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1 Abstract

Due to the interaction of physics and astrophysics we are witnessing in these
years a splendid synthesis of theoretical, experimental and observational re-
sults originating from three fundamental physical processes. They were orig-
inally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg,
Euler and Schwinger. For almost seventy years they have all three been fol-
lowed by a continued effort of experimental verification on Earth-based ex-
periments. The Dirac process, e+e− → 2γ, has been by far the most suc-
cessful. It has obtained extremely accurate experimental verification and has
led as well to an enormous number of new physics in possibly one of the
most fruitful experimental avenues by introduction of storage rings in Fras-
cati and followed by the largest accelerators worldwide: DESY, SLAC etc.
The Breit–Wheeler process, 2γ→ e+e−, although conceptually simple, being
the inverse process of the Dirac one, has been by far one of the most difficult
to be verified experimentally. Only recently, through the technology based on
free electron X-ray laser and its numerous applications in Earth-based exper-
iments, some first indications of its possible verification have been reached.
The vacuum polarization process in strong electromagnetic field, pioneered
by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of crit-
ical electric field Ec = m2

e c3/(eh̄). It has been searched without success for
more than forty years by heavy-ion collisions in many of the leading particle
accelerators worldwide.

The novel situation today is that these same processes can be studied on a
much more grandiose scale during the gravitational collapse leading to the
formation of a black hole being observed in Gamma Ray Bursts (GRBs). This
report is dedicated to the scientific race. The theoretical and experimental
work developed in Earth-based laboratories is confronted with the theoreti-
cal interpretation of space-based observations of phenomena originating on
cosmological scales. What has become clear in the last ten years is that all the
three above mentioned processes, duly extended in the general relativistic
framework, are necessary for the understanding of the physics of the grav-
itational collapse to a black hole. Vice versa, the natural arena where these
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processes can be observed in mutual interaction and on an unprecedented
scale, is indeed the realm of relativistic astrophysics.

We systematically analyze the conceptual developments which have fol-
lowed the basic work of Dirac and Breit–Wheeler. We also recall how the
seminal work of Born and Infeld inspired the work by Sauter, Heisenberg
and Euler on effective Lagrangian leading to the estimate of the rate for the
process of electron–positron production in a constant electric field. In addi-
tion of reviewing the intuitive semi-classical treatment of quantum mechani-
cal tunneling for describing the process of electron–positron production, we
recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and
effective Lagrangian for constant electromagnetic fields. We also review the
electron–positron production in both time-alternating electromagnetic fields,
studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the cor-
responding processes relevant for pair production at the focus of coherent
laser beams as well as electron beam–laser collision. We finally report some
current developments based on the general JWKB approach which allows to
compute the Schwinger rate in spatially varying and time varying electro-
magnetic fields.

We also recall the pioneering work of Landau and Lifshitz, and Racah on
the collision of charged particles as well as experimental success of AdA and
ADONE in the production of electron–positron pairs.

We then turn to the possible experimental verification of these phenomena.
We review: (A) the experimental verification of the e+e− → 2γ process stud-
ied by Dirac. We also briefly recall the very successful experiments of e+e−

annihilation to hadronic channels, in addition to the Dirac electromagnetic
channel; (B) ongoing Earth based experiments to detect electron–positron
production in strong fields by focusing coherent laser beams and by elec-
tron beam–laser collisions; and (C) the multiyear attempts to detect electron–
positron production in Coulomb fields for a large atomic number Z > 137 in
heavy ion collisions. These attempts follow the classical theoretical work of
Popov and Zeldovich, and Greiner and their schools.

We then turn to astrophysics. We first review the basic work on the ener-
getics and electrodynamical properties of an electromagnetic black hole and
the application of the Schwinger formula around Kerr–Newman black holes
as pioneered by Damour and Ruffini. We only focus on black hole masses
larger than the critical mass of neutron stars, for convenience assumed to
coincide with the Rhoades and Ruffini upper limit of 3.2 M⊙. In this case
the electron Compton wavelength is much smaller than the spacetime cur-
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vature and all previous results invariantly expressed can be applied follow-
ing well established rules of the equivalence principle. We derive the corre-
sponding rate of electron–positron pair production and introduce the concept
of dyadosphere. We review recent progress in describing the evolution of
optically thick electron–positron plasma in presence of supercritical electric
field, which is relevant both in astrophysics as well as ongoing laser beam
experiments. In particular we review recent progress based on the Vlasov-
Boltzmann-Maxwell equations to study the feedback of the created electron–
positron pairs on the original constant electric field. We evidence the exis-
tence of plasma oscillations and its interaction with photons leading to energy
and number equipartition of photons, electrons and positrons. We finally re-
view the recent progress obtained by using the Boltzmann equations to study
the evolution of an electron–positron-photon plasma towards thermal equi-
librium and determination of its characteristic timescales. The crucial differ-
ence introduced by the correct evaluation of the role of two and three body
collisions, direct and inverse, is especially evidenced. We then present some
general conclusions.

The results reviewed in this report are going to be submitted to decisive
tests in the forthcoming years both in physics and astrophysics. To mention
only a few of the fundamental steps in testing in physics we recall the start-
ing of experimental facilities at the National Ignition Facility at the Lawrence
Livermore National Laboratory as well as corresponding French Laser the
Mega Joule project. In astrophysics these results will be tested in galactic
and extragalactic black holes observed in binary X-ray sources, active galac-
tic nuclei, microquasars and in the process of gravitational collapse to a neu-
tron star and also of two neutron stars to a black hole giving origin to GRBs.
The astrophysical description of the stellar precursors and the initial physical
conditions leading to a gravitational collapse process will be the subject of a
forthcoming report. As of today no theoretical description has yet been found
to explain either the emission of the remnant for supernova or the formation
of a charged black hole for GRBs. Important current progress toward the un-
derstanding of such phenomena as well as of the electrodynamical structure
of neutron stars, the supernova explosion and the theories of GRBs will be
discussed in the above mentioned forthcoming report. What is important
to recall at this stage is only that both the supernovae and GRBs processes
are among the most energetic and transient phenomena ever observed in the
Universe: a supernova can reach energy of∼ 1054 ergs on a time scale of a few
months and GRBs can have emission of up to ∼ 1054 ergs in a time scale as
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short as of a few seconds. The central role of neutron stars in the description
of supernovae, as well as of black holes and the electron–positron plasma,
in the description of GRBs, pioneered by one of us (RR) in 1975, are widely
recognized. Only the theoretical basis to address these topics are discussed
in the present report.
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2 Introduction

The annihilation of electron–positron pair into two photons, and its inverse
process – the production of electron–positron pair by the collision of two pho-
tons were first studied in the framework of quantum mechanics by P.A.M.
Dirac and by G. Breit and J.A. Wheeler in the 1930s [1, 2].

A third fundamental process was pioneered by the work of Fritz Sauter and
Oscar Klein, pointing to the possibility of creating an electron–positron pair
from the vacuum in a constant electromagnetic field. This became known
as the ‘Klein paradox’ and such a process named as vacuum polarization. It
would occur for an electric field stronger than the critical value

Ec ≡
m2

e c3

eh̄
≃ 1.3 · 1016 V/cm. (2.0.1)

where me, e, c and h̄ are respectively the electron mass and charge, the speed
of light and the Planck’s constant.

The experimental difficulties to verify the existence of such three processes
became immediately clear. While the process studied by Dirac was almost
immediately observed [3] and the electron–positron collisions became possi-
bly the best tested and prolific phenomenon ever observed in physics. The
Breit–Wheeler process, on the contrary, is still today waiting a direct obser-
vational verification. Similarly the vacuum polarization process defied dedi-
cated attempts for almost fifty years in experiments in nuclear physics labo-
ratories and accelerators all over the world, see Section 7.

From the theoretical point of view the conceptual changes implied by these
processes became immediately clear. They were by vastness and depth only
comparable to the modifications of the linear gravitational theory of New-
ton introduced by the nonlinear general relativistic equations of Einstein. In
the work of Euler, Oppenheimer and Debye, Born and his school it became
clear that the existence of the Breit–Wheeler process was conceptually modi-
fying the linearity of the Maxwell theory. In fact the creation of the electron–
positron pair out of the two photons modifies the concept of superposition
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2 Introduction

of the linear electromagnetic Maxwell equations and impose the necessity
to transit to a nonlinear theory of electrodynamics. In a certain sense the
Breit–Wheeler process was having for electrodynamics the same fundamen-
tal role of Gedankenexperiment that the equivalence principle had for grav-
itation. Two different attempts to study these nonlinearities in the electro-
dynamics were made: one by Born and Infeld [4–6] and one by Euler and
Heisenberg [7]. These works prepared the even greater revolution of Quan-
tum Electro-Dynamics by Tomonaga [8], Feynman [9–11], Schwinger [12–14]
and Dyson [15, 16].

In Section 3 we review the fundamental contributions to the electron–positron
pair creation and annihilation and to the concept of the critical electric field.
In Section 3.1 we review the Dirac derivation [1] of the electron–positron an-
nihilation process obtained within the perturbation theory in the framework
of relativistic quantum mechanics and his derivation of the classical formula
for the cross-section σlab

e+e− in the rest frame of the electron

σlab
e+e− = π

(
αh̄

me c

)2

(γ̂− 1)−1
{

γ̂2 + 4γ̂ + 1
γ̂2 − 1

ln[γ̂ + (γ̂2 − 1)1/2]− γ̂ + 3
(γ̂2 − 1)1/2

}
,

where γ̂ ≡ E+/me c2 ≥ 1 is the energy of the positron and α = e2/(h̄c) is
as usual the fine structure constant, and we recall the corresponding formula
for the center of mass reference frame. In Section 3.2 we recall the main steps
in the classical Breit–Wheeler work [2] on the production of a real electron–
positron pair in the collision of two photons, following the same method used
by Dirac and leading to the evaluation of the total cross-section σγγ in the
center of mass of the system

σγγ =
π

2

(
αh̄

me c

)2

(1− β̂2)
[
2β̂(β̂2− 2)+ (3− β̂4) ln

(1 + β̂

1− β̂

)]
, with β̂ =

c|p|
E

,

where β̂ is the reduced velocity of the electron or the positron. In Section
3.3 we recall the basic higher order processes, compared to the Dirac and
Breit–Wheeler ones, leading to pair creation. In Section 3.4 we recall the fa-
mous Klein paradox [17, 18] and the possible tunneling between the positive
and negative energy states leading to the concept of level crossing and pair
creation by analogy to the Gamow tunneling [19] in the nuclear potential bar-
rier. We then turn to the celebrated Sauter work [20] showing the possibility
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of creating a pair in a uniform electric field E. We recover in Section 3.5.1 a
JWKB approximation in order to reproduce and improve on the Sauter result
by obtaining the classical Sauter exponential term as well as the prefactor

ΓJWKB

V
≃ Ds

αE2

2π2h̄
e−πEc/E,

where Ds = 2 for a spin-1/2 particle and Ds = 1 for spin-0, V is the volume.
Finally, in Section 3.5.2 the case of a simultaneous presence of an electric and
a magnetic field B is presented leading to the estimate of pair production rate

ΓJWKB

V
≃ αβε

πh̄
coth

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 1/2 particle

and

ΓJWKB

V
≃ αβε

2πh̄
sinh−1

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 0 particle,

where

ε ≡
√
(S2 + P2)1/2 + S,

β ≡
√
(S2 + P2)1/2 − S,

where the scalar S and the pseudoscalar P are

S ≡ 1
4

FµνFµν =
1
2
(E2 − B2); P ≡ 1

4
Fµν F̃µν = E · B,

where F̃µν ≡ ϵµνλκFλκ is the dual field tensor.

In Section 4 we first recall the seminal work of Hans Euler [21] pointing
out for the first time the necessity of nonlinear character of electromagnetism
introducing the classical Euler Lagrangian

L =
E2 − B2

8π
+

1
α

1
E2

0

[
aE

(
E2 − B2

)2
+ bE (E · B)2

]
,

where
aE = −1/(360π2), bE = −7/(360π2),
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a first order perturbation to the Maxwell Lagrangian. In Section 4.2 we re-
view the alternative theoretical approach of nonlinear electrodynamics by
Max Born [5] and his collaborators, to the more ambitious attempt to ob-
tain the correct nonlinear Lagrangian of Electro-Dynamics. The motivation of
Born was to attempt a theory free of divergences in the observable properties
of an elementary particle, what has become known as ‘unitarian’ standpoint
versus the ‘dualistic’ standpoint in description of elementary particles and
fields. We recall how the Born Lagrangian was formulated

L =
√

1 + 2S− P2 − 1,

and one of the first solutions derived by Born and Infeld [6]. We also recall
one of the interesting aspects of the courageous approach of Born had been
to formulate this Lagrangian within a unified theory of gravitation and elec-
tromagnetism following Einstein program. Indeed, we also recall the very
interesting solution within the Born theory obtained by Hoffmann [22, 23].
Still in the work of Born [5] the seminal idea of describing the nonlinear vac-
uum properties of this novel electrodynamics by an effective dielectric con-
stant and magnetic permeability functions of the field arisen. We then review
in Section 4.3.1 the work of Heisenberg and Euler [7] adopting the general
approach of Born and generalizing to the presence of a real and imaginary
part of the electric permittivity and magnetic permeability. They obtain an
integral expression of the effective Lagrangian given by

∆Leff =
e2

16π2h̄c

∫ ∞

0
e−s ds

s3

[
is2 ĒB̄

cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2) + c.c.
cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2)− c.c.

+

(
m2

e c3

eh̄

)2

+
s2

3
(|B̄|2 − |Ē|2)

]
,

where Ē, B̄ are the dimensionless reduced fields in the unit of the critical field
Ec,

Ē =
|E|
Ec

, B̄ =
|B|
Ec

.

obtaining the real part and the crucial imaginary term which relates to the
pair production in a given electric field. It is shown how these results give as
a special case the previous result obtained by Euler (4.1.3). In Section 4.3.2 the
work by Weisskopf [24] working on a spin-0 field fulfilling the Klein–Gordon
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equation, in contrast to the spin 1/2 field studied by Heisenberg and Euler,
confirms the Euler-Heisenberg result. Weisskopf obtains explicit expression
of pair creation in an arbitrary strong magnetic field and in an electric field
described by Ē and B̄ expansion.

For the first time Heisenberg and Euler provided a description of the vac-
uum properties by the characteristic scale of strong field Ec and the effective
Lagrangian of nonlinear electromagnetic fields. In 1951, Schwinger [25–27]
made an elegant quantum field theoretic reformulation of this discovery in
the QED framework. This played an important role in understanding the
properties of the QED theory in strong electromagnetic fields. The QED the-
ory in strong coupling regime, i.e., in the regime of strong electromagnetic
fields, is still a vast arena awaiting for experimental verification as well as of
further theoretical understanding.

In Section 5 after recalling some general properties of QED in Section 5.1
and some basic processes in Section 5.2 we proceed to the consideration of the
Dirac and the Breit–Wheeler processes in QED in Secton 5.3. Then we discuss
some higher order processes, namely double pair production in Section 5.4,
electron-nucleus bremsstrahlung and pair production by a photon in the field
of a nucleus in Section 5.5, and finally pair production by two ions in Section
5.6. In Section 5.7 the classical result for the vacuum to vacuum decay via
pair creation in uniform electric field by Schwinger is recalled

Γ
V

=
αE2

π2

∞

∑
n=1

1
n2 exp

(
−nπEc

E

)
.

This formula generalizes and encompasses the previous results reviewed in
our report: the JWKB results, discussed in Section 3.5, and the Sauter expo-
nential factor (3.5.11), and the Heisenberg-Euler imaginary part of the effec-
tive Lagrangian. We then recall the generalization of this formula to the case
of a constant electromagnetic fields. Such results were further generalized
to spatially nonuniform and time-dependent electromagnetic fields by Nik-
ishov [28], Vanyashin and Terent’ev [29], Popov [30–32], Narozhny and Nik-
ishov [33] and Batalin and Fradkin [34]. We then conclude this argument by
giving the real and imaginary parts for the effective Lagrangian for arbitrary
constant electromagnetic field recently published by Ruffini and Xue [35].
This result generalizes the previous result obtained by Weisskopf in strong
fields. In weak field it gives the Euler-Heisenberg effective Lagrangian. As
we will see in the Section 7.2 much attention has been given experimentally
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to the creation of pairs in the rapidly changing electric fields. A fundamen-
tal contribution in this field studying pair production rates in an oscillating
electric field was given by Brezin and Itzykson [36] and we recover in Section
5.8 their main results which apply both to the case of bosons and fermions.
We recall how similar results were independently obtained two years later by
Popov [37]. In Section 5.10 we recall an alternative physical process consid-
ering the quantum theory of the interaction of free electron with the field of
a strong electromagnetic waves: an ultrarelativistic electron absorbs multiple
photons and emits only a single photon in the reaction [38]:

e + nω → e′ + γ.

This process appears to be of the great relevance as we will see in the next Sec-
tion for the nonlinear effects originating from laser beam experiments. Partic-
ularly important appears to be the possibility outlined by Burke et al. [39] that
the high-energy photon γ created in the first process propagates through the
laser field, it interacts with laser photons nω to produce an electron–positron
pair

γ + nω → e+ + e−.

We also refer to the papers by Narozhny and Popov [40–45] studying the
dependence of this process on the status of the polarization of the photons.

We point out the great relevance of departing from the case of the uniform
electromagnetic field originally considered by Sauter, Heisenberg and Euler,
and Schwinger. We also recall some of the classical works of Brezin and Itzyk-
son and Popov on time varying fields. The space variation of the field was
also considered in the classical papers of Nikishov and Narozhny as well as in
the work of Wang and Wong. Finally, we recall the work of Khriplovich [46]
studying the vacuum polarization around a Reissner–Nordström black hole.
A more recent approach using the worldline formalism, sometimes called the
string-inspired formalism, was advanced by Dunne and Schubert [47, 48].

In Section 6, after recalling studies of pair production in inhomogeneous
electromagnetic fields in the literature by [48–53], we present a brief review
of our recent work [54] where the general formulas for pair production rate
as functions of either crossing energy level or classical turning point, and
total production rate are obtained in external electromagnetic fields which
vary either in one space direction E(z) or in time E(t). In Sections 6.1 and
6.2, these formulas are explicitly derived in the JWKB approximation and
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generalized to the case of three-dimensional electromagnetic configurations.
We apply these formulas to several cases of such inhomogeneous electric field
configurations, which are classified into two categories. In the first category,
we study two cases: a semi-confined field E(z) ̸= 0 for z ≲ ℓ and the Sauter
field

E(z) = E0/cosh2 (z/ℓ) , V(z) = −σs mec2 tanh (z/ℓ) ,

where ℓ is width in the z-direction, and

σs ≡ eE0ℓ/mec2 = (ℓ/λC)(E0/Ec).

In these two cases the pairs produced are not confined by the electric po-
tential and can reach an infinite distance. The resultant pair production rate
varies as a function of space coordinate. The result we obtained is drasti-
cally different from the Schwinger rate in homogeneous electric fields with-
out any boundary. We clearly show that the approximate application of the
Schwinger rate to electric fields limited within finite size of space overesti-
mates the total number of pairs produced, particularly when the finite size
is comparable with the Compton wavelength λC, see Figs. 6.2 and 6.3 where
it is clearly shown how the rate of pair creation far from being constant goes
to zero at both boundaries. The same situation is also found for the case of
the semi-confined field z(z) ̸= 0 for |z| ≲ ℓ, see Eq. (6.3.34). In the second
category, we study a linearly rising electric field E(z) ∼ z, corresponding to
a harmonic potential V(z) ∼ z2, see Figs. 6.1. In this case the energy spectra
of bound states are discrete and thus energy crossing levels for tunneling are
discrete. To obtain the total number of pairs created, using the general formu-
las for pair production rate, we need to sum over all discrete energy crossing
levels, see Eq. (6.4.11), provided these energy levels are not occupied. Other-
wise, the pair production would stop due to the Pauli principle.

In Section 7 we focus on the phenomenology of electron–positron pair cre-
ation and annihilation experiments. There are three different aspects which
are examined: the verification of the process (3.0.1) initially studied by Dirac,
the process (3.0.2) studied by Breit and Wheeler, and then the classical work
of vacuum polarization process around a supercritical nucleus, following the
Sauter, Euler, Heisenberg and Schwinger work. We first recall in Section 7.1
how the process (3.0.1) predicted by Dirac was almost immediately discov-
ered by Klemperer [3]. Following this discovery the electron–positron colli-
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sions have become possibly the most prolific field of research in the domain of
particle physics. The crucial step experimentally was the creation of the first
electron–positron collider the “Anello d’Accumulazione” (AdA) was built by
the theoretical proposal of Bruno Touschek in Frascati (Rome) in 1960 [55].
Following the success of AdA (luminosity ∼ 1025/(cm2 sec), beam energy
∼0.25GeV), it was decided to build in the Frascati National Laboratory a stor-
age ring of the same kind, Adone. Electron-positron colliders have been built
and proposed for this purpose all over the world (CERN, SLAC, INP, DESY,
KEK and IHEP). The aim here is just to recall the existence of this enormous
field of research which appeared following the original Dirac idea. The main
cross-sections (7.1.1) and (7.1.2) are recalled and the diagram (Fig. 7.1) sum-
marizing this very great success of particle physics is presented. While the
Dirac process (3.0.1) has been by far one of the most prolific in physics, the
Breit–Wheeler process (3.0.2) has been one of the most elusive for direct ob-
servations. In Earth-bound experiments the major effort today is directed to
evidence this phenomenon in very strong and coherent electromagnetic field
in lasers. In this process collision of many photons may lead in the future to
pair creation. This topic is discussed in Section 7.2. Alternative evidence for
the Breit–Wheeler process can come from optically thick electron–positron
plasma which may be created either in the future in Earth-bound experi-
ments, or currently observed in astrophysics, see Section 10. One additional
way to probe the existence of the Breit–Wheeler process is by establishing in
astrophysics an upper limits to observable high-energy photons, as a function
of distance, propagating in the Universe as pioneered by Nikishov [56], see
Section 7.4. We then recall in Section 7.3 how the crucial experimental break-
through came from the idea of John Madey [57] of self-amplified spontaneous
emission in an undulator, which results when charges interact with the syn-
chrotron radiation they emit [58]. Such X-ray free electron lasers have been
constructed among others at DESY and SLAC and focus energy onto a small
spot hopefully with the size of the X-ray laser wavelength λ ≃ O(0.1)nm [59],
and obtain a very large electric field E ∼ 1/λ, much larger than those obtain-
able with any optical laser of the same power. This technique can be used
to achieve a very strong electric field near to its critical value for observable
electron–positron pair production in vacuum. No pair can be created by a
single laser beam. It is then assumed that each X-ray laser pulse is split into
two equal parts and recombined to form a standing wave with a frequency
ω. We then recall how for a laser pulse with wavelength λ about 1µm and
the theoretical diffraction limit σlaser ≃ λ being reached, the critical intensity
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laser beam would be

Ic
laser =

c
4π

E2
c ≃ 4.6 · 1029W/cm2.

In Section 7.2.1 we recall the theoretical formula for the probability of pair
production in time-alternating electric field in two limiting cases of large fre-
quency and small frequency. It is interesting that in the limit of large field and
small frequency the production rate approach the one of the Sauter, Heisen-
berg, Euler and Schwinger, discussed in Section 5. In the following Sec-
tion 7.2.2 we recall the actually reached experimental limits quoted by Ring-
wald [60] for a X-ray laser and give a reference to the relevant literature. In
Section 7.2.3 we summarize some of the most recent theoretical estimates for
pair production by a circularly polarized laser beam by Narozhny, Popov and
their collaborators. In this case the field invariants (3.5.23) are not vanishing
and pair creation can be achieved by a single laser beam. They computed the
total number of electron–positron pairs produced as a function of intensity
and focusing parameter of the laser. Particularly interesting is their analy-
sis of the case of two counter-propagating focused laser pulses with circular
polarizations, pair production becomes experimentally observable when the
laser intensity Ilaser ∼ 1026W/cm2 for each beam, which is about 1 ∼ 2 or-
ders of magnitude lower than for a single focused laser pulse, and more than
3 orders of magnitude lower than the critical intensity (7.2.4). Equally in-
teresting are the considerations which first appear in treating this problem
that the back reaction of the pairs created on the field has to be taken into
due account. We give the essential references and we will see in Section 9
how indeed this feature becomes of paramount importance in the field of
astrophysics. We finally review in Section 7.2.4 the technological situation
attempting to increase both the frequency and the intensity of laser beams.

The difficulty of evidencing the Breit–Wheeler process even when the high-
energy photon beams have a center of mass energy larger than the energy-
threshold 2mec2 = 1.02 MeV was clearly recognized since the early days. We
discuss the crucial role of the effective nonlinear terms originating in strong
electromagnetic laser fields: the interaction needs not to be limited to initial
states of two photons [61, 62]. A collective state of many interacting laser
photons occurs. We turn then in Section 7.3 to an even more complex and in-
teresting procedure: the interaction of an ultrarelativistic electron beam with
a terawatt laser pulse, performed at SLAC [63], when strong electromagnetic
fields are involved. A first nonlinear Compton scattering process occurs in
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which the ultrarelativistic electrons absorb multiple photons from the laser
field and emit a single photon via the process (5.9.1). The theory of this pro-
cess has been given in Section 5.10. The second is a drastically improved
Breit–Wheeler process (5.9.2) by which the high-energy photon γ, created in
the first process, propagates through the laser field and interacts with laser
photons nω to produce an electron–positron pair [39]. In Section 7.3.1 we
describe the status of this very exciting experiments which give the first ev-
idence for the observation in the laboratory of the Breit–Wheeler process al-
though in a somewhat indirect form. Having determined the theoretical ba-
sis as well as attempts to verify experimentally the Breit–Wheeler formula
we turn in Section 7.4 to a most important application of the Breit–Wheeler
process in the framework of cosmology. As pointed out by Nikishov [56] the
existence of background photons in cosmology puts a stringent cutoff on the
maximum trajectory of the high-energy photons in cosmology.

Having reviewed both the theoretical and observational evidence of the
Dirac and Breit–Wheeler processes of creation and annihilation of electron–
positron pairs we turn then to one of the most conspicuous field of theoretical
and experimental physics dealing with the process of electron–positron pair
creation by vacuum polarization in the field of a heavy nuclei. This topic has
originated one of the vastest experimental and theoretical physics activities
in the last forty years, especially by the process of collisions of heavy ions. We
first review in Section 7.5 the Z = 137 catastrophe, a collapse to the center, in
semi-classical approach, following the Pomeranchuk work [64] based on the
imposing the quantum conditions on the classical treatment of the motion
of two relativistic particles in circular orbits. We then proceed showing in
Section 7.5.3 how the introduction of the finite size of the nucleus, following
the classical work of Popov and Zeldovich [65], leads to the critical charge of
a nucleus of Zcr = 173 above which a bare nucleus would lead to the level
crossing between the bound state and negative energy states of electrons in
the field of a bare nucleus. We then review in Section 7.5.5 the recent theoret-
ical progress in analyzing the pair creation process in a Coulomb field, taking
into account radial dependence and time variability of electric field. We fi-
nally recall in Section 7.6 the attempt to use heavy-ion collisions to form tran-
sient superheavy “quasimolecules”: a long-lived metastable nuclear complex
with Z > Zcr. It was expected that the two heavy ions of charges respectively
Z1 and Z2 with Z1 + Z2 > Zcr would reach small inter-nuclear distances well
within the electron’s orbiting radii. The electrons would not distinguish be-
tween the two nuclear centers and they would evolve as if they were bounded
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by nuclear “quasimolecules” with nuclear charge Z1 + Z2. Therefore, it was
expected that electrons would evolve quasi-statically through a series of well
defined nuclear “quasimolecules” states in the two-center field of the nuclei
as the inter-nuclear separation decreases and then increases again. When
heavy-ion collision occurs the two nuclei come into contact and some deep
inelastic reaction occurs determining the duration ∆ts of this contact. Such
“sticking time” is expected to depend on the nuclei involved in the reac-
tion and on the beam energy. Theoretical attempts have been proposed to
study the nuclear aspects of heavy-ion collisions at energies very close to the
Coulomb barrier and search for conditions, which would serve as a trigger for
prolonged nuclear reaction times, to enhance the amplitude of pair produc-
tion. The sticking time ∆ts should be larger than 1 ∼ 2 · 10−21 sec [66] in order
to have significant pair production. Up to now no success has been achieved
in justifying theoretically such a long sticking time. In reality the character-
istic sticking time has been found of the order of ∆t ∼ 10−23 sec, hundred
times shorter than the needed to activate the pair creation process. We fi-
nally recall in Section 7.6.2 the Darmstadt-Brookhaven dialogue between the
Orange and the Epos groups and the Apex group at Argonne in which the
claim for discovery of electron–positron pair creation by vacuum polariza-
tion in heavy-ion collisions was finally retracted. Out of the three fundamen-
tal processes addressed in this report, the Dirac electron–positron annihila-
tion and the Breit–Wheeler electron–positron creation from two photons have
found complete theoretical descriptions within Quantum Electro-Dynamics.
The first one is very likely the best tested process in physical science, while
the second has finally obtained the first indirect experimental evidence. The
third process, the one of the vacuum polarization studied by Sauter, Euler,
Heisenberg and Schwinger, presents in Earth-bound experiments presents a
situation “terra incognita”.

We turn then to astrophysics, where, in the process of gravitational col-
lapse to a black hole and in its outcomes these three processes will be for
the first time verified on a much larger scale, involving particle numbers of
the order of 1060, seeing both the Dirac process and the Breit–Wheeler pro-
cess at work in symbiotic form and electron–positron plasma created from
the “blackholic energy” during the process of gravitational collapse. It is
becoming more and more clear that the gravitational collapse process to a
Kerr–Newman black hole is possibly the most complex problem ever ad-
dressed in physics and astrophysics. What is most important for this report
is that it gives for the first time the opportunity to see the above three pro-
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cesses simultaneously at work under ultrarelativistic special and general rel-
ativistic regimes. The process of gravitational collapse is characterized by the
timescale ∆tg = GM/c3 ≃ 5 · 10−6M/M⊙ sec and the energy involved are of
the order of ∆E = 1054M/M⊙ ergs. It is clear that this is one of the most
energetic and most transient phenomena in physics and astrophysics and
needs for its correct description such a highly time varying treatment. Our
approach in Section 8 is to gain understanding of this process by separating
the different components and describing 1) the basic energetic process of an
already formed black hole, 2) the vacuum polarization process of an already
formed black hole, 3) the basic formula of the gravitational collapse recover-
ing the Tolman-Oppenheimer-Snyder solutions and evolving to the gravita-
tional collapse of charged and uncharged shells. This will allow among oth-
ers to obtain a better understanding of the role of irreducible mass of the black
hole and the maximum blackholic energy extractable from the gravitational
collapse. We will as well address some conceptual issues between general rel-
ativity and thermodynamics which have been of interest to theoretical physi-
cists in the last forty years. Of course in these brief chapter we will be only
recalling some of these essential themes and refer to the literature where in-
depth analysis can be found. In Section 8.1 we recall the Kerr–Newman met-
ric and the associated electromagnetic field. We then recall the classical work
of Carter [67] integrating the Hamilton-Jacobi equations for charged particle
motions in the above given metric and electromagnetic field. We then recall
in Section 8.2 the introduction of the effective potential techniques in order to
obtain explicit expression for the trajectory of a particle in a Kerr–Newman
geometry, and especially the introduction of the reversible–irreversible trans-
formations which lead then to the Christodoulou-Ruffini mass formula of the
black hole

M2c4 =

(
Mirc2 +

c2Q2

4GMir

)2

+
L2c8

4G2M2
ir

,

where Mir is the irreducible mass of a black hole, Q and L are its charge and
angular momentum. We then recall in Section 8.3 the positive and negative
root states of the Hamilton–Jacobi equations as well as their quantum limit.
We finally introduce in Section 8.4 the vacuum polarization process in the
Kerr–Newman geometry as derived by Damour and Ruffini [68] by using a
spatially orthonormal tetrad which made the application of the Schwinger
formalism in this general relativistic treatment almost straightforward. We
then recall in Section 8.5 the definition of a dyadosphere in a Reissner–Nordström
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geometry, a region extending from the horizon radius

r+ = 1.47 · 105µ(1 +
√

1− ξ2) cm

out to an outer radius

r⋆ =
(

h̄
mec

)1/2 (GM
c2

)1/2(mp

me

)1/2( e
qp

)1/2( Q√
GM

)1/2

=

= 1.12 · 108√µξ cm,

where the dimensionless mass and charge parameters µ = M
M⊙ , ξ = Q

(M
√

G)
≤

1. In Section 8.6 the definition of a dyadotorus in a Kerr–Newman metric is
recalled. We have focused on the theoretically well defined problem of pair
creation in the electric field of an already formed black hole. Having set the
background for the blackholic energy we recall some fundamental features of
the dynamical process of the gravitational collapse. In Section 8.7 we address
some specific issues on the dynamical formation of the black hole, recalling
first the Oppenheimer-Snyder solution [69] and then considering its general-
ization to the charged nonrotating case using the classical work of W. Israel
and V. de la Cruz [70, 71]. In Section 8.7.1 we recover the classical Tolman-
Oppenheimer-Snyder solution in a more transparent way than it is usually
done in the literature. In the Section 8.7.2 we are studying using the Israel-
de la Cruz formalism the collapse of a charged shell to a black hole for se-
lected cases of a charged shell collapsing on itself or collapsing in an already
formed Reissner–Nordström black hole. Such elegant and powerful formal-
ism has allowed to obtain for the first time all the analytic equations for such
large variety of possibilities of the process of the gravitational collapse. The
theoretical analysis of the collapsing shell considered in the previous section
allows to reach a deeper understanding of the mass formula of black holes at
least in the case of a Reissner–Nordström black hole. This allows as well to
give in Section 8.8 an expression of the irreducible mass of the black hole only
in terms of its kinetic energy of the initial rest mass undergoing gravitational
collapse and its gravitational energy and kinetic energy T+ at the crossing of
the black hole horizon r+

Mir = M0 −
M2

0
2r+ + T+.
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Similarly strong, in view of their generality, are the considerations in Sec-
tion 8.8.2 which indicate a sharp difference between the vacuum polarization
process in an overcritical E ≫ Ec and undercritical E ≪ Ec black hole. For
E ≫ Ec the electron–positron plasma created will be optically thick with av-
erage particle energy 10 MeV. For E≪ Ec the process of the radiation will be
optically thin and the characteristic energy will be of the order of 1021 eV. This
argument will be further developed in a forthcoming report. In Section 8.9
we show how the expression of the irreducible mass obtained in the previ-
ous Section leads to a theorem establishing an upper limit to 50% of the total
mass energy initially at rest at infinity which can be extracted from any pro-
cess of gravitational collapse independent of the details. These results also
lead to some general considerations which have been sometimes claimed in
reconciling general relativity and thermodynamics.

The conditions encountered in the vacuum polarization process around
black holes lead to a number of electron–positron pairs created of the order
of 1060 confined in the dyadosphere volume, of the order of a few hundred
times to the horizon of the black hole. Under these conditions the plasma
is expected to be optically thick and is very different from the nuclear col-
lisions and laser case where pairs are very few and therefore optically thin.
We turn then in Section 9, to discuss a new phenomenon: the plasma oscil-
lations, following the dynamical evolution of pair production in an external
electric field close to the critical value. In particular, we will examine: (i) the
back reaction of pair production on the external electric field; (ii) the screen-
ing effect of pairs on the electric field; (iii) the motion of pairs and their in-
teractions with the created photon fields. In Secs. 9.1 and 9.2, we review
semi-classical and kinetic theories describing the plasma oscillations using
respectively the Dirac-Maxwell equations and the Boltzmann-Vlasov equa-
tions. The electron–positron pairs, after they are created, coherently oscillate
back and forth giving origin to an oscillating electric field. The oscillations
last for at least a few hundred Compton times. We review the damping due to
the quantum decoherence. The energy from collective motion of the classical
electric field and pairs flows to the quantum fluctuations of these fields. This
process is quantitatively discussed by using the quantum Boltzmann-Vlasov
equation in Sections 9.4 and 9.5. The damping due to collision decoherence is
quantitatively discussed in Sections 9.6 and 9.7 by using Boltzmann-Vlasov
equation with particle collisions terms. This damping determines the energy
flows from collective motion of the classical electric field and pairs to the
kinetic energy of non-collective motion of particles of these fields due to col-
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lisions. In Section 9.7, we particularly address the study of the influence of
the collision processes e+e− ⇄ γγ on the plasma oscillations in supercritical
electric field [72]. It is shown that the plasma oscillation is mildly affected
by a small number of photons creation in the early evolution during a few
hundred Compton times (see Fig. 9.4). In the later evolution of 103−4 Comp-
ton times, the oscillating electric field is damped to its critical value with a
large number of photons created. An equipartition of number and energy
between electron–positron pairs and photons is reached (see Fig. 9.4). In Sec-
tion 9.8, we introduce an approach based on the following three equations:
the number density continuity equation, the energy-momentum conserva-
tion equation and the Maxwell equations. We describe the plasma oscilla-
tion for both overcritical electric field E > Ec and undercritical electric field
E < Ec [73]. In additional of reviewing the result well known in the liter-
ature for E > Ec we review some novel result for the case E < Ec. It was
traditionally assumed that electron–positron pairs, created by the vacuum
polarization process, move as charged particles in external uniform electric
field reaching arbitrary large Lorentz factors. It is reviewed how recent com-
putations show the existence of plasma oscillations of the electron–positron
pairs also for E ≲ Ec. For both cases we quote the maximum Lorentz factors
γmax reached by the electrons and positrons as well as the length of oscilla-
tions. Two specific cases are given. For E0 = 10Ec the length of oscillations
10 h̄/(mec), and E0 = 0.15Ec the length of oscillations 107 h̄/(mec). We also
review the asymptotic behavior in time, t→ ∞, of the plasma oscillations by
the phase portrait technique. Finally we review some recent results which
differentiate the case E > Ec from the one E < Ec with respect to the creation
of the rest mass of the pair versus their kinetic energy. For E > Ec the vac-
uum polarization process transforms the electromagnetic energy of the field
mainly in the rest mass of pairs, with moderate contribution to their kinetic
energy.

We then turn in Section 10 to the last physical process needed in ascer-
taining the reaching of equilibrium of an optically thick electron–positron
plasma. The average energy of electrons and positrons we illustrate is 0.1 <
ϵ < 10 MeV. These bounds are necessary from the one hand to have signif-
icant amount of electron–positron pairs to make the plasma optically thick,
and from the other hand to avoid production of other particles such as muons.
As we will see in the next report these are indeed the relevant parameters for
the creation of ultrarelativistic regimes to be encountered in pair creation pro-
cess during the formation phase of a black hole. We then review the problem
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of evolution of optically thick, nonequilibrium electron–positron plasma, to-
wards an equilibrium state, following [74,75]. These results have been mainly
obtained by two of us (RR and GV) in recent publications and all relevant pre-
vious results are also reviewed in this Section 10. We have integrated directly
relativistic Boltzmann equations with all binary and triple interactions be-
tween electrons, positrons and photons two kinds of equilibrium are found:
kinetic and thermal ones. Kinetic equilibrium is obtained on a timescale of
few (σTn±c)−1, where σT and n± are Thomson’s cross-section and electron–
positron concentrations respectively, when detailed balance is established be-
tween all binary interactions in plasma. Thermal equilibrium is reached on
a timescale of few (ασTn±c)−1, when all binary and triple, direct and inverse
interactions are balanced. In Section 10.1 basic plasma parameters are illus-
trated. The computational scheme as well as the discretization procedure
are discussed in Section 10.2. Relevant conservation laws are given in Sec-
tion 10.3. Details on binary interactions, consisting of Compton, Møller and
Bhabha scatterings, Dirac pair annihilation and Breit–Wheeler pair creation
processes, and triple interactions, consisting of relativistic bremsstrahlung,
double Compton process, radiative pair production and three photon anni-
hilation process, are presented in Section 10.5 and 10.6, respectively. In Sec-
tion 10.5 collisional integrals with binary interactions are computed from first
principles, using QED matrix elements. In Section 10.7 Coulomb scattering
and the corresponding cutoff in collisional integrals are discussed. Numer-
ical results are presented in Section 10.8 where the time dependence of en-
ergy and number densities as well as chemical potential and temperature
of electron–positron-photon plasma is shown, together with particle spectra.
The most interesting result of this analysis is to have differentiate the role of
binary and triple interactions. The detailed balance in binary interactions fol-
lowing the classical work of Ehlers [76] leads to a distribution function of the
form of the Fermi-Dirac for electron–positron pairs or of the Bose-Einstein
for the photons. This is the reason we refer in the text to such conditions as
the Ehlers equilibrium conditions. The crucial role of the direct and inverse
three-body interactions is well summarized in fig. 10.1, panel A from which it
is clear that the inverse three-body interactions are essential in reaching ther-
mal equilibrium. If the latter are neglected, the system deflates to the creation
of electron–positron pairs all the way down to the threshold of 0.5MeV. This
last result which is referred as the Cavallo–Rees scenario [77] is simply due
to improper neglection of the inverse triple reaction terms.

In Section 11 we present some general remarks.

770



Here and in the following we will use Latin indices running from 1 to 3,
Greek indices running from 0 to 3, and we will adopt the Einstein summation
rule.
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3 The fundamental contributions
to the electron–positron pair
creation and annihilation and the
concept of critical electric field

In this Section we recall the annihilation process of an electron–positron pair
with the production of two photons

e+ + e− → γ1 + γ2, (3.0.1)

studied by Dirac in [1], the Breit–Wheeler process of electron–positron pair
production by light-light collisions [2]

γ1 + γ2 → e+ + e−. (3.0.2)

and the vacuum polarization in external electric field, introduced by Sauter
[20]. These three results, obtained in the mid-30’s of the last century [78, 79],
played a crucial role in the development of the Quantum Electro-Dynamics
(QED).

3.1 Dirac’s electron–positron annihilation

Dirac had proposed his theory of the electron [80, 81] in the framework of
relativistic quantum theory. Such a theory predicted the existence of positive
and negative energy states. Only the positive energy states could correspond
to the electrons. The negative energy states had to have a physical mean-
ing since transitions were considered to be possible from positive to negative
energy states. It was proposed by Dirac [81] that nearly all possible states
of negative energy are occupied with just one electron in accordance with
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3 The fundamental contributions to the electron–positron pair creation and
annihilation and the concept of critical electric field

Pauli’s exclusion principle and that the unoccupied states, ‘holes’ in the neg-
ative energy states should be regarded as ‘positrons’1. Historical review of
this exciting discovery is given in [85].

Adopting his time-dependent perturbation theory [86] in the framework
of relativistic Quantum Mechanics Dirac pointed out in [1] the necessity of
the annihilation process of electron–positron pair into two photons (3.0.1).
He considered an electron under the simultaneous influence of two incident
beams of radiation, which induce transition of the electron to states of nega-
tive energy, then he calculated the transition probability per unit time, using
the well established validity of the Einstein emission and absorption coeffi-
cients, which connect spontaneous and stimulated emission probabilities. He
obtained the explicit expression of the cross-section of the annihilation pro-
cess.

Such process is spontaneous, i.e. it occurs necessarily for any pair of electron
and positron independently of their energy. The process does not need any
previously existing radiation. The derivation of the cross-section, considering
the stimulated emission process, was simplified by the fact that the electro-
magnetic field could be treated as an external classical perturbation and did
not need to be quantized [87].

Dirac started from his wave equation [80] for the spinor field Ψ:{
E
c
+

e
c

A0 + α ·
(

p +
e
c

A
)
+ βDmec

}
Ψ = 0, (3.1.1)

where me and e are electron’s mass and charge, A is electromagnetic vector
potential, and the matrices α and βD are:

α =

(
0 σ
σ 0

)
and βD =

(
I 0
0 −I

)
, (3.1.2)

where σ and I are respectively the Pauli’s and unit matrices. By choosing a

1Actually initially [1, 81] Dirac believed that these ‘holes’ in negative energy spectrum de-
scribe protons, but later he realized that these holes represent particles with the same
mass as of electron but with opposite charge, ‘anti-electrons’ [82]. The discovery of these
anti-electrons was made by Anderson in 1932 [83] and named by him ‘positrons’ [84].
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3.1 Dirac’s electron–positron annihilation

gauge in which A0 vanishes he obtained:

A = a1 eiω1[t−l1·x/c] + a∗1 e−iω1[t−l1·x/c] + a2 eiω2[t−l2·x/c] + a∗2 e−iω2[t−l2·x/c],
(3.1.3)

where ω1 and ω2 are respectively the frequencies of the two beams, l1 and l2
are the unit vectors in their direction of motion and a1 and a2 are the polar-
ization vectors, the modulus of which are the amplitudes of the two beams.

Dirac solved Eq. (3.1.1) by a perturbation method, finding a solution of the
form ψ = ψ0 + ψ1 + ψ2 + . . . , where ψ0 is the solution in the free case, and
ψ1 is the first order perturbation containing the field A, or, explicitly− e

c α ·A.
He then computed the explicit expression of the second order expansion term
ψ2, which represents electrons that have made the double photon emission
process and decay into negative energy states. He evaluated the transition
amplitude for the stimulated transition process, which reads

we++e−→γ1+γ2
=

16e2|a1|2|a2|2
|E′|me c2 K12

1− cos(δE′t/h)
(δE′)2 , (3.1.4)

where E′ = me c2 − ν1 − ν2, ν1 and ν2 are the photons’ frequencies and

K12 = −(m1 ·m2)
2 +

1
4
[1− (m1 ·m2)(n1 · n2) + (m1 · n2)(m1 · n2)]

ν1 + ν2

mec2 ,

(3.1.5)
is a dimensionless number depending on the unit vectors in the directions of
the two photon’s polarization vectors m1 and m2. The quantities n1 and n2
are respectively given by n1,2 = l1,2 ×m1,2. Introducing the intensity of the
two incident beams

I1 =
ν2

1
2π c
|k1|2, I2 =

ν2
2

2π c
|k2|2, (3.1.6)

where k1,2 = ω1,2l1,2. Dirac obtained from the above transition amplitude the
transition probability

Pe++e−→γ1+γ2
=

8π2c2e4

|E′|me c2ν2
1ν2

2
K12

1− cos(δE′t/h)
(δE′)2 . (3.1.7)

In order to evaluate the spontaneous emission probability Dirac uses the re-
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lation between the Einstein coefficients AE and BE which is of the form

AE/BE = 2πh/c2(ν1,2/2π)3. (3.1.8)

Integrating on all possible directions of emission he obtains the total proba-
bility per unit time in the rest frame of the electron

σlab
e+e− = π

(
αh̄

me c

)2

(γ̂− 1)−1
{

γ̂2 + 4γ̂ + 1
γ̂2 − 1

ln[γ̂ + (γ̂2 − 1)1/2]− γ̂ + 3
(γ̂2 − 1)1/2

}
,

(3.1.9)
where γ̂ ≡ E+/me c2 ≥ 1 is the energy of the positron and α = e2/(h̄c) is the
fine structure constant. Again, historically Dirac was initially confused about
the negative energy states interpretation as we recalled. Although he derived
the correct formula, he was doubtful about the presence in it of the mass of the
electron or of the mass of the proton. Of course today this has been clarified
and this derivation is fully correct if one uses the mass of the electron and
applied this formula to description of electron–positron annihilation. The
limit for high-energy pairs (γ̂≫ 1) is

σlab
e+e− ≃

π

γ̂

(
αh̄

me c

)2

[ln (2γ̂)− 1] ; (3.1.10)

The corresponding center of mass formula is

σe+e− =
π

4β̂2

(
αh̄

me c

)2

(1− β̂2)
[
2β̂(β̂2 − 2) + (3− β̂4) ln

(1 + β̂

1− β̂

)]
, (3.1.11)

where β̂ is the reduced velocity of the electron or the positron.

3.2 Breit–Wheeler pair production

We now turn to the equally important derivation on the production of an
electron–positron pair in the collision of two real photons given by Breit and
Wheeler [2]. According to Dirac’s theory of the electron, this process is caused
by a transition of an electron from a negative energy state to a positive energy
under the influence of two light quanta on the vacuum. This process differ-
ently from the one considered by Dirac, which occurs spontaneously, has a
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threshold due to the fact that electron and positron mass is not zero. In other
words in the center of mass of the system there must be sufficient available
energy to create an electron–positron pair. This energy must be larger than
twice of electron rest mass energy.

Breit and Wheeler, following the discovery of the positron by Anderson
[84], studied the effect of two light waves upon an electron in a negative en-
ergy state, represented by a normalized Dirac wave function ψ(0). Like in
the previous case studied by Dirac [1] the light waves have frequencies ωi,
wave vectors ki and vector potentials (3.1.3). Under the influence of the light
waves, the initial electron wave function ψ(0) is changed after some time t
into a final wave function ψ(t). The method adopted is the time-dependent
perturbation [86] (for details see [88]) to solve the Dirac equation with the
time-dependent potential eA(t) (3.1.3). The transition amplitude was calcu-
lated by an expansion in powers of a1,2 up to O(α2). The wave function ψ(t)

contains a term representing an electron in a positive energy state. The asso-
ciated density is found to be

wγ1+γ2→e++e− =

(
αh̄

me c

)2

|a1|2|a2|2K12
|1− exp(−itδE/h̄)|2

(δE)2 (3.2.1)

=

(
αh̄

me c

)2

2|a1|2|a2|2K12
|1− cos(δEt/h̄)|2

(δE)2 , (3.2.2)

where K12 is the dimensionless number already obtained by Dirac, Eq. (3.1.5),
depending on initial momenta and spin of the wave function ψ(0) and the po-
larizations of the quanta. This quantity is actually the squared transition ma-
trix in the momenta and spin of initial and final states of light and electron–
positron. The squared amplitudes |a1,2|2 in Eq. (3.2.1) are determined by the
intensities I1,2 of the two light beams as

|a1,2|2 =
2πc
ω2

1,2
I1,2. (3.2.3)

The quantity δE in Eq. (3.2.1) is the difference in energies between initial
light states and final electron–positron states. Indicating by E(−) = −c(p2

1 +

m2
e c2)1/2, where p1 is the four-momentum of the positron, the negative en-

ergy of the electron in its initial state and the corresponding quantity for the
electron E2 = −c(p2

2 + m2
e c2)1/2, where p2 is the 4-momentum of the electron,
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δE is given by

δE = c(p2
2 + m2

e c2)1/2 + E1 − h̄ω1 − h̄ω2, where E1 = −E(−), (3.2.4)

and p2 = −p1 + k1 + k2 is the final momentum of the electron. From this
energy and momentum conservation it follows

d(δE) = c2
[ |p1|
E1
− p1 · p2

(|p1|E2)

]
dp1. (3.2.5)

It is then possible to sum the probability densities (3.2.1) over all possible
initial electron states of negative energy in the volume V. An integral over
the phase space

∫
2|p1|2d|p1|dΩ1V/(2πh̄)3 must be performed. The effective

collision area for the head-on collision of two light quanta was shown by Breit
and Wheeler to be

σγγ = 2
(

αh̄
m c

)2 ∫ c|p1|2
h̄ω1h̄ω2

K12

[ |p1|
E1
− p1 · p2

|p1|E2

]−1
dΩ1, (3.2.6)

where Ω1 is the solid angler, which fulfills the total energy conservation δE =
0.

In the center of mass of the system, the momenta of the electron and the
positron are equal and opposite p1 = −p2. In that frame the momenta of the
photons in the initial state are k1 = −k2. As a consequence, the energies of
the electron and the positron are equal: E1 = E2 = E, and so are the energies
of the photons: h̄ω1 = h̄ω2 = Eγ = E. The total cross-section of the process is
then

σγγ = 2
(

αh̄
me c

)2 c|p|
E

∫
K12dΩ1, (3.2.7)

where |p| = |p1| = |p2|, and E = (c2|p|2 +m2
e c4)1/2. Therefore, the necessary

kinematic condition in order for the process (3.0.2) taking place is that the
energy of the two colliding photons be larger than the threshold 2mec2, i.e.,

Eγ > mec2. (3.2.8)
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From Eq. (3.2.7) the total cross-section in the center of mass of the system is

σγγ =
π

2

(
αh̄

me c

)2

(1− β̂2)
[
2β̂(β̂2− 2)+ (3− β̂4) ln

(1 + β̂

1− β̂

)]
, with β̂ =

c|p|
E

.

(3.2.9)
In modern QED cross-sections (3.1.10) and (3.2.9) emerge form two tree-level
Feynman diagrams (see, for example, the textbook [89] and Section 5).

For E ≫ mec2, the total effective cross-section is approximately propor-
tional to

σγγ ≃ π

(
αh̄

mec

)2 (mec2

E

)2

. (3.2.10)

The cross-section in line (3.2.9) can be easily generalized to an arbitrary ref-
erence frame, in which the two photons k1 and k2 cross with arbitrary relative
directions. The Lorentz invariance of the scalar product of their 4-momenta

(k1k2) gives ω1ω2 = E2
γ. Since Eγ = E = mec2/

√
1− β̂2, to obtain the total

cross-section in the arbitrary frame K, we must therefore make the following
substitution [90]

β̂→
√

1−m2
e c4/(ω1ω2), (3.2.11)

in Eq. (3.2.9).

3.3 Collisional e+e− pair creation near nuclei:
Bethe and Heitler, Landau and Lifshitz,
Sauter, and Racah

After having recalled in the previous sections the classical works of Dirac on
the reaction (3.0.1) and Breit–Wheeler on the reaction (3.0.2) it is appropri-
ate to return for a moment on the discovery of electron–positron pairs from
observations of cosmic rays. The history of this discovery sees as major ac-
tors on one side Carl Anderson [84] at Caltech and on the other side Patrick
Maynard Stuart Blackett and Giuseppe Occhialini [91] at the Cavendish lab-
oratory. A fascinating reconstruction of their work can be found e.g. in [85].
The scene was however profoundly influenced by a fierce conceptual battle
between Robert A. Millikan at Caltech and Arthur Compton at Chicago on
the mechanism of production of these cosmic rays. For a refreshing mem-
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ory of these heated discussions and a role also of Sir James Hopwood Jeans
see e.g. [92]. The contention by Millikan was that the electron–positron pairs
had to come from photons originating between the stars, while Jeans located
their source on the stars. Compton on the contrary insisted on their origin
from the collision of charged particles in the Earth atmosphere. Moreover, at
the same time there were indications that similar process of charged particles
would occur by the scattering of the radiation from polonium-beryllium, see
e.g. Joliot and Curie [93].

It was therefore a natural outcome that out of this scenario two major theo-
retical developments occurred. One development inquired electron–positron
pair creation by the interaction of photons with nuclei following the reaction:

γ + Z −→ Z + e+ + e−, (3.3.1)

major contributors were Oppenheimer and Plesset [94], Heitler [95], Bethe-
Heitler [96], Sauter [97] and Racah [98]. Heitler [95] obtained an order of
magnitude estimate of the total cross-section of this process

σZγ→Ze+e− ≃ αZ2
(

e2

mec2

)2

. (3.3.2)

In the ultrarelativistic case ϵ± ≫ me the total cross-section for pair production
by a photon with a given energy ω is [96]

σ =
28
9

Z2αr2
e

(
log

2ω

me
− 109

42

)
. (3.3.3)

The second development was the study of the reaction

Z1 + Z2 −→ Z1 + Z2 + e+ + e−. (3.3.4)

with the fundamental contribution of Landau and Lifshitz [99] and Racah
[98, 100]. This process is an example of two photon pair production, see. Fig.
3.1. The 4-momenta of particles Z1 and Z2 are respectively p1 and p2. The
total pair production cross-section is [99]

σLandau =
28

27π
r2

e (Z1Z2α)2L3
γ, (3.3.5)
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Figure 3.1: The sketch of two photon particle production. Reproduced from
[101].

where Lγ = log γ. Racah [100] gives next to leading terms

σRacah =
28

27π
r2

e (Z1Z2α)2(L3
γ − 2.2L2

γ + 3.84Lγ − 1.636). (3.3.6)

The differential cross-section is given in Section 5.5. The differential distri-
butions of electrons and positrons in a wide energy range was computed by
Bhabha in [102].

In parallel progress on the reaction

e− + Z −→ e− + Z + γ, (3.3.7)

was made by Sommerfeld [103], Heitler [95] and later by Bethe and Heitler
[96].

Once the exact cross-section of the process (3.3.1) was known, the corre-
sponding cross-section for the process (3.3.7) was found by an elegant method,
called the equivalent photons method [101, 104]. The idea to treat the field of
a fast charged particle in a way similar to electromagnetic radiation with par-
ticular frequency spectrum goes back to Fermi [105]. In such a way electro-
magnetic interaction of this particle e.g. with a nucleus is reduced to the inter-
action of this radiation with the nucleus. This idea was successfully applied
to the calculation of the cross-section of interaction of relativistic charged par-
ticles by Weizsäcker [106] and Williams [107]. In fact, this method establishes
the relation between the high-energy photon induced cross-section dσγX→Y
to the corresponding cross-section induced by a charged particle dσeX→Y by
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the relation which is expressed by

dσeX→Y =
∫ n(ω)

ω
dσγX→Ydω, (3.3.8)

where n(ω) is the spectrum of equivalent photons. Its simple generalization,

σee→Y =
∫ dω1

ω1

dω2

ω2
n(ω1)n(ω2)dσγ1γ2→Y. (3.3.9)

Generally speaking, the equivalent photon approximation consists in ignor-
ing that in such a case intermediate (virtual) photons are a) off mass shell
and b) no longer transversely polarized. In the early years this spectrum was
estimated on the ground of semi-classical approximations [106, 108] as

n(ω) =
2α

π
ln
(

E
ω

)
, (3.3.10)

where E is relativistic charged particle energy. This logarithmic dependence
of the equivalent photon spectrum on the particle energy is characteristic of
the Coulomb field. Racah [98] applied this method to compute the bremsstrahlung
cross-section in the process (3.3.7), which is given in Section 5.5. Bethe and
Heitler [96], obtained the same formula and computed the effect of the screen-
ing of the electrons of the nucleus. They found the screening is significant
when the energy of relativistic particle is not too high (E ≃ mc2), where m is
the mass of the particle. Finally, Bethe and Heitler discussed the energy loss
of charged particles in a medium.

Racah [100] used the equivalent photons method to compute from (3.3.9)
the cross-section of pair creation at collision of two charged particles (3.3.4).
Unlike Landau and Lifshitz result [99] σ ∼ log3(2E) which is valid only for
log 2E≫ 1 the cross-section of Racah contains more terms of different powers
of the logarithm, see Section 5.6.

3.4 Klein paradox and Sauter work

Every relativistic wave equation of a free particle of mass me, momentum p
and energy E, admits “positive energy” and “negative energy” solutions. In
Minkowski space such a solution is symmetric with respect to the zero energy
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and the wave function given by

ψ±(x, t) ∼ e
i
h̄ (k·x−E±t) (3.4.1)

describes a relativistic particle, whose energy, mass and momentum satisfy,

E2
± = m2

e c4 + c2|p|2; E± = ±
√

m2
e c4 + c2|p|2. (3.4.2)

This gives rise to the familiar positive and negative energy spectrum (E±) of
positive and negative energy states ψ±(x, t) of the relativistic particle, as rep-
resented in Fig. 3.2. In such a situation, in absence of external field and at zero
temperature, all the quantum states are stable; that is, there is no possibility
of “positive” (“negative”) energy states decaying into “negative” (“positive”)
energy states since there is an energy gap 2mec2 separating the negative en-
ergy spectrum from the positive energy spectrum. This stability condition
was implemented by Dirac by considering all negative energy states as fully
filled.

A scalar field described by the wave function ϕ(x) satisfies the Klein–Gordon
equation [109–112]{[

ih̄∂µ +
e
c

Aµ(z)
]2
−m2

e c2
}

ϕ(x) = 0. (3.4.3)

If there is only an electric field E(z) in the z-direction and varying only as a
function of z, we can choose a vector potential with the only nonzero compo-
nent A0(z) and potential energy

V(z) = −eA0(z) = e
∫ z

dz′E(z′). (3.4.4)

For an electron of charge −e by assuming

ϕ(x) = e−iEt/h̄eip⊥x⊥/h̄ϕ(z),

with a fixed transverse momentum p⊥ in the x, y-direction and an energy
eigenvalue E, and Eq. (3.4.3) becomes simply[

−h̄2 d2

dz2 + p2
⊥ + m2

e c2 − 1
c2 [E−V(z)]2

]
ϕ(z) = 0. (3.4.5)
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Klein studied a relativistic particle moving in an external step function po-
tential V(z) = V0Θ(z) and in this case Eq. (3.4.5) is modified as

[E−V0]
2 = m2

e c4 + c2|p|2; E± = V0 ±
√

m2
e c4 + c2|p|2, (3.4.6)

where |p|2 = |pz|2 + p2
⊥. He solved his relativistic wave equation [109–112]

by considering an incident free relativistic wave of positive energy states scat-
tered by the constant potential V0, leading to reflected and transmitted waves.
He found a paradox that in the case V0 ≥ E+ mec2, the reflected flux is larger
than the incident flux jref > jinc, although the total flux is conserved, i.e.
jinc = jref + jtran. This is known as the Klein paradox [17, 18]. This implies
that negative energy states have contributions to both the transmitted flux
jtran and reflected flux jref.

Sauter studied this problem by considering a potential varying in the z-
direction corresponding to a constant electric field E in the ẑ = z/|z|-direction
and considering spin 1/2 particles fulfilling the Dirac equation. In this case
the energy E is shifted by the amount V(z) = −eEz. He further assumed an
electric field E uniform between z1 and z2 and null outside. Fig. 3.3 repre-
sents the corresponding sketch of allowed states. The key point now, which
is the essence of the Klein paradox [17, 18], is that a level crossing between
the positive and negative energy levels occurs. Under this condition the
above mentioned stability of the “positive energy” states is lost for suffi-
ciently strong electric fields. The same is true for “negative energy” states.
Some “positive energy” and “negative energy” states have the same energy
levels. Thus, these “negative energy” waves incident from the left will be
both reflected back by the electric field and partly transmitted to the right
as a “‘positive energy” wave, as shown in Fig. 3.3 [113]. This transmission
represents a quantum tunneling of the wave function through the electric po-
tential barrier, where classical states are forbidden. This quantum tunneling
phenomenon was pioneered by George Gamow by the analysis of alpha par-
ticle emission or capture in the nuclear potential barrier (Gamow wall) [19].
In the latter case however the tunneling occurred between two states of posi-
tive energy while in the Klein paradox and Sauter computation the tunneling
occurs for the first time between the positive and negative energy states giv-
ing rise to the totally new concept of the creation of particle-antiparticle pairs
in the positive energy state as we are going to show.

Sauter first solved the relativistic Dirac equation in the presence of the con-
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z

E
positive continuum E+ > mec2

negative continuum E− < mec2

mec2

−mec2

Figure 3.2: The mass-gap 2mec2 that separates the positive continuum spec-
trum E+ from the negative continuum spectrum E−.
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Figure 3.3: In presence of a strong enough electric field the boundaries of
the classically allowed states (“positive” or “negative”) can be so tilted that
a “negative” is at the same level as a “positive” (level crossing). Therefore
a “negative” wave-packet from the left will be partially transmitted, after an
exponential damping due to the tunneling through the classically forbidden
states, as s “positive” wave-packet outgoing to the right. This figure is repro-
duced from Fig. II in Ref. [113], and µ = mec2, ϵV = V(z), ω = E.
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stant electric field by the ansatz,

ψs(x, t) = e
i
h̄ (kxx+kyy−E±t)χs3(z) (3.4.7)

where spinor function χs3(z) obeys the following equation (γ0, γi are Dirac
matrices)[

h̄cγ3
d
dz

+ γ0(V(z)− E±) + (mec2 + icγ2py + icγ1px)

]
χs3(z) = 0, (3.4.8)

and the solution χs3(z) can be expressed in terms of hypergeometric func-
tions [20]. Using this wave function ψs(x, t) (3.4.7) and the flux icψ†

s γ3ψs,
Sauter computed the transmitted flux of positive energy states, the incident
and reflected fluxes of negative energy states, as well as exponential decay-
ing flux of classically forbidden states, as indicated in Fig. 3.3. Using the reg-
ular matching conditions of the wave functions and fluxes at boundaries of
the potential, Sauter found that the transmission coefficient |T|2 of the wave
through the electric potential barrier from the negative energy state to posi-
tive energy states:

|T|2 =
|transmission flux|
|incident flux| ∼ e−π

m2
e c3

h̄eE . (3.4.9)

This is the probability of negative energy states decaying to positive energy
states, caused by an external electric field. The method that Sauter adopted
to calculate the transmission coefficient |T|2 is indeed the same as the one
Gamow used to calculate quantum tunneling of the wave function through
nuclear potential barrier, leading to the α-particle emission [19].

The simplest way to calculate the transmission coefficient |T|2 (3.4.9) is the
JWKB (Jeffreys–Wentzel–Kramers–Brillouin) approximation. The electric po-
tential V(z) is not a constant. The corresponding solution of the Dirac equa-
tion is not straightforward, however it can be found using the quasi-classical,
JWKB approximation. Particle’s energy E, momentum p and mass me satisfy,

[E± −V(z)]2 = m2
e c4 + c2|p|2; E± = V(z)±

√
m2

e c4 + c2|p|2, (3.4.10)

where the momentum pz(z) is spatially dependent. The momentum pz >
0 for both negative and positive energy states and the wave functions ex-
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hibit usual oscillatory behavior of propagating wave in the ẑ-direction, i.e.
exp i

h̄ pzz. Inside the electric potential barrier where are the classically for-
bidden states, the momentum p2

z given by Eq. (3.4.10) becomes negative, and
pz becomes imaginary, which means that the wave function will have an ex-
ponential behavior, i.e. exp− 1

h̄

∫
|pz|dz, instead of the oscillatory behavior

which characterizes the positive and negative energy states. Therefore the
transmission coefficient |T|2 of the wave through the one-dimensional poten-
tial barrier is given by

|T|2 ∝ exp−2
h̄

∫ z+

z−
|pz|dz, (3.4.11)

where z− and z+ are roots of the equation pz(z) = 0 defining the turn-
ing points of the classical trajectory, separating positive and negative energy
states.

3.5 A semi-classical description of pair production
in quantum mechanics

3.5.1 An external constant electric field

The phenomenon of pair production can be understood as a quantum me-
chanical tunneling process of relativistic particles. The external electric field
modifies the positive and negative energy spectrum of the free Hamiltonian.
Let the field vector E point in the ẑ-direction. The electric potential is A0 =
−|E|z where−ℓ < z < +ℓ and the length ℓ≫ h̄/(mec), then the positive and
negative continuum energy spectra are

E± = |eE|z±
√
(cpz)2 + c2p2

⊥ + (mec2)2, (3.5.1)

where pz is the momentum in ẑ-direction, p⊥ transverse momenta. The en-
ergy spectra E± (3.5.1) are sketched in Fig. 3.4. One finds that crossing en-
ergy levels E between two energy spectra E− and E+ (3.5.1) appear, then
quantum tunneling process occurs. The probability amplitude for this pro-
cess can be estimated by a semi-classical calculation using JWKB method (see
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e.g. [54, 88]):

PJWKB(|p⊥|) ≡ exp
{
−2

h̄

∫ z+(E+)

z−(E−)
pzdz

}
, (3.5.2)

where

pz =
√

p2
⊥ + m2

e c2 − (E− |eE|z)2/c2 (3.5.3)

is the classical momentum. The limits of integration z±(E±) are the turning
points of the classical orbit in imaginary time. They are determined by setting
pz = 0 in Eq. (3.5.1). The solutions are

z±(E±) =
c
[
p2
⊥ + m2

e c2]1/2
+ E±

|eE| , (3.5.4)

At the turning points of the classical orbit, the crossing energy level

E = E+ = E−, (3.5.5)

as shown by dashed line in Fig. 3.4. The tunneling length is

z+(E+)− z−(E−) =
2mec2

|eE| = 2
h̄

mec

(
Ec

E

)
, (3.5.6)

which is independent of crossing energy levels E. The critical electric field
Ec in Eq. (2.0.1) is the field at which the tunneling length (3.5.6) is twice the
Compton length λC ≡ h̄/mec.

Changing the variable of integration from z to y(z),

y(z) =
E− |eE|z

c
√

p2
⊥ + m2

e c2
, (3.5.7)

we obtain
y−(z−) = −1, y+(z+) = +1 (3.5.8)

789



3 The fundamental contributions to the electron–positron pair creation and
annihilation and the concept of critical electric field

and the JWKB probability amplitude (3.5.2) becomes

PJWKB(|p⊥|) = exp

[
−2Ec

E

(
1 +

p2
⊥

m2
e c2

) ∫ +1

−1
dy
√

1− y2

]

= exp
[
− πEc

E

(
1 +

p2
⊥

m2
e c2

) ]
. (3.5.9)

Summing over initial and final spin states and integrating over the transverse
phase space

∫
dz⊥dp⊥/(2πh̄)2 yields the final result

PJWKB ≈ DsV⊥e−πcm2
e c2/|eE|h̄∫ d2p⊥

(2πh̄)2 e−πcp2
⊥/|eE|h̄ =

= DsV⊥
|eE|

4π2ch̄ e−πEc/E, (3.5.10)

where the transverse surface V⊥ =
∫

dz⊥. For the constant electric field E
in −ℓ < z < +ℓ, crossing energy levels E vary from the maximal energy
potential V(−ℓ) = +eEℓ to the minimal energy potential V(+ℓ) = −eEℓ.
This probability Eq. (3.5.10) is independent of crossing energy levels E. We
integrate Eq. (3.5.10) over crossing energy levels

∫
dE/mec2 and divide it by

the time interval ∆t ≃ h/mec2 during which quantum tunneling occurs, and
find the transition rate per unit time and volume

ΓJWKB

V
≃ Ds

αE2

2π2h̄
e−πEc/E, (3.5.11)

where Ds = 2 for a spin-1/2 particle and Ds = 1 for spin-0, V is the volume.
The JWKB result contains the Sauter exponential e−πEc/E [20] and reproduces
as well the prefactor of Heisenberg and Euler [7].

Let us specify a quantitative condition for the validity of the above “semi-
classical” JWKB approximation, which is in fact leading term of the expan-
sion of wave function in powers of h̄. In order to have the next-leading term
be much smaller than the leading term, the de Broglie wavelength λ(z) ≡
2πh̄/pz(z) of wave function of the tunneling particle must have only small
spatial variations [88]:

1
2π

∣∣∣∣dλ(z)
dz

∣∣∣∣ = h̄
p2

z(z)

∣∣∣∣dpz(z)
dz

∣∣∣∣≪ 1. (3.5.12)
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z

V(z)

E+ = +
√

m2
e c4 + c2|p|2 − |eE|z

E− = −
√

m2
e c4 + c2|p|2 − |eE|z

z−(E) z+(E)

Figure 3.4: Energy-spectra E± with an external electric field E along ẑ-
direction (for −ℓ < z < ℓ and ℓ ≫ 1). Crossing energy-levels appear, in-
dicated by a dashed line between two continuum energy-spectra E− and E+.
The turning points z±(E) for the crossing energy-levels E of Eq. (3.5.5) are
marked. This implies that virtual electrons at these crossing energy-levels
in the negative energy-spectrum can quantum-mechanically tunnel toward
infinity [z ≫ z+(E)] as real electrons; empty states left over in the negative
energy-spectrum represent real positrons. This is how quantum tunneling
produces pairs of electrons and positrons.

with pz(z) of Eq. (3.5.3). The electric potential A0 = −e|z|Z must satisfy

h̄
2p3

z

∣∣∣∣dA0

dz

∣∣∣∣ ≃ E
Ec
≪ 1. (3.5.13)
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so that the result (3.5.11) is valid only for E≪ Ec.

3.5.2 An additional constant magnetic field

The result (3.5.11) can be generalized to include a uniform magnetic field B.
The calculation is simplest by going into a Lorentz frame in which B and
E are parallel to each other, which is always possible for uniform and static
electromagnetic field. This frame will be referred to a center-of-fields frame,
and the associated fields will be denoted by BCF and ECF. Suppose the initial
B and E are not parallel, then we perform a Lorentz transformation with a
velocity determined by [114]

v/c
1 + (|v|/c)2 =

E× B
|E|2 + |B|2 , (3.5.14)

in the direction v̂ ≡ v/|v| as follows

ECF = (E · v̂)v̂ +
v̂× (E× v̂) + (v/c)× B

[1− (|v|/c)2]1/2 , (3.5.15)

BCF = (B · v̂)v̂ +
v̂× (B× v̂)− (v/c)× E

[1− (|v|/c)2]1/2 . (3.5.16)

The fields BCF and ECF are now parallel. As a consequence, the wave func-
tion factorizes into a Landau state and into a spinor function, this last one
first calculated by Sauter (see Eqs. (3.4.7),(3.4.8)). The energy spectrum in the
JWKB approximation is still given by Eq. (3.5.1), but the squared transverse
momenta p2

⊥ is quantized due to the presence of the magnetic field: they
are replaced by the Landau energy levels whose transverse energies have the
discrete spectrum

c2p2
⊥ = 2mec2×

p2
⊥

2me
→ 2mec2× g

h̄ωL

2

(
n+

1
2
+σ̂

)
, n = 0, 1, 2, · · · , (3.5.17)

where g = 2 + α/π + . . . is the anomalous magnetic moment of the electron
[11, 115–118], ωL = e|BCF|/mec the Landau frequency, σ̂ = ±1/2 for a spin-
1/2 particle (σ̂ = 0 for a spin-0 particle) are eigenvalues of spinor operator
σz in the (ẑ)-direction, i.e., in the common direction of ECF and BCF in the
selected frame. The quantum number n characterizing the Landau levels is
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associated with harmonic oscillations in the plane orthogonal to ECF and BCF.
Apart from the replacement (3.5.17), the JWKB calculation remains the same
as in the case of constant electric field (3.5.11). We must only replace the
integration over the transverse phase space

∫
dxdydp⊥/(2πh̄)2 in Eq. (3.5.10)

by the sum over all Landau levels with the degeneracy V⊥e|BCF|/(2πh̄c) [88]:

V⊥e|BCF|
2πh̄c ∑

nσ̂

exp
[
−π

2ch̄|e||BCF|(n + 1/2 + σ̂) + (mec2)2

e|ECF|ch̄

]
. (3.5.18)

The results are

V⊥e|BCF|
2πh̄c

coth
(

π|BCF|
|ECF|

)
exp

(
− πEc

|ECF|

)
, spin− 1/2 particle (3.5.19)

and

V⊥e|BCF|
4πh̄c

sinh−1
(

π|BCF|
|ECF|

)
exp

(
− πEc

|ECF|

)
, spin− 0 particle. (3.5.20)

We find the pair production rate per unit time and volume

ΓJWKB

V
≃ α|BCF||ECF|

πh̄
coth

(
π|BCF|
|ECF|

)
exp

(
− πEc

|ECF|

)
, spin− 1/2 particle

(3.5.21)
and

ΓJWKB

V
≃ α|BCF||ECF|

2πh̄
sinh−1

(
π|BCF|
|ECF|

)
exp

(
− πEc

|ECF|

)
, spin− 0 particle.

(3.5.22)

We can now go back to an arbitrary Lorentz frame by expressing the result
in terms of the two Lorentz invariants that can be formed from the B and E
fields: the scalar S and the pseudoscalar P

S ≡ 1
4

FµνFµν =
1
2
(E2 − B2); P ≡ 1

4
Fµν F̃µν = E · B, (3.5.23)

where F̃µν ≡ ϵµνλκFλκ is the dual field tensor. We define the invariants ε and
β as the solutions of the invariant equations

ε2 − β2 ≡ E2 − B2 ≡ 2S, εβ ≡ E B ≡ P, (3.5.24)
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and obtain

ε ≡
√
(S2 + P2)1/2 + S, (3.5.25)

β ≡
√
(S2 + P2)1/2 − S. (3.5.26)

In the special frame with parallel BCF and ECF, we see that β = |BCF| and
ε = |ECF|, so that we can replace (3.5.21) and (3.5.22) directly by the invariant
expressions

ΓJWKB

V
≃ αβε

πh̄
coth

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 1/2 particle (3.5.27)

and

ΓJWKB

V
≃ αβε

2πh̄
sinh−1

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 0 particle, (3.5.28)

which are pair production rates in arbitrary constant electromagnetic fields.
We would like to point out that S and P in (3.5.23) are identically zero for any
field configuration in which

|E| = |B|; E ⊥ B = 0. (3.5.29)

As example, for a plane wave of electromagnetic field, ε = β = 0 and no pairs
are produced.
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4 Nonlinear electrodynamics and
rate of pair creation

4.1 Hans Euler and light-light scattering

Hans Euler in his celebrated diplom thesis [21] discussed at the University of
Leipzig called attention on the reaction

γ1γ2 −→ e+e− −→ γ′1γ′2

He recalled that Halpern [119] and Debye [120] first recognized that Dirac
theory of electrons and the Dirac process (3.0.1) and the Breit–Wheeler one
(3.0.2) had fundamental implication for the light on light scattering and con-
sequently implied a modifications of the Maxwell equations.

If the energy of the photons is high enough then a real electron–positron
pair is created, following Breit and Wheeler [2]. Again, if electron–positron
pair does exist, two photons are created following [1]. In the case that the sum
of energies of the two photons are smaller than the threshold 2mec2 then the
reaction (above) still occurs through a virtual pair of electron and positron.

Under this condition the light-light scattering implies deviation from su-
perposition principle, and therefore the linear theory of electromagnetism
has to be substituted by a nonlinear one. Maxwell equations acquire non-
linear corrections due to the Dirac theory of the electron.

Euler first attempted to describe this nonlinearity by an effective Lagrangian
representing the interaction term. He showed that the interaction term had
to contain the forth power of the field strengths and its derivatives

Eint = const
∫ [

FFFF + const′
∂F
∂x

∂F
∂x

FF + ...
]

, (4.1.1)

F being symbolically the electromagnetic field strength. He also estimated
that the constants may be determined from dimensional considerations. Since

795



4 Nonlinear electrodynamics and rate of pair creation

the interaction Uint has the dimension of energy density and contains electric
charge in the forth power, the constants up to numerical factors are

const =
h̄c
e2

1
E2

e
, const′ =

(
h̄

mec

)2

, (4.1.2)

where Ee = e
(

e2

mec2

)−2
= α−1Ec, namely “the field strength at the edge of the

electron”.
From these general qualitative considerations Euler made an important

further step taking into account that the Lagrangian (4.1.1) describing such
a process had necessarily be built from invariants constructed from the field
strengths, such as E2 − B2 and E · B following a precise procedure indicated
by Max Born, see e.g. Pauli’s book [121]. Contrary to the usual Maxwell
Lagrangian which is only a function of F2

µν Euler first recognized that virtual
electron–positron loops are represented by higher powers in the field strength
corrections to the linear action of electromagnetism and written down the La-
grangian with second order corrections

L =
E2 − B2

8π
+

1
α

1
E2

0

[
aE

(
E2 − B2

)2
+ bE (E · B)2

]
, (4.1.3)

where
aE = −1/(360π2), bE = −7/(360π2). (4.1.4)

The crucial result of Euler has been to determine the values of the coefficients
(4.1.4) using time-dependent perturbation technique, e.g. [88] in Dirac theory.

Euler computed only the lowest order corrections in α to Maxwell equa-
tions, namely “the 1/137 fraction of the field strength at the edge of the elec-
tron”. This perturbation method did not allow calculation of the tunneling
rate for electron–positron pair creation in strong electromagnetic field which
became the topic of the further work with Heisenberg [7].

4.2 Born’s nonlinear electromagnetism

A nonlinear theory of electrodynamics was independently proposed and de-
veloped by Max Born [4, 5] and later by Born and Infeld [6]. The main mo-
tivation in Born’s approach was the avoidance of infinities in an elementary
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particle description. Among the classical discussions on the fundamental in-
teractions this topic had attracted attention of a large number of scientists. It
was clear in fact from the considerations of J.J. Thomson, Abraham Lorentz
that a point-like electron needed to have necessarily an infinite mass. The ex-
istence of a finite radius was attempted by Poincare by introduction of non-
electromagnetic stresses. Also among the attempts we have to recall the the-
ory of Mie [122–125] modifying the Maxwell theory by nonlinear terms. This
theory however had serious difficulty because solutions of Mie field equa-
tions depend on the absolute value of the potentials.

Max Born developed his theory in collaboration with Infeld. This alterna-
tive to the Maxwell theory is today called the Born-Infeld theory which still
finds interest in the framework of subnuclear physics. The coauthorship of
Infeld is felt by the general premise of the article in distinguishing the unitar-
ian standpoint versus the dualistic standpoint in the description of particles
and fields. “In the dualistic standpoint the particles are the sources of the
field, are acted own by the field but are not a part of the field. Their character-
istic properties are inertia, measured by specific constant, the mass” [6]. The
unitarian theory developed by Thomson, Lorentz and Mie tends to describe
the particle as a point-like singularity but with finite mass-energy density
fulfilling uniquely an appropriate nonlinear field equations. It is interesting
that this approach was later developed in the classical book by Einstein and
Infeld [126] as well as in the classical paper by Einstein, Infeld and Hoff-
mann [127] on equations of motion in General Relativity.

In the Born-Infeld approach the emphasis is directed to a formalism en-
compassing General Relativity. But for simplicity the field equations are
solved within the realm only of the electromagnetic field. A basic tensor
aαβ = gαβ + fαβ is introduced. Its symmetric part gαβ is identified with a
metric component and the antisymmetric part fαβ with the electromagnetic
field. Formally therefore both the electromagnetic and gravitational fields
are present although the authors explicitly avoided to insert the part of the
Lagrangian describing the gravitational interaction and focused uniquely on
the following nonlinear Lagrangian

L =
√

1 + 2S− P2 − 1. (4.2.1)

The necessity to have the quadratic form of the P term is due to obtain a La-
grangian invariant under reflections as pointed out by W. Pauli in his classical
book [121]. For small field strengths Lagrangian (4.2.1) has the same form as
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(4.1.3) obtained by Euler.
From the nonlinear Lagrangian (4.2.1) Born and Infeld calculated the fields

D and H through a tensor, Pi
0 = Di and Pij = −ϵijkHk, where

Pµν ≡
δLBorn

δFµν =
Fµν − PF̃µν√
1 + 2S− P2

, (4.2.2)

and introduced therefore an effective electric permittivity and magnetic per-
meability which are functions of S and P. It is very interesting that Born and
Infeld managed to obtain a solution for electrostatic field of a point particle
(P = 0) in which the radial component Dr = e/r2 becomes infinite as r → 0
but the radial component of E field is perfectly finite and is given by the ex-
pression

Er =
e

r2
0

√
1 + (r/r0)4

, (4.2.3)

where r0 is the “radius” of the electron.
Most important the integral of the electromagnetic energy is finite and

given by ∫
HBorndV =

∫
(PµνFµν −LBorn)dV = 1.2361

e
r0

2
, (4.2.4)

Equating this energy to mec2 they obtain r0 = 1.2361e2/(mec2).
The attempt therefore is to have a theoretical framework explaining the

mass of the electron solely by a modified nonlinear electromagnetic field the-
ory. This approach has not been followed by the current theories in particle
physics where the dualistic approach is today adopted in which the charged
particles are described by half-integer spin fields and electro-magnetic inter-
actions by integer-spin fields.

The initial goal to develop a fully covariant theory of electrodynamics within
General Relativity although not developed by Born himself was not aban-
doned. Hoffmann found an analytic solution [22] to the coupled system of
the Einstein-Born-Infeld equations.

4.3 The Euler-Heisenberg Lagrangian

The two different approaches of Born and Infeld and of Euler present strong
analogies and substantial differences. The attempt of Born and Infeld was
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to obtain at once a new nonlinear Lagrangian for electromagnetic field re-
placing the Maxwell Lagrangian in order to avoid the appearance of infinite
self-energy for a classical point-like electron.

The attempt of Euler [128] was more conservative, to obtain the first order
nonlinear perturbation corrections to the Maxwell Lagrangian on the ground
of the Dirac theory of the electron.

Born and Infeld in addition introduced an effective dielectric constant and
an effective magnetic permeability of the vacuum out of their nonlinear La-
grangian (4.2.1). This approach was adopted as well in the classical work of
Heisenberg and Euler [7]. They introduced an effective Lagrangian on the
ground of the Dirac theory of the electron and expressed the result in integral
form duly taking away infinities, see Section 4.3.1. This integral was explic-
itly performed in the weak field limit and the special attention was given to
the real part, see Section 4.3.2 and the imaginary part, see Section 4.3.3.

A successive work of Weisskopf [24] derived the same equations of Heisen-
berg and Euler for the real part of the dielectric constant and magnetic per-
meability by using instead of the spin 1/2 particle of the Dirac equation the
scalar relativistic wave equation of Klein and Gordon. The results differ from
the one of spin 1/2 particle only by a factor 2 due to the Bose statistics, see
Section 4.3.1. The technique used by Weisskopf refers to the case of magnetic
field of arbitrary strengths and describes the electric field perturbatively, see
Section 4.3.2. As we will see in the following, the Heisenberg and Euler in-
tegral can be found in the case of arbitrary large both electric and magnetic
fields, see Section 5.7.3.

4.3.1 Real part of the effective Lagrangian

We now recall how Heisenberg and Euler adopted the crucial idea of Max
Born to describe the nonlinear Lagrangian by the introduction of an effective
dielectric constant and magnetic permeability [7]. They further extended this
idea by adopting the most general case of a dielectric constant containing real
and imaginary part. Such an approach is generally followed in the descrip-
tion of dissipative media. The crucial point was to relate electron–positron
pair creation process to imaginary part of the Lagrangian.

Let L to be the Lagrangian density of electromagnetic fields E, B, a Legen-
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dre transformation produces the Hamiltonian density:

H = Ei
δL

δEi
−L. (4.3.1)

In Maxwell’s theory, the two densities are given by

LM =
1

8π
(E2 − B2), HM =

1
8π

(E2 + B2). (4.3.2)

To quantitatively describe nonlinear electromagnetic properties of the vac-
uum based on the Dirac theory, Heisenberg and Euler introduced an effective
Lagrangian Leff of the vacuum state and an associated Hamiltonian density

Leff = LM + ∆L, Heff = HM + ∆H. (4.3.3)

Here Heff and Leff are complex functions of E and B. In Maxwell’s theory,
∆L ≡ 0 in the vacuum, so that D = E and H = B.

Heisenberg and Euler derived the induced fields D, H as the derivatives

Di ≡
δLeff

δEi
, Hi ≡ −

δLeff

δBi
. (4.3.4)

Consequently, the vacuum behaves as a dielectric and permeable medium
[7, 24] in which,

Di = ϵikEk, Hi = µikBk, (4.3.5)

where ϵik and µik are complex and field-dependent dielectric and permeabil-
ity tensors of the vacuum.

The discussions on complex dielectric and permeability tensors (ϵik and
µik) can be found for example in Ref. [129]. The effective Lagrangian and
Hamiltonian densities in such a medium are given by

Leff =
1

8π
(E ·D− B ·H), Heff =

1
8π

(E ·D + B ·H). (4.3.6)

In this medium, the conservation of electromagnetic energy has the form

−divS = E · ∂D
∂t

+ B · ∂H
∂t

, S = cE× B, (4.3.7)
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where S is the Poynting vector describing the density of electromagnetic en-
ergy flux. Consider complex and monochromatic electromagnetic field

E = E(ω) exp−i(ωt); B = B(ω) exp−i(ωt), (4.3.8)

of frequency ω, and dielectric and permeability tensors are frequency-dependent,
i.e., ϵik(ω) and µik(ω). Substituting these fields and tensors into the right-
hand side of Eq. (4.3.7), one obtains the dissipation of electromagnetic energy
per unit time into the medium

Qdis =
ω

2
{Im [ϵik(ω)] EiE∗k + Im [µik(ω)] BiB∗k} . (4.3.9)

This is nonzero if ϵik(ω) and µik(ω) contain an imaginary part. The dissi-
pation of electromagnetic energy in a medium is accompanied by heat pro-
duction. In the light of the third thermodynamical law of entropy increase,
the energy lost Qdis of electromagnetic fields in the medium is always posi-
tive, i.e., Qdis > 0. As a consequence, Im[ϵik(ω)] > 0 and Im[µik(ω)] > 0.
The real parts of ϵik(ω) and µik(ω) represent an electric and magnetic polar-
izability of the vacuum and leads, for example, to the refraction of light in
an electromagnetic field, or to the elastic scattering of light from light. The

nij(ω) =
√

ϵik(ω)µkj(ω) is the reflection index of the medium. The field de-
pendence of ϵik and µik implies nonlinear electromagnetic properties of the
vacuum as a dielectric and permeable medium.

The effective Lagrangian density (4.3.3) is a relativistically invariant func-
tion of the field strengths E and B. Since (E2 − B2) and E · B are relativistic
invariants, one can formally expand ∆L in powers of weak field strengths:

∆L = κ2,0(E2−B2)2 + κ0,2(E ·B)2 + κ3,0(E2−B2)3 + κ1,2(E2−B2)(E ·B)2 + . . . ,
(4.3.10)

where κi,j are field-independent constants whose subscripts indicate the pow-
ers of (E2 − B2) and E · B, respectively. Note that the invariant E · B appears
only in even powers since it is odd under parity and electromagnetism is
parity invariant. The Lagrangian density (4.3.10) corresponds, via relation
(4.3.1), to

∆H = κ2,0(E2 − B2)(3E2 + B2) + κ0,2(E · B)2

+κ3,0(E2 − B2)2(5E2 + B2) + κ1,2(3E2 − B2)(E · B)2 + . . . .(4.3.11)
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To obtain Heff in Dirac’s theory, one has to calculate

∆H = ∑
k

{
ψ∗k ,
[
α · (−ihc∇+ eA )) + βDmec2

]
ψk

}
, (4.3.12)

where {ψk(x)} are the wave functions of the occupied negative energy states.
When performing the sum, one encounters infinities which were removed by
Dirac, Heisenberg, and Weisskopf [24, 130–132] by a suitable subtraction.

Heisenberg [131] expressed the Hamiltonian density in terms of the density
matrix ρ(x, x′) = ∑k ψ∗k (x)ψk(x′) [130]. Heisenberg and Euler [7] calculated
the coefficients κi,j. They did so by solving the Dirac equation in the presence
of parallel electric and magnetic fields E and B in a specific direction,

ψk(x)→ ψpz,n,s3 ≡ e
i
h̄ (zpz−Et)un(y)χs3(x), n = 0, 1, 2, . . . (4.3.13)

where {un(y)} are the Landau states1 depending on the magnetic field and
χs3(x) are the spinor functions calculated by Sauter [20]. Heisenberg and
Euler used the Euler-Maclaurin formula to perform the sum over n, and ob-
tained for the additional Lagrangian in (4.3.3) the integral representation

∆Leff =
e2

16π2h̄c

∫ ∞

0
e−s ds

s3

[
is2 ĒB̄

cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2) + c.c.
cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2)− c.c.

+

(
m2

e c3

eh̄

)2

+
s2

3
(|B̄|2 − |Ē|2)

]
, (4.3.14)

where Ē, B̄ are the dimensionless reduced fields in the unit of the critical field
Ec,

Ē =
|E|
Ec

, B̄ =
|B|
Ec

. (4.3.15)

Expanding this expression in powers of α up to α3 yields the following values
for the four constants:

κ2,0 =
α

360π2 E−2
c , κ0,2 = 7κ2,0, κ3,0 =

2α

315π2 E−4
c , κ1,2 =

13
2

κ3,0. (4.3.16)

The above results will receive higher corrections in QED and are correct only

1Landau determined the quantum states of a particle in an external magnetic field in 1930
[88, 90].
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up to order α2. Up to this order, the field-dependent dielectric and perme-
ability tensors ϵik and µik (4.3.5) have the following real parts for weak fields

Re(ϵik) = δik +
α

180π2

[
2(Ē2 − B̄2)δik + 7B̄iB̄k

]
+O(α2),

Re(µik) = δik +
α

180π2

[
2(Ē2 − B̄2)δik + 7ĒiĒk

]
+O(α2). (4.3.17)

4.3.2 Weisskopf effective Lagrangian

Weisskopf [24] adopted a simpler method. He considered first the special
case in which E = 0, B ̸= 0 and used the Landau states to find ∆H of
Eq. (4.3.11), extracting from this κ2,0 and κ3,0. Then he added a weak electric
field E ̸= 0 to calculate perturbatively its contributions to ∆H in the Born ap-
proximation (see for example [88]). This led again to the coefficients (4.3.16),
(4.3.17). In addition to the weak field expansion of real part of effective La-
grangian, Weisskopf also obtained the leading order term considering very
large field strengths Ē≫ 1 or B̄≫ 1,

∆Leff ∼ −
e2

12π2h̄c
E2 ln Ē; ∆Leff ∼

e2

12π2h̄c
B2 ln B̄, (4.3.18)

We shall address this same problem in Section 5.7.3 in the framework of
QED [35] and we will compare and contrast our exact expressions with the
one given by Weisskopf. The crucial point stressed by Weisskopf is that
if one limits to the analysis of the real part of the dielectric constant and
magnetic permeability then the nonlinearity of effective electromagnetic La-
grangian represent only small corrections even for field strengths which are
much higher than the critical field strength Ec. As we will show however,
the contribution of the imaginary part of the effective Lagrangian diverges as
pointed out by Heisenberg and Euler [7].

4.3.3 Imaginary part of the effective Lagrangian

Heisenberg and Euler [7] were the first to realize that for E ̸= 0 the powers se-
ries expansion (4.3.10) is not convergent, due to singularities of the integrand
in (4.3.14) at s = π/Ē, 2π/Ē, . . . . They concluded that the powers series
expansion (4.3.10) does not yield all corrections to the Maxwell Lagrangian,
calling for a more careful evaluation of the integral representation (4.3.14).
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4 Nonlinear electrodynamics and rate of pair creation

Selecting an integration path that avoids these singularities, they found an
imaginary term. Motivated by Sauter’s work [20] on Klein paradox [17, 18],
Heisenberg and Euler estimated the size of the imaginary term in the effective
Lagrangian as

ImLeff = −
8
π

Ē2mec2
(mec

h

)3
e−π/Ē, (4.3.19)

and pointed out that it is associated with pair production by the electric field.
The exponential in this expression is exactly reproducing the Sauter result
(3.4.9). However, for the first time the pre-exponential factor is determined.
This imaginary term in the effective Lagrangian is related to the imaginary
parts of field-dependent dielectric ϵ and permeability µ of the vacuum.

In 1950’s, Schwinger [25–27] derived the same formula (4.3.14) within the
Quantum Electro-Dymanics (QED). In the following sections, our discussions
and computations will focus on the Schwinger formula, the real and imagi-
nary parts of effective Lagrangian for arbitrary values of electromagnetic field
strength.

The consideration of Heisenberg and Euler were applied to a uniform elec-
tric field. The exponential factor e−π/Ē in Eqs. (3.4.9) and (4.3.19) character-
izes the transmission coefficient of quantum tunneling, Heisenberg and Eu-
ler [7] introduced the critical field strength (4.3.15). They compared it with
the field strength Ee of an electron at its classical radius, Ee = e/r2

e where re =
αh̄/(mec). They found the field strength Ee is 137 time larger than the critical
field strength Ec, i.e. Ee = α−1Ec. At a critical radius rc = α1/2h̄/(mec) < re,
the field strength of the electron would be equal to the critical field strength
Ec. There have been various attempts to reach the critical field: in Secs. 7.5
and 7.6 we will examine the possibility of reaching such value around the
bare nucleus. In Section 8.5 we will discuss the possibility of reaching such a
field in an astrophysical setting around a black hole.

In conclusion, if an electric field attempts to tear an electron out of the filled
state the gap energy must be gained over the distance of two electron radii.
The virtual particles give an electron a radius of the order of the Compton
wavelength λC. Thus we expect a significant creation of electron–positron
pairs if the work done by the electric field E over twice the Compton wave
length h̄/mec is larger than 2mec2

eE
(

2h̄
mec

)
> 2mec2.
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4.3 The Euler-Heisenberg Lagrangian

This condition defines a critical electric field (2.0.1) above which pair creation
becomes abundant. To have an idea how large this critical electric field is, we
compare it with the value of the electric field required to ionize a hydrogen
atom. There the above inequality holds for twice of the Bohr radius and the
Rydberg energy

eEion

(
2h̄

αmec

)
> α2mec2,

where Eion = m2
e e5/h̄4 = 5.14 × 109 V/cm, so that Ec = Eion/α3 is about

106 times as large, a value that has so far not been reached in a laboratory on
Earth.

805





5 Pair production and annihilation
in QED

5.1 Quantum Electro-Dynamics

Quantum Electro-Dynamics (QED), the quantum theory of electrons, positrons,
and photons, was established by by Tomonaga [8], Feynman [9–11], Schwinger
[12–14] and Dyson [15, 16] and others in the 1940’s and 1950’s [133]. For
decades, both theoretical computations and experimental tests have been de-
veloped to great perfection. It is now one of the fundamental pillars of the
theory of the microscopic world. Many excellent monographs have been
written [25–27, 89, 90, 134–143], so the concepts of the theory and the tech-
niques of calculation are well explained. On the basis of this material, we
review some aspects and properties of the QED that are relevant to the sub-
ject of the present review.

QED combines a relativistic extension of quantum mechanics with a quan-
tized electromagnetic field. The nonrelativistic system has a unique ground
state, which is the state with no particle, the vacuum state. The excited states
contain a fixed number of electrons and an arbitrary number of photons. As
electrons are allowed to become relativistic, their number becomes also arbi-
trary, and it is possible to create pairs of electrons and positrons.

In the modern functional integral description, the nonrelativistic system is
described by a given set of fluctuating particle orbits running forward in time.
If the theory is continued to an imaginary time, in which case one speaks of
a Euclidean formulation, the nonrelativistic system corresponds to a canonical
statistical ensemble of trajectories.

In the relativistic system, the orbits form worldlines in four-dimensional
space-time which may run in any time direction, in particular they may run
backwards in time, in which case the backward parts of a line correspond
to positrons. The number of lines is arbitrary and the Euclidean formula-
tion corresponds to a grand-canonical ensemble. The most efficient way of
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5 Pair production and annihilation in QED

describing such an ensemble is by a single fluctuating field [143].
The vacuum state contains no physical particles. It does, however, harbor

zero-point oscillations of the electron and photon fields. In the worldline de-
scription, the vacuum is represented by a grand-canonical ensemble of inter-
acting closed world lines. These are called virtual particles. Thus the vacuum
contains the full complexity of a many-body problem so that one may right-
fully say that the vacuum is the world [144]. In the Fourier decomposition of
the fluctuating fields, virtual particles correspond to Fourier components, or
modes, in which the 4-vectors of energy and momentum kµ ≡ (k0, k) ≡ (E, k)
do not satisfy the mass-shell relation

k2 ≡ (k0)2 − c2|k|2 = E2 − c2|k|2 = m2
e c4, (5.1.1)

valid for real particles.
The only way to evaluate physical consequences from QED is based on the

smallness of the electromagnetic interaction. It is characterized by the dimen-
sionless fine structure constant α. All theoretical results derived from QED
are found in the form of series expansions in powers of α, which are expan-
sions around the non-interacting system. Unfortunately, all these expansions
are badly divergent (see e.g. Section 4.62 in [145]). The number of terms con-
tributing to the same order of α grows factorially fast, i.e., faster than any
exponential, leading to a zero radius of convergence. Fortunately, however,
the coupling α is so small that the series possess an apparent convergence
up to order 1/α ≈ 137, which is much higher than will be calculable for a
long time to come (see e.g. Section 4.62 in [145]). With this rather academic
limitation, perturbation expansions are well defined.

In perturbation expansions, all physical processes are expressible in terms
of Feynman diagrams. These are graphic representations of the interacting
world lines of all particles. Among these lines, there are some which run to
infinity. They satisfy the mass shell relation (5.1.1) and describe real particles
observable in the laboratory. Those which remain inside a finite space-time
region are virtual.

The presence of virtual particles in the perturbation expansions leads to
observable effects. Some of these have been measured and calculated with
great accuracy. The most famous examples are

1. the electrostatic polarizability of quantum fluctuations of the QED vac-
uum has been measured in the Lamb shift [146, 147].
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5.1 Quantum Electro-Dynamics

2. the anomalous magnetic moment of the electron [11, 115–118].

3. the dependence of the electric charge on the distance. It is observed
by measuring cross-sections of electron–positron collisions, most re-
cently in the L3-experiments at the Large Electron-Positron Collider (LEP)
at CERN [148].

4. the Casimir effect caused by virtual photons, i.e., by the fluctuations of
the electromagnetic field in the QED vacuum [149, 150]. It causes an
attractive force [151–153] between two uncharged conducting plates in
the vacuum (see also [154–160]).

There are, of course, many other discussions of the effects of virtual par-
ticles caused either by external boundary conditions or by external classical
fields [161–175].

An interesting aspect of virtual particles both theoretically and experimen-
tally is the possibility that they can become real by the effect of external fields.
In this case, real particles are excited out of the vacuum. In the previous Sec-
tion 3.4 and 4.3.1, we have shown that this possibility was first pointed out
in the framework of quantum mechanics by Klein, Sauter, Euler and Heisen-
berg [7, 17, 18, 20] who studied the behavior of the Dirac vacuum in a strong
external electric field. Afterward, Schwinger studied this process and derived
the probability (Schwinger formula) in the field theory of Quantum Electro-
Dynamics, which will be described in this chapter. If the field is sufficiently
strong, the energy of the vacuum can be lowered by creating an electron–
positron pair. This makes the vacuum unstable. This is the Sauter-Euler-
Heisenberg-Schwinger process for electron–positron pair production. There are
many reasons for the interest in the phenomenon of pair production in a
strong electric field. The most compelling one is that now both laboratory
conditions and astrophysical events provide possibilities for observing this
process.

In the following chapters, in addition to reviewing the Schwinger formula
and QED-effective Lagrangian in constant electromagnetic fields, we will also
derive the probability of pair production in an alternating field, and discuss
theoretical studies of pair production in (i) electron-beam–laser collisions and
(ii) superstrong Coulomb potential. In addition, the plasma oscillations of
electron–positron pairs in electric fields will be reviewed in Section 9. The
rest part of this chapter, we shall use natural units h̄ = c = 1.

809



5 Pair production and annihilation in QED

5.2 Basic processes in Quantum Electro-Dynamics

The total Lagrangian describing the interacting system of photons, electrons,
and positrons reads, see e.g. [90]

L = L
γ
0 +Le+e−

0 +Lint, (5.2.1)

where the free Lagrangians Le+e−
0 and L

γ
0 for electrons and photons are ex-

pressed in terms of quantized Dirac field ψ(x) and quantized electromagnetic
field Aµ(x) as follows:

Le+e−
0 = ψ̄(x)(iγµ∂µ −me)ψ(x), (5.2.2)

L
γ
0 = −1

4
Fµν(x)Fµν(x) + gauge−fixing term. (5.2.3)

Here γµ are the 4× 4 Dirac matrices, ψ̄(x) ≡ ψ†(x)γ0, and Fµν = ∂µ Aν− ∂ν Aµ

denotes the electromagnetic field tensor. Minimal coupling gives rise to the
interaction Lagrangian

Lint = −ejµ(x)Aµ(x), jµ(x) = ψ̄(x)γµψ(x). (5.2.4)

After quantization, the photon field is expanded into plane waves as

Aµ(x) =
∫ d3k

2k0(2π)3

3

∑
λ=1

[
a(λ)(k)ϵ(λ)µ (k)e−ikx + a(λ)†(k)ϵ(λ)∗µ (k)eikx

]
,

(5.2.5)
where ϵ

(λ)
µ are polarization vectors, and a(λ), a(λ)† are annihilation and cre-

ation operators of photons. The quantized fermion field ψ(x) has the expan-
sion

ψ(x) =
∫ d3k

(2π)3
m
k0 ∑

α=1,2

[
bα(k, s3)u(α)(k, s3)e−ikx + d†

α(k, s3)v(α)(k, s3)eikx
]
,

(5.2.6)

where the four-component spinors u(α)(k, s3), v(α)(k, s3) are positive and neg-
ative energy solutions of the Dirac equation with momentum k and spin com-
ponent s3. The operators b(k, s3), b†(k, s3) annihilate and create electrons, the
operators d(k, s3) and d†(k, s3) do the same for positrons [90].
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5.2 Basic processes in Quantum Electro-Dynamics

In the framework of QED the transition probability from an initial to a final
state for a given process is represented by the imaginary part of the unitary
S-matrix squared

P f←i = |⟨f, out |Im S| i, in⟩|2 , (5.2.7)

where
Im S = (2π)4δ4(Pf − Pi)

∣∣M f i
∣∣ , (5.2.8)

M f i is called matrix element and δ-function stays for energy-momentum con-
servation in the process.

When initial state contains two particles with energies ϵ1 and ϵ2, and final
state contain arbitrary number of particles having 3-momenta p′i, the transi-
tion probability per unit time and unit volume is given by

dP f←i

dVdt
= (2π)4δ4(Pf − Pi)

∣∣M f i
∣∣2 1

4ϵ1ϵ2
∏

i

d3p′i
(2π)3 2ϵi

. (5.2.9)

The Lorentz invariant differential cross-section for a given process is then
obtained from (5.2.9) by dividing it on the flux density of initial particles

dσ = (2π)4δ4(Pf − Pi)
∣∣M f i

∣∣2 1
4Ikin

∏
i

d3p′i
(2π)3 2ϵi

, (5.2.10)

where p1 and p2 are particles’ 4-momenta, m1 and m2 are their masses respec-

tively, Ikin =
√
(p1p2)

2 −m2
1m2

2.
It is useful to work with Mandelstam variables which are kinematic invari-

ants built from particles 4-momenta. Consider the process A + B −→ C + D.
Lorentz invariant variables can be constructed in the following way

s = (pA + pB)
2 = (pC + pD)

2 ,

t = (pA + pC)
2 = (pB + pD)

2 , (5.2.11)

u = (pB + pC)
2 = (pA + pD)

2 .

Since any incoming particle can be regarded as outgoing antiparticle, it gives
rise to the crossing symmetry property of the scattering amplitude, which
is best reflected in the Mandelstam variables. In fact, reactions A + B −→
C + D, A + C̄ −→ B̄ + D or A + D̄ −→ C + B̄ where the bar denotes the
antiparticle are just different cross-channels of a single general reaction. The
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5 Pair production and annihilation in QED

meaning of the variables s, t, u changes, but the amplitude is the same.
The S-matrix is computed through the interaction operator as

S = T exp
(

i
∫

Lintd4x
)

, (5.2.12)

where T is the chronological operator. Perturbation theory is applied, since
the fine structure constant is small, while any additional interaction in colli-
sion of particles contains the factor α.

A simple and elegant way of computation of the S-matrix and consequently
of the matrix element M f i is due to Feynman, who discovered a graphical
way to depict each QED process, in momentum representation.

In what follows we consider briefly the calculation for the case of Compton
scattering process [90], which is given by two Feynman diagrams. Conserva-
tion law for 4-momenta is p + k = p′ + k′, where p and k are 4-momenta
of electron and photon respectively, and invariant Ikin = 1

4(s − m2
e )

2. After
the calculation of traces with gamma-matrices, the final result, expressed in
Mandelstam variables, is

|M f i|2 = 27π2e4

[
m2

e
s−m2

e
+

m2
e

u−m2
e
+

(
m2

e
s−m2

e
+

m2
e

u−m2
e

)2

−1
4

(
s−m2

e
u−m2

e
+

u−m2
e

s−m2
e

)]
, (5.2.13)

s = (p + k)2, t = (p − p′)2 and u = (p − k′)2. Since the differential cross-
section is independent of the azimuth of p′1 relative to p1, it is obtained from
(5.2.13) as

dσ =
1

64π
|M f i|2

dt
I2
kin

. (5.2.14)

In the laboratory frame, where s−m2
e = 2mew, u−m2

e = −2mew′ and elec-
tron is at rest before the collision with photon, the differential cross-section of
Compton scattering is thus given by the Klein–Nishina formula [176]

dσ =
1
2

(
e2

m

)2 (
ω′

ω

)2(
ω

ω′
+

ω′

ω
− sin2 ϑ

)
, (5.2.15)

where ω and ω′ are frequencies of photon before and after the collision, ϑ is
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the angle at which the photon is scattered.

5.3 The Dirac and the Breit–Wheeler processes in
QED

We turn now to the formulas obtained within framework of quantum me-
chanics by Dirac [1] and Breit and Wheeler [2] within QED. The crossing
symmetry allows to readily write the matrix element for the pair production
(3.0.1) and pair annihilation (3.0.2) processes with the energy-momentum
conservation written as p+ + p− = k1 + k2, where p+ and p− are 4-momenta
of the positron and the electron, k1 and k2 are 4-momenta of two photons. It
is in fact given by the same formula (5.2.13) with the substitution p → p−,
p′ → p+, k → k1, k′ → k2, but with different meaning of the kinematic in-
variants s = (p− − k1)

2, t = (p− + p+)2, u = (p− − k2)
2. Matrix elements

for Dirac and Breit–Wheeler processes are the same. The differential cross-
section of the Dirac process is obtained from (5.2.13) with the exchange s↔ t
and the invariant Ikin = 1

4 t(t − 4m2
e ), which leads to (3.1.9). For the case of

the Breit–Wheeler process with the invariant Ikin = 1
4 t2, the result is reduced

to (3.2.9).
Since the Dirac pair annihilation process (3.0.1) is the inverse of Breit–

Wheeler pair production (3.0.2), it is useful to compare the cross-section of
the two processes. We note that the squared transition amplitude |M f i|2
must be the same for two processes, due to the CPT invariance. The cross-
sections could be different only by kinematics and statistical factors. Let us
consider the pair annihilation process in the center of mass system where
E = E1 + E2 = E′1 + E′2 is the total energy, the initial and final momenta are
equal and opposite, p1 = −p2 ≡ p and p′1 = −p′2 ≡ p′. The differential
cross-section is given by (5.2.14). For the Breit and Wheeler process (3.0.2) of
two colliding photons with 4-momenta k1 and k2, the scalar I2

γγ = (k1k2)
2. For

the Dirac process (3.0.1) of colliding electron and positron with 4-momenta p1
and p2, the scalar I2

e+e− = (p1p2)
2 −m4

e . As results, one has

dσγγ

dσe+e−
=

I2
e+e−

I2
γγ

=
2(k1k2)− 4m2

e
2(k1k2)

=
E2 − 2m2

e
E2 =

(
|p|
E

)2

= β̂2, (5.3.1)
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where momenta and energies are related by

(p1 + p2)
2 = (k1 + k2)

2 = 2(k1k2) = 2E2.

Integrating Eq. (5.3.1) over all scattering angles yields the total cross-section.
Whereas the previous σγγ required division by a Bose factor 2 for the two
identical photons in the final state, the cross-section σe+e− has no such factor
since the final electron and positron are not identical. Hence we obtain

σe+e− =
1

2β̂2
σγγ. (5.3.2)

By re-expressing the kinematic quantities in the laboratory frame, one obtains
the Dirac cross-section (3.1.9).

As shown in Eq. (5.3.2) in the center of mass of the system, the two cross-
sections σe+e− and σγγ of the above described phenomena differ only in the
kinematics and statistical factor 1/(2β̂2), which is related to the fact that
the resulting particles are massless or massive. The process of electron and
positron production by the collision of two photons has a kinematic energy
threshold, while the process of electron and positron annihilation to two pho-
tons has not such kinematic energy threshold. In the limit of high energy
neglecting the masses of the electron and positron, β̂ → 1, the difference be-
tween two cross-sections σe+e− and σγγ is only the statistical factor 1/2.

The total cross-sections (3.1.11) of Breit–Wheeler’s and Dirac’s process are
of the same order of magnitude ∼ 10−25cm2 and have the same energy de-
pendence 1/E2 above the energy threshold. The energy threshold (2mec2)
have made until now technically impossible to observe the pair production
by the Breit–Wheeler process in laboratory experiments at the intersection of
two beams of X-rays. Another reason is of course the smallness of the total
cross-section (3.2.10) (σγγ ≲ 10−25cm2) and the experimental limitations on
the intensities Ii (3.2.3) of the light beams. We shall see however, that this
Breit–Wheeler process occurs routinely in the dyadosphere of a black hole.
The observations of such phenomena in the astrophysical setting are likely
to give the first direct observational test of the validity of the Breit–Wheeler
process, see e.g. [177].
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5.4 Double-pair production

Following the Breit–Wheeler pioneer work on the process (3.0.2), Cheng and
Wu [178–183] considered the high-energy behavior of scattering amplitudes
and cross-section of two photon collision, up to higher order O(α4) [184],

γ1 + γ2 → e+ + e− + e+ + e−. (5.4.1)

For this purpose, they calculated the two photon forward scattering ampli-
tude Mγγ (see Eq. (5.2.9)) by taking into account all relevant Feynman dia-
grams via two electron loops up to the order O(α4). The total cross-section
σγγ for photon-photon scattering is related to the photon-photon scattering
amplitude Mγγ in the forward direction by the optical theorem,

σγγ(s) =
1
s

ImMγγ, (5.4.2)

where s is the square of the total energy in the center of mass system. They
obtained the total cross-section of double pair production (5.4.1) at high en-
ergy s≫ 2me,

lim
s→∞

σγγ(s) =
α4

36πm2
e
[175ζ(3)− 38] ∼ 6.5µb, (5.4.3)

which is independent of s as well as helicities of the incoming photons. Up
to the α4 order, Eq. (5.4.3) is the largest term in the total cross-section for
photon-photon scattering at very high energy. This can be seen by compar-
ing Eq. (5.4.3) with the cross-section (3.2.9,3.2.10) of the Breit–Wheeler pro-
cess (3.0.2), which is the lowest-order process in a photon-photon collision
and vanishes as s → ∞. Thus, although the Breit–Wheeler cross-section is of
lower order in α, the Cheng-Wu cross-section (5.4.3) is larger as the energy
becomes sufficiently high. In particular, the Cheng-Wu cross-section (5.4.3)
exceeds the Breit–Wheeler one (3.2.9) as the center of mass energy of the pho-
ton E ≥ 0.24GeV. Note that in the double pair production (5.4.1), the energy
threshold is E ≥ 2me rather than E ≥ me in the one pair production of Breit–
Wheeler.

In Ref. [185, 186], using the same method Cheng and Wu further calcu-
lated other cross-sections for high-energy photon-photon scattering to double
pion, muon and electron–positron pairs:
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• the process of double muon pair production γ1 + γ2 → µ+ + µ− +
µ+ + µ− and its cross-section can be obtained by replacing me → mµ

in Eq. (5.4.3), thus σγγ(s) ∼ 1.5 · 10−4µb.

• the process of double pion pair production γ1 + γ2 → π+ + π−+ π+ +
π− and its extremely small cross-section

lim
s→∞

σγγ(s) =
α4

144πm2
π
[7ζ(3) + 10] ∼ 0.23 · 10−5µb, (5.4.4)

• the process of one pion pair and one electron–positron pair production
γ1 + γ2 → e+ + e− + π+ + π− and its small cross-section

lim
s→∞

σγγ(s) =
2α4

27πm2
π

[(
ln

m2
π

m2
e

)2

+
16
3

ln
m2

π

m2
e
+

163
18

]
∼ 0.26 · 10−3µb,

(5.4.5)
which is more than one hundred times larger than (5.4.4).

• the process of one pion pair and one muon-antimuon pair production
γ1 + γ2 → µ+ + µ− + π+ + π− and its small cross-section can be ob-
tained by replacing me → mµ in Eq. (5.4.5) everywhere.

5.5 Electron-nucleus bremsstrahlung and pair
production by a photon in the field of a nucleus

The other two important QED processes, related by the crossing symme-
try are the electron-nucleus bremsstrahlung (3.3.7) and creation of electron–
positron pair by a photon in the field of a nucleus (3.3.1). These processes
were considered already in the early years of QED. They are of higher or-
der, comparing to the Compton scattering and the Breit–Wheeler processes,
respectively, and contain one more vertex connecting fermions with the pho-
ton.

The nonrelativistic cross-section for the process (3.3.7) was derived by Som-
merfeld [103]. Here we remind the basic results obtained in the relativistic
case by Bethe and Heitler [96] and independently by Sauter [97]. The Feyn-
man diagram for bremsstrahlung can be imagined considering for the Comp-
ton scattering, but treating one of the photons as virtual one corresponding
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field of a nucleus

to an external field. We consider this process in Born approximation, and
the momentum recoil of the nucleus is neglected. Integrating the differential
cross-section over all directions of the photon and the outgoing electron one
has, see e.g. [90]

dσ = Z2αr2
e

dω
ω

p′
p

{
4
3 − 2ϵϵ′ p

2+p′2

p2 p′2 + m2
e

(
l ϵ′

p3 + l′ ϵ

p′3− ll′
pp′

)
+

+L
[

8ϵϵ′
3pp′ +

ω2

p3 p′3
(
ϵ2ϵ′2 + p2p′2 + m2

e ϵϵ′
)
+ m2

e ω
2pp′

(
l ϵϵ′+p2

p3 − l′ ϵϵ′+p′2

p′3

)]}
,

(5.5.1)
where

L = log
ϵϵ′ + pp′ −m2

e
ϵϵ′ − pp′ −m2

e
, l = log

ϵ + p
ϵ− p

, l′ = log
ϵ′ + p′

ϵ′ − p′
, (5.5.2)

and ω is photon energy, p and p′ are electron momenta before and after the
collision, respectively, ϵ and ϵ′ are its initial and final energies.

The averaged cross-section for the process of pair production by a photon
in the field of a nucleus may be obtained by applying the transformation rules
relating the processes (3.3.1) and (3.3.7), see e.g. [90]. The result is

dσ = Z2αr2
e

p+p−
ω3 dϵ+

{
−4

3 − 2ϵ+ϵ−
p2
++p2

−
p2
+p2
−

+ m2
e

(
l− ϵ+

p3
−
+ l+ ϵ−

p3
+−

l+ l−
p+ p−

)
+

+L
[

8ϵ+ϵ−
3p+p− + ω2

p3
+p3
−

(
ϵ2
+ϵ2
− + p2

+p2
− −m2

e ϵ+ϵ−
)
−

− m2
e ω

2p+p−

(
l+

ϵ+ϵ−−p2
+

p3
+

+ l−
ϵ+ϵ−−p2

−
p3
−

)]}
,

(5.5.3)
where

L = log
ϵ+ϵ− + p+p− + m2

e
ϵ+ϵ− − p+p− + m2

e
, l± = log

ϵ± + p±
ϵ± − p±

, (5.5.4)

and p± and ϵ± are momenta and energies of positron and electron respec-
tively.

The total cross-section for this process is given in Section 3.3, see (3.3.3).
In the ultrarelativistic approximation relaxing the condition Zα ≪ 1 the pair
production by the process (3.3.1) was treated by Bethe and Maximon in [187,
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188]. The total cross-section (3.3.3) is becoming then

σ =
28
9

Z2αr2
e

(
log

2ω

me
− 109

42
− f (Zα)

)
, (5.5.5)

where

f (Zα) = γE + ReΨ(1 + iZα) = (Zα)2
∞

∑
n=1

1
n[n2 + (Zα)2]

. (5.5.6)

5.6 Pair production in collision of two ions

The process of the pair production by two ions (3.3.4) in ultrarelativistic ap-
proximation was considered by Landau and Lifshitz [99] and Racah [100]. For
the modern review of these topics see [189]. The corresponding differential
cross-section with logarithmic accuracy can be obtained from the differential
cross-section (5.5.3) taking its ultrarelativistic approximation γ ≫ 1 for the
Lorentz factor of the relative motion of the two nuclei with charges Z1 and
Z2 respectively, and treating the real photon line in the process (3.3.1) as a
virtual photon corresponding to the external field of the nucleus. One should
then multiply the cross-section by the spectrum of these equivalent photons,
see Section 3.3, and the result is

dσ =
8
π

r2
e (Z1Z2α)2 dϵ+dϵ−

(ϵ+ + ϵ−)4

(
ϵ2
+ + ϵ2

− +
2
3

ϵ+ϵ−

)
log

ϵ+ϵ−
me(ϵ+ + ϵ−)

log
meγ

(ϵ+ + ϵ−)
.

(5.6.1)
The total cross-section is given in Section 3.3, see (3.3.5) and (3.3.6). More

recent results containing higher order in α corrections are obtained in [190,
191], see also [192, 193].

Lepton pair production in relativistic ion collision to all orders in Zα with
logarithmic accuracy is studied in [194] where the matrix elements are sepa-
rated in different classes, see Fig. 5.1, according to numbers of photon lines
attached to a given nucleus

M = M(i) + M(ii) + M(iii) + M(iv). (5.6.2)

The Born amplitude
∣∣∣M(i)

∣∣∣2 corresponding to the lowest order in Zα with one
photon line attached to each nucleus was computed by Landau and Lifshitz
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5.6 Pair production in collision of two ions

Figure 5.1: Classification of the e+e− pair production by the number of pho-
tons attached to a nucleus. Reproduced from [189].

[99] who obtained the famous L3
γ dependence of the cross-section in (3.3.5).

It should be mentioned that the Racah formula (3.3.6) in contrast with the
Landau and Lifshitz result (3.3.5) contains also terms proportional to L2

γ and
Lγ. These terms come from the absolute square of M(ii) and M(iii) and their
interference with the Born amplitude M(i) [191]. Their result for the Coulomb
corrections which is defined as the difference between the full cross-section
and the Born approximation, in order L2

γ is of the “Bethe–Maximon” type
[191]

σC =
28

27π
r2

e (Z1Z2α)2 [ f (Z1α) f (Z2α)] (L2
γ +O(Lγ)). (5.6.3)

The Coulomb corrections here are up to L2
γ-term in the Racah formula (3.3.6).

The calculations mentioned above were all made as early as in the 1930s.
Clearly, at that time only e+e− pair production was discussed. However,
these calculations can be considered for any lepton pair production, for exam-
ple µ+µ− pair production, as long as the total energy in the center of mass of
the system is large enough. However, simple substitution me −→ ml, where
l stands for any lepton is not sufficient since when the energy reaches the
inverse radius Λ = 1/R ∼ 30MeV of the nucleus the electric field of the nu-
cleus cannot be approximated as a Coulomb field of a point-like particle [195].
The review of computation for lepton pair production can be found in [196]
and [101].

Another effect of large enough collision energy is multiple pair produc-
tion. Early work on this subject started with the observation that the impact-
parameter-dependent total pair production probability computed in the low-
est order perturbation theory is larger than one. The analysis of Ref. [190]
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5 Pair production and annihilation in QED

devoted to the study of the corresponding Feynman diagrams in the high-
energy limit leads to the probability of N lepton pair production obeying the
Poisson distribution. For a review of this topic see [189].

Two photon particle pair production by collision of two electrons or elec-
tron and positron (see Fig. 3.1, where 4-momenta p1 and p2 correspond
to their momenta) were studied in storage rings in Novosibirsk (e+e− →
e+e−e+e− [197]) and in Frascati at ADONE (e+e− → e+e−e+e− [198], e+e− →
e+e−µ+µ− [199], e+e− → e+e−π+π− [200]), see also [201]. At high en-
ergy the total cross-section of two photon production of lepton pairs is given
by [99, 101]

σe±e−→e±e−l+l− =
28α4

27πm2
l

(
ln

s
m2

e

)2

ln
s

m2
e

; l ≡ e or µ. (5.6.4)

see c.f. Eq. (3.3.5).

5.7 QED description of pair production

We turn now to a Sauter-Heisenberg-Euler process in QED. An external elec-
tromagnetic field is incorporated by adding to the quantum field Aµ in (5.2.4)
an unquantized external vector potential Ae

µ, so that the total interaction be-
comes

Lint +Le
int = −eψ̄(x)γµψ(x)

[
Aµ(x) + Ae

µ(x)
]

. (5.7.1)

Instead of an operator formulation, one can derive the quantum field theory
from a functional integral formulation, see e.g. [202], in which the quantum
mechanical partition function is described by

Z[Ae] =
∫
[DψDψ̄DAµ] exp

[
i
∫

d4x(L+Le
int)

]
, (5.7.2)

to be integrated over all fluctuating electromagnetic and Grassmannian elec-
tron fields. The normalized quantity Z[Ae] gives the amplitude for the vac-
uum to vacuum transition in the presence of the external classical electro-
magnetic field:

⟨out, 0|0, in⟩ = Z[Ae]

Z[0]
, (5.7.3)
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where |0, in⟩ is the initial vacuum state at the time t = t− → −∞, and ⟨out, 0|
is the final vacuum state at the time t = t+ → +∞. By selecting only the
one-particle irreducible Feynman diagrams in the perturbation expansion of
Z[Ae] one obtains the effective action as a functional of Ae:

∆Aeff[Ae] ≡ −i ln⟨out, 0|0, in⟩. (5.7.4)

In general, there exists no local effective Lagrangian density ∆Leff whose
space-time integral is ∆Aeff[Ae]. An infinite set of derivatives would be needed,
i.e., ∆Leff would have the arguments Ae(x), ∂µ Ae(x), ∂µ∂ν Ae(x), . . . , contain-
ing gradients of arbitrary high order. With presently available methods it
is possible to calculate a few terms in such a gradient expansion, or a semi-
classical approximation à là JWKB for an arbitrary but smooth space-time
dependence (see Section 3.21ff in Ref. [202]). Under the assumption that the
external field Ae(x) varies smoothly over a finite space-time region, we may
define an approximately local effective Lagrangian ∆Leff[Ae(x)],

∆Aeff[Ae] ≃
∫

d4x∆Leff[Ae(x)] ≈ V∆t∆Leff[Ae], (5.7.5)

where V is the spatial volume and time interval ∆t = t+ − t−.

For a large time interval ∆t = t+ − t− → ∞, the amplitude of the vacuum
to vacuum transition (5.7.3) has the form,

⟨out, 0|0, in⟩ = e−i(∆E0−iΓ/2)∆t, (5.7.6)

where ∆E0 = E0(Ae)− E0(0) is the difference between the vacuum energies
in the presence and the absence of the external field, Γ is the vacuum decay
rate, and ∆t the time over which the field is nonzero. The probability that the
vacuum remains as it is in the presence of the external classical electromag-
netic field is

|⟨out, 0|0, in⟩|2 = e−2Im∆Aeff[Ae]. (5.7.7)

This determines the decay rate of the vacuum in an external electromagnetic
field:

Γ
V

=
2 Im∆Aeff[Ae]

V∆t
≈ 2 Im∆Leff[Ae]. (5.7.8)

The vacuum decay is caused by the production of electron and positron pairs.
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5 Pair production and annihilation in QED

The external field changes the energy density by

∆E0

V
= − Re∆Aeff[Ae]

V∆t
≈ −Re∆Leff[Ae]. (5.7.9)

5.7.1 Schwinger formula for pair production in uniform
electric field

The Dirac fields appears quadratically in the partition functional (5.7.2) and
can be integrated out, leading to

Z[Ae] =
∫

DAµ Det{i̸∂− e[A̸(x)+ A̸e(x)]−me + iη}; ̸∂ ≡ γµ∂µ, ̸A ≡ γµ Aµ,

(5.7.10)
where Det denotes the functional determinant of the Dirac operator. Ignoring
the fluctuations of the electromagnetic field, the result is a functional of the
external vector potential Ae(x):

Z[Ae] ≈ const×Det{i̸∂− e A̸e(x)−me + iη}. (5.7.11)

The infinitesimal constant iη with η > 0 specifies the treatment of singulari-
ties in energy integrals. From Eqs. (5.7.3)–(5.7.11), the effective action (5.7.7)
is given by

∆Aeff[Ae] = −iTr ln
{
[i̸∂− e A̸e(x)−me + iη]

1
i̸∂−me + iη

}
, (5.7.12)

where Tr denotes the functional and Dirac trace. In physical units, this is
of order h̄. The result may be expressed as a one-loop Feynman diagram,
so that one speaks of one-loop approximation. More convenient will be the
equivalent expression

∆Aeff[Ae] = − i
2

Tr ln
(
{[i̸∂− e A̸e(x)]2 −m2

e + iη} 1
−∂2 −m2

e + iη

)
,

(5.7.13)
where

[i̸∂− e A̸e(x)]2 = [i∂µ − eAe
µ(x)]2 +

e
2

σµνFe
µν, (5.7.14)
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where σµν ≡ i
2 [γ

µ, γν], Fe
µν = ∂µ Ae

ν − ∂ν Ae
µ. Using the identity

ln
a2

a1
=
∫ ∞

0

ds
s
[
eis(a1+iη) − eis(a2+iη)], (5.7.15)

Eq. (5.7.13) becomes

∆Aeff[Ae] =
i
2

∫ ∞

0

ds
s

e−is(m2
e−iη)Tr⟨x|eis{[i∂µ−eAe

µ(x)]2+ e
2 σµνFe

µν} − e−is∂2 |x⟩,
(5.7.16)

where ⟨x|{· · ·}|x⟩ are the diagonal matrix elements in the local basis |x⟩.
This is defined by the matrix elements with the momentum eigenstates |k⟩
being plane waves: ⟨x|k⟩ = e−ikx. The symbol Tr denotes integral

∫
d4x in

space-time and the trace in spinor space. For constant electromagnetic fields,
the integrand in (5.7.16) does not depend on x, and σµνFe

µν commutes with all
other operators. This will allows us to calculate the exponential in Eq. (5.7.16)
explicitly. The presence of −iη in the mass term ensures convergence of inte-
gral for s→ ∞.

If only a constant electric field E is present, it may be assumed to point
along the ẑ-axis, and one can choose a gauge such that Ae

z = −Et is the only
nonzero component of Ae

µ. Then one finds

tr exp is
[ e

2
σµνFe

µν

]
= 4 cosh(seE), (5.7.17)

where the symbol tr denotes the trace in spinor space. Using the commuta-
tion relation [∂0, x0] = 1, where x0 = t, one computes the exponential term in
the effective action (5.7.16) (c.e.g. [89])

⟨x| exp is
[
(i∂µ − eAe

µ(x))2 +
e
2

σµνFe
µν

]
|x⟩ = eE

(2π)2is
coth(eEs). (5.7.18)

The second term in Eq. (5.7.16) is obtained by setting E = 0 in Eq. (5.7.18), so
that the effective action (5.7.16) yields,

∆Aeff =
1

2(2π)2

∫
d4x

∫ ∞

0

ds
s3 [eEs coth(eEs)− 1] e−is(m2

e−iη). (5.7.19)

Since the field is constant, the integral over x gives a volume factor, and the
effective action (5.7.16) can be attributed to the space-time integral over an
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effective Lagrangian (5.7.5)

∆Leff =
1

2(2π)2

∫ ∞

0

ds
s3 [eEs coth(eEs)− 1] e−is(m2

e−iη). (5.7.20)

By expanding the integrand in Eq. (5.7.20) in powers of e, one obtains,

1
s3 [eEs coth(eEs)− 1] e−is(m2

e−iη) =

[
e2

3s
E2 − e4s

45
E4 +O(e6)

]
e−is(m2

e−iη).

(5.7.21)
The small-s divergence in the integrand,

e2

3
E2 1

2(2π)2

∫ ∞

0

ds
s

e−is(m2
e−iη), (5.7.22)

is proportional to the electric term in the original Maxwell Lagrangian. The
divergent term (5.7.22) can therefore be removed by a renormalization of the
field E. Thus we subtract a counterterm in Eq. (5.7.20) and form

∆Leff =
1

2(2π)2

∫ ∞

0

ds
s3

[
eEs coth(eEs)− 1− e2

3
E2s2

]
e−is(m2

e−iη). (5.7.23)

Remembering Eq. (5.7.8), we find from (5.7.23) the decay rate of the vacuum
per unit volume

Γ
V

=
1

(2π)2 Im
∫ ∞

0

ds
s3

[
eEs coth(eEs)− 1− e2

3
E2s2

]
e−is(m2

e−iη). (5.7.24)

The integral (5.7.24) can be evaluated analytically by the method of residues.
Since the integrand is even, the integral can be extended to the entire s-axis.
After this, the integration contour is deformed to enclose the negative imagi-
nary axis and to pick up the contributions of the poles of the coth function at
s = nπ/eE. The result is

Γ
V

=
αE2

π2

∞

∑
n=1

1
n2 exp

(
−nπEc

E

)
. (5.7.25)

This result, i.e. the Schwinger formula [25–27] is valid to lowest order in h̄ for
arbitrary constant electric field strength.
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An analogous calculation for a charged scalar field yields

Γ
V

=
αE2

2π2

∞

∑
n=1

(−1)n+1

n2 exp
(
−nπEc

E

)
, (5.7.26)

which generalizes the Weisskopf treatment being restricted to the leading
term n = 1. These Schwinger results complete the derivation of the prob-
ability for pair productions. The leading n = 1 -terms of (5.7.25) and (5.7.26)
agrees with the JWKB results we discuss in Section 3.5, and thus the correct
Sauter exponential factor (3.4.9) and Heisenberg-Euler imaginary part of the
effective Lagrangian (4.3.19).

Narozhny and Nikishov [33] have expressed Eq. (5.7.7) through the prob-
ability of one pair production P1, of n pair production Pn with n = 1, 2, 3, · · ·
as well as the average number of pair productions

|⟨out, 0|0, in⟩|2 = 1− P1 − P2 − P3 − · · ·, (5.7.27)

where Pn, (n = 1, 2, 3, · · ·) is the probability of n pair production, and the
probability of one pair production is,

P1 = V∆t
αE2

2π2 ln
(

1− e−
πm2

e
eE

)
e−2V∆tIm∆Leff[Ae]. (5.7.28)

The average number N̄ of pair productions is then given by

N̄ =
∞

∑
n=1

nPn = V∆t
αE2

π2 exp
(
−πEc

E

)
, (5.7.29)

which is the quantity directly related to the experimental measurements.

5.7.2 Pair production in constant electromagnetic fields

Since the QED theory is gauge and Lorentz invariant, effective action ∆Aeff
and Lagrangian ∆Leff are expressed as functionals of the scalar and pseu-
doscalar invariants S, P (3.5.23). Thus they must be invariant under the dis-
crete duality transformation:

|B| → −i|E|, |E| → i|B|, (5.7.30)
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i.e.,
β→ −iε, ε→ iβ. (5.7.31)

This implies that in the case E = 0 and B ̸= 0, results can be simply obtained
by replacing |E| → i|B| in Eqs. (5.7.18), (5.7.23), (5.7.24):

⟨x| exp is
[
(i∂µ − eAe

µ(x))2 +
e
2

σµνFe
µν

]
|x⟩ = eB

(2π)2is
cot(eBs), (5.7.32)

and

∆Leff =
1

2(2π)2

∫ ∞

0

ds
s3

[
eBs cot(eBs)− 1 +

e2

3
B2s2

]
e−is(m2

e−iη). (5.7.33)

In the presence of both constant electric and magnetic fields E and B, we
adopt parallel ECF and BCF pointing along the ẑ-axis in the center-of-fields
frame, as discussed after Eqs. (3.5.14), (3.5.15), (3.5.16). We can choose a gauge
such that only Ae

z = −ECFt, Ae
y = BCFx1 are nonzero. Due to constant

fields, the exponential in the effective action Eq. (5.7.16) can be factorized
into a product of the magnetic part and the electric part. Following the same
method used to compute the electric part (5.7.17,5.7.18), one can compute the
magnetic part by using the commutation relation [∂1, x1] = 1, where x1 = x.
Or one can make the substitution (5.7.30) to obtain the magnetic part, based
on the discrete symmetry of duality. As results, Eqs. (5.7.17), (5.7.18) become

tr exp is
[ e

2
σµνFe

µν

]
= 4 cosh(seECF) cos(seBCF), (5.7.34)

and

⟨x| exp is
{
[i∂µ − eAe

µ(x)]2 +
e
2

σµνFe
µν

}
|x⟩

=
1

(2π)2
eECF

is
coth(seECF)

eBCF

s
cot(seBCF). (5.7.35)

In this special frame, the effective Lagrangian is then given by

∆Leff =
1

2(2π)2

∫ ∞

0

ds
s3

[
e2ECFBCFs2 coth(seECF) cot(seBCF)

− 1− e2

3
(E2

CF − B2
CF)s

2
]
· e−is(m2

e−iη). (5.7.36)
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Using definitions in Eqs. (3.5.23), (3.5.24), (3.5.25), we obtain the effective La-
grangian

∆Leff=
1

2(2π)2

∫ ∞

0

ds
s3

[
e2εβs2 coth(eεs) cot(eβs)

− 1− e2

3
(ε2 − β2)s2

]
e−is(m2

e−iη); (5.7.37)

and the decay rate

Γ
V

=
1

(2π)2 Im
∫ ∞

0

ds
s3

[
e2εβs2 coth(eεs) cot(eβs)

− 1− e2

3
(ε2 − β2)s2

]
e−is(m2

e−iη), (5.7.38)

in terms of the invariants ε and β (3.5.25) for arbitrary electromagnetic fields
E and B.

The integral (5.7.38) is evaluated as in Eq. (5.7.25) by the method of residues,
and yields [25–27]

Γ
V

=
αε2

π2 ∑
n=1

1
n2

nπβ/ε

tanh nπβ/ε
exp

(
−nπEc

ε

)
, (5.7.39)

which reduces for β → 0 (B = 0) correctly to (5.7.25). The n = 1 -term is the
JWKB approximation (3.5.27).

The analogous result for bosonic fields is

Γ
V

=
αε2

2π2 ∑
n=1

(−1)n

n2
nπβ/ε

sinh nπβ/ε
exp

(
−nπEc

ε

)
, (5.7.40)

where the first term n = 1 corresponds to the Euler-Heisenberg result (4.3.19).
Note that the magnetic field produces in the fermionic case an extra factor
(nπβ/ε)/ tanh(nπβ/ε) > 1 in each term which enhances the decay rate. The
bosonic series (5.7.40), on the other hand, carries in each term a suppression
factor (nπβ/ε)/ sinh nπβ/ε < 1. The average number N̄ (5.7.29) is given by

N̄ =
∞

∑
n=1

nPn = V∆t
α

π

αβε

tanh πβ/ε
exp

(
−πEc

ε

)
. (5.7.41)
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The decay rate Γ/V gives the number of electron–positron pairs produced
per unit volume and time. The prefactor can be estimated on dimensional
grounds. It has the dimension of E2

c /h̄, i.e., m4c5/h̄4. This arises from the
energy of a pair 2mec2 divided by the volume whose diameter is the Comp-
ton wavelength h̄/mec, produced within a Compton time h̄/mec2. The ex-
ponential factor suppresses pair production as long as the electric field is
much smaller than the critical electric field Ec, in which case the JWKB re-
sults (3.5.27) and (3.5.28) are good approximations.

The general results (5.7.39),(5.7.40) was first obtained by Schwinger [25–27]
for scalar and spinor electrodynamics (see also Nikishov [28], Batalin and
Fradkin [29]). The method was extended to special space-time-dependent
fields in Refs. [30–34]. The monographs [89, 145, 203–205] can be consulted
about more detailed calculation, discussion and bibliography.

5.7.3 Effective nonlinear Lagrangian for arbitrary constant
electromagnetic field

Starting from the integral form of Heisenberg and Euler Lagrangian (5.7.37)
we find explicitly real and imaginary parts of the effective Lagrangian ∆Leff
(5.7.37) for arbitrary constant electromagnetic fields E and B [35]. The es-
sential step is to reach a direct analytic form resulting from performing the
integration. We use the expressions [206],

eεs coth(eεs) =
∞

∑
n=−∞

s2

(s2 + τ2
n)

; τn ≡ nπ/eε, (5.7.42)

eβs cot(eβs) =
∞

∑
m=−∞

s2

(s2 − τ2
m)

, τm ≡ mπ/eβ, (5.7.43)

and obtain for the finite effective Lagrangian of Heisenberg and Euler integral
representation,

∆Leff=
1

2(2π)2

∞

∑
n,m=−∞

′
∫ ∞

0
ds

s
τ2

n + τ2
m

[ δ̄m0

(s2 − τ2
m)
− δ̄n0

(s2 + τ2
n)

]
e−is(m2

e−iη),

(5.7.44)

where divergent terms n ̸= 0, m = 0, n = 0, m ̸= 0 and n = m = 0 are
excluded from the sum, as indicated by a prime. The symbol δ̄ij ≡ 1− δij
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denotes the complimentary Kronecker-δ which vanishes for i = j. The di-
vergent term with n = m = 0 is eliminated by the zero-field subtraction in
Eq. (5.7.37), while the divergent terms n ̸= 0, m = 0 and n = 0, m ̸= 0

∆Ldiv
eff =

1
2(2π)2

∫ ∞

0

ds
s

e−is(m2
e−iη)2

(
∞

∑
m=1

1
τ2

m
−

∞

∑
n=1

1
τ2

n

)
, (5.7.45)

are eliminated by the second subtraction in Eq. (5.7.37). This can be seen by
performing the sums

∞

∑
n=1

1
τk

n
=
( eε

π

)k
ζ(k);

∞

∑
n=1

1
τk

m
=

(
eβ

π

)k
ζ(k), (5.7.46)

where ζ(k) = ∑n 1/nk is the Riemann function.

The infinitesimal iη accompanying the mass term in the s-integral (5.7.44)
is equivalent to replacing e−is(m2

e−iη) by e−is(1−iη)m2
e . This implies that s is to be

integrated slightly below (above) the real axis for s > 0 (s < 0). Equivalently
one may shift the τm (−τm) variables slightly upwards (downwards) to τm +
iη (−τm − iη) in the complex plane.

In order to calculate the finite effective Lagrangian (5.7.44), the factor e−is(1−iη)m2
e

is divided into its sin and cos parts:

∆Lsin
eff =

−i
4(2π)2

∞

∑
n,m=−∞

′
∫ ∞

−∞

sds
τ2

n + τ2
m

[ δ̄m0

(s2 − τ2
m)
− δ̄n0

(s2 + τ2
n)

]
sin[s(1− iη)m2

e ];

(5.7.47)

∆Lcos
eff =

1
2(2π)2

∞

∑
n,m=−∞

′
∫ ∞

0

sds
τ2

n + τ2
m

[ δ̄m0

(s2 − τ2
m)
− δ̄n0

(s2 + τ2
n)

]
cos[s(1− iη)m2

e ].

(5.7.48)

The sin part (5.7.47) has an even integrand allowing for an extension of the s-
integral over the entire s-axis. The contours of integration can then be closed
by infinite semicircles in the half plane, the integration receives contributions
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from poles ±τm,±iτn, so that the residue theorem leads to,

∆Lsin
eff = i

αεβ

2π

∞

∑
n=1

1
n

coth
(

nπβ

ε

)
exp(−nπEc/ε) (5.7.49)

− i
αεβ

2π

∞

∑
m=1

1
m

coth
(

mπε

β

)
exp(imπEc/β) (5.7.50)

The first part (5.7.49) leads to the exact non-perturbative Schwinger rate (5.7.39)
for pair production.

The second term, as we see below, is canceled by the imaginary part of the
cos term. In fact, shifting s → s − iη, we rewrite the cos part of effective
Lagrangian (5.7.48) as

∆Lcos
eff =

1
2(2π)2

∞

∑
n,m=−∞

′
∫ ∞

0
ds

cos(sm2
e )

τ2
n + τ2

m

(
sδ̄m0

s2 − τ2
m − iη

− sδ̄n0

s2 + τ2
n − iη

)
.

(5.7.51)
In the first term of magnetic part, singularities s = τm, (m > 0) and s =
−τm, (m < 0) appear in integrating s-axis. We decompose

s
s2 − τ2

m − iη
= i

π

2
δ(s− τm) + i

π

2
δ(s + τm) + P

s
s2 − τ2

m
, (5.7.52)

where P indicates the principle value under the integral. The integrals over
the δ-functions give

∆δL
cos
eff = i

αεβ

2π

∞

∑
m=1

1
m

coth
(

mπε

β

)
exp(imπEc/β), (5.7.53)

which exactly cancels the second part (5.7.50) of the sin part ∆Lsin
eff .

It remains to find the principle-value integrals in Eq. (5.7.51), which corre-
sponds to the real part of the effective Lagrangian

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n,m=−∞

′ 1
τ2

n + τ2
m
P

∫ ∞

0
ds cos(sm2

e )

(
sδ̄m0

s2 − τ2
m
− sδ̄n0

s2 + τ2
n

)
.

(5.7.54)
We rewrite the cos function as cos(sm2

e ) = (eism2
e + e−ism2

e )/2 and make the
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rotations of integration contours by ±π/2 respectively,

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n,m=−∞

′ 1
τ2

n + τ2
m
×

× P

∫ ∞

0
dτ

(
δ̄m0τe−τ

τ2 − (iτmm2
e )

2 −
δ̄n0τe−τ

τ2 − (τnm2
e )

2

)
. (5.7.55)

Using the formulas (see Secs. 3.354, 8.211.1 and 8.211.2 in Ref. [206])

J(z) ≡ P

∫ ∞

0
ds

se−s

s2 − z2 = −1
2

[
e−zEi(z) + ezEi(−z)

]
, (5.7.56)

where Ei(z) is the exponential-integral function,

Ei(z) ≡ P

∫ z

−∞
dt

et

t
= log(−z) +

∞

∑
k=1

zk

kk!
, (5.7.57)

we obtain the principal-value integrals (5.7.55),

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n,m=−∞

′ 1
τ2

m + τ2
n

[
δ̄m0 J(iτmm2

e )− δ̄n0 J(τnm2
e )
]
. (5.7.58)

Having so obtained the real part of an effective Lagrangian for an arbi-
trary constant electromagnetic field we recover the usual approximate results
by suitable expansion of the exact formula. With the help of the series and
asymptotic representation (see formula 8.215 in Ref. [206]) of the exponential-
integral function Ei(z) for large z, corresponding to weak electromagnetic
fields (ε≪ 1, β≪ 1),

J(z) = − 1
z2 −

6
z4 −

120
z6 −

5040
z8 −

362880
z10 + · · ·, (5.7.59)

and Eq. (5.7.58), we find,

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n,m=−∞

′ 1
τ2

m + τ2
n

{
δ̄n0

[
1

τ2
n m4

e
+

6
τ4

n m8
e
+

120
τ6

n m12
e

+ · · ·
]

+ δ̄m0

[
1

τ2
mm4

e
− 6

τ4
mm8

e
+

120
τ6

mm12
e

+ · · ·
] }

. (5.7.60)
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Applying the summation formulas (5.7.46), the weak field expansion (5.7.60)
is seen to agree with the Heisenberg and Euler effective Lagrangian [7],

(∆Leff)P =
2α

90πE2
c

{
(E2−B2)2 + 7(E · B)2

}
+

2α

315π2E4
c

{
2(E2−B2)3 + 13(E2−B2)(E · B)2

}
+ · · ·, (5.7.61)

which is expressed in terms of a powers series of weak electromagnetic fields
up to O(α3). The expansion coefficients of the terms of order n have the gen-
eral form m4

e /(Ec)n. As long as the fields are much smaller than Ec, the ex-
pansion converges.

On the other hand, we can address the limiting form of the effective La-
grangian (5.7.58) corresponding to electromagnetic fields (ε ≫ 1, β ≫ 1). We
use the series and asymptotic representation (formulas 8.214.1 and 8.214.2 in
Ref. [206]) of the exponential-integral function Ei(z) for small z≪ 1,

J(z) = −1
2

[
ez ln(z) + e−z ln(−z)

]
+ γE +O(z), (5.7.62)

with γE = 0.577216 being the Euler-Mascheroni constant, we obtain the lead-
ing terms in the strong field expansion of Eq. (5.7.58),

(∆Lcos
eff )P =

1
2(2π)2

∞′

∑
n,m=−∞

1
τ2

m + τ2
n

[
δ̄n0 ln(τnm2

e )− δ̄m0 ln(τmm2
e )
]
+ · · ·.

(5.7.63)
In the case of vanishing magnetic field B = 0 and m = 0 in Eq. (5.7.63), we
have,

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n=1

1
τ2

n
ln(τnm2

e ) + · · · =
αE2

2π2

∞

∑
n=1

1
n2 ln

(
nπEc

E

)
+ · · ·,

(5.7.64)
for a strong electric field E. In the case of vanishing electric field E = 0 and
n = 0 in Eq. (5.7.63), we obtain for the strong magnetic field B,

(∆Lcos
eff )P = − 1

2(2π)2

∞

∑
m=1

1
τ2

m
ln(τmm2

e )+ · · · = −
αB2

2π2

∞

∑
m=1

1
m2 ln

(
mπEc

B

)
+ · · ·.

(5.7.65)
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The (m = 1) term is the one obtained by Weisskopf [24].
We have presented in Eqs. (5.7.49), (5.7.50), (5.7.53), (5.7.58) closed form re-

sults for the one-loop effective Lagrangian ∆Leff (5.7.37) for arbitrary strength
of constant electromagnetic fields. The results will receive fluctuation cor-
rections from higher loop diagrams. These carry one or more factors α, α2,
. . . and are thus suppressed by factors 1/137. Thus results are valid for all
field strengths with an error no larger than roughly 1%. If we include, for
example, the two-loop correction, the first term in the Heisenberg and Euler
effective Lagrangian (5.7.61) becomes [145]

(∆Leff)P =
2α

90πE2
c

{(
1 +

40α

9π

)
(E2−B2)2 + 7

(
1 +

1315α

252π

)
(E · B)2

}
.

(5.7.66)
Readers can consult the recent review article [207], where one finds discus-
sions and computations of the effective Lagrangian at the two-loop level,
and [208] for discussion of pair production rate.

5.8 Theory of pair production in an alternating
field

When the external electromagnetic field Fe
µν is space-time-dependent, i.e.,

Fe
µν = Fe

µν(x, t) the exponential in Eq. (5.7.16) can no longer be calculated
exactly. In this case, JWKB methods have to be used to calculate pair pro-
duction rates [30, 30, 31, 31, 32, 32, 36, 37, 209, 210]. The aim of this section is to
show how one can use a semi-classical JWKB approach to estimate the rate
of pair production in an oscillating electric field as first indicated by Brezin
and Itzykson in Ref. [36]. They evaluated the production rate of charged bo-
son pairs. The results they obtained can be straightforwardly generalized to
charged fermion case, since the spins of charged particles contribute essen-
tially with a counting factor to the final results (see Secs. 3.5 and 5.7.1). Thus,
let the electromagnetic potential be ẑ directed, uniform in space and periodic
in time with frequency ω0:

Ae
µ(x) = (0, 0, 0, A(t)), A(t) =

E
ω0

cos ω0t. (5.8.1)
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5 Pair production and annihilation in QED

Then the electric field is ẑ directed, uniform in space and periodic in time
as well. The electric field strength is given by E(t) = −Ȧ(t) = E sin ω0t.
It is assumed that the electric field is adiabatically switched on and damped
off in a time Te, which is much larger than the period of oscillation T0 =
2π/ω0. Suppose also that T0 is much larger than the Compton time 2π/ω of
the created particle , i.e.,

Te ≫ T0 ≫
2π

ω
≃ 2π

me
, (5.8.2)

where ω =
√
|p|2 + m2

e , p being the 3-momentum of the created particle.
Furthermore, eE is assumed to be much smaller than m2

e , i.e., E ≪ Ec (see
Eq. (3.5.13)).

We have to study the time evolution of a scattered wave function ψ(t) rep-
resenting the production of particle and antiparticle pairs in the electromag-
netic potential (5.8.1). As usual, an antiparticle can be thought of as a wave-
packet moving backward in time. Therefore, for large positive time (forward)
only positive energy modes (∼ e−iωt) contribute to ψ(t). Similarly, for large
negative times both positive energy and negative energy modes (∼ eiωt) con-
tribute to ψ(t) which satisfies the differential equation [36]:[

d2

dt2 + ω2(t)
]

ψ(t) = 0, (5.8.3)

where the “variable frequency” is defined as

ω(t) ≡
{

m2
e + p⊥2 + [pz − eA(t)]2

}1/2
. (5.8.4)

The JWKB method suggests a general solution of the from

ψ(t) = α(t)e−iχ(t) + β(t)eiχ(t), χ(t) ≡
∫ t

0
dt′ω(t′), (5.8.5)

where the boundary conditions at large positive and negative times are:

α(−∞) = 1, β(+∞) = 0; χ̇(±∞) = ω. (5.8.6)

The backward scattering amplitude β(t) for large negative time (t → −∞)
represents the probability of antiparticle production.
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5.8 Theory of pair production in an alternating field

The normalization condition |ψ(t)|2 = 1 implies

α̇(t)e−iχ(t) + β̇(t)eiχ(t) = 0. (5.8.7)

Eq. (5.8.3) can be written in terms of the scattering amplitudes as

α̇(t)e−iχ(t) − β̇(t)eiχ(t) = − ω̇(t)
ω(t)

[
α(t)e−iχ(t) − β(t)eiχ(t)

]
, (5.8.8)

or, which is the same,

α̇(t) = − ω̇(t)
2ω(t)

[
α(t)− β(t)ei2χ(t)

]
, (5.8.9)

β̇(t) = − ω̇(t)
2ω(t)

[
β(t)− α(t)e−i2χ(t)

]
. (5.8.10)

It follows from assumption (5.8.2) that ω̇(t) vanishes as |t| → ∞, i.e.,

ω̇(t)
ω2(t)

=
eE[pz − eA(t)]

{m2
e + p⊥2 + [pz − eA(t)]2}3/2 ≪ 1. (5.8.11)

More precisely ∣∣∣∣ ω̇(t)
ω2(t)

∣∣∣∣ < eE
m2

e + p⊥2 <
eE
m2

e
≪ 1. (5.8.12)

Therefore, α(t) and β(t) slowly vary in time and tend to constants as |t| → ∞.
The phase ei2χ(t) oscillates very rapidly as compared to the variation of α(t)
and β(t), for χ̇(t) = ω(t) ≫ |ω̇(t)/ω(t)|. In the zeroth order the oscillating
terms in Eqs. (5.8.9), (5.8.10) are negligible and one finds

α(0)(t) = [ω/ω(t)]1/2 ≃ 1; β(0)(t) = 0, (5.8.13)

which duly satisfy the boundary conditions, and

β(1)(t) =
∫ ∞

t
dt′

ω̇(t′)
2ω(t′)

e−i2χ(t′), (5.8.14)

where (5.8.2) and (5.8.12) have been used. |β(1)(−∞)|2 gives information
about the probability of particle-antiparticle pair production. Namely, the
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probability of pair production per unit volume and time is given by

P̃ = lim
Te→∞

1
Te

∫ d3k
(2π)3 |β

(1)(−Te)|2

=
∫ d3k

(2π)3 lim
Te→∞

1
Te

∣∣∣∣∫ Te/2

−Te/2
dt′

ω̇(t′)
2ω(t′)

e−i2χ(t′)
∣∣∣∣2 . (5.8.15)

Since ω(t) is a periodic function with the same frequency ω0 as A(t) one can
make a Fourier series expansion:

ω̇(t)
2ω(t)

=
+∞

∑
n=−∞

cneinω0 . (5.8.16)

Defined a renormalized frequency Ω via χ(t) = tΩ one finds

Ω ≡
∫ 2π

0

dx
2π

[
m2

e + k⊥
2 +

(
k3 −

eE
ω0

cos x
)2
]1/2

. (5.8.17)

so that

lim
Te→∞

1
Te

∣∣∣∣∫ Te/2

−Te/2
dt′

ω̇(t′)
2ω(t′)

e−i2χ(t′)
∣∣∣∣2 = 2π ∑

n
δ(nω0 − 2Ω)|cn|2. (5.8.18)

Consequently, the probability of pair production (5.8.15) is,

P̃ =
∫ d3k

(2π)2 ∑
n

δ(nω0 − 2Ω)|cn|2 =
∫ d3k

(2π)2ω0
|cn◦ |2, (5.8.19)

where n◦ = 2Ω/ω0 and cn◦ are determined via Eq. (5.8.16) as

cn◦ =
∫ π

−π

dx
2π

ω̇(x)
2ω(x)

exp

 2i
ω0

∫ x

0
dx′
[

m2
e + p⊥2 +

(
pz −

eE
ω0

cos(x′)
)2
]1/2

 .

(5.8.20)
The expression for cn◦ contains a very rapidly oscillating phase factor with
frequency of the order of me/ω0, and it decreases very rapidly in terms of
imaginary time τ = −it. Its evaluation requires the application of the steepest-
descent method in the complex time x = ω0t plane. This is done by selecting
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a proper contour turning in a neighborhood of the saddle point and following
the steepest-descent line, so as to find the main contributions to the integral
in Eq. (5.8.20). The saddle point originates from branch points and poles in
Eq. (5.8.20), which are the zeros of ω(x). Mathematical details can be found
in Ref. [36]. One finds

P̃ ≃ ω0

9

∫ d3k
(2π)2 e−2A cos2 B, (5.8.21)

where

−A + iB =
2i
ω0

∫ x0

0
dx′
[

m2
e + p⊥2 +

(
pz −

eE
ω0

cos(x′)
)2
]1/2

, (5.8.22)

and the saddle point is x0 = 1/π + i sinh−1[(ω0/eE)(m2
e + p⊥2)1/2].

The exponential factor e−2A in Eq. (5.8.21) indicates that particle-antiparticle
pairs tend to be emitted with small momenta. This allows one to estimate the
right-hand side of Eq. (5.8.21) as follow: (i) pz is set equal to zero, moreover,
the range of the pz-integration is of the order of 2eE/ω0 as suggested by the
classical equation of motion (5.8.3); (ii) cos2 B is replaced by its average value
1/2. As a result, one obtains [36],

P̃ ≃ (eE)3

18πω2
0

∫ ∞

η−1
duu exp

[
−πeE

ω2
0

u2g(u)

]
, (5.8.23)

where η−1 = meω0/(eE), u = (m2
e + p⊥2)ω2

0/(eE)2 and

g(z) =
4
π

∫ 1

0
dy
[ 1− y2

1 + z−2y2

]1/2
= F

(
1
2

,
1
2

; 2;−z−2
)

, (5.8.24)

where F(1/2, 1/2; 2;−z−2) = 2F1(1/2, 1/2; 2;−z−2) is the Gauss hypergeo-
metrical function. The function u2g(u) is monotonically increasing:

eE
ω2

0
u2g(u) ≥ eE

ω2
0

η−2g(η) =
m2

e
eE

g(η)≫ 1, (5.8.25)

which indicates that the integral in (5.8.23) is strongly dominated by values
in a neighborhood of u = η−1. This allows one to approximately perform the
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integration and leads to the rate of pair production of charged bosons [36],

P̃boson ≃
αE2

2π

1
g(η) + 1

2η g′(η)
exp

[
−πm2

e
eE

g(η)
]

. (5.8.26)

Analogously, the rate of pair production of charged fermions can be approx-
imately obtained from Eq. (5.8.26) by taking into account two helicity states
of fermions (see Secs. 3.5 and 5.7.1),

P̃fermion ≃
αE2

π

1
g(η) + 1

2η g′(η)
exp

[
−πm2

e
eE

g(η)
]

. (5.8.27)

This formula has played an important role in recent studies of electron and
positron pair production by laser beams, which we will discuss in some de-
tails in Section 7.2. Momentum spectrum of electrons and positrons, pro-
duced from the vacuum, was calculated in [30–32, 37]. For η ≫ 1 this distri-
bution is concentrated along the direction of electric field, while for η ≪ 1 it
approaches isotropic one.

Unfortunately, it appears very difficult to produce a macroscopic electric
field with strength of the order of the critical value (2.0.1) and lifetime long
enough (≫ h̄/(mec2)) in any ground laboratory to directly observe the Sauter-
Euler-Heisenberg-Schwinger process of electron–positron pair production in
vacuum. The same argument applies for the production of any other pair of
fermions or bosons. In the following Section, we discuss some ideas to exper-
imentally create a transient electric field E ≲ Ec in Earth-bound laboratories,
whose lifetime is expected to be long enough (larger than h̄/mec2) for the pair
production process to take place.

5.9 Nonlinear Compton scattering and
Breit-Wheeler process

In Section 3.2, we have discussed the Breit–Wheeler process [2] in which an
electron–positron pair is produced in the collision of two real photons γ1 +
γ2 → e+ + e− (3.0.2). The cross-section they obtained is O(r2

e ), where re is the
classical electron radius, see Eq. (3.2.10). This lowest order photon-photon
pair production cross-section is so small that it is difficult to observe creation
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5.9 Nonlinear Compton scattering and Breit-Wheeler process

of pairs in the collision of two high-energy photon beams, even if their center
of mass energy is larger than the energy-threshold 2mec2 = 1.02 MeV.

In the previous Sections we have seen that in strong electromagnetic fields
in lasers the effective nonlinear terms (5.7.61) become significant and there-
fore, the interaction needs not to be limited to initial states of two photons
[61, 62]. A collective state of many interacting laser photons occurs.

We turn now to two important processes [38,39] emerging in the interaction
of an ultrarelativistic electron beam with a terawatt laser pulse, performed at
SLAC [63], when strong electromagnetic fields are involved. The first process
is the nonlinear Compton scattering, in which an ultrarelativistic electron ab-
sorbs multiple photons from the laser field, but emits only a single photon
via the process

e + nω → e′ + γ, (5.9.1)

where ω represents photons from the strong electromagnetic wave of the
laser beam (its frequency being ω), n indicates the number of absorbed pho-
tons and γ represents a high-energy emitted photon (see Eq. (5.9.2) for cross
symmetry). The theory of this nonlinear Compton effect (5.9.1) is given in Sec-
tion 5.10. The same process (5.9.1) has been expressed by Bamber et al. [211]
in a semi-classical framework. The second is the nonlinear Breit–Wheeler
process

γ + nω → e+ + e−. (5.9.2)

between this very high-energy photon γ and multiple laser photons: the
high-energy photon γ, created in the first process, propagates through the
laser field and interacts with laser photons nω to produce an electron–positron
pair [39].

In the electric field E of an intense laser beam, an electron oscillates with
the frequency ω of the laser and its maximum velocity in unit of the speed of
light is given by

vmaxγmax =
eE

mω
, γmax = 1/

√
1− v2

max. (5.9.3)

In the case of weak electric field, vmax ≪ 1 and the nonrelativistic electron
emits the dipole radiation well described in linear and perturbative QED. On
the other hand, in the case of strong electric fields, vmax → 1 and the ultrarela-
tivistically oscillating electron emits multi-pole radiation. The radiated power
is then a nonlinear function of the intensity of the incident laser beam. Using
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5 Pair production and annihilation in QED

the maximum velocity vmax of oscillating electrons in the electric field of laser
beam, one can characterize the effect of nonlinear Compton scattering by the
dimensionless parameter

η = vmaxγmax =
eErms

mω
=

mec2

ωh̄
Erms

Ec
, (5.9.4)

where the subscript ‘rms’ means root-mean-square, with respect to the num-
ber of interacting laser photons with scattered electron. The parameter η can
be expressed as a Lorentz invariant,

η2 =
e2|⟨Aµ Aµ⟩|

m2
e

, (5.9.5)

where Aµ is the gauge potential of laser wave, ∂µ Aµ = 0 and the time-average
is taken over one period of laser wave, ⟨Aµ⟩ = 0 and

⟨Aµ Aµ⟩ = ⟨(Aµ − ⟨Aµ⟩)2⟩. (5.9.6)

Eq. (5.9.5) shows that η2 is the intensity parameter of laser fields, and η in
(5.9.4) coincides with the parameter η introduced in Eq. (5.8.23) for the pair
production in an alternating electric field (see Section 5.8).

5.10 Quantum description of nonlinear Compton
effect

In Refs. [40–45, 61, 62, 90, 212–216], the quantum theory of the interaction of
free electrons with the field of a strong electromagnetic wave has been stud-
ied. The application of quantum perturbation theory to such interaction re-
quires not only that the interaction constant α should be small but also that
field should be sufficiently weak. The characteristic quantity in this respect
is the dimensionless invariant ratio η, see (5.9.5). The photon emission pro-
cesses occurring in the interaction of an electron with the field of a strong
electromagnetic wave have been discussed in Ref. [90] for any η value. The
method used is based on an exact treatment of this interaction, while the
interaction of the electron with the newly emitted photons regarded as a per-
turbation.
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5.10 Quantum description of nonlinear Compton effect

Laser beam is considered as a monochromatic plane wave, described by the
gauge potential Aµ(ϕ) and ϕ = kx, where wave vector k = (ω, k) (k2 = 0)
(see Eq. (3.1.3)). The Dirac equation can be exactly solved [217] for an electron
moving in this field of electromagnetic plane wave of an arbitrary polariza-
tion and the normalized wave function of the electron with momentum p is
given by (c.e.g. [90]),

ψp =

[
1 +

e
2(kp)

̸ k A̸
]

u(p)√
2q0

eiΦ, (5.10.1)

Φ = −px−
∫ kx

0

[
e

(kp)
(pA)− e2

2(kp)
A2
]

dϕ, (5.10.2)

where u(p) is the solution of free Dirac equation ( ̸ p− me)u(p) = 0 and the
time-average value of 4-vector,

q = p− e2⟨A2⟩
2(kp)

k, (5.10.3)

is the kinetic momentum operator in the electron state ψp (5.10.1) and the
“effective mass” m∗ of the electron in the field is

q2 = m2
∗, m∗ = me

√
1 + η2, (5.10.4)

where η2 is given by (5.9.5). The electron becomes “heavy” in an oscillating
electromagnetic field.

The S-matrix element for a transition of the electron from the state ψp to the
state ψp′ , with emission of a photon having momentum k′ and polarization ϵ′

is given by (c.e.g. [90])

S f i = −ie
∫

ψ̄p′(γϵ′∗)ψp
eik′x
√

2ω′
d4x (5.10.5)

=
1

2ω′ · 2q0 · 2q′0
∑
n

M(n)
f i (2π)4iδ(4)(nk + q− q′ − k′), (5.10.6)

where the integrand in Eq. (5.10.5) is expanded in Fourier series and ex-
pansion coefficients are in terms of Bessel functions Jn, the scattering am-
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5 Pair production and annihilation in QED

plitude M(n)
f i in Eq. (5.10.6) is obtained1 by integrating over x. Eq. (5.10.6)

shows that S f i is an infinite sum of terms, each corresponds to an energy-
momentum conservation law nk + q = q′ + k′, indicating an electron (q) ab-
sorbs n-photons (nk) and emits another photon (k′) of frequency

ω′ =
nω

1 + (nω/m∗)(1− cos θ)
, (5.10.7)

in the frame of reference where the electron is at rest (q = 0, q0 = m∗), and θ
is the angle between k and k′. Given the nth term of the S-matrix S f i (5.10.6),
the differential probability per unit volume and unit time yields,

dP(n)
eγ =

d3k′d3q′

(2π)6 · 2ω′ · 2q0 · 2q′0
|M(n)

f i |
2(2π)4iδ(4)(nk + q− q′ − k′). (5.10.8)

Integrating over the phase space of final states
∫

d3k′d3q′, one obtains the
total probability of emission from unit volume in unit time (circular polariza-
tion),

Peγ =
e2m2

e
4q0

∞

∑
n=1

∫ κn

0

dκ

(1 + κ)2

[
−4J2

n(z) + η2(2 + κ2

1 + κ

)
(J2

n+1 + J2
n−1 − 2J2

n)

]
,

(5.10.9)
where κ = (kk′)/(kp′), κn = 2n(kp)/m2

∗ and Bessel functions Jn(z),

z = 2m2
e

η

(1 + η2)1/2

[
κ

κn

(
1− κ

κn

)]1/2

, (5.10.10)

for any η value. A systematic investigation of various quantum processes in
the field of a strong electromagnetic wave can be found in [40–45], in partic-
ular photon emission and pair production in the field of a plane wave with
various polarizations are discussed.

We now turn to the Breit–Wheeler process for multi-photons (5.9.2). In this
process, the pair production is attributed to the interaction of a high-energy
photon with many laser photons in the electromagnetic laser wave. Actually,
the Breit–Wheeler process for multi-photons, see Eq. (5.9.2), is related to the
nonlinear Compton scattering process, see Eq. (5.9.1), by crossing symmetry.

1The explicit expression M(n)
f i is not given here for its complexity, see for example [90].
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5.10 Quantum description of nonlinear Compton effect

By replacement p→ −p and k′ → −l and reverse the common sign of the ex-
pression in Eq. (5.10.6), one obtains the probability of pair production (5.9.2)
by a photon γ (momentum l) colliding with n laser photons (momentum k)
per unit volume in unit time (circular polarization) [40–45],

Pγγ =
e2m2

e
16l0

∞

∑
n>n0

∫ υn

1

dυ

υ3/2(1 + υ)1/2 ×

×
[
2J2

n(z) + η2(2υ− 1)(J2
n+1 + J2

n−1 − 2J2
n)
]

, (5.10.11)

where υ = (kl)2/4(kq)(kq′), υn = n/n0, n0 = 2m2
∗/(kl) and Bessel functions

Jn(z),

z = 4m2
e

η(1 + η2)1/2

(kl)

[
υ

υn

(
1− υ

υn

)]1/2

.

In Eq. (5.10.11), the number n of laser photons must be larger than n0 (n > n0),
which is the energy threshold n0(kl) = 2m2

∗ for the process (5.9.2) of pair
production to occur.
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6 Semi-classical description of pair
production in a general electric
field

As shown in previous sections, the rate of pair production may be split into an
exponential and a pre-exponential factor. The exponent is determined by the
classical trajectory of the tunneling particle in imaginary time which has the
smallest action. It plays the same role as the activation energy in a Boltzmann
factor with a “temperature” h̄. The pre-exponential factor is determined by
the quantum fluctuations of the path around that trajectory. At the semi-
classical level, the latter is obtained from the functional determinant of the
quadratic fluctuations. It can be calculated in closed form only for a few clas-
sical paths [202]. An efficient technique for doing this is based on the JWKB
wave functions, another on solving the Heisenberg equations of motion for
the position operator in the external field [202].

Given the difficulties in calculating the pre-exponential factor, only a few
nonuniform electric fields in space or in time have led to analytic results for
the pair production rate: (i) the electric field in the z-direction is confined in
the space x < x0, i.e., E = E(x)ẑ where E(x) = E0Θ(x0 − x) [218, 219]; (ii)
the electric field in the z-direction depends only on the light-cone coordinate
z+ = (t + z)/

√
2, i.e., E = E(z+)ẑ [220, 221]. If the nonuniform field has

the form E(z) = E0/ cosh2(z), which will be referred as a Sauter field, the
rate was calculated by solving the Dirac equation [33] in the same way as
Heisenberg and Euler did for the constant electric field. For general space and
time dependencies, only the exponential factor can be written down easily
— the fluctuation factor is usually hard to calculate [65]. In the Coulomb
field of heavy nucleus whose size is finite and charge Z is supercritical, the
problem becomes even more difficult for bound states being involved in pair
production, and a lot of effort has been spent on this issue [65, 203, 222].

If the electric field has only a time dependence E = E(t), both exponen-
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6 Semi-classical description of pair production in a general electric field

tial and pre-exponential factors were approximately computed by Brezin and
Itzykson using JWKB methods for the purely periodic field E(t) = E0 cos ω0t
[36]. The result was generalized by Popov in Ref. [209, 223] to more general
time-dependent fields E(t). After this, several time-independent but space-
dependent fields were treated, for instance an electric field between two con-
ducting plates [224], and an electric field around a Reissner–Nordström black
hole [46].

The semi-classical expansion was carried beyond the JWKB approximation
by calculating higher order corrections in powers of h̄ in Refs. [51,52] and [53].
Unfortunately, these terms do not comprise all corrections of the same orders
h̄ as explained in [54].

An alternative approach to the same problems was recently proposed by
using the worldline formalism [47], sometimes called the “string-inspired for-
malism”. This formalism is closely related to Schwinger’s quantum field the-
oretic treatment of the tunneling problem, where the evaluation of a fluctua-
tion determinant is required involving the fields of the particle pairs created
from the vacuum. The worldline approach is a special technique for calcu-
lating precisely this functional determinant. Within the worldline formal-
ism, Dunne and Schubert [48] calculated the exponential factor and Dunne
et al. [49] gave the associated prefactor for various field configurations: for
instance a spatially uniform, and single-pulse field with a temporal Sauter
shape ∝ 1/ cosh2 ωt. For general z-dependencies, a numerical calculation
scheme was proposed in Ref. [225–228] and applied further in [229]. For a
multidimensional extension of the techniques see Ref. [50].

In this Section, a general expression is derived for the pair production rate
in nonuniform electric fields E(z) pointing in the z-direction recently derived
in [54, 230]. A simple variable change in all formulas leads to results for elec-
tric fields depending also on time rather than space. As examples, three cases
will be treated: (i) a nonzero electric field confined to a region of size ℓ, i.e.,
E(z) ̸= 0, |z| ≲ ℓ (Sauter field see Eq. (6.3.4)); (ii) a nonzero electric field
in a half space, i.e., E(z) ̸= 0, z ≳ 0 (see Eq. (6.3.25)); (iii) an electric field
increasing linearly like E(z) ∼ z. In addition, the process of negative en-
ergy electrons tunneling into the bound states of an electric potential with
the emission of positrons will be studied, by considering the case: the electric
field E(z) ∼ z of harmonic potential V(z) ∼ z2.
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6.1 Semi-classical description of pair production

6.1 Semi-classical description of pair production

The phenomenon of pair production in an external electric field can be under-
stood as a quantum mechanical tunneling process of Dirac electrons [1, 80].
In the original Dirac picture, the electric field bends the positive and negative
energy levels of the Hamiltonian, leading to a level crossing and a tunneling
of the electrons in the negative energy band to the positive energy band. Let
the field vector E(z) point in the z-direction. In the one-dimensional potential
energy (3.4.4) the classical positive and negative energy spectra are

E±(pz, p⊥; z) = ±
√
(cpz)2 + c2p2

⊥ + (mec2)2 + V(z), (6.1.1)

where pz is the momentum in the z-direction, p⊥ the momentum orthogonal
to it, and p⊥ ≡ |p⊥|. For a given energy E, the tunneling takes place from z−
to z+ determined by pz = 0 in Eq. (6.1.1)

E = E+(0, p⊥; z+) = E−(0, p⊥; z−). (6.1.2)

The points z± are the turning points of the classical trajectories crossing from
the positive energy band to the negative one at energy E. They satisfy the
equations

V(z±) = ∓
√

c2p2
⊥ + m2

e c4 + E. (6.1.3)

This energy level crossing E is shown in Fig. 6.1 for the Sauter potential
V(z) ∝ tanh(z/ℓ).

6.1.1 JWKB transmission probability for Klein–Gordon Field

The probability of quantum tunneling in the z-direction is most easily studied
for a scalar field which satisfies the Klein–Gordon equation (3.4.3). If there is
only an electric field in the z-direction which varies only along z, a vector
potential with the only nonzero component (3.4.4) is chosen, and the ansatz
ϕ(x) = e−iEt/h̄eip⊥x⊥/h̄ϕp⊥,E(z), is made with a fixed momentum p⊥ in the
x, y-direction and an energy E, and Eq. (3.4.3) becomes simply[

−h̄2 d2

dz2 + p2
⊥ + m2

e c2 − 1
c2 [E−V(z)]2

]
ϕp⊥,E(z) = 0. (6.1.4)
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Figure 6.1: Positive- and negative-energy spectra E±(z) of Eq. (6.1.1) in units
of mec2, with pz = p⊥ = 0 as a function of ẑ = z/ℓ for the Sauter potential
V±(z) (6.3.4) for σs = 5.

By expressing the wave function ϕp⊥,E(z) as an exponential

ϕp⊥,E(z) = C eiSp⊥ ,E/h̄, (6.1.5)

where C is some normalization constant, the wave equation becomes a Riccati
equation for Sp⊥,E:

−ih̄∂2
zSp⊥,E(z) + [∂zSp⊥,E(z)]2 − p2

z(z) = 0. (6.1.6)

where the function pz(z) is the solution of the equation

p2
z(z) =

1
c2 [E−V(z)]2 − p2

⊥ −m2
e c2. (6.1.7)

The solution of Eq. (6.1.6) can be found iteratively as an expansion in powers
of h̄:

Sp⊥,E(z) = S(0)
p⊥,E(z)− ih̄S(1)

p⊥,E(z) + (−ih̄)2S(2)
p⊥,E(z) + . . . . (6.1.8)
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6.1 Semi-classical description of pair production

Neglecting the expansion terms after S(1)
p⊥,E(z) = − log p1/2

z (z) leads to the
JWKB approximation for the wave functions of positive and negative ener-
gies (see e.g. [88, 202])

ϕJWKB
p⊥,E (z) =

C

p1/2
z (z)

eiS(0)
p⊥ ,E(z)/h̄. (6.1.9)

where S(0)
p⊥,E(z) is the eikonal

S(0)
p⊥,E(z) =

∫ z
pz(z′)dz′. (6.1.10)

Between the turning points z− < z < z+, whose positions are illustrated
in Fig. 6.1, the momentum pz(z) is imaginary and it is useful to define the
positive function

κz(z) ≡
√

p2
⊥ + m2

e c2 − 1
c2 [E−V(z)]2 ≥ 0. (6.1.11)

The tunneling wave function in this regime is the linear combination

C

2(κz)1/2 exp
[
−1

h̄

∫ z

z−
κzdz

]
+

C̄

2(κz)1/2 exp
[
+

1
h̄

∫ z

z−
κzdz

]
. (6.1.12)

Outside the turning points, i.e., for z < z− and z > z+, there exist negative
energy and positive energy solutions for E < E− and E > E+ for positive pz.
On the left-hand side of z−, the general solution is a linear combination of an
incoming wave running to the right and outgoing wave running to the left:

C+

(pz)1/2 exp
[

i
h̄

∫ z
pzdz

]
+

C−
(pz)1/2 exp

[
− i

h̄

∫ z
pzdz

]
. (6.1.13)

On the right-hand of z+, there is only an outgoing wave

T

(pz)1/2 exp
[

i
h̄

∫ z

z+
pzdz

]
, (6.1.14)
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6 Semi-classical description of pair production in a general electric field

The connection equations can be solved by

C̄ = 0, C± = e±iπ/4C/2, T = C+ exp
[
−1

h̄

∫ z+

z−
κzdz

]
. (6.1.15)

The incident flux density is

jz ≡
h̄

2mei
[ϕ∗∂zϕ− (∂zϕ∗)ϕ] =

pz

me
ϕ∗ϕ =

|C+|2
me

, (6.1.16)

which can be written as

jz(z) = vz(z)n−(z), (6.1.17)

where vz(z) = pz(z)/me is the velocity and n−(z) = ϕ∗(z)ϕ(z) the density of
the incoming particles. Note that the z-dependence of vz(z) and n−(z) cancel
each other. By analogy, the outgoing flux density is |T|2/me.

6.1.2 Rate of pair production

From the considerations given above, the transmission probability

PJWKB ≡
transmitted flux

incident flux
(6.1.18)

is found to be the simple exponential

PJWKB(p⊥,E) = exp
[
−2

h̄

∫ z+

z−
κzdz

]
. (6.1.19)

In order to derive from (6.1.18) the total rate of pair production in the elec-
tric field, it must be multiplied with the incident particle flux density at the
entrance z− of the tunnel. The particle velocity at that point is vz = ∂E/∂pz,
where the relation between E and z− is given by Eq. (6.1.3):

−1 =
E−V(z−)√
(cp⊥)2 + m2

e c4
. (6.1.20)

This must be multiplied with the particle density which is given by the phase
space density d3p/(2πh̄)3. The incident flux density at the tunnel entrance is
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6.1 Semi-classical description of pair production

therefore

jz(z−) = Ds

∫
∂E

∂pz

d2p⊥
(2πh̄)2

dpz

2πh̄
= Ds

∫ dE
2πh̄

d2p⊥
(2πh̄)2 , (6.1.21)

and the extra factor Ds is equal to 2 for electrons with two spin orientations1.
It is useful to change the variable of integration from z to ζ(z) defined by

ζ(p⊥,E; z) ≡ E−V(z)√
(cp⊥)2 + m2

e c4
, (6.1.22)

and to introduce the notation for the electric field E(p⊥,E; ζ) ≡ E[z̄(p⊥,E; ζ)],
where z̄(p⊥,E; ζ) is the inverse function of (6.1.22), the equations in (6.1.3)
reduce to

ζ−(p⊥,E; z−) = −1, ζ+(p⊥,E; z+) = +1. (6.1.23)

In terms of the variable ζ, the JWKB transmission probability (6.1.19) can be
rewritten as

PJWKB(p⊥,E) = exp

{
−2m2

e c3

eh̄E0

[
1 +

(cp⊥)2

m2
e c4

] ∫ 1

−1
dζ

√
1− ζ2

E(p⊥,E; ζ)/E0

}
.(6.1.24)

Here a standard field strength E0 has been introduced to make the integral in
the exponent dimensionless, which is abbreviated by

G(p⊥,E) ≡ 2
π

∫ 1

−1
dζ

√
1− ζ2

E(p⊥,E; ζ)/E0
. (6.1.25)

The first term in the exponent of (6.1.24) is equal to 2Ec/E0.
At the semi-classical level, tunneling takes place only if the potential height

is larger than 2mec2 and for energies E for which there are two real turning
points z±. The total tunneling rate is obtained by integrating over all in-
coming momenta and the total area V⊥ =

∫
dxdy of the incoming flux. The

JWKB-rate per area is

ΓJWKB

V⊥
= Ds

∫ dE
2πh̄

∫ d2p⊥
(2πh̄)2PJWKB(p⊥,E). (6.1.26)

1By setting Ds equal to 1 one can obtain the tunneling result also for spin-0 particles al-
though the Dirac picture is no longer applicable.
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6 Semi-classical description of pair production in a general electric field

Using the relation following from (6.1.20)

dE = eE(z−)dz−, (6.1.27)

the alternative expression is obtained

ΓJWKB

V⊥
= Ds

∫ dz−
2πh̄

∫ d2p⊥
(2πh̄)2 eE(z−)PJWKB(p⊥,E(z−)), (6.1.28)

where E(z−) is obtained by solving the differential equation (6.1.27).

The integral over p⊥ cannot be done exactly. At the semi-classical level, this
is fortunately not necessary. Since Ec is proportional to 1/h̄, the exponential
in (6.1.24) restricts the transverse momentum p⊥ to be small of the order of√

h̄, so that the integral in (6.1.28) may be calculated from an expansion of
G(p⊥,E) up to the order p2

⊥:

G(p⊥,E) ≃ 2
π

∫ 1

−1
dζ

√
1− ζ2

E(0,E; ζ)/E0

[
1− 1

2
dE(0,E, ζ)/dζ

E(0,E, ζ)
ζ δ + . . .

]
=

= G(0,E) + Gδ(0,E)δ + . . . , (6.1.29)

where δ ≡ δ(p⊥) ≡ (cp⊥)2/(m2
e c4), and

Gδ(0,E) ≡ − 1
π

∫ 1

−1
dζ

ζ
√

1− ζ2

E2(0,E; ζ)/E0
E′(0,E; ζ)

= −1
2

G(0,E) +
1
π

∫ 1

−1
dζ

ζ2√
1− ζ2

dζ

E(0,E, ζ)/E0
. (6.1.30)

The integral over p⊥ in (6.1.28) is approximately performed as follows:∫ d2p⊥
(2πh̄)2 e−π(Ec/E0)(1+δ)[G(0,E)+Gδ(0,E)δ] = (6.1.31)

=
m2

e c2

4πh̄2

∫ ∞

0
dδ e−π(Ec/E0)[G(0,E)+δG̃(0,E) ≈ eE0

4π2h̄cG̃(0,E)
e−π(Ec/E0)G(0,E),

where
G̃(0,E) ≡ G(0,E) + Gδ(0,E). (6.1.32)

The electric fields E(p⊥,E; ζ) at the tunnel entrance z− in the prefactor of
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(6.1.28) can be expanded similarly to first order in δ. If z0
− denotes the solu-

tions of (6.1.20) at p⊥ = 0, it is found that for small δ:

∆z− ≡ z− − z0
− ≈

mec2

E(z0
−)

δ

2
. (6.1.33)

so that

E(z−) ≃ E(z0
−)−mec2 E′(z0

−)

E(z0
−)

δ

2
. (6.1.34)

Here the extra term proportional to δ can be neglected in the semi-classical
limit since it gives a contribution to the prefactor of the order h̄. Thus the
JWKB-rate (6.1.28) of pair production per unit area is obtained

ΓJWKB

V⊥
≡
∫

dz
∂zΓJWKB(z)

V⊥
≃
∫

dz
Dse2E0E(z)

8π3h̄2c G̃(0,E(z))
e−π(Ec/E0)G(0,E(z)),(6.1.35)

where z is short for z0
−. At this point it is useful to return from the inte-

gral
∫

dz−eE(z−) introduced in (6.1.28) to the original energy integral
∫

dE in
(6.1.26), so that the final result is

ΓJWKB

V⊥
≡
∫

dE
∂EΓJWKB(z)

V⊥
≃ Ds

eE0

4π2h̄c

∫ dE
2πh̄

1
G̃(0,E)

e−π(Ec/E0)G(0,E),(6.1.36)

where E-integration is over all crossing energy levels.

These formula can be approximately applied to the three-dimensional case
of electric fields E(x, y, z) and potentials V(x, y, z) at the points (x, y, z) where
the tunneling length (3.5.6) is much smaller than the variation lengths δx⊥ of
electric potentials V(x, y, z) in the xy-plane,

1
z+ − z−

≫ 1
V

δV
δx⊥

. (6.1.37)

At these points (x, y, z), one can arrange the tunneling path dz and momen-
tum pz(x, z, z) in the direction of electric field, corresponding perpendicu-
lar area d2V⊥ ≡ dxdy for incident flux and perpendicular momentum p⊥.
It is then approximately reduced to a one-dimensional problem in the re-
gion of size O(a) around these points. The surfaces z−(x−, y−,E) and z+ =
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6 Semi-classical description of pair production in a general electric field

(x+, y+,E) associated with the classical turning points are determined by
Eqs. (6.1.22) and Eqs. (6.1.23) for a given energy E. The JWKB-rate of pair
production (6.1.35) can then be expressed as a volume integral over the rate
density per volume element

ΓJWKB =
∫

dxdydz
d3ΓJWKB

dx dy dz
=
∫

dtdxdydz
d4NJWKB

dt dx dy dz
. (6.1.38)

On the right-hand side it is useful to rewrite the rate ΓJWKB as the time deriva-
tive of the number of pair creation events dNJWKB/dt, so that one obtains an
event density in four-space

d4NJWKB

dt dx dy dz
≈ Ds

e2E0E(z)
8π3h̄ G̃(0,E(z))

e−π(Ec/E0)G(0,E(z)), (6.1.39)

Here x, y and z are related by the function z = z−(x, y,E) which is obtained
by solving (6.1.27).

It is now useful to observe that the left-hand side of (6.1.39) is a Lorentz
invariant quantity. In addition, it is symmetric under the exchange of time
and z, and this symmetry will be exploited in the next section to relate pair
production processes in a z-dependent electric field E(z) to those in a time-
dependent field E(t).

Attempts to go beyond the JWKB results (6.1.35) or (6.1.36) require a great
amount of work. Corrections will come from three sources:

I from the higher terms of order in (h̄)n with n > 1 in the expansion
(6.1.8) solving the Riccati equation (6.1.6).

II from the perturbative evaluation of the integral over p⊥ in Eqs. (6.1.26)
or (6.1.28) when going beyond the Gaussian approximation.

III from perturbative corrections to the Gaussian energy integral (6.1.36) or
the corresponding z-integral (6.1.35).

All these corrections contribute terms of higher order in h̄.
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6.1.3 Including a smoothly varying B(z)-field parallel to E(z)

The results presented above can easily be extended for the presence of a con-
stant magnetic field B parallel to E(z). Then the wave function factorizes into
a Landau state and a spinor function first calculated by Sauter [20]. In the
JWKB approximation, the energy spectrum is still given by Eq. (6.1.1), but
the squared transverse momenta p2

⊥ is quantized and must be replaced by
discrete values corresponding to the Landau energy levels. From the known
nonrelativistic levels for the Hamiltonian p2

⊥/2me one extracts immediately
the replacements (3.5.17). Apart from the replacement (3.5.17), the JWKB cal-
culations remain the same. Thus one must only replace the integration over
the transverse momenta

∫
d2p⊥/(2πh̄)2 in Eq. (6.1.31) by the sum over all

Landau levels with the degeneracy eB/(2πh̄c). Thus, the right-hand side be-
comes

eB
2πh̄c

e−π(Ec/E0)G(0,E) ∑
n,σ̂

e−π(B/E0)(n+1/2+gσ̂)G̃(0,E), (6.1.40)

where g and σ̂ are as in (3.5.17). The result is, for spin-0 and spin-1/2:

eE0

4π2h̄cG̃(0,E)
e−π(Ec/E0)G(0,E) f0,1/2(BG̃(0,E)/E0) (6.1.41)

where

f0(x) ≡ πx
sinh πx

, f1/2(x) ≡ 2
πx

sinh πx
cosh

πgx
2

(6.1.42)

In the limit B→ 0, Eq. (3.5.20) reduces to Eq. (6.1.31).
The result remains approximately valid if the magnetic field has a smooth

z-dependence varying little over a Compton wavelength λC.
In the following only nonuniform electric fields without a magnetic field

are considered.

6.2 Time-dependent electric fields

The semi-classical considerations given above can be applied with little change
to the different physical situation in which the electric field along the z-direction
depends only on time rather than z. Instead of the time t itself it is better to
work with the zeroth length coordinate x0 = ct, as usual in relativistic calcu-
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6 Semi-classical description of pair production in a general electric field

lations. As an intermediate step consider for a vector potential

Aµ = (A0(z), 0, 0, Az(x0)), (6.2.1)

with the electric field

E = −∂z A0(z)− ∂0Az(x0), x0 ≡ ct. (6.2.2)

The associated Klein–Gordon equation (3.4.3) reads{[
ih̄∂0 +

e
c

A0(z)
]2

+ h̄2∂2
x⊥ −

[
ih̄∂z +

e
c

Az(x0)
]2
−m2

e c2
}

ϕ(x) = 0. (6.2.3)

The previous discussion was valid under the assumption Az(x0) = 0, in
which case the ansatz

ϕ(x) = e−iEt/h̄eip⊥x⊥ϕp⊥,E(z),

led to the field equation (6.1.4). For the present discussion it is useful to write
the ansatz as ϕ(x) = e−ip0x0/h̄eip⊥x⊥/h̄ϕp⊥,p0(z) with p0 = E/c, and Eq. (6.1.4)
in the form{

1
c2

[
E− e

∫ z
dz′ E(z′)

]2

− p2
⊥ −m2

e c2 + h̄2 d2

dz2

}
ϕp⊥,p0(z) = 0. (6.2.4)

Now assume that the electric field depends only on x0 = ct. Then the
ansatz ϕ(x) = eipzz/h̄eip⊥x⊥/h̄ϕp⊥,pz(x0) leads to the field equation{
−h̄2 d2

dx02 − p2
⊥ −m2

e c2 −
[
−pz −

e
c

∫ x0
dx′0E(x′0)

]2
}

ϕp⊥,pz(x0) = 0.(6.2.5)

If Eq. (6.2.5) is compared with (6.2.4) it can be seen that one arises from the
other by interchanging

z↔ x0, p⊥ → ip⊥, c→ ic, E→ −iE. (6.2.6)

With these exchanges, it may easy to calculate the decay rate of the vacuum
caused by a time-dependent electric field E(x0) using the formulas derived
above.
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6.3 Applications

Now formulas (6.1.36) or (6.1.35) are applied to various external field config-
urations capable of producing electron–positron pairs.

6.3.1 Step-like electric field

First one checks the result for the original case of a constant electric field
E(z) ≡ eE0 where the potential energy is the linear function V(z) = −eE0z.
Here the function (6.1.25) becomes trivial

G(0,E) =
2
π

∫ 1

−1
dζ
√

1− ζ2 = 1, Gδ(0,E) = 0, (6.3.1)

which is independent of E (or z−). The JWKB-rate for pair production per
unit time and volume is found from Eq. (6.1.35) to be

ΓEH
JWKB

V
≃ Ds

αE2
0

2π2h̄
e−πEc/E0 . (6.3.2)

where V ≡ dz−V⊥. This expression contains the exponential e−πEc/E0 found
by Sauter [20], and the correct prefactor as calculated by Heisenberg and Eu-
ler [7], and by Schwinger [25–27].

In order to apply the transformation rules (6.2.6) to obtain the analogous
result for the constant electric field in time, one can rewrite Eq. (6.3.2) as

dNJWKB

dx0V
≃ Ds

αE2
0

2π2h̄c
e−πEc/E0 , (6.3.3)

where dNJWKB/dx0 = ΓEH
JWKB/c and NJWKB is the number of pairs produced.

Applying the transformation rules (6.2.6) to Eq. (6.3.3), one obtains the same
formula as Eq. (6.3.2).

6.3.2 Sauter electric field

Let us now consider the nontrivial Sauter electric field localized within finite
slab in the xy-plane with the width ℓ in the ẑ-direction. A field of this type
can be produced, e.g., between two opposite charged conducting plates. The
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6 Semi-classical description of pair production in a general electric field

electric field E(z)ẑ in the z-direction and the associated potential energy V(z)
are given by

E(z) = E0/cosh2 (z/ℓ) , V(z) = −σs mec2 tanh (z/ℓ) , (6.3.4)

where
σs ≡ eE0ℓ/mec2 = (ℓ/λC)(E0/Ec). (6.3.5)

From now on natural units, in which energies are measured in units of mec2,
are used. Figure 6.1 shows the positive and negative energy spectra E±(z)
of Eq. (6.1.1) for pz = p⊥ = 0 in particular the energy gap and energy level
crossings. From Eq. (6.1.3) one finds the classical turning points

z± = ℓ arctanh
E±
√

1 + δ

σs
=

ℓ

2
ln

σs + E±
√

1 + δ

σs − E∓
√

1 + δ
. (6.3.6)

Tunneling is possible for all energies satisfying

−
√

1 + δ + σs ≥ E ≥
√

1 + δ− σs, (6.3.7)

for the strength parameter σs >
√

1 + δ.

One may invert Eq. (6.1.22) to find the relation between ζ and z:

z = z(p⊥,E; ζ) = ℓ arctanh
E+ ζ

√
1 + δ

σs
=

ℓ

2
ln

σs + E+ ζ
√

1 + δ

σs − E− ζ
√

1 + δ
. (6.3.8)

In terms of the function z(p⊥,E; ζ), the Eq. (6.3.6) reads simply z± = z(p⊥,E;±1).

Inserting (6.3.8) into the equation for E(z) in Eq. (6.3.4), one obtains

E(z) = E0

1−
(

ζ
√

1 + δ− E

σs

)2
 ≡ E(p⊥,E; ζ). (6.3.9)

G(0,E) and Gδ(0,E) of Eqs. (6.1.25), (6.1.29) and (6.1.30) are calculated:

G(0,E) = 2σ2
s − σs

[
(σs − E)2 − 1

]1/2
− σs

[
(σs + E)2 − 1

]1/2
, (6.3.10)
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and

G(0,E) + Gδ(0,E) =
σs

2

{[
(σs − E)2 − 1

]−1/2
+
[
(σs + E)2 − 1

]−1/2
}

.(6.3.11)

Substituting the functions G(0,E) and Gδ(0,E) into Eqs. (6.1.35) and (6.1.36),
one obtains the general expression for the pair production rate per volume
slice at a given tunnel entrance point z−(E) or the associated energy E(z−).
The pair production rate per area is obtained by integrating over all slices
permitted by the energy inequality (6.3.7).

In Fig. 6.2, the slice dependence of the integrand in the tunneling rate
(6.1.35) for the Sauter potential (6.3.4) is shown and compared with the con-
stant field expression (6.3.2) of Euler and Heisenberg, if it is evaluated at the
z-dependent electric field E(z). This is done once as a function of the tunnel
entrance point z and once as a function of the associated energy E. On each
plot, the difference between the two curves illustrates the nonlocality of the
tunneling process2. The integral is dominated by the region around E ∼ 0,
where the tunneling length is shortest [see Fig. 6.1] and tunneling probabil-
ity is largest. Both functions G(0,E) and Gδ(0,E) have a symmetric peak at
E = 0. Around the peak they can be expanded in powers of E as

G(0,E) = 2[σ2
s − σs(σ

2
s − 1)1/2] +

σs

(σ2
s − 1)3/2E

2 +O(E4) =

= G0(σs) +
1
2

G2(σs)E
2 +O(E4), (6.3.12)

and

G(0,E) + Gδ(0,E) =
σs

(σ2
s − 1)1/2 +

1
2

(1 + 2σ2
s )

(σ2
s − 1)5/2E

2 +O(E4) =

= G0(σs) +
1
2

G2(σs)E
2 +O(E4). (6.3.13)

The exponential e−πG(0,E)Ec/E0 has a Gaussian peak around E = 0 whose
width is of the order of 1/Ec ∝ h̄. This implies that in the semi-classical limit,
one may perform only a Gaussian integral and neglect the E-dependence of

2Note that omitting the z-integral in the rate formula (6.1.35) does not justify calling the
result a “local production rate”, as done in the abstract of Ref. [229]. The result is always
nonlocal and depends on all gradients of the electric field.
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Figure 6.2: The slice dependence of the integrand in the tunneling rate (6.1.35)
for the Sauter potential (6.3.4) is plotted: left, as a function of the tunnel
entrance z (compare with numeric results plotted in Fig. 1 of Ref. [229]);
right, as a function of the associated energy E, which is normalized by
the Euler-Heisenberg rate (6.3.2). The dashed curve in left figure shows
the Euler-Heisenberg expression (6.3.2) evaluated for the z-dependent field
E(z) to illustrate the nonlocality of the production rate. The dashed curve
in right figure shows the Euler-Heisenberg expression (6.3.2) which is in-
dependent of energy-level crossing E. The dimensionless parameters are
σs = 5, E0/Ec = 1.

the prefactor in (6.1.36). Recalling that E in this section is in natural units with
mec2 = 1, one should replace

∫
dE by mec2

∫
dE and can perform the integral

over E approximately as follows

ΓJWKB

V⊥
≃ Ds

eE0mec2

4π2h̄c
1

G0
e−π(Ec/E0)G0

∫ dE
2πh̄

e−π(Ec/E0)G′′0 E2/2=

= Ds
eE0

4π2h̄c
1

G0

e−π(Ec/E0)G0

2πh̄
√

G′′0 Ec/2E0

. (6.3.14)

For convenience, the limits of integration over E is extended from the interval
(−1 + σs, 1− σs) to (−∞, ∞). This introduces exponentially small errors and
can be ignored.

Using the relation (6.3.5) one may replace eE0mec2/h̄c by e2E2
02ℓ/σs, and

obtain

ΓJWKB[total]
V⊥ℓ

≃ Ds
αE2

0
2π2h̄

√
E0

Ec

(σ2
s − 1)5/4

σ5/2
s

e−πG0(σs)Ec/E0 . (6.3.15)
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This approximate result agrees 3 with that obtained before with a differ-
ent, somewhat more complicated technique proposed by Dunne and Schu-
bert [48] after the fluctuation determinant was calculated exactly in [49] with
the help of the Gelfand–Yaglom method, see Section 2.2 in Ref. [202]. The ad-
vantage of knowing the exact fluctuation determinant could not, however, be
fully exploited since the remaining integral was calculated only in the saddle
point approximation. The rate (6.3.15) agrees with the leading term of the
expansion (42) of Kim and Page [53]. Note that the higher expansion terms
calculated by the latter authors do not yet lead to proper higher order results
since they are only of type II and III in the list after Eq. (6.1.39). The terms of
equal order in h̄ in the expansion (6.1.8) of the solution of the Riccati equation
are still missing.

Using the transformation rules (6.2.6), it is straightforward to obtain the
pair production rate of the Sauter type of electric field depending on time
rather than space. According to the transformation rules (6.2.6), one has to
replace ℓ → cδT, where δT is the characteristic time over which the electric
field acts—the analog of ℓ in (6.3.4). Thus the field (6.3.4) becomes

E(t) = E0/cosh2 (t/δT) , V(t) = −σ̃s mec2 tanh (t/δT) . (6.3.16)

According to the same rules, one must also replace σs → iσ̃s, where

σ̃s ≡ eE0δT/mec. (6.3.17)

This brings G0(σs) of Eq. (6.3.10) to the form

G0(σs)→ Gt
0(σ̃s) = 2[σ̃s(σ̃

2
s − 1)1/2 − σ̃2

s ], (6.3.18)

and yields the pair production rate

Γz
JWKB[total]

V⊥δT
≃ Ds

αE2
0

2π2h̄

√
E0

Ec

(
σ̃2

s + 1
σ̃2

s

)5/4

e−πGt
0(σ̃s)Ec/E0 , (6.3.19)

where Γz
JWKB[total] = ∂NJWKB/∂z is the number of pairs produced per unit

thickness in a spatial shell parallel to the xy-plane. This is in agreement with
Ref. [49].

3See Eq. (63) of Dunne and Schubert [48], and replace there γ̃ → 1/σs. It agrees also with
the later paper by Dunne et al. [49] apart from a factor 2.
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6 Semi-classical description of pair production in a general electric field

Note also that the constant field result (6.3.2) of Euler and Heisenberg can-
not be deduced from (6.3.15) by simply taking the limit ℓ → ∞ as one might
have expected. The reason is that the saddle point approximation (6.3.14) to
the integral (6.1.36) becomes invalid in this limit. Indeed, if ℓ ∝ σs is large in
Eqs. (6.3.10) and (6.3.11), these become

G(0,E)→ G(0,E) + Gδ(0,E)→ 1
1− E2/σ2

s
, (6.3.20)

and the integral in (6.1.36) becomes approximately

e−π(Ec/E0)
∫ +σs

−σs

dE
2πh̄

(
1− E2/σ2

s

)
e−π(Ec/E0)(E

2/σ2
s ) (6.3.21)

For not too large ℓ ∝ σs, the integral can be evaluated in the leading Gaussian
approximation

∫ ∞

−∞

dE
2πh̄

e−π(Ec/E0)(E
2/σ2

s ) =
1

2πh̄

√
E0

Ec
σs, (6.3.22)

corresponding to the previous result (6.3.15) for large-σs. For a constant field,
however, where the integrands becomes flat, the Gaussian approximation is
no longer applicable. Instead one must first set σs → ∞ in the integrand of
(6.3.21), making it constant. Then the integral (6.3.21) becomes4

e−π(Ec/E0)2σs/2πh̄ = e−π(Ec/E0)2ℓeE0/mec2 2πh̄. (6.3.23)

Inserting this into (6.1.36) one recovers the constant field result (6.3.2). One
must replace 2ℓ by L to comply with the relation (6.1.27) from which one
obtains∫

dE =
∫

dzeE(z) = eE0

∫
dz/ cosh2(z/ℓ) = 2ℓeE0 = LeE0.

In order to see the boundary effect on the pair production rate, this section
is closed with a comparison between pair production rates in the constant
field (6.3.2) and Sauter field (6.3.15) for the same field strength E0 in the vol-

4This treatment is analogous to that of the translational degree of freedom in instanton
calculations in Section 17.3.1 of [202] [see in particular Eq. (17.112)].
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ume V⊥ℓ. The ratio Rrate of pair production rates (6.3.15) and (6.3.2) in the
volume V⊥ℓ is defined as

Rrate =

√
E0

Ec
eπEc/E0

(σ2
s − 1)5/4

σ5/2
s

e−πG0(σs)Ec/E0 . (6.3.24)

The soft boundary of the Sauter field (6.3.4) reduces its pair production rate
with respect to the pair production rate (6.3.2) computed in a constant field of
width L = 2ℓ. The reduction is shown quantitatively in Fig. 6.3, where curves
are plotted for the rates (6.3.2) and (6.3.15), and and for their ratio (6.3.24)
at E0 = Ec and σs = ℓ/λC [recall (6.3.5)]. One can see that the reduction
is significant if the width of the field slab shrinks to the size of a Compton
wavelength λC.
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Figure 6.3: Left: Ratio Rrate defined in Eq. (6.3.24) is plotted as function of σs
in the left figure. Right: Number of pairs created in slab of Compton width
per area and time as functions of σs. Upper curve is for the constant field
(6.3.2), lower for the Sauter field (6.3.15)). Both plots are for E0 = Ec and
σs = ℓ/λC.

6.3.3 Constant electric field in half space

As a second application consider an electric field which is zero for z < 0 and
goes to −E0 over a distance ℓ as follows:

E(z) = −E0

2

[
tanh

(z
ℓ

)
+ 1
]

, V(z) = −σs

2
mec2

{
ln cosh

(z
ℓ

)
+

z
ℓ

}
,(6.3.25)
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where σs ≡ eE0ℓ/mec2. In Fig. 6.4, the positive and negative energy spectra
E±(z) defined by Eq. (6.1.1) for pz = p⊥ = 0 are plotted to show energy gap
and level crossing. From Eq. (6.1.3) one finds now the classical turning points
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Figure 6.4: Energies (6.1.1) for a soft electric field step E(z) of Eq. (6.3.25) and
the potentials V±(z) (6.3.25) for σs = 5. Positive and negative-energies E±(z)
of Eq. (6.1.1) are plotted for pz = p⊥ = 0 as functions of ẑ = z/ℓ.

[instead of (6.3.6)]

z± =
ℓ

2
ln
[
2e(E±

√
1+δ)/σs − 1

]
. (6.3.26)

For tunneling to take place, the energy E has to satisfy

E ≤
√

1 + δ− σs ln 2, (6.3.27)

and σs must be larger than
√

1 + δζ. Expressing z/ℓ in terms of ζ as

z = z(p⊥,E; ζ) =
ℓ

2
ln
[
2e(E+ζ

√
1+δ)/σs − 1

]
, (6.3.28)
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so that z± = z(p⊥,E;±1), one finds the electric field in the form

E(z) = E0

[
1− 1

2
e(ζ
√

1+δ−E)/σs

]
≡ E(p⊥,E; ζ). (6.3.29)

Inserting this into Eq. (6.1.25) and expanding E0/E(p⊥,E; ζ) in powers one
obtains

G(p⊥,E) = 1 +
∞

∑
n=1

e−nE/σs

2n
2
π

∫ 1

−1
dζ
√

1− ζ2 enζ̂/σs =

= 1 +
∞

∑
n=1

e−nE/σs I1(n
√

1 + δ/σs), (6.3.30)

where I1(x) is a modified Bessel function. Expanding I1(n
√

1 + δ/σs) in pow-
ers of δ:

I1(n
√

1 + δ/σs) = I1(n/σs) + (n/4σs)[I0(n/σs) + I2(n/σs)]δ + . . . ,(6.3.31)

one can identify

G(0,E) = 1 +
∞

∑
n=1

e−nE/σs I1(n/σs), (6.3.32)

G(0,E) + Gδ(0,E) = 1 +
1
2

∞

∑
n=1

e−nE/σs [(n/σs)I0(n/σs)− I1(n/σs)].(6.3.33)

The integral over E in Eq. (6.1.36) starts at E< = 1− σs log 2 where the in-
tegrand rises from 0 to 1 as E exceeds a few units of σs. The derivative
of e−π(Ec/E0)G(0,E) drops from 1 to e−π(Ec/E0) over this interval. Hence the
derivative ∂Ee−π(Ec/E0)G(0,E) is peaked around some value Ē. Thus the inte-
gral

∫
dEe−π(Ec/E0)G(0,E) is performed by parts as∫

dEe−π(Ec/E0)G(0,E) = Ee−π(Ec/E0)G(0,E)
∣∣∣∞
E<
−
∫

dEE ∂Ee−π(Ec/E0)G(0,E).

(6.3.34)
The first term can be rewritten with the help of dE = eE0dz as e−π(Ec/E0)|eE0|ℓ/2,
thus giving rise to the decay rate (6.3.2) in the volume V⊥ℓ/2 , and the sec-
ond term gives only a small correction to this. The second term in Eq. (6.3.34)
shows that the boundary effects reduce the pair production rate compared
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6 Semi-classical description of pair production in a general electric field

with the pair production rate (6.3.2) in the constant field without any bound-
ary.

6.4 Tunneling into bound States

We turn now to the case in which instead of an outgoing wave as given by
(6.1.14) there is a bound state. A linearly rising electric field whose potential
is harmonic is considered:

E(z) = E0

(
z

λC

)
, V(z) =

eE0λC

2

(
z

λC

)2

. (6.4.1)

It will be convenient to parametrize the field strength E0 in terms of a dimen-
sionless reduced electric field ϵ as E0 = ϵh̄c/eλ2

C = ϵEc. In Fig. 6.5, the posi-
tive and negative energy spectra E±(z) defined by Eq. (6.1.1) for pz = p⊥ = 0
are plotted to show energy gap and level crossing for ϵ > 0 (left) and ϵ < 0
(right). If ϵ is positive, Eq. (6.1.3) yields for z > 0,
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Figure 6.5: Positive- and negative-energy spectra E±(z) of Eq. (6.1.1) for pz =
p⊥ = 0 as a function of ẑ ≡ z/λC for the linearly rising electric field E(z)
with the harmonic potential (6.4.1). The reduced field strengths are ϵ = 2
(left figure) and ϵ = −2 (right figure). On the left, bound states are filled and
positrons escape to z = ±∞. On the right, bound electrons with negative
energy tunnel out of the well and escape with increasing energy to z = ±∞.

z± = λC

√
2
ϵ

(
E∓
√

1 + δ
)1/2

, z+ < z−, (6.4.2)
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and mirror-reflected turning points for z < 0, obtained by exchanging z± →
−z± in (6.4.2). Negative energy electrons tunnel into the potential well−z+ <
z < +z+, where E ≥ E+, forming bound states. The associated positrons run
off to infinity.

6.4.1 JWKB transmission probability

Due to the physical application to be discussed in the next section, here only
the tunneling process for ϵ > 0 on the left-hand side of Fig. 6.5 will be studied.
One can consider the regime z < 0 with the turning pints −z− < −z+. The
incident wave and flux for z < −z− pointing in the positive z-direction are
given by Eqs. (6.1.13) and (6.1.16). The wave function for−z− < z < −z+ has
the form Eq. (6.1.12) with the replacement z− → −z−. The transmitted wave
is now no longer freely propagating as in (6.1.14), but describes a bound state
of a positive energy electron:

ϕEn(z) =
B

(pz)1/2 cos
[

1
h̄

∫ z

−z+
pzdz− π

4

]
. (6.4.3)

The Sommerfeld quantization condition

1
h̄

∫ +z+

−z+
pzdz = π(n +

1
2
), n = 0, 1, 2, . . . . (6.4.4)

fixes the energies En. The connection rules for the wave functions (6.1.12) and
(6.4.3) at the turning point −z+ determine

B =
√

2C+e−iπn exp
[
−1

h̄

∫ −z+

−z−
κzdz

]
. (6.4.5)

Assuming the states ϕEn(z) to be initially unoccupied, the transmitted flux to
these states at the classical turning point −z+ is

h̄
me

ϕEn(z)∂zϕ∗En
(z)
∣∣∣
z→−z+

=
|B|2
(2me)

=
|C+|2

me
exp

[
−2

h̄

∫ −z+

−z−
κzdz

]
. (6.4.6)
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6 Semi-classical description of pair production in a general electric field

From Eqs. (6.1.16), (6.4.6), and (6.1.18) one then finds the JWKB transmission
probability for positrons to fill these bound states leaving a positron outside:

PJWKB(p⊥,En) = exp
[
−2

h̄

∫ −z+

−z−
κzdz

]
, (6.4.7)

which has the same form as Eq. (3.5.10). The same result is obtained once
more for z > 0 with turning points z+ < z−, which can be obtained from
(6.4.7) by the mirror reflection −z± ↔ z±.

6.4.2 Energy spectrum of bound states

From Eq. (6.1.7) for pz and Eq. (6.4.1) for the potential V(z), the eikonal (6.4.4)
is calculated to determine the energy spectrum En of bound states

1
h̄

∫ +z+

−z+
pzdz = 2

ϵ

λ3
C

∫ z+

0

[
(z2 − z2

+)(z
2 − z2

−)
]1/2

dz

=
2ϵz+
3λ3

C

[
(z2

+ + z2
−)E(t)− (z2

− − z2
+)K(t)

]
, (6.4.8)

where E(t), K(t) are complete elliptical integrals of the first and second kind,
respectively, and t ≡ z+/z−. The Sommerfeld quantization rule (6.4.4) be-
comes

8
3

[
2(En −

√
1 + δ)

ϵ

]1/2 [
EnE(tn)− (

√
1 + δ)K(tn)

]
= π(n +

1
2
),(6.4.9)

tn ≡
(
En −

√
1 + δ

En +
√

1 + δ

)1/2

.

For any given transverse momentum p⊥ =
√

δ, this determines the discrete
energies En.

6.4.3 Rate of pair production

By analogy with Eqs. (6.1.26) and (6.1.36), the transmission probability (6.4.7)
must now be integrated over all incident particles with the flux (6.1.21) to
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yield the rate of pair production:

ΓJWKB

V⊥
= 2Ds ∑

n

ωn

2π

∫ d2p⊥
(2πh̄)2PJWKB(p⊥,En), (6.4.10)

≈ 2Ds
|eE0|

4π2h̄c ∑
n

ωn

2π

1
G(0,En) + Gδ(0,En)

e−π(Ec/E0)G(0,En).(6.4.11)

In obtaining these expressions one has used the energy conservation law to
perform the integral over E. This receives only contributions for E = En
where

∫
dE = ωnh̄ ≡ En − En−1. The factor 2 accounts for the equal contri-

butions from the two regimes z > 0 and z < 0. The previous relation (6.1.27)
is now replaced by

ωnh̄ = |eE(zn
−)|∆zn

−. (6.4.12)

Using Eq. (6.1.22) and expressing z/λC > 0 in terms of ζ as

z = z(p⊥,En; ζ) = λC

√
2
ϵ

(
En − ζ

√
1 + δ

)1/2
, (6.4.13)

one calculates z± = z(p⊥,En;±1), and find the electric field in the form

E(z) = E0

√
2
ϵ

(
En − ζ

√
1 + δ

)1/2
≡ E(p⊥,En; ζ). (6.4.14)

Inserting this into Eq. (6.1.25) one obtains

G(p⊥,En) =
2
π

√
ϵ

2

∫ 1

−1
dζ

√
1− ζ2

[En − ζ
√

1 + δ]1/2
,

=
8

3π

√
ϵ

2
(Eδ

n + 1)1/2

(1 + δ)1/4

[
(1− Eδ

n)K(q
δ
n) + Eδ

nE(qδ
n)
]

(6.4.15)

where Eδ
n ≡ En/(1 + δ)1/2 and qδ

n =
√

2/(Eδ
n + 1). Expanding G(p⊥,En) in

powers of δ one finds the zeroth order term

G(0,En) =
8

3π

√
ϵ

2
(En + 1)1/2 [(1− En)K(qn) + EnE(qn)] (6.4.16)
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and the derivative

Gδ(0,En) =

√
ϵ

3π

qn

En
qn − 1 [(4− 5qn + En(7− 6qn))E(qn)+

+ (1− En − 7E2
n)(qn − 1)K(qn)

]
. (6.4.17)

where qn ≡
√

2/(En + 1).
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7 Phenomenology of
electron–positron pair creation
and annihilation

7.1 e+e− annihilation experiments in particle
physics

The e+e− → γ + γ process predicted by Dirac was almost immediately ob-
served [3]. The e+e− annihilation experiments have since became possibly
the most prolific field of research in the active domain of particle physics.
The Dirac pair annihilation process (3.0.1) has no energy threshold and the
energy release in the e+e− collision is larger than 2mec2. This process is the
only one in the limit of low energy. As the e+e− energy increases the col-
lision produces not only photons through the Dirac process (5.9.2) but also
other particles. For early work in this direction, predicting resonances for
pions, K-mesons etc., see [231]. Production of such particles are achievable
and precisely conceived in experimental particle physics, but hardly possi-
ble with the vacuum polarization process . In particular when the energy in
the center of mass is larger than twice muon mass mµ about 100 times elec-
tron mass, the electron and positron electromagnetically annihilate into two
muons e+e− → µ+µ− via the intermediation of a virtual photon. The cross-
section in the center of mass frame is given by [232]

σe+e−→µ+µ− =
16π2α2(h̄c)2

q2
cm

Im ω̄µ+µ−(q
2
cm) =

4πα2(h̄c)2

3q2
cm

=
86.8nb

q2
cm(GeV)2

(7.1.1)
where ω̄µ+µ−(q2

cm) is the muon part of the vacuum polarization tensor and
q2

cm = c2(p+ + p−)2/4 the square of energy of the center of mass frame,
where p± are 4-momenta of positron and electron. At very high energy
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7 Phenomenology of electron–positron pair creation and annihilation

m2
µ/q2

cm → 0, Im ω̄µ+µ−(q2
cm)→ 1/(12π).

At very high energies of the order of several GeV, electron and positron
electromagnetically annihilate into hadrons, whose cross-section has the same
structure as the cross-section (7.1.1) with ω̄µ+µ−(q2

cm) replaced by the hadron
part of the vacuum polarization tensor ω̄hadrons(q2

cm),

σe+e−→hadron =
16π2α2(h̄c)2

q2
cm

Im ω̄hardrons(q2
cm). (7.1.2)

The two cross-sections (7.1.1) and (7.1.2) are comparable, of the order of a few
tens of nanobarns (10−33cm2). It is traditional to call R the ratio of hadronic
to electromagnetic annihilation cross-sections [232],

R(q2
cm) =

σe+e−→hadron
σe+e−→µ+µ−

= 12πIm ω̄hadrons(q2
cm). (7.1.3)

As the energy q2
cm of electron and positron collision increases and reaches

the mass–energy thresholds of constituents of hadrons, i.e. “quarks”, narrow
resonances occurs, see Fig. 7.1 for the ratio R as a function of

√
q2 measured

at SLAC [233]. These resonances correspond to production of particles such
as J/ψ, Υ etc. This provides a fruitful investigation of hadron physics. For a
review of this topic see [101].

As the center of mass energy q2
cm reaches the electroweak scale (several

hundred GeVs), electron and positron annihilation process probes a rich do-
main of investigating electroweak physics, see for instance Refs. [234, 235].
Recent experiments on e+e− collisions at LEP, SLAC and the Tevatron al-
lowed precision tests of the electroweak Standard Model. In [236, 237] the
results of these precision tests together with implications on parameters, in
particular Higgs boson mass, as well as constraints for possible new physics
effects are discussed.

Electron and positron collisions are used to produce many particles in the
laboratory, which live too short to occur naturally. Several electron–positron
colliders have been built and proposed for this purpose all over the world
(CERN, SLAC, INP, DESY, KEK and IHEP), since the first electron–positron
collider the “Anello d’Accumulazione” (AdA) was built by the theoretical
proposal of Bruno Touschek in Frascati (Rome) in 1960 [55]. Following the
success of AdA (luminosity ∼ 1025/(cm2 sec), beam energy ∼0.25GeV), it
was decided to build in the Frascati National Laboratory a storage ring of
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Figure 7.1: The total cross section of e+e− → hadron (7.1.2) and the ratio
R = σe+e−→hadron/σe+e−→µ+µ− (7.1.3), where s ≡ q2

cm. Reproduced from Ref.
[C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008)].

the same kind, Adone and then Daphne (luminosity ∼ 1033/(cm2sec), beam
energy ∼0.51GeV), with the aim of exploring the new energy range in sub-
nuclear physics opened by the possibility of observing particle-antiparticle
interactions with center of mass at rest. The biggest of all is CERN’s Large
Electron Positron (LEP) collider [148], which began operation in the summer
of 1989 and have reached a maximal collision energy of 206.5 GeV. The de-
tectors around the LEP ring have been able to perform precise experiments,
testing and extending our knowledge of particles and their strong, electro-
magnetic and weak interactions, as described by the Standard Model for ele-
mentary particle physics.

All these clearly show how the study of e+e− reaction introduced by Dirac
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7 Phenomenology of electron–positron pair creation and annihilation

have grown to be one of the most prolific field in particle physics and have
received remarkable verification in energies up to TeV in a succession of ma-
chines increasing in energy.

7.2 The Breit–Wheeler process in laser physics

While the Dirac process (3.0.1) has been by far one of the most prolific in
physics, the Breit–Wheeler process (3.0.2) has been one of the most elusive
for direct observations. In Earth-bound experiments the major effort today
is directed to evidence this phenomenon in very strong and coherent electro-
magnetic field in lasers. In this process collision of many photons may lead in
the future to pair creation. This topic is discussed in the following Sections.
Alternative evidence for the Breit–Wheeler process can come from optically
thick electron–positron plasma which may be created in the future either in
Earth-bound experiments, or currently observed in astrophysics, see Section
10. One additional way to probe the existence of the Breit–Wheeler process
is by establishing in astrophysics an upper limits to observable high-energy
photons, as a function of distance, propagating in the Universe as pioneered
by Nikishov [56], see Section 7.4.

We first briefly discuss the phenomenon of electron–positron pair produc-
tion at the focus of an X-ray free electron laser, as given in the review arti-
cles [60,238,239]. In the early 1970’s, the question was raised whether intense
laser beams could be used to produce a very strong electric field by focus-
ing the laser beam onto a small spot of size of the laser wavelength λ, so
as to possibly study electron–positron pair production in vacuum [36, 240].
However, it was found that the power density of all available and conceiv-
able optical lasers [241] is too small to have a sizable pair production rate for
observations [30–32,36,37,209,210,240,242–246], since the wavelength of op-
tical lasers and the size of focusing spot are too large to have a strong enough
electric field.

Definite projects for the construction of X-ray free electron lasers (XFEL)
have been set up at both DESY and SLAC. Both are based on the principle
pioneered by John Madey [57] of self-amplified spontaneous emission in an
undulator, which results when charges interact with the synchrotron radia-
tion they emit [58]. At DESY the project is called XFEL and is part of the
design of the electron–positron collider TESLA [247–250] but is now being
build as a stand-alone facility. At SLAC the project so-called Linac Coherent
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Light Source (LCLS) has been proposed [251–253]. It has been pointed out by
several authors [254–257] that having at hand an X-ray free electron laser, the
experimental study and application of strong field physics turn out to be pos-
sible. One will use not only the strong energy and transverse coherence of the
X-ray laser beam, but also focus it onto a small spot hopefully with the size of
the X-ray laser wavelength λ ≃ O(0.1)nm [59], and obtain a very large elec-
tric field E ∼ 1/λ, much larger than those obtainable with any optical laser
of the same power.

Using the X-ray laser, we can hopefully achieve a very strong electric field
near to its critical value for observable electron–positron pair production in
vacuum. Electron-positron pair production at the focus of an X-ray laser has
been discussed in Ref. [254], and an estimate of the corresponding production
rate has been presented in Ref. [255]. In Ref. [60, 238, 239], the critical laser
parameters, such as the laser power and focus spot size, are determined in
order for achieving an observable effect of pair production in vacuum.

The electric field produced by a single laser beam is the light-like static,
spatially uniform electromagnetic field, and field invariants S and P (3.5.23)
vanish [242]

S = 0, P = 0, (7.2.1)

leading to ε = β = 0 and no pair production [25–27], this can be seen from
Eqs. (3.5.23), (3.5.27) and (5.7.39). It is then required that two or more coherent
laser beams form a standing wave at their intersection spot, where a strong
electric field can hypothetically be produced without magnetic field.

We assume that each X-ray laser pulse is split into two equal parts and
recombined to form a standing wave with a frequency ω, whose electromag-
netic fields are then given by

E(t) = [0, 0, Epeak cos(ωt)], B(t) = (0, 0, 0), (7.2.2)

where the peak electric field is [60, 238, 239],

Epeak =

√
Plaser

πσ2
laser
≃ 1.1 · 1017

(
Plaser

1TW

)1/2(0.1nm
σlaser

)
V
m

, (7.2.3)

as expressed in terms of the laser power Plaser (1 TW=1012W), with the fo-
cus spot radius σlaser. Eq. (7.2.3) shows that the peak electric energy density
E2

peak/2 is created in a spot of area πσ2
laser by an X-ray laser of power Plaser.
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The laser beam intensity on the focused spot is then given by

Ilaser =
Plaser

πσ2
laser
≃ c

4π
E2

peak.

For a laser pulse with wavelength λ about 1µm and the theoretical diffraction
limit σlaser ≃ λ being reached, the critical intensity laser beam can be defined
as,

Ic
laser =

c
4π

E2
c ≃ 4.6 · 1029W/cm2, (7.2.4)

which corresponds to the peak electric field approximately equal to the criti-
cal value Ec in (2.0.1).

7.2.1 Phenomenology of pair production in alternating fields

To compute pair production rate in an alternating electric field (7.2.2) of laser
wave in a semi-classical manner, one assumes the conditions that the peak
electric field Epeak is much smaller than the critical field Ec (2.0.1) and the en-
ergy h̄ω of the laser photons is much smaller than the rest energy of electron
mec2,

Epeak ≪ Ec, h̄ω ≪ mec2. (7.2.5)

These conditions are well satisfied at realistic optical as well as X-ray lasers
[60, 238, 239].

The phenomenon of electron–positron pair production in alternating elec-
tric fields was studied in Refs. [30–32, 36, 37, 209, 210, 243–246, 258]. By using
generalized JWKB method [36] and imaginary time method [30–32, 244, 246]
the rate of pair production was computed. In Ref. [36], the rate of pair pro-
duction was estimated to be (see Section 5.8),

P̃ =
c

4π3λ4
C

(Epeak

Ec

)2
π

g(η) + 1
2η g′(η)

exp
[
−π

Epeak

Ec
g(η)

]
, (7.2.6)

where the complex function g(η) is given in Refs. [30–32,36] (see Eq. (5.8.24)),

g(η) =
4
π

∫ 1

0
du
[ 1− u2

1 + η−2u2

]1/2
=

{
1− 1

8η3 + O(η−4), η ≫ 1
4η
π ln

( 4
eη

)
+ O(η3), η ≪ 1

(7.2.7)
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and the parameter η is defined as the work done by the electric force eEpeak
in the Compton wavelength λC in unit of laser photon energy h̄ω,

η =
eEpeakλC

h̄ω
=

mec2

h̄ω

Epeak

Ec
. (7.2.8)

which is the same as η in (5.8.23) in Section 5.8 and agrees with its time-
average (5.9.4) and (5.9.5), over one period of laser wave. The exponential
factor in Eq. (7.2.6) has been confirmed by later works [30–32,244,246], which
determine more accurately the pre-exponential factor by taking into account
also interference effects. The parameter η is related to the adiabaticity param-
eter γ = 1/η.

In the strong field and low frequency limit (η ≫ 1), formula (7.2.6) agrees
to the Schwinger non-perturbative result (5.7.25) for a static and spatially uni-
form field, apart from an “inessential” (see Ref. [36]) pre-exponential factor of
π. This is similar to the adiabatic approximation of a slowly varying electric
field that we discuss in Section 7.5.5. On the other hand, for η ≪ 1, i.e. in
high frequency and weak field limit, Eq. (7.2.6) yields [36],

P̃ ≃ c
4π3λ4

C

(
h̄ω

mec2

)2 πη

2 ln(4/η)

( eη

4

)2 2mec2
h̄ω
[
1 + O(η2)

]
, (7.2.9)

corresponding to the nth order perturbative result, where n is the minimum
number of quanta of laser field required to create an e+e− pair:

n ≳
2mec2

h̄ω
≫ 1. (7.2.10)

The pair production rate (7.2.6) interpolates analytically between the adia-
batic, non-perturbative tunneling mechanism (5.7.25) (η ≫ 1, γ ≪ 1) and
the anti-adiabatic, perturbative multi-photon production mechanism (7.2.9)
(η ≪ 1, γ≫ 1).

In Refs. [244,246], it was found that the pair production rate, under the con-
dition (7.2.5), can be expressed as a sum of probabilities wn of many photon
processes,

P̃p = ∑
n>n0

wn, with n0 =
mec2

h̄ω
∆m, (7.2.11)

where ∆m indicates an effective energy gap mec2∆m, due to the transverse
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oscillations of the electron propagating in a laser wave (see Section 5.10 and
Eq. (5.10.11)). In the limiting cases of small and large η, the result is given
by [246],

P̃p ≃
c

4π3λ4
C


√

2
π

(
Epeak

Ec

)5/2
exp

[
− π

(
Ec

Epeak

) (
1− 1

8η2 + O(η−4)], η ≫ 1
√

2
2

(
h̄ω

mec2

)5/2
∑n
( eη

4

)2n e−ϕErfi
(
ϕ1/2) , η ≪ 1,

(7.2.12)
where n > (2mec2/h̄ω), ϕ = 2(n− 2mec2

h̄ω ) and Erfi(x) is the imaginary error
function [259]. The range of validity of results (7.2.6), (7.2.9), (7.2.11) and
(7.2.12) is indicated by the conditions (7.2.5).

7.2.2 Pair production in X-ray free electron lasers

According to Eq. (7.2.3) for the electric field E of an X-ray laser, in order
to obtain an observable effect of pair production we need to have a large
power P, a small laser focusing spot radius σlaser and a long duration time
∆t of the coherent laser pulse. The power of an X-ray free electron laser is
limited by the current laser technology. The focusing spot radii σlaser are
limited by the diffraction to the order of the X-ray laser beam wavelength.
In Ref. [60, 238, 239], it was estimated that to produce at least one pair of
electron and positron, we need the minimum power of the X-ray laser to be
∼ 2.5− 4.5TW corresponding to an electric field of ∼ 1.7− 2.3 · 1015V/cm ∼
0.1Ec, provided the laser wavelength is λ ∼ 0.1nm and the theoretical diffrac-
tion limit σlaser ≃ λ is actually reached and the laser coherent duration time
∆t ∼ 10−(13∼16) second. Based on these estimations, Ringwald concluded
[60, 238, 239] that with present available techniques, the power density and
electric fields of X-ray laser are far too small to produce a sizable Sauter-Euler-
Heisenberg-Schwinger effect. If the techniques for X-ray free electron laser
are considerably improved, so that the XFEL power can reach the terawatt
regime and the focusing spot radii can reach the theoretical diffraction limit,
we will still have the possibility of investigating the Sauter-Euler-Heisenberg-
Schwinger phenomenon by a future XFEL.
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7.2 The Breit–Wheeler process in laser physics

7.2.3 Pair production by a circularly polarized laser beam

Instead of a time varying electric field (7.2.2) that is created by an intersec-
tion of more than two coherent laser beams, it was suggested [260,261] to use
a focused circularly polarized laser beam having nonvanishing field invari-
ants S, P (3.5.23) and strong electromagnetic fields E, B for pair production.
It is well known that the electromagnetic field of a focused light beam is not
transverse, however, one can always represent the field of a focused beam as
a superposition of fields with transverse either electric (e-polarized) field or
magnetic (h-polarized) field only, see e.g., [262].

In Ref. [261], the e-polarized electric and magnetic fields (Ee, Be) propagat-
ing in the ẑ-direction is described by the following exact solution of Maxwell
equations [263],

Ee = iEpeake−iψ
[

F1(ex ± ey)− F2e±2iϕ(ex ∓ ey)
]

; (7.2.13)

Be = ±Epeake−iψ
{(

1− iδ2 ∂

∂χ

)
[

F1(ex ± ey) + F2e±2iϕ(ex ∓ ey)
]
+ 2i∆e±2iϕ ∂F1

∂ξ
ez

}
, (7.2.14)

where ψ = ω(t − z/c), e±2iϕ = (x + iy)/ρ, χ = z∆/R, ξ = ρ/R and ρ =√
x2 + y2. The focusing parameter ∆ = λ/(2πR) is expressed in terms of

laser’s wavelength λ and the focal spot radius R. The functions F1,2(ξ, χ, ∆)
obey differential equations [263], go to zero sufficiently fast when ξ, |χ| → ∞
and conditions F1(0, 0, ∆) = 1; F2(0, 0, ∆) = 0 are satisfied for ∆ → 0 [261].
The h-polarized electric and magnetic fields Eh = ±iBe and Bh = ∓iEe [263].

Corresponding to electromagnetic fields (7.2.13), (7.2.14), field invariants
Se, Pe are given by Eq. (3.5.23) and ε, β by Eq. (3.5.25) in Section 3.5. The total
number of electron and positron pairs is given by Eq. (5.7.39) for n = 1 (see
also Eq. (5.7.41),

Ne+e− ≃
α

π

∫
V

dV
∫ τ

0
dtεβ coth

πβ

ε
exp

(
−πEc

ε

)
, (7.2.15)

where the integral is taken over the volume V and duration τ of the laser
pulse. The qualitative estimations and numerical calculations of total number
Ne+e− of electron and positron pairs in terms of laser intensity Ilaser and fo-
cusing parameter ∆ are presented in Ref. [261]. Two examples for e-polarized
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7 Phenomenology of electron–positron pair creation and annihilation

electromagnetic fields are as follows:

1. for Epeak = Ec, λ = 1µm, τ = 10fs and ∆ = 0.1 (the theoretical diffrac-
tion limit), the laser beam intensity Ilaser ≃ 1.5 · 1029W/cm2 ≃ 0.31Ic

laser
the critical intensity (7.2.4). The total number of pairs created Ne+e− ≃
5 · 1020 according to the Schwinger formula Eq. (7.2.15) for pair produc-
tion rate;

2. with the same values of laser parameters ∆, λ and τ, while the laser
pulse intensity Ilaser ≃ 5 · 1027W/cm2 ∼ 10−2 Ic

laser corresponding to
Epeak ∼ 0.18Ec, Eq. (7.2.15) gives Ne+e− ∼ 20.

Because the volume V and duration τ of the laser pulse is much larger than
the Compton volume and time occupied by one pair, the average number of
pairs Ne+e− ≃ 20 is large and possibly observable even if the peak value of
electric field is only 18% of the critical value. In addition, pair production
is much more effective by the e-polarized electric and magnetic fields Ee, Be

than by the h-polarized fields Eh, Bh. The detailed analysis of the dependence
of the number of pairs Ne+e− on the laser intensity Ilaser and focusing param-
eter ∆ is given in [264], and results are presented in Fig. (7.2). In particular,
it is shown that for the case of two counter-propagating focused laser pulses
with circular polarizations, pair production becomes experimentally observ-
able when the laser intensity Ilaser ∼ 1026W/cm2 for each beam, which is
about 1 ∼ 2 orders of magnitude lower than for a single focused laser pulse,
and more than 3 orders of magnitude lower than the critical intensity (7.2.4).
In these calculations the “imaginary time” method is useful [246, 264, 265],
which gives a clear description of tunneling of a quantum particles through
a potential barrier. Recently the process of electron–positron pair creation in
the superposition of a nuclear Coulomb and a strong laser field was studied
in [266].

It was pointed [261, 264] that the exploited method becomes inconsistent
and one should take into account back reaction of the pair production ef-
fect on the process of laser pulse focusing at such high laser intensity and
Epeak ∼ Ec. It has already been argued in Refs. [209, 210, 244, 246] that for
the superstrong field regime E ≳ 0.1Ec, such back reaction of the produced
electron–positron pairs on the external field and the mutual interactions be-
tween these particles have to be considered. These back reaction effects on
pair production by laser beams leading to the formation of plasma oscilla-
tion have been studied in Refs. [267–269]. Our studies [72, 73] show that the
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7.2 The Breit–Wheeler process in laser physics

Figure 7.2: Logarithm of the number of pairs Ne+e− produced by the field
of two counter-propagating laser-pulses (circular polarization) is shown as
functions of: (a) the beam intensity Ilaser for the focusing parameters ∆ =
0.1, 0.075, 0.05 and 0.01 (the curves 1, 2, 3 and 4 correspondingly); (b) the fo-
cusing parameter ∆ for the beam intensity Ilaser = 4 · 1026W/cm2 and laser-
pulse duration τ = 10−14 sec. This figure is reproduced from Fig. 6 in
Ref. [264].
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7 Phenomenology of electron–positron pair creation and annihilation

plasma oscillation and electron–positron-photon collision are important for
electric fields E ≳ 0.1Ec, see Section 9.7.

7.2.4 Availability of laser technology for pair production

There are several ways to increase the electromagnetic fields of a laser beam.
One way is to increase the frequency of the laser radiation and then focus
it onto a tiny region. X-ray lasers can be used [60, 238, 239, 257, 268]. An-
other way is, clearly, to increase the intensities of laser beams. The recent
development of laser technology and the invention of the chirped pulse am-
plification (CPA) method have led to a stunning increase of the light inten-
sity (1022W/cm2) in a laser focal spot [270, 271]. To achieve intensities of the
order 1024−25W/cm2, a scheme was suggested in Ref. [272], where a quasi-
soliton wave between two foils is pumped by the external laser field up to an
ultrahigh magnitude. Using the method based on the simultaneous laser fre-
quency upshifting and pulse compression, another scheme for reaching criti-
cal intensities has also been suggested in Ref. [273,274], where the interaction
of the laser pulse with electron density modulations in a plasma produced by
a counter-propagating breaking wake plasma wave, results in the frequency
upshift and pulse focusing. In addition, it has been suggested [270] a path
to reach the extremely high intensity level of 1026−28W/cm2 already in the
coming decade. Such field intensities are very close to the value of critical
intensity Ic

laser (7.2.4). For a recent review, see Ref. [275]. This technological
situation has attracted the attention of the theorists who involved in physics
in strong electromagnetic fields.

Currently available technologies allow for intensities of the order of 1020

W/cm2 leading to abundant positron production essentially through the Bethe-
Heitler process (3.3.1) with number densities of the order of 1016 cm−3 [276].

7.3 Phenomenology of pair production in electron
beam-laser collisions

7.3.1 Experiment of electron beam-laser collisions

After the availability of high dense and powerful laser beams, the Breit–
Wheeler process (3.0.2) has been reconsidered in Refs. [40–45,61,62] for high-
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7.3 Phenomenology of pair production in electron beam-laser collisions

energy multiple photon collisions. The phenomenon of e+e− pair production
in multi-photon light-by-light scattering has been reported in [38,39,211,254]
on the experiment SLAC-E-144 [63, 277].

As described in Ref. [39], such a large center of mass energy (2mec2 = 1.02
MeV) can be possibly achieved in the collision of a laser beam against another
high-energy photon beam. With a laser beam of energy 2.35 eV, a high-energy
photon beam of energy 111 GeV is required for the Breit–Wheeler reaction
(3.0.2) to be feasible. Such a high-energy photon beam can be created for in-
stance by backscattering the laser beam off a high-energy electron beam, i.e.,
by inverse Compton scattering. With a laser beam of energy 2.35 eV (wave-
length 527nm) backscattering off a high-energy electron beam of energy 46.6
GeV, as available at SLAC [63], the maximum energy acquired by Compton-
backscattered photon beam is only 29.2GeV. This is still not enough for the
Breit–Wheeler reaction (3.0.2) to occur, since such photon energy is four times
smaller than the needed energetic threshold.

Nevertheless in strong electromagnetic fields and a long coherent time-
duration ∆t = 2π/ω of the laser pulse, the number n of laser photons inter-
acting with scattered electron becomes large, when the intensity parameter
of laser fields η (5.9.4) approaches or even exceeds unity. Once this num-
ber n is larger than the critical number n0 defined after Eq. (5.10.11) in Sec-
tion 7.3, pair production by the nonlinear Breit–Wheeler reaction (5.9.2) for
high-energy multiple photon collisions becomes feasible.

The probability of pair production by the processes (5.9.1) and (5.9.2) is
given by Eqs. (5.10.9) and (5.10.11) for any values of η in Section 5.10. In high
frequency and weak field limit η ≪ 1, the probability Peγ (5.10.9) and Pγγ

(5.10.11) for fairly small n are proportional to η2n, i.e.

Peγ ∝ η2n, Pγγ ∝ η2n (7.3.1)

(see Eqs. (7.2.9), (7.2.12)). This corresponds to the anti-adiabatic, perturba-
tive multi-photon production mechanism (7.2.9), (7.2.12) for (η ≪ 1). In
low frequency and strong field limit η ≫ 1, it essentially refers to process
in a constant and uniform field where E and B are orthogonal and equal in
magnitude. This corresponds to the adiabatic limit of a slowly varying elec-
tromagnetic field discussed in Section 7.2.1.

For n ≥ 5 laser photons of energy 2.35eV colliding with a photon of energy
29 GeV, the process of nonlinear Breit–Wheeler pair production becomes en-
ergetically accessible. In Refs. [38,39,211], it is reported that nonlinear Comp-
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7 Phenomenology of electron–positron pair creation and annihilation

ton scattering (5.9.1) and nonlinear Breit–Wheeler electron–positron pair pro-
duction (5.9.2) have been observed in the collision of 46.6 GeV and 49.1 GeV
electrons of the Final Focus Test Beam at SLAC with terawatt pulse of 1053
nm (1.18 eV) and 527 nm (2.35 eV) wavelengths from a Nd:glass laser. The
rate of pair production, i.e., Re+ of positrons/(laser shot) is measured in terms
of the parameter η (η ≪ 1), as shown in Fig. 7.3, where line represents a
power law fit to the data which gives [39],

Re+ ∝ η2n, with n = 5.1± 0.2(stat)+0.5
−0.8(syst). (7.3.2)

These experimental results are found to be in agreement with theoretical pre-
dictions (7.3.1), i.e., (5.10.9), (5.10.11) for small η; as well as with (7.2.12) and
(7.2.9) for ω → γω in the frame of reference where the electron beam is
at rest. This shows that the pair production of Breit–Wheeler type by the
anti-adiabatic, perturbative multi-photon production mechanism, described
by Eqs. (5.10.9), (5.10.11) or (7.2.9), (7.2.12) for small η ≪ 1, has been ex-
perimentally confirmed. However, one has not yet experimentally observed
the pair production by the adiabatic, non-perturbative tunneling mechanism,
described by Eqs. (5.10.9), (5.10.11) or (7.2.9), (7.2.12) for large η ≫ 1, i.e.
for static and constant electromagnetic fields. Nevertheless, pair production
probabilities Eqs. (7.2.6), (7.2.12) and Eqs. (5.10.9), (5.10.11) interpolates be-
tween both η ≪ 1 and η ≫ 1 regimes. Based on such analyticity of these
probability functions in terms of the laser intensity parameter η, we expect
the pair production to be observed in η ≫ 1 regime.

7.3.2 Pair production viewed in the rest frame of electron
beam

In the reference frame where the electron beam is at rest, one can discuss [254]
pair production in the processes (5.9.1) and (5.9.2) by using pair production
rate Eqs. (7.2.6), (7.2.9), (7.2.12) in Section 7.2. In the experiment of colliding
46.6GeV electron beam with 2.35eV (527nm) laser wave, the field strength in
the laboratory is Elab ≃ 6 · 1010V/cm and intensity I ≃ 1019W/cm2 for η = 1
[39]. The Lorentz gamma factor of the electron beam γ = Ee/mec2 ≃ 9.32 · 104

for Ee ≃ 46.6GeV. In the rest frame of the electron beam, the electric field is
given by

Erest = γ(Elab + v× Blab) = γElab(1 + |v|) ≃ 2γElab (7.3.3)
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7.3 Phenomenology of pair production in electron beam-laser collisions

Figure 7.3: Dependence of the positron rate per laser shot on the laser field-
strength parameter η. The line shows a power law fit to the data. The shaded
distribution is the 95% confidence limit on the residual background from
showers of lost beam particles after subtracting the laser-off positron rate.
This figure is reproduced from Fig. 4 in Ref. [39]
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where laser’s electromagnetic fields E · B = 0, |E| = |B|, B × k̂ = E, and
laser’s wave vector k̂ = −v̂, thus one has

Erest ≃ 2γElab ≃ 2 · 105Elab ∼ 0.86Ec. (7.3.4)

The field of 2.35eV laser wave is well defined coherent wave field with wave-
length λlab = 5.27 · 10−5cm and frequency ωlab = 3.57 · 1015/sec (the pe-
riod ∆tlab = 2π/ω = 1.76 · 10−15sec). In the rest frame of electron beam,
λrest = γλlab = 4.91cm and ∆trest = ∆tlab/γ = 1.9 · 10−20sec. Comparing
these wavelength and frequency of laser wave field with the spatial length
h̄/mec = 3.86 · 10−11cm and timescale h̄/mec2 = 1.29 · 10−21sec of sponta-
neous pair production in vacuum, we are allowed to apply the homogeneous
and adiabatic approximation discussed in Section 7.5.5, and use the rate of
pair production (7.2.6), (7.2.9), (7.2.12) in Section 7.2.

7.4 The Breit–Wheeler cutoff in high-energy
γ-rays

Having determined the theoretical basis as well as attempts to verify experi-
mentally the Breit–Wheeler formula we turn to a most important application
of the Breit–Wheeler process in the framework of cosmology. As pointed out
by Nikishov [56] the existence of background photons in cosmology puts a
stringent cutoff on the maximum trajectory of the high energy photons.

The Breit–Wheeler process for the photon-photon pair production is one
of most relevant elementary processes in high-energy astrophysics. In addi-
tion to the importance of this process in dense radiation fields of compact
objects [278], the essential role of this process in the context of intergalactic
absorption of high-energy γ-rays was first pointed out by Nikishov [56, 279].
The spectra of TeV radiation observed from distant (d > 100 Mpc) extra-
galactic objects suffer essential deformation during the passage through the
intergalactic medium, caused by energy-dependent absorption of primary γ-
rays interacting with the diffuse extragalactic background radiation, for the
optical depth τγγ most likely significantly exceeding one [279–282]. A rele-
vant broad-band information about the cosmic background radiation (CBR)
is important for the interpretation of the observed high-energy γ spectra
[283–286]. For details, readers are referred to Refs. [287, 288]. In this sec-
tion, we are particularly interested in such absorption effect of high-energy
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7.4 The Breit–Wheeler cutoff in high-energy γ-rays

γ-ray, originated from cosmological sources, interacting with the Cosmic Mi-
crowave Background (CMB) photons. Fazio and Stecker [289, 290] were the
first who calculated the cutoff energy versus redshift for cosmological γ-rays.
This calculation was applied to further study of the optical depth of the Uni-
verse to high-energy γ-rays [291–293]. With the Fermi telescope, such study
turns out to be important to understand the spectrum of high-energy γ-ray
originated from sources at cosmological distance, we therefore offer the de-
tails of theoretical analysis as follow [294].

We study the Breit–Wheeler process (3.0.2) in the case that high-energy
photons ω1, originated from sources at cosmological distance z, on their way
to us, collide with CMB photons ω2 in the rest frame of CMB photons, lead-
ing to electron–positron pair production. We calculate the opacity and mean
free path of these high-energy photons, find the energy range of absorption
as a function of the cosmological redshift z.

In general, a high-energy photon with a given energy ω1, collides with
background photons having all possible energies ω2. We assume that i-type
background photons have the spectrum distribution fi(ω2), the opacity is
then given by

τi
γγ(ω1, z) =

∫ z

0

dz′

H(z′)

∫ ∞

m2
e c4/ω1

ω2
2dω2

π2 fi(ω2)σγγ

(
ω1ω2

m2
e c4

)
, (7.4.1)

where m2
e c4/ω1 is the energy threshold (3.2.8) above which the Breit–Wheeler

process (3.0.2) can occur and the cross-section σγγ is given by Eqs. (3.2.9);
H(z) is the Hubble function, obeyed the Friedmann equation

H(z) = H0[ΩM(z + 1)3 + ΩΛ]
1/2. (7.4.2)

We will assume ΩM ≃ 0.3 and ΩM ≃ 0.7 and H0 = 75Km/s/Mpc. The total
opacity is then given by

τtotal
γγ (ω1, z) = ∑

i
τi

γγ(ω1, z), (7.4.3)

which the sum is over all types of photon backgrounds in the Universe.

In the case of CMB photons the ir distribution is black-body one fCMB(ω2/T) =
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1/(eω2/T − 1) with the CMB temperature T, the opacity is given by

τγγ(ω1, z) =
∫ z

0

dz′

H(z′)

∫ ∞

m2
e c4/ω1

dω2

π2
ω2

2
eω2/T − 1

σγγ(
ω1ω2

m2
e c4 ), (7.4.4)

where the Boltzmann constant kB = 1. To simply Eq. (7.4.4), we set x = ω1ω2
m2

e c4 .
In terms of CMB temperature and high-energy photons energy at the present
time,

T = (z + 1)T0; ω1,2 = (z + 1)ω0
1,2, (7.4.5)

we obtain,

τγγ(ω
0
1, z) =

1
R0

∫ z

0

dz′

H(z′) (z + 1)3

(
m2

e c4

ω0
1

)3 ∫ ∞

1

dx
π2

x2

exp(x/θ)− 1
σγγ(x),

(7.4.6)
where

θ = x0(z + 1)2; x0 =
ω0

1T0

m2
e c4 , (7.4.7)

and x0 is the energy ω0
1 in unit of mec2(mec2/T0) = 1.11 · 1015eV.

The τγγ(ω0
1, z) = 1 gives the relationship ω0

1 = ω0
1(z) that separates the

optically thick τγγ(ω0
1, z) > 1 and optically thin τγγ(ω0

1, z) < 1 regimes in the
ω0

1 − z plane.
The integral (7.4.6) is evaluated numerically and the result is presented in

Fig. 7.4. It clearly shows the following properties:

1. for the redshift z smaller than a critical value zc ≃ 0.1 (z < zc), the CMB
is transparent to photons with arbitrary energy, this indicates a minimal
mean free path of high-energy photons;

2. for the redshift z larger than the value (z > zc), there are two branches of
solutions for τγγ(ω0

1, z) = 1, respectively corresponding to the different
energy dependence of the cross-section (3.2.9): the cross-section σγγ(x)
increases with the center of mass energy x = ω1ω2

2
γ/(mec2)2 from the

energy threshold x = 1 to x ≃ 1.97, and decreases (3.2.10) from x ≃ 1.97
to x → ∞. The energy of the CMB photon corresponding to the critical
redshift z ≃ 0.1, ω0

1 is ≃ 1.15 · 1015eV which separates two branches
of the solution. The position of this point in Fig. 7.4 is determined by
the maximal cross-section at x ≃ 1.97. Due to existence of these two
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Figure 7.4: This is a Log-Log plot for high energy photon energy x0 in units of
1.11 · 1015 eV versus redshift z. The grey region represents optically thick case,
while the white one is for optically thin case. The boundary between the two
is the two-branch solution of Eq. 7.4.6 for τγγ = 1. There is a critical redshift
zc ≃ 0.1 for a photon with arbitrary energy, which can reach the observer.
The value of the photon energy corresponding to this critical redshift is ω0

1 ≃
1.11 · 1015eV.
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solutions for a given redshift z, photons having energies in the grey
region of Fig. 7.4 cannot reach the observer, while photons from the
white region of Fig. 7.4 are observable.

3. above the critical redshift zc low-energy photons can reach us since their
energies are smaller than the energetic threshold for the Breit–Wheeler
process (3.0.2). In addition, high-energy photons are also observable
due to the fact that the cross-section of Breit–Wheeler process (3.0.2)
decreases with increasing energy of photons. For large redshifts z ∼
103, the Universe is opaque and we disregard this regime.

In Section 5.4 we considered another relevant process which is double pair
production (5.4.1). This process contributes to the opacity at very high ener-
gies and its effect has been computed in [295]. We also computed the effect
of this process on our diagram in Fig. 7.4. This process becomes relevant at
very high redshift z ∼ 103.

Due to the fact that there are other radiation backgrounds contributing into
(7.4.3), the background of CMB photons gives the lower limit for opacity for
high-energy photons with respect to the Breit–Wheeler process (3.0.2). Fi-
nally, we point out that the small-energy solution for large redshift in Fig. (7.4)
agrees with the one found by Fazio and Stecker [289, 290].

7.5 Theory of pair production in Coulomb
potential

By far the major attention to build a critical electric field has occurred in the
physics of heavy nuclei and in heavy-ion collisions. We recall in the follow-
ing some of the basic ideas, calculations, as well as experimental attempts to
obtain the pair creation process in nuclear physics.

7.5.1 The Z = 137 catastrophe

Soon after the Dirac equation for a relativistic electron was discovered [80,
296], Gordon [297, 298] (for all Z < 137) and Darwin [299] (for Z = 1) found
its solution in the point-like Coulomb potential V(r) = −Zα/r, 0 < r < ∞.
Solving the differential equations for the Dirac wave function, they obtained
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the well-known Sommerfeld’s formula [300] for the energy spectrum,

E(n, j) = mec2

[
1 +

(
Zα

n− |K|+ (K2 − Z2α2)1/2

)2
]−1/2

. (7.5.1)

Here the principle quantum number n = 1, 2, 3, · · · and

K =

{
−(j + 1/2) = −(l + 1), if j = l + 1

2 , l ≥ 0
(j + 1/2) = l, if j = l − 1

2 , l ≥ 1
(7.5.2)

where l = 0, 1, 2, . . . is the orbital angular momentum corresponding to the
upper component of Dirac bi-spinor, j is the total angular momentum, and
the states with K = ∓1,∓2,∓3, · · ·,∓(n− 1) are doubly degenerate1, while
the state K = −n is a singlet [297–299]. The integer values n and K label
bound states whose energies are E(n, j) ∈ (0, mec2). For the example, in the
case of the lowest-energy states, one has

E(1S 1
2
) = mec2

√
1− (Zα)2, (7.5.3)

E(2S 1
2
) = E(2P1

2
) = mec2

√
1 +

√
1− (Zα)2

2
, (7.5.4)

E(2P3
2
) = mec2

√
1− 1

4
(Zα)2. (7.5.5)

For all states of the discrete spectrum, the binding energy mec2 − E(n, j) in-
creases as the nuclear charge Z increases, as shown in Fig. 7.5. When Z = 137,
E(1S1/2) = 0, E(2S1/2) = E(2P1/2) = (mec2)/

√
2 and E(2S3/2) = mec2

√
3/2.

Gordon noticed in his pioneer paper [297, 298] that no regular solutions with
n = 1, j = 1/2, l = 0, and K = −1 (the 1S1/2 ground state) are found beyond
Z = 137. This phenomenon is the so-called “Z = 137 catastrophe” and it is
associated with the assumption that the nucleus is point-like in calculating
the electronic energy spectrum.

In fact, it was shown since the pioneering work of Pomeranchuk [64] that

1This degeneracy is removed by radiative corrections [90, 133]. The shift of the level 2S 1
2

up, compared to the level 2P1
2

(the famous Lamb shift) was discovered out of the study
of fine structure of the hydrogen spectrum.
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Figure 7.5: Atomic binding energies as function of nuclear charge Z. This
figure is reproduced from Fig. 1 in Ref. [66].

in nature there cannot be a point-like charged object with effective coupling
constant Zα > 1 since the entire electron shell will collapse to the center r = 0.

7.5.2 Semi-Classical description

In order to have further understanding of this phenomenon, we study it in the
semi-classical scenario. For simplicity we treat relativistic electron as a scalar
particle fulfilling the Klein–Gordon equation, but still obeying Fermi-Dirac
statistics. Setting the origin of spherical coordinates (r, θ, ϕ) at the point-like
charge, we introduce the vector potential Aµ = (A, A0), where A = 0 and A0
is the Coulomb potential. The motion of a relativistic “electron” with mass
m and charge e is described by its radial momentum pr, angular momenta pϕ
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and the Hamiltonian

H± = ±mec2

√
1 +

(
pr

mec

)2

+

(
pϕ

mecr

)2

+ V(r), (7.5.6)

where the potential energy V(r) = eA0, and ± corresponds for positive and
negative solutions. The states corresponding to negative energy solutions are
fully occupied. The angular momentum pϕ is conserved, when the Hamilto-
nian is spherically symmetric. For a given angular momentum pϕ, the Hamil-
tonian (7.5.6) describes electron’s radial motion in the following effective po-
tential

E± = ±mec2

√
1 +

(
pϕ

mecr

)2

+ V(r). (7.5.7)

The Coulomb potential energy V(r) is given by

V(r) = −Ze2

r
. (7.5.8)

In the classical scenario, given different values of angular momenta pϕ,
the stable circulating orbits (states) are determined by the minimum of the
effective potential E+(r) (7.5.7). Using dE+(r)/dr = 0, we obtain the stable
orbit location at the radius RL in the unit of the Compton length λC,

RL(pϕ) = ZαλC

√
1−

(
Zα

pϕ/h̄

)2

, (7.5.9)

where α = e2/h̄c and pϕ > Zα. Substituting Eq. (7.5.9) into Eq. (7.5.7), we
find the energy of the electron at each stable orbit,

E(pϕ) ≡ min(E+) = mec2

√
1−

(
Zα

pϕ/h̄

)2

. (7.5.10)

The last stable orbits (minimal energy) are given by

pϕ → Zαh̄ + 0+, RL(pϕ)→ 0+, E(pϕ)→ 0+. (7.5.11)
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For stable orbits with pϕ/h̄ ≫ 1, the radii RL/λC ≫ 1 and energies E →
mec2 + 0−; electrons in these orbits are critically bound since their binding
energy goes to zero. As the energy spectrum (7.5.1), see Eqs. (7.5.3,7.5.4,7.5.5),
Eq. (7.5.10) shows, only positive or null energy solutions (states) exist in the
presence of a point-like nucleus.

In the semi-classical scenario, the discrete values of angular momentum pϕ

are selected by the Bohr-Sommerfeld quantization rule∫
pϕdϕ ≃ h(l +

1
2
), ⇒ pϕ(l) ≃ h̄(l +

1
2
), l = 0, 1, 2, 3, . . . (7.5.12)

describing the semi-classical states of radius and energy

RL(l) ≃ (Zα)−1λC

√
1−

(
2Zα

2l + 1

)2

, (7.5.13)

E(l) ≃ mec2

√
1−

(
2Zα

2l + 1

)2

. (7.5.14)

Other values of angular momentum pϕ, radius RL and energy E given by
Eqs. (7.5.9,7.5.10) in the classical scenario are not allowed. When these semi-
classical states are not occupied as required by the Pauli Principle, the tran-
sition from one state to another with different discrete values (l1, l2 and ∆l =
l2 − l1 = ±1) is possible by emission or absorption of a spin-1 (h̄) photon.
Following the energy and angular-momentum conservations, photons emit-
ted or absorbed in the transition have angular momentum pϕ(l2)− pϕ(l1) =
h̄(l2 − l1) = ±h̄ and energy E(l2)− E(l1). As required by the Heisenberg un-
certainty principle ∆ϕ∆pϕ ≃ 4πpϕ(l) ≳ h, the absolute ground state for min-
imal energy and angular momentum is given by the l = 0 state, pϕ ∼ h̄/2,
RL ∼ ZαλC

√
1− (2Zα)2 > 0 and E ∼ mec2

√
1− (2Zα)2 > 0 for Zα ≤ 1/2.

Thus the stability of all semi-classical states l > 0 is guaranteed by the Pauli
principle. In contrast for Zα > 1/2, there is not an absolute ground state in
the semi-classical scenario.

We see now how the lowest-energy states are selected by the quantization
rule in the semi-classical scenario out of the last stable orbits (7.5.11) in the
classical scenario. For the case of Zα ≤ 1/2, equating (7.5.11) to (7.5.12),
we find the selected state l = 0 is only possible solution so that the ground
state l = 0 in the semi-classical scenario corresponds to the last stable orbits
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(7.5.11) in the classical scenario. On the other hand for the case Zα > 1/2,
equating (7.5.11) to (7.5.12), we find the selected state l = l̃ ≡ (Zα− 1)/2 > 0
in the semi-classical scenario corresponds to the last stable orbits (7.5.11) in
the classical scenario. This state l = l̃ > 0 is not protected by the Heisenberg
uncertainty principle from quantum mechanically decaying in h̄-steps to the
states with lower angular momentum and energy (correspondingly smaller
radius RL (7.5.13)) via photon emissions. This clearly shows that the “Z =
137-catastrophe” corresponds to RL → 0, falling to the center of the Coulomb
potential and all semi-classical states (l) are unstable.

7.5.3 The critical value of the nuclear charge Zcr = 173

A very different situation is encountered when considering the fact that the
nucleus is not point-like and has an extended charge distribution [64,65,301–
307]. In that case the Z = 137 catastrophe disappears and the energy lev-
els E(n, j) of the bound states 1S, 2P and 2S, · · · smoothly continue to drop
toward the negative energy continuum as Z increases to values larger than
137, as shown in Fig. 7.5. The reason is that the finite size R of the nucleus
charge distribution provides a cutoff for the boundary condition at the ori-
gin r → 0 and the energy levels E(n, j) of the Dirac equation are shifted due
to this cutoff. In order to determine the critical value Zcr when the negative
energy continuum (E < −mec2) is encountered (see Fig. 7.5), Zeldovich and
Popov [65, 304–307] solved the Dirac equation corresponding to a nucleus of
finite extended charge distribution, i.e., the Coulomb potential is modified as

V(r) =

{
−Ze2

r , r > R,
−Ze2

R f
( r

R
)

, r < R,
(7.5.15)

where R ∼ 10−12cm is the size of the nucleus. The form of the cutoff function
f (x) depends on the distribution of the electric charge over the volume of
the nucleus (x = r/R, 0 < x < 1, with f (1) = 1). Thus, f (x) = (3− x2)/2
corresponds to a constant volume density of charge.

Solving the Dirac equation with the modified Coulomb potential (7.5.15)
and calculating the corresponding perturbative shift ∆ER of the lowest-energy
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level (7.5.3) Popov obtains [65, 304]

∆ER = mec2 (ξ)
2(2ξe−Λ)2γz

γz(1 + 2γz)

[
1− 2γz

∫ 1

0
f (x)x2γz dx

]
, (7.5.16)

where ξ = Zα, γz =
√

1− ξ2 and Λ = ln(h̄/mecR) ≫ 1 is a logarithmic
parameter in the problem under consideration. The asymptotic expressions
for the 1S1/2 energy that were obtained are [65, 307]

E(1S1/2) = mec2


√

1− ξ2 coth(Λ
√

1− ξ2), 0 < ξ < 1,
Λ−1, ξ = 1,√

ξ2 − 1 cot(Λ
√

ξ2 − 1), ξ > 1.
(7.5.17)

As a result, the “Z = 137 catastrophe” in Eq. (7.5.1) disappears and E(1S1/2) =
0 gives

ξ0 = 1 +
π2

8Λ
+O(Λ−4); (7.5.18)

the state 1S1/2 energy continuously goes down to the negative energy contin-
uum since Zα > 1, and E(1S1/2) = −1 gives

ξcr = 1 +
π2

2Λ(Λ + 2)
+O(Λ−4) (7.5.19)

as shown in Fig. 7.5. In Ref. [65, 304] Popov and Zeldovich found that the
critical value ξ

(n)
c = Zcα for the energy levels nS1/2 and nP1/2 reaching the

negative energy continuum is equal to

ξ
(n)
c = 1 +

n2π2

2Λ2 +O(Λ−3). (7.5.20)

The critical value increases rapidly with increasing n. As a result, it is found
that Zcr ≃ 173 is a critical value at which the lowest-energy level of the
bound state 1S1/2 encounters the negative energy continuum, while other
bound states encounter the negative energy continuum at Zcr > 173 (see also
Ref. [302] for a numerical estimation of the same spectrum). The change in
the vacuum polarization near a high-Z nucleus arising from the finite extent
of the nuclear charge density was computed in [308–310] with all calcula-
tions done analytically, and to all orders in Zα. Note that for two nuclei with
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charges Z1 and Z2 respectively, if Z1 > Z2 and K-shell of the Z1-nucleus is
empty, then Z2 may be a neutral atom. In this case two nuclei make a quasi-
molecular state for which the ground term (1sσ) is unoccupied by electrons:
so spontaneous production of positrons is also possible [311, 312]. We refer
the readers to Ref. [65, 304–307, 313] for mathematical and numerical details.

When Z > Zcr = 173, the lowest-energy level of the bound state 1S1/2
enters the negative energy continuum. Its energy level can be estimated as
follows

E(1S1/2) = mec2 − Zα

r̄
< −mec2, (7.5.21)

where r̄ is the average radius of the 1S1/2 state’s orbit, and the binding energy
of this state satisfies Zα/r̄ > 2mec2. If this bound state is unoccupied, the
bare nucleus gains a binding energy Zα/r̄ larger than 2mec2, and becomes
unstable against the production of an electron–positron pair. Assuming this
pair production occurs around the radius r̄, we have energies for the electron
(ϵ−) and positron (ϵ+) given by

ϵ− =
√
|cp−|2 + m2

e c4 − Zα

r̄
; ϵ+ =

√
|cp+|2 + m2

e c4 +
Zα

r̄
, (7.5.22)

where p± are electron and positron momenta, and p− = −p+. The total
energy required for the production of a pair is

ϵ−+ = ϵ− + ϵ+ = 2
√
|cp−|2 + m2

e c4, (7.5.23)

which is independent of the potential V(r̄). The potential energies ±eV(r̄)
of the electron and positron cancel out each other and do not contribute to
the total energy (7.5.23) required for pair production. This energy (7.5.23)
is acquired from the binding energy (Zα/r̄ > 2mec2) by the electron filling
into the bound state 1S1/2. A part of the binding energy becomes the kinetic
energy of positron that goes out. This is analogous to the familiar case when a
proton (Z = 1) catches an electron into the ground state 1S1/2, and a photon is
emitted with the energy not less than 13.6 eV. In the same way, more electron–
positron pairs are produced, when Z ≫ Zcr = 173 and the energy levels of
the next bound states 2P1/2, 2S3/2, . . . enter the negative energy continuum,
provided these bound states of the bare nucleus are unoccupied.
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7.5.4 Positron production

Gershtein and Zeldovich [314, 315] proposed that when Z > Zcr the bare
nucleus produces spontaneously pairs of electrons and positrons: the two
positrons2 run off to infinity and the effective charge of the bare nucleus de-
creases by two electrons, which corresponds exactly to filling the K-shell3 A
more detailed investigation was made for the solution of the Dirac equation
at Z ∼ Zcr, when the lowest electron level 1S1/2 merges with the negative
energy continuum, in Refs. [304–307, 316]. It was there further clarified the
situation, showing that at Z ≳ Zcr, an imaginary resonance energy of Dirac
equation appears,

ϵ = ϵ0 − i
Γnucl

2
, (7.5.24)

where

ϵ0 = −me − a(Z− Zcr), (7.5.25)

Γnucl ∼ θ(Z− Zcr) exp

(
−b

√
Zcr

Z− Zcr

)
, (7.5.26)

and a, b are constants, depending on the cutoff Λ (for example, b = 1.73 for
Z = Zcr = 173 [65,305,306]). The energy and momentum of emitted positrons
are |ϵ0| and |p| =

√
|ϵ0| −mec2.

The kinetic energy of the two positrons at infinity is given by

εp = |ϵ0| −mec2 = a(Z− Zcr) + · · ·, (7.5.27)

which is proportional to Z − Zcr (as long as (Z − Zcr) ≪ Zcr) and tends to
zero as Z → Zcr. The pair production resonance at the energy (7.5.24) is ex-
tremely narrow and practically all positrons are emitted with almost same ki-
netic energy for Z ∼ Zcr, i.e. nearly mono-energetic spectra (sharp line struc-
ture). Apart from a pre-exponential factor, Γnucl in Eq. (7.5.26) coincides with
the probability of positron production, i.e., the penetrability of the Coulomb
barrier (see Section 3.5). The related problems of vacuum charge density due
to electrons filling into the K-shell and charge renormalization due to the

2Hyperfine structure of 1S1/2 state: single and triplet.
3An assumption was made in Ref. [314, 315] that the electron density of 1S1/2 state, as well

as the vacuum polarization density, is delocalized at Z → Zcr. Later it was proved to be
incorrect [65, 305, 306].
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change of wave function of electron states are discussed in Refs. [317–321].
An extensive and detailed review on this theoretical issue can be found in
Refs. [65, 66, 313, 322].

On the other hand, some theoretical work has been done studying the pos-
sibility that pair production, due to bound states encountering the negative
energy continuum, is prevented from occurring by higher order processes of
quantum field theory, such as charge renormalization, electron self-energy
and nonlinearities in electrodynamics and even Dirac field itself [222, 323–
328]. However, these studies show that various effects modify Zcr by a few
percent, but have no way to prevent the binding energy from increasing to
2mec2 as Z increases, without simultaneously contradicting the existing pre-
cise experimental data on stable atoms [329]. Contrary claim [330] according
to which bound states are repelled by the lower continuum through some
kind of self-screening appear to be unfounded [66].

It is worth noting that an overcritical nucleus (Z ≥ Zcr) can be formed
for example in the collision of two heavy nuclei [303, 314–316, 331–334]. To
observe the emission of positrons originated from pair production occurring
near to an overcritical nucleus temporally formed by two nuclei, the follow-
ing necessary conditions have to be full filled: (i) the atomic number of an
overcritical nucleus is larger than Zcr = 173; (ii) the lifetime of the overcriti-
cal nucleus must be much longer than the characteristic time (h̄/mec2) of pair
production; (iii) the inner shells (K-shell) of the overcritical nucleus should be
unoccupied.

The collision of two Uranium nuclei with Z = 92 was considered by Zel-
dovich, Popov and Gershtein [65, 311]. The conservation of energy in the
collision reads

Mnv2
0 = (Ze)2/Rmin, (7.5.28)

where v0 is the relative velocity of the nuclei at infinity, Rmin is the smallest
distance, and Mn is the Uranium atomic mass. In order to have Rmin ≃ 30fm
a fine tuning of the initial velocity narrowly peaked around v0 ≃ 0.034c is
needed. The characteristic collision time would be then ∆tc = Rmin/v0 ≃
10−20s. The interesting possibility then occurs, that the typical velocity of an
electron in the inner shell (r ∼ 115.8fm) is v ∼ c and therefore its character-
istic time ∆τ0 ∼ r/v ∼ 4 · 10−22s. This means that the characteristic collision
time ∆tc in which the two colliding nuclei are brought into contact and sepa-
rated again can be in principle much larger than the timescale ∆τ0 of electron
evolution. This would give justification for an adiabatic description of the
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7 Phenomenology of electron–positron pair creation and annihilation

collision in terms of quasimolecules. The formation of “quasimolecules” could
also be verified by the characteristic molecular-orbital X-rays radiation due
to the electron transitions between “quasimolecules” orbits [329, 335–341].
However, this requires the above mentioned fine tuning in the bombarding
energies (Mnv2

0/2) close to the nuclear Coulomb barrier.
However, we notice that the above mentioned condition (ii) has never been

fulfilled in heavy-ion collisions. There has been up to now various unsuccess-
ful attempts to broaden this time of encounter by ‘sticking’ phenomena. Sim-
ilarly, the condition (iii) is not sufficient for pair production, since electrons
that occupied outer shells of high energies must undergo a rapid transition
to occupy inner shells of lower energies, which is supposed to be vacant and
encountering the negative energy continuum. If such transition and occu-
pation take place faster than pair production, the pair production process is
blocked. As a consequence, it needs a larger value of Z > Zcr = 173 to
have stronger electric field for vacant out shells encountering the negative
energy continuum (see Eq. (7.5.20)) so that electrons produced can occupy
outer shells. This makes pair production even less probable to be observed,
unless the overcritical charged nucleus is bare, i.e. all shells are vacant.

7.5.5 Homogeneous and adiabatic approximation

There is a certain analogy between positron production by a nucleus with
Z > Zcr and pair production in a homogeneous electrostatic field. We note
that in a Coulomb potential of a nucleus with Z = Zcr the corresponding
electric field Ecr = Zcr|e|/r2 is comparable with the critical electric field Ec,
(2.0.1), when r ∼ λC. However, the condition E > Ec is certainly the nec-
essary condition in order to have the pair creation but not a sufficient one:
the spatial extent of the region where E > Ec occurs must be larger than the
de Broglie wavelength of the created electron—positron pair. If a pair pro-
duction takes place, electrons should be bound into the K-shell nucleus and
positrons should run off to infinity. This intuitive reasoning builds the con-
nection between the phenomena of pair production in the Coulomb potential
at charge Z > Zcr and the one in an external constant electric field which was
treated in Section 5.7. The exact formula for pair production probability W in
an overcritical Coulomb potential has not yet been obtained in the framework
of QED. We cannot expect a literal coincidence of formulas for the probabil-
ity W of pair production in these different cases, since the Schwinger formula

900



7.6 Pair production in heavy-ion collisions

(5.7.25) is exactly derived for a homogeneous field, while the Coulomb po-
tential is strongly inhomogeneous at small distances. Some progress in the
treatment of this problem is presented in Section 6.

All the discussions dealing with pair production in an external homoge-
neous electric field or a Coulomb potential assume that the electric field be
static. Without the feedback of the particles created on the field this will
clearly lead to a divergence of the number of pairs created. In the real de-
scription of the phenomenon at t → −∞ we have an initial empty vacuum
state. We then have the turned on of an overcritical electric field and ongoing
process of pair creation with their feedback on a time on the electric field and
a final state at remote future t → +∞ with the electron and positron created
and the remaining subcritical electric field. To describe this very different
regimes a simplified “adiabatic approximation” can be adopted by assum-
ing the existence of a homogeneous field only during a finite time interval
[−T,T]. That time T should be of course shorter than the feedback time .
During that time interval the Schwinger formula (5.7.25) is assumed to be ap-
plicable and it is appropriate to remark that the overcritical electric fields are
related to very high energy densities: E2

c /2 = 9.53 · 1026ergs/cm3. In the adi-
abatic approximation an effective spatial limitation to the electric field is also
imposed. Therefore the constant overcritical electric field and the application
of the Schwinger formula is limited both in space and time. Progress in this
direction has been presented in [73], see Section 9.8. A significant amount of
pairs is only produced if the finite lifetime of the overcritical electric field is
larger than the characteristic time of pair production (h̄/mec2) and the spatial
extent of the electric field is larger than the tunneling length a (3.5.6).

We have already discussed in Secs. 7.2 and 7.3 the experimental status of
electron–positron pair creation in X-ray free electron laser and an electron-
beam–laser collision, respectively. We now turn in Section 7.6 to the multiyear
attempts in creating electron–positron pairs in heavy-ion collisions.

7.6 Pair production in heavy-ion collisions

7.6.1 A transient super heavy “quasimolecules”

There has been a multiyear effort to observe positrons from pair production
associated with the overcritical field of two colliding nuclei, in heavy-ion col-
lisions [314–316, 329, 333, 334, 342]. The hope was to use heavy-ion collisions
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to form transient superheavy “quasimolecules”: a long-lived metastable nu-
clear complex with Z > Zcr. It was expected that the two heavy ions of
charges respectively Z1 and Z2 with Z1 + Z2 > Zcr would reach small inter-
nuclear distances well within the electron’s orbiting radii. The electrons would
not distinguish between the two nuclear centers and they would evolve as if
they were bounded by nuclear “quasimolecules” with nuclear charge Z1 +
Z2. Therefore, it was expected that electrons would evolve quasi-statically
through a series of well defined nuclear “quasimolecules” states in the two-
center field of the nuclei as the inter-nuclear separation decreases and then
increases again.

When heavy-ion collision occurs the two nuclei come into contact and some
deep inelastic reaction occurs determining the duration ∆ts of this contact.
Such “sticking time” is expected to depend on the nuclei involved in the re-
action and on the beam energy. Theoretical attempts have been proposed to
study the nuclear aspects of heavy-ion collisions at energies very close to the
Coulomb barrier and search for conditions, which would serve as a trigger
for prolonged nuclear reaction times, to enhance the amplitude of pair pro-
duction. The sticking time ∆ts should be larger than 1 ∼ 2 · 10−21 sec [66] in
order to have significant pair production, see Fig. 7.6. Up to now no success
has been achieved in justifying theoretically such a long sticking time. In real-
ity the characteristic sticking time has been found of the order of ∆t ∼ 10−23

sec, hundred times shorter than the one needed to activate the pair creation
process. Moreover, it is recognized that several other dynamical processes
can make the existence of a sharp line corresponding to an electron–positron
annihilation very unlikely [66, 329, 343–345].

It is worth noting that several other dynamical processes contribute to the
production of positrons in undercritical as well as in overcritical collision sys-
tems [222, 323–325]. Due to the time-energy uncertainty relation (collision
broadening), the energy spectrum of such positrons has a rather broad and
oscillating structure, considerably different from a sharp line structure that
we would expect from pair production positron emission alone.

7.6.2 Experiments

As remarked above, if the sticking time ∆ts could be prolonged, the probabil-
ity of pair production in vacuum around the superheavy nucleus would be
enhanced. As a consequence, the spectrum of emitted positrons is expected
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Figure 7.6: Energy expectation values of the 1sσ state in a U+U collision at
10 GeV/nucleon. The unit of time is h̄/mec2. This figure is reproduced from
Fig. 4 in Ref. [66].

to develop a sharp line structure, indicating the spontaneous vacuum decay
caused by the overcritical electric field of a forming superheavy nuclear sys-
tem with Z ≥ Zcr. If the sticking time ∆ts is not long enough and the sharp
line of pair production positrons has not yet well developed, in the observed
positron spectrum it is difficult to distinguish the pair production positrons
from positrons created through other different mechanisms. Prolonging the
“sticking time” and identifying pair production positrons among all other
particles [335,346] created in the collision process has been an object of a very
large experimental campaign [347–354].

For nearly 20 years the study of atomic excitation processes and in particu-
lar of positron creation in heavy-ion collisions has been a major research topic
at GSI (Darmstadt) [355–358]. The Orange and Epos groups at GSI (Darm-
stadt) discovered narrow line structures (see Fig. 7.7) of unexplained origin,
first in the single positron energy spectra and later in coincident electron–
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positron pair emission. Studying more collision systems with a wider range
of the combined nuclear charge Z = Z1 + Z2 they found that narrow line
structures were essentially independent of Z. This has ruled out the expla-
nation as a pair production positron, since the line was expected to be at the
position of the 1sσ resonance, i.e., at a kinetic energy given by Eq. (7.5.27),
which is strongly Z dependent. Attempts to link this positron line to spon-
taneous pair production have failed. Other attempts to explain this positron
line in term of atomic physics and new particle scenario were not successful
as well [66].

Figure 7.7: Two typical example of coincident electron–positron spectra mea-
sured by the Epose group in the system U+Th (left) and by the Orange group
in U+Pb collisions (right). When plotted as a function of the total energy of
the electron and positron, very narrow line structures were observed. This
figure is reproduced from Fig. 7 in Ref. [66].

The anomalous positron line problem has perplexed experimentalists and
theorists alike for more than a decade. Moreover, later results obtained by the
Apex collaboration at Argonne National Laboratory showed no statistically
significant positron line structures [359, 360]. This is in strong contradiction
with the former results obtained by the Orange and Epos groups. However,
the analysis of Apex data was challenged in the comment by Ref. [361, 362]
pointing out that the Apex measurement would have been less sensitive to
extremely narrow positron lines. A new generation of experiments (Apex at
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Argonne and the new Epos and Orange setups at GSI) with much improved
counting statistics has failed to reproduce the earlier results [66].

To overcome the problem posed by the short timescale of pair produc-
tion (10−21 sec), hopes rest on the idea to select collision systems in which
a nuclear reaction with sufficient sticking time occurs. Whether such a situ-
ation can be realized still is an open question [66]. In addition, the anoma-
lous positron line problem and its experimental contradiction overshadow
the field of the pair production in heavy-ion collisions.

In summary, clear experimental signals for electron–positron pair produc-
tion in heavy-ion collisions are still missing [66] at the present time. For
more recent information on the pair production in the heavy-ion collisions
see [363–365] and for complete references the resource letter [366].

Having reviewed the situation of electron–positron pair creation by vac-
uum polarization in Earth-bound experiments we turn now to the corre-
sponding problems in the realm of astrophysics. The obvious case is the one
of black holes where the existence of critical field is clearly predicted by the
analytic solutions of the Einstein-Maxwell field equations.
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8 The extraction of blackholic
energy from a black hole by
vacuum polarization processes

It is becoming more and more clear that the theoretical description of the
gravitational collapse process to a Kerr–Newman black hole, with all the as-
pects of nuclear physics and electrodynamics involved, is likely the most
complex problem in physics and astrophysics. Specific to this report is the
opportunity given by the process of gravitational collapse to study for the
first time the above mentioned three quantum processes simultaneously at
work under ultrarelativistic special and general relativistic regimes. The pro-
cess of gravitational collapse is characterized by the gravitational timescale
∆tg = GM/c3 ≃ 5 · 10−6(M/M⊙) sec, where G is the gravitational constant,
M is the mass of a collapsing object, and the energy involved is of the order of
∆E = 1054M/M⊙ ergs. This is one of the most energetic and most transient
phenomena in physics and astrophysics and needs for its correct description
the identification of the basic constitutive processes occurring in a highly time
varying regime. Our approach in this Section is to proceed with an idealized
model which can give us estimates of the basic energetics and some leading
features of the real phenomenon. We shell describe: (1) the basic energetic
process of an already formed black hole; (2) the vacuum polarization pro-
cess a la Schwinger of an already formed Kerr–Newman black hole; (3) the
basic formula of the dynamics of the gravitational collapse. We shall in par-
ticular recover the Tolman-Oppenheimer-Snyder solutions in a more explicit
form and give exact analytic solution for the description of the gravitational
collapse of charged and uncharged shells. This will allow, among others,
to recall the mass formula of the black hole, to clarify the special role of the
irreducible mass in that formula, and to have a general derivation of the max-
imum extractable energy in the process of gravitational collapse. We will as
well address some conceptual issues between general relativity and thermo-
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dynamics which have been of interest to theoretical physicists in the last forty
years. Of course in this brief Section we will be only recalling some of these
essential themes and refer to the literature where in-depth analysis can be
found. Since we are interested in the gravitational collapse we are going to
examine only processes involving masses larger than the critical mass of neu-
tron stars, for convenience established in 3.2 M⊙ [367]. We are consequently
not addressing the research on mini-black-holes [368] which involves ener-
getics 1041 times smaller than the ones involved in gravitational collapse and
discussed in this report. This problematics implies a yet unknown physics
of applying quantum mechanics in conditions where the curvature of space-
time is comparable to the wavelength of the particle.

We recall here the basic steps leading to the study of the electrodynamics of
a Kerr–Newman black hole, indicating the relevant references. In this Section
we use the system of units c = G = h̄ = 1.

8.1 Test particles in Kerr–Newman geometries

According to the uniqueness theorem for stationary, regular black holes (see
Ref. [369]), the process of gravitational collapse of a core whose mass is larger
than the neutron star critical mass [367] will generally lead to a black hole
characterized by all the three fundamental parameters: the mass-energy M,
the angular momentum L, and the charge Q (see [370]). The creation of crit-
ical electric fields and consequent process of pair creation by vacuum po-
larization are expected to occur in the late phases of gravitational collapse
when the gravitational energy of the collapsing core is transformed into an
electromagnetic energy and eventually in electron–positron pairs. As of to-
day no process of the gravitational collapse either to a neutron star or to a
black hole has reached a satisfactory theoretical understanding. It is a fact
that even the theory of a gravitational collapse to a neutron star via a super-
nova is not able to explain even the ejection of a supernova remnant [371].
In order to estimate the fundamental energetics of these transient phenom-
ena we recall first the metric of a Kerr–Newman black hole, the role of the
reversible and irreversible transformations in reaching the mass formula as
well as the role of the positive and negative energy states in a quantum ana-
log. We will then estimate the energy emission due to vacuum polarization
process. As we will see, such a process occurs on characteristic quantum
timescale of t ∼ h̄/(mec2) ∼ 10−21 sec, which is many orders of magnitude
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shorter than the characteristic gravitational collapse timescale. Of course the
astrophysical progenitor of the black hole will be a neutral one, as all the as-
trophysical systems. Only during the process of the gravitational collapse
and for the above mentioned characteristic gravitational timescale a process
of charge separation will occur. The positively charged core would give rise
to the electrodynamical process approaching asymptotically in time the hori-
zon of a Kerr–Newman black hole.

A generally charged and rotating, black hole has been considered whose
curved space-time is described by the Kerr–Newman geometry [372]. In
Kerr–Newman coordinates (u, r, θ, ϕ) the line element takes the form,

ds2 = Σdθ2 − 2a sin2 θdrdϕ + 2drdu− 2aΣ−1(2Mr−Q2) sin2 θdϕdu

+ Σ−1[(r2 + a2)2 − ∆a2 sin2 θ] sin2 θdϕ2 − [(1− Σ−1(2Mr−Q2)]du2

(8.1.1)

where ∆ = r2− 2Mr + a2 + Q2 and Σ = r2 + a2 cos2 θ, a = L/M being the an-
gular momentum per unit mass of the black hole. The Reissner–Nordström
and Kerr geometries are particular cases for a nonrotating, a = 0, and un-
charged, Q = 0, black holes respectively. The Kerr–Newman space–time has
a horizon at

r = r+ = M + (M2 −Q2 − a2)1/2 (8.1.2)

where ∆ = 0.
The electromagnetic vector potential around the Kerr–Newman black hole

is given by [372]
A = −Σ−1Qr(du− a sin2 θdϕ), (8.1.3)

the electromagnetic field tensor is then

F = dA = 2QΣ−2[(r2 − a2 cos2 θ)dr ∧ du− 2a2r cos θ sin θdθ ∧ du

− a sin2 θ(r2 − a2 cos2 θ)dr ∧ dϕ + 2ar(r2 + a2) cos θ sin θdθ ∧ dϕ].
(8.1.4)

The equation of motion of a test particle of mass m and charge e in the Kerr–
Newman geometry reads

uµ∇µuν = (e/m)uµFµ
ν, (8.1.5)

where uµ is the 4–velocity of the particle. These equations may be derived
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from the Lagrangian
L = 1

2 mgµνuµuν + eAµuµ, (8.1.6)

or, equivalently, from the Hamiltonian

H = 1
2 gµν(pµ − eAµ)(pν − eAν), (8.1.7)

where we have introduced the 4–momentum of the particle

pµ = muµ + eAµ. (8.1.8)

Note that Hamiltonian (8.1.7) is subject to the constraint

H = −1
2 m2. (8.1.9)

Carter [67] firstly recognized that the corresponding Hamilton–Jacobi equa-
tions

gαβ

(
∂S
∂xα

+ eAα

)(
∂S
∂xβ

+ eAβ

)
+ m2 = 0, (8.1.10)

are separable. Correspondingly four integrals of the equation of motion (8.1.5)
can be found. Indeed, in addition to the constant of motion (8.1.9) which cor-
responds to conservation of the rest mass we have the two first integrals

pu = −E (8.1.11)
pϕ = Φ (8.1.12)

associated with the stationarity and the axial symmetry of Kerr–Newman
space-time respectively. E and Φ are naturally interpreted as the energy and
the angular momentum about the symmetry axis of the test particle. It fol-
lows from the separability of Eq. (8.1.10) that the quantities

p2
θ + (aE sin θ −Φ sin−1 θ)2 + a2m2 cos2 θ = K (8.1.13)

∆p2
r − 2[(r2 + a2)E+ eQr− aΦ]pr + m2r2 = −K (8.1.14)

are conserved as well. Together with E and Φ they form a complete set of
first integrals of the motion and allow one to integrate Eq. (8.1.5). As an
example consider the proper time derivative ṙ of the radial coordinate of the
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test particle. It follows from Eqs. (8.1.11), (8.1.12), (8.1.13) and (8.1.14), that

Σ2ṙ2 = (E(r2 + a2) + eQr−Φa)2 − ∆(m2r2 + K) (8.1.15)

which can be numerically integrated using the effective potential technique
[373].

8.2 Reversible and irreversible transformations of a
black hole: the Christodoulou-Ruffini mass
formula

In 1969 Roger Penrose [374] pointed out for the first time the possibility to
extract rotational energy from a Kerr black hole. The first example of such an
energy extraction was obtained by Ruffini and Wheeler who also introduced
the concept of the ergosphere [177, 370, 375], the region between the horizon
of the black hole and the surface of infinite redshift. These works has been
generalized by Denardo and Ruffini in 1973 [376] and Denardo, Hively and
Ruffini in 1974 [377] to the case of a Kerr–Newman black hole. The process
described by Denardo, Hively and Ruffini can be described as follows. A
neutral particle P0 approaches the black hole with positive energy E0 and
decays into two oppositely charged particles P1 and P2 whose energies are
E1 < 0 and E2 > E0 respectively. P1 falls into the black hole while P2 is
accelerated towards spatial infinity. Correspondingly, a positive energy

δE = E2 − E0 (8.2.1)

has been extracted from the black hole and deposited on P2. The region
around the black hole where the energy extraction processes can occur is
named effective ergosphere in Refs. [376], [377]. Note that, as the particle P1
is swallowed, the black hole undergoes a transformation since its energy, an-
gular momentum and charge change accordingly. When is the extracted en-
ergy maximal? In order to answer this question note that the energy E of a
particle of angular momentum Φ, charge e and rest mass m moving around
a Kerr–Newman black hole and having a turning point at r is given by (see
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Eq. (8.1.15)) the quadratic equation

(r2 + a2)2E2 + 2(eQr−Φa)(r2 + a2)E+ (eQr−Φa)2 − ∆(m2r2 + K) = 0.
(8.2.2)

As recalled in [114, p. 352], in the case of Q = 0 which corresponds to a
pure Kerr solution, the explicit integration of this equation was performed
by Ruffini and Wheeler [378]. They introduced the effective potential energy
defined by

(r2 + a2)2E2 − 2(Φa)(r2 + a2)E+ (Φa)2 − ∆(m2r2 + K) = 0. (8.2.3)

The radii of stable orbits are determined by minimum of function E(r), i.e.
by simultaneous solution of equations E(r) = E0, E′(r) = 0 for E′′(r) > 0.
The orbit closest to the center corresponds to E′′(r)min = 0; for r < rmin, the
function E(r) has no minima. As a result

• When Φ < 0 (motion opposite to the direction of rotation of the collaps-
ing object)

rmin

2M
=

9
2

,
E0

m
=

5
3
√

3
,

Φ
2mM

=
11

3
√

3
. (8.2.4)

• For Φ > 0 (motion in the direction of rotation of the collapsing object) as
a → M the radius rmin tends towards the radius of the horizon. Setting
a = M(1 + δ), we find in the limit δ→ 0:

rhor

2M
=

1
2
(1 +

√
2δ),

rmin

2m
=

1
2
[1 + (4δ)1/3]. (8.2.5)

Then

E0

m
=

Φ
2mM

=
1√
3
[1 + (4δ)1/3]. (8.2.6)

We call attention to the fact that rmin/rhor remainsgreater than one through-
out, i.e. the orbit does not go inside the horizon. This is as it should be:
the horizon is a null hypersurface, and no time-like world lines of moving
particles can lie on it. Although no general formula exists in the case of the
Kerr–Newman geometry the energy and the angular velocity of a test parti-
cle in a circular orbit with radius R in the Reissner–Nordström geometry has
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been given by Ruffini and Zerilli [373]

ϕ̇2=
M
R3 −

Q2

R4 −
e
m

Q
R3

[
e
m

Q
2R

+

(
1− 3M

R
+

2Q2

R2 +
e
m

Q2

4R2

)1/2]
, (8.2.7)

E

m
=

(
1− 2M

R
+

Q2

R2

)
/

[
e
m

Q
2R

+

(
1− 3M

R
+

2Q2

R2 +
e
m

Q2

4R2

)1/2]
(8.2.8)

+
q
m

Q
R

,

and the limiting cases are there treated.

Eq. (8.2.2) is not only relevant for understanding the fully relativistic stable
circular orbit but it also defines the “positive root states” and the “negative
root states” for the particle [379]. Such states were first interpreted as limits
of states of a quantum field by Deruelle and Ruffini [380]. Such an interpreta-
tion will be discussed in the next section. Note that in the case eQr−Φa < 0
there can exist negative energy states of positive root solutions and, as a di-
rect consequence, energy can be extracted from a Kerr–Newman black hole
via the Denardo-Ruffini process. Such a process is most efficient when the
reduction of mass is greatest for a given reduction in angular momentum. To
meet this requirement the energy E1 must be as negative as possible. This
happens when r = r+, that is the particle has a turning point at the horizon
of the black hole. When r = r+, ∆ = 0 and the separation between negative
and positive root states vanishes. This implies that capture processes from
such an orbit are reversible since they can be inverted bringing the black hole
to its original state. Correspondingly the energy of the incoming particle is

E1 =
aΦ + eQr+

a2 + r2
+

. (8.2.9)

If we apply the conservation of energy, angular momentum and charge
to the capture of the particle P1 by the black hole, we find that M, L and Q
change as for the quantities

dM = E1, dL = Φ, dQ = e. (8.2.10)
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Thus Eq. (8.2.9) reads

dM =
adL + r+QdQ

a2 + r2
+

. (8.2.11)

Integration of Eq. (8.2.11) gives

M2c4 =

(
Mirc2 +

c2Q2

4GMir

)2

+
L2c8

4G2M2
ir

, (8.2.12)

provided the condition is satisfied(
c2

16G2M4
ir

)(
Q4 + 4L2c4

)
≤ 1, (8.2.13)

where Mir is an integration constant and we restored the physical constants
c and G. Eq. (8.2.12) is the Christodoulou–Ruffini mass formula [379] and
it expresses the contributions to the total energy of the black hole. Extreme
black holes satisfy equality (8.2.13). The irreducible mass Mir satisfies the
equation [379]

Sa =
16πG2 M2

ir
c4 (8.2.14)

where Sa is the surface area of the horizon of the black hole, and cannot be
decreased by classical processes. Any transformation of the black hole which
leaves fixed the irreducible mass (for instance, as we have seen, the capture
of a particle having a turning point at the horizon of the black hole) is called
reversible [379]. Any transformation of the black hole which increases its
irreducible mass, for instance, the capture of a particle with nonzero radial
momentum at the horizon, is called irreversible. In irreversible transforma-
tions there is always some kinetic energy that is irretrievably lost behind the
horizon. Note that energy can be extracted approaching arbitrarily close to
reversible transformations which are the most efficient ones. Namely, from
Eq. (8.2.12) it follows that up to 29% of the mass-energy of an extreme Kerr
black hole (M2 = a2) can be stored in its rotational energy term Lc4

2GMir
and can

in principle be extracted. Gedankenexperiments have been conceived to ex-
tract such energy [374,381–384]. The first specific example of a process of en-
ergy extraction from a black hole can be found in R. Ruffini and J. A. Wheeler,
as quoted in [385], see also [386]. Other processes of rotational energy extrac-
tion of astrophysical interest based on magnetohydrodynamic mechanism
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occurring around a rotating Black Hole have also been advanced [381–384]
though their reversibility as defined in Ref. [379], and consequently their ef-
ficiency of energy extraction, has not been assessed. From the same mass for-
mula (8.2.12) follows that up to 50% of the mass energy of an extreme black
hole with (Q = M) can be stored in the electromagnetic term c2Q2

4GMir
and can

be in principle extracted. These extractable energies either rotational or elec-
tromagnetic will be indicated in the following as blackholic energy and they
can be the source of some of the most energetic phenomena in the Universe
like jets from active galactic nuclei and GRBs.

8.3 Positive and negative root states as limits of
quantum field states

In 1974 Deruelle and Ruffini [380] pointed out that negative root solutions
of Eq. (8.2.2) can be interpreted in the framework of a fully relativistic quan-
tum field theory as classical limits of antimatter solutions. In this section we
briefly review their analysis. The equation of motion of a test particle in a
Kerr–Newman geometry can be derived by the Hamilton–Jacobi Eq. (8.1.10).
The first quantization of the corresponding theory can be obtained by sub-
stituting the Hamilton–Jacobi equation with the generalized Klein–Gordon
equation

gαβ (∇α + ieAα)
(
∇β + ieAβ

)
Φ + m2Φ = 0 (8.3.1)

for the wave function Φ. For simplicity we restrict to the Kerr case: Q = 0,
when Eq. (8.3.1) reduces to

gαβ∇α∇βΦ + m2Φ = 0. (8.3.2)

In order to solve Eq. (8.3.2) we can separate the variables as follows:

Φ = e−imEteikϕSkl(θ)R(r) (8.3.3)

where Skl(θ) are spheroidal harmonics. We thus obtain the radial equation

d2u
dr∗2 =

{
−E2m2

(
1 + a2

r2 +
2Ma2

r3

)
+ 4MakEm

r3 + m2(1− 2M
r + a2

r2 )−mk 2M
r3

− 1
r2 − a2

r4 − k2a2

r4 + 2
r6

[
Mr3 − r2(a2 + 2M2) + 3Ma2r− a4

]}
u,
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where u = R(r)r and dr/dr∗ = ∆/r2. It is natural to look for “resonances”
states of the Klein–Gordon equation corresponding to classical bound states
(circular or elliptic orbits). Then, impose as boundary conditions (a) an ex-
ponential decay of the wave function for r → ∞ and (b) a purely ingoing
wave at the horizon r → r+. The solutions of the corresponding problem can
be found numerically [380]. The main conclusions of the integration can be
summarized as follows:

1. The continuum spectrum of the classical stable bound states is replaced
by a discrete spectrum of resonances with tunneling through the poten-
tial barrier giving the finite probability of the particle to be captured by
the horizon.

2. In the classical limit (GM/c2)/(h̄/mec) → ∞ the separation of the en-
ergy levels of the resonances tends to zero. The leakage toward the
horizon also decreases and the width of the resonance tends to zero.

3. The negative root solutions of Eq. (8.2.2) correspond to the classical limit
(GM/c2)/(h̄/mec) → ∞ of the negative energy solutions of the Klein–
Gordon Eq. (8.3.2) and consequently they can be thought of as antimat-
ter solutions with an appropriate interchange of the sign of charge, the
direction of time and the angular momentum.

4. We can have positive root states of negative energy in the ergosphere,
see e.g. [375]. In particular we can have crossing of positive and nega-
tive energy root states. This corresponds, at the second quantized the-
ory level to the possibility of particle pair creation à là Klein, Sauter,
Heisenberg, Euler and Schwinger [7, 17, 18, 20, 25–27].

Similar considerations can be made in the Kerr–Newman case, Q ̸= 0,
when the generalized Klein Gordon Eq. (8.3.1) has to be integrated. The
resonance states can be obtained imposing the same boundary conditions
as above. Once again we can have level crossing inside the effective ergo-
sphere [376, 377] and therefore possible pair creation.
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8.4 Vacuum polarization in Kerr–Newman
geometries

We discussed in the previous Sections the phenomenon of electron–positron
pair production in a strong electric field in a flat space-time. Nere we study
the same phenomenon occurring around a black hole endowed with mass M,
charge Q and the angular momentum a.

The space-time of a Kerr–Newman geometry is described by a metric which
in Boyer–Lindquist coordinates (t, r, θ, ϕ) acquires the form

ds2 =
Σ
∆

dr2 + Σdθ2 − ∆
Σ
(dt− a sin2 θdϕ)2 +

sin2 θ

Σ

[
(r2 + a2)dϕ− adt

]2
,

(8.4.1)
where ∆ and Σ are defined following (8.1.1). We recall that the Reissner–
Nordstrøm geometry is the particular case a = 0 of a nonrotating black hole.

The electromagnetic vector potential around the Kerr–Newman black hole
is given in Boyer–Lindquist coordinates by

A = −QΣ−1r(dt− a sin2 θdϕ). (8.4.2)

The electromagnetic field tensor is then

F = dA = 2QΣ−2[(r2 − a2 cos2 θ)dr ∧ dt− 2a2r cos θ sin θdθ ∧ dt

− a sin2 θ(r2 − a2 cos2 θ)dr ∧ dϕ + 2ar(r2 + a2) cos θ sin θdθ ∧ dϕ].
(8.4.3)

After some preliminary work in Refs. [387–389], the occurrence of pair pro-
duction in a Kerr–Newman geometry was addressed by Deruelle [390]. In
a Reissner–Nordström geometry, QED pair production has been studied by
Zaumen [391] and Gibbons [392]. The corresponding problem of QED pair
production in the Kerr–Newman geometry was addressed by Damour and
Ruffini [68], who obtained the rate of pair production with particular empha-
sis on:

• the limitations imposed by pair production on the strength of the elec-
tromagnetic field of a black hole [373];

• the efficiency of extracting rotational and Coulomb energy (the “black-
holic” energy) from a black hole by pair production;
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• the possibility of having observational consequences of astrophysical
interest.

In the following, we recall the main results of the work by Damour and
Ruffini.

In order to study the pair production in the Kerr–Newman geometry, they
introduced at each event (t, r, θ, ϕ) a local Lorentz frame associated with a
stationary observer O at the event (t, r, θ, ϕ). A convenient frame is defined
by the following orthogonal tetrad [67]

ω(0) = (∆/Σ)1/2(dt− a sin2 θdϕ), (8.4.4)

ω(1) = (Σ/∆)1/2dr, (8.4.5)

ω(2) = Σ1/2dθ, (8.4.6)

ω(3) = sin θΣ−1/2((r2 + a2)dϕ− adt). (8.4.7)

In this Lorentz frame, the electric potential A0, the electric field E and the
magnetic field B are given by the following formulas (c.e.g. Ref. [393]),

A0 = ω
(0)
a Aa,

Eα = ω
(0)
β Fαβ,

Bβ =
1
2

ω
(0)
γ ϵαγδβFγδ.

We then obtain
A0 = −Qr(Σ∆)−1/2, (8.4.8)

while the electromagnetic fields E and B are parallel to the direction of ω(1)

and have strengths given by

E(1) = QΣ−2(r2 − a2 cos2 θ), (8.4.9)

B(1) = QΣ−22ar cos θ, (8.4.10)

respectively. The maximal strength Emax of the electric field is obtained in the
case a = 0 at the horizon of the black hole: r = r+. We have

Emax = Q/r2
+. (8.4.11)
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In the original paper a limit on the black hole mass Mmax ≃ 7.2 · 106M⊙
was established by requiring that the pair production process would last less
than the age of the Universe. For masses much smaller than this absolute
maximum mass the pair production process can drastically modify the elec-
tromagnetic structure of black hole.

Both the gravitational and the electromagnetic background fields of the
Kerr–Newman black hole are stationary when considering the quantum field
of the electron. Since meM ≃ 1014 ≫ 1 the gravitational field of the back-
ground black hole is practically constant over the Compton wavelength of
the electron characterizing the quantum field. As far as purely QED phe-
nomena such as pair production are concerned, it is possible to consider the
electric and magnetic fields defined by Eqs. (8.4.9,8.4.10) as constants in the
neighborhood of a few wavelengths around any events (r, θ, ϕ, t). Thus, the
analysis and discussion on the Sauter-Euler-Heisenberg-Schwinger process
over a flat space-time can be locally applied to the case of the curved Kerr–
Newman geometry, based on the equivalence principle.

The rate of pair production around a Kerr–Newman black hole can be ob-
tained from the Schwinger formula (5.7.39) for parallel electromagnetic fields
ε = E(1) and β = B(1) as:

Γ̃
V

=
αE(1)B(1)

4π2

∞

∑
n=1

1
n

coth

(
nπB(1)

E(1)

)
exp

(
−nπEc

E(1)

)
. (8.4.12)

The total number of pairs produced in a region D of the space-time is

N =
∫

D
d4x
√
−g

Γ̃
V

, (8.4.13)

where
√−g = Σ sin θ. In Ref. [68], it was assumed that for each created pair

the particle (or antiparticle) with the same sign of charge as the black hole was
expelled to infinity with charge e, energy ω and angular momentum lϕ while
the antiparticle was absorbed by the black hole. This implies the decrease
of charge, mass and angular momentum of the black hole and a correspond-
ing extraction of all three quantities. These considerations, however, were
profoundly modified later by the introduction of the concept of dyadosphere
which is presented in the next section. The rates of change of the charge, mass
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and angular momentum were estimated by

Q̇ = −Re,

Ṁ = −R⟨ω⟩, (8.4.14)

L̇ = −R⟨lϕ⟩,

where R = Ṅ is the rate of pair production and ⟨ω⟩ and ⟨lϕ⟩ represent some
suitable mean values for the energy and angular momentum carried by the
pairs.

Supposing the maximal variation of black hole charge to be ∆Q = −Q, one
can estimate the maximal number of pairs created and the maximal mass-
energy variation. It was concluded in Ref. [68] that the maximal mass-energy
variation in the pair production process is larger than 1041erg and up to
1058erg, depending on the black hole mass, see Table 1 in [68]. They con-
cluded at the time “this work naturally leads to a most simple model for the
explanation of the recently discovered γ-ray bursts”.

8.5 The “Dyadosphere” in Reissner–Nordström
geometry

After the discovery in 1997 of the afterglow of GRBs [394] and the determi-
nation of the cosmological distance of their sources, at once of the order of
103 theories explaining them were wiped out on energetic grounds. On the
contrary, it was noticed [395,396] the coincidence between their observed en-
ergetics and the one theoretically predicted by Damour and Ruffini [68] of
1054 ergs per burst for M = M⊙. Ruffini and collaborators therefore, indi-
rectly motivated by GRBs, returned to these theoretical results with renewed
interest developing some additional basic theoretical concepts [395, 397–402]
such as the dyadosphere and, more recently, the dyadotorus. In this Section
we restore constants G, c and h̄ for clarity.

As a first simplifying assumption the case of absence of rotation was con-
sidered. The space-time is then described by the Reissner–Nordström geom-
etry, see (8.4.1) whose spherically symmetric metric is given by

d2s = gtt(r)d2t + grr(r)d2r + r2d2θ + r2 sin2 θd2ϕ , (8.5.1)
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where gtt(r) = −
[
1− 2GM

c2r + Q2G
c4r2

]
≡ −α2(r) and grr(r) = α−2(r).

The first result obtained is that the pair creation process does not occur at
the horizon of the black hole: it extends over the entire region outside the
horizon in which the electric field exceeds the value E⋆ of the order of mag-
nitude of the critical value given by Eq. (2.0.1). We recall the pair creation
process is a quantum tunneling between the positive and negative energy
states, which needs a level crossing, can occur for E⋆ < Ec as well, if the field
extent to spatial dimension D∗ such that D∗E∗ = 2mec2/e. The probability of
such pair creation process will be exponentially damped by exp(−πD∗/λc).
Clearly, very intense process of pair creation will occur for E∗ > Ec. In order
to give a scale of the phenomenon, and for definiteness, in Ref. [398] it was
considered the case of E⋆ ≡ Ec, although later in order to take into due ac-
count the tunneling effects we have considered dyadosphere for electric field
in the range

E⋆ = κEc, (8.5.2)

with κ in the range 0.1-10. Since the electric field in the Reissner–Nordström
geometry has only a radial component given by [403]

E (r) =
Q
r2 , (8.5.3)

this region extends from the horizon radius, for κ = 1

r+ = 1.47 · 105µ(1 +
√

1− ξ2) cm (8.5.4)

out to an outer radius [395]

r⋆ =
(

h̄
mec

)1/2(GM
c2

)1/2 (mp

me

)1/2( e
qp

)1/2( Q√
GM

)1/2

=

= 1.12 · 108√µξ cm, (8.5.5)

where we have introduced the dimensionless mass and charge parameters
µ = M

M⊙ , ξ = Q
(M
√

G)
≤ 1, see Fig. 8.2.

The second result gave the local number density of electron and positron
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pairs created in this region as a function of radius

ne+e−(r) =
Q

4πr2
(

h̄
mec

)
e

[
1−

( r
r⋆
)2
]

, (8.5.6)

and consequently the total number of electron and positron pairs in this re-
gion is

N◦e+e− ≃
Q−Qc

e

[
1 +

(r⋆ − r+)
h̄

mec

]
, (8.5.7)

where Qc = Ecr2
+.

The total number of pairs is larger by an enormous factor r⋆/ (h̄/mec) >
1018 than the value Q/e which a naive estimate of the discharge of the black
hole would have predicted. Due to this enormous amplification factor in the
number of pairs created, the region between the horizon and r⋆ is dominated
by an essentially high density neutral plasma of electron–positron pairs. This
region was defined [395] as the dyadosphere of the black hole from the Greek
duas, duados for pairs. Consequently we have called r⋆ the dyadosphere ra-
dius r⋆ ≡ rds [395,397,398]. The vacuum polarization process occurs as if the
entire dyadosphere is subdivided into a concentric set of shells of capacitors
each of thickness h̄/mec and each producing a number of e+e− pairs on the
order of ∼ Q/e (see Fig. 8.2). The energy density of the electron–positron
pairs is there given by

ϵ(r) =
Q2

8πr4

(
1−

(
r

rds

)4)
, (8.5.8)

(see Figs. 2–3 of Ref. [397]). The total energy of pairs converted from the static
electric energy and deposited within the dyadosphere is then

Edya =
1
2

Q2

r+

(
1− r+

rds

)[
1−

(
r+
rds

)4
]

. (8.5.9)

In the limit r+
rds
→ 0, Eq. (8.5.9) leads to Edya → 1

2
Q2

r+ , which coincides
with the energy extractable from black holes by reversible processes (Mir =

const.), namely EBH −Mir =
1
2

Q2

r+ [379], see Fig. 8.1. Due to the very large pair
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Figure 8.1: The energy extracted by the process of vacuum polarization is
plotted (solid lines) as a function of the mass M in solar mass units for se-
lected values of the charge parameter ξ = 1, 0.1, 0.01 (from top to bottom)
for a Reisner-Nordström black hole, the case ξ = 1 reachable only as a lim-
iting process. For comparison we have also plotted the maximum energy
extractable from a black hole (dotted lines) given by Eq. (8.2.12). Details in
Ref. [397].

density given by Eq. (8.5.6) and to the sizes of the cross-sections for the pro-
cess e+e− ↔ γ + γ, the system has been assumed to thermalize to a plasma
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Figure 8.2: The dyadosphere of a Reissner–Nordström black hole can be rep-
resented as equivalent to a concentric set of capacitor shells, each one of thick-
ness h̄/mec and producing a number of e+e− pairs of the order of ∼ Q/e on
a time scale of 10−21 s, where Q is the black hole charge. The shells extend in
a region of thickness ∆r, from the horizon r+ out to the Dyadosphere outer
radius rds (see text). The system evolves to a thermalized plasma configura-
tion.

configuration for which

ne+ = ne− ∼ nγ ∼ n◦e+e− , (8.5.10)
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where n◦e+e− is the total number density of e+e−-pairs created in the dyado-
sphere [397, 398]. In Fig. 8.3 we show the average energy per pair as a func-
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Figure 8.3: The average energy per pair is shown here as a function of the
black hole mass in solar mass units for ξ = 1 (solid line), ξ = 0.5 (dashed
line) and ξ = 0.1 (dashed and dotted line).

tion of the black hole mass in solar mass units [398]. This assumption has
been in the meantime rigorously proven by Aksenov, Ruffini and Vereshcha-
gin [74], see Section 10.

The third result, again introduced for simplicity, is that for a given Edya it
was assumed either a constant average energy density over the entire dyado-
sphere volume, or a more compact configuration with energy density equal
to its peak value. These are the two possible initial conditions for the evolu-
tion of the dyadosphere (see Fig. 8.4).

The above theoretical results permit a good estimate of the general ener-
getics processes originating in the dyadosphere, assuming an already formed
black hole and offer a theoretical framework to estimate the general relativis-
tic effect and characteristic time scales of the approach to the black hole hori-
zon [405–410].
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Figure 8.4: Left) Selected lines corresponding to fixed values of the Edya are
given as a function of the two parameters µ ξ, only the solutions below the
continuous heavy line are physically relevant. The configurations above the
continuous heavy lines correspond to unphysical solutions with rds < r+.
Right) There are two different approximations for the energy density profile
inside the Dyadosphere. The first one (dashed line) fixes the energy den-
sity equal to its peak value, and computes an “effective” Dyadosphere ra-
dius accordingly. The second one (dotted line) fixes the Dyadosphere radius
to its correct value, and assumes a uniform energy density over the Dyado-
sphere volume. The total energy in the Dyadosphere is of course the same in
both cases. The solid curve represents the real energy density profile. Details
in [404].

8.6 The “dyadotorus”

We turn now to examine how the presence of rotation modifies the geometry
of the surface containing the region where electron–positron pairs are created
as well as the conditions forthe existence of such a surface. Due to the axial
symmetry of the problem, this region was called the “dyadotorus” [411,412].

We shall follow the treatment of [411, 412]. As in Damour [383, 413] we
introduce at each point of the space-time the orthogonal Carter tetrad (8.4.4-
8.4.7).

From Eq. (8.4.9) we define the dyadotorus by the condition |E(1)| = κEc,
where 10−1 ≤ κ ≤ 10, see Fig. 8.5. Solving for r and introducing the
dimensionless quantities ξ = Q/(

√
GM), µ = M/M⊙, α̃ = ac2/(GM),
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Figure 8.5: The projections of the dyadotorus on the X-Z plane corresponding
to different values of the ratio E/Ec = κ are shown (upper panel) for µ = 10
and λ = 1.49× 104. The corresponding plot for the dyadosphere with the
same mass energy and charge to mass ratio is shown in the lower panel for
comparison. Reproduced from [412].
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Ẽ = κ Ec M⊙c4/G3/2 and r̃ = rc2/(GM) we get(
rd
±c2

GM

)2

=
ξ

2µẼ
− α̃2 cos2 θ ±

√
ξ2

4µ2Ẽ2
− 2ξ

µẼ
α̃2 cos2 θ , (8.6.1)

where the ± signs correspond to the two different parts of the surface.
The two parts of the surface join at the particular values θ∗ and π − θ∗ of

the polar angle where

θ∗ = arccos

(
1

2
√

2α̃

√
ξ

µE

)
.

The requirement that cos θ∗ ≤ 1 can be solved for instance for the charge
parameter ξ, giving a range of values of ξ for which the dyadotorus takes one
of the shapes (see fig.8.6)

surface =

{
ellipsoid–like if ξ ≥ ξ∗
thorus–like if ξ < ξ∗

(8.6.2)

where ξ∗ = 8µẼα̃2.
In Fig. 8.6 we show some examples of the dyadotorus geometry for differ-

ent sets of parameters for an extreme Kerr–Newman black hole (a2c8/G2 +
Q2/G = M2), we can see the transition from a toroidal geometry to an ellip-
soidal one depending on the value of the black hole charge.

Fig. 8.7 shows the projections of the surfaces corresponding to different
values of the ratio |E(1)|/Ec ≡ κ for the same choice of parameters as in
Fig. 8.6 (b), as an example. We see that the region enclosed by such surfaces
shrinks for increasing values of κ.

Equating (8.4.9) and (8.5.2) for θ = π/2 and α̃ = 1 we get

µ =
ξ

κ
× 5× 105. (8.6.3)

8.7 Geometry of gravitationally collapsing cores

In the previous Sections we have focused on the theoretically well defined
problem of pair creation in the electric field of an already formed black hole.
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Figure 8.6: The projection of the dyadotorus on the X − Z plane (X = r sin θ,
Z = r cos θ are Cartesian-like coordinates built up simply using the Boyer-
Lindquist radial and angular coordinates) is shown for an extreme Kerr–
Newman black hole with µ = 10 and different values of the charge parame-
ter ξ = [1, 1.3, 1.49, 1.65]× 10−4 (from (a) to (d) respectively). The black circle
represents the black hole horizon. Details in [411, 412].
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Figure 8.7: The projections of the surfaces corresponding to different values
of the ratio |E(1)|/Ec ≡ κ are shown for the same choice of parameters as in
Fig. 8.6 (b), as an example. The gray shaded region is part of the “dyadotorus”
corresponding to the case κ = 1 as plotted in Fig. 8.6 (b). The region delimited
by dashed curves corresponds to κ = 0.8, i.e., to a value of the strength of the
electric field smaller than the critical one, and contains the dyadotorus; the
latter in turn contains the white region corresponding to κ = 1.4, i.e., to a
value of the strength of the electric field greater than the critical one. Details
in [411].

In this section we shall follow the treatment of Cherubini et al. [405] address-
ing some specific issues on the dynamical formation of the black hole, recall-
ing first the Oppenheimer-Snyder solution and then considering its general-
ization to the charged case using the classical work of W. Israel and V. de la
Cruz [70, 71].
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8.7.1 The Tolman-Oppenheimer-Snyder solution

Oppenheimer and Snyder first found a solution of the Einstein equations
describing the gravitational collapse of spherically symmetric star of mass
greater than∼ 0.7M⊙. In this section we briefly review their pioneering work
as presented in Ref. [69].

In a spherically symmetric space-time such coordinates can be found (t, r, θ, ϕ)
that the line element takes the form

ds2 = eνdt2 − eλdr2 − r2dΩ2, (8.7.1)

dΩ2 = dθ2 + sin2 θdϕ2, ν = ν(t, r), λ = λ(t, r). However the gravitational
collapse problem is better solved in a system of coordinates (τ, R, θ, ϕ) which
are comoving with the matter inside the star. In comoving coordinates the
line element takes the form

ds2 = dτ2 − eσdR2 − eωdΩ2,

ω = ω(τ, R), ω = ω(τ, R). Einstein equations read

8πT1
1 = e−ω − e−σ ω′2

4 + ω̈ + 3
4 ω̇2 (8.7.2)

8πT2
2 = 8πT3

3 = − e−σ

4

(
2ω′′ + ω′2 − σ′ω′

)
+ 1

4(2σ̈ + σ̇2 + 2ω̈ + ω̇2 + σ̇ω̇) (8.7.3)

8πT4
4 = e−ω − e−σ

(
ω′′ + 3

4 ω′2 − σ′ω′
2

)
+ ω̇2

4 + σ̇ω̇
2 (8.7.4)

8πeσT1
4 = −8πT4

1 = 1
2 ω′(ω̇− σ̇) + ω̇′. (8.7.5)

Where Tµν is the energy–momentum tensor of the stellar matter, a dot denotes
a derivative with respect to τ and a prime denotes a derivative with respect
to R. Oppenheimer and Snyder were only able to integrate Eqs. (8.7.2)–(8.7.5)
in the case when the pressure p of the stellar matter vanishes and no energy
is radiated outwards. In the following we thus put p = 0. Under this hypoth-
esis

T1
1 = T2

2 = T3
3 = T1

4 = T4
1 = 0, T4

4 = ρ

where ρ is the comoving density of the star. Eq. (8.7.5) was first integrated by

931



8 The extraction of blackholic energy from a black hole by vacuum
polarization processes

Tolman in Ref. [414]. The solution is

eσ = eωω′2/4 f 2(R), (8.7.6)

where f = f (R) is an arbitrary function. In Ref. [69] the case of f (R) = 1 was
studied. In Section 8.7.2 below the hypothesis f (R) = 1 is relaxed in the case
of a shell of dust. Substitution of Eq. (8.7.6) into Eq. (8.7.2) with f (R) = 1
gives

ω̈ + 3
4 ω̇2 = 0, (8.7.7)

which can be integrated to give

eω = (Fτ + G̃)4/3, (8.7.8)

where F = F(R) and G̃ = G̃(R) are arbitrary functions. Substitution of
Eq. (8.7.6) into Eq. (8.7.3) gives Eq. (8.7.7) again. From Eqs. (8.7.4), (8.7.6)
and (8.7.8) the density ρ can be found as

8πρ = 4
3

(
τ + G̃

F

)−1 (
τ + G̃′

F′

)−1
. (8.7.9)

There is still the gauge freedom of choosing R so to have

G̃ = R3/2.

Moreover, arbitrary initial density profile can be chosen, i.e., for the density
at the initial time τ = 0, ρ0 = ρ0(R). Eq. (8.7.9) then becomes

FF′ = 9πR2ρ0(R)

whose solution contains only one arbitrary integration constant. It is thus
seen that the choice of Oppenheimer and Snyder of f (R) = 1 allows one to
assign only a 1-parameter family of functions for the initial values ρ̇0 = ρ̇0(R)
of ρ̇. However in general one should be able to assign the initial values of ρ̇
arbitrarily. This will be done in Section (8.7.2) in the case of a shell of dust.

Choosing, for instance,

ρ0 =

{
const > 0 if R < Rb

0 if R ≥ Rb
,

932



8.7 Geometry of gravitationally collapsing cores

Rb being the comoving radius of the boundary of the star, gives

F =

 −3
2r1/2

+

(
R
Rb

)3/2
if R < Rb

−3
2r1/2

+ if R ≥ Rb

where r+ = 2M is the Schwarzschild radius of the star.
We are finally in the position of performing a coordinate transformation

from the comoving coordinates (τ, R, θ, ϕ) to new coordinates (t, r, θ, ϕ) in
which the line elements looks like (8.7.1). The requirement that the line ele-
ment be the Schwarzschild one outside the star fixes the form of such a coor-
dinate transformation to be

r = (Fτ + G)2/3

t =


2
3r−1/2

+ (R3/2
b − r3/2

+ y3/2)− 2r+y1/2 + r+ log y1/2+1
y1/2−1 if R < Rb

2
3r1/2

+

(R3/2 − r3/2)− 2(rr+)1/2 + r+ log r1/2+r1/2
+

r1/2−r1/2
+

if R ≥ Rb
,

where

y = 1
2

[(
R
Rb

)2
− 1
]
+ Rbr

r+R .

8.7.2 Gravitational collapse of charged and uncharged shells

It is well known that the role of exact solutions has been fundamental in
the development of general relativity. In this section, we present these ex-
act solutions for a charged shell of matter collapsing into a black hole. Such
solutions were found in Ref. [405] and are new with respect to the Tolman–
Oppenheimer–Snyder class. For simplicity we consider the case of zero angu-
lar momentum and spherical symmetry. This problem is relevant on its own
account as an addition to the existing family of interesting exact solutions and
also represents some progress in understanding the role of the formation of
the horizon and of the irreducible mass as will be discussed in Section 8.8.1,
see e.g. [406]. It is also essential in improving the treatment of the vacuum po-
larization processes occurring during the formation of a black hole discussed
in [408, 415–418] and references therein.

W. Israel and V. de La Cruz [70, 71] showed that the problem of a collaps-
ing charged shell can be reduced to a set of ordinary differential equations.
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We reconsider here the following relativistic system: a spherical shell of elec-
trically charged dust which is moving radially in the Reissner–Nordström
background of an already formed nonrotating black hole of mass M1 and
charge Q1, with Q1 ≤ M1. The Einstein–Maxwell equations with a charged
spherical dust as source are

Gµν = 8π
[

T(d)
µν + T(em)

µν

]
, ∇µFνµ = 4π jν, ∇[µFνρ] = 0, (8.7.10)

where

T(d)
µν = εuµuν, T(em)

µν = 1
4π

(
Fµ

ρFρν − 1
4 gµνFρσFρσ

)
, jµ = σuµ. (8.7.11)

Here T(d)
µν , T(em)

µν and jµ are respectively the energy-momentum tensor of the
dust, the energy-momentum tensor of the electromagnetic field Fµν and the
charge 4−current. The mass and charge density in the comoving frame are
given by ε, σ and ua is the 4-velocity of the dust. In spherical–polar coordi-
nates the line element is

ds2 ≡ gµνdxµdxν = −eν(r,t)dt2 + eλ(r,t)dr2 + r2dΩ2, (8.7.12)

where dΩ2 = dθ2 + sin2 θdϕ2.

We describe the shell by using the four-dimensional Dirac distribution δ(4)

normalized as ∫
δ(4)

(
x, x′

)√
−gd4x = 1 (8.7.13)

where g = det
∥∥gµν

∥∥. We then have

ε (x) = M0

∫
δ(4) (x, x0) r2dτdΩ, (8.7.14)

σ (x) = Q0

∫
δ(4) (x, x0) r2dτdΩ. (8.7.15)

M0 and Q0 respectively are the rest mass and the charge of the shell and τ
is the proper time along the world surface S : x0 = x0 (τ, Ω) of the shell. S
divides the space-time into two regions: an internal one M− and an external
one M+. As we will see in the next section for the description of the collapse
we can choose either M− or M+. The two descriptions, clearly equivalent,
will be relevant for the physical interpretation of the solutions.
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Introducing the orthonormal tetrad

ω
(0)
± = f 1/2

± dt, ω
(1)
± = f−1/2

± dr, ω(2) = rdθ, ω(3) = r sin θdϕ;
(8.7.16)

we obtain the tetrad components of the electric field

E = Eω(1) =

{
Q
r2 ω

(1)
+ outside the shell

Q1
r2 ω

(1)
− inside the shell

, (8.7.17)

where Q = Q0 + Q1 is the total charge of the system. From the Gtt Einstein
equation we get

ds2 =

{
− f+dt2

+ + f−1
+ dr2 + r2dΩ2 outside the shell

− f−dt2
− + f−1

− dr2 + r2dΩ2 inside the shell
, (8.7.18)

where f+ = 1− 2M
r + Q2

r2 , f− = 1− 2M1
r +

Q2
1

r2 and t− and t+ are the Schwarzschild-
like time coordinates in M− and M+ respectively. Here M is the total mass-
energy of the system formed by the shell and the black hole, measured by an
observer at rest at infinity.

Indicating by r0 the Schwarzschild-like radial coordinate of the shell and
by t0± its time coordinate, from the Gtr Einstein equation we have

M0
2

[
f+ (r0)

dt0+
dτ + f− (r0)

dt0−
dτ

]
= M−M1 −

Q2
0

2r0
− Q1Q0

r0
. (8.7.19)

The remaining Einstein equations are identically satisfied. From (8.7.19) and
the normalization condition uµuµ = −1 we find(

dr0
dτ

)2
= 1

M2
0

(
M−M1 +

M2
0

2r0
− Q2

0
2r0
− Q1Q0

r0

)2
− f− (r0)

= 1
M2

0

(
M−M1 −

M2
0

2r0
− Q2

0
2r0
− Q1Q0

r0

)2
− f+ (r0) , (8.7.20)

dt0±
dτ = 1

M0 f±(r0)

(
M−M1 ∓

M2
0

2r0
− Q2

0
2r0
− Q1Q0

r0

)
. (8.7.21)

We now define, as usual, r± ≡ M ±
√

M2 −Q2: when Q < M, r± are
real and they correspond to the horizons of the new black hole formed by
the gravitational collapse of the shell. We similarly introduce the horizons
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r1
± = M1 ±

√
M2

1 −Q2
1 of the already formed black hole. From (8.7.19) we

have that the inequality

M−M1 −
Q2

0
2r0
− Q1Q0

r0
> 0 (8.7.22)

holds for r0 > r+ if Q < M and for r0 > r1
+ if Q > M since in these cases the

left-hand side of (8.7.19) is clearly positive. Eqs. (8.7.20) and (8.7.21) (together
with (8.7.18), (8.7.17)) completely describe a 5-parameter (M, Q, M1, Q1, M0)
family of solutions of the Einstein-Maxwell equations.

For astrophysical applications [408] the trajectory of the shell r0 = r0 (t0+)
is obtained as a function of the time coordinate t0+ relative to the space-time
region M+. In the following we drop the + index from t0+. From (8.7.20) and
(8.7.21) we have

dr0
dt0

= dr0
dτ

dτ
dt0

= ± F
Ω

√
Ω2 − F, (8.7.23)

where

F ≡ f+ (r0) = 1− 2M
r0

+ Q2

r2
0

, Ω ≡ Γ− M2
0+Q2−Q2

1
2M0r0

, Γ ≡ M−M1
M0

. (8.7.24)

Since we are interested in an imploding shell, only the minus sign case in
(8.7.23) will be studied. We can give the following physical interpretation of
Γ. If M−M1 ≥ M0, Γ coincides with the Lorentz γ factor of the imploding
shell at infinity; from (8.7.23) it satisfies

Γ = 1√
1−
(

dr0
dt0

)2

r0=∞

≥ 1. (8.7.25)

When M−M1 < M0 then there is a turning point r∗0 , defined by dr0
dt0

∣∣∣
r0=r∗0

= 0.

In this case Γ coincides with the “effective potential” at r∗0 :

Γ =
√

f−
(
r∗0
)
+ M−1

0

(
−M2

0
2r∗0

+
Q2

0
2r∗0

+ Q1Q0
r∗0

)
≤ 1. (8.7.26)

The solution of the differential equation (8.7.23) is given by:∫
dt0 = −

∫
Ω

F
√

Ω2−F
dr0. (8.7.27)
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The functional form of the integral (8.7.27) crucially depends on the degree of
the polynomial P (r0) = r2

0
(
Ω2 − F

)
, which is generically two, but in special

cases has lower values. We therefore distinguish the following cases:

1. M = M0 + M1; Q1 = M1; Q = M: P (r0) is equal to 0, we simply have

r0(t0) = const. (8.7.28)

2. M = M0 + M1; M2 − Q2 = M2
1 − Q2

1; Q ̸= M: P (r0) is a constant, we
have

t0 = const + 1
2
√

M2−Q2

[
(r0 + 2) r0 + r2

+ log
(

r0−r+
M

)
+ r2
− log

(
r0−r−

M

)]
.

(8.7.29)

3. M = M0 + M1; M2 − Q2 ̸= M2
1 − Q2

1: P (r0) is a first order polynomial
and

t0 = const + 2r0

√
Ω2 − F

[
M0r0

3(M2−Q2−M2
1+Q2

1)

+
(M2

0+Q2−Q2
1)

2−9MM0(M2
0+Q2−Q2

1)+12M2 M2
0+2Q2 M2

0

3(M2−Q2−M2
1+Q2

1)
2

]
− 1√

M2−Q2

[
r2
+arctanh

(
r0
r+

√
Ω2−F
Ω+

)
− r2
−arctanh

(
r0
r−

√
Ω2−F
Ω−

)]
,

(8.7.30)

where Ω± ≡ Ω (r±).
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4. M ̸= M0 + M1: P (r0) is a second order polynomial and

t0 = const− 1
2
√

M2−Q2

{
2Γ
√

M2−Q2

Γ2−1 r0

√
Ω2 − F

+ r2
+ log

[
r0
√

Ω2−F
r0−r+ +

r2
0(Ω2−F)+r2

+Ω2
+−(Γ2−1)(r0−r+)2

2(r0−r+)r0
√

Ω2−F

]
− r2
− log

[
r0
√

Ω2−F
r0−r− +

r2
0(Ω2−F)+r2

−Ω2
−−(Γ2−1)(r0−r−)2

2(r0−r−)r0
√

Ω2−F

]
− [2MM0(2Γ3−3Γ)+M2

0+Q2−Q2
1]
√

M2−Q2

M0(Γ2−1)3/2 log
[

r0
M

√
Ω2 − F

+
2M0(Γ2−1)r0−(M2

0+Q2−Q2
1)Γ+2M0 M

2M0 M
√

Γ2−1

]}
. (8.7.31)

In the case of a shell falling in a flat background (M1 = Q1 = 0) it is of
particular interest to study the turning points r∗0 of the shell trajectory. In this
case equation (8.7.20) reduces to(

dr0
dτ

)2
= 1

M2
0

(
M +

M2
0

2r0
− Q2

2r0

)2
− 1. (8.7.32)

Case (2) has no counterpart in this new regime and Eq. (8.7.22) constrains the
possible solutions to only the following cases:

1. M = M0; Q = M0. r0 = r0 (0) constantly.

2. M = M0; Q < M0. There are no turning points, the shell starts at
rest at infinity and collapses until a Reissner–Nordström black hole is
formed with horizons at r0 = r± ≡ M±

√
M2 −Q2 and the singularity

in r0 = 0.

3. M ̸= M0. There is one turning point r∗0 .

a) M < M0, then necessarily is Q < M0. Positivity of the right-hand

side of (8.7.32) requires r0 ≤ r∗0 , where r∗0 = 1
2

Q2−M2
0

M−M0
is the unique

turning point. Then the shell starts from r∗0 and collapses until the
singularity at r0 = 0 is reached.

b) M > M0. The shell has finite radial velocity at infinity.
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8.8 The maximum energy extractable from a black hole

i. Q ≤ M0. The dynamics are qualitatively analogous to case
(2).

ii. Q > M0. Positivity of the right-hand side of (8.7.32) and

(8.7.22) requires that r0 ≥ r∗0 , where r∗0 = 1
2

Q2−M2
0

M−M0
. The shell

starts from infinity and bounces at r0 = r∗0 , reversing its mo-
tion.

In this regime the analytic forms of the solutions are given by Eqs. (8.7.30)
and (8.7.31), simply setting M1 = Q1 = 0.

Of course, it is of particular interest for the issue of vacuum polarization
the time varying electric field Er0 = Q

r2
0

on the external surface of the shell.

In order to study the variability of Er0 with time it is useful to consider in
the tridimensional space of parameters (r0, t0, Er0) the parametric curve C :(

r0 = λ, t0 = t0(λ), Er0 =
Q
λ2

)
. In astrophysical applications [408] we are

specially interested in the family of solutions such that dr0
dt0

is 0 when r0 = ∞
which implies that Γ = 1. In Fig. 8.8 we plot the collapse curves in the plane
(t0, r0) for different values of the parameter ξ ≡ Q

M , 0 < ξ < 1. The initial
data are chosen so that the integration constant in Eq. (8.7.30) is equal to 0. In
all the cases we can follow the details of the approach to the horizon which is
reached in an infinite Schwarzschild time coordinate.

In Fig. 8.9 we plot the parametric curves C in the space (r0, t0, Er0) for dif-
ferent values of ξ. Again we can follow the exact asymptotic behavior of the
curves C, Er0 reaching the asymptotic value Q

r2
+

. The detailed knowledge of

this asymptotic behavior is of relevance for the observational properties of
the black hole formation, see e.g. [406], [408].

8.8 The maximum energy extractable from a black
hole

The theoretical analysis of the collapsing shell considered in the previous sec-
tion allows to reach a deeper understanding of the mass formula of black
holes at least in the case of a Reissner–Nordström black hole. This allows as
well to give an expression of the irreducible mass of the black hole only in
terms of its kinetic energy of the initial rest mass undergoing gravitational
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Figure 8.8: Collapse curves in the plane (T, R) for M = 20M⊙ and for dif-
ferent values of the parameter ξ. The asymptotic behavior is the clear man-
ifestation of general relativistic effects as the horizon of the black hole is ap-
proached. Details in [405].
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clear manifestation of general relativistic effects as the horizon of the black
hole is approached. Details in [405].
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collapse and its gravitational energy and kinetic energy at the crossing of the
black hole horizon. It also allows to create a scenario for acceleration of the
ultrahigh energy cosmic rays with energy typically 1021 eV from black holes,
as opposed to the process of vacuum polarization producing pairs with en-
ergies in the MeV region. We shall follow in this Section the treatment by
Ruffini and Vitagliano [407].

8.8.1 The formula of the irreducible mass of a black hole

The main objective of this section is to clarify the interpretation of the mass-
energy formula [379] for a black hole. For simplicity we study the case of a
nonrotating black hole using the results presented in the previous section. As
we saw there, the collapse of a nonrotating charged shell can be described by
exact analytic solutions of the Einstein–Maxwell equations. Consider to two
complementary regions in which the world surface of the shell divides the
space-time: M− and M+. They are static space-times; we denote their time-
like Killing vectors by ξ

µ
− and ξ

µ
+ respectively. M+ is foliated by the family{

Σ+
t : t+ = t

}
of space-like hypersurfaces of constant t+.

The splitting of the space-time into the regions M− and M+ allows two
physically equivalent descriptions of the collapse and the use of one or the
other depends on the question one is studying. The use of M− proves helpful
for the identification of the physical constituents of the irreducible mass while
M+ is needed to describe the energy extraction process from black hole. The
equation of motion for the shell, Eq. 8.7.20, reduces in this case to(

M0
dr0
dτ

)2
=
(

M +
M2

0
2r0
− Q2

2r0

)2
−M2

0 (8.8.1)

in M− and (
M0

dr0
dτ

)2
=
(

M− M2
0

2r0
− Q2

2r0

)2
−M2

0 f+ (8.8.2)

in M+. The constraint (8.7.22) becomes

M− Q2

2r0
> 0. (8.8.3)

Since M− is a flat space-time we can interpret −M2
0

2r0
in (8.8.1) as the gravita-

tional binding energy of the system. Q2

2r0
is its electromagnetic energy. Then
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8.8 The maximum energy extractable from a black hole

Eqs. (8.8.1), (8.8.2) differ by the gravitational and electromagnetic self-energy
terms from the corresponding equations of motion of a test particle.

Introducing the total radial momentum Pr ≡ M0ur = M0
dr0
dτ of the shell,

we can express the kinetic energy of the shell as measured by static observers

in M− as T ≡ −M0uµξ
µ
− −M0 =

√
(Pr)2 + M2

0 −M0. Then from Eq. (8.8.1)
we have

M = −M2
0

2r0
+ Q2

2r0
+
√
(Pr)2 + M2

0 = M0 + T − M2
0

2r0
+ Q2

2r0
. (8.8.4)

where we choose the positive root solution due to the constraint (8.8.3). Eq. (8.8.4)
is the mass formula of the shell, which depends on the time-dependent radial
coordinate r0 and kinetic energy T. If M ≥ Q, a black hole is formed and we
have

M = M0 + T+ −
M2

0
2r+ + Q2

2r+ , (8.8.5)

where T+ ≡ T (r+) and r+ = M +
√

M2 −Q2 is the radius of the external
horizon of that

M = Mir +
Q2

2r+ , (8.8.6)

so it follows that
Mir = M0 −

M2
0

2r+ + T+, (8.8.7)

namely that Mir is the sum of only three contributions: the rest mass M0, the
gravitational potential energy and the kinetic energy of the rest mass evalu-
ated at the horizon. Mir is independent of the electromagnetic energy, a fact
noticed by Bekenstein [419]. We have taken one further step here by iden-
tifying the independent physical contributions to Mir. This has important
consequences for the energetics of black hole formation (see [406]).

Next we consider the physical interpretation of the electromagnetic term
Q2

2r0
, which can be obtained by evaluating the Killing integral

∫
Σ+

t

ξ
µ
+T(em)

µν dΣν =
∫ ∞

r0

r2dr
∫ 1

0
d cos θ

∫ 2π

0
dϕ T(em)

0
0 = Q2

2r0
, (8.8.8)

where Σ+
t is the space-like hypersurface in M+ described by the equation

t+ = t = const, with dΣν as its surface element vector. The quantity in
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Eq. (8.8.8) differs from the purely electromagnetic energy∫
Σ+

t

nµ
+T(em)

µν dΣν = 1
2

∫ ∞

r0

dr
√

grr
Q2

r2 , (8.8.9)

where nµ
+ = f−1/2

+ ξ
µ
+ is the unit normal to the integration hypersurface and

grr = f+. This is similar to the analogous situation for the total energy
of a static spherical star of energy density ϵ within a radius r0, m (r0) =
4π
∫ r0

0 dr r2ϵ, which differs from the pure matter energy

mp (r0) = 4π
∫ r0

0
dr
√

grrr2ϵ

by the gravitational energy (see [393]). Therefore the term Q2

2r0
in the mass

formula (8.8.4) is the total energy of the electromagnetic field and includes
its own gravitational binding energy. This energy is stored throughout the
region M+, extending from r0 to infinity.

8.8.2 Extracting electromagnetic energy from a subcritical
and overcritical black hole

We now turn to the problem of extracting the electromagnetic energy from
a black hole (see [379]). We can distinguish between two conceptually phys-
ically different processes, depending on whether the electric field strength
E = Q

r2 is smaller or greater than the critical value Ec. The maximum value
E+ = Q

r2
+

of the electric field around a black hole is reached at the horizon. In

what follows we restore G, h̄ and c.
For E+ < Ec the leading energy extraction mechanism consists of a se-

quence of discrete elementary decay processes of a particle into two oppo-
sitely charged particles. The condition E+ < Ec implies

ξ ≡ Q√
GM

≲

 GM/c2

λC

(
e√

Gme

)−1
∼ 10−6 M

M⊙ if M
M⊙ ≤ 106

1 if M
M⊙ > 106

, (8.8.10)

where λC is the Compton wavelength of the electron. Denardo and Ruffini
[376] and Denardo, Hively and Ruffini [377] have defined as the effective ergo-
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sphere the region around a black hole where the energy extraction processes
occur. This region extends from the horizon r+ up to a radius

rEerg = GM
c2

[
1 +

√
1− ξ2

(
1− e2

Gm2
e

)]
≃ e

me

Q
c2 . (8.8.11)

The energy extraction occurs in a finite number NPD of such discrete elemen-
tary processes, each one corresponding to a decrease of the black hole charge.
We have

NPD ≃ Q
e . (8.8.12)

Since the total extracted energy is (see Eq. (8.8.6)) Etot = Q2

2r+ , we obtain for

the mean energy per accelerated particle ⟨E⟩PD = Etot

NPD

⟨E⟩PD = Qe
2r+ = 1

2
ξ

1+
√

1−ξ2
e√

Gme
mec2 ≃ 1

2 ξ e√
Gme

mec2, (8.8.13)

which gives

⟨E⟩PD ≲

{
M

M⊙1021eV if M
M⊙ ≤ 106

1027eV if M
M⊙ > 106 . (8.8.14)

One of the crucial aspects of the energy extraction process from a black
hole is its back reaction on the irreducible mass expressed in [379]. Although
the energy extraction processes can occur in the entire effective ergosphere
defined by Eq. (8.8.11), only the limiting processes occurring on the horizon
with zero kinetic energy can reach the maximum efficiency while approach-
ing the condition of total reversibility (see Fig. 2 in [379] for details). The far-
ther from the horizon that a decay occurs, the more it increases the irreducible
mass and loses efficiency. Only in the complete reversibility limit [379] can
the energy extraction process from an extreme black hole reach the upper
value of 50% of the total black hole energy.

For E+ ≥ Ec the leading extraction process is the collective process based on
the generation of the optically thick electron–positron plasma by the vacuum
polarization. The condition E+ ≥ Ec implies

GM/c2

λC

(
e√

Gme

)−1
≃ 2 · 10−6 M

M⊙ ≤ ξ ≤ 1 . (8.8.15)

This vacuum polarization process can occur only for a black hole with mass
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smaller than 5 · 105M⊙. The electron–positron pairs are now produced in the
dyadosphere of the black hole. We have

rdya ≪ rEerg. (8.8.16)

The number of particles created [398] is then

Ndya = 1
3

(
rdya
λC

) (
1− r+

rdya

) [
4 + r+

rdya
+
(

r+
rdya

)2
]

Q
e ≃

4
3

(
rdya
λC

)
Q
e . (8.8.17)

The total energy stored in the dyadosphere is [398]

Etot
dya =

(
1− r+

rdya

) [
1−

(
r+

rdya

)4
]

Q2

2r+ ≃
Q2

2r+ . (8.8.18)

The mean energy per particle produced in the dyadosphere ⟨E⟩dya =
Etot

dya
Ndya

is
then

⟨E⟩dya = 3
2

1−
(

r+
rdya

)4

4+
r+

rdya
+

(
r+

rdya

)2

(
λC

rdya

)
Qe
r+ ≃

3
8

(
λC

rdya

)
Qe
r+ , (8.8.19)

which can be also rewritten as

⟨E⟩dya ≃ 3
8

(
rdya
r+

)
mec2 ∼

√
ξ

M/M⊙
105keV . (8.8.20)

We stress again that the vacuum polarization around a black hole has been
observed to reach theoretically the maximum efficiency limit of 50% of the
total mass-energy of an extreme black hole (see e.g. [398]).

Let us now compare and contrast these two processes. We have

rEerg ≃
(

rdya
λC

)
rdya, Ndya ≃

(
rdya
λC

)
NPD, ⟨E⟩dya ≃

(
λC

rdya

)
⟨E⟩PD . (8.8.21)

Moreover we see (Eqs. (8.8.14), (8.8.20)) that ⟨E⟩PD is in the range of ener-
gies of UHECR (see [420] and references therein), while for ξ ∼ 0.1 and
M ∼ 10M⊙, ⟨E⟩dya is in the γ-ray range. In other words, the discrete particle
decay process involves a small number of particles with ultrahigh energies
(∼ 1021eV), while vacuum polarization involves a much larger number of
particles with lower mean energies (∼ 10MeV).
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8.9 A theorem on a possible disagreement
between black holes and thermodynamics

This analysis of vacuum polarization process around black holes is so general
that it allows as well to look back to traditional results on black hole physics
with an alternative point of view. We quote in particular a result which allows
to overcome a claimed inconsistency between general relativity and thermo-
dynamics in the field of black holes.

It is well known that if a spherically symmetric mass distribution without
any electromagnetic structure undergoes free gravitational collapse, its total
mass-energy M is conserved according to the Birkhoff theorem: the increase
in the kinetic energy of implosion is balanced by the increase in the gravita-
tional energy of the system. If one considers the possibility that part of the
kinetic energy of implosion is extracted then the situation is very different:
configurations of smaller mass-energy and greater density can be attained
without violating Birkhoff theorem in view of the radiation process.

From a theoretical physics point of view it is still an open question how
far such a sequence can go: using causality nonviolating interactions, can
one find a sequence of braking and energy extraction processes by which the
density and the gravitational binding energy can increase indefinitely and
the mass-energy of the collapsed object be reduced at will? This question can
also be formulated in the mass formula language [379] (see also Ref. [406]):
given a collapsing core of nucleons with a given rest mass-energy M0, what
is the minimum irreducible mass of the black hole which is formed?

Following the previous two sections, consider a spherical shell of rest mass
M0 collapsing in a flat space-time. In the neutral case the irreducible mass of
the final black hole satisfies Eq. 8.8.7. The minimum irreducible mass M(min)

irr
is obtained when the kinetic energy at the horizon T+ is 0, that is when the
entire kinetic energy T+ has been extracted. We then obtain, form Eq. 8.8.7,
the simple result

M(min)
irr = M0

2 . (8.9.1)

We conclude that in the gravitational collapse of a spherical shell of rest mass
M0 at rest at infinity (initial energy Mi = M0), an energy up to 50% of M0c2

can in principle be extracted, by braking processes of the kinetic energy. In
this limiting case the shell crosses the horizon with T+ = 0. The limit M0

2
in the extractable kinetic energy can further increase if the collapsing shell
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Figure 8.10: Collapse curves for neutral shells with rest mass M0 starting
at rest at selected radii R∗ computed by using the exact solutions given in
Ref. [405]. A different value of Mirr (and therefore of r+) corresponds to each
curve. The time parameter is the Schwarzschild time coordinate t and the
asymptotic behaviour at the respective horizons is evident. The limiting con-
figuration Mirr =

M0
2 (solid line) corresponds to the case in which the shell is

trapped, at the very beginning of its motion, by the formation of the horizon.

is endowed with kinetic energy at infinity, since all that kinetic energy is in
principle extractable.

We have represented in Fig. 8.10 the world lines of spherical shells of the
same rest mass M0, starting their gravitational collapse at rest at selected radii
r∗0 . These initial conditions can be implemented by performing suitable brak-
ing of the collapsing shell and concurrent kinetic energy extraction processes
at progressively smaller radii (see also Fig. 8.11). The reason for the exis-
tence of the minimum (8.9.1) in the black hole mass is the “self-closure” oc-
curring by the formation of a horizon in the initial configuration (thick line in
Fig. 8.10).

Is the limit Mirr → M0
2 actually attainable without violating causality? Let

us consider a collapsing shell with charge Q. If M ≥ Q a black hole is formed.
As pointed out in the previous section the irreducible mass of the final black
hole does not depend on the charge Q. Therefore Eqs. (8.8.7) and (8.9.1) still
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hold in the charged case. In Fig. 8.11 we consider the special case in which
the shell is initially at rest at infinity, i.e. has initial energy Mi = M0, for three
different values of the charge Q. We plot the initial energy Mi, the energy of
the system when all the kinetic energy of implosion has been extracted as well

as the sum of the rest mass energy and the gravitational binding energy −M2
0

2r0
of the system (here r0 is the radius of the shell). In the extreme case Q = M0,
the shell is in equilibrium at all radii (see Ref. [405]) and the kinetic energy is
identically zero. In all three cases, the sum of the extractable kinetic energy T
and the electromagnetic energy Q2

2r0
reaches 50% of the rest mass energy at the

horizon, according to Eq. (8.9.1).
What is the role of the electromagnetic field here? If we consider the case

of a charged shell with Q ≃ M0, the electromagnetic repulsion implements
the braking process and the extractable energy is entirely stored in the elec-
tromagnetic field surrounding the black hole (see Ref. [406]). We emphasize
here that the extraction of 50% of the mass-energy of a black hole is not specif-
ically linked to the electromagnetic field but depends on three factors: a) the
increase of the gravitational energy during the collapse, b) the formation of a
horizon, c) the reduction of the kinetic energy of implosion. Such conditions
are naturally met during the formation of an extreme black hole with Q = M,
but as we have seen, they are more general and can indeed occur in a vari-
ety of different situations, e.g. during the formation of a Schwarzschild black
hole by a suitable extraction of the kinetic energy of implosion (see Fig. 8.10
and Fig. 8.11).

Before closing let us consider a test particle of mass m in the gravitational
field of an already formed Schwarzschild black hole of mass M and go through
such a sequence of braking and energy extraction processes. Kaplan [421]
found for the energy E of the particle as a function of the radius r

E = m
√

1− 2M
r . (8.9.2)

It would appear from this formula that the entire energy of a particle could
be extracted in the limit r → 2M. Such 100% efficiency of energy extrac-
tion has often been quoted as evidence for incompatibility between General
Relativity and the second principle of Thermodynamics (see Ref. [422] and
references therein). J. Bekenstein and S. Hawking have gone as far as to con-
sider General Relativity not to be a complete theory and to conclude that in
order to avoid inconsistencies with thermodynamics, the theory should be
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Figure 8.11: Energetics of a shell such that Mi = M0, for selected values of
the charge. In the first diagram Q = 0; the dashed line represents the total
energy for a gravitational collapse without any braking process as a function
of the radius R of the shell; the solid, stepwise line represents a collapse with
suitable braking of the kinetic energy of implosion at selected radii; the dot-
ted line represents the rest mass energy plus the gravitational binding energy.
In the second and third diagram Q/M0 = 0.7, Q/M0 = 1 respectively; the
dashed and the dotted lines have the same meaning as above; the solid lines
represent the total energy minus the kinetic energy. The region between the
solid line and the dotted line corresponds to the stored electromagnetic en-
ergy. The region between the dashed line and the solid line corresponds to
the kinetic energy of collapse. In all the cases the sum of the kinetic energy
and the electromagnetic energy at the horizon is 50% of M0. Both the elec-
tromagnetic and the kinetic energy are extractable. It is most remarkable that
the same underlying process occurs in the three cases: the role of the electro-
magnetic interaction is twofold: a) to reduce the kinetic energy of implosion
by the Coulomb repulsion of the shell; b) to store such an energy in the re-
gion around the black hole. The stored electromagnetic energy is extractable
as shown in Ref. [406]
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thermodynamics

implemented through a quantum description [422–425]. Einstein himself of-
ten expressed the opposite point of view (see, e.g., Ref. [426] and references
therein).

The analytic treatment presented in Section 8.7.2 can clarify this fundamen-
tal issue. It allows to express the energy increase E of a black hole of mass M1
through the accretion of a shell of mass M0 starting its motion at rest at a
radius r0 in the following formula which generalizes Eq. (8.9.2):

E ≡ M−M1 = −M2
0

2r0
+ M0

√
1− 2M1

r0
, (8.9.3)

where M = M1 + E is clearly the mass-energy of the final black hole. This
formula differs from the Kaplan formula (8.9.2) in three respects: (a) it takes
into account the increase of the horizon area due to the accretion of the shell;
(b) it shows the role of the gravitational self-energy of the imploding shell; (c)
it expresses the combined effects of (a) and (b) in an exact closed formula.

The minimum value Emin of E is attained for the minimum value of the
radius r0 = 2M: the horizon of the final black hole. This corresponds to the
maximum efficiency of the energy extraction. We have

Emin = −M2
0

4M + M0

√
1− M1

M = − M2
0

4(M1+Emin)
+ M0

√
1− M1

M1+Emin
, (8.9.4)

or solving the quadratic equation and choosing the positive solution for phys-
ical reasons

Emin = 1
2

(√
M2

1 + M2
0 −M1

)
. (8.9.5)

The corresponding efficiency of energy extraction is

ηmax = M0−Emin
M0

= 1− 1
2

M1
M0

(√
1 + M2

0
M2

1
− 1
)

, (8.9.6)

which is strictly smaller than 100% for any given M0 ̸= 0. It is interesting that
this analytic formula, in the limit M1 ≪ M0, properly reproduces the result of
equation (8.9.1), corresponding to an efficiency of 50%. In the opposite limit
M1 ≫ M0 we have

ηmax ≃ 1− 1
4

M0
M1

. (8.9.7)

Only for M0 → 0, Eq. (8.9.6) corresponds to an efficiency of 100% and cor-
rectly represents the limiting reversible transformations. It seems that the
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polarization processes

difficulties of reconciling General Relativity and Thermodynamics are ascrib-
able not to an incompleteness of General Relativity but to the use of the Ka-
plan formula in a regime in which it is not valid.

8.10 Astrophysical gravitational collapse and black
holes

The time evolution of the gravitational collapse (occurring on characteristic
gravitational timescale τ = GM/c3 ≃ 5 × 10−5M/M⊙ s) and the associ-
ated electrodynamical process are too complex for direct description. We
addressed here a more confined problem: the vacuum polarization process
around an already formed Kerr–Newman black hole. This is a well defined
problem which deserves attention. It is theoretically expected to represent a
physical state asymptotically reached in the process of gravitational collapse.
Such an asymptotic configuration will be reached when all multipoles de-
parting from the Kerr–Newman geometry have been radiated away either by
process of vacuum polarization or electromagnetic and gravitational waves.
What is most important is that by performing this theoretical analysis we can
have a direct evaluation of the energetics and of the spectra and dynamics of
the e+e− plasma created on the extremely short timescale due to the quantum
phenomena of ∆t = h̄/(mec2) ≃ 10−21 s. This entire transient phenomena,
starting from an initial neutral condition of the core in the progenitor star,
undergoes the formation of the Kerr–Newman black hole by the collective ef-
fects of gravitation, strong, weak, electromagnetic interactions during a frac-
tion of the above mentioned gravitational characteristic timescale of collapse.

After the process of vacuum polarization all the electromagnetic energy of
incipient Kerr–Newman black hole will be radiated away and almost neu-
tral Kerr solution will be left and reached asymptotically in time. In a re-
alistic gravitational collapse the theoretical picture described above will be
further amplified by the presence of high-energy processes including neu-
trino emission and gravitational waves emission with their electromagnetic
coupling: the gravitationally induced electromagnetic radiation and electro-
magnetically induced gravitational radiation [427, 428].

Similarly, in the next Section we proceed to a deeper understanding of
other collective plasma phenomena also studied in idealized theoretically
well defined cases. They will play an essential role in the astrophysical de-
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scription of the dynamical phase of gravitational collapse.
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9 Plasma oscillations in electric
fields

We have seen in the previous Sections the application of the Sauter-Heisenberg-
Euler-Schwinger process for electron–positron pair production in the heavy
nuclei, in the laser and in the last Section in the field of black holes. The case
of black holes is drastically different from all the previous ones. The number
of electron–positron pairs created is of the order of 1060, the plasma expected
is optically thick and is very different from the nuclear collisions and laser
case where pairs are very few and therefore optically thin. The following
dynamical aspects need to be addressed.

1. the back reaction of pair production on the external electric field;

2. the screening effect of pairs on the external electric field strengths;

3. the motion of pairs and their interactions.

When these dynamical effects are considered, the pair production in an
external electric field is no longer only a process of quantum tunneling in a
constant static electric field. In fact, it turns out to be a much more complex
process during which all the three above mentioned effects play an important
role. More precisely, a phenomenon of electron–positron oscillation, plasma
oscillation, takes place. We are going to discuss such plasma oscillation phe-
nomenon in this Section. As we will see in this Section these phenomena can
become also relevant for heavy-ion collisions. After giving the basic equa-
tions for description of plasma oscillations we give first some applications in
the field of heavy ions. In this Section in all formulas we use c = h̄ = 1.
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9 Plasma oscillations in electric fields

9.1 Semiclassical theory of plasma oscillations in
electric fields

In the semi-classical QED [429, 430], one quantizes only the Dirac field ψ(x),
while an external electromagnetic field Aµ(x) is treated classically as a mean
field. This is the self-consistent mean field or Gaussian approximation that
can be formally derived as the leading term in the large-N limit of QED,
where N is the number of charged matter fields [430–434]. The motion of
these electrons can be described by a Dirac equation in an external classical
electromagnetic potential Aµ(x)

[γµ(i∂µ − eAµ)−m]ψ(x) = 0 (9.1.1)

and the semi-classical Maxwell equation

∂µFµν = ⟨jν(x)⟩, jν(x) = i
e
2
[ψ̄(x), γνψ(x)], (9.1.2)

where jν(x) is the electron and positron current and the expectation value
is with respect to the quantum states of the electron field. The dynamics
that these equations describe is not only the motion of electron and positron
pairs, but also their back reaction on the external electromagnetic field. The
resultant phenomenon is the so-called plasma oscillation that we will discuss
based on both a simplified model of semi-classical scalar QED and kinetic
Boltzmann-Vlasov equation as presented in Refs. [429, 430, 435–437].

A scheme for solving the back reaction problem in scalar QED was offered
in Refs. [429, 430]. Based on this scheme, a numerical analysis was made in
(1+1)-dimensional case [435]. Eqs. (9.1.1), (9.1.2) are replaced by the scalar
QED coupled equations for a charged scalar field Φ(x)

[(i∂µ − eAµ)2 −m2
e ]Φ(x) = 0. (9.1.3)

The current jν(x) of the charged scalar field in the semi-classical Maxwell
equations (9.1.2) is

jν(x) = i
e
2
[Φ∗(x)∂νΦ(x)−Φ(x)∂νΦ∗(x)]. (9.1.4)

Now, consider a spatially homogeneous electric field E = Ez(t)ẑ in the ẑ-
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9.1 Semiclassical theory of plasma oscillations in electric fields

direction. A corresponding gauge potential is A = Az(t)̂z, A0 = 0. Defining
E ≡ Ez, A ≡ Az and j ≡ jz, the Maxwell equations (9.1.2) reduce to the single
equation

d2A
dt2 = ⟨j(x)⟩, (9.1.5)

for the potential and E = −dA/dt.

The quantized scalar field Φ(x) in Eq. (9.1.3) can be expanded in terms of
plane waves with operator-valued amplitudes fk(t)ak and f ∗−k(t)b

†
k

Φ(x) =
1

V1/2 ∑
k
[ fk(t)ak + f ∗−k(t)b

†
k]e
−ikx, (9.1.6)

where V is the volume of the system and the time-independent creation and
annihilation operators obey the commutation relations

[ak, a†
k′ ] = [bk, b†

k′ ] = δk,k′ , (9.1.7)

and each k-mode function fk obeys the Wronskian condition,

fk ḟ ∗k − ḟk f ∗k = i. (9.1.8)

The time dependency in this basis (ak, b†
k) (9.1.6,9.1.7) is carried by the com-

plex mode functions fk(t) that satisfy the following equation of motion, as
demanded from the QED coupled Eq. (9.1.3) of Klein–Gordon type(

d2

dt2 + ω2
k(t)

)
fk(t) = 0, (9.1.9)

where the time-dependent frequency ω2
k(t) is given by

ω2
k(t) ≡ [k− eA]2 + m2

e = [k− eA(t)]2 + k2
⊥ + m2

e . (9.1.10)

Here k is the constant canonical momentum in the ẑ-direction which should be
distinguished from the gauge invariant, but time-dependent kinetic momen-
tum

p(t) = k− eA(t),
dp
dt

= eE, (9.1.11)

which reflects the acceleration of the charged particles due to the electric field,
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9 Plasma oscillations in electric fields

while in the directions transverse to the electric field the kinetic and canonical
momenta are the same k⊥ = p⊥.

The mean value of electromagnetic current (9.1.4) in the ẑ-direction is then

⟨j(t)⟩ = 2e
∫ d3k

(2π)3 [k− eA(t)]| fk(t)|2[1 + N+(k) + N−(−k)], (9.1.12)

where N+(k) = ⟨a†
kak⟩ and N−(k) = ⟨b†

kbk⟩ are the mean numbers of par-
ticles and antiparticles in the time-independent basis (9.1.6,9.1.7). The mean
charge density must vanish

⟨j0(t)⟩ = e
∫ d3k

(2π)3 [N+(k)− N−(−k)] = 0,
∫ d3k

(2π)3 ≡
1
V ∑

k

by the Gauss law for a spatially homogeneous electric field (i.e., ∇ · E = 0).
As a result, N+(k) = N−(−k) ≡ Nk. For the vacuum state, Nk = 0. The
Maxwell equation (9.1.5) for the evolution of electric field becomes

d2A
dt2 = 2e

∫ d3k
(2π)3 [k− eA(t)]| fk(t)|2σk, σk = (1 + 2Nk). (9.1.13)

These two scalar QED coupled Eqs. (9.1.9) and (9.1.13) in (1+1)-dimensional
case were numerically integrated in Ref. [435]. The results are shown in
Fig. 9.1, where the time evolutions of the scaled electric field Ẽ ≡ E/Ec and
current j̃ ≡ jh̄/(Ecmec2) are shown as functions of time τ ≡ (mec2/h̄)t in unit
of Compton time (h̄/mec2). Starting with a strong electric field, one clearly
finds the phenomenon of oscillating electric field E(t) and current j(t), i.e.,
plasma oscillation.

This phenomenon of plasma oscillation is shown in Fig. 9.1 and is easy
to understand as follows. In a classical kinetic picture, we have the electric
current j = 2en⟨v⟩ where n is the density of electrons (or positrons) and ⟨v⟩
is their mean velocity. Driven by the external electric field, the velocity ⟨v⟩
of electrons (or positrons) continuously increases, until the electric field of
electron and positron pairs screens the external electric field down to zero,
and the kinetic energy of electrons (or positrons) reaches its maximum. The
electric current j saturates as the velocity ⟨v⟩ is close to the speed of light.
Afterward, these electrons and positrons continuously move apart from each
other further, their electric field, whose direction is opposite to the direction
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9.1 Semiclassical theory of plasma oscillations in electric fields

Figure 9.1: Time evolution of scaled electric field Ẽ and current j̃, with initial
value Ẽ = 1.0 and coupling e2/m2

e = 0.1. The solid line is semi classical
scalar QED, and the dashed line is the Boltzmann-Vlasov model. This figure
is reproduced from Fig. 1 (a) in Ref. [435].

of the external electric field, increases and decelerates electrons and positrons
themselves. Thus the velocity ⟨v⟩ of electrons and positrons decreases, until
the electric field reaches negative maximum and the velocity vanishes. Then
the velocity ⟨v⟩ of electrons and positrons starts to increase in backward di-
rection and the electric field starts to decrease for another oscillation cycle.
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9 Plasma oscillations in electric fields

9.2 Kinetic theory of plasma oscillations in electric
fields

In describing the same system as in the previous section it can be used, alter-
natively to the semi-classical theory, a phenomenological model based on the
following relativistic Boltzmann-Vlasov equation [435]

dF
dt
≡ ∂F

∂t
+ eE

∂F

∂p
=

dN
dtdVd3p

, (9.2.1)

where the x-independent function F(p, t) is a classical distribution function
of particle and antiparticle pairs in phase space. The source term in the right-
hand side of Eq. (9.2.1) is related to the Schwinger rate Pboson (5.7.26) for the
pair production of spin-0 particle and antiparticle

dN
dtdVd3p

= [1 + 2F(p, t)]Pbosonδ3(p), (9.2.2)

where the δ-function δ3(p) expresses the fact that particles are produced at
rest and the factor [1+ 2F(p, t)] accounts for stimulated pair production (Bose
enhancement). The Boltzmann-Vlasov equation (9.2.1) for the distribution
function F(p, t) is in fact attributed to the conservation of particle number in
phase space.

In the field equation (9.1.5) for the classical gauge potential A, the electric
current ⟨j(x)⟩ is contributed from the conduction current

jcond = 2e
∫ d3p

(2π)3
[p− eA(t)]

ωp
F(p, t), (9.2.3)

and the polarization current [438]

jpol =
2
E

∫ d3p
(2π)3 ωp

dN
dtdVd3p

. (9.2.4)

The relativistic Boltzmann-Vlasov equation (9.2.1) and field equation (9.1.5)
with the conduction current (9.2.3) and the polarization current (9.2.4) were
numerically integrated [435] in (1+1)-dimensional case. The numerical in-
tegration shows that the system undergoes plasma oscillations. In Fig. 9.1
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the results of the semi-classical analysis and the numerical integration of the
Boltzmann equation are compared. We see that they are in good quantita-
tive agreement. The discrepancies are because in addition to spontaneous
pair production, the quantum theory takes into account pair production via
bremsstrahlung (“induced” pair production), which are neglected in Eq. (9.2.1)).

In Refs. [439, 440], the study of plasma oscillation was extended to the
fermionic case. On the basis of semi-classical theory of spinor QED, express-
ing the solution of the Dirac equation (9.1.1) as

ψ(x) = [γµ(i∂µ − eAµ) + me]ϕ(x),

where ϕ(x) is a four-component spinor, one finds that ϕ(x) satisfies the quadratic
Dirac equation, [

(i∂µ − eAµ)2 − e
2

σµνFµν −m2
e

]
ϕ(x) = 0. (9.2.5)

The electric current of spinor field ϕ(x) couples to the external electric field
that obeys the field equation (9.1.5).

The source term in the right-hand side of the kinetic Boltzmann-Vlasov
equation (9.2.1) is changed to the Schwinger rate Pfermion (5.7.25) for the pair
production of electrons and positrons,

dN
dtdVd3p

= [1− 2F(p, t)]Pfermionδ3(p), (9.2.6)

where the Pauli blocking is taken into account by the factor [1 − 2F(p, t)].
Analogously to the scalar QED case, both semi-classical theory of spinor QED
and kinetic Boltzmann-Vlasov equation have been analyzed and numerical
integration was made in the (1+1)-dimensional case [439,440]. The numerical
results show that plasma oscillations of electric field, electron and positron
currents are similar to that plotted in Fig. 9.1.

9.3 Plasma oscillations in the color electric field of
heavy ions

The Relativistic Heavy-Ion Collider (RIHC) at Brookhaven National Labora-
tory and Large Hadron Collider (LHC) at CERN are designed with the goal of
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9 Plasma oscillations in electric fields

producing a phase of deconfined hadronic matter: the quark-gluon plasma.
A popular theoretical model for studying high-energy heavy-ion collisions
begins with the creation of a flux tube containing a strong color electric field
[441]. The field energy is converted into particles such as quark and antiquark
pairs and gluons that are created by the Sauter–Euler–Heisenberg–Schwinger
quantum tunneling mechanism. A relativistic Boltzmann–Vlasov equation
coupling to such particle creation source is phenomenologically adopted in
a kinetic theory model for the hydrodynamics of quark and gluon plasma
[438, 442–447].

In the collision of heavy-ion beams, one is clearly dealing with a situa-
tion that is not spatially homogeneous. However, particle production in the
central rapidity region can be modeled as hydrodynamical system with lon-
gitudinal boost invariance [448–452]. To express the longitudinal boost in-
variance of the hydrodynamical system, one introduces the comoving coor-
dinates: fluid proper time τ and rapidity η by the relationships [453]

z = τ sinh(η), t = τ cosh η, (9.3.1)

in terms of the Minkowski time t and the coordinate z along the beam direc-
tion ẑ in the ordinary laboratory frame. The line element and metric tensor
in these coordinates are given by

ds2 = dτ2 − dx2 − dy2 − τ2dη2, gµν = diag(1,−1,−1,−τ2), (9.3.2)

and
gµν = Va

µ Vb
ν ηab, Va

µ = diag(1, 1, 1, τ).

where the vierbein Va
µ transforms the curvilinear coordinates to Minkowski

coordinates and det(V) =
√−g = τ. The covariant derivative on fermion

field ψ(x) is given by [454]

∇µψ(x) ≡ [(i∂µ − eAµ) + Γµ]ψ(x) (9.3.3)

and the spin connection Γµ is

Γµ =
1
2

ΣabVaν(∂µVν
b + Γν

µλVλ
b ), Σab =

1
4
[γa, γb],

with Γν
µλ the usual Christoffel symbols and γa the usual coordinate-independent
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9.4 Quantum Vlasov equation

Dirac gamma matrices. The coordinate-dependent gamma matrices γ̃µ are
obtained via

γ̃µ = γaVµ
a .

In the curved space time (9.3.2), the Dirac equation (9.1.1) and semi-classical
Maxwell equation (9.1.2) are modified as

[iγ̃µ∇µ −me]ψ(x) = 0 (9.3.4)

and

1√−g
∂µ

√
−gFµν = ⟨jν(x)⟩, jν(x) =

e
2
[ψ̄(x), γ̃νψ(x)]. (9.3.5)

The phenomenological Boltzmann–Vlasov equation in (3+1)-dimensions
can be also written covariantly as

DF

Dτ
≡ pµ ∂F

∂qµ − epµFµν
∂F

∂pν
=

dN√−gdq0d3qdp
, (9.3.6)

where D/Dτ is the total proper time derivative. This kinetic transport equa-
tion is written in the comoving coordinates and their conjugate momenta:

qµ = (τ, x, y, η), pµ = (pτ, px, py, pη).

Due to the longitudinal boost invariance, energy density and color electric
field are spatially homogeneous, i.e., they are functions of the proper time
τ only [453]. Consequently, the approach for spatially homogeneous elec-
tric field presented in Refs. [430, 435, 439, 440] and discussed in the previous
Section 9.2 is applicable to the phenomenon of plasma oscillations in ultrarel-
ativistic heavy-ion collisions [453] using Eq. 9.3.4 (resp. Eq. 9.3.6) in the place
of Eq. 9.1.1 (resp. Eq. 9.2.1).

9.4 Quantum Vlasov equation

To understand the connection between the two frameworks of semi-classical
field theory and classical kinetic theory, both of which describe the plasma
oscillations, one can try to study a quantum transport equation in the semi-
classical theory [437, 455–457]. For this purpose, a Bogoliubov transforma-
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tion from the time-independent number basis (ak, b†
k) (9.1.6, 9.1.7) to a time-

dependent number basis [ãk(t), b̃†
k(t)] is introduced [437, 455, 456],

fk(t) = αk(t) f̃k(t) + βk(t) f̃ ∗k(t); (9.4.1)
ḟk(t) = −iωkαk(t) f̃k(t) + iωkβk(t) f̃ ∗k(t), (9.4.2)

and

ak(t) = α∗k(t)ãk(t)− β∗k(t)b̃
†
−k(t); (9.4.3)

b†
−k(t) = αk(t)b̃†

−k(t)− βk(t)ãk(t), (9.4.4)

where αk(t) and βk(t) are the Bogoliubov coefficients. They obey

|αk(t)|2 − |βk(t)|2 = 1,

for each mode k. In the limit of very slowly varying ωk(t) as a function
of time t (9.1.10), i.e., ω̇k ≪ ω2

k and ω̈k ≪ ω3
k, the adiabatic number basis

[ãk(t), b̃†
k(t)] is defined by first constructing the adiabatic mode functions,

f̃k(t) =
(

h̄
2ωk

)1/2

exp [−iΘk(t)] , Θk(t) =
∫ t

ωk(t′)dt′. (9.4.5)

The particle number Nk(t) in the time-dependent adiabatic number basis is
given by

Nk(t) = ⟨ã†
k(t)ãk(t)⟩ = ⟨b̃†

−k(t)b̃−k(t)⟩
= |αk(t)|2Nk + |βk(t)|2[1 + Nk], (9.4.6)

which though time-dependent, is an adiabatic invariant of the motion. Con-
sequently, it is a natural candidate for a particle number density distribution
function F(p, t) in the phase space, that is needed in a kinetic description.

By differentiating Nk(t) (9.4.6) and using the basic relationships (9.1.10,9.4.2,9.4.5),
one obtains,

Ṅk(t) =
ω̇k

ωk
Re {Ck(t) exp[−2iΘk(t)]} , Ck(t) = (1 + 2Nk)αk(t)β∗k(t),

(9.4.7)
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and
Ċk(t) =

ω̇k

2ωk
[1 + 2Nk(t)] exp[2iΘk(t)]. (9.4.8)

These two equations give rise to the quantum Vlasov equations [437,455,456],

Ṅk(t) = Sk(t), (9.4.9)

Sk(t) =
ω̇k

2ωk

∫ t

−∞
dt′

ω̇k

ωk
(t′)[1± 2Nk(t′)] cos[2Θk(t)− 2Θk(t′)],(9.4.10)

describing the time evolution of the adiabatic particle number Nk(t) of the
mean field theory. Sk(t) describes the quantum creation rate of particle num-
ber in an arbitrary slowly varying mean field. The Bose enhancement and
Pauli blocking factors [1± 2Nk(t′)] appear in Eq. (9.4.10) so that both sponta-
neous and induced particle creation are included automatically in the quan-
tum treatment. The most important feature of Eq. (9.4.10) is that the source
term Sk(t) is nonlocal in time, indicating the particle creation rate depend-
ing on the entire history of the system. This means that the time evolution
of the particle number Nk(t) governed by the quantum Vlasov equation is a
non-Markovian process.

The mean electric current ⟨j(t)⟩ (9.1.12) in the basis of adiabatic number
[ãk(t), b̃†

k(t)] (9.4.2,9.4.4) can be rewritten as,

⟨j(t)⟩ = jcond + jpol, (9.4.11)

jcond = 2e
∫ d3k

(2π)3
[k− eA(t)]

ωk
Nk(t), (9.4.12)

jpol =
2
E

∫ d3k
(2π)3 ωkṄk(t), (9.4.13)

by using Eqs. (9.4.6), (9.4.7). This means electric current ⟨j(t)⟩ enters into the
right-hand side of the field equation (9.1.5).

For the comparison between the quantum Vlasov equation (9.4.10) and
the classical Boltzmann–Vlasov equation (9.2.1), the adiabatic particle num-
ber Nk(t) has to be understood as the counterpart of the classical distri-
bution function F(p, t) of particle number in the phase space. The source
term, that is composed by the Schwinger rate of pair production and the fac-
tor [1± 2Nk(t′)] for either the Bose enhancement or Pauli blocking, is phe-
nomenologically added into in the Boltzmann–Vlasov equation (9.2.1). Such
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9 Plasma oscillations in electric fields

source term is local in time, indicating that the time evolution of the classical
distribution function F(p, t) is a Markovian process. In the limit of a very
slowly varying uniform electric field E and at very large time t the source
term Sk(t) (9.4.10) integrated over momenta k reduces to the source term in
the Boltzmann–Vlasov equation (9.2.1) [437,455,456]. As a result, the conduc-
tion current jcond and the polarization current jpol in Eq. (9.4.11) are reduced
to their counterparts Eqs. (9.2.3), (9.2.4) in the phenomenological model of ki-
netic theory. In Ref. [267,437,458–460], the quantum Vlasov equation has been
numerically studied to show the plasma oscillations and the non-Markovian
effects. They are also compared with the Boltzmann–Vlasov equation (9.2.1)
that corresponds to the Markovian limit.

9.5 Quantum decoherence in plasma oscillations

As showed in Fig. 9.1, the collective oscillations of electric field E(t) and asso-
ciate electric current ⟨j(t)⟩ are damped in their amplitude. Moreover, as time
increases, a decoherence in their oscillating frequency occurs [435, 461]. This
indicates that plasma oscillations decay in time. This effective energy dissipa-
tion or time irreversibility is the phenomenon of quantum decoherence [462]
in the process of creation and oscillation of particles, in the sense that energy
flows from collective motion of the classical electromagnetic field to the quan-
tum fluctuations of charged matter fields without returning back over times
of physical interest [461,463]. This means that the characteristic frequency ωk
of the quantum fluctuation mode “k” is much larger than the frequency ωpl
of the classical electric field: ωk ≫ ωpl and ω2

pl ∼ 2e2h̄np/(mec2) [437, 461],
where np is the number density of particles and antiparticles. The study of
quantum decoherence and energy dissipation associated with particle pro-
duction to understand the plasma oscillation frequency and damping can be
found in Refs. [437, 461, 463].

To understand the energy dissipation from the collective oscillation of clas-
sical mean fields to rapid fluctuations of quantum fields, it is necessary to use
the Hamiltonian formalism of semi-classical theory. One defines the quan-
tum fluctuation ξk(t) upon classical mean field ⟨Φk(t)⟩ in the semi-classical
scalar theory [437, 461, 463],

ξ2
k(t) = ⟨[Φk(t)− ⟨Φk(t)⟩]2⟩ = ⟨Φk(t)Φ∗k(t)⟩ − [⟨Φk(t)⟩]2, (9.5.1)

966



9.5 Quantum decoherence in plasma oscillations

where Φk(t) is the Fourier k−component of the quantized scalar field Φ(x)
(9.1.6). In the time-independent basis (9.1.7,9.1.8), one has (see Section 9),

ξ2
k(t) = σk| fk(t)|2, (9.5.2)

and the mode equation (9.1.9) for fk(t) can be rewritten as

η̇k(t) = ξ̈k(t) = −ω2
k(t)ξk(t) +

h̄2σ2
k

4ξ3
k(t)

, (9.5.3)

where ηk(t) = ξ̇k(t) is the momentum canonically conjugate to ξk(t). More-
over, the semi-classical Maxwell equation (9.1.13) is rewritten as

d2A
dt2 = 2e

∫ d3k
(2π)3 [k− eA(t)]ξ2

k(t). (9.5.4)

Eqs. (9.5.3) and (9.5.4) actually are Hamilton equations of motion,

η̇k(t) = −
δHeff

δξk(t)
, ṖA(t) = −

δHeff

δA(t)
, (9.5.5)

for a closed system with Hamiltonian,

Heff(A, PA, ξ, η, σ) = V
E2

2
+ V

∫ d3k
(2π)3

(
η2

k + ω2
k(A)ξ2

k +
h̄2σ2

k
4ξ2

k

)
, (9.5.6)

where PA = Ȧ = −E is the momentum canonically conjugate to A, ωk(A) is
the field-dependent frequency of quantum fluctuations given by Eq. (9.1.10)
and the value of mean field (9.5.1) vanishes, ⟨Φk(t)⟩ = 0, for each k-mode. In
Eq. (9.5.6), the first term is the electric energy and the second term is the en-
ergy of quantum fluctuations of charged matter field, interacting with electric
field.

Quantum decoherence can be studied within this Hamiltonian framework.
If one considers only the time evolution of classical electric field A(t), that is
influenced by the quantum fluctuating modes fk(t), the latter can be treated
as a heat bath “environment”. Quantitative information about the quantum
decoherence is contained in the so-called influence functional, which is a
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functional of two time evolution trajectories A1(t) and A2(t) [461]

F12(t) = exp[iΓ12(t)] = Tr(|A1(t)⟩⟨A2(t)|), (9.5.7)

where |A1,2(t)⟩ are different time evolution states determined by Eq. (9.5.5),
starting with the same initial state |A(0)⟩ and initial vacuum condition Nk =
0, σk = 1 (9.1.13). One finds [461]

Γ12(t) = −
i
2

ln

[
ih̄
| f1 f2|

(
f1 f ∗2

f1 ḟ ∗2 − ḟ1 f ∗2

)]
, (9.5.8)

in terms of the two sets of mode functions { f1(t)} and { f2(t)} (the subscript
k is omitted). This Γ12 (9.5.8) is precisely the closed time path (CTP) effective
action functional which generates the connected real n-points vertices in the
quantum theory [464–471]. The absolute value of F12 (9.5.7) measures the in-
fluence of quantum fluctuations fk(t) on the time evolution of the classical
electric field A(t), i.e., the effect of quantum decoherence. If there is no influ-
ence of quantum fluctuations on A(t), then |A1(t)⟩ = |A2(t)⟩ and |F12| = 1,
otherwise A2(t) deviates from A1(t), |A1(t)⟩ ̸= |A2(t)⟩ and |F12| < 1. Nu-
merical results about the damping and the decoherence of the electric field
are presented in Refs. [435, 461] (see Figs. 9.1 and 9.2).

The effective damping discussed above is certainly collisionless, since the
charged particle modes fk(t) interact only with the electric field but not di-
rectly with each other. The damping of plasma oscillation attributed to the
collisions between charged particle modes fk(t) will be discussed in the next
section.

9.6 Collision decoherence in plasma oscillations

If there are interactions between different modes k and species of particles,
the time evolutions of electric field and the distribution function F(p, t) of
particle number in the phase space are certainly changed. This can be phe-
nomenologically studied in the relativistic Boltzmann-Vlasov equation (9.2.1)
by adding collision terms C(p, t),

dF
dt
≡ ∂F

∂t
+ eE

∂F

∂p
= Sp(t) + C(p, t). (9.6.1)
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9.6 Collision decoherence in plasma oscillations

Figure 9.2: Absolute values of the decoherence functional |F12| as a function
of time. The two field values are E and E − ∆. The top figure shows (for
fixed ∆) the sharp dependence of decoherence on particle production when
|E| ≥ 0.2Ec. The second illustrates the relatively milder dependence on ∆.
These figures are reproduced from Fig. 2 in Ref. [461].

These collision terms C(p, t) describe not only the interactions of different
modes k of particles, but also interactions of different species of particles, for
example, electron and positron annihilation to two photons and vice versa. In
Refs. [458, 460], the following equilibrating collision terms were considered,

C(p, t) =
1
τr
[Feq(p, t, T)− F(p, t)], (9.6.2)
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where Feq(p, t, T) is the thermal (Fermi or Bose) distribution function of par-
ticle number (fermions or bosons) at temperature T, the relaxation time τr is
determined by the mean free path λ(t) and mean velocity v̄(t) of particles,
through

τr(t) = τc
λ(t)
v̄(t)

, (9.6.3)

and τc is a dimensionless parameter. λ(t) is computed from the number den-
sity n(t) of particles,

λ(t) =
1

[n(t)]1/3 , n(t) =
∫ d3k

(2π)3F(p, t). (9.6.4)

Whereas, the mean velocity of particles is given by v̄(t) = p̄(t)/ϵ̄(t), ex-
pressed in terms of mean kinetic momentum p̄(t) and energy ϵ̄(t) of particles.
The mean values of momentum p̄(t) and energy ϵ̄(t) are computed [460] by
using distribution function F(p, t) regularized via the procedure described
in Ref. [458] that yields the renormalized electric current (9.4.11). The tem-
perature T(t) in Eq. (9.6.2) is the “instantaneous temperature”, which is de-
termined by requiring that at each time t the mean particle energy ϵ̄(t) is
identical to that in an equilibrium distribution Feq(k, t, T) at the temperature
T(t),

ϵ̄(t) =
∫ d3k

(2π)3 ϵ(k)Feq[k, t, T(t)]. (9.6.5)

This system of two coupled equations: (i) the field equation (9.1.5) with renor-
malized electric currents (9.4.11); (ii) the relativistic Boltzmann-Vlasov equa-
tion (9.6.1) with the source term Sp(t) (9.4.10) and equilibrating collision term
C(p, t) (9.6.2), are numerically integrated in Refs. [458, 460]. One of these nu-
merical results is presented in Fig. 9.3. It shows [458] that when the collision
timescale τr (9.6.3) is much larger than the plasma oscillation timescale τpl,
τr ≫ τpl, the plasma oscillations are unaffected. On the other hand, when
τr ∼ τpl the collision term has a significant impact on both the amplitude and
the frequency of the oscillations that result damped. There is a value of τr be-
low which no oscillations arise and the system evolves quickly and directly
to thermal equilibrium. It is worthwhile to contrast this collision damping of
plasma oscillation with the collisionless damping effect due to rapid quan-
tum fluctuations described in Section 9.5.
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9.7 e+e−γ interactions in plasma oscillations in electric fields

Figure 9.3: Time evolution for electric field obtained using different relaxation
times τr in the collision term of Eq. (9.6.2) and with the impulse external field
Eex(t) = −A0[b cosh2(t/b)]−1, where A0 = 0.7 and b = 0.5. All dimensioned
quantities are given in units of the mass-scale m. This Figure is reproduced
from Fig. 6 in Ref. [458].

9.7 e+e−γ interactions in plasma oscillations in
electric fields

In this section, a detailed report of the studies [72] of the relativistic Boltzmann-
Vlasov equations for electrons, positrons and photons with collision terms
originated from annihilation of electrons and positrons pair into two pho-
tons and vice versa is presented. These collision terms lead to the damping
of plasma oscillation and possibly to energy equipartition between different
types of particles.We focus on the evolution of a system of e+e− pairs created
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in a strongly overcritical electric field (E ∼ 10Ec), explicitly taking into ac-
count the process e+e− ⇄ γγ. Since it is far from equilibrium the collisions
cannot be modeled by an effective relaxation time term in the transport equa-
tions, as discussed in the previous section. Rather the actual, time varying,
collision integrals have to be used.

Furthermore we are mainly interested in a system in which the electric field
varies on macroscopic length scale and therefore one can approximate an
electric field as a homogeneous one. Also, transport equations are used for
electrons, positrons and photons, with collision terms, coupled to Maxwell
equations, as introduced in Section 9.1 and 9.2. There is no free parame-
ter here: the collision terms can be exactly computed, since the QED cross-
sections are known. Starting from a regime which is far from thermal equi-
librium, one finds that collisions do not prevent plasma oscillations in the
initial phase of the evolution and analyze the issue of the timescale of the
approach to an e+e−γ plasma equilibrium configuration.

As discussed in Section 9.1 and 9.2 one can describe positrons (electrons)
created by vacuum polarization in a strong homogeneous electric field E
through the distribution function fe+ ( fe−) in the phase space of positrons
(electrons). Because of homogeneity fe+ ( fe−) only depend on the time t and
the positron (electron) 3–momentum p:

fe+,− = fe+,− (t, p) . (9.7.1)

Moreover, because of particle–antiparticle symmetry, one also has

fe+ (t, p) = fe− (t,−p) ≡ fe (t, p) . (9.7.2)

Analogously photons created by pair annihilation are described through the
distribution function fγ in the phase space of photons. k is the photon 3–
momentum , then

fγ = fγ (t, k) . (9.7.3)

fe and fγ are normalized so that∫
d3p
(2π)3 fe (t, p) = ne (t) , (9.7.4)∫
d3k
(2π)3 fγ (t, k) = nγ (t) , (9.7.5)
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where ne and nγ are number densities of positrons (electrons) and photons,
respectively. For any function of the momenta, one can denote by

⟨F (p1, ..., pn)⟩e ≡ n−n
e

∫
d3p1

(2π)3 ... d3pn

(2π)3 F (p1, ..., pn) · fe (p1) · ... · fe (pn) ,

(9.7.6)
or

⟨G (k1, ..., kl)⟩γ ≡ n−l
γ

∫
d3k1
(2π)3 ... d3kl

(2π)3 G (k1, ..., kl) · fγ (k1) · ... · fγ (kl) ,

(9.7.7)
its mean value in the phase space of positrons (electrons) or photons, respec-
tively.

The motion of positrons (electrons) is the result of three contributions: the
pair creation, the electric acceleration and the annihilation damping. The
probability density rate S (E, p) for the creation of a pair with 3–momentum
p in the electric field E is given by the Schwinger formula (see also Refs. [435,
439]):

S (E, p) = (2π)3 dN
dtd3xd3p

= − |eE| log
[

1− exp
(
−π(m2

e+p2
⊥)

|eE|

)]
δ(p∥), (9.7.8)

where p∥ and p⊥ are the components of the 3-momentum p parallel and or-
thogonal to E, respectively. Also the energy is introduced

ϵp =
(

p · p + m2
e

)1/2
(9.7.9)

of an electron of 3-momentum p and the energy

ϵk = (k · k)1/2 (9.7.10)

of a photon of 3-momentum k. Then, the probability density rate Ce (t, p) for
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the creation (destruction) of a fermion with 3-momentum p is given by

Ce (t, p) ≃ 1
ϵp

∫
d3p1

(2π)3ϵp1

d3k1
(2π)3ϵk1

d3k2
(2π)3ϵk2

(2π)4 δ(4) (p + p1 − k1 − k2)

×
∣∣∣Me+(p)e−(p1)→γ(k1)γ(k2)

∣∣∣2 [ fe (p) fe (p1)− fγ (k1) fγ (k2)] ,

(9.7.11)

where

Me+(p1)e−(p2)→γ(k1)γ(k2) = Me+(p1)e−(p2)←γ(k1)γ(k2) ≡M (9.7.12)

is the matrix element for the process

e+ (p1) e− (p2)→ γ (k1) γ (k2) (9.7.13)

and as a first approximation, Pauli blocking and Bose enhancement (see, for
instance, Ref. [439]) are neglected. Analogously the probability density rate
Cγ (t, p) for the creation (annihilation) of a photon with 3-momentum k is
given by

Cγ (t, k) ≃ 1
ϵk

∫
d3p1

(2π)3ϵp1

d3p2

(2π)3ϵp2

d3k1
(2π)3ϵk1

(2π)4 δ(4) (p1 + p2 − k− k1)

×
∣∣∣Me+(p1)e−(p2)→γ(k)γ(k1)

∣∣∣2 [ fe (p1) fe (p2)− fγ (k) fγ (k1)] , (9.7.14)

Finally the evolution of the pairs is governed by the transport Boltzmann–
Vlasov equations

∂t fe + eE · ∇p fe = S (E, p)− Ce (t, p) , (9.7.15)
∂t fγ = 2Cγ (t, k) , (9.7.16)

Note that the collisional terms (9.7.11) and (9.7.14) are negligible, when cre-
ated pairs do not produce a dense plasma.

Because pair creation back reacts on the electric field, as seen in Section 9.1
and 9.2, Vlasov equations are coupled with the homogeneous Maxwell equa-
tions, which read

∂tE = −jp (E)− jc (t) , (9.7.17)
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where
jp (E) = 2 E

E2

∫
d3p
(2π)3 ϵpS (E, p) (9.7.18)

is the polarization current and

jc (t) = 2ene

∫
d3p
(2π)3

p
ϵp

fe (p) (9.7.19)

is the conduction current (see Ref. [438]).
Eqs. (9.7.15), (9.7.16) and (9.7.17) describe the dynamical evolution of the

electron–positron pairs, the photons and the strong homogeneous electric
field due to the Schwinger process of pair creation, the pair annihilation into
photons and the two photons annihilation into pairs. It is hard to (even nu-
merically) solve this system of integral and partial differential equations. It
is therefore useful to introduce a simplification procedure of such a system
through an approximation scheme. First of all note that Eqs. (9.7.15) and
(9.7.16) can be suitably integrated over the phase spaces of positrons (elec-
trons) and photons to get differential equations for mean values. The follow-
ing exact equations for mean values are obtained:

d
dt ne = S (E)− n2

e
〈
σ1v′

〉
e + n2

γ

〈
σ2v′′

〉
γ

,
d
dt nγ = 2n2

e
〈
σ1v′

〉
e − 2n2

γ

〈
σ2v′′

〉
γ

,
d
dt ne

〈
ϵp
〉

e = eneE · ⟨v⟩e + 1
2 E · jp − n2

e
〈
ϵpσ1v′′

〉
e + n2

γ

〈
ϵkσ2v′′

〉
γ

,
d
dt nγ ⟨ϵk⟩γ = 2n2

e
〈
ϵpσ1v′

〉
e − 2n2

γ

〈
ϵkσ2v′′

〉
γ

,
d
dt ne ⟨p⟩e = eneE− n2

e
〈
pσ1v′

〉
e ,

d
dt E = −2ene ⟨v⟩e − jp (E) , (9.7.20)

where

S (E) =
∫

d3p
(2π)3S (E, p) (9.7.21)

≡ dN
dtd3x , (9.7.22)

is the total probability rate for Schwinger pair production. In Eqs. (9.7.20),
v′′ = c the velocity of light and v′ = 2|p/ϵCoM

p | is the relative velocity be-
tween electrons and positrons in the reference frame of the center of mass,
where p = |pe± |, pe− = −pe+ are 3–momenta of electron and positron and
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ϵpe∓ = ϵCoM
p are their energies. σ1 = σ1

(
ϵCoM

p

)
is the total cross-section for

the process e+e− → γγ, and σ2 = σ2
(
ϵCoM

k
)

is the total cross-section for the
process γγ → e+e−, here ϵCoM is the energy of a particle in the reference
frame of the center of mass.

In order to evaluate the mean values in system (9.7.20) some further hy-
potheses on the distribution functions are needed. One defines p̄∥, ϵ̄p and p̄2

⊥
such that 〈

p∥
〉

e
≡ p̄∥, (9.7.23)〈

ϵp
〉

e ≡ ϵ̄p ≡ ( p̄2
∥ + p̄2

⊥ + m2
e )

1/2. (9.7.24)

It is assumed

fe (t, p) ∝ ne (t) δ
(

p∥ − p̄∥
)

δ
(

p2
⊥ − p̄2

⊥

)
. (9.7.25)

Since in the scattering e+e− → γγ the coincidence of the scattering direction
with the incidence direction is statistically favored, it is also assumed

fγ (t, k) ∝ nγ (t) δ
(

k2
⊥ − k̄2

⊥

) [
δ
(

k∥ − k̄∥
)
+ δ

(
k∥ + k̄∥

)]
, (9.7.26)

where k∥ and k⊥ have analogous meaning as p∥ and p⊥ and the terms δ
(

k∥ − k̄∥
)

and δ
(

k∥ + k̄∥
)

account for the probability of producing, respectively, for-
wardly scattered and backwardly scattered photons. Since the Schwinger
source term (9.7.8) implies that the positrons (electrons) have initially fixed
p∥, namely p∥ = 0, assumption (9.7.25) ((9.7.26)) means that the distribu-
tion of p∥ (k∥) does not spread too much with time and, analogously, that
the distribution of energies is sufficiently peaked to be describable by a δ–
function. As long as this condition is fulfilled, approximations (9.7.25) and
(9.7.26) are applicable. The actual dependence on the momentum of the dis-
tribution functions has been discussed in Ref. [437, 439]. If Eqs. (9.7.25) and
(9.7.26) are substituted into the system (9.7.20) one gets a new system of or-
dinary differential equations. One can introduce the inertial reference frame
which on average coincides with the center of mass frame for the processes
e+e− ⇄ γγ, and has ϵCoM ≃ ϵ̄ for each species, and therefore substituting
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Eqs. (9.7.25) and (9.7.26) into Eqs. (9.7.20) one finds

d
dt ne = S (E)− 2n2

e σ1ρ−1
e

∣∣∣πe∥

∣∣∣+ 2n2
γσ2,

d
dt nγ = 4n2

e σ1ρ−1
e

∣∣∣πe∥

∣∣∣− 4n2
γσ2,

d
dt ρe = eneEρ−1

e

∣∣∣πe∥

∣∣∣+ 1
2 Ejp − 2neρeσ1ρ−1

e

∣∣∣πe∥

∣∣∣+ 2nγργσ2,

d
dt ργ = 4neρeσ1ρ−1

e

∣∣∣πe∥

∣∣∣− 4nγργσ2,

d
dt πe∥ = eneE− 2neπe∥σ1ρ−1

e

∣∣∣πe∥

∣∣∣ ,

d
dt E = −2eneρ

−1
e

∣∣∣πe∥

∣∣∣− jp (E) , (9.7.27)

where

ρe = neϵ̄p, (9.7.28)
ργ = nγϵ̄k, (9.7.29)

πe∥ = ne p̄∥ (9.7.30)

are the energy density of positrons (electrons), the energy density of photons
and the density of “parallel momentum” of positrons (electrons), E is the elec-
tric field strength and jp the unique component of jp parallel to E. σ1 and σ2

are evaluated at ϵCoM = ϵ̄ for each species. Note that Eqs. (9.7.27) are “classi-
cal” in the sense that the only quantum information is encoded in the terms
describing pair creation and scattering probabilities. Finally Eqs. (9.7.27) are
duly consistent with energy density conservation:

d
dt

(
ρe + ργ + 1

2 E2
)
= 0. (9.7.31)

977



9 Plasma oscillations in electric fields

Eqs. (9.7.27) have to be integrated with the following initial conditions

ne = 0,
nγ = 0,
ρe = 0,
ργ = 0,

πe∥ = 0,

E = E0.

In Fig. 9.4 the results of the numerical integration for E0 = 9Ec is showed.
The integration stops at t = 150 τC (where, as usual, τC = h̄/mec2 is the
Compton time of the electron). Each quantity is represented in units of me
and λC = h̄/mec, the Compton length of the electron.

The numerical integration confirms [435, 439] that the system undergoes
plasma oscillations:

1. the electric field does not abruptly reach the equilibrium value but rather
oscillates with decreasing amplitude;

2. electrons and positrons oscillates in the electric field direction, reaching
ultrarelativistic velocities;

3. the role of the e+e− ⇄ γγ scatterings is marginal in the early time of the
evolution.

This last point can be easily explained as follows: since the electrons are
too extremely relativistic, the annihilation probability is very low and conse-
quently the density of photons builds up very slowly (see details in Fig. 9.4).

At late times the system is expected to relax to an equilibrium configura-
tion and assumptions (9.7.25) and (9.7.26) have to be generalized to take into
account quantum spreading of the distribution functions. It is nevertheless
instructive to look at the solutions of Eqs. (9.7.27) in this regime. Moreover,
such a solution should give information at least at the order of magnitude
level. In Fig. 9.5 the numerical solution of Eqs. (9.7.27) is plotted, but the
integration extends here all the way up to t = 7000 τC (the timescale of oscil-
lations is not resolved in these plots).

It is interesting that the leading term recovers the expected asymptotic be-
havior:
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Figure 9.4: Plasma oscillations in a strong homogeneous electric field: early
times behavior. Setting E0 = 9Ec, t < 150τC and it is plotted, from the top
to the bottom panel: a) electromagnetic field strength; b) electrons energy
density; c) electrons number density; d) photons energy density; e) photons
number density as functions of time.
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Figure 9.5: Plasma oscillations in a strong homogeneous electric field: late
time expected behaviour. Setting E0 = 9Ec, t < 7000τC and it is plotted, from
the top to the bottom panel: a) electromagnetic field strength; b) electrons
energy density; c) electrons number density; d) photons energy density; e)
photons number density as functions of time – the oscillation period is not
resolved in these plots. The model should have a breakdown at a time much
earlier than 7000τC and therefore this plot contains no more than qualitative
informations.980



9.8 Electro-fluidodynamics of the pair plasma

1. the electric field is screened to about the critical value: E ≃ Ec for t ∼
103 − 104τC ≫ τC;

2. the initial electromagnetic energy density is distributed over electron–
positron pairs and photons, indicating energy equipartition;

3. photons and electron–positron pairs number densities are asymptoti-
cally comparable, indicating number equipartition.

At such late times a regime of thermalized electrons–positrons–photons
plasma is expected to begin (as qualitatively indicated by points 2 and 3
above) during which the system is describable by hydrodynamic equations
[399, 408].

Let us summarize the results in this section. A very simple formalism is
provided to describe simultaneously the creation of electron–positron pairs
by a strong electric field E ≳ Ec and the pairs annihilation into photons.
As discussed in literature, one finds plasma oscillations. In particular the
collisions do not prevent such a feature. This is because the momentum of
electrons (positrons) is very high, therefore the cross-section for the process
e+e− → γγ is small and the annihilation into photons is negligible in the
very first phase of the evolution. As a result, the system takes some time
(t ∼ 103 − 104τC) to reach an equilibrium e+e−γ plasma configuration.

9.8 Electro-fluidodynamics of the pair plasma

In the previous section, collisional terms in the Vlasov-Boltzmann equation
are introduced, describing interaction of pairs and photons via the reaction
e+e− ↔ γγ. These results have been considered of interest in the studies of
pair production in free electron lasers [60, 238, 239, 261, 264], in optical lasers
[472], of millicharged fermions in extensions of the standard model of particle
physics [473], electromagnetic wave propagation in a plasma [269], as well in
astrophysics [408].

In this section, following [73, 474], the case of undercritical electric field is
explored. It is usually expected that for E < Ec back reaction of the created
electrons and positrons on the external electric field can be neglected and
electrons and positrons would move as test particles along lines of force of the
electric field. Here it is shown that this is not the case in a uniform unbounded
field. This work is important since the first observation of oscillations effects
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9 Plasma oscillations in electric fields

should be first detectable in experiments for the regime E < Ec, in view of
the rapid developments in experimental techniques, see e.g. [270, 273, 274].

An approach is introduced based on continuity, energy-momentum conser-
vation and Maxwell equations in order to account for the back reaction of the
created pairs. This approach is more simple than the one, presented in the
previous section. However, the final equations coincide with (9.7.27) when
the interaction with photons can be neglected. By this treatment one can an-
alyze the new case of undercritical field, E < Ec, and recover the old results
for overcritical field, E > Ec. In particular, the range 0.15Ec < E < 10Ec is
focused.

It is generally assumed that electrons and positrons are created at rest in
pairs, due to vacuum polarization in uniform electric field with strength E
[7, 20, 25–27, 33, 203, 204], with the average rate per unit volume and per unit
time (5.7.29)

S(E) ≡ dN
dVdt

=
m4

e
4π3

(
E
Ec

)2

exp
(
−π

Ec

E

)
. (9.8.1)

This formula is derived for uniform constant in time electric field. However,
it still can be used for slowly time varying electric field provided the inverse
adiabaticity parameter [30–32, 36, 203, 204, 244], see Eq. (7.2.8), is much larger
than one,

η =
me

ω

Epeak

Ec
= T̃Ẽpeak ≫ 1, (9.8.2)

where ω is the frequency of oscillations, T̃ = me/ω is dimensionless period
of oscillations. Equation (9.8.2) implies that time variation of the electric field
is much slower than the rate of pair production. In two specific cases consid-
ered in this section, E = 10Ec and E = 0.15Ec one finds for the first oscillation
η = 334 and η = 3.1× 106 respectively. This demonstrates applicability of
the formula (9.8.1) in this case.

From the continuity, energy-momentum conservation and Maxwell equa-
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9.8 Electro-fluidodynamics of the pair plasma

tions written for electrons, positrons and electromagnetic field one can have

∂ (n̄Uµ)

∂xµ = S, (9.8.3)

∂Tµν

∂xν
= −Fµν Jν, (9.8.4)

∂Fµν

∂xν
= −4π Jµ, (9.8.5)

where n̄ is the comoving number density of electrons, Tµν is energy-momentum
tensor of electrons and positrons

Tµν = men̄
(

Uµ

(+)
Uν
(+) + Uµ

(−)U
ν
(−)

)
, (9.8.6)

Fµν is electromagnetic field tensor, Jµ is the total 4-current density, Uµ is four
velocity respectively of positrons and electrons

Uµ

(+)
= Uµ = γ (1, v, 0, 0) , Uµ

(−) = γ (1,−v, 0, 0) , (9.8.7)

v is the average velocity of electrons, γ =
(
1− v2)−1/2 is relativistic Lorentz

factor. Electrons and positrons move along the electric field lines in opposite
directions.

One can choose a coordinate frame where pairs are created at rest. Electric
field in this frame is directed along x-axis. In spatially homogeneous case
from (9.8.3) one has for coordinate number density n = n̄γ

ṅ = S. (9.8.8)

With definitions (9.8.6) from (9.8.4) and equation of motion for positrons and
electrons

me
∂Uµ

(±)
∂xν

= ∓eFµ
ν , (9.8.9)

one finds

∂Tµν

∂xν
= −en̄

(
Uν
(+) −Uν

(−)

)
Fµ

ν + meS
(

Uµ

(+)
+ Uµ

(−)

)
= −Fµ

ν Jν, (9.8.10)

where the total 4-current density is the sum of conducting Jµ
cond and polariza-
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9 Plasma oscillations in electric fields

tion Jµ
pol currents [438] densities

Jµ = Jµ
cond + Jµ

pol, (9.8.11)

Jµ
cond = en̄

(
Uµ

(+)
−Uµ

(−)

)
, (9.8.12)

Jµ
pol =

2meS
E

γ (0, 1, 0, 0) . (9.8.13)

Energy-momentum tensor in (9.8.4) and electromagnetic field tensor in
(9.8.5) change for two reasons: 1) electrons and positrons acceleration in the
electric field, given by the term Jµ

cond, 2) particle creation, described by the
term Jµ

pol. Equation (9.8.3) is satisfied separately for electrons and positrons.

Defining energy density of positrons

ρ =
1
2

T00 = menγ, (9.8.14)

one can find from (9.8.4)
ρ̇ = envE + meγS. (9.8.15)

Due to homogeneity of the electric field and plasma, electrons and positrons
have the same energy and absolute value of the momentum density p, but
their momenta have opposite directions. The definitions also imply for ve-
locity and momentum densities of electrons and positrons

v =
p
ρ

, (9.8.16)

and
ρ2 = p2 + m2

e n2, (9.8.17)

which is just relativistic relation between the energy, momentum and mass
densities of particles.

Gathering together the above equations one then has the following equa-
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9.8 Electro-fluidodynamics of the pair plasma

tions

ṅ = S, (9.8.18)

ρ̇ = E
(

env +
meγS

E

)
, (9.8.19)

ṗ = enE + mevγS, (9.8.20)

Ė = −8π

(
env +

meγS
E

)
. (9.8.21)

From (9.8.19) and (9.8.21) one obtains the energy conservation equation

E2
0 − E2

8π
+ 2ρ = 0, (9.8.22)

where E0 is the constant of integration, so the particle energy density vanishes
for initial value of the electric field, E0.

These equations give also the maximum number of the pair density asymp-
totically attainable consistently with the above rate equation and energy con-
servation

n0 =
E2

0
8πme

. (9.8.23)

For simplicity dimensionless variables n = m3
e ñ, ρ = m4

e ρ̃, p = m4
e p̃,

E = EcẼ, and t = m−1
e t̃ are introduced. With these variables the system

of equations (9.8.18)-(9.8.21) takes the form

dñ
dt̃

= S̃,

dρ̃

dt̃
= ñẼṽ + γ̃S̃, (9.8.24)

dp̃
dt̃

= ñẼ + γ̃ṽS̃,

dẼ
dt̃

= −8πα

(
ñṽ +

γ̃S̃
Ẽ

)
,

where S̃ = 1
4π3 Ẽ2 exp

(
−π

Ẽ

)
, ṽ = p̃

ρ̃ and γ̃ =
(
1− ṽ2)−1/2, α = e2/(h̄c) as

before.
The system of equations (9.8.24) is solved numerically with the initial con-
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9 Plasma oscillations in electric fields

ditions n(0) = ρ(0) = v(0) = 0, and the electric field E(0) = E0.
In fig. 9.6, electric field strength, number density, velocity and Lorentz

gamma factor of electrons as functions of time, are presented for initial values
of the electric field E0 = 10Ec (left column) and E0 = 0.15Ec (right column).
Slowly decaying plasma oscillations develop in both cases. The half-life of
oscillations to be 103tc for E0 = 10Ec and 105tc for E0 = 0.8Ec are estimated
respectively. The period of the fist oscillation is 50tc and 3× 107tc, the Lorentz
factor of electrons and positrons in the first oscillation equals 75 and 3× 105

respectively for E0 = 10Ec and E0 = 0.15Ec. Therefore, in contrast to the case
E > Ec, for E < Ec plasma oscillations develop on a much longer timescale,
electrons and positrons reach extremely relativistic velocities.

In fig. 9.7 the characteristic length of oscillations is shown together with the
distance between the pairs at the moment of their creation. For constant elec-
tric field the formation length for the electron–positron pairs, or the quantum
tunneling length, is not simply me/(eE), as expected from a semi-classical
approximation, but [28, 46]

D∗ =
me

eE

(
Ec

E

)1/2

. (9.8.25)

Thus, given initial electric field strength one can define two characteristic
distances: D∗, the distance between created pairs, above which pair creation
is possible, and the length of oscillations, D = cτ, above which plasma os-
cillations occur in a uniform electric field. The length of oscillations is the
maximal distance between two turning points in the motion of electrons and
positrons (see fig. 9.7). From fig. 9.7 it is clear that D ≫ D∗. In the oscillation
phenomena the larger electric field is, the larger becomes the density of pairs
and therefore the back reaction, or the screening effect, is stronger. Thus the
period of oscillations becomes shorter. Note that the frequency of oscillation
is not equal to the plasma frequency, so it cannot be used as the measure of
the latter. Notice that for E ≪ Ec the length of oscillations becomes macro-
scopically large.

At fig. 9.8 maximum Lorentz gamma factor in the first oscillation is pre-
sented depending on initial value of the electric field. Since in the succes-
sive oscillations the maximal value of the Lorentz factor is monotonically de-
creasing (see fig. 9.6) It is concluded that for every initial value of the elec-
tric field there exists a maximum Lorentz factor attainable by the electrons
and positrons in the plasma. It is interesting to stress the dependence of the
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9.8 Electro-fluidodynamics of the pair plasma

Figure 9.6: Electric field strength, number density of electrons, their velocity
and Lorentz gamma factor depending on time with E0 = 10Ec (left column)
and E0 = 0.15Ec (right column). Electric field, number density and velocity of
positron are measured respectively in terms of the critical field Ec, Compton

volume λ3
C =

(
h̄

mec

)3
, and the speed of light c. The length of oscillation is

defined as D = cτ, where τ is the time needed for the first half-oscillation,
shown above.

987



9 Plasma oscillations in electric fields

Figure 9.7: Maximum length of oscillations (black curves) together with the
distance between electron and positron in a pair (red curve) computed from
(9.8.25), depending on initial value of electric field strength. The solid black
curve is obtained from solutions of exact equations (9.8.24), while the dotted
black curve corresponds to solutions of approximate equation (9.8.27).
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9.8 Electro-fluidodynamics of the pair plasma

Figure 9.8: Maximum Lorentz gamma factor γ reached at the first oscillation
depending on initial value of the electric field strength.
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9 Plasma oscillations in electric fields

Lorentz factor on initial electric field strength. The kinetic energy contribu-
tion becomes overwhelming in the E < Ec case. On the contrary, in the case
E > Ec the electromagnetic energy of the field goes mainly into the rest mass
energy of the pairs.

This diagram clearly shows that never in this process the test particle ap-
proximation for the electrons and positrons motion in uniform electric field
can be applied. Without considering back reaction on the initial field, elec-
trons and positrons moving in a uniform electric field would experience con-
stant acceleration reaching v ∼ c for E = Ec on the timescale tc and keep that
speed thereafter. Therefore, the back reaction effects in a uniform field are
essential both in the case of E > Ec and E < Ec.

The average rate of pair creation is compared for two cases: when the elec-
tric field value is constant in time (an external energy source keeps the field
unchanged) and when it is self-regulated by equations (9.8.24). The result
is represented in fig. 9.9. It is clear from fig. 9.9 that when the back reac-
tion effects are taken into account, the effective rate of the pair production is
smaller than the corresponding rate (9.8.1) in a uniform field E0. At the same
time, discharge of the field takes much longer time. In order to quantify this
effect we need to compute the efficiency of the pair production defined as
ϵ = n(tS)/n0 where tS is the time when pair creation with the constant rate
S(E0) would stop, and n0 is defined above, see (9.8.23). For E0 = Ec one finds
ϵ = 14%, while for E0 = 0.3Ec one has ϵ = 1%.

It is clear from the structure of the above equations that for E < Ec the
number of pairs is small, electrons and positrons are accelerated in electric
field and the conducting current dominates. Assuming electric field to be
weak, the polarization current is neglected in energy conservation (9.8.19)
and in Maxwell equation (9.8.21). This means energy density change due to
acceleration is much larger than the one due to pair creation,

Eenv≫ meγS. (9.8.26)

In this case oscillations equations (9.8.18)-(9.8.21) simplify. From (9.8.19) and
(9.8.20) one has ρ̇ = vṗ, and using (9.8.16) obtains v = ±1. This is the limit
when rest mass energy is much smaller than the kinetic energy, γ≫ 1.

One may therefore use only the first and the last equations from the above
set. Taking time derivative of the Maxwell equation one arrives to a single
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Figure 9.9: The average rate of pair production n/t is shown as function of
time (thick curve), comparing to its initial value S(E0) (thin line) for E0 = Ec.
The dashed line marks the time when the energy of electric field would have
exhaused if the rate kept constant.

second order differential equation

Ë +
2em4

e
π2

(
E
Ec

) ∣∣∣∣ E
Ec

∣∣∣∣ exp
(
−π

∣∣∣∣Ec

E

∣∣∣∣) = 0. (9.8.27)

Equation (9.8.27) is integrated numerically to find the length of oscillations
shown in fig. 9.7 for E < Ec. Notice that condition (9.8.26) means ultrarela-
tivistic approximation for electrons and positrons, so that although according
to (9.8.18) there is creation of pairs with rest mass 2m for each pair, the corre-
sponding increase of plasma energy is neglected, as can be seen from (9.8.26).

Now one can turn to qualitative properties of the system (9.8.18)–(9.8.21).
These nonlinear ordinary differential equations describe certain dynamical
system which can be studied by using methods of qualitative analysis of dy-
namical systems. The presence of the two integrals (9.8.17) and (9.8.22) allows
reduction of the system to two dimensions. It is useful to work with the vari-
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ables v and E. In these variables one has

dṽ
dt̃

=
(

1− ṽ2
)3/2

Ẽ, (9.8.28)

dẼ
dt̃

= −1
2

ṽ
(

1− ṽ2
)1/2 (

Ẽ2
0 − Ẽ2

)
− 8πα

S̃

Ẽ (1− ṽ2)
1/2 . (9.8.29)

Introducing the new time variable τ

dτ

dt̃
=
(

1− ṽ2
)−1/2

(9.8.30)

one arrives at

dṽ
dτ

=
(

1− ṽ2
)2

Ẽ, (9.8.31)

dẼ
dτ

= −1
2

ṽ
(

1− ṽ2
) (

Ẽ2
0 − Ẽ2

)
− 8πα

S̃
Ẽ

. (9.8.32)

Clearly the phase space is bounded by the two curves ṽ = ±1. Moreover,
physical requirement ρ ≥ 0 leads to existence of two other bounds Ẽ = ±Ẽ0.
This system has only one singular point in the physical region, of the type
focus at Ẽ = 0 and ṽ = 0.

The phase portrait of the dynamical system (9.8.31),(9.8.32) is represented
at fig. 9.10. Thus, every phase trajectory tends asymptotically to the only
singular point at Ẽ = 0 and ṽ = 0. This means oscillations stop only when
electric field vanishes. At that point clearly

ρ = men. (9.8.33)

is valid. i.e. all the energy in the system transforms just to the rest mass of
the pairs.

In order to illustrate details of the phase trajectories shown at fig. 9.10 only
1.5 cycles are plotted at fig. 9.11. One can see that the deviation from closed
curves, representing undamped oscillations and shown by dashed curves,
is maximal when the field peaks, namely when the pair production rate is
maximal.

The above treatment has been done by considering uniquely back reaction
of the electron–positron pairs on the external uniform electric field. The only
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Figure 9.10: Phase portrait of the two-dimensional dynamical system
(9.8.31),(9.8.32). Tildes are omitted. Notice that phase trajectories are not
closed curves and with each cycle they approach the point with Ẽ = 0 and
ṽ = 0.
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E

v

Figure 9.11: Phase trajectory for 1.5 cycles (thick curve) compared with solu-
tions where the Schwinger pair production is switched off (dashed curves).
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9.8 Electro-fluidodynamics of the pair plasma

source of damping of the oscillations is pair production, i.e. creation of mass.
As analysis shows the damping in this case is exponentially weak. How-
ever, since electrons and positrons are strongly accelerated in electric field
the bremsstrahlung radiation may give significant contribution to the damp-
ing of oscillations and further reduce the pair creation rate. Therefore, the
effective rate shown in fig. 9.9 will represent an upper limit. In order to esti-
mate the effect of bremsstrahlung, the classical formula for the radiation loss
in electric field is recalled

I =
2
3

e4

m2
e

E2 =
2
3

αm2
e

(
E
Ec

)2

. (9.8.34)

Thus the equations (9.8.19) and (9.8.20), generalized for bremsstrahlung, are

ρ̇ = E
(

env +
meγS

E

)
− 2

3
e4meE2, (9.8.35)

ṗ = enE + mevγS− 2
3

e4meE2v. (9.8.36)

while equations (9.8.18) and (9.8.21) remain unchanged. Assuming that new
terms are small, relations (9.8.17) and (9.8.22) are still approximately satisfied.

Now damping of the oscillations is caused by two terms:

γ̃

4π2 Ẽ2 exp
(
−π

Ẽ

)
and

2
3

αẼ2. (9.8.37)

The modified system of equations is integrated, taking into account radia-
tion loss, starting with E0 = 10Ec. The results are presented in Fig. 9.12 where
the sum of the energy of electric field and electron–positron pairs normalized
to the initial energy is shown as a function of time. The energy loss reaches
20 percent for 400 Compton times. Thus the effect of bremsstrahlung is as
important as the effect of collisions considered in [72] for E > Ec, leading
to comparable energy loss for pairs on the same timescale. For E < Ec one
expects that the damping due to bremsstrahlung dominates, but the correct
description in this case requires Vlasov–Boltzmann treatment [74].

The damping of the plasma oscillations due to electron–positron annihi-
lation into photons has been addressed in [72]. There it was found that the
system evolves towards an electron–positron-photon plasma reaching energy
equipartition. Such a system undergoes self-acceleration process following
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Figure 9.12: Losses of the energy due to classical bremsstrahlung radiation.
The energy density of the system of electrons, positrons and the electric field
normalized to the initial energy density is shown without (solid line) and
with (dashed line) the effect of bremsstrahlung.

the work of [399].
Therefore the following conclusions are reached:

• It is usually assumed that for E < Ec electron–positron pairs, created
by the vacuum polarization process, move as charged particles in exter-
nal uniform electric field reaching arbitrary large Lorentz factors. The
existence of plasma oscillations of the electron–positron pairs also for
E ≲ Ec is demonstrated. The corresponding results for E > Ec are
well known in the literature. For both cases the maximum Lorentz
factors γmax reached by electrons and positrons are determined. The
length of oscillations is 10 h̄/(mec) for E0 = 10Ec, and 107 h̄/(mec) for
E0 = 0.15Ec. The asymptotic behavior in time, t → ∞, of the plasma
oscillations by the phase portrait technique is also studied.

• For E > Ec the vacuum polarization process transforms the electromag-
netic energy of the field mainly in the rest mass of pairs, with moderate
contribution to their kinetic energy: for E0 = 10Ec one finds γmax = 76.
For E < Ec the kinetic energy contribution is maximized with respect to
the rest mass of pairs: γmax = 8× 105 for E0 = 0.15Ec.
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9.8 Electro-fluidodynamics of the pair plasma

• In the case of oscillations the effective rate of pair production is smaller
than the rate in uniform electric field constant in time, and consequently,
the discharge process lasts longer. The half-life of oscillations is 103tc for
E0 = 10Ec and 105tc for E0 = 0.8Ec. The efficiency of pair production
is computed with respect to the one in a uniform constant field. For
E = 0.3Ec the efficiency is reduced to one percent, decreasing further
for smaller initial electric field.

All these considerations apply to a uniform electric field unbounded in
space. The presence of a boundary or a gradient in electric field would re-
quire the use of partial differential equations, in contrast to the ordinary dif-
ferential equations used here. This topic needs further study. The effect of
bremsstrahlung for E > Ec is also estimated, and it is found that it represents
comparable contribution to the damping of the plasma oscillations caused by
collisions [72]. It is therefore clear, that the effect of oscillations introduces a
new and firm upper limit to the rate of pair production which would be fur-
ther reduced if one takes into account bremsstrahlung, collisions and bound-
ary effects.
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10 Thermalization of the mildly
relativistic pair plasma

An electron–positron plasma is of interest in many fields of physics and astro-
physics. In the early Universe [454,475] during the lepton era, ultrarelativistic
electron–positron pairs contributed to the matter contents of the Universe. In
GRBs electron–positron pairs play an essential role in the dynamics of expan-
sion [476,477], [399]. Indications exist on the presence of the pair plasma also
in active galactic nuclei [478], in the center of our Galaxy [479], around hypo-
thetical quark stars [480]. In the laboratory pair plasma is expected to appear
in the fields of ultraintense lasers [472].

In many stationary astrophysical sources the pair plasma is thought to be in
thermodynamic equilibrium. A detailed study of the relevant processes [481–
486], radiation mechanisms [487], possible equilibrium configurations [483,
488] and spectra [489] in an optically thin pair plasma has been carried out.
Particular attention has been given to collisional relaxation process [490,491],
pair production and annihilation [492], relativistic bremsstrahlung [493,494],
double Compton scattering [495, 496].

An equilibrium occurs if the sum of all reaction rates vanishes. For in-
stance, electron–positron pairs are in equilibrium when the net pair produc-
tion (annihilation) rate is zero. This can be achieved by variety of ways and
the corresponding condition can be represented as a system of algebraic equa-
tions [497]. However, the main assumption made in all the above mentioned
works is that the plasma is in thermodynamic equilibrium.

At the same time, in some cases considered above the pair plasma can be
optically thick. Although moderately thick plasmas have been considered
in the literature [498], only qualitative description is available for large opti-
cal depths. Assumption of thermal equilibrium is often adopted for rapidly
evolving systems without explicit proof [476, 477], [399, 499]. Then hydrody-
namic approximation is usually applied both for leptons and photons. How-
ever, particles may not be in equilibrium initially. Moreover, it is very likely
situation, especially in the early Universe or in transient events when the en-
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10 Thermalization of the mildly relativistic pair plasma

ergy is released on a very short timescale and there is not enough time for the
system to relax to thermal equilibrium configuration.

Ultrarelativistic expansion of GRB sources is unprecedented in astrophysics.
There are indications that relativistic jets in X-ray binaries have Lorentz fac-
tors γ ∼ 2− 10 while in active galactic nuclei γ ∼ 10− 20 [500], but some
bursts sources have γ ∼ 400 and possibly larger [501]. There is a consensus
in the literature that the acceleration required to reach ultrarelativistic veloc-
ity in astrophysical flows comes from the radiation pressure, namely from
photons and electron–positron pairs. Therefore, the source does not move as
a whole, but expands from a compact region, almost reaching the speed of
light. The bulk of radiation is emitted far from the region of formation of the
plasma, when it becomes transparent for photons, trapped initially inside by
the huge optical depth. Thus the plasma is optically thick at the moment of
its formation and intense interactions between electrons, positrons and pho-
tons take place in it. Even if initially the energy is released in the form of only
photons, or only pairs, the process of creation and annihilation of pairs soon
redistribute the energy between particles in such a way that the final state will
be a mixture of pairs and photons. The main question arises: what is the initial
state, prior to expansion, of the pair plasma? Is it in a kind of equilibrium and,
if so, is it thermal equilibrium, as expected from the optically thick plasma?
Stationary sources in astrophysics have enough time for such an equilibrium
to be achieved. On the contrary, for transient sources with the timescale of
expansion of the order of milliseconds it is not at all clear that equilibrium
can be reached.

In the literature there is no consensus on this point. Some authors con-
sidered thermal equilibrium as the initial state prior to expansion [399, 476],
while others did not [77]. In fact, the study of the pair plasma equilibrium
configurations in detail, performed in [488], cannot answer this question, be-
cause essentially nonequilibrium processes have to be considered.

Thus, observations provide motivation for theoretical analysis of physi-
cal conditions taking place in the sources of GRBs, and more generally, in
nonequilibrium optically thick pair plasma. Notice that there is substantial
difference between the ion-electron plasma on the one hand and electron–
positron plasma on the other hand. Firstly, the former is collisionless in the
wide range of parameters, while collisions are always essential in the latter.
Secondly, when collisions are important relevant interactions in the former
case are Coulomb scattering of particles which are usually described by the
classical Rutherford cross-section. In contrast, interactions in the pair plasma
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10.1 Qualitative description of the pair plasma

are described by quantum cross-sections even if the plasma itself can be still
considered as classical one.

The study reported in [74, 75] in the case of pure pair plasma clarified the
issue of initial state of the pair plasma in GRB sources. The numerical calcu-
lations show that the pair plasma quickly reach thermal equilibrium prior to
expansion, due to intense binary and triple collisions. In this Section details
about the computational scheme adopted in [74] are given. Generalization to
the presence of proton loading is given in [502].

10.1 Qualitative description of the pair plasma

First of all the domain of parameters characterizing the pair plasma consid-
ered in this Section is specified. It is convenient to use dimensionless param-
eters usually adopted for this purpose.

Mildly relativistic pair plasma is considered, thus the average energy per
particle ϵ brackets the electron rest mass energy

0.1 MeV ≲ ϵ ≲ 10 MeV. (10.1.1)

The lower boundary is required for significant concentrations of pairs, while
the upper boundary is set to avoid substantial production of other particles
such as muons.

The plasma parameter is g = (n−d3)−1, where d =
√

kBT−
4πe2n−

= c
ω

√
θ− is

the Debye length, kB is Boltzmann’s constant, n− and T− are electron number
density and temperature respectively, θ− = kBT−/(mec2) is dimensionless
temperature, ω =

√
4πe2n−/me is the plasma frequency. To ensure applica-

bility of kinetic approach it is necessary that the plasma parameter is small,
g ≪ 1. This condition means that kinetic energy of particles dominates their
potential energy due to mutual interaction. For the pair plasma considered
in this Section this condition is satisfied.

Further, the classicality parameter, defined as κ = e2/(h̄vr) = α/βr, where
vr = βrc is mean relative velocity of particles, see (10.7.12). The condition
κ ≫ 1 means that particles collisions can be considered classically, while for
κ ≪ 1 quantum description is required. Both for pairs and protons quantum
cross-sections are used since κ < 1.

The strength of screening of the Coulomb interactions is characterized by
the Coulomb logarithm Λ = medvr/h̄. Coulomb logarithm varies with mean
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10 Thermalization of the mildly relativistic pair plasma

particle velocity, and it cannot be set a constant as in most of studies of the
pair plasma.

Finally, pair plasma is considered with linear dimensions R exceeding the
mean free path of photons l = (n−σ)−1, where n− is concentration of elec-
trons and σ is the corresponding total cross-section. Thus the optical depth
τ = nσR ≫ 1 is large, and interactions between photons and other particles
have to be taken in due account. These interaction are reviewed in the next
section.

Note that natural parameter for perturbative expansion in the problem un-
der consideration is the fine structure constant α.

Pure pair plasma composed of electrons e−, positrons e+, and photons γ
is considered. It is assumed that pairs or photons appear by some physical
process in the region with a size R and on a timescale t < R/c. We assume
that distribution functions of particles depend on neither spatial coordinates
nor direction of momentum fi = fi(ϵ, t), i.e. isotropic in momentum space
and uniform plasma is considered.

To make sure that classical kinetic description is adequate the dimension-
less degeneracy temperature is estimated

θF =

[(
h̄

mec

)2 (
3π2n−

) 2
3
+ 1

]1/2

− 1, (10.1.2)

and compared with the estimated temperature in thermal equilibrium. With
initial conditions (10.1.1) the degeneracy temperature is always smaller than
the temperature in thermal equilibrium and therefore the classical kinetic ap-
proach is applied. Besides, since ideal plasma is considered with the plasma
parameter g ∼ 10−3 it is possible to use one-particle distribution functions.
These considerations justify the computational approach based on classical
relativistic Boltzmann equation. At the same time the right-hand side of
Boltzmann equations contains collisional integrals with quantum and not
classical matrix elements, as discussed above.

Relativistic Boltzmann equations [503], [504] in spherically symmetric case
are

1
c

∂ fi

∂t
+ βi

(
µ

∂ fi

∂r
+

1− µ2

r
∂ fi

∂µ

)
−∇U

∂ fi

∂p
= ∑

q

(
η

q
i − χ

q
i fi
)

, (10.1.3)
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10.1 Qualitative description of the pair plasma

where µ = cos ϑ, ϑ is the angle between the radius vector r from the origin
and the particle momentum p, U is a potential due to some external force,
βi = vi/c are particles velocities, fi(ϵ, t) are their distribution functions, the
index i denotes the type of particle, ϵ is their energy, and η

q
i and χ

q
i are the

emission and the absorption coefficients for the production of a particle of
type “i” via the physical process labeled by q. This is a coupled system of
partial–integro-differential equations. For homogeneous and isotropic dis-
tribution functions of electrons, positrons and photons Eqs. (10.1.3) reduce
to

1
c

∂ fi

∂t
= ∑

q

(
η

q
i − χ

q
i fi
)

, (10.1.4)

which is a coupled system of integro-differential equations. In (10.1.4) the
Vlasov term ∇U ∂ fi

∂p is explicitly neglected.

Therefore, the left-hand side of the Boltzmann equation is reduced to par-
tial derivative of the distribution function with respect to time. The right-
hand side contains collisional integrals, representing interactions between
electrons, positrons and photons.

Differential probability for all processes per unit time and unit volume [90]
is defined as

dw = c(2πh̄)4δ(4)
(
p f − pi

) ∣∣M f i
∣∣2 V ×

[
∏

b

h̄c
2ϵbV

] [
∏

a

dp′a
(2πh̄)3

h̄c
2ϵ′a

]
,

(10.1.5)

where p′a and ϵ′a are respectively momenta and energies of outgoing parti-
cles, ϵb are energies of particles before interaction, M f i are the corresponding
matrix elements, δ(4) stands for energy-momentum conservation, V is the
normalization volume. The matrix elements are related to the scattering am-
plitudes by

M f i =

[
∏

b

h̄c
2ϵbV

] [
∏

a

h̄c
2ϵ′aV

]
Tf i. (10.1.6)

As example consider absorption coefficient for Compton scattering which
is given by

χfle±→fl′e±′ fγ =
∫

dk′dpdp′wk′,p′;k,p fγ(k, t) f±(p, t), (10.1.7)
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10 Thermalization of the mildly relativistic pair plasma

where p and k are momenta of electron (positron) and photon respectively,
dp = dϵ±doϵ2

±β±/c3, dk′ = dϵ′γϵ′2γ do′γ/c3 and the differential probability
wk′,p′;k,p is given by (10.5.3).

In (10.1.7) one can perform one integration over dp′∫
dp′δ(k + p− k′ − p′)→ 1, (10.1.8)

but it is necessary to take into account the momentum conservation in the
next integration over dk′, so∫

dϵ′γδ(ϵγ + ϵ± − ϵ′γ − ϵ′±) = (10.1.9)

=
∫

d(ϵ′γ + ϵ′±)
1

|∂(ϵ′γ + ϵ′±)/∂ϵ′γ|
δ(ϵγ + ϵ± − ϵ′γ − ϵ′±)→

1
|∂(ϵ′γ + ϵ′±)/∂ϵ′γ|

≡ Jcs,

where the Jacobian of the transformation is

Jcs =
1

1− β′±b′γ·b′±
, (10.1.10)

where bi = pi/p, b′i = p′i/p′, b′± = (β±ϵ±b± + ϵγbγ − ϵ′γb′γ)/(β′±ϵ′±).
Finally, for the absorption coefficient

χcs fγ = −
∫

do′γdp
ϵ′γ|M f i|2h̄2c2

16ϵ±ϵγϵ′±
Jcs fγ(k, t) f±(p, t), (10.1.11)

where the matrix element here is dimensionless. This integral is evaluated
numerically.

For all binary interactions exact QED matrix elements are used which can
be found in the standard textbooks, e.g. in [90], [322, 505], and are given
below.

In order to account for charge screening in Coulomb scattering the mini-
mal scattering angles are introduced following [506]. This allows to apply
the same scheme for the computation of emission and absorption coefficients
even for Coulomb scattering, while many treatments in the literature use
Fokker-Planck approximation [507].

For such a dense plasma collisional integrals in (10.1.4) should include
not only binary interactions, having order α2 in Feynman diagrams, but also
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10.1 Qualitative description of the pair plasma

triple ones, having order α3 [90]. Consider relativistic bremsstrahlung

e1 + e2 ↔ e′1 + e′2 + γ′. (10.1.12)

For the time derivative, for instance, of the distribution function f2 in the
direct and in the inverse reactions (10.1.12) one has

ḟ2 =
∫

dp1dp′1dp′2dk′
[
Wp′1,p′2,k′;p1,p2

f ′1 f ′2 f ′k −Wp1,p2;p′1,p′2,k′ f1 f2

]
= (10.1.13)∫

dp1dp′1dp′2dk′
c6h̄3

(2π)2

δ(4)(Pf − Pi)|M f i|2

25ϵ1ϵ2ϵ′1ϵ′2ϵ′γ

[
f ′1 f ′2 f ′k −

1
(2πh̄)3 f1 f2

]
,

where

dp1dp2Wp′1,p′2,k′;p1,p2
≡ V2dw1,

dp′1dp′2dk′Wp1,p2;p′1,p′2,k′ ≡ Vdw2,

and dw1 and dw2 are differential probabilities given by (10.1.5). The matrix
element here has dimensions of the length squared.

In the case of the distribution functions (10.1.18), see below, there are mul-
tipliers proportional to exp φ

kBT in front of the integrals, where φ are chemical
potentials. The calculation of emission and absorption coefficients is then
reduced to the well known thermal equilibrium case [497]. In fact, since reac-
tion rates of triple interactions are α times smaller than binary reaction rates,
it is expected that binary reactions come to detailed balance first. Only when
binary reactions are all balanced, triple interactions become important. In
addition, when binary reactions come into balance, distribution functions al-
ready acquire the form (10.1.18). Although there is no principle difficulty
in computations using exact matrix elements for triple reactions as well, the
simplified scheme allows for much faster numerical computation.

All possible binary and triple interactions between electrons, positrons and
photons are considered as summarized in Tab. 10.1.

Each of the above mentioned reactions is characterized by the correspond-
ing timescale and optical depth. For Compton scattering of a photon, for
instance

tcs =
1

σTn±c
, τcs = σTn±R, (10.1.14)
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10 Thermalization of the mildly relativistic pair plasma

Binary interactions Radiative and pair producing variants
Reactions with pairs

Møller and Bhabha scattering Bremsstrahlung
e±1 e±2 −→ e±1

′e±2
′ e±1 e±2 ↔e±′1 e±′2 γ

e±e∓ −→ e±′e∓′ e±e∓↔e±′e∓′γ
Single Compton scattering Double Compton scattering

e±γ−→e±γ′ e±γ↔e±′γ′γ′′

Pair production Radiative pair production
and annihilation and three photon annihilation

γγ′↔e±e∓ γγ′↔e±e∓γ′′

e±e∓↔γγ′γ′′

e±γ↔e±′e∓e±′′

Table 10.1: Microphysical processes in the pair plasma.

where σT = 8π
3 α2( h̄

mec )
2 is the Thomson cross-section. There are two timescales

in the problem that characterize the condition of detailed balance between
direct and inverse reactions, tcs for binary and α−1tcs for triple interactions
respectively.

Notice, that electron–positron pair can annihilate into neutrino channel
with the main contribution from the reaction e±e∓ −→νν̄. By this process
the energy could leak out from the plasma if it is transparent for neutrinos.
The optical depth and energy loss for this process can be estimated follow-
ing [508] by using Fermi theory, see also [509, 510] for calculations within
electroweak theory.

The optical depth is given by (10.1.14) with the cross-section

σνν̄ ∼
g2

π

(
h̄

mec

)2

, (10.1.15)

where g ≃ 10−12 is the weak interaction coupling constant and it is assumed
that typical energies of electron and positron are ∼ mec2 and their relative
velocities v ∼ c. Numerically σνν̄/σT = 3

8π2 (g/α)2 ≃ 7 10−22. For astro-
physical sources the plasma may be both transparent and opaque to neutrino
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10.1 Qualitative description of the pair plasma

production. The energy loss when pairs are relativistic and nondegenerate is

dρ

dt
=

128g2

π5 ζ(5)ζ(4)θ9mec2
(mec

h̄

)3
(

mec2

h̄

)
. (10.1.16)

The ratio between the energy lost due to neutrinos and the energy of pho-
tons in thermal equilibrium is then

1
ργ

dρ

dt
∆t =

128g2

π3 ζ(5)ζ(4)θ5
(

mec2

h̄

)
∆t ≃ 3.6 10−3θ5 ∆t

1 sec
. (10.1.17)

For astrophysical sources with the dynamical time ∆t ∼ 10−3 sec, the energy
loss due to neutrinos becomes relevant [511] for high temperatures θ > 10.
However, on the timescale of relaxation to thermal equilibrium ∆t ∼ 10−12

sec the energy loss is negligible.
Starting from arbitrary distribution functions a common development is

found: at the time tcs the distribution functions always have evolved in a
functional form on the entire energy range, and depend only on two param-
eters. In fact it is found for the distribution functions

fi(ε) =
2

(2πh̄)3 exp
(
− ε− νi

θi

)
, (10.1.18)

with chemical potential νi ≡ φi
mec2 and temperature θi ≡ kBTi

mec2 , where ε ≡ ϵ
mec2

is the energy of the particle. Such a configuration corresponds to a kinetic
equilibrium [76, 475, 507] in which all particles acquire a common tempera-
ture and nonzero chemical potentials. Triple interactions become essential for
t > tcs, after the establishment of kinetic equilibrium. In strict mathematical
sense the sufficient condition for reaching thermal equilibrium is when all di-
rect reactions are exactly balanced with their inverse. Therefore, in principle,
not only triple, but also four-particle, five-particle and so on reaction have
to be accounted for in equation (10.1.4). The timescale for reaching thermal
equilibrium will be then determined by the slowest reaction which is not bal-
anced with its inverse. The necessary condition here is the detailed balance
at least in triple interactions, since binary reactions do not change chemical
potentials at all.

Notice that similar method to ours was applied in [507] in order to compute
spectra of particles in kinetic equilibrium. However, it was never shown how
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10 Thermalization of the mildly relativistic pair plasma

particles evolve down to thermal equilibrium.

In the case of pure pair plasma chemical potentials in (10.1.18) represent
deviations from the thermal equilibrium through the relation

ν = θ ln(n/nth), (10.1.19)

where nth are concentrations of particles in thermal equilibrium.

10.2 The discretization procedure and the
computational scheme

In order to solve equations (10.1.4) a finite difference method is used by intro-
ducing a computational grid in the phase space to represent the distribution
functions and to compute collisional integrals following [512]. The goal is
to construct the scheme implementing energy, baryon number and electric
charge conservation laws. For this reason instead of distribution functions fi,
spectral energy densities are used

Ei(ϵi) =
4πϵ3

i βi fi

c3 , (10.2.1)

where βi =
√

1− (mic2/ϵi)2, in the phase space ϵi. Then

ϵi fi(p, t)drdp =
4πϵ3βi fi

c3 rdϵi = Eidrdϵi (10.2.2)

is the energy in the volume of the phase space drdp. The particle density is

ni =
∫

fidp =
∫ Ei

ϵi
dϵi, dni = fidp, (10.2.3)

while the corresponding energy density is

ρi =
∫

ϵi fidp =
∫

Eidϵi.
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10.3 Conservation laws

Boltzmann equations (10.1.4) can be rewritten in the form

1
c

∂Ei

∂t
= ∑

q
(η̃

q
i − χ

q
i Ei), (10.2.4)

where η̃
q
i = (4πϵ3

i βi/c3)η
q
i .

The computational grid for phase space is {ϵi, µ, ϕ}, where µ = cos ϑ, ϑ
and ϕ are angles between radius vector r and the particle momentum p. The
zone boundaries are ϵi,ω∓1/2, µk∓1/2, ϕl∓1/2 for 1 ≤ ω ≤ ωmax, 1 ≤ k ≤ kmax,
1 ≤ l ≤ lmax. The length of the ith interval is ∆ϵi,ω ≡ ϵi,ω+1/2 − ϵi,ω−1/2. On
the finite grid the functions (10.2.1) become

Ei,ω ≡
1

∆ϵi,ω

∫
∆ϵi,ω

dϵEi(ϵ). (10.2.5)

Now the collisional integrals in (10.2.4) are replaced by the corresponding
sums.

After this procedure the set of ordinary differential equations (ODE’s) is
obtained, instead of the system of partial differential equations for the quan-
tities Ei,ω to be solved. There are several characteristic times for different
processes in the problem, and therefore the system of differential equations
is stiff. (Eigenvalues of Jacobi matrix differs significantly, and the real parts
of eigenvalues are negative.) Gear’s method [513] is used to integrate ODE’s
numerically. This high order implicit method was developed for the solution
of stiff ODE’s.

In this method exact energy conservation law is satisfied. For binary inter-
actions the particles number conservation law is satisfied as interpolation of
grid functions Ei,ω inside the energy intervals is adopted.

10.3 Conservation laws

Conservation laws consist of charge and energy conservations. In addition,
in binary reactions particle number is conserved.

Energy conservation law can be rewritten for the spectral density

d
dt ∑

i
ρi = 0, or

d
dt ∑

i,ω
Yi,ω = 0, (10.3.1)

1009



10 Thermalization of the mildly relativistic pair plasma

where

Yi,ω =
∫ ϵi,ω+∆ϵi,ω/2

ϵi,ω−∆ϵi,ω/2
Eidϵ. (10.3.2)

Particle’s conservation law in binary reactions reduces to

d
dt ∑

i
ni = 0, or

d
dt ∑

i,ω

Yi,ω

ϵi,ω
= 0. (10.3.3)

For electrically neutral plasma considered in this Section charge conservation
implies

n− = n+. (10.3.4)

10.4 Determination of temperature and chemical
potentials in kinetic equilibrium

Consider distribution functions for photons and pairs in the most general
form (10.1.18). If one supposes that reaction rate for the Bhabha scattering
vanishes, i.e. there is equilibrium with respect to reaction

e+ + e− ↔ +e+′ + e−′, (10.4.1)

and the corresponding condition can be written in the following way

f+(1− f+′) f−(1− f−′) = f+′(1− f+) f−′(1 + f−), (10.4.2)

where Bose-Einstein enhancement along with Pauli blocking factors are taken
into account, it can be shown that electrons and positrons have the same tem-
perature

θ+ = θ− ≡ θ±, (10.4.3)

and they have arbitrary chemical potentials.
With (10.4.3) analogous consideration for the Compton scattering

e± + γ↔ +e±′ + γ′, (10.4.4)

gives
f±(1− f±′) fγ(1 + fγ

′) = f±′(1− f±) fγ
′(1 + fγ), (10.4.5)

1010



10.4 Determination of temperature and chemical potentials in kinetic
equilibrium

Interaction Parameters of DFs
I e+e− scattering θ+ = θ−, ∀ν+,ν−
II e±γ scattering θγ = θ±, ∀νγ,ν±
III pair production ν+ + ν− = 2νγ, if θγ = θ±
IV Tripe interactions νγ, ν± = 0, if θγ = θ±

Table 10.2: Relations between parameters of equilibrium DFs fulfilling de-
tailed balance conditions for the reactions shown in Tab. 10.1.

and leads to the same temperature of pairs and photons

θ± = θγ ≡ θk, (10.4.6)

with arbitrary chemical potentials. If, in addition, reaction rate in the pair
creation and annihilation process

e± + e∓ ↔ γ + γ′ (10.4.7)

vanishes too, i.e. there is equilibrium with respect to pair production and
annihilation, with the corresponding condition,

f+ f−(1 + fγ)(1 + fγ
′) = fγ fγ

′(1− f+)(1− f−), (10.4.8)

it turns out that also chemical potentials for pairs and photons satisfy the
following condition for the chemical potentials

ν+ + ν− = 2νγ. (10.4.9)

However, since in general νγ ̸= 0 the condition (10.4.9) does not imply ν+ =
ν−.

In general, the detailed balance conditions for different reactions lead to
relations between temperatures and chemical potentials summarized in table
10.2.

Kinetic equilibrium is first established simultaneously for electrons, positrons
and photons. Thus they reach the same temperature, but with chemical po-
tentials different from zero. Later on, protons reach the same temperature.

In order to find temperatures and chemical potentials the following con-
straints are implemented: energy conservation (10.3.1), particle number con-
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10 Thermalization of the mildly relativistic pair plasma

servation (10.3.3), charge conservation (10.3.4), condition for the chemical po-
tentials (10.4.9).

Given (10.1.18) it is found for photons

ργ

nγmec2 = 3θγ, nγ =
1

V0
exp

(
νγ

θγ

)
2θ3

γ, (10.4.10)

and for pairs

ρ±
n±mec2 = j2(θ±), n± =

1
V0

exp
(

ν±
θ±

)
j1(θ±), (10.4.11)

where the Compton volume is

V0 =
1

8π

(
2πh̄
mec

)3

(10.4.12)

and functions j1 and j2 are defined as

j1(θ) = θK2(θ
−1)→

{ √
π
2 e−

1
θ θ3/2, θ → 0

2θ3, θ → ∞
, (10.4.13)

j2(θ) =
3K3(θ

−1) + K1(θ
−1)

4K2(θ−1)
→
{

1 + 3θ
2 , θ → 0

3θ, θ → ∞
. (10.4.14)

For pure electron–positron-photon plasma in kinetic equilibrium, summing
up energy densities in (10.4.10),(10.4.11) and using (10.4.3),(10.4.6) and (10.4.9)
it is found

∑
e+,e−,γ

ρi =
2mec2

V0
exp

(
νk

θk

) [
3θ4 + j1(θk)j2(θk)

]
, (10.4.15)

and analogously for number densities

∑
e+,e−,γ

ni =
2

V0
exp

(
νk

θk

) [
θ3

k + j1(θk)
]

. (10.4.16)

Therefore, two unknowns, νk and θk can be found.
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10.5 Binary interactions

In thermal equilibrium νγ vanishes and one has

ν+ = ν− = 0. (10.4.17)

10.5 Binary interactions

In this section the expressions for emission and absorption coefficients in
Compton scattering, pair creation and annihilation with two photons, Møller
and Bhabha scattering are obtained.

10.5.1 Compton scattering

The time evolution of the distribution functions of photons and pair particles
due to Compton scattering may be described by [514], [515](

∂ fγ(k, t)
∂t

)
γe±→γ′e±′

=
∫

dk′dpdp′Vwk′,p′;k,p×

×[ fγ(k′, t) f±(p′, t)− fγ(k, t) f±(p, t)], (10.5.1)

(
∂ f±(p, t)

∂t

)
γe±→γ′e±′

=
∫

dkdk′dp′Vwk′,p′;k,p×

×[ fγ(k′, t) f±(p′, t)− fγ(k, t) f±(p, t)], (10.5.2)

where

wk′,p′;k,p =
h̄2c6

(2π)2V
δ(ϵγ − ϵ± − ϵ′γ − ϵ′±)δ(k + p− k′ − p′)

|M f i|2

16ϵγϵ±ϵ′γϵ′±
,

(10.5.3)
is the probability of the process,

|M f i|2 = 26π2α2

[
m2

e c2

s−m2
e c2 +

m2
e c2

u−m2
e c2 +

(
m2

e c2

s−m2
e c2 +

m2
e c2

u−m2
e c2

)2

−1
4

(
s−m2

e c2

u−m2
e c2 +

u−m2
e c2

s−m2
e c2

)]
, (10.5.4)
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10 Thermalization of the mildly relativistic pair plasma

is the square of the matrix element, s = (p+ k)2 and u = (p− k′)2 are in-
variants, k = (ϵγ/c)(1, eγ) and p = (ϵ±/c)(1, β±e±) are energy-momentum
four vectors of photons and electrons, respectively, dp = dϵ±doϵ2

±β±/c3,
dk′ = dϵ′γϵ′2γ do′γ/c3 and do = dµdϕ.

The energies of photon and positron (electron) after the scattering are

ϵ′γ =
ϵ±ϵγ(1− β±b±·bγ)

ϵ±(1− β±b±·b′γ) + ϵγ(1− bγ·b′γ)
, ϵ′± = ϵ± + ϵγ − ϵ′γ , (10.5.5)

bi = pi/p, b′i = p′i/p′, b′± = (β±ϵ±b± + ϵγbγ − ϵ′γb′γ)/(β′±ϵ′±).

For photons, the absorption coefficient (10.1.11) in the Boltzmann equa-
tions (10.1.4) is

χ
γe±→γ′e±′
γ fγ = −1

c

(
∂ fγ

∂t

)abs

γe±→γ′e±′
=
∫

dn±do′γ Jcs
ϵ′γ|M f i|2h̄2c2

16ϵ±ϵγϵ′±
fγ, (10.5.6)

where dni = dϵidoiϵ
2
i βi fi/c3 = dϵidoiEi/(2πϵi).

From equations (10.5.1) and (10.5.6), the absorption coefficient for photon
energy density Eγ averaged over the ϵ, µ-grid with zone numbers ω and k is

(χE)γe±→γ′e±′
γ,ω ≡ 1

∆ϵγ,ω

∫
ϵγ∈∆ϵγ,ω

dϵγdµγ(χE)γe±→γ′e±′
γ =

=
1

∆ϵγ,ω

∫
ϵγ∈∆ϵγ,ω

dnγdn±do′γ Jcs
ϵ′γ|M f i|2h̄2c2

16ϵ±ϵ′±
, (10.5.7)

where the Jacobian of the transformation is

Jcs =
ϵ′γϵ′±

ϵγϵ± (1− β±bγ·b±)
. (10.5.8)

Similar integrations can be performed for the other terms of equations (10.5.1),
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10.5 Binary interactions

(10.5.2), and

η
γe±→γ′e±′
γ,ω =

1
∆ϵγ,ω

∫
ϵ′γ∈∆ϵγ,ω

dnγdn±do′γ Jcs
ϵ′2γ |M f i|2h̄2c2

16ϵ±ϵγϵ′±
, (10.5.9)

η
γe±→γ′e±′
±,ω =

1
∆ϵ±,ω

∫
ϵ′±∈∆ϵ±,ω

dnγdn±do′γ Jcs
ϵ′γ|M f i|2h̄2c2

16ϵ±ϵγ
, (10.5.10)

(χE)γe±→γ′e±′
±,ω =

1
∆ϵ±,ω

∫
ϵ±∈∆ϵ±,ω

dnγdn±do′γ Jcs
ϵ′γ|M f i|2h̄2c2

16ϵγϵ′±
. (10.5.11)

In order to perform integrals (10.5.7)-(10.5.11) numerically over ϕ (0 ≤
ϕ ≤ 2π) a uniform grid ϕl∓1/2 is introduced with 1 ≤ l ≤ lmax and ∆ϕl =
(ϕl+1/2 − ϕl−1/2)/2 = 2π/lmax. It is assumed that any function of ϕ in equa-
tions (10.5.7)-(10.5.11) in the interval ∆ϕj is equal to its value at ϕ = ϕj =
(ϕl−1/2 + ϕl+1/2)/2. It is necessary to integrate over ϕ only once at the begin-
ning of calculations. The number of intervals of the ϕ-grid depends on the
average energy of particles and is typically taken as lmax = 2kmax = 64.

10.5.2 Pair creation and annihilation

The rates of change of the distribution function due to pair creation and an-
nihilation are(

∂ fγj(ki, t)
∂t

)
γ1γ2→e−e+

= −
∫

dkjdp−dp+Vwp−,p+;k1,k2 fγ1(k1, t) fγ2(k2, t) ,

(10.5.12)(
∂ fγi(ki, t)

∂t

)
e−e+→γ1γ2

=
∫

dkjdp−dp+Vwk1,k2;p−,p+
f−(p−, t) f+(p+, t) ,

(10.5.13)
for i = 1, j = 2, and for j = 1, i = 2.(

∂ f±(p±, t)
∂t

)
γ1γ2→e−e+

=
∫

dp∓dk1dk2Vwp−,p+;k1,k2 fγ(k1, t) fγ(k2, t) ,

(10.5.14)(
∂ f±(p±, t)

∂t

)
e−e+→γ1γ2

= −
∫

dp∓dk1dk2Vwk1,k2;p−,p+
f−(p−, t) f+(p+, t) ,

(10.5.15)
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10 Thermalization of the mildly relativistic pair plasma

where

wp−,p+;k1,k2 =
h̄2c6

(2π)2V
δ(ϵ−+ ϵ+− ϵ1− ϵ2)δ(p−+p+−k1−k2)

|M f i|2

16ϵ−ϵ+ϵ1ϵ2
.

(10.5.16)
Here, the matrix element |M f i|2 is given by equation (10.5.4) with the new
invariants s = (p− − k1)

2 and u = (p− − k2)
2, see [90].

The energies of photons created via annihilation of a e± pair are

ϵ1(b1) =
m2c4 + ϵ−ϵ+(1− β−β+b−·b+)

ϵ−(1− β−b−·b1) + ϵ+(1− β+b+·b1)
, ϵ2(b1) = ϵ− + ϵ+ − ϵ1 ,

(10.5.17)
while the energies of pair particles created by two photons are found from

ϵ−(b−) =
B∓
√

B2 − AC
A

, ϵ+(b−) = ϵ1 + ϵ2 − ϵ− , (10.5.18)

where A = (ϵ1 + ϵ2)
2 − [(ϵ1b1 + ϵ2b2)·b−]2, B = (ϵ1 + ϵ2)ϵ1ϵ2(1− b1·b2),

C = m2
e c4[(ϵ1b1 + ϵ2b2)·b−]2 + ϵ2

1ϵ2
2(1− b1·b2)

2. Only one root in equation
(10.5.18) has to be chosen. From energy-momentum conservation

k1 + k2 − p− = p+, (10.5.19)

taking square from the energy part leads to

ϵ2
1 + ϵ2

2 + ϵ2
− + 2ϵ1ϵ2 − 2ϵ1ϵ− − 2ϵ2ϵ− = ϵ2

+, (10.5.20)

and taking square from the momentum part

ϵ2
1 + ϵ2

2 + ϵ2
−β2
− + 2ϵ1ϵ2b1·b2 − 2ϵ1ϵ−β−b1·b− − 2ϵ2ϵ−β−b2·b− = (ϵ+β+)

2.
(10.5.21)

There are no additional roots because of the arbitrary e+

ϵ1ϵ2(1− b1·b2)− ϵ1ϵ−(1− β−b1·b−)− ϵ2ϵ−(1− βb2·b−) = 0, (10.5.22)
ϵ−β−(ϵ1b1 + ϵ2b2)·b− = ϵ−(ϵ1 + ϵ2)− ϵ1ϵ2(1− b1·b2).
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10.5 Binary interactions

Eliminating β it is obtained

ϵ2
1ϵ2

2(1− b1·b2)
2 − 2ϵ1ϵ2(1− b1·b2)(ϵ1 + ϵ2)ϵ−+

+
{
(ϵ1 + ϵ2)

2 − [(ϵ1b1 + ϵ2b2)·b−]2
}

ϵ2
− =

= [(ϵ1b1 + ϵ2b2)·b−] (−m2), (10.5.23)

Therefore, the condition to be checked reads

ϵ−β− [(ϵ1b1 + ϵ2b2)·b−]2 = [ϵ−(ϵ1 + ϵ2)− (ϵ1ϵ2)(1− b1·b2)]×
× [(ϵ1b1 + ϵ2b2)·b−] ≥ 0. (10.5.24)

Finally, integration of equations (10.5.12)-(10.5.15) yields

η
e−e+→γ1γ2
γ,ω =

1
∆ϵγ,ω

(∫
ϵ1∈∆ϵγ,ω

d2n± Jca
ϵ2

1|M f i|2h̄2c2

16ϵ−ϵ+ϵ2

)
+

+
1

∆ϵγ,ω

(∫
ϵ2∈∆ϵγ,ω

d2n± Jca
ϵ1|M f i|2h̄2c2

16ϵ−ϵ+

)
, (10.5.25)

(χE)e−e+→γ1γ2
e,ω =

1
∆ϵe,ω

(∫
ϵ−∈∆ϵe,ω

d2n± Jca
ϵ1|M f i|2h̄2c2

16ϵ+ϵ2

)
+

+
1

∆ϵe,ω

(∫
ϵ+∈∆ϵe,ω

d2n± Jca
ϵ1|M f i|2h̄2c2

16ϵ−ϵ2

)
, (10.5.26)

(χE)γ1γ2→e−e+
γ,ω =

1
∆ϵγ,ω

(∫
ϵ1∈∆ϵγ,ω

d2nγ Jca
ϵ−β−|M f i|2h̄2c2

16ϵ2ϵ+

)
+

+
1

∆ϵγ,ω

(∫
ϵ2∈∆ϵγ,ω

d2nγ Jca
ϵ−β−|M f i|2h̄2c2

16ϵ1ϵ+

)
, (10.5.27)

η
γ1γ2→e−e+
e,ω =

1
∆ϵe,ω

(∫
ϵ−∈∆ϵe,ω

d2nγ Jca
ϵ2
−β−|M f i|2h̄2c2

16ϵ1ϵ2ϵ+

)
+

+
1

∆ϵe,ω

(∫
ϵ+∈∆ϵe,ω

d2nγ Jca
ϵ−β−|M f i|2h̄2c2

16ϵ1ϵ2

)
, (10.5.28)

where d2n± = dn−dn+do1, d2nγ = dnγ1dnγ2do−, dn± = dϵ±do±ϵ2
±β± f±,
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10 Thermalization of the mildly relativistic pair plasma

dnγ1,2 = dϵ1,2do1,2ϵ2
1,2 fγ1,2 and the Jacobian is

Jca =
ϵ+β−

(ϵ+ + ϵ−) β− − (ϵ1b1 + ϵ2b2) ·b−
. (10.5.29)

10.5.3 Møller scattering of electrons and positrons

The time evolution of the distribution functions of electrons (or positrons) is
described by(

∂ fi(pi, t)
∂t

)
e1e2→e′1e′2

=
∫

dpjdp′1dp′2Vwp′1,p′2;p1,p2
×

×[ f1(p′1, t) f2(p′2, t)− f1(p1, t) f2(p2, t)] , (10.5.30)

with i = 1, j = 2, and with j = 1, i = 2, and where

wp′1,p′2;p1,p2
=

h̄2c6

(2π)2V
δ(ϵ1 + ϵ2 − ϵ′1 − ϵ′2)δ(p1 + p2 − p′1 − p′2)

|M f i|2

16ϵ1ϵ2ϵ′1ϵ′2
,

(10.5.31)

|M f i|2 = 26π2α2
{

1
t2

[
s2 + u2

2
+ 4m2

e c2(t−m2
e c2)

]
+ (10.5.32)

+
1
u2

[
s2 + t2

2
+ 4m2

e c2(u−m2
e c2)

]
+ (10.5.33)

+
4
tu

( s
2
−m2

e c2
) ( s

2
− 3m2

e c2
)}

, (10.5.34)

with s = (p1 + p2)
2 = 2(m2

e c2 + p1p2), t = (p1 − p′1)
2 = 2(m2

e c2 − p1p
′
1), and

u = (p1 − p′2)
2 = 2(m2

e c2 − p1p
′
2) [90].

The energies of final state particles are given by (10.5.18) with new coef-
ficients Ã = (ϵ1 + ϵ2)

2 − (ϵ1β1b1·b′1 + ϵ2β2b2·b′1)2, B̃ = (ϵ1 + ϵ2)[m2
e c4 +

ϵ1ϵ2(1− β1β2b1b2)], and C̃ = m2
e c4(ϵ1β1b1·b′1 + ϵ2β2b2·b′1)2 +[m2

e c4 + ϵ1ϵ2(1−
β1β2b1·b2)]

2. The condition to be checked is[
ϵ′1(ϵ1 + ϵ2)−m2

e c4 − (ϵ1ϵ2)(1− β1β2b1·b2)
] [

(ϵ1β1b1 + ϵ2β2b2)·b′1
]
≥ 0.

(10.5.35)
Integration of equations (10.5.30), similar to the case of Compton scattering
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10.5 Binary interactions

in Section 10.5.1 yields

η
e1e2→e′1e′2
e,ω =

1
∆ϵe,ω

(∫
ϵ′1∈∆ϵe,ω

d2nJms
ϵ′21 β′1|M f i|2h̄2c2

16ϵ1ϵ2ϵ′2

)
+

+
1

∆ϵe,ω

(∫
ϵ′2∈∆ϵe,ω

d2nJms
ϵ′1β′1|M f i|2h̄2c2

16ϵ1ϵ2

)
, (10.5.36)

(χE)e1e2→e′1e′2
e,ω =

1
∆ϵe,ω

(∫
ϵ1∈∆ϵe,ω

d2nJms
ϵ′1β′1|M f i|2h̄2c2

16ϵ2ϵ′2

)
+

+
1

∆ϵe,ω

(∫
ϵ2∈∆ϵe,ω

d2nJms
ϵ′1β′1|M f i|2h̄2c2

16ϵ1ϵ′2

)
, (10.5.37)

where d2n = dn1dn2do′1, dn1,2 = dϵ1,2do1,2ϵ2
1,2β1,2 f1,2 , and the Jacobian is

Jms =
ϵ′2β′2

(ϵ′1 + ϵ′2)β′1 − (ϵ1β1b1 + ϵ2β2b2)·b′1
. (10.5.38)

10.5.4 Bhaba scattering of electrons on positrons

The time evolution of the distribution functions of electrons and positrons
due to Bhaba scattering is described by

(
∂ f±(p±, t)

∂t

)
e−e+→e−′e+′

=
∫

dp∓dp′−dp′+Vwp′−,p′+;p−,p+
×

×[ f−(p′−, t) f+(p′+, t)− f−(p−, t) f+(p+, t)], (10.5.39)

where

wp′−,p′+;p−,p+
=

h̄2c6

(2π)2V
δ(ϵ−+ ϵ+− ϵ′−− ϵ′+)δ(p−+p+−p′−−p′+)

|M f i|2

16ϵ−ϵ+ϵ′−ϵ′+
,

(10.5.40)
and |M f i| is given by the equation (10.5.34), but the invariants are s = (p− −
p′+)

2, t = (p+ − p′+)
2 and u = (p− + p+)2. The final energies ϵ′−, ϵ′+ are

functions of the outgoing particle directions in a way similar to that in Section
10.5.3, see also [90].
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10 Thermalization of the mildly relativistic pair plasma

Integration of equations (10.5.39) yields

ηe−e+→e−′e+′
±,ω =

1
∆ϵ±,ω

(∫
ϵ′−∈∆ϵe,ω

d2n′± Jbs
ϵ′2−β′−|M f i|2h̄2c2

16ϵ−ϵ+ϵ′+

)
+

+
1

∆ϵ±,ω

(∫
ϵ′+∈∆ϵe,ω

d2n′± Jbs
ϵ′−β′−|M f i|2h̄2c2

16ϵ−ϵ+

)
, (10.5.41)

(χE)e−e+→e−′e+′
±,ω =

1
∆ϵ±,ω

(∫
ϵ−∈∆ϵe,ω

d2n′± Jbs
ϵ′−β′−|M f i|2h̄2c2

16ϵ+ϵ′+

)
+

+
1

∆ϵ±,ω

(∫
ϵ+∈∆ϵe,ω

d2n′± Jbs
ϵ′−β′−|M f i|2h̄2c2

16ϵ−ϵ′+

)
, (10.5.42)

where d2n′± = dn−dn+do′−, dn± = dϵ±do±ϵ2
±β± f±, and the Jacobian is

Jbs =
ϵ′+β′+

(ϵ′− + ϵ′+)β′− − (ϵ−β−b− + ϵ+β+b+)·b′−
. (10.5.43)

Analogously to the case of pair creation and annihilation in Section (10.5.2)
the energies of final state particles are given by (10.5.18) with the coefficients
Ă = (ϵ−+ ϵ+)2− (ϵ−β−b−·b′−+ ϵ+β+b+·b′−)2, B̆ = (ϵ−+ ϵ+)

[
m2

e c4 + ϵ−ϵ+(1− β−β+b−·b+)
]
,

C̆ =
[
m2

e c4 + ϵ−ϵ+(1− β−β+b−·b+)
]2
+m2

e c4 [ϵ−β−b−·b′− + ϵ+β+b+·b′−
]2.

In order to select the correct root one has to check the condition (10.5.35)
changing the subscripts 1→ −, 2→ +.

10.6 Three-body processes

As we discussed above, for the collisional integrals for three-body interac-
tions we assume that particles already reached kinetic equilibrium. In that
case one can use the corresponding expressions, obtained in the literature for
the thermal equilibrium case, and multiply the collisional integrals by the
exponents, containing the chemical potentials of particles.

Emission coefficients for triple interactions in thermal equilibrium may be
computed by averaging of the differential cross-sections given in Section 5 of
the corresponding processes over the thermal distributions of particles. An-
alytic results as a rule exist only for nonrelativistic and/or ultrarelativistic
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10.6 Three-body processes

cases. The only way to get approximate analytical expressions is then to find
the fitting formulas, connecting the two limiting cases with reasonable ac-
curacy. This work has been done by Svensson [497], also for reactions with
protons, and in what follows we adopt the emission and absorption coeffi-
cient for triple interactions given in that paper.

Bremsstrahlung

η
e∓e∓→e∓e∓γ
γ = (n2

+ + n2
−)

16
3

αc
ε

(
e2

mec2

)2

×

× ln
[

4ξ(11.2 + 10.4θ2)
θ

ε

] 3
5

√
2θ + 2θ2

exp(1/θ)K2(1/θ)
, (10.6.1)

η
e−e+→e−e+γ
γ = n+n−

16
3

2αc
ε

(
e2

mec2

)2

×

× ln
[

4ξ(1 + 10.4θ2)
θ

ε

] √
2 + 2θ + 2θ2

exp(1/θ)K2(1/θ)
, (10.6.2)

where ξ = e−0.5772, and K2(1/θ) is the modified Bessel function of the second
kind of order 2.

Double Compton scattering

η
e±γ→e±′γ′γ′′
γ = (n+ + n−)nγ

128
3

αc
ε
×

×
(

e2

mec2

)2
θ2

1 + 13.91θ + 11.05θ2 + 19.92θ3 , (10.6.3)

Three photon annihilation

η
e±e∓→γγ′γ′′
γ = n+n−αc

(
e2

mec2

)2 1
ε

4
θ

(
2 ln2 2ξθ + π2

6 −
1
2

)
4θ + 1

θ2

(
2 ln2 2ξθ + π2

6 −
1
2

) , (10.6.4)

where two limiting approximations [497] are joined together.

Radiative pair production
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10 Thermalization of the mildly relativistic pair plasma

η
γγ′→γ′′e±e∓
e = η

e±e∓→γγ′γ′′
γ

n2
γ

n+n−

[
K2(1/θ)

2θ2

]2

. (10.6.5)

Electron-photon pair production

η
e±1 γ→e±′1 e±e∓
γ =

 (n+ + n−)nγαc
(

e2

mec2

)2
exp

(
−2

θ

)
16.1θ0.541, θ ≤ 2,

(n+ + n−)nγαc
(

e2

mec2

)2 (56
9 ln 2ξθ − 8

27

) 1
1+0.5/θ , θ > 2.

(10.6.6)
The absorption coefficient for three-body processes is written as

χ
3p
γ = η

3p
γ /Eeq

γ , (10.6.7)

where η
3p
γ is the sum of the emission coefficients of photons in the three-

particle processes, Eeq
γ = 2πϵ3 f eq

γ /c3, where f eq
γ is given by (10.1.18).

From equation (10.2.4), the law of energy conservation in the three-body
processes is ∫

∑
i
(η

3p
i − χ

3p
i Ei)dµdϵ = 0 . (10.6.8)

For exact conservation of energy in these processes the following coefficients
of emission and absorption for electrons are introduced:

χ
3p
e =

∫
(η

3p
γ − χ

3p
γ Eγ)dϵdµ∫

Eedϵdµ
, η

3p
e = 0,

∫
(η

3p
γ − χ

3p
γ Eγ)dϵdµ > 0 ,

(10.6.9)
or

η
3p
e

Ee
= −

∫
(η

3p
γ − χ

3p
γ Eγ)dϵdµ∫

Eedϵdµ
, χ

3p
e = 0,

∫
(η

3p
γ − χ

3p
γ Eγ)dϵdµ < 0 .

(10.6.10)

10.7 Cutoff in the Coulomb scattering

Denote quantities in the center of mass (CM) frame with index 0, and with
prime after interaction. Suppose there are two particles with masses m1 and
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m2. The change of the angle of the first particle in CM system is

θ10 = arccos(b10·b′10), (10.7.1)

the numerical grid size is ∆θg, the minimal angle at the scattering is θmin.

By definition in the in CM frame

p10 + p20 = 0, (10.7.2)

where

pi0 = pi +

[
(Γ− 1)(Npi)− Γ

V
c

ϵi

c

]
N, i = 1, 2, (10.7.3)

and
ϵi = Γ(ϵi0 + Vpi0). (10.7.4)

Then for the velocity of the CM frame

V
c
= c

p1 + p2

ϵ1 + ϵ2
, N =

V
V

, Γ =
1√

1−
(V

c
)2

. (10.7.5)

By definition
b10 = b20, b′10 = b′20, (10.7.6)

and then

|p10| = |p20| = p0 ≡

≡ 1
c

√
ϵ2

10 −m2
1c4 =

1
c

√
ϵ2

20 −m2
2c4, (10.7.7)

where

ϵ10 =
(ϵ1 + ϵ2)

2 − Γ2(m2
2 −m2

1)c
4

2(ϵ1 + ϵ2)Γ
, (10.7.8)

ϵ20 =
(ϵ1 + ϵ2)

2 + Γ2(m2
2 −m2

1)c
4

2(ϵ1 + ϵ2)Γ
. (10.7.9)
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10 Thermalization of the mildly relativistic pair plasma

Haug [506] gives the minimal scattering angle in the center of mass system

θmin =
2h̄

mecD
γr

(γr + 1)
√

2(γr − 1)
, (10.7.10)

where the maximum impact parameter (neglecting the effect of protons) is

D =
c2

ω

p0

ϵ10
, (10.7.11)

and the invariant Lorentz factor of relative motion (e.g. [506]) is

γr =
1√

1−
( vr

c
)2

=
ϵ1ϵ2 − p1 · p2c2

m1m2c4 . (10.7.12)

Finally, in the CM frame

tmin = 2
[
(mec)

2 −
(ϵ10

c

)2 (
1− β2

10 cos θmin

)]
Since it is invariant, t in the denominator of |M f i|2 in (10.5.34) is replaced

by the value t
√

1 + t2
min/t2 to implement the cutoff scheme. Also at the scat-

tering of equivalent particles u in the denominator of |M f i|2 in (10.5.34) is

changed to the value u
√

1 + t2
min/u2.

10.8 Numerical results

The results of numerical simulations are reported below. Two limiting ini-
tial conditions with flat spectra are chosen: (i) electron–positron pairs with a
10−5 energy fraction of photons and (ii) the reverse case, i.e., photons with
a 10−5 energy fraction of pairs. The grid consists of 60 energy intervals and
16 × 32 intervals for two angles characterizing the direction of the particle
momenta. In both cases the total energy density is ρ = 1024 erg · cm−3. In the
first case initial concentration of pairs is 3.1 · 1029 cm−3, in the second case the
concentration of photons is 7.2 · 1029 cm−3.

In Fig. 10.1, panel A concentrations of photons and pairs as well as their
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10.8 Numerical results

A B C

Figure 10.1: A: Dependence on time of concentrations of pairs (black), pho-
tons (red) and both (thick) when all interactions take place (solid). Upper
(lower) figure corresponds to the case when initially there are mainly pairs
(photons). Dotted curves on the upper figure show concentrations when in-
verse triple interactions are neglected. In this case an enhancement of the
pairs occurs with the corresponding increase in photon number and thermal
equilibrium is never reached. B: Time dependence of temperatures, mea-
sured on the left axis (solid), and chemical potentials, measured on the right
axis (dotted), of electrons (black) and photons (red). The dashed lines corre-
spond to the reaching of the kinetic (∼ 10−14sec) and the thermal (∼ 10−12sec)
equilibria. Upper (lower) figure corresponds to the case when initially there
are mainly pairs (photons). C: Spectra of pairs (upper figure) and photons
(lower figure) when initially only pairs are present. The black curve repre-
sents the results of numerical calculations obtained successively at t = 0,
t = tk and t = tth (see the text). Both spectra of photons and pairs are ini-
tially taken to be flat. The yellow curves indicate the spectra obtained form
(10.1.18) at t = tk. The perfect fit of the two curves is most evident in the
entire energy range leading to the first determination of the temperature and
chemical potential both for pairs and photons. The orange curves indicate
the final spectra as thermal equilibrium is reached.

sum for both initial conditions are shown. After calculations begin, concen-
trations and energy density of photons (pairs) increase rapidly with time, due
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10 Thermalization of the mildly relativistic pair plasma

to annihilation (creation) of pairs. Then, in the kinetic equilibrium phase,
concentrations of each component stay almost constant, and the sum of con-
centrations of photons and pairs remains unchanged. Finally, both individual
components and their sum reach stationary values. If one compares and con-
trasts both cases as reproduced in Fig. 10.1 A one can see that, although the
initial conditions are drastically different, in both cases the same asymptotic
values of the concentration are reached.

One can see in Fig. 10.1, panel C that the spectral density of photons and
pairs can be fitted already at tk ≈ 20tCs ≈ 7 · 10−15 sec by distribution func-
tions (10.1.18) with definite values of temperature θk(tCs) ≈ 1.2 and chemical
potential ϕk(tk) ≈ −4.5, common for pairs and photons. As expected, after
tk the distribution functions preserve their form (10.1.18) with the values of
temperature and chemical potential changing in time, as shown in Fig. 10.1,
panel B. As one can see from this figure, the chemical potential evolves with
time and reaches zero at the moment tth ≈ α−1tk ≈ 7 · 10−13 sec , correspond-
ing to the final stationary solution. Condition (10.4.6) is satisfied in kinetic
equilibrium.

The necessary condition for thermal equilibrium in the pair plasma is the
detailed balance between direct and inverse triple interactions. This point
is usually neglected in the literature where there are claims that the thermal
equilibrium may be established with only binary interactions [491]. In order
to demonstrate it explicitly in Fig. 10.1, panel A the dependence of concen-
trations of pairs and photons when inverse triple interactions are artificially
switched off is also shown. In this case (see dotted curves in the upper part of
Fig. 10.1, panel A), after kinetic equilibrium is reached concentrations of pairs
decrease monotonically with time, and thermal equilibrium is never reached.

The existence of a non-null chemical potential for photons indicates the
departure of the distribution function from the one corresponding to thermal
equilibrium. Negative (positive) value of the chemical potential generates
an increase (decrease) of the number of particles in order to approach the
one corresponding to the thermal equilibrium state. Then, since the total
number of particles increases (decreases), the energy is shared between more
(less) particles and the temperature decreases (increases). Clearly, as thermal
equilibrium is approached, the chemical potential of photons is zero.

In this example with the energy density 1024 erg · cm−3 the thermal equilib-
rium is reached at ∼ 7 · 10−13 sec with the final temperature Tth = 0.26 MeV.
For a larger energy density the duration of the kinetic equilibrium phase, as
well as of the thermalization timescale, is smaller. Recall, that in entire tem-
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10.8 Numerical results

perature range the plasma is nondegenerate.
The results, obtained for the case of an uniform plasma, can only be adopted

for a description of a physical system with dimensions R0 ≫ 1
nσT

= 4.3 10−5cm.
The assumption of the constancy of the energy density is only valid if the

dynamical timescale tdyn =
(

1
R

dR
dt

)−1
of the plasma is much larger than the

above timescale tth which is indeed true in all the cases of astrophysical inter-
est.

Since thermal equilibrium is obtained already on the timescale tth ≲ 10−12sec,
and such a state is independent of the initial distribution functions for elec-
trons, positrons and photons, the sufficient condition to obtain an isothermal
distribution on a causally disconnected spatial scale R > ctth = 10−2cm is
the request of constancy of the energy density on such a scale as well as, of
course, the invariance of the physical laws.

To summarize, the evolution of an initially nonequilibrium optically thick
electron–positron-photon plasma is considered up to reaching thermal equi-
librium. Starting from arbitrary initial conditions kinetic equilibrium is ob-
tained from first principles, directly solving the relativistic Boltzmann equa-
tions with collisional integrals computed from QED matrix elements. The es-
sential role of direct and inverse triple interactions in reaching thermal equi-
librium is demonstrated. These results can be applied in the theories of the
early Universe and of astrophysical sources, where thermal equilibrium is
postulated at the very early stages. These results can in principle be tested in
laboratory experiments in the generation of electron–positron pairs.
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11 Concluding remarks

We have reviewed three fundamental quantum processes which have high-
lighted some of the greatest effort in theoretical and experimental physics in
last seventy years. They all deal with creation and annihilation of electron–
positron pairs. We have followed the original path starting from the classical
works of Dirac, on the process e+e− → 2γ, and the inverse process, 2γ →
e+e−, considered by Breit–Wheeler. We have then reviewed the e+e− pair
creation in a critical electric field Ec = m2

e c3/(h̄e) and the Sauter-Heisenberg-
Euler-Schwinger description of this process both in Quantum Mechanics and
Quantum Electro-Dynamics. We have also taken this occasion to reconstruct
the exciting conceptual developments, initiated by the Sauter work, enlarged
by the Born-Infeld nonlinear electrodynamical approach, finally leading to
the Euler and Euler-Heisenberg results. We were guided in this reconstruc-
tion by the memories of many discussions of one of us (RR) with Werner
Heisenberg. We have then reviewed the latest theoretical developments de-
riving the general formula for pair production rate in electric fields varying
in space and in time, compared with one in a constant electric field approx-
imation originally studied by Schwinger within QED. We also reviewed re-
cent studies of pair production rates in selected electric fields varying both in
space and in time, obtained in the literature using instanton and JWKB meth-
ods. Special attention has been given to review the pair production rate in
electric fields alternating periodically in time, early derived by Brezin, Itzyk-
son and Popov, and the nonlinear Compton effect in the processes of electrons
and photons colliding with laser beams, studied by Nikishov and Narozhny.
These theoretical results play an essential role in Laboratory experiments to
observe the pair production phenomenon using laser technologies.

We then reviewed the different level of verification of these three processes
in experiments carried all over the world. We stressed the success of exper-
imental verification of the Dirac process, by far one of the most prolific and
best tested process in the field of physics. We also recalled the study of the
hadronic branch in addition to the pure electrodynamical branch originally
studied by Dirac, made possible by the introduction of e+e− storage rings
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technology. We then turned to the very exciting current situation which sees
possibly the Breit–Wheeler formula reaching its first experimental verifica-
tion. This result is made possible thanks to the current great developments of
laser physics. We reviewed as well the somewhat traumatic situation in the
last forty years of the heavy-ion collisions in Darmstadt and Brookhaven, yet
unsuccessfully attempting to observe the creation of electron–positron pairs.
We also reviewed how this vast experimental program was rooted in the the-
oretical ideas of Zeldovich, Popov, Greiner and their schools.

We have also recalled the novelty in the field of relativistic astrophysics
where we are daily observing the phenomenon of Gamma Ray Bursts [404,
477, 516–518]. These bursts of photons occur in energy range keV to MeV,
last about one second and come from astrophysical sources located at a cos-
mological distance [394, 519–522]. The energy released is up to ∼ 1055 ergs,
equivalent to all the energy emitted by all the stars of all the galaxies of the
entire visible Universe during that second. It is generally agreed that the en-
ergetics of these GRB sources is dominated by a dense plasma of electrons,
positrons and photons created during the process of gravitational collapse
leading to a Black Hole, see e.g. [68, 398–400] and references therein. The
Sauter-Heisenberg-Euler-Schwinger vacuum polarization process, we have
considered in the first part of the report, is a classic theoretical model to
study the creation of an electron–positron optically thick plasma. Similarly
the Breit–Wheeler and the Dirac processes we have discussed, are essential in
describing the further evolution of such an optically thick electron–positron
plasma. The GRBs present an unique opportunity to test new unexplored
regime of ultrahigh energy physics with Lorentz factor γ ∼ 100− 1000 and
relativistic field theories in the strongest general relativistic domain.

The aim in this report, in addition to describe the above mentioned three
basic quantum processes, has been to identify and review three basic rela-
tivistic regimes dealing with an optically thin and optically thick electron–
positron plasma.

The first topic contains the basic results of the physics of black holes, of
their energetics and of the associated process of vacuum polarization. We re-
viewed the procedures to generalize in a Kerr–Newman geometry the QED
treatment of Schwinger and the creation of enormous number of 1060 electron–
positron pairs in such a process.

The second topic is the back reaction of a newly created electron–positron
plasma on an overcritical electric field. Again we reviewed the Breit–Wheeler
and Dirac processes applied in the wider context of the Vlasov–Boltzmann–
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Maxwell equations. To discuss the back reaction of electron–positron pair on
external electric fields, we reviewed semi-classical and kinetic theories de-
scribing the plasma oscillations using respectively the Dirac-Maxwell equa-
tions and the Boltzmann–Vlasov equations. We also reviewed the discus-
sions of plasma oscillations damping due to quantum decoherence and col-
lisions, described by respectively the quantum Boltzmann–Vlasov equation
and Boltzmann–Vlasov equation with particle collisions terms. We particu-
larly addressed the study of the influence of the collision processes e+e− ⇄
γγ on the plasma oscillations in supercritical electric field E > Ec. After
103−4 Compton times, the oscillating electric field is damped to its critical
value with a large number of photons created. An equipartition of number
and energy between electron–positron pairs and photons is reached. For the
plasma oscillation with undercritical electric field E ≲ Ec, we recalled that
electron–positron pairs, created by the vacuum polarization process, move as
charged particles in external electric field reaching a maximum Lorentz fac-
tor at finite length of oscillations, instead of arbitrary large Lorentz factors,
as traditionally assumed. Finally we point out some recent results which dif-
ferentiate the case E > Ec from the one E < Ec with respect to the creation
of the rest mass of the pair versus its kinetic energy. For E > Ec the vac-
uum polarization process transforms the electromagnetic energy of the field
mainly in the rest mass of pairs, with moderate contribution to their kinetic
energy. Such phenomena, certainly fundamental on astrophysical scales, may
become soon directly testable in the verification of the Breit–Wheeler process
tested in laser experiments in the laboratory.

As the third topic we have reviewed the recent progress in the understand-
ing of thermalization process of an optically thick electron–positron-photon
plasma. Numerical integration of relativistic Boltzmann equation with colli-
sional integrals for binary and triple interactions is used to follow the time
evolution of such a plasma, in the range of energies per particle between
0.1 and 10 MeV, starting from arbitrary nonequilibrium configuration. It is
recalled that there exist two types of equilibria in such a plasma: kinetic equi-
librium, when all particles are at the same temperature, but have different
nonzero chemical potential of photons, and thermal equilibrium, when chem-
ical potentials vanish. The crucial role of direct and inverse binary and triple
interactions in reaching thermal equilibrium is emphasized.

In a forthcoming report we will address how the above mentioned three
relativistic processes can be applied to a variety of astrophysical systems in-
cluding neutron stars formation and gravitational collapse, supernovae ex-
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plosions and GRBs.
This report is dedicated to the progress of theoretical physics in extreme

regimes of relativistic field theories which are on the verge of finding their
experimental and observational verification in physics and astrophysics. It is
then possible from our review and the many references we have given to gain
a basic understanding of this new field of research. The three topics which
we have reviewed are closely linked to the three quantum processes currently
being tested in precision measurement in the laboratories. The experiments
in the laboratories and the astrophysical observations cover complementary
aspects which may facilitate a deeper and wider understanding of the nuclear
and laser physics processes, of heavy-ion collisions as well as neutron stars
formation and gravitational collapse, supernovae and GRBs phenomena. We
shall return on such an astrophysical and observational topics in a dedicated
forthcoming report.

* * *

We are witnessing in these times some enormous experimental and obser-
vational successes which are going to be the natural ground to test some of
the theoretical works which we have reviewed in this report. Among the
many experimental progresses being done in particle accelerators worldwide
we like to give special mention to two outstanding experimental facilities
which are expected to give results in the forthcoming years. We refer here to
the National Ignition Facility at the Lawrence Livermore National Laboratory
to be soon becoming operational, see e.g. [523] as well as the corresponding
facility in France, the Mega Joule project [524].

In astrophysics these results will be tested in galactic and extragalactic
black holes observed in binary X-ray sources, active galactic nuclei, micro-
quasars and in the process of gravitational collapse to a neutron star and also
of two neutron stars to a black hole in GRBs. The progress there is equally
remarkable. In the last few days after the completion of this report thanks to
the tremendous progress in observational technology for the first time a mas-
sive hypergiant star has been identified as the progenitor of the supernova
SN 2005gl [525]. In parallel the joint success of observations of the flotilla of
X-ray observatories and ground-based large telescopes [177] have allowed to
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identify the first object ever observed at z ≈ 8 the GRB090423 [526].
To follow the progress of this field we are planning a new report which

will be directed to the astrophysical nature of the progenitors and the initial
physical conditions leading to the process of the gravitational collapse. There
the electrodynamical structure of neutron stars, the phenomenon of the su-
pernova explosion as well as theories of Gamma-Ray Bursts (GRBs) will be
discussed. Both in the case of neutron stars and the case of black holes there
are fundamental issues still to be understood about the process of gravita-
tional collapse especially with the electrodynamical conditions at the onset
of the process. The major difficulties appear to be connected with the fact
that all fundamental interactions, the gravitational, the electromagnetic, the
strong, the weak interactions appear to participate in essential way to this
process which appear to be therefore one of the most interesting fundamen-
tal process of theoretical physics. Current progress is presented in the fol-
lowing works [527–538]. What is important to recall at this stage is only that
both the supernovae and GRBs processes are among the most energetic and
transient phenomena ever observed in the Universe: a supernova can reach
energy of∼ 1052 ergs (hypernovae) on a time scale of a few months and GRBs
can have emission of up to ∼ 1055 ergs [539] in a time scale as short as of a
few seconds. The central role in their description of neutron stars, for super-
nova as well as of black holes and the electron–positron plasma discussed in
this report, for GRBs, are widely recognized. The reason which makes this
last research so important can be seen in historical prospective: the Sun has
been the arena to understand the thermonuclear evolution of stars [540], Cyg
X-1 has evidenced the gravitational energy role in explaining an astrophysi-
cal system [541], the GRBs are promising to prove the existence for the first
time of the “blackholic energy”. These three quantum processes described in
our report reveal the basic phenomena in the process of gravitational collapse
predicted by Einstein theory of General Relativity [177].
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12 Notes added in proof

• In Ref. [258] two terms related to the initial and final frequencies are
missing in the effective action (real part and imaginary part). These
have been corrected in [542, 543].

• Some new results were obtained for QED in quasi constant in time
electric field, in particular, the distributions of particles created is dis-
cussed in [544, 545]; consistency restrictions on maximal electric field
strength in QFT are discussed in [546]. One-loop energy-momentum
tensor in QED is obtained in [547]. The exact rate of pair production
by a smooth potential proportional to tanh(kz) in three dimensions is
obtained in [548].

• A recent review on the muon anomalous magnetic moment (muon g-
2), offers the possibility, by making most precise measurement of muon
g-2 in low-energies, to infer virtual hadronic vacuum polarization and
light-by-light scattering effects due to virtual quark-pairs production in
high-energies. In recent BNL E821 experiment1, the muon anomalous
magnetic moment can be rather accurately measured. In the theory of
Standard Model for elementary particles, the muon anomalous mag-
netic moment aµ receive leptonic QED-contributions (e, µ, τ) to aQED

µ ,
which has been calculated, see for a review [549], up to 5-loop contribu-
tions O(α5)

aQED
µ ∼ 663(20)(4.6)

( α

π

)5
.

While hadronic (u, d, sc, · · ·) contributions to the muon anomalous mag-
netic moment ahad

µ contain, due to the strong interaction, both perturba-

1http://www.g-2.bnl.gov
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tive and non-perturbative parts, the O(α2) contribution to ahad
µ ,

a(4)µ (vap, had) =
(αmµ

3π

)2
(∫ E2

cut

m2
π0

ds
Rdata

had (s)K̂(s)
s2 +

∫ ∞

E2
cut

ds
RpQCD

had (s)K̂(s)
s2

)
,

where R(s) is given by

Rhad(s) = σ(e+e− → hadrons)/
4πα(s)2

3s
,

and K(s) is the vacuum polarization contribution,

K(s) =
∫ 1

0
dx

x2(1− x)
x2 + (s/m2

µ)(1− x)
,

and a cut Ecut in the energy, separating the non-perturvative part to be
evaluated from data and the perturbative high energy tail to be calcu-
lated using perturvative QCD (pQCD), analogously to QED-calculations.
The pQCD calculations may only be trusted above 2 GeV and away
from threshold and resonances. In the report [549], authors resort to
a semiphenomenological approach using dispersion relations together
with the optical theorem and experimental data. The “measurements of
Rhad(s)” get more difficult as increasing energies more and more chan-
nels open for meson-resonances. In addition, the most problematic set
of hadronic corrections is that related to hadronic light-by-light scatter-
ing, which for the first time show up at order O(α3) via the diagrams
with insertion of a box with four photon lines. As a contribution to the
anomalous magnetic moment three of four photons are virtual and to
be integrated over all four-momentum space, such that a direct exper-
imental input for the non-perturbative dressed four-photon correlator
is not available. In this case one has to resort the low energy effective
description of QCD like chiral perturbation theory (CHPT) extended to
include vector-mesons, which is reviewed in detail [549]. Furthermore,
the Electroweak corrections of weak virtual process including interme-
diate bosons W± and Z to g − 2 are important and now almost three
standard deviations, and without it the deviation between theory and
experiment would be the 6σ level. The test of the weak contribution
is actually one of the milestones achieved by Brookhaven experiment
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E821 (see the footnote above). These studies and experiments are crucial
to include the contributions from all known particles and interactions
such that from a possible deviation between theory and experiment we
may get a hint of the yet unknown physics.

• Some recent results on e+e− annihilation cross sections in the GeV re-
gion are obtained in the following experiments: KLOE [550–552], CMD-
2 [553, 554] and SND [554].

• We would like to point out that in our report, one-loop vacuum polar-
ization and light-by-light scattering effects (effective Euler-Heisenberg
Lagrangian), as well as their high-order corrections in low-energies are
considered in Section 5.7; non-linear Compton effect is discussed in
both Section 5.10 (theory) and Sections 7.2,7.3 (experiments); the Breit-
Wheeler cutoff in high-energy γ-rays for astrophysics in Section 7.4.
All these discussions are limited in the leptonic sector for low-energies.
The reason of recording here these hadronic contributions in the high-
energy region is motivated by our expectation that these effects will be
possibly soon detected by direct measurements of gamma ray emission
from high-energy astrophysical processes. We shall return on this topic
in our forthcoming report already mentioned above.
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[176] O. Klein, T. Nishina, Über die Streuung von Strahlung durch freie Elek-
tronen nach der neuen relativistischen Quantendynamik von Dirac,
Zeitschrift fur Physik 52 (1929) 853–868.

[177] R. Ruffini, The Kerr Spacetime: Rotating Black Holes in General Rela-
tivity, Cambridge Univ. Press, Cambridge, 2009, Ch. The ergosphere
and dyadosphere of the Kerr black hole, p. 161.

[178] H. Cheng, T. T. Wu, High-Energy Elastic Scattering in Quantum Elec-
trodynamics, Physical Review Letters 22 (1969) 666–669.

[179] H. Cheng, T. T. Wu, Longitudinal Momentum Distribution of Pioniza-
tion Products, Physical Review Letters 23 (1969) 1311–1313.

[180] H. Cheng, T. T. Wu, High-Energy Collision Processes in Quantum Elec-
trodynamics. I, Physical Review 182 (1969) 1852–1867.

[181] H. Cheng, T. T. Wu, High-Energy Collision Processes in Quantum Elec-
trodynamics. II, Physical Review 182 (1969) 1868–1872.

[182] H. Cheng, T. T. Wu, High-Energy Collision Processes in Quantum Elec-
trodynamics. III, Physical Review 182 (1969) 1873–1898.

[183] H. Cheng, T. T. Wu, High-Energy Collision Processes in Quantum Elec-
trodynamics. IV, Physical Review 182 (1969) 1899–1906.

1052

http://arxiv.org/abs/arXiv:hep-th/0406024
http://arxiv.org/abs/arXiv:hep-ph/0011327
http://arxiv.org/abs/arXiv:quant-ph/0106076
http://arxiv.org/abs/arXiv:astro-ph/0210069
http://arxiv.org/abs/arXiv:hep-th/0204060


Bibliography

[184] H. Cheng, T. T. Wu, Photon-Photon Scattering close to the Forward Di-
rection, Phys. Rev. D1 (1970) 3414–3415.

[185] H. Cheng, T. T. Wu, Elastic Scattering Processes in Scalar Electrody-
namics at High Energies. I, Phys. Rev. D1 (1970) 467–473.

[186] H. Cheng, T. T. Wu, Cross Sections for Two-Pair Production at Infinite
Energy, Phys. Rev. D2 (1970) 2103–2104.

[187] H. A. Bethe, L. C. Maximon, Theory of Bremsstrahlung and Pair Pro-
duction. I. Differential Cross Section, Physical Review 93 (1954) 768–
784.

[188] H. Davies, H. A. Bethe, L. C. Maximon, Theory of Bremsstrahlung and
Pair Production. II. Integral Cross Section for Pair Production, Phys-
ical Review 93 (1954) 788–795.

[189] G. Baur, K. Hencken, D. Trautmann, Electron positron pair production
in ultrarelativistic heavy ion collisions, Phys. Rep. 453 (2007) 1–27.

arXiv:0706.0654.

[190] E. Bartos, S. R. Gevorkyan, E. A. Kuraev, N. N. Nikolaev, Multiple lep-
ton pair production in relativistic ion collisions, Physics Letters B
538 (2002) 45–51.

arXiv:arXiv:hep-ph/0204327.

[191] E. Bartos, S. R. Gevorkyan, E. A. Kuraev, N. N. Nikolaev, Lep-
ton pair production in heavy-ion collisions in perturbation theory,
Phys. Rev. A66 (4) (2002) 042720–+.

arXiv:arXiv:hep-ph/0109281.

[192] O. O. Voskresenskaya, A. N. Sissakian, A. V. Tarasov, G. T. Torosyan,
Watson representation for the amplitude of lepton-pair production
in nucleus-nucleus collisions, Physics of Particles and Nuclei Letters
3 (2006) 246–248.

[193] O. O. Voskresenskaya, A. N. Sissakian, A. V. Tarasov, G. T. Torosyan,
The structure of the Z1Z2 → l+l−Z1Z2 amplitude process outside
the born approximation framework, Physics of Particles and Nuclei
Letters 4 (2007) 18–21.

[194] S. R. Gevorkyan, E. A. Kuraev, Lepton pair production in relativistic
ion collisions to all orders in Zα with logarithmic accuracy, Journal
of Physics G Nuclear Physics 29 (2003) 1227–1235.

arXiv:arXiv:hep-ph/0302238.

1053

http://arxiv.org/abs/0706.0654
http://arxiv.org/abs/arXiv:hep-ph/0204327
http://arxiv.org/abs/arXiv:hep-ph/0109281
http://arxiv.org/abs/arXiv:hep-ph/0302238


Bibliography

[195] D. Ivanov, K. Melnikov, Lepton pair production by a high energy pho-
ton in a strong electromagnetic field, Phys. Rev. D57 (1998) 4025–
4034.

arXiv:arXiv:hep-ph/9709352.

[196] V. G. Gorshkov, REVIEWS OF TOPICAL PROBLEMS: Electrodynamic
processes in colliding beams of high-energy particles, Soviet Physics
Uspekhi 16 (1973) 322–338.

[197] V. E. Balakin, A. D. Bukin, E. V. Pakhtusova, V. A. Sidorov, A. G.
Khabakhpashev, Evidence for electron-positron pair electroproduc-
tion, Physics Letters B 34 (1971) 663–664.

[198] C. e. a. Bacci, Gamma-gamma interaction processes at adone e+e− stor-
age ring — measurement of reaction e

+
+ e
−
− → e

+
+ e
−
+ e

+
− e
−
− , Lett.

Nuovo Cimento 3 (1972) 709.

[199] G. Barbiellini, S. Orito, T. Tsuru, R. Visentin, F. Ceradini, M. Conversi,
S. D’Angelo, M. L. Ferrer, L. Paoluzi, R. Santonico, Muon Pair Pro-
duction by Photon-Photon Interactions in e+e− Storage Rings, Phys-
ical Review Letters 32 (1974) 385–388.

[200] S. Orito, M. L. Ferrer, L. Paoluzi, R. Santonico, Two-photon annihilation
into pion pair, Physics Letters B 48 (1974) 380–384.

[201] G. Barbiellini, The early experiments on photon-photon collisions, in:
G. Cochard, P. Kessler (Eds.), Photon-Photon Collisions, Vol. 134 of
Lecture Notes in Physics, Berlin Springer Verlag, 1980, pp. 9–18.

[202] H. Kleinert, Path integrals in quantum mechanics, statistics polymer
physics, and financial markets, World Scientific, 2004.

[203] W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics of Strong
Fields, Berlin, Springer, 1985.

[204] A. Grib, S. Mamaev, V. Mostepanenko, Vacuum Quantum Effects in
Strong External Fields, Moscow, Atomizdat, 1980.

[205] E. Fradkin, D. Gitman, S. S. M., Quantum Electrodynamics: With Un-
stable Vacuum, Springer, 1991.

[206] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series and prod-
ucts, New York: Academic Press, —c1994, 5th ed. completely reset,
edited by Jeffrey, Alan, 1994.

1054

http://arxiv.org/abs/arXiv:hep-ph/9709352


Bibliography

[207] G. V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and ex-
tensions, World Scientific, 2004, pp. 445–522.

arXiv:hep-th/0406216.

[208] G. V. Dunne, C. Schubert, Two-loop Euler-Heisenberg QED pair-
production rate, Nuclear Physics B 564 (2000) 591–604.

arXiv:arXiv:hep-th/9907190.

[209] M. S. Marinov, V. S. Popov, Effect of Screening on the Critical Charge of
a Nucleus, Soviet Journal of Experimental and Theoretical Physics
Letters 17 (1973) 368–+.

[210] M. S. Marinov, V. S. Popov, Electron-positron pair creation from vac-
uum induced by variable electric field, Fortschritte der Physik 25
(1977) 373–400.

[211] C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D.
Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Pre-
bys, D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz,
S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, Studies
of nonlinear QED in collisions of 46.6 GeV electrons with intense
laser pulses, Phys. Rev. D60 (9) (1999) 092004–+.

[212] N. Sengupta, On the scattering of electromagnetic waves by a free elec-
tron. ii. wave mechanical theory, Bull. Calcutta Math. Soc. 44 (1952).

[213] L. S. Brown, T. W. Kibble, Interaction of Intense Laser Beams with Elec-
trons, Physical Review 133 (1964) 705–719.

[214] I. Goldman, Intensity effects in compton scattering, Sov. Phys. JETP 19
(1964) 954.

[215] I. Goldman, Intensity effects in compton scattering, Physics Letters 8
(1964) 103–106.

[216] J. H. Eberly, Progress in Optics, Vol. 7, North-Holland, Amsterdam,
1969, p. 360.

[217] D. Wolkow, er eine klasse von lsungen der diracschen gleichung,
Zeitschrift fr Physik 94 (1935) 250–260.

[218] C. Martin, D. Vautherin, Finite-size effects in pair production by an ex-
ternal field, Phys. Rev. D38 (1988) 3593–3595.

[219] C. Martin, D. Vautherin, Finite-size and dynamical effects in pair pro-
duction by an external field, Phys. Rev. D40 (1989) 1667–1673.

1055

http://arxiv.org/abs/hep-th/0406216
http://arxiv.org/abs/arXiv:hep-th/9907190


Bibliography

[220] T. N. Tomaras, N. C. Tsamis, R. P. Woodard, Back reaction in light cone
QED, Phys. Rev. D62 (12) (2000) 125005–+.

arXiv:arXiv:hep-ph/0007166.

[221] J. Avan, H. M. Fried, Y. Gabellini, Nontrivial generalizations of the
Schwinger pair production result, Phys. Rev. D67 (1) (2003) 016003–
+.

arXiv:arXiv:hep-th/0208053.

[222] J. Rafelski, L. P. Fulcher, A. Klein, Fermions and bosons interacting with
arbitrarily strong external fields, Phys. Rep. 38 (1978) 227–361.

[223] G. Soff, B. Müller, J. Rafelski, Precise Values for Critical fields in Quan-
tum Electrodynamics, Zeitschrift Naturforschung Teil A 29 (1974)
1267–+.

[224] R.-C. Wang, C.-Y. Wong, Finite-size effect in the Schwinger particle-
production mechanism, Phys. Rev. D38 (1988) 348–359.

[225] H. Gies, K. Langfeld, Quantum diffusion of magnetic fields in a numer-
ical worldline approach, Nuclear Physics B 613 (2001) 353–365.

arXiv:arXiv:hep-ph/0102185.

[226] H. Gies, K. Langfeld, Loops and Loop Clouds - A Numerical Approach
to the Worldline Formalism in QED, International Journal of Mod-
ern Physics A 17 (2002) 966–976.

arXiv:arXiv:hep-ph/0112198.

[227] K. Langfeld, L. Moyaerts, H. Gies, Fermion-induced quantum action of
vortex systems, Nuclear Physics B 646 (2002) 158–180.

arXiv:arXiv:hep-th/0205304.

[228] H. Gies, K. Langfeld, L. Moyaerts, Casimir effect on the worldline, Jour-
nal of High Energy Physics 6 (2003) 18–+.

arXiv:arXiv:hep-th/0303264.

[229] H. Gies, K. Klingmüller, Pair production in inhomogeneous fields,
Phys. Rev. D72 (6) (2005) 065001–+.

arXiv:arXiv:hep-ph/0505099.

[230] S.-S. Xue, Pair-production in inhomogeneous electric fields, in: C. L.
Bianco, S.-S. Xue (Eds.), Relativistic Astrophysics, Vol. 966 of Amer-
ican Institute of Physics Conference Series, 2008, pp. 213–215.

1056

http://arxiv.org/abs/arXiv:hep-ph/0007166
http://arxiv.org/abs/arXiv:hep-th/0208053
http://arxiv.org/abs/arXiv:hep-ph/0102185
http://arxiv.org/abs/arXiv:hep-ph/0112198
http://arxiv.org/abs/arXiv:hep-th/0205304
http://arxiv.org/abs/arXiv:hep-th/0303264
http://arxiv.org/abs/arXiv:hep-ph/0505099


Bibliography

[231] N. Cabibbo, R. Gatto, Electron-Positron Colliding Beam Experiments,
Physical Review 124 (1961) 1577–1595.

[232] G. Altarelli, Partons in quantum chromodynamics, Phys. Rep. 81 (1982)
1–129.

[233] R. F. Schwitters, K. Strauch, The Physics of e+e- Collisions, Annual Re-
view of Nuclear and Particle Science 26 (1976) 89–149.

[234] H. Murayama, M. E. Peskin, Physics Opportunities of ee Linear Collid-
ers, Annual Review of Nuclear and Particle Science 46 (1996) 533–
608.

arXiv:arXiv:hep-ex/9606003.

[235] T. L. Barklow, S. Dawson, H. E. Haber, J. L. Siegrist (Eds.), Electroweak
Symmetry Breaking and New Physics at the Tev Scale, World Scien-
tific, 1997.
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miller, H. J. Schreiber, S. Schreiber, K. P. Schüler, V. Serbo, A. Seryi,
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[298] W. Gordon, Über den Stoß zweier Punktladungen nach der Wellen-
mechanik, Zeitschrift fur Physik 48 (1928) 180–191.

[299] C. G. Darwin, The Wave Equations of the Electron, Royal Society of
London Proceedings Series A 118 (1928) 654–680.

[300] A. Sommerfeld, Zur Quantentheorie der Spektrallinien, Annalen der
Physik 356 (1916) 1–94.

[301] K. M. Case, Singular Potentials, Physical Review 80 (1950) 797–806.

[302] F. G. Werner, J. A. Wheeler, Superheavy Nuclei, Physical Review 109
(1958) 126–144.

[303] V. V. Voronkov, N. N. Kolesnikov, Soy. Phys. JETP 12 (1961) 136–137.

[304] V. S. Popov, Collapse to the center at z ¿ 137 and critical nuclear charge,
Yadernaya Fizika 12 (1970) 429–447.

[305] V. S. Popov, Electron Energy Levels at Z ¿ 137, Soviet Journal of Exper-
imental and Theoretical Physics Letters 11 (1970) 162–+.

[306] V. S. Popov, Position Production in a Coulomb Field with Z ¿137, Soviet
Journal of Experimental and Theoretical Physics 32 (1971) 526–+.

[307] V. S. Popov, On the Properties of the Discrete Spectrum for Z Close
to 137, Soviet Journal of Experimental and Theoretical Physics 33
(1971) 665–+.

[308] L. S. Brown, R. N. Cahn, L. D. McLerran, Vacuum polarization in a
strong Coulomb field. I. Induced point charge, Phys. Rev. D12 (1975)
581–595.

[309] L. S. Brown, R. N. Cahn, L. D. McLerran, Vacuum polarization in a
strong Coulomb field. II. Short-distance corrections, Phys. Rev. D12
(1975) 596–608.

[310] L. S. Brown, R. N. Cahn, L. D. McLerran, Vacuum polarization in a
strong Coulomb field. III. Nuclear size effects, Phys. Rev. D12 (1975)
609–619.

1064



Bibliography

[311] S. S. Gershtein, V. S. Popov, Lett. Nuovo Cimento 6 (1973) 593.

[312] V. S. Popov, Spontaneous positron production in collisions between
heavy nuclei, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 65
(1973) 35–53.

[313] V. S. Popov, Critical Charge in Quantum Electrodynamics, Physics of
Atomic Nuclei 64 (2001) 367–392.
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[330] K. Dietz, R. Porath, H. Römer, Charge screening in supercritical
Coulomb fields and a lower bound for electron energy levels, Nu-
clear Physics A 560 (1993) 973–984.

[331] W. Pieper, W. Greiner, Interior electron shells in superheavy nuclei,
Zeitschrift fur Physik 218 (1969) 327–340.

[332] B. Müller, H. Peitz, J. Rafelski, W. Greiner, Solution of the Dirac Equa-
tion for Strong External Fields, Physical Review Letters 28 (1972)
1235–1238.

[333] B. Müller, J. Rafelski, W. Greiner, Electron shells in over-critical external
fields, Zeitschrift fur Physik 257 (1972) 62–77.

[334] B. Müller, J. Rafelski, W. Greiner, Auto-ionization of positrons in heavy
ion collisions, Zeitschrift fur Physik 257 (1972) 183–211.

[335] P. Vincent, K. Heinig, J.-U. Jäger, K.-H. Kaun, H. Richler, H. Woit-
tenek, Quantum electrodynamics of strong fields, Vol. 80 of NATO
Advanced Study Institute, Series B: Physics, Plenum Press, 1983,
proceedings of the conference NATO Advanced Study Institute on
Quantum Electrodynamics of Strong Fields, Lahnstein, Germany,
Jun 15-26, 1981.

[336] B. Müller, R. Kent-Smith, W. Greiner, Induced radiative transitions of
intermediate molecules in heavy ion collisions, Physics Letters B 49
(1974) 219–223.

[337] R. Anholt, Theory of the angular distribution of molecular orbital K
x rays seen in heavy-ion-atom collisions, Zeitschrift fur Physik 288
(1978) 257–276.

[338] J. S. Greenberg, C. K. Davis, P. Vincent, Evidence for Quasimolecular
K X-Ray Emission in Heavy-Ion Collisions from the Observation of

1066



Bibliography

the X-Ray Directional Anisotropy, Physical Review Letters 33 (1974)
473–476.

[339] G. Kraft, P. H. Mokler, H. J. Stein, Anisotropic Emission of Noncharac-
teristic X Rays from Low-Energy I-Au Collisions, Physical Review
Letters 33 (1974) 476–479.

[340] W. E. Meyerhof, T. K. Saylor, R. Anholt, Doppler shift of continuum x
rays from heavy-ion collisions, Phys. Rev. A12 (1975) 2641–2643.

[341] P. Vincent, C. K. Davis, J. S. Greenberg, Doppler-shift analysis of con-
tinuum x radiation from quasimolecular systems, Phys. Rev. A18
(1978) 1878–1891.

[342] M. Gyulassy, Vacuum Polarization in Heavy-Ion Collisions, Physical
Review Letters 33 (1974) 921–925.

[343] J. Rafelski, B. Müller, W. Greiner, Spontaneous vacuum decay of super-
critical nuclear composites, Zeitschrift fur Physik 285 (1978) 49–52.

[344] J. Reinhardt, U. Müller, B. Müller, W. Greiner, The decay of the vacuum
in the field of superheavy nuclear systems, Zeitschrift fur Physik
303 (1981) 173–188.

[345] O. Graf, J. Reinhardt, B. Müller, W. Greiner, G. Soff, Angular corre-
lations of coincident electron-positron pairs produced in heavy-ion
collisions with nuclear time delay, Physical Review Letters 61 (1988)
2831–2834.

[346] C. Kozhuharov, 12th International Conference on the Physics of Elec-
tronic and Atomic Collisions, in: S. Datz (Ed.), Physics of Electronic
and Atomic Collisions: ICPEAC XII, 1982, p. 179.

[347] P. Kienle, B. H., H. Bokemeyer, Quantum electrodynamics of strong
fields, Vol. 80 of NATO Advanced Study Institute, Series B: Physics,
Plenum Press, 1983, proceedings of the conference NATO Ad-
vanced Study Institute on Quantum Electrodynamics of Strong
Fields, Lahnstein, Germany, Jun 15-26, 1981.

[348] P. Kienle, Atomic Physics 7, Plenum Press, 1981.

[349] J. Greenberg, in: Proceedings of the 11th International Conference on
the Physics of Electronic and Atomic Collisions, North Holland,
Amsterdam, 1980.

1067



Bibliography

[350] H. Backe, L. Handschug, F. Hessberger, E. Kankeleit, L. Richter, F. Weik,
R. Willwater, H. Bokemeyer, P. Vincent, Y. Nakayama, J. S. Green-
berg, Observation of Positron Creation in Superheavy Ion-Atom
Collision Systems, Physical Review Letters 40 (1978) 1443–1446.

[351] C. Kozhuharov, P. Kienle, E. Berdermann, H. Bokemeyer, J. S.
Greenberg, Y. Nakayama, P. Vincent, H. Backe, L. Handschug,
E. Kankeleit, Positrons from 1.4-GeV Uranium-Atom Collisions,
Physical Review Letters 42 (1979) 376–379.

[352] U. Müller, J. Reinhardt, T. de Reus, P. Schlüter, G. Soff, K. Wietschorke,
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