
Electron-positron pairs in physics,
astrophysics and cosmology





Contents

1. Topics 467

2. Participants 469
2.1. ICRANet participants . . . . . . . . . . . . . . . . . . . . . . . . 469
2.2. Past collaborators . . . . . . . . . . . . . . . . . . . . . . . . . . 469
2.3. On going collaborations . . . . . . . . . . . . . . . . . . . . . . 470
2.4. Young researcher, Ph.D. and M.S. Students . . . . . . . . . . . 471

3. Brief description 473
3.1. Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
3.2. The three fundamental contributions to the electron-positron

pair creation and annihilation and the concept of critical elec-
tric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

3.3. Nonlinear electrodynamics and rate of pair creation . . . . . . 479
3.4. Pair production and annihilation in QED . . . . . . . . . . . . 481
3.5. Phenomenology of electron-positron pair creation and annihi-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
3.6. Plasma oscillations and radiation in uniform or nonuniform

electric fields, and thermalization of the mildly relativistic pair
plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

3.7. The energy extraction from a black hole by pair-productions,
and Einstein-Euler-Heisenberg theory and charged black holes 491

3.8. Dyadosphere of electron-positron pairs and photons formed in
gravitational collapses . . . . . . . . . . . . . . . . . . . . . . . 494

3.9. Polarization of strong electromagnetic fields and its applica-
tions in polarizations of laser fields, GRBs and CMB photons,
as well as neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . 499

3.10. Pair production and interactions of fields and matter in the
cosmology within the framework of quantum Einstein-Cartan-
Maxwell theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

463



Contents

3.11. Semiclassical approach to pair production rate for strong time-
dependent electrical fields with more than one component . . 512

3.12. Pair-production, ultra-high energy particles, gravitational and
electromagnetic energies in gravitational collapse and accre-
tion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

3.13. Strong and pulsating electromagnetic field in gravitational col-
lapse core or heavy atoms . . . . . . . . . . . . . . . . . . . . . 523

3.14. The Breit-Wheeler cutoff in high-energy γ-rays and cosmic ab-
sorption (opacity) of ultra high energy particles . . . . . . . . . 525

4. Publications (before 2005) 533

5. Publications (2005-2019) 541

6. Invited talks in international conferences 575

7. APPENDICES 579

A. Dyadosphere (electron-positron-photon plasma) formation in grav-
itational collapse. 581

B. Electron-positron pair oscillation in spatially inhomogeneous elec-
tric fields and radiation 587

C. Electron and positron pair production in gravitational collapse 603
C.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
C.2. Basic equations for dynamical evolution. . . . . . . . . . . . . 604
C.3. Equilibrium configurations. . . . . . . . . . . . . . . . . . . . 605
C.4. Modeling dynamical perturbations of baryon cores. . . . . . 606
C.5. Dynamical evolution of electron fluid . . . . . . . . . . . . . . 608
C.6. Oscillations of electron fluid and electric field. . . . . . . . . 609
C.7. Electron-positron pair production . . . . . . . . . . . . . . . . 612
C.8. Gravitational collapse and Dyadosphere . . . . . . . . . . . . . 612
C.9. Summary and remarks. . . . . . . . . . . . . . . . . . . . . . . 617

D. Gravitational and electric energies in gravitational collapse 619
D.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
D.2. Einstein-Maxwell Equations and conservation laws of two

fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

464



Contents

D.3. A thin shell of spherical capacitor . . . . . . . . . . . . . . . . 625
D.4. Collapse of spherically thin capacitor . . . . . . . . . . . . . . 627
D.5. Collapse of the thin shell with varying electric energy . . . . 630
D.6. Summary and remarks . . . . . . . . . . . . . . . . . . . . . . . 634

E. Einstein-Euler-Heisenberg theory and charged black holes 637
E.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
E.2. The Euler-Heisenberg effective Lagrangian . . . . . . . . . . . 639
E.3. The Einstein-Euler-Heisenberg theory . . . . . . . . . . . . . . 642

E.3.1. B = 0, E 6= 0 or E = 0, B 6= 0 . . . . . . . . . . . . . . . 644
E.3.2. Weak- and strong-field cases . . . . . . . . . . . . . . . 645

E.4. Electrically charged black holes . . . . . . . . . . . . . . . . . . 646
E.5. Magnetically charged black holes . . . . . . . . . . . . . . . . . 652

E.5.1. Weak magnetic field case . . . . . . . . . . . . . . . . . 653
E.5.2. Strong magnetic field case . . . . . . . . . . . . . . . . . 655

E.6. Black holes with electric and magnetic charges . . . . . . . . . 658
E.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Bibliography 663

465





1. Topics

• The three fundamental contributions to the electron-positron pair cre-
ation and annihilation and the concept of critical electric field

• Nonlinear electrodynamics and rate of pair creation

• Pair production and annihilation in QED

• Phenomenology of electron-positron pair creation and annihilation

• Plasma oscillations and radiation in uniform or nonuniform electric
fields, and thermalization of the mildly relativistic pair plasma

• The energy extraction from a black hole by pair productions, and Einstein-
Euler-Heisenberg theory and charged black holes

• Dyadophere of electron-positron pairs and photons formation in gravi-
tational collapses

• Polarization of strong electromagnetic fields and its applications in po-
larizations of laser fields, GRBs and CMB photons, as well as neutrinos

• Pair production and interactions of fields and matter in the cosmology
within the framework of quantum Einstein-Cartan-Maxwell theory

• Semiclassical approach to pair production rate for strong time-dependent
electrical fields with more than one component

• Pair production, ultra-high energy particles, gravitational and electro-
magnetic energies in gravitational collapse or accretion processes

• Pulsating or static strong electromagnetic fields in gravitational collapse
cores and heavy atoms

• The Breit-Wheeler cutoff in high-energy γ-rays and cosmic absorption
(opacity) of ultra high energy particles
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(PUCV), Chile)

• Soroush Shakeri (Isfahan University of Technology, Iran)

• XiaoFeng Yang (Xing Jian Astronomy Observatory, CAS, China)

• David Melon Fukson (Sapienza, Italy)

• Rahim Moradi (ICRANet, Sapienza, Italy)

• Seddigheh Tizchang (IPM, Isfahan University of Technology, Iran)

• Somayye Mahmoudi (Shiraz University, Shiraz, Iran)

• Li Liang (ICRANet, Sapienza Univ., Italy)

• Yen-Chen Chen (ICRANet, Sapienza Univ,Italy)

• Yu Ling Chang (Shanghai Jiaotong Univ., China)

• Takahiro Hayashinaka, (Toyko University, Japan)

• Cheng-Jun Xia (ITP, CAS, and Zhejiang Univ., China)

* passed away

471





3. Brief description

3.1. Abstract

Due to the interaction of physics and astrophysics we are witnessing in these
years a splendid synthesis of theoretical, experimental and observational re-
sults originating from three fundamental physical processes. They were orig-
inally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg,
Euler and Schwinger. For almost seventy years they have all three been fol-
lowed by a continued effort of experimental verification on Earth-based ex-
periments. The Dirac process, e+e− → 2γ, has been by far the most suc-
cessful. It has obtained extremely accurate experimental verification and has
led as well to an enormous number of new physics in possibly one of the
most fruitful experimental avenues by introduction of storage rings in Fras-
cati and followed by the largest accelerators worldwide: DESY, SLAC etc.
The Breit–Wheeler process, 2γ→ e+e−, although conceptually simple, being
the inverse process of the Dirac one, has been by far one of the most difficult
to be verified experimentally. Only recently, through the technology based on
free electron X-ray laser and its numerous applications in Earth-based exper-
iments, some first indications of its possible verification have been reached.
The vacuum polarization process in strong electromagnetic field, pioneered
by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of crit-
ical electric field Ec = m2

e c3/(eh̄). It has been searched without success for
more than forty years by heavy-ion collisions in many of the leading particle
accelerators worldwide.

The novel situation today is that these same processes can be studied on a
much more grandiose scale during the gravitational collapse leading to the
formation of a black hole being observed in Gamma Ray Bursts (GRBs). This
report is dedicated to the scientific race. The theoretical and experimental
work developed in Earth-based laboratories is confronted with the theoreti-
cal interpretation of space-based observations of phenomena originating on
cosmological scales. What has become clear in the last ten years is that all the
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3. Brief description

three above mentioned processes, duly extended in the general relativistic
framework, are necessary for the understanding of the physics of the grav-
itational collapse to a black hole. Vice versa, the natural arena where these
processes can be observed in mutual interaction and on an unprecedented
scale, is indeed the realm of relativistic astrophysics.

We systematically analyze the conceptual developments which have fol-
lowed the basic work of Dirac and Breit–Wheeler. We also recall how the
seminal work of Born and Infeld inspired the work by Sauter, Heisenberg
and Euler on effective Lagrangian leading to the estimate of the rate for the
process of electron–positron production in a constant electric field. In addi-
tion of reviewing the intuitive semi-classical treatment of quantum mechani-
cal tunneling for describing the process of electron–positron production, we
recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and
effective Lagrangian for constant electromagnetic fields. We also review the
electron–positron production in both time-alternating electromagnetic fields,
studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the cor-
responding processes relevant for pair production at the focus of coherent
laser beams as well as electron beam–laser collision. We finally report some
current developments based on the general JWKB approach which allows to
compute the Schwinger rate in spatially varying and time varying electro-
magnetic fields.

We also recall the pioneering work of Landau and Lifshitz, and Racah on
the collision of charged particles as well as experimental success of AdA and
ADONE in the production of electron–positron pairs.

We then turn to the possible experimental verification of these phenomena.
We review: (A) the experimental verification of the e+e− → 2γ process stud-
ied by Dirac. We also briefly recall the very successful experiments of e+e−

annihilation to hadronic channels, in addition to the Dirac electromagnetic
channel; (B) ongoing Earth based experiments to detect electron–positron
production in strong fields by focusing coherent laser beams and by elec-
tron beam–laser collisions; and (C) the multiyear attempts to detect electron–
positron production in Coulomb fields for a large atomic number Z > 137 in
heavy ion collisions. These attempts follow the classical theoretical work of
Popov and Zeldovich, and Greiner and their schools.

We then turn to astrophysics. We first review the basic work on the ener-
getics and electrodynamical properties of an electromagnetic black hole and
the application of the Schwinger formula around Kerr–Newman black holes
as pioneered by Damour and Ruffini. We only focus on black hole masses
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3.1. Abstract

larger than the critical mass of neutron stars, for convenience assumed to
coincide with the Rhoades and Ruffini upper limit of 3.2 M�. In this case
the electron Compton wavelength is much smaller than the spacetime cur-
vature and all previous results invariantly expressed can be applied follow-
ing well established rules of the equivalence principle. We derive the corre-
sponding rate of electron–positron pair production and introduce the concept
of dyadosphere. We review recent progress in describing the evolution of
optically thick electron–positron plasma in presence of supercritical electric
field, which is relevant both in astrophysics as well as ongoing laser beam
experiments. In particular we review recent progress based on the Vlasov-
Boltzmann-Maxwell equations to study the feedback of the created electron–
positron pairs on the original constant electric field. We evidence the exis-
tence of plasma oscillations and its interaction with photons leading to energy
and number equipartition of photons, electrons and positrons. We finally re-
view the recent progress obtained by using the Boltzmann equations to study
the evolution of an electron–positron-photon plasma towards thermal equi-
librium and determination of its characteristic timescales. The crucial differ-
ence introduced by the correct evaluation of the role of two and three body
collisions, direct and inverse, is especially evidenced. We then present some
general conclusions.

The results reviewed in this report are going to be submitted to decisive
tests in the forthcoming years both in physics and astrophysics. To mention
only a few of the fundamental steps in testing in physics we recall the start-
ing of experimental facilities at the National Ignition Facility at the Lawrence
Livermore National Laboratory as well as corresponding French Laser the
Mega Joule project. In astrophysics these results will be tested in galactic
and extragalactic black holes observed in binary X-ray sources, active galac-
tic nuclei, microquasars and in the process of gravitational collapse to a neu-
tron star and also of two neutron stars to a black hole giving origin to GRBs.
The astrophysical description of the stellar precursors and the initial physical
conditions leading to a gravitational collapse process will be the subject of a
forthcoming report. As of today no theoretical description has yet been found
to explain either the emission of the remnant for supernova or the formation
of a charged black hole for GRBs. Important current progress toward the un-
derstanding of such phenomena as well as of the electrodynamical structure
of neutron stars, the supernova explosion and the theories of GRBs will be
discussed in the above mentioned forthcoming report. What is important
to recall at this stage is only that both the supernovae and GRBs processes

475



3. Brief description

are among the most energetic and transient phenomena ever observed in the
Universe: a supernova can reach energy of∼ 1054 ergs on a time scale of a few
months and GRBs can have emission of up to ∼ 1054 ergs in a time scale as
short as of a few seconds. The central role of neutron stars in the description
of supernovae, as well as of black holes and the electron–positron plasma,
in the description of GRBs, pioneered by one of us (RR) in 1975, are widely
recognized. Only the theoretical basis to address these topics are discussed
in the present report.

3.2. The three fundamental contributions to the
electron-positron pair creation and
annihilation and the concept of critical
electric field

The annihilation of electron–positron pair into two photons, and its inverse
process – the production of electron–positron pair by the collision of two pho-
tons were first studied in the framework of quantum mechanics by P.A.M. Dirac
and by G. Breit and J.A. Wheeler in the 1930s (Dirac (1930); Breit and Wheeler
(1934)).

A third fundamental process was pioneered by the work of Fritz Sauter and
Oscar Klein, pointing to the possibility of creating an electron–positron pair
from the vacuum in a constant electromagnetic field. This became known
as the ‘Klein paradox’ and such a process named as vacuum polarization. It
would occur for an electric field stronger than the critical value

Ec ≡
m2

e c3

eh̄
' 1.3 · 1016 V/cm. (3.2.1)

where me, e, c and h̄ are respectively the electron mass and charge, the speed
of light and the Planck’s constant.

The experimental difficulties to verify the existence of such three processes
became immediately clear. While the process studied by Dirac was almost
immediately observed Klemperer (1934) and the electron–positron collisions
became possibly the best tested and prolific phenomenon ever observed in
physics. The Breit–Wheeler process, on the contrary, is still today waiting a
direct observational verification. Similarly the vacuum polarization process
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3.2. The three fundamental contributions to the electron-positron pair
creation and annihilation and the concept of critical electric field

defied dedicated attempts for almost fifty years in experiments in nuclear
physics laboratories and accelerators all over the world, see Section 7 in the
following article.

From the theoretical point of view the conceptual changes implied by these
processes became immediately clear. They were by vastness and depth only
comparable to the modifications of the linear gravitational theory of New-
ton introduced by the nonlinear general relativistic equations of Einstein. In
the work of Euler, Oppenheimer and Debye, Born and his school it became
clear that the existence of the Breit–Wheeler process was conceptually modi-
fying the linearity of the Maxwell theory. In fact the creation of the electron–
positron pair out of the two photons modifies the concept of superposition
of the linear electromagnetic Maxwell equations and impose the necessity to
transit to a nonlinear theory of electrodynamics. In a certain sense the Breit–
Wheeler process was having for electrodynamics the same fundamental role
of Gedankenexperiment that the equivalence principle had for gravitation.
Two different attempts to study these nonlinearities in the electrodynam-
ics were made: one by Born and Infeld Born (1933, 1934); Born and Infeld
(1934) and one by Euler and Heisenberg Heisenberg and Euler (1936). These
works prepared the even greater revolution of Quantum Electro-Dynamics
by Tomonaga Tomonaga (1946), Feynman Feynman (1948, 1949b,a), Schwinger
Schwinger (1948, 1949a,b) and Dyson Dyson (1949a,b).

In Section 3 in the following article we review the fundamental contribu-
tions to the electron–positron pair creation and annihilation and to the con-
cept of the critical electric field. In Section 3.1 of the following article we re-
view the Dirac derivation Dirac (1930) of the electron–positron annihilation
process obtained within the perturbation theory in the framework of rela-
tivistic quantum mechanics and his derivation of the classical formula for the
cross-section σlab

e+e− in the rest frame of the electron

σlab
e+e− = π

(
αh̄

me c

)2

(γ̂− 1)−1
{

γ̂2 + 4γ̂ + 1
γ̂2 − 1

ln[γ̂ + (γ̂2 − 1)1/2]− γ̂ + 3
(γ̂2 − 1)1/2

}
,

where γ̂ ≡ E+/me c2 ≥ 1 is the energy of the positron and α = e2/(h̄c) is
as usual the fine structure constant, and we recall the corresponding formula
for the center of mass reference frame. In article Section 3.2 we recall the
main steps in the classical Breit–Wheeler work Breit and Wheeler (1934) on
the production of a real electron–positron pair in the collision of two photons,
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3. Brief description

following the same method used by Dirac and leading to the evaluation of the
total cross-section σγγ in the center of mass of the system

σγγ =
π

2

(
αh̄

me c

)2

(1− β̂2)
[
2β̂(β̂2− 2)+ (3− β̂4) ln

(1 + β̂

1− β̂

)]
, with β̂ =

c|p|
E

,

where β̂ is the reduced velocity of the electron or the positron. In Section
3.3 of the article we recall the basic higher order processes, compared to the
Dirac and Breit–Wheeler ones, leading to pair creation. In Section 3.4 in the
following review we recall the famous Klein paradox Klein (1929); Sauter
(1931) and the possible tunneling between the positive and negative energy
states leading to the concept of level crossing and pair creation by analogy
to the Gamow tunneling Gamow (1931) in the nuclear potential barrier. We
then turn to the celebrated Sauter work Sauter (1931) showing the possibility
of creating a pair in a uniform electric field E. We recover in Section 3.5.1 of
the review a JWKB approximation in order to reproduce and improve on the
Sauter result by obtaining the classical Sauter exponential term as well as the
prefactor

ΓJWKB

V
' Ds

αE2

2π2h̄
e−πEc/E,

where Ds = 2 for a spin-1/2 particle and Ds = 1 for spin-0, V is the vol-
ume. Finally, in review Section 3.5.2 the case of a simultaneous presence of
an electric and a magnetic field B is presented leading to the estimate of pair
production rate

ΓJWKB

V
' αβε

πh̄
coth

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 1/2 particle

and

ΓJWKB

V
' αβε

2πh̄
sinh−1

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 0 particle,

where

ε ≡
√
(S2 + P2)1/2 + S,

β ≡
√
(S2 + P2)1/2 − S,
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3.3. Nonlinear electrodynamics and rate of pair creation

where the scalar S and the pseudoscalar P are

S ≡ 1
4

FµνFµν =
1
2
(E2 − B2); P ≡ 1

4
Fµν F̃µν = E · B,

where F̃µν ≡ εµνλκFλκ is the dual field tensor.

3.3. Nonlinear electrodynamics and rate of pair
creation

In article Section 4 we first recall the seminal work of Hans Euler Euler (1936)
pointing out for the first time the necessity of nonlinear character of electro-
magnetism introducing the classical Euler Lagrangian

L =
E2 − B2

8π
+

1
α

1
E2

0

[
aE

(
E2 − B2

)2
+ bE (E · B)2

]
,

where
aE = −1/(360π2), bE = −7/(360π2),

a first order perturbation to the Maxwell Lagrangian. In review article Sec-
tion 4.2 we review the alternative theoretical approach of nonlinear electrody-
namics by Max Born Born (1934) and his collaborators, to the more ambitious
attempt to obtain the correct nonlinear Lagrangian of Electro-Dynamics. The
motivation of Born was to attempt a theory free of divergences in the observ-
able properties of an elementary particle, what has become known as ‘unitar-
ian’ standpoint versus the ‘dualistic’ standpoint in description of elementary
particles and fields. We recall how the Born Lagrangian was formulated

L =
√

1 + 2S− P2 − 1,

and one of the first solutions derived by Born and Infeld Born and Infeld
(1934). We also recall one of the interesting aspects of the courageous ap-
proach of Born had been to formulate this Lagrangian within a unified theory
of gravitation and electromagnetism following Einstein program. Indeed, we
also recall the very interesting solution within the Born theory obtained by
Hoffmann Hoffmann (1935); Hoffmann and Infeld (1937). Still in the work of
Born Born (1934) the seminal idea of describing the nonlinear vacuum prop-
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3. Brief description

erties of this novel electrodynamics by an effective dielectric constant and
magnetic permeability functions of the field arisen. We then review in Sec-
tion 4.3.1 of the article the work of Heisenberg and Euler Heisenberg and
Euler (1936) adopting the general approach of Born and generalizing to the
presence of a real and imaginary part of the electric permittivity and magnetic
permeability. They obtain an integral expression of the effective Lagrangian
given by

∆Leff =
e2

16π2h̄c

∫ ∞

0
e−s ds

s3

[
is2 ĒB̄

cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2) + c.c.
cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2)− c.c.

+

(
m2

e c3

eh̄

)2

+
s2

3
(|B̄|2 − |Ē|2)

]
,

where Ē, B̄ are the dimensionless reduced fields in the unit of the critical field
Ec,

Ē =
|E|
Ec

, B̄ =
|B|
Ec

.

obtaining the real part and the crucial imaginary term which relates to the
pair production in a given electric field. It is shown how these results give
as a special case the previous result obtained by Euler (Eq. (4.1.3) in the re-
view). In Section 4.3.2 of the following article the work by Weisskopf Weis-
skopf (1936) working on a spin-0 field fulfilling the Klein–Gordon equation,
in contrast to the spin 1/2 field studied by Heisenberg and Euler, confirms
the Euler-Heisenberg result. Weisskopf obtains explicit expression of pair cre-
ation in an arbitrary strong magnetic field and in an electric field described
by Ē and B̄ expansion.

For the first time Heisenberg and Euler provided a description of the vac-
uum properties by the characteristic scale of strong field Ec and the effective
Lagrangian of nonlinear electromagnetic fields. In 1951, Schwinger Schwinger
(1951, 1954a,b) made an elegant quantum field theoretic reformulation of this
discovery in the QED framework. This played an important role in under-
standing the properties of the QED theory in strong electromagnetic fields.
The QED theory in strong coupling regime, i.e., in the regime of strong elec-
tromagnetic fields, is still a vast arena awaiting for experimental verification
as well as of further theoretical understanding.
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3.4. Pair production and annihilation in QED

3.4. Pair production and annihilation in QED

In the review article in Section 5 after recalling some general properties of
QED in Section 5.1 and some basic processes in Section 5.2 we proceed to the
consideration of the Dirac and the Breit–Wheeler processes in QED in Secton
5.3. Then we discuss some higher order processes, namely double pair pro-
duction in Section 5.4, electron-nucleus bremsstrahlung and pair production
by a photon in the field of a nucleus in Section 5.5, and finally pair production
by two ions in Section 5.6. In Section 5.7 the classical result for the vacuum
to vacuum decay via pair creation in uniform electric field by Schwinger is
recalled

Γ
V

=
αE2

π2

∞

∑
n=1

1
n2 exp

(
−nπEc

E

)
.

This formula generalizes and encompasses the previous results reviewed in
our report: the JWKB results, discussed in Section 3.5, and the Sauter expo-
nential factor (Eq. (3.5.11) in the review), and the Heisenberg-Euler imagi-
nary part of the effective Lagrangian. We then recall the generalization of
this formula to the case of a constant electromagnetic fields. Such results
were further generalized to spatially nonuniform and time-dependent elec-
tromagnetic fields by Nikishov (1970), Vanyashin and Terent’ev (1965), Popov
(1971, 1972b, 2001a), Narozhnyi and Nikishov (1970) and Batalin and Frad-
kin (1970a). We then conclude this argument by giving the real and imaginary
parts for the effective Lagrangian for arbitrary constant electromagnetic field
recently published by Ruffini and Xue (2006). This result generalizes the pre-
vious result obtained by Weisskopf in strong fields. In weak field it gives the
Euler-Heisenberg effective Lagrangian. As we will see in the Section 7.2 of the
review much attention has been given experimentally to the creation of pairs
in the rapidly changing electric fields. A fundamental contribution in this
field studying pair production rates in an oscillating electric field was given
by Brezin and Itzykson (1970) and we recover in review Section 5.8 their main
results which apply both to the case of bosons and fermions. We recall how
similar results were independently obtained two years later by Popov Popov
(1972a). In Section 5.10 of the article we recall an alternative physical process
considering the quantum theory of the interaction of free electron with the
field of a strong electromagnetic waves: an ultrarelativistic electron absorbs
multiple photons and emits only a single photon in the reaction Bula et al.
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(1996):
e + nω → e′ + γ.

This process appears to be of the great relevance as we will see in the next Sec-
tion for the nonlinear effects originating from laser beam experiments. Partic-
ularly important appears to be the possibility outlined by Burke et al. (1997)
that the high-energy photon γ created in the first process propagates through
the laser field, it interacts with laser photons nω to produce an electron–
positron pair

γ + nω → e+ + e−.

We also refer to the papers by Nikishov and Ritus (1964a,b, 1965, 1967, 1979);
Narozhnyǐ et al. (1965) studying the dependence of this process on the status
of the polarization of the photons.

We point out the great relevance of departing from the case of the uni-
form electromagnetic field originally considered by Sauter, Heisenberg and
Euler, and Schwinger. We also recall some of the classical works of Brezin
and Itzykson and Popov on time varying fields. The space variation of the
field was also considered in the classical papers of Nikishov and Narozhny
as well as in the work of Wang and Wong. Finally, we recall the work of
Khriplovich Khriplovich (2000) studying the vacuum polarization around a
Reissner–Nordström black hole. A more recent approach using the worldline
formalism, sometimes called the string-inspired formalism, was advanced by
Dunne and Schubert Schubert (2001); Dunne and Schubert (2005a).

3.5. Phenomenology of electron-positron pair
creation and annihilation

In Section 7 of the review we focus on the phenomenology of electron–positron
pair creation and annihilation experiments. There are three different aspects
which are examined: the verification of the process (3.0.1) initially studied by
Dirac, the process (3.14.1) studied by Breit and Wheeler, and then the clas-
sical work of vacuum polarization process around a supercritical nucleus,
following the Sauter, Euler, Heisenberg and Schwinger work. We first recall
in Section 7.1 how the process (3.0.1) predicted by Dirac was almost imme-
diately discovered by Klemperer Klemperer (1934). Following this discov-
ery the electron–positron collisions have become possibly the most prolific
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field of research in the domain of particle physics. The crucial step exper-
imentally was the creation of the first electron–positron collider the “Anello
d’Accumulazione” (AdA) was built by the theoretical proposal of Bruno Tou-
schek in Frascati (Rome) in 1960 Bernardini (2004). Following the success
of AdA (luminosity ∼ 1025/(cm2 sec), beam energy ∼0.25GeV), it was de-
cided to build in the Frascati National Laboratory a storage ring of the same
kind, Adone. Electron-positron colliders have been built and proposed for
this purpose all over the world (CERN, SLAC, INP, DESY, KEK and IHEP).
The aim here is just to recall the existence of this enormous field of research
which appeared following the original Dirac idea. In the review the main
cross-sections (7.1.1) and (7.1.2) are recalled and the diagram (Fig. 7.1) sum-
marizing this very great success of particle physics is presented. While the
Dirac process (3.0.1) has been by far one of the most prolific in physics, the
Breit–Wheeler process (3.14.1) has been one of the most elusive for direct ob-
servations. In Earth-bound experiments the major effort today is directed
to evidence this phenomenon in very strong and coherent electromagnetic
field in lasers. In this process collision of many photons may lead in the
future to pair creation. This topic is discussed in Section 7.2. Alternative ev-
idence for the Breit–Wheeler process can come from optically thick electron–
positron plasma which may be created either in the future in Earth-bound
experiments, or currently observed in astrophysics, see Section 10. One ad-
ditional way to probe the existence of the Breit–Wheeler process is by estab-
lishing in astrophysics an upper limits to observable high-energy photons, as
a function of distance, propagating in the Universe as pioneered by Nikishov
Nikishov (1961), see Section 7.4. We then recall in Section 7.3 how the crucial
experimental breakthrough came from the idea of John Madey Deacon et al.
(1977) of self-amplified spontaneous emission in an undulator, which results
when charges interact with the synchrotron radiation they emit (Tremaine
et al. (2002)). Such X-ray free electron lasers have been constructed among
others at DESY and SLAC and focus energy onto a small spot hopefully with
the size of the X-ray laser wavelength λ ' O(0.1)nm (Nuhn and Pellegrini
(2000)), and obtain a very large electric field E ∼ 1/λ, much larger than those
obtainable with any optical laser of the same power. This technique can be
used to achieve a very strong electric field near to its critical value for observ-
able electron–positron pair production in vacuum. No pair can be created by
a single laser beam. It is then assumed that each X-ray laser pulse is split into
two equal parts and recombined to form a standing wave with a frequency
ω. We then recall how for a laser pulse with wavelength λ about 1µm and
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the theoretical diffraction limit σlaser ' λ being reached, the critical intensity
laser beam would be

Ic
laser =

c
4π

E2
c ' 4.6 · 1029W/cm2.

In review Section 7.2.1 we recall the theoretical formula for the probability
of pair production in time-alternating electric field in two limiting cases of
large frequency and small frequency. It is interesting that in the limit of large
field and small frequency the production rate approach the one of the Sauter,
Heisenberg, Euler and Schwinger, discussed in Section 5. In the following
Section 7.2.2 we recall the actually reached experimental limits quoted by
Ringwald Ringwald (2001) for a X-ray laser and give a reference to the rele-
vant literature. In Section 7.2.3 we summarize some of the most recent the-
oretical estimates for pair production by a circularly polarized laser beam
by Narozhny, Popov and their collaborators. In this case the field invariants
(3.5.23) are not vanishing and pair creation can be achieved by a single laser
beam. They computed the total number of electron–positron pairs produced
as a function of intensity and focusing parameter of the laser. Particularly
interesting is their analysis of the case of two counter-propagating focused
laser pulses with circular polarizations, pair production becomes experimen-
tally observable when the laser intensity Ilaser ∼ 1026W/cm2 for each beam,
which is about 1 ∼ 2 orders of magnitude lower than for a single focused
laser pulse, and more than 3 orders of magnitude lower than the critical in-
tensity (7.2.4). Equally interesting are the considerations which first appear
in treating this problem that the back reaction of the pairs created on the field
has to be taken into due account. We give the essential references and we will
see in Section 9 how indeed this feature becomes of paramount importance in
the field of astrophysics. We finally review in Section 7.2.4 the technological
situation attempting to increase both the frequency and the intensity of laser
beams.

The difficulty of evidencing the Breit–Wheeler process even when the high-
energy photon beams have a center of mass energy larger than the energy-
threshold 2mec2 = 1.02 MeV was clearly recognized since the early days. We
discuss the crucial role of the effective nonlinear terms originating in strong
electromagnetic laser fields: the interaction needs not to be limited to initial
states of two photons Reiss (1962, 1971). A collective state of many interact-
ing laser photons occurs. We turn then in Section 7.3 of the review to an even
more complex and interesting procedure: the interaction of an ultrarelativis-
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tic electron beam with a terawatt laser pulse, performed at SLAC Kotseroglou
et al. (1996), when strong electromagnetic fields are involved. A first nonlin-
ear Compton scattering process occurs in which the ultrarelativistic electrons
absorb multiple photons from the laser field and emit a single photon via
the process (5.9.1). The theory of this process has been given in Section 5.10.
The second is a drastically improved Breit–Wheeler process (5.9.2) by which
the high-energy photon γ, created in the first process, propagates through
the laser field and interacts with laser photons nω to produce an electron–
positron pair Burke et al. (1997). In Section 7.3.1 we describe the status of
this very exciting experiments which give the first evidence for the observa-
tion in the laboratory of the Breit–Wheeler process although in a somewhat
indirect form. Having determined the theoretical basis as well as attempts
to verify experimentally the Breit–Wheeler formula we turn in Section 7.4 to
a most important application of the Breit–Wheeler process in the framework
of cosmology. As pointed out by Nikishov Nikishov (1961) the existence of
background photons in cosmology puts a stringent cutoff on the maximum
trajectory of the high-energy photons in cosmology.

Having reviewed both the theoretical and observational evidence of the
Dirac and Breit–Wheeler processes of creation and annihilation of electron–
positron pairs we turn then to one of the most conspicuous field of theoretical
and experimental physics dealing with the process of electron–positron pair
creation by vacuum polarization in the field of a heavy nuclei. This topic has
originated one of the vastest experimental and theoretical physics activities
in the last forty years, especially by the process of collisions of heavy ions.
We first review in Section 7.5 of the article the Z = 137 catastrophe, a collapse
to the center, in semi-classical approach, following the Pomeranchuk work
Pomeranchuk and Smorodinskii (1945) based on the imposing the quantum
conditions on the classical treatment of the motion of two relativistic parti-
cles in circular orbits. We then proceed showing in Section 7.5.3 how the
introduction of the finite size of the nucleus, following the classical work of
Popov and Zeldovich Zeldovich and Popov (1971), leads to the critical charge
of a nucleus of Zcr = 173 above which a bare nucleus would lead to the level
crossing between the bound state and negative energy states of electrons in
the field of a bare nucleus. We then review in Section 7.5.5 the recent theoret-
ical progress in analyzing the pair creation process in a Coulomb field, taking
into account radial dependence and time variability of electric field. We fi-
nally recall in Section 7.6 the attempt to use heavy-ion collisions to form tran-
sient superheavy “quasimolecules”: a long-lived metastable nuclear complex
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with Z > Zcr. It was expected that the two heavy ions of charges respectively
Z1 and Z2 with Z1 + Z2 > Zcr would reach small inter-nuclear distances well
within the electron’s orbiting radii. The electrons would not distinguish be-
tween the two nuclear centers and they would evolve as if they were bounded
by nuclear “quasimolecules” with nuclear charge Z1 + Z2. Therefore, it was
expected that electrons would evolve quasi-statically through a series of well
defined nuclear “quasimolecules” states in the two-center field of the nuclei
as the inter-nuclear separation decreases and then increases again. When
heavy-ion collision occurs the two nuclei come into contact and some deep
inelastic reaction occurs determining the duration ∆ts of this contact. Such
“sticking time” is expected to depend on the nuclei involved in the reac-
tion and on the beam energy. Theoretical attempts have been proposed to
study the nuclear aspects of heavy-ion collisions at energies very close to
the Coulomb barrier and search for conditions, which would serve as a trig-
ger for prolonged nuclear reaction times, to enhance the amplitude of pair
production. The sticking time ∆ts should be larger than 1 ∼ 2 · 10−21 sec
Greiner and Reinhardt (1999) in order to have significant pair production.
Up to now no success has been achieved in justifying theoretically such a
long sticking time. In reality the characteristic sticking time has been found
of the order of ∆t ∼ 10−23 sec, hundred times shorter than the needed to
activate the pair creation process. We finally recall in Section 7.6.2 of the re-
view the Darmstadt-Brookhaven dialogue between the Orange and the Epos
groups and the Apex group at Argonne in which the claim for discovery of
electron–positron pair creation by vacuum polarization in heavy-ion colli-
sions was finally retracted. Out of the three fundamental processes addressed
in this report, the Dirac electron–positron annihilation and the Breit–Wheeler
electron–positron creation from two photons have found complete theoretical
descriptions within Quantum Electro-Dynamics. The first one is very likely
the best tested process in physical science, while the second has finally ob-
tained the first indirect experimental evidence. The third process, the one of
the vacuum polarization studied by Sauter, Euler, Heisenberg and Schwinger,
presents in Earth-bound experiments presents a situation “terra incognita”.
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3.6. Plasma oscillations and radiation in uniform or
nonuniform electric fields, and thermalization
of the mildly relativistic pair plasma

The conditions encountered in the vacuum polarization process around black
holes lead to a number of electron–positron pairs created of the order of 1060

confined in the dyadosphere volume, of the order of a few hundred times
to the horizon of the black hole. Under these conditions the plasma is ex-
pected to be optically thick and is very different from the nuclear collisions
and laser case where pairs are very few and therefore optically thin. We turn
then in Section 9, to discuss a new phenomenon: the plasma oscillations,
following the dynamical evolution of pair production in an external electric
field close to the critical value. In particular, we will examine: (i) the back
reaction of pair production on the external electric field; (ii) the screening
effect of pairs on the electric field; (iii) the motion of pairs and their interac-
tions with the created photon fields. In review Secs. 9.1 and 9.2, we review
semi-classical and kinetic theories describing the plasma oscillations using
respectively the Dirac-Maxwell equations and the Boltzmann-Vlasov equa-
tions. The electron–positron pairs, after they are created, coherently oscillate
back and forth giving origin to an oscillating electric field. The oscillations
last for at least a few hundred Compton times. We review the damping due to
the quantum decoherence. The energy from collective motion of the classical
electric field and pairs flows to the quantum fluctuations of these fields. This
process is quantitatively discussed by using the quantum Boltzmann-Vlasov
equation in Sections 9.4 and 9.5. The damping due to collision decoherence is
quantitatively discussed in Sections 9.6 and 9.7 by using Boltzmann-Vlasov
equation with particle collisions terms. This damping determines the energy
flows from collective motion of the classical electric field and pairs to the
kinetic energy of non-collective motion of particles of these fields due to col-
lisions. In Section 9.7, we particularly address the study of the influence of
the collision processes e+e− � γγ on the plasma oscillations in supercritical
electric field Ruffini et al. (2003b). It is shown that the plasma oscillation is
mildly affected by a small number of photons creation in the early evolution
during a few hundred Compton times (see Fig. 9.4 of the review). In the later
evolution of 103−4 Compton times, the oscillating electric field is damped to
its critical value with a large number of photons created. An equipartition of
number and energy between electron–positron pairs and photons is reached
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(see Fig. 9.4). In Section 9.8, we introduce an approach based on the fol-
lowing three equations: the number density continuity equation, the energy-
momentum conservation equation and the Maxwell equations. We describe
the plasma oscillation for both overcritical electric field E > Ec and under-
critical electric field E < Ec Ruffini et al. (2007b). In additional of reviewing
the result well known in the literature for E > Ec we review some novel re-
sult for the case E < Ec. It was traditionally assumed that electron–positron
pairs, created by the vacuum polarization process, move as charged particles
in external uniform electric field reaching arbitrary large Lorentz factors. It
is reviewed how recent computations show the existence of plasma oscilla-
tions of the electron–positron pairs also for E . Ec. For both cases we quote
the maximum Lorentz factors γmax reached by the electrons and positrons as
well as the length of oscillations. Two specific cases are given. For E0 = 10Ec
the length of oscillations 10 h̄/(mec), and E0 = 0.15Ec the length of oscilla-
tions 107 h̄/(mec). We also review the asymptotic behavior in time, t → ∞,
of the plasma oscillations by the phase portrait technique. Finally we review
some recent results which differentiate the case E > Ec from the one E < Ec
with respect to the creation of the rest mass of the pair versus their kinetic
energy. For E > Ec the vacuum polarization process transforms the electro-
magnetic energy of the field mainly in the rest mass of pairs, with moderate
contribution to their kinetic energy.

Plasma oscillations and radiation in nonuniform electric fields

We also study electron-positron pair oscillation in spatially inhomogeneous
and bound electric fields by integrating the equations of energy-momentum
and particle-number conservations and Maxwell equations. The space and
time evolutions of the pair-induced electric field, electric charge- and current-
densities are calculated. The results show non-vanishing electric charge-den-
sity and the propagation of pair-induced electric fields, that are different from
the case of homogeneous and unbound electric fields. The space and time
variations of pair-induced electric charges and currents emit an electromag-
netic radiation. We obtain the narrow spectrum and intensity of this radi-
ation, whose peak ωpeak locates in the region around 4 keV for electric field
strength∼ Ec. We discuss their relevances to both the laboratory experiments
for electron and positron pair-productions and the astrophysical observations
of compact stars with an electromagnetic structure.

The origin of electron-positron pairs being created strong electric field and
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their oscillations has been considered in Ruffini et al. (2007b). There it was
shown that plasma oscillations occur not only for overcritical electric field,
but also for undercritical electric field, provided the electric field is main-
tained on spatial distances larger than the distance of oscillations determined
explicitly in Ruffini et al. (2007b).

In the paper by Han et al. (2010) the spectrum of electromagnetic radia-
tion seen by far observer for initial phase of oscillations has been computed.
It was shown there that the spectrum contain a narrow feature which corre-
sponds to the frequency of plasma oscillations. We revisited the approach of
Ruffini et al. (2007b) and showed that for the case of uniform external electric
field it is possible to reduce the system of four first order ordinary differential
equations governing the dynamics of particle number density, energy den-
sity, momentum and electric field to just one second order equation.

Then in the paper by Han et al. (2010); Benedetti et al. (2011) we analyzed
the frequency of oscillations, and found that the frequency of oscillations
coincides up to a factor close to unity with the plasma frequency, which is
strongly time dependent due to pair creation process. Analytical arguments
suggest that the frequency of oscillations should asymptotically reach the
plasma frequency, and this fact has been demonstrated. The results of this
work allow simple estimation of the frequency of plasma oscillations, and
then of the spectrum of electromagnetic radiation generated by these oscilla-
tions. For the details of this parts, see Appendex B.

Thermalization of the mildly relativistic pair plasma

We then turn in Section 10 of the review to the last physical process needed
in ascertaining the reaching of equilibrium of an optically thick electron–
positron plasma. The average energy of electrons and positrons we illustrate
is 0.1 < ε < 10 MeV. These bounds are necessary from the one hand to
have significant amount of electron–positron pairs to make the plasma opti-
cally thick, and from the other hand to avoid production of other particles
such as muons. As we will see in the next report these are indeed the rel-
evant parameters for the creation of ultrarelativistic regimes to be encoun-
tered in pair creation process during the formation phase of a black hole.
We then review the problem of evolution of optically thick, nonequilibrium
electron–positron plasma, towards an equilibrium state, following Aksenov
et al. (2007, 2008). These results have been mainly obtained by two of us
(RR and GV) in recent publications and all relevant previous results are also
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reviewed in this Section 10. We have integrated directly relativistic Boltz-
mann equations with all binary and triple interactions between electrons,
positrons and photons two kinds of equilibrium are found: kinetic and ther-
mal ones. Kinetic equilibrium is obtained on a timescale of few (σTn±c)−1,
where σT and n± are Thomson’s cross-section and electron–positron concen-
trations respectively, when detailed balance is established between all binary
interactions in plasma. Thermal equilibrium is reached on a timescale of few
(ασTn±c)−1, when all binary and triple, direct and inverse interactions are
balanced. In Section 10.1 basic plasma parameters are illustrated. The com-
putational scheme as well as the discretization procedure are discussed in
Section 10.2. Relevant conservation laws are given in Section 10.3. Details
on binary interactions, consisting of Compton, Møller and Bhabha scatter-
ings, Dirac pair annihilation and Breit–Wheeler pair creation processes, and
triple interactions, consisting of relativistic bremsstrahlung, double Compton
process, radiative pair production and three photon annihilation process, are
presented in Section 10.5 and 10.6, respectively. In Section 10.5 collisional
integrals with binary interactions are computed from first principles, using
QED matrix elements. In Section 10.7 Coulomb scattering and the corre-
sponding cutoff in collisional integrals are discussed. Numerical results are
presented in Section 10.8 where the time dependence of energy and number
densities as well as chemical potential and temperature of electron–positron-
photon plasma is shown, together with particle spectra. The most interest-
ing result of this analysis is to have differentiate the role of binary and triple
interactions. The detailed balance in binary interactions following the classi-
cal work of Ehlers Ehlers (1973) leads to a distribution function of the form
of the Fermi-Dirac for electron–positron pairs or of the Bose-Einstein for the
photons. This is the reason we refer in the text to such conditions as the
Ehlers equilibrium conditions. The crucial role of the direct and inverse three-
body interactions is well summarized in fig. 10.1, panel A from which it is
clear that the inverse three-body interactions are essential in reaching thermal
equilibrium. If the latter are neglected, the system deflates to the creation of
electron–positron pairs all the way down to the threshold of 0.5MeV. This last
result which is referred as the Cavallo–Rees scenario Cavallo and Rees (1978)
is simply due to improper neglection of the inverse triple reaction terms (see
Appendix 10).
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3.7. The energy extraction from a black hole by
pair-productions, and
Einstein-Euler-Heisenberg theory and charged
black holes

We turn then to astrophysics, where, in the process of gravitational collapse
to a black hole and in its outcomes these three processes will be for the first
time verified on a much larger scale, involving particle numbers of the or-
der of 1060, seeing both the Dirac process and the Breit–Wheeler process
at work in symbiotic form and electron–positron plasma created from the
“blackholic energy” during the process of gravitational collapse. It is becom-
ing more and more clear that the gravitational collapse process to a Kerr–
Newman black hole is possibly the most complex problem ever addressed
in physics and astrophysics. What is most important for this report is that
it gives for the first time the opportunity to see the above three processes
simultaneously at work under ultrarelativistic special and general relativis-
tic regimes. The process of gravitational collapse is characterized by the
timescale ∆tg = GM/c3 ' 5 · 10−6M/M� sec and the energy involved are
of the order of ∆E = 1054M/M� ergs. It is clear that this is one of the
most energetic and most transient phenomena in physics and astrophysics
and needs for its correct description such a highly time varying treatment.
Our approach in Section 8 is to gain understanding of this process by sep-
arating the different components and describing 1) the basic energetic pro-
cess of an already formed black hole, 2) the vacuum polarization process of
an already formed black hole, 3) the basic formula of the gravitational col-
lapse recovering the Tolman-Oppenheimer-Snyder solutions and evolving to
the gravitational collapse of charged and uncharged shells. This will allow
among others to obtain a better understanding of the role of irreducible mass
of the black hole and the maximum blackholic energy extractable from the
gravitational collapse. We will as well address some conceptual issues be-
tween general relativity and thermodynamics which have been of interest to
theoretical physicists in the last forty years. Of course in these brief chap-
ter we will be only recalling some of these essential themes and refer to the
literature where in-depth analysis can be found. In Section 8.1 we recall the
Kerr–Newman metric and the associated electromagnetic field. We then re-
call the classical work of Carter Carter (1968) integrating the Hamilton-Jacobi
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equations for charged particle motions in the above given metric and elec-
tromagnetic field. We then recall in Section 8.2 the introduction of the ef-
fective potential techniques in order to obtain explicit expression for the tra-
jectory of a particle in a Kerr–Newman geometry, and especially the intro-
duction of the reversible–irreversible transformations which lead then to the
Christodoulou-Ruffini mass formula of the black hole

M2c4 =

(
Mirc2 +

c2Q2

4GMir

)2

+
L2c8

4G2M2
ir

,

where Mir is the irreducible mass of a black hole, Q and L are its charge and
angular momentum. We then recall in article Section 8.3 the positive and neg-
ative root states of the Hamilton–Jacobi equations as well as their quantum
limit. We finally introduce in Section 8.4 the vacuum polarization process
in the Kerr–Newman geometry as derived by Damour and Ruffini Damour
and Ruffini (1975) by using a spatially orthonormal tetrad which made the
application of the Schwinger formalism in this general relativistic treatment
almost straightforward. We then recall in Section 8.5 the definition of a dya-
dosphere in a Reissner–Nordström geometry, a region extending from the
horizon radius

r+ = 1.47 · 105µ(1 +
√

1− ξ2) cm

out to an outer radius

r? =
(
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)1/2 (GM
c2

)1/2(mp
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)1/2( e
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)1/2( Q√
GM

)1/2

=

= 1.12 · 108√µξ cm,

where the dimensionless mass and charge parameters µ = M
M� , ξ = Q

(M
√

G)
≤

1. In Section 8.6 of the review the definition of a dyadotorus in a Kerr–
Newman metric is recalled. We have focused on the theoretically well de-
fined problem of pair creation in the electric field of an already formed black
hole. Having set the background for the blackholic energy we recall some
fundamental features of the dynamical process of the gravitational collapse.
In Section 8.7 we address some specific issues on the dynamical formation of
the black hole, recalling first the Oppenheimer-Snyder solution Oppenheimer
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and Snyder (1939) and then considering its generalization to the charged non-
rotating case using the classical work of W. Israel and V. de la Cruz Israel
(1966); De la Cruz and Israel (1967). In Section 8.7.1 we recover the classi-
cal Tolman-Oppenheimer-Snyder solution in a more transparent way than it
is usually done in the literature. In the Section 8.7.2 we are studying using
the Israel-de la Cruz formalism the collapse of a charged shell to a black hole
for selected cases of a charged shell collapsing on itself or collapsing in an
already formed Reissner–Nordström black hole. Such elegant and powerful
formalism has allowed to obtain for the first time all the analytic equations
for such large variety of possibilities of the process of the gravitational col-
lapse. The theoretical analysis of the collapsing shell considered in the pre-
vious section allows to reach a deeper understanding of the mass formula
of black holes at least in the case of a Reissner–Nordström black hole. This
allows as well to give in Section 8.8 of the review an expression of the irre-
ducible mass of the black hole only in terms of its kinetic energy of the initial
rest mass undergoing gravitational collapse and its gravitational energy and
kinetic energy T+ at the crossing of the black hole horizon r+

Mir = M0 −
M2

0
2r+ + T+.

Similarly strong, in view of their generality, are the considerations in Sec-
tion 8.8.2 which indicate a sharp difference between the vacuum polarization
process in an overcritical E � Ec and undercritical E � Ec black hole. For
E � Ec the electron–positron plasma created will be optically thick with av-
erage particle energy 10 MeV. For E� Ec the process of the radiation will be
optically thin and the characteristic energy will be of the order of 1021 eV. This
argument will be further developed in a forthcoming report. In Section 8.9
we show how the expression of the irreducible mass obtained in the previ-
ous Section leads to a theorem establishing an upper limit to 50% of the total
mass energy initially at rest at infinity which can be extracted from any pro-
cess of gravitational collapse independent of the details. These results also
lead to some general considerations which have been sometimes claimed in
reconciling general relativity and thermodynamics.

Einstein-Euler-Heisenberg theory and charged black holes

Taking into account the Euler-Heisenberg effective Lagrangian of one-loop
nonperturbative quantum electrodynamics (QED) contributions, we formu-
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late the Einstein-Euler-Heisenberg theory and study the solutions of nonro-
tating black holes with electric and magnetic charges in spherical geometry.
In the limit of strong and weak electromagnetic fields of black holes, we calcu-
late the black hole horizon radius, area, and total energy up to the leading or-
der of QED corrections and discuss the black hole irreducible mass, entropy,
and maximally extractable energy as well as the Christodoulou-Ruffini mass
formula. We find that these black hole quantities receive the QED corrections,
in comparison with their counterparts in the Reissner-Nordström solution.
The QED corrections show the screening effect on black hole electric charges
and the paramagnetic effect on black hole magnetic charges. As a result, the
black hole horizon area, irreducible mass, and entropy increase; however, the
black hole total energy and maximally extractable energy decrease, compared
with the Reissner-Nordström solution. In addition, we show that the condi-
tion for extremely charged black holes is modified due to the QED correction.
The reason is that the QED vacuum polarization gives rise to the screening ef-
fect on the black hole electric charge and the paramagnetic effect on the black
hole magnetic charge. It is mentioned that in the Einstein-Euler-Heisenberg
theory, it is worthwhile to study Kerr-Newman black holes, whose electric
field E and magnetic field B are determined by the black hole mass M, charge
Q, and angular momentum a Newman et al. (1965). In addition, it will be
interesting to study the QED corrections in black hole physics by taking into
account the one-loop photon-graviton amplitudes of the effective Lagrangian
(E.3.11) Drummond and Hathrell (1980) and its generalizations Gilkey (1975);
Bastianelli et al. (2000); Barvinsky and Vilkovisky (1985); Gusev (2009); Bas-
tianelli et al. (2009). We leave these studies for future work. For the details of
this part, see Appendix E.

3.8. Dyadosphere of electron-positron pairs and
photons formed in gravitational collapses

In Refs. Ruffini et al. (2003b,a), first initiating with supercritical electric fields
on the core surface, we study electron-positron pair production and oscilla-
tion together with gravitational collapse. We use the exact solution of Einstein–
Maxwell equations describing the gravitational collapse of a thin charged
shell. Recall that the region of space–time external to the core is Reissner–
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Figure 3.1.: In left figure: We plot for t < 150τC, from the top to the bottom
panel: a) electromagnetic field strength; b) electrons energy density; c) elec-
trons number density; d) photons energy density; e) photons number density
as functions of time. The right figure: We plot for t < 7000τC as the same
quantities as in left.
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Figure 3.2.: Collapse velocity of a charged stellar core of mass M0 = 20M�
as measured by static observers as a function of the radial coordinate of
the core surface. Dyadosphere radii for different charge to mass ratios
(ξ = 10−3, 10−2, 10−1) are indicated in the plot together with the correspond-
ing velocity.

Nordström with line element

ds2 = −α2dt2 + α−2dr2 + r2dΩ2 (3.8.1)

in Schwarzschild like coordinate (t, r, θ, φ) , where α2 = 1− 2M/r + Q2/r2;
M is the total energy of the core as measured at infinity and Q is its total
charge. Let us label with r0 and t0 the radial and time–like coordinate of the
core surface, and the equation of motion of the core is Israel (1966); De la Cruz
and Israel (1967); Bekenstein (1971):

dr0
dt0

= − α2(r0)
Ω(r0)

√
Ω2 (r0)− α2 (r0), Ω (r0) =

M
M0
− M2

0+Q2

2M0r0
; (3.8.2)

M0 being the rest mass of the shell. The analytical solutions of Eq. (3.8.2) were
found t0 = t0 (r0) , and the core collapse speed V∗(r0) as a function of r0 is
plotted in Fig. 3.2, where we indicate V∗ds ≡ V∗|r0=rds as the velocity of the
core at the Dyadosphere radius rds.

We now turn to the pair creation and plasma oscillation taking place in the
classical electric and gravitational fields during the gravitational collapse of
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Figure 3.3.: In left figure: Electrons elongation as function of time in the case
r = rds/3. The oscillations are damped in a time of the order of 103 − 104τC.
The right figure: Electrons mean velocity as a function of the elongation dur-
ing the first half oscillation. The plot summarize the oscillatory behaviour: as
the electrons move, the mean velocity grows up from 0 to the speed of light
and then falls down at 0 again.

a charged overcritical stellar core. As already show in Fig. 3.1, (i) the electric
field oscillates with lower and lower amplitude around 0; (ii) electrons and
positrons oscillates back and forth in the radial direction with ultra relativistic
velocity, as result the oscillating charges are confined in a thin shell whose
radial dimension is given by the elongation ∆l of the oscillations. In Fig. 3.3,
we plot the elongation ∆l as a function of time and electron mean velocity v as
a function of the elongation during the first half period ∆t of oscillation. This
shows precisely the characteristic time ∆t and size ∆l of charge confinement
due to plasma oscillation.

In the time ∆t the charge oscillations prevent a macroscopic current from
flowing through the surface of the core. Namely in the time ∆t the core moves
inwards of

∆r∗ = V∗∆t� ∆l. (3.8.3)

Since the plasma charges are confined within a region of thickness ∆l, due to
Eq. (3.8.3) no charge “reaches” the surface of the core which can neutralize it
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and the initial charge of the core remains untouched. For example in the case
M = 20M�, ξ = 0.1, and r = 1

3rds, we have

∆l . 30λC, ∆t ∼ 103τC, V∗ ∼ 0.3c, (3.8.4)

and ∆r∗ � ∆l. We conclude that the core is not discharged or, in other words,
the electric charge of the core is stable against vacuum polarization and elec-
tric field E = Q/r2

0 is amplified during the gravitational collapse. As a conse-
quence, an enormous amount (N ∼ Qrds/eλC as claimed in Refs. Preparata
et al. (1998, 2003); Ruffini and Xue (2008b,a)) of pairs is left behind the col-
lapsing core and Dyadosphere Ruffini and Xue (2008a); Preparata et al. (1998,
2003) is formed.

Recently, we study this pair-production process in a neutral collapsing
core, rather than a charged collapsing core, as described above. Neutral
stellar cores at or over nuclear densities are described by positive charged
baryon cores and negative charged electron gas since they possess different
masses and interactions (equations of state). In static case, the equilibrium
configuration of positive charged baryon cores and negative charged electron
gas described by Thomas-Fermi equation shows an overcritical electric field
on the surface of baryon core. Based on such an initial configuration and
a simplified model of spherically collapsing cores, we approximately inte-
grate the Einstein-Maxwell equations and the equations for the particle num-
ber and energy-momentum conservations. It is shown that in gravitational
core-collapse, such an electric field dynamically evolves in the space-time and
electron-positron pairs are produced and gravitational energy is converted to
electron-positron energy. This important result has been published in Physics
Review D. The details on this topic can be found in Appendix C.

The e+e− pairs generated by the vacuum polarization process around the
core are entangled in the electromagnetic field Ruffini et al. (2003a), and ther-
malize in an electron–positron–photon plasma on a time scale∼ 104τC Ruffini
et al. (2003b) (see Fig. 3.1). As soon as the thermalization has occurred, the hy-
drodynamic expansion of this electrically neutral plasma starts Ruffini et al.
(1999, 2000). While the temporal evolution of the e+e−γ plasma takes place,
the gravitationally collapsing core moves inwards, giving rise to a further
amplified supercritical field, which in turn generates a larger amount of e+e−

pairs leading to a yet higher temperature in the newly formed e+e−γ plasma.
We report progress in this theoretically challenging process which is marked
by distinctive and precise quantum and general relativistic effects. As pre-
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sented in Ref. Ruffini et al. (2003a): we follow the dynamical phase of the
formation of Dyadosphere and of the asymptotic approach to the horizon by
examining the time varying process at the surface of the gravitationally col-
lapsing core. The details on this topic can be found in Appendix A

3.9. Polarization of strong electromagnetic fields
and its applications in polarizations of laser
fields, GRBs and CMB photons, as well as
neutrinos

Euler-Heisenberg Lagrangian and CMB photon circular polarization

Considering the effective Euler-Heisenberg Lagrangian, i.e., non-linear photon-
photon interactions, we study the circular polarization of electromagnetic ra-
diation based on the time-evolution of Stokes parameters. To the leading
order, we solve the Quantum Boltzmann Equation for the density matrix
describing an ensemble of photons in the space of energy-momentum and
polarization states, and calculate the intensity of circular polarizations. Ap-
plying these results to a linear polarized thermal radiation, we calculate the
circular polarization intensity, and discuss its possible relevance to the cir-
cular polarization intensity of the Cosmic Microwave Background radiation.
For the details of this part, see I. Motie, S.-S. Xue, European Physics Letter,
100, 17006, (2012)

To probe the nonlinear effects of photon-photon interaction in the quantum
electrodynamics, we study the generation of circular polarized photons by
the collision of two linearly polarized laser beams. In the framework of the
Euler-Heisenberg effective Lagrangian and the Quantum Boltzmann equa-
tion for the time evolution of the density matrix of polarization, we calculate
the intensity of circular polarization generated by the collision of two linearly
polarized laser beams and estimate the rate of generation that is proportional
to α2. As a result, we show that the generated circular polarization can be
experimentally measured by two head-on colliding optical laser beams of the
cross-sectional area . 0.01 cm2 and the laser pulse energy ∼ mJ. which are
currently available in laboratories. Our study presents a valuable supplement
to other theoretical and experimental frameworks to study and measure the
nonlinear effects of photon-photon interaction in the quantum electrodynam-
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ics. For the details of this part, see “Circular polarization from linearly polar-
ized laser beam collisions”, I. Motie, R. Mohammadi, and S.-S. Xue, Physics
Review A377 (2013) 2450.

In addition, we have studied the following case. Nonlinear QED interac-
tions induce different polarization properties on a given probe beam. We
consider the polarization effects caused by the photon-photon interaction in
laser experiments, when a laser beam propagates through a constant mag-
netic field or collides with another laser beam. We solve the quantum Boltz-
mann equation within the framework of the Euler-Heisenberg Lagrangian
for both time-dependent and constant background field to explore the time
evolution of the Stokes parameters Q, U, and V describing polarization. As-
suming an initially linearly polarized probe laser beam, we also calculate the
induced ellipticity and rotation of the polarization plane. For details see “Po-
larization of a probe laser beam due to nonlinear QED effects”, S. Shakeri, S.
Z. Kalantari, and S.-S. Xue, Physical Review A 95, 012108 (2017).

CMB or laser photon circular polarization via interaction with neutrino
beam or cosmic background

We study the phenomenon that laser photons acquire circular polarization
by interacting with a Dirac or Majorana neutrino beam. It is shown that for
the reason of neutrinos being left-handed and their gauge-couplings being
parity-violated, linearly polarized photons acquire their circular polarization
by interacting with neutrinos. Calculating the ratio of linear and circular po-
larizations of laser photons interacting with either Dirac or Majorana neu-
trino beam, we obtain this ratio for the Dirac neutrino case, which is about
twice less than the ratio for the Majorana neutrino case. Based on this ra-
tio, we discuss the possibility of using advanced laser facilities and the T2K
neutrino experiment to measure the circular polarization of laser beams in-
teracting with neutrino beams in ground laboratories. This could be an ad-
ditional and useful way to gain some insight into the physics of neutrinos,
for instance their Dirac or Majorana nature. For the details of this part, see R.
Mohammadi and S.-S. Xue Physics Letters B731 272–278, (2014).

Recently, the similar idea has been used to study the Lorentz violation ef-
fects via a laser beam interacting with a high-energy charged lepton beam.
The conversion of linear polarization of a laser beam to circular one through
its forward scattering by a TeV order charged lepton beam in the presence
of Lorentz violation correction is explored. We calculate the ratio of circu-
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lar polarization to linear one (Faraday Conversion phase) of the laser beam
interacting with either electron or the muon beam in the framework of the
quantum Boltzmann equation. Regarding the experimentally available sen-
sitivity to the Faraday conversion, we show that the scattering of a linearly
polarized laser beam with energy 0.1 eV and an electron/muon beam with
available flux places an upper bound on the combination of lepton sector
Lorentz violation coefficients c components (cTT+1.4 c(TZ)+0.25(cXX+cYY+2
cZZ)). The obtained bound on the combination for the electron beam is at the
1015 level and for the muon beam at the 3.91013 level. It should be mentioned
that the laser and charged lepton beams considered here to reach the exper-
imentally measurable Faraday Conversion phase are currently available or
will be accessible in the near future. This study provides a valuable sup-
plementary to other theoretical and experimental frameworks for measuring
and constraining Lorentz violation coefficients. For the details of this part,
see Seddigheh Tizchang, R. Mohammadi and S.-S. Xue, Eur. Phys. J. C (2019)
79: 224 https://arxiv.org/abs/1811.00486.

We propose a novel scheme for distinguishing between the Dirac and Ma-
jorana nature of neutrinos via interaction of a neutrino beam with microwave
photons inside a cavity. We study the effective photon-photon polarization
exchange induced by the photon-neutrino scattering. The quantum field the-
oretical studies of such effective picture are presented for both Dirac and Ma-
jorana neutrinos. Our phenomenological analyses show that the difference
between Dirac and Majorana neutrinos can manifest itself in scattering rate
of the photons. To enhance the effect a cavity scheme is employed. An exper-
imental setup based on microwave cavities is then designed and simulated
by finite element method to measure the scattering rate. Our results sug-
gest that an experiment based on the current state-of-the-art technology will
be able to probe the difference in about one year. However, it can be done
in a few days by enhancing the neutrino beam flux or implementing with
the near future equipments. Therefore, our work provides the possibility
for solving the long lasting puzzle of Dirac or Majorana nature of neutri-
nos. For details see the article by Mehdi Abdi (IUT), Roohollah Mohammadi
(INMOST and SoA-IPM), She-Sheng Xue (ICRANet), Moslem Zarei (IUT)
https://arxiv.org/abs/1909.01536

In this approch of measuring scatted photon’s polarization, another goal
is to probe axion or axion-like particles in light-by-light forward scattering
process. We consider the polarization effects caused by on-shell axions in
the photon-photon scattering process. We show that the circular polariza-
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tion signal generated in light-by-light scattering in the current/future laser
experiments can shed more light on different aspects of these mysterious par-
ticles. Our results show a large enhancement in the conversion rate between
circular and linear polarizations at the domain close to the resonance point
of inter-mediating axions. This signal enhancement can be used in order
to discriminate between the ALP contribution to photon-photon scattering
and one originates from the virtual electron-positron pairs in the pure QED
framework. This work is in preparation by Soroush Shakeri, Rohollah Mo-
hammadi, She-Sheng Xue “ Light by Light Scattering as a Probe for Axion
Dark Matter”.

Photon-neutrino scattering and the B-mode spectrum of CMB photons

On the basis of the quantum Boltzmann equation governing the time-evolution of
the density matrix of polarized CMB photons in the primordial scalar perturbations
of metric, we calculate the B-mode spectrum of polarized CMB photons contributed
from the scattering of CMB photons and CNB neutrinos (Cosmic Neutrino Back-
ground). We show that such contribution to the B-mode spectrum is negligible for
small `, however is significantly large for 50 < ` < 200 by plotting our results to-
gether with the BICEP2 data. Our study and results imply that in order to theoret-
ically better understand the origin of the observed B-mode spectrum of polarized
CMB photons (r-parameter), it should be necessary to study the relevant and dom-
inate processes in both tensor and scalar perturbations. For the details of this part,
see the Rapid communication section of Physics Review D 90, 091301(R) (2014), J.
Khodagholizadeh, R. Mohammadi and S.-S. Xue.

In addition, we study the cosmic microwave background polarization, especially
the B-mode due to the weak interaction of the cosmic neutrino background and cos-
mic microwave background, in addition to the Compton scattering in both cases of
scalar and tensor metric perturbations. It is shown that the power spectrum CBl of
the B-mode polarization receives some contributions from scalar and tensor modes,
which have effects on the value of the r-parameter. We also show that the B-mode
polarization power spectrum can be used as an indirect probe into the cosmic neu-
trino background. B-mode polarization receives some contributions from scalar and
tensor modes, which have effects on the value of the r-parameter. We also show that
the B-mode polarization power spectrum can be used as an indirect probe into the
cosmic neutrino background. For the details of this part, see Physics Review D 93,
091301 (2016), R. Mohammadi, J. Khodagholizadeh, M. Sadegh, and She-Sheng Xue.

Recently, we explore the possibility of the polarization conversion of a wide en-
ergy range of cosmic photons to the circular polarization through their interaction
with Sterile neutrino as a dark matter candidate. By considering the Sterile neutrino
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in the seesaw mechanism framework and right-handed current model, we estimate
the Faraday conversion ∆φFC of gamma ray burst (GRB) photons interacting with the
Sterile neutrinos at both the prompt and afterglow emission levels. We show that for
active-Sterile neutrino with mixing angle θ2 . 10−2 motivated by models with a
hidden sector coupled to the sterile neutrino, the Faraday conversion can be esti-
mated as ∆φFC . 10−2 − 10−17 rad. We also examine the V-mode power spectrum
CVl of the cosmic microwave background (CMB) at the last scattering surface. We
show that the circular polarization power spectrum at the leading order is propor-
tional to the linear polarization power spectrum Cpl and the mixing angle where for
θ2 . 10−2 leads to CVl . 0.01 Nano-Kelvin squared. For details see the recent article
by M. Haghighat, S. Mahmoudi, R.Mohammadi, S. Tizchang and S.S. Xue, Circular
polarization of cosmic photons due to their interactions with Sterile neutrino dark
matter, https://arxiv.org/abs/1909.03883.

Generation of circular polarization of gamma ray bursts

We study the generation of the circular polarization of gamma ray burst (GRB) pho-
tons via their interactions with astroparticles in the presence or absence of back-
ground fields such as magnetic fields. Solving the quantum Boltzmann equation
for GRB photons as a photon ensemble, we discuss the generation of circular polar-
ization (as Faraday conversion phase shift ∆ϕFC of GRBs in the following cases: (i)
intermediate interactions, i.e., the Compton scattering of GRBs in the galaxy clus-
ter magnetic field, and the scattering of GRBs in the cosmic neutrino background
(CNB), as well as cosmic microwave background (CMB); (ii) interactions with parti-
cles and fields in shockwaves, i.e., the Compton scattering of GRBs with accelerated
charged particles in the presence of magnetic fields. We found that (i) after shock-
wave crossing, the greatest contribution of ∆ϕFC for energetic GRBs (of the order of
GeV and larger) comes from GRB-CMB interactions, but for low-energy GRBs the
contributions of the Compton scattering of GRBs in the galaxy cluster magnetic field
dominate; (ii) in shockwave crossing, the magnetic field has significant effects on
converting a GRB’s linear polarization to a circular one, and this effect can be used
to better understand the magnetic profile in shockwaves. The main aim of this work
is to study and measure the circular polarization of GRBs for a better understanding
of the physics and mechanism of the generation of GRBs and their interactions before
reaching us. For the details of this part, see the reference Phys. Rev. D 94, 065033 –
Published 22 September 2016 S. Batebi, R. Mohammadi, R. Ruffini, S. Tizchang, and
S.-S. Xue. This work is also presented in the conference MG14, Rome, Italy 2015, see
the conference proceeding of MG14, World Scientific, Singapore, 2017.

We have also studied the following case. In the presence of strong magnetic fields
near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear
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QED interactions. Here, we explore the impact of the effective photon-photon inter-
action on the polarization evolution of photons propagating through the magnetized
QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the
framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes
parameters. We find that linearly polarized X-ray photons propagating outward in
the magnetosphere of a rotating neutron star can acquire high values for the circular
polarization parameter. Meanwhile, it is shown that the polarization characteris-
tics of photons besides photon energy depend strongly on parameters of the pulsars
such as magnetic field strength, inclination angle and rotational period. Our results
are clear predictions of QED vacuum polarization effects in the near vicinity of mag-
netic stars which can be tested with the upcoming X-ray polarimetric observations.
For details see “Nonlinear QED effects in X-ray emission of pulsars” , S. Shakeri, M.
Haghighat, S.-S. Xue, JCAP 10, 014 (2017).

3.10. Pair production and interactions of fields and
matter in the cosmology within the
framework of quantum
Einstein-Cartan-Maxwell theory

Fermionic and bosonic current and Schwinger effect in de Sitter
spacetime

Semiclassical fermion pair creation in de Sitter spacetime is studied, we present a
method to semiclassically compute the pair creation rate of bosons and fermions
in de Sitter spacetime. The results in the bosonic case agree with the ones in the
literature. We find that for the constant electric field the fermionic and bosonic pair
creation rate are the same. This analogy of bosons and fermions in the semiclassical
limit is known from several flat spacetime examples.

We study the fermionic Schwinger effect in two dimensional de Sitter spacetime.
To do so we first present a method to semiclassically compute the number of pairs
created per momentum mode for general time dependent fields. In addition the con-
stant electric field is studied in depth. In this case solutions for the Dirac equation can
be found and the number of pairs can be computed using the standard Bogoliubov
method. This result is shown to agree with the semiclassical one in the appropriate
limit. The solutions are also used to compute the expectation value of the induced
current. Comparing these results to similar studies for bosons we find that while the
results agree in the semiclassical limit they do not generally. Especially there is no
occurrence of a strong current for small electric fields.
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We present a method to semiclassically compute the pair creation rate of bosons
and fermions in de Sitter spacetime. The results in the bosonic case agree with the
ones in the literature. We find that for the constant electric field the fermionic and
bosonic pair creation rate are the same. This analogy of bosons and fermions in the
semiclassical limit is known from several flat spacetime examples.

For the details of this part, see C. Stahl, E. Strobel, and S.-S. Xue, “Fermionic
current and Schwinger effect in de Sitter spacetime”, for the details, see the refer-
ence Physics Review D 93,025004 (2016), and AIP Conf. Proc. 1693, 050005 (2015),
arXiv:1507.01401 [hep-th].

In a further study, we consider a charged scalar field in a D dimensional de Sitter
spacetime and investigate pair creation by Schwinger mechanism in a constant elec-
tric field background. Using a semiclassical approximation the current of the created
pairs has been estimated. We find that, the semiclassical current of the created pairs
in the strong electric field limit responds as E

D
2 . Going further but restricting to

D = 3 dimensional de Sitter spacetime, the quantum expectation value of the space-
like component of the induced current has been computed in the in-vacuum state by
applying an adiabatic subtraction scheme. We find that, in the strong electric field
limit, the current responds as E

3
2 . In the weak electric field limit the current has a

linear response in E and an inverse dependence on the mass of the scalar field. In
the case of a massless scalar field, the current varies with E−1 which leads to a phe-
nomenon of infrared hyperconductivity. A new relation between infrared hypercon-
ductivity, tachyons and conformality is discussed and a scheme to avoid an infrared
hyperconductivity regime is proposed. In D dimension, we eventually presented
some first estimates of the backreaction of the Schwinger pairs to the gravitational
field, we find a decrease of the Hubble constant due to the pair creation. For more
details, see the reference “Scalar current of created pairs by Schwinger mechanism in
de Sitter spacetime”, Ehsan Bavarsad, Clément Stahl and She-Sheng Xue, Phys. Rev.
D 94, 104011 (2016), as well as E. Bavarsad, S. P. Kim, C. Stahl, S.-S. Xue, “Effect of
a magnetic field on Schwinger mechanism in de Sitter spacetime”, Phys. Rev. D 97,
025017 (2018).

In addition, we considered a new renormalization condition for the vacuum ex-
pectation values of the scalar and spinor currents induced by a homogeneous and
constant electric field background in de Sitter spacetime. Following a semiclassical
argument, the condition named maximal subtraction imposes the exponential sup-
pression on the massive charged particle limit of the renormalized currents. The
maximal subtraction changes the behaviors of the induced currents previously ob-
tained by the conventional minimal subtraction scheme. The maximal subtraction is
favored for a couple of physically decent predictions including the identical asymp-
totic behavior of the scalar and spinor currents, the removal of the infrared (IR)
hyperconductivity from the scalar current, and the finite current for the massless
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fermion. For details see the article by Takahiro Hayashinaka, She-Sheng Xue, “Phys-
ical renormalization condition for de Sitter QED”, published in Phys. Rev. D 97,
105010 (2018).

Recently we consider a massive charged scalar field in a uniform electric field
background in a de Sitter spacetime (dS). We compute the in-vacuum expectation
value of the trace of the energy-momentum tensor for the created Schwinger pairs,
and using adiabatic subtraction scheme the trace is regularized. The effect of the
Schwinger pair creation on the evolution of the Hubble constant is investigated. We
find that the production of the semiclassical pairs leads to a decay of the Hubble con-
stant. Whereas, the production of a light scalar field in the weak electric field regime
leads to a superacceleration phenomenon. For details see the article by E. Bavarsad,
S. P. Kim, C. Stahl, S.-S. Xue, https://arxiv.org/abs/1909.09319, will appear soon in
the proceeding of MG15 and regular scientific journal.

An overall review has been made on this subject. Recent observations of gravi-
tational waves from binary mergers of black holes or neu- tron stars and the rapid
development of ultrahigh intensity laser pulses lead strong field physics to a fron-
tier of new physics in the 21st century. Strong gravity phenomena are most pre-
cisely described by general relativity, and lasers that are described by another most
precisely tested quantum electrodynamics (QED) can be focused into a tiny area
in a short period through the chirped pulse amplification (CPA) and generate ex-
tremely high intensity electromagnetic (EM) fields beyond the conventional meth-
ods. It is physically interesting to study QED phenomena in curved spacetimes,
in which both strong gravitational and electromagnetic fields play important roles.
There are many sources for strong gravitational and electromagnetic fields in the sky
or universe, such highly magnetized neutron stars, magnetized black holes, and the
early universe. We review quantum field theoretical frameworks for QED both in the
Minkowski spacetime and curved spacetimes, in particular, charged black holes and
the early universe, and discuss QED physics in strong EM fields, such as the vacuum
polarization and Schwinger pair production and their implications to astrophysics
and cosmology. For details see Sang Pyo Kim https://arxiv.org/abs/1905.13439, the
review article will appear soon in the proceeding of MG15 and regular scientific jour-
nal IJMPD.

We explore the enhancement of an electromagnetic field in an inflationary back-
ground with an anti-conductive plasma of scalar particles. The scalar particles are
created by Schwinger effect in curved spacetime and backreact to the electromagnetic
field. The possibility of a negative conductivity was recently put forward in the con-
text of the renormalization of the Schwinger induced current in de Sitter spacetime.
While a negative conductivity enhances the produced magnetic field, we find that it
is too weak to seed the observed intergalactic magnetic field today. This results on
pair creation in inflationary scenario is however important for primordial scenarios

506



3.10. Pair production and interactions of fields and matter in the cosmology
within the framework of quantum Einstein-Cartan-Maxwell theory

of magnetogenesis as the presence of a conductivity alters the spectral index of the
magnetic field. This also shows on a specific example that backreaction can increase
the electromagnetic field and not only suppress it. For details see Clement Stahl,
Nucl. Phys. B12, 017, 2018, https://arxiv.org/abs/1806.06692

We currently consider that particles creation under the influence of both an electro-
magnetic field and a de Sitter (dS) spacetime is an interesting topic to probe quantum
electrodynamics (QED) and quantum gravitational effects. By applying the gamma-
function regularization to the in-out formulation, we find the exact one-loop effec-
tive action in the proper-time integral representation for a charged scalar field in a
uniform electric field and a parallel magnetic field in a dS space, which reduces to
Weisskofp-Schwinger scalar QED action in the limit of Minkowski spacetime and the
one-loop action in the pure dS space. We find the consistency of the effective action
with the vacuum persistence amplitude and the Schwinger effect of Phys. Rev. D 97,
025017. The effective action is analyzed for the pure dS space and QED actions in the
pure electric field in dS space and in both electric and magnetic fields. The effective
action in the pure dS space consists of a series of the scalar curvature starting with
the quadratic order. We explore the effect of curvature on the QED vacuum polar-
ization and find consistency of the effective action with the perturbative expansion
from the worldline formalism. The article is in preparation by E. Bavarsad, S. P. Kim,
C. Stahl, S.-S. Xue.

Schwinger effect and backreaction in de Sitter spacetime

For the backreaction of created pairs on external fields, we first consider the particle-
antiparticle pairs produced by both a strong electric field and de Sitter curvature. We
investigate in 1 + 1 D the backreaction of the pairs on the electromagnetic field. To
do so we describe the canonical quantization of an electromagnetic field in de Sit-
ter space and add in the Einstein-Maxwell equation the fermionic current induced
by the pairs. After solving this equation, we find that the electric field gets either
damped or unaffected depending on the value of the pair mass and the gauge cou-
pling. No enhancement of the electromagnetic field to support a magnetogenesis
scenario is found. The physical picture is that the Schwinger pairs locally created
screen the production and amplification of the electromagnetic field. However, if
one considers light bosons created by the Schwinger mechanism, we report a solu-
tion to the Einstein-Maxwell equation with an enhancement of the electromagnetic
field. This solution could be a new path to primordial magnetogenesis. For more de-
tails, see the reference Clement Stahl and She-Sheng Xue Physics Letters B, Volume
760, p. 288-292.

In addition, we also study the pair creation in the early universe, and present a
short review in the conference proceeding of the the MG14 meeting. In the very
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early universe, a generalized Schwinger effect can create pairs from both electrical
and gravitational fields. The expectation value of fermionic current induced by these
newly created pairs has been recently computed in de Sitter spacetime. I will discuss
different limiting cases of this result and some of its possible physical interpretations.
See the conference proceeding of MG14, World scientific, Stahl Clément Strobel Eck-
hard and Xue She-Sheng

Quantum Regge calculus of Einstein-Cartan theory and its phase and
critical point

We study the Quantum Regge Calculus of Einstein-Cartan theory to describe quan-
tum dynamics of Euclidean space-time discretized as a 4-simplices complex. Tetrad
field eµ(x) and spin-connection field ωµ(x) are assigned to each 1-simplex. Apply-
ing the torsion-free Cartan structure equation to each 2-simplex, we discuss paral-
lel transports and construct a diffeomorphism and local gauge-invariant Quantum
Regge Calculus of Einstein-Cartan action. Invariant holonomies of field ωµ(x) along
large loops are also given. Quantization is defined by a bounded partition function
with the measure of SO(4)-group valued ωµ(x) fields and Dirac-matrix valued eµ(x)
fields over 4-simplices complex.

We present detailed discussions and calculations of the Quantum Regge calcu-
lus of Einstein-Cartan theory. The Euclidean space-time is discretized by a four-
dimensional simplicial complex. We adopt basic tetrad and spin-connection fields to
describe the simplicial complex. By introducing diffeomorphism and local Lorentz
invariant holonomy fields, we construct a regularized Einstein-Cartan theory for
studying the quantum dynamics of the simplicial complex and fermion fields. This
regularized Einstein-Cartan action is shown to properly approach to its continuum
counterpart in the continuum limit. Based on the local Lorentz invariance, we derive
the dynamical equations satisfied by invariant holonomy fields. In the mean-field
approximation, we show that the averaged size of 4-simplex, the element of the sim-
plicial complex, is larger than the Planck length. This formulation provides a theo-
retical framework for analytical calculations and numerical simulations to study the
quantum Einstein-Cartan theory.

On the basis of strong coupling expansion, mean-field approximation and dynam-
ical equations satisfied by holonomy fields, we present calculations and discussions
to show the phase structure of the quantum Einstein-Cartan gravity, (i) the order
phase: long-range condensations of holonomy fields in strong gauge couplings; (ii)
the disorder phase: short-range fluctuations of holonomy fields in weak gauge cou-
plings. According to the competition of the activation energy of holonomy fields and
their entropy, we give a simple estimate of the possible ultra-violet critical point and
correlation length for the second-order phase transition from the order phase to dis-
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order one. At this critical point, we discuss whether the continuum field theory of
quantum Einstein-Cartan gravity can be possibly approached when the macroscopic
correlation length of holonomy field condensations is much larger than the Planck
length. For the details of this part, see Physical Review D 82, 064039 (2010), Physics
Letters B665 54 (2008), B682 (2009) 300 and B711 (2012) 404.

How universe evolves with cosmological and gravitational constants in
the field theory of quantum Einstein-Cartan gravity

With a basic varying space-time cutoff ˜̀, we study a regularized and quantized
Einstein-Cartan gravitational field theory and its domains of ultraviolet-unstable
fixed point gir & 0 and ultraviolet-stable fixed point guv ≈ 4/3 of the gravitational
gauge coupling g = (4/3)G/GNewton. Because the fundamental operators of quan-
tum gravitational field theory are dimension-2 area operators, the cosmological con-
stant is inversely proportional to the squared correlation length Λ ∝ ξ−2. The cor-
relation length ξ characterizes an infrared size of a causally correlate patch of the
universe. The cosmological constant Λ and the gravitational constant G are related
by a generalized Bianchi identity. As the basic space-time cutoff ˜̀ decreases and ap-
proaches to the Planck length `pl, the universe undergoes inflation in the domain of
the ultraviolet-unstable fixed point gir, then evolves to the low-redshift universe in
the domain of ultraviolet-stable fixed point guv. We give the quantitative description
of the low-redshift universe in the scaling-invariant domain of the ultraviolet-stable
fixed point guv, and its deviation from the ΛCDM can be examined by low-redshift
(z . 1) cosmological observations, such as supernova Type Ia. For the details of this
part, see Nuclear Physics B897 (2015) 326–345.

Based on above framework that Einstein equation and Hawking radiation govern
Universe evolution, we present a possible understanding to the issues of cosmologi-
cal constant, inflation, matter and coincidence problems based on the Einstein equa-
tion and Hawking pair production of particles and antiparticles. In this scenario, the
cosmological constant is attributed to the spacetime horizon that generates matter
via pair productions, in turn the matter contributes to the RHS of the Einstein equa-
tion, conversely governing the spacetime horizon. In such a way, the cosmological
and matter terms are interacting via the spacetime horizon in their evolutions. As
a result, the inflation naturally appears and results agree to observations. The CMB
large-scale anomaly can be explained and the dark-matter acoustic wave is specu-
lated. The cosmological term ΩΛ tracks down the matter term ΩM from the reheating
to the radiation-matter equilibrium, then it varies very slowly, ΩΛ ∝ constant. Thus
the cosmic coincidence problem can be possibly avoided. The relation between ΩΛ

and ΩM is obtained and can be examined at large redshifts.
Using this model, we compare supernovae and Baryon Acoustic Oscillations data
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to the predictions of a cosmological model of interacting dark matter and dark en-
ergy. This theoretical model can be derived from the effective field theory of Einstein-
Cartan gravity with two scaling exponents δG and δΛ, related to the interaction be-
tween dark matter and dark energy. We perform a χ2 fit to the data to compare and
contrast it with the standard ΛCDM model. We then explore the range of parame-
ter of the model which gives a better χ2 than the standard cosmological model. All
those results lead to tight constraints on the scaling exponents of the model. Our
conclusion is that this class of models, provides a decent alternative to the ΛCDM
model. For details see Damien Bégué, Clément Stahl and She-Sheng Xue “A model
of interacting dark fluids tested with supernovae and Baryon Acoustic Oscillations
data” Nuclear Physics, Section B, Volume 940, p. 312-320

Quantum Einstein-Cartan theory with four-fermion interactions and its
resulted particle mass spectra for matter and dark matter

In the fermion content and gauge symmetry of the standard model (SM), we study
the four-fermion operators in the torsion-free quantum Einstein-Cartan theory. The
collider signatures of irrelevant operators are suppressed by the high-energy cut-
off (torsion-field mass) Λ, and cannot be experimentally accessible at TeV scales.
Whereas the dynamics of relevant operators accounts for (i) the SM symmetry-breaking
in the domain of infrared-stable fixed point with the energy scale v ≈ 239.5 GeV and
(ii) composite Dirac particles restoring the SM symmetry in the domain of ultraviolet-
stable fixed point with the energy scale E & 5 TeV. To search for the resonant phe-
nomena of composite Dirac particles with peculiar kinematic distributions in final
states, we discuss possible high-energy processes: multi-jets and dilepton Drell-Yan
process in LHC p p collisions, the resonant cross-section in e−e+ collisions annihi-
lating to hadrons and deep inelastic lepton-hadron e− p scatterings. To search for
the nonresonant phenomena due to the form-factor of Higgs boson, we calculate the
variation of Higgs-boson production and decay rate with the CM energy in LHC. We
also present the discussions on four-fermion operators in the lepton sector and the
mass-squared differences for neutrino and sterile neutrinos, as well as its resulted
particle spectra for matter and the candidates for dark matter. We also present the
discussions on the fermion-mass generation and vectorlike gauge-boson coupling
due to the four-fermion operators in Quantum Einstein-Cartan theory For the de-
tails this part, see “ Resonant and nonresonant phenomena as well as fermion-mass
generations due to the four-fermion operators in quantum Einstein-Cartan theory”
Physics Letters B744 88–94 (2015), B737 (2014) 172, B727, 308 (2013), B721 (2013) 347,
and Physics Review D 93, 073001 (2016), JHEP 11, 027 (2016), JHEP 05, 146 (2017).

In addition, we have also generalized our study to the solid state physics. Our
goal is to understand the phenomena arising in optical lattice fermions at low tem-
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perature in an external magnetic field. Varying the field, the attraction between any
two fermions can be made arbitrarily strong, where composite bosons form via so-
called Feshbach resonances. By setting up strong-coupling equations for fermions,
we find that in spatial dimension they couple to bosons which dress up fermions
and lead to new massive composite fermions. At low enough temperature, we ob-
tain the critical temperature at which composite bosons undergo the Bose–Einstein
condensate (BEC), leading to BEC-dressing massive fermions. These form tightly
bound pair states which are new bosonic quasi-particles producing a BEC-type con-
densate. A quantum critical point is found and the formation of condensates of com-
plex quasi-particles is speculated over. For details, see Hagen Kleinert, She-Sheng
Xue, “Composite fermions and their pair states in a strongly-coupled Fermi liquid”,
Nuclear Physics B. Volume 936, November 2018, Pages 352-363.

Fractal matter distribution and supernovae

Recently, we report here a work on a simple inhomogeneous cosmological model
within the Lemaı̂tre-Tolman-Bondi (LTB) metric. The mass-scale function of the LTB
model is taken to be M(r) ∝ rd and would correspond to a fractal distribution for
0 < d < 3. The luminosity distance for this model is computed and then compared
to supernovae data. Unlike LTB models which have in the most general case two
free functions, our model has only two free parameters as the flat standard model
of cosmology. The best fit obtained is a matter distribution with an exponent of
d = 3.44. Finally by adding an upper cutoff on the scale r = 2300 Mpc, we find
a better fit than the simple fractal model with an exponent d = 3.36. For some
details, see the reference, C. Stahl, R. Ruffini, the conference proceedings of the 15th
Italian and Korean meeting, Pescara Italy July, 2015, World scientific, Singapore. The
proceeding is published together with the MG XIV proceedings.

Testing the cosmological parameters and isotropy principle by use of
gamma-ray bursts data

We perform a model independent analysis to study the constraints on the cosmo-
logical parameter by use of gamma-ray bursts data. Most gamma-ray bursts have
higher redshifts than the traditional probes, such as SNe Ia. We employ 118 long
gamma-ray bursts to constrain the cosmological parameter in model independent
manner. We find the best value indicates Ωm0 = 0.32, which is consistent with other
latest observations, like Planck CMB 2015 released result.

A cosmological preferred direction was reported from the type Ia supernovae
(SNe Ia) data in recent years. Most gamma-ray bursts have higher redshifts than SNe
Ia. We use the long gamma-ray bursts data to give a simple classification of such
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studies for the first time. Because the maximum anisotropic direction is indepen-
dent of isotropic cosmological models, we adopt two cosmological models (ΛCDM,
wCDM) for the hemisphere comparison analysis and ΛCDM model for dipole fit ap-
proach. In hemisphere comparison method, the matter density and the equation of
state of dark energy are adopted as the diagnostic qualities in the ΛCDM model and
wCDM model, respectively. In dipole fit approach, we fit the fluctuation of distance
modulus. We find that there is a null signal for the hemisphere comparison method,
while a preferred direction (b = −14.3◦ ± 10.1◦, l = 307.1◦ ± 16.2◦) for the dipole fit
method. This result indicates that the dipole fit is more sensitive than the hemisphere
comparison method. Y. Wang, X. F. Yang, C. Stahl, R. Ruffini .

In addition, we study that the cosmological black holes are black holes living not
in an asymptotically flat universe but in an expanding spacetime. They have a rich
dynamics in particular for their mass and horizon. In this article we perform a nat-
ural step in investigating this new type of black hole: we consider the possibility
of a charged cosmological black hole. We derive the general equations of motion
governing its dynamics and report a new analytic solution for the special case of the
charged Lemaitre-Tolman-Bondi equations of motion that describe a charged cosmo-
logical black hole. We then study various relevant quantities for the characterization
of the black hole such as the C-function, the effect of the charge on the black hole
flux and the nature of the singularity. We also perform numerical investigations to
strengthen our results. Finally we challenge a model of gamma ray burst within our
framework. For details, see R. Moradi, C. Stahl, J. Firouzjaee, S.-S. Xue, “Charged
cosmological black hole” Phys. Rev. D 96, 104007 (2017).

3.11. Semiclassical approach to pair production
rate for strong time-dependent electrical
fields with more than one component

Semi-classical description of pair production in a general electric field

In review Section 6, after recalling studies of pair production in inhomogeneous
electromagnetic fields in the literature by Dunne and Schubert (2005a); Dunne et al.
(2006); Dunne and Wang (2006); Kim and Page (2002, 2006, 2007), we present a brief
review of our recent work Kleinert et al. (2008) where the general formulas for pair
production rate as functions of either crossing energy level or classical turning point,
and total production rate are obtained in external electromagnetic fields which vary
either in one space direction E(z) or in time E(t). In Sections 6.1 and 6.2, these formu-
las are explicitly derived in the JWKB approximation and generalized to the case of
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three-dimensional electromagnetic configurations. We apply these formulas to sev-
eral cases of such inhomogeneous electric field configurations, which are classified
into two categories. In the first category, we study two cases: a semi-confined field
E(z) 6= 0 for z . ` and the Sauter field

E(z) = E0/cosh2 (z/`) , V(z) = −σs mec2 tanh (z/`) ,

where ` is width in the z-direction, and

σs ≡ eE0`/mec2 = (`/λC)(E0/Ec).

In these two cases the pairs produced are not confined by the electric potential and
can reach an infinite distance. The resultant pair production rate varies as a func-
tion of space coordinate. The result we obtained is drastically different from the
Schwinger rate in homogeneous electric fields without any boundary. We clearly
show that the approximate application of the Schwinger rate to electric fields limited
within finite size of space overestimates the total number of pairs produced, particu-
larly when the finite size is comparable with the Compton wavelength λC, see article
Figs. 6.2 and 6.3 where it is clearly shown how the rate of pair creation far from be-
ing constant goes to zero at both boundaries. The same situation is also found for the
case of the semi-confined field z(z) 6= 0 for |z| . `, see Eq. (6.3.34). In the second cat-
egory, we study a linearly rising electric field E(z) ∼ z, corresponding to a harmonic
potential V(z) ∼ z2, see Figs. 6.1. In this case the energy spectra of bound states are
discrete and thus energy crossing levels for tunneling are discrete. To obtain the to-
tal number of pairs created, using the general formulas for pair production rate, we
need to sum over all discrete energy crossing levels, see Eq. (6.4.11), provided these
energy levels are not occupied. Otherwise, the pair production would stop due to
the Pauli principle.

Semiclassical approach to pair production rate for strong time-dependent
electrical fields with more than one component

Since Sauter in 1931 Sauter (1931) and Heisenberg and Euler Heisenberg and Euler
(1936) four years later gave a first description of the vacuum properties of QED, there
have been a lot of investigations of the pair creation rate in strong electric fields. In
particular, Schwinger Schwinger (1951, 1954a,b) reformulated their result in an ele-
gant way using quantum-field theoretic methods (see also Nikishov (1970); Batalin
and Fradkin (1970b)).
The formulation was extended to space-time-dependent fields using different meth-
ods, e.g. the imaginary time method Brezin and Itzykson (1970); Popov (1972d,c,
1973b); Marinov and Popov (1977); Popov (2001b) and a tunneling picture Kleinert
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(2008); Kleinert and Xue (2013), both using WKB-approximations or the world-line
instanton method Dunne and Schubert (2005b); Dunne et al. (2006).
By comparing numerical with analytic results it was found that for more compli-
cated field configurations, i.e. for those which have more than one distinct pair of
semiclassical turning points, interference effects arise. This was already discussed
as a resonance effect for oscillating fields in Popov (1973). Interference effects were
recently studied in Dumlu and Dunne (2010, 2011b) for the WKB-method and in
Dumlu and Dunne (2011a) for the world-line instanton approach. In this study we
consider only fields with one dominant pair of turning points where interference ef-
fects are negligible. This enables us to use scalar quantum-electrodynamics, since it
is known to give the same results as spinor quantum electrodynamics at the leading
non-perturbative order if there are no interference effects Dumlu and Dunne (2011b).
All the analytic methods mentioned above give the same results for electric fields
with only one component depending on either space or time. A more general case,
namely electric fields with two or three components depending on space was dis-
cussed in Dunne and Wang (2006) in the world-line instanton approach.
A special case namely a (two component) rotating electrical field was discussed in
Popov (1973b). Recently pair production in rotating fields has been studied numer-
ically in Blinne and Gies (2013) using the Wigner formalism. These results can be
used to calculate the pair creation rate of a plane wave in a plasma as shown in Bu-
lanov et al. (2003).
So far, electron-positron pair production has not been directly observed in experi-
ments due to the necessity of high field strengths which are out of the range reached
by nowadays laser systems. However recent theoretical investigations have shown
that less strong fields are needed if one uses carefully-shaped multi-component laser
pulses Schützhold et al. (2008); Dunne et al. (2009); Bell and Kirk (2008); Di Piazza
et al. (2009); Monin and Voloshin (2010a,b); Heinzl et al. (2010); Bulanov et al. (2010).
For this reason, we generalize the above mentioned analytic methods to compute
the pair creation rate for a general time-dependent periodic electrical field which is
characterized by the potential

Aµ(t) = [0, A1(t), A2(t), A3(t)] =
1
e c

[0, V1(t), V2(t), V3(t)]. (3.11.1)

To do so we use the WKB-approximation as well as the world-line instanton method
of Dunne et al. (2006).
As is well known, the WKB approach the pair creation rate per volume V takes the
general form (see, e.g., Kleinert (2008); Kleinert and Xue (2013))

ΓWKB

V
∼
∫ d3P

(2πh̄)3 exp
(
−π

Ec

E0
G(~P)

)
. (3.11.2)
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where the integral over ~P is over the momentum modes of the produced pairs. We
introduce the critical electrical field

Ec =
m2c3

eh̄
. (3.11.3)

In Eq. (3.11.2) E0 is a characteristic electric field strength and G(~P) is a function de-
pending on the explicit form of the electric field, which is straightforwardly general-
ized to more than one component.
We find that if the momentum spectrum exp(−πEc/E0G(~P)) is peaked around zero
canonical momentum ~P = 0 it can be approximated by expanding around this point
and it is possible to simplify the result via Gaussian integration.
In the world-line instanton framework of Dunne et al. (2006) the momentum, arising
as an integration constant, was implicitly taken to vanish with a Gaussian momen-
tum integration producing the prefactors, as discussed in Dumlu and Dunne (2011a).
We argue that this is a de facto expansion around ~P = 0. We generalize this method
to the case of electric fields with more than one component and show that the result
agrees with the WKB result expanded around ~P = 0.
The momentum spectrum is usually peaked around ~P = 0 for the examples of one-
component fields studied in the literature (see, e.g., Dunne et al. (2006)). Thus the
expansion around ~P = 0 presents a good approximation. However this situation
changes if one goes to the case of two-component fields. By looking at rotating elec-
tric fields we find that their momentum spectra are not peaked around ~P = 0.
If the momentum spectrum is not peaked around ~P = 0 one can not use the ex-
panded WKB result since it does not present a good approximation. Also the world-
line instanton method of Dunne et al. (2006) and the generalized form presented here
implicitly require the momentum spectrum to be peaked around ~P = 0. This implies
that it is not appropriate to calculate the pair production rate for cases where the
momentum spectrum is not peaked around ~P = 0 in the form discussed here.
Rotating field configurations such as the one studied here are of interest since they
are related to circularly-polarized laser waves. A circularly-polarized wave in medium
can be described by a rotating electric field, since it is possible to make a transforma-
tion into the co-moving Lorentz frame (see, e.g., Bulanov et al. (2003)).
Recently it has become obvious that the pair production rate of lasers depends sen-
sitively on the pulse shape Schützhold et al. (2008); Dunne et al. (2009); Bell and Kirk
(2008); Di Piazza et al. (2009); Monin and Voloshin (2010a,b); Heinzl et al. (2010); Bu-
lanov et al. (2010). For the design of feasible experiments to directly measure pair
production it is therefore of interest to find a pulse profile which enhances this pro-
cess. Obviously for complicated laser pulse profiles the calculation has to be done
numerically. The development of semiclassical analytical methods discussed in this
study certainly helps to provide some physical intuition for these numerical simula-
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tions. For the details of this part, see E. Strobel and S.-S. Xue, Nuclear Physics B 886,
1153 (2014).

Using semiclassical WKB-methods, we calculate the rate of electron- positron pair-
production from the vacuum in the presence of two external fields, a strong (space-
or time-dependent) classical field and a monochromatic electromagnetic wave. We
discuss the possible medium effects on the rate in the presence of thermal electrons,
bosons, and neutral plasma of electrons and protons at a given temperature and
chemical potential. Using our rate formula, we calculate the rate enhancement due to
a laser beam, and discuss the possibility that a significant enhancement may appear
in a plasma of electrons and protons with self-focusing properties. For details of this
part, see H. Kleinert and S.-S. Xue, “Vacuum pair-production in a classical electric
field and an electromagnetic wave”, Annals of Physics 333 (2013) 104.

By using this approach, we semiclassically investigate Schwinger pair production
for pulsed rotating electric fields depending on time. To do so we solve the Dirac
equation for two-component fields in a WKB-like approximation. The result shows
that for two-component fields the spin distribution of produced pairs is generally not
1:1. As a result the pair creation rates of spinor and scalar quantum electro dynamics
(QED) are different even for one pair of turning points. For rotating electric fields
the pair creation rate is dominated by particles with a specific spin depending on the
sense of rotation for a certain range of pulse lengths and frequencies. We present an
analytical solution for the momentum spectrum of the constant rotating field. We
find interference effects not only in the momentum spectrum but also in the total
particle number of rotating electric fields. For the details of this part, see E. Strobel
and S.-S. Xue Physics Review D 91, 045016 (2015).

Nonlinear Breit-Wheeler process in the collision of a photon with two
plane waves

Electron-positron pair creation by the collision of two real photons (Breit-Wheeler
process [Breit and Wheeler, Phys. Rev. 46, 1087 (1934)]) is one of most relevant ele-
mentary processes in high-energy astrophysics. It can lead to observable effects such
as cutoff in the high-energy Gamma spectra. In order to access the observations of
this fundamental phenomenon in the earth-based experiments, the generalization
of the Breit-Wheeler process to the nonlinear Breit-Wheeler process of pair produc-
tion in the collision a photon with an intensive monochromatic plane wave has been
fully analyzed and discussed in the past few decades [e.g., Reiss, J. Math. Phys. 3,
59 (1962) and Ritus, J. Sov. Laser Res. 6, 497 (1985)]. Such a nonlinear Breit-Wheeler
process has been detected in the SLAC-E-144 experiment [Burke et al., Phys. Rev.
Lett. 79, 1626 (1997)]. In this article, we analyzed the nonlinear Breit-Wheeler pro-
cess of pair production off a probe photon colliding with a bifrequent field. The
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bifrequent field is composed of a low-frequency and a high-frequency electromag-
netic wave that propagate in the same direction. We calculate the pair-production
probability and the spectra of created pairs in the nonlinear Breit-Wheeler processes
of pair production off a probe photon colliding with two plane waves or one of these
two plane waves. The differences of these two cases are discussed. We evidently
show, in the two-wave case, the possibility of Breit-Wheeler pair production with si-
multaneous photon emission into the low-frequency wave and the high multiphoton
phenomena: (i) Breit-Wheeler pair production by absorption of the probe photon and
a large number of photons from the low-frequency wave, in addition to the absorp-
tion of one photon from the high-frequency wave; (ii) Breit-Wheeler pair production
by absorption of the probe photon and one photon from the high-frequency wave
with simultaneous emission of a large number of photons into the low-frequency
wave. The phenomenon of photon emission into the wave cannot happen in the
one-wave case. Compared with the one-wave case, the contributions from high mul-
tiphoton processes are largely enhanced in the two-wave case. A multipeak structure
of the spectra (multipeak structure) of created e− e+ pairs in the two-wave process
is shown, as a result of the effects of the phenomenon of pair production with si-
multaneous photon emission into the low-frequency wave and high multiphoton
(absorption and emission) phenomenon. The results presented in this article show a
possible way to access the observations of the phenomenon of photon emission into
the wave and high multiphoton phenomenon in Breit-Wheeler pair production even
with the laser-beam intensity of order 1018 W/cm2. For the details of this part, see
Yuan-Bin Wu and S.-S. Xue, Physics Review D 90, 013009 (2014).

Fractional Effective Action at strong electromagnetic fields

In 1931 Sauter Sauter (1931) and four years later Heisenberg and Euler Heisenberg
and Euler (1936) provided a first description of the vacuum properties of QED. They
identified a characteristic scale of strong field Ec = m2

e c3/eh̄, at which the field energy
is sufficient to create electron positron pairs from the vacuum, and calculated an ef-
fective Lagrangian that will replace the Maxwell Lagrangian at strong fields. In 1951,
Schwinger Schwinger (1951, 1954a,b) gave an elegant quantum-field theoretic refor-
mulation of their result in the spinor and scalar QED framework (see also Nikishov
(1970); Batalin and Fradkin (1970b)). The description was further extended to space-
time dependent electromagnetic fields in Refs. Popov (1972d,c, 2001b); Narozhnyi
and Nikishov (1970); Schubert (2001); Dunne and Schubert (2005b); Kleinert and Xue
(2013). The monographs Itzykson and Zuber (2006); Kleinert (2008); Greiner et al.
(1985); Grib et al. (1980); Fradkin et al. (1991) and the recent review articles Dunne
and Schubert (2000); Dunne (2005); Ruffini et al. (2010) can be consulted for more
detailed calculations, discussions and bibliographies. Since then, the properties of
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QED in strong electromagnetic fields have become vast arena of theoretical research,
awaiting experimental verification as well as further theoretical understanding.

An interesting aspect of effective field theories in the strong-field limit has recently
been emphasized in a completely different class of quantum field theories. These
have the property of developing in the strong-field limit an anomalous power be-
havior. It is experimentally observable at the critical point in second-order phase
transitions, and for this reason such a power behavior is also called critical behavior.
Such a behavior arises if the the so-called beta function (also called the Stueckelberg–
Petermann function or the Gell-Mann–Low function) Stueckelberg and Petermann
(1953); Gell-Mann and Low (1954), which governs the logarithmic growth of the
coupling strength for varying energy scale, has a fixed point in the infrared. In such
theories, it is possible to take the theory to the limit of infinite coupling strength.
The effective action can usually be calculated in perturbation theory as a power
series in the fields. The coefficients are the one-particle irreducible n-point vertex
functions of the theory. In the limit of large field strength, this power series can be
shown to develop an anomalous power behavior with irrational exponents Kleinert
and Frohlinde (2001); Kleinert. Also the gradient terms in this effective action show
anomalous powers Kleinert (2012).

In QED such a fixed point is presently believed to be absent Suslov (2001), even
though many authors have in the past argued that it may exist Johnson et al. (1963,
1964); Maris et al. (1964, 1965); Frishman (1965) and could ultimately explain the
numerical value of the fine structure constant. In this study we shall not assume the
existence of such a fixed point, but point out that at strong fields, the effective action
exhibits nevertheless a power behavior that is typical for critical phenomena.

We conclude that in the strong fields expansion, the leading order behavior of the
Euler-Heisenberg effective Lagrangian is logarithmic, and can be formulated as a
power law for three different cases:

1. |S/P| � 1,

2. ε, β� Ec and ε/β ∼ O(1),

3. |P/S| � 1.

The the general form is the same for scalar and spinor QED. The only difference is a
factor of four in the anomalous power δ.

We have not been able to conclude a result for S, P� E2
c . This case is equivalent to

|~E| � |~B| � Ec or |~B| � |~E| � Ec while the fields are almost parallel. If we combine
the result

L< =
1
2

E−δ
c (~E2 − ~B2)|~E2 − ~B2|δ/2

+ . . . , (3.11.4)
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for the cases 1. and the result

L< =
1
2

E−δ
c (~E2 − ~B2)|~E · ~B|δ/2

+ . . . , (3.11.5)

for the cases 3. with the anomalous power δ := e2/12π, we can conjecture the more
general result:

Leff =
1
2

E−2δ
c (~E2 − ~B2)

(
|~E2 − ~B2||~E · ~B|

)δ/2
+ . . . . (3.11.6)

This correctly reduces to the cases 1. and 3. in the respective limits and thus is more
general. As a result, Eq. (3.11.6) defines a fractional formulation for the QED in the
regime of strong fields. Thus our finding exhibits an interesting similarity to the
fractional quantum field theory discussed in Kleinert (2012).

The Euler-Heisenberg-Lagrangian is obtained in the configuration of constant elec-
tromagnetic fields. Nevertheless, for the case of smooth and slow variations of elec-
tromagnetic fields in space and time, it can be approximately used to study inter-
esting effects like light-by-light scattering, photon splitting or electron-positron pair
production (for reviews see Dunne (2005); Ruffini et al. (2010)). This implies that the
fractional QED obtained in this article could find some applications in the regime
of strong electromagnetic fields. This is particularly important for the recent rapid
developments of experimental facilities using novel strong laser sources to reach the
field strength and intensity of theoretical interest. Such facilities include the Extreme
Light Infrastructure (ELI)1, the Exawatt Center for Extreme Light studies (XCELS)2,
or the High Power laser Energy Research (HiPER)3 facility, which are planned to
exceed powers of 100 PW. Both theoretical and experimental studies of the QED of
strong electromagnetical fields at the Sauter-Euler-Heisenberg scale Ec promise to
become increasingly fascinating in the coming years. For the details of this part, see
H. Kleinert, E. Strobel and S.-S. Xue, “Fractional Effective Action at strong electro-
magnetic fields”, Physics Review D88, 025049 (2013).

1http://www.extreme-light-infrastructure.eu/
2http://www.xcels.iapras.ru/
3http://www.hiper-laser.org/
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3.12. Pair-production, ultra-high energy particles,
gravitational and electromagnetic energies in
gravitational collapse and accretion processes

Electron and positron pair-production in gravitational collapses

We attempt to study possible electric processes in the dynamical perturbations of
neutral stellar cores. These dynamical perturbations can be caused by either the
gravitational collapse or pulsation of neutral stellar cores. The basic equations are the
Einstein-Maxwell equations and those governing the particle number and energy-
momentum conservation

(n̄e,BUν
e,B);ν = 0,
Gµν = −8πG(Tµν + Tem

µν ),
(Tν

µ);ν = −Fµν Jν,

Fµν
;ν = 4π Jµ, (3.12.1)

in which the Einstein tensor Gµν, the electromagnetic field Fµν (satisfying F[αβ,γ] = 0)
and its energy-momentum tensor Tem

µν appear; Uν
e,B and n̄e,B are, respectively, the four

velocities and proper number-densities of the electrons and baryons. The electric
current density is

Jµ = en̄pUµ
B − en̄eU

µ
e , (3.12.2)

where n̄p is the proper number-density of the positively charged baryons. The energy-
momentum tensor Tµν = Tµν

e + Tµν
B is taken to be that of two simple perfect fluids

representing the electrons and the baryons, each of the form

Tµν
e,B = p̄e,Bgµν + ( p̄e,B + ρ̄e,B)U

µ
e,BUν

e,B, (3.12.3)

where ρ̄e,B(r, t) and p̄e,B(r, t) are the respective proper energy densities and pres-
sures. Baryon fluid and electron fluid are separately described for the reason that in
addition to baryons being much more massive than electrons, the EOS of baryons
p̄B = p̄B(ρ̄B) is very different from the electron one p̄e = p̄e(ρ̄e) due to the strong
interaction. Therefore, in the dynamical perturbations of neutral stellar cores, one
should not expect that the space-time evolution of number density, energy density,
four velocity, and pressure of baryon fluid be identical to the space-time evolution of
counterparts of electron fluid. The difference of space-time evolutions of two fluids
results in the electric current Jµ and field Fµν, possibly leading to some electric pro-
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cesses. In a simplified model for the dynamical perturbations of neutral stellar cores,
we approximately study possible electric processes by assuming that the equilibrium
configurations of neutral stellar cores are initial configurations.

As a result, we find that total electric field, electron number density, energy den-
sity, and pressure oscillate around their equilibrium configurations. These oscilla-
tions with frequency ω = τ−1

osci ∼ 1.5me around the equilibrium configuration take
place in a thin layer of a few Compton lengths around the boundary of baryon core,
which undergo the dynamical perturbations caused by the gravitational collapse or
pulsation. Suppose that the dynamical perturbation of the baryon core is caused
by either the gravitational collapse or pulsation of the baryon core, that gains the
gravitational energy. Then, in this oscillating process, energy transforms from the
dynamical perturbation of the baryon core to the electron fluid via an oscillating
electric field. This can been seen from the energy conservation along a flow line of
the electron fluid for ve 6= vp

Uµ
e (Tν

µ);ν = en̄pFµνUµ
e Uν

B = en̄pγeγB(vp − ve)grrE. (3.12.4)

The energy densities of the oscillating electric field and electron fluid are converted
from one to another in the oscillating process with frequencies ω ∼ τ−1

osci ∼ 1.5me
around the equilibrium configuration. Oscillating electric fields E(r, t) > Eeq(r), this
leads to electron-positron pair production in strong electric fields and converts elec-
tric energy into the energy of electron-positron pairs, provided the pair-production
rate τ−1

pair ≈ 6.6me is faster than the oscillating frequency ω = τ−1
osci.

It is an assumption that the gravitationally collapsing process is represented by
the sequence of events: the baryon core starts to collapse from rest by gaining grav-
itational energy, the increasing Coulomb energy results in decreasing kinetic energy
and slowing down the collapse process, the electric processes mentioned above con-
vert the Coulomb energy into the radiative energy of electron-positron pairs, and as
a result the baryon core restarts to accelerate the collapse process by further gain-
ing gravitational energy. This indicates that in the gravitationally collapsing pro-
cess, the gravitational energy must be partly converted into the radiative energy of
electron-positron pairs. By summing over all events in the sequence of the gravita-
tionally collapsing process, we approximately estimate the total number and energy
of electron-positron pairs produced in the range Rc ∼ 5× 105 − 107cm: from 1056–
1057 and 1052–1053 erg to 1055–1056 and 1051–1052 erg for different ratios of charged
and neutral baryon numbers. These electron-positron pairs undergo the plasma os-
cillation in strong electric fields and annihilate to photons to form a neutral plasma
of photons and electron-positron pairs Ruffini et al. (2003b,a). This is reminiscent of
the vacuum polarization of a charged black hole Damour and Ruffini (1975); Cheru-
bini et al. (2009) and the Dyadosphere supposed to be dynamically created during
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gravitational collapse in Refs. Ruffini and Xue (2008a); Preparata et al. (1998, 2003).
For the details of this part, see Appendix C.

Gravitational and electric energies in gravitational collapses

In our previous work “Electron and positron pair-production in gravitational col-
lapses” (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong
oscillating electric fields and electron-positron pair-production in gravitational col-
lapse of a neutral stellar core at or over nuclear densities. In order to understand the
back-reaction of such electric energy building and radiating on collapse, we adopt a
simplified model describing the collapse of a spherically thin capacitor to give an an-
alytical description how gravitational energy is converted to both kinetic and electric
energies in collapse. It is shown that (i) averaged kinetic and electric energies are the
same order, about an half of gravitational energy of spherically thin capacitor in col-
lapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse
undergoes a sequence of “on and off” hopping steps in the microscopic Compton
scale. Although such a collapse process is still continuous in terms of macroscopic
scales, it is slowed down as kinetic energy is reduced and collapsing time is about an
order of magnitude larger than that of collapse process eliminating electric processes.
These results indicate that it is essential to take into account, rather than ignore, elec-
tric processes in more realistic models for studying gravitational collapse of neutral
stellar core at or over the nuclear density. For the details of this part, see Appendix
D.

Electromagnetic field generated by neutral plasma Accretion into a Kerr
Black hole

Recently, we have exploited Ruffini-Wilson model to describe strong electromag-
netic fields generated by neutral plasma Accretion into a Kerr Black hole, which can
be account for a possible engine for GRBs and AGNs. In this work we study the
accretion of magnetized plasma to an extremely rotating (a = M) Kerr black hole.
Using infinite conductivity condition (FU = 0) and Carter solutions as geodesics of
falling plasma components we have plotted the electromagnetic field configuration
and current density lines around Kerr black hole. The total amount of electromag-
netic energy which can be extracted from such an engine has been discussed. We
have concluded that the total charge which is induced on the Kerr black hole can be
around Q/M 10−4, which is quite significant.

The first part of the work “On Perfect Relativistic magnetohydrodynamics around
black holes in horizon penetrating coordinates”, C. Cherubini, S. Filippi, A. Loppini,
R. Ruffini, R. Moradi, Y. Wang, and S.-S. Xue, published in Phys. Rev. D 97, 064038
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(2018) is: Plasma accreting processes on black holes represent a central problem for
Relativistic Astrophysics. In this context, here we specifically revisit the classical
Ruffini-Wilson work developed for analytically modelling via analytical solutions
for geodesic equations the accretion of perfect magnetized plasma on a rotating Kerr
black hole. Introducing the horizon penetrating coordinates found by Doran twenty
five years later, we revisit the entire approach studying Maxwell invariants, electric
and magnetic fields, volumetric charge density and electromagnetic total energy. We
finally discuss the physical implications of this analysis.

3.13. Strong and pulsating electromagnetic field in
gravitational collapse core or heavy atoms

Surface tension for heavy atoms

Based on the relativistic mean field theory and the Thomas-Fermi approximation,
we study the surface properties of giant-nucleus compressed atoms; a giant-nucleus
compressed atom has a giant nuclear core (giant nucleus) and degenerate electrons
some of which have penetrated into the giant nucleus. Taking into account the
strong, weak, and electromagnetic interactions, we numerically study the structure
of giant-nucleus compressed atoms and calculate the nuclear surface tension and
Coulomb energy. We analyze the influence of the electron component and the back-
ground matter on the nuclear surface tension and Coulomb energy of giant-nucleus
compressed atoms. We also compare and contrast these results in the case of giant-
nucleus compressed atoms with phenomenological results in nuclear physics and
the results of the core-crust interface of neutron stars with global charge neutrality.
Based on the numerical results we study the instability against Bohr-Wheeler sur-
face deformations in the case of giant-nucleus compressed atoms. The results in this
article provide the evidence of strong effects of the electromagnetic interaction and
electrons on the structure of giant-nucleus compressed atoms. For details of this part,
see J. Rueda, R. Ruffini, Y.-B. Wu and S.-S. Xue, “Surface tension for heavy atoms”,
to submitted to Physics Review C.

Critical fermion density for restoring spontaneously broken symmetry

We show how the phenomenon of spontaneous symmetry breakdown is affected by
the presence of a sea of fermions in the system. When its density exceeds a criti-
cal value, the broken symmetry can be restored. We calculate the critical value and
discuss the consequences for three different physical systems: First, for the stan-
dard model of particle physics, where the spontaneous symmetry breakdown leads
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nonzero masses of intermediate gauge bosons and fermions. The symmetry restora-
tion will greatly enhance various processes with dramatic consequences for the early
universe. Second, for the Gell-Mann–Lèvy σ-model of nuclear physics, where the
symmetry breakdown gives rise to the nucleon and meson masses. The symmetry
restoration may have important consequences for formation or collapse of stellar
cores. Third, for the superconductive phase of condensed-matter, where the BCS
condensate at low-temperature may be destroyed by a too large electron density. For
the details of this part, see H. Kleinert and S.-S. Xue, Mod. Phys. Lett. A, Vol. 30, No.
24 (2015) 1550122.

Strong and pulsating electromagnetic field in gravitational collapse core
or heavy atoms

Then we study collective electronic pulsation of compressed atoms in Thomas-Fermi
model. Based on the Thomas-Fermi solution for compressed electron gas around a
giant nucleus, we study electric pulsations of electron number-density, pressure and
electric fields, which could be caused by an external perturbations acting on the nu-
cleus or the electrons themselves. We numerically obtain the eigen-frequencies and
eigen-functions for stationary pulsation modes that fulfill the boundary-value prob-
lem established by electron-number and energy-momentum conservation, equation
of state, and Maxwell’s equations, as well as physical boundary conditions, and as-
sume the nucleons in β-equilibrium at nuclear density. We particularly study the
configuration of ultra-relativistic electrons with a large fraction contained within the
nucleus. Such configurations can be realized for a giant nucleus or high external
compression on the electrons. The lowest modes turn out to be heavily influenced
by the relativistic plasma frequency induced by the positive charge background in
the nucleus. Our results can be applied to heavy nuclei in the neutron star crust, as
well as to the whole core of a neutron star. We discuss the possibility to apply our
results to dynamic nuclei using the spectral method. For the details of this part, see
L. Hendrik, R. Ruffini, and S.-S. Xue, “Collective electronic pulsation of compressed
atoms in Thomas-Fermi model”, Nuclear Physics A 941, 1–15 (2015).

We are proceeding to further study the phenomenon of pulsating electromagnetic
field and electron-positron pair-production in gravitational collapse process of neu-
tral core, and its astrophysics applications, GRBs etc.

R. Moradi, R. Ruffini, S. Shakeri, Y. Wang, and S.-S. Xue, The work is in progress.

524



3.14. The Breit-Wheeler cutoff in high-energy γ-rays and cosmic absorption
(opacity) of ultra high energy particles

3.14. The Breit-Wheeler cutoff in high-energy
γ-rays and cosmic absorption (opacity) of
ultra high energy particles

The Breit-Wheeler process for the photon-photon pair production is one of most rel-
evant elementary processes in high energy astrophysics (see review Sec. 7.4). In
addition to the importance of this process in dense radiation fields of compact ob-
jects (Bonometto and Rees, 1971), the essential role of this process in the context
of intergalactic absorption of high-energy γ-rays was first pointed out by Nikishov
(Nikishov, 1961; Gould and Schréder, 1967). The spectra of TeV radiation observed
from distant (d > 100 Mpc) extragalactic objects suffer essential deformation dur-
ing the passage through the intergalactic medium, caused by energy-dependent ab-
sorption of primary γ-rays at interactions with the diffuse extragalactic background
radiation, for the optical depth τγγ most likely significantly exceeding one (Gould
and Schréder, 1967; Stecker et al., 1992; Vassiliev, 2000; Coppi and Aharonian, 1999).
A relevant broad-band information about the cosmic background radiation (CBR)
is important for the interpretation of the observed high-energy γ spectra (Aharo-
nian et al., 2000; Kneiske et al., 2002; Dwek and Krennrich, 2005; Aharonian et al.,
2006). For details see Hauser and Dwek (2001); Aharonian (2003). In this section,
we are particularly interested in such absorption effect of high-energy γ-ray, orig-
inated from cosmological sources, interacting with the Cosmic Microwave Back-
ground (CMB) photons. Fazio and Stecker (Fazio and Stecker, 1970; Stecker et al.,
1977) were the first who calculated the cutoff energy versus redshift for cosmologi-
cal γ-rays. This calculation was applied to further study of the optical depth of the
Universe to high-energy γ-rays (MacMinn and Primack, 1996; Kneiske et al., 2004;
Stecker et al., 2006). With the Fermi telescope, such study turns out to be important
to understand the spectrum of high-energy γ-ray originated from GRBs’ sources at
cosmological distance, we therefore offer the details of theoretical analysis as follow.

Breit-Wheeler cross-section in arbitrary frame

Breit and Wheeler (1934) studied the process

γ1 + γ2 → e+ + e−, (3.14.1)

in the center of mass of the system, the momenta of the electron and positron are
equal and opposite p1 = −p2. The same thing holds for the momenta of the photons
in the initial state: k1 = −k2. As a consequence, the energies of electron and positron
are equal: E1 = E2 = E, and so are the energies of the photons: h̄ω1 = h̄ω2 = Eγ = E.
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They found the total cross-section in the center of mass of the system:

σγγ =
π

2

(
αh̄
m c

)2

(1− β̂2)
[
2β̂(β̂2 − 2) + (3− β̂4) ln

(1 + β̂

1− β̂

)]
, with β̂ =

c|p|
E

,

(3.14.2)
where p and β̂ are respectively momentum and the reduced velocity of an electron or
positron. The necessary kinematic condition in order for the process (3.14.1) taking
place is that the energy of two colliding photons is larger than the energetic threshold
2mec2, i.e.,

Eγ > mec2. (3.14.3)

The cross-section in line (3.14.2) can be easily generalized to an arbitrary reference
frame K, in which the two photons k1 and k2 are moving in opposite directions; for
Lorentz invariance of (k1 · k2), one has ω1ω2 = E2

γ. Since

Eγ = E = mec2/
√

1− β̂2, (3.14.4)

to obtain the total cross-section in the arbitrary frame K, we must therefore make the
following substitution (Landau and Lifshitz, 1975),

β̂→
√

1−m2
e c4/(ω1ω2), (3.14.5)

in Eq. (3.14.2). For E � mec2, the total effective cross-section is approximately pro-
portional to

σγγ ' π

(
αh̄

mec

)2 (mec2

E

)2

= πr2
e

(
mec2

E

)2

, (3.14.6)

where re =
(

αh̄
mec

)
is the electron classical radius and πr2

e ' 2.5 · 10−25cm2.

Opacity of high-energy GRB photons colliding with CMB photons

We study the Breit-Wheeler process (3.14.1) to the case that high-energy GRB photons
ω1, originated from GRBs sources at cosmological distance z, on their way traveling
to us, collide with CMB photons ω2 in the rest frame of CMB photons, leading to
electron-positron pair production. We calculate the opacity and mean free-path of
these high-energy GRB photons, find the energy-range of absorption as a function of
the cosmological red-shift z.

In general, a high-energy GRB photon with a give energy ω1, collides with back-
ground photons in all possible energies ω2. We assume that i-type background pho-
tons have the spectrum distribution fi(ω2/Ti), where Ti is the characteristic energy
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scale of the distribution, the opacity is then given by

τi
γγ(ω1, z) =

∫
dr
∫ ∞

m2
e c4/ω1

ω2
2dω2

π2 fi(ω2/Ti)σγγ(
ω1ω2

m2
e c4 ), (3.14.7)

where m2
e c4/ω1 is the energy-threshold (3.14.3) above which the Breit-Wheeler pro-

cess (3.14.1) can occurs and the cross-section σγγ(x) is given by Eqs. (3.14.2), depend-
ing only on x = ω1ω2

m2
e c4 . The total opacity is then given by

τtotal
γγ (ω1, z) = ∑

i
τi

γγ(ω1, z), (3.14.8)

which the sum is over all types of photon background in the Universe. The high-
energy photons traveling path

∫
dr is given by ,

∫ t0

t

dt′

R(t′)
=
∫ r(t)

0

dr
(1− kr2)1/2 =

∫ r(t)

0
dr, (3.14.9)

where R(t) is the scalar factor, t0 is the present time and t corresponds to epoch of
the red-shift z for a flat (k = 0) Freemann Universe. Using the relationship z + 1 =
R0/R(t), we change integrand variable from t′ to the red-shift z,

dt′ = − dz
(z′ + 1)H(z′)

, (3.14.10)

so that we have ∫ r(t)

0
dr =

∫ t0

t

dt′

R(t′)
=

1
R0

∫ z

0

dz
H(z)

, (3.14.11)

where H(z) = Ṙ(t)/R(t0) is the Hubble function, obeyed the Friedmann equation

H(z) = H0[ΩM(z + 1)3 + ΩΛ]
1/2, ΩM + ΩΛ = 1, (3.14.12)

ΩM ' 0.3 and ΩM ' 0.7.

In the case of CMB photons in a black-body distribution 1/(eω2/T − 1) with the
temperature T, the opacity is given by

τγγ(ω1, z) =
∫

dr
∫ ∞

m2
e c4/ω1

dω2

π2
ω2

2
eω2/T − 1

σγγ(
ω1ω2

m2
e c4 ), (3.14.13)
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where the Boltzmann constant kB = 1. To simply Eq. (3.14.13), we set x = ω1ω2
m2

e c4 ,

τγγ(ω1, z) =
∫

dr
(

m2
e c4

ω1

)3 ∫ ∞

1

dx
π2

x2

exp xm2
e c4

ω1T − 1
σγγ(x). (3.14.14)

In terms of CMB temperature and GRB-photons energy at the present time,

T = (z + 1)T0; ω1,2 = (z + 1)ω0
1,2, (3.14.15)

we obtain,

τγγ(ω
0
1, z) =

1
R0

∫ z

0

dz′

H(z′) (z + 1)3

(
m2

e c4

ω0
1

)3 ∫ ∞

1

dx
π2

x2

exp(x/θ)− 1
σγγ(x), (3.14.16)

where

θ = x0(z + 1)2; x0 =
ω0

1T0

m2
e c4 , (3.14.17)

and x0 is the energy ω0
1 in unit of mec2(mec2/T0) = 1.15 · 1015eV. For the purpose of

numerical calculations, we rewrite the expression,

τγγ(x0, z) =
πr2

e
R0H0/c

(
T0

x0

)3 ∫ z

0

dz′

[ΩM(z′ + 1)3 + ΩΛ]1/2
1

(z′ + 1)3×

×
∫ ∞

1

dx
2π2

x2 fγγ(x)
exp(x/θ)− 1

=

=
23.8
R0h

(
1
x0

)3 ∫ z

0

dz′

[ΩM(z′ + 1)3 + ΩΛ]1/2
1

(z′ + 1)3×

×
∫ ∞

1

dx
2π2

x2 fγγ(x)
exp(x/θ)− 1

, (3.14.18)

where R0 = 1, present Hubble constant h = H0/100km/sec/Mpc and

fγγ(x) = (1− β̂2)
[
2β̂(β̂2 − 2) + (3− β̂4) ln

(1 + β̂

1− β̂

)]
, β̂ =

√
1− 1/x.

The τγγ(ω0
1, z) = 1 give the relationship ω0

1 = ω0
1(z) that separates the absorbed

regime τγγ(ω0
1, z) > 1 and transparent regime τγγ(ω0

1, z) < 1 in the ω0
1 − z plane.

The numerical result is shown in Fig. 3.4. It clearly shows the following properties:

1. for the redshift z smaller than a critical value zc ' 0.1 (z < zc), the CMB
photons are transparent τγγ(ω0

1, z) < 1 to GRB photons in any energy bands,

528



3.14. The Breit-Wheeler cutoff in high-energy γ-rays and cosmic absorption
(opacity) of ultra high energy particles

this indicates a minimal mean-free path of photons traveling in CMB photons
background;

2. for the redshift z larger than the value (z > zc), there are two branches of so-
lutions for τγγ(ω0

1, z) = 1, respectively corresponding to the different energy-
dependence of the cross-section (3.14.2): the cross-section increases with the
center-mass-energy x = E2

γ/(mec2)2 from the energy-threshold x = 1 to x '
1.99, and decreases (3.14.6) from x ' 1.99 to x → ∞. The turn point (z '
0.1, ω0

1 ' 1.15 · 1015eV) from one solution to another is determined by the max-
imal cross-section at x ' 1.99. Due to these two solutions, CMB photons are
transparent to GRB photons of large and small energies, opaque to those GRB
photons in an intermediate energy-range large for a given finite z-value;

3. CMB photons are transparent to very low-energy GRB photons ω0
1 < 1012eV,

i.e., x0 < 10−3, due to their energies are below the energetic threshold for
the Breit-Wheeler process (3.14.1). In addition, CMB photons are transpar-
ent to very large-energy GRB photons ω0

1 > 1018eV, i.e., x0 > 103, due to
the cross-section of Breit-Wheeler process (3.14.1) is very small for extremely
high-energy photons. For very large z ∼ 103, the Universe becomes com-
pletely opaque and photon distribution cannot be described by the black body
spectrum, we disregard this regime.

Due to the fact that there are other radiation backgrounds (3.14.7), the background
of CMB photons gives the lowest bound of opacity, absorption limit, to GRB photons
with respect to the Breit-Wheeler process (3.14.1). Finally, we point out that Fazio
and Stecker (Fazio and Stecker, 1970; Stecker et al., 1977) gave only asymptotic form
of small-energy solution indicated in Fig. (3.4).

Cosmic absorption of ultra high energy particles

We summarize the limits on propagation of ultra high energy particles in the Uni-
verse, set up by their interactions with cosmic background of photons and neutrinos.
By taking into account cosmic evolution of these backgrounds and considering ap-
propriate interactions we derive the mean free path for ultra high energy photons,
protons and neutrinos. For photons the relevant processes are the Breit-Wheeler
process as well as the double pair production process. For protons the relevant re-
actions are the photopion production and the Bethe-Heitler process. We discuss the
interplay between the energy loss length and mean free path for the Bethe-Heitler
process. Neutrino opacity is determined by its scattering off the cosmic background
neutrino. We compute for the first time the high energy neutrino horizon as a func-
tion of its energy. For the details of this part, see R. Ruffini, G. Vereshchagin and S.-S.
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3. Brief description

Figure 3.4.: This is a Log-Log plot for GRB photon energy x0 (in unit of
1.11 · 1015) vs redshift z. For z > zc ' 0.1, the line that bounds shadow
area indicates two solutions for the opacity τγγ = 1: (i) large-energy solu-
tion for ω0

1 > 1.15 · 1015eV; (ii) small-energy solution for ω0
1 < 1.15 · 1015eV,

which separate the optically thick regime (shadow area) τγγ(ω0
1, z) > 1 and

optically thin regime τγγ(ω0
1, z) < 1.
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3.14. The Breit-Wheeler cutoff in high-energy γ-rays and cosmic absorption
(opacity) of ultra high energy particles

Xue, “Cosmic absorption of ultra high energy particles”, Astrophysics and Space
Science, Volume 361, article id.82, 2016 11 pp.

In addition, we study the high energy photon interaction with cosmic microwave
background (CMB) and calculate the optical depth due to Euler-Heisenberg photon-
photon scattering at cosmological redshift. According to our results the photon-
photon scattering is predominant with respect to the Breit-Wheeler pair production
at energies below 1 GeV. However, it is relevant for sources of high energy pho-
tons at high redshift z > 100. We also discuss implications of our results for two
astrophysical observations of gamma-ray bursts and blazars. Tizchang, Seddigheh;
Batebi, Saghar; Mohammadi, Rohollah; Ruffini, Remo; Vereshchagin, Gregory; S.-S.
Xue, the conference proceeding of MG14, Rome, Italy 2015.
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4. Publications (before 2005)

1. R. Ruffini and J. A. Wheeler, “Introducing the black hole ”, Phys. Today, Jan-
uary (1971) 178.

This article proved to be popular and was written with the intention of com-
municating some of the major processes made in understanding the final con-
figurations of collapsed stars to the largest possible audience. In this article,
the authors summarized the results of their students’ work with particular
emphasis on the work of D. Christodoulou (graduate student of R. Ruffini’s at
that time) together with some of their most significant new results. Moreover,
it was emphasized that of all the procedures for identifying a collapsed object
in space at a great distance, the most promising consisted of analyzing a close
binary system in which one member is a normal star and the other a black hole.
The X–ray emission associated with the transfer of material from the normal
star to the collapsed object would then be of greatest importance in determin-
ing the properties of the collapsed object. This article has been reprinted many
times and has been translated into many languages (Japanese, Russian, and
Greek, among others). It has created much interest in the final configuration of
stars after the endpoint of their thermonuclear evolution. The analysis of the
possible processes leading to the formation of a black hole, via either a one–
step process of a multistep process, was also presented for the first time in this
article.

2. D. Christodoulou and R. Ruffini, “Reversible Transformations of a Charged
Black Hole”, Phys. Rev. D4 (1971) 3552.

A formula is derived for the mass of a black hole as a function of its ”irre-
ducible mass,” its angular momentum, and its charge. It is shown that 50%
of the mass of an extreme charged black hole can be converted into energy as
contrasted with 29% for an extreme rotating black hole.

3. T. Damour and R. Ruffini, “Quantum electrodynamical effects in Kerr-Newman
geometries”, Phys. Rev. Lett. 35 (1975) 463.

Following the classical approach of Sauter, of Heisenberg and Euler and of
Schwinger the process of vacuum polarization in the field of a ”bare” Kerr-
Newman geometry is studied. The value of the critical strength of the elec-
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tromagnetic fields is given together with an analysis of the feedback of the
discharge on the geometry. The relevance of this analysis for current astro-
physical observations is mentioned.

4. J. Ferreirinho, R. Ruffini and L. Stella, “On the relativistic Thomas-Fermi model”,
Phys. Lett. B 91, (1980) 314. The relativistic generalization of the Thomas-
Fermi model of the atom is derived. It approaches the usual nonrelativistic
equation in the limit Z � Zcrit, where Z is the total number of electrons of the
atom and Zcrit = (3π/4)1/2α−3/2 and α is the fine structure constant. The new
equation leads to the breakdown of scaling laws and to the appearance of a
critical charge, purely as a consequence of relativistic effects. These results are
compared and contrasted with those corresponding to N self-gravitating de-
generate relativistic fermions, which for N ≈ Ncrit = (3π/4)1/2(m/mp)3 give
rise to the concept of a critical mass against gravitational collapse. Here m is
the mass of the fermion and mp = (h̄c/G)1/2 is the Planck mass.

5. R. Ruffini and L. Stella,“Some comments on the relativistic Thomas-Fermi
model and the Vallarta-Rosen equation”, Phys. Lett. B 102 (1981) 442. Some
basic differences between the screening of the nuclear charge due to a rela-
tivistic cloud of electrons in a neutral atom and the screening due to vacuum
polarization effects induced by a superheavy ion are discussed.

6. G. Preparata, R. Ruffini and S.-S. Xue, “The dyadosphere of black holes and
gamma-ray bursts”, Astron. Astroph. Lett. 337 (1998) L3.

The ”dyadosphere” has been defined (Ruffini, Preparata et al.) as the region
outside the horizon of a black hole endowed with an electromagnetic field (ab-
breviated to EMBH for ”electromagnetic black hole”) where the electromag-
netic field exceeds the critical value, predicted by Heisenberg & Euler for e+e−

pair production. In a very short time (∼ O(h̄/(mc2))), a very large number of
pairs is created there. We here give limits on the EMBH parameters leading to
a Dyadosphere for 10M� and 105M� EMBH’s, and give as well the pair densi-
ties as functions of the radial coordinate. We here assume that the pairs reach
thermodynamic equilibrium with a photon gas and estimate the average en-
ergy per pair as a function of the EMBH mass. These data give the initial con-
ditions for the analysis of an enormous pair-electromagnetic-pulse or ”P.E.M.
pulse” which naturally leads to relativistic expansion. Basic energy require-
ments for gamma ray bursts (GRB), including GRB971214 recently observed at
z = 3.4, can be accounted for by processes occurring in the dyadosphere. In
this letter we do not address the problem of forming either the EMBH or the
dyadosphere: we establish some inequalities which must be satisfied during
their formation process.
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7. R. Ruffini, “On the dyadosphere of black holes”, at the XLIXth Yamada Confer-
ence on “Black Holes and High-Energy Astrophysics”, H. Sato Ed., Univ. Acad. Press,
Tokyo, 1998.

The ”dyadosphere” (from the Greek word ”duas-duados” for pairs) is here
defined as the region outside the horizon of a black hole endowed with an
electromagnetic field (abbreviated to EMBH for ”electromagnetic black hole”)
where the electromagnetic field exceeds the critical value, predicted by Heisen-
berg and Euler for electron-positron pair production. In a very short time, a
very large number of pairs is created there. I give limits on the EMBH pa-
rameters leading to a Dyadosphere for 10 solar mass and 100000 solar mass
EMBH’s, and give as well the pair densities as functions of the radial coordi-
nate. These data give the initial conditions for the analysis of an enormous
pair-electromagnetic-pulse or ”PEM-pulse” which naturally leads to relativis-
tic expansion. Basic energy requirements for gamma ray bursts (GRB), includ-
ing GRB971214 recently observed at z=3.4, can be accounted for by processes
occurring in the dyadosphere.

8. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On the Pair Electro-
magnetic Pulse of a Black Hole with Electromagnetic Structure”, Astron. As-
troph. 350 (1999) 334.

Starting from a nonequilibrium configuration we analyse the essential role of
the direct and the inverse binary and triple interactions in reaching an asymp-
totic thermal equilibrium in a homogeneous isotropic electron-positron-photon
plasma. We focus on energies in the range 0.1–10 MeV. We numerically inte-
grate the integro-partial differential relativistic Boltzmann equation with the
exact QED collisional integrals taking into account all binary and triple inter-
actions in the plasma. We show that first, when detailed balance is reached
for all binary interactions on a timescale tk . 10−14sec, photons and electron-
positron pairs establish kinetic equilibrium. Successively, when triple inter-
actions fulfill the detailed balance on a timescale teq . 10−12sec, the plasma
reaches thermal equilibrium. It is shown that neglecting the inverse triple in-
teractions prevents reaching thermal equilibrium. Our results obtained in the
theoretical physics domain also find application in astrophysics and cosmol-
ogy.

9. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On Evolution of the
Pair-Electromagnetic Pulse of a Charge Black Hole ”, Astron. Astrophys. Suppl. Ser. 138
(1999) 511.

Using hydrodynamic computer codes, we study the possible patterns of rel-
ativistic expansion of an enormous pair-electromagnetic-pulse (P.E.M. pulse);

535



4. Publications (before 2005)

a hot, high density plasma composed of photons, electron-positron pairs and
baryons deposited near a charged black hole (EMBH). On the bases of baryon-
loading and energy conservation, we study the bulk Lorentz factor of expan-
sion of the P.E.M. pulse by both numerical and analytical methods.

10. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On the pair-electromagnetic
pulse from an electromagnetic Black Hole surrounded by a Baryonic Remnant
”, Astron. Astrophys 359, 855-864 (2000).

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with
a shell of baryonic matter surrounding a Black Hole with electromagnetic struc-
ture (EMBH) is analyzed for selected values of the baryonic mass at selected
distances well outside the dyadosphere of an EMBH. The dyadosphere, the
region in which a super critical field exists for the creation of electron-positron
pairs, is here considered in the special case of a Reissner-Nordstrom geometry.
The interaction of the PEM pulse with the baryonic matter is described us-
ing a simplified model of a slab of constant thickness in the laboratory frame
(constant-thickness approximation) as well as performing the integration of
the general relativistic hydrodynamical equations. The validation of the constant-
thickness approximation, already presented in a previous paper Ruffini, et
al.(1999) for a PEM pulse in vacuum, is here generalized to the presence of
baryonic matter. It is found that for a baryonic shell of mass-energy less than
1% of the total energy of the dyadosphere, the constant-thickness approxima-
tion is in excellent agreement with full general relativistic computations. The
approximation breaks down for larger values of the baryonic shell mass, how-
ever such cases are of less interest for observed Gamma Ray Bursts (GRBs). On
the basis of numerical computations of the slab model for PEM pulses, we de-
scribe (i) the properties of relativistic evolution of a PEM pulse colliding with
a baryonic shell; (ii) the details of the expected emission energy and observed
temperature of the associated GRBs for a given value of the EMBH mass; 103

solar masses, and for baryonic mass-energies in the range 10−8 to 10−2 the total
energy of the dyadosphere.

11. G. Preparata, R. Ruffini and S.-S. Xue,“The role of the screen factor in GRBs ”,
Il Nuovo Cimento B115 (2000) 915.

We derive the screen factor for the radiation flux from an optically thick plasma
of electron-positron pairs and photons, created by vacuum polarization pro-
cess around a black hole endowed with electromagnetic structure.

12. C. L. Bianco, R. Ruffini and S.-S. Xue, “The elementary spike produced by a
pure e+e− pair-electromagnetic pulse from a Black Hole: The PEM Pulse ”,
Astron. Astrophys. 368 (2001) 377.

536



4. Publications (before 2005)

In the framework of the model that uses black holes endowed with electro-
magnetic structure (EMBH) as the energy source, we study how an elemen-
tary spike appears to the detectors. We consider the simplest possible case of a
pulse produced by a pure e+e− pair-electro-magnetic plasma, the PEM pulse,
in the absence of any baryonic matter. The resulting time profiles show a Fast-
Rise-Exponential-Decay shape, followed by a power-law tail. This is obtained
without any special fitting procedure, but only by fixing the energetics of the
process taking place in a given EMBH of selected mass, varying in the range
from 10 to 103 M� and considering the relativistic effects to be expected in an
electron-positron plasma gradually reaching transparency. Special attention is
given to the contributions from all regimes with Lorentz γ factor varying from
γ = 1 to γ = 104 in a few hundreds of the PEM pulse travel time. Although the
main goal of this paper is to obtain the elementary spike intensity as a function
of the arrival time, and its observed duration, some qualitative considerations
are also presented regarding the expected spectrum and on its departure from
the thermal one. The results of this paper will be comparable, when data will
become available, with a subfamily of particularly short GRBs not followed by
any afterglow. They can also be propedeutical to the study of longer bursts in
presence of baryonic matter currently observed in GRBs.

13. R. Ruffini and L. Vitagliano, “Irreducible mass and energetics of an electro-
magnetic black hole ”, Phys. Lett. B545 (2002) 233.

The mass-energy formula for a black hole endowed with electromagnetic struc-
ture (EMBH) is clarified for the nonrotating case. The irreducible mass Mirr is
found to be independent of the electromagnetic field and explicitly expressable
as a function of the rest mass, the gravitational energy and the kinetic energy of
the collapsing matter at the horizon. The electromagnetic energy is distributed
throughout the entire region extending from the horizon of the EMBH to in-
finity. We discuss two conceptually different mechanisms of energy extraction
occurring respectively in an EMBH with electromagnetic fields smaller and
larger than the critical field for vacuum polarization. For a subcritical EMBH
the energy extraction mechanism involves a sequence of discrete elementary
processes implying the decay of a particle into two oppositely charged parti-
cles. For a supercritical EMBH an alternative mechanism is at work involving
an electron-positron plasma created by vacuum polarization. The energetics of
these mechanisms as well as the definition of the spatial regions in which thay
can occur are given. The physical implementations of these ideas are outlined
for ultrahigh energy cosmic rays UHECR) and gamma ray bursts (GRBs).

14. C. Cherubini, R. Ruffini and L. Vitagliano, “On the electromagnetic field of
a charged collapsing spherical shell in general relativity ”, Phys. Lett. B545
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(2002) 226.

A new exact solution of the Einstein-Maxwell equations for the gravitational
collapse of a shell of matter in an already formed black hole is given. Both
the shell and the black hole are endowed with electromagnetic structure and
are assumed spherically symmetric. Implications for current research are out-
lined.

15. R. Ruffini, L. Vitagliano and S.-S. Xue, “On Plasma Oscillations in Strong Elec-
tric Fields ”, Phys. Lett. B559 (2003) 12.

We describe the creation and evolution of electron-positron pairs in a strong
electric field as well as the pairs annihilation into photons. The formalism
is based on generalized Vlasov equations, which are numerically integrated.
We recover previous results about the oscillations of the charges, discuss the
electric field screening and the relaxation of the system to a thermal equilib-
rium configuration. The timescale of the thermalization is estimated to be
∼ 103 − 104h̄/mec2.

16. R. Ruffini, L. Vitagliano and S.-S. Xue, “Electron-positron-photon plasma around
a collapsing star ”, (invited talk) in Proc. of the 28th Joint ICFA Conference
on Quantum Aspects of Beam Physics and Other Critical Issues of Beams in
Physics and Astrophysics, January 7–11, 2003, Hiroshima University, Higashi–
Hiroshima, Japan, Pisin Chen Ed., World Scientific, Singapore.

We describe electron-positron pairs creation around an electrically charged
star core collapsing to an electromagnetic black hole (EMBH), as well as pairs
annihilation into photons. We use the kinetic Vlasov equation formalism for
the pairs and photons and show that a regime of plasma oscillations is estab-
lished around the core. As a byproduct of our analysis we can provide an
estimate for the thermalization time scale.

17. G. Preparata, R. Ruffini and S.-S. Xue, “On the Dyadosphere of Black Hole”,
J. Korean Phys.Soc. 42 (2003) S99-S104 (astro-ph/0204080).

Basic energy requirements of Gamma Ray Burst(GRB) sources can be easily
accounted for by a pair creation process occurring in the ”Dyadosphere” of
a Black Hole endowed with an electromagnetic field (abbreviated to EMBH
for ”electromagnetic Black Hole”). This includes the recent observations of
GRB971214 by Kulkarni et al. The ”Dyadosphere” is defined as the region
outside the horizon of an EMBH where the electromagnetic field exceeds the
critical value for e+e− pair production. In a very short time ∼ O(h̄mc2), very
large numbers of pairs are created there. Further evolution then leads nat-
urally to a relativistically expanding pair-electromagnetic-pulse (PEM-pulse).
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Specific examples of Dyadosphere parameters are given for 10 and 105 solar
mass EMBH’s. This process does occur for EMBH with charge-to-mass ratio
larger than 2.210−5 and strictly smaller than one. From a fundamental point of
view, this process represents the first mechanism proved capable of extracting
large amounts of energy from a Black Hole with an extremely high efficiency
(close to 100%).

18. R. Ruffini and L. Vitagliano, “Energy Extraction From Gravitational Collapse
to Static Black Holes ”, Int. J. Mod. Phys. D12 (2003) 121.

The mass–energy formula of black holes implies that up to 50% of the energy
can be extracted from a static black hole. Such a result is reexamined using the
recently established analytic formulas for the collapse of a shell and expression
for the irreducible mass of a static black hole. It is shown that the efficiency of
energy extraction process during the formation of the black hole is linked in
an essential way to the gravitational binding energy, the formation of the hori-
zon and the reduction of the kinetic energy of implosion. Here a maximum
efficiency of 50% in the extraction of the mass energy is shown to be generally
attainable in the collapse of a spherically symmetric shell: surprisingly this re-
sult holds as well in the two limiting cases of the Schwarzschild and extreme
Reissner-Nordström space-times. Moreover, the analytic expression recently
found for the implosion of a spherical shell onto an already formed black hole
leads to a new exact analytic expression for the energy extraction which re-
sults in an efficiency strictly less than 100% for any physical implementable
process. There appears to be no incompatibility between General Relativity
and Thermodynamics at this classical level.
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1. R. Ruffini, F. Fraschetti, L. Vitagliano and S.-S. Xue,“Observational signatures
of an electromagnetic overcritical gravitational collapse ”, Int. Journ. Mod.
Phys. D14 (2005) 131.

We present theoretical predictions for the spectral, temporal and intensity sig-
natures of the electromagnetic radiation emitted during the process of the
gravitational collapse of a stellar core to a black hole, during which electro-
magnetic field strengths rise over the critical value for e+e− pair creation. The
last phases of this gravitational collapse are studied, leading to the formation
of a black hole with a subcritical electromagnetic field, likely with zero charge,
and an outgoing pulse of initially optically thick e+e−-photon plasma. Such
a pulse reaches transparency at Lorentz gamma factors of 102–104. We find a
clear signature in the outgoing electromagnetic signal, drifting from a soft to a
hard spectrum, on very precise time-scales and with a very specific intensity
modulation. The relevance of these theoretical results for the understanding
of short gamma-ray bursts is outlined.

2. Federico Fraschetti, Remo Ruffini, Luca Vitagliano, and She-Sheng Xue, “The-
oretical predictions of spectral evolution of short GRBs ”, in Venice (Italy), June
5-9, 2006, IL NUOVO CIMENTO Vol. 121 (2006) 1477.

We present the properties of spectrum of radiation emitted during gravita-
tional collapse in which electromagnetic field strengths rise over the critical
value for e+e− pair creation. A drift from soft to a hard energy and a high en-
ergy cut off have been found; a comparison with a pure black body spectrum
is outlined.

3. R. Ruffini and S.-S. Xue, “Effective Lagrangian of QED”, Journal of the Korean
physical society, Vol. 49, No. 2, august 2006, pp. 715.

From the Euler-Heisenberg formula we calculate the exact real part of the one-
loop effective Lagrangian of Quantum Electrodynamics in a constant electro-
magnetic field, and determine its strong-field limit.

4. C. Cherubini, A. Geralico, J. Rueda and R. Ruffini, “On the “Dyadotorus” of
Kerr-Newman space time ”, Phys. Rev. D 79 124002 (2009).
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We present the geometrical properties of the region where vacuum polariza-
tion precess occur int he Kerr-Newman space time. We find that the shape of
the region can be ellipsoid-like or torus-like depending on the charge of the
black hole.

5. H. Kleinert, R. Ruffini and S.-S. Xue, “Electron-positron pair-production in
nonuniform electric fields”, Phys. Rev. D 78 (2008) 025011.

Treating the production of electron and positron pairs in vacuum as quantum
tunneling, at the semiclassical level O(h̄), we derive a general expression, both
exponential and pre-exponential factors, of the pair-production rate in nonuni-
form electric fields varying only in one direction. In particularly we discuss the
expression for the case when produced electrons (or positrons) fill into bound
states of electric potentials with discrete spectra of energy-level crossings. This
expression is applied to the examples of the confined field E(z) 6= 0, |z| . `,
half-confined field E(z) 6= 0, z & 0, and linear increasing field E(z) ∼ z, as well
as the Coulomb field E(r) = eZ/r2 for a nucleus with finite size rn and large
Z � 1.

6. R. Ruffini, G. V. Vereshchagin and S.-S. Xue, “Vacuum polarization and
plasma oscillations”, Phys. Lett. A 371(2007) 399 ( arXiv:0706.4363).

We evidence the existence of plasma oscillations of electrons-positron pairs
created by the vacuum polarization in an uniform electric field with E < Ec.
Our general treatment, encompassing also the traditional, well studied case of
E > Ec, shows the existence in both cases of a maximum Lorentz factor ac-
quired by electrons and positrons and allows determination of the a maximal
length of oscillation. We quantitatively estimate how plasma oscillations re-
duce the rate of pair creation and increase the time scale of the pair production.
These results are particularly relevant in view of the experimental progress in
approaching the field strengths E < Ec.

7. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of a
nonequilibrium electron-positron-photon plasma ”, Phys.Rev.Lett. 99 (2007)
125003 .

Starting from a nonequilibrium configuration we analyse the essential role of
the direct and the inverse binary and triple interactions in reaching an asymp-
totic thermal equilibrium in a homogeneous isotropic electron-positron-photon
plasma. We focus on energies in the range 0.1–10 MeV. We numerically inte-
grate the integro-partial differential relativistic Boltzmann equation with the
exact QED collisional integrals taking into account all binary and triple inter-
actions in the plasma. We show that first, when detailed balance is reached
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for all binary interactions on a timescale tk . 10−14sec, photons and electron-
positron pairs establish kinetic equilibrium. Successively, when triple inter-
actions fulfill the detailed balance on a timescale teq . 10−12sec, the plasma
reaches thermal equilibrium. It is shown that neglecting the inverse triple in-
teractions prevents reaching thermal equilibrium. Our results obtained in the
theoretical physics domain also find application in astrophysics and cosmol-
ogy.

8. S.-S. Xue, “Gravitational Instanton and Cosmological term ”, Int. Journ. Mod.
Phys. A Vol. 24, Nos. 20 & 21 (2009) 3865–3891.

Quantum fluctuation of unstable modes about gravitational instantons causes
the instability of flat space at finite temperature, leading to the spontaneous
process of nucleating quantum black holes. The energy-density of quantum
black holes, depending on the initial temperature, gives the cosmological term,
which naturally accounts for the inflationary phase of the early universe. The
reheating phase is attributed to the Hawking radiation and annihilation of
these quantum black holes. Then, the radiation energy-density dominates over
the energy-density of quantum black holes, the universe started the standard
cosmology phase. In this phase the energy-density of quantum black holes
depends on the reheating temperature. It asymptotically approaches to the
cosmological constant in matter domination phase, consistently with current
observations.

9. R. Ruffini, M. Rotondo and S.-S. Xue, “Electrodynamics for Nuclear Matter in
Bulk ”, Int. Journ. Mod. Phys. D Vol. 16, No. 1 (2007) 1-9.

A general approach to analyze the electrodynamics of nuclear matter in bulk
is presented using the relativistic Thomas-Fermi equation generalizing to the
case of N ' (mPlanck/mn)3 nucleons of mass mn the approach well tested in
very heavy nuclei (Z ' 106). Particular attention is given to implement the
condition of charge neutrality globally on the entire configuration, versus the
one usually adopted on a microscopic scale. As the limit N ' (mPlanck/mn)3

is approached the penetration of electrons inside the core increases and a rel-
atively small tail of electrons persists leading to a significant electron density
outside the core. Within a region of 102 electron Compton wavelength near the
core surface electric fields close to the critical value for pair creation by vacuum
polarization effect develop. These results can have important consequences on
the understanding of physical process in neutron stars structures as well as on
the initial conditions leading to the process of gravitational collapse to a black
hole.

10. V. Popov, M. Rotondo, R. Ruffini and S.-S. Xue, “Analytic treatment of the
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electrodynamics for nuclear matter in bulk”, Int. Journal of Modern Physics D
20 (2011) 1995.

Using the relativistic Thomas-Fermi equation, we present an analytic treat-
ment of the electrodynamic properties of nuclear matter in bulk. Following
the works of Migdal and Popov we generalize to the case of a massive core
with the mass number A ∼ 1057 the analytic approach well tested in very
heavy nuclei with A ∼ 106. Attention is given to implement the condition of
charge neutrality globally on the entire configuration, versus the one usually
adopted on a microscopic scale. It is confirmed that also in this limit A, an
electric field develops near the core surface of magnitude close to the critical
value of vacuum polarization. It is shown that such a configuration is ener-
getically favorable with respect to the one which obeys local charge neutrality.
These results can have important consequences on the understanding of the
physical process in neutron stars as well as on the initial conditions leading to
the process of gravitational collapse to a black hole.

11. R. Ruffini, M. Rotondo and S.-S. Xue, “Neutral nuclear core vs super charged
one ”, in Proceedings of the Eleventh Marcel Grossmann Meeting, R. Jantzen,
H. Kleinert, R. Ruffini (eds.), (World Scientific, Singapore, 2008).

Based on the Thomas-Fermi approach, we describe and distinguish the elec-
tron distributions around extended nuclear cores: (i) in the case that cores are
neutral for electrons bound by protons inside cores and proton and electron
numbers are the same; (ii) in the case that super charged cores are bare, elec-
trons (positrons) produced by vacuum polarization are bound by (fly into)
cores (infinity).

12. R. Ruffini and S.-S. Xue, “Dyadosphere formed in gravitational collapse ”, AIP
Conf. Proc. 1059 (2008) 72.

We first recall the concept of Dyadosphere (electron-positron-photon plasma
around a formed black holes) and its motivation, and recall on (i) the Dirac pro-
cess: annihilation of electron-positron pairs to photons; (ii) the Breit-Wheeler
process: production of electron-positron pairs by photons with the energy
larger than electron-positron mass threshold; the Sauter-Euler-Heisenberg ef-
fective Lagrangian and rate for the process of electron-positron production in
a constant electric field. We present a general formula for the pair-production
rate in the semi-classical treatment of quantum mechanical tunneling. We also
present in the Quantum Electro-Dynamics framework, the calculations of the
Schwinger rate and effective Lagrangian for constant electromagnetic fields.
We give a review on the electron-positron plasma oscillation in constant elec-
tric fields, and its interaction with photons leading to energy and number
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equipartition of photons, electrons and positrons. The possibility of creating an
overcritical field in astrophysical condition is pointed out. We present the dis-
cussions and calculations on (i) energy extraction from gravitational collapse;
(ii) the formation of Dyadosphere in gravitational collapsing process, and (iii)
its hydrodynamical expansion in Reissner Nordström geometry. We calculate
the spectrum and flux of photon radiation at the point of transparency, and
make predictions for short Gamma-Ray Bursts.

13. Jorge A. Rueda, Remo Ruffini, and S.-S. Xue, “On the electrostatic structure of
neutron stars”, AIP Conference Proceedings Volume 1205, page 143 (2009), In-
ternational Conference in Honor of Ya.B. Zeldovich’s 95th Anniversary, Minsk,
(Belarus), 20-23 April 2009.

We consider neutron stars composed by, (1) a core of degenerate neutrons, pro-
tons, and electrons above nuclear density; (2) an inner crust of nuclei in a gas
of neutrons and electrons; and (3) an outer crust of nuclei in a gas of electrons.
We use for the strong interaction model for the baryonic matter in the core an
equation of state based on the phenomenological Weizsacker mass formula,
and to determine the properties of the inner and the outer crust below nuclear
saturation density we adopt the well–known equation of state of Baym–Bethe–
Pethick. The integration of the Einstein–Maxwell equations is carried out un-
der the constraints of β–equilibrium and global charge neutrality. We obtain
baryon densities that sharply go to zero at nuclear density and electron den-
sities matching smoothly the electron component of the crust. We show that
a family of equilibrium configurations exists fulfilling overall neutrality and
characterized by a non–trivial electrodynamical structure at the interface be-
tween the core and the crust. We find that the electric field is overcritical and
that the thickness of the transition surface–shell separating core and crust is of
the order of the electron Compton wavelength.

14. Jorge A. Rueda H., B. Patricelli, M. Rotondo, R. Ruffini, and S. S. Xue, “The
Extended Nuclear Matter Model with Smooth Transition Surface”, in the Pro-
ceedings of The 3rd Stueckelberg Workshop on Relativistic Field Theories,
Pescara-Italy (2008).

The existence of electric fields close to their critical value Ec = m2
e c3/(eh̄) has

been proved for massive cores of 107 up to 1057 nucleons using a proton dis-
tribution of constant density and a sharp step function at its boundary. We
explore the modifications of this effect by considering a smoother density pro-
file with a proton distribution fulfilling a Woods-Saxon dependence. The oc-
currence of a critical field has been confirmed. We discuss how the location of
the maximum of the electric field as well as its magnitude is modified by the
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smoother distribution.

15. B. Patricelli, M. Rotondo and R. Ruffini, “On the Charge to Mass Ratio of Neu-
tron Cores and Heavy Nuclei”, AIP Conference Proceedings, Vol. 966 (2008),
pp. 143-146.

We determine theoretically the relation between the total number of protons
Np and the mass number A (the charge to mass ratio) of nuclei and neutron
cores with the model recently proposed by Ruffini et al. (2007) and we compare
it with other Np versus A relations: the empirical one, related to the Periodic
Table, and the semi-empirical relation, obtained by minimizing the Weizsäcker
mass formula. We find that there is a very good agreement between all the
relations for values of A typical of nuclei, with differences of the order of per
cent. Our relation and the semi-empirical one are in agreement up to A ≈
104 for higher values, we find that the two relations differ. We interpret the
different behavior of our theoretical relation as a result of the penetration of
electrons (initially confined in an external shell) inside the core, that becomes
more and more important by increasing A; these effects are not taken into
account in the semi-empirical mass-formula.

16. M. Rotondo, R. Ruffini and S.-S Xue, “On the Electrodynamical properties of
Nuclear matter in bulk”, AIP Conference Proceedings, Vol. 966 (2008), pp.
147-152.

We analyze the properties of solutions of the relativistic Thomas-Fermi equa-
tion for globally neutral cores with radius of the order of R ≈ 10 Km, at
constant densities around the nuclear density. By using numerical tecniques
as well as well tested analytic procedures developed in the study of heavy
ions, we confirm the existence of an electric field close to the critical value
Ec = m2

e c3/eh̄ in a shell ∆R ≈ 104h̄/mπc near the core surface. For a core of
≈ 10 Km the difference in binding energy reaches 1049 ergs. These results can
be of interest for the understanding of very heavy nuclei as well as physics of
neutron stars, their formation processes and further gravitational collapse to a
black hole.

17. B. Patricelli, M. Rotondo, J. A. Rueda H. and R. Ruffini, “The Electrodynam-
ics of the Core and the Crust components in Neutron Stars”, AIP Conference
Proceedings, Vol. 1059 (2008), pp. 68-71.

We study the possibility of having a strong electric field (E) in Neutron Stars.
We consider a system composed by a core of degenerate relativistic electrons,
protons and neutrons, surrounded by an oppositely charged leptonic compo-
nent and show that at the core surface it is possible to have values of E of the
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order of the critical value for electron-positron pair creation, depending on the
mass density of the system. We also describe Neutron Stars in general relativ-
ity, considering a system composed by the core and an additional component:
a crust of white dwarf - like material. We study the characteristics of the crust,
in particular we calculate its mass Mcrust. We propose that, when the mass
density of the star increases, the core undergoes the process of gravitational
collapse to a black hole, leaving the crust as a remnant; we compare Mcrust
with the mass of the baryonic remnant considered in the fireshell model of
GRBs and find that their values are compatible.

18. Iman Motie and She-Sheng Xue, “High energy neutrino oscillation at the pres-
ence of the Lorentz Invariance Violation ”, International Journal of Modern
Physics A Vol. 27, No. 19 (2012) 1250104.

Due to quantum gravity fluctuations at the Planck scale, the space-time mani-
fold is no longer continuous, but discretized. As a result the Lorentz symmetry
is broken at very high energies. In this article, we study the neutrino oscilla-
tion pattern due to the Lorentz Invariance Violation (LIV), and compare it with
the normal neutrino oscillation pattern due to neutrino masses. We find that
at very high energies, neutrino oscillation pattern is very different from the
normal one. This could provide an possibility to study the Lorentz Invariance
Violation by measuring the oscillation pattern of very high energy neutrinos
from a cosmological distance.

19. R. Ruffini, “The Role of Thomas-Fermi approach in Neutron Star Matter”,
in the Proceedings of the 9th International Conference “Path Integrals - New
trends and perspectives”, Max Planck Institute for the Physics of Complex Sys-
tems, Dresden, Germany, Semptember 23 - 28 2007, World Scientific 207 - 218
(2008), eds. W. Janke and A. Pelster

The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-
sented and discussed with special attention to solutions globally neutral and
not fulfilling the traditional condition of local charge neutrality. A new sta-
ble and energetically favorable configuration is found. This new solution can
be of relevance in understanding unsolved issues of the gravitational collapse
processes and their energetics.

20. S.-S. Xue, “The phase structure of Einstein-Cartan theory ”, Physics Letters
B665 54 (2008).

In the Einstein–Cartan theory of torsion-free gravity coupling to massless fermions,
the four-fermion interaction is induced and its strength is a function of the
gravitational and gauge couplings, as well as the Immirzi parameter. We
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study the dynamics of the four-fermion interaction to determine whether effec-
tive bilinear terms of massive fermion fields are generated. Calculating one-
particle-irreducible two point functions of fermion fields, we identify three
different phases and two critical points for phase transitions characterized by
the strength of four-fermion interaction: (1) chiral symmetric phase for mas-
sive fermions in strong coupling regime; (2) chiral symmetric broken phase
for massive fermions in intermediate coupling regime; (3) chiral symmetric
phase for massless fermions in weak coupling regime. We discuss the scaling-
invariant region for an effective theory of massive fermions coupled to torsion-
free gravity in the low-energy limit.

21. S.-S. Xue, “Quantum Regge calculus of Einstein-Cartan theory and its phase
and critical point”, Physics Letters B682 (2009) 300.

We study the Quantum Regge Calculus of Einstein-Cartan theory to describe
quantum dynamics of Euclidean space-time discretized as a 4-simplices com-
plex. Tetrad field eµ(x) and spin-connection field ωµ(x) are assigned to each 1-
simplex. Applying the torsion-free Cartan structure equation to each 2-simplex,
we discuss parallel transports and construct a diffeomorphism and local gauge-
invariant Einstein-Cartan action. Invariant holonomies of tetrad and spin-
connection fields along large loops are also given. Quantization is defined by
a bounded partition function with the measure of SO(4)-group valued ωµ(x)
fields and Dirac-matrix valued eµ(x) fields over 4-simplices complex.

22. S.-S. Xue, “Quantum Regge calculus of Einstein-Cartan theory”, Physical Re-
view D 82, 064039 (2010),

We then present detailed discussions and calculations of Quantum Regge cal-
culus of Einstein-Cartan theory. The Euclidean space-time is discretized by a
four-dimensional simplicial complex. We adopt basic tetrad and spin-connection
fields to describe the simplicial complex. By introducing diffeomorphism and
local Lorentz invariant holonomy fields, we construct a regularized Einstein-
Cartan theory for studying the quantum dynamics of the simplicial complex
and fermion fields. This regularized Einstein-Cartan action is shown to prop-
erly approach to its continuum counterpart in the continuum limit. Based on
the local Lorentz invariance, we derive the dynamical equations satisfied by
invariant holonomy fields. In the mean-field approximation, we show that
the averaged size of 4-simplex, the element of the simplicial complex, is larger
than the Planck length. This formulation provides a theoretical framework
for analytical calculations and numerical simulations to study the quantum
Einstein-Cartan theory.

23. S.-S. Xue, “The phase and critical point of quantum Einstein-Cartan gravity ”,
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Physics Letters B711 (2012) 404.

By introducing diffeomorphism and local Lorentz gauge invariant holonomy
fields, we study the quantum Einstein-Cartan gravity in the framework of
Regge calculus. On the basis of strong coupling expansion, mean-field approx-
imation and dynamical equations satisfied by holonomy fields, we present in
this Letter calculations and discussions to show the phase structure of the
quantum Einstein-Cartan gravity, (i) the order phase: long-range condensa-
tions of holonomy fields in strong gauge couplings; (ii) the disorder phase:
short-range fluctuations of holonomy fields in weak gauge couplings. Accord-
ing to the competition of the activation energy of holonomy fields and their
entropy, we give a simple estimate of the possible ultra-violet critical point and
correlation length for the second-order phase transition from the order phase
to disorder one. At this critical point, we discuss whether the continuum field
theory of quantum Einstein-Cartan gravity can be possibly approached when
the macroscopic correlation length of holonomy field condensations is much
larger than the Planck length.

24. R. Ruffini and S.-S. Xue, “Electron-positron pairs production in a macroscopic
charged core”, Phys. Lett. B 696 (2011) 416.

Classical and semi-classical energy states of relativistic electrons bounded by a
massive and charged core with the charge-mass-radio Q/M and macroscopic
radius Rc are discussed. We show that the energies of semi-classical (bound)
states can be much smaller than the negative electron mass-energy (−mc2),
and energy-level crossing to negative energy continuum occurs. Electron-
positron pair production takes place by quantum tunneling, if these bound
states are not occupied. Electrons fill into these bound states and positrons go
to infinity. We explicitly calculate the rate of pair-production, and compare it
with the rates of electron-positron production by the Sauter-Euler-Heisenberg-
Schwinger in a constant electric field. In addition, the pair-production rate for
the electro-gravitational balance ratio Q/M = 10−19 is much larger than the
pair-production rate due to the Hawking processes.

25. W.-B. Han, R. Ruffini and S.-S. Xue, “Electron-positron pair oscillation in spa-
tially inhomogeneous electric fields and radiation ”, Physics Letters B, Vol. 691
(2010), pp. 99-104.

It is known that strong electric fields produce electron and positron pairs from
the vacuum, and due to the back-reaction these pairs oscillate back and forth
coherently with the alternating electric fields in time. We study this phe-
nomenon in spatially inhomogeneous and bound electric fields by integrating
the equations of energy-momentum and particle-number conservations and
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Maxwell equations. The space and time evolutions of the pair-induced electric
field, electric charge- and current-densities are calculated. The results show
non-vanishing electric charge-density and the propagation of pair-induced elec-
tric fields, that are different from the case of homogeneous and unbound elec-
tric fields. The space and time variations of pair-induced electric charges and
currents emit an electromagnetic radiation. We obtain the narrow spectrum
and intensity of this radiation, whose peak ωpeak locates in the region around
4 keV for electric field strength ∼ Ec. We discuss their relevances to both the
laboratory experiments for electron and positron pair-productions and the as-
trophysical observations of compact stars with an electromagnetic structure.

26. A. Benedetti, W.-B. Han, R. Ruffini, G. V. Vereshchagin, “On the frequency of
oscillations in the pair plasma generated by a strong electric field ”, Phys. Lett. B698:75-
79,2011.

We study the frequency of the plasma oscillations of electron-positron pairs
created by the vacuum polarization in an uniform electric field with strength
E in the range 0.2Ec < E < 10Ec. Following the approach adopted in [1] we
work out one second order ordinary differential equation for a variable re-
lated to the velocity from which we can recover the classical plasma oscillation
equation when E→ 0. Thereby, we focus our attention on its evolution in time
studying how this oscillation frequency approaches the plasma frequency. The
time-scale needed to approach to the plasma frequency and the power spec-
trum of these oscillations are computed. The characteristic frequency of the
power spectrum is determined uniquely from the initial value of the electric
field strength. The effects of plasma degeneracy and pair annihilation are dis-
cussed.

27. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “The self-consistent general
relativistic solution for a system of degenerate neutrons, protons and electrons
in beta-equilibrium ”, Physics Letters B, Volume 701, Issue 5, p. 667-671 (2011).

We present the self-consistent treatment of the simplest, nontrivial, self-gravitating
system of degenerate neutrons, protons and electrons in β-equilibrium within
relativistic quantum statistics and the Einstein-Maxwell equations. The impos-
sibility of imposing the condition of local charge neutrality on such systems is
proved, consequently overcoming the traditional Tolman-Oppenheimer-Volkoff
treatment. We emphasize the crucial role of imposing the constancy of the
generalized Fermi energies. A new approach based on the coupled system
of the general relativistic Thomas-Fermi-Einstein-Maxwell equations is pre-
sented and solved. We obtain an explicit solution fulfilling global and not local
charge neutrality by solving a sophisticated eigenvalue problem of the general
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relativistic Thomas-Fermi equation. The value of the Coulomb potential at the
center of the configuration is eV(0) ' mπc2 and the system is intrinsically
stable against Coulomb repulsion in the proton component. This approach is
necessary, but not sufficient, when strong interactions are introduced.

28. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “On Compressed Nuclear
Matter: from Nuclei to Neutron Stars ”, International Journal of Modern Physics
D, Volume 20, Issue 10, pp. 1789-1796 (2011).

We address the description of neutron-proton-electron degenerate matter in
beta equilibrium subjected to compression both in the case of confined nucle-
ons into a nucleus as well as in the case of deconfined nucleons. We follow a
step-by-step generalization of the classical Thomas-Fermi model to special and
general relativistic regimes, which leads to a unified treatment of beta equi-
librated neutron-proton-electron degenerate matter applicable from the case
of nuclei all the way up to the case of white-dwarfs and neutron stars. New
gravito-electrodynamical effects, missed in the traditional approach for the de-
scription of neutron star configurations, are found as a consequence of the new
set of general relativistic equilibrium equations.

29. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “The relativistic Feynman-
Metropolis-Teller theory for white-dwarfs in general relativity ”, Physical Re-
view D, vol. 84, Issue 8, 084007 (2011).

The recent formulation of the relativistic Thomas-Fermi model within the Feynman-
Metropolis-Teller theory for compressed atoms is applied to the study of gen-
eral relativistic white dwarf equilibrium configurations. The equation of state,
which takes into account the β-equilibrium, the nuclear and the Coulomb in-
teractions between the nuclei and the surrounding electrons, is obtained as a
function of the compression by considering each atom constrained in a Wigner-
Seitz cell. The contribution of quantum statistics, weak, nuclear, and electro-
magnetic interactions is obtained by the determination of the chemical po-
tential of the Wigner-Seitz cell. The further contribution of the general rela-
tivistic equilibrium of white dwarf matter is expressed by the simple formula√

g00µws= constant, which links the chemical potential of the Wigner-Seitz cell
µws with the general relativistic gravitational potential g00 at each point of the
configuration. The configuration outside each Wigner-Seitz cell is strictly neu-
tral and therefore no global electric field is necessary to warranty the equi-
librium of the white dwarf. These equations modify the ones used by Chan-
drasekhar by taking into due account the Coulomb interaction between the nu-
clei and the electrons as well as inverse β-decay. They also generalize the work
of Salpeter by considering a unified self-consistent approach to the Coulomb
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interaction in each Wigner-Seitz cell. The consequences on the numerical value
of the Chandrasekhar-Landau mass limit as well as on the mass-radius rela-
tion of 4He, 12C, 16O and 56Fe white dwarfs are presented. All these effects
should be taken into account in processes requiring a precision knowledge of
the white dwarf parameters.

30. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “On the relativistic Thomas-
Fermi treatment of compressed atoms and compressed nuclear matter cores of
stellar dimensions ”, Physics Review C83, 045805 (2011).

The Feynman, Metropolis and Teller treatment of compressed atoms is ex-
tended to the relativistic regimes. Each atomic configuration is confined by
a Wigner-Seitz cell and is characterized by a positive electron Fermi energy.
The non-relativistic treatment assumes a point-like nucleus and infinite val-
ues of the electron Fermi energy can be attained. In the relativistic treatment
there exists a limiting configuration, reached when the Wigner-Seitz cell radius
equals the radius of the nucleus, with a maximum value of the electron Fermi
energy (EF

e )max, here expressed analytically in the ultra-relativistic approxima-
tion. The corrections given by the relativistic Thomas-Fermi-Dirac exchange
term are also evaluated and shown to be generally small and negligible in
the relativistic high density regime. The dependence of the relativistic elec-
tron Fermi energies by compression for selected nuclei are compared and con-
trasted to the non-relativistic ones and to the ones obtained in the uniform ap-
proximation. The relativistic Feynman, Metropolis, Teller approach here pre-
sented overcomes some difficulties in the Salpeter approximation generally
adopted for compressed matter in physics and astrophysics. The treatment
is then extrapolated to compressed nuclear matter cores of stellar dimensions
with A ' (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M�. A new family of equilibrium
configurations exists for selected values of the electron Fermi energy varying
in the range 0 < EF

e ≤ (EF
e )max. Such configurations fulfill global but not local

charge neutrality. They have electric fields on the core surface, increasing for
decreasing values of the electron Fermi energy reaching values much larger
than the critical value Ec = m2

e c3/(eh̄), for EF
e = 0. We compare and contrast

our results with the ones of Thomas-Fermi model in strange stars.

31. Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue,
She-Sheng, “Neutron star equilibrium configurations within a fully relativistic
theory with strong, weak, electromagnetic, and gravitational interactions ”,
Nuclear Physics A, Volume 883, p. 1-24, 2012.

We formulate the equations of equilibrium of neutron stars taking into ac-
count strong, weak, electromagnetic, and gravitational interactions within the
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framework of general relativity. The nuclear interactions are described by
the exchange of the sigma, omega, and rho virtual mesons. The equilibrium
conditions are given by our recently developed theoretical framework based
on the Einstein-Maxwell-Thomas-Fermi equations along with the constancy
of the general relativistic Fermi energies of particles, the ”Klein potentials”,
throughout the configuration. The equations are solved numerically in the case
of zero temperatures and for selected parametrization of the nuclear models.
The solutions lead to a new structure of the star: a positively charged core at
supranuclear densities surrounded by an electronic distribution of thickness
∼ h̄/(mec) of opposite charge, as well as a neutral crust at lower densities.
Inside the core there is a Coulomb potential well of depth ∼ mπc2/e. The con-
stancy of the Klein potentials in the transition from the core to the crust, impose
the presence of an overcritical electric field ∼ (mπ/me)2Ec, the critical field be-
ing Ec = m2

e c3/(eh̄). The electron chemical potential and the density decrease,
in the boundary interface, until values µcrust

e < µcore
e and ρcrust < ρcore. For

each central density, an entire family of core-crust interface boundaries and,
correspondingly, an entire family of crusts with different mass and thickness,
exist. The configuration with ρcrust = ρdrip ∼ 4.3× 1011 g/cm3 separates neu-
tron stars with and without inner crust. We present here the novel neutron star
mass-radius for the case ρcrust = ρdrip and compare and contrast it with the one
obtained from the Tolman-Oppenheimer-Volkoff treatment.

32. H. Kleinert and S.-S. Xue, “Vacuum pair-production in a classical electric field
and an electromagnetic wave ”, Annals of Physics 333 (2013) 104.

Using semiclassical WKB-methods, we calculate the rate of electron- positron
pair-production from the vacuum in the presence of two external fields, a
strong (space- or time-dependent) classical field and a monochromatic elec-
tromagnetic wave. We discuss the possible medium effects on the rate in the
presence of thermal electrons, bosons, and neutral plasma of electrons and pro-
tons at a given temperature and chemical potential. Using our rate formula,
we calculate the rate enhancement due to a laser beam, and discuss the possi-
bility that a significant enhancement may appear in a plasma of electrons and
protons with self-focusing properties.

33. Jorge A. Rueda, R. Ruffini, S.-S. Xue, “The Klein first integrals in an equilib-
rium system with electromagnetic, weak, strong and gravitational interactions
”, Nuclear Physics A, Volume 872, Issue 1, 286-295 (2011).

The isothermal Tolman condition and the constancy of the Klein potentials
originally expressed for the sole gravitational interaction in a single fluid are
here generalized to the case of a three quantum fermion fluid duly taking into

553



5. Publications (2005-2019)

account the strong, electromagnetic, weak and gravitational interactions. The
set of constitutive equations including the Einstein-Maxwell-Thomas-Fermi
equations as well as the ones corresponding to the strong interaction descrip-
tion are here presented in the most general relativistic isothermal case. This
treatment represents an essential step to correctly formulate a self-consistent
relativistic field theoretical approach of neutron stars.

34. H. Kleinert, E. Strobel and S.-S. Xue, “Fractional Effective Action at strong elec-
tromagnetic fields ”, Physics Review D88, 025049 (2013).

In 1936, Weisskopf showed that for vanishing electric or magnetic fields the
strong-field behavior of the one loop Euler-Heisenberg effective Lagrangian
of quantum electro dynamics (QED) is logarithmic. Here we generalize this
result for different limits of the Lorentz invariants (~E2 − ~B2) and (~B · ~E). The
logarithmic dependence can be interpreted as a lowest-order manifestation of
an anomalous power behavior of the effective Lagrangian of QED, with critical
exponents (δ = e2/(12π)) for spinor QED, and (δS = δ/4) for scalar QED.

35. A. Benedetti, R. Ruffini and G. Vereshchagin, “Phase space evolution of pairs
created in strong electric fields ”, Phys. Lett. A377, 206-215 (2013).

We study the process of energy conversion from overcritical electric field into
electron-positron-photon plasma. We solve numerically Vlasov-Boltzmann
equations for pairs and photons assuming the system to be homogeneous and
anisotropic. All the 2-particle QED interactions between pairs and photons
are described by collision terms. We evidence several epochs of this energy
conversion, each of them associated to a specific physical process. Firstly pair
creation occurs, secondly back reaction results in plasma oscillations. Thirdly
photons are produced by electron-positron annihilation. Finally particle in-
teractions lead to completely equilibrated thermal electron-positron-photon
plasma.

36. W.-B. Han, R. Ruffini and S.-S. Xue, “Electron and positron pair production in
gravitational collapse ”, Physics Review D86, 084004 (2012).

Neutral stellar core at or over nuclear densities is described by a positive charged
baryon core and negative charged electron fluid since they possess different
masses and interactions. Based on a simplified model of a gravitationally
collapsing or pulsating baryon core, we approximately integrate the Einstein-
Maxwell equations and the equations for the number and energy-momentum
conservation of complete degenerate electron fluid. We show possible electric
processes that lead to the production of electron-positron pairs in the bound-
ary of a baryon core and calculate the number and energy of electron-positron
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pairs. This can be relevant for understanding the energetic sources of super-
novae and gamma-ray bursts.

37. S.-P. Kim, H. W. Lee and R. Ruffini, “Schwinger Pair Production in Pulsed
Electric Fields ”, arXiv:1207.5213 (2012).

We numerically investigate the temporal behavior and the structure of longi-
tudinal momentum spectrum and the field polarity effect on pair production
in pulsed electric fields in scalar quantum electrodynamics (QED). Using the
evolution operator expressed in terms of the particle and antiparticle opera-
tors, we find the exact quantum states under the influence of electric pulses
and measure the number of pairs of the Minkowski particle and antiparti-
cle. The number of pairs, depending on the configuration of electric pulses,
exhibits rich structures in the longitudinal momentum spectrum and under-
goes diverse dynamical behaviors at the onset of the interaction but always
either converges to a momentum-dependent constant or oscillates around a
momentum-dependent time average after the completion of fields.

38. R. Ruffini, Y.-B. Wu and S.-S. Xue, “Einstein-Euler-Heisenberg theory and
charged black holes ”, Physics Review D88, 085004 (2013).

Taking into account the Euler-Heisenberg effective Lagrangian of one-loop
nonperturbative quantum electrodynamics (QED) contributions, we formu-
late the Einstein-Euler-Heisenberg theory and study the solutions of nonrotat-
ing black holes with electric and magnetic charges in spherical geometry. In
the limit of strong and weak electromagnetic fields of black holes, we calculate
the black hole horizon radius, area, and total energy up to the leading order
of QED corrections and discuss the black hole irreducible mass, entropy, and
maximally extractable energy as well as the Christodoulou-Ruffini mass for-
mula. We find that these black hole quantities receive the QED corrections, in
comparison with their counterparts in the Reissner-Nordström solution. The
QED corrections show the screening effect on black hole electric charges and
the paramagnetic effect on black hole magnetic charges. As a result, the black
hole horizon area, irreducible mass, and entropy increase; however, the black
hole total energy and maximally extractable energy decrease, compared with
the Reissner-Nordström solution. In addition, we show that the condition for
extremely charged black holes is modified due to the QED correction.

39. I. Motie and S.-S. Xue, “Euler-Heisenberg Lagrangian and CMB photon circu-
lar polarization”, European Physics Letter, 100, 17006, (2012).

Considering the effective Euler-Heisenberg Lagrangian, i.e., non-linear photon-
photon interactions, we study the circular polarization of electromagnetic ra-
diation based on the time-evolution of Stokes parameters. To the leading order,
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we solve the Quantum Boltzmann Equation for the density matrix describing
an ensemble of photons in the space of energy-momentum and polarization
states, and calculate the intensity of circular polarizations. Applying these
results to a linear polarized thermal radiation, we calculate the circular polar-
ization intensity, and discuss its possible relevance to the circular polarization
intensity of the Cosmic Microwave Background radiation.

40. R. Mohammadi, I. Motie and S.-S. Xue, “Circular polarization from linearly
polarized laser beam collisions ”, Physics Review A377 (2013) 2450.

To probe the nonlinear effects of photon-photon interaction in the quantum
electrodynamics, we study the generation of circular polarized photons by the
collision of two linearly polarized laser beams. In the framework of the Euler-
Heisenberg effective Lagrangian and the Quantum Boltzmann equation for the
time evolution of the density matrix of polarization, we calculate the intensity
of circular polarization generated by the collision of two linearly polarized
laser beams and estimate the rate of generation that is proportional to α2. As a
result, we show that the generated circular polarization can be experimentally
measured by two head-on colliding optical laser beams of the cross-sectional
area. 0.01 cm2 and the laser pulse energy∼ mJ. which are currently available
in laboratories. Our study presents a valuable supplement to other theoretical
and experimental frameworks to study and measure the nonlinear effects of
photon-photon interaction in the quantum electrodynamics.

41. R. Mohammadi and S.-S. Xue, “CMB or laser photon circular polarization via
interaction with neutrino beam or cosmic background ”, Physics Letters B731
272–278, (2014).

We study the phenomenon that laser photons acquire circular polarization by
interacting with a Dirac or Majorana neutrino beam. It is shown that for the
reason of neutrinos being left-handed and their gauge-couplings being parity-
violated, linearly polarized photons acquire their circular polarization by inter-
acting with neutrinos. Calculating the ratio of linear and circular polarizations
of laser photons interacting with either Dirac or Majorana neutrino beam, we
obtain this ratio for the Dirac neutrino case, which is about twice less than
the ratio for the Majorana neutrino case. Based on this ratio, we discuss the
possibility of using advanced laser facilities and the T2K neutrino experiment
to measure the circular polarization of laser beams interacting with neutrino
beams in ground laboratories. This could be an additional and useful way
to gain some insight into the physics of neutrinos, for instance their Dirac or
Majorana nature.

42. J. Khodagholizadeh, R. Mohammadi and S.-S. Xue, “Photon-neutrino scatter-
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ing and the B-mode spectrum of CMB photons ”, the Rapid communication
section of Physics Review D 90, 091301(R) (2014).

On the basis of the quantum Boltzmann equation governing the time-evolution
of the density matrix of polarized CMB photons in the primordial scalar per-
turbations of metric, we calculate the B-mode spectrum of polarized CMB
photons contributed from the scattering of CMB photons and CNB neutri-
nos (Cosmic Neutrino Background). We show that such contribution to the
B-mode spectrum is negligible for small `, however is significantly large for
50 < ` < 200 by plotting our results together with the BICEP2 data. Our study
and results imply that in order to theoretically better understand the origin
of the observed B-mode spectrum of polarized CMB photons (r-parameter),
it should be necessary to study the relevant and dominate processes in both
tensor and scalar perturbations.

43. R. Mohammadi, J. Khodagholizadeh, M. Sadegh, and S.-S. Xue, “B-mode po-
larization of the CMB and the cosmic neutrino background ”, PHYSICAL RE-
VIEW D93, 125029 (2016).

It is known that in contrast with the E-mode polarization the B-mode polariza-
tion of the cosmic microwave background cannot be generated by the Comp-
ton scattering in the case of the scalar mode of metric perturbation. However,
it is possible to generate the B mode by the Compton scattering in the case of
the tensor mode of metric perturbation. For this reason, the ratio of tensor to
scalar modes of metric perturbation (r ∼ CBl/CEl) is estimated by comparing
the B-mode power spectrum with the E mode at least for small `. We study the
cosmic microwave background polarization, especially the B-mode due to the
weak interaction of the cosmic neutrino background and cosmic microwave
background, in addition to the Compton scattering in both cases of scalar and
tensor metric perturbations. It is shown that the power spectrum CBl of the B-
mode polarization receives some contributions from scalar and tensor modes,
which have effects on the value of the r- parameter. We also show that the
B-mode polarization power spectrum can be used as an indirect probe into
the cosmic neutrino background. B-mode polarization receives some contri-
butions from scalar and tensor modes, which have effects on the value of the
r-parameter. We also show that the B-mode polarization power spectrum can
be used as an indirect probe into the cosmic neutrino background. For the de-
tails of this part, see Physics Review D 93, 091301 (2016), R. Mohammadi, J.
Khodagholizadeh, M. Sadegh, and S.-S. Xue.

44. R. Ruffini and S.-S. Xue, “Gravitational and electric energies in collapse of
spherically thin capacitor ”, Physics Letters A377 (2013) 2450.

557



5. Publications (2005-2019)

We adopt a simplified model describing the collapse of a spherically thin ca-
pacitor to give an analytical description how gravitational energy is converted
to both kinetic and electric energies in collapse. It is shown that (i) averaged
kinetic and electric energies are the same order, about an half of gravitational
energy of spherically thin capacitor in collapse; (ii) caused by radiating and
rebuilding electric energy, gravitational collapse undergoes a sequence of “on
and off” hopping steps in the microscopic Compton scale. Although such a
collapse process is still continuous in terms of macroscopic scales, it is slowed
down as kinetic energy is reduced and collapsing time is about an order of
magnitude larger than that of collapse process eliminating electric processes.

45. Y.-B. Wu and S.-S. Xue, “Nonlinear Breit-Wheeler process in the collision of a
photon with two plane waves ”, Physics Review D 90, 013009 (2014).

The nonlinear Breit-Wheeler process of electron-positron pair production off
a probe photon colliding with a low-frequency and a high-frequency electro-
magnetic wave that propagate in the same direction is analyzed. We calculate
the pair-production probability and the spectra of created pairs in the non-
linear Breit-Wheeler processes of pair production off a probe photon colliding
with two plane waves or one of these two plane waves. The differences of these
two cases are discussed. We evidently show, in the two-wave case, the pos-
sibility of Breit-Wheeler pair production with simultaneous photon emission
into the low-frequency wave and the high multiphoton phenomena: (i) Breit-
Wheeler pair production by absorption of the probe photon and a large num-
ber of photons from the low-frequency wave, in addition to the absorption of
one photon from the high-frequency wave; (ii) Breit-Wheeler pair production
by absorption of the probe photon and one photon from the high-frequency
wave with simultaneous emission of a large number of photons into the low-
frequency wave. The phenomenon of photon emission into the wave cannot
happen in the one-wave case. Compared with the one-wave case, the con-
tributions from high multiphoton processes are largely enhanced in the two-
wave case. The results presented in this article show a possible way to access
the observations of the phenomenon of photon emission into the wave and
high multiphoton phenomenon in Breit-Wheeler pair production even with
the laser-beam intensity of order 1018 W/cm2.

46. E. Strobel and S.-S. Xue, “Semiclassical pair production rate for time-dependent
electrical fields with more than one component: -WKB-approach and world-
line instantons ”, Nuclear Physics B886 (2014) 1153.

We present an analytic calculation of the semiclassical electron-positron pair
creation rate by time-dependent electrical fields. We use two methods, first
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the imaginary time method in the WKB-approximation and second the world-
line instanton approach. The analytic tools for both methods are generalized
to time-dependent electric fields with more than one component.
For the WKB method an expansion of the momentum spectrum of produced
pairs around the canonical momentum ~P = 0 is presented which simplifies
the computation of the pair creation rate. We argue that the world-line instan-
ton method of Dunne et al. (2006) implicitly performs this expansion of the
momentum spectrum around ~P = 0. Accordingly the generalization to more
than one component is shown to agree with the WKB result obtained via this
expansion.
However the expansion is only a good approximation for the cases where the
momentum spectrum is peaked around ~P = 0. Thus the expanded WKB re-
sult and the world-line instanton method of Dunne et al. (2006) as well as the
generalized method presented here are only applicable in these cases.
We study the two component case of a rotating electric field and find a new
analytic closed form for the momentum spectrum using the generalized WKB
method. The momentum spectrum for this field is not peaked around ~P = 0.

47. H. Kleinert and S.-S. Xue, “Critical fermion density for restoring spontaneously
broken symmetry ”, Mod. Phys. Lett. A, Vol. 30, No. 24 (2015) 1550122.

We show how the phenomenon of spontaneous symmetry breakdown is af-
fected by the presence of a sea of fermions in the system. When its density
exceeds a critical value, the broken symmetry can be restored. We calculate
the critical value and discuss the consequences for three different physical
systems: First, for the standard model of particle physics, where the spon-
taneous symmetry breakdown leads nonzero masses of intermediate gauge
bosons and fermions. The symmetry restoration will greatly enhance various
processes with dramatic consequences for the early universe. Second, for the
Gell-Mann–Lèvy σ-model of nuclear physics, where the symmetry breakdown
gives rise to the nucleon and meson masses. The symmetry restoration may
have important consequences for formation or collapse of stellar cores. Third,
for the superconductive phase of condensed-matter, where the BCS conden-
sate at low-temperature may be destroyed by a too large electron density.

48. S.-S. Xue, “Particle spectra for matter and the candidates for dark matter, reso-
nant and nonresonant phenomena of four-fermion operators in quantum Einstein-
Cartan theory ”, Physics Letters B744 88–94 (2015), B737 (2014) 172, B727, 308,
B721, 347 (2013), and Physical Review D 93, 073001 (2016).

In the fermion content and gauge symmetry of the standard model (SM), we
study the four-fermion operators in the torsion-free quantum Einstein-Cartan
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theory. The collider signatures of irrelevant operators are suppressed by the
high-energy cutoff (torsion-field mass) Λ, and cannot be experimentally ac-
cessible at TeV scales. Whereas the dynamics of relevant operators accounts
for (i) the SM symmetry-breaking in the domain of infrared-stable fixed point
with the energy scale v ≈ 239.5 GeV and (ii) composite Dirac particles restor-
ing the SM symmetry in the domain of ultraviolet-stable fixed point with the
energy scale E & 5 TeV. To search for the resonant phenomena of composite
Dirac particles with peculiar kinematic distributions in final states, we discuss
possible high-energy processes: multi-jets and dilepton Drell-Yan process in
LHC p p collisions, the resonant cross-section in e−e+ collisions annihilating to
hadrons and deep inelastic lepton-hadron e− p scatterings. To search for the
nonresonant phenomena due to the form-factor of Higgs boson, we calculate
the variation of Higgs-boson production and decay rate with the CM energy
in LHC. We also present the discussions on four-fermion operators in the lep-
ton sector and the mass-squared differences for neutrino oscillations in short
baseline experiments, as well as its resulted particle spectra for matter and the
candidates for dark matter.

49. S.-S. Xue, “How universe evolves with cosmological and gravitational con-
stants in the field theory of Einstein-Cartan gravity ”, Nuclear Physics B897
326–345 (2015).

With a basic varying space-time cutoff ˜̀, we study a regularized and quan-
tized Einstein-Cartan gravitational field theory and its domains of ultraviolet-
unstable fixed point gir & 0 and ultraviolet-stable fixed point guv ≈ 4/3 of
the gravitational gauge coupling g = (4/3)G/GNewton. Because the funda-
mental operators of quantum gravitational field theory are dimension-2 area
operators, the cosmological constant is inversely proportional to the squared
correlation length Λ ∝ ξ−2. The correlation length ξ characterizes an infrared
size of a causally correlate patch of the universe. The cosmological constant
Λ and the gravitational constant G are related by a generalized Bianchi iden-
tity. As the basic space-time cutoff ˜̀ decreases and approaches to the Planck
length `pl, the universe undergoes inflation in the domain of the ultraviolet-
unstable fixed point gir, then evolves to the low-redshift universe in the do-
main of ultraviolet-stable fixed point guv. We give the quantitative description
of the low-redshift universe in the scaling-invariant domain of the ultraviolet-
stable fixed point guv, and its deviation from the ΛCDM can be examined by
low-redshift (z . 1) cosmological observations, such as supernova Type Ia.

50. E. Strobel and S.-S. Xue, “Semiclassical pair production rate for rotating electric
fields ”, Physics Review D 91, 045016 (2015).
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We semiclassically investigate Schwinger pair production for pulsed rotating
electric fields depending on time. To do so we solve the Dirac equation for
two-component fields in a WKB-like approximation. The result shows that for
two-component fields the spin distribution of produced pairs is generally not
1:1. As a result the pair creation rates of spinor and scalar quantum electro
dynamics (QED) are different even for one pair of turning points. For rotating
electric fields the pair creation rate is dominated by particles with a specific
spin depending on the sense of rotation for a certain range of pulse lengths
and frequencies. We present an analytical solution for the momentum spec-
trum of the constant rotating field. We find interference effects not only in the
momentum spectrum but also in the total particle number of rotating electric
fields.

51. L. Hendrik, R. Ruffini, and S.-S. Xue, “Collective electronic pulsation of com-
pressed atoms in Thomas-Fermi model ”, Nuclear Physics A 941, 1–15 (2015).

Based on the Thomas-Fermi solution for compressed electron gas around a
giant nucleus, we study electric pulsations of electron number-density, pres-
sure and electric fields, which could be caused by an external perturbations
acting on the nucleus or the electrons themselves. We numerically obtain the
eigen-frequencies and eigen-functions for stationary pulsation modes that ful-
fill the boundary-value problem established by electron-number and energy-
momentum conservation, equation of state, and Maxwell’s equations, as well
as physical boundary conditions, and assume the nucleons in β-equilibrium
at nuclear density. We particularly study the configuration of ultra-relativistic
electrons with a large fraction contained within the nucleus. Such configura-
tions can be realized for a giant nucleus or high external compression on the
electrons. The lowest modes turn out to be heavily influenced by the rela-
tivistic plasma frequency induced by the positive charge background in the
nucleus. Our results can be applied to heavy nuclei in the neutron star crust,
as well as to the whole core of a neutron star. We discuss the possibility to
apply our results to dynamic nuclei using the spectral method.

52. J. Rueda, R. Ruffini, Y.-B. Wu and S.-S. Xue, “Surface tension for heavy atoms
”, submitted to Physics Review C.

Based on the relativistic mean field theory and the Thomas-Fermi approxima-
tion, we study the surface properties of giant-nucleus compressed atoms; a
giant-nucleus compressed atom has a giant nuclear core (giant nucleus) and
degenerate electrons some of which have penetrated into the giant nucleus.
Taking into account the strong, weak, and electromagnetic interactions, we nu-
merically study the structure of giant-nucleus compressed atoms and calculate
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the nuclear surface tension and Coulomb energy. We analyze the influence of
the electron component and the background matter on the nuclear surface ten-
sion and Coulomb energy of giant-nucleus compressed atoms. We also com-
pare and contrast these results in the case of giant-nucleus compressed atoms
with phenomenological results in nuclear physics and the results of the core-
crust interface of neutron stars with global charge neutrality. Based on the
numerical results we study the instability against Bohr-Wheeler surface de-
formations in the case of giant-nucleus compressed atoms. The results in this
article provide the evidence of strong effects of the electromagnetic interaction
and electrons on the structure of giant-nucleus compressed atoms.

53. R. Ruffini, G. Vereshchagin and S.-S. Xue, “Cosmic absorption of ultra high
energy particles ”, Astrophysics and Space Science, Volume 361, article id.82,
2016 11 pp.

This paper summarizes the limits on propagation of ultra high energy parti-
cles in the Universe, set up by their interactions with cosmic background of
photons and neutrinos. By taking into account cosmic evolution of these back-
grounds and considering appropriate interactions we derive the mean free
path for ultra high energy photons, protons and neutrinos. For photons the
relevant processes are the Breit-Wheeler process as well as the double pair
production process. For protons the relevant reactions are the photopion pro-
duction and the Bethe-Heitler process. We discuss the interplay between the
energy loss length and mean free path for the Bethe-Heitler process. Neutrino
opacity is determined by its scattering off the cosmic background neutrino. We
compute for the first time the high energy neutrino horizon as a function of its
energy.

54. Hendrik Ludwig, Remo Ruffini, “Gamow’s Calculation of the Neutron Star’s
Critical Mass Revised ”, Journal of the Korean Physical Society, September
2014, Volume 65, Issue 6, pp 892–896.

It has at times been indicated that Landau introduced neutron stars in his clas-
sic paper of 1932. This is clearly impossible because the discovery of the neu-
tron by Chadwick was submitted more than one month after Landau’s work.
Therefore, and according to his calculations, what Landau really did was to
study white dwarfs, and the critical mass he obtained clearly matched the
value derived by Stoner and later by Chandrasekhar. The birth of the con-
cept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade
and Zwicky pointed to neutron stars as originating from supernovae. Oppen-
heimer in 1939 is also well known to have introduced general relativity (GR) in
the study of neutron stars. The aim of this note is to point out that the crucial
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idea for treating the neutron star has been advanced in Newtonian theory by
Gamow. However, this pioneering work was plagued by mistakes. The criti-
cal mass he should have obtained was 6.9M�, not the one he declared, namely,
1.5M�. Probably, he was taken to this result by the work of Landau on white
dwarfs. We revise Gamow’s calculation of the critical mass regarding calcula-
tional and conceptual aspects and discuss whether it is justified to consider it
the first neutron-star critical mass. We compare Gamow’s approach to other
early and modern approaches to the problem.

55. C. Stahl, and E. Strobel, “Semiclassical fermion pair creation in de Sitter space-
time”, The proceeding of the 2nd Cesare Lattes Meeting, 2015, AIP Conf. Proc.
1693, 050005 (2015).

We present a method to semiclassically compute the pair creation rate of bosons
and fermions in de Sitter spacetime. The results in the bosonic case agree
with the ones in the literature. We find that for the constant electric field the
fermionic and bosonic pair creation rate are the same. This analogy of bosons
and fermions in the semiclassical limit is known from several flat spacetime
examples.

56. C. Stahl, E. Strobel, and S.-S. Xue, “Fermionic current and Schwinger effect in
de Sitter spacetime ”, Phys. Rev. D 93, 025004 – Published 6 January 2016.

We study the fermionic Schwinger effect in two-dimensional de Sitter space-
time. To do so, we first present a method to semiclassically compute the num-
ber of pairs created per momentum mode for general time dependent fields. In
addition, the constant electric field is studied in depth. In this case, solutions
for the Dirac equation can be found and the number of pairs can be computed
using the standard Bogoliubov method. This result is shown to agree with the
semiclassical one in the appropriate limit. The solutions are also used to com-
pute the expectation value of the induced current. Comparing these results to
similar studies for bosons, we find that while the results agree in the semiclas-
sical limit, they do not generally agree. In particular, there is no occurrence of
a strong current for small electric fields.

57. E. Bavarsad ,C. Stahl, and S.-S. Xue, “Scalar current of created pairs by Schwinger
mechanism in de Sitter spacetime ”, Phys. Rev. D 94, 104011 (2016)

We consider a charged scalar field in a D dimensional de Sitter spacetime and
investigate pair creation by Schwinger mechanism in a constant electric field
background. Using a semiclassical approximation the current of the created
pairs has been estimated. We find that, the semiclassical current of the created
pairs in the strong electric field limit responds as E

D
2 . Going further but re-

stricting to D = 3 dimensional de Sitter spacetime, the quantum expectation
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value of the spacelike component of the induced current has been computed
in the in-vacuum state by applying an adiabatic subtraction scheme. We find
that, in the strong electric field limit, the current responds as E

3
2 . In the weak

electric field limit the current has a linear response in E and an inverse depen-
dence on the mass of the scalar field. In the case of a massless scalar field, the
current varies with E−1 which leads to a phenomenon of infrared hypercon-
ductivity. A new relation between infrared hyperconductivity, tachyons and
conformality is discussed and a scheme to avoid an infrared hyperconductiv-
ity regime is proposed. In D dimension, we eventually presented some first
estimates of the backreaction of the Schwinger pairs to the gravitational field,
we find a decrease of the Hubble constant due to the pair creation.

58. C. Stahl and S.-S. Xue, “Schwinger effect and backreaction in de Sitter space-
time ”, Physics Letters B, Volume 760, p. 288-292. 2016.

We consider the particle-antiparticle pairs produced by both a strong electric
field and de Sitter curvature. We investigate in 1 + 1 D the backreaction of the
pairs on the electromagnetic field. To do so we describe the canonical quan-
tization of an electromagnetic field in de Sitter space and add in the Einstein-
Maxwell equation the fermionic current induced by the pairs. After solving
this equation, we find that the electric field gets either damped or unaffected
depending on the value of the pair mass and the gauge coupling. No en-
hancement of the electromagnetic field to support a magnetogenesis scenario
is found. The physical picture is that the Schwinger pairs locally created screen
the production and amplification of the electromagnetic field. However, if one
considers light bosons created by the Schwinger mechanism, we report a solu-
tion to the Einstein-Maxwell equation with an enhancement of the electromag-
netic field. This solution could be a new path to primordial magnetogenesis.

59. S. Batebi, S. Tizchang, R. Mohammadi, R. Ruffini, S.-S. Xue, “The generation
of circular polarization of GRB ”, the MG XIV proceedings, World scientific,
Singapore, 2017.

A certain degree of linear polarization has been measured in several GRB af-
terglows. Astonishingly, circular polarization has been recently measured in
GRB121024A for the first time. In this paper by considering Gamma Ray
Burst interactions to cosmic microwave background photons through Euler-
Heisenberg effective Lagrangian, GRB circular polarization is discussed.

60. R. Ruffini and C. Stahl, “Cosmological fractal matter with an upper cutoff ”, the
conference proceedings of the 15th Italian and Korean meeting, Pescara Italy
July, 2016, World scientific, Singapore. The proceeding is published together
with the MG XIV proceedings, 2017.
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We report here a work on a simple inhomogeneous cosmological model within
the Lemaı̂tre-Tolman-Bondi (LTB) metric. The mass-scale function of the LTB
model is taken to be M(r) ∝ rd and would correspond to a fractal distribution
for 0 < d < 3. The luminosity distance for this model is computed and then
compared to supernovae data. Unlike LTB models which have in the most
general case two free functions, our model has only two free parameters as the
flat standard model of cosmology. The best fit obtained is a matter distribu-
tion with an exponent of d = 3.44. Finally by adding an upper cutoff on the
scale r = 2300 Mpc, we find a better fit than the simple fractal model with an
exponent d = 3.36.

61. C. Stahl, Eckhard Strobel and S.-S. Xue, “Pair creation in the early universe ”,
the MG XIV proceedings, World scientific, Singapore, 2017.

In the very early universe, a generalized Schwinger effect can create pairs from
both electrical and gravitational fields. The expectation value of fermionic cur-
rent induced by these newly created pairs has been recently computed in de
Sitter spacetime. I will discuss different limiting cases of this result and some
of its possible physical interpretations.

62. S. Tizchang, S. Batebi, R. Mohammadi, R. Ruffini, G. Vereshchagin, S.-S. Xue,
“On the interaction of high energy photons with the cosmic microwave back-
ground ”, the MG XIV proceedings, World scientific, Singapore, 2017.

We study the high energy photon interaction with cosmic microwave back-
ground (CMB) and calculate the optical depth due to Euler-Heisenberg photon-
photon scattering at cosmological redshift. According to our results the photon-
photon scattering is predominant with respect to the Breit-Wheeler pair pro-
duction at energies below 1 GeV. However, it is relevant for sources of high
energy photons at high redshift z > 100. We also discuss implications of our
results for two astrophysical observations of gamma-ray bursts and blazars.

63. S. Batebi, R. Mohammadi, R. Ruffini, S. Tizchang, and S.-S. Xue, “Generation
of circular polarization of gamma ray bursts ”, Phys. Rev. D 94, 065033 –
Published 22 September 2016.

The generation of the circular polarization of gamma ray burst (GRB) photons
is discussed in this paper via their interactions with astroparticles in the pres-
ence or absence of background fields such as magnetic fields and noncommu-
tative space-time geometry. Solving the quantum Boltzmann equation for GRB
photons as a photon ensemble, we discuss the generation of circular polariza-
tion (as Faraday conversion phase shift ∆φFC) of GRBs in the following cases:
(i) intermediate interactions, i.e., the Compton scattering of GRBs in the galaxy
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cluster magnetic field and in the presence of noncommutative space-time ge-
ometry, as well as the scattering of GRBs in the cosmic neutrino background
(CNB) and cosmic microwave background (CMB); (ii) interactions with parti-
cles and fields in shockwaves, i.e., the Compton scattering of GRBs with accel-
erated charged particles in the presence of magnetic fields. We found that (i)
after shockwave crossing, the greatest contribution of ∆φFC for energetic GRBs
(of the order of GeV and larger) comes from GRB-CMB interactions, but for
low-energy GRBs the contributions of the Compton scattering of GRBs in the
galaxy cluster magnetic field dominate; (ii) in shockwave crossing, the mag-
netic field has significant effects on converting a GRB’s linear polarization to
a circular one, and this effect can be used to better understand the magnetic
profile in shockwaves. The main aim of this work is to study and measure
the circular polarization of GRBs for a better understanding of the physics and
mechanism of the generation of GRBs and their interactions before reaching
us.

64. S.-S. Xue, “An effective strong-coupling theory in UV-domain ”, JHEP 05, 146
(2017).

We briefly review the effective field theory of massive composite particles,
their gauge couplings and characteristic energy scale in the UV-domain of UV-
stable fixed point of strong four-fermion coupling, then mainly focus the dis-
cussions on the decay channels of composite particles into the final states of
the SM gauge bosons, leptons and quarks. We calculate the rates of compos-
ite bosons decaying into two gauge bosons and give the ratios of decay rates
of different channels depending on gauge couplings only. It is shown that a
composite fermion decays into an elementary fermion and a composite boson,
the latter being an intermediate state decays into two gauge bosons, leading
to a peculiar kinematics of final states of a quark (or a lepton) and two gauge
bosons. These provide experimental implications of such an effective theory of
composite particles beyond the SM. We also present some speculative discus-
sions on the channels of composite fermions decaying into two boson-tagged
jets with quark jets, or to four-quark jets. Moreover, at the same energy scale
of composite particles produced in high-energy experiments, composite parti-
cles are also produced by high-energy sterile neutrino (dark matter) collisions,
their decays lead to excesses of cosmic ray particles in space and signals of SM
particles in underground laboratories.

65. S. Shakeri, S. Z. Kalantari, and S.-S. Xue, “Polarization of a probe laser beam
due to nonlinear QED effects ”, Physical Review A 95, 012108 (2017).

Nonlinear QED interactions induce different polarization properties on a given
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probe beam. We consider the polarization effects caused by the photon-photon
interaction in laser experiments, when a laser beam propagates through a con-
stant magnetic field or collides with another laser beam. We solve the quan-
tum Boltzmann equation within the framework of the Euler-Heisenberg La-
grangian for both time-dependent and constant background field to explore
the time evolution of the Stokes parameters Q, U, and V describing polariza-
tion. Assuming an initially linearly polarized probe laser beam, we also calcu-
late the induced ellipticity and rotation of the polarization plane.

66. S. Shakeri, M. Haghighat, and S.-S. Xue, “Nonlinear QED effects in X-ray emis-
sion of pulsars ”, JCAP 10, 014 (2017).

In the presence of strong magnetic fields near pulsars, the QED vacuum be-
comes a birefringent medium due to nonlinear QED interactions. Here, we
explore the impact of the effective photon-photon interaction on the polariza-
tion evolution of photons propagating through the magnetized QED vacuum
of a pulsar. We solve the quantum Boltzmann equation within the framework
of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes param-
eters. We find that linearly polarized X-ray photons propagating outward in
the magnetosphere of a rotating neutron star can acquire high values for the
circular polarization parameter. Meanwhile, it is shown that the polarization
characteristics of photons besides photon energy depend strongly on param-
eters of the pulsars such as magnetic field strength, inclination angle and ro-
tational period. Our results are clear predictions of QED vacuum polarization
effects in the near vicinity of magnetic stars which can be tested with the up-
coming X-ray polarimetric observations.

67. R. Moradi, C. Stahl, J. Firouzjaee, S.-S. Xue, “Charged cosmological black hole
”, Phys. Rev. D 96, 104007 (2017).

The cosmological black holes are black holes living not in an asymptotically
flat universe but in an expanding spacetime. They have a rich dynamics in
particular for their mass and horizon. In this article we perform a natural
step in investigating this new type of black hole: we consider the possibility
of a charged cosmological black hole. We derive the general equations of mo-
tion governing its dynamics and report a new analytic solution for the special
case of the charged Lemaı̂tre-Tolman-Bondi equations of motion that describe
a charged cosmological black hole. We then study various relevant quantities
for the characterization of the black hole such as the C-function, the effect of
the charge on the black hole flux and the nature of the singularity. We also per-
form numerical investigations to strengthen our results. Finally we challenge
a model of gamma ray burst within our framework.
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68. C. Cherubini, S. Filippi, A. Loppini, R. Ruffini, R. Moradi, Y. Wang, and S.-
S. Xue, “On Perfect Relativistic magnetohydrodynamics around black holes
in horizon penetrating coordinates ”, Physical Review D, Volume 97, Issue 6,
064038, 2018

Plasma accreting processes on black holes represent a central problem for Rel-
ativistic Astrophysics. In this context, here we specifically revisit the classical
Ruffini-Wilson work developed for analytically modelling via analytical so-
lutions for geodesic equations the accretion of perfect magnetized plasma on
a rotating Kerr black hole. Introducing the horizon penetrating coordinates
found by Doran twenty five years later, we revisit the entire approach study-
ing Maxwell invariants, electric and magnetic fields, volumetric charge density
and electromagnetic total energy. We finally discuss the physical implications
of this analysis.

69. E. Bavarsad, S. P. Kim, C. Stahl, S.-S. Xue, “Effect of a magnetic field on Schwinger
mechanism in de Sitter spacetime ”, Physical Review D, Volume 97, 025017,
2018.

We investigate the effect of a constant magnetic field background on the scalar
QED pair production in a four-dimensional de Sitter spacetime. We have ob-
tained the pair production rate which agrees with the known Schwinger result
in the limit of Minkowski spacetime and with the Hawking radiation in de Sit-
ter spacetime (dS) in the zero electric field limit. Our results describe how the
cosmic magnetic field affects the pair production rate in cosmological setups.
In addition, using the zeta function regularization scheme we have calculated
the induced current and examined the effect of a magnetic field on the vacuum
expectation value of the current operator. We find that, in the case of a strong
electromagnetic background the current responds as E · B, while in the infrared
regime, it responds as B/E, which leads to a phenomenon of infrared hyper-
conductivity. These results of the induced current have important applications
for the cosmic magnetic field evolution.

70. Takahiro Hayashinaka, She-Sheng Xue, “Physical renormalization condition
for de Sitter QED ”, Phys. Rev. D 97, 105010 (2018).

We considered a new renormalization condition for the vacuum expectation
values of the scalar and spinor currents induced by a homogeneous and con-
stant electric field background in de Sitter spacetime. Following a semiclassical
argument, the condition named maximal subtraction imposes the exponential
suppression on the massive charged particle limit of the renormalized cur-
rents. The maximal subtraction changes the behaviors of the induced currents
previously obtained by the conventional minimal subtraction scheme. The

568



5. Publications (2005-2019)

maximal subtraction is favored for a couple of physically decent predictions
including the identical asymptotic behavior of the scalar and spinor currents,
the removal of the infrared (IR) hyperconductivity from the scalar current, and
the finite current for the massless fermion.

71. Hagen Kleinert, She-Sheng Xue, “Composite fermions and their pair states in
a strongly-coupled Fermi liquid ”, Nuclear Physics B. Volume 936, November
2018, Pages 352-363.

Our goal is to understand the phenomena arising in optical lattice fermions at
low temperature in an external magnetic field. Varying the field, the attraction
between any two fermions can be made arbitrarily strong, where composite
bosons form via so-called Feshbach resonances. By setting up strong-coupling
equations for fermions, we find that in spatial dimension they couple to bosons
which dress up fermions and lead to new massive composite fermions. At low
enough temperature, we obtain the critical temperature at which composite
bosons undergo the Bose–Einstein condensate (BEC), leading to BEC-dressing
massive fermions. These form tightly bound pair states which are new bosonic
quasi-particles producing a BEC-type condensate. A quantum critical point is
found and the formation of condensates of complex quasi-particles is specu-
lated over.

72. Remo, Ruffini, Wang Yu, et.al., “Early X-Ray Flares in GRBs ”, 2018ApJ...852...53R

The discovery of GRBs by the Vela satellites was presented at the AAAS meet-
ing in February 1974 in San Francisco (Gursky and Ruffini 1975ASSL...48.....G).
The Vela satellites were operating in gamma-rays in the 150-750keV energy
range and only marginally in X-rays. Since 1991, the BATSE detectors on the
Compton Gamma-Ray Observatory (CGRO) have been leading to the classi-
fication of GRBs on the basis of their spectral hardness and of their observed
T90 duration in the 50-300keV energy band. The BeppoSAX satellite, oper-
ating since 1996, joined the expertise of the X-ray and gamma-ray communi-
ties. Its gamma-ray burst monitor (GRBM) operating in the 40-700keV energy
band determined the trigger of the GRB, and two wide-field cameras operat-
ing in the 2-30keV X-ray energy band allowed the localization of the source
within an arcminute resolution. The Swift Burst Alert Telescope (BAT), op-
erating in the 15-150keV energy band, can detect GRB prompt emissions and
accurately determine their position in the sky within 3 arcmin. Within 90s,
Swift can re-point the narrow-field X-ray telescope (XRT), operating in the 0.3-
10keV energy range, and relay the burst position to the ground. Thanks to the
Swift satellite, the number of detected GRBs increased rapidly to 480 sources
with known redshifts. We have used Swift-XRT data in differentiating two
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distinct subclasses of long GRBs: X-ray flares (XRFs) with Eiso¡ 1052erg and
binary-driven hypernovae (BdHNe) with Eiso¿ 1052erg (see Section 3). Finally,
the Fermi satellite, launched in 2008, detects ultrahigh energy photons from
20MeV to 300GeV with the Large Area Telescope (LAT) and detects photons
from 8keV to 30MeV with the Gamma-ray Burst Monitor (GBM).

73. Remo, Ruffini, Rahim Moradi, et.al., “On the role of the Kerr-Newman black
hole in the GeV emission of long gamma-ray bursts, ”, Submitted to ApJ

X-ray Flashes (XRFs), binary-driven hypernovae (BdHNe) are long GRB sub-
classes with progenitor a COcore, undergoing a supernova (SN) explosion and
hypercritically accreting in a tight binary system onto a companion neutron
star (NS) or black hole (BH). In XRFs the NS does not reach by accretion the
critical mass and no BH is formed. In BdHNe I, with shorter binary periods,
the NS gravitationally collapses and leads to a new born BH. In BdHNe II the
accretion on an already formed BH leads to a more massive BH. We assume
that the GeV emission observed by Fermi-LAT originates from the rotational
energy of the BH. Consequently, we verify that, as expected, in XRFs no GeV
emission is observed. In 16 BdHNe I and 5 BdHNe II, within the boresight an-
gle of LAT, the integrated GeV emission allows to estimate the initial mass and
spin of the BH. In the remaining 27 sources in the plane of the binary system
no GeV emission occurs, hampered by the presence of the HN ejecta. From
the ratio, 21/48, we infer a new asymmetric morphology for the BdHNe remi-
niscent of the one observed in active galactic nuclei (AGN): the GeV emission
occurs within a cone of half-opening angle≈ 60◦ from the normal to the orbital
plane of the binary progenitor. The transparency condition requires a Lorentz
factor Γ ∼ 1500 on the source of GeV emission. The GeV luminosity in the rest-
frame of the source follows a universal power-law with index of −1.20± 0.04,
allowing to estimate the spin-down rate of the BH

74. E. Bavarsad, S. P. Kim, C. Stahl, S.-S. Xue, “Effect of Schwinger pair production
on the evolution of the Hubble constant in de Sitter spacetime, ”, https://arxiv.org/abs/1909.09319,
will appear soon in the proceeding of MG15 and regular scientific journal.

Recently we consider a massive charged scalar field in a uniform electric field
background in a de Sitter spacetime (dS). We compute the in-vacuum expecta-
tion value of the trace of the energy-momentum tensor for the created Schwinger
pairs, and using adiabatic subtraction scheme the trace is regularized. The ef-
fect of the Schwinger pair creation on the evolution of the Hubble constant is
investigated. We find that the production of the semiclassical pairs leads to a
decay of the Hubble constant. Whereas, the production of a light scalar field
in the weak electric field regime leads to a superacceleration phenomenon.
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75. S. P. Kim, “Astrophysics in Strong Electromagnetic Fields and Laboratory As-
trophysics, ”, https://arxiv.org/abs/1905.13439, the review article will appear
soon in the proceeding of MG15 and regular scientific journal IMPD.

Recent observations of gravitational waves from binary mergers of black holes
or neu- tron stars and the rapid development of ultrahigh intensity laser pulses
lead strong field physics to a frontier of new physics in the 21st century. Strong
gravity phenomena are most precisely described by general relativity, and
lasers that are described by another most precisely tested quantum electro-
dynamics (QED) can be focused into a tiny area in a short period through the
chirped pulse amplification (CPA) and generate extremely high intensity elec-
tromagnetic (EM) fields beyond the conventional methods. It is physically
interesting to study QED phenomena in curved spacetimes, in which both
strong gravitational and electromagnetic fields play important roles. There
are many sources for strong gravitational and electromagnetic fields in the sky
or universe, such highly magnetized neutron stars, magnetized black holes,
and the early universe. We review quantum field theoretical frameworks for
QED both in the Minkowski spacetime and curved spacetimes, in particular,
charged black holes and the early universe, and discuss QED physics in strong
EM fields, such as the vacuum polarization and Schwinger pair production
and their implications to astrophysics and cosmology.

76. Clement Stahl, “Schwinger effect impacting primordial magnetogenesis, ”, Nucl.
Phys. B12, 017, 2018, https://arxiv.org/abs/1806.06692.

We explore the enhancement of an electromagnetic field in an inflationary
background with an anti-conductive plasma of scalar particles. The scalar par-
ticles are created by Schwinger effect in curved spacetime and backreact to the
electromagnetic field. The possibility of a negative conductivity was recently
put forward in the context of the renormalization of the Schwinger induced
current in de Sitter spacetime. While a negative conductivity enhances the
produced magnetic field, we find that it is too weak to seed the observed in-
tergalactic magnetic field today. This results on pair creation in inflationary
scenario is however important for primordial scenarios of magnetogenesis as
the presence of a conductivity alters the spectral index of the magnetic field.
This also shows on a specific example that backreaction can increase the elec-
tromagnetic field and not only suppress it. For details see Clement Stahl, Nucl.
Phys. B12, 017, 2018, https://arxiv.org/abs/1806.06692

77. E. Bavarsad, S. P. Kim, C. Stahl, S.-S. Xue, “QED effective action in de Sitter
space, ”, will appear soon in arXiv and regular scientific journal.

Particles creation under the in uence of both an electromagnetic field and a de
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Sitter (dS) spacetime is an interesting topic to probe quantum electrodynamics
(QED) and quantum gravitational effects. By applying the gamma-function
regularization to the in-out formulation, we find the exact one-loop effective
action in the proper-time integral representation for a charged scalar field in
a uniform electric field and a parallel magnetic field in a dS space, which re-
duces to Weisskofp-Schwinger scalar QED action in the limit of Minkowski
spacetime and the one-loop action in the pure dS space. We find the consis-
tency of the effective action with the vacuum persistence amplitude and the
Schwinger effect of Phys. Rev. D 97, 025017. The effective action is analyzed
for the pure dS space and QED actions in the pure electric field in dS space
and in both electric and magnetic fields. The effective action in the pure dS
space consists of a series of the scalar curvature starting with the quadratic or-
der. We explore the effect of curvature on the QED vacuum polarization and
find consistency of the effective action with the perturbative expansion from
the worldline formalism.

78. S. Tizchang, R. Mohammadi and S.-S. Xue “Lorentz violation effects via a laser
beam interacting with a high-energy charged lepton beam, ”, Eur. Phys. J. C
(2019) 79: 224 https://arxiv.org/abs/1811.00486.

Lorentz violation effects via a laser beam interacting with a high-energy charged
lepton beam. The conversion of linear polarization of a laser beam to circu-
lar one through its forward scattering by a TeV order charged lepton beam
in the presence of Lorentz violation correction is explored. We calculate the
ratio of circular polarization to linear one (Faraday Conversion phase) of the
laser beam interacting with either electron or the muon beam in the framework
of the quantum Boltzmann equation. Regarding the experimentally available
sensitivity to the Faraday conversion, we show that the scattering of a lin-
early polarized laser beam with energy 0.1 eV and an electron/muon beam
with available flux places an upper bound on the combination of lepton sector
Lorentz violation coefficients c components (cTT+1.4 c(TZ)+0.25(cXX+cYY+2
cZZ)). The obtained bound on the combination for the electron beam is at the
1015 level and for the muon beam at the 3.91013 level. It should be mentioned
that the laser and charged lepton beams considered here to reach the experi-
mentally measurable Faraday Conversion phase are currently available or will
be accessible in the near future. This study provides a valuable supplemen-
tary to other theoretical and experimental frameworks for measuring and con-
straining Lorentz violation coefficients.

79. M. Haghighat, S. Mahmoudi, R.Mohammadi, S. Tizchang and S.S. Xue “Cir-
cular polarization of cosmic photons due to their interactions with Sterile neu-
trino dark matter, ”, https://arxiv.org/abs/1909.03883.
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In this paper, we explore the possibility of the polarization conversion of a
wide energy range of cosmic photons to the circular polarization through their
interaction with Sterile neutrino as a dark matter candidate. By considering
the Sterile neutrino in the seesaw mechanism framework and right-handed
current model, we estimate the Faraday conversion ∆φFC of gamma ray burst
(GRB) photons interacting with the Sterile neutrinos at both the prompt and af-
terglow emission levels. We show that for active-Sterile neutrino with mixing
angle θ2 . 10−2 motivated by models with a hidden sector coupled to the ster-
ile neutrino, the Faraday conversion can be estimated as ∆φFC . 10−2 − 10−17

rad. We also examine the V-mode power spectrum CVl of the cosmic mi-
crowave background (CMB) at the last scattering surface. We show that the
circular polarization power spectrum at the leading order is proportional to
the linear polarization power spectrum Cpl and the mixing angle where for
θ2 . 10−2 leads to CVl . 0.01 Nano-Kelvin squared.

80. Mehdi Abdi (IUT), Roohollah Mohammadi (INMOST and SoA-IPM), She-Sheng
Xue (ICRANet), Moslem Zarei (IUT) “Distinguishing Dirac from Majorana
neutrinos in a microwave cavity, ”, https://arxiv.org/abs/1909.01536.

We propose a novel scheme for distinguishing between the Dirac and Majo-
rana nature of neutrinos via interaction of a neutrino beam with microwave
photons inside a cavity. We study the effective photon-photon polarization
exchange induced by the photon-neutrino scattering. The quantum field the-
oretical studies of such effective picture are presented for both Dirac and Ma-
jorana neutrinos. Our phenomenological analyses show that the difference
between Dirac and Majorana neutrinos can manifest itself in scattering rate of
the photons. To enhance the effect a cavity scheme is employed. An experi-
mental setup based on microwave cavities is then designed and simulated by
finite element method to measure the scattering rate. Our results suggest that
an experiment based on the current state-of-the-art technology will be able to
probe the difference in about one year. However, it can be done in a few days
by enhancing the neutrino beam flux or implementing with the near future
equipments. Therefore, our work provides the possibility for solving the long
lasting puzzle of Dirac or Majorana nature of neutrinos.

81. She-Sheng Xue “Einstein equation and Hawking radiation govern Universe
evolution, ”, https://arxiv.org/abs/1910.03938

We present a possible understanding to the issues of cosmological constant, in-
flation, matter and coincidence problems based on the Einstein equation and
Hawking pair production of particles and antiparticles. In this scenario, the
cosmological constant is attributed to the spacetime horizon that generates
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matter via pair productions, in turn the matter contributes to the RHS of the
Einstein equation, conversely governing the spacetime horizon. In such a way,
the cosmological and matter terms are interacting via the spacetime horizon in
their evolutions. As a result, the inflation naturally appears and results agree
to observations. The CMB large-scale anomaly can be explained and the dark-
matter acoustic wave is speculated. The cosmological term ΩΛ tracks down the
matter term ΩM from the reheating to the radiation-matter equilibrium, then it
varies very slowly, ΩΛ ∝ constant. Thus the cosmic coincidence problem can
be possibly avoided. The relation between ΩΛ and ΩM is obtained and can be
examined at large redshifts.

82. Soroush Shakeri, Rohollah Mohammadi, She-Sheng Xue “Light by Light Scat-
tering as a Probe for Axion Dark Matter, ”, to appear in arXiv.

The main goal of this paper is to probe axion or axion-like particles in light-by-
light forward scattering process. We consider the polarization effects caused
by on-shell axions in the photon-photon scattering process. We show that the
circular polarization signal generated in light-by-light scattering in the cur-
rent/future laser experiments can shed more light on different aspects of these
mysterious particles. Our results show a large enhancement in the conversion
rate between circular and linear polarizations at the domain close to the reso-
nance point of inter-mediating axions. This signal enhancement can be used
in order to discriminate between the ALP contribution to photon-photon scat-
tering and one originates from the virtual electron-positron pairs in the pure
QED framework.

83. Damien Bégué, Clément Stahl and She-Sheng Xue “A model of interacting
dark fluids tested with supernovae and Baryon Acoustic Oscillations data, ”,
Nuclear Physics, Section B, Volume 940, p. 312-320, (2019), https://arxiv.org/abs/1702.03185

We compare supernovae and Baryon Acoustic Oscillations data to the predic-
tions of a cosmological model of interacting dark matter and dark energy. This
theoretical model can be derived from the effective field theory of Einstein-
Cartan gravity with two scaling exponents δG and δΛ, related to the interac-
tion between dark matter and dark energy. We perform a χ2 fit to the data
to compare and contrast it with the standard ΛCDM model. We then explore
the range of parameter of the model which gives a better χ2 than the standard
cosmological model. All those results lead to tight constraints on the scaling
exponents of the model. Our conclusion is that this class of models, provides
a decent alternative to the ΛCDM model.
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6. Invited talks in international
conferences

1. Yamada conference “On the dyadosphere of black holes” in Kyoto Japan, April
1998 .

2. International workshop on Gamma Ray Bursts, Rome (1998) .

3. 19th Texas Symposium, Dec. 1998

4. “Exploring the Universe”, a Festschrift in honour of Riccardo Giacconi, (2000).

5. Fluctuating Paths and Fields - Dedicated to Hagen Kleinert on the Occasion of
His 60th Birthday, Berlin 2001.

6. The ESO workshop on “Black Holes in Binaries and Galactic Nuclei”, in hon-
our of Prof. R. Giacconi, (2000) .

7. Marcel Grossmann Meetings IX (Rome) (2000), X (Brazil) (2003) and XI Berlin
(2006).

8. International conference in the quantum aspect of beam physics in Hiroshima
Japan (2003)

9. “Frontiers in Astroparticle Physics and Cosmology”, 6th RESCEU Interna-
tional Symposium, Tokyo 2003.

10. International Conference “Analysis, manifolds and geometric structures in physics”,
in Honour of Y. Choquet-Bruhat, Isola d’Elba June 24th-26th, 2004 .

11. Brazilian School of Cosmology and Gravitation X (2002), XI (2004) and XII
(2006) (Portobello, Brazile).

12. Relativistic Astrophysics and Cosmology - Einstein’s Legacy meeting, Novem-
ber 7-11, 2005,

13. 35th COSPAR scientific assembly (Paris, 2004) and 36th COSPAR scientific as-
sembly (Beijing , 2006).
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6. Invited talks in international conferences

14. 9th International Conference Path Integrals - New Trends and Perspectives,
DRESDEN, Germany 23 - 28 September 2007

15. APS April meeting, April 12-15 2008, Saint Louis (USA).

16. V Italian-Sino Workshop, May 28- June 1 2008, Taipei (Taiwan).

17. III Stueckelberg Workshop, July 8-18 2008, Pescara (Italy).

18. XIII Brazilian School of Cosmology and Gravitation, July 20-August 2 2008,
Rio de Janeiro (Brazil).

19. Path Integrals - New Trends and Perspectives, September 23 - 28 2007, Dresden
(Germany)

20. APS April meeting, April 14-17 2007, Jacksonville (USA).

21. The first Sobral Meeting, May 26-29, 2009 Fortaleza (Ceara) Brazile

22. Zeldovich Meeting, April 20-23, 2009 Minsk - (BELARUS).

23. XI Marcel Grossmann Meeting on General Relativity, July 23-29 2006, Berlin
(Germany).

24. The first Galileo - Xu Guangqi Meeting October 26-30, 2009 - Shanghai - (CHINA).

25. 11th Italian-Korean Meeting November 2-4, 2009 - Seoul - (KOREA).

26. Christchurch Meeting December 16-18, 2009 - Christchurch - (New Zealand).

27. Annual Meeting of the Korean Physical Society October 19-22, 2010 - Seoul -
(KOREA).

28. The second Galileo - Xu Guangqi Meeting July 12-18, 2010 - Ventimiglia and
Nice - (Italy and France).

29. 12th Italian-Korean Meeting July 4-8, 2011, Pescara, Italy .

30. The third Galileo - Xu Guangqi Meeting October 12-16, 2011 Beijing (China).

31. The first LeCosPA Symposium: Towards Ultimate Understanding of the Uni-
verse, Feb 6-9, 2012, Taipei Taiwan.

32. The meeting for Italian-Korean cooperation, Nov 5-6, 2012, Seoul, South Korea.

33. The 13th MG meeting, July 1-7, 2012, Stockholm, Sweden.
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6. Invited talks in international conferences

34. The Scientific meeting of ICRANet, June, 2013, Pescara, Italy.

35. The meeting for 9th Italian-Korean meeting, July 12-18, 2013, Seoul, South Ko-
rea.

36. The first Scientific ICRANet Meeting in Armenia, 30 June - 4 July 2014 – Yere-
van (Armenia)

37. IZEST-ELI-NP Meeting (Extreme Light’s New Horizons Introducting Zepto
and Zettawatt Science Societal Applications), Sept. 17-19, 2014, Paris, France.

38. 14th Italian-Korean Symposium on Relativistic Astrophysics, July 20-24, 2015
ICRANet, Pescara Italy.

39. International Conference on Gravitation and Cosmology the fourth Galileo-Xu
Guangqi meeting, May 4-8, 2015, Kavli Institute for Theoretical Physics China
at the Chinese Academy of Sciences (KITPC) Beijing - China.

40. Fourteenth Marcel Grossmann Meeting - MG14 University of Rome ”La Sapienza”
- Rome, July 12-18, 2015 The Chair of the parallel session“SF1 - Strong (EM)
Fields Physics and Astrophysics” and “SF2 - Ground experiments and astro-
physical observations in Strong Field Physics”.

41. The Fifth Galileo - Xu Guangqi Meeting June, 2016, Chengdu (China).

42. the parallel session “SF2 - Ground experiments and astrophysical observations
in Strong Field Physics”, in The Fifteenth Marcel Grossmann Meeting - MG15,
University of Rome ”La Sapienza” - Rome, July 1-7, 2018

43. Yau Mathematical Sciences Center, Tsinghua University, Beijing China, Dec.
7-15, 2018

44. The first Hangzhou International Meeing on Gravitational Waves Oct, 2016,
Hangzhou (China).

45. 16th Italian-Korean Symposium on Relativistic Astrophysics, Pescara, Italy,
June 1-5, 2019

46. Open Universe International doctoral School ”The discovery of Black Holes”,
Nice, France, June 11 - 14, 2019
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A. Dyadosphere
(electron-positron-photon
plasma) formation in
gravitational collapse.

The e+e− pairs generated by the vacuum polarization process around the core are
entangled in the electromagnetic field Ruffini et al. (2003a), and thermalize in an
electron–positron–photon plasma on a time scale ∼ 104τC Ruffini et al. (2003b) (see
Fig. 3.1). As soon as the thermalization has occurred, the hydrodynamic expansion
of this electrically neutral plasma starts Ruffini et al. (1999, 2000). While the tem-
poral evolution of the e+e−γ plasma takes place, the gravitationally collapsing core
moves inwards, giving rise to a further amplified supercritical field, which in turn
generates a larger amount of e+e− pairs leading to a yet higher temperature in the
newly formed e+e−γ plasma. We report progress in this theoretically challenging
process which is marked by distinctive and precise quantum and general relativistic
effects. As presented in Ref. Ruffini et al. (2003a): we follow the dynamical phase
of the formation of Dyadosphere and of the asymptotic approach to the horizon by
examining the time varying process at the surface of the gravitationally collapsing
core.

It is worthy to remark that the time–scale of hydrodynamic evolution (t ∼ 0.1s)
is, in any case, much larger than both the time scale needed for “all pairs to be
created” (∼ 103τC), and the thermalization time–scale (∼ 104τC, see Fig. 3.1) and
therefore it is consistent to consider pair production, plus thermalization, and hy-
drodynamic expansion as separate regimes of the system. We assume the initial
condition that the Dyadosphere starts to be formed at the instant of gravitational
collapse tds = t0 (rds) = 0, and rds = Rc the radius of massive nuclear core. Hav-
ing formulated the core collapse in General Relativity in Eq. (3.8.2), we discretize the
gravitational collapse of a spherically symmetric core by considering a set of events
(N−events) along the world line of a point of fixed angular position on the collapsing
core surface. Between each of these events we consider a spherical shell of plasma of
constant coordinate thickness ∆r so that:
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A. Dyadosphere (electron-positron-photon plasma) formation in
gravitational collapse.

1. ∆r is assumed to be a constant which is small with respect to the core radius;

2. ∆r is assumed to be large with respect to the mean free path of the particles so
that the statistical description of the e+e−γ plasma can be used;

3. There is no overlap among the slabs and their union describes the entirety of
the process.

We check that the final results are independent of the special value of the chosen
∆r and N.

In each slab the processes of e+e−-pair production, oscillation with electric field
and thermalization with photons are considered. While the average of the electric
field E over one oscillation is 0, the average of E2 is of the order of E2

c , therefore the
energy density in the pairs and photons, as a function of r0, is given by

ε0 (r0) =
1

8π

[
E2 (r0)− E2

c
]
= E2

c
8π

[(
rds
r0

)4
− 1
]

. (A.0.1)

For the number densities of e+e− pairs and photons at thermal equilibrium we have
ne+e− ' nγ; correspondingly the equilibrium temperature T0, which is clearly a func-
tion of r0 and is different for each slab, is such that Ruffini et al. (1999, 2000)

ε (T0) ≡ εγ (T0) + εe+ (T0) + εe− (T0) = ε0, (A.0.2)

with ε and n given by Fermi (Bose) integrals (with zero chemical potential):

εe+e− (T0) =
2

π2 h̄3

∫ ∞

me

(E2−m2
e)

1/2

exp(E/kT0)+1 E2dE, εγ (T0) =
π2

15h̄3 (T0)
4 , (A.0.3)

ne+e− (T0) =
1

π2 h̄3

∫ ∞

me

(E2−m2
e)

1/2

exp(E/kT0)+1 EdE, nγ (T0) =
2ζ(3)

h̄3 (T0)
3 . (A.0.4)

From the conditions set by Eqs. (A.0.2), (A.0.3), (A.0.4), we can now turn to the dy-
namical evolution of the e+e−γ plasma in each slab. We use the covariant conser-
vation of energy momentum and the rate equation for the number of pairs in the
Reissner–Nordström geometry external to the core:

∇aTab = 0, (A.0.5)

∇a (ne+e−ua) = σv
[
n2

e+e− (T)− n2
e+e−

]
, (A.0.6)

where Tab = (ε + p) uaub + pgab is the energy–momentum tensor of the plasma with
proper energy density ε and proper pressure p, ua is the fluid 4−velocity, ne+e− is the
number of pairs, ne+e− (T) is the equilibrium number of pairs and σv is the mean of
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the product of the e+e− annihilation cross-section and the thermal velocity of pairs.
In each slab the plasma remains at thermal equilibrium in the initial phase of the
expansion and the right hand side of the rate Eq. (A.0.6) is effectively 0.

If we denote by ξa the static Killing vector field normalized at unity at spacial in-
finity and by {Σt}t the family of space-like hypersurfaces orthogonal to ξa (t being
the Killing time) in the Reissner–Nordström geometry, from Eqs. (A.0.6), the follow-
ing integral conservation laws can be derived∫

Σt

ξaTabdΣb = E,
∫

Σt

ne+e−ubdΣb = Ne+e− , (A.0.7)

where dΣb = α−2ξbr2 sin θdrdθdφ is the vector surface element, E the total energy
and Ne+e− the total number of pairs which remain constant in each slab. We then
have [

(ε + p) γ2 − p
]

r2 = E, ne+e−γα−1r2 = Ne+e− , (A.0.8)

where E and Ne+e− are constants and

γ ≡ α−1uaξa =

[
1− α−4

(
dr
dt

)2
]−1/2

(A.0.9)

is the Lorentz γ factor of the slab as measured by static observers. We can rewrite
Eqs. (A.0.7) for each slab as(

dr
dt

)2
= α4 fr0 , (A.0.10)(

r
r0

)2
=
(

ε+p
ε0

) (
ne+e−0
ne+e−

)2 (
α
α0

)2
− p

ε0

(
r
r0

)4
, (A.0.11)

fr0 = 1−
(

ne+e−
ne+e−0

)2 ( α0
α

)2
(

r
r0

)4
(A.0.12)

where pedex 0 refers to quantities evaluated at selected initial times t0 > 0, having
assumed r (t0) = r0, dr/dt|t=t0

= 0, T (t0) = T0.
Eq. (A.0.10) is only meaningful when fr0 (r) ≥ 0. From the structural analysis of

such equation it is clearly identifiable a critical radius r0 such that:

• for any slab initially located at r0 > R̄ we have fr0 (r) ≥ 0 for any value of
r ≥ r0 and fr0 (r) < 0 for r . r0; therefore a slab initially located at a radial
coordinate r0 > R̄ moves outwards,

• for any slab initially located at r0 < R̄ we have fr0 (r) ≥ 0 for any value of
r+ < r ≤ r0 and fr0 (r) < 0 for r & r0; therefore a slab initially located at a
radial coordinate r0 < R̄ moves inwards and is trapped by the gravitational
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A. Dyadosphere (electron-positron-photon plasma) formation in
gravitational collapse.

field of the collapsing core.

We define the surface r = R̄, the Dyadosphere trapping surface (DTS). The radius
R̄ of DTS is generally evaluated by the condition d fR̄

dr

∣∣∣
r=R̄

= 0. R̄ is so close to the

horizon value r+ that the initial temperature T0 satisfies kT0 � mec2 and we can
obtain for R̄ an analytical expression. Namely the ultra relativistic approximation of
all Fermi integrals, Eqs. (A.0.3) and (A.0.4), is justified and we have ne+e− (T) ∝ T3

and therefore fr0 ' 1− (T/T0)
6 (α0/α)2 (r/r0)

4 (r ≤ R̄). The defining equation of R̄,
together with (A.0.12), then gives

R̄ = 2M
[
1 +

(
1− 3Q2/4M2)1/2

]
> r+. (A.0.13)

In the case of an EMBH with M = 20M�, Q = 0.1M, we compute:

• the fraction of energy trapped in DTS:

Ē =
∫

r+<r<R̄
αε0dΣ ' 0.53

∫
r+<r<rds

αε0dΣ; (A.0.14)

• the world–lines of slabs of plasma for selected r0 in the interval (R̄, rds) (see
left figure in Fig. A.1);

• the world–lines of slabs of plasma for selected r0 in the interval (r+, R̄) (see
Fig. A.2).

At time t̄ ≡ t0 (R̄) when the DTS is formed, the plasma extends over a region of space
which is almost one order of magnitude larger than the Dyadosphere and which we
define as the effective Dyadosphere. The values of the Lorentz γ factor, the temperature
and e+e− number density in the effective Dyadosphere are given in the right figure
in Fig. A.1.
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Figure A.1.: In left figure: World line of the collapsing charged core (dashed
line) as derived from Eq. (3.8.2); world lines of slabs of plasma for selected
radii r0 in the interval (R̄, rds). At time t̄ the expanding plasma extends over a
region which is almost one order of magnitude larger than the Dyadosphere.
The small rectangle in the right bottom is enlarged in Fig. A.2. The right
figure: Physical parameters in the effective Dyadosphere: Lorentz γ factor,
proper temperature and proper e+e− number density as functions at time t̄.
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A. Dyadosphere (electron-positron-photon plasma) formation in
gravitational collapse.

1

2

3

4

5

6

0.0255 0.026 0.0265 0.027 0.0275 0.028

r(
t) 

/ M

t (s)

−R

r+

world line of the collapsing core
world lines of the expanding plasma

world lines of the trapped plasma

Figure A.2.: Enlargement of the small rectangle in the right bottom of left
figure in Fig. A.1. World–lines of slabs of plasma for selected radii r0 in the
interval (r+,R̄).
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B. Electron-positron pair
oscillation in spatially
inhomogeneous electric fields
and radiation

Introduction. As reviewed in the recent report Ruffini et al. (2010), since the pioneer
works by Sauter Sauter (1931), Heisenberg and Euler Heisenberg and Euler (1936) in
1930’s, then by Schwinger Schwinger (1951) in 1950’s, it has been well known that
positron-electron pairs are produced from the vacuum in external electric fields. In
a constant electric field E0 in dependent of space and time, the pair-creation rate per
unit volume is given by Heisenberg and Euler (1936),

S ≡ dN
dVdt

=
m4

e
4π3

(
E0

Ec

)2

exp
(
−π

Ec

E0

)
, (B.0.1)

where the critical field Ec ≡ m2
e c3/(eh̄), the Plank’s constant h̄, the speed of light c, the

electron mass me, the absolute value of electron charge e and the fine structure con-
stant α = e2/h̄c (in this article we use the natural units h̄ = c = 1, unless otherwise
specified). The pair-production rate (B.0.1) is significantly large for strong electric
fields E & Ec ' 1.3 · 1016V/cm. The critical field will probably be reached by recent
advanced laser technologies in laboratory experiments Ringwald (2001); Tajima and
Mourou (2002); Gordienko et al. (2005), X-ray free electron laser (XFEL) facilities1,
optical high-intensity laser facilities such as Vulcan or ELI2, and SLAC E144 using
nonlinear Compton scattering Burke et al. (1997). On the other hand, strong over-
critical electric fields (E ≥ 10Ec) can be created in astrophysical environments, for
instance, quark stars Usov (1998); Usov et al. (2005) and neutron stars Ruffini et al.
(2007a)-Popov et al. (2009).

The back-reaction and screening effects of electron and positron pairs on external
electric fields lead to the phenomenon of plasma oscillations: electrons and positrons

1http://www.xfel.eu
2http://www.extreme-light-infrastructure.eu
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moving back and forth coherently with alternating electric fields. This means that
external electric fields are not eliminated within the Compton time h̄/mec2 of pair-
production process, rather oscillate collectively with the motion of pairs in a much
longer timescale.

In a constant electric field E0 (B.0.1), the phenomenon of plasma oscillations is
studied in the two frameworks Ruffini et al. (2010): (1) the semi-classical QED with
quantized Dirac field and classical electric field Kluger et al. (1991, 1992); Cooper and
Mottola (1989); (2) the kinetic description using the Boltzmann-Vlasov and Maxwell
equations Biro et al. (1984); Gatoff et al. (1987); Cooper et al. (1993); Ruffini et al.
(2003b, 2007b). In the second framework, the Boltzmann-Vlasov equation is used to
obtain the equations for the continuity and energy-momentum conservations Gatoff
et al. (1987).

Ref. Ruffini et al. (2007b) shows the evidence of plasma oscillation in under-critical
field (E < Ec) and the relation between the kinetic energy and numbers of oscillat-
ing pairs in a given electric field strength E0. Taking into account the creation and
annihilation process e+ + e− ⇔ γ + γ, it is shown Ruffini et al. (2003b) that the
plasma oscillation in an overcritical field is led to a plasma of photons, electrons
and positions with the equipartition of their number- and energy-densities. The
phenomenon of plasma oscillations is studied in connection with pair creation in
heavy ions collisions Biro et al. (1984)-Cooper et al. (1993), the laser field Ringwald
(2001)-Hebenstreit et al. (2008), and gravitational collapse Ruffini et al. (2003a). It is
worthwhile to emphasize that the plasma oscillation occurs not only at overcritical
field-strengths E0 & Ec (see for instance Refs. Kluger et al. (1991, 1992); Ruffini et al.
(2003b)), but also undercritical field-strengths E0 . Ec (see Ref. Ruffini et al. (2007b)),
and plasma oscillation frequency is related to field-strength E0, while the number of
oscillating pairs depends on the pair-production rate (B.0.1). More details can be
found in the recent review article Ruffini et al. (2010).

The realistic ultra-strong electric fields are not only vary with space and time, but
also confined in a finite region. In this letter, studying the plasma oscillations in spa-
tially inhomogeneous electric field, we present the evidence of electric fields propa-
gation, leading to electromagnetic radiation with a peculiar narrow spectrum in the
keV-region, which should be distinctive and experimentally observable.

In the kinetic description for the plasma fluids of positrons (+) or electrons (−),
whose single-particle spectrum p0

± = (p2
± + m2

e )
1/2, we define the number-densities
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n±(t, x) and “averaged” velocities v±(t, x) of the fluids:

n±(t, x) ≡
∫ d3p±

(2π)3 f±(t, p±, x), (B.0.2)

v±(t, x) ≡ 1
n±

∫ d3p±
(2π)3

(
p±
p0
±

)
f±(t, p±, x), (B.0.3)

where f±(t, p±, x) is the distribution function in the phase space. The four-velocities
of the electron and positron fluids Uµ

± = γ±(1, v±), the Lorentz factor γ± = (1−
|v±|2)−1/2, and the comoving number-densities n̄± = n±(γ±)−1, where we choose
the laboratory frame where pairs are created at rest. The collision-less plasma fluid
of electrons and positrons coupling to electromagnetic fields is governed by the con-
tinuity, energy-momentum conservation and Maxwell equations:

∂
(
n̄±Uµ

±
)

∂xµ
= S, (B.0.4)

∂Tµν
±

∂xν
= −Fµ

σ (Jσ
± + Jσ

±pola), (B.0.5)

∂Fµν

∂xν
= −4π(Jµ

cond + Jµ
pola + Jµ

ext), (B.0.6)

where is the pair-production rate, Jµ
± = ±en̄±Uµ

± electric currents and the energy-
momentum tensors Weinberg (1972)

Tµν
± = p̄±gµν + ( p̄± + ε̄±)U

µ
±Uν
±, (B.0.7)

and the pressure p̄± and comoving energy-density ε̄± is related by the equation of
state, in general 0 ≤ p̄± ≤ ε̄±/3. In the laboratory frame, the fluid energy-density
ε± ≡ T00 and momentum-density pi

± ≡ Ti0 are given by

ε± = (ε̄± + p̄±v2
±)γ

2
±, p± = (ε̄± + p̄±)γ2

±v±. (B.0.8)

In Eqs. (B.0.5,B.0.6) Fµ
σ is the tensor of electromagnetic fields (E, B), the conducting

four-current density

Jµ
cond ≡ e(n̄+Uµ

+ − n̄−Uµ
−), ∂µ Jµ

cond = 0, (B.0.9)

and polarized four-current density Jµ
pola = ∑± Jµ

±pola and Jµ
±pola =

(
ρ±pola, J±pola

)
Gatoff
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et al. (1987); Kajantie and Matsui (1985)

Fν
µ Jµ
±pola = Σν

±, Σν
± ≡

∫ d3p±
(2π)3 p0

±
pν
±S, (B.0.10)

and S =
∫

d3p±/[(2π)3 p0
±]S. Using “averaged” velocities (B.0.3) of the fluids, we

approximately have

J±pola '
meγ±S
|E| Ê, ρ±pola ' ±

meγ±|v±|S
|E| , (B.0.11)

where the magnetic field B = 0. In Eq. (B.0.6), Jµ
ext = (ρext, Jext) is an external electric

current.

Basic equations of motion. For simplicity to start with, we consider the electric field
Eext created by a capacitor made of two parallel plates, one carries an external charge
+Q and another −Q. The sizes of two parallel plats are Lx and Ly, which are much
larger than their separation ` in the ẑ-direction, i.e., Lx � ` and Ly � `. For |z| ∼
O(`), the system has an approximate translation symmetry in the (x, y) plane. As
results the electric field Eext(x, y, z) ≈ Eext(z)ẑ and Bext(x, y, z) ≈ 0, is approximately
homogeneous in the (x, y) plane and confined within the capacitor. In addition,
∂Eext/∂t ≈ 0, namely, this electric field is assumed to be continuously supplied by
an external source (+Q,−Q) or slowly varying. In order to do calculations we model
this electric field as the one-dimensional Sauter electric field in the ẑ-direction

Eext(z) = E0/ cosh2(z/`), σ ≡ eE0`/mec2 = (`/λC)(E0/Ec), (B.0.12)

where the λC is Compton wavelength, the external electric charge is given by ∂Eext(z)/∂z =
4πρext and the external electric current vanishes Jext = 0 for the field being static
∂Eext/∂t = 0. In the electric field configuration (B.0.12) and B ≈ 0, the “averaged”
velocities v± of electrons and positrons fluids are in the ẑ-direction,

Uµ
± = γ± (1, 0, 0,±v±) , (B.0.13)

and the total fluid current- and charge-densities (B.0.6) Jµ = (ρ, J) are

Jz = en+v+ + en−v− +
me(γ+ + γ−)S

E
, (B.0.14)

ρ = e (n+ − n−) +
me(γ+v+ − γ−v−)S

E
. (B.0.15)

The system can be approximately treated as a 1 + 1 dimensional system in terms of
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space-time variables (z, t), and Eqs. (B.0.4-B.0.6) become for zero pressure 3,

∂n±
∂t
± ∂n±v±

∂z
= S, (B.0.16)

∂ε±
∂t
± ∂p±

∂z
= en±v±E + meγ±S, (B.0.17)

∂p±
∂t
± ∂p±v±

∂z
= en±E + meγ±v±S, (B.0.18)

∂E
∂t

= −4π Jz, (B.0.19)

∂E
∂z

= 4π(ρ + ρext). (B.0.20)

The total electric field E(z, t) in Eqs. (B.0.14-B.0.20) is the superposition of two com-
ponents:

E(z, t) = Eext(z) + Eind(z, t), (B.0.21)

where the space- and time-dependent Eind(z, t) is the electric field created by electron
and positron pairs. We call Jz(z, t) (B.0.14), ρ(z, t) (B.0.15) and Eind(z, t) pair-induced
electric current, charge and field.

As for the pair-production rate S in Eqs. (B.0.16-B.0.19), instead of the pair-production
rate (B.0.1) for a constant field E0, we adopt the following z-dependent formula for
the pair-production rate in the Sauter field (B.0.12), obtained by using the WKB-
method to calculate the probability of quantum-mechanical tunneling Kleinert et al.
(2008),

S(z) =
m4

e
4π3

E0E(z)
E2

c G̃[0,E]
e−πG[0,E]Ec/E0 , (B.0.22)

where G(0,E) and G̃(0,E) are functions of the energy-level crossings E(z) and we
approximately adopt E(z) ≈ E0/G(0,E) ≈ E0/G̃(0,E) in Eq. (B.0.22) in order to

3For an electric field E ∼ Ec, the number-density of electron-positron pairs is small and the
pressure of pairs can be neglected. While for an over electric field E � Ec, the number-
density of pairs is large and the collisions and annihilation of pairs into photons are im-
portant, leading to the energy equipartition of electron, positrons and photons. In this
case, the pressure, effective temperature and equation of state have to be considered.For
an electric field E ∼ Ec, the number-density of electron-positron pairs is small and the
pressure of pairs can be neglected. While for an over electric field E � Ec, the number-
density of pairs is large and the collisions and annihilation of pairs into photons are im-
portant, leading to the energy equipartition of electron, positrons and photons. In this
case, the pressure, effective temperature and equation of state have to be considered.
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do feasible numerical calculations. As shown by the Fig. 2 in Ref. Kleinert et al.
(2008), the deviation of the pair-production rate (B.0.22) due to this approximation
is small. The formula (B.0.22) is derived for the static Sauter field (B.0.12). How-
ever, analogously to the discussions for the plasma oscillations in spatially homoge-
neous fields Cooper et al. (1993)-Ruffini et al. (2007b), it can be approximately used
for a time-varying electric field E(z, t) (B.0.21), provided the time-dependent com-
ponent Eind(z, t), created by electron-positron pair-oscillations, varies much slowly
compared with the rate of electron-positron pair-productions O(mec2/h̄). This can
be justified by the inverse adiabaticity parameter Greiner et al. (1985)-Popov (1973a),

η =
me

ω

E0

Ec
� 1, (B.0.23)

where ω is the frequency of pair-oscillations.

Eqs. (B.0.16,B.0.17,B.0.18) describe the motion of electron-positron plasma cou-
pling to the electric field E and source S of pair-productions. The Maxwell equations
(B.0.19,B.0.20) describe the motion of the electric field (B.0.21) coupled to the current-
and charge-densities (B.0.15), leading to the wave equation of the propagating elec-
tric field Eind(z, t) Jackson (1998),

∂2Eind

∂t2 − 1
c2

∂2Eind

∂z2 = 4π

(
∂ρ

∂z
+

1
c2

∂Jz

∂t

)
, (B.0.24)

where we use ∂Eext/∂z = 4πρext and ∂Eext/∂t = 0. This wave equation shows the
propagating electric field Eind(z, t) in the region R where the non-vanishing current
Jz and charge ρ are, and both the propagation and polarization of the electric field
are in the ẑ-direction. This implies a wave transportation of electromagnetic energies
inside the region R. Since the current- and charge-densities (ρ, Jz) are functions of the
field E(t, z) (B.0.21), the wave equation is highly nonlinear, the dispersion relation of
the field is very complex and the velocity of field-propagation is not the speed of
light.

Numerical integrations. Given the parameters E0 = Ec and ` = 105λC of the Sauter
field (B.0.12) as an initial electric field Eext, we numerically integrate Eqs.(B.0.16-
B.0.19) in the spatial region R: −`/2 ≤ z ≤ `/2 and time interval T: 0 ≤ t ≤ 3500τC,
where τC is the Compton time. The value T ≤ 3500τC is chosen so that the adiabatic
condition (B.0.23) is satisfied, and the spatial range R is determined by the capac-
ity of computer for numerical calculations. The electric field strength E0 is chosen
around the critical value Ec, so that the semiclassical pair-production rate (B.0.22)
can be approximately used. Actually, E0, ` and T are attributed to the characteristics
of external ultra-strong electric fields Eext established by either experimental setups
or astrophysical conditions.

592



In Figs. B.1 and B.2, we respectively plot the time- and space-evolution of the total
electric fields E(z, t) (B.0.21) as functions of t and z at three different spatial points
and times. As discussed in Figure captions, numerical results show the properties
of the electric field wave Eind(z, t) propagating in the plasma of oscillating electron-
positron pairs, as described by the wave equation (B.0.24). This electric field wave
propagates along the directions in which external electric field-strength decreases.
The wave propagation is rather complex, depending on the space and time variations
of the net charge density ρ(z, t) and current density jz(z, t), as shown in Figs. B.4-B.5.
The net charge density ρ oscillates (see Figs. B.3 and B.4) proportionally to the field-
gradient (B.0.20) and at the center z = 0 the charge density and field-gradient are
zero independent of time evolution (see Fig. B.4). However, the total charge of pairs
Q =

∫
R

d3xρ must be zero at any time, as required by the neutrality. The electric
current jz(z, t) alternating in space and time follows the space and time evolution of
the electric field E(z, t) see Eq. (B.0.19), as shown in Figs. B.5 and B.6.

We recall the discussions of the plasma oscillations in the case of spatially homo-
geneous electric field E0 without boundary Ruffini et al. (2003b, 2007b). Due to the
spatial homogeneity of electric fields and pair-production rate S (B.0.1), the number-
densities n±(t, x) = n(t) (B.0.2), “averaged” velocities |v±(t, x)| = v(t) (B.0.3) and
energy-momenta ε±(t, x) = ε(t), |p±(t, x)| = p(t) (B.0.8) are spatially homogeneous
so that the charge density (B.0.15) ρ ≡ 0 identically vanishes and current (B.0.14)
Jz = Jz(t). All spatial derivative terms in Eqs. (B.0.16-B.0.18) and Eq. (B.0.24) vanish
and Eq. (B.0.20) becomes irrelevant. As results, the plasma oscillations described is
the oscillations of electric fields and currents with respect time at each spatial point,
and the electric field has no any spatial correlation and does not propagate.

In contrary to the plasma oscillation in homogeneous fields, the presence of such
field-propagation in inhomogeneous fields is due to: (i) non-vanishing field-gradient
∂zE (B.0.20) and net charge-density ρ (B.0.15), as shown in Figs. B.3 and B.4, give the
spatial correlations of the fields at neighboring points; (ii) the stronger field-strength,
the larger field-oscillation frequency is, as shown in Fig. B.1; (iii) at the center z = 0
the field-strength is largest and the field-oscillation is most rapid, and the field-
oscillations at points |z| > 0 are slower and in retard phases, as shown in Fig. B.2.
The point (i) is essential, the charge density ρ oscillates (see Figs. B.3 and B.4) propor-
tionally to the field-gradient Eq. (B.0.20) and at the center z = 0 the charge density
and field-gradient are zero independent of time evolution (see Fig. B.4). Such field-
propagation is reminiscent of the drift motion of particles driven by a field-gradient
( “ponderomotive”) force, which is a cycle-averaged force on a charged particle in
a spatially inhomogeneous oscillating electromagnetic field Boot and R.-S.-Harvie
(1957); Kibble (1966); Hopf et al. (1976).
Radiation fields. As numerically shown in Fig. B.1-B.6, the propagation of the elec-
tric field wave Eind(z, t) inside the region R is rather complex, due to th high non-
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Figure B.1.: Electric fields E(z, t) are plotted as functions of t at three different
points: z = 0 (red), z = `/4 (blue) and z = `/2 (black). Analogously to the
plasma oscillation in homogeneous fields, the stronger initial field-strength,
the larger field-oscillation frequency is, i.e., ω(z = 0) > ω(z = `/4) > ω(z =
`/2), where ω(z) is the field oscillating frequency at the spatial point z.

linearity of wave equation (B.0.24). Nevertheless, the electromagnetic radiation fields
Erad and Brad far away from the region R are completely determined and could be
experimentally observable. At the space-time point (t, x) of an observer, the electro-
magnetic radiation fields Erad(z, t) and Brad(z, t), emitted by the variations of electric
charge density ρ(x′, t′) and current-density J(x′, t′) in the region R (x′ ∈ R) and time
t′ (t′ ∈ T), are given by Jackson (1998)

Erad(t, x) =−
∫
R

d3x′
{ R̂

R2

[
ρ(t′, x′)

]
ret +

R̂
cR

[
∂ρ(t′, x′)

∂t′

]
ret

+
1

c2R

[
∂J(t′, x′)

∂t′

]
ret

}
, (B.0.25)

Brad(t, x) =
∫
R

d3x′
{[

J(t′, x′)
]

ret ×
R̂

cR2 +

[
∂J(t′, x′)

∂t′

]
ret
× R̂

c2R

}
. (B.0.26)

where the subscript “ret” indicates t′ = t− R/c, R = |x− x′|. In the radiation zone
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Figure B.2.: Electric fields E(z, t) are plotted as functions of z at three different
times in the Compton unit: t = 1(black), t = 500 (blue) and t = 1500 (red).
As shown in Fig. B.1, the electric field E(z, t) oscillation at the center (z = 0)
is most rapid, and gets slower and slower at spatial points (|z| > 0) further
away from the center. This implies the electric field wave propagating in the
space, and the directions of propagations are indicated.

|x| � |x′| and R ≈ |x|, where is far away from the plasma oscillation region R, the
radiation fields (B.0.25,B.0.26) approximately are

Erad(t, x) ≈ − 1
c2|x|

∫
d3x′

[
∂J(t′, x′)

∂t′

]
ret

, (B.0.27)

Brad(t, x) ≈ R̂× Erad(t, x), (B.0.28)

where we use the charge conservation (B.0.9) and total neutrality condition of pairs∫
R

d3x′ρ(t′, x′) = 0. The first terms in Eqs. (B.0.25,B.0.26) are the Coulomb-type fields
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Figure B.3.: The net charge density ρ(z, t) [see Eq. (B.0.15)] as a function of
z at three different times: t = 1 (black, nearly zero), t = 500 (blue) and t =
1500 (red). It is shown that the net charged density value |ρ(z, t)| is zero at
the center where the initial electric field gradient vanishes [see Eq. (B.0.20)],
whereas it increases as the initial electric field gradient increases for |z| > 0.

decaying away as O(1/|x|2). The Fourier transforms of Eqs. (B.0.27) and (B.0.28) are

Ẽrad(ω, x) ≈ − e−ik|x|

c2|x| D̃(ω), B̃rad(ω, x) ≈ R̂× Ẽrad(ω, x) (B.0.29)

D̃(ω) ≡
∫
R

d3x′
∫
T

dt′eiωt′
[

∂J(t′, x′)
∂t′

]
, (B.0.30)

where the wave number k = ω/c and the numerical integration (B.0.30) is carried
out overall the space-time evolution of the electric current J(x′, t′) (see Figs. B.6 and
B.5). For definiteness we thinks of the oscillation currents occurring for some finite
interval of time T or at least falling off for remote past and future times, so that
the total energy radiated is finite, thus the energy radiated per unit solid angle per
frequency interval is given by Jackson (1998)

d2 I
dωdΩ

= 2|D̃(ω)|2. (B.0.31)
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Figure B.4.: The net electric charge density ρ(z, t) [see Eq. (B.0.15)] as a func-
tion of t at three different points: z = 0 (red, nearly zero) , z = `/4 (blue) and
z = `/2 (black). It is shown that the net electric charge density ρ(z, t) (except
the center z = 0) increases as time.

The squared amplitude |D̃(ω)|2 as a function of ω gives the spectrum of the ra-
diation (see Fig. B.7), which is very narrow as expected with a peak locating at
ωpeak ≈ 0.08me = 4keV for E0 = Ec, consistently with the plasma oscillation fre-
quency (see Fig. B.1). The energy-spectrum and its peak are shifted to high-energies
as the initial electric field-strength increases, and the relation between the spectrum
peak location and the electric field-strength is shown in Fig. B.8. In addition, the
energy-spectrum and its peak are also shifted to high-energies as the temporary
duration T of plasma oscillations increases (see Fig. B.1). In calculations, the tem-
porary duration T = 3500τC is chosen, not only to satisfy the adiabaticity condi-
tion Eq. (B.0.23) 4, but also to be in the time duration when the oscillatory behavior
is distinctive (see Figs. B.1,B.4,B.6), since the oscillations of pair-induced currents
damp and pairs annihilate into photons Ruffini et al. (2003b). The radiation inten-
sity (B.0.31) depends on the strength, spatial dimension and temporal duration of

4We check the two cases E0 = Ec and E0 = 10Ec, and find for the first oscillation η = 865
and η = 487 respectively. As can be seen for the Fig. B.1 the frequencies ω of pair-
oscillations increase with time which means the parameter η becoming smaller. Eventu-
ally it may reach unity so the formula (B.0.22) becomes inapplicable.
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Figure B.5.: Electric current densities jz(z, t) [see Eq. (B.0.14)] as functions
of z at three different times: t = 1 (black), t = 500 (blue) and t = 1500 (red).
Following Eq. (B.0.19), the electric current alternates following the alternating
electric field (see Fig. B.1), the plateaus indicate the current saturation for
v ∼ c and its spatial distribution is determined by the initial electric field
Eext(z).

strong external electric fields, created by either experimental setups or astrophysical
conditions.

Conclusions and remarks. We show the space and time evolutions of pair-induced
electric charges, currents and fields in strong external electric fields bounded within
a spatial region. These results imply the wave propagation of the pair-induced
electric field and wave-transportation of the electromagnetic energy in the strong
field region. Analogously to the electromagnetic radiation emitted from an alternat-
ing electric current, the space and time variations of pair-induced electric currents
and charges emit an electromagnetic radiation. We show that this radiation has a
the peculiar energy-spectrum (see Fig. B.7) that is clearly distinguishable from the
energy-spectra of the bremsstrahlung radiation, electron-positron annihilation and
other possible background events. This possibly provides a distinctive way to de-
tect the radiative signatures for the production and oscillation of electron-positron
pairs in ultra-strong electric fields that can be realized in either ground laboratories
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Figure B.6.: Electric current densities jz(z, t) [see Eq. (B.0.14)] as functions of
t at three different points: z = `/2 (black), z = `/4 (blue) and z = 0 (red).
The plateaus (see also Fig. B.6) for the current saturation values increases
as time, mainly due to the number-densities n± of electron-positron pairs
increase with time. In addition, they are maximal at the center z = 0 where
the initial electric field is maximal, and decrease as the initial electric field
Eext(z) decreasing for |z| > 0.

or astrophysical environments.
As mentioned in introduction, the critical electric field Ec will be reached soon in

ground laboratories and sensible methods to detect signatures of pair-productions
become important. Recently, the momentum signatures of pair-production is found
Hebenstreit et al. (2009) in a time-varying electric field E(t) with sub-cycle structure.
On the other hand, space-based telescopes the Swift-BAT NASA (2004), NuSTAR
caltech (2010) and Astro-H japan (2010) focusing high-energy X-ray missions, will
also give possibilities of detecting X-ray radiation signature, discussed in this paper,
from compact stars with electromagnetic structure.
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Figure B.7.: In the Compton unit, normalizing D̃(ω) [see Eq. (B.0.30)] by
the volume V ≡

∫
d3x′ of the radiation source J(t′, x′), we plot |D̃(ω)|2 [see

Eq. (B.0.31)] representing the narrow energy-spectrum of the radiation field
Erad and peak locates at the frequency ωpeak ≈ 0.08me.
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Figure B.8.: The peak frequency ωpeak of the radiation approximately varies
from 4keV to 70 keV as the initial electric field strength E0 varies from Ec to
10Ec. The values for very large field-strengths E0/Ec > 1 possibly receive
corrections, since the semiclassical pair-production rate (B.0.22) is approxi-
mately adopted and the pressure term (see footnote on page 591) is not prop-
erly taken into account.
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C. Electron and positron pair
production in gravitational
collapse

C.1. Introduction.

In the gravitational collapse or pulsation of neutral stellar cores at densities compa-
rable to the nuclear density, complex dynamical processes are expected to take place.
These involve both macroscopic processes such as gravitational and hydrodynamical
processes, as well as microscopic processes due to the strong and electroweak inter-
actions. The time and length scales of macroscopic processes are much larger than
those of the microscopic processes. Despite the existence of only a few exact solu-
tions of Einstein’s equations for simplified cases, macroscopic processes can be stud-
ied rather well by numerical algorithms. In both analytical solutions and numerical
simulations it is rather difficult to simultaneously analyze both macroscopic and mi-
croscopic processes characterized by such different time and length scales. In these
approaches, microscopic processes are approximately treated as local and instanta-
neous processes that are effectively represented by a model-dependent parametrized
equation of state (EOS). We call this approximate locality.

Applying approximate locality to electric processes, as required by the charge con-
servation, one is led to local neutrality : positive and negative charge densities are ex-
actly equal over all space and time. As a consequence, all electric fields and processes
are eliminated. An internal electric field (charge separation) must be developed Ol-
son and Bailyn (1975, 1976); Rotondo et al. (2011a,b) in a totally neutral system of pro-
ton and electron fluids in a gravitational field. If the electric field (process) is weak
(slow) enough, approximate locality is applicable. However, this should be seriously
questioned when the electric field (process) is strong (rapid). For example, neutral
stellar cores reach the nuclear density where positive charged baryons interact via
the strong interaction while electrons do not, in addition to their widely different
masses. As a result, their pressure, number, and energy density are described by dif-
ferent EOS, and a strong electric field (charge separation) on the baryon core surface
is realized Usov (1998); Popov et al. (2009) in an electrostatic equilibrium state.
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C. Electron and positron pair production in gravitational collapse

Furthermore, either gravitationally collapsing or pulsating of the baryon core leads
to the dynamical evolution of electrons. As a consequence, the strong electric field
dynamically evolves in space and time, and some electromagnetic processes can re-
sult if their reaction rates are rapid enough, for example, the electron-positron pair-
production process of Sauter-Heisenberg-Euler-Schwinger (see the review Ruffini
et al. (2010)) for electric fields E & Ec ≡ m2

e c3/(eh̄). If this indeed occurs, gravi-
tational and pulsating energies of neutral stellar cores are converted into the observ-
able energy of electron-positron pairs via the space and time evolution of electric
fields. In this chapter, we present our studies of this possibility (the natural units
h̄ = c = 1 are adopted, unless otherwise specified).

C.2. Basic equations for dynamical evolution.

We attempt to study possible electric processes in the dynamical perturbations of
neutral stellar cores. These dynamical perturbations can be caused by either the
gravitational collapse or pulsation of neutral stellar cores. The basic equations are the
Einstein-Maxwell equations and those governing the particle number and energy-
momentum conservation

(n̄e,BUν
e,B);ν=0,
Gµν=−8πG(Tµν + Tem

µν ),
(Tν

µ);ν=−Fµν Jν,

Fµν
;ν=4π Jµ, (C.2.1)

in which the Einstein tensor Gµν, the electromagnetic field Fµν (satisfying F[αβ,γ] = 0)
and its energy-momentum tensor Tem

µν appear; Uν
e,B and n̄e,B are, respectively, the four

velocities and proper number-densities of the electrons and baryons. The electric
current density is

Jµ = en̄pUµ
B − en̄eU

µ
e , (C.2.2)

where n̄p is the proper number-density of the positively charged baryons. The energy-
momentum tensor Tµν = Tµν

e + Tµν
B is taken to be that of two simple perfect fluids

representing the electrons and the baryons, each of the form

Tµν
e,B= p̄e,Bgµν + ( p̄e,B + ρ̄e,B)U

µ
e,BUν

e,B, (C.2.3)

where ρ̄e,B(r, t) and p̄e,B(r, t) are the respective proper energy densities and pressures.
In this chapter, baryons indicate hadrons, or their constituents (quarks) that carry
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C.3. Equilibrium configurations.

baryon numbers. Electrons indicate all negatively charged leptons. Baryon fluid
and electron fluid are separately described for the reason that in addition to baryons
being much more massive than electrons, the EOS of baryons p̄B = p̄B(ρ̄B) is very
different from the electron one p̄e = p̄e(ρ̄e) due to the strong interaction. Therefore,
in the dynamical perturbations of neutral stellar cores, one should not expect that the
space-time evolution of number density, energy density, four velocity, and pressure
of baryon fluid be identical to the space-time evolution of counterparts of electron
fluid. The difference of space-time evolutions of two fluids results in the electric cur-
rent (C.2.2) and field Fµν, possibly leading to some electric processes. In a simplified
model for the dynamical perturbations of neutral stellar cores, we approximately
study possible electric processes by assuming that the equilibrium configurations of
neutral stellar cores are initial configurations.

C.3. Equilibrium configurations.
In Refs. Olson and Bailyn (1975, 1976); Rotondo et al. (2011a,b), the equilibrium con-
figurations of neutral stellar cores, whose densities are smaller than nuclear density
nnucl, are studied on the basis of hydrostatic dynamics of baryon and electron fluids
in the presence of long-ranged gravitational and Coulomb forces. In these equilib-
rium configurations, very weak electric fields E � Ec are present, resulted from the
balance between attractive gravitational force and repulsive Coulomb force. This
electric field is too weak to make important electric processes, for example, electron-
positron pair productions. We are interested in the case where strong electric fields
are present. This leads us to consider strong electric fields in the surface layer of
baryon cores of compact stars (quark or neutron stars) at or over the nuclear density.
In this case, we assume that baryons form a rigid core of radius Rc and density

n̄B,p(r)
n̄B,p

=

[
exp

r−Rc

ζ
+ 1
]−1

, n̄B,p ≈
NB,p

(4πR3
c /3)

, (C.3.1)

where n̄p/n̄B ≈ Np/NB < 1, NB(Np) is the number of total (charged) baryons and
n̄B,p & nnucl ≈ 1.4× 1038cm−3. The baryon core has a sharp boundary (r ∼ Rc)
of the width ζ ∼ m−1

π due to the strong interaction. The line element is Bekenstein
(1971); Mashhoon and Partovi (1979)

ds2 = −gttdt2 + grrdr2 + r2dθ2 + r2 sin2 θdφ2 , (C.3.2)
g−1

rr (r) = 1− 2GM(r)/r + GQ2(r)/r2 ,

where mass M(r), charge Q(r) and radial electric field E(r) = Q(r)/r2.
Electrons form a complete degenerate fluid and their density neq

e (r) obeys the fol-
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C. Electron and positron pair production in gravitational collapse

lowing Poisson equation and equilibrium condition Popov et al. (2009); Rueda et al.
(2011):

d2Veq

dr2 +

[
2
r
− 1

2
d
dr

ln(gttgrr)

]
dVeq

dr
= −4πegrr(n̄pUt

p − neq
e Ut

e), (C.3.3)

EF
e = g1/2

tt

√
|PF

e |2 + m2
e −me − eVeq = const. ,

where Ut
p = Ut

e = (1, 0, 0, 0), EF
e , and PF

e = (3π2neq
e )1/3 are the Fermi energy and

momentum, Veq(r) and Eeq = −(grr)−1/2∂Veq(r)/∂r are the static electric potential
and field. In the ultrarelativistic case |PF

e | � me, we numerically integrate Eq. (C.3.3)
with boundary conditions:

neq
e (r)|r�Rc =nB

neq
e (r)|r�Rc =

dneq
e (r)
dr

∣∣∣
r�Rc

=
dneq

e (r)
dr

∣∣∣
r�Rc

= 0. (C.3.4)

As a result, we obtain on the baryon core boundary r ≈ Rc, the nontrivial charge-
separation (np − neq

e )/nB and overcritical electric field Eeq/Ec > 0 in a thin layer of
a few electron Compton length λe [the curves (t = 0) in Fig. C.1]. This is due to the
sharpness boundary (ζ ∼ m−1

π ) of the baryon core (C.3.1) at the nuclear density, as
discussed for compact stars Usov (1998); Popov et al. (2009). Note that all electronic
energy-levels Kleinert et al. (2008)

Eoccupied = e
∫

g1/2
rr drEeq(r) (C.3.5)

are fully occupied and pair-production is not permitted due to Pauli blocking, al-
though electric fields in the surface layer are over critical. We want to understand
the space and time evolution of the electric field in this thin layer and its consequence
in the dynamical perturbations of baryon cores, which can be caused by either the
gravitational collapse or pulsation of baryon cores.

C.4. Modeling dynamical perturbations of baryon
cores.

It is rather difficult to solve the dynamical system (C.2.1-C.2.3) with the EOS p̄B =
p̄B(ρ̄B) and p̄e = p̄e(ρ̄e) for the gravitational collapse or pulsation of baryon core and
electron fluid, and to examine possible electromagnetic processes. The main diffi-
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C.4. Modeling dynamical perturbations of baryon cores.

culty comes from the fact that the time and length scales of gravitational and electro-
magnetic processes differ by many orders of magnitude. In order to gain some phys-
ical insight into the problem, we are bound to split the problem into three parts: (i)
first, we adopt a simplified model to describe the dynamical perturbations of baryon
cores; (ii) second, we examine how electron fluid responds to this dynamical pertur-
bation of baryon cores; (iii) third, we check whether the resulted strong electric fields
can lead to very rapid electromagnetic processes, for example, electron-positron pair
production.

As for the first part, we adopt the following simplified model. Suppose that at the
time t = 0 the baryon core is in the equilibrium configuration (C.3.1) with the radius
Rc and starts dynamical perturbations with an inward velocity Ṙc(t) or pulsation
frequency ωpulsa ' Ṙc/Rc. The rate of dynamical perturbations of baryon cores
is defined as τ−1

coll = Ṙc/Rc . c/Rc. We further assume that in these dynamical
perturbations, baryon cores are rigid, based on the argument that as the baryon core
density n̄B,p (C.3.1) increases, the EOS of baryons p̄B = p̄B(ρ̄B) due to the strong
interaction is such that the baryon core profile (C.3.1) and boundary width ζ ∼ m−1

π

are maintained in the nuclear relaxation rate τ−1
stro ∼ mπ, which is much larger than

τ−1
coll. Thus, due to these properties of strong interaction, the dynamical perturbation

of the baryon core induces an inward charged baryon current-density

Jr
B(Rc) = en̄p(Rc)Ur

B(Rc), (C.4.1)

on the sharp boundary of baryon core density (C.3.1) at Rc, where the baryon den-
sity n̄B,p(Rc) = 0.5n̄B,p and the four-velocity Ur

B(Rc) 6= 0. We have not yet been able,
from the first principle of strong interaction theory, to derive this boundary prop-
erty (C.4.1) of baryon cores undergoing dynamical perturbations, which essentially
are assumptions in the present chapter, and the boundary density n̄B,p(Rc) and the
boundary four-velocity Ur

B(Rc) are two parameters depending on dynamical per-
turbations. This is in the same situation that so far one has not yet been able, from
the first principle of strong interaction theory, to derive the sharp boundary pro-
file (C.3.1) of baryon core densities of static compact stars Usov (1998); Popov et al.
(2009). However, we have to point out that the boundary properties (C.3.1) and
(C.4.1) of the baryon core undergoing dynamical perturbations are rather techni-
cal assumptions for the following numerical calculations of dynamical evolution of
electron fluid and electric processes in the Compton time and length scales. These
assumptions could be abandoned if we were able to simultaneously make numeri-
cal integration of differential equations for both dynamical perturbations of baryon
cores at macroscopic length scale and strong and electric processes at microscopic
length scale.
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C. Electron and positron pair production in gravitational collapse

C.5. Dynamical evolution of electron fluid

In this section, we attempt to examine how the electron fluid around the bound-
ary layer of the baryon core responds to the dynamical perturbations of the baryon
core described by the boundary properties (C.3.1) and (C.4.1). Given these bound-
ary properties at different values of baryon core radii Rc, we describe electrons and
electric fields around the boundary layer of baryon core by Maxwell’s equations,
the electron number and energy-momentum conservation laws (C.2.1) in the exter-
nal metric field (C.3.2). In addition, we assume that the electron fluid is completely
degenerate, and its EOS is given by

ρ̄e(t, r)=2
∫ PF

e

0
p0d3p/(2π)3,

p̄e(t, r)=
1
3

2
(2π)3

∫ PF
e

0

p2

p0 d3p , (C.5.1)

where the single-particle spectrum is p0 = (p2 + m2
e )

1/2 and the Fermi momentum
is PF

e = (3π2n̄e)1/3. In the present chapter, for the sake of simplicity, we set the
temperature of electron fluid to be zero and neglect all temperature effects, which
may be important and will be studied in future.

The electron fluid has four velocity Uµ
e = (Ut, Ur)e, radial velocity ve ≡ (Ur/Ut)e,

Ut
e = g−1/2

tt γe and Lorentz factor γe ≡ (1 + UrUr)1/2
e = [1 + (grr/gtt)v2

e ]
−1/2. In the

rest frame at a given radius r it has the number density ne = n̄eγe, energy density
εe = (ρ̄e + p̄ev2

e )γ
2
e , momentum density Pe = (ρ̄e + p̄e)γ2

e ve, and ve = Pe/(εe + p̄e). In
the rest frame, the number and energy-momentum conservation laws for the electron
fluid, and Maxwell’s equations are given by(

neg−1/2
tt

)
,t
+
(

neveg−1/2
tt

)
,r
= 0, (C.5.2)

(εe),t + (Pe),r +
1

2gtt

[
∂grr

∂t
Peve −

∂gtt

∂t
(εe + p̄e)

]
= −eneveEg−1/2

tt , (C.5.3)(
Pe

grr

gtt

)
,t
+

(
p̄e + Peve

grr

gtt

)
,r

+
εe + p̄e

2gtt

(
∂gtt

∂r
− ∂grr

∂r
v2

e

)
= −eneEg−1/2

tt , (C.5.4)

(E),t = −4πe(npvp − neve)g−1/2
tt , (C.5.5)

where (· · ·),x ≡ (−g)−1/2∂(−g)1/2(· · ·)/∂x, and in the line (C.5.5), the boundary
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C.6. Oscillations of electron fluid and electric field.

velocity vp of the baryon core comes from the baryon current-density (C.4.1). We
have the boundary four-velocity Ur

B of the baryon core,

vp = vB ≡ (Ur/Ut)B, Ut
B = g−1/2

tt γB, (C.5.6)

and the Lorentz factor

γB ≡ (1 + UrUr)1/2
B = [1 + (grr/gtt)v2

p]
−1/2, (C.5.7)

at the baryon core boundary Rc.
In the static case for vp = ve = 0, Eqs. (C.5.1-C.5.5) are equivalent to Eq. (C.3.3).

Provided an initial equilibrium configuration (C.3.3) and proper boundary condi-
tions, we numerically integrate these five equations (C.5.1-C.5.5) to obtain five vari-
ables ne(t, r), εe(t, r), Pe(t, r), p̄(t, r) and E(t, r) describing the electric processes around
the baryon core boundary.

C.6. Oscillations of electron fluid and electric field.

We consider the baryon core of mass M = 10M� and radius Rc ∼ 107cm at the
nuclear density nnucl, and select its boundary velocity vp = 0.2c to represent possible
dynamical perturbations of baryon cores. In the proper frame of a rest observer at
the core radius Rc, where gtt(Rc) ≈ g−1

rr (Rc), we chose the surface layer boundaries
ξ− ≈ −λe, ξ+ ≈ 3.5λe, at which Eeq(ξ±) ≈ 0 and proper thickness ` = ξ+ − ξ−, and
numerically integrate Eqs. (C.5.1-C.5.5) for the electron fluid. Numerical results are
presented in Figs. C.1 and C.2, showing that total electric field

E(t, r) = Eeq(r) + Ẽ(t, r), (C.6.1)

where electron number density, energy density, and pressure oscillate around their
equilibrium configurations Han et al. (2010). This is due to the fact that electrons do
not possess the strong interaction and their mass is much smaller than the baryon
one, as a result, the current density of electron fluid in the boundary layer does
not exactly follow the baryon core current density (C.4.1). Instead, triggered by the
baryon core current (C.4.1), total electric fields E(t, r) deviate from Eeq(r) and in-
crease, which breaks the equilibrium condition (C.3.3), namely, the balance between
pressure and electric force acting on electrons, dPF

e /dr + eEeq = 0. Accelerated by
increasing electric fields, electrons outside the core start to move inwards follow-
ing the collapsing baryon core. This leads to the increase of the electron pressure
(C.5.1) and the decrease of the electric fields. On the contrary, increasing electron
pressure pushes electrons backwards, and bounces them back. Overcritical electric
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Figure C.1.: The space and time evolution of the electric field (left) and
charge-separation (right) around the boundary layer of the baryon core,
M = 10M�, Rc ≈ 107cm, and vp = 0.2c. The coordinate is ξ ≡ r− Rc.

fields work against the pressure of ultrarelativistic electrons. As a consequence, os-
cillations with frequency ω = τ−1

osci ∼ 1.5me around the equilibrium configuration
take place in a thin layer of a few Compton lengths around the boundary of baryon
core. These are the main results presented in this chapter. We would like to point out
that these results should not depend on the boundary properties (C.3.1) and (C.4.1)
that we assume for the dynamical perturbations of baryon cores. The reason is that
both electron and proton fluids in baryon cores are at or over nuclear density, and
their Fermi momenta are the order of the pion mass mπ; therefore, electric fields must
be at or over critical value Ec = m2

e /e to do work against motion of charge separation
between positively charged baryon and electron fluids, and the frequency of oscil-
lation because of the backreaction should also be the order of me. It is worthwhile
that these results are further checked by full numerical calculations without assum-
ing the boundary properties (C.3.1) and (C.4.1) of baryon cores, which undergo the
dynamical perturbations caused by the gravitational collapse or pulsation.

Suppose that the dynamical perturbation of the baryon core is caused by either
the gravitational collapse or pulsation of the baryon core, that gains the gravitational
energy. Then, in this oscillating process, energy transforms from the dynamical per-
turbation of the baryon core to the electron fluid via an oscillating electric field. This
can been seen from the energy conservation (C.2.1) along a flow line of the electron
fluid for ve 6= vp

Uµ
e (Tν

µ);ν = en̄pFµνUµ
e Uν

B = en̄pγeγB(vp − ve)grrE, (C.6.2)

although we have not yet explicitly proved it. The energy density of the oscillating
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Figure C.2.: Time evolution of electric fields at different radial positions
around the boundary layer of the baryon core, M = 10M�, Rc ≈ 107cm
and vp = 0.2c. The coordinate is ξ ≡ r− Rc.

electric field is

εosci ≡ [E2(t, r)− E2
eq(r)]/(8π). (C.6.3)

The energy densities of the oscillating electric field and electron fluid are converted
from one to another in the oscillating process with frequencies ω ∼ τ−1

osci ∼ 1.5me
around the equilibrium configuration. However, the oscillating electron fluid has to
relax to the new equilibrium configuration determined by Eqs. (C.3.3) and (C.3.4)
with a smaller baryon core radius R′c < Rc. As a result, the oscillating electric field
must damp out and its lifetime τrelax is actually a relaxation time to the new equilib-
rium configuration. As shown in Fig. C.2 the relaxation rate τ−1

relax ∼ 0.05me. We no-
tice very different time scales of strong interacting processes, electric interacting pro-
cesses and dynamical perturbations of baryon cores: τ−1

stro � τ−1
osci � τ−1

relax � τ−1
coll.

Moreover, when E(r, t) > Eeq(r) (see Fig. C.1), the unoccupied electronic energy-
level can be obtained by Kleinert et al. (2008)

Eunocuppied=e
∫

g1/2
rr drE(t, r)− Eocuppied

=e
∫

g1/2
rr drẼ(t, r), (C.6.4)

see Eq. (C.3.5). This leads to pair production in strong electric fields and converts
electric energy into the energy of electron-positron pairs, provided the pair-production
rate τ−1

pair is faster than the oscillating frequency ω = τ−1
osci. Otherwise, the energy of

oscillating electric fields would completely be converted into the electrostatic Coulomb
energy of the new equilibrium configuration of electron fluid, which cannot be not
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radiative.

C.7. Electron-positron pair production

We turn to the pair-production rate in spatially inhomogeneous and temporally os-
cillating electric fields E(t, r). Although the oscillating frequency ω is rather large,
the pair-production rate τ−1

pair can be even larger due to the very strong electric fields
E(t, r). The pair-production rate can be approximately calculated by the formula for
static fields. The validity of this approximation is justified (see Ruffini et al. (2010);
Brezin and Itzykson (1970)) by the adiabaticity parameter η−1 = (ω/me)(Ec/Emax)�
1, where Emax is the maximal value of the electric field on the baryon core surface
r ' Rc. Therefore we adopt Eqs. (38) and (39) and (64)-(66) in Ref. Kleinert et al.
(2008) for the Sauter electric field to estimate the density of the pair-production rate
in the proper frame at the core radius Rc

Rpair ≈
e2EẼ

4π3 Ḡ0(σ)
e−π(Ec/E)G0(σ) ∼ e2EẼ

4π3 , (C.7.1)

where Ẽ (instead of E) in the prefactor accounts for the unoccupied electric energy
levels, G0(σ) → 0 and Ḡ0(σ) → 1 for σ = (`/λe)(E/Ec) � 1. The electron-positron
pairs screen the oscillating field Ẽ so that the number of pairs can be estimated
by Npair ≈ 4πR2

c(Ẽ/e). The pair-production rate is τ−1
pair ≈ Rpair(4πR2

c`)/Npair ∼
αme(`/λe)(E/Ec) ' 6.6me > τ−1

osci. The number density of pairs is estimated by
npair ≈ Npair/(4πR2

c`). Assuming the energy density εosci of oscillating fields is to-
tally converted into the pair energy density, we have the pair mean energy ε̄pair ≡
εosci/npair. Using the parameters vp ≈ 0.2c, Rc ≈ 107cm, and M = 10M�, we obtain
εosci ≈ 4.3× 1028 ergs/cm3, npair ≈ 1.1× 1033/cm3, and ε̄pair ≈ 24.5MeV. These es-
timates are preliminary without considering the efficiency of pair-productions, pos-
sible suppression due to strong magnetic fields, and possible enhancement due to
finite temperature effect.

C.8. Gravitational collapse and Dyadosphere

Up to now, we have not discussed how the dynamical perturbations of baryon cores
can be caused by either the gravitational collapse or pulsation of baryon cores. Ac-
tually, we have not been able to completely integrate the dynamical equations dis-
cussed in Sec. C.2 for the reasons discussed in Secs. C.1 and C.4. Nevertheless, we
attempt to use the results of electric field oscillation and pair production obtained
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in Secs. C.5, C.6 and C.7 to gain some physical insight into what and how electric
processes could possibly occur in the gravitational collapse of baryon cores. For this
purpose and in order to do some quantitative calculations, we first model the gravi-
tational collapse of baryon cores by the following assumptions:

1. the gravitationally collapsing process is made of the sequence of events (in
time) occurring at different radii Rc of the baryon core;

2. at each event the baryon core maintains its density profile and sharp boundary
as described by Eqs. (C.3.1) and (C.4.1).

The first assumption is based on the arguments that (i) in the electric processes dis-
cussed in Sec. C.6, the charge-mass ratio Q/M of the baryon core can possibly be
approaching to 1, then the collapse process of the baryon core is slowing down and
its kinetic energy is vanishing because the attractive gravitational energy gained is
mostly converted into the repulsive Coulomb energy of the baryon core; (ii) then
this Coulomb energy can be possibly converted into the radiative energy of electron-
positron pairs as discussed in Sec. C.7, and the baryon core restarts acceleration by
gaining gravitational energy. We have already discussed the second assumption in
Secs. C.4 and C.6. Here we want to emphasize that (i) the sharp boundary properties
(C.3.1) and (C.4.1) in the second assumption are technically used in order to numer-
ically calculate the dynamics of electron fluid in the thin shell around the baryon
boundary (Secs. C.5, C.6 and C.7); (ii) in the gravitational collapse or pulsation of
neutral stellar cores at or over nuclear density, these sharp boundary properties
(C.3.1) and (C.4.1) should be abandoned in a more realistic model of simultaneously
integrating dynamical equations of electron and baryon fluids over the entire stellar
core at macroscopic scales. This turns out to be much more complicated and we will
focus on this study in the future.

On the basis of these assumptions, the boundary velocity vp(Rc) (C.5.6) and bound-
ary radius Rc [or boundary density n̄B,p(Rc) (C.3.1)] of the baryon core at or over
the nuclear density are no longer independent parameters, instead they should be
related by the gravitational collapse equation of the baryon core. We adopt a simpli-
fied model for the gravitational collapse of the baryon core by approximately using
the collapsing equation for a thin shell Israel (1966); De la Cruz and Israel (1967);
Bekenstein (1971); Cherubini et al. (2002); Ruffini and Vitagliano (2002)(

Ω
F

)2 (dRc

dt

)2

=

[
1 +

GM
2Rc

(1− ξ2
Q)

]2

− 1, (C.8.1)

where at different radii Rc of the baryon core, we define the charge-mass ratio

ξQ≡Qeq/(G1/2M) < 1; Qeq = R2
c Eeq, (C.8.2)
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Figure C.3.: The estimate of the core collapsing velocity vp ≡ Ṙc = dRc/dt at
different collapsing radii Rc for the baryon core of mass M = 10 M�.

and

Ω≡1− (M/2Rc)(1 + ξ2
Q)

F≡1− (2M/Rc) + (Qeq/Rc)
2. (C.8.3)

The collapsing Eq. (C.8.1) for the collapsing velocity Ṙc is based on the condition
that at each collapsing radius Rc, the shell starts to collapse from rest. As a result, us-
ing these Eqs. (C.8.1-C.8.3) we describe the sequence of events in the gravitationally
collapsing process in terms of the collapsing velocities vp = Ṙc = dRc/dt defined
by (C.5.6) and (C.5.7) at different collapsing radii Rc of the baryon core, as shown
in Fig. C.3. Thus, at each event the induced inward charged baryon current-density
(C.4.1) is given by

Jr
B = en̄pUr

B ≈ en̄p(ṘcΩ/F), (C.8.4)

as a function of the collapsing radius Rc. The strength of this charged baryon cur-
rent density (C.8.4) depends also on the ratio of the charged baryon number and
total baryon number (Np/NB), which varies in the gravitational collapsing process
because of the β processes Mohammadi et al. (2012). In this chapter, the β processes
are not considered and the charged baryon (proton) number Np is constant; we se-
lect two values Np/NB ≈ 1/38 or Np/NB ≈ 1/380 for the charged baryon current
density Eq. (C.8.4). The collapsing process rate is τ−1

coll = Ṙc/Rc . c/Rc. If the dy-
namical perturbation of the baryon core is caused by the gravitational core pulsation,
the pulsation frequency can be expressed as ωpulsa ' Ṙc/Rc = τcoll.

In the sequence of the gravitationally collapsing process, at each event character-
ized by [Rc, vp(Rc)], we first solve Eqs. (C.3.3) and (C.3.4) of the equilibrium config-
uration to obtain the number density (neq

e ) and electric field (Eeq) as the initial con-
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Figure C.4.: The energy (left) and number (right) densities of electron-
positron pairs at selected values of collapsing radii Rc for M = 10M� and
Np/NB ≈ 1/38 (upper); 1/380 (lower). We select Rmax

c ∼ 107cm so that
n̄B ∼ nnucl.

figuration of the electron fluid and electric field. Then, with this initial configuration
we numerically solve the dynamical equations (C.5.1-C.5.5) to obtain the dynamical
evolution of electron fluid and electric field within the thin shell (a few Compton
lengths) around the baryon core boundary, described by Eqs. (C.3.1) and (C.8.4). As
a result, based on the analysis presented in Sec. C.7 we calculate the energy and num-
ber densities of the electron-positron pairs produced at each event in the sequence of
the gravitationally collapsing process. These results are plotted in Figs. C.4. Limited
by numerical methods, we cannot do calculations for smaller radii.

In addition, at each event in the sequence of the gravitationally collapsing process,
using the Gauss law, Q = R2

c E, we calculate the charge-mass ratio Q/M averaged
over oscillations of electric fields, Q/M < 1 as shown in Fig. C.5. The averaged
charge-mass ratio Q/M is not very small, rather about 0.4 (see Fig. C.5), implying
the possible validity of the first assumption we made that the gravitational collapsing
process is approximately made of a sequence of events. In principle, at Q/M = 1 the
gravitational collapsing process should stop, whereas the gravitational collapsing
process is continuous for Q/M = 0 without considering electric interactions.

It is clear that the ratio Np/NB becomes larger, the charged baryon current den-
sity (C.4.1) or (C.8.4) becomes larger, and all effects of electrical processes we dis-
cussed in Secs. C.5, C.6 and C.7 become larger. As shown in Figs. C.4, for the ratio
Np/NB ≈ 1/38, the energy density of electron-positron pairs is about 1031 ergs/cm3,
and the number density of electron-positron pairs is about 1035.6 /cm3. The mean
energy of electron-positron pairs is ε̄pair ≡ εosci/npair ∼ 10–50 MeV. While, for
the ratio Np/NB ≈ 1/380, the energy density of electron-positron pairs is about
1030 ergs/cm3, the number density of electron-positron pairs is about 1034.6 /cm3,
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Figure C.5.: The charge-mass ratio Q/M averaged over oscillations of electric
fields is plotted at different collapsing radii Rc for the baryon core of mass
M = 10 M�.

and the mean energy of electron-positron pairs ε̄pair ≡ εosci/npair ∼ 10–50 MeV does
not change very much.

It this chapter, it is an assumption that the gravitationally collapsing process is
represented by the sequence of events: the baryon core starts to collapse from rest by
gaining gravitational energy, the increasing Coulomb energy results in decreasing ki-
netic energy and slowing down the collapse process, the electric processes discussed
in Secs. C.5, C.6 and C.7 convert the Coulomb energy into the radiative energy of
electron-positron pairs, and as a result the baryon core restarts to accelerate the col-
lapse process by further gaining gravitational energy. This indicates that in the grav-
itationally collapsing process, the gravitational energy must be partly converted into
the radiative energy of electron-positron pairs. However, we have not been able
so far to calculate all processes with very different time and length scales from one
event to another in the sequence, so that it is impossible to quantitatively obtain the
rate of the conversion of the gravitational energy to the energy of electron-positron
pairs. Nevertheless, by summing over all events in the sequence of the gravitation-
ally collapsing process, we approximately estimate the total number and energy of
electron-positron pairs produced in the range Rc ∼ 5× 105 − 107cm: 1056–1057 and
1052–1053 erg for the ratio Np/NB ≈ 1/38; 1055–1056 and 1051–1052 erg for the ra-
tio Np/NB ≈ 1/380. These electron-positron pairs undergo the plasma oscillation
in strong electric fields and annihilate to photons to form a neutral plasma of pho-
tons and electron-positron pairs Ruffini et al. (2003b,a). This is reminiscent of the
vacuum polarization of a charged black hole Damour and Ruffini (1975); Cherubini
et al. (2009) and a sphere of electron-positron pairs and photons, called a Dyado-
sphere that is supposed to be dynamically created during gravitational collapse in
Refs. Ruffini and Xue (2008a); Preparata et al. (1998, 2003).
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C.9. Summary and remarks.
In the simplified model for the baryon cores of neutral compact stars, we show pos-
sible electric processes for the production of electron-positron pairs within the thin
shell (a few Compton lengths) around the boundary of baryon cores that undergo
gravitationally collapsing or pulsating processes, depending on the balance between
attractive gravitational energy and repulsive electric and internal energies (see the
numerical results in Ref. Ghezzi (2005); Ghezzi and Letelier (2007)). This indicates
a possible mechanism that the gravitational energy is converted into the energy of
electron-positron pairs in either baryon core collapse or pulsation.

In theory, this is a well-defined problem based on the Einstein-Maxwell equations,
particle-number and energy-momentum conservation (C.2.1)-(C.2.3), and equations
of states, as well as the Sauter-Heisenberg-Euler-Schwinger mechanism. However,
in practice, it is a rather complicated problem that one has to deal with various inter-
acting processes with very different time and length scales. The approach we adopt
in this chapter is the adiabatic approximation: the interacting processes with very
small rates are considered to be adiabatic processes in comparison with the interact-
ing processes with very large rates. Therefore, we try to split the problem of rapid
microscopic processes from the problem of slow macroscopic processes, and focus on
studying rapid microscopic processes in the background of adiabatic (slowly vary-
ing) macroscopic processes. The adiabatic approximation we adopted here is self-
consistently and quantitatively justified by process rates

τ−1
strong � τ−1

pair > τ−1
osci � τ−1

relax � τ−1
coll, (C.9.1)

studied in this chapter. In addition to the adiabatic approximation, we have not con-
sidered in this over simplified model the hydrodynamical evolution of baryon cores,
the back-reaction of oscillations and pair-production on the collapsing or pulsating
processes, and the dynamical evolution of the electron-positron pairs and photons.
Needless to say, these results should be further checked by numerical algorithms
integrating the full Einstein-Maxwell equations and proper EOS of particles in grav-
itational collapse. Nevertheless, the possible consequences of these electromagnetic
processes discussed in this chapter are definitely interesting and could be possi-
bly relevant and important for understanding energetic sources of supernovae and
gamma-ray bursts.
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D. Gravitational and electric
energies in gravitational
collapse

D.1. Introduction

In the gravitational collapse of neutral stellar cores at densities comparable to the
nuclear density, both macroscopic processes of gravitational and hydrodynamical
interactions and microscopic processes of the strong and electroweak interactions
occur. In theoretical principle, these can be well described by the Einstein-Maxwell
equations and the equations for the number and energy-momentum conservations
of particles, duly taking into account their interactions. In practical calculations of
analytical or numerical approach, however, it is rather difficult to simultaneously
analyze both macroscopic and microscopic processes for the reason that the time and
length scales of macroscopic processes are much larger than those of the microscopic
processes. The approximation normally adopted is that microscopic processes are
treated as local and instantaneous processes which are effectively represented by
a model-dependent parameterized equation of state (EOS). We call this approximate
locality.

Applying the approximate locality to electric processes, as required by the charge
conservation, one is led to local neutrality: positive and negative charge densities are
exactly equal overall space and time. As a consequence, all electric processes are
completely eliminated in the assumption of the approximate locality. On the other
hand, it is well known that an internal electric field (charge-separation) must be de-
veloped Olson and Bailyn (1975, 1976); Rotondo et al. (2011a,b) in a totally neutral
system of proton and electron fluids in the presence of gravitational fields. If the elec-
tric field (process) is weak (slow) enough, the approximate locality is applicable. How-
ever, this should be seriously questioned when the electric field (process) is strong
(rapid) in the case that neutral stellar cores reach the nuclear density where positive
charged baryons interact via strong interactions that do not associate to negative
charged electrons, in addition to widely different gravitational masses of baryons
and electrons. In fact, strong electric fields are created on the baryon core surface in
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an electrostatic equilibrium state Usov (1998); Popov et al. (2009). Furthermore, it is
shown in Ref. Han et al. (2012), either pulsating or gravitationally collapsing of the
baryon core results in the dynamical evolution of electrons, as a consequence, the
strong electric field dynamically evolves in space and time, and leads to the electron-
positron pair-production process of Sauter-Heisenberg-Euler-Schwinger (see the re-
view Ruffini et al. (2010)) for overcritical electric fields E & Ec ≡ m2

e c3/(eh̄). When
this occurs in gravitational collapses of neutral stellar cores, some part of the gravi-
tational energy of neutral stellar cores converts to the observable energy of electron-
positron pairs, as a result the kinetic and internal energies of neutral stellar cores are
reduced.

As mentioned above, the difficulties of dealing with such a problem come from
very different space-time scales of macroscopic and microscopic processes. We are
forced to properly split the problem into three parts: (i) microscopic processes of
electrodynamics; (ii) macroscopic processes of gravitational collapses; (iii) the back-
reaction of microscopic processes on macroscopic processes. In Ref. Han et al. (2012),
we study the first part of the problem: microscopic processes of electrodynamics for
strong electric field oscillations and pair-productions, which form a radiative electric
energy, in a postulated space-time world line of gravitational collapse. However,
the back-reaction of such radiative electric energy on collapse is not considered. In
this chapter, we start to quantitatively understand the second and third parts of the
problem in a simplified model how gravitational, electric and kinetic energies of
neutral stellar cores transfer from one to another in gravitational collapses, to see the
possibility of converting the gravitational energy to the electromagnetic energy by
the “breaking process” of reducing kinetic energy Ruffini and Vitagliano (2003). The
Planck units G = h̄ = c = 1 are adopted, unless otherwise specified.

D.2. Einstein-Maxwell Equations and
conservation laws of two fluids

The gravitational collapse of neutral stellar cores is generally described by the Einstein-
Maxwell equations and those governing the particle number and energy-momentum
conservations

Gµν=−8πG(Tµν + Tem
µν ), Fµν

;ν = 4π Jµ,
(Tν

µ);ν=−Fµν Jν, (n̄e,BUν
e,B);ν = 0, (D.2.1)

620



D.2. Einstein-Maxwell Equations and conservation laws of two fluids

in which appear the Einstein tensor Gµν, the electromagnetic field Fµν (satisfying
F[αβ,γ] = 0) and its energy-momentum tensor

Tem
µν =

1
4π

(
F ρ

µ Fρν −
1
4

gµνFρσFρσ

)
; (D.2.2)

Uν
e,B and n̄e,B are respectively the four-velocities and proper number-densities of elec-

trons and baryons,
Jµ = en̄pUµ

B − en̄eU
µ
e (D.2.3)

is the electric current density, and n̄p < n̄B the proper number-density of the posi-
tively charged baryons. The energy-momentum tensor Tµν = Tµν

e + Tµν
B is taken to

be that of two simple perfect fluids representing electrons and the baryons, each of
the form

Tµν
B

= p̄B gµν + ( p̄B + ρ̄B)U
µ

B
Uν

B
, (D.2.4)

Tµν
e = p̄egµν + ( p̄e + ρ̄e)U

µ
e Uν

e , (D.2.5)

where ρ̄e,B and p̄e,B are the respective proper energy densities and pressures. In this
scenario, electrons and baryons are respectively described by two perfect fluids at or
over the nuclear density, and they couple each other via the electromagnetic interac-
tion.

Baryon fluid and electron fluid must be separately described for the reasons that
in addition to the different kinematics of baryons and electrons, the most important
differences between their dynamics are: (i) baryons are much more massive than
electrons in terms of the long-range gravitational force and baryon cores undergo
relativistically collapsing processes; (ii) at or over the nuclear density n̄nucl, the elec-
tron pressure is much larger that baryon one, and baryons interact each other via the
short-range strong force that does not act on electrons. Electron and baryon fluids
interact via the long-range electromagnetic force, when two fluids are at or over the
nuclear density, this interaction between two fluids becomes rather strong, as will
be specified below. Note that we ignore the short-range weak interactions for the
β-process in this chapter. The long-range gravitational and electromagnetic forces
are explicitly present in Eqs. (D.2.1-D.2.3). Instead, the short-range strong interac-
tion is taken into account by pressure and energy density in the proper frame (see
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Ref. Weinberg (1972)),

p̄B =
1
3

3

∑
i=1

Tii =
1
3 ∑

B

δ3(x− xB)
p2

B

EB

, (D.2.6)

ρ̄B = Ttt = ∑
B

δ3(x− xB)EB (D.2.7)

where EB = EB(pB) is the energy spectrum of baryons, duly taking into account their
short-range strong interactions (nuclear potential) at a given density n̄B & n̄nucl. Elec-
trons’ pressure and energy density are analogously given by Eqs. (D.2.6) and (D.2.7)
by replacing the subscript B → e, however, the spectrum Ee = Ee(pe) is different
from baryon one, due to the fact that electrons are blind with the short-range strong
interactions. As a result, the baryon and electron EOS p̄B = p̄B(ρ̄B) and p̄e = p̄e(ρ̄e)
are different, moreover, the space-time gradients ∇ p̄e,B and ∂ p̄e,B /∂t are different.

We turn now to discuss how the short-range strong interaction effect on the baryon
fluid velocity vi

B
= (Ui/Ut)B . In the Newtonian limit, Eqs. (D.2.1-D.2.4) lead to the

Euler equation (see Ref. Weinberg (1972))

∂vB

∂t
+ (vB · ∇)vB =−

1− v2
B

ρ̄B + p̄B

[
∇ p̄B + vB

∂ p̄B

∂t

]
(D.2.8)

+ terms of long−range forces.

The first term in the right-handed side of Eq. (D.2.8) indicates the force due to the
space-time gradients of baryon fluid pressure. This implies that the space-time gra-
dients of baryon fluid velocity vB(x, t) should have the rates of short-range strong
interactions, which are proportional to the inverses of π, σ, ρ and ω meson masses
(∼ m−1

π,σ,ρ,ω,···), depending on values of the baryon density n̄B(x, t). These nuclear
reaction rates must be larger than the rate (& m−1

e ) of electromagnetic interactions.
In other words, the baryon fluid and electron fluid have the different values of the
incompressibility so that they have different rates (frequencies) of reactions in space
and time. However, this still remains as an argument, because we has not so far been
able to quantitatively calculate the space-time gradients of baryon fluid pressure by
Eqs. (D.2.6) and (D.2.7), then to obtain the space-time gradients of baryon fluid ve-
locity by Euler equation (D.2.8) together with the Einstein-Maxwell field equations.

In the following, we attempt to address our attention to the issue how the gravita-
tional energy gained by the baryon fluid in collapses is transfered to the electromag-
netic energy and how kinetic and internal energies are reduced as a consequence of
total energy conservation. The energy conservation (D.2.1) along a flow line of the
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electron fluid yields

Uµ
e (Tν

µ);ν = en̄pFµνUµ
e Uν

B = en̄pγeγB(vB − ve)grrE, (D.2.9)

where e and E are electric charge and field, the fluid velocity v(e,B) ≡ vr
(e,B) =

(Ur/Ut)(e,B) and Lorentz factor γ(e,B) ≡ (1 + UrUr)1/2
(e,B) in the spherical geometry

ds2 = −gttdt2 + grrdr2 + r2dθ2 + r2 sin2 θdφ2 . (D.2.10)

Eq. (D.2.9) indicates that the dynamical evolutions of the baryon fluid caused by
the gravitational or strong interactions can transfer the energy that the baryon fluid
gains to the electron fluid via an electric field, provided ve 6≡ vB. As explained in the
introductory section, for the reason that the differential equations governing macro-
scopic processes (e.g. gravitational collapse) and the differential equations governing
microscopic processes (e.g. electrodynamic pair-production, nuclear reaction) have
very different space-time scales at least of the order of 1017, it is very difficult to si-
multaneously integrate these differential equations and quantitatively show the en-
ergy transformation as indicated by Eq. (D.2.9) in the realistic case of gravitational
collapses. In order to overcome these difficulties and make steps toward the un-
derstanding of the issue, on the basis of some assumptions and approximations, we
decouple the differential equations governing macroscopic processes from the dif-
ferential equations governing microscopic processes as follows.

1. The first, we study the static case of compact stars at/over the nuclear density,
e.g., baryons and electrons of neutral compact stars are in their equilibrium
states. The local equilibrium profile of baryons must be determined by the
strong interaction, whereas the local equilibrium profile of electrons must be
determined instead by the electromagnetic interaction. In the Thomas-Fermi
model, an overcritical “equilibrium” electric fields are found Usov (1998); Popov
et al. (2009) on the surface of baryon cores. These results provide the initial con-
figurations for the dynamical space-time evolution of baryon core and electron
fluid in the gravitational collapse or pulsation.

2. Because of the dynamics of gravitational collapse or pulsation, the baryon core
deviates from its equilibrium state. We postulate that due to the nuclear rigid-
ity of baryon cores, an inward velocity vB and charged current JB (Eqs. (9)
in Han et al. (2012)) of baryon cores are introduced at the rate of the nuclear
reaction scales, rather than the rate of the gravitational collapse, as already
indicated in Eqs. (D.2.6,D.2.7,D.2.8).We asked the question how the electron
fluid responses to this external baryon current JB. In Ref. Han et al. (2012),
by solving the microscopic kinetic transport equations (particle number and
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energy-momentum conservations) of the electron fluid as well as the Maxwell
equation, we obtained the space-time evolution (non-equilibrium) of the elec-
tron fluid and overcritical electric fields in the Compton scale, and estimated
the rate of pair-productions. These results are essentially due to the postula-
tion that the inward baryon current JB is introduced at the rate of the strong
interaction scale, rather than the gravitational one. The rate of gravitational
collapses is too slow to trigger these electrodynamic processes at the Comp-
ton scale. In addition, it should be pointed out that in these calculations we
did not solve the differential equations for the electron fluid and the Maxwell
equation together with the differential equation for the gravitational collapse.
The baryon velocity vB is treated as a parameter and its values are given by
a simple collapsing equation of thin shell at different radii of gravitational
collapse (Figure 3 in Ref. Han et al. (2012)). In summary, two important as-
sumptions were made: (i) the baryon core is treated as a giant nucleus and the
deviation from its equilibrium state, represented by the baryon electric current
JB ∼ vB, is introduced at the rate of the strong introduction; (ii) the values of
vB are given by a simple collapsing model without considering dynamics of
the gravitational collapses.

3. On the contrary, instead of solving the differential equations for microscopic
electrical processes in a given dynamics of gravitational collapse, in this chap-
ter we focus on solving differential equations for macroscopic gravitational
collapse processes in a given dynamics of electric processes studied in Ref. Han
et al. (2012), represented by an ansatz function. Our purpose is to see the back-
reaction of microscopic electrical processes on macroscopic gravitational col-
lapse processes. In order to gain some insight into this issue, we study the
gravitational collapse of a spherically thin capacitor, which might present a
thin layer of collapsing stellar cores. Although this spherically thin capacitor
is totally neutral, it carries electric and gravitational energies. Using such a
simplified model, we try to find an analytical description and make a step in
understanding the issue how the gravitational energy is converted to electric,
kinetic and internal energies in a neutral stellar core collapse.

This has been so far our approach to the electromagnetic processes in the gravi-
tational collapse of neutral compact stars at/over nuclear density. This approach is
clearly far from being complete. In order to quantitatively show that the produc-
tion, oscillation and annihilation of electron-positron pairs with overcritical electric
fields indeed dynamically take place, one must solve altogether the Maxwell equa-
tion and the quantum Boltzmann-Vlasov transport equations not only for the elec-
trons fluid Ruffini et al. (2003b), but also for the baryon fluid with the strong inter-
action. We have not yet been able to model the strong interaction for doing these
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quantitative calculations. On the basis of the rates of various microscopic processes
and interactions, we argue the possibility of the production, oscillation and annihila-
tion of electron-positron pairs and dynamical evolution of overcritical electric fields
(Eq. (26) in Ref. Han et al. (2012)). We clarify that in our model these electric pro-
cesses are triggered by the rapid action rate of the baryon core due to the strong
interaction, rather than the gravitational interaction. However, the question is to
understand how to quantitatively describe and calculate the dynamics of strongly
interacting baryon core in gravitational collapse, and how the baryon charged cur-
rent JB is introduced at the rate of strong interactions. This will be the subject for our
future work.

D.3. A thin shell of spherical capacitor
The thin shell of spherical capacitor is composed by a layer of positively charged

baryons and a layer of negatively charged electrons. The baryon layer is defined as a
mathematically thin layer, while the electron layer is understood as a physically thin
layer with a thickness “d” specified below. The total numbers of charged baryons
and electrons are exactly equal so that the thin shell of spherical capacitor is totally
neutral but carries non-vanishing the electric energy stored inside two spherical lay-
ers. The number-densities of two spherical layers are at least order of the nuclear
density, as a consequence the radial separation “d” between two spherical layers
must be a few orders of the Compton length λC. The reasons are the following: elec-
tric fields between two layers E ≈ en̄nucld are overcritical and electric force acting on
ultra-relativistic electrons balances their Fermi momenta eEd ≈ PF

e ≈ n̄1/3
nucl. Let the

baryon layer locate at the Schwarzschild-like radial coordinate r0 and electron layer
distributes from r0 to r0 + d. The spherical capacitor can be physically considered as
an infinitely thin shell for d/r0 → 0. The spherical capacitor is henceforth denoted
by “the thin shell” in short.

As the baryon layer is mathematically thin, in Eq. (D.2.4) the baryon pressure p̄B =
0 and mass density ρ̄B(x) = ρ̄Bδ(4) (x, x0), where ρ̄B is the constant surface density
in the proper frame of the baryon layer and the 4-dimensional Dirac distribution is
defined as ∫

δ(4) (x, x0)
√
−gd4x = 1,

where g = det
∥∥gµν

∥∥. Then we have (dΩ = sin θdθdφ)∫
ρ̄Bδ(4) (x, x0) r2drdΩdτ = M0, (D.3.1)

where M0 is the rest mass of the baryon layer, and τ is the proper time along the
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D. Gravitational and electric energies in gravitational collapse

world surface S : x0 = x0 (τ, θ, φ) of the baryon layer. S divides the space-time into
two complementary static space-times: an internal one M− and an external one M+.
Their time-like Killing vectors are denoted by ξ

µ
− and ξ

µ
+. M+ is foliated by the family

{Σ+
t : t+ = t} of space-like hypersurfaces of constant t+.

On the other hand, introducing the orthonormal tetrad

ω
(0)
± = (g±tt )

1/2dt, ω
(1)
± = (g±rr)

−1/2dr, ω(2) = rdθ, ω(3) = r sin θdφ, (D.3.2)

we describe the electric field E = Eω(1) and electromagnetic tensor (Tem)t
t = E2/(8π)

and (Tem)i
i = −E2/(8π) inside the thin shell (r0 ≤ r ≤ r0 + d). The electric energy

of the thin shell, measured by an observer at rest at infinity, is obtained by evaluating
the Killing integral

∫
Σ+

t

ξ
µ
+Tem

µν dΣν
+ = 4π

∫ ∞

r
r2dr (Tem)t

t ≡
Q2

eff(r)
2r

, (D.3.3)

where dΣν
+ is the surface element vector of the space-like hypersurfaces Σ+

t in M+. In
Eq. (D.3.3), we introduce the quantity Q2

eff(r) 6= 0 for r0 ≤ r ≤ r0 + d to characterize
the electric energy stored inside the thin shell. Q2

eff(r) = 0 for r > r0 + d and r < r0.
The total electric energy inside the thin shell is given by

Eem(r0) =
Q2

eff(r0)

2r0
, (D.3.4)

where the quantity Q2
eff(r0) parametrizes the total electric energy stored inside the

thin shell that locates at radius r0(t0) and time t0. Qeff(r) does not represent an elec-
tric charge carried by the thin shell. We express the repulsive electric energy (D.3.3)
or (D.3.4) in the same form of the Coulomb energy of a spherical charged layer for
the reason that it is useful to study the collapse equation of the thin shell in next
section.

The energy-momentum tensor (D.2.5) of the electron layer has a physical distribu-
tion over the size “d” of the thin shell. Analogously to Eq. (D.3.3), we define the total
energy of the electron layer as

Eelectron(r0) ≡
∫

Σ+
t

ξ
µ
+(Te)µνdΣν

+ = 4π
∫ ∞

r0

r2dr (Te)t
t, (D.3.5)

where (Te)t t = (ρ̄e + p̄e〈v2
e 〉)/(1 − 〈v2

e 〉) and ve is the electron fluid velocity. In
Ref. Han et al. (2012), it is shown that the electron fluid velocity ve is ultra-relativistically
oscillating back and forth collectively with oscillating electric fields inside the thin
shell, 〈v2

e 〉 indicates the averaged value over rapid oscillations in the Compton scale.
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In Eq. (D.3.5), the rest mass of the electron layer is negligible, compared with its in-
ternal energy for ultra-relativistically oscillating electrons. Moreover, at or over the
nuclear density, electron Fermi momenta PF

e ∼ mπ in the proper frame of the electron
fluid is rather smaller than the baryon mass mB . Therefore, compared with the rest
mass of baryon layer M0, we neglect the internal energy of electron layer Eelectron(r0)
of Eq. (D.3.5) in this chapter.

Here, we disregard the detailed space-time oscillations of electric field and elec-
tron fluid in the Compton length scale, leading to the energy radiation in the form of
electron-positron pairs. Instead, we attempt to properly model the quantity Q2

eff(r0)
to represent these microscopic processes of building the electric energy (D.3.4) and
radiating it away from the thin shell, so as to study the back-reaction of these mi-
croscopic processes on the macroscopic process of gravitational collapse of the thin
shell.

D.4. Collapse of spherically thin capacitor

A lot of attention has been focused on the exact solution of thin charged shell in
gravitational collapse Israel (1966); De la Cruz and Israel (1967); Bekenstein (1971);
Cherubini et al. (2002); Ruffini and Vitagliano (2002). Following the line presented in
Refs. Cherubini et al. (2002) and Ruffini and Vitagliano (2002) for finding an exact
solution of thin charged shell in gravitational collapse, we try to approximately solve
the Einstein equations (D.2.1,D.2.2) for the gravitational collapse of the spherically
thin capacitor (the thin shell). We have g−tt = (g−rr)

−1 ≡ f− and g+tt ≈ (g+rr)
−1 ≡ f+,

where the sign “≈” indicates for the range r0 ≥ r ≥ r0 + d, where we neglect the
charge and mass-energy distributions of the electron layer. From the Gtt Einstein
equation, we get

ds2 =

{
− f+dt2

+ + f−1
+ dr2 + r2(dθ2 + sin2 θdφ2) in M+

− f−dt2
− + f−1

− dr2 + r2(dθ2 + sin2 θdφ2) in M−
, (D.4.1)

where
f+ = 1− 2M

r +
Q2

eff(r)
r2 , and f− = 1; (D.4.2)

t− and t+ are the Schwarzschild-like time coordinates in M− and M+ respectively. M
is the total mass-energy of the thin shell, measured by an observer at rest at infinity.
Indicating by t0± the Schwarzschild-like time coordinate of the thin shell, from the
Gtr Einstein equation we have

M0
2

[
f+ (r0)

dt0+
dτ + f− (r0)

dt0−
dτ

]
= M− Q2

eff
2r0

, (D.4.3)
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where we introduce the notation Q2
eff ≡ Q2

eff(r0). The remaining Einstein equations
are identically satisfied. From (D.4.3) we have that the inequality

M− Q2
eff

2r0
> 0, (D.4.4)

holds since the left-handed side of Eq. (D.4.3) is clearly positive. We define the four-
velocity Uµ of the thin shell as the four-velocity Uµ

B of the baryon layer, for the rea-
sons discussed in the paragraphs where Eqs. (D.2.6-D.2.8) are. From (D.4.3) and the
normalization condition of the four-velocity of the thin shell UµUµ = −1,[

− f± (r0)
dt0±
dτ + f± (r0)

dt0±
dτ

]
= −1, (D.4.5)

we find (
dr0
dτ

)2
= 1

M2
0

(
M± M2

0
2r0
− Q2

eff
2r0

)2
− f∓ (r0) , (D.4.6)

dt0±
dτ = 1

M0 f±(r0)

(
M∓ M2

0
2r0
− Q2

eff
2r0

)
, (D.4.7)

in the space-times M±. Eqs. (D.4.1-D.4.7) completely describe a 3-parameter (M, Q2
eff,

M0) family of solutions of the Einstein equations. As we will see, for the description
of the collapse we can choose either M− or M+. The two descriptions are equivalent
and relevant for the physical interpretation of the solutions.

For astrophysical applications, see for example Ref. Ruffini et al. (2003a), we at-
tempt to approximately solve the equation of motion of the thin shell and obtain the
trajectory r0 = r0 (t0+) as a function of the time coordinate t0+ relative to the space-
time region M+. In the following we drop the + index from t0+. From (D.4.6) and
(D.4.7) we have the equation of motion of the thin shell

dr0
dt0

= dr0
dτ

dτ
dt0

= ± F
Ω

√
Ω2 − F,

dr0
dτ =±

√
Ω2 − F (D.4.8)

where F ≡ f+ (r0) of Eq. (D.4.2),

Ω ≡ Γ− M2
0+Q2

eff
2M0r0

, Γ ≡ M
M0

. (D.4.9)

Since we are interested in an imploding thin shell, only the minus sign case in (D.4.8)
will be studied. We can give the following physical interpretation of Γ. For M ≥ M0,
Γ coincides with the Lorentz factor of the imploding thin shell at infinity; from (D.4.8)
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it satisfies
Γ = 1√

1−
(

dr0
dt0

)2

r0=∞

≥ 1. (D.4.10)

We rewrite equation of motion (D.4.8) as(
dr0

dτ

)2

=

[
Γ +

M0

2r0
(1− ξ2)

]2

− 1,

or (
Ω
F

)2 (dr0

dt0

)2

=

[
Γ +

M0

2r0
(1− ξ2)

]2

− 1, (D.4.11)

where Ω ≡ Γ− (M0/2r0)(1 + ξ2) and we define an effective “charge-mass-ratio”

ξ ≡ Qeff

M0
. (D.4.12)

Actually ξ2 represents the ratio of electric energy and gravitational energy of the thin
shell. For the case Γ = 1 (M = M0), i.e., the thin shell collapses at rest from infinity.
Eq. (D.4.4) requires M0 ≥ Q2

eff/2r0 to start gravitational collapse and Eq. (D.4.11)
requires ξ < 1 to continue gravitational collapse. When ξ = 1, gravitational col-
lapse stops and kinetic energy of the thin shell vanishes as will be seen below. The
trajectory of the thin shell is given by the solution:∫

dt0 = −
∫

Ω
F
√

Ω2−F
dr0. (D.4.13)

to the equation of motion (D.4.8).
To understand the total energy conservation of the thin shell in gravitational col-

lapse, we use the solution (D.4.6) in the flat space-time M−,(
M0

dr0
dτ

)2
=
(

M +
M2

0
2r0
− Q2

eff
2r0

)2
−M2

0, (D.4.14)

we can interpret −M2
0

2r0
as the gravitational attractive energy of the thin shell and Q2

eff
2r0

is its repulsive electric energy. Introducing the total four-momentum of the shell
Pµ = M0Uµ and its radial component P ≡ M0Ur = M0

dr0
dτ , the kinetic energy of

the thin shell as measured by static observers in M− is expressed as Ruffini and
Vitagliano (2002)

T(r0)≡−Pµξ
µ
− −M0 =

√
P2 + M2

0 −M0. (D.4.15)
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Then from Eqs. (D.4.14,D.4.15) we have

M(r0)=−M2
0

2r0
+

Q2
eff

2r0
+
√

P2 + M2
0

=M0 + T(r0)− M2
0

2r0
+

Q2
eff

2r0
, (D.4.16)

where we choose the positive root solution due to the constraint (D.4.4). Eq. (D.4.16)
is the total energy-conservation of the thin shell, whose rest mass M0, kinetic en-

ergy T(r0), gravitational energy −M2
0

2r0
, and electric energy Q2

eff
2r0

depends on the radial
coordinate r0(t0) in gravitational collapse.

In the following discussion, we consider the shell is at rest at infinity and starts to

gravitational collapse, T(r0) = 0,−M2
0

2r0
= 0 and Q2

eff
2r0

= 0 at r0 → ∞. The initial energy
of the thin shell M(r0 → ∞) = M0, i.e., Γ = 1. The total shell energy M(r0) = M0 is
conserved in the entire collapsing process.

D.5. Collapse of the thin shell with varying
electric energy

In Ref. Han et al. (2012), assuming that in gravitational collapses, the baryon layer
induces an inward current-density

Jr
B
(r0) = en̄pUr

B
≈ en̄p(ṙ0Ω/F), ṙ0 = dr0/dt0, (D.5.1)

at the rate of strong interaction scales, we show that triggered by this baryon current
(D.5.1), the current-density Jr

e = en̄eUr
e of the electron layer oscillates collectively

with overcritical electric fields E at frequency ωosci = τ−1
osci ' 1.5 me, leading to the

production of electron-positron pairs at rate τ−1
pair ' 6.6 me. Selecting values Jr

B
(r0)

and ṙ0 of Eq. (D.5.1) at different collapsing radii, we calculated Han et al. (2012) the
averaged energy and number densities of electron-positron pairs produced, as well
as the averaged electric energy (Coulomb energy) of oscillating overcritical electric
fields. In addition, our results presented in Refs. Ruffini et al. (2003b,a) show that
these electron-positron pairs annihilate to photons and the ultra-dense plasma of
electron-positron pairs and photons is formed with the equipartition of energy and
number of electron-positron pairs and photons, beside this plasma undergoes the
hydrodynamical expansion and the photon radiation occurs. This indicates that the
electric energy is established by the electron-positron oscillations collectively with
overcritical electric fields, then dissipated by electron-positron annihilations to pho-
tons radiating away. Clearly, these results and discussions are based on the postula-
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tion that the baryon current of Eq. (D.5.1) introduced by the strong interaction in a
gravitational collapse process triggers all electric processes, provided that the reac-
tion rates of processes satisfy the inequality of Eq. (26) in Ref. Han et al. (2012). In the
light of the total energy conservation in gravitational collapses and Eq. (D.2.9), we
further postulate that the electric energy of these electric processes is converted from
the gravitational energy, as a consequence, the gravitational energy gained by the
collapsing baryon core is transfered to the photon radiation energy. In future work,
we are bound to show this energy conversion by solving the equations of gravita-
tional collapses altogether with the equations of electric processes and nuclear pro-
cesses. In the present chapter, we attempt to study the back-reaction effect of this
energy conversion on the gravitational collapse.

In the simplified model of collapsing thin shell, we represent Q2
eff

2r0
the electric en-

ergy established by electron-positron pair production and oscillation with overcriti-
cal electric fields, then dissipated by electron-positron annihilations to photons radi-
ating away at the collapsing radius r0. The time variation rate of this electric energy
Q2

eff
2r0

is characterized by the frequency ωosci ' 1.5me Han et al. (2012). On the other
hand, from collapse equation (D.4.11) for Γ = 1, it is shown that the collapsing veloc-
ity (dr0/dt0) varies between zero and its maximal value as the “charge-mass-ratio”
ξ varies from 1 and 0, corresponding to the microscopic processes of the electric en-

ergy Q2
eff

2r0
built up and completely radiating away. In order to see the back-reaction of

this radiative electric energy on the gravitational collapse of the thin shell, we model

the electric energy Q2
eff

2r0
by an ansatz function for varying “charge-mass-ratio” ξ in the

collapse equation (D.4.11)

ξ = ξmax| sin(ωoscir0)|+ ξmin, r0 = r0(t0). (D.5.2)

As indicated by the results of Ref. Han et al. (2012) for M0 = 20M�, we adopt values
ωosci ' 1.5me, ξmax = 0.6 and ξmin = 0.1 for illustrating the back-reaction effect. This
postulates that at the collapsing radius r0(t0) of the baryon layer, the microscopic

processes of the electric energy Q2
eff

2r0
built up and radiating away are in the rate of

the Compton scale ωosci ' 1.5me and effectively described by a simple function of
Eq. (D.5.2), and ξmin 6= 0 representing the part of the electric energy that does not
radiate away from the shin shell. Whereas the case (ξ ≡ 0) represents the collapse of
a neutral thin shell without carrying any electric energy.

We express r0 and t0 in units of GM0 and GM0/c, then ωr0 = 1.5(meGM0)r0,
λC/GM0 = 1.05× 10−16, 20GM�/c2 ' 10−4 second and M0 = 20GM�/c ' 3×
106 cm. Plotting the velocity ṙ0 = dr0/dt0 of Eq. (D.4.11) in Fig. D.1, we find that in
collapse process, the thin shell velocity is oscillating between zero and the envelop
curve, which represents the collapsing velocity of the thin shell carrying the electric
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energy described by ξmin 6= 0.1. This result shows a sequence of “on and off” col-
lapsing steps: the thin shell at rest starts to move inwards due to the gravitational
attraction of the baryon layer, and stops due to the repulsion of the electric energy
Q2

eff
2r0

built up to ξ = 1, then restarts to move inwards again due to the electric energy
Q2

eff
2r0

partially radiating away in the form of electron-positron pairs and photons. The
frequency of this “on and off” hopping sequence is about ωosci ∼ me, the Compton
scale. The collapse process is still continuous in terms of macroscopic scale. How-
ever, as will be seen soon, the time scale and kinetic energy of collapses are changed.

The averaged collapsing velocity of the thin shell of Eq. (D.5.2) is smaller than the
collapsing velocity (envelop curve) for the case ξ = 0. As a result, the time duration
of collapse process becomes longer. Assuming that the thin shell is at rest at the
radius R0 = 30M0 and starts to collapse, we plot in Fig. D.2 the time coordinate t0
of Eq. (D.4.13) as a function of the radial coordinate r0 of the collapsing thin shell,
in comparison with that of the case ξ = 0. The blue line for the case ξ = 0 shows
that the collapsing shell takes time ∼ 102 GM0/c2 to approach the horizon, whereas
the red line for the case ξ of Eq. (D.5.2) shows that the collapsing thin shell takes
time ∼ 103 GM0/c2 to approach the horizon. The collapsing time for the case ξ of
Eq. (D.5.2) is about 10 times longer than the collapsing time for the case ξ = 0. This
result is not sensitive to the value of the frequency ωosci in the Compton scale and
the detailed form of an oscillating function (D.5.2) of the frequency ωosci.

It should be pointed out that in this simplified toy model of thin shell collapsing,
to evidently illustrate the back-reaction effect that slows down the collapsing process
in comparison with the free fall collapsing process in the same plot (see Fig. D.2), we
select the initial radius R0 = 30M0 at which the thin shell starts to collapse. As dis-
cussed, the baryon core must be at (over) the nuclear density and the mean distance
between baryons is about one Fermi (smaller than one Fermi), where the strong in-
teraction plays an important role. This is the one of necessary conditions for the elec-
tric processes of production and oscillation of electron-positron pairs together with
“non-equilibrium” overcritical electric fields to occur. Under this consideration, the
initial radius R0 of the baryon core starting to collapse should be smaller than 30M0.
However, in this simplified toy model of thin shell collapsing, the surface density
of the baryon thin shell is over the nuclear density at the initial radius R0 = 30M0.
Nevertheless, the necessary condition of baryon cores being at/over the nuclear den-
sity should be duly taken into account, when we study the back-reaction in a more
realistic model describing the gravitational collapse of neutral stellar cores.

Using the velocity ṙ0 = dr0/dt0 of Eqs. (D.4.8) and (D.4.11), we plot in Fig. D.3
the kinetic energy T(r0) of Eq. (D.4.15) and the gravitational energy M2

0/2r0 of the
collapsing thin shell as a function of collapsing radius r0. Following the total energy
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conservation of Eq. (D.4.16) and M(r0) = M0,

T(r0)− M2
0

2r0
+

Q2
eff

2r0
= 0, (D.5.3)

the electric energy Q2
eff

2r0
is given by the difference between gravitational energy and

kinetic energy, as shown in Fig. D.3. In the collapse process, the kinetic energy T(r0)

and electric energy Q2
eff

2r0
are rapidly oscillating, following the ansatz function (D.5.2)

with the frequency ωosci of microscopic processes. Averaging over these rapid os-
cillations, we obtain the averaged values of the kinetic energy and electric energy,
which are approximately equal to an half of gravitational energy:

〈T(r0)〉 ≈ 〈
Q2

eff
2r0
〉 ≈ 1

2
M2

0
2r0

. (D.5.4)

This implies that the averaged electric energy radiating away from the thin shell is
about an half of the gravitational energy gained by the collapsing thin shell in the
collapsing process. When the black hole horizon is reached, using Eq. (D.4.16), the
irreducible mass of black hole is introduced Ruffini and Vitagliano (2002)

M=Mir +
Q2

eff
2r+ , and Mir = M0 − M2

0
2r+ + T(r+), (D.5.5)

where Q2
eff

2r+ is the total electric energy of the thin shell approaching the horizon r+.

Suppose that the electric energy Q2
eff

2r+ completely radiates away, a black hole is formed
with the horizon r0 → r+ = 2M0 for F ≡ f+(r0) → 0. In this case, the total electric
energy radiating away from the thin shell is about an half of gravitational energy of
the thin shell

〈
Q2

eff
2r+
〉 ≈ 1

2

(
M2

0
2r+

)
=

1
8

M0, (D.5.6)

and the irreducible mass of the formed black hole is about

Mir=M0 − M2
0

2r+ + 〈T(r+)〉 ≈
7
8

M0, (D.5.7)

M0=Mir + 〈
Q2

eff
2r+
〉, (D.5.8)

which implies about 1/8 of the gravitational energy extracted in gravitational col-
lapses.
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Figure D.1.: In unit of the speed of light c, the collapse velocity (dr0/dt0) is
plotted (fast oscillating lines in blue) as a function of radius r0 of the collaps-
ing thin shell. The thin shell is at rest at the radius R0 = 30 GM0 and starts to
collapse. The thin shell mass M0 = 20M�.

D.6. Summary and remarks
In this chapter, on the basis of a simple model for describing the gravitational col-

lapse of a spherically thin capacitor, we analytically study how the gravitational en-
ergy gained in collapse converts to the kinetic energy and electric energy, the latter
can be radiated away. Using an ansatz function for the effective “charge-mass-ratio”
(D.4.12) to model the microscopic processes that create this electric energy and radi-
ate it away in the Compton scale, we study how the back-reaction of such radiative
electric energy on the macroscopic process of gravitational collapse. We find that
the rebuilding and radiating of repulsive electric energy cause the collapse process
undergoing a sequence of “on and off” hopping steps in the microscopic Compton
scale. Although such a collapse process is still continuous in the macroscopic scales,
it is slowed down as the kinetic energy is reduced and collapsing time is about an or-
der of magnitude larger than that of collapse process eliminating electric processes.
The averaged kinetic and electric energies are the same order, about an half of grav-
itational energy in collapse.

These results are obtained from an over simplified model for both macroscopic
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Figure D.2.: In thin shell collapsing process, the time coordinate t0 is plotted
as a function of radial coordinate r0 of the thin shell. t0 and r0 are in unit of
GM0. The red line is for ξ of Eq. (D.5.2) and the blue for ξ = 0. The shell is
at rest at the radius R0 = 30 GM0 and starts to collapse. The thin shell mass
M0 = 20M�.

and microscopic processes. Nevertheless they indicate that apart from an electro-
magnetic energy radiation, the microscopic processes of electrodynamics have signif-
icant back-reaction and effects on gravitational collapsing processes in macroscopic
scales. It is thus essential to take into account, rather than ignore, electric processes
in more realistic models for studying gravitational collapse of neutral stellar core
at/over the nuclear density, even though calculations are very complicate.

To end this chapter, we would like to mention the relevance of these results to
our previous studies of energetic budget and time duration of Gamma-Ray Bursts
(GRBs) as a signal of the final stage of gravitational collapse of massive stellar cores.
The total electromagnetic energy extractable from a charged black hole Damour and
Ruffini (1975); Ruffini and Xue (2008a); Preparata et al. (1998, 2003) (from the collapse
of a neutral stellar core Han et al. (2012)) is a fraction of its mass, which reasonably
accounts for the energetic budget of GRBs. In addition, the time duration T90 of
electromagnetic radiation is about 10−2 second obtained Ruffini et al. (1999, 2000) by
solving hydrodynamical equations with an initial configuration of electro-positron

635
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Figure D.3.: In unit of the gravitational energy M2
0/(2r0), the gravitational

energy (constant red line at 1) and kinetic energy (fast oscillating lines in blue)
and electric energy (fast oscillating lines in white) of the thin shell are plotted
as a function of collapsing radius r0.

pairs and photons sphere (dyadosphere) around a charged black hole. This time
duration scale is elongated to be an order of magnitude larger∼ 10−1 second Ruffini
et al. (2003a); Fraschetti et al. (2006); Ruffini et al. (2005) by considering both the
dynamical formation and hydrodynamical evolution of dyadosphere in a collapsing
charged core. The results of this chapter imply that due to the back-reaction of the
dynamical formation and hydrodynamical evolution of dyadosphere on collapsing
neutral stellar cores at or over the nuclear density, the slowing down of gravitational
collapsing processes should elongate this time duration scale by another factor of 10,
i.e., T90 ∼ 1 second that reasonably accounts for the time duration of short GRBs.
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E. Einstein-Euler-Heisenberg
theory and charged black holes

E.1. Introduction

For several decades the nonlinear electromagnetic generalization of the Reissner-
Nordström solution of the Einstein-Maxwell equations has attracted a great deal of
attention. The most popular example is the gravitating Born-Infeld (BI) theory Born
and Infeld (1934). The static charged black holes in gravitating nonlinear electrody-
namics were studied in the 1930s Hoffmann (1935); Hoffmann and Infeld (1937). The
discovery that the string theory, as well as the D-brane physics, leads to Abelian and
non-Abelian BI-like Lagrangians in its low-energy limit (see, e.g., Refs. Fradkin and
Tseytlin (1985); Abouelsaood et al. (1987); Tseytlin (1997)), has renewed the interest
in these kinds of nonlinear actions. Asymptotically flat, static, spherically symmetric
black hole solutions for the Einstein-Born-Infeld theory were obtained in the litera-
ture Garcia et al. (1984); Demianski (1986).

Generalization of the exact solutions of spherically symmetric Born-Infeld black
holes with a cosmological constant in arbitrary dimensions has been considered Fer-
nando and Krug (2003); Dey (2004); Cai et al. (2004), as well as in other gravita-
tional backgrounds Wiltshire (1998); Aiello et al. (2004). Many other models of non-
linear electrodynamics leading to static and spherically symmetric structures have
been considered in the last decades, such as the theory with a nonlinear Lagrangian
of a general function of the gauge invariants (FµνFµν and Fµν F̃µν) Diaz-Alonso and
Rubiera-Garcia (2010b,a, 2011a,b) or a logarithmic function of the Maxwell invari-
ant (FµνFµν) Soleng (1995), and the theory with a generalized nonlinear Lagrangian
De Oliveira (1994) which can lead to the BI Lagrangian and the weak-field limit of
the Euler-Heisenberg effective Lagrangian Heisenberg and Euler (1936). The static
and spherically symmetric black hole, whose gravity coupled to the nonlinear elec-
trodynamics of the weak-field limit of the Euler-Heisenberg effective Lagrangian as
a low-energy limit of the Born-Infeld theory, was studied in Ref. Yajima and Tamaki
(2001). Some attempts in the obtention of regular (singularity-free) static and spher-
ically symmetric black hole solutions in gravitating nonlinear electrodynamics have
been made Ayón-Beato and Garcı́a (1998, 1999); Cirilo Lombardo (2009); Burinskii
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and Hildebrandt (2002); Dymnikova (2004), and the unusual properties of these so-
lutions have been discussed in Refs. Novello et al. (2000); Bronnikov (2001). Gen-
eralization of spherically symmetric black holes in higher dimension in the theory
with a nonlinear Lagrangian of a function of power of the Maxwell invariant has
been considered in the literature Hassaı̈ne and C. Martı́nez (2007, 2008); González
et al. (2009); Mazharimousavi et al. (2010). Finally, we mention that rotating black
branes Dehghani and Rastegar Sedehi (2006); Dehghani et al. (2007) and rotating
black strings Hendi (2010) in the Einstein-Born-Infeld theory have been also consid-
ered.

The effective Lagrangian of nonlinear electromagnetic fields has been formulated
for the first time by Heisenberg and Euler using the Dirac electron-positron theory
Heisenberg and Euler (1936). Schwinger reformulated this nonperturbative one-
loop effective Lagrangian within the quantum electrodynamics (QED) framework
Schwinger (1951). This effective Lagrangian characterizes the phenomenon of vac-
uum polarization. Its imaginary part describes the probability of the vacuum de-
cay via the electron-positron pair production. If electric fields are stronger than the
critical value Ec = m2c3/eh̄, the energy of the vacuum can be lowered by spon-
taneously creating electron-positron pairs Heisenberg and Euler (1936); Schwinger
(1951); Sauter (1931). For many decades, both theorists and experimentalists have
been interested in the aspects of the electron-positron pair production from the QED
vacuum and the vacuum polarization by an external electromagnetic field (see, e.g.,
Refs. Ruffini et al. (2010); ELI).

As a fundamental theory, QED gives an elegant description of the electromagnetic
interaction; moreover, it has been experimentally verified. Therefore, it is impor-
tant to study the QED effects in black hole physics. As a result of one-loop nonper-
turbative QED, the Euler-Heisenberg effective Lagrangian deserves to attract more
attention in the topic of generalized black hole solutions mentioned above. In this
chapter, we adopt the contribution from the Euler-Heisenberg effective Lagrangian
to formulate the Einstein-Euler-Heisenberg theory, and study the solutions of electri-
cally and magnetically charged black holes in spherical geometry. We calculate and
discuss the QED corrections to the black hole horizon area, entropy, total energy, and
the maximally extractable energy.

The chapter is organized as follows. In Sec. E.2, we first recall the Euler-Heisenberg
effective Lagrangian. We formulate the Einstein-Euler-Heisenberg theory in Sec. E.3.
The study of electrically charged black holes in the weak electric field case is pre-
sented in Sec. E.4. The study of magnetically charged black holes in both weak and
strong magnetic field cases is presented in Sec. E.5. Then we present the study of
black holes with both electric and magnetic charges in the Einstein-Euler-Heisenberg
theory in Sec. E.6. A summary is given in Sec. E.7. The use of units with h̄ = c = 1 is
throughout the chapter.
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E.2. The Euler-Heisenberg effective Lagrangian

The QED one-loop effective Lagrangian was obtained by Heisenberg and Euler Heisen-
berg and Euler (1936) for constant electromagnetic fields,

∆Leff=
1

2(2π)2

∫ ∞

0

ds
s3

[
e2εβs2 coth(eεs) cot(eβs)

−1− e2

3
(ε2 − β2)s2

]
e−is(m2

e−iη), (E.2.1)

as a function of two invariants: the scalar S and the pseudoscalar P,

S≡−1
4

FµνFµν =
1
2
(E2 − B2) ≡ ε2 − β2,

P≡−1
4

Fµν F̃µν = E · B ≡ εβ, (E.2.2)

where the field strength is Fµν, F̃µν ≡ εµνλκ Fλκ/2, and

ε=
√
(S2 + P2)1/2 + S, (E.2.3)

β=
√
(S2 + P2)1/2 − S. (E.2.4)

The effective Lagrangian reads

Leff = LM + ∆Leff, (E.2.5)

where LM = S is the Maxwell Lagrangian. Its imaginary part is related to the decay
rate of the vacuum per unit volume Heisenberg and Euler (1936); Schwinger (1951),

Γ
V

=
αε2

π2 ∑
n=1

1
n2

nπβ/ε

tanh nπβ/ε
exp

(
−nπEc

ε

)
(E.2.6)

for fermionic fields, and

Γ
V

=
αε2

2π2 ∑
n=1

(−1)n

n2
nπβ/ε

sinh nπβ/ε
exp

(
−nπEc

ε

)
(E.2.7)
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for bosonic fields; here, Ec = m2
e c3

eh̄ is the critical field. Using the expressions Grad-
shteyn and Ryzhik (1994)

eεs coth (eεs)=
∞

∑
n=−∞

s2

(s2 + τ2
n)

, τn ≡ nπ/eε, (E.2.8)

eβs cot (eβs)=
∞

∑
m=−∞

s2

(s2 − τ2
m)

, τm ≡ mπ/eβ, (E.2.9)

one obtains the real part of the Euler-Heisenberg effective Lagrangian (E.2.1) (see
Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Mielniczuk (1982); Valluri et al.
(1993); Cho and Pak (2001); Kleinert et al. (2013)),

(∆Lcos
eff )P=

1
2(2π)2

∞

∑
n,m=−∞

1
τ2

m + τ2
n

[
δ̄m0 J(iτmm2

e )− δ̄n0 J(τnm2
e )
]

(E.2.10)

=− 1
(2π)2

[
∞

∑
n=1

eβ

τn
coth (eβτn)J(τnm2

e )−
∞

∑
m=1

eε

τm
coth (eετm)J(iτmm2

e )

]
.(E.2.11)

The symbol δ̄ij ≡ 1− δij denotes the complimentary Kronecker δ, which vanishes for
i = j, and

J(z) ≡ P

∫ ∞

0
ds

se−s

s2 − z2 = −1
2

[
e−zEi(z) + ezEi(−z)

]
. (E.2.12)

Here, P indicates the principle value integral, and Ei(z) is the exponential-integral
function,

Ei(z) ≡ P

∫ z

−∞
dt

et

t
= log(−z) +

∞

∑
k=1

zk

kk!
. (E.2.13)

Using the series and asymptotic representation of the exponential-integral func-
tion Ei(z) for large z corresponding to weak electromagnetic fields (ε/Ec � 1, β/Ec �
1),

J(z) = − 1
z2 −

6
z4 −

120
z6 −

5040
z8 −

362880
z10 + · · ·, (E.2.14)

the weak-field expansion of Eq. (E.2.10) is

(∆Leff)P =
2α2

45m4
e

{
4S2 + 7P2}+ 64πα3

315m8
e

{
16S3 + 26SP2}+ · · ·, (E.2.15)

which is expressed in terms of a powers series of weak electromagnetic fields up to
O(α3), the first term was obtained by Heisenberg and Euler in their original article
Heisenberg and Euler (1936).

On the other hand, using the series and asymptotic representation of the exponential-
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integral function Ei(z) for small z� 1 Gradshteyn and Ryzhik (1994) corresponding
to strong electromagnetic fields (ε/Ec � 1, β/Ec � 1),

J(z) = −1
2

[
ez ln(z) + e−z ln(−z)

]
− 1

2
γ
[
ez + e−z

]
+O(z), (E.2.16)

the leading terms in the strong-field expansion of Eqs. (E.2.10) and (E.2.11) are given
by (see Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Kleinert et al. (2013); Kleinert
(2011))

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n,m=−∞

1
τ2

m + τ2
n

[
δ̄n0 ln (τnm2

e )− δ̄m0 ln (τmm2
e )
]
+ · · · (E.2.17)

=
1

2(2π)2

[ ∞

∑
n=1

eβ

τn
coth (eβτn) ln (τnm2

e )−
∞

∑
m=1

eε

τm
coth (eετm) ln (τmm2

e )

]
+ · · ·.(E.2.18)

In the case of vanishing magnetic field B = 0 and a strong electric field E� Ec using
limz→∞ J(iz) = 0 and limz→0 z coth (az) = 1/a, Eq. (E.2.18) becomes (see Refs. Ruffini
et al. (2010); Ruffini and Xue (2006); Kleinert et al. (2013))

(∆Lcos
eff )P=

e2E2

4π4

∞

∑
n=1

1
n2

[
ln
(

nπEc

E

)
+ γ

]
+ · · · (E.2.19)

=
e2E2

24π2

[
ln
(

πEc

E

)
+ γ

]
− e2E2

4π4 ζ ′(2) + · · ·, (E.2.20)

with the Euler-Mascheroni constant γ = 0.577216, the Riemann zeta function ζ(k) =
∑n 1/nk, and

ζ ′(2) =
π2

6
[γ + ln (2π)− 12 ln A] ' −0.937548, (E.2.21)

with A = 1.28243 being the Glaisher constant. Similarly, in the case of vanishing
electric field E = 0 and a strong magnetic field B � Ec, Eq. (E.2.18) becomes (see
Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Kleinert et al. (2013))

(∆Lcos
eff )P=−

e2B2

4π4

∞

∑
m=1

1
n2

[
ln
(

nπEc

B

)
+ γ

]
+ · · · (E.2.22)

=− e2B2

24π2

[
ln
(

πEc

B

)
+ γ

]
+

e2B2

4π4 ζ ′(2) + · · ·. (E.2.23)

The (n = 1) term in Eq. (E.2.22) is the one obtained by Weisskopf Weisskopf (1936).
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E.3. The Einstein-Euler-Heisenberg theory

Since the real part of the Euler-Heisenberg effective Lagrangian (∆Lcos
eff )P of Eq. (E.2.10)

is expressed in terms of Lorentz invariants (ε, β) or (S, P), the Euler-Heisenberg ef-
fective action in the curve space-time described by metric gµν can be written as

SEH =
∫

d4x
√
−gLEH, LEH = [S + (∆Lcos

eff )P] . (E.3.1)

The Einstein and Euler-Heisenberg action is then given by

SEEH = − 1
16πG

∫
d4x
√
−gR + SEH, (E.3.2)

where R is the Ricci scalar.

The Einstein field equations are

Gµν ≡ Rµν − 1
2

gµνR = 8πGTµν, (E.3.3)

where the energy-momentum tensor is

Tµν =
2√−g

δSEH

δgµν
. (E.3.4)

The electromagnetic field equations and Bianchi identities are given by

DµPνµ = jν, Dµ F̃µν = 0, (E.3.5)

and the displacement fields Pνµ, Di = P0i, and Hi = −εijkPjk are defined as

Pµν =
δLEH

δFµν
, Di =

δLEH

δEi
, Hi = −δLEH

δBi
. (E.3.6)

Here, electromagnetic fields are treated as smooth varying fields over all space gen-
erated by external charge currents jµ at infinity.

Using functional derivatives, we obtain

Tµν=−gµν [S + (∆Lcos
eff )P] + 2

[
δS

δgµν

δLEH

δS
+

δP
δgµν

δLEH

δP

]
,

=−gµν [S + (∆Lcos
eff )P] + 2

[
(1 +AS)

δS
δgµν

+AP
δP

δgµν

]
, (E.3.7)
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where two invariants are defined as

AS ≡
δ(∆Lcos

eff )P
δS

; AP ≡
δ(∆Lcos

eff )P
δP

. (E.3.8)

It is straightforward to obtain

δS
δgµν

=
1
2

Fµ
λFλν,

δP
δgµν

= Fµ
λ F̃λν = gµνP, (E.3.9)

and as a result, we rewrite Eq. (E.3.7) as

Tµν=Tµν
M + gµν [APP− (∆Lcos

eff )P] +ASFµ
λFλν,

=Tµν
M (1 +AS) + gµν [ASS +APP− (∆Lcos

eff )P] , (E.3.10)

where Tµν
M = −gµνS + Fµ

λFλν is the energy-momentum tensor of the electromag-
netic fields of the linear Maxwell theory. Equation (E.3.10) is in fact a general re-
sult, independent of the explicit form of nonlinear Lagrangian (∆Lcos

eff )P. Equations
(E.3.1)-(E.3.10) in principle give a complete set of equations for Einstein and Euler-
Heisenberg effective theory, together with total charge (Q), angular-momentum (L),
and energy (M) conservations. In this chapter, adopting the Euler-Heisenberg effec-
tive Lagrangian (E.2.10), we explicitly calculate invariants AS and AP of Eq. (E.3.8)
as well as the energy-momentum Tµν of Eq. (E.3.10) in the following cases.

It is necessary to point out that in present chapter, we do not consider the cou-
plings between photons and gravitons that are also induced by QED vacuum polar-
ization effects at the level of one-fermion loop. Drummond and Hathrell obtained
the photon effective action from the lowest term of one-loop vacuum polarization on
a general curved background manifold; i.e., a graviton couples to two on-mass-shell
photons through a fermionic loop Drummond and Hathrell (1980),

SDH=− α

720πm2
e

∫
d4x
√
−g
(
5RFµνFµν − 26RµνFµσFν

σ

+2Rµνστ FµνFστ + 24DµFµνDσFσ
ν

)
. (E.3.11)

Further studies of one-loop effective action (E.3.11) were made based on the ap-
proach of the heat-kernel or “inverse mass” expansion Gilkey (1975); Bastianelli et al.
(2000), the approach of the so-called “derivative expansion” Barvinsky and Vilko-
visky (1985, 1990a,b); Gusev (2009), and the consideration of the one-loop one par-
ticle irreducible of one graviton interacting with any number of photons Bastianelli
et al. (2009). This effective action (E.3.11) was used to study the modified photon
dispersion relation by a generic gravitational background Drummond and Hathrell
(1980) and the possible consequences Latorre et al. (1995); Dittrich and Gies (1998);
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Shore (1996); Hollowood and Shore (2007, 2008b,a).

At the level of one-loop quantum corrections of the QED theory in the presence of
gravitational field, the effective Lagrangian (E.3.11) should be considered as an addi-
tion to the Euler and Heisenberg effective Lagrangian (E.2.15) in the weak-field limit.
In this chapter, we try to quantitatively study the QED corrections in spherically
symmetric black holes with mass M and charge Q. In this case, the corrections from
the Euler and Heisenberg effective Lagrangian (E.2.15) must be much larger than
the one from the effective Lagrangian (E.3.11). Studying the discussion and result of
Ref. Drummond and Hathrell (1980) for spherical symmetric black holes, we approx-
imately estimate the ratio of Eqs. (E.2.15) and (E.3.11) around the horizon of black

holes with mass M and charge Q. As a result, this ratio is ∼ 10−2
(

Q
M
√

G

)2
α

Gm2
e
� 1.

It is not surprising that the electromagnetic coupling e ∼ 1/
√

137 is much larger
than the effective gravitational counterpart Gm2

e ∼ 10−45. Besides, it is expected
that calculations involving both the Euler-Heisenberg effective Lagrangian (E.2.15)
and Eq. (E.3.11) are much more complex and tedious. Nevertheless, it is interesting
to investigate the effect of the photon-graviton amplitudes on black hole physics.
In this chapter, for the sake of simplicity, we first consider only the Einstein-Euler-
Heisenberg action (E.3.2) as a leading contribution in order to gain some physical
insight into the QED corrections in black hole physics.

E.3.1. B = 0, E 6= 0 or E = 0, B 6= 0

We consider the case of B = 0 and E 6= 0, namely, β = P = 0, ε = E = |E|, and
S = E2/2. AP = 0 and the effective Lagrangian Eq. (E.2.10) becomes

(∆Lcos
eff )P = − e2E2

4π4

∞

∑
n=1

1
n2 J(nπEc/E). (E.3.12)

Using

P

∫ ∞

0
ds

e−s

(s2 − z2)
= − 1

2z

[
e−zEi(z)− ezEi(−z)

]
, (E.3.13)

we calculate

dJ(z)
dz2 = P

∫ ∞

0
ds

se−s

(s2 − z2)2 =
1

2z2 − P

∫ ∞

0
ds

e−s

(s2 − z2)
(E.3.14)
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and obtain

AS=−
e2

2π4

∞

∑
n=1

1
n2 J(nπEc/E)

− e2

4π2 ζ(2) +
e2

4π

Ec

E

∞

∑
n=1

1
n

J̃(nπEc/E), (E.3.15)

where
J̃(z) = e−zEi(z)− ezEi(−z). (E.3.16)

Substituting these quantities into Eq. (E.3.10), we obtain the expression of the energy-
momentum tensor Tµν(ε). In the case of E = 0 and B 6= 0, the energy-momentum
tensor Tµν(β) can be straightforwardly obtained from Tµν(ε) by the discrete dual-
ity transformation ε → iβ, i.e., |E| → i|B|. In principle, using the complete Euler-
Heisenberg effective Lagrangian (∆Lcos

eff )P (E.2.10) for arbitrary electromagnetic fields
E and B, one can obtain the energy-momentum tensor Tµν(ε, β) of Eq. (E.3.10). For
the reason of practical calculations, we consider the cases of weak and strong fields.

E.3.2. Weak- and strong-field cases

In the weak-field case, using Eq. (E.2.15) and calculating Eqs. (E.3.7)-(E.3.10), we
obtain

AS=
2α2

45m4
e
(8S) +

64πα3

315m8
e
(48S2 + 26P2) + · · ·,

AP=
2α2

45m4
e
(14P) +

64πα3

315m8
e
(52SP) + · · ·, (E.3.17)

and

Tµν = Tµν
M

[
1 + 8

(
2α2

45m4
e

)
S
]
+ gµν

(
2α2

45m4
e

) [
4S2 + 7P2]+ · · ·, (E.3.18)

up to the leading order.
In strong-field case ε/Ec � 1 and β/Ec � 1 using Eq. (E.2.17) and calculating

Eqs. (E.3.7)-(E.3.10), we obtain

AS=
1

2(2π)2
2

ε2 + β2

∞

∑
n,m=−∞

1
(τ2

m + τ2
n)

2

{
δ̄n0

[
(τ2

n − τ2
m) ln(τnm2

e )−
1
2
(τ2

m + τ2
n)
]

−δ̄m0

[
(τ2

n − τ2
m) ln(τmm2

e ) +
1
2
(τ2

m + τ2
n)
]}

+ · · · (E.3.19)
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and

AP=
1

2(2π)2
2εβ

ε2 + β2

∞

∑
n,m=−∞

1
(τ2

m + τ2
n)

2

{
δ̄n0

[ (τ2
n

ε2 +
τ2

m
β2

)
ln(τnm2

e )−
1
2
(τ2

m + τ2
n)

ε2

]
−δ̄m0

[ (τ2
n

ε2 +
τ2

m
β2

)
ln(τmm2

e )−
1
2
(τ2

m + τ2
n)

β2

]}
+ · · ·. (E.3.20)

From Eq. (E.2.20) for B = 0 and a strong electric field, we obtain

AS =
e2

24π2

[
2 ln

(
πEc

E

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2) + · · ·, (E.3.21)

and the energy-momentum tensor Tµν of Eq. (E.3.10),

Tµν = Tµν
M

{
1 +

e2

24π2

[
2 ln

(
πEc

E

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2)
}
− gµν e2E2

48π2 + · · · .

(E.3.22)
Analogously, from Eq. (E.2.23) for E = 0 and a strong magnetic field, we obtain

AS =
e2

24π2

[
2 ln

(
πEc

B

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2) + · · ·, (E.3.23)

and the energy-momentum tensor

Tµν = Tµν
M

{
1 +

e2

24π2

[
2 ln

(
πEc

B

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2)
}
+ gµν e2B2

48π2 + · · · .

(E.3.24)
In the following sections, using the energy-momentum tensors Tµν of Eqs. (E.3.18),
(E.3.22), and (E.3.24), we try to study the solutions of the Einstein-Euler-Heisenberg
theory for nonrotating (spherically symmetric), electrically or magnetically charged
black holes.

E.4. Electrically charged black holes

In this section, we study a nonrotating (spherically symmetric) electrically charged
black hole. In this spherical symmetry case, the gauge potential is

Aµ(x) = [A0(r), 0, 0, 0], (E.4.1)
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corresponding to the electric field E(r) = −A′0(r) = −∂A0(r)/∂r in the radial direc-
tion, and the metric field is assumed to be

ds2 = f (r)dt2 − f (r)−1dr2 − r2dΩ; f (r) ≡ 1− 2Gm(r)/r. (E.4.2)

The metric function f (r) and the electric field E(r) fulfill the Einstein equations
(E.3.3) and electromagnetic field equations (E.3.5) and their asymptotically flat so-
lutions at r � 1,

A0(r)→ −
Q

4πr
, E(r)→ Q

4πr2 ,
Gm(r)

r
→ GM

r
(E.4.3)

satisfy the Gauss law, where Q and M are the black hole electric charge and mass
seen at infinity.

In order to find the solution near to the horizon of the black hole by taking into
account the QED effects, we approximately adopt the Euler-Heisenberg effective La-
grangian for constant fields that leads to the energy-momentum tensor (E.3.18) or
(E.3.22) for B = 0. This approximation is based on the assumption that the macro-
scopic electric field E(r) is approximated as a constant field E over the microscopic
scale of the electron Compton lengths. When the electric field of charged black holes
are overcritical, electron-positron pair productions take place and the electric field is
screened down to its critical value Ec (see Refs. Damour and Ruffini (1975); Preparata
et al. (1998, 2003); Ruffini et al. (2008)). In this chapter, we study the QED effects on
electrically charged black holes with spherical symmetry, whose electric field is much
smaller than the critical field Ec. In this weak electric field case using Eq. (E.3.18) we
obtain the energy-momentum tensor

Tµν = Tµν
M

(
1 +

2αE2

45πE2
c

)
+ gµν αE4

90πE2
c
+ · · · . (E.4.4)

As a result, the (0-0) component of Einstein equations is

2m′(r)
r2 = 4π

[
E2(r) +

α

15π
E4(r)/E2

c

]
, (E.4.5)

which relates to the energy conservation. Analogously, using Eqs. (E.3.5) and (E.3.6)
and the metric of Eq. (E.4.2), we obtain the field equation up to the leading order,

2α

45π
E3(r)/E2

c + E(r) =
Q

4πr2 , (E.4.6)

which is the zero component of DµPνµ = jν of Eq. (E.3.5) in the spherical symmetry
case. This equation relates to the total charge conservation.
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A similar case was studied in Ref. Yajima and Tamaki (2001), in which, however,
the effective Lagrangian [the first term in Eq. (E.2.15)] was considered as a low-
energy limit of the Born-Infeld theory; the coefficients of the S2 and P2 terms in
Eq. (E.2.15) are treated as free parameters, so as to either numerically or analytically
study the properties of spherically symmetric black hole solutions in the Einstein-
Euler-Heisenberg system. In the following, in order to analytically study the QED
effects on the black hole solution, we use the Euler-Heisenberg effective Lagrangian
(E.2.15) and find the black hole solution by a series expansion in powers of α. In-
troducing E(r) ≡ E(r)/Ec, up to the first order of α, the solution to Eq. (E.4.6) is
approximately given by

E(r) = EQ

(
1− 2α

45π
E2

Q + · · ·
)

, (E.4.7)

where EQ ≡ EQ(r) ≡ Q/(4πr2Ec). We find that the electric field E(r) is smaller than
Q/4πr2, due to the charge screening effect of the vacuum polarization. Substituting
this solution (E.4.7) into the Einstein equation (E.4.5), we obtain the integration

m(r) = M−
∫ ∞

r
4πr2dr

1
2

[
E2(r) +

α

15π
E4(r)/E2

c

]
. (E.4.8)

This equation clearly shows that the energy-mass function m(r) of Eq. (E.4.2) is the
total gravitational mass M (attractive) “screened down” by the electromagnetic en-
ergy (repulsive). In the Maxwell theory (∆Lcos

eff )P = 0 and E(r) = Q/(4πr2), we ob-
tain the Reissner-Nordström solution m(r) = M−Q2/8πr. In the Euler-Heisenberg
system, it is not proper to make the integration in Eq. (E.4.8), since the integrand
comes from the Euler-Heisenberg effective Lagrangian, which is valid only for con-
stant fields. In order to gain some physical insight into the energy-mass function
(E.4.8), we integrate Eq. (E.4.8) to the leading order of α,

m(r) ≈ M− Q2

8πr

[
1− α

225π

1
(4π)2

Q2

r4
1

E2
c

]
= M− Q2

8πr

[
1− α

225π
E2

Q

]
, (E.4.9)

which shows the QED correction to the Reissner-Nordström solution. Due to the
QED vacuum polarization effect, the black hole charge Q is screened

Q→ Q
[
1− α

225π
E2

Q

]1/2
. (E.4.10)

As a consequence, the electrostatic energy of Eq. (E.4.9) is smaller than Q2/(8πr) in
the Reissner-Nordström solution.

Moreover, we study the QED correction to the black hole horizon. For this pur-
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pose, we define the horizon radius rH at which the function f (r) of Eq. (E.4.2) van-
ishes, i.e., f (rH ) = 0, leading to

Gm(rH)

rH

=
1
2

. (E.4.11)

Using the energy-mass function m(r) of Eq. (E.4.9), we obtain

GM
rH

− GQ2

8πr2
H

[
1− α

225π
E2

Qh

]
=

1
2

, (E.4.12)

where EQh ≡ EQ(rH ). Up to the leading order of α, we obtain

rH+ =GM +

√
G2M2 − GQ2

4π

[
1− α

225π
E2

Q+

]
, (E.4.13)

rH−=GM−
√

G2M2 − GQ2

4π

[
1− α

225π
E2

Q−

]
, (E.4.14)

where EQ+ ≡ EQ(rH+) and EQ− ≡ EQ(rH−). Equation (E.4.13) shows that the black
hole horizon radius rH+ becomes larger than the Reissner-Nordström one r+ given
by Eq. (E.4.13) for setting α = 0. The black hole horizon area 4πr2

H+
becomes larger

than the Reissner-Nordström one 4πr2
+ given by Eq. (E.4.13) for setting α = 0. This

is again due to the black hole charge Q screened by the QED vacuum polarization
(E.4.10).

In the Reissner-Nordström solution, the extreme black hole solution is given by
r+ = r− or 4πGM2 = Q2. In our case, this is given by rH+ = rH− = rH yielding

G2M2 − GQ2

4π

[
1− α

225π
E2

Qh

]
= 0. (E.4.15)

From Eqs. (E.4.13) and (E.4.14), we obtain

4πr2
H
=4πG2M2 = GQ2

[
1− α

225π
E2

Qh

]
=GQ2

[
1− α

225π

1
G2Q2E2

c

]
, (E.4.16)

rH±
≈Q

[
1− α

225π
E2

Qh

]1/2
= Q

[
1− α

225π

1
(EcQ)2

]1/2

. (E.4.17)

In Eq. (E.4.17) we adopt G/4π = 1. Due to the QED correction, the condition of
extremely electrically charged black holes with spherical symmetry changes from
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M = Q/4π to

M =
Q
4π

[
1− α

225π

1
(EcQ)2

]1/2

. (E.4.18)

This implies that for a given M, the black holes are allowed to carry more charge
Q than the Reissner-Nordström case. These results show that when the black hole
mass M is fixed, the horizon area and radius of the extremely electrically charged
black hole are the same as the extreme Reissner-Nordström one. However, when the
black hole charge Q is fixed, the black hole horizon area and radius are smaller than
those of the extreme Reissner-Nordström black hole. The reason is that the charge
screening effect decreases the electrostatic energy; hence, this leads to a smaller mass
M for the extreme black hole.

Now we turn to the maximal energy extractable from a black hole. As pointed out
in Ref. Christodoulou and Ruffini (1971), the surface area Sa of the black hole horizon
is related to the irreducible mass Mir of the black hole

Sa = 16πG2M2
ir = 4πr2

H+
, (E.4.19)

where rH+ is given by Eq. (E.4.13). The surface area of the black hole horizon cannot
be decreased by classical processes Christodoulou and Ruffini (1971); Christodoulou
(1970); Hawking (1971). Any transformation of the black hole which leaves fixed the
irreducible mass is called reversible Christodoulou and Ruffini (1971); Christodoulou
(1970). Any transformation of the black hole which increases its irreducible mass, for
instance, the capture of a particle with nonzero radial momentum at the horizon, is
called irreversible. In irreversible transformations there is always some kinetic en-
ergy that is irretrievably lost behind the horizon. Note that transformations which
arbitrarily close to reversible ones are the most efficient transformations for extract-
ing energy from a black hole Christodoulou and Ruffini (1971); Christodoulou (1970).
Following the same argument presented in Ref. Christodoulou and Ruffini (1971),
and including the leading-order QED correction (E.4.9), we obtain the Christodoulou-
Ruffini mass formula

M = Mir +
Q2

16πGMir

[
1− α

225π
E2

Q+

]
, (E.4.20)

where the electrostatic energy of the black hole is reduced for the reason that the
black hole charge is screened down by the QED vacuum polarization effect (E.4.10).

The properties of the surface area Sa of the black hole horizon and irreducible mass
Mir can also been understood from the concepts of information theory Bekenstein
(1973). The black hole entropy Sen is introduced as the measure of information about
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a black hole interior which is inaccessible to an exterior observer and is proportional
to the surface area Sa of the black hole horizon Bekenstein (1973)

Sen = Sa/4 = πr2
H+

. (E.4.21)

The physical content of the concept of the black hole entropy derives from the gener-
alized second law of thermodynamics: when common entropy in the black hole ex-
terior plus the black hole entropy never decreases Bekenstein (1973). In the Einstein-
Euler-Heisenberg theory, the black hole irreducible mass of Eq. (E.4.19) and entropy
of Eq. (E.4.21) with the QED correction are determined by the horizon radius rH+ of
Eq. (E.4.13) for charged black holes and Eq. (E.4.16) for extreme black holes.

Now we consider the physical interpretation of the electromagnetic term in Eq. (E.4.20).
This term represents the maximal energy extractable from a black hole, which can be
obtained by evaluating the conserved Killing integral Ruffini et al. (2010); Ruffini
and Vitagliano (2002) ∫

Σ+
t

ξ
µ
+TµνdΣν = 4π

∫ ∞

rH+

r2T0
0 dr, (E.4.22)

where Σ+
t is the spacelike hypersurface in the space-time region that is outside the

horizon r > rH+ described by the equation t = constant, with dΣν as its surface
element vector. ξ

µ
+ is the static Killing vector field. This electromagnetic term in

Eq. (E.4.20) is the total energy of the electromagnetic field and includes its own gravi-
tational binding energy. Using the energy-momentum tensor of Eq. (E.4.4) and weak-
field solution (E.4.7), we obtain the maximal energy extractable from an electrically
charged black hole

εex =
Q2

8πrH+

[
1− α

225π
E2

Q+

]
. (E.4.23)

This shows that the black hole maximal extractable energy decreases in comparison
with the Reissner-Nordström case (Q2/8πr+). This can be explained by the follow-
ing: (i) the charge screening effect decreases the electrostatic energy; (ii) the black
hole horizon radius rH+ of Eq. (E.4.13) increases, leading to the decrease of the max-
imally extractable energy, because the most efficient transformations that extract en-
ergy from a black hole occur near the horizon. For the extremely electrically charged
black hole, the maximally extractable energy is the same as that in the Reissner-
Nordström case, when the black hole mass M is fixed; however, it becomes smaller
than the Reissner-Nordström one when the black hole electric charge Q is fixed.
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E.5. Magnetically charged black holes

Now we turn to study the Einstein-Euler-Heisenberg theory (E.3.18) and (E.3.24) in
the presence of the magnetic field B. As shown by Eq. (E.2.6), the magnetic field B
does not contribute to the pair-production rate so that the process of the electron-
positron pair production does not occur for a strong magnetic field B. For this rea-
son, we consider black holes with strong magnetic fields. The conventional black
hole with electric and magnetic fields is the rotating charged black hole of the Kerr-
Newman black hole Newman et al. (1965). However, the solution to a rotating
charged black hole in the Einstein-Euler-Heisenberg theory is rather complicated,
and we do not consider it in this work. For the sake of simplicity, we study the
nonrotating magnetically charged black hole with spherical symmetry in order to in-
vestigate the QED corrections in the presence of the magnetic field B in the Einstein-
Euler-Heisenberg theory.

For a nonrotating magnetically charged black hole with magnetic charge Qm, the
tensor Fµν compatible with spherical symmetry can involve only a radial magnetic
field F23 = −F32. In the Einstein-Maxwell theory, the field equations (E.3.5) give (see,
e.g., Refs. Hawking and Ross (1995); Gibbons and Rasheed (1995))

F23 =
Qm sin θ

4π
, (E.5.1)

and the gauge potential will be (see, e.g., Refs. Hawking and Ross (1995))

Aµ(x) = [0, 0, 0, Qm(1− cos θ)/4π]. (E.5.2)

The metric is similar to the one of nonrotating electrically charged black holes,

ds2 = f (r)dt2 − f (r)−1dr2 − r2dΩ, f (r) ≡ 1− 2Gm(r)/r, (E.5.3)

where m(r) is the mass-energy function. In the Einstein-Maxwell theory, the metric
function f (r) of magnetically charged black holes with spherical symmetry is given
by (see, e.g., Refs. Hawking and Ross (1995))

f (r) = 1− 2GM
r

+
GQ2

m
4πr2 , (E.5.4)

where M is the black hole mass seen at infinity.
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E.5.1. Weak magnetic field case

Using Eq. (E.3.18), we obtain the energy-momentum tensor for the weak magnetic
field B case,

Tµν = Tµν
M

(
1− 2αB2

45πE2
c

)
+ gµν αB4

90πE2
c
+ · · · . (E.5.5)

Similar to the analysis of electrically charged black holes with spherical symmetry,
we obtain the (0-0) component of Einstein equations,

2m′(r)
r2 = 4π

[
B2(r)− α

45π
B4(r)/E2

c

]
. (E.5.6)

For the magnetically charged black hole with spherical symmetry, only a radial mag-
netic field is present. The field equations (E.3.5) give B(r) = Qm/(4πr2) (see, e.g.,
Refs. Yajima and Tamaki (2001); Bronnikov (2001)). Substituting B(r) into the Ein-
stein equation (E.5.6), we obtain the mass-energy function

m(r) = M−
∫ ∞

r
4πr2dr

1
2

[
B2(r)− α

45π
B4(r)/E2

c

]
. (E.5.7)

Neglecting the QED correction of the Euler-Heisenberg effective Lagrangian, Eq. (E.5.7)
gives m(r) = M−Q2

m/8πr, which is the solution of the magnetically charged Reissner-
Nordström black hole in the Einstein-Maxwell theory. Making the integration in
Eq. (E.5.7), one obtains Yajima and Tamaki (2001)

m(r) = M− Q2
m

8πr

[
1− α

225π

1
(4π)2

Q2
m

r4
1

E2
c

]
= M− Q2

m
8πr

[
1− α

225π
B2

Q

]
, (E.5.8)

where BQ ≡ BQ(r) ≡ Qm/(4πr2Ec). As shown in Eq. (E.5.8), taking into account
the QED vacuum polarization effect, the total magnetostatic energy is smaller than
Q2

m/8πr in the magnetically charged Reissner-Nordström case. This can be under-
stood as follows. In the magnetic field B of the black holes, the vacuum polarization
effect results in a positive magnetic polarization M. Then the magnetic H field de-
fined B = H + M is smaller than the magnetic field B. The magnetostatic energy
density εEM ∝ B ·H decreases. This shows that in weak magnetic fields, the vacuum
polarization effect exhibits the paramagnetic property.

Compared to the result of the electrically charged black hole in the first order
of α, Eqs. (E.4.9) and (E.5.8) have the same expression. One can obtain Eq. (E.5.8)
by simply replacing EQ in Eq. (E.4.9) by BQ, namely, replacing Q by Qm because
of the duality symmetry (see, e.g., Ref. Hawking and Ross (1995)). Similar to the
analysis of electric charged black holes, we obtain the horizon radii rH+

and rH−
of
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the magnetically charged black hole, up to the leading order of α,

rH+ =GM +

√
G2M2 − GQ2

m
4π

[
1− α

225π
B2

Q+

]
, (E.5.9)

rH−=GM−
√

G2M2 − GQ2
m

4π

[
1− α

225π
B2

Q−

]
, (E.5.10)

where BQ+ ≡ BQ(rH+) and BQ− ≡ BQ(rH−). The result (E.5.9) shows that the
black hole horizon radius rH+ increases in comparison with the magnetically charged
Reissner-Nordström one r+. This is again due to the paramagnetic effect of the vac-
uum polarization that decreases the magnetostatic energy of the black hole.

Now we turn to the extreme black hole (rH+ = rH− = rH ). Similarly, we have

G2M2 − GQ2
m

4π

[
1− α

225π
B2

Qh

]
= 0, (E.5.11)

where BQh ≡ BQ(rH ), and we obtain the black hole horizon area and radius

4πr2
H
=4πG2M2 = GQ2

m

[
1− α

225π
B2

Qh

]
= GQ2

m

[
1− α

225π

1
G2Q2

mE2
c

]
,(E.5.12)

rH≈Qm

[
1− α

225π
B2

Qh

]1/2
= Qm

[
1− α

225π

1
(EcQm)2

]1/2

. (E.5.13)

In the second line, we adopt G/4π = 1. The QED correction changes the condition
of extremely magnetically charged black holes with spherical symmetry from M =
Qm/4π to

M =
Qm

4π

[
1− α

225π

1
(EcQm)2

]1/2

. (E.5.14)

The properties of the horizon area and radius of the extremely magnetically charged
black hole are the same as their counterparts in the extremely electrically charged
black hole, given by the duality transformation Q↔ Qm.

Following the same argument presented in Ref. Christodoulou and Ruffini (1971),
we obtain the Christodoulou-Ruffini mass formula

M = Mir +
Q2

m
16πGMir

[
1− α

225π
B2

Q+

]
(E.5.15)

for magnetically charged black holes with spherical symmetry in the Einstein-Euler-
Heisenberg theory. One is able to obtain the irreducible mass Mir by substituting
Eq. (E.5.9) into Eq. (E.4.19), and the black hole entropy Sen by substituting Eq. (E.5.9)
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into Eq. (E.4.21). The irreducible mass Mir and the black hole entropy Sen in terms
of black hole horizon radius rH+ Eq. (E.5.9) have the same paramagnetic property in
the presence of the QED vacuum polarization effect, as already discussed.

As shown in Eq. (E.5.15), the maximal energy extractable from a magnetically
charged black hole is

εex =
Q2

m
8πrH+

[
1− α

225π
B2

Q+

]
, (E.5.16)

where rH+ is given by Eq. (E.5.9). The result shows that the maximal energy ex-

tractable from a magnetically charged black hole is smaller than Q2
m

8πr+ of the mag-
netically charged Reissner-Nordström black hole. The reasons are the following:
(i) the vacuum polarization effect decreases the magnetostatic energy; (ii) the black
hole horizon radius rH+ of Eq. (E.5.9) increases, therefore the maximally extractable
energy decreases. The maximal energy extractable from an extremely magnetically
charged black hole is the same as that from an extremely magnetically charged Reissner-
Nordström black hole when the black hole mass M is fixed, while it decreases when
the black hole magnetic charge Qm is fixed, as we have already discussed at the end
of Sec. E.4 for the case of the extremely electrically charged black hole.

E.5.2. Strong magnetic field case

In this section, we study the magnetically charged black holes with a strong magnetic
field B(r). From Eq. (E.3.24), we obtain the energy-momentum tensor of the magnet-
ically charged black hole with spherical symmetry in the strong magnetic field case.
Analogous to the weak magnetic field case of magnetically charged black holes with
spherical symmetry, we obtain the (0-0) component of Einstein equations

2m′(r)
4πr2 = 4π

{
B2(r) +

e2B2

12π2

[
ln
(

πEc

B

)
+ γ− 6

π2 ζ ′(2)
]}

, (E.5.17)

and the field equations (E.3.5) give B(r) = Qm/(4πr2). Substituting this magnetic
field B(r) into the Einstein equation (E.5.17), we obtain

m(r)≈M−
∫ ∞

r
4πr2dr

1
2

{
B2 +

e2B2

12π2

[
ln
(

πEc

B

)
+ γ− 6

π2 ζ ′(2)
]}

(E.5.18)

≈M− Q2
m

8πr

{
1 +

α

3π

[
ln
(

π

BQ

)
+ γ + 2− 6

π2 ζ ′(2)
]}

. (E.5.19)

This result is valid for B � Ec, for which the value of ln (π/BQ) + γ + 2− 6
π2 ζ ′(2)

is negative. As a result, Eq. (E.5.19) shows that the total magnetostatic energy in
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the presence of the vacuum polarization is smaller than Q2
m/8πr of the magnetically

charged Reissner-Nordström black hole. Similar to the weak-field case, this is again
due to the paramagnetic effect of the vacuum polarization that decreases the mag-
netostatic energy of black holes. In the strong magnetic field case, the QED vacuum
polarization effect is much larger than the result (E.5.8) in the weak-field case, where
the QED correction term in Eq. (E.5.8) is small for the smallness of α/(225π) and B2

Q.
This result (E.5.19) shows a significant QED effect of the vacuum polarization on the
energy of magnetically charged black holes in the strong magnetic field case.

Now we turn to the study of the black hole horizon radius and area in the strong
magnetic field case. Using the condition f (rH ) = 0, we obtain the horizon radii rH+

and rH− up to the leading order of α,

rH+ =GM +

√
G2M2 − GQ2

m
4π

[
1 +

α

3π
KNR+

]
, (E.5.20)

rH−=GM−
√

G2M2 − GQ2
m

4π

[
1 +

α

3π
KNR−

]
, (E.5.21)

where

KNR+= ln
(

π

BQ+

)
+ γ + 2− 6

π2 ζ ′(2), (E.5.22)

KNR−= ln
(

π

BQ−

)
+ γ + 2− 6

π2 ζ ′(2). (E.5.23)

Equation (E.5.20) shows that the horizon radius rH+ increases in comparison with the
magnetically charged Reissner-Nordström one r+. This is again due to the paramag-
netic effect of the vacuum polarization that decreases the magnetostatic contribution
to the total energy of black holes.

For the case of the extreme black hole (rH+ = rH− = rH ), we have

G2M2 − GQ2
m

4π

[
1 +

α

3π
KNR

]
= 0, (E.5.24)

where

KNR = ln
(

π

BQh

)
+ γ + 2− 6

π2 ζ ′(2). (E.5.25)

As a result, we obtain

4πr2
H
=4πG2M2 = GQ2

m

[
1 +

α

3π
KNR

]
, (E.5.26)

rH≈Qm

[
1 +

α

3π
KNR

]1/2
. (E.5.27)
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Similar to the weak magnetic field case, the QED correction changes the condition
of extremely magnetically charged black holes with spherical symmetry from M =
Qm/4π to

M =
Qm

4π

[
1 +

α

3π
KNR

]1/2
. (E.5.28)

These results show that the horizon area and radius of the extreme black hole are the
same as their counterparts of the extremely magnetically charged Reissner-Nordström
black hole, when the black hole mass M is fixed. Whereas, the black hole mag-
netic charge Qm is fixed, Eqs. (E.5.26) and (E.5.27) show that the black hole hori-
zon area and radius become smaller than their counterparts of extremely magneti-
cally charged Reissner-Nordström black holes. We have discussed this behavior in
Eqs. (E.4.15)-(E.4.18) for the case of extremely electrically charged black holes.

Analogously, we obtain the Christodoulou-Ruffini mass formula in the strong-
field case of magnetically charged black holes,

M = Mir +
Q2

16πGMir

[
1 +

α

3π
KNR+

]
. (E.5.29)

It is straightforward to obtain irreducible mass Mir by substituting Eq. (E.5.20) into
Eq. (E.4.19), and the black hole entropy Sen by substituting Eq. (E.5.20) into Eq. (E.4.21).
Analogous to the case of the electrically charged black hole, the black hole irreducible
mass Mir and entropy Sen in the strong magnetic field case depend on the black hole
horizon radius rH+ of Eqs. (E.5.20) and (E.5.26). Equation (E.5.29) indicates that the
maximal energy extractable from a magnetically charged black hole is

εex =
Q2

m
8πrH+

[
1 +

α

3π
KNR+

]
. (E.5.30)

The properties of the maximally extractable energy in the strong magnetic field case
are similar to those of the magnetically charged black hole in the weak magnetic field
case. However, the QED correction of the vacuum polarization effect to the energy of
the magnetically charged black hole in the strong magnetic field case is much more
significant in comparison with that in the weak magnetic field case.
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E.6. Black holes with electric and magnetic
charges

If the spherically symmetric (nonrotating) black hole is both electrically and magnet-
ically charged, electric and magnetic fields do not vanish. As shown in Eq. (E.2.11),
both invariants S and P contribute to the Euler-Heisenberg effective Lagrangian. The
metric takes the same form as the metric of Eq. (E.4.2) for electrically charged black
holes with spherical symmetry. In this case, the tensor Fµν compatible with spherical
symmetry can involve only a radial electric field F01 = −F10 and a radial magnetic
field F23 = −F32, and the gauge potential is (see, e.g., Ref. Hawking and Ross (1995))

Aµ(x) = [A(r), 0, 0, Qm(1− cos θ)/4π]. (E.6.1)

In the Einstein-Maxwell theory, A(r) = −Q/(4πr), and the metric function f (r) of
Eq. (E.4.2) is given by (see, e.g., Ref. Hawking and Ross (1995))

f (r) = 1− 2GM
r

+
GQ2

4πr2 +
GQ2

m
4πr2 . (E.6.2)

In the Einstein-Euler-Heisenberg theory, we study the spherically symmetric black
hole with electric and magnetic charges in the weak-field case. Using Eq. (E.3.18),
we derive the energy-momentum tensor with a radial electric field E and a radial
magnetic field B,

Tµν = Tµν
M

[
1 +

2α

45πE2
c
(E2 − B2)

]
+ gµν α

90πE2
c

[
(E2 − B2)2 + 7(E · B)2]+ · · · .

(E.6.3)
Analogous to the analysis of electrically/magnetically charged black holes with spher-
ical symmetry, we obtain the (0-0) component of Einstein equations,

2m′(r)
r2 = 4π

[
E2(r) + B2(r) +

α

15π
E4(r)/E2

c −
α

45π
B4(r)/E2

c +
α

9πE2
c

E2(r)B2(r)
]

.

(E.6.4)
In addition, we obtain the field equations from Eq. (E.3.5) (see also Ref. Yajima and
Tamaki (2001)),

E(r) +
2α

45π
E3(r)/E2

c +
αB2

9πE2
c

E(r) =
Q

4πr2 , (E.6.5)

B(r) =
Qm

4πr2 . (E.6.6)

Note that the mixing terms of the electric and magnetic fields in Eqs. (E.6.4) and
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(E.6.5) come from the contribution of the invariant P. Introducing E(r) ≡ E(r)/Ec,
we have

E(r) = EQ −
2α

45π
E3

Q −
α

9π
B2

QEQ + · · · , (E.6.7)

up to the first order of α. We substitute the solutions of (E.6.6) and (E.6.7) into the
Einstein equation (E.6.4) and obtain the mass-energy function

m(r) = M−
∫ ∞

r
4πr2dr

1
2

E2
c

[
E2

Q + B2
Q −

α

45π
E4

Q −
α

45π
B4

Q −
α

9π
B2

QE2
Q

]
. (E.6.8)

Disregarding the QED correction of the Euler-Heisenberg effective Lagrangian, Eq. (E.6.8)
gives the solution m(r) = M−Q2/8πr−Q2

m/8πr for the Reissner-Nordström black
hole with electric and magnetic charges. Performing the integration in Eq. (E.6.8),
we approximately obtain

m(r) = M− Q2

8πr

[
1− α

225π
E2

Q

]
− Q2

m
8πr

[
1− α

225π
B2

Q

]
+

α

45π

Q2
m

8πr
E2

Q. (E.6.9)

In the limit Q � Qm, Eq. (E.6.9) becomes Eq. (E.4.9) of the electrically charged black
hole. On the contrary, in the limit Qm � Q, Eq. (E.6.9) becomes Eq. (E.5.8) of the
magnetically charged black hole. In order to study the effect of the P term in the
Euler-Heisenberg effective Lagrangian, we consider the case with large P and small
S, i.e., Qm ≈ Q. In this situation, Eq. (E.6.9) becomes

m(r) = M− Q2

8πr

[
2− 7α

225π
E2

Q

]
, (E.6.10)

for Qm = Q, i.e., S = 0 and large P. Comparing to the cases of electrically/magnetically
charged black holes, the QED correction to the black hole energy becomes larger,
which results from the combination effects of the vacuum polarization on electric
and magnetic charges of black holes in the Einstein-Euler-Heisenberg theory.

In the same way that has been discussed in previous sections, up to the leading
order of α, we obtain the horizon radii rH+ and rH− from Eq. (E.6.10),

rH+ =GM +

√
G2M2 − GQ2

4π

[
2− 7α

225π
E2

Q+

]
, (E.6.11)

rH−=GM−

√
G2M2 − GQ2

4π

[
2− 7α

225π
E2

Q−

]
, (E.6.12)
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and the Christodoulou-Ruffini mass formula

M = Mir +
Q2

16πGMir

[
2− 7α

225π
E2

Q+

]
, (E.6.13)

as well as the maximal energy extractable from a black hole

εex =
Q2

8πrH+

[
2− 7α

225π
E2

Q+

]
. (E.6.14)

Analogously, we obtain the irreducible mass Mir by substituting Eq. (E.6.11) into
Eq. (E.4.19), and the black hole entropy Sen by substituting Eq. (E.6.11) into Eq. (E.4.21).
The irreducible mass Mir, the black hole entropy Sen, and the maximal energy ex-
tractable from a black hole receive the same QED correction, but a factor of 7/2 larger,
as compared with their counterparts in the case of either electrically or magnetically
charged black holes in the weak-field case.

E.7. Summary

In this chapter, in addition to the Maxwell Lagrangian, we consider the contribu-
tion from the QED Euler-Heisenberg effective Lagrangian to formulate the Einstein-
Euler-Heisenberg theory. On the basis of this theory, we study the horizon radius,
area, total energy, entropy, and irreducible mass as well as the maximally extractable
energy of spherically symmetric (nonrotating) black holes with electric and magnetic
charges. Our calculations are made up to the leading order of the QED corrections
in the limits of strong and weak fields. Our results show that the QED correction
of the vacuum polarization results in the increase of the black hole horizon area, en-
tropy and irreducible mass, as well as the decrease of the black hole total energy and
maximally extractable energy. The reason is that the QED vacuum polarization gives
rise to the screening effect on the black hole electric charge and the paramagnetic ef-
fect on the black hole magnetic charge. The condition of the extremely charged black
hole M = Q/4π or M = Qm/4π is modified [ see Eqs. (E.4.18), (E.5.14), and (E.5.28)],
which results from the screening and paramagnetic effects.

To end this chapter, we would like to mention that in the Einstein-Euler-Heisenberg
theory, it is worthwhile to study Kerr-Newman black holes, whose electric field E
and magnetic field B are determined by the black hole mass M, charge Q, and angu-
lar momentum a Newman et al. (1965). In addition, it will be interesting to study the
QED corrections in black hole physics by taking into account the one-loop photon-
graviton amplitudes of the effective Lagrangian (E.3.11) Drummond and Hathrell
(1980) and its generalizations Gilkey (1975); Bastianelli et al. (2000); Barvinsky and
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Vilkovisky (1985); Gusev (2009); Bastianelli et al. (2009). We leave these studies for
future work.

661





Bibliography

Eli (????).

ABOUELSAOOD, A., CALLAN, C.G., NAPPI, C.R. AND YOST, S.A.
Open strings in background gauge fields.
Nucl. Phys. B, 280, pp. 599–624 (1987).

AHARONIAN, F., AKHPERJANIAN, A.G., BAZER-BACHI, A.R., BEILICKE, M., BEN-
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HASSAÏNE, M. AND C. MARTÍNEZ, C.
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