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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman
solution that describes the gravitational and electromagnetic fields of a rotat-
ing charged mass. In fact, it is widely believed that this metric can be used
only in the case of black holes because its possesses a limited number of mul-
tipole moments, namely, the monopoles of mass and charge and the angular
momentum dipole. All the higher multipole moments can be expressed in
terms of these three independent moments. For instance, the quadrupole
moment is proportional to the angular momentum dipole, which, in turn,
contains the mass monopole.

Astrophysical compact objects, however, are characterized by shape de-
formations that can be described only by means of higher independent mo-
ments. For instance, even a small deviation from spherical symmetry would
generate a quadrupole moment that should be independent of the rotational
properties of the body. Also, the moment of inertia of the system is expected
to be related to the a rotational quadrupole moment. On the other hand, the
rotation of a body is also expected to induce, in general, shape deformations
that should be taken into account when considering the general set of mul-
tipole moments that are necessary for describing the corresponding gravita-
tional field. Therefore, we expect that a general treatment of the gravitational
field of compact objects implies the introduction of two independent sets of
multipole moments, one related to the distribution of mass and its shape, and
the second one associated to the moment of inertia and other rotational prop-
erties of the body. Furthermore, if the constituent particles of the mass distri-
bution are endowed with electric charge, an additional set of electromagnetic
multipole moments should be considered.

It follows that to attack the problem of describing the gravitational and
electromagnetic fields of an arbitrary distribution of charged masses, it is
necessary to derive and investigate new exact solutions of Einstein-Maxwell
equations, which posses an infinite set of gravitational and electromagnetic
multipole moments and contain the Kerr-Newman solution as special case.

We consider the circular motion of test particles in the gravitational field
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2 Brief description

of a rotating deformed object described by the Hartle-Thorne metric. This
metric represents an approximate solution to the vacuum Einstein field equa-
tions, accurate to second order in the angular momentum J and to first order
in the mass quadrupole moment Q. We calculate the orbital parameters of
neutral test particles on circular orbits (in accretion disks) such as angular ve-
locity, Ω, total energy, E, angular momentum, L, and radius of the innermost
stable circular orbit, RISCO, as functions of the total mass, M, spin parameter,
j = J/M2 and quadrupole parameter, q = Q/M3, of the source. We use the
Novikov-Thorne-Page thin accretion disk model to investigate the character-
istics of the disk. In particular, we analyze in detail the radiative flux, differ-
ential luminosity, and spectral luminosity of the accretion disk, which are the
quantities that can be measured experimentally. We compare our results with
those obtained in the literature for the Schwarzschild and Kerr metrics, and
the q-metric. It turns out that the Hartle-Thorne metric and the Kerr metric
lead to similar results for the predicted flux and the differential and spectral
luminosities, whereas the q-metric predicts different values. We compare the
predicted values of M, j, and q with those of realistic neutron star models.
Furthermore, we compare the values of RISCO with the static and rotating
radii of neutron stars.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only
for general relativity itself, but also for the very fundamentals of physics.
It assumes this position as being the most physically relevant rotating gen-
eralization of the static Schwarzschild geometry. Its charged counterpart,
the Kerr-Newman solution, representing the exterior gravitational and elec-
tromagnetic fields of a charged rotating object, is an exact solution of the
Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt − a sin2 θdφ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dφ − adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2 dr2 − (r2 + a2 cos2 θ)dθ2 , (3.0.1)

where M is the total mass of the object, a = J/M is the specific angular mo-
mentum, and Q is the electric charge. In this particular coordinate system,
the metric functions do not depend on the coordinates t and ϕ, indicating the
existence of two Killing vector fields ξ I = ∂t and ξ I I = ∂φ which represent
the properties of stationarity and axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is
surrounded by two horizons situated at a distance

r± = M ±
√

M2 − a2 − Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singular-
ity is present which, however, cannot be observed by any observer situated
outside the exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no
horizons are present and the Kerr–Newman spacetime represents the exterior
field of a naked singularity.
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3 Introduction

Despite of its fundamental importance in general relativity, and its theo-
retical and mathematical interest, this solution has not been especially useful
for describing astrophysical phenomena, first of all, because observed astro-
physical objects do not possess an appreciable net electric charge. Further-
more, the limiting Kerr metric takes into account the mass and the rotation,
but does not consider the moment of inertia of the object. For astrophysi-
cal applications it is, therefore, necessary to use more general solutions with
higher multipole moments which are due not only to the rotation of the body
but also to its shape. This means that even in the limiting case of a static
spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum
solution

In general relativity, stationary axisymmetric solutions of Einstein’s equa-
tions (1) play a crucial role for the description of the gravitational field of
astrophysical objects. In particular, the black hole solutions and their gener-
alizations that include Maxwell fields are contained within this class.

This type of exact solutions has been the subject of intensive research dur-
ing the past few decades. In particular, the number of know exact solutions
drastically increased after Ernst (2) discovered an elegant representation of
the field equations that made it possible to search for their symmetries. These
studies lead finally to the development of solution generating techniques (1)
which allow us to find new solutions, starting from a given seed solution. In
particular, solutions with an arbitrary number of multipole moments for the
mass and angular momentum were derived in (3) and used to describe the
gravitational field of rotating axially symmetric distributions of mass.

The first analysis of stationary axially symmetric gravitational fields was
carried out by Weyl (4) in 1917, soon after the formulation of general rela-
tivity. In particular, Weyl discovered that in the static limit the main part of
the vacuum field equations reduces to a single linear differential equation.
The corresponding general solution can be written in cylindrical coordinates
as an infinite sum with arbitrary constant coefficients. A particular choice of
the coefficients leads to the subset of asymptotically flat solutions which is
the most interesting from a physical point of view. In this section we review
the main properties of stationary axisymmetric gravitational fields. In par-
ticular, we show explicitly that the main field equations in vacuum can be
represented as the equations of a nonlinear sigma model in which the base
space is the 4-dimensional spacetime and the target space is a 2-dimensional
conformally Euclidean space.
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4 The general static vacuum solution

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, sta-
tionary axisymmetric gravitational fields are usually described in cylindric
coordinates (t, ρ, z, φ). Stationarity implies that t can be chosen as the time
coordinate and the metric does not depend on time, i.e. ∂gµν/∂t = 0. Con-
sequently, the corresponding timelike Killing vector has the components δ

µ
t .

A second Killing vector field is associated to the axial symmetry with respect
to the axis ρ = 0. Then, choosing φ as the azimuthal angle, the metric satis-
fies the conditions ∂gµν/∂φ = 0, and the components of the corresponding
spacelike Killing vector are δ

µ
φ.

Using further the properties of stationarity and axial symmetry, together
with the vacuum field equations, for a general metric of the form gµν =
gµν(ρ, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
(4; 5; 6)

ds2 = f (dt − ωdφ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dφ2

]
, (4.1.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements
which include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.1.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the
following set of partial differential equations

1
ρ

∂ρ(ρ∂ρ f ) + ∂2
z f +

1
f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.1.3)

1
ρ

∂ρ(ρ∂ρΩ) + ∂2
zΩ − 2

f
(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.1.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.1.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.1.6)

It is clear that the field equations for γ can be integrated by quadratures,
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4.2 Static solution

once f and Ω are known. For this reason, the equations (4.1.3) and (4.1.4)
for f and Ω are usually considered as the main field equations for stationary
axisymmetric vacuum gravitational fields. In the following subsections we
will focus on the analysis of the main field equations, only. It is interesting
to mention that this set of equations can be geometrically interpreted in the
context of nonlinear sigma models (17).

Let us consider the special case of static axisymmetric fields. This corre-
sponds to metrics which, apart from being axially symmetric and indepen-
dent of the time coordinate, are invariant with respect to the transformation
φ → −φ (i.e. rotations with respect to the axis of symmetry are not allowed).
Consequently, the corresponding line element is given by (4.1.1) with ω = 0,
and the field equations can be written as

∂2
ρψ +

1
ρ

∂ρψ + ∂2
zψ = 0 , f = exp(2ψ) , (4.1.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.1.8)

We see that the main field equation (4.1.7) corresponds to the linear Laplace
equation for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand addi-
tionally asymptotic flatness, we obtain the Weyl solution which can be writ-
ten as (4; 1)

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (4.2.1)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the
Legendre polynomials of degree n. The expression for the metric function γ
can be calculated by quadratures by using the set of first order differential
equations (4.1.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (4.2.2)
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4 The general static vacuum solution

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solution of this class. In particular,
one of the most interesting special solutions which is Schwarzschild’s spher-
ically symmetric black hole spacetime must be contained in this class. To see
this, we must choose the constants an in such a way that the infinite sum
(4.2.1) converges to the Schwarzschild solution in cylindric coordinates. But,
or course, this representation is not the most appropriate to analyze the inter-
esting physical properties of Schwarzschild’s metric.

In fact, it turns out that to investigate the properties of solutions with mul-
tipole moments it is more convenient to use prolate spheroidal coordinates
(t, x, y, φ) in which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dφ2

]
where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.2.3)

r2
± = ρ2 + (z ± σ)2 , σ = const , (4.2.4)

and the metric functions are f , ω, and γ depend on x and y, only. In this
coordinate system, the general static solution which is also asymptotically
flat can be expressed as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre func-
tions of second kind. In particular,

P0 = 1, P1 = y, P2 =
1
2
(3y2 − 1) , ...

Q0 =
1
2

ln
x + 1
x − 1

, Q1 =
1
2

x ln
x + 1
x − 1

− 1 ,

Q2 =
1
2
(3x2 − 1) ln

x + 1
x − 1

− 3
2

x , ...
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4.2 Static solution

The corresponding function γ can be calculated by quadratures and its gen-
eral expression has been explicitly derived in (3). The most important special
cases contained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1
2

ln
x2 − 1
x2 − y2 ,

and the Erez-Rosen metric (9)

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1
2

ln
x2 − 1
x2 − y2 + ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters
that determines an infinite set of mass multipole moments. The parameters
qn represent the deviation of the mass distribution from the ideal spherical
symmetry. It is interesting to mention that if demand the additional symme-
try with respect to the equatorial plane θ = π/2, it can be shown that all odd
parameters q2k+1, k = 0, 1, ... should vanish. This is an additional symmetry
condition that reduces the form of the resulting metric.
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5 Stationary generalization

The solution generating techniques (12) can be applied, in particular, to any
static seed solution in order to obtain the corresponding stationary general-
ization. One of the most powerful techniques is the inverse method (ISM)
developed by Belinski and Zakharov (13). We used a particular case of the
ISM, which is known as the Hoenselaers–Kinnersley-Xanthopoulos (HKX)
transformation to derive the stationary generalization of the general static
solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω ̸= 0) with line element

ds2 = f (dt − ωdφ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dφ2

]
it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1 − E
1 + E

,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1 − y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmet-
ric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx]x + [(1 − y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1 − y2)ξ2
y] .
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5 Stationary generalization

This equation is invariant with respect to the transformation x ↔ y. Then,
since the particular solution

ξ =
1
x
→ Ω = 0 → ω = 0 → γ =

1
2

ln
x2 − 1
x2 − y2

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact
solution. Furthermore, if we take the linear combination ξ−1 = c1x + c2y and
introduce it into the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a
M

y , σ =
√

M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.

In the case of the Einstein-Maxwell theory, the main field equations can be
expressed as

(ξξ∗ − FF∗ − 1)∇2ξ = 2(ξ∗∇ξ − F∗∇F)∇ξ ,

(ξξ∗ − FF∗ − 1)∇2F = 2(ξ∗∇ξ − F∗∇F)∇F

where ∇ represents the gradient operator in prolate spheroidal coordinates.
Moreover, the gravitational potential ξ and the electromagnetic F Ernst po-
tential are defined as

ξ =
1 − f − iΩ
1 + f + iΩ

, F = 2
Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromag-
netic potentials At and Aφ One can show that if ξ0 is a vacuum solution, then
the new potential

ξ = ξ0

√
1 − e2

represents a solution of the Einstein-Maxwell equations with effective elec-
tric charge e. This transformation is known in the literature as the Harrison
transformation (10). Accordingly, the Kerr–Newman solution in this repre-
sentation acquires the simple form

ξ =

√
1 − e2

σ
M x + i a

M y
, e =

Q
M

, σ =
√

M2 − a2 − Q2 .
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5.2 Representation as a nonlinear sigma model

In this way, it is very easy to generalize any vacuum solution to include the
case of electric charge. More general transformations of this type can be used
in order to generate solutions with any desired set of gravitational and elec-
tromagnetic multipole moments (3).

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let M be coordinatized by xa, and N by Xµ, so
that the metrics on M and N can be, in general, smooth functions of the cor-
responding coordinates, i.e., γ = γ(x) and G = G(X). A harmonic map is a
smooth map X : M → N, or in coordinates X : x 7−→ X so that X becomes
a function of x, and the X’s satisfy the motion equations following from the
action (14)

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.2.1)

which sometimes is called the “energy” of the harmonic map X. The straight-
forward variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν ∂bXλ = 0 , (5.2.2)

where Γµ
νλ are the Christoffel symbols associated to the metric Gµν of the

target space N. If Gµν is a flat metric, one can choose Cartesian-like coor-
dinates such that Gµν = ηµν = diag(±1, ...,±1), the motion equations be-
come linear, and the corresponding sigma model is linear. This is exactly
the case of a bosonic string on a flat background in which the base space is
the 2-dimensional string world-sheet. In this case the action (5.2.1) is usually
referred to as the Polyakov action (16).

Consider now the case in which the base space M is a stationary axisym-
metric spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-
Papapetrou metric (4.1.1), i.e.

γab =


f 0 0 − f ω

0 − f−1e2k 0 0
0 0 − f−1e2k 0

− f ω 0 0 f ω2 − ρ2 f−1

 . (5.2.3)
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5 Stationary generalization

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν,
µ, ν = 1, 2, and let the coordinates on N be Xµ = ( f , Ω). Then, it is straight-
forward to show that the action (5.2.1) becomes

S =
∫

L dtdφdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
,

(5.2.4)
and the corresponding motion equations (5.2.2) are identical to the main field
equations (4.1.3) and (4.1.4).

Notice that the field equations can also be obtained from (5.2.4) by a direct
variation with respect to f and Ω. This interesting result was obtained orig-
inally by Ernst (2), and is the starting point of what today is known as the
Ernst representation of the field equations.

The above result shows that stationary axisymmetric gravitational fields
can be described as a (4 → 2)−nonlinear harmonic map, where the base
space is the spacetime of the gravitational field and the target space corre-
sponds to a 2-dimensional conformally Euclidean space. A further analy-
sis of the target space shows that it can be interpreted as the quotient space
SL(2, R)/SO(2), and the Lagrangian (5.2.4) can be written explicitly (17) in
terms of the generators of the Lie group SL(2, R). Harmonic maps in which
the target space is a quotient space are usually known as nonlinear sigma
models (14).

The form of the Lagrangian (5.2.4) with two gravitational field variables,
f and Ω, depending on two coordinates, ρ and z, suggests a representation
as a harmonic map with a 2-dimensional base space. In string theory, this
is an important fact that allows one to use the conformal invariance of the
base space metric to find an adequate representation for the set of classical
solutions. This, in turn, facilitates the application of the canonical quantiza-
tion procedure. Unfortunately, this is not possible for the Lagrangian (5.2.4).
Indeed, if we consider γab as a 2-dimensional metric that depends on the pa-
rameters ρ and z, the diagonal form of the Lagrangian (5.2.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front

of the Lagrangian. Therefore, the reduced gravitational Lagrangian (5.2.4)
cannot be interpreted as corresponding to a (2 → n)-harmonic map. Never-
theless, we will show in the next section that a modification of the definition
of harmonic maps allows us to “absorb” the unpleasant factor ρ in the met-
ric of the target space, and to use all the advantages of a 2-dimensional base
space.
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5.3 Representation as a generalized harmonic map

Notice that the representation of stationary fields as a nonlinear sigma
model becomes degenerate in the limiting case of static fields. Indeed, the
underlying geometric structure of the SL(2, R)/SO(2) nonlinear sigma mod-
els requires that the target space be 2-dimensional, a condition which is not
satisfied by static fields. We will see below that by using a dimensional exten-
sion of generalized sigma models, it will be possible to treat the special static
case, without affecting the underlying geometric structure.

The analysis performed in this section for stationary axisymmetric fields
can be generalized to include any gravitational field containing two com-
muting Killing vector fields (1). This is due to the fact that for this class of
gravitational fields it is always possible to find the corresponding Ernst rep-
resentation in which the Lagrangian contains only two gravitational variables
which depend on only two spacetime coordinates.

5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let xa and Xµ be coordinates on M and N, re-
spectively. This coordinatization implies that in general the metrics γ and
G become functions of the corresponding coordinates. Let us assume that
not only γ but also G can explicitly depend on the coordinates xa, i.e. let
γ = γ(x) and G = G(X, x). This simple assumption is the main aspect of our
generalization which, as we will see, lead to new and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized har-
monic map if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 ,

(5.3.1)
which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.2)

with respect to the fields Xµ. Here the Christoffel symbols, determined by
the metric Gµν, are calculated in the standard manner, without considering
the explicit dependence on x. Notice that the new ingredient in this general-
ized definition of harmonic maps, i.e., the term Gµν(X, x) in the Lagrangian
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density implies that we are taking into account the “interaction” between the
base space M and the target space N. This interaction leads to an extra term
in the motion equations, as can be seen in (5.3.1). It turns out that this inter-
action is the result of the effective presence of the gravitational field.

Notice that the limiting case of generalized linear harmonic maps is much
more complicated than in the standard case. Indeed, for the motion equations
(5.3.1) to become linear it is necessary that the conditions

γab(Γµ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.3.3)

be satisfied. One could search for a solution in which each term vanishes sep-
arately. The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which
would imply Γµ

νλ = 0, is not allowed, because it would contradict the as-
sumption ∂bGµν ̸= 0. Nevertheless, a flat background metric in curvilinear
coordinates could be chosen such that the assumption Gµλ∂bGµν = 0 is ful-
filled, but in this case Γµ

νλ ̸= 0 and (5.3.3) cannot be satisfied. In the general
case of a curved target metric, conditions (5.3.3) represent a system of m first
order nonlinear partial differential equations for Gµν. Solutions to this system
would represent linear generalized harmonic maps. The complexity of this
system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.3.2) includes an inter-
action between the base space N and the target space M, reflected on the
fact that Gµν depends explicitly on the coordinates of the base space. Clearly,
this interaction must affect the conservation laws of the physical systems we
attempt to describe by means of generalized harmonic maps. To see this ex-
plicitly we calculate the covariant derivative of the generalized Lagrangian
density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.4)

and replace in the result the corresponding motion equations (5.3.1). Then,
the final result can be written as

∇bT̃ b
a = − ∂L

∂xa (5.3.5)
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where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.3.6)
The standard conservation law is recovered only when the Lagrangian does
not depend explicitly on the coordinates of the base space. Even if we choose
a flat base space γab = ηab, the explicit dependence of the metric of the target
space Gµν(X, x) on x generates a term that violates the standard conservation
law. This term is due to the interaction between the base space and the target
space which, consequently, is one of the main characteristics of the general-
ized harmonic maps introduced in this work.

An alternative and more general definition of the energy-momentum ten-
sor is by means of the variation of the Lagrangian density with respect to the
metric of the base space, i.e.

Tab =
δL

δγab . (5.3.7)

A straightforward computation shows that for the action under consideration
here we have that T̃ab = 2Tab so that the generalized conservation law (5.3.5)
can be written as

∇bT b
a +

1
2

∂L

∂xa = 0 . (5.3.8)

For a given metric on the base space, this represents in general a system of m
differential equations for the “fields” Xµ which must be satisfied “on-shell”.

If the base space is 2-dimensional, we can use a reparametrization of x to
choose a conformally flat metric, and the invariance of the Lagrangian den-
sity under arbitrary Weyl transformations to show that the energy-momentum
tensor is traceless, T a

a = 0.
In Section 5.1 we described stationary, axially symmetric, gravitational fields

as a (4 → 2)−nonlinear sigma model. There it was pointed out the conve-
nience of having a 2-dimensional base space in analogy with string theory.
Now we will show that this can be done by using the generalized harmonic
maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the
coordinates on the base space M, and Xµ = ( f , Ω) the coordinates on the
target space N. In the base space we choose a flat metric and in the target
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space a conformally flat metric, i.e.

γab = δab and Gµν =
ρ

2 f 2 δµν (a, b = 1, 2; µ, ν = 1, 2). (5.3.9)

A straightforward computation shows that the generalized Lagrangian (5.3.4)
coincides with the Lagrangian (5.2.4) for stationary axisymetric fields, and
that the equations of motion (5.3.1) generate the main field equations (4.1.3)
and (4.1.4).

For the sake of completeness we calculate the components of the energy-
momentum tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.3.10)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.3.11)

This tensor is traceless due to the fact that the base space is 2-dimensional. It
satisfies the generalized conservation law (5.3.8) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1
2

∂L

∂ρ
= 0 , (5.3.12)

dTρz

dρ
−

dTρρ

dz
= 0 . (5.3.13)

Incidentally, the last equation coincides with the integrability condition for
the metric function k, which is identically satisfied by virtue of the main field
equations. In fact, as can be seen from Eqs.(4.1.5,4.1.6) and (5.3.10,5.3.11),
the components of the energy-momentum tensor satisfy the relationships
Tρρ = ∂ρk and Tρz = ∂zk, so that the conservation law (5.3.13) becomes an
identity. Although we have eliminated from the starting Lagrangian (5.2.4)
the variable k by applying a Legendre transformation on the Einstein-Hilbert
Lagrangian (see (17)) for this type of gravitational fields, the formalism of
generalized harmonic maps seems to retain the information about k at the
level of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be
represented as a (2 → 2)−generalized harmonic map with metrics given as
in (5.3.9). It is also possible to interpret the generalized harmonic map given
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above as a generalized string model. Although the metric of the base space
M is Euclidean, we can apply a Wick rotation τ = iρ to obtain a Minkowski-
like structure on M. Then, M represents the world-sheet of a bosonic string
in which τ is measures the time and z is the parameter along the string. The
string is “embedded” in the target space N whose metric is conformally flat
and explicitly depends on the time parameter τ. We will see in the next sec-
tion that this embedding becomes more plausible when the target space is
subject to a dimensional extension. In the present example, it is necessary to
apply a Wick rotation in order to interpret the base space as a string world-
sheet. This is due to the fact that both coordinates ρ and z are spatial coordi-
nates. However, this can be avoided by considering other classes of gravita-
tional fields with timelike Killing vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmet-
ric fields are the asymptotically flat solutions. Asymptotic flatness imposes
conditions on the metric functions which in the cylindrical coordinates used
here can be formulated in the form

lim
xa→∞

f = 1 + O
(

1
xa

)
, lim

xa→∞
ω = c1 + O

(
1
xa

)
, lim

xa→∞
Ω = O

(
1
xa

)
(5.3.14)

where c1 is an arbitrary real constant which can be set to zero by appropri-
ately choosing the angular coordinate φ. If we choose the domain of the
spatial coordinates as ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic
flatness conditions it follows that the coordinates of the target space N satisfy
the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.3.15)

where the dot stands for a derivative with respect to ρ and the prime rep-
resents derivation with respect to z. These relationships are known in string
theory (16) as the Dirichlet and Neumann boundary conditions for open strings,
respectively, with the extreme points situated at infinity. We thus conclude
that if we assume ρ as a “time” parameter for stationary axisymmetric grav-
itational fields, an asymptotically flat solution corresponds to an open string
with endpoints attached to D−branes situated at plus and minus infinity in
the z−direction.
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5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target
space N, and study the conditions under which this dimensional extension
does not affect the field equations of the gravitational field. Consider an
(m → D)−generalized harmonic map. As before we denote by {xa} the
coordinates on M. Let {Xµ, Xα} with µ = 1, 2 and α = 3, 4, ..., D be the
coordinates on N. The metric structure on M is again γ = γ(x), whereas
the metric on N can in general depend on all coordinates of M and N, i.e.
G = G(Xµ, Xα, xa). The general structure of the corresponding field equa-
tions is as given in (5.3.1). They can be divided into one set of equations for
Xµ and one set of equations for Xα. According to the results of the last sec-
tion, the class of gravitational fields under consideration can be represented
as a (2 → 2)−generalized harmonic map so that we can assume that the
main gravitational variables are contained in the coordinates Xµ of the target
space. Then, the gravitational sector of the target space will be contained in
the components Gµν (µ, ν = 1, 2) of the metric, whereas the components Gαβ

(α, β = 3, 4, ..., D) represent the sector of the dimensional extension.
Clearly, the set of differential equations for Xµ also contains the variables

Xα and its derivatives ∂aXα. For the gravitational field equations to remain
unaffected by this dimensional extension we demand the vanishing of all the
terms containing Xα and its derivatives in the equations for Xµ. It is easy to
show that this can be achieved by imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.4.1)

That is to say that the gravitational sector must remain completely invariant
under a dimensional extension, and the additional sector cannot depend on
the gravitational variables, i.e., Gαβ = Gαβ(Xγ, xa), γ = 3, 4, ..., D. Further-
more, the variables Xα must satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 .

(5.4.2)
This shows that any given (2 → 2)−generalized map can be extended, with-
out affecting the field equations, to a (2 → D)−generalized harmonic map.
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It is worth mentioning that the fact that the target space N becomes split in
two separate parts implies that the energy-momentum tensor Tab = δL/δγab

separates into one part belonging to the gravitational sector and a second one
following from the dimensional extension, i.e. Tab = Tab(Xµ, x) + Tab(Xα, x).
The generalized conservation law as given in (5.3.8) is satisfied by the sum of
both parts.

Consider the example of stationary axisymmetric fields given the metrics
(5.3.9). Taking into account the conditions (5.4.1), after a dimensional exten-
sion the metric of the target space becomes

G =


ρ

2 f 2 0 0 · · · 0
0 ρ

2 f 2 0 · · · 0
0 0 G33(Xα, x) · · · G3D(Xα, x)
. . · · · · · · · · ·
0 0 GD3(Xα, x) · · · GDD(Xα, x)

 . (5.4.3)

Clearly, to avoid that this metric becomes degenerate we must demand that
det(Gαβ) ̸= 0, a condition that can be satisfied in view of the arbitrariness
of the components of the metric. With the extended metric, the Lagrangian
density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ , (5.4.4)

which nevertheless does not affect the field equations for the gravitational
variables f and Ω. On the other hand, the new fields must be solutions of the
extra field equations(

∂2
ρ + ∂2

z

)
Xα + Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
(5.4.5)

+Gαγ
(

∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 . (5.4.6)

An interesting special case of the dimensional extension is the one in which
the extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with addi-
tional fields Xα given as arbitrary harmonic functions. This choice opens the
possibility of introducing a “time” coordinate as one of the additional dimen-
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sions, an issue that could be helpful when dealing with the interpretation of
gravitational fields in this new representation.

The dimensional extension finds an interesting application in the case of
static axisymmetric gravitational fields. As mentioned in Section 4.1, these
fields are obtained from the general stationary fields in the limiting case Ω =
0 (or equivalently, ω = 0). If we consider the representation as an SL(2, R)/SO(2)
nonlinear sigma model or as a (2 → 2)−generalized harmonic map, we see
immediately that the limit Ω = 0 is not allowed because the target space
becomes 1-dimensional and the underlying metric is undefined. To avoid
this degeneracy, we first apply a dimensional extension and only then calcu-
late the limiting case Ω = 0. In the most simple case of an extension with
Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the met-
rics γab = δab and

G =

(
ρ

2 f 2 0
0 1

)
(5.4.7)

where the additional dimension is coordinatized by an arbitrary harmonic
function which does not affect the field equations of the only remaining grav-
itational variable f . This scheme represents an alternative method for explor-
ing static fields on nondegenerate target spaces. Clearly, this scheme can be
applied to the case of gravitational fields possessing two hypersurface or-
thogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as
a string “living” in a D-dimensional target space N. The string world-sheet is
parametrized by the coordinates ρ and z. The gravitational sector of the tar-
get space depends explicitly on the metric functions f and Ω and on the pa-
rameter ρ of the string world-sheet. The sector corresponding to the dimen-
sional extension can be chosen as a (D − 2)−dimensional Minkowski space-
time with time parameter τ. Then, the string world-sheet is a 2-dimensional
flat hypersurface which is “frozen” along the time τ.

5.5 The general solution

If we take as seed metric the general static solution, the application of two
HXK transformations generates a stationary solution with an infinite number
of gravitoelectric and gravitomagnetic multipole moments. The HKX method
is applied at the level of the Ernst potential from which the metric functions
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can be calculated by using the definition of the Ernst potential E and the
field equations for γ. The resulting expressions in the general case are quite
cumbersome. We quote here only the special case in which only an arbitrary
quadrupole parameter is present. In this case, the result can be written as

f =
R
L

e−2qP2Q2 ,

ω = −2a − 2σ
M

R
e2qP2Q2 ,

e2γ =
1
4

(
1 +

M
σ

)2 R
x2 − y2 e2γ̂ , (5.5.1)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1 − y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1 − α2e2q(δ++δ−))b+ ,

γ̂ =
1
2
(1 + q)2 ln

x2 − 1
x2 − y2 + 2q(1 − P2)Q1 + q2(1 − P2)

[
(1 + P2)(Q2

1 − Q2
2)

+
1
2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 − Q′
2)

]
. (5.5.2)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

a± = x(1 − α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,
b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1
2

ln
(x ± y)2

x2 − 1
+

3
2
(1 − y2 ∓ xy) +

3
4
[x(1 − y2)∓ y(x2 − 1)] ln

x − 1
x + 1

,

the quantity α being a constant

α =
σ − M

a
, σ =

√
M2 − a2 . (5.5.3)

The physical significance of the parameters entering this metric can be clar-
ified by calculating the Geroch-Hansen (18; 19) multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.5.4)
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M0 = M , M2 = −Ma2 +
2
15

qM3
(

1 − a2

M2

)3/2

, ... (5.5.5)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1 − a2

M2

)3/2

, .... (5.5.6)

The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn)
multipole moments is a consequence of the symmetry with respect to the
equatorial plane. From the above expressions we see that M is the total mass
of the body, a represents the specific angular momentum, and q is related to
the deviation from spherical symmetry. All higher multipole moments can
be shown to depend only on the parameters M, a, and q.

We analyzed the geometric and physical properties of the above solution.
The special cases contained in the general solution suggest that it can be used
to describe the exterior asymptotically flat gravitational field of rotating body
with arbitrary quadrupole moment. This is confirmed by the analysis of the
motion of particles on the equatorial plane. The quadrupole moment turns
out to drastically change the geometric structure of spacetime as well as the
motion of particles, especially near the gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM)
spacetime which is a generalization of Kerr spacetime, including an arbitrary
quadrupole. Our results show (20) that a deviation from spherical symme-
try, corresponding to a non-zero electric quadrupole, completely changes the
structure of spacetime. A similar behavior has been found in the case of the
Erez-Rosen spacetime. In fact, a naked singularity appears that affects the
ergosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into non simply-connected regions. All these changes occur near the
naked singularity which is situated at x = 1, a value that corresponds to the
radial distance r = M +

√
M2 − a2 in Boyer-Lindquist coordinates. In the

limiting case a/M > 1, the multipole moments and the metric become com-
plex, indicating that the physical description breaks down. Consequently,
the extreme Kerr black hole represents the limit of applicability of the QM
spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we
can conclude that the QM metric can be used to describe their exterior grav-
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itational field. Two alternative situations are possible. If the characteristic
radius of the body is greater than the critical distance M +

√
M2 − a2, i.e.

x > 1, the exterior solution must be matched with an interior solution in or-
der to describe the entire spacetime. If, however, the characteristic radius of
the body is smaller than the critical distance M +

√
M2 − a2, the QM metric

describes the field of a naked singularity.
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6 Accretion disks in the
Hartle-Thorne spacetime

The influx of gas and dust or, more general, diffuse material, towards a cen-
tral gravitating object is dubbed accretion, mostly occurring through the for-
mation of accretion disks (22; 23; 24). The formation of an accretion disk is un-
questionably one of the most prevalent processes in relativistic astrophysics
and, importantly, it yields significant observational manifestations. Notably,
the accretion of matter onto relativistic objects, such as black holes and neu-
tron stars, stands out as one of the most efficient mechanisms for energy
release in the field of astrophysics (25). Undoubtedly, the most remarkable
observational manifestation is the accretion onto a black hole that results in
the release of an enormous amount of energy per unit of accreted mass and
showcases the dynamics associated with black hole accretion.

Accretion disks enable the observation of the radiation emitted by matter in
rotational motion around a compact object. By analyzing the emitted spectra
of the disk, valuable information about the nature of the central object under-
going accretion can be obtained. These observations provide insights into the
properties and characteristics of the accreting central object, contributing to
our understanding of astrophysical phenomena.

The exploration of central compact objects, which also includes supermas-
sive central objects, carries immense importance in contemporary astrophysics.
The origin of these objects is still a topic of ongoing discussion. Comprehend-
ing their physical attributes necessitates indirect research methods, such as
examining accretion disks. Accretion disks play a crucial role in uncovering
the fundamental properties of the aforementioned structures. By conduct-
ing thorough analyses and observations of accretion disks, we can acquire
valuable knowledge about the development and dynamics of central com-
pact objects1.

1Nevertheless, the incoming observations can also shed some new light on possible devia-
tions from general relativity in the incoming years. Consequently, the possible existence
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Accretion disk luminosity for compact objects can be modeled using var-
ious solutions to Einstein’s field equations. This includes the gravitational
field of neutral black holes, as described in Ref. (26), or the outside field of
white dwarfs and neutron stars, as discussed in Refs. (24; 27; 28; 29). Addi-
tionally, exotic objects such as boson stars (30; 31; 32; 33) or gravastars (34) can
also be considered. Observations related to accretion disks provide valuable
insights into these objects as well. Examples include the motion of stars near
the galactic center (35; 36; 37), the spectra of X-ray binary systems (38) and the
emission by the accretion disks of binary black holes (39; 40). Other examples
encompass the shadow of supermassive black hole candidates in the nucleus
of the M87 galaxy (41), among others. It is worth noting that certain features
of the accretion disk depend on the underlying space-time geometry (42).
Hence, observations of accretion disks can be utilized to impose constraints
on the geometry, as discussed in (43). By comparing theoretical models with
observational data, we can gain insights into the nature of compact objects
and the properties of the space-time in their vicinity.

Among all possible spacetimes modeling compact objects, from which we
can infer accretion disk properties, the Hartle-Thorne metric represents a use-
ful tool for describing the geometry around slowly rotating and slightly de-
formed objects in strong gravitational fields. As stated, it provides a frame-
work for studying real astrophysical objects ranging from celestial bodies like
planets to neutron stars. The metric is characterized by three multipole mo-
ments: the total mass, the angular and quadrupole momenta. These parame-
ters describe several astrophysical phenomena (44; 45; 46; 47).

One notable advantage of the Hartle-Thorne metric is its flexibility. In
cases where angular momentum is absent, it characterizes a naked singu-
larity. However, by incorporating angular momentum and expressing the
quadrupole moment based on it, the metric transforms into the well-known
Kerr metric. When linear terms in angular momentum are present without
the quadrupole moment, it corresponds to the Lense-Thirring solution. Ad-
ditionally, in the absence of angular momentum, a comparison can be made
between the Hartle-Thorne metric and the approximate Erez-Rosen solution
(48). Consequently, the Hartle-Thorne solution serves as a valuable reference
point for modeling intricate variations of central compact objects.

In this work, we construct a theoretical scheme to determine the accre-

of exotic compact objects cannot be ignored, as most observations of black hole candi-
dates do not allow one to study the geometry near such astrophysical sources yet.

366



tion disk, following the standard theory of black hole accretion developed
in (49; 50), which can be adapted to the Hartle-Thorne solution within the
context of Einstein’s equations. So, we first compute the particle motion
in such a metric, emphasizing the role of the aforementioned three free pa-
rameters. Afterwards, we determine the circular orbits, the innermost stable
circular orbits (ISCOs) and the kinematic properties of the metric, used to
infer the spectral properties of thin accretion disks. We compare our find-
ings with those of the Schwarzschild and Kerr metrics as limiting cases of the
Hartle-Thorne spacetime. We motivate this, noticing that specific properties
of given compact objects can modify the form of the metric and so, utilizing
the Hartle-Thorne metric, one can compute the luminosity and fluxes associ-
ated with these central compact objects. These calculations provide valuable
insights into the observable properties of accretion processes and the radia-
tive emissions from the surrounding matter. Finally, theoretical interpreta-
tions of our outcomes are critically discussed, employing generic neutron star
models that are compared with our framework.

The difference between the current work and the above-mentioned and
other works lies, firstly, in different metrics, which are used for different pur-
poses. For example, in our previous works (51; 52; 53) we examined the
motion of test particles in the gravitational field of a Schwarzschild black
hole surrounded by spherically distributed dark matter, possessing non-zero
isotropic, anisotropic, and tangential pressures. These studies indicate that
the inclusion of dark matter pressure significantly alters the geometry around
the Schwarzschild black hole, impacting the radiative flux, differential lumi-
nosity, and spectral luminosity of the accretion disk. In this paper, we study
the geometry around astrophysical objects such as neutron stars, whose inte-
rior and exterior geometry is well described by the Hartle–Thorne solution.

In Sect. 6.1, we review the Hartle-Thorne metric and compare it with other
known solutions, In Sect. 6.2, we consider the circular orbits and basic pa-
rameters of neutral test particles in the Hartle-Thorne spacetime. In Sect. 6.3,
we review the Novikov-Page-Thorne model and present our numerical re-
sults for the spectral properties of the accretion disks. In Sect. 6.4, we discuss
about neutron star physics. Finally, in Sect. 6.5, we present the conclusions
and perspectives of our work. Throughout the paper we make use of ge-
ometrized units setting G = c = 1. This work was published in (21).

367



6 Accretion disks in the Hartle-Thorne spacetime

6.1 Particle motion in the Hartle-Thorne metric

The line element for the Hartle-Thorne metric is (54)

ds2 = −
(

1 − 2M
r

)[
1 + 2k1P2(cos θ) + 2

(
1 − 2M

r

)−1 J2

r4 (2 cos2 θ − 1)

]
dt2

+

(
1 − 2M

r

)−1
[

1 − 2k2P2(cos θ)− 2
(

1 − 2M
r

)−1 J2

r4

]
dr2

+r2[1 − 2k3P2(cos θ)](dθ2 + sin2 θdϕ2)− 4J
r

sin2 θdtdϕ (6.1.1)

with

k1 =
J2

Mr3

(
1 +

M
r

)
+

5
8

Q − J2/M
M3 Q2

2

( r
M

− 1
)

, k2 = k1 −
6J2

r4 ,

k3 = k1 +
J2

r4 +
5
4

Q − J2/M

M2 (r2 − 2Mr)1/2 Q1
2

( r
M

− 1
)

,

and

P2(cos θ) =
1
2
(3 cos2 θ − 1), Q1

2(x) = (x2 − 1)1/2
[

3x
2

ln
x + 1
x − 1

− 3x2 − 2
x2 − 1

]
,

Q2
2(x) = (x2 − 1)

[
3
2

ln
x + 1
x − 1

− 3x3 − 5x
(x2 − 1)2

]
,

where x = r/M − 1, P2(x) is the second Legendre polynomial of the first
kind, Qm

l are the associated Legendre polynomials of the second kind and
the constants M, J and Q are, as mentioned earlier, the total mass, angular
momentum and mass quadrupole moment of a rotating star, respectively. In
addition, J ∼ ΩStar and Q ∼ Ω2

Star, where ΩStar is the angular velocity of the
central object, or a star, behaving as the source of gravity.

In general, the Hartle-Thorne metric encompasses both interior and exte-
rior solutions that describe the gravitational field within and outside a com-
pact object, respectively. However, when one investigates the accretion disk,
focusing on the exterior case appears sufficient. Indeed, this occurs because
the accretion disk is primarily influenced by the gravitational field outside
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the compact object. However, there are certain situations where it becomes
necessary to explore the interior gravitational field of a compact object as well
as the exterior one. This is particularly relevant when constructing quantities
such as mass-radius relations or mass-central density profiles. In such cases,
it is important to appropriately consider both the interior and exterior solu-
tions of the Hartle-Thorne metric in order to obtain a complete description of
the compact object.

6.1.1 Comparison with alternative spacetimes

Here we review the relationship of the Hartle-Thorne metric with other solu-
tions in the literature, survey studies on accretion disks in those spacetimes
and highlight some open issues in this direction.

The exterior Hartle-Thorne solution characterizes the geometry surround-
ing compact objects with slow rotation and slight deformations. In their
groundbreaking paper (55), Hartle and Thorne initially attempted to compare
this solution with the well-known Kerr solution. It has been demonstrated
that by selecting a specific value for the quadrupole moment, denoted as
q = j2, and applying intricate coordinate transformations, the Hartle-Thorne
solution converges to the approximate Kerr solution in the case of slow ro-
tation. This implies that the applicability of the Kerr solution is limited and
it can only describe a particular category of objects, namely the geometry
around rotating black holes2.

Subsequently, the Hartle-Thorne metric can be compared with a static space-
time describing the geometry around deformed objects, in particular, with the
Erez-Rosen metric3 (56). Then, by using the Geroch-Hansen invariant def-
inition of multipole moments (57; 58) it was established that the monopole
moment corresponds to the total mass, the dipole moment is the angular
momentum, and the quadrupole moment contains an intrinsic part, due to
the deformation of the source, and a second term due to rotation. As a

2The luminosity of the accretion disk in the Kerr spacetime has been extensively investi-
gated in the scientific literature.

3It was shown that the static Hartle-Thorne solution with j = 0 reduces to the approximate
Erez-Rosen solution in the limiting case of a small deformation (48). However, before
finding the coordinate transformations to establish the relationship between the parame-
ters of the solutions, it was necessary to generalize the Erez-Rosen metric by applying a
Zipoy-Voorhees transformation, which introduces a new parameter that must be fixed in
order to obtain the required transformations (48).
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6 Accretion disks in the Hartle-Thorne spacetime

result, it was shown that the Hartle-Thorne parameters M and Q are re-
lated to those of the Erez-Rosen metric as follows M = MER(1 − qER) and
Q = −(4/5)qERM3

ER. This result allows one to find unambiguously the co-
ordinate transformations between the static Hartle-Thorne and the approxi-
mate Erez-Rosen solutions4.

A further attempt to find the relationship between the Hartle-Thorne and
Erez-Rosen solutions was made by Frutos-Alfaro and Soffel in the limit of
∼ M2 and ∼ Q2 (60). To this end, the original exterior Hartle-Thorne so-
lution was generalized to include new terms ∼ Q2 for a non-rotating case.
The advantage of this approach is that it is not necessary to perform a Zipoy-
Voorhees transformation in order to obtain the corresponding coordinate trans-
formations, which turned out to have a completely different form. It was
concluded that the approximation determines the coordinate transformation
(for more details see e.g. Ref. (61)). To the knowledge of the authors, the lu-
minosity of accretion disks in the Erez-Rosen spacetime has not been studied
yet in the literature.

Additionally, in Refs. (62; 63; 64; 65; 66), it was found a whole new class
of exterior exact solutions with an infinite number of parameters, containing
not only the mass, rotation parameter, and quadrupole parameter, but also
the Zipoy-Voorhees parameter, charge, and the Taub-NUT parameter, among
others5. In this respect, one of the main drawbacks of the exterior exact so-
lutions is the fact that it is hard or sometimes even impossible to find their
interior counterparts. Nonetheless, as above stated, for most of the astro-
physical phenomena the exterior exact solutions are more than sufficient and
play a pivotal and occasionally ultimate role. The luminosity of the accretion
disk in the spacetime combining both Kerr and Erez-Rosen solutions has not
been studied yet.

In the weak field regime, namely in the post-Newtonian approximation, it
was shown that the Hartle-Thorne solution reduces to the Fock solution with
quadrupole moment (67). The generalization of the Hartle-Thorne solution to
quartic order in angular velocity has been obtained in Ref. (68). Undoubtedly,
the extension of the Hartle-Thorne solution may have a wider application in

4Some details about the Zipoy-Voorhees transformations that are necessary to compare the
Erez-Rosen and Hartle-Thorne solutions can be found in Ref. (59).

5This solution contains as a specific case the solution combining both Erez Rosen and Kerr
solutions. Using the prescriptions provided in Refs. (55; 48), it was demonstrated that this
particular Quevedo-Mashhoon solution in the limiting case of slow rotation and small
deformation was equivalent to the Hartle-Thorne solution (54).
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astrophysics6.
In view of recent developments (70), it should also be possible to establish

the relationship between the Hartle-Thorne solution and q-metric7 and its
extension that includes the rotation parameter (71; 72). However, this issue is
out of the scope of the present work and possibly will be addressed in future
studies.

Given the remarkable properties of the Hartle-Thorne spacetime and its
widespread applications, it is highly intriguing to explore its implications
in the context of accretion disks. By incorporating quadrupole terms and
considering modifications to the standard Zipoy-Voorhees metric, we can ac-
count for additional factors such as mass and other properties that may influ-
ence the dynamics of the system. This allows us to extend the applicability
of the Hartle-Thorne solution beyond static spherically symmetric configu-
rations and incorporate rotation effects. Remarkably, the predictions derived
from our analysis are anticipated to be tested experimentally in the near fu-
ture, further validating the significance of our findings. In this respect, below
we elucidate the main features of the Hartle-Thorne solution in view of ob-
servable signatures that can be obtained from it.

6.2 Circular orbits in the Hartle-Thorne space-time

We focus our analysis on the equatorial plane, where the polar angle θ is fixed
at π/2. Within this restricted region, we investigate the motion of neutral test
particles that follow circular orbits. By employing the well-established Euler-
Lagrange formalism, we are able to determine various orbital parameters for
these particles, including the angular velocity, angular momentum, and en-
ergy8. These quantities play a crucial role in characterizing the dynamics of
the test particles and provide valuable insights into their behavior within the
considered gravitational field.

6Additionally, it was shown that the so-called Sedrakyan-Chubaryan solution is equivalent
to the the Hartle-Thorne solution (69).

7Sometimes, this metric is known in the literature as the Zipoy-Voorhees metric, δ-metric
and γ-metric.

8The formulas for the angular velocity Ω, angular momentum L, and energy E in the Hartle-
Thorne spacetime were initially derived in Ref. (73). However, it is important to exercise
caution when referring to (73) due to the presence of certain typographical errors.
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6.2.1 Angular momentum and energy

The angular velocity for corotating/counterrotating particles on circular or-
bits for a generic stationary axisymmetric metric (74) is given by

Ω =
dϕ

dt
=

−∂rgtϕ ±
√
(∂rgtϕ)2 − (∂rgtt)(∂rgϕϕ)

∂rgϕϕ
, (6.2.1)

and for the Hartle-Thorne spacetime it acquires the form

Ω = Ω0

[
1 ∓ jW1(r) + j2W2(r) + qW3(r)

]
, (6.2.2)

where j = J/M2, q = Q/M3, Ω0 is the angular velocity for the Schwarzschild
metric, and W1;2;3 are reported below

Ω0(r) =
M1/2

r3/2 , (6.2.3)

W1(r) =
M3/2

r3/2 , (6.2.4)

W2(r) =
[
16M2r4(r − 2M)

]−1 (
48M7 − 80M6r + 4M5r2

− 18M4r3 + 40M3r4 + 10M2r5 + 15Mr6 − 15r7
)
+ W(r),(6.2.5)

W3(r) = 5
[
16M2r(r − 2M)

]−1

×
(

6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4
)
− W(r), (6.2.6)

W(r) =
15(r3 − 2M3)

32M3 ln
(

r
r − 2M

)
. (6.2.7)

Given the generic orbital angular momentum,

L =
gtϕ + Ωgϕϕ√

−gtt − 2Ωgtϕ − Ω2gϕϕ

, (6.2.8)
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we compute it for the Hartle-Thorne metric, having

L = L0

[
1 ∓ jH1(r) + j2H2(r) + qH3(r)

]
, (6.2.9)

where, analogously to the above case, L0, say the angular momentum for the
Schwarzschild metric and the supporting functions H1;2;3 are reported below

L0(r) = r
√

M
r − 3M

, (6.2.10)

H1(r) =
3M3/2(r − 2M)

r3/2(3M − r)
, (6.2.11)

H2(r) =
[
16M2r4(r − 3M)2

]−1

×
[
144M8 − 144M7r + 20M6r2 − 98M5r3 + 147M4r4

+ 205M3r5 − 260M2r6 + 105Mr7 − 15r8
]
+ H(r), (6.2.12)

H3(r) = 5
[
16M2r(3M − r)

]−1

×
(

6M4 − 7M3r − 16M2r2 + 12Mr3 − 3r4
)
− H(r), (6.2.13)

H(r) = 15
[
32M3(3M − r)

]−1

×
(

6M4 + 2M3r − 9M2r2 + 5Mr3 − r4
)

ln
(

r
r − 2M

)
.(6.2.14)

Afterwards, the generic expression for the energy of test particles on circu-
lar orbit,

E = −
gtt + Ωgtϕ√

−gtt − 2Ωgtϕ − Ω2gϕϕ

, (6.2.15)

leads to

E = E0

[
1 ∓ jF1(r) + j2F2(r) + qF3(r)

]
, (6.2.16)

for the Hartle-Thorne spacetime. Here, E0 is the energy for the Schwarzschild
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space-time and the supporting functions, F1;2;3, are

E0(r) =
r − 2M√
r(r − 3M)

, (6.2.17)

F1(r) =
M5/2r−1/2

(r − 2M)(r − 3M)
, (6.2.18)

F2(r) =
[
16Mr4(2M − r)(r − 3M)2

]−1

×
(
− 144M8 + 144M7r + 28M6r2 + 58M5r3 + 176M4r4

− 685M3r5 + 610M2r6 − 225Mr7 + 30r8
)
− F(r), (6.2.19)

F3(r) = −5 [16Mr(r − 2M)(r − 3M)]−1

×
(

6M4 + 14M3r − 41M2r2 + 27Mr3 − 6r4
)
+ F(r), (6.2.20)

F(r) =
15r(8M2 − 7Mr + 2r2)

32M2(3M − r)
ln
(

r
r − 2M

)
. (6.2.21)

As mentioned in the previous section, these quantities reduce to the corre-
sponding Schwarzschild values for q → 0 and j → 0.

The novelty of our work lies in the fact that all analytic expressions, de-
scribing test particles in circular orbits, were applied to the description of ac-
cretion disks. We explicitly showed that, in the Hartle–Thorne metric the pa-
rameters of the source such as total mass, angular momentum and quadrupole
momentum affect the motion of test particles and the whole structure of ac-
cretion disks. In other spacetimes these parameters appear as well, however
in most of the cases those spacetimes are used for other goals.

In the past related works usually black hole and naked singularity solu-
tions have been exploited to analyze accretion disks within the Novikov–
Thorne–Page model. Moreover, Bambi and Barausse (75), considered a solu-
tion describing the geometry around compact objects and used it to constraint
the quadrupole moment of the source exploiting X-ray data of the thermal
spectrum of black hole candidates’ accretion disk. Accordingly, the results in
this work are different.
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Figure 6.1: Dimensionless angular velocity Ω∗ = MΩ of test particles versus
radial distance r normalized by the total mass M in the Hartle-Thorne space-
time. All curves start from RISCO. Left panel: the quadrupole parameter is
set as q = 0 in all curves. Right panel: the spin parameter is set as j = 0 in all
curves.
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Figure 6.2: Angular momentum L∗ = L/M of test particles versus radial
distance r normalized by the total mass M in the Hartle-Thorne metric. All
curves start from RISCO. Left panel: L∗ for fixed q = 0 and arbitrary j. Right
panel: for fixed j = 0 and arbitrary q.
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Figure 6.3: Energy E∗ = E of test particles versus radial distance r normalized
by total mass M in the Hartle-Thorne spacetime. All curves start from RISCO.
Left panel: E∗ for fixed q = 0 and arbitrary j. Right panel: E∗ for fixed j = 0
and arbitrary q.

6.2.2 The innermost stable circular orbits

As we claimed in the introduction, ISCO is the smallest circular orbit around
a massive object that can be obtained within the contexts of metric theories.
Computing this quantity is manifestly relevant since, there, a test particle can
maintain a stable orbit, and so the ISCO radius is function of the mass and
angular momentum of the central object determining the accretor. Conse-
quently, in the context of black hole accretion disks, the ISCO is of utmost im-
portance as it represents the inner boundary of the disk itself. Thus, the ISCO
radius, dubbed RISCO, is defined via the condition dL/dr = 0 or dE/dr = 0
(76) and is given by

RISCO = 6M
[

1 ∓ 2
3

√
2
3 j +

(
251647
2592 − 240 ln 3

2

)
j2

+
(
−9325

96 + 240 ln 3
2

)
q
]

≈ 6M[1 ∓ 0.5443j − 0.2256j2 + 0.1762q] . (6.2.22)

Here, the sign in front of j in the expression for the ISCO radius determines
the rotation direction of the central object. For co-rotating or prograde or-
bits, a negative sign is used, while for counter-rotating or retrograde orbits, a
positive sign is used. It is worth noting that in the limit of zero angular mo-
mentum and quadrupole moment, the ISCO radius reduces to R0

ISCO = 6M
for the Schwarzschild spacetime.
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It should be mentioned that the analytic formulas for the orbital parameters
of test particles such as angular velocity, energy, angular momentum, radius
of ISCOs, have been well-known long before this work. However, here we
present their corrected analytical expressions and show their graphical rep-
resentation and practical application to accretion disks.

In addition, one of the key quantities which is of great interest is the effi-
ciency of converting matter into radiation (see for details page 662 of Ref. (23))

η = [1 − E(RISCO)]× 100%, (6.2.23)

where the energy of test particles E is calculated at RISCO.

6.2.3 Numerical analysis of angular velocity, angular
momentum and energy of test particles

Here, we report an overall analysis of our numerical findings concerning the
angular velocity, angular momentum, the energy of test particles in circular
orbits, and all the kinematic quantities of our metric, which are useful for the
study of the accretion disk.

Specifically, in Fig. 6.1, we present the orbital angular velocity Ω∗(r) = MΩ
of test particles as a function of the normalized radial coordinate r/M in the
Hartle-Thorne metric. In the left panel, we consider a fixed q = 0 and arbi-
trary j, while in the right panel, we fix j = 0 and vary q. In the left panel,
the curves with j > 0 are similar to the co-rotating orbits in the Kerr met-
ric or the q-metric with q > 0, we observe that the angular velocity curves
lie below the curve corresponding to the Schwarzschild metric. Instead the
curves with j < 0 correspond to the counter-rotating orbits in the Kerr space-
time and lie above the curve corresponding to the Schwarzschild metric. In
the right panel, which resembles the counter-rotating orbits in the Kerr met-
ric, we see that the angular velocity curves are above the curve obtained in
the Schwarzschild solution. It is important to note that in the Hartle-Thorne
spacetime, q > 0 corresponds to oblate astrophysical objects, while q < 0 cor-
responds to prolate objects. Since most rotating objects are oblate, we focus
on cases where q > 0 throughout this paper. Furthermore, the limit q = 0
describes rotating objects without deformation, distinct from the Kerr space-
time, although many features are similar to the Kerr metric. On the other
hand, the limit j = 0 represents static deformed objects.

In Fig. 6.2, we present the dimensionless orbital angular momentum L∗(r) =
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Figure 6.4: RISCO in the Hartle-Thorne spacetime. Left panel: RISCO versus q
for different values of j. Right panel: RISCO versus j for different values of q.

L/M of test particles as a function of the normalized radial coordinate r/M
in the Hartle-Thorne metric. The left panel corresponds to fixed q = 0 and
arbitrary j, while the right panel represents fixed j = 0 and arbitrary q. In the
left panel, it can be observed that the curves of L∗ for j > 0 (j < 0) lie below
(above) with respect to the Schwarzschild case. Moreover, the overall behav-
ior of L∗ resembles that of co-rotating (counter-rotating) test particles’ orbits
in the Kerr spacetime. On the right panel, the Schwarzschild case exhibits
smaller values of L∗, and the general trend of the curves is similar to the ones
observed in the Kerr metric for counter-rotating orbits or the q-metric with
q > 0 cases (see (77) for more detailed information).

In Fig. 6.3, we depict the energy per unit mass E∗ = E of test particles as a
function of the normalized radial coordinate r/M in the Hartle-Thorne met-
ric. The left panel corresponds to fixed q = 0 and arbitrary j, while the right
panel represents fixed j = 0 and arbitrary q. In the left panel, it is evident that
the energy of particles for j > 0 (j < 0) cases is relatively lower (higher) than
in the Schwarzschild case. We observe a similarity between the behavior of E∗

for co-rotating and counter-rotating orbits in the Kerr spacetime (77). On the
right panel, the curve of E∗ for the Schwarzschild case is below the curves of
q > 0 cases, resembling the behavior observed in the q-metric with q > 0 case
or the Kerr metric with counter-rotating orbits (77). In Fig. 6.4, we illustrate
the dependence of the normalized ISCO radius RISCO/M in terms of j and q.
The left panel shows RISCO/M versus q for fixed values of j. Here, counter-
rotating orbits will have larger RISCO/M with respect to the Schwarzschild
(black solid straight line) for increasing q. However, co-rotating orbits will
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Figure 6.5: Efficiency η of converting matter into radiation in the Hartle-
Thorne spacetime. Left panel: η versus q for different values of j. Right
panel: η versus j for different values of q.

have smaller RISCO/M with respect to the Schwarzschild case (black solid
straight line) for decreasing q. The right panel presents RISCO/M versus j
for fixed values of q. Counter-rotating orbits will have larger RISCO/M with
respect to the Schwarzschild (solid straight line) for any value of q, but for
co-rotating orbits RISCO/M will be smaller with respect to the Schwarzschild
case for small values of q. The two panels complement each other. One can
see that RISCO/M in the field of rotating neutron stars with large j can be
smaller than in the field of a static neutron star or a Schwarzschild black hole
with equal masses. This tendency can be explained by the fact that for small
values of q the effects of j start prevailing and the Hartle-Thorne metric be-
haves like the Kerr metric. Correspondingly, one can observe a similar effect
for both co-rotating and counter-rotating orbits in the Kerr spacetime.

In Fig. 6.5, the efficiency of the compact object is illustrated in the Hartle-
Thorne spacetime. Left panel shows that for increasing q the efficiency de-
creases for different values of j and starting from certain values of q the effi-
ciency becomes smaller than in the Schwarzschild case (black solid straight
line). Instead, for smaller values of q the efficiency of neutron stars for co-
rotating orbits can be larger than the one of a static neutral black hole, pos-
sessing the same mass. Here again as in a previous case for small q the effects
of j are more dominant. Therefore the trend of the curves are similar to the
ones of the Kerr metric for co-rotating orbits. Right panel shows efficiency
versus j for q ≥ 0. As expected for small q and large j the efficiency will be
larger than for the Schwarzschild black hole (black solid straight line).
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6.3 Spectra of thin accretion disks

To investigate the luminosity and spectral characteristics of the accretion disk
in the Hartle-Thorne spacetime, we adopt the simplest model for accretion
disk, developed by Novikov-Thorne and Page-Thorne as described in Refs.
(49; 50). The underlying relativistic models for accretion disks around black
holes are limited in their validity and physical realism at the inner edge due
to the boundary condition that requires a sudden cessation of viscous stresses
at the radius separating the region of circular orbits from the region of spiral
orbits.

However, in the case of accreting black holes, emission from the inner disk
provides insights into the corresponding black hole spin. According to the
model, for a thin accretion disk around a black hole, the accreting matter
gradually moves inward along nearly Keplerian orbits due to viscous evolu-
tion until it reaches the radius of the innermost stable circular orbit (ISCO),
beyond which the gas rapidly falls into the black hole.

Consequently, the inner edge of the viscous accretion disk is predicted to
be very close to the ISCO. In this respect, most analytical models of accretion
disks assume a stationary and axially symmetric state of the matter being
accreted into the black hole. In these scenarios, all physical quantities depend
only on two spatial coordinates: the radial distance from the center and the
vertical distance from the equatorial symmetry plane.

Even though commonly studied models assume that the disk is not sig-
nificantly vertically extended, the Novikov-Thorne solution represents local
solutions and introduces an assumption that the viscous torque vanishes at
the ISCO, leading to a singularity in the model at that point.

For very low accretion rates, this singularity does not significantly affect
the electromagnetic spectrum or several other important astrophysical pre-
dictions of the model. However, in certain astrophysical scenarios where the
inner boundary condition plays a crucial role, such as global modes of disk
oscillations, the Novikov-Thorne model is inadequate.

In the subsequent analysis, we make the assumption of a constant mass
accretion rate of the disk to meet the aforementioned criteria. Therefore, the
primary quantities that describe the model locally are the radiative flux F and
the differential luminosity, which represents the energy per unit time reach-
ing an observer located at infinity, denoted as L∞. The differential luminosity
L∞ is estimated based on the flux F, which represents the energy radiated per
unit area per unit time by the accretion disk. The flux definition can be mod-
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Figure 6.6: Radiative flux F∗ multiplied by 105 of the accretion disk in the
Hartle-Thorne metric versus radial distance r normalized by the total mass
M. Left panel: F∗ versus r/M for fixed q = 0 and arbitrary j. Right panel: F∗

versus r/M for fixed j = 0 and arbitrary q ≥ 0.

ified conveniently. Later, we take its normalized version with respect to total
mass M, say F∗(r) = M2F(r). Suitably this will help in formulating spectral
properties of the disk. We thus have (49; 50)

F(r) = − ṁ
4π

√−g
Ω,r

(E − ΩL)2

∫ r

ri

(E − ΩL) L,r̃dr̃, (6.3.1)

and

dL∞

d ln r
= 4πr

√
−gEF(r), (6.3.2)

where in the previous discussion, the term flux refers to the energy radiated
per unit area per unit time by the accretion disk.

In the given expression, ri = RISCO represents the value of the radial coor-
dinate corresponding to the innermost stable circular orbit (ISCO), while ṁ
denotes the mass accretion rate of the disk, which is assumed to be constant
throughout the analysis. Lastly, g represents the determinant of the metric
tensor in the three-dimensional subspace spanned by the coordinates (t, r, φ).
In the above relation, the effect of the geometry enters through g, namely
the determinant of the metric of the three-dimensional sub-space (t, r, φ) (i.e.
√−g =

√
−grr(gttgφφ − g2

tφ) (78).
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6.3.1 Emitting properties

The radiative flux and its local definition at infinity represent the radiation
emitted by the disk as a function of the radial coordinate. However, they do
not consider the measured quantities that involve the spectrum of light and
its frequencies.

In practice, we observe the emitted spectrum as a function of frequency.
Therefore, it is natural to consider the determination of the spectral lumi-
nosity distribution observed at infinity, denoted as Lν,∞. Assuming that the
overall emission follows a black body radiation pattern and considering ut,
the contra-variant time component of the four velocity and ν, the frequency
of the emitted radiation, we can handle for the Lν,∞ the following formula
(79):

νLν,∞ =
60
π3

∫ ∞

ri

√−gE
M2

(uty)4

exp
[
uty/F∗1/4

]
− 1

dr, (6.3.3)

with the positions

ut(r) =
1√

−gtt − 2Ωgtφ − Ω2gφφ

, (6.3.4a)

y = hν/kT∗ . (6.3.4b)

Besides the clear definitions of h and k as Planck’s and Boltzmann’s con-
stants respectively, the relation (6.3.3) is also function of the characteristic
temperature, T∗. This quantity can be obtained adopting the aforementioned
approximation of black body. Hence, taking into account the above Stefan-
Boltzmann law we immediately obtain

σT4
∗ =

1
4π

ṁ
M2 , (6.3.5)

6.3.2 Numerical analysis

We can now proceed with the numerical analysis based on the theoretical
predictions derived from our metric and the assumption of a thin disk. As
a result, we present the main outcomes of our study in Figures 6.6, 6.7, and

382



6.3 Spectra of thin accretion disks

j=-0.4

j=0.0

j=-0.2

j=0.4

j=0.2

5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

r/M

rd
∞
/d
r

q=0

q=1

q=2

q=4

q=3

5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

2.5

r/M

rd
∞
/d
r*

Figure 6.7: Differential luminosity multiplied by 102 of the accretion disk in
the Hartle-Thorne metric versus radial coordinate r normalized by total mass
M. Left panel: Differential luminosity versus r/M for fixed q = 0 and arbi-
trary j. Right panel: Differential luminosity versus r/M for fixed j = 0 and
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6.8. These results can also be compared with previous findings available in
the literature.

In the following, we highlight the key characteristics of our study and,
specifically,

- Fig. 6.6 showcases the flux distribution, which provides insights into
the amount of radiation emitted by the disk as a function of the radial
coordinate.

- Fig. 6.7 illustrates the differential luminosity, representing the energy
per unit time that reaches an observer located at infinity. This quantity
is crucial in understanding the overall energy output of the accretion
disk.

- Fig. 6.8 displays the spectral luminosity distribution, denoted as Lν,∞.
It characterizes the energy emitted by the accretion disk as a function of
the frequency of radiation.

By examining these figures, we can gain valuable insights into the behavior
and properties of the accretion disk, while also comparing our findings with
existing literature.

In particular, for Fig. 6.6, we underline that

- the left panel corresponds to the case of fixed q = 0 and arbitrary j. We
observe that the flux for the Schwarzschild black hole is consistently
lower (higher) than the flux for the Hartle-Thorne metric with j > 0
(j < 0) in the entire range of the radial distance. The behavior of the
flux in the Hartle-Thorne metric is similar to that observed in the Kerr
metric for co-rotating (counter-rotating) orbits, as noted in the Ref. (77);

- the right panel shows a comparison of the flux for the Schwarzschild
black hole with that of a static and deformed object characterized by
j = 0 and q ≥ 0. We find that the flux for the Schwarzschild black hole
is always greater than the flux for the static and deformed object. This
behavior is consistent with the behavior observed in the Kerr metric but
for counter-rotating orbits, as indicated in the reference (77);

- these results provide valuable insights into the radiative flux behav-
ior in the Hartle-Thorne metric, and they demonstrate similarities and
differences with respect to other metrics, such as the Kerr metric, for
various orbit configurations.
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6.3 Spectra of thin accretion disks

From the analysis of the radiative flux, differential luminosity, and the
spectral luminosity of the accretion disk, we show that the gravity of a ro-
tating deformed compact object, e.g. neutron star is conceptually different
from those of black holes and naked singularities, though occasionally they
can display similar features.

Concerning Fig. 6.7, we highlight that

- we present the plot of the differential luminosity as a function of the
normalized radial coordinate in the Hartle-Thorne metric. The left panel
corresponds to the case of fixed q = 0 and arbitrary j, while the right
panel represents the case of fixed j = 0 and arbitrary q ≥ 0. As the
differential luminosity is directly defined in terms of the flux, we notice
that the behavior observed in Fig. 6.6 naturally translates into the be-
havior of the differential luminosity. The left panel of Fig. 6.7 reflects
the same trends observed in the left panel of Fig. 6.6, with the differen-
tial luminosity for the Hartle-Thorne metric exceeding (not exceeding)
for j > 0 (j < 0) that of the Schwarzschild black hole throughout the
radial distance range;

- similarly, the right panel of Fig. 6.7 reflects the behavior observed in the
right panel of Fig. 6.6. Here, we compare the differential luminosity for
the Hartle-Thorne metric, characterized by j = 0 and q ≥ 0, with that
of a Schwarzschild metric (black solid curve). The results show that the
differential luminosity for the Schwarzschild metric surpasses that of
the Hartle-Thorne metric with j = 0 and q ≥ 0, describing gravitational
fields of static and deformed objects;

- these findings highlight the connection between the flux and the differ-
ential luminosity, confirming that the behavior observed in Fig. 6.6 is
accurately translated into the differential luminosity as well.

While, finally, for Fig. 6.8,

- we present the plot of the spectral luminosity Lν,∞ as a function of
the frequency of radiation emitted by the accretion disk in the Hartle-
Thorne metric. The left panel corresponds to the case of fixed q = 0,
while the right panel represents the case of fixed j = 0.

- Similar to the spectral luminosity obtained using the Kerr metric for co-
rotating and counter-rotating orbits, as referenced (79; 77), we observe a
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similar pattern in the left and right panels of Fig. 6.8. This indicates that
the spectral luminosity in the Hartle-Thorne metric follows a similar
trend as in the Kerr metric for the respective orbit configurations.

- The main physical mechanisms yielding similar results for the radia-
tive flux, differential and spectral luminosities between rotating neu-
tron stars and the Kerr black holes are related to the total mass and ra-
dius of neutron stars. The more massive neutron stars possess smaller
radii and correspondingly tend to have stronger gravitational field (see
Fig. 6.9). In turn, due to stronger fields massive neutron stars try to
get more spherical shape despite fast rotation. Hence, the effects of the
quadrupole moment in this situation becomes less dominant than the
effects of the angular momentum (see Fig. 6.10) and the characteristics
of the accretion disks around the fast spinning neutron stars become
similar to those of around the Kerr black holes.

- Furthermore, it is noteworthy that the spectral luminosity of the accre-
tion disk with q = 0 and j > 0 (j < 0) (left panel) is always larger
(smaller) than that in the Schwarzschild spacetime. Conversely, for the
case of j = 0 and q ≥ 0 (right panel), the spectral luminosity is always
smaller than in the Schwarzschild spacetime.

- These results highlight the differences in spectral luminosity between
the Hartle-Thorne metric and the Schwarzschild spacetime, reaffirming
the influence of the Hartle-Thorne metric parameters on the emitted
radiation from the accretion disk.

6.4 Neutron star models

In this section, we examine models of neutron stars and calculate feasible
parameters for M, j, and q using the Hartle-Thorne formalism. We establish
that the values of M, j, and q discussed above align with realistic neutron
star models. Furthermore, we illustrate that the radius of ISCO, RISCO, can
surpass the size of a neutron star.
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6.4.1 Mass-radius relations for neutron stars

To determine the mass-radius relationship for neutron stars, it is necessary to
select an equation of state and subsequently solve the Tolman-Oppenheimer-
Volkoff equation, which describes a static neutron star in hydrostatic equilib-
rium. This straightforward method becomes more intricate when considering
the rotation of a star. Fortunately, there exist established methodologies and
publicly accessible numerical codes both in the literature and on dedicated
websites, simplifying the process. These resources offer valuable tools for
studying the properties and characteristics of rotating neutron stars, see e.g.
(45; 68; 80). While the technical aspects of studying neutron stars may be rel-
atively clear, the conceptual challenges arise when considering the equation
of state.

Neutron stars are extraordinary objects characterized by extreme densities,
pressures, temperatures, electromagnetic fields, and gravitational fields. Un-
fortunately, these extreme conditions cannot be replicated or reproduced in
laboratory settings. Consequently, the equation of state for neutron stars re-
mains an area of ongoing research and is not yet firmly established. The equa-
tion of state describes the relationship between various properties of matter
within a neutron star, such as density, pressure, temperature, composition
etc. Understanding and accurately modeling these relationships is crucial for
comprehending the internal structure and behavior of neutron stars. Despite
significant progress, the equation of state for neutron stars remains an active
area of research and a subject of ongoing debate and investigation and, so, de-
termining an equation of state that accurately represents the complex physics
at play is a challenging task.

There are a lot of uncertainties at supra-nuclear densities (22; 24; 27) and
this fact generates various models (81; 82; 83; 84; 85; 86), accounting for dif-
ferent processes in neutron stars’ crusts (87; 88). In this work we adopt the
neutron star model formulated in Ref. (89). We consider this approach since:

- the model or equation of state takes into account strong interaction
(based on the Boguta-Bodmer model (90)), weak interaction (taking into
account the β-equilibrium), electromagnetic and gravitational interac-
tions by solving the Einstein-Maxwell-Thomas-Fermi system of equa-
tions;

- the equation of state fulfills the global charge neutrality condition, un-
like other equations of state which are mainly derived to satisfy the local
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charge neutrality condition;

- the equation of state fulfills both theoretical and observational constraints

These are the main reason and motivations to exploit this model. Certainly,
it should be stressed that one can refer to any model in the literature. In
order to show that our findings are compatible with neutron star physics,
and to estimate the basic parameters of neutron stars we adopt here the above
mentioned model.

Hence, to construct the mass-radius, mass-central density, radius-central
density and other relation we exploit the well-corroborated Hartle’s formal-
ism (91; 55).

Specifically, in Fig. 6.9, the mass-radius relation is shown along with obser-
vational constraints. The neutron star model we adopted fully satisfies the
observational and theoretical constraints, which are listed below. For addi-
tional details, see e.g. (29).

In the future, it is anticipated that we may observe more massive neutron
stars, as both theoretical static and rotating masses have already exceeded
the maximum observed mass. These potential discoveries could provide
valuable insights into the nature of neutron star equations of state, partic-
ularly those characterized by stiffness or super stiffness (92). By studying
these extreme objects, we can gain a deeper understanding of the fundamen-
tal properties of matter under extreme conditions, pushing the boundaries of
our knowledge in the field of astrophysics.

6.4.2 Theoretical and observational constraints

In order to construct realistic and physically self-consistent neutron star mod-
els, certain constraints, both theoretical and observational, must be satisfied.
Theoretical constraints are derived from fundamental principles and govern
the maximum mass of a neutron star, as defined by the Tolman-Oppenheimer-
Volkoff limit. However, this limit is model-dependent and needs to be con-
sidered in conjunction with observational constraints on neutron star masses
(93; 94; 95; 96). Another important theoretical constraint is related to the
speed of sound in the extremely dense matter within a neutron star (97).
To satisfy the causality principle, the speed of sound must not exceed the
speed of light in vacuum. For rotating neutron stars with crusts, there exists
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Figure 6.9: The mass-radius relations for neutron stars. Dashed/solid blue
and red curves indicate static/rotating local charge neutrality (LCN) and
global charge neutrality (GCN) cases, respectively. The solid line is the up-
per limit of the surface gravity of XTE J1814-338, the dotted-dashed curve
show the lower limit to the radius of RX J1856-3754, the dashed line is the
constraint imposed by the fastest rotating pulsar PSR J1748-2246ad and the
dotted curves are the 90 % confidence level contours of constant R∞ of the
neutron star in the low mass X-Ray binary X7. Any realistic mass-radius rela-
tion should pass through the area delimited by the solid, the dashed and the
dotted lines and in addition it must have a maximum mass larger than the
mass of PSR J0740+6620, M = (2.14 ± 0.2)M⊙.
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Figure 6.10: The mass in solar masses (M/M⊙), the dimensionless angular
momentum j and quadrupole moment q as a function of the central density
of a maximally rotating neutron star. Solid curves indicate GCN and dashed
curves indicate LCN cases.

a constraint on the spin parameter j, which should not exceed 0.7 (98). How-
ever, for crustless neutron stars, the spin parameter can approach or even
exceed unity (99). In our adopted neutron star model, we encounter similar
circumstances, where locally neutral neutron stars exhibit properties akin to
those with crusts, while globally neutral neutron stars resemble those with-
out crusts (100).

Observational constraints on the mass-radius relations of neutron stars are
derived from various measurements, including the largest observed masses
(101; 102), the largest observed radii (103), the highest rotational frequencies
(82; 104), and the maximum surface gravity (105; 106). These observational
constraints play a crucial role in validating and refining our understanding
of neutron star properties. For a visual representation, refer to Fig. 6.9.
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6.4.3 Morphological properties of maximally rotating neutron
stars

As an intriguing point, we can now work out the morphological properties
of maximally rotating neutron stars, employing the main characteristics of
mass, angular momentum and so forth.

In particular, Fig. 6.10 illustrates the key parameters of neutron stars as
a function of the central density normalized by the nuclear density (ρ0 ≈
2.3 × 1017 kg/m3) and,

- the mass, dimensionless angular momentum (j), and quadrupole mo-
ment (q) are depicted for maximally rotating configurations, calculated
using the Hartle-Thorne formalism and employing the equation of state
described in References (89; 107)

- the plot reveals that as the central density increases, the mass of the
neutron star reaches its maximum value, but both j and q decrease. For
central densities beyond ρc/ρ0 ≈ 3.4, the angular momentum parame-
ter j becomes dominant over the quadrupole moment parameter q. This
intriguing effect suggests that as the central density of a neutron star in-
creases, it becomes more spherical in shape but rotates at a faster rate;

- on the other hand, at lower density ranges, the influence of the quadrupole
moment q becomes more pronounced than that of j. Consequently, ro-
tating and more massive neutron stars exhibit similarities to Kerr black
holes.

In addition, Fig. 6.11 presents the relation between the radius and central
density of neutron stars, including the RISCO and,

- in the case of a static neutron star, the equatorial radius Req corresponds
to the static radius R0. However, starting from a central density of ap-
proximately ρc/ρ0 ≈ 2.2, which corresponds to a neutron star with a
mass of approximately 2M⊙, the static radius R0 becomes smaller than
the innermost stable circular orbit radius R0

ISCO. This implies that when
measuring R0

ISCO, or alternatively the flux and luminosity, it becomes
challenging to distinguish between massive neutron stars and low-mass
static black holes. To differentiate a massive neutron star from a black
hole, one possibility is to observe the photon sphere, which can provide
distinctive features;
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- regarding the innermost stable circular orbit radius for co-rotating disks
(R−

ISCO), if a neutron star rotates rapidly, R−
ISCO tends to shrink towards

the surface of the star. Only for higher central densities does it become
slightly larger than the equatorial radius (Req) and exhibit comparable
characteristics to a rotating black hole;

- on the other hand, for counter-rotating disks, the innermost stable circu-
lar orbit radius (R+

ISCO) is larger than Req and R0
ISCO. It is worth noting

that, from a theoretical point of view, counter-rotating disks may exist.
However, they are less likely and viable due to the frame-dragging ef-
fect near relativistic objects such as neutron stars and black holes. The
presence of counter-rotating accretion disks around compact objects re-
mains a topic of ongoing research and investigation.

Finally, it is worth noting that in Figs. 6.11, 6.10 and 6.9 we considered
maximally rotating neutron stars, but most of the observed neutron stars and
pulsars do not rotate so fast as theoretically estimated (29). Therefore, for
slowly rotating stars j, q are quite small, and R−

ISCO can be close to R0
ISCO i.e.

outside a neutron star. This implies only one thing that the values of j and q
we used above are sufficiently realistic.

6.5 Final outlooks and perspectives

In the present work, we investigated the motion of neutral test particles in the
Hartle-Thorne spacetime by considering equatorial circular geodesics and ex-
amining the influence of the central object angular momentum and quadrupole
moment.

We computed important orbital parameters, including angular velocity,
angular momentum, and energy for neutral test particles on circular orbits.
These quantities exhibited smaller (larger) values for q = 0 and j > 0 (j < 0),
(j = 0 and q > 0) compared with the Schwarzschild case. The ISCO radius
was also estimated, and we calculated the efficiency of matter-to-radiation
conversion for different values of j and q. Our results showed that highly
rotating and less deformed objects were more efficient in converting matter
into radiation than the Schwarzschild black hole of the same mass, and vice
versa.

Using the Novikov-Page-Thorne thin accretion disk model, we determined
the radiative flux, differential luminosity, and spectral luminosity. Contrary
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to angular velocity, angular momentum, and energy, these quantities exhib-
ited larger (smaller) values for q = 0 and j > 0, (j < 0) (j = 0 and q > 0)
compared with the Schwarzschild case.

Afterwards, we employed a neutron star model described in Refs. (89; 29)
to calculate various key parameters of rotating neutron stars, including mass-
radius relations, mass-central density relations, radius-central density rela-
tions, angular momentum, and quadrupole moment. We compared the ISCO
radius with realistic neutron star radii and found that for slowly rotating mas-
sive neutron stars, the ISCO radius lies outside the star. Furthermore, we
demonstrated that the values of j and q utilized in our study are realistic and
consistent with neutron star physics.

Our findings exhibited strong compatibility with configurations incorpo-
rating quadrupole effects, obviating the need for additional rotational pa-
rameters. However, our results aligned more closely with the Kerr spacetime
compared to other metrics. Notably, the q-metric failed to reproduce compa-
rable outcomes to the Hartle-Thorne spacetime.

In view of these remarkable results, we intend to further investigate this
metric and explore other properties that display notable distinctions from
metrics employing quadrupole effects. In particular, involving more accu-
rate accretion disk models and the Hartle-Thorne spacetime would help in
shedding light on the role played by quadrupole moments in compact object
physics.
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[17] D. Nuñez, H. Quevedo and A. Sánchez, Einstein’s equations as functional
geodesics, Rev. Mex. Phys. 44 (1998) 440; J. Cortez, D. Nuñez, and H.
Quevedo, Gravitational fields and nonlinear sigma models, Int. J. Theor.
Phys. 40 (2001) 251.

[18] R. Geroch, J. Math. Phys. 11, 2580 (1970).

[19] R. O. Hansen, J. Math. Phys. 15, 46 (1974).

[20] D. Bini, A. Geralico, O. Luongo, and H. Quevedo, Generalized Kerr space-
time with an arbitrary quadrupole moment: Geometric properties vs par-
ticle motion, Class. Quantum Grav. 26, 225006 (2009).

[21] K. Boshkayev et al. Accretion disk in the Hartleâ€“Thorne spacetime, Eur.
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