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UNIFYING 
KNOWLEDGE WITH 
AI IN EXPLORATION 
OF UNIVERSE 
The year 2024 marked a pivotal moment in the advancement of artificial intelligence 

(AI) and machine learning (ML), particularly in their application to understanding 
the Universe. As we stand on the cusp of an era defined by the integration of AI 

into every facet of scientific inquiry, it is crucial to reflect on the profound implications 
and transformative potential of these technologies. The eight papers summarized in this 
collection were written in collaboration with ICRANet in 2024, especially the last two, 
illuminate a future where AI is not just a tool for data analysis but a partner in the quest to 
uncover the fundamental principles governing the cosmos. 

A recurring theme in these works is the remarkable versatility of modern AI systems. 
Unlike traditional approaches that rely on specialized models tailored for specific tasks, 
recent advancements demonstrate the power of unifying diverse scientific inquiries 
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under a single framework. The fine-tuning of large language models (LLMs) such as GPT 
exemplifies this trend. By training one model to perform tasks ranging from classifying 
celestial objects to inferring black hole parameters, researchers have shown that AI can 
generalize across domains, effectively serving as a universal instrument for astrophysical 
exploration. This ability is not just a technical milestone; it represents a philosophical shift 
in how we approach the integration of knowledge across disciplines. 

In particular, the reflections on “Can AI Understand Our Universe?” delve deeply into the 
nature of understanding itself. Two concepts—intuition and causality—are identified as 
cornerstones of human cognition. The authors argue that AI, through technologies like 
Transformers, chain-of-thought reasoning, and multimodal processing, is beginning to 
exhibit elements of these capabilities. While AI does not possess human-like intuition 
rooted in sensory experience, it develops what can be described as “super-intuition.” By 
processing vast and complex datasets, AI can identify patterns and relationships that are 
invisible to the human mind. For example, AI's ability to “perceive” high-dimensional data 
and integrate information across spatial and temporal scales offers a new lens for 
understanding phenomena ranging from gamma-ray bursts to cosmic evolution. 

Equally compelling is AI’s potential to uncover causality. The discussion highlights how AI 
employs statistical models and causal inference techniques to establish relationships that 
go beyond simple correlations. This capability is particularly significant in fields where 
human intuition often falls short, such as the analysis of complex systems or the 
exploration of phenomena at the edges of observational capabilities. AI’s ability to test 
counterfactuals and simulate alternative scenarios introduces a new dimension to 
scientific reasoning, enabling researchers to probe the mechanisms underlying observed 
events with unprecedented depth and rigor. 

The implications of these developments extend far beyond astrophysics. The 
methodologies pioneered in these studies are adaptable to other domains, including 
climate science, medicine, and economics. For instance, AI’s capacity to integrate 
multimodal data—from images and text to time-series measurements—positions it as a 
powerful tool for tackling global challenges that require interdisciplinary approaches. 
Moreover, the reflections on AI’s role in understanding underline its potential to bridge 
the gap between data-driven insights and theoretical frameworks, fostering a more 
holistic view of complex systems. 
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However, these advances also compel us to confront fundamental questions about the 
nature of understanding and the limits of machine cognition. While AI can process 
information at scales and speeds that far exceed human capabilities, it lacks the self-
awareness and contextual grounding that define human understanding. This raises 
critical ethical and philosophical considerations. As we increasingly rely on AI to guide 
scientific discovery, we must remain vigilant about the boundaries of its applicability and 
the risks of over-reliance on its outputs. 

In conclusion, the works presented here illustrate a trajectory of progress that is both 
inspiring and thought-provoking. They challenge us to rethink traditional approaches to 
scientific inquiry and embrace a future where AI and ML serve not merely as tools but as 
collaborators in the pursuit of knowledge. As we move forward, the integration of AI into 
scientific research will undoubtedly reshape our understanding of the Universe, revealing 
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various existing and future observations for a comprehensive understanding.



not only its hidden laws but also new questions that we have yet to imagine. The journey 
ahead is as much about exploring the potential of AI as it is about deepening our 
connection to the mysteries of existence. 

PAPERS 
 

1) FNet II: Spectral Classification of Quasars, Galaxies, Stars, and Broad 
Absorption Line (BAL) Quasars 

Summary: 
This study introduces FNet II, an enhanced version of a convolutional neural network 
(CNN) designed for spectral classification of astrophysical objects, including quasars, 
galaxies, stars, and BAL-quasars. The research focuses on data from the Sloan Digital Sky 
Survey (SDSS) Data Release 17 (DR17), a vast dataset comprising 1.4 million spectra. 

FNet II uses a ResNet-based architecture, allowing it to learn both local and global 
spectral patterns autonomously. Unlike other methods that rely on identifying specific 
spectral lines, FNet II employs a self-learning approach, making it adaptable to diverse 
and ambiguous spectra. The network achieves exceptionally high classification 
completeness: 

• Galaxies: 99.00% ± 0.20 

• Quasars: 98.50% ± 0.30 

• BAL-quasars: 99.00% ± 0.18 

• Stars: 98.80% ± 0.20 
FNet II's performance is comparable to or better than existing models such as QuasarNET, 
but with broader applicability due to its design. Its ability to classify spectra without 
predefining emission or absorption lines represents a significant innovation in automating 
large-scale astronomical surveys. 

Significance: 
This work addresses critical challenges in processing the massive datasets generated by 
modern astrophysical surveys. By automating spectral classification with high precision, 
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FNet II reduces the reliance on manual inspection, enabling faster and more scalable 
analysis of cosmic objects. The method demonstrates potential for use in upcoming 
large-scale surveys, contributing to our understanding of the Universe's structure and 
evolution. 

2) Advancing Gamma-Ray Burst Identification through Transfer Learning 
with Convolutional Neural Networks 

Summary: 
This study presents a novel approach to identifying Gamma-Ray Bursts (GRBs) using a 
combination of convolutional neural networks (CNNs), data augmentation, and transfer 
learning. GRBs are transient astronomical events that release immense energy in short 
durations, making their identification critical for multi-messenger and multi-band 
astrophysics. The study specifically uses data from the GECAM-B satellite and enhances 
identification by leveraging pre-trained models on a larger dataset from the Fermi/GBM 
satellite. 

Key components of the approach include: 

1. A multi-scale feature cross fusion module (MSCFM) integrated into a ResNet-
based CNN to improve feature extraction. 

2. Transfer learning to adapt models trained on Fermi/GBM data to the GECAM-B 
dataset, addressing challenges of limited labeled data. 

3. Data augmentation techniques that increase the diversity of training samples by 
creating synthetic GRB light curves with varying signal-to-noise ratios (SNRs). 

 
The model achieved: 

• Accuracy: 96.41% on the GECAM-B dataset 

• Precision: 91.07% 
• Recall: 89.47% 

Three previously unidentified GRBs were discovered in GECAM-B data, validated through 
manual analysis and comparison with the Fermi/GBM catalog. 
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Significance: 
This research advances the automation of GRB identification, a critical need for modern 
astrophysical studies. The transfer learning and data augmentation methods significantly 
enhance the adaptability of machine learning models to limited datasets. These 
innovations have the potential to improve multi-satellite GRB detection, enabling more 
efficient follow-up observations of afterglows, host galaxies, and other counterparts. The 
proposed methodology offers scalability to future missions, enhancing the study of high-
energy transients. 

3) Application of Machine Learning to Background Rejection in Very-high-
energy Gamma-Ray Observation 

Summary: 
This paper investigates the use of advanced machine learning (ML) techniques to 
distinguish between very-high-energy (VHE) gamma rays and the cosmic-ray hadronic 
background, a critical challenge in gamma-ray astronomy. Using simulated data from the 
LHAASO-KM2A experiment, the study evaluates various ML models for gamma/hadron 
classification across four energy ranges (10 to 10 eV). Eight high-level features were 
extracted from the simulation data, focusing on physical properties like the muonic and 
electromagnetic components of extensive air showers. 

Key methods include logistic regression, support vector machines, decision trees, 
random forests, XGBoost, CatBoost, deep neural networks (DNNs), and a stacking 
ensemble algorithm that combines these models. The stacking ensemble demonstrated 
the best overall performance, achieving high accuracy and recall across energy bins. 

Key Results: 

• The stacking ensemble model outperformed traditional methods and standalone 
ML models, particularly in lower energy ranges (10-10 eV). 

• Gamma/proton discrimination was quantified using metrics like accuracy (95.18% 
to 99.39%), F1 scores, and the Q-factor, with the stacking model achieving a Q-
factor of 21.19 in the highest energy bin. 
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• Feature importance analysis identified parameters such as NfiltM (filtered muon 
count) and Base (ratio of muons to electrons) as critical for classification. 

Significance: 
This work demonstrates that ensemble ML techniques can significantly enhance gamma-
ray background rejection. The results are crucial for future large-scale gamma-ray 
observatories, improving sensitivity and detection efficiency. Moreover, the 
interpretability of ML models provides insights into the underlying physical processes in 
cosmic-ray showers, contributing to multimessenger astrophysics. 

4) Deep Learning for Identification and Characterization of Ca II 
Absorption Lines: A Multitask Convolutional Neural Network Approach 

Summary: 
This study introduces a multitask convolutional neural network (CNN) for automating the 
detection and characterization of Ca II absorption lines in quasar spectra. These lines are 
crucial for understanding the distribution of gas, dust, and metals in galaxy halos and 
disks, as well as their evolution over cosmic time. Traditionally, identifying these lines 
required manual Gaussian fitting, which is time-consuming and prone to errors. 

The novel ResNet-CBAM model, which combines residual learning with an attention 
mechanism, demonstrated outstanding performance. The model achieved a classification 
accuracy of 99.77% and excelled in predicting equivalent width (EW) and full width at half 
maximum (FWHM), with average correlation coefficients of 0.98 and 0.85, respectively. By 
applying the model to Sloan Digital Sky Survey (SDSS) data (DR7 and DR12), it 
rediscovered 321 known Ca II absorbers and identified 381 new candidates, increasing 
the sample size significantly. 

Significance: 

• Efficiency and Precision: The model automates the detection process, 
significantly reducing manual inspection workloads while improving accuracy and 
reliability. 
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• Scientific Impact: The discovery of new Ca II absorbers enables more detailed 
studies of the interstellar medium, galaxy formation, and cosmic evolution. 

• Future Applications: The methodology can be adapted for other spectral features 
and integrated into next-generation astronomical surveys. 

This research showcases how deep learning can revolutionize the analysis of quasar 
absorption lines, paving the way for more efficient and scalable astrophysical 
investigations. 

5) Modeling Blazar Broadband Emission with Convolutional Neural 
Networks: Synchrotron Self-Compton Model 

Summary: 
This work introduces a novel approach to modeling the spectral energy distributions 
(SEDs) of blazars, a subclass of active galactic nuclei known for their high luminosity and 
variability. By employing convolutional neural networks (CNNs), the study overcomes the 
computational challenges associated with traditional methods, which are often resource-
intensive and time-consuming. 

The research demonstrates the effectiveness of CNNs in reproducing blazar spectra 
generated by sophisticated numerical models. The trained CNN provides fast and 
accurate predictions of SEDs, significantly reducing computational time to milliseconds. 
This allows for real-time fitting of multiwavelength observational data. The authors 
showcase the framework's capability by modeling the SEDs of two blazars, Mrk 421 and 
1ES 1959+650, and obtaining detailed posterior parameter distributions. 

Significance: 

1. Efficient Computational Framework: The CNN-based method addresses a 
longstanding challenge in astrophysics—balancing computational efficiency with 
the complexity required for accurate modeling. By drastically reducing the time 
needed for SED modeling, this approach opens new avenues for analyzing large 
datasets from blazar observations. 

2. Enhancing Multi-Messenger Astronomy: The framework lays the groundwork for 
incorporating additional astrophysical processes, including hadronic interactions 
and external Compton models. This paves the way for a more comprehensive 
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understanding of blazars within the context of multi-messenger astronomy, 
combining electromagnetic and neutrino observations. 

3. Accessible and Scalable Tools: The development of a publicly available interface, 
hosted by the Markarian Multiwavelength Data Center, will enable researchers to 
model SEDs interactively. This democratizes access to advanced modeling 
techniques, fostering broader collaboration and innovation in the field. 

 
Broader Implications: 
The work exemplifies how AI technologies can revolutionize the interpretation of complex 
astrophysical phenomena. By providing a scalable and accurate tool for modeling SEDs, 
this study enhances our ability to investigate the mechanisms powering some of the 
Universe’s most energetic objects. The methodology is expected to have applications 
beyond blazars, including gamma-ray bursts and kilonovae, underscoring its versatility in 
multiwavelength and time-domain astronomy. 

6) Modeling Blazar Broadband Emission with Convolutional Neural 
Networks: External Compton Model 

Summary: 
This paper builds upon prior work by extending a convolutional neural network (CNN)-
based approach for modeling the spectral energy distributions (SEDs) of blazars to 
include the External Inverse Compton (EIC) mechanism. The EIC model accounts for 
interactions between relativistic electrons in the jet and external photon fields originating 
from the accretion disk, broad-line region, and dusty torus, explaining the high-energy 
emission in blazars. This is a significant step forward, as EIC modeling involves more 
parameters and greater spectral diversity compared to previous synchrotron self-
Compton (SSC) models. 

The CNN was trained on a large dataset of numerically simulated spectra and 
demonstrated high accuracy in reproducing the SEDs. It was applied to two well-known 
flat-spectrum radio quasars (FSRQs), 3C 454.3 and CTA 102, during their flaring states. 
This enabled detailed modeling of their broadband emissions and derivation of posterior 
parameter distributions. 
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Significance: 

1. Efficiency and Scalability: The CNN dramatically reduces computation time for 
SED modeling, allowing complex radiative processes to be modeled in seconds 
instead of months. This enables real-time analysis of large datasets from modern 
multiwavelength astronomical surveys. 

2. Comprehensive Framework: By incorporating external photon fields, the model 
captures a more complete picture of the radiative mechanisms in FSRQs. It enables 
comparisons between SSC and EIC scenarios, offering insights into the location 
and physical properties of the emission regions in blazar jets. 

3. Advancing Multi-Messenger Astronomy: The methodology is adaptable for future 
studies of lepto-hadronic models, including interactions that produce high-energy 
neutrinos, bridging electromagnetic and neutrino observations in multi-messenger 
astrophysics. 

4. Public Access: The model is made publicly available through the Markarian 
Multiwavelength Data Center (MMDC), promoting broader access to advanced 
tools for the scientific community. 

Broader Impact: 
This study highlights the growing role of AI in addressing computational bottlenecks in 
astrophysics. The integration of CNNs with complex numerical models provides a 
powerful framework for exploring the physics of relativistic jets and the environments 
around supermassive black holes. It exemplifies how AI can facilitate the interpretation of 
increasingly large and complex astronomical datasets, contributing to a deeper 
understanding of the Universe’s most energetic phenomena. 

7) Can AI Understand Our Universe? Fine-Tuning GPT with Astrophysical 
Data 

Summary: 
This paper explores the groundbreaking potential of artificial intelligence (AI) in unifying 
diverse astrophysical tasks under a single framework. By fine-tuning GPT, a large 
language model, with data from galaxies, quasars, gamma-ray bursts, and black holes, 
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the study demonstrates the model’s ability to interpret, classify, and extract meaningful 
information from different types of astrophysical phenomena. Remarkably, one model 
proves capable of handling tasks as varied as object classification, redshift estimation, 
gamma-ray burst categorization, and black hole parameter inference. 

Significance: 

1. Versatility in Understanding: The ability of a single AI model to process and 
interpret multiple types of astronomical data underscores a significant leap in how 
science can approach complex datasets. This adaptability mirrors the way humans 
apply universal principles to diverse problems, hinting at AI's potential to 
synthesize insights across different domains. 

2. Discovery of Universal Laws: By identifying patterns and relationships in vast 
datasets, the AI model offers a path to uncovering deeper, universal principles 
governing the cosmos. This work suggests that AI may one day assist in the 
discovery of laws that underpin seemingly disparate phenomena, paving the way 
for a more unified understanding of the Universe. 

3. Future of Scientific Exploration: The study exemplifies how AI could become an 
indispensable tool for next-generation scientific facilities. With their ever-
expanding data volumes, such tools will be essential for analyzing information at a 
scale and speed far beyond human capacity, unlocking discoveries that were 
previously inaccessible. 

Broader Meaning: 
This research represents a shift in how humanity approaches scientific inquiry. By 
demonstrating that one model can integrate and understand diverse astrophysical 
datasets, it signals the potential for AI to go beyond data analysis to uncovering the 
fundamental laws of nature. The study not only advances our ability to explore the 
Universe but also inspires a future where AI serves as a collaborator in revealing the 
interconnectedness of all cosmic phenomena. 
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8) Reflections on "Can AI Understand Our Universe? 

Summary: 
This article extends the discussion on whether artificial intelligence (AI), particularly large 
language models like GPT, can achieve a level of "understanding" that goes beyond data 
processing to deducing the fundamental principles of our Universe. It focuses on two key 
aspects of understanding—intuition and causality—and explores how current AI 
technologies, such as Transformers, chain-of-thought reasoning, and multimodal 
processing, contribute to this pursuit. 

The author highlights how a single AI model can unify tasks across diverse astrophysical 
datasets, such as classifying celestial objects, estimating quasar redshifts, and inferring 
black hole parameters. This ability to generalize across domains signifies a departure 
from traditional approaches that rely on task-specific models. 

Significance: 

1. AI as a Tool for Unified Understanding: The potential of one model to analyze 
diverse data types and uncover relationships offers a path toward discovering 
universal principles that govern the cosmos. This integration points to a future 
where AI might bridge gaps between seemingly unrelated scientific phenomena. 

2. Expanding Human Perception: AI technologies extend beyond human sensory 
and cognitive limitations. By processing high-dimensional data, perceiving across 
scales, and synthesizing multimodal information, AI can identify patterns and 
causal relationships inaccessible to humans. This capability enables new insights 
into complex systems, from molecular biology to cosmic evolution. 

3. Advancing Scientific Exploration: The reflections underscore the transformative 
role AI will play in the era of large-scale, multidisciplinary data. As observational 
datasets grow exponentially, AI's ability to integrate and analyze this information 
efficiently will accelerate discovery and deepen our understanding of the Universe. 

Broader Implications: 
The author posits that AI's "understanding" is not merely about replicating human 
cognition but developing unique perspectives informed by its strengths—such as super-
intuition and superior causal reasoning. These abilities could lead AI to propose novel 
hypotheses, reveal hidden laws of nature, and even reshape our scientific paradigms. 
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However, the piece also emphasizes the philosophical and technical challenges ahead. 
AI's current limitations, such as its dependence on extensive training data and lack of 
self-awareness, suggest that achieving human-level understanding—or surpassing it—
remains a long-term goal. 
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