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1 Topics

The study of compact objects such as white dwarfs, neutron stars, and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories, e.g., general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
theoretical physics aspects, studying astrophysical scenarios characterized by
the presence of at least one of the above compact objects is the focus of exten-
sive research within our group, e.g., the physics of pulsars. This research can
be divided into the following topics:

• Nuclear and Atomic Astrophysics. We study the properties and pro-
cesses occurring in compact stars in which nuclear and atomic physics
have to be necessarily applied. We focus on the properties of nuclear
matter under extreme conditions of density, pressure, and temperature
in compact star interiors. The matter equation of state is studied in de-
tail, considering all the interactions between the constituents within a
fully relativistic framework.

• White Dwarfs Physics and Structure. The aim of this part of our re-
search is to construct the white dwarf structure within a self-consistent
description of the equation of state of the interior together with the solu-
tion of the hydrostatic equilibrium equations in general relativity. Non-
magnetized, magnetized, non-rotating, and rotating white dwarfs are
studied. The interaction and evolution of a central white dwarf with a
surrounding disk, as occurred in the aftermath of white dwarf binary
mergers, is also a subject of study.

• White Dwarfs Astrophysics. We are interested in the astrophysics of
white dwarfs, both isolated and in binaries. Magnetized white dwarfs,
soft gamma repeaters, anomalous X-ray pulsars, white dwarf pulsars,
cataclysmic variables, binary white dwarf mergers, and type Ia super-
novae are studied. The role of a realistic white dwarf interior structure
is particularly emphasized.
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1 Topics

• Neutron Stars Physics and Structure. We calculate the properties of
the interior structure of neutron stars using realistic models of the nu-
clear matter equation of state within the general relativistic equilibrium
equations. Strong, weak, electromagnetic, and gravitational interac-
tions have to be jointly taken into due account within a self-consistent,
fully relativistic framework. Non-magnetized, magnetized, non-rotating,
and rotating neutron stars are studied.

• Neutron Stars Astrophysics. We study astrophysical systems harbor-
ing neutron stars, such as isolated and binary pulsars, low and inter-
mediate X-ray binaries, and merging double neutron stars and neutron
star-white dwarf binaries. Most extreme cataclysmic events involving
neutron stars and their role in explaining extraordinarily energetic as-
trophysical events such as gamma-ray bursts are analyzed in detail.

• Black Hole Physics and Astrophysics. We study the role of black holes
in relativistic astrophysical systems such as gamma-ray bursts, active
galactic nuclei, and galactic cores. Special attention is given to applying
the theory of test particle motion both in the neutral and charged case
and general relativity tests.

• Radiation Mechanisms of Compact Objects. We here study possible
emission mechanisms of compact objects such as white dwarfs, neu-
tron stars, and black holes. We are interested in the electromagnetic,
neutrino, and gravitational-wave emission in compact object magneto-
spheres and accretion disks surrounding them, as well as inspiraling
and merging relativistic binaries (double neutron stars, neutron star-
white dwarfs, white dwarf-white dwarf, and neutron star-black holes).
We also study the radiation from particle acceleration near stellar-mass
and supermassive black holes by surrounding electromagnetic fields.

• Exact and Numerical Solutions of the Einstein and Einstein-Maxwell
Equations in Astrophysics. We analyze the ability of analytic exact so-
lutions of the Einstein and Einstein-Maxwell equations to describe the
exterior spacetime of compact stars such as white dwarfs and neutron
stars. For this, we compare and contrast exact (analytic) solutions with
numerical solutions of the stationary axisymmetric Einstein equations.
The problem of matching between interior and exterior spacetime is ad-
dressed in detail. The effect of the quadrupole moment on the proper-
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ties of the spacetime is also investigated. Particular attention is given to
applying exact solutions in astrophysics, e.g., the dynamics of particles
around compact stars and their relevance in astrophysical systems such
as X-ray binaries and gamma-ray bursts.

• Critical Fields and Non-linear Electrodynamics Effects in Astrophysics.
We study the conditions under which ultrastrong electromagnetic fields
can develop in astrophysical systems such as neutron stars and the pro-
cess of gravitational collapse to a black hole. The effects of non-linear
electrodynamics minimally coupled to gravity are investigated. New
analytic and numeric solutions to the Einstein-Maxwell equations rep-
resenting black holes or the exterior field of a compact star are obtained
and analyzed. The consequences on extreme astrophysical systems, for
instance, gamma-ray bursts, are studied.
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3 Highlights 2024

The year 2024 has seen the consolidation of the scientific production trend of
ICRANet on the topic of compact objects. It has been very prolific in terms
of the number of publications and, more importantly, in terms of the quality
and relevance of our publications.

Analyzing astrophysical sources requires the interplay of different areas of
physics and astronomy. For this reason, some articles on this topic could be
placed in any of the different reports. To avoid such an overlapping, the Ed-
itors discuss which section of the annual report would be the best place to
include a publication with such features. In this report, we have included six
published articles, one accepted for publication (in press) and one under re-
view process for publication. The report reproduces the PDFs of the selected
six already published articles in 2024. In the other reports of the annual sci-
entific report of ICRANet, you will also find articles where the physics and
astrophysics of compact objects have been relevant, e.g., the section dedicated
to gamma-ray bursts and dark matter. We refer the reader to those sections
for further details on those publications.

We want to highlight the strengthening of our international collaborations
for these achievements. The publications summarized in this report have
seen the participation of scientists from Argentina, Brazil, Chile, China, Colom-
bia, Italy, Mexico, Portugal, Spain, and the United States.

All results have been discussed at international conferences. In particular,
we highlight the presentations at the 17th Marcel Grossmann Meeting, held
in Pescara on 7-12 July 2024.
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4 Publications 2024

4.1 Refereed Journals

4.1.1 Printed

1. Rueda, J. A.; Becerra, L.; Bianco, C. L.; Della Valle, M.; Fryer, C. L.;
Guidorzi, C.; Ruffini, R., Long and short GRB connection, Physical Review
D 111, 023010, 2025.

Long and short gamma-ray bursts (GRBs) are thought to arise from
different and unrelated astrophysical progenitors. The association of
long GRBs with supernovae (SNe) and the difference in the distribu-
tions of galactocentric offsets of long and short GRBs within their host
galaxies have often been considered strong evidence of their unrelated
origins. Long GRBs have been thought to result from the collapse of
single massive stars, while short GRBs come from mergers of compact-
object binaries. Our present study challenges this conventional view.
We demonstrate that the observational properties, such as the associa-
tion with SNe and the different galactic offsets, are naturally explained
within the framework of the binary-driven hypernova model, suggest-
ing an evolutionary connection between long and short GRBs.

2. S. R. Zhang, J. A. Rueda, R. Negreiros, Can the central compact object in
HESS J1731–347 be indeed the lightest neutron star observed?, The Astro-
physical Journal 978, 1 2025.

The exceptionally low mass of 0.77+0.2
−0.17M⊙ for the central compact ob-

ject (CCO) XMMU J173203.3–344518 (XMMU J1732) in the supernova
remnant (SNR) HESS J1731–347 challenges standard neutron star (NS)
formation models. The nearby post-AGB star IRAS 17287–3443 (≈ 0.6M⊙),
also within the SNR, enriches the scenario. To address this puzzle, we
advance the possibility that the gravitational collapse of a rotating pre-
SN iron core (≈ 1.2M⊙) could result in a low-mass NS. We show that
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4 Publications 2024

angular momentum conservation during the collapse of an iron core ro-
tating at ≈ 45% of the Keplerian limit results in a mass loss of ≈ 0.3M⊙,
producing a stable newborn NS of ≈ 0.9M⊙. Considering the possible
spin-down, this indicates that the NS is now slowly rotating, thus ful-
filling the observed mass-radius relation. Additionally, the NS’s surface
temperature (≈ 2 × 106 K) aligns with canonical thermal evolution for
its ≈ 4.5 kyr age. We propose the pre-SN star, likely an ultra-stripped
core of ≈ 4.2M⊙, formed a tidally locked binary with IRAS 17287–3443,
having a 1.43-day orbital period. The supernova led to a ≈ 3M⊙ mass
loss, imparting a kick velocity ≲ 670 km s−1, which disrupted the bi-
nary. This scenario explains the observed 0.3 pc offset between XMMU
J1732 and IRAS 17287–3443 and supports the possibility of CCOs form-
ing in binaries, with rotation playing a key role in core-collapse, and the
CCO XMMU J1732 being the lightest NS ever observed.

3. Ottoni, Tulio; Coelho, Jaziel G.; de Lima, Rafael C. R.; Pereira, Jonas P.;
Rueda, Jorge A., X-ray pulsed light curves of highly compact neutron stars
as probes of scalar-tensor theories of gravity, Eur. Phys. J. C, 84, 1337, 2024.

The strong gravitational potential of neutron stars (NSs) makes them
ideal astrophysical objects for testing extreme gravity phenomena. We
explore the potential of NS X-ray pulsed lightcurve observations to probe
deviations from general relativity (GR) within the scalar-tensor theory
(STT) of gravity framework. We compute the flux from a single, cir-
cular, finite-size hot spot, accounting for light bending, Shapiro time
delay, and Doppler effect. We focus on the high-compactness regime,
i.e., close to the critical GR value GM/(Rc2) = 0.284, over which multi-
ple images of the spot appear and impact crucially the lightcurve. Our
investigation is motivated by the increased sensitivity of the pulse to
the scalar charge of the spacetime in such high compactness regimes,
making these systems exceptionally suitable for scrutinizing deviations
from GR, notably phenomena such as spontaneous scalarization, as pre-
dicted by STT. We find significant differences in NS observables, e.g.,
the flux of a single spot can differ up to 80% with respect to GR. Addi-
tionally, reasonable choices for the STT parameters that satisfy astro-
physical constraints lead to changes in the NS radius relative to GR
of up to approximately 10%. Consequently, scalar parameters might
be better constrained when uncertainties in NS radii decrease, where
this could occur with the advent of next-generation gravitational wave
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4.1 Refereed Journals

detectors, such as the Einstein Telescope and LISA, as well as future
electromagnetic missions like eXTP and ATHENA. Thus, our findings
suggest that accurate X-ray data of the NS surface emission, jointly with
refined theoretical models, could constrain STTs.

4. Pereira, Jonas P.; Ottoni, Tulio; Coelho, Jaziel G.; Rueda, Jorge A.; de
Lima, Rafael C. R., Impact of stratified rotation on the moment of inertia of
neutron stars , Physical Review D 110, 103014, 2024.

Rigid (uniform) rotation is usually assumed when investigating the prop-
erties of mature neutron stars (NSs). Although it simplifies their de-
scription, it is an assumption because we cannot observe the NS’s in-
nermost parts. Here, we analyze the structure of NSs in the simple case
of almost rigidity, where the innermost and outermost parts rotate with
different angular velocities. This is motivated by the possibility of NSs
having superfluid interiors, phase transitions, and angular momentum
transfer during accretion processes. We show that, in general relativ-
ity, the relative difference in angular velocity between different parts of
an NS induces a change in the moment of inertia compared to that of
rigid rotation. The relative change depends nonlinearly on where the
angular velocity jump occurs inside the NS. For the same observed an-
gular velocity in both configurations, if the jump location is close to the
star’s surface—which is possible in central compact objects (CCOs) and
accreting stars—the relative change in the moment of inertia is close to
that of the angular velocity (which is expected due to total angular mo-
mentum aspects). If the jump occurs deep within the NS, for instance,
due to phase transitions or superfluidity, smaller relative changes in
the moment of inertia are observed; we found that if it is at a radial
distance smaller than approximately 40% of the star’s radius, the rel-
ative changes are negligible. Additionally, we outline the relevance of
systematic uncertainties that nonrigidity could have on some NS ob-
servables, such as radius, ellipticity, and the rotational energy budget
of pulsars, which could explain the x-ray luminosity of some sources.
Finally, we also show that nonrigidity weakens the universal I-Love-Q
relations.

5. Rueda, J. A.; Ruffini, R., Kerr black hole energy extraction, irreducible mass
feedback, and the effect of captured particles charge, The European Physical
Journal C 84, 1166, 2024.
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4 Publications 2024

We analyze the extraction of the rotational energy of a Kerr black hole
(BH) endowed with a test charge and surrounded by an external test
magnetic field and ionized low-density matter. For a magnetic field
parallel to the BH spin, electrons move outward(inward) and protons
inward(outward) in a region around the BH poles(equator). For zero
charge, the polar region comprises spherical polar angles −60◦ ≲ θ ≲
60◦ and the equatorial region 60◦ ≲ θ ≲ 120◦. The polar region shrinks
for positive charge, and the equatorial region enlarges. For an isotropic
particle density, we argue the BH could experience a cyclic behavior:
starting from a zero charge, it accretes more polar protons than equa-
torial electrons, gaining net positive charge, energy and angular mo-
mentum. Then, the shrinking(enlarging) of the polar(equatorial) region
makes it accrete more equatorial electrons than polar protons, gaining
net negative charge, energy, and angular momentum. In this phase, the
BH rotational energy is extracted. The extraction process continues un-
til the new enlargement of the polar region reverses the situation, and
the cycle repeats. We show that this electrodynamical process produces
a relatively limited increase of the BH irreducible mass compared to
gravitational mechanisms like the Penrose process, hence being a more
efficient and promising mechanism for extracting the BH rotational en-
ergy.

6. Becerra, L. M.; Cipolletta, F.; Fryer, C. L.; Menezes, Débora P.; Providência,
Constança; Rueda, J. A.; Ruffini, R., Occurrence of Gravitational Collapse in
the Accreting Neutron Stars of Binary-driven Hypernovae, The Astrophysi-
cal Journal 976, 80, 2024.

The binary-driven hypernova (BdHN) model proposes long gamma-
ray bursts (GRBs) originate in binaries composed of a carbon-oxygen
(CO) star and a neutron star (NS) companion. The CO core collapse
generates a newborn NS and a supernova that triggers the GRB by ac-
creting onto the NSs, rapidly transferring mass and angular momentum
to them. This article aims to determine the conditions under which a
black hole (BH) forms from NS collapse induced by the accretion and
the impact on the GRB’s observational properties and taxonomy. We
perform three-dimensional, smoothed particle hydrodynamics simula-
tions of BdHNe using up-to-date NS nuclear equations of state, with
and without hyperons, and calculate the structure evolution in full gen-
eral relativity. We assess the binary parameters leading either NS in the
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4.1 Refereed Journals

binary to the critical mass for gravitational collapse into a BH and its oc-
currence time, tcol. We include a nonzero angular momentum of the NSs
and find that tcol ranges from a few tens of seconds to hours for decreas-
ing NS initial angular momentum values. BdHNe I are the most com-
pact (about 5 minute orbital period), promptly form a BH, and release
≳ 1052 erg of energy. They form NS-BH binaries with tens of kiloyears
merger timescales by gravitational-wave emission. BdHNe II and III do
not form BHs, and release ∼ 1050–1052 erg and ≲ 1050 erg of energy, re-
spectively. They form NS-NS binaries with a range of merger timescales
larger than for NS-BH binaries. In some compact BdHNe II, either NS
can become supramassive, i.e., above the critical mass of a nonrotating
NS. Magnetic braking by a 1013 G field can delay BH formation, leading
to BH-BH or NS–BH with tens of kiloyears merger timescales.

4.1.2 Accepted for publication (in press)

1. Ruffini, R.; Bianco, C. L.; Prakapenia, M.; Quevedo, H.; Rueda, J. A.;
Zhang, S. R., The role of the irreducible mass in repetitive Penrose energy ex-
traction processes in a Kerr black hole, accepted for publication in Physical
Review Research, preprint: arXiv:2405.10459.

The concept of the irreducible mass (Mirr) has led to the mass-energy
(M) formula of a Kerr black hole (BH), in turn leading to its surface
area S = 16πM2

irr. This also allowed the coeval identification of the
reversible and irreversible transformations, soon followed by the con-
cepts of extracted and extractable energy. This new conceptual frame-
work avoids inconsistencies recently evidenced in a repetitive Penrose
process. We consider repetitive decays in the ergosphere of an initially
extreme Kerr BH and show the processes are highly irreversible. For
each decay, the particle that the BH captures causes an increase of the
irreducible mass (so the BH horizon), much larger than the extracted
energy. The energy extraction process stops when the BH reaches a pos-
itive spin lower limit set by the process boundary conditions. Thus, the
reaching of a final non-rotating Schwarzschild BH state through this
accretion process is impossible. We have assessed such processes for
selected decay radii and incoming particle with rest mass 1% of the BH
initial mass M0. For r = 1.2M and 1.9M, the sequence stops after 8 and
34 decays, respectively, at a spin 0.991 and 0.857, the energy extracted
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4 Publications 2024

has been only 1.16%, and 0.42%, the extractable energy is reduced by
17% and 56%, and the irreducible mass increases by 5% and 22%, all
values in units of M0. These results show the highly nonlinear change
of the BH parameters, dictated by the BH mass-energy formula, and
that the BH rotational energy is mainly converted into irreducible mass.
Thus, evaluating the irreducible mass increase in any energy extraction
processes in the Kerr BH ergosphere is mandatory.

4.1.3 Submitted for publication

1. Becerra, L. M.; Fryer, C. L.; Rueda, J. A.; Ruffini, R., On the formation
of compact-object binaries from binary-driven hypernovae, submitted to The
Astrophysical Journal. Preprint: arXiv:2401.15702.

We present smoothed-particle-hydrodynamics (SPH) simulations of the
binary-driven hypernova (BdHN) scenario of long gamma-ray bursts
(GRBs), focusing on the binary stability during the supernova (SN) ex-
plosion. The BdHN progenitor is a binary comprised of a carbon-oxygen
(CO) star and a neutron star (NS) companion. The core collapse of the
CO leads to an SN explosion and a newborn NS (νNS) at its center.
Ejected material accretes onto the NS and the νNS. BdHNe of type I
have compact orbits of a few minutes, the NS reaches the critical mass,
forming a black hole (BH), and the energy release is ≳ 1052 erg. BdHNe
II have longer periods of tens of minutes to hours; the NS becomes
more massive, remains stable, and the system releases ∼ 1050–1052 erg.
BdHN III have longer periods, even days, where the accretion is negli-
gible, and the energy released is ≲ 1050 erg. We assess whether the sys-
tem remains gravitationally bound after the SN explosion, leading to an
NS-BH in BdHN I, an NS-NS in BdHN II and III, or if the SN explosion
disrupts the system. The existence of bound systems predicts an evo-
lutionary connection between the long and short GRB populations. We
determine the binary parameters for which the binary remains bound
after the BdHN event. For these binaries, we derive fitting formulas
of the numerical results for the main parameters, e.g., the mass loss,
the SN explosion energy, orbital period, eccentricity, center-of-mass ve-
locity, and the relation between the initial and final binary parameters,
which are useful for outlined astrophysical applications.
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Long and short gamma-ray bursts (GRBs) are thought to arise from different and unrelated astrophysical
progenitors. The association of long GRBs with supernovae (SNe) and the difference in the distributions of
galactocentric offsets of long and short GRBs within their host galaxies have often been considered strong
evidence of their unrelated origins. Long GRBs have been thought to result from the collapse of single
massive stars, while short GRBs come from mergers of compact-object binaries. Our present study
challenges this conventional view. We demonstrate that the observational properties, such as the association
with SNe and the different galactic offsets, are naturally explained within the framework of the binary-
driven hypernova model, suggesting an evolutionary connection between long and short GRBs.

DOI: 10.1103/PhysRevD.111.023010

I. INTRODUCTION

The binary nature of short gamma-ray bursts (GRBs) was
recognized and widely accepted since the first proposals
based on mergers of binaries formed of two neutron stars
(NS-NS) or anNS and a black hole (NS-BH; e.g., [1–4]). On
the other hand, long GRBs have been mostly considered to
arise from the core collapse of a singlemassive star into aBH
(or a magnetar), a “collapsar” [5], surrounded by a massive
accretion disk [6,7].
Therefore, the above theoretical models of long and short

GRBs have treated them as two different and unrelated

classes of astrophysical sources from different progeni-
tors. This assumption has been further enhanced by the
fact that only the long GRBs are associated with super-
novae (SNe) and by the differences in the observed
projected galactocentric offsets of short and long GRBs
in the host galaxies. This work shows that such apparent
differences are instead explained through an evolutionary
connection between the long and the short GRBs that
naturally arises when considering the role of binaries in
the stellar evolution of massive stars.
Indeed, multiwavelength observations in the intervening

years point to a key role of binaries in the evolution of
massive stars and GRBs. The BeppoSAX satellite capabil-
ities led to the discovery of the x-ray afterglow of GRBs [8],*Contact author: jorge.rueda@icra.it

PHYSICAL REVIEW D 111, 023010 (2025)
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and the accurate position, which allowed the optical follow-
up by ground-based telescopes, led to two major results:
determining theGRBcosmological nature [9] and observing
long GRBs in temporal and spatial coincidence with type Ic
SNe. The first GRB-SN association was GRB 980425-SN
1998bw [10]. The follow-up by the Neil Gehrels Swift
Observatory [11–13] of the optical afterglow has confirmed
about twenty GRB-SN associations [14–18]. The SNe Ic
associated with the long GRBs show similar optical lumi-
nosity and peak time independent of the GRB energetics,
which spans nearly 7 orders of magnitude in the sample of
GRB-SN (see Ref. [18], for details). Explaining the GRB-
SN association is one of the most stringent constraints for
GRB models.
GRB-SN systems are related to massive star explosions

[19–21], and most massive stars belong to binaries [22,23].
The SN associated with long GRBs are of type Ic, and
theoretical models and simulations show that they are
more plausibly explained via binary interactions to aid
the hydrogen and helium layers of the pre-SN star to be
ejected [24–30]. Further discussion on binary and single-
star model progenitors of GRB-SNe can be found in
Aimuratov et al. [18].
The above theoretical and observational considerations

suggest that long GRBs associated with SNe likely occur in
binaries. A possible crucial role of binaries in GRBs had
been envisaged in Fryer et al. [31]. The binary-driven
hypernova (BdHN) model has proposed a binary progenitor
for long GRBs to respond to the above exigences. In this
model, the GRB-SN event arises from a binary comprising
a carbon-oxygen (CO) star and an NS companion. The
collapse of the iron core of theCOstar leads to a newbornNS
(νNS) and a type Ic SN.The explosion and expelledmatter in
the presence of the NS companion in a tight orbit triggers a
series of physical processes that lead to the observed
emission episodes (see, e.g., Refs. [18,32–38] and refer-
ences therein).Most relevant is the hypercritical accretion of
SN ejecta onto the νNS and NS companion [39], allowed by
the copious emission of MeV neutrinos [35,40]. The
accretion rate, highly dependent on the orbital period, leads
to various BdHN types.
In the few-minute-orbital-period CO-NS binaries, the NS

reaches the criticalmass, collapsing into a rotating (Kerr) BH.
These systems are called BdHN I and are the most energetic
long GRBs with an energy release ≳1052 erg. Some exam-
ples are GRB 130427A [41], GRB 180720B [42], and GRB
190114C [43,44]. The accretion rate is lower in less compact
binarieswith periods from tens ofminutes to hours, so theNS
remains stable as a more massive, fast-rotating NS. These
systems, called BdHNe II, release energies ∼1050–1052 erg.
An example is GRB 190829A [45]. Wide CO-NS binaries
with periods of up to days, called BdHNe III, release
≲1050 erg, such as GRB 171205A [46].
The above picture predicts that BdHN events (longGRBs)

may lead to three possible fates of the CO-NS binary: an

NS-BH (BdHNe I) and NS-NS (BdHNe II) or two runaway
NSs (most BdHNe III). The gravitational wave emission
will lead the new compact-object binaries that remain
bound to merge, producing short GRBs [33,47–49]. We
refer to this evolutionary process as the “long-short GRB
connection.”We have recently performed a suite of numeri-
cal simulations to determine the binary parameters that form
NS-BH, NS-NS, and those that become unbound by BdHN
events [50]. Here,we use those new results to assess the long-
short GRB connection from the theoretical and observational
viewpoint. In particular, we analyze information from the
GRB density rates, the distribution as a function of redshift,
the host galaxy types, and the projected offset position of
long and short GRBs.
Section II summarizes the observational constraints for

the long-short GRB connection imposed by the observed
GRB populations, density rates, the host galaxies, and the
sources’ position projected offsets. Section III shows the
main results of the three-dimensional numerical simula-
tions of the BdHN scenario relevant to the analysis of this
work. Specifically, we calculate the merger times and the
difference of the position offsets between the long and
short GRBs, predicted by the BdHN model simulations.
In Sec. IV, we discuss our results and draw the main
conclusions.

II. OBSERVATIONAL CONSTRAINTS
FOR THE LONG-SHORT GRB CONNECTION

A. GRB density rates

A clue for the long-short GRB connection may arise
from the GRB occurrence rates. Here, we use the rates
estimated in Ruffini et al. [47], following the method by
Sun et al. [51]. Suppose ΔNi bursts are detected by various
instruments in a logarithmic luminosity bin from logL to
logLþ Δ logL. Thus, the total local density rate between
observed minimum and maximum luminosities Lmin and
Lmax can be estimated as

R ¼
X
i

XLmax

Lmin

4π

ΩiTi

1

ln 10
1

gðLÞ
ΔNi

Δ logL
ΔL
L

; ð1Þ

where Ωi and Ti are the instrument field of view and
observing time, gðLÞ ¼ R zmax

0 ð1þ zÞ−1dVðzÞ, being VðzÞ
the comoving volume given in a flat ΛCDM cosmology by
dVðzÞ=dz ¼ ðc=H0Þ4πd2L=½ð1þ z2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þΩΛ

p
�,

with H0 the Hubble constant, dL the luminosity distance,
ΩM and ΩΛ the cosmology matter and dark energy density
parameters, and zmax is the maximum redshift at which a
burst of luminosity L can be detected. We refer the reader to
Sec. X in [47] for further details.
Using a sample of 233 long bursts with Eiso ≳ 1052 erg,

peak energy 0.2≲ Ep ≲ 2 MeV, and measured red-
shifts 0.169 ≤ z ≤ 9.3, Ruffini et al. [47] estimated the
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observed (isotropic) density rate of BdHN I, RI ≈
0.7–0.9 Gpc−3 yr−1. As expected from the above defini-
tions, this rate agrees with the estimated rate of the so-
called high-luminous (L≳ 1050 erg s−1) long GRBs, e.g.,
0.6–1.9 [52] and 0.7–0.9 Gpc−3 yr−1 [51].
As discussed in [33], the BdHN I subclass can arise from

a small subset of the ultrastripped binaries. The rate of
ultrastripped binaries,RUSB, is expected to be 0.1%–1% of
the total SN Ic [53]. The rate of SN Ic (not the total core-
collapse SN) has been estimated to be RSNIc ≈ 2.6 ×
104 Gpc−3 yr−1 (see, e.g., [54]). This estimate is compat-
ible with more recent estimates, e.g., RSNIc ∼ 2.4 ×
104 Gpc−3 yr−1 [55]. Therefore, the rate of ultrastripped
binaries may beRUSB ∼ 24–240 Gpc3 yr−1, which implies
that ∼0.4%–4% of them may explain the BdHNe I
observed population.
Turning now to the BdHNe II and III, the above method

leads to the total density rate RIIþIII ≈ 66–145 Gpc−3 yr−1,
which was estimated in [47] with a sample of 10 long bursts
with Eiso ≲ 1052 erg, 4≲ Ep ≲ 200 keV, and measured
redshifts 0.0085 ≤ z ≤ 1.096. As expected from the above
features, this rate agrees with independent estimates of the
density rate of the so-called low-luminous (L≲ 1048 erg s−1)
long GRBs, e.g., 148–677 [56], 155–1000 [54], ∼200 [57],
and 99–262 Gpc−3 yr−1 [51]. Therefore, the BdHNe II and
III dominate the long GRB rate, i.e., Rlong ≡RIþIIþIII ≈
RIIþIII.
Let us now discuss the post-BdHN binaries formed by

the BdHNe I, II, and III. The (“pre-BdHN”) CO-NS
progenitors of BdHNe I have orbital periods of a few
minutes, so most of them remain bound after the SN
explosion [33,36]. The bursts from the NS-BH mergers
formed after BdHNe I are expected to have compact and
potentially low-mass disks, leading to very short durations.
Hence, they have been called ultrashort GRBs (U-GRBs).
The above properties make U-GRBs hard to detect, and it is
thought that no U-GRB has been observed [33]. Thus,
we can assume the rate of BdHN I as the upper limit to the
U-GRBs from NS-BH mergers, i.e., RU-GRB ≲RI.
In BdHNe II and III, the SN can either disrupt the binary,

leading to runaway NSs or, if it remains bound, to an

NS-NS binary. The mergers of the NS-NS binaries are
expected to produce short GRBs. As for BdHN I and II
energy separatrix of ∼1052 erg related to the energy
required to bring the NS companion to the critical mass
for BH formation, in Ruffini et al. [47,48], two subclasses
of short bursts from NS-NS mergers have been distin-
guished. The mergers that overcome the NS critical mass,
so those forming a BH, should release an energy≳1052 erg.
These systems have been called authentic short GRBs
(S-GRBs). The NS-NS mergers leading to a stable, massive
NS have been called short gamma-ray flashes (S-GRFs)
and release ≲1052 erg. It has been there estimated that
RS-GRF ≈ 4 and RS-GRB ≈ 0.002 Gpc3 yr−1. Hence, the
S-GRFs dominate the rate of short bursts, i.e., Rshort ≡
RS-GRF þRS-GRB þRU-GRB ≈RS-GRF. This implies that
NS-NS mergers dominate the observed local short GRB
rate. The above estimates agree with independent assess-
ments of the short GRB rate (see Table 2 in [58] for a
summary) and the current upper limit of AT 2017gfo
kilonovalike events < 900 Gpc3 yr−1 [59]. We refer to
Mandel and Broekgaarden [60] for a recent review.
We summarize in Table I all the above information for

the various BdHN and short GRB subclasses. The fact that
Rlong > Rshort supports the expectation that the SN event
disrupts a non-negligible fraction of binaries. Indeed, if we
require the short-burst population to derive from the long-
burst population, the fraction of binaries that remain bound
should be Rshort=Rlong ≈ 2%–8%. Thus, the SN explosion
would disrupt the 92%–98% of NS-NS binaries from
BdHNe II and III. However, the latter dominates the
percentage of unbound systems given their much wider
pre-SN orbits [50]. Interestingly, this inferred ∼1% fraction
of survived NS-NS binaries only based on the GRB rates
and the BdHN prediction that short GRBs are long GRB
descendants agrees with estimates from population synthe-
sis simulations (see, e.g., [61–65] and references therein).
See also Kochanek et al. [66], Chrimes et al. [67], Luitel and
Rangelov [68], and Chrimes et al. [69] for more recent
analyses. All the above has triggered new observational
campaigns searching for bound or ejected companions of
SN explosions (see, e.g., [69–74] and references therein).

TABLE I. Summary of some physical and observational properties of the GRB subclasses relevant for this work. The first three
columns indicate the GRB subclass name and the corresponding pre-BdHN and post-BdHN binaries. In columns 4 and 5, we list the
ranges of peak energy (Ep;i) and isotropic energy released (Eiso) (rest frame 1–104 keV). Columns 6 and 7 list the maximum observed
redshift and the local observed rate R obtained in Ruffini et al. [47].

Subclass Pre-BdHN Post-BdHN Ep;i (MeV) Eiso (erg) zmax R (Gpc−3yr−1)

BdHN I CO-NS NS-BH ∼0.2–2 ∼1052–1054 9.3 0.77þ0.09
−0.08

BdHN IIþ III CO-NS NS-NS ≲0.2 ∼1048–1052 1.096 100þ45
−34

S-GRF NS-NS NS ≲2 ∼1049–1052 2.609 3.6þ1.4
−1.0

S-GRB NS-NS BH ≳2 ∼1052–1053 5.52 ð1.9þ1.8
−1.1 Þ × 10−3

U-GRB NS-BH BH ≳2 ≳1052 ≲zImax ≲RI
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B. GRB redshift distribution

In Bianco et al. [75], the redshift distribution of a sample
of 301 GRBs observed by Swift before December 2018
was analyzed. Based on the definition of long GRB types
within the BdHN scenario and that of short GRBs, the
above Swift sample was subdivided into three subsamples:
216 BdHNe I, 64 BdHNe II and III, and 21 short GRBs.
The redshift distribution of the BdHNe I subsample shows
a single peak between z ∼ 2 and z ∼ 2.5 and a sort of
plateau for 0.5≲ z≲ 2. The distribution of the subsample
formed by BdHNe II and III shows a single peak around
z ∼ 1. Therefore, the distribution of BdHN Iþ IIþ III has a
double-peak structure [75], which, as expected, agrees
with previous analysis of the long GRB population (see,
e.g., [52,76] and Fig. 8 in Grieco et al. [77]). The sample of
short GRBs shows a single peak at z≲ 0.5. In this paper, we
updated this GRB sample by considering 34 additional short
GRBs until the end of 2023. The total number of short GRBs
in this new sample is, therefore, 55, and the total number of
GRBs in the entire sample is 335. Figure 1 shows the
distributions of the BdHNe I (upper panel), BdHNe IIþ III
(middle panel), and short GRBs (lower panel) subsamples. It
shows the following qualitative features:

(i) The BdHN I population is responsible for the long
GRB peak at zIp ∼ 2–2.5 [75]. The BdHN IIþ III
distribution peaks at zIIþIII

p ≈ 0.72. One of the reasons
for zIp > zIIþIII

p is the BdHN I higher energetics,
which allows their detection at larger redshifts.

(ii) The distributions of BdHNe IIþ III and short GRBs
show a similar shape [75]. The former is wider than
the latter, and their peaks occur at slightly different
redshifts. The peak of the short GRB distribution
occurs at zshortp ≈ 0.42, which is lower than zIIþIII

p ≈
0.72 by Δz ≈ 0.3.

We have performed a Kolmogorov-Smirnov test on the
relation hypothesis between the BdHN I, BdHN IIþ III,
and short GRB distributions. The following conclusions
can be drawn:

(i) The p-value testing the BdHN I and short GRB
distribution similarity is 4.5 × 10−10. This very low
value suggests their relationship is unlikely.

(ii) The p-value testing the BdHN IIþ III and short
GRB distribution similarity is 0.011. This much
larger value indicates similarity. The difference in
the position of the peaks dominates the difference in
the distributions. In fact, by shifting any of the
distributions by the difference of their peaks,
Δz ≈ 0.3, the p-value increases to ≈0.35.

The above results agree with our previous conclusions
based on the GRB density rates: the observed population of
short GRBs appears dominated by NS-NS mergers and not
by NS-BH mergers, so it is not evolutionarily connected
with the BdHN I population but with that of BdHNe II and
III, i.e., the latter may form the NS-NS binaries that become

the short GRB progenitors. This conclusion finds further
support from the estimated merger times. The most recent
numerical simulations of the BdHN scenario [50] lead to a
wide range of merger timescales ∼104–109 yr (see Fig. 2
below). The rapidly merging binaries are those of short
orbital periods, so they are mostly NS-BH, which have
merger times τmerger ∼ 10 kyr [33]. As we discussed above,
those NS-BH are post-BdHN I products. Thus, given the
peak of the BdHN I distribution at z ∼ 2 and the NS-BH
short merging times, these binaries should not be expected
to contribute to the short GRB population at low redshifts.

C. GRB host galaxies and projected offsets

Concerning the short GRBhost galaxies,Nugent et al. [78]
shows that 84% are star forming, like long GRB hosts. This
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FIG. 1. Distributions of a sample of 335GRBs as a function of the
cosmological redshift. The sample is divided into three subsamples:
BdHNe I (upper panel, 216 sources, gray), BdHNe IIþ III (middle
panel, 64 sources, orange), and short GRBs (lower panel, 55
sources, green). This GRB sample is an updated version, with 34
additional short GRBs until the end of 2023, of the one considered
by Bianco et al. [75]. We refer to Sec. VI of Bianco et al. [75]
for additional details on the definition of the sample.
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fraction decreases significantly at low redshift (z≲ 0.25), in
linewith galaxy evolution. Interestingly, high-mass galaxies
are less abundant among the short GRB hosts than field
galaxies, which becomes more evident at z≳ 0.5 and more
similar to the analogous distribution for long GRB hosts.
Moreover, they found evidence for both a short delay-time
population, mostly for star-forming hosts at z > 1, and a
long delay-time one, which becomes prevalent at lower
redshift in quiescent hosts.
The projected physical offsets from the host galaxy

center of short GRBs are, on average, larger than those of
long GRBs. Recent work by Fong et al. [79] including 90
short GRB host galaxies, the majority of which are robust
associations, finds offsets ranging from a fraction of kilo-
parsec to ≈60 kpc, with a median offset value 5–8 kpc (see
also O’Connor et al. [80]). These values must be compared
with the median value of long GRBs of 1.28 kpc. Indeed,
90% of long GRB offsets are < 5 kpc [81].
The above observational properties evidence that, for

long and short GRBs to share a common progenitor, the
delay-time distribution of the compact-object binary merg-
ers must include short and long values. We shall discuss
these points in the next section.

III. POST-BdHN NS-NS/NS-BH TIME
AND DISTANCE TRAVELED TO MERGER

We have recently presented in Becerra et al. [50] a new
set of numerical simulations performed with the SN-SPH

code [82] of the evolution of the binary system from the CO
star SN explosion. The code follows the structure evolution
of the νNS and the NS companion as they move and accrete
matter from the SN ejecta. The initial setup has been
described in detail in Becerra et al. [36] (see also [38]).
The code tracks the SN ejecta and point-mass particles’

position and velocity. The total energy of the evolving

νNS-NS system,Etot, is given by the sum of the total kinetic
energy relative to the binary’s center of mass and the
gravitational binding energy. The system is bound if
Etot < 0. In that case, the orbital separation can be deter-
mined from the binary total energy, the orbital period from
Kepler’s law, and the eccentric from the orbital angular
momentum (see [50] for further details).
To examine the conditions under which the binary

remains bound, we perform simulations for various initial
orbital periods, keeping fixed the initial mass of the NS
companion, MNS;i ¼ 2M⊙, the zero-age main-sequence
(ZAMS) of the CO star (Mzams ¼ 25M⊙), and the SN
explosion energy. The pre-SN CO star has a total mass of
MCO ¼ 6.8M⊙ and leaves a νNS ofMνNS;i ¼ 1.8M⊙. Thus,
it ejects Mej ≈ 5M⊙ in the SN explosion. We recall that
MCO ¼ MνNS;i þMej. We record the final values of the νNS
mass MνNS;f , the NS companion mass MNS;f , orbital sep-
aration aorb;f , orbital period Porb;f , and eccentricity ef.
Another key quantity is the final binary center of mass
velocity vc:m:;f. We end the simulation when most of the
ejecta have left the system, i.e., when the mass gravitation-
ally bound to the stars (νNS and NS) is gravitationally
negligible, e.g., ≲10−3M⊙.
The final total energy of the systems in the simulations is

well fitted by the following polynomial function:

Etot;f ≈−
1

2

GMCOMns;i

aorb;i
ðaþbxþcx2Þ; x≡aorb;iPorb;i

vsn
;

ð2Þ
where vsn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Esn=Mej

p
is an indicative average expansion

velocity of the SN ejecta of massMej. For the present binary,
a ¼ 0.294, the constantsb andc depend on theSNexplosion
energy and are listed in Table 2 of Becerra et al. [50].
For example, for Esn ¼ 6.3 × 1050 erg, b ¼ −3.153 and

FIG. 2. Characteristic merger time by gravitational-wave emission (left axis) and distance travel (right axis) for the binary systems that
remain bound (negative total energy) after a BdHN event as a function of the final binary separation. Left: the initial binary comprises a
CO-evolved star from a ZAMS progenitor of Mzams ¼ 25M⊙ and a 2M⊙ NS companion and the curves correspond to selected SN
explosion energies. Right: simulations for the SN explosion energy 6.30 × 1050 erg for two CO-evolved stars from ZAMS progenitors:
Mzams ¼ 25M⊙ (red) and 30M⊙ (blue). The dashed (solid) curves correspond to symmetric (asymmetric) SN explosions (see [50]
for details).
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c ¼ 5.219. The maximum initial period for the system to
hold bound is obtained by setting the final total energy to
zero. In the present example, the energy becomes zero at
x ¼ 0.115, which implies Porb;max ≈ 7.15 min.
The final bound systems will be compact binary systems

(NS-NS or NS-BH), which will eventually merge through
the emission of gravitational waves. The time to merger is
given by (see, e.g., [83])

τmerger ¼
c5

G3

5

256

a4orb
μM2

FðeÞ; ð3Þ

FðeÞ ¼ 48

19

1

gðeÞ4
Z

e

0

gðeÞ4ð1 − e2Þ5=2
eð1þ 121

304
e2Þ de; ð4Þ

where gðeÞ ¼ e12=19ð1 − e2Þ−1ð1þ 121e2=304Þ870=2299,
being M ¼ m1 þm2, μ ¼ m1m2=M, and e the orbit total
mass, reduced mass, and eccentricity.
We have calculated the time to merger from Eq. (3),

using the parameters obtained from the numerical simu-
lations, i.e., aorb ¼ aorb;f , m1 ¼ MνNS;f , m2 ¼ MNS;f , and
e ¼ ef. With this information, the distance traveled by the
newly formed compact-object binary from the BdHN event
location to the merger site is

d ¼ vc:m:;fτmerger: ð5Þ

Figure 2 shows τmerger (left axis) and d (right axis) as a
function of aorb;f . We show the results when the CO star’s
companion is an NS of MNS;i ¼ 2M⊙, while we adopt two
models for the CO star. The first is the model of the
previous example, i.e., a CO-evolved star from a ZAMS
progenitor of Mzams ¼ 25M⊙; MCO ¼ MνNS;i þMej ≈
6.8M⊙, where MνNS;i ≈ 1.8M⊙ and Mej ≈ 5M⊙. The sec-
ond model is the CO star from a Mzams ¼ 30M⊙;
MCO ≈ 8.9M⊙, where MνNS;i ¼ 1.7M⊙ and Mej≈7.2M⊙.
Each point in each curve corresponds to a different value of
the parameter x defined in Eq. (2), so for fixed initial
component masses, ejecta mass, and SN explosion energy,
it explores a range of orbital periods Porb;i (or, equivalently,
aorb;i). In the right panel plot, we compare the results for a
symmetric and asymmetric SN explosion of the same
energy.
For the various SN explosion energies, the left panel of

Fig. 2 shows a range of merger times τmerger ¼ 104–109 yr.
Correspondingly, we obtain systemic velocities vc:m:;f ∼
10–100 km s−1 for those newly formed binaries. From
the above, we find that the distance traveled by these
binaries (NS-NS or NS-BH) after the BdHN event
ranges d ¼ 0.01–100 kpc.
Themeasured projected offsets of long and short GRBs in

the host galaxies differ about 1 order of magnitude (see [79]
and Sec. II B).While most longGRBs have offsets< 5 kpc,
with a median value ∼1 kpc, short GRBs show an equally

broad distribution but shifted to larger values by about one
decade, that is, from a fraction of kiloparsec to≈70 kpc. The
short GRB offset median is ≈8 or ≈5 kpc for the golden
sample of the most robust associations. The offsets of the
short GRBs in the sample of Fig. 1 are 0.15–70.19 kpc. This
range of values strikingly agrees with that obtained for the
distance traveled by the NS-NS and NS-BH binaries
produced by BdHNe.
It is worth mentioning that the above conclusions have

been obtained within the model’s hypotheses and are
limited to the parameter space we have explored. Such a
parameter space (e.g., CO star mass and orbital period) is
not arbitrary; it corresponds to the conditions that, from our
simulations, lead to the three subclasses of BdHNe (I, II,
III). However, these conditions may vary according to the
various physical conditions in population synthesis simu-
lations leading to the pre-BdHN CO-NS binaries. Such
simulations are still missing in the literature and represent
an interesting new research topic.

IV. DISCUSSION AND CONCLUSIONS

We have reached the following conclusions:
(1) GRB rates. The inequality Rshort < Rlong is ex-

plained as follows (see Sec. II A). First and foremost,
the short GRB is dominated by NS-NS mergers, and
only a subset of the BdHNe can produce NS-NS
(BdHNe II and III). Thus, the subset leading to short
GRBs is given by the BdHNe II and III that lead to
bound NS-NS binaries [50]. Further, BdHNe I lead
to NS-BH binaries. These binaries can produce short
GRBs only if the BH is low enough mass; otherwise,
tidal disruption of the NS by the BH is more likely
to occur.

(2) Redshift distribution. First, we have shown in
Sec. II B that zIpð≈2–2.5Þ > zIIþIII

p ð≈0.72Þ (see also
Fig. 1), which reflects the higher energetics of the
BdHN I relative to BdHN II and III that allows their
observation at higher redshifts. Then, we showed
that the short GRB distribution peaks at zshortp ≈ 0.42.
The inequality zshortp ≪ zIp suggests that BdHN I
remnant binaries have a negligible role in the distri-
bution of short GRBs. Indeed, in the BdHN scenario,
BdHNe I produce compact-orbit NS-BH binaries,
rapidly merging on timescales < 105 yr [33]. At the
peak redshift of the BdHN I distribution, zIp ≈ 2–2.5,
such a timescale implies a negligible redshift interval,
so their contribution at zshortp ≈ 0.42 is negligible. On
the other hand, the distribution of BdHN IIþ III
shows similarities with that of the short GRBs, and
zIIþIII
p ≈ 0.72, which differs from zshortp by Δz ¼ 0.3.
Themerger timescales ofNS-NSproducts byBdHNII
and III (see Fig. 2) could explain the time delay
(redshift difference) between the two distributions.
The above analysis suggests a linkbetween theNS-NS
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remnant binaries from BdHN II and III as possible
progenitors of the short GRBs. Thus, further detailed
calculations are needed to deepen this connection,
such as simulating the merger time-delay distribution
accounting for the occurrence rate and intrinsic dis-
tribution of binary periods at different redshifts and the
cosmological expansion. Such a calculation goes
beyond the exploratory character of the present article
and is left for future analyses.

(3) Host galaxies. Short-GRB host stellar-population
ages support the picture of a short delay-time
population within young and star-forming galaxies
at z > 0.25, along with a long delay-time population
which characterizes older and quiescent galaxies at
lower z [78]. The above observations suggest com-
pact-orbit NS-NS binaries should be more abundant
in the former galaxies, while wide-orbit NS-NS
binaries dominate in the latter. This suggestive
information deserves further attention from com-
bined cosmology and population synthesis models,
which, combined with the BdHN simulations, could
be used to estimate the expected galactocentric
offsets and circum-merger conditions for NS-NS
merging systems (see, e.g., [84]).

(4) Galactocentric offsets. The NS-NS produced by
BdHNe II and III have a distribution of binary
periods, eccentricities, and systemic velocities,
which predict a wide distribution of systemic veloc-
ities 10–100 km s−1 and merger times 104–109 yr,
leading to distances of 0.01–100 kpc traveled by
these systems from the BdHN site to their merger
site at which the short GRBs are expected to be
produced (see Fig. 2). In the BdHN scenario, this
distance traveled by the post-BdHN binary directly
measures the distance separating the long and short
GRB occurrence sites. Therefore, our modeling does
not give information on the offset of the long or the
short GRB but on their relative offset. Indeed, most
long GRBs have offsets < 5 kpc, while short GRB

offsets span from a fraction of kiloparsec to
≈70 kpc. This difference in the offset of about a
decade agrees with the BdHN numerical simulations
presented here.

There are additional consequences of the present sce-
nario. Current distributions of merger times and large
systemic postformation velocities are in tension with
observations of short GRBs in dwarf galaxies. The veloc-
ities larger than the galaxy escape velocities and the long
merger times predict offsets larger than observed would
impede the r-process enrichment of the galaxy [85]. In this
regard, our results imply two possibilities. First, a pop-
ulation of short-merger-time binaries (< 100 kyr) do not
have time to move outside the dwarf galaxy, even for
velocities larger than the galaxy’s escape velocity. Second,
there are binaries with longer merger times but with
velocities lower than the galaxy’s escape velocity. The
present results, combined with future detailed population
studies, may determine the relative relevance of these
systems to explain these observations.
In summary, we have shown that observations of the

GRB density rates and density distribution, the host galaxy
types, and the sources’ projected position offsets agree with
the expectations from the BdHN scenario and numerical
simulations. This constitutes a strong test of the surprising
conclusion, as it may sound: short GRBs are long GRB
descendants.
All the above implies, at the same time, the binary

progenitor nature of long GRBs and, consequently, the
associated preceding binary stellar evolution. Therefore,
further theoretical and observational scrutiny from the
GRB, x-ray binaries, population synthesis, stellar evolu-
tion, and cosmology communities is highly encouraged.
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Abstract

The exceptionally low mass of -
+ M0.77 0.17

0.2 for the central compact object (CCO) XMMU J173203.3–344518
(XMMU J1732) in the supernova remnant (SNR) HESS J1731–347 challenges standard neutron star (NS)
formation models. The nearby post–asymptotic giant branch star IRAS 17287–3443 (≈0.6Me), also within the
SNR, enriches the scenario. To address this puzzle, we advance the possibility that the gravitational collapse of a
rotating presupernova (SN) iron core (≈1.2Me) could result in a low-mass NS. We show that angular momentum
conservation during the collapse of an iron core rotating at ≈45% of the Keplerian limit results in a mass loss of
≈0.3Me, producing a stable newborn NS of ≈0.9Me. Considering the possible spin-down, this indicates that the
NS is now slowly rotating, thus fulfilling the observed mass–radius relation. Additionally, the NS's surface
temperature (≈2 × 106 K) aligns with canonical thermal evolution for its ≈4.5 kyr age. We propose the pre-SN
star, likely an ultrastripped core of ≈4.2Me, formed a tidally locked binary with IRAS 17287–3443, with a
1.43 day orbital period. The SN led to a ≈3Me mass loss, imparting a kick velocity 670 km s−1, which disrupted
the binary. This scenario explains the observed 0.3 pc offset between XMMU J1732 and IRAS 17287–3443 and
supports the possibility of CCOs forming in binaries, with rotation playing a key role in core collapse, and the CCO
XMMU J1732 being the lightest NS ever observed.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Close binary stars (254)

1. Introduction

Central compact objects (CCOs) are isolated compact stars,
thought to be neutron stars (NSs), located at the center of
supernova remnants (SNRs) of young ages of a few thousand
years (V. Doroshenko et al. 2016; W. C. G. Ho et al. 2021),
show low magnetic fields ranging 1010–1011 G (J. P. Halpern &
E. V. Gotthelf 2010; E. V. Gotthelf et al. 2013; W. C. G. Ho
et al. 2021), and emit thermal X-ray radiation with no
counterparts at any other wavelength and most do not exhibit
pulsations (A. De Luca 2017; J. A. J. Alford & J. P. Halpern
2023). These observational properties make the study of CCOs
crucial for understanding the equation of state (EOS), thermal
evolution, and formation channel of NSs.

Typically, no observations suggest a binary origin for CCOs,
except the CCO in the SNR HESS J1731–347 (see below),
XMMU J173203.3–344518, hereafter XMMU J1732 for short.
But this is not the only feature that makes XMMU J1732 an
exceptional CCO study case: its mass has been recently
measured to be -

+ M0.77 0.17
0.2 and its radius -

+10.4 0.78
0.86 km

(V. Doroshenko et al. 2022). The above numbers challenge
the existing evolutionary channels leading to NSs, e.g., via core
collapse, given that only NS masses 1.17Me are expected

(Y. Suwa et al. 2018). This is generally consistent with
observations, except for XMMU J1732. Thus, even if the
general relativistic equilibrium configuration sequences of NSs
allow for stable low-mass NSs, and the mass and radius of this
CCO could provide new constraints on the nuclear EOS,
astrophysical formation channels would avoid their formation
in nature. Given the above properties of this system, it has been
suggested XMMU J1732 could be a strange star (see, e.g.,
J. E. Horvath et al. 2023; F. Di Clemente et al. 2024), a hybrid
star, or a dark matter admixed NS (see, e.g., V. Sagun et al.
2023; P. Laskos-Patkos et al. 2024).
In this article, we argue that XMMU J1732 might indeed be

a low-mass NS and advance the possible formation channel in a
core-collapse scenario by considering the rotational effects of
the progenitor star in a binary, which have not been previously
accounted for. The presence of a (likely) post–asymptotic giant
branch (post-AGB) star (IRAS 17287–3443) inside the SNR
HESS J1731–347 suggests these two stars could have formed a
binary that was disrupted by the supernova (SN) event
(V. Doroshenko et al. 2016). Binaries are prevalent in the
Universe, and binary stellar evolution, their associated SN
explosions, and products can differ significantly from those of
single stars (P. Podsiadlowski et al. 2004; E. Laplace et al.
2020; E. Laplace et al. 2021). The gravitational and rotational
effects may lead to mass transfer and rotational synchronization
of the stellar components with the orbital period in compact-
orbit binaries. Therefore, the pre-SN star could be a rotating
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core whose outermost layers may have been stripped, with the
composition and structure different from the single-star case
(E. Laplace et al. 2020; E. Laplace et al. 2021).

Bearing the above in mind, in the following sections, we
explore the possibility that the pre-SN system was a tidally
locked binary that led to an ultrastripped SN, forming at its
center an NS that becomes low mass owing to mass shedding,
and the disruption of the binary. In Section 2, the observational
properties of the source are introduced, a model of rotating core
collapse to form an NS is constructed, and the rotational
evolution of the NS leading to shedding mass during its
formation is discussed. Subsequently, in Section 3, we argue a
possible evolutionary scenario for the pre-SN binary and
discuss its disruption by the SN event. Finally, we summarize
and discuss our conclusions in Section 4.

2. The Low-mass NS Formation and Evolution

2.1. Observational Properties

The observations of HESS J1731–347 (also known as
G353.6–0.7) indicate the presence of XMMU J1732 at its center
with a mass of -

+ M0.77 0.17
0.2 and a radius of -

+10.4 0.78
0.86 km

(V. Doroshenko et al. 2022). An optical star, IRAS 17287–3443,
likely a post-AGB star with a mass of 0.605Me, is also inside the
SNR (V. Doroshenko et al. 2016). The mass of the thick dust
shell within which the optical star and the CCO are embedded
has been estimated to be 1.5–3Me (V. Doroshenko et al. 2016).
Gaia parallax measurements constrain the distance to the optical
companion to be 2.5(3) kpc (C. A. L. Bailer-Jones et al. 2021).
Thus, the observed angular distance of ≈25″ between
XMMU J1732 and IRAS 17287–3443 implies their projected
separation to be ≈0.3 pc. There is another source,
HESS J1729–345, where a γ-ray excess has also been observed.
This source is located near HESS J1731–347 and shares a
common H II cloud association with it, but it lies approximately
1° away from the CCO. As explained in N. Maxted et al. (2018),
the TeV emission outside the SNR is produced by escaping
cosmic rays, and HESS J1729–345 may represent a new
component of target material mass.

2.2. The Rotating Collapse of the Iron Core

We assume XMMU J1732 is an NS formed following the
traditional paradigm of gravitational collapse of the iron core of
an evolved star. For simplicity, a polytropic sphere model is
employed to calculate (solving the Lane–Emden equation) the
density profile ρ(R) of the iron core. A polytropic sphere with
polytropic index n= 3 (γ = 4/3) is a suitable approximation
near the critical mass, with a moment of inertia given by
I = kMR2, where k= 0.075. Despite the polytropic sphere
closely matching the detailed iron core model with k= 0.074
(K. Boshkayev et al. 2013), the spherical symmetry does not
account for deformations due to rotation. This is safe for our
purpose since the collapsing part is the central region of the
iron core, where the oblateness is very small, making it
accurate to first order. Hence, equal equatorial and polar radii
(Req and Rp) are assumed, hereafter denoted as R.

The angular momentum of every fluid element is assumed to
be conserved during the collapse. The collapsing matter is
contained within a cylindrical polar coordinate in the initial
model (see, e.g., J. C. Miller & F. de Felice 1985). For a
spherical object, the mass and angular momentum contained

within the cylindrical polar coordinate x are

( ) ( ) ( )ò ò r p= + ¢ ¢
-

¢
¢

M x x z x dzdx4 , 1b

x R x

0 0

2 2
2 2

( ) ( ) ( ) ( )ò ò r p= + W ¢ ¢
-

¢ ¢
¢

L x x z x x dzdx4 . 2
x R x

0 0

2 2 3
2 2

When a rapidly rotating NS is formed with baryonic mass
Mb(x), the corresponding gravitational mass is M(x). Following
the general relativistic uniformly rotating NS results of F. Cip-
olletta et al. (2015), the relationship between the above two is

( )( )  » -M M M M M M1 20b b
2/ / / / , and the upper limit of

angular momentum is given by

( ) ( )»L
GM x

c
0.7 . 3max

2

Thus, the angular momentum of the original components
required for the collapse into an NS must fulfill

( ) ( )L x L . 4max

This necessary condition allows us to determine the critical
cylindrical polar coordinate xcrit, below which collapse occurs
and above it, mass is shed. The equality in Equation (4)
indicates the final collapsed object is at the Keplerian sequence.
We turn to exemplify the model with specific cases. Let us

assume the initial iron core is uniformly rotating with an
angular velocity Ω given by a fraction β < 1 of the maximum
angular velocity set by the mass-shedding, Keplerian limit, ΩK.
According to the simulation of a uniformly rotating iron core in
general relativity (see, e.g., K. Boshkayev et al. 2013),
W » GM R0.76K

3/ , so Ω = βΩK. We adopt an initial mass
M = 1.2Me and radius R= 2686 km, consistent with the
structure parameters of the maximum mass configuration of an
iron core in the same general relativistic treatment. For rotation
parameters β = 0.3, β = 0.4, and β = 0.5, the corresponding
angular momenta contained within the cylindrical polar
coordinate x are depicted in Figure 1, along with the maximum
allowable angular momentum. Additionally, the lower panel of
Figure 1 gives the masses contained within the cylindrical polar
coordinate x.
In the case of β = 0.3 and β = 0.4, the critical coordinate is

xcrit = 0.54 and xcrit = 0.35, respectively, and the corresp-
onding mass that can collapse to form an NS is
M(xcrit) ≈ 1.07Me and M(xcrit) ≈ 0.91Me. The case of
β = 0.4 is suitable for XMMU J1732. The actual rotation
parameter β may be slightly larger since the central core may
not be a pure iron core, so its mass may be somewhat larger
than 1.2Me, and the mass of the newly formed NS may be even
smaller initially, increasing to its current mass through the
accretion of shedding material. However, the exact amount of
shed material accreted onto the NS and the unbound portion
depends on factors like magnetic field strength, rotation, and
the NS collapse process (e.g., P. Chi-Kit Cheong et al. 2024).
While dynamic evolution of shed materials merits further
numerical simulation, they are beyond the scope of this study.
The case β= 0.5 leads to L(x) above Lmax for the appropriate NS
mass values. Therefore, values β ∼ 0.4–0.45 are reasonable.
To summarize, the collapse of an iron core of Mb ≈

Mg = 1.2Me, uniformly rotating at Ω = 0.4ΩK ≈ 0.87 rad s−1,
so a rotation period P ≈ 7.2 s, could lead to an NS of baryonic
mass Mb ≈ 0.96Me, so a gravitational mass M ≈ 0.91Me. In
the collapse process, ΔM = 0.24Me are shed, in addition to the
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ejected outermost layers of the pre-SN star hosting the
iron core.

2.3. Spin-down of the Newborn NS

As indicated above, the newborn NS formed in the core-
collapse process will rapidly rotate, with their rotation rate
limited by the mass-shedding angular velocity. We now
estimate the NS angular velocity at the system's estimated
age. For this task, we consider the NS can spin-down as it
might be subjected to the torque by magnetic dipole radiation.
In this case, the energy conservation equation reads

⎛⎝ ⎞⎠ ( )- » - W = =
W

E
d

dt
I L

B R

c

1

2

2

3
, 5dip

2
dip

2
NS
6 4

3

where I is the NS moment of inertia. Neglecting the change
with time of I, Equation (5) leads to the angular rotation
evolution

( ) ( )tW =
W

+
=

W
t

t
Ic

B R1
,

3

4
, 6

t

0
3

2
NS
6

0
2

where τ is the spin-down timescale and Ω0 is the initial NS
angular velocity, which we adopt to be a maximum value, i.e.,

W = W » »GM R0.7 71100 K NS NS
3/ rad s−1, corresponding

to a rotation frequency f0 = Ω0/(2π) ≈ 1131 Hz (≈0.9 ms
period). This is just the initial frequency at the birth of the NS,
and it will evolve rapidly.
CCOs are characterized by weak magnetic fields B ∼

1010–1011 G. For instance, assuming B = 1011 G, MNS =
0.9Me, RNS = 106 cm, and I = 1045 g cm2, Equation (6) tells
that at t= 4.5 kyr, the NS rotation frequency will be ≈531 Hz.
This is an upper limit for the rotation frequency since
additional effects could also contribute to the NS spin-down,
e.g., the gravitational waves in early evolution (see, e.g.,
A. Ferrari & R. Ruffini 1969; J. P. Ostriker & J. E. Gunn 1969;
S. Chandrasekhar 1970; R. Ruffini & J. A. Wheeler 1971;
B. D. Miller 1974), multipolar magnetic field components
(see, e.g., A. Mastrano et al. 2013; A. Tiengo et al. 2013;
J. Pétri 2015; G. A. Rodrìguez Castillo et al. 2016; J. A. Pons &
D. Viganò 2019; J. A. Rueda et al. 2022; Y. Wang et al. 2023),
or the magnetic field could have been larger at earlier times at
then be buried by fallback accretion (see, e.g., W. C. G. Ho
2011; N. Fraija et al. 2018). Thus, the rotation effect on the NS
structure at these times is negligible, so a slow-rotation or
nonrotation approximation may suffice to estimate the mass
and radius (see, e.g., F. Cipolletta et al. 2015).
We can also use the above estimate to constrain the magnetic

field, the frequency, and the X-ray pulsar efficiency, as follows.
As for other CCOs, the X-ray observations of XMMU J1732 by
XMM-Newton show a stable, i.e., absent of pulsed, emission. The
observed flux in the 0.5–10 keV energy band is FX ≈ 2.5 ×
10−12 erg s−1 cm−2 (D. Klochkov et al. 2015). The spectrum is
consistent with a blackbody emission with surface temperature
Ts = 2 × 106 K and radius RNS ≈ 10.5 km, assuming a distance
to the source d= 2.5 kpc (C. A. L. Bailer-Jones et al. 2021). This
implies an intrinsic X-ray luminosity LX = 4πd2FX ≈
2 × 1033 erg s−1. The dipole luminosity in the X-ray band is

h=L LX
dip

X dip, where ηX is the X-ray emission efficiency
parameter. Therefore, the constraint L LX

dip
X leads to

⎛⎝ ⎞⎠ ( )h
W t

+ c L

B R

t3

2
1 , 7X

3
X

2
NS
6

0
4

2

which for the above parameters implies ηX  10−7 at
t= 4.5 kyr. This value is consistent with the lowest X-ray
emission efficiencies of pulsars (see, e.g., A. A. Abdo et al.
2013). Still, the value of ηX can be higher since, as we argued
above, the rotation angular velocity is an upper limit, so the
CCO is likely slower.

2.4. Cooling Evolution

We must also dedicate some time to exploring the thermal
properties of XMMU J1732. This object offers a unique
opportunity for examining its thermal characteristics, as it is
one of the few thermally emitting compact objects for which
we have a reliable mass estimate.
We start by revisiting the thermal evolution equations that

govern the cooling process of NSs. This cooling is primarily
driven by the emission of neutrinos, originating from the
star's interior, and photons, emitted from its surface. The
equations representing both energy balance and conservation

Figure 1. Upper panel: angular momentum contained within the cylindrical
polar coordinate x (solid curves), along with the maximum angular momentum
for the uniformly rotating sphere (red dashed–dotted curve), for selected values
of the initial angular velocity parameter β. The angular momentum is
normalized to =L GM c0.7max

2/ . Lower panel: baryonic (blue curve) and
gravitational (black curve) mass contained within the cylindrical polar
coordinate x.
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are written as

⎜ ⎟⎛⎝ ⎞⎠( ) ( ) ( )
r

¶
¶

= -
-

+
¶
¶

f

n
f

f
le

m m r
e c

Te

t

1

1 2
, 8v

2
2

/

( ) ( ) ( )
p kr

¶
¶

= -
-

f fTe

m

le

r m r16 1 2
. 9

2 4 /

Equations (8) and (9) illustrate that the cooling of NSs depends
on macroscopic properties—such as radial distance (r), mass
(m(r)), and the metric function (f(r)). Additionally, there is a
direct correlation with microscopic and thermodynamic
quantities, including specific heat cv(r, T), thermal conductivity
κ(r, T), neutrino emissivity òν(r, T), and energy density ρ(r). By
solving Equations (8) and (9), one can obtain the temporal
evolution of the temperature (T(r, t)) and luminosity (l(r, t)),
which can then be compared against observational data to
gauge the quality of the underlying model.

The stellar microscopic composition is crucial for thermal
evolution, significantly impacting thermal conductivity, specific
heat, and most importantly, neutrino emissivity. Given the nature
of our model, we have opted for a conservative approach by
using a parameterization of the Akmal–Pandaripande–Ravenhall
(APR) EOS (V. R. Pandharipande & D. G. Ravenhall 1998;
H. Heiselberg 2000), known for its ab initio formulation.
This choice is ideal for modeling low-mass stars, as it
provides reliable results for low densities, thereby minimizing
uncertainties associated with the microscopic model. Previous
studies have employed similar methodologies, such as
T. Sales et al. (2020), F. Lyra et al. (2023), and V. Sagun
et al. (2023). Assuming the APR EOS, the composition of the
stellar core is limited to neutrons, protons, and electrons. The
corresponding microscopic properties are utilized to deter-
mine all pertinent thermodynamic quantities. Additionally,
we consider all potential neutrino emission processes,
including the direct Urca, modified Urca, and bremsstrahlung
processes.

The crust of the star is modeled using the traditional Baym–

Pethick–Sutherland (BPS) approach (G. Baym et al. 1971). In
this model, the outer crust consists of heavy ions arranged in a
crystalline lattice permeated by electrons. The inner crust
begins at the neutron drip density, where, in addition to the
electron sea, free neutrons are also present. Thermodynamics of
the crust is mostly dominated by the heavy ions and electrons,
the latter being responsible for most of the specific heat, with
the latter driving most of the heat conduction.

Details of the calculations of thermodynamics properties
may be found in great detail in references D. G. Yakovlev et al.
(2000), D. Yakovlev & C. Pethick (2004), and D. Page et al.
(2004).

Finally, we must enforce the appropriate boundary condi-
tions. These include the vanishing heat flow at the star's center
(l(r = 0) = 0) and the suitable atmospheric model at the
surface, which depends on the ratio and content of light and
heavy elements. For more details, refer to E. Gudmundsson
(1982), E. H. Gudmundsson et al. (1983), and D. Page &
S. Reddy (2006).

Our initial findings are presented in Figure 2, which depicts
the thermal evolution of NSs with masses in the range of

-
+ M0.77 0.17

0.2 against the observed temperature of XMMU J1732
whose age was estimated in V. Doroshenko et al. (2016); this
age of between 4 and 10 kyr is supported by the fact that the

observed infrared structure and SNR shell must have compar-
able ages. Alternatively, we could adopt a more stringent age
constraint of 2–6 kyr, as suggested by Y. Cui et al. (2016),
which we also examined. However, this narrower age range did
not lead to qualitative differences in our results, except that it
slightly favors an object with a smaller mass, closer to 0.6Me.
This figure includes two data sets: one for NSs without pairing
and another with pairing. Pairing is a crucial factor in the
thermal evolution of NSs. Its significance to cooling lies in the
exponential suppression of neutrino emission processes by
the pairing gap energy, which affects the primary heat sink
in the thermal evolution. At the densities present in NSs,
nucleons are expected to form pairs (J. Chen et al. 1993a).
Although there are still many uncertainties regarding the
strength and prevalence of pairing, it is generally accepted (see,
for instance, D. Page et al. 2004; S. Beloin et al. 2018) that, at
least for lower densities, neutrons may pair up in singlet (1S0)
states, especially in the lower density regions of the outer crust,
as well as triplet (3P2) states, which can extend into the core.
More uncertain, but still possible, is the formation of super-
conducting protons via singlet proton pairing. We examine
both neutron singlet and triplet pairing (1S0 and

3P2), as well as
proton singlet (1S0) based on the Schwenk–Friman–Brown
(SFB) and CCDK models (J. M. C. Chen et al. 1993b;
A. Schwenk et al. 2003). Allowing nucleons to pair up results
in significantly slower cooling, yet it cannot match the
observed temperature of XMMU J1732. As previously noted,
the composition of an NS's atmosphere greatly influences its
cooling process. Initially, our simulations assumed an atmos-
phere composed exclusively of heavy elements. Such a setup,
which is associated with more efficient cooling, does not align
with the specific conditions we propose for XMMU J1732 in
this paper.

Figure 2. Thermal evolution simulation for 0.6–0.97Me NSs modeled with the
APR EOS. Cooling tracks with pairing indicated were calculated employing
neutron singlet and triplet pairing (1S0 and 3P2) as well as proton singlet
(1S0) model after the SFB and CCDK models (J. M. C. Chen et al. 1993b;
A. Schwenk et al. 2003). These simulations considered an envelope of heavy
elements. Also shown is the observed temperature of XMMU J1732 and its
estimated age according to V. Doroshenko et al. (2016).
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The situation significantly improves when considering a
light-element-rich envelope. In this case, we have employed an
envelope with ΔM/M = 10−7, where ΔM represents the light
elements mass in the upper envelope (E. Gudmundsson 1982;
E. H. Gudmundsson et al. 1983; A. Y. Potekhin et al. 1997).
Figure 3 shows the outcomes for such an envelope.

The selection of ΔM/M = 10−7 is deliberate, aligning with
an atmosphere composed of H, He, and C as described by
A. Y. Potekhin et al. (1997). This detail is crucial since the
most likely scenario for this object is the accretion of material
onto the CCO shortly after the SN, resulting in a significant
carbon presence in the atmosphere, as it was pointed out by
V. Doroshenko et al. (2016). It is thus worth noting that, by
accounting for a carbon-rich atmosphere, there is a remarkable
concordance between the temperature and estimated age of the
central compact object XMMU J1732 and our cooling
simulations.

The results suggest the thermal properties of XMMU J1732
concur with the model explored in this study. An ordinary NS
with a mass ranging 0.6–0.97 Me can naturally account for the
observed data. In this study, we have focused solely on
hadronic degrees of freedom. This approach is reasonable
because transitions to quark matter are suggested to occur at
higher densities (M. Oertel et al. 2017; M. G. Alford et al.
2013; M. Buballa et al. 2014; K. Masuda et al. 2013) than those
expected in a compact object with such low mass. Notably, the
work published in V. Sagun et al. (2023) and J. Horvath et al.
(2023) has demonstrated that exotic degrees of freedom can
also explain the thermal data of HESS J1731–347. Therefore,
extending our evolutionary model to include exotic degrees of
freedom would be an interesting direction for future research.

3. Progenitor System

Having clarified the consistency of XMMU J1732 with a
rotating core-collapse event that shed mass, we turn to
reconstruct the astrophysical scenario before the SN event.

Observations indicate that the mass of the dust shell in this
SNR is ∼1.5–3Me, which further supports the suggestion that
the pre-SN progenitor should not be a single star but rather an
ultrastripped core in a binary. Below, we infer the progenitor
binary parameters.

3.1. Binary System Prior to SN

We start by imposing that there is no Roche-lobe overflow in
the binary at the SN event. For the primary star, this condition
constraints its radius Rå to satisfy

( ) ( )
+ +

R
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q

q q

0.49

0.6 ln 1
, 10

2 3

2 3 1 3

/

/ /

where a is the semimajor axis of the binary orbit, and
q ≡ Må/Mc > 1 is the binary mass ratio. When the equal sign
in Equation (10) is taken, it indicates the Roche-lobe outflow
condition, corresponding to the blue curve in Figure 4, with the
shaded region indicating the range defined by Equation (10).
We assume the binary is tidally locked before the SN

occurs, i.e., Ωå = Ωorb. Then, the angular velocity parameter is
given by
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Note that the value 0.76 is consistent with Section 2.2. For a
given β*, Equation (11) relates Rå/a and q. As discussed in
Section 2.2, assuming that the collapsing iron core rotates
uniformly to collapse into a low-mass NS, a reasonable value
for βå could be somewhere in the range 0.4–0.5. Figure 4
shows the Rå/a as a function of q for three selected values,
β* = 0.4, 0.45, and 0.5.
An SNR mass of 3Me (V. Doroshenko et al. 2016) implies

the pre-SN star would be M* = 4.2Me. We recall that here we
refer to the pre-SN star mass, which can be considerably lower
than the mass of its progenitor zero-age main-sequence star.
Indeed, for the latter to give rise to an NS, stellar evolution
predicts it to be 8Me. Therefore, the above numbers suggest

Figure 3. Same as Figure 2, but for a hydrogen-rich envelope with a light-
element fraction of ΔM/M = 10−7, which is consistent with a carbon-rich
envelope.

Figure 4. The ratio of the primary star radius to the binary semimajor axis as a
function of the ratio of the masses of the two components of the binary star.
The blue curve corresponds to the Roche-lobe outflow condition, with the
shaded region separating two components larger than the Roche-lobe outflow
condition, i.e., Equation (10). The dashed–dotted curves correspond to the
tidally locked condition with different rotation parameters. The vertical dashed
line indicates the mass ratio of the inferred progenitor binary associated with
SNR HESS J1731–347.
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the star loses about half of its mass from the main sequence to
the pre-SN stage. Given that the companion star is
Mc ≈ 0.6Me, the mass ratio is q ≈ 7. These parameters are
consistent with the ultrastripped SNe simulations: see, for
instance, the simulation where the mass of the stripped star is
4.23Me and the iron core mass is 1.27Me in Table 1 in
E. Laplace et al. (2021). The stripped star of 4.23Me has a
stellar radius Rå ≈ 4.2Re. By substituting this value into
Equation (11), for q= 7, we find the orbital separation
a = 9.04Re. This implies an orbital period of P= 1.43 days.
The optical star has Mc ∼ 0.6Me, so its radius is expected to be
Re during the post-AGB phase. Thus, at the time of the SN
explosion, the separation between the two components is larger
than the sum of their radii, placing it below the Roche-lobe
outflow condition curve, as shown in Figure 4. Interestingly,
this also agrees with the numerical simulations of E. Laplace
et al. (2021), which indicate that the primary star in close
binaries at solar metallicity and an initial mass above 11Me
does not interact with its companion after reaching core helium
depletion.

3.2. Binary Disruption

We now show that the binary parameters inferred above
imply that the SN explosion likely disrupted the binary, as
suggested by V. Doroshenko et al. (2016). The SNR mass
consists of two parts: the ejecta from the SN explosion,
Mej = 4.23Me–1.27Me = 2.96Me (the outer layers above the
iron core), and the material shed during the core collapse,
Mshed ≈ 0.3Me (i.e., Mcco + Mshed ≈ 1.27Me). It is worth
noting that the mass ejected from the AGB to post-AGB
evolution of the optical star is expected to be only
10−5

–10−2.5Me (R. Meijerink et al. 2003; P. Ventura et al.
2012), hence we neglect its contribution to the remnant mass.

For a binary with a circular orbit, an ejected mass larger than
half of the total mass, i.e., Mej > Mtot/2, leads to a 100%
probability of disruption (J. G. Hills 1983). As indicated by the
model above, Mej = 2.96Me and Mtot = 4.23Me +
0.6Me = 4.83Me. Therefore, Mej/Mtot > 1/2, indicating that
the SN explosion could have indeed disrupted this binary.
Furthermore, the mass of the SNR is consistent with the upper
limit of approximately 3Me (V. Doroshenko et al. 2016).

Following J. G. Hills (1983), we can estimate an upper limit
of the kick velocity, i.e., assuming 100% of the probability of
disruption. This leads to a kick of Δv ≈ 670 km s−1. The
possible large kick velocity imparted to the stars in this
scenario agrees with existing simulations of ∼1 day orbital
period binaries of low-mass components (P. Podsiadlowski
et al. 2004). Considering the SNR estimated age of 4.5 kyr, the
two objects could have reached a maximum separation of
≈3 pc. This value is larger than the observed relative projected
offset of ≈0.3 pc between the CCO, XMMU J1732, and the
optical star, IRAS 17287–3443, which is reasonable because
we have used the upper limit of the kick velocity, and the actual
distance between the optical star and the CCO can be larger
than the observed projected offset, depending on the proper
motion direction relative to the line of sight.

4. Discussion and Conclusions

We have advanced a formation scenario for the puzzling,
light CCO XMMU J1732, with an optical star neighbor
IRAS 17287–3443 within the SNR HESS J1731–347. We have

provided a scenario within the traditional framework of NS
formation from core-collapse SN. Here are some concluding
remarks:
(i) Angular momentum conservation in the collapse process

leads to the light NS formation by mass-shedding if the iron
core at the collapse moment rotates at about 45% of the
Keplerian limit angular velocity, i.e., β ∼ 0.45. The observed
CCO, XMMU J1732, is indeed a light NS of MNS ≈ 0.9Me
formed in the collapse of a fast-rotating iron core of mass
M ≈ 1.2Me, with a rotation period of ≈7 s, which sheds
≈0.3Me during its collapse avoiding to overcome the
maximum angular momentum the newborn NS can hold. We
refer to Section 2.2 for details.
(ii) Assuming a magnetic dipole braking model for a dipole

strength of 1011 G, and as NS age the estimated age of the SNR
(4.5–10 kyr), we showed the CCO must be currently a modest
rotator, given the upper limit of the rotation frequency ≈531 Hz
(see Section 2.3). Thus, a slow-rotation or nonrotating mass–
radius relation could accurately describe it. This implies that
the observationally inferred radius of XMMU J1732 can be a
relevant constraint in the low-mass region of the NS mass–
radius relation.
(iii) We have performed comprehensive cooling simulations

for light NSs within the mass range of -
+ M0.77 0.17

0.20 , specifically
for those characterized by the ab initio APR model, and have
observed a significant agreement with empirical data. It is
important to highlight that our simulations incorporated
considerations for nucleon pairing, which align with the
prevailing theories on NS thermal evolution. Remarkably by
considering a carbon-rich atmosphere, as predicted by V. Dor-
oshenko et al. (2016), our cooling simulations were in excellent
agreement with observed thermal data. This concurrence is not
merely coincidental but is a testament to the robustness of the
underlying assumptions. These findings corroborate the model
introduced in this study, demonstrating that the thermal
characteristics of XMMU J1732 can be accurately accounted
for by a conventional NS cooling model, thereby eliminating
the need for more speculative hypotheses and decreasing the
number of parameters required to interpret the observed
phenomena.
(iv) The obtained parameters from the core-collapse model

are generally consistent with simulations of the pre-SN stage in
binaries with the primary having a mass of M* ∼ 4.2Me
(E. Laplace et al. 2021). We assume XMMU J1732 and
IRAS 17287–3443 (Mc ≈ 0.6Me) formed a binary system
before the core-collapse SN event. Adopting tidal locking, we
have inferred a semimajor axis of the pre-SN binary a ≈ 9Re,
and the orbital period P ≈ 1.4 days (see section 3.1). No
Roche-lobe overflow occurred before the SN.
(v) The mass loss amounting to ∼3Me, given by the SNR

shell mass, led to the disruption of the binary since it is more
than half the total binary mass, M* + Mc ≈ 4.8Me. This is
consistent with the observed projected separation of ≈0.3 pc
between the CCO and the post-AGB, lower than the maximum
separation of ≈3 pc, obtained assuming the maximum possible
kick (670 km s−1) that could have been imparted (see
Section 3.2).
Although assessed via a simplified model, the above

astrophysical scenario highlights the relevance of rotation in
the binary evolution and, finally, in the core-collapse process.
Accurate calculations from numerical simulations could replace
some simplifications. For instance, we have made a hybrid
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model of the rotating core collapse that joins a simplified
Newtonian model to the results of the rotating NS structure
obtained in full general relativity. Thus, it would be ideal to
perform a full general relativistic calculation of the gravita-
tional collapse of a rotating iron core of a pre-SN star with its
interior structure obtained with an evolution code accounting
for binary interactions.

To conclude, some comments on the binary evolution path
are in order. Typically, ultrastripped SNe do not lead to the
binary disruption (T. M. Tauris et al. 2015; N. D. Richardson
et al. 2023). However, what makes this system unique is
mainly the exceptionally low mass of the newborn NS, i.e., the
CCO, and the companion star, resulting in the ejected mass
easily exceeding half of the total system mass. The previous
evolution of the binary, especially of the low-mass companion,
remains an interesting subject of study since the evolution
leading to a post-AGB is expected to be longer than that
leading to a core-collapse SN and an NS. We can only
speculate that our binary could have followed a similar
evolutionary path to the E. Laplace et al. (2021) simulations.
The crucial condition is that the binary mass ratio be close to
unity at the beginning of the evolution. Their simulations
involve a secondary with an initial mass of 80% of the primary
star. Still, the secondary's state at the time of the SN is
uncertain. Therefore, further population synthesis analyses and
simulations of the binary stellar evolution, including possible
different masses of the secondary, are needed to comprehend
this system fully. Such analysis, which is worth it on its own,
goes beyond our scope here and is left for future work.
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Abstract The strong gravitational potential of neutron stars
(NSs) makes them ideal astrophysical objects for testing
extreme gravity phenomena. We explore the potential of NS
X-ray pulsed light curve observations to probe deviations
from general relativity (GR) within the scalar–tensor the-
ory (STT) of gravity framework. We compute the flux from
a single, circular, finite-size hot spot, accounting for light
bending, Shapiro time delay, and Doppler effect. We focus
on the high-compactness regime, i.e., close to the critical GR
value GM/(c2R) = 0.284, over which multiple images of
the spot appear and impact crucially the light curves. Our
investigation is motivated by the increased sensitivity of the
pulse to the scalar charge of the spacetime in such high com-
pactness regimes, making these systems exceptionally suit-
able for scrutinizing deviations from GR, notably phenom-
ena such as spontaneous scalarization, as predicted by STT.
We find significant differences in NS observables, e.g., the
flux of a single spot can differ up to 80% with respect to
GR. Additionally, reasonable choices for the STT parame-
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ters that satisfy astrophysical constraints lead to changes in
the NS radius relative to GR of up to approximately 10%.
Consequently, scalar parameters might be better constrained
when uncertainties in NS radii decrease, where this could
occur with the advent of next-generation gravitational wave
detectors, such as the Einstein Telescope and LISA, as well
as future electromagnetic missions like eXTP and ATHENA.
Thus, our findings suggest that accurate X-ray data of the
NS surface emission, jointly with refined theoretical models,
could constrain STTs.

1 Introduction

Neutron stars (NSs) are natural laboratories for testing fun-
damental physics, ranging from interactions above nuclear
saturation density to the strong gravitational field in the stel-
lar interior and surroundings. Their astrophysical observa-
tions can probe fundamental interactions in a very unique
regime [1,2]. Regarding the gravitational field, the extreme
conditions of density and pressure in NSs can activate non-
minimally coupled fields to gravity. The simplest case is
that of scalar fields. In the context of scalar–tensor theories
(STTs), this is one way to understand the phenomenon of
spontaneous scalarization, a novel non-perturbative effect
arising in these theories. This effect predicts deviations from
General Relativity (GR) that can be observationally tested [3–
7]. Scalar fields are pivotal in cosmological scenarios, lead-
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ing to well-established inflationary models [8–10]. A fun-
damental scalar field can modify compact objects structure
and gravitational field depending on the Lagrangian coupling
between the scalar field and ordinary matter. Such theoreti-
cally predicted modifications can be tested with astrophysical
observations. On the other hand, some grand unification theo-
ries, like string theory, also predict scalar degrees of freedom
in the low energy, classical regime (see, e.g., [11,12], and
references therein).

We aim to extend previous efforts to constrain STTs using
astrophysical observations of NSs, particularly the X-ray
light curve profiles. This task can generally be done for STTs
without specifying the origin of the scalar field. There is cur-
rently a broad class of astrophysical sources associated with
NSs, with observations spanning the electromagnetic spec-
trum from the radio to high-energy X-rays and gamma rays.
In particular, some systems exhibit periodic X-ray emissions
modulated by the star’s rotation period, which can be deduced
from the pulsar timing of radio signals. The modeling of these
pulse profiles can be compared to observations, such as those
made by NICER [13], and global properties of NSs, like com-
pactness (C ≡ GM/Rc2, where M is the NS mass and R its
radius), can be inferred from the analysis. This, in turn, can
constrain the equation of state of nuclear matter. Further-
more, modeling deviations from GR in the pulse profile can,
in principle, constrain modified gravity models, such as STT.

A crucial and pertinent question regarding NSs revolves
around the maximum mass allowed by gravitational insta-
bility, known as the Tolman–Oppenheimer–Volkov (TOV)
limit. Presently, we have reliable mass measurements for
high-mass pulsars, with masses around or greater than 2M�,
such as PSR J0348+0432 with 2.01 ± 0.04M� [14], PSR
J0740+6620 with 2.08 ± 0.07M� [15] and PSR J0952-0607
with 2.35±0.17M� [16]. The first two pulsars are in a binary
system, and the masses were estimated by standard timing
techniques. At the same time, the last one is a “spider” sys-
tem with more model-dependent uncertainty. But the mes-
sage here is that such massive NSs are feasible, and such
systems are ideal for testing strong gravity effects because of
the high gravitational binding energy compared to low-mass
NSs.

For a ∼ 2M� star, several realistic equations of state
(EOS) predict a radius such that the resultant compactness
can be closer or higher than GM/Rc2 = 0.284, the critical
value in GR that makes light bending strong enough for the
whole NS surface to be seen by an observer at rest at infin-
ity [17]. As a result, considering multiple images is relevant
to model realistic light curves of high-mass stars. From the
point of view of STT predictions, deviations from GR gen-
erally increase with compactness, making these high-mass
systems ideal for testing and constraining the strong field
regime of alternative theories. This study focuses on scenar-
ios of high compactness, which have been partially explored

in the literature and are critical for understanding the differ-
ences between STT and GR. Our analysis emphasizes the
effects of possible compactness values approaching the the-
oretical limits.

Significant research has been conducted on pulse profile
modeling within the framework of STT [18–22]. Silva and
Yunes [20] derived the flux of infinitesimal spots, incorpo-
rating the varying effects of bending, time delay, and kine-
matic factors specific to STT. Here, we use their expression
but integrate it over a finite spot and a different regime of
compactness. Furthermore, the work by [21,22] expanded
these calculations to finite spots and linked them to particu-
lar scalar–tensor models with a massive scalar field. In this
study, we investigate the impact of extended spots on the
light curve of an isolated NS with high compactness [17,23],
demonstrating that such compact systems, close to produc-
ing multiple images of the spot by a strong lensing effect, are
promising for testing deviations from GR, as evidenced by
the qualitative and quantitative differences in the light curves.

The structure of the paper is as follows. In Sect. 2, we
review the fundamentals of scalar–tensor theory and exam-
ine specific models that predict spontaneous scalarization.
Section 3 reviews pulse profile modeling techniques within
the STT context. Finally, in Sect. 4, we present and discuss
our findings. Throughout this paper, we adopt the units where
G = c = 1.

2 Scalar–tensor theory

A general class of scalar–tensor theory that encodes a non-
minimal coupling with geometry is described by the gravi-
tational action

Sg = 1

16π

∫
d4x

√−g̃[F(�)R̃ −
−Z(�)∇μ�∇μ� − V (�)], (1)

which is written in the so-called Jordan Frame, where the
scalar field couples directly with the geometry via F(�) [24].
We get a particular theory within this general class once we
specify a particular form of these functions.

In this work, we focus on the simpler case of a massless
scalar field with no self-interactions so that we can neglect
the potential term V (�) = 0. Also, to take into account
the stringent constraints from solar system experiments [see,
e.g., 25], we set the background scalar field value to �∞ = 0
since parametrized pós Newtonian (PPN) deviations in this
theory are generally proportional to this background value.
Including the matter contribution, the total action reads

S = Sg + Sm[�m, g̃μν], (2)
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where �m denotes the matter fields collectively. As usual, we
assume a perfect fluid form for the energy-momentum tensor
Tμν ≡ (2/

√−g)δSm/δg̃μν , i.e.,

Tμν = (ε + p)uμuν + pg̃μν. (3)

For numerical computation, it is convenient to work in the
so-called Einstein frame, where, after a conformal transfor-
mation of the metric gμν ≡ F(�)g̃μν and field redefinition
� → ϕ(�), the action can be written as

S = 1

16π

∫
d4x

√−g[R − 2∇μϕ∇μϕ]
+Sm[�m, A2(φ)gμν], (4)

where we define A(ϕ) ≡ F(�(ϕ))−1/2 and now the scalar
field is minimally coupled to gravity, but it couples directly
with matter. We also chose the standard canonical kinetic
term Z(�) = 1. After varying the action with respect to gμν

and ϕ, we get the following field equations:

Gμν − 2∂μϕν∂ϕ + gμνg
αβ∂αϕ∂βϕ = 8πTμν A

2(ϕ). (5)

∇μ∇μϕ = −4π A4(ϕ)α(ϕ)T, (6)

where T ≡ gμνTμν = 3p − ε is the trace of the energy-
momentum tensor,

α(ϕ) ≡ d ln A(ϕ)

dϕ
. (7)

2.1 Spontaneous scalarization

The most distinct feature of the STT when compared to GR
is the phenomenon of spontaneous scalarization of compact
objects, discovered by Damour and Esposito-Farèse [6]. This
scalarization is a violation of the strong equivalence princi-
ple associated with a gravitational phase transition [26,27].
It can be understood as a tachyonic instability of the scalar
field [28]. To see this more clearly, we can study linear per-
turbations of the scalar field given by Eq. (6),

�δϕ = −4πβ(ϕ)T δϕ, (8)

where β(ϕ) = dα(ϕ)/dϕ|ϕ∞ . This equation is a Klein–
Gordon equation of the background space-time, with an
effective mass

μ2
e f f = −4πβT . (9)

The solutions are oscillatory for a positive effective mass
squared, and the perturbations do not grow. This happens
if β and T have opposite signs. But now, if they have the
same sign, the instability grows until the linear approxima-
tion breaks down and the nonlinearities occur, quenching the
scalar field’s growth.

2.2 Models

Once we choose a specific form for the coupling function, we
select a particular model within the general class of STTs. A
simple model is described by an exponential coupling, first
used in [6]

A(ϕ) = e
βϕ2

2 , (10)

frequently known as Damour–Esposito–Faresè (DEF) theory
and has a significant historical value and simplicity, although
incompatible with recent observations [29]. Another well-
motivated form for the conformal factor comes from cos-
mology, especially from inflationary models [30,31]

A(ϕ) = 1√
1 + ξ�2

, (11)

but the technical difficulty here is that we need to solve the
relation between the fields numerically, and so there is no
close form for α(ϕ) in the Einstein frame, for example, [32].
This difficulty can be overcome with the use of an analytical
approximation using hyperbolic functions, where the confor-
mal function is

A(ϕ) = (cosh(−2
√

3ξϕ))
− 1

6ξ , (12)

while the coupling function is

1√
3

tanh(−2
√

3ξϕ). (13)

This model was first discussed in [33], known as the Mendes–
Ortiz (MO) theory. Finally, all three models are similar for
ξ = 2β, showing the same linear behavior when expanded
in powers of φ.

2.3 Exact external solution

In the scalar–tensor theory, an exact analytical solution for a
spherically symmetric spacetime is the Just metric [34–36].
Written in the Einstein frame, it is

ds2 = − f b/adt2 + f −b/adρ2 + ρ2 f 1−b/ad�, (14)

besides the spherical part, the radial coordinate ρ is related
to Schwarzschild coordinate by

r = ρ(1 − a/ρ)(1−b/a)/2, (15)

which cannot be analytically inverted. Here, b is related to
the gravitational (ADM) mass, b ≡ 2M , and

f ≡ 1 − a/ρ, (16)
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where a has length units and is related to the mass and the
scalar field configuration. We recover GR when a = b.

The scalar field profile outside the star has the form

ϕ = ϕ∞ + q

a
log

(
1 − a

ρ

)
, (17)

where ϕ∞ is the background value of the scalar field, which
is constrained to be very small by solar system experiments.
For simplicity, we assume ϕ∞ = 0. Far from the source, the
scalar field behaves like an electric field of a point charge
ϕ ∼ −q/ρ, and thus, we make the identification of q as the
scalar charge. The constants a, b and q are not independent:

a2 − b2 − (2q)2 = 0. (18)

It is more common to define a scalar-to-mass ratio Q ≡ q/M ,
so that

a/b =
√

1 + Q2 (19)

2.4 Constraints

Since the formulation of GR, it has passed the scrutiny of
experimental tests [37], and tight constraints were put in alter-
native theories of gravity. The most relevant constraint in the
weak field regime and solar system scale comes from the
Cassini bound [25]. Making the PPN expansion for the weak
field/low velocities regime, the constraint on the γ parameter
is usually proportional to the background value of the scalar
field. We put �∞ = ϕ∞ = 0, which automatically satisfies
that. But even with a restricted weak field phenomenology,
STTs can still have a rich, strong-field landscape, bigger than
GR, which is precisely the essence of the phenomenon of
spontaneous scalarization.

From the strong field perspective, the constraints usu-
ally come from the timing of binary systems [38–40]. These
bounds are typically put in the microphysics of the theory,
i.e., the restrictions on coupling parameters, which, in the
case of the models discussed before, translates into a con-
straint on the coupling constant ξ . Indeed, the timing of radio
pulsars in binary systems leads to the exclusion of the region
2ξ = β � −4.35, mainly due to the effect of emission of
dipolar gravitational radiation, which affects the dynamics
of the two-body system at 1.5 post-Newtonian order (PN), in
contrast with the quadrupolar emission of GR, that enter in
a 2.5 PN order [38].

From the macroscopic phenomenological perspective,
few constraints exist on the scalar charge Q. Horbatsch and
Burgess [41], with model-independent analysis using the
double pulsar, found Q < 0.21. But it is important to empha-
size that a constraint on the scalar charge for a ∼ 1.4M� NS
does not necessarily translate into a constraint on the charge

of a high mass ∼ 2.1M� because there can be some models
that allow spontaneous scalarization only for high mass NSs.

It is important to note also that pulsar timing of binary
systems cannot constrain a massive STT when the orbital
separation is larger than the characteristic length of the scalar
field (Compton wavelength), λφ = (2π h̄)/mϕ . Thus, the
scalar field is local, only affecting the NS structure and its
immediate surroundings, leaving the orbital motion of wide
binaries as in GR [see 42]. Another similar case arises when
one considers fast rotation [43,44], with the strength of the
scalar field increasing at the center and inside the star but
decreasing quickly after some star radii.

For a massive STT, the main effect is the suppression
of the scalar field proportional to the Yukawa term e−r/λφ

[42]. We stress that the constraints in the massive sce-
nario differ significantly from those in the massless case.
Observationally, the agreement between the orbital motion
of close relativistic binaries and GR places constraints on
STT, as STT predicts dipolar gravitational wave emission
[38]. Given that the typical size of such compact binaries is
about rbin ∼ 1010 m, dipolar gravitational radiation is sup-
pressed if rbin > λφ , which implies mϕ > 10−16 eV. On
the other hand, a maximum mass can be estimated by ensur-
ing that scalarization is not suppressed inside the star. This
condition requires λφ > R, or equivalently, mϕ < 10−9

eV. Therefore, the allowed mass range for the scalar field
is 10−16 eV � mϕ � 10−9 eV, which also accommodates
a much broader range of the parameter ξ consistent with
observations [42,45].

3 Pulse profile modeling

Pulse profile modeling is a powerful and crucial tool for ana-
lyzing localized surface emission of pulsars, such as the X-
ray observations of NASA’s NICER observatory [13]. Since
the seminal work of Pechenick et al. [46], several studies
have been made to model realistic pulse profile of neutrons
stars [47–49], and by comparing them with data, its possible
to infer the mass and radius of the star [50–54]. In addition,
the magnetic field structure (related to the spot configurations
[55]) and hot-spot temperatures could be obtained.

The basic idea is to make two transformations of the rele-
vant quantities that describe the radiation emission. The first
is from a frame co-rotating with the star to a frame just above
the star’s surface (a local Lorentz boost). The second trans-
formation is from the star to the observer at infinity. The first
transformation considers the special relativistic effects of the
moving spot, such as aberration and Doppler boost. The sec-
ond one, being non-local, collects the effect of gravity on
photon propagation, such as the bending and time delay.
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In the geometric optics approximation, the photon path is
a null geodesic of the Just metric (14), whose Lagrangian is

L = gμν p
μ pν, (20)

where pα is the photon 4-momenta along the path xα =
(ct, ρ, θ, φ), parametrized by an affine parameter λ. The
equations of motion follow from Euler–Lagrange equations,
with two well-known constants of motion associated with
energy and angular momentum conservation

dt/dλ = A−2ε f −b/a, (21)

dρ/dλ = A−4[c2ε2 − (h/ρ)2 f 2b/a−1], (22)

dθ/dλ = 0, (23)

dψ/dλ = A−2(h/ρ2) f b/a−1. (24)

We can make the identification of ψ with the azimuthal
angle φ because of the spherical symmetry, i.e., the pho-
ton is always constrained to move on a plane, which we can
choose as θ = π/2. Also, from the two constants of motion
(ε and h), we can define, as usual, the impact parameter of
the photon as σ ≡ h/ε.

Now we consider the emission angle α of the photon at the
stellar surface, we have tan α = [pψ pψ/(pρ pρ)]1/2 which
gives a relation for the impact parameter σ :

sin α = σ

ρs
(1 − ās)

b/a−1/2, (25)

where ās = a/ρs , and ρs is the stellar radius in Just coordi-
nates. Using the geodesic equations and the impact param-
eter, Silva and Yunes [20] were able to derive an integral
expression for the angle ψ that generalizes the GR expres-
sion

ψ = 2 sin α

∫ 1

0
dx x[1 − ās(1 − x2)]b/a−1

×{(1 − ās)
2b/a−1 − (1 − x2)2

[1 − ās(1 − x2)]2b/a−1 sin2 α}−1/2, (26)

where x = √
1 − y and y ≡ ρs/ρ. (Although we do not use

it in this work, in Appendix A we compare the Beloborodov
approximation [56] for GR and its equivalent for STT.) In the
GR limit, a/b = 1, and ās becomes twice the compactness
2M/R. In other words, in GR, the bending of the photon path
will depend on the emission angle and the compactness, i.e.,
ψGR = ψGR(α, M/R). On the other hand, in STT, the bend-
ing will also depend on the scalar charge of the spacetime
and the value of ās , i.e., ψSTT = ψSTT(α, ās, Q)

In particular, the visible part of the star is defined by the
light ray emitted tangentially to the local radial direction at
the star’s surface, i.e., α = π/2. For low compactness, the
value of ψ is close to α, and half of the star surface is visible.

Fig. 1 Critical deflection angle in GR and scalar–tensor theory, with a
charge of Q = 0.5 and a scale factor evaluated on the surface As = 1±
0.05, where As = 1.05 correspond to the left boundary and As = 0.95
to the right boundary of the blue shaded area. Since the critical angle
is equal to π , which means a star whose surface is fully visible, this
affects the light curve and could be used to distinguish between the two
theories. Notice that the relative changes of the critical view angle in
STT and GR scale with the compactness in a nonlinear way

Fig. 2 Compactness versus ADM mass for two realistic EOS. The
continuous lines represent the GR solution. The dotted lines correspond
to scalarized solutions in STT for the MO coupling with ξ = −3, and
the dashed lines at the end of each curve represent the scalarized solution
with ξ = 25. We also mark the critical GR compactness that starts to
produce a multiple-image region behind the star (M/R = 0.284)

But, as compactness increases, the bending increases, and
ψ can become larger than π , meaning that there is a region
behind the star where the light rays emitted can take two
different paths to reach the observer, one in the direction
of increasing ψ and the other of decreasing ψ . (An explicit
example of such a phenomenon is given in the Appendix B.)
As shown in Fig. 1, in GR ψGR(π/2, M/R) ≡ ψc = π for a
compacteness M/R = 0.284, and the whole star surface is
visible. We stress that ψc in STT changes nonlinearly with the
compactness, as clear from Eq. (26). Thus, the same should
happen with the relative changes of ψc and observables in
STT and GR that depend on ψ .
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In addition to the bending, the Shapiro time delay [57]
also affects the photons. Working with the geodesics of the
Just metric, Silva and Yunes [20] also derived an integral
expression for the time delay, defined as

�t ≡ t (σ ) − t (σ = 0), (27)

i.e., the time difference for a photon emitted directly towards
the observer. With all these ingredients, the authors derive
the differential flux formula in the context of the STT

dF = A2
s (1 − ās)

1√
1+Q2 δ5 cos α

d cos α

d cos ψ

d A′

D2 I ′
0(α

′), (28)

where As is the conformal factor evaluated on the stellar
surface, δ is the Doppler factor (whose expression can be seen
in [20]), which takes into account the gravitational redshift,
α is the local emission angle, d A′ is the area element on the
surface, D is the distance to the pulsar and I0 is the specific
intensity of radiation, which is naturally expressed in terms
of α′, the emission angle for an observer co-moving with the
surface.

The values of As and Q for a given mass and compact-
ness are needed to integrate the flux formula. With the mass,
we can get the values of b and a using the scalar charge Q.
The mass and compactness also specify the physical radius,
which can be translated to ρs via the conformal factor As . We
can perform an EOS-independent analysis using the exterior
spacetime solution [20]. Namely, we can specify the mass and
radius without integrating the interior relativistic structure
equations and choosing suitable values for the scalar charge
Q and conformal factor As , thus characterizing the exterior
spacetime. We adopt a straightforward and intuitive approach
of treating the stellar compactness as an independent param-
eter, which maintains theoretical consistency within observa-
tional limits and the predictions of STT and GR. This method
allows for a flexible yet robust exploration of the differences
between the theories, clearly demonstrating how compact-
ness influences the phenomena of interest without requiring
an explicit TOV (or modified TOV) solution. Table 1 lists the
stellar models studied here.

To motivate possible compactness values to explore,
we first present a specific solution following the model-
dependent approach of integrating the interior equations for
a given EOS to get the mass, radius, conformal factor at the
surface, and the scalar charge via the asymptotic behavior of
the external scalar field solution, Eq. (17). We choose a real-
istic EOS and an STT model, like the ones presented in 2.2.
These models depend generally on just one free parameter,
the value of the coupling constant ξ . Once we choose the
value of ξ and a central pressure or density, we can integrate
the equations outwards and obtain all the quantities needed

to describe the exterior spacetime and compute the flux. As
an example, Fig. 2 shows the equilibrium solutions for GR
and STT (ξ = −3, 25) for the realistic ENG [58] and MPA1
[59] EOSs. GR and STT solutions have stellar configurations
that go into the high compactness region to produce multiple
images before reaching the maximum mass. One interesting
case of specific coupling will be the one with ξ > 0 since
they scalarize for stars with high mass and are still uncon-
strained by pulsar timing [33,60]. Unfortunately, in this case,
the smallness of the scalar charge makes the difference in
the light curve relative to the GR case negligible [60]. The
differences between theories increase for high compactness,
close to M/R = 0.284, especially for the tangentially emit-
ted photons α ≈ π/2 (meaning ψ ≈ ψc), as can be seen in
Fig. 1.

The above solutions to the NS interior equilibrium equa-
tions with realistic EOSs demonstrate that GR and STT can
result in high compactness configurations, allowing for mul-
tiple images in pulsars. To maintain generality, from now on,
we adopt the previously mentioned model strategy of treating
compactness as an independent parameter, having as refer-
ences the critical threshold predicted by GR.

For the models considered here, following the choices of
[20] with Q = 0.5 and a conformal factor varying 5% relative
to 1, the critical angle ψC becomes π for a compactness in
the range [0.275, 0.305]. This slight difference creates a large
qualitative difference in the light curve because a star with
ψC > π develops a region behind it that produces multiple
images so the photon can bend from one direction or another.
Meanwhile, for a ψC < π , there is an invisible zone behind
the star where the photons cannot reach the observer.

To make the model appropriate for astrophysical applica-
tions, one must go beyond the infinitesimal approximation,
integrating the flux over an extended region of the star’s sur-
face. In this case,

F = F0A
2
s (1 − ās)

1√
1+Q2

∫∫
S
δ5cosα sinα

dα

dψ
dψdφ, (29)

where we choose spherical coordinates over the spot area S.
Since we are dealing primarily with compact configurations,
where the view bending angle can become larger than π , it
is better to write the derivative as dα

dψ
to avoid the singularity

when cosψ = 0. Also, F0 is a phase-independent overall
constant

F0 ≡ I0
RD2 . (30)

Owing to the exploratory theoretical nature of the present
work, we consider only one hot spot on the stellar sur-
face, with a circular shape of semi-aperture angle �ψ , to
isolate the scalar-field effects. Likely, the light curve fit-
ting of specific sources could require additional ingredients,
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such as complicated magnetic field structures over a simple-
centered dipole or multiple spots [55,61,62]. The infinitesi-
mal approximation works well for small spots (�ψ < 5◦).
For larger spots, one must integrate over the spot area. In this
case, the difference between the theories increases because
of the cumulative light bending, time delay, and gravitational
redshift.

Let us briefly revisit the massive STT mentioned earlier.
A high scalar field mass always suppresses the scalariza-
tion of the star, leading to a lower scalar field value at its
surface [42]. For example, if one assumes that the flux equa-
tion (29) approximately holds for the massive case, Fig. 2 of
Ref. [42] suggests that for mϕ > 1.6 × 10−12 eV, the flux
differences between STT and GR become negligible. There-
fore, the results presented in the next section for the massless
case can be regarded as an upper limit on flux changes (see
also [63] for a discussion of a massive scalar field in heavy
NS with the “asymmetron” model). We leave precise details
about the flux change in the case of highly compact NS with
a massive scalar field for future work.

To characterize the flux, one must know the specific geom-
etry of the source, which can be described by the angles
(ι0, θs), as illustrated in Fig. 3. Here, ι0 is the angle between
the rotational axis of the NS and line of sight (LoS), and θs
is the colatitude of the spot’s center relative to the rotational
axis. The position of the spot’s center will vary in time as the
star rotates

cos ψ0 = sin ι0 sin θs cos ωt + cos ι0 cos θs, (31)

where ω is the angular velocity of the star, and we choose
t = 0 as the moment of closest approach between the spot
and the observer. For the integration procedure, we follow
[62,64,65]. The main difference here is the inclusion of the
flux of the secondary image of the spot. The center of the
secondary image is in the position ψsec = 2π − ψ0, and we
start to consider it when cos (ψ0 + �ψ) ≤ cos (ψc).

Here, we keep things simple enough to isolate the effects
of STT on the light curves of compact NS. We do not include
an atmosphere model, magnetic fields, and rotation effects on
the exterior spacetime and star’s structure. These ingredients
must be included in STT [66] to be consistent.

4 Results

In Fig. 4, we show the bolometric flux of a spot with �ψ =
10◦ for the compact stellar models of Table 1. In this case, we
do not consider rotational effects (Doppler and time delay)
and take the rotational frequency ν = 0. For the GR star, the
critical angle is ψc = π , and the whole surface of the star
is visible, making a non-vanishing flux, even when the spot
is behind the star. For the model STT1, according to Fig. 1,

Fig. 3 Schematic representation of angles and vectors for the NS. l
represents the line of sight, r denotes the axis of rotation, and c is
normal to the center of the polar cap. The angle ψ is defined between
l and c, and α represents the angle made by a photon leaving the star
relative to c. Additionally, ι0 is the angle between l and r, and θs is the
angle between c and r

Fig. 4 Bolometric flux of the models relative to GR. The difference
is more evident when the spot passes the area opposite the observer’s
line of sight, around half the rotational period. In one case there is
an invisible zone and a multiple image zone in the other, producing
a brightening in the flux. The huge difference between the fluxes is
evident, both qualitatively and quantitatively

the critical angle is smaller than π (ψc = 0.90π ), making
an invisible zone of roughly ∼ 20◦ behind the star, which
eclipses the entire spot during a short period. In the case of
the model STT2, the critical angle is a little greater than π

(ψc = 1.05π ), meaning that a zone of roughly ∼ 9◦ starts
to produce a second image when the spot reaches it, making
that brightening observed in the light curve close to half the
rational phase of the star.

One interesting fact about the light bending of compact
stars is that visually, the star appears bigger than it is. For
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Table 1 Stellar models considered in the light curve analysis. We
choose configurations that are doppelgängers of each other, with the
same mass M and Jordan frame radius R, giving the same compactness
value of M/R = 0.284. The STT models are chosen by fixing the con-

formal factor at the surface As and scalar charge Q. The values of ρs
(Einstein Frame radius in Just coordinates), ās = a/ρs and b̄s = b/ρs
are then obtained by Eq. (15), the b definition and Eq. (19), respectively

Stellar models
Name M/R M/M� R/km ρs/km As ās b̄s Q

GR 0.284 2.1 10.918 10.918 1 0.568 0.568 0

STT1 0.284 2.1 10.918 12.026 0.95 0.576 0.515 0.5

STT2 0.284 2.1 10.918 10.962 1.05 0.632 0.565 0.5

a 2.1M� star, with compactness M/R = 0.284, the phys-
ical radius is 10.918 km. Still, using the impact parameter
formula (25) for the last photon that we can see from the
star surface (α = π/2), we find a value of 16.611 km for
GR, almost 50% bigger. A different gravitational field will
of course also influence the visual appearance of the star, for
the STT1 model the apparent radius is ∼ 260 m bigger, and
for STT2 ∼ 340 m smaller, causing although a small per-
ceptual difference of 1.6 and 2% respectively, with respect
to GR.

These distinct features between the light curves can be
appreciated for increasing compactness above M/R = 0.275
(see Appendix B) and a geometrical configuration where the
spot crosses the invisible or multiple image region behind
the star. To be more specific, the effect is evident when ι0 +
θs − π ≤ �ψ , meaning that the ideal configuration to test
is with small hot spots seen edge-on that are near the stellar
equator. Although it may sound particular, the analysis of
Miller et al. [52] of NICER data from the massive (2.08M�)
pulsar PSR J0740+6620 is consistent with this geometrical
configuration, making this source suitable for gravitational
theory tests.

Although the light curves are qualitatively different for
the same compactness, there is a degeneracy between the
compactness and the scalar charge: a slightly more compact
star in GR will start to produce the multiple image region,
and a less compact one will produce an invisible zone. This is
a reflex of the well-known degeneracy between the equation
of state physics and the gravitational theory [see, e.g., 67]. To
get a clear signature of the scalar charge on the light curve,
one, in principle, needs an independent measurement of the
mass and radius, which is difficult for millisecond pulsars,
for example. The mass can be well measured by the radio
timing of the pulses, while the radius measurement is way
more elusive [68]. Still, multimessenger observations could
help to break this degeneracy.

Even for geometric configurations where the spot does
not cross the region opposite to the line of sight, the light
curves of the models can be significantly different when we
include rotational effects. Here, the spacetime is still spheri-
cally symmetric, and we keep the spherical shape of the star.

Fig. 5 Upper: Bolometric flux for a geometric configuration ι0 = θs =
80◦, where the spot’s flux does not suffer the influence of the special
region behind the star, so the differences are ascribed to the time-delay
and gravitational redshift. Lower: STT cases relative difference relative
to GR

Still, we include special relativity effects that depend cru-
cially on the gravitational redshift and the time delay, which
are small but enhanced by the integration over the extended
spot. Motivated by observations, we choose, in the case of
rotation, the frequency ν = 700 Hz. In Fig 5, we show the
bolometric light curve for a �ψ = 10◦ spot but for a con-
figuration almost equatorial, with ι0 = θs = 80◦. In this
case, we do not have the effect illustrated in Fig. 4 because
the spot does not cross exactly the region behind the star. The
difference is mainly due to the surface gravity that affects the
special relativistic effects and the time delay integrated over
the extended spot.
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We emphasize that for a fast-rotating NS, one should
include at least the dominant effect of the deformed stellar
surface in the light curve analysis [48], but for geometrical
configurations where ι0 ≈ θs ≈ 90◦, as discussed here, the
approximation using a spherical surface works well and the
effects of a rotating spacetime is subdominant, as demon-
strated by Cadeau et al. [48] for the GR case.

5 Conclusion

While GR has passed all experimental tests, it remains imper-
ative to scrutinize it for potential deviations, striving for
greater precision. Among the notable alternative theories
is scalar–tensor gravity, which posits an additional scalar
degree of freedom alongside the metric tensor to describe
gravitation and predict different phenomena, like sponta-
neous scalarization that affect both neutron stars structure
and gravitational field.

In this work, we analyze a promising way to test STTs in
the strong-field regime of high-mass pulsars: the pulse profile
is very sensitive to the scalar charge when the compactness
is close to GM/(c2R) ∼ 0.284. It makes compact systems
with localized hot spot emission close to the equator, ideal
for testing scalar-tensor theories and suggestively, alternative
gravitational theories in general. Such an analysis needs the
inclusion of all ingredients that enter the pulse profile analy-
sis: gravitational redshift, light bending, time delay, and dif-
ferent stellar structures. The advantage of the STT used here
is that it allows the analysis with an analytic, closed-form
exterior spacetime solution for the light bending and time
delay. The STT effects, especially for the light bending, are
more pronounced for the light rays emitted tangentially rel-
ative to the stellar surface, as shown by the distinct features
in Figs. 4 and 5. The latter shows flux differences of up to
80% in the spot’s passage around the region opposite the line
of sight (i.e., behind the star relative to the observer). This
suggests that differences between GR and STT light curves
can be significant in cases of high compactness. Therefore,
that could be a promising observational approach to constrain
deviations from GR. Due to the nonlinear dependence of the
flux on compactness, slightly smaller values of the latter can
result in much smaller relative changes of the former in STT
and GR.

Figure 1 shows the nonlinearity of the differences between
STTs and GR in the deflection angle. For a fixed scalar
charge, configurations with a scale factor with the same
excess or defect relative to the GR case lead to asymmetric
stellar compactness values (relative to the GR case) at which
the whole NS becomes visible. This is expected because STT
changes are more relevant for more relativistic systems. The
largest deviation of compactness is around 10% (when the
star is not entirely visible (ψc < π), the relative changes

are smaller). It is meaningful to compare the above num-
bers with NICER compactness constraints, which use GR,
to gain insight into the feasibility of probing scalarization in
compact stars. We use as reference pulsar PSR J0740+6620,
constrained to having a radius [52,53] R = 12.39+2.22

−1.50 km
(90% credible interval). For the accurately-estimated mass
of 2.08M�, its compactness is 0.209–0.281, with a median
of 0.248. Thus, the relative dispersion of compactness values
is around 12–15%. Therefore, current NICER observations
cannot yet differentiate GR from STTs. However, with the
increasing accuracy of multimessenger constraints [52] or
several gravitational-wave observations [69], it will be pos-
sible to differentiate theories using ray-tracing observables,
especially for highly compact stars. The largest compactness
dispersion produced by STT can also be used to estimate
the radius uncertainty associated with scalarization. From
the definition, C ≡ M/R, it follows that |�R|/R = �C/C
for a well-constrained mass. Thus, |�R|/R � 10% for the
above parameters. This also suggests that Q = 0.5 is the
maximum value of the charge parameter allowed by current
radius constraints. Naturally, tighter constraints on Q and A
or smaller values for ψc will reduce that uncertainty. Still, it
is large enough to suggest that STT could generally impact
radius inferences from light curves.

Large compactness values are generally associated with
very dense systems where phase transitions can occur [70–
72]. This means that probing scalarization could also be par-
ticularly relevant in hybrid stars [73]. If the surface tension
of dense matter is large enough, the quark phase and the
hadronic phase could be in direct touch (first-order phase
transition). In this case, phase conversions could happen upon
perturbations, and the matter would not be catalyzed any-
more, meaning that the usual stability rules for NSs would
be violated [73]. Such a violation would allow for an extended
branch of (meta)stable NSs with large compactnesses (see,
e.g., [74–78]). The terminal mass (where radial perturbations
have null eigenfrequencies) within this branch is not known.
Still, it could go down to values about ordinary stars [79].
All the above means that scalarization could be relevant for
NSs of canonical mass, in addition to massive ones.

Gravitational theory tests using pulse profile modeling are
still not sufficiently competitive compared to binary pulsar
experiments for real astrophysical verification or for plac-
ing meaningful constraints. However, this subject remains
a fresh and fertile area for research, as emphasized in [80].
In this work, we have presented promising configurations
that could shed new light on the field. However, our model
is still too simplified for application to real astrophysical
sources. We must incorporate the possibility of multiple spots
(e.g., [62,65]) with temperature distributions and account
for atmospheric effects within the context of STT, which
can attenuate tangentially emitted photons. Additionally, it
is crucial to consider stellar oblateness. For instance, as an
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initial approximation, one could solve the structure equa-
tions up to second order in angular velocity [66] to obtain the
star’s quadrupole moment and shape, resulting in an oblate
Just+Doppler model for the NS spacetime. With this more
comprehensive theoretical model in hand, a statistical analy-
sis can be performed, for example, using the NICER data for
the high-mass pulsar PSR J0740+6620. This would enable
us to obtain posterior values for the mass and radius and the
parameters of the STT. We leave this analysis for future work.
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Appendix A The Beloborodov approximation

Although this work focuses on the light curve of compact
stars, a comment can be made about the well-established
Beloborodov analytical approximation [56] in the context
of STT. This approximation for the light bending integral,
Eq. (26), is valid for compactness bellow M/R ≤ 0.25,
where we get an exact analytical formula without solving
the integral numerically, saving computational time.

Fig. 6 Beloborodov approximation for compactness of M/R = 0.25.
The dashed lines are the exact numerical result, and the solid lines are
for the function (1 − cosα) = (1 − 2x)(1 − cosψ), with x = 0.25 for
GR and 0.234, 0.258 for the STT models. The fact that the lines run
practically parallel shows compactness’s main role in this geometric
approximation. The error is a maximum of 7% for the emission angle
α = π/2

The Beloborodov formula reads

1 − cosα = (1 − 2C)(1 − cosψ) (A1)

where C is the stellar compactness. In Fig. 6, we show the
Beloborodov approximation for GR and the equivalent for
the STT, choosing the value of the slope so that the error
relative to the numerical results is similar. We fixed the scalar
charge to be Q = 0.5 and the scale factor at the star’s surface
to vary 5% relative to 1. For the blue curve (As = 0.95), we
put C = 0.234, and for the red one (As = 1.05) C = 0.258.
We note that these values are very similar to the “effective
compactness” in the STT solution bs/2 = GM/ρsc2, which
are bs/2 = 0.228 and bs/2 = 0.251. We can interpret this as
the compactness’s key role in light bending, which dominates
over the direct effect of the scalar charge [18]. The lines of
GR and STT run almost parallel, and the error is a maximum
of 7% for the emission angle α = π/2.

Appendix B Increasing compactness and the
appearance of multiple images of the spot

One of the key aspects of the results discussed here is the
appearance of multiple images of the NS surface when the
compactness increases over a critical value, which depends
on the gravitational theory and crucially affects the light
curve. The difference between the theories is small for com-
pactness below the critical one, as seen from Fig. 7. The geo-
metric configuration is similar to those of Fig. 5 of Hu et al.
[22], and we also find within our model that the maximum
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Fig. 7 The difference between the theories is small for compactness
below critical and a geometrical configuration where the spot does not
cross the region opposite to the LoS

relative change of the flux in STT and GR is smaller than
5%, in agreement with their findings.

But as compactness increases, the bending becomes strong
enough so that the critical angle ψc can be greater than π ,
meaning that photons that leave a region behind the star,
relative to the LoS, can take two paths to reach the observer,
a phenomenon similar to gravitational lensing that can be
seen in Fig. 8. We consider the Schwarzschild spacetime and
a star with the critical compactness C = 0.284.

One can appreciate in Fig. 9 the increasing sensitivity
of the light curve as compactness increases in the interval
[0.275, 0.305], where the GR solution (thick line) can be
very different from the STT models considered (dotted and
dashed). The brightening observed around half the rotational
period, associated with the lensed secondary flux, can be
compared with [17,23]. The peak of the brightening depends
on the spot size, with smaller spots producing more pro-
nounced peaks [23].
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Rigid (uniform) rotation is usually assumed when investigating the properties of mature neutron stars
(NSs). Although it simplifies their description, it is an assumption because we cannot observe the NS’s
innermost parts. Here, we analyze the structure of NSs in the simple case of “almost rigidity,” where the
innermost and outermost parts rotate with different angular velocities. This is motivated by the possibility
of NSs having superfluid interiors, phase transitions, and angular momentum transfer during accretion
processes. We show that, in general relativity, the relative difference in angular velocity between different
parts of an NS induces a change in the moment of inertia compared to that of rigid rotation. The relative
change depends nonlinearly on where the angular velocity jump occurs inside the NS. For the same
observed angular velocity in both configurations, if the jump location is close to the star’s surface—which
is possible in central compact objects (CCOs) and accreting stars—the relative change in the moment of
inertia is close to that of the angular velocity (which is expected due to total angular momentum aspects). If
the jump occurs deep within the NS, for instance, due to phase transitions or superfluidity, smaller relative
changes in the moment of inertia are observed; we found that if it is at a radial distance smaller than
approximately 40% of the star’s radius, the relative changes are negligible. Additionally, we outline the
relevance of systematic uncertainties that nonrigidity could have on some NS observables, such as radius,
ellipticity, and the rotational energy budget of pulsars, which could explain the x-ray luminosity of some
sources. Finally, we also show that nonrigidity weakens the universal I-Love-Q relations.

DOI: 10.1103/PhysRevD.110.103014

I. INTRODUCTION

A reasonable picture of the neutron star (NS) structure
has emerged after more than half a century since the
discovery of pulsars [1]. First, there is an atmosphere of
ionized matter, probably hydrogen or helium, with a
composition that depends on the environment and can
be affected by strong magnetic fields. Under the atmos-
phere, we have the ocean and then the crust, a lattice of

increasingly heavy elements and neutron richness until the
point of neutron drip density, which is energetically
favorable to have free neutrons instead of being bound
to nuclei. When the density increases, the lattice structure
disappears, giving way to a liquid structure of primarily
protons, neutrons, and electrons (outer core). Matter here is
expected to be a superfluid. Going deeper into the inner
core of an NS, several extra possibilities emerge, such
as meson condensates [2], hyperons, and deconfined
quarks [3]. The core of an NS is where most of its mass
is concentrated, and the energy density can be several times
the nuclear saturation density.
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As all NS are spinning with frequencies ranging from
sub-Hz [4] to several hundreds of Hz [5,6], it is crucial to
describe appropriately the rotation and its effects on the
star’s observables. With such a rich and complicated
internal structure, is treating a spinning NS as a rigid body
reasonable? Numerical simulations show that newborn NS
in mergers, supernova explosions, and main sequence stars
all present differential rotation [7]. But even in an old and
evolved NS, we can imagine different rotations between the
crust and a weakly coupled superfluid core component due
to vortices. Moreover, if there is a phase transition to quark
matter in the neutron star core [8], simple angular momen-
tum conservation considerations will demand a differential
rotation between the crust and the now more compact core.
A clear example where rotation stratification is relevant

is in the Sun. An abrupt change in angular velocity is
possible due to the tachocline [9], a very thin layer between
the Sun’s core and the convective envelope. In the case of
NSs, the Ekman layer [10] between the core and the crust
may also lead to an abrupt change in the rotation of the
phases it splits. Of course, stars also have dissipation
mechanisms such as viscosity [11], which leads to a
uniform rotation inside some part of the star. However,
there is still room for nonrigid rotation between two
different phases of stars for those in the process of “settling
in” (such as due to accretion) and those that are “old” (that
could have superfluid parts).
Regarding the viscosity, it has been estimated (see [12]

and references therein for details) the characteristic time-
scales for an NS to reach uniform rotation. Assuming that
superfluids are present in the outer core of an NS, the shear
viscosity of the liquid core (η) would be dominated by
electron-electron scattering (ηee), which is

ηee ¼ 4.7 × 1019T−2
8

�
ρ

ρsat

�
2

g cm−1 s−1; ð1Þ

where ρ is the density, T8 is the temperature in units of
108 K, and ρsat ¼ 2.7 × 1014 g cm−3 is the nuclear satu-
ration density. In addition, η≡ ρν, where ν is the kinematic
shear viscosity. Finally, the viscosity timescale can be
estimated as tvis ∼ R2=ν, where R is the NS radius. From
the above equation, one thus has

tsupflvis ¼ 0.18R2
6T

2
8

�
ρ

ρsat

�
−1
�

η

ηee

�
−1

yr; ð2Þ

with R6 ¼ R=ð106 cmÞ. For instance, taking T8 ¼ 1, R ¼
10 km and ρ ¼ ρsat, it follows that t

supfl
vis ≈ 0.2 yr. Thus, a

superfluid phase in a star could be safely taken as having a
uniform rotation. For the crust of an NS, analysis from [13]
shows that ηcrust ∼ 1015 g cm−1 s−1 for ρcrust ¼ ρsat=2
and T8 ¼ 1. Thus, tcrustvis ¼ R2ρcrust=ηcrust ∼ 10 kyr, much
longer than the superfluid region. Therefore, for old (i.e.,
aging more than the above timescale), nonaccreting NSs,

assuming rigid rotation of the crust is reasonable. When it
comes to the timescale it takes for a superfluid phase and a
nonsuperfluid phase to equilibrate their rotations, the
answer is much more complex. Up to now, there is no
precise mechanism for the core-crust angular momentum
transfer. The occurrence of glitches suggests that the
timescale for the rigid rotation of the whole star to be
attained may be significant. Although the star will even-
tually reach an equilibrium angular momentum, this does
not mean that angular velocities will be equal. This is
because the superfluid part of the star (outer core and inner
crust) is generally much larger in mass than the non-
superfluid part (outer crust) [1].
This work aims to draw attention to the implications of

rotation stratification of NSs, where we examine its impact
on some relevant stellar observables. In general relativity
(GR), the total angular moment J appears as a constant of
integration from the field equations [14] at the first order in
the rotation parameter, associated with frame dragging.
With the corresponding J, we find the moment of inertia I
by simply dividing it by the observed angular velocity Ω of
the NS surface, measured, for example, with radio pulse
timing, i.e., I ≡ J=Ω. Note that this result is intrinsically
general relativistic because J comes directly from GR, and
it generalizes the classical moment of inertia of stars with
axial symmetry [14]. In the Newtonian framework, rotation
generally influences the moment of inertia by altering the
star’s equilibrium shape, thereby affecting its mass distri-
bution. However, for slow rotation (reasonable approxi-
mation for old NSs), the deviation from the moment of
inertia in the static, spherically symmetric case remains
small. On the other hand, when GR is also taken into
account, boundary conditions for the angular velocity
can have an imprint on I. That means that even in the
perturbative case the background aspects of the star are
enough in general. Thus, for NSs, the way internal parts
rotate matters for the moment of inertia.
A relevant motivation for our study is that it will soon be

possible to infer the moment of inertia directly from
observations. For instance, further timing measurements
of PSR J0737–3039A/B, the double pulsar, will allow for
further improvement in the constraints of the system post-
Keplerian parameters, e.g., the periastron advance [15–17].
Indeed, the inclusion of the pulsar A mass-energy loss
owing to spindown will lead to a direct measurement of its
moment of inertia with 11% accuracy by 2030 [17,18].
Another motivation is that the moment of inertia is
important for several observables, such as the rotational
energy, energy budget of stars, deformations, production of
gravitational waves (GWs), the braking index and the
physics of glitches [19].
The structure of the paper is as follows: In Sec. II, we

give the basic details about slow rotation in general
relativity, focusing on rigid rotation, differential rotation,
the correct boundary conditions when there is rotation
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stratification in NSs, the general relativistic version of the
moment of inertia for stars and their rotational energy in
this context. Section III discusses some expected relative
changes of the moment of inertia in the case of one-phase
and hybrid stars when rotation stratification is present.
Finally, in Sec. IV, we discuss the main points raised and
show several astrophysical observables that could be
affected by nonrigid rotation. We work with geometric
units and metric signature þ2 unless otherwise specified.

II. SLOW ROTATION IN GR, ANGULAR
MOMENTUM, AND MOMENT OF INERTIA

After Hartle and collaborators [14,20–26], the problem
of slowly rotating stars has been characterized and exten-
sively explored. When it comes to the equations governing
the motion of fluid elements and most metric components,
they only appear in the second order of the rotation
parameter Ω, supposed to be small (RΩ ≪ 1, where R is
the stellar radius). However, the description of the angular
rotation of the star’s fluid, locally and for observers at
infinity, is done in the first order of the rotation parameter.
The structure of the star is described by the Tolman-
Oppenheimer-Volkoff (TOV) equation, assuming spherical
symmetry and a perfect-fluid description.
In particular, the background spacetime is defined as

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dθ2 þ r2 sin2 θdφ2: ð3Þ

The unperturbed spacetime spherical symmetry allows the
metric and variables decomposition into spherical harmon-
ics (Ym

l ) or Legendre polynomials (Pl, m ¼ 0).

A. Rigid rotation

Up to the first order in the rotation parameter (for l ¼ 1),
Hartle showed that the equation describing the rate of
rotation of inertial frames, ωðrÞ, is given by

1

r4
d
dr

�
r4jðrÞ dω

dr

�
−
4

r
dj
dr

ðΩ − ωÞ ¼ 0; ð4Þ

where jðrÞ≡ e−ðλþνÞ=2. In addition, Ω is the velocity of the
fluid as seen by an observer at rest in the fluid. Equation (4)
is a direct consequence of the tφ-component of the Einstein
equations, which becomes relevant when deducing the
boundary conditions in the stratified case.
In rigid rotation, i.e., Ω constant, one could absorb it in

the first term of the above equation and get [14]

1

r4
d
dr

�
r4jðrÞ dω̄

dr

�
þ 4

r
dj
dr

ω̄ ¼ 0; ð5Þ

with ω̄≡Ω − ω, the fluid’s angular velocity relative to a
freely falling observer, or, in other words, the fluid’s
angular velocity relative to the local inertial frame.

B. Differential rotation

In the case of differential rotation, where Ω ¼ ΩðrÞ [23],
the appropriate equation to be taken into account is (4). In
addition, to solve it, a prescription for ΩðrÞ should be
given. Based on the sun’s case [27], one would expect that
Ω would not be the same throughout the star. However, if
the star is old enough, it seems reasonable to assume rigid
rotation given the action of angular momentum loss mecha-
nisms. At the same time, that is exactly when superfluidity
would play a role in the star’s angular momentum. Thus,
even for old stars, differential rotation should not be
overlooked.
Here, we do not work with differential rotation per se,

but we approach it by considering a toy model where some
parts of the star rotate with different angular velocities. That
should be seen as a phenomenological model trying to
capture some of the rich physics in stars that would lead to a
spatially varying rotation rate. This model should be appli-
cable for some time intervals during the lives of compact
stars. For instance, a young NS star born in a core-collapse
supernova or an NS binary merger should experience some
form of differential rotation [28]; it should also exist, at
least transiently, in the case of fallback accretion (e.g.,
associated with central compact objects—CCOs—and
recycled pulsars) [29], or even during an NS phase
transition by angular momentum conservation.

C. Boundary conditions

Given that, loosely speaking, the problem of perturba-
tions of stars is a Sturm-Louiville problem, boundary
conditions are paramount for their solutions. Hartle and
collaborators have shown the necessary prescriptions for
solving Eq. (5). Regularity at the origin imposes

ω̄ ¼ const;

�
dω̄
dr

�
r¼0

¼ 0: ð6Þ

Outside the star, where j ¼ 0, one has a general solution

ω̄ ¼ Ω − 2
J
r3
; ð7Þ

where J is a constant identified with the total angular
momentum of the star and in the absence of surface degrees
of freedom, the function ω̄ and its derivative are continuous
at the stellar surface. This implies that

J ¼ 1

6
R4

�
dω̄
dr

�
r¼R

; Ω ¼ ω̄ðRÞ þ 2
J
R3

: ð8Þ

Given one has freedom in choosing ω̄ at the center of the
star, one will generally end up with an Ω different from a
desirable one (coming from observations, for example). In
this case, one should just rescale ω̄ as follows
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ω̄newðrÞ ¼
�
Ωnew

Ωold

�
ω̄oldðrÞ: ð9Þ

When stratification is involved, further boundary con-
ditions should be given. By stratification, we mean a
sudden change in Ω at a given radial distance R⋆. Such
a boundary condition could be obtained when promoting
the relevant equations to distributions and collecting the
Dirac delta terms. The appropriate equation to be promoted
here is Eq. (4). Assume that there is a sudden change ofΩ at
r ¼ R⋆, meaning that at such a radial distance, the “jump”
of Ω is different from zero, i.e., ½Ω�þ− ≠ 0. Here, “�”
represents a distance immediately above/below r ¼ R⋆
(r ¼ R⋆ � ϵ, with ϵ → 0þ). The question we want to
answer is what ½Ω�þ− ≠ 0 implies for ½ω�þ− and ½ω0�þ− .
We stressed that it comes from the tφ-component of the

Einstein equations, which should be the equation to be
promoted to distributions. In this case, the energy-momen-
tum tensor may have a surface term, contributing to a Dirac
delta. Indeed, it appears when ½ω0�þ− ≠ 0 [30]. By writing
(promotion of ω to a distribution)

ω ¼ ωþΘðr − R⋆Þ þ ω−ΘðR⋆ − rÞ; ð10Þ

where Θ is the Heaviside function, and seeing Eq. (4) as a
distributional equation with the right-hand side replaced
by a term proportional to ½ω0�þ−δðr − R⋆Þ, it immediately
follows that this equation only starts making distributional
sense if

½ω�þ− ¼ 0: ð11Þ

Working now with the second derivatives of Eq. (10), based
on Eq. (4) and the energy-momentum tensor at r ¼ R⋆, it
follows that

½ω0�þ− ¼ 0: ð12Þ

From the above equations, it is simple to see the appropriate
jump conditions for ω̄≡Ω − ω:

½ω̄�þ− ¼ ½Ω�þ− ; ½ω̄0�þ− ¼ 0: ð13Þ

We stress that it would have been incorrect to promote
Eq. (5) to a distribution and then find the appropriate
boundary conditions to ω̄ because it is valid only whenΩ is
a given constant. Equation (13) lead to the additional
boundary conditions to be considered in the stratification
case. One needs to solve Eq. (5) for each layer with a given
Ω and implement Eq. (13) between them.

D. Moment of inertia in the stratified case

In the rigid (uniform) perturbative rotation case without
stratification, the moment of inertia is I ¼ J=Ω. This makes
sense because the constant J, the star’s total angular

momentum, must be of first order in Ω. It then ensues
that I should be seen as the general relativistic counterpart
of the star’s moment of inertia.
The fact that I is a ratio of two first-order quantities does

not mean it is free from the subtleties of ω̄, particularly its
boundary conditions. To make matters more complicated,
in the case of rotation stratification, it is in principle unclear
whichΩ (i.e.,Ω� in our case) to choose when writing J as a
first-order quantity. However, the case of uniform rotation
and the observables we have at hand are good guides to
consistently define I for rotation stratification. To start with,
for an isolated NS, the total angular momentum J is a
conserved quantity for both stratified and uniform rotation
cases. In addition, the angular frequency at the surface of
the star (Ωþ) is an observable, easily obtained by timing
analysis. Thus, the most natural definition for the moment
of inertia in the stratified rotation case is also Istrat ≡ J=Ωþ.
This definition renders Istrat numerically different from

Irig in general because J is sensitive to boundary conditions.
However, the functional form of J in the case of stratifi-
cation is exactly the same as in the case of uniform rotation
[given by Eq. (8)]. Indeed, from Hartle [23] we learn that

J ¼ −
2

3

Z
R

0

dj
dr

r3ω̄ðrÞdr ¼ 1

6
R4

�
dω̄
dr

�
r¼R

; ð14Þ

[see Eqs. (23), (28), (29), and (32) of Hartle [23] for the
case l ¼ 1, making use of

R
0
π dθ sin

2 θðdP1ðθÞ=dθÞ ¼ − 4
3

with P1ðθÞ the first-order Legendre polynomial and taking
into account Eq. (5), jðRÞ ¼ 1 and ½ω0�þ− ¼ 0]. From the
above expression, one sees that different Js will arise in the
case of stratified and rigid rotations because ω̄0

stratðRÞ ≠
ω̄0
rigðRÞ. Note that (the constant) J is intrinsically general

relativistic, which easily allows us to define a relativistic
moment of inertia using Ωþ. In addition, J is a “global”
quantity, which depends on the internal aspects and
dynamics of a star, in agreement with what is expected
for its moment of inertia. Finally, I ¼ J=Ωþ is physically
relevant because J (and also Ωþ) can be directly inferred
from observations [15,17].

E. Rotational energy

Another relevant issue for energy-balance considerations
is the rotational energy of a star. Reference [23] clarifies
this point using the seminal work of Bardeen [31]. In
summary, Hartle has shown that the rotational energy
(which is a positive quantity [23]) of a star with uniform
rotation (for which case ωl ¼ 0 for l > 1) is given by

Erot ¼ −
1

3

Z
R

0

drr3
dj
dr

ΩðΩ − ωðrÞÞ; ð15Þ

where it is now understood that Ω ¼ ΩþΘðr − R⋆Þ þ
Ω−ΘðR⋆ − rÞ, which is the generalization of the uniform
rotation case for stratification. Since Eq. (15) comes from a
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variational principle, it should also hold in the case of
stratification. However, its integrant is not continuous in the
whole star, and thus this integral should be properly split.
One has

Erot ¼ −
1

3

�
Ω−

Z
R⋆

0

drr3
dj
dr

ω̄− þ Ωþ
Z

R

R⋆

drr3
dj
dr

ω̄þ
�
;

ð16Þ

where we have used that ω̄ðrÞ ¼ Ω − ωðrÞ for each phase.
With Eq. (16), one can use Eq. (5) and obtain

Erot ¼
1

2

�
JΩþ −

1

6
R4
⋆jðR⋆Þω̄0ðR⋆Þ½Ω�þ−

�
: ð17Þ

Therefore, from our definition of the moment of inertia,

Erot ¼
1

2

�
I −

1

6
R4
⋆jðR⋆Þ

ω̄0ðR⋆Þ
Ωþ

½Ω�þ−
Ωþ

�
ðΩþÞ2: ð18Þ

We stress that the second term of the above equation is
generally much smaller than the first due to R⋆ < R,
jðR⋆Þ < 1, and j½Ω�þ− j=Ωþ < 1. In general, it would have
been misleading to read off the moment of inertia from
Eq. (18) because energy is not trivially extended from
Newtonian dynamics to general relativity in general.
Finally, we note that Eq. (18) is only valid for the case
of ‘almost rigidity,” i.e., when Ω� are constants. The case
where Ω� ¼ Ω�ðrÞ is much more complicated because
it involves l > 1 [23]. We leave this to be studied in
future work.

III. RESULTS

Our main goal here is to compare the outcomes of J and I
in the cases of rigid rotation and stratification. For
simplicity, in the case of stratification, we assume that
two regions of a star rotate with different Ωs and that a
surface splits them at r ¼ R⋆. The case with more layers
with different values of Ω can be trivially extended.
The motivations for different parts of the star rotating

with different angular velocities stem from various stellar
possibilities: (i) sharp phase transitions leading to a quark
core and a hadronic phase (crust); (ii) superfluidity in the
neutron star, which tends to preserve a certain angular
velocity up to a critical lag; (iii) burying of the star’s surface
by supernova remnant material, which in general has
different angular momentum than the star’s; and (iv) nuclear
reactions and gravitational and electromagnetic wave
emission in some regions of the star, which also take away
angular momentum.

A. Modeling

We will work with two main models: (i) the SLy4
equation of state (EOS) [32] for one-phase stars and

(ii) stars presenting sharp phase transitions with different
quark-hadron energy density jumps (ηþ 1)–hybrid stars.
Many models could be used for the hybrid star EOS. Here
we limit to some examples given in Pereira et al. [33].
Particular details can be found there. For the M − R
relations (or M − R diagrams) of the representative
EOSs that we will make use of here, see Fig. 1.
In case (i), we assume that R⋆ is chosen at will. It would

allow one to build intuition about changes in J and I for
different angular velocity stratification depths compared to
the rigid rotation scenario. In case (ii), R⋆ will be identified
with the phase transition radius and hence will be fixed for
given quark and hadronic equations of state and stellar
masses. The idea of this work is not to make an exhaustive
EOS analysis but to find the main trends to focus on in
future works and to make back-of-the-envelope estimates
of the relative changes relative to the rigid rotation case.

B. One-phase stars with rotational stratification

Let us focus first on stars without phase transitions
described by the (realistic) SLy4 model. We will assume
that the star’s inner and outer parts rotate with different Ωs.
The inner part encompasses radii up to R⋆, which will be
freely chosen. The outer part goes from R⋆ to the star’s
surface (R). Motivated by the sun’s case, where relative
changes in Ω for the core and the convective envelope
could be around 10%–20% [34] (associated with the
presence of a very thin layer where the angular velocity
changes rapidly—the tachocline [9]), we will assume this
also to be the case of NSs roughly. Because we work with
ω̄ in the numerical integrations, we will assume that
½Ω�þ−=ω̄− ¼ given≡ C. From it, it trivially follows that
½Ω�þ−=Ωþ ¼ Cðω̄−=ΩþÞ. Here, Ω−ðΩþÞ is the angular
velocity of the inner(outer) phase of the star. We aim to

FIG. 1. M-R relations for the SLy4 EOS and the hybrid models
of Ref. [33], for selected values of the 1þ η≡ top of the quark
phase over the bottom of the hadronic phase energy density
ratio, 0.39 and 0.77. The dot-dashed horizontal line represents
M ¼ 1.4M⊙ and is highlighted to facilitate the identification of
the canonical NS mass radius.
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work with cases where ½Ω�þ−=Ωþ ∼ 10%–20%. For a given
C, Eq. (5) could be easily integrated out, and ω̄ could be
known throughout the star. For a given Ωþ, which directly
comes from observations of NS surfaces, one could easily
find the right C for any given ½Ω�þ−=Ωþ. As a rule of thumb,
C is not much different from ½Ω�þ−=Ωþ.
An important issue when comparing I and J with and

without rigid rotation is fulfilling Eqs. (8) and (9) if the Ω
that we get at the star’s surface is not the one we would like
to link with observations. That is not the case, given that Ω
at R depends on the choice of ω̄ð0Þ. However, this is not a
problem, as we show now. From our definition of I and
Eqs. (8) and (9), it follows that I ¼ Jnew=Ωnew ¼ Jold=Ωold,
meaning that it is independent of the choice of ω̄ at the
center of the star. For J in both the stratified and rigid
rotation cases, one can use Eq. (14) after solving Eq. (5).
Note from Eq. (14) that when R⋆ → R, it follows that
Jstrat → Jrig due to Eq. (12).
We start by analyzing the relative differences of I

between stratification and rigid rotation for different
depths in the NS (different R⋆). We use as a representative
EOS the SLy4 EOS (see Fig. 1 for its M − R relation).
Figure 2 shows that the largest differences in ΔI=Irig ≡
ðIrig − IstratÞ=Irig happen close to the surface of the star
(∼½Ω�þ−=Ωþ). This is expected since the total angular
momenta in the cases of stratified and uniform rotation
tend to the same value, meaning that ΔI=Irig →
½ð1=Ω−Þ − ð1=ΩþÞ�Ω− ¼ ½Ω�þ−=Ωþ. What is not intuitive
is how it does so. It decreases nonlinearly when the angular

velocity jumps deeper inside the star. Further, the smaller
the mass, the larger the relative difference for a given R⋆.
Roughly speaking, relative differences in I grow much
quicker and become relevant for R⋆ ≳ 0.6R. The sign of
ΔI=Irig is always the same as ½Ω�þ−=Ωþ, but the relative
changes in the moment of inertia are not exactly symmetric
to the relative changes in Ω.

C. Hybrid stars

We consider EOSs with different (and controllable)
energy density jumps for hybrid stars as in [35,36]. In
other words, we use the SLy4 EOS [32] for the crust,
smoothly connected to a polytropic EOS for the hadronic
outer core, followed by a sharp phase transition with a
given energy density jump, ηþ 1, to an inner quark core
modeled by a simple MIT baglike model, with the sound
speed equal to unity (as suggested by Bayesian inferences
using GW and electromagnetic data [37–39]). Further
details about these EOSs can be found in Ref. [33]. The
mass-radius relations for the hybrid EOSs we use are
shown in Fig. 1 and they lead to radii around 11–13 km for
1.4M⊙, in agreement with multimessenger results [40–43].
Figures 3 and 4 show the results for ΔI=Irig for several

choices of C and different masses. Qualitatively, the results
are similar to the case without phase transitions: relative
changes are roughly limited by ½Ω�þ−=Ωþ, and the deeper
the phase transition occurs, the smaller the change in the
moment of inertia relative to the rigid case. As is clear from

FIG. 2. ΔI=Irig for the SLy4 EOS assuming a relative angular
velocity jump C at R⋆. Several Cs have been included, as well as
NS masses. Each color represents a given C ∼ ½Ω�þ−=Ωþ, while
each curve dashing relates to a given NS mass. Non-negligible
relative differences start showing up for R⋆=R≳ 0.6, increasing
nonlinearly. If we can infer an NS moment of inertia with a 5%
uncertainty, that would also be the minimum level of uncertainty
for the relative angular velocity difference between the two
phases we could resolve.

FIG. 3. ΔI=Irig for hybrid EOS models with η ¼ 0.39 (weak
phase transition) and η ¼ 0.77 (strong phase transition) as a
function of the NS’s mass assuming an angular velocity jump C at
the phase transition radius (R⋆). Several C and NS masses have
been included. Each color represents a given energy density
jump, while each curve dashing relates to a given C ∼ ½Ω�þ−=Ωþ.
Non-negligible relative differences (≳5%) start showing up only
for C ∼ 20% for these models given that the R⋆ are at most around
0.8R (see Fig. 4).
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Fig. 2, a relevant aspect is where the jump in rotation occurs
in the star. This depends on the star’s mass relative to the
phase transition mass for a given microphysics of the quark
and hadronic phases. Another relevant aspect of ΔI=Irig as
a function of the angular rotation jump depth, as evident in
Figs. 2 and 4, is its nonlinearity. Instead, in the case of
ΔI=Irig versus the stellar mass, as shown in Fig. 3, an
almost linear behavior is observed, mainly because the
phase transition does not vary significantly with the mass in
the range ð1.4–2.0ÞM⊙. The larger the mass, the greater the
relative change in the moment of inertia because larger
masses have larger transition radii, meaning that the radius
where the angular velocity jump occurs is closer to the
stellar surface.

IV. DISCUSSION AND CONCLUSIONS

The internal composition and rotational dynamics of NSs
are not directly observable, necessitating theoretical
assumptions for predictions. A prevalent assumption is
the rigid rotation of NSs, simplifying the model by
reducing the number of variables. However, this
assumption may introduce biases in astrophysical con-
straints. Observations of the Sun and other stars suggest
that differential rotation is a more natural assumption.
However, modeling this requires a specific rotational law,
which introduces its own set of challenges. Moreover,
as a main-sequence star, the Sun differs significantly from
NSs regarding composition, dynamics, and phenomena.

Additionally, temperature effects significantly influence the
Sun’s differential rotation and are less significant in NSs.
Despite these differences, the Sun is a practical reference

point without direct observables for NS internal rotation.
Our study shows that nonrigid rotation in NSs introduces
systematic uncertainties when calculating their moment of
inertia. We adopted a simplified model of nonrigid rotation,
characterized by two phases, separated at r ¼ R⋆, and
having different angular velocities. Though rudimentary
and predicated on stellar viscosity properties, this model
aims to identify angular velocity jumps that significantly
impact I. Our findings indicate that the maximum relative
differences in I correspond to the relative changes in the
angular velocity, especially when the discontinuity in
rotation occurs near the stellar surface. Considering that
future observations could constrain I within 5%–10%, our
results highlight the potential inaccuracies in assuming
rigid rotation for stars.
We now discuss the implications of rotational stratifi-

cation and changes in I for various stellar observables.
Incorporating nonrigid rotation models, which could mit-
igate many current challenges in understanding stellar
dynamics, may help address these issues. Here we focus
on the impact of the maximum changes in I on certain
observables to assess their systematic errors.

A. Direct measurements of I

From the above, it becomes clear that direct measure-
ment of the NS moment of inertia can be the most relevant
probe of the NS interior stratification. Such measurement
might soon be fulfilled as pulsar timing precision and data
increase and improve [17], but models must be more
accurate. We have just reached the level where higher-
order post-Keplerian parameters can be assessed because
the double pulsar mass loss cannot be ignored anymore.
Among such higher-order parameters, the moment of
inertia of a pulsar can be constrained. The results of
Kramer et al. [17] have constrained the moment of inertia
of a pulsar with mass 1.338M⊙ to I45 ≡ I=ð1045 g cm2Þ ¼
1.15–1.48 at 95% confidence. It takes into account multi-
messenger constraints on the radius of NSs. Although the
uncertainty about this result is around 10%–20%, it is
remarkable that such a direct inference can be made. In the
future, this uncertainty is expected to decrease significantly.
Another possibility for constraining the moment of

inertia of an NS in a binary system is due to measurements
of its periastron advance [15], which will be possible for
some sources [16]. That is a higher-order spin-orbit effect,
and the expected precision for moment-of-inertia measure-
ments is around 10%–20% [16]. Based on our results, the
above accuracies suggest the maximum uncertainties for
the rigid rotation of neutron stars. At the same time, it
shows that phases rotating with relative differences up to
10%–20% could not be differentiated from those rotating
with a uniform angular velocity. However, this stratified

FIG. 4. ΔI=Irig for hybrid EOS models with η ¼ 0.39 (weak
phase transition) and η ¼ 0.77 (strong phase transition) assuming
an angular velocity jump of C at the phase transition radius (R⋆)
as a function of R⋆=R. Several C and NS masses have been
included, related to the different R⋆=R values for a given η. Each
color on the curves relates to a given energy density jump, while
each curve shape relates to a given C ∼ ½Ω�þ−=Ωþ. Non-negligible
relative differences (≳5%) start showing up only for R⋆=R≳ 0.8
and C ∼ 20% (because it represents the same models of Fig. 3).
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rotation could have an impact on other observables, and
combined measurements may be able to provide further
information. In the best-case scenario, stratified rotation
will lead to systematic uncertainties, and they should be
duly characterized and not ignored.
Systematic uncertainties to I can have important impli-

cations for the constraint of superdense matter in NSs.
Suppose there is an intrinsic ΔI=I due to nonrigid rotation.
In that case, it follows that radius inferences will also have
uncertainties, and they can be estimated as ΔR=R ¼
ð1=2ÞΔI=I if the mass of an NS is well-constrained. If
ΔI=I ∼ 10%, then ΔR=R ∼ 5%. For reference, that already
competes with combined multimessenger constraints using
ray-tracing techniques for light-curve modeling and tidal
deformation constraints [42]. We have shown that ΔI=I
around a few percent can already occur for small angular
velocity jumps (∼5%). Thus, unless the rotation stratifica-
tion is small, direct measurements of I may constrain
superdense matter less strongly than combined multimes-
senger techniques.

B. Central compact objects (CCOs)

CCOs are a distinctive class of neutron stars, typically
found near the centers of young supernova remnants
(SNRs) [see, e.g., 44, for a review]. As these remnants
evolve from the aftermath of a supernova, they undergo
dynamic processes, including the potential accretion of
surrounding material.
The assumption of rigid (uniform) rotation, often applied

to older neutron stars, may not be valid for these young and
dynamically evolving objects. Specifically, it is expected
that the accreted layer rotates differently from the rest of the
star, at least transiently, over timescales characterized by
viscosity in the outermost regions of the NS. Our estimates
suggest that this transient period lasts approximately up to
10 kyr, which is significant for most CCOs given the typical
ages of their associated SNRs [see 45].
Due to the thinness of these accreted layers, which are

much smaller than the radius of the NS, our analysis
suggests that their moments of inertia might differ consid-
erably from other NSs with similar masses if their layers
rotate at different rates compared to the rest of the star.
When rotation is considered and is not negligible in ray-
tracing techniques used to characterize CCOs (or even
rotation-powered pulsars), fluctuations in the moment of
inertia may affect the spacetime geometry due to variations
in total angular momentum and the quadrupole moment. In
addition, fluctuations in I can also influence the inference
of the dipolar component of the magnetic field of CCOs.
Indeed, B ∝ I

1
2, meaning that ΔB=B ¼ ð1=2ÞΔI=I for

given values of the star’s period and its derivative. For
instance, a ΔI=I ∼ 10% would imply ΔB=B ∼ 5%. Thus,
the stratified rotation will not significantly affect the values
inferred for the dipolar component of B of CCOs.

The differential rotation within the accreted layers of
CCOs has a broader impact beyond just influencing
magnetic fields; it can also affect the emission of x-rays.
Specifically, variations in the accretion rate, the angular
momentum deposited, and the temperature distribution on
the NS surface may lead to measurable fluctuations in x-ray
emission. These aspects should be investigated further, as
such modulations could provide additional information
about the internal structure and dynamical evolution of
CCOs. We leave this for future studies.

C. Energy budget of neutron stars

Here we focus on back-of-the-envelope consequences of
the rotational energy of stratified NSs. We have checked
numerically that the second term of Eq. (18) is up to around
1% of the first term for all EOSs that we used. Therefore,
we will neglect it and consider Erot ≃ ð1=2ÞIðΩþÞ2. A
relative change of 10%–20% in the moment of inertia due
to stratified rotation might significantly impact the energy
budget of some sources previously classified as nonrota-
tion-powered pulsars. We identified at least five sources
that could be explained by rotation alone in the stratified
regime by applying the SLy4 equation of state to compute
each pulsar’s moment of inertia. This was done using the
period (P) and period derivative (Ṗ) data from the third
catalog of gamma-ray pulsars [46]. For convenience, we
define α≡ Lγ=Erot, where Lγ is the luminosity and Erot is
the rotational energy. Thus, a rotation-powered pulsar
(RPP) has α ≤ 1.
In our analysis, we selected two reference points from

the EOS: the fiducial configuration for SLy4, i.e., a mass
M ¼ 1.45M⊙ for which we find a moment of inertia
I0 ¼ 1.06 × 1046 g cm2, and the maximum mass con-
figuration, M ¼ 2.04M⊙, where we calculated I0 ¼
6.55 × 1045 g cm2. Table I displays our results.
Considering the fiducial mass, we find that for a 10%
increase in the moment of inertia (Iþ10%), the source
J1522–5735 has a value of α ¼ 0.99, indicating it is an

TABLE I. Comparison of αs for pulsars with rigid-rotation and
stratified-rotation moments of inertia.

ðM; I0Þ ¼ ð1.45M⊙; 1.06 × 1046 g cm2Þ
PSR αðI0Þ αðIþ10%Þ αðIþ20%Þ
J1057-5851 1.19 >1 0.99
J1522-5735 1.09 0.99 0.911
J1650-4601 1.11 >1 0.92

ðM; I0Þ ¼ ð2.04M⊙; 6.55 × 1045g cm2Þ
PSR αðI0Þ αðIþ10%Þ αðIþ20%Þ
J1429-5911 1.03 0.94 0.86
J1817-1742 1.04 0.95 0.87
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RPP, in contrast to α ¼ 1.19 found for I0. Additionally,
when we increase the change in the moment of inertia to
20% (Iþ20%) for the fiducial mass case, we identify three
sources within the rotation-powered zone: J1057–5851,
J1522–5735, and J1650–4601. Stratified rotation will not
address the issue of RPPs for all pulsars, but it is an aspect
that must be considered for energy budget assessments. A
reasonable upper limit correction would be 10%–20%.

D. Mass changes due to stratification

Within the Hartle formalism for slowly rotating stars, the
boundary conditions discussed in Sec. II C for the first-
order quantity ωðrÞ will affect all the second-order metric
perturbation functions. In particular, the total mass-energy
of the rotating star is given by [20]

M ¼ mðRÞ þm0ðRÞ þ
J2

R3
≡mðRÞ þ δM ð19Þ

where mðRÞ is the mass of the nonrotating star and δM is
the mass increase due to rotation, with a contribution
coming from m0, a second-order metric perturbation
function, and the rotational energy, which is proportional
to J2. The stratification will affect J (in the same way I, as
shown in Sec. III) and the function m0 since its differential
equation depends on the value of ω throughout the star.
Thus, a stratified NS has a different gravitational mass
relative to a rigidly rotating one, as shown in Fig. 5 for
differentΩs in the reference rigid case (20% and 50% of the
Newtonian Keplerian frequency, Ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmðRÞ=R3

p
). We

chose a situation where the sharp angular velocity change
happens close to the star’s surface, R ¼ 0.9R, and a large

rotation jump, jCj ¼ 20%, to obtain the largest differences.
For the case, Ω ¼ 0.2Ωk, stratification contributes little to
the mass related to rigid rotation (≲1%). However, the
contribution to the rigid mass due to stratified rotation
when Ω ¼ 0.5Ωk can be more significant, up to around
10%. The above happens essentially because the mass
variation δMstrat can differ significantly concerning δMrig

(up to ≈45% for the case C ¼ −20% and R⋆ close to the
star surface), but the total mass is still dominated by the
nonrotating term mðRÞ, making less relevant the global
change in the mass.

E. I-Love-Q universal relations

Many uncertainties are associated with the NS interior
structure, mainly because of our lack of knowledge about
the equation of the state of the NS core. Nevertheless, some
universal relations between the moment of inertia I, the
quadrupole moment Q, and the tidal Love number λ have
been discovered some time ago [47]. These relations are
very powerful from an astrophysical point of view since
measuring any of the variables in the trio could lead to
direct information about the other two. The assumptions
behind the I-Love-Q relations derivation are slow and
uniform rotation, small tidal perturbations, and GR gravity.
As discussed in this work, letting go of uniform rigid
rotation will naturally alter the moment of inertia, as shown
previously. But what happens with the quadrupole moment
and the universal relations?
The spin-induced quadrupole moment Q is a second-

order quantity that will be affected by the boundary
condition in ω through nonlinear terms in the differential
equation. The expression for Q is given by [20]

Q ¼ −
J2

mðRÞ −
8

5
Am3ðRÞ: ð20Þ

As we have shown, the first term is sensitive to stratifica-
tion, hence the second term, since second-order equations
are seeded by the solutions of first-order equations in the
rotation parameter.
The universal relations are expressed in terms of the

dimensionless moment of Inertia Ī ≡ I=mðRÞ3 and dimen-
sionless quadrupole moment Q̄≡ −QmðRÞ=J2 [47]. Since
the normalization is done with the nonrotating mass mðRÞ,
the relative change due to stratification in the dimensionless
moment of inertia will be

ΔĪ
Ī

¼ ΔJ
J

¼ ΔI
I
; ð21Þ

while the relative change in the dimensionless quadrupole
moment is

FIG. 5. Gravitational mass (M) versus mean radius (Rm)
relation, where Rm ¼ ðRp þ 2ReqÞ=3 (Rp and Req are the NSs
radius at the pole and equator, respectively). The SLy4 EOS was
used as the equation of state of the nonrotating seed. Concerning
the rigid rotations, we chose the exemplary cases of Ω ¼ 0.2Ωk

and Ω ¼ 0.5Ωk, where Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmðRÞ=R3

p
is the Newtonian

Keplerian frequency. For the stars with stratified rotation, we
assumed a rotation jump of C ¼ �20% close to the surface
R� ¼ 0.9R.
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ΔQ̄
Q̄

¼
8
5
A
J2 m

4ðRÞ�ΔAA − 2ΔJ
J

�
	
1þ 8

5
Am4ðRÞ

J2


 : ð22Þ

One sees that ΔĪ and ΔQ̄ will not be proportional to each
other due to the presence of ΔA=A. Thus, we expect, in
general, that the universal relation between Ī and Q̄ will no
longer hold/will be weakened in the presence of stratified
rotation.We leave further examination of that for futurework.

F. Gravitational wave production

For isolated NSs, mountains can be built on their
surfaces for a variety of reasons (see [33] and references
therein), and they could lead to the emission of GWs
due to a resultant ellipticity (quadrupole moment). It
depends on the moment of inertia of the star and is defined
as [33,48,49]

ε≡
ffiffiffiffiffiffi
8π

15

r
Q22

I
; ð23Þ

where I is the principal moment of inertia, Q22 is the
l ¼ m ¼ 2 quadrupole moment of the star. The GW
strain is [50]

h ¼ 4πεIf2GW
d

; ð24Þ

where d is the source distance and fGW is the GW
frequency. Thus, from the above equations, ε (and to a
lesser extent h because of the product εI) will have
systematic uncertainties associated with the NS unknown
internal rotation. The relative uncertainties of ε will be
proportional to ΔI=I. Uncertainties today are large
for h, and only upper limits can be set for ε, meaning that

ΔI=I ≲ 10%–20% will not be problematic for NS con-
straints with them. However, in the future, systematics
about I will become relevant for GW astronomy. That
motivates further studies on the internal rotation of NSs.
Future missions promise much tighter constraints on GW

observables, such as the GW strain, tidal deformations,
ellipticities, and quasinormal modes, which all depend
on the moment of inertia. At the same time, when
uncertainties for GW observables decrease, it might also
be possible to constrain rotation aspects of NSs with them.
Statistical studies of GW observables may also constrain
where, inside the star, an abrupt rotation change happens.
Our analysis suggests that relative changes of a few percent
in the moment of inertia happen for R⋆=R≳ 0.6. If no
systematic fluctuation in the observables is found, it would
suggest that rotation changes happen much deeper in
the star.
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Abstract We analyze the extraction of the rotational energy
of a Kerr black hole (BH) endowed with a test charge
and surrounded by an external test magnetic field and ion-
ized low-density matter. For a magnetic field parallel to
the BH spin, electrons move outward(inward) and protons
inward(outward) in a region around the BH poles(equator).
For zero charge, the polar region comprises spherical polar
angles −60◦ � θ � 60◦ and the equatorial region 60◦ �
θ � 120◦. The polar region shrinks for positive charge, and
the equatorial region enlarges. For an isotropic particle den-
sity, we argue the BH could experience a cyclic behavior:
starting from a zero charge, it accretes more polar protons
than equatorial electrons, gaining net positive charge, energy
and angular momentum. Then, the shrinking(enlarging) of
the polar(equatorial) region makes it accrete more equatorial
electrons than polar protons, gaining net negative charge,
energy, and angular momentum. In this phase, the BH rota-
tional energy is extracted. The extraction process continues
until the new enlargement of the polar region reverses the
situation, and the cycle repeats. We show that this electro-
dynamical process produces a relatively limited increase of
the BH irreducible mass compared to gravitational mecha-
nisms like the Penrose process, hence being a more efficient
and promising mechanism for extracting the BH rotational
energy.

a e-mail: jorge.rueda@icra.it (corresponding author)
b e-mail: ruffini@icra.it

1 Introduction

This paper discusses a specific electrodynamic process to
extract the Kerr black hole (BH) rotational energy and ana-
lyze its efficiency. For this task, taking into account and
differentiating the concepts of extractable energy, extracted
energy, and the inevitable increase of the BH irreducible mass
in processes interacting with the BH are essential. This fact
has been recently exemplified for the gravitational Penrose
process [1] in [2] (hereafter Paper I) and in [3] (hereafter
Paper II). Paper I assesses the efficiency of the single Pen-
rose process, while Paper II analyzes the case of repetitive
processes. Paper II conclusion is dramatic: applying the Pen-
rose processes repetitively either poorly reduces the BH spin,
hence the BH rotational energy, leaving most of it yet to be
extracted, or it can approach a final Schwarzschild BH state,
but by converting the BH rotational energy into irreducible
mass. In either case, very little or even no energy extrac-
tion occurs. The former case results from Penrose processes
occurring near the BH horizon, and the latter near the ergo-
sphere border. Papers I and II have revealed that the nonlin-
ear increase of the BH irreducible mass is responsible for the
Penrose process’s inefficiency.

The main consequence of the above result is that any Kerr
BH rotational energy extraction process must account for the
irreducible mass increase effect. Therefore, the efficiency of
any BH energy extraction process is ultimately linked to its
ability to approach reversibility, i.e., to cause an as-low-as-
possible increase of the BH irreducible mass.

In the context of the Wald electromagnetic field [4] for
a Kerr BH immersed in an asymptotically aligned (with
the BH spin), uniform test magnetic field, it was shown in
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Ref. [5] that the capture and ejection of positively and nega-
tively charged particles by a Kerr BH can extract its energy
when the BH captures more particles with negative than pos-
itive energy (and angular momentum). These conditions are
attainable in an ionized anisotropic medium with density
increasing toward the equator. The process showed the BH
extracted energy increases more than the irreducible mass,
representing a first step towards an efficient process of BH
energy extraction. Indeed, in the sequence of gravitational
Penrose processes of Paper II, the increase of the BH irre-
ducible mass relative to the decrease of the mass becomes as
large as ∼ 500%, which contrasts with the ∼ 1–10% relative
change obtained in the electrodynamical process in [5].

This paper extends the above analysis by accounting for
the fact that the BH also gains charge. As a first step in under-
standing the process, we consider the BH charge to be a test
charge, i.e., it affects the exterior electromagnetic field but
not the spacetime geometry, which will still be given by the
Kerr metric. The main new result is that including the BH
(test) charge allows the BH energy extraction for isotropic
surrounding particle density and is more efficient than the
previous case.

The paper is organized as follows. Section 2 discusses the
concepts of extractable energy, extracted energy, and the role
of the BH irreducible mass in differentiating the two. Sec-
tion 3 describes the electromagnetic field structure leading to
outgoing and ingoing charged particles. In Sect. 4, we cal-
culate the energy and angular momentum of the particles
captured by the BH. Section 5 estimates the total change in
the BH parameters mass, angular momentum, and irreducible
mass. Finally, we outline the conclusions, consequences, and
future research directions from the paper’s results in Sect. 6.

2 Extractable, extracted energy, and irreducible mass

Let us start by recalling the concept of extractable energy
(see, e.g., [6,7])

Eext ≡ M − Mirr, (1)

where M and Mirr are the BH mass and irreducible mass.
Unless otherwise specified, we use geometric (G = c = 1)
units throughout. The relation between the BH mass, angular
momentum (J ), charge (Q), and irreducible mass is dictated
by the Christodoulou-Ruffini-Hawking BH mass-energy for-
mula [8–10]

M2 =
(
Mirr + Q2

4M2
irr

)2

+ J 2

4M2
irr

. (2)

The BH horizon is r+ = M + √
M2 − a2 − Q2, being a =

J/M the BH angular momentum per unit mass, so Mirr can

be readily written as

Mirr = 1

2

√
2Mr+ − Q2. (3)

For a Schwarzschild BH (Q = 0 and J = 0), Mirr = M , so
Eext = 0. For the extreme Kerr BH (Q = 0 and J = M2),
Mirr = M/

√
2 ≈ 0.71M , leading to Eext = (1−1/

√
2)M ≈

0.29M . For an extreme Reissner–Nordström BH (J = 0 and
Q = M), Mirr = M/2, so Eext = 0.5M . Thus, a non-
rotating BH has no energy to be extracted, while up to 29%
(50%) of the mass of an extremely rotating (charged) BH
could be extracted. However, astrophysical processes have
to deal with the BH surface area increase theorem [10]

dS+ ≥ 0, S+ = 4π(r2+ + a2) = 16πM2
irr, (4)

which implies that dM2
irr ≥ 0 for any process acting on

the BH. Hence, the extractable energy given by Eq. (1) is
the maximum amount of energy that can be extracted. If an
energy extraction process reduces the BH mass by an amount
dM , then the extracted energy is defined as

dEextracted ≡ −dM, (5)

and from Eq. (1), the extractable energy changes by

dEext = dM − dMirr = −dEextracted − dMirr. (6)

Thus, the extracted energy can approach the maximum possi-
ble value, the extractable energy, only if the process of extrac-
tion occurs without increasing the BH irreducible mass,
namely if it is reversible in the Christodoulou-Ruffini sense
[8,9], i.e., if dMirr = 0.

Reversibility is hard to approach, so in general, we seek
efficient processes able to extract the BH energy causing a
relatively small change of the irreducible mass [5,11], i.e.,

|dM | = dEextracted � dMirr, (7)

such that dEextracted = −dM ≈ dEext.
Let us now focus on the case of a Kerr BH. Equation (3)

tells that an infinitesimal change in the BH mass (dM) and
angular momentum (d J ) leads to a change in the horizon
surface area

dS+ = 16π dM2
irr = 32πM2

irr
dM − Ω+d J√

M2 − a2
, (8)

where Ω+ = a/(2Mr+). The condition (7) is not trivial. It
challenges energy extraction processes by particles or fields
as they could convert the BH rotational energy into irre-
ducible mass rather than in energy extracted.

When the BH captures a particle of energy E and angular
momentum L , from Eq. (8) we have dM2

irr ∝ E − Ω+L ∝
|pr |+, being the latter the radial momentum of the parti-
cle crossing the horizon [5,11–13]. Therefore, a reversible
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transformation is achieved only by capturing particles graz-
ing the horizon [8,9]. Otherwise, |pr |+ > 0, dS+ > 0 and
dM2

irr > 0, so Mirr necessarily increases.
We have already recalled the results of Paper II, which

shows the high irreversibility of a repetitive Penrose process,
even approaching the limit of being completely irreversible
when it occurs near the ergosphere, i.e., approaching a com-
plete conversion of the BH rotational energy into the irre-
ducible mass without energy extracted: dEext → −dMirr

and dEextracted = −dM → 0.
We now turn to the electrodynamical processes. We recall

that the electrostatic potential for charged particles allows
them to have negative energy states outside the ergosphere,
a fact first noticed for the Reissner–Nordström BH leading
to the concept of generalized ergosphere [14]. This property
has been used in the extension of the Penrose process in the
presence of magnetic fields (see, e.g., [15–20], and references
therein).

However, the presence of electromagnetic fields does not
guarantee an improvement in efficiency. An astrophysically
relevant example is a Kerr BH immersed in a test magnetic
field, asymptotically inclined relative to the BH rotation axis.
Two seminal papers [21,22] showed, in the slow-rotation
regime and the full Kerr metric, that the exerted torque by
the fields onto the BH induces the alignment between the
BH angular momentum and the magnetic moment. The pro-
cess fully converts the BH rotational energy into irreducible
mass, with no energy being released to infinity at any time
in the alignment process. The above result was also indepen-
dently obtained using a different theoretical framework for
the general Kerr BH metric in [23].

In the meantime, several energy extraction mechanisms
using electromagnetic fields have been proposed. The matter-
dominated plasma accreting onto a Kerr BH [24] inspired
the Blandford-Znajek mechanism [25], which has seen a
recently boosted interest from relativistic magnetohydrody-
namics and particle-in-cell simulations (e.g., [26–28]). Fur-
ther works involve magnetohydrodynamic inflows [29], elec-
tric and magnetic generalizations of the Penrose process [15–
20], and references therein), and more recently, relativistic
magnetic reconnection in the BH vicinity [30]. Because of
the critical role of the BH irreducible mass increase discussed
above, it remains to verify whether or not the efficiency con-
dition (7) is approached in these processes. However, such a
study goes beyond the scope of the present work and is left
as a prospect.

Next, we follow our plan of setting the physical picture of
present interest to assess the conditions for the energy extrac-
tion to occur and its efficiency by monitoring the increase of
the BH irreducible mass.

3 Electromagnetic field structure

In spheroidal Boyer–Lindquist coordinates (t, r, θ, φ), the
Kerr metric reads [31]

ds2 = g00dt
2 + g11dr

2 + g22dθ2 + g33dφ2 + 2g03dtdφ,

(9a)

g00 = −
(

1 − 2Mr

Σ

)
, g11 = Σ

Δ
, g22 = Σ, (9b)

g33 = A

Σ
sin2 θ, g03 = −2aMr

Σ
sin2 θ, (9c)

where, being M and a = J/M , respectively, the BH mass
and angular momentum per unit mass.

The electromagnetic four-potential of the Wald solution
in the case of a slightly charged Kerr BH, embedded in a
magnetic field of strength B0 asymptotically aligned with
the BH rotation axis is given by [4],

Aμ = B0

2
ψμ + a B0ημ − Q

2M
ημ, (10)

where ημ = δ
μ
0 and ψμ = δ

μ
3 are the time-like and space-

like Killing vectors of the Kerr metric. Thus, the electro-
magnetic four-potential is Aμ = (A0, 0, 0, A3), where the
non-vanishing components are given by (see Appendix A)

A0 = −aB0

[
1 − Mr

Σ
(1 + cos2 θ)

]
+ Q

2M

(
1 − 2Mr

Σ

)
,

(11a)

A3 = 1

2
B0 sin2 θ

[
r2 + a2 − 2Mra2

Σ
(1 + cos2 θ)

]

+ Qar sin2 θ

Σ
. (11b)

With the knowledge of Aμ, we can now calculate the Fara-
day tensor, Fαβ = ∂αAβ −∂β Aα , whose non-vanishing com-
ponents result to be (see Appendix A)

F01 = (r2 − a2 cos2 θ)

Σ2

[
aB0M(1 + cos2 θ) − Q

]
, (12a)

F02 = 2ar sin θ cos θ

Σ2

[
B0M(r2 − a2) + aQ

]
(12b)

F13 = B0r sin2 θ

[
1 + Ma2(r2 − a2 cos2 θ)(1 + cos2 θ)

rΣ2

]

− Qa(r2 − a2 cos2 θ) sin2 θ

Σ2 , (12c)

F23 = B0 sin θ cos θ

Σ2

[
Σ2(r2 + a2) − 2Ma2rΣ(1 + cos2 θ)

+2Ma2r(r2 − a2) sin2 θ
]

+ 2Qar3 sin θ cos θ

Σ2 .

(12d)
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To better depict the electromagnetic field structure and the
expected charged particle motion, we calculate the electro-
magnetic invariant (see Appendix A)

�E · �B = −1

4
Fαβ F̃

αβ = F02F13 − F01F23

Σ sin θ
, (13)

where F̃αβ is the dual of the electromagnetic tensor, defined
by

√−gF̃αβ = (1/2)εαβμνFμν , being εαβμν the Levi-Civita
symbol, and g = −Σ2 sin2 θ the determinant of the Kerr
spacetime metric (9).

We are interested in obtaining the polar angle at which
�E · �B = 0, which separates regions where the scalar prod-
uct is positive and negative and can be calculated at the BH
horizon radius. By replacing the corresponding expressions
of Fαβ given in Eq. (12) into Eq. (13), it follows the quadratic
equation ( �E · �B)+ = λQ2 + σQ + γ = 0, whose two roots
are

Q = −σ ± √
σ 2 − 4λγ

2λ
, (14)

where we have defined

λ = 2ar+(r2+ − a2 cos2 θ) cos θ

Σ4 , (15)

σ = −2B0a2r+ cos θ

Σ4 [M(r2+ − a2 cos2 θ)(1 + cos2 θ)

− r+ sin2 θ(r2+ + a2 cos2 θ)], (16)

γ = σ
B0M(r2+ − a2)

a
. (17)

The background color in Fig. 1 shows the regions where
the invariant (13) is positive (bluer), negative (redder), and
zero (blue dashed lines). For example, for a magnetic field
aligned with the BH spin (i.e., vertically upward), positively
charged particles will follow the magnetic field lines down-
ward in the red and upward in the blue regions. Negatively
charged particles have the opposite behavior.

Given the invariant character of �E · �B, we can use any
observer to exemplify the above situation, e.g., the locally
non-rotating observer, also called the zero angular momen-
tum (ZAMO) observer [32,33]. The ZAMO carries a tetrad
with vectors e0̂ = u(Z), e1̂ = √

Δ/Σ e1, e2̂ = e2/
√

Σ ,
and e3̂ = √

Σ/A e3/ sin θ , where uν
(Z) the ZAMO four-

velocity as seen for an observer at rest at infinity, uν
(Z) =

Γ (1, 0, 0, ω), with Γ = √
A/(ΣΔ) and ω = 2 Mar/A.

The electric and magnetic field components measured
by the ZAMO are Eî = Eμ eμ

î
and Bî = Bμ eμ

î
, where

Eμ = Fμνuν
(Z) and Bμ = F̃μνuν

(Z). Using the above ZAMO
tetrad and the electromagnetic tensor components (12), the
resulting electric and magnetic fields measured by the ZAMO
are Eî = (E1̂, E2̂, 0) and Bî = (B1̂, B2̂, 0), where

E1̂ = − B0aM

Σ2
√
A

[
(r2 + a2)(r2 − a2 cos2 θ)(1 + cos2 θ)

− 2r2 sin2 θ Σ

]
+ Q

(r2 + a2)(r2 − a2 cos2 θ)

Σ2
√
A

,

(18a)

E2̂ = 2ra2 sin θ cos θ

Σ2

[
B0aM(1 + cos2 θ) − Q

√
Δ

A

]
,

(18b)

and

B1̂ = − B0 cos θ

Σ2
√
A

{
2Mra2[2r2 cos2 θ + a2(1 + cos4 θ)]

− (r2 + a2)Σ2
}

+ Qa
2r(r2 + a2) cos θ√

AΣ2
, (19a)

B2̂ =
√

Δ

A

sin θ

Σ2 {−B0[Ma2(r2 − a2 cos2 θ)(1 + cos2 θ)

+ rΣ2] + Qa(r2 − a2 cos2 θ)}. (19b)

Figure 1 shows the electric and magnetic field lines in the
ZAMO frame. In the northern and southern regions (hereafter
polar regions), comprised at polar angles −θ

(Q)
c < θ < θ

(Q)
c

and π − θ
(Q)
c < θ < π + θ

(Q)
c , respectively, the electric

field accelerates electrons outward and protons inward. In the
eastern and western regions (hereafter equatorial regions),
θ

(Q)
c ≤ θ ≤ π − θ

(Q)
c and −π + θ

(Q)
c ≤ θ ≤ −θ

(Q)
c ,

respectively, the electric field accelerates electrons inward
and protons outward. Notice that this result is independent
of the ZAMO observer since it arises from the analysis of the
Maxwell invariant associated with �E · �B (see Eq. 13).

Introducing the charge parameter, ξ = Q/QW , where
QW = Qeff = 2J B0 = 2aMB0 is the so-called Wald charge
(or effective charge; see [6,34,35], for this concept), and
normalizing the radial coordinate to M and the electric and
magnetic field to B0, by fixing a value of a/M , the angle θ

(Q)
c

depends only on ξ . Figure 1 shows the electric field lines (blue
arrows) and the magnetic field lines (contours of constant
Aφ , in red color) for a BH with a/M = 0.7. In this case, the

solution of Eq. (14) gives, besides the trivial solution θ
(Q)
c =

90◦, θ
(Q)
c ≈ 56.12◦ (ξ = 0), 46.87◦ (ξ = 0.2), and 38.44◦

(ξ = 0.4), so the polar region shrinks with the increase of the
positive charge. On the contrary, the increase of a negative
charge enlarges it, e.g., θ

(Q)
c ≈ 67.86◦ (ξ = −0.2).

4 Particle energy and angular momentum

The conserved energy and angular momentum of massive,
charged, test particle of mass mi and charge qi are

Ei = −πμημ = −π0 = −p0 − q A0, (20a)
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Fig. 1 BH horizon (filled-black), ergosphere (dashed-gray), Kp = 0
boundary (green), electric field lines (blue arrows) and magnetic field
lines (red, contours of constant A3) for selected values of the charge
parameter, ξ = Q/QW , where QW = 2J B0 = 2aMB0. By normal-
izing the radial coordinate to M and the electric and magnetic field
intensity to B0, the EM field expressions depend only on a/M and ξ . In
this example, the BH spin parameter is a/M = 0.7, in the upper panel,

ξ = −0.4 (left), −0.2 (center), and 0.0 (right), and in the lower panel,
ξ = 0.2 (left), 0.4 (center), and 1.0 (right). The lower panel shows
how the angle at which �E · �B = 0 (besides the equator), marked by
the dashed-blue lines, shrinks with the increase of the positive charge,
for instance, θ

(Q)
c ≈ 56.12◦ (ξ = 0), 46.87◦ (ξ = 0.2), and 38.44◦

(ξ = 0.4). The background color maps the value of �E · �B, i.e., the
redder color is negative and the bluer positive

Li = πμψμ = π3 = p3 + q A3, (20b)

where pα = miuα the four-momentum, uα the four-velocity,
Aμ is the electromagnetic four-potential given by Eq. (10),
and i = p, e stands for protons or electrons. We also refer the
reader to the discussions of charged particle motion, energy,
and angular momentum in the case of the Wald solution pre-
sented in [12,13,36].

As in Ref. [5], we study test particles initially at rest
at the position (ri , θi , φi ), outside the ergosphere. Hence,
Σi > 2Mri , with ri > rerg = M + √

M2 − a2 cos2 θi ,
and the initial four-velocity is uα

i = u0
i δ

α
0 , with u0

i =
(1−2Mri/Σi )

−1/2. The kinetic energy of a particle crossing
the BH horizon is

Ki = −pμl
μ|+ = Ei − Ω+Li . (21)

where lμ = ημ + Ω+ψμ [37]. By inspecting Eq. (8), it can
be seen that the condition Ki > 0 implies the increase of the
square of the BH irreducible mass.

Charged particles will follow the magnetic field lines,
which are nearly vertical (see Fig. 1), so the BH can cap-
ture particles at initial positions ri sin θi � rH . For example,
let us set initial particle positions ri sin θi = rH . The upper
panel of Fig. 2 shows Ee, Le, Ep, L p, Ke, Kp, and indicates

the spherical polar angles θ
(Q)
c , θKp , and θi,cyl(ri = rerg).

The angle θi,cyl(ri = rerg) is the maximum value at which
the initial position is along the set cylinder and above the
ergosphere, i.e., the solution of the equation rerg sin θi = rH .
The angle θKp is that where Kp = 0. Thus, the BH cap-
tures polar protons (in the northern hemisphere) in the region
0 ≤ θ ≤ Min(θ

(Q)
c , θi,cyl, θKp ). Let us analyze the neu-
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tral case, ξ = 0 (upper right figure). We have θKp ≈ 41◦,

θ
(Q)
c ≈ 57◦, and θi,cyl(ri = rerg) ≈ 62◦. The BH captures

protons in the region 0 ≤ θKp . These protons have positive
energy and angular momentum (see solid and dashed orange
curves). For larger angles, proton trajectories do not cross
the event horizon (the red curve, Kp, becomes negative),
and the BH captures electrons (the blue curve, Ke, becomes
positive). Those electrons have negative energy and angular
momentum (solid and dashed green curves). An analogous
analysis can be done for non-zero values of the charge param-
eter: it turns out that the proton(electron) capture region
shrinks(enlarges) for positive values of the charge parameter
and vice-versa for negative values, as expected from Fig. 1.

5 BH mass, angular momentum, and irreducible mass
change

By capturing a particle, the BH mass and angular momen-
tum change by dMi = Ei and d Ji = Li . Because dMi −
Ω+d Ji = Ei − Ω+Li = Ki ≥ 0 (see Fig. 2), we have
dM2

irr ≥ 0 (see Eq. 8), as expected from the BH reversible
and irreversible transformations [8,9] or the horizon surface
area increase theorem [10].

For a particle number density n, we can estimate the net
energy and angular momentum transferred to the BH by the
captured particles as [5]

Ei = 2π

∫∫
Ein

√−g dridθi

= 2π

∫∫
EinΣi sin θi dri dθi , (22a)

Li = 2π

∫∫
Lin

√−g dridθi

= 2π

∫∫
LinΣi sin θi dri dθi , (22b)

where the integration is carried out in the region covering all
initial positions of particles captured by the BH, as discussed
in the previous section. We calculate the conserved energy
and angular momentum at the initial position (ri , θi ) of the
electrons (i = e) and protons (i = p), where we assume
they start their motion at rest, so u0

e = u0
p = 1/

√−g00 =
(1 − 2 Mre,p/Σe,p)

−1/2. Hence, Eq. (20) become

Ee = me
√−g00 + eA0, Ep = mp

√−g00 − eA0, (23a)

Le = me
g03√−g00

− eA3, L p = mp
g03√−g00

+ eA3,

(23b)

where we have denoted with me,p the electron and proton
rest-mass and qe = −e and qp = +e their charge, and
the electromagnetic four-potential components are given by

Eq. (11). Therefore, we obtain the total energy and angular
momentum absorbed by the BH are

E = Ee + Ep, L = Le + Lp (24)

where

Ee = 2π

∫∫
nΣe sin θe

[
me

√−g00 + eB0

2
g03

+
(
eaB0 − eQ

2M

)
g00

]
dreθe, (25a)

Le = 2π

∫∫
nΣe sin θe

[
me

g03√−g00
− eB0

2
g33

−
(
eaB0 − eQ

2M

)
g03

]
dreθe, (25b)

Ep = 2π

∫∫
nΣp sin θp

[
mp

√−g00 − eB0

2
g03

−
(
eaB0 − eQ

2M

)
g00

]
drpθp, (25c)

Lp = 2π

∫∫
nΣp sin θp

[
mp

g03√−g00

+ eB0

2
g33 +

(
eaB0 − eQ

2M

)
g03

]
drpθp, (25d)

where we have used the expression of Aμ given in Eq. (A.2)
in Appendix A, Eq. (23), and the involved metric functions
are given in Eq. (9).

With the above, the total change of the mass, angular
momentum, and irreducible mass are

ΔM = E , ΔJ = L , ΔMirr = Mirr
E − Ω+L√
M2 − a2

, (26)

where we have assumed the changes as infinitesimal (relative
to the BH initial parameters) and used Eq. (3) to estimate the
change of the irreducible mass.

Figure 3 shows in the upper panels Ee and Ep, in the mid-
dle panels, Le and Lp, and in the lower panels, ΔM , ΔJ ,
and ΔMirr , for selected values of the charge parameter, ξ = 0
(first column), 0.3 (central column), 0.5 (last column), as a
function of the BH spin parameter. We assume a spherically
symmetric density, n(r) = n+(r+/r)m , with m = 3. It is
clear from Eq. (25) that the parameter n+ is only a scaling fac-
tor, so we do not need to specify it for the general discussion.
However, we must remember that the particle density around
the BH must be lower than the Goldreich-Julian density to
avoid the screening of the accelerating electric field (see dis-
cussion in [5]). For instance, for a BH of mass M = 4M,
spin a = M , surrounded by a magnetic field of 1013 G, the
density must be lower than a few 10−9 g cm−3, so n+ � 1015

cm−3. Further, for these astrophysical BH and magnetic field
parameters, the electric potential energy largely dominates
over the gravitational one [5], which implies, from Eq. (23),
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Fig. 2 Ei , Li , given by Eqs. (20a)–(20b), and Ki given by Eq. (21),
at initial positions outside the ergosphere (ri > rerg) leading to the par-
ticle capture by the BH (see Fig. 1). In this example, the initial radial

coordinate is set by ri = rH / sin θi , and the polar angle by 0 ≤ θi ≤
θi,cyl(ri = rerg), and the polar angle is θi,cyl(ri = rerg) ≈ 61.86◦ is the
angle at which ri = rerg

that Ee,p ≈ ±eA0 and Le,p ≈ ∓eA3, which do not depend
upon the particle mass. Under these conditions, and recalling
that Q = ξQW = ξ2aMB0, Ee,p and Le,p scale with eaB0

and eB0M2, respectively, which explains the normalization
used in Fig. 3.

The figure suggests the BH could follow a cyclic behavior.
Let us start with a neutral BH (ξ = 0, left column plots). As
already discussed in [5], and shown by this plot, the BH
in this initial phase absorbs more protons than electrons,

so it gains energy and angular momentum (ΔM > 0 and
ΔJ > 0), and becomes positively charged (ξ > 0). Fig-
ures 1 and 2 show that, for ξ > 0, the polar region shrinks
(the equatorial enlarges), so the positive contribution of pro-
tons to the energy and angular momentum reduces, and the
negative one of electrons increases, as shown by the cen-
tral column panels. The process can continue this way until
the BH starts to absorb more electrons than protons, and it
gains net negative energy and angular momentum (ΔM < 0

123



 1166 Page 8 of 10 Eur. Phys. J. C          (2024) 84:1166 

Fig. 3 Upper and middle panels: total energy and angular momentum,
Ei/(eB0a) and Li/(eB0M2), of the polar protons (solid and dashed
red) and equatorial electrons (solid and dashed blue) absorbed by the

BH, given by Eq. (25). Lower panels: The net change of the BH mass-
energy ΔM (green), angular momentum ΔL (orange), and irreducible
mass ΔMirr (gray), according to Eq. (26)

and ΔJ < 0), as shown in the last column panels. In this
stage, the BH energy is extracted. It can be shown that for
ξ > ξc = (3−√

1 − (a/M)2)/2, the polar region is entirely
contained in the cylinder of radius r+, leading to a con-
siderable reduction of absorbed protons. The electrons can
take over, causing the BH charge to reduce. The BH energy
extraction continues. However, the decrease in the BH charge
reverses the shrinking of the polar region and the equatorial
region enlargement. The charge becomes again ξ < ξc, and
at some instant, the enlargement of the polar region is such
that protons take over once again. The BH energy extraction
stops, and the cycle repeats.

6 Conclusions

We have generalized the analysis of Ref. [5] of the energy
extraction from a Kerr BH, immersed in a magnetic field
asymptotically aligned to the BH spin, which captures pos-

itively and negatively charged particles from its surround-
ings, considering the effects of the BH charge. For this task,
we used the charged Wald solution [4], i.e., for test BH
charge. We have estimated the change of the BH mass, angu-
lar momentum, and irreducible mass for different values of
the BH spin and charge parameter.

We have shown the changes of the region of capturable
protons and electrons as a function of the BH charge parame-
ter (see Figs. 1, 2). The changing polar and equatorial regions
with the charge parameter leads to new results relative to the
previously uncharged analysis in [5].

For the present case, energy extraction occurs for a particle
density that is isotropic and falls with distance as a power-law,
e.g., n ∝ 1/r3, unlike the uncharged case [5]. The increase of
the irreducible mass in this process is relatively low compared
to purely gravitational processes like the Penrose process
recently evaluated in Paper II.

For isotropic ionized matter density, our analysis for var-
ious spin and charge values suggests the BH could evolve
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in cycles where its charge increases and decreases, alternat-
ing periods without and with energy and angular momentum
extraction (see Figs. 2, 3).

As we have made some assumptions, it is worth men-
tioning possible extensions and generalizations of this work.
Two main extensions are particularly promising and relevant.
First, abandoning the assumption of the BH charge as a test
charge. Such an extension would allow us to verify how much
the maximum extractable energy of 50% of the energy of an
extremely charged BH is approachable. Second, in our esti-
mate of the increase of the irreducible mass, we have carried
out the integrals (22) over the entire region where the charged
particles can be captured by the BH of some mass and angular
momentum. The above method implicitly assumes all those
particles are captured simultaneously. Thus, an improvement
would be calculating the equal capture time regions. The
above extension is necessary for understanding the dynamic
behavior of this system. Further, they will lead to an improved
assessment of the BH irreducible mass increase in time, hence
the efficiency of the energy extraction process.
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Appendix A Expressions of the electromagnetic four-
potential, Faraday tensor and its dual

This appendix shows the explicit, full expressions, i.e., van-
ishing and non-vanishing components, of the electromag-
netic four-potential, Aμ, the Faraday tensor, Fαβ , and its dual,
F̃αβ . We start with Aμ, so for this task, following Eq. (10),
we must know the covariant and contravariant time-like and
space-like Killing vectors

ημ = δ
μ
0 , ημ = gμαηα = gμ0 = g00δ

0
μ + g03δ

3
μ, (A.1a)

ψμ = δ
μ
3 , ψμ = gμαψα = gμ3 = g03δ

0
μ + g33δ

3
μ.

(A.1b)

Using Eq. (A.1), Aμ can be written as

Aμ =
[
B0

2
g03 +

(
aB0 − Q

2M

)
g00

]
δ0
μ

+
[
B0

2
g33 +

(
aB0 − Q

2M

)
g03

]
δ3
μ, (A.2)

where the metric tensor is

gαβ =

⎛
⎜⎜⎝
g00 0 0 g03

0 g11 0 0
0 0 g22 0
g03 0 0 g33

⎞
⎟⎟⎠ (A.3)

with the components given in Eq. (9). The inverse metric
tensor is

gαβ =

⎛
⎜⎜⎝
g00 0 0 g03

0 g11 0 0
0 0 g22 0
g03 0 0 g33

⎞
⎟⎟⎠ , (A.4)

where

g00 = g33

g00g33 − g2
03

= − A

ΣΔ
, (A.5a)

g11 = 1

g11
= Δ

Σ
, (A.5b)

g22 = 1

g22
= 1

Σ
, (A.5c)

g33 = g00

g00g33 − g2
03

= Δ − a2 sin2 θ

ΣΔ sin2 θ
, (A.5d)

g03 = − g03

g00g33 − g2
03

= −2Mar

ΣΔ
. (A.5e)

Thus, by replacing the metric functions in Eq. (A.2), we
obtain the electromagnetic four-potential

Aμ = (A0, 0, 0, A3), (A.6)

where A0 and A3 are given in Eq. (11).
The Faraday tensor is defined as Fαβ = ∂αAβ − ∂β Aα .

Thus, using Eq. (A.6), and that A0 and A3 are only functions
of r and θ because of the axial symmetry, we obtain

Fαβ = ∂1A0(δ
1
αδ0

β − δ1
βδ0

α) + ∂2A0(δ
2
αδ0

β − δ2
βδ0

α)

+ ∂1A3(δ
1
αδ3

β − δ1
βδ3

α) + ∂2A3(δ
2
αδ3

β − δ2
βδ3

α), (A.7)

which can be written in matrix form as

Fαβ =

⎛
⎜⎜⎝

0 F01 F02 0
F10 0 0 F13

F20 0 0 F23

0 F31 F32 0

⎞
⎟⎟⎠ , (A.8)
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where

F01 = −F10 = −∂1A0, F02 = −F20 = −∂2A0, (A.9a)

F13 = −F31 = ∂1A3, F23 = −F32 = ∂2A3, (A.9b)

leading to the expressions given by Eq. (12). For complete-
ness, we give the expressions of the two-contravariant Fara-
day tensor Fαβ = gαμgβνFμν , in matrix form

Fαβ =

⎛
⎜⎜⎝

0 F01 F02 0
F10 0 0 F13

F20 0 0 F23

0 F31 F32 0

⎞
⎟⎟⎠ , (A.10)

where

F01 = −F10 = g11(g00F01 + g03F31), (A.11a)

F02 = −F20 = g22(g00F02 + g03F32), (A.11b)

F13 = −F31 = g11(g03F10 + g33F13), (A.11c)

F23 = −F32 = g22(g03F20 + g33F23), (A.11d)

with the inverse metric given by Eqs. (A.4) and (A.5).
For the determination of the electromagnetic scalars, we

must compute the electromagnetic dual tensor, defined by√−gF̃αβ = (1/2)εαβμνFμν , being εαβμν the Levi-Civita
symbol given by

εαβμν =
⎧⎨
⎩

+1, for even permutations of 0,1,2,3
−1, for odd permutations of 0,1,2,3

0, otherwise.
(A.12)

With the above definition, we obtain

√−gF̃αβ =

⎛
⎜⎜⎝

0 F23 −F13 0
−F23 0 0 −F02

F13 0 0 F01

0 F02 −F01 0

⎞
⎟⎟⎠ . (A.13)

It is straightforward to check that the matrix product of Eqs.
(A.8) and (A.13) leads to the electromagnetic invariant (13).
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Abstract

The binary-driven hypernova (BdHN) model proposes long gamma-ray bursts (GRBs) originate in binaries
composed of a carbon–oxygen (CO) star and a neutron star (NS) companion. The CO core collapse generates a
newborn NS and a supernova that triggers the GRB by accreting onto the NSs, rapidly transferring mass and
angular momentum to them. This article aims to determine the conditions under which a black hole (BH) forms
from NS collapse induced by the accretion and the impact on the GRB’s observational properties and taxonomy.
We perform three-dimensional, smoothed particle hydrodynamics simulations of BdHNe using up-to-date NS
nuclear equations of state, with and without hyperons, and calculate the structure evolution in full general
relativity. We assess the binary parameters leading either NS in the binary to the critical mass for gravitational
collapse into a BH and its occurrence time, tcol. We include a nonzero angular momentum of the NSs and find that
tcol ranges from a few tens of seconds to hours for decreasing NS initial angular momentum values. BdHNe I are
the most compact (about 5 minute orbital period), promptly form a BH, and release 1052 erg of energy. They
form NS–BH binaries with tens of kiloyears merger timescales by gravitational-wave emission. BdHNe II and III
do not form BHs, and release ∼1050–1052 erg and 1050 erg of energy, respectively. They form NS–NS binaries
with a range of merger timescales larger than for NS–BH binaries. In some compact BdHNe II, either NS can
become supramassive, i.e., above the critical mass of a nonrotating NS. Magnetic braking by a 1013 G field can
delay BH formation, leading to BH–BH or NS–BH with tens of kiloyears merger timescales.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Neutron stars (1108); Black holes (162);
Gravitational collapse (662); Core-collapse supernovae (304); Close binary stars (254); Compact binary stars (283)

1. Introduction

Understanding the physical and astrophysical conditions
under which a neutron star (NS) can reach the point of
gravitational collapse into a black hole (BH) is essential for
understanding the final stages of binary stellar evolution, which
are associated with the most energetic and powerful cataclysms
in the Universe: gamma-ray bursts (GRBs).

In a few seconds, a GRB can produce a gamma-ray
luminosity comparable to the luminosity of all stars in the
observable Universe, which makes a GRB detectable to
cosmological redshifts z∼ 10, close to the dawn of galaxy
and stellar formation. Observationally, they are classified as
short or long depending on whether T90 is shorter or longer
than 2 s. The time T90 is the time interval in the observer frame
where 90% of the isotropic energy in gamma rays (Eiso) is
released (E. P. Mazets et al. 1981; J.-P. Dezalay et al. 1992;
R. W. Klebesadel 1992; C. Kouveliotou et al. 1993;

M. Tavani 1998). This article focuses on assessing the BH
formation in long GRBs within the binary-driven hypernova
(BdHN) scenario (details below).
Despite a few peculiar exceptions of short bursts that shows

hybrid properties of long GRBs, pointing to alternative
scenarios (e.g., see the discussion in J. A. Rueda et al. 2018;
B.-B. Zhang et al. 2021), NS binary (NS–NS) and NS–BH
mergers are widely accepted as the progenitors of short GRBs
(J. Goodman 1986; B. Paczynski 1986; D. Eichler et al. 1989;
R. Narayan et al. 1991). This view has gained additional
attention by the proposed first electromagnetic counterpart
associated with a gravitational-wave event, i.e., GW170817
and GRB 170817A (B. P. Abbott et al. 2017).
For long GRBs, the model (see, e.g., P. Mészáros 2002;

T. Piran 2004, for reviews) based on a relativistic jet, a fireball
of an optically thick e−e+–photon–baryon plasma (G. Cavallo
& M. J. Rees 1978; J. Goodman 1986; B. Paczynski 1986;
R. Narayan et al. 1991, 1992), with bulk Lorentz factor
Γ∼ 102–103 (A. Shemi & T. Piran 1990; M. J. Rees &
P. Meszaros 1992; P. Meszaros et al. 1993; T. Piran et al. 1993;
S. Mao & I. Yi 1994), powered by a massive disk accreting
onto a BH, became the traditional GRB model. The formation
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of such a BH–massive disk structure has been theorized by the
collapsar model (S. E. Woosley 1993; A. I. MacFadyen &
S. E. Woosley 1999), i.e., the core collapse of a single,
massive, fast-rotating star. In parallel, it has also been explored
as GRB central engine, a highly magnetized, newborn NS
(V. V. Usov 1992; J. C. Wheeler et al. 2000; B. D. Metzger
et al. 2011), currently referred to as the millisecond magnetar
scenario. This model has gained attention in the literature
mainly in the explanation of low to moderate luminosity GRBs
(see, e.g., T. A. Thompson et al. 2004; N. Bucciantini et al.
2007; B. D. Metzger et al. 2007; P. Beniamini et al. 2017;
B. D. Metzger et al. 2018; S. Dall’Osso et al. 2023; C.-Y. Song
& T. Liu 2023, and references therein); see also B. Zhang
(2018) for a recent review of the traditional GRB model.

Meanwhile, GRB astronomy has made significant advances
that challenge the traditional picture of long GRBs and
evidence the need to explore alternatives. In particular, there
is mounting evidence of the necessity of accounting for binary
progenitors, as discussed below.

First, we recall the X-ray afterglow discovery by the
BeppoSAX satellite (E. Costa et al. 1997) and the confirmation
of the GRB cosmological nature (M. R. Metzger et al. 1997).
The accurate source localization provided by BeppoSAX
allowed the optical follow-up by ground-based telescopes.
This led to one of the most significant discoveries: the
observation of long GRBs in coincidence with Type Ic
supernovae (SNe). The first GRB-SN association was
GRB 980425–SN 1998bw (T. J. Galama et al. 1998). The
number of associations has since then increased thanks to the
optical afterglow follow-up by the Neil Gehrels Swift
Observatory (S. D. Barthelmy et al. 2005; D. N. Burrows
et al. 2005; P. W. A. Roming et al. 2005), leading to about
twenty robust cases with spectroscopic coverage as of today
(S. E. Woosley & J. S. Bloom 2006; M. Della Valle 2011;
J. Hjorth & J. S. Bloom 2012; Z. Cano et al. 2017; Y. Aimur-
atov et al. 2023). Further potential GRB-SN associations have
been claimed, although they are uncertain owing to the lack of
spectral verification (see, e.g., the discussion in Z. Cano et al.
2017; M. G. Dainotti et al. 2022).

Interestingly, all SNe associated with long GRBs show
similar luminosity and time of occurrence (from the GRB
trigger). In contrast, the associated GRBs show energy releases
that span nearly 7 orders of magnitude (see Y. Aimuratov et al.
2023, for details). It seems challenging to reconcile this
observational result with a model based on a single massive
stellar collapse.

The association of GRB-SN systems to massive star
explosions has been set statistically (A. S. Fruchter et al.
2006; P. L. Kelly et al. 2008; C. Raskin et al. 2008) and from
the modeling of photometric and spectroscopic observations of
the optical emission of GRB-associated SNe (see P. A. Mazzali
et al. 2003; K. Nomoto et al. 2003; K. Maeda et al. 2006;
P. A. Mazzali et al. 2006; S. E. Woosley & J. S. Bloom 2006;
M. Tanaka et al. 2009; F. Bufano et al. 2012; C. Ashall et al.
2019, for specific examples). Thus, further constraints and
drawbacks of a single-star collapse model for long GRBs arise
from observational evidence pointing out the ubiquitous role of
binaries in the stellar evolution of massive stars.

Observations show that most massive stars belong to
binaries (H. A. Kobulnicky & C. L. Fryer 2007; H. Sana
et al. 2012). For a more recent analysis, we refer to

K. F. Neugent et al. (2020). The ubiquitousness of massive
binaries across the universe has also caught the attention of the
James Webb Space Telescope with the recent observations of
Mothra, a likely binary of two supergiants at redshift z= 2.091
(J. M. Diego et al. 2023). A new observational exploration era
has started, looking for binary companions of SN explosions in
binaries (see, e.g., M. Ogata et al. 2021; O. D. Fox et al. 2022;
H.-P. Chen et al. 2023; T. Moore et al. 2023; P. Chen et al.
2024, and references therein).
This makes particular contact with GRBs since they are

associated with SNe of Type Ic. These SNe lack hydrogen (H)
and helium (He), and most Type Ic SN models acknowledge
binary interactions as the most effective mechanism to get rid
of the H and He layers of the pre-SN star (see, e.g., K. Nomoto
& M. Hashimoto 1988; K. Iwamoto et al. 1994; C. L. Fryer
et al. 2007; S.-C. Yoon et al. 2010; N. Smith et al. 2011;
H.-J. Kim et al. 2015; S.-C. Yoon 2015).
From the theoretical side, it appears an extreme assumption

that the gravitational collapse of a single massive star forms a
collapsar, a jetted fireball, and an SN explosion, although some
proposals have been made to mitigate this difficulty (see, e.g.,
A. I. MacFadyen & S. E. Woosley 1999; K. Kohri et al. 2005;
C. C. Lindner et al. 2012; M. Milosavljević et al. 2012;
J. Fuller et al. 2015). Theoretical models fail to produce the fast
rotation to produce a GRB jet and an SN-like explosion from a
single stellar collapse (C. L. Fryer et al. 2007). Moreover,
stellar evolution suggests that the angular momenta in the
stellar cores of single stars are even less than what earlier
models obtained (J. Fuller et al. 2015). Binary interactions are
likely required to produce the high angular momenta needed
for the BH–accretion disk mechanism of the traditional GRB
model. However, extreme fine-tuning appears necessary to
reach the requested physical conditions, challenging to
reproduce the GRB density rates (see, e.g., J. Fuller &
W. Lu 2022).
S. J. Smartt et al. (2009) and S. J. Smartt (2009, 2015)

analyzed archival images of the locations of past SNe to
pinpoint their pre-SN stars. The result has been that the inferred
zero-age main-sequence (ZAMS) progenitors masses are
18 Me. These observations agree with standard stellar
evolution, i.e., ZAMS stars with mass 25 Me evolve to
core-collapse SNe, forming NSs. Direct BH formation occur
for ZAMS stars with mass above 20–25 Me, without an SN
(e.g., C. L. Fryer 1999; A. Heger et al. 2003; H.-J. Park et al.
2022). Instead, they are at odds with the traditional GRB
model, which requests a single-star core collapse to produce a
BH and an SN.
All the above facts on GRB-SNe strongly suggest that most

GRBs, if not all, should occur in binaries. In their pioneering
work, this possibility was envisaged by C. L. Fryer et al.
(1999). The alternative BdHN model has been developed
complementing and joining the SN and binary evolution
community results, filling the gap between the increasing
observational evidence of the role of binaries in the stellar
evolution of massive stars and theoretical modeling of long
GRBs. Specifically, the BdHN model proposes the GRB event
occurs in a binary composed of a carbon–oxygen (CO) star and
an NS companion. We refer the reader to L. Izzo et al. (2012),
J. A. Rueda & R. Ruffini (2012), C. L. Fryer et al.
(2014, 2015), L. Becerra et al. (2015, 2016, 2019), and
L. M. Becerra et al. (2022) for theoretical details on the model.
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The core of the CO star collapses, generating a newborn NS
(hereafter, νNS) and the SN. The latter triggers the GRB event,
which shows up to seven emission episodes in the most
energetic sources, associated with specific physical processes
that occur in a BdHN, scrutinized in recent years (see
Y. Aimuratov et al. 2023, and references therein). Numerical
three-dimensional (3D) smoothed particle hydrodynamics
(SPH) simulations of the SN explosion in a CO–NS binary
(L. Becerra et al. 2019; L. M. Becerra et al. 2022) show the
CO–NS fates explain the diversity of GRBs: BdHNe I are the
most extreme with energies of 1052–1054 erg and orbital
periods of a few minutes. In these sources, the material ejected
in the SN is easily accreted by the NS companion, so it reaches
the point of gravitational collapse, forming a rotating BH. In
BdHNe II, the orbital period is of a few tens of minutes and
emit energies of 1050–1052 erg. The accretion is lower, so the
NS remains stable. The energy threshold of 1052 erg for BdHN
I and II is set by the energy released when bringing the NS to
the critical mass and forming a rotating BH (R. Ruffini et al.
2016, 2018). The BdHNe III have orbital periods of hours, and
the accretion is negligible. They explain GRBs with energies
lower than 1050 erg.

Therefore, the BdHN scenario complements and joins the SN
and binary evolution community results, leading to a more
comprehensive and global picture of GRB progenitors.
Section 6.1 describes the connection between the CO–NS binary
and the BdHN I, II, and III features. In this line, a crucial point is
the determination of the conditions under which BH formation
occurs since it separates BdHNe I from Types II and III. This is
the topic of this work. The article is organized as follows.
Section 2 describes the SPH numerical simulations of the GRB-
SN event, focusing on determining the accretion rate of material
from the SN explosion onto the νNS and the NS companion.
Section 3 details the up-to-date nuclear equations of state (EOSs)
used in the numerical simulations to describe the NS interiors.
Section 4 sets the theoretical framework to determine the
evolution of the NS structure during the accretion process and
the critical mass limit for gravitational collapse into a rotating BH.
Specific results of numerical simulations and the evolution of the
NSs and the collapse times are shown in Section 5. We discuss in
Section 6 the impact of the results of this work on the BdHN
scenario. Finally, in Section 7, we discuss and draw the main
conclusions.

2. Simulation of the Binary-driven Hypernova Early
Evolution

We perform SPH simulations with the SNSPH code adapted
to the binary progenitor of the BdHN presented in L. Becerra
et al. (2019). This Newtonian, 3D Lagrangian code calculates
the evolution of the position, momentum (linear and angular),
and thermodynamics (pressure, density, and temperature) of
pseudoparticles, which are of mass mi, assigned according to
the mass–density distribution of the ejecta. The code estimates
the baryonic mass accretion rate at every time t= t0+Δt,
where t0 is the simulation’s starting time, i.e., the time of the
SN explosion set by the time when the SN shock front reaches
the CO star surface, given as

( ) ( ) å=
D
Dn

nM m
N t m

t

,
, 1

i
i

i
NS

cap NS
cap

( ) ( ) å=
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D

M m
N t m

t

,
, 2

i
i

i
NS
cap NS

cap

where nN NS
cap and NNS

cap are the number of particles gravitationally
captured by the νNS and the NS companion, respectively at
time t. The Newtonian scheme suffices for the accretion rate
estimate because the size of the gravitational capture region
(i.e., the Bondi–Hoyle radius) of the NSs is 100–1000 larger
than their Schwarzschild radius (L. Becerra et al. 2019). The
gravitational mass and angular momentum of the NSs are
calculated in full general relativity by solving, at every time
step, the Einstein equations in axial symmetry (see Section 4).
The top panel of Figure 1 shows snapshots of the mass and

density of the SN ejecta in the x–y plane, the binary equatorial
plane at different times. In this simulation, the mass of the CO
star, just before its collapse, is around 8.89 Me. This pre-SN
configuration is obtained from the thermonuclear evolution of a
ZAMS star of MZAMS= 30 Me. The NS companion has a mass
of 1.9Me, and the pre-SN orbital period is 5.77 minutes, which
is the shortest orbital period for the system to avoid Roche-lobe
overflow before the SN explosion of the CO core (see, e.g.,
C. L. Fryer et al. 2014).
The SPH simulation maps to a 3D SPH configuration, the 1D

core-collapse SN simulation of C. L. Fryer et al. (2018). At this
moment, the collapse of the CO star has formed a νNS of mass
of 1.75 Me, and around 7.14 Me of mass is ejected by the SN
explosion of energy 3.26× 1051 erg. In the simulation, the νNS
and NS companion are modeled as point-like masses,
interacting only gravitationally with the SN particles and
between them. We allow these two point-like particles to
increase their mass by accreting other SN particles following
the algorithm described in L. Becerra et al. (2019).
The top panel of Figure 1 shows that the SN ejecta, which

are gravitationally captured by the NS companion, first form a
tail behind the star and then circularize around it, forming a
thick disk. At the same time, the particles from the innermost
layers of the SN ejecta that could not escape from the νNS
gravitational field fallback are accreted by the νNS. After a few
minutes, part of the material in the disk around the NS
companion is also attracted by the νNS, enhancing the
accretion process onto the νNS.
The bottom panel of Figure 1 corresponds to a simulation

with a CO star coming from a MZAMS= 15 Me progenitor with
a 1.4 Me companion. At the beginning of the simulation, the
CO core collapses into a νNS of 1.4 Me, and around 1.6 Me of
mass is ejected by the SN explosion with a total energy of
1.1× 1051 erg. Almost all the SN ejecta leave the system
without being affected by the NS companion’s gravita-
tional field.
The hydrodynamics of matter infalling and accreting onto an

NS at hypercritical rates has been extensively studied in
different astrophysics contexts taking into account details on
the neutrino emission, e.g., fallback accretion in SNe
(Y. B. Zel’dovich et al. 1972; C. L. Fryer et al. 1996, 2006a;
C. L. Fryer 2009), accreting NSs in X-ray binaries (R. Ruffini
& J. Wilson 1973), and for the case of BdHNe, we refer to
C. L. Fryer et al. (2014) and L. Becerra et al. (2016, 2018) for
details. The latter include a formulation in a general relativistic
background and account for neutrino flavor oscillations. The
relevant, not obvious result is that these simulations show that
the NS can accrete matter at a hypercritical rate at which
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baryonic mass from the SN ejecta falls into the gravitational
capture region of the NS. The simulations show the accretion
rate in BdHNe is hypercritical, reaching peak values of up to
10−3 Me s−1. This implies the accretion flow reaches
densities∼ 108 g cm−3 near the NS surface (see, e.g.,
Appendix B in L. Becerra et al. 2016; Table 1 in L. Becerra
et al. 2018), which is about 12 orders of magnitude larger than
the densities of Eddington-limited accretion flows in low-mass
X-ray binaries.

Therefore, we assume that the accretion rate inferred with the
SPH code is the effective baryonic mass accretion rate onto the
NS, i.e.,

( )   = =n nM M M M, . 3b b, NS NS
cap

,NS NS
cap

Figure 2 shows the accretion rate onto the νNS and the NS
companion obtained from SPH simulations for selected orbital
periods and progenitor for the CO star: MZAMS= 30 Me and

MZAMS= 15 Me, with an NS companion with 1.9 Me and
1.4 Me, respectively (see Table 1).
For systems with a CO progenitor of mass MZAMS= 30 Me,

the accretion rate onto the νNS shows two prominent peaks.
The second peak of the fallback accretion onto the νNS is a
unique feature of BdHNe because, as explained above (see,
also, L. Becerra et al. 2019, for additional details), it is caused
by the influence of the NS companion. The accretion rate onto
the NS companion shows a single-peak structure, accompanied
by additional peaks of smaller intensity and shorter timescales.
This feature is more evident in short-period binaries. Such
small peaks are produced by higher and lower accretion
episodes as the NS companion orbits across the ejecta and finds
higher- and lower-density regions.
For systems with a CO progenitor with MZAMS= 15 Me, the

second peak in the mass accretion rate for the νNS does not
occur, while the accretion rate for the NS companion is much
lower. This is due to the small amount of mass ejected in the
SN explosion and its high velocity.

Figure 1. SPH simulations of BdHNe: model “30m1p1eb” (top) and “15m1p05e” (bottom) of Table 2 in L. Becerra et al. (2019). Top: the binary progenitor comprises
a CO star of mass ≈ 9 Me, produced by a ZAMS star of 30 Me, and a 1.9 Me NS companion. The orbital period is »6 minutes and the energy of the SN is
3.26 × 1051 erg. Bottom: the binary progenitor is a CO star of mass ≈ 3 Me, produced by a ZAMS star of 15 Me, and a 1.4 Me NS companion. The orbital period is
»5 minutes and the energy of the SN is 1.1 × 1051 erg. Each frame corresponds to selected increasing times from left to right with t = 0 s the instant of the SN shock
breakout. They show the mass and density on the equatorial plane. The reference system is rotated and translated to align the x-axis with the line joining the binary
components. The origin of the reference system is located at the NS companion position. Top: the first frame corresponds to =t 0.6 minutes, showing that the
particles entering the NS capture region form a tail behind them. These particles then circularize around the NS, forming a thick disk already visible in the second
frame at =t 1.3 minutes. Part of the SN ejecta are also attracted by the νNS accreting onto it; this is appreciable in the third frame at =t 2.4 minutes. Bottom: in all
three panels, it can be seen how the material leaves the system almost without being affected by the NS companion. This figure has been produced with the SNsplash
visualization program (D. J. Price 2011).
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3. Equation of State

To consider the scenario proposed in the present paper,
nuclear matter EOSs that can describe NS macroscopic proper-
ties are necessary. In recent decades, many relativistic EOSs
were proposed and analyzed in light of bulk nuclear matter
properties (M. Dutra et al. 2014). The detection of massive NSs
(P. B. Demorest et al. 2010; J. Antoniadis et al. 2013;
H. T. Cromartie et al. 2020; E. Fonseca et al. 2021;
R. W. Romani et al. 2022), imposes strong constraints on the
density dependence of the EOS and the EOSs that passed the test
of satisfying nuclear bulk properties were confronted with the
observational data in several works, see for instance M. Dutra
et al. (2016a, 2016b) and M. Fortin et al. (2016). More recently,
the data on GW170817 (B. P. Abbott et al. 2017) by the LIGO/
Virgo Collaboration have been used to constrain the radius of the
canonical NS (i.e., of a mass of 1.4 Me) by the tidal
polarizabilities of the stars involved in the merger (see, e.g.,
O. Lourenço et al. 2019). In the last years, data from the Neutron
star Interior Composition Explorer (NICER) X-ray telescope for
a canonical NS (M. C. Miller et al. 2019; T. E. Riley et al. 2019)
and a massive NS (M. C. Miller et al. 2021; T. E. Riley et al.
2021) have also been used to constrain the EOS, with both
measurements imposing further restrictions on the EOS. Another
interesting object is the NS in the quiescent low-mass X-ray
binary in NGC 6397 (J. E. Grindlay et al. 2001; S. Guillot
et al. 2011; C. O. Heinke et al. 2014), which provided
reliable constraints, as seen in F. Özel & P. Freire (2016) and
A. W. Steiner et al. (2018). It is also worth mentioning other

observations that have been used as constraints, but they must
be considered carefully due to their specific nature. One refers
to a massive, fast black widow with a large error bar
(R. W. Romani et al. 2022). Another one is the gravitational-
wave emission resulting from the merger of a BH with another
object that can be either the smallest BH or the most massive
NS ever detected, GW190814 (R. Abbott et al. 2020). The last
one is a very compact object, perhaps a quark star, known as
XMMU J173203.3–344518 (V. Doroshenko et al. 2022).
Notice, however, that the present observations are still not
very restrictive, as discussed in several works where a Bayesian
inference approach has been used to constrain the parameters of
relativistic mean-field (RMF) models (S. Traversi et al. 2020;
T. Malik et al. 2022; M. V. Beznogov & A. R. Raduta 2023;
T. Malik et al. 2023; C. Huang et al. 2024).
Having all those considerations in mind, we have chosen to

work with two different RMF parameterizations that satisfy all
of the constraints mentioned above, namely eL3ωρ
(L. L. Lopes 2022), and NL3ωρ (C. J. Horowitz & J. Piekare-
wicz 2001; M. Fortin et al. 2016; H. Pais & C. Providên-
cia 2016; L. L. Lopes & D. P. Menezes 2022). One should
notice that the nonlinear Lagrangian density terms are
presented differently in the literature. Any reader interested in
a uniform and clear notation is referred to C. Biesdorf et al.
(2023). One aspect that remains to be mentioned is the hyperon
puzzle. While including hyperons seems to be natural from the
theoretical point of view, it softens the EOS with a consequent
decrease in the maximum NS mass, possibly not attaining
2 Me; see, for instance, the discussions in T. Malik & C. Pro-
vidência (2022), T. Malik et al. (2023), and X. Sun et al.
(2023), where the inclusion of hyperons has been considered
within a Bayesian inference approach. There are different ways
to circumvent this problem in the literature, and we cannot say
it is completely solved. Hence, one of the models we use next
fails to describe the highly massive objects detected so far
when hyperons are included. Nevertheless, it remains a good
choice if other aspects are considered, as discussed in
L. L. Lopes et al. (2022). We consider these two EOSs as
representatives of EOSs with similar properties allowing for
2 Me stars, also including hyperons, see for instance (T. Malik
et al. 2023).
The Lagrangian density of these models is given by

(C. J. Horowitz & J. Piekarewicz 2001; F. J. Fattoyev et al.

Table 1
Properties of the Carbon–Oxygen Star–Neutron Star Binary before the Carbon–

Oxygen Core Gravitationally Collapses

MZAMS MνNS Mej MNS Porb ΔMb,NS ΔMb,νNS

(Me) (Me) (Me) (Me) ( )min (Me) (Me)

30 1.8 7.14 1.9 5.77 0.328 0.414
10.27 0.281 0.391
30.85 0.117 0.322

15 1.4 1.6 1.4 4.89 0.006 0.029
8.72 0.006 0.023

Note. The CO star mass is MCO = MνNS + Mej, where the mass of the CO
unstable iron core gives the νNS mass.

Figure 2. Accretion rate onto the νNS (left) and the NS companion (right) as a function of time, obtained from SPH simulations of BdHNe with various orbital periods
and CO star progenitors. The black curves correspond to binaries formed by a CO star evolved from a ZAMS withMZAMS = 30Me and a 1.9Me NS companion. The
CO star undergoes collapse, ejecting an SN with an energy of 3.26 × 1051 erg. The red curves correspond to binaries formed by a CO star from a ZAMS star with
MZAMS = 15 Me and a 1.4 Me NS companion, where the corresponding SN energy is 1.1 × 1051 erg. We refer to Table 1 for the CO–NS binary properties.
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in natural units. Here ψB represents the Dirac field, where B can
stand either for nucleons only (N) or nucleons (N) and hyperons
(H). σ, ωμ, and rm are the mesonic fields and t are the Pauli
matrices. The gs are the Yukawa coupling constants, MB is the
baryon mass, and ms, mv, and mρ are the masses of the σ, ω, and
ρ mesons respectively. U(σ) is a self-interaction term
(J. Boguta & A. R. Bodmer 1977)
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where the ω4 term was introduced in Y. Sugahara & H. Toki
(1994), which softens the EOS at high densities (see the
discussion in T. Malik et al. 2023), and wr is the nonlinear
ω–ρ coupling interaction discussed in C. J. Horowitz & J. Pie-
karewicz (2001)
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necessary to correct the slope of the symmetry energy (L). The
last term f is related the hidden strangeness f vector meson,
which couples only with hyperons (H), not affecting the
properties of nuclear matter
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To account for the chemical stability and charge neutrality of
the NS, leptons have to be considered, and the corresponding
Lagrangian density reads

¯ [ ( )] ( )å y g y= ¶ -
m
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,

where l represents electrons and muons, and β-equilibrium
conditions establish a relation between the different chemical
potentials

( )m m m m m= - =mq , , 9B n B e e

where μi designates the chemical potential of the baryons (B),
neutrons (n), electrons (e), and muons (μ), and qB is the electric
charge of baryon B. The imposition of these relations defines
the NS composition. In the present study, we consider the νNS
is already in a neutrino-free regime.

Given the Lagrangian density, the equations of motion are
obtained and solved with the help of an RMF approximation.
All details can be found in the literature (see for instance
B. D. Serot 1992; N. K. Glendenning 2012; L. L. Lopes &

D. P. Menezes 2022) and are not reproduced here. The first
step is to obtain expressions for the pressure (PB), energy
density (εB), and baryonic density (nB) at zero temperature,
which are used as input to the calculation of the
NS’s macroscopic properties via Einstein equations. The
next step is to calculate the EOS at fixed entropy per baryon
(sB/nB) for neutrino-free matter (e.g., M. Prakash et al.
1997). For this case, the Fermi distribution functions are no
longer step functions, and antiparticles have to be taken into
account as
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with energy = + *E k MB B
2 2 , where *MB is the effective mass

and m*B is the effective chemical potential. The entropy density
can be easily obtained from the expression
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or computed as the entropy density of a free Fermi gas.
The top panel of Figure 3 shows the pressure as a function

of the energy density for the eL3ωρ and NL3ωρ EOSs at zero
temperature. For both parameterizations, we considered the
case of matter formed only by nucleons and the case of
nucleons mixed with hyperons. The middle panel of Figure 3
shows the mass–radius relation for the nonrotating and cold
NS configurations (see also Table 2), obtained including a
crust. We have considered the Baym, Pethick and Sutherland
(BPS) model for the outer crust (G. Baym et al. 1971) and a
Thomas–Fermi calculation of the inner crust (S. S. Avancini
et al. 2008; F. Grill et al. 2012). The core–crust transition
occurs at nB= 0.082 fm−3 (ρB= εB/c

2= 1.39× 1014 g cm−3) for
the NL3ωρ model. As discussed in M. Fortin et al. (2016), it is
important to consider an inner crust EOS described by the same
model as the core. We will take for both EOSs the same crust
model because they have similar symmetry energy at subsaturation
densities, and, therefore, it is expected that the two inner crust
EOSs do not differ much (H. Pais & C. Providência 2016). The
bottom panel of Figure 3 shows the mass–radius relation for
nonrotating and hot NS configurations for the eL3ωρ and NL3ωρ
EOS parameterizations with nucleons mixed with hyperons. The
hot EOS generally produces less compact configurations than
the cold one, but the maximum allowed mass remains roughly the
same for both cases (see also Table 2). In the last two plots, we
have also colored the regions corresponding to the observational
constraints discussed at the beginning of this section. We have
used two constant values of entropy per baryon, sB/nB= 1 and 2,
which we designate as S1 and S2, respectively, in Table 2 and
Figure 3.

4. Evolution of the Neutron Star Structure

To calculate the time evolution of the νNS and the NS
companion structure during the accretion process, we have
implemented a code that uses the RNS code (N. Stergioulas &
J. L. Friedman 1995; with the quadrupole correction
performed in F. Cipolletta et al. 2015). Given the EOS, the
code calculates the stable, rigidly rotating, corresponding NS
configuration of equilibrium in axial symmetry for the
baryonic mass, Mb, and angular momentum, J, at a given
time. The value of Mb is updated using the baryonic mass
accretion rate from the SPH numerical simulation (see
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Section 2). The value of J is obtained by angular momentum
conservation (L. M. Becerra et al. 2022)

( ) t t= +J , 12acc mag

where the torques acting on the stars are specified as follows.
Our numerical simulations indicate that the infalling material
forms a disk around the star before being accreted. Therefore,
the accreted matter exerts a (positive) torque on the star

( )t c= l M , 13bacc

where χ� 1 is an efficiency parameter of angular momentum
transfer, and l is the specific (i.e., per unit mass) angular
momentum of the inner disk radius, Rin, and it is given by

( )⎧⎨⎩=
W <


l

l R R

R R R

, if ,

, if ,
14

isco in NS

NS
2

in NS

with lisco the specific angular momentum of the innermost
stable circular orbit around the NS, while RNS and Ω are,
respectively, the NS radius and angular velocity. All these
quantities are obtained from the numerical solution of the
Einstein equations directly from the RNS code. It is worth
noting that due to the high accretion rates (see Figure 2), the
NSs evolve in the regime where Rmag< RNS, with Rmag the
magnetospheric radius (J. E. Pringle & M. J. Rees 1972)

( )⎛⎝⎜ ⎞⎠⎟
m

=R
M GM2

, 15mag
dip
2

NS

2 7

where m = B Rdip dip NS
3 is the dipole magnetic moment. Addi-

tionally, if the magnetic field is not buried by the accretion
(e.g., D. J. B. Payne & A. Melatos 2007), the star is subjected
to (negative) torque by the magnetic field. We adopt the
dipole+ quadrupole magnetic field model (see J. Pétri 2015,
for details)

( )⎜ ⎟⎛⎝ ⎞⎠t
m

q h= -
W

+
W

c

R

c

2

3
sin 1

16

45
, 16mag

dip
2 3

3
2

1
2 NS

2 2

2

where η defines the quadrupole-to-dipole magnetic field
strength ratio

( )h q qº +
B

B
cos 10 sin . 172

2
2

2
quad

dip

Figure 3. Top: pressure–energy density relation for the cold NS EOS with the
matter with nucleons only (solid line) and nucleons and hyperons (dotted line).
Middle: mass–radius relation for nonrotating NSs. The color bands represent
observational constraints given by the pulsar mass of PSR J0348+0432
(J. Antoniadis et al. 2013); on mass and radius from NICER measurements for
pulsars PSR J0030+0451 (M. C. Miller et al. 2019; T. E. Riley et al. 2019) and
PSR J0740+662 (M. C. Miller et al. 2021; T. E. Riley et al. 2021); and the
mass of the secondary compact object of the GW190814 event (R. Abbott
et al. 2020). The dashed gray line corresponds to the fastest observed radio
pulsar, PSR J1748–2446ad (J. W. T. Hessels et al. 2006). Bottom: same as
middle panel but adding the hot NS EOS with nucleons mixed with hyperons
for two constant entropy per baryon values, sB/nB = 1 and 2.

Table 2
For Selected Equations of State, the Table Lists the Maximum Stable Mass for
the Nonrotating and Uniformly Rotating Configurations, =M j

max
0 and Mmax

Kep , and
the Maximum Rotation Frequency, Wmax

Kep

EOS =M j
max

0 Mmax
Kep Wmax

Kep

(Me) (Me) (104 s−1)

eL3ωρ 2.30 2.75 1.08
eL3ωρ-hyperons 1.96 2.35 0.98
eL3ωρ-hyperons-S1 1.96 2.32 0.97
eL3ωρ-hyperons-S2 1.96 2.27 0.92
NL3ωρ 2.76 3.36 0.98
NL3ωρ-hyperons 2.35 2.88 0.91
NL3ωρ-hyperons-S1 2.34 2.84 0.91
NL3ωρ-hyperons-S2 2.32 2.75 0.88

Note. S1 and S2 stand for the two constant values of entropy per baryon,
sB/nB = 1 and 2, respectively.
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In this model, the m= 0 mode is set by θ1= 0 and any value of
θ2; the m= 1 mode is given by (θ1, θ2)= (90°, 0°); and the
m= 2 mode is given by (θ1, θ2)= (90°, 90°).

In the following, we analyze systems with a CO star
evolving from a progenitor with MZAMS= 30 Me. For the case
of a CO star with a progenitor withMZAMS= 15Me, we do not
find any initial condition in which the star evolves outside the
stability zone. These systems remain gravitationally bound
after the SN explosion and produce binary NS systems that will
eventually merge, driven by gravitational-wave emission.

5. Results

5.1. Newborn Neutron Star and Neutron Star Evolution

Figure 4 shows, for the EOSs summarized in Table 2, the
evolution of the NS and the νNS in the central density,
ρc–gravitational mass, MNS plane, where ρc is ρB= εB/c

2 at the
stellar center, r= 0. The baryonic mass accretion rate on the
NS is taken from the SPH simulation of the BdHN event,
which begins with the SN explosion of a CO star in a binary
system with a 1.9 Me NS companion. The CO star evolved
from a star withMZAMS= 30Me. When the CO core collapses,
it leaves a 1.85 Me proto-NS and ejects about 7 Me of material
in the SN explosion. The orbital period is =P 5.77 minutesorb .
The star increases its central density in all cases as it accretes
baryonic mass and angular momentum. The equatorial radius

and angular velocity also increase when the secular instability
limit is not reached.
For sufficiently high initial angular momentum, the stars

reach the mass-shedding limit. As shown by 3D numerical
simulations of uniformly rotating NSs by M. Shibata et al.
(2000), the mass-shedding limit leads to a dynamical instability
point near secular instability, which, in turn, leads to
gravitational collapse into a BH. They show this situation will
occur by an NS accreting at the mass-shedding limit. Therefore,
we here assume the mass-shedding limit and the secular
instability as points of BH formation. Configurations that can
reach this limit are discussed in the next section.

5.2. Time to Black Hole Formation

We now analyze how the initial star’s angular momentum
affects the occurrence of gravitational collapse by accretion.
For the same binary systems in Figure 4, Figure 5 shows the
time taken for the stars to become unstable during the accretion
process and probably collapse to a BH as a function of the
star’s initial angular momentum, for different values for the
angular momentum transfer efficiency, χ. We recall the orbital
period is =P 5.77 minutesorb . The NS companion only reaches
the secular instability limit when the eL3ωρ EOS with
hyperons is assumed. The time the star needs to reach it
shortens for larger initial angular momentum or larger χ. On
the other hand, independently of the EOS assumed, for

( )º j cJ GM 1NS,0
2 and χ= 0.9, the star reaches the

Figure 4. Evolution of the NS (orange lines) and the νNS (green lines) in the ρc−MNS plane for different initial values of the angular momentum, J. Each panel
corresponds to each EOS summarized in Table 2. We set the strength of the magnetic field to Bns = 1013 G and the angular momentum transfer efficiency χ = 0.5. The
initial binary system is formed by a 1.9 Me NS and a CO star, whose progenitor is a star with MZAMS = 30 Me, and the orbital period is Porb = 5.77 minutes. The
stability zone is delimited by the static (red solid line), Keplerian (red dashed line), and secular instability sequences (red dotted line).
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mass-shedding limit, and the time it takes to do so decreases as
its initial angular momentum increases. Under certain condi-
tions, with high initial angular momentum, the star could reach
the mass-shedding limit in less than 50 s. In contrast, an
initially nonrotating star needs more than 300 s to reach the
secular instability limit. The νNS reaches the secular instability
limit for the eL3ωρ EOS with hyperons and only for χ= 0.5.
For the νNS, the mass-shedding limit can be reached for
jNS,0 0.5, if χ= 0.9, for example.

Figure 6 shows the collapse time as done in Figure 5, for the
same binary system stars but with different initial binary
periods (see Figure 2) and employing the eL3ωρ EOS
parameterization with nucleons mixed with hyperons. As
shown in Figure 2, an increase in the initial binary period
results in a decrease in the accretion rate of the binary stars,
which subsequently requires more time to reach an instability
limit. When the initial binary period is greater than 31 minutes,
the NS companion does not reach the secular instability limit
for any value of the χ parameter, while the νNS reaches it only
for χ< 0.5. The initial angular momentum required for the
stars to reach the mass-shedding limit increases with the initial
binary period. It is worth noting that the mass loss by the SN
explosion disrupts the final binary system only for larger initial
binary periods (Porb> 31 minutes). In contrast, the system
remains gravitationally bound for the two shorter ones, forming
BH–BH or NS–NS binaries. We refer to L. M. Becerra et al.
(2024) for the latest simulations of the unbinding process in

BdHN systems and Section 6.2 for further discussions on the
implications.
Figure 7 shows the collapse time for the νNS described by a

hot EOS with uniform entropy (see also bottom panel of
Figure 3). For these cases, the hotter the star, the mass-
shedding limit or the secular instability limit is reached in less
time, independent of the EOS parameterization used. For the
eL3ωρ parameterization, hotter stars can get to the secular
instability limit with greater values for the angular momentum
transfer efficiency, χ, while cold stars do not.

5.3. Delayed Black Hole Formation

When the stars do not collapse and if the magnetic field is
not buried by the accretion (e.g., D. J. B. Payne & A. Mela-
tos 2007), they will continue losing angular momentum driven
by the magnetic field torque after the end of the accretion
process. When the final mass of the stars is smaller than the
maximum mass allowed for a static star, MTOV

max , they evolve
toward the static sequences as they lose angular momentum.
But, when the final mass of either star is larger than MTOV

max , the
stars evolve toward the secular instability limit, leading to a
long-delayed collapse into a BH. This will be the case for stars
that do not collapse in the accretion process. On the other hand,
if the binary remains gravitationally bound, gravitational-wave
emission makes the stars merge in a time tGW (see below).
Thus, for the BdHN event to occur, the collapse delay time
must be shorter than the merger time. We refer to Section 6.1

Figure 5. Time to collapse, defined as the time it takes the stars to leave the stability zone, as a function of the star’s initial angular momentum, for different values of
the angular momentum efficiency, χ. The upper panels show the results assuming the eL3ωρ parameterization for the EOS, while for the lower panels, we use the
NL3ωρ one. Black lines correspond to matter with nucleons, and blue lines correspond to matter with nucleons mixed with hyperons. The initial binary is the same as
in Figure 4.
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for further discussion on the consequences of the delayed
collapse for the BdHN classifications.

To assess the above scenario, we analyze as specific
examples the stars described by the eL3ωρ EOS with hyperons
(Figure 4 and top panel of Figure 5).

The time to reach the secular instability limit by magnetic-
dipole braking is

( )ò= -
W

t
c

B

dJ

R

3

2
, 18

J

J

col
dip

3

2 6 3
i

sec

where Ji and Jsec are the NS angular momentum at the end of
accretion and the secularly unstable configuration with the
same baryon mass, respectively. Equation (18) refers to a
spherical dipole, so we approximate its radius with the authalic
radius, R≈ (2Req+ Rp)/3. The merger time is (see, e.g.,
Equation (4.135) in M. Maggiore 2007)

( )
( ) ( )

( ) ( )òm
=

-

+
t

c

G

a

M g e

g e e

e e
de

5

256

48

19

1 1

1
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e
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5

3
orb
4

2 4 0

4 2 5 2

121

304
2

where ( ) ( ) ( )= - +-g e e e e1 1 121 30412 19 2 1 2 870 2299, aorb is
the orbital separation at the end of the accretion process, and M
and μ are the total and reduced binary mass, respectively. The
BdHN event of an initial binary with a 1.9 Me NS and a CO
star from a MZAMS= 30 Me progenitor leaves a binary of
approximately equal masses (∼2.1 Me), orbital separation
aorb∼ 3.3× 1010 cm, and eccentricity e= 0.71. Equation (19)
says this system will merge in tGW= 33 kyr. Figure 8 shows

that tcol
dip is of the order of 0.05 yr (≈18 days) for a magnetic

field strength of 1013 G. Equation (18) shows this time
increases as the square of the magnetic field strength decreases.
For the above numbers, we obtain that these stars will
gravitationally collapse to a BH before the binary merges for
magnetic fields above 1010 G. Given the shortness of tcol

dip

Figure 6. Same as Figure 5 but using an EOS with the eL3ωρ parameterization
with hyperons. The initial binary system is formed by a 1.9 Me NS and a CO
star, whose progenitor is a star with MZAMS = 30 Me. The initial binary period
is about 5.7 minutes for the black lines, 10.2 minutes for the blue ones, and 31
minutes for the red ones.

Figure 7. Same as Figure 5 but for a hot NS using the eL3ωρ and NL3ωρ
parameterizations with hyperons for the EOS. The black lines correspond to the
cold EOS, the blue ones for an EOS with constant entropy S1(sB/nB = 1), and
the red ones for an EOS with constant entropy S2(sB/nB = 2) > S1. The initial
binary system is formed by a 1.9 Me NS and a CO star, whose progenitor is a
star with MZAMS = 30 Me in an initial binary period of about 5.7 minutes.

Figure 8. Time to the secular instability limit by magnetic-dipole braking as
a function of the initial angular momentum of the νNS and the NS
companion, which do not collapse to a BH in the BdHN event but reach a
mass greater than MTOV

max . The EOS is the eL3ωρ parameterization with
hyperons. The star’s initial mass is about 2.1 Me, and its radius is between
13 and 16 km, depending on its angular momentum. The star reaches secular
instability when = »J J GM c3sec

2 .
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relative to tGW, we can conclude that in ∼33 kyr, this system
leads to a BH–BH merger.

6. Discussion

6.1. Carbon–Oxygen Star–Neutron Star Parameters and
Binary-driven Hypernova Types

We recalled in Section 1 that the various possible fates of the
binary imply the three types of sources, BdHNe I, II, and III. In
particular, the main parameters of the classification are the
GRB energy and the orbital period of the CO–NS progenitor.
These two parameters are naturally connected in the BdHN
model (L. Becerra et al. 2016; R. Ruffini et al. 2016; L. Becerra
et al. 2019), as follows.

The minimum energy release of a BdHN is the energy
released by the NS companion accretion process when
increasing its mass from MNS,0 to MNS,f, i.e., ΔEacc≈
ηaccΔMaccc

2, where ΔMacc=MNS,f−MNS,0, and ηacc is the
efficiency in converting gravitational into electromagnetic
energy. Because the BH forms when the NS reaches the
critical mass for gravitational collapse, Mcrit, the energy
released to the BH formation trigger point, assuming typical
order-of-magnitude values ΔMacc=Mcrit−MNS,0∼ 0.1 Me
and ηacc∼ 0.1, one obtains ΔEacc∼ 1052 erg. This estimate
shows the reason BdHNe I are expected to explain the most
energetic GRBs with Eiso 1052 erg. The connection with the
CO–NS progenitor orbital period follows from the relation
between the latter and the accreted mass. L. Becerra et al.
(2019) showed that for a given SN explosion energy, the
amount of accreted matter approximately scales as
D µM M Pacc NS,0

2
orb
1 3. This expression implies there is a

maximum orbital period, ( )µ -P M M Morb,max NS,0
6

crit NS,0
3,

over which no BH is formed by the accretion process. It turns
out that Porb,max is of the order of a few minutes for typical CO–
NS parameters. The above suggests that the shorter the orbital
period, the shorter the time the NS takes to reach the collapse
point. The peak time of accretion scales as µt Ppeak orb

2 3

(L. Becerra et al. 2019). Besides, there is a strong dependence
on the initial NS angular momentum, as shown in this article
(e.g., Figures 5 and 6). Examples of BdHNe I are
GRB 130427A (R. Ruffini et al. 2019), GRB 180720B
(J. A. Rueda et al. 2022), and GRB 190114C (R. Moradi
et al. 2021a, 2021b). BdHNe I show seven observable emission
episodes in the sequence of physical processes triggered by the
SN explosion in the CO–NS: GRB precursors, MeV prompt
emission, GeV and TeV emissions, X-ray–optical–radio after-
glow, and optical SN emission. These emissions involve the
physics of the early SN, NS accretion, BH formation, synchro-
curvature radiation, and quantum and classic electrodynamics
processes. We refer to Y. Aimuratov et al. (2023) and the
appendix in C. L. Bianco et al. (2024) for details.

Therefore, binaries with >P Porb orb,max do not form a BH.
These binaries lead to the subclasses BdHNe II and III. The
divide between these two subclasses is given by the fact that as
the period and orbital separation increase, the role of the NS
companion diminishes, becoming negligible for binaries with
periods of hours. Thus, BdHNe III are expected to release an
energy similar to that of a single core-collapse event without
any companion. Accretion is expected only from fallback onto
the νNS, which has a maximum peak accretion rate of 10−3 Me
s−1 for about seconds (e.g., Figure 2), so ΔMacc∼ 10−3 Me,
leading to ΔEacc∼ 1050 erg. We refer to Y. Wang et al. (2023)

for a detailed analysis of GRB 171205A as an example of a
BdHN III.
The sources with energies in the range 1050–1052 erg are

explained by BdHNe II, with orbital periods from tens of
minutes to hours. We refer to Y. Wang et al. (2022) for an
analysis of GRB 190829A as a BdHN II. At this stage, it is
worth recalling that Section 5.3 has shown that the NS
companion, in some cases, could lie at the supramassive
metastable region at the end of the accretion phase. For those
systems, delayed BH formation is expected to occur under the
action of braking mechanisms, e.g., by a magnetic field. A
natural question arises as to whether these systems should be
classified as a BdHN I or II. Figure 8 shows that the delay time
of BH formation could be a few 106 s (10 days or longer for
magnetic fields lower than 1013 G) after the SN breakout.
Whether the BH formation implies BdHN I signatures in a
binary that would lead to a BdHN II depends on the emission
processes related to the BH and the differences in the system
properties relative to a BdHN I. In this sense, the delay time
could be crucial (e.g., the density surrounding the system
decreases with time). It might be that these are borderline
sources with energies of the order of 1052 erg and show hybrid
properties between BdHNe I and II. However, this situation is
new for us and needs further analysis and simulations to arrive
at a definite answer.

6.2. The Long–Short Gamma-Ray Burst Connection

The above classification implies a unique prediction of this
scenario: BdHNe I lead to NS–BH systems and BdHN II to
NS–NS systems if the binary holds bound in the cataclysmic
event. The BdHN III most likely unbinds the progenitor binary.
Gravitational-wave emission drives the bound compact-object
binaries to merge, leading to short GRBs (C. L. Fryer et al.
2015; L. Becerra et al. 2019; L. M. Becerra et al. 2022, 2023;
C. L. Bianco et al. 2024). The above long–short GRB
connection is a unique prediction of the BdHN scenario with
verifiable observational consequences (L. M. Becerra et al.
2024).
If the system remains bound, the typical outcome of a BdHN

I is an NS–BH, and of a BdHN II, an NS–NS. Gravitational-
wave emission leads the NS–BH and NS–NS to merge, with
the likely consequent emission of a short GRB (C. L. Fryer
et al. 2015; L. M. Becerra et al. 2023; C. L. Bianco et al. 2024).
Recent numerical simulations of the BdHN scenario for various
binary parameters show a wide range of merger timescales
∼104–109 yr (L. M. Becerra et al. 2024). The rapidly merging
(e.g., tens of kiloyears timescale) binaries are those of short
orbital periods (e.g., of a few minutes), so they are NS–BH.
The wider binaries are NS–NS and lead to longer merger times.
The fact that the mass loss in BdHNe should unbind a
considerable amount of binaries (see L. M. Becerra et al. 2024,
for the latest simulations) and the broad range of merger times
is essential to explain the lower observed rate of short GRBs
relative to that of long GRBs (see, e.g., R. Ruffini et al.
2016, 2018) and their shifted redshift distributions (see, e.g.,
M. H. P. M. van Putten et al. 2014; C. L. Bianco et al. 2024).
Figure 9 shows a scheme of the above scenarios predicted by
the BdHN model.
Section 5.3 has shown the possibility of forming BH–BH

systems in some BdHNe II if the νNS and the NS do not
collapse by accretion but reach a final mass larger than the
maximum mass allowed for the nonrotating configuration, i.e.,
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if they end the accretion process in the NS supramassive
region. This happens for soft EOS as the EOS with the eL3ωρ
parameterization with matter formed by a mix of nucleons and
hyperons. These stars may reach secular instability by losing
angular momentum by magnetic torque if the magnetic field is
not buried by accretion. We showed they could form a BH–BH
or a BH–NS (if only one of them is supramassive) in a
timescale shorter than the merger timescale by gravitational-
wave emission. Following the BH formation, in a timescale of
tens of kiloyears, gravitational-wave emission leads the BH–
BH or BH–NS system to merge.

7. Conclusions

In this paper, we have followed the evolution of the νNS and
its NS companion during their accretion of SN ejecta in a
BdHN event leading to a long GRB. We have aimed to
determine the conditions under which these stars evolve into
unstable configurations, reaching either the secular instability
or the mass-shedding limit, collapsing into a rotating, Kerr BH.
We assume the stars evolve through stable configurations as
they accrete baryonic mass and angular momentum from the
SN ejecta. The accretion rate onto the NSs is obtained from 3D
SPH simulations using the adapted SNSPH code of the Los
Alamos National Laboratory (C. L. Fryer et al. 2006b). To
perform the evolution of the NS structure, we adapted the RNS
code (N. Stergioulas & J. L. Friedman 1995) to compute
uniformly rotating NS configurations and used different
parameterizations for the EOS, eL3ωρ, and NL3ωρ both for
cold and hot matter, respectively, with varying compositions
including nucleons only and hyperons mixed with nucleons.

Our findings indicate that for low-mass progenitors of the
CO star, the mass accretion rate onto the binary stars is
insufficient to push them toward an unstable point. This holds,
for instance, in the case of the CO progenitor with MZAMS=
15 Me. On the other hand, for the progenitors of the CO star
with MZAMS= 30 Me, the configurations reach the mass-
shedding limit under the same conditions regardless of the
assumed EOS. This happens for configurations with jNS,0> 1.0
and efficient angular momentum accretion. The secular

instability limit is reached when the EOS with the eL3ωρ
parameterization is used for matter with a mix of nucleons and
hyperons and configuration with jNS,0< 1.0. This is the softer
EOS we have considered in our study.
The time required to collapse can be as short as 10 s for

rapidly rotating initial stars reaching the mass-shedding limit or
as short as 50 s for slowly rotating initial stars reaching the
secular instability limit and modeled by a soft EOS. As
expected, this time increases with the binary period of the CO–
NS system. There is the possibility of the appearance of the
νNS at times of the order of 100 s, e.g., owing to the second
accretion peak (see, e.g., the simulation with an orbital period
of about 10 minutes in the left panel of Figure 2 and the
discussion in L. M. Becerra et al. 2022), and BH formation at
comparable times (see left panel of Figure 5) could have been
individuated in three sources: GRB 221009A, GRB 221001A,
and GRB 160625B (R. Ruffini et al. 2024, in preparation).
Summarizing, we confirm results from previous simulations

(L. Becerra et al. 2019; L. M. Becerra et al. 2022) that short-
period CO–NS binaries can lead to BH formation in an orbital
timescale. In this work, we showed the effect of the NS angular
momentum: the time to reach the conditions for gravitational
collapse shortens if the NS has nonzero angular momentum
before the accretion process. It can become as short as tens of
seconds for a rapidly rotating NS before the SN explosion
triggers the GRB event. This present approach is based on the
simplest BdHN model based on core collapse in a CO star of
mass of about 10 Me, forming the νNS and the SN, in the
presence of an NS companion. However, the quality of data
from the early phases of BdHNe, particularly identifying the
SN rise (R. Ruffini et al. 2024), opens the possibility to explore
alternative scenarios for the νNS and the SN formation
(R. Ruffini et al. 2024, in preparation).
All the above results provide an additional step toward a

comprehensive understanding of binary stellar evolution,
starting from binaries of main-sequence massive stars to
intermediate stages like binary X-ray sources, whose further
evolution leads to the most powerful transients in the Universe,
long GRBs, and finally to compact-star binaries merging
producing short GRBs.

Figure 9. Scheme of the BdHN I, II, and III scenarios, depending upon the pre-SN CO–NS orbital period. We recall that Porb,max is the maximum orbital period for the
NS companion to reach an instability point of BH formation, given CO and NS masses and SN kinetic energy.
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