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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman
solution that describes the gravitational and electromagnetic fields of a ro-
tating charged mass. For astrophysical purposes, however, it is necessary to
take into account the effects due to the moment of inertia of the object. To
attack this problem, we investigate new exact solutions of Einstein-Maxwell
equations which posses an infinite set of gravitational and electromagnetic
multipole moments and contain the Kerr-Newman solution as special case.

There are several methods that can be used to find generalizations of the
Kerr-Newman metric. In particular, one can use the curvature of the space-
time that can be measured by local observers. We argue that the curvature
generated by a gravitational field can be used to calculate the corresponding
metric, which determines the trajectories of freely falling test particles. To
this end, we present a method to compute the metric from a given curva-
ture tensor. We use Petrov’s classification to handle the structure and proper-
ties of the curvature tensor, and Cartan’s structure equations in an orthonor-
mal tetrad to investigate the differential equations that relate the curvature
with the metric. The second structure equation is integrated to obtain the
explicit expression for the connection 1−form from which the components
of the orthonormal tetrad are obtained by using the first structure equation.
This opens the possibility of using the curvature of astrophysical objects like
the Earth to determine the position of freely falling satellites that are used in
modern navigation systems.

The Newman-Janis Ansatz was used first to obtain the stationary Kerr met-
ric from the static Schwarzschild metric. Many works have been devoted to
investigate the physical significance of this Ansatz, but no definite answer has
been given so far. We show that this Ansatz can be applied in general to con-
formastatic vacuum metrics, and leads to stationary generalizations which,
however, do not preserve the conformal symmetry. We investigate also the
particular case when the seed solution is given by the Schwarzschild space-
time and show that the resulting rotating configuration does not correspond
to a vacuum solution, even in the limiting case of slow rotation. In fact, it de-
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2 Brief description

scribes in general a relativistic fluid with anisotropic pressure and heat flux.
This implies that the Newman-Janis Ansatz strongly depends on the choice
of representation for the seed solution. We interpret this result as as a further
indication of its applicability limitations.

One of the applications of the Kerr-Newman metric is the description of
the gravitational field of compact objects like white dwarfs. The equilib-
rium configurations of uniformly rotating white dwarfs at finite temperatures
are investigated, exploiting the Chandrasekhar equation of state for different
isothermal cores. The Hartle-Thorne formalism is applied to construct white
dwarf configurations in the framework of Newtonian physics. The equations
of structure are considered in the slow rotation approximation and all basic
parameters of rotating hot white dwarfs are computed to test the so-called
moment of inertia, tidal Love number and quadrupole moment (I-Love-Q)
relations. It is shown that even within the same equation of state the I-Love-
Q relations are not universal for white dwarfs at finite temperatures.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only
for general relativity itself, but also for the very fundamentals of physics.
It assumes this position as being the most physically relevant rotating gen-
eralization of the static Schwarzschild geometry. Its charged counterpart,
the Kerr-Newman solution, representing the exterior gravitational and elec-
tromagnetic fields of a charged rotating object, is an exact solution of the
Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt− a sin2 θdϕ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dϕ− adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2 dr2 − (r2 + a2 cos2 θ)dθ2 , (3.0.1)

where M is the total mass of the object, a = J/M is the specific angular mo-
mentum, and Q is the electric charge. In this particular coordinate system,
the metric functions do not depend on the coordinates t and φ, indicating the
existence of two Killing vector fields ξ I = ∂t and ξ I I = ∂ϕ which represent
the properties of stationarity and axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is
surrounded by two horizons situated at a distance

r± = M±
√

M2 − a2 −Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singular-
ity is present which, however, cannot be observed by any observer situated
outside the exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no
horizons are present and the Kerr–Newman spacetime represents the exterior
field of a naked singularity.
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3 Introduction

Despite of its fundamental importance in general relativity, and its theo-
retical and mathematical interest, this solution has not been especially useful
for describing astrophysical phenomena, first of all, because observed astro-
physical objects do not possess an appreciable net electric charge. Further-
more, the limiting Kerr metric takes into account the mass and the rotation,
but does not consider the moment of inertia of the object. For astrophysi-
cal applications it is, therefore, necessary to use more general solutions with
higher multipole moments which are due not only to the rotation of the body
but also to its shape. This means that even in the limiting case of a static
spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum
solution

In general relativity, stationary axisymmetric solutions of Einstein’s equa-
tions [1] play a crucial role for the description of the gravitational field of
astrophysical objects. In particular, the black hole solutions and their gener-
alizations that include Maxwell fields are contained within this class.

This type of exact solutions has been the subject of intensive research dur-
ing the past few decades. In particular, the number of know exact solutions
drastically increased after Ernst [2] discovered an elegant representation of
the field equations that made it possible to search for their symmetries. These
studies lead finally to the development of solution generating techniques [1]
which allow us to find new solutions, starting from a given seed solution. In
particular, solutions with an arbitrary number of multipole moments for the
mass and angular momentum were derived in [3] and used to describe the
gravitational field of rotating axially symmetric distributions of mass.

The first analysis of stationary axially symmetric gravitational fields was
carried out by Weyl [4] in 1917, soon after the formulation of general rela-
tivity. In particular, Weyl discovered that in the static limit the main part of
the vacuum field equations reduces to a single linear differential equation.
The corresponding general solution can be written in cylindrical coordinates
as an infinite sum with arbitrary constant coefficients. A particular choice of
the coefficients leads to the subset of asymptotically flat solutions which is
the most interesting from a physical point of view. In this section we review
the main properties of stationary axisymmetric gravitational fields. In par-
ticular, we show explicitly that the main field equations in vacuum can be
represented as the equations of a nonlinear sigma model in which the base
space is the 4-dimensional spacetime and the target space is a 2-dimensional
conformally Euclidean space.
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4 The general static vacuum solution

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, sta-
tionary axisymmetric gravitational fields are usually described in cylindric
coordinates (t, ρ, z, ϕ). Stationarity implies that t can be chosen as the time
coordinate and the metric does not depend on time, i.e. ∂gµν/∂t = 0. Con-
sequently, the corresponding timelike Killing vector has the components δ

µ
t .

A second Killing vector field is associated to the axial symmetry with respect
to the axis ρ = 0. Then, choosing ϕ as the azimuthal angle, the metric satis-
fies the conditions ∂gµν/∂ϕ = 0, and the components of the corresponding
spacelike Killing vector are δ

µ
ϕ.

Using further the properties of stationarity and axial symmetry, together
with the vacuum field equations, for a general metric of the form gµν =
gµν(ρ, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
[4, 5, 6]

ds2 = f (dt−ωdϕ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dϕ2

]
, (4.1.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements
which include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.1.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the
following set of partial differential equations

1
ρ

∂ρ(ρ∂ρ f ) + ∂2
z f +

1
f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.1.3)

1
ρ

∂ρ(ρ∂ρΩ) + ∂2
zΩ− 2

f
(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.1.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.1.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.1.6)

It is clear that the field equations for γ can be integrated by quadratures,
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4.2 Static solution

once f and Ω are known. For this reason, the equations (4.1.3) and (4.1.4)
for f and Ω are usually considered as the main field equations for stationary
axisymmetric vacuum gravitational fields. In the following subsections we
will focus on the analysis of the main field equations, only. It is interesting
to mention that this set of equations can be geometrically interpreted in the
context of nonlinear sigma models [7].

Let us consider the special case of static axisymmetric fields. This corre-
sponds to metrics which, apart from being axially symmetric and indepen-
dent of the time coordinate, are invariant with respect to the transformation
ϕ→ −ϕ (i.e. rotations with respect to the axis of symmetry are not allowed).
Consequently, the corresponding line element is given by (4.1.1) with ω = 0,
and the field equations can be written as

∂2
ρψ +

1
ρ

∂ρψ + ∂2
zψ = 0 , f = exp(2ψ) , (4.1.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.1.8)

We see that the main field equation (4.1.7) corresponds to the linear Laplace
equation for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand addi-
tionally asymptotic flatness, we obtain the Weyl solution which can be writ-
ten as [4, 1]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (4.2.1)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the
Legendre polynomials of degree n. The expression for the metric function γ
can be calculated by quadratures by using the set of first order differential
equations (4.1.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (4.2.2)
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4 The general static vacuum solution

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solution of this class. In particular,
one of the most interesting special solutions which is Schwarzschild’s spher-
ically symmetric black hole spacetime must be contained in this class. To see
this, we must choose the constants an in such a way that the infinite sum
(4.2.1) converges to the Schwarzschild solution in cylindric coordinates. But,
or course, this representation is not the most appropriate to analyze the inter-
esting physical properties of Schwarzchild’s metric.

In fact, it turns out that to investigate the properties of solutions with mul-
tipole moments it is more convenient to use prolate spheroidal coordinates
(t, x, y, ϕ) in which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.2.3)

r2
± = ρ2 + (z± σ)2 , σ = const , (4.2.4)

and the metric functions are f , ω, and γ depend on x and y, only. In this
coordinate system, the general static solution which is also asymptotically
flat can be expressed as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre func-
tions of second kind. In particular,

P0 = 1, P1 = y, P2 =
1
2
(3y2 − 1) , ...

Q0 =
1
2

ln
x + 1
x− 1

, Q1 =
1
2

x ln
x + 1
x− 1

− 1 ,

Q2 =
1
2
(3x2 − 1) ln

x + 1
x− 1

− 3
2

x , ...
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4.2 Static solution

The corresponding function γ can be calculated by quadratures and its gen-
eral expression has been explicitly derived in [8]. The most important special
cases contained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1
2

ln
x2 − 1
x2 − y2 ,

and the Erez-Rosen metric [9]

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1
2

ln
x2 − 1
x2 − y2 + ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters
that determines an infinite set of mass multipole moments.
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5 Stationary generalization

The solution generating techniques [12] can be applied, in particular, to any
static seed solution in order to obtain the corresponding stationary general-
ization. One of the most powerful techniques is the inverse method (ISM)
developed by Belinski and Zakharov [13]. We used a particular case of the
ISM, which is known as the Hoenselaers–Kinnersley-Xanthopoulos (HKX)
transformation to derive the stationary generalization of the general static
solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω 6= 0) with line element

ds2 = f (dt−ωdϕ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1− E
1 + E

,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1− y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmet-
ric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx]x + [(1− y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1− y2)ξ2
y] .
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5 Stationary generalization

This equation is invariant with respect to the transformation x ↔ y. Then,
since the particular solution

ξ =
1
x
→ Ω = 0→ ω = 0→ γ =

1
2

ln
x2 − 1
x2 − y2

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact
solution. Furthermore, if we take the linear combination ξ−1 = c1x + c2y and
introduce it into the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a
M

y , σ =
√

M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.

In the case of the Einstein-Maxwell theory, the main field equations can be
expressed as

(ξξ∗ − FF∗ − 1)∇2ξ = 2(ξ∗∇ξ − F∗∇F)∇ξ ,

(ξξ∗ − FF∗ − 1)∇2F = 2(ξ∗∇ξ − F∗∇F)∇F
where ∇ represents the gradient operator in prolate spheroidal coordinates.
Moreover, the gravitational potential ξ and the electromagnetic F Ernst po-
tential are defined as

ξ =
1− f − iΩ
1 + f + iΩ

, F = 2
Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromag-
netic potentials At and Aϕ One can show that if ξ0 is a vacuum solution, then
the new potential

ξ = ξ0

√
1− e2

represents a solution of the Einstein-Maxwell equations with effective elec-
tric charge e. This transformation is known in the literature as the Harrison
transformation [10]. Accordingly, the Kerr–Newman solution in this repre-
sentation acquires the simple form

ξ =

√
1− e2

σ
M x + i a

M y
, e =

Q
M

, σ =
√

M2 − a2 −Q2 .
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5.2 Representation as a nonlinear sigma model

In this way, it is very easy to generalize any vacuum solution to include the
case of electric charge. More general transformations of this type can be used
in order to generate solutions with any desired set of gravitational and elec-
tromagnetic multipole moments [11].

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let M be coordinatized by xa, and N by Xµ, so
that the metrics on M and N can be, in general, smooth functions of the cor-
responding coordinates, i.e., γ = γ(x) and G = G(X). A harmonic map is a
smooth map X : M → N, or in coordinates X : x 7−→ X so that X becomes
a function of x, and the X’s satisfy the motion equations following from the
action [14]

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.2.1)

which sometimes is called the “energy” of the harmonic map X. The straight-
forward variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν ∂bXλ = 0 , (5.2.2)

where Γµ
νλ are the Christoffel symbols associated to the metric Gµν of the

target space N. If Gµν is a flat metric, one can choose Cartesian-like coor-
dinates such that Gµν = ηµν = diag(±1, ...,±1), the motion equations be-
come linear, and the corresponding sigma model is linear. This is exactly
the case of a bosonic string on a flat background in which the base space is
the 2-dimensional string world-sheet. In this case the action (5.2.1) is usually
referred to as the Polyakov action [16].

Consider now the case in which the base space M is a stationary axisym-
metric spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-
Papapetrou metric (4.1.1), i.e.

γab =


f 0 0 − f ω

0 − f−1e2k 0 0
0 0 − f−1e2k 0
− f ω 0 0 f ω2 − ρ2 f−1

 . (5.2.3)
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5 Stationary generalization

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν,
µ, ν = 1, 2, and let the coordinates on N be Xµ = ( f , Ω). Then, it is straight-
forward to show that the action (5.2.1) becomes

S =
∫

L dtdϕdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
,

(5.2.4)
and the corresponding motion equations (5.2.2) are identical to the main field
equations (4.1.3) and (4.1.4).

Notice that the field equations can also be obtained from (5.2.4) by a direct
variation with respect to f and Ω. This interesting result was obtained orig-
inally by Ernst [2], and is the starting point of what today is known as the
Ernst representation of the field equations.

The above result shows that stationary axisymmetric gravitational fields
can be described as a (4 → 2)−nonlinear harmonic map, where the base
space is the spacetime of the gravitational field and the target space corre-
sponds to a 2-dimensional conformally Euclidean space. A further analy-
sis of the target space shows that it can be interpreted as the quotient space
SL(2, R)/SO(2) [15], and the Lagrangian (5.2.4) can be written explicitly [17]
in terms of the generators of the Lie group SL(2, R). Harmonic maps in which
the target space is a quotient space are usually known as nonlinear sigma
models [14].

The form of the Lagrangian (5.2.4) with two gravitational field variables,
f and Ω, depending on two coordinates, ρ and z, suggests a representation
as a harmonic map with a 2-dimensional base space. In string theory, this
is an important fact that allows one to use the conformal invariance of the
base space metric to find an adequate representation for the set of classical
solutions. This, in turn, facilitates the application of the canonical quantiza-
tion procedure. Unfortunately, this is not possible for the Lagrangian (5.2.4).
Indeed, if we consider γab as a 2-dimensional metric that depends on the pa-
rameters ρ and z, the diagonal form of the Lagrangian (5.2.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front

of the Lagrangian. Therefore, the reduced gravitational Lagrangian (5.2.4)
cannot be interpreted as corresponding to a (2 → n)-harmonic map. Never-
theless, we will show in the next section that a modification of the definition
of harmonic maps allows us to “absorb” the unpleasant factor ρ in the met-
ric of the target space, and to use all the advantages of a 2-dimensional base
space.
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5.3 Representation as a generalized harmonic map

Notice that the representation of stationary fields as a nonlinear sigma
model becomes degenerate in the limiting case of static fields. Indeed, the
underlying geometric structure of the SL(2, R)/SO(2) nonlinear sigma mod-
els requires that the target space be 2-dimensional, a condition which is not
satisfied by static fields. We will see below that by using a dimensional exten-
sion of generalized sigma models, it will be possible to treat the special static
case, without affecting the underlying geometric structure.

The analysis performed in this section for stationary axisymmetric fields
can be generalized to include any gravitational field containing two com-
muting Killing vector fields [1]. This is due to the fact that for this class of
gravitational fields it is always possible to find the corresponding Ernst rep-
resentation in which the Lagrangian contains only two gravitational variables
which depend on only two spacetime coordinates.

5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let xa and Xµ be coordinates on M and N, re-
spectively. This coordinatization implies that in general the metrics γ and
G become functions of the corresponding coordinates. Let us assume that
not only γ but also G can explicitly depend on the coordinates xa, i.e. let
γ = γ(x) and G = G(X, x). This simple assumption is the main aspect of our
generalization which, as we will see, lead to new and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized har-
monic map if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 ,

(5.3.1)
which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.2)

with respect to the fields Xµ. Here the Christoffel symbols, determined by
the metric Gµν, are calculated in the standard manner, without considering
the explicit dependence on x. Notice that the new ingredient in this general-
ized definition of harmonic maps, i.e., the term Gµν(X, x) in the Lagrangian
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5 Stationary generalization

density implies that we are taking into account the “interaction” between the
base space M and the target space N. This interaction leads to an extra term
in the motion equations, as can be seen in (5.3.1). It turns out that this inter-
action is the result of the effective presence of the gravitational field.

Notice that the limiting case of generalized linear harmonic maps is much
more complicated than in the standard case. Indeed, for the motion equations
(5.3.1) to become linear it is necessary that the conditions

γab(Γµ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.3.3)

be satisfied. One could search for a solution in which each term vanishes sep-
arately. The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which
would imply Γµ

νλ = 0, is not allowed, because it would contradict the as-
sumption ∂bGµν 6= 0. Nevertheless, a flat background metric in curvilinear
coordinates could be chosen such that the assumption Gµλ∂bGµν = 0 is ful-
filled, but in this case Γµ

νλ 6= 0 and (5.3.3) cannot be satisfied. In the general
case of a curved target metric, conditions (5.3.3) represent a system of m first
order nonlinear partial differential equations for Gµν. Solutions to this system
would represent linear generalized harmonic maps. The complexity of this
system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.3.2) includes an inter-
action between the base space N and the target space M, reflected on the
fact that Gµν depends explicitly on the coordinates of the base space. Clearly,
this interaction must affect the conservation laws of the physical systems we
attempt to describe by means of generalized harmonic maps. To see this ex-
plicitly we calculate the covariant derivative of the generalized Lagrangian
density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.4)

and replace in the result the corresponding motion equations (5.3.1). Then,
the final result can be written as

∇bT̃ b
a = − ∂L

∂xa (5.3.5)
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5.3 Representation as a generalized harmonic map

where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.3.6)
The standard conservation law is recovered only when the Lagrangian does
not depend explicitly on the coordinates of the base space. Even if we choose
a flat base space γab = ηab, the explicit dependence of the metric of the target
space Gµν(X, x) on x generates a term that violates the standard conservation
law. This term is due to the interaction between the base space and the target
space which, consequently, is one of the main characteristics of the general-
ized harmonic maps introduced in this work.

An alternative and more general definition of the energy-momentum ten-
sor is by means of the variation of the Lagrangian density with respect to the
metric of the base space, i.e.

Tab =
δL

δγab . (5.3.7)

A straightforward computation shows that for the action under consideration
here we have that T̃ab = 2Tab so that the generalized conservation law (5.3.5)
can be written as

∇bT b
a +

1
2

∂L

∂xa = 0 . (5.3.8)

For a given metric on the base space, this represents in general a system of m
differential equations for the “fields” Xµ which must be satisfied “on-shell”.

If the base space is 2-dimensional, we can use a reparametrization of x to
choose a conformally flat metric, and the invariance of the Lagrangian den-
sity under arbitrary Weyl transformations to show that the energy-momentum
tensor is traceless, T a

a = 0.
In Section 5.1 we described stationary, axially symmetric, gravitational fields

as a (4 → 2)−nonlinear sigma model. There it was pointed out the conve-
nience of having a 2-dimensional base space in analogy with string theory.
Now we will show that this can be done by using the generalized harmonic
maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the
coordinates on the base space M, and Xµ = ( f , Ω) the coordinates on the
target space N. In the base space we choose a flat metric and in the target
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space a conformally flat metric, i.e.

γab = δab and Gµν =
ρ

2 f 2 δµν (a, b = 1, 2; µ, ν = 1, 2). (5.3.9)

A straightforward computation shows that the generalized Lagrangian (5.3.4)
coincides with the Lagrangian (5.2.4) for stationary axisymetric fields, and
that the equations of motion (5.3.1) generate the main field equations (4.1.3)
and (4.1.4).

For the sake of completeness we calculate the components of the energy-
momentum tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.3.10)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.3.11)

This tensor is traceless due to the fact that the base space is 2-dimensional. It
satisfies the generalized conservation law (5.3.8) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1
2

∂L

∂ρ
= 0 , (5.3.12)

dTρz

dρ
−

dTρρ

dz
= 0 . (5.3.13)

Incidentally, the last equation coincides with the integrability condition for
the metric function k, which is identically satisfied by virtue of the main field
equations. In fact, as can be seen from Eqs.(4.1.5,4.1.6) and (5.3.10,5.3.11),
the components of the energy-momentum tensor satisfy the relationships
Tρρ = ∂ρk and Tρz = ∂zk, so that the conservation law (5.3.13) becomes an
identity. Although we have eliminated from the starting Lagrangian (5.2.4)
the variable k by applying a Legendre transformation on the Einstein-Hilbert
Lagrangian (see [17] for details) for this type of gravitational fields, the for-
malism of generalized harmonic maps seems to retain the information about
k at the level of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be
represented as a (2 → 2)−generalized harmonic map with metrics given as
in (5.3.9). It is also possible to interpret the generalized harmonic map given
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5.3 Representation as a generalized harmonic map

above as a generalized string model. Although the metric of the base space
M is Euclidean, we can apply a Wick rotation τ = iρ to obtain a Minkowski-
like structure on M. Then, M represents the world-sheet of a bosonic string
in which τ is measures the time and z is the parameter along the string. The
string is “embedded” in the target space N whose metric is conformally flat
and explicitly depends on the time parameter τ. We will see in the next sec-
tion that this embedding becomes more plausible when the target space is
subject to a dimensional extension. In the present example, it is necessary to
apply a Wick rotation in order to interpret the base space as a string world-
sheet. This is due to the fact that both coordinates ρ and z are spatial coordi-
nates. However, this can be avoided by considering other classes of gravita-
tional fields with timelike Killing vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmet-
ric fields are the asymptotically flat solutions. Asymptotic flatness imposes
conditions on the metric functions which in the cylindrical coordinates used
here can be formulated in the form

lim
xa→∞

f = 1 + O
(

1
xa

)
, lim

xa→∞
ω = c1 + O

(
1
xa

)
, lim

xa→∞
Ω = O

(
1
xa

)
(5.3.14)

where c1 is an arbitrary real constant which can be set to zero by appropri-
ately choosing the angular coordinate ϕ. If we choose the domain of the
spatial coordinates as ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic
flatness conditions it follows that the coordinates of the target space N satisfy
the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.3.15)

where the dot stands for a derivative with respect to ρ and the prime rep-
resents derivation with respect to z. These relationships are known in string
theory [16] as the Dirichlet and Neumann boundary conditions for open strings,
respectively, with the extreme points situated at infinity. We thus conclude
that if we assume ρ as a “time” parameter for stationary axisymmetric grav-
itational fields, an asymptotically flat solution corresponds to an open string
with endpoints attached to D−branes situated at plus and minus infinity in
the z−direction.
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5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target
space N, and study the conditions under which this dimensional extension
does not affect the field equations of the gravitational field. Consider an
(m → D)−generalized harmonic map. As before we denote by {xa} the
coordinates on M. Let {Xµ, Xα} with µ = 1, 2 and α = 3, 4, ..., D be the
coordinates on N. The metric structure on M is again γ = γ(x), whereas
the metric on N can in general depend on all coordinates of M and N, i.e.
G = G(Xµ, Xα, xa). The general structure of the corresponding field equa-
tions is as given in (5.3.1). They can be divided into one set of equations for
Xµ and one set of equations for Xα. According to the results of the last sec-
tion, the class of gravitational fields under consideration can be represented
as a (2 → 2)−generalized harmonic map so that we can assume that the
main gravitational variables are contained in the coordinates Xµ of the target
space. Then, the gravitational sector of the target space will be contained in
the components Gµν (µ, ν = 1, 2) of the metric, whereas the components Gαβ

(α, β = 3, 4, ..., D) represent the sector of the dimensional extension.
Clearly, the set of differential equations for Xµ also contains the variables

Xα and its derivatives ∂aXα. For the gravitational field equations to remain
unaffected by this dimensional extension we demand the vanishing of all the
terms containing Xα and its derivatives in the equations for Xµ. It is easy to
show that this can be achieved by imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.4.1)

That is to say that the gravitational sector must remain completely invariant
under a dimensional extension, and the additional sector cannot depend on
the gravitational variables, i.e., Gαβ = Gαβ(Xγ, xa), γ = 3, 4, ..., D. Further-
more, the variables Xα must satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 .

(5.4.2)
This shows that any given (2→ 2)−generalized map can be extended, with-
out affecting the field equations, to a (2→ D)−generalized harmonic map.
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It is worth mentioning that the fact that the target space N becomes split in
two separate parts implies that the energy-momentum tensor Tab = δL/δγab

separates into one part belonging to the gravitational sector and a second one
following from the dimensional extension, i.e. Tab = Tab(Xµ, x) + Tab(Xα, x).
The generalized conservation law as given in (5.3.8) is satisfied by the sum of
both parts.

Consider the example of stationary axisymmetric fields given the metrics
(5.3.9). Taking into account the conditions (5.4.1), after a dimensional exten-
sion the metric of the target space becomes

G =


ρ

2 f 2 0 0 · · · 0
0 ρ

2 f 2 0 · · · 0
0 0 G33(Xα, x) · · · G3D(Xα, x)
. . · · · · · · · · ·
0 0 GD3(Xα, x) · · · GDD(Xα, x)

 . (5.4.3)

Clearly, to avoid that this metric becomes degenerate we must demand that
det(Gαβ) 6= 0, a condition that can be satisfied in view of the arbitrariness
of the components of the metric. With the extended metric, the Lagrangian
density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ , (5.4.4)

which nevertheless does not affect the field equations for the gravitational
variables f and Ω. On the other hand, the new fields must be solutions of the
extra field equations(

∂2
ρ + ∂2

z

)
Xα + Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
(5.4.5)

+ Gαγ
(

∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 . (5.4.6)

An interesting special case of the dimensional extension is the one in which
the extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with addi-
tional fields Xα given as arbitrary harmonic functions. This choice opens the
possibility of introducing a “time” coordinate as one of the additional dimen-
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sions, an issue that could be helpful when dealing with the interpretation of
gravitational fields in this new representation.

The dimensional extension finds an interesting application in the case of
static axisymmetric gravitational fields. As mentioned in Section 4.1, these
fields are obtained from the general stationary fields in the limiting case Ω =
0 (or equivalently, ω = 0). If we consider the representation as an SL(2, R)/SO(2)
nonlinear sigma model or as a (2 → 2)−generalized harmonic map, we see
immediately that the limit Ω = 0 is not allowed because the target space
becomes 1-dimensional and the underlying metric is undefined. To avoid
this degeneracy, we first apply a dimensional extension and only then calcu-
late the limiting case Ω = 0. In the most simple case of an extension with
Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the met-
rics γab = δab and

G =

(
ρ

2 f 2 0
0 1

)
(5.4.7)

where the additional dimension is coordinatized by an arbitrary harmonic
function which does not affect the field equations of the only remaining grav-
itational variable f . This scheme represents an alternative method for explor-
ing static fields on nondegenerate target spaces. Clearly, this scheme can be
applied to the case of gravitational fields possessing two hypersurface or-
thogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as
a string “living” in a D-dimensional target space N. The string world-sheet is
parametrized by the coordinates ρ and z. The gravitational sector of the tar-
get space depends explicitly on the metric functions f and Ω and on the pa-
rameter ρ of the string world-sheet. The sector corresponding to the dimen-
sional extension can be chosen as a (D− 2)−dimensional Minkowski space-
time with time parameter τ. Then, the string world-sheet is a 2-dimensional
flat hypersurface which is “frozen” along the time τ.

5.5 The general solution

If we take as seed metric the general static solution, the application of two
HXK transformations generates a stationary solution with an infinite number
of gravitoelectric and gravitomagnetic multipole moments. The HKX method
is applied at the level of the Ernst potential from which the metric functions
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can be calculated by using the definition of the Ernst potential E and the
field equations for γ. The resulting expressions in the general case are quite
cumbersome. We quote here only the special case in which only an arbitrary
quadrupole parameter is present. In this case, the result can be written as

f =
R
L

e−2qP2Q2 ,

ω = −2a− 2σ
M

R
e2qP2Q2 ,

e2γ =
1
4

(
1 +

M
σ

)2 R
x2 − y2 e2γ̂ , (5.5.1)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1− y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1− α2e2q(δ++δ−))b+ ,

γ̂ =
1
2
(1 + q)2 ln

x2 − 1
x2 − y2 + 2q(1− P2)Q1 + q2(1− P2)

[
(1 + P2)(Q2

1 −Q2
2)

+
1
2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 −Q′2)
]

. (5.5.2)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

a± = x(1− α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,
b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1
2

ln
(x± y)2

x2 − 1
+

3
2
(1− y2 ∓ xy) +

3
4
[x(1− y2)∓ y(x2 − 1)] ln

x− 1
x + 1

,

the quantity α being a constant

α =
σ−M

a
, σ =

√
M2 − a2 . (5.5.3)

The physical significance of the parameters entering this metric can be clar-
ified by calculating the Geroch-Hansen [18, 19] multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.5.4)
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M0 = M , M2 = −Ma2 +
2
15

qM3
(

1− a2

M2

)3/2

, ... (5.5.5)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1− a2

M2

)3/2

, .... (5.5.6)

The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn)
multipole moments is a consequence of the symmetry with respect to the
equatorial plane. From the above expressions we see that M is the total mass
of the body, a represents the specific angular momentum, and q is related to
the deviation from spherical symmetry. All higher multipole moments can
be shown to depend only on the parameters M, a, and q.

We analyzed the geometric and physical properties of the above solution.
The special cases contained in the general solution suggest that it can be used
to describe the exterior asymptotically flat gravitational field of rotating body
with arbitrary quadrupole moment. This is confirmed by the analysis of the
motion of particles on the equatorial plane. The quadrupole moment turns
out to drastically change the geometric structure of spacetime as well as the
motion of particles, especially near the gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM)
spacetime which is a generalization of Kerr spacetime, including an arbitrary
quadrupole. Our results show [20] that a deviation from spherical symme-
try, corresponding to a non-zero electric quadrupole, completely changes the
structure of spacetime. A similar behavior has been found in the case of the
Erez-Rosen spacetime. In fact, a naked singularity appears that affects the
ergosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into non simply-connected regions. All these changes occur near the
naked singularity which is situated at x = 1, a value that corresponds to the
radial distance r = M +

√
M2 − a2 in Boyer-Lindquist coordinates. In the

limiting case a/M > 1, the multipole moments and the metric become com-
plex, indicating that the physical description breaks down. Consequently,
the extreme Kerr black hole represents the limit of applicability of the QM
spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we
can conclude that the QM metric can be used to describe their exterior grav-
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itational field. Two alternative situations are possible. If the characteristic
radius of the body is greater than the critical distance M +

√
M2 − a2, i.e.

x > 1, the exterior solution must be matched with an interior solution in or-
der to describe the entire spacetime. If, however, the characteristic radius of
the body is smaller than the critical distance M +

√
M2 − a2, the QM metric

describes the field of a naked singularity.
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6 Kerr solution with higher
multipoles: the equatorial plane

6.1 Introduction

One of the most important practical applications of general relativity is the
Global Positioning System (GPS), the most advanced navigation system known
today. It consists essentially in a set of artificial satellites freely falling in the
gravitational field of the Earth. To determine the location of any point on the
Earth by using the method of triangulation, it is necessary to know the exact
position of several satellites at a given moment of time. This means that the
path of each satellite must be determined as exact as possible. In fact, due to
the accuracy expected from the GPS, specially for navigation purposes, it is
necessary to take into account relativistic effects for the determination of the
satellites trajectories and the gravitational field of the Earth. This method is
therefore essentially based upon the use of the geodesic equations of motion
for each satellite. Moreover, it is necessary to consider the fact that accord-
ing to special and general relativity clocks inside the satellites run differently
than clocks on the Earth surface. Indeed, it is known that not taking rela-
tivistic effects into account would lead to an error in the determination of the
position which could grow up to 10 kilometers per day.

The curvature seems to be an alternative way to determine the position
of any point on the surface of the Earth. Indeed, if we could measure the
curvature of the spacetime around the Earth, and from it the corresponding
metric, one could imagine that the determination of the position of the satel-
lites could be carried out in a different way. Maybe this method could be
more efficient and more accurate. To this end, it is necessary to measure the
curvature of spacetime. Several devices have been proposed for this pur-
pose. The five-point curvature detector [24] consists of four mirrors and a
light source. By measuring the distances between all the components of the
detector, it is possible to determine the curvature. Another method uses a
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local orthonormal frame which is Fermi-Walker propagated along a geodesic
[27]. A gyroscope is directed along each vector of the frame so that the rela-
tive acceleration will allow the determination of the curvature components.
The gravitational compass [28] is a tetrahedral arrangement of springs with
test particles on each vertex. Using the geodesic deviation equation, from the
strains in the springs it is possible to infer the components of the curvature.
More recently, a generalized geodesic deviation equation was derived which,
when applied to a set of test particles, can be used to measure the components
of the curvature tensor [29].

It seems therefore to be now well established that the curvature can be mea-
sured by using different devices that are within the reach of modern technol-
ogy. The question arises whether it is possible to obtain the metric from a
given curvature tensor. This is the problem we will address in this work. In
Sec. 6.2, we study a particular matrix representation of the curvature ten-
sor which allows us to calculate its eigenvalues in a particularly simple way.
Petrov’s classification is used to represent the curvature matrix in terms of its
eigenvalues. In Sec. 6.3, we use Cartan’s formalism to derive all the algebraic
and differential equations which must be combined and integrated to deter-
mine the components of the metric from the components of the curvature.
As particular examples, we present the Schwarzschild, Taub-NUT and Kas-
ner metrics with cosmological constant. All the components of the metric are
found explicitly in terms of the components of the curvature tensor. It turns
out that for a given vacuum solution it is possible to find several generaliza-
tions which include the cosmological constant.

6.2 Matrix representation of the curvature tensor

There are several ways to represent and study the properties of the curva-
ture tensor. Here, we will use a method which is based upon the formalism
of differential forms and the matrix representation of the curvature tensor.
The reason is simple. Imagine an observer in a gravitational field. Locally,
the observer can introduce a set of four vectors ea to perform measurements
and experiments. Although it is possible to choose the direction of each vec-
tor arbitrarily, the most natural choice would be to construct an orthonormal
system, i.e., ea ⊗ eb = ηab = diag(+1,−1,−1,−1). Of course, the observer
could also choose a local metric which depends on the point. Nevertheless,
the choice of a constant local metric facilitates the process of carrying out
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measurements in space and time. This choice is also in the spirit of the equiv-
alence principle which states that locally it is always possible to introduce a
system in which the laws of special relativity are valid. The set of vectors ea
can be used to introduce a local frame ϑa by using the orthonormality condi-
tion eacϑb = δb

a , where c is the internal product. The set of 1-forms ϑa deter-
mines a local orthonormal tetrad that is the starting point for the construction
of the formalism of differential forms which is widely used in general relativ-
ity.

There is an additional advantage in choosing a local orthonormal frame.
General relativity is a theory constructed upon the assumption of diffeomor-
phism invariance, i.e, it is invariant with respect to arbitrary changes of co-

ordinates xµ → xµ′ such that J = det
(

∂xµ′

∂xµ

)
6= 0. Once a local orthonormal

frame ϑa is chosen, the only freedom which remains is the transformation
ϑa → ϑa′ = Λa′

aϑa, where Λa′
a is a Lorentz transformation, satisfying the con-

dition Λa′
aΛa′ b = ηab. This means that the diffeomorphism invariance reduces

locally to the Lorentz invariance, which is easier to be handled.
In the local orthonormal frame, the line element can be written as

ds2 = gµνdxµ ⊗ dxν = ηabϑa ⊗ ϑb , (6.2.1)

with
ϑa = ea

µdxµ . (6.2.2)

The components ea
µ are called tetrad vectors, and can be used to relate tetrad

components with coordinate components. For instance, the components of
the metric are given in terms of the tetrad vectors by gµν = ea

µeb
νηab. The ex-

terior derivative of the local tetrad is given in terms of the connection 1−form
ωab as [23]

dηab = ωab + ωba . (6.2.3)

Since the local metric is constant, the above expression vanishes, indicating
that the connection 1−form is antisymmetric. Furthermore, the first structure
equation

dϑa = −ωa
b ∧ dϑb , (6.2.4)

can be used to calculate all the components of the connection 1−form. Finally,
the curvature 2−form is defined as

Ωa
b = dωa

b + ωa
c ∧ωc

b (6.2.5)
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in terms of a connection. In this differential form representation, the Ricci
and Bianchi identities can be expressed as

Ωa
b ∧ ϑb = 0 , dΩa

b + ωa
c ∧Ωc

b −Ωa
c ∧ωc

b = 0 , (6.2.6)

respectively.
The curvature 2−form can be decomposed in terms of the canonical basis

ϑa ∧ ϑb as
Ωa

b =
1
2

Ra
bcdϑc ∧ ϑd , (6.2.7)

where Ra
bcd are the components of the Riemann curvature tensor in the tetrad

representation.
It is well known that the curvature tensor can be decomposed in terms of

its irreducible parts which are the Weyl tensor [21]

Wabcd = Rabcd + 2η[a|[cRd]|b] +
1
6

Rηa[dηc]b , (6.2.8)

the trace-free Ricci tensor

Eabcd = 2η[b|[cRd]|a] −
1
2

Rηa[dηc]b , (6.2.9)

and the curvature scalar

Sabcd = −1
6

Rηa[dηc]b , (6.2.10)

where we use the following convention for the components of the Ricci ten-
sor:

Rab = ηcdRcabd . (6.2.11)

Due to the symmetry properties of the components of the curvature tensor,
it is possible to represent it as a (6×6)-matrix by introducing the bivector
indices A, B, ... which encode the information of two different tetrad indices,
i.e., ab → A. We follow the convention used in [23] which establishes the
following correspondence between tetrad and bivector indices

01→ 1 , 02→ 2 , 03→ 3 , 23→ 4 , 31→ 5 , 12→ 6 . (6.2.12)

This correspondence can be applied to all the irreducible components of the
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Riemann tensor given in Eqs.(6.2.8)–(6.2.10). Then, the bivector representa-
tion of the Riemann tensor reads

RAB = WAB + EAB + SAB , (6.2.13)

with

WAB =

(
M N
N −M

)
, (6.2.14)

EAB =

(
P Q
Q −P

)
, (6.2.15)

SAB = − R
12

(
I3 0
0 −I3

)
. (6.2.16)

Here M, N and P are (3× 3) real symmetric matrices, whereas Q is anti-
symmetric.

We see that the bivector representation of the curvature is in fact given in
terms of the (3×3)-matrices M, N, P, Q and the scalar R, suggesting an equiv-
alent representation in terms of only (3×3)-matrices. Indeed, since (6.2.13)
represents the irreducible pieces of the curvature with respect to the Lorentz
group SO(3, 1) and, in turn, this group is isomorphic to the group SO(3, C),
it is possible to introduce a local complex basis where the curvature is given
as a (3×3)-matrix. This is the SO(3, C)-representation of the Riemann tensor
[21, 22]:

R = W + E + S , (6.2.17)
W = M + iN , (6.2.18)
E = P + iQ , (6.2.19)
S = 1

12 R I3 . (6.2.20)

In this representation, Einstein’s equations can be written as algebraic equa-
tions. Consider, for instance, a vacuum spacetime for which E = 0 and S = 0.
Then, the vanishing of the Ricci tensor in terms of the components of the
Riemann tensor corresponds to the algebraic condition

Tr(W) = 0 , WT = W . (6.2.21)
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6 Kerr solution with higher multipoles: the equatorial plane

In general, from Einstein’s equations in the presence of matter

Rab −
1
2

Rηab + Ληab = −κTab , (6.2.22)

we find that
R = 4Λ + κT , T = ηabTab , (6.2.23)

and the components of the curvature tensor satisfy the relationships

ηcdRcabd = κTab +
(

Λ +
κ

2
T
)

ηab . (6.2.24)

It is then easy to see that the following curvature tensor

S =
1

12
(4Λ + κT)diag(1, 1, 1) , (6.2.25)

E =
κ

2

 T11 − T00 +
1
2 T T12 − iT03 T13 + iT02

T12 − iT03 T22 − T00 +
1
2 T T23 − iT01

T13 − iT02 T23 + iT01 T33 − T00 +
1
2 T

 , (6.2.26)

W arbitrary (3× 3)−matrix with Tr(W) = 0 , WT = W , (6.2.27)

satisfies Einstein’s equations identically. Thus, we see that the matrix W has
only ten independent components, the matrix E is hermitian with nine inde-
pendent components and the scalar piece S has only one component.

The energy-momentum tensor determines completely only the trace-free
Ricci tensor and the scalar curvature. The Weyl tensor contains in general
ten independent components. However, since the local tetrad ϑa is defined
modulo transformations of the Lorentz group SO(3, 1), we can use the six
independent parameters of the Lorentz group to fix six components of the
Weyl tensor. Accordingly, we can use the eigenvalues of the matrix W to
write the four remaining parameters in the form

W
I
=

 a1 + ib1
a2 + ib2

−a1 − a2 − i(b1 + b2)

 . (6.2.28)

In fact, this is the most general case of a Weyl tensor, and corresponds to a
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type I curvature tensor in Petrov’s classification. If the eigenvalues of the
matrix W are degenerate, then a2 = a1 = a and b2 = b1 = b and therefore

W
D
=

 a + ib
a + ib

−2a− 2ib

 , (6.2.29)

which represents a type D curvature tensor.
In general, all the eigenvalues can depend on the coordinates xµ of the

spacetime. The real part of the eigenvalues a1 and a2 represent the gravi-
toelectric part of the curvature, whereas the imaginary part b1 and b2 corre-
spond to the gravitomagnetic field, i.e., the gravitational field generated by
the motion of the source.

6.3 Integration of Cartan’s structure equations

Our aim now is to show that for a given curvature tensor it is possible to in-
tegrate Cartan’s equation in order to compute the components of the metric.
To this end, it is necessary to rewrite Cartan’s equations so that the depen-
dence on the spacetime coordinates becomes explicit. First, let us introduce
the components of the anholonomic connection Γa

bc by means of the relation-
ship

ωa
b = Γa

bcϑc , (6.3.1)

and the condition Γabc = −Γbac. Then, from the definition of the connection
1−form, we obtain

ea
[µ,ν] = Γa

bce b
[ν e c

µ] , (6.3.2)

which represents a differential equation for the components of the tetrad vec-
tors ea

µ. Here, the square brackets denote antisymmetrization. On the other
hand, the exterior derivative of the curvature 2−form yields

dΩa
b =

1
2

(
Ra

bcd,µe µ
e + 2Ra

b f dΓ f
ec

)
ϑe ∧ ϑc ∧ ϑd , (6.3.3)

which together with

dΩa
b =

1
2

(
R f

bedΓa
f c

)
ϑe ∧ ϑc ∧ ϑd , (6.3.4)
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6 Kerr solution with higher multipoles: the equatorial plane

leads to the following equation

Ra
b[cd,|µ|e

µ
e = Ra

f [cdΓ f
|b|e] − Ra

b[cdΓ f
| f |e] − 2Ra

b f [cΓ f
de] . (6.3.5)

This equation represents an algebraic relationship between the components
of the tetrad vectors ea

µ and the components of the connection 1−form Γa
bc.

Finally, the components of the curvature tensor can be expressed in terms
of the anholonomic components of the connection as

1
2

Ra
bcd = Γa

b[d,|µ|e
µ

c + Γa
beΓ

e
[cd] + Γa

e[cΓe
|b|d] , (6.3.6)

which can be considered as a system of partial differential equations for the
components of the connection with the components of the curvature and the
tetrad vectors as variable coefficients.

To integrate Cartan’s equations we proceed as follows. First, we consider
the 20 particular independent equations (6.3.6) together with the 18 equa-
tions which follow from Eq.(6.3.5). The idea is to obtain from here all the
24 anholonomic components of the connection Γa

bc. Then, this result is used
as input to solve the 24 independent equations which follow from Eq.(6.3.2).
This procedure leads to a large number of equations which are complicated to
be handled. They have been analyzed with some detail in [11]. Here, we will
limit ourselves to quoting the some of the final results obtained previously.

6.4 Type D metrics

Consider a type D curvature tensor with eigenvalue a + ib, and suppose that

a = a(x3) , b = b(x3) , (6.4.1)

i.e., we assume that the curvature depends on only one spatial coordinate.
Furthermore, it is well known that type D spacetimes can have a maximum
of four Killing vector fields. Then, we will consider spacetimes with two
Killing vector fields which can be taken along the coordinates x0 and x1; con-
sequently,

gµν,0 = gµν,1 = 0 , gµν,0 =
∂gµν

∂x0 . (6.4.2)
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6.4 Type D metrics

This means that the only relevant spatial direction should be x3. Therefore,
we can use the diffeomorphism invariance of general relativity in order to
bring four metric components into any desired form. We then assume that

g30 = g31 = g32 = 0 , g33 = g33(x3) . (6.4.3)

In terms of the local tetrad, the above assumption implies that

ϑ3 =
√

g33dx3 = e3
3̇dx3 , (6.4.4)

where the dot denotes coordinate indices. As a consequence we have that

dϑ3 = 0 , (6.4.5)

which implies that six components of the tetrad vectors vanish, namely,

e0
3̇ = e1

3̇ = e2
3̇ = e3

0̇ = e3
1̇ = e3

2̇ . (6.4.6)

This means that we now have a system of only ten components of ea
µ that are

unknown. On the other hand, the vanishing of the exterior derivative of ϑ3

implies that
Γ3

[ab] = 0 , (6.4.7)

which drastically simplifies the set of differential equations for the compo-
nents of the connection. A detailed analysis of the resulting equations shows
that it is convenient to consider particular cases which are obtained for dif-
ferent choices of some components of the connection. In fact, it turns out that
the choices

Γ1
21 = 0 , Γ1

23 6= 0 (6.4.8)

and
Γ1

21 6= 0 , Γ1
23 = 0 (6.4.9)

lead to completely different solutions which we will analyze in the following
subsections.

It is then possible to show that with these simplifying assumptions, we can
integrate the set of partial differential equations. Several arbitrary functions
arise in the tetrad vectors which can then be absorbed by means of coordinate
transformations.
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6 Kerr solution with higher multipoles: the equatorial plane

6.4.1 Schwarzschild and Taub-NUT metrics

The particular choice
Γ1

21 6= 0 , Γ1
23 = 0 (6.4.10)

leads to a compatible set of algebraic and differential equations which allow
us to calculate all the components of the tetrad vectors. We present the final
results without the details of calculations which can be consulted in [22].

Consider, for instance, the following curvature tensor in the SO(3, C) rep-
resentation:

R = −M
r3 diag(1, 1,−2) +

Λ
3

diag(1, 1, 1) , (6.4.11)

where r = x3. Then, the integration of all the differential equations yields

e3
3̇

(
α− 2M

r
− Λ

3
r2
)−1/2

, e2
2̇ = r , e1

2̇ = rF1
2̇ , (6.4.12)

e0
ṁ = C0

ṁ

(
α− 2M

r
− Λ

3
r2
)1/2

, e0
2̇ = F0

2̇

(
α− 2M

r
− Λ

3
r2
)1/2

, (6.4.13)

where m = 0, 1, α and C0
ṁ are arbitrary real constants and F0

2̇ and F1
2̇ are non-

zero functions of the coordinate x2. It is then possible to find a coordinate
system in which the above tetrad vector components lead to the line element

ds2 =

(
α− 2M

r
− Λ

3
r2
)

dt2− dr2

α− 2M
r −

Λ
3 r2
− r2(dθ2 + sin2 θdφ2) , (6.4.14)

which represents the Schwarzschild-de-Sitter spacetime.

Consider now a curvature tensor with gravitoelectric and gravitomagnetic
components:

R = − M + iP
(r + iC)3 diag(1, 1,−2) +

Λ
3

diag(1, 1, 1) , (6.4.15)

where P and C are arbitrary real constants. It is then possible to show that
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6.4 Type D metrics

the result of the integration leads to a line element of the form

ds2 = ∆1(dt + 2C cos θdφ)2 − dr2

∆1
− (r2 + C2)

(
∆2 sin2 θdφ2 +

dθ2

∆2

)
,

(6.4.16)
with

∆1 = (r2 + C2)

[
P
C
(r2 − C2)− 2Mr− Λ

3
(r2 + C2)2

]−1

, (6.4.17)

∆2 =
P
C
+

4
3

ΛC2 . (6.4.18)

Different choices of the parameters P and C lead to different particular so-
lutions of Einstein’s equations. For instance, the choice

P = l
(

1− 4
3

Λl2
)

, C = l (6.4.19)

corresponds to the Taub-NUT metric with cosmological constant [25], where
l is the NUT parameter. Furthermore, the choice

P = kl
(

1− 4
3

Λl2
)

, C = l , k = −1, 0,+1 (6.4.20)

is known as the Cahen-Defrise spacetime [26].

The Taub-NUT metric is obtained for the choice P = l and C = l with
Λ = 0. It is then possible to obtain several different generalizations which
include the cosmological constant. In fact, the simplest choice corresponds to
P = C = l and the cosmological constant entering only the scalar part of the
curvature. Other generalizations are obtained by choosing the free parameter
P as a polynomial in Λ, for instance,

C = l , P = l
(

c1 + c2Λl2 + c3Λ2l4 + ...
)

, (6.4.21)

where c1, c2, etc. are dimensionless constants. Another example is obtained
for the choice

P = l , C = l
(

c1 + c2Λl2 + c3Λ2l4 + ...
)

. (6.4.22)
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6 Kerr solution with higher multipoles: the equatorial plane

All these examples generalize the Taub-NUT metric to include the cosmo-
logical constant. In principle, all of them should represent different physical
configurations since they all differ in the behavior of the Weyl tensor. This
opens the possibility of analyzing anti-de-Sitter spacetimes which are equiv-
alent from the point of view of the scalar curvature, but different from the
point of view of the Weyl curvature.

We conclude that in the particular case analyzed here the method presented
above can be used to generate new solutions of Einstein’s equations with
cosmological constant.

6.4.2 Generalized Kasner metrics

Another particular choice of the connection components given by

Γ1
21 = 0 , Γ1

23 6= 0 (6.4.23)

leads to a set of algebraic and differential equations which can be integrated
completely for a curvature tensor with only gravitomagnetic components,
i.e.,

R = a(x3)diag(1, 1,−2) +
Λ
3

diag(1, 1, 1) . (6.4.24)

Indeed, after applying a series of coordinate transformations, the correspond-
ing line element can be expressed as

ds2 = |a0|
|3a0−Λ

2 |
2/3 dt2 − (a′0)

2

2|a0|(3a0−Λ
2 )

2 dr2

− 1

|3a0−Λ
2 |

2/3 (dX2 + dY2) , (6.4.25)

with
a0 = a +

Λ
2
< 0 , (6.4.26)

and the prime represents derivation with respect to r = x3. Here we see that
the metric can be calculated immediately from the gravitoelectric component
of the curvature a(r). Several particular metrics can be written down. We
quote only the metric that follows from the eigenvalue

a = − γ

r2β
− Λ

3
, (6.4.27)
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6.4 Type D metrics

where γ and β are real constants. For this case, we obtain

ds2 =
(

γ− Λ
6 r2β

)
r−2β/3dt2 − 2

9 β2
(

γ− Λ
6 r2β

)−1
r2(β−1)dr2

−r4β/3(dX2 + dY2) . (6.4.28)

In the limiting case Λ = 0, we obtain for each value of β a particular case of
the Kasner metric [1]. In general, the above line element represents a gener-
alization of the Kasner space which includes the cosmological constant. We
see that in this particular case we have chosen a curvature eigenvalue which
contains the cosmological constant explicitly. This has been done in order
to obtain a simple expression for the Kasner metric with Λ. However, one
can always change in the function a(r) the term containing the cosmologi-
cal constant, in order to obtain different solutions. The simplest spacetime
would correspond to the one in which the Weyl tensor does not depend on
the cosmological constant, i.e.,

a = − γ

r2β
, (6.4.29)

for which we obtain the generalized Kasner metric

ds2 =

∣∣∣− γ

r2β +
Λ
2

∣∣∣∣∣∣− 3γ

r2β +Λ
∣∣∣2/3 dt2 − 2β2γ2

r2(2β+1)
∣∣∣− γ

r2β +
Λ
2

∣∣∣(− 3γ

r2β +Λ
)2 dr2

− 1∣∣∣− 3γ

r2β +Λ
∣∣∣2/3

(
dX2 + dY2) . (6.4.30)

This particular choice seems to be more complicated than the solution (6.4.28);
however, from a physical point of view it corresponds to the simplest choice
in which the Weyl tensor is not affected by the presence of the cosmological
constant.

We see that it is possible to obtain several generalizations of the Kasner
metric with cosmological constant and, in principle, each of them should cor-
respond to a different physical configuration.
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6.5 Conclusions

In this work, we presented a method to calculate the components of the met-
ric tensor from the components of the Riemann curvature tensor. We use
the formalism of differential forms and Cartan’s structure equations in order
to calculate explicitly the algebraic and differential equations that relate the
components of the local tetrad vectors with the components of the connection
1−form and the curvature 2−form.

We integrate the differential equations for the case of a type D curvature
tensor in Petrov’s classification which is characterized by only one complex
eigenvalue. We found that for a given curvature eigenvalue, it is possible to
obtain different metrics, depending on some assumptions made for the com-
ponents of the connection 1−form. For the computation of explicit examples,
we assume that the curvature eigenvalue depends on only one spatial coor-
dinate. This simplifies the set of differential equations and allows us to carry
out the integration completely. We obtain as concrete examples two classes of
spacetimes. The first class contains the Schwarzschild metric, the Taub-NUT
metric and several generalizations which include the cosmological constant.
The second class contains a family of particular Kasner spacetimes with cos-
mological constant.

The main result of the present work is that is possible to obtain the metric
from the curvature. Furthermore, we found that for any given vacuum space-
time, we can apply the procedure presented in this work to obtain different
generalizations which include the cosmological constant. This means that
solutions of Einstein’s equations with cosmological constant are not unique.
The main physical difference between different spacetimes with cosmologi-
cal constant is reflected in the Weyl tensor which behaves differently for each
metric.

The concrete examples of curvature analyzed in this work involve terms
with gravitoelectric monopole (mass parameter) and gravitomagnetic mono-
pole (NUT parameter) only. In the case of an astrophysical gravitational
source, a more realistic situation involves higher mass and angular momen-
tum multipole moments. It is then easy to see that if we consider the Weyl
tensor in the form

W = −
∞

∑
n=1

mn

r2n+1 diag(1, 1,−2) , (6.5.1)
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the integration of the structure equations can be performed in a way similar
to the one used to obtain the Schwarzschild and the Taub-NUT metrics. The
explicit metric components can be computed by using the general formula
presented here and in [11]. The resulting metric will contain the parameters
mn which correspond to higher mass multipole moments. In this way, one
could generate exact solutions with a prescribed set of multipoles. In a re-
alistic situation, for instance in the case of the Earth, one would need only a
limited number of moments mn, whose values can be from the measurement
of the curvature components.

To take into account higher gravitomagnetic moments, it will be probably
necessary to generalize the method presented here. Indeed, the presence of
rotational moments implies that the curvature must depend on at least two
spatial coordinates (a radial and an angular coordinate). In addition, it will
probably necessary to consider not only type D, but also type I Weyl ten-
sors. In this case, we need to construct a more general method than the one
presented here. However, if we fix the angular coordinate and consider, for
instance, the equatorial plane of the gravitational source, the curvature will
depend only on the radial distance and it will be possible to consider a Weyl
tensor of the form

W = −
∞

∑
n=1

mn + ijn
r2n+1 diag(1, 1,−2) , (6.5.2)

where the parameters jn represent the multipoles of the curvature generated
by the rotation of the source. Of course, this would be only an approxima-
tion of a realistic compact object since the dependence on the angular coordi-
nate is completely neglected. However, since in the case of an object like the
Earth, the deviations from spherical symmetry due to rotation are very small,
one could expect that this equatorial plane approximation would lead results
with a good degree of accuracy.

We conclude that the method presented in this work can be used, in prin-
ciple, to generate particular metrics, describing the gravitational field of re-
alistic compact objects. It would be interesting to investigate this problem
in detail in the case of the Earth, to study the possibility of developing new
navigation systems by using as input the curvature of the spacetime around
our planet.
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7 The Newman-Janis Ansatz

7.1 Introduction

Stationary solutions in general relativity are very important in the context of
relativistic astrophysics. If we assume axial symmetry in vacuum, the Kerr
solution [30] describes the exterior gravitational field of a rotating stationary
configuration. A major open problem in classical general relativity is to find
an exact interior solution that could be matched with the exterior Kerr geom-
etry. Soon after the discovery of the Kerr solution, Newman and Janis [31]
showed an algorithm for obtaining the Kerr solution from the Schwarzschild
solution. The Newman-Janis Ansatz (NJA) can be interpreted as a complex
coordinate transformation that acts on the Schwarzschild metric for deriving
the Kerr solution. The same method has been used to obtain a Kerr-NUT
solution [32] and a solution of the Einstein-Maxwell equations [33], start-
ing from the Schwarzschild and the Reissner-Nordström metric, respectively.
The NJA was investigated in general by Talbot [34] who proposed the first
explanation for its success. Demianski [25] proved that the Taub-NUT metric
with cosmological constant is the most general solution of Einstein’s equa-
tions with cosmological constant that can be generated by using the NJA. Of
course, the reasons why such a method does work can be traced to the be-
havior of Einstein equations [35, 36]. Moreover, at the level of the curvature
tensor it is also possible to apply complex transformations to generate new
solutions [22, 37].

The NJA was generalized by Herrera and Jiménez [38] to include the case
of static spherically symmetric interior solutions in order to generate station-
ary interior spacetimes. Several interior Kerr solutions have been obtained
by employing this method. For example, in [39] an interior trial solution was
obtained which is characterized by a pressure that diverges at the origin of
coordinates. In [40], several rotating neutral and charged solutions were ob-
tained, describing the interior field of non-perfect fluids. The case of rotating
spacetimes for anisotropic fluids with shear viscosity and heat flux was ana-
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lyzed in detail in [41, 42], obtaining some particular solutions whose exterior
counterpart is unknown, however. In [43], the extension of the NJA was ap-
plied to static spacetimes, like the incompressible Schwarzschild interior. The
same method can be applied to obtain interior metrics which match a general
stationary vacuum spacetime, provided the starting static metric is physically
reasonable. Moreover, in [44], the field equations for anisotropic fluids were
presented in an Ernst-like form which leads to a precise method for gener-
ating interior solutions. It turns out that, when applied to static spherically
symmetric interior solutions, the extension of the NJA always destroys the
perfect-fluid property [45]; nevertheless, in the case of a pure gravitomagnetic
Weyl tensor, the perfect-fluid property can be preserved [46]. Although it has
been argued [47] that the NJA would work only in Einstein’s theory. More-
over, the application of the NJA to spherically symmetric solutions of alter-
native gravity theories has been shown to lead to pathologies in the resulting
axially symmetric spacetimes [48]. Nevertheless, it has found applications to
obtain rotating higher dimensional spacetimes [49], non-commutative black
holes [50, 51], loop black holes [52], regular black holes [53, 55] and worm-
holes [54]. Moreover, a generalization of the NJA was proposed which in-
cludes the transformation of a particular gauge field [56].

The main objective of the present work is to apply the NJA to comfor-
mastatic spacetimes and, in particular, to the Schwarzschild exterior met-
ric in isotropic coordinates. We follow the original terminology introduced
by Synge [57], according to which stationary spacetimes with a conformally
flat space of orbits constitute the conformastationary spacetimes, and con-
formastatic spacetimes comprises the static subset. Several exact solutions
belonging to this class have been derived in a series of recent works [58, 59,
60, 61] which are interpreted as describing the gravitational and magnetic
fields of static and rotating thin disks. In this work, we start from a general
conformastatic metric from which a stationary metric is obtained whose main
physical are also analyzed.

7.2 Vacuum conformastatic spacetimes

Consider the following conformastatic line element in spherical coordinates
xα = (t, r, θ, ϕ):

ds2 = V2dt2 −U4(dr2 + r2dθ2 + r2 sin2 θdϕ2) . (7.2.1)
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In general, the functions U and V can depend on all spatial coordinates. For
the sake of simplicity, however, in this work we focus on the simple case in
which these functions depend on the radial coordinate r, only. A straightfor-
ward computation leads to the following expressions

R1
1 = (2rUrVr + rUVrr + 2UVr)/(rU5V), (7.2.2)

R2
2 = (4rUVUrr − 4rVU2

r − 2rUUrVr + rU2Vrr + 4UVUr)/(rU6V), (7.2.3)

R3
3 = R4

4 = (2rUVUrr + 2rVU2
r + 2rUVrUr + 6UVUr + U2Vr)/(rU6V),

(7.2.4)

where Rα
β are the components of the Ricci tensor. In vacuum, it is easy to

show that the above system reduces to

∇2U = 0, ∇ · (U2∇V) = 0, (7.2.5)

where ∇ is the usual gradient operator in spherical coordinates. Thus, U is
a harmonic function. Having U, the second equation in (7.2.5) gives V. It is
easy to prove that the only possible functional dependence V = V[U] is of the
form V = −kU−1 with k =constant. However, with this kind of relationship
between U and V the only possible solution for the complete system Rα

β = 0
is the trivial solution. So, in general, the functions U and V are not related.

Is not easy to find functions U and V satisfying the above system. How-
ever, the following solution does exist

U = c +
b
r

, V =
cr− b
cr + b

, (a, b constants), (7.2.6)

which is equivalent to one of the most important solutions of Einstein’s equa-
tions, namely, the exterior Schwarzschild solution in isotropic coordinates [1]

U = 1 +
m
2r

, V =
2r−m
2r + m

, (7.2.7)

corresponding to c = 1 and b = m/2.

The NJA is usually applied to obtain new stationary solutions from vac-
uum static solutions. We will follow the same idea in this work. Indeed, we
will assume that we have two functions U(r) and V(r) that satisfy the vac-
uum conformastatic field equations (7.2.5). We will call this set of functions
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the seed solution. Our goal is to apply the NJA to a seed solution and to inves-
tigate the physical properties of the resulting metrics. In particular, we will
be interested in finding explicitly the metric resulting from the Schwarzschild
seed solution in order to compare our results with the ones obtained origi-
nally by Newman and Janis.

7.3 The Newman-Janis Ansatz

In this section, we apply the NJA to a general conformastatic spacetime given
by the line element (7.2.1) with the metric functions U and V satisfying the
vacuum field equations (7.2.5). Following the procedure presented originally
in [31], we introduce the outgoing Eddington-Finkelstein coordinates (u, r∗)
by means of

u = t− r∗, dr∗ =
U2

V
dr . (7.3.1)

Then, the line element (7.2.1) can be written as

ds2 = V2du2 + 2U2Vdu dr− r2U4(dr2 + r2dθ2 + r2 sin2 θdϕ2). (7.3.2)

To apply the NJA to this line element, we introduce the complex null tetrad

gαβ = lαnβ + nαlβ −mαm̄β − m̄αmβ,

lα = δα
r , nα =

1
U2V

δα
u −

1
2U4 δα

r , (7.3.3)

mα =
1√

2U2r
δα

θ −
i√

2U2r sin θ
δα

r ,

where lαlα = mαmα = nαnα = lαmα = mαnα = 0 and lαnα = −mαm̄α = 1.
Complex conjugation is denoted by a bar over the corresponding quantity.
Now, we perform the complex transformation

r → r̃ = r + ia cos θ, u→ ũ = u− ia cos θ, (7.3.4)
{U(r), V(r)} → {M(r, θ; a), N(r, θ; a)}

where the transformed functions M and N are demanded to be real and to
satisfy the condition lima→0{M, N} = {U, V}. Thus, the null tetrad (7.3.3)
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transforms into

lα = δα
r , (7.3.5)

nα =
1

M2N
δα

u −
1

2M4 δα
r , (7.3.6)

mα =
(r− ia cos θ)√

2M2(r2 + a2 cos2 θ)
δα

θ

+
a sin θ(ir + a cos θ)√
2M2(r2 + a2 cos2 θ)

(δα
u − δα

r )

+
(ir + a cos θ)√

2M2r sin θ(r2 + a2 cos2 θ)
δα

ϕ.

From here, we obtain the transformed inverse metric

guu = − a2 sin2 θ

M4(r2 + a2 cos2 θ)
, gur =

1
M2N

+
a2 sin2 θ

M4(r2 + a2 cos2 θ)
, (7.3.7)

guϕ = − a
M4(r2 + a2 cos2 θ)

, grr = − 1
M4 −

a2 sin2 θ

M4(r2 + a2 cos2 θ)
, (7.3.8)

grϕ =
a

M4(r2 + a2 cos2 θ)
, gθθ = − 1

M4(r2 + a2 cos2 θ)
(7.3.9)

gϕϕ = − a
M4(r2 + a2 cos2 θ) sin2 θ

,

and the corresponding line element in Eddington-Finkelstein coordinates

ds2 = N2du2 + 2M2Ndu dr + 2a(M2N − N2) sin2 θdu dϕ

− 2aM2N sin2 θdr dϕ−M4(r2 + a2 cos2 θ)dθ2

−
[
a2(2M2N − N2) sin2 θ + M4(r2 + a2 cos2 θ)

]
sin2 θdϕ2. (7.3.10)

Now, if we choose the transformed functions as

M(r, θ) = U(r) and N(r, θ) =
U2(r2 + a2 cos2 θ)

r2U2

V + a2 cos2 θ
(7.3.11)

and introduce Boyer-Lindquist (BL) like coordinates by means of the coordi-
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nate transformation

du = dt−
r2U2

V + a2

r2 + a2 dr, dϕ = dφ− a
r2 + a2 dr , (7.3.12)

the metric generated by the NJA reduces to

ds2 =
U4(r2 + a2 cos2 θ)2

(a2 cos2 θ + r2U2

V )2
dt2 +

2aU4(r2 + a2 cos2 θ)( r2U2

V − r2) sin2 θ

(a2 cos2 θ + r2U2

V )2
dt dφ

− U4(r2 + a2 cos2 θ)

a2 + r2 dr2 −U4(r2 + a2 cos2 θ)dθ2

−U4(r2 + a2 cos2 θ) sin2 θ

[
1 + a2 sin2 θ

(2r2U2

V − r2 + a2 cos2 θ)

(a2 cos2 θ + r2U2

V )2

]
dφ2,

(7.3.13)

where, as we mentioned above, U(r) and V(r) are a solution of the Einstein
vacuum equations for a conformastatic spacetime. Notice that the above met-
ric can also be obtained as a particular case from Eq.(7.3.13) of Ref. [53] where
a general static metric is analyzed. To this end, it is necessary to choose the
metric functions as

G(r) = V2(r), H(r) =
r2

F(r)
, F(r) =

1
U4(r)

, (7.3.14)

K =
r2U2

V
, ψ = U4(r2 + a2 cos2 θ) . (7.3.15)

For our purposes, however, we rewrite the new metric (7.3.13) as

ds2 =
V2ρ2

Σ2

[
dt2 − 2a

r2

ρ

(
1− U2

V

)
sin2 θdtdφ + a2

(
1− 2ΣU2

ρV

)
sin4 θdφ2

]
−U4ρ

[
dr2

r2 + a2 + dθ2 + sin2 θdφ2
]

, (7.3.16)

with
ρ = r2 + a2 cos2 θ , Σ = r2 + a2 cos2 θ

V
U2 . (7.3.17)

Notice that in the limit a → 0, the generalized metric reduces to the seed
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metric (7.2.1). Therefore, the parameter a can be interpreted as responsible
for the stationarity of the spacetime and, consequently, should be associated
with the rotation of the gravity source.

7.4 Physical interpretation

The generalized metric (7.3.16) is clearly stationary; however, it is not con-
formastationary. This implies that the NJA does not preserve the conformal
invariance in this case. Moreover, if we impose the vacuum field equations
for the functions (7.2.5) U and V, one can show that the corresponding Ein-
stein tensor does not vanish; instead, we compute the following structure

Gαβ =


Gtt 0 0 Gtφ
0 Grr Grθ 0
0 Grθ Gθθ 0

Gtφ 0 0 Gφφ

 . (7.4.1)

It follows that in the case of vacuum comformastatic spacetimes the NJA
leads in general to non-vacuum stationary spacetimes.

To investigate the physical interpretation of the spacetimes generated in
this manner, we proceed as it is customary in the case of conformastatic and
conformastic metrics, namely, we search for the conditions under which the
above Einstein tensor can be interpreted as corresponding to a perfect-fluid
source possibly endowed with an electromagnetic field [58] in such a way
that it could describe the field of a disk-halo configuration.

7.4.1 The linearized limit

For the sake of simplicity, we consider first the approximate linearized limit in
which quadratic terms in a can be neglected. Since the parameter a is related
to the rotation of the source, we can expect that in the limiting case of slow
rotation the resulting solution is related to the Lense-Thirring solution [1]

ds2 =

(
1− 2m

r

)
dt2 − 4ma

sin2 θ

r
dtdφ− dr2

1− 2m
r
− r2(dθ2 + sin2 θdφ2) .

(7.4.2)
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The non-diagonal term corresponds to the gravitational field generated by
the rotation of the source.

The generalized metric (7.3.16) reduces in this case to

ds2 = V2
[

dt2 − 2a
(

1− U2

V

)
sin2 θdtdφ

]
−U4

(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
.

(7.4.3)
If the metric functions satisfy the conditions limr→∞ U = ±1 and limr→∞ V =
1, the spacetime is asymptotically flat, implying that the source of gravity is
located in a limited region of spacetime. A direct calculation of the Einstein
tensor shows that in general it is non-vanishing. For the sake of concreteness,
let us consider the Schwarzschild metric (7.2.7) as the seed solution. Then,
the only non-vanishing component of the Einstein tensor is

Gtφ = 32
am2r(2r2 + 3mr−m2) sin2 θ

(2 r + m)6 (2 r−m)
, (7.4.4)

Remarkably, all the component Gtt vanishes in this limit. This means that
there is no energy density to be interpreted as the source of gravity. This
makes difficult the interpretation of this approximate solution. In fact, one
can try to identify the component Gtφ as due to a particular magnetic distri-
bution in Einstein-Maxwell theory, i.e., satisfying the equations

Gαβ =
1

4π

(
FαµFβνgµν − 1

4
gαβgµλgδνFµδFλν

)
, (7.4.5)

where Fαβ is the Faraday tensor which can be expressed in terms of the elec-
tromagnetic potential Aα as Fαβ = Aα,β − Aβα. One can prove that starting
from a general magnetic potential Aφ(r) there is no real solution for the com-
ponents of the Faraday tensor such that the approximate Einstein-Maxwell
equations (7.4.5) are satisfied.

If the parameter a, induced by the NJA, would be related only to the sta-
tionary rotation of the gravitational source, we would obtain in the linearized
limit the Lense-Thirring metric in vacuum or its magnetic generalization.
The results presented above show that this is not the case. We can nev-
ertheless force the equivalence for particular cases. Indeed, we see that at
the pole θ = 0, the Einstein tensor component (7.4.4) vanishes. However,
along the poles the Lense-Thirring metric predicts no gravitational influence
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due to the rotation and, consequently, this particular value corresponds to
the original Schwarzschild metric. The additional particular case for which
2r2 + 3mr−m2 = 0 leads to a radius value located inside the horizon which
is, therefore, unphysical because it cannot be detected by an observer located
outside the horizon. Thus, we see that it is not possible to recover the Lense-
Thirring metric in any particular case.

7.4.2 A relativistic fluid

The non-diagonal structure of the Einstein tensor (7.4.1) for the general sta-
tionary metric indicates that it cannot be interpreted as a perfect fluid. More-
over, a straightforward calculation of its trace shows that it is in general dif-
ferent from zero, indicating that the identification with the electromagnetic
Maxwell tensor is possible only in very special cases. Let us therefore con-
sider the general case of a relativistic fluid whose energy-momentum tensor
is given by

Tαβ = (µ + P)VαVβ − Pgαβ + QαVβ + QβVα + Παβ, (7.4.6)

where µ and P represent the energy and pressure, respectively, the worldlines
of the fluid are integral curves of the 4-velocity vector field Vα, the heat flux
vector is Qβ, and Παβ represents the viscosity tensor. Notice that Qβ, and
Παβ are transverse to the worldlines of the fluid in the sense that QαVα =
QαVα = 0, and ΠαβVα = 0. If a particular solution of Einstein’s equations
is described by the energy-momentum tensor (7.4.6), we may say that the
gravitational field is generated by a source in which µ, P, Qα and Παβ are the
energy density, the isotropic pressure, the heat flux and the anisotropic tensor
of the source. Thus, it is straightforward to see that

µ = TαβVαVβ, (7.4.7)

P =
1
3
HαβTαβ, (7.4.8)

Qα = TαβVβ − µVα, (7.4.9)

Παβ = H
µ

α H ν
β (Tµν − PHµν), (7.4.10)

where the projection tensor is defined by Hαβ ≡ VαVβ − gαβ.
In order to interpret the solution generated by the NJA, we first rewrite the
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metric (7.3.13) as

ds2 = Adt2 + 2Bdtdφ− ψ

a2 + r2 dr2 − ψdθ2 − Cdφ2 , (7.4.11)

where

A ≡ ψ(r2 + a2 cos2 θ)

(K + a2 cos2 θ)2 , B ≡ aψ sin2 θ(K− r2)

(K + a2 cos2 θ)2 ,

C ≡
ψ sin2 θ

[
(K + a2)2 − a2 sin2 θ(r2 + a2)

]
(K + a2 cos2 θ)2 , ψ ≡ U4(r2 + a2 cos2 θ) , K ≡ r2U2

V
.

It is convenient to introduce a suitable reference frame in terms of an or-
thonormal tetrad for a local observer in the form

Vα =

{√
A, 0, 0,

B√
A

}
, (7.4.12)

Kα =

{
0, −

√
ψ√

a2 + r2
, 0, 0

}
, (7.4.13)

Lα =
{

0, 0 −
√

ψ, 0, 0
}

, (7.4.14)

Mα =

{
0, 0 0, −

√
B2 + AC√

A

}
. (7.4.15)

with the corresponding dual tetrad

Vα =

{
1√
A

, 0, 0, 0
}

, (7.4.16)

Kα =

{
0,

√
a2 + r2
√

ψ
, 0, 0

}
, (7.4.17)

Lα =

{
0, 0,

1√
ψ

, 0
}

, (7.4.18)

Mα =

{
− B√

A(B2 + AC)
, 0 0,

√
A√

B2 + AC

}
. (7.4.19)

It is easy to see that VαVα = −KαKα = −LαLα = −MαMα = 1 and that
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VαKα = VαLα = VαMα = KαLα = KαMα = LαMα = 0.

The idea now is to verify if Einstein’s equations, Gαβ = 8πTαβ, which for
the particular Einstein tensor (7.4.1) and the energy-momentum tensor (7.4.6)
lead to an algebraic system of equations, can be solved in a consistent manner
and without imposing additional conditions on the components of Gαβ. To
this end, we use the constitutive equations (7.4.7) - (7.4.10) and Eq.(7.4.1).
First, we can write the energy density and the pressure of the fluid as

µ =
Gtt

A
(7.4.20)

and

P =
Gtt − AG

3A
, (7.4.21)

respectively, where G = G α
α . These quantities must satisfy the correspond-

ing energy conditions to be physically meaningful. Furthermore, the heat
function is given by

Qα =
(AGtφ − BGtt)δ

φ
α

A3/2 , (7.4.22)

indicating the heat flux occurs only along the azimuthal direction. Finally,
the non-zero components of the anisotropic tensor are

Πrr = Grr −
ψ

3(a2 + r2)A
Gtt +

ψ

3(a2 + r2)
G, (7.4.23)

Πθθ = Gθθ −
ψ

3A
Gtt +

ψ

3
G, (7.4.24)

Πrθ = Grθ, (7.4.25)

Πφφ = Gφφ +
2B2 − AC

3A2 Gtt −
2B
A

Gtφ +
B2 + AC

3A
G, (7.4.26)

(7.4.27)

In terms of the components of the local orthonormal tetrad, the anisotropic
tensor can be decomposed as

Παβ = PrKαKβ + Pθ LαLβ + PφMαMβ + PT(LαKβ + LβKα) , (7.4.28)
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where

Pr =
a2 + r2

ψ
Grr −

1
3A

Gtt +
1
3

G,

Pθ =
1
ψ

Gθθ −
1

3A
Gtt +

1
3

G,

Pφ =
A

B2 + AC
Gφφ +

2B2 − AC
3A(B2 + AC)

Gtt −
2B

B2 + AC
Gtφ +

1
3

G,

PT =

√
a2 + r2

ψ
,

represent the values of the anisotropic pressure in different spatial directions.
Notice that P ≡ Pr + Pθ + Pφ = 0 and, consequently, the trace Πα

α = 0.
Notice also that to get a fluid without heat flux it is mandatory that AGtφ −
BGtt = 0, a condition which in general is not satisfied. Even if we consider
the particular metric generated from the Schwarzschild metric in isotropic
coordinates, the heat flux cannot be made to vanish.

We see that the NJA generates in this case metrics with properties that are
completely different from the properties of the starting seed metric. Consider,
for instance, the Schwarzschild metric as seed solution. The NJA generates
a non-vacuum solution for a relativistic fluid in which the heat flux is non-
trivial and all the components of the anisotropic pressure are different from
zero. It is interesting to consider in this case the limit m → 0 with a 6= 0. The
obtained solution has a non-trivial form, but a straightforward computation
shows that its curvature tensor vanishes. This an essential logical test which
shows that there is no pressure and heat flux without mass. Nevertheless,
the resulting solution has a quite complicated physical interpretation which
somehow is not exactly the idea of NJA.

7.5 Conclusions

The NJA was proposed more that half a century ago as a method to obtain
the rotating Kerr solution from the static Schwarzschild solution, but it has
also been shown to work for the Reissner-Nordström metric from which the
Kerr-Newman solution is generated. It has been used extensively to generate
stationary perfect-fluid solutions from static ones. Despite its success, the rea-
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son why the NJA works is still unknown. In fact, as it is used today, it can be
understood as an Ansatz or as a trick. To upgrade the NJA to the status of an
algorithm or a genuine method to generate new solutions of Einstein’s equa-
tions, it must be described as an exact mathematical formalism that allows
us to understand why it can be used to generate new solutions. The results
obtained in the present work can be interpreted as an indication that the NJA
is just a trick that happens to work under very particular circumstances.

In fact, we first applied the NJA to conformastatic vacuum metrics in the
hope that we could generate conformastationary vacuum solutions. Our re-
sults show that this is not possible. Although the resulting metric has a non-
diagonal term which is usually associated with the rotation of the source, it
does not preserve the conformal symmetry of the static case. Moreover, the
resulting metric does not satisfy Einstein’s equations in vacuum. To analyze
the physical significance of the metric generated by the NJA, we compare its
Einstein tensor with the energy-momentum tensor for a relativistic fluid with
anisotropic pressure and heat flux. We proved that in general all the physical
quantities determining the fluid can be identified in a consistent manner with
the non-zero components of the Einstein tensor. If we consider the particular
case of the Schwarzschild metric as seed solution, all the physical quantities
of the generated relativistic fluid satisfy the physical condition of vanishing
as m→ 0, independently of the value of the rotational parameter a.

We thus see that the NJA does not generate the vacuum Kerr metric from
the Schwarzschild metric in isotropic coordinates. Even in the limiting case of
small a, the resulting linearized solution cannot be identified as the vacuum
Lense-Thirring metric. This implies that the NJA depends on the choice of
coordinates. We interpret this result as indication that the NJA cannot be con-
sidered as an algorithm; instead, it should be interpreted as a trick that hap-
pens to work well for particular solutions in spherical coordinates. Recently,
in [62], an additional negative fact about the NJA was observed, namely, that
in the context of modified gravity theories it leads to pathologies in the re-
sulting metrics and that it should not be used to generate rotating black holes
outside general relativity. In the present work, we show that even within gen-
eral relativity it should be used with caution to construct black hole solutions,
because it depends on the coordinates used for the construction.
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8 On the gravitational field of Hot
White Dwarf Stars

8.1 Introduction

The no-hair theorems for black holes state that in general relativity only a
finite number of multipole moments are necessary to describe black holes,
namely, mass, charge and angular momentum [87]. It is believed that during
the gravitational collapse of an arbitrary mass distribution, higher multipoles
disappear as a result of the emission of gravitational waves. One would then
expect that other compact objects like neutron stars (NSs) are characterized in
general by an infinite number of multipoles. However, some recent intrigu-
ing results seem to indicate that compact objects other than black holes are
also characterized by a finite number of multipoles.

In fact, the I−Love−Q relation states that there exists a connection be-
tween the moment of inertia, quadrupole moment and the Love numbers,
which in compact objects measure their rigidity and shape response to tidal
forces. This relation is valid independently of the equations of state (EoSs)
used to describe relativistic compact objects such as NSs and quark stars, if
the slow rotation approximation is assumed in the framework of the Hartle-
Thorne formalism [110, 98]. Similar approximate relations among multipole
moments for NSs have been also investigated in the case of both slow and
rapid rotation regimes [113, 106].

The I-Love-Q and I-Love relations, respectively, were investigated for in-
compressible and realistic stars; it was shown that the EoS-independent be-
haviour of the I-Love-Q relation can be attributed to its incompressible limit
[105, 77]. Moreover, these relations were also calculated by Pani [101] for ex-
otic objects such as thin-shell gravastars at zero temperature, without assess-
ing their validity. The nonvalidity for the thin-shell gravastars was shown for
different EoSs [109]. Nonetheless, it was established that in gravastars these
relations posses distinct features from the ones of NSs and QSs.
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More recently, the validity of the I−Love-Q relation was proven also in the
case of dark stars by Maselli et al. [99] and white dwarfs (WDs) by Boshkayev
et al. [74] at zero temperature. In the case of WDs, the Hartle-Thorne formal-
ism was implemented in Newtonian physics to integrate the field equations
together with the condition of hydrostatic equilibrium.

In the present work, we consider an additional important aspect of the
internal structure of WDs, namely, their thermodynamic behavior. In partic-
ular, we analyze in detail the effects that follow from considering finite tem-
peratures in the EoS. We will use the Hartle-Thorne formalism the validity of
which has been well established in the derivation of all physically relevant
quantities of rigidly rotating relativistic and classical objects [84, 85, 72]. The
parameters describing the structure play a paramount role in the investiga-
tion of the stability and the lifespan of WDs [67, 68, 69, 70, 71, 104, see e.g.].

It has been shown that for massive white dwarfs close to the Chandrasekhar
mass limit the effects of finite temperatures are negligible. However, for the
observed low-mass white dwarfs the effects are crucial [82]. From the astro-
physical point of view it is hard to measure the radius of a star with respect
to its mass and temperature. Hence, if we know the mass and temperature
of a WD, we can theoretically calculate its radius as it will be always differ-
ent from the cold (degenerate) case [82, 75]. Therefore, we study here the
effects that rotation along with temperature cause on the structure of WDs;
first, we consider the main physical parameters of WDs and study their de-
pendence on the density of the star for different temperature values. This
allows us to investigate in detail the I-Q, I-Love and Love-Q relations, and
to demonstrate that they are not universal. The temperature effects are suf-
ficient to break down the universality of the I−Love−Q relations. This is
shown by integrating numerically the structure equations for slowly rotating
WDs with the Chandrasekhar EoS [78, 79, 103] at different temperatures.

8.2 Formalism and stability criteria for rotating hot
white dwarfs

A general relativistic analysis of the hydrodynamic equilibrium of WDs has
established that relativistic effects lead only to small perturbations of Newto-
nian gravity [100]; consequently, the essential physical features of WDs can
be studied by using Newton’s theory. If in addition we use the Hartle-Thorne
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formalism to analyze perturbatively the structural equations, as proposed re-
cently by Boshkayev et al. [74], it is possible to explore in detail the behavior
of all the relevant physical quantities. The main idea consists in solving New-
ton’s equation

∇2Φ = 4πGρ , (8.2.1)

and the equilibrium condition

dp
dr

= −ρ
GM
r2 ,

dM
dr

= 4πr2ρ , (8.2.2)

perturbatively by expanding the radial coordinate as r = R + ξ, where R
is the radial coordinate for a spherical configuration and the function ξ(R, θ)
takes into account the deviations from spherical symmetry due to the rotation
of the star. All the relevant quantities such as the total mass M, equatorial
radius Re, moment of inertia I, angular momentum J, quadrupole moment Q,
etc. are then Taylor expanded up to the second order in the angular velocity.
Within this approximation, due to an appropriate choice of ξ, the density ρ
and pressure p can be considered as non affected by the rotation of the star.
The structural equations (8.2.1) and (8.2.2) can then be integrated numerically
to obtain all the relevant quantities in the desired approximation.

For the analysis of the structural equations it is convenient to introduce the
Keplerian angular velocity

ΩKep =

√
GM
R3

e
, (8.2.3)

because it allows us to calculate all the key parameters at the mass-shedding
limit, and to determine the stability region inside which rotating configura-
tions can exist [69].

Finally, the inverse β-decay instability determines the critical density which,
in turn, defines the onset of instability for a WD to collapse into a neutron
star. For the Chandrasekhar EoS we adopt ρcrit = 1.37× 1011 g/cm3. The in-
verse β-decay instability is crucial both for static and rotating configurations.
It represents one of the boundaries of the stability region for rotating WDs
[69, 72, 74]. According to de Carvalho et al. [82], the occurrence of the inverse
β-decay instability is not affected by the presence of temperature, i. e., it is
the same as in the degenerate approximation. This is related to the fact that
the effects of temperature are negligible in the higher density regime. For the
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sake of generality, all computations are performed for central densities up to
1012 g/cm3.

8.3 Equations of state for white dwarfs

We will use the simplest EoS for WD matter that correctly describes its main
physical properties, namely, the Chandrasekhar EoS [82, 73]. Then, the total
pressure is due to the pressure of electrons Pe, because the pressure of positive
ions PN (naked nuclei) is insignificant, whereas the energy density is due
to the energy density of nuclei EN as the energy density of the degenerate
electrons Ee is negligibly small. Thus, the Chandrasekhar EoS is given by

ECh = EN + Ee ≈ EN, (8.3.1)

PCh = PN + Pe ≈ Pe. (8.3.2)

Hence the energy density of the nuclei is given by

EN =
A
Z

Muc2ne (8.3.3)

where A is the average atomic weight, Z is the number of protons, Mu =
1.6604× 10−24 g is the unified atomic mass, c is the speed of light and ne is
the electron number density. In the following analysis, we will assume the
average molecular weight µ = A/Z = 2. In general, the electron number
density follows from the Fermi-Dirac statistics, and is determined by

ne =
2

(2πh̄)3

∫ ∞

0

4πp2dp

exp
[

Ẽ(p)−µ̃e(p)
kBT

]
+ 1

, (8.3.4)

where kB is the Boltzmann constant, µ̃e is the electron chemical potential with-
out the rest-mass, and Ẽ(p) =

√
c2p2 + m2

e c4−mec2, with p and me being the
electron momentum and rest-mass, respectively, [82].

The electron number (8.3.4) can be written in an alternative form as

ne =
8π
√

2
(2πh̄)3 m3c3β3/2 [F1/2(η, β) + βF3/2(η, β)] , (8.3.5)
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where

Fk(η, β) =
∫ ∞

0

tk
√

1 + (β/2)t
1 + et−η dt (8.3.6)

is the relativistic Fermi-Dirac integral, η = µ̃e/(kBT), t = Ẽ(p)/(kBT) and
β = kBT/(mec2) are the degeneracy parameters. Consequently, the total elec-
tron pressure for T 6= 0 K is given by

Pe =
23/2

3π2h̄3 m4
e c5β5/2 [F3/2(η, β) +

β

2
F5/2(η, β)

]
. (8.3.7)

When T = 0, for a degenerate electron gas we find from Eq. (8.3.4) that

ne =
∫ PF

e

0

2
(2πh̄)3 d3p =

(PF
e )

3

3π2h̄3 =
(mec)3

3π2h̄3 x3
e . (8.3.8)

Thus, the total electron pressure is

Pe =
1
3

2
(2πh̄)3

∫ PF
e

0

c2p2√
c2p2 + m2

e c4
4πp2dp

=
m4

e c5

8π2h̄3

[
xe

√
1 + x2

e

(
2x2

e
3
− 1
)
+ arcsinh(xe)

]
, (8.3.9)

where xe = PF
e /(mec) is the dimensionless Fermi momentum.

8.4 Results and discussion

For the sake of simplicity, throughout the paper we use a uniform temper-
ature profile for isothermal cores of WDs, i.e. WDs without outer envelop
(atmosphere). The atmosphere serves as an isolator and its effect on the struc-
ture of WDs can be neglected in this approximation. In order to justify a con-
stant temperature profile within the core, we considered the [107] equilibrium
condition for hot relativistic static stars, which is given by T/ut = constant,
where T is the local temperature and ut is the zero-component of the four-
velocity. In the case of a static star, ut = 1/

√
gtt, from which one obtains the

known Tolman law:
√

gttT = constant. So, for the usual spherically symmet-
ric metric: exp(ν/2)T = constant. In the classical limit exp(ν/2) ≈ 1−Φ/c2,
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Figure 8.1: exp(ν/2) as a function of the radial distance for a zero tempera-
ture white dwarf of mass M= 1.44M� and radius R=1000 km.
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Figure 8.2: exp(ν/2) as a function of the radial distance for a zero tempera-
ture white dwarf of mass M=0.4M� and radius R=10952 km.

where Φ = Φ(r) is the internal Newtonian gravitational potential found from
Eq. (8.2.1) and c is the speed of light in vacuum. We constructed exp(ν/2) as
a function of r/R. We then selected a white dwarf with mass 1.44M� and
radius 1000 km, as an example. As one can see from Fig. 8.1, the function
exp(ν/2) changes slightly from the center to the surface of a white dwarf
core. So, exp(ν/2) changes less than 1% from the center to the surface of the
isothermal core. This is the main argument to adopt the constant temperature
profile.

One can calculate exp(ν/2) also for a low mass white dwarf with mass
0.4M� and radius 10952 km. In Fig. 8.2, we see that exp(ν/2) changes even
less than in the previous case. Hence, for the cores of WDs the constant tem-
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Figure 8.3: Total pressure as a function of the mass density for selected tem-
peratures in the range T =

[
0, 108]K (colour online).

perature profile is a safe assumption. A further generalization of the Tolman
condition for slowly rotating stars is given by [66]. Even in that general case
the change of function exp(ν/2) turned out to be negligible for WDs.

In Fig. 8.3, we plot the total pressure Eq. (8.3.2) as a function of the total
density Eq. (8.3.1) for some selected temperatures. We conclude that the ef-
fects of temperature are essential only in the range of small densities.

In general, we assume that the slow-rotation approximation can be applied
to any realistic star with a Keplerian angular velocity. Indeed, Hartle and
Thorne [85] in their pioneering article used this approximation to investigate
the effects and deviations produced by rotation starting from massive non-
compact stars to neutron stars. The general conditions in the slow-rotation
regime are that the velocities of particles at the equatorial plane of the star
must be non-relativistic and, of course, that the fractional changes of density,
pressure, mass, radius, gravitational potential etc., due to rotation must be
smaller than in the static case. However, the most practical condition to check
the validity of the slow rotation approximation for WDs would be to compare
the mass-radius relations at the mass shedding limit within the slow-rotation
approximation with the resuls obtained by using exact numerical computa-
tions. Unfortunately, to our knowledge, for white dwarfs this problem has
not been considered yet. Some analysis of the validity of the slow approx-
imation for WDs were performed by Boshkayev et al. [see 69, Appendix D,
Fig. 9]. Here we employ the Keplerian velocity to set upper bounds for all
physical quantities as their realistic values will be between static and maxi-
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Figure 8.4: Mass versus central density (colour online).
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Figure 8.5: Radius versus central density (colour online).

mally rotating configurations. Hence, by solving the structure equations, we
construct all necessary relations along the mass shedding sequence with an-
gular velocity ΩKep.

In Fig. 8.4, the static and rotating mass of a WD is shown as a function of
the central density and temperature. Our results show that in general rotating
WDs have larger masses than their static counterparts. Due to the choice of
the scale the green and blue curves look sudden and sharp, but in reality
they are not so abrupt. The curves look sharper with respect to colder white
dwarfs, because of the pronounced effects of higher temperatures.

Fig. 8.5 shows the equatorial radius as a function of the central density and
temperature for both rotating and static WDs. The plots show that hot WDs
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Figure 8.6: Mass versus radius (colour online).

possess larger radius than cold ones. For increasing central densities, WDs
become more gravitationally bound and spherical.

Fig. 8.6 shows the mass and equatorial radius relation. Here one can see
that the mass-radius relation significantly diverges from the degenerate case
especially for lower masses and larger radii, depending on the value of the
core temperature. The relationship between the core temperature and ob-
served effective surface temperature is given via the so-called Koester rela-
tion [82]. This explains the variety of observed WDs, according to the Sloan
Digital Sky Survey Data Release. Indeed, nowadays we have data for more
than thirty two thousand WDs and all of them have diverse characteristics
[90, 91, 89, 92, 108, 88]. It should be stressed that the scale of the mass is se-
lected for the sake of generality. Indeed, so far observed WDs have masses
larger than 0.1M�.

Fig. 8.7 shows the moment of inertia as a function of the central density
for both static and rotating, cold and hot WDs. In the static case the moment
of inertia of hot WDs is larger than for cold ones, in the entire range of the
central density. This was expected as hotter WDs with similar masses will
be larger in size than colder ones. However, for rotating WDs the situation is
slightly different as hotter (larger in size) WDs cannot rotate faster than colder
(smaller in size) ones. This effect becomes more evident starting from the
value of the central density 106g/cm3. Consequently, because of the rotation,
the moment of inertia of hotter WDs will be smaller than that of colder ones.
For the normalized moment of inertia this effect is also valid in the static case
as MR2 goes up faster than the moment of inertia when temperature increases
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Figure 8.7: Moment of inertia versus central density. The legend is the same
as in Fig. 8.6(colour online).

and the EoS becomes softer, for further details see Fig.8.8.
The normalized quadrupole moment is shown as a function of the central

density in Fig. 8.9. The effect of the temperature is considerably small in
the range of densities higher than 1010 g/cm3. However, as the density di-
minishes the temperature plays a more important role, leading to a nonlinear
behaviour of the analysed quantities. For values of the central density lower
than 1010 g/cm3, the quadrupole moment strongly depends on the temper-
ature, but in general it increases in value for less massive stars. Within the
approximate interval ρc ∈ [104, 106] g/cm3 and for specific values of the tem-
perature, the quadrupole moment drastically decreases, indicating a trend
towards spherical symmetry.

The above results show that temperature can play a very important role in
the determination of the physical properties of WDs. Moreover, at first glance
it seems that the moment of inertia and the quadrupole moment correlate.
However, a deeper analysis shows a discrepancy. In Fig.8.10, we plot the di-
mensionless moment of inertia Ī = (c4 I)/(G2M3) against the dimensionless
quadrupole moment Q̄ = (c2Q)/(J2/M), where I is the physical moment
of inertia, Q is the physical mass quadrupole moment, M is the static mass
and J is the angular momentum of the WD. For the degenerate case, T = 0,
we corroborate the Ī − Q̄ relation established previously by Boshkayev et al.
[74]. As the temperature increases towards the range of realistic values the
Ī − Q̄ relation clearly breaks down. As the temperature increases, the break
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Figure 8.10: Dimensionless moment of inertia versus dimensionless
quadrupole moment (colour online).

point moves towards the region of lower quadrupole moment. This proves
that the Ī − Q̄ is no longer valid in the case of hot WDs.

We investigate the I-Love-Q relations in Figs. 8.11 and 8.12. As the tem-
perature is taken into account, the non-validity of these relations becomes
evident. We also see that as the temperature goes up, the breaking occurs at
lower values of the dimensionless tidal Love number λ̄ = (c10λ)/(G4M5).

Notice that in this approximation the moment of inertia can be expressed
as the sum of a static plus a rotational component, whereas the quadrupole
moment has only a rotational component (for the details of this decomposi-
tion, see [72]). Therefore, although in Fig. 8.10 we use Q̄ as a parameter for
the central density also in the static case, it does not mean that there is a static
quadrupole moment. Also for this reason, in Fig. 8.12 only the rotational
component of the quadrupole moment is plotted. For the sake of clarity, we
present in Table 8.1 the numerical values for the I-Love-Q relations in terms
of the central density for zero temperature white dwarf stars. Fig. 8.10 and
Fig. 8.11 illustrate the behavior of Ī and Ī + ∆ Ī as functions of Q̄, where Q̄
serves as a parameter for ρ, and λ̄, respectively. Finally, Fig. 8.12 represents
Q̄ as a function of λ̄.

From the above results, we conclude that the I-Love-Q relations proposed
by Yagi and Yunes [110] for relativistic objects are not true for hot white dwarf
stars, even in the framework of Newtonian gravity. The universality is thus
lost for larger values of the moment of inertia, quadrupole moment and tidal
Love number. In the region of smaller values of these parameters, which
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Figure 8.11: Dimensionless moment of inertia versus dimensionless tidal
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Table 8.1: I-Love-Q relations for white dwarf stars with T = 0 K. Here ρ is the
central density, Ī is the dimensionless moment of inertia for static configura-
tions, Ī + ∆ Ī is the dimensionless moment of inertia for rotating configura-
tions, Q̄ is the dimensionless quadrupole moment for rotating configurations
and λ̄ is the dimensionless tidal Love number for static configurations.

ρ (g/cm3) Ī Ī + ∆ Ī Q̄ λ̄

102 1.0×1013 1.7×1013 1.6×107 1.7×1033

103 4.8×1011 7.6×1011 3.5×106 8.2×1029

104 2.3×1010 3.5×1010 7.6×105 4.0×1026

105 1.1×109 1.7×109 1.7×105 2.2×1023

106 6.7×107 1.0×108 4.2×104 1.9×1020

107 6.2×106 9.1×106 1.3×104 4.9×1017

108 9.3×105 1.3×106 5.2×103 4.5×1015

109 1.8×105 2.4×105 2.4×103 8.2×1013

1010 3.9×104 4.9×104 1.2×103 1.8×1012

1011 8.5×103 1.0×104 5.6×102 4.0×1010

corresponds to the regime of larger densities when the degeneracy sets in,
the behaviour is almost universal as it was shown by Boshkayev et al. [74].

The non-validity of the I−Love−Q relations was also found in other stud-
ies. For instance, the breakdown of these relations was found by Doneva
et al. [83] for rapidly rotating NSs and QSs, although in the slow-rotation
approximation and at fixed rotational frequencies, one can still find roughly
EoS-independent relations. Similar results have been obtained by Pappas and
Apostolatos [102]. The I-Q relations for arbitrarily fast rotating NSs were also
considered by Chakrabarti et al. [76], where it was found that the relations can
be still universal among various EoSs for constant values of certain dimen-
sionless parameters characterizing the magnitude of the rotation. However, it
was demonstrated by Haskell et al. [86] that the universality of the relations is
lost in the presence of huge magnetic fields in NSs with rotation period larger
than 10 seconds and magnetic fields larger than 1012G. In addition, Yagi et al
[112] showed that the universality is also lost for non-compact objects when
their opacity was varied. Furthermore, the phase of the proto-NS life, in-
cluding the effects of both rotation and finite temperatures, was studied by
Martinon et al. [97]. It was shown that the I-Love-Q relations are violated in
the first second of life, but they are satisfied as soon as the entropy gradients
smooth out. Recently, it was found that the I-Q universality is broken when
thermal effects become important, independently of the presence of entropy
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gradients [96].

8.5 Conclusions

We numerically integrated the underlying differential equations in order to
determine the structure of slowly and rigidly rotating classical WDs in hy-
drostatic equilibrium. In particular, using the Chandrasekhar EoS, the rela-
tions for the mass, radius, moment of inertia, and quadrupole moment were
established as functions of the central density and temperature. All these
quantities play a crucial role in describing the equilibrium configurations of
uniformly rotating main sequence stars as well as massive stars. In partic-
ular, we proved that the temperature affects the behavior of all the physical
parameters, especially in the region of realistic temperature values. In ad-
dition, we calculated the tidal Love number and investigated the I-Love-Q
relations for rotating WDs.

It turned out that the I-Love-Q relations are not universal even within the
same EoS when the finite temperature effects are taken into account. This is
probably due to the fact that the EoS is not longer barotropic when the ther-
mal effects are included, i.e., the pressure not only depends on the density,
but also on the temperature. In a related work by Lau et al. [93], it was
found that the universality of the I-Love relation is broken when the elastic
properties of crystalline quark matter are accounted for, i.e., the universality
is observed only in perfect fluid compact objects (at zero temperature without
magnetic fields).

In view of their astrophysical relevance it would be interesting to inves-
tigate the validity of the I-Love-Q relations for WDs with different nuclear
composition and magnetic field intensity [95, 80, 81, 94, 63, 64, 65]. This will
be the issue of future studies.
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