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3. Brief description

3.1. Spacetime splitting techniques in
General Relativity

Spacetime splitting techniques play a central role and have fundamental in-
terest in general relativity in view of extracting from the unified notion of
spacetime the separate classical notions of space and time, at the founda-
tion of all of our experience and intuition. Studying all the existing differ-
ent approaches scattered in the literature has allowed the creation a unique
framework encompassing all of them [1] and a more clear geometrical inter-
pretation of the underlying “measurement process” for tensors and tensorial
equations. “Gravitoelectromagnetism” is a convenient name for this frame-
work because it helps explain the close relation between gravity and electro-
magnetism represented by the Coriolis and centrifugal forces on one side and
the Lorentz force on the other side.

3.1.1. “1+3” splitting of the spacetime

During the last century, the various relativistic schools: Zelmanov, Landau,
Lifshitz and the Russian school, Lichnerowicz in France, the British school,
the Italian school (Cattaneo and Ferrarese), scattered Europeans (Ehlers and
Trautman, for example) and the Americans (Wheeler, Misner, etc.), developed
a number of different independent approaches to spacetime splitting almost
without reference to each other.

R. Ruffini [2], a former student of Cattaneo and a collaborator of Wheeler,
looking for a better understanding of black holes and their electromagnetic
properties, stimulated Jantzen, Carini and Bini to approach the problem and
to make an effort to clarify the interrelationships between these various ap-
proaches as well as to shed some light on the then confusing works of Abra-
mowicz and others on relativistic centrifugal and Coriolis forces. By putting
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3. Brief description

them all in a common framework and clarifying the related geometrical as-
pects, some order was brought to the field [1, 3, 4].

3.1.2. Measurement process in general relativity

The investigations on the underlying geometrical structure of any spacetime
splitting approach show that it is not relevant to ask which of these various
splitting formalisms is the “best” or “correct” one, but to instead ask what
exactly each one of them “measures” and which is specially suited to a par-
ticular application.

For instance, in certain situations a given approach can be more suitable
than another to provide intuition about or simplify the presentation of the
invariant spacetime geometry, even if all of them may always be used. These
ideas were then used to try to understand better the geometry of circular
orbits in stationary spacetimes and their physical properties where the con-
nection between general relativity and its Newtonian progenitor are most
natural.

The list of problems addressed and results obtained together can be found
in Appendix A.

3.2. Motion of particles and extended bodies in
general relativity

The features of test particle motion along a given orbit strongly depend on the
nature of the background spacetime as well as on the model adopted for the
description of the intrinsic properties of the particle itself (e.g., its charge or
spin). As a basic assumption, the dimensions of the test particle are supposed
to be very small compared with the characteristic length of the background
field in such a way that the background metric is not modified by the presence
of the particle (i.e., the back reaction is neglected), and that the gravitational
radiation emitted by the particle in its motion is negligible. The particle can
in turn be thought as a small extended body described by its own energy-
momentum tensor, whose motion in a given background may be studied by
treating the body via a multipole expansion. Thus, a single-pole particle is a
test particle without any internal structure; a pole-dipole particle instead is a
test particle whose internal structure is expressed by its spin, and so on. The
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3. Brief description

equations of motion are then obtained by applying Einsteins field equations
together with conservation of the energy-momentum tensor describing the
body. For a single-pole particle this leads to a free particle moving along
the geodesics associated with the given background geometry. The motion
of a pole-dipole particle is instead described by the Mathisson-Papapetrou-
Dixon equations which couple background curvature and the spin tensor of
the field. The motion of particles with an additional quadrupolar structure
has been developed mostly by Dixon; because of its complexity, there are
very few applications in the literature. Finally, the discussion of the case in
which the test particle also has charge in addition to spin or mass quadrupole
moment is due to Dixon and Souriau and this situation has been very poorly
studied as well.

A complete list of the original results obtained and a deeper introduction
to the models can be found in Appendix B.

3.2.1. Test particles

Since the 1990s we have been investigating the geometrical as well as physical
properties of circular orbits in black hole spacetimes, selecting a number of
special orbits for various reasons. These were already reviewed in a previous
ICRANet report on activities. A recent work has instead been to consider
a given gravitational background a (weak) radiation field superposed on it
and a test particle interacting with both fields. Interesting effects arise like
the Poynting-Robertson effect which have been considered in the framework
of the full general relativistic theory for the first time.

Poynting-Robertson effect can be briefly described as follows.
For a small body orbiting a star, the radiation pressure of the light emitted

by the star in addition to the direct effect of the outward radial force exerts
a drag force on the body’s motion which causes it to fall into the star un-
less the body is so small that the radiation pressure pushes it away from the
star. Called the Poynting-Robertson effect, it was first investigated by J.H.
Poynting in 1903 using Newtonian gravity and then later calculated in lin-
earized general relativity by H.P. Robertson in 1937. These calculations were
revisited by Wyatt and Whipple in 1950 for applications to meteor orbits,
making more explicit Robertson’s calculations for slowly evolving elliptical
orbits and slightly extending them.

The drag force is easily naively understood as an aberration effect: if the
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3. Brief description

body is in a circular orbit, for example, the radiation pressure is radially out-
ward from the star, but in the rest frame of the body, the radiation appears
to be coming from a direction slightly towards its own direction of motion,
and hence a backwards component of force is exerted on the body which acts
as a drag force. If the drag force dominates the outward radial force, the
body falls into the star. For the case in which a body is momentarily at rest,
a critical luminosity similar to the Eddington limit for a star exists at which
the inward gravitational force balances the outward radiation force, a critical
value separating radial infall from radial escape. Similarly for a body initially
in a circular orbit, there are two kinds of solutions: those in which the body
spirals inward or spirals outward, depending on the strength of the radiation
pressure.

We have considered [156, 162, 159] this problem in the context of a test
body in orbit in a spherically symmetric Schwarzschild spacetime without
the restriction of slow motion, and then in the larger context of an axially
symmetric Kerr spacetime while developing the equations for a more general
stationary axially symmetric spacetime. The finite size of the radiating body
is ignored.

We have also developed applications to cylindrically symmetric Weyl class
spacetimes (exhibiting a typical naked singularity structure) as well as to the
Vaidya radiating spacetime where the photon field is not a test field but the
source of the spacetime itself.

3.2.2. Spinning test particles

During the last five years we have investigated the motion of spinning test
particles along special orbits in various spacetimes of astrophysical interest:
black hole spacetimes as well as more “exotic” background fields represent-
ing naked singularities or the superposition of two or more axially symmetric
bodies kept apart in a stable configuration by gravitationally inert singular
structures.

In particular, we have focused on the so called “clock effect,” defined by
the difference in the arrival times between two massive particles (as well as
photons) orbiting around a gravitating source in opposite directions after one
complete loop with respect to a given observer [5, 6, 7].

We have also analyzed the motion of massless spinning test particles, ac-
cording to an extended version of the Mathisson-Papapetrou model in a gen-

1270



3. Brief description

eral vacuum algebraically special spacetime using the Newman-Penrose for-
malism in the special case in which the multipole reduction world line is
aligned with a principal null direction of the spacetime. Recent applications
concern instead the study of the Poynting-Robertson effect for spinning par-
ticles.

3.2.3. Particles with both dipolar and quadrupolar structure
(Dixon’s model)

We have studied the motion of particles with both dipolar and quadrupolar
structure in several different gravitational backgrounds (including Schwarz-
schild, Kerr, weak and strong gravitational waves, etc.) following Dixon’s
model and within certain restrictions (constant frame components for the
spin and the quadrupole tensor, center of mass moving along a circular orbit,
etc.).

We have found a number of interesting situations in which deviations from
geodesic motion due to the internal structure of the particle can give rise to
measurable effects.

3.2.4. Exact solutions representing extended bodies with
quadrupolar structure

We have investigated geometrical as well as physical properties of exact so-
lutions of Einstein’s field equations representing extended bodies with struc-
ture up to the quadrupole mass moment, generalizing so the familiar black
hole spacetimes of Schwarzschild and Kerr.

Recent results involve the use of the equivalence principle to compare geo-
desic motion in these spacetimes with nongeodesic motion of structured par-
ticles in Schwarzschild and Kerr spacetimes, allowing an interesting analysis
which strongly support Dixon’s model.

3.3. Perturbations

A discussion of curvature perturbations of black holes needs many different
approaches and mathematical tools. For example, the Newman-Penrose for-
malism in the tetradic and spinor version, the Cahen-Debever-Defrise self-
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dual theory, the properties of the spin-weighted angular harmonics, with
particular attention to the related differential geometry and the group the-
ory, some tools of complex analysis, etc. Furthermore, even using any of the
above mentioned approaches, this remains a difficult problem to handle. It is
not by chance, for instance, that the gravitational and electromagnetic pertur-
bations of the Kerr-Newman rotating and charged black hole still represent
an open problem in general relativity.

During the last years, however, modern computers and software have reached
an exceptional computational level and one may re-visit some of these still
open problems, where technical difficulties stopped the research in the past.
Details can be found in Appendix C.

3.3.1. Curvature and metric perturbations in algebraically
special spacetimes

Most of the work done when studying perturbations in General Relativity
concerns curvature perturbations from one side or metric perturbations from
the other side. In the first case, one can easily deal with gauge invariant
quantities but the problem of finding frame-independent objects arises. Fur-
thermore, the reconstruction of the metric once the curvature perturbations
are known is a very difficult task. In the second case, instead, in order to start
working with an explicit metric since the beginning, the choice of a gauge
condition is necessary. Gauge independent quantities should therefore be
determined properly.

There exist very few examples of works considering both cases of curvature
and metric perturbations on the same level so that we have been motivated
to start working in this direction.

3.3.2. Curvature perturbations in type D spacetimes

In the Kerr spacetime Teukolsky [8] has given a single “master equation”
to deal with curvature perturbations by a field of any spin (“spin-weight,”
properly speaking). Then the problem of extending the results of Teukolsky
to other spacetimes is raised.

Actually, a very important result that we have obtained framed the Teukol-
sky equation in the form of a linearized de-Rham Laplacian equation for
the perturbing field [9, 10]. In addition, in all the cases (type D spacetime:
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Taub-NUT, type D-Kasner, etc) in which an equation similar to the Teukolsky
equation can be written down, one can study the various couplings between
the spin of the perturbing field and the background parameters, i.e., spin-
rotation, spin-acceleration couplings, etc., which can also be relevant in dif-
ferent contexts and from other points of view. We have obtained important
results considering explicit applications to the Taub-NUT, Kerr-Taub-NUT, C-
metric, spinning C-metric, Kasner and de Sitter spacetimes. For example in
the Taub-NUT spacetime we have shown that the perturbing field acquires
an effective spin which is simply related to the gravitomagnetic monopole
parameter ` of the background [11]; in the C-metric case (uniformly accel-
erated black hole spacetime) we have been able to introduce a gravitational
analog of the Stark effect, etc.

3.3.3. Metric perturbations in a Reissner-Nordström
spacetime

A few years ago we solved the multiyear problem of a two-body system con-
sisting of a ReissnerNordström black hole and a charged massive particle
at rest at the first perturbative order. The expressions for the metric and the
electromagnetic field, including the effects of the electromagnetically induced
gravitational perturbation and of the gravitationally induced electromagnetic
perturbation, have been presented in closed analytic formulas; the details are
indicated in Appendix C. Motivated by our works an exact solution has then
been found by Belinski and Alekseev [149] of which our solution is a lin-
earization with respect to certain parameters.

3.3.4. Curvature perturbations due to spinning bodies on a
Kerr background

A new scheme for computing dynamical evolutions and gravitational ra-
diations for intermediate-mass-ratio inspirals (IMRIs) based on an effective
one-body (EOB) dynamics plus Teukolsky perturbation theory has been re-
cently derived by Wen-Biao Han and collaborators [169]. This research line
is very promising in view of many possible applications ranging from the
Post-Newtonian physics of binary systems to numerical relativity.
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3.3.5. Metric perturbations due to spinning bodies on a
Schwarzschild background

The full reconstruction of the perturbed metric by a pinning particle mov-
ing on a Schwarzschild background is possibile following the original Zerilli
and Ruffini approach, at least perturbatively at various Post-Newtonian or-
ders. This research project is expected to add corrections due to spin to the
relativistic two body problem within the effective one-body formalism intro-
duced by Damour.

3.3.6. Gravitational Self-force and Effective-One-Body
model: synergies

In recent years, it has been understood that a useful strategy for studying
the strong-field aspects of the dynamics of compact binaries is to combine,
in a synergetic manner, information gathered from several different approx-
imation methods, namely: the post-Newtonian (PN) formalism, the post-
Minkowskian one, the gravitational self-force (SF) formalism, full numerical
relativity simulations, and, the effective one-body (EOB) formalism. In par-
ticular, the EOB formalism appears to define a useful framework which can
combine, in an efficient and accurate manner, information coming from all the
other approximation schemes, while also adding genuinely new information
coming from EOB theory.

A main motivation to pursue this synergetic effort is certainly the current
development of gravitational wave detectors gives, which makes it urgent to
improve our theoretical understanding of the general relativistic dynamics
of compact binary systems, i.e., systems comprising black holes and/or neu-
tron stars. Recent work has shown that tidal interactions have a significant
influence on the late dynamics of coalescing neutron star binaries.

3.4. Cosmology

3.4.1. Mixmaster universe and the spectral index

We have recently revisited the Mixmaster dynamics in a new light, reveal-
ing a series of transitions in the complex scale invariant scalar invariant of
the Weyl curvature tensor best represented by the speciality index S, which
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gives a 4-dimensional measure of the evolution of the spacetime independent
of all the 3-dimensional gauge-dependent variables except the time used to
parametrize it.

Its graph versus time with typical spikes in its real and imaginary parts cor-
responding to curvature wall collisions serves as a sort of electrocardiogram
of the Mixmaster universe, with each such spike pair arising from a single
circuit or “pulse” around the origin in the complex plane. These pulses in the
speciality index seem to invariantly characterize some of the so called spike
solutions in inhomogeneous cosmology and should play an important role in
the current investigations of inhomogeneous Mixmaster dynamics.

3.4.2. Wave equations in de Sitter spacetime

Wave propagation on a de Sitter background spacetime can be considered
for both the electromagnetic and the gravitational case under the preliminar
choice of a gauge conditions. Usually, even in the recent literature, the dis-
cussion is limited to special gauge conditions only, like the harmonic one. Re-
cently, some interest has been raised instead for the development of a system-
atic study in terms of the de Donder gauge since this is close to the Lorentz
gauge of the electromagnetic case. Due to the particular symmetries of the de
Sitter spacetime we expect to be able to reconstruct the perturbed metric by
the wave propagation, at least in the PN scheme.

3.4.3. Fluids obeying non-ideal equations of state

Recently, we have proposed a new class of cosmological models consisting
of a FRW universe with a fluid source obeying a non-ideal equation of state,
with the suitable property to support a phase transition between low and
high density regimes, both characterized by an ideal gas behavior, i.e., pres-
sure and density change in linear proportion to each other. This kind of equa-
tion of state was first introduced by Shan and Chen [177] in the context of
lattice kinetic theory. We have first investigated the possibility to explain the
growth of the dark energy component of the present universe, as a natural
consequence of the fluid evolution equations. We have then developed an in-
flationary model based on a dark energy field described by a Shan-Chen-like
equation of state. The results are summarized in Appendix D.
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of state matters
The European Physical Journal C, vol. 72, Issue 3, 1913, 2012.
Abstract
The motion of a massive test particle in a Schwarzschild spacetime sur-
rounded by a perfect fluid with equation of state p0 = wρ0 is investi-
gated. Deviations from geodesic motion are analyzed as a function of
the parameter w, ranging from w = 1 which corresponds to the case of
massive free scalar fields, down into the so-called “phantom” energy,
with w < −1. It is found that the interaction with the fluid leads to
capture (escape) of the particle trajectory in the case 1 + w > 0 (< 0),
respectively. Based on this result, it is argued that inspection of the tra-
jectories of test particles in the vicinity of a Schwarzschild black hole
with matter around may offer a new means of gaining insights into the
nature of cosmic matter.

7. Bini D., Geralico A.,
Observer-dependent tidal indicators in the Kerr spacetime
Class. Quantum Grav., vol. 29, 055005, 2012.
Abstract
The observer-dependent tidal effects associated with the electric and
magnetic parts of the Riemann tensor with respect to an arbitrary fam-
ily of observers are discussed in a general spacetime in terms of certain
tidal indicators. The features of such indicators are then explored by
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specializing our considerations to the family of stationary circularly ro-
tating observers in the equatorial plane of the Kerr spacetime. There ex-
ist a number of observer families which are special for several reasons
and for each of them such indicators are evaluated. The transforma-
tion laws of tidal indicators when passing from one observer to another
are also discussed, clarifying the interplay among them. Our analysis
shows that no equatorial plane circularly rotating observer in the Kerr
spacetime can ever measure a vanishing tidal electric indicator, whereas
the family of Carters observers measures zero tidal magnetic indicator.

8. Bini D., Damour T., Faye G.,
Effective action approach to higher-order relativistic tidal interactions in bi-
nary systems and their effective one body description
Physical Review D, 85, 124034, 2012.
Abstract
The gravitational-wave signal from inspiralling neutron-starneutron-
star (or black-holeneutron-star) binaries will be influenced by tidal cou-
pling in the system. An important science goal in the gravitational-
wave detection of these systems is to obtain information about the equa-
tion of state of neutron star matter via the measurement of the tidal
polarizability parameters of neutron stars. To extract this piece of in-
formation will require accurate analytical descriptions both of the mo-
tion and the radiation of tidally interacting binaries. We improve the
analytical description of the late inspiral dynamics by computing the
next-to-next-to-leadingorder relativistic correction to the tidal interac-
tion energy. Our calculation is based on an effective-action approach to
tidal interactions and on its transcription within the effective-one-body
formalism. We find that second-order relativistic effects (quadratic in
the relativistic gravitational potential u = G(m1 + m2)/(c2r)) signif-
icantly increase the effective tidal polarizability of neutron stars by a
distance-dependent amplification factor of the form 1 + a1u + a2u2+
where, say, for an equal-mass binary, a1 = 5/4 = 1.25 (as previously
known) and a2 = 85/14 =≈ 6.07143 (as determined here for the first
time). We argue that higher-order relativistic effects will lead to further
amplification, and we suggest a Pad-type way of resumming them. We
recommend testing our results by comparing resolution-extrapolated
numerical simulations of inspiralling binary neutron stars to their ef-
fective one-body description.
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9. Bini D., Gregoris D., Rosquist K., Succi S.,
Particle motion in a photon gas: friction matters
Gen. Rel. Grav., vol. 44, 2669-2680, 2012.
Abstract
The motion of a particle in the Tolman metric generated by a photon gas
source is discussed. Both the case of geodesic motion and motion with
nonzero friction, due to photon scattering effects, are analyzed. In the
Minkowski limit, the particle moves along a straight line segment with
a decelerated motion, reaching the endpoint at zero speed. The curved
case shows a qualitatively different behavior; the geodesic motion con-
sists of periodic orbits, confined within a specific radial interval. Under
the effect of frictional drag, this radial interval closes up in time and in
all our numerical simulations the particle ends up in the singularity at
the center.

10. Bini D., Chicone C., Mashhoon B.,
Spacetime Splitting, Admissible Coordinates and Causality
Physical Review D, vol. 85, 104020, 2012.
arXiv:1203.3454
Abstract
To confront relativity theory with observation, it is necessary to split
spacetime into its temporal and spatial components. The (1+3) timelike
threading approach involves restrictions on the gravitational potentials
(gµν), while the (3+1) spacelike slicing approach involves restrictions
on (gµν). These latter coordinate conditions protect chronology within
any such coordinate patch. While the threading coordinate conditions
can be naturally integrated into the structure of Lorentzian geometry
and constitute the standard coordinate conditions in general relativity,
this circumstance does not extend to the slicing coordinate conditions.
We explore the influence of chronology violation on wave motion. In
particular, we consider the propagation of radiation parallel to the rota-
tion axis of stationary Gödel-type universes characterized by parame-
ters η > 0 and λ > 0 such that for η < 1 (η > 1) chronology is protected
(violated). We show that in the WKB approximation such waves can
freely propagate only when chronology is protected.

11. Bini D., Boshkayev K., Ruffini R., Siutsou I.,
Equatorial Circular Geodesics in the Hartle-Thorne Spacetime
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Proceedings of the 12th Italian-Korean meeting July 4-8, 2011. Pescara
(Italy). To appear on il Nuovo Cimento, 2012
Abstract
We investigate the influence of the quadrupole moment of a rotating
source on the motion of a test particle in the strong field regime. For
this purpose the Hartle-Thorne metric, that is an approximate solution
of vacuum Einstein field equations that describes the exterior of any
slowly rotating, stationary and axially symmetric body, is used. The
metric is given with accuracy up to the second order terms in the body’s
angular momentum, and first order terms in its quadrupole moment.
We give, with the same accuracy, analytic equations for equatorial cir-
cular geodesics in the Hartle-Thorne spacetime and integrate them nu-
merically.

12. Bini D., Boshkayev K., Geralico A.,
Tidal indicators in the spacetime of a rotating deformed mass
Class. Quantum Grav., vol. 29, 145003, 2012.
Abstract
Tidal indicators are commonly associated with the electric and magnetic
parts of the Riemann tensor (and its covariant derivatives) with respect
to a given family of observers in a given spacetime. Recently, observer-
dependent tidal effects have been extensively investigated with respect
to a variety of special observers in the equatorial plane of the Kerr
spacetime. This analysis is extended here by considering a more gen-
eral background solution to include the case of matter which is also
endowed with an arbitrary mass quadrupole moment. Relations with
curvature invariants and BelRobinson tensor, i.e. observer-dependent
super-energy density and super-Poynting vector, are also investigated.

13. Bini D., Geralico A., Haney M., Jantzen R.T.,
Scattering of particles by radiation fields: a comparative analysis
Phys. Rev. D., vol 86, 064016, 2012.
Abstract
The features of the scattering of massive neutral particles propagating
in the field of a gravitational plane wave are compared with those char-
acterizing their interaction with an electromagnetic radiation field. The
motion is geodesic in the former case, whereas in the case of an elec-
tromagnetic pulse it is accelerated by the radiation field filling the as-
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sociated spacetime region. The interaction with the radiation field is
modeled by a force term entering the equations of motion proportional
to the 4-momentum density of radiation observed in the particles rest
frame. The corresponding classical scattering cross sections are evalu-
ated too.

14. Bini D., Geralico A.,
Equilibrium Orbits of Particles Undergoing Poynting-Robertson Effect in Schwarzschild
Spacetime
Proceedings of the 2nd GalileoXuGuangqi Meeting
International Journal of Modern Physics: Conference Series, vol. 12, is-
sue 01, p. 247, 2012.
Abstract
Equilibrium orbits of particles moving on the equatorial plane of a Schwarzschild
spacetime are investigated when a test radiation field is superposed to
the background gravitational field. The radiation flux is endowed with
a fixed but arbitrary (non-zero) angular momentum. It is found that
multiple equilibrium circular orbit exist provided that the photon an-
gular momentum is sufficiently high. The stability of such orbits is also
analyzed.

15. Bini D., Damour T.,
Gravitational radiation reaction along general orbits in the effective one-body
formalism
Phys. Rev. D, vol. 86, 124012, 2012.
Abstract
We derive the gravitational radiation-reaction force modifying the Ef-
fective One Body (EOB) description of the conservative dynamics of
binary systems. Our result is applicable to general orbits (elliptic or hy-
perbolic) and keeps terms of fractional second post-Newtonian order
(but does not include tail effects). Our derivation of radiation-reaction
is based on a new way of requiring energy and angular momentum
balance. We give several applications of our results, notably the value
of the (minimal) “Schott” contribution to the energy, the radial compo-
nent of the radiation-reaction force, and the radiative contribution to
the angle of scattering during hyperbolic encounters. We present also
new results about the conservative relativistic dynamics of hyperbolic
motions.
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16. Bini D., Geralico A.,
Slicing black hole spacetimes
Proceedings of the 13th Marcel Grossmann Meeting, July 2-8, 2012, Stock-
holm (Sweden).
Abstract
Some properties of both the intrinsic and extrinsic geometry of special
slicings in black hole spacetimes are discussed. A special role is played
by slicings associated with the so called Painlevé-Gullstrand observers.

17. Bini D., Cherubini C., Filippi S.,
On the analog gravity formalism applied to white dwarfs
Proceedings of the 13th Marcel Grossmann Meeting, July 2-8, 2012, Stock-
holm (Sweden).
abstract
The “effective geometry”formalism is here adopted to analyze the per-
turbations of a non rotating white dwarf. After the derivation of a
compact analytical parametric approximate white dwarf solution via
the Padé formalism, we use it to construct the effective acoustic met-
ric governing general fluid perturbations. The equations of the theory,
numerically integrated in the case of irrotational, spherical, pulsating
problem, show the analog space-time structure of the acoustic metric.
In particular it appears that the stellar surface exhibits a curvature sin-
gularity associated to the vanishing of density.

18. Bini D.,
Observers, observables and measurements in general relativity
Proceedings of the meeting “Relativity and Gravitation 100 Years after
Einstein in Prague” June 2529, 2012, Prague (Czech Republic).
Abstract
To perform any physical measurement it is necessary to identify in a
non ambiguous way both the observer and the observable. A given
observable can be then the target of different observers: a suitable al-
gorithm to compare among their measurements should necessarily be
developed, either formally or operationally. This is the task of what we
call “theory of measurement,” which we discuss here in the framework
of general relativity.

19. Bini D., Crosta M.T., de Felice F., Geralico A., Vecchiato A.,
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The Erez-Rosen metric and the role of the quadrupole on light propagation
Class. Quantum Grav., vol. 30 045009(22pp), 2013
Abstract
The gravitational field of a static body with quadrupole moment is de-
scribed by an exact solution found by Erez and Rosen. Here we inves-
tigate the role of the quadrupole in the motion, deflection and lensing
of a light ray in the above metric. The standard lensing observables like
image positions and magnification have been explicitly obtained in the
weak field and small quadrupole limit. In this limit the spacetime met-
ric appears as the natural generalization to quadrupole corrections of
the metric form adopted also in current astrometric models. Hence, the
corresponding analytical solution of the inverse ray tracing problem as
well as the consistency with other approaches are also discussed.

20. Bini D., Gregoris D., Rosquist K., Succi S.,
Effects of friction forces on the motion of objects in smoothly matched inte-
rior/exterior spacetimes
Class. Quantum Grav., vol. 30, 025009, 2013.
Abstract
We investigate the non-geodesic motion of a test particle inside a gas
in equilibrium, as described by the interior Schwarzschild solution, in
the presence of a Poynting-Robertson-like dissipative force. The ac-
celerated motion in the interior spacetime is (regularly) connected to
the geodesic one in the corresponding external Schwarzschild back-
ground, mimicking physical conditions often occurring in spacetime re-
gions close to stellar or compact objects. A similar analysis is repeated
for the case in which the interior Schwarzschild solution is given by a
Pant-Sah perfect-fluid solution. This latter case, supporting a polytropic
equation of state for the interior fluid source, appears to be more appro-
priate for modeling situations of either stellar or cosmological interest.

21. Bini D., Geralico A.,
On the occurrence of Closed Timelike Curves and the observer’s point of view
Proceedings of the meeting “The Time-Machine Factory”, October 14-
19, 2012, Torino (Italy) [Invited speaker].
EPJ Web of Conferences 58, 01002, (2013)
DOI: 10.1051/epjconf/20135801002
Published by EDP Sciences, 2013.
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Abstract
The existence of Closed Timelike Curves (CTCs) in a generic spacetime
is often associated with a non-physical choice of coordinates and can
be cured by limiting the admissibility of such coordinates. Lichnerow-
icz conditions, for instance, represent a criterion for admissibility. The
result, however, is a very restrictive limitation which may imply re-
moval” of important regions (with respect to the peculiarity of phenom-
ena which may happen there) of the spacetime manifold. We consider
here the point of view of a family of observers (Fundamental Slicing
Observers, FSO) having their world lines orthogonal to the surfaces of
constant coordinate time. We say that the time coordinate has not a
global character if the associated FSO change their causality condition
in the domain of validity of the coordinates themselves. Furthermore,
in those regions where FSO have no more timelike world lines, CTCs
are present and one may think of special devices or investigation tools
apt to operationally detect them. We will discuss in detail theoretical
approaches involving (scalar) waves or photons.

22. Bini D., Geralico A.,
Dynamics of quadrupolar bodies in a Schwarzschild spacetime
Phys. Rev. D, vol. 87, 024028, 2013.
Abstract
The dynamics of extended bodies endowed with multipolar structure
up to the mass quadrupole moment is investigated in the Schwarzschild
background according to Dixons model, extending previous works. The
whole set of evolution equations is numerically integrated under the
simplifying assumptions of constant frame components of the quadrupole
tensor and that the motion of the center of mass be confined on the
equatorial plane, the spin vector being orthogonal to it. The equations
of motion are also solved analytically in the limit of small values of
the characteristic length scales associated with the spin and quadrupole
with respect to the background curvature characteristic length. The re-
sults are qualitatively and quantitatively different from previous anal-
yses involving only spin structures. In particular, the presence of the
quadrupole turns out to be responsible for the onset of a nonzero spin
angular momentum, even if initially absent.

23. Bini D., Geralico A., Gregoris D., Succi S.,
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Friction forces in cosmological models
EPJC, vol. 73, 2334, 2013.
Abstract
We investigate the dynamics of test particles undergoing friction forces
in a Friedmann-Robertson-Walker (FRW) spacetime. The interaction
with the background fluid is modeled by introducing a Poynting-Robertson-
like friction force in the equations of motion, leading to measurable (at
least in principle) deviations of the particle trajectories from geodesic
motion. The effect on the peculiar velocities of the particles is investi-
gated for various equations of state of the background fluid and dif-
ferent standard cosmological models. The friction force is found to
have major effects on particle motion in closed FRW universes, where it
turns the time-asymptotic value (approaching the recollapse) of the pe-
culiar particle velocity from ultra-relativistic (close to light speed) to a
co-moving one, i.e., zero peculiar speed. On the other hand, for open or
flat universes the effect of the friction is not so significant, because the
time-asymptotic peculiar particle speed is largely non-relativistic also
in the geodesic case.

24. Bini D., Fortini P., Geralico A., Haney M., Ortolan A.,
Light scattering by radiation fields: the optical medium analogy
EPL, vol 102, 20006 (2013)
Abstract
The optical medium analogy of a radiation field generated by either an
exact gravitational plane wave or an exact electromagnetic wave in the
framework of general relativity is developed. The equivalent medium
of the associated background field is inhomogeneous and anisotropic
in the former case, whereas it is inhomogeneous but isotropic in the lat-
ter. The features of light scattering are investigated by assuming the in-
teraction region to be sandwiched between two flat spacetime regions,
where light rays propagate along straight lines. Standard tools of ordi-
nary wave optics are used to study the deflection of photon paths due
to the interaction with the radiation fields, allowing for a comparison
between the optical properties of the equivalent media associated with
the different background fields.

25. Bini D., Esposito G., Kiefer C., Krämer M., Pessina F.,
On the Modification of the Cosmic Microwave Background Anisotropy Spec-
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trum from Canonical Quantum Gravity
Phys. Rev. D, vol. 87, 104008 (2013)
Abstract
We evaluate the modifications to the CMB anisotropy spectrum that re-
sult from a semiclassical expansion of the Wheeler–DeWitt equation.
Recently, such an investigation in the case of a real scalar field coupled
to gravity, has led to the prediction that the power at large scales is sup-
pressed. We make here a more general analysis and show that there
is an ambiguity in the choice of solution to the equations describing
the quantum gravitational effects. Whereas one of the two solutions
describes a suppression of power, the other one describes an enhance-
ment. We investigate possible criteria for an appropriate choice of so-
lution. The absolute value of the correction term is in both cases of the
same order and currently not observable. We also obtain detailed for-
mulae for arbitrary values of a complex parameter occurring in the gen-
eral solution of the nonlinear equations of the model. We finally discuss
the modification of the spectral index connected with the power spec-
trum and comment on the possibility of a quantum-gravity induced
unitarity violation.

26. Bini D., Damour T.,
Analytic determination of the two-body gravitational interaction potential at
the 4th post-Newtonian approximation
Phys. Rev. D. Rapid Communications, vol. 87, 121501, (2013)
Abstract
We complete the analytical determination, at the 4th post-Newtonian
approximation, of the main radial potential describing (within the ef-
fective one-body formalism) the gravitational interaction of two bod-
ies. The (non logarithmic) coefficient a5(ν) measuring this 4th post-
Newtonian interaction potential is found to be linear in the symmet-
ric mass ratio ν. Its ν-independent part a5(0) is obtained by an ana-
lytical gravitational self-force calculation that unambiguously resolves
the formal infrared divergencies which currently impede its direct post-
Newtonian calculation. Its ν-linear part a5(ν)− a5(0) is deduced from
recent results of Jaranowski and Schaefer, and is found to be signifi-
cantly negative.

27. Bini D., Geralico A., Gregoris D., Succi S.,
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Dark energy from cosmological fluids with asymptotic-free non-ideal equation
of state
Phys. Rev. D., vol. 88, 063007, (2013)
Abstract
We consider a Friedmann-Robertson-Walker universe with a fluid source
obeying a non-ideal equation of state with “asymptotic freedom,” namely
ideal gas behavior (pressure changes directly proportional to density
changes) both at low and high density regimes, following a fluid dy-
namical model due to Shan and Chen. It is shown that, starting from
an ordinary energy density component, such fluids naturally evolve
towards a universe with a substantial dark energy component at the
present time, with no need of invoking any cosmological constant. More-
over, we introduce a quantitative indicator of darkness abundance, which
provides a consistent picture of the actual matter-energy content of the
universe.

28. Bini D., de Felice F., Geralico A.,
On the spacetime acting as an optical medium: the observer-dependent ap-
proach
IJGMMP, vol. 11 (3) 1450024 (15 pages) 2014
Abstract
A local observer-dependent approach to the optical medium analogy of
a general gravitational background is developed. The optical proper-
ties of the equivalent media associated with several stationary axisym-
metric spacetimes are investigated with respect to different families of
observers playing a special role as well as selected null orbits. Explicit
examples among the class of both exact and approximate solutions of
Einstein’s field equations describing the gravitational field of sources
with a multipolar structure up to the quadrupole are analyzed. The
analytic contribution of the individual polarities to the refraction index
associated with the corresponding effective media is deduced as a func-
tion of the spacetime parameters.

29. Bini D., Geralico A., Haney M.,
Refraction index analysis of light propagation in a colliding gravitational wave
spacetime
Gen. Relativ. Gravit. (2014) 46:1644
Abstract
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The optical medium analogy of a given spacetime was developed decades
ago and has since then been widely applied to different gravitational
contexts. Here we consider applications to light propagation in a col-
liding gravitational wave spacetime, generalizing previous results con-
cerning single gravitational pulses. In view of complexity of the non-
linear interaction of two gravitational waves in the framework of gen-
eral relativity, typically leading to the formation of either horizons or
singularities, the optical medium analogy proves helpful. It allows us
to simply capture some interesting effects we discuss here in terms of
wave propagation, interferometric fringe motions, time delays, etc.

30. Bini D., Geralico A.,
Deviation of quadrupolar bodies from geodesic motion in a Kerr spacetime
Phys. Rev. D. vol. 89 (4), 044013 (22 pages), 2014.
Abstract
The deviation from geodesic motion of the world line of an extended
body endowed with multipolar structure up to the mass quadrupole
moment is studied in the Kerr background according to the Mathisson-
Papapetrou-Dixon model. The properties of the quadrupole tensor are
clarified by identifying the relevant components which enter the equa-
tions of motion, leading to the definition of an effective quadrupole ten-
sor sharing its own algebraic symmetries, but also obeying those im-
plied by the Mathisson-Papapetrou-Dixon model itself. The equations
of motion are then solved analytically in the limit of small values of
the characteristic length scales associated with the spin and quadrupole
variables in comparison with the one associated with the background
curvature and under special assumptions on bodys structure and mo-
tion. The resulting quasi-circular orbit is parametrized in a Keplerian-
like form, so that temporal, radial and azimuthal eccentricities as well
as semi-major axis, period and periastron advance are explicitly com-
puted and expressed in terms of gauge-invariant variables in the weak
field and slow motion limit. A companion numerical study of the equa-
tions of motion is performed too.

31. Bini D., Haney M., Geralico A., Ortolan A.,
Deviation effects induced by strong electromagnetic waves
Phys. Rev. D 89, 044013 (2014)
Abstract
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Some strong field effects on test particle motion associated with the
propagation of a plane electromagnetic wave in the exact theory of gen-
eral relativity are investigated. The chosen (not empty) spacetime met-
ric is conformally flat and of Petrov type O, differently from the back-
ground of a plane gravitational wave, which is of type N. The world
line deviation between both uncharged and charged particles on dif-
ferent spacetime trajectories due to the combined effect of gravitational
and electromagnetic forces is studied. The interaction of charged par-
ticles with the background radiation field is also discussed through a
general relativistic description of the inverse Compton effect.

32. Bini D., Damour T.,
High-order post-Newtonian contributions to the two-body gravitational inter-
action potential from analytical self-force calculations
Phys. Rev. D 89, 064063 (2014)
Abstract
We extend the analytical determination of the main radial potential de-
scribing (within the effective one-body formalism) the gravitational in-
teraction of two bodies beyond the fourth post-Newtonian approxima-
tion recently obtained by us. This extension is done to linear order in
the mass ratio by applying analytical gravitational self-force theory (for
a particle in circular orbit around a Schwarzschild black hole) to De-
tweilers gauge-invariant redshift variable. By using the version of black
hole perturbation theory developed by Mano, Suzuki and Takasugi, we
have pushed the analytical determination of the (linear in mass ratio)
radial potential to the sixth post-Newtonian order (passing through 5
and 5.5 post-Newtonian terms). In principle, our analytical method can
be extended to arbitrarily high post-Newtonian orders.

33. Bini D., Geralico A.,
Extended bodies in a Kerr spacetime: exploring the role of a general quadrupole
tensor
Class. Quantum Grav. 31 (2014) 075024.
Abstract
The equatorial motion of extended bodies in a Kerr spacetime is inves-
tigated in the framework of the MathissonPapapetrouDixon model, in-
cluding the full set of effective components of the quadrupole tensor.
The numerical integration of the associated equations shows the specific
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role of the mass and current quadrupole moment components. While
most of the literature on this topic is limited to spin-induced (purely
electric) quadrupole tensor, the present analysis highlights the effect of
a completely general quadrupole tensor on the dynamics. The contri-
bution of the magnetic-type components is indeed related to a num-
ber of interesting features, e.g., enhanced inward/outward spiraling
behavior of the orbit and spin-flip-like effects, which may have obser-
vational counterparts. Finally, the validity limit of the MathissonPapa-
petrouDixon model is also discussed through explicit examples.

34. Bini D., Geralico A., Gregoris D., Succi S.,
Scalar field inflation and Shan-Chen fluid models
Phys. Rev. D 90, 044021 (2014)
Abstract
A scalar field equivalent to a nonideal dark energy fluid obeying a Shan-
Chen-like equation of state is used as the background source of a flat
Friedmann-Robertson-Walker cosmological spacetime to describe the
inflationary epoch of our Universe. Within the slow-roll approximation,
a number of interesting features are presented, including the possibil-
ity to fulfill current observational constraints as well as a graceful exit
mechanism from the inflationary epoch.

35. Bini D., Damour T.,
Analytic determination of the eight-and-a-half post-Newtonian self-force con-
tributions to the two-body gravitational interaction potential
Phys. Rev. D 89, 104047 (2014)
Abstract
We analytically compute, to the eight-and-a-half post-Newtonian order,
and to linear order in the mass ratio, the radial potential describing
(within the effective one-body formalism) the gravitational interaction
of two bodies, thereby extending previous analytic results. These re-
sults are obtained by applying analytical gravitational self-force theory
(for a particle in circular orbit around a Schwarzschild black hole) to De-
tweiler’s gauge-invariant redshift variable. We emphasize the increase
in “transcendentality” of the numbers entering the post-Newtonian ex-
pansion coefficients as the order increases, in particular we note the ap-
pearance of ζ(3) (as well as the square of Euler’s constant γ) starting
at the seventh post-Newtonian order. We study the convergence of the
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post-Newtonian expansion as the expansion parameter u = GM/(c2r)
leaves the weak-field domain u � 1 to enter the strong field domain
u = O(1).

36. Bini D., Esposito G.,
Perturbative evaluation of scalar two-point function in the Cosmic Microwave
Background power spectrum
Phys. Rev. D, vol. 89, 084032, 2014.
Abstract
Recent work in the literature has found a suppression or, instead, an
enhancement of the Cosmic Microwave Background power spectrum
in quantum gravity, although the effect is too small to be observed, in
both cases. The present paper studies in detail the equations recently
proposed for a Born-Oppenheimer-type analysis of the problem. By us-
ing a perturbative approach to the analysis of the nonlinear ordinary
differential equation obeyed by the two-point function for scalar fluctu-
ations, we find various explicit forms of such a two-point function, with
the associated power spectrum. In particular, a new family of power
spectra is obtained and studied. The theoretical prediction of power
enhancement at large scales is hence confirmed.

37. Bini D., Damour T.,
Two-body gravitational spin-orbit interaction at linear order in the mass ratio
Phys. Rev. D 90, 024039 (2014)
Abstract
We analytically compute, to linear order in the mass-ratio, the geode-
tic spin precession fre- quency of a small spinning body orbiting a large
(non-spinning) body to the eight-and-a-half post- Newtonian order, thereby
extending previous analytical knowledge which was limited to the third
post-Newtonian level. These results are obtained applying analytical
gravitational self-force theory to the first-derivative level generaliza-
tion of Detweilers gauge-invariant redshift variable. We compare our
analytic results with strong-field numerical data recently obtained by
S. R. Dolan et al. [Phys. Rev. D 89, 064011 (2014)]. Our new, high-
post-Newtonian-order results capture the strong-field features exhib-
ited by the numerical data. We argue that the spin-precession will di-
verge as −0.14/(1− 3y) as the light-ring is approached. We transcribe
our kinematical spin-precession results into a corresponding improved
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analytic knowledge of one of the two (gauge-invariant) effective gyro-
gravitomagnetic ratios characterizing spin-orbit couplings within the
effective-one-body formalism. We provide simple, accurate analytic fits
both for spin-precession and the effective gyro-gravitomagnetic ratio.
The latter fit predicts that the linear-in-mass-ratio correction to the gyro-
gravitomagnetic ratio changes sign before reaching the light-ring. This
strong-field prediction might be important for improving the analytic
modeling of coalescing spinning binaries.

38. Bini D., Mashhoon B.,
Peculiar velocities in dynamic spacetimes
Phys. Rev. D 90, 024030 (2014)
Abstract
We investigate the asymptotic behavior of peculiar velocities in cer-
tain physically significant time-dependent gravitational fields. Previ-
ous studies of the motion of free test particles have focused on the col-
lapse scenario, according to which a double-jet pattern with Lorentz
factor γ develops asymptotically along the direction of complete grav-
itational collapse. In the present work, we identify a second wave sce-
nario, in which a single-jet pattern with Lorentz factor γ develops asymp-
totically along the direction of wave propagation. The possibility of a
connection between the two scenarios for the formation of cosmic jets is
critically examined.

39. Bini D., Geralico A., Passamonti A.,
Radiation drag in the field of a non-spherical source
Monthly Notices of the Royal Astronomical Society 446 (3): 65-74 (2014).
Abstract
The motion of a test particle in the gravitational field of a non-spherical
source en- dowed with both mass and mass quadrupole moment is in-
vestigated when a test radiation field is also present. The background
is described by the Erez-Rosen so- lution, which is a static spacetime
belonging to the Weyl class of solutions to the vacuum Einsteins field
equations, and reduces to the familiar Schwarzschild solution when
the quadrupole parameter vanishes. The radiation flux has a fixed but
arbitrary (non-zero) angular momentum. The interaction with the ra-
diation field is assumed to be Thomson-like, i.e., the particles absorb
and re-emit radiation, thus suffering for a friction-like drag force. Such
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an additional force is responsible for the Poynting- Robertson effect,
which is well established in the framework of Newtonian gravity and
has been recently extended to the general theory of relativity. The bal-
ance between gravitational attraction, centrifugal force and radiation
drag leads to the occurrence of equilibrium circular orbits which are at-
tractors for the surrounding matter for ev- ery fixed value of the inter-
action strength. The presence of the quadrupolar structure of the source
introduces a further degree of freedom: there exists a whole family of
equilibrium orbits parametrized by the quadrupole parameter, gener-
alizing previous works. This scenario is expected to play a role in the
context of accretion matter around compact objects.

40. Bini D., Damour T.,
Gravitational self-force corrections to two-body tidal interactions and the effec-
tive one-body formalism
Phys. Rev. D 90, 124037 (2014)
Abstract
Tidal interactions have a significant influence on the late dynamics of
compact binary systems, which constitute the prime targets of the up-
coming network of gravitational-wave detectors. We refine the theoret-
ical description of tidal interactions (hitherto known only to the second
post- Newtonian level) by extending our recently developed analytic
self-force formalism, for extreme mass-ratio binary systems, to the com-
putation of several tidal invariants. Specifically, we compute, to linear
order in the mass ratio and to the 7.5th post-Newtonian order, the fol-
lowing tidal invariants: the square and the cube of the gravitoelectric
quadrupolar tidal tensor, the square of the gravito- magnetic quadrupo-
lar tidal tensor, and the square of the gravitoelectric octupolar tidal ten-
sor. Our high-accuracy analytic results are compared to recent numer-
ical self-force tidal data by Dolan et al. [1], and, notably, provide an
analytic understanding of the light ring asymptotic behavior found by
them. We transcribe our kinematical tidal-invariant results in the more
dynamically significant effective one-body description of the tidal in-
teraction energy. By combining, in a synergetic man- ner, analytical and
numerical results, we provide simple, accurate analytic representations
of the global, strong-field behavior of the gravitoelectric quadrupolar
tidal factor. A striking finding is that the linear-in-mass-ratio piece in
the latter tidal factor changes sign in the strong-field domain, to be-
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come negative (while its previously known second post-Newtonian ap-
proximant was always positive). We, however, argue that this will be
more than compensated by a probable fast growth, in the strong-field
domain, of the nonlinear-in-mass-ratio contributions in the tidal factor.

41. Bini D., Geralico A., Jantzen R.T., Semerak O.,
Particles under radiation thrust in Schwarzschild space-time: a flux perpen-
dicular to the equatorial plane
Monthly Notices of the Royal Astronomical Society 446, 1907 (2015).
Abstract
Motivated by the picture of a thin accretion disc around a black hole, ra-
diating mainly in the direction perpendicular to its plane, we study the
motion of test particles interacting with a test geodesic radiation flux
propagating perpendicular to the equatorial plane in a Schwarzschild
space-time. We assume that the interaction (kind of Poynting-Robertson
effect) is modelled by an effective term corresponding to a Thomson-
type radiation drag. After approximating the individual photon trajec-
tories in quite an accurate way, we solve the continuity equation (up to
linear order in M) in order to find a consistent radiation-flux density,
prescribing a certain plausible equatorial profile. The combined effect
of gravitation and radiation is illustrated on several figures; they con-
firm that the particles are generically strongly influenced by the flux,
in particular, they are both collimated and accelerated in the direction
perpendicular to the disc, but the acceleration received in this manner is
not enough to explain highly relativistic outflows emanating from some
black-holedisc sources. Main improvement needed is a more realistic
description of the radiation-particle interaction, allowing for Compton-
type frequency-dependent effect and particle heating/cooling.

42. Bini D. and Geralico A.,
Effect of an arbitrary spin orientation on the quadrupolar structure of an ex-
tended body in a Schwarzschild spacetime
Phys. Rev. D, 91, 104036 (2015)
Abstract
The influence of an arbitrary spin orientation on the quadrupolar struc-
ture of an extended body moving in a Schwarzschild spacetime is inves-
tigated. The body dynamics is described by the Mathisson-Papapetrou-
Dixon model, without any restriction on the motion or simplifying as-
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sumption on the associated spin vector and quadrupole tensor, general-
izing previous works. The equations of motion are solved analytically
in the limit of small values of the characteristic length scales associated
with the spin and quadrupole variables with respect to the characteris-
tic length of the background curvature. The solution provides all cor-
rections to the circular geodesic on the equatorial plane taken as the
reference trajectory due to both dipolar and quadrupolar structure of
the body as well as the conditions which the nonvanishing components
of the quadrupole tensor must fulfill in order that the problem be self-
consistent.

43. Bini D. and Geralico A.,
Tidal invariants along the world line of an extended body in the Kerr spacetime
Phys. Rev. D 91, no. 8, 084012 (2015).
Abstract
An extended body orbiting a compact object undergoes tidal defor-
mations by the background gravitational field. Tidal invariants built
up with the Riemann tensor and their derivatives evaluated along the
worldline of the body are essential tools to investigate both geometrical
and physical properties of the tidal interaction. For example, one can
determine the tidal potential in the neighborhood of the body by con-
structing a body-fixed frame, which requires Fermi-type coordinates at-
tached to the body itself, the latter being in turn related to the space-
time metric and curvature along the considered worldline. Similarly, in
an effective field theory description of extended bodies, finite size ef-
fects are taken into account by adding to the point mass action certain
nonminimal couplings which involve integrals of tidal invariants along
the orbit of the body. In both cases such a computation of tidal ten-
sors is required. Here we consider the case of a spinning body also en-
dowed with a nonvanishing quadrupole moment in a Kerr spacetime.
The structure of the body is modeled by a multipolar expansion around
the center-of-mass line according to the Mathisson-Papapetrou-Dixon
model truncated at the quadrupolar order. The quadrupole tensor is as-
sumed to be quadratic in spin, accounting for rotational deformations.
The behavior of tidal invariants of both electric and magnetic type is
discussed in terms of gauge-invariant quantities when the body is mov-
ing along a circular orbit as well as in the case of an arbitrary (equato-
rial) motion. The analysis is completed by examining the associated
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eigenvalues and eigenvectors of the tidal tensors. The limiting situa-
tion of the Schwarzschild solution is also explored both in the strong
field regime and in the weak field limit.

44. Bini D. and Damour T.,
Detweiler’s gauge-invariant redshift variable: analytic determination of the
nine and nine-and-a-half post-Newtonian self-force contributions
Phys. Rev. D 91, 064050 (2015)
Abstract
Continuing our analytic computation of the first-order self-force contri-
bution to Detweilers redshift variable we provide the exact expressions
of the ninth and ninth-and-a-half post-Newtonian terms.

45. Bini D. , Mashhoon B..
Weitzenböck’s Torsion, Fermi Coordinates and Adapted Frames
Phys. Rev. D 91, no. 8, 084026 (2015)
Abstract
We study Weitzenböcks torsion and discuss its properties. Specifically,
we calculate the measured components of Weitzenböcks torsion tensor
for a frame field adapted to static observers in a Fermi normal coordi-
nate system that we establish along the world line of an arbitrary accel-
erated observer in general relativity. A similar calculation is carried out
in the standard Schwarzschild-like coordinates for static observers in
the exterior Kerr spacetime; we then compare our results with the cor-
responding curvature components. Our work supports the contention
that in the extended general relativistic framework involving both the
Levi-Civita and Weitzenbock connections, curvature and torsion pro-
vide complementary representations of the gravitational field.

46. Bini D. , Bittencourt E., Geralico A. and Jantzen R.T.,
Slicing black hole spacetimes
International Journal of Geometric Methods in Modern Physics Vol. 12
(2015) 1550070 (32 pages).
Abstract
A general framework is developed to investigate the properties of use-
ful choices of stationary spacelike slicings of stationary spacetimes whose
congruences of timelike orthogonal trajectories are interpreted as the
world lines of an associated family of observers, the kinematical prop-
erties of which in turn may be used to geometrically characterize the
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original slicings. On the other hand properties of the slicings them-
selves can directly characterize their utility motivated instead by other
considerations like the initial value and evolution problems in the 3-
plus-1 approach to general relativity. An attempt is made to categorize
the various slicing conditions or time gauges used in the literature for
the most familiar stationary spacetimes: black holes and their flat space-
time limit.

47. Bini D. and Damour T.,
Analytic determination of high-order post-Newtonian self-force contributions
to gravitational spin precession
Phys. Rev. D 91, 064064 (2015)
Abstract
Continuing our analytic computation of the first-order self-force con-
tribution to the geodetic spin precession frequency of a small spinning
body orbiting a large (non-spinning) body we provide the exact expres-
sions of the tenth and tenth-and-a-half post-Newtonian terms. We also
introduce a new approach to the analytic computation of self-force reg-
ularization parameters based on a WKB analysis of the radial and an-
gular equations satisfied by the metric perturbations.

48. Bini D., Iorio L. and Giordano D.
Orbital effects due to gravitational induction
General Relativity and Gravitation, vol. 47, 130 (2015).
Abstract
We study the motion of test particles in the metric of a localized and
slowly rotating astronomical source, within the framework of linear
gravitoelectromagnetism, grounded on a Post-Minkowskian approxi-
mation of general relativity. Special attention is paid to gravitational
inductive effects due to time-varying gravitomagnetic fields. We show
that, within the limits of the approximation mentioned above, there
are cumulative effects on the orbit of the particles either for planetary
sources or for binary systems. They turn out to be negligible.

49. Bini D., Bittencourt E. and Geralico A.
Massless Dirac particles in the vacuum C-metric
Classical and Quantum Gravity, 32, 215010 (2015).
Abstract
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We study the behavior of massless Dirac particles in the vacuum C-
metric spacetime, representing the nonlinear superposition of the Schwarz-
schild black hole solution and the Rindler flat spacetime associated with
uniformly accelerated observers. Under certain conditions, the C-metric
can be considered as a unique laboratory to test the coupling between
intrinsic properties of particles and fields with the background accel-
eration in the full (exact) strong-field regime. The Dirac equation is
separable by using, e.g., a spherical-like coordinate system, reducing
the problem to one-dimensional radial and angular parts. Both radial
and angular equations can be solved exactly in terms of general Heun
functions. We also provide perturbative solutions to first-order in a
suitably defined acceleration parameter, and compute the acceleration-
induced corrections to the particle absorption rate as well as to the
angle-averaged cross section of the associated scattering problem in the
low-frequency limit. Furthermore, we show that the angular eigenvalue
problem can be put in one-to-one correspondence with the analogous
problem for a Kerr spacetime, by identifying a map between these ac-
celeration harmonics and Kerr spheroidal harmonics. Finally, in this re-
spect we discuss the nature of the coupling between intrinsic spin and
spacetime acceleration in comparison with the well known Kerr spin-
rotation coupling.

50. Bini D. , de Felice F.
Chronology protection in the Kerr metric
General Relativity and Gravitation, vol. 47, (2015)
Abstract
We show that causality violation in a Kerr naked singularity spacetime
is constrained by the existence of (radial) potential barriers. We extend
to the class of vortical nonequatorial null geodesics confined to θ= con-
stant hyperboloids (boreal orbits) previous results concerning timelike
ones [M. Calvani et. al., Gen. Rel. Grav. 9, 155 (1978)], showing that
within this class of orbits, the causality principle is rigorously satisfied.

51. Bini D., Faye G. and Geralico A.
Dynamics of extended bodies in a Kerr spacetime with spin-induced quadrupole
tensor
Phys. Rev. D 92, 104003 (2015)
Abstract
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The features of equatorial motion of an extended body in Kerr space-
time are investigated in the framework of the Mathisson-Papapetrou-
Dixon model. The body is assumed to stay at quasiequilibrium and
respond instantly to external perturbations. Besides the mass, it is com-
pletely determined by its spin, the multipolar expansion being trun-
cated at the quadrupole order, with a spin-induced quadrupole tensor.
The study of the radial effective potential allows to analytically deter-
mine the ISCO shift due to spin and the associated frequency of the last
circular orbit.

52. Bini D. , Damour T. and Geralico A.
Spin-dependent two-body interactions from gravitational self-force computa-
tions
Phys. Rev. D, 92, 124058 (2015)
Abstract
We analytically compute, through the eight-and-a-half post-Newtonian
order and the fourth-order in spin, the gravitational self-force correc-
tion to Detweilers gauge invariant redshift function for a small mass in
circular orbit around a Kerr black hole. Using the first law of mechan-
ics for black hole binaries with spin [L. Blanchet, A. Buonanno and A.
Le Tiec, Phys. Rev. D 87, 024030 (2013)] we transcribe our results into a
knowledge of various spin-dependent couplings, as encoded within the
spinning effective-one-body model of T. Damour and A. Nagar [Phys.
Rev. D 90, 044018 (2014)]. We also compare our analytical results to the
(corrected) numerical self-force results of A. G. Shah, J. L. Friedman and
T. S. Keidl [Phys. Rev. D 86, 084059 (2012)], from which we show how
to directly extract physically relevant spin-dependent couplings.

53. Bini D., Esposito G. and Geralico A.
Late time evolution of cosmological models with non-ideal fluids
Phys. Rev. D, vol. 93, 023511 (2016)
Abstract
Classical as well as quantum features of the late-time evolution of cos-
mological models with fluids obeying a Shan-Chen-like equation of state
are studied. The latter is of the type p = weff(ρ) ρ, and has been used
in previous works to describe, e.g., a possible scenario for the growth
of the dark-energy content of the present Universe. At the classical
level the fluid dynamics in a spatially flat Friedmann-Robertson-Walker
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background implies the existence of two equilibrium solutions depend-
ing on the model parameters, associated with (asymptotic) finite pres-
sure and energy density. We show that no future cosmological singular-
ity is developed during the evolution for this specific model. The cor-
responding quantum effects in the late-time behavior of the system are
also investigated within the framework of quantum geometrodynam-
ics, i.e., by solving the (minisuperspace) Wheeler-DeWitt equation in
the Born-Oppenheimer approximation, by constructing wave-packets
and by analyzing their behavior.

54. Bini D., Damour T. and Geralico A.
Confirming and improving post-Newtonian and effective-one-body results from
self-force computations along eccentric orbits around a Schwarzschild black
hole
Phys. Rev. D, 93, no. 6, 064023 (2016)
Abstract
We analytically compute, through the six-and-a-half post-Newtonian
order, the second-order-ineccentricity piece of the Detweiler-Barack-Sago
gauge-invariant redshift function for a small mass in eccentric orbit
around a Schwarzschild black hole. Using the first law of mechanics
for eccentric orbits [A. Le Tiec, Phys. Rev. D 92, 084021 (2015)] we tran-
scribe our result into a correspondingly accurate knowledge of the sec-
ond radial potential of the effective-one-body formalism [A. Buonanno
and T. Damour, Phys. Rev. D 59, 084006 (1999)]. We compare our newly
acquired analytical information to several different numerical self-force
data and find good agreement, within estimated error bars. We also
obtain, for the first time, independent analytical checks of the recently
derived, comparable-mass fourth-post-Newtonian order dynamics [T.
Damour, P. Jaranowski and G. Shaefer, Phys. Rev. D 89, 064058 (2014)].

55. Bini D., Damour T. and Geralico A.
New gravitational self-force analytical results for eccentric orbits around a
Schwarzschild black hole Phys. Rev. D, 93, no. 10, 104017 (2016)
Abstract
We raise the analytical knowledge of the eccentricity expansion of the
Detweiler-Barack-Sago redshift invariant in a Schwarzschild spacetime
up to the 9.5th post-Newtonian order (included) for the e2 and e4 contri-
butions, and up to the 4th post-Newtonian order for the higher eccen-

1302



4. Publications (2012 – 2017)

tricity contributions through e20. We convert this information into an
analytical knowledge of the effective-one-body radial potentials d̄(u),
ρ(u) and q(u) through the 9.5th post-Newtonian order. We find that our
analytical results are compatible with current corresponding numerical
self-force data.

56. Punsly B. and Bini D.
General Relativistic Considerations of the Field Shedding Model of Fast
Radio Bursts
Mon. Not. Roy. Astron. Soc. 459, L41 (2016)
Abstract
Popular models of fast radio bursts (FRBs) involve the gravitational col-
lapse of neutron star progenitors to black holes. It has been proposed
that the shedding of the strong neutron star magnetic field (B) during
the collapse is the power source for the radio emission. Previously,
these models have utilized the simplicity of the Schwarzschild metric
which has the restriction that the magnetic flux is magnetic hair that
must be shed before final collapse. But, neutron stars have angular mo-
mentum and charge and a fully relativistic Kerr Newman solution exists
in which B has its source inside of the event horizon. In this letter, we
consider the magnetic flux to be shed as a consequence of the electric
discharge of a metastable collapsed state of a Kerr Newman black hole.
It has also been argued that the shedding model will not operate due
to pair creation. By considering the pulsar death line, we find that for
a neutron star with B = 1011 to 1013 G and a long rotation period, > 1 s
this is not a concern. We also discuss the observational evidence sup-
porting the plausibility of magnetic flux shedding models of FRBs that
are spawned from rapidly rotating progenitors.

57. Bini D. and Geralico A.
Scattering by a Schwarzschild black hole of particles undergoing drag force ef-
fects
General Relativity and Gravitation, 48, 101 (2016)
Abstract
The scattering of massive particles by a Schwarzschild black hole also
undergoing a drag force is considered. The latter is modeled as a vis-
cous force acting on the orbital plane, with components proportional to
the associated particle 4-velocity components. The energy and angular
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momentum losses as well as the dependence of the hyperbolic scatter-
ing angle on the strength of the drag are investigated in situations where
strong field effects cause large deflections.

58. Bini D. and Mashhoon B.
Nonlocal Gravity: Conformally Flat Spacetimes
J. Geom. Methods Mod. Phys. 13, 1650081 (2016)
Abstract
The field equations of the recent nonlocal generalization of Einsteins
theory of gravitation are presented in a form that is reminiscent of gen-
eral relativity. The implications of the nonlocal field equations are stud-
ied in the case of conformally flat spacetimes. Even in this simple case,
the field equations are intractable. Therefore, to gain insight into the
nature of these equations, we investigate the structure of nonlocal grav-
ity in two-dimensional spacetimes. While any smooth 2D spacetime is
conformally flat and satisfies Einsteins field equations, 0Gµν = 0, only a
subset containing either a Killing vector or a homothetic Killing vector
can satisfy the field equations of nonlocal gravity.

59. Bini D., Damour T. and Geralico A.
High post-Newtonian order gravitational self-force analytical results for eccen-
tric orbits around a Kerr black hole
Phys. Rev. D, 93, no. 12, 124058 (2016)
Abstract
We present the first analytic computation of the Detweiler-Barack-Sago
gauge-invariant redshift function for a small mass in eccentric equato-
rial orbit around a spinning black hole. Our results give the redshift
contributions that mix eccentricity and spin effects, through second or-
der in eccentricity, second order in spin parameter, and the eight-and-a-
half post-Newtonian order.

60. Bini D. and Geralico A.
Schwarzschild black hole embedded in a dust field: scattering of particles and
drag force effects
Class. Quantum. Grav., 33, 125024 (2016)
Abstract
A ’temporal analogue’ of the standard PoyntingRobertson effect is ana-
lyzed as induced by a dust of particles (instead of a gas of photons) sur-
rounding a Schwarzschild black hole. Test particles inside this cloud
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undergo acceleration effects due to the presence of a friction force, so
that the fate of their evolution can be completely different from the cor-
responding geodesic motion. Typical situations are discussed of hyper-
bolic motion of particles scattered by the black hole in the presence of
a dust filling the whole spacetime region outside the horizon as well
as particles which free fall radially crossing a corona located at a cer-
tain distance from the horizon. The existence of equilibrium orbits may
prevent particles from either falling into the hole or escaping to infinity.

61. Bini D. and Damour T.
Conservative second-order gravitational self-force on circular orbits and the ef-
fective one-body formalism
Phys. Rev. D, 93, 104040 (2016)
Abstract
We consider Detweiler’s redshift variable z for a nonspinning mass m1
in circular motion (with orbital frequency Ω) around a nonspinning
mass m2. We show how the combination of effective-one-body (EOB)
theory with the first law of binary dynamics allows one to derive a sim-
ple, exact expression for the functional dependence of z on the (gauge-
invariant) EOB gravitational potential u = (m1 + m2)/R. We then
use the recently obtained high-post-Newtonian(PN)-order knowledge
of the main EOB radial potential A(u; ν) [where ν = m1m2/(m1 + m2)

2]
to decompose the second-self-force-order contribution to the function
z(m2Ω, m1/m2) into a known part (which goes beyond the 4PN level in
including the 5PN logarithmic term, and the 5.5PN contribution), and
an unknown one [depending on the yet unknown, 5PN, 6PN, . . ., con-
tributions to the O(ν2) contribution to the EOB radial potential A(u; ν)].
We apply our results to the second-self-force-order contribution to the
frequency shift of the last stable orbit. We indicate the expected sin-
gular behaviors, near the lightring, of the second-self-force-order con-
tributions to both the redshift and the EOB A potential. Our results
should help both in extracting information of direct dynamical signifi-
cance from ongoing second-self-force-order computations, and in para-
metrizing their global strong-field behaviors. We also advocate com-
puting second-self-force-order conservative quantities by iterating the
time-symmetric Green-function in the background spacetime.

62. Bini D., Mashhoon B.
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Relativistic Gravity Gradiometry: The Mashhoon–Theiss Effect
e-Print: arXiv:1607.05473 [gr-qc]
Abstract
In general relativity, relativistic gravity gradiometry involves the mea-
surement of the relativistic tidal matrix, which is theoretically obtained
from the projection of the Riemann curvature tensor onto the orthonor-
mal tetrad frame of an observer. The observers 4-velocity vector defines
its local temporal axis and its local spatial frame is defined by a set of
three orthonormal nonrotating gyro directions. The general tidal ma-
trix for the timelike geodesics of Kerr spacetime has been calculated by
Marck [17]. We are interested in the measured components of the cur-
vature tensor along the inclined circular geodesic orbit of a test mass
about a slowly rotating astronomical object of mass M and angular mo-
mentum J. Therefore, we specialize Marcks results to such a circular or-
bit that is tilted with respect to the equatorial plane of the Kerr source.
To linear order in J, we recover the MashhoonTheiss effect, which is
due to a small denominator (resonance) phenomenon involving the fre-
quency of geodetic precession. The MashhoonTheiss effect shows up as
a special long-period gravitomagnetic part of the relativistic tidal ma-
trix. The physical interpretation of this effect is briefly discussed.

63. Bini D., Geralico A. and Jantzen R.T.
Gyroscope precession along bound equatorial plane orbits around a Kerr black
hole
Phys. Rev. D 94, 064066 (2016)
Abstract
The precession of a test gyroscope along stable bound equatorial plane
orbits around a Kerr black hole is analyzed and the precession angular
velocity of the gyros parallel transported spin vector and the increment
in precession angle after one orbital period is evaluated. The parallel
transported Marck frame which enters this discussion is shown to have
an elegant geometrical explanation in terms of the electric and magnetic
parts of the Killing-Yano 2-form and a Wigner rotation effect.

64. Bini D., Damour T. and Geralico A.
High-order post-Newtonian contributions to gravitational self-force effects in
black hole spacetimes
Proceedings of the international meeting “INdAM Workshop on Inno-

1306



4. Publications (2012 – 2017)

vative Algorithms and Analysis,”
May 17-20, 2016, Rome (It). Ed. by Springer.
Abstract
The explicit analytical computation of first-order metric perturbations
in black hole spacetimes is described in the case of a perturbing mass
moving on an equatorial circular orbit. The perturbation equations can
be separated into an angular part and a radial part. The latter satis-
fies a single inhomogeneous radial Schrödinger-like equation with a
Dirac-delta singular source term, whose solutions are built up through
Green’s function techniques. Various types of approximate analytical
homogeneous solutions (and corresponding Green’s functions) can be
constructed: Post-Newtonian solutions (expanded in powers of 1/c),
Mano-Suzuki-Takasugi solutions (expanded in series of hypergeomet-
ric functions), Wentzel-Kramers-Brillouin (WKB) solutions (large l ex-
pansion). The perturbed black-hole metric constructed by suitably com-
bining these different kind of solutions can then be used to compute, in
analytical form, gauge-invariant quantities. These include several “po-
tentials” entering the effective-one-body formalism (shortly reviewed
here). The latter formalism is a new way of describing the gravitational
interaction of two masses which has played a crucial role in the recent
detection of gravitational waves.

65. Bini D., Carvalho G. and Geralico A.
Scalar field self-force effects on a particle orbiting a Reissner-Nordstrom black
hole
Phys. Rev. D 94, 124028 (2016)
e-print: arXiv:1610.02235 [gr-qc]
Abstract
Scalar field self-force effects on a scalar charge orbiting a Reissner-Nord-
strom black hole are investigated. The scalar wave equation is solved
analytically in a post-Newtonian framework, and the solution is used
to compute the self-field as well as the components of the self-force at
the particles location up to 7.5 post-Newtonian order. The energy fluxes
radiated to infinity and down the hole are also evaluated. Comparison
with previous numerical results in the Schwarzschild case shows a good
agreement in both strong-field and weak-field regimes.

66. Bini D., Geralico A. and Jantzen R. T.,
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Gyroscope precession along unbound equatorial plane orbits around a Kerr
black hole
Phys. Rev. D 94, 124002 (2016)
e-Print: arXiv:1610.06513 [gr-qc].
Abstract
The precession of a test gyroscope along unbound equatorial plane geo-
desic orbits around a Kerr black hole is analyzed with respect to a static
reference frame whose axes point towards the “fixed stars.” The accu-
mulated precession angle after a complete scattering process is evalu-
ated and compared with the corresponding change in the orbital angle.
Limiting results for the non-rotating Schwarzschild black hole case are
also discussed.

67. Bini D., Geralico A., Jantzen R.T.,
Gyroscope precession along general timelike geodesics in a Kerr black hole
spacetime
Phys. Rev. D 95, 124022 (2017)
e-print arXiv:1703.09525 [gr-qc].
Abstract
The precession angular velocity of a gyroscope moving along a general
geodesic in the Kerr spacetime is analyzed using the geometric prop-
erties of the spacetime. Natural frames along the gyroscope world line
are explicitly constructed by boosting frames adapted to fundamental
observers. A novel geometrical description is given to Marck’s con-
struction of a parallel propagated orthonormal frame along a general
geodesic, identifying and clarifying the special role played by the Carter
family of observers in this general context, thus extending previous dis-
cussion for the equatorial plane case.

68. Bini D., Geralico A., Ortolan A.,
Deviation and precession effects in the field of a weak gravitational wave
Phys. Rev. D 95, 104044 (2017)
Abstract
Deviation and precession effects of a bunch of spinning particles in the
field of a weak gravitational plane wave are studied according to the
Mathisson-Papapetrou-Dixon (MPD) model. Before the passage of the
wave the particles are at rest with an associated spin vector aligned
along a given direction with constant magnitude. The interaction with
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the gravitational wave causes the particles to keep moving on the 2-
plane orthogonal to the direction of propagation of the wave, with the
transverse spin vector undergoing oscillations around the initial orien-
tation. The transport equations for both the deviation vector and spin
vector between two neighboring world lines of such a congruence are
then solved by a suitable extension of the MPD model off the spinning
particle’s world line. In order to obtain measurable physical quantities
a ”laboratory” is set up by constructing a Fermi coordinate system at-
tached to a reference world line. The exact transformation between TT
coordinates and Fermi coordinates is derived too.

69. Bini D., Chicone C., Mashhoon B.,
Relativistic Tidal Acceleration of Astrophysical Jets
Phys. Rev. D 95, 104029 (2017)
Abstract
Within the framework of general relativity, we investigate the tidal ac-
celeration of astrophysical jets relative to the central collapsed configu-
ration (”Kerr source”). To simplify matters, we neglect electromagnetic
forces throughout; however, these must be included in a complete anal-
ysis. The rest frame of the Kerr source is locally defined via the set
of hypothetical static observers in the spacetime exterior to the source.
Relative to such a fiducial observer fixed on the rotation axis of the Kerr
source, jet particles are tidally accelerated to almost the speed of light
if their outflow speed is above a certain threshold, given roughly by
one-half of the Newtonian escape velocity at the location of the refer-
ence observer; otherwise, the particles reach a certain height, reverse
direction and fall back toward the gravitational source.

70. Bini D., Geralico A.
Hyperbolic-like elastic scattering of spinning particles by a Schwarzschild black
hole
Gen. Rel. Gravit. 49, 84 (2017)
Abstract
The scattering of spinning test particles by a Schwarzschild black hole
is studied. The motion is described according to the MathissonPapa-
petrouDixon model for extended bodies in a given gravitational back-
ground field. The equatorial plane is taken as the orbital plane, the spin
vector being orthogonal to it with constant magnitude. The equations of
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motion are solved analytically in closed form to first-order in spin and
the solution is used to compute corrections to the standard geodesic
scattering angle as well as capture cross section by the black hole.

71. Kavanagh C., Bini D., Damour T., Hopper S., Ottewill A.C., Wardell B.
Spin-orbit precession along eccentric orbits for extreme mass ratio black hole
binaries and its effective-one-body transcription
Phys. Rev. D 96064012 (2017)
e-print arXiv:1706.00459 [gr-qc].
Abstract
In this work we present an analytical gravitational self-force calculation
of the spin-orbit precession along an eccentric orbit around a Schwarzschild
black hole, following closely the recent prescription of Akcay, Dempsey,
and Dolan, giving results to six post-Newtonian orders expanded in
small eccentricity through e2. We then transcribe this quantity within
the effective-one-body (EOB) formalism, thereby determining several
new, linear-in-mass-ratio contributions in the post-Newtonian expan-
sion of the spin-orbit couplings entering the EOB Hamiltonian. Namely,
we determine the second gyrogravitomagnetic ratio gS *(r ,pr,p?) up to
order pr2/r4 included.

72. Bini D., Damour T.,
Gravitational scattering of two black holes at the fourth post-Newtonian ap-
proximation
Phys. Rev. D, 96, 064021 (2017)
e-print arXiv:1706.06877v1 [gr-qc]
Abstract
We compute the (center-of-mass frame) scattering angle ? of hyper-
boliclike encounters of two spinning black holes, at the fourth post-
Newtonian approximation level for orbital effects, and at the next-to-
next-to-leading order for spin-dependent effects. We find it convenient
to compute the gauge-invariant scattering angle (expressed as a func-
tion of energy, orbital angular momentum and spins) by using the effective-
one-body formalism. The contribution to scattering associated with
nonlocal, tail effects is computed by generalizing to the case of unbound
motions the method of time localization of the action introduced in the
case of (small-eccentricity) bound motions by Damour et al. [Phys. Rev.
D 91, 084024 (2015), 10.1103/PhysRevD.91.084024].
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73. Bini D., Geralico A., Jantzen R.T.,
Position determination and strong field parallax effects for photon emitters in
the Schwarzschild spacetime
Gen. Rel. Gravit. 49, 84 (2017)
e-print arXiv:1707.00955
Abstract
The scattering of spinning test particles by a Schwarzschild black hole is
studied. The motion is described according to the Mathisson-Papapetrou-
Dixon model for extended bodies in a given gravitational background
field. The equatorial plane is taken as the orbital plane, the spin vector
being orthogonal to it with constant magnitude. The equations of mo-
tion are solved analytically in closed form to first-order in spin and the
solution is used to compute corrections to the standard geodesic scat-
tering angle as well as capture cross section by the black hole.

74. Bini D., Geralico A., Vines J.,
Hyperbolic scattering of spinning particles by a Kerr black hole
Phys. Rev. D, 96, no. 8, 084044 (2017)
e-print arXiv:1707.09814
Abstract
The scattering of spinning test particles by a Schwarzschild black hole is
studied. The motion is described according to the Mathisson-Papapetrou-
Dixon model for extended bodies in a given gravitational background
field. The equatorial plane is taken as the orbital plane, the spin vector
being orthogonal to it with constant magnitude. The equations of mo-
tion are solved analytically in closed form to first-order in spin and the
solution is used to compute corrections to the standard geodesic scat-
tering angle as well as capture cross section by the black hole.

75. Bini D., Chicone C., Mashhoon B.,
Anisotropic gravitational collapse and cosmic Jets
Phys. Rev. D 96, 084034 (2017).
[arXiv:1708.01040 [gr-qc]].
Abstract
Consider a dynamic general relativistic spacetime in which the proper
infinitesimal interval along one spatial coordinate direction decreases
monotonically with time, while the corresponding intervals increase
along other spatial directions. In a system undergoing such complete
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anisotropic collapse/expansion, we look for the formation of a cosmic
double-jet configuration: free test particles in the ambient medium, rel-
ative to the collapsing system, gain energy from the gravitational field
and asymptotically line up parallel and antiparallel to the direction of
collapse such that their Lorentz factors approach infinity. A strong burst
of electromagnetic radiation is expected to accompany this event if some
of the free test particles carry electric charge. Previous work in this
direction involved mainly Ricci-flat spacetimes; hence, we concentrate
here on inhomogeneous perfect fluid spacetimes. We briefly explore
the possible connection between these theoretical cosmic jets and astro-
physical jets. We also discuss other general relativistic scenarios for the
formation of cosmic jets.

76. Bini D., Damour T.,
Gravitational spin-orbit coupling in binary systems, post-Minkowskian ap-
proximation and effective one-body theory
Phys. Rev. D, 96, 104038 (2017)
e-print arXiv: 1709.00590 [gr-qc]
Abstract
A novel approach for extracting gauge-invariant information about spin-
orbit coupling in gravitationally interacting binary systems is introduced.
This approach is based on the ”scattering holonomy”, i.e. the integra-
tion (from the infinite past to the infinite future) of the differential spin
evolution along the two worldlines of a binary system in hyperboli-
clike motion. We apply this approach to the computation, at the first
post-Minkowskian approximation (i.e. first order in G and all orders
in v/c), of the values of the two gyrogravitomagnetic ratios describing
spin-orbit coupling in the Effective One-Body formalism. These gyro-
gravitomagnetic ratios are found to tend to zero in the ultrarelativistic
limit.

Books and book chapters

1. (Book) Ferrarese G., Bini D.,
Introduction to relativistic continuum mechanics,
Lecture Notes in Physics 727, Ed. Springer, 2007.

2. (Book) De Felice F., Bini D.,
Classical Measurements in Curved Space-Times
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Series: Cambridge Monographs on Mathematical Physics, Cambridge,
UK, 2010

Brief description

The theory of relativity describes the laws of physics in a given space-
time. However, a physical theory must provide observational predic-
tions expressed in terms of measurements, which are the outcome of
practical experiments and observations. Ideal for readers with a math-
ematical background and a basic knowledge of relativity, this book will
help readers understand the physics behind the mathematical formal-
ism of the theory of relativity. It explores the informative power of
the theory of relativity, and highlights its uses in space physics, astro-
physics and cosmology. Readers are given the tools to pick out from
the mathematical formalism those quantities that have physical mean-
ing and which can therefore be the result of a measurement. The book
considers the complications that arise through the interpretation of a
measurement, which is dependent on the observer who performs it.
Specific examples of this are given to highlight the awkwardness of the
problem.
Provides a large sample of observers and reference frames in space-
times that can be applied to space physics, astrophysics and cosmology.
Tackles the problems encountered in interpreting measurements, giv-
ing specific examples. Features advice to help readers understand the
logic of a given theory and its limitations.

Contents
1. Introduction; 2. The theory of relativity: a mathematical overview; 3.
Space-time splitting; 4. Special frames; 5. The world function; 6. Local
measurements; 7. Non-local measurements; 8. Observers in physical
relevant space-times; 9. Measurements in physically relevant space-
times; 10. Measurements of spinning bodies.
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A. Spacetime splitting techniques
in general relativity

The concept of a “gravitational force” modeled after the electromagnetic Lo-
rentz force was born in the Newtonian context of centrifugal and Coriolis
“fictitious” forces introduced by a rigidly rotating coordinate system in a flat
Euclidean space. Bringing this idea first into linearized general relativity and
then into its fully nonlinear form, it has found a number of closely related but
distinct generalizations. Regardless of the details, this analogy between grav-
itation and electromagnetism has proven useful in interpreting the results of
spacetime geometry in terms we can relate to, and has been illustrated in
many research articles and textbooks over the past half century.

ICRANet has itself devoted a workshop and its proceedings to aspects of
this topic in 2003 [2]. In the lengthy introduction to these proceedings, R.
Ruffini has discussed a number of related topics, like “the gravitational ana-
logue of the Coulomb-like interactions, of Hertz-like wave solutions, of the
Oersted-Ampére-like magnetic interaction, etc.,” supporting the thesis that
treating gravitation in analogy with electromagnetism may help to better un-
derstand the main features of certain gravitational phenomena, at least when
the gravitational field may be considered appropriately described by its lin-
earized approximation [12, 13, 14, 15, 16, 17, 18]. A particularly long bib-
liography surveying most of the relevant literature through 2001 had been
published earlier in the Proceedings of one of the annual Spanish Relativity
Meetings [19].

In the 1990s, working in fully nonlinear general relativity, all of the various
notions of “noninertial forces” (centrifugal and Coriolis forces) were put into
a single framework by means of a unifying formalism dubbed “gravitoelec-
tromagnetism” [1, 3, 4] which is a convenient framework to deal with these
and curvature forces and related questions of their effect on test bodies mov-
ing in the gravitational field. More precisely, such a language is based on the
splitting of spacetime into “space plus time,” accomplished locally by means
of an observer congruence, namely a congruence of timelike worldlines with
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(future-pointing) unit tangent vector field u which may be interpreted as the
4-velocity field of a family of test observers filling some region of spacetime.
The orthogonal decomposition of each tangent space into a local time direc-
tion along u and the orthogonal local rest space (LRS) is used to decompose
all spacetime tensors and tensor equations into a “space plus time” represen-
tation; the latter representation is somehow equivalent to a geometrical “mea-
surement” process. This leads to a family of “spatial” spacetime tensor fields
which represent each spacetime field and a family of spatial equations which
represent each spacetime equation. Dealing with spacetime splitting tech-
niques as well as 3-dimensional-like quantities clearly permits a better inter-
face of our intuition and experience with the 4-dimensional geometry in cer-
tain gravitational problems. It can be particularly useful in spacetimes which
have a geometrically defined timelike congruence, either explicitly given or
defined implicitly as the congruence of orthogonal trajectories to a slicing or
foliation of spacetime by a family of privileged spacelike hypersurfaces.

For example, splitting techniques are useful in the following spacetimes:

1. Stationary spacetimes, having a preferred congruence of Killing trajec-
tories associated with the stationary symmetry, which is timelike on a
certain region of spacetime (usually an open region, the boundary of
which corresponding to the case in which the Killing vector becomes
null so that in the exterior region Killing trajectories are spacelike).

2. Stationary axially symmetric spacetimes having in addition a preferred
slicing whose orthogonal trajectories coincide with the worldlines of
locally nonrotating test observers.

3. Cosmological spacetimes with a spatial homogeneity subgroup, which
have a preferred spacelike slicing by the orbits of this subgroup.

From the various schools of relativity that blossomed during the second
half of the last century a number of different approaches to spacetime split-
ting were developed without reference to each other. During the 1950s efforts
were initiated to better understand general relativity and the mathematical
tools needed to flush out its consequences. Lifshitz and the Russian school,
Lichnerowicz in France, the British school, scattered Europeans (Ehlers and
Trautman, for example) and the Americans best represented by Wheeler ini-
tiated this wave of relativity which blossomed in the 1960s. The textbook of
Landau and Lifshitz and articles of Zelmanov [20, 21, 22, 23] presented the
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“threading point of view” of the Russian school and of Moller [21] which in-
fluenced Cattaneo in Rome and his successor Ferrarese [24, 25, 26, 27, 28],
while a variation of this approach not relying on a complementary family
of hypersurfaces (the “congruence point of view) began from work initially
codified by Ehlers [17] and then taken up by Ellis [29, 30] in analyzing cos-
mological issues.

However, issues of quantum gravity lead to the higher profile of the “slic-
ing point of view” in the 1960s initiated earlier by Lichnerowicz and devel-
oped by Arnowitt, Deser and Misner and later promoted by the influential
textbook “Gravitation” by Misner, Thorne and Wheeler [31, 32, 33, 34] repre-
sents a splitting technique which is complementary to the threading point of
view and its congruence variation, and proved quite useful in illuminating
properties of black hole spacetimes.

R. Ruffini, a former student of Cattaneo and a collaborator of Wheeler,
in his quest to better understand electromagnetic properties of black holes,
awakened the curiosity of Jantzen and Carini at the end of the 1980s, later
joined by Bini, who together made an effort to clarify the interrelationships
between these various approaches as well as shed some light on the then
confusing work of Abramowicz and others on relativistic centrifugal and
Coriolis forces. By putting them all in a common framework, and describ-
ing what each measured in geometrical terms, and how each related to the
others, some order was brought to the field [1, 3, 4].

The ICRANet people working on this subject have applied the main ideas
underlying spacetime splitting techniques to concrete problems arising when
studying test particle motion in black hole spacetimes. Among the various re-
sults obtained it is worth mentioning the relativistic and geometrically correct
definition of inertial forces in general relativity [35, 36, 37, 38, 39], the defi-
nition of special world line congruences, relevant for the description of the
motion of test particles along circular orbits in the Kerr spacetime (geodesic
meeting point observers, extremely accelerated observers, etc.), the specifi-
cation of all the geometrical properties concerning observer-adapted frames
to the above mentioned special world line congruences [40, 41], the charac-
terization of certain relevant tensors in black hole spacetimes (Simon tensor,
Killing-Yano tensor) in terms of gravitoelectromagnetism [42, 43], etc. This
research line is still ongoing and productive.

Over a period of several decades Jantzen, Bini and a number of students at
the University of Rome “La Sapienza” under the umbrella of the Rome ICRA
group have been working on this problem under the supervision of Ruffini.

1317



A. Spacetime splitting techniques in general relativity

The collaborators involved have been already listed and the most relevant pa-
pers produced are indicated in the references below [44]–[83]. In the present
year 2010 a book by F. de Felice and D. Bini, including a detailed discussion
of this and related topics, has been published by Cambridge University Press
[157].

Let us now describe some fundamental notions of gravitoelectromagnetism.

A.1. Observer-orthogonal splitting

Let (4)g (signature -+++ and components (4)gαβ, α, β, . . . = 0, 1, 2, 3) be the
spacetime metric, (4)∇ its associated covariant derivative operator, and (4)η

the unit volume 4-form which orients spacetime ((4)η0123 = (4)g1/2 in an ori-
ented frame, where (4)g ≡ |det((4)gαβ)|). Assume the spacetime is also time
oriented and let u be a future-pointing unit timelike vector field (uαuα = −1)
representing the 4-velocity field of a family of test observers filling the space-
time (or some open submanifold of it).

If S is an arbitrary tensor field, let S[ and S] denote its totally covariant
and totally contravariant forms with respect to the metric index-shifting op-
erations. It is also convenient to introduce the right contraction notation
[S X]α = Sα

βXβ for the contraction of a vector field and the covariant in-
dex of a (1

1)-tensor field (left contraction notation being analogous).

A.1.1. The measurement process

The observer-orthogonal decomposition of the tangent space, and in turn of
the algebra of spacetime tensor fields, is accomplished by the temporal pro-
jection operator T(u) along u and the spatial projection operator P(u) onto
LRSu, which may be identified with mixed second rank tensors acting by
contraction

δα
β = T(u)α

β + P(u)α
β ,

T(u)α
β = −uαuβ ,

P(u)α
β = δα

β + uαuβ .

(A.1.1)
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These satisfy the usual orthogonal projection relations P(u)2 = P(u), T(u)2 =
T(u), and T(u) P(u) = P(u) T(u) = 0. Let

[P(u)S]α...
β... = P(u)α

γ · · · P(u)δ
β · · · Sγ...

δ... (A.1.2)

denote the spatial projection of a tensor S on all indices.
The measurement of S by the observer congruence is the family of spatial

tensor fields which result from the spatial projection of all possible contrac-
tions of S by any number of factors of u. For example, if S is a (1

1)-tensor, then
its measurement

Sα
β ↔(uδuγSγ

δ︸ ︷︷ ︸
scalar

, P(u)α
γuδSγ

δ︸ ︷︷ ︸
vector

, P(u)δ
αuγSγ

δ︸ ︷︷ ︸
vector

, P(u)α
γP(u)δ

βSγ
δ︸ ︷︷ ︸

tensor

)
(A.1.3)

results in a scalar field, a spatial vector field, a spatial 1-form and a spatial (1
1)-

tensor field. It is exactly this family of fields which occur in the orthogonal
“decomposition of S” with respect to the observer congruence

Sα
β = [T(u)α

γ + P(u)α
γ][T(u)δ

β + P(u)δ
β]Sγ

δ

= [uδuγSγ
δ]uαuβ + · · ·+ [P(u)S]αβ .

(A.1.4)

A.2. Examples

1. Measurement of the spacetime metric and volume 4-form

• spatial metric [P(u)(4)g]αβ = P(u)αβ

• spatial unit volume 3-form η(u)αβγ = uδ(4)ηδαβγ;
In a compact notation: η(u) = [P(u) u (4)η]

2. Measurement of the Lie, exterior and covariant derivative

• spatial Lie derivative £(u)X = P(u)£X
• the spatial exterior derivative d(u) = P(u)d

• the spatial covariant derivative ∇(u) = P(u)(4)∇
• the spatial Fermi-Walker derivative (or Fermi-Walker temporal deriva-

tive) ∇(fw)(u) = P(u)(4)∇u (when acting on spatial fields)

1319



A. Spacetime splitting techniques in general relativity

• the Lie temporal derivative ∇(lie)(u) = P(u)£u = £(u)u

Note that spatial differential operators do not obey the usual product
rules for nonspatial fields since undifferentiated factors of u are killed
by the spatial projection.

3. Notation for 3-dimensional operations

It is convenient to introduce 3-dimensional vector notation for the spa-
tial inner product and spatial cross product of two spatial vector fields
X and Y. The inner product is just

X ·u Y = P(u)αβXαYβ (A.2.1)

while the cross product is

[X×u Y]α = η(u)α
βγXβYγ . (A.2.2)

With the “vector derivative operator” ∇(u)α one can introduce spatial
gradient, curl and divergence operators for functions f and spatial vec-
tor fields X by

gradu f = ∇(u) f = [d(u) f ]] ,

curlu X = ∇(u)×u X = [∗(u)d(u)X[]] ,

divu X = ∇(u) ·u X = ∗(u)[d(u)∗(u)X[] ,

(A.2.3)

where ∗(u) is the spatial duality operation for antisymmetric tensor fields
associated with the spatial volume form η(u) in the usual way. These
definitions enable one to mimic all the usual formulas of 3-dimensional
vector analysis. For example, the spatial exterior derivative formula for
the curl has the index form

[curlu X]α = η(u)αβγ(4)∇βXγ (A.2.4)

which also defines a useful operator for nonspatial vector fields X.

4. Measurement of the covariant derivative of the observer four velocity

Measurement of the covariant derivative [(4)∇u]αβ = uα
;β leads to two

spatial fields, the acceleration vector field a(u) and the kinematical mixed
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tensor field k(u)
uα

;β = −a(u)αuβ − k(u)α
β ,

a(u) = ∇(fw)(u)u ,

k(u) = −∇(u)u .

(A.2.5)

The kinematical tensor field may be decomposed into its antisymmetric
and symmetric parts:

k(u) = ω(u)− θ(u) , (A.2.6)

with

[ω(u)[]αβ = P(u)σ
α P(u)δ

βu[δ;σ]

= 1
2 [d(u)u

[]αβ ,

[θ(u)[]αβ = P(u)σ
α P(u)δ

βu(δ;σ)

= 1
2 [∇(lie)(u)P(u)[]αβ = 1

2£(u)u(4)gαβ ,

(A.2.7)

defining the mixed rotation or vorticity tensor field ω(u) (whose sign
depends on convention) and the mixed expansion tensor field θ(u), the
latter of which may itself be decomposed into its tracefree and pure
trace parts

θ(u) = σ(u) +
1
3

Θ(u)P(u) , (A.2.8)

where the mixed shear tensor field σ(u) is tracefree (σ(u)α
α = 0) and

the expansion scalar is

Θ(u) = uα
;α = ∗(u)[∇(lie)(u)η(u)] . (A.2.9)

Define also the rotation or vorticity vector field ω(u) = 1
2 curlu u as the

spatial dual of the spatial rotation tensor field

ω(u)α = 1
2 η(u)αβγω(u)βγ = 1

2
(4)ηαβγδuβuγ;δ . (A.2.10)

5. Lie, Fermi-Walker and co-Fermi-Walker derivatives

The kinematical tensor describes the difference between the Lie and
Fermi-Walker temporal derivative operators when acting on spatial ten-
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sor fields. For example, for a spatial vector field X

∇(fw)(u)Xα = ∇(lie)(u)Xα − k(u)α
βXβ

= ∇(lie)(u)Xα −ω(u)α
βXβ + θ(u)α

βXβ ,
(A.2.11)

where

ω(u)α
βXβ = −η(u)α

βγω(u)βXγ = −[ω(u)×u X]α . (A.2.12)

The kinematical quantities associated with u may be used to introduce
two spacetime temporal derivatives, the Fermi-Walker derivative and
the co-rotating Fermi-Walker derivative along u

(4)∇(fw)(u)Xα = (4)∇uXα + [a(u) ∧ u]αβXβ ,
(4)∇(cfw)(u)Xα = (4)∇(fw)(u)Xα + ω(u)α

βXβ .
(A.2.13)

These may be extended to arbitrary tensor fields in the usual way (so
that they commute with contraction and tensor products) and they both
commute with index shifting with respect to the metric and with duality
operations on antisymmetric tensor fields since both (4)g and (4)η have
zero derivative with respect to both operators (as does u itself). For an
arbitrary vector field X the following relations hold

£uXα = (4)∇(fw)(u)Xα + [ω(u)α
β − θ(u)α

β + uαa(u)β]Xβ

= (4)∇(cfw)(u)Xα + [−θ(u)α
β + uαa(u)β]Xβ .

(A.2.14)

A spatial co-rotating Fermi-Walker derivative ∇(cfw)(u) (“co-rotating
Fermi-Walker temporal derivative”) may be defined in a way analogous
to the ordinary one, such that the three temporal derivatives have the
following relation when acting on a spatial vector field X

∇(cfw)(u)Xα = ∇(fw)(u)Xα + ω(u)α
βXβ

= ∇(lie)(u)Xα + θ(u)α
βXβ ,

(A.2.15)

while ∇(cfw)(u)[ f u] = f a(u) determines its action on nonspatial fields.
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It has been introduced an index notation to handle these three operators
simultaneously

{∇(tem)(u)}tem=fw,cfw,lie = {∇(fw)(u),∇(cfw)(u),∇(lie)(u)} . (A.2.16)

A.3. Comparing measurements by two observers in
relative motion

Suppose U is another unit timelike vector field representing a different family
of test observers. One can then consider relating the “observations” of each
to the other. Their relative velocities are defined by

U = γ(U, u)[u + ν(U, u)] ,
u = γ(u, U)[U + ν(u, U)] ,

(A.3.1)

where the relative velocity ν(U, u) of U with respect to u is spatial with re-
spect to u and vice versa, both of which have the same magnitude ||ν(U, u)|| =
[ν(U, u)αν(U, u)α]1/2, while the common gamma factor is related to that mag-
nitude by

γ(U, u) = γ(u, U) = [1− ||ν(U, u)||2]−1/2 = −Uαuα . (A.3.2)

Let ν̂(U, u) be the unit vector giving the direction of the relative velocity
ν(U, u). In addition to the natural parametrization of the worldlines of U
by the proper time τU, one may introduce two new parametrizations: by a
(Cattaneo) relative standard time τ(U,u)

dτ(U,u)/dτU = γ(U, u) , (A.3.3)

which corresponds to the sequence of proper times of the family of observers
from the u congruence which cross paths with a given worldline of the U
congruence, and by a relative standard lenght `(U,u)

d`(U,u)/dτU = γ(U, u)||ν(U, u)|| = ||ν(U, u)||dτ(U,u)/dτU , (A.3.4)

which corresponds to the spatial arc lenght along U as observed by u.
Eqs. (A.3.1) describe a unique active “relative observer boost” B(U, u) in
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the “relative observer plane” spanned by u and U such that

B(U, u)u = U , B(U, u)ν(U, u) = −ν(u, U) (A.3.5)

and which acts as the identity on the common subspace of the local rest
spaces LRSu ∩ LRSU orthogonal to the direction of motion.

A.3.1. Maps between the LRSs of different observers

The projection P(U) restricts to an invertible map when combined with P(u)
as follows

P(U, u) = P(U) ◦ P(u) : LRSu → LRSU (A.3.6)

with inverse P(U, u)−1 : LRSU → LRSu and vice versa, and these maps also
act as the identity on the common subspace of the local rest spaces.

Similarly the boost B(U, u) restricts to an invertible map

B(lrs)(U, u) ≡ P(U) ◦ B(U, u) ◦ P(u) (A.3.7)

between the local rest spaces which also acts as the identity on their common
subspace. The boosts and projections between the local rest spaces differ only
by a gamma factor along the direction of motion.

An expression for the inverse projection

If Y ∈ LRSu, then the orthogonality condition 0 = uαYα implies that Y has
the form

Y = [ν(u, U) ·U P(U, u)Y]U + P(U, u)Y . (A.3.8)

If X = P(U, u)Y ∈ LRSU is the field seen by U, then Y = P(U, u)−1X and

P(U, u)−1X = [ν(u, U) ·U X]U + X = [P(U) + U ⊗ ν(u, U)[] X , (A.3.9)

which gives a useful expression for the inverse projection.

This map appears in the transformation law for the electric and magnetic
fields:

E(u) = γP(U, u)−1[E(U) + ν(u, U)×U B(U)] ,

B(u) = γP(U, u)−1[B(U)− ν(u, U)×U E(U)] .
(A.3.10)
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A.4. Comparing measurements by three or more
observers in relative motion

A typical situation is that of a fluid/particle whis is observed by two diferrent
families of observers. In this case one deal with three timelike congruences
(or two congruences and a single line): the rest frame of the fluid U and the
two observer families u e u′.

All the previous formalism can be easily generalized. One has

U = γ(U, u)[u + ν(U, u)] ,

U = γ(U, u′)[u′ + ν(U, u′)] ,

u′ = γ(u′, u)[u + ν(u′, u)] ,

u = γ(u, u′)[u′ + ν(u, u′)] .

(A.4.1)

and mixed projectors involving the various four-velocities can be introduced.
They are summarized in the following table:

PROJECTORS
P(u, U, u) P(u) + γ(U, u)2ν(U, u)⊗ ν(U, u)
P(u, U, u)−1 P(u)− ν(U, u)⊗ ν(U, u)
P(u, U, u′) P(u, u′) + γ(U, u)γ(U, u′)ν(U, u)⊗ ν(U, u′)
P(u, U, u′)−1 P(u′, u) + γ(u, u′)[(ν(u, u′)− ν(U, u′))⊗ ν(U, u)

+ ν(U, u′)⊗ ν(u′, u)]
P(U, u)−1P(U, u′) P(u, u′) + γ(u, u′)ν(U, u)⊗ ν(u, u′)
P(u′, u)P(U, u)−1P(U, u′) P(u′) + δ(U, u, u′)ν(U, u′)⊗ ν(u, u′)
P(u′, u)P(u′, U, u)−1 P(u′) + δ(U, u, u′)ν(U, u′)⊗ [ν(u, u′)− ν(U, u′)]

where

δ(U, u, u′) =
γ(U, u′)γ(u′, u)

γ(U, u)
, δ(U, u, u′)−1 = δ(u, U, u′) , (A.4.2)

and
P(u, U, u′) = P(u, U)P(U, u′)
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A.5. Derivatives

Suppose one uses the suggestive notation

(4)D(U)/dτU = (4)∇U (A.5.1)

for the “total covariant derivative” along U. Its spatial projection with respect
to u and rescaling corresponding to the reparametrization of Eq. (A.3.4) is
then given by the “Fermi-Walker total spatial covariant derivative,” defined
by

D(fw,U,u)/dτ(U,u) = γ−1D(fw,U,u)/dτU = γ−1P(u)(4)D(U)/dτU

= ∇(fw)(u) +∇(u)ν(U, u) .
(A.5.2)

Extend this to two other similar derivative operators (the co-rotating Fermi-
Walker and the Lie total spatial covariant derivatives) by

D(tem,U,u)/dτ(U,u) = ∇(tem)(u) +∇(u)ν(U, u) , tem=fw,cfw,lie , (A.5.3)

which are then related to each other in the same way as the corresponding
temporal derivative operators

D(cfw,U,u)X
α/dτ(U,u) = D(fw,U,u)X

α/dτ(U,u) + ω(u)α
βXβ

= D(lie,U,u)X
α/dτ(U,u) + θ(u)α

βXβ
(A.5.4)

when acting on a spatial vector field X. All of these derivative operators
reduce to the ordinary parameter derivative D/dτ(U,u) ≡ d/dτ(U,u) when
acting on a function and extend in an obvious way to all tensor fields.

Introduce the ordinary and co-rotating Fermi-Walker and the Lie “relative
accelerations” of U with respect to u by

a(tem)(U, u) = D(tem)(U, u)ν(U, u)/dτ(U,u) , tem=fw,cfw,lie . (A.5.5)

These are related to each other in the same way as the corresponding deriva-
tive operators in Eq. (A.2.15).

The total spatial covariant derivative operators restrict in a natural way to a
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single timelike worldline with 4-velocity U, where the D/dτ notation is most
appropriate; (4)D(U)/dτU is often called the absolute or intrinsic derivative
along the worldline of U (associated with an induced connection along such
a worldline).

A.6. Applications

A.6.1. Test-particle motion

Let’s consider the motion of a unit mass test-particle with four velocity U,
accelerated by an external force f (U): a(U) = f (U). A generic observer u can
measure the particle four velocity U, obtaining its relative energy E(U, u) =
γ(U, u) and momentum p(U, u) = γ(U, u)ν(U, u),

U = E(U, u)[u + p(U, u)] = γ(U, u)[u + ν(U, u)]. (A.6.1)

Splitting the acceleration equation gives the evolution (along U) of the rela-
tive energy and momentum of the particle

dE(U, u)
dτ(U,u)

= [F(G)
(tem,U,u) + F(U, u)] · ν(U, u)

+ ε(tem)γ(U, u)ν(U, u) · (θ(u) ν(U, u))
D(tem)p(U, u)

dτ(U,u)
= F(G)

(tem,U,u) + F(U, u) ,

(A.6.2)

where tem=fw,cfw,lie,lie[ refers to the various possible (i.e. geometrically
meaningful) transport of vectors along U, ε(tem) = (0, 0,−1, 1) respectively
and

dτ(U,u) = γ(U, u)dτU

F(G)
(tem,U,u) = γ(U, u)[g(u) + H(tem,u) ν(U, u)]

F(U, u) = γ(U, u)−1P(u, U) f (U)

with

H(fw,u) = ω(u)− θ(u) H(cfw,u) = 2ω(u)− θ(u)

H(lie,u) = 2ω(u)− 2θ(u) H
(lie[,u) = 2ω(u) .

(A.6.3)
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The gravitoelectric vector field g(u) = −a(u) = −∇u u and the gravito-
magnetic vector field H(u) = 2[∗(u)ω(u)[]] of the observer u (sign-reversed
acceleration and twice the vorticity vector field) are defined by the exterior
derivative of u

du[ = [u ∧ g(u) + ∗(u)H(u)][ . (A.6.4)

and will be essential in showing the analogy between the gravitational force
F(G)
(tem,U,u) and the Lorentz force. The expansion scalar Θ(u) = Tr θ(u) ap-

pears in an additional term in the covariant derivative of u as the trace of
the (mixed) expansion tensor θ(u), of which the shear tensor σ(u) = θ(u)−
1
3 Θ(u)P(u) is its tracefree part

∇u = −a(u)⊗ u[ + θ(u)−ω(u) . (A.6.5)

The term D(tem)p(U, u)/dτ(U,u) contains itself the “spatial geometry” con-
tribution which must be added to the gravitational and the external force to
reconstruct the spacetime point of view. Actually, this term comes out nat-
urally and is significant all along the line of the particle: the single terms
∇(fw,u) and ∇(u)ν(U,u), in which it can be further decomposed, are not indi-
vidually meaningful unless one defines some extension for the spatial mo-
mentum p(U, u) off the line of the particle, which of course is unnecessary at
all.

From this spatial geometry contribution a general relativistic version of in-
ertial forces can be further extracted.

A.6.2. Maxwell’s equations

Maxwell’s equations can be expressed covariantly in many ways. For in-
stance, in differential form language one has

dF = 0 , d∗F = −4π∗J[ , (A.6.6)

where F is the Faraday electromagnetic 2-form and J is the current vector
field, obeying the conservation law

δJ[ = ∗d∗J[ = 0 . (A.6.7)
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The splitting of the electromagnetic 2-form F by any observer family (with
unit 4-velocity vector field u) gives the associated electric and magnetic vector
fields E(u) and B(u) as measured by those observers through the Lorentz
force law on a test charge, and the relative charge and current density ρ(u)
and J(u). The “relative observer decomposition” of F and its dual 2-form ∗F
is

F = [u ∧ E(u) + ∗(u)B(u)][ ,
∗F = [−u ∧ B(u) + ∗(u)E(u)][ ,

while J has the representation

J = ρ(u)u + J(u) . (A.6.8)

If U is the 4-velocity of any test particle with charge q and nonzero rest
mass m, it has the orthogonal decomposition

U = γ(U, u)[u + ν(U, u)] . (A.6.9)

Its absolute derivative with respect to a proper time parametrization of its
world line is its 4-acceleration a(U) = DU/dτU. The Lorentz force law then
takes the form

ma(U) = qγ(U, u)[E(u) + ν(U, u)×u B(u)] . (A.6.10)

The relative observer formulation of Maxwell’s equations is well known.
Projection of the differential form equations (A.6.6) along and orthogonal to
u gives the spatial scalar (divergence) and spatial vector (curl) equations:

divuB(u) + ~H(u) ·u E(u) = 0 ,
curluE(u)−~g(u)×u E(u) + [£(u)u + Θ(u)]B(u) = 0 ,

divuE(u)− ~H(u) ·u B(u) = 4πρ(u) ,
curluB(u)−~g(u)×u B(u)− [£(u)u + Θ(u)]E(u) = 4π J(u) ,

(A.6.11)

This representation of Maxwell’s equations differs from the Ellis represen-
tation only in the use of the spatially projected Lie derivative rather than the
spatially projected covariant derivative along u (spatial Fermi-Walker deriva-
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tive). These two derivative operators are related by the following identity for
a spatial vector field X (orthogonal to u)

[£(u)u + Θ(u)]X = [∇(u)u + {−σ(u) + ω(u)} ]X . (A.6.12)

It is clear, at this point, that for any spacetime tensor equation the “1+3”
associated version allows one to read it in a Newtonian form and to interpret
it quasi-classically.

For instance one can consider motion of test fields in a given gravitational
background (i.e. neglecting backreaction) as described by spacetime equa-
tions and look at their “1+3” counterpart. Over the last ten years, in a similar
way in which we have discussed the splitting of Maxwell’s equations in in-
tegral formulation, we have studied scalar field, spinorial field (Dirac fields),
fluid motions, etc.
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The motion of an extended body in a given background may be studied by
treating the body via a multipole expansion. The starting point of this method
is the covariant conservation law

∇µTµ
ν = 0 , (B.0.1)

where Tµν is the energy-momentum tensor describing the body. The body
sweeps out a narrow tube in spacetime as it moves. Let L be a line inside
this tube representing the motion of the body. Denote the coordinates of the
points of this line by Xα, and define the displacement δxα = Xα − xα, where
xα are the coordinates of the points of the body. Let us consider now the
quantities∫

TµνdV ,
∫

δxλTµνdV ,
∫

δxλδxρTµνdV , . . . (B.0.2)

where the integrations are carried out on the 3-dimensional hypersurfaces
of fixed time t = X0 = const, the tensor Tµν being different from zero only
inside the world tube: these are the successive terms of the multipole expan-
sion. A single-pole particle is defined as a particle that has nonvanishing at
least some of the integrals in the first (monopole) term, assuming that all the
integrals containing δxµ vanish. A pole-dipole particle, instead, is defined as
a particle for which all the integrals with more than one factor of δxµ (dipole
term) vanish. Higher order approximations may be defined in a similar way.
Thus, a single-pole particle is a test particle without any internal structure.
A pole-dipole particle, instead, is a test particle whose internal structure is
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expressed by its spin, an antisymmetric second-rank tensor defined by

Sµν ≡
∫ [

δxµT0ν − δxνT0µ
]

dV . (B.0.3)

The equations of motion are, then, obtained by applying the Einstein’s field
equations together with conservation of the energy-momentum tensor (B.0.1)
describing the body. For a single-pole particle this leads to a free particle
moving along the geodesics associated with the given background field. For
the motion of a pole-dipole particle, instead, the corresponding set of equa-
tions was derived by Papapetrou [85] by using the above procedure. Obvi-
ously, the model is worked out under the assumption that the dimensions of
the test particle are very small compared with the characteristic length of the
basic field (i.e., with backreaction neglected), and that the gravitational radia-
tion emitted by the particle in its motion is negligible. As a final remark, note
that this model can be extended to charged bodies by considering in addition
the conservation law of the current density.

B.1. The Mathisson-Papapetrou model

The equations of motion for a spinning (or pole-dipole) test particle in a given
gravitational background were deduced by Mathisson and Papapetrou [85,
84] and read

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ ≡ F(spin)µ , (B.1.1)

DSµν

dτU
= PµUν − PνUµ , (B.1.2)

where Pµ is the total four-momentum of the particle, and Sµν is a (antisym-
metric) spin tensor; U is the timelike unit tangent vector of the “center of mass
line” used to make the multipole reduction. Equations (B.1.1) and (B.1.2) de-
fine the evolution of P and S only along the world line of U, so a correct
interpretation of U is that of being tangent to the true world-line of the spin-
ning particle. The 4-momentum P and the spin tensor S are then defined as
vector fields along the trajectory of U. By contracting both sides of Eq. (B.1.2)
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with Uν, one obtains the following expression for the total 4-momentum

Pµ = −(U · P)Uµ −Uν
DSµν

dτU
≡ mUµ + Pµ

s , (B.1.3)

where m = −U · P reduces to the ordinary mass in the case in which the
particle is not spinning, and Ps is a 4-vector orthogonal to U.

The test character of the particle under consideration refers to its mass as
well as to its spin, since both quantities should not be large enough to con-
tribute to the background metric. In what follows, with the magnitude of the
spin of the particle, with the mass and with a natural lengthscale associated
with the gravitational background we will construct a dimensionless param-
eter as a smallness indicator, which we retain to the first order only so that
the test character of the particle be fully satisfied. Moreover, in order to have
a closed set of equations Eqs. (B.1.1) and (B.1.2) must be completed with sup-
plementary conditions (SC), whose standard choices in the literature are the
following

1. Corinaldesi-Papapetrou [86] conditions (CP): Sµν(e0)ν = 0, where e0 is
the coordinate timelike direction given by the background;

2. Pirani [87] conditions (P): SµνUν = 0;

3. Tulczyjew [88] conditions (T): SµνPν = 0;

all of these are algebraic conditions.
Detailed studies concerning spinning test particles in General Relativity

are due to Dixon [89, 90, 91, 92, 93], Taub [94], Mashhoon [95, 96] and Ehlers
and Rudolph [97]. The Mathisson-Papapetrou model does not give a priori
restrictions on the causal character of U and P and there is no agreement in
the literature on how this point should be considered. For instance, Tod, de
Felice and Calvani [98] consider P timelike, assuming that it represents the to-
tal energy momentum content of the particle, while they do not impose any
causality condition on the world line U, which plays the role of a mere math-
ematical “tool” to perform the multipole reduction. Differently, according to
Mashhoon [96], P can be considered analogously to the canonical momentum
of the particle: hence, there should be not any meaning for its causality char-
acter, while the world line U has to be timelike (or eventually null) because
it represents the center of mass line of the particle. This uncertainty in the
model itself then reflects in the need for a supplementary condition, whose
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choice among the three mentioned above is arbitrary, making the general rel-
ativistic description of a spinning test particle somehow unsatisfactory. When
both U and P are timelike vectors as e0, all of them can be taken as the 4-
velocity field of a preferred observer family, and all the SC above state that
for the corresponding observer the spin tensor is purely spatial. In a sense,
only P and T supplementary conditions give “intrinsic” relations between the
various unknown of the model and they should be somehow more physical
conditions. In fact, the CP conditions are “coordinate dependent,” being e0
the coordinate timelike vector. It is worth to mention that grounded on phys-
ical reasons, Dixon has shown that the T conditions should be preferred with
respect to the others.

B.2. The Dixon-Souriau model

The equations of motion for a charged spinning test particle in a given grav-
itational as well as electromagnetic background were deduced by Dixon-
Souriau [99, 100, 101, 102]. They have the form

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ + qFµ
νUν − λ

2
Sρσ∇µFρσ ≡ F(tot)µ , (B.2.1)

DSµν

dτU
= PµUν − PνUµ + λ[SµρFρ

ν − SνρFρ
µ] , (B.2.2)

where Fµν is the electromagnetic field, Pµ is the total 4-momentum of the par-
ticle, and Sµν is the spin tensor (antisymmetric); U is the timelike unit tangent
vector of the “center of mass line” used to make the multipole reduction. As
it has been shown by Souriau, the quantity λ is an arbitrary electromagnetic
coupling scalar constant. We note that the special choice λ = −q/m (see
[46]) in flat spacetime corresponds to the Bargman-Michel-Telegdi [103] spin
precession law.

B.3. Particles with quadrupolar structure

The equations of motion for an extended body in a given gravitational back-
ground were deduced by Dixon [89, 90, 91, 92, 93] in multipole approxima-

1334



B. Motion of particles and extended bodies in General Relativity

tion to any order. In the quadrupole approximation they read

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ − 1
6

JαβγδRαβγδ
; µ ≡ F(spin)µ + F(quad)µ(B.3.1)

DSµν

dτU
= 2P[µUν] − 4

3
Jαβγ[µRν]

αβγ , (B.3.2)

where Pµ = mUµ
p (with Up ·Up = −1) is the total four-momentum of the par-

ticle, and Sµν is a (antisymmetric) spin tensor; U is the timelike unit tangent
vector of the “center of mass line” CU used to make the multipole reduc-
tion, parametrized by the proper time τU. The tensor Jαβγδ is the quadrupole
moment of the stress-energy tensor of the body, and has the same algebraic
symmetries as the Riemann tensor. Using standard spacetime splitting tech-
niques it can be reduced to the following form

Jαβγδ = Παβγδ − ū[απβ]γδ − ū[γπδ]αβ − 3ū[αQβ][γūδ] , (B.3.3)

where Qαβ = Q(αβ) represents the quadrupole moment of the mass distribu-
tion as measured by an observer with 4-velocity ū. Similarly παβγ = πα[βγ]

(with the additional property π[αβγ] = 0) and Παβγδ = Π[αβ][γδ] are essen-
tially the body’s momentum and stress quadrupoles. Moreover the various
fields Qαβ, παβγ and Παβγδ are all spatial (i.e. give zero after any contraction
by ū). The number of independent components of Jαβγδ is 20: 6 in Qαβ, 6 in
Παβγδ and 8 in παβγ. When the observer ū = Up, i.e. in the frame associated
with the momentum of the particle, the tensors Qαβ, παβγ and Παβγδ have an
intrinsic meaning.

There are no evolution equations for the quadrupole as well as higher mul-
tipoles as a consequence of the Dixon’s construction, so their evolution is
completely free, depending only on the considered body. Therefore the sys-
tem of equations is not self-consistent, and one must assume that all unspec-
ified quantities are known as intrinsic properties of the matter under consid-
eration.

In order the model to be mathematically correct the following additional
condition should be imposed to the spin tensor:

SµνUpν = 0. (B.3.4)

Such supplementary conditions (or Tulczyjew-Dixon conditions [88, 89]) are
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necessary to ensure the correct definition of the various multipolar terms.
Dixon’s model for structured particles originated to complete and give

a rigorous mathematical support to the previously introduced Mathisson-
Papapetrou model [85, 84, 86, 87], i.e. a multipole approximation to any order
which includes evolutional equations along the “center line” for all the var-
ious structural quantities. The models are then different and a comparison
between the two is possible at the dipolar order but not once the involved
order is the quadrupole.

Here we limit our considerations to Dixon’s model under the further sim-
plifying assumption[94, 97] that the only contribution to the complete quadrupole
moment Jαβγδ stems from the mass quadrupole moment Qαβ, so that παβγ =
0 = Παβγδ and

Jαβγδ = −3U[α
p Qβ][γUδ]

p , QαβUpβ = 0 ; (B.3.5)

The assumption that the particle under consideration is a test particle means
that its mass, its spin as well as its quadrupole moments must all be small
enough not to contribute significantly to the background metric. Otherwise,
backreaction must be taken into account.

B.4. Null multipole reduction world line: the
massless case

The extension of the Mathisson-Papapetrou model to the case of a null multi-
pole reduction world line l has been considered by Mashhoon [96]: the model
equations have exactly the same form as (B.1.1) and (B.1.2), with U (timelike)
replaced by l (null) for what concerns the multipole reduction world line and
τU (proper time parametrization of the U line) replaced by λ (affine parame-
ter along the l line):

DPα

dλ
= −1

2
Rα

βρσlβSρσ ≡ F(spin)α , (B.4.1)

DSαβ

dλ
= [P ∧ l]αβ . (B.4.2)

Equations (B.4.1) and (B.4.2) should be then solved assuming some SC. Let
us limit ourselves to the case of “intrinsic” SC, i.e. Pirani and Tulczyjew, with
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Pirani’s conditions now naturally generalized as Sαβlβ = 0. Furthermore,
we require P · l = 0: in fact, we are interested to the massless limit of the
Mathisson-Papapetrou equations, and as the mass of the particle is defined
by m = −P ·U the massless limit implies −P · l = 0.

By denoting with {l = e1, n = e2, m = e3, m̄ = e4} a complex null frame
along the center line l, such that l · l = n · n = m · m = 0, l · n = 1, l · m =
l ·m = 0 and m · m̄ = −1, it is possible to parametrize the path so that

Dlµ

dλ
= b̄mµ + bm̄µ ,

Dnµ

dλ
= āmµ + am̄µ ,

Dmµ

dλ
= alµ + bnµ + icmµ , (B.4.3)

where a, b, c are functions of λ and c is real. The metric signature is assumed
now +−−− in order to follow standard notation of Newman-Penrose for-
malism, and the bar over a quantity denotes complex conjugation. Equa-
tions (B.4.3) are the analogous of the FS relations for null lines so that, repeat-
ing exactly the above procedure, one gets the final set of equations. Since
for a massless spinning test particle we have m = −P · l = 0, the total 4-
momentum P has the following decomposition:

Pµ = −[Blµ + Amµ + Ām̄µ] . (B.4.4)

Following Mashhoon [96], Tulczyjew’s conditions SαβPβ = 0 are in general
inconsistent in the presence of a gravitational background if in addition one
has P lightlike: P · P = 0. Thus, even if these inconsistencies concern only
the case of null P, we are clearly forced to consider Pirani’s SC as the only
physically meaningful supplementary conditions. Using the P supplemen-
tary conditions (implying b = 0), Mashhoon has shown that l is necessarily
geodesics: Dlµ/dλ = 0 and

Sµν = f (λ)[l ∧m]µν + f̄ (λ)[l ∧ m̄]µν + ig(λ)[m ∧ m̄]µν , (B.4.5)

with B real and

A =
d f
dλ

+ ic f − igā , PµPµ = −2|A|2 . (B.4.6)
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so that P is in general spacelike or eventually null. Furthermore, he has
shown that the spin vector defined by

Sµ =
1
2

ηµναβlνSαβ (B.4.7)

is constant along l and either parallel or antiparallel to l.
Finally, the generalized momentum of the particle should be determined by

solving equations (B.4.1) and (B.4.2) supplemented by Sαβlβ = 0. The other
components of the spin tensor not summarized by the spin vector should be
determined too. By assuming a = 0 (n parallel propagated along l) without
any loss of the physical content of the solution, Mashhoon has obtained for f
and B the following differential equations:[

d
dλ

+ ic
]2

f = f R1413 + f̄ R1414 + igR1434 ,

−dB
dλ

= f R1213 + f̄ R1214 + igR1234 , (B.4.8)

which determine the total 4-momentum and the spin tensor along the path
once they have been specified initially.

B.5. Applications

B.5.1. The special case of constant frame components of the
spin tensor

Due to the mathematical complexity in treating the general case of non-con-
stant frame components of the spin tensor, we have considered first the sim-
plest case of massive spinning test particles moving uniformly along circular
orbits with constant frame components of the spin tensor with respect to a
naturally geometrically defined frame adapted to the stationary observers in
the Schwarzschild spacetime [104] as well as in other spacetimes of astro-
physical interest: Reissner-Nordström spacetime [105], Kerr spacetime [5],
superposed static Weyl field [106], vacuum C metric [107]. A static spin vec-
tor is a very strong restriction on the solutions of the Mathisson-Papapetrou
equations of motion. However, this assumption not only greatly simplifies
the calculation, but seems to be not so restrictive, since, as previously demon-
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strated at least in the Schwarzschild case, the spin tensor components still re-
main constant under the CP an T choices of supplementary conditions, start-
ing from the more general non-constant case.

We have confined our attention to spatially circular equatorial orbits in
Schwarzschild, Reissner-Nordström and Kerr spacetimes, and searched for
observable effects which could eventually discriminate among the standard
supplementary conditions. We have found that if the world line chosen for
the multipole reduction and whose unit tangent we denote as U is a circular
orbit, then also the generalized momentum P of the spinning test particle is
tangent to a circular orbit even though P and U are not parallel 4-vectors.
These orbits are shown to exist because the spin induced tidal forces provide
the required acceleration no matter what supplementary condition we select.
Of course, in the limit of a small spin the particle’s orbit is close of being a
circular geodesic and the (small) deviation of the angular velocities from the
geodesic values can be of an arbitrary sign, corresponding to the possible
spin-up and spin-down alignment to the z-axis. When two massive particles
(as well as photons) orbit around a gravitating source in opposite directions,
they make one loop with respect to a given static observer with different ar-
rival times. This difference is termed clock effect (see [50, 108, 109, 110, 111]
and references therein). Hereafter we shall refer the co/counter-rotation as
with respect to a fixed sense of variation of the azimuthal angular coordinate.
In the case of a static observer and of timelike spatially circular geodesics the
coordinate time delay is given by

∆t(+,−) = 2π

(
1

ζ+
+

1
ζ−

)
, (B.5.1)

where ζ± denote angular velocities of two opposite rotating geodesics. In the
case of spinless neutral particles in geodesic motion on the equatorial plane of
both Schwarzschild and Reissner-Nordström spacetimes one has ζ+ = −ζ−,
and so the clock effect vanishes; in the Kerr case, instead, the clock effect reads
∆t(+,−) = 4πa, where a is the angular momentum per unit mass of the Kerr
black hole. These results are well known in the literature. We have then ex-
tended the notion of clock effect to non geodesic circular trajectories consid-
ering co/counter-rotating spinning-up/spinning-down particles. In this case
we have found that the time delay is nonzero for oppositely orbiting both
spin-up or spin-down particles even in both Schwarzschild and Reissner-
Nordström cases, and can be measured. In addition, we have found that
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a nonzero gravitomagnetic clock effect appears in the Reissner-Nordström
spacetime for spinless (oppositely) charged particles as well.

An analogous effect is found in the case of superposed Weyl fields cor-
responding to Chazy-Curzon particles and Schwarzschild black holes when
the circular motion of spinning test particles is considered on particular sym-
metry hyperplanes, where the orbits are close to a geodesic for small values
of the spin. In the case of the C metric, instead, we have found that the or-
bital frequency is in general spin-dependent, but there is no clock effect, in
contrast to the limiting Schwarzschild case.

B.5.2. Spin precession in Schwarzschild and Kerr spacetimes

We have then studied the behaviour of spinning test particles moving along
equatorial circular orbits in the Schwarzschild [6] as well as Kerr [7] space-
times within the framework of the Mathisson-Papapetrou approach supple-
mented by standard conditions, in the general case in which the components
of the spin tensor are not constant along the orbit. We have found that preces-
sion effects occur only if the Pirani’s supplementary conditions are imposed,
where one finds a Fermi-Walker transported spin vector along an accelerated
center of mass world line. The remaining two supplementary conditions ap-
parently force the test particle center of mass world line to deviate from a
circular orbit because of the feedback of the precessing spin vector; in addi-
tion, under these choices of supplementary conditions the spin tensor com-
ponents still remain constant. In reaching these conclusions, we only consid-
ered solutions for which both U and P are timelike vectors, in order to have
a meaningful interpretation describing a spinning test particle with nonzero
rest mass.

B.5.3. Massless spinning test particles in vacuum
algebraically special spacetimes

As a final application, we have derived the equations of motion for massless
spinning test particles in general vacuum algebraically special spacetimes,
using the Newman-Penrose formalism, in the special case in which the mul-
tipole reduction world line is aligned with a principal null direction of the
spacetime [112]. This situation gives very simple equations and their com-
plete integration is straightforward. Explicit solutions corresponding to some
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familiar Petrov type D and type N spacetimes (including Schwarzschild, Taub-
NUT, Kerr, C metric, Kasner, single exact gravitational wave) are derived and
discussed. Furthermore, we have investigated the motion along (null) circu-
lar orbits, providing explicit solutions in black hole spacetimes.

B.5.4. Quadrupole effects in black hole spacetimes

We have studied the motion of quadrupolar particles on a Schwarzschild as
well as Kerr backgrounds [113, 114] following Dixon’s model. In the sim-
plified situation of constant frame components (with respect to a natural or-
thonormal frame) of both the spin and the quadrupole tensor of the parti-
cle we have found the kinematical conditions to be imposed to the particle’s
structure in order the orbit of the particle itself be circular and confined on the
equatorial plane. Co-rotating and counter-rotating particles result to have a
non-symmetric speed in spite of the spherical symmetry of the background,
due to their internal structure. This fact has been anticipated when studying
spinning particles only, i.e. with vanishing quadrupole moments. We show
modifications due to the quadrupole which could be eventually observed in
experiments. Such experiment, however, cannot concern standard clock ef-
fects, because in this case we have shown that there are no contributions aris-
ing from the quadrupolar structure of the body. In contrast, the effect of the
quadrupole terms could be important when considering the period of revo-
lution of an extended body around the central source: measuring the period
will provide an estimate of the quantities determining the quadrupolar struc-
ture of the body, if its spin is known.

It would be of great interest to extend this analysis to systems with varying
quadrupolar structure and emitting gravitational waves without perturbing
significantly the background spacetime.

B.5.5. Quadrupole effects in gravitational wave spacetimes

We have studied how a small extended body at rest interacts with an incom-
ing single plane gravitational wave. The body is spinning and also endowed
with a quadrupolar structure, so that due to the latter property it can be thus
considered as a good model for a gravitational wave antenna.

We have first discussed the motion of such an extended body by assuming
that it can be described according to Dixon’s model and that the gravitational
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field of the wave is weak, i.e. the “reaction” (induced motion) of a “gravi-
tational wave antenna” (the extended body) to the passage of the wave, and
then the case of an exact plane gravitational wave. We have found that in gen-
eral, even if initially absent, the body acquires a dipolar moment induced by
the quadrupole tensor, a property never pointed out before in the literature.

Special situations may occur in which certain spin components change
their magnitude leading to effects (e.g. spin-flip) which can be eventually ob-
served. This interesting feature recalls the phenomenon of glitches observed
in pulsars: a sudden increase in the rotation frequency, often accompanied by
an increase in slow-down rate. The physical mechanism triggering glitches
is not well understood yet, even if these are commonly thought to be caused
by internal processes. If one models a pulsar by a Dixon’s extended body,
then the present analysis shows that a sort of glitch can be generated by the
passage of a strong gravitational wave, due to the pulsar quadrupole struc-
ture. In fact, we have found that the profile of a polarization function can be
suitably selected in order to fit observed glitches and in particular to describe
the post-glitch behavior.

B.5.6. Quadrupolar particles and the equivalence principle

We have compared the two “reciprocal ” situations of motion of an extended
body endowed with structure up to the mass quadrupole moment in a Shwarz-
schild background spacetime (as described by Dixon’s model) with that of a
test particle in geodesic motion in the background of an exact solution of
Einstein’s field equations describing a source with quadrupolar structure (for
a more detailed study of this kind of solutions generalizing Schwarzschild,
Kerr and Kerr-Newman spacetimes see also the section “Generalizations of
the Kerr-Newman solution,” included in the present report). Under certain
conditions the two situations give perfect corresponding results a fact which
has been interpreted as an argument in favour of the validity of Dixon’s
model.

B.5.7. Poynting-Robertson-like effects

Test particle motion in realistic gravitational fields is of obvious astrophysical
importance and at the same time it provides reliable evidence of the proper-
ties of those gravitational fields. However, in many actual astrophysical sys-
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tems the particles are not moving freely but are influenced by ambient matter,
electromagnetic fields and radiation. In typical situations, these “physical”
effects are probably even more important than fine details of the spacetime
geometry alone. The most remarkable conditions, from the point of view of
general relativity as well as astrophysics, appear near very compact objects
where both the pure gravitational and other “physical” effects typically be-
come extraordinarily strong.

In a series of papers, recently, we have focused on the motion of test par-
ticles in a spherically symmetric gravitational field, under the action of a
Thomson-type interaction with radiation emitted or accreted by a compact
center. This kind of problem was first investigated by Poynting using New-
tonian gravity and then in the framework of linearized general relativity by
Robertson (see [165] and the references therein). It involves competition be-
tween gravity and radiation drag, which may lead to interesting types of mo-
tion which do not occur in strictly vacuum circumstances. In particular, there
arises the question of whether equilibrium behavior like circular orbit motion
or even “staying at rest” are possible in some cases. Theoretical aspects of the
Poynting-Robertson effect as well as its astrophysical relevance in specific
situations have been studied by many authors since the original pioneering
work. We first considered this effect on test particles orbiting in the equa-
torial plane of a Schwarzschild or Kerr black hole, assuming that the source
of radiation is located symmetrically not far from the horizon (in the case of
outgoing flux). Successively, we have generalized these results by includ-
ing in our discussion other relevant spacetimes, e.g. Vaidya, or considering
spinning particles undergoing Poynting-Robertson-like effect.
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perturbations in black hole
spacetimes

C.1. Perturbations of charged and rotating black
hole

The gravitational and electromagnetic perturbations of the Kerr-Newman
metric represent still an open problem in General Relativity whose solution
could have an enormous importance for the astrophysics of charged and ro-
tating collapsed objects. A complete discussion about this problems needs
a plenty of different mathematical tools: the Newman-Penrose formalism in
the tetradic and spinor version, the Cahen-Debever-Defrise self dual theory,
the properties of the spin-weighted angular harmonics, with particular atten-
tion to the related differential geometry and the group theory, some tools of
complex analysis, etc, but in any case it is difficult to handle with the pertur-
bative equations. Fortunately, during the last years, the modern computers
and software have reached an optimal computational level which allows now
to approach this problem from a completely new point of view.

The Kerr-Newman solution in Boyer-Lindquist coordinates is represented
by the metric:

ds2 =

(
1− V

Σ

)
dt2 +

2a sin2 θ

Σ
Vdtdφ− Σ

∆
dr2

−Σdθ2 −
[

r2 + a2 +
a2 sin2 θ

Σ
V

]
sin2 θdφ2 (C.1.1)
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where as usual:

V ≡ 2Mr−Q2 (C.1.2)
∆ ≡ r2 − 2Mr + a2 + Q2

Σ ≡ r2 + a2 cos2 θ

and by the vector potential:

A[ = Aµ dxµ =
Qr
Σ

(dt− a sin2 θ dφ) . (C.1.3)

To investigate the geometrical features of this metric it is convenient to in-
troduce a symmetry-adapted tetrad. For any type D metric, and in par-
ticular for the Kerr-Newman solution, the best choice is a null tetrad with
two “legs” aligned along the two repeated principal null directions of the
Weyl tensor. The standard theory for analyzing different spin massless wave
fields in a given background is represented by the spinorial tetradic formal-
ism of Newman-Penrose (hereafter N-P)[115]. Here we follow the standard
approach, pointing out that a more advanced reformulation of this formal-
ism, called “GHP” [116] exists, allowing a more geometric comprehension of
the theory. In the N-P formalism, this solution is represented by the follow-
ing quantities [117] (in this section we use an A label over all quantities for a
reason which will be clear later). The Kinnersley tetrad [118]:

(lµ)A =
1
∆
[r2 + a2, ∆, 0, a]

(nµ)A =
1

2Σ
[r2 + a2,−∆, 0, a] (C.1.4)

(mµ)A =
1√

2(r + ia cos θ)
[ia sin θ, 0, 1,

i
sin θ

] ,

with the 4th leg represented by the conjugate (m∗µ)A, gives the metric tensor
of Kerr-Newman spacetime the form:

η(a)(b) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (C.1.5)
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The Weyl tensor is represented by:

ΨA
0 = ΨA

1 = ΨA
3 = ΨA

4 = 0
(C.1.6)

ΨA
2 = Mρ3 + Q2ρ∗ρ3

and the electromagnetic field is given by:

φA
0 = φA

2 = 0 , φA
1 =

Q
2(r− ia cos θ)2 . (C.1.7)

For the Ricci tensor and the curvature scalar we have:

ΛA = 0 , ΦA
nm = 2φA

m φ∗A
n (m, n = 0, 1, 2) (C.1.8)

so in Kerr-Newman, the only quantity different from zero is:

ΦA
11 =

Q2

2Σ2 . (C.1.9)

The spin coefficients, which are linear combination of the Ricci rotation coef-
ficients, are given by:

κA = σA = λA = νA = εA = 0 ,

ρA =
−1

(r− ia cos θ)
, τA =

−iaρAρ∗A sin θ√
2

,

βA =
−ρ∗A cot θ

2
√

2
, πA =

ia(ρA)2 sin θ√
2

, (C.1.10)

µA =
(ρA)2ρ∗A∆

2
, γA = µA +

ρAρ∗A(r−M)

2
,

αA = πA − β∗A .

The directional derivatives are expressed by:

D = lµ∂µ , ∆ = nµ∂µ , δ = mµ∂µ , δ∗ = m∗µ∂µ . (C.1.11)

Unfortunately in the literature the same letter for (C.1.2) and for the direc-
tional derivative along n it is used. However the meaning of ∆ will always
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be clear from the context. The study of perturbations in the N-P formalism is
achieved splitting all the relevant quantities in the form l = lA + lB, Ψ4 =
ΨA

4 + ΨB
4 , σ = σA + σB, D = DA + DB, etc., where the A terms are the

background and the B’s are small perturbations. The full set of perturba-
tive equations is obtained inserting these quantities in the basic equations
of the theory (Ricci and Bianchi identities, Maxwell, Dirac, Rarita-Schwinger
equations etc.) and keeping only first order terms. After certain standard
algebraic manipulations one usually obtains coupled linear PDE’s involving
curvature quantities. In the following, we will omit the A superscript for the
background quantities. Comparing with the standard Regge-Wheeler-Zerilli
[119, 120] approach which gives the equation for the metric, here one gets
the equations for Weyl tensor components. This theory is known as curvature
perturbations. In the case of Einstein-Maxwell perturbed metrics, one gets as
in R-W-Z the well known phenomenon of the “gravitationally induced elec-
tromagnetic radiation and vice versa” [121], which couples gravitational and
electromagnetic fields. In the first formulation, one gets a coupled system for
FB

µν and gB
µν quantities. In the N-P approach one has the coupling between

perturbed Weyl and Maxwell tensor components, although it’s possible to
recover the metric perturbations using the curvature one [122]. A discussion
about the connections between these two approaches can be found in [123].
To make a long story short, taking in account the two Killing vectors of this
spacetime, one can write the unknown functions in the form:

F(t, r, θ, φ) = e−iωteimφ f (r, θ) . (C.1.12)

In the easier cases of Kerr, Reissner-Nordstrom and Schwarzchild, writing
f (r, θ) = R(r)Y(θ) one gets separability of the problem. For instance, the
Reissner-Nordström case [124] is separable using the spin-weighted spherical
harmonics:[

1
sin θ

d
dθ

(
sin θ

d
dθ

)
−
(

m2 + s2 + 2ms cos θ

sin2 θ

)]
sYm

l(θ) = −l(l + 1)sYm
l(θ)

(C.1.13)
and their related laddering operators:(

d
dθ
− m

sin θ
− s

cos θ

sin θ

)
sYm

l(θ) = −
√
(l − s)(l + s + 1)s+1Ym

l(θ) (C.1.14)
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(
d
dθ

+
m

sin θ
+ s

cos θ

sin θ

)
sYm

l(θ) = +
√
(l + s)(l − s + 1)s−1Ym

l(θ) . (C.1.15)

The unknown functions can be cast in the form:

ΨB
0 = e−iωteimφ

2Ym
l(θ)R(2)

l (r)

χB
1 = e−iωteimφ

1Ym
l(θ)R(1)

l (r) (C.1.16)

χB
−1 = e−iωteimφ

−1Ym
l(θ)

∆
2r2 R(−1)

l (r)

ΨB
4 = e−iωteimφ

−2Ym
l(θ)

∆2

4r4 R(−2)
l (r)

where ∆ = r2 − 2Mr + Q2, and after manipulations, one gets two sets of
coupled ODE’s. The first set is:[

−ω2 r4

∆
+ 4iωr

(
−2 +

r(r−M)

∆
+

Q2

3Mr− 4Q2

)
− ∆

d2

dr2

−
{

6(r−M)− 4Q2∆
r(3Mr− 4Q2)

}
d
dr
− 4− 2Q2

r2

+
4Q2(r2 + 2Mr− 3Q2)

r2(3Mr− 4Q2)
+

3Mr− 4Q2

3Mr− 2Q2 (l − 1)(l + 2)
]

R(2)
l (C.1.17)

=
2
√

2Q
√
(l − 1)(l + 2)r3

3Mr− 2Q2

(
−iω

r2

∆
+

d
dr

+
4
r

− 4Q2

r(3Mr− 4Q2)

)
R(1)

l
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[
−ω2 r4

∆
+ 2iωr

(
−2 +

r(r−M)

∆
− Q2

3Mr− 2Q2

)
− ∆

d2

dr2

−
{

6∆
r

+ 4(r−M)− 2Q2∆
r(3Mr− 2Q2)

}
d
dr
− 18r2 − 24Mr + 2Q2

r2

+
12Q2∆

r2(3Mr− 2Q2)
+

3Mr− 2Q2

3Mr− 4Q2 (l − 1)(l + 2)
]

R(1)
l (C.1.18)

=
−
√

2Q2
√
(l − 1)(l + 2)∆

r3(3Mr− 4Q2)

(
iω

r2

∆
+

d
dr
− 2

r
+

4(r−M)

∆

− 2Q2

r(3Mr− 2Q2)

)
R(2)

l .

The quantities (R(−1)
l )∗ e (R(−2)

l )∗ (from χB
−1 e ΨB

4 ), satisfy the same equations

of R(1)
l and R(2)

l . At this point decoupling this system of ordinary differential
equations is straightforward.

Similarly, the Kerr case is separable using but the so-called spin-weighted
spheroidal harmonics [8, 125]:

(H0 + H1)Θ(θ) = −EΘ(θ) (C.1.19)

where:

H0 =

[
1

sin θ

d
dθ

(
sin θ

d
dθ

)
−
(

m2 + s2 + 2ms cos θ

sin2 θ

)]
(C.1.20)

H1 = a2ω2 cos2 θ − 2aωs cos θ (C.1.21)

and E is the eigenvalue. We have factorized the spherical and the spheroidal
parts to give the problem the form of a typical Quantum Mechanics exercise.
In fact depending if the H1 term is small or not, the way to approach the prob-
lem is very different. Unfortunately, in this case the laddering operators are
not know [126] and this does not allow the same strategy used in the case of
the Reissner-Nordström spacetime. In the case of the Kerr spacetime instead,
this is not a problem because laddering operators are unnecessary to solve
completely the problem. In the case of the Kerr-Newman spacetime this cre-
ates a “formal” problem. In fact the presence of the charge Q generates “ugly”
terms which don’t allow the separation of variables in all known coordinates.
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A hypothetical separation of variables in these coordinates would have been
stopped by the explicit absence of laddering operators. During the last 25
years there have been various attempts to solve this problem. One idea, pro-
posed in Chandrasekhar’s monography [126], is to decouple the PDE’s be-
fore the separation of variables, obtaining 4th order or higher linear PDE’s.
This task could be accomplished only using a super-computer, because of the
4th order derivatives. Another formulation was developed using de Cahen-
Debever-Defrise formalism, but a part some elegant conservative equations,
the problem has not been solved [127, 128]. In conclusion the problem re-
mains still open. A new approach has been developed [9, 10] for vacuum
spacetimes which gives directly the full set of perturbative equations. The
direct extension of this work to the case of Einstein-Maxwell or more compli-
cate spacetimes can put in a new light this difficult problem.

After this short historical overview we can discuss the results obtained by
ICRANet researchers in this field. In [129], due to Cherubini and Ruffini,
gravitational and electromagnetic perturbations to the Kerr-Newman space-
time using Maple tensor package are shown; a detailed analysis for slightly
charged, rotating and oblate black hole is presented too. Subsequent to this
article there have been various studies regarding the Teukolsky Master Equa-
tions (TMEs) in General Relativity. To this aim, a new form is found for the
Teukolsky Master Equation in Kerr and interpreted in terms of de Rham-
Lichenrowicz laplacians. The exact form of these generalized wave equations
in any vacuum spacetime is given for the Riemann and Maxwell tensors, and
the equations are linearized at any order, obtaining a hierarchy. It is shown
that the TME for any Petrov type D spacetime is nothing more than a com-
ponent of this laplacian linearized and that the TME cannot be derived by
variational principles [9, 10]. More in detail, the Teukolsky Master Equation
in the Kerr case, can be cast in a more compact form (Bini-Cherubini-Jantzen-
Ruffini form) by introducing a “connection vector” whose components are:

Γt = − 1
Σ

[
M(r2 − a2)

∆
− (r + ia cos θ)

]
Γr = − 1

Σ
(r−M)

Γθ = 0

Γφ = − 1
Σ

[
a(r−M)

∆
+ i

cos θ

sin2 θ

]
. (C.1.22)

1351



C. Metric and curvature perturbations in black hole spacetimes

It’s easy to prove that:

∇µΓµ = − 1
Σ

, ΓµΓµ =
1
Σ

cot2 θ + 4ψA
2 (C.1.23)

and consequently the Teukolsky Master Equation assumes the form:

[(∇µ + sΓµ)(∇µ + sΓµ)− 4s2ψA
2 ]ψ

(s) = 4πT (C.1.24)

where ψA
2 is the only non vanishing NP component of the Weyl tensor in

the Kerr background in the Kinnersley tetrad (C.1.5) (with Q = 0). Equa-
tion (C.1.24) gives a common structure for these massless fields in the Kerr
background varying the “s” index. In fact, the first part in the lhs represents
(formally) a D’Alembertian, corrected by taking into account the spin-weight,
and the second part is a curvature (Weyl) term linked to the “s” index too.
This particular form of the Teukolsky Master Equation forces us to extend
this analysis in the next sections because it suggests a connection between
the perturbation theory and a sort of generalized wave equations which dif-
fer from the standard ones by curvature terms. In fact generalized wave op-
erators are know in the mathematical literature as De Rham-Lichnerowicz
Laplacians and the curvature terms which make them different from the or-
dinary ones are given by the Weitzenböck formulas. Mostly known examples
in electromagnetism are

• the wave equation for the vector potential Aµ:

∇α∇α Aµ − Rµ
λ Aλ = −4π Jµ , ∇α Aα = 0 (C.1.25)

• the wave equation for the Maxwell tensor :

∇µ∇µFνλ + RρµνλFρµ − Rρ
λFνρ + Rρ

νFλρ = −8π∇[µ Jν] (C.1.26)

while for the gravitational case one has

• the wave equation for the metric perturbations:

∇α∇αh̄µν + 2Rαµβνh̄αβ − 2Rα(µh̄ν)
α = 0,

∇αh̄µ
α = 0, h̄µν = hµν −

1
2

gµνhα
α (C.1.27)
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• the wave equation for the Riemann Tensor

Rαβ
γδ;ε

ε = 4R[α
[γ;δ]

β] − 2R[α
εRβ]ε

γδ − 2RαµβνRµνγδ

−4R[α
µν[γRβ]µν

δ] . (C.1.28)

These equations are “non minimal,” in the sense that they cannot be recov-
ered by a minimal substitution from their flat space counterparts. A similar
situation holds in the standard Quantum Field Theory for the electromagnetic
Dirac equation. In fact, applying for instance to the Dirac equation an “ad
hoc” first order differential operator one gets the second order Dirac equa-
tion

(i/∂− e/A + m)(i/∂− e/A−m)ψ =[
(i∂µ − eAµ)(i∂µ − eAµ)− e

2
σµνFµν −m2

]
ψ = 0, (C.1.29)

where the notation is obvious. It is easy to recognize in equation (C.1.29) a
generalized Laplacian and a curvature (Maxwell) term applied to the spinor.
Moreover this equation is “non minimal”, in the sense that the curvature
(Maxwell) term cannot be recovered by electromagnetic minimal substitu-
tion in the standard Klein-Gordon equation for the spinor components. The
analogous second order Dirac equation in presence of a gravitational field
also has a non minimal curvature term and reduces to the form:

(∇α∇α + m2 +
1
4

R)ψ = 0 . (C.1.30)

The general TME formalism is applied to other exact solutions of the vacuum
Einstein field equations of Petrov type D. A new analysis of the Kerr-Taub-
NUT black hole is given, focussing on Mashhoon spin-coupling and superra-
diance [130, 59].

More in detail, in [130] Bini, Cherubini and Jantzen studied a single mas-
ter equation describing spin s = 0− 2 test field gauge and tetrad-invariant
perturbations of the Taub-NUT spacetime. This solution of vacuum Ein-
stein field equations describes a black hole with mass M and gravitomagnetic
monopole moment `. This equation can be separated into its radial and an-
gular parts. The behaviour of the radial functions at infinity and near the
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horizon is studied. The angular equation, solved in terms of hypergeomet-
ric functions, can be related both to spherical harmonics of suitable weight,
resulting from the coupling of the spin-weight of the field and the gravito-
magnetic monopole moment of the spacetime, and to the total angular mo-
mentum operator associated with the spacetime’s rotational symmetry. The
results are compared with the Teukolsky master equation for the Kerr space-
time.

In [59] instead Bini, Cherubini, Jantzen and Mashhoon have studied a sin-
gle master equation describing spin s ≤ 2 test fields that are gauge- and
tetrad-invariant perturbations of the Kerr-Taub-NUT (Newman - Unti - Tam-
burino) spacetime representing a source with a mass M, gravitomagnetic
monopole moment −`, and gravitomagnetic dipole moment (angular mo-
mentum) per unit mass a. This equation can be separated into its radial and
angular parts. The behavior of the radial functions at infinity and near the
horizon is studied and used to examine the influence of l on the phenomenon
of superradiance, while the angular equation leads to spin-weighted spheroidal
harmonic solutions generalizing those of the Kerr spacetime. Finally, the
coupling between the spin of the perturbing field and the gravitomagnetic
monopole moment is discussed.

In [69] instead Bini and Cherubini investigate the algebraically special fre-
quencies of Taub-NUT black holes in detail in comparison with known results
concerning the Schwarzschild case. The periodicity of the time coordinate, re-
quired for regularity of the solution, prevents algebraically special frequen-
cies to be physically acceptable. In the more involved Kerr-Taub-NUT case,
the relevant equations governing the problem are obtained. The formalism is
applied to the C-metric, and physical speculations are presented concerning
the spin-acceleration coupling.

In [70] Bini, Cherubini and Mashhoon study the vacuum C metric and its
physical interpretation in terms of the exterior spacetime of a uniformly accel-
erating spherically-symmetric gravitational source. Wave phenomena on the
linearized C metric background are investigated. It is shown that the scalar
perturbations of the linearized C metric correspond to the gravitational Stark
effect. This effect is studied in connection with the Pioneer anomaly.

In [71] instead Bini, Cherubini and Mashhoon analysed the massless field
perturbations of the accelerating Minkowski and Schwarzschild spacetimes.
The results are extended to the propagation of the Proca field in Rindler
spacetime. They examine critically the possibility of existence of a general
spinacceleration coupling in complete analogy with the well-known spinro-
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tation coupling. They argue that such a direct coupling between spin and
linear acceleration does not exist.

In [72] Cherubini, Bini, Bruni and Perjes consider vacuum Kasner space-
times, focusing on those that can be parametrized as linear perturbations of
the special Petrov type D case. In particular they analyze in detail the per-
turbations which map the Petrov type D Kasner spacetime into another Kas-
ner spacetime of Petrov type I. For these ’quasi-D’ Kasner models they first
investigate the modification to some curvature invariants and the principal
null directions, both related to the Petrov classification of the spacetime. This
simple Kasner example allows one to clarify the fact that perturbed space-
times do not retain in general the speciality character of the background. In
fact, there are four distinct principal null directions, although they are not
necessarily first-order perturbations of the background principal null direc-
tions. Then in the Kasner type D background they derive a Teukolsky master
equation, a classical tool for studying black-hole perturbations of any spin.
This further step allows one to control totally general cosmologies around
such a background as well as to show, from a completely new point of view,
the well-known absence of gravitational waves in Kasner spacetimes.

C.2. Perturbations of a Reissner-Nordström black
hole by a massive point charge at rest and
the “electric Meissner effect”

The problem of the effect of gravity on the electromagnetic field of a charged
particle leading to the consideration of the Einstein-Maxwell equations has
been one of the most extensively treated in the literature, resulting in exact
solutions (see [131] and references therein) as well as in a variety of approxi-
mation methods [132]-[140].

The issue of the interaction of a massive charged particle of mass m and
charge q with a Reissner-Nordström black hole with mass M and charge Q
has been addressed by the ICRANet collaboration: Bini, Geralico and Ruffini
[141, 142, 143]. We have solved this problem by the first order perturbation
approach formulated by Zerilli [120] using the tensor harmonic expansion of
the Einstein-Maxwell system of equations.

The results discussed in [141, 142] gave answer to a problem whose inves-
tigation started long ago by Hanni and Ruffini [137]. They obtained the so-
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lution for a charged particle at rest in the field of a Schwarzschild black hole
in the case of test field approximation, i.e. under the conditions q/m � 1,
m ≈ 0 and q � M, q � Q, by using the vector harmonic expansion of the
electromagnetic field in curved space. The conditions above imply the so-
lution of the Maxwell equations only in a fixed Schwarzschild metric, since
the perturbation to the background geometry given by the electromagnetic
stress-energy tensor is second order in the particle’s charge and the effect of
the particle’s mass is there neglected. As a result, no constraint on the posi-
tion of the test particle follows from the Einstein equations and the Bianchi
identities: the position of the particle is totally arbitrary.

This same test field approximation has been applied to the case of a Reissner-
Nordström black hole by Leaute and Linet [140]. In analogy with the Schwarz-
schild case, they used the vector harmonic expansion of the electromagnetic
field holding the background geometry fixed. However, this “test field ap-
proximation” is not valid in the present context. In fact, in addition to ne-
glecting the effect of the particle mass on the background geometry, this
treatment also neglects the electromagnetically induced gravitational pertur-
bation terms linear in the charge of the particle which would contribute to
modifying the metric as well.

The correct way to attack the problem is thus to solve the linearized Einstein-
Maxwell equations following Zerilli’s first order tensor harmonic analysis
[120]. In fact the source terms of the Einstein equations comprise the energy-
momentum tensor associated with the particle’s mass, the electromagnetic
energy-momentum tensor associated with the background field as well as
additional interaction terms, to first order in m and q, proportional to the
product of the square of the charge of the background geometry and the par-
ticle’s mass (∼ Q2m) and to the product of the charges of both the particle and
the black hole (∼ qQ). These terms give origin to the so called “electromag-
netically induced gravitational perturbation” [144]. On the other hand, the
source terms of the Maxwell equations contain the electromagnetic current
associated with the particle’s charge as well as interaction terms proportional
to the product of the black hole’s charge and the particle’s mass (∼ Qm),
giving origin to the “gravitationally induced electromagnetic perturbation”
[145].

This has been explicitly done in [141, 142]. Let us briefly summarize the re-
sults and the properties of the solution derived there. In standard Schwarzschild-
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like coordinates the Reissner-Nordström black hole metric is

ds2 = − f (r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θdφ2) ,

f (r) = 1− 2M
r

+
Q2

r2 , (C.2.1)

with associated electromagnetic field

F = −Q
r2 dt ∧ dr . (C.2.2)

The horizons are located at r± = M ±
√

M2 −Q2 ≡ M ± Γ; we consider
the case |Q| ≤ M and the region r > r+ outside the outer horizon, with an
extremely charged hole corresponding to |Q| = M (which implies Γ = 0)
where the two horizons coalesce.

The only nonvanishing components of the stress-energy tensor and of the
current density are given by

Tpart
00 =

m
2πb2 f (b)3/2δ (r− b) δ (cos θ − 1)

J0
part =

q
2πb2 δ (r− b) δ (cos θ − 1) , (C.2.3)

which enter the system of combined Einstein-Maxwell equations

G̃µν = 8π
(

Tpart
µν + T̃em

µν

)
,

F̃µν
; ν = 4π Jµ

part , ∗ F̃αβ
;β = 0 . (C.2.4)

The quantities denoted by the tilde refer to the total electromagnetic and
gravitational fields, to first order of the perturbation:

g̃µν = gµν + hµν , F̃µν = Fµν + fµν ,

T̃em
µν =

1
4π

[
g̃ρσ F̃ρµ F̃σν −

1
4

g̃µν F̃ρσ F̃ρσ

]
,

G̃µν = R̃µν −
1
2

g̃µνR̃ ; (C.2.5)

note that the covariant derivative operation makes use of the perturbed met-
ric g̃µν as well. The corresponding quantities without the tilde refer to the
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background Reissner-Nordström geometry (C.2.1) and electromagnetic field
(C.2.2). Following Zerilli’s [120] procedure we expand the fields hµν and fµν

as well as the source terms (C.2.3) in tensor harmonics, imposing then the
Regge-Wheeler gauge [119] to simplify the description of the perturbation.
The perturbation equations are then obtained from the system (C.2.4), keep-
ing terms to first order in the mass m of the particle and its charge q which are
assumed sufficiently small with respect to the black hole mass and charge.
The axial symmetry of the problem about the z axis (θ = 0) allows to put
the azimuthal parameter equal to zero in the expansion, leading to a great
simplification. Furthermore, it is sufficient to consider only electric-parity
perturbations, since there are no magnetic sources [144, 145, 120].

The geometrical perturbations hµν for the electric multipoles in the Regge-
Wheeler gauge are given by

||hµν|| =


eνH0Yl0 H1Yl0 0 0

H1Yl0 e−νH2Yl0 0 0

0 0 r2KYl0 0

0 0 0 r2 sin2 θKYl0

 , (C.2.6)

where Yl0 are normalized spherical harmonics with azimuthal index equal to
zero and eν = f (r) is Zerilli’s notation. The electromagnetic field harmonics
fµν for the electric multipoles are given by

|| fµν|| =



0 f̃01Yl0 f̃02
∂Yl0
∂θ

0

antisym 0 f̃12
∂Yl0
∂θ

0

antisym antisym 0 0

antisym antisym antisym 0


, (C.2.7)

where f̃µν denotes the θ-independent part of fµν, and the symbol “antisym”
indicates components obtainable by antisymmetry. The expansion of the
source terms (C.2.3) gives the relations

∑
l

A00Yl0 = 16πTpart
00 , ∑

l
vYl0 = J0

part , (C.2.8)
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with

A00 = 8
√

π
m
√

2l + 1
b2 f (b)3/2δ (r− b) , v =

1
2
√

π

q
√

2l + 1
b2 δ (r− b) .(C.2.9)

The Einstein-Maxwell field equations (C.2.4) give rise to the following system
of radial equations for values l ≥ 2 of the multipoles (note that the cases
l = 0, 1 must be treated separately)

0 = e2ν

[
2K′′ − 2

r
W ′ +

(
ν′ +

6
r

)
K′ − 4

(
1
r2 +

ν′

r

)
W
]
− 2λeν

r2 (W + K)

−2
Q2eνW

r4 − 4
Qeν f̃01

r2 + A00 ,

0 =
2
r

W ′ −
(

ν′ +
2
r

)
K′ − 2λe−ν

r2 (W − K)− 2
Q2e−νW

r4 + 4
Qe−ν f̃01

r2 ,

0 = K′′ +
(

ν′ +
2
r

)
K′ −W ′′ − 2

(
ν′ +

1
r

)
W ′

+

(
ν′′ + ν′

2
+

2ν′

r

)
(K−W)− 2

Q2e−νK
r4 +

4Qe−ν

r2 f̃01 ,

0 = −W ′ + K′ − ν′W + 4
Qe−ν f̃02

r2 ,

0 = f̃01
′ +

2
r

f̃01 −
l (l + 1) e−ν f̃02

r2 − Q
r2 K′ + 4πv ,

0 = f̃01 − f̃02
′ , (C.2.10)

since H0 = H2 ≡ W, H1 ≡ 0 and f̃12 ≡ 0, where λ = 1
2 (l − 1) (l + 2) and a

prime denotes differentiation with respect to r.

We have a system of 6 coupled ordinary differential equations for 4 un-
known functions: K, W, f̃01 and f̃02. The compatibility of the system requires
that these equations are not independent. Two equations can indeed be elim-
inated provided that the following stability condition holds

m = qQ
b f (b)1/2

Mb−Q2 , (C.2.11)

involving the black hole and particle parameters as well as their separation
distance b. If the black hole is extreme (i.e. Q/M = 1), then the particle
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must also have the same ratio q/m = 1, and equilibrium exists indepen-
dent of the separation. In the general non-extreme case Q/M < 1 there is
instead only one position of the particle which corresponds to equilibrium,
for given values of the charge-to-mass ratios of the bodies. In this case the
particle charge-to-mass ratio must satisfy the condition q/m > 1. Note that
quite surprisingly Eq. (C.2.11) coincides with the equilibrium condition for
a charged test particle in the field of a Reissner-Nordström black hole which
has been discussed by Bonnor [146] in the simplified approach of test field
approximation, neglecting all the feedback terms.

We then succeed in the exact reconstruction of both the perturbed grav-
itational and electromagnetic fields by summing all multipoles [142]. The
perturbed metric is given by

ds̃2 = −[1− H̄− k(r)] f (r)dt2 + [1 + H̄+ k(r)] f (r)−1dr2

+(1 + H̄)r2(dθ2 + sin2 θdφ2) ,

k(r) =
H̄0Q2

r2 f (r)
, H̄0 = −2qΓ2/[Q(Mb−Q2)] , (C.2.12)

where

H̄ = 2
m
br

f (b)−1/2 (r−M)(b−M)− Γ2 cos θ

D̄
,

D̄ = [(r−M)2 + (b−M)2 − 2(r−M)(b−M) cos θ

−Γ2 sin2 θ]1/2 . (C.2.13)

It can be shown that this perturbed metric is spatially conformally flat; more-
over, the solution remains valid as long as the condition |H̄| � 1 is satisfied.
The total electromagnetic field to first order of the perturbation turns out to
be

F̃ = −
[

Q
r2 + Er

]
dt ∧ dr− Eθdt ∧ dθ , (C.2.14)
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with

Er =
q
r3

Mr−Q2

Mb−Q2
1
D̄

{[
M(b−M) + Γ2 cos θ

+
Q2[(r−M)(b−M)− Γ2 cos θ]

Mr−Q2

]
−r[(r−M)(b−M)− Γ2 cos θ]

D̄2 [(r−M)− (b−M) cos θ]

}
,

Eθ = q
Mr−Q2

Mb−Q2
b2 f (b) f (r)

D̄3 sin θ . (C.2.15)

Note that in the extreme case Q/M = q/m = 1 this solution reduces to the
linearized form of the well known exact solution by Majumdar and Papa-
petrou [147, 148] for two extreme Reissner-Nordström black holes. Further-
more, this solution satisfies Gauss’ theorem

Φ =
∫

S

∗ F̃ ∧ dS = 4π[Q + qϑ(r− b)] , (C.2.16)

where Φ is the flux of the electric field obtained by integrating the dual of
the electromagnetic form (C.2.14) over a spherical 2-surface S centered at the
origin where the black hole charge Q is placed and with variable radius (r
greater or lesser than b), the function ϑ(x) denoting the step function.

Recently an important progress has been achieved by Belinski and Alek-
seev [149]. They have obtained an exact two-body solution of the Einstein-
Maxwell equations in explicit analytic form for the system consisting of a
Reissner-Nordström black hole and a naked singularity, by using the mon-
odromy transform approach [150]. They have shown that an equilibrium
without intervening struts or tensions is possible for such a system at se-
lected values of the separating distance between the sources. Furthermore,
their equilibrium condition exactly reduces to our equation (C.2.11) once lin-
earized with respect to the mass and charge of the naked singularity. We have
indeed been able to show explicitly the coincidence between the linearized
form of their exact solution and our perturbative solution.

We have then analyzed in [143] the properties of the perturbed electric field
with special attention to the construction of the lines of force of the electric
field. The two cases have been considered of the sole particle, with the sub-
traction of the dominant contribution of the black hole, as well as of the total
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field due to the black hole and the particle. As the black hole becomes ex-
treme an effect similar to the ordinary Meissner effect for magnetic fields in
the presence of superconductors arises: the electric field lines of the point
charge are expelled outside the outer horizon. Note that this effective “elec-
tric Meissner effect” has no classical analogue, as far as we know, and is a
pure general relativistic effect. Furthermore, it is suitable to a suggestive in-
terpretation in terms of the nature of the Reissner-Nordström solution. In
fact, as soon as the black hole is not extreme the point particle induces charge
on the horizon, and accordingly the electric field lines terminate on it; when
the black hole becomes extreme no further charge induction is possible (un-
less one turns the black hole into a naked singularity), and coherently the
electric field lines no more cross the horizon. In a sense the black hole re-
jects to turn itself into a naked singularity and this might be thought of as an
argument in favor of the Cosmic Censorship conjecture.

It is worth to mention that we are currently extending the above mentioned
results to more general situations. For example, we are considering (with A.
Geralico and G. Carvalho) the case in which the source is rotating uniformly
and the backreaction on the metric invloves all electric and magnetic multi-
poles.
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D.1. Mixmaster universe and the spectral index

The Bianchi type IX spatially homogeneous vacuum spacetime also known
as the Mixmaster universe has served as a theoretical playground for many
ideas in general relativity, one of which is the question of the nature of the
chaotic behavior exhibited in some solutions of the vacuum Einstein equa-
tions and another is the question of whether or not one can interpret the
spacetime as a closed gravitational wave. In particular, to describe the mathe-
matical approach to an initial cosmological singularity, the exact Bianchi type
IX dynamics leads to the BLK approximation involving the discrete BLK map
which acts as the transition between phases of approximately Bianchi type I
evolution. The parameters of this map are not so easily extracted from the
numerical evolution of the metric variables. However, recently it has been
realized that these parameters are directly related to transitions in the scale-
free part of the Weyl tensor. In fact this leads to a whole new interpretation
of what the BLK dynamics represents.

For a given foliation of any spacetime, one can always introduce the scale
free part of the extrinsic curvature when its trace is nonzero by dividing by
that trace. In the expansion-normalized approach to spatially homogeneous
dynamics, this corresponds to the expansion-normalized gravitational veloc-
ity variables. This scale free extrinsic curvature tensor can be characterized
by its eigenvalues, whose sum is 1 by definition: these define three functions
of the time parametrizing the foliation which generalize the Kasner indices of
Bianchi type I vacuum spacetimes. A phase of velocity-dominated evolution
is loosely defined as an interval of time during which the spatial curvature
terms in the spacetime curvature are negligible compared to the extrinsic cur-
vature terms. Under these conditions the vacuum Einstein equations can be
approximated by ordinary differential equations in the time. These lead to a
simple scaling of the eigenvectors of the extrinsic curvature during which the
generalized Kasner indices remain approximately constant and simulate the

1363



D. Cosmology

Bianchi type I Kasner evolution.

The Weyl tensor can be also be repackaged as a second rank but complex
spatial tensor with respect to the foliation and its scale free part is deter-
mined by a single complex scalar function of its eigenvalues, a number of
particular representations for which are useful. In particular the so called
speciality index is the natural choice for this variable which is independent
of the permutations of the spatial axes used to order the eigenvalues, and so
is a natural 4-dimensional tracker of the evolving gravitational field quoti-
enting out all 3-dimensional gauge-dependent quantities. During a phase of
velocity-dominated (“Kasner”) evolution, the Weyl tensor is approximately
determined by the extrinsic curvature alone, and hence the scalefree invari-
ant part of the Weyl tensor is locked to the generalized Kasner indices exactly
as in a Kasner spacetime. Of course during transitions between velocity-
dominated evolution where the spatial curvature terms are important, the
generalized Kasner indices and the Weyl tensor are uncoupled in their evolu-
tion, but the transition between one set of generalized Kasner indices and the
next is locked to a transition in the scalefree Weyl tensor. This idealized map-
ping, approximated by the BKL map between Kasner triplets, can be rein-
terpreted as a continuous transition in the Weyl tensor whose scale invariant
part can be followed through the transition directly. For spatially homoge-
neous vacuum spacetimes, the BLK transition is a consequence of a Bianchi
type II phase of the dynamics which can be interpreted as a single bounce
with a curvature wall in the Hamiltonian approach to the problem. One can
in fact follow this transition in the Weyl tensor directly with an additional
first order differential equation which is easily extracted from the Newman-
Penrose equations expressed in a frame adapted both to the foliation and the
Petrov type of the Weyl tensor.

This type of Weyl transition in the Mixmaster dynamics can be followed ap-
proximately using the Bianchi type II approximation to a curvature bounce,
leading to a temporal spike in the real and imaginary parts of the special-
ity index which represents a circuit in the complex plane between the two
real asymptotic Kasner points (a “pulse”). The graph of the speciality index
versus time thus serves as a sort of electrocardiogram of the “heart” of the
Mixmaster dynamics, stripping away all the gauge and frame dependent de-
tails of its evolution except for the choice of time parametrization, which is a
recent nice result of our investigation.
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D.2. Cosmological fluids obeying a non-ideal
equation of state

Current improvements in cosmological measurements strongly favor the stan-
dard model of the universe being spatially flat, homogeneous and isotropic
on large scales and dominated by dark energy consistently with the effect of
a cosmological constant and cold dark matter. In the literature such a con-
cordance model is referred to as Λ-Cold Dark Matter (ΛCDM) model: the
universe is well described by a Friedmann-Robertson-Walker (FRW) metric,
whose gravity source is a mixture of non-interacting perfect fluids including a
cosmological constant. At early times the universe was radiation-dominated,
but the present contribution of radiation is negligibly small. The dominant
contribution to the mass-energy budget of the universe today is due to dark
energy, obeying an equation of state pde ' −ρde. The cosmological constant
thus acts as an effective negative pressure, allowing the total energy density
of the universe to remain constant even though the universe expands.

However, no theoretical model determining the nature of dark energy is
available as yet, leaving its existence still unexplained. A big effort has been
spent in recent years in formulating cosmological models with modified equa-
tion of state [170]. These models include, for instance, a decaying scalar field
(quintessence) minimally coupled to gravity, similar to the one assumed by
inflation [171], scalar field models with nonstandard kinetic terms (k−essence)
[172], the Chaplygin gas [173], braneworld models and cosmological models
from scalar-tensor theories of gravity (see, e.g., Refs. [174, 175] and references
therein).

Following the same line of thinking, we have recently proposed in Ref.
[176] a cosmological model with a fluid source obeying a non-ideal equa-
tion of state with “asymptotic freedom,” first introduced by Shan and Chen
(SC) in the context of lattice kinetic theory [177]. Such an equation of state
supports a phase transition between low and high density regimes, both
characterized by an ideal gas behavior, i.e., pressure and density change in
linear proportion to each other. Similarly to the case of lattice kinetic the-
ory, in which the stabilizing effect of hard-core repulsion is replaced by an
asymptotic-free attraction, the repulsive effect of the cosmological constant is
here replaced by a scalar field with asymptotic-free attraction. We have used
these properties to model the growth of the dark matter-energy component of
the universe, showing that a cosmological FRW fluid obeying a SC-like equa-
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tion of state naturally evolves from an ordinary energy density component
towards a present-day universe with a suitable dark energy component, with
no need of invoking any cosmological constant. We have also provided some
observational tests in support to our model. More precisely, we have drawn
the Hubble diagram (distance modulus vs redshift) as well as the expansion
history of the universe (Hubble parameter vs redshift), showing that they are
consistent with current astronomical data.

We have then investigated in Ref. [178] the possibility that a SC-like equa-
tion of state may also be used to describe an early inflationary universe. In-
flation is an epoch of accelerated expansion, which was originally assumed
as a mechanism to solve several puzzles of the standard Big Bang scenario,
e.g., the flatness and horizon problems [179, 180, 181, 182, 183, 184]. It also
provides plausible scenarios for the origin of the large scale structure of the
universe, as well as the formation of anisotropies in the cosmic microwave
background radiation. Many different kinds of inflationary models have been
developed so far, including recent attempts to construct consistent models of
inflation based on superstring or supergravity models.

In the context of inflation, we have represented a SC fluid in a flat FRW
universe filled by a scalar field in an external potential, whose energy density
and pressure are identified (and fixed by) with the SC corresponding quanti-
ties. Therefore, the potential is completely determined and we have analyzed
in detail its role in the slow-roll approximation of inflation. We have found
that simple choices of the free parameters of the SC model are consistent with
current Planck and WMAP data, i.e., the minimal viability request for any
model. Furthermore, the equation of state undergoes a transition between
p/ρ < 0 (exotic matter) during inflation to p/ρ > 0 (ordinary matter) for late
times, thus providing a natural exit mechanism. As a result, a SC-like equa-
tion of state for the fluid source of the early universe may play a role also in
the context of inflation.
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