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3. Brief description

3.1. Spacetime splitting techniques in
General Relativity

Spacetime splitting techniques play a central role and have fundamental in-
terest in general relativity in view of extracting from the unified notion of
spacetime the separate classical notions of space and time, at the founda-
tion of all of our experience and intuition. Studying all the existing differ-
ent approaches scattered in the literature has allowed the creation a unique
framework encompassing all of them [1] and a more clear geometrical inter-
pretation of the underlying “measurement process” for tensors and tensorial
equations. “Gravitoelectromagnetism” is a convenient name for this frame-
work because it helps explain the close relation between gravity and electro-
magnetism represented by the Coriolis and centrifugal forces on one side and
the Lorentz force on the other side.

3.1.1. “1+3” splitting of the spacetime

During the last century, the various relativistic schools: Zelmanov, Landau,
Lifshitz and the Russian school, Lichnerowicz in France, the British school,
the Italian school (Cattaneo and Ferrarese), scattered Europeans (Ehlers and
Trautman, for example) and the Americans (Wheeler, Misner, etc.), developed
a number of different independent approaches to spacetime splitting almost
without reference to each other.

R. Ruffini [2], a former student of Cattaneo and a collaborator of Wheeler,
looking for a better understanding of black holes and their electromagnetic
properties, stimulated Jantzen, Carini and Bini to approach the problem and
to make an effort to clarify the interrelationships between these various ap-
proaches as well as to shed some light on the then confusing works of Abra-
mowicz and others on relativistic centrifugal and Coriolis forces. By putting
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3. Brief description

them all in a common framework and clarifying the related geometrical as-
pects, some order was brought to the field [1, 3, 4].

3.1.2. Measurement process in general relativity

The investigations on the underlying geometrical structure of any spacetime
splitting approach show that it is not relevant to ask which of these various
splitting formalisms is the “best” or “correct” one, but to instead ask what
exactly each one of them “measures” and which is specially suited to a par-
ticular application.

For instance, in certain situations a given approach can be more suitable
than another to provide intuition about or simplify the presentation of the
invariant spacetime geometry, even if all of them may always be used. These
ideas were then used to try to understand better the geometry of circular
orbits in stationary spacetimes and their physical properties where the con-
nection between general relativity and its Newtonian progenitor are most
natural.

The list of problems addressed and results obtained together can be found
in Appendix A.

3.2. Motion of particles and extended bodies in
general relativity

The features of test particle motion along a given orbit strongly depend on the
nature of the background spacetime as well as on the model adopted for the
description of the intrinsic properties of the particle itself (e.g., its charge or
spin). As a basic assumption, the dimensions of the test particle are supposed
to be very small compared with the characteristic length of the background
field in such a way that the background metric is not modified by the presence
of the particle (i.e., the back reaction is neglected), and that the gravitational
radiation emitted by the particle in its motion is negligible. The particle can
in turn be thought as a small extended body described by its own energy-
momentum tensor, whose motion in a given background may be studied by
treating the body via a multipole expansion. Thus, a single-pole particle is a
test particle without any internal structure; a pole-dipole particle instead is a
test particle whose internal structure is expressed by its spin, and so on. The
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3.2. Motion of particles and extended bodies in general relativity

equations of motion are then obtained by applying Einsteins field equations
together with conservation of the energy-momentum tensor describing the
body. For a single-pole particle this leads to a free particle moving along
the geodesics associated with the given background geometry. The motion
of a pole-dipole particle is instead described by the Mathisson-Papapetrou-
Dixon equations which couple background curvature and the spin tensor of
the field. The motion of particles with an additional quadrupolar structure
has been developed mostly by Dixon; because of its complexity, there are
very few applications in the literature. Finally, the discussion of the case in
which the test particle also has charge in addition to spin or mass quadrupole
moment is due to Dixon and Souriau and this situation has been very poorly
studied as well.

A complete list of the original results obtained and a deeper introduction
to the models can be found in Appendix B.

3.2.1. Test particles

Since the 1990s we have been investigating the geometrical as well as physical
properties of circular orbits in black hole spacetimes, selecting a number of
special orbits for various reasons. These were already reviewed in a previous
ICRANet report on activities. A recent work has instead been to consider
a given gravitational background a (weak) radiation field superposed on it
and a test particle interacting with both fields. Interesting effects arise like
the Poynting-Robertson effect which have been considered in the framework
of the full general relativistic theory for the first time.

Poynting-Robertson effect can be briefly described as follows.
For a small body orbiting a star, the radiation pressure of the light emitted

by the star in addition to the direct effect of the outward radial force exerts
a drag force on the body’s motion which causes it to fall into the star un-
less the body is so small that the radiation pressure pushes it away from the
star. Called the Poynting-Robertson effect, it was first investigated by J.H.
Poynting in 1903 using Newtonian gravity and then later calculated in lin-
earized general relativity by H.P. Robertson in 1937. These calculations were
revisited by Wyatt and Whipple in 1950 for applications to meteor orbits,
making more explicit Robertson’s calculations for slowly evolving elliptical
orbits and slightly extending them.

The drag force is easily naively understood as an aberration effect: if the
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3. Brief description

body is in a circular orbit, for example, the radiation pressure is radially out-
ward from the star, but in the rest frame of the body, the radiation appears
to be coming from a direction slightly towards its own direction of motion,
and hence a backwards component of force is exerted on the body which acts
as a drag force. If the drag force dominates the outward radial force, the
body falls into the star. For the case in which a body is momentarily at rest,
a critical luminosity similar to the Eddington limit for a star exists at which
the inward gravitational force balances the outward radiation force, a critical
value separating radial infall from radial escape. Similarly for a body initially
in a circular orbit, there are two kinds of solutions: those in which the body
spirals inward or spirals outward, depending on the strength of the radiation
pressure.

We have considered [136, 139, 138] this problem in the context of a test
body in orbit in a spherically symmetric Schwarzschild spacetime without
the restriction of slow motion, and then in the larger context of an axially
symmetric Kerr spacetime while developing the equations for a more general
stationary axially symmetric spacetime. The finite size of the radiating body
is ignored.

We have also developed applications to cylindrically symmetric Weyl class
spacetimes (exhibiting a typical naked singularity structure) as well as to the
Vaidya radiating spacetime where the photon field is not a test field but the
source of the spacetime itself.

3.2.2. Spinning test particles

During the last five years we have investigated the motion of spinning test
particles along special orbits in various spacetimes of astrophysical interest:
black hole spacetimes as well as more “exotic” background fields represent-
ing naked singularities or the superposition of two or more axially symmetric
bodies kept apart in a stable configuration by gravitationally inert singular
structures.

In particular, we have focused on the so called “clock effect,” defined by
the difference in the arrival times between two massive particles (as well as
photons) orbiting around a gravitating source in opposite directions after one
complete loop with respect to a given observer [5, 6, 7].

We have also analyzed the motion of massless spinning test particles, ac-
cording to an extended version of the Mathisson-Papapetrou model in a gen-
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3.3. Perturbations

eral vacuum algebraically special spacetime using the Newman-Penrose for-
malism in the special case in which the multipole reduction world line is
aligned with a principal null direction of the spacetime. Recent applications
concern instead the study of the Poynting-Robertson effect for spinning par-
ticles.

3.2.3. Particles with both dipolar and quadrupolar structure
(Dixon’s model)

We have studied the motion of particles with both dipolar and quadrupolar
structure in several different gravitational backgrounds (including Schwarz-
schild, Kerr, weak and strong gravitational waves, etc.) following Dixon’s
model and within certain restrictions (constant frame components for the
spin and the quadrupole tensor, center of mass moving along a circular orbit,
etc.).

We have found a number of interesting situations in which deviations from
geodesic motion due to the internal structure of the particle can give rise to
measurable effects.

3.2.4. Exact solutions representing extended bodies with
quadrupolar structure

We have investigated geometrical as well as physical properties of exact so-
lutions of Einstein’s field equations representing extended bodies with struc-
ture up to the quadrupole mass moment, generalizing so the familiar black
hole spacetimes of Schwarzschild and Kerr.

Recent results involve the use of the equivalence principle to compare geo-
desic motion in these spacetimes with nongeodesic motion of structured par-
ticles in Schwarzschild and Kerr spacetimes, allowing an interesting analysis
which strongly support Dixon’s model.

3.3. Perturbations

A discussion of curvature perturbations of black holes needs many different
approaches and mathematical tools. For example, the Newman-Penrose for-
malism in the tetradic and spinor version, the Cahen-Debever-Defrise self-
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3. Brief description

dual theory, the properties of the spin-weighted angular harmonics, with
particular attention to the related differential geometry and the group the-
ory, some tools of complex analysis, etc. Furthermore, even using any of the
above mentioned approaches, this remains a difficult problem to handle. It is
not by chance, for instance, that the gravitational and electromagnetic pertur-
bations of the Kerr-Newman rotating and charged black hole still represent
an open problem in general relativity.

During the last years, however, modern computers and software have reached
an exceptional computational level and one may re-visit some of these still
open problems, where technical difficulties stopped the research in the past.
Details can be found in Appendix C.

3.3.1. Curvature and metric perturbations in algebraically
special spacetimes

Most of the work done when studying perturbations in General Relativity
concerns curvature perturbations from one side or metric perturbations from
the other side. In the first case, one can easily deal with gauge invariant
quantities but the problem of finding frame-independent objects arises. Fur-
thermore, the reconstruction of the metric once the curvature perturbations
are known is a very difficult task. In the second case, instead, in order to start
working with an explicit metric since the beginning, the choice of a gauge
condition is necessary. Gauge independent quantities should therefore be
determined properly.

There exist very few examples of works considering both cases of curvature
and metric perturbations on the same level so that we have been motivated
to start working in this direction.

3.3.2. Curvature perturbations in type D spacetimes

In the Kerr spacetime Teukolsky [8] has given a single “master equation”
to deal with curvature perturbations by a field of any spin (“spin-weight,”
properly speaking). Then the problem of extending the results of Teukolsky
to other spacetimes is raised.

Actually, a very important result that we have obtained framed the Teukol-
sky equation in the form of a linearized de-Rham Laplacian equation for
the perturbing field [9, 10]. In addition, in all the cases (type D spacetime:
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3.3. Perturbations

Taub-NUT, type D-Kasner, etc) in which an equation similar to the Teukolsky
equation can be written down, one can study the various couplings between
the spin of the perturbing field and the background parameters, i.e., spin-
rotation, spin-acceleration couplings, etc., which can also be relevant in dif-
ferent contexts and from other points of view. We have obtained important
results considering explicit applications to the Taub-NUT, Kerr-Taub-NUT, C-
metric, spinning C-metric, Kasner and de Sitter spacetimes. For example in
the Taub-NUT spacetime we have shown that the perturbing field acquires
an effective spin which is simply related to the gravitomagnetic monopole
parameter ℓ of the background [11]; in the C-metric case (uniformly accel-
erated black hole spacetime) we have been able to introduce a gravitational
analog of the Stark effect, etc.

3.3.3. Curvature perturbations due to spinning bodies on a
Kerr background

A new scheme for computing dynamical evolutions and gravitational ra-
diations for intermediate-mass-ratio inspirals (IMRIs) based on an effective
one-body (EOB) dynamics plus Teukolsky perturbation theory has been re-
cently derived by Wen-Biao Han and collaborators [141]. This research line
is very promising in view of many possible applications ranging from the
Post-Newtonian physics of binary systems to numerical relativity.

3.3.4. Metric perturbations due to spinning bodies on a
Schwarzschild background

The full reconstruction of the perturbed metric by a pinning particle mov-
ing on a Schwarzschild background is possibile following the original Zerilli
and Ruffini approach, at least perturbatively at various Post-Newtonian or-
ders. This research project is expected to add corrections due to spin to the
relativistic two body problem within the effective one-body formalism intro-
duced by Damour.
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3. Brief description

3.3.5. Gravitational Self-force and Effective-One-Body
model: synergies

In recent years, it has been understood that a useful strategy for studying
the strong-field aspects of the dynamics of compact binaries is to combine,
in a synergetic manner, information gathered from several different approx-
imation methods, namely: the post-Newtonian (PN) formalism, the post-
Minkowskian one, the gravitational self-force (SF) formalism, full numerical
relativity simulations, and, the effective one-body (EOB) formalism. In par-
ticular, the EOB formalism appears to define a useful framework which can
combine, in an efficient and accurate manner, information coming from all the
other approximation schemes, while also adding genuinely new information
coming from EOB theory.

A main motivation to pursue this synergetic effort is certainly the current
development of gravitational wave detectors gives, which makes it urgent to
improve our theoretical understanding of the general relativistic dynamics
of compact binary systems, i.e., systems comprising black holes and/or neu-
tron stars. Recent work has shown that tidal interactions have a significant
influence on the late dynamics of coalescing neutron star binaries.

3.4. Cosmology

3.4.1. Mixmaster universe and the spectral index

We have recently revisited the Mixmaster dynamics in a new light, reveal-
ing a series of transitions in the complex scale invariant scalar invariant of
the Weyl curvature tensor best represented by the speciality index S, which
gives a 4-dimensional measure of the evolution of the spacetime independent
of all the 3-dimensional gauge-dependent variables except the time used to
parametrize it.

Its graph versus time with typical spikes in its real and imaginary parts cor-
responding to curvature wall collisions serves as a sort of electrocardiogram
of the Mixmaster universe, with each such spike pair arising from a single
circuit or “pulse” around the origin in the complex plane. These pulses in the
speciality index seem to invariantly characterize some of the so called spike
solutions in inhomogeneous cosmology and should play an important role in
the current investigations of inhomogeneous Mixmaster dynamics.
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3.4. Cosmology

3.4.2. Wave equations in de Sitter spacetime

Wave propagation on a de Sitter background spacetime can be considered
for both the electromagnetic and the gravitational case under the preliminar
choice of a gauge conditions. Usually, even in the recent literature, the dis-
cussion is limited to special gauge conditions only, like the harmonic one. Re-
cently, some interest has been raised instead for the development of a system-
atic study in terms of the de Donder gauge since this is close to the Lorentz
gauge of the electromagnetic case. Due to the particular symmetries of the de
Sitter spacetime we expect to be able to reconstruct the perturbed metric by
the wave propagation, at least in the PN scheme.

3.4.3. Fluids obeying non-ideal equations of state

Recently, we have proposed a new class of cosmological models consisting
of a FRW universe with a fluid source obeying a non-ideal equation of state,
with the suitable property to support a phase transition between low and
high density regimes, both characterized by an ideal gas behavior, i.e., pres-
sure and density change in linear proportion to each other. This kind of equa-
tion of state was first introduced by Shan and Chen [149] in the context of
lattice kinetic theory. We have first investigated the possibility to explain the
growth of the dark energy component of the present universe, as a natural
consequence of the fluid evolution equations. We have then developed an in-
flationary model based on a dark energy field described by a Shan-Chen-like
equation of state. The results are summarized in Appendix D.
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1. Bini D. , Geralico A.,
Relative-observer definition of the Simon tensor
Class. Quantum. Grav. vol. 35, 105003 (2018)
e-print arXiv:1808.05830 [gr-qc]
Abstract
The definition of the Simon tensor, originally given only in Kerr space-
time and associated with the static family of observers, is generalized to
any spacetime and to any possible observer family. Such generalization
is obtained by a standard 3+1 splitting of the Bianchi identities, which
are rewritten here as a ’balance equation’ between various spatial fields,
associated with the kinematical properties of the observer congruence
and representing the spacetime curvature.

2. Bini D., Damour T., A. Geralico
Spin-orbit precession along eccentric orbits: improving the knowledge of self-
force corrections and of their effective-one-body counterparts
Phys. Rev. D, 97 no.10, 104046 (2018)
e-print arXiv: 1801.03704 [gr-qc]
Abstract
The (first-order) gravitational self-force correction to the spin-orbit pre-
cession of a spinning compact body along a slightly eccentric orbit around
a Schwarzschild black hole is computed through the ninth post-Newtonian
order and to second order in the eccentricity, improving recent results
by Kavanagh et al. [Phys. Rev. D 96, 064012 (2017), 10.1103/Phys-
RevD.96.064012]. We show that our higher-accurate theoretical esti-
mates of the spin precession exhibits an improved agreement with cor-
responding numerical self-force data. We convert our new theoretical
results into its corresponding effective-one-body counterpart, thereby
determining several new post-Newtonian terms in the gyrogravitomag-
netic ratio gS*.
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Twisted Gravitational Waves
Phys. Rev. D, 97, no. 6, 064022 (2018).
e-Print arXiv:1801.06003 [gr-qc]
Abstract
In general relativity (GR), linearized gravitational waves propagating
in empty Minkowski spacetime along a fixed spatial direction have the
property that the wave front is the Euclidean plane. Beyond the linear
regime, exact plane waves in GR have been studied theoretically for a
long time and many exact vacuum solutions of the gravitational field
equations are known that represent plane gravitational waves. These
have parallel rays and uniform wave fronts. It turns out, however, that
GR also admits exact solutions representing gravitational waves prop-
agating along a fixed direction that are nonplanar. The wave front is
then nonuniform and the bundle of rays is twisted. We find a class
of solutions representing nonplanar unidirectional gravitational waves
and study some of the properties of these twisted waves.

4. Bini D., Damour T., Geralico A., Kavanagh C.
Detweiler’s redshift invariant for spinning particles along circular orbits on a
Schwarzschild background
Phys. Rev. D, 97 no.10, 104022 (2018).
e-print arXiv:1801.09616 [gr-qc]
Abstract
We study the metric perturbations induced by a classical spinning par-
ticle moving along a circular orbit on a Schwarzschild background, lim-
iting the analysis to effects which are first order in spin. The particle
is assumed to move on the equatorial plane and has its spin aligned
with the z axis. The metric perturbations are obtained by using two dif-
ferent approaches, i.e., by working in two different gauges: the Regge-
Wheeler gauge (using the Regge-Wheeler-Zerilli formalism) and a ra-
diation gauge (using the Teukolsky formalism). We then compute the
linear-in-spin contribution to the first-order self-force contribution to
Detweiler’s redshift invariant up to the 8.5 post-Newtonian order. We
check that our result is the same in both gauges, as appropriate for a
gauge-invariant quantity, and agrees with the currently known 3.5 post-
Newtonian results.
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Spinning particles in Twisted Gravitational Wave Spacetimes
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Abstract
Twisted gravitational waves (TGWs) are nonplanar waves with twisted
rays that move along a fixed direction in space. We study further the
physical characteristics of a recent class of Ricci-flat solutions of gen-
eral relativity representing TGWs with wave fronts that have negative
Gaussian curvature. In particular, we investigate the influence of TGWs
on the polarization of test electromagnetic waves and on the motion of
classical spinning test particles in such radiation fields. To distinguish
the polarization effects of twisted waves from plane waves, we examine
the theoretical possibility of existence of spin-twist coupling and show
that this interaction is generally consistent with our results.
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We study trapped surfaces from the point of view of local isometric
embedding into 3D Riemannian manifolds. When a two-surface is em-
bedded into 3D Euclidean space, the problem of finding all surfaces
applicable upon it gives rise to a non-linear partial differential equation
of the MongeAmp type, first discovered by Darboux, and later reformu-
lated by Weingarten. Even today, this problem remains very difficult,
despite some remarkable results. We find an original way of general-
izing the Darboux technique, which leads to a coupled set of six non-
linear partial differential equations. For the 3-manifolds occurring in
Friedmann(Lemaitre)RobertsonWalker cosmologies, we show that the
local isometric embedding of trapped surfaces into them can be proved
by solving just one non-linear equation. Such an equation is here solved
for the three kinds of Friedmann model associated with positive, zero,
negative curvature of spatial sections, respectively.

8. Bini D., Damour T.,
Gravitational spin-orbit coupling in binary systems at the second post-Minkowskian
approximation
Phys. Rev. D, 98, 044036 (2018).
e-print arXiv:1805.10809
Abstract
We compute the rotations, during a scattering encounter, of the spins of
two gravitationally interacting particles at second order in the gravita-
tional constant (second post-Minkowskian order). Following a strategy
introduced by us [D. Bini and T. Damour, Phys. Rev. D 96, 104038
(2017), 10.1103/PhysRevD.96.104038], we transcribe our result into a
correspondingly improved knowledge of the spin-orbit sector of the
effective one-body (EOB) Hamiltonian description of the dynamics of
spinning binary systems. We indicate ways of resumming our results
for defining improved versions of spinning EOB codes which might
help in providing a better analytical description of the dynamics of co-
alescing spinning binary black holes.

9. Bini D., Geralico A.,
High-energy hyperbolic scattering by neutron stars and black holes
Phys. Rev. D, 98, 024049 (2018).
e-print arXiv:1806.02085
Abstract
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We investigate the hyperbolic scattering of test particles, spinning test
particles, and particles with spin-induced quadrupolar structure by a
Kerr black hole in the ultrarelativistic regime. We also study how the
features of the scattering process modify if the source of the background
gravitational field is endowed with a nonzero mass quadrupole mo-
ment as described by the (approximate) Hartle-Thorne solution. We
compute the scattering angle either in closed analytical form, when pos-
sible, or as a power series of the (dimensionless) inverse impact param-
eter. It is a function of the parameters characterizing the source (intrin-
sic angular momentum and mass quadrupole moment) as well as the
scattered body (spin and polarizability constant). Measuring the scat-
tering angle thus provides useful information to determine the nature
of the two components of the binary system undergoing high-energy
scattering processes.

10. Bini D., Geralico A.,
Gravitational self-force corrections to tidal invariants for spinning particles on
circular orbits in a Schwarzschild spacetime
Phys. Rev. D, 98, 084021 (2018).
e-print arXiv:1806.03495
Abstract
We compute gravitational self-force (conservative) corrections to tidal
invariants for spinning particles moving along circular orbits in a Schwarzschild
spacetime. In particular, we consider the square and the cube of the
gravitoelectric quadrupolar tidal tensor and the square of the gravito-
magnetic quadrupolar tidal tensor. Our results are accurate to first or-
der in spin and through the 9.5 post-Newtonian order. We also compute
the associated electric-type and magnetic-type eigenvalues.

11. Bini D., Geralico A.,
Gravitational self-force corrections to tidal invariants for particles on eccentric
orbits in a Schwarzschild spacetime
Phys. Rev. D, 98, 064026 (2018).
e-print arXiv:1806.06635
Abstract
We study tidal effects induced by a particle moving along a slightly
eccentric equatorial orbit in a Schwarzschild spacetime within the grav-
itational self-force framework. We compute the first-order (conserva-
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tive) corrections in the mass ratio to the eigenvalues of the electric-type
and magnetic-type tidal tensors up to the second order in eccentricity
and through the 9.5 post-Newtonian order. Previous results on circular
orbits are thus generalized and recovered in a proper limit.

12. Bini D., Geralico A.,
Gravitational self-force corrections to tidal invariants for particles on circular
orbits in a Kerr spacetime
Phys. Rev. D, 98, 064040 (2018).
e-print arXiv:1806.08765
Abstract
We generalize to the Kerr spacetime existing self-force results on tidal
invariants for particles moving along circular orbits around a Schwarz-
schild black hole. We obtain linear-in-mass-ratio (conservative) correc-
tions to the quadratic and cubic electric-type invariants and the quadratic
magnetic-type invariant in series of the rotation parameter up to the
fourth order and through the ninth and eighth post-Newtonian orders,
respectively. We then analytically compute the associated eigenvalues
of both electric and magnetic tidal tensors.

13. Rosquist K., Bini D., Mashhoon B.,
Twisted Gravitational Waves of Petrov type D
Phys. Rev. D 98, 064039 (2018).
e-print arXiv:1807.09214
Abstract
Twisted gravitational waves (TGWs) are nonplanar unidirectional Ricci-
flat solutions of general relativity. Thus far only TGWs of Petrov type
II are implicitly known that depend on a solution of a partial differ-
ential equation and have wave fronts with negative Gaussian curva-
ture. A special Petrov type D class of such solutions that depends on
an arbitrary function is explicitly studied in this paper and its Killing
vectors are worked out. Moreover, we concentrate on two solutions of
this class, namely, the Harrison solution and a simpler solution we call
the w -metric and determine their Penrose plane-wave limits. The cor-
responding transition from a nonplanar TGW to a plane gravitational
wave is elucidated.

14. Bini D., Geralico A., Jantzen R.T.
Black hole geodesic parallel transport and the Marck recipe for isolating cumu-
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lative precession effects
Phys. Rev. D, submitted (2018).
e-print arXiv:1807.10085
Abstract
The Wigner rotations arising from the combination of boosts along two
different directions are rederived from a relative boost point of view and
applied to gyroscope spin precession along timelike geodesics in a Kerr
spacetime, clarifying the geometrical properties of Marck’s recipe for
describing parallel transport along such world lines expressed in terms
of the constants of the motion. His final angular velocity isolates the
cumulative spin precession angular velocity independent of the space-
time tilting required to keep the spin 4-vector orthogonal to the gyro
4-velocity. As an explicit example the cumulative precession effects are
computed for a test gyroscope moving along both bound and unbound
equatorial plane geodesic orbits.

15. Bini D., Damour T., Geralico A., Kavanagh C., van de Meent M.,
Gravitational self-force corrections to gyroscope precession along circular or-
bits in the Kerr spacetime
Phys. Rev. D, 98, 104062 (2018).
e-print arXiv: 1809.02516
Abstract
We generalize to Kerr spacetime previous gravitational self-force re-
sults on gyroscope precession along circular orbits in the Schwarzschild
spacetime. In particular we present high order post-Newtonian expan-
sions for the gauge invariant precession function along circular geodesics
valid for an arbitrary Kerr spin parameter and show agreement be-
tween these results and those derived from the full post-Newtonian
conservative dynamics. Finally we present strong field numerical data
for a range of the Kerr spin parameter, showing agreement with the
gravitational self-force-post-Newtonian results, and the expected light-
ring divergent behavior. These results provide useful testing bench-
marks for self-force calculations in Kerr spacetime, and provide an av-
enue for translating self-force data into the spin-spin coupling in effective-
one-body models.

16. Bini D., Geralico A., Jantzen R.T.
Black hole geodesic parallel transport and the Marck reduction procedure
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Phys. Rev. D, 99 , 064041 (2019).
e-print arXiv:1807.10085
DOI:10.1103/PhysRevD.99.064041 Abstract
The Wigner rotations arising from the combination of boosts along two
different directions are rederived from a relative boost point of view and
applied to study gyroscope spin precession along timelike geodesics in
a Kerr spacetime. First this helps to clarify the geometrical properties
of Marcks recipe for reducing the equations of parallel transport along
such world lines expressed in terms of the constants of the motion to
a single differential equation for the essential planar rotation. Second
this shows how to bypass Marcks reduction procedure by direct boost-
ing of orthonormal frames associated with natural observer families.
Wigner rotations mediate the relationship between these two descrip-
tions for reaching the same parallel transported frame along a geodesic.
The comparison is particularly straightforward in the case of equatorial
plane motion of a test gyroscope, where Marcks scalar angular velocity
captures the essential cumulative spin precession relative to the spheri-
cal frame locked to spatial infinity. These cumulative precession effects
are computed explicitly for both bound and unbound equatorial plane
geodesic orbits. The latter case is of special interest in view of recent
applications to the dynamics of a two-body system with spin. Our re-
sults are consistent with the point-particle limit of such two-body re-
sults and also pave the way for similar computations in the context of
gravitational self-force.

17. Bini D., Geralico A., Plastino W.,
Cylindrical gravitational waves: C-energy, super-energy and associated dy-
namical effects
Class. Quantum Grav., 36, no. 9, 095012 (2019).
e-print arXiv:1812.07938 [gr-qc]
DOI: 10.1088/1361-6382/ab10ec
Abstract
The energy content of cylindrical gravitational wave spacetimes is an-
alyzed by considering two local descriptions of energy associated with
the gravitational field, namely those based on the C-energy and the Bel-
Robinson super-energy tensor. A PoyntingRobertson-like effect on the
motion of massive test particles, beyond the geodesic approximation, is
discussed, allowing them to interact with the background field through
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an external force which accounts for the exchange of energy and mo-
mentum between particles and waves. In addition, the relative strains
exerted on a bunch of particles displaced orthogonally to the direction
of propagation of the wave are examined, providing invariant informa-
tion on spacetime curvature effects caused by the passage of the wave.
The explicit examples of monochromatic waves with either a single or
two polarization states as well as pulses of gravitational radiation are
discussed.

18. Nagar A., Messina F., Rettegno P., Bini D., Damour T., Geralico A., Ak-
cay S., Bernuzzi S.,
Nonlinear-in-spin effects in effective-one-body waveform models of spin-aligned,
inspiralling, neutron star binaries
Phys. Rev. D 99, no. 4, 044007 (2019)
DOI:10.1103/PhysRevD.99.044007
[arXiv:1812.07923 [gr-qc]].
Abstract
Spinning neutron stars acquire a quadrupole moment due to their own
rotation. This quadratic-in-spin, self-spin effect depends on the equa-
tion of state (EOS) and affects the orbital motion and rate of inspiral of
neutron star binaries. Building upon circularized post-Newtonian re-
sults, we incorporate the EOS-dependent self-spin (or monopole-quadrupole)
terms in the spin-aligned effective-one-body (EOB) waveform model
TEOBResumS at next-to-next-to-leading (NNLO) order, together with
other (bilinear, cubic and quartic) nonlinear-in-spin effects (at leading
order, LO). We point out that the structure of the Hamiltonian of TEO-
BResumS is such that it already incorporates, in the binary black hole
case, the recently computed [Levi and Steinhoff, arXiv:1607.04252] quartic-
in-spin LO term. Using the gauge-invariant characterization of the phas-
ing provided by the function Qω = ω2/ω̇ of ω = 2π f , where f is
the gravitational wave frequency, we study the EOS dependence of
the self-spin effects and show that: (i) the next-to-leading order (NLO)
and NNLO monopole-quadrupole corrections yield increasingly phase-
accelerating effects compared to the corresponding LO contribution; (ii)
the standard TaylorF2 post-Newtonian (PN) treatment of NLO (3PN)
EOS-dependent self-spin effects makes their action stronger than the
corresponding EOB description; (iii) the addition to the standard 3PN
TaylorF2 post-Newtonian phasing description of self-spin tail effects at
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LO allows one to reconcile the self-spin part of the TaylorF2 PN phas-
ing with the corresponding TEOBResumS one up to dimensionless fre-
quencies M ≈ 0.040.06. Such a tail-augmented TaylorF2 approximant
then yields an analytically simplified, EOB-faithful, representation of
the EOS-dependent self-spin phasing that can be useful to improve cur-
rent PN-based (or phenomenological) waveform models for inspiralling
neutron star binaries. Finally, by generating the inspiral dynamics using
the post-adiabatic approximation, incorporated in a new implementa-
tion of TEOBResumS, one finds that the computational time needed to
obtain a typical waveform (including all multipoles up to l = 8) from
10 Hz is of the order of 0.4 sec.

19. Bini D., Geralico A., Jantzen R.T., Plastino W.,
Gödel spacetime: elliptic-like geodesics and gyroscope precession
Phys. Rev. D, 100, 084051, (2019)
DOI:10.1103/PhysRevD.100.084051
e-print arXiv:1905.04917 [gr-qc]
Abstract
Using standard cylindrical-like coordinates naturally adapted to the
cylindrical symmetry of the Gdel spacetime, we study ellipticlike geodesic
motion on hyperplanes orthogonal to the symmetry axis through an
eccentricity-semi-latus rectum parametrization which is familiar from
the Newtonian description of a two-body system. We compute several
quantities which summarize the main features of the motion, namely
the coordinate time and proper time periods of the radial motion, the
frequency of the azimuthal motion, the full variation of the azimuthal
angle over a period, and so on. Exact as well as approximate (i.e.,
Taylor-expanded in the limit of small eccentricity) analytic expressions
of all these quantities are obtained. Finally, we consider their applica-
tion to the gyroscope precession frequency along these orbits, general-
izing the existing results for the circular case.

20. Bini D., Geralico A., Gionti G., Plastino W., Velandia N.
Scattering of uncharged particles in the field of two extremely charged black
holes
Gen. Rel. Gravitation, vol. 51, 153, (2019)
e-print arXiv:1906.01991 [gr-qc]
DOI:doi.org/10.1007/s10714-019-2642-y Abstract
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We investigate the motion of uncharged particles scattered by a binary
system consisting of extremely charged black holes in equilibrium as
described by the MajumdarPapapetrou solution. We focus on unbound
orbits confined to the plane containing both black holes. We consider
the two complementary situations of particles approaching the system
along a direction parallel to the axis where the black holes are displaced
and orthogonal to it. We numerically compute the scattering angle as
a function of the particles conserved energy parameter, which provides
a gauge-invariant information of the scattering process. We also study
the precession of a test gyroscope along such orbits and evaluate the
accumulated precession angle after a full scattering, which is another
gauge-invariant quantity.

21. Bini D. and Geralico A.
New gravitational self-force analytical results for eccentric equatorial orbits
around a Kerr black hole: redshift invariant
Phys. Rev. D, 100, 104002, (2019)
DOI:10.1103/PhysRevD.100.104002
e-print arXiv:1907.11080 [gr-qc]
Abstract
The Detweiler-Barack-Sago redshift function for particles moving along
slightly eccentric equatorial orbits around a Kerr black hole is currently
known up to the second order in eccentricity, second order in spin pa-
rameter, and the 8.5 post-Newtonian order. We improve the analyti-
cal computation of such a gauge-invariant quantity by including terms
up to the fourth order in eccentricity at the same post-Newtonian ap-
proximation level. We also check that our results agrees with the corre-
sponding post-Newtonian expectation of the same quantity, calculated
by using the currently known Hamiltonian for spinning binaries.

22. Bini D. and Geralico A.
New gravitational self-force analytical results for eccentric equatorial orbits
around a Kerr black hole: gyroscope precession
Phys. Rev. D, 100, 104003, (2019)
DOI:10.1103/PhysRevD.100.104003
e-print arXiv:1907.11082 [gr-qc]
Abstract
We analytically compute the gravitational self-force correction to the gy-
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roscope precession along slightly eccentric equatorial orbits in the Kerr
spacetime, generalizing previous results for the Schwarzschild space-
time. Our results are accurate through the 9.5 post-Newtonian order
and to second order in both eccentricity and rotation parameter. We
also provide a post-Newtonian check of our results based on the cur-
rently known Hamiltonian for spinning binaries.

23. Bini D. and Geralico A.
Analytical determination of the periastron advance in spinning binaries from
self-force computations
Phys. Rev. D, to appear, (2019)
e-print arXiv:1907.11083 [gr-qc]
Abstract
We present the first analytical computation of the (conservative) grav-
itational self-force correction to the periastron advance around a spin-
ning black hole. Our result is accurate to the second order in the rota-
tional parameter and through the 9.5 post-Newtonian level. It has been
obtained as the circular limit of the correction to the gyroscope pre-
cession invariant along slightly eccentric equatorial orbits in the Kerr
spacetime. The latter result is also new and we anticipate here the first
few terms only of the corresponding post-Newtonian expansion.

24. Bini D., Damour T. and Geralico A.
Novel approach to binary dynamics: application to the fifth post-Newtonian
level
Phys. Rev. Lett., 123, 231104, (2019)
DOI:10.1103/PhysRevLett.123.231104
e-print arXiv:1909.02375 [gr-qc]
Abstract
We introduce a new methodology for deriving the conservative dynam-
ics of gravitationally interacting binary systems. Our approach com-
bines, in a novel way, several theoretical formalisms: post-Newtonian,
post-Minkowskian, multipolar-post-Minkowskian, gravitational self-force,
and effective one body. We apply our method to the derivation of the
fifth post-Newtonian dynamics. By restricting our results to the third
post-Minkowskian level, we give the first independent confirmation of
the recent result of Bern et al. [Phys. Rev. Lett. 122, 201603 (2019)PRLTAO0031-
900710.1103/PhysRevLett.122.201603]. We also offer checks for future
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fourth post-Minkowskian calculations. Our technique can, in principle,
be extended to higher orders of perturbation theory.

25. Bini D. , Damour T. and Geralico A.
Scattering of tidally interacting bodies in post-Minkowskian gravity
Phys. Rev. D 101, no. 4, 044039 (2020)
DOI:10.1103/PhysRevD.101.044039
e-Print: arXiv:2001.00352 [gr-qc] .
Abstract
The post-Minkowskian approach to gravitationally interacting binary
systems (i.e., perturbation theory in G, without assuming small veloci-
ties) is extended to the computation of the dynamical effects induced by
the tidal deformations of two extended bodies, such as neutron stars.
Our derivation applies general properties of perturbed actions to the
effective field theory description of tidally interacting bodies. We com-
pute several tidal invariants (notably the integrated quadrupolar and
octupolar actions) at the first post-Minkowskian order. The correspond-
ing contributions to the scattering angle are derived.

26. Bini D. , Geralico A. Jantzen R. T., Plastino W.,
Gödel spacetime, planar geodesics and the Möbius map
Gen Relativ Gravit vol. 52, 73 (2020)
doi: doi.org/10.1007/s10714-020-02731-w e-print: arXiv:2002.11432
Abstract
Timelike geodesics on a hyperplane orthogonal to the symmetry axis
of the Gdel spacetime appear to be elliptic-like if standard coordinates
naturally adapted to the cylindrical symmetry are used. The orbit can
then be suitably described through an eccentricity-semi-latus rectum
parametrization, familiar from the Newtonian dynamics of a two-body
system. However, changing coordinates such planar geodesics all be-
come explicitly circular, as exhibited by Kundt’s form of the Gdel met-
ric. We derive here a one-to-one correspondence between the constants
of the motion along these geodesics as well as between the parame-
ter spaces of elliptic-like versus circular geodesics. We also show how
to connect the two equivalent descriptions of particle motion by intro-
ducing a pair of complex coordinates in the 2-planes orthogonal to the
symmetry axis, which brings the metric into a form which is invariant
under Mbius transformations preserving the symmetries of the orbit,
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i.e., taking circles to circles.

27. Rettegno P., Martinetti F., Nagar A., Bini D. , Riemenschneider G., and
Damour T.
Comparing effective One Body Hamiltonians for spin-aligned coalescing bina-
ries
Physical Review D ,Vol. 101, No. 10 (2020)
DOI: 10.1103/PhysRevD.101.104027
e-Print: arXiv:1911.10818 [gr-qc]
Abstract
TEOBResumS and SEOBNRv4 are the two existing semi-analytical grav-
itational waveform models for spin-aligned coalescing black hole bi-
naries based on the effective-one-body approach.They are informed by
numerical relativity simulations and provide the relative dynamics and
waveforms from early inspiral to plunge, merger and ringdown The
central building block of each model is the EOB resummed Hamilto-
nian.The two models implement different Hamiltonians that are both
deformations of the Hamiltonian of a test spinning black hole moving
around a Kerr black hole.Here we analytically compare, element by el-
ement, the two Hamiltonians. In particular: we illustrate that one can
introduce a centrifugal radius SEOBNRv4, so to rewrite the Hamilto-
nian in a more compact form that is analogous to the one of TEOBRe-
sumS.The latter centrifugal radius cannot, however, be identified with
the one used in TEOBResumS because the two models differ in their
ways of incorporating spin effects in their respective deformations of
the background Kerr Hamiltonian. We performed extensive compar-
isons between the energetics corresponding to the two Hamiltonians
using gauge-invariant quantities. Finally, as an exploratory investiga-
tion, we apply the post-adiabatic approximation to the newly rewritten
SEOBNRv4 Hamiltonian, illustrating that it is possible to generate long-
inspiral waveforms with negligible computational cost.

28. Bini D. and Esposito G.
New solutions of the Ermakov-Pinney equation in curved spacetime
General Relativity and Gravitation, Vol. 52, No. 60, 2020
doi: 10.1007/s10714-020-02713-y
e-Print: arXiv:1912.01869 [gr-qc]
Abstract
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An Ermakov-Pinney-like equation associated with the scalar wave equa-
tion in curved space-time is here studied. The example of Schwarzschild
space-time considered in the present work shows that this equation can
be viewed more as a model equation, with interesting applications in
black hole physics. Other applications studied involve cosmological
space-times (de Sitter) and pulse of plane gravitational waves. In all
these cases the evolution of the Ermakov-Pinney field seems to be con-
sistent with a rapid blow-up, unlike the Schwarzschild case where spa-
tially damped oscillations are allowed. Eventually, the phase function
is also evaluated in many of the above space-time models.

29. Bini D. , Geralico A. and Steinhoff J.,
Detweiler’s redshift invariant for extended bodies orbiting a Schwarzschild
black hole
Phys. Rev. D, vol. 102, 024091, (2020)
doi: 10.1103/PhysRevD.102.024091
e-print: arXiv:2003.12887 [gr-qc]
Abstract
We compute the first-order self-force contribution to Detweiler’s red-
shift invariant for extended bodies endowed with both dipolar and quadrupo-
lar structure (with spin-induced quadrupole moment) moving along
circular orbits on a Schwarzschild background. Our analysis includes
effects which are second order in spin, generalizing previous results for
purely spinning particles. The perturbing body is assumed to move
on the equatorial plane, the associated spin vector being orthogonal to
it. The metric perturbations are obtained by using a standard gravita-
tional self-force approach in a radiation gauge. Our results are accurate
through the 6.5 post-Newtonian order, and are shown to reproduce the
corresponding post-Newtonian expression for the same quantity com-
puted by using the available Hamiltonian from an effective field theory
approach for the dynamics of spinning binaries.

30. Bini D. , Damour T. and Geralico A.
Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders
Phys. Rev. D, vol. 102, 024062 (2020)
e-print: arXiv:2003.11891 [gr-qc]
DOI: 10.1103/PhysRevD.102.024062
Appeared as Editor Suggestion paper
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Abstract
Using the new methodology introduced in a recent Letter [Phys. Rev.
Lett. 123, 231104 (2019)], we present the details of the computation of
the conservative dynamics of gravitationally interacting binary systems
at the fifth post-Newtonian (5PN) level, together with its extension at
the fifth-and-a-half post-Newtonian (5.5PN) level. We present also the
sixth post-Newtonian (6PN) contribution to the third-post-Minkowskian
(3PM) dynamics. Our strategy combines several theoretical formalisms:
post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, grav-
itational self-force, effective one-body, and Delaunay averaging. We
determine the full functional structure of the 5PN Hamiltonian (which
involves 95 non-zero numerical coefficients), except for two undeter-
mined coefficients proportional to the cube of the symmetric mass ra-
tio, and to the fifth and sixth power of the gravitational constant, G.
We present not only the 5PN-accurate, 3PM contribution to the scatter-
ing angle, but also its 6PN-accurate generalization. Both results agree
with the corresponding truncations of the recent 3PM result of Bern et
al. [Phys. Rev. Lett. 122, 201603 (2019)]. We also compute the 5PN-
accurate, fourth-post-Minkowskian (4PM) contribution to the scatter-
ing angle, including its nonlocal contribution, thereby offering checks
for future 4PM calculations. We point out a remarkable hidden simplic-
ity of the gauge-invariant functional relation between the radial action
and the effective-one-body energy and angular momentum.

31. Bini D. , Damour T. and Geralico A.
Sixth Post-Newtonian local-in-time dynamics of binary systems
Phys. Rev. D, vol 102, 024061 (2020)
e-print: arXiv:2004.05407 [gr-qc]
DOI: 10.1103/PhysRevD.102.024061
Appeared as Editor Suggestion paper
Abstract
Using a recently introduced method [Phys. Rev. Lett. 123, 231104 (2019)],
which splits the conservative dynamics of gravitationally interacting bi-
nary systems into a non-local-in-time part and a local-in-time one, we
compute the local part of the dynamics at the sixth post-Newtonian
(6PN) accuracy. Our strategy combines several theoretical formalisms:
post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, effective-
field-theory, gravitational self-force, effective one-body, and Delaunay
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averaging. The full functional structure of the local 6PN Hamiltonian
(which involves 151 numerical coefficients) is derived, but contains four
undetermined numerical coefficients. Our 6PN-accurate results are com-
plete at orders G3 and G4, and the derived O(G3) scattering angle agrees,
within our 6PN accuracy, with the computation of [Phys. Rev. Lett. 122,
no. 20, 201603 (2019)]. All our results are expressed in several different
gauge-invariant ways. We highlight, and make a crucial use of, several
aspects of the hidden simplicity of the mass-ratio dependence of the
two-body dynamics.

32. Bini D. , Damour T. and Geralico A.
Sixth post-Newtonian nonlocal-in-time dynamics of binary systems
Phys. Rev. D, 102, no.8, 084047 (2020)
e-print: arXiv:2007.11239 [gr-qc, hep-th]
DOI: 10.1103/PhysRevD.102.084047
Abstract
We complete our previous derivation, at the sixth post-Newtonian (6PN)
accuracy, of the local-in-time dynamics of a gravitationally interacting
two-body system by giving two gauge-invariant characterizations of its
complementary nonlocal-in-time dynamics. On the one hand, we com-
pute the nonlocal part of the scattering angle for hyberboliclike motions;
and, on the other hand, we compute the nonlocal part of the averaged
(Delaunay) Hamiltonian for ellipticlike motions. The former is com-
puted as a large-angular-momentum expansion (given here to next-to-
next-to-leading order), while the latter is given as a small-eccentricity
expansion (given here to the tenth order). We note the appearance of
ζ(3) in the nonlocal part of the scattering angle. The averaged Hamilto-
nian for ellipticlike motions then yields two more gauge-invariant ob-
servables: the energy and the periastron precession as functions of or-
bital frequencies. We point out the existence of a hidden simplicity in
the mass-ratio dependence of the gravitational-wave energy loss of a
two-body system.

33. Salucci P, et al., Einstein, Planck and Vera Rubin: Relevant Encounters Be-
tween the Cosmological and the Quantum Worlds.
Frontiers in Astronomy and Space Sciences, 8:603190, 2021
doi: 10.3389/fphy.2020.603190
White Paper of the INFN collaboration QGSKY
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e-print: arXiv:2011.09278

Abstract
In Cosmology and in Fundamental Physics there is a crucial question
like: where the elusive substance that we call Dark Matter is hidden
in the Universe and what is it made of?, that, even after 40 years from
the Vera Rubin seminal discovery does not have a proper answer. Ac-
tually, the more we have investigated, the more this issue has become
strongly entangled with aspects that go beyond the established Quan-
tum Physics, the Standard Model of Elementary particles and the Gen-
eral Relativity and related to processes like the Inflation, the acceler-
ated expansion of the Universe and High Energy Phenomena around
compact objects. Even Quantum Gravity and very exotic DM particle
candidates may play a role in framing the Dark Matter mystery that
seems to be accomplice of new unknown Physics. Observations and
experiments have clearly indicated that the above phenomenon cannot
be considered as already theoretically framed, as hoped for decades.
The Special Topic to which this review belongs wants to penetrate this
newly realized mystery from different angles, including that of a con-
tamination of different fields of Physics apparently unrelated. We show
with the works of this ST that this contamination is able to guide us into
the required new Physics. This review wants to provide a good num-
ber of these ”paths or contamination” beyond/among the three worlds
above; in most of the cases, the results presented here open a direct link
with the multi-scale dark matter phenomenon, enlightening some of
its important aspects. Also in the remaining cases, possible interesting
contacts emerges.

34. Bini D. , Damour T., Geralico A., Laporta S. and Mastrolia P.
Gravitational scattering at the seventh order in G: nonlocal contribution at the
sixth post-Newtonian accuracy,
Phys. Rev. D, Vol. 103, No. 4, 044038 (2021)
e-print: [arXiv:2012.12918 [gr-qc]].
DOI: 10.1103/PhysRevD.103.044038
Abstract

A recently introduced approach to the classical gravitational dynamics
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of binary systems involves intricate integrals (linked to a combination
of nonlocal-in-time interactions with iterated 1/r-potential scattering)
which have so far resisted attempts at their analytical evaluation. By
using computing techniques developed for the evaluation of multiloop
Feynman integrals (notably harmonic polylogarithms and Mellin trans-
form) we show how to analytically compute all the integrals entering
the nonlocal-in-time contribution to the classical scattering angle at the
sixth post-Newtonian accuracy, and at the seventh order in Newtons
constant, G (corresponding to six-loop graphs in the diagrammatic rep-
resentation of the classical scattering angle).

35. Bini D. , Esposito G.,
Investigating new forms of gravity-matter couplings in the gravitational field
equations
Phys. Rev. D, vol. 103, 064030 (2021)
e-print: [arXiv:2101.09771 [gr-qc]]
DOI: 10.1103/PhysRevD.103.064030
Abstract

This paper proposes a toy model where, in the Einstein equations, the
right-hand side is modified by the addition of a term proportional to
the symmetrized partial contraction of the Ricci tensor with the energy-
momentum tensor, while the left-hand side remains equal to the Ein-
stein tensor. Bearing in mind the existence of a natural length scale
given by the Planck length, dimensional analysis shows that such a
term yields a correction linear in h̄ to the classical term that is instead
just proportional to the energy-momentum tensor. One then obtains an
effective energy-momentum tensor that consists of three contributions:
pure energy part, mechanical stress, and thermal part. The pure en-
ergy part has the appropriate property for dealing with the dark sector
of modern relativistic cosmology. Such a theory coincides with gen-
eral relativity in vacuum, and the resulting field equations are here
solved for a Dunn and Tupper metric, for departures from an interior
Schwarzschild solution as well as for a Friedmann-Lemaitre-Robertson-
Walker universe.

36. Bini D. , Damour T., Geralico A.
Radiative contributions to gravitational scattering,
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Phys. Rev. D 104, no.8, 084031 (2021)
doi:10.1103/PhysRevD.104.084031
e-print: [arXiv:2107.08896 [gr-qc]].
Abstract

The linear-order effects of radiation-reaction on the classical scattering
of two point masses, in general relativity, are derived by a variation-of-
constants method. Explicit expressions for the radiation-reaction con-
tributions to the changes of 4-momentum during scattering are given to
linear order in the radiative losses of energy, linear-momentum, and an-
gular momentum. The polynomial dependence on the masses of the 4-
momentum changes is shown to lead to nontrivial identities relating the
various radiative losses. At order G3 our results lead to a streamlined
classical derivation of results recently derived within a quantum ap-
proach. At order G4 we compute the needed radiative losses to next-to-
next-to-leading-order in the post-Newtonian expansion, thereby reach-
ing the absolute fourth and a half post-Newtonian level of accuracy
in the 4-momentum changes. We also provide explicit expressions, at
the absolute sixth post-Newtonian accuracy, for the radiation-graviton
contribution to conservative O(G4) scattering. At orders G5 and G6

we derive explicit theoretical expressions for the last two hitherto un-
determined parameters describing the fifth-post-Newtonian dynamics.
Our results at the fifth-post-Newtonian level confirm results of [Nucl.
Phys. B965, 115352 (2021)] but exhibit some disagreements with results
of [Phys. Rev. D 101, 064033 (2020)].

37. Bini D., Geralico A.
Frequency domain analysis of the gravitational wave energy loss in hyperbolic
encounters
Phys. Rev. D, vol. 104, 104019 (2021)
doi:10.1103/PhysRevD.104.104019
e-print: [arXiv:2108.02472 [gr-qc]].
Abstract

The energy radiated (without the 1.5PN tail contribution which requires
a different treatment) by a binary system of compact objects moving in
a hyperboliclike orbit is computed in the frequency domain through the
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second post-Newtonian level as an expansion in the large-eccentricity
parameter up to next-to-next-to-leading order, completing the time do-
main corresponding information (fully known in closed form at the sec-
ond post-Newtonian of accuracy). The spectrum contains quadratic
products of the modified Bessel functions of the first kind (Bessel K
functions) with frequency-dependent order (and argument) already at
Newtonian level, so preventing the direct evaluation of Fourier inte-
grals. However, as the order of the Bessel functions tends to zero for
large eccentricities, a large-eccentricity expansion of the spectrum al-
lows for analytical computation beyond the lowest order.

38. Bini D., Geralico A.
Higher-order tail contributions to the energy and angular momentum fluxes
in a two-body scattering process
Phys. Rev. D, 104, 104020 (2021)
doi:10.1103/PhysRevD.104.104020
e-print: [arXiv:2108.05445 [gr-qc]].
Abstract

The need for more and more accurate gravitational-wave templates re-
quires taking into account all possible contributions to the emission
of gravitational radiation from a binary system. Therefore, working
within a multipolar-post-Minkowskian framework to describe the gravitational-
wave field in terms of the source multipole moments, the dominant
instantaneous effects should be supplemented by hereditary contribu-
tions arising from nonlinear interactions between the multipoles. The
latter effects include tails and memories and are described in terms of
integrals depending on the past history of the source. We compute
higher-order tail (i.e., tail-of-tail, tail-squared, and memory) contribu-
tions to both energy and angular momentum fluxes and their averaged
values along hyperboliclike orbits at the leading post-Newtonian ap-
proximation, using harmonic coordinates and working in the Fourier
domain. Because of the increasing level of accuracy recently achieved in
the determination of the scattering angle in a two-body system by sev-
eral complementary approaches, the knowledge of these terms will pro-
vide useful information to compare results from different formalisms.

39. Bini D. , Mashhoon B., Obukhov Y. N.
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Gravitomagnetic Helicity
Phys. Rev. D 105, no.6, 064028 (2022)
doi:10.1103/PhysRevD.105.064028
[arXiv:2112.07550 [gr-qc]].
Abstract

Mass currents in astrophysics generate gravitomagnetic fields of enor-
mous complexity. Gravitomagnetic helicity, in direct analogy with mag-
netic helicity, is a measure of entwining of the gravitomagnetic field
lines. We discuss gravitomagnetic helicity within the gravitoelectro-
magnetic (GEM) framework of linearized general relativity. Further-
more, we employ the spacetime curvature approach to GEM in order
to determine the gravitomagnetic helicity for static observers in Kerr
spacetime.

40. Bini D. and Geralico A.,
Momentum recoil in the relativistic two-body problem: Higher-order tails
Phys. Rev. D 105, no.8, 084028 (2022)
doi:10.1103/PhysRevD.105.084028
[arXiv:2202.03037 [gr-qc]].
Abstract

In the description of the relativistic two-body interaction, together with
the effects of energy and angular momentum losses due to the emis-
sion of gravitational radiation, one has to take into account also the loss
of linear momentum, which is responsible for the recoil of the center-
of-mass of the system. We compute higher-order tail (i.e., tail-of-tail
and tail-squared) contributions to the linear momentum flux for a non-
spinning binary system either along hyperboliclike or ellipticlike or-
bits. The corresponding orbital averages are evaluated at their leading
post-Newtonian approximation, using harmonic coordinates and work-
ing in the Fourier domain. The final expressions are given in a large-
eccentricity (or large-angular momentum) expansion along hyperboli-
clike orbits and in a small-eccentricity expansion along ellipticlike or-
bits. We thus complete a previous analysis focusing on both energy and
angular momentum losses [Phys. Rev. D 104, 104020 (2021)], provid-
ing brick-type results which will be useful, e.g., in the high-accurate
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determination of the radiated impulses of the two bodies undergoing a
scattering process.

41. Bini D. and Geralico A.,
Multipolar invariants and the eccentricity enhancement function parametriza-
tion of gravitational radiation
Phys. Rev. D 105, no.12, 124001 (2022)
doi: 10.1103/PhysRevD.105.124001
[arXiv:2204.08077 [gr-qc]].
Abstract

Gravitational radiation can be decomposed as an infinite sum of radia-
tive multipole moments, which parametrize the waveform at infinity.
The multipolar-post-Minkowskian formalism provides a connection be-
tween these multipoles and the source multipole moments, known as
explicit integrals over the matter source. The gravitational wave en-
ergy, angular momentum, and linear momentum fluxes are then ex-
pressed as multipolar expansions containing certain combinations of
the source moments. We compute several gauge-invariant quantities as
“building blocks” entering the multipolar expansion of both radiated
energy and angular momentum at the 2.5 post-Newtonian (PN) level of
accuracy in the case of hyperboliclike motion, by completing previous
studies through the calculation of tail effects up to the fractional 1PN
order. We express such multipolar invariants in terms of certain eccen-
tricity enhancement factor functions, which are the counterpart of the
well-known enhancement functions already introduced in the literature
for ellipticlike motion. Finally, we use the complete 2.5PN-accurate av-
eraged energy and angular momentum fluxes to study the associated
adiabatic evolution of orbital elements under gravitational radiation re-
action.

42. Bini D. and Mashhoon B.,
Static and Dynamic Melvin Universes
Phys. Rev. D 105, no.12, 124012 (2022)
doi: 10.1103/PhysRevD.105.124012
[arXiv:2202.02033 [gr-qc]].
Abstract
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We briefly review the known properties of Melvins magnetic universe
and study the propagation of test charged matter waves in this static
spacetime. Moreover, the possible correspondence between the wave
perturbations on the background Melvin universe and the motion of
charged test particles is discussed. Next, we explore a simple scenario
for turning Melvins static universe into one that undergoes gravita-
tional collapse. In the resulting dynamic gravitational field, the forma-
tion of cosmic double-jet configurations is emphasized.

43. Bini D. , Kauffman S., Succi S., Tello P. G. ,
First Post-Minkowskian approach to turbulent gravity
Phys. Rev. D 106, no.10, 104007 (2022)
doi: 10.1103/PhysRevD.106.104007
[arXiv:2208.03572 [gr-qc]].
Abstract

We compute the metric fluctuations induced by a turbulent energy-
matter tensor within the first order post-Minkowskian approximation.
It is found that the turbulent energy cascade can in principle interfere
with the process of black hole formation, leading to a potentially strong
coupling between these two highly nonlinear phenomena. It is further
found that a power-law turbulent energy spectrum E(k) ∼ k−n gener-
ates metric fluctuations scaling as xn−2, where x is the four-dimensional
spacelike distance from an arbitrary origin in Minkowski spacetime,
highlighting the onset of metric singularities whenever n < 2. Finally,
the effect of metric fluctuations on the geodesic motion of test particles
is also discussed as a potential technique to extract information on the
spectral characteristics of fluctuating spacetime.

44. Bini D., Damour T.,
Radiation-reaction and angular momentum loss at the second Post-Minkowskian
order
Phys.Rev.D 106 12, 124049 (2022)
[arXiv:2211.06340 [gr-qc]].
Abstract

We compute the variation of the Fokker-Wheeler-Feynman total linear
and angular momentum of a gravitationally interacting binary system
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under the second post-Minkowskian retarded dynamics. The resulting
O(G2) equations-of-motion-based, total change in the systems angular
momentum is found to agree with existing computations that assumed
balance with angular momentum fluxes in the radiation zone.

45. P. G. Tello, Bini D., S. Kauffman, S. Succi,
Predicting today’s cosmological constant via the Zel’dovich-Holographic con-
nection
EPL, 141, 19002 (2023)
doi: 10.1209/0295-5075/acae01
[arXiv:2208.08129 [gr-qc]].
Abstract

This Letter proposes a solution of the Vacuum Energy and the Cosmo-
logical Constant (CC) paradox based on the Zel’dovich’s ansatz, which
states that the observable contribution to the vacuum energy density is
given by the gravitational energy of virtual particle-antiparticle pairs,
continually generated and annihilated in the vacuum state. The nov-
elty of this work is the use of an ultraviolet cut-off length based on the
Holographic Principle, which is shown to yield current values of the CC
in good agreement with experimental observations.

46. Bini D., Damour T., Geralico A.
Radiated momentum and radiation reaction in gravitational two-body scatter-
ing including time-asymmetric effects
Phys. Rev. D 107, no.2, 024012 (2023)
doi:10.1103/PhysRevD.107.024012
[arXiv:2210.07165 [gr-qc]].
Abstract

We compute to high post-Newtonian accuracy the 4-momentum (lin-
ear momentum and energy), radiated as gravitational waves in a two-
body system undergoing gravitational scattering. We include, for the
first time, all the relevant time-asymmetric effects that arise when con-
sistently going three post-Newtonian orders beyond the leading post-
Newtonian order. We find that the inclusion of time-asymmetric radia-
tive effects (both in tails and in the radiation-reacted hyperbolic motion)
is crucial to ensure the mass polynomiality of the post-Minkowskian

1273



4. Publications (2018 – 2023)

expansion (G-expansion) of the radiated 4-momentum. Imposing the
mass polynomiality of the corresponding individual impulses deter-
mines the conservativelike radiative contributions at the fourth post-
Minkowskian order and strongly constrains them at the fifth post-Minkowskian
order.

47. Bini D., Geralico A., R. T. Jantzen
Petrov type I spacetime curvature: principal null vector spanning dimension
IJGMMP, Vol. 20, No. 05, 2350087 (2023)
doi: 10.1142/S0219887823500871
e-Print: [arXiv:2111.01283 [gr-qc]]
Abstract

The class of Petrov type I curvature tensors is further divided into those
for which the span of the set of distinct principal null directions has
dimension four (maximally spanning type I) or dimension three (non-
maximally spanning type I). Explicit examples are provided for both
vacuum and nonvacuum spacetimes.

48. Bini D., Geralico A., R. T. Jantzen
Wedging spacetime principal null directions
IJGMMP, Vol. 20, No. 9 (2023) 2350149 (24 pages)
doi: 10.1142/S0219887823501499
e-Print: [arXiv:2302.03367 [gr-qc]]
Abstract

Taking wedge products of the p distinct principal null directions asso-
ciated with the eigen-bivectors of the Weyl tensor associated with the
Petrov classification, when linearly independent, one is able to express
them in terms of the eigenvalues governing this decomposition. We
study here algebraic and differential properties of such p-forms by com-
pleting previous geometrical results concerning type I spacetimes and
extending that analysis to algebraically special spacetimes with at least
2 distinct principal null directions. A number of vacuum and nonvac-
uum spacetimes are examined to illustrate the general treatment.

49. P. G. Tello, S. Succi, Bini D., S. Kauffman,
From quantum foam to graviton condensation: the Zeldovich route
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EPL, 143 (2023) 39002
doi: 10.1209/0295-5075/acec95
e-Print: [arXiv:2306.17168 [physics.gen-ph]]
Abstract

Based on a previous ansatz by Zeldovich for the gravitational energy of
virtual particle-antiparticle pairs, supplemented with the Holographic
Principle, we estimate the vacuum energy in a fairly reasonable agree-
ment with the experimental values of the Cosmological Constant. We
further highlight a connection between Wheelers quantum foam and
graviton condensation, as contemplated in the quantum N-portrait paradigm,
and show that such connection also leads to a satisfactory prediction of
the value of the cosmological constant. The above results suggest that
the unnaturally small value of the cosmological constant may find a
quite natural explanation once the nonlocal perspective of the large N-
portrait gravitational condensation is endorsed.

50. Bini D., Geralico A., Rettegno P.
Spin-orbit contribution to radiative losses for spinning binaries with aligned
spins
Phys. Rev. D 108, no.6, 064049 (2023)
doi:10.1103/PhysRevD.108.064049
e-Print: [arXiv:2307.12670 [gr-qc]]
Abstract

We compute the leading order contribution to radiative losses in the
case of spinning binaries with aligned spins due to their spin-orbit inter-
action. The orbital average along hyperboliclike orbits is taken through
an appropriate spin-orbit modification to the quasi-Keplerian parametriza-
tion for nonspinning bodies, which maintains the same functional form,
but with spin-dependent orbital elements. We perform consistency checks
with existing post-Newtonian-based and post-Minkowskian (PM)-based
results. In the former case, we compare our expressions for both radi-
ated energy and angular momentum with those obtained in [G. Cho et
al., From boundary data to bound states. Part III. Radiative effects, J.
High Energy Phys. 04 (2022) 154] by applying the boundary-to-bound
correspondence to known results for ellipticlike orbits, finding agree-
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ment. The linear momentum loss is instead newly computed here. In
the latter case, we also find agreement with the low-velocity limit of re-
cent calculations of the total radiated energy, angular momentum and
linear momentum in the framework of an extension of the worldline
quantum field theory approach to the classical scattering of spinning
bodies at the leading PM order [G. U. Jakobsen et al., Gravitational
Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies, Phys.
Rev. Lett. 128, 011101 (2022), M. M. Riva et al., Gravitational bremsstrahlung
from spinning binaries in the post-Minkowskian expansion, Phys. Rev.
D 106, 044013 (2022)]. We get exact expressions of the radiative losses
in terms of the orbital elements, even if they are at the leading post-
Newtonian order, so that their expansion for large values of the ec-
centricity parameter (or equivalently of the impact parameter) provides
higher-order terms in the corresponding PM expansion, which can be
useful for future crosschecks of other approaches.

51. Bini D., Damour T., Geralico A.
Comparing One-loop Gravitational Bremsstrahlung Amplitudes to the Multipolar-
Post-Minkowskian Waveform
Phys.Rev.D 108 (2023) 12, 124052 doi:10.1103/PhysRevD.108.124052
[arXiv:2309.14925 [gr-qc]].
Abstract

We compare recent one-loop-level, scattering-amplitude-based, compu-
tations of the classical part of the gravitational bremsstrahlung wave-
form to the frequency-domain version of the corresponding multipolar-
post-Minkowskian waveform result. When referring the one-loop re-
sult to the classical averaged momenta p̄a = 1

2(pa + p′a), the two wave-
forms are found to agree at the Newtonian and first post-Newtonian
levels, as well as at the first-and-a-half post-Newtonian level, i.e., for
the leading-order quadrupolar tail. However, we find that there are
significant differences at the second-and-a-half post-Newtonian level,
O(G2/c5), i.e., when reaching he following: (i) the first post-Newtonian
correction to the linear quadrupole tail; (ii) Newtonian-level linear tails
of higher multipolarity (odd octupole and even hexadecapole); (iii) radiation-
reaction effects on the worldlines; and (iv) various contributions of cubi-
cally nonlinear origin (notably linked to the quadrupole×quadrupole×
quadrupole coupling in the wave zone). These differences are reflected
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at the sub-sub-sub-leading level in the soft expansion, ∼ ω ln ω, i.e.,
O( 1

t2 ) in the time domain. Finally, we computed the first four terms
of the low-frequency expansion of the multipolar-post-Minkowskian
waveform and checked that they agree with the corresponding exist-
ing classical soft graviton results.

52. Astesiano D., Bini D., Geralico A., Ruggiero M.L.
Particle motion in a rotating dust spacetime: the Bonnor solution Class. Quan-
tum Grav. submitted (2023)
[arXiv:2310.04157 [gr-qc]].
Abstract

We investigate the geometrical properties, spectral classification, geodesics,
and causal structure of the Bonnors spacetime [Journal of Physics A
Math. Gen., 10, 1673 (1977)], i.e., a stationary axisymmetric solution
with a rotating dust as a source. This spacetime has a directional singu-
larity at the origin of the coordinates (related to the diverging vorticity
field of the fluid there), which is surrounded by a toroidal region where
closed timelike curves (CTCs) are allowed, leading to chronology viola-
tions. We use the effective potential approach to provide a classification
of the different kind of orbits on the symmetry plane as well as to study
the motion parallel to the symmetry axis. In the former case we find
that as a general feature test particles released from a fixed space point
and directed towards the singularity are repelled and scattered back as
soon as they approach the CTC boundary, without reaching the central
singularity.

53. Bini D., Geralico A., R. T. Jantzen, R. Ruffini
On Fermis resolution of the “4/3 problem” in the classical theory of the electron
Foundation of Physics, submitted (2023)
Abstract

We discuss the solution proposed by Fermi to the so called 4/3 prob-
lem in the classical theory of the electron, a problem which puzzled
the physics community for many decades before and after his contri-
bution. Unfortunately his early resolution of the problem in 19221923
published in three versions in Italian and German journals (after three
preliminary articles on the topic) went largely unnoticed. Even more
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recent texts devoted to classical electron theory still do not present his
argument or acknowledge the actual content of those articles. The cal-
culations initiated by Fermi at the time are completed here and finally
brought to their logical conclusion.

Books and book chapters

1. (Book) Ferrarese G., Bini D.,
Introduction to relativistic continuum mechanics,
Lecture Notes in Physics 727, Ed. Springer, 2007.

2. (Book) De Felice F., Bini D.,
Classical Measurements in Curved Space-Times
Series: Cambridge Monographs on Mathematical Physics, Cambridge,
UK, 2010

Brief description

The theory of relativity describes the laws of physics in a given space-
time. However, a physical theory must provide observational predic-
tions expressed in terms of measurements, which are the outcome of
practical experiments and observations. Ideal for readers with a math-
ematical background and a basic knowledge of relativity, this book will
help readers understand the physics behind the mathematical formal-
ism of the theory of relativity. It explores the informative power of
the theory of relativity, and highlights its uses in space physics, astro-
physics and cosmology. Readers are given the tools to pick out from
the mathematical formalism those quantities that have physical mean-
ing and which can therefore be the result of a measurement. The book
considers the complications that arise through the interpretation of a
measurement, which is dependent on the observer who performs it.
Specific examples of this are given to highlight the awkwardness of the
problem.
Provides a large sample of observers and reference frames in space-
times that can be applied to space physics, astrophysics and cosmology.
Tackles the problems encountered in interpreting measurements, giv-
ing specific examples. Features advice to help readers understand the
logic of a given theory and its limitations.

1278



Contents
1. Introduction; 2. The theory of relativity: a mathematical overview; 3.
Space-time splitting; 4. Special frames; 5. The world function; 6. Local
measurements; 7. Non-local measurements; 8. Observers in physical
relevant space-times; 9. Measurements in physically relevant space-
times; 10. Measurements of spinning bodies.

1279



4. Publications (2018 – 2023)

APPENDICES

1280



A. Spacetime splitting techniques
in general relativity

The concept of a “gravitational force” modeled after the electromagnetic Lo-
rentz force was born in the Newtonian context of centrifugal and Coriolis
“fictitious” forces introduced by a rigidly rotating coordinate system in a flat
Euclidean space. Bringing this idea first into linearized general relativity and
then into its fully nonlinear form, it has found a number of closely related but
distinct generalizations. Regardless of the details, this analogy between grav-
itation and electromagnetism has proven useful in interpreting the results of
spacetime geometry in terms we can relate to, and has been illustrated in
many research articles and textbooks over the past half century.

ICRANet has itself devoted a workshop and its proceedings to aspects of
this topic in 2003 [2]. In the lengthy introduction to these proceedings, R.
Ruffini has discussed a number of related topics, like “the gravitational ana-
logue of the Coulomb-like interactions, of Hertz-like wave solutions, of the
Oersted-Ampére-like magnetic interaction, etc.,” supporting the thesis that
treating gravitation in analogy with electromagnetism may help to better un-
derstand the main features of certain gravitational phenomena, at least when
the gravitational field may be considered appropriately described by its lin-
earized approximation [12, 13, 14, 15, 16, 17, 18]. A particularly long bib-
liography surveying most of the relevant literature through 2001 had been
published earlier in the Proceedings of one of the annual Spanish Relativity
Meetings [19].

In the 1990s, working in fully nonlinear general relativity, all of the various
notions of “noninertial forces” (centrifugal and Coriolis forces) were put into
a single framework by means of a unifying formalism dubbed “gravitoelec-
tromagnetism” [1, 3, 4] which is a convenient framework to deal with these
and curvature forces and related questions of their effect on test bodies mov-
ing in the gravitational field. More precisely, such a language is based on the
splitting of spacetime into “space plus time,” accomplished locally by means
of an observer congruence, namely a congruence of timelike worldlines with
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(future-pointing) unit tangent vector field u which may be interpreted as the
4-velocity field of a family of test observers filling some region of spacetime.
The orthogonal decomposition of each tangent space into a local time direc-
tion along u and the orthogonal local rest space (LRS) is used to decompose
all spacetime tensors and tensor equations into a “space plus time” represen-
tation; the latter representation is somehow equivalent to a geometrical “mea-
surement” process. This leads to a family of “spatial” spacetime tensor fields
which represent each spacetime field and a family of spatial equations which
represent each spacetime equation. Dealing with spacetime splitting tech-
niques as well as 3-dimensional-like quantities clearly permits a better inter-
face of our intuition and experience with the 4-dimensional geometry in cer-
tain gravitational problems. It can be particularly useful in spacetimes which
have a geometrically defined timelike congruence, either explicitly given or
defined implicitly as the congruence of orthogonal trajectories to a slicing or
foliation of spacetime by a family of privileged spacelike hypersurfaces.

For example, splitting techniques are useful in the following spacetimes:

1. Stationary spacetimes, having a preferred congruence of Killing trajec-
tories associated with the stationary symmetry, which is timelike on a
certain region of spacetime (usually an open region, the boundary of
which corresponding to the case in which the Killing vector becomes
null so that in the exterior region Killing trajectories are spacelike).

2. Stationary axially symmetric spacetimes having in addition a preferred
slicing whose orthogonal trajectories coincide with the worldlines of
locally nonrotating test observers.

3. Cosmological spacetimes with a spatial homogeneity subgroup, which
have a preferred spacelike slicing by the orbits of this subgroup.

From the various schools of relativity that blossomed during the second
half of the last century a number of different approaches to spacetime split-
ting were developed without reference to each other. During the 1950s efforts
were initiated to better understand general relativity and the mathematical
tools needed to flush out its consequences. Lifshitz and the Russian school,
Lichnerowicz in France, the British school, scattered Europeans (Ehlers and
Trautman, for example) and the Americans best represented by Wheeler ini-
tiated this wave of relativity which blossomed in the 1960s. The textbook of
Landau and Lifshitz and articles of Zelmanov [20, 21, 22, 23] presented the
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“threading point of view” of the Russian school and of Moller [21] which in-
fluenced Cattaneo in Rome and his successor Ferrarese [24, 25, 26, 27, 28],
while a variation of this approach not relying on a complementary family
of hypersurfaces (the “congruence point of view) began from work initially
codified by Ehlers [17] and then taken up by Ellis [29, 30] in analyzing cos-
mological issues.

However, issues of quantum gravity lead to the higher profile of the “slic-
ing point of view” in the 1960s initiated earlier by Lichnerowicz and devel-
oped by Arnowitt, Deser and Misner and later promoted by the influential
textbook “Gravitation” by Misner, Thorne and Wheeler [31, 32, 33, 34] repre-
sents a splitting technique which is complementary to the threading point of
view and its congruence variation, and proved quite useful in illuminating
properties of black hole spacetimes.

R. Ruffini, a former student of Cattaneo and a collaborator of Wheeler,
in his quest to better understand electromagnetic properties of black holes,
awakened the curiosity of Jantzen and Carini at the end of the 1980s, later
joined by Bini, who together made an effort to clarify the interrelationships
between these various approaches as well as shed some light on the then
confusing work of Abramowicz and others on relativistic centrifugal and
Coriolis forces. By putting them all in a common framework, and describ-
ing what each measured in geometrical terms, and how each related to the
others, some order was brought to the field [1, 3, 4].

The ICRANet people working on this subject have applied the main ideas
underlying spacetime splitting techniques to concrete problems arising when
studying test particle motion in black hole spacetimes. Among the various re-
sults obtained it is worth mentioning the relativistic and geometrically correct
definition of inertial forces in general relativity [35, 36, 37, 38, 39], the defi-
nition of special world line congruences, relevant for the description of the
motion of test particles along circular orbits in the Kerr spacetime (geodesic
meeting point observers, extremely accelerated observers, etc.), the specifi-
cation of all the geometrical properties concerning observer-adapted frames
to the above mentioned special world line congruences [40, 41], the charac-
terization of certain relevant tensors in black hole spacetimes (Simon tensor,
Killing-Yano tensor) in terms of gravitoelectromagnetism [42, 43], etc. This
research line is still ongoing and productive.

Over a period of several decades Jantzen, Bini and a number of students at
the University of Rome “La Sapienza” under the umbrella of the Rome ICRA
group have been working on this problem under the supervision of Ruffini.
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The collaborators involved have been already listed and the most relevant pa-
pers produced are indicated in the references below [44]–[88]. In the present
year 2010 a book by F. de Felice and D. Bini, including a detailed discussion
of this and related topics, has been published by Cambridge University Press
[137].

Let us now describe some fundamental notions of gravitoelectromagnetism.

A.1. Observer-orthogonal splitting

Let (4)g (signature -+++ and components (4)gαβ, α, β, . . . = 0, 1, 2, 3) be the
spacetime metric, (4)∇ its associated covariant derivative operator, and (4)η

the unit volume 4-form which orients spacetime ((4)η0123 = (4)g1/2 in an ori-
ented frame, where (4)g ≡ |det((4)gαβ)|). Assume the spacetime is also time
oriented and let u be a future-pointing unit timelike vector field (uαuα = −1)
representing the 4-velocity field of a family of test observers filling the space-
time (or some open submanifold of it).

If S is an arbitrary tensor field, let S♭ and S♯ denote its totally covariant
and totally contravariant forms with respect to the metric index-shifting op-
erations. It is also convenient to introduce the right contraction notation
[S X]α = Sα

βXβ for the contraction of a vector field and the covariant in-
dex of a (1

1)-tensor field (left contraction notation being analogous).

A.1.1. The measurement process

The observer-orthogonal decomposition of the tangent space, and in turn of
the algebra of spacetime tensor fields, is accomplished by the temporal pro-
jection operator T(u) along u and the spatial projection operator P(u) onto
LRSu, which may be identified with mixed second rank tensors acting by
contraction

δα
β = T(u)α

β + P(u)α
β ,

T(u)α
β = −uαuβ ,

P(u)α
β = δα

β + uαuβ .

(A.1.1)
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These satisfy the usual orthogonal projection relations P(u)2 = P(u), T(u)2 =
T(u), and T(u) P(u) = P(u) T(u) = 0. Let

[P(u)S]α...
β... = P(u)α

γ · · · P(u)δ
β · · · Sγ...

δ... (A.1.2)

denote the spatial projection of a tensor S on all indices.
The measurement of S by the observer congruence is the family of spatial

tensor fields which result from the spatial projection of all possible contrac-
tions of S by any number of factors of u. For example, if S is a (1

1)-tensor, then
its measurement

Sα
β ↔(uδuγSγ

δ︸ ︷︷ ︸
scalar

, P(u)α
γuδSγ

δ︸ ︷︷ ︸
vector

, P(u)δ
αuγSγ

δ︸ ︷︷ ︸
vector

, P(u)α
γP(u)δ

βSγ
δ︸ ︷︷ ︸

tensor

)
(A.1.3)

results in a scalar field, a spatial vector field, a spatial 1-form and a spatial (1
1)-

tensor field. It is exactly this family of fields which occur in the orthogonal
“decomposition of S” with respect to the observer congruence

Sα
β = [T(u)α

γ + P(u)α
γ][T(u)δ

β + P(u)δ
β]Sγ

δ

= [uδuγSγ
δ]uαuβ + · · ·+ [P(u)S]αβ .

(A.1.4)

A.2. Examples

1. Measurement of the spacetime metric and volume 4-form

• spatial metric [P(u)(4)g]αβ = P(u)αβ

• spatial unit volume 3-form η(u)αβγ = uδ(4)ηδαβγ;
In a compact notation: η(u) = [P(u) u (4)η]

2. Measurement of the Lie, exterior and covariant derivative

• spatial Lie derivative £(u)X = P(u)£X
• the spatial exterior derivative d(u) = P(u)d

• the spatial covariant derivative ∇(u) = P(u)(4)∇
• the spatial Fermi-Walker derivative (or Fermi-Walker temporal deriva-

tive) ∇(fw)(u) = P(u)(4)∇u (when acting on spatial fields)
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A. Spacetime splitting techniques in general relativity

• the Lie temporal derivative ∇(lie)(u) = P(u)£u = £(u)u

Note that spatial differential operators do not obey the usual product
rules for nonspatial fields since undifferentiated factors of u are killed
by the spatial projection.

3. Notation for 3-dimensional operations

It is convenient to introduce 3-dimensional vector notation for the spa-
tial inner product and spatial cross product of two spatial vector fields
X and Y. The inner product is just

X ·u Y = P(u)αβXαYβ (A.2.1)

while the cross product is

[X ×u Y]α = η(u)α
βγXβYγ . (A.2.2)

With the “vector derivative operator” ∇(u)α one can introduce spatial
gradient, curl and divergence operators for functions f and spatial vec-
tor fields X by

gradu f = ∇(u) f = [d(u) f ]♯ ,

curlu X = ∇(u)×u X = [∗(u)d(u)X♭]♯ ,

divu X = ∇(u) ·u X = ∗(u)[d(u)∗(u)X♭] ,

(A.2.3)

where ∗(u) is the spatial duality operation for antisymmetric tensor fields
associated with the spatial volume form η(u) in the usual way. These
definitions enable one to mimic all the usual formulas of 3-dimensional
vector analysis. For example, the spatial exterior derivative formula for
the curl has the index form

[curlu X]α = η(u)αβγ(4)∇βXγ (A.2.4)

which also defines a useful operator for nonspatial vector fields X.

4. Measurement of the covariant derivative of the observer four velocity

Measurement of the covariant derivative [(4)∇u]αβ = uα
;β leads to two

spatial fields, the acceleration vector field a(u) and the kinematical mixed
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tensor field k(u)
uα

;β = −a(u)αuβ − k(u)α
β ,

a(u) = ∇(fw)(u)u ,

k(u) = −∇(u)u .

(A.2.5)

The kinematical tensor field may be decomposed into its antisymmetric
and symmetric parts:

k(u) = ω(u)− θ(u) , (A.2.6)

with

[ω(u)♭]αβ = P(u)σ
α P(u)δ

βu[δ;σ]

= 1
2 [d(u)u

♭]αβ ,

[θ(u)♭]αβ = P(u)σ
α P(u)δ

βu(δ;σ)

= 1
2 [∇(lie)(u)P(u)♭]αβ = 1

2£(u)u(4)gαβ ,

(A.2.7)

defining the mixed rotation or vorticity tensor field ω(u) (whose sign
depends on convention) and the mixed expansion tensor field θ(u), the
latter of which may itself be decomposed into its tracefree and pure
trace parts

θ(u) = σ(u) +
1
3

Θ(u)P(u) , (A.2.8)

where the mixed shear tensor field σ(u) is tracefree (σ(u)α
α = 0) and

the expansion scalar is

Θ(u) = uα
;α = ∗(u)[∇(lie)(u)η(u)] . (A.2.9)

Define also the rotation or vorticity vector field ω(u) = 1
2 curlu u as the

spatial dual of the spatial rotation tensor field

ω(u)α = 1
2 η(u)αβγω(u)βγ = 1

2
(4)ηαβγδuβuγ;δ . (A.2.10)

5. Lie, Fermi-Walker and co-Fermi-Walker derivatives

The kinematical tensor describes the difference between the Lie and
Fermi-Walker temporal derivative operators when acting on spatial ten-
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sor fields. For example, for a spatial vector field X

∇(fw)(u)Xα = ∇(lie)(u)Xα − k(u)α
βXβ

= ∇(lie)(u)Xα − ω(u)α
βXβ + θ(u)α

βXβ ,
(A.2.11)

where

ω(u)α
βXβ = −η(u)α

βγω(u)βXγ = −[ω(u)×u X]α . (A.2.12)

The kinematical quantities associated with u may be used to introduce
two spacetime temporal derivatives, the Fermi-Walker derivative and
the co-rotating Fermi-Walker derivative along u

(4)∇(fw)(u)Xα = (4)∇uXα + [a(u) ∧ u]αβXβ ,
(4)∇(cfw)(u)Xα = (4)∇(fw)(u)Xα + ω(u)α

βXβ .
(A.2.13)

These may be extended to arbitrary tensor fields in the usual way (so
that they commute with contraction and tensor products) and they both
commute with index shifting with respect to the metric and with duality
operations on antisymmetric tensor fields since both (4)g and (4)η have
zero derivative with respect to both operators (as does u itself). For an
arbitrary vector field X the following relations hold

£uXα = (4)∇(fw)(u)Xα + [ω(u)α
β − θ(u)α

β + uαa(u)β]Xβ

= (4)∇(cfw)(u)Xα + [−θ(u)α
β + uαa(u)β]Xβ .

(A.2.14)

A spatial co-rotating Fermi-Walker derivative ∇(cfw)(u) (“co-rotating
Fermi-Walker temporal derivative”) may be defined in a way analogous
to the ordinary one, such that the three temporal derivatives have the
following relation when acting on a spatial vector field X

∇(cfw)(u)Xα = ∇(fw)(u)Xα + ω(u)α
βXβ

= ∇(lie)(u)Xα + θ(u)α
βXβ ,

(A.2.15)

while ∇(cfw)(u)[ f u] = f a(u) determines its action on nonspatial fields.
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It has been introduced an index notation to handle these three operators
simultaneously

{∇(tem)(u)}tem=fw,cfw,lie = {∇(fw)(u),∇(cfw)(u),∇(lie)(u)} . (A.2.16)

A.3. Comparing measurements by two observers in
relative motion

Suppose U is another unit timelike vector field representing a different family
of test observers. One can then consider relating the “observations” of each
to the other. Their relative velocities are defined by

U = γ(U, u)[u + ν(U, u)] ,
u = γ(u, U)[U + ν(u, U)] ,

(A.3.1)

where the relative velocity ν(U, u) of U with respect to u is spatial with re-
spect to u and vice versa, both of which have the same magnitude ||ν(U, u)|| =
[ν(U, u)αν(U, u)α]1/2, while the common gamma factor is related to that mag-
nitude by

γ(U, u) = γ(u, U) = [1 − ||ν(U, u)||2]−1/2 = −Uαuα . (A.3.2)

Let ν̂(U, u) be the unit vector giving the direction of the relative velocity
ν(U, u). In addition to the natural parametrization of the worldlines of U
by the proper time τU, one may introduce two new parametrizations: by a
(Cattaneo) relative standard time τ(U,u)

dτ(U,u)/dτU = γ(U, u) , (A.3.3)

which corresponds to the sequence of proper times of the family of observers
from the u congruence which cross paths with a given worldline of the U
congruence, and by a relative standard lenght ℓ(U,u)

dℓ(U,u)/dτU = γ(U, u)||ν(U, u)|| = ||ν(U, u)||dτ(U,u)/dτU , (A.3.4)

which corresponds to the spatial arc lenght along U as observed by u.
Eqs. (A.3.1) describe a unique active “relative observer boost” B(U, u) in
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the “relative observer plane” spanned by u and U such that

B(U, u)u = U , B(U, u)ν(U, u) = −ν(u, U) (A.3.5)

and which acts as the identity on the common subspace of the local rest
spaces LRSu ∩ LRSU orthogonal to the direction of motion.

A.3.1. Maps between the LRSs of different observers

The projection P(U) restricts to an invertible map when combined with P(u)
as follows

P(U, u) = P(U) ◦ P(u) : LRSu → LRSU (A.3.6)

with inverse P(U, u)−1 : LRSU → LRSu and vice versa, and these maps also
act as the identity on the common subspace of the local rest spaces.

Similarly the boost B(U, u) restricts to an invertible map

B(lrs)(U, u) ≡ P(U) ◦ B(U, u) ◦ P(u) (A.3.7)

between the local rest spaces which also acts as the identity on their common
subspace. The boosts and projections between the local rest spaces differ only
by a gamma factor along the direction of motion.

An expression for the inverse projection

If Y ∈ LRSu, then the orthogonality condition 0 = uαYα implies that Y has
the form

Y = [ν(u, U) ·U P(U, u)Y]U + P(U, u)Y . (A.3.8)

If X = P(U, u)Y ∈ LRSU is the field seen by U, then Y = P(U, u)−1X and

P(U, u)−1X = [ν(u, U) ·U X]U + X = [P(U) + U ⊗ ν(u, U)♭] X , (A.3.9)

which gives a useful expression for the inverse projection.

This map appears in the transformation law for the electric and magnetic
fields:

E(u) = γP(U, u)−1[E(U) + ν(u, U)×U B(U)] ,

B(u) = γP(U, u)−1[B(U)− ν(u, U)×U E(U)] .
(A.3.10)
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motion

A.4. Comparing measurements by three or more
observers in relative motion

A typical situation is that of a fluid/particle whis is observed by two diferrent
families of observers. In this case one deal with three timelike congruences
(or two congruences and a single line): the rest frame of the fluid U and the
two observer families u e u′.

All the previous formalism can be easily generalized. One has

U = γ(U, u)[u + ν(U, u)] ,

U = γ(U, u′)[u′ + ν(U, u′)] ,

u′ = γ(u′, u)[u + ν(u′, u)] ,

u = γ(u, u′)[u′ + ν(u, u′)] .

(A.4.1)

and mixed projectors involving the various four-velocities can be introduced.
They are summarized in the following table:

PROJECTORS
P(u, U, u) P(u) + γ(U, u)2ν(U, u)⊗ ν(U, u)
P(u, U, u)−1 P(u)− ν(U, u)⊗ ν(U, u)
P(u, U, u′) P(u, u′) + γ(U, u)γ(U, u′)ν(U, u)⊗ ν(U, u′)
P(u, U, u′)−1 P(u′, u) + γ(u, u′)[(ν(u, u′)− ν(U, u′))⊗ ν(U, u)

+ ν(U, u′)⊗ ν(u′, u)]
P(U, u)−1P(U, u′) P(u, u′) + γ(u, u′)ν(U, u)⊗ ν(u, u′)
P(u′, u)P(U, u)−1P(U, u′) P(u′) + δ(U, u, u′)ν(U, u′)⊗ ν(u, u′)
P(u′, u)P(u′, U, u)−1 P(u′) + δ(U, u, u′)ν(U, u′)⊗ [ν(u, u′)− ν(U, u′)]

where

δ(U, u, u′) =
γ(U, u′)γ(u′, u)

γ(U, u)
, δ(U, u, u′)−1 = δ(u, U, u′) , (A.4.2)

and
P(u, U, u′) = P(u, U)P(U, u′)
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A.5. Derivatives

Suppose one uses the suggestive notation

(4)D(U)/dτU = (4)∇U (A.5.1)

for the “total covariant derivative” along U. Its spatial projection with respect
to u and rescaling corresponding to the reparametrization of Eq. (A.3.4) is
then given by the “Fermi-Walker total spatial covariant derivative,” defined
by

D(fw,U,u)/dτ(U,u) = γ−1D(fw,U,u)/dτU = γ−1P(u)(4)D(U)/dτU

= ∇(fw)(u) +∇(u)ν(U, u) .
(A.5.2)

Extend this to two other similar derivative operators (the co-rotating Fermi-
Walker and the Lie total spatial covariant derivatives) by

D(tem,U,u)/dτ(U,u) = ∇(tem)(u) +∇(u)ν(U, u) , tem=fw,cfw,lie , (A.5.3)

which are then related to each other in the same way as the corresponding
temporal derivative operators

D(cfw,U,u)X
α/dτ(U,u) = D(fw,U,u)X

α/dτ(U,u) + ω(u)α
βXβ

= D(lie,U,u)X
α/dτ(U,u) + θ(u)α

βXβ
(A.5.4)

when acting on a spatial vector field X. All of these derivative operators
reduce to the ordinary parameter derivative D/dτ(U,u) ≡ d/dτ(U,u) when
acting on a function and extend in an obvious way to all tensor fields.

Introduce the ordinary and co-rotating Fermi-Walker and the Lie “relative
accelerations” of U with respect to u by

a(tem)(U, u) = D(tem)(U, u)ν(U, u)/dτ(U,u) , tem=fw,cfw,lie . (A.5.5)

These are related to each other in the same way as the corresponding deriva-
tive operators in Eq. (A.2.15).

The total spatial covariant derivative operators restrict in a natural way to a
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single timelike worldline with 4-velocity U, where the D/dτ notation is most
appropriate; (4)D(U)/dτU is often called the absolute or intrinsic derivative
along the worldline of U (associated with an induced connection along such
a worldline).

A.6. Applications

A.6.1. Test-particle motion

Let’s consider the motion of a unit mass test-particle with four velocity U,
accelerated by an external force f (U): a(U) = f (U). A generic observer u can
measure the particle four velocity U, obtaining its relative energy E(U, u) =
γ(U, u) and momentum p(U, u) = γ(U, u)ν(U, u),

U = E(U, u)[u + p(U, u)] = γ(U, u)[u + ν(U, u)]. (A.6.1)

Splitting the acceleration equation gives the evolution (along U) of the rela-
tive energy and momentum of the particle

dE(U, u)
dτ(U,u)

= [F(G)
(tem,U,u) + F(U, u)] · ν(U, u)

+ ϵ(tem)γ(U, u)ν(U, u) · (θ(u) ν(U, u))
D(tem)p(U, u)

dτ(U,u)
= F(G)

(tem,U,u) + F(U, u) ,

(A.6.2)

where tem=fw,cfw,lie,lie♭ refers to the various possible (i.e. geometrically
meaningful) transport of vectors along U, ϵ(tem) = (0, 0,−1, 1) respectively
and

dτ(U,u) = γ(U, u)dτU

F(G)
(tem,U,u) = γ(U, u)[g(u) + H(tem,u) ν(U, u)]

F(U, u) = γ(U, u)−1P(u, U) f (U)

with

H(fw,u) = ω(u)− θ(u) H(cfw,u) = 2ω(u)− θ(u)

H(lie,u) = 2ω(u)− 2θ(u) H
(lie♭,u) = 2ω(u) .

(A.6.3)
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The gravitoelectric vector field g(u) = −a(u) = −∇u u and the gravito-
magnetic vector field H(u) = 2[∗(u)ω(u)♭]♯ of the observer u (sign-reversed
acceleration and twice the vorticity vector field) are defined by the exterior
derivative of u

du♭ = [u ∧ g(u) + ∗(u)H(u)]♭ . (A.6.4)

and will be essential in showing the analogy between the gravitational force
F(G)
(tem,U,u) and the Lorentz force. The expansion scalar Θ(u) = Tr θ(u) ap-

pears in an additional term in the covariant derivative of u as the trace of
the (mixed) expansion tensor θ(u), of which the shear tensor σ(u) = θ(u)−
1
3 Θ(u)P(u) is its tracefree part

∇u = −a(u)⊗ u♭ + θ(u)− ω(u) . (A.6.5)

The term D(tem)p(U, u)/dτ(U,u) contains itself the “spatial geometry” con-
tribution which must be added to the gravitational and the external force to
reconstruct the spacetime point of view. Actually, this term comes out nat-
urally and is significant all along the line of the particle: the single terms
∇(fw,u) and ∇(u)ν(U,u), in which it can be further decomposed, are not indi-
vidually meaningful unless one defines some extension for the spatial mo-
mentum p(U, u) off the line of the particle, which of course is unnecessary at
all.

From this spatial geometry contribution a general relativistic version of in-
ertial forces can be further extracted.

A.6.2. Maxwell’s equations

Maxwell’s equations can be expressed covariantly in many ways. For in-
stance, in differential form language one has

dF = 0 , d∗F = −4π∗J♭ , (A.6.6)

where F is the Faraday electromagnetic 2-form and J is the current vector
field, obeying the conservation law

δJ♭ = ∗d∗J♭ = 0 . (A.6.7)
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The splitting of the electromagnetic 2-form F by any observer family (with
unit 4-velocity vector field u) gives the associated electric and magnetic vector
fields E(u) and B(u) as measured by those observers through the Lorentz
force law on a test charge, and the relative charge and current density ρ(u)
and J(u). The “relative observer decomposition” of F and its dual 2-form ∗F
is

F = [u ∧ E(u) + ∗(u)B(u)]♭ ,
∗F = [−u ∧ B(u) + ∗(u)E(u)]♭ ,

while J has the representation

J = ρ(u)u + J(u) . (A.6.8)

If U is the 4-velocity of any test particle with charge q and nonzero rest
mass m, it has the orthogonal decomposition

U = γ(U, u)[u + ν(U, u)] . (A.6.9)

Its absolute derivative with respect to a proper time parametrization of its
world line is its 4-acceleration a(U) = DU/dτU. The Lorentz force law then
takes the form

ma(U) = qγ(U, u)[E(u) + ν(U, u)×u B(u)] . (A.6.10)

The relative observer formulation of Maxwell’s equations is well known.
Projection of the differential form equations (A.6.6) along and orthogonal to
u gives the spatial scalar (divergence) and spatial vector (curl) equations:

divuB(u) + H⃗(u) ·u E(u) = 0 ,
curluE(u)− g⃗(u)×u E(u) + [£(u)u + Θ(u)]B(u) = 0 ,

divuE(u)− H⃗(u) ·u B(u) = 4πρ(u) ,
curluB(u)− g⃗(u)×u B(u)− [£(u)u + Θ(u)]E(u) = 4π J(u) ,

(A.6.11)

This representation of Maxwell’s equations differs from the Ellis represen-
tation only in the use of the spatially projected Lie derivative rather than the
spatially projected covariant derivative along u (spatial Fermi-Walker deriva-
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tive). These two derivative operators are related by the following identity for
a spatial vector field X (orthogonal to u)

[£(u)u + Θ(u)]X = [∇(u)u + {−σ(u) + ω(u)} ]X . (A.6.12)

It is clear, at this point, that for any spacetime tensor equation the “1+3”
associated version allows one to read it in a Newtonian form and to interpret
it quasi-classically.

For instance one can consider motion of test fields in a given gravitational
background (i.e. neglecting backreaction) as described by spacetime equa-
tions and look at their “1+3” counterpart. Over the last ten years, in a similar
way in which we have discussed the splitting of Maxwell’s equations in in-
tegral formulation, we have studied scalar field, spinorial field (Dirac fields),
fluid motions, etc.
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extended bodies in General
Relativity

The motion of an extended body in a given background may be studied by
treating the body via a multipole expansion. The starting point of this method
is the covariant conservation law

∇µTµ
ν = 0 , (B.0.1)

where Tµν is the energy-momentum tensor describing the body. The body
sweeps out a narrow tube in spacetime as it moves. Let L be a line inside
this tube representing the motion of the body. Denote the coordinates of the
points of this line by Xα, and define the displacement δxα = Xα − xα, where
xα are the coordinates of the points of the body. Let us consider now the
quantities∫

TµνdV ,
∫

δxλTµνdV ,
∫

δxλδxρTµνdV , . . . (B.0.2)

where the integrations are carried out on the 3-dimensional hypersurfaces
of fixed time t = X0 = const, the tensor Tµν being different from zero only
inside the world tube: these are the successive terms of the multipole expan-
sion. A single-pole particle is defined as a particle that has nonvanishing at
least some of the integrals in the first (monopole) term, assuming that all the
integrals containing δxµ vanish. A pole-dipole particle, instead, is defined as
a particle for which all the integrals with more than one factor of δxµ (dipole
term) vanish. Higher order approximations may be defined in a similar way.
Thus, a single-pole particle is a test particle without any internal structure.
A pole-dipole particle, instead, is a test particle whose internal structure is
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expressed by its spin, an antisymmetric second-rank tensor defined by

Sµν ≡
∫ [

δxµT0ν − δxνT0µ
]

dV . (B.0.3)

The equations of motion are, then, obtained by applying the Einstein’s field
equations together with conservation of the energy-momentum tensor (B.0.1)
describing the body. For a single-pole particle this leads to a free particle
moving along the geodesics associated with the given background field. For
the motion of a pole-dipole particle, instead, the corresponding set of equa-
tions was derived by Papapetrou [90] by using the above procedure. Obvi-
ously, the model is worked out under the assumption that the dimensions of
the test particle are very small compared with the characteristic length of the
basic field (i.e., with backreaction neglected), and that the gravitational radia-
tion emitted by the particle in its motion is negligible. As a final remark, note
that this model can be extended to charged bodies by considering in addition
the conservation law of the current density.

B.1. The Mathisson-Papapetrou model

The equations of motion for a spinning (or pole-dipole) test particle in a given
gravitational background were deduced by Mathisson and Papapetrou [90,
89] and read

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ ≡ F(spin)µ , (B.1.1)

DSµν

dτU
= PµUν − PνUµ , (B.1.2)

where Pµ is the total four-momentum of the particle, and Sµν is a (antisym-
metric) spin tensor; U is the timelike unit tangent vector of the “center of mass
line” used to make the multipole reduction. Equations (B.1.1) and (B.1.2) de-
fine the evolution of P and S only along the world line of U, so a correct
interpretation of U is that of being tangent to the true world-line of the spin-
ning particle. The 4-momentum P and the spin tensor S are then defined as
vector fields along the trajectory of U. By contracting both sides of Eq. (B.1.2)
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with Uν, one obtains the following expression for the total 4-momentum

Pµ = −(U · P)Uµ − Uν
DSµν

dτU
≡ mUµ + Pµ

s , (B.1.3)

where m = −U · P reduces to the ordinary mass in the case in which the
particle is not spinning, and Ps is a 4-vector orthogonal to U.

The test character of the particle under consideration refers to its mass as
well as to its spin, since both quantities should not be large enough to con-
tribute to the background metric. In what follows, with the magnitude of the
spin of the particle, with the mass and with a natural lengthscale associated
with the gravitational background we will construct a dimensionless param-
eter as a smallness indicator, which we retain to the first order only so that
the test character of the particle be fully satisfied. Moreover, in order to have
a closed set of equations Eqs. (B.1.1) and (B.1.2) must be completed with sup-
plementary conditions (SC), whose standard choices in the literature are the
following

1. Corinaldesi-Papapetrou [91] conditions (CP): Sµν(e0)ν = 0, where e0 is
the coordinate timelike direction given by the background;

2. Pirani [92] conditions (P): SµνUν = 0;

3. Tulczyjew [93] conditions (T): SµνPν = 0;

all of these are algebraic conditions.
Detailed studies concerning spinning test particles in General Relativity are

due to Dixon [94, 95, 96, 97, 98], Taub [99], Mashhoon [100, 101] and Ehlers
and Rudolph [102]. The Mathisson-Papapetrou model does not give a priori
restrictions on the causal character of U and P and there is no agreement in
the literature on how this point should be considered. For instance, Tod, de
Felice and Calvani [103] consider P timelike, assuming that it represents the
total energy momentum content of the particle, while they do not impose any
causality condition on the world line U, which plays the role of a mere math-
ematical “tool” to perform the multipole reduction. Differently, according to
Mashhoon [101], P can be considered analogously to the canonical momen-
tum of the particle: hence, there should be not any meaning for its causality
character, while the world line U has to be timelike (or eventually null) be-
cause it represents the center of mass line of the particle. This uncertainty
in the model itself then reflects in the need for a supplementary condition,
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whose choice among the three mentioned above is arbitrary, making the gen-
eral relativistic description of a spinning test particle somehow unsatisfac-
tory. When both U and P are timelike vectors as e0, all of them can be taken
as the 4-velocity field of a preferred observer family, and all the SC above
state that for the corresponding observer the spin tensor is purely spatial. In
a sense, only P and T supplementary conditions give “intrinsic” relations be-
tween the various unknown of the model and they should be somehow more
physical conditions. In fact, the CP conditions are “coordinate dependent,”
being e0 the coordinate timelike vector. It is worth to mention that grounded
on physical reasons, Dixon has shown that the T conditions should be pre-
ferred with respect to the others.

B.2. The Dixon-Souriau model

The equations of motion for a charged spinning test particle in a given grav-
itational as well as electromagnetic background were deduced by Dixon-
Souriau [104, 105, 106, 107]. They have the form

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ + qFµ
νUν − λ

2
Sρσ∇µFρσ ≡ F(tot)µ , (B.2.1)

DSµν

dτU
= PµUν − PνUµ + λ[SµρFρ

ν − SνρFρ
µ] , (B.2.2)

where Fµν is the electromagnetic field, Pµ is the total 4-momentum of the par-
ticle, and Sµν is the spin tensor (antisymmetric); U is the timelike unit tangent
vector of the “center of mass line” used to make the multipole reduction. As
it has been shown by Souriau, the quantity λ is an arbitrary electromagnetic
coupling scalar constant. We note that the special choice λ = −q/m (see
[46]) in flat spacetime corresponds to the Bargman-Michel-Telegdi [108] spin
precession law.

B.3. Particles with quadrupolar structure

The equations of motion for an extended body in a given gravitational back-
ground were deduced by Dixon [94, 95, 96, 97, 98] in multipole approxima-
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tion to any order. In the quadrupole approximation they read

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ − 1
6

JαβγδRαβγδ
; µ ≡ F(spin)µ + F(quad)µ(B.3.1)

DSµν

dτU
= 2P[µUν] − 4

3
Jαβγ[µRν]

αβγ , (B.3.2)

where Pµ = mUµ
p (with Up ·Up = −1) is the total four-momentum of the par-

ticle, and Sµν is a (antisymmetric) spin tensor; U is the timelike unit tangent
vector of the “center of mass line” CU used to make the multipole reduc-
tion, parametrized by the proper time τU. The tensor Jαβγδ is the quadrupole
moment of the stress-energy tensor of the body, and has the same algebraic
symmetries as the Riemann tensor. Using standard spacetime splitting tech-
niques it can be reduced to the following form

Jαβγδ = Παβγδ − ū[απβ]γδ − ū[γπδ]αβ − 3ū[αQβ][γūδ] , (B.3.3)

where Qαβ = Q(αβ) represents the quadrupole moment of the mass distribu-
tion as measured by an observer with 4-velocity ū. Similarly παβγ = πα[βγ]

(with the additional property π[αβγ] = 0) and Παβγδ = Π[αβ][γδ] are essen-
tially the body’s momentum and stress quadrupoles. Moreover the various
fields Qαβ, παβγ and Παβγδ are all spatial (i.e. give zero after any contraction
by ū). The number of independent components of Jαβγδ is 20: 6 in Qαβ, 6 in
Παβγδ and 8 in παβγ. When the observer ū = Up, i.e. in the frame associated
with the momentum of the particle, the tensors Qαβ, παβγ and Παβγδ have an
intrinsic meaning.

There are no evolution equations for the quadrupole as well as higher mul-
tipoles as a consequence of the Dixon’s construction, so their evolution is
completely free, depending only on the considered body. Therefore the sys-
tem of equations is not self-consistent, and one must assume that all unspec-
ified quantities are known as intrinsic properties of the matter under consid-
eration.

In order the model to be mathematically correct the following additional
condition should be imposed to the spin tensor:

SµνUpν = 0. (B.3.4)

Such supplementary conditions (or Tulczyjew-Dixon conditions [93, 94]) are
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necessary to ensure the correct definition of the various multipolar terms.
Dixon’s model for structured particles originated to complete and give

a rigorous mathematical support to the previously introduced Mathisson-
Papapetrou model [90, 89, 91, 92], i.e. a multipole approximation to any order
which includes evolutional equations along the “center line” for all the var-
ious structural quantities. The models are then different and a comparison
between the two is possible at the dipolar order but not once the involved
order is the quadrupole.

Here we limit our considerations to Dixon’s model under the further sim-
plifying assumption[99, 102] that the only contribution to the complete quadrupole
moment Jαβγδ stems from the mass quadrupole moment Qαβ, so that παβγ =
0 = Παβγδ and

Jαβγδ = −3U[α
p Qβ][γUδ]

p , QαβUpβ = 0 ; (B.3.5)

The assumption that the particle under consideration is a test particle means
that its mass, its spin as well as its quadrupole moments must all be small
enough not to contribute significantly to the background metric. Otherwise,
backreaction must be taken into account.

B.4. Null multipole reduction world line: the
massless case

The extension of the Mathisson-Papapetrou model to the case of a null mul-
tipole reduction world line l has been considered by Mashhoon [101]: the
model equations have exactly the same form as (B.1.1) and (B.1.2), with U
(timelike) replaced by l (null) for what concerns the multipole reduction world
line and τU (proper time parametrization of the U line) replaced by λ (affine
parameter along the l line):

DPα

dλ
= −1

2
Rα

βρσlβSρσ ≡ F(spin)α , (B.4.1)

DSαβ

dλ
= [P ∧ l]αβ . (B.4.2)

Equations (B.4.1) and (B.4.2) should be then solved assuming some SC. Let
us limit ourselves to the case of “intrinsic” SC, i.e. Pirani and Tulczyjew, with
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Pirani’s conditions now naturally generalized as Sαβlβ = 0. Furthermore,
we require P · l = 0: in fact, we are interested to the massless limit of the
Mathisson-Papapetrou equations, and as the mass of the particle is defined
by m = −P · U the massless limit implies −P · l = 0.

By denoting with {l = e1, n = e2, m = e3, m̄ = e4} a complex null frame
along the center line l, such that l · l = n · n = m · m = 0, l · n = 1, l · m =
l · m = 0 and m · m̄ = −1, it is possible to parametrize the path so that

Dlµ

dλ
= b̄mµ + bm̄µ ,

Dnµ

dλ
= āmµ + am̄µ ,

Dmµ

dλ
= alµ + bnµ + icmµ , (B.4.3)

where a, b, c are functions of λ and c is real. The metric signature is assumed
now +−−− in order to follow standard notation of Newman-Penrose for-
malism, and the bar over a quantity denotes complex conjugation. Equa-
tions (B.4.3) are the analogous of the FS relations for null lines so that, repeat-
ing exactly the above procedure, one gets the final set of equations. Since
for a massless spinning test particle we have m = −P · l = 0, the total 4-
momentum P has the following decomposition:

Pµ = −[Blµ + Amµ + Ām̄µ] . (B.4.4)

Following Mashhoon [101], Tulczyjew’s conditions SαβPβ = 0 are in general
inconsistent in the presence of a gravitational background if in addition one
has P lightlike: P · P = 0. Thus, even if these inconsistencies concern only
the case of null P, we are clearly forced to consider Pirani’s SC as the only
physically meaningful supplementary conditions. Using the P supplemen-
tary conditions (implying b = 0), Mashhoon has shown that l is necessarily
geodesics: Dlµ/dλ = 0 and

Sµν = f (λ)[l ∧ m]µν + f̄ (λ)[l ∧ m̄]µν + ig(λ)[m ∧ m̄]µν , (B.4.5)

with B real and

A =
d f
dλ

+ ic f − igā , PµPµ = −2|A|2 . (B.4.6)
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so that P is in general spacelike or eventually null. Furthermore, he has
shown that the spin vector defined by

Sµ =
1
2

ηµναβlνSαβ (B.4.7)

is constant along l and either parallel or antiparallel to l.
Finally, the generalized momentum of the particle should be determined by

solving equations (B.4.1) and (B.4.2) supplemented by Sαβlβ = 0. The other
components of the spin tensor not summarized by the spin vector should be
determined too. By assuming a = 0 (n parallel propagated along l) without
any loss of the physical content of the solution, Mashhoon has obtained for f
and B the following differential equations:[

d
dλ

+ ic
]2

f = f R1413 + f̄ R1414 + igR1434 ,

−dB
dλ

= f R1213 + f̄ R1214 + igR1234 , (B.4.8)

which determine the total 4-momentum and the spin tensor along the path
once they have been specified initially.

B.5. Applications

B.5.1. The special case of constant frame components of the
spin tensor

Due to the mathematical complexity in treating the general case of non-con-
stant frame components of the spin tensor, we have considered first the sim-
plest case of massive spinning test particles moving uniformly along circular
orbits with constant frame components of the spin tensor with respect to a
naturally geometrically defined frame adapted to the stationary observers in
the Schwarzschild spacetime [109] as well as in other spacetimes of astro-
physical interest: Reissner-Nordström spacetime [110], Kerr spacetime [5],
superposed static Weyl field [111], vacuum C metric [112]. A static spin vec-
tor is a very strong restriction on the solutions of the Mathisson-Papapetrou
equations of motion. However, this assumption not only greatly simplifies
the calculation, but seems to be not so restrictive, since, as previously demon-
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strated at least in the Schwarzschild case, the spin tensor components still re-
main constant under the CP an T choices of supplementary conditions, start-
ing from the more general non-constant case.

We have confined our attention to spatially circular equatorial orbits in
Schwarzschild, Reissner-Nordström and Kerr spacetimes, and searched for
observable effects which could eventually discriminate among the standard
supplementary conditions. We have found that if the world line chosen for
the multipole reduction and whose unit tangent we denote as U is a circular
orbit, then also the generalized momentum P of the spinning test particle is
tangent to a circular orbit even though P and U are not parallel 4-vectors.
These orbits are shown to exist because the spin induced tidal forces provide
the required acceleration no matter what supplementary condition we select.
Of course, in the limit of a small spin the particle’s orbit is close of being a
circular geodesic and the (small) deviation of the angular velocities from the
geodesic values can be of an arbitrary sign, corresponding to the possible
spin-up and spin-down alignment to the z-axis. When two massive particles
(as well as photons) orbit around a gravitating source in opposite directions,
they make one loop with respect to a given static observer with different ar-
rival times. This difference is termed clock effect (see [50, 113, 114, 115, 116]
and references therein). Hereafter we shall refer the co/counter-rotation as
with respect to a fixed sense of variation of the azimuthal angular coordinate.
In the case of a static observer and of timelike spatially circular geodesics the
coordinate time delay is given by

∆t(+,−) = 2π

(
1

ζ+
+

1
ζ−

)
, (B.5.1)

where ζ± denote angular velocities of two opposite rotating geodesics. In the
case of spinless neutral particles in geodesic motion on the equatorial plane of
both Schwarzschild and Reissner-Nordström spacetimes one has ζ+ = −ζ−,
and so the clock effect vanishes; in the Kerr case, instead, the clock effect reads
∆t(+,−) = 4πa, where a is the angular momentum per unit mass of the Kerr
black hole. These results are well known in the literature. We have then ex-
tended the notion of clock effect to non geodesic circular trajectories consid-
ering co/counter-rotating spinning-up/spinning-down particles. In this case
we have found that the time delay is nonzero for oppositely orbiting both
spin-up or spin-down particles even in both Schwarzschild and Reissner-
Nordström cases, and can be measured. In addition, we have found that
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a nonzero gravitomagnetic clock effect appears in the Reissner-Nordström
spacetime for spinless (oppositely) charged particles as well.

An analogous effect is found in the case of superposed Weyl fields cor-
responding to Chazy-Curzon particles and Schwarzschild black holes when
the circular motion of spinning test particles is considered on particular sym-
metry hyperplanes, where the orbits are close to a geodesic for small values
of the spin. In the case of the C metric, instead, we have found that the or-
bital frequency is in general spin-dependent, but there is no clock effect, in
contrast to the limiting Schwarzschild case.

B.5.2. Spin precession in Schwarzschild and Kerr spacetimes

We have then studied the behaviour of spinning test particles moving along
equatorial circular orbits in the Schwarzschild [6] as well as Kerr [7] space-
times within the framework of the Mathisson-Papapetrou approach supple-
mented by standard conditions, in the general case in which the components
of the spin tensor are not constant along the orbit. We have found that preces-
sion effects occur only if the Pirani’s supplementary conditions are imposed,
where one finds a Fermi-Walker transported spin vector along an accelerated
center of mass world line. The remaining two supplementary conditions ap-
parently force the test particle center of mass world line to deviate from a
circular orbit because of the feedback of the precessing spin vector; in addi-
tion, under these choices of supplementary conditions the spin tensor com-
ponents still remain constant. In reaching these conclusions, we only consid-
ered solutions for which both U and P are timelike vectors, in order to have
a meaningful interpretation describing a spinning test particle with nonzero
rest mass.

B.5.3. Massless spinning test particles in vacuum
algebraically special spacetimes

As a final application, we have derived the equations of motion for massless
spinning test particles in general vacuum algebraically special spacetimes,
using the Newman-Penrose formalism, in the special case in which the mul-
tipole reduction world line is aligned with a principal null direction of the
spacetime [117]. This situation gives very simple equations and their com-
plete integration is straightforward. Explicit solutions corresponding to some
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familiar Petrov type D and type N spacetimes (including Schwarzschild, Taub-
NUT, Kerr, C metric, Kasner, single exact gravitational wave) are derived and
discussed. Furthermore, we have investigated the motion along (null) circu-
lar orbits, providing explicit solutions in black hole spacetimes.

B.5.4. Quadrupole effects in black hole spacetimes

We have studied the motion of quadrupolar particles on a Schwarzschild as
well as Kerr backgrounds [118, 119] following Dixon’s model. In the sim-
plified situation of constant frame components (with respect to a natural or-
thonormal frame) of both the spin and the quadrupole tensor of the parti-
cle we have found the kinematical conditions to be imposed to the particle’s
structure in order the orbit of the particle itself be circular and confined on the
equatorial plane. Co-rotating and counter-rotating particles result to have a
non-symmetric speed in spite of the spherical symmetry of the background,
due to their internal structure. This fact has been anticipated when studying
spinning particles only, i.e. with vanishing quadrupole moments. We show
modifications due to the quadrupole which could be eventually observed in
experiments. Such experiment, however, cannot concern standard clock ef-
fects, because in this case we have shown that there are no contributions aris-
ing from the quadrupolar structure of the body. In contrast, the effect of the
quadrupole terms could be important when considering the period of revo-
lution of an extended body around the central source: measuring the period
will provide an estimate of the quantities determining the quadrupolar struc-
ture of the body, if its spin is known.

It would be of great interest to extend this analysis to systems with varying
quadrupolar structure and emitting gravitational waves without perturbing
significantly the background spacetime.

B.5.5. Quadrupole effects in gravitational wave spacetimes

We have studied how a small extended body at rest interacts with an incom-
ing single plane gravitational wave. The body is spinning and also endowed
with a quadrupolar structure, so that due to the latter property it can be thus
considered as a good model for a gravitational wave antenna.

We have first discussed the motion of such an extended body by assuming
that it can be described according to Dixon’s model and that the gravitational
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field of the wave is weak, i.e. the “reaction” (induced motion) of a “gravi-
tational wave antenna” (the extended body) to the passage of the wave, and
then the case of an exact plane gravitational wave. We have found that in gen-
eral, even if initially absent, the body acquires a dipolar moment induced by
the quadrupole tensor, a property never pointed out before in the literature.

Special situations may occur in which certain spin components change
their magnitude leading to effects (e.g. spin-flip) which can be eventually ob-
served. This interesting feature recalls the phenomenon of glitches observed
in pulsars: a sudden increase in the rotation frequency, often accompanied by
an increase in slow-down rate. The physical mechanism triggering glitches
is not well understood yet, even if these are commonly thought to be caused
by internal processes. If one models a pulsar by a Dixon’s extended body,
then the present analysis shows that a sort of glitch can be generated by the
passage of a strong gravitational wave, due to the pulsar quadrupole struc-
ture. In fact, we have found that the profile of a polarization function can be
suitably selected in order to fit observed glitches and in particular to describe
the post-glitch behavior.

B.5.6. Quadrupolar particles and the equivalence principle

We have compared the two “reciprocal ” situations of motion of an extended
body endowed with structure up to the mass quadrupole moment in a Shwarz-
schild background spacetime (as described by Dixon’s model) with that of a
test particle in geodesic motion in the background of an exact solution of
Einstein’s field equations describing a source with quadrupolar structure (for
a more detailed study of this kind of solutions generalizing Schwarzschild,
Kerr and Kerr-Newman spacetimes see also the section “Generalizations of
the Kerr-Newman solution,” included in the present report). Under certain
conditions the two situations give perfect corresponding results a fact which
has been interpreted as an argument in favour of the validity of Dixon’s
model.

B.5.7. Poynting-Robertson-like effects

Test particle motion in realistic gravitational fields is of obvious astrophysical
importance and at the same time it provides reliable evidence of the proper-
ties of those gravitational fields. However, in many actual astrophysical sys-
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tems the particles are not moving freely but are influenced by ambient matter,
electromagnetic fields and radiation. In typical situations, these “physical”
effects are probably even more important than fine details of the spacetime
geometry alone. The most remarkable conditions, from the point of view of
general relativity as well as astrophysics, appear near very compact objects
where both the pure gravitational and other “physical” effects typically be-
come extraordinarily strong.

In a series of papers, recently, we have focused on the motion of test par-
ticles in a spherically symmetric gravitational field, under the action of a
Thomson-type interaction with radiation emitted or accreted by a compact
center. This kind of problem was first investigated by Poynting using New-
tonian gravity and then in the framework of linearized general relativity by
Robertson (see [140] and the references therein). It involves competition be-
tween gravity and radiation drag, which may lead to interesting types of mo-
tion which do not occur in strictly vacuum circumstances. In particular, there
arises the question of whether equilibrium behavior like circular orbit motion
or even “staying at rest” are possible in some cases. Theoretical aspects of the
Poynting-Robertson effect as well as its astrophysical relevance in specific
situations have been studied by many authors since the original pioneering
work. We first considered this effect on test particles orbiting in the equa-
torial plane of a Schwarzschild or Kerr black hole, assuming that the source
of radiation is located symmetrically not far from the horizon (in the case of
outgoing flux). Successively, we have generalized these results by includ-
ing in our discussion other relevant spacetimes, e.g. Vaidya, or considering
spinning particles undergoing Poynting-Robertson-like effect.
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C. Metric and curvature
perturbations in black hole
spacetimes

C.1. Perturbations of charged and rotating black
hole

The gravitational and electromagnetic perturbations of the Kerr-Newman
metric represent still an open problem in General Relativity whose solution
could have an enormous importance for the astrophysics of charged and ro-
tating collapsed objects. A complete discussion about this problems needs
a plenty of different mathematical tools: the Newman-Penrose formalism in
the tetradic and spinor version, the Cahen-Debever-Defrise self dual theory,
the properties of the spin-weighted angular harmonics, with particular atten-
tion to the related differential geometry and the group theory, some tools of
complex analysis, etc, but in any case it is difficult to handle with the pertur-
bative equations. Fortunately, during the last years, the modern computers
and software have reached an optimal computational level which allows now
to approach this problem from a completely new point of view.

The Kerr-Newman solution in Boyer-Lindquist coordinates is represented
by the metric:

ds2 =

(
1 − V

Σ

)
dt2 +

2a sin2 θ

Σ
Vdtdϕ − Σ

∆
dr2

−Σdθ2 −
[

r2 + a2 +
a2 sin2 θ

Σ
V

]
sin2 θdϕ2 (C.1.1)
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where as usual:

V ≡ 2Mr − Q2 (C.1.2)
∆ ≡ r2 − 2Mr + a2 + Q2

Σ ≡ r2 + a2 cos2 θ

and by the vector potential:

A♭ = Aµ dxµ =
Qr
Σ

(dt − a sin2 θ dϕ) . (C.1.3)

To investigate the geometrical features of this metric it is convenient to in-
troduce a symmetry-adapted tetrad. For any type D metric, and in par-
ticular for the Kerr-Newman solution, the best choice is a null tetrad with
two “legs” aligned along the two repeated principal null directions of the
Weyl tensor. The standard theory for analyzing different spin massless wave
fields in a given background is represented by the spinorial tetradic formal-
ism of Newman-Penrose (hereafter N-P)[120]. Here we follow the standard
approach, pointing out that a more advanced reformulation of this formal-
ism, called “GHP” [121] exists, allowing a more geometric comprehension of
the theory. In the N-P formalism, this solution is represented by the follow-
ing quantities [122] (in this section we use an A label over all quantities for a
reason which will be clear later). The Kinnersley tetrad [123]:

(lµ)A =
1
∆
[r2 + a2, ∆, 0, a]

(nµ)A =
1

2Σ
[r2 + a2,−∆, 0, a] (C.1.4)

(mµ)A =
1√

2(r + ia cos θ)
[ia sin θ, 0, 1,

i
sin θ

] ,

with the 4th leg represented by the conjugate (m∗µ)A, gives the metric tensor
of Kerr-Newman spacetime the form:

η(a)(b) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (C.1.5)
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The Weyl tensor is represented by:

ΨA
0 = ΨA

1 = ΨA
3 = ΨA

4 = 0
(C.1.6)

ΨA
2 = Mρ3 + Q2ρ∗ρ3

and the electromagnetic field is given by:

ϕA
0 = ϕA

2 = 0 , ϕA
1 =

Q
2(r − ia cos θ)2 . (C.1.7)

For the Ricci tensor and the curvature scalar we have:

ΛA = 0 , ΦA
nm = 2ϕA

m ϕ∗A
n (m, n = 0, 1, 2) (C.1.8)

so in Kerr-Newman, the only quantity different from zero is:

ΦA
11 =

Q2

2Σ2 . (C.1.9)

The spin coefficients, which are linear combination of the Ricci rotation coef-
ficients, are given by:

κA = σA = λA = νA = ϵA = 0 ,

ρA =
−1

(r − ia cos θ)
, τA =

−iaρAρ∗A sin θ√
2

,

βA =
−ρ∗A cot θ

2
√

2
, πA =

ia(ρA)2 sin θ√
2

, (C.1.10)

µA =
(ρA)2ρ∗A∆

2
, γA = µA +

ρAρ∗A(r − M)

2
,

αA = πA − β∗A .

The directional derivatives are expressed by:

D = lµ∂µ , ∆ = nµ∂µ , δ = mµ∂µ , δ∗ = m∗µ∂µ . (C.1.11)

Unfortunately in the literature the same letter for (C.1.2) and for the direc-
tional derivative along n it is used. However the meaning of ∆ will always
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be clear from the context. The study of perturbations in the N-P formalism is
achieved splitting all the relevant quantities in the form l = lA + lB, Ψ4 =
ΨA

4 + ΨB
4 , σ = σA + σB, D = DA + DB, etc., where the A terms are the

background and the B’s are small perturbations. The full set of perturba-
tive equations is obtained inserting these quantities in the basic equations
of the theory (Ricci and Bianchi identities, Maxwell, Dirac, Rarita-Schwinger
equations etc.) and keeping only first order terms. After certain standard
algebraic manipulations one usually obtains coupled linear PDE’s involving
curvature quantities. In the following, we will omit the A superscript for the
background quantities. Comparing with the standard Regge-Wheeler-Zerilli
[124, 125] approach which gives the equation for the metric, here one gets
the equations for Weyl tensor components. This theory is known as curvature
perturbations. In the case of Einstein-Maxwell perturbed metrics, one gets as
in R-W-Z the well known phenomenon of the “gravitationally induced elec-
tromagnetic radiation and vice versa” [126], which couples gravitational and
electromagnetic fields. In the first formulation, one gets a coupled system for
FB

µν and gB
µν quantities. In the N-P approach one has the coupling between

perturbed Weyl and Maxwell tensor components, although it’s possible to
recover the metric perturbations using the curvature one [127]. A discussion
about the connections between these two approaches can be found in [128].
To make a long story short, taking in account the two Killing vectors of this
spacetime, one can write the unknown functions in the form:

F(t, r, θ, ϕ) = e−iωteimϕ f (r, θ) . (C.1.12)

In the easier cases of Kerr, Reissner-Nordstrom and Schwarzchild, writing
f (r, θ) = R(r)Y(θ) one gets separability of the problem. For instance, the
Reissner-Nordström case [129] is separable using the spin-weighted spherical
harmonics:[

1
sin θ

d
dθ

(
sin θ

d
dθ

)
−

(
m2 + s2 + 2ms cos θ

sin2 θ

)]
sYm

l(θ) = −l(l + 1)sYm
l(θ)

(C.1.13)
and their related laddering operators:(

d
dθ

− m
sin θ

− s
cos θ

sin θ

)
sYm

l(θ) = −
√
(l − s)(l + s + 1)s+1Ym

l(θ) (C.1.14)

1314



C.1. Perturbations of charged and rotating black hole

(
d
dθ

+
m

sin θ
+ s

cos θ

sin θ

)
sYm

l(θ) = +
√
(l + s)(l − s + 1)s−1Ym

l(θ) . (C.1.15)

The unknown functions can be cast in the form:

ΨB
0 = e−iωteimϕ

2Ym
l(θ)R(2)

l (r)

χB
1 = e−iωteimϕ

1Ym
l(θ)R(1)

l (r) (C.1.16)

χB
−1 = e−iωteimϕ

−1Ym
l(θ)

∆
2r2 R(−1)

l (r)

ΨB
4 = e−iωteimϕ

−2Ym
l(θ)

∆2

4r4 R(−2)
l (r)

where ∆ = r2 − 2Mr + Q2, and after manipulations, one gets two sets of
coupled ODE’s. The first set is:[

−ω2 r4

∆
+ 4iωr

(
−2 +

r(r − M)

∆
+

Q2

3Mr − 4Q2

)
− ∆

d2

dr2

−
{

6(r − M)− 4Q2∆
r(3Mr − 4Q2)

}
d
dr

− 4 − 2Q2

r2

+
4Q2(r2 + 2Mr − 3Q2)

r2(3Mr − 4Q2)
+

3Mr − 4Q2

3Mr − 2Q2 (l − 1)(l + 2)
]

R(2)
l (C.1.17)

=
2
√

2Q
√
(l − 1)(l + 2)r3

3Mr − 2Q2

(
−iω

r2

∆
+

d
dr

+
4
r

− 4Q2

r(3Mr − 4Q2)

)
R(1)

l
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[
−ω2 r4

∆
+ 2iωr

(
−2 +

r(r − M)

∆
− Q2

3Mr − 2Q2

)
− ∆

d2

dr2

−
{

6∆
r

+ 4(r − M)− 2Q2∆
r(3Mr − 2Q2)

}
d
dr

− 18r2 − 24Mr + 2Q2

r2

+
12Q2∆

r2(3Mr − 2Q2)
+

3Mr − 2Q2

3Mr − 4Q2 (l − 1)(l + 2)
]

R(1)
l (C.1.18)

=
−
√

2Q2
√
(l − 1)(l + 2)∆

r3(3Mr − 4Q2)

(
iω

r2

∆
+

d
dr

− 2
r
+

4(r − M)

∆

− 2Q2

r(3Mr − 2Q2)

)
R(2)

l .

The quantities (R(−1)
l )∗ e (R(−2)

l )∗ (from χB
−1 e ΨB

4 ), satisfy the same equations

of R(1)
l and R(2)

l . At this point decoupling this system of ordinary differential
equations is straightforward.

Similarly, the Kerr case is separable using but the so-called spin-weighted
spheroidal harmonics [8, 130]:

(H0 + H1)Θ(θ) = −EΘ(θ) (C.1.19)

where:

H0 =

[
1

sin θ

d
dθ

(
sin θ

d
dθ

)
−

(
m2 + s2 + 2ms cos θ

sin2 θ

)]
(C.1.20)

H1 = a2ω2 cos2 θ − 2aωs cos θ (C.1.21)

and E is the eigenvalue. We have factorized the spherical and the spheroidal
parts to give the problem the form of a typical Quantum Mechanics exercise.
In fact depending if the H1 term is small or not, the way to approach the prob-
lem is very different. Unfortunately, in this case the laddering operators are
not know [131] and this does not allow the same strategy used in the case of
the Reissner-Nordström spacetime. In the case of the Kerr spacetime instead,
this is not a problem because laddering operators are unnecessary to solve
completely the problem. In the case of the Kerr-Newman spacetime this cre-
ates a “formal” problem. In fact the presence of the charge Q generates “ugly”
terms which don’t allow the separation of variables in all known coordinates.
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A hypothetical separation of variables in these coordinates would have been
stopped by the explicit absence of laddering operators. During the last 25
years there have been various attempts to solve this problem. One idea, pro-
posed in Chandrasekhar’s monography [131], is to decouple the PDE’s be-
fore the separation of variables, obtaining 4th order or higher linear PDE’s.
This task could be accomplished only using a super-computer, because of the
4th order derivatives. Another formulation was developed using de Cahen-
Debever-Defrise formalism, but a part some elegant conservative equations,
the problem has not been solved [132, 133]. In conclusion the problem re-
mains still open. A new approach has been developed [9, 10] for vacuum
spacetimes which gives directly the full set of perturbative equations. The
direct extension of this work to the case of Einstein-Maxwell or more compli-
cate spacetimes can put in a new light this difficult problem.

After this short historical overview we can discuss the results obtained by
ICRANet researchers in this field. In [134], due to Cherubini and Ruffini,
gravitational and electromagnetic perturbations to the Kerr-Newman space-
time using Maple tensor package are shown; a detailed analysis for slightly
charged, rotating and oblate black hole is presented too. Subsequent to this
article there have been various studies regarding the Teukolsky Master Equa-
tions (TMEs) in General Relativity. To this aim, a new form is found for the
Teukolsky Master Equation in Kerr and interpreted in terms of de Rham-
Lichenrowicz laplacians. The exact form of these generalized wave equations
in any vacuum spacetime is given for the Riemann and Maxwell tensors, and
the equations are linearized at any order, obtaining a hierarchy. It is shown
that the TME for any Petrov type D spacetime is nothing more than a com-
ponent of this laplacian linearized and that the TME cannot be derived by
variational principles [9, 10]. More in detail, the Teukolsky Master Equation
in the Kerr case, can be cast in a more compact form (Bini-Cherubini-Jantzen-
Ruffini form) by introducing a “connection vector” whose components are:

Γt = − 1
Σ

[
M(r2 − a2)

∆
− (r + ia cos θ)

]
Γr = − 1

Σ
(r − M)

Γθ = 0

Γϕ = − 1
Σ

[
a(r − M)

∆
+ i

cos θ

sin2 θ

]
. (C.1.22)
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It’s easy to prove that:

∇µΓµ = − 1
Σ

, ΓµΓµ =
1
Σ

cot2 θ + 4ψA
2 (C.1.23)

and consequently the Teukolsky Master Equation assumes the form:

[(∇µ + sΓµ)(∇µ + sΓµ)− 4s2ψA
2 ]ψ

(s) = 4πT (C.1.24)

where ψA
2 is the only non vanishing NP component of the Weyl tensor in

the Kerr background in the Kinnersley tetrad (C.1.5) (with Q = 0). Equa-
tion (C.1.24) gives a common structure for these massless fields in the Kerr
background varying the “s” index. In fact, the first part in the lhs represents
(formally) a D’Alembertian, corrected by taking into account the spin-weight,
and the second part is a curvature (Weyl) term linked to the “s” index too.
This particular form of the Teukolsky Master Equation forces us to extend
this analysis in the next sections because it suggests a connection between
the perturbation theory and a sort of generalized wave equations which dif-
fer from the standard ones by curvature terms. In fact generalized wave op-
erators are know in the mathematical literature as De Rham-Lichnerowicz
Laplacians and the curvature terms which make them different from the or-
dinary ones are given by the Weitzenböck formulas. Mostly known examples
in electromagnetism are

• the wave equation for the vector potential Aµ:

∇α∇α Aµ − Rµ
λ Aλ = −4π Jµ , ∇α Aα = 0 (C.1.25)

• the wave equation for the Maxwell tensor :

∇µ∇µFνλ + RρµνλFρµ − Rρ
λFνρ + Rρ

νFλρ = −8π∇[µ Jν] (C.1.26)

while for the gravitational case one has

• the wave equation for the metric perturbations:

∇α∇αh̄µν + 2Rαµβνh̄αβ − 2Rα(µh̄ν)
α = 0,

∇αh̄µ
α = 0, h̄µν = hµν −

1
2

gµνhα
α (C.1.27)
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• the wave equation for the Riemann Tensor

Rαβ
γδ;ϵ

ϵ = 4R[α
[γ;δ]

β] − 2R[α
ϵRβ]ϵ

γδ − 2RαµβνRµνγδ

−4R[α
µν[γRβ]µν

δ] . (C.1.28)

These equations are “non minimal,” in the sense that they cannot be recov-
ered by a minimal substitution from their flat space counterparts. A similar
situation holds in the standard Quantum Field Theory for the electromagnetic
Dirac equation. In fact, applying for instance to the Dirac equation an “ad
hoc” first order differential operator one gets the second order Dirac equa-
tion

(i/∂ − e/A + m)(i/∂ − e/A − m)ψ =[
(i∂µ − eAµ)(i∂µ − eAµ)− e

2
σµνFµν − m2

]
ψ = 0, (C.1.29)

where the notation is obvious. It is easy to recognize in equation (C.1.29) a
generalized Laplacian and a curvature (Maxwell) term applied to the spinor.
Moreover this equation is “non minimal”, in the sense that the curvature
(Maxwell) term cannot be recovered by electromagnetic minimal substitu-
tion in the standard Klein-Gordon equation for the spinor components. The
analogous second order Dirac equation in presence of a gravitational field
also has a non minimal curvature term and reduces to the form:

(∇α∇α + m2 +
1
4

R)ψ = 0 . (C.1.30)

The general TME formalism is applied to other exact solutions of the vacuum
Einstein field equations of Petrov type D. A new analysis of the Kerr-Taub-
NUT black hole is given, focussing on Mashhoon spin-coupling and superra-
diance [135, 59].

More in detail, in [135] Bini, Cherubini and Jantzen studied a single mas-
ter equation describing spin s = 0 − 2 test field gauge and tetrad-invariant
perturbations of the Taub-NUT spacetime. This solution of vacuum Ein-
stein field equations describes a black hole with mass M and gravitomagnetic
monopole moment ℓ. This equation can be separated into its radial and an-
gular parts. The behaviour of the radial functions at infinity and near the
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horizon is studied. The angular equation, solved in terms of hypergeomet-
ric functions, can be related both to spherical harmonics of suitable weight,
resulting from the coupling of the spin-weight of the field and the gravito-
magnetic monopole moment of the spacetime, and to the total angular mo-
mentum operator associated with the spacetime’s rotational symmetry. The
results are compared with the Teukolsky master equation for the Kerr space-
time.

In [59] instead Bini, Cherubini, Jantzen and Mashhoon have studied a sin-
gle master equation describing spin s ≤ 2 test fields that are gauge- and
tetrad-invariant perturbations of the Kerr-Taub-NUT (Newman - Unti - Tam-
burino) spacetime representing a source with a mass M, gravitomagnetic
monopole moment −ℓ, and gravitomagnetic dipole moment (angular mo-
mentum) per unit mass a. This equation can be separated into its radial and
angular parts. The behavior of the radial functions at infinity and near the
horizon is studied and used to examine the influence of l on the phenomenon
of superradiance, while the angular equation leads to spin-weighted spheroidal
harmonic solutions generalizing those of the Kerr spacetime. Finally, the
coupling between the spin of the perturbing field and the gravitomagnetic
monopole moment is discussed.

In [69] instead Bini and Cherubini investigate the algebraically special fre-
quencies of Taub-NUT black holes in detail in comparison with known results
concerning the Schwarzschild case. The periodicity of the time coordinate, re-
quired for regularity of the solution, prevents algebraically special frequen-
cies to be physically acceptable. In the more involved Kerr-Taub-NUT case,
the relevant equations governing the problem are obtained. The formalism is
applied to the C-metric, and physical speculations are presented concerning
the spin-acceleration coupling.

In [70] Bini, Cherubini and Mashhoon study the vacuum C metric and its
physical interpretation in terms of the exterior spacetime of a uniformly accel-
erating spherically-symmetric gravitational source. Wave phenomena on the
linearized C metric background are investigated. It is shown that the scalar
perturbations of the linearized C metric correspond to the gravitational Stark
effect. This effect is studied in connection with the Pioneer anomaly.

In [71] instead Bini, Cherubini and Mashhoon analysed the massless field
perturbations of the accelerating Minkowski and Schwarzschild spacetimes.
The results are extended to the propagation of the Proca field in Rindler
spacetime. They examine critically the possibility of existence of a general
spinacceleration coupling in complete analogy with the well-known spinro-
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tation coupling. They argue that such a direct coupling between spin and
linear acceleration does not exist.

In [72] Cherubini, Bini, Bruni and Perjes consider vacuum Kasner space-
times, focusing on those that can be parametrized as linear perturbations of
the special Petrov type D case. In particular they analyze in detail the per-
turbations which map the Petrov type D Kasner spacetime into another Kas-
ner spacetime of Petrov type I. For these ’quasi-D’ Kasner models they first
investigate the modification to some curvature invariants and the principal
null directions, both related to the Petrov classification of the spacetime. This
simple Kasner example allows one to clarify the fact that perturbed space-
times do not retain in general the speciality character of the background. In
fact, there are four distinct principal null directions, although they are not
necessarily first-order perturbations of the background principal null direc-
tions. Then in the Kasner type D background they derive a Teukolsky master
equation, a classical tool for studying black-hole perturbations of any spin.
This further step allows one to control totally general cosmologies around
such a background as well as to show, from a completely new point of view,
the well-known absence of gravitational waves in Kasner spacetimes.

Recent progress in black hole perturbations was obtained in 2013 by Bini
and Damour [77] who showed how to explicitly compute in Post-Newtonian
sense (as well as to re-sum and convert in the Effective One-Body formalism)
gravitational perturbations due a massive particle in a circular orbit around
a Schwarzschild black hole. This was made possible thanks to the use of cer-
tain Gravitational Self-Force tools. Since then, the same approach (with small
modifications) has allowed to discuss perturbations in a Schwarzschild and
Kerr spacetime, due to massive and spinning particles in bounded (eccentric)
motion on the equatorial plane of these spacetimes. All results have been
framed in a gauge-invariant form and have provided an impressive number
of analytic information for several companion formalism (Post-Newtonian,
Post-Minkowskian, Gravitational Self-Force, Effective Field Theories, Scat-
tering Amplitudes, etc.). For the most recent results see e.g., [78, 79, 80, 81].
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D.1. Mixmaster universe and the spectral index

The Bianchi type IX spatially homogeneous vacuum spacetime also known
as the Mixmaster universe has served as a theoretical playground for many
ideas in general relativity, one of which is the question of the nature of the
chaotic behavior exhibited in some solutions of the vacuum Einstein equa-
tions and another is the question of whether or not one can interpret the
spacetime as a closed gravitational wave. In particular, to describe the mathe-
matical approach to an initial cosmological singularity, the exact Bianchi type
IX dynamics leads to the BLK approximation involving the discrete BLK map
which acts as the transition between phases of approximately Bianchi type I
evolution. The parameters of this map are not so easily extracted from the
numerical evolution of the metric variables. However, recently it has been
realized that these parameters are directly related to transitions in the scale-
free part of the Weyl tensor. In fact this leads to a whole new interpretation
of what the BLK dynamics represents.

For a given foliation of any spacetime, one can always introduce the scale
free part of the extrinsic curvature when its trace is nonzero by dividing by
that trace. In the expansion-normalized approach to spatially homogeneous
dynamics, this corresponds to the expansion-normalized gravitational veloc-
ity variables. This scale free extrinsic curvature tensor can be characterized
by its eigenvalues, whose sum is 1 by definition: these define three functions
of the time parametrizing the foliation which generalize the Kasner indices of
Bianchi type I vacuum spacetimes. A phase of velocity-dominated evolution
is loosely defined as an interval of time during which the spatial curvature
terms in the spacetime curvature are negligible compared to the extrinsic cur-
vature terms. Under these conditions the vacuum Einstein equations can be
approximated by ordinary differential equations in the time. These lead to a
simple scaling of the eigenvectors of the extrinsic curvature during which the
generalized Kasner indices remain approximately constant and simulate the
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Bianchi type I Kasner evolution.

The Weyl tensor can be also be repackaged as a second rank but complex
spatial tensor with respect to the foliation and its scale free part is deter-
mined by a single complex scalar function of its eigenvalues, a number of
particular representations for which are useful. In particular the so called
speciality index is the natural choice for this variable which is independent
of the permutations of the spatial axes used to order the eigenvalues, and so
is a natural 4-dimensional tracker of the evolving gravitational field quoti-
enting out all 3-dimensional gauge-dependent quantities. During a phase of
velocity-dominated (“Kasner”) evolution, the Weyl tensor is approximately
determined by the extrinsic curvature alone, and hence the scalefree invari-
ant part of the Weyl tensor is locked to the generalized Kasner indices exactly
as in a Kasner spacetime. Of course during transitions between velocity-
dominated evolution where the spatial curvature terms are important, the
generalized Kasner indices and the Weyl tensor are uncoupled in their evolu-
tion, but the transition between one set of generalized Kasner indices and the
next is locked to a transition in the scalefree Weyl tensor. This idealized map-
ping, approximated by the BKL map between Kasner triplets, can be rein-
terpreted as a continuous transition in the Weyl tensor whose scale invariant
part can be followed through the transition directly. For spatially homoge-
neous vacuum spacetimes, the BLK transition is a consequence of a Bianchi
type II phase of the dynamics which can be interpreted as a single bounce
with a curvature wall in the Hamiltonian approach to the problem. One can
in fact follow this transition in the Weyl tensor directly with an additional
first order differential equation which is easily extracted from the Newman-
Penrose equations expressed in a frame adapted both to the foliation and the
Petrov type of the Weyl tensor.

This type of Weyl transition in the Mixmaster dynamics can be followed ap-
proximately using the Bianchi type II approximation to a curvature bounce,
leading to a temporal spike in the real and imaginary parts of the special-
ity index which represents a circuit in the complex plane between the two
real asymptotic Kasner points (a “pulse”). The graph of the speciality index
versus time thus serves as a sort of electrocardiogram of the “heart” of the
Mixmaster dynamics, stripping away all the gauge and frame dependent de-
tails of its evolution except for the choice of time parametrization, which is a
recent nice result of our investigation.
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D.2. Cosmological fluids obeying a non-ideal
equation of state

Current improvements in cosmological measurements strongly favor the stan-
dard model of the universe being spatially flat, homogeneous and isotropic
on large scales and dominated by dark energy consistently with the effect of
a cosmological constant and cold dark matter. In the literature such a con-
cordance model is referred to as Λ-Cold Dark Matter (ΛCDM) model: the
universe is well described by a Friedmann-Robertson-Walker (FRW) metric,
whose gravity source is a mixture of non-interacting perfect fluids including a
cosmological constant. At early times the universe was radiation-dominated,
but the present contribution of radiation is negligibly small. The dominant
contribution to the mass-energy budget of the universe today is due to dark
energy, obeying an equation of state pde ≃ −ρde. The cosmological constant
thus acts as an effective negative pressure, allowing the total energy density
of the universe to remain constant even though the universe expands.

However, no theoretical model determining the nature of dark energy is
available as yet, leaving its existence still unexplained. A big effort has been
spent in recent years in formulating cosmological models with modified equa-
tion of state [142]. These models include, for instance, a decaying scalar field
(quintessence) minimally coupled to gravity, similar to the one assumed by
inflation [143], scalar field models with nonstandard kinetic terms (k−essence)
[144], the Chaplygin gas [145], braneworld models and cosmological models
from scalar-tensor theories of gravity (see, e.g., Refs. [146, 147] and references
therein).

Following the same line of thinking, we have recently proposed in Ref.
[148] a cosmological model with a fluid source obeying a non-ideal equa-
tion of state with “asymptotic freedom,” first introduced by Shan and Chen
(SC) in the context of lattice kinetic theory [149]. Such an equation of state
supports a phase transition between low and high density regimes, both
characterized by an ideal gas behavior, i.e., pressure and density change in
linear proportion to each other. Similarly to the case of lattice kinetic the-
ory, in which the stabilizing effect of hard-core repulsion is replaced by an
asymptotic-free attraction, the repulsive effect of the cosmological constant is
here replaced by a scalar field with asymptotic-free attraction. We have used
these properties to model the growth of the dark matter-energy component of
the universe, showing that a cosmological FRW fluid obeying a SC-like equa-
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tion of state naturally evolves from an ordinary energy density component
towards a present-day universe with a suitable dark energy component, with
no need of invoking any cosmological constant. We have also provided some
observational tests in support to our model. More precisely, we have drawn
the Hubble diagram (distance modulus vs redshift) as well as the expansion
history of the universe (Hubble parameter vs redshift), showing that they are
consistent with current astronomical data.

We have then investigated in Ref. [150] the possibility that a SC-like equa-
tion of state may also be used to describe an early inflationary universe. In-
flation is an epoch of accelerated expansion, which was originally assumed
as a mechanism to solve several puzzles of the standard Big Bang scenario,
e.g., the flatness and horizon problems [151, 152, 153, 154, 155, 156]. It also
provides plausible scenarios for the origin of the large scale structure of the
universe, as well as the formation of anisotropies in the cosmic microwave
background radiation. Many different kinds of inflationary models have been
developed so far, including recent attempts to construct consistent models of
inflation based on superstring or supergravity models.

In the context of inflation, we have represented a SC fluid in a flat FRW
universe filled by a scalar field in an external potential, whose energy density
and pressure are identified (and fixed by) with the SC corresponding quanti-
ties. Therefore, the potential is completely determined and we have analyzed
in detail its role in the slow-roll approximation of inflation. We have found
that simple choices of the free parameters of the SC model are consistent with
current Planck and WMAP data, i.e., the minimal viability request for any
model. Furthermore, the equation of state undergoes a transition between
p/ρ < 0 (exotic matter) during inflation to p/ρ > 0 (ordinary matter) for late
times, thus providing a natural exit mechanism. As a result, a SC-like equa-
tion of state for the fluid source of the early universe may play a role also in
the context of inflation.
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ana,” Libreria E.V. Veschi, Rome, (1961).

[27] Ferrarese G., Rend. di Mat. 22 (1963), 147; 24 (1965), 57.

[28] Massa E., Gen. Relativ. Grav. 5 (1974), 555; 5 (1974), 573; 5 (1974), 715.

1328



Bibliography

[29] Ellis G.F.R., in “General Relativity and Cosmology: Proceedings of
Course 47 of the International School of Physics ‘Enrico Fermi’,” (R.
Sachs, Ed.) Academic Press, New York, 1971.
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Grav., 28, 035008 (2011).

[140] Bini D., Geralico A., Jantzen R.T., Semeřák O., Class. Quantum Grav., 28,
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