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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman
solution that describes the gravitational and electromagnetic fields of a ro-
tating charged mass. For astrophysical purposes, however, it is necessary to
take into account the effects due to the moment of inertia of the object. To
attack this problem we investigate new exact solutions of Einstein-Maxwell
equations which posses an infinite set of gravitational and electromagnetic
multipole moments and contain the Kerr-Newman solution as special case.

In particular, we investigate the properties of static and axisymmetric vac-
uum solutions of Einstein equations which generalize the Schwarzschild spher-
ically symmetric solution to include a quadrupole parameter. We test all the
solutions with respect to elementary and asymptotic flatness and curvature
regularity. Analyzing their multipole structure, according to the relativis-
tic invariant Geroch definition, we show that all of them are equivalent up
to the level of the quadrupole. We conclude that the quadrupolar metric
(q−metric), a variant of the Zipoy-Voorhees metric, is the simplest gener-
alization of the Schwarzschild metric, containing a quadrupole parameter.
This is of particular importance for the investigation of the physical effects
due to the quadrupole moment, especially in the framework of relativistic
astrophysics.

To explore the physical characteristics of black hole spacetimes, we per-
form a detailed analysis of the properties of stationary observers located on
the equatorial plane of the ergosphere in a Kerr spacetime, including light-
surfaces. This study highlights crucial differences between black hole and
the super-spinner sources. In the case of Kerr naked singularities, the results
allow us to distinguish between “weak” and “strong ” singularities, corre-
sponding to spin values close to or distant from the limiting case of extreme
black holes, respectively. We derive important limiting angular frequencies
for naked singularities. We especially study very weak singularities as re-
sulting from the spin variation of black holes. We also explore the main
properties of zero angular momentum observers for different classes of black
hole and naked singularity spacetimes.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only
for general relativity itself, but also for the very fundamentals of physics.
It assumes this position as being the most physically relevant rotating gen-
eralization of the static Schwarzschild geometry. Its charged counterpart,
the Kerr-Newman solution, representing the exterior gravitational and elec-
tromagnetic fields of a charged rotating object, is an exact solution of the
Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt− a sin2 θdϕ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dϕ− adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2 dr2 − (r2 + a2 cos2 θ)dθ2 , (3.0.1)

where M is the total mass of the object, a = J/M is the specific angular mo-
mentum, and Q is the electric charge. In this particular coordinate system,
the metric functions do not depend on the coordinates t and φ, indicating the
existence of two Killing vector fields ξ I = ∂t and ξ I I = ∂ϕ which represent
the properties of stationarity and axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is
surrounded by two horizons situated at a distance

r± = M±
√

M2 − a2 −Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singular-
ity is present which, however, cannot be observed by any observer situated
outside the exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no
horizons are present and the Kerr–Newman spacetime represents the exterior
field of a naked singularity.
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3 Introduction

Despite of its fundamental importance in general relativity, and its theo-
retical and mathematical interest, this solution has not been especially useful
for describing astrophysical phenomena, first of all, because observed astro-
physical objects do not possess an appreciable net electric charge. Further-
more, the limiting Kerr metric takes into account the mass and the rotation,
but does not consider the moment of inertia of the object. For astrophysi-
cal applications it is, therefore, necessary to use more general solutions with
higher multipole moments which are due not only to the rotation of the body
but also to its shape. This means that even in the limiting case of a static
spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum
solution

In general relativity, stationary axisymmetric solutions of Einstein’s equa-
tions [1] play a crucial role for the description of the gravitational field of
astrophysical objects. In particular, the black hole solutions and their gener-
alizations that include Maxwell fields are contained within this class.

This type of exact solutions has been the subject of intensive research dur-
ing the past few decades. In particular, the number of know exact solutions
drastically increased after Ernst [2] discovered an elegant representation of
the field equations that made it possible to search for their symmetries. These
studies lead finally to the development of solution generating techniques [1]
which allow us to find new solutions, starting from a given seed solution. In
particular, solutions with an arbitrary number of multipole moments for the
mass and angular momentum were derived in [3] and used to describe the
gravitational field of rotating axially symmetric distributions of mass.

The first analysis of stationary axially symmetric gravitational fields was
carried out by Weyl [4] in 1917, soon after the formulation of general rela-
tivity. In particular, Weyl discovered that in the static limit the main part of
the vacuum field equations reduces to a single linear differential equation.
The corresponding general solution can be written in cylindrical coordinates
as an infinite sum with arbitrary constant coefficients. A particular choice of
the coefficients leads to the subset of asymptotically flat solutions which is
the most interesting from a physical point of view. In this section we review
the main properties of stationary axisymmetric gravitational fields. In par-
ticular, we show explicitly that the main field equations in vacuum can be
represented as the equations of a nonlinear sigma model in which the base
space is the 4-dimensional spacetime and the target space is a 2-dimensional
conformally Euclidean space.
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4 The general static vacuum solution

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, sta-
tionary axisymmetric gravitational fields are usually described in cylindric
coordinates (t, ρ, z, ϕ). Stationarity implies that t can be chosen as the time
coordinate and the metric does not depend on time, i.e. ∂gµν/∂t = 0. Con-
sequently, the corresponding timelike Killing vector has the components δ

µ
t .

A second Killing vector field is associated to the axial symmetry with respect
to the axis ρ = 0. Then, choosing ϕ as the azimuthal angle, the metric satis-
fies the conditions ∂gµν/∂ϕ = 0, and the components of the corresponding
spacelike Killing vector are δ

µ
ϕ.

Using further the properties of stationarity and axial symmetry, together
with the vacuum field equations, for a general metric of the form gµν =
gµν(ρ, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
[4, 5, 6]

ds2 = f (dt−ωdϕ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dϕ2

]
, (4.1.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements
which include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.1.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the
following set of partial differential equations

1
ρ

∂ρ(ρ∂ρ f ) + ∂2
z f +

1
f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.1.3)

1
ρ

∂ρ(ρ∂ρΩ) + ∂2
zΩ− 2

f
(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.1.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.1.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.1.6)

It is clear that the field equations for γ can be integrated by quadratures,
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4.2 Static solution

once f and Ω are known. For this reason, the equations (4.1.3) and (4.1.4)
for f and Ω are usually considered as the main field equations for stationary
axisymmetric vacuum gravitational fields. In the following subsections we
will focus on the analysis of the main field equations, only. It is interesting
to mention that this set of equations can be geometrically interpreted in the
context of nonlinear sigma models [7].

Let us consider the special case of static axisymmetric fields. This corre-
sponds to metrics which, apart from being axially symmetric and indepen-
dent of the time coordinate, are invariant with respect to the transformation
ϕ→ −ϕ (i.e. rotations with respect to the axis of symmetry are not allowed).
Consequently, the corresponding line element is given by (4.1.1) with ω = 0,
and the field equations can be written as

∂2
ρψ +

1
ρ

∂ρψ + ∂2
zψ = 0 , f = exp(2ψ) , (4.1.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.1.8)

We see that the main field equation (4.1.7) corresponds to the linear Laplace
equation for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand addi-
tionally asymptotic flatness, we obtain the Weyl solution which can be writ-
ten as [4, 1]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (4.2.1)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the
Legendre polynomials of degree n. The expression for the metric function γ
can be calculated by quadratures by using the set of first order differential
equations (4.1.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (4.2.2)
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4 The general static vacuum solution

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solution of this class. In particular,
one of the most interesting special solutions which is Schwarzschild’s spher-
ically symmetric black hole spacetime must be contained in this class. To see
this, we must choose the constants an in such a way that the infinite sum
(4.2.1) converges to the Schwarzschild solution in cylindric coordinates. But,
or course, this representation is not the most appropriate to analyze the inter-
esting physical properties of Schwarzchild’s metric.

In fact, it turns out that to investigate the properties of solutions with mul-
tipole moments it is more convenient to use prolate spheroidal coordinates
(t, x, y, ϕ) in which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.2.3)

r2
± = ρ2 + (z± σ)2 , σ = const , (4.2.4)

and the metric functions are f , ω, and γ depend on x and y, only. In this
coordinate system, the general static solution which is also asymptotically
flat can be expressed as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre func-
tions of second kind. In particular,

P0 = 1, P1 = y, P2 =
1
2
(3y2 − 1) , ...

Q0 =
1
2

ln
x + 1
x− 1

, Q1 =
1
2

x ln
x + 1
x− 1

− 1 ,

Q2 =
1
2
(3x2 − 1) ln

x + 1
x− 1

− 3
2

x , ...
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4.2 Static solution

The corresponding function γ can be calculated by quadratures and its gen-
eral expression has been explicitly derived in [8]. The most important special
cases contained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1
2

ln
x2 − 1
x2 − y2 ,

and the Erez-Rosen metric [9]

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1
2

ln
x2 − 1
x2 − y2 + ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters
that determines an infinite set of mass multipole moments.
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5 Stationary generalization

The solution generating techniques [12] can be applied, in particular, to any
static seed solution in order to obtain the corresponding stationary general-
ization. One of the most powerful techniques is the inverse method (ISM)
developed by Belinski and Zakharov [13]. We used a particular case of the
ISM, which is known as the Hoenselaers–Kinnersley-Xanthopoulos (HKX)
transformation to derive the stationary generalization of the general static
solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω 6= 0) with line element

ds2 = f (dt−ωdϕ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1− E
1 + E

,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1− y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmet-
ric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx]x + [(1− y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1− y2)ξ2
y] .
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5 Stationary generalization

This equation is invariant with respect to the transformation x ↔ y. Then,
since the particular solution

ξ =
1
x
→ Ω = 0→ ω = 0→ γ =

1
2

ln
x2 − 1
x2 − y2

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact
solution. Furthermore, if we take the linear combination ξ−1 = c1x + c2y and
introduce it into the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a
M

y , σ =
√

M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.

In the case of the Einstein-Maxwell theory, the main field equations can be
expressed as

(ξξ∗ − FF∗ − 1)∇2ξ = 2(ξ∗∇ξ − F∗∇F)∇ξ ,

(ξξ∗ − FF∗ − 1)∇2F = 2(ξ∗∇ξ − F∗∇F)∇F
where ∇ represents the gradient operator in prolate spheroidal coordinates.
Moreover, the gravitational potential ξ and the electromagnetic F Ernst po-
tential are defined as

ξ =
1− f − iΩ
1 + f + iΩ

, F = 2
Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromag-
netic potentials At and Aϕ One can show that if ξ0 is a vacuum solution, then
the new potential

ξ = ξ0

√
1− e2

represents a solution of the Einstein-Maxwell equations with effective elec-
tric charge e. This transformation is known in the literature as the Harrison
transformation [10]. Accordingly, the Kerr–Newman solution in this repre-
sentation acquires the simple form

ξ =

√
1− e2

σ
M x + i a

M y
, e =

Q
M

, σ =
√

M2 − a2 −Q2 .
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5.2 Representation as a nonlinear sigma model

In this way, it is very easy to generalize any vacuum solution to include the
case of electric charge. More general transformations of this type can be used
in order to generate solutions with any desired set of gravitational and elec-
tromagnetic multipole moments [11].

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let M be coordinatized by xa, and N by Xµ, so
that the metrics on M and N can be, in general, smooth functions of the cor-
responding coordinates, i.e., γ = γ(x) and G = G(X). A harmonic map is a
smooth map X : M → N, or in coordinates X : x 7−→ X so that X becomes
a function of x, and the X’s satisfy the motion equations following from the
action [14]

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.2.1)

which sometimes is called the “energy” of the harmonic map X. The straight-
forward variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν ∂bXλ = 0 , (5.2.2)

where Γµ
νλ are the Christoffel symbols associated to the metric Gµν of the

target space N. If Gµν is a flat metric, one can choose Cartesian-like coor-
dinates such that Gµν = ηµν = diag(±1, ...,±1), the motion equations be-
come linear, and the corresponding sigma model is linear. This is exactly
the case of a bosonic string on a flat background in which the base space is
the 2-dimensional string world-sheet. In this case the action (5.2.1) is usually
referred to as the Polyakov action [16].

Consider now the case in which the base space M is a stationary axisym-
metric spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-
Papapetrou metric (4.1.1), i.e.

γab =


f 0 0 − f ω

0 − f−1e2k 0 0
0 0 − f−1e2k 0
− f ω 0 0 f ω2 − ρ2 f−1

 . (5.2.3)
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5 Stationary generalization

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν,
µ, ν = 1, 2, and let the coordinates on N be Xµ = ( f , Ω). Then, it is straight-
forward to show that the action (5.2.1) becomes

S =
∫

L dtdϕdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
,

(5.2.4)
and the corresponding motion equations (5.2.2) are identical to the main field
equations (4.1.3) and (4.1.4).

Notice that the field equations can also be obtained from (5.2.4) by a direct
variation with respect to f and Ω. This interesting result was obtained orig-
inally by Ernst [2], and is the starting point of what today is known as the
Ernst representation of the field equations.

The above result shows that stationary axisymmetric gravitational fields
can be described as a (4 → 2)−nonlinear harmonic map, where the base
space is the spacetime of the gravitational field and the target space corre-
sponds to a 2-dimensional conformally Euclidean space. A further analy-
sis of the target space shows that it can be interpreted as the quotient space
SL(2, R)/SO(2) [15], and the Lagrangian (5.2.4) can be written explicitly [17]
in terms of the generators of the Lie group SL(2, R). Harmonic maps in which
the target space is a quotient space are usually known as nonlinear sigma
models [14].

The form of the Lagrangian (5.2.4) with two gravitational field variables,
f and Ω, depending on two coordinates, ρ and z, suggests a representation
as a harmonic map with a 2-dimensional base space. In string theory, this
is an important fact that allows one to use the conformal invariance of the
base space metric to find an adequate representation for the set of classical
solutions. This, in turn, facilitates the application of the canonical quantiza-
tion procedure. Unfortunately, this is not possible for the Lagrangian (5.2.4).
Indeed, if we consider γab as a 2-dimensional metric that depends on the pa-
rameters ρ and z, the diagonal form of the Lagrangian (5.2.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front

of the Lagrangian. Therefore, the reduced gravitational Lagrangian (5.2.4)
cannot be interpreted as corresponding to a (2 → n)-harmonic map. Never-
theless, we will show in the next section that a modification of the definition
of harmonic maps allows us to “absorb” the unpleasant factor ρ in the met-
ric of the target space, and to use all the advantages of a 2-dimensional base
space.
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5.3 Representation as a generalized harmonic map

Notice that the representation of stationary fields as a nonlinear sigma
model becomes degenerate in the limiting case of static fields. Indeed, the
underlying geometric structure of the SL(2, R)/SO(2) nonlinear sigma mod-
els requires that the target space be 2-dimensional, a condition which is not
satisfied by static fields. We will see below that by using a dimensional exten-
sion of generalized sigma models, it will be possible to treat the special static
case, without affecting the underlying geometric structure.

The analysis performed in this section for stationary axisymmetric fields
can be generalized to include any gravitational field containing two com-
muting Killing vector fields [1]. This is due to the fact that for this class of
gravitational fields it is always possible to find the corresponding Ernst rep-
resentation in which the Lagrangian contains only two gravitational variables
which depend on only two spacetime coordinates.

5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let xa and Xµ be coordinates on M and N, re-
spectively. This coordinatization implies that in general the metrics γ and
G become functions of the corresponding coordinates. Let us assume that
not only γ but also G can explicitly depend on the coordinates xa, i.e. let
γ = γ(x) and G = G(X, x). This simple assumption is the main aspect of our
generalization which, as we will see, lead to new and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized har-
monic map if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 ,

(5.3.1)
which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.2)

with respect to the fields Xµ. Here the Christoffel symbols, determined by
the metric Gµν, are calculated in the standard manner, without considering
the explicit dependence on x. Notice that the new ingredient in this general-
ized definition of harmonic maps, i.e., the term Gµν(X, x) in the Lagrangian
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5 Stationary generalization

density implies that we are taking into account the “interaction” between the
base space M and the target space N. This interaction leads to an extra term
in the motion equations, as can be seen in (5.3.1). It turns out that this inter-
action is the result of the effective presence of the gravitational field.

Notice that the limiting case of generalized linear harmonic maps is much
more complicated than in the standard case. Indeed, for the motion equations
(5.3.1) to become linear it is necessary that the conditions

γab(Γµ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.3.3)

be satisfied. One could search for a solution in which each term vanishes sep-
arately. The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which
would imply Γµ

νλ = 0, is not allowed, because it would contradict the as-
sumption ∂bGµν 6= 0. Nevertheless, a flat background metric in curvilinear
coordinates could be chosen such that the assumption Gµλ∂bGµν = 0 is ful-
filled, but in this case Γµ

νλ 6= 0 and (5.3.3) cannot be satisfied. In the general
case of a curved target metric, conditions (5.3.3) represent a system of m first
order nonlinear partial differential equations for Gµν. Solutions to this system
would represent linear generalized harmonic maps. The complexity of this
system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.3.2) includes an inter-
action between the base space N and the target space M, reflected on the
fact that Gµν depends explicitly on the coordinates of the base space. Clearly,
this interaction must affect the conservation laws of the physical systems we
attempt to describe by means of generalized harmonic maps. To see this ex-
plicitly we calculate the covariant derivative of the generalized Lagrangian
density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.4)

and replace in the result the corresponding motion equations (5.3.1). Then,
the final result can be written as

∇bT̃ b
a = − ∂L

∂xa (5.3.5)
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5.3 Representation as a generalized harmonic map

where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.3.6)
The standard conservation law is recovered only when the Lagrangian does
not depend explicitly on the coordinates of the base space. Even if we choose
a flat base space γab = ηab, the explicit dependence of the metric of the target
space Gµν(X, x) on x generates a term that violates the standard conservation
law. This term is due to the interaction between the base space and the target
space which, consequently, is one of the main characteristics of the general-
ized harmonic maps introduced in this work.

An alternative and more general definition of the energy-momentum ten-
sor is by means of the variation of the Lagrangian density with respect to the
metric of the base space, i.e.

Tab =
δL

δγab . (5.3.7)

A straightforward computation shows that for the action under consideration
here we have that T̃ab = 2Tab so that the generalized conservation law (5.3.5)
can be written as

∇bT b
a +

1
2

∂L

∂xa = 0 . (5.3.8)

For a given metric on the base space, this represents in general a system of m
differential equations for the “fields” Xµ which must be satisfied “on-shell”.

If the base space is 2-dimensional, we can use a reparametrization of x to
choose a conformally flat metric, and the invariance of the Lagrangian den-
sity under arbitrary Weyl transformations to show that the energy-momentum
tensor is traceless, T a

a = 0.
In Section 5.1 we described stationary, axially symmetric, gravitational fields

as a (4 → 2)−nonlinear sigma model. There it was pointed out the conve-
nience of having a 2-dimensional base space in analogy with string theory.
Now we will show that this can be done by using the generalized harmonic
maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the
coordinates on the base space M, and Xµ = ( f , Ω) the coordinates on the
target space N. In the base space we choose a flat metric and in the target
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space a conformally flat metric, i.e.

γab = δab and Gµν =
ρ

2 f 2 δµν (a, b = 1, 2; µ, ν = 1, 2). (5.3.9)

A straightforward computation shows that the generalized Lagrangian (5.3.4)
coincides with the Lagrangian (5.2.4) for stationary axisymetric fields, and
that the equations of motion (5.3.1) generate the main field equations (4.1.3)
and (4.1.4).

For the sake of completeness we calculate the components of the energy-
momentum tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.3.10)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.3.11)

This tensor is traceless due to the fact that the base space is 2-dimensional. It
satisfies the generalized conservation law (5.3.8) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1
2

∂L

∂ρ
= 0 , (5.3.12)

dTρz

dρ
−

dTρρ

dz
= 0 . (5.3.13)

Incidentally, the last equation coincides with the integrability condition for
the metric function k, which is identically satisfied by virtue of the main field
equations. In fact, as can be seen from Eqs.(4.1.5,4.1.6) and (5.3.10,5.3.11),
the components of the energy-momentum tensor satisfy the relationships
Tρρ = ∂ρk and Tρz = ∂zk, so that the conservation law (5.3.13) becomes an
identity. Although we have eliminated from the starting Lagrangian (5.2.4)
the variable k by applying a Legendre transformation on the Einstein-Hilbert
Lagrangian (see [17] for details) for this type of gravitational fields, the for-
malism of generalized harmonic maps seems to retain the information about
k at the level of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be
represented as a (2 → 2)−generalized harmonic map with metrics given as
in (5.3.9). It is also possible to interpret the generalized harmonic map given
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5.3 Representation as a generalized harmonic map

above as a generalized string model. Although the metric of the base space
M is Euclidean, we can apply a Wick rotation τ = iρ to obtain a Minkowski-
like structure on M. Then, M represents the world-sheet of a bosonic string
in which τ is measures the time and z is the parameter along the string. The
string is “embedded” in the target space N whose metric is conformally flat
and explicitly depends on the time parameter τ. We will see in the next sec-
tion that this embedding becomes more plausible when the target space is
subject to a dimensional extension. In the present example, it is necessary to
apply a Wick rotation in order to interpret the base space as a string world-
sheet. This is due to the fact that both coordinates ρ and z are spatial coordi-
nates. However, this can be avoided by considering other classes of gravita-
tional fields with timelike Killing vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmet-
ric fields are the asymptotically flat solutions. Asymptotic flatness imposes
conditions on the metric functions which in the cylindrical coordinates used
here can be formulated in the form

lim
xa→∞

f = 1 + O
(

1
xa

)
, lim

xa→∞
ω = c1 + O

(
1
xa

)
, lim

xa→∞
Ω = O

(
1
xa

)
(5.3.14)

where c1 is an arbitrary real constant which can be set to zero by appropri-
ately choosing the angular coordinate ϕ. If we choose the domain of the
spatial coordinates as ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic
flatness conditions it follows that the coordinates of the target space N satisfy
the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.3.15)

where the dot stands for a derivative with respect to ρ and the prime rep-
resents derivation with respect to z. These relationships are known in string
theory [16] as the Dirichlet and Neumann boundary conditions for open strings,
respectively, with the extreme points situated at infinity. We thus conclude
that if we assume ρ as a “time” parameter for stationary axisymmetric grav-
itational fields, an asymptotically flat solution corresponds to an open string
with endpoints attached to D−branes situated at plus and minus infinity in
the z−direction.
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5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target
space N, and study the conditions under which this dimensional extension
does not affect the field equations of the gravitational field. Consider an
(m → D)−generalized harmonic map. As before we denote by {xa} the
coordinates on M. Let {Xµ, Xα} with µ = 1, 2 and α = 3, 4, ..., D be the
coordinates on N. The metric structure on M is again γ = γ(x), whereas
the metric on N can in general depend on all coordinates of M and N, i.e.
G = G(Xµ, Xα, xa). The general structure of the corresponding field equa-
tions is as given in (5.3.1). They can be divided into one set of equations for
Xµ and one set of equations for Xα. According to the results of the last sec-
tion, the class of gravitational fields under consideration can be represented
as a (2 → 2)−generalized harmonic map so that we can assume that the
main gravitational variables are contained in the coordinates Xµ of the target
space. Then, the gravitational sector of the target space will be contained in
the components Gµν (µ, ν = 1, 2) of the metric, whereas the components Gαβ

(α, β = 3, 4, ..., D) represent the sector of the dimensional extension.
Clearly, the set of differential equations for Xµ also contains the variables

Xα and its derivatives ∂aXα. For the gravitational field equations to remain
unaffected by this dimensional extension we demand the vanishing of all the
terms containing Xα and its derivatives in the equations for Xµ. It is easy to
show that this can be achieved by imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.4.1)

That is to say that the gravitational sector must remain completely invariant
under a dimensional extension, and the additional sector cannot depend on
the gravitational variables, i.e., Gαβ = Gαβ(Xγ, xa), γ = 3, 4, ..., D. Further-
more, the variables Xα must satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 .

(5.4.2)
This shows that any given (2→ 2)−generalized map can be extended, with-
out affecting the field equations, to a (2→ D)−generalized harmonic map.
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5.4 Dimensional extension

It is worth mentioning that the fact that the target space N becomes split in
two separate parts implies that the energy-momentum tensor Tab = δL/δγab

separates into one part belonging to the gravitational sector and a second one
following from the dimensional extension, i.e. Tab = Tab(Xµ, x) + Tab(Xα, x).
The generalized conservation law as given in (5.3.8) is satisfied by the sum of
both parts.

Consider the example of stationary axisymmetric fields given the metrics
(5.3.9). Taking into account the conditions (5.4.1), after a dimensional exten-
sion the metric of the target space becomes

G =


ρ

2 f 2 0 0 · · · 0
0 ρ

2 f 2 0 · · · 0
0 0 G33(Xα, x) · · · G3D(Xα, x)
. . · · · · · · · · ·
0 0 GD3(Xα, x) · · · GDD(Xα, x)

 . (5.4.3)

Clearly, to avoid that this metric becomes degenerate we must demand that
det(Gαβ) 6= 0, a condition that can be satisfied in view of the arbitrariness
of the components of the metric. With the extended metric, the Lagrangian
density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ , (5.4.4)

which nevertheless does not affect the field equations for the gravitational
variables f and Ω. On the other hand, the new fields must be solutions of the
extra field equations(

∂2
ρ + ∂2

z

)
Xα + Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
(5.4.5)

+ Gαγ
(

∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 . (5.4.6)

An interesting special case of the dimensional extension is the one in which
the extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with addi-
tional fields Xα given as arbitrary harmonic functions. This choice opens the
possibility of introducing a “time” coordinate as one of the additional dimen-
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sions, an issue that could be helpful when dealing with the interpretation of
gravitational fields in this new representation.

The dimensional extension finds an interesting application in the case of
static axisymmetric gravitational fields. As mentioned in Section 4.1, these
fields are obtained from the general stationary fields in the limiting case Ω =
0 (or equivalently, ω = 0). If we consider the representation as an SL(2, R)/SO(2)
nonlinear sigma model or as a (2 → 2)−generalized harmonic map, we see
immediately that the limit Ω = 0 is not allowed because the target space
becomes 1-dimensional and the underlying metric is undefined. To avoid
this degeneracy, we first apply a dimensional extension and only then calcu-
late the limiting case Ω = 0. In the most simple case of an extension with
Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the met-
rics γab = δab and

G =

(
ρ

2 f 2 0
0 1

)
(5.4.7)

where the additional dimension is coordinatized by an arbitrary harmonic
function which does not affect the field equations of the only remaining grav-
itational variable f . This scheme represents an alternative method for explor-
ing static fields on nondegenerate target spaces. Clearly, this scheme can be
applied to the case of gravitational fields possessing two hypersurface or-
thogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as
a string “living” in a D-dimensional target space N. The string world-sheet is
parametrized by the coordinates ρ and z. The gravitational sector of the tar-
get space depends explicitly on the metric functions f and Ω and on the pa-
rameter ρ of the string world-sheet. The sector corresponding to the dimen-
sional extension can be chosen as a (D− 2)−dimensional Minkowski space-
time with time parameter τ. Then, the string world-sheet is a 2-dimensional
flat hypersurface which is “frozen” along the time τ.

5.5 The general solution

If we take as seed metric the general static solution, the application of two
HXK transformations generates a stationary solution with an infinite number
of gravitoelectric and gravitomagnetic multipole moments. The HKX method
is applied at the level of the Ernst potential from which the metric functions
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can be calculated by using the definition of the Ernst potential E and the
field equations for γ. The resulting expressions in the general case are quite
cumbersome. We quote here only the special case in which only an arbitrary
quadrupole parameter is present. In this case, the result can be written as

f =
R
L

e−2qP2Q2 ,

ω = −2a− 2σ
M

R
e2qP2Q2 ,

e2γ =
1
4

(
1 +

M
σ

)2 R
x2 − y2 e2γ̂ , (5.5.1)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1− y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1− α2e2q(δ++δ−))b+ ,

γ̂ =
1
2
(1 + q)2 ln

x2 − 1
x2 − y2 + 2q(1− P2)Q1 + q2(1− P2)

[
(1 + P2)(Q2

1 −Q2
2)

+
1
2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 −Q′2)
]

. (5.5.2)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

a± = x(1− α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,
b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1
2

ln
(x± y)2

x2 − 1
+

3
2
(1− y2 ∓ xy) +

3
4
[x(1− y2)∓ y(x2 − 1)] ln

x− 1
x + 1

,

the quantity α being a constant

α =
σ−M

a
, σ =

√
M2 − a2 . (5.5.3)

The physical significance of the parameters entering this metric can be clar-
ified by calculating the Geroch-Hansen [18, 19] multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.5.4)

447



5 Stationary generalization

M0 = M , M2 = −Ma2 +
2
15

qM3
(

1− a2

M2

)3/2

, ... (5.5.5)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1− a2

M2

)3/2

, .... (5.5.6)

The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn)
multipole moments is a consequence of the symmetry with respect to the
equatorial plane. From the above expressions we see that M is the total mass
of the body, a represents the specific angular momentum, and q is related to
the deviation from spherical symmetry. All higher multipole moments can
be shown to depend only on the parameters M, a, and q.

We analyzed the geometric and physical properties of the above solution.
The special cases contained in the general solution suggest that it can be used
to describe the exterior asymptotically flat gravitational field of rotating body
with arbitrary quadrupole moment. This is confirmed by the analysis of the
motion of particles on the equatorial plane. The quadrupole moment turns
out to drastically change the geometric structure of spacetime as well as the
motion of particles, especially near the gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM)
spacetime which is a generalization of Kerr spacetime, including an arbitrary
quadrupole. Our results show [20] that a deviation from spherical symme-
try, corresponding to a non-zero electric quadrupole, completely changes the
structure of spacetime. A similar behavior has been found in the case of the
Erez-Rosen spacetime. In fact, a naked singularity appears that affects the
ergosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into non simply-connected regions. All these changes occur near the
naked singularity which is situated at x = 1, a value that corresponds to the
radial distance r = M +

√
M2 − a2 in Boyer-Lindquist coordinates. In the

limiting case a/M > 1, the multipole moments and the metric become com-
plex, indicating that the physical description breaks down. Consequently,
the extreme Kerr black hole represents the limit of applicability of the QM
spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we
can conclude that the QM metric can be used to describe their exterior grav-
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itational field. Two alternative situations are possible. If the characteristic
radius of the body is greater than the critical distance M +

√
M2 − a2, i.e.

x > 1, the exterior solution must be matched with an interior solution in or-
der to describe the entire spacetime. If, however, the characteristic radius of
the body is smaller than the critical distance M +

√
M2 − a2, the QM metric

describes the field of a naked singularity.
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6 Comparison of vacuum static
quadrupolar metrics

6.1 Introduction

Most applications of Einstein’s gravity theory follow from the investigation of
exact solutions of the corresponding field equations. In the case of relativistic
astrophysics, asymptotically flat solutions in empty space are of particular
importance in order to describe the physical properties of the exterior field
of compact objects [1]. From a physical point of view, it is sufficient in this
case to limit ourselves to static and stationary solutions which are axially
symmetric. In addition, it is appropriate to classify them in accordance with
certain criteria which permits a comparison of their main properties. Using
the analogy with Newtonian gravity, we propose to classify them in terms of
their multipole moments.

The problem of defining invariant multipole moments in general relativity
was first solved by Geroch and Hansen (GH) [27, 30], who proposed def-
initions for mass and spin multipoles of asymptotically flat spacetimes in
vacuum. Moreover, Thorne, Simon and Beig defined relativistic multipole
moments [41, 42] for non-stationary spacetimes. A proof of the equivalence
between the GH moments and the Thorne moments for stationary systems
was provided by Gürsel [28]. An elegant method to derive explicit expres-
sions for the multipole moments of a given stationary and axially symmetric
spacetime with asymptotic flatness was found by Fodor, Hoenselaers and
Perjés (FHP) [26] using the Ernst formalism. This FHP method was gener-
alized by Hoenselaers and Perjés [33]. Finally, Ryan found an alternative
method for deriving the relativistic multipole moments [39] which has been
intensively applied in relativistic astrophysics.

Although for the study of the gravitational field of relativistic compact ob-
jects, it is necessary to consider stationary solutions that take into account the
rotation of the source, in this work, we will focus on the study of the static
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case to explore in detail the physical properties of the solutions which then
will be generalized to the case of stationary fields. From a physical point of
view, the most important multipoles of a mass distribution are the monopole
and the quadrupole; in this work, we will focus our analysis on mainly these
two multipoles.

The first solution with only monopole moment was derived by Schwarz-
schild in 1916, just a couple of months after the publication of the theory of
general relativity [40]. In 1917, Weyl found a class of static and axisymmetric
solutions to the vacuum Einstein field equations [4]. The first static solution
with quadrupole moment which includes the Schwarzschild metric as special
case was found by Erez and Rosen in 1959 [22, 23]. This quadrupolar solu-
tion was generalized to include an infinite mumber of multipole moments by
Quevedo in 1989 [37]. In 1966 and 1970, Zipoy and Voorhees found a trans-
formation which allows us to generate new static solutions from known solu-
tions [43, 44]. In particular, applying this transformation to the Schwarzschild
metric, one obtains a new solution which, after a redefinition of the Zipoy-
Voorhees parameter, was interpreted as the simplest static solution with gen-
eralizes the Schwarzschild metric and includes a quadrupole moment (q-
metric) [38]. In 1985, Gutsunaev and Manko found an exact solution with
monopole and quadrupole moments which was shown in [36] to have the
same quadrupole as in the Erez-Rosen metric, but different contributions to
higher relativistic multipole moments. In 1990, Manko [35] found a quadrupo-
lar metric which can be interpreted as the non-linear combination of the Schwarzschild
monopole solution with the quadrupolar term of the Weyl solution. In 1994,
Hernández-Pastora and Martı́n [32] derived two exact solutions with differ-
ent monopole-quadrupole structures.

To our knowledge, the above list includes all known static and asymptoti-
cally flat solutions of Einstein’s equations in empty space. The main goal of
the present work is to investigate the most important physical properties of
these solutions. In particular, we will analyze the elementary flatness condi-
tion, curvature singularities, multipole moments structure and the relation-
ships between them.

This paper is organized as follows. In Sec. 6.2, we present the general line
element for static axisymmetric spacetimes and the corresponding vacuum
field equations, and review the most general aymptotically flat solution in
cylindrical coordinates discovered by Weyl. In Sec. 6.3, we present the so-
lutions that contain the Schwarzschild spacetime as a particular case and an
additional parameter which determines the quadrupole of the gravitational
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source. Then, in Sec. 6.4, we investigate the conditions that the solutions
must satisfy in order to be able to describe the exterior gravitational field of
compact objects. Sec. 6.5 is devoted to the study of the multipole structure
of the solutions. Finally, in Sec. 6.6, we discuss our results and present some
initiatives for future works.

6.2 General properties of static and axisymmetric
vacuum solutions

Although there exist in the literature many suitable coordinate systems, static
axisymmetric gravitational fields are usually described in cylindrical coordi-
nates (t, ρ, z, ϕ), following the seminal work of Weyl. Stationarity implies
that there exists a timelike Killing vector field with components δα

t , i.e., t can
be chosen as the time coordinate and the metric does not depend on time,
∂gαβ/∂t = 0. Axial symmetry, in addition, implies the existence of a spacelike
Killing vector field with components δα

ϕ, which commutes with the timelike
Killing vector. The coordinates can then be chosen such that ∂gαβ/∂ϕ = 0,
and the axis of symmetry corresponds to ρ = 0. Furthermore, if we assume
that the timelike Killing vector is hypersurface-orthogonal, the spacetime is
static, i.e., it is invariant with respect to the transformation ϕ→ −ϕ.

Furthermore, using the properties of staticity and axial symmetry, together
with the vacuum field equations, for a general metric of the form gαβ =
gαβ(ρ, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
[4, 5, 6, 1]

ds2 = e2ψdt2 − e−2ψ
[
e2γ(dρ2 + dz2) + ρ2dϕ2

]
, (6.2.1)

where ψ and γ are functions of ρ and z only. The vacuum field equations can
be reduced to the following set of independent differential equations

ψρρ +
1
ρ

ψρ + ψzz = 0 , (6.2.2)

γρ = ρ
(

ψ2
ρ − ψ2

z

)
, γz = 2ρψρψz , (6.2.3)

where ψρ = ∂ψ/∂ρ, etc. We see that the main field equation (6.2.2) corre-
sponds to the linear Laplace equation for the metric function ψ. Furthermore,
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the solution for the function γ can be obtained by quadratures once the func-
tion ψ is known.

The general solution of Laplace’s equation is known and, if we demand
additionally asymptotic flatness, we obtain the Weyl solution [4, 1]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (6.2.4)

where an (n = 0, 1, ...) are arbitrary real constants, and Pn(cos θ) represents
the Legendre polynomials of degree n. The expression for the metric function
γ can be obtained from the two first-order differential equations (6.2.3). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (6.2.5)

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solutions of this class. In particular,
one of the most interesting special solutions, which is Schwarzschild’s spher-
ically symmetric black hole spacetime, must be included as a special case. To
see this, we must choose the constants an in such a way that the infinite sum
(6.2.4) converges to the Schwarzschild solution in cylindrical coordinates. A
straightforward computation shows that

a2n = −m2n+1

2n + 1
, a2n+1 = 0 , (6.2.6)

where m is the mass parameter [31]. Clearly, this representation is not appro-
priate to handle the Schwarzschild metric.

It turns out that to investigate the properties of solutions with multipole
moments, it is convenient to use prolate spheroidal coordinates (t, x, y, ϕ) in
which the line element can be written as

ds2 = e2ψdt2

− σ2e−2ψ

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
,(6.2.7)
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where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (6.2.8)

r2
± = ρ2 + (z± σ)2 , σ = const. , (6.2.9)

and the metric functions ψ, and γ depend on x and y, only. In this coordinate
system, the field equations become

[(x2 − 1)ψx]x + [(1− y2)ψy]y = 0 , (6.2.10)

γx =

(
1− y2

x2 − y2

) [
x(x2 − 1)ψ2

x − x(1− y2)ψ2
y − 2y(x2 − 1)ψxψy

]
,(6.2.11)

γy =

(
x2 − 1
x2 − y2

) [
y(x2 − 1)ψ2

x − y(1− y2)ψ2
y + 2x(1− y2)ψxψy

]
.

The simplest physically meaningful solution to the above system of differen-
tial equations is the Schwarzschild solution

ψS =
1
2

ln
(

x− 1
x + 1

)
, γS =

1
2

ln
(

x2 − 1
x2 − y2

)
, (6.2.12)

which takes the standard form in spherical coordinates with x = r/m − 1,
y = cos θ, and σ = m. In principle, there could be an infinite number of
exact solutions to the above equations. Not all of them, however, can be
physically meaningful, in particular, if we demand that they should describe
the exterior field of realistic compact objects. To this end, it is necessary that
the solutions satisfy the conditions of asymptotic flatness, elementary flatness
and regularity.

Asymptotic flatness means that at spatial infinity, the solution reduces to
the Minkowski metric, indicating that the gravitational field far away from
the source is practically negligible. This is a consequence of the long-range
property of the gravitational interaction. In the case of the static metric in
prolate spheroidal coordinates 6.2.7, this condition implies that

lim
x→∞

ψ = const., lim
x→∞

γ = const. , (6.2.13)
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6 Comparison of vacuum static quadrupolar metrics

where the constants can be set equal to zero by a suitable rescaling of the
coordinates.

Elementary flatness is necessary in order to guarantee that near the rotation
axis the geometry is Lorentzian, i.e., there are no conical singularities on the
axis [1]. This condition can be expressed in an invariant manner by using the
spacelike Killing vector field ηα = δα

ϕ as

lim
ρ→0

(ηαηα),β(ηαηα),β

4(ηαηα)
= 1 . (6.2.14)

A direct computation by using the general line element in prolate spheroidal
coordinates shows that the elementary flatness condition is equivalent to de-
manding that

lim
y→±1

γ = 0 , (6.2.15)

independently of the value of the spatial coordinate x.
Finally, the regularity condition implies that the solution must be free of

curvature singularities outside a region located near the origin of coordinates
so that it can be covered by an interior solution. Curvature singularities can
be detected by analyzing the behavior of curvature invariants. In general,
the Riemann curvature tensor in four dimensions possess 14 independent
invariants. In the case of vacuum spacetimes, however, the Riemann tensor
coincides with the Weyl tensor that has only four invariants which can be
expressed as [21]

K = I1 = RαβγδRαβγδ , I2 = ∗RαβγδRαβγδ ,

I3 = RαβγδRγδλτR αβ
λτ , I4 = ∗RαβγδRγδλτR αβ

λτ , (6.2.16)

where the dual is defined as

∗ Rαβγδ =
1
2

εαβλτRλτ
γδ , (6.2.17)

with εαβλτ being the Levi-Civita symbol. The quadratic invariants K = I1 and
I2 are usually known as the Kretschmann and the Chern-Pontryagin scalars,
respectively. If anyone of the four invariants happens to diverge at some
particular place, it is said that there exists a curvature singularity at that place.

In the next section, we will investigate the properties of several exact solu-
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6.3 Static vacuum metrics with quadrupole

tions with monopole and quadrupole moment. In particular, we will find out
if they satisfy all the conditions to be physically relevant in the sense that they
can be used to describe the exterior gravitational field of compact objects.

6.3 Static vacuum metrics with quadrupole

As mentioned in the last section, the Weyl metric can be considered as the
most general static and axisymmetric solution which contains an infinite num-
ber of parameters, representing all the multipole moments. Therefore, a par-
ticular choice of parameters could represent a solution with only mass and
quadrupole. However, such a form of a metric with an infinite number of
parameters is not very suitable to be applied in the case of realistic sources
like compact astrophysical objects. For this reason, we consider now metrics
which include only two independent parameters that can be interpreted as
mass and quadrupole.

In 1959, Erez and Rosen [23] presented a solution which generalizes the
Schwarzschild metric and contains an additional parameter q. In this case,
the function ψ can be expressed as

ψER =
1
2

ln
(

x− 1
x + 1

)
+

1
2

q(3y2 − 1)
[

1
4
(3x2 − 1) ln

(
x− 1
x + 1

)
+

3
2

x
]

. (6.3.1)

The corresponding function γER can be expressed in a compact form as fol-
lows:

γER =
1
2
(q + 1)2 ln

(
x2 − 1
x2 − y2

)
− 3

2
q
(

1− y2
) [ 3

32
q(x2 − 1)(9 x2y2 − x2 − y2 + 1) ln2

(
x− 1
x + 1

)
+

1
8

x(27 qx2y2 − 3 qx2 − 21 qy2 + 5 q + 8) ln
(

x− 1
x + 1

)
+

1
8
(27 qx2y2 − 3 qx2 − 12 qy2 + 4 q + 16)

]
. (6.3.2)

This solution was obtained by using the method of separation of variables
for the function ψ. An explicit generalization which contains higher multi-
pole moments was presented in 1989 in [37] by using the same method.
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6 Comparison of vacuum static quadrupolar metrics

In 1984, Gutsunayev and Manko [29] found a new static solution for the
function ψ which is given by

ψGM =
1
2

ln
(

x− 1
x + 1

)
+ q

x
(x2 − y2)3 (x2 − 3x2y2 + 3y2 − y4) , (6.3.3)

and the function γGM is given by

γGM =
1
2

ln
(

x2 − 1
x2 − y2

)
+

1
2

q
1− y2

(x2 − y2)4

(
3
(
−5 y2 + 1

) (
x2 − y2

)2

+ 8 y2
(
−5 y2 + 3

) (
x2 − y2

)
+ 24 y4

(
−y2 + 1

))
+

1
8

q2
(
1− y2)

(x2 − y2)
8

(
−12

(
25 y4 − 14 y2 + 1

) (
x2 − y2

)5

+ 3
(
−675 y6 + 697 y4 − 153 y2 + 3

) (
x2 − y2

)4

+ 32 y2
(
−171 y6 + 259 y4 − 105 y2 + 9

) (
x2 − y2

)3

+ 32 y4
(
−225 y6 + 451 y4 − 271 y2 + 45

) (
x2 − y2

)2

+ 2304 y6
(
−2 y6 + 5 y4 − 4 y2 + 1

) (
x2 − y2

)
+ 1152 y8

(
−y6 + 3 y4 − 3 y2 + 1

))
. (6.3.4)

This solution was found by applying a particular differential operator to
the Schwarzschild metric. This method was shown to be based upon the
property that in Cartesian coordinates the derivatives of a harmonic function
are also harmonic functions [36]. The metric function γ takes the form

In 1990, Manko [35] found a different static solution in the form

ψM =
1
2

ln
(

x− 1
x + 1

)
+ q

3x2y2 − x2 − y2 + 1
2(x2 + y2 − 1)5/2 , (6.3.5)
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which leads to a particular function γM

γM =
1
2

ln
(

x2 − 1
x2 − y2

)
+

qx(2x4 − 5x2 + 5x2y2 + 3− 3y2)

(x2 + y2 − 1)5/2 − 2q

+
3q2

8(x2 + y2 − 1)5

(x2y2(5x2y2 − 3x2 − 3y2 + 3)2

x2 + y2 − 1

− (3x2y2 − x2 − y2 + 1)2
)

(6.3.6)

The first term of this solution corresponds to the Schwarzschild metric, whereas
the second term coincides with the quadrupolar term of the general Weyl so-
lution in prolate spheroidal coordinates.

Furthermore, in 1994, Hernández-Pastora and Martı́n [32] derived two dif-
ferent exact solutions which can be written as

ψHM1 =
1
2

ln
(

x− 1
x + 1

)
− 5

8
q
[

1
4

(
(3x2 − 1)(3y2 − 1)− 4

)
ln
(

x− 1
x + 1

)
+

2x
(x2 − y2)

− 3
2

x(3y2 − 1)
]

(6.3.7)

and

ψHM2 = ψHM1 −
5
32

q2
[(

33 + 90P2(x)P2(y)−
153
2

P4(x)P4(y)
)

ln
(

x− 1
x + 1

)
− 135xP2(y)−

153
24

x(55− 105x2)P4(y) (6.3.8)

− x
x2 − y2

(
33− 5

(x2 − y2)2 (3x2y2 + y4 − x2 − 3y2)

)]
,

where

P2(y) =
1
2
(3y2 − 1), (6.3.9)

P4(y) =
1
8
(35y4 − 30y2 + 3). (6.3.10)

The corresponding functions γHM1 and γHM2 have a quite complicated struc-
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ture which we will not present here.
Finally, in 1966 and 1970 Zipoy [44] and Voorhees [43], respectively, found

a particular symmetry of the vacuum field equations, and derived a transfor-
mation which can be used to generate new solutions from known solutions.
In the case of the Schwarzschild metric, the new solution can be expressed
simply as

ψZV =
1
2

δ ln
(

x− 1
x + 1

)
, γZV =

1
2

δ2 ln
(

x2 − 1
x2 − y2

)
, (6.3.11)

where δ is an arbitrary real constant. This solution is also known as the
δ−metric of the γ−metric for notational reasons [34]. Later on, in 2011,
this metric was reinterpreted as a quadrupolar metric and renamed as the
q−metric [38] which in spherical coordinates can be transformed into the sim-
ple form

ds2 =

(
1− 2m

r

)1+q
dt2 −

(
1− 2m

r

)−q
(6.3.12)

×

(1 +
m2 sin2 θ

r2 − 2mr

)−q(2+q) (
dr2

1− 2m/r
+ r2dθ2

)
+ r2 sin2 θdϕ2

 .

It is easy to see that all the above solutions represent a generalization of the
Schwarzschild metric which is obtained in the limiting case q → 0. To our
knowledge, the solutions presented above are the only exact solutions that
generalize the Schwarzschild monopole solution and satisfy the conditions
expected from a metric that describes a realistic gravitational field.

6.4 Physical conditions

All the solutions presented in the last section are asymptotically flat because
at spatial infinity they behave as

ψ0 = lim
x→∞

ψ = 0 , γ0 = lim
x→∞

γ = 0 , (6.4.1)

which determine the Minkowski metric, independently of the value of y. No-
tice, moreover, that this condition is satisfied for all finite values of the in-
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dependent parameters m and q. This means that for any finite values of the
monopole and quadrupole moments, the solutions presented in the last sec-
tion are asymptotically Minkowski.

As mentioned above, the condition that no conical singularities exist on the
symmetry axis (6.2.14) in prolate spheroidal coordinates becomes

lim
y→±1

γ = 0 . (6.4.2)

An inspection of the γ function for the Erez-Rosen, Gutsunayev-Manko and
Manko solutions and the q−metric, mentioned in the last section, shows that
this condition is always satisfied, independently of the value of x, indicating
that all of them are elementary flat. In the case of the Hernández-Martı́n
solutions, however, a direct computation shows that they are elementary flat
only for positive values of the coordinate x. In spherical coordinates, this
means that the HM solutions are well-defined only outside the radius r = 2m.
A geometric and physical analysis inside the horizon r = 2m is possible only
by considering the presence of conical singularities along the symmetry axis.

We now analyze the regularity condition by using first the Kretschmann
scalar K = RαβγδRαβγδ. Fist, we consider the Schwarzschild metric (6.2.12)
for which we obtain

KS =
48

m4(x + 1)6 . (6.4.3)

This expression is singular only for x = −1 (r = 0), indicating the well-
known fact that the Schwarzschild spacetime is singular only at the origin of
coordinates.

Another example of a solution that can be investigated analytically is the
q−metric. In this case, all the calculations can be performed explicitly and
the resulting Kretschmann scalar reads

Kq =
48
σ4 (q + 1)2 p(x, y; q)

(x + 1)2(q2+3q+3)(x− 1)2(q2+q+1)(x2 − y2)−2q2−4q+1
,

(6.4.4)
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where

p(x, y; q) = (x− 1)2(x2 − y2)− 2q(x− 1)2(x + y2) (6.4.5)

+ q2
[
(2− y2)x2 − 3(1− y2)x +

1
2
(4− 7y2)

]
− q3

(
x− 4

3

)
(1− y2) +

1
3

q4(1− y2).

First, we see that for all values of q there is always a singularity at x = −1.
Moreover, we have two possible divergences at x = 1 and x = ±y. These di-
vergent factors can only be canceled by the function p, but it does not vanish
for x = 1 or x = ±y for arbitrary values of q, except for q = −2. In this case,
one has p(x, y;−2) = (x + 1)2(x2 − y2) so that

Kq=−2 =
48

σ4(x− 1)6 , (6.4.6)

which diverges for x = 1. For other values of the parameter q, the Kretschmann
scalar of the q-metric diverges at x = ±1 and x = ±y, as far as the exponents
of the corresponding factors are negative. The exponents of the factors x + 1
and x− 1 are negative definite, but the exponent of the factor x2− y2 vanishes
for q = −1 +

√
3/2 and q = −1−

√
3/2.

Consequently, the Kretschmann scalar of the q-metric diverges at x = −1
for q 6= −2, at x = 1 for q 6= 0 and at x = ±y for q ∈ (−1−

√
3/2,−1+

√
3/2)

restricted to q 6= 0 and q 6= −2. An additional restriction to the value of the
parameter q is imposed by assuming σ > 0 and requiring its mass monopole
to be positive. We will see in the next section that this physical condition
implies that q > −1, leading to the conclusion that the singularity at x = −1
is always present.

The investigation of the remaining quadrupolar solutions is much more
complicated. The results of our analysis are summarized in Table 6.1, where
we include the Schwarzschild solution for comparison, and use spherical co-
ordinates with x = r/m − 1 and y = cos θ. The boldfaced radii represent
singularities that are present, independently of the value of the parameters
m, q and the coordinate θ. The remaining radii represent singularities which
are not always present, but depend on the value of q or the coordinate θ. We
see that only the q−metric is characterized by a completely singular hori-
zon at r = 2m, representing the outermost singularity, which is the only one
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6.5 Multipole moments

Static metric Naked singularites
Schwarzschild r = 0

q−metric r = 0, m(1± cos θ), 2m
Erez-Rosen r = 0, m(1± cos θ), 2m

Gutsunayev-Manko r = 0, m(1± cos θ), 2m
Manko r = 0, m(1± cos θ), 2m

Hernández-Martı́ 1 and 2 r = 0, m(1± cos θ), 2m

Table 6.1: Singularities of spacetimes with monopole and quadrupole mo-
ments. Boldfaced values are naked singularities which exist for all values of
the parameters m, q and θ. Other singularities exist only for particular values
of these parameters.

that can be observed by an exterior observer. In the remaining cases, the
Schwarzschild horizon remains partially regular, implying that for certain
values of q, it is possible to observe the singularity located at the origin of
coordinates.

Finally, we mention that the analysis of the remaining three curvature in-
variants does not lead to additional singularities.

6.5 Multipole moments

Using the original definition formulated by Geroch [27], the calculation of
multipole moments is quite laborious. Fodor, Hoenselaers and Perjés [26]
found a relation between the Ernst potential [24, 25] and the multipole mo-
ments which facilitates the computation. In the case of static axisymmetric
spacetimes, the Ernst potential is defined as

ξ(x, y) =
1− e2ψ

1 + e2ψ
. (6.5.1)

The idea is that the multipole moments can be obtained explicitly from the
values of the Ernst potential on the axis by using the following procedure.
On the axis of symmetry y = 1, we can introduce the inverse of the Weyl
coordinate z as

z̃ =
1
z
=

1
mx

, with σ = m . (6.5.2)
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If we now introduce the inverse potential as

ξ̃(z̃, 1) =
1
z̃

ξ(z̃, 1) , (6.5.3)

the multipole moments can be calculated as

Mn = mn + dn , mn =
1
n!

dnξ̃(z̃, 1)
dz̃n

∣∣∣
z̃=0

, (6.5.4)

where the additional terms dn must be determined from the original Geroch
definition. The main point now is that the first term mn is completely deter-
mined by the n−th derivative of the inverse Ernst potential ξ̃, whereas the
second term dn depends on the derivatives of order less than n, so that the
moment Mn can be calculated explicitly once all the derivatives of order n or
less are known.

In this manner, it is easy to show that for the Schwarzschild spacetime the
multipole moments are given as

M0 = m , Mk = 0 , (k ≥ 1) , (6.5.5)

a result which is in accordance with the physical interpretation of the Schwarz-
schild metric obtained by using other methods.

For the Erez-Rosen metric, we obtain

M0 = m
M2 = Q

M4 = −2
7

Qm2

M6 = − 8
231

Qm4 (1 + 3q)

M8 = − 8
3003

Qm6
(

2− 74
15

q +
84
45

q2
)

M10 =
32

3927
Qm8

(
− 28

247
+

37
57

q +
1124
741

q2
)

,

where Q = 2qm3/15.
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For the Gutsunayev-Manko metric, we obtain

M0 = m
M2 = Q

M4 =
6
7

Qm2

M6 =
8

231
Qm4 (14− 45q)

M8 =
8

3003
Qm6

(
84− 1282q− 420q2

)
M10 =

32
3927

Qm8
(

2772
247
− 1343804

2717
q− 50

1463
q2
)

,

where Q = 2qm3.
For the Manko solution, we obtain

M0 = m
M2 = Q = −m3q

M4 = −8
7

Qm2

M6 =
1

231
Qm4(180q + 133)

M8 = − 2
3003

Qm6(420q2 + 2182q + 357)

M10 =
1

969969
Qm8(1379100q2 + 1277710q + 85701).

For the first Hernández-Martı́n metric, we obtain

M0 = m
M2 = Q
M4 = 0

M6 = −60
77

Qm4

M8 = − 4
3003

qQm6 (265 + 210q)

M10 =
4

3927
qQm8

(
−104370

714
+

769125
1729

q
)

,
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and for the second Hernández-Martı́n solution

M0 = m
M2 = Q
M4 = 0
M6 = 0

M8 = − 40
143

q2Qm6

M10 = −42140
46189

q2Qm8,

where Q = qm3.
Finally, for the q−metric we get

M0 = δm

M2 =
1
3

δm3(1− δ2)

M4 = δm5
(

19
105

δ4 − 8
21

δ2 +
1
5

)
M6 = δm7

(
− 389

3465
δ6 +

23
63

δ4 − 457
1155

δ2 +
1
7

)
M8 = δm9

(
257

3465
δ8 − 44312

135135
δ6 +

73522
135135

δ4 − 54248
135135

δ2 +
1
9

)
M10 = δm11

(
− 443699

8729721
δ10 +

17389
61047

δ8 − 27905594
43648605

δ6 +
6270226
8729721

δ4

− 5876077
14549535

δ2 +
1
11

)
,

where δ = 1 + q.
A comparison of these results show that all the above solutions are equiv-

alent up to the quadrupole moment. Indeed, a simple redefinition of the
parameter q which enters all the metrics leads to equivalent values for the
monopole and quadrupole moments. We see, however, that differences ap-
pear between all the solutions at the level of higher moments. The particu-
larity of the first and second Hernández-Martı́n solutions is that by choosing
the form of the metric ψHM appropriately, the multipoles M4 and M6 can be
made to vanish identically. This means that by following the same procedure,
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it is possible to generate a solution with only monopole and quadrupole mo-
ments. In all the remaining solutions, contributions of higher multipoles are
always present.

We conclude that from the point of view of the monopole-quadrupole struc-
ture all the solutions presented in Sec. 6.3 are physically equivalent.

6.6 Remarks

In this work, we analyzed all the exact solutions of Einstein’s vacuum field
equations which contain the Schwarzschild solution as a particular case and,
in addition, possess an arbitrary parameter which determines the quadrupole
of the gravitational source. In particular, we studied the Erez-Rosen, Gut-
sunayev-Manko, Manko, Hernández-Pastora solutions and the q−metric, ob-
tained from the Schwarzschild by applying a Zipoy-Voorhees transformation.

First, we established that all the above solutions are asymptotically and el-
ementary flat. This means that at infinity the gravitational field strength is
negligible, and the rotation axis is free of conical singularities, respectively.
We performed also a detailed analysis of the Kretschmann scalar to deter-
mine the curvature singularity structure of these spacetimes. We found that
in general there are three types of naked singularities which are located at
the origin of coordinates r = 0, between the origin and the Schwarzschild
horizon r = m(1± cos θ) and on the horizon r = 2m, where m is the mass
of the gravitational source. The main difference is that only in the case of the
q−metric, the outermost singularity located at r = 2m exists for all values of
the parameters m and q and the coordinate θ. For all the remaining metrics,
the second and third singularities exist only for certain specific values of q or
θ. This means that in principle it is possible to observe the interior singulari-
ties located at r = 0 and r = m(1± cos θ), which is not possible in the case of
a spacetime described by the q−metric. Suppose that we want to use an inte-
rior solution to “cover” the naked singularities generated by the quadrupole.
In the case of the q−metric, the surface of the interior mass distribution can
be located anywhere outside the outermost singularity situated at r = 2m.
In the case of all the remaining exterior metrics, the surface of the interior
distribution can have even a zero radius for certain values of the quadrupole
parameter.

The study of the multipole moments of all the solutions shows that by
choosing the quadrupole parameter appropriately all of them are character-
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ized by the same mass and quadrupole, although differences can appear at
the level of higher multipoles. This means that all the solutions can be used to
describe the exterior gravitational field of a distorted mass distribution with
quadrupole moment.

Our results show that all the solutions analyzed in this work are equivalent
from the physical point of view in the sense that they satisfy all the condi-
tions that are necessary to describe the exterior gravitational field of realistic
compact objects. Nevertheless, from a practical point of view the q−metric
presents certain advantages over the remaining metrics. Indeed, the mathe-
matical structure of this metric is very simple which facilitates its study. For
instance, when searching for interior solutions with quadrupole that could be
matched with an exterior quadrupolar metric, one certainly would try first
the q−metric because of its simplicity.

To completely describe the gravitational field of realistic compact objects
with quadrupole, it is necessary to take the rotation into account. Moreover,
a suitable interior solution is also necessary in order to describe the entire
spacetime, as required in general relativity. Due to the mathematical com-
plexity of the inner field equations and the matching conditions, it would be
easier to start with the simplest possible case which can be handled analyti-
cally. Our results show that the q−metric is the best candidate for this task.
We expect to explore this problem in future works.

*******************
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7 Observers in Kerr spacetimes:
the ergoregion on the equatorial
plane

7.1 Introduction

The physics of black holes (BHs) is probably one of the most complex and
still controversial aspects of Einstein’s geometric theory of gravitation. Many
processes of High Energy Astrophysics are supposed to involve singularities
and their formation from a stellar progenitor collapse or from the merging of
a binary BH system. The interaction of these sources with the matter envi-
ronment, which can lead to accretion and jets emission, is the basis for many
observed phenomena. As a consequence of this interaction, the singularity
properties, determined generally by the values of their intrinsic spin, mass
or electric charge parameters, might be modified, leading to considerable
changes of the singularity itself. In this work, we concentrate our analysis
on the ergoregion in the naked singularity (NS) and BH regimes of the ax-
isymmetric and stationary Kerr solution. We are concerned also about the
implications of any spin-mass ratio oscillation between the BH and the NS
regimes from the viewpoint of stationary observers and their frequencies, as-
suming the invariance of the system symmetries (axial symmetry and time
independence). One of the goals of this work is to explore the existence of
spin transitions in very weak naked singularities [46], which are character-
ized by a spin parameter a/M ≈ 1. If the collapse of a stellar object or the
merging of several stellar or BH attractors lead to the formation of a naked
singularity, then a total or partial destruction of the horizon may occur which
should be accompanied by oscillations of the spin-to-mass ratio. Naked sin-
gularities can also appear in non-isolated BH configurations as the result of
their interaction with the surrounding matter, i. e., in some transient pro-
cess of the evolution of an interacting black hole. Indeed, the interaction can
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lead to modifications of characteristic BH parameters, for instance, through a
spin-up or spin-down process which can also alter the spacetime symmetries.
The details of such spin transitions, leading possibly to the destruction of the
horizon, and their consequences are still an open problem.

In this work, keeping the Kerr spacetime symmetries unchanged, we fo-
cus on the variation of the dimensionless spin parameter in the region within
the static limit on the equatorial plane of the attractor, this being the plane
of symmetry of the Kerr solution. This special plane of the axisymmetric
geometry has many interesting properties; for instance, constants of motion
emerge due to the symmetry under reflection with respect to this plane; the
geometry has some peculiarities that make it immediately comparable with
the limiting static Schwarzschild solution, in particular, the location of the
outer ergoregion boundary is independent of the spin value, and coincides
with the location of the Schwarzschild horizon. There is also a clear astro-
physical interest in the exploration of such a plane, as the large majority of
accretion disks are considered to be located on the equatorial plane of their
attractors.

From a methodological viewpoint, our analysis represents a comparative
study of stationary and static observers in Kerr spacetimes for any range of
the spin parameter. The findings in this work highlight major differences
between the behavior of these observers in BH and NS geometries. These is-
sues are clearly related to the most general and widely discussed problem of
defining BHs, their event horizon and their intrinsic thermodynamic proper-
ties [47, 48, 49, 50, 51, 52]. Further, it seems compelling to clarify the role of
the static limit and of the ergoregion in some of the well-analyzed astrophys-
ical processes such as the singularity formation, through the gravitational
collapse of a stellar “progenitor” or the merging of two BHs. Similarly, it
is interesting to analyze the role of the frame-dragging effect in driving the
accretion processes. In fact, the ergosphere plays an important role in the
energetics of rotating black holes.

The dynamics inside the ergoregion is relevant in Astrophysics for possible
observational effects, since in this region the Hawking radiation can be ana-
lyzed and the Penrose energy extraction process occurs [57, 53, 54, 55, 56]1.

1The Hawking process is essentially due to the vacuum fluctuation happening in the re-
gions close to the BH horizon; it is not related to the properties of the ergoregion itself.
The Hawking radiation is the (spontaneous) emission of thermal radiation which is cre-
ated in the vacuum regions surrounding a BH, and leads to a decrease of the mass. Con-
nected in many ways to the Unruh effects, it generally leads to the production of pairs
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For the actual state of the Penrose process, see [59]. Another interesting ef-
fect connected directly to the ergoregion is discussed in [60]. The mech-
anism, by which energy from compact spinning objects is extracted, is of
great astrophysical interest and the effects occurring inside the ergoregion
of black holes are essential for understanding the central engine mechanism
of these processes [61, 62]. Accreting matter can even get out, giving rise, for
example, to jets of matter or radiation [61, 63] originated inside the ergore-
gion. Another possibility is the extraction of energy from a rotating black
hole through the Blandford-Znajek mechanism (see, for instance, [64, 65, 66,
67, 68, 69, 70, 71, 72, 73]). An interesting alternative scenario for the role of
the Blandford-Znajek process in the acceleration of jets is presented in[74].
Further discussions on the Penrose and Blandford-Znajek processes may be
found in [75, 76]. In general, using orbits entering the ergosphere, energy
can be extracted from a Kerr black hole or a naked singularity. On the other
hand, naked singularity solutions have been studied in different contexts in
[77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]. Kerr naked singularities as par-
ticle accelerators are considered in [89]– see also [90, 91]. More generally,
Kerr naked singularities can be relevant in connection to superspinars, as
discussed in [90]. The stability of Kerr superspinars has been analyzed quite
recently in [92], assenting the importance of boundary conditions in dealing
with perturbations of NSs.

An interesting perspective exploring duality between elementary particles
and black holes, pursuing quantum black holes as the link between micro-
physics and macrophysics, can be found in [93, 94, 95, 96]– see also [97]. A
general discussion on the similarities between characteristic parameter val-
ues of BHs and NSs, in comparison with particle like objects, is addressed
also in [99, 98, 100, 101]. Quantum evaporation of NSs was analyzed in [102],
radiation in [103], and gravitational radiation in [104, 105, 106].

Creation and stability of naked singularities are still intensively debated
[107, 108, 109, 110, 111, 112]. A discussion on the ergoregion stability can be
found in [113, 114]. However, under quite general conditions on the progen-
itor, these analysis do not exclude the possibility that considering instability

of particles, one escaping to infinity while the other is trapped by the BH horizon. On
the other hand, the Penrose energy extraction, or its wave-analogue of super-radiance, is
related essentially to a classical (i.e. non quantum) phenomenon occurring in the ergore-
gion, ]r+, r+ε [, due to the frame-dragging of the spinning spacetime. In this way, energy
can be extracted from the source, lowering its angular momentum. For a study of the
Hawking radiation in Kerr and Kerr-Newman spacetimes see also [58]

471



7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

processes a naked singularity can be produced as the result of a gravitational
collapse. These studies, based upon a numerical integration of the corre-
sponding field equations, often consider the stability of the progenitor mod-
els and investigate the gravitational collapse of differentially rotating neutron
stars in full general relativity [115]. Black hole formation is then associated
with the formation of trapped surfaces. As a consequence of this, a singu-
larity without trapped surfaces, as the result of a numerical integration, is
usually considered as a proof of its naked singularity nature. However, the
non existence of trapped surfaces after or during the gravitational collapse
is not in general a proof of the existence of a naked singularity. As shown
in [116], in fact, it is possible to choose a very particular slicing of spacetime
during the formation of a spherically symmetric black hole where no trapped
surfaces exist (see also [117]). Eventually, the process of gravitational collapse
towards the formation of BHs (and therefore, more generally, the issues con-
cerning the formation or not of a horizon and hence of NSs) is still, in spite
of several studies, an open problem. There are transition periods of transient
dynamics, possibly involving topological deformations of the spacetime, in
which we know the past and future asymptotic regions of the spacetime, but
it is still in fact largely unclear what happens during that process. The prob-
lem is wide and involves many factors as, especially in non-isolated systems,
the role of matter and symmetries during collapse. Another major process
that leads to black hole formation is the merging of two (or more) black holes,
recently detected for the first time in the gravitational waves sector [118]. See
also [119, 120] for the first observation of the probable formation of a BH
from the coalescence of two neutron stars. An interesting and detailed anal-
ysis of Kerr and Kerr-Newman naked singularities in the broader context of
braneworld Kerr-Newman (B-KN) spacetimes can be found in [121], where
a new kind of instability, called mining instability, of some B-KN naked sin-
gularity spacetimes was found. In there, the exploration of the “causality
violation region” is also faced. This is the region where the angular coordi-
nate becomes timelike, leading eventually to closed timelike curves. Details
on the relation between this region and the Kerr ergoregion can be found in
the aforementioned reference.

In [99, 98, 101, 100, 46, 122], we focused on the study of axisymmetric grav-
itational fields, exploring different aspects of spacetimes with NSs and BHs.
The results of this analysis show a clear difference between naked singular-
ities and black holes from the point of view of the stability properties of cir-
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cular orbits2. This fact would have significant consequences for the extended
matter surrounding the central source and, hence, in all processes associated
with energy extraction. Indeed, imagine an accretion disk made of test parti-
cles which are moving along circular orbits on the equatorial plane of a Kerr
spacetime. It turns out that in the case of a black hole the accretion disk is con-
tinuous whereas in the case of a naked singularity it is discontinuous. This
means that we can determine the values of intrinsic physical parameters of
the central attractor by analyzing the geometric and topological properties of
the corresponding Keplerian accretion disk. In addition, these disconnected
regions, in the case of a naked singularities, are a consequence of the repul-
sive gravity properties found also in many other black hole solutions and in
some extensions or modifications of Einstein’s theory. The effects of repulsive
gravity in the case of the Kerr geometry were considered in [126] and [127].
Analogies between the effects of repulsive gravity and the presence of a cos-
mological constant was shown also to occur in regular black hole spacetimes
or in strong gravity objects without horizons [128, 129].

Several studies have already shown that it is necessary to distinguish be-
tween weak (a/M ≈ 1) and strong naked singularities (a/M >> 1). It is
also possible to introduce a similar classification for black holes; however,
we prove here that only in the case of naked singularities there are obvious
fundamental distinctions between these classes which are not present among
the different black hole classes. Our focus is on strong BHs, and weak and
very weak NSs. This analysis confirms the distinction between strong and
weak NSs and BHs, characterized by peculiar limiting values for the spin
parameters. Nevertheless, the existence and meaning of such limits is still
largely unclear, and more investigation is due. However, there are indica-
tions about the existence of such limits in different geometries, where weak
and strong singularities could appear. In [46, 99, 98, 100, 101], it was estab-
lished that the motion of test particles on the equatorial plane of black hole
spacetimes can be used to derive information about the structure of the cen-
tral source of gravitation; moreover, typical effects of repulsive gravity were
observed in the naked singularity ergoregion (see also [130, 131, 132, 78]). In
addition, it was pointed out that there exists a dramatic difference between

2Test particle motion can be used to determine the topological properties of general rela-
tivistic spacetimes [123, 124, 125]. Moreover, we proved that in certain NS geometries
different regions of stable timelike circular orbits are separated from each other by empty
regions; this means that an accretion disk made of test particles will show a particular
ring-like structure with specific topological properties.
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black holes and naked singularities with respect to the zero and negative en-
ergy states in circular orbits (stable circular geodesics with negative energy
were for the first time discussed in [133]). The static limit would act indeed
as a semi-permeable membrane separating the spacetime region, filled with
negative energy particles, from the external one, filled with positive energy
particles, gathered from infinity or expelled from the ergoregion with impov-
erishment of the source energy. The membrane is selective because it acts
so as to filter the material in transient between the inner region and outside
the static limit. This membrane wraps and selectively isolates the horizon
in Kerr black holes and the singularity in superspinning solutions, partially
isolating it from the outer region by letting selectively rotating infalling or
outgoing matter to cross the static limit. As mentioned above, the ergoregion
is involved in the BH spin-up and spin-down processes leading to a radi-
cal change of the dynamical structure of the region closest to the source and,
therefore, potentially could give rise to detectable effects. It is possible that,
during the evolutionary phases of the rotating object interacting with the or-
biting matter, there can be some evolutionary stages of spin adjustment, for
example, in the proximity of the extreme value (a . M) where the speculated
spin-down of the BH can occur preventing the formation of a naked singular-
ity with a & M (see also [111, 134, 135, 136, 137, 138, 139, 140, 141, 109, 142]).
The study of extended matter configurations in the Kerr ergoregion is faced
for example in [143, 46]. In [143, 144, 146, 145, 147], a model of multi-accretion
disks, so called ringed accretion disks, both corotating and counterrotating on
the equatorial plane of a Kerr BH, has been proposed, and a model for such
ringed accretion disks was developed. Matter can eventually be captured by
the accretion disk, increasing or removing part of its energy and angular mo-
mentum, therefore prompting a shift of its spin [148, 110, 133, 149, 150, 151].
A further remarkable aspect of this region is that the outer boundary on the
equatorial plane of the central singularity is invariant for every spin change,
and coincides with the radius of the horizon of the static case. In the limit
of zero rotation, the outer ergosurface coalesces with the event horizon. The
extension of this region increases with the spin-to-mass ratio, but the outer
limit is invariant. Although on the equatorial plane the ergoregion is invari-
ant with respect to any transformation involving a change in the source spin
(but not with respect to a change in the mass M), the dynamical structure of
the ergoregion is not invariant with respect to a change in the spin-to-mass
ratio. Nevertheless, concerning the invariance of this region with respect to
spin shifts it has been argued, for example in [152], that the ergoregion can-
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not indeed disappear as a consequence of a change in spin, because it may
be filled by negative energy matter provided by the emergence of a Penrose
process3 [57]. The presence of negative energy particles, a distinctive feature
of the ergoregion of any spinning source in any range of the spin value, has
special properties when it comes to the circular motion in weakly rotating
naked singularities. The presence of this special matter in an “antigravity”
sphere, possibly filled with negative energy formed according to the Penrose
process, and bounded by orbits with zero angular momentum, is expected
to play an important role in the source evolution. In this work, we clarify
and deepen those results, formulate in detail those considerations, analyze
the static limit, and perform a detailed study of this region from the point of
view of stationary observers. In this regards, we mention also the interesting
and recent results published in [153] and [154].

In detail, this article is organized as follows: in Sec. 7.2 we discuss the main
properties of the Kerr solution and the features of the ergoregion in the equa-
torial plane of the Kerr spacetimes. Concepts and notation used throughout
this work are also introduced. Stationary observers in BH and NS geome-
tries are introduced in Sec. 7.3. Then, in Sec. 7.4, we investigate the case of
zero angular momentum observers and find all the spacetime configurations
in which they can exist. Finally, in Sec. 7.5, we discuss our results.

7.2 Ergoregion properties in the Kerr spacetime

The Kerr metric is an axisymmetric, stationary (nonstatic), asymptotically flat
exact solution of Einstein’s equations in vacuum. In spheroidal-like Boyer–
Lindquist (BL) coordinates, the line element can be written as

ds2 = −dt2 +
ρ2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2

+
2M
ρ2 r(dt− a sin2 θdφ)2 , (7.2.1)

∆ ≡ r2 − 2Mr + a2, and ρ2 ≡ r2 + a2 cos2 θ . (7.2.2)

The parameter M ≥ 0 is interpreted as the mass parameter, while the rota-
tion parameter a ≡ J/M ≥ 0 (spin) is the specific angular momentum, and

3We note that the wave analog of the Penrose process is the superradiant scattering.
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J is the total angular momentum of the gravitational source. The spherically
symmetric (static) Schwarzschild solution is a limiting case for a = 0.

A Kerr black hole (BH) geometry is defined by the range of the spin-mass
ratio a/M ∈]0, 1[, the extreme black hole case corresponds to a = M, whereas
a super-spinner Kerr compact object or a naked singularity (NS) geometry
occurs when a/M > 1.

The Kerr solution has several symmetry properties. The Kerr metric tensor
(7.2.1) is invariant under the application of any two different transformations:
PQ : Q → −Q, where Q is one of the coordinates (t, φ) or the metric param-
eter a while a single transformation leads to a spacetime with an opposite
rotation with respect to the unchanged metric. The metric element is inde-
pendent of the coordinate t and the angular coordinate φ. The solution is
stationary due to the presence of the Killing field ξt = ∂t and the geometry is
axisymmetric as shown by the presence of the rotational Killing field ξφ = ∂φ.

An observer orbiting, with uniform angular velocity, along the curves r =constant
and θ =constant will not see the spacetime changing during its motion. As
a consequence of this, the covariant components pφ and pt of the particle
four–momentum are conserved along the geodesics4 and we can introduce
the constants of motion

E ≡ −gαβξα
t pβ, L ≡ gαβξα

φ pβ. (7.2.3)

The constant of motion (along geodesics) L is interpreted as the angular mo-
mentum of the particle as measured by an observer at infinity, and we may
interpret E, for timelike geodesics, as the total energy of a test particle coming
from radial infinity, as measured by a static observer located at infinity.

As a consequence of the metric tensor symmetry under reflection with re-
spect to the equatorial hyperplane θ = π/2, the equatorial (circular) trajec-
tories are confined in the equatorial geodesic plane. Several remarkable sur-
faces characterize these geometries: For black hole and extreme black hole

4We adopt the geometrical units c = 1 = G and the signature (−,+,+,+), Greek indices
run in {0, 1, 2, 3}. The four-velocity satisfy uαuα = −1. The radius r has units of mass
[M], and the angular momentum units of [M]2, the velocities [ut] = [ur] = 1 and [uφ] =
[uθ ] = [M]−1 with [uφ/ut] = [M]−1 and [uφ/ut] = [M]. For the sake of convenience, we
always consider a dimensionless energy and effective potential [Ve f f ] = 1 and an angular
momentum per unit of mass [L]/[M] = [M].
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spacetimes the radii

r± ≡ M±
√

M2 − a2 : grr = 0 (7.2.4)

are the event outer and inner (Killing) horizons5, whereas

r±ε ≡ M±
√

M2 − a2cos2θ : gtt = 0 (7.2.5)

are the outer and inner ergosurfaces, respectively6, with r−ε ≤ r− ≤ r+ ≤ r+ε .
In an extreme BH geometry, the horizons coincide, r− = r+ = M, and the
relation r±ε = r± is valid on the rotational axis (i.e., when cos2 θ = 1).

In this work, we will deal particularly with the geometric properties of the
ergoregion Σ+

ε : ]r+, r+ε ]; in this region, we have that gtt > 0 on the equato-
rial plane (θ = π/2) and also r+ε |π/2 = r+|a=0 = 2M and r−ε = 0. The
outer boundary r+ε is known as the static (or also stationary) limit [155]; it is
a timelike surface except on the axis of the Kerr source where it matches the
outer horizon and becomes null-like. On the equatorial plane of symmetry,
ρ = r and the spacetime singularity is located at r = 0. In the naked singu-
larity case, where the singularity at ρ = 0 is not covered by a horizon, the
region Σ+

ε has a toroidal topology centered on the axis with the inner circle
located on the singularity. On the equatorial plane, as a → 0 the geometry
“smoothly” resembles the spherical symmetric case, r+ ≡ r+ε |π/2, and the

5A Killing horizon is a null surface, S0, whose null generators coincide with the orbits of
an one-parameter group of isometries (i. e., there is a Killing field L which is normal
to S0). Therefore, it is a lightlike hypersurface (generated by the flow of a Killing vec-
tor) on which the norm of a Killing vector goes to zero. In static BH spacetimes, the
event, apparent, and Killing horizons with respect to the Killing field ξt coincide. In the
Schwarzschild spacetime, therefore, r = 2M is the Killing horizon with respect to the
Killing vector ∂t. The event horizons of a spinning BH are Killing horizons with respect
to the Killing field Lh = ∂t + ωh∂φ, where ωh is defined as the angular velocity of the
horizon. In this article we shall extensively discuss this special vector in the case of NS
geometries. We note here that the surface gravity of a BH may be defined as the rate
at which the norm of the Killing vector vanishes from the outside. The surface gravity,
SGKerr = (r+ − r−)/2(r2

+ + a2), is a conformal invariant of the metric, but it rescales with
the conformal Killing vector. Therefore, it is not the same on all generators (but obviously
it is constant along one specific generator because of the symmetries).

6 In the Kerr solution, the Killing vector ∂t, representing time translations at infinity, be-
comes null at the outer boundary of the ergoregion, r+ε , which is however a timelike
surface; therefore, r+ε is not a Killing horizon. More precisely, on the ergosurfaces the
time translational Killing vector becomes null.
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frequency of the signals emitted by an infalling particle in motion towards
r = 2M, as seen by an observer at infinity, goes to zero.

In general, for a 6= 0 and r ∈ Σ+
ε , the metric component gtt changes its sign

and vanishes for r = r+ε (and cos2 θ ∈]0, 1]). In the ergoregion, the Killing
vector ξα

t = (1, 0, 0, 0) becomes spacelike, i.e., gαβξα
t ξ

β
t = gtt > 0. As the

quantity E, introduced in Eq. (7.2.3), is associated to the Killing field ξt =
∂t, then the particle energy can be also negative inside Σ+

ε . For stationary
spacetimes (a 6= 0) in Σ+

ε , the motion with φ = const is not possible and all
particles are forced to rotate with the source, i.e., φ̇a > 0. This fact implies
in particular that an observer with four-velocity proportional to ξα

t so that
θ̇ = ṙ = φ̇ = 0, (the dot denotes the derivative with respect to the proper
time τ along the trajectory), cannot exist inside the ergoregion. Therefore, for
any infalling matter (timelike or photonlike) approaching the horizon r+ in
the region Σ+

ε , it holds that t→ ∞ and φ→ ∞, implying that the world-lines
around the horizon, as long as a 6= 0, are subjected to an infinite twisting. On
the other hand, trajectories with r = const and ṙ > 0 (particles crossing the
static limit and escaping outside in the region r ≥ r+ε ) are possible.

Concerning the frequency of a signal emitted by a source in motion along
the boundary of the ergoregion r+ε , it is clear that the proper time of the source
particle is not null7. Then, for an observer at infinity, the particle will reach
and penetrate the surface r = r+ε , in general, in a finite time t. For this reason,
the ergoregion boundary is not a surface of infinite redshift, except for the axis
of rotation where the ergoregion coincides with the event horizon [156, 46].
This means that an observer at infinity will see a non-zero emission frequency.
In the spherical symmetric case (a = 0), however, as gtφ = 0 the proper
time interval dτ =

√
|gtt|dt goes to zero as one approaches r = r+ = r+ε .

For a timelike particle with positive energy (as measured by an observer at
infinity), it is possible to cross the static limit and to escape towards infinity.
In Sec. 7.3, we introduce stationary observers in BH and NS geometries. We
find the explicit expression for the angular velocity of stationary observers,
and perform a detailed analysis of its behavior in terms of the radial distance
to the source and of the angular momentum of the gravity source. We find all
the conditions that must be satisfied for a light-surface to exist.

7However, since gtt(r±ε ) = 0, it is also known as an infinity redshift surface; see, for exam-
ple, [155].
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7.3 Stationary observers and light surfaces

We start our analysis by considering stationary observers which are defined
as observers whose tangent vector is a spacetime Killing vector; their four-
velocity is therefore a linear combination of the two Killing vectors ξφ and
ξt, i.e., the coordinates r and θ are constants along the worldline of a station-
ary observer [157]. As a consequence of this property, a stationary observer
does not see the spacetime changing along its trajectory. It is convenient to
introduce the (uniform) angular velocity ω as

dφ/dt = uφ/ut ≡ ω, or uα = γ(ξα
t + ωξα

φ), (7.3.1)

which is a dimensionless quantity. Here, γ is a normalization factor

γ−2 ≡ −κ(ω2gφφ + 2ωgtφ + gtt), (7.3.2)

where gαβuαuβ = −κ. The particular case ω = 0 defines static observers; these
observers cannot exist in the ergoregion.

The angular velocity of a timelike stationary observer (κ = +1) is defined
within the interval

ω ∈]ω−, ω+[ where ω± ≡ ωZ ±
√

ω2
Z −ω2

∗, (7.3.3)

ω2
∗ ≡

gtt

gφφ
=

gtt

gφφ , ωZ ≡ −
gφt

gφφ
,

as illustrated in Figs. 7.1 and 7.2-right, where the frequencies ω± are plot-
ted for fixed values of r/M and as functions of the spacetime spin a/M and
radius r/M, respectively. In particular, the combination

L± ≡ ξt + ω±ξφ (7.3.4)

defines null curves, gαβL
α
±L

β
± = 0, and, therefore, as we shall see in detail be-

low, the frequencies ω± are limiting angular velocities for physical observers,
defining a family of null curves, rotating with the velocity ω± around the axis
of symmetry. The Killing vectors L± are also generators of Killing event hori-
zons. The Killing vector ξt + ωξφ becomes null at r = r+. At the horizon
ω+ = ω− and, consequently, stationary observers cannot exist inside this
surface.
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7.3.1 The frequencies ω±

We are concerned here with the orbits r =const and ω =const, which are
eligible for stationary observers. This analysis enlightens the differences be-
tween NS and BH spacetimes. Inside the ergoregion, the quantity in paren-
thesis in the r.h.s. of Eq. (7.3.2) is well defined for any source. However, it
becomes null for photon-like particles and the rotational frequencies ω±. On
the equatorial plane, the frequencies ω± are given as

ω± ≡
2aM2 ±M

√
r2∆

r3 + a2(2M + r)
(7.3.5)

with ω±(r+) = ωZ(r+) = ωh ≡
a

2r+
≡ M

2ω0r+
,

and lim
r→∞

ω± = 0, lim
r→0

ω± = ω0 ≡
M
a

.

Moreover, for the case of very strong naked singularities a � M, we obtain
that ω± → 0.

The above quantities are closely related to the main black hole characteris-
tics, and determine also the main features that distinguish NS solutions from
BH solutions. The constant ωh plays a crucial role for the characterization of
black holes, including their thermodynamic properties. It also determines the
uniform (rigid) angular velocity on the horizon, representing the fact that the
black hole rotates rigidly. This quantity enters directly into the definition of
the BH surface gravity and, consequently, into the formulation of the rigidity
theorem and into the expressions for the Killing vector (7.3.1). More precisely,
the Kerr BH surface gravity is defined as κ = κs − γa, where κs ≡ 1/4M is
the Schwarzschild surface gravity, while γa = Mω2

h (the effective spring con-
stant, according to [158]) is the contribution due to the additional component
of the BH intrinsic spin; ωh is therefore the angular velocity (in units of 1/M)
on the event horizon. The (strong) rigidity theorem connects then the event
horizon with a Killing horizon stating that, under suitable conditions, the
event horizon of a stationary (asymptotically flat solution with matter satis-
fying suitable hyperbolic equations) BH is a Killing horizon8.

8 Assuming the cosmic censorship validity, the gravitational collapse should lead to BH
configurations. The surface area of the BH event horizon is non-decreasing with time
(which is the content of the second law of black hole thermodynamics). The BH event
horizon of this stationary solution is a Killing horizon with constant surface gravity (ze-
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The constant limit ω0 ≡ M/a plays an important role because it corre-
sponds to the asymptotic limit for very small values of r and R ≡ r/a. Note
that, on the equatorial plane, gαβL

α
0L

β
0 = R2, where L0 ≡ L±|ω0

. The asymp-
totic behavior of these frequencies may be deeper investigated by considering
the power series expansion for the spin parameter and the radius determined
by the expression

for r → ∞ : ω± = ±M
r

(
1− M

r

)
+ o[r−3] , (7.3.6)

which shows a clear decreasing as the gravitational field diminishes. For
large values of the rotational parameter, we obtain

ω± =
M
a

2M± r
2M + r

+ (7.3.7)

M
a3

r2

(2M + r)2

(
∓2M2 − 2Mr∓ 1

2
r2
)
+ o[a−5] ,

so that for extreme large values of the source rotation, the frequencies van-
ish and no stationary observers exist, thought differently for the limiting fre-
quencies ω± (see Figs. 7.2). It is therefore convenient to introduce the dimen-
sionless radius R ≡ r/a, for which we obtain the limit

R→ 0 : ω+ =
M
a
− MR2

2a
− M2R3

4a2 + o[R3]; (7.3.8)

ω− =
M
a
− R +

(
M2 + a2) R2

2Ma
− (7.3.9)(

a4 + 4M2a2 −M4) R3

4a2M2 + o[R3];

R→ ∞ : ω± =
(∓M2 + 4Ma∓ a2)M

2a3R3 ∓ M2

a2R2 ±
M
aR

+ o[R−3].

(7.3.10)

Equations (7.3.7), (7.3.8) and (7.3.9) show the particularly different behav-
ior of ω± with respect to the asymptote ω0. The behavior of the frequencies
for fixed values of the radial coordinate r and varying values of the specific

roth law) [159, 160, 161, 162].
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rotational parameter a/M is illustrated in Fig. 7.1. We see that the region of
allowed values for the frequencies is larger for naked singularities than for
black holes. In fact, for certain values of the radial coordinate r, stationary
observers can exist only in the field of naked singularities. This is a clear
indication of the observational differences between black holes and naked
singularities. The allowed values for the frequencies are bounded by the

Figure 7.1: Plot of the limit frequencies ω± for fixed values of r/M. Frequen-
cies ω±, on r = rγ ∈ Σ+

ε , photon circular orbit in the BHs ergoregion are also
plotted–see Table 7.1 and [46].

Figure 7.2: Left and central panels: Plot of the limit radii r±s as functions of
the spacetime spin a/M and frequencies ω-see also Figs. 7.4. Right panel:
Plot of the limit frequencies ω± as functions of the spacetime spin a/M and
radius r/M–see also Fig. 7.5.

limiting value ω0 = M/a; for a broader discussion on the role of the dimen-
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7.3 Stationary observers and light surfaces

sionless spin parameter a/M in Kerr geometries, see also [143]9 Moreover,
for a given value of ω±, the corresponding radius is located at a certain dis-
tance from the source, depending on the value of the rotational parameter
a. The following configuration of frequencies, radii and spin determines the
location structure of stationary observers:

ω+ ∈]0, ω0[, for a ∈]0, M[ in r ∈]0, r−] ∪ [r+,+∞[ (7.3.11)
and for a ≥ M in r > 0
ω− ∈]0, ω0[ for a ∈]0, M[ in r ∈]0, r−] ∪ [r+, r+ε [ (7.3.12)
and for a ≥ M in r ∈]0, r+ε [ .

Thus, we see that in the interval ]0, M/a[ observers can exist with frequen-
cies ω±; moreover, the frequency ω− is allowed in r ∈ Σ+

ε , while observers
with ω− < 0 can exist in r > r+ε . Moreover, it is possible to show that, in
BH geometries, the condition ω± � 1/2 must be satisfied outside the outer
horizon (r > r+). The particular value ω± = ωh = 1/2 is therefore the lim-
iting angular velocity in the case of an extreme black hole, i.e., for a = M so
that r = r+ = r− = M in Eq.(7.3.5). The behavior of the special frequency
ω± = 1/2 is depicted in Fig. 7.3 and in Figs. 7.4, 7.2, 7.5, and 7.6, where other
relevant frequencies are also plotted.

Eqs (7.3.11) enlighten some important properties of the light surfaces (fre-
quencies ω±) and of stationary observers, associated with frequencies ω ∈
]ω−, ω+[ in the regime of strong singularities. Eqs(7.3.11) also enlighten the
dependence of the frequencies on the dimensionless spin a/M and radius
R = r/a. It is clear that when the frequency interval ]ω−, ω+[ shrinks, de-
pending on the singularity spin a/M or the distance from the source r/M,
the range of possible frequencies for stationary observers reduces. This oc-
curs in general when ω+ ≈ ω−. According to Eqs (7.3.11), the frequencies
ω± are bounded from above by the limiting frequencies ω0 = M/a and from

9For simplicity we use here dimensionless quantities. We introduce the rotational version
of the Killing vectors ξt and ξφ, i.e., the canonical vector fields Ṽ ≡ (r2 + a2)∂t + a∂φ and
W̃ ≡ ∂φ + aσ2∂t. Then, the contraction of the geodesic four-velocity with W̃ leads to the
(non-conserved) quantity L−Eaσ2, which is a function of the conserved quantities (E,L),
the spacetime parameter a and the polar coordinate θ; on the equatorial plane, it then
reduces to L− Ea. When we consider the principal null congruence γ± ≡ ±∂r + ∆−1Ṽ,
the angular momentum L = aσ2, that is, ¯̀ = 1 (and E = +1, in proper units), every
principal null geodesic is then characterized by ¯̀ = 1. On the horizon, it is L = E = 0
[163, 143]
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

Figure 7.3: Plot of the limiting frequency ω± = 1/2. The spin a+(r) ≡√
r(2M− r), solution of r = r+, and aγ, solution of r = rγ where rγ ∈ Σ+

ε is
the photon orbit in the ergoregion in a Kerr BH, are also plotted.

below by the null value ω± = 0. Thus, at fixed radius r, for very strong
naked singularities a/M � 1, we have that ω0 ≈ 0 and the range of possi-
ble frequencies for stationary observers becomes smaller. This effect will be
discussed more deeply in Sec. 7.3.2, where we shall focus specifically on the
frequency ω0. On the other hand, considering the limits (7.3.5), together with
Eqs (7.3.6)– (7.3.10), we find that the range of possible frequencies shrinks
also in the following situations: when moving outwardly with respect to the
singularity (at fixed a), very close to the source, approaching the horizon rh
according to Eq. (7.3.5), or also for very large or very small R = r/a. The last
case points out again the importance of the scaled radius r/a.

Essentially, stationary observers can be near the singularity only at a par-
ticular frequency. The greater is the NS dimensionless spin, the lower is the
limiting frequency ω±, with the extreme limit at ω+ = ω−. In other words,
the frequency range, ]ω−, ω+[, for stationary observers vanishes as the value
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7.3 Stationary observers and light surfaces

r = 0 is approached. The singularity at r = 0 in the NS regime is actually
related to the characteristic constant frequency ω = ω0 in the same way as in
BH-geometries the outer horizon r = r+ is related to the constant frequency
ωh (cf. Eq. (7.3.5)). Consequently, a NS solution must be characterized by
the frequency ω0 and a BH solution by the frequency ωh. Therefore, the fre-
quency ω0 may be seen actually as the NS counterpart of the BH horizon
angular frequency ωh (see Fig. 7.4). For r > r+, it holds that ω+ > ω−.

Figure 7.4: Stationary observers: The angular velocities ωε
+ (gray curve), ωh

(black curve), ωn (dot-dashed curve), ω0 (dashed curve), ω̄n > ωn > ωh
(black thick curve). Here ω̄n = ωn = ωh = 1/2 at a = M, ωε

+ = ωh =
0.321797 at a = as, and ωε

+ = ωn = 0.282843 at a = a1. The maximum of ωε
+,

at a = a� =
√

2M (dashed line) where a� : re = r+ε –see Eq. (7.4.4), is marked
with a point. See also Fig. 7.2. The angular velocities ω± on the BH photon
orbit rγ ∈ Σ+

ε are also plotted. Note that ωn it is an extension of ω+(rγ) for
a < a1–see Table 7.2.

Then, in general, for BHs and NSs in the static limit r+ε = 2M, we obtain
that

ωε
+ ≡ ω+(r+ε ) =

aM
2M2 + a2 with ω−(r+ε ) = 0. (7.3.13)

Moreover, ω− < 0 for r > r+ε , and ω− > 0 inside the ergoregion Σ+
ε , while

ω+ > 0 everywhere.
In general, any frequency value should be contained within the range ω+−
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

Figure 7.5: Upper panel: Plot of the curves r−s =constant and r+s =constant
(inside panel) in the plane (ω, a/M). The numbers denote the constant radii
r±s /M (light cylinders). Bottom panel: The radii r±s versus the spin a/M,
for different values of the velocity ω (numbers close to the curves), the gray
region is a ∈ [0, M] (BH-spacetime). The black region corresponds to r < r+.
The dashed lines denote a1 < a2 < a3 < a4. The angular momentum and the
velocity (a, ω) for r±s (a, ω) = 0 are related by ω = M/a. See also Figs. 7.2.

ω−; therefore, it is convenient to define the frequency interval

∆ω± ≡ ω+ −ω− = 2
√

ω2
Z −ω2

∗, (7.3.14)

which is a function of the radial distance from the source and of the attractor
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7.3 Stationary observers and light surfaces

Figure 7.6: The radii r±s versus the frequency ω for different values of the
spin a/M (numbers close to the curves). The gray region is the only region
allowed for the case of BH spacetimes. The surfaces r̂± at a = M (extreme-
BH-case) are shown in black-thick.

spin. Figs. 7.7 show the frequency interval ∆ω± as a function of r/M and
a/M.

An analysis of this quantity makes it possible to derive some key features
about the eligible frequencies. For convenience, we present in Table 7.1 some
special values of the spin-mass ratio, which we will consider in the following
analysis. We summarize the obtained results in the following way:

Firstly, for any NS source with a > a∆ ≡ 1.16905M, the interval ∆ω± in-
creases as the observer (on the equatorial plane) moves inside the ergoregion
Σ+

ε towards the static limit.
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

Table 7.1: Classes of BH and NS geometries according to their specific spins.
The radii (r−γ , r−mso) correspond to the photon circular orbit (or also last circu-
lar orbit) and the marginally stable circular orbit, respectively, for corrotating
orbits in BH geometries. The NS case is characterized by the zero angular
momentum radii (L(r̂±) = 0) and the radius of the marginally stable circular
orbit r(NS)−

mso ∈ Σ+
ε . The explicit expressions for these radii can be found in

[99, 98, 101, 100, 122]

.

Black hole classes:
BHI : [0, a1[; BHII : [a1, a2[, BHIII : [a2, M]

a1/M ≡ 1/
√

2 ≈ 0.707107 : r−γ (a1) = r+ε ,
a2/M ≡ 2

√
2/3 ≈ 0.942809 : r−mso(a2) = r+ε

Naked singularity classes:
NSI : ]M, a3], NSII : ]a3, a4], NSIII : ]a4,+∞]

a3/M ≡ 3
√

3/4 ≈ 1.29904 : r̂+(a3) = r̂−(a3),
a4/M ≡ 2

√
2 ≈ 2.82843 : r(NS)−

mso (a4) = r+ε
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7.3 Stationary observers and light surfaces

Figure 7.7: Upper panel: Plot of the frequency interval ∆ω± = ω+ − ω− as
a function of the radius r/M and the BH and NS spin a/M. The extrema
r±∆ and r±� are solutions of ∂r∆ω± = 0 and ∂a∆ω± = 0, respectively. Lower
panel: The frequency interval ∆ω± = ω+ − ω− as a function of a/M for
selected values of the orbit radius r/M; the maximum points are for the radii
r±∆ or r+�–see Figs. 7.8.

Secondly, in the case of NS geometries with a ∈]M, a∆[, i.e., belonging par-
tially to the class of NSI spacetimes, the situation is very articulated. There
is a region of maximum and a minimum frequencies, as the observer moves
from the source towards the static limit. This phenomenon involves an orbital
range partially located within the interval ]r̂−, r̂+[, which is characterized by
the presence of counterrotating circular orbits with negative orbital angular
momentum L = −L− (cf. Fig. 7.8, where the radii r̂± are plotted.).

For the maximum spin, a = a∆, we obtain ω+ = ω− on the radius r ≡
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

r±∆ (a∆) = 0.811587M and, therefore, the range of possible frequencies for
stationary observers vanishes. The points r±∆ (a) represent the extrema of
the interval ∆ω± , i.e., the solutions of the equation ∂r∆ω± = 0 – Fig. 7.8. This
property is present only in the case of NS geometries. In fact, there are the two
critical orbits r+∆ > r−∆ and r = r±∆ (a∆), which are the boundaries of a closed
region, whose extension reaches a maximum in the case of the extreme Kerr
geometry a = M, and is zero for a = a∆. For r ∈]r−∆ , r+∆ [, the separation
parameter ∆ω± decreases with the orbital distance, then on the inner radius
r−∆ it reaches a maximum value, whereas on the outer radius r+∆ it reaches a
minimum. In the outer regions, at r > r+ε , the separation parameter increases
with the distance from the source. This feature constitutes therefore a major
difference in the the behavior of stationary observers within and outside the
ergoregion of a naked singularity spacetime. However, a deeper analysis of
the equatorial plane, outside the static limit, shows the existence of a second
region for light surfaces in the NS case.

On the other hand, the angular velocity ω− decreases with the orbit in
the Kerr spacetime. The maximum frequency ω+ also decreases in the NS
spacetimes. In the BH cases, the angular velocity is always increasing for
sources of the class BHI, while for the other sources there is a maximum for
the velocity ω+ at r = r−γ , which is the circular orbit of a photon or null-like
particle corotating with the source. Such a kind of orbit, contained in Σ+

ε ,
is a feature of the BHII-III spacetimes [46], this is also know as marginally
or last circular orbit as no circular particle motion is possible in the region
r < r−γ . We close this section with a brief discussion on the variation of the
frequency interval ∆ω± , following a spin transition with a > 0. In the case
of a singularity spin-transition, there are two extreme radii for the frequency
interval

r+� ≡ η cos
[

1
3

arccos
(
−8a2

η3

)]
, (7.3.15)

r−� ≡ η sin
[

1
3

arcsin
(

8a2

η3

)]
, η ≡ 2

√
8M2 − a2
√

3
,

or alternatively a =

√
−r (r2 − 8M2)

r + 2M
for r ∈]0, 2

√
2M[ ,

where r±� : ∂a∆ω± |r±� = 0 are maximum points– see Figs. 7.8 and 7.7.
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7.3 Stationary observers and light surfaces

7.3.2 Light surfaces

In this section, we briefly study the conditions for the existence of light sur-
faces and and their morphology. The condition (7.3.3), for the definition of a
stationary observer, can be restated in terms of the solutions r±s , considering
ω as a fixed parameter. Therefore, we now consider the solutions r±s of the
equation for the light surfaces defined in Eq. (7.3.4) in terms of the Killing
null generator L±, as functions of the frequency ω. We obtain

r−s
M
≡

2β1 sin
(

1
3 arcsin β0

)
√

3
,

r+s
M
≡

2β1 cos
(

1
3 arccos(−β0)

)
√

3

where β1 ≡
√

1
ω2 −

1
ω2

0
, β0 ≡

3
√

3β1ω2(
ω
ω0

+ 1
)2 , (7.3.16)

where ω0 ≡ M/a (cf. Eq. (7.3.5) and Fig. 7.2). For ω = 1/2, in the limiting
case of a = M, we have that ωn = ω̄n = ωh = 1/2 and r±s = M–see Figs. 7.4,
7.6 and 7.210. Thus, there are solutions r+s = r−s = 0 for a ∈]0, M[ if ω ∈
(ωn, ω̄n) where (for simplicity we use a dimensionless spin a→ a/M)

ω̄n ≡
9− a2 + 6

√
9− 5a2 cos

[
1
3 arccos α

]
a(a2 + 27)

(7.3.17)

ωn ≡
9− a2 − 6

√
9− 5a2 sin

[
1
3 arcsin α

]
a(a2 + 27)

(7.3.18)

α ≡ a4 − 36a2 + 27

(9− 5a2)
3/2 (7.3.19)

The situation is summarized in Table 7.2. We see that ωn = ωε
+ for a = a1,

10More precisely, it is r+s = r−s = 0 for a > 0 and ω = ω0. Also, r+s = r−s > r+ for a = 0
and ω = ± 1

3
√

3
. In the extreme Kerr spacetime geometry, we have that r+s = r−s > 0 for

a = M, ω = 1/2 for r = M, and ω = −1/7 for r = 4M. For a Kerr geometry, where
a/M ∈]0, 1[, it is r+s = r−s > r+ for ω = ωn or ω̄n (one positive and one negative value
solution), while in the naked singularity case where a > M, the condition r+s = r−s > 0 is
valid only for one negative frequency – see Figs. 7.5 and 7.6.
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

Table 7.2: Existence of stationary observers in BH and NS spacetimes, respec-
tively. The spin/mass ratio a/M, angular frequencies ω and orbital ranges r
are listed. See also Fig. 7.4.

Black holes: Naked singularities:
a ∈]0, a1] ω ∈]0, ωε

+[ r ∈]r−s , r+ε ] a > M ω ∈]0, ωε
+[ r ∈]r−s , r+ε ]

a ∈]a1, M] ω ∈]0, ωε
+[ r ∈]r−s , r+ε ] ω = ωε

+ r ∈]r−s , r+ε [
ω = ωε

+ r ∈]r−s , r+ε [ ]ωε
+, ω0[ r ∈]r−s , r+s [

ω ∈]ωε
+, ωn[ r ∈]r−s , r+s [

ωn = ω̄n = ωh = 1/2 at11 a = M, ωε
+ = ωh at a = as ≡

√
2
(√

2− 1
)

M ≈
0.91017M and a = 0 (the static solution). Moreover, we have that ω0 > ω̄n >
ωn > ωε

+ and ωn > ωh for BH-sources, where ωh > ωε
+ for a ∈]as, M]. In

the NS case, there are no crossing points for the radii r±s and ω0 > ωε
+ (see

Fig. 7.4). The shrinking of the frequency interval ]ω−, ω+[ is also shown in
Figs. 7.6, 7.9 and 7.10, where the radii r±s are also plotted as functions of the
frequencies.

Figures 7.4, 7.5, and 7.6 contain all the information about the differences
between black holes with a < M, and the case of naked singularities with
a > M. We summarize the situation in the following statements:

Naked singularities spacetimes: For a > M, the solutions for the equation of
the light surfaces in the limiting case ω = 0 (static observer) are located
at r = r+ε . While for any frequency within the range ω ∈]0, ωε

+[ there is
one solution r−s , for larger frequencies in the range ω ∈ [ωε

+, ω0[ there
are two solutions r±s . In the ergoregion Σ+

ε of a naked singularity, there
exists a limit ω0 ≡ M/a for the angular frequency.

Extreme black hole spacetime: For a = M, we obtain the following set of
solutions (ω = 0, r = r+ε ), (ω ∈]0, 1/3[, r = r−s ), and (ω ∈ [1/3, 1/2[, r =
r±s ).

Black hole spacetimes: We consider first the class BHI with a ∈]0, a1]. In the
limit ω = 0, there exists a solution for the light surface with r = r+ε .
More generally, the solutions are constrained by the following set of

11For a closer look at the role of this special frequency we note that ω̄n = ωn = ωh = 1/2 at
a = M and, clearly, ω0 = 1/2 for a = 2M. We refer then to Figs. 7.3, 7.4, 7.5, 7.6, and 7.9.
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conditions:

C1 : ω ∈]0, ωε
+] ∪ω 6= ωh with solution r = r−s . (7.3.20)

C2 : ω ∈ [ωε
+, ωn[ with solution r = r±s , (7.3.21)

ω = ωn, with solution r = r−s . (7.3.22)

Then, we consider BH spacetimes with spin a ∈]a1, as[, where as ≡√
2
(√

2− 1
)

M < a2. These spacetimes include a part of BHII-sources

and the condition C1 applies.

For spacetimes with rotation a = as, the conditions C1 and C2 apply.
Then, in the special case ωε

+ = ωh or ω = ωε
+, there is a solution with

r = r+s .

Finally, for spacetimes with a ∈]as, M[, which belong to the class of
BHII and BHIII sources, the condition C1 holds, whereas the condi-
tion C2 applies for frequencies within the interval ωh < ωn. Finally, in
the special case ω = ωh, there is one solution at r = r+s , and for ω = ωn
we have the solution r = r−s .

A summary and comparison of these two cases is proposed also in Figs. 7.5
and 7.6, where the surfaces r±s are studied as functions of a/M and ω. It is
evident that the extreme solution a/M = 1 is a limiting case of both surfaces
r±s , varying both in terms of the spin and the angular velocity ω. Thus, the
difference between the regions where stationary observers can exist in the
BH case (gray regions in Figs. 7.6) and in the NS case are clearly delineated.
In BH spacetimes, the surfaces r±s are confined within a restricted radial and
frequency range. On the other hand, in the naked singularity case, the or-
bits and the frequency range is larger than in the black hole case. Moreover,
the surfaces r±s can be closed in the case of NS spacetimes, inside the ergore-
gion, for sufficiently low values of the spin parameter, namely a ∈]M, a4].
Furthermore, in any Kerr spacetime, there is a light surface at r±s = r+ε with
ω = M/a4. In Sec. 7.4, we complete this analysis by investigating the spe-
cial case of zero angular momentum observers, and we find all the spacetime
configurations in which they can exist.
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

7.4 Zero angular momentum observers

This section is dedicated to the study of Zero Angular Momentum Observers
(ZAMOs) which are defined by the condition

L ≡ uαξα
(φ) = gαβξα

φ pβ = gtφ ṫ + gφφφ̇ = 0. (7.4.1)

In terms of the particle’s four–velocity, the condition L = 0 is equivalent to
dφ/dt = −gφt/gφφ ≡ ωZ = (ω+ + ω−)/2, where the quantity ωZ is the
ZAMOs angular velocity introduced in Eq. (7.3.3), and the frequency of arbi-
trary stationary observers is written in terms of ωZ [46]. The sign of ωZ is in
concordance with the source rotation. The ZAMOs angular velocity is a func-
tion of the spacetime spin (see Figs. 7.11 and 7.12, where constant ZAMOs
frequency profiles are shown). In the plane θ = π/2, we find explicitly

ωZ|(θ=π/2) =
2aM2

r3 + a2(r + 2M)
. (7.4.2)

As discussed in [101, 100, 46], ZAMOs along circular orbits with radii r̂± are
possible only in the case of “slowly rotating” naked singularity spacetimes of
class NSI. This is a characteristic of naked singularities which is interpreted
generically as a repulsive effect exerted by the singularity [99, 98, 101, 100,
122]. On the other hand, ω2

Z = ω2
∗ for r = r±, while ω2

Z > ω2
∗ in the region

r > r+ for BH spacetimes, and in the region r > 0 for NS spacetimes (see also
Fig. 7.12).

ZAMOs angular velocity and orbital regions
The ZAMOs angular velocity ωZ is always positive for a > 0, and vanishes

only in the limiting case a = 0. This means that the ZAMOs rotate in the
same direction as the source (dragging of inertial frames).

As can be seen from Eq.(7.4.2), the frequency ωZ for a fixed mass and a 6= 0
is strictly decreasing as the radius r/M increases.

For the NS regime it is interesting to investigate the variation of ZAMO
frequency ωZ on the orbits r̂±. These special radii of the NS geometries do
not remain constant under a spin-transition of the central singularity. We
shall consider this aspect focusing on the curves r̂±(a) of the plane r − a as
illustrated in Fig. 7.8. This will enable us to evaluate simultaneously the fre-
quency variation on these special orbits, following a spin variation of the
naked singularity in the rage of definition of r̂±, and to evaluate the com-
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bined effects of a variation in the orbital distance from the singularity and a
change of spin. A similar analysis will be done, from a different point of view,
also for stationary observers.

In Σ±ε , the velocity ωZ = ω̂− (in NSs) always decreases with the orbital
radii r̂−, i.e. ∂r̂−ω̂− < 0, when the spin increases, i.e. ∂ar̂− > 0 (see Figs. 7.8
and 7.12). As r̂+ monotonically decreases with the spin during a NS spin-
up process (see Fig. 7.8), the frequency ω̂+ = ωZ(r̂+) decreases in the spin-
range a ∈ [M, aω[, and increases in the range ]aω, a3]; therefore, the special
value aω = 1.1987M is a minimum point of the ZAMOs frequency ω̂+

Z – see
Fig. 7.12. Viceversa, as r̂− increases after a NS spin-up, the corresponding
ZAMOs frequency ω̂− = ωZ(r̂−) decreases as the observer moves along the
curve r̂−(a). Thus, we can say that, if the NS spin increases, the frequency ω̂+

decreases, approaching, but never reaching, the singularity, i. e., ∂ar̂+ < 0 for
a ∈ [M, aω[. Viceversa, increasing the NSs spin in spacetimes with a ∈]aω, a3[,
the frequency ω̂+ increases again and the orbit r̂+ moves towards the central
singularity. On the other hand, the frequency ω̂− monotonically decreases
with the naked singularity spin, i.e. ∂ar̂− > 0; therefore, for a fixed NS spin,
the frequency interval decreases, i.e. ω̂− > ω̂+. In fact, the velocity ωZ is
strictly decreasing with the radius r in the BH and NS regimes with a 6= 0 (i.e.
∂rωZ < 0). Moreover, in general ωZ increases as the observer approaches the
black hole at fixed spin, and it decreases as the observer moves far away from
the center of rotation.

In the static limit, we have that ωZ(r+ε ) = ωε
+/2. In fact, the asymptotic

behavior of the frequency is determined by the relations

lim
r→r+

ωZ = lim
r→r+

ω± = ωh, lim
r→+∞

ωZ = 0, lim
r→0

ωZ = ω0. (7.4.3)

Change in the intrinsic spin The angular velocity of the ZAMOs inside
Σ+

ε varies according to the source spin. This might be especially important
in a possible process of spin-up or spin-down as a result of the interaction,
for example, with the surrounding matter. In [46], this phenomenon and its
implications were investigated, considering different regions close to the sin-
gularity. For a fixed orbital radius r, the ZAMOs angular velocity strongly
depends on the value of the spacetime spin-mass ratio. In particular, de-
pending on the value of the ratio a/M, there can exist a radius of maximum
frequency re given by
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re ≡
3
√

3a2 + Υ2

32/3Υ
, Υ ≡ 3

√
9Ma2 +

√
3
√

a4 (27M2 − a2) (7.4.4)

that are solutions of the equation ∂aωZ|π/2 = 0 at which the frequency is
denoted by ωe ≡ ωZ(re) (see Figs. 7.11 and 7.12). A detailed analysis of
the expression for the radius re shows that in can exist in spacetimes that
belong to the class BHII with spin a = as, where re(as) = r+(as), and to the
classes BHIII, NSI, and NSII with the limiting value a = a� =

√
2M, where

a� : re = r+ε (see Figs. 7.11 and 7.2). Spacetimes with spin as belong to the
class BHII, as defined in Table 7.2, and have been analyzed in the context of
stationary observers in Sec. 7.3.2 and Sec. 7.3.1 (Figs. 7.4, 7.11, 7.12 and 7.13
show the behavior of several quantities related to ZAMOs in relation to other
frequencies.). In this particular case, we have that

ωε
+ = ωh = 0.321797 and re(as) = r+(as). (7.4.5)

We focus our attention on ergoregion Σ+
ε , bounded from above by the ra-

dius r+ε and from below by r = 0 and r = r+ for NSs and BHs, respectively.
We consider the role of the radius re, as the maximum point of the ZAMO
frequency, as a function of the source spin-mass ratio. Thus, for black holes
with a ∈ [0, as], the frequency ωZ increases with a/M always inside the er-
goregion; this holds for any orbit inside Σ+

ε (i.e. for a fixed value r̄ ∈ Σ+
ε , if

a BH spin-up shift occurs in the range [0, as], the function ωZ(r̄, a) increases
with r̄). For spins a ∈]as, M], instead, the frequency ωZ grows with the spin
only for r̄ ∈]re, r+ε [; on the contrary, for radii located close to the horizon,
r̄ ∈]r+, re], ωZ(r̄, a) decreases following a spin up in the range ∈]as, M] (i.e,
∂ar+ < 0 and ∂are > 0).

In the case of NS-spacetimes, the frequency ωZ(r̄, a) is an increasing func-
tion of the dimensionless spin in the NS spin range ]M, a�[ and on the orbit
r̄ ∈]re, r+ε ]. Moreover, the frequency ωZ(r̄, a) decreases with the spin in the
range of values a ∈]M, a�[ and on r̄ ∈]0, re]. This situation is distinctly differ-
ent for NS with a > a�, for which in the ergoregion an increase of the spin
corresponds to a decrease of ωZ. This is an important distinction between
different NS regimes.

We note that re(as) = r+(as) for the spin as =

√
2
(√

2− 1
)

M (see Fig. 7.11).
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7.4 Zero angular momentum observers

Moreover, in NSII naked singularity spacetimes with spin a� =
√

2M : re =
r+ε , we obtain that ωε

Z = ωe–Fig. 7.12. Remarkably, the spin a� is the max-
imum point of the frequency ωε

Z(a�) = ωe(a�) ≡ ωε−Max
Z = 0.176777 and

also the maximum point of the frequency ωε
+ (see Fig. 7.2). In other words,

in naked singularity spacetimes with a = a�, where re = r+ε , the ZAMOs fre-
quency at the ergosurface ωε

Z reaches a maximum value which is equal to ωe,
defined through the radius in Eq. (7.4.4); moreover, the frequency ωε

+ reaches
its maximum value at the ergosurface.

ZAMOs energy

The circular motion of test particles can be described easily by using the
effective potential approach [164]. The exact form of such an effective poten-
tial in the Kerr spacetime is well known in the literature (see, for example,
[101, 100]). The effective potential function V+

e f f represents the value of E/µ

that makes r into a turning point (Ve f f = E/µ), µ being the particle mass;
in other words, it is the value of E/µ (in the case of photons, µ shall depend
on an affine parameter and the impact parameter ` ≡ L/E is relevant for
the analysis of trajectories) at which the (radial) kinetic energy of the parti-
cle vanishes. This can easily be obtained from the geodesic equations with
the appropriate constraints or through the normalization conditions of the
four-velocities, taking into account the constraints and the constants of mo-
tion [164]. Here we consider specifically an effective potential associated to
the ZAMOs. In general, the effective potential for a particle on a circular or-
bit can always be written in terms of the frequencies ωZ and ω∗ introduced
in Eq. (7.3.3), by using the quantities ωZ and ω∗ and the conserved particle
angular momentum L of Eq. (7.2.3). This can be shown as follows.

First, we consider the normalization condition for a particle with momen-
tum pα = µuα, mass µ and four-velocity uα so that gαβuαuβ = −κ, where
κ = 0,−1, 1 for null, spacelike and timelike curves, respectively (for photon
orbits the mass µ must be changed with a different parameter related to the
affine curve parametrization; for a discussion on this point see, for example,
[164]). Then, we can introduce the quantities M ≡ {Λ ≡ ur, Σ ≡ ut, Φ ≡
uφ, Θ ≡ uθ}. Using M in Eq. (7.2.3), we obtain

E = −(gttΣ + gφtΦ), L = (gφφΦ + gφtΣ), (7.4.6)

Σ =
Egφφ + gφtL

g2
φt − gttgφφ

, Φ =
Egφt + gttL

−g2
φt + gttgφφ

, (7.4.7)
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expressing the components ut and uφ in terms of the constants of motion.
The normalization condition can be solved for E to obtain the following two
solutions,

E± =
−gφtL±

√(
g2

φt − gttgφφ

) [
L2 + gφφ(gθθΘ2 + grrΛ2 + κ)

]
gφφ

. (7.4.8)

Considering now the angular frequency ω and the specific angular momen-
tum ` ≡ L/E, or photon impact parameter, we get

ω ≡ Φ
Σ

= −
Egφt + gttL

Egφφ + gφtL
= −

gtφ + gtt`

gφφ + gtφ`
, (7.4.9)

` ≡ L

E
= −

Φ + gφtΣ
gttΣ + gφtΦ

= −
gtφ + gφφω

gtt + gtφω
, (7.4.10)

which shows explicitly the relation between the angular frequency ω of circu-
lar orbits, the constants of motion L and E and the photon impact parameter
`. The ZAMO case corresponds to L = 0, and is considered in Sec. 7.4.

Equation (7.4.8) leads to the definition of the effective potential Vκ
e f f (a;L, r) ≡

E±/µ|Λ=0 on the equatorial plane. Circular motion is defined by the con-
straint Λ = 0, and Θ = 0 determines the equatorial hyperplane θ = π/2.
Then, explicitly,

Ve f f (`) = ±

√
κ(g2

φt − gttgφφ)

gφφ + 2`gφt + `2gtt
, (7.4.11)

V±e f f (L) =
−gφtL±

√(
g2

φt − gttgφφ

) (
L2 + κgφφ

)
gφφ

(7.4.12)

= LωZ ±
√(

κgφφ +L2
) (

ω2
Z −ω2

∗
)

(7.4.13)

=
1
2

(
L (ω− + ω+)±

√
(ω− −ω+) 2

(
gφφκ +L2

))
. (7.4.14)

In the case of light-like particle, κ = 0, we have that E± = Lω±and, for
a ≥ a1, ωγ ≡ |E+/L−(E+)|r−γ = |ω+|r−γ , r−γ is the photon (corotating) orbit
in the ergoregion. The frequency ω− corresponds to the case of energy E−
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7.4 Zero angular momentum observers

with appropriately defined angular momentum on r−γ . The functions Ve f f (L)
and Ve f f (`) in Eqs. (7.4.11) are related by the transformation L = L(`) or
` = `(L):

L(`) =
√
`2Ve f f (`)2 =

√√√√ (
g2

φt − gttgφφ

)
κ`2

gφφ + `(2gφt + gtt`)
. (7.4.15)

We can write now the effective potential V±e f f (a;L, r) in Eq.(7.4.8) for timelike
particles in terms of the angular momentum `, using Eq. (7.4.9), as

u2
t = V±e f f (a; `, r)2 = κ

g2
φt − gttgφφ

gφφ + 2`gφt + `2gtt
(7.4.16)

= κ
E2
(

g2
φt − gttgφφ

)
E2gφφ + 2EgφtL(`) + gttL(`)2 . (7.4.17)

Note that the limiting frequencies ω±(r; a), which determine the light sur-
faces r±s (ω; a), are defined from the normalization condition for light-like sur-
faces; in this sense, they are related to the photon circular motion on the equa-
torial plane ur = uθ = 0, i. e., they contain but do not coincide with geodesic
circular orbits, which are a particular case. In order to describe motion, it
is necessary to specify the dynamics, that is, to consider the normalization
condition together with the equations of motion. For the case of an equation
in which the effective potential V±e f f appears with the conditions κ = 0 and
Λ = Θ = 0 (circular motion on the equatorial plane), it is necessary to choose
an appropriate parametrization – see, for example, [164, 88].

In fact, the above rearranging of the terms is useful to determine immedi-
ately the potential in which a ZAMO observer moves, assuming L = 0, and
to compare with different orbits where L 6= 0 (clearly in this case the effec-
tive potential will be a function of r and a, through ω∗, ωZ and gφφ which
depend on the parameter L). Here we consider for the ZAMO Ve f f

∣∣2
Z =

κ̃gφφ[ω2
∗ − ω2

Z] where κ̃ is a factor related to the normalization condition of
the ZAMO four-velocity (κ̃ = −1 for timelike ZAMOs, where uφ = −ωZut

and ut = −εE/gφφ[ω2
∗ −ω2

Z], ε = 1 according to Eq. (7.2.3); in the ergoregion
Ve f f

∣∣2
Z > 0, but Ve f f

∣∣2
Z = 0 for r = 0 and r = r+). The orbits r̂± are critical

points of the effective potential, i. e., r̂± : ∂r Ve f f
∣∣2
Z = 0.
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

12. The energy of the ZAMOs is always positive for both BH and NS space-
times, and it grows with the source spin; in fact, solutions for Ve f f

∣∣
Z = 0 are

not possible because this would correspond to the case of a null angular mo-
mentum with null energy. The energy on the orbits r̂± where L = 0 is always
positive. In BH geometries, the potential V0

e f f , at L = 0, increases with the
distance from the source and has no critical points as a function of r/M. The
most interesting case is then for the slow naked singularity spacetimes of the
first class, NSI with a ∈]M, a1], where there is a closed and connected orbital
region of circular orbits with r ∈]r̂−, r̂+[. The radii r̂± are ZAMOs orbits, and
in this region the potential decreases with the orbital radius. However, in
the outer region r ∈]r+, r̂−[∪]r̂+, 2M[, the potential increases with the radius.
This implies that the radii r̂± are possible circular ZAMOs orbits. In fact, r̂−
is an unstable orbit and r̂+ is a stable orbit. Thus, in any geometry of this set,
there is a stable orbit for the ZAMOs with angular velocity ω̂±Z ≡ ωZ(r̂±)
different from zero, where ω̂−Z < ω̂+

Z (see Fig. 7.12).
In [46], we investigated the orbital nature of the static limit. Here, in Fig. 7.13,

the velocity ωZ and the ratio Rε ≡ Eε
−/Lε

− (that is, the inverse of the spe-
cific angular momentum defined as uφ/ut) are considered as functions of the
source spin at the static limit. We explore the relation between the ZAMOs
and the stationary observes, where ωZ = (ω+ + ω−)/2, for NSI sources at
the static limit. A maximum value, Rε = 0.853553M, is reached at a = 2M ∈
NSII. Also, a maximum value ωε−Max

Z = 0.176777 exists for the ZAMOs an-
gular velocity at a = a� ∈ NSII. This ratio is always greater than the angular
momentum of the ZAMOs at the static limit.

In BH spacetimes, the angular velocity for stationary observers is limited
by the value ωh which occurs for the radius r+. We can evaluate the deviation
of this velocity in a neighborhood of the radius r+, since the four-velocity of
the observers rotating with ω (where ua ≡ ξt +ωξφ) must be timelike outside
the horizon and therefore it has to be R = E/L > ωh in that range (the
event horizon of a Kerr black hole rotates with angular velocity ωh [45]). This
limit cannot be extended to the case of naked singularities. However, one can
set similarly the threshold E > ωaL in the case of circular orbits, where the
frequency limit is restricted to the values ωa ∈ [1, a−1

µ M[ as ωa ∈ [ω0(a =

M), ω0(aµ)[.

12The function Ve f f

∣∣∣
Z
≡ Ve f f (ωZ, r)

∣∣∣
L=0

resembles the effective potential for the motion of
a neutral particle in the Reissner-Norström spacetime [122].
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7.5 Remarks

In this work, we carried out a detailed analysis of the physical properties of
stationary observers moving in the ergoregion along equatorial circular orbits
in the gravitational field of a spinning source, described by the stationary and
axisymmetric Kerr metric. We derived the explicit value of the angular veloc-
ity of stationary observers and analyzed all possible regions where circular
motion is allowed, depending on the radius and the rotational Kerr parame-
ter. We found that in general the region of allowed values for the frequencies
is larger for naked singularities than for black holes. In fact, for certain val-
ues of the radius r, stationary observers can exist only in the field of naked
singularities. We interpret this result as a clear indication of the observational
differences between black holes and naked singularities. Given the frequency
and the orbit radius of a stationary observer, it is always possible to deter-
mine the value of the rotational parameter of the gravitational source. Our
results show that in fact the probability of existence of a stationary observer
is greater in the case of naked singularities that in the case of black holes.
Moreover, it is possible to introduce a classification of rotating sources by us-
ing their rotational parameter which, in turn, determines the properties of
stationary observers. Black holes and naked singularities turn out to be split
each into three different classes in which stationary observers with different
properties can exist. In particular, we point out the existence of weak (NSI)
and strong (NSIII) naked singularities, corresponding to spin values close to
or distant from the limiting case of an extreme black hole, respectively.

Light surfaces are also a common feature of rotating gravitational config-
urations. We derived the explicit value of the radius for light surfaces on
the equatorial plane of the Kerr spacetime. In the case of black holes, light
surfaces are confined within a restricted radial and frequency range. On the
contrary, in the naked singularity case, the orbits and the frequency ranges
are larger than for black holes. Again, we conclude that light surfaces can be
found more often in naked singularities. The observation and measurement
of the physical parameters of a particular light surface is sufficient to deter-
mine the main rotational properties of the spinning gravitational source. We
believe that the study of light surfaces (defining the “throat” discussed in
Sec. 7.3) has important applications regarding the possibility of directly ob-
serving a black hole in the immediate vicinity of an event horizon (within the
region defined by the static limit), as this seems to be possible in the immedi-
ate future through, for example, the already active Event Horizon Telescope
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

(EHT) projects13.
We also analyzed the conditions under which a ZAMO can exist in a Kerr

spacetime. In particular, we computed the orbital regions and the energy of
ZAMOs. The frequency of the ZAMOs is always positive, i.e., they rotate in
the same direction of the spinning source as a consequence of the dragging of
inertial frames. The energy is also always positive. The most interesting case
is that of slowly rotating naked singularities (NSI) where there exists a closed
and disconnected orbital region. This particular property could, in principle,
be used to detect naked singularities of this class. We derived the particular
radius at which the frequency of the ZAMOs is maximal, showing that the
measurement of this radius could be used to determine whether the spinning
source is a black hole or a naked singularity and its class, according to the
classification scheme formulated here. To be more specific, from Table 7.2 we
infer that the existence of stationary observers in black hole spacetimes is lim-
ited from above by the frequency ωε

+, which is the highest frequency on the
static limit, implying the frequency lower bound ω = 0 – see also Fig. 7.4. In
this figure, we also show the maximum frequency, ω+

ε , at the static limit for a
naked singularity with a = a� =

√
2M ∈ NSII. This spin plays an important

role for the variation of the ZAMOs frequency in NSs in terms of the singu-
larity dimensionless spin – see Fig. 7.12 and Fig. 7.13. On the other hand, for
strong BHs, with a > a1, the frequency is bounded from below by ω = ω+

ε

and from above by ωn, as the radial upper bound is r+s . A similar situation
occurs for NSs, provided that ωn is replaced with the limiting frequency ω0.
The special role of the BH spin a1 is related to the presence of the photon
circular orbit in the BH ergoregion, which is absent in NS geometries; con-
sequently, as seen in Table 7.2, there is no distinction between the naked sin-
gularities classes. However, the analysis of the frequencies in Fig. 7.4 shows
differently that there are indeed distinguishing features in the corresponding
ergoregions. In the case of naked singularities, the frequency range of sta-
tionary observers has as a boundary the outer light-surface, r = r+s , then it
narrows as the spin increases, and finally vanishes near the static limit.

The frequency of the orbits on the static limit, in fact, converges to the limit
ω0 = M/a, which is an important frequency threshold for the NS regime.
The presence of a maximum for the special NS geometry with a = a� on the
static limit is symptomatic for the nature of this source – see Figs. 7.4, 7.6 and
7.13. The study of the surfaces r±s on the plane (r, ω), for different values

13 http://www.eventhorizontelescope.org/
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of the spin-mass ratio, shows a clear difference between the allowed regions
in naked singularities and black holes (gray region in Fig. 7.6). There is an
open “throat” between the spin values a . M (strong BHs) and a ' M (very
weak NSs), with an opening of the cusp (at r = 0 in these special coordi-
nates) for the frequency ω = 0.5. We note a change in the situation for spins
in a/M ∈]1, 1.0001]; this region is in fact extremely sensitive to a change of
the source spin; the throat of r±s has, in this special spin range, a saddle point
around (r = M, ω = 1/2) between [aµ, a3], which is not present in stronger
singularities. The spins in this range are related to the negative state energy
and the radii r±υ , where the orbital energy is E = 0 – Fig. 7.8. Particularly, we
point out the spin a = aσ = 1.064306M, where r−υ = r−∆ = 0.5107M, for which
at r±∆ there is a critical point of the frequency amplitude ∆ω±. In BH ge-
ometries, the frequencies increase with the spin and with the decrease of the
radius towards the horizon. The curves r±s continue to increase with the pres-
ence of a transition throat at r = M that increases, stretching and widening.
This throat represents a “transition region” between BH and super-spinning
sources from the viewpoint of stationary observes. The regions outlined here
play a distinct role in the collapse processes with possible spin oscillations
and different behaviors for weak, very weak, and strong naked singularities.
As the spin increases, the frequencies of NSs observes move to lower values,
widening the throat. This trend, however, changes with the spin, enlighten-
ing some special thresholds.

This analysis shows firstly the importance of the limiting frequency ω0 =
M/a, determining the main properties of both frequencies ω± and the radii
r±s ; it is also relevant in relation to ZAMOs dynamics in NS geometries. In
this way, we may see ω0 as an extension of the frequency ωh at the horizon
for BH solutions–Fig. 7.4. In the NS regime, all the curves r±s converge to
the same “focal point” r = 0, regardless of the type of naked singularity, but
as ωh is the limiting frequency at the BH horizon, each source is character-
ized by only one ω0 6= 0 frequency. The greater is the spin, the lower is the
frequency ω± at fixed radius, and particularly in the neighborhood of the
singularity ring, according to the limiting value ω0. The frequency range at
fixed r/M narrows for higher dimensionless NS spin a/M. This feature dis-
tinguishes between strong, weak and very weak naked singularities. From
Figs. 7.6 it is clear also that the throat of the light-surfaces r±s , in the plane
r − ω, for different spins a/M closes for a ≈ M, which is a spin transition
region that includes the extreme Kerr solution. This region has been enlarged
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

in Fig. 7.6-bottom. Figures 7.9 and 7.10 show from a different perspective the
transition between the BH region, gray region in Figs. 7.6, and the NS region
for different spins. Any spin oscillation in that region generates a tunnel in
the light-surface14. The transition region is around ω± ≈ 1/2, which is a
special value related to the spin a = 2M of strong naked singularities–see
Figs. 7.3 and 7.2. In this region, as in the neighborhood of the ring singularity
(r = 0), the orbital range reaches relatively small values15. This shows the
existence of limitations for a spin transition in the parameter region of very
weak naked singularities, pointed out also in [99, 98, 122, 100, 101].

On the other hand, in the strong NSs regimes, a spin threshold emerges
at a = 2M and a = M (see Figs. 7.3, 7.4 and 7.6). In Fig. 7.13, we ana-
lyze the properties at the static limit r+ε . The maximum value of E−/L− is
then reached in the ergoregion of the NSII class16. Around a = a3 the throat
width becomes more or less constant. The situation is different for a > a3
and a > 2M and then for a4, where the frequencies range narrows, and near
r = r+ε becomes restricted to a small range of a few mass units in the limit
of large spin a/M. In strong and very strong NSs, the wide region is inac-
cessible for stationary observers, whereas it is accessible in the BH case. This
significantly separates strong and weak NSs, and distinguish them from the
BH case. Interestingly, the saddle point around r = M, which narrows the
throat of frequencies even in the case of NS geometries for a ∈]M, aσ[, could
perhaps be viewed as a trace of the presence of r+, which is absent for a > M.
For a = aσ, where the saddle point disappears, the shape of the r±s tube is dif-

14Since any simulation of stellar collapse returns to the BH regime, there must be some
(retroactive) mechanism that closes the observer tunnel, as even light does not run away
in the forbidden region at r < M. Moreover, hypothetical super-luminary matter would
violate the bonding of the tunnel wall.

15It is worth to mention that predicted quantum effects close to the singularities could play
a major role in this region. However, we recall that the extreme limit a = M in this
model is never faced, as we continue to see the spacetime for all NSs using a Boyer-
Lindquist frame. It is well known that approaching the horizon at a = M, the radial
coordinate velocity appears as never penetrating the black hole, spiraling as t goes to
infinity. This is the consequence of a coordinate singularity which can be avoided by
using Kerr coordinates or Eddington-Finkelstein coordinates.

16 The throat depth in the region would lead to an immediate change of the observers prop-
erties and it is reasonable to ask if this may imply an activation instead of a “positive
feedback” phenomenon. We recall that in this scenario, we are not considering a change
of symmetries which would have an essential role. Then it is important to emphasize
that in these hypothetical spin transitions, the external boundary of the ergoregion re-
mains unchanged, but not the frequency at the static limit.
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ferent. This, on the other hand, would suggest that the existence of the flex
in the case of very weak NSs would prevent a further increasing of the spin.
This does not hold for a transition to stronger NSs, a ≥ aσ, where no saddle
point is present–Fig. 7.8-bottom. Obviously, the consequences of the hypo-
thetical transition processes should also take into account the transient phase
times. Very weak naked singularities show a “rippled-structure” in the fre-
quency profiles of ω with respect to r/M and a/M, as appears in Figs. 7.2, 7.6,
7.9, and 7.10. The significance of this structure is still to be fully investigated,
but it may be seen perhaps as a fingerprint-remnant of the BH horizon. This
may open an interesting perspective for the study of NS geometries.

An interesting application of our results would be related to the characteri-
zation of the optical phenomena in the Kerr naked singularity and black hole
geometries, such as the BH raytracing and the determination of the BH sil-
houette (shadow). The light escape cones are a key element for such phenom-
ena. Light escape cones of local observers (intended as sources) determine
the portion of radiation emitted by a source that could escape to infinity and
the one which is trapped. This is related to the study of the radial motion
of photons because the boundary of the escape cones is given by directional
angles associated to unstable spherical photon orbits. Light escape cones can
be identified in locally non-rotating frames, in frames associated to circular
geodesic motion and in radially free-falling observers [165, 166, 88, 167, 168].
We want to point out, however, that light escape cones do not define the
properties of the light-cone causal structure, and are not directly related to
stationary observers; they rather depend on the photon orbits. A thorough-
out analysis of the photon circular motion in the region of the ergoregion can
be found in [46]. In Figs. 7.1, 7.3, 7.4 and 7.12, we show the photon orbit rγ

and the limiting frequencies crossing this radius; this enlightens the relation
with the frequency ωn. A more detailed discussion on the relation between
angular frequencies ω± and the photon orbit in Σ+

ε in BH spacetimes was
presented above. We consider there in more detail the relation between the
quantities ωZ ω∗, the constants of motion L and E and the effective potential,
briefly addressed also in Sec. 7.4.

In general, we see that it is possible to detect black holes and naked sin-
gularities by analyzing the physical properties (orbital radius and frequency)
of stationary observers and ZAMOs. Moreover, the main physical properties
(mass and angular momentum) of the spinning gravitational source can be
determined by measuring the parameters of stationary observers. This is cer-
tainly important for astrophysical purposes since the detection and analysis
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of compact astrophysical objects is one of the most important issues of mod-
ern relativistic astrophysics. In addition, the results presented in this work
are relevant especially for investigating non-isolated singularities, the energy
extraction processes, according to Penrose mechanism, and the gravitational
collapse processes which lead to the formation of black holes.

506



7.5 Remarks

Figure 7.8: Upper panel: The effective potential Ve f f
∣∣
Z for the ZAMOS L = 0,

for BH and NS sources as a function of the source spin a/M and the radius
r/M. Black planes represent the spin values a = M, extreme Kerr BH, and
a3 ≡ 3

√
3/4M, a NS geometry, where r̂− = r̂+. The orbits r̂− ≤ r̂+, gray

surfaces, are for a < M (BH-case) inside the horizon (r < r+). The inner black
surface is the horizon r+. Central panel: The radius r(a), solution of ∂r∆ω± =
0. The radius r±υ , where the orbital energy E = 0, and the orbits r̂±, for which
L = 0, are also plotted. Dashed lines represent the spins aσ = 1.064306M,
aµ = 4

√
2/3/3M ≈ 1.08866M, a∆ = 1.16905M and a3 = 3

√
3/4M. The black

region corresponds to r < r+. Bottom panel: The radii r±� : ∂a∆ω± = 0 are
plotted as functions of a/M–see also Figs. 7.7.

507



7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

Figure 7.9: Plots of the surfaces r±s (in units of mass) versus the frequency
ω for different spin values a/M, including BH and NS geometries–see also
Figs. 7.6. The surfaces r±s are represented as revolution surfaces with height
r±s (vertical axes) and radius ω (horizontal plane). Surfaces are generated by
rotating the two-dimensional curves r±s around an axis (revolution of the
function curves r±s around the “z” axis). Thus, r =constant with respect to the
frequency ω is represented by a circle under this transformation. The disks
in the plots are either r = M, r = r+ or r = r+ε = 2M. The surfaces r±s are
green and pink colored, respectively (as mentioned in the legend). In the last
panel (a = 0.7M), both radii r±s are green colored
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Figure 7.10: Plots of frequency surfaces ω±(r, θ) as functions of the radial
distance r in Cartesian coordinates (x, y) for different spin values a, including
BHs and NSs –see also Figs. 7.6.
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Figure 7.11: The plot shows the orbits (gray curves) of constant ZAMOs ve-
locity ωZ =constant in the BH and NS regions. The radius re and the spin
as : re = r+ are marked by dashed lines. The arrows show the increasing of
the angular velocity.
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7.5 Remarks

Figure 7.12: Upper panel: The angular velocity ωe ≡ ωZ(re) as a function of a/M. The
angular velocities ωε

Z ≡ ωZ(r+ε ) (dashed curve), ωh ≡ ω±(r+) = ωZ(r+) (dot-dashed
curve), ω̂±Z ≡ ωZ(r̂±) as functions of the spacetime rotation a/M for different BH and NS
classes. Dotted lines are aκ ≈ 0.3002831060M : ωe = ω̂+

Z , as ≈ 0.91017M : ωe = ωh,
a3 : ω̂+

Z = ω̂−Z = 8/9
√

3, and finally the spin a� =
√

2M : ωε
Z = ω2 (dashed line) which is

a maximum for ωε
Z (the maximum point is marked with a point). The inset plot is a zoom.

The radius re/M is a maximum for ωe. The angular velocities ω± on the BH photon orbit
rγ ∈ Σ+

ε are also plotted (colored lines). Center panel: ω̂±Z ≡ ωZ(r̂±) as functions of a/M
for different NS classes. The minimum point of the ZAMOs frequency ω̂Z

+ is marked with
a point at spin aω = 1.19866M. Bottom panel: The ZAMOs angular velocity ωZ is plotted as
a function of the spin a/M and the radius r/M. The plane a = M and the horizon surface
r = r+ are black surfaces. The gray surface denotes the orbit re. For both NS and BH space-
times, the ZAMOs have a maximum frequency which is a function of a/M. The black thick
curve corresponds to E = 0. The black region denotes the region inside the outer horizon
r < r+.
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7 Observers in Kerr spacetimes: the ergoregion on the equatorial plane

Figure 7.13: Upper panel: The ratio Eε
−/Lε

− and the angular momentum of
the ZAMOs ωε

Z as a function of a/M in the static limit r = r+ε . The angular
momentum ωε

+ ≡ ω+(r+ε ) which is a boundary frequency for the stationary
observer (outer light surface) is plotted (gray curve). The radius r+ε is defined
by the condition ω−(r+ε ) = 0, ωh is the ZAMOs angular velocity on r = r+,
i.e. ω±(r±) = ωh. The maxima are denoted by points. The NSII region is in
light-gray. A zoom of this plot in the BH region is in the bottom panel.

512



Bibliography

[1] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt,
Exact solutions of Einstein’s field equations, Cambridge University
Press, Cambridge UK, 2003.

[2] F. J. Ernst, New formulation of the axially symmetric gravitational field prob-
lem, Phys. Rev. 167 (1968) 1175; F. J. Ernst, New Formulation of the
axially symmetric gravitational field problem II Phys. Rev. 168 (1968)
1415.

[3] H. Quevedo and B. Mashhoon, Exterior gravitational field of a rotating de-
formed mass, Phys. Lett. A 109 (1985) 13; H. Quevedo, Class of station-
ary axisymmetric solutions of Einstein’s equations in empty space, Phys.
Rev. D 33 (1986) 324; H. Quevedo and B. Mashhoon, Exterior grav-
itational field of a charged rotating mass with arbitrary quadrupole mo-
ment, Phys. Lett. A 148 (1990) 149; H. Quevedo, Multipole Moments
in General Relativity - Static and Stationary Solutions-, Fort. Phys.
38 (1990) 733; H.Quevedo and B. Mashhoon Generalization of Kerr
spacetime, Phys. Rev. D 43 (1991) 3902.

[4] H. Weyl, Zur Gravitationstheorie, Ann. Physik (Leipzig) 54 (1917) 117.

[5] T. Lewis, Some special solutions of the equations of axially symmetric gravi-
tational fields, Proc. Roy. Soc. London 136 (1932) 176.

[6] A. Papapetrou, Eine rotationssymmetrische Lösung in de Allgemeinen Rel-
ativitätstheorie, Ann. Physik (Leipzig) 12 (1953) 309.

[7] F. J. Hernandez, F. Nettel, and H. Quevedo, Gravitational fields as gener-
alized string models, Grav. Cosmol. 15, 109 (2009).

[8] H. Quevedo, General Static Axisymmetric Solution of Einstein’s Vacuum
Field Equations in Prolate Spheroidal Coordinates, Phys. Rev. D 39,
2904–2911 (1989).

513



Bibliography

[9] G. Erez and N. Rosen, Bull. Res. Counc. Israel 8, 47 (1959).

[10] B. K. Harrison, Phys. Rev. Lett. 41, 1197 (1978).

[11] H. Quevedo, Generating Solutions of the Einstein–Maxwell Equations with
Prescribed Physical Properties, Phys. Rev. D 45, 1174–1177 (1992).

[12] W. Dietz and C. Hoenselaers, Solutions of Einstein’s equations: Techniques
and results, (Springer Verlag, Berlin, 1984).

[13] V. A. Belinski and V. E. Zakharov, Soviet Phys. – JETP, 50, 1 (1979).

[14] C. W. Misner, Harmonic maps as models for physical theories, Phys. Rev. D
18 (1978) 4510.

[15] D. Korotkin and H. Nicolai, Separation of variables and Hamiltonian for-
mulation for the Ernst equation, Phys. Rev. Lett. 74 (1995) 1272.

[16] J. Polchinski, String Theory: An introduction to the bosonic string,
Cambridge University Press, Cambridge, UK, 2001.
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