
Generalizations of the Kerr-Newman
solution





Contents

1 Topics 405
1.1 ICRANet Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
1.2 Ongoing collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
1.3 Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

2 Brief description 407

3 Introduction 409

4 The general static vacuum solution 411
4.1 Line element and field equations . . . . . . . . . . . . . . . . . . . . . . 411
4.2 Static solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

5 Stationary generalization 417
5.1 Ernst representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
5.2 Representation as a nonlinear sigma model . . . . . . . . . . . . . . . . 419
5.3 Representation as a generalized harmonic map . . . . . . . . . . . . . . 421
5.4 Dimensional extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
5.5 The general solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

6 Gravitational field of slightly deformed naked singularities 431
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
6.2 Line element and field equations . . . . . . . . . . . . . . . . . . . . . . 432
6.3 Approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
6.4 Motion of test particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

6.4.1 Circular orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
6.4.2 Bounded and unbounded orbits . . . . . . . . . . . . . . . . . . 446
6.4.3 Radial geodesics and repulsive gravity . . . . . . . . . . . . . . 447

6.5 Conclusions and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 448

7 Darmois matching and C3 matching 449
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

403



Contents

7.2 Darmois matching approach . . . . . . . . . . . . . . . . . . . . . . . . . 450
7.3 C3 matching approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
7.4 Matching spherically symmetric spacetimes . . . . . . . . . . . . . . . . 455

7.4.1 The Tolman III spacetime . . . . . . . . . . . . . . . . . . . . . . 457
7.4.2 The Heintzmann II spacetime . . . . . . . . . . . . . . . . . . . . 459
7.4.3 The Buchdahl I spacetime . . . . . . . . . . . . . . . . . . . . . . 462
7.4.4 Analysis of the results . . . . . . . . . . . . . . . . . . . . . . . . 464

7.5 C3 discontinuous matching . . . . . . . . . . . . . . . . . . . . . . . . . 466
7.6 Discussion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

8 Gravitational field of black holes surrounded by dark matter with anisotropic
pressure 471
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
8.2 Black hole surrounded by anisotropic dark matter . . . . . . . . . . . . 473

8.2.1 TOV equations with anisotropic pressure . . . . . . . . . . . . . 474
8.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 476
8.2.3 Radiative flux and spectral luminosity . . . . . . . . . . . . . . . 477

8.3 Discussion of numerical results . . . . . . . . . . . . . . . . . . . . . . . 478
8.4 Final outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Bibliography 489

404



1 Topics

• Generalizations of the Kerr-Newman solution

• Properties of Kerr-Newman spacetimes

• Quadrupolar metrics

1.1 ICRANet Participants

• Roy P. Kerr

• Hernando Quevedo

• Jorge A. Rueda

• Remo Ruffini

1.2 Ongoing collaborations

• Medeu Abishev (Kazakh National University - KazNU, Kazakhstan)

• Nurzada Beissen (Taraz State Pedagogical University, Kazakhstan)

• Kuantay Boshkayev (Kazakh National University - KazNU, Kazakhstan)

• Antonio C. Gutierrez (Industrial University of Santander, Colombia)

• Orlando Luongo (University of Naples, Italy)

• Daniela Pugliese (Silesian University in Opava, Czech Republic)

• Saken Toktarbay (Kazakh National University - KazNU, Kazakhstan)

405



1 Topics

1.3 Students
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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman solution
that describes the gravitational and electromagnetic fields of a rotating charged mass.
For astrophysical purposes, however, it is necessary to take into account the effects
due to the moment of inertia of the object. To attack this problem, we investigate
new exact solutions of Einstein-Maxwell equations which posses an infinite set of
gravitational and electromagnetic multipole moments and contain the Kerr-Newman
solution as special case.

In particular, we derive an approximate solution of Einstein equations, describing
the gravitational field of a mass distribution that slightly deviates from spherical sym-
metry. The deviation is described by means of a quadrupole parameter that is respon-
sible for the appearance of a curvature singularity, which is not covered by a horizon
of the limiting Schwarzschild spacetime. We investigate the motion of test particles
in the gravitational field of this naked singularity and show that the quadrupole pa-
rameter affects the properties of Schwarzschild trajectories. By investigating radial
geodesics, we find that no effects of repulsive gravity are present. We interpreted this
result as indicating that repulsive gravity is a non-linear effect, which manifests itself
only on certain test particle trajectories.

An important problem for investigating the physical meaning of solutions of Ein-
stein’s equations is the matching problem, which consists in matching together two
spacetimes. In this context, we apply the Darmois and the C3 matching conditions
to three different spherically symmetric spacetimes. The exterior spacetime is de-
scribed by the Schwarzschild vacuum solution whereas for the interior counterpart
we choose different perfect fluid solutions with the same symmetry. We show that
Darmois matching conditions are satisfied in all the three cases whereas the C3 condi-
tions are not fulfilled. We argue that this difference is due to a non-physical behavior
of the pressure on the matching surface.

The behavior of matter in the gravitational field of a compact object described by a
solution of Einstein’s equations is important to explore the physical meaning of math-
ematical solutions. In this framework, we investigate the luminosity of the accretion
disk for a static black hole surrounded by dark matter with anisotropic pressure. We
calculate all basic orbital parameters of test particles in the accretion disk, such as
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2 Brief description

angular velocity, angular momentum, energy and radius of the innermost circular
stable orbit as functions of the dark matter density, radial pressure and anisotropic
parameter, which establishes the relationship between the radial and tangential pres-
sures. We show that the presence of dark matter with anisotropic pressure makes
a noticeable difference in the geometry around a Schwarzschild black hole, affect-
ing the radiative flux, differential luminosity and spectral luminosity of the accretion
disk.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only for gen-
eral relativity itself, but also for the very fundamentals of physics. It assumes this
position as being the most physically relevant rotating generalization of the static
Schwarzschild geometry. Its charged counterpart, the Kerr-Newman solution, rep-
resenting the exterior gravitational and electromagnetic fields of a charged rotating
object, is an exact solution of the Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt − a sin2 θdφ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dφ − adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2 dr2 − (r2 + a2 cos2 θ)dθ2 , (3.0.1)

where M is the total mass of the object, a = J/M is the specific angular momentum,
and Q is the electric charge. In this particular coordinate system, the metric functions
do not depend on the coordinates t and ϕ, indicating the existence of two Killing
vector fields ξ I = ∂t and ξ I I = ∂φ which represent the properties of stationarity and
axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is sur-
rounded by two horizons situated at a distance

r± = M ±
√

M2 − a2 − Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singularity is
present which, however, cannot be observed by any observer situated outside the
exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no horizons are present
and the Kerr–Newman spacetime represents the exterior field of a naked singularity.

Despite of its fundamental importance in general relativity, and its theoretical and
mathematical interest, this solution has not been especially useful for describing as-
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3 Introduction

trophysical phenomena, first of all, because observed astrophysical objects do not
possess an appreciable net electric charge. Furthermore, the limiting Kerr metric
takes into account the mass and the rotation, but does not consider the moment of
inertia of the object. For astrophysical applications it is, therefore, necessary to use
more general solutions with higher multipole moments which are due not only to the
rotation of the body but also to its shape. This means that even in the limiting case
of a static spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum solution

In general relativity, stationary axisymmetric solutions of Einstein’s equations [45]
play a crucial role for the description of the gravitational field of astrophysical objects.
In particular, the black hole solutions and their generalizations that include Maxwell
fields are contained within this class.

This type of exact solutions has been the subject of intensive research during the
past few decades. In particular, the number of know exact solutions drastically in-
creased after Ernst [11] discovered an elegant representation of the field equations
that made it possible to search for their symmetries. These studies lead finally to the
development of solution generating techniques [45] which allow us to find new so-
lutions, starting from a given seed solution. In particular, solutions with an arbitrary
number of multipole moments for the mass and angular momentum were derived in
[44] and used to describe the gravitational field of rotating axially symmetric distri-
butions of mass.

The first analysis of stationary axially symmetric gravitational fields was carried
out by Weyl [48] in 1917, soon after the formulation of general relativity. In particular,
Weyl discovered that in the static limit the main part of the vacuum field equations
reduces to a single linear differential equation. The corresponding general solution
can be written in cylindrical coordinates as an infinite sum with arbitrary constant
coefficients. A particular choice of the coefficients leads to the subset of asymptot-
ically flat solutions which is the most interesting from a physical point of view. In
this section we review the main properties of stationary axisymmetric gravitational
fields. In particular, we show explicitly that the main field equations in vacuum can
be represented as the equations of a nonlinear sigma model in which the base space
is the 4-dimensional spacetime and the target space is a 2-dimensional conformally
Euclidean space.

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, stationary ax-
isymmetric gravitational fields are usually described in cylindric coordinates (t, ρ, z, φ).
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4 The general static vacuum solution

Stationarity implies that t can be chosen as the time coordinate and the metric does
not depend on time, i.e. ∂gµν/∂t = 0. Consequently, the corresponding timelike
Killing vector has the components δ

µ
t . A second Killing vector field is associated to

the axial symmetry with respect to the axis ρ = 0. Then, choosing φ as the azimuthal
angle, the metric satisfies the conditions ∂gµν/∂φ = 0, and the components of the
corresponding spacelike Killing vector are δ

µ
φ.

Using further the properties of stationarity and axial symmetry, together with the
vacuum field equations, for a general metric of the form gµν = gµν(ρ, z), it is possible
to show that the most general line element for this type of gravitational fields can be
written in the Weyl-Lewis-Papapetrou form as [48, 26, 36]

ds2 = f (dt − ωdφ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dφ2

]
, (4.1.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements which
include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.1.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the following
set of partial differential equations

1
ρ

∂ρ(ρ∂ρ f ) + ∂2
z f +

1
f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.1.3)

1
ρ

∂ρ(ρ∂ρΩ) + ∂2
zΩ − 2

f
(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.1.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.1.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.1.6)

It is clear that the field equations for γ can be integrated by quadratures, once f and
Ω are known. For this reason, the equations (4.1.3) and (4.1.4) for f and Ω are usually
considered as the main field equations for stationary axisymmetric vacuum gravita-
tional fields. In the following subsections we will focus on the analysis of the main
field equations, only. It is interesting to mention that this set of equations can be
geometrically interpreted in the context of nonlinear sigma models [19].

Let us consider the special case of static axisymmetric fields. This corresponds to

412



4.2 Static solution

metrics which, apart from being axially symmetric and independent of the time coor-
dinate, are invariant with respect to the transformation φ → −φ (i.e. rotations with
respect to the axis of symmetry are not allowed). Consequently, the corresponding
line element is given by (4.1.1) with ω = 0, and the field equations can be written as

∂2
ρψ +

1
ρ

∂ρψ + ∂2
zψ = 0 , f = exp(2ψ) , (4.1.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.1.8)

We see that the main field equation (4.1.7) corresponds to the linear Laplace equation
for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand additionally
asymptotic flatness, we obtain the Weyl solution which can be written as [48, 45]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (4.2.1)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the Legendre
polynomials of degree n. The expression for the metric function γ can be calculated
by quadratures by using the set of first order differential equations (4.1.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (4.2.2)

Since this is the most general static, axisymmetric, asymptotically flat vacuum solu-
tion, it must contain all known solution of this class. In particular, one of the most
interesting special solutions which is Schwarzschild’s spherically symmetric black
hole spacetime must be contained in this class. To see this, we must choose the con-
stants an in such a way that the infinite sum (4.2.1) converges to the Schwarzschild
solution in cylindric coordinates. But, or course, this representation is not the most
appropriate to analyze the interesting physical properties of Schwarzschild’s metric.

In fact, it turns out that to investigate the properties of solutions with multipole
moments it is more convenient to use prolate spheroidal coordinates (t, x, y, φ) in
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4 The general static vacuum solution

which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dφ2

]
where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.2.3)

r2
± = ρ2 + (z ± σ)2 , σ = const , (4.2.4)

and the metric functions are f , ω, and γ depend on x and y, only. In this coordinate
system, the general static solution which is also asymptotically flat can be expressed
as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre functions of
second kind. In particular,

P0 = 1, P1 = y, P2 =
1
2
(3y2 − 1) , ...

Q0 =
1
2

ln
x + 1
x − 1

, Q1 =
1
2

x ln
x + 1
x − 1

− 1 ,

Q2 =
1
2
(3x2 − 1) ln

x + 1
x − 1

− 3
2

x , ...

The corresponding function γ can be calculated by quadratures and its general ex-
pression has been explicitly derived in [40]. The most important special cases con-
tained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1
2

ln
x2 − 1
x2 − y2 ,

and the Erez-Rosen metric [10]

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1
2

ln
x2 − 1
x2 − y2 + ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters that de-
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4.2 Static solution

termines an infinite set of mass multipole moments. The parameters qn represent the
deviation of the mass distribution from the ideal spherical symmetry. It is interest-
ing to mention that if demand the additional symmetry with respect to the equatorial
plane θ = π/2, it can be shown that all odd parameters q2k+1, k = 0, 1, ... should van-
ish. This is an additional symmetry condition that reduces the form of the resulting
metric.
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5 Stationary generalization

The solution generating techniques [22] can be applied, in particular, to any static
seed solution in order to obtain the corresponding stationary generalization. One
of the most powerful techniques is the inverse method (ISM) developed by Belinski
and Zakharov [49]. We used a particular case of the ISM, which is known as the
Hoenselaers–Kinnersley-Xanthopoulos (HKX) transformation to derive the station-
ary generalization of the general static solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω ̸= 0) with line element

ds2 = f (dt − ωdφ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1 − y2

)
+ (x2 − 1)(1 − y2)dφ2

]
it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1 − E
1 + E

,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1 − y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmetric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx]x + [(1 − y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1 − y2)ξ2
y] .
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5 Stationary generalization

This equation is invariant with respect to the transformation x ↔ y. Then, since the
particular solution

ξ =
1
x
→ Ω = 0 → ω = 0 → γ =

1
2

ln
x2 − 1
x2 − y2

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact solution.
Furthermore, if we take the linear combination ξ−1 = c1x + c2y and introduce it into
the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a
M

y , σ =
√

M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.
In the case of the Einstein-Maxwell theory, the main field equations can be ex-

pressed as
(ξξ∗ − FF∗ − 1)∇2ξ = 2(ξ∗∇ξ − F∗∇F)∇ξ ,

(ξξ∗ − FF∗ − 1)∇2F = 2(ξ∗∇ξ − F∗∇F)∇F

where ∇ represents the gradient operator in prolate spheroidal coordinates. More-
over, the gravitational potential ξ and the electromagnetic F Ernst potential are de-
fined as

ξ =
1 − f − iΩ
1 + f + iΩ

, F = 2
Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromagnetic po-
tentials At and Aφ One can show that if ξ0 is a vacuum solution, then the new poten-
tial

ξ = ξ0

√
1 − e2

represents a solution of the Einstein-Maxwell equations with effective electric charge
e. This transformation is known in the literature as the Harrison transformation [18].
Accordingly, the Kerr–Newman solution in this representation acquires the simple
form

ξ =

√
1 − e2

σ
M x + i a

M y
, e =

Q
M

, σ =
√

M2 − a2 − Q2 .

In this way, it is very easy to generalize any vacuum solution to include the case of
electric charge. More general transformations of this type can be used in order to
generate solutions with any desired set of gravitational and electromagnetic multi-
pole moments [41].

418



5.2 Representation as a nonlinear sigma model

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimension m and
n, respectively. Let M be coordinatized by xa, and N by Xµ, so that the metrics on M
and N can be, in general, smooth functions of the corresponding coordinates, i.e.,
γ = γ(x) and G = G(X). A harmonic map is a smooth map X : M → N, or in
coordinates X : x 7−→ X so that X becomes a function of x, and the X’s satisfy the
motion equations following from the action [33]

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.2.1)

which sometimes is called the “energy” of the harmonic map X. The straightforward
variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν ∂bXλ = 0 , (5.2.2)

where Γµ
νλ are the Christoffel symbols associated to the metric Gµν of the target space

N. If Gµν is a flat metric, one can choose Cartesian-like coordinates such that Gµν =
ηµν = diag(±1, ...,±1), the motion equations become linear, and the corresponding
sigma model is linear. This is exactly the case of a bosonic string on a flat background
in which the base space is the 2-dimensional string world-sheet. In this case the action
(5.2.1) is usually referred to as the Polyakov action [37].

Consider now the case in which the base space M is a stationary axisymmetric
spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-Papapetrou
metric (4.1.1), i.e.

γab =


f 0 0 − f ω

0 − f−1e2k 0 0
0 0 − f−1e2k 0

− f ω 0 0 f ω2 − ρ2 f−1

 . (5.2.3)

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν, µ, ν = 1, 2,
and let the coordinates on N be Xµ = ( f , Ω). Then, it is straightforward to show that
the action (5.2.1) becomes

S =
∫

L dtdφdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
, (5.2.4)
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5 Stationary generalization

and the corresponding motion equations (5.2.2) are identical to the main field equa-
tions (4.1.3) and (4.1.4).

Notice that the field equations can also be obtained from (5.2.4) by a direct variation
with respect to f and Ω. This interesting result was obtained originally by Ernst [11],
and is the starting point of what today is known as the Ernst representation of the
field equations.

The above result shows that stationary axisymmetric gravitational fields can be de-
scribed as a (4 → 2)−nonlinear harmonic map, where the base space is the spacetime
of the gravitational field and the target space corresponds to a 2-dimensional confor-
mally Euclidean space. A further analysis of the target space shows that it can be
interpreted as the quotient space SL(2, R)/SO(2), and the Lagrangian (5.2.4) can be
written explicitly [6] in terms of the generators of the Lie group SL(2, R). Harmonic
maps in which the target space is a quotient space are usually known as nonlinear
sigma models [33].

The form of the Lagrangian (5.2.4) with two gravitational field variables, f and Ω,
depending on two coordinates, ρ and z, suggests a representation as a harmonic map
with a 2-dimensional base space. In string theory, this is an important fact that allows
one to use the conformal invariance of the base space metric to find an adequate
representation for the set of classical solutions. This, in turn, facilitates the application
of the canonical quantization procedure. Unfortunately, this is not possible for the
Lagrangian (5.2.4). Indeed, if we consider γab as a 2-dimensional metric that depends
on the parameters ρ and z, the diagonal form of the Lagrangian (5.2.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front of

the Lagrangian. Therefore, the reduced gravitational Lagrangian (5.2.4) cannot be
interpreted as corresponding to a (2 → n)-harmonic map. Nevertheless, we will
show in the next section that a modification of the definition of harmonic maps allows
us to “absorb” the unpleasant factor ρ in the metric of the target space, and to use all
the advantages of a 2-dimensional base space.

Notice that the representation of stationary fields as a nonlinear sigma model be-
comes degenerate in the limiting case of static fields. Indeed, the underlying geomet-
ric structure of the SL(2, R)/SO(2) nonlinear sigma models requires that the target
space be 2-dimensional, a condition which is not satisfied by static fields. We will
see below that by using a dimensional extension of generalized sigma models, it will
be possible to treat the special static case, without affecting the underlying geometric
structure.

The analysis performed in this section for stationary axisymmetric fields can be
generalized to include any gravitational field containing two commuting Killing vec-
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5.3 Representation as a generalized harmonic map

tor fields [45]. This is due to the fact that for this class of gravitational fields it is al-
ways possible to find the corresponding Ernst representation in which the Lagrangian
contains only two gravitational variables which depend on only two spacetime coor-
dinates.

5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimension m
and n, respectively. Let xa and Xµ be coordinates on M and N, respectively. This
coordinatization implies that in general the metrics γ and G become functions of the
corresponding coordinates. Let us assume that not only γ but also G can explicitly
depend on the coordinates xa, i.e. let γ = γ(x) and G = G(X, x). This simple as-
sumption is the main aspect of our generalization which, as we will see, lead to new
and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized harmonic map
if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 , (5.3.1)

which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.2)

with respect to the fields Xµ. Here the Christoffel symbols, determined by the metric
Gµν, are calculated in the standard manner, without considering the explicit depen-
dence on x. Notice that the new ingredient in this generalized definition of harmonic
maps, i.e., the term Gµν(X, x) in the Lagrangian density implies that we are taking
into account the “interaction” between the base space M and the target space N. This
interaction leads to an extra term in the motion equations, as can be seen in (5.3.1). It
turns out that this interaction is the result of the effective presence of the gravitational
field.

Notice that the limiting case of generalized linear harmonic maps is much more
complicated than in the standard case. Indeed, for the motion equations (5.3.1) to
become linear it is necessary that the conditions

γab(Γµ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.3.3)
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5 Stationary generalization

be satisfied. One could search for a solution in which each term vanishes separately.
The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which would imply
Γµ

νλ = 0, is not allowed, because it would contradict the assumption ∂bGµν ̸= 0.
Nevertheless, a flat background metric in curvilinear coordinates could be chosen
such that the assumption Gµλ∂bGµν = 0 is fulfilled, but in this case Γµ

νλ ̸= 0 and
(5.3.3) cannot be satisfied. In the general case of a curved target metric, conditions
(5.3.3) represent a system of m first order nonlinear partial differential equations for
Gµν. Solutions to this system would represent linear generalized harmonic maps. The
complexity of this system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.3.2) includes an interaction be-
tween the base space N and the target space M, reflected on the fact that Gµν depends
explicitly on the coordinates of the base space. Clearly, this interaction must affect the
conservation laws of the physical systems we attempt to describe by means of gener-
alized harmonic maps. To see this explicitly we calculate the covariant derivative of
the generalized Lagrangian density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.4)

and replace in the result the corresponding motion equations (5.3.1). Then, the final
result can be written as

∇bT̃ b
a = − ∂L

∂xa (5.3.5)

where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.3.6)
The standard conservation law is recovered only when the Lagrangian does not de-
pend explicitly on the coordinates of the base space. Even if we choose a flat base
space γab = ηab, the explicit dependence of the metric of the target space Gµν(X, x)
on x generates a term that violates the standard conservation law. This term is due
to the interaction between the base space and the target space which, consequently, is
one of the main characteristics of the generalized harmonic maps introduced in this
work.

An alternative and more general definition of the energy-momentum tensor is by
means of the variation of the Lagrangian density with respect to the metric of the base
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5.3 Representation as a generalized harmonic map

space, i.e.

Tab =
δL

δγab . (5.3.7)

A straightforward computation shows that for the action under consideration here we
have that T̃ab = 2Tab so that the generalized conservation law (5.3.5) can be written as

∇bT b
a +

1
2

∂L

∂xa = 0 . (5.3.8)

For a given metric on the base space, this represents in general a system of m differ-
ential equations for the “fields” Xµ which must be satisfied “on-shell”.

If the base space is 2-dimensional, we can use a reparametrization of x to choose a
conformally flat metric, and the invariance of the Lagrangian density under arbitrary
Weyl transformations to show that the energy-momentum tensor is traceless, T a

a = 0.

In Section 5.1 we described stationary, axially symmetric, gravitational fields as a
(4 → 2)−nonlinear sigma model. There it was pointed out the convenience of having
a 2-dimensional base space in analogy with string theory. Now we will show that this
can be done by using the generalized harmonic maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the coordinates
on the base space M, and Xµ = ( f , Ω) the coordinates on the target space N. In the
base space we choose a flat metric and in the target space a conformally flat metric,
i.e.

γab = δab and Gµν =
ρ

2 f 2 δµν (a, b = 1, 2; µ, ν = 1, 2). (5.3.9)

A straightforward computation shows that the generalized Lagrangian (5.3.4) coin-
cides with the Lagrangian (5.2.4) for stationary axisymetric fields, and that the equa-
tions of motion (5.3.1) generate the main field equations (4.1.3) and (4.1.4).

For the sake of completeness we calculate the components of the energy-momentum
tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.3.10)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.3.11)

This tensor is traceless due to the fact that the base space is 2-dimensional. It satisfies
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5 Stationary generalization

the generalized conservation law (5.3.8) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1
2

∂L

∂ρ
= 0 , (5.3.12)

dTρz

dρ
−

dTρρ

dz
= 0 . (5.3.13)

Incidentally, the last equation coincides with the integrability condition for the metric
function k, which is identically satisfied by virtue of the main field equations. In
fact, as can be seen from Eqs.(4.1.5,4.1.6) and (5.3.10,5.3.11), the components of the
energy-momentum tensor satisfy the relationships Tρρ = ∂ρk and Tρz = ∂zk, so that
the conservation law (5.3.13) becomes an identity. Although we have eliminated from
the starting Lagrangian (5.2.4) the variable k by applying a Legendre transformation
on the Einstein-Hilbert Lagrangian (see [6] for details) for this type of gravitational
fields, the formalism of generalized harmonic maps seems to retain the information
about k at the level of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be represented
as a (2 → 2)−generalized harmonic map with metrics given as in (5.3.9). It is also
possible to interpret the generalized harmonic map given above as a generalized
string model. Although the metric of the base space M is Euclidean, we can apply
a Wick rotation τ = iρ to obtain a Minkowski-like structure on M. Then, M repre-
sents the world-sheet of a bosonic string in which τ is measures the time and z is the
parameter along the string. The string is “embedded” in the target space N whose
metric is conformally flat and explicitly depends on the time parameter τ. We will
see in the next section that this embedding becomes more plausible when the target
space is subject to a dimensional extension. In the present example, it is necessary
to apply a Wick rotation in order to interpret the base space as a string world-sheet.
This is due to the fact that both coordinates ρ and z are spatial coordinates. However,
this can be avoided by considering other classes of gravitational fields with timelike
Killing vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmetric fields
are the asymptotically flat solutions. Asymptotic flatness imposes conditions on the
metric functions which in the cylindrical coordinates used here can be formulated in
the form

lim
xa→∞

f = 1 + O
(

1
xa

)
, lim

xa→∞
ω = c1 + O

(
1
xa

)
, lim

xa→∞
Ω = O

(
1
xa

)
(5.3.14)
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where c1 is an arbitrary real constant which can be set to zero by appropriately choos-
ing the angular coordinate φ. If we choose the domain of the spatial coordinates as
ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic flatness conditions it follows that
the coordinates of the target space N satisfy the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.3.15)

where the dot stands for a derivative with respect to ρ and the prime represents
derivation with respect to z. These relationships are known in string theory [37] as the
Dirichlet and Neumann boundary conditions for open strings, respectively, with the
extreme points situated at infinity. We thus conclude that if we assume ρ as a “time”
parameter for stationary axisymmetric gravitational fields, an asymptotically flat so-
lution corresponds to an open string with endpoints attached to D−branes situated
at plus and minus infinity in the z−direction.

5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target space
N, and study the conditions under which this dimensional extension does not affect
the field equations of the gravitational field. Consider an (m → D)−generalized har-
monic map. As before we denote by {xa} the coordinates on M. Let {Xµ, Xα} with
µ = 1, 2 and α = 3, 4, ..., D be the coordinates on N. The metric structure on M is again
γ = γ(x), whereas the metric on N can in general depend on all coordinates of M and
N, i.e. G = G(Xµ, Xα, xa). The general structure of the corresponding field equations
is as given in (5.3.1). They can be divided into one set of equations for Xµ and one set
of equations for Xα. According to the results of the last section, the class of gravita-
tional fields under consideration can be represented as a (2 → 2)−generalized har-
monic map so that we can assume that the main gravitational variables are contained
in the coordinates Xµ of the target space. Then, the gravitational sector of the target
space will be contained in the components Gµν (µ, ν = 1, 2) of the metric, whereas the
components Gαβ (α, β = 3, 4, ..., D) represent the sector of the dimensional extension.

Clearly, the set of differential equations for Xµ also contains the variables Xα and
its derivatives ∂aXα. For the gravitational field equations to remain unaffected by this
dimensional extension we demand the vanishing of all the terms containing Xα and
its derivatives in the equations for Xµ. It is easy to show that this can be achieved by
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5 Stationary generalization

imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.4.1)

That is to say that the gravitational sector must remain completely invariant under a
dimensional extension, and the additional sector cannot depend on the gravitational
variables, i.e., Gαβ = Gαβ(Xγ, xa), γ = 3, 4, ..., D. Furthermore, the variables Xα must
satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 . (5.4.2)

This shows that any given (2 → 2)−generalized map can be extended, without af-
fecting the field equations, to a (2 → D)−generalized harmonic map.

It is worth mentioning that the fact that the target space N becomes split in two sep-
arate parts implies that the energy-momentum tensor Tab = δL/δγab separates into
one part belonging to the gravitational sector and a second one following from the di-
mensional extension, i.e. Tab = Tab(Xµ, x) + Tab(Xα, x). The generalized conservation
law as given in (5.3.8) is satisfied by the sum of both parts.

Consider the example of stationary axisymmetric fields given the metrics (5.3.9).
Taking into account the conditions (5.4.1), after a dimensional extension the metric of
the target space becomes

G =


ρ

2 f 2 0 0 · · · 0
0 ρ

2 f 2 0 · · · 0
0 0 G33(Xα, x) · · · G3D(Xα, x)
. . · · · · · · · · ·
0 0 GD3(Xα, x) · · · GDD(Xα, x)

 . (5.4.3)

Clearly, to avoid that this metric becomes degenerate we must demand that det(Gαβ) ̸=
0, a condition that can be satisfied in view of the arbitrariness of the components of
the metric. With the extended metric, the Lagrangian density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ , (5.4.4)
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5.4 Dimensional extension

which nevertheless does not affect the field equations for the gravitational variables f
and Ω. On the other hand, the new fields must be solutions of the extra field equations(

∂2
ρ + ∂2

z

)
Xα + Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
(5.4.5)

+Gαγ
(

∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 . (5.4.6)

An interesting special case of the dimensional extension is the one in which the
extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with additional fields
Xα given as arbitrary harmonic functions. This choice opens the possibility of intro-
ducing a “time” coordinate as one of the additional dimensions, an issue that could
be helpful when dealing with the interpretation of gravitational fields in this new
representation.

The dimensional extension finds an interesting application in the case of static ax-
isymmetric gravitational fields. As mentioned in Section 4.1, these fields are obtained
from the general stationary fields in the limiting case Ω = 0 (or equivalently, ω = 0).
If we consider the representation as an SL(2, R)/SO(2) nonlinear sigma model or as a
(2 → 2)−generalized harmonic map, we see immediately that the limit Ω = 0 is not
allowed because the target space becomes 1-dimensional and the underlying metric
is undefined. To avoid this degeneracy, we first apply a dimensional extension and
only then calculate the limiting case Ω = 0. In the most simple case of an extension
with Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the metrics
γab = δab and

G =

(
ρ

2 f 2 0
0 1

)
(5.4.7)

where the additional dimension is coordinatized by an arbitrary harmonic function
which does not affect the field equations of the only remaining gravitational variable
f . This scheme represents an alternative method for exploring static fields on nonde-
generate target spaces. Clearly, this scheme can be applied to the case of gravitational
fields possessing two hypersurface orthogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as a string
“living” in a D-dimensional target space N. The string world-sheet is parametrized
by the coordinates ρ and z. The gravitational sector of the target space depends ex-
plicitly on the metric functions f and Ω and on the parameter ρ of the string world-
sheet. The sector corresponding to the dimensional extension can be chosen as a
(D − 2)−dimensional Minkowski spacetime with time parameter τ. Then, the string
world-sheet is a 2-dimensional flat hypersurface which is “frozen” along the time τ.
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5 Stationary generalization

5.5 The general solution

If we take as seed metric the general static solution, the application of two HXK trans-
formations generates a stationary solution with an infinite number of gravitoelectric
and gravitomagnetic multipole moments. The HKX method is applied at the level
of the Ernst potential from which the metric functions can be calculated by using the
definition of the Ernst potential E and the field equations for γ. The resulting expres-
sions in the general case are quite cumbersome. We quote here only the special case
in which only an arbitrary quadrupole parameter is present. In this case, the result
can be written as

f =
R
L

e−2qP2Q2 ,

ω = −2a − 2σ
M

R
e2qP2Q2 ,

e2γ =
1
4

(
1 +

M
σ

)2 R
x2 − y2 e2γ̂ , (5.5.1)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1 − y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1 − α2e2q(δ++δ−))b+ ,

γ̂ =
1
2
(1 + q)2 ln

x2 − 1
x2 − y2 + 2q(1 − P2)Q1 + q2(1 − P2)

[
(1 + P2)(Q2

1 − Q2
2)

+
1
2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 − Q′
2)

]
. (5.5.2)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind respec-
tively. Furthermore

a± = x(1 − α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,
b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1
2

ln
(x ± y)2

x2 − 1
+

3
2
(1 − y2 ∓ xy) +

3
4
[x(1 − y2)∓ y(x2 − 1)] ln

x − 1
x + 1

,
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the quantity α being a constant

α =
σ − M

a
, σ =

√
M2 − a2 . (5.5.3)

The physical significance of the parameters entering this metric can be clarified by
calculating the Geroch-Hansen [13, 17] multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.5.4)

M0 = M , M2 = −Ma2 +
2

15
qM3

(
1 − a2

M2

)3/2

, ... (5.5.5)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1 − a2

M2

)3/2

, .... (5.5.6)

The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn) multi-
pole moments is a consequence of the symmetry with respect to the equatorial plane.
From the above expressions we see that M is the total mass of the body, a represents
the specific angular momentum, and q is related to the deviation from spherical sym-
metry. All higher multipole moments can be shown to depend only on the parameters
M, a, and q.

We analyzed the geometric and physical properties of the above solution. The spe-
cial cases contained in the general solution suggest that it can be used to describe
the exterior asymptotically flat gravitational field of rotating body with arbitrary
quadrupole moment. This is confirmed by the analysis of the motion of particles
on the equatorial plane. The quadrupole moment turns out to drastically change the
geometric structure of spacetime as well as the motion of particles, especially near the
gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM) spacetime
which is a generalization of Kerr spacetime, including an arbitrary quadrupole. Our
results show [4] that a deviation from spherical symmetry, corresponding to a non-
zero electric quadrupole, completely changes the structure of spacetime. A similar
behavior has been found in the case of the Erez-Rosen spacetime. In fact, a naked
singularity appears that affects the ergosphere and introduces regions where closed
timelike curves are allowed. Whereas in the Kerr spacetime the ergosphere corre-
sponds to the boundary of a simply-connected region of spacetime, in the present
case the ergosphere is distorted by the presence of the quadrupole and can even be-
come transformed into non simply-connected regions. All these changes occur near
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5 Stationary generalization

the naked singularity which is situated at x = 1, a value that corresponds to the ra-
dial distance r = M +

√
M2 − a2 in Boyer-Lindquist coordinates. In the limiting case

a/M > 1, the multipole moments and the metric become complex, indicating that
the physical description breaks down. Consequently, the extreme Kerr black hole
represents the limit of applicability of the QM spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we can con-
clude that the QM metric can be used to describe their exterior gravitational field.
Two alternative situations are possible. If the characteristic radius of the body is
greater than the critical distance M +

√
M2 − a2, i.e. x > 1, the exterior solution

must be matched with an interior solution in order to describe the entire spacetime.
If, however, the characteristic radius of the body is smaller than the critical distance
M +

√
M2 − a2, the QM metric describes the field of a naked singularity.
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6 Gravitational field of slightly
deformed naked singularities

6.1 Introduction

Although the existence of naked singularities in Nature is the subject of intense de-
bate nowadays, it has been well established that Einstein field equations for the gravi-
tational field allow solutions that can be interpreted as describing naked singularities.
In particular, black hole solutions are characterized by the existence of naked singu-
larity counterparts [24]. However, it seems that the particular choice of the physical
parameters, which is necessary for the formation of naked singularities, is difficult to
be realizable in Nature. Indeed, a rotating naked singularity needs a specific angular
momentum that must be greater that its mass (in geometric units), a condition that
probably cannot be fulfilled in realistic configurations because it would imply such a
high angular velocity that the object would destroy itself before reaching it [34].

There is, however, a simpler way to generate naked singularities, namely, by con-
sidering mass distributions with quadrupole moment [42]. Indeed, from the point
of view of multipole moments, the uniqueness theorems prove that black holes can
have only mass monopole and angular momentum dipole [21]. Consequently, the ad-
dition of a quadrupole to a mass distribution, even in the static case, would imply that
the corresponding gravitational field describes a naked singularity. Consequently, a
simple shape deviation from spherical symmetry in a mass distribution leads to the
appearance of naked singularities. In previous works [42? ? , 5], we used a particular
static quadrupolar solution [50, 47, 32, 45] to study the physical properties of naked
singularities.

There are several solutions of Einstein field equations that can be used to describe
the exterior gravitational field of a static mass distribution with quadrupole moment
[12]. In the limiting case of vanishing quadrupole, they reduce to the spacetime of
a Schwarzschild black hole. An interesting characteristic of all of them is that the
outermost naked singularity is a sphere with radius r = 2m, where m is the mass of
the gravitational source. This could be interpreted intuitively as if the presence of the
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6 Gravitational field of slightly deformed naked singularities

quadrupole causes the destruction of the regular horizon turning it into a singular
hypersurface.

In this work, we show that this is not always the case. Indeed, we will derive a new
solution, whose singularity is located on a sphere of radius r = m. This means that
in this case the quadrupole completely destroys the regular horizon at r = 2m, but
generates a new special hypersurface at r = m which contains a singularity. To derive
this new solution, we use the fact in realistic situations we expect that compact objects
deviates only slightly from spherical symmetry. This implies that the quadrupole can
be considered as a small quantity. With this in mind, we investigate a particular
approximate line element, which is valid only up to the first order in the quadrupole
parameter. Then, we find the general solution of the corresponding Einstein vacuum
field equations and show that a particular solution is characterized by a curvature
singularity located on a sphere of radius r = m.

This work is organized as follows. In Sec. 6.2, we consider a line element that is es-
pecially adapted to the study of interior and exterior solutions. We derive the general
field equations for the case of vacuum gravitational fields. In Sec. 6.3, we find the
most general solution that is linear in the quadrupole moment. We select a particular
case that is characterized by the presence of naked singularity at a distance r = m
from the origin of coordinates. We also calculate the Newtonian limit of the new ap-
proximate solution and show that it corresponds to a mass distribution with a small
quadrupole. In Sec. 6.4, we investigate the motion of test particles in the spacetime
described by the approximate solution. In general, we find that the quadrupole af-
fects the behavior of Schwarzschild orbits. By analyzing the behavior of free falling
particles we show that no effects associated with the presence of repulsive gravity
can be detected in contrast to repulsive effects found previously in the case of exact
solutions with quadrupole. We conclude that repulsive gravity in naked singularities
is a non-linear phenomenon. Finally, Sec. 7.6 contains a summary of our results.

6.2 Line element and field equations

The search for and investigation of physically meaningful solutions of Einstein equa-
tions begins with the choice of an appropriate line element. In the case of static grav-
itational fields of deformed mass distributions, one can assume that the fields pre-
serve axial symmetry. Moreover, if we are interested in describing the gravitational
field outside as well as inside the mass distribution, it is convenient to choose a line
element that can be used in both cases. In a previous work [1], we found interior
perfect-fluid solutions that can be matched with exterior vacuum solutions under the
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assumption that the quadrupole moment is small. From a physical point of view, this
implies that the mass distribution is only slightly deformed. We were able to find a
particular line element that can be used to search for interior and exterior approxi-
mate solutions. It can be written as

ds2 = e2ν(1 + qa)dt2 − (1 + qc + qb)
dr2

1 − 2m̃
r

−(1 + qa + qb)r2dθ2 − (1 − qa)r2 sin2 θdφ2 , (6.2.1)

where the set of (t, r, θ, φ) can be interpreted as polar coordinates in the limiting case
q → 0. Moreover, the functions ν = ν(r), a = a(r), c = c(r), m̃ = m̃(r), and b = b(r, θ)
are arbitrary.

In the particular case q = 0, the above line element can be used to describe the
exterior Schwarzschild solution

m̃ = m = const, e2ν = 1 − 2m
r

, (6.2.2)

and the interior perfect fluid Schwarzschild metric with

m̃ = 4πρR3 , p =
3m

4πR3
[ f (r)− f (R)]
[3 f (R)− f (r)]

, (6.2.3)

with

e2ν =

[
3
2

f (R)− 1
2

f (r)
]2

, f (r) =

√
1 − 2mr2

R3 (6.2.4)

where ρ = const and p = p(r) are the density and pressure of the fluid, respectively.
Furthermore, for q ̸= 0 the line element (6.2.1) contains the approximate (up to

the first order in q) quadrupolar metric (q−metric), which has been interpreted as
the simplest generalization of the Schwarzschild metric that includes a quadrupole
moment [42]. In this limit, q has been interpreted as the quadrupole parameter.

Here, we will use the advantages of the line element (6.2.1) to search for more
general approximate solutions. Then, the Einstein vacuum field equations, up to the
first order in q, can be written as

m̃,r = 0 i.e. m̃ = m = const. , (6.2.5)

ν,r =
m

r (r − 2m)
, (6.2.6)
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(r − m)(a,r − c,r) + (a − c) = 0 , (6.2.7)

2 r (r − 2m) a,rr + (3r − m) a,r + (r − 3m) c,r

−2 (a − c) = 0, (6.2.8)

r (r − 2m) b,rr + b,θθ + (r − m) b,r − 2 (r − 2m) c,r

+2 (a − c) = 0, (6.2.9)

(
r2 − 2mr + m2 sin2 θ

)
b,θ + 2r (r − 2m)

× (ma,r − a + c) sin θ cos θ = 0, (6.2.10)

(
r2 − 2mr + m2 sin2 θ

)
b,r + 2 (r − 2m)

×
(

r − m sin2 θ
)

a,r + 2 (r − m) (a − c) sin2 θ = 0, (6.2.11)

where a comma represents partial differentiation with respect to the corresponding
coordinate. For simplicity, we replaced the solution of the first equation m̃ = m =
const. in the remaining equations.

6.3 Approximate solutions

We now investigate the system of partial differential equation (6.2.6)-(6.2.11). Equa-
tions (6.2.6) and (6.2.7) can be integrated and yield

ν =
1
2

ln
(

1 − 2m
r

)
+ α1 , a − c =

α2m2

(r − m)2 , (6.3.1)

where α1 and α2 are dimensionless integration constants. It turns out that the remain-
ing system of partial differential equations can be integrated in general and yields

a = − α2m
r − m

+
1
2
(α3 − α2) ln

(
1 − 2m

r

)
+ α4 , (6.3.2)
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c = − α2mr
(r − m)2 +

1
2
(α3 − α2) ln

(
1 − 2m

r

)
+ α4 , (6.3.3)

b =
2α2m
r − m

− (α3 − α2)

[
ln 2

+ ln

(
1 − 2m

r
+

m2 sin2 θ

r2

)]
+ α5 , (6.3.4)

where α3, α4, and α5 are dimensionless integration constants. We can see that the
general approximate exterior solution with quadrupole moment is represented by
the 5-parameter family of solutions (6.3.1)–(6.3.4). In this general solution, the addi-
tive constants α4 and α5 can be chosen such that at infinity the solution describes the
Minkowski spacetime in spherical coordinates. This means that non asymptotically
flat solutions are also contained in the above general solution.

To partially investigate the physical meaning of this solution, we calculate the
Kretschmann scalar K = RabcdRabcd. We obtain

K =
48m2

r6

{
1 + q

[
(α2 − α3)

[
ln
(

1 − 2m
r

)
− 2 ln

(
1 − 2m

r
+

m2

r2 sin2 θ

)
− 2 ln 2

]
+α2 A1 + α3A2 − 2 (α4 + α5) + α2A3

]
+O(q2)

}
(6.3.5)

where

A1 = − 1

6
(
m2 sin2 θ − 2mr + r2

)
(m − r)3 m2

×
[ (

12m3 − 11m2r − 14mr2 + 11r3
)

m4 cos2 θ

−
(

12m3 − 17m2r − 2mr2 + 5r3
)

m2 (m − r)2
]

(6.3.6)
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6 Gravitational field of slightly deformed naked singularities

Figure 6.1: Curvature singularities of the general metric.

A2 =
2m2 sin2 θ − 3mr + r2

m2 sin2 θ − 2mr + r2
(6.3.7)

A3 = −1
6

r
[
7 (m − r)2 − 2r2]

(m − r)3 (6.3.8)

where the term proportional to q2 has been neglected. We can see that this approxi-
mate spacetime is characterized by the presence of three different curvature singular-
ities located at

r = 0 , r = m r = 2m , r = m(1 ± cos θ) . (6.3.9)

The geometric structure of the curvature singularities of the solutions (6.3.1), (6.3.2),
(6.3.3) and (6.3.4) is illustrated in Fig.6.1.

Another interesting particular case corresponds to the choice

α1 = 0 , α3 = α2 , α4 = 0 , α5 = 0 , (6.3.10)
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which leads to the line element

ds2 =

(
1 − 2m

r

)(
1 − qα2m

r − m

)
dt2

−
[

1 +
qα2m(r − 2m)

(r − m)2

]
dr2

1 − 2m
r

−
(

1 +
qα2m
r − m

)
r2(dθ2 + sin2 θdφ2) . (6.3.11)

This is an asymptotically flat approximate solution with parameters m, q and α2. Since
α2 appears always in combination with q, it can be absorbed in the definition of q. We,
therefore, set α2 = 1 without loss of generality. The singularity structure can be found
by analyzing the Kretschmann invariant, which in this case reduces to

K =
48m2

r6

(
1 + q

r − 4m
r − m

+O(q2)

)
. (6.3.12)

We see that there are only two singularities, which are located at r = 0 and r = m.
This is an interesting property of this solution because all the remaining solutions
contained in (6.3.1)–(6.3.4) are singular on the hypersurface r = 2m. Moreover, all the
known exact solutions with quadrupole turn out to be singular at r = 2m [12]. To our
knowledge, the solution (6.3.11) is the only one in which the outermost singularity is
located inside the sphere with r = 2m. This means that the spacetime is well defined
behind in the interval r ∈ (m, 2m]. We are interested in investigating the properties
of this spacetime near the singularity r = m.

To further analyze the physical meaning of the solution (6.3.11), we calculate the
corresponding Newtonian limit. To this end, we perform a coordinate transformation
of the form (r, θ) → (R, ϑ) defined by the equations [1, 2]

r = R
[

1 − q
m
R
[
1 +

m
R

(
β1 + sin2 ϑ

)
+

m2

R2

(
β2 − sin2 ϑ

)
+ ..
]

sin2 ϑ

]
, (6.3.13)

and

θ = ϑ − q
m2

R2

(
1 + 2

m
R
+ ...

)
sin ϑ cos ϑ, (6.3.14)
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6 Gravitational field of slightly deformed naked singularities

where the β1 and β2 are constants and we have neglected terms of the order higher
that m3/R3. Inserting the above coordinates into the metric (6.3.11), we obtain the
approximate line element

ds2 = (1 + 2Φ) dt2 − dR2

1 + 2Φ

− U (R, ϑ) R2
(

dϑ2 + sin2 ϑdφ2
)

, (6.3.15)

with
Φ = −GM

R
+

GQ
R3 P2 (cos ϑ) , (6.3.16)

U (R, ϑ) = 1 − 2
GM
R3 P2(cos ϑ), (6.3.17)

where P2(cos ϑ) is the Legendre polynomial of degree 2, and we have chosen the free
constants as α2 = 2, β1 = 1/3, and β2 = 5/3.

We recognize the metric (6.3.15) as the Newtonian limit of general relativity, where
Φ represents the Newtonian potential. Moreover, the constants

M = (1 + q)m, Q =
2
3

qm3, (6.3.18)

can be interpreted as the Newtonian mass and quadrupole moment of the corre-
sponding mass distribution.

6.4 Motion of test particles

Consider the trajectory xa(τ) of a test particle with 4-velocity ua = dxa/dτ = ẋa.
The 4-moment pa = µẋa of the particle can be normalized so that the equations and
constraint for geodesics are given as

ẍa + Γa
bc ẋb ẋc = 0 (6.4.1)

gab ẋa ẋb = ϵ, (6.4.2)

where ϵ = 0, 1,−1 for null, timelike, and spacelike curves, respectively [38]. For the
approximate metric (6.3.11) we obtain from (6.4.1) that geodesics are determined, in
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general, by the following set of equations

ẗ + m
[

2
r (r − 2m)

+
q

(r − m)2

]
ṫṙ = 0 , (6.4.3)

r̈ +
[

1 +
q
(
6m2 − 6mr + r2)

2 (r − m)2

]
m (r − 2m) ṫ2

r3

−m
2

[
2

r (r − 2m)
+

q (r − 3m)

(r − m)3

]
ṙ2

−
[

r − 2m − qm (r − 2m)2

(r − m)2

]
θ̇2

− (r − 2m) sin2 θ

[
1 − qm (r − 2m)

(r − m)2

]
φ̇2 = 0 , (6.4.4)

θ̈ − sin θ cos θφ̇2 +

(
2
r
− qm

(r − m)2

)
ṙθ̇ = 0. (6.4.5)

φ̈ +

[(
2
r
− qm

(r − m)2

)
ṙ +

2 cos θ

sin θ
θ̇

]
φ̇ = 0 , (6.4.6)

The 4-moment pa = µẋa of the particle can be normalized so that

gab ẋa ẋb = ϵ, (6.4.7)

where ϵ = 0, 1,−1 for null, timelike, and spacelike curves, respectively [39]. Then,
for the approximate metric (6.3.11) we obtain from (6.4.7) that(

1 − qm2

(r − m)

)
ṙ2 = Ẽ2 − Φ2, (6.4.8)
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where

Ve f f = Φ2 =

(
1 − 2m

r

) [
r2θ̇2 +

(
ϵ +

2l2

r2 sin2 θ

)
×

(
1 − qm

r − m

)
− l2

r2 sin2 θ

]
(6.4.9)

is the effective potential and we have used the expression for the energy E = µẼ and
the angular moment l = µl̃ of the test particle which are constants of motion

E = gabξa
t pb =

(
1 − 2m

r

)(
1 − qm

r − m

)
µṫ, (6.4.10)

l = −gabξa
φ pb =

(
1 +

qm
r − m

)
r2 sin2 θµφ̇, (6.4.11)

associated with the Killing vector fields ξt = ∂t and ξφ = ∂φ, respectively. For the
sake of simplicity we set µ = 1 so that Ẽ = E and l̃ = l.

Figure 6.2 illustrates the behavior of the effective potential in terms of the pa-
rameter q for θ = π/2. The effective potential of the Schwarzschild spacetime is
also shown for comparison. For positive (negative) values of q, the effective poten-
tial at a given point outside the outer singularity is always less (greater) than the
Schwarzschild value. This indicates that the distribution of orbits on the equator of
the metric (6.2.1) can depend drastically on the value of q.

6.4.1 Circular orbits

We will now investigate the properties of circular orbits on the equatorial plane, θ =
π/2 of the gravitational described by the approximate metric (6.2.1). Circular orbits
correspond to the limiting case ṙ = 0. Their stability properties are determined by
the extrema of the effective potential. Following the conventional stability analysis of
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6.4 Motion of test particles

Figure 6.2: The effective potential for timelike geodesics on the equatorial plane as a
function of the radius for different values of the quadrupole parameter. Here we set
l2 = 20 for concreteness.
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circular orbits involving a potential function, from Eq.(6.4.9), we obtain

Ve f f ,r =
2ϵm
r2 +

2 (3m − r) l2

r4 +
qm

r2 (r − m)2

×
[ (

2m2 − 4mr + r2
)

ϵ

+
2
(
6m2 − 10mr + 3r2) l2

r2

]
, (6.4.12)

and
Ve f f ,rr = B1 + B2 (6.4.13)

where B1 and B2 are given by

B1 =
m
(
36m4 − 90m3r + 74m2r2 − 22mr3 + 2r4)

r3 (3m2 − 4mr + r2)
2 , (6.4.14)

B2 =
mq
(
36m4 − 114m3r + 74m2r2 − 17mr3 + r4)

r3 (3m2 − 4mr + r2)
2 (6.4.15)

where we set ϵ = 1 and replaced the value of the angular momentum

l2 =
ϵmr2

(r − m) (r − 3m)2

[
2
(

3m2 − 4mr + r2
)

+ q
(

r2 − 6m2
) ]

, (6.4.16)

which can be derived from the condition Ve f f ,r = 0.

The numerical analysis of the stability condition, Ve f f ,rr > 0, is depicted in Fig.6.3.
The green region contains only stable orbits whereas the yellow region corresponds to
unstable orbits. For comparison, we include the limiting values of the Schwarzschild
spacetime. We see that the quadrupole parameter q changes the value of the mini-
mum allowed radius (3m) and of the inner most stable circular orbit radius (6m) of
the Schwarzschild metric. In fact, the quadrupole leads to the appearance of a second
stable region below and over the radius 3m, which is not present in the Schwarzschild
limiting case. This region can reach the value of r/m ≈ 1, approaching the singularity
which is located at r = m. Moreover, within the spacetime determined by the interval
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6.4 Motion of test particles

Figure 6.3: Stability analysis of circular orbits with radius r/m for different values of
the quadrupole parameter q. Green (yellow) points represent stable (unstable) orbits.
The red region lies inside the singularity.

r ∈ (m, 2m], we notice that most of this region allows the existence of stable circular
orbits with a disjoint region of instability for positive values of q.

Furthermore, the energy of test particles on circular orbits can be expressed as

E2 =
ϵ (r − 2m)2

r (r − 3m)

[
1 − mq (r − 6m)

2 (r − m) (r − 3m)

]
. (6.4.17)

In Fig. 6.4, we plot the regions in which the energy E2 and angular momentum l2

are both positive or negative simultaneously. The red region denotes all the radii
that are not allowed for circular orbits because either the squared of the energy or
of the angular momentum are negative. A comparison with Fig. 6.3 shows that the
region contained between the singularity r/m = 1 and around r/m = 3 is allowed
for circular orbits by the stability condition but is excluded by the energy and angular
momentum conditions.

We conclude that the effect of the quadrupole on the properties of circular orbits
is as follows. A positive quadrupole leads to an increase of the minimum allowed
radius whereas a negative quadrupole generates the opposite effect. This means that
only in the case of an oblate object, test particles are allowed to exist on orbits closer
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Figure 6.4: Energy E2 and angular momentum l2 of test particles on circular orbits in
terms of the radius r/m and the quadrupole parameter q.

to the singularity, which is situated at r = m.

Finally, we consider the angular velocity

Ω(r) =
dφ

dt
=

φ̇

ṫ

=

√
m
r3

[
1 +

q (r − 4m)

4 (r − m)

]
, (6.4.18)
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6.4 Motion of test particles

Figure 6.5: Angular velocity and period of circular orbits in terms of the radius r/m
and the quadrupole parameter q.

and the period

T(r) =
∫ ṫ

φ̇
dφ = 2π

dt
dφ

= 2π

√
r3

m

[
1 − q (r − 4m)

4 (r − m)

]
, (6.4.19)

of circular orbits. The behavior of the angular velocity and period are depicted in
Fig. (6.5). We can see that the influence of the quadrupole on the value of the angular
velocity increases as the radius of the orbit approaches the value of r ≈ 3m. This
agrees with the behavior of the stability condition and the energy and angular mo-
mentum shown in Figs. 6.3 and 6.4, respectively. For a given orbit radius, the angular
velocity increases (decreases) for positive (negative) values of the quadrupole. Notice
that close to the singularity located at r = m, there is a region in which the angular
velocity is a well behaved function of q and r. This region corresponds to the stability
region that was also found in Fig. 6.3.
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6 Gravitational field of slightly deformed naked singularities

Figure 6.6: Influence of the quadrupole on unbounded orbits. Initial conditions:
φ(0) = π/2, r(0) = 7, φ̇(0) = 0.07145, ṙ(0) = 0 (top, left); φ(0) = 0, r(0) =
20, φ̇(0) = 0.04305, ṙ(0) = −2.5 (top, right); φ(0) = 0, r(0) = 20, φ̇(0) = 0.04305,
ṙ(0) = −2.489 (bottom) ;

6.4.2 Bounded and unbounded orbits

We now study the influence of the quadrupole on the trajectories of massive test par-
ticles, moving along unbounded paths on the equatorial plane. The geodesics for
different values of the quadrupole parameter are given in Figs. 6.6-6.7, where the
radial coordinate is dimensionless (r/m).

We consider first unbounded Schwarzschild trajectories with non-zero initial radial
velocities under the influence of the quadrupole. In this case, we see that for the cho-
sen initial angular and radial velocities all the particles escape from the gravitational
field of central slightly deformed body. This is illustrated Fig.6.6. The direction along
which the particle escapes to infinity depends on the value of the quadrupole. It is
worth noticing that, in principle, this effect could be used to measure the quadrupole
of the central mass distribution.

In Fig. 6.7, we consider a Schwarzschild bounded orbit with zero initial radial ve-
locity and the same non-zero value for the initial angular velocity. The left panel
shows the Schwarzschild geodesic. The central and right panels illustrate the influ-
ence of a negative and positive small quadrupole, respectively. We conclude that that
the small quadrupole does not affect the bounded character of the geodesic, but it
does drastically modify the morphology of the trajectories.

We conclude that the quadrupole always affects the Schwarzschild trajectories. The
explicit modifications depend on the properties of the original Schwarzschild trajec-
tory and the value of the quadrupole parameter.

446



6.4 Motion of test particles

Figure 6.7: Influence of the quadrupole on Schwarzschild bounded orbits with van-
ishing initial radial velocity (ṙ(0) = 0). The initial conditions are φ(0) = 0, r(0) = 7,
and φ̇(0) = 0.08 for all the trajectories.

6.4.3 Radial geodesics and repulsive gravity

We now study the free fall of test particles. To this end, we consider the geodesics
equations in their most general form as given in Eqs.(6.4.3)-(6.4.6). The important
point is that in all the cases to be considered all the initial spatial velocities are as-
sumed to vanish. The starting point can be chosen arbitrarily, but some special values
of the angle θ are of interest, namely, the symmetry axis θ = 0, the equatorial plane
θ = π/2, and some other different value that we can choose as θ = π/4. In fact, in [?
], it was shown that by analyzing the behavior of radial geodesics one can detect the
presence of repulsive gravity [8, 28, 29]

A free falling particle will continue its motion along the radial direction, unless a
force acts on it and changes the original radial direction. This phenomenon has been
reported in the case of an exact solution with quadrupole moment in [? ].

We will now consider the same situation in the case of the approximate solution
we are analyzing in this work. The result of the integration of the geodesic equations
(6.4.3)-(6.4.6) is illustrated in Fig. 6.8. We see that, in fact, free falling particles move
along the original directions (θ = 0, θ = π/4, and θ = π/2), independently of the
value of quadrupole parameter q. This means that no repulsive gravity effects can
be detected in the case of the approximate metric. Taking into account also the result
of [? ], we conclude that repulsive effects are non-linear, i.e., they appear only in the
case of an exact quadrupolar metric.
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Figure 6.8: Free fall of test particles with vanishing initial velocities. On the axes θ = 0
(top, left), θ = π/4 (top, right), and θ = π/2 (bottom). The sphere represents the
singularity at the radius r = m (top). The trajectories of the free falling test particles
do not depend on the value of the parameter q. For concreteness, we set the energy
of the test particle as E = 1.

6.5 Conclusions and remarks

In this work, we have derived a family of approximate vacuum solutions of Einstein
equations with quadrupole. Among all the solutions contained in this family we
choose a particular one, which presents a naked singularity at the hypersurface r =
m, instead of r = 2m as in other quadrupolar metrics. To our knowledge this is the
only metric with such a singularity.

By applying an appropriate coordinate transformation, we found the Newtonian
limit of the approximate solution and showed that it corresponds to the gravitational
potential of a mass with quadrupole.

Then, we investigated the motion of test particles along circular orbits. We estab-
lished that a positive quadrupole leads to an increase of the minimum allowed radius
whereas a negative quadrupole generates the opposite effect. This means that only
in the case of an oblate object, test particles are allowed to exist on orbits closer to the
singularity, which is situated at r = m. In the case of bounded and unbounded tra-
jectories, we found that the quadrupole always affects the Schwarzschild trajectories.
The explicit modifications depend on the properties of the original Schwarzschild
trajectory and the value of the quadrupole parameter.

Finally, we analyzed radial geodesics that have been used previously to detect ef-
fects of repulsive gravity in an exact quadrupolar metric. However, in the case of the
approximate solution no repulsive effects were found. We conclude that repulsive
gravity in the quadrupolar naked singularities is a non-linear phenomenon.
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7.1 Introduction

The problem of matching two spacetimes across a surface Σ has been investigated for
a long time [25]. In 1927, Darmois [7] proposed that a physically meaningful match-
ing can be obtained by demanding that the first and second fundamental forms (in-
duced metric and extrinsic curvature, respectively) be continuous across Σ. Later on,
in 1955, Lichnerowicz [27] proposed an alternative approach that turned out to be
equivalent to the Darmois approach by choosing the underlying coordinates appro-
priately. If the fundamental forms are not continuous across the matching surface,
Israel proposed in [23] to “cover” Σ with a shell, whose energy-momentum tensor
takes care of the discontinuities. More recently, in 2012, one of us proposed in [43] the
C3 approach, which is completely different because it is based not upon the use of fun-
damental forms (C2 quantities), but upon the behavior of the curvature eigenvalues
and their derivatives. This approach has been applied in cosmology, and relativistic
astrophysics [28, 30, 31].

Whereas the Darmois approach demands the continuity of the first and second
fundamental forms across the matching surface, which should be specified a pri-
ori, the C3 approach contains a criterium that allows us to determine the location
of the matching surface. Indeed, the point is that the C3 approach can be used to
propose an invariant definition of repulsive gravity [30]. In cosmology, this defini-
tion has been shown to be very useful because it allows us to construct models that
describe inflation and the observed accelerated expansion of the Universe as repul-
sive gravity effects. In relativistic astrophysics, the situation is different; no repulsive
gravity effects have been detected so far at the astrophysical level. In the description
of the gravitational field of compact astrophysical objects, we use this fact in the C3

approach to match vacuum and non-vacuum exact solutions in such a way that no
repulsive gravity effects appear. Indeed, the behavior of the curvature eigenvalues
can be used to detect regions of repulsive gravity within the gravitational field of a
compact object. The spatial derivatives of the eigenvalues indicate the exact location
where repulsion sets up. Thus, in the C3 approach, we “cover” the repulsion region
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with a different spacetime in such a way that no repulsive gravity effects can appear.
In a previous work [16], we formulated in detail the C3 matching approach in

asymptotically flat spacetimes. For an arbitrary metric that satisfies Einstein equa-
tions with cosmological constant and energy-momentum tensor, we computed the
general form of a 6 × 6 matrix, from which the curvature eigenvalues can be derived.
The approach was applied in the case of vacuum, conformally flat, and perfect-fluid
spacetimes. In the present work, we continue the investigation of C3 approach. The
main goal is to compare the Darmois and the C3 approaches in concrete examples.
Indeed, we consider spherically symmetric spacetimes and find the conditions un-
der which the vacuum Schwarzschild spacetime can be matched with exact perfect
fluid solutions. We will see that the results depend on the matching approach. In
fact, in the three specific cases we will consider, it turns out that according to the
Darmois approach the matching is possible whereas the conditions for a C3 matching
are not satisfied. This result indicates that the two approaches are entirely different.
We discuss this contradictory result and argue that the difference can be explained
by considering the physical properties of the perfect fluid solutions near the match-
ing surface. We use this result as a motivation to propose a generalization of the C3

matching procedure that allows to treat the case of discontinuities across the match-
ing hypersurface.

This paper is organized as follows. In Sections 7.2 and 7.3, we review in detail
the main aspects of the Darmois and C3 matching approaches, respectively. Sec. 7.4
is devoted to the matching of the exterior Schwarzschild metric with three different
perfect fluid solutions, namely, the Tolman III, Heintzmann II, and Buchdahl I space-
times. We compare the results of applying both the Darmois and the C3 matching
approaches and establish that they lead to different results due to the presence of dis-
continuities of the perfect fluid parameters on the matching surface. To be able to
handle such cases, we propose in Sec. 7.5 a generalization of the C3 matching proce-
dure. Finally, in Sec. 7.6, we sum up our results.

7.2 Darmois matching approach

In this section, we present the fundamental concepts related to the notion of hyper-
surfaces, which are essential for the description of the Darmois matching approach
[45, 3, 15]. Let (M, g) represent a spacetime, where M is a real smooth (i.e. C∞) mani-
fold of dimension 4 and g a Lorentzian metric on M with signature (−,+,+,+). We
assume that (M, g) is time orientable and M can be represented as a family of three-
dimesional hypersurfaces. On each hypersurface Σ, a 3-metric fl is induced. The
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hypersurface Σ is said to be spacelike, if fl is definite positive (signature: +,+,+);
timelike, if γ is Lorentzian (signature: −,+,+); or null, if fl is degenerate (signa-
ture: 0,+,+). Accordingly, each hypersurface Σ defines a normal vector field n ∈ M,
whose norm is ε = −1,+1, 0, corresponding to a spacelike, timelike, or null hyper-
surface, respectively.

A timelike hypersurface can be specified by means of a spatial coordinate x1 =
constant. Hence, on Σ, we can introduce a vector basis ei = {e0, e2, e3} and the
extrinsic curvature tensor K by

Kij ≡ −ej · ∇in = − eα
j nα;i , (7.2.1)

where “;” denotes the usual covariant derivative, Kij denotes the components of the
extrinsic curvature tensor K and eα

j , α = 0, 1, 2, 3, the αth component of the vector ej.

Now we assume that it is possible to foliate the spacetime (M, g) into a family of
slices corresponding to timelike hypersurfaces (Σ|x1)x1∈ℜ. Therefore, there exists a
smooth and regular scalar field X on M such that on each hypersurface there is a
level surface of this scalar field, i.e.,

∀x1 ∈ ℜ, Σx1 ≡ {p ∈ M, X(p) = x1}.

Thus, the regularity character of X guarantees that the hypersufaces satisfy the con-
dition

Σx1 ∩ Σx̃1 ̸= ∅ for x1 ̸= x̃1.

Consequently, the foliation of timelike hypersurfaces Σx1 covers M in such a way that

M =
⋃

x1∈ℜ
Σx1 .

We now introduce coordinates adapted to the foliation (Σ|x1)x1∈ℜ. On each timelike
hypersurfce Σ|x1 one can introduce coordinates xi = (x0, x2, x3), being x0 a temporal
coordinate whereas x2 and x3 are spacial coordinates.

If these coordinates vary smoothly between any two infinitesimally near timelike
hypersurfaces, Σ|x1 and Σ|x1+δx1 , it is always possible to construct a well-behaved
chart of coordinates in M . Consequently, a metric tensor on two neighboring hyper-
surfaces can be given in the form

γ(x0, x1, x2, x3) and γ(x0, x1 + δx1, x2, x3),
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7 Darmois matching and C3 matching

respectively. Accordingly, the metric tensor on M can be decomposed as

g = γij(d xi + βi d x1)⊗ (d xj + βj d x1) + N2 d x1 ⊗ d x1 (7.2.2)

where βi(xα) is determined by the relation

xi(Σ|x1+δx1) = xi(Σ|x1)− βi(xα)δx1. (7.2.3)

Here, xi(Σ|x1+δx1) are the coordinates of a point in Σ|x1+δx1 constructed by a perpen-
dicular line from the point xi(Σ|x1) on Σ|x1 to Σ|x1+δx1 . We get then the following
expressions for the metric components(

g11 g1i
gi1 gij

)
=

(
βiβ

i + N2 βi
βi γij

)
, (7.2.4)

and the components of the inverse metric are given by(
g11 g1i

gj1 gij

)
=

(
1/N2 −βi/N2

−βi/N2 γij + βiβj/N2

)
, (7.2.5)

where βi = γijβ
j. Naturally, for a timelike hypersurface its normal vector n satisfies

the condition nαnα = 1; then,

nα = (0, N, 0, 0), (7.2.6)

nα = −(β0,−1, β2, β3)/N. (7.2.7)

The Darmois matching approach can be described as follows. Let Σ be a three-
dimensional timelike hypersurface spliting the spacetime (M, g) in two 4-dimensional
manifolds (M−, g−) and (M+, g+) . The metric tensor g is of class C3 except on the
hypersurface Σ and satisfies the Einstein equations in M− and M+, respectively. Dar-
mois matching can be considered as a C2-matching that includes the following con-
ditions:

Condition 1: fl−|Σ = fl+|Σ (i. e., fl is continuos across Σ) ,

Condition 2: The surface stress-energy tensor on Σ (defined to be the integral of T
with respect to the “distance” Z measured perpendicularly through Σ) satisfies the
condition

lim
ϵ→0

∫ ϵ

−ϵ
(T)i

j d Z = 0,
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7.3 C3 matching approach

which yields to K−|Σ = K+|Σ (i. e., K is continuous across Σ).
Accordingly, in summa, Darmois matching formalism consists of choosing an ap-

propriate coordinate chart on which the metric tensor and the extrinsic curvature of
the surface are continuous and match the corresponding solutions.

7.3 C3 matching approach

The C3 matching approach uses as a starting point the curvature eigenvalues, whose
behavior does not depend on the choice or coordinates. This method was first pro-
posed in relativistic astrophysics in [43] and further applied to define repulsive grav-
ity in [30], to investigate cosmological models in [31, 14], and to study asymptotically
flat spacetimes in [16].

For a given metric, there are several equivalent methods to calculate its curvature
eigenvalues [46]. Here, we use the Cartan formalism of differential forms to empha-
size the independence from the coordinates. Thus, consider a set of differential forms
ϑa, a = 0, ..., 3 such that

ds2 = gµνdxµ ⊗ dxν = ηabϑa ⊗ ϑb , (7.3.1)

with ηab = diag(−1, 1, 1, 1), and ϑa = ea
µdxµ. The first and second Cartan equations

dϑa = −ωa
b ∧ ϑb , (7.3.2)

Ωa
b = dωa

b + ωa
c ∧ ωc

b =
1
2

Ra
bcdϑc ∧ ϑd (7.3.3)

allow us to compute the components of the Riemann curvature tensor Rabcd in the
local orthonormal frame ϑa. Furthermore, we introduce the bivector representation
that consists in defining the curvature components Rabcd as the components of a 6 ×
6 matrix RAB according to the convention proposed in [34], which establishes the
following correspondence between tetrad ab and bivector indices A:

01 → 1 , 02 → 2 , 03 → 3 , 23 → 4 , 31 → 5 , 12 → 6 . (7.3.4)

Due to the symmetry Rabcd = Rcdab, the matrix RAB is symmetric with 21 independent
components. The algebraic Bianchi identity Ra[bcd] = 0, which in bivector representa-
tion reads

R14 + R25 + R36 = 0 (7.3.5)
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7 Darmois matching and C3 matching

reduces the number of independent components to 20. Furthermore, Einstein’s equa-
tions

Rab −
1
2

Rηab = k Tab , Rab = Rc
acb , (7.3.6)

can be written explicitly in terms of the curvature components RAB, resulting in a set
of ten algebraic equations that relate the components of RAB and Tab. Consequently,
only ten components RAB are algebraic independent and can be arranged in the 6× 6
curvature matrix in the following way

RAB =

(
M1 L
L M2

)
, (7.3.7)

where

L =

 R14 R15 R16
R15 − κT03 R25 R26
R16 + κT02 R26 − κT01 −R14 − R25

 ,

and M1 and M2 are 3 × 3 symmetric matrices

M1 =

 R11 R12 R13
R12 R22 R23
R13 R23 −R11 − R22+κ

(T
2 + T00

)
 ,

M2 =

 −R11 + κ
(T

2 + T00 − T11
)

−R12 − κT12 −R13 − κT13
−R12 − κT12 −R22 + κ

(T
2 + T00 − T22

)
−R23 − κT23

−R13 − κT13 −R23 − κT23 R11 + R22−κT33

,

with T = ηabTab. This is the most general form of a curvature tensor that satisfies
Einstein’s equations with an arbitrary energy-momentum tensor. The eigenvalues
λn, n = 1, ..., 6 of the matrix RAB are known as the curvature eigenvalues.

The C3 matching approach can be formulated as follows. Let (M−, g−) and (M+, g+)
be an arbitrary and an asymptotically flat spacetime, respectively, which satisfy Ein-
stein equations. Let λ−

n and λ+
n be the corresponding curvature eigenvalues. Let r

be a spatial coordinate associated with the asymptotic flatness property of (M+, g+).
Then, the C3 matching approach can be split into two steps:
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7.4 Matching spherically symmetric spacetimes

Step 1: Define the matching surface Σ as determined by the matching radius

rmatch ∈ [rrep, ∞) , with rrep = max{rl} ,
∂λ+

i
∂r

∣∣∣
r=rl

= 0 . (7.3.8)

Step 2: Match the spacetimes (M−, g−) and (M+, g+) at Σ by imposing the conditions

[λn] = λ−
n − λ+

n ∀ n , (7.3.9)

where [λn] denotes the jump of the corresponding eigenvalue across the matching
surface Σ.

From a pragmatical point of view, the interior region of compact objects corre-
sponds to the spacetime (M−, g−) whereas the exterior region is described by (M+, g+)
.

7.4 Matching spherically symmetric spacetimes

In this section, we will apply the Darmois and C3 matching approaches to three dif-
ferent perfect fluid spherically symmetric spacetimes.

Regarding the Darmois approach, we will consider the case of a normal vector n as
given in Eq.(7.2.6). Then, the extrinsic curvature K can be expressed as

Kij = −nj;i =
1

2N

(
Ni,j + Nj,i − hij,1 − 2NkΓk

ij

)
. (7.4.1)

Additionally, we restrict ourselves to spacetiems with metric

g = flii d xi ⊗ d xi + N2 d x1 ⊗ d x1, (7.4.2)

so that the components of K reduce to

Kij = − 1
2N

flij,1 , i, j = 0, 2, 3 . (7.4.3)

Moreover, in the interior and exterior regions, we choose spherical coordinates and
metrics of the form

g = −G d t ⊗ d t +
1
F

d r ⊗ d r + H d Ω ⊗ d Ω (7.4.4)
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7 Darmois matching and C3 matching

where d Ω ⊗ d Ω ≡ d θ ⊗ d θ + sin2 θ d ϕ ⊗ d ϕ and the functions G, F, and H depend
on r only. Similarly, we suppose that the conventional matter governing the internal
spacetime dynamics is a perfect fluid determined by the energy-momentum tensor

Tαβ = (ρ + p)VαVβ + pgαβ (7.4.5)

where ρ and p are the energy density and the pressure of the fluid, respectively,
and V is the velocity of the fluid, which we choose as the comoving velocity Vα =
(−1, 0, 0, 0).

According to Birkhoff’s theorem, the exterior spacetime must be described by the
Schwarzschild metric

g+ = −
(

1 − 2m
r

)
d t ⊗ d t +

(
1 − 2m

r

)−1

d r ⊗ d r + r2 d Ω ⊗ d Ω. (7.4.6)

Furthermore, we choose the matching hypersurface as a sphere of constant radius.
Hence, according to equations (7.4.2) and (7.4.3), the metric tensor induced on Σ and
its extrinsic curvature are given by

fl+
tt = −1 +

2m
r

, fl+
θθ = r2 , fl+

ϕϕ = r2 sin2 θ , (7.4.7)

and

K+
tt =

m
r2

(
1 − 2m

r

)1/2

, K+
θθ = −r

(
1 − 2m

r

)1/2

, K+
ϕϕ = sin2 θ K+

θθ, (7.4.8)

respectively.
For the C3 approach we only need to calculate the curvature eigenvalues. We

choose the orthonormal tetrad ϑa as

ϑ0 =

(
1 − 2m

r

)1/2

d t , ϑ1 =

(
1 − 2m

r

)−1/2

d r , ϑ2 = r d θ , ϑ3 = r sin θ d ϕ .

(7.4.9)
A straightforward computation shows that the curvature matrix RAB is diagonal and
the eigeinvalues are

λ+
2 = λ+

3 = −λ+
5 = −λ+

6 = m/r3, (7.4.10)

λ+
1 = −λ+

4 = −2m/r3. (7.4.11)
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7.4 Matching spherically symmetric spacetimes

We can now perform the first step of the C3 approach, which consists in finding the
extrema of the exterior eigenvalues. Obviously, none of the Schwarzchild eigenvalues
has an extremum. This means that there is no repulsion radius rrep, which indicates
in the approach the smallest sphere at which the matching can be carried out. Con-
sequently, there is no repulsion region in the Schwarzschild spacetime that should
be covered by an interior solution, which is the conceptual background of the C3

approach. Then, the matching radius can be located anywhere outside the central
singularity, i.e., rmatch ∈ (0, ∞).

7.4.1 The Tolman III spacetime

The Tolman III spacetime is an exact solution of Einstein equations that describes a
perfect fluid with constant energy density. It can be written out as

g− = −
[

3
2

f (K)− 1
2

f (r)
]2

d t ⊗ d t

+
1

f 2(r)
d r ⊗ d r + r2 d Ω ⊗ d Ω , (7.4.12)

ρ =
3m

4πK3 , p =
3m

4πK3
[ f (r)− f (K)]
[3 f (K)− f (r)]

, f (r) =
(

1 − 2mr2

K3

)1/2

, (7.4.13)

where m and K are constants. Furthermore, the components of the metric on Σ are
given by

γ−
tt = −

[
3
2

f (K)− 1
2

f (r)
]2

, γ−
θθ = r2 , γ−

ϕϕ = r2 sin2 θ , (7.4.14)

and the components of the corresponding extrinsic curvature become

K−
tt =

rm
2K9/2 [3K(K − 2m)1/2 − (K3 − 2mr2)1/2] ,

K−
θθ = − r

K3/2 (K
3 − 2mr2)1/2 , K−

ϕϕ = sin2 θK−
θθ . (7.4.15)

Consider now the matching hypersurface Σ as a sphere of radius r = r0 = const.
Then, by imposing the first Darmois condition on the exterior (7.4.14) and interior
(7.4.7) metrics, it follows that

fl+|r=r0 = fl−|r=r0 , (7.4.16)
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7 Darmois matching and C3 matching

only if K = r0. Furthermore, a comparison of the components of the extrinsic curva-
ture (7.4.15) and (7.4.8) leads to

K+|r=r0 = K−|r=r0 , (7.4.17)

implying that the second Darmois condition is satisfied identically. We conclude that
according to Darmois approach, the exterior Schwarzschild metric and the interior
Tolman III solution can be matched on the hypersurface r = r0 = const. and, con-
sequently, determine a physically meaningful spacetime. Notice that on the match-
ing hypersurface r = r0, the pressure vanishes, but the density remains constant,
ρ(r0) = 3m/4πr3

0.

Consider now the C3 matching approach. The choice of the differential forms ϑa is
suggested by the diagomal form of the metric (7.4.12). Then,

ϑ0 =

[
3
2

f (K)− 1
2

f (r)
]

d t , (7.4.18)

ϑ1 =
1

f (r)
d r , ϑ2 = r d θ , ϑ3 = r d ϕ . (7.4.19)

The computation of the corresponding matrix RAB yields the following curvature
eigenvalues

λ−
1 = λ−

2 = λ−
3 =

2m(K3 − 2mr2)1/2

K3[3K(K − 2m)1/2 − (K3 − 2mr2)1/2]
, (7.4.20)

λ−
4 = −λ−

1 + 4π(ρ + p) =
2m
K3 , (7.4.21)

λ−
5 = −λ−

2 + 4π(ρ + p) =
2m
K3 , (7.4.22)

λ−
6 = −λ−

3 + 4π(ρ + p) =
2m
K3 . (7.4.23)

The second step of the C3 matching approach implies that on the matching hypersur-
face, r = rmatch, all the eigenvalues should coincide, λ+

n = λ−
n , ∀ n. A comparison of

the above expressions with the Schwarzschild eigenvalues (7.4.10) shows that there
is no rmatch for which all the conditions are satisfied. We conclude that according to
the C3 matching approach, the interior Tolman III solution cannot be matched with
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7.4 Matching spherically symmetric spacetimes

the exterior Schwarzschild metric.

7.4.2 The Heintzmann II spacetime

The Heintzmann II spacetime is a perfect fluid solution of Einstein equations de-
scribed by the metric [9]

g− = −A2(1 + ar2)3 d t ⊗ d t +
{

1 − 3ar2

2(1 + ar2)

[
1 + K(1 + 4ar2)−1/2

]}−1

d r ⊗ d r

+ r2 d Ω ⊗ d Ω , (7.4.24)

p = −
3a
[
(7ar2 + 1)K + 3(ar2 − 1)(4ar2 + 1)1/2]

16π(4ar2 + 1)1/2(ar2 + 1)2 , (7.4.25)

ρ =
3a
[
3(3ar2 + 1)K + (4a2r4 + 13ar2 + 3)(4ar2 + 1)1/2]

16π(4ar2 + 1)3/2(ar2 + 1)2 , (7.4.26)

where a, A and K are constants.

This metric tensor induces on a hypersurface Σ with r =const. a 3-metric with
extrinsic curvature given by

fl−
tt = −A2(ar2 + 1)3, fl−

θθ = r2 , fl−
ϕϕ = r2 sin2 θ , (7.4.27)

and

K−
tt = −3

√
2A2ar(ar2 + 1)3/2

2(4ar2 + 1)1/4

[
(2 − ar2)(4ar2 + 1)1/2 − 3ar2K

]1/2
,

K−
θθ =

√
2r

2(ar2 + 1)1/2(4ar2 + 1)1/4

[
(2 − ar2)(4ar2 + 1)1/2 − 3ar2K

]1/2
,

K−
ϕϕ = sin2 θK−

θθ . (7.4.28)

We now consider as matching hypersurface a sphere of radius r = r0, where we
impose the Darmois conditions fl−|r=r0 = fl+|r=r0 and K−|r=r0 = K+|r=r0 . Lengthy
calculations show that in this case Darmois conditions are equivalent to fixing the
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arbitrary constants that enter the spacetime metric as

a = − m
(7m − 3r0)r2

0
, A = −31/2(3r0 − 7m)3/2

r1/2
0 (18m − 9r0)

, K = −31/2(8m − 3r0)(m − r0)
1/2

r0(7m − 3r0)
,

(7.4.29)

in terms of the Schwarzschild mass m and the radius of the matching sphere r0. We
conclude that according to Darmois approach the Heintzmann II spacetime can be
matched with the exterior Schwarzschild metric.

We notice that if we introduce the above values for the constants a, A, and K into
the expressions for the pressure and density of the Heintzmann solution, we obtain
that on the matching hypersurface, the pressure vanishes, but the density is different
from zero. In fact, the density tends to zero only asymptotically. We illustrate this
behavior in Fig. 7.1, where for concreteness we set r0 = 3. We see that the pressure is
positive inside the source, 0 < r0 < 3, vanishes on the matching hypersurface, r0 = 3,
and becomes negative outside the body. On the other hand, the density is always
positive and vanishes only asymptotically.

Figure 7.1: Pressure and the energy density of the Heintzmann II solution for r0 = 3
and m = 1.

To apply the C3 approach, we choose the orthonormal tetrad as

ϑ0 = A(1 + ar2)3/2 d t , ϑ2 = r d θ , ϑ3 = r d ϕ , (7.4.30)

ϑ1 =

{
1 − 3ar2

2(1 + ar2)

[
1 + K(1 + 4ar2)−1/2

]}−1/2

d r , (7.4.31)
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which leads to the curvature eigenvalues

λ−
1 = −3a[3aKr2(3ar2 + 1) + (4ar2 + 1)1/2(4a2r4 − 3ar2 − 1)]

(4ar2 + 1)3/2(ar2 + 1)2 , (7.4.32)

λ−
2 = λ−

3 = −3a[(ar2 − 2)(4ar2 + 1)1/2 + 3aKr2]

2(4ar2 + 1)1/2(ar2 + 1)2 , (7.4.33)

λ−
4 = −λ−

1 + 4π(ρ + p) =
3a[(4ar2 + 1)1/2 + K]

2(4ar2 + 1)1/2(ar2 + 1)
, (7.4.34)

λ−
5 = −λ−

2 + 4π(ρ + p)

= −3a[2Kar2(ar2 − 1)− (4ar2 + 1)(4ar2 + 1)1/2 − K]
2(4ar2 + 1)3/2(ar2 + 1)2 , (7.4.35)

λ−
6 = −λ−

3 + 4π(ρ + p) =

= −3a[2Kar2(ar2 − 1)− (4ar2 + 1)(4ar2 + 1)1/2 − K]
2(4ar2 + 1)3/2(ar2 + 1)2 . (7.4.36)

It is then possible to prove that there is no solution to the C3 matching condition,
which implies the equality between the interior and exterior eigenvalues. This incom-
patibility is illustrated in Fig. 7.2, where we plot the eigenvalues of the Heintzmann
II metric for a, A, and K given by (7.4.29) and the eigenvalues of the Schwarzschild
metric with m = 1 and r0 = 3.
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7 Darmois matching and C3 matching

Figure 7.2: The Eigenvalues of the Heintzmann II metric (r ≤ 3) and of the
Schwarzschild metric (r ≥ 3) for r0 = 3 and m = 1.

7.4.3 The Buchdahl I spacetime

The Buchdahl spacetime describres a spherically symmetric perfect fluid solution of
Einstein equations. The corresponding metric, density, and pressure read [9]

g− =− A[(1 + Kr2)3/2 + B(2 − Kr2)1/2(5 + 2Kr2)]3 d t ⊗ d t (7.4.37)

+
2(1 + Kr2)

2 − Kr2 d r ⊗ d r + r2 d Ω ⊗ d Ω ,

ρ =
3K(Kr2 + 3)

16π(Kr2 + 1)2 , (7.4.38)

p = − 9K
16π

B(Kr2 + 1)1/2(2 − Kr2)1/2(2Kr2 + 1) + K2r4 − 1
(Kr2 + 1)3/2[B(2Kr2 + 5)(2 − Kr2)1/2 + (Kr2 + 1)3/2]

, (7.4.39)

where A, B, and K are arbitrary constants. On a hypersurface r =const., this metric
induces the 3-metric

fl−
tt = −A[(Kr2 + 1)3/2 + B(2Kr2 + 5)(2 − Kr2)1/2]2, (7.4.40)

fl−
θθ = r2 , fl−

ϕϕ = r2 sin2 θ ,
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whose extrinsic curvature is given by

K−
tt =

3
√

2KAr(2 − Kr2)1/2[(Kr2 + 1)3/2 + B(2 − Kr2)1/2(2Kr2 + 5)]
2(1 + Kr2)1/2(2 − Kr2)1/2 (7.4.41)

× [B(1 − 2Kr2) + (1 + Kr2)1/2(2 − Kr2)1/2],

K−
θθ =

√
2(2 − Kr2)1/2

2(Kr2 + 1)1/2 , K−
ϕϕ = sin2 θ K−

θθ .

Then, imposing the first and second Darmois conditions on a matching hypersurface
determined by a sphere of radius r = 2κm, we obtain that if we choose the arbitrary
constants entering the metric as

A =
(9κ2 + 12κ + 4)(κ − 1)

108κ2(3κ − 2)
, (7.4.42)

B =
κ1/2(3κ − 4)

(2 + 3κ)(2κ − 2)1/2 , (7.4.43)

K =
1

2κ2m2(3κ − 2)
, (7.4.44)

then the Darmois matching approach guarantees that the interior Buchdahl I space-
time can be matched with the exterior Schwarzschild spacetime.

It can also be shown that at the matching radius r = 2κm, the pressure vanishes
identically and the density is nonzero and positive. This behavior is illustrated in Fig.
7.3.

Figure 7.3: The pressure and the energy density of the Buchdahl I spacetime for κ = 2,
m = 1, and matching radius located at r = 4.
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To carry out the C3 approach, we choose the orthonormal tetrad as

ϑ0 = A1/2[(1 + Kr2)3/2 + B(2 − Kr2)1/2(5 + 2Kr2)]3/2 d t , (7.4.45)

ϑ1 =

[
2(1 + Kr2)

2 − Kr2

]1/2

r d r , ϑ2 = r d θ , ϑ3 = r d ϕ . (7.4.46)

Then, following the method for calculating the curvature matrix RAB, we find the
following curvature eigenvalues

λ−
1 =

3K[2(1 − Kr2)(1 + Kr2)3/2 + B(2 − Kr2)1/2(1 − 4K2r4 − 6Kr2)]

2(1 + Kr2)2[(1 + Kr2)3/2 + B(2 − Kr2)1/2(5 + 2Kr2)]
, (7.4.47)

λ−
2 = λ−

3 =
3K(2 − Kr2)1/2[B(1 − 2Kr2) + (1 + Kr2)1/2(2 − Kr2)1/2]

2(1 + Kr2)[(1 + Kr2)3/2 + B(2 − Kr2)1/2(5 + 2Kr2)]
(7.4.48)

λ−
4 = −λ−

1 + 4π(ρ + p) =
3K

2(Kr2 + 1)
, (7.4.49)

λ−
5 = −λ−

2 + 4π(ρ + p) =
3K

2(Kr2 + 1)2 , (7.4.50)

λ−
6 = −λ−

3 + 4π(ρ + p) =
3K

2(Kr2 + 1)2 . (7.4.51)

Then, it can be shown that no solution exists for the C3 matching condition. In fact, the
equivalence between the interior and exterior curvature eigenvalues on the matching
surface can be reached only for some of the eigenvalues. To illustrate the lack of
coincidence, we plot in Fig. 7.4, the behavior of the eigenvalues as functions of the
radial coordinate r. For concreteness, the free parameters A, B and K are chosen as
given in Eq.(7.4.42) with κ = 2 and m = 1.

7.4.4 Analysis of the results

The results of the previous subsections show that different matching approaches can
lead to different results. Whereas according to the Darmois approach, it is possible
to match the exterior Schwazschild solution with the Tolman III, Heintzmann II, and
Buchdahl I perfect fluid solutions, the C3 matching approach shows that it is not
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Figure 7.4: The curvature eigenvalues for the interior Buchdahl I metric (r ≤ 4) and
the exterior Schwarzschild metric (r ≥ 4) for κ = 2 and m = 1.

possible. This seems to indicate that the C3 procedure is more restrictive than the
Darmois approach.

To explain this contradictory result, let us consider the behavior of the thermody-
namic variables p and ρ on the matching surface Σ. In all the three cases investigated
above, we can see that the pressure vanishes on Σ, but the density is different from
zero. In the case of the Tolman III perfect fluid, the density is constant everywhere,
even outside the body, and in the case of the Heintzmann II and Buchdahl I solutions,
the density vanishes only asymptotically at infinity. It seems that for the Darmois
matching approach, this physical obstruction is not a problem. In fact, from a physi-
cal point of view, one would expect that pressure and density should vanish outside
the object.

On the other hand, the C3 approach can detect the physical obstruction due to
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a non-vanishing density on the matching surface. In fact, in [16], it was shown
that in the case of spherically symmetric perfect fluids, the vanishing of the energy-
momentum tensor on the matching surface is a necessary condition to perform the
matching procedure. This means that the pressure, as well as the density, should
vanish on the matching hypersurface. In this sense, from a physical point of view, we
can ensure that the C3 approach is more restrictive than the Darmois approach.

This result also shows that a generalization of Darmois approach would be appro-
priate to handle the cases in which the jump of the curvature eigenvalues across Σ
does not vanish. We will propose such a procedure in the next section.

7.5 C3 discontinuous matching

The previous results show that the C3 procedure does not allow to match spherically
symmetric perfect fluid spacetimes, whose density and pressure are different from
zero on the matching surface.

Now, we will construct a formalism that allows the matching in the case of discon-
tinuities across the matching surface, i.e., λ+

n ̸= λ−
n on Σ for at least one value of n.

We will use as a conceptual guide Israel’s formalism [23] that allows the existence of
discontinuities of the first and second fundamental forms by introducing an effective
energy-momentum tensor on the matching surface Σ so that it can be intepreted as a
infinitesimal matter shell that join the interior and exterior spacetimes. To this end,
let us consider the jump of the eigenvalues across Σ as

[λn] = λ−
n − λ+

n , (7.5.1)

In the case of a matching between an interior perfect fluid solution and the exterior
Schwarzschild vacuum solution, we have shown that the C3 procedure implies that ρ
and p should be zero on Σ. When these conditions are not satisfied, let us define the
surface density σ and pressure π as

σ = ρ|Σ , P = p|Σ . (7.5.2)

Then, since in the case of discontinuities we have that [λn] ̸= 0, it follows that σ ̸= 0
and P ̸= 0, in general, as will be shown in concrete examples below. This is equivalent
to saying that the explicit values of [λn] should contain information about σ and P.
The question is now whether σ and P can be used to construct a realistic matter shell
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on Σ. To this end, consider the jump of the Einstein tensor on Σ, i. e.,

[Gij] = G−
ij − G+

ij , G±
ij =

∂xµ
±

∂ξ i
∂xν

±
∂ξ j G±

µν , (7.5.3)

where ξ i are the coordinates of the surface Σ and xµ
± are the coordinates of the interior

and exterior spacetimes, respectively. Then, G±
ij is the Einstein tensor induced on Σ.

Furthermore, we introduce an energy-momentum tensor Sij on Σ as

[Gij] = kSij . (7.5.4)

Certainly, it is always possible to introduce algebraically an energy-momentum ten-
sor in this way. However, the essential point is whether Sij is physically meaningful.
To guarantee the fulfillment of this condition, we demand that Sij be induced by the
energy-momentum tensors of the interior and exterior spacetimes and be in agree-
ment with their physical significance. Then, in the case of the perfect fluid we are
considering here, we demand that

Sij = [Tij] = T−
ij − T+

ij = (σ + P)uiuj + Pγij , (7.5.5)

where T±
ij are the energy-momentum tensors and γij = γ±

ij is the metric tensor in-
duced on Σ, respectively.

In summary, in the case of discontinuities, we will say that an interior spacetime
can be matched with an exterior one along a boundary shell located on Σ, if there
exist a density σ and a pressure P, satisfying the induced Einstein equations (7.5.4)
and (7.5.5) and the boundary condition (7.5.2).

To test the above procedure, we consider now the explicit examples presented in
the previous sections. First, we notice that in the case of spherical symmetry the
coordinates on both sides of the boundary can be chosen as xµ

± = (t, r, θ, ϕ) and on
the matching surface as ξ i = (t, θ, ϕ). Then, all the components of the quantities ∂xµ

∂ξ i

are constant and the induced tensors can be calculated in a straightforward way.

Tolman III

In this case, from the results presented in Sec. 7.4.1, we obtain for the jump of the
eigenvalues along the matching surface r = K the following expressions

[λ2] = [λ3] = [λ4] = 0 , [λ1] = [λ5] = [λ6] =
3m
K3 = 4πσ , (7.5.6)
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which agrees with the result that on the matching surface the pressure vanishes. Fur-
thermore, the jump of components of the induced Einstein tensor can be expressed
as

[Gtt] =
4mr2 + K3 − K3 f 2(r)

K3r2 γtt , (7.5.7)

[Gθθ] =
6mr2

K3
f (K)− f (r)

3 f (K)− f (r)
, [Gϕϕ] = sin2 θ [Gθθ] . (7.5.8)

It is then easy to see that on the matching surface r = K, the induced Einstein equa-
tions for dust are satisfied

[Gij] = kσuiuj , ui = (−1, 0, 0) , (7.5.9)

proving that, in fact, a realistic dust shell can be introduced that allows us to match,
in the framework of the C3 matching procedure, the interior Tolman III solution with
the exterior Schwarzschild spacetime.

An explicit calculation gives

[Gtt] =
6m
K3 , (7.5.10)

[Gθθ] = [Gϕϕ] = 0. (7.5.11)

Heintzmann II

In this case, from the results presented in Sec. 7.4.2, we obtain for the jump of the
eigenvalues along the matching surface r = r0 the following expressions

[λ2] = [λ3] = [λ4] = 0 , [λ1] = [λ5] = [λ6] =
(14m − 9r0)m
3r3

0(m − r0)
= 4πσ . (7.5.12)

From the expressions for the induced Einstein tensor, we obtain the jump

[Gtt] =
2(14m − 9r0)m

3r3
0(m − r0)

, (7.5.13)

[Gθθ] = [Gϕϕ] = 0 . (7.5.14)

In this case, the induced Einstein equations [Gij] = kσuiuj are satisfied for

σ =
(14m − 9r0)m
12πr3

0(m − r0)
, ui = (−1, 0, 0) , (7.5.15)
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an expression that fulfills the compatibility condition (7.5.2).
Buchdahl I
From the results presented in Sec. 7.4.3, we obtain the following jumps for the

eigenvalues along the surface r = 2κm

[λ2] = [λ3] = [λ4] = 0 , [λ1] = [λ5] = [λ6] =
9κ − 4
24κ4m2 = 4πσ . (7.5.16)

Furthermore, the jump of the induced Einstein tensor reads

[Gtt] =
9κ − 4
12κ4m2 , (7.5.17)

[Gθθ] = [Gϕϕ] = 0 . (7.5.18)

Then, the induced Einstein equations [Gij] = kσuiuj are satisfied for

σ =
9κ − 4

96πκ4m2 , ui = (−1, 0, 0) , (7.5.19)

in accordance with the compatibility condition (7.5.2).
Notice that in all the above examples the energy-momentum tensor of the dust shell

can be expressed as

Sij =
k

4π
[λ1]uiuj , (7.5.20)

indicating that the properties of the boundary shell are determined in an invariant
manner by the curvature eigenvalues.

7.6 Discussion and remarks

In this work, we have analyzed the problem of matching exact solutions of Ein-
stein equations in order to describe a spacetime completely. We limit ourselves to
the case of spherically symmetric solutions of Einstein equations. Since the vacuum
Schwarzschild solution is singular at the origin of coordinates, it is believed that an
appropriate non-vacuum and singularity-free solution can be used to “cover” the
Schwarzschild singularity in such a way that the entire spacetime is regular. This
is how one expects that classical general relativity can get rid of curvature singulari-
ties. This seems to be a simple method to solve such an important problem of general
relativity. However, the problem arises of matching the non-vacuum and vacuum
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7 Darmois matching and C3 matching

solutions in such a way that the entire differential manifold is well behaved. This is
why the matching problem is very important in general relativity.

We have applied the Darmois and the C3 approaches to three different perfect solu-
tions of Einstein equations, which could be considered as appropriate interior candi-
dates to be matched with the exterior Schwarzschild solution. These are the Tolman
III, Heintzmann II, and Buchdahl I solutions. We have shown that the mentioned
matching procedures lead to contradictory results. According to Darmois approach,
all the three candidates satisfy the matching conditions and can be interpreted as in-
terior counterparts of the exterior Schwarzschild metric. However, the C3 approach
shows that none of the three solutions satisfy the C3 matching conditions. We explain
this contradictory result by noticing that in all three perfect fluid solutions, the en-
ergy density shows a discontinuity across the matching surface. Although this is not
an obstacle for the Darmois procedure, the C3 approach demands that the pressure
and the density as well vanish on the matching surface. This is why both approaches
lead to different results. We mention that we obtained the same result in the case of
the Durgapal IV and V spacetimes [9], which are spherically symmetric perfect fluid
solutions of Einstein equations.

To handle the case in which discontinuities are present along the matching surface
Σ, we propose in this work a generalization of the C3 matching procedure. It consists
essentially on demanding that the 3-dimensional hypersurface Σ be also described by
a solution of Einstein equations. In fact, we consider the induced Einstein tensor on
Σ and show that it can be represented as a realistic energy-momentum tensor that de-
scribes the matter inside a boundary shell located on Σ. In the cases considered in this
work, it turned out that the boundary corresponds to a dust shell. For more general
interior solutions, we expect to obtain shells with more intricate internal structures.
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8 Gravitational field of black holes
surrounded by dark matter with
anisotropic pressure

8.1 Introduction

The common disk-like particle flow lying around compact objects, dubbed accretion
disk, permits the direct observation of the radiation emitted by the orbiting material
rotating in the gravitational field of an astronomical object. In particular, the corre-
sponding spectra are commonly observed and so, as the accreting material fuels the
region around the central object, observers can extract information about properties
of the whole system. For extreme compact objects the relativistic effects are clearly
non-negligible. On one side, the luminosity itself can be described simply by some
emission spectrum model, however, on the other side, the motion of particles in the
disk and the trajectory of light rays escaping the disk require Einstein’s field equa-
tions. Thus, the exterior geometry of the accretor, namely the central object, can be
modeled through a metric with a given symmetry which will determine the proper-
ties of the observed radiation. In this picture, one can investigate black holes, white
dwarfs, neutron stars, quasars, radio galaxies, X-ray binaries, but also more exotic,
hypothetical objects, e.g. boson stars or gravastars.

The central object’s mass grows through accretion and to fully describe the disks,
one requires an exterior configuration and then solves the hydrodynamic equilibrium
equations. Frequently, “exotic” matter contributions seem to be needed to describe
hypothetical objects that are massive and compact, in order to fulfill stability criteria.
Analogous examples can often be found in the case of wormholes and for cosmolog-
ical backgrounds.

In this work, we consider a static spherically symmetric configuration composed of
a central black hole surrounded by a dark matter envelope. The gravitational field in
the vacuum region around the black hole is described by the exterior Schwarzschild
space-time while the corresponding dark matter distribution, located at a given dis-
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tance from the black hole, and its properties, is described by making use of the
Tolman-Oppenheimer-Volkoff (TOV) equations.

We assume that the dark matter envelope does not interact with the baryonic mat-
ter of the accretion disk that is located within the envelope itself. We then apply
the theory of black hole accretion developed in Ref. [35] for astrophysical black hole
candidates, in order to model the emitted spectrum from the accretion disk. In par-
ticular, we aim to test the consequences of two main assumptions: (i) dark matter
in endowed with a non-vanishing radial pressure term entering the TOV equations,
namely Pr(r) = P(r) and (ii) second, we assume the energy momentum tensor to
be anisotropic, leading to an additional pressure term, which is interpreted as a non
vanishing tangential pressure, Pθ(r). We physically motivate these two choices and
characterize the dark matter distribution accordingly, by computing the difference
Pθ(r)− P(r).

It should be stressed that the theory of anisotropic fluids is well known in the litera-
ture. In particular, it was shown that anisotropic fluids may be geodesic in general rel-
ativity in Ref. [20]. A general study of spherically symmetric dissipative anisotropic
fluids is given in Ref. [? ]. Exact static spherically symmetric anisotropic solutions
of the field equations are obtained and analyzed in Refs. [? ? ]. Anisotropic stars in
general relativity and their mass-radius relations are computed in Ref. [? ]. In this
work we instead study the effects of dark matter with anisotropic pressures on test
particles in the accretion disk present within the dark matter and the spectra of the
disk. In particular we compare the motion of particles and accretion disk’s spectra
with the cases of isotropic dark matter and a Schwarzschild black hole in vacuum.

The chapter is organized as follows: in Sect. 8.2, we describe a configuration that
consists of a black hole surrounded by a dark matter distribution. We then introduce
the static line element with anisotropic energy momentum tensor containing tangen-
tial pressure Pθ used to describe the dark matter envelope. Afterwards, we review the
definitions of flux, differential luminosity, and spectral luminosity as presented in the
Novikov-Page-Thorne (NPT) model. In Sect. 8.3, we solve the Tolman-Oppenheimer-
Volkoff (TOV) equations and calculate the metric functions fulfilling boundary condi-
tions in the different regions of the space-time. Then we compute the angular velocity,
energy, and angular momentum of the configuration and plot the modeled flux and
luminosity spectrum for various values of the parameter related to the dark matter
anisotropy. Implications of the model for astrophysical black hole candidates are then
discussed in in Sect. 8.4.
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8.2 Black hole surrounded by anisotropic dark matter

8.2 Black hole surrounded by anisotropic dark matter

In the following we investigate a system composed of a static black hole with a dark
matter envelope around it, where the dark matter is introduced only with the purpose
of modifying the geometry around the black hole. Since the black hole represents the
accretor, one can split the mass profile of the overall configuration into three regions,

M(r) =


MBH, rg < r ≤ rb,
MBH + MDM(r), rb ≤ r ≤ rs,
MBH + MDM(rs), rs ≤ r,

(8.2.1)

where rg = 2MBH is the gravitational radius and MBH is the mass black hole, whereas
rb and rs are the inner and outer edges (radii) of the dark matter envelope. In partic-
ular, rb corresponds to the boundary that separates the inner vacuum region from
the outer distribution of dark matter. Accordingly, the above configuration can be
described as follows:

• the core is modeled by the accretor in the form of a black hole. Its mass, MBH, is
a free parameter of our model;

• the black hole is surrounded by a dark matter shell that extends from a radius
rb up to the radius rs;

• at rs, the dark matter mass reaches its maximum value MDM(rs) and beyond rs
we assume vacuum;

• at r ≥ rs the total mass of the system is defined as MT = M(rs).

To model the dark matter distribution in the shell r ∈ [rb, rs], we assume an expo-
nential sphere profile of the form

ρ(r) = ρ0e−
r

r0 , r ≥ rb, (8.2.2)

where ρ0 is the dark matter density at r = 0 and r0 is the scale radius. The exponential
density profile was introduced in Ref. [? ] to explain the rotation curve in the bulge
of the Milky Way Galaxy. Indeed it showed a better fit of the observational data with
respect to the widely adopted de Vaucouleurs law in the inner part of the galaxy. Re-
cently it was also applied to study the effects of non-vanishing dark matter pressure
in the entire Milky Way Galaxy [? ].
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As a consequence, assuming spherical symmetry, the dark matter mass profile is
given by

MDM(r) =
∫ r

rb

4πr̃2ρ(r̃) dr̃, (8.2.3)

which yields

MDM(x) = 8πr3
0ρ0

[
e−xb

(
1 + xb +

x2
b

2

)
− e−x

(
1 + x +

x2

2

)]
, (8.2.4)

for r > rb, where we have substituted x = r/r0 and xb = rb/r0. For vanishing rb, the
profile (8.2.3) reduces to the one obtained in [? ].

8.2.1 TOV equations with anisotropic pressure

To describe the physical properties of the system in Eq. (8.2.1), we consider the spher-
ical symmetric line element

ds2 = eN(r)dt2 − eΛ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

, (8.2.5)

where, as usual, we take (t, r, θ, φ) as time and spherical coordinates, respectively,
while N(r) and Λ(r) represent the unknown metric functions.

The energy-momentum tensor is given by

Tαβ = (ρ + Pθ)uαuβ − Pθgαβ + (P − Pθ)χ
αχβ , (8.2.6)

where uαuα = 1 = −χαχα, uαχα = 0, uα = e−N/2δα
0 is the four-velocity and χα =

e−Λ/2δα
1 is a unit space-like vector in the radial direction, with δα

i the Kronecker
symbol [? ]. Using Einstein’s equations for the line element (8.2.5) and the energy-
momentum tensor(8.2.6) we obtain the following expressions [? ]

dP(r)
dr

= −(ρ(r) + P(r))
M(r) + 4πr3P(r)

r(r − 2M(r))
(8.2.7)

+
2
r
(Pθ(r)− P(r)) ,

dN(r)
dr

= 2
M(r) + 4πr3P(r)

r(r − 2M(r))
, (8.2.8)
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which generalize the TOV equations to the case of anisotropic pressures and relate
the density, ρ(r), with the radial pressure, P(r), and the tangential term, Pθ(r). In
general this is a system of two equations in four unknown, and therefore two func-
tions must be provided in order to close it. Typically this is done by specifying the
equations of state that relate the pressures Pθ(r) and P(r) to the density. In our model,
however, ρ(r) is the dark matter density given by Eq. (8.2.2), whereas M(r) is given
by Eq. (8.2.1); and therefore, these quantities are no longer unknown functions to be
determined. Notice, however, that one unknown function remains to be specified.
This function can be taken to be the pressure difference Pθ(r)− P(r), appearing in Eq.
(8.2.7), which is not known a priori.

A possible viable strategy to employ has been discussed in Ref. [? ? ], where the
anisotropy function, ∆(r), has been introduced as

∆(r) ≡ Pθ(r)− P(r) = αµ(r)P(r) , (8.2.9)

where α is a free constant, physically interpreted as the anisotropy parameter, while
µ is the compactness of the system defined by

µ(r) =
2M(r)

r
= 1 − e−Λ(r) . (8.2.10)

In general, µ indicates the strength of the gravitational field. If µ ≪ 1 the field is
weak, if µ ∼ 1 the field is strong. An interesting characteristics of Eq. (8.2.9) is that
µ guarantees the required vanishing of the anisotropy of pressures at r = 0 (notice
that typically M(r) ∼ r3 close to the center). Moreover in the weak field limit the
anisotropy of pressure is not expected to be important. In addition, this anzatz makes
sure that the tangential pressure vanishes at the surface of the object [? ], in our case
at the surface of dark matter envelope.

Notice that according to Eq. (8.2.9), α < 0 corresponds to Pθ < P, α = 0 corresponds
to the isotropic case Pθ = P and α > 0 corresponds to Pθ > P. The case of a static black
hole surrounded by a dark matter envelope with isotropic pressures, i.e. α = 0, has
been studied in detail by some of us in Ref. [? ] within a model that closely follows
the one considered here.

Furthermore, to analyze our model, we should now establish the boundary condi-
tions between inner and outer solutions.
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8.2.2 Boundary conditions

As stated above, the innermost region is given by a black hole vacuum solution with
the event horizon located at r = rg, while the exterior region corresponds to the dark
matter distribution extending from a radius rb > rg to an outer radius rs > rb. The
values of density, pressures and metric functions at the boundary are determined
from ρ(rb), P(rb) and N(rb). They can be computed immediately, obtaining

ρ(rb) = ρb = ρ0 e−
rb
r0 , (8.2.11)

P(rb) = Pb, (8.2.12)

N(rb) = Nb = ln
(

1 −
rg

rb

)
. (8.2.13)

Consequently, the unknown metric functions, N(r) and Λ(r), are evaluated as

eN(r) =


1 −

rg

r
, rg < r ≤ rb,

eNr(r), rb ≤ r ≤ rs,

1 − 2M(rs)

r
, rs ≤ r,

(8.2.14)

and

eΛ(r) =



(
1 −

rg

r

)−1
, rg < r ≤ rb,(

1 − 2M(r)
r

)−1

, rb ≤ r ≤ rs,(
1 − 2M(rs)

r

)−1

, rs ≤ r.

(8.2.15)

where Nr(r) is simply function N(r) in the interval r ∈ [rb, rs] which must be nu-
merically evaluated from the TOV equations fulfilling the corresponding boundary
conditions.

It is worth noticing that if we follow this consolidate procedure for matching differ-
ent spacetimes by imposing continuity of the first and second fundamental forms, the
dark matter pressure should vanish when r = rb. Therefore the condition P(rb) = Pb
leads to a non-continuous matching, since the first derivatives of the metric show a
jump at the boundary. However, there is a natural physical explanation for the dis-
continuity. The common interpretation is to assume the presence of a massive surface
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layer at rb for which the three dimensional energy momentum can be evaluated from
the matching conditions, as discussed in Refs. [? ? ].

8.2.3 Radiative flux and spectral luminosity

Bearing in mind the above results, we can now investigate the flux and spectral lu-
minosity produced by an accretion disk in the geometry with the above proposed
ansatz. The disk extends from an inner edge ri which is usually taken as the inner-
most stable circular orbit (ISCO) for test particles, ri = rISCO. To this end, we follow
the simple approach proposed by Novikov-Thorne and Page-Thorne in Refs. [35? ]
and write the radiative flux F as

F(r) = − ṁ
4π

√
g

Ω,r

(E − ΩL)2

∫ r

ri

(E − ΩL) L,r̃dr̃. (8.2.16)

The above quantity depends upon ṁ, i.e., the disk mass accretion rate, which is
unknown. In the simplest case, we can take it as constant and we can set ṁ = 1, which
is equivalent to considering the normalized flux per unit accretion rate, i.e., F(r)/ṁ.
Moreover, g is the determinant of the three-dimensional subspace with coordinates
(t, r, φ) and is given by

√
g =

√gttgrrgφφ. The quantities appearing in Eq. (8.2.16)
are,

Ω(r) =
dφ

dt
=

√
− ∂rgtt

∂rgφφ
, (8.2.17)

E(r) = ut = utgtt, (8.2.18)
L(r) = −uφ = −uφgφφ = −Ωutgφφ, (8.2.19)

ut(r) = ṫ =
1√

gtt + Ω2gφφ

, (8.2.20)

namely Ω = Ω(r) is the orbital angular velocity, E = E(r) is the energy per unit mass
and L = L(r) is the orbital angular momentum per unit mass of the test particle. Ad-
ditionally, ∂r is the derivative with respect to the radial coordinate r, a dot represents
the derivative with respect to the proper time and ut is the time component of the
4-velocity.

Another important quantity is the differential luminosity that is interpreted as the
energy per unit of time reaching an observer at infinity. We denote it by L∞ and
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estimate it through the flux, F, by means of the following relation [35? ]

dL∞

d ln r
= 4πr

√
gEF(r). (8.2.21)

If the radiation emission is assumed to be well described by that of a black body,
then we can express the spectral luminosity at infinity Lν,∞ as a function of the radi-
ation’s frequency ν as [? ]

νLν,∞ =
60
π3

∫ ∞

ri

√
gE

M2
T

(uty)4

exp
[
uty/F∗1/4

]
− 1

dr, (8.2.22)

where y = hν/kT∗, h is the Planck constant, k is Boltzmann’s constant, MT is the
total mass, F∗ = M2

TF and we have taken ri = rISCO. Also, T∗ is the characteristic
temperature defined from the Stefan-Boltzmann law, which reads

σT∗ =
ṁ

4πM2
T

, (8.2.23)

with σ the Stefan-Boltzmann constant.
To compare with a Schwarzschild black hole in vacuum it is also interesting to

calculate the radiative efficiency of the source, i.e. the amount of rest mass energy of
the disk that is converted into radiation which is given by

L∞/ṁ = 1 − E(rISCO), (8.2.24)

that in the case of Schwarzschild gives the known result η = (1− E(rISCO))× 100% ≃
5.7%.

In Fig. 8.1 we show schematic representation of the system examined here. Left
panel presents two dimensional diagram of the equatorial plane of the system, whereas
right panel shows a cross section of the three dimensional diagram. One can see that
rb < rISCO < 3rg. Thus the presence of dark matter alters the geometry around a
black hole and decreases the value of rISCO.

8.3 Discussion of numerical results

To compute orbital parameters of test particles, flux, differential and spectral lumi-
nosities of an accretion disk, we need first to numerically solve the TOV equations.
The corresponding numerical solutions for the pressure and the metric functions
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Figure 8.1: Left panel: two dimensional schematic illustration of the system at the
equatorial plane. The central black disk represents a black hole of radius rg =

2MBH = 109M⊙ ≈ 9.866 AU, the gray disk shows dark matter distribution starting
from rb = 27.133 AU up to rs = 57.755 AU, the orange disk represents an accretion
disk of inner radius rISCO = 29.414 AU and outer radius rs. Right panel: the cross sec-
tion of the three dimensional plot. The black sphere is the black hole, the dark matter
distribution is confined within the two gray spheres of radii rb and rs, the accretion
disk is at the equatorial plane
.

must fulfill the boundary conditions above reported in Eqs. (8.2.14)-(8.2.15). In par-
ticular, holding P(r) = 0 at r = rs, i.e. at the surface radius of the dark matter
envelope, implies that N and Λ have to ensure N(rs) = −Λ(rs) on the surface. How-
ever, the numerical value of function N(r) which denote as Nn(rs), obtained from the
numerical solution of the TOV equations, is not equal to −Λ(rs). This is related to the
fact that the boundary condition N(rb) = ln (1 − rg/rb) is imposed while solving the
TOV equations, whereas the boundary condition N(rs) = ln (1 − 2M(rs)/rs) is not.
Therefore in order to satisfy the latter boundary condition one needs a redefinition of
function Nn. The most suitable redefinition of Nn is the following

Nr(r) = Nn(r)−
[

Nn(rs)− ln
(

1 − 2M(rs)

rs

)]
r − rb
rs − rb

, (8.3.1)
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which clearly fulfills the boundary conditions in Eq. (8.2.14).
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Figure 8.2: Left panel: numerical evaluation of the orbital angular velocity Ω∗ of test
particles in the accretion disk around a static black hole of mass MBH = 5× 108M⊙ ≈
4.933AU in the presence of anisotropic dark matter as a function of r/MT. Right
panel: numerical evaluation of orbital angular momentum L∗ of test particles in the
accretion disk as a function of r/MT. In both figures the solid black curves represents
the case of a static black hole without dark matter while the other curves represent
anisotropic dark matter envelopes with ρ0 = 0.85 × 10−5AU−2

.

The numerical analysis that follows shows the effects of the presence of the dark
matter envelope as depending on the value of the parameter α in Eq. (8.2.9). It is
worth noticing that in order to solve the TOV equations one needs to restrict α to neg-
ative or small positive values. The outer boundary of the envelope rs is determined
from the TOV equations by imposing P(rs) = 0, once ρ0, Pb and α are fixed. Finally
the total amount of dark matter in the envelope is given by MDM(rs).

With these ingredients we fully determine the metric functions and therefore we
can study the motion of test particles within the dark matter cloud under the hypoth-
esis that dark matter doesn’t interact with the baryonic matter of the accretion disk
and therefore test particles move on geodesics in the geometry produced by the dark
matter envelope surrounding the black hole. The value of rISCO is obtained from the
evaluation of stable circular orbits within the dark matter envelope and it is set as the
inner edge of the disk.

Comparison of the values of rs, MDM and rISCO for different values of α can be
found in Tab. 8.1.

It is worth noticing that, for a fixed value of ρ0 and Pb the TOV equations can be
solved for a wide range of values of α < 0, which implies Pθ < P. On the other
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Figure 8.3: Left panel: numerical evaluation of energies E∗ of test particles in the
accretion disk around a static black hole of mass MBH = 5 × 108M⊙ ≈ 4.933AU in
the presence of anisotropic dark matter as a function of r/MT. Right panel: numerical
evaluation of the flux F divided by 10−5 of the accretion disk as a function of r/MT.
In both figures the solid black curves represents the case of a static black hole without
dark matter while the other curves represent anisotropic dark matter envelopes with
ρ0 = 0.85 × 10−5AU−2.

hand, for α > 0, i.e. Pθ > P there are maxima of α for which the TOV equa-
tions lead to unstable dark matter configurations and the TOV equations will not
have solutions. Also the total dark matter mass tends to reach a maximum value of
MDM(rs) ≃ 2.12342 × 10−2 MBH for α ≃ −10−8 ÷ 10−9. Similarly, considering a cen-
tral black hole of mass MBH = 5 × 108M⊙ ≈ 4.933AU (with M⊙ being the mass of
the Sun) the value of α affects only slightly the location of the ISCO, while it affects
significantly the outer edge of the envelope rs i.e. rs and MDM(rs) increase with in-
creasing α from negative to positive values. On the contrary, the radiative efficiency
of the accretion disk decreases as α increases. See for Tab. 8.1 details.

With the above numerical setup, in Fig. 8.2 we plot Ω⋆ = MTΩ and L⋆ = L/MT,
i.e. the dimensionless orbital angular velocity and orbital angular momentum of test
particles in the presence of a dark matter envelope, as functions of r/MT. The solid
curves represent the case of a static black hole without dark matter, namely ρ0 = 0,
and are easily distinguished from the other curves. For other curves the values of
density and pressure are fixed as ρ0 = 0.85× 10−5AU−2 and Pb = 2.356× 10−8AU−2,
and α is varied. In particular the distinction is more marked for orbital angular mo-
mentum L⋆, especially for large values of r/MT.

Similar plots for E⋆ and F⋆, namely the energy per unit mass of test particles and
the disk’s flux, are obtained in Fig. 8.3. In the case of energy one can see that for
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Figure 8.4: Left panel: numerical evaluation of the differential luminosity of the ac-
cretion disk scaled in powers of 10−2 as a function of r/MT. Right panel: numerical
evaluation of the spectral luminosity of the accretion disk as a function of hν/kT∗ ,
i.e. as a function of frequency. In both figures the solid curves represents the case of a
static black hole without dark matter. The intersection points are listed in Table 8.2.

smaller r/MT E⋆ is larger than the pure vacuum case while it becomes smaller r/MT
increases. Consequently, for each α there is an intersection point of the ρ0 = 0 curve
with the ρ0 = 0.85 × 10−5AU−2 curve which produce the same energy. In the case
of flux, it is noticeable that the presence of anisotropic dark matter with different α
increases the maximum with respect to ρ0 = 0 case.

The differential luminosity as a function of r/MT is reported in the left panel of
Fig. 8.4. The numerical evaluation is scaled in powers of 10−2 and shows how the
absence of dark matter produces smaller luminosity with respect to the case with
dark matter for small radii up to r/MT ≃ 15, and larger luminosity for larger values
of r/MT. This suggests that the accretion disk in the presence of dark matter should
emit more energy with respect to the accretion disk in vacuum for large frequencies,
as it can be seen from the right panel of Fig. 8.4 which shows the spectral luminosity
of the accretion disk as a function of the radiation frequency in a log-log plot. In fact,
all frequency ranges for α > 0 posses larger luminosity with respect to the ρ0 = 0
case, i.e. Schwarzschild. However for α ≤ 0 the situation is different and at lower
frequencies the luminosity is lower and at higher frequencies the luminosity higher
than the Schwarzschild case.

It is relevant to notice that, although our approach is model-dependent since it
relies on the assumptions made on compactness, see Eq. (8.2.9), the various possible
values of α do not impact significantly on the physics of the disk’s emission. This
can be seen from the fact that the cases with anisotropic pressures are similar to each
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other and to the isotropic case, i.e. α = 0, when compared with the vacuum case
(solid line in the plots), suggesting that the effects on the spectrum are due mostly to
the presence of dark matter rather than to the possible anisotropies.

From an experimental perspective, in principle, it would be possible to obtain in-
formation about the presence of dark matter from the spectra of accretion disks, if
the other relevant quantities, such as the black hole mass and the disk’s ISCO can be
determined independently. Last but not least, it is important to remember that even
the observable properties of the dark matter distribution are also model dependent,
since they rely on the choice made in Eq. (8.2.2). Although the choices of different
density profiles in Eq. (8.2.2), equations of state and prescriptions for the anisotropies
in Eq. (8.2.9) would modify the values of quantities such as rISCO and the flux of the
accretion disk, we may expect that the overall qualitative features due to the presence
of dark matter would remain unchanged.

The case when α = 0, or Pθ = P, has been considered in [? ]. In principle, one can
expect that tangential pressures alone, i.e. in the absence of the radial pressures, also
known as ‘Einstein cluster’ [? ? ? ], could also reproduce analogous results providing
de facto a degeneracy between the different approaches. The case of vanishing radial
pressures is interesting in itself as it may approximate a rotating fluid while keeping
the advantage of making the equations much easier and it has been used to model the
properties of dark matter halos in [? ]. The observational features of accretion disks
in the Einstein cluster will appear in a separate article [? ].

For the sake of clarity, in Fig. 8.5 we show the difference in luminosity between
the ρ0 = 0 (Schwarzschild) case and the cases with different values of α (with fixed
ρ0 = 0.85 × 10−5AU−2 and Pb = 2.356 × 10−8AU−2). The intersection points indi-
cate that there exist frequencies for which the ρ0 ̸= 0 case with various α can mimic
the Schwarzschild case. However the overall spectrum for the cases in the presence
of dark matter differs from that of the Schwarzschild case and the deviation, which
appears to be larger at smaller frequencies, may help to constrain the values of α and
ρ0 from observations.

In Table 8.2 we show numerical values of the intersection points illustrated in
Fig. 8.5. For fixed ρ0 = 0.85 × 10−5AU−2 and Pb = 2.356 × 10−8AU−2 and increasing
values of α the difference in luminosity decrease and so does the frequency. These
numbers show the frequency at which the disk surrounding a Schwarzschild black
hole in vacuum can be mimicked by that of a black hole surrounded by dark matter
with a given value of α.

Finally in Fig. 8.6 we plot the efficiency of the source as a function of α for different
densities ρ∗0 = 0.85, 0.80 and 0.75, where ρ∗0 = ρ0/(10−5AU−2). It is evident that
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Figure 8.5: The difference of spectral luminosity of the accretion disk between differ-
ent α curves (with fixed ρ0 = 0.85 × 10−5AU−2 and Pb = 2.356 × 10−8AU−2) and the
vacuum case, i.e. ρ0 = 0.

negative α will yield larger efficiency with respect to the Schwarzschild black hole in
vacuum (5.72%) and for positive α the efficiency will be slightly smaller than 5.72%.
For numerical values of the efficiency see Table 8.1.

8.4 Final outlooks

We considered a spherically symmetric configuration composed of a central black
hole surrounded by a spherical dark matter envelope with anisotropic pressures and
studied the spectra produced by the accretion disk surrounding the central object in
the assumption that the baryonic matter in the disk does not interact with the dark
matter particles in the envelope.

Under a series of assumptions for the dark matter component of the system, namely
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Figure 8.6: Efficiency η = (1 − E(rISCO)) × 100% versus α. Black solid line corre-
sponds to the efficiency of the Schwarzschild black hole. Color curves shows effi-
ciency in the presence of dark matter with different densities.

density profile, anisotropies and inner boundary, we solved the TOV equations to de-
termine the geometry inside the dark matter envelope and consequently the motion
of test particles within the disk. We then numerically evaluated the flux and luminos-
ity of the disk in the presence of dark matter and compared it with the isotropic case
and the vacuum case.

We showed that there exist frequencies in the spectrum of accretion disk that bear
the mark of the presence of dark matter and that are also affected by the anisotropies.
This suggests that if other relevant quantities, such as the mass of the central black
hole and the innermost stable circular orbit, can be determined independently, it
could be possible, at least in principle, to distinguish different cases. In addition,
we also estimated how the radiative efficiency of the source is affected by the pres-
ence of dark matter anisotropies and found that the efficiency increases with respect
to that of a Schwarzschild black hole immersed in isotropic dark matter when Pθ < P.
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Of course, the scenario presented here is just a simple toy model to highlight the
qualitative features that the presence of anisotropies may bear on the accretion disk’s
spectrum. Astrophysical black holes are expected to be rotating and, therefore, the
assumption of staticity, while simplifying the equations, is not particularly realistic.
However, we expect similar results to hold in the presence of rotation of the central
object and we aim at investigating those in future works.

At present, our knowledge of the dark matter distribution near the center of galax-
ies is very limited, with most studies providing estimates for the dark matter den-
sity at distances of the order of several parsecs from the galactic center in the Milky
Way. Similar estimates for other galaxies are missing. Similarly, we still don’t know
whether the geometry near compact objects at the center of galaxies is well described
by the Kerr metric. We showed here that the presence of dark matter may affect the
spectrum of the black hole’s accretion disk and, therefore, provide valuable informa-
tion on the nature of dark matter itself. The hope is that future observations will
allow to test such ideas and further constrain the properties of viable dark matter
candidates.
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Table 8.1: Physical parameters of the dark matter envelope with fixed ρ0 = 0.85 ×
10−5AU−2 and Pb = 2.356 × 10−8AU−2. In addition the black hole mass MBH =
5 × 108M⊙ ≈ 4.933AU, the corresponding gravitational radius rg = 2MBH, the inner
edge of the dark matter envelope rb = 5.5MBH are the model free parameters and
therefore are also fixed. The choice of the anisotropic parameter α determines the
innermost stable circular orbit radius rISCO, the radius of the dark matter envelope
rs and its total mass MDM(rs). First column shows various values of α, second rISCO
in units of the gravitational radius rT corresponding to the total mass of the system
MT = rT/2, third rs in units of rT, fourth MDM(rs) in units of MT, fifth MT in units of
solar mass and sixth the radiative efficiency of the source η = (1− E(rISCO))× 100%.

α rISCO rs 10−2MDM(rs) MT η
(rT) (rT) (MT)

(
108M⊙

)
(%)

−0.10 2.928 5.750 1.7761957 5.0904157 5.866
−0.08 2.925 5.912 1.8099900 5.0921677 5.856
−0.06 2.921 6.124 1.8488401 5.0941833 5.845
−0.04 2.916 6.427 1.8954049 5.0966012 5.830
−0.02 2.909 6.957 1.9561495 5.0997589 5.808
−0.01 2.903 7.498 1.9982066 5.1019474 5.789
−10−3 2.891 9.359 2.0609501 5.1052160 5.747
−10−5 2.882 13.268 2.0786001 5.1061361 5.706
−10−7 2.879 17.343 2.0792547 5.1061703 5.686
−10−9 2.876 21.534 2.0792725 5.1061712 5.674

0 2.875 24.086 2.0792729 5.1061712 5.670
6.78 × 10−11 2.874 28.626 2.0792729 5.1061712 5.664
6.85 × 10−11 2.874 29.726 2.0792730 5.1061712 5.662

6.887 × 10−11 2.872 39.936 2.0792730 5.1061712 5.655
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Table 8.2: The intersection points between several luminosity curves with ρ0 = 0.85×
10−5AU−2 and Pb = 2.356 × 10−8AU−2 and different values of α and the luminosity
curve of a Schwarzschild black hole in vacuum ρ0 = 0. First column shows the
different values of α considered, the second and third columns show the frequencies
of the emitted radiation and the spectral luminosity as for Fig. 8.5.

α log10(hν/kT∗) log10(νLν,∞)

−9 × 10−9 −0.603 −1.764
−10−9 −0.651 −1.670

0 −0.756 −1.606
6.78 × 10−11 −12.254 −33.397
6.85 × 10−11 −14.683 −39.156
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