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1 Topics

The study of compact objects such as white dwarfs, neutron stars, and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories, e.g., general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
theoretical physics aspects, studying astrophysical scenarios characterized by
the presence of at least one of the above compact objects is the focus of exten-
sive research within our group, e.g., the physics of pulsars. This research can
be divided into the following topics:

• Nuclear and Atomic Astrophysics. We study the properties and pro-
cesses occurring in compact stars in which nuclear and atomic physics
have to be necessarily applied. We focus on the properties of nuclear
matter under extreme conditions of density, pressure, and temperature
in compact star interiors. The matter equation of state is studied in de-
tail, considering all the interactions between the constituents within a
fully relativistic framework.

• White Dwarfs Physics and Structure. The aim of this part of our re-
search is to construct the white dwarf structure within a self-consistent
description of the equation of state of the interior together with the solu-
tion of the hydrostatic equilibrium equations in general relativity. Non-
magnetized, magnetized, non-rotating, and rotating white dwarfs are
studied. The interaction and evolution of a central white dwarf with a
surrounding disk, as occurred in the aftermath of white dwarf binary
mergers, is also a subject of study.

• White Dwarfs Astrophysics. We are interested in the astrophysics of
white dwarfs, both isolated and in binaries. Magnetized white dwarfs,
soft gamma repeaters, anomalous X-ray pulsars, white dwarf pulsars,
cataclysmic variables, binary white dwarf mergers, and type Ia super-
novae are studied. The role of a realistic white dwarf interior structure
is particularly emphasized.
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1 Topics

• Neutron Stars Physics and Structure. We calculate the properties of
the interior structure of neutron stars using realistic models of the nu-
clear matter equation of state within the general relativistic equilibrium
equations. Strong, weak, electromagnetic, and gravitational interac-
tions have to be jointly taken into due account within a self-consistent,
fully relativistic framework. Non-magnetized, magnetized, non-rotating,
and rotating neutron stars are studied.

• Neutron Stars Astrophysics. We study astrophysical systems harbor-
ing neutron stars, such as isolated and binary pulsars, low and inter-
mediate X-ray binaries, and merging double neutron stars and neutron
star-white dwarf binaries. Most extreme cataclysmic events involving
neutron stars and their role in explaining extraordinarily energetic as-
trophysical events such as gamma-ray bursts are analyzed in detail.

• Black Hole Physics and Astrophysics. We study the role of black holes
in relativistic astrophysical systems such as gamma-ray bursts, active
galactic nuclei, and galactic cores. Special attention is given to applying
the theory of test particle motion both in the neutral and charged case
and general relativity tests.

• Radiation Mechanisms of Compact Objects. We here study possible
emission mechanisms of compact objects such as white dwarfs, neu-
tron stars, and black holes. We are interested in the electromagnetic,
neutrino, and gravitational-wave emission in compact object magneto-
spheres and accretion disks surrounding them, as well as inspiraling
and merging relativistic binaries (double neutron stars, neutron star-
white dwarfs, white dwarf-white dwarf, and neutron star-black holes).
We also study the radiation from particle acceleration near stellar-mass
and supermassive black holes by surrounding electromagnetic fields.

• Exact and Numerical Solutions of the Einstein and Einstein-Maxwell
Equations in Astrophysics. We analyze the ability of analytic exact so-
lutions of the Einstein and Einstein-Maxwell equations to describe the
exterior spacetime of compact stars such as white dwarfs and neutron
stars. For this, we compare and contrast exact (analytic) solutions with
numerical solutions of the stationary axisymmetric Einstein equations.
The problem of matching between interior and exterior spacetime is ad-
dressed in detail. The effect of the quadrupole moment on the proper-
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ties of the spacetime is also investigated. Particular attention is given to
applying exact solutions in astrophysics, e.g., the dynamics of particles
around compact stars and their relevance in astrophysical systems such
as X-ray binaries and gamma-ray bursts.

• Critical Fields and Non-linear Electrodynamics Effects in Astrophysics.
We study the conditions under which ultrastrong electromagnetic fields
can develop in astrophysical systems such as neutron stars and the pro-
cess of gravitational collapse to a black hole. The effects of non-linear
electrodynamics minimally coupled to gravity are investigated. New
analytic and numeric solutions to the Einstein-Maxwell equations rep-
resenting black holes or the exterior field of a compact star are obtained
and analyzed. The consequences on extreme astrophysical systems, for
instance, gamma-ray bursts, are studied.
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3 Highlights 2023

The year 2023 has seen the consolidation of our scientific production trend.
It has been very prolific in terms of the amount of publications but, more
importantly, in terms of the quality and relevance of our publications.

The analysis of astrophysical sources requires the interplay of different ar-
eas of physics and astronomy, the reason for which we could place some of
our articles in any of the different reports. To avoid such an overlapping, the
Editors discuss which section of the annual report would be the best place to
include a publication with such features. Therefore, in this report, we have
included six newly published articles and one currently under review for
publication that strictly fit the description of this section’s topics. Therefore,
you will also find articles where the physics and astrophysics of compact ob-
jects have been relevant, e.g., the section dedicated to gamma-ray bursts and
dark matter. We refer the reader to those sections for further details on those
publications.

We would like to highlight the strengthening of our international collabo-
rations for these achievements. The seven publications summarized in this
report have seen the participation of scientists from Brazil, China, Colombia,
Italy, Portugal, Spain, the United Kingdom, and the USA.

We would like to highlight two of these publications. First, the article
by Sousa, M. F.; Coelho, J. G.; de Araujo, J. C. N.; Guidorzi, C.; Rueda, J.
A., On the Optical Transients from Double White-dwarf Mergers, published in
The Astrophysical Journal 958, 134 (2023). This paper has received attention
from the scientific community and media. It has presented the relevant and
concise prediction that the forthcoming Vera Rubin Observatory will be able
to pinpoint a new class of ever-detected astrophysical sources at a pace of
thousands a year: the merger of binary systems of white dwarfs. These re-
sults open the way to new research on these astrophysical sources, and the
Vera Rubin Observatory and the Zwicky Transient Facility research teams are
already collaborating with ICRANet scientists to prepare the observational
campaigns of these sources.

Below, we report some of the press releases reporting the results of our
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3 Highlights 2023

research team:
On the ICRANet website:

http://www.icranet.org/index.php?option=com_content&task=view&id=1032&

Itemid=920

Press releases in Italy:

On the University of Ferrara website:
https://www.unife.it/it/notizie/2023/scienza-cultura-e-ricerca/origine-stelle-nane-bianche-vera-rubin

On Ansa.it
https://www.ansa.it/emiliaromagna/notizie/2023/11/02/unife-in-team-per-scoprire-origine-delle-stelle-nane-bianche_

75f3c2be-3992-4df0-80a8-49db4a4d8fcd.html

On Ferraratoday.it:
https://www.ferraratoday.it/cronaca/astrofisica-unife-icranet-brasile-scoperta-origine-stelle-nane-bianche.

html

On Ultimometro.it:
https://www.ultimometro.it/uncategorized/unife-in-team-per-scoprire-origine-delle-stelle-nane-bianche-notizie/

235580/

On 30scienze.com:
https://30science.com/2023/11/news/unife-icranet-e-brasile-insieme-per-scoprire-lorigine-delle-stelle-nane-bianche/

On Estense.com:
https://www.estense.com/2023/1047157/astrofisica-unife-icranet-e-brasile-insieme-per-scoprire-le-stelle-nane-bianche/

Press releases in Brazil:

On the Universidade Tecnológica Federal do Paraná website:
https://portal.utfpr.edu.br/noticias/geral/divulgacao-cientifica/fusoes-estelares-podem-explicar-a-descoberta-de-nova-fonte-astrofisica

On the Universidade Federal do Espı́rito Santo website:
https://www.ufes.br/conteudo/estudo-conduzido-por-pesquisador-da-ufes-preve-observacao-de-nova-fonte-astrofisica

Another publication worth highlighting is Extracting the energy and angular
momentum of a Kerr black hole by J. A. Rueda and R. Ruffini, published in The
European Physical Journal C 83, 960 (2023). This paper presents, for the first
time in fifty years of black hole physics research, a concrete example of an as-
trophysically plausible electromagnetic mechanism able to extract the energy
of black holes to power the most powerful astrophysical sources: gamma-
ray bursts and active galactic nuclei. Exciting new research avenues are now
open for further scrutiny, and we are already actively working on them.
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4 Publications 2023

4.1 Refereed Journals

4.1.1 Printed

1. Sousa, M. F.; Coelho, J. G.; de Araujo, J. C. N.; Guidorzi, C.; Rueda, J.
A., On the Optical Transients from Double White-dwarf Mergers, The Astro-
physical Journal 958, 134, 2023.

Double white-dwarf (DWD) mergers are relevant astrophysical sources
expected to produce massive, highly-magnetized WDs, type Ia super-
novae (SNe), and neutron stars (NSs). Although they are expected to be
numerous sources in the sky, their detection has evaded the most ad-
vanced transient surveys. This article characterizes the optical transient
expected from DWD mergers in which the central remnant is a stable
(sub-Chandrasekhar) WD. We show that the expansion and cooling of
the merger’s dynamical ejecta lead to an optical emission peaking at
1–10 d post-merger, with luminosities of 1040–1041 erg s−1. We present
simulations of the light-curves, spectra, and the color evolution of the
transient. We show that these properties, together with the estimated
rate of mergers, are consistent with the absence of detection, e.g., by
The Zwicky Transient Facility (ZTF). More importantly, we show that
the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Ob-
servatory will likely detect a few/several hundred per year, opening a
new window to the physics of WDs, NSs, and SN Ia.

2. Rodrı́guez, J. F.; Rueda, J. A.; Ruffini, R.; Zuluaga, J. I.; Blanco-Iglesias,
J. M.; Lorén-Aguilar, P., Chirping compact stars: gravitational radiation and
detection degeneracy with binaries , Journal of Cosmology and Astroparti-
cle Physics 2023, 017, 2023.

Compressible, Riemann S-type ellipsoids can emit gravitational waves
(GWs) with a chirp-like behavior (hereafter chirping ellipsoids, CELs).
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4 Publications 2023

We show that the GW frequency-amplitude evolution of CELs (mass ∼
1 M⊙, radius ∼ 103 km, polytropic equation of state with index n ≈ 3) is
indistinguishable from that emitted by double white dwarfs and by ex-
treme mass-ratio inspirals (EMRIs) composed of an intermediate-mass
(e.g. 103 M⊙) black hole and a planet-like (e.g. 10−4 M⊙) companion,
in the frequency interval within the detector sensitivity band in which
the GW emission of these systems is quasi-monochromatic. For reason-
able astrophysical assumptions, the local universe density rate of CELs,
double white dwarfs, and EMRIs in the mass range here considered are
very similar, posing a detection-degeneracy challenge for space-based
GW detectors. We outline the astrophysical implications of this CEL-
binary detection degeneracy by space-based GW-detection facilities.

3. Rueda, J. A.; Ruffini, R., Extracting the energy and angular momentum of a
Kerr black hole, The European Physical Journal C 83, 960, 2023.

It has been thought for decades that rotating black holes (BHs) power
the energetic gamma-ray bursts (GRBs) and active galactic nuclei (AGNs),
but the mechanism that extracts the BH energy has remained elusive.
We here show that the solution to this problem arises when the BH is
immersed in an external magnetic field and ionized low-density matter.
For a magnetic field parallel to the BH spin, the induced electric field
accelerates electrons outward and protons inward in a conical region,
centered on the BH rotation axis, and of semi-aperture angle θ ≈ 60◦

from the BH rotation axis. For an antiparallel magnetic field, protons
and electrons exchange their roles. The particles that are accelerated
outward radiate off energy and angular momentum to infinity. The BH
powers the process by reducing its energy and angular momentum by
capturing polar protons and equatorial electrons with net negative en-
ergy and angular momentum. The electric potential allows for negative
energy states outside the BH ergosphere, so the latter does not play any
role in this electrodynamical BH energy extraction process.

4. Becerra, L. M.; Fryer, C. L.; Rodriguez, J. F.; Rueda, J. A.; Ruffini, R.,
Neutron Star Binaries Produced by Binary-Driven Hypernovae, Their Merg-
ers, and the Link between Long and Short GRBs, Universe 9, 332, 2023.

The binary-driven hypernova (BdHN) model explains long gamma-ray
bursts (GRBs) associated with supernovae (SNe) Ic through physical
episodes that occur in a binary composed of a carbon-oxygen (CO) star
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4.1 Refereed Journals

and a neutron star (NS) companion in close orbit. The CO core col-
lapse triggers the cataclysmic event, originating the SN and a newborn
NS (hereafter νNS) at its center. The νNS and the NS accrete SN mat-
ter. BdHNe are classified based on the NS companion fate and the GRB
energetics, mainly determined by the orbital period. In BdHNe I, the or-
bital period is a few minutes, so the accretion causes the NS to collapse
into a Kerr black hole (BH), explaining GRBs of energies > 1052 erg.
BdHN II, with longer periods of tens of minutes, yields a more mas-
sive but stable NS, accounting for GRBs of 1050–1052 erg. BdHNe III
have still longer orbital periods (e.g., hours), so the NS companion has
a negligible role, which explains GRBs with a lower energy release of
< 1050 erg. BdHN I and II might remain bound after the SN, so they
could form NS-BH and binary NS (BNS), respectively. In BdHN III,
the SN likely disrupts the system. We perform numerical simulations
of BdHN II to compute the characteristic parameters of the BNS left by
them, their mergers, and the associated short GRBs. We obtain the mass
of the central remnant, whether it is likely to be a massive NS or a BH,
the conditions for disk formation and its mass, and the event’s energy
release. The role of the NS nuclear equation of state is outlined.

5. Pereira, J. P.; Rueda, J. A., Matching Slowly Rotating Spacetimes Split by
Dynamic Thin Shells, Universe 9, 305, 2023.

We investigated within the Darmois–Israel thin-shell formalism the match
of neutral and asymptotically flat, slowly rotating spacetimes (up to
second order in the rotation parameter) when their boundaries are dy-
namic. It has several important applications in general relativistic sys-
tems, such as black holes and neutron stars, which we exemplify. We
mostly focused on the stability aspects of slowly rotating thin shells in
equilibrium and the surface degrees of freedom on the hypersurfaces
splitting the matched slowly rotating spacetimes, e.g., surface energy
density and surface tension. We show that the stability upon perturba-
tions in the spherically symmetric case automatically implies stability
in the slow rotation case. In addition, we show that, when matching
slowly rotating Kerr spacetimes through thin shells in equilibrium, the
surface degrees of freedom can decrease compared to their Schwarzschild
counterparts, meaning that the energy conditions could be weakened.
The frame-dragging aspects of the match of slowly rotating spacetimes
are also briefly discussed.

1109



4 Publications 2023

6. Wang, Yu; Becerra, L. M.; Fryer, C. L.; Rueda, J. A.; Ruffini, R., GRB
171205A: Hypernova and Newborn Neutron Star, The Astrophysical Jour-
nal 945, 95, 2023.

GRB 171205A is a low-luminosity, long-duration gamma-ray burst (GRB)
associated with SN 2017iuk, a broad-line type Ic supernova (SN). It is
consistent with having been formed in the core collapse of a widely
separated binary, which we have called the binary-driven hypernova of
type III. The core collapse of the CO star forms a newborn NS (νNS) and
the SN explosion. Fallback accretion transfers mass and angular mo-
mentum to the νNS, here assumed to be born non-rotating. The accre-
tion energy injected into the expanding stellar layers powers the prompt
emission. The multiwavelength power-law afterglow is explained by
the synchrotron radiation of electrons in the SN ejecta, powered by en-
ergy injected by the spinning νNS. We calculate the amount of mass
and angular momentum gained by the νNS and the νNS rotational evo-
lution. The νNS spins up to a period of 47 ms, then releases its rota-
tional energy, powering the synchrotron emission of the afterglow. The
paucity of the νNS spin explains the low-luminosity characteristic and
that the optical emission of the SN from the nickel radioactive decay
outshines the optical emission from the synchrotron radiation. From
the νNS evolution, we infer that the SN explosion had to occur at most
7.36 h before the GRB trigger. Therefore, for the first time, the analysis
of the GRB data leads to the time of occurrence of the CO core collapse,
leading to the SN explosion and the electromagnetic emission of the
GRB event.

4.1.2 Submitted for publication

1. Becerra, L. M.; Cipolletta, F.; Fryer, C. L.; Menezes, D. P.; Providência,
C.; Rueda, J. A.; Ruffini, R., Occurrence of gravitational collapse in the ac-
creting neutron stars of binary-driven hypernovaer, submitted to The Astro-
physical Journal.

The binary-driven hypernova (BdHN) model proposes long gamma-
ray bursts (GRBs) originate in binaries composed of a carbon-oxygen
(CO) star and a neutron star (NS) companion in close orbit. The CO
core collapse triggers the GRB. It generates a newborn NS (νNS) and
a supernova (SN) that accretes onto the NS and the νNS. The accre-
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4.1 Refereed Journals

tion is highly super-Eddington, rapidly transferring mass and angu-
lar momentum to the stars. We perform three-dimensional, smoothed-
particle-hydrodynamics simulations of BdHNe. We use up-to-date nu-
clear equations of state (EOS), with and without hyperons, to describe
the NS interior and calculate the structure evolution in full general rel-
ativity. We assess the binary parameters leading either NS to the critical
mass for gravitational collapse into a black hole (BH) and the occur-
rence time, tcol. We include a non-zero angular momentum of the NSs:
tcol ranges from seconds to hours for decreasing NS initial angular mo-
mentum values. BdHNe I, the most compact (about five minutes orbital
period) and energetic, releasing ≳ 1052 erg, show prompt BH forma-
tion. They form NS-BH binaries with tens of kyr merger timescale by
gravitational-wave emission. BdHNe II do not form BHs and release
≲ 1052 erg. They form NS-NS binaries with similar merger timescales.
In some BdHNe II, either NS can become supramassive, i.e., above the
critical mass of a non-rotating NS. Magnetic braking can lead to a de-
layed collapse into a BH in tens of days for 1013 G magnetic field, lead-
ing to BH-BH or NS-BH with tens of kyr merger timescale.
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On the Optical Transients from Double White-dwarf Mergers
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Abstract

Double white dwarf (DWD) mergers are relevant astrophysical sources expected to produce massive, highly
magnetized white dwarfs (WDs), supernovae (SNe) Ia, and neutron stars (NSs). Although they are expected to be
numerous sources in the sky, their detection has evaded the most advanced transient surveys. This article
characterizes the optical transient expected from DWD mergers in which the central remnant is a stable (sub-
Chandrasekhar) WD. We show that the expansion and cooling of the merger’s dynamical ejecta lead to an optical
emission peaking at 1–10 days postmerger, with luminosities of 1040–1041 erg s−1. We present simulations of the
light curves, spectra, and the color evolution of the transient. We show that these properties, together with the
estimated rate of mergers, are consistent with the absence of detection, e.g., by the Zwicky Transient Facility. More
importantly, we show that the Legacy Survey of Space and Time of the Vera C. Rubin Observatory will likely
detect a few/several hundred per year, opening a new window to the physics of WDs, NSs, and SNe Ia.

Unified Astronomy Thesaurus concepts: White dwarf stars (1799); Stellar mergers (2157); Compact binary stars
(283); Compact objects (288); Visible sources (2108)

1. Introduction

The number of double white dwarfs (DWDs) in the Milky
Way (MW) merging within a Hubble time has been estimated
to be (5–7)× 10−13 yr−1


-M 1 (Maoz & Hallakoun 2017; Maoz

et al. 2018). Using a stellar mass and density of MW-like
galaxies of 6.4× 1010Me and 0.016Mpc−3 (Kalogera et al.
2001), it translates into a local cosmic merger rate of
 (» 5DWD –7)× 105 Gpc−3 yr−1. The above classifies DWD
mergers among the most numerous cataclysmic events.

Three fates of the central remnant of a DWD merger can be
envisaged: a fast-rotating (and possibly highly magnetized)
white dwarf (WD), a supernova (SN) of Type Ia, or a neutron
star (NS). The binary’s component masses, the presence (or
genesis) of high magnetic fields (García-Berro et al. 2012), and
the rate of mass and angular momentum transfer from a
surrounding debris disk are among the critical physical
ingredients that determine the central object’s fate (see, e.g.,
Becerra et al. 2018b, 2019, and references therein). Based on
the above, the relevance of DWDs has been highlighted in
various astrophysical scenarios, e.g.,:

1. The double-degenerate scenario (Iben & Tutukov 1984;
Webbink 1984) proposes that unstable thermonuclear
fusion can be ignited in the central remnant of DWD
mergers, leading to one of the most likely explanations of
SNe Ia (see, e.g., Neopane et al. 2022 and references
therein). Indeed, the DWD merger rate is sufficient to

explain the rate of SNe Ia, which is about 5–8 times
smaller (see, e.g., Ruiter et al. 2009; Maoz et al. 2018).

2. DWD mergers have been, for a long time, thought to be
the main channel leading to the observed WDs with high
magnetic fields in the range 106–109 G (Külebi et al.
2009; Ferrario et al. 2015; Kepler et al. 2016).

3. A fraction of DWD mergers can explain the population of
massive WDs of ∼1 Me (see Maoz et al. 2018; Cheng
et al. 2020; Kilic et al. 2023b, and references therein). See
also Section 4.

4. Interestingly, most of those massive WDs are highly
magnetic (see, e.g., Kepler et al. 2016). Additionally,
Legacy Survey of Space and Time (LSST) will observe
more than 150 million WDs at the final depth of its
stacked 10 yr survey (Fantin et al. 2020).

5. Indeed, it has been shown that the recently discovered
isolated, highly magnetic, rapidly rotating WDs, Zwicky
Transient Facility (ZTF) J190132.9+145808.7 (Caiazzo
et al. 2021), and SDSS J221141.80+113604.4 (Kilic
et al. 2021) could have been formed in DWD mergers
(see Sousa et al. 2022 for details).

6. Massive, highly magnetized, fast-rotating WDs formed in
DWD mergers have been proposed to explain soft gamma
repeaters and anomalous X-ray pulsars, i.e., magnetars
(Malheiro et al. 2012; Rueda et al. 2013; Coelho &
Malheiro 2014; Coelho et al. 2014, 2017; Mukhopadhyay
& Rao 2016; Cáceres et al. 2017; Otoniel et al. 2019;
Sousa et al. 2020a, 2020b; Borges et al. 2020), fast radio
bursts (Kashiyama et al. 2013), and overluminous SNe Ia
(Das et al. 2013; Deb et al. 2022).
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7. The Laser Interferometer Space Antenna expects to detect
the gravitational-wave (GW) radiation from many
compact (orbital periods shorter than hours), detached
DWDs (see, e.g., Stroeer & Vecchio 2006; Carvalho et al.
2022; Korol et al. 2022).

Despite the above theoretical and observational richness,
additional physical phenomena in DWD mergers have
remained unexplored. We aim to characterize them in this
article. First of all, given that  (~ 5DWD – ) -8 SN Ia, we must
conclude that there is a considerable population of DWD
mergers that do not produce SNe Ia (see, also, Cheng et al.
2020). This article focuses on such systems, especially those
where the central remnant is a massive WD (see Section 2).
Section 3 shows that the dynamical ejecta from DWD mergers
produces a fast-rising and fast-declining optical emission,
peaking at ∼1 day postmerger, from its cooling driven by the
expansion. The energy injected by the central remnant (e.g., by
accretion winds and/or pulsar-like emission) is considered. We
exemplify such optical transient theoretically and observation-
ally using fiducial model parameters. Section 4 discusses how
our findings compare with the known optical transients
population. We show the Bright Transient Survey (Perley
et al. 2020) of ZTF has not detected/identified any of them.

Finally, we discuss our main conclusions in Section 5,
including the consistency of our theoretical predictions with the
lack of detections by the ZTF of DWD mergers’ optical
transients. Furthermore, we provide an upper limit for the
number of detections expected by the forthcoming LSST of the
Vera C. Rubin Observatory. Details on the theoretical modeling
of the expected light curves and spectra are given in the
Appendix.

2. Merging Binary and Postmerger Configuration
Properties

We are interested in DWD mergers leading to a central
remnant that is a stable, sub-Chandrasekhar WD. Given the
mass distribution of observed WDs, we expect that sub-
Chandra mergers can lead to massive WDs in the
1.0M 1.4 Me range. In principle, such WDs might be
fastly rotating with periods P 0.5 s (see, e.g., Boshkayev
et al. 2013). Such postmerged WD can avoid exploding as an
SN Ia if, during its evolution, its central density remains below
some specific value estimated to be a few 109 g cm−3 (see, e.g.,
Becerra et al. 2018b, 2019, and references therein for details).

Numerical simulations show that the merger of a DWD, in
general, develops a rigidly rotating, central core surrounded by
a hot, convective corona with differential rotation and a
Keplerian disk that hosts nearly all the mass of the disrupted
secondary star (Benz et al. 1990; Guerrero et al. 2004; Lorén-
Aguilar et al. 2009; Longland et al. 2012; Raskin et al. 2012;
Zhu et al. 2013; Dan et al. 2014; Becerra et al. 2018b). These
compact-object mergers expel small amounts of mass in the
dynamical phase of the merger. Dan et al. (2014) provided
analytic functions that fit the results of their numerical
simulations. Concerning the ejected mass, it can be estimated
by

( )»
- + - +

m
M

q q q

0.0001807

0.01672 0.2463 0.6982
, 1ej 2 3

where M=m1+m2 is the total binary mass and q≡
m2/m1� 1 is the binary mass ratio. Equation (1) tells us that,

typically, DWD mergers eject mej∼ 10−3 Me. Despite this
amount of matter being negligible relative to the system mass,
we will show that it is responsible for the transient
electromagnetic emission in the early postmerger evolution.

3. Expected Light Curves and Spectra

We now turn to the results from modeling the emission of the
expanding ejecta. As we have recalled, about 10−3 Me are ejected
from the system during the final dynamical phase of the merger.
This ejecta expands nearly radially at about the escape velocity,
namely, 108–109 cm s−1. In the early postmerger evolution,
accretion winds further power the ejecta (see, e.g., Becerra et al.
2018a; Rueda et al. 2019). Magnetic braking and nuclear reactions
can also contribute to the energy budget but to a much lesser
extent, unless the central remnant is a superChandsekhar WD or a
neutron star (see, e.g., Yu et al. 2019). In Appendix, we present our
theoretical model to calculate the thermal evolution of the
expanding ejecta subjected to the injection of energy from the
central remnant. The model parameters are the ejecta mass (mej),
the index defining the radial falloff of the density profile (m), the
self-similar expansion index (n), the initial position and velocity of
the innermost ejecta layer (R*,0 and v*,0), the parameters defining
the power injected by the central remnant (H0, tc, and δ), and the
optical opacity (κ). We refer the reader to Appendix for technical
details.
Table 1 lists the model parameters and the corresponding

fiducial values we adopted to exemplify the model. Figure 1
shows the corresponding light curves (luminosity as a function
of time), predicted by the theoretical model in Appendix, in the
visible (r band) and the infrared (i and Ks bands).
From the light curves in Figure 1, we see that the thermal

emission due to the expansion of the ejecta peak luminosity is
∼1040–1041 erg s−1, at about 11–12 days postmerger. The
transparency time is * » ´t 1.55 10 str,

5 ≈1.79 days.
Figure 2 shows the spectra νF(ν, t) at selected times, where
F(ν, t)= Jcool(ν, t) is the spectral density, as given by
Equation (A16).

4. DWD Population, Merger Rate, and Massive WDs

Although the electromagnetic detection of DWDs is a
challenging observational task, the increasing quality, sensitiv-
ity, and capacity of performing accurate surveys by novel
optical observational facilities (e.g., the SDSS, ZTF, and Gaia)
and the refinement of observational techniques have led to a
tenfold increase in the number of observed DWDs in the MW
in the last 20 yr: from around 14 by 2000 (Nelemans et al.
2001) to about 150 by 2022 (Korol et al. 2022). That number

Table 1
Parameter Values Used to Model Thermal and Synchrotron Radiation from the

Expansion of Ejected Material

Parameter Fiducial Value

mej (10
−3 Me) 1.00

n 1.00
m 9.00
R*,0 (10

11 cm) 1.00
v*,0 (10

9 cm s−1) 1.00
H0 (10

46 erg s−1) 1.00
tc/t* 1.00
δ 1.30
κ (cm2 g−1) 0.20
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has already increased (see, e.g., Kosakowski et al. 2023), also
in view of the rapidly growing number of observed WDs in
binaries in recent data from the Gaia Mission and ZTF, of
which an appreciable percentage are expected to be DWDs
(see, e.g., Brown et al. 2023; Jiménez-Esteban et al. 2023;
Kosakowski et al. 2023; Parsons et al. 2023).

Using population synthesis models that matched the at-the-
time number of observed DWDs, i.e., 14, in their pioneering
work, Nelemans et al. (2001) estimated the MW hosts about
2.5× 108 DWDs and a DWD merger rate ≈2.2× 10−2 yr−1.
Up-to-date analyses that match the increasing number of
known DWDs have confirmed their estimate. We shall use the
estimates by Maoz et al. (2018), to which we refer the reader
for details. They estimated a DWD merger rate per WD of
 ( )=  ´ -9.7 1.1 10DWD

12 yr−1. This estimate can be
translated into a DWD merger rate per unit stellar mass by
dividing it by the stellar mass to WD number ratio (15.5±
1.8) Me per WD, leading to (» 5DWD –7)× 10−13 yr−1


-M 1.

It is worth noticing that this number agrees with the initial
estimate by Nelemans et al. (2001) when multiplied by the MW
stellar mass. Assuming a constant star formation rate over the
MW lifetime, these figures imply that ∼10% of the Galactic
WDs have merged with another WD. Therefore, as discussed in
Maoz et al. (2018), this inferred fraction of already-merged
DWDs may explain the high-mass bump in the WD mass
function (see also Kilic et al. 2023b). However, some massive
WDs may have formed from different channels (see, e.g., the
case of J004917.14-252556.81 in Kilic et al. 2023a).

The above result agrees with our basic assumption that a
considerable fraction of DWD mergers do not lead to SNe Ia
but to massive WDs (rapidly rotating and possibly highly
magnetic). Therefore, attention must be given to the possibility
of establishing the link between observed massive WDs and
their possible DWD merger progenitors. The success of this
task needs the observational determination of the WD
parameters (e.g., mass, radius, rotation period, temperature,
and magnetic field strength) and the accurate modeling of the
merger and postmerger evolution of the system. Fortunately,
there is a growing effort in both directions. Numerical
simulations focusing on the merging phase of DWDs started
in the ’90s and have considerably improved over the years (see,
e.g., Benz et al. 1990; Guerrero et al. 2004; Lorén-Aguilar et al.
2009; Longland et al. 2012; Raskin et al. 2012; Zhu et al. 2013;
Dan et al. 2014; Becerra et al. 2018b). Theoretical analyses to

constrain the physics of the postmerger remnant and to
determine its possible fate either as a disrupting explosion
(SN Ia); a stable, massive WD; or gravitational collapse to an
NS, including magnetic fields, rotation, and general relativistic
effects, have also gained interest and been performed in the last
decade (see, e.g., Schwab et al. 2012; Shen et al. 2012; Ji et al.
2013; Kashiyama et al. 2013; Beloborodov 2014; Schwab et al.
2016; Becerra et al. 2018b; Rueda et al. 2018; Shen et al. 2019;
Neopane et al. 2022). Although there is still room for
improvements in the merger and postmerger modeling, these
works have already allowed us to test the viability of the
connection between massive WDs and their possible DWD
progenitors on a theoretical basis. For instance, Sousa et al.
(2022) has positively assessed such a connection for the
isolated, highly magnetic, rapidly rotating WDs ZTF J190132.9
+145808.7 (Caiazzo et al. 2021) and SDSS J221141.80
+113604.4 (Kilic et al. 2021), leading to the parameters of
the possible DWD progenitor, which were found to agree with
those of the DWD observed population.
Having set the theoretical and observational basis for the

connection between DWD mergers and massive WDs, we next
discuss the electromagnetic transient associated with such an
astrophysical system, theoretically featured in Section 2, from
the observational viewpoint.

5. Observed Populations of Fast Transients

In the last decades, the advent of wide-field, high-cadence
surveys led to the discovery of several classes of fast (trise
10 days) transients, with luminosities spanning several decades
(see Pastorello & Fraser 2019 for a review). The so-called “fast
blue optical transients” (FBOTs) are blue and fast rising, with
peak luminosities in the range −16Mg,peak− 22 (e.g.,
Drout et al. 2014; Tanaka et al. 2016; Pursiainen et al. 2018;
Tampo et al. 2020) and are also referred to as “rapidly evolving
transients” or “fast-evolving luminous transients.” The source
AT2018cow (known as “the cow”), at 60 Mpc, represents the
best-studied case of this class. It exhibited some unprecedented
characteristics: rise time of a few days; Lp∼ 4× 1044 erg s−1;
mostly featureless spectra with blackbody temperatures above
104 K during the first 15 days with large expansion velocities
(∼0.1c); hard X-ray and variable soft X-ray emission; and
radio brightness with Lν,p∼ 4× 1028 erg s−1 Hz−1 at 8.5 GHz
(Ho et al. 2019; Margutti et al. 2019; Perley et al. 2019; see
also Coppejans et al. 2020; Ho et al. 2020; Perley et al. 2021;

Figure 2. Emission spectra from the expanding, cooling ejecta at selected
postmerger times. We refer to Appendix for details on the theoretical model.

Figure 1. Emission from the expanding, cooling ejecta at early times (solid
lines) in the visible (r band) and in the infrared (i and Ks bands). We refer to
Appendix for details on the theoretical model.
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Ho et al. 2023; Matthews et al. 2023 for the few analogous
cases yet observed). These properties suggest that a large
amount of radioactive nickel cannot explain the high
luminosity, and the relatively short effective diffusion timescale
points to a low ejecta mass. In contrast, the long-lived X-ray
variability suggests a compact and long-lived inner engine.
Owing to their extreme peak luminosity from radio to hard
X-rays, these FBOTs are hardly compatible with a DWD
merger since the power injected from the central remnant at
those times is lower than the observed luminosities.

In parallel, other transients that share comparably fast rise
times (∼12–15 days) but are significantly less luminous have
also been discovered, with peak luminosities in the gap between
novae and supernovae. A class that raised interest is that of so-
called calcium-rich transients (−13MV− 17; Perets et al.
2010; Kasliwal et al. 2012; De et al. 2020), which exhibit
a strong [Ca II] emission in the nebular phase spectra with a high
[Ca II]/[O I] ratio. These share similar photospheric velocities
with typical core-collapse Ib/c SNe. Still, their environment is
strongly different from the latter since they prefer remote
locations in the outskirts of early-type galaxies, even more than
Type Ia SNe and short gamma-ray bursts, indicative of a very old
progenitor population (Lunnan et al. 2017). In this respect, a
fraction of these transients could result from mergers of helium
and oxygen/neon WDs (Shen et al. 2019). The local volumetric
rate of Ca-rich, hydrogen-poor transients is estimated to be
15% of the Type Ia rate (De et al. 2020). The variety in peak
luminosity and spectroscopic properties probably stems from a
heterogeneous class of progenitors.

Some low-luminosity gap transients are still likely to be less
energetic SNe. In particular, the so-called intermediate-
luminosity red transients (Berger et al. 2009; Bond et al.
2009) have a peak luminosity in the range −12MV−15,
relatively long rise times and postpeak plateaus that resemble
Type II-L and II-P SNe. Although there is consensus that the
progenitors are 8–15Me stars in dusty cocoons, eruptive
formation of a massive WD or eruptions from binary
interactions could contribute to the observed population
(Pastorello & Fraser 2019).

A few gap transients MV−13 mag, characterized by
double or even triple-peaked light curves, have been proposed
as a scaled-up version of red novae (typically less luminous
than −10 mag) and, as such, are often referred to as luminous
red novae (see Kulkarni et al. 2007; Pastorello et al. 2019 and
references therein). Their photometric evolution is reminiscent
of eruptive variables such as V1309 Scorpii, whose final
brightening was interpreted as the merger of a contact binary
(Tylenda et al. 2011).

Figure 3 summarizes the zoo of the fast transients as
observed with the ZTF Bright Transient Survey (Perley et al.
2020) in the peak luminosity–duration plane. We show the
region where our predictions on DWD mergers lie: despite the
relatively high expected volumetric rate, this region is still
poorly explored. Upcoming surveys such as the LSST (Ivezić
et al. 2019) are expected to boost the number of promising
candidates for DWD mergers.

6. Discussion and Conclusions

We have estimated the optical transient from DWD mergers
leading to stable, massive, fast-rotating WDs. The emission
arises from the cooling down of the dynamical ejecta of the
merger, about 10−3Me, that expands at 108–109 cm s−1. The

ejecta is powered by the early activity of the central remnant,
mainly fallback accretion (see, e.g., Rueda et al. 2019, and
references therein, and Appendix for a comparison of accretion
power with nuclear energy and magnetic braking). Inspired by
numerical simulations, we assumed spherical expansion. The
theoretical model includes a power-law density profile and self-
similar expansion. We solve the energy balance equation and
determine the ejecta’s thermal history (time evolution),
estimating its photospheric emission and color evolution.
We have shown that the peak of the optical emission occurs

at times 1–10 days, with a luminosity Lp= 1040–1041 erg s−1,
for typical parameters expected for these DWD mergers (see
Table 1); see Figures 1 and 2 for the light curves and spectra,
respectively. Although our model makes some approximations,
we expect it to catch the main physics of these systems
robustly. Therefore, further model refinements should not
appreciably change the above qualitative and quantitative
picture.
With this in mind, we turned to the observational

considerations. Indeed, detecting the optical counterpart of
DWD mergers would have several relevant consequences in
physics and astrophysics. To mention some:

1. It will constrain the fraction of mergers producing SNe Ia,
giving crucial hints for the SN Ia–associated physics, e.g.,
the unstable thermonuclear fusion and detonation (see
Schwab et al. 2012; Shen et al. 2012; Ji et al. 2013;
Schwab et al. 2016; Neopane et al. 2022; and references
therein).

2. If the rate of mergers leading to SN Ia will turn out lower
than the SN Ia observed rate, it would imply the necessity
of also having at work the single-degenerate scenario for
their explanation (see, e.g., Han & Podsiadlowski 2004).

3. It will alert facilities on ground and space to look for
associated emissions at higher energies, e.g., in the
X- and gamma-rays, constraining the physics of the
central remnant such as magnetic fields and rotation

Figure 3. Different populations of fast transients observed with the ZTF Bright
Transient Survey (Perley et al. 2020). The shaded box highlights where we
expect most DWD mergers should lie. Figure adapted from Perley et al. (2020).
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(see, e.g., Ji et al. 2013; Kashiyama et al. 2013;
Beloborodov 2014; Becerra et al. 2018b; Rueda et al.
2018).

4. It will confirm DWD mergers as the formation channel of
massive, fast-rotating WDs.

5. At late postmerger times, the central WD might be
observed accompanied by a debris disk (see, e.g., Külebi
et al. 2013; Rueda et al. 2013; Becerra et al. 2018b;
Neopane et al. 2022; and references therein). Thus, it will
be interesting to compare forthcoming advanced infrared-
optical-UV survey estimates of the rate of WDs with
debris disk (Fantin et al. 2020) and the DWD merger rate
estimates.

6. It will constrain the physics of the gravitational collapse
of WDs into NSs while simultaneously possibly con-
firming DWD mergers as a formation channel of NSs.

Thus, in Section 4, we checked whether current observa-
tional facilities could have observed such optical transients. We
compare and contrast the model predictions with the emergence
population of optical transients in the literature. Our analysis
showed that the optical transients from DWD mergers
presented here do not match the observed features of FBOTs,
fast-evolving luminous transients (i.e., cow-like objects), and
calcium-rich transients. A plot of the peak absolute magnitude
as a function of the rest-frame time duration for the transients
detected by the ZTF Bright Transient Survey (see Figure 3),
highlighting the region the DWD merger optical transients
should occupy, reveals overwhelmingly the above result.

Therefore, no optical transient from DWD mergers has ever
been detected. Does this result agree with the model
prediction? The limiting magnitude for detection by ZTF is

=m 19ZTF, lim mag (Perley et al. 2020). Assuming the peak
luminosity Lp= 1040 erg s−1, this turns into a detection horizon

~d 11ZTF,lim Mpc. Using an expected volumetric rate for
DWD mergers of 4× 105 Gpc−3 yr−1 (see Section 1), the upper
limit to the expected number of events by ZTF is ∼2,
considering the duty cycle of the survey. This result is
consistent with our findings and the expectation that not all
DWD mergers produce stable WDs: a fraction should lead to
SNe Ia and another to NSs as central remnants.

We can apply the same kind of calculation to LSST, for
which 5σ limiting magnitudes for single exposures in filters g
and r (the same considered for ZTF in Figure 3) are 24.5 and
24.0, respectively.11 Under these favorable conditions, the
detection horizon becomes ~d 110LSST,lim –140Mpc, corresp-
onding to a gain by ∼103 in the expected detection rate.

The above analysis brings us to one of the main conclusions:
in the transition from ZTF to LSST, the electromagnetic
(optical) counterparts of DWD mergers will finally become
observable, likely a few/several hundred per year, opening a
new window to the physics of WDs, NSs, and SN Ia.
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Appendix
Emission from the Cooling of the Expanding Ejecta

For modeling the thermal emission of the expanding ejecta,
we must consider that the layers reach transparency at different
times in a nonhomogeneous distribution of matter. The present
model generalizes the model presented in Rueda et al. (2019).
Numerical simulations show that the ejected matter expands
nearly radially, so we consider a spherically symmetric
distribution. The ejecta extends at radii [ ]*Îr R R,i max , with
corresponding velocities [ ]*Îv v v,i max , in self-similar expan-
sion

( ) ˆ ( ) ( ) ˆ ( )= = = -r t r t v t n
r t

t
v t, , A1i i

n
i

i
i

n
,0 ,0

1

where ˆ
*ºt t t , being t*≡ nR*,0/v*,0 the characteristic

expansion timescale, which is the same for all layers given
the condition of self-similarity. Here, ri,0 and vi,0 are the initial
radius and velocity of the layer. The case n= 1 corresponds to
a uniform expansion.
The density at the position r = ri is given by
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where mej is the total mass of the ejecta, and m is a positive
constant. The distribution and time evolution given by
Equation (A2) ensure that at any time, the total mass of the
ejecta, i.e., the volume integral of the density, equals mej.
We divide the ejecta into N shells defined by the N+ 1 radii
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so the width and mass of each shell are, respectively,
( )*D = -r R R Nmax , and
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so given the decreasing density with distance, the inner layers
are more massive than the outer layers. The number of shells to
be used must satisfy the constraint that the sum of the shells’
mass gives the total ejecta mass, i.e.,

( )å =
=

m m . A5
j

N

j
1

ej

We have introduced the discrete index j= i+ 1 to differentiate
the counting of the shells from the counting of radii given by
Equation (A3). In this work, we use N= 100 shells, ensuring
that Equation (A5) is satisfied with 99% of accuracy.
Under the assumption that the shells do not interact with

each other, we can estimate the evolution of the ith shell from
the energy conservation equation

  ( )= - - +E P V L H , A6i i i i icool, inj,

where ( )p=V r4 3i i
3, Ei, and Pi are the volume, energy, and

pressure of the shell, while Hinj,i is the power injected from the11 https://www.lsst.org/scientists/keynumbers
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central remnant that is thermalized in the shell, and

( ) ( )
t

»
+

L
cE

r 1
A7i

i

i i
cool,

opt,

is the bolometric luminosity radiated by the shell, τopt,i being
the optical depth.

Assuming a spatially constant gray opacity throughout the
ejecta, the optical depth of the radiation emitted by the ith layer
is given by

⎡⎣ ⎤⎦⎡⎣ ⎤⎦
( ) ( )

( )

( ) ( ) ˆ
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*

* *
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ò òt kr kr t
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= = =
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¥
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,

3

1 4 1
, A8

r

R

r
i

n

i

R

r

m R

r

m

R

R

m

opt,i ,0
2

,0
ej

,0
2

1 1

3

i i

i

max

max

max

where we have used Equation (A2), and κ is the opacity.
We adopt a radiation-dominated equation of state for the

ejecta, so at every position, Ei≈ 3Pi Vi. The power injected into
the ejecta originates from the newborn central WD (Rueda et al.
2019). This energy is absorbed and thermalized, becoming a
heating source for the expanding matter. The power-law
decreasing density, Equation (A2), suggests that the more
inner the layer, the more radiation it should absorb. To account
for this effect, we weigh the heating source for each shell using
the mass fraction, i.e.,

( )=H
m

m
H , A9i

i
inj,

ej
inj

where mi is the shell’s mass, and adopt the following form for
the heating source

⎜ ⎟⎛⎝ ⎞⎠ ( )= +
d-

H H
t

t
1 , A10

c
inj 0

where H0 and δ are model parameters. This function can model
the power injected by the pulsar’s spindown by magnetic braking
and accretion winds. We expect that power released from
accretion dominates the early times. For instance, for fallback
accretion parameters H0= 1046 erg s−1, δ= 1.3, and tc= t*
(Rueda et al. 2019), with t*= 102 s, we obtain Hinj≈ 2×
1043 erg s−1 at t= 104 s. We can set an upper limit on the energy
injected from nuclear reactions, e.g., by nickel decay, assuming
nickel amounts to the entire ejecta mass, i.e.,
MNi=mej∼ 10−3Me. In that case, reactions would inject
LNi= 3.9× 1010MNi e

− t/(8.8d)∼ 1041 erg s−1 by that time, which
is still much smaller than the expected power injected by fallback
accretion. Likewise, magnetic braking leads to negligible energy
injection from rotational energy loss at early times. For example, a
WD with a dipole magnetic field of strength Bd= 109 G,
radius R= 108 cm, initial rotation period P0= 10 s
(Ω0= 2π/P0≈ 0.6 rad s−1), and moment of inertia I=
1049 g cm2 has a characteristic magnetic braking timescale
tsd= T/Lsd≈ 2× 107 yr, where ( )= WT I1 2 0

2 is the initial
rotational energy and ( )= WL B R c2 3 dd

2 6
0
4 3 the initial spindown

power due to magnetic dipole braking. Therefore, at times
t tsd≈ 6× 1014 s, the spindown power is Ld≈ 4× 1033 erg s−1.
From the above, we safely assume a single source of injection
power, modeled by Equation (A10), bearing in mind that other

power inputs could be considered but which should have a
negligible effect in the early postmerger transient.
The position of the shell that reaches transparency gives the

photospheric radius at a time t. Namely, the shell’s position
with optical depth τopt, i[ri(t)]= 1. Using Equation (A8), we
obtain

⎡
⎣⎢⎢
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2
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3
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1

1
1

Equation (A11) shows that when the entire ejecta is optically
thick, =R Rph max. Then, the transparency reaches the inner
shells to the instant over which Rph= R*, at *=t ttr, , when the
entire ejecta has become transparent. The time *ttr, is found
from the condition [ ( )]* * *t =R t 1opt, tr, , and is given by

⎜ ⎟
⎧⎨⎪⎩⎪ ⎛⎝ ⎞⎠ ⎡⎣ ⎤⎦⎡⎣ ⎤⎦
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At *<t ttr, , the photospheric radius evolves as
( )

µ
-
-R tph

n m
m

3
1 , while at later times, Rph∝ t n.

The sum of the luminosity of the shells gives the bolometric
luminosity

( )å=
=

L L , A13
j

N

jbol
1

cool,

so the effective temperature of the blackbody emission, Ts, can
be obtained from the Stefan–Boltzmann law, i.e.,⎛⎝⎜ ⎞⎠⎟ ( )

p s
=T

L

R4
, A14s

bol

ph
2

1 4

where σ is the Stefan–Boltzmann constant. The power per unit
frequency, per unit area, is given by Planck’s spectrum

( )p n
=

-
n nB

h

c e

2 1

1
, A15

3

2 h
kBTs

where ν is the radiation frequency, h and kB are the Planck and
Boltzmann constants. Therefore, the spectral density (power
per unit frequency) given by the thermal cooling at a frequency
ν is

( ) ( ) ( ) ( )n p n= nJ t R t B t, 4 , , A16cool ph
2

and the luminosity radiated in the frequency range [ν1, ν2] can
be then obtained as

( ) ( ) ( )òn n n n=
n

n
L t J t d, ; , . A17cool 1 2 cool

1

2

The parameter vmax,0 has no appreciable effect in the
evolution, so it cannot be constrained from the data. This
happens because most of the mass is concentrated in the
innermost layers, so they dominate the thermal evolution. For
self-consistency of the model, we have set *=v v2max,0 ,0
(so *=R R2max,0 ,0). As for the initial value of the internal
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energy of the shells, Ei(t0), we have set them to the initial
kinetic energy of each layer, ( ) ( )=E m v t1 2i i i 0

2.
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Abstract. Compressible, Riemann S-type ellipsoids can emit gravitational waves (GWs) with
a chirp-like behavior (hereafter chirping ellipsoids, CELs). We show that the GW frequency-
amplitude evolution of CELs (mass ∼ 1M�, radius ∼ 103 km, polytropic equation of state
with index n ≈ 3) is indistinguishable from that emitted by double white dwarfs and by
extreme mass-ratio inspirals (EMRIs) composed of an intermediate-mass (e.g. 103 M�) black
hole and a planet-like (e.g. 10−4 M�) companion, in the frequency interval within the de-
tector sensitivity band in which the GW emission of these systems is quasi-monochromatic.
For reasonable astrophysical assumptions, the local universe density rate of CELs, dou-
ble white dwarfs, and EMRIs in the mass range here considered are very similar, posing a
detection-degeneracy challenge for space-based GW detectors. We outline the astrophysical
implications of this CEL-binary detection degeneracy by space-based GW-detection facilities.

Keywords: gravitational waves / sources, gravitational wave detectors, gravitational waves
/ experiments, gravitational waves / theory
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1 Introduction

Space-based, gravitational wave (GW) interferometers such as LISA [1], TianQin [2] and
Taiji [3] have the potential to detect low-frequency GWs and thus to give details of a different
set of astrophysical objects with respect to the ones detectable by Earth-borne interferometers
such as LIGO/Virgo. Specifically, LISA is sensitive to the frequency range 10−5−1Hz [4, 5],
and TianQin in the range 10−4−0.1Hz [2].

Among the main astrophysical targets expected for these detectors are the so-called
extreme mass-ratio inspirals (EMRIs), namely binaries with symmetric mass-ratios ν ≡
q/(1 + q)2 ≈ q ≡ m2/m1 � 1. EMRIs that fall within the aforementioned GW frequency
range are, for example, binaries composed of a supermassive (e.g. m1 ∼ 106–109 M�) or
intermediate-mass (e.g. m1∼102–103 M�) black hole, accompanied by a stellar-mass object
(e.g. m2 ∼M�) or, more interestingly (for the purposes of the present work), a substellar
object (e.g. m2 �M�), respectively (see eg. [6] and references therein).

Another target for GW detectors is represented by triaxial objects (e.g., deformed com-
pact stars) emitting gravitational radiation while approaching axial symmetry. Searches for
GWs from deformed neutron stars have been conducted in LIGO/Virgo detectors in the
Hz-kHz band (e.g. [7, 8]). So far, no analogous sources in the sub-Hz frequency region ap-
pear to have been considered possible targets of LISA even for different types of stellar
objects. These sources could help to test astrophysical and relativistic objects, such as white
dwarfs and low-mass compact objects, in physical regimes not previously explored and with
unprecedented precision.

We show in this work that:

1. Triaxial, white dwarf-like compact objects emit quasi-monochromatic detectable GWs
in the LISA frequency sensitivity band;

2. Their GW emission (spectrum, spanned frequency range, and time evolution), becomes
almost indistinguishable from that of some binaries, specifically detached double white
dwarfs and EMRIs in the case of intermediate-mass black holes with planet-like com-
panions.

– 1 –
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We aim to characterize the above detection degeneracy. This challenge makes difficult
the unambiguous identification of these objects by space-based interferometers, also given
their expected comparable rates.

The article is organized as follows. In section 2, we recall the main physical properties of
the compressible, triaxial ellipsoid-like object relevant for this work, which we name chirping
ellipsoid (CEL). The properties of the GW emission from a CEL are investigated in section 3.
We identify white dwarf-like objects as the kind of CEL that could mimic the GW emission
from some binaries. In section 4, we summarize the main quantities relevant to estimating
the detectability by space-based interferometers of the GWs from CELs. We also define when
we can consider GWs monochromatic in the interferometer band. Having defined these key
ingredients, we identify in section 5 the binary systems for which a detection degeneracy with
CEL occurs. We refer to them as CEL equivalent binaries. Section 6 is devoted to giving
estimates of the rates of CEL and the equivalent binaries. Finally, in section 7, we draw our
conclusions.

2 Evolution of compressible ellipsoids

The study of equilibrium configurations of rotating self-gravitating systems using analytic
methods (e.g., [9]) allows us to estimate the gravitational radiation emitted by rotating
stars. In [10–13] incompressible rotating stars were studied following a quasi-static evolution
approach. In particular, it was shown that Kelvin’s circulation, C ≡ πa1a2

(
ζ + 2Ω

)
,1 is con-

served when the dynamics is only driven by gravitational radiation reaction [13]. Hereafter,
the principal axes of the ellipsoid are denoted by (a1, a2, a3), the angular velocity of rotation
around a3 by Ω, and the vorticity in the same direction by ζ. In [14, 15] it was studied the
GW emission of compressible, rotating stars with matter described by a polytropic equation
of state, i.e., P = Kρ1+1/n, where P is the pressure, ρ the matter density, and n and K are
the polytropic index and constant.

We are interested in the GW emission of Riemann type-S ellipsoids [9], which are not
axially symmetric but whose equilibrium sequences of constant circulation can be constructed.

There are two main sequences of rotating triaxial ellipsoids: the Jacobi-like (spinning-
up by angular momentum loss) with |ζ| < 2|Ω| and the Dedekind-like (spinning-down) with
|ζ| > 2|Ω| [14, 15]. For the purposes pursued here, we address systems along the Jacobi-like
sequence and, in virtue of its expected radiation signature, we call them chirping ellip-
soids, CEL.

Paper [15] studied the case of a newborn neutron star described by a polytropic index
n ≤ 1. In that case, the spin-up sequence has a first chirp-like epoch (i.e. frequency and
amplitude increase; see figure 7 in [15]) and both the spin-down and spin-up epochs are in
principle detectable by interferometers such as LIGO/Virgo [15, 16]. No other values of the
polytropic index, of interest e.g. for white dwarfs, have been explored in depth.

We follow the treatment of compressible ellipsoids by [14, 17] and refer the reader there
for technical details. The dynamical timescale, and hence the unit of time, in our calculations
will be τCEL = 1/

√
πGρ̄0, where ρ̄0 is the mean density of the non-rotating star with the

same polytropic index and total mass M , but with radius R0 different from the mean radius
R = (a1a2a3)1/3 of the compressible ellipsoid [14].

When the polytropic index is close to 3, the value of Ω/
√
πGρ̄0 along the equilibrium

sequence is of the order of 10−2. With this information, we can infer the kind of astrophysical
1Not to be confused with the compactness parameter denoted by calligraphic C.
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object whose GWs are within the frequency band of space-based detectors. For instance, for
a GW frequency of the order of the minimum noise of LISA i.e. f ∼ 10mHz (see figure 6 in
section 4), then ρ̄0 ∼ 5× 107 g cm−3, which is a typical average density of a white dwarf (see,
e.g., [18]).

3 GW emission of a CEL

In the weak-field, low-velocity approximation, the GW power of a rotating object is [19–21]

dE

dt
= −32

5
G

c5 Ω6(I11 − I22)2, (3.1)

where Iii = κnMa2
i /5, with κn a structure constant that depends on the polytropic index. We

recall that the GW is quadrupole dominant and the angular frequency is twice the rotational
one, i.e. ω = 2Ω.

The GW amplitude
h0 = 4 G

c4D
(πf)2(I11 − I22), (3.2)

where f is the GW frequency, and D is the distance to the source and the typical GW
emission timescale,

τGW = f

ḟ
= ΩdE

dΩ
dt

dE
, (3.3)

are obtained from the equilibrium sequence of Riemann type-S ellipsoids described in sec-
tion 2; see figure 1.

It can be seen from figure 1 that these CELs can be considered as quasi-monochromatic,
i.e., τGW � Tobs, where Tobs is the observing time of the space-based detector. This feature
is very important to assess the detectability and degeneracy properties. Figure 1 also shows
that these spin-up CELs have a chirp-like early epoch, i.e. both the frequency and amplitude
increase with time.

Different circulations converge during this early phase, characterized by axes ratios
λ2 = a2/a1, λ3 = a3/a1 . 0.7. The smaller the polytropic index, the more deformed the star
is during this chirping epoch.

We have identified CELs with deformed white dwarf-like objects. We show in figure 3
isodensity contours of a CEL with polytropic index n = 2.95, when the axes ratios are
λ2 = 0.74, λ = 0.80. At this stage, the object rotates with angular velocity Ω/

√
πGρ̄0 = 0.037.

All the contours represent self-similar ellipsoids, and the density profile is the same as the one
of the non-rotating polytrope with the same index n and radius R0 [14], shown in figure 2.
At this point of the evolution R/R0 = 14.81, which implies that for a CEL with M = 1.2M�
the axes are a1 = 7.1 × 109, a2 = 5.2 × 109, a3 = 5.6 × 109 cm. When we compare with
the simulations of double white dwarf mergers, evidently, there is a problem in scale that
comes from the fact that the CEL is very expanded, nearly one order of magnitude compared
with the non-rotating configuration. It is important to mention that this point of the CEL
evolution is near the end of the chirp Ωend/

√
πGρ̄0 ≈ 0.04.

We advance the possibility that these CELs might be the aftermath of double white
dwarf mergers. Numerical simulations (see, e.g., [22–26]) have shown that the merged object
is composed of a central white dwarf made of the undisrupted primary white dwarf and a
corona made with nearly half of the disrupted secondary. The central remnant is surrounded
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Figure 1. GW amplitude (upper panel) and timescale (lower panel) as a function of the GW frequency
(in Hz) for a compressible CEL with polytropic index n = 2.95. The CEL mass is M = 1.0M�, the
same as the non-rotating spherical star with radius R ≈ 6000 km. For comparison purposes, the
dot-dashed lines show a binary with chirp mass equal to the CEL mass. The systems are quasi-
monochromatic, i.e. τGW � Tobs, at the frequency band of spaced-borne detectors.

0.0 0.2 0.4 0.6 0.8 1.0
r/R0

10 9
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10 5

10 3

10 1

/
c

Figure 2. Density profile of a self-gravitating, non-rotating object whose internal matter is described
by a polytropic equation of state with n = 2.95.

by a Keplerian disk with a mass given by the rest of the disrupted secondary because very
little mass (∼ 10−3 M�) is ejected during the merger.

To validate the above hypothesis, we have performed smoothed-particle-hydrodynamics
(SPH) simulations of double white dwarf mergers to compare the structure of the post-merger,
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Figure 3. Isodensity curves of a CEL with polytropic index n = 2.95, MCEL = 1.2M�, and central
density ρc = 1.2 × 108 g cm−3, rotating with angular velocity Ω/

√
πGρ̄0 = 0.037. All the curves are

self-similar to the ellipsoid with axes ratio a2/a1 = 0.74 and a3/a1 = 0.80. The compactness of the
corresponding non-rotating configuration, with the same mass, is C = 0.44× 10−4.

central white dwarf remnant with the one of the CEL. In figure 4, we show the density color
map on the orbital and polar plane of a 0.6 + 0.6M� merger at about 9 orbital periods
after the starting time of the mass transfer. The two white dwarfs have merged, forming a
newborn central white dwarf remnant. By comparing figures 3 and 4, we can conclude that
the density and radii of the central white dwarf, the product of a merger, are similar to the
ones of our relevant CELs, which validate our initial guess.

Turning to the comparison with a binary, we computed, as a first guess, the GW emission
for a binary with total mass, Mbin = m1 + m2, and a chirp mass, Mchirp = Mbinν

3/5 (ν ≈
q ≡ m2/m1), equal to the mass of the CEL. We found that the timescale and amplitude
evolution of the binary is of the same order of magnitude as the ones of a CEL. Hence, we
conjecture that the two signals can have similar waveforms sweeping the same frequency
interval simultaneously.

The GWs from these CELs, besides their early chirping-like behavior, are highly mono-
chromatic. Hence, this poses a detection-degeneracy issue with other monochromatic systems,
such as some kind of binaries, which we identify in section 5.

For a more detailed and quantitative study of the waveforms, we used the non-dimen-
sional parameter

Qω ≡
ω2

ω̇
= dφ

d lnω = 2π dN

d ln f = 2Ω2dE

dΩ
dt

dE
, (3.4)

where φ is GW phase and N the number of cycles. This parameter is an intrinsic measure
of the phase-time evolution [29], and is (gauge) invariant under time and phase shifts.

We make an empirical fit of Qω for CEL with different indexes n, and different values
of the compactness parameter C = GMCEL/(c2R0). The fitting function is:

QCEL
ω ≈ AnC5/2

[
ω√
πGρ̄0

]α
(3.5)

where the values of An and α, as obtained fitting the waveforms of CELs with different
polytropic structure constants, are shown in table 1.
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Figure 4. Density map of a section in the orbital plane (top panel) and in the polar plane (bottom
panel) of a 0.6 + 0.6M� double white dwarf merger simulated with 5 × 104 SPH particles. This
snapshot is taken 9 orbital periods after mass transfer begins. The simulation was performed with
an adapted version of PHANTOM [27]. This figure has been created using SPLASH (Price 2007), an
SPH visualization tool publicly available at http://users.monash.edu.au/∼dprice/splash [28].

n κn k1 k2 k3 An α

2.0 0.38712 1.1078 0.71618 1.6562 4.003 −1.222
2.5 0.27951 1.4295 0.67623 1.4202 4.060 −1.447
2.7 0.24109 1.55971 0.66110 1.33194 5.926 −1.365
2.9 0.20530 1.69038 0.64630 1.24621 4.940 −1.571
2.95 0.19676 1.72309 0.64265 1.22511 4.369 −1.614
2.97 0.19340 1.73617 0.64119 1.21669 3.760 −1.640
2.99 0.19005 1.74925 0.63973 1.20829 3.817 −1.652

Table 1. Polytropic structure constants (n, κn, k1, k2, k3) and the Qω power-law empirical fitting
parameters.

The function Qω for both the CEL and the binary has a power-law behavior but with a
different exponent. The negative exponent implies that both have a monotonically increasing
frequency. In the case of the CEL, this behavior can be understood from the conservation
of circulation and the interplay of compressibility and vorticity. Riemann S-type ellipsoids
have internal motions with uniform vorticity contributing to the total angular momentum. In
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Figure 5. Intrinsic phase-time evolution for a Riemann S-type spinning-up ellipsoid (CEL) with
polytropic indexes n = 2.8, 2.9, 2.95 (blue, orange, green), normalized by the compactness parameter
C. Fits are shown as black dashed curves. The vertical dashed line represents the end of the chirping
regime for each index, i.e. the frequency where the GW amplitude reaches the maximum.

spin-up configurations, the radiation of angular momentum induces a vorticity loss. However,
since the circulation is conserved, this loss must be compensated with a change in the angular
velocity and the axes a1, a2. Thus, the spin-up of a CEL has two “components”: one due to
the change in geometry that depends on the compressibility, and the other one due to the
decrease of vorticity. The compressibility of the object changes with the polytropic index,
inducing the behavior seen in table 1 (e.g. when n→ 3 α→ −5/3).2

Empirical power-laws, such as that in eq. (3.5), can be used to compute analytically the
phase-time evolution of the GW. The frequency and phase are the functions of τ = t∞ − t,
where t∞ is the time the frequency formally diverges. For binaries with point-like components,
the GW frequency diverges when the orbital separation approaches zero. In a real CEL, this
time is never achieved since the object “leaves” the chirping regime at a time tend with a
finite angular frequency ωend (see dashed lines in figure 5).

4 GW detectability

For our analysis, we assume that the matched filtering technique is used to analyze the GW
data. In this case, the expected signal-to-noise ratio is given by (see e.g. [32])

(
S

N

)2
= 〈ρ2〉 = 2× 4

∫ f1

f0

〈|F+h̃+ + F×h̃×|2〉
Sn(f) df (4.1)

where f0 and f1 are the initial and final observed GW frequencies, h̃+(f), h̃×(f) are the
Fourier transforms of the GW polarizations, F+, F× are the detector antenna patterns, and
Sn(f) is the power spectrum density of the detector noise. The factor 2 comes from consid-
ering two Michelson interferometers (6 total laser beams).

As a first approximation, the modulation of the projection onto the detector is estimated
by performing an average over the source position and polarization angle. The inclination

2A similar behavior but for an axially symmetric rotating star (Maclaurin spheroid) has been pointed out
in [30]. There, it has been shown that when n → 3, the star can spin up by losing angular momentum (see
also [31] for a detailed analysis).

– 7 –



J
C
A
P
1
0
(
2
0
2
3
)
0
1
7

of the angular velocity with respect to the line of sight has also been averaged. The Fourier
transform of the GW polarizations, h̃+ and h̃×, can be obtained with the stationary phase
method [20]. As usual, the characteristic amplitude is:

hc ≡ h0

√
dN

d ln f
opt= f

√
2
(|h̃+|2 + |h̃×|2

)
, (4.2)

where the second identity is true only when the CEL is optimally oriented. The expected
(angle averaged) signal-to-noise ratio is related to the latter characteristic amplitude by

〈ρ2〉 = 6
25

∫ f1

f0

h2
c

f2Sn(f)df. (4.3)

Since these CEL are quasi-monochromatic, the expected signal-to-noise ratio can be
readily estimated with the “reduced” characteristic amplitude, h̃c, defined as [33]:

h̃c(f) = h0(f)
√
N = h0(f)

√
fTobs,

that applied to eq. (4.3) implies

〈ρ2〉 ∝ h̃2
c(f0)

f0Sn(f0) . (4.4)

Figure 6 shows h̃c for a CEL with n = 2.95 and MCEL = 1.0M�. Furthermore, in order
to illustrate the frequency vs. time evolution of the CEL, we show in the same figure a panel
with the time to reach the end of the chirping regime, τend = tend − t. At τend = 0 this CEL
reaches the GW frequency of ≈ 9.20mHz, after which the GW amplitude decreases.

For a distance between the detector and the source of 1 kpc used in figure 6, h̃c is
well above the LISA noise curve, at least near the end of the chirping regime, so the GW
is in principle detectable. The typical value of ω/(πGρ̄0)1/2 during the chirping phase is
∼ 10−5–10−1. For typical densities of a white dwarf ∼ 106–109 g cm−3, the frequency is
∼ 10−6–10Hz, inside the LISA sensitivity band. The detectability properties obtained from
eqs. (4.2) and (4.3) are reported in the last column of table 2.

In addition, the CEL can be regarded as monochromatic in some part of their lifetime.
Figure 5 shows that the evolution is rather slow at low frequencies, and becomes slower when
n→ 3. Thus, the CEL is expected to be monochromatic in those regions.

Specifically, whether a GW is monochromatic depends on the detector’s frequency reso-
lution or frequency bin, T−1

obs, on the signal-to-noise ratio, and the frequency evolution of the
CEL. The errors in estimating the frequency and its change rate by matched filtering are [36]

∆f = 0.22
(〈ρ〉

10

)−1
T−1

obs, (4.5)

∆ḟ = 0.43
(〈ρ〉

10

)−1
T−2

obs, (4.6)

which are frequency independent for Tobs & 2 yr. The ratio of the error in ḟ , to the rate of
change of the frequency of a CEL can be used to determine its “monochromaticity” [36], i.e.

F ≡ ∆ḟ
ḟ
. (4.7)

Thus, a source can be assumed as monochromatic for the detector if F > 1. We show this
criterion for different polytropic indices in figure 7, from which it is confirmed that in some
parts of the sensitivity band, the CELs are monochromatic.
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Figure 6. Reduced characteristic amplitude, h̃c, of a CEL, a double white dwarf, and an EMRI. The
CEL has a mass MCEL = 1.0M� and compactness C ≈ 2.5×10−4 (blue), according to the relativistic
Feynman-Metropolis-Teller equation of state [18]. The polytropic index is n = 2.95 and is located at a
distance D = 1kpc. The observing time has been set to Tobs = 2yr. The blue dot at fend ≈ 9.20mHz
marks the end of the chirping regime of the CEL. The inset shows a chart with the time to reach the
end of the chirp, τend. The EMRI is composed of m1 = 1940.62M�, m2 = 10−4 M�; it is located at
D = 1.29 kpc, and its evolution is shown up to the tidal-disruption frequency (green). The double
white dwarf is composed of m1 = 0.45M�, m2 = 0.18M�; it is located at D = 1.20 kpc, and its
evolution is shown up to the point of Roche-lobe overflow (orange). For more details, see table 2. Fits
of the noise amplitude spectral density of LISA are shown as purple continuous lines with decreasing
intensity for the configurations N2A1L4, N2A2L4, and N2A5L4, from top to bottom, respectively
(see [34] for the explicit form of the fits and conventions meaning). The amplitude spectral density
of the TianQin project detector is shown as a black continuous curve [2].
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100
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F
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n = 2.80
n = 2.90
n = 2.95

Figure 7. Ratio of ∆ḟ , error in estimating the time derivative of the frequency, to the value ḟ of
CELs with different polytropic indices, F = ∆ḟ/ḟ . The ratio was obtained assuming (S/N) = 10
and Tobs = 2yr. When F > 1, the error in estimating the frequency is larger than the theoretical
value of the CEL, i.e., the time derivative of f is inside the error, and the system can be regarded as
monochromatic [36]. For f . 3mHz, CELs are monochromatic for the adopted detection value.
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Summarizing, our estimates indicate that CELs are detectable for 1 yr of observation
(see table 2), given they have appreciable deformation and are close enough, D . 1 kpc.
Detectability depends also on the frequency. The system is monochromatic at very low
frequencies, f < 1mHz. Still, its GW amplitude (at D = 1kpc) is not high enough to
accumulate sufficient signal-to-noise ratio in 1 yr to be detected (see table 2 and figure 6).

5 CEL-binary degeneracy

We now compare the above results with the ones associated with specific binary systems. In
the quasi-circular orbit approximation, the intrinsic phase-time parameter of a binary has
a power-law exponent equal to −5/3. For a CEL whose equation of state is modeled as an
ultra-relativistic degenerate electron gas (n = 3), the intrinsic phase has the same exponent
as the binary, which confirms our initial hypothesis. Therefore, there exists a binary system,
with an appropriate value of the chirp mass, that matches the phase-time evolution of the
CEL (see below).

When α = −5/3, the dependence on the compactness in eq. (3.5) disappears. It is
interesting that this behavior finds a simple physical explanation in a compact star such
as a white dwarf: the ultra-relativistic limit for a Newtonian self-gravitating star made of
fermions is approached when ρ→∞, namely when R→ 0. In this limit, the star properties
become radius-independent when the critical mass is reached.

For each CEL at a given frequency, a binary system with the same intrinsic phase-
time evolution parameter Qω exists. Hereafter, we illustrate the analysis with a CEL whose
polytropic index is close to 3, ie. n = 2.95. It can be seen that at ω/

√
πGρ̄0 ∼ 10−3 the

chirp mass is ∼ 0.4M� and scales with the compactness, C3/2
1.4 , where C1.4 ≡ C/(2 × 10−3)

(see figure 8).
To give a complete vision of the CEL-binary degeneracy, we show in figure 9 the chirp

mass of the equivalent binary as a function of the observed frequency and the mass of the
CEL (n = 2.95). The mass-radius relation of the non-rotating white dwarf-like object has
been obtained for a Chandrasekhar-like equation of state, i.e. the pressure is given by the
electron degeneracy pressure while the density is given by the nuclei rest-mass density.4

For a given chirp mass, there is a degeneracy in the masses of the binary components,
i.e. there exist many combinations of m1 and m2 produce CEL equivalent binaries (see
figure 10). Here, we focus on two types of equivalent binaries: 1) detached double white
dwarfs and 2) EMRIs composed of an intermediate-mass black hole and a planet-like object.
It is worth mentioning that the chirp mass of observed detached double white dwarfs, with the
currently measured parameters, ranges from 0.23 to 0.61M� [35]. For illustration purposes,
we calculated some equivalent binaries to a CEL (n = 2.95), and show the results in table 2.

In the limit n→ 3, the following relation must be satisfied to have identical phase-time
evolution:

3
527/3A3

(3
4

)5/6
=
(
MCEL
Mbin

)5/3 1
ν
. (5.1)

The right-hand side of the last expression is of the order of (MCEL/Mbin)5/3ν−1 ≈ 10 (see
table 1). Consequently, when the chirp mass, Mchrip = Mbinν

3/5, and the mass of the CEL
are of the same order, both waveforms have the same phase-time evolution. Equation (5.1),

4Differences in the white dwarf mass-radius relation for more general equation of state are negligible for
the scope of this work (see, e.g., [18]).
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Figure 8. Chirp mass of the binary with the same intrinsic phase-time evolution Qω of a CEL of
n = 2.95, at a GW angular frequency ω. The value has been normalized by C1.4 ≡ C/(2 × 10−3)
and τ1.4 ≡ (πGρ̄0/ρ̄1.4)−1/2, where ρ̄1.4 is the mean density of a non-rotating white dwarf with
mass 1.4M� and radius RWD ≈ 1000 km, according to the mass-radius relation obtained from the
relativistic Feynman-Metropolis-Teller equation of state [18]. Therefore, the values shown in this plot
correspond to a CEL with MCEL = 1.4M�, C = 2× 10−3.
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Figure 9. Contours of constant chirp mass of the equivalent binary as a function of the CEL mass
and the observed frequency. In general, the chirp mass of the equivalent binary depends on the C,
MCEL, and the observed frequency f . However, once the equation of state is selected, the mass-radius
relation is fixed, implying that Mchirp depends only on MCEL and f . We have here used for the white
dwarf the “Chandrasekhar” equation of state (see text for details).

can be used to estimate readily the equivalent chirp mass. It is worth mentioning that in
the actual calculation, we used the intrinsic phase-time parameter given by the numerical
solution of the Riemann S-type sequence and not the one given by the fit.

When the chirp mass has been matched, the two systems have nearly equal phase-
time evolution and are, in practice, indistinguishable in their phases. This feature can be
appreciated in figure 11, where we compare and contrast the intrinsic phase-time evolution
of a CEL and binary systems with matching and non-matching (but close) chirp mass. Some
LISA targets that do not match the phase-time evolution of a CEL are an EMRI composed
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Figure 10. Contours of constant chirp mass of binaries in the mass range of double white dwarfs.
Observed detached double white dwarfs with measured parameters [35] are shown as orange circles.
The continuous white contour lines correspond a binary withMchirp = (0.41, 0.48)M�, which matches
the Qω of a CEL with C = 2× 10−3, at f = (9.00, 0.05)mHz, respectively. The dashed white contour
lines correspond to a binary with Mchirp = (0.24, 0.32)M�, which matches the Qω of a CEL with
C = 2.5× 10−4, at f = (3.00, 0.05)mHz, respectively.

of a massive black hole, e.g. m1 = 105 M� and m2 = 1M�, or a binary neutron star,
e.g. m1 = m2 = 1.3M�. However, a double white dwarf (also a known LISA target) like
J0651, currently the second shortest orbital period known GW emitter in the mHz frequency
band [37], has a chirp mass close to the matching one; thus, its phase-time evolution around
1mHz is nearly equal to the CEL under consideration (see figure 11).

It could be argued that the signal match is not exact for the range of frequencies
considered. However, it must be noticed that, since both systems are quasi-monochromatic,
differences between the evolution parameters appear when the frequency changes appreciably.
They become out of phase only when the observation is performed over very long periods of
time � 4 yr.

We now estimate how much the systems get out of phase by integrating ∆Qω = |QCEL
ω −

Qbin
ω |, during 1 yr, i.e.

∆φ1y =
∫ ω1yr

ω0
∆Qωd lnω, (5.2)

where ω0 is the initial observed GW angular frequency and ω1yr is the GW angular frequency
after 1 yr. The results are presented in table 2. As observed, phase differences are extremely
small for most of the considered values of MCEL and n. The systems (CEL and binary) are
monochromatic at very low frequencies and show full degeneracy.

Regarding the GW amplitude, we found that hc ∝ f−1/5 and this holds almost for any
n. Therefore, the reference amplitude h0 scales as h0 ∝ f−1/5−α/2.

Although in the limit n → 3 the intrinsic phase-time evolution of the CEL and the
binary tend to follow the same power-law exponent, the CEL amplitude h0 ∝ f0.63 grows
with a different (but nearly equal) exponent. For example, once some chirp mass has matched
the phase, the distance to the source can be chosen to match the GW amplitudes. We have
found that the distances must be of the same order. Again, since the exponents are nearly
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Figure 11. Residuals of comparison of the GW phase (top panel) and amplitude (bottom panel), of
a CEL (n = 2.95) with MCEL = 1.0M� and C = 2.5 × 10−4, and an equivalent binary system with
Mbin = 0.24M�. The binary matches the Qω of the CEL at f = 3mHz (dip in the residuals). For
reference, we also show in orange, the residual of comparing the CEL signal with that of the detached
double white dwarf J0651 (Mchirp = 0.31M�). The compared binaries are located at the same distance
from the detector, while the ratio of the distances to the EMRI and the CEL is Dbin/DCEL = 1.2.

equal and the evolution during observing time is slow, the GW amplitudes remain nearly
equal, as shown in the examples of table 2 and figure 11.

The end of the chirp regime for a binary depends on its nature. For the case of a
double white dwarf, this is generally given by the Roche-lobe overflow. Thus, we set this
frequency using the Eggleton approximate formula for the effective Robe-lobe radius [38].
The radius of each component has been obtained assuming a polytropic equation of state
with n = 1.5 [39], since in this case, the matching binary has low-mass components. Roche-
lobe overflow frequencies for selected double white dwarfs are reported in table 2. For the
case of an EMRI, the limit is due to the tidal disruption of the less massive component. The
GW frequency at tidal disruption is:

ftd ≈ (Gm2/R
3
2)1/2/(2.43/2π),

where R2 is the radius of the (less massive) component m2, and the tidal radius is rtd ≈
2.4q−1/3R2 [9] (see also table 2).

The above detection degeneracy might be broken since the chirping phase of the CEL
and the binary, owing to Roche-lobe overflow or tidal disruption, end at different frequencies.
It would then be possible to discriminate between systems by observing above some frequency.
For instance, if the observation is carried out near and beyond the Roche-lobe overflow
frequency, the continuation of a chirping power-law with exponent ≈ −5/3, will point to
a CEL (n = 2.95). In contrast, if the power-law changes, this will hint at the possibility
that the system is a double white dwarf that just filled one of its Roche-lobes. In addition,
degeneracy between an EMRI and a CEL is broken, owing to the fact the former can not be
individually detected by currently planned space-based detectors (see table 2).
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Finally, in the low-velocity, weak-field limit, any monochromatic GW can be considered
as being radiated from a deformed (not axially symmetric) rotating star. Equivalently, any
monochromatic GW can be thought as produced from a circular binary. The correspondence
between monochromatic GWs and sources is not one-to-one. The appropriate identification
of the source (if possible) relies on the astrophysical implications of the characterizing pa-
rameters and/or additional astronomical data, such as the relative abundance of the two
systems.

In summary, the above results show that given a CEL with n close to 3, a binary system
can be found whose GW chirping evolution during observing times matches the one of the
CEL, and vice-versa. When this chirping evolution is not identifiable due to the slow intrinsic
evolution, short periods of observation, or both, the system’s true nature would be highly
uncertain.

As already stated, CELs can be monochromatic. Thus, detection degeneracy extends
to even more systems. Namely, in the monochromatic regime, there is a degeneracy between
CELs, or between CELs and binaries with parameters different from previously found. This
kind of degeneracy will be addressed elsewhere.

6 Rate of equivalent binaries and CEL

Next, to assess the impact of the binary-CEL detection-degeneracy, we estimate the rate of
both sources in the local universe for the sensitivity of LISA at the frequencies of interest
(figure 6). We adopt the source parameters of table 2.

The equivalent EMRIs found for the CEL are formed by an intermediate-mass black hole
with a mass in the range m1 = 500–3000M� and a substellar, planet-like object m2 ≈ νm1 =
(0.7–4)× 10−3 M�. The latter mass range corresponds approximately to masses between the
one of Saturn (MSat = 3×10−4 M�) and the one of Jupiter (MJup ∼ 10−3 M�). Intermediate-
mass black holes in this mass range have been suggested by observations and simulations,
at least for the case of dynamically, old globular clusters (see e.g. [40]). It has also been
suggested that dwarf spheroidal galaxies may harbor intermediate-mass black holes in their
cores (see e.g. [41]). In the latter case, however, the galaxy core may also be explainable as
a dark matter concentration alternative to the intermediate-mass black hole [42].

Even if the association of intermediate-mass black holes with planetary-mass objects
is absent in the literature, extensive work has been done testing different dynamical pro-
cesses in the core of young stellar clusters, able (at least numerically) to drive the forma-
tion of intermediate mass-ratio binary inspirals (IMRIs). These IMRIs typically include an
intermediate-mass black hole and a compact stellar object (stellar-mass black holes, neutron
stars, or main sequence stars). These results, at least for our purposes, can shed some light
on the odd systems here considered.

We assume that those dynamical mechanisms operate independently of the mass of the
captured compact object (obeying the equivalence principle). If this assumption is true, the
challenge is whether planetary-sized objects could be found at the core of globular clusters
and dwarf spheroidals.

Planetary formation in globular clusters has been a matter of debate for several
decades [43–46]. Still, and against all odds, to the date of writing, at least one planet has been
discovered in the globular cluster M4. The planet has a similar Jupiter-like mass and orbits a
binary system formed by the millisecond pulsar PSR B1620-26 and a white dwarf [47]. More
intriguingly, the system is located close to the cluster core, where the dynamical lifetime of
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planetary systems is much lower than the estimated binary age. This suggests that, at least
in this case, the planet originally formed around its host star (the white dwarf’s progenitor)
while being far from the center. The star and its planet (or its entire planetary system) then
migrate towards the center, encountering in the process the pulsar. Once there, the system
may become unstable in a timescale of 108 yr (see eq. 5 in [47]), and the planet will probably
be detached from the system and eventually captured by the intermediate-mass black hole.
The details of this process will also depend on the complex dynamics of the cluster [48–50].

Let us assume that a fraction f of the stars in the outer regions of a dynamically evolved
globular cluster have planetary companions, and a fraction g of them migrates towards the
center in a multi-Gyr timescale. Further, we assume that once there, most systems become
unstable, and the intermediate-mass black hole captures planets. Under these conditions, the
formation rate of EMRIs at a given globular cluster can be estimated as 10−9f · g ·N? yr−1.
The number of globular clusters in the local Universe is uncertain, but it can be estimated
within the local group (which occupies a volume of 4Mpc−3). The Milky Way contain
around 200 (see e.g. [51] and references there in); Andromeda has the largest number with
460 ± 70 [52]; M33 has only 30 [53]; while the Large Magellanic Cloud has around 13 [54].
Assuming at least 1 globular cluster in the ∼ 30 dwarf galaxies of the local group, the total
number of globular clusters within 1Mpc will be ∼ 103. If only a fraction α of them contain
an intermediate-mass black hole with a mass as large as that able to mimic the signal of a
CEL, namely 103 M�, the rate of EMRIs will be REMRI = 10−6α · f · g ·N? yr−1. Assuming
N? ∼ 106, α = 0.2–1, f = 0.5, g = 0.1–1, this rate becomes:

REMRI = 0.02− 0.5 yr−1. (6.1)

Another family of the identified equivalent binary systems corresponds to double white
dwarfs. Since we are interested in the systems that can enter the interferometer frequency
band, we now adopt double white dwarfs that can merge within the Hubble time. The
merger rate of these systems in a typical galaxy is estimated to be (1–80)× 10−13 yr−1 M−1

�
(at 2σ) [55, 56]. Thus, using M = 6.4× 1010 M� for the Milky Way [57], we obtain:

RDWD = 0.0064− 0.512 yr−1. (6.2)

Turning to the CEL, we have seen that their structure (mass, radii, compactness, equa-
tion of state, etc.) points to a white dwarf-like nature. Deformed white dwarfs can result
from mass transfer from a companion, see e.g. [58]. The rate at which these events occur
might be close to that of novae, which has been estimated in the Milky Way to be ∼ 10–
80 yr−1 [59] and, more recently, ∼ 27–81 yr−1 [60]. If we assume that a fraction β of all white
dwarfs potentially becoming novae undergone a spin-up transition, the CEL rate may be as
high as:

RCEL = (10− 80)β yr−1. (6.3)

Another, possibly more plausible mechanism for the formation of highly-deformed white
dwarfs is the merging of double white dwarfs. Numerical simulations show that, when the
merger does not lead to a type Ia supernova, the merged configuration is made of three
regions [22–26, 61, 62]: a rigidly rotating, central white dwarf, on top of which there is a
hot, differentially-rotating, convective corona, surrounded by a Keplerian disk. The corona
comprises about half of the mass of the totally disrupted secondary star, while the rest of
the secondary mass belongs to the disk since a small mass (∼ 10−3 M�) is ejected. The rigid
core+corona configuration has a structure that resembles our CEL or triaxial object after the
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chirping regime (see figure 4). Depending on the merging components masses, the central
remnant can be a massive (1.0–1.5M�), fast rotating (P = 1–10 s) white dwarf [31, 63].

We adopt the view that the deformed white dwarfs result from double white dwarf
mergers that do not lead to type Ia supernovae since the latter should lead to total disruption
of the merged remnant, see figure 4. We estimate the merger rate as the rate (6.2), subtracted
off the type Ia supernova rate that is about (12–22)% of it [64]. Therefore, by requiring the
double white dwarf merger channel to cover the supernova Ia population, we obtain a lower
limit to the rate of deformed white dwarfs from such mergers, potentially observable as a
CEL within the Milky Way. Thus, we obtain:

RCEL = γ(ε)(0.0056− 0.45) yr−1 (6.4)

Since only eccentric mergers give rise to the final ellipsoidal-shape object, see e.g., [65], γ(ε)
is a parameter indicating that fraction. Given that not all Riemann-S ellipsoids behave as a
CEL, but only those with appreciable deformation (the chirping nature occurs at the begin-
ning of the evolution, see figure 5), γ is a function the ellipticity, ε ≡ (I11−I22)/(I11+I22). As
far as we know, this parameter has not been obtained from simulations or observations. The
possible observation of GW radiation from CELs or EM (see, e.g. [66]) could constrain this pa-
rameter. On the other hand, this rate can be very similar to the EMRI rate estimated before
(see eq. (6.1)). Using an extrapolating factor of Milky Way equivalent galaxies, whose volume
is 0.016Mpc−3 [57], the above rate implies a local cosmic rate of (0.74–5.94)×106 Gpc−3 yr−1.

Therefore, we found that EMRIs, double white dwarfs, and CELs (here identified as
deformed white dwarfs) could be numerous. The rates of CELs, as a function of the ellipticity,
could be comparable to the ones of EMRIs and double white dwarfs.

Although the above rate of EMRIs is as high as that of the double white dwarf mergers
or that of the CEL, they do not represent an important source of degeneracy since the signal-
to-noise ratio in one-year time of observation is very low, impeding their detection as single
sources by GW detectors (see table 2). However, given their very likely high occurrence
rate, they might represent an important source of GW stochastic background, which will be
studied elsewhere.

Under these conditions, the CEL-double white dwarf potential degeneracy is a significant
problem. The unambiguous identification of these sources would need to pinpoint its sky
position and/or be able to observe above the frequency of Roche-lobe overflow of the less
massive white dwarf in the double white dwarf system (see figure 6 and table 2). Whether
or not this would be achievable by the planned space-based facilities GW-detection remains
a question to be answered. Still, it can be done via joint electromagnetic observations or
future arrays of space-based interferometers.

7 Conclusions

Compressible, Riemann S-type ellipsoids with a polytropic index n & 2.7, that we have called
CELs, emit quasi-monochromatic GWs with a frequency that falls in the sensitivity band of
planned space-based detectors (eg. LISA and TianQin; see figure 1). Inside the sensitivity
band, CELs evolve sufficiently slowly to remain quasi-monochromatic during the planned
observation times. These sources exhibit a chirp-like behavior similar to binary systems. In
the limit n→ 3, as inferred from empirical fits shown in table 1, both systems have the same
intrinsic phase-time evolution Qω. This behavior is due to the change in the compressibility
of the CEL with n.
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CELs located at galactic distances are detectable by planned space-based detectors
during one year of observation (see last column of table 2). We refer to CELs as those
triaxial objects with appreciable deformation, so they exhibit a chirping nature. We have
found that within the detectors sensitivity band, a CEL (2.9 . n < 3.0) having intrinsic,
quasi-monochromatic parameters, h0, f, ḟ , or equivalently h0, Qω can have the same values
of those of a binary, see figure 8 and table 2. Namely, given a quasi-monochromatic binary
characterized by its frequency, chirp mass, and distance, it can be found a CEL mass and
distance, whose waveform at the same frequency has the same ḟ (or Qω) and amplitude of the
binary. In this sense, CEL and quasi-monochromatic binaries could be degenerated, given
the naturalness of CELs’ existence to be determined. We have here pinpointed two kinds of
quasi-monochromatic binaries potentially degenerated with CELs: double white dwarfs and
EMRIs composed of an intermediate-mass black hole and a planet-like object.

The completely different physical nature of CELs and such binaries should allow, in
principle, to distinguish them. Following this reasoning, we have found that the final fre-
quency of the quasi-monochromatic chirping behavior of a binary is set, in the case of EMRIs
(intermediate-mass black hole-planet), by the tidal disruption, or in the case of a double white
dwarf, by Roche-lobe overflow. The tidal disruption frequency of this system is ∼ 10−5 Hz.
These EMRIs cannot be detected as single sources by space-based detectors since they do
not accumulate enough signal-to-noise ratio in the observing time (see table 2). Thus, CELs
and EMRIs do not pose the problem of detection degeneracy. For the systems considered in
this work, the following relation is in general satisfied: ftd < fRLOF < fCEL

end . Consequently,
observing a quasi-monochromatic GW (with chirp mass ∼ 0.5M�) above the Roche-lobe
overflow frequency would strongly indicate a CEL. Below frequencies ∼ 10−2 Hz, the CELs
and binaries are degenerated and cannot be distinguished using only GW data. In those cases,
the electromagnetic data will be crucial in determining the real nature of the GW source.

Because of the relevance of this result for space-based detectors, we have discussed the
current estimates of the occurrence rate of this kind of system. For the deformed white
dwarfs, we adopted the view that they can be formed either by accretion from a companion
or by double white dwarf mergers (see figure 4). Surprisingly, we found that rates of EMRIs,
double white dwarf, and CELs could be comparable (see the discussion below eq. (6.4)). Al-
though EMRIs cannot be individually resolved, their occurrence rate makes them a plausible
stochastic GW source that deserves a detailed analysis. However, this issue is beyond the
scope of the present article and will be addressed elsewhere. From the present first approach,
we can conclude that there might be a potential GW source confusion, for individually re-
solved events in the frequency range f . 10mHz, between double white dwarfs and CELs.
Despite this issue, it is possible to do science with these sources. Indeed, we have presented
some possible solutions for the detection-degeneracy problem and encourage the scientific
community to explore additional ones.
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Abstract It has been thought for decades that rotating black
holes (BHs) power the energetic gamma-ray bursts (GRBs)
and active galactic nuclei (AGNs), but the mechanism that
extracts the BH energy has remained elusive. We here show
that the solution to this problem arises when the BH is
immersed in an external magnetic field and ionized low-
density matter. For a magnetic field parallel to the BH spin,
the induced electric field accelerates electrons outward and
protons inward in a conical region, centered on the BH rota-
tion axis, and of semi-aperture angle θ ≈ 60◦ from the BH
rotation axis. For an antiparallel magnetic field, protons and
electrons exchange their roles. The particles that are accel-
erated outward radiate off energy and angular momentum to
infinity. The BH powers the process by reducing its energy
and angular momentum by capturing polar protons and equa-
torial electrons with net negative energy and angular momen-
tum. The electric potential allows for negative energy states
outside the BH ergosphere, so the latter does not play any
role in this electrodynamical BH energy extraction process.

1 Introduction

In this article, we show an electrodynamical process that effi-
ciently extracts the rotational energy of BHs. The mechanism
works for stellar-mass BHs in strong magnetic fields that
power GRBs and supermassive BHs in weak magnetic fields
that power AGNs. A critical ingredient for this discussion is
one of the most relevant concepts of BHs, the Christodoulou-
Ruffini-Hawking mass-energy formula [1–3]. In its most gen-

a e-mail: jorge.rueda@icra.it (corresponding author)
b e-mail: ruffini@icra.it

eral form, for a charged, rotating BH, it reads1

M2 =
(
Mirr + Q2

4Mirr

)2

+ J 2

4M2
irr

, (1)

which relates the BH mass-energy, M , to three indepen-
dent pieces, the irreducible mass, Mirr , the charge, Q, and
the angular momentum, J . The radius of the BH horizon
is rH = M + √

M2 − a2 − Q2, being a = J/M , the
angular momentum per unit mass. Equation (1) implies a
great corollary: part of the BH energy is extractable, i.e.,
Eext = M − Mirr ≥ 0, and it amounts up to 50% of the
mass-energy of a non-rotating, charged BH (in the extreme
case Q = M), and up to 29% in a neutral, rotating BH
(in the extreme case a = M). It is worth noticing that the
above percentages are obtained under the nontrivial assump-
tion that the BH irreducible mass remains constant during the
energy extraction process. For fifty years as of this writing,
the concept of BHs being energy storehouses usable by nature
has permeated relativistic astrophysics at the theoretical and
experimental levels.

To explain the most powerful transients in the Universe,
GRBs, stellar-mass (i.e., of a few M�) BHs should release
up to a few 1054 erg in a few seconds. The supermassive
BHs (of up to 109M�), to power AGNs, release luminosi-
ties of up to 1046 erg s−1 for billion years. Existing models
of AGNs attempt to explain the emission with massive jets
powered by an accretion disk around the BH, and most GRB
models have inherited the same idea (see, e.g., [4,5], and
references therein). Accretion disk models use gravitational
energy, whose low efficiency makes it costly to power the
most energetic processes in these relativistic sources.

1 We use geometric units c = G = 1 unless otherwise specified.
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The binary-driven hypernova (BdHN) model of GRBs has
proposed as inner engine of the high-energy emission in the
gigaelectronvolt (GeV) domain, a Kerr BH surrounded by
low-density matter and a magnetic field, modeled by the Wald
solution [6–8]. For an aligned and parallel (to the BH spin
axis) magnetic field, the induced electric field in the polar
region accelerates electrons outwardly, reaching ultrarela-
tivistic energies and emitting synchrotron and high-energy
curvature radiation. In [7,9], the model has been applied
with M = 4.4M�, a/M = 0.4, and B0 = 4 × 1010 G
to the energetic GRB 190114C, and extended to AGNs, e.g.,
for the supermassive BH in M87*, with M = 6 × 109M�,
a/M = 0.1, and B0 = 10 G. These works have focused on
the emission of escaping particles assuming by energy con-
servation that the Kerr BH pays for the energy radiated to
infinity. On this basis, the evolution of the BH mass, angular
momentum, and irreducible mass as the system radiates have
been determined (see, e.g., [7,10]). However, the mechanism
for which the BH loses energy and angular momentum has
remained unexplained.

Thus, extracting the BH energy is tantalizing and cru-
cial in relativistic astrophysics. The first mechanism of BH
energy extraction was the mechanical Penrose process [11].
A particle of energy E1 splits into two particles of energy E2

and E3 that, by energy conservation, fulfill E3 = E1 − E2.
So, E3 > E1 if E2 < 0, and the BH reduces its mass by
δM = E2 < 0 and angular momentum by δ J = L2 < 0
by absorbing such a particle. The split must occur in the
BH ergosphere, where negative energy (and associated neg-
ative angular momentum) states exist. We shall see that the
ergosphere does not play any role in the electrodynamical
mechanism presented here.

It was soon demonstrated that the Penrose process is either
unrealizable or inefficient (see, e.g., [12–14]). Thus, numer-
ous works have searched for alternatives. For example, from
the mechanical viewpoint, the collisional Penrose process
has received much attention (see, e.g., [15–18]). General-
izations of the Penrose process, i.e., the same three-body
problem, accounting for electromagnetic fields, can be found,
e.g., in [19–21], and references therein. In parallel, increasing
research has been devoted to electromagnetic fields to extract
the BH energy. The idea of matter-dominated plasma accret-
ing onto a Kerr BH by Ruffini and Wilson [22], further devel-
oped in the Blandford-Znajek mechanism [23], which pro-
poses that poloidal and toroidal magnetic field lines threading
the BH extract its rotational energy. Without entering into the
discussion of whether or not such a mechanism can operate
in accreting rotating BHs, its efficiency, and power should be
at most (although unlikely) that of the surrounding accretion
disk [24,25]. Numerical, relativistic magnetohydrodynamics
and particle-in-cell simulations have also studied the prob-
lem (e.g., [26–28]). In the above literature, it is assumed
(or achieved under specific conditions) that the density of

charged particles in the magnetosphere is high enough to
shorten any electric field so that force-free electrodynamics
applies. Those magnetospheres fulfill magnetic dominance,
i.e., B2 − E2 > 0, and lack accelerating electric fields, i.e.,
E · B = 0 everywhere. Those systems can not accelerate
charged particles and emit radiation. To alleviate this draw-
back, it has been borrowed from pulsar theory the concept
of gaps [29,30], limited regions in the magnetosphere where
the force-free condition is violated, leading to regions where
E · B �= 0 (e.g., [23,26]).

Most numerical simulations of BH magnetospheres use as
initial condition the Wald solution of the Einstein-Maxwell
equations [31], which describes a Kerr BH immersed in a test
magnetic field, asymptotically uniform and aligned (parallel
or antiparallel) to the BH spin. The Wald solution contains
large regions where E · B �= 0 (see next section below).
The force-free condition is achieved if the charge density in
the magnetosphere exceeds the Goldreich–Julian value [32],
nGJ = ΩB0/(2πc e), where Ω is the angular velocity of the
corotating magnetic field lines. Since the BH angular velocity
is ΩH = a/(2 MrH ), for M = 4M�, a/M = 1, B0 = 1013

G, we obtain ρGJ = mpnGJ ≈ 5×10−9 g cm−3. Although it
looks like a very small value easy to exceed, numerical sim-
ulations show that, e.g., the matter density around the BH
formed from the gravitational collapse of a neutron star in
a BdHN can be as low as ρ ∼ 10−14 g cm−3 [33,34], and
the matter to electromagnetic energy density ratio as low as
8πρ/B2

0 ∼ 10−10. These physical conditions are far from the
ones explored in numerical simulations of screening plasma
leading to force-free conditions starting from the Wald solu-
tion (see, e.g., [27,28], in which both quantities have much
higher values).

Bearing the above in mind, we hold on to the Wald solu-
tion and show a process that occurs in its electromagnetic
field configuration, where E · B �= 0, allowing the Kerr BH
rotational energy extraction. This overcomes the original dif-
ficulty brought by the condition E · B = 0 in Ruffini and
Wilson [22] and Blandford and Znajek [23] treatments.

2 The electromagnetic field

In spheroidal Boyer–Lindquist coordinates (t, r, θ, φ), the
Kerr BH metric reads [35]2

ds2 = −
(

1−2Mr

Σ

)
dt2+Σ

Δ
dr2 + Σ dθ2 + A

Σ
sin2 θ dφ2

− 4aMr

Σ
sin2 θ dt dφ, (2)

2 We use geometric units c = G = 1 unless otherwise specified.
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where Σ = r2 + a2 cos2 θ , Δ = r2 − 2 Mr + a2, A =
(r2+a2)2−Δa2 sin2 θ , being M and a = J/M , respectively,
the BH mass and angular momentum per unit mass.

The electromagnetic four-potential of the Wald solution
for an uncharged, rotating BH is given by [31]

Aμ = B0

2
ψμ + a B0 ημ, (3)

where B0 is the asymptotic magnetic field strength, and ημ =
δ
μ
t and ψμ = δ

μ
φ are the time-like and space-like Killing

vectors of the Kerr metric. In the frame of the locally non-
rotating (LNR) observer [13,36], which carries a tetrad basis
with vectors �eâ , the electric and magnetic field components
are given by

Eî = Eμ �eμ

î
= Fî t̂ , Bî = Bμ �eμ

î
= (1/2)εî ĵ k̂ F

ĵ k̂, (4)

where Fμν is the electromagnetic field tensor in the coordi-
nate basis. Careted components are in the LNR frame, Greek
indexes run from 0 to 3 (t , r , θ , and φ), and Latin indexes
run from 1 to 3. In Boyer–Lindquist coordinates, the compo-
nents Eî and Bî are given in Eqs. (16a)–(16d) in [37] for the
chargeless case (Q = 0) and can be written as

Er̂ = − B0aM

Σ2A1/2

[
(r2 + a2)(r2 − a2 cos2 θ)(1 + cos2 θ)

− 2r2 sin2 θ Σ

]
, (5a)

E
θ̂

= B0aM
Δ1/2

Σ2A1/2 2ra2 sin θ cos θ(1 + cos2 θ), (5b)

Br̂ = − B0 cos θ

Σ2A1/2

{
2Mra2[2r2 cos2 θ + a2(1 + cos4 θ)]

− (r2 + a2)Σ2
}
, (6a)

B
θ̂

= −Δ1/2B0 sin θ

Σ2A1/2 [Ma2(r2 − a2 cos2 θ)(1 + cos2 θ)

+ rΣ2]. (6b)

We can now calculate the regions of charged particles’
acceleration. For the present case of magnetic dominance,
i.e., B2 > E2 [37], charged particles move along magnetic
field lines. For magnetic field lines that cross the horizon,
a particle will either move inward to the BH or be expelled
outward, depending upon its charge. The electric field com-
ponent parallel to the magnetic field line accelerates the par-
ticle. Therefore, we calculate the scalar product �E · �B on the
BH horizon, ( �E · �B)H . Specifically, we are interested in the
regions where ( �E · �B)H is positive and negative, so we calcu-
late the regions where it vanishes, which separate the regions
of acceleration. At the event horizon, we have Δ = 0, which

Fig. 1 BH horizon (filled-black), ergosphere (dashed-gray), Kp = 0
boundary (green), electric field lines (blue arrows) and magnetic field
lines (red, contours of constant Aφ). The BH parameters are mass M =
4M�, the spin parameter a/M = 0.7, and B0 = 4.4 × 109 G. For
the present spin parameter, θc ≈ 56.12◦, marked by the dashed-blue
lines. The physical situation in the southern hemisphere is analogous
due to equatorial symmetry. The figure shows the xz plane (φ = 0, π )
in Cartesian Kerr-Schild coordinates (see, e.g., [8])

leads to ( �E · �B)H = (Er̂ Br̂ )H = EH
r̂ BH

r̂ . Thus, the scalar
product vanishes where either EH

r̂ or BH
r̂ vanishes. From Eq.

(6a), we have BH
r̂ = 2 cos2 θB0MrH (r2

H − a2)/Σ2
H , which

readily tells that BH
r̂ = 0 on the equator, θ = π/2. The solu-

tion of the equation EH
r̂ = 0 is given by the angles θc that

vanish the expression within the square brackets of Eq. (5a),
i.e.,

cos2 θc = − σ

2a2 + rH
a

√
1 +

(
σ

2arH

)2

, (7)

where σ = (r2
H − a2)(rH + M)/(rH − M). We recall that

this is a spherical polar angle, so it is positively measured
clockwise from the polar axis, and it is in the range [0, π ].
At second-order approximation in a/M , σ ≈ 2rH (rH + M)

and the above expression reduces to the one of [38], cos2 θc ≈
rH/[2(rH +M)]. At first order, rH ≈ 2 M , so cos2 θc ≈ 1/3.

Figure 1 shows the electric field lines (blue arrows) and the
magnetic field lines (contours of constant Aφ , in red) for a BH
with a/M = 0.7. We display only the northern hemisphere
for the azimuthal angles φ = 0 and φ = π . The physical
situation is analogous in the southern hemisphere, given the
equatorial reflection symmetry of the Wald solution. For this
spin value, Eq. (7) leads to θc,1 ≈ 56.12◦, shown by the
dashed-blue line in the first quadrant (i.e., where φ = 0, so
x > 0 and z > 0). It also vanishes at θc,2 ≈ 123.88◦ which
lies in the fourth quadrant, not shown in the figure. Because
of the axial symmetry, the scalar product also vanishes along
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a line given by the same θc,1 and φ = π , leading to the
dashed-blue line in the second quadrant (i.e., where x < 0
and z > 0).

Therefore, these blue-dashed lines separate four regions
where �E · �B �= 0, unveiling the quadrupole nature of the
electric field. We call hereafter as polar the region within the
two blue-dashed lines in the northern hemisphere. There is an
analogous polar region in the southern hemisphere by equa-
torial reflection symmetry. We call as equatorial the region
θc,1 ≤ θ ≤ θc,2. There is an analogous equatorial region in
the western hemisphere by axial symmetry.

The electric field is nearly radial in these regions. It
decreases nearly as 1/r2, just like it would exist a net effective
charge [6,7], |Qeff | = 2J B. The net charge of the BH is zero,
as testified by calculating the induced charge over the hori-
zon. For this task, one integrates the induced surface charge
density introduced by Hanni and Ruffini [39], given by the
discontinuity of the electric field component perpendicular
to the BH horizon, i.e., the radial electric field. An explicit
calculation for the Kerr BH immersed in the magnetic field
can be found in [8,40,41]. The induced charge on the two
polar regions is of order Qeff and is equal but of the opposite
sign to the induced charge on the two equatorial regions [8].
The concept of effective charge has been useful in the analy-
sis of the high-energy (MeV and GeV) emission of GRBs in
the BdHN model (see, e.g., [6,7,42,43]). The above effec-
tive charge is also known as the Wald charge, QW , derived
in [14] as the maximum charge the BH acquires by capturing
charged particles along the polar axis, stopping accretion by
the BH after it reaches Q = QW . We shall return to this point
below in the conclusions.

3 Energy and angular momentum

Therefore, we focus on capturing charged particles with neg-
ative energy and angular momentum. The conserved energy
and angular momentum of charged particles are shifted by
the presence of the electromagnetic potential so that nega-
tive energies are achievable well beyond the ergosphere, and
co-rotating particles can attain negative angular momentum
(details below). Interesting analyses of the motion proper-
ties of charged particles in the Wald solution can be found
in [44–46] (see also [47] for the case of photons but in the
ergosphere).

The conserved energy and angular momentum of a particle
of mass mi and charge qi are

Ei = −πμημ = −π0, Li = πμψμ = π3, (8)

where πα = pα + qi Aα is the canonical four-momentum,
pα = miuα the four-momentum, uα the four-velocity, and
i = p, e stands for protons or electrons. Let us assume the
particles are initially located at the position (ri , θi , φi ), at

rest. The latter condition implies that the particle lies initially
outside the ergosphere, i.e., Σi > 2 Mri , so ri > rerg = M+√
M2 − a2 cos2 θi , and the initial four-velocity isuα

i = u0
i δ

α
0 ,

with u0
i = (1−2 Mri/Σi )

−1/2. From Eq. (8), the energy and
angular momentum at the initial position are

Ei =mi

√
1 − 2Mri

Σi
± eaB0

[
1 − Mri

Σi
(1 + cos2 θi )

]
,

(9a)

Li = − mi
2Mari sin2 θi√
Σi (Σi − 2Mri )

± 1

2
eB0 sin2 θi

[
r2
i + a2 − 2Ma2ri

Σi
(1 + cos2 θi )

]
,

(9b)

where e is the fundamental charge, the upper (+) sign
applies for protons and the lower (−) sign for electrons.
The terms due to the electromagnetic potential largely dom-
inate in Eqs for astrophysical parameters (9). In the case
B0 � 0.011(M�/M)(mi/me) G, eB0M � mi , so Eqs. (9)
lead to polar protons with Ep > 0 and L p > 0, and equato-
rial electrons with Ee < 0 and Le < 0.

Those electrons’ negative energy states are physically pos-
sible if (i) they do not reach infinity and (ii) a local observer
measures positive kinetic energy. The first condition is auto-
matically satisfied since equatorial electrons are accelerated
inward. The four-velocity of a regular local observer at the
horizon can be constructed by the linear combination of the
spacetime Killing vectors [48]: lμ = ημ + ΩHψμ, being
ΩH = a/(2 MrH ) the BH angular velocity. Therefore, the
kinetic energy this observer measures when the particles
cross the event horizon is

Ki = −pμl
μ|H = Ei − ΩH Li . (10)

For electrons, Ke > 0 at any angle in the equatorial region.
For polar protons, the condition Kp ≥ 0 constrains their
initial position (rp, θp), i.e., for given rp, the boundary Kp =
0 defines a maximum value of θp, say θKp . The maximum
value of this angle occurs at rp = rerg, say θKp,max. Figure 1
shows the boundary Kp = 0 (dashed-green curves) for a
BH with spin parameter a/M = 0.7, for which θKp,max ≈
51.81◦.

Charged particles will follow the magnetic field lines, and
the latter point approximately in the+z direction (Aφ = cons.
implies r sin θ ≈ constant; see Fig. 1), so the BH can capture
those particles whose initial position fulfills ri sin θi ≤ rH .
Thus, the BH captures polar protons at (rp, θp) within 0 ≤
θp ≤ θp,max, where θp,max = Min(θKp , θp,cyl), θp,cyl =
arcsin(rH/rp), and equatorial electrons at (re, θe) within
θc ≤ θe ≤ θe,max, where θe,max = θe,cyl = arcsin(rH/re).
Figure 2 shows Ep,e and L p,e at initial positions that sat-
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Fig. 2 Ei , Li , given by Eq. (9), and Ei − ΩH Li , at initial positions
outside the ergosphere (ri > rerg) leading to the particle capture by the
BH in the example of Fig. 1

isfy the capture conditions mentioned above, specifically for
protons initially located in the polar region at (rp, θp), with
rp = rH/ sin θp and 0 ≤ θp ≤ θp,max, and electrons in the
equatorial region at (re, θe), with re = rH/ sin θe and θc ≤
θe ≤ θe,max. For the present spin parameter, a/M = 0.7, the
reference angles are θc ≈ 56.12◦, θp,max = θp,cyl ≈ 40.80◦,
and θe,max = θe,cyl ≈ 61.86◦.

4 Discussion and conclusion

We have analyzed the capture of charged particles by a Kerr
BH embedded in a test, asymptotically aligned magnetic field
given by the Wald solution. Paper [31] envisaged a situation
in which the BH, by capturing charged particles along the
rotation axis, gain charge up to a maximal possible value,
QW = 2J B0. After that point, the charged particle accre-
tion should stop. Our results show that the physical situation
can be more complicated and interesting. To account for the
feedback of the particle capture on the BH parameters and,
as we discuss below, the distribution of particles, are essen-
tial to draw any conclusions on the BH evolution. Indeed, the
charged particles’ energy and angular momentum at different
radii and latitudes can lead to a very different scenario. Sec-
ond, special attention must be paid to estimating the change
of all BH parameters in the process, including its irreducible
mass. The latter is of paramount relevance to assess the effi-
ciency and plausibility of the energy extraction process.

When the BH captures a proton or electron, its mass, angu-
lar momentum, and irreducible mass change by

δM = Ei , (11a)

δ J = Li , (11b)

δMirr = Mirr√
M2 − a2

(δM − ΩH δ J ). (11c)

Because δM −ΩH δ J = Ei −ΩH Li = Ki ≥ 0 (see Fig. 2),
we have δM2

irr ≥ 0, as expected [1–3]. Figure 2 shows that
the equatorial region from which the BH captures electrons is
smaller than the polar region from which it captures protons.
The main reason is that the magnetic field lines are parallel to
the z-axis in the Wald solution, even in the BH vicinity. This
is confirmed by the magnetic flux threading the BH horizon

ΦB =
∫∫

F23dθdφ, (12)

which leads to the ratio of the polar to equatorial flux

1 + √
5

2
<

ΦB(0, θc)

ΦB(θc, π/2)
= rH

2M
tan2 θc ≤ 2, (13)

for 0 ≤ a/M < 1. Thus, for the given magnetic field geom-
etry, whether the net energy and angular momentum that the
BH absorbs are negative or positive depending on the density
of protons and electrons, n. Assuming local neutrality, pro-
tons, and electrons of number density n transfer to the BH
an energy

Ei ≈ 2π

∫∫
Ein

√−gdrdθ, (14a)

Li ≈ 2π

∫∫
Lin

√−gdrdθ, (14b)

where g = −Σ2 sin2 θ is the Kerr metric determinant. The
constraints of the previous section give the integration bound-
aries. For a spherically symmetric density, n = n(r), there
are more capturable protons than electrons. The BH would
acquire an energy E = Ee + Ep > 0 and angular momen-
tum L = Le + Lp > 0. An interesting situation occurs
for an anisotropic density that increases towards the equa-
tor. As an example, Fig. 3 shows Ee, Ep, Le, Lp, E and L ,
for n(r, θ) = N (r)Ψ (θ), where N (r) = nH (rH/r)m , and
Ψ (θ) = (1 − cos θ)2, with m = 2, nH = 6.0 × 1010 cm−3,
which corresponds to a rest-mass density ρ = 10−13 g cm−3

near the BH horizon at the pole. We obtain Ep < |Ee| and
Lp < |Le|, leading to E < 0 and L < 0, for values of the
BH spin parameter a/M � 0.5.

Therefore, the long-standing question of how to extract the
rotational energy of a Kerr BH is answered naturally by ana-
lyzing a rotating BH capturing not a single charged particle
but a bunch of them of opposite charges, at different latitudes
(see Fig. 2). We have shown, using the Wald solution, that the
electrodynamical extraction of rotational energy works for
an anisotropic density of protons and electrons increasing
with latitude (see Figs. 2 and 3). Estimating the present rota-
tional energy extraction process for different magnetic field
configurations, matter accretion of varying nature, and more
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Fig. 3 Upper: Êi = Ei/(eB0a) for polar protons (red) and equatorial
electrons (blue) that cross the BH horizon. The net energy, Ê = Êp +
Êe, is shown in black. Middle: analogous to the upper panel but for
L̂i = Li/(eB0M2), and L̂ . Lower: Fractional change of the BH mass,
δM/M (green, units of 10−18), angular momentum, δ J/J (orange, units
of 10−15), and irreducible mass, δMirr/M (gray, units of 10−19). The
particle density is n(r, θ) = N (r)Ψ (θ), where N (r) = nH (rH /r)m ,
with m = 2, nH = 6.0 × 1010 cm−3, and Ψ (θ) = (1 − cos θ)2.
In the upper and middle panels, the dimensionless energy and angular
momentum are normalized by nH M3. This example uses B0 = Bc =
2πm2

ec
3/(e h) ≈ 4.41 × 1013 G

extended BH parameters, including non-vanishing electric
charge, is now possible (Rueda and Ruffini, in preparation).

Data availability statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This article is of
theoretical nature, so there is no data to be deposited.].
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Abstract: The binary-driven hypernova (BdHN) model explains long gamma-ray bursts (GRBs)
associated with supernovae (SNe) Ic through physical episodes that occur in a binary composed of
a carbon-oxygen (CO) star and a neutron star (NS) companion in close orbit. The CO core collapse
triggers the cataclysmic event, originating the SN and a newborn NS (hereafter νNS) at its center.
The νNS and the NS accrete SN matter. BdHNe are classified based on the NS companion fate and
the GRB energetics, mainly determined by the orbital period. In BdHNe I, the orbital period is of
a few minutes, so the accretion causes the NS to collapse into a Kerr black hole (BH), explaining
GRBs of energies >1052 erg. BdHN II, with longer periods of tens of minutes, yields a more massive
but stable NS, accounting for GRBs of 1050–1052 erg. BdHNe III have still longer orbital periods
(e.g., hours), so the NS companion has a negligible role, which explains GRBs with a lower energy
release of <1050 erg. BdHN I and II might remain bound after the SN, so they could form NS-BH
and binary NS (BNS), respectively. In BdHN III, the SN likely disrupts the system. We perform
numerical simulations of BdHN II to compute the characteristic parameters of the BNS left by them,
their mergers, and the associated short GRBs. We obtain the mass of the central remnant, whether it
is likely to be a massive NS or a BH, the conditions for disk formation and its mass, and the event’s
energy release. The role of the NS nuclear equation of state is outlined.

Keywords: neutron stars; gamma-ray burst; close binaries

1. Introduction

Gamma-ray bursts (GRBs) are classified using the time (in the observer’s frame) T90,
in which 90% of the observed isotropic energy (Eiso) in the gamma-rays is released. Long
GRBs have T90 > 2 s and short GRBs, T90 < 2 s [1–5]. The two types of sources, short and
long GRBs, are thought to be related to phenomena occurring in gravitationally collapsed
objects, e.g., stellar-mass black holes (BHs) and neutron stars (NSs).

For short GRBs, mergers of binary NSs (BNSs) and/or NS-BH were soon proposed
as progenitors [6–9]). For long bursts, the core-collapse of a single massive star leading
to a BH (or a magnetar), a collapsar [10], surrounded by a massive accretion disk has been
the traditional progenitor (see, e.g., [11,12], for reviews). The alternative binary-driven
hypernova (BdHN) model exploits the increasing evidence for the relevance of a binary
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progenitor for long GRBs, e.g., their association with Ic-type supernovae (SNe) [13–16],
proposing a binary system composed of a carbon-oxygen star (CO) and an NS companion
for long GRBs. We refer the reader to [17–23] for theoretical details on the model.

In this article, we are interested in the direct relationship between long and short
GRBs predicted by the BdHN scenario. The CO undergoes core collapse, ejecting matter
in a supernova (SN) explosion and forming a newborn NS (νNS) at its center. The NS
companion attracts part of the ejected material leading to an accretion process with high
infalling rates. Also, the νNS gains mass via a fallback accretion process. The orbital period
is the most relevant parameter for the CO-NS system’s fate. In BdHN of type I, the NS
reaches the critical mass, gravitationally collapsing into a Kerr BH. It occurs for short orbital
periods (usually a few minutes) and explains GRBs with energies above 1052 erg. In BdHN
II, the orbital period is larger, up to a few tens of minutes, so the accretion rate decreases,
and the NS becomes more massive but remains stable. These systems explain GRBs with
energies 1050–1052 erg. In BdHN III, the orbital separation is still larger; the NS companion
does not play any role, and the energy release is lower than 1050 erg. If the binary is not
disrupted by the mass loss in the SN explosion (see [20] for details), a BdHN I produces a
BH-NS, whereas a BdHN II produces a BNS. In BdHN III, the SN is expected to disrupt the
system. Therefore, in due time, the mergers of NS-BHs left by BdHNe I and of BNS left by
BdHNe II are expected to lead to short GRBs.

Short GRBs from BNS mergers have been classified into short gamma-ray flashes
(S-GRFs) and authentic short GRBs (S-GRBs), depending on whether the central remnant is
an NS or a BH, respectively [24]. Two different subclasses of short GRBs from BNS mergers
have been electromagnetically proposed [20,24,25]:

(1) Authentic short GRBs (S-GRBs): short bursts with isotropic energy Eiso & 1052 erg
and peak energyEp,i & 2 MeV. They occur when a BH is formed in the merger, which is
revealed by the onset of a GeV emission (see [25–27]). Their electromagnetically inferred
isotropic occurrence rate is ρS−GRB ≈

(
1.9+1.8
−1.1

)
× 10−3 Gpc−3 year−1 [24]. The distinct

signature of the formation of the BH, namely the observation of the 0.1–100 GeV emission
by the Fermi-LAT, needs the presence of baryonic matter interacting with the newly-formed
BH, e.g., via an accretion process (see, e.g., [26,28]).

(2) Short gamma-ray flashes (S-GRFs): short bursts with Eiso . 1052 erg and Ep,i . 2 MeV.
They occur when no BH is formed in the merger, i.e., when it leads to a massive NS. Their U-GRB
electromagnetically inferred isotropic occurrence rate is ρS−GRF ≈ 3.6+1.4

−1.0 Gpc−3 year−1 [24].
(3) Ultrashort gamma-ray flashes (U-GRFs): in [20], it has been advanced a new class short

bursts, the ultrashort GRBs (U-GRBs) produced by NS-BH binaries when the merger leaves
the central BH with very little or completely without surrounding matter. An analogous
system could be produced in BNS mergers. We shall call these systems ultrashort GRFs, for
short U-GRFs. Their gamma-ray emission is expected to occur in a prompt short radiation
phase. The post-merger radiation is drastically reduced, given the absence of baryonic
matter to power an extended emission. A kilonova can still be observed days after the
merger, in the infrared, optical, and ultraviolet wavelengths, produced by the radioactive
decay of r-process yields [29–32]. Kilonova models used a dynamical ejecta composed
of matter expelled by tides prior or during the merger, and a disk-wind ejecta by matter
expelled from post-merger outflows in accretion disks [33], so U-GRFs are expected to have
only the dynamical ejecta kilonova emission.

We focus on the BNSs left by BdHNe II and discuss how their properties impact the
subsequent merger process and the associated short GRB emission, including their GW
radiation. Since an accretion disk around the central remnant of a BNS merger, i.e., a
newborn NS or a BH, is an important ingredient in models of short GRBs (see, e.g., [34]
and references therein), we give some emphasis to the conditions and consequences for
the merger leaving a disk. We study BNSs formed through binary evolution channels.
Specifically, we expect these systems to form following a binary evolution channel similar
to that of two massive stars leading to stripped-envelope binaries, described in previous
studies (e.g., [35,36]). In this process, the CO star undergoes mass loss in multiple mass-
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transfer and common-envelope phases through interactions with the NS companion (see,
e.g., [37–39]). This leads to removing the H/He layers of the secondary star, which ends
up as a CO star. Recently, significant progress has been made in the study of alternative
evolution channels for the progenitor of BNSs, such as hierarchical systems involving triple
and quadrupole configurations [40,41], which are motivated by the presence of massive
stars in multiple systems [42]. These systems are out of the scope of this study.

The article is organized as follows. In Section 2, we discuss the numerical simulations
of BdHNe and specialize in an example of a BNS led by a BdHN II. Section 3 introduces a
theoretical framework to analyze the BNS merger outcome configuration properties based
on the conservation laws of baryon number, angular momentum, and mass-energy. We
present in Section 4 a specific example analyzing a BNS merger using the above-mentioned
theoretical framework, including estimates of the energy and angular momentum release.
We include the radiation in gravitational waves (GWs) and estimate its detection by current
facilities. Section 5 presents a summary and the conclusions of this work.

2. A BNS Left by a BdHN II

Figure 1 shows a snapshot of the mass density with the vector velocity field at the
binary’s equatorial plane some minutes after the CO collapse and the expansion of the SN
ejecta. The system’s evolution was simulated with an SPH code, where the NS companion
and the νNS are point particles that interact gravitationally with the SPH particles of the SN
ejecta. For details of these numerical simulations, we refer to [23,43]. In these simulations,
the influence of the star’s magnetic field has be disregarded, as the magnetic pressure
remains significantly lower than the random pressure exerted on the infalling material.
The simulation of Figure 1 corresponds to a CO-NS for a CO star evolved from a zero-age
main-sequence (ZAMS) star of Mzams = 15 M�. The CO mass is about 3.06 M�, whose
core collapse leaves a 1.4 M� νNS and ejects 1.66 M�. The NS companion’s initial mass is
1.4 M�, and the initial binary period of the system is about 4.5 min.

Figure 1. Massdensity snapshots and velocity field on the orbital plane of a BdHN for a CO left by
a Mzams = 15 M� and a 1.4 M� NS companion, with an initial orbital period of about 4.5 min. We
follow the expansion of the SN ejecta in the presence of the NS companion and the ν−NS with a
smoothed particle hydrodynamic (SPH) code. It is clear that a disk with opposite spins has formed
around both stars.

From the accretion rate on the NSs, we have calculated the evolution of the mass and
angular momentum of the binary components (see [43], for details). Table 1 summarizes the
final parameters of the νNS and the NS, including the gravitational mass, m, dimensionless
angular momentum, j, angular velocity, Ω, equatorial radius, Req, and moment of inertia,
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I. These structure parameters have been calculated with the RNS code [44] and using the
GM1 [45,46] and TM1 [47] EOS (see Table 2 for details of the EOS). The BNS left by the
BdHN II event has a period Porb = 14.97 min, orbital separation aorb ≈ 2× 1010 cm, and
eccentricity e = 0.45.

Table 1. BNS produced by a BdHN II originated in a CO-NS with an orbital period of 4.5 min. The
CO star mass is 3.06 M�, obtained from the stellar evolution of a ZAMS star of Mzams = 15 M�, and
the NS companion has 1.4 M�. The numerical smoothed-particle hydrodynamic (SPH) simulation
follows the SN produced by the CO core collapse and estimates the accretion rate onto the νNS and
the NS companion. The structure parameters of the NSs are calculated for the GM1 and TM1 EOS.
We refer to [43] for additional details.

m j Ω Req I Ω Req I
[M�] [s−1] [km] [g cm2] [s−1] [km] [g cm2]

GM1 EOS TM1 EOS

νNS 1.505 0.259 1114.6 14.03 2.04× 1045 1077.1 14.47 2.11× 1045

NS 1.404 −0.011 −52.14 14.01 1.85× 1045 −56.6 14.49 1.93× 1045

Table 2. Properties of the selected EOS. From left to right: maximum stable mass of non-rotating
configurations, uniformly rotating configurations, set by the maximum mass of the Keplerian/mass-
shedding sequence and the corresponding angular velocity.

EOS Mj=0
max M

jkep
max Ωmax

kep
[M�] [M�] [s−1]

GM1 2.38 2.84 1.001× 104

TM1 2.19 2.62 8.83× 103

3. Inferences from Conservation Laws

We analyze the properties of the central remnant NS formed after the merger. We use
the conservation laws of baryon number, energy, and angular momentum for this aim.

3.1. Baryon Number Conservation

The total baryonic mass of the system must be conserved, so the binary baryonic mass,
Mb, will redistribute among that of the postmerger’s central remnant, mb,c; the ejecta’s
mass, mej, which is unbound to the system; and the matter kept bound to the system, e.g., in
the form of a disk of mass md. Therefore, we have the constraint

Mb = mb,c + mej + md, Mb = mb,1 + mb,2. (1)

For a uniformly rotating NS, the relation among its baryonic mass, mb,i, gravitational
mass, mi, and angular momentum Ji, is well represented by the simple function

mb,i

M�
≈ mi

M�
+

13
200

(
mi

M�

)2(
1− 1

130
j1.7
i

)
, i = 1, 2, c, (2)

where ji ≡ cJi/(GM2
�), which fits numerical integration solutions of the axisymmetric

Einstein equations for various nuclear EOS, with a maximum error of 2% [48]. Thus,
Equation (2) is a nearly universal, i.e., EOS-independent, formula. Equation (2) applies to
the merging components (i = 1, 2) as well as to the central remnant (i = c).
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3.2. Angular Momentum Conservation

We can make more inferences about the merger’s fate from the conservation of angular
momentum. The angular momentum of the binary during the inspiral phase is given by

J = µr2Ω + J1 + J2, Ji =
2
5

κimiR2
i Ωi, i = 1, 2, (3)

where r is the orbital separation, µ = m1m2/M is the reduced mass, M = m1 + m2 is the
total binary mass, and Ω =

√
GM/r3 is the orbital angular velocity. The gravitational mass

and stellar radius of the i-th stellar component are, respectively, mi and Ri; Ji is its angular
momentum, Ωi its angular velocity, and κi is the ratio between its moment of inertia to
that of a homogeneous sphere. We adopt the convention m2 ≤ m1. After the merger, the
angular momentum is given by the sum of the angular momentum of the central remnant,
the disk, and the ejecta. Angular momenta conservation implies that the angular momenta
at merger, Jmerger, equals that of the final configuration plus losses:

Jmerger = Jc + Jd + ∆J, (4)

where Jc and Jd are, respectively, the angular momenta of the central remnant and the even-
tual surrounding disk, ∆J accounts for angular momentum losses, e.g., via gravitational
waves, and we have neglected the angular momentum carried out by the ejecta since it is
expected to have small mass ∼10−4–10−2 M�. Simulations suggest that this ejecta comes
from interface of the merger, where matter is squeezed and ejected perpendicular to the
orbital plane, see, e.g., [49,50]. The definition of the merger point will be discussed below.

The angular momentum of the binary at the merger point is larger than the maximum
value a uniformly rotating NS can attain, i.e., the angular momentum at the Keplerian/mass-
shedding limit, JK. Thus, the remnant NS should evolve first through a short-lived phase
that radiates the extra angular momentum over that limit and enters the rigidly rotating
stability phase from the mass-shedding limit. Thus, we assume the remnant NS after that
transition phase starts its evolution with angular momentum

Jc = JK ≈ 0.7
Gm2

c
c

. (5)

Equation (5) fits the angular momentum of the Keplerian sequence from full numerical
integration of the Einstein equations and is nearly independent of the nuclear EOS (see,
e.g., [48] and references therein). Therefore, the initial dimensionless angular momentum
of the central remnant is

jc =
cJc

GM2
�
≈ 0.7

(
mc

M�

)2
. (6)

We model the disk’s angular momentum as a ring at the remnant’s inner-most stable
circular orbit (ISCO). Thus, we use the formula derived in Cipolletta et al. [51], which
fits, with a maximum error of 0.3%, the numerical results of the angular momentum per
unit mass of a test particle circular orbit in the general relativistic axisymmetric field of a
rotating NS. Within this assumption, the disk’s angular momentum is given by

Jd = JISCO ≈
G
c

mcmd

[
2
√

3− 0.37
(

jc
mc/M�

)0.85
]

. (7)

Notice that Equation (7) reduces to the known result for the Schwarzschild metric for
vanishing angular momentum, as it must. However, it differs from the result for the Kerr
metric, which tells us that the Kerr metric does not describe the exterior spacetime of a
rotating NS (see [51] for a detailed discussion).

The estimate of Jmerger requires the knowledge of the merger point, which depends
on whether or not the binary secondary becomes noticeably deformed by the tidal forces.
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When the binary mass ratio q ≡ m2/m1 is close or equal to 1, the stars are only deformed
before the point of contact [52]. Therefore, for q ≈ 1, we can assume the point of the merger
as the point of contact

rmerger ≈ rcont =
(C2 + qC1)

(1 + q)C1C2

GM
c2 , (8)

where C1,2 ≡ Gm1,2/(c2R1,2) is the compactness of the BNS components.
When the masses are different, if we model the stars as Newtonian incompressible

spheroids, there is a minimal orbital separation rms, below which no equilibrium configura-
tion is attainable, i.e., one star begins to shed mass to the companion due to the tidal forces.
In this approximation, rms ≈ 2.2q−1/3R2 [53]. Numerical relativity simulations of BH-NS
quasi-equilibrium states suggest that the mass-shedding occurs at a distance (see [54] and
references therein) of

rms ≈ (0.270)−2/3q−1/3R2. (9)

Our analysis adopts the mass-shedding distance of Equation (9). For a system with
q = 0.7 (similar mass ratio of the one in Table 1), we have found that the less-compact star
begins to shed mass before the point of contact, independently of the EOS, which agrees
with numerical relativity simulations. Consequently, for non-symmetric binaries q < 1, we
define the merging at the point as the onset of mass-shedding, rmerger ≈ rms.

Based on the above two definitions of merger point, Equations (8) and (9), the angular
momentum at the merger is given by

Jmerger =





ν
√ C2+qC1

(1+q)C1C2

GM2

c , q ≈ 1,

νq1/3[(1 + q)C2]
−1/2 GM2

c , q < 1,
(10)

where we have introduced the so-called symmetric mass-ratio parameter, ν ≡ q/(1 + q)2.

3.3. Mass-Energy Conservation

The conservation of mass-energy before and after the merger implies the energy
released equals the mass defect of the system, i.e.,

EGW + Eother = ∆Mc2 = [M− (mc + mej + md)]c2, (11)

where ∆M is the system’s mass defect. We have also defined EGW = Einsp
GW + Epm

GW the total

energy emitted in GWs in the inspiral regime, Einsp
GW , and in the merger and post-merger

phases, Epm
GW. The energy Eother is radiated in channels different from the GW emission,

e.g., electromagnetic (photons) and neutrinos.

4. A Specific Example of BNS Merger

We analyze the merger of the 1.505 + 1.404 M� BNS in Table 1. For these component
masses, the inferred orbital separation of aorb ≈ 2× 1010 cm and eccentricity e = 0.45, the
merger is expected to be driven by GW radiation on a timescale [55] of

τGW =
c5

G3
5

256
a4

orb
µM2 F(e) ≈ 73.15 kyr, F(e) =

48
19

1
g(e)4

∫ e

0

g(e)4(1− e2)5/2

e(1 + 121
304 e2)

de ≈ 0.44, (12)

where g(e) = e12/19(1− e2)−1(1 + 121e2/304)870/2299.
From Equations (2), (7) and (10), and the conservation Equations (1), (4) and (11), we

can obtain the remnant and disk’s mass as a function of the angular momentum losses, ∆J,
as well as an estimate of the energy and angular momentum released in the cataclysmic
event. We use the NS structure parameters obtained for the GM1 EOS and the TM1 EOS. The
total gravitational mass of the system is M = m1 + m2 = 2.909 M�, so using Equation (2),
we obtain the total baryonic mass of the binary, Mb = mb,1 + mb,2 ≈ 3.184 M�. The binary’s
mass fraction is q = 0.933, so we assume the merger starts at the contact point. With this,
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the angular momentum at the merger, as given by Equation (10), for the GM1 and TM1
EOS is, respectively, Jmerger ≈ 5.65 GM2

�/c and Jmerger ≈ 5.73 GM2
�/c.

Figure 2 shows that the disk’s mass versus the central remnant’s mass for selected
values of the angular momentum loss for the two EOS. The figure shows the system’s
final parameters lie between two limiting cases: zero angular momentum loss leading to
maximal disk mass and maximal angular momentum loss leading to zero disk mass.
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Figure 2. Disk mass versus central remnant (NS) mass. Selected values of the angular momentum loss
(in units of GM2

�/c) are shown as points. The initial BNS has a total gravitational mass of 2.909 M�
and a mass fraction q = 0.933, so we assume the merger starts at the contact point. The maximum
mass along the Keplerian sequence for the GM1 EOS is 2.84 M� and for the TM1 EOS it is 2.62 M�
(see Table 2). Thus, for the former EOS, the central remnant is a massive fast-rotating NS, while the
latter suggests a prompt collapse into a Kerr BH.

4.1. Maximal Disk Mass

We obtain the configuration corresponding to the maximum disk mass switching
off angular momentum losses. Let us specialize in the GM1 EOS. By setting ∆J = 0, the
solution of the system of equations formed by the baryon number and angular conser-
vation equations leads to the central remnant’s mass, mc = 2.697 M�, and disk’s mass,
md = 0.073 M�. This limiting case switches off the GW emission, so it also sets an upper
limit to the energy released in mechanisms different than GWs. Thus, Equation (11) implies
that Eother = ∆Mc2 = [M − (mc + mej + md)]c2 ≈ (M − mc − md)c2 ≈ 0.139 M�c2 ≈
2.484× 1053 erg of energy are carried out to infinity by a mechanism different than GWs
and not accompanied by angular momentum losses.

4.2. Zero Disk Mass

The other limiting case corresponds when the angular momentum loss and the rem-
nant mass are maximized, i.e., when no disk is formed (see Figure 2). By setting md = 0,
the solution of the conservation equations leads to the maximum angular momentum loss,
∆J = 0.331 GM2

�/c, and the maximum remnant’s mass, mc = 2.756 M�.
Thus, the upper limit to the angular momentum carried out by GWs is given by the

maximum amount of angular momentum losses, i.e., ∆JGW . 0.331 GM2
�/c. In the inspiral

phase of the merger, the system releases

Einsp
GW ≈

Gm1m2

2rcont
=

qC1C2Mc2

2(1 + q)(C2 + qC1)
+

1
2

[
j1|Ω1|+ j2|Ω2|

]
GM2

�
c

. (13)

For the binary we are analyzing, Einsp
GW ≈ 0.0194 Mc2 ≈ 0.0563M�c2 ≈ 1.0073× 1053 erg.

The transitional non-axisymmetric object (e.g., triaxial ellipsoid) formed immediately af-
ter the merger mainly generates these GWs, and their emission ends when the stable
remnant NS is finally formed. We can model such a rotating object as a compressible
ellipsoid with a polytropic EOS of index n = 0.5–1 [56]. The object will spin up by an-
gular momentum loss to typical frequencies of 1.4–2.0 kHz. The energy emitted in GWs
is Epm

GW ≈ 0.0079 M�c2 ≈ 1.404 × 1052 erg. Therefore, the energy released in GWs is,
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EGW = Einsp
GW + Epm

GW ≈ 0.0642 M�c2 ≈ 1.147× 1053 erg. If no disk is formed, i.e., for a U-
GRF, the mass-energy defect is ∆Mc2 = [M− (mc +mej)]c2 ≈ (M−mc)c2 ≈ 0.153 M�c2 ≈
2.734× 1053 erg. This implies that Eother = ∆Mc2 − EGW ≈ 0.089 M�c2 ≈ 1.591× 1053 erg
are released in forms of energy different than GW radiation.

Therefore, combining the above two results, we conclude that for the present merger,
assuming the GM1 EOS, the merger releases 0 < EGW . 1.147× 1053 erg in GWs and
1.591× 1053 . Eother < 2.484× 1053 erg are released in other energy forms. The energy
observed in short GRBs and further theoretical analysis, including numerical simulations of
the physical processes occurring during the merger, will clarify the efficiency of converting
Eother into observable radiation. Since no BH is formed (in this GM1 EOS analysis), the
assumption that the merger leads to an S-GRF suggests an efficiency lower than 10%.

We now estimate the detection efficiency of the GW radiation released by the system in
the post-merger phase when angular momentum losses are maximized, i.e., in the absence
of a surrounding disk. We find the root-sum-squared strain of the signal, i.e.,

hrss =

√∫
2
[
|h̃+|2 + |h̃×|2

]
d f ≈ 1

πd f̄

√
GEpm

GW
c3 , (14)

where h̃+ and h̃× are the Fourier transforms of the GW polarizations, d is the distance
to the source, f̄ is the mean GW frequency in the postmerger phase. These signals are
expected to be detected with a 50% of efficiency by the LIGO/Virgo pipelines [57] when
hrss ∼ 10−22 Hz−1/2 [58]. For the energy release in the post-merger phase, we have
f̄ = 1671.77 Hz, so these signals could be detected up to a distance of d ≈ 10 Mpc.

5. Discussion and Conclusions

As some BdHN I and II systems remain bound after the GRB-SN event, the corre-
sponding NS-BH and BNS systems, driven by GW radiation, will merge and lead to short
GRBs. For a few minutes binary, the merger time is of the order of 104 year. This implies
that the binaries will still be close to the long GRB site by the merger time, which implies a
direct link between long and short GRBs [20].

The occurrence rate of long and short bursts, however, should differ as the SN explo-
sion likely disrupts the binaries with long orbital periods. We are updating our previous
analysis on this interesting topic reported in [59]. We refer the reader to Bianco et al. [60]
for a preliminary discussion.

As a proof of concept, this article examined this unique connection between long and
short GRBs predicted by the BdHN scenario, emphasizing the case of mergers of BNS left
by BdHNe II. For this particular case, the simulations predict that the outcome system will
be a NSs binary with the star spins anti-aligned. The application of the present theoretical
framework to the analysis of other merging binaries, such as the BH-NS binaries produced
by BdHN I (see [20] for a general discussion), will be addressed in a separate work.

We have carried out a numerical SPH simulation of a BdHN II occurring in a CO-NS
of orbital period 4.5 min. The mass of the CO is 3.06 M� and that of the NS companion,
1.4 M�. The CO is the pre-SN star obtained from a ZAMS star of Mzams = 15 M� simulated
from MESA code. The SPH simulation follows [23,43]. It computes the accretion rate onto
the νNS (left by the CO core collapse) and the NS companion while the ejecta expands
within the binary. For the event that left a νNS-NS eccentric binary of 1.505 + 1.404 M�,
orbital separation 2× 1010 cm, orbital period of ≈15 min and eccentricity e = 0.45. The
SN ejecta matter forms a disk around both stars with opposite spins, so we expect that the
ν-NS binary will also have anti-aligned spins as well. The above parameters suggest the
BNS merger leading to a short GRB occurs in ≈73 kyear after the BdHN II event.

Whether or not the central remnant of the BNS merger will be a Kerr BH or a massive,
fast-rotating NS depends on the nuclear EOS. For instance, we have shown the GM1 EOS
leads to the latter while the TM1 EOS leads to the former. As an example of the theoretical
framework presented in this article, we quantify the properties of the merger using the GM1
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EOS. We infer the mass of the NS central remnant and the surrounding disk as a function of
the angular momentum losses. We then emphasize the merger features in the limiting cases
of maximum and zero angular momentum loss, corresponding to a surrounding disk’s
absence or maximum mass. We estimated the maximum energy and angular momentum
losses in GWs. We showed that the post-merger phase could release up to ≈1052 erg in
≈1.7 kHz GWs, and LIGO/Virgo could, in principle, detect such emissions for sources up
to ≈10 Mpc. We assessed that up to a few 1053 erg of energy could be released in other
forms of energy, so a .10% of efficiency of its conversion into observable electromagnetic
radiation would lead to an S-GRF.

The direct link between long and short GRB progenitors predicted by the BdHN model
opens the way to exciting astrophysical developments. For instance, the relative rate of
BdHNe I and II and S-GRBs and S-GRFs might give crucial information on the nuclear
EOS of NSs and the CO-NS parameters. At the same time, this information provides clues
for the stellar evolution path of the binary progenitors leading to the CO-NS binaries of
the BdHN scenario. Although challenging because of their expected ultrashort duration,
observing a U-GRF would also be relevant for constraining the EOS of NS matter. An
extended analysis is encouraged, including additional BNS parameters obtained from SPH
simulations of BdHNe for various CO-NS systems and nuclear EOS.
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BdHN Binary-driven hypernova
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GRB Gamma-ray burst
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ISCO Innermost stable circular orbit
NS Neutron star
νNS Newborn neutron star
S-GRB Short gamma-ray burst
S-GRF Short gamma-ray flash
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U-GRB Ultrashort gamma-ray burst
U-GRF Ultrashort gamma-ray flash
ZAMS Zero-age main-sequence
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Abstract: We investigated within the Darmois–Israel thin-shell formalism the match of neutral and
asymptotically flat, slowly rotating spacetimes (up to second order in the rotation parameter) when
their boundaries are dynamic. It has several important applications in general relativistic systems,
such as black holes and neutron stars, which we exemplify. We mostly focused on the stability aspects
of slowly rotating thin shells in equilibrium and the surface degrees of freedom on the hypersurfaces
splitting the matched slowly rotating spacetimes, e.g., surface energy density and surface tension. We
show that the stability upon perturbations in the spherically symmetric case automatically implies
stability in the slow rotation case. In addition, we show that, when matching slowly rotating Kerr
spacetimes through thin shells in equilibrium, the surface degrees of freedom can decrease compared
to their Schwarzschild counterparts, meaning that the energy conditions could be weakened. The
frame-dragging aspects of the match of slowly rotating spacetimes are also briefly discussed.

Keywords: slow rotation; neutron stars; black holes; Darmois–Israel formalism; surface degrees of
freedom; surface energy density; surface tension; general relativity; frame-dragging effect

1. Introduction

Although matching two spherically symmetric spacetimes is a simple task (see [1],
for instance), this is not the case for axially symmetric ones [2]. Nevertheless, particular
glues have already been applied to several scenarios and contexts in the slow rotation
case. We mention, for instance, the collapse of slowly rotating thin shells (onto already
formed black holes [3], generating slowly rotating black holes [4], or associated with regular
interior spacetimes [5]), the analysis of the kinematical effects that slowly rotating spacetime
glues should exhibit [6,7], and scalar fields non-minimally coupled to glued spacetimes [8].
Concerning the match of slowly rotating spacetimes up to second order in the rotation
parameter, the work of de La Cruz and Israel [3] is noteworthy. They did this for the first
time by joining the Minkowski and the Kerr spacetimes using prescribed axially symmetric
hypersurfaces in equilibrium. It was shown that there are infinite ways of joining these
spacetimes, each characterized by a spinning shell with a different degree of ellipticity. In
addition, the rigid rotation of observers inside the shell with the shell itself does not occur
generally. It was not the interest of that work to assess the stability of the equilibrium radii.

Another more recent example of an interesting glue is the work of Uchikata and Yoshida [5],
who investigated the matching of a slowly rotating Kerr–Newman spacetime with the de
Sitter one using a thin shell in equilibrium (its stability was not investigated either). As
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expected, they also found that the surface degrees of freedom are polar-angle-dependent
on the thin shell. Cases were found where the surface energy density could be negative,
but the authors deemed them unphysical. For further interesting slowly rotating thin-shell
applications, see [9–14] and the references therein.

Clear aspects of matching axially symmetric spacetimes are the possibility of having
manifolds without singularities and the possibility of more realistic models for astrophysical
systems. In addition, the dragging of inertial frames is inherent in these spacetimes. We
show here how this kinematic effect would allow us to scrutinize layered systems in
astrophysics, shedding some light on their constitution.

We addressed the problem of matching neutral, arbitrary, slowly rotating Hartle
spacetimes split by dynamic hypersurfaces, examining some of their subtleties. To the
best of our knowledge, this has not been performed before. We limit our analysis to the
second order in the rotation parameter since it is not known how to generically glue two
axially symmetric spacetimes with arbitrary rotation parameters. As a byproduct of our
investigation, we show, for instance, that the stability of thin shells in the spherically
symmetric case automatically implies the stability of thin shells when slow rotation (up
to second order in the rotation parameter) is present. In addition, we show that there are
(realistic) situations where the corrections to the surface energy density and surface tension
in the spherically symmetric case are negative. This seems to be of interest, as it would
point to the likelihood of violating some energy conditions in some regions of surfaces of
discontinuity in the non-perturbative context.

This article is organized as follows. In the next section, we deal with the problem of
matching two slowly rotating Hartle spacetimes split by a dynamic hypersurface. Section 3
is devoted to the solution of the established system of equations for static and away-from-
equilibrium hypersurfaces. The generalizations of the surface energy density and surface
tension in the case of slow rotation are presented in Section 4. Kinematic effects associated
with our generic glues are addressed in Section 5. In Section 6, we apply our formalism to
the important case of matching two Kerr spacetimes and investigate the behavior of surface
quantities and some aspects of the energy conditions. A summary and many astrophysical
applications of our work can be found in Section 7.

We use geometric units throughout the article and the metric signature −2.

2. Matching Slowly Rotating Spacetimes

In the slowly rotating case, following Hartle [15], we assumed that each spacetime
that we glue can be written as

ds2 = eν(r)[1 + 2ε2h(r, θ)]dt2 − eλ(r)[1 + 2ε2 j(r, θ)]dr2

− r2[1 + 2ε2k(r, θ)](dθ2 + sin2 θ{dϕ− εω(r)dt}2), (1)

where

h(r, θ) = h0(r) + h2(r)P2(cos θ), (2)

j(r, θ) = j0(r) + j2(r)P2(cos θ), (3)

k(r, θ) = k2(r)P2(cos θ). (4)

As usual, we define P2(cos θ) as the second-order Legendre polynomial [P2(cos θ) =
(3 cos2 θ − 1)/2].

In these approximations, we go up to the second order in the rotation parameter, finger-
printed by the dummy (dimensionless) quantity “ε”. It was put in Equation (1) just as a
mere indicator of the order of the rotational expansion taken into account. The functions
h, j, k, ω as given by Equations (2)–(4) are to be found by Einstein’s equations in the scope of
axially symmetric solutions (see Reference [15] for the associated equations, some solutions,
and properties). The background spacetime that is the seed for the Hartle metric is a
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spherically symmetric one (for the case of a BH spacetime, it would be the Schwarzschild
metric), as can be seen by putting ε = 0 in Equation (1).

To match two spacetimes (which can then be used to obtain spacetimes made up of
an arbitrary number of glues), one must also know their common hypersurface (that is to
say, it must be well-defined), as well as how the coordinates of each manifold are related
to the ones defined on such a hypersurface. Once this is obtained, finding the surface
energy–momentum tensor that would allow such a glue is more of an algebraic exercise,
made possible mainly by Lanczos’ and Israel’s seminal works [1,16–18].

To begin with, let us choose the intrinsic coordinates of the splitting hypersurface,
defined as Σ, as ya = (τ̃, θ̃, ϕ̃). For now, τ̃ is just a label for a time-like coordinate on
Σ. Further ahead, such a choice will be justified when we try to relate it to the proper
time measured by observers on Σ, at least to some order in “ε”. We shall assume that the
equation for Σ is given by

Ψ(r, τ̃, θ̃) = 0, Ψ(r, τ̃, θ̃) = r− R(τ̃)− ε2B(τ̃, θ̃). (5)

Up to this point, R and B are unknown functions, and “ε” indicates the rotational order of
the factors involved. In addition, let us assume that the spacetime coordinates relate to the
ones of the hypersurface as

t = T(τ̃) + ε2 A(τ̃, θ̃), θ = θ̃, dϕ = dϕ̃ + εC(τ̃)dτ̃. (6)

Just not to overload the notation, we dropped the “±” indexes that should be present in
the coordinates of the spacetimes to be matched. Such labels would be related to a region
above (“+”) and below (“−”) Σ, naturally defined by its normal vector.

With the ansatz given by Equations (5) and (6), our task is to find the functions A, B,
C, R, and T that lead the metrics given by Equation (1) to be continuous when projected
onto Σ (continuity of the first fundamental form). This is the first junction condition to be
imposed when matching spacetimes whose resultant one leads to a distributional solution
to Einstein’s equations [18]. From Equations (1) and (6), we have to impose that (for any F,
Ḟ ≡ ∂F/∂τ̃):

C = ω(R)Ṫ (7)

and
eν(R)Ṫ2 − eλ(R)Ṙ2 = 1, (8)

to eliminate the first-order terms in the rotational parameter of the induced metric and re-
trieve our spherically symmetric solution with τ̃ as the proper time on Σ. From Equation (8),
we see that the well-definiteness of the induced metric does not constrain R(τ̃); it is a free
function whose dynamics will be related to the spherically symmetric configuration. We
know from such a case that its determination is only possible when an equation of state for
the (perfect-like) fluid on Σ is given [1,19,20].

Since we are working perturbatively in “ε”, we can expand the functions A and B up
to the second-order Legendre polynomials in the same fashion as it was done previously
for h, j, k. Therefore, let us assume

B(τ̃, θ̃) = B0(τ̃) + B2(τ̃)P2(cos θ̃), (9)

and
A(τ̃, θ̃) = A0(τ̃) + A2(τ̃)P2(cos θ̃). (10)

On the hypersurface, Σ, the functions h0, j0, h2, j2, and k2 (see Equations (2)–(4)) have their
radial dependence just replaced by R, given that they are already second-order functions in
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the rotational parameter. This notwithstanding, the spherically symmetric function eν on
the hypersurface Σ, on account of Equations (5) and (9), changes to

eν(r) ≈ eν(R)
(

1 +
∂ν

∂R
ε2B
)

, (11)

similar to eλ. Therefore, further corrections appear when one works up to ε2. The one given
by Equation (11) is due to the shape change of Σ due to rotation.

From Equations (1), (6)–(8) and (11), the induced metric on Σ can be cast as

ds2
Σ = dτ̃2

{
1 + ε2

[
eν(R)

(
2ṪȦ + 2hṪ2 +

∂ν

∂R
BṪ2

)
− eλ(R)

(
2ṘḂ + 2jṘ2 +

∂λ

∂R
BṘ2

)]}

+ 2ε2
(

eν(R)Ṫ
∂A
∂θ̃
− eλ(R)Ṙ

∂B
∂θ̃

)
dτ̃dθ̃ − (R2 + 2RB + 2kR2)(dθ̃2 + sin θ̃2dϕ̃2). (12)

If we now substitute Equations (2)–(4), (9) and (10) into Equation (12), the well-definiteness
of the induced metric on Σ is guaranteed by means of the following conditions:

eν(R)
(

ṪȦ0 + h0Ṫ2
)
− eλ(R)

(
ṘḂ0 + j0Ṙ2

)
+

B0

2

(
eν(R)Ṫ2 ∂ν

∂R
− eλ(R)Ṙ2 ∂λ

∂R

)
= 0, (13)

eν(R)ṪA2 = eλ(R)ṘB2, (14)

[B2 + k2R]+− = 0, (15)

[B0]
+
− = 0, (16)

[α2]
+
− = 0, (17)

with

α2 ≡ eν(R)
(

ṪȦ2 + h2Ṫ2 +
1
2

∂ν

∂R
B2Ṫ2

)
− eλ(R)

(
ṘḂ2 + j2Ṙ2 +

1
2

∂λ

∂R
B2Ṙ2

)
. (18)

In the above equations, we defined [A]+−
.
= A+|Σ− A−|Σ as the jump of A across Σ. We stress

that each of Equations (13) and (14) is two equations, related to each region (±) defined
by Σ. We then have eight unknown functions, (A±0 , A±2 , B±2 , B±0 ), to seven equations,
Equations (13)–(17). The missing equation is related to the freedom in deforming the shape
of the surface, splitting the two glued regions of space for a fixed eccentricity. Note that
B±0 = 0 (or any given constant) renders Equation (16) an identity, and in this case, we are
left with a system of six equations to six variables. Equations (13)–(18) allow us to express
the (continuous) induced metric on Σ in a simplified way, namely

ds2
Σ = dτ̃2[1 + 2ε2{α2}+−P2(cos θ̃)

]
−
[
R2 + 2ε2R{B0}+−

+ 2ε2R{B2 + k2R}+−P2(cos θ̃)
]
(dθ̃2 + sin θ̃2dϕ̃2), (19)

where we define for a given quantity F on Σ, {F}+− ≡ (F|Σ+ + F|Σ−)/2. Of course, that
simplified way of expressing the induced metric is due to our coordinate freedom on Σ.

We stress that all of our previous reasoning remains the same if we perform the change
P2(cos θ) → CP2(cos θ), with C an arbitrary constant. This is related to the freedom we
always have in choosing the ellipticity of Σ when matching two slowly rotating spacetimes.
In addition, τ̃ is not the proper-time on Σ if one takes into account Equations (13)–(18).
This is not a problem since the coordinates on Σ can be chosen freely. Finally, we recall that
the thin-shell formalism leads to surface quantities that are independent of the coordinate
systems of the glued spacetimes and the hypersurface. We chose Hartle’s spacetime and
ya because, respectively, this is physically appealing and convenient for slowly rotating
extended systems such as neutron stars, and this leads to a simple induced metric on Σ.
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3. Static and Away-from-Equilibrium Thin Shells

We solved Equations (13)–(18) for the case Σ, which is not endowed with a dynamics,
namely when Ṙ = 0 or R(τ) = R = constant. This case is very important since it tests the
consistency of the system of equations obtained previously. In addition, it gives us the
requisites for having static glues of slowly rotating spacetimes. For this case, Equation (8)
gives us that Ṫ = e−

ν
2 . It is not difficult to show that the solution to the above system of

equations is

ε2B+
2 =

ε2
+(h

+
2 + ∂ν−

∂R k+2 R)− ε2
−(h

−
2 + ∂ν−

∂R k−2 R)
[

∂ν
∂R

]+
−

, (20)

ε2B−2 =
ε2
+(h

+
2 + ∂ν+

∂R k+2 R)− ε2
−(h

−
2 + ∂ν+

∂R k−2 R)
[

∂ν
∂R

]+
−

, (21)

A±2 = 0, (22)

ε2 A±0 = −ε2
±

(
h±0 +

B±0
2

∂ν±

∂R

)
e−

ν±
2 τ̃, (23)

with B0 a jump-free (B+
0 = B−0 ) and arbitrary constant. In this case, the induced metric,

Equation (19), does not depend on τ̃, as expected. It can be checked that this is the only
case where such an aspect rises concomitantly with the self-consistency of the system of
equations. This justifies the choice of Equations (13)–(18).

It is worth emphasizing that R(τ̃) = constant ≡ R does not automatically guarantee
the thin shell’s stability upon perturbations. This is just the case whenever Σ is bound.
From Equation (5), one sees that stability will be ensured just when both R(τ̃) and B(τ̃, ϕ̃)
are bound functions. In particular, for our analysis to be meaningful, that should be
fulfilled by the latter function. After meeting this demand, the only one left is the bound
nature of R(τ̃). This can be analyzed within the thin-shell formalism in the spherically
symmetric case, and we know that it is summarized by the search of the minima of an
effective potential [1]. As a result, in the stable case, Ṙ is automatically bound and could
be approximated by a harmonic function around R with a very small amplitude. It is
simple to show in this case that the corrections to Equations (20)–(23) coming from our
field Equations (13)–(17) will also be proportional to oscillating functions around r = R.
More specifically, if δR ≡ R(τ̃)− R = A cos(ω̃τ̃), where A/R � 1 and ω̃ is a constant,
then δA0 ∝ sin(ω̃τ̃), δA2 ∝ sin(ω̃τ̃), δB0 ∝ cos(ω̃τ̃) and δB2 ∝ cos(ω̃τ̃). This must be the
case mathematically since we have a system of inhomogeneous trigonometric functions to
solve. From Equations (5) and (6), it also makes physical sense that δA0 and δA2 (δB0 and
δB2) oscillate in the same way. Thus, we concluded that the stability of Σ in the spherically
symmetric case also implies its stability in the presence of small rotations. This is a very
important result and will be used in subsequent sections when we elaborate on the energy
conditions of hypersurfaces in the case of slow rotation.

4. Energy–Momentum Tensor for a Slowly Rotating Thin Shell

We now determine the energy–momentum tensor on Σ that guarantees the glue of
two slowly rotating spacetimes whose boundary is dynamic. We must find the normal
vector to Σ to do so. Generally, the normal vector to a given hypersurface Ψ is [18]

nµ ≡
εn∂µΨ

|gαβ∂αΨ∂βΨ| 12
, (24)

where εn = ±1, depending on whether Σ is space-like or time-like, respectively. In addition,
Equation (24) ensures that nµ is a unit vector in the direction of growth of Σ.
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Let us now calculate the gradient to Σ, ∂µΨ. From Equation (5),

∂µΨ =

(
−1

ṫ
[Ṙ + ε2Ḃ], 1,−∂B

∂θ̃
, 0
)

. (25)

From Equations (1), (6), (24) and (25), one obtains

n0 = e
ν+λ

2 Ṙ
{

1− ε2
[

Ḃ
Ṙ
+ eλṘ2

(
Ḃ
Ṙ
− B

2
∂ν

∂R
− h
)
− eνṪ2

(
Ȧ
Ṫ
− B

2
∂λ

∂R
− j
)]}

, (26)

n1 = −e
ν+λ

2 Ṫ
{

1 + ε2
[

Ȧ
Ṫ
+ eλṘ2

(
Ḃ
Ṙ
− B

2
∂ν

∂R
− h
)
− eνṪ2

(
Ȧ
Ṫ
− B

2
∂λ

∂R
− j
)]}

, (27)

n2 = e
ν+λ

2 Ṫε2 ∂B
∂θ̃

, (28)

n3 = 0. (29)

In the above normal components, we assumed that Σ is time-like, thus εn = −1 in
Equation (24). The contravariant components of the normal vector can be worked out
simply using nµ = gµνnν.

Now, we proceed with the calculations of the extrinsic curvature, defined as [18]

Kab ≡ nµ;ν
∂xµ

∂ya
∂xν

∂yb = −nµ

(
∂2xµ

∂ya∂yb + Γµ
αβ

∂xα

∂ya
∂xβ

∂yb

)
. (30)

Off-diagonal terms in Kab appear for slowly rotating spacetimes. First, we recall that, in the
spherically symmetric case

K0
0 =

ν′(e−λ + Ṙ2) + 2R̈ + λ′Ṙ2

2
√

e−λ + Ṙ2
, (31)

and

K1
1 = K2

2 =

√
e−λ + Ṙ2

R
. (32)

For the first-order corrections in “ε”, we also have

K0
2 =

1
2

∂ω

∂R
R2 sin2 θ̃e−

ν+λ
2 = −R2 sin2 θ̃K2

0. (33)

According to Lanczos’ equation [16,17], the surface energy–momentum leading to a distri-
butional solution to Einstein’s equations is

8πSa
b = [Ka

b ]
+
− − δa

b [K]
+
−, (34)

where K .
= habKab is the trace of the extrinsic curvature.

In the spherically symmetric (ss) case, Sa
b is a diagonal tensor concerning the (τ̃, θ̃, ϕ̃)

coordinates, i.e.,

Sa
b =

1
8π

diag(−2[K1
1]
+
−,−[K0

0 + K1
1]
+
−,−[K0

0 + K1
1]
+
−) ≡ diag(σss,−Pss,−Pss). (35)

This is the energy–momentum tensor for a comoving frame. Thus, the fluid on Σ is perfect-
like, i.e.,

Sab = σssuaub + Pss(uaub − hab). (36)

Whenever one works up to the first-order approximation in “ε”, similar results as the above
ones also hold in the coordinate system (τ̃, θ̃, ϕ̃), with ϕ̃ defined by Equation (6).
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Now, we turn to the case where, up to second order, corrections in “ε” are worked out.
From what we have pointed out previously, the form of the surface energy–momentum in
this case in the coordinate system (τ̃, θ̃, ϕ̃) should generically resemble

Sa
b =




S0
0 + ε2S̄0

0 ε2S̄0
1 εS̄0

2
ε2S̄1

0 S1
1 + ε2S̄1

1 0
εS̄2

0 0 S1
1 + ε2S̄2

2


. (37)

Because we are just inserting rotation into the problem, we still expect the fluid on Σ to be
perfect-like. Thus, from Equation (36), we have that

Sa
bub = σua. (38)

The above equation shows that σ is invariant; hence, it will be the same for every coordinate
system on Σ. The results coming from lower orders of approximation tell us that we should
accept solutions of the form

ua = [u0 + ε2ū0, ε2ū1, εū2], and σ = σss + ε2σ̄. (39)

The only solution coming from Equation (38) that satisfies such prerequisites is

ua =

{
1 + ε2


1

2

(
R sin θ̃S̄2

0

S0
0 − S1

1

)2

− {α2}+−P2(cos θ̃)


,

ε2S̄1
0

S0
0 − S1

1
,

εS̄2
0

S0
0 − S1

1

}
, (40)

where we fixed the arbitrary quantities u0 and ū0 coming from the eigenvalue approach by
the normalization condition uaua = 1 and

σ = S0
0 + ε2

(
S̄0

0 +
S̄0

2S̄2
0

S0
0 − S1

1

)
. (41)

For the (invariant) surface tension, from Equation (38), we generically have that

P =
1
2

Sa
b(u

bua − δb
a). (42)

For the slowly rotating thin-shell case, the above equation becomes

P = −S1
1 + ε2

[
− S̄1

1 + S̄2
2

2
+

S̄0
2S̄2

0

2(S0
0 − S1

1)

]
. (43)

Note that the second-order correction in “ε” to P is polar-angle-dependent, and it is
different from the one to σ (see Equations (33), (34), (41) and (43)). We finally stress that
our perturbative analyses break down whenever the surface quantities in the spherically
symmetric are null. That is natural because we assumed that the slow-rotation case is only
a small correction to the spherically symmetric case.

5. Dragging of Inertial Frames for Glued Slowly Rotating Spacetimes

We now briefly discuss some kinematic effects related to the match of two slowly
rotating Hartle’s spacetimes (see Equation (1)). Let us first analyze the aspects of a static
observer inside the rotating thin shell. This observer can be described by dϕ− = 0 or from
Equation (6) equivalently dϕ̃ = −(εC)−dτ̃. Thus, in the fixed stars’ frame of reference
(stationary observers at infinity), such an observer is rotating with the angular velocity:

dϕ+
(dϕ−=0)

dt+
= [(εC)+ − (εC)−]

dτ̃

dt+
= (εω)+ − (εωṪ)−

Ṫ+
, (44)
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where we also used Equation (7). We recall that Ṫ± can easily be read off from Equation (8).
Equation (44) states that, far away external observers see internal ones rotating, even when
ε− = 0, namely when the inner spacetime is spherically symmetric. Such an effect is the
well-known dragging of inertial frames, or the Lense–Thirring effect [21]. The case where
ε− = 0 is interesting because it shows that the rotation of the shell intrinsically induces a
rotation of the observers inside it. Whenever the inner spacetime is also endowed with a
rotational parameter (ε− 6= 0), naturally, it also contributes to the final angular velocity
fixed stars ascribe to internal observers at rest, as evidenced by Equation (44). Even more
remarkable in this case is the possibility of the disappearance of the dragging of inertial
frames (see Equation (44)). This is so even when ε± and the shell parameters are given by
convenient values of the inner spacetime parameters.

Furthermore, about distant observers, the rotation of the thin shell can be obtained.
We know that concerning the frame with coordinates (τ̃, θ̃, ϕ̃), the shell rotates with
angular velocity

dϕ̃

dτ̃
=

εS̄2
0

S0
0 − S1

1
, (45)

where we recall that the “ε” dependence on Equation (40) is merely an indicator that
the associated surface energy–momentum tensor is of a given order on the rotational
parameters ε±. Taking into account Equations (6) and (45), we have that the angular
velocity of the shell relative to the fixed stars is

dϕ+
Σ

dt+
=

dϕ̃

dt+
+ ε+C+ dτ̃

dt+
=

εS̄2
0

(S0
0 − S1

1)Ṫ
+
+ (εω)+, (46)

where also Equation (7) was taken into account, and we recall that Ṫ is given by Equation (8).
For completeness, we remark that the relative velocity of observers inside the shell with
the shell itself could be obtained by Equations (44) and (46) and always vanishes at the
associated “gravitational radius” of the external spacetime (eν+ = 0), showing that rigid
dragging takes place in this case [3]. Nevertheless, whenever a nontrivial inner spacetime
is considered, in principle, configurations always exist that would lead the observers inside
the shell to corotate with the thin shell. The interest in the effect of frame dragging [22,23]
naturally lies in the fact that its measurement could give direct information about the
stratification of spacetime.

6. Matching Slowly Rotating Kerr Spacetimes

A case of physical interest concerning the glue of slowly rotating spacetimes would
be where they are of Kerr types. This could be, for instance, a model for slowly rotating
neutral thin shells of matter collapsing onto Kerr black holes as could happen in AGNs. A
natural advantage of this match is the geometric simplicity of both regions. We know that
the Kerr metric in the Boyer–Lindquist coordinates (t̄, r̄, θ̄, ϕ̄) is [21]

ds2 =

(
1− 2Mr̄

ρ2

)
dt̄2 − 4Mr̄a sin2 θ̄

ρ2 dt̄dϕ̄− ρ2

∆
dr̄2 − ρ2dθ̄2 − Υ

ρ2 sin2 θ̄dϕ̄2, (47)

where

∆ ≡ r̄2 − 2Mr̄ + a2, (48)

Υ ≡ (r̄2 + a2)2 − ∆a2 sin2 θ̄, (49)

ρ2 ≡ r̄2 + a2 cos2 θ̄. (50)

This solution has two arbitrary constants: the system’s total mass, M, and its total angular
momentum per unit mass, a. The above metric has horizons at ∆ = 0. We shall not elaborate
anymore on the well-known properties of this solution.
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We emphasize that Hartle’s coordinates (t, r, θ, ϕ) differ from the Boyer–Lindquist
ones. It is simple, though tedious, to show that the coordinate transformations linking
the aforesaid coordinate systems up to second order in “ε” (here, ε = a/r) are (see, e.g.,
Beltracchi et al. [12])

θ̄ = θ − a2

2r2

(
1 +

2M
r

)
cos θ sin θ, (51)

r̄ = r− a2

2r

[(
1 +

2M
r

)(
1− M

r

)
−
(

1− 2M
r

)(
1 +

3M
r

)
cos2 θ

]
. (52)

The coordinate transformations given by Equations (51) and (52) are necessary to
apply the formalism we developed previously for matching two slowly rotating spacetimes.
The Kerr metric components up to second order in “ε” in Hartle’s coordinates are

hK
0 (r) =

M2

r2 e−ν, (53)

hK
2 (r) =

M
r3 (r− 2M)(M + r)e−ν, (54)

jK
0 (r) = −

M2

(r− 2M)2 eν, (55)

jK
2 (r) =

M(5M− r)
r(r− 2M)

eν, (56)

kK
2 (r) = −

M(2M + r)
r2 , (57)

and

eν = 1− 2M
r

, (58)

ω =
2M
r2 . (59)

We now investigate the induced shell quantities (surface energy density and tension)
due to small rotations. For example, let us choose thin shells in equilibrium at the radial
coordinate R = 5M+, M+ being the mass of the outer Schwarzschild spacetime seed. This
analysis is interesting since test particles cannot be in stable equilibrium for r < 6M+ in a
Schwarzschild spacetime, unlike thin shells (which renders them special and shows the
importance of searching for distributional solutions in general relativity). In addition, it
would allow us to probe thin shells in strong gravitational fields, as motivated by inner
accretion discs in AGNs [24] or even in stratified neutron stars. In what follows, for
numerical convenience, we take a− = na+ and M− = mM+, with (n, m) ∈ (<,<+),
respectively. As expected, for two Schwarzschild spacetimes, when M+ > M−, all induced
surface quantities are positive [1].

We must also choose other parameters related to the glued thin shells to proceed. Our
analysis in Section 3 concluded that shells in equilibrium could be characterized by an
arbitrary jump-free constant ε2B0, related to the effective change of radius from R due to
rotation. We chose for our investigations the case where B0 = 0. The reasons for that were
mainly connected with its physical reasonableness. One can verify that the glue of two Kerr
spacetimes at R = 5M+ is such that, for reasonable n (such as −1 < n < 1) and m < 1, one
has that B(θ = 0) < 0 and B(θ = π/2) > 0, meaning that the resultant surface is flattened
in the poles and stretched in the equator with respect to a sphere, as one expects physically
when rotation takes place. Situations where B0 6= 0 are left to be investigated elsewhere.

As we have shown previously, the stability analyses of slowly rotating thin shells
(around given radial positions) can be summarized by their spherically symmetric coun-
terparts (see Section 3). Therefore, we should analyze the stability of glued Schwarzschild
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spacetimes to investigate slowly rotating Kerr spacetimes. It is known in this case that a
thin shell is stable at r = R iff its associated effective potential [1]:

V(R) ≡ 1
2
(e−λ− + e−λ+)− 1

4
(4πRσss)

2 − 1
4

(
[e−λ]+−
4πRσss

)2

(60)

has a minimum there (d2V/dR2 > 0). It can be shown that [20]

d2V
dR2 = −

[
e−

λ
2

{
(2η + 1)

(
1 + R

2 λ′
)
− R2

2

(
ν′′ − 1

2 λ′ν′
)}]+

−
R2[e

λ
2 ]+−

, (61)

where η is defined as the adiabatic speed of sound squared on the shell [20], i.e., η ≡ c2
s .

We stress that, for the thin shell formalism to make sense, σss 6= 0, which we took in our
analysis. That also justified the perturbative treatment with respect to the spherically
symmetric case in the previous sections.

Figure 1 shows the stability condition (R2d2V/dR2 > 0) for several matches of
Schwarzschild spacetimes with masses leading to σss > 0 at R = 5M+. One sees from the
aforementioned plot that thin shells are stable for most η and internal-to-external mass
ratios. This suggests that r = 5M+ is a feasible choice for the equilibrium radius of a thin
shell with nontrivial surface degrees of freedom.

0.0 0.2 0.4 0.6 0.8 1.0

1
0
1
2
3
4
5
6

R
2 (

d2 V
/d

R
2 )

Thin-shell stability for R = 5M +

M /M + = 0
M /M + = 0.5
M /M + = 0.999

Figure 1. Thin-shell stability for some glues of Schwarzschild spacetimes where the outer masses
are always larger than the inner ones, leading to σss > 0 and Pss > 0. The equilibrium radius is
taken as R = 5M+ for all cases. For Schwarszchild spacetimes, the quantity of relevance is R/M+,
and M+ could be any. In particular, when R/M+ = 5, several thin shells’ speed of sound lead to
stable equilibria. That is the case even for very small thin-shell masses (M−/M+ ∼ 1). For the case
M−/M+ = 0.999, any η & 0.3 will fulfill the stability condition.

We studied induced surface quantities on slowly rotating neutral thin shells in slowly
rotating Kerr spacetimes. Figure 2 shows the relative changes for the surface energy
densities (∆σ/σ) for some selected Schwarzschild seeds. For all polar angles, they decrease
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when compared to their spherically symmetric counterparts. That is the case if the inner
spacetime counter-rotates with respect to the outer one (because ∆σ’s with positive and
negative n do not differ much), if it has no rotation at all (n = 0) or if it has the same
rotation as the external one (n = 1). That is the same concerning relative changes of the
relative surface tension ∆P/P ≡ P/Pss − 1 (see Figure 3).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
[rad]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
(

/
ss

)/(
a

+
/M

+
)2 f

R = 5M + , a = na + , M = mM +

m = 0, n = 0, f = 1
m = 0.5, n = 0, f = 1
m = 0.5, n = 1, f = 1
m = 0.999, n = 0, f = 10 6

m = 0.999, n = 1, f = 1

Figure 2. Relative surface energy density corrections due to rotation (∆σ/σss ≡ σ/σss − 1) for some
parameters of the glued spacetimes. Internal and external mass ratios were chosen to coincide
with those of Figure 2. To be more general, we did not specify the particular rotational parameter
(a+/M+)2; we just assumed it was small. The factor “ f ” is only for convenience (plotting all the
cases in a similar scale). Negative n’s lead to the same results as their positive counterparts. Note that,
for all the cases and polar angles, ∆σ < 0, meaning that rotation decreases the local surface energy
density on the thin shell.

For all the cases in Figure 1, it is simple to verify that the weak, null, strong, and
dominant energy conditions [18] are satisfied. This shows the reasonableness of our
assumptions. In the presence of rotation, the aforesaid conditions are slightly weakened.
Figure 4 exemplifies the previous statement due to the negativity of the induced part of
the strong energy condition (∆σ + 2∆P < 0) for the spacetime matches in Figure 1. Similar
conclusions could be reached for the weakening of other energy conditions (weak and
null) because both ∆σ and ∆P are negative. Naturally, in the perturbative scope, this does
not mean any violation of the energy conditions, but only their weakening when small
rotations are present, which suggests nontrivial behavior in the non-perturbative case.
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)/(
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R = 5M + , a = na + , M = mM +

m = 0, n = 0, f = 1
m = 0.5, n = 0, f = 1
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m = 0.999, n = 0, f = 10 6
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Figure 3. Relative induced surface tension (∆P/Pss ≡ P/Pss − 1) as a function of the polar angle
θ. We chose the same mass ratios of Figure 2. Note that, for almost all choices of thin-shell mass
and polar angles, the surface tension correction to the spherically symmetric case due to rotation
is negative.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
[rad]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(
+

2
)/(

ss
+

2
ss

)/(
a

+
/M

+
)2 f R = 5M + , a = na + , M = mM +

m = 0, n = 0, f = 1
m = 0.5, n = 0, f = 1
m = 0.5, n = 1, f = 1
m = 0.999, n = 0, f = 10 6

m = 0.999, n = 1, f = 1

Figure 4. The parameters for the curves are the same as their counterparts in Figure 2. The induced
part due to the rotation in the strong energy condition (∆σ + 2∆P) is negative (clearly not the case
for the selected values of the glued spacetimes, whose spherically symmetric counterparts satisfy all
energy conditions), which points to the possibility of the non-validity of some energy conditions in
non-perturbative analyses.
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7. Concluding Remarks

This work showed the subtleties and nontrivialities in matching two slowly rotating
Hartle’s spacetimes through dynamic hypersurfaces. For a given matching hypersurface,
we obtained generically that its equilibrium points are stable if their spherically symmetric
counterparts are so. Concerning the kinematical effects, we showed that it is possible
to match spacetimes where a rigid-rotation behavior appears—at least in some limit—
and the frame-dragging effect can give information about the matched spacetimes. We
also found that the thin shells’ surface energy densities and surface tensions decrease
compared to their spherical counterparts. This suggests, for instance, that the assumption of
having everywhere-positive surface degrees of freedom may be broken in non-perturbative
calculations. Energy conditions may also be violated in this scenario, which could have
important consequences (for the relevance of the energy conditions in general relativity,
see Chapter 34 of [21,25]). Another possibility would be that the possible violation of the
energy conditions would preclude the existence of such thin-shell structures. Given its
importance, we plan to investigate that better elsewhere.

Let us elaborate on some of the above points. The automatic stability of a slowly
rotating thin shell, when its spherically symmetric seed is stable, is reasonable because a
slowly rotating spacetime and thin shell perturbations there can be roughly seen as effective
thin-shell perturbations in the spherical case. The fact that this stability emerges from our
system of equations when matching two slowly rotating spacetimes is also relevant because
it strengthens its consistency and it shows that, when the thin shell stability is concerned,
it suffices to analyze just the spherically symmetric case. On the other hand, the decrease
in the value of surface quantities when the slow rotation is present (as was clear when
matching two Kerr spacetimes) is not trivial. A possible interpretation of it is that part of
the thin-shell energy goes into rotational energy. That would reinforce the need, in general,
to go beyond the slow rotation approximation we adopted. Clearly, this is not an easy
task because some symmetries of the spacetimes to be matched are lost. However, it is
worth mentioning that, for instance, in the case of rotating neutron stars, deviations from
the spherical symmetry are essentially negligible for rotation rates of up to a few hundred
Hz (see, e.g., [26,27]). Thus, we expect the slow-rotation Hartle spacetime metric to be a
reasonable approximation for those configurations. Finally, Figures 3 and 4 also show that
the largest relative differences for the surface tension and surface energy density when
m is not too close to unity happen when the internal spacetime is flat (i.e., Minkowski).
The reason here is that this case leads to the largest mass–energy content of the thin shell.
Thus, one would also expect that their relative differences would be maximized with
respect to other cases where the internal spacetime has mass and rotation. The results
for m close to one should be taken with a grain of salt because the perturbative model
investigated breaks down when m = 1 (no surface degrees of freedom are induced in the
background spacetime).

One could apply the thin shell formalism developed here for cases involving astro-
physical black holes, which are believed to be of the Kerr type. That could be for those
at the centers of galaxies, such as AGNs, or even those in binaries or alone. The idea
is that structures (thin shells) could be formed around black holes, wrapping them up
totally or partially. For the case of black holes with masses ranging from one to two solar
masses and thin shells with a (small) fraction of that mass, if their equilibrium position
is R = 4–6M+, then R is of the order of a neutron star’s radius (≈12 km for a 1.4 M�
star [28,29]). The intriguing question is whether external observers could perceive those
thin shells as neutron stars. If, instead, BHs of around a solar mass are wrapped up by thin
shells and equilibrium radii around R = (103–104)M+, one could perceive them as white
dwarfs. In the era of gravitational-wave astronomy, these possibilities seem interesting to
be better investigated because the above equilibrium radii are stable for a large range of
sound speeds on the thin shells. Some gravitational-wave aspects are already known for
some exotic compact objects (see, e.g., [9,11,30–37]).
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Another special arena of application of this work is stratified compact stars, which
have in their interiors a huge range of densities and pressures and even different matter
phases (e.g., solid and liquid hadronic phases [38] or possibly even the quark and hadronic
phases of hybrid stars [39]). Slow rotation would be the natural extension of the spherically
symmetric case, where the stability formalism for stratified stars is already known [40]
and surface degrees of freedom can be induced upon perturbations [41]. The approach
presented here can be applied to the match of various matter phases since the second-order
slow rotation approximation is accurate for the description of uniformly rotating neutron
stars up to frequencies ∼300 Hz (see, e.g., References [26,42]). In this line, comparing and
contrasting the stability when a thin shell matches different phases for static and rotating
configurations seem relevant. The formalism could also be applied if the surface of a
neutron star is buried with a thin layer of supernova debris (e.g., as the so-called central
compact objects (CCOs) [43–45]). In addition, one could check whether or not the stringent
stability of strange quark stars with an outer crust obtained in [20] changes when adding
rotation. The case of neutron stars rotating in the kHz region needs the non-perturbative
solution of the match of axially symmetric spacetimes, which represents the ultimate goal
of the analysis proposed in this work.
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Abstract

GRB 171205A is a low-luminosity, long-duration gamma-ray burst (GRB) associated with SN 2017iuk, a broad-
line type Ic supernova (SN). It is consistent with having been formed in the core collapse of a widely separated
binary, which we have called the binary-driven hypernova of type III. The core collapse of the CO star forms a
newborn NS (νNS) and the SN explosion. Fallback accretion transfers mass and angular momentum to the νNS,
here assumed to be born non-rotating. The accretion energy injected into the expanding stellar layers powers the
prompt emission. The multiwavelength power-law afterglow is explained by the synchrotron radiation of electrons
in the SN ejecta, powered by energy injected by the spinning νNS. We calculate the amount of mass and angular
momentum gained by the νNS, as well as the νNS rotational evolution. The νNS spins up to a period of 47 ms,
then releases its rotational energy powering the synchrotron emission of the afterglow. The paucity of the νNS spin
explains the low-luminosity characteristic and that the optical emission of the SN from the nickel radioactive decay
outshines the optical emission from the synchrotron radiation. From the νNS evolution, we infer that the SN
explosion had to occur at most 7.36 h before the GRB trigger. Therefore, for the first time, the analysis of the GRB
data leads to the time of occurrence of the CO core collapse leading to the SN explosion and the electromagnetic
emission of the GRB event.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Neutron stars (1108); Pulsars (1306)

1. Introduction

The Burst Alert Telescope of the Neil Gehrels Swift
Observatory on board (Swift-BAT) triggered and located
GRB 171205A at 07:20:43 UT on 2017 December 17. Swift’s
X-Ray Telescope (XRT) began to observe 144.7 s after the
BAT trigger (D’Elia et al. 2017). Soon, Izzo et al. (2017a)
found that the burst was located in a nearby galaxy at redshift
z= 0.0368, which was later confirmed by the X-shooter
telescope on board the Very Large Telescope (VLT/X-shooter;
Izzo et al. 2017b). About 5 days after, the associated type Ic
supernova (SN) started to emerge and was detected by the 10.4
m Gran Telescopio Canarias (GTC; de Ugarte Postigo et al.
2017) and the SMARTS 1.3 m telescope (Cobb 2017).

This source has gained much observational attention since it
was the third nearest gamma-ray burst (GRB) at the time of its
discovery. D’Elia et al. (2018) performed a multiwavelength
analysis of GRB 171205A using the data from the Swift and
Konus-Wind satellites, covering from the optical to the sub-
megaelectronvolt energies. Their cutoff power-law fit gives the
peak energy at ∼100 keV and the isotropic energy in the order

of 1049 erg, which implies this burst is a low-luminosity GRB
and is an outlier of the Amati relation. Wang et al. (2018)
reported the spectroscopic observation of the SN associated
with the GRB, SN 2017iuk, and of the host galaxy. These
observations showed that SN 2017iuk is a typical type Ic SN
that resembles SN 2006aj, and that the host is an early-type,
star-forming galaxy of high mass, low star formation rate, and
low solar metallicity. In this source, for the first time, the
polarization in the millimeter and radio bands during the
afterglow phase was observed, thanks to the intensive
combined use of the Submillimeter Array (SMA), the Atacama
Large Millimeter/submillimeter Array (ALMA), and the Very
Large Array (VLA), and showed a linear polarization <1%
indicative of Faraday depolarization (Urata et al. 2019; Laskar
et al. 2020). The observation continued for 1 yr, the ASKAP,
ATCA, and μGMRT radio observations lasted ∼1000 days, the
radio afterglow decays followed a shallow power law, and no
jet break was exhibited (Maity & Chandra 2021; Leung et al.
2021). Figure 1 shows the multiwavelength light curve of GRB
171205A.

1.1. GRB 171205A in the Traditional Scenario

The origin of low-luminosity GRBs is still an open debate,
and some interpretations include that these are bursts observed
off-axis (Waxman 2004; Soderberg et al. 2006a, 2006b;
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Kathirgamaraju et al. 2016; Fraija et al. 2019a; Izzo et al.
2020), shock-wave breakout from the progenitor’s shell
(Campana et al. 2006; Li 2007; Soderberg et al. 2008; Barniol
Duran et al. 2015; Irwin & Chevalier 2016; Fraija et al. 2019b),
and emission from a jet-heated cocoon (Nakar 2015; Kasliwal
et al. 2017; Gottlieb et al. 2018). GRB 171205A, as a low-
luminosity GRB at a low redshift, provides a testing ground for
the theoretical models. Izzo et al. (2019) found thermal X-ray
and optical emissions radiated from material whose velocity
evolves from ∼0.3c–0.1c in the first 7 days, and with a
chemical composition that differs from that of SN 2017iuk,
which has a lower velocity (<0.1c) evidenced by the spectro-
scopic analysis. They proposed the high-velocity material is a
portion of the accelerated cocoon, which becomes transparent
at ∼7 days, and then the SN dominates the optical emission.
Suzuki & Maeda (2022) performed hydrodynamic simulations
of a powerful jet penetrating the progenitor star and showed
that jet-induced chemical mixing can lead to the observed
chemical composition of the high-velocity material. Maity &
Chandra (2021) analyzed GRB 171205A with the shock-wave
breakout and the canonical off-axis jet models and show that
both are inconsistent with the 1000 day observations.
Compared to the observation, the shock-wave breakout model
predicts a longer duration, a lower peak energy, and requires a
higher column density. Moreover, the radius (∼1013 cm)
derived from the thermal component is too large for a typical
progenitor. For the off-axis model, the discrepancies arise
because the burst does not exhibit expected off-axis properties
like a low peak energy, an increasing luminosity in the
afterglow, and a frequency-independent break in the light curve
(D’Elia et al. 2018). There are alternative models, e.g., Suzuki
et al. (2019) modeled the burst as mildly relativistic spherical
ejecta interacting with an ambient wind-like medium producing
forward and reverse shocks and forming a thin shell. In their
model, the prompt gamma-ray and X-ray emissions are
produced when the optical depth of the shell reaches
transparency, and subsequently, the radio and X-ray emissions
are produced in the shock fronts by synchrotron and inverse
Compton processes. They claimed this model can fit the prompt

luminosity and duration, as well as the late-time X-ray, optical,
and radio light curves.

1.2. The BdHN Scenario

Therefore, a satisfactory explanation of the multiwavelength
data and the evolution with time of GRB 171205A remains an
open issue. In this work, we analyze this source from the
perspective of the binary-driven hypernova (BdHN) model of
long GRBs. The progenitor of the GRB in the BdHN model is a
binary system composed of a carbon-oxygen (CO) star and a
neutron star (NS) companion. Numerical simulations of the
sequence of physical processes occurring in a BdHN have been
performed in the last decade and have led to a detailed picture
and interpretation of the GRB observables (see, e.g., Izzo et al.
2012; Rueda & Ruffini 2012; Fryer et al. 2014; Becerra et al.
2015; Fryer et al. 2015; Becerra et al. 2016; Ruffini et al.
2018c; Becerra et al. 2019). The core collapse of the CO star
leads to the formation of a newborn NS (νNS) at its center and
ejects the outer layers of the star in an SN explosion. The ejecta
accretes onto the NS companion and due to matter fallback
there is also accretion onto the νNS (see, e.g., Wang et al.
2022; Becerra et al. 2022; Rueda et al. 2022b, and references
therein). Both accretion processes are hypercritical (i.e., highly
super-Eddington) in view of the activation of a very efficient
neutrino emission (Becerra et al. 2016, 2018). For orbital
periods of a few minutes, the NS companion reaches the critical
mass for gravitational collapse, leading to a Kerr black hole
(BH). These BdHN are referred to as type I (BdHN I). BdHN I
explain the energetic GRBs with isotropic energies 1052 erg.
The accretion processes are observed as precursors of the prompt
emission (see, e.g., Wang et al. 2019). The gravitomagnetic
interaction of the newborn Kerr BH with the surrounding
magnetic field induces an electric field. For a sufficiently
supercritical magnetic field, the electric field becomes also
supercritical leading to an electron–positron (e+e−) pair plasma.
The self-acceleration of this plasma to Lorentz factors Γ∼ 100
and its transparency explain the ultrarelativistic prompt emission
(UPE) phase (see Moradi et al. 2021b for the UPE analysis of

Figure 1. Luminosity light curve of Swift-BAT (deep red), Swift-XRT (red), optical B band from D’Elia et al. (2018) (gray), and radio 1255 MHz from Maity &
Chandra (2021) (brown), the triangles represent the upper limit. We also plot the thermal luminosity (yellow). The Swift-XRT data at time >8 × 104 s is fitted by a
power law index of 1.01 ± 0.06 and extrapolated to the earlier and the later time (red solid line, the red shadow represents the 68% confidence interval). Here, T0 = 0 s
is the starting time of the burst, corresponding to 38 s before the BAT trigger time.
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GRB 190114C, and Rastegarnia et al. 2022 for GRB 180720B).
The electric field accelerates electrons to ultrarelativistic energies
leading to synchrotron radiation, which explains the observed
gigaelectronvolt emission (Ruffini et al. 2019; Rueda &
Ruffini 2020; Moradi et al. 2021a; Rueda et al. 2022a). There
is an additional synchrotron radiation process by relativistic
electrons in the ejecta expanding in the νNS magnetic field. The
νNS also injects energy into the ejecta. This synchrotron
radiation explains the afterglow emission in the X-ray, optical,
and radio wavelengths (see, e.g., Ruffini et al. 2018a; Wang et al.
2019; Rueda et al. 2020). Finally, the release of nickel decay
(into cobalt) in the SN ejecta powers the bump observed in the
optical in the late afterglow.

For longer orbital periods, of the order of tens of minutes, the
NS companion does not reach the critical mass, so it remains a
massive, fast-rotating NS. These BdHN are referred to as type
II (BdHN II). BdHN II explain the less energetic GRBs with
isotropic energies 1052 erg. The physical processes and
related observables associated with the presence of the BH are
clearly not observed in the BdHN II (e.g., the UPE and the
gigaelectronvolt emission). The synchrotron afterglow in the
X-ray, optical, and radio wavelengths, instead, is present both
in BdHN I and II because it is powered by the νNS and the SN
ejecta (see Wang et al. 2019, 2022 for GRB 180728A and GRB
190829A).

1.3. GRB 171205A and the Quest for BdHN III

When considering BdHN with longer and longer orbital
periods, possibly of hours, the effects associated with the
presence of the binary companion become observationally
irrelevant. Therefore, there is no GRB observable that can
discriminate the presence or absence of a binary companion.

Under the above circumstances, we model GRB 171205A
neglecting the observational consequences of a companion NS.
We shall refer to these low-luminous sources with energies
1049–1050 erg as BdHNe III.
Table 1 summarizes the sequence of physical phenomena

that occur in BdHN I–III, and their corresponding observables
in the GRB data. Signatures from a binary companion appear
only in BdHN I and II, while BdHN III shows only observables
associated with the SN and the νNS.
In Section 2, we analyze the Swift observations and fit the

time-resolved spectra using the Markov Chain Monte Carlo
method, and then we generate the light curves for the prompt
emission and afterglow, shown in Figures 1 and 2. The special
feature of this burst is the presence of a thermal component in
the early afterglow, where the temperature drops from about 90
to 70 eV in the first 300 s. In Section 3, we describe the
physical process of this burst, we suggest that this low-
luminosity burst originates from a strong SN (or a hypernova).
The fallback accretion after the SN collapse heats up the SN
ejecta, accelerating its outermost layer to mildly relativistic and
the heated ejecta emits thermal radiation. This process is
similar to the cocoon model, but the opening angle for the
energy release of the fallback accretion is much larger than the
traditional jet. This large opening angle is consistent with the
absence of the jet break signal in the afterglow. Meanwhile, the
fallback accretion spins up the central NS, which in turn injects
energy to power the afterglow by losing its rotational energy. In
Section 4, we establish the analytical solutions for the spin-up
of the νNS due to the mass and angular momentum transfer
during the accretion. We derive an analytical solution for the
time required for the spin-up process using an accurate Padè
approximant in the expression of the angular velocity as a
function of time (see Figures 3 and 4). The spin period of the

Table 1
Physical Phenomena that Occur in BdHN I–III, and their Associated Observables in the GRB Data

Physical Phenomenon/Reference BdHN GRB Observable

Type νNS Rise UPE GeV SXFs Afterglow
(soft-hard X-rays) (MeV) emission HXFs (X/optical/radio)

Early SN emission (a) I, II, III ⊗

Hypercritical accretion onto νNS (b) I, II, III ⊗
Hypercritical accretion onto NS (b) I, II ⊗

BH formation from NS collapse (c) I ⊗

Transparency of e+e− (from vacuum I ⊗
polarization) with low baryon load region (d)

Synchrotron radiation inner engine: I ⊗
BH+B-field+SN ejecta (e)

Transparency of e+e− (from vacuum I ⊗
polarization) with high baryon load (f)

Synchrotron emission from SN ejecta with I, II, III ⊗
energy injection from νNS (g)

Pulsar-like emission from νNS (g) I, II, III ⊗

Note. UPE stands for ultrarelativistic prompt emission, SXFs for soft X-ray flares, and HXFs for hard X-ray flares.
References. (a) Y. Aimuratov et al. (2023, in preparation), Wang et al. (2019, 2022), Rueda et al. (2022b), (b) Fryer et al. (2014), Becerra et al. (2016, 2022), Rueda
et al. (2022b), Wang et al. (2022), (c) Ruffini et al. (2019), Moradi et al. (2021a, 2021b), (d) Bianco et al. (2001), Moradi et al. (2021b), Rastegarnia et al. (2022), (e)
Ruffini et al. (2019), Rueda & Ruffini (2020), Moradi et al. (2021a), Rueda et al. (2022a), (f) Ruffini et al. (2018c), (g) Ruffini et al. (2018a), Wang et al. (2019),
Rueda et al. (2020).
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NS required by the theory can be obtained from the observation
by assuming that the energy of the X-ray afterglow is mainly
contributed by the rotational energy of the νNS. From the
observation of GRB 171205A, we derive that the νNS is
possibly accelerated to a spin period of 47 ms, and 0.026Me

are accreted by the νNS via fallback. We show that this process
takes 7.36 hr for a νNS born with zero spin. In Section 5, we
present the model of the afterglow in the X-ray, optical, and
radio wavelengths as originating from synchrotron radiation in
the expanding SN ejecta with the energy injection from the
central 47 ms spinning νNS pulsar. Section 6 shows the results
of the fit of the X-ray, optical, and radio light curves with the
above model (see Figure 5). Our conclusions are given in
Section 7.

2. Spectrum and Light Curve

Swift-BAT and Swift-XRT data are retrieved from
UKSSDC,14 and the data reduction is performed by HEAsoft
6.29,15 then the exported spectra are fitted by the Multi-Mission
Maximum Likelihood framework (3ML; Vianello et al. 2015).
In order to produce the luminosity light curve, the BAT data are
binned following the thresholds that the signal-to-noise ratio is
at least 6 and the maximal bin size is at most 50 s. Then each
binned spectrum is fitted by a cutoff power-law function and is
integrated from 15–150 keV according to the BAT bandwidth

Figure 2. Top: spectrum of T90 observed by BAT, fitted by a cutoff power-law model with a photon index of α = 1.10 ± 0.35 and peak energy
Ep = 148.55 ± 121.97 keV. Bottom: jointly spectral fitting of BAT and XRT from 151–162 s after the BAT trigger with a composite spectrum of a power law index
of α = 2.00 ± 0.17 plus a blackbody of temperature kT = 77.48 ± 7.46 eV.

14 http://www.Swift.ac.uk
15 http://heasarc.gsfc.nasa.gov/lheasoft/
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to obtain the flux. After having the fitting parameters, the
fluxes, and by adopting the FRW cosmology16, the k-corrected
luminosity light curve is obtained (Bloom et al. 2001). We
generate the light curve of XRT in the energy range of
0.3–10 keV following a similar procedure, and the corresp-
onding binning thresholds change to at least 200 counts and
10 s duration for the windows timing (WT) mode, as well as at
least 100 counts and 100 s duration per bin for the photon
counting mode. All the XRT spectra are fitted by a power-law
function17 with the photoelectric absorption models of our
galaxy and the host galaxy. The generated Swift luminosity
light curves are presented in Figure 1. We notice that this burst
is seen since ∼38 s before the BAT trigger, hence, we set T0 as
38 s before the BAT trigger time. The XRT light curve later
than 8× 104 s is fitted by a power-law function using lmfit
(Newville et al. 2021), a python package for nonlinear

optimization and curve fitting. lmfit implements the Leven-
berg–Marquardt method for optimization and is extended by
numdifftool18 to estimate the covariance matrix and then
calculate parameter uncertainties. We obtain a power-law index
of 1.01± 0.06 with the 1σ uncertainty (68% confidence level).
We show the power-law fit in Figure 1 with the 1σ uncertainty
region. The extrapolation of the power-law function coincides
with the initial prompt luminosity.
The T90 of the BAT observation lasts 189.19 s, and its time-

integrated can be described by a cutoff power-law model with a
power-law index of α= 1.10± 0.35, while the peak energy
cannot be precisely constrained Ep= 148.55± 121.97 keV.
These parameters are consistent with those in D’Elia et al.
(2018), which jointly fitted BAT and Konus-Wind data. They
obtained a = -

+0.85 0.41
0.54 and = -

+E 122p 32
111 keV, where the

uncertainty of peak energy has been tightened because
Konus-Wind covers higher energies than BAT. The integrated
flux gives (1.56± 0.31)× 10−8 erg cm−2 s−1 in the observed
15–150 keV bandwidth, and extrapolated to (2.63± 0.54)×
10−8 erg cm−2 s−1 in 1–104 keV, which corresponds to the
isotropic energy Eiso= (1.71± 0.35)× 1049 erg.
The presence of a thermal component in the afterglow of

GRB 171205A has been reported in several articles (Campana
et al. 2017; D’Elia et al. 2018; Izzo et al. 2019). Our time-
resolved analysis also confirms that the additional thermal
component significantly improves the fit to the low energy
band of the XRT (<1 keV) until 324 s with a fitting blackbody
temperature that drops from ∼90 to ∼70 eV, with an
uncertainty of ∼10 eV. Afterward, the thermal spectrum
gradually fades out of the XRT band (0.3–10 keV) as the
temperature decreases. The WT data of XRT is unable to
constrain the temperature at a times later than ∼4000 s, while
the optical telescopes start to capture the thermal component
that cools to the optical band (Izzo et al. 2019).
There is a common time window for BAT and XRT

observing the source, from ∼151 s when XRT had slewed to
the GRB position, until ∼162 s, the end of the T90 of BAT. The
BAT data at the end of the prompt emission is adequate to
constrain the cutoff energy, hence, the model of a power law
index of α=−2.00± 0.17 plus a blackbody component of
kT= 77.53± 8.28 eV is implemented to fit the entire data, as
shown in Figure 2.
The optical and radio light curves shown in Figure 1 are

reproduced from D’Elia et al. (2018) and Maity & Chandra
(2021), respectively. The optical luminosity is unusually bright
compared to the X-rays. Izzo et al. (2019) found that the
evolution of the optical spectrum before and after 7 days is
dominated by two black bodies with different evolution laws.
The 1000 day radio light curve shows a shallow decay without
any jet break signature. We refer to D’Elia et al. (2018), Izzo
et al. (2019), Maity & Chandra (2021) for a detailed analysis
and discussion of the optical and radio data, including the SN
optical observation.

3. Physical Picture

At a given moment, a type Ic SN occurs from the core
collapse of the CO star, forming at the same time a νNS at its
center. The fallback accretion spins up the νNS (see Section 4),
while releasing the accretion energy. From Becerra et al.
(2019), the initial accretion rate is up to 10−3Me s−1 and lasts

Figure 3. Comparison of the approximate solution of Equations (5) and (6)
given by Equation (20), with the results from the full numerical integration, in
the case μ(t0) = 1.4, Ω(t0) = 0, and χ = 0.15.

Figure 4. Comparison of the Padè approximant given by Equation (27) with
the result of the full numerical integration.

16 The Friedman–Lemaître–Robertson–Walker metric is used for computing
the luminosity distance, Hubble constant H0 = 67.4 ± 0.5 km s−1 Mpc−1, and
matter density ΩM = 0.315 ± 0.007 (Planck Collaboration et al. 2020).
17 To have more data points for the light curve, our binning is more concerned
with sufficiently short time resolution than with exact spectra. Therefore, the
power-law model is used uniformly to fit the spectra, rather than the more
accurate power-law plus blackbody model for which the data of each small bin
cannot constrain all parameters. This introduces an error of less than 5%, which
is in an acceptable level. 18 https://numdifftools.readthedocs.io
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tens of seconds, then it drops following a power law depending
on the SN density profile. Therefore, in the initial phase of tens
of seconds, the total energy generated from the accretion and to
be injected into the stellar shells reaches ∼1052 erg, which is
comparable to the kinetic energy of SN ejecta inferred from the
optical emissions at a later time. Different from the traditional
jetted model of GRBs, this amount of energy is emitted in a
large opening angle of probably tens of degrees, it propagates
in a portion of shells and accelerates the outermost shell to
mildly relativistic velocity. The hydrodynamics can be referred
to the simulation in Ruffini et al. (2018c), where has been
simulated the propagation of GRB injected energy in the
expanding stellar shells. The Lorentz factor of the shock wave
is lower than 5 when it breaks out the outermost shell at ∼1012

cm. The acceleration of the accretion-powered blastwave is
similar to that proposed for the shock-accelerated GRB
model (Colgate 1974). In this scenario, a supernova blastwave
accelerates as it propagates down the steep density gradient at
the edge of a massive star (Colgate 1974; Tan et al. 2001).
Although these models can produce highly relativistic ejecta in
idealized conditions, the bulk of the material reaches only
mildly relativistic velocities. Our model mirrors this evolution,
differing only from this picture because the blastwave is
propagating through an exploding CO star and is not spherical.
Our asphericity has many of the features of the cocoon
produced in jet models (see, e.g., Meszaros & Rees 2001;
Ramirez-Ruiz et al. 2002; Zhang et al. 2004; Nakar &
Piran 2017; Soker 2022; Eisenberg et al. 2022) that the jet
pushes the stellar shells sideways to form a hot cocoon, a part
of the cocoon emerges from the shells and expands outward
with mildly relativistic velocity. Hence, both our picture and
the cocoon picture involve some heated high-velocity material
originating from the stellar shells expanding and emitting a
thermal spectrum. The evolution of such this blackbody
spectrum has been indeed observed by Swift-XRT and several

optical telescopes, and a mass of 1.1× 10−3 Me moving above
105 km s−1 has been inferred; see Figure 2 and Izzo et al.
(2019). The difference is that in our picture, we expect a wider
opening angle than in a jet, as we consider this low-luminosity
GRB originates from a strong SN or hypernova in which the
central compact object is the νNS. From the observations, there
is no signature of any jet break in the afterglow until
∼1000 days (Maity & Chandra 2021; Leung et al. 2021),
hence, preferring a large opening angle description.
At this stage, our system has three energy sources: the

accretion, the spinning νNS, and the high-velocity material. For
the prompt emission, this low-luminosity GRB deviates from
the Amati relation (Amati et al. 2002); its peak energy
(Ep= 148.55 keV, see Figure 2) is about one order of
magnitude higher than the typical value of a weak GRB with
isotropic energy ∼1049 erg (D’Elia et al. 2018). The deviation
indicates this burst could be an extreme case or is formed by a
different mechanism. Izzo et al. (2019) suggest that the jet
deposits the majority of energy in the creation of the cocoon
and only a small fraction of energy is emitted in gamma rays. In
our framework, accretion dominates the energy release once the
SN explodes, and the majority of energy is injected into the
stellar shells, converting to the internal and kinetic energy of
the SN ejecta, and producing the fast-moving material. The low
isotropic energy of the prompt emission can be either produced
by the tail of accretion or by the fast-moving material (De Colle
et al. 2018). For the X-ray afterglow, it can be accounted for, at
early times, by the synchrotron emission converted from the
kinetic energy of the fast-moving material, and at times after
the plateau, by the release of rotational energy of the νNS that
has been spun up to periods of the order of milliseconds. We
performed the numerical fitting of the spectrum and light curve
using this scenario for several GRBs (see, e.g., Ruffini et al.
2018a; Wang et al. 2019; Rueda et al. 2020). This is also
supported by that the ending time of the plateau coincides with

Figure 5. Luminosity of GRB 171205A in the X-ray (0.3–10 keV), optical (V band), and radio (607 MHZ and 1.255 GHz) energy bands compared with the
luminosity predicted by the theoretical model. The rising part of the radio luminosity in the time interval of 106–107 s is due to synchrotron self-absorption (see Maity
& Chandra 2021, for details), here unmodeled. The X-ray data is retrieved from the Swift-XRT repository and analyzed in this article, and the optical and radio data
are reproduced from D’Elia et al. (2018) and Maity & Chandra (2021).
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the transparency of the fast-moving material at ∼105 s. For the
optical afterglow, we share the same opinion as Izzo et al.
(2019) that the fast-expanding mass dominates the optical
emission before 4 days, then the dominance is overtaken by
photons diffused out from the massive SN ejecta heated by the
nickel radioactive decay.

The above picture contains many different physical pro-
cesses, most of which have been discussed in detail and
simulated, in the references mentioned in the text. However,
after the birth of a νNS, the fallback accretion, the mass
change, and the spin-up process have been rarely discussed in
GRB studies. Hence, we will focus on modeling the properties
of the νNS in the next section.

4. Spin-up and Fallback Accretion onto the νNS

We turn now to estimate the spin-up and the amount of mass
that the νNS has accreted to gain enough rotational energy to
power the X-ray afterglow emission, as specified in the BdHN
model (see, e.g., Ruffini et al. 2021, for the analysis of 380
BdHNe).

Assuming the X-ray luminosity as a good proxy of the
bolometric luminosity of the afterglow, we can estimate the
change in the νNS rotational energy from a time t1 to a time
t2> t1 from the energy balance equation, i.e.,

ò ò= - » -E dt E t E t L dt. 1
t

t

t

t

Xrot rot 2 rot 1
1

2

1

2( ) ( ) ( )
After an infinite time, the νNS will have lost all its rotational

energy; therefore, when t2→∞, we have Erot,∞(t2)→ 0. So,
assuming the time t1 to be a generic time t, and the power-law
luminosity
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we obtain from Equation (1) that the νNS angular velocity
evolves as
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where I is the stellar moment of inertia, which we have
assumed constant with time, and can be estimated, for instance,
using the EOS-independent approximate expression (Wei et al.
2019)
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where b1= 1.0334, b2= 30.7271, b3=−12.8839, and
b4= 2.8841.

In the case of GRB 171205A, the X-ray luminosity is fitted
by a power law at times t> tpl≈ 8× 104 s, with AX= (3.165±
0.238)× 1047 erg s−1, and αX= 1.022± 0.055. Using these
values, we estimate from Equation (3) that the rotation period
of the νNS at t= tpl is P(tpl)≈ 51.01 ms. If we assume that
the νNS is spinning down from the νNS rise, i.e., from
t= tνNS≈ 35 s, but the emission from it is partially absorbed by
the high-velocity material, which is opaque before ∼105 s, then
by extrapolating from t= tpl backward in time to t= tνNS, we
infer that at the νNS-rise time, the νNS rotation period was
PνNS≡ P(tνNS)≈ 46.85 ms, i.e., Ω(tνNS)= 134.11 rad s−1.

We now estimate the mass accreted by the νNS before the
νNS rise to spin it up to the above rotation rate. The accretion
rate onto the νNS, set by the amount of mass from the inner

layers of the expanding matter that fall back onto the νNS and
their infalling speed, proceeds at hypercritical rates (see, e.g.,
Fryer et al. 1996). The accretion process makes the νNS
increase its mass energy and rotation rate from the transfer of
baryonic mass and angular momentum. The evolution of the
νNS gravitational mass and angular momentum can be
calculated from (Becerra et al. 2019)

=
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where J= IΩ is the angular momentum, M is the gravitational
mass, Mb is the baryonic mass, Mb is the baryonic mass
accretion rate, and τacc is the accretion torque.
Equation (5) must be complemented with the expressions of

the two partial derivatives. These relations can be calculated
from the fitting formula of the NS binding energy obtained in
Cipolletta et al. (2015)
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The numerical simulations of BdHNe performed in Becerra
et al. (2019) show that the material accreted by the νNS
circularizes around it in a sort of Keplerian disk structure before
being accreted. Therefore, we assume that the accreted matter
exerts onto the νNS the torque

t c= l M , 10bacc ( )
where l is the specific (i.e., per unit mass) angular momentum
of the innermost stable circular orbit around the νNS, and
χ� 1 is an efficiency parameter of angular momentum transfer.
For the angular momentum of the last stable circular orbit, we
use the approximate EOS-independent results presented in
Cipolletta et al. (2017),

= ⎜ ⎟⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥
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We can obtain an approximate, analytic solution to
Equation (6). For this task, we use the following analytic
formula that fits the numerical results of the fallback accretion
rate calculated in Becerra et al. (2019, 2022),

» + - M M t1 , 12b
p

0( ¯) ( )
where = ´ - M M7.2 100

4 s−1, tacc= 12 s, p= 1.3, and we
have introduced the notation =t t tacc¯ .
For the involved rotation rates ( j∼ 0.01), the contribution of

the rotation terms in Equations (7) and (11) is negligible, so we
can retain only the first term in those equations. With this
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assumption, and integrating Equation (12), we have
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νNS gravitational mass, and we have inverted Equation (7) to
write the gravitational mass in terms of the baryonic mass.
Equations (13) and (14) imply that in the limit t→∞ the
baryonic mass and the gravitational mass approach a maximum
value
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We now approximate the angular momentum derivative as
» W » W  J I Imax , where m=I Imax max( ), so that Equation (6)
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Making the change in variable = + -x t1 p1( ¯) , the integration
of Equation (19) is straightforward leading to
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and we have set the initial time t0= 0 since the fallback
accretion begins soon after the SN explosion (see, e.g., Becerra
et al. 2019). Figure 3 compares the approximate analytic
solution (20) with the solution from the full numerical
integration of Equations (5) and (6), in the case of
μ(t0)= 1.4, Ω(t0)= 0, and χ= 0.15.

Equation (20) tells us that in the limit t→∞ (x→ 0), the
νNS reaches asymptotically a maximum angular velocity gain
of

w
m

aDW = + - -⎜ ⎟⎧⎨⎩ ⎡⎣⎢⎛⎝ ⎞⎠ ⎤⎦⎥ ⎫⎬⎭k
2

3
1

13

50
1 , 23b

max
,max

3 2
3 2 ( )

which as expected is larger for larger values of the angular
momentum transfer efficiency parameter, χ. Since we assume
that after the νNS rise the νNS is spinning down, we seek
solutions with a spinning up phase that ends with an angular
velocity approaching the value that we have inferred at the νNS
rise, i.e.,

W » W nt , 24max NS( ) ( )
where W = DW + W tmax max 0( ). We have used the approximate
symbol in Equation (24) because by definition the valueWmax is
reached only asymptotically. For practical purposes, we seek
solutions in which W = Wnt 0.9NS max( ) . Therefore, given the
values of M and Ω(tνNS), the above constraint leads to a specific
value of χ that leads to the self-consistent spin-up phase. For
instance, for a νNS mass M= 1.4Me and

a
W º W =

-
»n n

n
a-

-t
A t

I

2

1
134.11 rad s , 25X

X
NS NS

NS
1

1
X( ) ( ) ( )

we obtain χ= 0.182.
We can also obtain a simple analytic estimate of the mass

accreted by assuming that during the spin-up phase, the
accretion rate, the gravitational mass, and the moment of inertia
are constant and have their maximum values. Under this
assumption, Equations (6) and (10) lead to the accreted mass in
a time Δt,
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c m
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For the above parameters, Equation (26) gives Δμb≈ 0.02570.
This is very close to the value obtained from the full numerical
integration, Δμb= 0.02592, which represents an error of only
0.85%. The accuracy of Equation (26) resides in the fact that
the fallback accretion rate decreases as a power law, see
Equation (12), hence most of the baryonic mass is accreted in
the first minutes of the evolution. This explains why the above
value of the accreted mass is close to the maximum accreted
mass given by Equation (16), i.e., mD = 0.0288b,max .
We turn to obtain an analytic expression of the time interval

Δt elapsed since the beginning of the fallback accretion, up to
the instant when the νNS reaches a given angular velocity, or a
given angular velocity gain, ΔΩ. In principle, we can obtain it
by inverting Equation (20). However, the equation is highly
nonlinear, so to obtain a relatively simple expression for it we
use an accurate Padè approximant for the quantity involving
the baryonic mass, i.e.,
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where m= = Db k1 13 50 b,max( ) , a a= b˜ , and we have
introduced the variable X= 1− x. For the same example in
Figure 3, we show in Figure 4 the excellent performance of the
Padè approximant (27), which approximates the expression
with a tiny error of only 10−9.
Using the approximant (27), Equation (20) becomes a

second-order polynomial in the variable X whose solution is
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straightforward, leading to the time interval:
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The relevance of the above time interval is that it allows
computation of the time elapsed to reach the angular velocity at
the νNS rise, Ω(tνNS). Since it is close to the maximum value
reachable by the fallback accretion, that time interval gives an
estimate of the time elapsed since the SN explosion (SN rise),
tSN. For the present example, we obtain

= D DW = D W »nt t t 7.36 hr, 32SN NS( ) ( ) ( )
where we have used ΔΩ=ΩνNS−Ω(t0)= 134.11 rad s−1, as
given by Equation (25). The full numerical integration leads to
7.20 hr, which implies that Equation (28) estimates the time
interval with an error of only 2.2%.

5. Synchrotron and Pulsar Emission

We turn now to the specific modeling of the multi-
wavelength afterglow of GRB 171205A. In the present
scenario, the nonthermal component of the afterglow originates
from the synchrotron radiation in the SN ejecta. The SN ejecta
gets energy injected from the νNS fallback accretion and the
multipolar emissions. Numerical calculations of this model
applied to the description of the afterglow of specific GRBs can
be found in Ruffini et al. (2018a), Wang et al. (2019), and
Rueda et al. (2020). An analytic treatment of the model has
been presented in Rueda (2022), and Wang et al. (2022) have
applied it to model the afterglow of GRB 180720B. Our
afterglow model relies more on continuous energy injections
than the traditional forward shock-wave model, which relies on
the kinetic energy of the jet. And unlike the traditional model
that only considers the injection of dipole emission as an
additional energy source to explain the short-duration plateau
(e.g., internal plateau) (Dai & Lu 1998a, 1998b; Zhang &
Mészáros 2001; Metzger et al. 2011; Lehner et al. 2012; Chen
et al. 2017; Li et al. 2018; Zhao et al. 2020), our modeling
process takes into account the fallback accretion, the dipole,
and quadrupole radiation, such that continuous energy injec-
tions produce the long-lasting afterglow. Here, we follow the
latter to estimate for GRB 171205A the emission generated by
the synchrotron mechanism in the X-ray, optical, and radio
wavelengths, and the νNS pulsar emission.

5.1. Synchrotron Emission by the Expanding Ejecta

The distribution of radiating electrons per unit energy, N(E,
t), is obtained from the solution of the kinetic equation
(Kardashev 1962)

¶
¶

= -
¶
¶

+N E t

t E
E N E t Q E t

,
, , , 33

( ) [ ( )] ( ) ( )
where Q(E, t) is the number of injected electrons into the ejecta
per unit time t, per unit energy E, and E is the electron energy
loss rate.

Following Rueda (2022) and Wang et al. (2022), we adopt
the solution to Equation (33) for a self-similar uniform
expansion
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The model parameters are defined as follows. The ejecta
expands self-similarly with the radiating layer being = =r R*
R t,0 ˆ
* , ºt t tˆ

*, t* = R*/v* = R*,0/v*,0, v* = R*(t)/t= v*,0,
= = -B t B R r B t,0 ,0 ,0

1( ) ˆ
* * * * is the magnetic field strength

at r= R*, bº B 2,0
2
* , b = e m c2 3 e

4 4 7( ). We assume the
injection power-law distribution of Q(E, t)=Q0(t)E

− γ

(Kardashev 1962; Pacini & Salvati 1973; Rybicki & Light-
man 1979; Longair 2011), where γ and Emax are parameters to
be determined from the observational data, and Q0(t) can be
related to the power released by the νNS and injected into the

ejecta from ò= + =-L t L t t E Q E t dE1 ,q
k E

inj 0 0

max( ) ( ) ( ) , so

= + -Q t q t t1 q
k

0 0( ) ( ) , where gº - g-q L E20 0 max
2( ) .

The bolometric synchrotron radiation power of a single
electron is given by (see, e.g., Longair 2011)

b
b
a

n= »P E t B t E B, , 36syn
2 2( ) ( ) ( )* *

where in the last equality we have used the fact that most of the
radiation is emitted at frequencies near the so-called critical
frequency, νcrit= αB*E

2, where a p= e m c3 4 e
3 5( ). By setting

h= -N E t t E, l p( ) ˆ , so that with the constants η , l, and p
obtained by comparing this expression with Equation (34), the
synchrotron luminosity radiated at frequencies from ν1 to
ν2> ν1 can be written as
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where ν1= ν, ν2= ν+Δν, Δν is the bandwidth. Here, Jsyn is
the spectral density, which is given by Jsyn(ν, t)dν≈ Psyn(ν, t)N
(E, t)dE (see, e.g., Longair 2011). In Equation (37), we have
made the approximation Δν/ν= 1 because of the power-law
character of the spectral density. Despite the synchrotron
radiation of a single electron being beamed along the velocity
of the particle, here we consider an isotropic distribution of a
large number of electrons with an isotropic distribution of pitch
angles, hence, leading to an isotropic total synchrotron
luminosity.

5.2. vNS Evolution and Pulsar Emission

The νNS is subjected to the angular momentum loss driven
by the magnetic field braking. In the point dipole+quadrupole
magnetic field model presented in Petri (2015), the total
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magnetic torque is given by

t t t= + , 38mag dip quad ( )

t a= -
WB R

c

2

3
sin , 39dip

dip
2 6 3

3
2 ( )

t q q q= -
W

+
B R

c

32

135
sin cos 10 sin , 40quad

quad
2 8 5

5
2

1
2

2
2

2( ) ( )
where α is the inclination angle of the magnetic dipole moment
with respect to the rotation axis, and the angles θ1 and θ2
specify the geometry of the quadrupole field. The strength of
the magnetic dipole field is Bdip. The dipole pure axisymmetric
mode (m= 0) is set by α= 0, and the pure m= 1 mode by
α= π/2. The strength of the quadrupole magnetic field is
Bquad. The quadrupole m= 0 mode is set by θ1= 0, the m= 1
mode by θ1= π/2 and θ2= 0, while the m= 2 mode is set by
θ1= θ2= π/2. For the fit of the data, we shall adopt the m= 1
mode for the dipole while the quadrupole can range between
the m= 1 and m= 2 modes. The existence of multipolar
magnetic fields in the vNS is supported by some theories and
observations (Mastrano et al. 2013; Tiengo et al. 2013;
Rodríguez Castillo et al. 2016; Pons & Viganò 2019). There-
fore, we can write the total magnetic torque (38) as

t x= -
W

+
W⎜ ⎟⎛⎝ ⎞⎠B R

c

R

c

2

3
1

16

45
, 41mag

dip
2 6 3

3
2

2 2

2
( )

where ξ is the quadrupole-to-dipole magnetic field strength
ratio is defined by
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and the spin-down luminosity as
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The evolution of the νNS is obtained from the energy
conservation equation

- + = = + W T L L L , 44tot inj sd( ) ( )
where W and T are, respectively, the νNS gravitational and
rotational energy.

6. Results

The emission of GRB 171205A comprises thermal and
nonthermal components. In Section 1.1, we recalled that Izzo
et al. (2019) explain the thermal component up to 105 s in the
X-rays and in the optical due to the cooling of fast-moving
material. Here we here address the nature of the nonthermal
component once the material is transparent. Therefore, the
present model of synchrotron radiation described in Section 5
aims to explain the data that shows a decreasing power-law
luminosity in the different energy bands with similar power-
law indexes.

Table 2 summarizes the values of the model parameters that
fit the afterglow of GRB 171205A in the X-ray, optical, and
radio energy bands, as shown in Figure 5, obtained according
to the above guidelines and the fitting procedure outlined in the
Appendix.

In the X-rays, the model describes the decreasing power-law
behavior at times >105 s, and in the radio at times >107 s. We
do not model the rising part of the radio emission in the time
interval of 106–107 s, which is due to synchrotron self-
absorption (see Maity & Chandra 2021, for details).
The first relevant feature to notice is that the afterglow

luminosity fades with time with an approximate power law t−1.
This power law is shallower than in GRBs of higher luminosity
in which t−1.3 (see, e.g., GRB 130427A or GRB 190114C in
Ruffini et al. 2018a; Rueda et al. 2020). The pulsar emission
from magnetic braking predicts a luminosity with a sharper
power law, in a pure magnetic dipole the luminosity falls as
t−2, and for a pure magnetic quadrupole as t−3/2 (see equations
of Section 5.2 and Ruffini et al. 2018a; Rueda et al. 2020).
Therefore, models based on pulsar emission from magnetic
braking alone (even including higher-order multipole fields) are
unable to fit the afterglow luminosity of GRB 171205A. This is
the first indication of the necessity of an additional mechanism,
in this case, the synchrotron radiation. The second relevant
feature is that the afterglow in the X-ray and radio bands shows
a similar power-law index (see the red, gray, and brown data
points), as expected from the synchrotron model.
The optical data shows, instead, a flat behavior followed by

the bump that characterizes the peak of the SN emission
powered by the decay of nickel in the ejecta (Arnett 1996; Izzo
et al. 2019). Both the synchrotron radiation and the SN
radioactive decay contribute to the optical emission, but in
GRB 171205A the latter dominates over the former. This
explains the deviation of the optical luminosity from the typical
power-law behavior of synchrotron radiation. This feature is
consistent with the BdHN III nature of the source. In fact,
BdHN III are low-luminous sources in which the νNS is not a
very fast rotator, so it injects less energy into the ejecta in
comparison to BdHNe I (e.g., GRB 130427A, 180720B, or
190114C; see Ruffini et al. 2018a; Rueda et al. 2020) and
BdHNe II (e.g., GRB 190829A; see Wang et al. 2022).
Therefore, the synchrotron emission is not very luminous and
the emergent optical SN outshines the optical synchrotron
luminosity. Interestingly, this latter feature of the emergent
optical SN emission is also fulfilled in the most general
situation of BdHN I and BdHN II (Y. Aimuratov et al. 2023, in
preparation). SN 2017iuk is similar to the SNe associated with
high-luminous GRBs, indicating that the pre-SN progenitor
(i.e., the CO star and an NS companion) leading to the νNS in
its core-collapse event, is similar for all long GRBs irrespective
of their energetics (Y. Aimuratov et al. 2023, in preparation).
In the X-rays, the synchrotron luminosity fades off after a

few 106 s, when hνcrit falls below a kiloelectronvolt. At later

Table 2
Value of the Synchrotron Model Parameters that Fit the Multiwavelength

Observational Data of GRB 1701205A as Shown in Figure 5

Parameter Value

t* (104 s) 2.650 ± 110.276
B*,0 (10

5 G) 3.774 ± 157.021
γ 1.606 ± 0.231
Emax (104 mec

2) 3.738
k 1.219 ± 0.170
L0 (10

47 erg s−1) 1.011 ± 0.801
tq (s) 100.00
Bdip (10

12 G) 1.000
PνNS (ms) 46.852 ± 64.910
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times, the power-law behavior continues in the optical and
radio bands. The pulsar emission is characterized by a plateau
followed by a power-law decay (at times longer than the
characteristic spin-down timescale). For a plateau luminosity
comparable (but smaller) to the synchrotron power-law
luminosity, the sum of the two contributions can lead to a
luminosity with a less sharp power-law behavior than that of
the pure synchrotron. The afterglow of GRB 171205A does not
show any signs of a change in the power law of the synchrotron
emission (see Figure 5), so we cannot constrain the magnetic
field strength and structure. In Figure 5, we have adopted ≈47
ms as the initial rotation period of the νNS and a pure dipole
field (ξ= 0) of Bdip= 1012 G to guide the eye of the reader. For
magnetic fields 5× 1013 G, the plateau luminosity of the
pulsar emission contributes appreciably to the total X-ray
luminosity affecting the goodness of the fit. Therefore, we can
assume the above estimate as an upper limit to the dipole
magnetic field. For the present synchrotron model parameters,
X-ray data after times of a few 106 s could help constrain the
presence of the pulsar emission. A sanity check of the model is
that the energy injected into the ejecta is ∼1049 erg, of the same
order as the rotational energy of the νNS, for a moment of
inertia of a few 1045 g cm2.

7. Conclusions

In this article, we have interpreted GRB 171205A within the
BdHN model of long GRBs. In particular, because of the low
energy release of only a few 1049 erg, we have classified GRB
171205A as a BdHN III, systems with long orbital periods,
perhaps of the order of hours, in which the NS companion does
not play any role in the cataclysmic event. Most of these
binaries are also expected to be disrupted by the SN explosion
(Fryer et al. 2015; Ruffini et al. 2016, 2018b). Under these
circumstances, the GRB event is explained by the sole activity
of the νNS and its interaction with the SN ejecta.

Here, we have shown that GRB 171205A is a low-luminous
GRB consistent with it having been produced in the core
collapse of a single CO star that forms the νNS and the type Ic
SN. There are several new results related to the sequence of
physical phenomena occurring in this system and the related
GRB observables:

1. The fallback accretion is initially of a few of 10−3 Me s−1

and lasts tens of seconds (Becerra et al. 2019, 2022). The
accretion energy is ∼1052 erg, comparable to the kinetic
energy of the SN ejecta. This energy is injected into the
ejecta, propagates, and accelerates the outermost shell to
the observed mildly relativistic velocity. The hydrody-
namics is similar to the case of the expanding SN ejecta
with the GRB energy injection presented in Ruffini et al.
(2018c). The Lorentz factor of the shock wave is 5
when it gets transparency at ∼1012 cm, and emits a
thermal spectrum. This scenario explains the prompt
emission of GRB 171205A. This is also similar to the
cocoon scenario advanced for this source in Izzo et al.
(2019). Both pictures predict the heating of stellar shells
(in our case by the physical process of the fallback
accretion originating from the SN explosion and in the
other by the postulation of an unspecified jet) that get
boosted to high velocity and emit a thermal spectrum.
The associated blackbody emission has been indeed
observed in GRB 171205A, and it has been inferred that

≈10−3 Me of material expands at velocities above
105 km s−1 (see Izzo et al. 2019 and Figure 2). The main
difference between the two models is that in our picture
there is no jet. This solution seems favored since the
associated jet break expected in the afterglow of jetted
GRB models is not observed in the data up to the last
observations at ∼1000 days (Maity & Chandra 2021;
Leung et al. 2021).

2. Regarding the afterglow emission, we have first inferred
from an energy conservation argument, that the νNS
should have started to lose its rotational energy at t= 35 s
after the GRB trigger, i.e., from what we call the νNS
rise, with a rotation period of 47 ms.

3. We have shown that the afterglow of GRB 171205A
cannot be explained by the sole pulsar emission of the
νNS by magnetic braking, even including higher multi-
pole fields (e.g., quadrupole).

4. The multiwavelength afterglow is explained by synchro-
tron radiation emitted by electrons in the expanding SN,
which is further powered by energy injected by the νNS.
We have calculated the synchrotron luminosity in the
X-ray, optical, and radio wavelengths with an analytic
treatment of the above physical situation. We have shown
that the X-rays and the radio luminosities follow the
expectation from the synchrotron model. The rising part
of the radio luminosity in the time interval of 106–107 s is
due to synchrotron self-absorption (see Maity &
Chandra 2021, for details). The observed optical
luminosity shows a flat behavior followed by the bump
of the optical SN powered by the energy release in the
ejecta of the radioactive decay of nickel into cobalt. We
have shown that the synchrotron luminosity in those
optical wavelengths lies below the luminosity of the
emergent SN optical emission. This implies that the
observed optical emission contains the contribution of
both the synchrotron radiation and the optical SN.

5. Another remarkable fact to be highlighted is that SN
2017iuk, an SN associated with the low-luminous GRB
171205A, a BdHN III, shows similar properties (e.g.,
peak luminosity and peak time) to the SNe associated
with high-luminous GRBs (BdHN I and II). This suggests
that the pre-SN progenitor (i.e., the CO star) is similar for
all long GRBs, irrespective of their energetics (Y.
Aimuratov et al. 2023, in preparation).

6. There is a corollary of the above result. In low-luminous
GRBs, i.e., in BdHN III like GRB 171205A, the
relatively slow rotation (47 ms period) of the νNS
implies the lower amount of energy injected into the
ejecta, hence, the low energetics of the associated
synchrotron emission. Under these circumstances, the
optical emission of the SN powered by the nickel
radioactive decay is able to outshine the optical
synchrotron luminosity.

7. We calculated the evolution of the νNS mass and angular
momentum (assumed to be initially zero) during the
fallback accretion process leading to its spinning up to the
47 ms rotation period. From this evolution, we have
inferred that the SN explosion occurred at most 7.36 hr
before the GRB trigger time. This sets an estimate of the
time delay between the SN explosion and the electro-
magnetic emission of the GRB event, assuming a νNS
born with zero spin.
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Appendix
Fitting Procedure

In this appendix, we describe how we set the value of the
model parameters from the physical scenario and specific
observables, including the attached uncertainties. The para-
meters to be specified are the index of the electron’s energy
injection, γ, the parameters defining the injected power k, L0,
and tq, the maximum energy of the electrons, Emax, the self-
similar expansion timescale, t*, the magnetic field at the initial
time of reference of the expansion, B*.0, and the νNS dipole
magnetic field strength Bdip. In Section 4, we have already fixed
the νNS rotation period, PνNS. Our aim is to estimate the
uncertainty in each parameter from the propagation of the 1σ
uncertainty of the power-law fit of the X-ray and radio
luminosities.

Equation (37) shows that the signature of the present
synchrotron model is the power-law luminosity in the different
bands with (ideally) the same power-law index. Therefore, we
constrain the synchrotron model parameters using the observa-
tional data showing the above property. Figure 5 shows that the
X-ray (0.3–10 keV) luminosity data behaves as a power law in
the time interval of t≈ (0.87–5)× 106 s, and the radio (1255
MHz) data in the time interval t≈ (2.92–8)× 107 s. The two
luminosities are fitted by

= =a a- -L A t L A t, , A1X X r rX r ( )
where AX= (3.165± 0.238)× 1047 erg s−1, αX= 1.022± 0.055,
Ar= (4.290± 0.178)× 1042 erg s−1, and αr= 0.616± 0.081.
The uncertainties at 1σ level. To estimate the uncertainties in the
value of the model parameters, derived from the above fit, we
follow the standard theory of error propagation. For instance,
given quantity f that is a function of the independent variables ai,
i.e., f (a1, a2,...,an), its uncertainty can be estimated as (see, e.g.,
Ku 1966)
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Thus, the uncertainties of the luminosities given by the power-
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where AX,c= 3.165× 1047 erg s−1, Ar,c= 4.290× 1042 erg s−1,
δAX= 0.238× 1047 erg s−1, αX,c= 1.022, αr,c= 0.616, δAr=
0.178× 1042 erg s−1, δαX= 0.055, and δαr= 0.081.

We turn to the self-similar expansion timescale, t*, for which
we must set values for R*,0 and v*,0. For v*,0, we chose a
fiducial value according to numerical simulations of the SN
explosion (see, e.g., Becerra et al. 2016, 2019), so we set
v*,0= 108 cm s−1 and there is no propagated uncertainty to
calculate for. With the above, we set the expansion timescale

and its attached uncertainty
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According to our working assumption of uniform expansion,
the inner radius and its uncertainty are

d d= =R v t R v t, , A5,0 ,0 SN ,0 ,0 SN ( )* * * *
where tSN is the time since the SN explosion given by
Equations (28) and (32), and dtSN its uncertainty. For the above
expansion velocity v*,0, and the time since the SN explosion
estimated in Section 4, » ´t 2.650 10 sSN

4 ≈7.36 hr, we have
R*,0≈ 2.65× 1012 cm and = = ´t t 2.65 10 sSN
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where X and B are given by Equations (29) and (30), evaluated
at the time t= tνNS s, so ΔΩ=ΩνNS. The uncertainty in
estimating ΩνNS from Equation (25) is given by
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For the present parameters, i.e., tνNS= 35 s and ΩνNS=
134.11 rad s−1, we obtain from Equation (A7), δΩνNS≈
185.795 rad s−1, so an uncertainty in the rotation period,
d d pd= ¶ ¶W W = W W »n n n n n nP P 2 64.910NS NS NS NS NS NS

2∣ ∣ ms.
Using the above in Equation (A6), we obtain d » ´t 110.276SN

10 s4 ≈ 306.220 hr. Thus, we get from Equation (A5), δR*,0≈
110.276× 1012 cm, and from Equation (A4), d d=t tSN* .
At large distances from the νNS, we expect the toroidal

component of the magnetic field to dominate, which decays
with distance as r−1 (see, e.g., Goldreich & Julian 1969).
Assuming a toroidal field of the same order as the poloidal field
near the νNS surface, its value at the radius r= R*,0 is
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where Bdip is the strength of the dipole magnetic field and R is
the fiducial νNS radius. As discussed in Section 7 the data does
not constrain the dipole field but only sets an approximate
upper limit of » ´B 5 10dip,max

13 G. Therefore, we shall adopt
a fiducial, conservative magnetic field value Bdip= 1012 G. By
using a fiducial νNS radius R= 106 cm, and the value of R*,0
given by Equation (A5), we obtain B*,0≈ 3.774× 105 G. With
the choice, Equation (A8), the attached uncertainty is given by
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which leads to δB*,0≈ 157.021× 105 G.
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We now set the index γ. From Equation (37), we infer that
the ratio of the synchrotron luminosity at two frequencies, ν1
and ν2, is given by n n n n=

-
L Lsyn 1 syn 2 1 2

p3
2( ) ( ) ( ) , where

p= γ+ 1. Therefore, we can constrain the value of the index γ
using the data in the X-rays and in the radio as

g
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, A10X r
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where LX and Lr are given in Equation (A1). Since the fitted
power laws are not equal, the value of γ inferred from
Equation (A10) depends on the time at which we calculate
the ratio of the luminosities. Therefore, we adopt for γ

the value given by the mean 〈γ〉=Δt−1∫γdt. We obtained
〈γ〉≈ 1.6060, where we have used Δt≈ 8× 107 s,
νX= 10 keV/h≈ 2.423× 1018 Hz, and νr= 1255MHz. From
Equation (A10), the uncertainty in the choice of γ can be
estimated as
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whose mean for the above parameters is 〈δγ〉= 0.231.
The synchrotron emission peaks around the critical

frequency
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and then cuts off exponentially, where E is the electron energy.
Since the critical frequency decreases with time, there is a hard-
to-soft evolution of the cutoff and the X-ray data give the
strongest constraint. The electrons of maximum energy, Emax,
produce the maximum critical frequency, ncrit,max. By requiring
that n n= Xcrit,max at a cutoff time tcut,X> tf,X, where tf,X≈
3.5× 106 s is the time of the last observational X-ray data, we
obtain that the maximum electron energy must at least have the
value
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where in the last equality we have used Equation (A8). The
cutoff time must allow the power-law luminosity to extend at
least up to tf,X. Thus, we chose tcut,X such that the exponential
cutoff at the time t= tf,X has reduced the power-law
X-ray luminosity to one part in a thousand. With this condition,
we find tcut,X≈ 2.418× 107 s, so = ´E m c3.738 10 emax

4 2.
Equation (A13) tells us that Emax, chosen in this way, depends
only on fiducial values that we have set for v*,0, Bdip, R, and
tcut,X, so we cannot estimate an attached uncertainty to it.

Having set all the above parameters, it remains to set the
parameters of the injected power, L0, k, and tq. The synchrotron
luminosity increases at times t< tq (see Section 5.1) and
decreases at times t> tq. The X-rays’ luminosity always shows
a decreasing behavior, so we set tq= 100 s, which roughly
corresponds to the initial time of the X-ray data. For the
parameters L0 and k, we equate the model synchrotron
luminosity, Equation (37), in the case of X-rays with the

power-law luminosity (A1). From this equality, we obtain
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where we have used Equation (A13). For the present
parameters, we obtain k=1.219 and L0= 1.011× 1047 erg
s−1. Therefore, we can estimate the error of the above
quantities as
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which read as δk= 0.170 and δL0≈ 0.792L0≈ 0.801×
1047 erg s−1.
The large uncertainty in the estimate of t* and B*,0 is a

consequence of the propagation of the uncertainty of R*,0,
which arises from the uncertainty in the estimate of the SN
time, tSN, because it is sensitive to the function of ΩνNS.
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