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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman solution
that describes the gravitational and electromagnetic fields of a rotating charged mass.
In fact, it is widely believed that this metric can be used only in the case of black holes
because its possesses a limited number of multipole moments, namely, the monopoles
of mass and charge and the angular momentum dipole. All the higher multipole mo-
ments can be expressed in terms of these three independent moments. For instance,
the quadrupole moment is proportional to the angular momentum dipole, which, in
turn, contains the mass monopole.

Astrophysical compact objects, however, are characterized by shape deformations
that can be described only by means of higher independent moments. For instance,
even a small deviation from spherical symmetry would generate a quadrupole mo-
ment that should be independent of the rotational properties of the body. Also,
the moment of inertia of the system is expected to be related to the a rotational
quadrupole moment. On the other hand, the rotation of a body is also expected to
induce, in general, shape deformations that should be taken into account when con-
sidering the general set of multipole moments that are necessary for describing the
corresponding gravitational field. Therefore, we expect that a general treatment of
the gravitational field of compact objects implies the introduction of two independent
sets of multipole moments, one related to the distribution of mass and its shape, and
the second one associated to the moment of inertia and other rotational properties
of the body. Furthermore, if the constituent particles of the mass distribution are en-
dowed with electric charge, an additional set of electromagnetic multipole moments
should be considered.

It follows that to attack the problem of describing the gravitational and electromag-
netic fields of an arbitrary distribution of charged masses, it is necessary to derive and
investigate new exact solutions of Einstein-Maxwell equations, which posses an in-
finite set of gravitational and electromagnetic multipole moments and contain the
Kerr-Newman solution as special case.

Recently, new exploratory channels have opened up for the physics of highly com-
pact objects, such as gravitational waves and black hole shadows. Moreover, more
precise analysis and observations are now possible in the physics of accretion around
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2 Brief description

compact objects. These advancements provide in particular an unprecedented in-
sight into the physics near the horizons of a black hole. In this work we focus on the
shadow boundary of a Kerr black hole, introducing observables related to special null
orbits, called horizons replicas, solutions of the shadow edge equations which are re-
lated to particular photon orbits, defined by constraints on their impact parameter,
carrying information about the angular momentum of the central spinning object.
These orbits are related to particular regions on the shadow boundary and might be
used to determine the spin of the black hole. The results provide the conditions by
which horizon replicas are imprinted in the black hole shadow profile, in dependence
on the black hole dimensionless spin and observational angle, providing eventually
new templates for the future observations.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only for gen-
eral relativity itself, but also for the very fundamentals of physics. It assumes this
position as being the most physically relevant rotating generalization of the static
Schwarzschild geometry. Its charged counterpart, the Kerr-Newman solution, rep-
resenting the exterior gravitational and electromagnetic fields of a charged rotating
object, is an exact solution of the Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt − a sin2 θdφ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dφ − adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2 dr2 − (r2 + a2 cos2 θ)dθ2 , (3.1)

where M is the total mass of the object, a = J/M is the specific angular momentum,
and Q is the electric charge. In this particular coordinate system, the metric functions
do not depend on the coordinates t and ϕ, indicating the existence of two Killing
vector fields ξ I = ∂t and ξ I I = ∂φ which represent the properties of stationarity and
axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is sur-
rounded by two horizons situated at a distance

r± = M ±
√

M2 − a2 − Q2 (3.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singularity is
present which, however, cannot be observed by any observer situated outside the
exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no horizons are present
and the Kerr–Newman spacetime represents the exterior field of a naked singularity.

Despite of its fundamental importance in general relativity, and its theoretical and
mathematical interest, this solution has not been especially useful for describing as-
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3 Introduction

trophysical phenomena, first of all, because observed astrophysical objects do not
possess an appreciable net electric charge. Furthermore, the limiting Kerr metric
takes into account the mass and the rotation, but does not consider the moment of
inertia of the object. For astrophysical applications it is, therefore, necessary to use
more general solutions with higher multipole moments which are due not only to the
rotation of the body but also to its shape. This means that even in the limiting case
of a static spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum solution

In general relativity, stationary axisymmetric solutions of Einstein’s equations [1] play
a crucial role for the description of the gravitational field of astrophysical objects. In
particular, the black hole solutions and their generalizations that include Maxwell
fields are contained within this class.

This type of exact solutions has been the subject of intensive research during the
past few decades. In particular, the number of know exact solutions drastically in-
creased after Ernst [2] discovered an elegant representation of the field equations that
made it possible to search for their symmetries. These studies lead finally to the de-
velopment of solution generating techniques [1] which allow us to find new solutions,
starting from a given seed solution. In particular, solutions with an arbitrary number
of multipole moments for the mass and angular momentum were derived in [3] and
used to describe the gravitational field of rotating axially symmetric distributions of
mass.

The first analysis of stationary axially symmetric gravitational fields was carried
out by Weyl [4] in 1917, soon after the formulation of general relativity. In particular,
Weyl discovered that in the static limit the main part of the vacuum field equations
reduces to a single linear differential equation. The corresponding general solution
can be written in cylindrical coordinates as an infinite sum with arbitrary constant
coefficients. A particular choice of the coefficients leads to the subset of asymptot-
ically flat solutions which is the most interesting from a physical point of view. In
this section we review the main properties of stationary axisymmetric gravitational
fields. In particular, we show explicitly that the main field equations in vacuum can
be represented as the equations of a nonlinear sigma model in which the base space
is the 4-dimensional spacetime and the target space is a 2-dimensional conformally
Euclidean space.

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, stationary ax-
isymmetric gravitational fields are usually described in cylindric coordinates (t, ρ, z, φ).
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4 The general static vacuum solution

Stationarity implies that t can be chosen as the time coordinate and the metric does
not depend on time, i.e. ∂gµν/∂t = 0. Consequently, the corresponding timelike
Killing vector has the components δ

µ
t . A second Killing vector field is associated to

the axial symmetry with respect to the axis ρ = 0. Then, choosing φ as the azimuthal
angle, the metric satisfies the conditions ∂gµν/∂φ = 0, and the components of the
corresponding spacelike Killing vector are δ

µ
φ.

Using further the properties of stationarity and axial symmetry, together with the
vacuum field equations, for a general metric of the form gµν = gµν(ρ, z), it is possible
to show that the most general line element for this type of gravitational fields can be
written in the Weyl-Lewis-Papapetrou form as [4, 5, 6]

ds2 = f (dt − ωdφ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dφ2

]
, (4.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements which
include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the following
set of partial differential equations

1
ρ

∂ρ(ρ∂ρ f ) + ∂2
z f +

1
f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.3)

1
ρ

∂ρ(ρ∂ρΩ) + ∂2
zΩ − 2

f
(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.6)

It is clear that the field equations for γ can be integrated by quadratures, once f and
Ω are known. For this reason, the equations (4.3) and (4.4) for f and Ω are usually
considered as the main field equations for stationary axisymmetric vacuum gravita-
tional fields. In the following subsections we will focus on the analysis of the main
field equations, only. It is interesting to mention that this set of equations can be
geometrically interpreted in the context of nonlinear sigma models [17].

Let us consider the special case of static axisymmetric fields. This corresponds to
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4.2 Static solution

metrics which, apart from being axially symmetric and independent of the time coor-
dinate, are invariant with respect to the transformation φ → −φ (i.e. rotations with
respect to the axis of symmetry are not allowed). Consequently, the corresponding
line element is given by (4.1) with ω = 0, and the field equations can be written as

∂2
ρψ +

1
ρ

∂ρψ + ∂2
zψ = 0 , f = exp(2ψ) , (4.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.8)

We see that the main field equation (4.7) corresponds to the linear Laplace equation
for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand additionally
asymptotic flatness, we obtain the Weyl solution which can be written as [4, 1]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (4.9)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the Legendre
polynomials of degree n. The expression for the metric function γ can be calculated
by quadratures by using the set of first order differential equations (4.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (4.10)

Since this is the most general static, axisymmetric, asymptotically flat vacuum solu-
tion, it must contain all known solution of this class. In particular, one of the most in-
teresting special solutions which is Schwarzschild’s spherically symmetric black hole
spacetime must be contained in this class. To see this, we must choose the constants
an in such a way that the infinite sum (4.9) converges to the Schwarzschild solution in
cylindric coordinates. But, or course, this representation is not the most appropriate
to analyze the interesting physical properties of Schwarzschild’s metric.

In fact, it turns out that to investigate the properties of solutions with multipole
moments it is more convenient to use prolate spheroidal coordinates (t, x, y, φ) in
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4 The general static vacuum solution

which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dφ2

]
where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.11)

r2
± = ρ2 + (z ± σ)2 , σ = const , (4.12)

and the metric functions are f , ω, and γ depend on x and y, only. In this coordinate
system, the general static solution which is also asymptotically flat can be expressed
as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre functions of
second kind. In particular,

P0 = 1, P1 = y, P2 =
1
2
(3y2 − 1) , ...

Q0 =
1
2

ln
x + 1
x − 1

, Q1 =
1
2

x ln
x + 1
x − 1

− 1 ,

Q2 =
1
2
(3x2 − 1) ln

x + 1
x − 1

− 3
2

x , ...

The corresponding function γ can be calculated by quadratures and its general ex-
pression has been explicitly derived in [3]. The most important special cases con-
tained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1
2

ln
x2 − 1
x2 − y2 ,

and the Erez-Rosen metric [9]

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1
2

ln
x2 − 1
x2 − y2 + ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters that de-
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4.2 Static solution

termines an infinite set of mass multipole moments. The parameters qn represent the
deviation of the mass distribution from the ideal spherical symmetry. It is interest-
ing to mention that if demand the additional symmetry with respect to the equatorial
plane θ = π/2, it can be shown that all odd parameters q2k+1, k = 0, 1, ... should van-
ish. This is an additional symmetry condition that reduces the form of the resulting
metric.
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5 Stationary generalization

The solution generating techniques [12] can be applied, in particular, to any static
seed solution in order to obtain the corresponding stationary generalization. One
of the most powerful techniques is the inverse method (ISM) developed by Belinski
and Zakharov [13]. We used a particular case of the ISM, which is known as the
Hoenselaers–Kinnersley-Xanthopoulos (HKX) transformation to derive the station-
ary generalization of the general static solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω ̸= 0) with line element

ds2 = f (dt − ωdφ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dφ2

]
it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1 − E
1 + E

,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1 − y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmetric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx]x + [(1 − y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1 − y2)ξ2
y] .
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5 Stationary generalization

This equation is invariant with respect to the transformation x ↔ y. Then, since the
particular solution

ξ =
1
x
→ Ω = 0 → ω = 0 → γ =

1
2

ln
x2 − 1
x2 − y2

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact solution.
Furthermore, if we take the linear combination ξ−1 = c1x + c2y and introduce it into
the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a
M

y , σ =
√

M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.
In the case of the Einstein-Maxwell theory, the main field equations can be ex-

pressed as
(ξξ∗ − FF∗ − 1)∇2ξ = 2(ξ∗∇ξ − F∗∇F)∇ξ ,

(ξξ∗ − FF∗ − 1)∇2F = 2(ξ∗∇ξ − F∗∇F)∇F

where ∇ represents the gradient operator in prolate spheroidal coordinates. More-
over, the gravitational potential ξ and the electromagnetic F Ernst potential are de-
fined as

ξ =
1 − f − iΩ
1 + f + iΩ

, F = 2
Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromagnetic po-
tentials At and Aφ One can show that if ξ0 is a vacuum solution, then the new poten-
tial

ξ = ξ0

√
1 − e2

represents a solution of the Einstein-Maxwell equations with effective electric charge
e. This transformation is known in the literature as the Harrison transformation [10].
Accordingly, the Kerr–Newman solution in this representation acquires the simple
form

ξ =

√
1 − e2

σ
M x + i a

M y
, e =

Q
M

, σ =
√

M2 − a2 − Q2 .

In this way, it is very easy to generalize any vacuum solution to include the case of
electric charge. More general transformations of this type can be used in order to
generate solutions with any desired set of gravitational and electromagnetic multi-
pole moments [3].
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5.2 Representation as a nonlinear sigma model

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimension m and
n, respectively. Let M be coordinatized by xa, and N by Xµ, so that the metrics on M
and N can be, in general, smooth functions of the corresponding coordinates, i.e.,
γ = γ(x) and G = G(X). A harmonic map is a smooth map X : M → N, or in
coordinates X : x 7−→ X so that X becomes a function of x, and the X’s satisfy the
motion equations following from the action [14]

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.1)

which sometimes is called the “energy” of the harmonic map X. The straightforward
variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν ∂bXλ = 0 , (5.2)

where Γµ
νλ are the Christoffel symbols associated to the metric Gµν of the target space

N. If Gµν is a flat metric, one can choose Cartesian-like coordinates such that Gµν =
ηµν = diag(±1, ...,±1), the motion equations become linear, and the corresponding
sigma model is linear. This is exactly the case of a bosonic string on a flat background
in which the base space is the 2-dimensional string world-sheet. In this case the action
(5.1) is usually referred to as the Polyakov action [16].

Consider now the case in which the base space M is a stationary axisymmetric
spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-Papapetrou
metric (4.1), i.e.

γab =


f 0 0 − f ω

0 − f−1e2k 0 0
0 0 − f−1e2k 0

− f ω 0 0 f ω2 − ρ2 f−1

 . (5.3)

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν, µ, ν = 1, 2,
and let the coordinates on N be Xµ = ( f , Ω). Then, it is straightforward to show that
the action (5.1) becomes

S =
∫

L dtdφdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
, (5.4)
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5 Stationary generalization

and the corresponding motion equations (5.2) are identical to the main field equations
(4.3) and (4.4).

Notice that the field equations can also be obtained from (5.4) by a direct variation
with respect to f and Ω. This interesting result was obtained originally by Ernst [2],
and is the starting point of what today is known as the Ernst representation of the
field equations.

The above result shows that stationary axisymmetric gravitational fields can be de-
scribed as a (4 → 2)−nonlinear harmonic map, where the base space is the spacetime
of the gravitational field and the target space corresponds to a 2-dimensional confor-
mally Euclidean space. A further analysis of the target space shows that it can be
interpreted as the quotient space SL(2, R)/SO(2), and the Lagrangian (5.4) can be
written explicitly [17] in terms of the generators of the Lie group SL(2, R). Harmonic
maps in which the target space is a quotient space are usually known as nonlinear
sigma models [14].

The form of the Lagrangian (5.4) with two gravitational field variables, f and Ω,
depending on two coordinates, ρ and z, suggests a representation as a harmonic map
with a 2-dimensional base space. In string theory, this is an important fact that allows
one to use the conformal invariance of the base space metric to find an adequate rep-
resentation for the set of classical solutions. This, in turn, facilitates the application
of the canonical quantization procedure. Unfortunately, this is not possible for the
Lagrangian (5.4). Indeed, if we consider γab as a 2-dimensional metric that depends
on the parameters ρ and z, the diagonal form of the Lagrangian (5.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front of the

Lagrangian. Therefore, the reduced gravitational Lagrangian (5.4) cannot be inter-
preted as corresponding to a (2 → n)-harmonic map. Nevertheless, we will show in
the next section that a modification of the definition of harmonic maps allows us to
“absorb” the unpleasant factor ρ in the metric of the target space, and to use all the
advantages of a 2-dimensional base space.

Notice that the representation of stationary fields as a nonlinear sigma model be-
comes degenerate in the limiting case of static fields. Indeed, the underlying geomet-
ric structure of the SL(2, R)/SO(2) nonlinear sigma models requires that the target
space be 2-dimensional, a condition which is not satisfied by static fields. We will
see below that by using a dimensional extension of generalized sigma models, it will
be possible to treat the special static case, without affecting the underlying geometric
structure.

The analysis performed in this section for stationary axisymmetric fields can be
generalized to include any gravitational field containing two commuting Killing vec-
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5.3 Representation as a generalized harmonic map

tor fields [1]. This is due to the fact that for this class of gravitational fields it is always
possible to find the corresponding Ernst representation in which the Lagrangian con-
tains only two gravitational variables which depend on only two spacetime coordi-
nates.

5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimension m
and n, respectively. Let xa and Xµ be coordinates on M and N, respectively. This
coordinatization implies that in general the metrics γ and G become functions of the
corresponding coordinates. Let us assume that not only γ but also G can explicitly
depend on the coordinates xa, i.e. let γ = γ(x) and G = G(X, x). This simple as-
sumption is the main aspect of our generalization which, as we will see, lead to new
and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized harmonic map
if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 , (5.5)

which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.6)

with respect to the fields Xµ. Here the Christoffel symbols, determined by the metric
Gµν, are calculated in the standard manner, without considering the explicit depen-
dence on x. Notice that the new ingredient in this generalized definition of harmonic
maps, i.e., the term Gµν(X, x) in the Lagrangian density implies that we are taking
into account the “interaction” between the base space M and the target space N. This
interaction leads to an extra term in the motion equations, as can be seen in (5.5). It
turns out that this interaction is the result of the effective presence of the gravitational
field.

Notice that the limiting case of generalized linear harmonic maps is much more
complicated than in the standard case. Indeed, for the motion equations (5.5) to be-
come linear it is necessary that the conditions

γab(Γµ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.7)
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5 Stationary generalization

be satisfied. One could search for a solution in which each term vanishes separately.
The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which would imply
Γµ

νλ = 0, is not allowed, because it would contradict the assumption ∂bGµν ̸= 0.
Nevertheless, a flat background metric in curvilinear coordinates could be chosen
such that the assumption Gµλ∂bGµν = 0 is fulfilled, but in this case Γµ

νλ ̸= 0 and
(5.7) cannot be satisfied. In the general case of a curved target metric, conditions
(5.7) represent a system of m first order nonlinear partial differential equations for
Gµν. Solutions to this system would represent linear generalized harmonic maps.
The complexity of this system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.6) includes an interaction be-
tween the base space N and the target space M, reflected on the fact that Gµν depends
explicitly on the coordinates of the base space. Clearly, this interaction must affect the
conservation laws of the physical systems we attempt to describe by means of gener-
alized harmonic maps. To see this explicitly we calculate the covariant derivative of
the generalized Lagrangian density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.8)

and replace in the result the corresponding motion equations (5.5). Then, the final
result can be written as

∇bT̃ b
a = − ∂L

∂xa (5.9)

where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.10)
The standard conservation law is recovered only when the Lagrangian does not de-
pend explicitly on the coordinates of the base space. Even if we choose a flat base
space γab = ηab, the explicit dependence of the metric of the target space Gµν(X, x)
on x generates a term that violates the standard conservation law. This term is due
to the interaction between the base space and the target space which, consequently, is
one of the main characteristics of the generalized harmonic maps introduced in this
work.

An alternative and more general definition of the energy-momentum tensor is by
means of the variation of the Lagrangian density with respect to the metric of the base
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5.3 Representation as a generalized harmonic map

space, i.e.

Tab =
δL

δγab . (5.11)

A straightforward computation shows that for the action under consideration here
we have that T̃ab = 2Tab so that the generalized conservation law (5.9) can be written
as

∇bT b
a +

1
2

∂L

∂xa = 0 . (5.12)

For a given metric on the base space, this represents in general a system of m differ-
ential equations for the “fields” Xµ which must be satisfied “on-shell”.

If the base space is 2-dimensional, we can use a reparametrization of x to choose a
conformally flat metric, and the invariance of the Lagrangian density under arbitrary
Weyl transformations to show that the energy-momentum tensor is traceless, T a

a = 0.

In Section 5.1 we described stationary, axially symmetric, gravitational fields as a
(4 → 2)−nonlinear sigma model. There it was pointed out the convenience of having
a 2-dimensional base space in analogy with string theory. Now we will show that this
can be done by using the generalized harmonic maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the coordinates
on the base space M, and Xµ = ( f , Ω) the coordinates on the target space N. In the
base space we choose a flat metric and in the target space a conformally flat metric,
i.e.

γab = δab and Gµν =
ρ

2 f 2 δµν (a, b = 1, 2; µ, ν = 1, 2). (5.13)

A straightforward computation shows that the generalized Lagrangian (5.8) coincides
with the Lagrangian (5.4) for stationary axisymetric fields, and that the equations of
motion (5.5) generate the main field equations (4.3) and (4.4).

For the sake of completeness we calculate the components of the energy-momentum
tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.14)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.15)

This tensor is traceless due to the fact that the base space is 2-dimensional. It satisfies
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5 Stationary generalization

the generalized conservation law (5.12) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1
2

∂L

∂ρ
= 0 , (5.16)

dTρz

dρ
−

dTρρ

dz
= 0 . (5.17)

Incidentally, the last equation coincides with the integrability condition for the met-
ric function k, which is identically satisfied by virtue of the main field equations. In
fact, as can be seen from Eqs.(4.5,4.6) and (5.14,5.15), the components of the energy-
momentum tensor satisfy the relationships Tρρ = ∂ρk and Tρz = ∂zk, so that the
conservation law (5.17) becomes an identity. Although we have eliminated from the
starting Lagrangian (5.4) the variable k by applying a Legendre transformation on the
Einstein-Hilbert Lagrangian (see [17]) for this type of gravitational fields, the formal-
ism of generalized harmonic maps seems to retain the information about k at the level
of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be represented
as a (2 → 2)−generalized harmonic map with metrics given as in (5.13). It is also pos-
sible to interpret the generalized harmonic map given above as a generalized string
model. Although the metric of the base space M is Euclidean, we can apply a Wick
rotation τ = iρ to obtain a Minkowski-like structure on M. Then, M represents the
world-sheet of a bosonic string in which τ is measures the time and z is the parame-
ter along the string. The string is “embedded” in the target space N whose metric is
conformally flat and explicitly depends on the time parameter τ. We will see in the
next section that this embedding becomes more plausible when the target space is
subject to a dimensional extension. In the present example, it is necessary to apply a
Wick rotation in order to interpret the base space as a string world-sheet. This is due
to the fact that both coordinates ρ and z are spatial coordinates. However, this can
be avoided by considering other classes of gravitational fields with timelike Killing
vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmetric fields
are the asymptotically flat solutions. Asymptotic flatness imposes conditions on the
metric functions which in the cylindrical coordinates used here can be formulated in
the form

lim
xa→∞

f = 1 + O
(

1
xa

)
, lim

xa→∞
ω = c1 + O

(
1
xa

)
, lim

xa→∞
Ω = O

(
1
xa

)
(5.18)
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where c1 is an arbitrary real constant which can be set to zero by appropriately choos-
ing the angular coordinate φ. If we choose the domain of the spatial coordinates as
ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic flatness conditions it follows that
the coordinates of the target space N satisfy the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.19)

where the dot stands for a derivative with respect to ρ and the prime represents
derivation with respect to z. These relationships are known in string theory [16] as the
Dirichlet and Neumann boundary conditions for open strings, respectively, with the
extreme points situated at infinity. We thus conclude that if we assume ρ as a “time”
parameter for stationary axisymmetric gravitational fields, an asymptotically flat so-
lution corresponds to an open string with endpoints attached to D−branes situated
at plus and minus infinity in the z−direction.

5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target space
N, and study the conditions under which this dimensional extension does not affect
the field equations of the gravitational field. Consider an (m → D)−generalized har-
monic map. As before we denote by {xa} the coordinates on M. Let {Xµ, Xα} with
µ = 1, 2 and α = 3, 4, ..., D be the coordinates on N. The metric structure on M is again
γ = γ(x), whereas the metric on N can in general depend on all coordinates of M and
N, i.e. G = G(Xµ, Xα, xa). The general structure of the corresponding field equations
is as given in (5.5). They can be divided into one set of equations for Xµ and one set of
equations for Xα. According to the results of the last section, the class of gravitational
fields under consideration can be represented as a (2 → 2)−generalized harmonic
map so that we can assume that the main gravitational variables are contained in
the coordinates Xµ of the target space. Then, the gravitational sector of the target
space will be contained in the components Gµν (µ, ν = 1, 2) of the metric, whereas the
components Gαβ (α, β = 3, 4, ..., D) represent the sector of the dimensional extension.

Clearly, the set of differential equations for Xµ also contains the variables Xα and
its derivatives ∂aXα. For the gravitational field equations to remain unaffected by this
dimensional extension we demand the vanishing of all the terms containing Xα and
its derivatives in the equations for Xµ. It is easy to show that this can be achieved by
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5 Stationary generalization

imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.20)

That is to say that the gravitational sector must remain completely invariant under a
dimensional extension, and the additional sector cannot depend on the gravitational
variables, i.e., Gαβ = Gαβ(Xγ, xa), γ = 3, 4, ..., D. Furthermore, the variables Xα must
satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 . (5.21)

This shows that any given (2 → 2)−generalized map can be extended, without af-
fecting the field equations, to a (2 → D)−generalized harmonic map.

It is worth mentioning that the fact that the target space N becomes split in two sep-
arate parts implies that the energy-momentum tensor Tab = δL/δγab separates into
one part belonging to the gravitational sector and a second one following from the di-
mensional extension, i.e. Tab = Tab(Xµ, x) + Tab(Xα, x). The generalized conservation
law as given in (5.12) is satisfied by the sum of both parts.

Consider the example of stationary axisymmetric fields given the metrics (5.13).
Taking into account the conditions (5.20), after a dimensional extension the metric of
the target space becomes

G =


ρ

2 f 2 0 0 · · · 0
0 ρ

2 f 2 0 · · · 0
0 0 G33(Xα, x) · · · G3D(Xα, x)
. . · · · · · · · · ·
0 0 GD3(Xα, x) · · · GDD(Xα, x)

 . (5.22)

Clearly, to avoid that this metric becomes degenerate we must demand that det(Gαβ) ̸=
0, a condition that can be satisfied in view of the arbitrariness of the components of
the metric. With the extended metric, the Lagrangian density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ , (5.23)
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5.4 Dimensional extension

which nevertheless does not affect the field equations for the gravitational variables f
and Ω. On the other hand, the new fields must be solutions of the extra field equations(

∂2
ρ + ∂2

z

)
Xα + Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
(5.24)

+Gαγ
(

∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 . (5.25)

An interesting special case of the dimensional extension is the one in which the
extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with additional fields
Xα given as arbitrary harmonic functions. This choice opens the possibility of intro-
ducing a “time” coordinate as one of the additional dimensions, an issue that could
be helpful when dealing with the interpretation of gravitational fields in this new
representation.

The dimensional extension finds an interesting application in the case of static ax-
isymmetric gravitational fields. As mentioned in Section 4.1, these fields are obtained
from the general stationary fields in the limiting case Ω = 0 (or equivalently, ω = 0).
If we consider the representation as an SL(2, R)/SO(2) nonlinear sigma model or as a
(2 → 2)−generalized harmonic map, we see immediately that the limit Ω = 0 is not
allowed because the target space becomes 1-dimensional and the underlying metric
is undefined. To avoid this degeneracy, we first apply a dimensional extension and
only then calculate the limiting case Ω = 0. In the most simple case of an extension
with Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the metrics
γab = δab and

G =

(
ρ

2 f 2 0
0 1

)
(5.26)

where the additional dimension is coordinatized by an arbitrary harmonic function
which does not affect the field equations of the only remaining gravitational variable
f . This scheme represents an alternative method for exploring static fields on nonde-
generate target spaces. Clearly, this scheme can be applied to the case of gravitational
fields possessing two hypersurface orthogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as a string
“living” in a D-dimensional target space N. The string world-sheet is parametrized
by the coordinates ρ and z. The gravitational sector of the target space depends ex-
plicitly on the metric functions f and Ω and on the parameter ρ of the string world-
sheet. The sector corresponding to the dimensional extension can be chosen as a
(D − 2)−dimensional Minkowski spacetime with time parameter τ. Then, the string
world-sheet is a 2-dimensional flat hypersurface which is “frozen” along the time τ.
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5 Stationary generalization

5.5 The general solution

If we take as seed metric the general static solution, the application of two HXK trans-
formations generates a stationary solution with an infinite number of gravitoelectric
and gravitomagnetic multipole moments. The HKX method is applied at the level
of the Ernst potential from which the metric functions can be calculated by using the
definition of the Ernst potential E and the field equations for γ. The resulting expres-
sions in the general case are quite cumbersome. We quote here only the special case
in which only an arbitrary quadrupole parameter is present. In this case, the result
can be written as

f =
R
L

e−2qP2Q2 ,

ω = −2a − 2σ
M

R
e2qP2Q2 ,

e2γ =
1
4

(
1 +

M
σ

)2 R
x2 − y2 e2γ̂ , (5.27)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1 − y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1 − α2e2q(δ++δ−))b+ ,

γ̂ =
1
2
(1 + q)2 ln

x2 − 1
x2 − y2 + 2q(1 − P2)Q1 + q2(1 − P2)

[
(1 + P2)(Q2

1 − Q2
2)

+
1
2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 − Q′
2)

]
. (5.28)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind respec-
tively. Furthermore

a± = x(1 − α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,
b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1
2

ln
(x ± y)2

x2 − 1
+

3
2
(1 − y2 ∓ xy) +

3
4
[x(1 − y2)∓ y(x2 − 1)] ln

x − 1
x + 1

,
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5.5 The general solution

the quantity α being a constant

α =
σ − M

a
, σ =

√
M2 − a2 . (5.29)

The physical significance of the parameters entering this metric can be clarified by
calculating the Geroch-Hansen [18, 19] multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.30)

M0 = M , M2 = −Ma2 +
2

15
qM3

(
1 − a2

M2

)3/2

, ... (5.31)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1 − a2

M2

)3/2

, .... (5.32)

The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn) multi-
pole moments is a consequence of the symmetry with respect to the equatorial plane.
From the above expressions we see that M is the total mass of the body, a represents
the specific angular momentum, and q is related to the deviation from spherical sym-
metry. All higher multipole moments can be shown to depend only on the parameters
M, a, and q.

We analyzed the geometric and physical properties of the above solution. The spe-
cial cases contained in the general solution suggest that it can be used to describe
the exterior asymptotically flat gravitational field of rotating body with arbitrary
quadrupole moment. This is confirmed by the analysis of the motion of particles
on the equatorial plane. The quadrupole moment turns out to drastically change the
geometric structure of spacetime as well as the motion of particles, especially near the
gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM) spacetime
which is a generalization of Kerr spacetime, including an arbitrary quadrupole. Our
results show [20] that a deviation from spherical symmetry, corresponding to a non-
zero electric quadrupole, completely changes the structure of spacetime. A similar
behavior has been found in the case of the Erez-Rosen spacetime. In fact, a naked
singularity appears that affects the ergosphere and introduces regions where closed
timelike curves are allowed. Whereas in the Kerr spacetime the ergosphere corre-
sponds to the boundary of a simply-connected region of spacetime, in the present
case the ergosphere is distorted by the presence of the quadrupole and can even be-
come transformed into non simply-connected regions. All these changes occur near

405



5 Stationary generalization

the naked singularity which is situated at x = 1, a value that corresponds to the ra-
dial distance r = M +

√
M2 − a2 in Boyer-Lindquist coordinates. In the limiting case

a/M > 1, the multipole moments and the metric become complex, indicating that
the physical description breaks down. Consequently, the extreme Kerr black hole
represents the limit of applicability of the QM spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we can con-
clude that the QM metric can be used to describe their exterior gravitational field.
Two alternative situations are possible. If the characteristic radius of the body is
greater than the critical distance M +

√
M2 − a2, i.e. x > 1, the exterior solution

must be matched with an interior solution in order to describe the entire spacetime.
If, however, the characteristic radius of the body is smaller than the critical distance
M +

√
M2 − a2, the QM metric describes the field of a naked singularity.
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