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1 Topics

The study of compact objects such as white dwarfs, neutron stars and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories, e.g., general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
theoretical physics aspects, the study of astrophysical scenarios characterized
by the presence of at least one of the above compact object is focus of exten-
sive research within our group. The research of our group can be divided
into the following topics:

• Nuclear and Atomic Astrophysics. We study the properties and pro-
cesses occurring in compact stars in which nuclear and atomic physics
have to be necessarily applied. We focus on the properties of nuclear
matter under extreme conditions of density, pressure and temperature
in the compact star interiors. The matter equation of state is studied in
detail taking into account all the interactions between the constituents
within a full relativistic framework.

• White Dwarfs Physics and Structure. The aim of this part of our re-
search is the construction of the white dwarf structure within a self-
consistent description of the equation of state of the interior together
with the solution of the hydrostatic equilibrium equations in general
relativity. Non-magnetized, magnetized, non-rotating and rotating white
dwarfs are studied. The interaction and evolution of a central white
dwarf with a surrounding disk, as occurred in the aftermath of white
dwarf binary mergers, is also a subject of study.

• White Dwarfs Astrophysics. We are interested in the astrophysics of
white dwarfs both isolated and in binaries. Magnetized white dwarfs,
soft gamma repeaters, anomalous X-ray pulsars, white dwarf pulsars,
cataclysmic variables, binary white dwarf mergers, and type Ia super-
novae are studied. The role of a realistic white dwarf interior structure
is particularly emphasized.
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1 Topics

• Neutron Stars Physics and Structure. We calculate the properties of the
interior structure of neutron stars using realistic models of the nuclear
matter equation of state within the general relativistic equations of equi-
librium. Strong, weak, electromagnetic and gravitational interactions
have to be jointly taken into due account within a self-consistent fully
relativistic framework. Non-magnetized, magnetized, non-rotating and
rotating neutron stars are studied.

• Neutron Stars Astrophysics. We study astrophysical systems harbor-
ing neutron stars such as isolated and binary pulsars, low and inter-
mediate X-ray binaries, inspiraling and merging double neutron stars.
Most extreme cataclysmic events involving neutron stars and their role
in the explanation of extraordinarily energetic astrophysical events such
as gamma-ray bursts are analyzed in detail.

• Radiation Mechanisms of Compact Objects. We here study the pos-
sible emission mechanisms of compact objects such as white dwarfs,
neutron stars, and black holes. Therefore, we are interested in the elec-
tromagnetic, neutrino and gravitational-wave emission at work in as-
trophysical systems such as compact object magnetospheres, accretion
disks surrounding them, as well as inspiraling and merging relativistic
binaries, e.g. double neutron stars, neutron star-white dwarfs, white
dwarf-white dwarf and neutron star-black holes.

• Exact and Numerical Solutions of the Einstein and Einstein-Maxwell
Equations in Astrophysics. We analyze the ability of analytic exact so-
lutions of the Einstein and Einstein-Maxwell equations to describe the
exterior spacetime of compact stars such as white dwarfs and neutron
stars. For this we compare and contrast exact analytic with numerical
solutions of the stationary axisymmetric Einstein equations. The prob-
lem of matching between interior and exterior spacetime is addressed
in detail. The effect of the quadrupole moment on the properties of the
spacetime is also investigated. Particular attention is given to the appli-
cation of exact solutions in astrophysics, e.g. the dynamics of particles
around compact stars and its relevance in astrophysical systems such as
X-ray binaries and gamma-ray bursts.

• Critical Fields and Non-linear Electrodynamics Effects in Astrophysics.
We study the conditions under which ultrastrong electromagnetic fields
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can develop in astrophysical systems such as neutron stars and in the
process of gravitational collapse to a black hole. The effects of non-
linear electrodynamics minimally coupled to gravity are investigated.
New analytic and numeric solutions to the Einstein-Maxwell equations
representing black holes or the exterior field of a compact star are ob-
tained and analyzed. The consequences on extreme astrophysical sys-
tems, for instance gamma-ray bursts, are studied.
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• C. L. Ellinger (Los Alamos National Laboratory, USA)

• J. P. Pereira (Nicolaus Copernicus Astronomical Center, Polish Academy
of Sciences, Poland)

1038



2.4 Graduate Students

2.4 Graduate Students

• E. A. Becerra (ICRANet; Sapienza University of Rome, Italy)

• S. Campion (ICRANet; Sapienza University of Rome, Italy)

• G. A. Carvalho (Instituto Tecnológico de Aeronáutica, Brazil)
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3 Publications 2020

3.1 Refereed Journals

3.1.1 Printed

1. de Lima, Rafael C. R.; Coelho, Jaziel G.; Pereira, Jonas P.; Rodrigues,
Claudia V.; Rueda, J. A., Evidence for a Multipolar Magnetic Field in SGR
J1745-2900 from X-Ray Light-curve Analysis, The Astrophysical Journal
889, 165, 2020.

SGR J1745-2900 was detected from its outburst activity in 2013 April
and it was the first soft gamma repeater (SGR) detected near the cen-
ter of the Galaxy (Sagittarius A*). We use 3.5 yr Chandra X-ray light-
curve data to constrain some neutron star (NS) geometric parameters.
We assume that the flux modulation comes from hot spots on the stel-
lar surface. Our model includes the NS mass, radius, a maximum of
three spots of any size, temperature and positions, and general rela-
tivistic effects. We find that the light curve of SGR J1745-2900 could be
described by either two or three hot spots. The ambiguity is due to the
small amount of data, but our analysis suggests that one should not
disregard the possibility of multi-spots (due to a multipolar magnetic
field) in highly magnetized stars. For the case of three hot spots, we
find that they should be large and have angular semiapertures ranging
from 16◦ to 67◦. The large size found for the spots points to a magnetic
field with a nontrivial poloidal and toroidal structure (in accordance
with magnetohydrodynamics investigations and Neutron Star Interior
Composition Explorer’s (NICER) recent findings for PSR J0030+0451)
and is consistent with the small characteristic age of the star. Finally, we
also discuss possible constraints on the mass and radius of SGR J1745-
2900 and briefly envisage possible scenarios accounting for the 3.5 yr
evolution of SGR J1745-290 hot spots.

2. Rueda, J. A.; Ruffini, Remo; Karlica, Mile; Moradi, Rahim; Wang, Yu,
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3 Publications 2020

Magnetic Fields and Afterglows of BdHNe: Inferences from GRB 130427A,
GRB 160509A, GRB 160625B, GRB 180728A, and GRB 190114C , The As-
trophysical Journal 893, 148, 2020.

GRB 190114C is the first binary-driven hypernova (BdHN) fully ob-
served from initial supernova (SN) appearance to the final emergence
of the optical SN signal. It offers an unprecedented testing ground for
the BdHN theory, which is here determined and further extended to
additional gamma-ray bursts (GRBs). BdHNe comprise two subclasses
of long GRBs, with progenitors a binary system composed of a carbon-
oxygen star (COcore) and a neutron star (NS) companion. The COcore
explodes as an SN, leaving at its center a newborn NS (νNS). The SN
ejecta hypercritically accretes on both the νNS and the NS companion.
BdHNe I are very tight binaries, where the accretion leads the compan-
ion NS to gravitationally collapse into a black hole (BH). In BdHN II, the
accretion rate onto the NS is lower, so there is no BH formation. We ob-
serve the same afterglow structure for GRB 190114C and other selected
examples of BdHNe I (GRB 130427A, GRB 160509A, GRB 160625B) and
for BdHN II (GRB 180728A). In all cases, the afterglows are explained
via the synchrotron emission powered by the νNS, and their magnetic
field structures and their spin are determined. For BdHNe I, we dis-
cuss the properties of the magnetic field embedding the newborn BH,
which was inherited from the collapsed NS and amplified during the
gravitational collapse process, and surrounded by the SN ejecta.

3. Rueda, J. A.; Ruffini, R., The blackholic quantum , The European Physical
Journal C 80, 300, 2020.

We show that the high-energy emission of GRBs originates in the in-
ner engine: a Kerr black hole (BH) surrounded by matter and a mag-
netic field B0. It radiates a sequence of discrete events of particle ac-
celeration, each of energy E = h̄ Ωeff, the blackholic quantum, where
Ωeff = 4(mPl/mn)8(c a/G M)(B2

0/ρPl)Ω+. Here M, a = J/M, Ω+ =
c2∂M/∂J = (c2/G) a/(2Mr+) and r+ are the BH mass, angular mo-
mentum per unit mass, angular velocity and horizon; mn is the neutron
mass, mPl, λPl = h̄/(mPlc) and ρPl = mPlc2/λ3

Pl, are the Planck mass,
length and energy density. Here and in the following use CGS-Gaussian
units. The timescale of each process is τel ∼ Ω−1

+ , along the rotation
axis, while it is much shorter off-axis owing to energy losses such as
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3.1 Refereed Journals

synchrotron radiation. We show an analogy with the Zeeman and Stark
effects, properly scaled from microphysics to macrophysics, that allows
us to define the BH magneton, µBH = (mPl/mn)4(c a/G M)e h̄/(Mc). We
give quantitative estimates for GRB 130427A adopting M = 2.3 M�,
c a/(G M) = 0.47 and B0 = 3.5× 1010 G. Each emitted quantum, E ∼
1037 erg, extracts only 10−16 times the BH rotational energy, guarantee-
ing that the process can be repeated for thousands of years. The inner
engine can also work in AGN as we here exemplified for the supermas-
sive BH at the center of M87.

4. Uribe Suárez, J. D.; Rueda, J. A., Some Recent Results on Neutrino Oscil-
lations in Hypercritical Accretion, Astronomische Nachrichten 340, 935,
2020.

The study of neutrino flavour oscillations in astrophysical sources has
been boosted in the last two decades thanks to achievements in exper-
imental neutrino physics and observational astronomy. We here dis-
cuss two cases of interest in the modelling of short and long gamma-
ray bursts (GRBs): hypercritical, i.e. highly super-Eddington spheri-
cal/disk accretion onto a neutron star (NS)/black hole (BH). We show
that in both systems the ambient conditions of density and temperature
imply the occurrence of neutrino flavour oscillations, with a relevant
role of neutrino self-interactions.

5. Uribe, J. D.; Becerra-Vergara, E. A.; Rueda, J. A., Neutrino Oscillations in
Neutrino-Dominated Accretion Around Rotating Black Holes, Universe 7, 7,
2021.

In the binary-driven hypernova model of long gamma-ray bursts, a
carbon-oxygen star explodes as a supernova in presence of a neutron
star binary companion in close orbit. Hypercritical (i.e. highly super-
Eddington) accretion of the ejecta matter onto the neutron star sets in,
making it reach the critical mass with consequent formation of a Kerr
black hole. We have recently shown that, during the accretion process
onto the neutron star, fast neutrino flavour oscillations occur. Numeri-
cal simulations of the above system show that a part of the ejecta keeps
bound to the newborn Kerr black hole, leading to a new process of hy-
percritical accretion. We here address, also for this phase of the binary-
driven hypernova, the occurrence of neutrino flavour oscillations given
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3 Publications 2020

the extreme conditions of high density (up to 1012 g cm−3) and tem-
peratures (up to tens of MeV) inside this disk. We estimate the be-
haviour of the electronic and non-electronic neutrino content within the
two-flavour formalism (νeνx) under the action of neutrino collective ef-
fects by neutrino self-interactions. We find that in the case of inverted
mass hierarchy, neutrino oscillations inside the disk have frequencies
between ∼ (105–109) s−1, leading the disk to achieve flavour equiparti-
tion. This implies that the energy deposition rate by neutrino annihila-
tion (ν + ν̄ → e− + e+) in the vicinity of the Kerr black hole, is smaller
than previous estimates in the literature not accounting by flavour oscil-
lations inside the disk. The exact value of the reduction factor depends
on the νe and νx optical depths but it can be as high as ∼ 5. The results
of this work are a first step toward the analysis of neutrino oscillations
in a novel astrophysical context and, as such, deserve further attention.

3.1.2 Accepted for publication or in press

1. Uribe, J. D.; Rueda, J. A., Neutrino Flavour Oscillations in Gamma-Ray
Bursts, to be published as a chapter in the book “New phenomena and
new states of matter in the Universe: from quarks to Cosmos”, Eds.
Peter Hess, Thomas Boller and Cesar Zen Vasconcellos, World Scientific
2021.

In the binary-driven hypernova model of long gamma-ray bursts, a
carbon-oxygen star explodes as a supernova in presence of a neutron
star binary companion in close orbit. Hypercritical (i.e. highly super-
Eddington) accretion of the ejecta matter onto the neutron star sets in,
making it reach the critical mass with consequent formation of a Kerr
black hole. We have recently shown that, during the accretion pro-
cess onto the neutron star, fast neutrino flavour oscillations occur. Nu-
merical simulations of the above system show that a part of the ejecta
keeps bound to the newborn Kerr black hole, leading to a new process
of hypercritical accretion. We address here the occurrence of neutrino
flavour oscillations given the extreme conditions of high density (up
to 1012 g cm−3) and temperatures (up to tens of MeV) inside this disk.
We estimate the evolution of the electronic and non-electronic neutrino
content within the two-flavour formalism (νeνx) under the action of
neutrino collective effects by neutrino self-interactions. We find that
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3.1 Refereed Journals

neutrino oscillations inside the disk have frequencies between ∼ (105–
109) s−1, leading the disk to achieve flavour equipartition. This im-
plies that the energy deposition rate by neutrino annihilation (ν + ν̄ →
e− + e+) in the vicinity of the Kerr black hole, is smaller than previous
estimates in the literature not accounting by flavour oscillations inside
the disk. The exact value of the reduction factor depends on the νe and
νx optical depths but it can be as high as ∼ 5.

2. Rueda, J. A.; Ruffini, R., An Inner Engine Based on Binary-Driven Hy-
pernovae for the High-Energy Emission of Long Gamma-Ray Bursts, to be
published as a chapter in the book “New phenomena and new states
of matter in the Universe: from quarks to Cosmos”, Eds. Peter Hess,
Thomas Boller and Cesar Zen Vasconcellos, World Scientific 2021.

A multi-decade theoretical effort has been devoted to finding an effi-
cient mechanism to use the rotational and electromagnetic extractable
energy of a Kerr-Newman black hole (BH) to power the most energetic
astrophysical sources, gamma-ray bursts (GRBs) and active galactic nu-
clei (AGN). We show an efficient general relativistic electrodynamical
process which occurs in the “inner engine” of a binary driven hyper-
nova (BdHN). The inner engine is composed of a rotating Kerr BH, sur-
rounded by a magnetic field of strength B0, aligned and parallel to the
rotation axis, and a very-low-density ionized plasma. The gravitomag-
netic interaction between the Kerr BH and the magnetic field induces
an electric field that accelerates charged particles from the environment.
Along the BH rotation axis, the particles reach energies above 1018 eV
hence contributing to ultrahigh-energy cosmic rays, and at other lat-
itudes emit synchrotron radiation at GeV energies which explain the
high-energy emission of long GRBs observed by Fermi-LAT.

3.1.3 Submitted for publication

1. Campion, S.; Melon Fuksman, J. D.; J. A. Rueda, Neutrino production
from proton-proton interactions in binary-driven hypernovae, submitted for
publication to Physical Review D.

We estimate the neutrino emission from the decay chain of the π-meson
and µ-lepton, produced by proton-proton inelastic scattering in ener-
getic (Eiso & 1052 erg) long gamma-ray bursts (GRBs), within the type
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I binary-driven hypernova (BdHN) model. The BdHN I progenitor is
binary system composed of a carbon-oxygen star (COcore) and a neu-
tron star (NS) companion. The COcore explosion as supernova (SN)
triggers a massive accretion process onto the NS. For short orbital pe-
riods of few minutes, the NS reaches the critical mass, hence forming a
black hole (BH). Recent numerical simulations of the above scenario
show that the SN ejecta becomes highly asymmetric, creating a cav-
ity around the newborn BH site, due to the NS accretion and gravita-
tional collapse. Therefore, the electron-positron (e±) plasma created in
the BH formation, during its isotropic and expanding self-acceleration,
engulfs different amounts of ejecta baryons along different directions,
leading to a direction-dependent Lorentz factor. The protons engulfed
inside the high-density (∼ 1023 particle/cm3) ejecta reach energies in
the range 1.24 . Ep . 6.14 GeV and interact with the unshocked pro-
tons in the ejecta. The protons engulfed from the low density region
around the BH reach energies∼ 1 TeV and interact with the low-density
(∼ 1 particle/cm3) protons of the interstellar medium (ISM). The above
interactions give rise, respectively, to neutrino energies Eν ≤ 2 GeV and
10 ≤ Eν ≤ 103 GeV, and for both cases we calculate the spectra and
luminosity.

2. Moradi, R.; Rueda, J. A.; Ruffini, R., Wang, Y., The newborn black hole in
GRB 191014C manifests that is alive, submitted for publication to Astron-
omy & Astrophysics.

A multi-decade theoretical effort has been devoted to finding an effi-
cient mechanism to use the rotational and electrodynamical extractable
energy of a Kerr-Newman black hole (BH), to power the most ener-
getic astrophysical sources such as gamma-ray bursts (GRBs) and active
galactic nuclei (AGN). We show an efficient general relativistic electro-
dynamical process which occurs in the “inner engine” of a binary driven
hypernova (BdHN). The inner engine is composed of a rotating Kerr
BH of mass M and dimensionless spin parameter α, a magnetic field
of strength B0 aligned and parallel to the rotation axis, and a very low
density ionized plasma. Here, we show that the gravitomagnetic inter-
action between the BH and the magnetic field induces an electric field
that accelerates electrons/protons from the environment to ultrarela-
tivistic energies emitting synchrotron radiation. We show that in GRB
190114C the BH of mass M = 4.4 M�, α = 0.4 and B0 ≈ 4× 1010 G, can
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3.2 To be submitted

lead to a high-energy (&GeV) luminosity of 1051 erg s−1. The inner en-
gine parameters are determined by requiring: 1) that the BH extractable
energy explains the high-energy emission energetics, 2) that the emitted
photons are not subjected to magnetic-pair production, and 3) that the
synchrotron radiation timescale agrees with the observed high-energy
timescale. We find for GRB 190114C a clear jetted emission of GeV en-
ergies with a semi-aperture angle of approximately 60◦ with respect to
the BH rotation axis.

3.2 To be submitted

1. Rueda, J. A.; Ruffini, R.; Kerr, R. P., Gravitomagnetic interaction of a Kerr
black hole with a magnetic field as source of the jetted GeV radiation of gamma-
ray bursts, in preparation.

2. Rueda, J. A.; Ruffini, R., On a gravitomagnetic source of ultrahigh-energy
cosmic rays in gamma-ray bursts and active galactic nuclei, in preparation.
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Abstract

SGR J1745-2900 was detected from its outburst activity in 2013 April and it was the first soft gamma repeater
(SGR) detected near the center of the Galaxy (Sagittarius A*). We use 3.5 yr Chandra X-ray light-curve data to
constrain some neutron star (NS) geometric parameters. We assume that the flux modulation comes from hot spots
on the stellar surface. Our model includes the NS mass, radius, a maximum of three spots of any size, temperature
and positions, and general relativistic effects. We find that the light curve of SGR J1745-2900 could be described
by either two or three hot spots. The ambiguity is due to the small amount of data, but our analysis suggests that
one should not disregard the possibility of multi-spots (due to a multipolar magnetic field) in highly magnetized
stars. For the case of three hot spots, we find that they should be large and have angular semiapertures ranging from
16° to 67°. The large size found for the spots points to a magnetic field with a nontrivial poloidal and toroidal
structure (in accordance with magnetohydrodynamics investigations and Neutron Star Interior Composition
Explorer’s (NICER) recent findings for PSR J0030+0451) and is consistent with the small characteristic age of the
star. Finally, we also discuss possible constraints on the mass and radius of SGR J1745-2900 and briefly envisage
possible scenarios accounting for the 3.5 yr evolution of SGR J1745-290 hot spots.

Key words: dense matter – pulsars: general – stars: neutron – starspots – X-rays: individual (SGR J1745-2900)

1. Introduction

Electromagnetic data-driven constraints to the mass and
radius of NSs are very elusive. Radius measurements are
mostly based on the observation of thermal emission and
comparisons with theoretical models. The modeling, however,
due to the complex and relativistic nature of NSs, suffers from
a number of complications such as parameter degeneracy, the
unknown NS equation of state (EOS), among other uncertain-
ties, e.g., the distance to the object (see, e.g., Özel et al. 2016b;
Özel & Freire 2016, and references therein). Notwithstanding,
currently operating and future observatories, such as the
Neutron Star Interior Composition Explorer (NICER; Gendreau
et al. 2016), the enhanced X-ray Timing and Polarimetry mission
(Zhang et al. 2019), and the Spectroscopic Time-Resolving
Observatory for Broadband Energy X-rays (Ray et al. 2018),
promise to greatly decrease the uncertainties of NS parameters.
They are expected to provide masses and radii of NSs with an
accuracy of a few percent (see Sieniawska et al. 2018, and
references therein). In particular, one of the most significant
developments in the measurement of the dense matter EOS is
going to come from the NICER detector(see Özel et al. 2016a).
The pulsed X-ray emission from hot spots on the surface of a
rotating NS contains encoded information about its gravitational
field and the properties of the spot emission pattern. NICER is
using this approach to measure NS radii, based on the shape
and amplitude of the pulsed emission observed from pulsar

surface in multiple wavebands. The data accuracy allows for
precise comparison between measurements and models of
NSs(Sieniawska et al. 2018), and will significantly improve
our understanding of the physics of superdense matter in the
universe. Indeed, NICER’s X-ray data from PSR J0030+0451
has recently led to the first precise measurements (below 10%
uncertainty) of the radius and mass of a pulsar (see Bilous et al.
2019; Bogdanov et al. 2019a, 2019b; Guillot et al. 2019; Miller
et al. 2019; Raaijmakers et al. 2019; Riley et al. 2019). Besides,
it has also allowed for the first map of the hot spots on the
surface of a star. It provided the locations, shapes, sizes, and
temperatures of the heated regions, which should give precise
details of the magnetic field of a neutron star (NS). In this regard,
it has already been found that the hot spots are far from
antipodal, meaning that the magnetic field structure of a compact
star is much more complex than previously thought.
In order to constrain uncertainties up to a few percent, stellar

rotation should be large (>100 Hz), time resolution should be
small (10 μs), and the number of photons should be large (at
least ∼106; Watts 2019). However, it is still possible to obtain
interesting constraints on the properties of slowly rotating NSs,
such as the Soft Gamma Repeaters (SGRs) and the Anomalous
X-ray Pulsars (AXPs).
SGR1745-2900 was the first SGR detected near the Milky

Way center, Sagittarius A*(Kennea et al. 2013; Mori et al.
2013), and it is at distance of 8.3kpc. It has a rotational period
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P=3.76 s and a changing spindown rate since the 2013
outburst. From its latest update, it is  ~ ´ -P 3 10 11 s/s (Coti
Zelati et al. 2017). It is characterized by an X-ray luminosity
LX≈1032–1036ergs−1. Owing to the flaring/outburst activity
(1038–1045 erg), SGR1745-2900 has been classified within the
SGR and AXP class (see, e.g., Olausen & Kaspi 2014). For a
comprehensive review on observations of SGR1745-2900,
even the long-term ones, see Coti Zelati et al. (2015, 2017). For
a systematic study of pulsed fractions of magnetars in quiescent
state, including SGR1745-2900, see Hu et al. (2019).

In this paper, we apply the approach of Turolla & Nobili
(2013) for the emission of an NS with hot spots to two X-ray
light curves of SGR1745-2900 in different epochs. We use
Genetic Algorithm (GA) techniques to constrain the mass and
radius of SGR1745-2900 with a minimum set of assumptions.
This paper is organized as follows. In Section 2, we present the
aspects of the model used for obtaining light curves from
NS surfaces with hot spots. Section 3 explains the genetic
algorithm techniques we use for fits of the SGR1745-2900 light
curves and how to obtain the NS parameters. In Sections 4 and 6
we present our results and discuss them.

2. Pulsed Profile Model

Here we show how the theoretical pulsed profiles are
calculated for an NS with thermal spots on its surface. We
follow the procedure of Turolla & Nobili (2013) to calculate
the observed flux, which allows us to treat circular spots having
arbitrary size and location on the stellar surface. The mass and
radius of the star are denoted by M and R, respectively, and the
spacetime outside the star is described by the Schwarzschild
metric, i.e., we neglect rotational effects. This is an accurate
approximation for SGR J1754-2900 given its slow rotational
period of 3.76s (clearly contrasting with millisecond pulsars,
see, e.g., Belvedere et al. 2015; Cipolletta et al. 2015; Coelho
et al. 2017). Let (r, θ, f) be a spherical coordinate system with
the origin at the stellar center and the polar axis along the line
of sight (LOS; see Figure 1).

We consider an observer at  ¥r and a photon that arises
from the stellar surface at q q f=dS R d dsin2 , making an angle
α with the local normal to the surface ( a p 0 2). The
photon path is then bended by an additional angle β owing to
the spacetime curvature, and the effective emission angle as
seen by the observer is ψ=α+β (see Figure 1). The geometry
is symmetric relative to f. Beloborodov (2002) has shown that
the following simple approximate formula can be used to relate
the emission angle α to the angle θ:

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠a q- = - -

R

R
1 cos 1 cos 1 , 1s

where Rs=2GM/c2 is the Schwarzschild radius and G
denotes the gravitational constant. We note that Equation (1)
is a very good approximation for R>3Rs since it typically
leads to very small errors (1%). For the range of masses and
corresponding radii of interest here, errors would be up to a few
percent.

We assume that the spot emission follows a local Planck
spectrum and that the observed flux comes mainly from hot
spots. The intensity Bν(T) is given by a blackbody with
temperature T, where ν is the photon frequency. The flux is
proportional to the visible area of the emitting region (SV) plus

a relativistic correction, and it is given by (Beloborodov 2002;
Turolla & Nobili 2013)
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In polar coordinates, the circular hot spot has its center at θ0
and a semiaperture θc. The spot is bounded by the function
fb(θ), where f p 0 b , and since we must consider just the
visible part of the star, the spot must be also limited by a
constant θF. It is defined by

( )⎛
⎝⎜

⎞
⎠⎟q = -
-c R

GM
arccos 1

2
. 4F

2 1

For a given bending angle β, θF occurs for the maximum
emission α, i.e., α=π/2. In Newtonian gravity, where β=0,
the maximum visible angle is θF=π/2, meaning that half of
the stellar surface is visible. However, for a relativistic star

Figure 1. Illustration of the model geometry showing the photon trajectory and
the angles θ, α, and β.
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θF>π/2. Then
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where θmin, θmax are the limiting values, to be determined to the
spot considered. Turolla & Nobili (2013) show how to solve
these integrals and how to carefully treat the limiting angles.
Finally, the flux given by Equation (2) can be written as
(Turolla & Nobili 2013)
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where D is the distance to the source, and it corrects the flux for
an observer on Earth, and Aeff is the effective area, given by
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The total flux produced by Nσ spots, where the σth spot has a
semiaperture θcσ and a temperature Tσ, can be calculated by
adding up each contribution, and so we have
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Besides, the pulse profile in a given energy band [ν1, ν2] for a
given spot σ is
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Therefore, one can rewrite Equation (8) for a given energy
band, and it becomes

( ) ( )å n n=
s

sF F , . 10TOT
1 2

We define by r̂ the unit vector parallel to the rotation axis of
the star, whose angular velocity is Ω=2π/P. It is also useful
to introduce i, the angle between the LOS (unit vector l̂ )
and the rotation axis, and j, the angle between the polar cap
axis (unit vector ĉ) and the rotation axis ( ˆ · ˆ= r licos and

ˆ · ˆ= r cjcos ).
When the total flux, Equation (10), is calculated for a given

configuration (i, j) for a time interval (0− P), the typical result
is a pulsed flux with a maximum (Fmax) and a minimum flux
(Fmin). We shall use the normalized version of Equation (10),
given by

¯ ¯ ( )=F
N

F
1

, 11TOT TOT

where ¯ ( )= +N F F 2max min . This normalization makes our
model independent of the source distance, avoiding uncertain-
ties linked to its precise determination. As SGR1745-2900 is
located near the Galactic center, its emission is heavily
absorbed by the interstellar medium (ISM). However, we have
verified that the ISM absorption can be neglected when using
this normalization.

We also define the pulsed fraction as

( )=
-
+

F F

F F
PF . 12max min

max min

We have considered two main physical scenarios. (i) Two-
spot configuration: the spots can have any size and temperature,
but their centers are diametrically opposed (as the poles of a
dipolar magnetic field). So, in this case, the spots are called
polar caps and we can define a polar cap axis. (ii) Three-spot
configuration: two-spot configuration plus a third spot of any
size, location, and temperature.
As the star rotates, the polar coordinate of the spot’s center,

θ0, changes. Let γ(t)=Ωt be the star’s rotational phase. Thus,
from a geometrical reasoning we have that

( ) ( ) ( )q g= -t i j i j tcos cos cos sin sin cos , 130

where we have taken that i and j do not change with time.

3. Genetic Algorithms

A GA is a type of programming technique inspired in the
modern understanding of natural selection, i.e., the best genetic
code is the one whose phenotype manages to survive all natural
vicissitudes. In our work, the chromosome is given by the set of
all free parameters used to generate a theoretical pulse profile.
In GA, the individual parameters of a chromosome are called
genes. In our case, the mass and radius of the star (M and R)
and the angles i and j are examples of genes. The entire set of
genes is given in Table 1.
The desired phenotype is given by the observed pulse

profile, and a chromosome fitness is calculated from it. A
typical GA procedure comprises six steps:

(1) Initialization: generation of a population of solutions (i.e.,
the chromosomes).

(2) Phenotype evaluation—calculation of each model solu-
tion fitness.

(3) Selection of the best solutions.
(4) Reproduction—the genes of the best solutions are

recombined.
(5) Mutation—genes can be randomly selected and changed.
(6) Population replacement.

Table 1
List of Parameters and Ranges Used in Our Genetic Algorithm to Fit a

Light-curve

Chromosome

Gene Definition Range

M(Me) Star’s mass 1.0–2.0
R(km) Star’s radius 8.9–13.7
Nσ Number of hot spots 1–4
θcσ σth spot’s semiaperture 2°–180°
Tσ (keV) σth spot’s temperature 0.0–0.9
θσ σth spot’s colatitude 0°–180°
fσ σth spot’s longitude 0°–360°
i Angle between the LOS 0°–90°

and the rotation axis
j Angle between the polar cap 0°–90°

and the rotation axis
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Every iteration from step 2 to 6 is called a generation. In
order to handle the genetic evolution and gene operations, we
use the python library Pyevolve,12 maintained by Christian S.
Perone and modified by us.

3.1. Goodness-of-fit Calculation

The goodness-of-fit (GoF) of a given solution is calculated
by the square of the difference between the model and the
observed data. This is summed over the period of the pulsed
profile, i.e.,

[ ¯ ¯ ] ( )å= -F FGoF , 14
k

k k
TOT OBS 2

where F̄k
TOT is given by Equation (11). Note that the

summation is discrete because of the data nature, but the
temporal change in F̄k

TOT is controlled by Equation (13) over
the star’s period. F̄k

OBS is the normalized observed flux and
k=1–N, where N is the number of observed points of the light
curve. The optimal case would be GoF=0. Therefore, the
GA’s goal is to minimize GoF. We note that the data
uncertainty σ of SGR1745-2900 is a given constant for each
data set, and hence GoF and the standard χ2 (c sº GoF2 2)
carry the same statistical information. Since the definition given
by Equation (14) is better suited for numerical computations,
we use it for our fits. However, for statistical considerations we
use χ2 in order to be closer to standard analyses.

4. Results

Our aim is to find the set of parameters(see Table 1) that
best fit the X-ray emission of SGR J1745-2900. We use the
light curve from two epochs: 2013 (D13) and 2016 (D16)—
presented by Coti Zelati et al. (2017). We let the parameters
evolve as laid out in Section 3, and this is done independently
for each data set. The final criterion to accept the best solutions
is that both D13 and D16 result in the same most likely radius
and inclination angles i and j, since these are expected to
remain stable. For the determination of the mass and radius
(based on the mean mass) ranges, global data analyses have
been done, as explained below.

We have performed a “zeroth run” with all data points to find
out which values of mass were the most likely to fit the
SGR1745-2900 light curve. This has been done in order to fix

one parameter and expedite the convergence time of subse-
quent (more precise) analyses. Our results are summarized in
Figure 2 where one has the histogram of all generations of
solutions fitting SGR1745-2900 light curves. There one sees
that, to one standard deviation, the majority of candidates have
mass 1.4±0.1Me. Thus, we take the SGR1745-2900 mass
as a fixed value in the subsequent fits and equal to the mean
value of the normal distribution of Figure 2, the canonical
NS (1.4Me). However, as the large radius scattering of the
zeroth run (when compared to the mass) already suggests
(R= 10.9± 1.5 km), we do not take the radius of SGR1745-
2900 as a fixed parameter in our subsequent investigations.
Further details in this regard are given in Section 6.
As a first test, we have attempted to fit the light curve with

only one hot spot, but the fits were very poor and are not
discussed here. So we explore two spots, either having free
positions or being antipodal. The two-spot fits can be seen in
Figure 3 for the D13 data set, where the GoF per degree of
freedom for the fits are in the range 0.041–0.044. In order to
contemplate another geometry, we added a third hot spot with a
free position relative to the other two, chosen to be antipodal.
This choice of spots acts like a correction (which can be large)
to the dipolar model, and, as shown below, it results in better
fits to the light curves. A summary of the best-fit parameters for
the D13 and D16 data sets in this case can be seen in Table 2.
Figure 4 shows the best fits for the D13 and D16 sets using
three spots. One can see that three spots fit reasonably well the
main features of both data sets. For the D13 data set we find
that GoF per degree of freedom is around 0.037, which is
slightly better than the two-spot fits. We discuss further the
quality of the fits and some subtleties of the D16 data set in
Sections 4.1 and 6.
Figure 5 shows the hot spot positions on the stellar surface.

The nonantipodal spot, in the southern hemisphere of the star,
is responsible for the hottest blackbody temperature (0.87 keV)
for both epochs, and its semiaperture increases from 2013 to
2016. This temperature is very close to 0.88keV, as found by
Coti Zelati et al. (2017) when fitting SGR1745-2900 spectrum
with a single hot spot.

4.1. Statistical Considerations

Given that some macroscopic aspects of the star should not
change significantly from one period to the other, important
conclusions could already be reached from one data set alone, for
example D13. Clearly, three hot spots can fit better the data than
two hot spots. This can be seen by their goodness-of-fit per degree

Figure 2. Histograms of all generations of solutions for D13 and D16. Left panel: from a normal distribution fit of the count of solutions one learns that the mean mass
is 1.4Me and the standard deviation is 0.1Me. Right panel: the histogram shows the count of solutions of different radii forM=1.4Me (the mean mass). Also from a
normal distribution fit, the mean radius in this case is given by R=10.9 km and the standard deviation is 1.5 km.

12 http://pyevolve.sourceforge.net/
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of freedom (GoF/DoF), as present in Figures 3 and 4 and in
Table 3. However, for meaningful fit comparisons we calculate the
standard reduced χ2, ≔ ( )c s c=GoF DoF DoFred

2 2 2 (σ is the

normalized error bar of the measurements). As is clear from
Table 3, one can see that c = -2 6red

2 for both data sets. A
possible interpretation of the large values of cred

2 is an overfitting
due to the small number of data points (resulting in a small DoF).
We have also performed the F-test between nested models. The
p-values of these statistics suggest that there is not a preferred
model. This is not surprising given the large number of parameters
when compared to the data (small number of degrees of freedom).
In order to increase the number of degrees of freedom, we

have also attempted to fit the data in other ways. We have
assumed the case where the D13 and D16 data sets are fit
simultaneously for certain parameters. Our results are summar-
ized in Table 4 (for free fitting masses and radii) and 5 (free
fitting radii and fixed mass at 1.4Me). As one can clearly see, no
case led to a preferred hot spot scenario. For instance, the cred

2

found are as large as before, which is yet a consequence of the
very small number of observational data for SGR1745-2900.
One might wonder what is the minimum amount of data points
needed to reach more stringent results. As the goodnesses of fit
of Table 4 already suggests, assume that this hypothesized case
still leads to GoF≈0.6 to the simultaneous fit. Then, it follows
that c » 1.05red

2 would be reached when the degrees of freedom
are approximately 70. This is much larger than our SGR1745-
2900data. We come back to this issue in Section 6.

5. Additional Systematic Uncertainties to M and R

Care should be taken when extracting physical information
from pure blackbody emission models. The processes

Figure 3. Upper panel: D13ʼs fitting for two spots. The mass is 1.4Me and the two spots are free. The radius found is R=13.74km, and GoF=0.22. In this case,
the number of degrees of freedom (DoF) is 5 and hence GoF/DoF=0.044. Bottom panel: D13ʼs fitting for two antipodal spots. The mass is 1.4Me, R=13.4km,
and GoF=0.29. Here, DoF=7 and then GoF/DoF=0.041. The normalization factor used in the plots is ¯ ( )= +N F F 2max min .

Table 2
List of Solutions Found for D13 and D16

Best Solutions

D13 D16

GoF 0.11 0.27
M(Me) 1.40 1.40
R(km) 10.97 11.02
i 57° 58°
j 57° 56°
Nσ 3 3
PF 0.31 0.32

θc1 22° 40°
θ1 0° 2°
f1 0° 351°
T1(keV) 0.6967 0.2857

θc2 16° 67°
θ2 180° 178°
f2 0° 341°
T2(keV) 0.7858 0.0752

θc3 21° 26°
θ3 102° 117°
f3 234° 225°
T3(keV) 0.8789 0.8798

Note.The positions of the spots can be visualized in Figure 5.
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responsible for radiation emission in SGRs/AXPs are still
largely unknown. They may be related to the presence of an
atmosphere, although with properties quite different from those
of standard atmospheres around passively cooling NSs, or even
arise from a condensed surface. In both cases, the spectrum is
expected to be thermal but not necessarily blackbody-like(see,
e.g., Potekhin 2014, and references therein). In the case of NSs,
one can expect that the emitting layers are comprised of just
one, lightest available, chemical element because heavier
elements sink into deeper layers due to the immense NS
gravitational field.

Several works have addressed the problem of modeling the
radiation transport in magnetized NS atmospheres. Shibanov
et al. (1992) were the first to perform detailed calculations of
radiation spectra emerging from strongly magnetized NS
photospheres, for the case of a fully ionized plasma. Besides,
they have created a database of magnetic hydrogen spectra(see
also Ho & Lai 2001; Ho et al. 2007, and references therein) and
have shown that the spectra of magnetic hydrogen and helium
atmospheres are softer than the nonmagnetic ones, but harder
than the blackbody spectrum with the same temperature. Thus,
if an amount of hydrogen is present in the outer layers (e.g.,
because of accretion of the interstellar matter), one can expect a
pure hydrogen atmosphere. The latter can lead to much harder
spectra in the Wien tail than the blackbody spectrum, because
hotter deep layers are seen at high frequencies, where the
spectral opacity is lower(Pavlov et al. 1996). In this case, the
best-fit effective temperature of the atmosphere is considerably
lower than the blackbody temperature, whereas the R/D ratio is
larger than the one for the blackbody fit. Therefore, models that
go beyond blackbody assumptions could have an important
influence on SGR1745-2900 mass and radius constraints.

A crude way of estimating further uncertainties to our M and
R results due to the presence of atmospheres (e.g., hydrogen)
could be as follows. One could average out the different hot
spot temperatures in the D13 and D16 data sets and find a
representative temperature and an uncertainty to them. With
this uncertainty, one could estimate a range of wavelengths
around the one for the maximum flux, λmax (the most relevant
wavelength for a given temperature), and then use known
atmospheric models (Pons et al. 2007) to find the largest
change of the flux (with respect to the blackbody) for this
wavelength interval. Finally, by extrapolating these results, one
gets the flux change estimates to our case. Using the spots’
temperatures from Table 2, one has that a representative value
for them is 0.6±0.3 keV (7.0± 0.3× 106 K).13 For the above
hot spot temperature uncertainty, one then expects the relevant
wavelengths to range from (2/3)λmax to 2λmax. From Figure 6
of Ho et al. (2007; or Figure 1 of Suleimanov et al. 2009), it
thus follows that hydrogen atmospheres of isolated magnetized
stars should lead to a maximum difference in flux of
approximately 20% when compared to blackbody results. If
now one goes back to the expression of the flux and takes it as a
function of M and R, it follows that a 20% change of it leads to
a maximum uncertainty of approximately 7% to the radius and
a 5% uncertainty to the mass with respect to blackbody
outcomes. In order to reach these differences, we have taken

Figure 4. Upper panel: D13ʼs fitting for three spots. The mass is 1.4Me and two spots are antipodal, while the third one is free. The parameters found were
R=10.97km, j=57°, i=57°, T1=0.6967keV, T2=0.7858keV, and T3=0.8789keV. GoF=0.11 and the number of degrees of freedom here is 3 (the mass
has been fixed by our zeroth run), which implies that GoF/DoF=0.037. Bottom panel: D16ʼs fitting for three spots. Same mass and spot configurations as the D13
set. The parameters found were R=11.02km, j=58°, i=56°, T1=0.2857keV, T2=0.0752keV, and T3=0.8798keV. GoF=0.27 (GoF/DoF = 0.09).

13 If one assumes that the flux of the hot spots is around 10 times larger than
the one from the star’s surface (DeDeo et al. 2001), then the mean hot spot
temperature should be around twice as large as the star’s surface. This allows
us to conclude that our fit parameters are in good agreement with independent
fits of surface temperatures and magnetic fields of stars (Pons et al. 2007) since
the surface dipolar magnetic field of SGR1745-2900 would be around
2×1014 G (Coti Zelati et al. 2015).
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Ip=Is≈0.015 as a representative value. We note that the
above changes could either increase or decrease the mean mass
and radius of SGR1745-2900 .

Another source of uncertainty to our blackbody-based results
is light beaming. This is specially the case for systems with
high magnetic fields (DeDeo et al. 2001; Suleimanov et al.
2009), as is very likely the case of SGR1745-2900 (Coti Zelati
et al. 2015). Besides the plasma present in the magnetosphere,
the presence of an accretion column itself could lead the
emission from hot spots to be beamed (DeDeo et al. 2001).
When compared to isotropic emission models, beaming could
change pulsed fractions substantially (DeDeo et al. 2001).
One could crudely estimate additional uncertainties to our
model in the following way. The averaged semiaperture angle
from our hot spots is q̄ » 32c (see Table 2). From our model,
the SGR1745-2900 pulsed fraction is approximately 0.3.

Assuming that the hot spots could have a flux around 10 times
larger than the star’s surface (DeDeo et al. 2001), from Figure 4
of DeDeo et al. (2001), one sees that the most appropriate
beaming index in this case should be n=1 ( aµI cosn ) and
changes in the maximum to minimum flux ratio could be 65%
(pulsed fraction going from 0.1, the maximum in the isotropic
case (DeDeo et al. 2001), to 0.3, the inferred one from our
analysis of SGR1745-2900). This means, crudely speaking,
that the flux could change around 30% from a pure blackbody.
In terms of differences to macroscopic parameters, following
the procedure laid out before for atmospheres, we find that
beaming leads to a maximum difference of 6% to the mass and
10% to the radius. We stress that this is very model and
parameter dependent and it is not excluded larger or smaller
corrections to blackbody outcomes. We comment further on
beaming in the discussion section.
All the above systematic uncertainties indicate that, so far, it

is not possible to make predictions for the mass and radius of
SGR1745-2900 as precise as one would wish. Combining the
above models, systematic modeling uncertainties could lead the
radius and the mass to change by up to 20% and 10%,
respectively. However, a clear aspect from our simple analysis
is that fits with three hot spots resulted in smaller GoF, meaning
that they are more statistically relevant than two hot spots. We
discuss possible interpretations of that in the next section.

6. Discussions and Conclusions

Chandra X-ray data have been used to constrain SGR J1745-
2900 properties by means of genetic algorithm techniques.
From SGR1745-2900 X-ray light curve and pulsed fraction
and the assumption that they come from stellar hot spots of any
size, temperature, and stellar position, fits have been made
attempting to reproduce as best as possible the data. We took
into account relativistic effects such as light bending and we
have ignored the effects of stellar rotation, well supported by
the SGR1745-2900 long rotation period (3.76 s). In this first
approach, we have also ignored atmospheric effects and
beaming on the fits. Global and split into two epochs data
have been investigated for uncertainty estimations and precise
parameter extractions.
Although fits with three hot spots lead to better-than-two

GoFs, statistical considerations have shown that both models

Figure 5. Left panel: D13ʼs three-spot positions. T1=0.6967keV (north pole spot), T2=0.7858keV (south pole spot), and T3=0.8789keV (nonantipodal—or
southern hemisphere—spot). Right panel: D16ʼs three-spot positions. T1=0.2857keV (north pole spot), T2=0.0752keV (south pole spot), and T3=0.8798keV
(nonantipodal spot). The arrows shown are the l̂ (LOS), around the star’s equatorial plane, ĉ (polar cap axis), crossing the north pole, and r̂ (rotation axis), the
remaining arrow in the northern hemisphere. A plane is drawn as a reference to the maximum angle θF from which the observer cannot receive signals anymore.

Table 3
Acronym Meanings: Number of Fitting Parameters (NFP), Number of Data

Points (NDP), and Degrees of Freedom (DoF)

Separated Fits of D13 and D16 Epochs

Model A1 B1 C1 A2 B2 C2

Data D13 D13 D13 D16 D16 D16
Nσ 2 2 3 2 2 3
Antipodal y n y y n y
GoF 0.29 0.22 0.11 0.33 0.35 0.27
σ 0.09 0.09 0.09 0.15 0.15 0.15
χ2 (Di) 35.80 27.16 13.58 14.67 15.56 12.00
χ2
red 5.11 5.43 4.53 2.10 3.11 4.00

NFP 9 11 13 9 11 13
NDP 16 16 16 16 16 16
DoF 7 5 3 7 5 3

Models A1/B1 B1/C1 B2/C2

F-statistics 0.7954 1.4999 0.4444
p-value 0.5012 0.3535 0.6775

Note.σ stands for the data uncertainty. The row “antipodal” specifies whether
models have (y) or do not have (n) two antipodal spots. The F-statistics and
p-value are calculated by comparing two models as indicated by (X1)/(X2).
The mean value of the mass has been fixed by the zeroth run, while the radii
have been kept free for both epoch fits (see Section 4 for details).
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are equivalent. This is due to the limitation of the observational
data itself, which severely decreases the degrees of freedom of
the system for the models. Even though the resultant statistics
is poor in any case, one could interpret the above-mentioned
ambiguity as a suggestion that a multipolar structure in
SGR1745-2900 should not be excluded. This comes from
the fact that at least one model we have analyzed is a
reasonable first-order description to NSs. Indeed, this should be
the case for dipolar models since braking index measurements
for pulsars are not too far from three(see, e.g., Coelho et al.
2016; de Araujo et al. 2016a, 2016b, 2016c, 2017) and some

properties of SGRs/AXPs would need strong dipolar fields
(Coelho et al. 2017). Thus, if two hot spots are reasonable at
the surfaces of stars and they are statistically equivalent to three
hot spots, one should not disregard the latter (or other situations
with more hot spots) in modeling NS light curves. This has
indeed been shown to be the case of pulsar PSR J0030+0451,
which strengthens even further the suggestions of our statistical
analysis for SGR1745-2900. We leave for future work
investigations of light curves of NSs with more data points
using the GA techniques developed here. In particular, we plan
to investigate PSR J0030+0451, given that the hot spot
configuration found for it is very different from what is
expected in the dipolar case (see Bilous et al. 2019; Bogdanov
et al. 2019a, 2019b; Guillot et al. 2019; Miller et al. 2019;
Raaijmakers et al. 2019; Riley et al. 2019).
Regarding the normalized flux fits, some words are in order.

First, we have not fitted both data sets entirely independently.
We have taken the mean mass from our zeroth run (with all
data sets run simultaneously; see Figure 2) in order to minimize
the computation time of other parameters. This is reasonable
because SGR1745-2900 is an isolated NS. We have not taken
the mean value of the radius from our zeroth run, but we have
treated it as a free parameter in the D13 and D16 fits. However,
we expect them, as well as the inclination angles i and j, to
remain almost the same, as indeed happened to many
populations, and that has been used as our criterion for
selecting “the best” solution (see Table 2).14 This shows
consistency in our simple model. Nonetheless, the fit of the last
points of the D16 data set indicates that the model is not
entirely appropriate. This could be due to several reasons, one

Table 4
The Mass and Radius Were Free to Vary and Have Been Simultaneously Adjusted for the D13 and D16 Epochs

Simultaneous Fits of D13 and D16 with Free Masses and Radii

Model D E F G

Data +D D13 16 D13+D16 D13+D16 D13+D16
Nσ 2 2 3 3
Antipodal y n y n
GoF 0.5882 0.5589 0.5203 0.3761
χ2 (D13+D16) 45.21 42.71 39.28 19.05
cred

2 2.83 3.56 4.91 4.76

NFP 16 20 24 28
NDP 32 32 32 32
DoF 16 12 8 4

Di D13 D16 D13 D16 D13 D16 D13 D16
GoF 0.2413 0.3469 0.2260 0.3329 0.2044 0.3159 0.0294 0.3467
σ 0.09 0.15 0.09 0.15 0.09 0.15 0.09 0.15
χ2 (Di) 29.79 15.42 27.91 14.80 25.24 14.04 3.64 15.41

Models D/E E/F F/G

F-statistics 0.1760 0.1746 1.0619
p-value 0.9470 0.9452 0.4774

Note.The intermediate GoF and χ2 (D13 and D16) for the simultaneous fits are shown in the midpart of the table. The meaning of the acronyms and statistics are the
same as in Table 3.

Table 5
The Meaning of the Acronyms Are the Same As in Table 3

Simultaneous Fittings for D13 and D16. Stellar Mass Is Fixed at 1.4Me

Model H I

Data D13 + D16 D13 + D16
Nσ 2 3
Antipodal y y
GoF 0.5976 0.5272
χ2 (D13+D16) 46.40 40.20
χ2
red 2.73 4.47

NFP 15 23
NDP 32 32
DoF 17 9

Di D13 D16 D13 D16
GoF 0.2511 0.3465 0.2122 0.3150
σ 0.09 0.15 0.09 0.15
χ2 (Di) 31.00 15.40 26.20 14.00

Models H/I

F-statistics 0.1735
p-value 0.9891

Note.The middle part refers to the intermediate GoF and χ2 for the
simultaneous fits, as in Table 4.

14 The GA we have made use of has a mutation parameter to prevent solutions
from getting stuck in a false minimum. We have taken it to be 0.1, meaning that
in every generation 10% of the population suffers mutation. Besides that, we
have used many initial populations and have stopped running generations when
the best solution (minimum of χ2) had been the same for many successive
generations (around 1000). Not all populations converged to the same solution,
but we selected the physical one as the best of those with the same macroscopic
parameters for both data sets.
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of them being the small amount of data itself (see Coti Zelati
et al. 2017). Another reason would be that we have modeled
the data in a very simple way, forcing both epochs to be
described equally, and important effects might have been left
out. An example of that could be significant changes of
SGR1745-2900 atmospheric conditions from one epoch to the
other. A sharp change of the beaming might also take place,
meaning that accretion columns could change their properties
due to an outburst. Indeed, it could rearrange or disturb the
atmosphere of the magnetized NS, and as a result the flux could
change non-negligibly. Thus, better fits could raise if different
atmospheric models are taken for the epochs analyzed, which
we have not done in this first analysis. We plan to elaborate on
the above in future works.

The uncertainties to M and R, coming from our zeroth run,
should be taken just as indicative. Systematic uncertainties due
to different models could also be relevant. We have
investigated some of them and it seems that atmospheric
models and beaming could play an important role in more
realistic uncertainties to the parameters. Rough estimates
suggest that variations of the flux with respect to our model
are around 50%, meaning an additional 20% (10%) radius
(mass) uncertainty to SGR1745-2900 ’s mean blackbody
outcomes. However, it is important to bear in mind that
models for NS atmospheres are still debatable and blackbody
results could give us interesting insights for testing them more
precisely.

We now make a few comments regarding the case the
surface of SGR1745-2900 has three hot spots. The hot spots
in Figure 5, in the light of the Gourgouliatos & Hollerbach
(2017) results, could be interpreted as follows. First of all, the
magnetic field at the stellar surface in both data sets seems to be
far from axially symmetric because of the better fits coming
from three hot spots. For the D13 set, the presence of
the nonantipodal spot (southern hemisphere), whose size is
comparable to the antipodal spots (north and south poles),
suggests that the toroidal field should be relevant. Indeed,
purely dipolar models would lead to spot areas of the order of
the polar cap area p=A Rpc pc

2 , where ( )p=R R cP2pc
3 (see,

e.g., Ruderman & Sutherland 1975; Cheng & Ruderman 1977;
Chen & Ruderman 1993), and, for an NS with R=11km and
P=3.76 s, Apc≈0.023 km2, much smaller than the areas of
the spots in Figure 5. This clearly indicates that the magnetic
field of SGR J1754-2900 is very different from a dipolar
configuration. According to Gourgouliatos & Hollerbach
(2017), a very localized spot (≈1 km) implies a very specific
configuration where 99% of the energy is in the toroidal field.
However, smaller toroidal energy budgets lead to more
extended magnetic zones at the stellar surface and, as a
consequence, an extended hot region (Gourgouliatos &
Hollerbach 2017). Therefore, our results suggest that SGR
J1754-2900 has a complex multipolar magnetic field structure,
with a relevant toroidal component for both D13 and D16 data
sets (not overwhelmingly dominant, though, because the hot
spots are not small). Indeed, the variability of the spindown rate
of SGR J1745-2900 implies that its characteristic age
(≈4.3 kyr) is accurate to its real age up to one order of
magnitude, meaning it would be a young source and hence it
might have a quite complex magnetic field structure. In
addition, the association of some SGRs/AXPs with supernova
remnants suggests that the ages of these sources are typically
�104–105yr(see, e.g., Kaspi & Beloborodov 2017).

The variation of the spots’ temperatures and sizes from one
epoch to the other is pronounced. One might interpret these
results as due to thermal conduction and temperature gradients
on the stellar surface. This seems reasonable given the very
large electric conductivity of the star, which would also imply a
very large thermal conductivity, and so very small timescales
for temperature variations. The temperature change of the spot
at the north pole might be associated with its expansion,
triggered by temperature gradients, and standard cooling
processes. The significant temperature decrease of the south
pole hot spot might also be due to its large increase, possibly
triggered by similar reasons as to what happened to the north
pole hot spot. However, the temperature change in the
nonantipodal spot has been practically zero, and that might
be related to its partial overlap with the south pole hot spot.
Apart from temperature values of some of the hot spots of

SGR1745-2900, our results contrast with those of Coti Zelati
et al. (2017) for the same source and data. First, we have taken
two and three hot spots, while they assume just a single one.
Second, we have found that the sizes of the spots increase from
2013 to 2016, while the opposite happens to their single spot.
In their case, the spot shrinking was important to explain the
increase of the pulsed fraction. In our case, the increase of
the pulsed fraction might be explained with the large
temperature changes of some spots from one epoch to the
other. Due to the relevance of hot spot size evolution to
physical processes taking place in stars (Coti Zelati et al. 2017),
we leave precise analyses thereof in light of our results to be
carried out elsewhere.
We stress an important point of our analysis. One can see

from the bottom panel of Figure 4 that our best fit to the
normalized flux has not been so good for the last 2016 data
points. This means that our pulsed fraction increase is not
as pronounced (see Table 2) as the observed one (from
approximately 0.35 to 0.58; Coti Zelati et al. 2017). We have
tried to enhance the 2016 fit with three free hot spots on the
stellar surface, but no better results have been found. Since in
this case the number of free parameters is the same as the data
points for each set, we have kept analyses with three hot spots
where two of them are antipodal, which naturally have less
parameters than data. Thus, it is still pending ways to enhance
the fit of the last data points of the 2016 light curve of
SGR1745-2900.
We have performed a light curve and pulsed fraction X-ray

data analysis of SGR1745-2900 without assuming any specific
nuclear EOS. The data analysis based on the blackbody model
alone indicates that SGR J1745-2900 has as the most likely
mass the canonical NS mass M=1.4Me, and it should have a
corresponding radius R1.4≈9.4–12.3km. This result obtained
from electromagnetic data agrees with recent constraints
obtained from gravitational wave observations that lead to
R1.413.5 km for hadronic stars (Abbott et al. 2018; Annala
et al. 2018; De et al. 2018; Most et al. 2018). The above values
would disfavor relativistic mean-field theory models, which
usually lead to R1.4 larger than 13.5km (Fortin et al. 2016).
Some Skyrme models (see, for instance, Figure 7 of Fortin
et al. 2016, where models should have R1.4 in the range
of 11.5–13.5 km), as well as the MPA1, APR, and WFF
parameterizations (see their R1.4 in Read et al. 2009), among
other EOS, especially stiffer, seem to be favored by our
analysis. However, the systematic modeling uncertainties that
we have pointed out before significantly weaken the above
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EOS constraints, and no definite conclusion can be reached so
far; this might be mitigated just when precise emissions models
are analyzed or when more data is collected. Finally, the
question of whether SGR J1745-2900 could be a hybrid star
remains open since many of the hybrid EOS would lead to a
third family of NSs which would satisfy our light-curve
constraints (see, for instance, Paschalidis et al. 2018;
Sieniawska et al. 2019 and references therein).

Summing up, we have carried out fits of the light curve
of SGR1745-2900 using the genetic algorithm techniques.
Although the observational data of SGR1745-2900 is not
enough to achieve stringent statistical conclusions, our analysis
gave us important hints on magnetic fields of SGRs/AXPs.
The fact that two or three hot spots could equally describe the
data of SGR1745-2900 suggests that in NS cases with more
observations one should not disregard a multipolar structure of
their magnetic fields.
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Abstract

GRB 190114C is the first binary-driven hypernova (BdHN) fully observed from initial supernova (SN) appearance
to the final emergence of the optical SN signal. It offers an unprecedented testing ground for the BdHN theory,
which is here determined and further extended to additional gamma-ray bursts (GRBs). BdHNe comprise two
subclasses of long GRBs, with progenitors a binary system composed of a carbon–oxygen star (COcore) and a
neutron star (NS) companion. The COcore explodes as an SN, leaving at its center a newborn NS (νNS). The SN
ejecta hypercritically accretes on both the νNS and the NS companion. BdHNe I are very tight binaries, where the
accretion leads the companion NS to gravitationally collapse into a black hole (BH). In BdHN II, the accretion rate
onto the NS is lower, so there is no BH formation. We observe the same afterglow structure for GRB 190114C and
other selected examples of BdHNe I (GRB 130427A, GRB 160509A, GRB 160625B) and for BdHN II (GRB
180728A). In all cases, the afterglows are explained via the synchrotron emission powered by the νNS, and their
magnetic field structures and their spin are determined. For BdHNe I, we discuss the properties of the magnetic
field embedding the newborn BH, which was inherited from the collapsed NS and amplified during the
gravitational collapse process, and surrounded by the SN ejecta.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Gamma-ray bursts (629); Black hole
physics (159)

1. Introduction

We first briefly review the traditional afterglow models and
the possible alternatives. This task has been facilitated by the
publication of the comprehensive book by Zhang (2018). We
focus on additional results introduced since then by the
understanding of the X-ray flare(Ruffini et al. 2018e) and
afterglow of GRB 130427A(Ruffini et al. 2018b) and GRB
190114C(Ruffini et al. 2019b, 2019a).

We first recall the well-known discoveries by the Beppo-
SAX satellite:

1. The discovery of the first afterglow in GRB 970228
(Costa et al. 1997);

2. The consequent identification of the cosmological red-
shift of GRBs (GRB 970508; Metzger et al. 1997), which
proved the cosmological nature of GRBs and their
outstanding energetics; and

3. The first clear coincidence of a long GRB with the onset
of a supernova (GRB 980425/SN 1998bw, Galama
et al. 1998).

Even before these discoveries, three contributors, based on
first principles, formulated models for long GRBs by assuming
their cosmological nature and their origination from black hole
(BH) formation. At the time, these works expressed the point
of view of a small minority. A parallel successful move was
done by Paczynski and collaborators for short GRBs

(Paczynski 1991, 1992; Narayan et al. 1992). The aforemen-
tioned three contributors are the following:

1. Damour & Ruffini (1975) predicted that a vacuum
polarization process occurring around an overcritical
Kerr–Newman BH leads toward GRB energetics of up to
1054 erg, linking their activities as well to the emergence
of ultra-high-energy cosmic rays;

2. Rees & Meszaros (1992) and Mészáros & Rees (1997)
also proposed a BH as the origin of GRBs, but there, an
ultrarelativistic blast wave, whose expansion follows the
Blandford–McKee self-similar solution, was used to
explain the prompt emission phase (Blandford &
McKee 1976);

3. Woosley (1993) linked the GRB’s origin to a Kerr BH
emitting an ultrarelativistic jet originating from the
accretion of toroidal material onto the BH. There, the
idea was presented that for long GRBs, the BH would be
likely produced from the direct collapse of a massive star
—a “failed” SN leading to a large BH of approximately
5Me, possibly as high as 10Me, a “collapsar.”

1.1. Traditional Afterglow Model Originating from BH

The paper by Damour & Ruffini (1975) has only recently
started to attract attention for binary-driven hypernovae (BdHNe)
in the context of the exact solution of the Einstein–Maxwell
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equations by Wald (1974); see Section 2 for further details.
The papers by Rees & Meszaros (1992), Mészáros & Rees
(1997), and Woosley (1993), on the contrary, have led to the
traditional GRB model. There, the afterglow is explained by
the synchrotron/synchrotron self-Compton (SSC) emission
from accelerated electrons when an ultrarelativistic blast
wave of Γ∼1000 is slowed down by the circumburst medium
(Waxman & Piran 1994; Sari & Piran 1995; Sari 1997;
Wijers et al. 1997; Sari et al. 1998). This has become known
as the ultrarelativistic shock-wave model. As pointed out by
Zhang (2018), this ultrarelativistic blast-wave model has been
traditionally adopted in order to explain a vast number
of observations:

1. The X-ray afterglow, including the steep and the shallow
decay phases all the way to the X-ray flares (see Section
2.2.2 in Zhang 2018);

2. The optical and the radio afterglow (see Sections 2.2.3
and 2.2.4 in Zhang 2018); and

3. The high-energy afterglow in the GeV emission (see
Sections 2.2.5 in Zhang 2018).

Related to the above traditional approach are the papers by
Ruffini & Wilson (1975) and Blandford & Znajek (1977),
which addressed the gravitational accretion of magnetized
plasma of infinite conductivity into a Kerr BH. Such a
gravitation-dominated accretion theory implies the need
for a large magnetic field (∼1015 G) and high density
(∼1012–1013 g cm−3) near the last stable orbit around a
∼3Me BH. This gravitation-dominated accretion has been
commonly adopted as input for the above-mentioned ultra-
relativistic jetted emission from the accretion (at a rate ∼1Me
s−1) onto a Kerr BH to power a GRB of luminosity
∼1052 erg s−1.

Since 2018, it has become clear that the three above
processes do not share a common origin, and they are not
related to an ultrarelativistic blast wave.

An electrodynamic accretion process of ionized plasma as an
alternative to the gravitation-dominated accretion theory has
been announced (see companion paper Ruffini et al. 2019b),
operating at a density of ∼10−14 g cm−3 (see Section 8).

1.2. Role of Magnetars and Spinning Neutron Stars

In parallel, a variety of models have been developed,
adopting, instead of a BH, energy injection from various
combinations of NSs and “magnetars.” Dai & Lu (1998a,
1998b) and Zhang & Mészáros (2001) adopted energy injection
from a long-lasting spinning-down millisecond pulsar or a
magnetar (magnetic dipole strength ∼1015 G). Within this
approach, the shallow decay or the plateau observed at times
∼102–104 s is attributed to the energy injection by the magnetic
dipole radiation (see, e.g., Fan & Xu 2006; de Pasquale et al.
2007; Fan et al. 2013). The magnetar model is consistent with
so-called “internal plateaus,” namely the ones that end with a
very steep decay slope, which cannot be explained solely by
external shock waves. The steep drop is thus explained by the
sudden decrease in the energy injection by the pulsar/magnetar
engine at the characteristic lifetime of magneto-dipole emission
(Troja et al. 2007; Rowlinson et al. 2010, 2013; Lü &
Zhang 2014; Li et al. 2018b; Lü et al. 2015). All these
alternative models converge finally to the ultrarelativistic
shock-wave model. We show below how from 2018 the
observations sharply constrain this model.

As we will show below, in the BdHN scenario, the GRB
afterglow originates from mildly relativistic expanding SN
ejecta with energy injection from the newly born neutron star
(hereafter νNS) at its center and from the νNS pulsar emission
itself.

1.3. The Role of Binary Progenitors in GRBs

Alternatively to the above models, in addressing the GRB
within a single-progenitor scenario, fundamental papers have
presented a vast number of possible binary progenitors for
GRBs (Fryer et al. 1999; Heger et al. 2003). Following this
seminal paper, we have developed the concept of BdHNe,
which is recalled in Section 2. This model includes three
different components: (1) a COcore undergoing an SN explosion
in the presence of a binary NS companion; (2) an additional
NS, indicated as a νNS, which is the newborn NS originating at
the center of the SN, accreting the SN ejecta and giving rise to
the afterglow; and (3) the formation of the BH by the
hypercritical accretion of the SN ejecta onto the preexisting NS
companion, giving rise to the GeV emission.
Since the beginning of 2018, there have been considerable

advances in the time-resolved spectral analysis of GRBs
through state-of-the-art algorithms and tools (Skilling 2004;
Vianello et al. 2015). Thanks to this methodology, which
is conceptually different from the Band function approach
(see, e.g., Ruffini et al. 2019a), together with improved
feedback from three-dimensional smoothed-particle-hydrody-
namics (SPH) simulations (Becerra et al. 2019), three new
results have followed from the BdHN analysis which question
the traditional approach.
(1) The explanation of X-ray flares in the “flare–plateau–

afterglow” (FPA) phase (Ruffini et al. 2018e) as originating
from a BdHN observed in the orbital plane of the binary
progenitor system. In particular, the observational data of soft
X-ray flares in the early (t∼ 100 s rest-frame) FPA phase
indicate that the emission arises from a mildly relativistic
system with Lorentz factor Γ∼2–5 (Ruffini et al. 2018e).
(2) We investigated the FPA phase of GRB 130427A using

time-resolved spectral analysis of the early X-ray data (Ruffini
et al. 2015, 2019d; Wang et al. 2019b). There, from the thermal
emission in the FPA phase (see Figure 7 in Ruffini et al. 2015),
an upper limit of ∼0.9c to the expansion velocity was
established. Such a mildly relativistic expansion of the FPA
phase emitter was further confirmed in GRB 151027A (Ruffini
et al. 2018a) by soft and hard X-ray observations, and in GRB
171205A by the optical emission lines (Izzo et al. 2019). It
motivated the first detailed model, applied to GRB 130427A, of
the plateau–afterglow emission of the FPA phase (Ruffini et al.
2018b; Wang et al. 2019b) as arising from the synchrotron
radiation by relativistic electrons within the mildly relativistic
expanding SN ejecta magnetized by the νNS.
(3) One of the newest results on GRB 1901114C infers the

GeV emission, originating in the traditional model at distances
1012–1016 cm, to originate instead from the electrodynamical
process of BH rotational energy extraction very close to the BH
horizon (Ruffini et al. 2019d). This electrodynamical process
occurs in a very low-density environment of ∼10−14 g cm−3

and leads to an energy per particle of up to 1018eV. This is
confirmed by simulations in the accompanying cavity gener-
ated by the BH accretion(Ruffini et al. 2019b).
All of the above shows the different roles in a BdHN I of

three main components: the SN, the νNS, and the newborn BH.
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In this article, we aim to further clarify, confirm, and extend the
explanation of the plateau–afterglow emission of the FPA
phase, as powered by the SN and νNS interaction within the
BdHN scenario, following the treatment presented in Ruffini
et al. (2018b) and Wang et al. (2019b). We analyze the cases of
GRB 130427A, GRB 180728A, GRB 160509A, GRB
160625B, and GRB 190114C.

This article is organized as follows. In Section 2, we recall
the physical and astrophysical properties of the BdHN model.
In Section 3, we recall the observational properties of the GRBs
analyzed in this work. In Section 4, we simulate the X-ray
afterglow of the above-mentioned sources using the mild-
relativistic synchrotron model and infer the magnetic field of
the νNS based on the framework presented in Wang et al.
(2019b). The nature of the obtained magnetic field of the νNS
is discussed in Section 6. In Section 7, we discuss the possible
nature of the magnetic field around the newborn BH in a
BdHN. Finally, in Section 8, we outline our conclusions.

2. The BdHN Scenario

The BdHN model has been introduced to explain long-
duration gamma-ray bursts (GRBs), and it is based on the
induced gravitational collapse (IGC) paradigm (Rueda &
Ruffini 2012) occurring in a specific binary system following
a specific evolutionary path (see Figure 1 and Fryer et al. 2014;
Becerra et al. 2015; Fryer et al. 2015; Rueda et al. 2019 for
details).

As Figure 1 shows, the system starts with a binary composed
of two main-sequence stars, say of 15 and 12 Me, respectively.
At a given time, at the end of its thermonuclear evolution, the
more massive star undergoes core-collapse SN and forms an
NS. The system then enters the X-ray binary phase. After
possibly multiple common-envelope phases and binary inter-
actions (see Fryer et al. 2014, 2015, and references therein), the
hydrogen and helium envelopes of the other main-sequence star
are stripped, leaving exposed its core that is rich in carbon and
oxygen. For short, we refer to it as the carbon–oxygen core
(COcore) following the literature on the subject (see e.g.,
Nomoto et al. 1994; Filippenko et al. 1995; Iwamoto et al.
2000; Pian et al. 2006; Yoshida & Umeda 2011). The system at
this stage is a COcore–NS binary in tight orbit (period of the
order of a few minutes), which is taken as the initial
configuration of the BdHN scenario in which the IGC
phenomenon occurs (Fryer et al. 2014; Becerra et al.
2015, 2016, 2019).

We now proceed to describe the BdHN scenario. At the end
of its thermonuclear evolution the COcore undergoes a core-
collapse SN (of type Ic in view of the hydrogen and helium
absence). Matter is ejected but also a the center of the SN, a
newborn NS is formed, for short referred to as νNS, to
differentiate it from the accreting NS binary companion. As we
shall see, this differentiation is necessary in light of the physical
phenomena and corresponding observables in a BdHN
associated with each of them. Owing to the short orbital
period, the SN ejecta produce a hypercritical (i.e., highly super-
Eddington) accretion process onto the NS companion. The
material hits the NS surface developing and outward shock
which creates an accretion “atmosphere” of very high density
and temperature on top the NS. These conditions turn out to be
appropriate for the thermal production of positron–electron
(e+e−) pairs which, when annihilating, leads to a copious
production of neutrino–antineutrino pairs ( ¯nn), which turn out

to be the most important carriers of the gravitational energy
gain of the accreting matter, allowing the rapid and massive
accretion to continue. We refer to Fryer et al. (2014) and
Becerra et al. (2016, 2018) for details on the hypercritical
accretion and the involved neutrino physics.
Depending on the specific system parameters, i.e., mass of

the binary components, orbital period, SN explosion energy,
etc., two possible fates for the NS are possible (see Becerra
et al. 2015, 2016, 2019 for details on the relative influence of
each parameter in the system). For short binary periods, i.e.,
∼5 minutes, the NS reaches the critical mass for gravitational
collapse and forms a BH (see, e.g., Becerra et al.
2015, 2016, 2019; Fryer et al. 2015). We have called this kind
of system a BdHN type I (Wang et al. 2019b). A BdHN I emits
an isotropic energy Eiso1052 erg and gives rise to a new
binary composed of the NS formed at the center of the SN,
hereafter νNS, and the BH formed by the collapse of the NS.
For longer binary periods, the hypercritical accretion onto the
NS is not sufficient to bring it to the critical mass, and a more
massive NS (MNS) is formed. We have called these systems
BdHNe of type II (Wang et al. 2019b), and they emit energies
Eiso1052 erg. A BdHN II gives origin to a new binary
composed of the νNS and the MNS.
The BdHNe I represent, in our binary classification of GRBs,

the totality of long GRBs with energy larger than 1052 erg,
while BdHNe II, with their energy smaller than 1052 erg, are far
from unique, and there is a variety of long GRBs in addition to
them that can have similar energetics, e.g., double white dwarf
(WD–WD) mergers and NS–WD mergers (see Ruffini et al.
2016, 2018c; Wang et al. 2019b, for details).
Three-dimensional numerical SPH simulations of BdHNe

have been recently presented in Becerra et al. (2019). These
simulations improve and extend the previous ones by Becerra
et al. (2016). A fundamental contribution of these simulations
has been to provide a visualization of the morphology of the
SN ejecta, which is modified from the initial spherical
symmetry. A low-density cavity is carved initially by the NS
companion and, once its collapses, further by the BH formation
process (see also Ruffini et al. 2019a). Such an asymmetric
density distribution leads to a dependence of the GRB
description on the observer viewing angle—in the orbital/
equatorial plane or in the plane orthogonal to it (Becerra et al.
2016; Ruffini et al. 2018e, 2018a; Becerra et al. 2019)—and on
the orbital period of the binary, in the simulation of Figure 2 at
about 300 s (Ruffini et al. 2018a).
The SN transforms into a hypernova (HN) as a result of the

energy and momentum transfer of the e+e− plasma (Ruffini
et al. 2018a; Becerra et al. 2019). The SN shock breakout and
the hypercritical accretion can be observed as X-ray precursors
(Becerra et al. 2016; Wang et al. 2019b). The e+e− feedback
also produces the gamma- and X-ray flares observed in the
early afterglow (Ruffini et al. 2018e). There is then the most
interesting emission episode, which is related to the νNS that
originated from the SN explosion, that is, the synchrotron
emission by relativistic electrons, injected from the νNS pulsar
emission into the HN ejecta in the presence of the νNS
magnetic field, explains the X-ray afterglow and its power-law
luminosity (Ruffini et al. 2018b; Wang et al. 2019b). Finally,
the HN is observed in the optical bands a few days after the
GRB trigger, powered by the energy release of the nickel
decay.
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Figure 1 and Table 1 summarize the above correspondence
between the BdHN physical process and each GRB observable,
emphasizing the role of each component of the binary system.
We also refer the reader to Rueda et al. (2019), and references
therein, for a recent review on the physical processes at work
and related observables in BdHNe I and II.

3. GRBs (BdHNe I) of the Present Work

GRB 130427A is one of the best-observed GRBs; it is
located at redshift z∼ 0.34 (Levan et al. 2013), and more than
50 observatories participated in the observation. It hits the
record for brightness in gamma-ray emission, so that Fermi-
GBM was saturated. It also hits the record for GeV observation,

Figure 1. Schematic evolutionary path of a massive binary up to the emission of a BdHN. (a) Binary system composed of two main-sequence stars of 15 and 12 Me,
respectively. (b) At a given time, the more massive star undergoes a core-collapse SN and forms an NS (which might have a magnetic field B ∼ 1013 G). (c) The
system enters the X-ray binary phase. (d) The core of the remaining evolved star, rich in carbon and oxygen, COcore for short, is left exposed as the hydrogen and
helium envelopes have been striped by binary interactions and possibly multiple common-envelope phases (not shown in this diagram). The system is, at this stage, a
COcore–NS binary, which is taken as the initial configuration of the BdHN model (Fryer et al. 2014; Becerra et al. 2015, 2016, 2019). (e) The COcore explodes as an SN
when the binary period is of the order of a few minutes, the SN ejecta of a few solar masses start to expand, and a fast-rotating, newborn NS, νNS for short, is left in
the center. (f) The SN ejecta accrete onto the NS companion, forming a massive NS (BdHN II) or a BH (BdHN I; this example), depending on the initial NS mass and
the binary separation. Conservation of magnetic flux and possibly additional MHD processes amplify the magnetic field from the NS value to B∼1014 G around the
newborn BH. At this stage, the system is a νNS–BH binary surrounded by ionized matter of the expanding ejecta. (g) The accretion, the formation, and the activities of
the BH contribute to the GRB prompt gamma-ray emission and GeV emission (not the topic of this work).
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with more than 500 photons above 100MeV received, and
GeV emission observed until ∼104 s (Ackermann et al. 2014).

The shape of its prompt emission consists of a ∼3 s
precursor, followed by a multipeaked pulse lasting ∼10 s. At
time ∼120 s, an additional flare appears, then it enters the
afterglow (Maselli et al. 2014). The X-ray afterglow is
observed by Swift and NuStar. Swift covers discretely from
∼150 to ∼107 s (Li et al. 2015), and NuStar observes three
epochs, starting approximately at 1.2, 4.8, and 5.4 days, for
observational durations of 30.5, 21.2, and 12.3 ks (Kouveliotou
et al. 2013). The power-law decay index of the late-time
afterglow after ∼2000 s gives ∼−1.32 (Ruffini et al. 2015).

The optical spectrum reveals that 16.7 days after the GRB
trigger, a typical SN Ic emerges (Xu et al. 2013; Li et al.
2018a), as predicted by Ruffini et al. (2013).

GRB 160509A, at redshift z∼ 1.17 (Tanvir et al. 2016), is a
strong source of GeV emission, including a 52 GeV photon
arriving at 77 s, and a 29 GeV photon arriving ∼70 ks (Laskar
et al. 2016).

GRB 160509A consists of two emission periods, 0−40 s and
280−420 s (Tam et al. 2017). The first period exhibits a single-
pulse structure for sub-MeV emission, and a double-pulse
structure for ∼100MeV emission. The second period is in
the sub-MeV energy range with a double-pulse structure.

Swift–XRT started the observation ∼7000 s after the burst,
with a shallow power-law decay of index ∼−0.6, followed by a
normal decay of power-law index ∼−1.45 after 5× 104 s (Tam
et al. 2017; Li et al. 2018b).
There is no SN association reported; the optical signal of

SNe can hardly be confirmed for GRBs with redshift >1 as the
absorption is intense (Woosley & Bloom 2006).
GRB 160625B, at redshift 1.406 (Xu et al. 2016), is a bright

GRB with the special quality that its polarization has been
detected. Fermi-LAT has detected more than 300 photons with
energy >100MeV (Lü et al. 2017).
The gamma-ray light curve has three distinct pulses (Zhang

et al. 2018; Li 2019). The first short pulse is totally thermal and
lasts ∼2 s, the second bright pulse starts from ∼180 s and ends
at ∼240 s, and the last weak pulse emerges at ∼330 s and lasts
∼300 s. The total isotropic energy reaches ∼3× 1054 erg
(Alexander et al. 2017; Lü et al. 2017).
Swift–XRT starts the observation at a late time (>104 s),

finding a power-law behavior with decaying index ∼−1.25.
There is no SN confirmation, possibly due to the redshift

being>1 (Woosley & Bloom 2006).
GRB 190114C, at redshift z∼ 0.42 (Selsing et al. 2019), is

the first GRB with TeV photon detection by MAGIC
(Mirzoyan et al. 2019; MAGIC Collaboration et al. 2019). It

Figure 2. SPH simulation of a BdHN I: model “25M1p1e” of Table 2 in Becerra et al. (2019). The binary progenitor is composed of a COcore of ≈7Me, produced by
a zero-age main-sequence star of 25 Me (see Table 1 in Becerra et al. 2019), and a 2 Me NS companion. The orbital period is ≈5 minutes. Each frame, from left to
right, corresponds to selected increasing times with t=0 s the instant of the SN shock breakout. The upper panel shows the mass density on the equatorial plane and
the lower panel the plane orthogonal to the equatorial one. The reference system is rotated and translated to align the x-axis with the line joining the binary
components. The origin of the reference system is located at the NS companion position. The first frame corresponds to t=40 s, and it shows that the particles
entering the NS capture region form a tail behind them. These particles then circularize around the NS, forming a thick disk that is already visible in the second frame
at t=100 s. Part of the SN ejecta is also attracted by the νNS accreting onto it; this is appreciable in the third frame at t=180 s. At t=250 s (about one orbital
period), a disk structure has been formed around the νNS and the NS companion. To guide the eye, the νNS is at the x coordinates −2.02, −2.92, −3.73, and −5.64
for t=40 s, 100 s, 180 s, and 250 s, respectively. This figure has been produced with the SNsplash visualization program (Price 2011). The figure has been taken
from Becerra et al. (2019) with the permission of the authors.
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has similar features to GRB 130427A (Wang et al. 2019a), and
it has caught great attention as well.

The prompt emission of GRB 190114C starts with a
multipeaked pulse, its initial ∼1.5 s is nonthermal, which is
then followed by a possible thermal emission until ∼1.8 s. A
confident thermal emission exists during the peak of the pulse,
from 2.7 from 5.5 s. The GeV emission starts from 2.7 s,
initiated by a spiky structure, then follows a power-law decay
with index ∼−1.2 (Ruffini et al. 2019a). The GeV emission is
very luminous; more than 200 photons with energy >100MeV
are received. The X-ray afterglow observed by Swift–XRT
shows a persistent power-law decay behavior, with decaying
index ∼1.35 (Wang et al. 2019a).

An continuous observational campaign lasting ∼50 days
unveiled the SN emergence ∼15 days after the GRB (Melandri
et al. 2019), which is consistent with the prediction of
18.8± 3.7 days after the GRB by Ruffini et al. (2019c).

4. X-Ray Afterglow of the GRB and Magnetic Field of
the νNS

The newborn NS at the center of the SN, i.e., the νNS, ejects
high-energy particles as in traditional pulsar models. This
means that these particles escape from the νNS magnetosphere
through so-called “open” magnetic field lines, namely, the field
lines that do not close within the light cylinder radius that
determines the size of the corotating magnetosphere. These
particles interact with the SN ejecta, which, by expanding in the
νNS magnetic field, produce synchrotron radiation, which we
discuss below. Hence, the acceleration mechanism is similar to
the one occurring in traditional SN remnants but with two main
differences in our case: (1) we have a ∼1 ms νNS pulsar
powering the SN ejecta and (2) the SN ejecta are at a radius of
∼1012 cm at the beginning of the afterglow, at the rest-frame
time t∼ 100 s, as the SN expands with velocity ∼0.1c.

The above distance is well beyond the light cylinder radius,
so it is expected that only the toroidal component of the
magnetic field, which decreases as 1/r (see Equations (4) and
(12)), survives (see, e.g., Goldreich & Julian 1969 for details).

Therefore, the relevant magnetic field for synchrotron radiation
in the afterglow is that of the νNS, which is stronger (as shown
below, at that distance it is of the order of 105 G) than the one
possibly produced inside the remnant by dilute plasma currents,
unlike the traditional models for the emission of old (1 kyr)
SN remnants.
In Ruffini et al. (2018b) and Wang et al. (2019b), we

simulated the afterglow by the synchrotron emission of
electrons from the optically thin region of the SN ejecta,
which expand mildly relativistically in the νNS magnetic field.
The FPA emission at times t102 s has two origins: the
emission before the plateau phase (∼5× 103 s) is mainly
contributed by the remaining kinetic energy of the SN ejecta,
and at later times, the continuous energy injection from the
νNS dominates. We extend the same approach in this paper to
the GRBs of Section 3.
To fully follow the temporal behavior of radiation spectra, it

is necessary to solve the kinetic equation for electron
distribution in the transparent region of the SN ejecta:
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− p is the particle injection rate, assumed to be a
power law of index p, so the electrons injected are within the
energy range of γmin to γmax. The total injection luminosity
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where L0, k, and τ0 are assessed by fitting the light-curve data.
The majority of energy loss is considered to be the adiabatic

Table 1
Summary of the GRB Observables Associated with Each BdHN I Component and Physical Phenomena

BdHN Component/Phenomena GRB Observable

X-Ray Prompt GeV–TeV X-Ray Flares X-Ray Plateau
Precursor (MeV) Emission Early Afterglow and Late Afterglow

SN breakouta ⨂
Hypercritical accretion onto the NSb ⨂
e+e− from BH formation: transparency ⨂
in the low baryon load regionc

Inner engine: newborn BH + B-field+SN ejectad ⨂
e+e− from BH formation: transparency ⨂
in the high baryon load region (SN ejecta)e

Synchrotron emission by νNS-injected ⨂
particles on SN ejectaf

νNS pulsar-like emissionf ⨂

Notes.
a Wang et al. (2019b).
b Fryer et al. (2014), Becerra et al. (2016), Rueda et al. (2019).
c Bianco et al. (2001).
d Ruffini et al. (2018d, 2019d, 2019a, 2019b).
e Ruffini et al. (2018e).
f Ruffini et al. (2018b), Wang et al. (2019b), and this work.
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energy loss and the synchrotron energy loss,
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where R(t) is the size of the emitter, σT is the Thomson cross
section, and B(t) is the magnetic field strength expected to have
a toroidal configuration given by
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where B0 is the magnetic field strength at the distance R0. The
final bolometric synchrotron luminosity from this system gives
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As we have introduced in Section 1, the thermal emission
during the FPA phase indicates a mildly relativistic velocity,
∼0.5−0.9c, at time ∼100 s (Ruffini et al. 2015, 2018e, 2019d;
Wang et al. 2019b). We adopt this value as the initial velocity
and radius of the transparent part of the SN ejecta.

For later stages at around 106 s, when a sizable front shell of
SN ejecta becomes transparent, we adopt the velocity of ∼0.1c
obtained through observations of Fe II emission lines (see, e.g.,
Xu et al. 2013). We make the simplest assumption of a
uniformly decelerating expansion during the time interval
102t106 s. The SN ejecta remain in the coasting phase
for hundreds of years (see e.g., Sturner et al. 1997); therefore,
we adopt a constant velocity from 106 s until 107 s.

Following the above discussion and our data analysis, we
describe the expansion velocity as
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with typical value v0= 2.4× 1010 cm s−1, a0= 2.1× 104 cm s−2,
and vf=3× 109 cm s−1.

It is appropriate to clarify how the model parameters
presented in this table are obtained: R0 and τ0 are fixed by
the observed thermal component at around 102 s, from which
we obtain the radius and expansion velocity of the SN front.
The minimum and maximum energies of the injected electrons,
γmin and γmax, are fixed once B is given. L0 is fixed by a
normalization of the observed source luminosity. The power-
law index of the energy injection rate, p, is fixed to the value
p= 3/2. The parameter k is fixed to produce the power-law
decay of the late-time X-ray data. Therefore, the “free
parameter” to be obtained is B0.

In Ruffini et al. (2018b), we have given detailed fitting
parameters and figures of GRB 130427A. In this article, we
additionally fit GRB 160625B and confirm that the mildly
relativistic model is capable of producing the GRB afterglow.
As shown in Table 2 and Figure 3, our model fits very well the
optical and the X-ray spectrum but not the GeV data. This is in
agreement with the BdHN paradigm because the GeV emission
is expected to be explained by the newborn BH activity and not
by the νNS one (Ruffini et al. 2019d). On the other hand, radio
data show a lack of expected flux, which comes from
synchrotron self-absorption processes that are rather compli-
cated to model in the current numerical framework but can be
thoroughly ignored at frequencies above 1014 Hz.

Comparing their fitting parameters, GRB 130427A and GRB
160625B are similar except for the constant of injection power

L0 (see Equation (2)). Such similarities can be extended to
others. It can be seen from Figure 4 that taking everything else
as similar, from the magnetic field strength and structure to
expansion evolution, simulated light curve of GRB 190114C at
the relevant times can be obtained from that of GRB 130427A
by scaling L0 by a factor of 1/5.
The injection power index k∼ 1.5 from the fitting suggests

that the quadrupole emission from a pulsar dominates the late-
time afterglow. As we will see below, the complementary
analysis allows the initial rotation period of the νNS as well as
an independent estimate of its magnetic field structure to be
inferred.
Being just born, the νNS must be rapidly rotating, and as

such it contains abundant rotational energy:

( )= WE I
1

2
, 72

where I is the moment of inertia and Ω= 2π/PνNS is the
angular velocity. For a millisecond νNS and I∼ 1045 g cm2, the
total rotational energy E∼ 2× 1052 erg. Assuming that the
rotational energy loss is driven by magnetic dipole and

Figure 3. Model evolution of synchrotron spectral luminosity at various times
compared with measurements in various spectral bands for GRB 160625B.

Table 2
Parameters Used for the Simulation of GRB 160625B

Parameter Value

B0 1.0×106 G
R0 1.2×1011 cm
L0 8.44×1052 erg s−1

k 1.42
τ0 5.0×100 s
p 1.5
γmin 4.0×103

γmax 1.0×106
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quadrupole radiation, we have
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with χ1 and χ2 the inclination angles of the magnetic moment,
and Bdip and Bquad are the dipole and quadrupole magnetic
fields, respectively. The parameter η measures the quadrupole
to dipole magnetic field strength ratio.
Figure 5 shows the bolometric light curves (∼5 times

brighter than the Swift–XRT light curves inferred from the
fitting) of GRBs 160625B, 160509A, 130427A, 190114C, and
180728A, respectively. We show that the νNS luminosities
LNS(t) fit the light curves. We report the fitting νNS parameters
—the dipole (Bdip) and quadrupole (Bquad) magnetic field
components, the initial rotation period (Pν NS)—and assume a

Figure 4. X-ray light curve of GRB 160625B, GRB 130427A, GRB 190114C, and GRB 160509A (black, red and green diamonds, and blue stars with error bars
respectively). Simulated synchrotron light curves in the Swift X-ray band are shown for GRB 160625B (black line) and GRB 130427A (red line). It is also shown
how, by scaling the injection power by a factor 1/5, the light curve of GRB 130427A scales down (from the red line to the green one), fitting the data of GRB
190114C.

Figure 5. The brown, deep blue, orange, green, and bright blue points correspond to the bolometric (about ∼5 times brighter than the soft X-ray observed by Swift–
XRT inferred from the fitted synchrotron spectrum) light curves of GRBs 160625B, 160509A, 130427A, 190114C, and 180728A, respectively. The lines are the fits to
the energy injection from the rotational energy of the pulsar. The pulsar powers the late afterglow ( ´t 5 10 s3 , white background), while at earlier times
( ´t 5 10 s3 , dusty blue background), the remaining kinetic energy of the SN ejecta plays the leading role. The fitted parameters are shown in the legend and in
Table 3. The quadrupole field is given in a range; its upper value is three times the lower value due to the oscillation angle χ2, which is a free parameter. The fits to
GRB 1340427A and 180728A are reproduced from Wang et al. (2019b).
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νNS of mass and radius of 1.4Me and 106 cm, respectively.
The results are also summarized in Table 3. It also becomes
clear from this analysis that the νNS emission alone is not able
to explain the emission of the FPA phase at early times
102–103 s. As we have shown, that emission is mainly powered
by the mildly relativistic SN kinetic energy.

5. A Self-consistency Check

Having estimated the magnetic field structure and the
rotation period of the νNS from the fit of the data of the
FPA phase at times 102–107 s, we can now assess their self-
consistency with the expected values within the BdHN
scenario.

First, let us adopt the binary as tidally locked, i.e., the
rotation period of the binary components is synchronized with
the orbital period. This implies that the rotation period of the
COcore is PCO= P, where P denotes the orbital period. From
the Kepler law, the value of P is connected to the orbital
separation aorb and to the binary mass as

( )p= =P P
a

GM
2 , 10CO

orb
3

tot

where G is the gravitational constant and Mtot=MCO+MNS is
the total mass of the binary, where MCO and MNS are the
masses of the COcore and the NS companion, respectively.
Thus, MCO=MFe+Mej, with MFe and Mej the masses of the
iron core (which collapses and forms the νNS) and the ejected
mass in the SN event, respectively.

The mass of the νNS is »nM MNS Fe. The rotation period,
nP NS, is estimated from that of the iron core, PFe, by applying
angular momentum conservation in the collapse process, i.e.,

( )⎛
⎝⎜

⎞
⎠⎟=n

nP
R

R
P, 11NS

NS

Fe

2

where RνNS and RFe are the radius of the νNS and of the iron
core, respectively, and we have assumed that the pre-SN star
has uniform rotation; so, = =P P PFe CO .

Without loss of generality, in our estimates we can adopt a
νNS order-of-magnitude radius of 106 cm. As we shall see
below, a more careful estimate is that for the COcore progenitor
(which tells us the radius of the iron core) and the orbital
period/binary separation, which affect additional observables
of a BdHN.

It is instructive to appreciate the above statement with
specific examples; for these we use the results of Wang et al.
(2019b) for two BdHN archetypes: GRB 130427A for BdHN I
and GRB 180827A for BdHN II. Table 3 shows, for the above
GRBs, as well as for GRB 190114C, GRB 160625B, and GRB
160509A, some observational quantities (the isotropic energy
released Eiso and the cosmological redshift), the inferred BdHN
type, and the properties of the νNS (rotation period Pν NS,
rotational energy, and the strength of the dipole and quadrupole
magnetic field components).
By examining the BdHN models simulated in Becerra et al.

(2019) (see, e.g., Table 2 there), we have shown in Wang et al.
(2019b) that the Model “25m1p08e” fits the observational
requirements of GRB 130427A, and the Model “25m3p1e”
those of GRB 180827A. These models have the same
binary progenitor components: the ≈6.8Me COcore (RFe∼
2× 108 cm) developed by a 25Me zero-age main-sequence star
(see Table 1 in Becerra et al. 2019) and a 2Me NS companion.
For GRB 130427A, the orbital period is P= 4.8 minutes
(binary separation aorb≈ 1.3× 1010 cm), resulting in
PνNS≈ 1.0 ms while, for GRB 180827A, the orbital period is
P= 11.8 minutes (aorb≈ 2.6× 1010 cm), so a less compact
binary, which leads to PνNS≈ 2.5 ms.
We turn now to perform a further self-consistency check of

our picture. Namely, we make a cross-check of the estimated
νNS parameters obtained first from the early afterglow via
synchrotron emission, and then from the late X-ray afterglow
via the pulsar luminosity, with respect to expectations from NS
theory.
Up to factors of order unity, the surface dipole Bs and the

toroidal component Bt at a distance r from the surface are
approximately related as (see, e.g., Goldreich & Julian 1969)

( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

p
» n

n

nB
R

cP

R

r
B

2
. 12t s

NS

NS

2
NS

Let us analyze the case of GRB 130427A. By equating
Equations (4) and (12), and using the values of B0= 5× 105 G
and R0= 2.4× 1012 cm obtained from synchrotron analysis by
Ruffini et al. (2018b), and PνNS= P0≈ 1 ms from the pulsar
activity in the late-afterglow analysis, we obtain Bs≈ 2× 1013

G. This value has to be compared with that obtained from the
constraint that the pulsar luminosity power the late afterglow,
Bdip= 6× 1012 G (see Table 3). If we use the parameters
B0= 1.0× 106 G and R0= 1.2× 1011 cm from Table 2 for
GRB 160625B, and the corresponding PνNS= P0≈ 0.5 ms, we
obtain Bs≈ 6.8× 1011 G, compared with Bdip≈ 1012 G (see

Table 3
Observational Properties of the GRB and Inferred Physical Quantities of the νNS of the Corresponding BdHN Model that Fits the GRB Data

GRB Type Redshift Eiso PνNS Erot Bdip Bquad

(erg) (ms) (erg) (G) (G)

130427A BdHN I 0.34 ´1.40 1054 0.95 3.50×1052 6.0×1012 2.0×1013∼6.0×1014

160509A BdHN I 1.17 1.06×1054 0.75 5.61×1052 4.0×1012 1.3×1014∼4.0×1014

160625B BdHN I 1.406 3.00×1054 0.5 1.26×1053 1.5×1012 5.0×1013∼1.6×1014

190114C BdHN I 0.42 2.47×1053 2.1 7.16×1051 5.0×1012 1.5×1015∼5.0×1015

180728A BdHN II 0.117 2.73×1051 3.5 2.58×1051 1.0×1013 3.5×1015∼1.1×1016

Note. Column 1: GRB name; column 2: identified BdHN type; column 3: the isotropic energy released (Eiso) in gamma-rays; column 4: cosmological redshift (z);
column 5: νNS rotation period (PνNS); column 6: νNS rotational energy (Erot); columns 7 and 8: strength of the dipole (Bdip) and quadrupole (Bquad) magnetic field
components of the νNS. The quadrupole magnetic field component is given in the range where the upper limit is three times the lower limit; this is brought about by
the freedom of the inclination angles of the magnetic moment. During the fitting, we consistently assume the NS mass of 1.4Me and the NS radius of 106 cm for all
three cases. The fitted light curves are shown in Figure 5; the parameters of GRB 1340427A and 180728A are taken from Wang et al. (2019b).
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Table 3). An even better agreement can be obtained by using a
more accurate value of the νNS radius, which is surely bigger
than the fiducial value RνNS= 106 cm we have used in these
estimates.

6. Nature of the Dipole+Quadrupole Magnetic Field
Structure of the νNS

We attribute the spin-down energy of the νNS to the energy
injection of the late-time afterglow. By fitting the observed
emission through the synchrotron model, the spin period and
the magnetic field of the νNS can be inferred. In Wang et al.
(2019b), we have applied this approach to GRB 130427A and
GRB 180728A; here we apply the same method to the recent
GRB 190114C and to other two, GRB 160509A and GRB
160625B, for comparison. In Figure 5, we plot the energy
injection from the dipole and quadrupole emission of νNS; the
fitting results indicate 190114C leaves a νNS of spin period
2.1 ms, with dipole magnetic field = ´B 5 10dip

12 G, and a
quadrupole magnetic field >1015 G. The fitting parameters of
all the GRBs are listed in table 3. Generally, the NS in the
BdHN I system spins faster, of period 2 ms, and contains
more rotational energy 1052 erg. We notice that GRB
160625B has the shortest initial spin period of P= 0.5 ms,
which is exactly on the margin of the rotational period of an NS
at the Keplerian sequence. For an NS of mass 1.4Me and
radius 12 km, its Keplerian frequency fK;1900 (Lattimer &
Prakash 2004; Riahi et al. 2019), corresponding to the spin
period of P;0.5 ms.

From Equations (10) and (11), the orbital separation of the
binary system relates to the spin of νNS as µ na Porb NS

2 3.
Therefore, with the knowledge of the binary separation of GRB
130427A, ∼1.35× 1010 cm, the spin period of ∼1 ms, and the
newly inferred spin of GRB 190114C of ∼1.2 ms, assuming
these two systems have the same mass and radius as the COcore

and the νNS, we obtain the orbital separation of GRB 190114C
as ∼1.52× 1010 cm.

The self-consistent value obtained for the orbital period/
separation gives a strong support to our basic assumptions: (1)
owing to the system compactness, the binary components are
tidally locked, and (2) the angular momentum is conserved in
the core-collapse SN process.

We would like to recall that it has been shown that purely
poloidal field configurations are unstable against adiabatic
perturbations; for nonrotating stars, it has been first demon-
strated by Wright (1973), Markey & Tayler (1973; see also
Flowers & Ruderman 1977). For rotating stars, similar results
have been obtained, e.g., by Pitts & Tayler (1985). In addition,
Tayler (1973) has shown that purely toroidal configurations are
also unstable. We refer the reader to Spruit (1999) for a review
of the different possible instabilities that may be active in
magnetic stars. In this vein, the dipole–quadrupole magnetic
field configuration found in our analyses with a quadrupole
component dominating in the early life of the the νNS is
particularly relevant. They also give support to theoretical
expectations pointing to the possible stability of poloidal–
toroidal magnetic field configurations on timescales longer than
the collapsing time of the pre-SN star; for details, see, e.g.,
Tayler (1980) and Mestel (1984).

It remains the question of how, during the process of
gravitational collapse, the magnetic field increases its strength
to the observed NS values. This is still one of the most relevant
open questions in astrophysics, which at this stage is out of the

scope of the present work. We shall mention here only one
important case, which is the traditional explanation for the NS
magnetic field strength based on the amplification of the field
by magnetic flux conservation. The flux conservation implies

p pF = = F =B R B Ri i i f f f
2 2, where i and f stand for the initial

and final configurations and Ri,f the corresponding radii. The
radius of the collapsing iron core is of the order of 108–109 cm,
while the radius of the νNS is of the order of 106 cm; therefore,
the magnetic flux conservation implies an amplification of
104–106 times the initial field during the νNS formation.
Therefore, a seed magnetic field of 107–109 G is necessary to be
present in the iron core of the pre-SN star to explain a νNS
magnetic field of 1013 G. The highest magnetic fields observed
in main-sequence stars leading to the pre-SN stars of interest are
of the order of 104 G (Spruit 2009). If the magnetic field is
uniform inside the star, then the value of the magnetic field
observed in these stars poses a serious issue to the magnetic flux
conservation hypothesis for the NS magnetic field genesis. A
summary of the theoretical efforts to understand the possible
sources of the magnetic field of an NS can be found in
Spruit (2009).

7. Nature of the Magnetic Field around the Newborn BH

The BH in a BdHN I is formed from the gravitational
collapse of the NS companion of the COcore, which reaches
critical mass by the hypercritical accretion of the ejecta of the
SN explosion of the COcore. Hence, the magnetic field
surrounding the BH derived in the previous section to explain
the GeV emission should originate from the collapsed NS. In
fact, the magnetic field of the νNS evaluated at the BH position
is too low to be relevant in this discussion. As we shall see,
the magnetic field inherited from the collapsed NS can easily
reach values of the order of 1014 G. Instead, the magnetic field
of the νNS at the BH site is ( ) =nB R a 10dip NS orb

3 G, adopting
fiducial parameters according to the results of Table 3: a
dipole magnetic field at the νNS surface Bdip= 1013 G,
a binary separation of aorb= 1010 cm, and a νNS radius
of =nR 10 cmNS

6 .
Having clarified this issue, we proceed now to discuss the

nature of the field. Both the νNS and the NS follow an
analogous formation channel, namely, they are born from core-
collapse SNe. In fact, to reach the BdHN stage, the massive
binary has to survive two SN events: the first SN which forms
the NS and the second one which forms the νNS (core collapse
of the COcore). Figure 1 shows the evolutionary path of a
massive binary leading to a BdHN I. It is then clear that the NS
companion of the COcore will have magnetic field properties
analogous to those of the νNS, which were discussed in the
previous section. Therefore, we can conclude that the BH forms
from the collapse of a magnetized and fast-rotating NS.
In this scenario, the magnetic field of the collapsing NS

companion should then be responsible for the magnetic field
surrounding the BH. Only a modest amplification of the initial
field from the NS, which is ∼1013 G, is needed to reach the
value of 1014 G around the newborn BH. Then, even the single
action of magnetic flux conservation can suffice to explain the
magnetic field amplification. The BH horizon is r+∼GM/c2,
where M can be assumed to be equal to the NS critical mass,
say, 3Me, so r+≈ 4.4 km. The NS at the collapse point, owing
to high rotation, will have a radius in excess of the typically
adopted 10 km (Cipolletta et al. 2015); let us assume a
conservative range of 12–15 km. These conditions suggest that
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magnetic flux conservation magnifies the magnetic field in the
BH formation by a factor of 7–12. Therefore, a seed field of
1013 G present in the collapsing NS is enough to explain the
magnetic field of 1014 G near the newborn BH.

It is worth clarifying a crucial point: the magnetic field has to
remain anchored to some NS material, which guarantees its
existence. It is therefore expected that some part of the NS does
not take part in the BH formation. Assuming that magnetic flux
is conserved during the collapse, then the magnetic energy is a
constant fraction of the gravitational energy during the entire
process, so only high rotation (see, e.g., Becerra et al. 2016)
and some degree of differential rotation (see, e.g., Shibata et al.
2006) of the NS at the critical mass point are responsible for
some fraction of the NS matter to avoid remaining outside with
sufficient angular momentum to orbit the newborn BH (see,
e.g., Figure 6).

The three-dimensional simulations of BdHNe presented in
Becerra et al. (2019) show that the part of the SN ejecta
surrounding the BH forms a torus-like structure around it. The
aforementioned matter from the NS with high angular
momentum will add to this orbiting matter around the BH. In
the off-equatorial directions, the density is much smaller
(Ruffini et al. 2018b; Becerra et al. 2019; see also Ruffini et al.
2019a). This implies that on the equatorial plane, the field is
compressed, while in the axial direction, the matter accretion
flows in along the field lines.

Our inner engine, the BH+magnetic field configuration
powering the high-energy emission in a BdHN I, finds
additional support in numerical simulations of magnetic and
rotational collapse into a BH. The first numerical computer
treatment of the gravitational collapse to a BH in the presence
of magnetic fields starts with the pioneering two-dimensional
simulations by Wilson (1975; see Figure 6(a), reproduced from
Wilson 1978). These works already showed the amplification
of the magnetic field in the gravitational collapse process.
Rotating magnetized gravitational collapse into a BH has been
more recently treated in greater detail by three-dimensional
simulations, which have confirmed this picture and the

crucial role of the combined presence of magnetic field and
rotation (Dionysopoulou et al. 2013; Nathanail et al. 2017;
Most et al. 2018).
Additional support can be also found in the context of binary

NS mergers. Numerical simulations have indeed shown that the
collapse of the unstable massive NS formed in the merger into
a BH leads to a configuration composed of a BH surrounded by
a nearly collimated magnetic field and an accretion disk (see
Duez et al. 2006a, 2006b; Shibata et al. 2006; Stephens et al.
2007, 2008 for details). Three-dimensional numerical simula-
tions have also been performed and confirm this scenario
(Rezzolla et al. 2011). In particular, it is appropriate to
underline the strong analogy between Figure 6(a) taken from
Wilson (1978) with Figure 6(b) reproduced in this paper from
Rezzolla et al. (2011). It is also interesting that the value of the
magnetic field close to the BH estimated in Rezzolla et al.
(2011) along the BH spin axis, 8×1014 G , is similar to the
value of 3×1014 G needed for the operation of the “inner
engine” of GRB 130427A (Ruffini et al. 2018d). What is also
conceptually important is that the uniform magnetic field
assumed by the Wald solution should be expected to reach a
poloidal configuration already relatively close to the BH. This
already occurs in the original Wilson (1978) solution confirmed
by the recent and most detailed calculation by Rezzolla et al.
(2011); see Figures 6(a) and (b).
Although the above simulations refer to the remnant

configuration of a binary NS merger, the post-merger config-
uration is analogous to the one developed for BdHNe I related to
the newborn BH, which we have applied in our recent works
(see, e.g., Ruffini et al. 2018b, 2018d, 2019d, 2019a; Wang et al.
2019b, and references therein), and which is supported by the
recently presented three-dimensional simulations of BdHNe (see
Becerra et al. 2019 for details).
Before closing, let us indicate the difference between the NS

merger and the BdHN. In the case of the BdHN, the
gravitational collapse leading to the BH with the formation of
a horizon creates a very-low-density cavity of 10−14 g cm−3

with a radius of ∼1011 cm in the SN ejecta; see Figure 1 and

Figure 6. (a) Figure reproduced from Wilson (1978): numerical simulation of the gravitational collapse of a star accounting for the magnetic field presence. Isodensity
surfaces are indicated by the solid lines and poloidal field lines are indicated by the dashed lines. The time is the end of the numerical simulation. (b) Figure taken from
Rezzolla et al. (2011) with the author’s permission. Magnetic-field structure after the collapse to a BH. Green refers to magnetic-field lines inside the torus and on the
equatorial plane, while white refers to magnetic-field lines outside the torus and near the axis.
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Figure 7, reproduced from Ruffini et al. (2019b). The presence
of such a low-density environment is indeed essential for the
successful operation of the “inner engine.”

Reaching a poloidal configuration already close to the BH in
the Wald solution and the existence of the cavity are crucial
factors in the analysis of the propagation of the photons
produced by synchrotron radiation and in reaching the
transparency condition of the “inner engine” of the BdHNe
(Ruffini et al. 2019d).

8. Conclusions

Our general conclusions were reached by comparing and
contrasting the observations of GRB 130427A, GRB 160509A,
GRB 160625B, GRB 180728A, and GRB 190114C:

1. From the analysis of GRB 130427A (Ruffini et al. 2018a)
and GRB 190114C presented here (see Figures 4 and 5),
we conclude that the early (t∼ 102–104 s) X-ray emission
during the FPA phase is explained by the injection of
ultrarelativistic electrons from the νNS into the magne-
tized expanding ejecta, producing synchrotron radiation.
The magnetic field inferred in this part of the analysis is
found to be consistent with the toroidal/longitudinal
magnetic field component of the νNS. The dominance of
this component is expected at distances much larger
(∼1012 cm) than the light cylinder radius in which this
synchrotron emission occurs. No data on the other GRBs
considered in this paper are available in this time interval.

2. Using the data of all present GRBs, we concluded that at
times t103–104 s of the FPA phase, the power-law
decaying luminosity is dominated by the pulsar magnetic-
braking radiation. We have inferred a dipole+quadrupole
structure of the νNS magnetic field, with the quadrupole
component initially dominant. The strength of the dipole
component is about 1012–1013G while that of the
quadrupole can be of order 1015G (see Figure 4 and
Table 3). As clearly shown in Figures 4 and 5, νNS solely
with the dipole+quadrupole magnetic field structure
cannot explain the emission of the early FPA phase,
which is dominated by SN emission.

3. We have checked that the magnetic field of the νNS,
inferred independently in the two above regimes of the
FPA phase, give values in very good agreement. The νNS
magnetic fields obtained from the explanation of the FPA
phase, at times 102–103 s, by synchrotron radiation, and
at times t104 s by pulsar magnetic braking, are in close
agreement (see Section 4, Table 3 and Figure 5).

4. In Section 5, we have shown the consistency of the
inferred νNS parameters with the expectations in the
BdHN scenario. In particular, we have used the rotation
period of the νNS inferred from the FPA phase at times
t103–104 s , we have inferred the orbital period/
separation assuming tidal synchronization of the binary
and angular momentum conservation in the gravitational
collapse of the iron core leading to the νNS. This inferred
binary separation is shown to be in excellent agreement
with the numerical simulations of the binary progenitor in
Wang et al. (2019b).

Before concluding, in view of the recent understanding
gained on the “inner engine” of the high-energy emission of the
GRB (Ruffini et al. 2019d), we can also conclude the
following:

1. The magnetic field along the rotational axis of the BH is
rooted in the magnetosphere left by the binary companion
NS prior to the collapse.

2. While in the equatorial plane the field is magnified by
magnetic flux conservation, in the axial direction, the
matter accretion flows in along the field lines; see
Figure 2 and Becerra et al. (2019). Indeed, three-
dimensional numerical simulations of the gravitational
collapse into a BH in the presence of rotation and a
magnetic field confirm our picture; see Figure 6 and
Rezzolla et al. (2011), Dionysopoulou et al. (2013),
Nathanail et al. (2017), and Most et al. (2018).

3. The clarification reached regarding the role of SN
accretion both in the NS and in the νNS, the stringent
limits imposed on the Lorentz factor of the FPA phase,
and the energetic requirement of the “inner engine”
inferred from recent publications clearly point to an
electrodynamical nature of the “inner engine” of the
GRB, occurring close to the BH horizon, as opposed to
the traditional, gravitational massive blast-wave model.

We acknowledge the public data from the Swift and Fermi
satellites. We appreciate the discussion with Prof. She-sheng
Xue and the suggestions from the referee.

References

Ackermann, M., Ajello, M., Asano, K., et al. 2014, Sci, 343, 42
Alexander, K. D., Laskar, T., Berger, E., et al. 2017, ApJ, 848, 69
Becerra, L., Bianco, C. L., Fryer, C. L., Rueda, J. A., & Ruffini, R. 2016, ApJ,

833, 107

Figure 7. Spatial distribution of matter density at different times of impact of the e+e−γ plasma onto the cavity walls at timp=10 s (left) and timp=18 s (right) for
GRB 190114C; more information in Ruffini et al. (2019b).

12

The Astrophysical Journal, 893:148 (13pp), 2020 April 20 Rueda et al.



Becerra, L., Cipolletta, F., Fryer, C. L., Rueda, J. A., & Ruffini, R. 2015, ApJ,
812, 100

Becerra, L., Ellinger, C. L., Fryer, C. L., Rueda, J. A., & Ruffini, R. 2019, ApJ,
871, 14

Becerra, L., Guzzo, M. M., Rossi-Torres, F., et al. 2018, ApJ, 852, 120
Bianco, C. L., Ruffini, R., & Xue, S.-S. 2001, A&A, 368, 377
Blandford, R. D., & McKee, C. F. 1976, PhFl, 19, 1130
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Cipolletta, F., Cherubini, C., Filippi, S., Rueda, J. A., & Ruffini, R. 2015,

PhRvD, 92, 023007
Costa, E., Frontera, F., Heise, J., et al. 1997, Natur, 387, 783
Dai, Z. G., & Lu, T. 1998a, A&A, 333, L87
Dai, Z. G., & Lu, T. 1998b, PhRvL, 81, 4301
Damour, T., & Ruffini, R. 1975, PhRvL, 35, 463
de Pasquale, M., Oates, S. R., Page, M. J., et al. 2007, MNRAS, 377, 1638
Dionysopoulou, K., Alic, D., Palenzuela, C., Rezzolla, L., & Giacomazzo, B.

2013, PhRvD, 88, 044020
Duez, M. D., Liu, Y. T., Shapiro, S. L., Shibata, M., & Stephens, B. C. 2006a,

PhRvL, 96, 031101
Duez, M. D., Liu, Y. T., Shapiro, S. L., Shibata, M., & Stephens, B. C. 2006b,

PhRvD, 73, 104015
Fan, Y.-Z., & Xu, D. 2006, MNRAS, 372, L19
Fan, Y.-Z., Yu, Y.-W., Xu, D., et al. 2013, ApJL, 779, L25
Filippenko, A. V., Barth, A. J., Matheson, T., et al. 1995, ApJL, 450, L11
Flowers, E., & Ruderman, M. A. 1977, ApJ, 215, 302
Fryer, C. L., Oliveira, F. G., Rueda, J. A., & Ruffini, R. 2015, PhRvL, 115,

231102
Fryer, C. L., Rueda, J. A., & Ruffini, R. 2014, ApJL, 793, L36
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152
Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998, Natur, 395, 670
Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003,

ApJ, 591, 288
Iwamoto, K., Nakamura, T., Nomoto, K., et al. 2000, ApJ, 534, 660
Izzo, L., de Ugarte Postigo, A., Maeda, K., et al. 2019, Natur, 565, 324
Kouveliotou, C., Granot, J., Racusin, J. L., et al. 2013, ApJL, 779, L1
Laskar, T., Alexander, K. D., Berger, E., et al. 2016, ApJ, 833, 88
Lattimer, J. M., & Prakash, M. 2004, Sci, 304, 536
Levan, A. J., Cenko, S. B., Perley, D. A., & Tanvir, N. R. 2013, GCN, 14455, 1
Li, L. 2019, ApJS, 242, 16
Li, L., Wang, Y., Shao, L., et al. 2018a, ApJS, 234, 26
Li, L., Wu, X.-F., Huang, Y.-F., et al. 2015, ApJ, 805, 13
Li, L., Wu, X.-F., Lei, W.-H., et al. 2018b, ApJS, 236, 26
Lü, H.-J., Lü, J., Zhong, S.-Q., et al. 2017, ApJ, 849, 71
Lü, H.-J., & Zhang, B. 2014, ApJ, 785, 74
Lü, H.-J., Zhang, B., Lei, W.-H., Li, Y., & Lasky, P. D. 2015, ApJ, 805, 89
MAGIC Collaboration, Acciari, V. A., Ansoldi, S., et al. 2019, Natur, 575, 455
Markey, P., & Tayler, R. J. 1973, MNRAS, 163, 77
Maselli, A., Melandri, A., Nava, L., et al. 2014, Sci, 343, 48
Melandri, A., Izzo, L., D’Avanzo, P., et al. 2019, GCN, 23983, 1
Mestel, L. 1984, AN, 305, 301
Mészáros, P., & Rees, M. J. 1997, ApJL, 482, L29
Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R., et al. 1997, Natur, 387, 878
Mirzoyan, R., Noda, K., Moretti, E., et al. 2019, GCN, 23701, 1
Most, E. R., Nathanail, A., & Rezzolla, L. 2018, ApJ, 864, 117
Narayan, R., Paczynski, B., & Piran, T. 1992, ApJL, 395, L83
Nathanail, A., Most, E. R., & Rezzolla, L. 2017, MNRAS, 469, L31
Nomoto, K., Yamaoka, H., Pols, O. R., et al. 1994, Natur, 371, 227
Paczynski, B. 1991, AcA, 41, 257
Paczynski, B. 1992, in Gamma-Ray Bursts from Colliding Neutron Stars, ed.

C. Ho, R. I. Epstein, & E. E. Fenimore (Cambridge: Cambridge Univ.
Press), 67

Pian, E., Mazzali, P. A., Masetti, N., et al. 2006, Natur, 442, 1011
Pitts, E., & Tayler, R. J. 1985, MNRAS, 216, 139
Price, D. J. 2011, SPLASH: An Interactive Visualization Tool for Smoothed

Particle Hydrodynamics Simulations, Astrophysics Source Code Library,
ascl:1103.004

Rees, M. J., & Meszaros, P. 1992, MNRAS, 258, 41P
Rezzolla, L., Giacomazzo, B., Baiotti, L., et al. 2011, ApJL, 732, L6
Riahi, R., Kalantari, S. Z., & Rueda, J. A. 2019, PhRvD, 99, 043004
Rowlinson, A., O’Brien, P. T., Metzger, B. D., Tanvir, N. R., & Levan, A. J.

2013, MNRAS, 430, 1061
Rowlinson, A., O’Brien, P. T., Tanvir, N. R., et al. 2010, MNRAS, 409

531
Rueda, J. A., & Ruffini, R. 2012, ApJL, 758, L7
Rueda, J. A., Ruffini, R., & Wang, Y. 2019, Univ, 5, 110
Ruffini, R., Becerra, L., Bianco, C. L., et al. 2018a, ApJ, 869, 151
Ruffini, R., Bianco, C. L., Enderli, M., et al. 2013, GCN, 14526, 1
Ruffini, R., Karlica, M., Sahakyan, N., et al. 2018b, ApJ, 869, 101
Ruffini, R., Li, L., Moradi, R., et al. 2019a, arXiv:1904.04162
Ruffini, R., Melon Fuksman, J. D., & Vereshchagin, G. V. 2019b, ApJ,

883, 191
Ruffini, R., Moradi, R., Aimuratov, Y., et al. 2019c, GCN, 23715, 1
Ruffini, R., Moradi, R., Rueda, J. A., et al. 2019d, ApJ, 886, 82
Ruffini, R., Rodriguez, J., Muccino, M., et al. 2018c, ApJ, 859, 30
Ruffini, R., Rueda, J. A., Moradi, R., et al. 2018d, arXiv:1811.01839
Ruffini, R., Rueda, J. A., Muccino, M., et al. 2016, ApJ, 832, 136
Ruffini, R., Wang, Y., Aimuratov, Y., et al. 2018e, ApJ, 852, 53
Ruffini, R., Wang, Y., Enderli, M., et al. 2015, ApJ, 798, 10
Ruffini, R., & Wilson, J. R. 1975, PhRvD, 12, 2959
Sari, R. 1997, ApJL, 489, L37
Sari, R., & Piran, T. 1995, ApJL, 455, L143
Sari, R., Piran, T., & Narayan, R. 1998, ApJL, 497, L17
Selsing, J., Fynbo, J. P. U., Heintz, K. E., Watson, D., & Dyrbye, N. 2019,

GCN, 23695, 1
Shibata, M., Duez, M. D., Liu, Y. T., Shapiro, S. L., & Stephens, B. C. 2006,

PhRvL, 96, 031102
Skilling, J. 2004, in AIP Conf. Proc. 735, Cosmic Magnetic Fields: From

Planets, to Stars and Galaxies, ed. R. Fischer, R. Preuss, & U. V. Toussaint
(Melville, NY: AIP), 395

Spruit, H. C. 1999, A&A, 349, 189
Spruit, H. C. 2009, in IAU Symp. 259, Cosmic Magnetic Fields: From Planets,

to Stars and Galaxies, ed. K. G. Strassmeier, A. G. Kosovichev, &
J. E. Beckman (Cambridge: Cambridge Univ. Press), 61

Stephens, B. C., Duez, M. D., Liu, Y. T., Shapiro, S. L., & Shibata, M. 2007,
CQGra, 24, S207

Stephens, B. C., Shapiro, S. L., & Liu, Y. T. 2008, PhRvD, 77, 044001
Sturner, S. J., Skibo, J. G., Dermer, C. D., & Mattox, J. R. 1997, ApJ, 490

619
Tam, P.-H. T., He, X.-B., Tang, Q.-W., & Wang, X.-Y. 2017, ApJL, 844

L7
Tanvir, N. R., Levan, A. J., Cenko, S. B., et al. 2016, GCN, 19419, 1
Tayler, R. J. 1973, MNRAS, 161, 365
Tayler, R. J. 1980, MNRAS, 191, 151
Troja, E., Cusumano, G., O’Brien, P. T., et al. 2007, ApJ, 665, 599
Vianello, G., Lauer, R. J., Burgess, J. M., et al. 2015, arXiv:1507.08343
Wald, R. M. 1974, PhRvD, 10, 1680
Wang, Y., Li, L., Moradi, R., & Ruffini, R. 2019a, arXiv:1901.07505
Wang, Y., Rueda, J. A., Ruffini, R., et al. 2019b, ApJ, 874, 39
Waxman, E., & Piran, T. 1994, ApJL, 433, L85
Wijers, R. A. M. J., Rees, M. J., & Meszaros, P. 1997, MNRAS, 288, L51
Wilson, J. R. 1975, NYASA, 262, 123
Wilson, J. R. 1978, in Physics and Astrophysics of Neutron Stars and Black

Holes, ed. R. Giacconi & R. Ruffini (Amsterdam: North-Holland), 644
Woosley, S. E. 1993, ApJ, 405, 273
Woosley, S. E., & Bloom, J. S. 2006, ARA&A, 44, 507
Wright, G. A. E. 1973, MNRAS, 162, 339
Xu, D., de Ugarte Postigo, A., Leloudas, G., et al. 2013, ApJ, 776, 98
Xu, D., Malesani, D., Fynbo, J. P. U., et al. 2016, GCN, 1, 19600
Yoshida, T., & Umeda, H. 2011, MNRAS, 412, L78
Zhang, B. 2018, The Physics of Gamma-Ray Bursts (Cambridge: Cambridge

Univ. Press)
Zhang, B., & Mészáros, P. 2001, ApJL, 552, L35
Zhang, B.-B., Zhang, B., Castro-Tirado, A. J., et al. 2018, NatAs, 2, 69

13

The Astrophysical Journal, 893:148 (13pp), 2020 April 20 Rueda et al.



Eur. Phys. J. C          (2020) 80:300 
https://doi.org/10.1140/epjc/s10052-020-7868-z

Letter

The blackholic quantum

J. A. Rueda1,2,3,4,5,a, R. Ruffini1,2,6,b

1 ICRANet, Piazza della Repubblica 10, 65122 Pescara, Italy
2 ICRA, Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
3 ICRANet-Ferrara, Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
4 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
5 INAF, Istituto de Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, 00133 Rome, Italy
6 INAF, Viale del Parco Mellini 84, 00136 Rome, Italy

Received: 12 July 2019 / Accepted: 3 March 2020
© The Author(s) 2020

Abstract We show that the high-energy emission of GRBs
originates in the inner engine: a Kerr black hole (BH) sur-
rounded by matter and a magnetic field B0. It radiates a
sequence of discrete events of particle acceleration, each of
energy E = h̄ Ωeff , the blackholic quantum, where Ωeff =
4(mPl/mn)

8(c a/G M)(B2
0/ρPl)Ω+. Here M , a = J/M ,

Ω+ = c2∂M/∂ J = (c2/G) a/(2Mr+) and r+ are the BH
mass, angular momentum per unit mass, angular velocity and
horizon; mn is the neutron mass, mPl, λPl = h̄/(mPlc) and
ρPl = mPlc2/λ3

Pl, are the Planck mass, length and energy den-
sity. Here and in the following use CGS-Gaussian units. The
timescale of each process is τel ∼ Ω−1+ , along the rotation
axis, while it is much shorter off-axis owing to energy losses
such as synchrotron radiation. We show an analogy with the
Zeeman and Stark effects, properly scaled from microphysics
to macrophysics, that allows us to define the BH magneton,
μBH = (mPl/mn)

4(c a/G M)e h̄/(Mc). We give quantita-
tive estimates for GRB 130427A adopting M = 2.3 M�,
c a/(G M) = 0.47 and B0 = 3.5 × 1010 G. Each emit-
ted quantum, E ∼ 1037 erg, extracts only 10−16 times the
BH rotational energy, guaranteeing that the process can be
repeated for thousands of years. The inner engine can also
work in AGN as we here exemplified for the supermassive
BH at the center of M87.

1 Introduction

The GeV radiation in long GRBs is observed as a con-
tinuous, macroscopic emission with a luminosity that, in
the source rest-frame, follows a specific power-law behav-
ior: for instance the 0.1–100 GeV rest-frame luminosity

a e-mail: jorge.rueda@icra.it (corresponding author)
b e-mail: ruffini@icra.it

of GRB 130427A observed by Fermi-LAT is well fitted
by L = A t−α , A = (2.05 ± 0.23) × 1052 erg s−1 and
α = 1.2 ± 0.04 [1]. We have there shown that the rotational
energy of a Kerr BH is indeed sufficient to power the GeV
emission. From the global energetics we have determined
the BH parameters, namely its mass M and angular momen-
tum per unit mass a = J/M and, from the change of the
luminosity with time, we have obtained the slowing-down
rate of the Kerr BH. We have applied this procedure to the
GeV-emission data of 21 sources. For GRB 130427A, we
obtained that the BH initial parameters are M ≈ 2.3 M� and
c a/(G M) ≈ 0.47 [2].

One of the most extended multi-messenger campaign
of observation in the field of science, ranging from ultra
high-energy photons GeV/TeV (MAGIC) and MeV radia-
tion (Swift, Fermi, Integral, Konus/WIND and UHXRT satel-
lites) and to fifty optical observatories including the VLT, has
given unprecedented details data on GRB 190114C. An in-
depth time-resolved spectral analysis of its prompt emission,
obtaining the best fit of the spectrum, and repeating it in suc-
cessive time iterations with increasingly shorter time bins has
been presented in [3]. It turns out that the spectra are self-
similar and that the gamma-ray luminosity, expressed in the
rest-frame, follows a power-law dependence with an index
−1.20 ± 0.26, similar to the one of the GeV luminosity.

These data have offered us the first observational evidence
of the moment of BH formation and, indeed, it clearly appears
that the high-energy radiation is emitted in a sequence of ele-
mentary events, each of 1037 erg, and with an ever increasing
repetition time from 10−14 to 10−12 s [2].

We have shown that this emission can be powered by
what we have called the inner engine [2–4]: a Kerr BH
immersed in a magnetic field B0 and surrounded by matter.
This inner engine naturally forms in the binary-driven hyper-
nova (BdHN) scenario of GRBs [5–8]. The BdHN starts with
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the supernova explosion of a carbon-oxygen star that forms
a tight binary system with a neutron star companion. The
supernova ejecta produces a hypercritical accretion process
onto the neutron star bringing it to the critical mass point for
gravitational collapse, hence forming a rotating BH. The Kerr
BH, in presence of the magnetic field inherited from the neu-
tron star, induces an electromagnetic field that is described
by the Wald solution [9]. The BH is surrounded by matter
from the supernova ejecta that supply ionized matter that
is accelerated to ultrarelativistic energies at expenses of the
BH rotational energy. This model has been applied to specific
GRB sources in [2,3,10].

We here show that the GRB high-energy (GeV/TeV) radi-
ation is indeed better understood within this scenario and
that in particular: (1) it originates near the BH and (2) it is
extracted from the BH rotational energy bypackets,quanta of
energy, in a number of finite discrete processes. We show that
it is indeed possible to obtain the quantum of energy of this
elementary process: E = h̄Ωeff , where Ωeff is proportional
to the BH angular velocity, Ω+, and the proportionality con-
stant depends only on fundamental constants. The timescale
of the elementary process is shown to be τel ∼ Ω−1+ . Quan-
titatively speaking, initially E ≈ 1037 erg and τel is shorter
than microseconds.

This elementary process is not only finite in energy but it
uses in each iteration only a small fraction of the BH rota-
tional energy which can be as large as Erot ∼ 1053 erg. As
we shall see, this implies that the repetitive process, in view
of the slowing-down of the BH, can lasts thousands of years.
The considerations on the inner engine apply as well to the
case of AGN and we give a specific example for the case of
M87*, the supermassive BH at the center of the M87.

2 The inner engine electromagnetic field structure

The axisymmetric Kerr metric for the exterior field of a rotat-
ing BH, in Boyer–Lindquist coordinates (t, r, θ, φ), can be
written as [11]:

ds2 =−
(

1− 2M̂r

Σ

)
(cdt)2− 4â M̂ r sin2 θ

Σ
cdtdφ+ Σ

Δ
dr2

+Σdθ2 +
[
r2 + â2 + 2r M̂â2 sin2 θ

Σ

]
sin2 θdφ2,

(1)

where Σ = r2 + â2 cos2 θ and Δ = r2 − 2M̂r + â2. The
(outer) event horizon is located at r+ = M̂ +

√
M̂2 − â2,

where M̂ = G M/c2 and â = a/c, being M and a = J/M ,
respectively, the BH mass and the angular momentum per
unit mass. Quantities with the hat on top are in geometric
units.

Denoting by ημ and ψμ, respectively, the timelike and
spacelike Killing vectors, the electromagnetic four-potential
of the Wald solution is Aμ = 1

2 B0 ψμ + â B0ημ, where B0 is
the test magnetic field value [9]. The associated electromag-
netic field (in the Carter’s orthonormal tetrad), for parallel
magnetic field and BH spin, is:

Er̂ = âB0

Σ

[
r sin2 θ − M̂

(
cos2 θ + 1

) (
r2 − â2 cos2 θ

)
Σ

]
,

(2)

E
θ̂

= âB0

Σ
sin θ cos θ

√
Δ, (3)

Br̂ = − B0

Σ
cos θ

(
−2â2âr

(
cos2 θ + 1

)
Σ

+ â2 + r2

)
,

(4)

B
θ̂

= B0r

Σ
sin θ

√
Δ. (5)

3 Energetics and timescale of the elementary process

The electrostatic energy gained by an electron (or proton for
the antiparallel case) when accelerated from the horizon to
infinity, along the rotation axis, is

εe = −eAμημ|∞ + eAμημ|r+ = e â B0 = 1

c
e a B0, (6)

where we have used that ψμημ = 0 and ημημ → −1 along
the rotation axis, and ημημ = 0 on the horizon [9].

The electric field for θ = 0, and at the horizon, E+, is [2]:

|E+| = 1

2

â

M̂
B0 = 1

2

cJ

G M2 B0 ≈ 1

c
Ω+r+B0, (7)

where the last expression is accurate for â/M̂ � 0.5 [2], and
it evidences the inducting role of the BH angular velocity

Ω+ = ∂Mc2

∂ J
= c

1

2

â/M̂

r+
. (8)

Using Eq. (7), Eq. (6) can be written as

εe ≈ e |E+| r+ ≈ 1

c
e r2+ Ω+ B0. (9)

It is worth to note that this angular frequency can be related
to the energy gained timescale of the elementary process:

τel = εe

e|E+|c ≈ r+
c

= â/M̂

2Ω+
, (10)

that is the characteristic acceleration time of the particle along
the BH rotation axis. Thus, this is the longest timescale for
the elementary process and it happens on the rotation axis
where no (or negligible) radiation losses occur. This is rele-
vant for the emitting power of ultrahigh-energy charged parti-
cles leading to ultrahigh-energy cosmic rays. Off-polar axis,
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the charged particles emit e.g. synchrotron radiation at GeV
energies, in a much shorter timescale of the order of 10−14 s
(see [2] for details).

The total electric energy available for the inner engine
elementary process is [2]:

E ≈ 1

2
|E+|2r3+ = 1

4

â

M̂

r+Ω+
c

r3+B2
0 , (11)

where in the last equality we have used Eqs. (7) and (8).

4 The quantum of energy for GRBs

We recall that in a BdHN the BH is formed from the collapse
of a neutron star when it reaches the critical mass, Mcrit , by
accreting the ejected matter in the supernova explosion of a
companion carbon-oxygen star [5–8,12–14]. Thus, for the
GRB case we can adopt r+ ∼ 2 G M/c2 and M = Mcrit ∼
m3

Pl/m
2
n , where Mcrit is accurate within a factor of order

unity; mPl = √
h̄c/G and mn are the Planck and neutron

mass. With this, the energy per proton (9) can be written in
the quantized form:

εe = h̄ ωp, ωp ≡ 4 G

c4

(
mPl

mn

)4

e B0 Ω+. (12)

Following the above steps for εe, we can also write Eq. (11)
in the quantized form:

E = h̄ Ωeff , Ωeff ≡ 4

(
mPl

mn

)8 (
â

M̂

) (
B2

0

ρPl

)
Ω+, (13)

where ρPl ≡ mPlc2/λ3
Pl and λPl = h̄/(mPlc) are the Planck

energy-density and length. The quantities in parenthesis are
dimensionless; e.g. B2

0 is an energy density as it is ρPl. Each
discrete process extracts a specific amount of the BH rota-
tional energy set by the blackholic quantum (13).

5 Specific quantitative examples

Concerning quantitative estimates, let us compute the main
physical quantities of the inner engine for the case of GRB
130427A [2]. We have there estimated that, an inner engine
composed of a newborn BH of M ≈ 2.3 M�, â/M̂ = 0.47
and B0 = 3.5 × 1010 G, can explain the observed GeV
emission. We recall that the inner engine parameters in [2]
were determined at the end of the prompt emission (at 37 s
rest-frame time). At that time, the observed GeV luminos-
ity is LGeV ≈ 1051 erg s−1. The timescale of synchrotron
radiation expected to power this emission was found to be
tc ∼ 10−14 s (to not be confused with τel), which implies
an energy E ∼ LGeV × tc = 1037 erg, consistent with the

Table 1 Inner engine astrophysical quantities for GRBs and AGN. The
power reported in the last row is the one to accelerate ultrahigh-energy
particles, i.e. Ė = E /τel. In both cases the parameters (mass, spin and
magnetic field) have been fixed to explain the observed high-energy
(� GeV) luminosity

GRB (130427-like) AGN (M87*-like)

τel 2.21 × 10−5 s 0.49 day

εe (eV) 1.68 × 1018 1.19 × 1019

E (erg) 4.73 × 1036 5.19 × 1047

Ė (erg/s) 2.21 × 1041 1.22 × 1043

blackholic quantum estimated here for the above inner engine
parameters (see Table 1).

The elementary, discrete process introduced here can also
be at work in AGN where the time variability of the high-
energy GeV–TeV radiation appears to be emitted on sub-
horizon scales (see [15] for the case of M87*). Thus, we also
show in Table 1 the physical quantities for an AGN, which
can be obtained from the expressions in Sect. 3. We adopt as a
proxy M87*, so M ≈ 6×109 M� (e.g. [16]), and we assume
respectively for the BH spin and the external magnetic field,
â/M̂ = 0.9 and B0 = 50 G. The magnetic field has been
fixed to explain the observed high-energy luminosity which
is few × 1042 erg s−1 (e.g. [17,18]).

This shows that the energy of the blackholic quantum is
finite and is a very small fraction of the BH rotational energy:
for GRBs we have Erot ∼ 1053 erg and E /Erot ≈ 10−16 and
for AGN E /Erot ≈ 10−13. This guarantees that the emission
process has to occur following a sequence of the elemen-
tary processes. Under these conditions, the duration of the
repetitive sequence, Δt ∼ (Erot/E )τel, can be of thousands
of years, in view of the slowing-down of the BH leading
to an ever increasing value of τel [2] (while E holds nearly
constant).

6 The black hole magneton

It is interesting to show the analogy of the above result with
the case of an atom placed in an external electric or magnetic
field for which its energy levels suffer a shift, respectively,
from the Stark or Zeeman effect (see e.g. [19]).

In the case of the Zeeman effect, the energy shift is:

ΔεZ = μB B0, μB ≡ e
h̄

2mec
, (14)

where μB is the Bohr magneton. Indeed, by using Ω+ ≈
c(â/M̂)/(4GM/c2), and introducing μBH, the BH magne-
ton,

μBH ≡
(
mPl

mn

)4 (
â

M̂

)
e

h̄

Mc
, (15)
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the particle energy (12) can be written as

εe = μBHB0, (16)

which adds an unexpected deeper meaning to εe.
In the Stark effect, the energy shift is given by

ΔεS = e |E+| rB, (17)

where rB = h̄2/(mee2) is the Bohr radius. This expression
can be directly compared with the first equality in Eq. (9).

7 A direct application to the electron

The use of the Wald solution overcomes the conceptual dif-
ficulty of explaining the origin of the charge in BH electro-
dynamics. Indeed, an effective charge of the system can be
expressed as [2,9]

Qeff = G

c3 2 J B0, (18)

which is not an independent parameter but, instead, it is a
derived quantity from the BH angular momentum and the
magnetic field B0. These quantities become the free parame-
ters of the electrodynamical process and therefore the concept
of the BH charge is not anymore a primary concept.

The effective charge (18) can be also expressed in terms
of M , J and the magnetic moment μ as:

Qeff = Mc

J
μ, (19)

where we have used the computation of the Geroch–Hansen
multipole moments [20,21] performed in [9]. Assuming the
electron spin Je = h̄/2 and Qeff = e, the magnetic moment
becomes the Bohr magneton. But more interestingly, if we
adopt the angular momentum and magnetic moment of the
electron, then we obtain that the derived effective charge (19)
becomes indeed the electron charge:

Qeff = me c

Je
μB = 2me c

h̄

h̄

2me c
e = e. (20)

8 Conclusions

We recall:

1. That in addition of being exact mathematical solutions of
the Einstein equations, BHs are objects relevant for theo-
retical physics and astrophysics as it was clearly indicated
in “Introducing the BH” [22].

2. That the mass-energy of a Kerr–Newman BH, estab-
lished over a few months period ranging from September
17, 1970, to March 11, 1971 in [23–25], can be simply
expressed by

M2 = c2 J 2

4G2M2
irr

+
(

Q2

4G Mirr
+ Mirr

)2

, (21)

S = 16πG2 M2
irr/c

4,

δS = 32πG2 MirrδMirr/c
4 ≥ 0, (22)

where Q, J and M are the three independent parameters
of the Kerr–Newman geometry: charge, angular momen-
tum and mass. Mirr and S are, respectively, the derived
quantities representing the irreducible mass and the hori-
zon surface area.

3. That for extracting the Kerr BH rotational energy the
existence of the Wald solution [9] was essential [2,3,10].

From the observational point of view, the time-resolved
spectral analysis of GRB 130427A [1,2] and GRB 190114C
[3] clearly points to the existence of self-similarities in the
Fermi-GBM spectra, to the power-law in the GeV luminosity
of the Fermi-LAT and to a discrete emission of elementary
impulsive events of 1037 erg. The timescale of the emission is,
on the rotation axis∼ 10−6 s, leading to ultrahigh-energy par-
ticles contributing to cosmic rays, and off-axis of ∼ 10−14 s,
leading to GeV–TeV radiation [2].

Extrapolating these considerations from a BH to an elec-
tron, we showed that the electron charge turns out to be a
derived quantity, a function of the electron’s angular momen-
tum and magnetic moment, with the electron’s mass and the
speed of light considered as fundamental constants.

The definition, the formulation of the equation and the
identification of the mechanism of the process of emission
of the blackholic quantum has become a necessity and it is
presented in this article.
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Abstract
The study of neutrino flavor oscillations in astrophysical sources has been
boosted in the last two decades thanks to achievements in experimental neutrino
physics and in observational astronomy. We here discuss two cases of inter-
est in the modeling of short and long gamma-ray bursts: hypercritical, that is,
highly super-Eddington spherical/disk accretion onto a neutron star/black hole.
We show that in both systems, the ambient conditions of density and tempera-
ture imply the occurrence of neutrino flavor oscillations, with a relevant role of
neutrino self-interactions.

K E Y W O R D S
black hole, gamma-ray bursts, neutrino flavor oscillations, neutron star

1 INTRODUCTION

The occurrence of neutrino flavor oscillations has been,
undoubtedly, experimentally demonstrated (de Salas et al.
2018). Of special interest here is, it has become clear in
recent years that for the analysis of neutrino oscillations in
matter, for example, the Mikheyev-Smirnov-Wolfenstein
(MSW) effect (Mikheyev & Smirnov 1986; Wolfenstein
1978), refractive effects of neutrinos on themselves, due to
the neutrino self-interaction potential, are essential.

Over the last two decades, the achievements of exper-
imental neutrino physics and the constant development
of observational astronomy, have caused an increasing
interest in the study of the occurrence of neutrino flavor
oscillations in astrophysical sources. Although the bulk
of astrophysical analyses has been limited to supernova
(SN) neutrinos, flavor oscillations may also occur in other
relativistic astrophysics sources. In particular, as we are
showing here, this phenomenon is expected to occur in
known scenarios of short- and long-duration gamma ray
bursts (GRBs).

The emergent picture of GRBs is that both,
short-duration and long-duration GRBs, originate in
binary systems (Ruffini et al. 2016). Short bursts are asso-
ciated with mergers of NS-NS and/or NS-BH binaries.
For this case, the role of neutrino-antineutrino (𝜈𝜈) anni-
hilation leading to the formation of an electron-positron
plasma (e−e+) has been introduced (Narayan et al. 1992)
(for general relativistic effects, see [Salmonson & Wilson
2002]). For long bursts, it has been introduced binary pro-
genitor composed of a carbon–oxygen star (COcore) and a
companion neutron star (NS) (Fryer et al. 2014; Rueda &
Ruffini 2012). These binaries can form in an evolutionary
path, including a first SN explosion, common-envelope
phases, tidal interactions, and mass loss (Fryer et al. 2015).
The GRB is expected to occur when the binary experi-
ences the second SN, that is, the one of the COcore. Part of
the ejected matter produces a hypercritical accretion (i.e.,
highly super-Eddington) process onto the NS companion.
The NS then reaches its critical mass for gravitational col-
lapse, hence forming a rotating black hole (BH) (Becerra
et al. 2015; Becerra et al. 2016). These systems have been
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called binary-driven hypernovae (BdHNe), and they lead
to a variety of observable emissions from the X-rays all
the way to high-energy gamma rays (see e.g.,[Rueda et al.
2019; Ruffini et al. 2019] for details).

As we are showing below, a key ingredient in the above
systems is a copious emission of neutrinos during the
hypercritical accretion. The high neutrino and matter den-
sity involved suggests that a study of neutrino oscillations
may lead to new neutrino physics in these sources. Our aim
here is to compile the main results of neutrino oscillations
in the physical conditions expected in the above scenarios
of GRBs.

2 NEUTRINO OSCILLATIONS

To study the flavor evolution of neutrinos within a partic-
ular system, a Hamiltonian governing neutrino oscillation
must be set up. The relative strength of the potentials
appearing in such Hamiltonian depends on four elements:
geometry, mass content, neutrino content, and neutrino
mass hierarchy. Geometry refers to the nature of net neu-
trino fluxes and possible gravitational effects. Mass and
neutrino content refers to the distribution of leptons of
each flavor (e,𝜇,𝜏) present in the medium. Finally, mass
hierarchy refers to the relative values of the masses m1,m2,
and m3 for each neutrino mass eigen states. The equations
that govern the evolution of an ensemble of mixed neutri-
nos are the quantum Liouville equations

i𝜌̇p = [Hp, 𝜌p] ; i𝜌̇p = [Hp, 𝜌p] . (1)

The Hamiltonian is (see, e.g., [Becerra et al. 2018; Uribe
Suárez & Rueda Hernandez 2019] and references therein)

Hp,t = Ωp,t +
√

2GF ∫ (lq,t − lq,t)(1 − vq,t ⋅ vp,t)
d3q
(2𝜋)3

+
√

2GF ∫ (𝜌q,t − 𝜌q,t)(1 − vq,t ⋅ vp,t)
d3q
(2𝜋)3 ; (2)

Hp,t = −Ωp,t +
√

2GF ∫ (lq,t − lq,t)(1 − vq,t ⋅ vp,t)
d3q
(2𝜋)3

+
√

2GF ∫ (𝜌q,t − 𝜌q,t)(1 − vq,t ⋅ vp,t)
d3q
(2𝜋)3 . (3)

In these equations, 𝜌p (𝜌p) is the matrix of occupation
numbers (𝜌p)𝑖𝑗 = ⟨a†

j ai⟩p for neutrinos ((𝜌p)𝑖𝑗 = ⟨a†
i aj⟩p for

antineutrinos), for each momentum p and flavors i,j. The
diagonal elements are the distribution functions f𝜈i(𝜈i)(p)
such that their integration over the momentum space gives
the neutrino number density n𝜈i of a determined flavor i.
The off-diagonal elements provide information about the

overlapping between the two neutrino flavors. Ωp is the
matrix of vacuum oscillation frequencies, lp and lp are
matrices of occupation numbers for charged leptons built
in a similar way to the neutrino matrices, and vp = p/p
is the velocity of a particle with momentum p (either
neutrino or charged lepton). Since the matter in the accre-
tion zone is composed of protons, neutrons, electrons, and
positrons, 𝜈e and 𝜈e interact with matter by both charged
and neutral currents, while 𝜈𝜇, 𝜈𝜏 , 𝜈𝜇, and 𝜈𝜏 interact only
by neutral currents. Therefore, the behavior of these states
can be clearly divided into electronic and nonelectronic
allowing us to use the two-flavor approximation. Within
this approximation, 𝜌 in Equation (1) can be written in
terms of Pauli matrices and the polarization vector Pp as:

𝜌p =
(
𝜌𝑒𝑒 𝜌𝑒𝑥
𝜌𝑥𝑒 𝜌𝑥𝑥

)

p
= 1

2 (fp1 + Pp ⋅ −→𝜎 ), (4)

where fp = Tr[𝜌p] = f𝜈e (p) + f𝜈x (p) is the sum of the distri-
bution functions for 𝜈e and 𝜈x. Note that the z component
of the polarization vector obeys

Pz
p = f𝜈e (p) − f𝜈x (p). (5)

Hence, this component tracks the fractional flavor
composition of the system and appropriately normalizing
𝜌p allows defining a survival and mixing probability

P𝜈e↔𝜈e =
1
2 (1 + Pz

p), (6a)

P𝜈e↔𝜈x =
1
2 (1 − Pz

p). (6b)

On the other hand, the Hamiltonian can be written as
a sum of three interaction terms:

H = Hvac + Hm + H𝜈𝜈 , (7)

where H is the two-flavor Hamiltonian. The first term is
the Hamiltonian in vacuum (Qian & Fuller 1995):

Hvac =
𝜔p

2

(
− cos 2𝜃 sin 2𝜃

sin 2𝜃 cos 2𝜃

)
=

𝜔p

2 B ⋅ −→𝜎 , (8)

where 𝜔p = Δm2/2p, B = (sin2𝜃, 0,−cos2𝜃) and 𝜃 is the
smallest neutrino mixing angle in vacuum.

The other two terms in Equation (3) are special since
they make the evolution equations nonlinear. Even though
they are very similar, we are considering that the electrons
during the accretion form an isotropic gas; hence, the vec-
tor vq in the first integral is distributed uniformly on the
unit sphere and the factor vq ⋅ vp averages to zero. After
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integrating the matter Hamiltonian is given by:

Hm = 𝜆
2

(
1 0
0 −1

)
= 𝜆

2 L ⋅ −→𝜎 , (9)

where 𝜆 =
√

2GF(ne− − ne+) is the charged current matter
potential and L = (0, 0, 1).

Such simplification cannot be made with the final
term. Since neutrinos are responsible for the energy loss
of the infalling material during accretion, they must be
escaping the accretion zone and the net neutrino and
antineutrino flux is nonzero. In this case, the factor vq ⋅ vp
cannot be averaged to zero. At any rate, we can still use
Equation (4) and obtain (Malkus et al. 2016; Pantaleone
1992; Zhu et al. 2016):

H𝜈𝜈 =
√

2GF

[
∫ (1 − vq ⋅ vp)(Pq − Pq)

d3q
(2𝜋)3

]
⋅ −→𝜎 . (10)

Introducing every Hamiltonian term in Equation (1),
and using the commutation relations of the Pauli matri-
ces, we find the equations of oscillation for neutrinos and
antineutrinos for each momentum mode p:

Pp =
[
𝜔pB + 𝜆L +

√
2GF ∫ (1 − vq ⋅ vp)

× (Pq − Pq)
d3q
(2𝜋)3

]
⋅ Pp; (11a)

Pp =
[
−𝜔pB + 𝜆L +

√
2GF ∫ (1 − vq ⋅ vp)

× (Pq − Pq)
d3q
(2𝜋)3

]
⋅ Pp. (11b)

This set of equations is the starting point of any analysis
of neutrino oscillation in an astrophysical system.

2.1 Neutrino oscillation in spherical
accretion

In the BdHN scenario of GRBs, the SN material first
reaches the gravitational capture region of the NS com-
panion, namely, the Bondi-Hoyle region. The infalling
material shocks as it piles up onto the NS surface form-
ing an accretion zone where it compresses and eventu-
ally becomes sufficiently hot to trigger a highly efficient
neutrino emission process. Neutrinos take away most of
the infalling matter's gravitational energy gain, letting it
reduce its entropy and be incorporated into the NS. It
was shown in (Becerra et al. 2016) that the matter in the
accretion zone near the NS surface develops conditions of
temperature and density such that it is in a nondegenerate,
relativistic, hot plasma state. The most efficient neutrino

emission channel under those conditions becomes the
electron positron pair annihilation process. The neutrino
emissivity can be approximated with a very good accuracy
by (Yakovlev et al. 2001).

𝜀m
i ≈

2G2
F(T)8+m

9𝜋5 C2
+,i[m+1,0(𝜂e+)1,0(𝜂e−)

+m+1,0(𝜂e−)1,0(𝜂e+)], (12)

where k, 𝓁(y, 𝜂) are the generalized Fermi func-
tions (see [Becerra et al. 2018] for details) andk, 𝓁(𝜂)=k, 𝓁(y= 0, 𝜂). For m= 0 and m= 1 Equation (12)
gives the neutrino and antineutrino number emissiv-
ity (neutrino production rate), and the neutrino and
antineutrino energy emissivity (energy per unit volume
per unit time) for a certain flavor i, respectively. Using
Equation (12), we find that the ratio of emission rates
between electronic and nonelectronic neutrino flavors
obey the relation

𝜀0
e

𝜀0
x
≈ 7

3 . (13)

and because of the symmetry of the annihilation process,
the neutrinos and antineutrinos are produced in equal
quantities. We can also find an expression for the average
neutrino energy

⟨E𝜈⟩ = ⟨E𝜈⟩ ≈ 4.1 T, (14)

for all neutrino flavors. The neutrino energy emissivity in
Equation (12) can be written as

𝜀e−e+ ≈ 8.69 × 1030
( T

1 MeV

)9
MeV cm−3 s−1, (15)

which allows us to define an effective neutrino emission
region (Becerra et al. 2018)

Δr𝜈 =
𝜀e−e+

∇𝜀e−e+
=≈ 0.08RNS, (16)

with RNS the radius of the NS. Recollecting results, we
can make another simplifying assumption (Becerra et al.
2018): Since the neutrino emission region is thin, we
will consider it as a spherical shell. This allows us to
use the single-angle approximation (Dasgupta & Dighe
2008; Duan et al. 2006) and simplify the last term in
Equations (11a) and (11b). Precisely, the multi-angle term
and the one responsible for kinematic decoherence (Fogli
et al. 2007; Hannestad et al. 2006; Raffelt & Sigl 2007). With
the single-angle approximation and the inverse square law
of flux dilution, it is possible to find the explicit depen-
dence in r of each of the potentials in Equations (11a) and
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(11b), namely,

𝜔p,r =
Δm2

2p⟨vr⟩ , 𝜆r =
√

2GF(ne− − ne+)
1

⟨vr⟩ ;

𝜇r =
√

2GF

2

( ∑
i∈{e,x}

nC
𝜈i𝜈i

)(
RNS

r

)2 (1 − ⟨vr⟩2

⟨vr⟩
)
, (17)

where

⟨vr⟩ = 1
2

⎡
⎢⎢⎣
1 +

√
1 −

(
RNS

r

)2⎤
⎥⎥⎦
. (18)

Using Equation (12) and the hydrodynamic simula-
tions in (Becerra et al. 2016), we can obtain the ther-
modynamic properties of the accreting matter at the NS
surface (Table 1), which in turn are the initial condition
to solve Equations (11a) and (11b) and obtain an approx-
imate behavior of oscillations. In Figures 1 and 2, we
show the solution of Equations (11a) and (11b) for both
normal and inverted hierarchies using a monochromatic
spectrum dominated by the average neutrino energy for
Ṁ = 10−2,10−3,10−4 and5× 10−5M⊙s−1. For the inverted
hierarchy, there is no difference between the neutrino
and antineutrino survival probabilities. This should be
expected since for these values of r, the matter and
self-interaction potentials are much larger than the vac-
uum potential, and there is virtually no difference between
Equations (11a) and (11b). Also, note that the antineutrino
flavor proportions in Table 1 remain virtually unchanged
for normal hierarchy while the neutrino flavor proportions
change drastically around the point 𝜆r∼𝜔r. From these
solutions, we can calculate the oscillation length to be

tosc ≈ (0.05 − 1) km, (19)

which agree with the algebraic estimations in (Hannestad
et al. 2006;Raffelt & Sigl 2007). Clearly, the full equations
of oscillations are highly nonlinear so the solution may
not reflect the real neutrino flavor evolution. Concerning
the single-angle approximation, it is discussed in (Fogli
et al. 2007; Hannestad et al. 2006; Raffelt & Sigl 2007)
that in the more realistic multi-angle approach, kinematic
decoherence happens for both mass hierarchies, and in
(Esteban-Pretel et al. 2007) the conditions for decoher-
ence as a function of the neutrino flavor asymmetry have
been discussed. It is concluded that if the symmetry of
neutrinos and antineutrinos is broken beyond the limit of
O(25%), that is, if the difference between emitted neutri-
nos and antineutrinos is roughly larger than 25% of the
total number of neutrinos in the medium, decoherence
becomes a sub-dominant effect. As a direct consequence
of the peculiar symmetric situation, we are dealing with,
in which neutrinos and antineutrinos are produced in

similar numbers, bipolar oscillations happen and, as we
have already discussed, they present very small oscilla-
tion length as shown in Equation (19). Note also that the
bipolar oscillation length depends on the neutrino energy.
Therefore, the resulting process is equivalent to an averag-
ing over the neutrino energy spectrum and an equiparti-
tion among different neutrino flavors is expected (Raffelt &
Sigl 2007). Although, for simplicity, we are dealing with the
two neutrino hypothesis, this behavior is easily extended
to the more realistic three-neutrino situation. We assume,
therefore, that at few kilometers from the emission region,
neutrino flavor equipartition is a reality:

𝜈e ∶ 𝜈𝜇 ∶ 𝜈𝜏 = 1 ∶ 1 ∶ 1. (20)

After leaving the emission region, beyond
r ≈RNS +Δr𝜈 , where Δr𝜈 is the width defined in
Equation (16), the effective neutrino density quickly falls
in a asymptotic behavior 𝜇r ≈ 1/r4. The decay of 𝜆r is
slower. Hence, very soon the neutrino flavor evolution
is determined by the matter potential. Matter suppresses
neutrino oscillations and we do not expect significant
changes in the neutrino flavor content along a large
region. Nevertheless, the matter potential can be so small
that there will be a region along the neutrino trajectory in
which it can be compared with the neutrino vacuum fre-
quencies and the higher and lower resonant density con-
ditions will be satisfied. Using the results in (Becerra et al.
2018; Fogli et al. 2003), we can include the matter effects
and compare in Table 2 the flavor content at the emission
region and after decoherence and the MSW resonance.

Finally, we note that for accretion rates Ṁ < 5 ×
10−5M⊙ s−1, either the matter potential is close enough to
the vacuum potential and the MSW condition is satisfied,
or both the self-interaction and matter potentials are so
low that the flavor oscillations are only due to the vacuum
potential. In both cases, bipolar oscillations are not present
(Becerra et al. 2018). Without bipolar oscillations, it is not
possible to guarantee that decoherence will be complete
and Equation (20) is no longer valid.

2.2 Neutrino oscillations in accretion
disks

In the same BdHN scenario of Section 2, part of the SN
ejecta keeps bound to the newborn Kerr BH, forming an
accretion disk (Becerra et al. 2019). In order to study ana-
lytically the properties of accretion disks, different mod-
els make approximations that allow casting the physics
of an accretion disk as a two- or even one-dimensional
problem. Here, we will consider neutrino-cooled accre-
tion disks, which are steady-state (Page & Thorne 1974;
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T A B L E 1 Characteristics inside the neutrino emission zone for selected values of the accretion rate Ṁ

Ṁ
(M⊙ s−1) 𝝆 (g cm−3)

T
(MeV) 𝜼e±

ne− − ne+

(cm−3)
T𝝂𝝂
(MeV)

⟨E𝝂⟩
(MeV)

FC
𝝂e ,𝝂e

(cm−2 s−1)
FC
𝝂x ,𝝂x

(cm−2 s−1)
nC
𝝂e𝝂e

(cm−3)
nC
𝝂x𝝂x

(cm−3)

∑
i nC

𝝂i𝝂i

(cm−3)

10−6 1.12× 107 2.59 ±0.193 3.38× 1030 2.93 10.61 2.40× 1038 1.03× 1038 1.60× 1028 6.90× 1027 2.29× 1028

10−5 3.10× 107 3.34 ±0.147 9.56× 1030 3.78 13.69 1.84× 1039 7.87× 1038 1.23× 1029 5.20× 1028 1.75× 1029

10−4 8.66× 107 4.30 ±0.111 2.61× 1031 4.87 17.62 1.39× 1040 5.94× 1039 9.24× 1029 3.96× 1029 1.32× 1030

10−3 2.48× 108 5.54 ±0.082 7.65× 1031 6.28 22.70 1.04× 1041 4.51× 1040 7.00× 1030 3.00× 1030 1.00× 1031

10−2 7.54× 108 7.13 ±0.057 2.27× 1032 8.08 29.22 7.92× 1041 3.39× 1041 5.28× 1031 2.26× 1031 7.54× 1031

Note: The symbols FC and nC refer to the neutrino flux and neutrino density at the emission region. The electron fraction is Y e = 0.5 and the pinching
parameter for the neutrino spectrum is 𝜂𝜈𝜈 = 2.04.

F I G U R E 1 Neutrino flavor evolution for inverted hierarchy. Electron neutrino survival probability is shown as a function of the radial
distance from the neutron star surface. The curves for the electron antineutrino match the ones for electron neutrinos

Uribe Suárez & Rueda Hernandez 2019), axisymmetric,
thin, alpha-disk models with the following parameters: Ṁ
the accretion rate, 𝛼 the alpha-viscosity, and a the spin
of the BH (Abramowicz et al. 1999; Chen & Beloborodov
2007; Krolik 1999; Liu et al. 2017; Novikov & Thorne
1973; Page & Thorne 1974; Shakura & Sunyaev 1973;
Uribe Suárez & Rueda Hernandez 2019). The procedure

to analyze the dynamics of oscillations is similar to the
one in Section 2.1. The first step is to find the neutrino
flavor distributions to establish the initial conditions for
Equations (11a) and (11b), and then we have to find each
of the potentials and finally solve the equation. To do this,
we first solve the hydrodynamic model in the absence of
oscillations.
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F I G U R E 2 Electron neutrino and antineutrino flavor evolution for normal hierarchy. The survival probability is shown as a function
of the radial distance from the neutron star surface

T A B L E 2 Fraction of neutrinos and antineutrinos for each flavor after decoherence and matter effects, n = 2∑in𝜈i

n0
𝝂e
∕n n0

𝝂e
∕n n0

𝝂x
∕n n0

𝝂x
∕n nve∕n n𝝂e

∕n nvx∕n n𝝂x
∕n

Normal hierarchy 1
6

1
6

1
3

1
3

1
3

1
6 +
1
6 sin2𝜃12

1
6

1
3 −
1
6 sin2𝜃12

Inverted hierarchy 1
6

1
6

1
3

1
3

1
6 +
1
6 cos2𝜃12

1
3

1
3 −
1
6 cos2𝜃12

1
6

In Figure 3, we find the neutrino number densities and
energies inside the disk. Note that, as in Section 2.1, the
energies of neutrinos are comparable to the ones in spher-
ical accretion and the number of neutrinos and antineutri-
nos are equal. There is also a significant excess of electron
neutrinos over nonelectron neutrinos. However, there are
several key differences that make the analysis in accre-
tion disks more complex. First, an accretion disk has an
effective thickness H and neutrinos can be produced at
any point inside the disk. This means that it is not pos-
sible to set a surface of emission as before and due to
the lack of spherical symmetry does not allow using the
single-angle approximation. Second, close to the BH the

effects of curvature may not be negligible, implying that in
Equation (1), when applying the Liouville operator, a term
proportional rate of change of the energy of neutrinos p
may be present. To simplify the equations of oscillation,
we consider the local rest frame of the disk (see [Bardeen
et al. 1972; Thorne 1974] for details) and make a set of
assumptions:

1. Due to axial symmetry, the neutrino density is constant
along the z direction. Moreover, since neutrinos fol-
low null geodesics, we can set ṗz ≈ ṗ𝜙 = 0. Also, within
the thin disk approximation, the neutrino and matter
densities are constant along the y direction and the
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momentum change due to curvature along this direc-
tion can be neglected, that is, ṗy ≈ 0.

2. In the local rest frame of the disk, the normalized radial
momentum of a neutrino can be written as

px = ± r√
r2 − 2𝑀𝑟 + M2a2

,

(see [Uribe Suárez & Rueda Hernandez 2019] for
details). Hence, the typical scale of the change of momen-
tum with radius is

Δrpx ,eff =
||||
d ln px

𝑑𝑟
||||
−1

= r(r2 − 2𝑀𝑟 + M2a2)
M(𝑀𝑎2 − r)

,

which obeys

Δrpx ,eff > rs for r > 2rin.

This means we can assume ṗx ≈ 0 up to regions very
close to the inner edge of the disk.

3. We define an effective distance

Δr𝜌,eff =
||||
d ln(ne− − ne+)

𝑑𝑟
||||
−1
.

For all the systems we evaluated, we found that is
comparable to the height of the disk(Δr𝜌, eff∼2− 5rs). This
means that at any point of the disk, we can calculate neu-
trino oscillations in small regions assuming that both the
electron density and neutrino densities are constant.

4. We neglect energy and momentum transport
between different regions of the disk by neutrinos that are
recaptured by the disk due to curvature. This assumption
is reasonable except for regions very close to the BH but
is consistent with the thin disk model (Page & Thorne
1974). We also assume initially that the neutrino content
of neighboring regions of the disk (different values of r) do
not affect each other. As a consequence of the results dis-
cussed above, we assume that at any point inside the disk
and at any instant of time, an observer in the local rest
frame can describe both the charged leptons and neutri-
nos as isotropic gases around small enough regions of the
disk.

All assumptions are sensible except 4, which is consid-
erably restrictive. However, we can build our analysis on
top of it and use the same results of Section 2.1 to gen-
eralize the model. Note that with our assumptions, the
last term in Equations (11a) and (11b) is again simplified.
When we calculate the oscillation in different point of the
disk (Figure 4) we obtain fast flavor transformations with
oscillation lengths of the order

tosc ≈ 10−6 s. (21)

Keeping this in mind and given the symmetry between
neutrinos and antineutrinos in Figure 3, we note that
in (Esteban-Pretel et al. 2007), it was shown that if the
symmetry between neutrinos and antineutrinos is not bro-
ken beyond the limit of 25%, kinematic decoherence is
still the main effect of neutrino oscillations. Additionally,
in (Raffelt & Sigl 2007) it is shown that for asymmet-
ric 𝜈𝜈 gas, even an infinitesimal anisotropy triggers an
exponential evolution toward equipartition. Decoherence
happens within a few oscillation cycles of oscillation so
we can expect a steady-state, thin disk model to achieve
flavor equipartition and is the result of a nonvanishing
flux term (which is present in accretion disks due to the
increasing density towards the BH) such that at any point,
(anti)-neutrinos traveling in different directions, do not
experience the same self-interaction potential due to the
multiangle term in the integral of Equation (3). This effect
is of the neutrino mass hierarchy and neutrino flavor
equipartition is achieved for both hierarchies. Within the
disk dynamic, this is equivalent to imposing the condition

⟨P𝜈e→𝜈e⟩ = ⟨P𝜈e→𝜈e
⟩ = 0.5. (22)

Within this condition, we can compare the behavior
of disks with and without flavor equipartition. Figure 5
shows that equipartition increases the disk density and
reduces the temperature where the neutrino emission
is important. The effect is mild for low accretion rates
while very pronounced for high ones. Thus, result can be
explained as follows: for low accretion rates, the neutrino
optical depth for all flavors is 𝜏𝜈𝜈 ≲ 1 (Figure 6), hence neu-
trinos, regardless of their flavor, are free to leave the disk.
When the initial (mainly electron flavor) is redistributed
among both flavors, the total neutrino cooling remains vir-
tually unchanged and the disk evolves as if equipartition
had never occurred, save the new emission flavor content.
On the other hand, when accretion rates are high, the opti-
cal depth obeys 𝜏𝜈x ≈ 𝜏𝜈x

≲ 𝜏𝜈e
< 𝜏𝜈 ∼ 103. The 𝜈e cooling

is more heavily suppressed than the others. When flavors
are redistributed, the new 𝜈x particles are free to escape,
enhancing the total cooling with a consequent reduction
of the temperature. As the temperature decreases, a lower
internal energy allows for a higher matter density. The
net impact of flavor equipartition is to make the disk evo-
lution less sensitive to 𝜈e opacity. It can be shown (see
[Uribe Suárez & Rueda Hernandez 2019] for details) that it
increases the total cooling efficiency by the precise factor

1
2

(
1 +

⟨E𝜈x⟩
⟨E𝜈e⟩

1 + 𝜏𝜈e

1 + 𝜏𝜈x

)
. (23)

The main difference with the previous system is that,
for similar accretion rates, the density of the accretion
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F I G U R E 3 Properties of accretion disks in the absence of oscillations with M = 3 M⊙, 𝛼 = 0.01, a = 0.95 for accretion rates Ṁ = 1 M⊙

s−1, Ṁ = 0.1 M⊙ s−1, and Ṁ = 0.01 M⊙ s−1, respectively

F I G U R E 4 Survival provability for electron neutrinos and
antineutrinos for the accretion disk with Ṁ = 0.1 M⊙ s−1 at
r = 9rs,10rs,11rs,12rs

disk can be highly dense to impede, or even trap neutri-
nos within it. However, since electron and nonelectron
neutrinos have different cross sections, the flavor trans-
formations affect not only the dynamics of the disk but
also the neutrino flavor content emerging from the disk.
This, in turn, affects the energy deposition rate of the pro-
cess 𝜈 + 𝜈 → e− + e+. In particular, it leads to a deficit of
electron neutrinos and a smaller energy deposition rate
with respect to previous estimates not accounting by flavor
oscillations inside the disk. The exact value of the reduc-
tion factor depends on the 𝜈e and 𝜈x optical depths but it

can be as high as ∼5. We refer the reader to Uribe Suárez &
Rueda Hernandez (2019) for further details on this subject.

3 CONCLUDING REMARKS

We have outlined the implications of neutrino oscilla-
tions in two different accreting systems within the BdHN
scenario of GRBs. In both, spherical accretion and disk
accretion, the emission of neutrinos is a crucial ingredient
since they act as the main cooling process that allows the
accretion onto the NS (or onto the BH) to proceed at very
high rates of up to 1 M⊙ s−1. Also, the ambient conditions
of density and temperature imply the occurrence of neu-
trino flavor oscillations, with a relevant role of neutrino
self-interactions.

We have seen that in spherical accretion, the density of
neutrinos on the surface of the NS implies that neutrino
self-interactions dominate the flavor evolution, leading to
collective effects. The latter induce quick flavor conver-
sions with an oscillation length as small as (0.05–1) km. Far
from the NS surface, the neutrino density decreases and
so the matter potential and MSW resonances dominate the
flavor oscillations. Owing to the above, the neutrino flavor
content emerging from the system is completely different
with respect to the one created at the bottom of it, namely,
on top the NS accreting surface.



URIBE and RUEDA 943

F I G U R E 5 Comparison of density and temperature between thin disks with and without neutrino flavor equipartition for selected
accretion rates

F I G U R E 6 Total optical depth (left scale) and mean free path (right scale) for neutrinos and antineutrinos of both flavors for accretion
disks with Ṁ = 1 M⊙ s−1 and 0.01 M⊙ s−1, between the inner radius and the ignition radius

Concerning disk accretion onto a BH, we saw that
the number densities of electron neutrinos and antineu-
trinos are very similar. As a consequence of this partic-
ular environment, very fast pair conversions, 𝜈e𝜈e −−−−⇀↽−−−−
𝜈x𝜈x, induced by bipolar oscillations, are obtained for the
inverted mass hierarchy case with high oscillation fre-
quencies. However, due to the interaction between neigh-
boring regions of the disk, the onset of kinematic decoher-
ence with a timescale comparable to the oscillation length
induces flavor equipartition among electronic and non-
electronic neutrinos throughout the disk. Therefore, the
neutrino content emerging from the disk is very different
from the one that is usually assumed (see e.g.,[Liu et al.
2016; Malkus et al. 2012]).

Flavor equipartition, while leaving antineutrino cool-
ing practically unchanged, it enhances neutrino cooling
by allowing the energy contained (and partially trapped
inside the disk due to high opacity) within the 𝜈e gas
to escape in the form of 𝜈x, rendering the disk insensi-
ble to the electron neutrino opacity. The variation of the

flavor content in the emission flux implies a loss in the
electron neutrino luminosity and an increase in nonelec-
tron neutrino luminosity and L𝜈e

. As a consequence, the
total energy deposition rate of the process 𝜈 + 𝜈 → e− + e+
is reduced.

These results are only a first step toward the analysis
of neutrino oscillations in a novel relativistic astrophysics
context that can have an impact on a wide range of astro-
physical phenomena: from e−e+ plasma production above
BHs in GRB models, to r-process nucleosynthesis in disk
winds and possible MeV neutrino detectability.
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Abstract: In the binary-driven hypernova model of long gamma-ray bursts, a carbon–oxygen star
explodes as a supernova in the presence of a neutron star binary companion in close orbit. Hypercriti-
cal (i.e., highly super-Eddington) accretion of the ejecta matter onto the neutron star sets in, making it
reach the critical mass with consequent formation of a Kerr black hole. We have recently shown that,
during the accretion process onto the neutron star, fast neutrino flavor oscillations occur. Numerical
simulations of the above system show that a part of the ejecta stays bound to the newborn Kerr
black hole, leading to a new process of hypercritical accretion. We address herein, also for this phase
of the binary-driven hypernova, the occurrence of neutrino flavor oscillations given the extreme
conditions of high density (up to 1012 g cm−3) and temperatures (up to tens of MeV) inside this disk.
We estimate the behavior of the electronic and non-electronic neutrino content within the two-flavor
formalism (νeνx) under the action of neutrino collective effects by neutrino self-interactions. We find
that in the case of inverted mass hierarchy, neutrino oscillations inside the disk have frequencies
between∼(105–109) s−1, leading the disk to achieve flavor equipartition. This implies that the energy
deposition rate by neutrino annihilation (ν + ν̄→ e− + e+) in the vicinity of the Kerr black hole is
smaller than previous estimates in the literature not accounting for flavor oscillations inside the disk.
The exact value of the reduction factor depends on the νe and νx optical depths but it can be as high
as ∼5. The results of this work are a first step toward the analysis of neutrino oscillations in a novel
astrophysical context, and as such, deserve further attention.

Keywords: accretion disk; neutrino physics; gamma-ray bursts; black hole physics

1. Introduction

Neutrino flavor oscillations are now an experimental fact [1], and in recent years,
their study based only on Mikheyev–Smirnov–Wolfenstein (MSW) effects [2,3] has been
transformed by the insight that refractive effects of neutrinos on themselves due to the
neutrino self-interaction potential are essential. Their behavior in a vacuum, in matter
or by neutrino self-interactions has been studied in the context of early universe evo-
lution [4–15], solar and atmospheric neutrino anomalies [16–24] and core-collapse super-
novae (SN) ([25–51] and references therein). We are interested in astrophysical situations
when neutrino self-interactions become more relevant than the matter potential. This im-
plies systems in which a high density of neutrinos is present and in fact most of the literature
on neutrino self-interaction dominance is concentrated on supernova neutrinos. It has

Universe 2021, 7, 7. https://doi.org/10.3390/universe7010007 https://www.mdpi.com/journal/universe
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been shown how collective effects, such as synchronized and bipolar oscillations, change
the flavor content of the emitted neutrinos when compared with the original content deep
inside the exploding star.

This article aims to explore the problem of neutrino flavor oscillations in the case of
long gamma-ray bursts (GRBs), in particular in the context of the binary-driven hypernova
(BdHN) scenario. Long GRBs are the most energetic and powerful cosmological transients
so far observed, releasing energies of up to a few 1054 erg in just a few seconds. Most of the
energy is emitted in the prompt gamma-ray emission and in the X-ray afterglow. We refer
the reader to [52] for an excellent review on GRBs and its observational properties.

The GRB progenitor in the BdHN model is a binary system composed of a carbon–
oxygen star (COcore) and a companion neutron star (NS) in tight orbit with orbital periods
in the order of a few minutes [53–58]. These binaries are expected to occur in the final
stages of the evolutionary path of a binary system of two main-sequence stars of masses
in the order of 10–15 M�, after passing from X-ray binary phase and possibly multiple
common-envelope phases (see [57,59] and references therein).

The COcore explodes as SN, creating at its center a newborn NS (νNS), and ejecting
the matter from its outermost layers. Part of the ejected matter falls back and accretes
onto the νNS, while the rest continues its expansion leading to a hypercritical accretion
(i.e., highly super-Eddington) process onto the NS companion. The NS companion reaches
the critical mass for gravitational collapse, hence forming a rotating black hole (BH). The
class of BdHN in which a BH is formed has been called type I, i.e., BdHN I [60].

One of the most important aspects of the BdHN model of long GRBs is that different
GRB observables in different energy bands of the electromagnetic spectrum are explained
by different components and physical ingredients of the system. This is summarized in
Table 1, taken from [61]. For a review on the BdHN model and all the physical phenomena
at work, we refer the reader to [62].

Table 1. Summary of the gamma-ray burst (GRB) observables associated with each BdHN I component and physical
phenomenon. Adapted from Table 1 in [61] with the permission of the authors. References in the table: a [60], b [57,62,63],
c [64], d [65,66], e [67], f [60,68].

BdHN Component/Phenomena

GRB Observable

X-Ray
Precursor

Prompt
(MeV)

GeV-TeV
Emission

X-Ray Flares
Early Afterglow

X-Ray Plateau
and Late Afterglow

SN breakout a ⊗

Hypercrit. acc. onto the NS b ⊗

e+e−: transparency
in low baryon load region c

⊗

Inner engine: BH + B + matter d ⊗

e+e−: transparency
in high baryon load region e

⊗

Synchrotron by νNS injected
particles on SN ejecta f

⊗

νNS pulsar-like emission f ⊗

The emission of neutrinos is a crucial ingredient, since they act as the main cooling
process that allows the accretion onto the NS to proceed at very high rates of up to
1 M� s−1 [57,59,63,69,70]. In [71], we studied the neutrino flavor oscillations in this
hypercritical accretion process onto the NS, all the way to BH formation. We showed that
the density of neutrinos on top the NS in the accreting "atmosphere" is such that neutrino
self-interactions dominate the flavor evolution, leading to collective effects. The latter
induce in this system quick flavor conversions with short oscillation lengths as small as
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(0.05–1) km. Far from the NS surface, the neutrino density decreases, and so the matter
potential and MSW resonances dominate the flavor oscillations. The main result has been
that the neutrino flavor content emerging on top of the accretion zone was completely
different compared to the one created at the bottom of it. In the BdHN scenario, part of the
SN ejecta stays bound to the newborn Kerr BH, forming an accretion disk onto it. In this
context, the study of accretion disks and their nuances related to neutrinos is of paramount
importance to shed light on this aspect of the GRB central engine. In most cases, the mass
that is exchanged in close binaries has enough angular momentum so that it cannot fall
radially. As a consequence, the gas will start rotating around the star or BH, forming a
disk. At this point, it is worth digressing to mention the case of short GRBs. They are
widely thought to be the product of mergers of compact-object binaries, e.g., NS–NS and/or
NS–BH binaries (see, e.g., the pioneering works [72–75]). It is then clear that, especially in
NS–NS mergers, matter can be kept bound and circularize around the new central remnant.
Additionally, in such a case, an accretion disk will form around the more massive NS or
the newborn BH (if the new central object overcomes the critical mass), and therefore the
results of this work become relevant for such physical systems.

The magneto-hydrodynamics that describe the behavior of accretion disks are too
complex to be solved analytically and full numerical analysis is time-consuming and
costly. To bypass this difficulty, different models make approximations that allow casting
the physics of an accretion disk as a two-dimensional or even one-dimensional problem.
These approximations can be can be pigeonholed into four categories: symmetry, tempo-
ral evolution, viscosity and dynamics. Almost all analytic models are axially symmetric.
This is a sensible assumption for any physical system that rotates. Similarly, most models
are time-independent, although this is a more complicated matter. A disk can evolve in
time in several ways. For example, the accretion rate Ṁ depends on the external source of
material which need not be constant, and at the same time, the infalling material increases
the mass and angular momentum of the central object, constantly changing the gravi-
tational potential. Additionally, strong winds and outflows can continually change the
mass of the disk. Nonetheless, Ṁ(x, t) = Ṁ = constant is assumed. Viscosity is another
problematic approximation. For the gas to spiral down, its angular momentum needs
to be reduced by shear stresses. These come from the turbulence driven by differential
rotation and the electromagnetic properties of the disk [76–79], but again, to avoid magneto-
hydrodynamical calculations, the turbulence is accounted for using a phenomenological
viscosity α = constant, such that the kinematical viscosity takes the form ν ≈ αHcs, where
cs is the local isothermal sound speed of the gas and H is the height of the disk measured
from the plane of rotation (or half-thickness). This idea was first put forward by [80] and
even though there is disagreement about the value and behavior of the viscosity constant,
and it has been criticized as inadequate [81–84], several thriving models use this prescrip-
tion. Finally, the assumptions concerning the dynamics of the disk are related to what
terms are dominant in the energy conservation equation and the Navier–Stokes equation
that describe the fluid (apart from the ones related to symmetry and time independence).
In particular, it amounts to deciding what cooling mechanisms are important, what external
potentials should be considered and what are the characteristics of the internal forces in the
fluid. The specific tuning of these terms breeds one of the known models: thin disks, slim
disks, advection-dominated accretion flows (ADAFs), thick disks, neutrino-dominated
accretion flows (NDAFs), convection-dominated accretion flows (CDAFs), luminous hot
accretion flows (LHAFs), advection-dominated inflow-outflow solutions (ADIOS) and
magnetized tori. The options are numerous and each model is full of subtleties, making
accretion flows around a given object an extremely rich area of research. For useful reviews
and important articles with a wide range of subjects related to accretion disks, see [85–99]
and references therein.

NDAFs are of special interest for GRBs. They are hyperaccreting slim disks, optically
thick to radiation that can reach high densities ρ ≈ 1010–1013 g cm−3 and high tempera-
tures T ≈ 1010–1011 K around the inner edge. Under these conditions, the main cooling
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mechanism is neutrino emission since copious amounts of (mainly electron) neutrinos
and antineutrinos are created by electron–positron pair annihilation, URCA and nucleon–
nucleon bremsstrahlung processes, and later emitted from the disk surface. These νν̄ pairs
might then annihilate above the disk producing an e−e+ dominated outflow. NDAFs were
proposed as a feasible central engine for GRBs in [100] and have been studied extensively
since [101–112]. In [103] and later in [107], it was found that the inner regions of the disk
can be optically thick to νeν̄e, trapping them inside the disk, hinting that NDAFs may be
unable to power GRBs. However, the system involves neutrinos propagating through
dense media, and consequently, an analysis of neutrino oscillations, missing in the above
literature, must be performed. Figure 1 represents the standard situation of the physi-
cal system of interest. The dominance of the self-interaction potential induces collective
effects or decoherence. In either case, the neutrino flavor content of the disk changes.
Some recent articles are starting to recognize their role in accretion disks and spherical
accretion [71,113–117]. In particular, refs. [113,117] calculated the flavor evolution of neu-
trinos once they are emitted from the disk, but did not take into account the oscillation
behavior inside the disk. The energy deposition rate above a disk by neutrino-pair annihi-
lation as a powering mechanism of GRBs in NDAFs can be affected by neutrino oscillation
in two ways. The neutrino spectrum emitted at the disk surface depends not only on the
disk temperature and density but also on the neutrino flavor transformations inside the
disk. Additionally, once the neutrinos are emitted, they undergo flavor transformations
before being annihilated.

Figure 1. Schematic representation of the physical system. Due to conditions of high temperature
and density, neutrinos are produced in copious amounts inside the disk. Since they have very low
cross-sectional areas, neutrinos are free to escape but not before experiencing collective effects due to
the several oscillation potentials. The energy deposition rate of the process ν + ν̄→ e−+ e+ depends
on the local distribution of electronic and non-electronic (anti)neutrinos, which is affected by the
flavor oscillation dynamics.

Our main objective is to propose a simple model to study neutrino oscillations inside
an accretion disk and analyze its consequences. Applying the formalism of neutrino
oscillations to non-symmetrical systems is difficult, so we chose a steady-state, α-disk as a
first step in the development of such a model. The generalizations to more sophisticated
accretion disks (see, e.g., [118–121]) can be subjects of future research.

This article is organized as follows. We outline the features of NDAFs and discuss in
detail the assumptions needed to derive the disk equations in Section 2. Then, in Section 3,
we discuss the general characteristics of the equation that drive the evolution of neutrino os-
cillations. We use the comprehensive exposition of the accretion disk of the previous section
to build a simple model that adds neutrino oscillations to NDAFs, while emphasizing how
the thin disk approximation can simplify the equations of flavor evolution. In Section 4 we
set the parameters of the physical system and give some details on the initial conditions
needed to solve the equations of accretion disks and neutrino oscillations. In Section 5 we
discuss the main results of our calculations and analyze the phenomenology of neutrino
oscillations in accretion disks. Finally, we present in Section 6 the conclusions of this work.
Additional technical details are presented in a series of appendices at the end.
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2. Hydrodynamics
2.1. Units, Velocities and Averaging

Throughout this article, we use Planck units c = G = h̄ = kB = ke = 1. To describe
the spacetime around a Kerr BH of mass M, we use the metric gµν in Boyer–Lindquist
coordinates, with a space-like signature, and with a dimensionless spin parameter a =
J/M2, which can be written as:

ds2 =
(

gtt −ω2gφφ

)
dt2 + gφφ(dφ−ω dt)2 + grr dr2 + gθθ dθ2, (1)

in coordinates (t, r, θ, φ). The covariant components (g)µν of the metric are

gtt = −
(

1− 2 M r
Σ

)
, grr =

Σ
∆

, gθθ = Σ,

gφφ =

(
r2 + M2a2 +

2 M3a2r
Σ

sin2 θ

)
sin2 θ, gtφ = −2 M2 a r

Σ
sin2 θ,

(2)

and its determinant is g = −Σ2 sin2 θ, with the well known functions Σ = r2 + M2a2 cos2 θ
and ∆ = r2 − 2Mr + M2a2. We denote the coordinate frame by CF. Note that these
coordinates can be used by an observer on an asymptotic rest frame. The angular velocity
of the locally non-rotating frame (LNRF) is

ω = − gtφ

gφφ
=

2 a M2

(r3 + M2a2r + 2M3a2)
, (3)

and in Equation (2) it can be seen explicitly that if an observer has an angular velocity
ω = dφ/dt, it would not measure any differences between the ±φ directions. The LNRF
is defined by orthonormality and the coordinate change φLNRF = φ̃ = φ− ω t [122,123].
We assume that the disk lies on the equatorial plane of the BH (θ = π/2). This way
we represent the average movement of the fluid by geodesic circular orbits with angular
velocity Ω = dφ/dt = uφ/ut plus a radial velocity so that the local rest frame (LRF) of
the fluid is obtained by performing, first, an azimuthal Lorentz boost with velocity βφ̂ to
a co-rotating frame (CRF) [124], and then a radial Lorentz boost with velocity βr̃. Clearly,
the metric on the LNRF, CRF and LRF is diag(−1, 1, 1, 1). The expression for the angular
velocity of circular orbits is obtained by setting ṙ = r̈ = 0 in the r-component of the
geodesic equation

Ω± = ±
√

M(
r3/2 ±M3/2a

) , (4)

where (+) is for prograde orbits and (−) is for retrograde orbits. We will limit our
calculations to prograde movement with 0 ≤ a ≤ 1, but extension to retrograde orbits
is straightforward. Finally, we can get the components of the 4-velocity of the fluid by
transforming uLRF = (1, 0, 0, 0) back to the CF

uµ =


 γr̃γφ̂√

ω2gφφ− gtt

,
γr̃βr̃
√

grr
, 0,

γr̃γφ̂Ω
√

ω2gφφ− gtt


, (5)

leaving βr̃ to be determined by the conservation laws. In Equation (5) we have replaced
βφ̂ with Equation (A3). A discussion on the explicit form of the transformations and some
miscellaneous results are given in Appendix A. We will also assume that the disk is in a
steady-state. This statement requires some analysis. There are two main ways in which it
can be false:
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First, as matter falls into the BH, its values M and a change [125,126], effectively
changing the spacetime around it. For the spacetime to remain the same (i.e., for M and a
to stay constant) we require Ω−1 � tacc = ∆M0/Ṁacc, where ∆M0 is the total mass of the
disk and Ṁacc is the accretion rate. The characteristic accretion time must be bigger than the
dynamical time of the disk so that flow changes due to flow dynamics are more important
than flow changes due to spacetime changes. Equivalent versions of this condition that
appear throughout disk accretion articles are tdym � tvisc and

βr � βφ < 1, (6)

where it is understood that the accretion rate obeys Ṁacc ≈ ∆M0/tacc. To put these
numbers into perspective, consider a solar mass BH (M = 1M�) and a disk with mass
between ∆M0 = (1− 10)M�. For accretion rates up to Ṁacc = 1M�/s the characteristic
accretion time is tacc . (1− 10) s, while Ω−1 ∼ (10−5 − 10−1) s between r = rISCO and
r = 2000M�. Consequently, a wide range of astrophysical systems satisfy this condition,
and it is equivalent to claiming that both ∂t and ∂φ are killing fields.

Second, at any point inside the disk, any field ψ(t, r, θ, φ) that reports a property of
the gas may variate in time due to the turbulent motion of the flow. Thus, to assume
that any field is time-independent and smooth enough in r for its flow to be described
by Equation (5) means replacing such field by its average over an appropriate spacetime
volume. The same process allows one to choose a natural set of variables that split the
hydrodynamics into r-component equations and θ-component equations. The averaging
process has been explained in [124,127,128]. We include the analysis here and try to
explain it in a self-consistent manner. The turbulent motion is characterized by the eddies.
The azimuthal extension of the largest eddies can be 2π, like waves crashing around an
island, but their linear measure cannot be larger than the thickness of the disk, and as
measured by an observer on the CRF, their velocity is in the order of βr̃ so that their
period along the r component is ∆t̃ ≈ (Thickness)/βr̃ (e.g., §33, [129]). If we denote
by H the average half-thickness of the disk as measured by this observer at r over the
time ∆t̃, then the appropriate volume V is composed by the points (t, r, θ, φ) such that
t ∈ [t∗ − ∆t/2, t∗ + ∆t/2], θ ∈ [θmin, θmax] and φ ∈ [0, 2π), where we have transformed ∆t̃
and ∆r̃ back to the CF using Equation (A4) as approximations. The values θmin and θmax
correspond to the upper and lower faces of the disk, respectively. Then, the average takes
the form

ψ(t, r, θ, φ) 7→ ψ(r, θ) = 〈ψ(t, r, θ, φ)〉 =
∫ t∗+∆t/2

t∗−∆t/2

∫ 2π
0 ψ(r, t, θ, φ)

√ −g
grr gθθ

dtdφ

∫ t∗+∆t/2
t∗−∆t/2

∫ 2π
0

√ −g
grr gθθ

dtdφ
. (7)

The steady-state condition is achieved by requiring that the Lie derivative of the
averaged quantity along the killing field ∂t vanishes: L∂t〈ψ〉 = 0. Note that the thickness
measurement performed by the observer already has an error ∼M2a2H3/6r4 since it
extends the Lorentz frame beyond the local neighborhood, but if we assume that the disk
is thin (H/r � 1), and we do, this error remains small. At the same time, we can take all
metric components evaluated at the equator and use Equation (5) as the representative
average velocity. Under these conditions, we have θmax − θmin ≈ 2H/r, and the term√
−g/grr in Equation (7) cancels out. It becomes clear that an extra θ integral is what

separates the radial and polar variables. In other words, the r-component variables are the
vertically integrated fields

ψ(r, θ) 7→ ψ(r) =
∫ θmax

θmin

ψ(r, θ)
√

gθθdθ. (8)

The vertical equations of motion can be obtained by setting up Newtonian (with rela-
tivistic corrections) equations for the field ψ(r, θ) at each value of r (see, e.g., [99,127,130,131]).
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2.2. Conservation Laws

The equations of evolution of the fluid are contained in the conservation laws∇µTµν = 0
and ∇µ(ρuµ) = 0. The most general stress–energy tensor for a Navier–Stokes viscous fluid
with heat transfer is [132,133]

T =

Ideal Fluid︷ ︸︸ ︷
(ρ + U + P)u⊗ u + Pg +

Viscous Stress︷ ︸︸ ︷
(−2ησ − ζ(∇ · u)P) +

Heat flux︷ ︸︸ ︷
q⊗ u + u⊗ q, (9)

where ρ, P, U, ζ, η, q, P and σ are the rest-mass energy density, pressure, internal energy
density, dynamic viscosity, bulk viscosity, heat-flux 4-vector, projection tensor and shear
tensor, respectively, and thermodynamic quantities are measured on the LRF. We do
not consider electromagnetic contributions and ignore the causality problems associated
with the equations derived from this stress–energy tensor, since we are not interested in
phenomena close to the horizon [124]. Before deriving the equations of motion and to
add a simple model of neutrino oscillations to the dynamics of disk accretion, we must
make some extra assumptions. We will assume that the θ integral in Equation (8) can be
approximated by ∫ θmax

θmin

ψ
√

gθθdθ ≈ ψr(θmax − θmin) ≈ 2Hψ, (10)

for any field ψ. Additionally, we use Stokes’ hypothesis (ζ = 0). Since we are treating
the disk as a thin fluid in differential rotation, we will assume that, on average, the only
non-zero component of the shearing stress on the CRF is σr̃φ̃ (there are torques only on the
φ direction), and qθ̃ is the only non-zero component of the energy flux (on average the flux
is vertical). By uµσµν = 0 and Equation (A7) we have

σrφ =
γ3

φ̂

2
gφφ√

ω2gφφ − gtt

∂rΩ , σrt = −Ωσrφ. (11)

Finally, the turbulent viscosity is estimated to be ∼l∆u where l is the size of the
turbulent eddies and ∆u is the average velocity difference between points in the disk
separated by a distance l. By the same arguments in (§33, [129]) and in Section 2.2, l
can be at most equal to 2H and ∆u can be at most equal to the isothermal sound speed
cs =

√
∂P/∂ρ or else the flow would develop shocks [89]. The particular form of cs can be

calculated from Equation (15). This way we get

η = Πνturb = 2αΠHcs, (12)

with α ≤ 1 and Π = ρ + U + P. In a nutshell, this is the popular α-prescription put
forward by [80]. As we mentioned at the end of Section 2.1, on the CRF for a fixed value
of r, the polar equation takes the form of Euler’s equation for a fluid at rest where the
acceleration is given by the tidal gravitational acceleration. Namely, the θ component of
the fluid’s path-lines relative acceleration in the θ direction is

1
r

∂θ P ≈ ρr cos θ
[
R
(
u, ∂θ̃ , u

)
· ∂θ̃

]
θ=π/2

, (13)

with R being the Riemann curvature tensor. With uµ̃ ≈ (1, 0, 0, 0), Equations (10) and (A8)
and assuming that there is no significant compression of the fluid under the action of the
tidal force, integration of this equation yields the relation up to second order in π/2− θ:

P =
1
2

ρR θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

(
H2 − r2

(π

2
− θ
)2
)

, (14)

where we used the condition P = 0 at the disk’s surface. Hence, the average pressure
inside the disk is (cf. [99,107,131])
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P =
1
3

ρH2R θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

. (15)

The equation of mass conservation is obtained by directly inserting into Equation (A13)
the averaged density and integrating vertically to obtain

2Hrρur = constant = − Ṁ
2π

, (16)

where the term 2Hrρur is identified as the average inward mass flux through a cylindrical
surface of radius r per unit of azimuthal angle, and thus must be equal to the accretion rate
divided by 2π. The same process applied to Equation (A12) yields the energy conserva-
tion equation:

ur
[

∂r(HU)− U + P
ρ

∂r(Hρ)

]
= 2ηHσrφσrφ − Hε, (17)

where factors proportional to H/r are ignored and we assume Π ≈ ρ to integrate the
second term on the left-hand side. ε is the average energy density measured on the LRF
(see the discussion around Equation (A16)). The first term on the right-hand side is the
viscous heating rate Fheat and the second term is the cooling rate Fcool. The last constitutive
equation is obtained by applying the zero torque at the last stable orbit condition. These re-
lations are calculated in Appendix A. We just replace the density in Equation (16) using
Equation (A21), obtaining

ur = −
4αHcsσr

φ

M f (x, x∗)
. (18)

2.3. Equations of State

We consider that the main contribution to the rest-mass energy density of the disk is
made up of neutrons, protons and ions. This way ρ = ρB = nBmB with baryon number
density nB and baryon mass mB equal to the atomic unit mass. The disk’s baryonic mass
obeys Maxwell–Boltzmann statistics, and its precise composition is determined by the
nuclear statistical equilibrium (NSE). We denote the mass fraction of an ion i by Xi = ρi/ρB
(if i = p or n then we are referring to proton or neutrons) and it can be calculated by the
Saha equation [134,135]

Xi =
AimB

ρ
Gi

(
TAimB

2π

)3/2
exp




Zi

(
µp + µC

p

)
+ Niµn − µC

i + Bi

T


, (19)

with the constraints:
∑

i
Xi = 1, ∑

i
ZiYi = Ye. (20)

In these equations, T, Ai, Ni, Zi, Ye, Yi, Gi, µi and Bi are the temperature, atomic num-
ber, neutron number, proton number, electron fraction (electron abundance per baryon),
ion abundance per baryon, nuclear partition function, chemical potential (including the
nuclear rest-mass energy) and ion binding energy. The µC

i are the Coulomb corrections
for the NSE state in a dense plasma (see Appendix C). The binding energy data for a
large collection of nuclei can be found in [136] and the temperature-dependent partition
functions are found in [137,138]. Even though we take into account Coulomb corrections
in NSE, we assume that the baryonic mass can be described by an ideal gas1,2 and

PB = ∑
i

Pi = nBT ∑
i

Xi
Ai

, UB =
3
2

PB. (21)

1 Since bulk viscosity effects appear as a consequence of correlations between ion velocities due to Coulomb interactions and of large relaxation times
to reach local equilibrium, the NSE and ideal gas assumptions imply that imposing Stokes’ hypothesis becomes de rigueur [133,139,140]

2 We will consider accretion rates of up to 1M� s−1. These disks reach densities of 1013 g cm−3. Baryons can be lightly degenerate at these densities
but we will still assume that the baryonic mass can be described by an ideal gas.
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The disk also contains photons, electrons, positrons, neutrinos and antineutrinos. As is
usual in neutrino oscillations analysis, we distinguish only between electron (anti)neutrinos
νe, (ν̄e) and x (anti)neutrinos νx(ν̄x), where x = µ + τ is the superposition of muon neutri-
nos and tau neutrinos. Photons obey the usual relations

Pγ =
π2T4

45
, Uγ = 3Pγ, (22)

while, for electrons and positrons we have

ne± =

√
2

π2 ξ3/2[F1/2,0(ξ, ηe±) + ξF3/2,0(ξ, ηe±)], (23a)

Ue± =

√
2

π2 ξ5/2[F3/2,0(ξ, ηe±) + ξF5/2,0(ξ, ηe±)], (23b)

Pe± =
2
√

2
3π2 ξ5/2

[
F3/2,0(ξ, ηe±) +

ξ

2
F5/2,0(ξ, ηe±)

]
, (23c)

with ξ = T/me and written in terms of the generalized Fermi functions

Fk,`(y, η) =

∞∫

`

xk√1 + xy/2
exp(x− η) + 1

dx. (24)

In these equations ηe± = (µe± −me)/T is the electron (positron) degeneracy parameter
without rest-mass contributions (not to be confused with η in Section 2.2). Since electrons
and positrons are in equilibrium with photons due to the pair creation and annihilation
processes (e−+ e+→ 2γ), we know that their chemical potentials are related by µe+ =
−µe− , which implies ηe+ = −ηe− − 2/ξ from the charge neutrality condition, and we obtain

nBYe = ne− − ne+ . (25)

For neutrinos, the story is more complicated. In the absence of oscillations and if the
disk is hot and dense enough for neutrinos to be trapped within it and in thermal equilib-
rium, nν, Uν, Pν can be calculated with Fermi–Dirac statistics using the same temperature T

ntrapped
ν(ν̄)

=
T3

π2F2,0

(
ην(ν̄)

)
, (26a)

Utrapped
ν(ν̄)

=
T4

π2F3,0

(
ην(ν̄)

)
, (26b)

Ptrapped
ν(ν̄)

=
Utrapped

ν(ν̄)

3
, (26c)

where it is understood that F (η) = F (y = 0, η) with ην(ν̄) = µν(ν̄)/T and the ultra-
relativistic approximation mν � 1 for any neutrino flavor is used. If thermal equilibrium is
has not been achieved, Equation (26) cannot be used. Nevertheless, at any point in the disk
and for given values of T and ρ, (anti)neutrinos are being created through several processes.
The processes we take into account are pair annihilation e− + e+ → ν + ν̄, electron or
positron capture by nucleons p + e− → n + νe or n + e+ → p + ν̄e, electron capture by
ions A + e−→ A′ + νe, plasmon decay γ̃→ ν + ν̄ and nucleon-nucleon bremsstrahlung
n1 + n2 → n3 + n4 + ν + ν̄. The emission rates can be found in Appendix D. The chemical
equilibria for these processes determine the values of ην(ν̄). In particular,
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ηνe = ηe− + ln
(

Xp

Xn

)
+

1−Q
ξ

, (27a)

ην̄e = −ηνe , (27b)

ηνx = ην̄x = 0, (27c)

satisfy all equations. Here, Q = (mn −mp)/me ≈ 2.531. Once the (anti)neutrino number
and energy emission rates (Ri, Qi) are calculated for each process i, the (anti)neutrino
thermodynamic quantities are given by

nfree
ν(ν̄) = H ∑

i
Ri,ν(ν̄), (28a)

Ufree
ν(ν̄) = H ∑

i
Qi,ν(ν̄), (28b)

Pfree
ν(ν̄) =

Ufree
ν(ν̄)

3
. (28c)

Remember we are using Planck units, so in these expressions there should be an H/c
instead of just an H. The transition for each (anti)neutrino flavor between both regimes
occurs when Equations (26b) and (28b) are equal, and it can be simulated by defining
the parameter

wν(ν̄) =
Ufree

ν(ν̄)

Ufree
ν(ν̄)

+ Utrapped
ν(ν̄)

. (29)

With this equation, the (anti)neutrino average energy can be defined as

〈Eν(ν̄)〉 =
(

1− wν(ν̄)

)Ufree
ν(ν̄)

nfree
ν(ν̄)

+ wν(ν̄)

Utrapped
ν(ν̄)

ntrapped
ν(ν̄)

. (30)

and the approximated number and energy density are

nν(ν̄) =





nfree
ν(ν̄)

, if wν(ν̄) < 1/2.

ntrapped
ν(ν̄)

, if wν(ν̄) ≥ 1/2.
(31a)

Uν(ν̄) =





Ufree
ν(ν̄)

, if wν(ν̄) < 1/2.

Utrapped
ν(ν̄)

, if wν(ν̄) ≥ 1/2.
(31b)

Pν(ν̄) =
Uν(ν̄)

3
. (31c)

Note that both Equations (28c) and (31c) are approximations since they are derived
from equilibrium distributions, but they help make the transition smooth. Besides, the neu-
trino pressure before thermal equilibrium is negligible. This method was presented in [107]
where it was used only for electron (anti)neutrinos. The total (anti)neutrino number and
energy flux through one the disk’s faces can be approximated by

ṅνj(ν̄j)
= ∑

j∈{e,x}

nνj(ν̄j)

1 + τνj(ν̄j)
, (32a)

Fνj(ν̄j)
= ∑

j∈{e,x}

Uνj(ν̄j)

1 + τνj(ν̄j)
, (32b)
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where τνi is the total optical depth for the (anti)neutrino νi(ν̄i). By collecting all the
expressions, we write the total internal energy and total pressure as

U = ∑
j∈{e,x}

(
Uνj + Uν̄j

)
+ UB + Ue− + Ue+ + Uγ , (33a)

P = ∑
j∈{e,x}

(
Pνj + Pν̄j

)
+ PB + Pe− + Pe+ + Pγ . (33b)

The (anti)neutrino energy flux through the disk faces contributes to the cooling term
in the energy conservation equation, but it is not the only one. Another important energy
sink is photodisintegration of ions. To calculate it we proceed as follows. The energy
spent to knocking off a nucleon of an ion i is equal to the binding energy per nucleon
Bi/Ai. Now, consider a fluid element of volume V whose moving walls are attached
to the fluid so that no baryons flow in or out. The total energy of photodisintegration
contained within this volume is the sum over i of (energy per nucleon of ion i)×(# of
freed nucleons of ion i inside V). This can be written as ∑i(Bi/Ai)n f ,iV, or, alternatively,
nBV ∑i(Bi/Ai)X f ,i. If we approximate Bi/Ai by the average binding energy per nucleon
B̄ (which is a good approximation save for a couple of light ions) the expression becomes
nBVB̄ ∑i X f ,i = nBVB̄X f = nBVB̄(Xp + Xn). We place the value of B̄ in Section 4.

The rate of change of this energy on the LRF, denoting the proper time by λ, is

d
dλ

[
nBVB̄

(
Xp + Xn

)]
= nBVB̄

d
dλ

(
Xp + Xn

)
. (34)

The derivative of nBV vanishes by baryon conservation. Transforming back to CF and
taking the average we find the energy density per unit time used in disintegration of ions

εions = nB B̄ur H∂r
(
Xp + Xn

)
. (35)

The average energy density measured on the LRF ε appearing in Equation (17) is

ε = εions +
1
H ∑

i∈{e,x}
(Fνi + Fν̄i ). (36)

Finally, a similar argument allows us to obtain the equation of lepton number conser-
vation. For any lepton `, the total lepton number density is ∑`∈{e,µ,τ}(n` − n ¯̀ + nν` − nν̄`).
Thus, with Equation (25), calculating the rate of change as before, using Gauss’s theorem
and taking the average, we get

ur H


nB∂rYe + ∂r ∑

`∈{e,x}
(nν`− nν̄`)


 = ∑

`∈{e,x}
(ṅν̄`− ṅν`), (37)

where the right-hand side represents the flux of lepton number through the disk’s surface.

3. Neutrino Oscillations

To study the flavor evolution of neutrinos within a particular system, a Hamiltonian
governing neutrino oscillation must be set up. The relative strengths of the potentials
appearing in such a Hamiltonian depend on four elements: geometry, mass content,
neutrino content and neutrino mass hierarchy. Geometry refers to the nature of net neutrino
fluxes and possible gravitational effects. Mass and neutrino contents refer to respective
distributions of leptons of each flavor (e, µ, τ) present in the medium. Finally, mass
hierarchy refers to the relative values of the masses m1, m2, m3 for each neutrino mass
eigenstates (see Table 2). We dedicate this section to a detailed derivation of the equations
of flavor evolution for a neutrino dominated accretion disk. To maintain consistency with
the traditional literature of neutrino oscillations, we will reuse some symbols appearing in
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previous sections. To avoid confusion, we point out that the symbols in this section are
independent of the previous sections unless we explicitly draw a comparison.

Table 2. Mixing and squared mass differences as they appear in [141]. Error values in parentheses
are shown in 3σ interval. The squared mass difference is defined as ∆m2 = m2

3 −
(
m2

2 + m2
1
)
/2 and

its sign depends on the hierarchy m1 < m2 < m3 or m3 < m1 < m2.

∆m2
21 = 7.37 (6.93− 7.96)× 10−5 eV2

|∆m2| = 2.56 (2.45− 2.69)× 10−3 eV2 Normal Hierarchy
|∆m2| = 2.54 (2.42− 2.66)× 10−3 eV2 Inverted Hierarchy
sin2 θ12 = 0.297 (0.250− 0.354)
sin2 θ23(∆m2 > 0) = 0.425 (0.381− 0.615)
sin2 θ23(∆m2 < 0) = 0.589 (0.383− 0.637)
sin2 θ13(∆m2 > 0) = 0.0215 (0.0190− 0.0240)
sin2 θ13(∆m2 < 0) = 0.0216 (0.0190− 0.0242)

3.1. Equations of Oscillation

The equations that govern the evolution of an ensemble of mixed neutrinos are the
Boltzmann collision equations

iρ̇p,t = C
(
ρp,t
)
, (38a)

i ˙̄ρp,t = C
(
ρ̄p,t
)
. (38b)

The collision terms should include the vacuum oscillation plus all possible scattering
interactions that neutrinos undergo through their propagation. For free streaming neutri-
nos, only the vacuum term and the forward-scattering interactions are taken into account
so that the equations become

iρ̇p,t =
[
Hp,t, ρp,t

]
, (39a)

i ˙̄ρp,t =
[
H̄p,t, ρ̄p,t

]
. (39b)

Here, Hp,t (H̄p,t) is the oscillation Hamiltonian for (anti)neutrinos and ρp,t (ρ̄p,t) is the
matrix of occupation numbers: (ρp,t)ij = 〈a†

j ai〉p,t for neutrinos and ((ρ̄p,t)ij = 〈ā†
i āj〉p,t

for antineutrinos), for each momentum p and flavors i, j. The diagonal elements are the
distribution functions fνi(ν̄i)

(p) such that their integration over the momentum space gives
the neutrino number density nνi of a determined flavor i at time t. The off-diagonal
elements provide information about the overlapping between the two neutrino flavors.
Taking into account the current–current nature of the weak interaction in the standard
model, the Hamiltonian for each equation is [142–144]

Hp,t = Ωp,t +
√

2GF

∫(
lq,t − l̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 +
√

2GF

∫(
ρq,t − ρ̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 , (40a)

H̄p,t = −Ωp,t +
√

2GF

∫(
lq,t − l̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 +
√

2GF

∫(
ρq,t − ρ̄q,t

)(
1− vq,t · vp,t

) d3q

(2π)3 . (40b)

where GF is the Fermi coupling constant, Ωp,t is the matrix of vacuum oscillation fre-
quencies, lp,t and l̄p,t are matrices of occupation numbers for charged leptons built in a
similar way to the neutrino matrices, and vp,t = p/p is the velocity of a particle with
momentum p (either neutrino or charged lepton). As stated before, we will only consider
two neutrino flavors: e and x = µ + τ. Three-flavor oscillations can be approximated by
two-flavor oscillations as a result of the strong hierarchy of the squared mass differences
|∆m2

13| ≈ |∆m2
23| � |∆m2

12|. In this case, only the smallest mixing angle θ13 is considered.
We will drop the suffix for the rest of the discussion. Consequently, the relevant oscillations
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are νe 
 νx and ν̄e 
 ν̄x, and each term in the Hamiltonian governing oscillations becomes
a 2 × 2 Hermitian matrix. Now, consider an observer on the LRF (which is almost identical
to the CRF due to Equation (6) at a point r. In its spatial local frame, the unit vectors x̂, ŷ, ẑ
are parallel to the unit vectors r̂, θ̂, φ̂ of the CF, respectively. Solving Equation (39) in this
coordinate system would yield matrices ρ, ρ̄ as functions of time t. However, in our specific
physical system, both the matter density and the neutrino density vary with the radial
distance from the BH. This means that the equations of oscillations must be written in
a way that makes explicit the spatial dependence, i.e., in terms of the coordinates x, y, z.
For a collimated ray of neutrinos, the expression dt = dr would be good enough, but for
radiating extended sources or neutrino gases the situation is more complicated.

In Equation (39) we must replace the matrices of occupation numbers by the space-
dependent Wigner functions ρp,x,t (and ρ̄p,x,t) and the total time derivative by the Liouville
operator [145,146]:

ρ̇p,x,t =

Explicit Time
︷ ︸︸ ︷
∂ρp,x,t

∂t
+

Drift︷ ︸︸ ︷
vp · ∇x ρp,x,t +

External Forces︷ ︸︸ ︷
ṗ · ∇p ρp,x,t . (41)

In this context, x represents a vector in the LRF. In the most general case, finding ρp,x,t
and ρ̄p,x,t means solving a 7D neutrino transport problem in the variables x, y, z, px, py, pz, t.
Since our objective is to construct a simple model of neutrino oscillations inside the disk, to
obtain the specific form of Equation (39) we must simplify the equations by imposing on it
conditions that are consistent with the assumptions made in Section 2.

• Due to axial symmetry, the neutrino density is constant along the z direction. More-
over, since neutrinos follow null geodesics, we can set ṗz ≈ ṗφ = 0.

• Within the thin disk approximation (as represented by Equation (10)) the neutrino
and matter densities are constant along the y direction and the momentum change
due to curvature along this direction can be neglected, that is, ṗy ≈ 0.

• In the LRF, the normalized radial momentum of a neutrino can be written as px =

±r/
√

r2 − 2Mr + M2a2. Hence, the typical scale of the change of momentum with ra-
dius is ∆rpx ,eff = |d ln px/dr|−1 = (r/M)

(
r2 − 2Mr + M2a2)/

(
Ma2 − r

)
, which obeys

∆rpx ,eff > rs for r > 2rin. This means we can assume ṗx ≈ 0 up to regions very close
to the inner edge of the disk.

• We define an effective distance ∆rρ,eff = |d ln(YenB)/dr|−1. For all the systems we
evaluated, we found that it is comparable to the height of the disk (∆rρ,eff ∼ 2− 5 rs).
This means that at any point of the disk we can calculate neutrino oscillations in a small
regions assuming that both the electron density and neutrino densities are constant.

• We neglect energy and momentum transport between different regions of the disk
by neutrinos that are recaptured by the disk due to curvature. This assumption is
reasonable except for regions very close to the BH but is consistent with the thin
disk model (see, e.g., [128]). We also assume initially that the neutrino content of
neighboring regions of the disk (different values of r) do not affect each other. As a
consequence of the results discussed above, we assume that at any point inside the
disk and at any instant of time an observer can describe both the charged leptons and
neutrinos as isotropic gases around small enough regions of the disk. This assumption
is considerably restrictive but we will generalize it in Section 5.

The purpose of these approximations is twofold. On one hand, we can reduce the
problem considerably, since they allow us to add the neutrino oscillations to a steady-state
disk model by simply studying the behavior of neutrinos at each point of the disk using the
constant values of density and temperature at that point. We will see in Section 5, that this
assumption would correspond to a transient state of an accretion disk, since very fast
neighboring regions of the disk start interacting. On the other hand, the approximations
allow us to simplify the equations of oscillation considering that all but the first term in
Equation (41) vanish, leaving only a time derivative. In addition, both terms of the form
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vq,t · vp,t in Equation (40) average to zero so that ρp,x,t = ρp,t and ρ̄p,x,t = ρ̄p,t. We are
now in a position to derive the simplified equations of oscillation for this particular model.
Let us first present the relevant equations for neutrinos. Due to the similarity between
Hp,t and H̄p,t, the corresponding equations for antineutrinos can be obtained analogously.
For simplicity, we will drop the suffix t since the time dependence is now obvious. In the
two-flavor approximation, ρp is a 2× 2 Hermitian matrix and can be expanded in terms
of the Pauli matrices σi and a polarization vector Pp = (Px, Py, Pz) in the neutrino flavor
space, such that

ρp =

(
ρee ρex
ρxe ρxx

)
=

1
2
(

fp1 + Pp ·~σ
)
, (42)

where fp = Tr[ρp] = fνe(p) + fνx (p) is the sum of the distribution functions for νe and νx.
Note that the z component of the polarization vector obeys

Pz
p = fνe(p)− fνx (p). (43)

Hence, this component tracks the fractional flavor composition of the system.
Appropriately normalizing ρp allows one to define a survival and mixing probability

Pp,νe→νe =
1
2

(
1 + Pz

p

)
, (44a)

Pp,νe→νx =
1
2

(
1− Pz

p

)
. (44b)

The Hamiltonian can be written as a sum of three interaction terms:

H = Hvacuum + Hmatter + Hνν. (45)

The first term is the Hamiltonian in vacuum [27]:

Hvacuum =
ωp

2

(− cos 2θ sin 2θ
sin 2θ cos 2θ

)
=

ωp

2
B ·~σ, (46)

where ωp = ∆m2/2p, B = (sin 2θ, 0,− cos 2θ) and θ is the smallest neutrino mixing angle
in vacuum. The other two terms in Equation (40) are special since they make the evolution
equations non-linear. Since we are considering that the electrons inside the form an isotropic
gas, the vector vq in the first integral is distributed uniformly on the unit sphere and the
factor vq · vp averages to zero. After integrating the matter Hamiltonian is given by

Hmatter =
λ

2

(
1 0
0 −1

)
=

λ

2
L ·~σ, (47)

where λ =
√

2GF(ne− − ne+) is the charged current matter potential and L = (0, 0, 1).
Similarly, the same product disappears in the last term and after integrating we get

Hνν =
√

2GF[P− P̄] ·~σ. (48)

Clearly, P =
∫

Pp dp/(2π)3. Introducing every Hamiltonian term in Equation (39),
and using the commutation relations of the Pauli matrices, we find the equations of
oscillation for neutrinos and antineutrinos for each momentum mode p:

Ṗp =
[
ωpB + λL +

√
2GF(P− P̄)

]
× Pp, (49a)

˙̄Pp =
[
−ωpB + λL +

√
2GF(P− P̄)

]
× P̄p, (49b)
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where we have assumed that the total neutrino distribution remains constant, ḟp = 0.
This shows how the polarization vectors can be normalized. By performing the transfor-
mations Pp/ fp 7→ Pp and P̄p/ f̄p 7→ P̄p, and multiplying and dividing the last term by the
total neutrino density Equation (49), we get

Ṗp =
[
ωpB + λL + µD

]
× Pp, (50a)

˙̄Pp =
[
−ωpB + λL + µD

]
× P̄p, (50b)

D =
1

nνe+ nνx

∫ (
fqPq − f̄qP̄q

) dq
(2π)3 . (50c)

These are the traditional forms of the equations in terms of the vacuum, matter and
self-interaction potentials ωp, λ and µ with

µ =
√

2GF ∑
i∈{e,x}

nνi . (51)

Different normalization schemes are possible (see, e.g., [36,49,144,147]). Assuming
that we can solve the equations of oscillation with constant potentials λ and µ simplifies
the problem even further. Following [29], with the vector transformation (a rotation around
the z axis of flavor space)

Rz =




cos(λt) sin(λt) 0
− sin(λt) cos(λt) 0

0 0 1


, (52)

Equation (50) becomes

Ṗp =
[
ωpB + µD

]
× Pp, (53a)

˙̄Pp =
[
−ωpB + µD

]
× P̄p, (53b)

eliminating the λ potential, but making B time dependent. By defining the vector Sp = Pp + P̄p,
and adding and subtracting Equations (53a) and (53b) we get

Ṡp = ωpB×Dp + µD× Sp ≈ µD× Sp, (54a)

Ḋp = ωpB× Sp + µD×Dp ≈ µD×Dp. (54b)

The last approximation is true if we assume that the self-interaction potential is larger
than the vacuum potential ωp/µ � 1. We will show in Section 5 that this is the case for
thin disks. The first equation implies that all the vectors Sp and their integral S evolve in
the same way, suggesting the relation Sp =

(
fp + f̄p

)
S. By replacing in Equation (54b) and

integrating

Ṡ = µD× S, (55a)

Ḋ = 〈ω〉B× S. (55b)

where 〈ω〉 =
∫

ωp
(

fp + f̄p
)
dp/(2π)3 is the average vacuum oscillation potential. The fact

that in our model the equations of oscillations can be written in this way has an impor-
tant consequence. Usually, as it is done in supernovae neutrino oscillations, to solve
Equation (50) we would need the neutrino distributions throughout the disk. If neutrinos
are trapped, their distribution is given by Equation (26). If neutrinos are free, their tem-
perature is not the same as the disk’s temperature. Nonetheless, we can approximate the
neutrino distribution in this regime by a Fermi–Dirac distribution with the same chemical
potential as defined by Equation (27) but with an effective temperature Teff

ν . This tempera-



Universe 2021, 7, 7 16 of 45

ture can be obtained by solving the equation 〈Eν〉 = U
(
Teff

ν , ην

)
/n
(
Teff

ν , ην

)
which gives

Teff
νx ,ν̄x = 〈Eνx ,ν̄x 〉

180 ζ(3)
7π4 , (56a)

Teff
νe ,ν̄e =

〈Eνe ,ν̄e〉
3

Li3(− exp(ηνe ,ν̄e))

Li4(− exp(ηνe ,ν̄e))
, (56b)

where ζ(3) is Apéry’s constant (ζ is the Riemann zeta function) and Lis(z) is Jonquière’s
function. For convenience and considering the range of values that the degeneracy param-
eter reaches (see Section 6), we approximate the effective temperature of electron neutrinos
and antineutrinos with the expressions

Teff
νe =

〈Eνe〉
3

(
aη2

νe + bηνe + c
)

, (57a)

Teff
ν̄e =

〈Eν̄e〉
3

. (57b)

with constants a = 0.0024, b = −0.085, c = 0.97. However, Equation (55) allows us to
consider just one momentum mode, and the rest of the spectrum behaves in the same way.

4. Initial Conditions and Integration

In the absence of oscillations, we can use Equations (15), (17) and (37) to solve for the
set of functions ηe−(r), ξ(r) and Ye(r) using as input parameters the accretion rate Ṁ, the di-
mensionless spin parameter a, the viscosity parameter α and the BH mass M. From [99,107]
we learn that neutrino dominated disks require accretion between 0.01 M� s−1 and
1 M� s−1 (this accretion rate range varies depending on the value of α). For accretion rates
smaller than the lower value, the neutrino cooling is not efficient, and for rates larger than
the upper value, the neutrinos are trapped within the flow. We also limit ourselves to
the above accretion rate range, since it is consistent with the one expected to occur in a
BdHN (see, e.g., [57,63,70]). We also know that s high spin parameter, high accretion rate,
high BH mass and low viscosity parameter produce disks with higher density and higher
temperature. This can be explained using the fact that several variables of the disk, such
as pressure, density and height, are proportional to a positive power of M and a positive
power of the quotient Ṁ/α. To avoid this semi-degeneracy in the system, we reduce the
parameter space, and considering that we want to focus on the study of the oscillation
dynamics inside the disk, we fix the BH mass at M = 3M�, the viscosity parameter at
α = 0.01 and the spin parameter at a = 0.95 while changing the accretion rate. These values
also allow us to compare our results with earlier disk models. Equations (17) and (37)
are first-order ordinary differential equations, and since we perform the integration from
an external (far away) radius rout up to the innermost stable circular orbit rin, we must
provide two boundary conditions at rout. Following the induced gravitational collapse
(IGC) paradigm of GRBs associated with type Ib/c supernovae we assume that at the
external edge of the disk, the infalling matter is composed mainly by the ions present in
the material ejected from an explosion of a carbon–oxygen core, that is, mainly oxygen
and electrons. This fixes the electron fraction Ye(rout) = 0.5. We can also calculate the
average binding energy per nucleon that appears in Equation (34) using the data in [136].
To establish the NSE we consider H2, H3, HE3, HE4, LI6, LI7, BE7, BE9, BE10, B10, B11, C11,
C12, C13, C14, N13, N14, N15, O14, O15, O16, O17 and O18, and obtain the value of the
average binding energy per nucleon B̄ = 6.35 MeV. The second boundary condition can be
obtained by the relation (Tη + mB)

√
gtt = constant [148–150], with η being the degeneracy

parameter of the fluid. If we require the potentials to vanish at infinity and invoke Euler’s
theorem, we arrive at the relation in the weak field limit

M
rout

=
ρ + U + P− TS

ρ

∣∣∣∣
r=rout

. (58)
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For a classical gas composed of ions and electrons, this relation becomes

M
rout
. U

ρ

∣∣∣∣
r=rout

. (59)

That is, the virial specific energy must be smaller or comparable to the energy per
baryon. Equation (59) can be used together with Equations (15) and (33) to solve for
ηe−(rout), ξ(rout). The value of rout is chosen to be at most the circularization radius of the
accreting material as described in [63,69]. We can estimate this radius by solving for r in
the expression of the angular momentum per unit mass for a equatorial circular orbits.
Hence, using Equation (5) we need to solve

uφ = M
x2 − 2x + a2

x3/2
√

x3 − 3x + 2a
∼ 3× 107 cm, (60)

where x =
√

r/M which yields rout ∼ 1800rs and the expression is in geometric units.
Finally, for the initial conditions to be accepted, they are evaluated by the gravitational
instability condition [151]: √

R θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

Ω ≥ 2
√

3πρ. (61)

Integration of the equations proceeds as follows: With the initial conditions we
solve Equation (37) to obtain the electron fraction in the next integration point. With the
new value of the electron fraction we solve the differential algebraic system of
Equations (15) and (17) at this new point. This process continues until the innermost stable
circular orbit rin is reached.

To add the dynamics of neutrino oscillations we proceed the same as before, but at
each point of integration, once the values of Ye, η and ξ are found, we solve Equation (50)
for the average momentum mode to obtain the survival probabilities as a function of time.
We then calculate the new neutrino and antineutrino distributions with the conservation of
total number density and the relations

nnew
νe (t) = Pνe→νe(t)nνe + [1− Pνe→νe(t)]nνx , (62a)

nnew
νx (t) = Pνx→νx (t)nνx + [1− Pνx→νx (t)]nνe . (62b)

Since the disk is assumed to be in a steady-state, we then perform a time average
of Equation (62) as discussed in Section 2. With the new distributions, we can calculate
the new neutrino and antineutrino average energies and use them to re-integrate the
disk equations.

Neutrino emission within neutrino-cooled disks is dominated by electron and positron
capture, which only produces electron (anti)neutrinos. The second most important process
is electron–positron annihilation, but it is several orders of magnitude smaller. In Figure 2
we show the total number emissivity for these two processes for an accretion rate of
Ṁ = 0.1M� s −1. Other cases behave similarly. Moreover, although the degeneracy
parameter suppresses the positron density, a high degeneracy limit does not occur in
the disk and the degeneracy is kept low at values between about 0.2 and 3, as shown in
Figure 3. The reason for this is the effect of high degeneracy on neutrino cooling. Higher
degeneracy leads to a lower density of positrons, which suppresses the neutrino production
and emission, which in turn leads to a lower cooling rate, higher temperature, lower
degeneracy and higher positron density. This equilibrium leads, via the lepton number
conservation Equation (37), to a balance between electronic and non-electronic neutrino
densities within the inner regions of the disk. Given this fact, to solve the equations of
oscillations, we can approximate the initial conditions of the polarization vectors with

P = P̄ ≈ (0, 0, 1). (63)
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Figure 2. Total number emissivity for electron and positron capture (p+ e−→ n+ νe, n+ e+→ p+ ν̄e)
and electron–positron annihilation (e−+ e+ → ν + ν̄) for accretion disks with Ṁ = 0.1M� s−1

between the inner radius and the ignition radius.
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Figure 3. Properties of accretion disks in the absence of oscillations with M = 3M�, α = 0.01, a = 0.95. (a,b) The mass
fraction inside the disk. We have plotted only the ones that appreciably change. (c) The electron degeneracy parameter.
(d) The comparison between the neutrino cooling flux Fν and the viscous heating Fheat. (e) The baryon density. (f) The
temperature. (g,h) The neutrino number density. (i,j) The average neutrino energies.

5. Results and Analysis

In Figures 3 and 4, we present the main features of accretion disks for the param-
eters M = 3M�; α = 0.01; a = 0.95; and two selected accretion rates, Ṁ = 1M� s−1

and Ṁ = 0.01M� s−1. It exhibits the usual properties of thin accretions disks. High accre-
tion rate disks have higher density, temperature and electron degeneracy. Additionally, for
high accretion rates, the cooling due to photodisintegration and neutrino emission kicks in
at larger radii. For all cases, as the disk heats up, the number of free nucleons starts to in-
crease enabling the photodisintegration cooling at r ∼ (100–300)rs. Only the disintegration
of alpha particles is important, and the nucleon content of the infalling matter is of little
consequence for the dynamics of the disk. When the disk reaches temperatures ∼1.3 MeV,
the electron capture switches on, the neutrino emission becomes significant and the physics
of the disk is dictated by the energy equilibrium between Fheat and Fν. The radius at which
neutrino cooling becomes significant (called ignition radius rign) is defined by the condition
Fν∼Fheat/2. For the low accretion rate Ṁ = 0.01M� s−1, the photodisintegration cooling
finishes before the neutrino cooling becomes significant; this leads to fast heating of the
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disk. Then the increase in temperature triggers a strong neutrino emission that carries away
the excess heat generating a sharp spike in Fν surpassing Fheat by a factor of ∼3.5. This be-
havior is also present in the systems studied in [107], but there it appears for fixed accretion
rates and high viscosity (α = 0.1). This demonstrates the semi-degeneracy mentioned in
Section 5. The evolution of the fluid can be tracked accurately through the degeneracy
parameter. At the outer radius, ηe− starts to decrease as the temperature of the fluid rises.
Once neutrino cooling becomes significant, it starts to increase until the disk reaches the
local balance between heating and cooling. At this point, ηe− stops rising and is maintained
(approximately) at a constant value. Very close to rin, the zero torque condition of the disk
becomes important and the viscous heating is reduced drastically. This is reflected in a
sharp decrease in the fluid’s temperature and increase in the degeneracy parameter. For the
high accretion rate, an additional effect has to be taken into account. Due to high νe optical
depth, neutrino cooling is less efficient, leading to an increase in temperature and a second
dip in the degeneracy parameter. This dip is not observed in low accretion rates because
τνe does not reach significant values.
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Figure 4. Total optical depth (left scale) and mean free path (right scale) for neutrinos and antineu-
trinos of both flavors between the inner radius and the ignition radius for accretion disks with
(a) Ṁ = 1M� s−1 and (b) 0.01M� s−1.

With the information in Figure 3 we can obtain the oscillation potentials which we
plot in Figure 5. Since the physics of the disk for r < rign are independent of the initial
conditions at the external radius and for r > rign the neutrino emission is negligible,
the impact of neutrino oscillations is important only inside rign.
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Figure 5. Oscillation potentials as functions of r with M = 3M�, α = 0.01, a = 0.95 for accretion rates
(a) Ṁ = 1M� s−1 and (b) Ṁ = 0.01M� s−1, respectively. The vertical line represents the position of
the ignition radius.

We can see that the discussion at the end of Section 3.1 is justified since, for rin < r < rign,
the potentials obey the relation

〈ω〉 � µ� λ. (64)
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Generally, the full dynamics of neutrino oscillations are a rather complex interplay
between the three potentials, yet it is possible to understand the neutrino response in the
disk using some numerical and algebraic results obtained in [33,36,144] and references
therein. Specifically, we know that if µ� 〈ω〉, as long as the MSW condition λ ' 〈ω〉 is not
met (precisely our case), collective effects should dominate the neutrino evolution even if
λ� µ. On the other hand, if µ . 〈ω〉, the neutrino evolution is driven by the relative values
between the matter and vacuum potentials (not our case). With Equation (55) we can build
a very useful analogy. These equations are analogous to the equations of motion of a simple
mechanical pendulum with a vector position given by S, precessing around with angular
momentum D, subjected to a gravitational force 〈ω〉µB with mass µ−1. Using Equation (63)
obtains the expression |S| = S ≈ 2 + O(〈ω〉/µ). Calculating ∂t(S · S), it can be checked
that this value is conserved up to fluctuations of order 〈ω〉/µ. The analogous angular
momentum is D = P− P̄ = 0. Thus, the pendulum moves initially in a plane defined by B
and the z-axis, i.e., the plane xz. Then, it is possible to define an angle ϕ between S and the
z-axis such that

S = S(sin ϕ, 0, cos ϕ). (65)

The only non-zero component of D is the y-component. From Equation (55) we find

ϕ̇ = µD, (66a)

Ḋ = −〈ω〉S cos(ϕ + 2θ). (66b)

These equations can be equivalently written as

ϕ̈ = −k2 sin(2θ + ϕ), (67)

where we have introduced the inverse characteristic time k by

k2 = 〈ω〉µS, (68)

which is related to the anharmonic oscillations of the pendulum. The role of the matter
potential λ is to logarithmically extend the oscillation length by the relation [144]

τ = −k−1 ln

[
k

θ(k2 + λ2)
1/2

(
1 +
〈ω〉
Sµ

)]
. (69)

The total oscillation time can then be approximated by the period of an harmonic
pendulum plus the logarithmic extension

tosc =
2π

k
+ τ. (70)

The initial conditions of Equation (63) imply

ϕ(t = 0) = arcsin
( 〈ω〉

Sµ
sin 2θ

)
, (71)

so that ϕ is a small angle. The potential energy for a simple pendulum is

V(ϕ) = k2[1− cos(ϕ + 2θ)] ≈ k2(ϕ + 2θ)2. (72)

If k2 > 0, which is true for the normal hierarchy ∆m2 > 0, we expect small oscillations
around the initial position since the system begins in a stable position of the potential.
The magnitude of flavor conversions is in the order ∼〈ω〉/Sµ� 1. We stress that normal
hierarchy does not mean an absence of oscillations but rather imperceptible oscillations in
Pz. No strong flavor oscillations are expected. On the contrary, for the inverted hierarchy
∆m2 < 0, k2 < 0 and the initial ϕ indicates that the system begins in an unstable position
and we expect very large anharmonic oscillations. Pz (and P̄z) oscillates between two
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different maxima, passing through a minimum −Pz (−P̄z) several times. This implies total
flavor conversion: all electronic neutrinos (antineutrinos) are converted into non-electronic
neutrinos (antineutrinos) and vice versa. This has been called bipolar oscillation in the
literature [44]. If the initial conditions are not symmetric as in Equation (63), the asymmetry
is measured by a constant ς = P̄z/Pz if P̄z < Pz or ς = Pz/P̄z if P̄z > Pz so that 0 < ς < 1.
Bipolar oscillations are present in an asymmetric system as long as the relation

µ

|〈ω〉| < 4
1 + ς

(1− ς)2 , (73)

is obeyed [144]. If this condition is not met, instead of bipolar oscillation we get synchro-
nized oscillations. Since we are considering constant potentials, synchronized oscillations
are equivalent to the normal hierarchy case. From Figure 5 we can conclude that in the
normal hierarchy case, neutrino oscillations have no effects on neutrino-cooled disks under
the assumptions we have made. On the other hand, in the inverted hierarchy case, we ex-
pect extremely fast flavor conversions with periods of order tosc ∼ (10−9–10−5) s for high
accretion rates and tosc ∼ (10−8–10−5) s for low accretion rates, between the respective rin
and rign.

For the purpose of illustration we solve the equations of oscillations for the
Ṁ = 0.1M� s−1 case at r = 10rs. The electronic (anti)neutrino survival probability at
this point is shown in Figure 6 for inverted hierarchy and normal hierarchy, respectively.
On both plots, there is no difference between the neutrino and antineutrino survival proba-
bilities. This should be expected, since for these values of r, the matter and self-interaction
potentials are much larger than the vacuum potential, and there is virtually no differ-
ence between Equations (50a) and (50b). Additionally, as mentioned before, note that
the (anti)neutrino flavor proportions remain virtually unchanged for normal hierarchy,
while the neutrino flavor proportions change drastically for the inverted hierarchy case.
The characteristic oscillation time of the survival probability in inverted hierarchy found
on the plot is

tosc ≈ 8.4× 10−7 s, (74)

which agrees with the ones given by Equation (70) up to a factor of order one. Such a small
value suggests extremely quick νeν̄e → νx ν̄x oscillations. A similar effect occurs for regions
of the disk inside the ignition radius for all three accretion rates. In this example, the time
average of the survival probabilities yields the values 〈Pνe→νe〉 = 〈Pν̄e→ν̄e〉 = 0.92. With this
number and Equations (62) and (57), the (anti)neutrino spectrum for both flavors can be
constructed. However, more importantly, this means that the local observer at that point
in the disk measures, on average, an electron (anti)neutrino loss of around 8%, which is
represented by an excess of non-electronic (anti)neutrinos.
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Figure 6. Survival provability for electron neutrinos and antineutrinos for the accretion disk with Ṁ = 0.1M� s−1 at
r = 10rs. The survival probabilities for neutrinos and antineutrinos in both plots coincide. (a) Inverted hierarchy and (b)
normal hierarchy.
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In Section 3.1 we proposed to calculate neutrino oscillations assuming that small
neighboring regions of the disk are independent and that neutrinos can be viewed as
isotropic gases in those regions. However, this cannot be considered a steady-state of the
disk. To see this, consider Figure 4. The maximum value of the neutrino optical depth is in
the order of 103 for the highest accretion rate, meaning that the time that takes neutrinos to
travel a distance of one Schwarzschild inside the disk radius obeys

trs � Max(τν)rs ≈ 10−2 s, (75)

which is lower than the accretion time of the disk as discussed in Section 2 but higher
than the oscillation time. Different sections of the disk are not independent, since they
very quickly share (anti)neutrinos created with a non-vanishing momentum along the
radial direction. Furthermore, the oscillation patterns between neighboring regions of the
disk are not identical. In Figure 7 we show the survival probability as a function of time for
different (but close) values of r for Ṁ = 0.1M� s−1. The superposition between neutrinos
with different oscillation histories has several consequences: (1) It breaks the isotropy of
the gas because close to the BH, neutrinos are more energetic and their density is higher,
producing a radially directed net flux, meaning that the factor vq,t · vp,t does not average to
zero. This implies that realistic equations of oscillations include a multi-angle term and a
radially decaying neutrino flux similar to the situation in SN neutrinos. (2) It constantly
changes the neutrino content at any value of r independently of the neutrino collective
evolution given by the values of the oscillation potentials at that point. This picture plus the
asymmetry that electron and non-electron neutrinos experience through the matter environ-
ment (electron (anti)neutrinos can interact through n + νe→ p + e− and p + ν̄e→ n + e+),
suggests that the disk achieves complete flavor equipartitioning (decoherence). We can
identify two competing causes, namely, quantum decoherence and kinematic decoherence.
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Figure 7. Survival provability for electron neutrinos and antineutrinos for the accretion disk with
Ṁ = 0.1M� s−1 at r = 9rs, 10rs, 11rs, 12rs.

Quantum decoherence is the product of collisions among the neutrinos or with a ther-
mal background medium can be understood as follows [152]. From Appendix D.2 we know
that different (anti)neutrino flavors posses different cross-sections and scattering rates Γνi ,ν̄i .
In particular, we have Γνx ≈ Γν̄x < Γν̄e < Γνe . An initial electron (anti)neutrino created
at a point r will begin to oscillate into νx(ν̄x). The probability of finding it in one of the
two flavors evolves as previously discussed. However, in each interaction n + νe→ p + e−,
the electron neutrino component of the superposition is absorbed, while the νx component
remains unaffected. Thus, after the interaction the two flavors can no longer interfere.
This allows the remaining νx to oscillate and develop a new coherent νe component which
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is made incoherent in the next interaction. The process will come to equilibrium only
when there are equal numbers of electronic and non-electronic neutrinos. That is, the con-
tinuous emission and absorption of electronic (anti)neutrinos generate non-electronic
(anti)neutrinos with an average probability of 〈Pνe→νe〉 in each interaction, and once the
densities of flavors are equal, the oscillation dynamic stops. An initial system composed of
νe, ν̄e turns into an equal mixture of νe, ν̄e and νx, ν̄x, reflected as an exponential damping of
oscillations. For the particular case in which non-electronic neutrinos can be considered
as sterile (do not interact with the medium), the relaxation time of this process can be
approximated as [153,154]

tQ =
1

2lνν̄〈ω〉2 sin2 2θ
+

2lνν̄λ2

〈ω〉2 sin2 2θ
, (76)

where lνν̄ represents the (anti)neutrino mean free path.
Kinematic decoherence is the result of a non-vanishing flux term such that at any point,

(anti)neutrinos traveling in different directions do not experience the same self-interaction
potential due to the multi-angle term in the integral of Equation (40). Different trajectories
do not oscillate in the same way, leading to a de-phasing and a decay of the average 〈Pν→ν〉,
and thus to the equipartitioning of the overall flavor content. The phenomenon is similar
to an ensemble of spins in an inhomogeneous magnetic field. In [35] it is shown that for
asymmetric νν̄ gas, even an infinitesimal anisotropy triggers an exponential evolution
towards equipartitioning, and in [36] it was shown that if the symmetry between neutrinos
and antineutrinos is not broken beyond the limit of 25%, kinematic decoherence is still the
main effect of neutrino oscillations. As a direct consequence of the νν̄ symmetry present
within the ignition radius of accretion disks (see Figure 3), an equipartition among different
neutrino flavors is expected. This multi-angle term keeps the order of the characteristic
time tosc of Equation (70) unchanged, and kinematic decoherence happens within a few
oscillation cycles. The oscillation time gets smaller closer to the BH due to the 1/µ1/2

dependence. Therefore, we expect that neutrinos emitted within the ignition radius will be
equally distributed among both flavors in about few microseconds. Once the neutrinos
reach this maximally mixed state, no further changes are expected. We emphasize that
kinematic decoherence does not mean quantum decoherence. Figures 6 and 7 clearly show
the typical oscillation pattern which happens only if quantum coherence is still acting on
the neutrino system. Kinematic decoherence, differently to quantum decoherence, is just
the result of averaging over the neutrino intensities resulting from quick flavor conversion.
Therefore, neutrinos are yet able to quantum oscillate if appropriate conditions are satisfied.

Simple inspection of Equations (70) and (76) with Figure 4 yields tosc � tQ. Clearly
the equipartition time is dominated by kinematic decoherence. These two effects are inde-
pendent of the neutrino mass hierarchy, and neutrino flavor equipartitioning is achieved
for both hierarchies. Within the disk dynamic, this is equivalent to imposing the condition
〈Pνe→νe〉 = 〈Pν̄e→ν̄e〉 = 0.5.

Figure 8 shows a comparison between disks with and without neutrino flavor equipar-
tition for the three accretion rates considered. The roles of an equipartition are to increase
the disk’s density, reduce the temperature and electron fraction and further stabilize the
electron degeneracy for regions inside the ignition radius. The effect is mild for low ac-
cretion rates and very pronounced for high accretion rates. This result is in agreement
with our understanding of the dynamics of the disk and can be explained in the following
way. In low accretion systems the neutrino optical depth for all flavors is τνν̄ . 1, and
the differences between the cooling fluxes, as given by Equation (32) are small. Hence,
when the initial (mainly electron flavor) is redistributed among both flavors, the total
neutrino cooling remains virtually unchanged and the disk evolves as if equipartition had
never occurred save the new emission flavor content. On the other hand, when accretion
rates are high, the optical depth obeys τνx ≈ τν̄x . τν̄e < τνe ∼ 103. The νe cooling is
heavily suppressed—the other factors, less so. When flavors are redistributed, the new νx
particles are free to escape, enhancing the total cooling and reducing the temperature. As
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the temperature decreases, so do the electron and positron densities, leading to a lower
electron fraction. The net impact of a flavor equipartition is to make the disk evolution less
sensitive to νe opacity, and thus, increase the total cooling efficiency. As a consequence,
once the fluid reaches a balance between F+ and Fν, this state is kept without being affected
by high optical depths and ηe− stays at a constant value until the fluid reaches the zero
torque condition close to rin. Note that for every case, inside the ignition radius, we find
τνx ≈ τν̄x . τν̄e < τνe so that the equipartition enhances, mainly, neutrino cooling Fν (and
not antineutrino cooling Fν̄). The quotient between neutrino cooling with and without an
equipartition can be estimated with

Feq
ν

Fν
≈ 1

2

(
1 +
〈Eνx 〉
〈Eνe〉

1 + τνe

1 + τνx

)
. (77)
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Figure 8. Comparison between the main variables describing thin disks with and without a neutrino flavor equipartition
for each accretion rate considered. Here ρosc, ηosc

e− , Yosc
e , Tosc are the density, electron degeneracy, electron fraction and

temperature of a disk with a flavor equipartition. Together with Figure 3, these plots completely describe the profile of a
disk under a flavor equipartition. (a) The ratio between baryon densities. (b) The ratio between degeneracy parameters.
(c) The ratio between electron fractions. (d) The ratio between temperatures.

This relation exhibits the right limits. From Figure 3 we see that 〈Eνe〉 ≈ 〈Eνx 〉. Hence,
If 1 � τνe > τνx , then Feq

ν = Fν and the equipartition is unnoticeable. However, if
1 < τνx < τνe then Feq

ν /Fν > 1. In our simulations, this fraction reaches values of 1.9 for
Ṁ = 1M� s−1 to 2.5 for Ṁ = 0.01M� s−1.

The disk variables at each point do not change beyond a factor of order five in the
most obvious case. However, these changes can be important for cumulative quantities,
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e.g., the total neutrino luminosity and the total energy deposition rate into electron–positron
pairs due to neutrino antineutrino annihilation. To see this we perform a Newtonian
calculation of these luminosities following [99,100,112,155–158], and references therein.
The neutrino luminosity is calculated by integrating the neutrino cooling flux throughout
both faces of the disk:

Lνi = 4π
∫ rout

rin

CcapFνi rdr. (78)

The factor 0 < Ccap < 1 is a function of the radius (called capture function in [126])
that accounts for the proportion of neutrinos that are re-captured by the BH, and thus, do
not contribute to the total luminosity. For a BH with M = 3M� and a = 0.95, the numerical
value of the capture function as a function of the dimensionless distance x = r/rs is well
fitted by

Ccap(x) =
(

1 +
0.3348
x3/2

)−1
, (79)

with a relative error smaller than 0.02%. To calculate the energy deposition rate, the disk
is modeled as a grid of cells in the equatorial plane. Each cell k has a specific value of
differential neutrino luminosity ∆`k

νi
= Fk

νi
rk∆rk∆φk and average neutrino energy 〈Eνi 〉k.

If a neutrino of flavor i is emitted from the cell k and an antineutrino is emitted from the
cell k′, and before interacting at a point r above the disk, each travels a distance rk and rk′ ,
then their contribution to the energy deposition rate at r is (see Appendix D.3 for details)

∆Qνi ν̄ikk′ = A1,i
∆`k

νi

r2
k

∆`k′
ν̄i

r2
k′

(
〈Eνi 〉k + 〈Eν̄i 〉k

′)(
1− rk · rk′

rkrk′

)2

+ A2,i
∆`k

νi

r2
k

∆`k′
ν̄i

r2
k′

(
〈Eνi 〉k + 〈Eν̄i 〉k

′

〈Eνi 〉k〈Eν̄i 〉k
′

)(
1− rk · rk′

rkrk′

)
.

(80)

The total neutrino annihilation luminosity is the sum over all pairs of cells integrated
in space

Lνi ν̄i = 4π
∫

A
∑
k,k′

∆Qνi ν̄ikk′d
3r, (81)

where A is the entire space above (or below) the disk.
In Table 3 we show the neutrino luminosities and the neutrino annihilation lumi-

nosities for disks with and without neutrino collective effects. In each case, the flavor
equipartition induces a loss in Lνe by a factor of ∼3, and a loss in Lν̄e luminosity by a
factor of ∼2. At the same time, Lνx and Lν̄e are increased by a factor ∼10. This translates
into a reduction of the energy deposition rate due to electron neutrino annihilation by a
factor of ∼7, while the energy deposition rate due to non-electronic neutrinos goes from
being negligible to be of the same order of the electronic energy deposition rate. The net
effect is to reduce the total energy deposition rate of neutrino annihilation by a factor of
∼3–5 for the accretion rates considered. In particular, we obtain factors of 3.03 and 3.66 for
Ṁ = 1 M� s−1 and Ṁ = 0.01 M� s−1, respectively, and a factor of 4.73 for Ṁ = 0.1 M�
s−1. The highest value corresponds to an intermediate value of the accretion rate because,
for this case, there is a νe cooling suppression (τνe > 1) and the quotient τνe /τνx is maximal.
By Equation (77), the difference between the respective cooling terms is also maximal.
In Figure 9 we show the energy deposition rate per unit volume around the BH for each
flavor with accretion rates Ṁ = 1 M� s−1 and Ṁ = 0.1 M� s−1. There we can see the
drastic enhancement of the non-electronic neutrino energy deposition rate and the reduc-
tion of the electronic deposition rate. Due to the double peak in the neutrino density for
Ṁ = 0.01 M� s−1 case (see Figure 3), the deposition rate per unit volume also shows two
peaks—one at rs < r < 2rs and the other at 10 rs < r < 11 rs. Even so, the behavior is
similar to the other cases.
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Figure 9. Comparison of the neutrino annihilation luminosity per unit volume ∆Qνi ν̄i = ∑k,k′ ∆Qνi ν̄ikk′ between disk without
(left column) and with (right column) flavor equipartitioning for accretion rates Ṁ = 1M� s−1 and Ṁ = 0.01M� s−1.
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Table 3. Comparison of total neutrino luminosities Lν and annihilation luminosities Lνν̄ between disks with and without flavor
equipartitions. All luminosities are reported in MeV s−1.

Without Oscillations With Oscillations (Flavor Equipartition)

Lνe Lν̄e Lνx Lν̄x Lνe ν̄e Lνx ν̄x Lνe Lν̄e Lνx Lν̄x Lνe ν̄e Lνx ν̄x

1 M� s−1 6.46× 1058 7.33× 1058 1.17× 1058 1.17× 1058 1.25× 1057 1.05× 1055 1.87× 1058 4.37× 1058 7.55× 1058 5.44× 1058 1.85× 1056 2.31× 1056

0.1 M� s−1 9.19× 1057 1.08× 1058 8.06× 1055 8.06× 1055 1.62× 1055 1.27× 1050 2.47× 1057 4.89× 1057 7.75× 1057 5.27× 1057 1.78× 1054 1.64× 1054

0.01 M� s−1 1.05× 1057 1.12× 1057 2.43× 1055 2.43× 1055 1.78× 1053 8.68× 1048 4.29× 1056 5.48× 1056 6.71× 1056 5.70× 1056 3.53× 1052 1.23× 1052

6. Discussion

The generation of a seed, energetic e−e+ plasma, seems to be a general prerequisite
of GRB theoretical models for the explanation of the prompt (MeV) gamma-ray emission.
The e−e+ pair annihilation produces photons leading to an opaque pair-photon plasma
that self-accelerates, expanding to ultrarelativistic Lorentz factors in the order of 102–103

(see, e.g., [159–161]). The reaching of transparency of MeV-photons at large Lorentz factor
and corresponding large radii is requested to solve the so-called compactness problem
posed by the observed non-thermal spectrum in the prompt emission [162–164]. There is a
vast literature on this subject, and we refer the reader to [165–170] and references therein
for further details.

Neutrino-cooled accretion disks onto rotating BHs have been proposed as a possible
way of producing the above-mentioned e−e+ plasma. The reason is that such disks emit a
large amount of neutrino and antineutrinos that can undergo pair annihilation near the
BH [100–112]. The viability of this scenario clearly depends on the energy deposition rate
of neutrino-antineutrinos into e−e+ and so on the local (anti)neutrino density and energy.

We have here shown that, inside these hyperaccreting disks, a rich neutrino oscilla-
tion phenomenology is present due to the high neutrino density. Consequently, the neu-
trino/antineutrino emission and the corresponding pair annihilation process around the
BH leading to electron–positron pairs, are affected by neutrino flavor conversion. Using the
thin disk and α-viscosity approximations, we have built a simple stationary model of gen-
eral relativistic neutrino-cooled accretion disks around a Kerr BH that takes into account
not only a wide range of neutrino emission processes and nucleosynthesis, but also the
dynamics of flavor oscillations. The main assumption relies on considering the neutrino
oscillation behavior within small neighboring regions of the disk as independent from each
other. This, albeit being a first approximation to a more detailed picture, has allowed us
to set the main framework to analyze the neutrino oscillations phenomenology in inside
neutrino-cooled disks.

In the absence of oscillations, a variety of neutrino-cooled accretion disks onto
Kerr BHs, without neutrino flavor oscillations, have been modeled in the literature (see,
e.g., [99,100,107,112,124] for a recent review). The physical setting of our disk model fol-
lows closely the ones considered in [107], but with some extensions and differences in some
aspects:

1. The equation of vertical hydrostatic equilibrium, Equation (15), can be derived in
several ways [124,127,131]. We followed a particular approach consistent with the
assumptions in [127], in which we took the vertical average of a hydrostatic Euler
equation in polar coordinates. The result is an equation that leads to smaller values of
the disk pressure when compared with other models. It is expected that the pressure
at the center of the disk is smaller than the average density multiplied by the local
tidal acceleration at the equatorial plane. Still, the choice between the assortment of
pressure relations is tantamount to the fine-tuning of the model. Within the thin disk
approximation, all these approaches are equivalent, since they all assume vertical
equilibrium and neglect self-gravity.

2. Following the BdHN scenario for the explanation of GRBs associated with Type Ic SNe
(see Section 2), we considered a gas composed of 16O at the outermost radius of the
disk and followed the evolution of the ion content using the Saha equation to fix the
local NSE. In [107], only 4He is present, and in [112], ions up to 56Fe are introduced.
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The affinity between these cases implies that this particular model of disk accretion is
insensible to the initial mass fraction distribution. This is explained by the fact that the
average binding energy for most ions is very similar; hence, any cooling or heating due
to a redistribution of nucleons, given by the NSE, is negligible when compared to the
energy consumed by direct photodisintegration of alpha particles. Additionally, once
most ions are dissociated, the main cooling mechanism is neutrino emission, which
is similar for all models; the modulo includes the supplementary neutrino emission
processes included in addition to electron and positron capture. However, during our
numerical calculations, we noticed that the inclusion of non-electron neutrino emission
processes can reduce the electron fraction by up to ∼8%. This effect was observed
again during the simulation of flavor equipartition alluding to the need for detailed
calculations of neutrino emissivities when establishing NSE state. We obtained similar
results to [107] (see Figure 3), but by varying the accretion rate and fixing the viscosity
parameter. This suggests that a more natural differentiating set of variables in the
hydrodynamic equations of an α-viscosity disk is the combination of the quotient
Ṁ/α and either Ṁ or α. This result is already evident in, for example, Figures 11 and
12 of [107], but was not mentioned there.

Concerning neutrino oscillations, we showed that for the conditions inside the igni-
tion radius, the oscillation potentials follow the relation 〈ω〉 � µ� λ, as is illustrated by
Figure 5. We also showed that within this region the number densities of electron neutrinos
and antineutrinos are very similar. As a consequence of this particular environment, very
fast pair conversions νeν̄e 
 νx ν̄x, induced by bipolar oscillations, are obtained for the
inverted mass hierarchy case with oscillation frequencies between 109 s−1 and 105 s−1.
For the normal hierarchy case, no flavor changes were observed (see Figures 6 and 7).
Bearing in mind the magnitudes of these frequencies and the low neutrino travel times
through the disk, we conclude that an accretion disk under our main assumption can-
not represent a steady-state. However, using numerical and algebraic results obtained
in [33,35,36] and references therein, we were able to generalize our model to a more real-
istic picture of neutrino oscillations. The main consequence of the interactions between
neighboring regions of the disk is the onset of kinematic decoherence in a timescale in the
order of the oscillation times. Kinematic decoherence induces a fast flavor equipartition
among electronic and non-electronic neutrinos throughout the disk. Therefore, the neutrino
content emerging from the disk is very different from the one that is usually assumed
(see, e.g., [113,117,171]). The comparison between disks with and without flavor equipar-
tition is summarized in Figure 8 and Table 3. We found that the flavor equipartition,
while leaving antineutrino cooling practically unchanged, it enhances neutrino cooling by
allowing the energy contained (and partially trapped inside the disk due to high opacity)
within the νe gas to escape in the form of νx, rendering the disk insensible to the elec-
tron neutrino opacity. We give in Equation (77) a relation to estimate the change in Fν

as a function of τνe τνx that describes correctly the behavior of the disk under the flavor
equipartition. The variation of the flavor content in the emission flux implies a loss in Lνe

and an increase in Lνx and Lν̄e . As a consequence, the total energy deposition rate of the
process ν + ν̄ → e− + e+ is reduced. We showed that this reduction can be as high 80%
and is maximal whenever the quotient τνe /τνx is also maximal and the condition τνe > 1
is obtained.

At this point, we can identify several issues which must still to be investigated in view
of the results we have presented:

First, throughout the accretion disk literature, several fits of the neutrino and neutrino
annihilation luminosity can be found (see, e.g., [99] and references therein). However,
all these fits were calculated without taking into account neutrino oscillations. Since we
have shown that oscillations directly impact luminosity, these results need to be extended.

Second, the calculations of the neutrino and antineutrino annihilation luminosities
we have performed ignore general relativistic effects, save for the correction given by
the capture function, and the possible neutrino oscillations from the disk surface to the
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annihilation point. In [172], it has been shown that general relativistic effects can enhance
the neutrino annihilation luminosity in a neutron star binary merger by a factor of 10.
In [100], however, it is argued that in BHs this effect has to be mild since the energy gained
by falling into the gravitational potential is lost by the electron–positron pairs when they
climb back up. Nonetheless, this argument ignores the bending of neutrino trajectories and
neutrino capture by the BH which can be significant for r . 10rs. In [173], the increment is
calculated to be no more than a factor of 2 and can be less depending on the geometry of the
emitting surface. However, as before, these calculations assume a purely νeν̄e emission and
ignore oscillations after the emission. Simultaneously, the literature on neutrino oscillation
above accretion disks (see, e.g., [113,117]) does not take int account oscillations inside the
disk and assume only νeν̄e emission. A similar situation occurs in works studying the effect
of neutrino emission on r-process nucleosynthesis in hot outflows (wind) ejected from the
disk (see, e.g., [174]).

It is still unclear how the complete picture (oscillations inside the disk→ oscillations
above the disk + relativistic effects) affects the final energy deposition. We are currently
working on the numerical calculation of the annihilation energy deposition rate using a
ray tracing code and including neutrino oscillations from the point of their creation until
they are annihilated—i.e., within the accretion disk and after its emission from the surface
of the disk and during its trajectory until reaching the annihilation point. These results
and their consequences for the energy deposition annihilation rate will be the subject of a
future publication.

The knowledge of the final behavior of a neutrino-dominated accretion disk with
neutrino oscillations requires time-dependent, multi-dimensional, neutrino-transport sim-
ulations coupled with the evolution of the disk. These simulations are computationally
costly even for systems with a high degree of symmetry, therefore a first approximation is
needed to identify key theoretical and numerical features involved in the study of neutrino
oscillations in neutrino-cooled accretion disks. This work serves as a platform for such
a first approximation. Considering that kinematic decoherence is a general feature of
anisotropic neutrino gases, with the simplified model presented here, we were able to
obtain an analytical result that agrees with the physics understanding of accretion disks.

In [171] it is pointed out that for a total energy in ν̄e of 1052 erg and an average neutrino
energy 〈Eν,ν̄〉 ∼ 20 MeV, the Hyper-Kamiokande neutrino-horizon is in the order of 1 Mpc.
If we take a total energy carried out by ν̄e in the order of the gravitational gain by accretion
(Eg ∼ 1052–1053 erg) in the more energetic case of binary-driven hypernovae and the
neutrino energies in Figure 3, we should expect the neutrino-horizon distance to be also
in the order of 1 Mpc. However, if we adopt the local binary-driven hypernovae rate
∼1 Gpc−3 yr−1 [175], it is clear that the direct detection of this neutrino signal is quite
unlikely. However, we have shown that neutrino oscillation can have an effect on e−e+

plasma production above BHs in GRB models. Additionally, the unique conditions inside
the disk and its geometry lend themselves to a variety of neutrino oscillations that can
have impacts on other astrophysical phenomena, not only in plasma production, but also
in r-process nucleosynthesis in disk winds. This, in particular, is the subject of a future
publication. As such, this topic deserves appropriate attention, since it paves the way for
new, additional astrophysical scenarios for testing neutrino physics.
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Abbreviations
The following abbreviations are used in this manuscript:

BdHN Binary-Driven Hypernova
BH Black Hole
CF Coordinate Frame
COcore Carbon–Oxygen Star
CRF Co-rotating Frame
GRB Gamma-ray Burst
IGC Induced Gravitational Collapse
ISCO Innermost Stable Circular Orbit
LNRF Locally Non-Rotating Frame
MSW Mikheyev–Smirnov–Wolfenstein
NDAF Neutrino-Dominated Accretion Flows
NS Neutron Star
NSE Nuclear Statistical Equilibrium
SN Supernova

Appendix A. Transformations and Christoffel Symbols

For the sake of completeness, here we give the explicitly the transformation used
in Equation (5) and the Christoffel symbols used during calculations. The coordinate
transformation matrices between the CF and the LNRF on the tangent vector space is [123]

e µ
ν̂ =




1√
ω2 gφφ−gtt

0 0 0

0 1√
grr

0 0

0 0 1√
gθθ

0
ω√

ω2 gφφ−gtt
0 0 1√gφφ




, eν̂
µ =




√
ω2gφφ − gtt 0 0 0

0
√

grr 0 0
0 0

√
gθθ 0

−ω
√gφφ 0 0 √gφφ




, (A1)

so that the basis vectors transform as ∂ν̂ = eµ
ν̃∂µ, that is, with eT . For clarity,

coordinates on the LNRF have a caret (xµ̂), coordinates on the CRF have a tilde (xµ̃)
and coordinates on the LRF have two (x ˜̃µ). An observer on the LNRF sees the fluid ele-
ments move with an azimuthal velocity βφ̂. This observer then can perform a Lorentz boost
L

βφ̂ to a new frame. On this new frame an observer sees the fluid elements falling radially

with velocity βr̃, so it can perform another Lorentz boost Lβr̃ to the LRF. Finally, the trans-

formation between the the LRF and the CF coordinates xµ = e µ
ρ̂ (L

βφ̂)
ρ̂

α̃ (Lβr̃ ) α̃
˜̃ν x ˜̃ν = A µ

˜̃ν x ˜̃ν,
where the components of A are

A ˜̃ν
µ =




γr̃γφ̂

(√
ω2gφφ − gtt + βφ̂ω

√gφφ

)
−γr̃ βr̃√grr 0 −γr̃γφ̂βφ̂√gφφ

−γφ̂γr̃ βr̃
(√

ω2gφφ − gtt + βφ̂ω
√gφφ

)
γr̃
√

grr 0 γr̃γφ̂βr̃ βφ̂√gφφ

0 0
√

gθθ 0

−γφ̂

(
βφ̂
√

ω2gφφ − gtt + ω
√gφφ

)
0 0 γφ̂

√gφφ




. (A2)

Since Lorentz transformations do not commute, the transformation A raises the ques-
tion: what happens if we invert the order? In this case, we would not consider a co-rotating
frame but a cofalling frame on which observers see fluid elements, not falling, but rotat-
ing. The new transformation velocities βr′ , βφ′ are subject to the conditions βφ′ = γr′β

φ̂,
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βr′ = βr̃/γφ̂ and γr′γφ′ = γr̃γφ̂. Although both approaches are valid, considering that the
radial velocity is an unknown, the first approach is clearly cleaner. To obtain the coordinate
transformation between the CF and the CRF A µ

ν̃ and Aν̃
µ we can simply set βr̃ = 0 in

Equation (A2). With this, we can calculate

dφ̂

dt̂
= βφ̂ =

uµeφ̂
µ

uνet̂
ν

=

√
gφφ

ω2gφφ − gtt
(Ω−ω), (A3)

and

dr̃ =
√

grrdr, dt̃ =
γφ̂√

ω2gφφ − gtt

dt =
1√

−gtt − 2Ωgtφ −Ω2gφφ

dt, dθ̃ =
√

gθθdθ. (A4)

The non-vanishing Christoffel symbols are

Γt
tr =

M
(
r2 −M2a2 cos2 θ

)(
r2 + M2a2)

Σ2∆
, Γt

tθ = −M3a2r sin 2θ

Σ2 ,

Γt
rφ = −M2a

(
3r4 + M2a2r2 + M2a2 cos2 θ

(
r2 −M2a2)) sin2 θ

Σ2∆
,

Γt
θφ =

2M4a3r cos θ sin3 θ

Σ2 , Γr
tt =

M∆
(
r2 −M2a2 cos2 θ

)

Σ3 ,

Γr
tφ = −M2a∆

(
r2 −M2a2 cos2 θ

)
sin2 θ

Σ3 ,

Γr
rr =

r
Σ
+

M− r
∆

, Γr
rθ = − M2a2 sin θ

M2a2 cos θ + r2 tan θ
, Γr

θθ = − r∆
Σ

,

Γr
φφ =

(
MaΓr

tφ − Γr
θθ

)
sin2 θ, Γθ

tt = −Γt
θφ

csc2 θ

MaΣ
, Γθ

tφ =
M2ar

(
r2 + M2a2) sin 2θ

Σ3 ,

Γθ
rr =

M2a2 sin θ cos θ

Σ∆
, Γθ

tθ =
r
Σ

, Γθ
θθ = Γr

rθ ,

Γθ
φφ =

(
∆
Σ
+

2Mr
(
r2 + M2a2)2

Σ3

)
sin θ cos θ, Γφ

tr = −
M2a

(
r2 −M2a2 cos2 θ

)

Σ2∆
,

Γφ
tθ = −2M2ar cot θ

Σ2 , Γφ
rφ =

r(Σ− 2Mr)
Σ∆

+
MaΣ
∆2 Γr

tφ, Γφ
θφ = cot θ − Γt

tθ .

(A5)

Using the connection coefficients and the metric, both evaluated at the equatorial
plane we can collect several equations for averaged quantities. The expansion of the fluid
world lines is

θ = ∇µuµ =
2
r

ur + ∂rur. (A6)

There are several ways to obtain an approximate version of the shear tensor
(e.g., [124,176,177]) but by far the simplest one is proposed by [127]. On the CRF the
fluid four-velocity can be approximated by uµ̃ = (1, 0, 0, 0) by Equation (6). Both the fluid
four-acceleration aν = uµ∇µuν and expansion parameter, Equation (A6), vanish so that the
shear tensor reduces to 2σµ̃ν̃ = ∇µ̃uν̃ +∇ν̃uµ̃. In particular, the r-φ component is

σr̃φ̃ = −1
2

(
Γt̃

φ̃r̃ + Γt̃
r̃φ̃

)
= −1

4

(
2c r̃

t̃φ̃ + 2c φ̃

t̃r̃

)
=

1
2

c φ̃

r̃t̃ =
γ2

φ̂

2

√gφφ√
ω2gφφ − gtt

√
grr

∂rΩ, (A7)

where c α̃
µ̃ν̃ are the commutation coefficients for the CRF. Finally, of particular interest is the

θ̃ component of the Riemann curvature tensor

R θ̃
t̃θ̃ t̃

∣∣∣
θ=π/2

=
M
r3

r2 − 4aM3/2r1/2 + 3M2a2

r2 − 3Mr + 2aM3/2r1/2 , (A8)
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which gives a measurement of the relative acceleration in the θ̃ direction of nearly equato-
rial geodesics.

Appendix B. Stress–Energy Tensor

Here we present some equations related to the stress–energy that we used in this
paper. Equation (9) for a zero bulk viscosity fluid in components is

Tµ
ν = Πuµuν + Pδ

µ
ν − 2ησ

µ
ν + qµuν + qνuµ, (A9)

whose (vanishing) covariant derivative is

∇µTµ
ν = uµuν∂µΠ + Πθuν + Πaν + ∂νP− 2η∇µσ

µ
ν + qµ∇µuν + uν∇µqµ + qνθ+ uµ∇µqν

= uµ

[
uν

(
∂µΠ− Π

ρ
∂µρ

)
− qν

ρ
∂µρ

]
+ Πaν + ∂νP− 2η∇µσ

µ
ν + qµ∇µuν + uν∇µqµ + uµ∇µqν,

(A10)

where baryon conservation is used ρθ = −uµ∂µρ. To get an equation of motion for the
fluid, we project along the direction perpendicular to uν

Pν
β∇µTµ

ν = uµ

[
uβ

(
∂µΠ− Π

ρ
∂µρ

)
− qβ

ρ
∂µρ

]
+ Πaβ + ∂βP− 2η∇µσ

µ
β + qµ∇µuβ + uβ∇µqµ

+ uµ∇µqβ − uµuβ

[
∂µΠ− Π

ρ
∂µρ

]
+ uνuβ∂νP− 2ηuνuβ∇µσ

µ
ν − uβ∇µqµ + uνuβuµ∇µqν

= − qβ

ρ
uµ∂µρ + Πaβ + ∂βP− 2η∇µσ

µ
β + qµ∇µuβ + uµ∇µqβ + uβuν∂νP− 2ηuνuβ∇µσ

µ
ν + uνuβuµ∇µqν

= − qβ

ρ
uµ∂µρ + Πaβ + ∂βP− 2η∇µσ

µ
β + qµ∇µuβ + uµ∇µqβ + uβ

(
uν∂νP + 2ησµνσµν − qνaν

)
,

(A11)

where the identities qµuµ = uµaµ = σµνuν = 0, uµuν = −1, σµνσµν = σµν∇µuν are used.
Combining the Equations (A10) and (A11) we get

uµ

[
∂µU − U + P

ρ
∂µρ

]
= 2ησµνσµν − qµaµ −∇µqµ. (A12)

With Equation (A6) we can obtain an equation for mass conservation

0 =∇µ(ρuµ) = uµ∂µρ + ρθ = uµ∂µρ + ρ

(
2
r

ur + ∂rur
)

,

⇒ ∂r

(
r2ρur

)
+ r2uj∂jρ = 0, for j ∈ {t, θ, φ}. (A13)

Finally, we reproduce the zero torque at the innermost stable circular orbit condition
that appears in [128]. Using the killing vector fields ∂φ, ∂t and the approximation Π ≈ ρ,
we can calculate

0 = ∇ · (T · ∂φ

)
= ∇µTµ

φ =
1√−g

∂µ

(√
−gTµ

φ

)
≈ 1

r2 ∂r

(
ρuruφr2 − 2ησr

φr2
)
+ uφ∂θqθ ,

⇒ ∂r

(
ρuruφr2 − 2ησr

φr2
)
= −r2uφ∂θqθ ,

⇒ ∂r

(
Ṁ
2π

uφ + 4rHησr
φ

)
= 2Huφε,

(A14)

where we integrated vertically and used Equation (16). Analogously, using Equation (11)
we obtain

∂r

(
Ṁ
2π

ut − 4rHΩησr
φ

)
= 2Hutε. (A15)
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The vertical integration of the divergence of the heat flux is as follows: Since, on

average, q = qθ∂θ , we have ∇µqµ = ∂θqθ and by Equation (A2), qθ = rq
ˆ̂θ . Vertically

integrating yields ∫ θmax

θmin

∂θqθrdθ = rqθ
∣∣∣

θmax

θmin

= 2q
˜̃θ = 2Hε, (A16)

where q
˜̃θ is the averaged energy flux radiating out of a face of the disk, as measured by an

observer on the LRF, which we approximate as the half-thickness of the disk H times the
average energy density per unit proper time ε lost by the disk. With the variable change
z = 8πrHησr

φ/Ṁ and y = 4πHε/Ṁ the equations reduce to

∂r
(
uφ + z

)
= yuφ, (A17a)

∂r(ut −Ωz) = yut. (A17b)

Using the relation ∂rut = −Ω∂ruφ (see Equation (10.7.29) in [178]) and
∂r
(
ut + Ωuφ

)
= uφ∂rΩ we can combine the previous equations to obtain

z = −y
(
ut + Ωuφ

)

∂rΩ
, (A18a)

∂r

(
AB2

)
= B∂ruφ, (A18b)

with A = y/∂rΩ and B = ut + Ωuφ. To integrate these equations we use the zero torque
condition z(r = r∗) = 0 where r∗ is the radius of the innermost stable circular orbit,
which gives the relation

y =
∂rΩ

(
ut + Ωuφ

)2

∫ r

r∗

(
ut + Ωuφ

)
∂ruφdr =

∂rΩ
(
ut + Ωuφ

)2

(
utuφ

∣∣r
r∗ − 2

∫ r

r∗
uφ∂rutdr

)
, (A19)

or, equivalently,

8πHrρνturbσr
φ ≈ 8πHrΠνturbσr

φ = − Ṁ(
ut + Ωuφ

)
(

utuφ

∣∣r
r∗ − 2

∫ r

r∗
uφ∂rutdr

)
. (A20)

Using Equation (5), the approximation γr̃ ≈ 1 and the variable change r = xM2 the
integral can be easily evaluated by partial fractions

8πHrρνturbσr
φ = ṀM f (x, x∗), (A21a)

f (x, x∗) =
x3 + a

x3/2
√

x3 − 3x + 2a

[
x− x∗ − 3

2
a ln
( x

x∗
)
+

1
2

3

∑
i=1

ax2
i − 2xi + a

x2
i − 1

ln
(

x− xi
x∗ − xi

)]
, (A21b)

where x1, x2, x3 are the roots of the polynomial x3 − 3x + 2a.

Appendix C. Nuclear Statistical Equilibrium

The results in this section appear in [179]. We include them here since they are
necessary to solve Equation (19). Neutrino dominated accretion disks reach densities above
∼107 g cm−3 and temperatures above ∼5× 109 K. For these temperatures, forward and
reverse nuclear reactions are balanced and the abundances in the plasma are determined
by the condition µi = Ziµp + Niµn, that is, the Nuclear Statistical Equilibrium. However,
for densities above 106 g cm−3, the electron screening of charged particle reactions can
affect the nuclear reaction rates. For this reason, to obtain an accurate NSE state it is
necessary to include Coulomb corrections to the ion chemical potential. The Coulomb
correction to the i-th chemical potential is given by
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µC
i

T
= K1

[
Γi
√

Γi + K2 − K2 ln

(√
Γi
K2

+

√
1 +

Γi
K2

)]

+ 2K3

[√
Γi − arctan

√
Γi

]
+ Z1

[
Γi − Z2 ln

(
1 +

Γi
Z1

)]
+

Z3
2

ln

(
1 +

Γ2
i

Z4

)
, (A22)

and the ion coupling parameter in terms of the electron coupling parameter is Γi = ΓeZ5/3
i with

Γe =
e2

T

(
4πYenB

3

)1/3
. (A23)

where e is the electron charge. The parameters Ki, Ci are given in Table A1.

Table A1. Constants appearing in Equation (A22). See [179].

K1 K2 K3 Z1 Z2 Z3 Z4

−0.907347 0.62849 0.278497 4.50× 10−3 170.0 −8.4× 10−5 3.70× 10−3

Appendix D. Neutrino Interactions and Cross-Sections

In this appendix we include the neutrino emission rates and neutrino cross-sections
used in the accretion disk model. These expressions have been covered in [180–186].
We also include the expression energy emission rate for νν̄ annihilation into electron–
positron pairs. Whenever possible we write the rates in terms of generalized Fermi func-
tions since some numerical calculations were done following [187]. We list in Table A2
some useful expressions and constants in Planck units. The numerical values can be found
in [141].

Table A2. Constants used throughout this appendix to calculate emissivities and cross-sections.
All quantities are reported in Planck units.

Symbol Value Name

Mw 6.584× 10−18 W boson mass
gw 0.653 Weak coupling constant
ga 1.26 Axial-vector coupling constant
α∗ 1

137 Fine structure constant
sin2 θW 0.231 Weinberg angle
cos2 θc 0.947 Cabibbo angle
GF 1.738× 1033 Fermi coupling constant
Cv,e 2 sin2 θW + 1/2 Weak interaction vector constant for νe

Ca,e 1/2 Weak interaction axial-vector constant
for νe

Cv,e Cv,e − 1 Weak interaction vector constant for νx

Ca,e Ca,e − 1 Weak interaction axial-vector constant
for νx

σ0 6.546× 1021 Weak interaction cross-section

Appendix D.1. Neutrino Emissivities

• Pair annihilation: e−+ e+→ ν + ν̄

This process generates neutrinos of all flavors but around 70% are electron neutri-
nos [71]. This is due to the fact that the only charged leptons in the accretion systems
we study are electrons and positrons, so creation of electron neutrinos occurs via either
charged or neutral electroweak currents while creation of non-electronic neutrinos can only
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occur through neutral currents. Using the electron or positron four-momentum p = (E, p),
the Dicus cross-section for a particular flavor i is [180]

σD,i =
G2

F
12πEe−Ee+

[
C+,i

(
m4

e + 3m2
e pe− ·pe+ + 2(pe− ·pe+ )

2
)
+ 3C−,i

(
m4

e + m2
e pe− ·pe+

)]
. (A24)

The factors C±,i, are written in terms of the weak interaction vector and axial-vector
constants: C±,i = C2

v,i ± C2
a,i [141]. Representing the Fermi–Dirac distribution for electrons

(positrons) as fe−( fe+) with ηe∓ the electron (positron) degeneracy parameter including its
rest mass. The number and energy emission rates can be calculated by replacing Λ = 2
and Λ = Ee− + Ee+ in the integral [184]:

4

(2π)6

∫
ΛσD fe− fe+d3pe−d3pe+ , (A25)

giving the expressions

Rνi+ν̄i =
G2

Fm8
e

18π
[C+,i(8U1V1 + 5U−1V−1 + 9U0V0 − 2U−1V1 − 2U1V−1)

+9C−,i(U−1V−1 +U0V0)], (A26a)

Qνi+ν̄i =
G2

Fm9
e

36π
[C+,i(8(U2V1 +U1V2) + 7(U1V0 +U0V1) + 5(U−1V0 +U0V−1)

−2(U2V−1 +U−1V2)) + 9C−,i(U0(V1 +V−1) +V0(U1 +U−1))]. (A26b)

The functions U,V can be written in terms of generalized Fermi functions

Uj =
√

2ξ3/2
j+1

∑
k=0

(
j + 1

k

)
ξkFk+1/2,0(ξ, ηe−), (A27a)

Vj =
√

2ξ3/2
j+1

∑
k=0

(
j + 1

k

)
ξkFk+1/2,0(ξ, ηe+). (A27b)

It is often useful to define the functions

εm
i =

2G2
F(me)

4

3(2π)7

∫
fe− fe+

(
Em

e− + Em
e+
)
σD,i d3pe−d3pe+ . (A28)

For m = 0 and m = 1 Equation (A28) gives the neutrino and antineutrino number
emissivity (neutrino production rate), and the neutrino and antineutrino energy emis-
sivity (energy per unit volume per unit time) for a certain flavor i, respectively (that is,
Equation (A26)). Hence, not only we are able to calculate the total number and energy
emissivity, but we can also calculate the neutrino or antineutrino energy moments with

〈Em
νi(ν̄i)
〉 = εm

i
ε0

i
, for m ≥ 1. (A29)

• Electron capture and positron capture: p+ e−→ n+ νe, n+ e+→ p+ ν̄e and A+ e−→
A′ + νe

Due to lepton number conservation this process generated only electron (anti)neutrinos.
The number and energy emission rates for electron and positron capture by nucleons are
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Rνe =
m5

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ3/2

[
ξ3F7/2,χ(ξ, ηe− )

+(3− 2Q)ξ2F5/2,χ(ξ, ηe− ) + (1−Q)(3−Q)ξF3/2,χ(ξ, ηe− ) + (1−Q)2F1/2,χ(ξ, ηe− )
]
, (A30a)

Qνe =
m6

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ3/2

[
ξ4F9/2,χ(ξ, ηe− )

+ξ3(4− 3Q)F7/2,χ(ξ, ηe− ) + 3(Q− 1)(Q− 2)ξ2F5/2,χ(ξ, ηe− )

+(1−Q)2(4−Q)ξF3/2,χ(ξ, ηe− ) + (1−Q)3F1/2,χ(ξ, ηe− )
]
, (A30b)

Rν̄e =
m5

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆pnξ3/2

[
ξ3F7/2,0(ξ, ηe+ )

+(3 + 2Q)ξ2F5/2,0(ξ, ηe+ ) + (1 +Q)(3 +Q)ξF3/2,0(ξ, ηe+ ) + (1 +Q)2F1/2,0(ξ, ηe+ )
]
, (A30c)

Qν̄e =
m6

e G2
F cos2 θc√
2π3

(
1 + 3g2

A

)
∆npξ3/2

[
ξ4F9/2,0(ξ, ηe+ )

+ξ3(4 + 3Q)F7/2,0(ξ, ηe+ ) + 3(Q+ 1)(Q+ 2)ξ2F5/2,0(ξ, ηe+ )

+(1 +Q)2(4 +Q)ξF3/2,0(ξ, ηe+ ) + (1 +Q)3F1/2,0(ξ, ηe+ )
]
, (A30d)

where ∆ij =
(
ni − nj

)
/
(
exp

(
ηi − ηj

)
− 1
)
, i, j ∈ {p, n} are the Fermi blocking factors in

the nucleon phase spaces and Q = (mn −mp)me ≈ 2.531 is the nucleon mass difference.
The number and energy emission rates for electron capture by an ion i are

Rνe ,i =

√
2m5

e G2
F cos2 θc

7π3 g2
AniκZi κNi ξ

3/2
[
ξ3F7/2,χ̄(ξ, ηe− )

+(3− 2Q)ξ2F5/2,χ̄(ξ, ηe− ) + (1−Q)(3−Q)ξF3/2,χ̄(ξ, ηe− )(1−Q)2F1/2,χ̄(ξ, ηe− )
]
, (A31a)

Qνe ,i =

√
2m6

e G2
F cos2 θc

7π3 g2
AniκZi κNi ξ

3/2
[
ξ4F9/2,χ̄(ξ, ηe− ) + ξ3(4− 3Q)F7/2,χ̄(ξ, ηe− )

+3(Q− 1)(Q− 2)ξ2F5/2,χ̄(ξ, ηe− ) + (1−Q)2(4−Q)ξF3/2,χ̄(ξ, ηe− ) + (1−Q)3F1/2,χ̄(ξ, ηe− )
]
. (A31b)

The lower integration limits in these expressions are given by χ = (Q− 1)/ξ and
χ̄ = (µn − µp + ∆)/T − 1/ξ where ∆ ≈ 2.457× 10−22 is the energy of the neutron 1 f5/2
state above the ground state. The functions κZi , κNi are

κZi =





0 if Zi ≤ 20.
Zi − 20 if 20 < Zi ≤ 28.
8 if Zi > 28.

, κNi =





6 if Ni ≤ 34.
40− Ni if 34 < Ni ≤ 40.
0 if Ni > 40.

(A32)

• Plasmon decay: γ̃→ ν + ν̄.

Rνe+ν̄e =
Cv,eσ0T8

96π3m2
e α∗

γ̃6(γ̃ + 1) exp(−γ̃), (A33a)

Qνe+ν̄e =
Cv,eσ0T9

192π3m2
e α∗

γ̃6
(

γ̃2 + 2γ̃ + 2
)

exp(−γ̃), (A33b)

Rνx+ν̄x =
Cv,xσ0T8

48π3m2
e α∗

γ̃6(γ̃ + 1) exp(−γ̃), (A33c)

Qνx+ν̄x =
Cv,xσ0T9

96π3m2
e α∗

γ̃6
(

γ̃2 + 2γ̃ + 2
)

exp(−γ̃), (A33d)

where γ̃ = γ̃0

√(
π2 + 3(ηe− + 1/ξ)2

)
/3 and γ̃0 = 2

√
α∗
3π ≈ 5.565× 10−2.

• Nucleon-nucleon bremsstrahlung n1 + n2 → n3 + n4 + ν + ν̄.
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The nucleon-nucleon bremsstrahlung produces the same amount of neutrinos of all
three flavors. The number and energy emission rates can be approximated by (see, e.g., [186])

Rνi+ν̄i =
(

2.59× 1013
)(

X2
p + X2

n +
28
3

XpXn

)
n2

Bξ9/2, (A34a)

Qνi+ν̄i =
(

4.71× 10−9
)(

X2
p + X2

n +
28
3

XpXn

)
n2

Bξ10/2. (A34b)

Appendix D.2. Cross-Sections

We consider four interactions to describe the (anti)neutrino total cross-section.

• Neutrino annihilation: (ν + ν̄→ e−+ e+).

σνe ν̄e =
4
3

Kνe ν̄e σ0
〈Eνe〉〈Eν̄e〉

m2
e

with Kνe ν̄e =
1 + 4 sin2 θW + 8 sin4 θW

12
, (A35a)

σνx ν̄x =
4
3

Kνx ν̄x σ0
〈Eνx 〉〈Eν̄x 〉

m2
e

with Kνx ν̄x =
1− 4 sin2 θW + 8 sin4 θW

12
, (A35b)

• Electron (anti)neutrino absorption by nucleons: (νe + n → e− + p and ν̄e + p →
e+ + n).

σνen = σ0

(
1 + 3g2

a
4

)( 〈Eνe〉
me

+Q
)2√√√√1− 1

( 〈Eνe 〉
me

+Q
)2 , (A36a)

σν̄e p = 3.83× 1022
(
℘〈Eν̄e〉

me
−Q

)2√√√√1− 1
(
℘〈Eν̄e 〉

me
−Q

)2

(
℘〈Eν̄e〉

me

)g(Eν̄e )

, (A36b)

g(Eν̄e) = −0.07056 + 0.02018 ln
(
℘〈Eν̄e〉

me

)
− 0.001953 ln3

(
℘〈Eν̄e〉

me

)
. (A36c)

where ℘ = 0.511.

• (anti)neutrino scattering by baryons: (ν + Ai → ν + Ai and ν̄ + Ai → ν̄ + Ai).

σp =
σ0〈E〉2

4m2
e

(
4 sin4 θW − 2 sin2 θW +

1 + 3g2
a

4

)
, (A37a)

σn =
σ0〈E〉2

4m2
e

1 + 3g2
a

4
, (A37b)

σAi =
σ0 A2

i 〈E〉2
16m2

e

[(
4 sin2 θW − 1

) Zi
Ai

+ 1− Zi
Ai

]
. (A37c)

• (anti)neutrino scattering by electrons or positrons: (ν + e± → ν + e± and ν̄ + e± →
ν̄ + e±).

σe =
3
8

σ0ξ
〈E〉
me

(
1 +

ηe + 1/ξ

4

)[
(Cv,i + n`Ca,i)

2 +
1
3
(Cv,i − n`Ca,i)

2
]

. (A38)

Here, n` is the (anti)neutrino lepton number (that is, 1 for neutrinos and−1 for antineu-
trinos, depending on the cross-section to be calculated), and in the last four expressions,
〈E〉 is replaced by the average (anti)neutrino energy of the corresponding flavor. With these
expressions, the total opacity for neutrinos or antineutrinos is

κνi(ν̄i)
=

∑i σini
ρ

, (A39)
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where ni is the number density of the target particle associated with the process
corresponding to the cross-section σi. The (anti)neutrino optical depth appearing in
Equation (32) can then be approximated as

τνi(ν̄i)
=
∫

κνi(ν̄i)
ρdθ ≈ κνi(ν̄i)

ρH. (A40)

Appendix D.3. Neutrino-Antineutrino Pair Annihilation

Since the main interaction between νν̄ is the annihilation into e−e+, this process
above neutrino-cooled disks has been proposed as the origin of the energetic plasma
involved in the production of GRBs. Once the (anti)neutrino energy emissivity and
average energies are calculated it is possible to calculate the energy deposition rate of
the process νi + ν̄i → e− + e+ for each flavor i. Ignoring Pauli blocking effects in the
phase spaces of electron and positrons, the local energy deposition rate at a position r
by νν̄ annihilation can be written in terms of the neutrino and antineutrino distributions
fνi = fνi (r, Eν), fν̄i = fν̄i (r, Eν̄) as [155]

Qνi ν̄i = A1,i

∫ ∞

0
dEνi

∫ ∞

0
dEν̄i E

3
νi

E3
ν̄i
(Eνi + Eν̄i )

∫

S2

dΩνi

∫

S2

dΩν̄i fνi fν̄i (1− cos θ)2,

+ A2,i

∫ ∞

0
dEνi

∫ ∞

0
dEν̄i E

2
νi

E2
ν̄i
(Eνi + Eν̄i )

∫

S2

dΩνi

∫

S2

dΩν̄i fνi fν̄i (1− cos θ),
(A41)

where we have introduced the constants appearing in Equation (80)

A1,i =
σ0

[
(Cv,i − Ca,i)

2 + (Cv,i + Ca,i)
2
]

12π2m2
e

,

A2,i =
σ0

[
2C2

v,i − C2
a,i

]

6π2m2
e

.

(A42)

In Equation (A41), θ is the angle between the neutrino and antineutrino momentum
and dΩ is the differential solid angle of the incident (anti)neutrino at r. The integral can be
re-written in terms of the total intensity (energy integrated intensity) Iν =

∫
E3

ν fνdEν as [156]

Qνi ν̄i = A1,i

∫

S2

dΩνi Iνi

∫

S2

dΩν̄i Iν̄i (〈Eνi 〉+ 〈Eν̄i 〉)(1− cos θ)2

+ A2,i

∫

S2

dΩνi Iνi

∫

S2

dΩν̄i Iν̄i

〈Eνi 〉+ 〈Eν̄i 〉
〈Eνi 〉〈Eν̄i 〉

(1− cos θ).
(A43)

The incident radiation intensity passing through the solid differential angle dΩ at r
is the intensity Ird ,ν emitted from the point on the disk rd diluted by the inverse square
distance rk = |r− rd| between both points. Finally, assuming that each point rd on the
disk’s surface acts as a half-isotropic radiator of (anti)neutrinos, the total flux emitted at
rd is Frd ,ν =

∫ π/2
0

∫ 2π
0 Ird ,ν cos θ′ sin θ′dθ′dφ′ = π Ird ,ν, with θ′, φ′ the direction angles at rd.

Collecting all obtains

Qνi ν̄i = A1,i

∫

rd,νi
∈disk

drd,νi

∫

rd,ν̄i
∈disk

drd,ν̄i

Frd ,νi

r2
k,νi

Frd ,ν̄i

r2
k,ν̄i

(〈Eνi 〉+ 〈Eν̄i 〉)(1− cos θ)2

+ A2,i

∫

rd,νi
∈disk

drd,νi

∫

rd,ν̄i
∈disk

drd,ν̄i

Frd ,νi

r2
k,νi

Frd ,ν̄i

r2
k,ν̄i

〈Eνi 〉+ 〈Eν̄i 〉
〈Eνi 〉〈Eν̄i 〉

(1− cos θ).
(A44)
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