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1 Topics

The study of compact objects such as white dwarfs, neutron stars and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories, e.g., general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
theoretical physics aspects, the study of astrophysical scenarios characterized
by the presence of a compact object has also started to be focus of extensive
research within our group. The research which has been done and is cur-
rently being developed within our group can be divided into the following
topics:

• Nuclear and Atomic Astrophysics. Within this subject of research we
study the properties and processes occurring in compact stars in which
nuclear and atomic physics have to be necessarily applied. We focus
on the properties of nuclear matter under extreme conditions of density
and pressure found in these objects. The equation of state of the mat-
ter in compact star interiors is studied in detail taking into account all
the interactions between the constituents within a full relativistic frame-
work.

• White Dwarfs Physics and Structure. The aim of this part of our re-
search is to construct the structure of white dwarfs within a self-consistent
description of the equation of state of the interior together with the solu-
tion of the hydrostatic equilibrium equations in general relativity. Both
non-magnetized and magnetized white dwarfs are studied.

• White Dwarfs Astrophysics. We are interested in the astrophysics of
white dwarfs both isolated and in binaries. Magnetized white dwarfs,
soft gamma repeaters, anomalous X-ray pulsars, white dwarf pulsars,
cataclysmic variables, binary white dwarf mergers, and type Ia super-
novae are studied. The role of a realistic white dwarf interior structure
is particularly emphasized.
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1 Topics

• Neutron Stars Physics and Structure. We calculate the properties of the
interior structure of neutron stars using realistic models of the nuclear
matter equation of state within the general relativistic equations of equi-
librium. Strong, weak, electromagnetic and gravitational interactions
have to be jointly taken into due account within a self-consistent fully
relativistic framework. Both non-magnetized and magnetized neutron
stars are studied.

• Neutron Stars Astrophysics. We study astrophysical systems harbor-
ing neutron stars such as isolated and binary pulsars, low and inter-
mediate X-ray binaries, inspiraling and merging double neutron stars.
Most extreme cataclysmic events involving neutron stars and their role
in the explanation of extraordinarily energetic astrophysical events such
as gamma-ray bursts are analyzed in detail.

• Radiation Mechanisms of White Dwarfs and Neutron Stars. We here
study the possible emission mechanisms of white dwarfs and neutron
stars. We are thus interested in both electromagnetic and gravitational
radiation at work in astrophysical systems such as compact star mag-
netospheres, inspiraling and merging relativistic double neutron stars,
neutron star-white dwarfs, and neutron star-black hole binaries repre-
sent some examples.

• Exact and Numerical Solutions of the Einstein and Einstein-Maxwell
Equations in Astrophysics. We analyze the ability of analytic exact so-
lutions of the Einstein and Einstein-Maxwell equations to describe the
exterior spacetime of compact stars such as white dwarfs and neutron
stars. For this we compare and contrast exact analytic with numerical
solutions of the stationary axisymmetric Einstein equations. The prob-
lem of matching between interior and exterior spacetime is addressed
in detail. The effect of the quadrupole moment on the properties of the
spacetime is also investigated. Particular attention is given to the appli-
cation of exact solutions in astrophysics, e.g. the dynamics of particles
around compact stars and its relevance in astrophysical systems such as
X-ray binaries and gamma-ray bursts.

• Critical Fields and Non-linear Electrodynamics Effects in Astrophysics.
We study the conditions under which ultrastrong electromagnetic fields
can develop in astrophysical systems such as neutron stars and in the
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process of gravitational collapse to a black hole. The effects of non-
linear electrodynamics minimally coupled to gravity are investigated.
New analytic and numeric solutions to the Einstein-Maxwell equations
representing black holes or the exterior field of a compact star are ob-
tained and analyzed. The consequences on extreme astrophysical sys-
tems, for instance gamma-ray bursts, are studied.
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• R. Riahi (Isfahan University of Technology, Iran)

• J. F. Rodriguez (ICRANet; Sapienza University of Rome, Italy)

• J. D. Uribe (ICRANet; Sapienza University of Rome, Italy)

1127





3 Publications 2017

3.1 Refereed Journals

3.1.1 Printed

1. Gómez, L. Gabriel; Rueda, J. A., Dark matter dynamical friction versus
gravitational wave emission in the evolution of compact-star binaries, Physi-
cal Review D 96, 063001, 2017.

The measured orbital period decay of relativistic compact-star binaries,
with characteristic orbital periods 0.1 days , is explained with very high
precision by the gravitational wave (GW) emission of an inspiraling bi-
nary in a vacuum predicted by general relativity. However, the binary
gravitational binding energy is also affected by an usually neglected
phenomenon, namely the dark matter dynamical friction (DMDF) pro-
duced by the interaction of the binary components with their respec-
tive DM gravitational wakes. Therefore, the inclusion of the DMDF
might lead to a binary evolution which is different from a purely GW-
driven one. The entity of this effect depends on the orbital period and
on the local value of the DM density, hence on the position of the bi-
nary in the Galaxy. We evaluate the DMDF produced by three different
DM profiles: the Navarro-Frenk-White (NFW) profile, the nonsingular-
isothermal-sphere (NSIS) and the Ruffini-Argüelles-Rueda (RAR) DM
profile based on self-gravitating keV fermions. We first show that in-
deed, due to their Galactic position, the GW emission dominates over
the DMDF in the neutron star (NS)-NS, NS-(white dwarf) WD and WD-
WD binaries for which measurements of the orbital decay exist. Then,
we evaluate the conditions (i.e. orbital period and Galactic location)
under which the effect of DMDF on the binary evolution becomes com-
parable to, or overcomes, the one of the GW emission. We find that, for
instance for 1.3–0.2 M� NS-WD, 1.3–1.3 M� NS-NS, and 0.25–0.50 M�
WD-WD, located at 0.1 kpc, this occurs at orbital periods around 20-
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30 days in a NFW profile while, in a RAR profile, it occurs at about
100 days. For closer distances to the Galactic center, the DMDF ef-
fect increases and the above critical orbital periods become interestingly
shorter. Finally, we also analyze the system parameters (for all the DM
profiles) for which DMDF leads to an orbital widening instead of orbital
decay. All the above imply that a direct/indirect observational verifica-
tion of this effect in compact-star binaries might put strong constraints
on the nature of DM and its Galactic distribution.

2. Cipolletta, Federico; Cherubini, Christian; Filippi, Simonetta; Rueda,
Jorge A.; Ruffini, Remo, Equilibrium Configurations of Classical Polytropic
Stars with a Multi-Parametric Differential Rotation Law: A Numerical Anal-
ysis, Communications in Computational Physics 22, 863, 2017.

In this paper we analyze in detail the equilibrium configurations of
classical polytropic stars with a multi-parametric differential rotation
law of the literature using the standard numerical method introduced
by Eriguchi and Mueller. Specifically we numerically investigate the
parameters space associated with the velocity field characterizing both
equilibrium and non-equilibrium configurations for which the stability
condition is violated or the mass-shedding criterion is verified.

3. Cipolletta, F.; Cherubini, C.; Filippi, S.; Rueda, J. A.; Ruffini, R., Last
stable orbit around rapidly rotating neutron stars, Physical Review D 96,
024046, 2017.

We compute the binding energy and angular momentum of a test parti-
cle at the last stable circular orbit (LSO) on the equatorial plane around
a general relativistic, rotating neutron star (NS). We present simple, an-
alytic, but accurate formulas for these quantities that fit the numerical
results and which can be used in several astrophysical applications. We
demonstrate the accuracy of these formulas for three different equations
of state (EOS) based on nuclear relativistic mean-field theory models
and argue that they should remain still valid for any NS EOS that sat-
isfy current astrophysical constraints. We compare and contrast our nu-
merical results with the corresponding ones for the Kerr metric charac-
terized by the same mass and angular momentum.

4. Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Malheiro, M.; Rueda,
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J. A.; Ruffini, R., The rotation-powered nature of some soft gamma-ray re-
peaters and anomalous X-ray pulsars, A&A 599, A87, 2017.

Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs)
are slow rotating isolated pulsars whose energy reservoir is still mat-
ter of debate. Adopting neutron star (NS) fiducial parameters; mass
M = 1.4 M�, radius R = 10 km, and moment of inertia, I = 1045 g cm2,
the rotational energy loss, Ėrot, is lower than the observed luminosity
(dominated by the X-rays) LX for many of the sources. We investi-
gate the possibility that some members of this family could be canon-
ical rotation-powered pulsars using realistic NS structure parameters
instead of fiducial values. We compute the NS mass, radius, moment of
inertia and angular momentum from numerical integration of the ax-
isymmetric general relativistic equations of equilibrium. We then com-
pute the entire range of allowed values of the rotational energy loss,
Ėrot, for the observed values of rotation period P and spin-down rate
Ṗ. We also estimate the surface magnetic field using a general rela-
tivistic model of a rotating magnetic dipole. We show that realistic NS
parameters lowers the estimated value of the magnetic field and radia-
tion efficiency, LX/Ėrot, with respect to estimates based on fiducial NS
parameters. We show that nine SGRs/AXPs can be described as canon-
ical pulsars driven by the NS rotational energy, for LX computed in
the soft (2–10 keV) X-ray band. We compute the range of NS masses
for which LX/Ėrot < 1. We discuss the observed hard X-ray emis-
sion in three sources of the group of nine potentially rotation-powered
NSs. This additional hard X-ray component dominates over the soft
one leading to LX/Ėrot > 1 in two of them. We show that 9 SGRs/AXPs
can be rotation-powered NSs if we analyze their X-ray luminosity in
the soft 2–10 keV band. Interestingly, four of them show radio emission
and six have been associated with supernova remnants (including Swift
J1834.9–0846 the first SGR observed with a surrounding wind nebula).
These observations give additional support to our results of a natural
explanation of these sources in terms of ordinary pulsars. Including the
hard X-ray emission observed in three sources of the group of poten-
tial rotation-powered NSs, this number of sources with LX/Ėrot < 1
becomes seven. It remains open to verification 1) the accuracy of the
estimated distances and 2) the possible contribution of the associated
supernova remnants to the hard X-ray emission.
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5. Cáceres, D. L.; de Carvalho, S. M.; Coelho, J. G.; de Lima, R. C. R.;
Rueda, J. A., Thermal X-ray emission from massive, fast rotating, highly mag-
netized white dwarfs, MNRAS 465, 4434, 2017.

There is solid observational evidence on the existence of massive, M ∼
1 M�, highly magnetized white dwarfs (WDs) with surface magnetic
fields up to B ∼ 109 G. We show that, if in addition to these features,
the star is fast rotating, it can become a rotation-powered pulsar-like
WD and emit detectable high-energy radiation. We infer the values of
the structure parameters (mass, radius, moment of inertia), magnetic
field, rotation period and spin-down rates of a WD pulsar death-line.
We show that WDs above the death-line emit blackbody radiation in
the soft X-ray band via the magnetic polar cap heating by back flowing
pair-created particle bombardment and discuss as an example the X-ray
emission of soft gamma-repeaters and anomalous X-ray pulsars within
the WD model.

6. Rueda, Jorge A.; Aimuratov, Y.; de Almeida, U. Barres; Becerra, L.;
Bianco, C. L.; Cherubini, C.; Filippi, S.; Karlica, M.; Kovacevic, M.; Fuks-
man, J. D. Melon; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani,
G. B.; Primorac, D.; Ruffini, R.; Sahakyan, N.; Shakeri, S.; Wang, Y., The
binary systems associated with short and long gamma-ray bursts and their
detectability, IJMPD 26, 1730016, 2017.

Short and long-duration gamma-ray bursts (GRBs) have been recently
sub-classified into seven families according to the binary nature of their
progenitors. For short GRBs, mergers of neutron star binaries (NSNS)
or neutron star-black hole binaries (NS-BH) are proposed. For long
GRBs, the induced gravitational collapse (IGC) paradigm proposes a
tight binary system composed of a carbon-oxygen core (COcore) and a
NS companion. The explosion of the COcore as supernova (SN) triggers
a hypercritical accretion process onto the NS companion which might
reach the critical mass for the gravitational collapse to a BH. Thus, this
process can lead either to a NS-BH or to NSNS depending on whether
or not the accretion is sufficient to induce the collapse of the NS into
a BH. We shall discuss for the above compact object binaries: (1) the
role of the NS structure and the equation-of-state on their final fate; (2)
their occurrence rates as inferred from the X and gamma-ray observa-
tions; (3) the expected number of detections of their gravitational-wave
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emission by the Advanced LIGO interferometer.

3.1.2 Accepted for publication or in press

1. Becerra, Laura; Guzzo, Marcelo M.; Rossi-Torres, Fernando; Rueda,
Jorge A.; Ruffini, Remo; Uribe, Juan D., Neutrino Oscillations Within the
Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts, to ap-
pear in ApJ.

The induced gravitational collapse (IGC) paradigm of long gamma-
ray bursts (GRBs) associated with supernovae (SNe) predicts a copious
neutrino-antineutrino (νν̄) emission owing to the hypercritical accretion
process of SN ejecta onto a neutron star (NS) binary companion. The
neutrino emission can reach luminosities of up to 1057 MeV s−1, mean
neutrino energies 20 MeV, and neutrino densities 1031 cm−3. Along
their path from the vicinity of the NS surface outward, such neutrinos
experience flavor transformations dictated by the neutrino to electron
density ratio. We determine the neutrino and electron on the accretion
zone and use them to compute the neutrino flavor evolution. For nor-
mal and inverted neutrino-mass hierarchies and within the two-flavor
formalism (νeνx), we estimate the final electronic and non-electronic
neutrino content after two oscillation processes: (1) neutrino collec-
tive effects due to neutrino self-interactions where the neutrino den-
sity dominates and, (2) the Mikheyev-Smirnov-Wolfenstein (MSW) ef-
fect, where the electron density dominates. We find that the final neu-
trino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e.
νe + ν̄e, for the normal (inverted) neutrino-mass hierarchy. The results of
this work are the first step toward the characterization of a novel source
of astrophysical MeV-neutrinos in addition to core-collapse SNe and, as
such, deserve further attention.

3.1.3 Submitted

1. Rodriguez, J. F.; Rueda, J. A.; Ruffini, R., Comparison and contrast of test-
particle and numerical-relativity waveform templates, submitted to JCAP;
arXiv:1706.07704.

We compare and contrast the emission of gravitational waves and wave-
forms for the recently established “helicoidal-drifting-sequence” of a
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test particle around a Kerr black hole with the publicly available wave-
form templates of numerical relativity simulations. The merger of two
black holes of comparable mass are considered. We outline a final smooth
merging of the test particle into the Kerr black hole. We find a surpris-
ing and unexpected agreement between the two treatments if we adopt
for the mass of the particle and for the spin of the Kerr black hole, re-
spectively, the Newtonian-center-of-mass description and the spin of
the Kerr black hole formed in the merger.

2. Rodriguez, J. F.; Rueda, J. A.; Ruffini, R., Strong-field gravitational-wave
emission in Schwarzschild and Kerr geometries: some general considerations,
submitted to Physical Review D.

We show how the concurrent implementation of the exact solutions of
the Einstein equations, of the equations of motion of the test particles,
and of the relativistic estimate of the emission of gravitational waves
from test particles, can establish a priori constraints on the possible phe-
nomena occurring in Nature. Two examples of test particles starting at
infinite distance or from finite distance in a circular orbit around a Kerr
black hole are considered: the first leads to a well defined gravitational-
wave burst the second to a smooth merging into the black hole. We no-
tice a difference between our treatment and the one by Ori and Thorne
(2000) which will affect the gravitational-wave signal. This analysis is
necessary for the study of the waveforms in merging binary systems.

3. R. Ruffini, J. F. Rodriguez, M. Muccino, J. A. Rueda, Y. Aimuratov, U.
Barres de Almeida, L. Becerra, C. L. Bianco, C. Cherubini, S. Filippi,
D. Gizzi, M. Kovacevic, R. Moradi, F. G. Oliveira, G. B. Pisani, and Y.
Wang, On the rate and on the gravitational wave emission of short and long
GRBs, submitted to ApJ; arXiv:1602.03545.

GRBs, traditionally classified as “long” and “short”, have been often
assumed, till recently, to originate from a single black hole (BH) with
an ultrarelativistic jetted emission. There is evidence that both long
and short bursts have as progenitors merging and/or accreting bina-
ries, each composed by a different combination of carbon-oxygen cores
(COcore), neutron stars (NSs), BHs and white dwarfs (WDs). Conse-
quently, the traditional long bursts have been sub-classified as (I) X-ray
flashes (XRFs), (II) binary-driven hypernovae (BdHNe), and (III) BH-
supernovae (BH-SNe). They are framed within the induced gravita-
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tional collapse (IGC) paradigm which envisages as progenitor a tight
binary composed of a COcore and a NS or BH companion. The SN ex-
plosion of the COcore, originating a new NS (νNS), triggers a hypercrit-
ical accretion process onto the companion NS or BH. If the accretion is
not sufficient for the NS to reach its critical mass, an XRF occurs, lead-
ing to a νNS-NS system. Instead, when the BH is already present or
formed by the hypercritical accretion, a BdHN occurs, leading to a νNS-
BH system. Similarly, the traditional short bursts, originating in NS-NS
mergers, are sub-classified as (IV) short gamma-ray flashes (S-GRFs)
and (V) short GRBs (S-GRBs), respectively when the merging process
does not lead or leads to BH formation. Two additional families are
(VI) ultra-short GRBs (U-GRBs) and (VII) gamma-ray flashes (GRFs),
respectively formed in νNS-BH and NS-WD mergers. We use the es-
timated occurrence rate of the above sub-classes to assess the gravita-
tional wave emission in the merging process and its detectability by
Advanced LIGO, Advanced Virgo, eLISA, and resonant bars.

4. L. Becerra, J. A. Rueda, P. Lorén-Aguilar, E. Garcı́a-Berro, The Spin Evo-
lution of Fast-Rotating, Magnetized Super-Chandrasekhar White Dwarfs in
the Aftermath of White Dwarf Mergers, submitted to ApJ.

The evolution of the remnant of the merger of two white dwarfs is still
an open problem. Furthermore, few studies have studied the case in
which the remnant is a magnetic white dwarf with a mass larger than
the Chandrasekhar limiting mass. Angular momentum losses might
bring the remnant of the merger to the physical conditions suitable for
developing a thermonuclear explosion. Alternatively, the remnant may
be prone to gravitational and/or rotational instabilities, depending on
the initial conditions reached after the coalescence. Dipole magnetic
braking is one of the mechanisms that can drive such losses of angular
momentum. However, the timescale on which these losses occur de-
pend on several parameters, like the strength of the magnetic field, the
inclination angle with respect to the rotation axis of the remnant, and
the properties of the white dwarf. In addition, the coalescence leaves a
surrounding Keplerian disk that can be accreted by the newly formed
white dwarf. Here we compute the post-merger evolution of a super-
Chandrasekhar magnetized white dwarf taking into account all the rel-
evant physical processes. These include magnetic torques acting on the
star, accretion from the Keplerian disk, the threading of the magnetic
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field lines through the disk, as well as the thermal evolution of the white
dwarf core. We find that the central remnant can reach the conditions
suitable to develop a thermonuclear explosion before other instabilities,
such as the inverse beta-decay instability or the secular axisymmetric
instability, are reached which would instead lead to gravitational col-
lapse of the magnetized remnant.

5. Rueda, Jorge A.; Wu, Yuan-Bin; Xue, She-Sheng, Surface tension of com-
pressed, superheavy atoms, submitted to Physical Review C.

Based on the relativistic mean-field theory and the Thomas-Fermi ap-
proximation, we study the surface properties of compressed, super-
heavy atoms. By compressed, superheavy atom we mean an atom com-
posed by a superheavy nuclear core (superheavy nucleus) with mass
number of the order of 104, and degenerate electrons that neutralize the
system. Some electrons penetrate into the superheavy nuclear core and
the rest surround it up to a distance that depends upon the compres-
sion level. Taking into account the strong, weak, and electromagnetic
interactions, we numerically study the structure of compressed, super-
heavy atoms and calculate the nuclear surface tension and Coulomb
energy. We analyze the influence of the electron component and the
background matter on the nuclear surface tension and Coulomb energy
of compressed, superheavy atoms. We also compare and contrast these
results in the case of compressed, superheavy atoms with phenomeno-
logical results in nuclear physics and the results of the core-crust inter-
face of neutron stars with global charge neutrality. Based on the numer-
ical results we study the instability against Bohr-Wheeler surface defor-
mations in the case of compressed, superheavy atoms. The results in
this article show the possibility of the existence of such compressed, su-
perheavy atoms, and provide the evidence of strong effects of the elec-
tromagnetic interaction and electrons on the structure of compressed,
superheavy atoms.

3.1.4 To be submitted or work in progress

1. Becerra, L. M.; Ellinger, C. L., Fryer, C. L.; Rueda, J. A.; Ruffini, R.,SPH
simulations of the induced gravitational collapse scenario for long gamma-ray
bursts associated with supernovae.
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We present the first full 3D smoothed-particle hydrodynamics (SPH)
simulations of the the induced gravitational collapse (IGC) scenario for
the explanation of long-duration gamma-ray bursts (GRBs) associated
with supernovae (SNe). We simulate the SN explosion and subsequent
evolution of the ejecta expansion in presence of a neutron star (NS) bi-
nary companion. The NS companion accretes matter from the SN ejecta
at hypercritical (highly super-Eddington) rates allowed by a copious
neutrino-antineutrino pair emission near the NS surface. We show: 1)
that the NS can reach the critical mass for black-hole (BH) formation in
this process; 2) 3D profiles of the SN ejecta thermodynamical properties
(e.g. density, pressure and temperature) influenced by the gravitational
field of the nearby NS companion and the accretion process onto it; 3)
the relevance of our results for a high-precision analysis of GRB data.

2. Rodriguez, J. F.; Rueda, J. A.; Ruffini, R., Some general considerations on
the aftermath of neutron star binary mergers.

On the basis of the conservation of energy, angular momentum and
baryon number we determine the general properties of the configura-
tion left by the merger of a neutron star (NS) binary. We analyze the
conditions under which the central remnant left by the NS-NS merger
is purely a supra-massive NS or a black hole with/without surrounding
material. The role of the NS equation of state is addressed in detail.

3. Vieira Lobato, R.; Coelho, J. G.; Otoniel, E.; Malheiro, M.; Rueda, J. A.,
Radio emission in SGRs/AXPs and white dwarf pulsars.

Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs)
have been traditionally assumed to be a class of neutron stars powered
by magnetic energy (magnetars) and not by rotation as normal radio
pulsars (rotation-powered). The discovery of radio-pulsed emission,
expected in ordinary pulsars but not within the magnetar model, in four
sources of this class opens the question of the nature of these sources in
comparison to the other SGRs/AXPs. We investigate the condition for
electron-positron pair creation (death-line) in the pulsar magnetosphere
to establish the consistency with the absence/presence of radio emis-
sion in SGRs/AXPs. We perform this analysis both for the model of
SGRs/AXPs based on neutron stars and for the model based on white
dwarfs.
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3.2 Conference Proceedings

1. Becerra, L. M.; Fryer, C. L.; Rueda, J. A.; Ruffini, R., Hypercritical Ac-
cretion in the Induced Gravitational Collapse, XV Latin American Regional
IAU Meeting, Cartagena 2016, Revista Mexicana de Astronomı́a y As-
trofı́sica (Serie de Conferencias) 49, 83, 2017.

We present the induced gravitational collapse paradigm that have been
applied to explain the long gamma-ray burst associated with type Ic
supernovae and recently to the X-ray flashes.

2. Malheiro, M.; Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Lobato,
R. V.; Rueda, J. A.; Ruffini, R., Possible rotation-power nature of SGRs and
AXPs, JPCS, 861, 012003, 2017.

We investigate the possibility of some Soft Gamma-ray Repeaters (SGRs)
and Anomalous X-ray Pulsars (AXPs) could be described as rotation-
powered neutron stars (NSs). The analysis was carried out by comput-
ing the structure properties of NSs, and then we focus on giving esti-
mates for the surface magnetic field using both realistic structure pa-
rameters of NSs and a general relativistic model of a rotating magnetic
dipole. We show that the use of realistic parameters of rotating neutron
stars obtained from numerical integration of the self-consistent axisym-
metric general relativistic equations of equilibrium leads to values of
the magnetic field and radiation efficiency of SGRs/AXPs very differ-
ent from estimates based on fiducial parameters. This analysis leads to a
precise prediction of the range of NS masses, obtained here by making
use of selected up-to-date nuclear equations of state (EOS). We show
that 40% (nine) of the entire observed population of SGRs and AXPs
can be described as canonical pulsars driven by the rotational energy of
neutron stars, for which we give their possible range of masses. We also
show that if the blackbody component in soft X-rays is due to the sur-
face temperature of NSs, then 50% of the sources could be explained as
ordinary rotation-powered pulsars. Besides, amongst these sources we
find the four SGRs/AXPs with observed radio emission and six that are
possibly associated with supernova remnants (including Swift J1834.9-
0846 as the first magnetar to show a surrounding wind nebula), sug-
gesting as well a natural explanation as ordinary pulsars.

3. de Lima, Rafael C. R.; Coelho, Jaziel G.; Malheiro, Manuel; Rueda, Jorge
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A.; Ruffini, Remo, SGRs/AXPs as Rotation-Powered Neutron Stars, IJM-
PCS 45, 1760030, 2017.

We show that nine soft gamma repeaters (SGRs) and Anomalous X-ray
Pulsars (AXPs) of the twenty three known sources can be described as
rotation-powered canonical pulsars. To accomplish this we use realistic
parameters of rotating neutron stars obtained from numerical integra-
tion of the self-consistent axisymmetric general relativistic equations of
equilibrium. We present limits to the NS mass where the sources can be
rotation-powered.
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ABSTRACT
The induced gravitational collapse (IGC) paradigm of long gamma-ray bursts (GRBs) associated with super-

novae (SNe) predicts a copious neutrino-antineutrino (νν̄) emission owing to the hypercritical accretion process
of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up
to 1057 MeV s−1, mean neutrino energies 20 MeV, and neutrino densities 1031 cm−3. Along their path from the
vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino
to electron density ratio. We determine the neutrino and electron on the accretion zone and use them to com-
pute the neutrino flavor evolution. For normal and inverted neutrino-mass hierarchies and within the two-flavor
formalism (νeνx), we estimate the final electronic and non-electronic neutrino content after two oscillation pro-
cesses: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates
and, (2) the Mikheyev-Smirnov-Wolfenstein (MSW) effect, where the electron density dominates. We find that
the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e. νe + ν̄e, for the normal
(inverted) neutrino-mass hierarchy. The results of this work are the first step toward the characterization of
a novel source of astrophysical MeV-neutrinos in addition to core-collapse SNe and, as such, deserve further
attention.

1. INTRODUCTION

The emergent picture of gamma-ray burst (GRB) is that
both, short-duration and long-duration GRBs, originate from
binary systems (Ruffini et al. 2016b).

Short bursts originate from neutron star-neutron star (NS-
NS) or neutron star-black hole (NS-BH) mergers (see, e.g.,
Goodman 1986; Paczynski 1986; Eichler et al. 1989; Narayan
et al. 1991). For this case Narayan et al. (1992) introduced
the role of neutrino-antineutrino (νν̄) annihilation leading to
the formation of an electron-positron plasma (e−e+) in NS-
NS and NS-BH mergers. Such a result triggered many the-
oretical works, including the general relativistic treatment by
Salmonson & Wilson (2002) of the νν̄ annihilation process
giving rise to the e−e+ plasma in a NS-NS system.

For long bursts we stand on the induced gravitational col-
lapse (IGC) paradigm (Ruffini et al. 2006, 2008; Izzo et al.
2012; Rueda & Ruffini 2012; Fryer et al. 2014; Ruffini et al.
2015a), based on the hypercritical accretion process of the su-
pernova (SN) ejecta of the explosion of a carbon-oxygen core
(COcore) onto a NS binary companion. In the above processes,
the emission of neutrinos is a key ingredient.

We focus hereafter on the neutrino emission of long bursts
within the IGC scenario. The role of neutrinos in this
paradigm has been recently addressed Fryer et al. (2014);
Fryer et al. (2015); Becerra et al. (2015, 2016). The hyper-
critical accretion of the SN ejecta onto the NS companion can
reach very high rates of up to 10−2 M� s−1 and its duration can
be of the order of 10–104 s depending on the binary param-
eters. The photons become trapped within the accretion flow
and thus do not serve as an energy sink. The high tempera-

1 Dipartimento di Fisica and ICRA, Sapienza Università di Roma, P.le
Aldo Moro 5, I–00185 Rome, Italy

2 ICRANet, P.zza della Repubblica 10, I–65122 Pescara, Italy
4 ICRANet-Rio, i Centro Brasileiro de Pesquisas Fı́sicas, Rua Dr.

Xavier Sigaud 150, 22290–180 Rio de Janeiro, Brazil
3 Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Camp-

inas, Rua Sérgio Buarque de Holanda 777, 13083-859 Campinas SP Brazil

ture developed on the NS surface leads to e−e+ pairs that, via
weak interactions, annihilate into νν̄ pairs with neutrino lumi-
nosities of up to 1052 erg s−1 for the highest accretion rates.
Thus, this process dominates the cooling and give rise to a
very efficient conversion of the gravitational energy gained by
accretion into radiation. We refer to Becerra et al. (2016) for
further details on this process.

The above hypercritical accretion process can lead the NS
to two alternative fates, leading to the existence of two long
GRB sub-classes (Fryer et al. 2014; Fryer et al. 2015; Becerra
et al. 2015, 2016; Ruffini et al. 2016b):

I. The hypercritical accretion leads to a more massive NS
companion but not to a black hole (BH). These bina-
ries explain the X-ray flashes (XRFs); long bursts with
isotropic energy Eiso . 1052 erg and rest-frame spectral
peak energy Ep,i . 200 keV (see Ruffini et al. 2016b,
for further details). The local observed number den-
sity rate of this GRB sub-class is (Ruffini et al. 2016b):
ρGRB = 100+45

−34 Gpc−3yr−1.

II. The hypercritical accretion is high enough to make the
NS reach its critical mass triggering its gravitational
collapse with consequent BH formation. These binaries
explain the binary-driven hypernovae (BdHNe); long
bursts with Eiso & 1052 erg and Ep,i & 200 keV (see
Ruffini et al. 2016b, for further details). The local ob-
served number density rate of this GRB sub-class is
(Ruffini et al. 2016b): ρGRB = 0.77+0.09

−0.08 Gpc−3yr−1.

Simulations of the hypercritical accretion process in the
above binaries have been presented in Fryer et al. (2014);
Fryer et al. (2015); Becerra et al. (2015, 2016). It has been
shown how, thanks to the development of a copious neutrino
emission near the NS surface, the NS is allowed to accrete
matter from the SN at very high rates. The specific conditions
leading to XRFs and BdHNe as well as a detailed analysis of
the neutrino production in these systems have been presented
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in Becerra et al. (2016). Neutrino emission can reach lumi-
nosities of 1052 erg s−1 and the mean neutrino energy of the
order of 20 MeV. Under these conditions, XRFs and BdHNe
become astrophysical laboratories for MeV-neutrino physics
additional to core-collapse SNe.

On the other hand, the emission of TeV-PeV neutrinos is
relevant for the observations of detectors such as the Ice-
Cube (Aartsen et al. 2013). High-energy neutrino emission
mechanisms have been proposed within the context of the
traditional model of long GRBs. In the traditional “collap-
sar” scenario (Woosley 1993; Paczyński 1998; MacFadyen &
Woosley 1999) the gravitational collapse of a single, fast ro-
tating, massive star originates a BH surrounded by a massive
accretion disk (see, e.g., Piran 2004, for a review), and the
GRB dynamics follows the “fireball” model that assumes the
existence of an ultra-relativistic collimated jet with Lorentz
factor Γ ∼ 102–103 (see e.g. Shemi & Piran 1990; Piran
et al. 1993; Meszaros et al. 1993; Mao & Yi 1994). This
scenario has been adopted for the explanation of the prompt
emission, as well as both the afterglow and the GeV emis-
sion of long GRBs. The GRB light-curve structures are there
described by (internal or external) shocks (see, e.g., Rees &
Meszaros 1992, 1994). The high-energy neutrinos in this con-
text are produced from the interaction of shock-accelerated
cosmic-rays (e.g. protons) with the interstellar medium (see
e.g. Agostini et al. 2017; Kumar & Zhang 2015, and refer-
ences therein). A recent analysis of the thermal emission of
the X-ray flares observed in the early afterglow of long GRBs
(at source rest-frame times t ∼ 102 s) show that it occurs at
radii ∼ 1012 cm and expands with a mildly-relativistic Γ . 4
(see Ruffini et al. 2017, for further details). This rules out the
ultra-relativistic expansion in the GRB afterglow traditionally
adopted in the literature. Interestingly, the aforementioned
mechanisms of high-energy neutrino production conceived in
the collapsar-fireball model can still be relevant in the con-
text of BdHNe and authentic short GRBs (S-GRBs, NS-NS
mergers with Eiso & 1052 erg leading to BH formation; see
Ruffini et al. 2016b, for the classification of long and short
bursts in seven different sub-classes). The emission in the 0.1–
100 GeV energy band observed in these two GRB sub-classes
has been shown to be well explained by a subsequent accre-
tion process onto the newly-born BH (Ruffini et al. 2015a,b,
2016a,b; Aimuratov et al. 2017; see also Aimuratov et al. in
preparation). Such GeV emission is not causally connected
either with the prompt emission or with the afterglow emis-
sion comprising the flaring activity (Ruffini et al. 2017). An
ultra-relativistic expanding component is therefore expected
to occur in BdHNe and S-GRBs which deserves to be ex-
plored in forthcoming studies as a possible source of high-
energy neutrinos. Specifically, this motivates the present arti-
cle to identify the possible additional channels to be explored
in the hypercritical accretion not around a NS but around a
BH.

The aim of this article is to extend the analysis of the
MeV-neutrino emission in the hypercritical accretion process
around a NS in the XRFs and BdHNe to assess the possible
occurrence of neutrino flavor oscillations.

We shall show in this work that, before escaping to the outer
space, i.e. outside the Bondi-Hoyle accretion region, the neu-
trinos experience an interesting phenomenology. The neutrino
density near the NS surface is so high that the neutrino self-
interaction potential, usually negligible in other very well-
known scenarios like the Sun, the upper layers of Earth’s at-
mosphere and terrestrial reactor and accelerator experiments,

becomes more relevant than the matter potential responsible
for the famous Mikheyev-Smirnov-Wolfenstein (MSW) ef-
fect (Wolfenstein 1978; Mikheev & Smirnov 1986). A num-
ber of papers have been dedicated to the consequences of the
neutrino self-interaction dominance (Notzold & Raffelt 1988;
Pantaleone 1992; Qian & Fuller 1995; Pastor & Raffelt 2002;
Duan et al. 2006b; Sawyer 2005; Fuller & Qian 2006; Fogli
et al. 2007; Duan et al. 2007; Raffelt & Sigl 2007; Esteban-
Pretel et al. 2007, 2008; Chakraborty et al. 2008; Duan et al.
2008a,b; Dasgupta et al. 2008a; Dasgupta & Dighe 2008;
Sawyer 2009; Duan et al. 2010; Wu & Qian 2011), most of
them focused on SN neutrinos. In these cases, the SN induces
the appearance of collective effects such as synchronized and
bipolar oscillations leading to an entirely new flavor content
of emitted neutrinos when compared with the spectrum cre-
ated deep inside the star. The density of neutrinos produced
in the hypercritical accretion process of XRFs and BdHNe
is such that the neutrino self-interactions, as in the case of
SNe, dominate the neutrino flavor evolution, giving rise to the
aforementioned collective effects. The main neutrino source,
in this case, is the νν̄ pair production from e−e+ annihilation
(Becerra et al. 2016) which leads to an equal number of neu-
trinos and antineutrinos of each type. This equality does not
happen in the SN standard scenario. We will show that bipo-
lar oscillations, inducing very quick flavor pair conversions
νeν̄e ↔ νµν̄µ ↔ ντν̄τ, can occur with oscillation length as
small as O(0.05–1) kilometers. However, the ν–ν̄ symme-
try characterizing our system leads to the occurrence of kine-
matic decoherence making the neutrino flavor content to reach
equipartition deep inside the accretion zone. In the regions far
from the NS surface where the neutrino density is not so high,
the matter potential turns to dominate and MSW resonances
can take place. As a result, an entirely different neutrino flavor
content emerges from the Bondi-Hoyle surface when com-
pared with what was originally created in the bottom of the
accretion zone.

This article is organized as follows. In Sec. 2 we outline the
general features of the accretion process onto the NS within
the IGC paradigm and present the processes responsible for
the neutrino creation. From these features, we obtain the dis-
tribution functions that describe the neutrino spectrum near
the NS surface. Sec. 3 shows a derivation of the equations
that drive the evolution of neutrino oscillations closely re-
lated to the geometrical and physical characteristics of our
system. We discuss some details on the neutrino oscillation
phenomenology. Since we have to face a nonlinear integro-
differential system of equations of motion, we introduce the
single-angle approximation to later recover the full realistic
phenomenology after generalizing our results to the multi-
angle approach and, consequently, de-coherent picture. In
Sec. 5 the final neutrino emission spectra are presented and
compared with those ones in which neutrinos are created in
the accretion zone. Finally, we present in Sec. 6 the conclu-
sions and some perspectives for future research on this sub-
ject.

2. NEUTRINO CREATION DURING HYPERCRITICAL ACCRETION

The SN material first reaches the gravitational capture re-
gion of the NS companion, namely the Bondi-Hoyle region.
The infalling material shocks as it piles up onto the NS surface
forming an accretion zone where it compresses and eventually
becomes sufficiently hot to trigger a highly efficient neutrino
emission process. Neutrinos take away most of the infalling
matter’s gravitational energy gain, letting it reduce its entropy
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Fig. 1.— Schematic representation of the accretion process onto the NS
and the neutrino emission. The supernova ejected material reaches the NS
Bondi-Hoyle radius and falls onto the NS surface. The material shocks and
decelerates as it piles over the NS surface. At the neutrino emission zone,
neutrinos take away most of the infalling matter’s energy. The neutrino emis-
sion allows the material to reduce its entropy to be incorporated to the NS.
The image is not to scale. For binary system with MNS = 2M� and RNS = 10
km, and a MZAMS = 20M� progenitor, at Ṁ = 10−2 M�/s, the position of the
Bondi-Hoyle and Shock radii are 2.3 × 105 km and 31 km, respectively. The
neutrino emission zone’s thickness is ∆rν = 0.8 km.

and be incorporated into the NS. Fig. 1 shows a sketch of this
entire hypercritical accretion process.

It was shown in Becerra et al. (2016) that the matter in the
accretion zone near the NS surface develops conditions of
temperature and density such that it is in a non-degenerate,
relativistic, hot plasma state. The most efficient neutrino
emission channel under those conditions becomes the elec-
tron positron pair annihilation process:

e−e+→ ν ν̄. (1)

The neutrino emissivity produced by this process is propor-
tional to the accretion rate to the 9/4 power (see below). This
implies that the higher the accretion rate the higher the neu-
trino flux, hence the largest neutrino flux occurs at the largest
accretion rate.

We turn now to estimate the accretion rate and thus the neu-
trino emissivity we expect in our systems.

2.1. Accretion rate in XRFs and BdHNe
We first discuss the amount of SN matter per unit time

reaching the gravitational capture region of the NS compan-
ion, namely the Bondi-Hoyle accretion rate. It has been
shown in Bayless et al. (2015); Becerra et al. (2016) that the
shorter (smaller) the orbital period (separation) the higher the
peak accretion rate Ṁpeak and the shorter the time at which it
peaks, tpeak.

The Bondi-Hoyle accretion rate is proportional to the den-
sity of the accreted matter and inversely proportional to its
velocity. Thus, we expect the accretion rate to increase as the
denser and slower inner layers of the SN reach the accretion
region. Based on these arguments, Becerra et al. (2016) de-
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Fig. 2.— Peak accretion rate, Ṁpeak, as a function of the binary orbital pe-
riod, as given by Eq. (2). This example corresponds to the following bi-
nary parameters: a COcore formed by a MZAMS = 20 M� progenitor, i.e.
MCO = 5.4 M�, an initial NS mass 2.0 M�, vstar,0 = 2× 109 cm s−1, η ≈ 0.41
and index m = 2.946 (see Becerra et al. 2016, for further details). For these
parameters the largest orbital period for the induced collapse of the NS to
a BH by accretion is Pmax ≈ 127 min which is represented by the vertical
dashed line.

rived simple, analytic formulas for Ṁpeak and tpeak as a func-
tion of the orbital period (given all the other binary param-
eters) that catch both the qualitatively and quantitatively be-
haviors of these two quantities obtained from full numerical
integration. We refer the reader to the Appendix A of that
article for further details. For the scope of this work these an-
alytic expressions are sufficient to give us an estimate of the
hypercritical accretion rates and related time scale developed
in these systems:

tpeak ≈
(
1 − 2MNS

M

) (GM
4π2

)1/3 (
R0

star

ηRcore

)
P2/3

vstar,0
, (2a)

Ṁpeak ≈ 2π2 (2MNS/M)5/2

(1 − 2MNS/M)3 η
3−m ρcore R3

core

P
, (2b)

where P is the orbital period, m is the index of the power-law
density profile of the pre-SN envelope, vstar,0 is the velocity
of the outermost layer of the SN ejecta, M = MCO + MNS is
the total binary mass, MCO = Menv + MνNS is the total mass
of the COcore given by the envelope mass and the mass of
the central remnant, i.e. the new NS (hereafter νNS) formed
from the region of the COcore which undergoes core-collapse
(i.e. roughly speaking the iron core of density ρcore and radius
Rcore). We here adopt MνNS = 1.5 M�. The parameter η is
given by

η ≡ R0
star

Rcore

1 + m
1 + m(R0

star/R̂core)
, (3)

where R0
star is the total radius of the pre-SN COcore; ρ̂core

and R̂core are parameters of the pre-SN density profile intro-
duced to account of the finite size of the envelope, and m is
the power-law index followed by the density profile at radii
r > Rcore (see Becerra et al. 2016, for further details).

Fig. 2 shows the peak accretion rate in Eq. (2) as a function
of the orbital period. In this example, we consider the follow-
ing binary parameters (see Becerra et al. 2016, for details): a
COcore produced by a zero-age main-sequence (ZAMS) pro-
genitor with MZAMS = 20 M�, i.e. MCO = 5.4 M�, an initial
NS mass 2.0 M�, and a velocity of the outermost ejecta layer
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vstar,0 = 2 × 109 cm s−1. For these parameters, η ≈ 0.41.
It was shown in Becerra et al. (2015, 2016) the existence

of a maximum orbital period, Pmax, over which the accre-
tion onto NS companion is not high enough to bring it to
the critical mass for gravitational collapse to a BH. As we
have recalled in the Introduction, COcore-NS binaries with
P > Pmax lead to XRFs while the ones with P . Pmax lead to
BdHNe. For the binary parameters of the example in Fig. 2,
Pmax ≈ 127 min (vertical dashed line). We can therefore con-
clude that BdHNe can have peak accretion rates in the range
Ṁpeak ∼ 10−3– few 10−2 M� s−1 while XRFs would have
Ṁpeak ∼ 10−4–10−3 M� s−1.

2.2. Neutrino emission at maximum accretion
For the accretion rate conditions characteristic of our mod-

els at peak ∼ 10−4–10−2 M� s−1, pair annihilation dominates
the neutrino emission and electron neutrinos remove the bulk
of the energy (Becerra et al. 2016). The e+e− pairs producing
the neutrinos are thermalized at the matter temperature. This
temperature is approximately given by:

Tacc ≈
(

3Pshock

4σ/c

)1/4

=


7
8

Ṁaccvaccc
4πR2

NSσ


1/4

, (4)

where Pshock is the pressure of the shock developed on the ac-
cretion zone above the NS surface, Ṁacc is the accretion rate,
vacc is the velocity of the infalling material, σ is the Stefan-
Boltzmann constant and c the speed of light. It can be checked
that, for the above accretion rates, the system develops tem-
peratures and densities (T & 1010 K and ρ & 106 g cm−3; see
e.g. Fig. 16 in Becerra et al. 2016) for which the neutrino
emissivity of the e+e− annhiliation process can be estimated
by the simple formula (Yakovlev et al. 2001):

εe−e+ ≈ 8.69 × 1030
(

kBT
1 MeV

)9

MeV cm−3 s−1, (5)

where kB is the Boltzmann constant.
The accretion zone is characterized by a temperature gra-

dient with a typical scale height ∆rER = T/∇T ≈ 0.7 RNS.
Owing to the strong dependence of the neutrino emission on
temperature, most of the neutrinos are emitted from a spheri-
cal shell around the NS of thickness (see Fig. 1)

∆rν =
εe−e+

∇εe−e+

=
∆rER

9
≈ 0.08RNS. (6)

Eqs. (4) and (5) imply the neutrino emissivity satisfies εe−e+ ∝
Ṁ9/4

acc as we had anticipated. These conditions lead to the neu-
trinos to be efficient in balancing the gravitational potential
energy gain, allowing the hypercritical accretion rates. The
effective accretion onto the NS can be estimated as

Ṁeff ≈ ∆Mν
Lν
Eg
, (7)

where ∆Mν, Lν are, respectively, the mass and neu-
trino luminosity in the emission region, and Eg =
(1/2)GMNS∆Mν/(Rν + ∆rν) is half the gravitational poten-
tial energy gained by the material falling from infinity to the
RNS + ∆rν. The neutrino luminosity is

Lν ≈ 4πR2
NS∆rνεe−e+ . (8)

with εe−e+ being the neutrino emissivity in Eq. (5). For MNS =
2 M� and temperatures 1–10 MeV, the Eqs. (7) and (8) result

Ṁeff ≈ 10−10–10−1 M� s−1 and Lν ≈ 1048–1057 MeV s−1.

2.3. Neutrino spectrum at the NS surface
After discussing the general features of neutrino emission

during the accretion process, it is necessary for our analysis
of the neutrino oscillations to determine the neutrino spec-
trum at the NS surface. Specifically, we need to determine
the ratios at which the neutrinos of each flavor are created and
their average energy so that we can find a fitting distribution
function fν with these characteristics.

Since the main source of neutrinos is the e−e+ pair annihila-
tion process we can conclude that neutrinos and antineutrinos
are created in equal number. Furthermore, the information
about the neutrino and antineutrino emission of a given flavor
i can be calculated from the integral (Yakovlev et al. 2001):

εm
i =

2G2
F

(
mec2

)4

3 (2π~)7 (~c)3

∫
fe− fe+

(
Em

e− + Em
e+

)

Ee−Ee+

σi d3pe−d3pe+ (9)

where GF = 8.963 × 10−44 MeV cm3 is the Fermi constant
of weak interactions. Here m = 0, 1, . . . and should not be
confused with the index of the power-law density profile of
the pre-SN envelope in Sec. 2.1). fe± are the Fermi-Dirac
distributions for electron and positrons

fe∓ =
1

1 + exp
(

Ee∓
kBT ∓ ηe∓

) . (10)

ηe∓ is the electron (positron) degeneracy parameter includ-
ing it’s rest mass. The Dicus cross section σi is written
in terms of the electron and positron four-momenta pe± =
(Ee±/c,pe± ) as (Dicus 1972)

σi = C2
+,i

(
1 + 3

pe− · pe+

(cme)2 +2
(pe− · pe+ )2

(cme)4

)

+ 3C2
−,i

(
1 +

pe− · pe+

(cme)2

)
. (11)

The factors C2
±,i, are written in terms of the weak interaction

vector and axial-vector constants: C2
±,i = C2

Vi
± C2

Ai
, where

CVe = 2 sin2 θW+1/2, CAe = 1/2, CVµ = CVτ = CVe−1 and CAµ =
CAτ = CAe − 1 with the numerical value of the Weinberg angle
approximated by sin2 θW ≈ 0.231 (Patrignani et al. 2016).

For m = 0 and m = 1 Eq. (9) gives the neutrino and an-
tineutrino number emissivity (neutrino production rate), and
the neutrino and antineutrino energy emissivity (energy per
unit volume per unit time) for a certain flavor i, respectively.
Hence, not only we are able to calculate the total number
emissivity with

n =
∑

i∈{e,τ,µ}
ε0

i , (12)

but we can also calculate the neutrino or antineutrino energy
moments with

〈Em
νi(ν̄i)〉 =

εm
i

ε0
i

, for m ≥ 1. (13)

We wish to construct a Fermi-Dirac like fitting formula for
the neutrino spectrum as it is usually done in supernovae neu-
trino emission (Janka & Hillebrandt 1989a,b). That is, a func-
tion like Eq. (10) in terms of two parameters: the effective
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Ṁ ρ kBT ηe∓ ne−− ne+ kBTνν̄ 〈Eν〉 FC
νe ,ν̄e

FC
νx ,ν̄x

nC
νe ν̄e

nC
νx ν̄x

∑
i nC

νi ν̄i

(M� s−1) (g cm−3) (MeV) (cm−3) (MeV) (MeV) (cm−2s−1) (cm−2s−1) (cm−3) (cm−3) (cm−3)

10−8 1.46 × 106 1.56 ∓0.325 4.41 × 1029 1.78 6.39 4.17 × 1036 1.79 × 1036 2.78 × 1026 1.19 × 1026 3.97 × 1026

10−7 3.90 × 106 2.01 ∓0.251 1.25 × 1030 2.28 8.24 3.16 × 1037 1.36 × 1037 2.11 × 1027 9.00 × 1026 3.01 × 1027

10−6 1.12 × 107 2.59 ∓0.193 3.38 × 1030 2.93 10.61 2.40 × 1038 1.03 × 1038 1.60 × 1028 6.90 × 1027 2.29 × 1028

10−5 3.10 × 107 3.34 ∓0.147 9.56 × 1030 3.78 13.69 1.84 × 1039 7.87 × 1038 1.23 × 1029 5.20 × 1028 1.75 × 1029

10−4 8.66 × 107 4.30 ∓0.111 2.61 × 1031 4.87 17.62 1.39 × 1040 5.94 × 1039 9.24 × 1029 3.96 × 1029 1.32 × 1030

10−3 2.48 × 108 5.54 ∓0.082 7.65 × 1031 6.28 22.70 1.04 × 1041 4.51 × 1040 7.00 × 1030 3.00 × 1030 1.00 × 1031

10−2 7.54 × 108 7.13 ∓0.057 2.27 × 1032 8.08 29.22 7.92 × 1041 3.39 × 1041 5.28 × 1031 2.26 × 1031 7.54 × 1031

TABLE 1
Characteristics inside the neutrino emission zone and the neutrino spectrum for selected values of the accretion rate Ṁ. The electron fraction is Ye = 0.5,

the pinching parameter for the neutrino spectrum is ηνν̄ = 2.0376 and the.

neutrino temperature Tνν̄ and the effective neutrino degener-
acy parameter ηνν̄ otherwise known as the pinching parameter
(Raffelt 1996; Keil et al. 2003). To that end, it is enough to
calculate the first two moments. In particular, for a relativistic
non-degenerate plasma (kBT > 2mec2 and 1 > ηe∓ see table
1) Eq. (9) can be approximated with a very good accuracy by
(Yakovlev et al. 2001)

εm
i ≈

2G2
F (kBT )8+m

9π5~ (~c)9 C2
+,i

[Fm+1 (ηe+ )F1 (ηe− )

+Fm+1 (ηe− )F1 (ηe+ )
]

(14)

where Fk (η) =
∫ ∞

0 dx xk/
[
1 + exp (x − η)

]
are the Fermi-

Dirac integrals. For m = 1, ηe± = 0 and adding over every
flavor this expression reduces to Eq. (5). With Eqs. (13) and
(14) we find

〈Eν〉 = 〈Eν̄〉 ≈ 4.1 kBT (15a)

〈E2
ν〉 = 〈E2

ν̄〉 ≈ 20.8 (kBT )2 , (15b)

regardless of the neutrino flavor. Furthermore, we can calcu-
late the ratio of emission rates between electronic and non-
electronic neutrino flavors in terms of the weak interaction
constants

ε0
e

ε0
x

=
ε0

e

ε0
µ + ε0

τ

=
C2

+,e

C2
+,µ + C2

+,τ

≈ 7
3
. (16)

Some comments must be made about the results we have
obtained:

• It is well known that, within the Standard Model of
Particles, there are three neutrino flavors νe, ν̄e, νµ, ν̄µ
and ντ, ν̄τ. However, as in Eq. (16), we will simplify
our description using only two flavors: the electronic
neutrinos and antineutrinos νe, ν̄e, and a superposition
of the other flavors νx, ν̄x (x = µ + τ). This can be
understood as follows. Since the matter in the accre-
tion zone is composed by protons, neutrons, electrons
and positrons, νe and ν̄e interact with matter by both
charged and neutral currents, while νµ, ντ, ν̄µ and ν̄τ
interact only by neutral currents. Therefore, the behav-
ior of these states can be clearly divided into electronic
and non-electronic. This distinction will come in handy
when studying neutrino oscillations.

• Representing the neutrino (antineutrino) density and
flux in the moment of their creation with nc

νi(ν̄i)
and

Fc
νi(ν̄i)

respectively and using Eq. (16) we can recollect

two important facts:

nC
νi

= nC
ν̄i
, FC

νi
= FC

ν̄i
∀i ∈ {e, µ, τ} (17a)

nC
νe

nC
νx

=
nC
ν̄e

nC
ν̄x

=
FC
νe

FC
νx

=
FC
ν̄e

FC
ν̄x

≈ 7
3
. (17b)

Eqs. (17) imply that, in the specific environment of our
system, of the total number of neutrinos+antineutrinos
emitted, Nν + Nν̄, 70% are electronic neutrinos (Nνe +
Nν̄e ), 30% are non-electronic (Nνx + Nν̄x ), while the to-
tal number of neutrinos is equal to the total number of
antineutrinos, i.e. Nν = Nν̄, where Nν = Nνe + Nνx and
Nν̄ = Nν̄e + Nν̄x .

• Bearing in mind such high neutrino energies as the ones
suggested by Eqs. (15) , from here on out we will use
the approximation

Eν ≈ c|p| � mνc2, (18)

where p is the neutrino momentum.

• From Eq. (13) we obtain the same energy moments for
both neutrinos and antineutrinos but, as Misiaszek et al.
(2006) points out, these energies should be different
since, in reality, this expression returns the arithmetic
mean of the particle and antiparticle energy moments,
that is

(
〈Em

ν 〉 + 〈Em
ν̄ 〉

)
/2. However, if we calculate the

differences between the energy moments with equa-
tions (41) and (46) in Misiaszek et al. (2006) for the
values of T and ηe± we are considering, we get ∆〈E〉 ∼
10−2–10−3 MeV and ∆〈E2〉 ∼ 10−3–10−4 MeV2. These
differences are small enough that we can use the same
effective temperature and pinching parameter for both
neutrinos and antineutrinos.

Solving the equations

4.1kBT = kBTνν̄
F3 (ηνν̄)
F2 (ηνν̄)

(19a)

20.8 (kBT )2 = (kBTνν̄)2 F4 (ηνν̄)
F2 (ηνν̄)

(19b)

for any value of T in table (1) we find Tνν̄ = 1.1331T and
ηνν̄ = 2.0376. Integrating Eq. (10) over the neutrino momen-
tum space using these values should give the neutrino num-
ber density. To achieve this we normalize it with the factor
1/

(
2π2 (kBTνν̄)3 F2 (ηνν̄)

)
and then we multiply by

nC
νi(ν̄i) = wνi(ν̄i)

Lν
4πR2

NS〈Eν〉〈v〉
= wνi(ν̄i)

ε0
i ∆rν
c/2

, (20)
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where the neutrino’s average radial velocity at r = RNS is
〈v〉 = c/2 (Dasgupta et al. 2008b) and wνe = wν̄e = 0.35 and
wνx = wν̄x = 0.15. To calculate the neutrino fluxes we simply
FC
ν(ν̄i)

= 〈v〉nc
νi(ν̄i)

. Gathering our results we can finally write
the distribution functions as

fνe = fν̄e =
2π2 (~c)3 nC

νe

(kBTνν̄)3 F2 (ηνν̄)
1

1 + exp (E/kBTνν̄ − ηνν̄) (21a)

fνx = fν̄x =
2π2 (~c)3 nC

νx

(kBTνν̄)3 F2 (ηνν̄)
1

1 + exp (E/kBTνν̄ − ηνν̄) (21b)

It can be checked that these distributions obey
∫

fνi

d3p
(2π~)3 = nC

νi
(22a)

∫
E fνi

d3p
(2π~)3 = 〈Eν〉nC

νi
= ε1

i (22b)

and with these conditions satisfied we can conclude that
Eqs. (21) are precisely the ones that emulate the neutrino
spectrum at the NS surface. In Table 1 we have collected
the values of every important quantity used in the calculations
within this section for the range of accretion rates in which
we are interested.

Considering that the problem we attacked in this section re-
duces to finding a normalized distribution whose first two mo-
ments are fixed, the choice we have made with Eqs. (21) is not
unique. The solution depends on how many moments are used
to fit the distribution and what kind of function is used as an
ansatz. A different solution based on a Maxwell-Boltzmann
distribution can be found in Keil et al. (2003); Fogli et al.
(2005); Misiaszek et al. (2006).

At this stage, we can identify two main differences between
neutrino emission in SNe and in the IGC process of XRFs and
BdHNe, within the context of neutrino oscillations. The sig-
nificance of these differences will become clearer in next sec-
tions but we mention them here to establish a point of compar-
ison between the two systems since SN neutrino oscillations
have been extensively studied.

• Neutrinos of all flavors in XRFs and BdHNe have the
same temperature, which leads to equal average energy.
The neutrinos produced in SNe are trapped and kept
in thermal equilibrium within their respective neutrino-
sphere. The neutrino-spheres have different radii, caus-
ing different flavors to have different average energies.
This energy difference leads to a phenomenon called
spectral stepwise swap which, as we will show below,
is not present in our systems (see, e.g., Raffelt 1996;
Fogli et al. 2007; Dasgupta & Dighe 2008, and refer-
ences therein).

• As we have discussed above, in XRFs and BdHNe neu-
trinos and antineutrinos are emitted in equal number.
Due to this fact, kinematical decoherence occurs (up to
a number difference of 30% this statement is valid; see
Sec. 4 for further details). Instead, SN neutrino and an-
tineutrino fluxes differ such that Fνe > Fν̄e > Fνx = Fν̄x .
It has been argued that this difference between neutri-
nos and antineutrinos is enough to dampen kinematical
decoherence, so that bipolar oscillations are a feature
present in SN neutrinos (see, e.g., Esteban-Pretel et al.
2007).

In the next section, we will use the results presented here to
determine the neutrino flavor evolution in the accretion zone.

3. NEUTRINO OSCILLATIONS

In recent years the picture of neutrino oscillations in dense
media, based only on MSW effects, has undergone a change
of paradigm by the insight that the refractive effects of neu-
trinos on themselves due to the neutrino self-interaction po-
tential are crucial (Notzold & Raffelt 1988; Pantaleone 1992;
Qian & Fuller 1995; Pastor & Raffelt 2002; Duan et al. 2006b;
Sawyer 2005; Fuller & Qian 2006; Fogli et al. 2007; Duan
et al. 2007; Raffelt & Sigl 2007; Esteban-Pretel et al. 2007,
2008; Chakraborty et al. 2008; Duan et al. 2008a,b; Dasgupta
et al. 2008a; Dasgupta & Dighe 2008; Sawyer 2009; Duan
et al. 2010; Wu & Qian 2011).

As we discussed in Sec. 2, in our physical system of interest
neutrinos are mainly created by electron-positron pair annihi-
lation and so the number of neutrinos is equal to the number
of antineutrinos. Such a fact creates an interesting and unique
physical situation, different from, for example, SN neutrinos
for which traditional models predict a predominance of elec-
tron neutrinos mainly due to the deleptonization caused by the
URCA process (see, e.g., Esteban-Pretel et al. 2007).

The neutrino self-interaction potential decays with the ra-
dial distance from the neutron star faster than the matter po-
tential. This is a direct consequence of the usual 1/r2 flux
dilution and the collinearity effects due to the neutrino veloc-
ity dependence of the potential. Consequently, we identify
three different regions along the neutrino trajectory in which
the oscillations are dominated by intrinsically different neu-
trino phenomenology. Fig. 3 illustrates the typical situation of
the physical system we are analyzing. Just after the neutrino
creation in the regions of the accretion zone very close to the
surface of the NS, neutrinos undergo kinematic decoherence
along the same length scale of a single cycle of the so-called
bipolar oscillations. Bipolar oscillations imply very fast fla-
vor conversion between neutrino pairs νeν̄e ↔ νµν̄µ ↔ ντν̄τ
and, amazingly, the oscillation length in this region can be
so small as of the order tens of meters. Note that kinematic
decoherence is just the averaging over flavor neutrino states
process resulting from quick flavor conversion which oscilla-
tion length depends on the neutrino energy. It does not im-
ply quantum decoherence and, thus, neutrinos are yet able to
quantum oscillate if appropriate conditions are satisfied. In
fact, as it can be observed from Figs. 4 and 5 below, bipo-
lar oscillations preserve the characteristic oscillation pattern,
differently from quantum decoherence which would lead to a
monotonous dumping figure.

Kinematic decoherence is relevant when three conditions
are met: (i) The self-interaction potential dominates over the
vacuum potential. (ii) The matter potential does not fulfill the
MSW condition. (iii) There is a low asymmetry between the
neutrino and antineutrino fluxes. We will see that our system
satisfies all three conditions.

As the self-interaction potential becomes small and the mat-
ter potential becomes important, oscillations are suppressed
and we do not expect significant changes in the neutrino fla-
vor content along this region. This situation changes radically
when the matter potential is so small that it is comparable with
neutrino vacuum frequencies ∆m2/2p, where ∆m2 is the neu-
trino squared mass difference and p is the norm of the neutrino
momentum p. In this region, the neutrino self-interaction po-
tential is negligible and the usual MSW resonances can occur.
Therefore, we can expect a change in the neutrino spectrum.
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We dedicate this section to a detailed derivation of the equa-
tions of motion (EoM) of flavor evolution. In later sections,
we will analyze the neutrino oscillation phenomenology to
build the neutrino emission spectrum from a binary hyper-
accretion system.

3.1. Equations of motion
The equations of motion (EoM) that govern the evolution

of an ensemble of mixed neutrinos are the quantum Liouville
equations

iρ̇p = [Hp, ρp] (23a)

i ˙̄ρp = [H̄p, ρ̄p] (23b)

where we have adopted the natural units c = ~ = 1. In these
equations ρp (ρ̄p) is the matrix of occupation numbers (ρp)i j =

〈a†jai〉p for neutrinos ((ρ̄p)i j = 〈ā†i ā j〉p for antineutrinos), for
each momentum p and flavors i, j. The diagonal elements are
the distribution functions fνi(ν̄i) (p) such that their integration
over the momentum space gives the neutrino number density
nνi of a determined flavor i. The off-diagonal elements provide
information about the overlapping between the two neutrino
flavors.

Taking into account the current-current nature of the weak
interaction in the standard model, the Hamiltonian for each
equation is (Dolgov 1981; Sigl & Raffelt 1993; Hannestad
et al. 2006)

Hp = Ωp +
√

2GF

∫ (
lq − l̄q

) (
1 − vq · vp

) d3q
(2π)3 +

√
2GF

∫ (
ρq − ρ̄q

) (
1 − vq · vp

) d3q
(2π)3 (24a)

H̄p = −Ωp +
√

2GF

∫ (
lq − l̄q

) (
1 − vq · vp

) d3q
(2π)3 +

√
2GF

∫ (
ρq − ρ̄q

) (
1 − vq · vp

) d3q
(2π)3 (24b)

∆m2
21 = 7.37 (6.93 − 7.97) × 10−5 eV2

|∆m2 | = 2.50 (2.37 − 2.63) × 10−3 eV2 Normal Hierarchy

|∆m2 | = 2.46 (2.33 − 2.60) × 10−3 eV2 Inverted Hierarchy

sin2 θ12 = 0.297 (0.250 − 0.354)

sin2 θ23(∆m2 > 0) = 0.437 (0.379 − 0.616)

sin2 θ23(∆m2 < 0) = 0.569 (0.383 − 0.637)

sin2 θ13(∆m2 > 0) = 0.0214 (0.0185 − 0.0246)

sin2 θ13(∆m2 < 0) = 0.0218 (0.0186 − 0.0248)

TABLE 2
Mixing and squared mass differences as they appear in Patrignani et al.

(2016). Error values in parenthesis are shown in 3σ interval. The squared
mass difference is defined as ∆m2 = m2

3 −
(
m2

2 + m2
1

)
/2.

where Ωp is the matrix of vacuum oscillation frequencies, lp
and l̄p are matrices of occupation numbers for charged leptons
built in a similar way to the neutrino matrices, and vp = p/p
is the velocity of a particle with momentum p (either neutrino
or charged lepton).

As in Sec. 2 we will only consider two neutrino flavors: e
and x = µ + τ. Three-flavor oscillations can be approximated
to two-flavor oscillations as a result of the strong hierarchy
of the squared mass differences |∆m2

13| ≈ |∆m2
23| � |∆m2

12|
(see Table 2). In this case, only the smallest mixing angle
θ13 is considered. We will drop the suffix for the rest of the
discussion. Consequently, the relevant oscillations are νe 

νx and ν̄e 
 ν̄x, and each term in the Hamiltonian governing
oscillations becomes a 2 × 2 Hermitian matrix.

Let us first present the relevant equations for neutrinos. Due
to the similarity between Hp and H̄p, the corresponding equa-
tions for antineutrinos can be obtained in an analogous man-
ner. In the two-flavor approximation, ρ in Eq. (23) can be
written in terms of Pauli matrices and the polarization vector

Pp as:

ρp =

(
ρee ρex
ρxe ρxx

)

p
=

1
2

(
fp1 + Pp · ~σ

)
, (25)

where fp = Tr[ρp] = fνe (p) + fνx (p) is the sum of the distribu-
tion functions for νe and νx. Note that the z component of the
polarization vector obeys

Pz
p = fνe (p) − fνx (p). (26)

Hence, this component tracks the fractional flavor compo-
sition of the system and appropriately normalizing ρp allows
to define a survival and mixing probability

Pνe↔νe =
1
2

(
1 + Pz

p

)
, (27a)

Pνe↔νx =
1
2

(
1 − Pz

p

)
. (27b)

On the other hand, the Hamiltonian can be written as a sum
of three interaction terms:

H = Hvacuum + Hmatter + Hνν. (28)

where H is the two-flavor Hamiltonian. The first term is the
Hamiltonian in vacuum (Qian & Fuller 1995):

Hvacuum =
ωp

2

( − cos 2θ sin 2θ
sin 2θ cos 2θ

)
=
ωp

2
~B · ~σ (29)

where ωp = ∆m2/2p, ~B = (sin 2θ, 0,− cos 2θ) and θ is the
smallest neutrino mixing angle in vacuum.

The other two terms in Eqs. (24) are special since they make
the evolution equations non-linear. Even though they are very
similar, we are considering that the electrons during the ac-
cretion form an isotropic gas; hence, the vector vq in the first
integral is distributed uniformly on the unit sphere and the
factor vq · vp averages to zero. After integrating the matter
Hamiltonian is given by:

Hmatter =
λ

2

( 1 0
0 −1

)
=
λ

2
~L · ~σ (30)



8

where λ =
√

2GF (ne− − ne+ ) is the charged current matter
potential and ~L = (0, 0, 1).

Such simplification cannot be made with the final term.
Since neutrinos are responsible for the energy loss of the in-
falling material during accretion, they must be escaping the
accretion zone and the net neutrino and antineutrino flux is
non-zero.In this case the factor vq · vp cannot be averaged to
zero. At any rate, we can still use Eq. (25) and obtain (Panta-
leone 1992; Zhu et al. 2016; Malkus et al. 2016):

Hνν =
√

2GF

[∫ (
1 − vq · vp

) (
Pq − P̄q

) d3q
(2π)3

]
· ~σ (31)

Introducing every Hamiltonian term in Eqs. (23), and us-
ing the commutation relations of the Pauli matrices, we find
the EoM for neutrinos and antineutrinos for each momentum
mode p:

Ṗp =

[
ωp~B +λ~L +

√
2GF

∫ (
1 − vq · vp

) (
Pq − P̄q

) d3q
(2π)3

]
× Pp

(32a)

˙̄Pp =

[
−ωp~B +λ~L +

√
2GF

∫ (
1 − vq · vp

) (
Pq − P̄q

) d3q
(2π)3

]
× P̄p.

(32b)

Solving the above equations would yield the polarization
vectors as a function of time. However, in our specific physi-
cal system, both the matter potential λ and the neutrino poten-
tial vary with the radial distance from the NS surface as well
as the instant t of the physical process which can be char-
acterized by the accretion rate Ṁ. As we will see later, the
time dependence can be ignored. This means that Eqs. (32)
must be written in a way that makes explicit the spatial de-
pendence, i.e. in terms of the vector r. For an isotropic and
homogeneous neutrino gas or a collimated ray of neutrinos
the expression dt = dr would be good enough, but for radi-
ating extended sources the situation is more complicated. In
Eqs. (23) we must replace the matrices of occupation num-
bers by the space dependent Wigner functions ρp,r (and ρ̄p,r)
and the total time derivative by the Liouville operator (Cardall
2008; Strack & Burrows 2005)

ρ̇p,r =
∂ρp,r

∂t
+ vp · ∇r ρp,r + ṗ · ∇p ρp,r (33)

We will ignore the third term of the Liouville operator since
we won’t consider the gravitational deflection of neutrinos.
For peak accretion rates Ṁ ≈ 10−8–10−2 M�/s the charac-
teristic accretion time is ∆tacc = M/Ṁ ≈ M�/Ṁ ≈ 108–
102 s. The distances traveled by a neutrino in these times
are r ≈ 3×1012–3×1018 cm. These distances are much larger
than the typical binary separation a. As a consequence, we
can consider the neutrino evolution to be a stationary process.
This fact allows us to neglect the first term in Eq. (33). Putting
together these results, the EoM become:

ivp · ∇r ρp,r = [Hp,r, ρp,r] (34a)

ivp · ∇r ρ̄p,r = [H̄p,r, ρ̄p,r], (34b)

where Hp,r and H̄p,r are the same as (24) but the matrices of
densities (as well as the polarization vectors) depend on the
position r. Note, however, that the electrons in the accretion
zone still form an isotropic gas and Eq. (30) is still valid and

the matter Hamiltonian depends on r through ne− (r) − ne+ (r).
The first two terms in the Hamiltonian remain virtually un-
changed. On the other hand, projecting the EoM onto the ra-
dial distance from the NS and using the axial symmetry of the
system, the integral in the neutrino-neutrino interaction term
can be written as

√
2GF

(2π)2

∫ (
1 − vϑ′r vϑr

) (
ρq,ϑ′,r− ρ̄q,ϑ′,r

)
q2dq|d cosϑ′r |. (35)

Since the farther from the NS the interacting neutrinos ap-
proach a perfect collinearity, the projected velocities vϑr be-
come decreasing functions of the position. In this particular
geometry the diagonal elements of the matrix of densities are
written as a product of independent distributions over each
variable p, ϑ, φ, where the φ dependence has been integrated
out. The one over p is the normalized Fermi-Dirac distribu-
tion and the one over ϑ is assumed uniform due to symmetry.
The r dependence is obtained through the geometrical flux di-
lution. Knowing this, the diagonal elements of matrices of
densities at the NS surface are

(
ρp,RNS

)
ee

=
(
ρ̄p,RNS

)
ee

= fνe (p) (36a)
(
ρp,RNS

)
xx

=
(
ρ̄p,RNS

)
xx

= fνx (p) (36b)

where the functions fνi are given by Eqs. (21).

3.2. Single-angle approximations
The integro-differential Eqs. (32) and (34) are usually nu-

merically solved for the momentum p and the scalar vq · vp.
Such simulation are quite time-consuming and the result is
frequently too complicated to allow for a clear interpretation
of the underlying physics. For this reason, the analytic ap-
proximation called the single-angle limit is made. Such ap-
proximation consists in imposing a self-maintained coherence
in the neutrino system, i.e. it is assumed that the flavor evo-
lution of all neutrinos emitted from an extended source is the
same as the flavor evolution of the neutrinos emitted from the
source along a particular path. Under this premise, the prop-
agation angle between the test neutrino and the background
neutrinos is fixed. In expression (35) this is equivalent to
dropping the ϑ′ dependence of ρ and replacing the projected
velocity vϑr either by an appropriate average at each r (as in
Dasgupta & Dighe 2008) or by a representative angle (usu-
ally 0 or π/4). We will follow the former approach and apply
the bulb model described in Duan et al. (2006a). Within this
model it is shown that the projected velocity at a distance r
from the neutrino emission zone is

vr =

√

1 −
(RNS

r

)2 (
1 − v2

RNS

)
. (37)

where vRNS is the projected velocity at the NS surface. By
redefining the matrices of density with a change of variable
u = 1 − v2

RNS
in the integral (35)

ρp,u,r
p2

2 (2π)2 → ρp,u,r, (38)
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and using Eq. (25), we can write the full equations of motion

∂

∂r
Pp,r =

[
ωp,r~B +λr~L + µr

∫ ∞

0

(
Pq,r− P̄q,r

)
dq

]
×Pp,r (39a)

∂

∂r
P̄p,r =

[
−ωp,r~B +λr~L + µr

∫ ∞

0

(
Pq,r− P̄q,r

)
dq

]
×P̄p,r (39b)

where we have replaced vr by it’s average value

〈vr〉 =
1
2

1 +

√

1 −
(RNS

r

)2
 . (40)

All the interaction potentials now depend on r and each
effective potential strength is parametrized as follows (Das-
gupta & Dighe 2008)

ωp,r =
∆m2

2p〈vr〉 , (41)

λr =
√

2GF (ne− (r)− ne+ (r))
1
〈vr〉 , (42)

µr =

√
2GF

2


∑

i∈{e,x}
nC
νi ν̄i


(RNS

r

)2 (
1 − 〈vr〉2
〈vr〉

)
. (43)

It is worth mentioning that all the effective potential
strengths are affected by the geometry of the extended source
through the projected velocity on the right side of Eqs. (34).
For the neutrino-neutrino interaction potential, we have cho-
sen the total neutrino number density as parametrization. This
factor comes from the freedom to re-normalize the polariza-
tion vectors in the EoM. A different choice has been made
in Esteban-Pretel et al. (2007). Of the other two r dependent
factors, one comes from the geometrical flux dilution and the
other accounts for collinearity in the single-angle approxima-
tion. Over all µr decays as 1/r4.

In Fig. 3 the behavior of the effective potentials within
the single-angle formalism is shown for Ṁ = 10−2M� s−1,
10−4M� s−1, 10−6M� s−1 and 10−8M� s−1. In all cases, the
neutrino energy is the corresponding average reported in Ta-
ble 1. Since the oscillatory dynamics of the neutrino flavors
are determined by the value of the potentials, and the value of
the potentials depends on the data in Table 1, it is important
to establish how sensible is this information to the model we
have adopted. In particular, to the pre-SN envelope density
profile index m. The reported accretion rates can be seen as
different states in the evolution of a binary system or as peak
accretion rates of different binary systems. For a given accre-
tion rate, the temperature and density conditions on the neu-
tron star surface are fixed. This, in turn, fixes the potentials
involved in the equations of flavor evolution and the initial
neutrino and antineutrino flavor content. To see the conse-
quences of changing the index m we can estimate the peak
accretion rates for new values using Eqs. (2). Since we are
only interested in type Ic supernovae, we shall restrict these
values to the ones reported in Table 1 of Becerra et al. (2016)
(that is m = 2.771, 2.946 and 2.801), and in each case, we
consider the smallest binary separation such that there is no
Roche-Lobe overflow. For these parameters, we find peak ac-
cretion rates Ṁpeak ∼ 10−2–10−4M� s−1 with peak times at
tpeak ≈ 7–35 min. Because these accretion rates are still within
the range in Table 1, the results contained in Sec. 4 apply also
to these cases with different value of the m-index.

The profiles for the electron and positron number densities
were adopted from the simulations presented in Becerra et al.
(2016). Due to the dynamics of the infalling matter, close to
the NS, the behavior of ne− (r) − ne+ (r) is similar to µr. At the
shock radius, the electron density’s derivative presents a dis-
continuity and its behavior changes allowing for three distinct
regions inside the Bondi-Hoyle radius. The matter potential
is always higher than the neutrino potential yet, in most cases,
both are higher than the vacuum potential, so we expect neu-
trino collective effects (neutrino oscillations) and MSW res-
onances to play a role in the neutrino flavor evolution inside
the Bondi-Hoyle radius. Outside the capture region, as long
as the neutrinos are not directed towards the SN, they will be
subjected to vacuum oscillations.

4. SINGLE-ANGLE SOLUTIONS AND MULTI-ANGLE EFFECTS

The full dynamics of neutrino oscillations is a rather com-
plex interplay between the three potentials discussed in Sec. 3,
yet the neutrino-antineutrino symmetry allows us to general-
ize our single-angle calculations for certain accretion rates us-
ing some numerical and algebraic results obtained in Hannes-
tad et al. (2006); Fogli et al. (2007); Esteban-Pretel et al.
(2007) and references therein. Specifically, we know that if
µr � ωr, as long as the MSW condition λr ' ωr is not
met, collective effects should dominate the neutrino evolu-
tion even if λr � µr. On the other hand, if µr . ωr, the
neutrino evolution is driven by the relative values between
the matter and vacuum potentials. With this in mind, we
identify two different ranges of values for the accretion rate:
Ṁ & 5 × 10−5M� s−1 and Ṁ . 5 × 10−5M� s−1.

4.1. High accretion rates
For accretion rates Ṁ & 5× 10−5M� s−1 the potentials obey

the following hierarchy

λr & µr � ωr, (44)

hence, we expect strong effects of neutrino self-interactions.
In order to appreciate the interesting physical processes which
happen with the neutrinos along their trajectory in the accre-
tion zone, we begin this analysis with a simplified approach
to the EoM for a monochromatic spectrum with the same en-
ergy for both neutrinos and antineutrinos. Let us introduce the
following definitions

~D = Pr − P̄r (45)

~Q = Pr + P̄r − ωr

µr

~B. (46)

The role of the matter potential is to logarithmically extend
the period of the bipolar oscillations so we can ignore it for
now. Also, we will restrict our analysis to a small enough
region at RNS + ∆rν so that we can consider d

dr (ωr/µr) ≈ 0
(adiabatic approximation). Then, By summing and subtract-
ing Eqs. (39) and using definitions (45) and (46), we obtain

d
dr

~Q = µ~D × ~Q (47)

d
dr
~D = ω~B × ~Q. (48)

We are now able to build a very useful analogy. The equa-
tions above are analogous to the EoM of a simple mechani-
cal pendulum with a vector position given by ~Q, precessing
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Fig. 3.— Interaction potentials as functions of the radial distance from the NS center for selected accretion rates Ṁ (see Table 1). Each plot runs from the
NS surface to the Bondi-Hoyle surface. µr stands for the self-interaction neutrino potential, λr is the matter potential and ωH and ωL are the higher and lower
resonances corresponding to the atmospheric and solar neutrino scales, respectively, defined in Eq. (59). Outside the Bondi-Hoyle region the neutrino and electron
densities depend on the direction of their path relative to the SN and the particular ejecta density profile.

around an angular momentum ~D, subjected to a force ωµ~B
with a moment of inertia proportional to the inverse of µ. With
Eqs. (17) and (26) the initial conditions for the polarization
vectors are

P(RNS) = P̄(RNS) = (0, 0, 0.4) (49)

We can easily show that | ~Q(RNS)| = |P(RNS) + P̄(RNS)| +
O(ω/µ) ≈ 0.8. Calculating d

dr ( ~Q · ~Q) it can be checked that
this value is conserved.

The analogous angular momentum is ~D(RNS) = P(RNS) −
P̄(RNS) = 0. Thus, the pendulum moves initially in a plane
defined by ~B and the z-axis, i.e., the plane xz. Then, it is
possible to define an angle ϕ between ~Q and the z-axis such
that

~Q = | ~Q| (sinϕ, 0, cosϕ) . (50)

Note that the only non-zero component of ~D is y-component
and from (47) and (48) we find

dϕ
dr

= µ|~D| (51)

and
d|~D|
dr

= −ω| ~Q| cos(2θ + ϕ). (52)

The above equations can be equivalently written as

d2ϕ

dr2 = −k2 sin(2θ + ϕ), (53)

where we have introduced the inverse characteristic distance
k by

k2 = ωµ| ~Q|, (54)

which is related to the anharmonic oscillations described by
the non-linear EoM (51) and (52). The logarithmic correction
to the oscillation length due to matter effects is (Hannestad
et al. 2006)

τṀ = −k−1 ln

(
π

2
− θ

) k
(
k2 + λ2)1/2

1 +
ω

| ~Q|µ


 . (55)

The initial conditions (49) imply

ϕ (RNS) = arcsin

ω

| ~Q|µ
sin 2θ

 . (56)

To investigate the physical meaning of the above equation,
let us assume for a moment that 2θ is a small angle. In this
case ϕ (RNS) is also a small angle. If k2 > 0, which is true for
the normal hierarchy ∆m2 > 0, we expect small oscillations
around the initial position since the system begins in a stable
position of the potential associated with Eqs. (51) and (52).
No strong flavor oscillations are expected. On the contrary,
for the inverted hierarchy ∆m2 < 0, k2 < 0 and the initial
ϕ(RNS) indicates that the system begins in an unstable posi-
tion and we expect very large anharmonic oscillations. Pz (as
well as P̄z) oscillates between two different maxima passing
through a minimum −Pz (−P̄z) several times. This behavior
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Fig. 4.— Neutrino flavor evolution for inverted hierarchy. Electron neutrino survival probability is shown as a function of the radial distance from the NS
surface. The curves for the electron antineutrino match the ones for electron neutrinos.

implies total flavor conversion: all electronic neutrinos (an-
tineutrinos) are converted into non-electronic neutrinos (an-
tineutrinos) and vice-versa. This has been called bipolar os-
cillations in the literature (Duan et al. 2010).

We solved numerically Eqs. (39) for both normal and in-
verted hierarchies using a monochromatic spectrum domi-
nated by the average neutrino energy for Ṁ = 10−2, 10−3, 10−4

and 5×10−5M� s−1, and the respective values reported in Table
1 with the initial conditions given by Eqs. (17) and (36). The
behavior of the electronic neutrino survival probability inside
the accretion zone is shown in Figs. 4 and 5 for inverted hi-
erarchy and normal hierarchy, respectively. For the inverted
hierarchy, there is no difference between the neutrino and
antineutrino survival probabilities. This should be expected
since for these values of r the matter and self-interaction po-
tentials are much larger than the vacuum potential, and there
is virtually no difference between Eqs. (39). Also, note that
the antineutrino flavor proportions discussed in Sec. 2.3 re-
main virtually unchanged for normal hierarchy while the neu-
trino flavor proportions change drastically around the point
λr ∼ ωr. The characteristic oscillation length of the survival
probability found on these plots is

τ ≈ (0.05 − 1) km (57)

which agree with the ones given by Eq. (55) calculated at the
NS surface up to a factor of order one. Such a small value of
τ suggests extremely quick νeν̄e ↔ νxν̄x oscillations.

Clearly, the full EoM are highly nonlinear so the solution
may not reflect the real neutrino flavor evolution. Concern-
ing the single-angle approximation, it is discussed in Hannes-
tad et al. (2006); Raffelt & Sigl (2007); Fogli et al. (2007)

that in the more realistic multi-angle approach, kinematic de-
coherence happens. And in Esteban-Pretel et al. (2007) the
conditions for decoherence as a function of the neutrino fla-
vor asymmetry have been discussed. It is concluded that if the
symmetry of neutrinos and antineutrinos is broken beyond the
limit of O(25%), i.e., if the difference between emitted neutri-
nos and antineutrinos is roughly larger than 25% of the total
number of neutrinos in the medium, decoherence becomes a
sub-dominant effect.

As a direct consequence of the peculiar symmetric situation
we are dealing with, in which neutrinos and antineutrinos are
produced in similar numbers, bipolar oscillations happen and,
as we have already discussed, they present very small oscil-
lation length as shown in Eq. (57). Note also that the bipolar
oscillation length depends on the neutrino energy. Therefore,
the resulting process is equivalent to an averaging over the
neutrino energy spectrum and an equipartition among differ-
ent neutrino flavors is expected Raffelt & Sigl (2007). Al-
though, for simplicity, we are dealing with the two neutrino
hypothesis, this behavior is easily extended to the more realis-
tic three neutrino situation. We assume, therefore, that at few
kilometers from the emission region neutrino flavor equipar-
tition is a reality:

νe : νµ : ντ = 1 : 1 : 1. (58)

Note that the multi-angle approach keeps the order of the
characteristic length τ of Eq. (55) unchanged and kinematics
decoherence happens within a few oscillation cycles (Sawyer
2005; Hannestad et al. 2006; Raffelt & Sigl 2007). There-
fore, we expect that neutrinos created in regions close to the
emission zone will be equally distributed among different fla-
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Fig. 5.— Electron neutrino and antineutrino flavor evolution for normal hierarchy.The survival probability is shown as a function of the radial distance from the
NS surface.

vors in less than few kilometers after their creation. Once
the neutrinos reach this maximally mixed state, no further
changes are expected up until the matter potential enters the
MSW resonance region. We emphasize that kinematics de-
coherence does not mean quantum decoherence. Figs. 4 and
5 clearly show the typical oscillation pattern which happens
only if quantum coherence is still acting on the neutrino sys-
tem. Differently from quantum decoherence, which would
reveals itself by a monotonous dumping in the oscillation pat-
tern, kinematics decoherence is just the result of averaging
over the neutrino energy spectrum resulting from quick flavor
conversion which oscillation length depends on the neutrino
energy. Therefore, neutrinos are yet able to quantum oscillate
if appropriate conditions are satisfied.

We discuss now the consequences of the matter potential.

4.1.1. Matter Effects

After leaving the emisison region, beyond r ≈ RNS + ∆rν,
where ∆rν is the width defined in Eq. (6), the effective neu-
trino density quickly falls in a asymptotic behavior µr ≈ 1/r4.
The decay of λr is slower. Hence, very soon the neutrino fla-
vor evolution is determined by the matter potential. Matter
suppresses neutrino oscillations and we do not expect signif-
icant changes in the neutrino flavor content along a large re-
gion. Nevertheless, the matter potential can be so small that
there will be a region along the neutrino trajectory in which
it can be compared with the neutrino vacuum frequencies and
the higher and lower resonant density conditions will be sat-
isfied, i.e.:

λ(rH) = ωH =
∆m2

2〈Eν〉 and λ(rL) = ωL =
∆m2

21

2〈Eν〉 , (59)

where ∆m2 and ∆m2
21 are, respectively, the squared-mass dif-

ferences found in atmospheric and solar neutrino observa-
tions. Table 2 shows the experimental values of mixing an-
gles and mass-squared differences taken from Patrignani et al.
(2016). The definition of ∆m2 used is: ∆m2 = m2

3 − (m2
2 +

m2
1)/2. Thus, ∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if m1 < m2 < m3,

and ∆m2 = ∆m2
32 + ∆m2

21/2 < 0 for m3 < m1 < m2. When
the above resonance conditions are satisfied the MSW effects
happen and the flavor content of the flux of electronic neutri-
nos and antineutrinos will be again modified. The final fluxes
can be written as

Fνe (E) = Pνe→νe (E)F0
νe

(E) +
[
1 − Pνe→νe (E)

]
F0
νx

(E) (60a)

Fν̄e (E) = Pν̄e→ν̄e (E)F0
ν̄e

(E) +
[
1 − Pν̄e→ν̄e (E)

]
F0
ν̄x

(E) (60b)

where F0
νe

(E), F0
νx

(E), F0
ν̄e

(E) and F0
ν̄x

(E) are the fluxes of
electronic and non-electronic neutrinos and antineutrinos af-
ter the bipolar oscillations of the emission zone and Pνe→νe (E)
and Pν̄e→ν̄e (E) are the survival probability of electronic neu-
trinos and antineutrinos during the resonant regions.

In order to evaluate Fνe (E) and Fν̄e (E) after matter effects,
we have to estimate the survival probability at the resonant
regions. There are several articles devoted to this issue; for
instance we can adopt the result in Fogli et al. (2003), namely,
for normal hierarchy

Pνe→νe (E) = X sin2 θ12 (61a)

Pν̄e→ν̄e (E) = cos2 θ12 (61b)
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and, for inverted hierarchy

Pνe→νe (E) = sin2 θ12 (62a)

Pν̄e→ν̄e (E) = X cos2 θ12 (62b)

The factor X, the conversion probability between neutrino
physical eigenstates, is given by Petcov (1987); Fogli et al.
(2003); Kneller & McLaughlin (2006)

X =
exp(2rreskres cos 2θ13) − 1

exp(2rreskres) − 1
, (63)

where rres = rL or rres = rH , defined according to Eq. (59) and

1
kres

=

∣∣∣∣∣
d ln λr

dx

∣∣∣∣∣
r=rres

. (64)

The factor X is related to how fast physical environment fea-
tures relevant for neutrino oscillations change, such as neu-
trino and matter densities.

For slow and adiabatic changes X → 0 while for fast and
non-adiabatic, X → 1. In our specific cases, the MSW reso-
nances occur very far from the accretion zone where the mat-
ter density varies very slow and therefore X → 0, as can
be explicitly calculated from Eq. (63). Consequently, it is
straightforward to estimate the final fluxes of electronic and
non-electronic neutrinos and antineutrinos.

4.2. Low accretion rates
For accretion rates Ṁ < 5 ×10−5M� s−1, either the mat-

ter potential is close enough to the vacuum potential and the
MSW condition is satisfied, or both the self-interaction and
matter potentials are so low that the flavor oscillations are
only due to the vacuum potential. In both cases, bipolar os-
cillations are not present. In Fig. (6) we show the survival
probability for Ṁ = 10−6M� s−1 as an example. We can see
that neutrinos and antineutrinos follow different dynamics. In
particular, for antineutrinos there are two decreases. The first
one, around r ≈ (1–2)RNS, is due to bipolar oscillations which
are rapidly damped by the matter potential as discussed in
Sec. 4.1.1. The second one happens around r ≈ (10–20)RNS.
It can be seen from the bottom left panel of Fig. 3 (that one
for Ṁ = 10−6M� s−1), that around r ≈ (1–2) × 107 cm (or,
equivalently, r ≈ (10–20) RNS) the higher MSW resonance
occurs (λr ∼ ωrH ). For inverted hierarchy, such resonance
will affect antineutrinos depleting its number, as can be seen
from Eq. (60). Without bipolar oscillations, it is not possible
to guarantee that decoherence will be complete and Eq. (58)
is no longer valid. The only way to know the exact flavor
proportions is to solve the full Eqs. (32).

5. NEUTRINO EMISSION SPECTRA

Using the the calculations of last section we can draw a
comparison between the creation spectra of neutrinos and
antineutrinos at the NS surface (Fc

ν, n
c
ν), initial spectra after

kinematic decoherence (F0
ν , n

0
ν) and emission spectra after the

MSW resonances (Fν, nν). Table 3 contains a summary of the
flavor content inside the Bondi-Hoyle radius. With these frac-
tions and Eqs. (21) it is possible to reproduce the spectrum for
each flavor and for accretion rates M ≥ 5×10−5M� s−1.

The specific cases for Ṁ = 10−2M� s−1 are shown in Fig. 7.
In such figures, the left column corresponds to normal hierar-
chy and the right corresponds to inverted hierarchy. The first
two rows show the number fluxes after each process studied.

The last row shows the relative fluxes Fν/FC
ν between the cre-

ation and emission fluxes. For the sake of clarity, we have
normalized the curves to the total neutrino number at the NS
surface

n = 2
∑

i∈{e,x}
nνi . (65)

so that each one is a normalized Fermi-Dirac distribution mul-
tiplied by the appropriate flavor content fraction. To repro-
duce any other case, it is enough to use Eqs. (21) with the
appropriate temperature.

At this point two comments have to be made about our re-
sults:

• As we mentioned before, the fractions in Table 3 were
obtained by assuming a monochromatic spectrum and
using the single-angle approximation. This would im-
ply that the spectrum dependent phenomenon called
the spectral stepwise swap of flavors is not present
in our analysis even though it has been shown that it
can also appear in multi-angle simulations (Fogli et al.
2007). Nevertheless, we know from our calculations in
Sec. 2.3 that neutrinos and antineutrinos of all flavors
are created with the exact same spectrum up to a multi-
plicative constant. Hence, following Raffelt & Smirnov
(2007a,b), by solving the equation

∫ ∞

Ec

(
nνe − nνx

)
dE =

∫ ∞

0

(
nν̄e − nν̄x

)
dE, (66)

we find that the critical (split) energy is Ec = 0. This
means that the resulting spectrum should still be uni-
modal and the spectral swap in our system could be
approximated by a multiplicative constant that is taken
into account in the decoherence analysis of Sec. 4.

• The fluxes of electronic neutrinos and antineutrinos
shown in these figures and in Eqs. (60) represent fluxes
at different positions up to a geometrical 1/r2 factor, r
being the distance from the NS radius. Also, since we
are considering the fluxes before and after each oscilla-
tory process, the values of r are restricted to r = RNS
for FC

ν , τṀ < r < rH for F0
ν , and r > rL for Fν. To cal-

culate the number flux at a detector, for example, much
higher values of r have to be considered and it is neces-
sary to study vacuum oscillations in more detail. Such
calculations will be presented elsewhere.

From Fig. 7 one can observe that the dominance of elec-
tronic neutrinos and antineutrinos found at their creation at
the bottom of the accretion zone is promptly erased by kine-
matic decoherence in such a way that the content of the neu-
trinos and antineutrinos entering the MSW resonant region
is dominated by non-electronic flavors. After the adiabatic
transitions provoked by MSW transitions, electronic neutri-
nos and antineutrinos dominate again the emission spectrum
except for non-electronic antineutrinos in the normal hierar-
chy. Although no energy spectrum distortion is expected, the
flavor content of neutrinos and antineutrinos produced near
the NS surface escape to the outer space in completely differ-
ent spectra when compared with the ones in which they were
created, as shown in the last row of Fig. 7.

6. CONCLUDING REMARKS

We can now proceed to draw the conclusions and some as-
trophysical consequences of this work:
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Fig. 6.— Electron neutrino and antineutrino flavor evolution for inverted hierarchy and Ṁ = 10−6 M� s−1. The survival probability is shown as a function of the
radial distance from the NS surface.

n0
νe/n n0

ν̄e
/n n0

νx/n n0
ν̄x
/n nνe/n nν̄e/n nνx/n nν̄x/n

Normal Hierarchy 1
6

1
6

1
3

1
3

1
3

1
6 + 1

6 sin2 θ12
1
6

1
3 − 1

6 sin2 θ12

Inverted Hierarchy 1
6

1
6

1
3

1
3

1
6 + 1

6 cos2 θ12
1
3

1
3 − 1

6 cos2 θ12
1
6

TABLE 3
Fraction of neutrinos and antineutrinos for each flavor after decoherence and matter effects. n = 2

∑
i nνi .

1. The main neutrino production channel in XRFs and
BdHNe in the hypercritical accretion process is pair an-
nihilation: e−e+ → νν̄. This mechanism produces an
initial equal number of neutrino and antineutrino and an
initial 7/3 relative fraction between electronic and other
flavors. These features lead to a different neutrino phe-
nomenology with respect to the typical core-collapse
SN neutrinos produced via the URCA process.

2. The neutrino density is higher than both the elec-
tron density and the vacuum oscillation frequencies for
the inner layers of the accretion zone and the self-
interaction potential dictates the flavor evolution along
this region, as it is illustrated by Fig. 3. This particular
system leads to very fast pair conversions νeν̄e↔νµ,τν̄µ,τ
induced by bipolar oscillations with oscillation length
as small as O(0.05–1) km. However, due to the charac-
teristics of the main neutrino production process, neu-
trinos and antineutrinos have very similar fluxes inside
the neutrino emission zone and kinematic decoherence
dominates the evolution of the polarization vectors.

3. The kinematic decoherence induces a fast flux equipar-
tition among the different flavors that then enters the
matter dominated regions in which MSW resonances
take place.

4. Therefore, the neutrino flavor content emerging from
the Bondi-Hoyle surface to the outer space is differ-
ent from the original one at the bottom of the accretion
zone. As shown in Table 3, The initial 70% and 30%
distribution of electronic and non-electronic neutrinos
becomes 55% and 45% or 62% and 38% for normal or
inverted hierarchy, respectively. Since the ν ↔ ν̄ os-
cillations are negligible (Pontecorvo 1957, 1968; Xing
2013) the total neutrino to antineutrino ratio is kept con-
stant.

We have shown that such a rich neutrino phenomenology
is uniquely present in the hypercritical accretion process in

XRFs and BdHNe. This deserves the appropriate attention
since it paves the way for a new arena of neutrino astrophysics
besides SN neutrinos. There are a number of issues which
have still to be investigated:

1. We have made some assumptions which, albeit being a
first approximation to a more detailed picture, have al-
lowed us to set the main framework to analyze the neu-
trino oscillations phenomenology in these systems. We
have shown in Becerra et al. (2015) that the SN ejecta
carry enough angular momentum to form a disk-like
structure around the NS before being accreted. How-
ever, the knowledge of the specific properties of such
possible disk-like structure surrounding the neutron star
is still pending of more accurate numerical simulations
at such distance scales. For instance, it is not clear yet
if such a structure could be modeled via thin-disk or
thick-disk models. We have adopted a simplified model
assuming isotropic accretion and the structure of the NS
accretion region used in Becerra et al. (2016) which ac-
counts for the general physical properties of the sys-
tem. In order to solve the hydrodynamics equations,
the neutrino-emission region features, and the neutrino
flavor-oscillation equations, we have assumed: spher-
ically symmetric accretion onto a nonrotating NS, a
quasi-steady-state evolution parametrized by the mass
accretion rate, a polytropic equation of state, and sub-
sonic velocities inside the shock radius. The matter
is described by a perfect gas made of ions, electrons,
positrons and radiation with electron and positron obey-
ing a Fermi-Dirac distribution. The electron fraction
was fixed and equal to 0.5. We considered pair an-
nihilation, photo-neutrino process, plasmon decay and
bremsstrahlung to calculate neutrino emissivities. Un-
der the above conditions we have found that the pair
annihilation dominates the neutrino emission for the
accretion rates involved in XRFs and BdHNe (see Be-
cerra et al. 2016, for further details). The photons are
trapped within the infalling material and the neutrinos
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Fig. 7.— Several neutrino and antineutrino number fluxes for different neutrino flavors are presented for Ṁ = 10−2 M�/s. Each column corresponds to a neutrino
mass hierarchy: normal hierarchy on the left and inverted hierarchy on the right. The first two rows show the number fluxes after each process studied. FC

ν , F0
ν

and Fν are the creation flux at the bottom accretion zone due to e+e− pair annihilation, the flux after the region with dominant neutrino-neutrino potential and the
final emission flux after the region with dominant neutrino-matter potential, respectively. The last row shows the relative fluxes Fν/FC

ν between the creation and
emission fluxes.

are transparent, taking away most of the energy from
the accretion. We are currently working on the relax-
ation of some of the above assumptions, e.g. the as-
sumption of spherical symmetry to introduce a disk-like
accretion picture, and the results will be presented else-
where. In this line it is worth mentioning that some
works have been done in this direction (see, e.g., Zhang
& Dai 2008; Zhang & Dai 2009), although in a New-
tonian framework, for complete dissociated matter, and
within the thin-disk approximation. In these models,
disk heights H are found to obey the relation H/r ∼ 0.1
near the neutron star surface which suggests that the
results might be similar to the ones of a spherical ac-

cretion as the ones we have adopted. We are currently
working on a generalization including general relativis-
tic effects in axial symmetry to account for the fast rota-
tion that the NS acquires during the accretion process.
This was already implemented for the computation of
the accretion rates at the Bondi-Hoyle radius position
in Becerra et al. (2016), but it still needs to be imple-
mented in the computation of the matter and neutrino
density-temperature structure near the NS surface. In
addition, the description of the equation of state of the
infalling matter can be further improved by taking into
account beta and nuclear statistical equilibrium.
In forthcoming works we will relax the assumptions
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made not only on the binary system parameters but also
make more detailed calculations on the neutrino os-
cillations including general relativistic and multi-angle
effects. This paper, besides presenting a comprehen-
sive non-relativistic account of flavor transformations
in spherical accretion, serves as a primer that has al-
lowed us to identify key theoretical and numerical fea-
tures involved in the study of neutrino oscillations in the
IGC scenario of GRBs. From this understanding, we
can infer that neutrino oscillations might be markedly
different in a disk-like accretion process. First, depend-
ing on the value of the neutron-star mass, the inner disk
radius may be located at an rinner > RNS beyond the NS
surface (see e.g. Ruffini et al. 2016b; Cipolletta et al.
2017), hence the neutrino emission must be located at a
distance r ≥ rinner. On the other hand, depending on the
accretion rate, the density near the inner radius can be
higher than in the present case and move the condition
for neutrino cooling farther from the inner disk radius,
at r > rinner. Both of these conditions would change the
geometric set up of the neutrino emission. Furthermore,
possible larger values of T and ρ may change the mech-
anisms involved in neutrino production. For example,
electron-positron pair capture, namely p + e− → n + νe,
n+e+ → p+ ν̄e and n→ p+e−+ ν̄e, may become as ef-
ficient as the electron-positron pair annihilation. This,
besides changing the intensity of the neutrino emission,
would change the initial neutrino-flavor configuration.

2. Having obtained the flux as well as the total number of
neutrinos and antineutrinos of each flavor that leave the
binary system during the hypercritical accretion process
in XRFs and BdHNe, it raises naturally the question
of the possibility for such neutrinos to be detected in
current neutrino observatories. For instance, detectors
such as Hyper-Kamiokande are more sensitive to the
inverse beta decay events produced in the detector, i.e.
ν̄e + p→ e+ + n (see Abe et al. 2011, for more details),
consequently, the ν̄e are the most plausible neutrinos to
be detected. Liu et al. (2016) have pointed out that for
a total energy in ν̄e of 1052 erg and 〈Eν̄e〉 ∼ 20 MeV,
the Hyper-Kamiokande neutrino-horizon is of the order
of 1 Mpc. In the more energetic case of BdHNe we
have typically 〈Eν,ν̄〉 ∼ 20 MeV (see table 1) and a total
energy carried out ν̄e of the order of the gravitational
energy gain by accretion, i.e. Eg ∼ 1052–1053 erg.
Therefore we expect the BdHN neutrino-horizon dis-
tance to be also of the order of 1 Mpc. These order-of-
magnitude estimates need to be confirmed by detailed
calculations, including the vacuum oscillations experi-
enced by the neutrinos during their travel to the detec-
tor, which we are going to present elsewhere.

3. If we adopt the local BdHNe rate ∼ 1 Gpc−3 yr−1

(Ruffini et al. 2016b) and the data reported above at face
value, it seems that the direct detection of this neutrino
signal is very unlikely. However, the physics of neu-
trino oscillations may have consequences on the power-
ing mechanisms of GRBs such as the electron-positron
pair production by neutrino-pair annihilation. The en-
ergy deposition rate of this process depends on the
local energy-momentum distribution of (anti)neutrinos
which, as we have discussed, is affected by the flavor
oscillation dynamics. This phenomenon may lead to

measurable effects on the GRB emission.

4. An IGC binary leading either to an XRF or to a BdHN
is a unique neutrino-physics laboratory in which there
are at least three neutrino emission channels at the early
stages of the GRB-emission process: i) the neutrinos
emitted in the explosion of the COcore as SN; ii) the
neutrinos studied in this work created in the hypercrit-
ical accretion process triggered by the above SN onto
the NS companion, and iii) the neutrinos from fallback
accretion onto the νNS created at the center of the SN
explosion. It remains to establish the precise neutrino
time sequence as well as the precise relative neutrino
emissivities from all these events. This is relevant to
establish both the time delays in the neutrino signals as
well as their fluxes which will become a unique signa-
ture of GRB neutrinos following the IGC paradigm.

5. As discussed in Ruffini et al. (2016b), there are two
cases in which there is the possibility to have hypercrit-
ical accretion onto a BH. First, in BdHNe there could
be still some SN material around the newly-born BH
which can create a new hypercritical accretion process
(Becerra et al. 2016). Second, a ∼ 10 M� BH could
be already formed before the SN explosion, namely the
GRB could be produced in a COcore-BH binary progen-
itor. The conditions of temperature and density in the
vicinity of these BHs might be very different to the ones
analyzed here and, therefore, the neutrino emission and
its associated phenomenology. We have recalled in the
introduction that such an accretion process onto the
BH can explain the observed 0.1–100 GeV emission
in BdHNe (Ruffini et al. 2015a,b, 2016a,b; Aimuratov
et al. 2017; see also Aimuratov et al. in preparation).
The interaction of such an ultra-relativistic expanding
emitter with the interstellar medium could be a possi-
ble source of high-energy (e.g. TeV-PeV) neutrinos,
following a mechanisms similar to the one introduced
in the traditional collapsar-fireball model of long GRBs
(see e.g. Agostini et al. 2017; Kumar & Zhang 2015,
and references therein).

6. Although the symmetry between the neutrino and an-
tineutrino number densities has allowed us to gener-
alize the results obtained within the single-angle and
monochromatic spectrum approximations, to success-
fully answer the question of detectability, full-scale nu-
merical solutions will be considered in the future to
obtain a precise picture of the neutrino-emission spec-
trum. In particular, it would be possible to obtain an
r-dependent neutrino spectrum without the restrictions
discussed in Sec. 5.

7. For low accretion rates (Ṁ . 5× 10−5 M� s−1) the mat-
ter and self-interaction potentials in Eqs. (39) decrease
and the general picture described in Fig. 3 changes. The
resonance region could be located around closer to the
NS surface, anticipating the MSW condition λr ∼ ωr
and interfering with the kinematic decoherence. This
changes the neutrino flavor evolution and, of course,
the emission spectrum. Hence, the signature neutrino-
emission spectrum associated with the least luminous
XRFs might be different from the ones reported here.
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The measured orbital period decay of relativistic compact-star binaries, with characteristic orbital
periods ∼0.1 days, is explained with very high precision by the gravitational wave (GW) emission of an
inspiraling binary in a vacuum predicted by general relativity. However, the binary gravitational binding
energy is also affected by an usually neglected phenomenon, namely the dark matter dynamical friction
(DMDF) produced by the interaction of the binary components with their respective DM gravitational
wakes. Therefore, the inclusion of the DMDF might lead to a binary evolution which is different from a
purely GW-driven one. The entity of this effect depends on the orbital period and on the local value of the
DM density, hence on the position of the binary in the Galaxy. We evaluate the DMDF produced by three
different DM profiles: the Navarro-Frenk-White (NFW) profile, the nonsingular-isothermal-sphere (NSIS)
and the Ruffini-Argüelles-Rueda (RAR) DM profile based on self-gravitating keV fermions. We first show
that indeed, due to their Galactic position, the GWemission dominates over the DMDF in the Neutron star
(NS)-NS, NS-(White Dwarf) WD andWD-WD binaries for which measurements of the orbital decay exist.
Then, we evaluate the conditions (i.e. orbital period and Galactic location) under which the effect of DMDF
on the binary evolution becomes comparable to, or overcomes, the one of the GW emission. We find that,
for instance for 1.3–0.2 M⊙ NS-WD, 1.3–1.3 M⊙ NS-NS, and 0.25–0.50 M⊙ WD-WD, located at
0.1 kpc, this occurs at orbital periods around 20–30 days in a NFW profile while, in a RAR profile, it occurs
at about 100 days. For closer distances to the Galactic center, the DMDF effect increases and the above
critical orbital periods become interestingly shorter. Finally, we also analyze the system parameters (for all
the DM profiles) for which DMDF leads to an orbital widening instead of orbital decay. All the above imply
that a direct/indirect observational verification of this effect in compact-star binaries might put strong
constraints on the nature of DM and its Galactic distribution.

DOI: 10.1103/PhysRevD.96.063001

I. INTRODUCTION

Compact-star binaries composed of neutron stars (NSs)
and/or white dwarfs (WDs) have turned out to be rich
laboratories of physics and astrophysics that allow us to test
fundamental theoretical predictions. In particular, NS-NS
binaries have served to prove the existence of gravitational
waves (GWs) [1] and the motion of matter and photons in
strong gravitational fields [2], as well as other phenomena
[3]. These latter aspects are of special interest in tests of
general relativity and alternative theories of gravity [2,4].
The orbital motion of such systems also offers the

possibility of analyzing further effects. An interesting
physical situation arises when the orbiting object moves
through an extended medium which is formed, for instance,
from the mass loss of the binary companion. This inter-
action can be thought of as a drag force exerted by the
circumbinary medium on the object in question, perturbing
thereby its Keplerian orbital motion [5]. This dynamical
friction produced by the gravitational drag force has been
also studied in the context of different astrophysical
phenomena such as mergers of star clusters, galaxies,

and even galaxy clusters, to the inspiral of dwarf galaxies
within dark matter halos and the orbital evolution of
massive black hole (BH) binaries in a stellar medium
[6]. Thus, dynamical friction plays an important role in the
orbital evolution of many astrophysical systems. In a
pioneering work, S. Chandrasekhar [7] calculated the
dynamical friction force on a massive object traversing
an infinite homogeneous collisionless background (repre-
senting the surrounding star neighbors).
It is thus natural to expect that a binary system moving

through the galaxy can also experience a dynamical friction
caused by collisionless DM particles, namely DM dynami-
cal friction (hereafter DMDF), particularly in DM-domi-
nated regions, as at the outer part of the Galactic halo and
near the Galactic center [8]. The perturbed orbital motion
may lead thus to interesting observable effects in the
secular evolution of the orbital period. An interesting
proposal was advanced in Ref. [9] on the possibility of
inferring constraints to the DM density by determining the
above DM effect on the orbital motion of binaries (see also
the pioneering work by Bekenstein & Zamir [10], for a
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general discussion of collisionless background types as
well as in the context of DM). They showed that the
change in the orbital period could be due to the dynamical
friction force exerted by the DM background on the
binary. In that work, this effect was used to put an upper
bound on the DM density in a given location of the
Galaxy, independently of the density profile or the nature
of the DM particles. It can be shown, however, that this
upper limit is indeed fulfilled by any DM density profile
consistent with the outer halo properties of the MilkyWay.
Thus, we explore in this work the dependence of the
orbital period decay by DMDF on the different binary
parameters and also on the DM density profile, in order to
identify all possible physical situations suitable for an
observational verification of the DMDF effect. For doing
this we obtain DM profiles fulfilling definite Galactic-
halo observables such as the escape velocity, the velocity
dispersion and the one-halo scale length parameters. The
velocity distribution function and the DM density profile
are, as we shall show below, crucial elements in the
dynamical friction force estimation.
It is known that the DM in the outer part of our Galaxy is

well described by a classical Maxwell-Boltzmann distri-
bution, e.g. by a nonsingular isothermal (hereafter NSIS)
profile [6]. However, depending on the DM nature (e.g.
particle type), the DM density distribution can deviate from
the classical Maxwell-Boltzmann behavior towards the
inner regions of the Galaxy. This implies that the
DMDF effect will depend according to the phase-space
density consistent with the DM particle nature. We shall
consider, for the sake of comparison, three DM models: 1)
the NSIS profile, 2) the Navarro-Frenk-White (NFW)
profile [11], and 3) the recently introduced Ruffini-
Argüelles-Rueda (RAR) model [12,13].
The RAR model is based on a self-gravitating system of

massive (keV) fermions in thermodynamic equilibrium.
The density profile of the RAR model exhibits a core-halo
structure which allows to explain the DM distribution in
galactic halos from dwarfs to big spirals, and predicts at the
same time the presence of a DM high density core [12].
Under this approach and following the more realistic
distribution function including violent relaxation processes
[14] and the escape velocity of particles, the Fermi-Dirac
distribution function was subsequently introduced to
describe the finite size of halos. In the case of the
Milky Way, such a DM core can explain the observed
dynamics near the Galactic center Sgr A* without invoking
a central supermassive black hole for fermion masses in the
range 48 keV≲mc2 ≲ 345 keV [13].1

Having established the DM density profiles we shall
analyze, we now describe the structure of this work. We
start by discussing in Sec. II the effects which are

commonly assumed to produce a change of the orbital
period of binaries, putting special attention evidently to the
one produced by GW emission. We analyze in Sec. III
the dynamical friction force and its main ingredients for the
case when it is produced by DM and when it acts on binary
systems. We analyze in Sec. IV the perturbation effect of
DMDF on the orbital motion of the pulsar and reproduce
some general results presented in [9]. Furthermore, we
introduce Galactic-halo observables in order to generalize
the prescription presented in [9] and present thus a more
realistic estimation of dynamical friction effects. Finally,
we present in Sec. V the numerical results of _Pb as a
function of the radial position, the DM wind velocity and
the orbital period. This latter computation leads us to
compare directly the _Pb due to GW emission to that given
by DMDF. In Sec. V we summarize our results and present
a general discussion.

II. BINARY SYSTEMS AND ORBITAL PERIOD
DECAY BY GRAVITATIONAL WAVES

The precise pulsar timing measurements allow us to
detect, with a high accuracy, tiny orbital effects which thus
require a precise theoretical description of the orbital
motion [1]. In the weak field regime (Newtonian
approach), the binary motion of pulsar is simply described
by the Kepler laws. However, relativistic and strong-field
effects in the orbital motion should be taken into account in
the vicinity of a close-orbit binary pulsar [2]. These
relativistic effects can be described, for the known binaries,
with sufficient accuracy in terms of the called post-
Keplerian parameters that account for departures from
Newtonian Keplerian dynamics owing e.g. to the GW
emission, time delay caused by the curvature of space-time
near the pulsar (Shapiro delay), and relativistic time
dilation [16]. There exist a variety of effects that affect
the orbital period stability and they can be, roughly
speaking, classified in two large groups: kinematic and
intrinsic to the system. The former include the effects of a
secular increase due to the Galactic gravitational potential,
secular acceleration resulting from the pulsars transverse
velocity (proper motion of the pulsar) and the clusters
gravitational field; while the latter is related to “local”
effects in the system as mass loss either from the pulsar or
its companion and the GW emission among others.2 After
subtracting kinematic effects from the observed change
of the orbital period, the remaining intrinsic period decay
has been shown to be explained by the GW emission
predicted by general relativity of an inspiraling binary in
vacuum.
The orbital period decay owing to the GW emission of a

binary spiraling in circular orbits is given by

1See also Ref. [15] for the gravitational lensing properties of
the RAR profile.

2For a more detail description of possible effects on the
observed period decay see Refs. [3,17].
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_PGW
b ¼ −

192π

5

�
2πGM
c3Pb

�
5=3

; ð1Þ

where G is the gravitational constant, Pb is the orbital
period, M ¼ ðmpmcÞ3=5M−1=5 is the so-called chirp mass
and M ¼ mp þmc is the total mass, with the subscripts p
and c denoting the primary component and its companion,
respectively.
The theoretical prediction of general relativity given by

Eq. (1) was first verified with the observed intrinsic orbital
period decay of the famous Hulse-Taylor binary pulsar PSR
B1913þ 16 [1], which is explained with an accuracy of
99,8%. Later on, additional successful verifications in other
relativistic NS-NS and NS-WD binaries have been made
and with even higher accuracy. We refer the reader to
Ref. [18] for a review on this subject and also Table I.
As we have mentioned, the above orbital period decay by

GW emission is calculated under the assumption of binary
motion in empty space. We shall explore below the effect of
the presence of DM background on the orbital motion via
dynamical friction, i.e. by DM gravitational drag. We shall
infer the predicted orbital period time derivative by this
phenomenon to then compare it with the one produced by
the GW emission.

III. DYNAMICAL FRICTION FORCE AND ITS
MAIN INGREDIENTS

Dynamical friction has been widely used to account for
the drag force when an object is moving through a
collisionless medium of field particles. This drag induces
a wake of medium particles on the object with a

characteristic overdensity proportional to its mass [6]. In
his seminal work, Chandrasekhar [7] computed the
dynamical friction force onto an object that moved in an
infinite homogeneous stellar medium obeying a Maxwell-
Boltzmann velocity distribution, taking into account only
the contribution of the field particle velocities smaller with
respect to the object’s velocity. However, the dynamical
evolution of many astrophysical systems is driven by
dynamical friction in a more realistic way [6]. We consider
the drag force, ffr;i, experienced by a test body of mass
mi ≫ m, being m the DM particle mass, and with orbital
velocity vi moving through the DM background with
velocity distribution function fðuÞ [6,7]:

ffr;i ¼ −4πG2m2
i m

�Z
~vi

0

d3ufðuÞ ln
�
bmax

Gmi
ð ~v2i − u2Þ

�

þ
Z

vesc

~vi

d3ufðuÞ
�
ln

�
uþ ~vi
u − ~vi

�
− 2

~vi
u

��
~vi
~v3i
; ð2Þ

where the integral in the first term accounts for low velocity
contributions (fraction of particles moving slower than the
object), while the integral in the second term refers to
the faster particles, limited by the escape velocity vesc
according to the Galactic gravitational potential.3 bmax is
the maximum impact parameter defined below in Eq. (4).
The above equation takes into account the orbital velocity
of each object with respect to the DM wind relative to the

TABLE I. Intrinsic orbital decays for several binary systems in the Galaxy as well as the ones predicted by GR and DM dynamical
friction. There, it is also shown the values of mass binaries, orbital periods and distances measured from the Galactic center. This
information is taken completely from Table I in Ref. [18] and references therein. For updated values of masses of neutron stars see [19].
We have simply added the last row for the WD-WD binary and the last two columns to show the orbital decay predicted by DMDF for
the NFW profile and the RAR model.

Name Type mp [M⊙] mc [M⊙] Pb [days] d [kpc] _Pint
b [10−12] _PGW

b [10−12] _PDF
b;NFW [10−21] _PDF

b;RAR [10−21]

J0737-3039 NS-NS 1.3381(7) 1.2489(7) 0.104 1.15(22) −1.252ð17Þ −1.24787ð13Þ −10.498 −7.860
B1534þ 12 NS-NS 1.3330(4) 1.3455(4) 0.421 0.7 −0.19244ð5Þ −0.1366ð3Þ −244.166 −27.827
J1756-2251 NS-NS 1.312(17) 1.258(17) 0.321 2.5 −0.21ð3Þ −0.22ð1Þ −0.271 −20.695
J1906þ 0746 NS-NS 1.323(11) 1.290(11) 0.166 5.4 −0.565ð6Þ −0.52ð2Þ −2.655 −11.176
B1913þ 16 NS-NS 1.4398(2) 1.3886(2) 0.325 9.9 −2.396ð5Þ −2.402531ð14Þ −7.942 −17.747
B2127þ 11Ca NS-NS 1.358(10) 1.354(10) 0.333 10.3(4) −3.961ð2Þ −3.95ð13Þ −8.083 −17.0154
J0348þ 0432 NS-WD 2.01(4) 0.172(3) 0.104 2.1(2) −0.273ð45Þ −0.258ð11Þ −0.399 −1.514
J0751þ 1807 NS-WD 1.26(14) 0.13(2) 0.263 2.0 −0.031ð14Þ � � � −1.022 −2.587
J1012þ 5307 NS-WD 1.64(22) 0.16(2) 0.60 0.836(80) −0.15ð15Þ −0.11ð2Þ −3.404 −7.343
J1141-6545 NS-WD 1.27(1) 1.02(1) 0.20 3.7 −0.401ð25Þ −0.403ð25Þ −3.578 −11.469
J1738þ 0333 NS-WD 1.46(6) 0.181(7) 0.354 1.47(10) −0.0259ð32Þ −0.028ð2Þ −2.120 −4.379
WDJ0651þ 2844 WD-WD 0.26(4) 0.50(4) 0.008 1 −9.8ð28Þ −8.2ð17Þ −0.014 −0.207

aThis binary is located in the globular cluster M15 [20]. However we have made here a simple estimation of the DMDF effect
assuming that the DM local density in its location does not change abruptly within the globular cluster, which may not be the case. This
point is better discussed in footnote 9. For a comprehensive list of all known binaries in globular clusters see http://www.naic.edu/
pfreire/GCpsr.html and references therein.

3It has been recently shown that the incorporation of the tidal
radius into the background system can produce interesting
features in infalling satellites in large cored galaxies [21].
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center of mass of the binary system: ~vi ¼ vi þ vw, with vw ¼
vwðcosα sin β; sinα sin β; cos βÞ andβ andα being the angles
between the wind velocity vector and the perpendicular axis
of the binary orbital plane and the projection of the wind
velocity vector with an axes lying in the orbital plane,
respectively. There are at least two different cases of wind
velocities: bound and unbound binaries to the galaxy poten-
tial. In the former theDMwindvelocity can be assumed as the
negative of the binary circular velocity with respect to the
galactic center vw ¼ −vrot. The latter case occurs often in
binaries with NS components in which the system received a
high kick velocity from the supernova event [22]. For high
kick velocities the binary circular velocity with respect to the
galactic center can be neglected [23] and we can assume
vw ¼ −vT , where vT is the transversal velocity of the system.
For intermediate kicks, the system can remain bound and we
can consider, in a more general case, vw ¼ vrot þ vT . Thus,
we shall consider the value of vw as a free parameter that can
assume values ranging from 10 km s−1 all the way to
1000 km s−1 following the above discussion. There is the
additional possibility for thebinary components to experience
an intrinsic DM wind. However, up to the best of our
knowledge, there is no observational evidence of an intrinsic
rotation of theDMwith respect to theGalactic center and thus
we do not consider it in our estimates.
It is important also tomention that the conditionL=a ≪ 1,

whereL is the size of the component’s wake and a the orbital
separation, must be fulfilled in order that Eq. (2) becomes
linearly applicable to each binary component [6,10]. SinceL
is of the order of the radius of the sphere of gravitational
influence of each component—see Eq. (5) below—this
means that we are limited to binary systems with orbital
velocities smaller than the velocity dispersion of the DM
background. Namely, we deal with binary systems with
sufficiently large orbital periods (small orbital compactness)
so that each binary component does not interact with its
respective companion’s wake. Furthermore, we treat the
binary system as composed of point masses no matter their
internal structure. Thus,we can apply this approach under the
above conditions to binary systems such as NS-NS/NS-WD
[18] and WD-WD [24], or any other possible binary system
of astrophysical interest.
We proceed now to introduce the most relevant ingre-

dients entering into the computation of the dynamical
friction force on the binary system. This analysis allows
us to establish our system more accurately in terms of
Milky Way galactic observables and to more realistically
characterize the DM density properties.

A. The Coulomb logarithm

The Coulomb logarithm in the Chandrasekhar’s dynami-
cal friction formula accounts for the finite size of the system
and is defined as the ratio of the maximum and minimum
impact parameters for encounters, respectively bmax and
bmin, i.e.

logΛ≡ log

�
bmax

bmin

�
: ð3Þ

It is assumed typically that bmax is of the order of the size of
the system, and bmin is defined as the impact parameter for a
90° deflection [6]

bmax ≈ a; bmin ¼ maxðrh; RAÞ; ð4Þ
where bmax can be taken as the effective size of the system
(the binary orbital separation) and rh is the half-mass radius
of the subject system. This is the radius that contains the
body’s half-mass and should be taken as bmin in the case it be
an extended body. However it does not correspond to the
present case. We instead adopt bmin ¼ RA, where RA is the
radius at which a particle of the surrounding medium is
affected by the sphere of gravitational influence of the test
body, namely:

RA;i ¼
Gmi

~v2i
; ð5Þ

being ~vi the relative velocity of the object with respect to the
DM wind velocity as we defined above.
We can see from here that dynamical friction force is

determined by the local distribution of matter producing the
wake around each object. This also establishes the char-
acteristic size of the wake. It is here assumed that bmax ≫
bmin and bmax is set to be the length scale over which the
density can be assumed to be constant for a given system at
fixed radial position. It is important to note that the choices
of the impact parameters are somewhat arbitrary. However,
we guarantee that the condition Λ ≫ 1 is satisfied.
As an example we plot in Fig. 1 the Coulomb logarithm

as a function of the wind velocity for a 1.3þ 0.2 M⊙

FIG. 1. Coulomb logarithm for the primary, log10 Λp (blue
line), and for the secondary, log10 Λc (red line), as a function of
the DM wind velocity. The primary is a NS of 1.3 M⊙ and the
companion secondary is a WD of 0.2 M⊙. The NS-WD binary
has an orbital period Pb ¼ 100 days and β ¼ π=2. The
differences between the Coulomb logarithms lead every compo-
nent of the system to experience distinct gravitational interactions
with its respective wake.
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NS-WD binary with orbital period Pb ¼ 100 days. We
stress that the Coulomb logarithm does not change with β,
we choose however β ≠ 0 to perform, in a more general
way, a study of the orbital period decay. We also note that,
for vw ≥ 80 km s−1 there are not large differences between
the Coulomb logarithm for each object. However, we will
take into account these small differences for accuracy even
though we consider, in some cases, large values for the
wind velocity.

B. Velocity distribution function

The evolution of a collisionless self-gravitating system is
determined by the Vlasov-Poisson equation that sets the
conservation of the phase-space density [6]. This distribu-
tion function fully specifies the dynamic of a collisionless
system. For instance, for spherical systems, the mass
density is proportional to

R
d3vf. It is also possible to

derive the distribution function of a collisionless system for
a given self-consistent density profile ρ following
Eddington’s formula [25]

fðEÞ ¼ 1ffiffiffi
8

p
π2

�Z
E

0

d2ρ
dΨ2

dΨffiffiffiffiffiffiffiffiffiffiffiffi
E − Ψ

p þ 1ffiffiffi
E

p
�
dρ
dΨ

�
Ψ¼0

�
; ð6Þ

where we have introduced the relative potential and binding
energy (per unit mass) defined respectively as: Ψ ¼ −Φþ
Φ0 and E ¼ −EþΦ0 ¼ Ψ − 1

2
v2. For a spherical system

with an isotropic velocity dispersion, the phase space
distribution function of dark halos depends only on the
energy and not on the angular momentum. The above
formula is particularly useful when we seek for a distri-
bution function to associate with a density profile obtained
from other methods. We shall apply this procedure in the
appendix, to the NSIS and to the phenomenological NFW
profile to validate the approximation of considering, within
our estimations, the Maxwell-Boltzmann distribution for
these both profiles. Significant but very small differences
appear between the Maxwell-Boltzmann distribution and
the distribution functions associated to the NFW and NSIS
profile at nearby unbound energies, as can be seen in Fig. 7.
In addition, the unbound energy (E ¼ 0) permits, in fact, to
define the escape velocity vesc ¼

ffiffiffiffiffiffiffiffiffi
2jΨjp

. We shall see that
the contribution of particles moving faster than the object
and limited by the escape velocity, do not contribute
substantially to the dynamical friction force. This conse-
quence supports the fact of considering the Maxwell-
Boltzmann distribution to describe the velocity distribution
for the aforementioned profiles. The main motivation of
this approach is then, due to the numerical facilities that the
simple Maxwell-Boltzmann distribution provides in the
computation of the dynamical friction force.
Accordingly, for the sake of comparison, let us assume

then that the virialized NFW and NSIS halos, follow the
Maxwell-Boltzmann distribution function

fMBðuÞ ¼ n0
ð2πσ2Þ3=2 exp

�
−

u2

2σ2

�
; ð7Þ

where n0 is the particle number such that ρ ¼ n0m and σ is
the velocity dispersion which is defined in terms of the DM
gravitational potential through the Jeans Eq. (14).
For the RAR model, we consider self-consistently a

Fermi-Dirac distribution function with energy cutoff ϵc to
describe the velocity distribution of self-gravitating halos in
thermodynamic equilibrium [12]4

fcðpÞ ¼
gm3

h3

�
1−eðϵ−ϵcÞ=kT
eðϵ−μÞ=kTþ1

ϵ ≤ ϵc;

0 ϵ > ϵc:
ð8Þ

Here ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þm2c4

p
−mc2 is the particle kinetic

energy, m is the particle mass, μ is the chemical potential
(with the particle rest mass subtracted off), T is the
temperature, k is the Boltzmann constant. The quantity g
denotes as usual the particle spin degeneracy (g ¼ 2 in our
case) and h is the Planck constant. It is important to stress
that, the parameter ϵc serves to account for the finite size of
galaxies. Note also that for ϵc → þ∞, we recover the
Fermi-Dirac distribution. In the nondegenerate limit
μ → −∞, we recover on the other hand the classical
King model [26], which reduces to the Boltzmann dis-
tribution in the limit ϵc → þ∞.
As we have mentioned, we are going to explore in this

work the dynamical friction force effects on binary systems
produced by DM profiles. However, it is important to note
that, the dynamical friction force depends actually on the
velocity distribution function whereby the introduction of
the DM density profile, is somehow artificial; but in any
case, it should be self-consistent for a given velocity
distribution function according to the previous discussion.

C. The escape velocity

The escape velocity is defined in terms of the gravita-
tional potential ϕðrÞ of the background5 as vesc ¼

ffiffiffiffiffiffiffiffiffi
−2ϕ

p
.

The latter can be determined completely at any radius scale
for a given density profile as follows

ϕðrÞ ¼ 4πG

�
1

r

Z
r

0

dr0r02ρðr0Þ þ
Z

∞

r
dr0r0ρðr0Þ

�
: ð9Þ

The observed escape velocity of the Milky Way (consid-
ering the Galactic components, disk, bulge and halo) was
found to be in the range 498 km s−1 ≲ vesc ≲ 608 km s−1 at
the solar position, at 90% confidence interval and median

4See also Ref. [14] for a general discussion about the
conditions under which statistical equilibrium state is reached.

5Note that we are ignoring the gravitational potential produced
by the binary system as well as other possible contributions, such
as those produced by the baryonic component.
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likelihood of 544 km s−1 [27]. The RAVE survey has
recently found the local escape speed to be vesc ¼
533þ54

−41 km s−1 [28]. These values depend significantly
on the mass exterior to the solar circle within a certain
halo radius rh. For example, the halo mass MDMðrh ¼
40 kpcÞ ∼ 2 × 1011 M⊙ is consistent with the dynamics of
the outer DM halo as was recently indicated in [29]. We
note therefore that the Galactic escape velocity is either
lower or closely equal to the orbital velocity of the binary
pulsar for periods around Pb ≈ 0.1 days. For large orbital
periods Pb ≈ 100 days, the orbital velocity is always well
below the escape velocity. These two facts imply therefore
that the contribution of the second integral (fast particles) to
the dynamical friction force could be very small in most
cases but not negligible in general. We will keep this term
for a general study since, as we will see, it also leads to a
change of sign in the orbital period time derivative (i.e.
from decay to widening) for some values of the period as
well as for the DM wind velocity.

D. The density profile

1. The NFW profile

We first recall the widely used phenomenological DM
density profile arising within the ΛCDM cosmological
paradigm, i.e. the NFW profile [11]

ρðrÞ ¼ ρc
ðr=rsÞð1þ r=rsÞ2

; ð10Þ

where ρc is the characteristic density and rs is the scale
radius. This density profile exhibits a sharp cusp in the
inner region ρ ∝ r−1 while in the halo part the density
scales as ρ ∝ r−3.
It is worth to mention that there is an active debate in the

literature on which is the best representation of the DM
density profile that originates from the ΛCDM paradigm.
For instance, some simulations have pointed out that the
density profile of DM halos might be actually shallower
than the one given by the NFW profile and found a cored
structure represented more accurately by an Einasto profile
(see Ref. [30] for details). It is out of the scope of this work
to make an assessment on this issue and thus, for the sake of
example, we adopt the NFW profile as the DM profile
associated with the ΛCDM scenario. As we shall see, since
the NSIS and the RAR profiles show also a shallower,
cored inner halo,6 they are useful to analyze the differences
that arise in the DMDF effect between cuspy and cored
density profiles.

2. The NSIS profile

Another often adopted DM density profile which also
yields the asymptotic flatness of the rotation curves is
represented by the NSIS profile [32]:

ρðrÞ ¼ ρ0
1þ ðr=r0Þ2

; ð11Þ

where ρ0 is the central density and r0 is the core radius.

3. The RAR profile

We will also examine the DMDF in the case of the RAR
model [12,13]. This model describes the DM distribution
along the entire galaxy in a continuousway, i.e. from the halo
part to the Galactic center and without spoiling the baryonic
component which dominates at intermediate scales.
Likewise, the density ρ and pressure P for the Fermi-
Dirac distribution function are defined respectively by

ρ ¼ g
h3

m
Z

ϵc

0

fcðpÞ
�
1þ ϵðpÞ

mc2

�
d3p; ð12Þ

P ¼ 2

3

g
h3

Z
ϵc

0

fcðpÞ
1þ ϵðpÞ=2mc2

1þ ϵðpÞ=mc2
d3p: ð13Þ

Assuming a self-gravitating system of massive fermions
(within the standard Fermi-Dirac phase-space distribution)
in thermodynamic equilibrium, the DM density profile was
computed in [12]. By imposing fixed boundary conditions
at the halo and including the fulfillment of the rotation
curves data, the parameters of the system have been
constrained. This procedure was applied for different types
of galaxies from dwarfs to big spirals exhibiting a universal
compact core-diluted halo density profile. An extended
version of the RAR model was recently presented [13], by
introducing a fermion energy cutoff ϵc in the fermion
distribution. Importantly, this generalization in the statistics
naturally arises by studying the stationary solution of a
generalized Kramer statistics which includes the effects of
escape of particles and violent relaxation [14]. The new
emerging density profile serves to account for the finite
galaxy sizes due to the more realistic boundary conditions,
while it opens the possibility to achieve a more compact
solution for the quantum core working as a good alternative
to the BH scenario in Sgr A* (see, Ref. [13], for details).
The narrow particle mass range provides several solutions
to satisfy either the rotation curve data in the halo part or
both sets of data, namely including additionally the orbits
of the S-cluster stars such as the S2 star, necessary to
establish the compactness of the DM central core. A
comparison between the RAR model, NFW profile and
NSIS for MW-like spiral galaxies is also shown in Fig. 2,
describing the outstanding inner structure below parsec
scale for the RAR profile.

6The similarity between the Einasto profile and the RAR
profile in the inner halo region has been shown in Ref. [31].
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It is important to clarify that the above DM density
profiles are obtained without considering a DM-baryonic
matter feedback nor DM self-annihilations. As shown in
Ref. [35], these effects might produce changes in the DM
density profile. We expect, however, the former to be
important only locally in massive clusters and the latter
stands on the largely model-dependent unknown DM
nature. Thus, for the sake of generality, we shall not
consider these effects in this work.

E. The velocity dispersion

According to observations of stars in outer part of halos
and numerical simulation, the stellar velocity dispersion of
the Milky Way halo σr, shows an almost constant value
around 120 km s−1 at scales of 20 kpc where DM is
supposed to dominate and the circular velocity Vc exhibits
a flat behavior. Assuming that the galactic halo is stationary
and spherically symmetric, it is possible to derive the DM
radial velocity dispersion from the Jeans equation7

1

ρðrÞ
dðρðrÞσ2rÞ

dr
þ 2

βσ2r
r

¼ −
dϕðrÞ
dr

¼ −V2
c; ð14Þ

where β ¼ 1 − σ2θ=σ
2
r is the velocity anisotropic parameter,

that in the isotropic case, takes evidently the value β ¼ 0.
The circular velocity vc is defined by the local radial

gradient of the potential while the radial velocity dispersion
σðrÞ depends on the shape of the potential at exterior radii.
For a nonrotating spherical system the relation between
these quantities is given by

v2c ¼ −σ2r
�
d ln ρ
d ln r

þ d ln σ2r
d ln r

þ 2β

�
; ð15Þ

where the first term in parenthesis is (minus) the loga-
rithmic slope γ of the density profile. For the singular
isothermal sphere with a Maxwell Boltzmann distribution,
the simple relation v2c ¼ 2σ2r is satisfied for all radii. We
note that, instead, for the NFW profile one obtains 1 ≤
γ ≤ 3 and hence, this simple relation between the circular
velocity and the velocity dispersion is not fulfilled at all
radii (except at the virial radius where γ ¼ 2, see e.g.
Ref. [36]). Therefore, in order to find the right velocity
dispersion profile for a given density profile, with asso-
ciated gravitational potential, we solve hence the Jean
equation for the isotropic case along the entire the Galaxy.

IV. ORBITAL PERIOD EVOLUTION

In this section we study the DMDF effect as an intrinsic
effect on the binary system motion. Hence, in order to
analyze the perturbed Keplerian orbit of binary systems, we
use the osculating formalism that permits us to obtain the
sequence of perturbed orbits [16]. We follow particularly
both the formulation and the derived analysis presented in [9]
to compute the orbital period decay due to DMDF. We start
by defining the relative acceleration between two bodies as

_v ¼ −
GM
r3

rþ f; ð16Þ

with f ¼ a1ηv þ a2vw for the case in which the perturbing
force is taking to be the drag force measured on the center of
mass. To the zeroth order, the orbital velocity obeys a
Keplerian motion, v ¼ Ω0r0, with Ω0 and r0 being the
angular velocity and orbital separation, respectively.Wehave
also introduced thedefinitions: η ¼ μ=M,μ ¼ mpmc=M and
M ¼ mp þmc. From here, the perturbed orbital elements
can be then written as follows

_a ¼ 2

ffiffiffiffiffiffiffiffi
r30
GM

r
SðtÞ; ð17Þ

_e ¼ 2

ffiffiffiffiffiffiffiffi
r0
GM

r
½RðtÞ sinðΩ0tÞ þ 2SðtÞ cosðΩ0tÞ�; ð18Þ

_i ¼ 2

ffiffiffiffiffiffiffiffi
r0
GM

r
WðtÞ cosðΩ0tþ ωÞ; ð19Þ

_Ω ¼ 1

sin i

ffiffiffiffiffiffiffiffi
r0
GM

r
WðtÞ sinðΩ0tþ ωÞ; ð20Þ

where the orbital parameters a, e,ω, i andΩ are the semiaxis
major, the eccentricity, the longitude of the pericenter, the

FIG. 2. Distribution of DM in MW-type galaxies predicted by
the RAR model. The solid line in the legend, refers to the most
compact solution for m ¼ 345 keV. For comparison we show,
with the dashed blue line, the solution form ¼ 48 keV. There are
also shown the NFW and NSIS profiles given by Eqs. (10) and
(11), respectively. The free parameters in these profiles were
taken from [33,34], respectively, satisfying the same (total)
rotation curve data as in the RAR case, with the corresponding
considerations of bulge and disk counterparts.

7Note that it is not the (observed) line of sight velocity
dispersion of tracers.
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inclination and longitude of the ascending node, respectively.
In the right side of Eqs. (17)–(20), the source terms SðtÞ,
RðtÞ and WðtÞ have been defined as a functions of the
dynamical friction force as well as the wind velocity vector
according to [9]

SðtÞ ¼ a1ηv − a2vw sin β sinðΩ0t − αÞ; ð21Þ

RðtÞ ¼ a2vw sin β cosðΩ0t − αÞ; ð22Þ

WðtÞ ¼ a2vw cos β: ð23Þ

The rate of change of the separation with time leads
consequently to a change of the orbital period Pb ¼
2π=Ω0 given by [37]

_Pb

Pb
¼ 3

2

_a
r0
: ð24Þ

This relation along with Eq. (17) provide the time derivative
of the orbital period8

_PbðtÞ ¼ 3Pb½a1η − a2Γ sin β sinðΩ0t − αÞ�: ð25Þ

The resulting secular change in the orbital period is obtained
by averaging over one period Pb, namely (see e.g. Ref. [9]):

h _Pbi ¼
1

Pb

Z
Pb

0

_PbðtÞdt: ð26Þ

In the above formulation we have introduced the same
definitions as in [9] for an easier comparison of the results:
Γ ¼ vw=v, Δ� ¼ Δ� 1, Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

. The coefficients ai
can be written in terms of the integral velocity contribution
function

bi ¼
1

ρðrÞ logΛi

Ii
~v3i
; ð27Þ

as

a1 ¼ −ðA1b1 þ A2b2Þ; a2 ¼
1

2
ðA1b1Δþ þ A2b2Δ−Þ; ð28Þ

with Ai ¼ 4πρðrÞ logΛiG2M. The definition of bi in the
more general form given by Eq. (27) allows the use of any
velocity distribution function, or equivalently any density
profile through the integral term Ii [term in parenthesis in
Eq. (2)]. This feature is contrary to the analyzed case in [9]
where the Maxwell-Boltzmann distribution function was
only considered there.

It is clear that the initial phase α can be set to any value
without loss of generality, hence we set α ¼ 0 for sim-
plicity. In the next section, we compute the secular change
of _Pb for different density profiles with the velocity
dispersion profile determined by Eq. (14) and the asso-
ciated velocity distribution function described by Eqs. (7)
and (8). The incorporation of the radial scale dependence of
these quantities, leads to reduce the number of free
parameters presented in early calculations [9], as already
pointed out previously.
There may be other contributions to a secular change of

the orbital period in addition to the DMDF and the
gravitational wave emission. A common effect in binaries
with ordinary star components is the mass loss by star
winds or accretion. A change of mass in the system would
produce a change in the orbital period of the type
_Pb=Pb ¼ − _M=M, thus mass loss increases the orbital
period (orbital widening) and mass accretion decreases it
(orbital decay). In our case of binaries composed of
compact stars the mass loss by winds is unlikely and
accretion of matter from one component into the other
could occur only via Roche lobe overflow for extremely
short binary periods near the merging process. It remains
the possibility of accretion of DM particles onto the binary
components leading to a shrink of the orbit. The assessment
of the importance of this effect, however, relies on the
unknown cross section between DM and baryonic matter
inside the stars (see, e.g., Ref. [38]). Thus, for the sake of
generality of our conclusions, we shall not include this
effect in our estimates.

V. NUMERICAL RESULTS

We present now the dependence of _Pb according to
Eq. (25) on the free parameters: the orbital period, the DM
wind velocity and the radial position of the binary mea-
sured from the Galactic center.
Once the density profile has been chosen, and the binary

position has been fixed, the velocity distribution function,
the velocity dispersion, as well as the escape velocity that
constrains the maximum velocity in phase space, [upper
limit in the second integral Eq. (2)] can be determined
uniquely. Thus, for an observed binary at a known galactic
position, the above quantities acquire values that can not be
treated as uncorrelated and fully free parameters.
In the following analysis we adopt for the RAR model

the solution for the Milky Way with a particle mass
m ¼ 345 keV, which has the density profile with the most
compact quantum core (see Fig. 2). We consider for the
sake of example the following binary systems: NS-WD
with masses mp ¼ 1.3 M⊙ and mc ¼ 0.2 M⊙, NS-NS
with masses mp ¼ mc ¼ 1.3 M⊙ and WD-WD with
masses mp ¼ 0.5 M⊙ and mc ¼ 0.25 M⊙. According to
our above discussion of the DM wind, and considering the
observed orbital period range and binary positions, we

8We note there is a typo in Eq. (18) of Ref. [9], namely when
compared with Eq. (25) of our present work it shows an extra
factor v=2 which leads the equation to be dimensionally
incorrect.

L. GABRIEL GÓMEZ and J. A. RUEDA PHYSICAL REVIEW D 96, 063001 (2017)

063001-8



perform our analysis varying the parameters in the following
ranges: 10 km s−1 ≲ vw ≲ 1000 km s−1, 0.1 days ≲Pb ≲
100 days and a scale radius 0.1 kpc≲ r≲ 10 kpc. It is
important to note that we will also consider binary systems
near theGalactic center (at parsec scales) since it is of interest
to check theDMDF in regions along theGalaxywhereDM is
supposed to dominate.

A. DMDF in observed binaries

We first apply the approach to the Galactic binaries with
measured intrinsic orbital periods and which are remark-
ably well explained by GW emission. In the last three
columns of Table I we compare _PGW

b with _PDF
b . In this

calculation we use the NFW profile and the RAR model
for illustrative purposes and the following free parameters:
β ¼ 0 and vw ¼ 100 km s−1. For other values of β, _PDF

b
does not change significantly, however a change of vw by
one order of magnitude may be more important in the
computation of _PDF

b as we shall see below. At this point we
should discuss whether the binaries of Table I are bound or
unbound to the Galactic gravitational potential to determine
a more precise value for the DM velocity wind.9 However,
for the binaries of Table I which are characterized by short
orbital periods, we checked that this is not relevant since for
any DM wind in the range 10 km s−1 ≲ vw ≲ 1000 km s−1

the value of _PDF
b is still very small compared with the _PGW

b
and with the measured intrinsic orbital period decay.
As we can see the DMDF effect is very small for all the

above binaries because of the short orbital periods (com-
pact orbits) that lead them to experience a small drag force.
We can thus first conclude that, for the binary systems

listed in Table I, the DMDF effect is indeed negligible and
their secular evolution is fully dominated by GWemission.

B. DMDF as a function of the orbital period

A natural question that arises is whether DMDF effects
can be comparable with the orbital period decay predicted
by GW emission. To answer this question we explore the
physical conditions (and hence the values for the model
parameters) under which such equality may be attained. We
thus consider the possibility to have binary systems with
large periods, e.g. Pb ¼ 100 days, since DMDF is
enhanced in systems with small binary compactness. We
also consider regions along the Galaxy where the DM is
supposed to dominate as those near the Galactic center.

We start our analysis by plotting the secular change of Pb
as a function of the orbital period for different density
profiles in Fig. 3 with values for the free parameters vw ¼
100 km s−1 and r ¼ 0.1 kpc in this analysis. We also show

FIG. 3. Secular change of the orbital period as a function of the
orbital period. The red dotted curve refers to the most compact
solution of the RAR profile for the Milky Way, namely for a DM
particle mass m ¼ 345 keV. The blue dashed curve shows the
results for the NSIS profile and the purple solid curve the ones for
the NFW profile. The pink solid line shows the prediction of the
orbital decay due to GW emission. We have here adopted the
values r ¼ 0.1 kpc, vw ¼ 100 km s−1 and β ¼ π=2. Top panel:
NS-WD with mp ¼ 1.3 M⊙ and mc ¼ 0.2 M⊙. Middle panel:
NS-NS with mp ¼ mc ¼ 1.3 M⊙. Bottom panel: WD-WD with
mp ¼ 0.5 M⊙ and mc ¼ 0.25 M⊙.

9It is important to clarify that the pulsar B2127þ 11C is located
within the Galactic globular cluster M15 whereby it is subjected
dominantly to the gravitational potential of its host globular cluster.
As in the case of bulge globular clusters accelerating (possibly)
pulsars through their stellar components [39], DM can also
contribute to the total acceleration by the studied effect in this
paper. This latter claim is motivated by recent observational
analysis that point out favorably the importance of the DM
component in the dynamical of globular clusters [40,41].
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in the same plot the orbital decay due to GWemission _PGW
b ,

according to Eq. (1).
We can see that for a NS-WD system (top panel in

Fig. 3), the orbital period decay starts to be dominated by
the DMDF effect shortly after than Pb ¼ 18 days, for the
NFW profile, i.e it is now larger that the one predicted by
the GW emission. For the same system, The NSIS predicts
a _PDF

b that matches _PGW
b around Pb ¼ 80 days while for the

RAR model, it occurs around 120 days. For a NS-NS
system (middle panel in Fig. 3), the NFW provides the
match around 30 days and around 90 days and 130 days for
the NSIS and RAR model respectively. For a WD-WD
system (bottom panel in Fig. 3), the NFW provides the
match around 25 days and around 70 days and 150 days for
the NSIS and RAR model respectively. These results are
also summarized in Table II for clarity. However, for such
large periods, DMDF provides small orbital decays
between 10−16 (for the NFW profile) and around 10−18

(for the other profiles) as can be seen in Fig. 3. It is evident
from here that, the larger the orbital period, the larger the _Pb

reached. For instance for Pb ¼ 1000 days, _Pb ∼ 10−14 for
the NFW profile and NS-NS binaries (middle panel in
Fig. 3). These values are however very small, with respect,
for instance, to the measured intrinsic orbital decays shown
in Table I for some binary systems. However, possible
measurements of the intrinsic period decays for binary
systems with characteristic large periods is a challenge of
unprecedented precision for astronomical observations. If
such measurements might be successfully attained, it could
also lead to discriminate between different DM density
profiles due to the outstanding precision which is a
characteristic property in such systems.

C. DMDF as a function of the DM wind

In order to analyze the effect of the wind velocity, we
choose the radial position of the binary system fixed
(measured from the Galactic center) at r ¼ 1.5 kpc and
the orbital period Pb ¼ 100 days. Figure 4 shows that, for
the aforementioned parameters and for the NFW and the
NSIS profile, _PDF

b lies in the range 10−20–10−16. We can see
from here that the smaller the DM wind velocity the larger
the _PDF

b . However the latter statement does not apply for the
RAR model which exhibits a constant value of _PDF

b ∼ 5 ×

10−18 for NS-WD and WD-WD and around 10−17 for NS-
NS, for vw ≳ 200 km s−1. this analysis leads to conclude
that binaries into a DM background with small DM wind
velocities (than the orbital velocity), experience a more
effective drag force and hence a larger _Pb. We shall be then

TABLE II. This table displays theoretical predictions of orbital
periods in days at which _PDF

b , computed by the indicated DM
density profiles, equates _PGW

b predicted by general relativity for
different binary systems.

DM Profile NS-WD NS-NS WD-WD

NFW 18 30 25
RAR 120 130 150
NSIS 80 90 70

FIG. 4. Secular change of the orbital period as a function of the
DM velocity wind. The red dotted curve refers to the most
compact solution of the RAR profile for the Milky Way, namely
for a DM particle mass m ¼ 345 keV. The blue dashed curve
shows the results for the NSIS profile and the purple solid curve
the ones for the NFW profile. The pink solid line shows the
prediction of the orbital decay due to GWemission. We have here
adopted the values r ¼ 1.5 kpc, Pb ¼ 100 days and β ¼ π=2.
Top panel: NS-WD with mp ¼ 1.3 M⊙ and mc ¼ 0.2 M⊙.
Middle panel: NS-NS with mp ¼ mc ¼ 1.3 M⊙. Bottom panel:
WD-WD with mp ¼ 0.5 M⊙ and mc ¼ 0.25 M⊙.
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more interested in binary systems with small wind veloc-
ities, however we do not exclude at all binaries with (at
least) one NS companion which may posses high kick
velocities and then large wind velocities.

D. DMDF as a function of the binary position

We turn now to plot in Fig. 5 the value of _Pb as a function
of the radial position. We here adopt for the DM wind
vw ¼ 200 km s−1 and for the binary period Pb ¼ 100 days
(left panel) and Pb ¼ 0.5 days (right panel). We can see
that, differences between the solution provided by m ¼
48 keV and the one provided by m ¼ 345 keV for the
RARmodel is ≈3 × 103. Interestingly, towards the Galactic
center, for the two chosen cases of orbital periods
(Pb ¼ 0.5, 100 days), the NFW profile and the RAR
model (for the most compact solution m ¼ 345 keV) can
reach a value of _Pb that may be comparable with the one
provided by Eq. (1) due to GWemissions. The prediction of
_Pb due to DMDF, for binaries with short orbital periods,
can also be seen in Table I for the NFW profile and the
RAR model, respectively. For large periods however (left
panel in Fig. 5), DMDF effect is highly enhanced for all the
binary systems as can be seen in Fig. 3. In particular, the
RAR model predicts large orbital period decay very near
the Galactic center (around 10−3 pc) due to the high DM
density at such distances (see also Fig. 2). The most
promising situation arises then for binary positions near
the Galactic center either for long or short orbital periods.
We expect hence that observational measurements reach a
technological improvement that permit us to measure such
short orbital periods decays with outstanding precision in
the future. In addition, it would be interesting to observe
binary systems near the Galactic center to put constraints
on the Galactic center environment, particularly on the DM

density profile and importantly, to check the GR predic-
tions in the strong field regime.

E. From orbital shrinking to widening

We turn now to analyze the model parameters under
which a change of sign in the orbital period first time-
derivative occurs. Namely, the conditions under which
DMDF produces an orbital widening instead of an orbital
shrinking or vice-versa. For given binary parameters and β,
there are values of the wind velocity for which occurs a
change of sign of _Pb. This is clearly seen in Fig. 4 for each
density profile, for binaries with known values of the orbital
period and distance and setting β ¼ π=2. Figure 6 shows,
instead, how sensitive is this feature to the value of the β
parameter and to the Galactic DM distribution, i.e on the
DM density profile. We describe now, for the sake of
example and without loss of generality, the case of the NS-
WD binary of Fig. 6. In this analysis we have adopted
Pb ¼ 100 days and r ¼ 1.5 kpc as known quantities. The
two changes of signs occur at: β ¼ 68.75° and 114.6° for
the RAR model with vw ¼ 70 km s−1; β ¼ 80.21° and
97.40° for the NFW profile with vw ¼ 200 km s−1; and β ¼
74.49° and 103.13° for the NSIS profile with vw ¼
300 km s−1 (see Fig. 6). These results are in general
agreement with the ones found in Ref. [9] within the
approximation of large vw. The contribution of fast moving
particles with respect to the binary-components, along with
particular choices of vw, β and even Pb, might lead
(although it is not a necessary condition) to multiple
changes of sign of _Pb. This analysis supports the necessity
of taking into account this contribution to check the
conditions under which _Pb may change sign. If one were
interested in providing only negative values of _Pb, the
particular choice β ¼ 0 (or more generally a value of it out

FIG. 5. Secular change of the orbital period of a NS-WD as a function of the radial position, for all the density profiles analyzed in this
work. The red dotted curve refers to the most compact solution of the RAR profile for the Milky Way, namely for a DM particle mass
m ¼ 345 keV. The black dot-dashed curve shows the RAR profile for m ¼ 48 keV. The blue dashed curve shows the results for the
NSIS profile and the purple solid curve the ones for the NFW profile. We have here adopted the values vw ¼ 200 km s−1 and β ¼ π=2.
Left panel: numerical results for the case Pb ¼ 100 days. Right panel: numerical results for the case Pb ¼ 0.5 days.
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the above ranges) would fulfill such requirement. We set
then henceforth on the contrary β ¼ π=2 in order to
introduce a possible change of sign in _Pb as a general case.
Let us turn back to Fig. 3. We note that the change of sign

can occur for shorter or longer periods depending on the
density profile and the DM wind velocity. For instance, for
the NFW profile and vw ¼ 200 km s−1, the change of sign
occurs at Pb ≈ 2 days contrary to the case vw ¼ 100 km s−1

where the change is around 100 days for NS-WD as can be
seen in the top panel of Fig. 3. The change of sign of _Pb
may occur at short period values for the RAR model,
around 1 day for NS-NS and WD-WD (see middle and
bottom panel in Fig. 3), while for the NFW profile, it may
occur around 20 days for NS-NS, around 12 days for WD-
WD and around 100 days for NS-WD. The NSIS profile
always provides negatives values in all the binary systems
shown in Fig. 3. Before the first peak and after the second
one, _Pb is always negative while between the two peaks _Pb
is positive. We recall that, however, negatives values can be
obtained for all the orbital period range in the case in which
β takes a value different from the aforementioned ranges,
independently of the binary system and the other param-
eters as was inferred from Fig. 6.
It can be seen that negative values of _Pb correspond to

those binaries between the two peaks contrary to the curve
given by the RAR model in the bottom panel in Fig 3. We
also note that the position of those peaks does not change
significantly when the orbital period varies, but rather the
order of magnitude of _Pb. In some cases it can vary up to
one order of magnitude. It is also important to note that this

feature may change depending on the radial position and
the density profile. As we can see from the same plot, the
RAR model shows negative values of _Pb below the
first peak.
We can analyze the behavior as a function of the binary

position in Fig. 5. For the case of NFW profile and left
panel (Pb ¼ 100 days), negatives values of _Pb can still be
found after the peak as pointed out previously; therefore,
positives values are located below 1.5 kpc for the NFW
profile, while for both the NSIS profile and the RARmodel,
_Pb is always negative. In the right panel of the same figure
(for Pb ¼ 0.5 days), all the DM density profiles provide
negatives values of _Pb except the RAR model, before the
peak, for m ¼ 48 keV (also for Pb ¼ 100 days). It is
important to stress that this analysis is valid for β ¼ π=2
since, for other values of it, as β ¼ 0, _Pb is always negative
being independent of the DM density profile as can be
inferred from Fig. 6.

VI. DISCUSSION AND CONCLUSIONS

It is by now well-known that the high-precision mea-
surements of the orbital parameters of compact-star binaries
(e.g. NS-NS, NS-WD and WD-WD) with short orbital
periods (Pb ≲ 0.1 days) have allowed a remarkable veri-
fication of the of the orbital decay predicted by general
relativity due to GW emission (see Table II and references
therein). However, the binary gravitational binding energy
can be also affected by an usually neglected phenomenon,
namely the DMDF (i.e. DM gravitational drag) induced by
the DM on the binary owing to the interaction of the binary
components with their DM gravitational wakes. We have
qualified and quantified in this work this effect in the
evolution of compact-star binaries and assessed the con-
ditions under which it can become comparable to the one of
the GW emission. We can draw the following conclusions
from such an analysis:
(1) A first interesting situation may occur for binaries

with long orbital periods above 20 days: the orbital
decay produced by DMDF becomes comparable to
the one produced by the emission of GWs. Clearly,
the precise orbital period at which the two effects are
quantitatively equal depends on the DM density
profile and on the binary parameters (see Fig. 3).

(2) We have presented here, for the NFW, the NSIS and
the RAR DM profiles, the orbital period for NS-NS,
NS-WD and WD-WD binaries at which the DMDF
effects, start to dominate over the produced by GW
emission. These results are summarized in Table II
(see also Fig. 3).

(3) The NFW profile and the RARmodel provide a more
significant effect in the drag force than the one given
by the NSIS profile, as can be seen in Figs. 3–5. It is
important to note that the RAR and the NSIS profile
predictions are similar above Pb ¼ 100 days, for all

FIG. 6. Secular change of the orbital period for a NS-WD as a
function of the angle β. The red-dotted curve refers to the most
compact solution of the RAR profile for the Milky Way, namely
for a DM particle mass m ¼ 345 keV. The blue-dashed curve
shows the results for the NSIS profile and the purple-solid curve
the one for the NFW profile. We have here adopted the values
Pb ¼ 100 days and r ¼ 1.5 kpc for all the profiles. Here we
adopt values of the wind velocities that can lead to change of sing
in the orbital period time-derivative. For the RAR model
vw ¼ 70 km s−1, for NFW profile vw ¼ 200 km s−1 and for
the NSIS profile vw ¼ 300 km s−1.
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the binary systems analyzed in this work (with vw ¼
100 km s−1 and located at 0.1 kpc), while also for
those values of Pb the NFW profile predicts a much
larger DMDF effect.

(4) Another promising situation arises for binary sys-
tems located very near the Galactic center. In this
case, the _Pb due to DMDF is increased even for short
orbital periods (Pb ¼ 0.5 days) as is shown in the
right panel of Fig. 5. For long orbital periods the
DMDF is notoriously strengthened, particularly for
the NFW profile and the most compact solution for
the RAR model (m ¼ 345 keV). This latter situation
corresponds to the most ideal case for testing the
DMDF (left panel of Fig. 5).

(5) For the most ideal scenario of the DMDF effects in
binary systems, kinematic effects, which are propor-
tional to the orbital period, must be considered and
respectively compared to the one studied in this work.

(6) It is known that positive values of _Pb can be caused
for example by binary mass-loss or mass-exchange.
However, we have seen that _Pb might change sign
from negative to positive due to DMDF. This is
shown in Fig. 6 for different DM density profiles.
Thus, this effect could be study in binary systems
dominated by kinematic effects.

To summarize, The DMDF is very sensitive to the DM
properties: density profile, velocity distribution function
and velocity dispersion profile; whereby it would permit to
put stringent constraints on the DM properties (and
presumably on the nature) at the binary position and thus
to discriminate between different DM models. Following
this idea, the determination of the orbital secular changes of
compact-star binaries with long/short orbital periods
located in the outer halo/center of the Galaxy, might
constrain the DM density distribution in these locations.
It would also be interesting to study such an effect in
binaries with measured orbital decays within globular
clusters (as in the case of B2127þ 11C) in order to put
constraints on the DM distribution in these systems.
Therefore, the possible identification of this effect estab-
lishes a topic for future high-precision astrophysical data
for the analysis of the secular evolution of compact-star
binaries.
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APPENDIX: DISTRIBUTION FUNCTIONS FROM
EDDINGTON’S FORMULA

For a given density profile, the gravitational potential can
be obtained by solving the Poisson’s equation ∇Ψ ¼
−4πρðrÞ. Now, in order to solve Eddington’s formula
Eq. (6), we express the integral there in terms of r instead
of Ψ, and choose the appropriate limits of integrations by
inverting numerically the equation ΨðrÞ ¼ gðrÞ, with gðrÞ
being a defined function of the radial position for a given
density profile. In addition, the condition that the distri-
bution function be positive for any positive energy, i.e,
fðEÞ ≥ 0 for E ≥ 0, should be guaranteed. This condition is
fulfilled when ΦðrÞ goes to zero at infinity along with the
appropriated value of the central potential Φ0 ¼ Φðr ¼ 0Þ.
We then set E ¼ −E and do for convenience the simple
change

d2ρ̄

dΨ̄2
¼ d

dr̄

�
ρ̄0ðr̄Þ
Ψ̄0ðr̄Þ

�
dr̄

dΨ̄
: ðA1Þ

All quantities with bar are dimensionless by making use of
the model parameters of the respective density profile. With
all of this, we can perform numerically the integral in
Eq. (6). In order to compare the distribution functions
associated with the NFW and the NSIS profiles, with the
Maxwell-Boltzmann one, we have to normalize f to
common units. For this we follow the usual normalizationffiffiffi
8

p
M=ðRVÞ3, whereM is the mass enclosed at a position R

where the circular velocity V becomes flat, and E is given
in units of square velocity V2; hence we introduce the
dimensionless quantity Ē ¼ E=V2. For the NFW profile
(Eq. (10) such a radius is given by the virial radius,
rv ¼ crs, where c is the so-called concentration parameter
c and rs is the scale radius. For this profile, we measure
then f in units of

ffiffiffi
8

p
Mv=ðRvVvÞ3 and Ē ¼ E=V2

v. For the
NSIS profile (Eq. (11), we adopt the core radius r0 and thus
all the quantities derived from it such that f is given in units
of

ffiffiffi
8

p
M0=ðr0V0Þ3 and Ē ¼ E=V2

0. Furthermore, we
express the Maxwell-Boltzmann distribution as follows [6]

fðEÞ ¼ ρ̄0
ð2πσ2Þ3=2 exp ½E=σ

2�; ðA2Þ

with Ē ¼ −E=2σ2.
To check the consistency of our calculation we also

apply the above method to the singular isothermal sphere
(SIS)

ρðrÞ ¼ σ2

2πGr̄20

�
r̄0
r

�
2

; ðA3Þ

which must follow the Maxwell-Boltzmann distribution
function (see, e.g., [6]). We define the central density ρ̄0 ¼
σ2=2πGr̄20 and compute its associated distribution function
also from Eddington’s formula. This solution is represented

DARK MATTER DYNAMICAL FRICTION VERSUS … PHYSICAL REVIEW D 96, 063001 (2017)

063001-13



by the cyan-dotted line in Fig. 7 which can be seen overlaps
with the Maxwell-Boltzmann distribution. For this profile,
we measure f in units of

ffiffiffi
8

p
M̄0=ðr̄0

ffiffiffi
2

p
σÞ3. Thus, all the

distribution functions and the dimensionless energy Ē are
given in terms of theirs model parameters. Therefore, once
we set the units of f and Ē, we can infer quantitatively the
scale factor that lead to compare our results. However, it is
important to mention that such a scale factor may be

somewhat arbitrary when one does not consider a finite size
for the halo which forces us to introduce a cutoff at
some radius scale. The relation between the relative energy
E ¼ −E and the particle velocity v is determined by
E ¼ 1

2
ðv2 − v2escÞ. For v < vesc particles are of course

bounded. Finally, we present numerical results of the
distribution functions associated to the NFW and the
NSIS profiles and the comparison with the Maxwell-
Boltzmann distribution function in Fig. 7. Our goal in this
computation is to validate the approximation of taking the
Maxwell-Boltzmann distribution to describe the velocity
distribution for the aforementioned profiles. We can see
that the largest differences occur close to unbound energies,
precisely where the contribution of particle velocities near
the escape velocity do not contribute significantly to the
dynamical friction force. These results then lead us to
approximate, within our estimations, the velocity distribu-
tions function for the aforementioned profiles to follow the
Maxwell-Boltzmann distribution. Such approximation per-
mits us to notoriously facilitate all the numerical compu-
tations regarding the orbital period decay. However, if we
had at disposition observational timing pulsar data to test
robustly our predictions, we would have to use the exact
velocity distribution function for every density profile
according to Eddington’s formula.
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Abstract. In this paper we analyze in detail the equilibrium configurations of classical
polytropic stars with a multi-parametric differential rotation law of the literature using
the standard numerical method introduced by Eriguchi and Mueller. Specifically we
numerically investigate the parameters’ space associated with the velocity field char-
acterizing both equilibrium and non-equilibrium configurations for which the stability
condition is violated or the mass-shedding criterion is verified.
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1 Introduction

The problem of equilibrium of rotating self-gravitating systems, dating back to Newton’s
Principia Mathematica studies on the Earth’s shape, still represents a very actual topic in
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the field of astrophysics. Its main target is to reconstruct the structure of rotating stars
considered to be, in a first approximation, in hydrostatic equilibrium although more com-
plicated hydrodynamical effects can be taken into account by using modern tools of nu-
merical analysis. Historically the studies on spherical non rotating self-gravitating bodies
(well summarized in the classical Chandrasekhar’s monograph on stellar structure [1])
and on uniformly rotating ones in the case of incompressible fluids (deeply analysed too
in the companion Chandrasekhar’s monograph on ellipsoidal figures of equilibrium [2],
as well as, for instance, in [4–12]) preceded the study of compressible uniformly rotating
polytropic stars [3]. All of these studies were completed by a series of refined numer-
ical integrations of the complicated field equations governing the problem, performed
by the Japanese school, which specifically investigated the problem of self-gravitating
fluid’s shape bifurcations [13–20]. The next step then has been the inclusion of differen-
tial rotation laws in the treatment, for instance in [21, 22], where rotation profiles were
considered admitting an exact integral relation leading to an analytical expression of the
centrifugal potential term in the hydrostatic equilibrium equation. In the literature it is
known that differential rotation plays an important role in modelling the rotating stars’
structure, in particular for both initial and ending phases of the stars’ life. Most of the
aforementioned works dealt with barotropic stars, i.e. configurations in which isopycnic
(constant density) and isobaric (constant pressure) surfaces coincide, although it has been
recently stressed the importance to consider also more general situations, like the baro-
clinic one (in which isopycnic surfaces are inclined over isobaric ones) in order to obtain
more realistic configurations [23]. We have to point out also that although many recent
papers dealt with relativistic figures of equilibrium (see for instance e.g. [24] and refer-
ences therein) in relation to the problem of modelling possible sources of gravitational
waves, the initial step to investigate the effects of pure rotation is to consider the problem
of classical figures of equilibrium first. In the present paper, we will analyse in detail i)
a polytropic classical self-gravitating fluid, ii) with axial and equatorial symmetry and
with iii) a multi-parametric differential rotation law, which was proposed in [25] without
a systematic analysis of the possible configurations belonging to such a velocity profile.
The main feature of this rotation profile is that, with respect to the study in [21], this one
can be considered as a generalization because it does not admit an analytical expression
for the integral for centrifugal potential term. In addition, the presence of different free-
parameters allows a more detailed study of the way in which the star rotates. By using
the general method given in [21] in order to perform an analysis of the free-parameters’
space, we identify the presence of possible bifurcation points in the configurations’ se-
quences. The article is organized as follows. In Section 2, the numerical method by
Eriguchi and Mueller [21] is briefly reviewed, the multi-parametric differential rotation
profile taken by [25] is discussed and an analysis of possible instabilities which may be
reached is performed. In Section 3, we show results locating stable configurations within
the free-parameters’ space and focusing on how different values of parameters in the
rotation law could lead to different shaped configurations. The correctness of results is
checked and already known results of [21] are recovered. In Section 4 we summarize and
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discuss the results obtained. Finally, details on the numerical implementation and on the
definitions of physical quantities adopted in the analysis are given in Appendix A.

2 Theoretical framework

2.1 The problem of equilibrium

In this section we review the general method for analyzing rotating and self-gravitating
fluids as presented in [21]. In this method the attention is focused on a configuration of
rotating and self-gravitating gas for which the equation of hydrostationary equilibrium,
in its differential form, reads

−(~v·~∇)~v=
~∇P

ρ
+~∇Φg, (2.1)

being ~v, ρ, P and Φg respectively the fluid’s velocity, density, pressure and gravitational
potential. The latter quantity must satisfy the Poisson’s equation, which for a general
configuration reads

∆Φg =

{
4πGρ, inside,

0, outside,
(2.2)

being G the constant of gravitation. Note that left-hand side of Eq. (2.1) can be written as

−(~v·~∇)~v=−1

2
~∇(~v·~v)−(~∇×~v)×~v, (2.3)

so that using Eq. (2.1) we get

~∇P

ρ
+(~∇×~v)×~v=−

(
~∇Φg+

1

2
~∇(~v·~v)

)
, (2.4)

and as the right-hand side has null curl, one obtains the following integrability condition
for Eq. (2.1)

~∇×
{
~∇P

ρ
+(~∇×~v)×~v

}
=0. (2.5)

Writing explicitly the fluid’s velocity of a rotating gas in hydrostationary equilibrium in
cylindrical coordinates (̟,z,φ) as

~v=̟Ω(̟,z)êφ, (2.6)

one obtains that Eqs. (2.1) and (2.5) are respectively equivalent to

~∇P

ρ
=−∇Φg+̟Ω2(̟,z)ê̟, (2.7)

2̟Ω(̟,z)
∂Ω(̟,z)

∂z
êφ= ~∇1

ρ
×~∇P. (2.8)
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From Eq. (2.8), by assuming a barotropic Equation of State (EOS), P=P(ρ), we get

∂Ω
∂z

=0, (2.9)

which is a well known sufficient condition (see [26]) for isopycnic (constant density) and
isobaric (constant pressure) surfaces to be coincident. In addition, we also obtain that the
centrifugal term in Eq. (2.7) comes out from a potential which can be defined as

Φc =−
∫ ̟

0
̟′Ω2(̟′)d̟′. (2.10)

One can in principle investigate Eqs. (2.2) and (2.7) in their differential form, but this gives
rise to problems in treating the boundary conditions to impose, which are the finiteness
of Φg and P at the center of the star, the vanishing of Φg at infinity and the definition of
the surface where P vanishes. On the other hand, by treating the integral form of these
equations, one can incorporate the boundary condition in an easier way. To do so, we
have to note that Φg at a point ~x, due to the presence of mass in the volume V, can be
written as (see e.g. [27])

Φg(~x)=−G
∫

V

ρ(~x′)
|~x−~x′|dV ′, (2.11)

which using spherical coordinates (r,θ,φ) together with axial and equatorial symmetries,
is equal to

Φg(r,θ)=−4πG
∫ π

2

0
sin(θ′)dθ′

∫ rsurf(θ)

0
r′2dr′

·
∞

∑
n=0

f2n(r,r′)P2n(cos(θ))P2n(cos(θ′))ρ(r′ ,θ′). (2.12)

Here we indicate with P2n(cos(θ)) the Legendre’s polynomial of order 2n computed in
cos(θ) and f2n are the Green’s functions (of even order), defined by

f2n(r,r′)=





r′2n

r2n+1 for r≥ r′,

r2n

r′2n+1 for r< r′.
(2.13)

It is possible now to have Eq. (2.1) in its integral form, which can be written as

∫
1

ρ
dP+Φg+Φc=C (const.) . (2.14)

The system to be solved is defined via Eq. (2.14) coupled to Eq. (2.12). But one still has
to insert the EOS and the boundary conditions to define the surface (a free boundary
problem) of the figure of equilibrium, namely

ρ(rsurf)=0 (2.15)
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and a rotation law, that is a relation to express Ω as a function of the adopted coordinates,
which will be used in the centrifugal potential term, Φc. The choice of the EOS relation
is one the most delicate points in approaching the problem of equilibrium of rotating
gases from the physical point of view. In fact, different EOSs can result in very different
configurations of equilibrium of rotating stars. For the sake of simplicity we suppose
that the gas we are modelling is perfect, in the sense that it is composed of non-interacting
particles (i.e. the effects of interacting particles is negligible, thus we can neglect viscosity
implicated by energy dissipation during motion due to the interaction between particles)
and it is non-degenerate (see e.g. [27]). An EOS which in a first approximation is able to
model this kind of physical properties is the polytropic one

P=Kρ1+ 1
n , (2.16)

where K is the polytropic constant and n is the polytropic index. At this point, the only
missing ingredient to numerically solve the system of equations (which we report in Ap-
pendix A) is a rotation profile.

2.2 Multi-parametric differential rotation law

When integrating hydrostationary equilibrium equation together with Poisson’s equa-
tion on a discretized numerical grid (see Appendix A for details) one should also supply
a rotation law, i.e. a relation to express the angular velocity on each grid-point as a func-
tion of the spatial variables. In particular, actually we are interested in the study of the
axisymmetric case, in which equatorial symmetry is also prescribed, thus a natural choice
of coordinates’ set will be the spherical one (r,θ,φ). In literature many cases have already
been studied, taking into account both uniform rotation, i.e. Ω = const. (see e.g. [3]),
and differential rotation, i.e. Ω = Ω(̟), being ̟ = rsin(θ) the cylindrical radius (see
e.g. [22] and [21]). More precisely, in papers dealing with differential rotation, a single-
free-parameter differential rotation law is chosen, i.e. where Ω(̟) depends also on one
single free parameter which allows to control how much differential is the rotation, in the
sense that for a defined value the uniformly rotating case is recovered. We consider here
a differential rotation law of the following kind (see Ref. [25]):

Ω(̟)=Ω0
e−B̟2

1+
(

̟
A

)2
, (2.17)

being Ω0 the central angular velocity and A and B parameters which control the rotation
law and that in a limiting case can reproduce uniform rotation. It is worth noting that the
if A→∞, the rotation law tends to the one of [22], while if B=0, it is the so-called j-const.
rotation law of [21]. Although it may seem that Ω0, A and B are all free-parameters, the
reader will see that Ω0 is treated as an unknown by the method adopted, thus the actual
free-parameters’ number is two as the value of Ω0 is obtained from the choice of the axis
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ratio. We then require A,B≥ 0. It is useful to introduce dimensionless variables within
the method, adopting the following relation:

F= kF F̃, (2.18)

where F is the physical quantity in real dimension, kF is the constant for non-
dimensionalization and F̃ is the quantity in dimensionless form. In particular, as in [21]
we adopt non-dimensional constants as reported in Table 1, where n is the polytropic in-
dex, K is the polytropic constant and G is the gravitational constant. Looking at Eq. (2.17)
is evident that parameters A and B have dimensions of length and length−2 respectively,
thus it is also useful to impose

A= ars, (2.19)

B=
b

req
2

, (2.20)

with rs being the radius of the spherical configuration and req the equatorial spherical
coordinate radius, just like in [21] (for parameter A) and [22] (for parameter B). The
main problem in choosing differential rotation given by Eq. (2.17), is that the integral
to compute the centrifugal potential term in the hydrostationary equilibrium equation
(see Section 2) cannot be performed analytically. For this reason we have decided to

Table 1: Constants adopted to obtain dimensionless quantities from Eq. (2.18).

F kF F̃ Physical Meaning

ρ ρc σn Density

P Kρ
1+ 1

n
c σn+1 Pressure

Ω2 [4πGρc] ν Squared Angular Velocity

Φg K(n+1)ρ
1
n
c Ψ Gravitational Potential

r

[
K(n+1)

4πG ρ
1
n−1
c

] 1
2

ξ Spherical Radius

M 4π
[

K(n+1)
4πG

] 3
2

ρ
3−n
2n

c M̃ Mass

J
[K(n+1)]

5
2

4πG2 ρ
5−2n

2n
c j Angular Momentum

IΩ
[K(n+1)]

5
2

[4π]
3
2 G

5
2

ρ
5−3n

2n
c Ĩ Moment of Intertia

T
[K(n+1)]

5
2

[4π]
1
2 G

3
2

ρ
5−n
2n

c T̃ Kinetic Energy

W
[K(n+1)]

5
2

[4π]
1
2 G

3
2

ρ
5−n
2n

c W̃ Gravitational Potential Energy

U
[K(n+1)]

5
2

[4π]
1
2 G

3
2

ρ
5−n
2n

c Ũ Thermal Energy

https://www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.OA-2017-0007
Downloaded from https://www.cambridge.org/core. Universita Studi La Sapienza, on 27 Jul 2017 at 07:31:54, subject to the Cambridge Core terms of use, available at



F. Cipolletta et al. / Commun. Comput. Phys., 22 (2017), pp. 863-888 869

perform a numerical integration (via trapezoidal method) on an artificial numerical grid
for each axis distance from the particular grid-point in which to compute the value of
centrifugal potential, considering a very large set of Ncyl points (namely Ncyl = 1000 for
each grid-point and Ncyl = 10000 to find the integration constant). With such numerical
grid in the cylindrical radial coordinate, the aforementioned numerical integration for
the centrifugal potential is able to properly reproduce already known results [21] (see
Section 4). This allows us to study in a general numerical way every kind of differential
rotation law, without requiring an analytical form for centrifugal potential.

2.3 Stability

As already pointed out in [22], an important condition which the chosen rotation law
should satisfy is the stability condition against axisymmetric perturbation, provided by
the Solberg-Høiland criterion,

d
[
̟2Ω(̟)

]

d̟
>0, (2.21)

which states that the angular momentum per unit mass ̟2Ω must increase outwards
(c.f. [22], [26] and [27]), i. e. going from the pole to the equator (for a complete deriva-
tion of this criterion we refer to [28]). Thus, when choosing a rotation law, one must
always verify that Eq. (2.21) is satisfied in order to guarantee stability. Using Eq. (2.17) in
Eq. (2.21), it is easy to check that this condition is equivalent to

B̟2A2+B̟4−A2<0, (2.22)

which, using definitions given in Eqs. (2.19), (2.20) and in Table 1 for r and simplifying
for a factor Kr

2, in dimensionless form reads as:

b

ξeq
2
˜̟2a2ξs

2+
b

ξeq
2
˜̟4−a2ξs

2<0, (2.23)

where ˜̟=ξsin(θ) is the dimensionless cylindrical radius, ξeq is the dimensionless spher-
ical equatorial radius of the configuration and ξs is the dimensionless radius of the initial
spherical configuration. It is now evident that the stability condition may be violated for
particular choices of the two free-parameters. It could be interesting to have a sample
of what violation of criterion of Eq. (2.21) would imply. Anticipating some results, in
Fig. 1 the angular momentum per unit mass distribution along the distance from rotation
axis direction is plotted for three configurations, obtained with same differential rotation
exponential parameter b = 0.128 and axis ratio

req

rpol
= 1.05 but with different choices of

parameter a (namely 0.02,1.12,2.00). It can be noted that for sequences represented by
dashed and dash-dotted curves (respectively with a=1.12 and a=2.00) the condition of
Eq. (2.21) is obviously satisfied, leading to stable configurations and allowing the entire
sequence to be constructed (as the reader will see in figures of next section), while for
sequence represented by solid the curve, obtained with a=0.02, the angular momentum
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Figure 1: Angular momentum per unit mass distribution along distance from rotation axis for three sample
sequences obtained with same choice of parameter b=0.128 and axis ratio

req

rpol
=1.05, but different choices of

parameter a=0.02, 1.12, 2.00.

per unit mass distribution is slowly decreasing. The stability condition given by Eq. (2.21)
is not the only one to be controlled. In fact, another physical limit for the rotation which
is worth to take into account is the mass-shedding limit, namely the point in which the
rotation becomes too fast to allow stability. As already presented in [3] or [26] the afore-
mentioned limit for equilibrium configurations in the axisymmetric case occurs when the
effective gravity of the surface at the equator becomes zero, which means that the gravi-
tational force is perfectly balanced by the centrifugal one (and vice-versa). Actually, if the
angular velocity would increase further after this condition is reached, a portion of the to-
tal mass should begin to shed from the star, because the centrifugal force would become
greater than the gravitational one (the so-called “mass-shedding”). Using a polytropic
EOS and the constants for dimensionless form given by Table 1, one gets the following
criterion for dimensionless effective gravity

g̃eq eff=
∂σ

∂ξ

(
ξsurf eq,

π

2

)
≤0, (2.24)

necessary to avoid mass-shedding.

3 Results

3.1 Differentially rotating polytropes

In the following analyses, we have specifically adopted for the polytropic relation of
Eq. (2.16) the value n= 1.5. Adopting a multi-parametric differential rotation law, such
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the one given in Eq. (2.17), it is possible to have a very detailed control on the way the
star rotates. It is interesting to understand the different figures of equilibrium which
could result from different choices of these control parameters. Summarizing, to per-
form such an analysis, one can use the method given in [21] to build several equilibrium
sequences, each obtained by a fixed change in the axis ratio from one configuration to an-
other (see Section 2), taking into account the Solberg-Høiland criterion in Eq. (2.21) and
the mass-shedding condition given in Eq. (2.24). Thus, we decided to fix initial extrema
for parameters value, namely amin, amax, bmin and bmax and to compute respectively Na

and Nb linearly equally spaced parameter’s values between these extremes. Explicitly,
the parameters value are given by the following equation:

pk = pmin+

(
(pmax−pmin)×

(k−1)

(Np−1)

)
for k=1,··· ,Np, (3.1)

where with letter p the parameter’s name is intended, namely a or b. After having fixed
the set of values for free-parameters, several sequences can be computed starting from the
spherical configuration until some kind of instability is reached. However we notice that
it is possible that none of the two instability condition could be reached, thus we decided
to stop the computations when 101 configurations have been built (this in order to limit
the computation time). Precisely, the maximum axis ratio of equilibrium configurations
which is reached in this way is (1.05)101 ∼138.07.

In Fig. 2 the kind of instability reached (after the entire sequence is computed) for each
choice of the two rotational parameters is represented, with color convention given in the

Figure 2: Resulting equilibrium configurations for different choices of rotational parameters b and a of Eq. (2.17),
obtained with 15-angular times 40-radial points in the numerical grid. Colour convention is: green is for mass-
shedding criterion violation, yellow is for Solberg-Høiland criterion violation, blue is for concave hamburger
configurations, which after 101 configurations did not violate any stability criterion and purple is for concave
hamburger configuration which reach mass-shedding at equator.
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Figure 3: Same as Fig. 2, but with a 8×22 points numerical grid, where in vertical axes is indicated the
maximum value of dimensionless central angular velocity of the last stable configuration for each sequence of
configurations computed (squeezing for visual purposes).

caption. Here, computations where performed with a 15×40 points numerical grid. From
this figure, it is clear that, depending on the choice of rotational parameters, different
kinds of configurations can result. It is interesting to study the parameters’ space in
three dimensions, e.g. taking into account the maximum value of central dimensionless
angular velocity reached in each sequence.

In Fig. 3 a three-dimensional plot of the aforementioned kind is presented. It has
been obtained considering in x-y plane the same as Fig. 2 and in the vertical axes the
maximum dimensionless central angular velocity reached by configurations in each se-
quence of configurations just before the different kinds of instability occur, but consid-
ering a 8×22 points numerical grid. In particular, it is worth noting that the value of
central angular velocity goes well beyond the value of 0.2 for each sequence in which a
concave hamburger structure appears (this nomenclature follows [17]). This is due to the
fact that effective gravity slightly increases along these sequences, although in some cases
mass-shedding occurs before the limit of 101 configurations is reached. In addition, some
evident differences in color of points of Fig. 2 and Fig. 3 must be underlined manifest-
ing the strong grid-dependence of the model implemented. In Figs. 4, 5, 6 and 7 density
distributions of some configurations are plotted, revealing also the shape of configura-
tion. In particular, Fig. 4 is obtained through the solution of Lane-Emden equation (see
Appendix A) for the construction of the spherical configuration. From this configuration,
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Figure 4: Density distribution for spherical configuration obtained via solution of Lane-Emden equation (see
Appendix A).

Figure 5: Density distribution for an oblate configuration, obtained fixing b=0.0 and a=2.0 in Eqs. (2.17), (2.19)

and (2.20). The axis ratio value here is
req

rpol
= 1.71, thus the oblateness is evident. This kind of configuration

will undergo to mass-shedding instability, according to Fig. 2.

all the other configurations are obtained by increasing the axis ratio with the method de-
scribed in Section 2, fixing several values for differential rotation parameters. In Fig. 5,
fixing b= 0 and a= 2.0 in Eqs. (2.19) and (2.20) and increasing the axis ratio value up to
req

rpol
=1.71, produces an evident oblate structure, in which the equatorial centrifugal force

will increase until a mass-shedding instability is reached (see Fig. 2). Finally, Figs. 6 and
7 belong to the same sequence of configurations, obtained fixing b=0.128 and a=0.46 in
Eqs. (2.19) and (2.20), respectively with

req

rpol
=1.22 and 7.04. In these two figures the forma-
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Figure 6: Density distribution for a configuration which is starting to be a concave hamburger one, obtained

fixing b = 0.128 and a = 0.46 in Eqs. (2.17), (2.19) and (2.20). The axis ratio value here is
req

rpol
= 1.22 and

although it is nearly spherical an accurate observation shows that the differential rotation parameters’ value
begin to create a oblate hamburger structure.

Figure 7: Same as Fig. 6, but with axis ratio value here fixed as
req

rpol
=7.04.

tion of a ring-like structure is evident: as the axis ratio increases, mass density maximum
transfers from the center of configuration to a certain grid point and this process, with
further increasing in axis ratio, would produce a torus (although in present calculation
this result can not be seen, as the method is not appropriate for the study of ring-like
structures, see [21] for details; in particular, the present method does not allow to see the
hole formation leading to a toroidal configuration).
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Figure 8: Sample of configurations surfaces for different choices of parameters of differential rotation. Figures
show the last stable configurations just before computation is stopped because of aforementioned conditions
(namely mass-shedding, violation of Solberg-Høiland criterion or error in N-R method’s implementation). For
each row and column of figures, values of parameters a and b of Eqs. (2.19) and (2.20) are indicated respectively
with red and blue colors. Cusps are an artifact due to the absence of the graphical interpolation between two
grid points.

In Fig. 8 we show some samples of possible figures of equilibrium which can be ob-
tained using the differential rotation law of Eqs. (2.17), (2.19) and (2.20), with different
choices of free parameters a and b. In particular, each plot corresponds to the last stable
configuration which our code produced just before the computation has been stopped
due to aforementioned possible reasons (namely mass-shedding, violation of stability
criterion, exceeding in the number of configurations). The axis ratio req/rpol of each con-
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figuration is reported in parentheses above each plot. A spherical figure means that the
particular choice of rotational parameter leads immediately to some kind of instability
(the reader should refer specifically to Fig. 2). Before concluding this section, an impor-
tant consideration must be done. Our code adopts the Newton-Raphson (N-R) method
as discussed in Ref. [29] in order to compute the solution of a set of non-linear equations.
The code uses the LU decomposition method in order to invert the Jacobian matrix but
we found in some cases instabilities. In fact, the Newton-Raphson method implemented
could lead to local minima of the system, instead to an absolute one. For this reason
and because of the strong grid-dependence of Eriguchi and Mueller method, in some
cases, the computation could be interrupted for some particular choices of rotational pa-
rameters before one of the stopping conditions occurs. How can be possible to recover
these missing result? In these cases the grid-dependence study helps us. In fact, one
could perform some cross-checks between results obtained using several grids and this
guarantees the accuracy of results presented. In particular, for results presented in this
section, we compared results obtained with 8×22 and 15×40 grids. We also report in
Tables 2-4, the physically relevant values of some of the sequences computed, exemplify-
ing the different configurations of equilibrium obtained. It is worth noting that, although
usually convergence may be recovered changing the initial guess, this is not possible for
the present situation, because the computation is always starting from the spherically
symmetric configuration, obtained by the solution of Eq. (A.9). We also tried to reduce
the step of axis ratio from one configuration to another (e.g. 1.01), but neither this could
give any benefit to the convergence.

Table 2: Results of our numerical computations for an almost uniformly rotating sequence of equilibrium
configurations obtained fixing b=0 and a=2.0. This sequence will end in mass-shedding.

ξeq

ξpol
j2 T̃

|W̃|
Ũ
|W̃| M̃ V.T.

1.000 0.000000 0.000000 0.500 2.710 9.55e−4

1.158 0.972e−3 0.2861e−1 0.472 2.994 4.87e−4

1.276 0.165e−2 0.4607e−1 0.454 3.156 4.24e−4

1.407 0.234e−2 0.6242e−1 0.438 3.323 3.93e−4

1.551 0.304e−2 0.7720e−1 0.423 3.488 3.71e−4

1.710 0.369e−2 0.9003e−1 0.410 3.643 3.59e−4

1.886 0.425e−2 0.1002000 0.400 3.774 3.48e−4

2.078 0.465e−2 0.1069000 0.393 3.867 3.23e−4

2.292 0.487e−2 0.1102000 0.390 3.934 3.28e−4

3.2 Numerical tests

To test our results with ones from literature, we will refer to tables presented in [21],
for the so-called j-const rotation law, for choices of parameter A= 2.0rs, 0.2rs and 0.02rs
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Table 3: Results of our numerical computations for an almost uniformly rotating sequence of equilibrium
configurations obtained fixing b=0.0 and a=1.12. This sequence will end in mass-shedding although it will also
tend to have a concave hamburger structure.

ξeq

ξpol
j2 T

|W|
U
|W| M̃ V.T.

1.000 0.000000 0.000000 0.500 2.710 9.55e−4

1.477 0.307e−2 0.8168e−1 0.419 3.565 4.23e−4

2.407 0.853e−2 0.1873000 0.313 6.146 5.43e−4

3.920 0.133e−1 0.2583000 0.242 17.172 6.54e−4

6.385 0.166e−1 0.2763000 0.224 47.965 9.09e−4

10.401 0.187e−1 0.2867000 0.214 114.025 7.76e−4

16.943 0.201e−1 0.2949000 0.206 246.237 7.34e−4

27.598 0.212e−1 0.3016000 0.199 467.418 8.63e−4

Table 4: Results of our numerical computations for an almost uniformly rotating sequence of equilibrium
configurations obtained fixing b= 0.383 and a= 1.34. This sequence will have a concave hamburger structure
and it will not reach an instability although 101 configurations are computed.

ξeq

ξpol
j2 T

|W|
U
|W| M̃ V.T.

1.000 0.000000 0.000000 0.500 2.710 9.55e−4

2.079 0.698e−2 0.1620000 0.338 5.299 5.23e−4

3.733 0.128e−1 0.2527000 0.248 16.536 7.49e−4

6.705 0.162e−1 0.2714000 0.229 54.776 7.77e−4

12.041 0.182e−1 0.2813000 0.219 150.250 1.083e−3

21.623 0.193e−1 0.2884000 0.212 378.059 9.17e−4

38.833 0.201e−1 0.2936000 0.207 915.252 6.78e−4

69.739 0.207e−1 0.2977000 0.207 2165.079 7.81e−4

which are reported in the following Tables 5, 6 and 7. Precisely the definition of quantities
reported in each table is the same given in Table 1, with the exception of j2, the squared
dimensionless angular momentum, which in paper [21] is defined as

j2=
J̃2

(4π)
4
3 M̃

10
3 σ

n
3

max

, (3.2)

where dimensionless quantities are again defined in Table 1 and σmax is the maximum
value of the dimensionless density of configuration. It is worth noting that with rotation
law given in Eq. (2.17), keeping parameter B=0, one obtains exactly the same aforemen-
tioned j-const rotation law. We will now turn to compare results of our computations
with values given in Tables 5, 6 and 7, plotting each quantity as a function of axis ratio in
the subsequent figures. Calculations have been performed using several numerical grids,
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Table 5: Results for numerical computations taken from [21] A=2.0rs.

ξeq

ξpol
j2 T

|W|
U
|W| V.T.

1.050 2.966e−4 9.183e−3 0.4911 5.7e−4

1.276 1.622e−3 4.530e−2 0.4549 4.8e−4

1.551 3.0228e−3 7.689e−2 0.4233 4.1e−4

1.886 4.244e−3 9.991e−2 0.4003 4.3e−4

2.292 4.766e−3 1.086e−1 0.3916 4.3e−4

Table 6: Results for numerical computations taken from [21] A=0.2rs.

ξeq

ξpol
j2 T

|W|
U
|W| V.T.

1.050 1.521e−4 7.236e−3 0.4931 5.7e−4

1.340 9.305e−4 4.323e−2 0.4570 5.3e−4

1.710 1.789e−3 7.514e−2 0.4251 4.9e−4

2.183 2.616e−3 1.022e−1 0.3991 5.0e−4

2.786 3.446e−3 1.220e−1 0.3783 5.1e−4

3.386 4.089e−3 1.356e−1 0.3647 5.0e−4

4.538 5.037e−3 1.528e−1 0.3475 4.6e−4

5.792 5.840e−3 1.651e−1 0.3352 4.6e−4

7.392 6.639e−3 1.762e−1 0.3240 4.7e−4

9.434 7.446e−3 1.864e−1 0.3138 4.8e−4

12.04 8.290e−3 1.961e−1 0.3042 4.6e−4

Table 7: Results for numerical computations taken from [21] A=0.02rs.

ξeq

ξpol
j2 T

|W|
U
|W| V.T.

1.050 3.393e−6 4.472e−4 0.4998 5.8e−4

1.710 5.310e−5 6.282e−3 0.4940 5.6e−4

2.786 1.253e−4 1.302e−2 0.4872 5.5e−4

3.920 1.896e−4 1.808e−2 0.4822 5.5e−4

6.385 3.098e−4 2.596e−2 0.4743 5.5e−4

9.434 4.392e−4 3.331e−2 0.4670 5.5e−4

14.64 6.332e−4 4.305e−2 0.4572 5.4e−4

25.03 9.597e−4 5.705e−2 0.4432 5.4e−4

38.83 1.315e−3 6.996e−2 0.4303 5.2e−4

60.24 1.771e−3 8.428e−2 0.4160 5.1e−4

89.01 2.277e−3 9.806e−2 0.4022 5.0e−4
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Figure 9: Comparison of results obtained with our own implementation of method by Eriguchi and Mueller and
results from Table 5 (thus taking A=2.0rs), where dimensionless squared angular momentum j2 is plotted as

a function of axis ratio
req

rpol
.

to obtain different resolution in configurations. Namely, we considered NT×NR =8×22
(green dots in figures), 12×34 (blue triangles), 15×40 (red squares) and 20×60 (purple
stars) and in each plot results by Eriguchi and Mueller are represented by black dia-
monds. In addition, three different values of the rotational parameter have been consid-
ered, analogously to results presented in Tables 5, 6 and 7. The step factor for axis ratio
change has been taken as 1.05 for the construction of each sequence.

From Figs. 2, 3, 9, 10, 11, 12, 13, 14, 15, 16 and 17 a grid dependent behavior arises
from computation: in effect we could not obtain the entire sequences of configurations
for all grids considered. For example, if one takes a grid of 10×30 points, the code reaches
an error in the Newton-Raphson method. This instability of the code can occur due to
the method’s implementation. In addition, considering again a step factor “too” small for
axis ratio from one configuration to the subsequent, some numerical oscillations occur,
most of all in the first sequence of configurations, that is the one in which A= 2.0rs (or
in other words the most rigid one). On the other hand, from these figures the reader
can easily notice that deviations from results of paper [21] are negligible thus we may
conclude that our code is well calibrated. Moreover, deviations between results obtained
with grid 15×40 (red squares) and 20×60 (purple stars) could not be observed, thus, the
suggestion given in [21] to use a 15×40 grid to obtain accurate results is confirmed.

In conclusion, it is worth to remember the softening condition taken in [33], where
variables are updated from one iteration to another with a softening parameter, usually
between 0.5 and 1.0, which often reduce numerical oscillations increasing the rate of con-
vergence. Further studies in this direction would be useful in the present framework.
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Figure 10: Same as Fig. 9 but in comparison with results from Table 6 (thus taking A=0.2rs).

Figure 11: Same as Fig. 9 but in comparison with results from Table 7 (thus taking A=0.02rs).

4 Summary and discussion

In this paper we have implemented a multi-parametric rotation law proposed in [25] with
the method introduced by Eriguchi and Mueller in [21] and studied in detail the corre-
sponding configurations. We had treated the stability of differentially rotating polytropic
stars against violations of Solberg-Høiland criterion and mass-shedding, analysing the
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Figure 12: Comparison of results obtained with our own implementation of method by Eriguchi and Mueller
and results form Table 5 (thus taking A=2.0rs), where ratio between rotational kinetic energy and gravitational

potential energy is plotted as a function of axis ratio
req

rpol
.

Figure 13: Same as Fig. 12 but in comparison with results from Table 6 (thus taking A=0.2rs).

free-parameters’ space in search of sort of catastrophic points at which small changes in
free-parameters can lead to relevant changes in the equilibrium configuration (e.g. from
a concave hamburger to an ellipsoidal one) or to instabilities. It is worth noting that the
rotation law as a function of the distance from the axis of rotation (namely the cylindrical
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Figure 14: Same as Fig. 12 but in comparison with results from Table 7 (thus taking A=0.02rs).

Figure 15: Comparison of results obtained with our own implementation of method by Eriguchi and Mueller and
results form Table 5 (thus taking A= 2.0rs), where ratio between thermal energy and gravitational potential

energy is plotted as a function of axis ratio
req

rpol
.

radius) introduced in Eq. (2.17) in a strictly decreasing one. For future studies, we would
like to stress the necessity to focus on achievement of an improved convergence, as al-
ready mentioned in Section 3, possibly obtained by introducing a softening condition as
the one presented in [33]. In addition, it would be interesting also to implement a non-
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Figure 16: Same as Fig. 15 but in comparison with results from Table 6 (thus taking A=0.2rs).

Figure 17: Same as Fig. 15 but in comparison with results from Table 7 (thus taking A=0.02rs).

completely decreasing rotation law, where angular velocity may also increase in small
portion of the configuration, e.g. one interesting case could be, for instance, the one in
which the angular velocity in not a strictly decreasing function of the cylindrical radius
as in the case of the coalescence of the two component of a binary system (for example of
white dwarfs), during merging. In effect the idea to perform numerical integration in or-
der to obtain the centrifugal potential allows one to study every kind of rotation law, and
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studying the free-parameters space as in the way we propose, should in general allow to
locate instability points. We would also focus the attention to the fact that the method
presented in [21] is in principle a general one, thus it should allow to consider different
kinds of EOS. In the present case, all previously presented results were obtained with a
n = 1.5 polytropic EOS, but it could also be interesting to treat the case of a numerical
EOS, in which no analytical relation is known.

Appendix

A Numerical implementation and physical properties

A.1 Numerical method

Once an EOS and a rotation law are supplied, to solve the system of equations defined by
Eqs. (2.14), (2.15) and (2.12), in [21] a numerical method has been presented in which the
interior of the star is discretized in a mesh of points. Considering spherical coordinates,
a grid is built dividing the domain into NT points along the θ-direction, and in NR points
along each r-direction. Grid points are defined as follows:

θi =
π

2

i−1

NT−1
, i=1,··· ,NT, (A.1)

rij = rj(θi)= rsurf(θi)
j

NR
, i=1,··· ,NT, j=1,··· ,NR. (A.2)

In particular, this grid does not consider the center of configuration because it has to
be treated separately from other points. Note in addition that the angular values vary
between 0 and π

2 , as equatorial symmetry is taken into account, while there is no depen-
dence on the ϕ coordinate as expected by axial symmetry. Then, with the use of dimen-
sionless variables as given in Table 1 it is possible to discretize the equations. Explicitly
writing the system for the fixed EOS and the rotation law, one can note that a model is
completely determined by the prescription of polytropic constant K, central density ρc

and angular velocity Ω (this last condition holds in the case of uniform rotation; in case
of differential rotation one should instead fix the central value of angular velocity only,
knowing that the values in all other points are given by the chosen rotation law). In the
method by Eriguchi and Mueller [21], it is stressed that fixing the angular velocity is not
the best way to solve the system of equation. Instead a better choice for numerical calcu-

lation is to fix the axis ratio, namely
req

rpol
=

rNR
( π

2 )

rNR
(0) =

ξeq

ξpol
, the last equality obtained by the

introduction of the dimensionless radial coordinate. This condition gives one last equa-
tion which will make the system solvable (see discussion on the number of equations and
variables at the end of the present section). Now we can write the discretized system of
equations, which will read as follows:
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(i) at the centre of configuration:

1+Ψcentre =C, (A.3)

Ψcentre=−
NT

∑
p=1

sin(θp)Θp

NR

∑
q=1

ξpqRpqσn
pq; (A.4)

(ii) at all the grid points:

σij+Ψij−
1

2
νξ2

ij sin(θi)
2=C, (A.5)

Ψij =−
NT

∑
p=1

sin(θp)Θp

NR

∑
q=1

ξ2
pqRpqσn

pq

·
∞

∑
m=0

f2m(ξij,ξpq)P2n(cos(θi))P2n(cos(θp))σ
n
pq; (A.6)

(iii) boundary conditions to define the surface:

σi,NR
=0, for i=1,··· ,NT ; (A.7)

(iv) a last equation for the axis ratio:

ξNT ,NR

ξ1,NR

=λ. (A.8)

To note that in Eqs. (A.4) and (A.6), the integral over the volume is discretized. In particu-
lar, the terms Θp and Rpq denote respectively angular and radial grid spacings multiplied
by weight factors which depend on the numerical integration scheme which in radial di-
rection is the Simpson rule while in angular direction is the trapezoidal rule. The system
of NT×(NR+1)+2 equations for the same number of unknowns (namely NT surface
radii, NT×NR densities in each grid-point, the central value of angular velocity and the
integration constant which turns out to be the gravitational potential at the pole) can be
solved using an iterative numerical method, such the one called the Newton-Raphson’s.
The Newton-Raphson’s method in [21] starts from a spherical (non-rotating) configura-
tion and gradually increases the axis ratio of the configuration by a constant factor near
1 (for example 1.05 or less) to obtain a new configuration and then repeats the procedure
until a certain stopping condition is reached. The computation of a spherically symmet-
ric model (meant as the density distribution and the surface radius) of a polytropic star
of index n is a well-known problem in astrophysics and it was studied by many authors
in the past (see e.g. [30]). The equation to solve, namely the Lane-Emden equation, reads

1

ξ2

∂

∂ξ

(
ξ2 ∂σ(ξ)

∂ξ

)
+σ(ξ)n =0, (A.9)
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where we have adopted the same notation for dimensionless variables as in the Section 1.
One can solve Eq. (A.9) numerically, finding σ(ξ), imposing as initial conditions

σ(0)=1, (A.10a)

σ′(0)=0. (A.10b)

Through a Newton-Raphson iteration scheme, one can also find the zero of function σ(ξ),
which represents the surface radius of the spherical solution. Finally, one can put ν=ν0=0
and find C≡C0 with expression given by Eq. (A.5) in which Eq. (A.6) can be used.

A.2 Definition of relevant physical quantities

Once the density distribution and surface radii of a configuration are computed, one
could also evaluate its physical properties (cf. [27] and [31]). Firstly, the rotational kinetic
energy of a rotating configuration can be found with the following expression

T=
1

2

∫

V
ρ̟2Ω2dV, (A.11)

where V is the volume, ̟ is the cylindrical radius (distance from the axis of rotation,
thus ̟ = rsin(θ) when spherical coordinates are considered) and ρ represents as usual
the density. The gravitational potential energy, on the other hand, can be computed as

W=−1

2
G
∫

V
ρΦgdV, (A.12)

being G the constant of gravitation and Φg the gravitational potential, which can be com-
puted with Eq. (2.11). The internal energy of the system reads as

U=
1

γ−1

∫

V
ρdV, (A.13)

where γ is the polytropic adiabatic exponent defined as γ = 1+ 1
n . Obviously the total

mass of the configuration is simply

M=
∫

V
ρdV, (A.14)

while the total angular momentum is given by

J=
∫

V
ρΩ̟2dV. (A.15)

Finally another quantity which is worth computing is the value of virial test, which in [21]
(just as in [32]) is expressed in the following form

V.T.=

∣∣∣∣
(2T+W+3(γ−1)U)

W

∣∣∣∣, (A.16)

and it should be zero in order to have an accurate model.
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We compute the binding energy and angular momentum of a test particle at the last stable circular orbit
(LSO) on the equatorial plane around a general relativistic, rotating neutron star (NS). We present simple,
analytic, but accurate formulas for these quantities that fit the numerical results and which can be used in
several astrophysical applications. We demonstrate the accuracy of these formulas for three different
equations of state (EOS) based on nuclear relativistic mean-field theory models and argue that they should
remain still valid for any NS EOS that satisfy current astrophysical constraints. We compare and contrast
our numerical results with the corresponding ones for the Kerr metric characterized by the same mass and
angular momentum.

DOI: 10.1103/PhysRevD.96.024046

I. INTRODUCTION

It is well known that the knowledge of the properties of
the circular orbits of test particles, e.g., energy and angular
momentum around compact objects such as neutron stars
(NSs) and black holes (BHs) are of paramount importance
for the understanding of several astrophysical scenarios
such as the accretion processes in binary x-ray sources [1].
The precise knowledge of NS properties is essential for

the correct description of the NS structure evolution during
the accretion process. This is particulary relevant in the
evolution of accreting NSs in x-ray binaries leading to the
NS spin-up and final formation of the millisecond recycled
pulsars [2]. It is by now clear that the inclusion in the
accretion process of subtle effects such as the NS binding
energy [3], and the precise energy and angular momentum
trasnferred to the NS including general relativistic effects
and the NS interior compression [4,5], can have an impact
in the determination of the correct evolutionary scenario
and therefore in the determination of the binary progenitors
of millisecond pulsars (see, e.g., Refs. [6–8]).
On the other hand, it has been shown that such an

information becomes also relevant within the induced
gravitational paradigm of gamma-ray bursts (GRBs),
where a hypercritical accretion process is triggered onto
a NS by the supernova explosion of a binary companion

carbon-oxygen core [9–13]. In contrast to binary x-ray
sources in which the NS accretes matter from a companion
at sub-Eddington rates _M≡dM=dt≲10−8 M⊙y−1, hence
evolving quietly on very long time scales tacc ≡M= _M≳
108 y, the aforementioned hypercritical accretion process
in GRBs leads to a NS which evolves in time scales as
short as tacc ¼ M= _M ∼ 102 s. In such a short time interval,
the NS can reach either the mass-shedding or the secular
axisymmetric instability with consequent gravitational
collapse to a BH (see, e.g., Refs. [10,11,13]).
It is clear that the description of processes similar to

the above one needs the knowledge of the properties of the
NS interior, of its exterior spacetime, and of the circular
orbits around it. The aim of this article is to provide these
ingredients.
Uniformly rotating NS equilibrium configurations

form a two-parameter family of solutions characterized
by baryonic mass Mb and angular momentum J. We can
write the evolution of a uniformly rotating NS gravitational
mass M as:

_M ¼
� ∂M
∂Mb

�
J

_Mb þ
�∂M
∂J

�
Mb

_J; ð1Þ

where _Mb and _J are the amount of baryonic mass and
angular momentum being transferred to the NS per-unit-
time, namely the mass accretion rate and torque acting onto
the NS. The two above partial derivatives have to be
obtained from the relation MðMb; JÞ which is obtained
numerically. We have recently found in Ref. [14] that,
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independent on the nuclear equation of state (EOS), such a
relation for uniformly rotating NSs is well fitted by

Mb

M⊙
¼ M

M⊙
þ 13

200

�
M
M⊙

�
2
�
1 −

1

130
j1.7

�
; ð2Þ

where j≡ cJ=ðGM2⊙Þ. This relation has been shown to be
very accurate also in the description of the binding energy
of other nuclear EOS models including hyperonic and
hybrid ones [15].
The total energy released in an accretion process is given

by the amount of gravitational energy gained by the
material in its way to the NS surface and that is not spent
in increasing the gravitational binding energy of the NS,
namely (see, e.g., [11,16]):

Lacc ¼ ð _Mb − _MÞc2

¼ _Mbc2
�
1 −

�∂M
∂J

�
Mb

_J
_Mb

−
� ∂M
∂Mb

�
J

�
; ð3Þ

where we have used Eq. (1).
If the accretion of matter comes from a disk-like

structure, such a total radiated energy Lacc is given by
the sum of the energy radiated in the disk, Ldisk, and the
energy radiated at the NS surface when the material is
incorporated to the star, Ls, i.e.

Lacc ¼ Ls þ Ldisk: ð4Þ

In the case when the magnetic field effects can be
neglected, the inner boundary of an accretion disk around
a compact object is assumed to be given by the radius of the
last stable circular orbit (hereafter LSO) of a test particle of
mass μ ≪ M. Thus, the knowledge of the energy and
angular momentum of a test particle at the LSO is essential
for the determination of the evolution of the NS during the
accretion process. We denote hereafter by ~E≡ E=μ and
~L≡ L=ðGμM=cÞ the energy per-unit-mass and dimension-
less angular momentum of a particle at the LSO.
From energy and angular momentum conservation we

have that the mass-energy and angular momentum trans-
ferred to the NS from a particle infalling from the LSO are
(see, e.g., Ref. [16]):

_Mc2 ¼ ~E _Mbc2 − Ls ð5Þ

_J ¼ _Mb
~L
GM
c

: ð6Þ

Equations (1)–(6) lead, therefore, to the surface luminosity,

Ls ¼ _Mbc2
�
~E −

�∂M
∂J

�
Mb

~L
GM
c

−
� ∂M
∂Mb

�
J

�
; ð7Þ

and to the disk luminosity

Ldisk ≡ Lacc − Ls ¼ _Mbc2ð1 − ~EÞ: ð8Þ

From Eqs. (1)–(6), one can compute the time evolution
of the mass and angular momentum of the NS in an
accretion process, providing we know how ~E and ~L depend
on the gravitational (or on the baryonic mass) and angular
momentum of the NS. At the same time, Eqs. (7) and (8)
give us, respectively, the surface and disk luminosities
which are important from the observational point of view. It
is worth to mention that the contribution of Ls and Ldisk to
the total radiated energy can be comparable depending on
the angular momentum [16].
In this article we present simple but accurate fitting

formulas of ~EðM; JÞ and ~LðM; JÞ both for corotating and
counter-rotating orbits around rotating NS and are valid for
any rotation ratewithin theNS region of stability boundedby
mass-shedding and secular axisymmetric instability limits.
We show below that the aforementioned formulas for

~EðM; JÞ and ~LðM; JÞ are shown to be the same for three
different nuclear EOS based on relativistic mean-field
theory, suggesting a possible universal character. We
elaborate on this concept and show that current astrophysi-
cal constraints imply that, indeed, our formulas should
remain valid for other astrophysically relevant set of EOS
and for the relevant NS masses leading to an LSO located
outside the NS surface.
Despite the complexity of NSs and the still debated EOS

governing their interior physics, there have been discovered
features which seem to be EOS-independent such as the
relation between the moment of inertia, Love number and
quadrupole moment, i.e. the I-Love-Q relation [17,18], and
the NS binding energy shown in Eq. (2) [14]. We show in
this work that indeed also the energy and angular momen-
tum of the LSO around rotating NSs are very weakly EOS-
dependent properties in the limits established by current
astrophysical constraints. All the above allow the con-
struction of a set of analytic and/or semianalytic set of NS
properties that can be used in a variety of NS astrophysical
scenarios as the accretion process exemplified above.
The article is organized as follows. In Sec. II, we compute

the interior and exterior spacetime geometry of uniformly
rotating NSs. The general formulation of the problem of
circular orbits is recalled in Sec. III. Then, in Sec. IV, we
compute the configurations for which there exists a LSO
outside the NS surface. In Sec. V, we focus on those
configurations and compute the binding energy and angular
momentum of the LSO. Finally, we shall present simple but
very accurate fitting formulas for these quantities.

II. NEUTRON STAR STRUCTURE AND
SPACETIME GEOMETRY

We first compute the interior and exterior spacetime
of uniformly rotating NSs in order to derive the equations
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of motion for the test particle. Following [14], we
consider the stationary axisymmetric spacetime metric
in quasi-isotropic coordinates and in geometric units
c ¼ G ¼ 1 [19],

ds2 ¼ −eγþρdt2 þ eγ−ρr2sin2θðdϕ − ωdtÞ2
þ e2λðdr2 þ r2dθ2Þ; ð9Þ

where γ, ρ, ω and λ depend only on variables r
and θ.

It is useful to introduce the variable eψ ¼ r sinðθÞBe−ν,
being again B ¼ Bðr; θÞ. The energy-momentum tensor of
the NS interior is given by

Tαβ ¼ ðεþ PÞuαuβ þ Pgαβ; ð10Þ

where ε and P denote the energy density and pressure
of the fluid, and uα is the fluid 4-velocity. Thus, with the
metric given by equation (9) and the above energy-
momentum tensor, one can write the field equations as
(setting ζ ¼ λþ ν):

∇ · ðB∇νÞ ¼ 1

2
r2sin2θB3e−4ν∇ω ·∇ωþ 4πBe2ζ−2ν

�ðεþ PÞð1þ v2Þ
1 − v2

þ 2P

�
; ð11aÞ

∇ · ðr2 sin2 θB3e−4ν∇ωÞ ¼ −16πr sin θB2e2ζ−4ν
ðεþ PÞv
1 − v2

; ð11bÞ

∇ · ðr sinðθÞ∇BÞ ¼ 16πr sin θBe2ζ−2νP; ð11cÞ

ζ;μ ¼ −
�
ð1 − μ2Þ

�
1þ r

B;r

B

�
2

þ
�
μ − ð1 − μ2ÞB;r

B

�
2
�

−1
�
1

2
B−1fr2B;rr − ½ð1 − μ2ÞB;μ�;μ − 2μB;μg

×

�
−μþ ð1 − μ2ÞB;μ

B

�
þ r

B;r

B

�
1

2
μþ μr

B;r

B
þ 1

2
ð1 − μ2ÞB;μ

B

�
þ 3

2

B;μ

B

�
−μ2 þ μð1 − μ2ÞB;μ

B

�

− ð1 − μ2Þr B;μr

B

�
1þ r

B;r

B

�
− μr2ðν;rÞ2 − 2ð1 − μ2Þrν;μν;r þ μð1 − μ2Þðν;μÞ2 − 2ð1 − μ2Þr2B−1B;rν;μν;r

þ ð1 − μ2ÞB−1B;μ½r2ðν;rÞ2 − ð1 − μ2Þðν;μÞ2� þ ð1 − μ2ÞB2e−4ν
�
1

4
μr4ðω;rÞ2 þ

1

2
ð1 − μ2Þr3ω;μω;r

−
1

4
μð1 − μ2Þr2ðω;μÞ2 þ

1

2
ð1 − μ2Þr4B−1B;rω;μω;r −

1

4
ð1 − μ2Þr2B−1B;μ½r2ðω;rÞ2 − ð−μ2Þðω;μÞ2�

��
; ð11dÞ

where, in the equation for ζ;μ, we introduced μ≡ cosðθÞ.
The NS interior is made of a core and a crust. The core of

the star has densities higher than the nuclear value,
ρnuc ≈ 3 × 1014 g cm−3, and it is composed by a degenerate
gas of baryons (e.g. neutrons, protons, hyperons) and
leptons (e.g. electrons and muons). The crust, in its outer
region (ρ ≤ ρdrip ≈ 4.3 × 1011 g cm−3), is composed of
ions and electrons, and in the so-called inner crust
(ρdrip < ρ < ρnuc), there are also free neutrons that drip
out from the nuclei. For the crust, we adopt the Baym-
Pethick-Sutherland (BPS) EOS [20]. For the core, we adopt
instead the relativistic mean-field (RMF) theory models
within the extension of the formulation of Boguta and
Bodmer [21] with massive scalar and vector meson
mediators (σ, ω, and ρ mesons). In this work, we present
results for NSs constructed using the NL3 [22], TM1 [23]
and GM1 [24,25] EOS.
Our preference for EOS based on RMF models is

because they satisfy important properties such as Lorentz

covariance, they are self-consistent relativistic models and
therefore they do not violate causality, and they are
successful in providing an intrinsic inclusion of spin as
well as a simple mechanism of saturation of nuclear matter.
We refer to Refs. [26,27] for recent extensive studies of
RMF models both from the nuclear experiments point of
view and from the astrophysical one. The above three
representative models that we use in this work satisfy the
astrophysical constraint of producing nonrotating, stable
NSs up to masses larger than the most massive NS
observed, PSR J0348þ0432, with M ¼ 2.01� 0.04 M⊙
[28]. The mass-radius relation for nonrotating models
obtained with these three EOS is shown in Fig. 1.
With the knowledge of the EOS we can compute

equilibrium configurations integrating the above Einstein
equations for suitable initial conditions, e.g. central density
and angular momentum (or angular velocity) of the star.
Then the properties of the NS such as the total gravitational
mass, the total baryon mass, polar and equatorial radii,
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moment of inertia, quadrupole moment, etc, can be
obtained as a function of the central density and angular
momentum.
The equilibrium configurations are limited by the

Keplerian, mass-shedding, or maximally rotating sequence,
and by the secular axisymmetric instability. At the
Keplerian sequence the dimensionless angular momentum
a=M≡ cJ=ðGM2Þ, where a ¼ J=M is the angular mom-
entum per-unit-mass, reaches a maximum value of
amax=M ≈ 0.7, independently on the EOS [14]. This value
is lower than the maximum dimensionless angular momen-
tum parameter of a rotating BH given by the extreme Kerr
solution, i.e. amax;BH=MBH ¼ 1.
The secular axisymmetric instability sequence separates

stable from unstable stars against axisymmetric perturba-
tions. The turning-point method [29] gives a sufficient
condition for the onset of this instability. Such a sequence,
for the present EOS, is well fitted by

Mcrit
NS ¼ MJ¼0

crit ð1þ kjpNSÞ; ð12Þ

with a maximum error of 0.45% [14]. The parameters k and
p and MJ¼0

crit depend of the nuclear EOS (see Table I). The
latter, the critical NS mass in the nonrotating case, is as
expeceted below the upper bound to the critical mass by
Rhoades and Ruffini, 3.2 M⊙ [30].

III. LAST STABLE CIRCULAR ORBIT

We are interested in circular orbits of particles on the
equatorial plane of the NS, that is to fix θ ¼ π

2
(see [31]).

It is well known that a practical way to analyze the problem
of the circular orbits is through the effective potential
Vðr; ~E; ~LÞ (see, e.g., Ruffini and Wheeler 1969 in Sec. 104
in [32]; see also Refs. [33,34]), whose turning points give
us the radii of the circular orbits. For the metric given by
Eq. (9), one can express the effective potential Vðr; ~E; ~LÞ as
follows [19]:

Vðr; ~E; ~LÞ ¼ e2λþγ

�
dr
dτ

�
2

¼ e−ρð ~E − ω ~LÞ2 − eγ −
eρ

r2
~L2; ð13Þ

where τ is the proper time of the free particle. In order to
obtain a circular orbit, one should impose the conditions

V ¼ V;r ¼ 0; ð14Þ

and from equations (13) and (14), one obtains

~E ¼ ~ve
γþρ
2

ð1 − ~v2Þ12 þ ω ~L; ð15Þ

~L ¼ ~vre
γ−ρ
2

ð1 − ~v2Þ12 ; ð16Þ

with ~v the velocity as measured by the zero angular
momentum observer (ZAMO):

~v ¼ 1

2þ rðγ;r − ρ;rÞ
fe−ρr2ω;r � ½e−2ρr4ω;r

2þ

þ 2rðγ;r þ ρ;rÞ þ r2ðγ;r2 − ρ;r
2Þ�12g; ð17Þ

where the upper (plus) sign is for corotating particles and
the lower (minus) sign is for counter-rotating particles.
Stable orbits are those for which the above equations are

satisfied and, in addition, V;rr ≥ 0, where the equality
corresponds to the LSO. We shall denote the radius of the
LSO to as rlso. Depending upon the mass and angular
momentum of the NS, we have situations in which
rlso > req, being req the coordinate equatorial radius of
the star, and situations in which stable circular orbits exist
down to the stellar surface, namely rlso ¼ req.

A. Location of the last stable circular orbit

We now check the conditions under which the LSO
actually resides outside the NS. It is then clear that the
condition of the LSO to lie outside the NS, i.e. the condition
rlso ≥ req, establishes a minimummass (for a given value of
the angular momentum), or conversely, a maximum angular

FIG. 1. Mass-radius relation for nonrotating NSs for the three
EOS NL3 (green solid curve), TM1 (red dashed curve) and GM1
(blue dotted-dashed curve) used in this work. The gray dashed
horizontal line shows the mass of the heaviest NS observed, PSR
J0348þ 0432, M ¼ 2.01� 0.04 M⊙ [28].

TABLE I. Parameters needed to compute the secular axisym-
metric instability sequence as given by Eq. (12).

EOS MJ¼0
crit (M⊙) p k

NL3 2.81 1.68 0.006
GM1 2.39 1.69 0.011
TM1 2.20 1.61 0.017
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momentum (for a given mass), over which this condition is
satisfied. In the case J ¼ 0, namely for nonrotating stars, it
is known that the LSO is located at rJ¼0

lso ¼ 6GM=c2, and
therefore the minimum mass to have this orbit outside the
star is obtained for the configuration with radius R ¼ rJ¼0

lso .
For the NL3, TM1 and GM1 EOS, in the case of corotating
particles this minimum mass is ½1.68; 1.61; 1.57� M⊙,
respectively. On the other hand, for counter-rotating par-
ticles, this minimum mass is given for the maximally
rotating (Keplerian) configuration and for the NL3, TM1
and GM1 EOS is ½1.42; 1.41; 1.34� M⊙.
Fig. 2 shows the results in the rotating case for the GM1

EOS and for corotating and counter-rotating orbits. The
stable NS models reside in the interior region bounded by
the static (solid red curve), Keplerian (solid green curve),
and secular instability (solid black curve) sequences. The
configurations along the dashed curve have the radius of
the LSO equal to the NS equatorial radius, i.e. rlso ¼ Req.
Only the configurations on the right side of this curve have

rlso > Req. The configurations on the left side of the curve
have stable circular orbits down to the NS surface. The
dashed-dotted curve is the analogous limit for orbits of
counter-rotating particles, thus the configurations under
this curve have stable circular orbits down to the NS
surface, while the configurations above it have rlso > Req.
For the corotating case we can obtain a fitting function of

the minimumNSmass,Mmin, for which given a value of the
angular momentum one has rLSO ≥ Req. For the selected
EOS such a function is:

Mmin

M⊙
¼ Mj¼0

min

M⊙
þ c1jc2 ; ð18Þ

where Mj¼0
min , c1 and c2 are dimensionless constants that

depend on the EOS. We report the values of these fitting
parameters in Table II together the maximum relative error
and the values of NS mass for which this maximum error is
obtained. Clearly, the above fitting formula is valid up to
the configuration that intersects the Keplerian sequence,
namely where the dashed black curve intersects the solid
green curve in Fig. 2. The value of the dimensionless
angular momentum of that configuration, which we denote
here to as jmax, is reported in Table II. It can be easily
checked that introducing the value of jmax given in Table II
into the Eq. (18), one obtains the correct value of the mass
of this precise configuration on the Keplerian sequence.
It is important to stress that Eq. (18) is not EOS-

independent and it is here presented with the only purpose
of providing the reader a complete set of analytic formulas
that simplify the analysis of several astrophysical scenarios.
The information provided by Eq. (18) is therefore com-
plementary to the one recalled in Sec. I on the NS binding
energy and accretion luminosity, and the one on the LSO
energy and angular momentum that is obtained in the
next Sec. V.

B. Orbital binding energy and angular momentum

We now focus on the properties of the LSO, therefore we
deal with NS configurations with rLSO ≥ Req. We here
present the numerical results obtained through integrations
performed with RNS public code (http://www.gravity.phys
.uwm.edu/rns/) for NSs considering mass-constant sequen-
ces within the region of stability bounded by the spherical
symmetric case (nonrotating), by the Keplerian sequence

FIG. 2. Mass versus central density of uniformly rotating NSs
with the GM1 EOS. The region of stability is bounded by the
nonrotating sequence (solid red curve), the maximally rotating
models (solid green curve), namely the mass-shedding limit or
Keplerian sequence, and the secular axisymmetric stability limit
(solid black curve). The dashed curve corresponds to configu-
rations for which the LSO of corotating particles equals the NS
equatorial radius: configurations on the right side of it possess an
LSO exterior to their surface while configurations on the left side
of the curve, have stable circular orbits down to the NS surface.
Analogously, the dashed-dotted curve corresponds to configura-
tions for which the LSO of counter-rotating particles equals the
NS equatorial radius: configurations above it possess an LSO
exterior to their surface while, configurations below it, have
stable circular orbits down to the NS surface.

TABLE II. Parameters of the fitting formulas given by Eq. (18)
for the three EOS used, together with maximum relative errors.

EOS Mj¼0
min [M⊙] c1 c2 Max rel errð%Þ jmax

NL3 1.68 0.225 0.94 1.71 6.31
TM1 1.61 0.238 0.94 1.68 4.47
GM1 1.57 0.242 0.94 1.66 4.98
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(mass-shedding) and by the secular axisymmetric insta-
bility limit. We shall refer to as supramassive NSs
those with a mass larger than the critical mass of non-
rotating NSs, i.e. configurations without a stable non-
rotating counterpart.
We show in Figs. 3–6 the results of our computations

for corotating and counter-rotating orbits around NSs
obeying the GM1 EOS. The results for the other EOS

FIG. 3. Binding energy (Ebind=μ≡ 1 − ~E) of corotating test
particles in the LSO for constant mass sequences of NS
configurations versus the dimensionless angular momentum
a=M ¼ cJ=ðGM2Þ. We compare and contrast our results with
the values given by the Schwarzschild and Kerr solutions. In this
example the NSs obey the GM1 EOS.

FIG. 4. Dimensionless angular momentum (jLj=ðμMÞ) of
corotating test particles in the LSO for constant mass sequences
of NS configurations versus the dimensionless angular momen-
tum a=M ¼ cJ=ðGM2Þ. We compare and contrast our results
with the values given by the Schwarzschild and Kerr solutions. In
this example the NSs obey the GM1 EOS.

FIG. 5. Same as Fig. 3 but for counter-rotating orbits.

FIG. 6. Same as Fig. 6 but for counter-rotating orbits.
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are analogous. Fig. 3 shows the binding energy per-unit-
mass, Ebind=μ ¼ 1 − ~E, as a function of the dimensionless
angular momentum parameter, a=M ¼ cJ=ðGM2Þ, for
selected constant mass-sequences in case of corotating
particles. Fig. 5 shows the results for counter-rotating
particles. Fig. 4 shows the modulus of the dimensionless
angular momentum of particles in the LSO, jLj=ðGμM=cÞ,
as a function of a=M ¼ cJ=ðGM2Þ for the same constant
mass sequences in case of corotating particles. Fig. 6
shows the results for counter-rotating particles.

It can be seen that the sequences are bounded by the
Keplerian (mass-shedding) sequence, i.e. a=M ≈ 0.7, by
the limit rLSO ¼ Req, by the secular axisymmetric insta-
bility and by the nonrotating limit at a=M ¼ 0 (except
the supramassive sequences which have no static counter-
part), for which the LSO properties have the well-known
results of the Schwarzschild exterior solution. We recall
that j ¼ cJ=ðGM2⊙Þ ¼ ða=MÞðM=M⊙Þ2. We compare and
contrast our results with the corresponding values given by
the Kerr metric [34]. Deviations from the behavior given by

FIG. 7. Maximum error (in percentage) of Eqs. (19) and (20) with respect to the numerical value of ~E and ~L for the sequences of
constant gravitational mass in the range 2–3.4 M⊙. The results for corotating orbits are shown in the left upper and lower panels and for
counter-rotating ones in the right upper and lower ones.
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the Kerr solution are evident at almost any value of the
dimensionless angular momentum, except for the region of
very slow rotation a=M ≪ 1.
As one can note from Figs. 3, 4, 5 and 6, the binding

energy and the angular momentum of particles orbiting
rotating NSs seem to be power-law functions of the mass
and the dimensionless angular momentum. Indeed, we find
that the following relations

~E − ~E0 ¼∓ 0.0132

�
j

M=M⊙

�
0.85

; ð19Þ

j ~Lj − ~L0 ¼∓ 0.37

�
j

M=M⊙

�
0.85

; ð20Þ

where the upper(lower) sign corresponds to co(counter)-
rotating orbits, hold for the three studied EOS. This leads to
the conjecture that these relations might be universal. The
values ~E0 ¼

ffiffiffiffiffiffiffiffi
8=9

p
and ~L0 ¼ 2

ffiffiffi
3

p
are the well-known

values of the Schwarzschild solution, hence our formulas
recover the correct values in the nonrotating case. We note
that in the slow rotation regime, a=M ≪ 1, the Kerr
solution seems to approach this behavior (see Figs. 3
and 4, for the corotating case). The above fitting formula
for ~E is accurate with a maximum error of 1% and the one
for ~L has a maximum error of 0.3%. It is interesting to note
that we obtain that the same fitting formulas apply to both
co- and counter-rotating orbits.
We have shown in Figs. 3–6 the results for the GM1

EOS. For the other EOS similar plots are obtained. Indeed,
the formulas (19) and (20) perform with similar accuracy in
the case of the TM1 and NL3 EOS. In Fig. 7 we show the
details of the performance of formulas (19) and (20) as a
function of the NS mass for the three EOS. Specifically, for
each sequence of fixed gravitational mass we compute the
maximum error (in percentage) of Eqs. (19) and (20) with
respect to the values of ~E and ~L obtained from the numerical
integration. Fig. 7 shows the results for the range of mass
2–3.4 M⊙ for co- and counter-rotating orbits.

IV. DISCUSSION

We have shown that expressions for ~E and ~L
remain rather accurate for the three EOS used in this work.
One is therefore brought to conjecture on the possible
“universality” of such equations, namely that such simple
relations would remain valid for a broader set of NS EOS.
Below, through a set of logically connected statements, we
shall conclude that this should be indeed the case.

1. There is a firm observational lower limit to the NS
critical mass: it must be larger than the mass of the
heaviest NS observed, 2.01� 0.04 M⊙, of PSR
J0348þ 0432 [28].

2. The above point constraints the nuclear EOS to be
stiff. These EOS with sound velocity approaching,
but not exceeding, the speed of light (see, e.g., [35]),

have a very narrow critical mass domain of depend-
ence [30,36].

3. For such stiff EOS, the condition for the existence of
an LSO, namely that the radius of the NS is smaller
than the LSO radius, is satisfied only for heavy NSs.
In the specific cases studied in this work we have
shown that this condition implies M ≳ 1.7 M⊙. For
details we refer to Sec. III A, specifically to Eq. (18)
with the aid of Table II.

4. In Ref. [37], it was presented a general expansion of
the LSO energy ~E and angular momentum ~L in
terms of α≡ a=M ¼ J=M2, the NS dimensionless
angular momentum parameter, and in terms of the
dimensionless quadrupole moment q≡Q=M3.
Such an expansion shows that the dependence of
~E and ~L on the EOS occurs first at linear order in q.

5. On the other hand, it has been shown that the
dimensionless quadrupole moment of NSs can be
written as q ¼ kðEOS;MÞα2, where the coefficient
kðEOS;MÞ depends on the NS mass and the EOS
(see, e.g., Ref. [38]). The dependence q ∝ α2 is
satisfied by both slow and fast rotating NSs. Typ-
ically k > 1 but the larger the NS mass, the more k
approaches unity, namely the quadrupole moment of
massive NSs approaches the one of the Kerr solution
(see Refs. [14,39] for more details).

6. The above points 4 and 5 imply that the dependence
~E and ~L on the EOS occurs only at order α2 through
the k and, since for NSs α < 0.7 [14], such EOS
dependence is expected to be weak.

7. Following Ref. [37], we can write up to second order
in α (and first order in q):

~E − ~E0 ¼ −0.032αþ δEðkÞα2 þOðα3Þ ð21Þ
~L − ~L0 ¼ −0.943αþ δJðkÞα2 þOðα3Þ ð22Þ

where δEðkÞ¼0.008k−0.022 and δJðkÞ ¼ 0.189k−
0.258. For values of k of the order of unity as the
ones expected for the aforementioned massive NSs
of points 1–3, both δEðkÞ and δJðkÞ imply a very
small deviation of the ~E and ~L from a linear
dependence α1. To be more precise, the values of k
are such that δEðkÞ and δJðkÞ are slightly positive and
therefore the contribution at second order has
opposite sign with respect to the one at first order
and thus when trying a fit with a sole power of α we
should expect a power smaller than unity. Indeed, our
results summarized by Eqs. (19) and (20) show
~E − ~E0 ∝ α0.85 and ~L − ~L0 ∝ α0.85.

8. At such linear order in α, the LSO energy and angular
momentum are indeed “universal” since they have no
EOS dependence up to this order. The dependence on
the EOS should be evident only when the contribu-
tions of δEðkÞ and δJðkÞ are non-negligible. This
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happens for instancewhen k ∼ 10which is the case of
NSs with M ≲ 1.4 M⊙. However, such NSs do not
satisfy condition imposedbypoint 3unless theEOS is
very soft, but in the latter case from the points 1 and 2
such EOS are not of astrophysical relevance.

It is important to stress that, in general, the energy and
angular momentum of the LSO depend on the details of
the EOS, however, the above points 1–8 imply that our
Eqs. (19) and (20) should remain valid for a wide set of
EOS, providing they are of astrophysical relevance in the
sense of the points 1 and 2. It is only under these conditions
that we can consider these formulas as universal.
Although the knowledge of the quadrupole moment

appear to be relevant for the determination of several NS
properties such as the angular velocity and the LSO radius
(see, e.g., Ref. [40]), our results show that its role in the
determination of the energy and angular momentum of the
LSO can be much less important. Themain reason for this is
that, besides being the contribution of order α2 naturally
small by itself (because α < 0.7) with respect to the leading
order, the contribution of the quadrupole moment via the
coefficients δEðkÞ and δJðkÞ, is of opposite signwith respect
to the one given by the centrifugal potential, almost cancel-
ing each other for the relevant NS masses. This effect
confirms for the LSO the results of Ref. [41] on the circular
orbits around rotating NSs where this feature had been
already noticed.
In Sec. III B, we have compared and contrasted our

results for ~E and ~L with the ones of the LSO in the Kerr
background characterized with the same mass and angular
momentum. We have seen how the properties of the LSO
given by the Kerr metric deviate from the ones of NSs
except in the slow rotation regime α ¼ a=M ≫ 1. This is
indeed in agreement with the above discussion on the
almost linear dependence in α obtained for ~E and ~L. Indeed,
the expansion of these quantities for small α for the Kerr
metric coincide at the linear level (see, e.g, Eqs. (B3) and
(B4) in Ref. [40]) with the above expansion (21). Thus, ~E
and ~L for rotating NSs are relatively well represented by the
corresponding values of the Kerr metric kept only at linear
order in α. However, if more terms of the expansion in the
Kerr metric (or the full solution) are taken into account, the
predictions of the Kerr solution deviate considerably from
the realistic NS values as it is shown in Figs. 3–6.

V. CONCLUDING REMARKS

We have computed the binding energy and angular
momentum of test particles orbiting on the equatorial plane
of uniformly rotating NSs. The NS equilibrium configu-
rations were constructed for up-to-date nuclear EOS by
integrating the Einstein equations in the axially symmetric
case. Our study was limited to stable NSs with respect to
the mass-shedding (Keplerian) limit and the secular axi-
symmetric instability. Our conclusions are as follows.

(i) There is a limiting configuration for which the
radius of the LSO equals the equatorial radius of
the NS (see, e.g., Fig. 2). As an example, we have
obtained the fitting function (18) that connects the
mass and angular momentum of such a limiting
configuration in the case of corotating orbits, for the
three EOS used in this work. Thus, given a NS mass
(angular momentum), Eq. (18) gives the maximum
(minimum) angular momentum(mass) for which
rlso > Req. It is important to recall that Eq. (18) is
not a universal, i.e. EOS-independent equation, and
thus it must be computed for every EOS. For more
details see Sec. III A.

(ii) We obtained simple formulas for the energy and
angular momentum of the LSO of co- and counter-
rotating test particles as a function of the NS mass
and angular momentum [see, respectively, Eqs. (19)
and (20)]. We have obtained these formulas for the
three EOS studied in this work (NL3, TM1 and
GM1) and are valid for any rotation rate within the
established stability limits.

(iii) We have argued that such formulas will remain valid
for other nuclear EOS which satisfy the astrophysical
request of having a critical NS mass larger than 2 M⊙
[28]. The EOS-dependent contributions to ~E and ~L
appear at higher powers of the dimensionless angular
momentumparameter α ¼ a=M and are due to theNS
mass quadrupole moment. However, such a contri-
bution becomes negligible for massive NSs which are
the ones that possess an LSO exterior to their surface.
See Sec. IV for details on this discussion.

(iv) The simplicity and high accuracy of these formulas,
which show a maximum error of 1% and 0.3%
respectively for the energy and angular momentum
of corotating orbits (see Fig. 7), makes them particu-
larly suitable for astrophysical applications where
taking into due account general relativistic effects of
rotatingNSs are important, e.g. the accretionprocesses
in x-ray binaries (see, e.g., Refs. [3–5]) or hypercritical
accretion in GRBs (see, e.g., Refs. [11,13]).

(v) Our results are qualitatively and quantitatively
different from the corresponding ones obtained in
the Kerr geometry, except in the slow rotation
regime a=M ≪ 1.
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ABSTRACT

Context. Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slow rotating isolated pulsars whose energy
reservoir is still matter of debate. Adopting neutron star (NS) fiducial parameters; mass M = 1.4 M�, radius R = 10 km, and moment
of inertia, I = 1045 g cm2, the rotational energy loss, Ėrot, is lower than the observed luminosity (dominated by the X-rays) LX for
many of the sources.
Aims. We investigate the possibility that some members of this family could be canonical rotation-powered pulsars using realistic NS
structure parameters instead of fiducial values.
Methods. We compute the NS mass, radius, moment of inertia and angular momentum from numerical integration of the axisymmetric
general relativistic equations of equilibrium. We then compute the entire range of allowed values of the rotational energy loss, Ėrot, for
the observed values of rotation period P and spin-down rate Ṗ. We also estimate the surface magnetic field using a general relativistic
model of a rotating magnetic dipole.
Results. We show that realistic NS parameters lowers the estimated value of the magnetic field and radiation efficiency, LX/Ėrot, with
respect to estimates based on fiducial NS parameters. We show that nine SGRs/AXPs can be described as canonical pulsars driven
by the NS rotational energy, for LX computed in the soft (2–10 keV) X-ray band. We compute the range of NS masses for which
LX/Ėrot < 1. We discuss the observed hard X-ray emission in three sources of the group of nine potentially rotation-powered NSs.
This additional hard X-ray component dominates over the soft one leading to LX/Ėrot > 1 in two of them.
Conclusions. We show that 9 SGRs/AXPs can be rotation-powered NSs if we analyze their X-ray luminosity in the soft 2–10 keV
band. Interestingly, four of them show radio emission and six have been associated with supernova remnants (including Swift J1834.9-
0846 the first SGR observed with a surrounding wind nebula). These observations give additional support to our results of a natural
explanation of these sources in terms of ordinary pulsars. Including the hard X-ray emission observed in three sources of the group
of potential rotation-powered NSs, this number of sources with LX/Ėrot < 1 becomes seven. It remains open to verification 1) the
accuracy of the estimated distances and 2) the possible contribution of the associated supernova remnants to the hard X-ray emission.
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1. Introduction

Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars
(AXPs) constitute a class of pulsars with the following main
properties (Mereghetti 2008): rotation periods P ∼ (2–12) s,
slowing down rates Ṗ ∼ (10−15−10−10) s/s, persistent X-ray lu-
minosity as large as 1035 erg s−1 and transient activity in the form
of outbursts of energies around (1041–1043) erg. Giant flares of
even larger energies, (1044–1047) erg, up to now only observed
in SGRs.

A spinning down neutron star (NS) loses rotational energy at
a rate given by

Ėrot = −4π2I
Ṗ
P3 (1)

which, adopting fiducial moment of inertia I = 1045 g cm2, be-
comes

Ėfid
rot = −3.95 × 1046 Ṗ

P3 erg s−1. (2)

Correspondingly to the fiducial moment of inertia, usual fiducial
values for the mass and radius of a NS adopted in the litera-
ture are, respectively, M = 1.4 M� and radius R = 10 km. For
the observed values of P and Ṗ, Eq. (2) leads to values lower
than the observed X-ray luminosity from SGR/AXPs (i.e. Ėfid

rot <
LX). This is in contrast with traditional rotation-powered pulsars
which show Ėrot > Lobs

X .

The apparent failure of the traditional energy reser-
voir of pulsars in SGR/AXPs has led to different scenar-
ios for the explanation of SGRs and AXPs, e.g.: magne-
tars (Duncan & Thompson 1992; Thompson & Duncan 1995);
drift waves near the light-cylinder of NSs (see Malov 2010, and
references therein); fallback accretion onto NSs (Trümper et al.
2013); accretion onto exotic compact stars such as quark stars
(Xu et al. 2006); the quark-nova remnant model (Ouyed et al.
2011); and massive, fast rotating, highly magnetized white
dwarfs (WDs; Malheiro et al. 2012; Boshkayev et al. 2013;
Rueda et al. 2013; Coelho & Malheiro 2014).
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None of the above scenarios appears to be ruled out by the
current observational data, thus further scrutiny of the nature and
the possible energy reservoir of SGRs and AXPs deserves still
attention.

Following the above reasoning, we aim to revisit in this work
the possibility that some SGR/AXPs could be rotation-powered
NSs, but now exploring the entire range of NS parameters al-
lowed by the conditions of stability of the star, and not only on
the use of fiducial parameters. We have already examined this
possibility in Malheiro et al. (2012), Coelho & Malheiro (2013,
2014, 2015), Lobato et al. (2016) and have found at the time four
sources (1E 1547.0−5408, SGR 1627−41, PSR J1622−4950,
and XTE J1810−197) of the SGR/AXPs catalog explainable as
rotation-powered NSs (see, also, Rea et al. 2012). We show in
this article that this conclusion can be indeed extended to other
seven sources. For the total eleven objects we report the range of
masses where the rotation-power condition Ėrot > LX is satisfied.

Once identified as rotation-powered NSs, one is led to the
theoretical prediction that some of the phenomena observed in
ordinary pulsars could also be observed in SGRs and AXPs. In-
deed, we found that for the above 11 SGRs/AXPs describable as
rotation-powered NSs:

– The energetics of their observed outbursts can be explained
from the gain of rotational energy during an accompanied
glitch. Such a glitch-outburst connection is not expected in a
source not driven by rotational energy.

– The radio emission, a property common in pulsars but gen-
erally absent in SGRs and AXPs, is observed in four of
these objects (see, e.g., Halpern et al. 2005; Camilo et al.
2006, 2007a,b; Helfand et al. 2006; Levin et al. 2010, 2012;
Eatough et al. 2013).

– Six sources have possible associations with supernova rem-
nants (SNRs), including Swift J1834.9-0846 the first SGR for
which a pulsar wind nebula has been observed (Younes et al.
2016).

We also analyze the observed hard X-ray emission in the
20−150 keV band in 5 of the above 11 sources. As we shall
discuss, this emission dominates over the soft X-rays leading to
LX/Ėrot > 1 in 4 of them. With this, the number of potential
rotation-powered sources becomes seven. However, this conclu-
sion remains open for further verification since it critically de-
pends 1) on the accuracy of the estimated distances to the sources
and 2) on the possible contribution of the supernova remnants
present in the hard X-ray component.

This article is organized as follows. We first compute in
Sect. 2 the structure properties of NSs, and then Sect. 3 we es-
timate the surface magnetic field using both realistic structure
parameters and a general relativistic model of a rotating mag-
netic dipole. We compute in Sect. 4 the ratio LX/Ėrot for all the
SGRs/AXPs for the entire range of possible NS masses. We also
show in Sect. 5 an analysis of the glitch/outburst connection in
the nine aforementioned sources. Finally, in Sect. 6, we summa-
rize the main conclusions and remarks.

2. Neutron star structure

In order to compute the rotational energy loss of a NS as a func-
tion of its structure parameters, e.g. mass and radius, we need
to construct the equilibrium configurations of a uniformly rotat-
ing NS in the range of the observed periods. We have shown
in Rotondo et al. (2011), Rueda et al. (2011), Belvedere et al.
(2012, 2014) that, in the case of both static and rotating NSs,

Table 1. Meson masses and coupling constants in the parameterizations
NL3, TM1, and GM1.

NL3 TM1 GM1
M(MeV) 939.00 938.00 938.93
mσ(MeV) 508.194 511.198 512.000
mω(MeV) 782.501 783.000 783.000
mρ(MeV) 763.000 770.000 770.000
gσ 10.2170 10.0289 8.9073
gω 12.8680 12.6139 10.6089
gρ 4.4740 7.2325 4.0972

the Tolman-Oppenheimer-Volkoff (TOV) system of equations
(Oppenheimer & Volkoff 1939; Tolman 1939) is superseded by
the Einstein-Maxwell system of equations coupled to the gen-
eral relativistic Thomas-Fermi equations of equilibrium, giving
rise to what we have called the Einstein-Maxwell-Thomas-Fermi
(EMTF) equations. In the TOV-like approach, the condition of
local charge neutrality is applied to each point of the config-
uration, while in the EMTF equations the condition of global
charge neutrality is imposed. The EMTF equations account for
the weak, strong, gravitational and electromagnetic interactions
within the framework of general relativity and relativistic nuclear
mean field theory. In this work we shall use both global (EMTF)
and local (TOV) charge neutrality to compare and contrast their
results.

2.1. Nuclear equation of state (EOS)

The NS interior is made up of a core and a crust. The
core of the star has densities higher than the nuclear one,
ρnuc ≈ 3 × 1014 g cm−3, and it is composed of a degener-
ate gas of baryons (e.g. neutrons, protons, hyperons) and lep-
tons (e.g. electrons and muons). The crust, in its outer region
(ρ ≤ ρdrip ≈ 4.3 × 1011 g cm−3), is composed of ions and
electrons, and in the inner crust (ρdrip < ρ < ρnuc), there
are also free neutrons that drip out from the nuclei. For the
crust, we adopt the Baym-Pethick-Sutherland (BPS) EOS (Baym
et al. 1971b), which is based on the Baym et al. (1971a) work.
For the core, we adopt relativistic mean-field (RMF) theory
models. We use an extension of the Boguta & Bodmer (1977)
formulation with a massive scalar meson (σ) and two vec-
tor mesons (ω and ρ) mediators, and possible interactions
amongst them. We adopt in this work three sets of parame-
terizations of these models (see Table 1 and Fig. 1): the NL3
(Lalazissis et al. 1997), TM1 (Sugahara & Toki 1994), and GM1
(Glendenning & Moszkowski 1991) EOS.

2.2. Mass-radius relation and moment of inertia

For the rotational periods as the ones observed in SGR/AXPs
(P ∼ 2–12 s), the structure of the rotating NS can be accu-
rately described by small rotation perturbations from the spheri-
cally symmetric configuration (see, e.g., Belvedere et al. 2014,
2015), using the Hartle’s formalism (Hartle 1967). Following
this method we compute rotating configurations, accurate up to
second-order in Ω, with the same central density as the seed
static non-rotating configurations. The mass-radius relation for
non-rotating configurations in the cases of global and local
charge neutrality are shown in Fig. 2. For the rotation periods of
interest here, the mass-equatorial radius relation of the uniformly
rotating NSs practically overlaps the one given by the static se-
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Fig. 2. Mass-radius relation for the NL3, TM1, and GM1 EOS in
the cases of global (solid curves) and local (dashed curves) charge
neutrality.

quence (see Fig. 1 in Belvedere et al. 2015). Thus, we take here
advantage of this result and consider hereafter, as masses and
corresponding radii, the values of the non-rotating NSs.

The moment of inertia is given by

I =
J
Ω
, (3)

where Ω is the angular velocity and J is the angular momentum
given by

J =
1
6

R4
(

dω̄
dr

)

r=R
· (4)

Here R is the radius of the non-rotating star with the same central
density as the rotating one, ω̄ = Ω − ω(r) is the angular velocity
of the fluid relative to the local inertial frame, and ω is the angu-
lar velocity of the local frame. The angular velocity Ω is related
the angular momentum J by

Ω = ω̄(R) +
2J
R3 · (5)

Figure 3 shows the behavior of the moment of inertia as a func-
tion of the mass of the NS for the three EOS NL3, TM1 and

GM1 and both in the case of global and local charge neutrality.
Although in general there is a dependence of all the structure pa-
rameters on the nuclear EOS, we use below, without loss of gen-
erality and for the sake of exemplification, only the GM1 EOS.
Similar qualitatively and quantitatively results are obtained for
the other EOSs. It is worth mentioning that the chosen EOS lead
to a maximum stable mass larger than 2 M�, the heaviest NS
mass measured (Demorest et al. 2010; Antoniadis et al. 2013).

3. Surface magnetic field

Since the range of P for SGRs and AXPs is similar to the one
concerning the high-magnetic field pulsar class, we can directly
apply the results of Belvedere et al. (2015), applying only the
most relevant correction for this range of periods to estimate
the surface magnetic field, namely the finite-size correction. The
exact solution of the radiation power of a (slowly) rotating,
magnetic dipole, which duly generalizes the classic solution by
Deutsch (1955), is given by (see Rezzolla & Ahmedov 2004, and
references therein)

PGR
dip = −2

3
µ2
⊥Ω4

c3

(
f

N2

)2

, (6)

where µ⊥ = µ sin χ, is the component of the magnetic dipole
moment perpendicular to the rotation axis, µ = BR3 with B the
surface magnetic field at the star’s equator, χ is the inclination
angle between the magnetic dipole and rotation axis, and f and
N are the general relativistic corrections

f = −3
8

( R
M

)3 [
ln(N2) +

2M
R

(
1 +

M
R

)]
, (7)

N =

√
1 − 2M

R
, (8)

with M the mass of the non-rotating configuration. Now, equat-
ing the rotational energy loss, Eq. (1) to the above electromag-
netic radiation power, Eq. (6), one obtains the formula to infer
the surface magnetic field, given the rotation period and the spin-
down rate:

BGR =
N2

f

(
3c3

8π2

I
R6 PṖ

)1/2

, (9)

where we have introduced the subscript “GR” to indicate explic-
itly the magnetic field inferred from the above general relativis-
tic expression, and we have adopted for simplicity an inclination
angle χ = π/2.

Figures 4 and 5 show our theoretical prediction for the sur-
face magnetic fields of the SGR/AXPs as a function of the NS
mass, using Eq. (9), for the GM1 EOS and for the global and
local charge neutrality cases, respectively. We find that in both
cases some of the sources have inferred magnetic fields lower
than the critical value, Bc, for some range of NS masses. Clearly
this set of sources includes SGR 0418+5729, Swift J1822.3-
1606 and 3XMM J185246.6+003317, which are already known
to show this feature even using fiducial NS parameters and the
classic magnetic dipole model (see e.g., Olausen & Kaspi 2014).
It is worth to note that Eq. (9) is derived for a rotating mag-
netic dipole in electrovacuum, thus neglecting the extra torque
from the presence of magnetospheric plasma. The addition of
this torque certainly leads to values of the magnetic field still
lower than the ones shown here. However, the inclusion of the
torques from the magnetosphere is beyond the scope of this work
and will be taken into account in future works.
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Fig. 3. Moment of inertia as a function of the NS mass for the NL3, TM1, and GM1 EOS in the cases of global (left panel) and local (right panel)
charge neutrality.
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Fig. 4. Magnetic field BGR given by Eq. (9), in units of Bc = m2
ec3/(e~) =

4.4 × 1013 G, as function of the mass (in solar masses) in the global
charge neutrality case.

4. SGRs and AXPs efficiency

Another important quantity for the identification of the nature of
the sources is the radiation efficiency, namely the ratio between
the observed luminosity and the rotational energy loss (1). It is
clear from Fig. 3 that such a ratio is a function of the NS mass,
via the moment of inertia. For SGR/AXPs the dominant emission
is in X-rays, thus we analyze all the possible values of the ratio
LX/Ėrot in the entire parameter space of NSs. As we show below,
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Fig. 5. Magnetic field BGR given by Eq. (9), in units of Bc = 4.4 ×
1013 G, as function of the mass (in solar masses) in the local charge
neutrality case.

some SGRs and AXPs allow a wide range of masses for which
LX/Ėrot . 1, implying a possible rotation-powered nature for
those sources.

Figure 6 shows the X-ray luminosity to rotational energy
loss ratio as a function of the NS mass, for both global and
local charge neutrality configurations. We can see from these
figures that nine out of the twenty three SGR/AXPs could
have masses in which LX < Ėrot, and therefore they could be
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Ė

ro
t

GM1 - Global Neutrality

0.0 0.5 1.0 1.5 2.0 2.5
M/M⊙

10−4

10−2

100

102

104

L
X
/
Ė
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Fig. 6. Radiation efficiency LX/Ėrot as a function of the NS mass (in solar masses), for the global (left panel) and local (right panel) neutrality
cases.

Table 2. Some properties of nine SGRs/AXPs potential rotation-powered NSs.

Source P Ṗ d LX Lhard
X Lradio SNR assoc. Obs. glitches Burst Transient

(s) (kpc) (1033 erg s−1) (1033 erg s−1) (1028 sr−1 erg s−1)
SGR 0501+4516 5.8 0.59 2 0.81 40.2 – HB 9 (?) No Yes Yes
1E 1547.0–5408 2.07 4.77 4.5 1.3 193.9 1.19 G327.24-0.13 Yes Yes Yes
PSR J1622-4950 4.33 1.7 9 0.44 – 5.18 G333.9+0.0 No No Yes
SGR 1627-41 2.59 1.9 11 3.6 – – G337.0-0.1 No Yes Yes
CXOU J171405.7-381031 3.8 6.4 13.2 56 – – CTB 37B No No No
SGR J1745-2900 3.76 1.38 8.5 0.11 57.9 84.6 – No Yes Yes
XTE J1810-197 5.54 0.77 3.5 0.043 – 0.98 – No Yes Yes
Swift J1834.9-0846 2.48 0.79 4.2 0.0084 – – W41 No Yes Yes
PSR J1846-0258 0.33 0.71 6 19 – – Kes 75 Yes Yes No

Notes. Column 1: source name. Column 2: rotation period P in units of seconds. Column 3: spin-down rate Ṗ in units of 10−11. Column 4: source
distance in units of kpc. Column 5: X-ray luminosity in the 2–10 keV band in units of 1033 erg s−1. Column 6: hard X-ray luminosity in the
20–150 keV band in units of 1033 erg s−1. Column 7: radio luminosity per solid angle at the frequency f0 = 1.4 GHz, i.e. Lradio = S 1.4d2 in units of
1028 sr−1 erg s−1 where S 1.4 is the measured flux density at f0. In the case of SGR J1745-2900 we report the luminosity per beam at the frequency
41 GHz according to Yusef-Zadeh et al. (2015). In Cols. 8–11 we report respectively if the source has reported association with SNR, observed
glitches, outbursts, and if it is considered as a transient X-ray lumminosity (in the sense explained in Sect. 6). Data have been taken from the
McGill catalog (Olausen & Kaspi 2014; see http://www.physics.mcgill.ca/~pulsar/magnetar/main.html).

explained as ordinary rotation-powered NSs. Such sources are:
Swift J1834.9–0846, PSR J1846–0258, 1E 1547.0–5408, SGR
J1745-2900, XTE J1810–197, PSR J1622–4950, SGR 1627−41,
SGR 0501+4516, CXOU J171405.7381031 (see Table 2). In
view of the proximity of some of the sources to the line
LX/Ėrot = 1 (e.g., SGR 1900+14, SGR 0418+5729, and Swift
J1822.3–1606), and the currently poorly constrained determina-
tion of the distance to the sources, there is still the possibility of
having additional sources as rotation powered NSs.

In this line, two sources are particularly interesting, namely
SGR 1900+14 and SGR 1806-20, which appear very close

(but above) to the limit of becoming rotation-powered NSs. The
soft X-rays spectra of SGRs and AXPs are usually well fitted by
a blackbody + power-law spectral model (see e.g., Mereghetti
2008). The blackbody temperature is usually of the order kBT ∼
0.5 keV and surface radii of the emitting region are ∼1 km. In
the case of a NS, one could interpret such a thermal component
as due to the surface temperature of the NS, namely associated
with the thermal reservoir of the star. The power-law component
has instead a non-thermal nature and must be due to magneto-
spheric processes which are connected with the rotational energy
reservoir in a rotation-powered star. Within this interpretation,
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Fig. 7. Radiation efficiency LX/Ėrot as a function of the NS mass (in solar masses), for the global (left panel) and local (right panel) neutrality
cases.

the request that the rotational energy loss pays also for the con-
tribution of the thermal component of the luminosity is unneces-
sarily rigorous. Thus, the above ratio LX/Ėrot becomes an upper
limit to the actual efficiency for the conversion of rotational into
electromagnetic energy. We can now apply this interpretation,
for the sake of example, to the above two sources.

SGR 1900+14: the blackbody component of the spectrum
is characterized by kBTBB = 0.47 keV, and a surface radius of
RBB = 4.0 km, assuming a distance of 15 kpc (Mereghetti et al.
2006). The total (blackbody + power-law) flux in the 2–10 keV
energy band is FX = 4.8 × 10−12 erg cm−2 s−1. With the above
data, we infer that the blackbody and the power-law components
contribute respectively 28% and 72% to the total flux. Namely,
we have FBB

X = 0.28FX and FPL
X = 0.72FX. This leads to

LPL
X = 9.3 × 1034 erg s−1.

SGR 1806–20: in this case we have kBTBB = 0.55 keV and
RBB = 3.7 km, assuming a distance of 15 kpc (Esposito et al.
2007). For this source FX = 1.8 × 10−11 erg cm−2 s−1, and we
infer FBB

X = 0.16FX and FPL
X = 0.84FX. This leads to LPL

X =

4.1×1035 erg s−1. If we use instead the revised distance of 8.7 kpc
(Bibby et al. 2008), we have LPL

X = 1.4 × 1035 erg s−1.

Figure 7 shows the ratio LPL
X /Ėrot as a function of the NS

mass in the case of SGR 1900+14 and SGR 1806–20, adopt-
ing the GM1 EOS and assuming a distance of 15 kpc for both
sources. It is clear from this analysis the importance of identi-
fying the different contributions to the emission of the object.
There is no doubt that the subtraction of the contribution from
the thermal reservoir to the total flux in soft X-rays can be impor-
tant for the correct identification of the nature of these sources:
now there is a range of masses for which the luminosity to ro-
tational energy loss ratio becomes lower than unity. Again, it is
worth to recall that there are still additional effects which could
improve the above analysis: (i) the distance to the sources are
not known accurately; (ii) the spectrum could be equally well-
fitted by a different spectral model such as a double blackbody
which would have a different interpretation; (iii) the NS EOS is
still unknown and so the moment of inertia and radius for a given
mass might be different. These effects might lead to a different
value of the luminosity, and of the contributions of thermal and
rotational energy reservoirs to it. Clearly, the above analysis can
be extended to all the other SGRs and AXPs, and in the case

of the nine sources already identified with LX/Ėrot < 1, it will
further diminish their radiation efficiency.

It is now appropriate to discuss the non-thermal hard X-ray
emission (above 10 keV) in SGRs/AXPs which has been ob-
served by some missions like RXTE, INTEGRAL, Suzaku and
NuSTAR. First we discuss the observations of the above two
sources which could in principle join the possibly rotation-
powered group. Adopting a distance of 15 kpc, SGR 1900+14
has an observed 20–100 keV band luminosity of Lhard

X = 4 ×
1035 erg s−1 (Götz et al. 2006). This implies Lhard

X ≈ 4.3LPL
X , so

a total X-ray luminosity (hard + soft) Lx = 5.3LPL
X ≈ 4.9 ×

1035 erg s−1. SGR 1806–20 has a 20–100 keV band flux three
times higher than the one of SGR 1900+14 (Götz et al. 2006),
thus assuming also a distance of 15 kpc for this source we ob-
tain Lhard

X ≈ 2.9LPL
X , so a total X-ray luminosity (hard + soft)

Lx = 3.9LPL
X ≈ 1.6 × 1036 erg s−1. This means that the points

in Fig. 7 would shift 5 and 4 times up respectively and therefore
there will be no solution for these sources as rotation-powered,
unless their distances are poorly constrained. In this line it is
worth mentioning that the distance to these sources has been
established via their possible association with star clusters (see
Vrba et al. 2000; Corbel & Eikenberry 2004, for details).

From the set of nine potential rotation-powered sources, only
three ones have persistent hard X-ray emission (see Table 2):
SGR 0501+4516, 1E 1547.0–5408 and SGR J1745–2900. For
these sources we can see the hard X-ray luminosity in the 20–
150 keV band overcomes the soft X-ray contribution to the lumi-
nosity respectively by a factor 50, 149 and 527. Figure 8 shows
the ratio LHard

X /Ėrot as a function of the NS mass in the case
of SGR 0501+4516, 1E 1547.0–5408 and SGR J1745–2900.
We can see that, after including the hard X-ray component in
these three sources, 1 E1547.0–5408 stands still below the line
LX/Ėrot = 1, while the other two sources appear above it.

The existence of persistent hard X-ray emission provides
new constraints on the emission models for SGRs/AXPs since,
as in ordinary pulsars, the higher the energy band the higher the
luminosity, namely their luminosities can be dominated by hard
X-rays and/or gamma-rays. At the present, the mechanisms re-
sponsible for the hard energy emission is still poorly understood,
what causes the hard X-ray tails is still an open issue. In this
respect it is worth mentioning that, since these sources are also
associated with supernova remnants (see Table 2 and Sect. 6), the
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Fig. 8. Radiation efficiency LHard
X /Ėrot as a function of the NS mass (in solar masses), for the global (left panel) and local (right panel) neutrality

cases.

emission in hard X and/or gamma-rays could be contaminated
by the remnant emission. The disentanglement of the contribu-
tions of the remnant and the central pulsar to the total emission
is an interesting issue to be explored, in addition to the confir-
mation of the estimated distances. If the above numbers will be
confirmed, then the number of rotation-powered SGRs/AXPs be-
comes seven.

5. Glitches and bursts in SGRs/AXPs

We have shown in the last section that nine (and up to eleven) of
the twenty three SGR/AXPs are potential rotation-powered NSs.
Once the possible rotation-power nature of the source is estab-
lished, one expects that also the transient phenomena observed in
these sources could be powered by rotation. Based on that idea,
we here discuss a possible glitch-outburst connection. Thus, it is
interesting to scrutinize the outburst data of SGR/AXPs, to seek
for associated glitches, and check if the energetics of its burst-
ing activity could be explained by the gain of rotational energy
during an associated (observed or unobserved) glitch.

In a glitch, the release of the accumulated stress leads to a
sudden decrease of the moment of inertia and, via angular mo-
mentum conservation,

J = IΩ = (I + ∆I)(Ω + ∆Ω) = constant, (10)

to a decrease of both the rotational period (spin-up) and the ra-
dius, i.e.

∆I
I

= 2
∆R
R

=
∆P
P

= −∆Ω

Ω
· (11)

The sudden spin-up leads to a gain of rotational energy

∆Erot = −2π2I
P2

∆P
P
, (12)

which is paid by the gravitational energy gain by the star’s con-
traction (Malheiro et al. 2012).

It is important to start our analysis by recalling the case of
PSR J1846–0258, which has LX < Ėrot even when fiducial NS
parameters are adopted. The importance of this source relies
on the fact that, although it is recognized as rotation-powered
NS, it has been classified as SGR/AXP (Olausen & Kaspi 2014)
owing to its outburst event in June 2006 (Gavriil et al. 2008).

In view of the possible NS rotation-power nature of PSR,
Malheiro et al. (2012) explored the possibility that the outburst
energetics (3.8–4.8) × 1041 erg (Kumar & Safi-Harb 2008) can
be explained by the rotational energy gained by a NS glitch. It
was there found that a glitch with fractional change of period
|∆P|/P ∼ (1.73–2.2) × 10−6 could explain the outburst of 2006.
This theoretical result is in full agreement with the observational
analysis by Kuiper & Hermsen (2009), who showed that indeed
a major glitch with |∆P|/P ∼ (2–4.4) × 10−6 is associated with
the outburst. Very recently, Archibald et al. (2016) reported an-
other example of an X-ray outburst from a radio pulsar, PSR
J1119–6127, which also has LX < Ėrot. This source is similar to
the rotation-powered pulsar PSR J1846–0258. The pulsar’s spin
period P = 0.407 s and spin-down rate Ṗ = 4.0 × 10−12 imply a
dipolar surface magnetic field B = 4.1 × 1013 G adopting fidu-
cial values. It is clear from Figs. 4 and 5 that also in this case
the magnetic field would become undercritical for realistic NS
parameters.

We follow this reasoning and proceed to theoretically infer
the fractional change of rotation period, |∆P|/P, which explains
the energetics of the bursts of the family of SGR/AXPs with
LX < Ėrot presented in this work. We do this by assuming that
|∆Erot|, given by Eq. (12), equals the observed energy of the burst
event, Eburst, namely

|∆P|
P

=
EburstP2

2π2I
· (13)

From the set of nine potential rotation-powered sources, only
two ones have glitches detected: PSR J1846–0258 which has
been discussed above and 1E 1547.0–5408 with |∆P|/P ≈ 1.9 ×
10−6 (Kuiper et al. 2012). In particular, figure 9 shows the value
of |∆P|/P obtained from Eq. (13) as a function of the NS mass
for PSR J1846–0258 (a similar analysis can be applied to the
radio pulsar PSR J1119–6127, whose timing analysis presented
in Archibald et al. 2016 suggests the pulsar had a similar-sized
spin-up glitch with |∆P|/P ∼ 5.8 × 10−6). Indeed a minimum
mass for the NS can be established for the sources by request-
ing that: (1) the entire moment of inertia is involved in the glitch
and (2) the theoretical value of |∆P|/P coincides with the ob-
served value. We obtain a minimum mass for PSR J1846–0258,
Mmin = 0.72 M� and Mmin = 0.61 M�, for the global and local
charge neutrality cases, respectively. On the other hand, if we
substitute the moment of inertia I in Eq. (13) by Iglitch = ηI
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Fig. 9. Inferred fractional change of rotation period during the glitch, ∆P/P, obtained by equating the rotational energy gained during the glitch,
∆Erot, to the energy of the burst, for globally neutral (left panel) and locally neutral (right panel) NSs. In this example the NS obeys the GM1 EOS.
The gray-shaded area corresponds to the value of |∆P|/P in the observed glitch of PSR J1846–0258 in June 2006 (Kuiper & Hermsen 2009).

Table 3. Predicted values of |∆P|/P assuming rotation-powered NSs – Global charge neutrality case.

Source name Year of burst Total isotropic burst energy (erg) Predicted |∆P|/P for M > 1 M�
PSR J1846–0258 2006 4.8 × 1041 8.8 × 10−7−2.6 × 10−6

1E 1547.0–5408 2009 1.1 × 1041 8.1 × 10−6−2.4 × 10−5

XTE J1810–197 2004 4.0 × 1037 2.1 × 10−8−6.3 × 10−8

SGR 1627–41 1998 1.0 × 1041 1.0 × 10−5−3.8 × 10−5

SGR 0501+4516 2008 1.0 × 1040 5.7 × 10−6−1.7 × 10−5

Swift J1834.9–0846 2011 1.5 × 1037 1.6 × 10−9−4.8 × 10−9

SGR 1745–2900 2013 6.7 × 1037 1.61 × 10−8−4.9 × 10−8

Table 4. Predicted values of |∆P|/P assuming rotation-powered NSs – Local charge neutrality case.

Source name Year of burst Total isotropic burst energy (erg) Predicted |∆P|/P for M > 1 M�
PSR J1846–0258 2006 4.8 × 1041 7.9 × 10−7−2.2 × 10−6

1E 1547.0–5408 2009 1.1 × 1041 7.2 × 10−6−2.0 × 10−5

XTE J1810–197 2004 4.0 × 1037 1.9 × 10−8−5.3 × 10−8

SGR 1627–41 1998 1.0 × 1041 1.1 × 10−5−3.2 × 10−5

SGR 0501+4516 2008 1.0 × 1040 5.0 × 10−6−1.4 × 10−5

Swift J1834.9–0846 2011 1.5 × 1037 1.4 × 10−9−3.9 × 10−9

SGR 1745–2900 2013 6.7 × 1037 1.4 × 10−8−4.1 × 10−8

where η ≤ 1, being Iglitch the moment of inertia powering the
glitch, then we can obtain a lower limit for the parameter η: we
obtain η = 0.20 and η = 0.18 for the global and local charge
neutrality cases, respectively. Tables 3 and 4 show the theoreti-
cally predicted value of |∆P|/P for the seven sources with known
bursts energy, assuming the mass of the NS is larger than 1 M�
and η = 1, in the cases of global and local charge neutrality,
respectively.

Table 4 shows that from the nine potentially rotation-
powered sources, two have a firmly established glitch-outburst
connection. For the other sources there are two possibilities.
(1) The glitch could be missed because absence of timing mon-
itoring of the source prior to the burst, as it is certainly the case
of the SGRs/AXPs discovered from an outburst. (2) The source
timing was monitored and indeed there is no glitch associated

with the outburst. In this case, it remains open the possibility
that the outburst could be of magnetospheric origin. (3) There
are also observed glitches without associated outburst activ-
ity (see, e.g., Pons & Rea 2012). It is worth mentioning that
a recent systematic analysis of the glitch-outburst connection in
five AXPs by Dib & Kaspi (2014) concluded (amongst other im-
portant results): 1) glitches associated and not associated with
outbursts or radiative changes show similar timing properties,
namely outburst activity is not necessarily associated with large
glitches; and 2) all glitches observed point to have their ori-
gin in the stellar interior. The second conclusion gives obser-
vational support to our theoretical interpretation of glitches as a
phenomenon associated to cracking occurring in the NS interior.
Whether a glitch can or not lead to observable radiative changes
depends on specific properties of the phenomenon such as the
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energy budget and the localization of the event in the star’s inte-
rior (Dib & Kaspi 2014), as well as on the efficiency in convert-
ing mechanical energy into radiation. The first two features have
been here analyzed through ∆Erot and the parameter η, the latter
which defines Iglitch, the amount of moment of inertia involved
in the glitch.

Thus, the glitch-outburst connection remains one of the most
interesting problems of SGR/AXP physics and astrophysics.
There are still several issues which need to be addressed both
from systematic observational analyses and from theoretical
point of view of NS physics.

6. Possible additional evidence
We have shown above for the nine potential rotation-powered
SGRs/AXPs that, when timing observations allowed for the
glitch/outburst connection identification, the rotational energy
gain in the glitch can explain the outburst energetics. This char-
acteristic is expected from a rotation-powered object.

We discuss now three additional pieces of astrophysi-
cal evidence pointing to a rotation-power nature of these
sources. First, we note that four of the above nine sources,
namely 1E 1547.0−5408, SGR J1745−2900, XTE J1810−197,
and PSR J1622−4950, are the only SGR/AXPs with detected
radio emission (see, e.g., Halpern et al. 2005; Camilo et al.
2006, 2007a,b, 2008; Helfand et al. 2006; Kramer et al. 2007;
Levin et al. 2010, 2012; Eatough et al. 2013; Olausen & Kaspi
2014; Lobato et al. 2015; Yusef-Zadeh et al. 2015). This prop-
erty, expected in ordinary rotation-powered pulsars, is generally
absent in SGR/AXPs. As discussed in Kramer et al. (2007), the
radio emission of SGRs/AXPs and normal radio pulsars shows
differences but also similarities, e.g. the case of XTE J1810-197.
We show in Table 2 the observed radio luminosity per solid angle
at the 1.4 GHz frequency. For all of them we have Lradio � LX,
a feature also observed in ordinary pulsars. The continuous ob-
servation, as well as theoretical analysis and comparison of the
radio emission of rotating radio transients (RRATS), high-B pul-
sars, SGRs/AXPs, and ordinary radio pulsars will allow us to un-
derstand the NS properties leading to the differences and similar-
ities of the radio emission of these sources. New observational
capabilities such as the ones of the Square Kilometer Array
(SKA) expect to give also important contributions in this direc-
tion (Tauris et al. 2015).

In order to understand better the nature of these nine
SGRs/AXPs it is worth to seek for additional emission fea-
tures which could distinguish them from the rest of the sources.
In this line we would like to point out that, at present,
eleven SGRs/AXPs have been identified as transient sources,
i.e. sources which show flux variations by a factor ∼(10−1000)
over the quiescent level (see, e.g., Turolla et al. 2015), in
timescales from days to months. Such a variations are usu-
ally accompanied by an enhancement of the bursting activity.
Seven of the nine potentially rotation-powered sources shown in
Table 2 are transient sources. Therefore it is possible to identify
common features in these sources, although more observational
and theoretical investigation is needed. For instance, the above
shows that all radio SGR/AXPs are rotation-powered sources
and have a transient nature in the X-ray flux. The theoretical
analysis of the evolution of the X-ray flux can constrain the prop-
erties of the NS and the emission geometry, for instance the an-
gles between the rotation axis, the line of sight and the magnetic
field (see, e.g., Albano et al. 2010). Such constraints can help in
constraining, at the same time, the properties of the radio emis-
sion. Such an analysis is however out of the scope of the present

work and opens a window of new research which we plan to
present elsewhere.

There is an additional observational property which support
to a NS nature for the nine sources of Table 2, namely six of them
have possible associations with supernova remnants (SNRs). As
it is summarized in Table 2, Swift J1834.9–0846 has been asso-
ciated with SNR W41 (see, Younes et al. 2016, for the detection
of a wind nebula around this source); PSR J1846−0258 with
SNR Kes75; 1E 1547.0−5408 with SNR G327.24−0.13; PSR
J1622−4950 with SNR G333.9+0.0; SGR 1627−41 with NR
G337.0-0; and CXOU J171405.7–381031 with SNR CTB37B
(Olausen & Kaspi 2014). If these associations will be fully con-
firmed, then it is clear that the NS was born from the core-
collapse of a massive star which triggered the SN explosion.
Further analysis of the supernova remnant and/or pulsar wind
nebulae energetics and emission properties is needed to check
their consistency with the rotation-powered nature of the object
at the center.

7. Conclusions
We consider here the possibility that some SGRs and AXPs
could be rotation-powered NSs by exploring the allowed range
of realistic NS structure parameters for the observed rotation pe-
riods of SGRs/AXPs, instead of using only fiducial parameters
M = 1.4 M�, R = 10 km, and I = 1045 g cm2. We obtained
the NS properties from the numerical integration of the gen-
eral relativistic axisymmetric equations of equilibrium for EOS
based on relativistic nuclear mean-field models both in the case
of local and global charge neutrality. We thus calculated the ro-
tational energy loss, Ėrot, (hence a radiation efficiency LX/Ėrot)
as a function of the NS mass. In addition, we estimated the sur-
face magnetic field from a general relativistic model of a rotating
magnetic dipole in vacuum.

Based on the above, we have shown that fiducial parame-
ters overestimate both the radiation efficiency and the surface
magnetic field of pulsars. Moreover, the X-ray luminosity of
nine sources shown in Table 2, that is Swift J1834.9–0846,
PSR J1846–0258, 1E 1547.0–5408, SGR J1745–2900, XTE
J1810−197, PSR J1622–4950, SGR 1627–41, SGR 0501+4516,
and CXOU J171405.7381031 can be explained via the loss
of rotational energy of NSs (see Fig. 6). Thus, they fit into
the family of ordinary rotation-powered pulsars. For the above
nine sources, we obtained lower mass limits from the request
Ėrot ≥ LX.

We also show that, if the thermal reservoir of the NS
is responsible for the blackbody component observed in soft
X-rays, both SGR 1900+14 and SGR 1806-20 join the above
family of rotation-powered NSs, since the rotational energy
loss is enough to cover their non-thermal X-ray luminosity.
This implies that up to 11 SGR/AXPs could be rotation-powered
pulsars. This argument could also be, in principle, applied to the
other sources, further lowering their radiation efficiency LX/Ėrot.
Thus, we argue that the observational uncertainties in the de-
termination of the distances and/or luminosities, as well as the
uncertainties in the NS nuclear EOS, as well as the different
interpretations of the observed spectrum still leave room for a
possible explanation in terms of spin-down power for additional
sources. It is worth mentioning that the distance for some sources
has been established via their association with SNRs, as pointed
out in Table 2.

Furthermore, we then proceeded to discuss the observed
emission in hard X-rays (in the 20–150 keV band) in both SGR
1900+14 and SGR 1806-20. Including this contribution, the lu-
minosity increases up to a factor of five and four, respectively, for
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each source, making it impossible to interpret them as rotation-
powered sources unless their estimated distances are poorly con-
strained. We then examined the three sources of the group of
nine potential rotation-powered sources for which hard X-ray
emission has been observed: SGR J1745–2900, 1E 1547.0–5408
and SGR 0501+4516. Fig. 8 shows that 1E 1547.0–5408 still
remains within the rotation-powered group while the other two
sources do not. Thus, for these sources, it becomes critical to
verify the accuracy of the estimated distances and to explore the
possible contribution of their associated supernova remnants to
the hard X-ray emission. If these sources are powered by rota-
tion, then other phenomena observed in known rotation-powered
NSs could also have been observed in these objects. Thus, for the
nine sources with LX < Ėrot , we explored the possibility that the
energetics of their bursting activity, Eburst, could be explained
from the rotational energy gained in an associated glitch, ∆Erot.
We thus computed lower limits to the fractional change of ro-
tation period of NSs caused by glitches, |∆P|/P, by requesting
∆Erot = Eburst. The fact that there exist physically plausible solu-
tions for |∆P|/P reinforces the possibility that these sources are
indeed rotation-powered (e.g., the cases of PSR J1846–0258 and
PSR J1119–6127).

Finally, we discuss in Sect. 6 possible additional evidence
pointing to the rotation-power nature of these nine sources:
the radio emission is observed in four SGRs/AXPs and all of
them are part of these nine sources. Radio emission character-
izes ordinary pulsars but it is generally absent/unobserved in
SGRs/AXPs. We also draw attention to a peculiar emission prop-
erty of the majority of these nine sources: seven of them belong
to the group of the so-called transient sources (which are eleven
in total). Within these seven transient rotation-powered objects,
we find four showing radio emission. We argue that the analy-
sis of the varying X-ray flux can provide information on the NS
properties and magnetospheric geometry, improving our under-
standing of the properties of the radio emission. It is worth men-
tioning that six of the nine sources have potential associations
with supernova remnants, supporting a NS nature (see Table 2
for details).

Although we have shown the possibility that some SGRs
and AXPs are rotation-powered pulsars, we are far from getting
a final answer to the question of the nature of SGRs/AXPs. It
is not yet clear whether or not all the current members of the
SGR/AXP family actually form a separate class of objects, with
respect to traditional pulsars, for example, or if their current clas-
sification leads to misleading theoretical interpretations. There-
fore, we encourage further theoretical predictions and observa-
tions in additional bands of the electromagnetic spectrum such as
the optical, high, and ultra-high gamma-rays and cosmic-rays to
discriminate amongst the different models and make it possible
to elucidate the nature of SGRs and AXPs.
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ABSTRACT
There is solid observational evidence on the existence of massive, M ∼ 1 M�, highly magne-
tized white dwarfs (WDs) with surface magnetic fields up to B ∼ 109 G. We show that, if in
addition to these features, the star is fast rotating, it can become a rotation-powered pulsar-like
WD and emit detectable high-energy radiation. We infer the values of the structure parameters
(mass, radius, moment of inertia), magnetic field, rotation period and spin-down rates of a
WD pulsar death-line. We show that WDs above the death-line emit blackbody radiation in
the soft X-ray band via the magnetic polar cap heating by back flowing pair-created particle
bombardment and discuss as an example the X-ray emission of soft gamma-repeaters and
anomalous X-ray pulsars within the WD model.

Key words: acceleration of particles – radiation mechanisms: thermal – stars: magnetic field –
starspots – white dwarfs.

1 IN T RO D U C T I O N

The increasing data from observational campaigns leave no room
for doubts on the existence of massive (M ∼ 1 M�) white dwarfs
(WDs) with magnetic fields comprised in the range B = 106–109 G
(Külebi et al. 2009; Kepler et al. 2013, 2015). It has been recently
shown that massive, highly magnetized WDs could be formed by
mergers of double WDs (Garcı́a-Berro et al. 2012). The fact that
WDs produced in mergers, besides being massive and highly mag-
netized, can be also fast rotators with periods P ∼ 10 s was used
in Rueda et al. (2013) to show that they could be the WDs postu-
lated in Malheiro, Rueda & Ruffini (2012) to describe the observa-
tional properties of soft gamma-repeaters (SGRs) and anomalous
X-ray pulsars (AXPs), in alternative to the ‘magnetar’ model (Dun-
can & Thompson 1992; Thompson & Duncan 1995). In the WD
model, the observed X-ray luminosity of SGRs/AXPs is explained
via the loss of rotational energy of the fast rotating WD.1 The WD
gravitational stability imposes a lower bound to the rotation period

� E-mail: jorge.rueda@icra.it
1 It remains open the case of 1E 161348–5055, the central compact object
in the supernova remnant RCW 103, to be confirmed as a new SGR/AXP
(see e.g. Rea et al. 2016; D’Aı̀ et al. 2016). The observed luminosity and
light-curve periodicity with P = 6.67 h, if confirmed to be due to the
rotation period, together with the upper limit of to the possible spin-down

P ≈ 0.5 s, in agreement with the minimum measured rotation pe-
riod of SGRs/AXPs, P ∼ 2 s (Boshkayev et al. 2013b). On the
other hand, the surface area and temperature of the emitting region
inferred from the available infrared, optical and ultraviolet data of
SGR/AXPs (i.e. for SGR 0418+5729, J1822.3–1606, 1E 2259+586
and 4U 0142+61) were shown to be consistent with the values ex-
pected from WDs (Boshkayev et al. 2013a; Rueda et al. 2013). The
similarities of these WDs with ordinary, rotation-powered pulsars
imply that similar radiation mechanisms are expected to be at work
in their magnetosphere. Indeed, the loss of rotational energy of the
WD, owing to magnetic breaking, is sufficient to explain the X-ray
luminosity observed in SGRs/AXPs, and the inferred magnetic field
from the observed spindown rates, B ∼ 109 G, agrees with the afore-
mentioned observed values in Galactic WDs (Malheiro et al. 2012;
Coelho & Malheiro 2014).

Following this line, it was advanced in Rueda et al. (2013) that the
blackbody observed in the soft X-rays of SGRs/AXPs, with obser-
vationally inferred radii Rbb ∼ 1 km and temperatures Tbb ∼ 106 K,
could be due to a known phenomenon expected to occur in pulsars,
namely the magnetospheric currents flowing back towards the WD,
heating up the magnetic polar caps creating surface hot spots (see
e.g. Usov 1988, 1993). The aim of this work is to estimate this

rate |Ṗ | < 7 × 10−10, rule out the rotational energy of either a neutron star
or a WD as the possible source of energy.

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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magnetospheric process for massive, highly magnetized, fast rotat-
ing WDs, exploiting the full analogy with pulsars. This calculation
is interesting by its own and becomes of observational relevance
in view of the latest results by Marsh et al. (2016) which point
to the observational evidence of pulsar behaviour of a magnetized
WD. It is interesting that, as in the well-known case of AE Aquari,
also this WD belongs to a binary system. Pulsar behaviour can
be observed from WDs in binaries when they can be considered
approximately as isolated objects as in the case of detached bina-
ries or in binaries in a propeller phase. White dwarf pulsars have
been also considered as possible sources of high-energy and cosmic
rays (see e.g. Kashiyama, Ioka & Kawanaka 2011). Bearing this
in mind, we focus in this work on the observable emission from
isolated magnetized WDs in the X-rays. In order to exemplify the
mechanism with appealing numbers, we apply it to the case of the
WD model of SGRs and AXPs. Specifically, we evaluate the decay
rate of curvature radiation photons in e−e+ pairs, and the subse-
quent backward flow of pair-produced particles that bombards and
heats up the magnetosphere polar caps, producing the observable
thermal radiation. We compute in Section 2 the condition for e−e+

pair creation within the inner gap model. In Section 3, we calcu-
late the expected thermal luminosity and infer the values of mass,
radius, magnetic field and potential drop that ensure that the polar
cap thermal emission explains the observed blackbody in the soft
X-ray spectrum of SGRs/AXPs. The cases of 1E 2259+586 and 4U
0142+61 are analysed as specific examples. In Section 4, we simu-
late the observed X-ray flux from this spotty emission and compute
the expected pulsed fraction, which we compare with the observed
values in SGRs and AXPs. We outline the conclusions in Section 5.

2 W D MAG N E TO S P H E R E

Rotating, highly magnetized WDs can develop a magneto-
sphere analog to the one of pulsars. A corotating magnetosphere
(Davis 1947; Ferraro & Unthank 1949; Gold 1962; Ferraro &
Bhatia 1967) is enforced up to a maximum distance given by the
so-called light cylinder, Rlc = c/� = cP/(2π ), where c is the speed
of light and � is the angular velocity of the star, since corotation at
larger distances would imply superluminal velocities for the magne-
tospheric particles. For an axisymmetric star with aligned magnetic
moment and rotation axes, the local density of charged plasma
within the corotating magnetosphere is (Goldreich & Julian 1969)

ρGJ = −� · B
2πc

1

1 − (�r⊥/c)2
, (1)

where r⊥ = rsin θ with θ the polar angle.
The last B-field line closing within the corotating magneto-

sphere can be easily located from the B-field lines equation
for a magnetic dipole r/sin 2θ = constant =Rlc, and is lo-
cated at an angle θpc = arcsin(

√
R/Rlc) ≈ √

R/Rlc = √
R�/c =√

2πR/(cP ) from the star’s pole, with R the radius of the star. The
B-field lines that originate in the region between θ = 0 and θ = θpc

(referred to as magnetic polar caps) cross the light cylinder, and are
called ‘open’ field lines. The size of the cap is given by the polar cap
radius Rpc = R θpc ≈ R

√
2πR/(cP ). Clearly, by symmetry, there

are two (antipodal) polar caps on the stellar surface from which the
charged particles leave the star moving along the open field lines
and escaping from the magnetosphere passing through the light
cylinder.

Particle acceleration is possible in regions called vacuum gaps
where corotation cannot be enforced, i.e. where the density of
charged particles is lower than the Goldreich–Julian value ρGJ given

by equation (1). For aligned (anti-aligned) rotation and magnetic
axes, we have ρGJ < 0 (ρGJ > 0), hence magnetosphere has to be
supplied by electrons (ions) from the WD surface. This work is done
by the existence of an electric field parallel to the magnetic field.
Independently on whether � · B is positive or negative, we assume
that the condition of a particle injection density lower than ρGJ is
fulfilled. In this inner gap model, the gaps are located just above the
polar caps (Ruderman & Sutherland 1975) and the potential drop
generated by the unipolar effect and that accelerates the electrons
along the open B-field lines above the surface is

�V = Bs�h2

c
, (2)

where h is the height of the vacuum gap and Bs is the surface
magnetic field, which does not necessarily coincides with the dipole
field Bp.

The electrons (or positrons) accelerated through this potential
and following the B-field lines will emit curvature photons whose
energy depends on the γ -factor, γ = e�V/(mc2), where e and m
are the electron charge and mass, and on the B-field line curvature
radius rc, i.e. ωc = γ 3c/rc. Following Chen & Ruderman (1993),
we adopt the constraint on the potential �V for pair production via
γ + B → e− + e+,

1

2

(
e�V

mc2

)3
λ

rc

h

rc

Bs

Bq

≈ 1

15
, (3)

or in terms of a condition on the value of the potential,

�V ≈
(

2

15

)2/7 ( rc

λ

)4/7
(

λ�

c

)1/7 (
Bs

Bq

)−1/7
mc2

e
, (4)

where we have used equation (2), λ = �/(mc), Bq ≡
m2c3/(e�) = 4.4 × 1013 G, is the quantum electrodynamic field,
with � the reduced Planck’s constant.

For a magnetic dipole geometry, i.e. Bs = Bd and rc = √
Rc/�,

the potential drop �V cannot exceed the maximum potential (i.e.
for h = hmax = Rpc/

√
2),

�Vmax = Bd�
2R3

2c2
. (5)

Here, we are interested in the possible magnetospheric mech-
anism of X-ray emission from magnetized WDs, thus we will
consider the heating of the polar caps by the inward flux of pair-
produced particles in the magnetosphere. These particles of opposite
sign to the parallel electric field move inwards and deposit most of
their kinetic energy on an area

Aspot = f Apc, (6)

i.e. a fraction f ≤ 1 of the polar cap area, Apc = πR2
pc. The tempera-

ture Tspot of this surface hotspot can be estimated from the condition
that it re-radiates efficiently the deposit kinetic energy, as follows.
The rate of particles flowing to the polar cap is Ṅ = JApc/e, where
J = ηρGJc is the current density in the gap and η < 1 a parameter that
accounts for the reduction of the particle density in the gap with
respect to the Goldreich–Julian value (Cheng & Ruderman 1977
used η = 1 for order-of-magnitude estimates). In this model, the
filling factor f is not theoretically constrained, and it has been es-
timated from pulsar’s observations in X-rays that its value can be
much smaller than unity (Cheng & Ruderman 1977). The condition
that the hotspot luminosity equals the deposited kinetic energy rate
reads

AspotσT 4
spot = e�V Ṅ = JApc�V = ηρGJ(R)cApc�V , (7)

MNRAS 465, 4434–4440 (2017)
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where σ is the Stefan–Boltzmann constant. From equations (1), (6)
and (7), we obtain the spot temperature

Tspot =
(

η
Bd�V

σf P

)1/4

. (8)

It is worth mentioning that in the above estimate, we have assumed
a full efficiency in the conversion from the deposited kinetic energy
to the hotspot emission. This assumption is accurate if the heating
source, namely the energy deposition, occurs not too deep under the
star’s surface and it is not conducted away to larger regions being
mainly re-radiated from the surface area filled by the penetrating
particles (Cheng & Ruderman 1980). In Appendix, we estimate the
cooling and heating characteristic times and the heating and re-
radiation efficiency. For the densities and temperatures of interest
here, we show that the polar cap surface re-radiates efficiently most
of the kinetic energy deposited by the particle influx validating our
assumption.

3 SP ECIF IC EX AMPLE S

As in our previous analyses (Malheiro et al. 2012; Boshkayev
et al. 2013a; Rueda et al. 2013; Coelho & Malheiro 2014), we
use the traditional dipole formula to get an estimate for the WD
dipole magnetic field, i.e.:

Bd =
(

3c3

8π2

I

R6
P Ṗ

)1/2

, (9)

where I is the moment of inertia of the star, Ṗ ≡ dP/dt is the
first time derivative of the rotation period (spin-down rate) and an
inclination of π/2 between the magnetic dipole and the rotation axis
has been adopted. It is worth recalling that the estimate of the B-field
by equation (9) is not necessarily in contrast, from the quantitative
point of view, with an estimate using an aligned field but introducing
a breaking from the particles escaping from the magnetosphere,
since also in this case a quantitatively and qualitatively similar
energy loss is obtained.

For a given rotation period P, the WD structure parameters such
as mass M, radius R and moment of inertia I are bounded from
below and above if the stability of the WD is requested (Boshkayev
et al. 2013a). From those bounds, we established their lower and
upper bounds for the field Bd of the WD.

3.1 1E 2259+586

We apply the above theoretical framework to a specific source,
AXP 1E 2259+586. This source, with a rotation period P = 6.98 s
(Fahlman & Gregory 1981) and a spin-down rate Ṗ = 4.8 × 10−13

(Davies, Coe & Wood 1990), has a historical importance since
Paczynski (1990) first pointed out the possibility of this object be-
ing a WD. This object produced a major outburst in 2002 (Kaspi
et al. 2003; Woods et al. 2004), in which the pulsed and persistent
fluxes rose suddenly by a factor of ≥20 and decayed on a time-scale
of months. Coincident with the X-ray brightening, the pulsar suf-
fered a large glitch of rotation frequency fractional change 4 × 10−6

(Kaspi et al. 2003; Woods et al. 2004). It is worth recalling that the
observed temporal coincidence of glitch/bursting activity, as first
pointed out by Usov (1994) in the case of 1E 2259+586, and then
extended in Malheiro et al. (2012) and Boshkayev et al. (2013a), can
be explained as due to the release of the rotational energy, gained in
a starquake occurring in a total or partially crystallized WD. Since
we are interested in the quiescent behaviour, we will not consider

this interesting topic here. Therefore, only X-ray data prior to this
outburst event will be used in this work (Zhu et al. 2008).

The soft X-ray spectrum of 1E 2259+586 is well fitted by a
blackbody plus a power-law model. The blackbody is characterized
by a temperature kTbb ≈ 0.37 keV (Tbb ≈ 4.3 × 106 K) and emitting
surface are Abb ≈ 1.3 × 1012 cm2 (Zhu et al. 2008). These values
of temperature and radius are inconsistent (too high and too small,
respectively) with an explanation based on the cooling of a hot WD,
and therefore such a soft X-ray emission must be explained from a
spotty surface due to magnetospheric processes, as the one explored
in this work.

The stability of the WD for such a rotation period constrains the
WD radius to the range R ≈ (1.04–4.76) × 108 cm. For example,
in the case of a WD with radius R ≈ 108 cm, the polar cap area
is Apc = 6.6 × 1014 cm, hence using equation (6) we have f ≈
0.002. From equation (8) the spot temperature k Tspot ≈ 0.37 keV
can be obtained using Bd ≈ 6 × 109 G from the dipole formula
(9), a potential drop �V ≈ 3.5 × 1011 V (lower than �Vmax ≈
5.4 × 1012 V), and using the typical value η = 1/2 of the reduced
particle density in the gap adopted in the literature. These parameters
suggest a height of the gap, obtained with equation (2), h ≈ 0.11Rpc.

The smallness of the filling factor, which appears to be not at-
tributable to the value of h, could be explained by a multipolar
magnetic field near the surface. It is interesting that the exis-
tence of complex multipolar magnetic field close to the WD sur-
face is observationally supported (see e.g. Ferrario, de Martino &
Gänsicke 2015). It is important to clarify that the above defined fill-
ing factor has only a physical meaning when, besides a strong non-
dipolar surface field, the physical parameters of the star (magnetic
field and rotational velocity) fulfill the requirement for the creation
of electron–positron pairs in such a way that an avalanche of parti-
cles hits the surface. This is given by the request that the potential
drop (4) does not exceed the maximum value (5). For example, for
the largest magnetic field measured in WDs, B ∼ 109G, and WD
radii 108–109 cm, the maximum period that allows the avalanche of
electron–positron pairs gives the range P ∼ 4–100 s, values much
shorter than the value of typical rotation periods measured in most
of magnetic WDs, P � 725 s (see e.g. Ferrario et al. 2015). It is
interesting to note that the condition of e+e− pair creation in the
WD magnetosphere could explain the narrow range of observed
rotation periods of SGRs/AXPs, P ∼ 2–12 s. Such a local, strong
non-dipolar field in the surface diminishes the area bombarded by
the incoming particles and, via magnetic flux conservation, the fill-
ing factor establishes the intensity of the multipolar magnetic field
component as (see e.g. Cheng & Zhang 1999; Gil & Sendyk 2000;
Gil & Melikidze 2002, and references therein)

Bs = Bd

f
, (10)

which implies that, close to the surface, there could be small mag-
netic domains with magnetic field intensity as large as 1011–1012 G
(see Fig. 1).

3.2 4U 0142+61

We can repeat the above analysis for the case of 4U 0142+61.
This source, with a rotation period P ≈ 8.69 s, was first de-
tected by Uhuru (Forman et al. 1978). The measured period
derivative of this source is Ṗ = 2.03 × 10−12 (Hulleman, van
Kerkwijk & Kulkarni 2000). The time-integrated X-ray spec-
trum of 4U 0142+61 is also described by a blackbody plus a
power-law model. The blackbody component shows a temperature

MNRAS 465, 4434–4440 (2017)
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Figure 1. Surface to dipole magnetic field ratio given by magnetic flux
conservation (10) for the AXPs 1E 2259+586 and 4U 0142+61.

kTbb = 0.39 keV (Tbb ≈ 4.6 × 106 K) and a surface area Abb ≈
5.75 × 1011 cm2 (Göhler, Wilms & Staubert 2005). As for the above
case of 1E 2259+5726, such a blackbody cannot be explained from
the cooling of a WD but instead from a magnetospheric hotspot
created by the heating of the polar cap.

For a WD radius R = 108 cm and a magnetic field Bd ≈ 1010 G for
a rotating dipole (9), we have a filling factor f ≈ 0.001, a potential
drop �V ≈ 1.4 × 1011 V (smaller than �Vmax ≈ 5.8 × 1012 Volts)
and a gap height h ≈ 0.06Rpc. Again the filling factor suggests the
presence of a strong multipolar component as shown in Fig. 1.

We show in Fig. 2 the potential drop inferred from equation (8)
using the X-ray blackbody data for the above two sources. We check
that for all the possible stable WD configurations, the potential drop
satisfies the self-consistence condition �V < �Vmax, where the
latter is given by equation (5).

4 FL U X PRO F ILE S A N D PU LSED FRAC T I ON

We turn now to examine the properties of the flux emitted by such
hot spots. Even if the gravitational field of a WD is not strong
enough to cause appreciable general relativistic effects, for the sake
of generality we compute the flux from the star taken into account

Figure 3. View of the photon trajectory and angles θ , α and β.

the bending of light. We shall follow here the treatment in Turolla
& Nobili (2013) to calculate the observed flux that allows us to treat
circular spots of arbitrary finite size and arbitrarily located in the
star surface. The mass and radius of the star are denoted by M and R
and the outer space–time is described by the Schwarzschild metric,
i.e. we shall neglect at first approximation the effects of rotation.
Let (r, θ , φ) be the spherical coordinate system centred on the star
and the line-of-sight (LOS) the polar axis.

We consider an observer at r → ∞ and a photon that arises
from the star surface at dS = R2 sin θdθdφ making an angle α with
the local surface normal, where 0 ≤ α ≤ π/2. The photon path
is then bended by an additional angle β owing to the space–time
curvature, reaching the observer with an angle ψ = α + β. Since
we have chosen the polar axis aligned with the LOS, it is easy to see
that ψ = θ (see Fig. 3). Beloborodov (2002) showed that a simple
approximate formula can be used to relate the emission angle α to
the final angle θ :

1 − cos α = (1 − cos θ )

(
1 − Rs

R

)
, (11)

Figure 2. WD polar gap potential drop �V inferred via equation (8) using the blackbody observed in soft X-rays in 1E 2259+586 (left-hand panel) and 4U
0142+61 (right-hand panel). In this plot, we check the potential drop developed in the WD polar gap does not exceed the maximum potential reachable �Vmax

given by equation (5).
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where Rs = 2GM/c2 is the Schwarzschild radius and, as usual, G
denotes the gravitational constant.

For an emission with a local Planck spectrum, the intensity is
given by a blackbody of temperature T, Bν(T), where ν is the photon
frequency. The flux is proportional to the visible area of the emitting
region (SV) plus a relativistic correction proportional to the surface,
given by the equation

Fν =
(

1 − Rs

R

)
Bν(T )

∫

SV

cos α
dcosα

d(cos θ )
ds

=
(

1 − Rs

R

)2

Bν(T )(Ip + Is), (12)

where

Ip =
∫

SV

cos θ sin θdθdφ, Is =
∫

SV

sin θdθdφ. (13)

In polar coordinates, the circular spot has its centre at θ0 and a
semi-aperture θ c. The spot is bounded by the function φb(θ ), where
0 ≤ φb ≤ π , and since we must consider just the star visible part,
the spot must be also limited by a constant θF. For a given bending
angle β, the maximum θF is given by the maximum emission α, i.e.
α = π/2. One can see that in a Newtonian gravity, where β = 0, the
maximum visible angle is θF = π/2, which means half of the star
is visible, while in a relativistic star, values θF > π/2 are possible,
as expected. Then

Ip = 2
∫ θmax

θmin

cos θ sin θφb(θ )dθ,

Is = 2
∫ θmax

θmin

sin θφb(θ )dθ, (14)

where θmin, θmax are the limiting values to be determined for the
spot considered. Turolla & Nobili (2013) showed how to solve these
integrals and how to treat carefully the limiting angles. The Ip and
Is integrals can be then written as Ip, s = I1, 2(θmax) − I1, 2(θmin) and
we refer the reader to that work for the precise expressions.

Finally, the flux (12) is written as

Fν =
(

1 − Rs

R

)2

Bν(T )Aeff (θc, θ0) , (15)

where Aeff is the effective area, given by

Aeff (θc, θ0) = R2

[
Rs

R
Is +

(
1 − Rs

R

)
Ip

]
. (16)

The total flux produced by two antipodal spots, with semi-
apertures θ c,i and temperatures Ti (i = 1,2), can be calculated by
adding each contribution, so we have

F TOT
ν =

(
1 − Rs

R

)2

[Bν(T1)Aeff (θc,1, θ0)

+Bν(T2)Aeff (θc,2, θ0 + π/2)] . (17)

Besides, the pulse profile in a given energy band [ν1, ν2] for one
spot is given by

F (ν1, ν2) =
(

1 − Rs

R

)2

Aeff (θc, θ0)
∫ ν2

ν1

Bν(T )dν . (18)

The star rotates with a period P (angular velocity � = 2π/P), so
we consider r̂ the unit vector parallel to the rotating axis. It is useful
to introduce the angles ξ , the angle between the LOS (unit vector
l̂) and the rotation axis and the angle χ between the spot axis (unit
vector ĉ) and the rotation axis, i.e. cos ξ = r̂ · l̂ and cos χ = r̂ · ĉ.

Figure 4. Flux profiles for different configurations of antipodal spots as a
function of the phase. The semi-aperture for all the lines is θc = 3◦. The WD
parameters correspond to the ones of the WD of minimum radius adopted
for AXP 1E 2259+586.

As the star rotates, the spot’s centre, θ0, changes. Let γ (t) = �t be
the rotational phase, thus by geometrical reasoning we have

cos θ0(t) = cos ξ cos χ − sin ξ sin χ cos γ (t) , (19)

where it is indicated that ξ and χ do not change in time. When
the total flux (17) is calculated for a given configuration (ξ , χ ) in
the whole period of time, the typical result is a pulsed flux with a
maximum (Fmax) and a minimum flux (Fmin). As an example, we
show in Fig. 4 flux profiles for different configurations of antipodal
spots as a function of the phase for the WD of minimum radius in
the case of AXP 1E 2259+586 used in Section 3.1.

We can measure the amount of pulsed emission by defining the
pulsed fraction

PF = Fmax − Fmin

Fmax + Fmin
, (20)

which we show in Fig. 5, as a function of the angles ξ and χ , for
AXP 1E 2259+586. In the left-hand panel of this figure, we consider
only the flux given by the blackbody produced by the two antipodal
hotspots on the WD. We can see that indeed pulsed fractions as
small as the above values can be obtained from magnetized WDs,
for appropriate values of the geometric angles ξ and χ . However, the
soft X-ray spectrum shows a non-thermal power-law component,
additional to the blackbody one. As we have shown, the blackbody
itself can contribute to the PF if produced by surface hotspots and
thus the observed total PF of a source in those cases includes both
contributions, mixed. It is thus of interest to explore this problem
from the theoretical point of view. To do this, we first recall that
total intrinsic flux of this source in the 2–10 keV band is Ftot ≈
1.4 × 10−11 erg cm−2 s−1 and the power-law flux is FPL ≈ 1.8Fbb

≈ 8.5 × 10−12 erg cm−2 s−1 (Zhu et al. 2008). The right-hand panel
of Fig. 5 shows the PF map for this source taking into account both
the blackbody and the power-law components. By comparing this
PF map with the one in the left-hand panel which considers only
the pulsed blackbody we can see that they are very similar each
other. This means that in these cases where both pulsed components
are in phase and have comparable fluxes, it is difficult (although
still possible if good data are available) to disentangle the single
contributions.
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Figure 5. Theoretical PF as a function of the angles ξ and χ , computed in this work for the source 1E 2259+586 modelled as a WD of radius Rmin ≈
1.04 × 108 cm. The left-hand panel shows the results of the PF produced by the blackbody given by the two antipodal hot spots. The right-hand panel shows the
results for the total flux given by the blackbody plus the non-thermal power-law component, both pulsed. The observed total PF of this source in the 2–10 keV
is about 20 per cent (Zhu et al. 2008).

5 C O N C L U S I O N S

We exploited the analogy with pulsars to investigate whether or
not massive, highly magnetized, fast rotating WDs can behave as
neutron star pulsars and emit observable high-energy radiation. We
conclude the following:

(i) We showed that WDs can produce e−e+ pairs in their magne-
tosphere from the decay of curvature radiation photons, i.e. we infer
the structure parameters for which they are located above the WD
pulsar death-line. We evaluated the rate of such a process. Then, we
calculated the thermal emission produced by the polar cap heating
by the pair-created particles that flow back to the WD surface due
to the action of the induction electric field.

(ii) In order to give a precise example of the process, we ap-
plied the theoretical results to the case of the WD model of SGRs
and AXPs. We have shown that the inferred values of the WD pa-
rameters obtained from fitting with this magnetospheric emission,
the blackbody spectrum observed in the soft X-rays of SGRs and
AXPs, are in agreement with our previous estimates using the IR,
optical, and UV data and fall within the constraints imposed by the
gravitational stability of the WD.

(iii) We have related the size of the spot with the size of the sur-
face under the polar cap filled by the inward particle bombardment.
We have shown that the spot area is much smaller than the polar cap
area pointing to the existence of strong non-dipolar magnetic fields
close to the WD surface.

(iv) We have used the heat transport and energy balance equa-
tions to show that for the actual conditions of density and tempera-
ture under the polar cap, the hotspot re-radiates efficiently the heat
proportioned by the inward particle bombardment.

(v) The spot, which is aligned with the magnetic dipole moment
of the WD, produces a pulsed emission in phase with the rotation
period of the object. We showed that the theoretically inferred pulsed
fraction of the WD spans from very low values all the way to unity
depending on the viewing angles. Therefore, it can also account
for the observed pulsed fraction in SGRs and AXPs for appropriate
choices of the viewing angles. In addition, the low-energy tail of
the blackbody spectrum of the hotspot could produce a non-null
pulsed fraction of the flux in the optical bands as well. However,
this depends on the flux produced by the surface temperature of
the WD which certainly dominates the light curve at low energies.

From the quantitative point of view, the size of the surface area
of the spots is crucial for the explanation of the observed pulsed
fraction in soft X-rays.

(vi) We have also shown that the addition of a pulsed power-law
component as the one observed in SGRs/AXPs does not modify
appreciably the above result. The reason for this is that the non-
thermal power-law component and the blackbody due to the surface
hotspot have comparable fluxes and are in phase with each other. In
those cases, it is difficult to disentangle the siingle contributions to
the pulsed fraction.

We have shown that, as advanced in Rueda et al. (2013), indeed
the blackbody observed in the optical wavelengths of SGRs and
AXPs can be due to the surface temperature of the WD, while the
one observed in the X-rays can be of magnetospheric origin. For the
power-law component, also observed in the soft X-rays, a deeper
analysis of processes, such as curvature radiation, inverse Compton
scattering, as well as other emission mechanisms, is currently under
study.

There is also room for application and extension of the results pre-
sented in this work to other astrophysical phenomena. WD mergers
can lead to a system formed by a central massive, highly magne-
tized, fast rotating WD, surrounded by a Keplerian disc (see Rueda
et al. 2013, and references therein). At the early stages, the WD and
the disc are hot and there is ongoing accretion of the disc material
on to the WD. In such a case, the WD surface shows hot regions
that deviate from the spotty case, e.g. hot surface rings. That case is
also of interest and will be presented elsewhere.
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A P P E N D I X : H E ATI N G A N D C O O L I N G
O F PA RTI C L E I N F L U X B O M BA R D M E N T

We estimate in this appendix the efficiency of the particle bom-
bardment in heating (and re-rediating) the surface area they hit. We

follow the discussion in Gil & Melikidze (2002), Gil, Melikidze &
Geppert (2003) for the heat flow conditions in the polar cap surface
of neutron stars, and extended it to the present case of magnetized
WDs.

The particles arriving to the surface penetrate up to a depth that
can be estimated using the concept of radiation length (Cheng &
Ruderman 1980). For a carbon composition, the radiation length is
� ≈ 43 g cm−2 (Tsai 1974), so an electron would penetrate the WD
surface up to a depth

�z ≈ �

ρ
= 4.3 × 10−3 cm

(
104 g cm−3

ρ

)
. (A1)

With the knowledge of the thickness of the layer under the surface
where the energy deposition occurs, we can proceed to estimate the
properties of the diffusion and re-radiation of the kinetic energy
of the particle influx using the heat transport and energy balance
equations on the star’s surface corresponding to the polar cap. The
typically small distances (see equation A1) allow us to introduce a
plane-parallel approximation in the direction parallel to the mag-
netic field lines, say in the direction z orthogonal to the surface.

The energy balance can be simply written as

Frad = Fheat + Fcond, (A2)

where Fheat = e�VηρGJc, Fcond = −κ∂T /∂z and Frad = σT4, with
κ the thermal conductivity (along the z-direction).

Let us first estimate the characteristic cooling time. To do this,
we switch off energy losses and heating terms in the energy balance
equation (A2), i.e. the radiation flux is only given by conduction:

σT 4 = −κ
∂T

∂z
, (A3)

which leads to the heat transport equation

cv

∂T

∂t
= ∂

∂z

(
κ
∂T

∂z

)
, (A4)

where cv is the heat capacity per unit volume. We can therefore
obtain the characteristic (e-folding) cooling and heating time as-
suming the quantities are uniform within the penetration depth �z,
i.e.

�tcool = �z2cv

κ
, �theat = cv�z

σT 3
. (A5)

We can now introduce the radiation to heating efficiency parameter

ε ≡ Frad

Fheat
= 1

1 + �theat/�tcool
= 1

1 + κ/(σT 3�z)
, (A6)

which shows that in equilibrium, �theat = �tcool, we have ε = 1/2.
In estimating the spot temperature (8), we have assumed in

equation (7) full re-radiation of the influx, namely we assumed
ε = 1. We proceed now to estimate the realistic values of ε from
equation (A6) to check our assumption. We compute the thermal
conductivity from Itoh, Hayashi & Kohyama (1993) and the heat
capacity from Chabrier & Potekhin (1998); Potekhin & Chabrier
(2000). For example, at a density ρ = 103 g cm−3 and T = 106 K,
we have cv = 2.7 × 1010 erg cm−3 K−1 and κ ≈ 4 × 1011 erg
cm−1 s−1 K−1, and equation (A6) gives ε ≈ 0.86. At T = 107 K,
we have cv = 3.8 × 1011 erg cm−3 K−1 and κ ≈ 3.4 × 1013 erg
cm−1 s−1 K−1 and ε ≈ 1.
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Short and long-duration gamma-ray bursts (GRBs) have been recently sub-classified into
seven families according to the binary nature of their progenitors. For short GRBs, merg-
ers of neutron star binaries (NS–NS) or neutron star-black hole binaries (NS-BH) are

proposed. For long GRBs, the induced gravitational collapse (IGC) paradigm proposes
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a tight binary system composed of a carbon–oxygen core (COcore) and a NS companion.
The explosion of the COcore as supernova (SN) triggers a hypercritical accretion pro-
cess onto the NS companion which might reach the critical mass for the gravitational
collapse to a BH. Thus, this process can lead either to a NS-BH or to NS–NS depending
on whether or not the accretion is sufficient to induce the collapse of the NS into a BH.
We shall discuss for the above compact object binaries: (1) the role of the NS struc-
ture and the equation-of-state on their final fate; (2) their occurrence rates as inferred
from the X and gamma-ray observations; (3) the expected number of detections of their
gravitational wave (GW) emission by the Advanced LIGO interferometer.

Keywords: Gamma-ray bursts; neutron stars; black holes.

PACS Number(s): 04.30.Tv, 04.40.Dg, 97.60.Bw, 97.60.Jd, 97.60.Lf, 98.62.Mw

1. Introduction

There has been a traditional phenomenological classification of GRBs based on

the observed prompt duration, T90: long GRBs for T90 > 2 s and short GRBs for

T90 < 2 s.1–5 In this paper, we shall review the recent progress reached in the under-

standing of the nature of long and short GRBs that has led to a physical GRB classi-

fication, proposed in Refs. 6–8. Such a classification, as we will see below, is based on

the possible outcomes in the final stages of the evolution of the progenitor systems.

1.1. Long GRBs

The induced gravitational collapse (IGC) scenario introduces, as the progenitor of

the long GRBs associated with SNe Ib/c, binaries composed of a carbon–oxygen

core (COcore) on the verge of supernova with a NS companion.9–15 The explosion

of the COcore as SN, forming at its center a newly-born NS called hereafter νNS,

triggers an accretion process onto the NS binary companion. Depending on the

parameters of the in-state, i.e. of COcore-NS binary, two sub-classes of long GRBs

with corresponding out-states are envisaged6:

• X-ray flashes (XRFs). Long bursts with Eiso � 1052 erg are produced by COcore-

NS binaries with relatively large binary separations (a � 1011 cm). The accretion

rate of the SN ejecta onto the NS in these systems is not high enough to bring

the NS mass to the critical value Mcrit, hence no BH is formed. The out-state

of this GRB sub-class can be either a νNS–NS binary if the system keeps bound

after the SN explosion, or two runaway NSs if the binary system is disrupted.

• Binary driven hypernovae (BdHNe). Long bursts with Eiso � 1052 erg are instead

produced by more compact COcore-NS binaries (a � 1011 cm, see e.g. Refs. 13

and 15). In this case, the SN triggers a larger accretion rate onto the NS com-

panion, e.g. � 10−2–10−1M� s−1, bringing the NS to its critical mass Mcrit,
11–13

namely to the point of gravitational collapse with consequent formation of a BH.

Remarkably, in Ref. 14, it was recently shown that the large majority of BdHNe

leads naturally to NS-BH binaries owing to the high compactness of the binary
that avoids the disruption of it even in cases of very high mass loss exceeding

50% of the total mass of the initial COcore-NS binary.
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In addition, it exists the possibility of BH-SNe.6 Long burst with Eiso � 1054 erg

occurring in close COcore-BH binaries in which the hypercritical accretion produces,

as out-states, a more massive BH and a νNS. These systems have been considered

in Ref. 6 as a subset of the BdHNe but no specific example have been yet observa-

tionally identified.

1.2. Short GRBs

There is the consensus within the GRB community that the progenitors of short

GRBs are mergers of NS–NS and/or NS-BH binaries (see, e.g. Refs. 16–20 for a

recent review). Similarly to the case of long GRBs, in Ref. 6 short GRBs have been

split into different sub-classes:

• Short gamma-ray flashes (S-GRFs). Short bursts with energies Eiso � 1052 erg,

produced when the post-merger core do not surpass the NS critical mass Mcrit,

hence there is no BH formation. Thus, these systems left as byproduct a massive

NS and possibly, due to the energy and angular momentum conservation, orbiting

material in a disk-like structure or a low-mass binary companion.

• Authentic short gamma-ray bursts (S-GRBs). Short bursts with Eiso � 1052 erg,

produced when the post-merger core reaches or overcome Mcrit, hence forming a

Kerr or Kerr–Newman BH,8 and also in this case possibly orbiting material.

• Ultra-short GRBs (U-GRBs). A new sub-class of short bursts originating from

νNS-BH merging binaries. They can originate from BdHNe (see Ref. 14) or from

BH-SNe.

In addition, it exists the possibility of gamma-ray flashes (GRFs). These are

bursts with hybrid properties between short and long, they have 1051 � Eiso �
1052 erg. This sub-class of sources originates in NS-WD mergers.6

Table 1 summarized some observational aspects of the GRB sub-classes includ-

ing the occurrence rate calculated in Ref. 6.

Table 1. Some observational aspects of the GRB sub-classes. In the first three columns, we
indicate the GRB sub-class and their corresponding in-states and the out-states. In column 4,
we list the Eiso (rest-frame 1–104 keV), columns 5–6 list, for each GRB sub-class, the maximum
observed redshift and the local occurrence rate computed in Ref. 6.

GRB sub-class In-state Out-state Eiso zmax ρGRB

(erg) (Gpc−3yr−1)

XRFs COcore-NS νNS-NS 1048–1052 1.096 100+45
−34

BdHNe COcore-NS νNS-BH 1052–1054 9.3 0.77+0.09
−0.08

BH-SN COcore-BH νNS-BH >1054 9.3 � 0.77+0.09
−0.08

S-GRFs NS-NS MNS 1049–1052 2.609 3.6+1.4
−1.0

S-GRBs NS-NS BH 1052–1053 5.52 (1.9+1.8
−1.1)× 10−3

U-GRBs νNS-BH BH >1052 — � 0.77+0.09
−0.08

GRFs NS-WD MNS 1051–1052 2.31 1.02+0.71
−0.46
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We focus here on the physical properties of the above progenitors, as well as

on the main properties of NSs that play a relevant role in the dynamics of these

systems and that lead to the above different GRB sub-classes. We shall discuss as

well recent estimates of the rates of occurrence on all the above subclasses based on

X and gamma-ray observations, and also elaborate on the possibility of detecting

the gravitational wave (GW) emission originated in these systems.

2. IGC, Hypercritical Accretion, and Long GRBs

We turn now to the details of the accretion process within the IGC scenario. Realis-

tic simulations of the IGC process were performed in Ref. 12, including: (1) detailed

SN explosions of the COcore; (2) the hydrodynamic details of the hypercritical accre-

tion process; (3) the evolution of the SN ejecta material entering the Bondi–Hoyle

region all the way up to its incorporation into the NS. Here, the concept of hyper-

critical accretion refers to the fact the accretion rates are highly super-Eddington.

The accretion process in the IGC scenario is allowed to exceed the Eddington limit

mainly for two reasons: (i) the photons are trapped within the infalling material

impeding them to transfer momentum; (ii) the accreting material creates a very

hot NS atmosphere (T ∼ 1010K) that triggers a very efficient neutrino emission

which become the main energy sink of these systems unlike photons.

The hypercritical accretion process in the above simulations was computed

within a spherically symmetric approximation. A further step was given in Ref. 13

by estimating the angular momentum that the SN ejecta carries and transfer to

the NS via accretion, and how it affects the evolution and fate of the system. The

calculations are as follows: first the accretion rate onto the NS is computed adopt-

ing an homologous expansion of the SN ejecta and introducing the pre-SN density

profile of the COcore envelope from numerical simulations. Then, it is estimated the

angular momentum that the SN material might transfer to the NS: it comes out

that the ejecta have enough angular momentum to circularize for a short time and

form a disc around the NS. Finally, the evolution of the NS central density and rota-

tion angular velocity (spin-up) is followed computing the equilibrium configurations

from the numerical solution of the axisymmetric Einstein equations in full rotation,

until the critical point of collapse of the NS to a BH taking into due account the

equilibrium limits given by mass-shedding and the secular axisymmetric instability.

Now we enter into the details of each of the above steps. The accretion rate of the

SN ejecta onto the NS can be estimated via the Bondi–Hoyle–Lyttleton accretion

formula:

ṀB(t) = πρejR
2
cap

√
v2rel + c2s,ej, Rcap(t) =

2GMNS(t)

v2rel + c2s,ej
, (1)

where G is the gravitational constant, ρej and cs,ej are the density and sound speed

of the SN ejecta, Rcap is the NS gravitational capture radius (Bondi–Hoyle radius),

MNS, the NS mass, and vrel the ejecta velocity relative to the NS: vrel = vorb−vej,
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Fig. 1. Scheme of the IGC scenario: the COcore undergoes SN explosion, the NS accretes part of
the SN ejecta and then reaches the critical mass for gravitational collapse to a BH, with consequent
emission of a GRB. The SN ejecta reach the NS Bondi–Hoyle radius and fall toward the NS surface.

The material shocks and decelerates as it piles over the NS surface. At the neutrino emission zone,
neutrinos take away most of the infalling matter gravitational energy gain. The neutrinos are
emitted above the NS surface in a region of thickness ∆rν about half the NS radius that allow
the material to reduce its entropy to be finally incorporated to the NS. The image is not to scale.
For further details and numerical simulations of the above process, see Refs. 12–15.

with |vorb| =
√
G(Mcore +MNS)/a, the module of the NS orbital velocity around

the COcore, and vej the velocity of the supernova ejecta (see Fig. 1).

Extrapolating the results for the accretion process from stellar wind accretion in

binary systems, the angular momentum per unit time that crosses the NS capture

region can be approximated by: L̇cap = (π/2)(ερ/2−3εν)ρej(a, t)v
2
rel(a, t)R

4
cap(a, t),

where ερ and εν are parameters measuring the inhomogeneity of the flow (see Ref. 13

for details).

In order to simulate the hypercritical accretion, it is adopted an homolo-

gous expansion of the SN ejecta, i.e. the ejecta velocity evolves as vej(r, t) =

nr/t, where r is the position of every ejecta layer from the SN center and

n is called expansion parameter. The ejecta density is given by ρej(r, t) =

ρ0ej(r/Rstar(t), t0)
Menv(t)
Menv(0)

(Rstar(0)
Rstar(t)

)3, where Menv(t) the mass of the COcore envelope,

namely the mass of the ejected material in the SN explosion and available to be

accreted by the NS, Rstar(t) is the position of the outermost layer of the ejected

material, and ρ0ej is the pre-SN density profile. The latter can be approximated with

a power law: ρej(r, t0) = ρcore(Rcore/r)
m, where ρcore, Rcore and m are the profile

parameters which are fixed by fitting the pre-SN profiles obtained from numerical

simulations.

For the typical parameters of pre-SN COcore and assuming a velocity of the out-

ermost SN layer vsn(Rstar, t0) ∼ 109 cm s−1 and a free expansion n = 1 (for details
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of typical initial conditions of the binary system see Refs. 12 and 13), Eq. (1) gives

accretion rates around the order of 10−4−10−2M� s−1, and an angular momentum

per unit time crossing the capture region L̇cap ∼ 1046–1049 g cm2 s−2.

We consider the NS companion of the COcore initially as nonrotating, thus at

the beginning, the NS exterior spacetime is described by the Schwarzschild metric.

The SN ejecta approach the NS with specific angular momentum, lacc = L̇cap/ṀB,

thus they will circularize at a radius rst if they have enough angular momentum.

What does the word “enough” means here? The last stable circular orbit (LSO)

around a nonrotating NS is located at a distance rlso = 6GMNS/c
2 and has an

angular momentum per unit mass llso = 2
√
3GMNS/c. The radius rlso is larger

than the NS radius for masses larger than 1.67M�, 1.71M�, and 1.78M� for the

GM1, TM1, and NL3 nuclear equation-of-state (EOS).13 If lacc ≥ llso, the material

circularizes around the NS at locations rst ≥ rlso. For the values of the IGC systems

under discussion here, rst/rlso ∼ 10− 103, thus the SN ejecta have enough angular

momentum to form a sort of disc around the NS. Even in this case, the viscous forces

and other angular momentum losses that act on the disk will allow the matter in

the disk to reach the inner boundary at rin ∼ rlso, to then be accreted by the NS.

Within this picture, the NS accretes the material from rin and the NS mass and

angular momentum evolve as:

ṀNS =

(
∂MNS

∂Mb

)

JNS

Ṁb +

(
∂MNS

∂JNS

)

Mb

J̇NS, J̇NS = ξl(rin)ṀB, (2)

where Mb is the NS baryonic mass, l(rin) is the specific angular momentum of

the accreted material at rin, which corresponds to the angular momentum of the

LSO, and ξ ≤ 1 is a parameter that measures the efficiency of angular momentum

transfer. We assume in our simulations Ṁb = ṀB.

In order to integrate Eqs. (1) and (2), we have to supply the two above partial

derivatives which are obtained from the relation of the NS gravitational mass with

Mb and JNS, namely from the NS binding energy. The general relativistic calcula-

tions of rotating NSs in Ref. 21 show that, independent on the nuclear EOS, this

relation is well approximated by the formula

Mb

M�
=

MNS

M�
+

13

200

(
MNS

M�

)2(
1− 1

137
j1.7NS

)
, (3)

where jNS ≡ cJNS/(GM2
�). In addition, since the NS will spin up with accretion,

we need information of the dependence of the specific angular momentum of the

LSO as a function of both the NS mass and angular momentum. For corotating

orbits, the following relation is valid for all the aforementioned EOS13:

llso =
GMNS

c


2

√
3− 0.37




jNS

MNS

M�




0.85

. (4)

The NS accretes mass until it reaches a region of instability. There are two main

instability limits for rotating NSs: mass-shedding or Keplerian limit and the secular
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Table 2. Critical NS mass in the nonrotating case and

constants k and p needed to compute the NS critical mass
in the nonrotating case given by Eq. (5). The values are
given for the NL3, GM1 and TM1 EOS.

EOS MJ=0
crit (M�) p k

NL3 2.81 1.68 0.006
GM1 2.39 1.69 0.011
TM1 2.20 1.61 0.017

axisymmetric instability. The critical NS mass along the secular instability line is

approximately given by21:

M crit
NS = MJ=0

NS (1 + kjpNS), (5)

where the parameters k and p depends of the nuclear EOS (see Table 2). These

formulas fit the numerical results with a maximum error of 0.45%.

Along the mass-shedding sequence, the NS has the maximum possible angu-

lar momentum21: JNS,max ≈ 0.7GM2
NS/c. Figure 2 shows the evolution of the NS

dimensionless angular momentum, cJNS/(GM2
NS), as a function of the NS mass for

ξ = 0.5 and for selected values of the initial NS mass. The NS fate depends of

the NS initial mass and the efficiency parameter ξ. The less massive initial con-

figurations reach the mass-shedding limit with a maximum dimensionless angular

momentum value while the initially more massive configurations reach the secular

axisymmetric instability. It is interesting to note that the total angular momentum

of the SN ejecta entering the Bondi–Hoyle region, Lcap, is much larger than the

Fig. 2. Evolution of NSs of different initial masses MNS = 2.0, 2.25 and 2.5M� during the
hypercritical accretion in a BdHN.13 It is shown the dimensionless angular momentum as a func-
tion of the NS mass. The binary parameters are: COcore of a MZAMS = 30M� progenitor star
(m = 2.801, Menv = 7.94M�, ρcore = 3.08 × 108 g cm−3 and R0star = 7.65 × 109 cm), a free

expansion (n = 1) and a SN outermost ejecta velocity v0star = 2× 109 cm s−1. The orbital period
is of approximately 5min.
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maximum angular momentum that a uniformly rotating NS can support, JNS,max.

The numerical simulations in Ref. 13 indicate Lcap ∼ 10JNS,max. Thus, part of this

angular momentum must be lost or redistributed before the material can reach the

NS surface. This result leads to a clear prediction: the BHs produced through the

IGC mechanism, namely those formed in BdHNe, have initial dimensionless spin

∼0.7 and the excess of angular momentum could lead to a jetted emission with

possible high-energy signatures and/or to the presence of a disk-like structure first

around the NS as shown above and possibly also around the BH originated from

the gravitational collapse of the NS.

2.1. Most recent simulations of the IGC process

Additional details and improvements of the hypercritical accretion process leading

to XRFs and BdHNe have been recently presented in Ref. 15. In particular:

(1) It was there improved the accretion rate estimate including the density profile

finite size/thickness and additional COcore progenitors leading to different SN

ejecta masses were also considered.

(2) It was shown in Ref. 13, the existence of a maximum orbital period, Pmax, over

which the accretion onto NS companion is not high enough to bring it to the

critical mass for gravitational collapse to a BH. Therefore, COcore-NS binaries

with P > Pmax lead to XRFs while the ones with P � Pmax lead to BdHNe.

In Ref. 15, the determination of Pmax was extended to all the possible initial

values of the mass of the NS companion and the angular momentum transfer

efficiency parameter was also allowed to vary.

(3) It was computed the expected luminosity during the hypercritical accretion

process for a wide range of binary periods covering XRFs and BdHNe.

(4) It was there shown that the presence of the NS companion originates large

asymmetries (see, e.g. simulation in Fig. 3) in the SN ejecta leading to observ-

able signatures in the X-rays.

Figure 3 shows a simulation of an IGC process presented in Ref. 15. We con-

sidered the effects of the gravitational field of the NS on the SN ejecta including

the orbital motion as well as the changes in the NS gravitational mass owing to the

accretion process via the Bondi formalism. The supernova matter was described as

formed by point-like particles whose trajectory was computed by solving the New-

tonian equation of motion. The initial conditions of the SN ejecta are computed

assuming an homologous velocity distribution in free expansion. The initial power-

law density profile of the CO envelope is simulated by populating the inner layers

with more particles. For the MZAMS = 30M� progenitor which gives a COcore with

envelope profile ρ0ej ≈ 3.1 × 108(8.3 × 107/r)2.8 g cm−3, we adopt for the simula-

tion a total number of N = 106 particles. We assume that particles crossing the

Bondi–Hoyle radius are captured and accreted by the NS so we removed them from

the system as they reach that region. We removed these particles according to the
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Fig. 3. Hypercritical accretion process in the IGC binary system at selected evolution times.
In this example, the COcore has a total mass of 9.44M� divided in an ejecta mass of 7.94M�
and a νNS of 1.5M� formed by the collapsed high density core. The supernova ejecta evolve
homologously with outermost layer velocity v0,star = 2 × 109 cm s−1. The NS binary companion
has an initial mass of 2.0M�. The binary period is P ≈ 5min, which corresponds to a binary
separation a ≈ 1.5×1010 cm. The system of coordinates is centered on the νNS represented by the
white-filled circle at (0, 0). The NS binary companion, represented by the gray-filled circle, orbits
counterclockwise following the thin-dashed circular trajectory. The colorbar indicates values of
ejecta density in logarithmic scale. Left upper panel : initial time of the process. The supernova
ejecta expand radially outward and the NS binary companion is at (a, 0). Right upper panel :
the accretion process starts when the first supernova layers reach the Bondi–Hoyle region. This
happens at t = tacc,0 ≈ a/v0,star ≈ 7.7 s. Left lower panel : the NS binary companion reaches the
critical mass by accreting matter from the SN with consequent collapse to a BH. This happens
at t = tcoll ≈ 254 s ≈ 0.85P . The newly-formed BH of mass MBH = Mcrit ≈ 3M� is represented
by the black-filled circle. It is here evident the asymmetry of the supernova ejecta induced by the

presence of the accreting NS companion at close distance. Right lower panel : t = tcoll + 100 s =
354 s ≈ 1.2P , namely 100 s after the BH formation. It appears here the new binary system
composed of the νNS and the newly-formed BH.

results obtained from the numerical integration explained above. Figure 3 shows

the orbital plane of an IGC binary at selected times of its evolution. The NS has an

initial mass of 2.0M�; the COcore leads to a total ejecta mass 7.94M� and a νNS

of 1.5M�. The orbital period of the binary is P ≈ 5min, i.e. a binary separation

a ≈ 1.5 × 1010 cm. For these parameters, the NS reaches the critical mass and

collapses to form a BH.
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2.2. Hydrodynamics and neutrino inside the accretion region

We turn now to give some details on the properties of the system inside the Bondi–

Hoyle accretion region. We have seen that the accretion rate onto the NS can be as

high as ∼10−2–10−1M� s−1. For these accretion rates:

(1) We can neglect the effect of the NS magnetic field since the magnetic pressure

remains much smaller than the random pressure of the infalling material.11,22

(2) The photons are trapped in the accretion flow. The trapping radius, defined

at which the photons emitted diffuse outward at a slower velocity than the

one of the infalling material, is23: rtrapping = min{ṀBκ/(4πc), Rcap, where κ

is the opacity. For the COcore, in Ref. 12, a Rosseland mean opacity roughly

5× 103 cm2 g−1 was estimated. For the range of accretion rates, we obtain that

ṀBκ/(4πc) ∼ 1013–1019 cm, a radius much bigger than the NS capture radius

which is in our simulations at most 1/3 of the binary separation. Thus, in our

systems, the trapping radius extends all the way to the Bondi–Hoyle region,

hence the Eddington limit does not apply and hypercritical accretion onto the

NS occurs.

(3) Under these conditions, the gain of gravitational energy of the accreted material

is mainly radiated via neutrino emission (see below).11,12,22,24,25

2.2.1. Convective instabilities

As the material piles onto the NS and the atmosphere radius, the accretion shock

moves outward. The post-shock entropy is a decreasing function of the shock

radius position which creates an atmosphere unstable to Rayleigh–Taylor con-

vection during the initial phase of the accretion process. These instabilities can

accelerate above the escape velocity driving outflows from the accreting NS with

final velocities approaching the speed of light.26,27 Assuming that radiation domi-

nates, the entropy of the material at the base of the atmosphere is22: Sbubble ≈
16(1.4M�/MNS)

−7/8(M� s−1/ṀB)
1/4(106 cm/r)3/8, in units of kB per nucleon.

This material will rise and expand, cooling adiabatically, i.e. T 3/ρ = constant,

for radiation dominated gas. If we assume a spherically symmetric expansion, then

ρ ∝ 1/r3 and we obtain kBTbubble = 195S−1
bubble(10

6 cm/r)MeV. However, it is

more likely that the bubbles expand in the lateral but not in the radial direction,27

thus we have ρ ∝ 1/r2, i.e. Tbubble = T0(Sbubble)(r0/r)
2/3, where T0(Sbubble) is

given by the above equation evaluated at r = r0 ≈ RNS. This temperature implies

a bolometric blackbody flux at the source from the bubbles

Fbubble ≈ 2× 1040
(

MNS

1.4M�

)−7/2
(

ṀB

M� s−1

)(
RNS

106 cm

)3/2

×
(r0
r

)8/3
erg s−1cm−2, (6)

where σ is the Stefan–Boltzmann constant.
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In Ref. 12, it was shown that the above thermal emission from the rising bubbles

produced during the hypercritical accretion process can explain the early (t � 50 s)

thermal X-ray emission observed in GRB 090618.10,28 In that case, Tbubble drops

from 50 keV to 15 keV expanding from r ≈ 109 cm to 6 × 109 cm, for an accretion

rate 10−2M� s−1.

It is interesting that also r-process nucleosynthesis can occur in these outflows.26

This implies that long GRBs can be also r-process sites with specific signatures from

the decay of the produced heavy elements, possibly similar as in the case of the

kilonova emission in short GRBs.29 The signatures of this phenomenon in XRFs

and BdHNe, and its comparison with kilonovae, deserves to be explored.

2.2.2. Neutrino emission

Most of the energy from the accretion is lost through neutrino emission. For the

accretion rate conditions characteristic of our models ∼10−4–10−2M� s−1, e+e−

pair annihilation dominates the neutrino emission and electron neutrinos remove the

bulk of the energy. The temperature of these neutrinos can be roughly approximated

by assuming that the inflowing material generally flows near to the NS surface before

shocking and emitting neutrinos. For accretion rates ∼10−4–10−2M� s−1, neutrino

energies ∼5–20MeV are obtained.15 A detailed study of the neutrino emission will

be the presented elsewhere.

For the developed temperatures (say kBT ∼ 1–10MeV) near the NS surface,

the dominant neutrino emission process is the e+e−annihilation leading to νν̄.

This process produces a neutrino emissivity proportional to the ninth power of

the temperature. The accretion atmosphere near the NS surface is characterized by

a temperature gradient with a typical scale height ∆rν ≈ 0.7RNS.
15 Owing to the

aforementioned strong dependence of the neutrino emission on temperature, most

of the neutrino emission occurs in the region ∆rν above the NS surface.

These conditions lead to the neutrinos to be efficient in balancing the gravita-

tional potential energy gain allowing the hypercritical accretion rates. The effective

accretion onto the NS can be estimated as22: Ṁeff ≈ ∆Mν(Lν/Eν), where ∆Mν

and Lν are the mass and neutrino luminosity in the emission region (i.e. ∆rν). Eν is

half the gravitational potential energy gained by the material falling from infinity to

the RNS +∆rν . Since Lν ≈ 2πR2
NS∆rνεe−e+ with εe−e+ the e+e− pair annihilation

process emissivity, and Eν = (1/2)GMNS∆Mν/(RNS+∆rν), it can be checked that

for MNS = 1.4M� this accretion rate leads to values Ṁeff ≈ 10−9–10−1M� s−1 for

temperatures kBT = 1–10MeV.

2.3. Accretion luminosity

The gain of gravitational potential energy in the accretion process is the total one

available to be released, e.g. by neutrinos and photons. The total energy released in

the star in a time-interval dt during the accretion of an amount of mass dMb with
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angular momentum lṀb, is given by13,30

Lacc = (Ṁb − ṀNS)c
2 = Ṁbc

2

[
1−

(
∂MNS

∂JNS

)

Mb

l −
(
∂MNS

∂Mb

)

JNS

]
. (7)

This upper limit to the energy released is just the amount of gravitational energy

gained by the accreted matter by falling to the NS surface and which is not spent

in changing the gravitational binding energy of the NS. The total energy releasable

during the accretion process, say ∆Eacc ≡
∫
Laccdt, is given by the difference in

binding energies of the initial and final NS configurations. The typical luminosity

will be Lacc ≈ ∆Eacc/∆tacc where ∆tacc is the duration of the accretion process.

The duration of the accretion process is given approximately by the flow time of

the slowest layers of the supernova ejecta to the NS. If the velocity of these layers is

vinner, then ∆tacc ∼ a/vinner, where a is the binary separation. For a ∼ 1011 cm and

vinner ∼ 108 cm s−1, we obtain ∆tacc ∼ 103 s, while for shorter binary separation,

e.g. a ∼ 1010 cm (P ∼ 5min), ∆tacc ∼ 102 s, as validated by the results of our

numerical integrations.

For instance, the NS in the system with P = 5min accretes ≈ 1M� in ∆tacc ≈
100 s. With the aid of Eq. (3), we estimate a difference in binding energies between

a 2M� and a 3M� NS, i.e. ∆Eacc ≈ 13/200(32 − 22)M�c2 ≈ 0.32M�c2 leading

to a maximum luminosity Lacc ≈ 3× 10−3M�c2 ≈ 0.1Ṁbc
2. This accretion power,

which could be as high as Lacc ∼ 0.1Ṁbc
2 ∼ 1047–1051 erg s−1 for accretion rates

in the range Ṁb ∼ 10−6–10−2M� s−1, necessarily leads to signatures observable in

long GRBs (see, e.g. Refs. 10 and 12).

2.4. Post-explosion orbits and formation of NS-BH binaries

We turn now to discuss the out-states of the IGC process. The SN explosion of

the COcore leaves as a central remnant, the νNS, while the IGC process triggered

by the hypercritical accretion of the SN ejecta onto the NS companion leads to

the formation of a BH. Thus, the question arises if BdHNe are natural sites for

the formation of NS-BH binaries or if these binaries become disrupted during the

SN explosion and the consequent IGC process. The answer to this question was

recently given in Ref. 14, where it was shown that indeed most of BdHN form NS-

BH binaries since the high compactness of the orbit avoids the unbinding of the

orbit.

In typical systems, most of the binaries become unbound during the SN explo-

sion because of the ejected mass and momentum imparted (kick) on the newly

formed compact object in the explosion of the massive star. Under the instanta-

neous explosion assumption, if half of the binary system’s mass is lost in the SN

explosion, the system is disrupted. In general, the fraction of massive binaries that

can produce double compact object binaries is thought to be low: ∼0.001–1%.31–33

The mass ejected during the SN alters the binary orbit, causing it to become

wider and more eccentric. Assuming that the mass is ejected instantaneously, the
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post-explosion semi-major axis is a/a0 = (M0 −∆M)/(M0 − 2a0∆M/r), where a0
and a are the initial and final semi-major axes respectively, M0 is the total initial

mass of the binary system, ∆M is the change of mass (equal to the amount of

mass ejected in the SN), and r is the orbital separation at the time of explosion.34

For circular orbits, the system is unbound if it loses half of its mass. However, for

very tight binaries as the one proposed in the IGC scenario, a number of additional

effects can alter the fate of the binary.

The time it takes for the ejecta to flow past a companion in a SN is roughly

10–1000s. Although the shock front is moving above 104 km s−1, the denser, lower-

velocity ejecta can be moving at 103 km s−1.12 The broad range of times arises

because the SN ejecta velocities varies from 102–104 km s−1. The accretion peaks as

the slow-moving (inner) ejecta flows past the NS companion. For normal (wide)

binaries, this time is a small fraction of the orbital period and the “instanta-

neous” mass-loss assumption is perfectly valid. However, in the compact binary

systems considered in the IGC scenario, the orbital period ranges from only 100–

1000 s, and the mass loss from the SN explosion can no longer be assumed to be

instantaneous.

We have seen how in BdHNe, the accretion process can lead to BH formation

in a time-interval as short as the orbital period. We here deepen this analysis to

study the effect of the SN explosion in such a scenario with a specific example

of Ref. 14. Figure 4 shows as the ejecta timescale becomes just a fraction of the

orbital timescale, the fate of the post-explosion binary is altered. For these models,

we assumed very close binaries with an initial orbital separation of 7 × 109 cm in

circular orbits. With COcore radii of 1–4× 109 cm, such a separation is small, but

achievable. We assume the binary consists of a COcore and a 2.0M� NS companion.

When the COcore collapses, it forms a 1.5M� NS, ejecting the rest of the core. We

then vary the ejecta mass and time required for most of the ejected matter to move

out of the binary. Note that even if 70% of the mass is lost from the system (the

8M� ejecta case), the system remains bound as long as the explosion time is just

above the orbital time (Torbit = 180 s) with semi-major axes of less than 1011 cm.

The short orbits (on ejecta timescales) are not the only feature of these bina-

ries that alters the post-explosion orbit. The NS companion accretes both matter

and momentum from the SN ejecta, reducing the mass lost from the system with

respect to typical binaries with larger orbital separations and much less accretion.

In addition, as with common envelope scenarios, the bow shock produced by the

accreting NS transfers orbital energy into the SN ejecta. Figure 4 shows the final

orbital separation of our same three binaries, including the effects of mass accretion

(we assume 0.5M� is accreted with the momentum of the SN material) and orbit

coupling (30% of the orbital velocity is lost per orbit). With these effects, not only

do the systems remain bound even for explosion times greater than 1/2 the orbital

period but, if the explosion time is long, the final semi-major axis can be on par

with the initial orbital separation.
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Fig. 4. Left panel: semi-major axis versus explosion time for three binary systems including
mass accretion and momentum effects. Including these effects, all systems with explosion times
above 0.7 times, the orbital time are bound and the final separations are on par with the initial
separations. Right panel: merger time due to GW emission as a function of explosion time. Beyond
a critical explosion time (0.1–0.6 Torbit depending on the system), the merger time is less than
roughly 10,000 yr. For most of our systems, the explosion time is above this limit and we expect
most of these systems to merge quickly.

The tight compact binaries produced in these explosions will emit GW emis-

sion, ultimately causing the system to merge. For typical massive star binaries, the

merger time is many Myr. For BdHNe, the merger time is typically 10,000yr, or

less, as shown in the right panel of Fig. 4. Since the merger should occur within

the radius swept clean by the BdHN, we expect a small baryonic contamination

around the merger site which might lead to a new family of events which we term

ultrashort GRBs, U-GRBs. to this new family of events.

3. NS–NS/NS-BH Mergers and Short GRBs

Let us turn to short GRBs. We have mentioned that the most viable progenitors of

short GRBs appear to be mergers of NS–NS and/or NS-BH binaries. Specifically, in

the case of NS–NS mergers, the value of the critical mass of the NS, which crucially

depends on the nuclear EOS, has been also found to be a most relevant parameter

since it defines the fate of the post-merger object.8 In this section, we discuss the

conditions that determine the fate of the NS–NS binary merger by estimating the

mass and angular momentum of the post-merger object. Once we know these values,

we can compare the mass of the merged core with the value of the NS critical mass

obtained for uniformly rotating NSs. Based on this, we can asses whether a massive

NS or a BH is formed from the merger.

We proceed to estimate the mass and the angular momentum of the post-merger

core via baryonic mass and angular momentum conservation of the system. We

adopt for simplicity that nonrotating binary components. We first compute the

total baryonic mass of the NS–NS binary Mb = Mb1 + Mb2 using the relation

between the gravitational mass Mi and the baryonic mass Mbi (i = 1, 2) recently

obtained in Ref. 21 and given in Eq. (3) assuming jNS = cJNS/(GM2
�) = 0. The
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post-merger core will have approximately the entire baryonic mass of the initial

binary, i.e. Mb,core ≈ Mb, since little mass is expected to be ejected during the

coalescence process. However, the gravitational mass of the post-merger core can-

not be estimated using again the above formula since, even assuming nonrotating

binary components, the post-merger core will necessarily acquire a fraction η ≤ 1

of the binary angular momentum at the merger point. One expects a value of η

smaller than unity since, during the coalesce, angular momentum is lost, e.g. by

gravitational wave emission and it can be also redistributed, e.g. into a surrounding

disk.

To obtain the gravitational mass of the post-merger core, we can use again

Eq. (3) relating the baryonic mass Mb,NS and the gravitational mass MNS in this

case with jNS �= 0. The mass and angular momentum of the post-merger core,

respectively Mcore and Jcore, are therefore obtained from baryon mass and angular

momentum conservation, i.e.

Mcore = MNS, Mb,core = Mb,NS = Mb1 +Mb2 , Jcore = JNS = ηJmerger, (8)

where Jmerger is the system angular momentum at the merger point. The value of

Jmerger is approximately given by Jmerger = µr2mergerΩmerger, where µ = M1M2/M

is the binary reduced mass, M = M1 + M2 is the total binary mass, and rmerger

and Ωmerger are the binary separation and angular velocity at the merger point. If

we adopt the merger point where the two stars enter into contact we have rmerger =

R1 + R2, where Ri is the radius (which depend on the EOS) of the i-component

of the binary.

Given the parameters of the merging binary, the above equations lead to the

merged core properties Mcore and Jcore (or jcore). These values can be therefore

confronted with the values of uniformly rotating, stable NSs to check if such a

merger will lead either to a new massive NS or to an unstable merged core collapsing

to a BH.

For the sake of exemplifying, let us assume a mass-symmetric binary, M1 =

M2 = M/2. In this case, Eq. (8) together with the above estimate of Jmerger lead to

the angular momentum of the merged core Jcore = (η/4)(GM2/c)C−1/2, where C ≡
GM1/(c

2R1) = GM2/(c
2R2) is the compactness of the merging binary components.

Therefore, if we adopt M1 = 1.4 M� and C = 0.15 the above equations imply a

merged core mass Mcore = (2.61, 2.65) M� for η = (0, 1), i.e. for a dimensionless

angular momentum of the merged core jcore = (0, 5.06). Whether or not these

pairs (Mcore, jcore) correspond to stable NSs depend on the nuclear EOS. A similar

analysis can be done for any other pair of binary masses.

4. Detectability of GWs Produced by the GRB Progenitors

Having established the nature of the progenitors of each GRB sub-class, we turn

now to briefly discuss the detectability of their associated GW emission. The

minimum GW frequency detectable by the broadband aLIGO interferometer is
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faLIGO
min ≈ 10Hz.35 Since during the binary inspiral, the GW frequency is twice

the orbital one, this implies that a binary enters the aLIGO band for orbital peri-

ods Porb � 0.2 s. Thus, COcore-NS binaries, in-states of XRFs and BdHNe, and

COcore-BH binaries, in-states of BH-SN, are not detectable by aLIGO since they

have orbital periods Porb � 5min 	 0.2 s. Concerning their out-states after the cor-

responding hypercritical accretion processes, namely νNS–NS, out-states of XRFs,

and νNS-BH, out-states of BdHNe and BH-SNe, they are not detectable by aLIGO

at their birth but only when approaching the merger. Clearly, the analysis of the

νNS–NS mergers is included in the analysis of the S-GRFs and S-GRBs and, like-

wise, the merger of νNS-BH binaries is included in the analysis of U-GRBs. In the

case of NS-WD binaries, the WD is tidally disrupted by the NS making their GW

emission hard to be detected (see, e.g. Ref. 36).

A coalescing binary evolves first through the inspiral regime to then pass over

a merger regime, the latter composed by the plunge leading to the merger itself

and by the ringdown (oscillations) of the newly formed object. During the inspiral

regime, the system evolves through quasi-circular orbits and is well described by

the traditional point-like quadrupole approximation.37–39 The GW frequency is

twice the orbital frequency (fs = 2forb) and grows monotonically. The energy

spectrum during the inspiral regime is: dE/dfs = (1/3)(πG)2/3M
5/3
c f

−1/3
s , where

Mc = µ3/5M2/5 = ν3/5M is the so-called chirp mass and ν ≡ µ/M is the symmetric

mass-ratio parameter. A symmetric binary (m1 = m2) corresponds to ν = 1/4

and the test-particle limit is ν → 0. The GW spectrum of the merger regime is

characterized by a GW burst.40 Thus, one can estimate the contribution of this

regime to the signal-to-noise ratio with the knowledge of the location of the GW

burst in the frequency domain and of the energy content. The frequency range

spanned by the GW burst is ∆f = fqnm− fmerger, where fmerger is the frequency at

which the merger starts and fqnm is the frequency of the ringing modes of the newly

formed object after the merger, and the energy emitted is ∆Emerger. With these

quantities defined, one can estimate the typical value of the merger regime spectrum

as: dE/dfs ≈ ∆Emerger/∆f . Unfortunately, the frequencies and energy content of

the merger regime of the above merging binaries are such that it is undetectable by

LIGO.41

Since the GW signal is deep inside the detector noise, the signal-to-noise ratio

(ρ) is usually estimated using the matched filter technique.42 The exact position

of the binary relative to the detector and the orientation of the binary rota-

tion plane are usually unknown, thus it is a common practice to average over

all the possible locations and orientations, i.e.42: 〈ρ2〉 = 4
∫∞
0 〈|h̃(f)|2〉/Sn(f)df =

4
∫∞
0 h2

c(f)/[f
2Sn(f)]df , where f is the GW frequency in the detector frame, h̃(f)

is the Fourier transform of h(t), and
√
Sn(f) is the one-sided amplitude spec-

tral density of the detector noise, and hc(f) is the characteristic strain, hc =

(1+z)/(πdl)
√

(1/10)(G/c3)(dE/dfs). We recall that in the detector frame, the GW

frequency is redshifted by a factor 1+z with respect to the one in the source frame,
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fs, i.e. f = fs/(1 + z) and dl is the luminosity distance to the source. We adopt a

ΛCDM cosmology with H0 = 71km s−1 Mpc−1, ΩM = 0.27 and ΩΛ = 0.73.43

A threshold ρ0 = 8 in a single detector is adopted by LIGO.44 This minimum

ρ0 defines a maximum detection distance or GW horizon distance, say dGW, that

corresponds to the most optimistic case when the binary is just above the detector

and the binary plane is parallel to the detector plane. In order to give an esti-

mate, the annual number of merging binaries associated with the above GRB sub-

classes detectable by aLIGO, we can use the lower and upper values of the aLIGO

search volume defined by Vs = V GW
max T , where V GW

max = (4π/3)R3, where T is the

observing time and R is the so-called detector range defined by R = FdGW, with

F−1 = 2.2627 (see, Refs. 44 and 45, for details). For a (1.4 + 1.4)M� NS binary

and the three following different observational campaigns we have44: 2015/2016

(O1; T = 3months) VS = (0.5–4) × 105 Mpc3 yr, 2017/2018 (O3; T = 9months)

VS = (3–10)× 106Mpc3 yr, and the entire network including LIGO-India at design

sensitivity (2022+; T = 1yr) VS = 2 × 107 Mpc3 yr. The maximum possible sen-

sitivity reachable in 2022+ leads to dGW ≈ 0.2Gpc, hence V GW
max ≈ 0.033Gpc3,

for such a binary. One can use this information for other binaries with different

masses taking advantage of the fact that dGW scales with the binary chirp mass

as M
5/6
c . The expected GW detection rate by aLIGO can be thus estimated as:

ṄGW ≡ ρGRBV
GRB
max , where ρGRB is the inferred occurrence rate of GRBs shown in

Table 1 computed in Ref. 6. Bearing the above in mind, it is easy to check that

there is a low probability for aLIGO to detect the GW signals associated with the

GRB binary progenitors: indeed in the best case of the 2022+ observing rung one

obtains, respectively, ∼1 detection every 3 and 5 yr for U-GRBs and S-GRFs.

5. Conclusions

There is accumulated evidence on the binary nature of long and short GRBs. Such

binaries are composed of COcores, NSs, BHs and WDs in different combinations. We

have here focused on the salient aspects of the NS physics relevant for the under-

standing of these binaries and their implications in GRB astrophysics, including

their associated GW emission. We have discussed the crucial role of the NS critical

mass in discriminating the GRB sub-classes. Therefore, we expect that the increas-

ing amount of GRB high-quality data will help in constraining the NS critical mass

with high accuracy with the most welcome result of constraining the NS matter

content and the corresponding nuclear EOS.
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42. É. É. Flanagan and S. A. Hughes, Phys. Rev. D 57 (1998) 4535.
43. M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, C. Aragon, S. Bailey,

C. Baltay, D. Baugh, S. Bongard, K. Boone, C. Buton, J. Chen, N. Chotard, H. K.
Fakhouri, U. Feindt, P. Fagrelius, M. Fleury, D. Fouchez, E. Gangler, B. Hayden,
A. G. Kim, P.-F. Leget, S. Lombardo, J. Nordin, R. Pain, E. Pecontal, R. Pereira,
S. Perlmutter, D. Rabinowitz, K. Runge, D. Rubin, C. Saunders, G. Smadja, C. Sofi-
atti, N. Suzuki, C. Tao and B. A. Weaver, Astrophys. J. 802 (2015) 20.

44. B. P. Abbott et al., Living Rev. Rel. 19 (2016) 1.
45. L. S. Finn and D. F. Chernoff, Phys. Rev. D 47 (1993) 2198.

1730016-19


