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1. Topics

• The three fundamental contributions to the electron-positron pair cre-
ation and annihilation and the concept of critical electric field

• Nonlinear electrodynamics and rate of pair creation

• Pair production and annihilation in QED

• Phenomenology of electron-positron pair creation and annihilation

• Plasma oscillations and radiation in uniform or nonuniform electric
fields, and thermalization of the mildly relativistic pair plasma

• The energy extraction from a black hole by pair productions, and Einstein-
Euler-Heisenberg theory and charged black holes

• Dyadophere of electron-positron pairs and photons formation in gravi-
tational collapses

• Polarization of strong electromagnetic fields and its applications in po-
larizations of laser fields, GRBs and CMB photons, as well as neutrinos

• Pair production and interactions of fields and matter in the cosmology
within the framework of quantum Einstein-Cartan-Maxwell theory

• Semiclassical approach to pair production rate for strong time-dependent
electrical fields with more than one component

• Pair production, ultra-high energy particles, gravitational and electro-
magnetic energies in gravitational collapse or accretion processes

• Pulsating or static strong electromagnetic fields in gravitational collapse
cores and heavy atoms

• The Breit-Wheeler cutoff in high-energy γ-rays and cosmic absorption
(opacity) of ultra high energy particles
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3. Brief description

3.1. Abstract

Due to the interaction of physics and astrophysics we are witnessing in these
years a splendid synthesis of theoretical, experimental and observational re-
sults originating from three fundamental physical processes. They were orig-
inally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg,
Euler and Schwinger. For almost seventy years they have all three been fol-
lowed by a continued effort of experimental verification on Earth-based ex-
periments. The Dirac process, e+e− → 2γ, has been by far the most suc-
cessful. It has obtained extremely accurate experimental verification and has
led as well to an enormous number of new physics in possibly one of the
most fruitful experimental avenues by introduction of storage rings in Fras-
cati and followed by the largest accelerators worldwide: DESY, SLAC etc.
The Breit–Wheeler process, 2γ→ e+e−, although conceptually simple, being
the inverse process of the Dirac one, has been by far one of the most difficult
to be verified experimentally. Only recently, through the technology based on
free electron X-ray laser and its numerous applications in Earth-based exper-
iments, some first indications of its possible verification have been reached.
The vacuum polarization process in strong electromagnetic field, pioneered
by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of crit-
ical electric field Ec = m2

e c3/(eh̄). It has been searched without success for
more than forty years by heavy-ion collisions in many of the leading particle
accelerators worldwide.

The novel situation today is that these same processes can be studied on a
much more grandiose scale during the gravitational collapse leading to the
formation of a black hole being observed in Gamma Ray Bursts (GRBs). This
report is dedicated to the scientific race. The theoretical and experimental
work developed in Earth-based laboratories is confronted with the theoreti-
cal interpretation of space-based observations of phenomena originating on
cosmological scales. What has become clear in the last ten years is that all the
three above mentioned processes, duly extended in the general relativistic
framework, are necessary for the understanding of the physics of the grav-
itational collapse to a black hole. Vice versa, the natural arena where these
processes can be observed in mutual interaction and on an unprecedented
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3. Brief description

scale, is indeed the realm of relativistic astrophysics.
We systematically analyze the conceptual developments which have fol-

lowed the basic work of Dirac and Breit–Wheeler. We also recall how the
seminal work of Born and Infeld inspired the work by Sauter, Heisenberg
and Euler on effective Lagrangian leading to the estimate of the rate for the
process of electron–positron production in a constant electric field. In addi-
tion of reviewing the intuitive semi-classical treatment of quantum mechani-
cal tunneling for describing the process of electron–positron production, we
recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and
effective Lagrangian for constant electromagnetic fields. We also review the
electron–positron production in both time-alternating electromagnetic fields,
studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the cor-
responding processes relevant for pair production at the focus of coherent
laser beams as well as electron beam–laser collision. We finally report some
current developments based on the general JWKB approach which allows to
compute the Schwinger rate in spatially varying and time varying electro-
magnetic fields.

We also recall the pioneering work of Landau and Lifshitz, and Racah on
the collision of charged particles as well as experimental success of AdA and
ADONE in the production of electron–positron pairs.

We then turn to the possible experimental verification of these phenomena.
We review: (A) the experimental verification of the e+e− → 2γ process stud-
ied by Dirac. We also briefly recall the very successful experiments of e+e−

annihilation to hadronic channels, in addition to the Dirac electromagnetic
channel; (B) ongoing Earth based experiments to detect electron–positron
production in strong fields by focusing coherent laser beams and by elec-
tron beam–laser collisions; and (C) the multiyear attempts to detect electron–
positron production in Coulomb fields for a large atomic number Z > 137 in
heavy ion collisions. These attempts follow the classical theoretical work of
Popov and Zeldovich, and Greiner and their schools.

We then turn to astrophysics. We first review the basic work on the ener-
getics and electrodynamical properties of an electromagnetic black hole and
the application of the Schwinger formula around Kerr–Newman black holes
as pioneered by Damour and Ruffini. We only focus on black hole masses
larger than the critical mass of neutron stars, for convenience assumed to
coincide with the Rhoades and Ruffini upper limit of 3.2 M�. In this case
the electron Compton wavelength is much smaller than the spacetime cur-
vature and all previous results invariantly expressed can be applied follow-
ing well established rules of the equivalence principle. We derive the corre-
sponding rate of electron–positron pair production and introduce the concept
of dyadosphere. We review recent progress in describing the evolution of
optically thick electron–positron plasma in presence of supercritical electric

540



3.1. Abstract

field, which is relevant both in astrophysics as well as ongoing laser beam
experiments. In particular we review recent progress based on the Vlasov-
Boltzmann-Maxwell equations to study the feedback of the created electron–
positron pairs on the original constant electric field. We evidence the exis-
tence of plasma oscillations and its interaction with photons leading to energy
and number equipartition of photons, electrons and positrons. We finally re-
view the recent progress obtained by using the Boltzmann equations to study
the evolution of an electron–positron-photon plasma towards thermal equi-
librium and determination of its characteristic timescales. The crucial differ-
ence introduced by the correct evaluation of the role of two and three body
collisions, direct and inverse, is especially evidenced. We then present some
general conclusions.

The results reviewed in this report are going to be submitted to decisive
tests in the forthcoming years both in physics and astrophysics. To mention
only a few of the fundamental steps in testing in physics we recall the start-
ing of experimental facilities at the National Ignition Facility at the Lawrence
Livermore National Laboratory as well as corresponding French Laser the
Mega Joule project. In astrophysics these results will be tested in galactic
and extragalactic black holes observed in binary X-ray sources, active galac-
tic nuclei, microquasars and in the process of gravitational collapse to a neu-
tron star and also of two neutron stars to a black hole giving origin to GRBs.
The astrophysical description of the stellar precursors and the initial physical
conditions leading to a gravitational collapse process will be the subject of a
forthcoming report. As of today no theoretical description has yet been found
to explain either the emission of the remnant for supernova or the formation
of a charged black hole for GRBs. Important current progress toward the un-
derstanding of such phenomena as well as of the electrodynamical structure
of neutron stars, the supernova explosion and the theories of GRBs will be
discussed in the above mentioned forthcoming report. What is important
to recall at this stage is only that both the supernovae and GRBs processes
are among the most energetic and transient phenomena ever observed in the
Universe: a supernova can reach energy of∼ 1054 ergs on a time scale of a few
months and GRBs can have emission of up to ∼ 1054 ergs in a time scale as
short as of a few seconds. The central role of neutron stars in the description
of supernovae, as well as of black holes and the electron–positron plasma,
in the description of GRBs, pioneered by one of us (RR) in 1975, are widely
recognized. Only the theoretical basis to address these topics are discussed
in the present report.
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3. Brief description

3.2. The three fundamental contributions to the
electron-positron pair creation and
annihilation and the concept of critical
electric field

The annihilation of electron–positron pair into two photons, and its inverse
process – the production of electron–positron pair by the collision of two pho-
tons were first studied in the framework of quantum mechanics by P.A.M. Dirac
and by G. Breit and J.A. Wheeler in the 1930s (Dirac (1930); Breit and Wheeler
(1934)).

A third fundamental process was pioneered by the work of Fritz Sauter and
Oscar Klein, pointing to the possibility of creating an electron–positron pair
from the vacuum in a constant electromagnetic field. This became known
as the ‘Klein paradox’ and such a process named as vacuum polarization. It
would occur for an electric field stronger than the critical value

Ec ≡
m2

e c3

eh̄
' 1.3 · 1016 V/cm. (3.2.1)

where me, e, c and h̄ are respectively the electron mass and charge, the speed
of light and the Planck’s constant.

The experimental difficulties to verify the existence of such three processes
became immediately clear. While the process studied by Dirac was almost
immediately observed Klemperer (1934) and the electron–positron collisions
became possibly the best tested and prolific phenomenon ever observed in
physics. The Breit–Wheeler process, on the contrary, is still today waiting a
direct observational verification. Similarly the vacuum polarization process
defied dedicated attempts for almost fifty years in experiments in nuclear
physics laboratories and accelerators all over the world, see Section 7 in the
following article.

From the theoretical point of view the conceptual changes implied by these
processes became immediately clear. They were by vastness and depth only
comparable to the modifications of the linear gravitational theory of New-
ton introduced by the nonlinear general relativistic equations of Einstein. In
the work of Euler, Oppenheimer and Debye, Born and his school it became
clear that the existence of the Breit–Wheeler process was conceptually modi-
fying the linearity of the Maxwell theory. In fact the creation of the electron–
positron pair out of the two photons modifies the concept of superposition
of the linear electromagnetic Maxwell equations and impose the necessity to
transit to a nonlinear theory of electrodynamics. In a certain sense the Breit–
Wheeler process was having for electrodynamics the same fundamental role
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3.2. The three fundamental contributions to the electron-positron pair
creation and annihilation and the concept of critical electric field

of Gedankenexperiment that the equivalence principle had for gravitation.
Two different attempts to study these nonlinearities in the electrodynam-
ics were made: one by Born and Infeld Born (1933, 1934); Born and Infeld
(1934) and one by Euler and Heisenberg Heisenberg and Euler (1936). These
works prepared the even greater revolution of Quantum Electro-Dynamics
by Tomonaga Tomonaga (1946), Feynman Feynman (1948, 1949b,a), Schwinger
Schwinger (1948, 1949a,b) and Dyson Dyson (1949a,b).

In Section 3 in the following article we review the fundamental contribu-
tions to the electron–positron pair creation and annihilation and to the con-
cept of the critical electric field. In Section 3.1 of the following article we re-
view the Dirac derivation Dirac (1930) of the electron–positron annihilation
process obtained within the perturbation theory in the framework of rela-
tivistic quantum mechanics and his derivation of the classical formula for the
cross-section σlab

e+e− in the rest frame of the electron

σlab
e+e− = π

(
αh̄

me c

)2

(γ̂− 1)−1
{

γ̂2 + 4γ̂ + 1
γ̂2 − 1

ln[γ̂ + (γ̂2 − 1)1/2]− γ̂ + 3
(γ̂2 − 1)1/2

}
,

where γ̂ ≡ E+/me c2 ≥ 1 is the energy of the positron and α = e2/(h̄c) is
as usual the fine structure constant, and we recall the corresponding formula
for the center of mass reference frame. In article Section 3.2 we recall the
main steps in the classical Breit–Wheeler work Breit and Wheeler (1934) on
the production of a real electron–positron pair in the collision of two photons,
following the same method used by Dirac and leading to the evaluation of the
total cross-section σγγ in the center of mass of the system

σγγ =
π

2

(
αh̄

me c

)2

(1− β̂2)
[
2β̂(β̂2− 2)+ (3− β̂4) ln

(1 + β̂

1− β̂

)]
, with β̂ =

c|p|
E

,

where β̂ is the reduced velocity of the electron or the positron. In Section
3.3 of the article we recall the basic higher order processes, compared to the
Dirac and Breit–Wheeler ones, leading to pair creation. In Section 3.4 in the
following review we recall the famous Klein paradox Klein (1929); Sauter
(1931) and the possible tunneling between the positive and negative energy
states leading to the concept of level crossing and pair creation by analogy
to the Gamow tunneling Gamow (1931) in the nuclear potential barrier. We
then turn to the celebrated Sauter work Sauter (1931) showing the possibility
of creating a pair in a uniform electric field E. We recover in Section 3.5.1 of
the review a JWKB approximation in order to reproduce and improve on the
Sauter result by obtaining the classical Sauter exponential term as well as the
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3. Brief description

prefactor
ΓJWKB

V
' Ds

αE2

2π2h̄
e−πEc/E,

where Ds = 2 for a spin-1/2 particle and Ds = 1 for spin-0, V is the vol-
ume. Finally, in review Section 3.5.2 the case of a simultaneous presence of
an electric and a magnetic field B is presented leading to the estimate of pair
production rate

ΓJWKB

V
' αβε

πh̄
coth

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 1/2 particle

and

ΓJWKB

V
' αβε

2πh̄
sinh−1

(
πβ

ε

)
exp

(
−πEc

ε

)
, spin− 0 particle,

where

ε ≡
√
(S2 + P2)1/2 + S,

β ≡
√
(S2 + P2)1/2 − S,

where the scalar S and the pseudoscalar P are

S ≡ 1
4

FµνFµν =
1
2
(E2 − B2); P ≡ 1

4
Fµν F̃µν = E · B,

where F̃µν ≡ εµνλκFλκ is the dual field tensor.

3.3. Nonlinear electrodynamics and rate of pair
creation

In article Section 4 we first recall the seminal work of Hans Euler Euler (1936)
pointing out for the first time the necessity of nonlinear character of electro-
magnetism introducing the classical Euler Lagrangian

L =
E2 − B2

8π
+

1
α

1
E2

0

[
aE

(
E2 − B2

)2
+ bE (E · B)2

]
,

where
aE = −1/(360π2), bE = −7/(360π2),
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3.3. Nonlinear electrodynamics and rate of pair creation

a first order perturbation to the Maxwell Lagrangian. In review article Sec-
tion 4.2 we review the alternative theoretical approach of nonlinear electrody-
namics by Max Born Born (1934) and his collaborators, to the more ambitious
attempt to obtain the correct nonlinear Lagrangian of Electro-Dynamics. The
motivation of Born was to attempt a theory free of divergences in the observ-
able properties of an elementary particle, what has become known as ‘unitar-
ian’ standpoint versus the ‘dualistic’ standpoint in description of elementary
particles and fields. We recall how the Born Lagrangian was formulated

L =
√

1 + 2S− P2 − 1,

and one of the first solutions derived by Born and Infeld Born and Infeld
(1934). We also recall one of the interesting aspects of the courageous ap-
proach of Born had been to formulate this Lagrangian within a unified theory
of gravitation and electromagnetism following Einstein program. Indeed, we
also recall the very interesting solution within the Born theory obtained by
Hoffmann Hoffmann (1935); Hoffmann and Infeld (1937). Still in the work of
Born Born (1934) the seminal idea of describing the nonlinear vacuum prop-
erties of this novel electrodynamics by an effective dielectric constant and
magnetic permeability functions of the field arisen. We then review in Sec-
tion 4.3.1 of the article the work of Heisenberg and Euler Heisenberg and
Euler (1936) adopting the general approach of Born and generalizing to the
presence of a real and imaginary part of the electric permittivity and magnetic
permeability. They obtain an integral expression of the effective Lagrangian
given by

∆Leff =
e2

16π2h̄c

∫ ∞

0
e−s ds

s3

[
is2 ĒB̄

cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2) + c.c.
cos(s[Ē2 − B̄2 + 2i(ĒB̄)]1/2)− c.c.

+

(
m2

e c3

eh̄

)2

+
s2

3
(|B̄|2 − |Ē|2)

]
,

where Ē, B̄ are the dimensionless reduced fields in the unit of the critical field
Ec,

Ē =
|E|
Ec

, B̄ =
|B|
Ec

.

obtaining the real part and the crucial imaginary term which relates to the
pair production in a given electric field. It is shown how these results give
as a special case the previous result obtained by Euler (Eq. (4.1.3) in the re-
view). In Section 4.3.2 of the following article the work by Weisskopf Weis-
skopf (1936) working on a spin-0 field fulfilling the Klein–Gordon equation,
in contrast to the spin 1/2 field studied by Heisenberg and Euler, confirms
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3. Brief description

the Euler-Heisenberg result. Weisskopf obtains explicit expression of pair cre-
ation in an arbitrary strong magnetic field and in an electric field described
by Ē and B̄ expansion.

For the first time Heisenberg and Euler provided a description of the vac-
uum properties by the characteristic scale of strong field Ec and the effective
Lagrangian of nonlinear electromagnetic fields. In 1951, Schwinger Schwinger
(1951, 1954a,b) made an elegant quantum field theoretic reformulation of this
discovery in the QED framework. This played an important role in under-
standing the properties of the QED theory in strong electromagnetic fields.
The QED theory in strong coupling regime, i.e., in the regime of strong elec-
tromagnetic fields, is still a vast arena awaiting for experimental verification
as well as of further theoretical understanding.

3.4. Pair production and annihilation in QED

In the review article in Section 5 after recalling some general properties of
QED in Section 5.1 and some basic processes in Section 5.2 we proceed to the
consideration of the Dirac and the Breit–Wheeler processes in QED in Secton
5.3. Then we discuss some higher order processes, namely double pair pro-
duction in Section 5.4, electron-nucleus bremsstrahlung and pair production
by a photon in the field of a nucleus in Section 5.5, and finally pair production
by two ions in Section 5.6. In Section 5.7 the classical result for the vacuum
to vacuum decay via pair creation in uniform electric field by Schwinger is
recalled

Γ
V

=
αE2

π2

∞

∑
n=1

1
n2 exp

(
−nπEc

E

)
.

This formula generalizes and encompasses the previous results reviewed in
our report: the JWKB results, discussed in Section 3.5, and the Sauter expo-
nential factor (Eq. (3.5.11) in the review), and the Heisenberg-Euler imagi-
nary part of the effective Lagrangian. We then recall the generalization of
this formula to the case of a constant electromagnetic fields. Such results
were further generalized to spatially nonuniform and time-dependent elec-
tromagnetic fields by Nikishov (1970), Vanyashin and Terent’ev (1965), Popov
(1971, 1972b, 2001a), Narozhnyi and Nikishov (1970) and Batalin and Frad-
kin (1970a). We then conclude this argument by giving the real and imaginary
parts for the effective Lagrangian for arbitrary constant electromagnetic field
recently published by Ruffini and Xue (2006). This result generalizes the pre-
vious result obtained by Weisskopf in strong fields. In weak field it gives the
Euler-Heisenberg effective Lagrangian. As we will see in the Section 7.2 of the
review much attention has been given experimentally to the creation of pairs
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in the rapidly changing electric fields. A fundamental contribution in this
field studying pair production rates in an oscillating electric field was given
by Brezin and Itzykson (1970) and we recover in review Section 5.8 their main
results which apply both to the case of bosons and fermions. We recall how
similar results were independently obtained two years later by Popov Popov
(1972a). In Section 5.10 of the article we recall an alternative physical process
considering the quantum theory of the interaction of free electron with the
field of a strong electromagnetic waves: an ultrarelativistic electron absorbs
multiple photons and emits only a single photon in the reaction Bula et al.
(1996):

e + nω → e′ + γ.

This process appears to be of the great relevance as we will see in the next Sec-
tion for the nonlinear effects originating from laser beam experiments. Partic-
ularly important appears to be the possibility outlined by Burke et al. (1997)
that the high-energy photon γ created in the first process propagates through
the laser field, it interacts with laser photons nω to produce an electron–
positron pair

γ + nω → e+ + e−.

We also refer to the papers by Nikishov and Ritus (1964a,b, 1965, 1967, 1979);
Narozhnyǐ et al. (1965) studying the dependence of this process on the status
of the polarization of the photons.

We point out the great relevance of departing from the case of the uni-
form electromagnetic field originally considered by Sauter, Heisenberg and
Euler, and Schwinger. We also recall some of the classical works of Brezin
and Itzykson and Popov on time varying fields. The space variation of the
field was also considered in the classical papers of Nikishov and Narozhny
as well as in the work of Wang and Wong. Finally, we recall the work of
Khriplovich Khriplovich (2000) studying the vacuum polarization around a
Reissner–Nordström black hole. A more recent approach using the worldline
formalism, sometimes called the string-inspired formalism, was advanced by
Dunne and Schubert Schubert (2001); Dunne and Schubert (2005a).

3.5. Phenomenology of electron-positron pair
creation and annihilation

In Section 7 of the review we focus on the phenomenology of electron–positron
pair creation and annihilation experiments. There are three different aspects
which are examined: the verification of the process (3.0.1) initially studied by
Dirac, the process (3.14.1) studied by Breit and Wheeler, and then the clas-
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sical work of vacuum polarization process around a supercritical nucleus,
following the Sauter, Euler, Heisenberg and Schwinger work. We first recall
in Section 7.1 how the process (3.0.1) predicted by Dirac was almost imme-
diately discovered by Klemperer Klemperer (1934). Following this discov-
ery the electron–positron collisions have become possibly the most prolific
field of research in the domain of particle physics. The crucial step exper-
imentally was the creation of the first electron–positron collider the “Anello
d’Accumulazione” (AdA) was built by the theoretical proposal of Bruno Tou-
schek in Frascati (Rome) in 1960 Bernardini (2004). Following the success
of AdA (luminosity ∼ 1025/(cm2 sec), beam energy ∼0.25GeV), it was de-
cided to build in the Frascati National Laboratory a storage ring of the same
kind, Adone. Electron-positron colliders have been built and proposed for
this purpose all over the world (CERN, SLAC, INP, DESY, KEK and IHEP).
The aim here is just to recall the existence of this enormous field of research
which appeared following the original Dirac idea. In the review the main
cross-sections (7.1.1) and (7.1.2) are recalled and the diagram (Fig. 7.1) sum-
marizing this very great success of particle physics is presented. While the
Dirac process (3.0.1) has been by far one of the most prolific in physics, the
Breit–Wheeler process (3.14.1) has been one of the most elusive for direct ob-
servations. In Earth-bound experiments the major effort today is directed
to evidence this phenomenon in very strong and coherent electromagnetic
field in lasers. In this process collision of many photons may lead in the
future to pair creation. This topic is discussed in Section 7.2. Alternative ev-
idence for the Breit–Wheeler process can come from optically thick electron–
positron plasma which may be created either in the future in Earth-bound
experiments, or currently observed in astrophysics, see Section 10. One ad-
ditional way to probe the existence of the Breit–Wheeler process is by estab-
lishing in astrophysics an upper limits to observable high-energy photons, as
a function of distance, propagating in the Universe as pioneered by Nikishov
Nikishov (1961), see Section 7.4. We then recall in Section 7.3 how the crucial
experimental breakthrough came from the idea of John Madey Deacon et al.
(1977) of self-amplified spontaneous emission in an undulator, which results
when charges interact with the synchrotron radiation they emit (Tremaine
et al. (2002)). Such X-ray free electron lasers have been constructed among
others at DESY and SLAC and focus energy onto a small spot hopefully with
the size of the X-ray laser wavelength λ ' O(0.1)nm (Nuhn and Pellegrini
(2000)), and obtain a very large electric field E ∼ 1/λ, much larger than those
obtainable with any optical laser of the same power. This technique can be
used to achieve a very strong electric field near to its critical value for observ-
able electron–positron pair production in vacuum. No pair can be created by
a single laser beam. It is then assumed that each X-ray laser pulse is split into
two equal parts and recombined to form a standing wave with a frequency
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ω. We then recall how for a laser pulse with wavelength λ about 1µm and
the theoretical diffraction limit σlaser ' λ being reached, the critical intensity
laser beam would be

Ic
laser =

c
4π

E2
c ' 4.6 · 1029W/cm2.

In review Section 7.2.1 we recall the theoretical formula for the probability
of pair production in time-alternating electric field in two limiting cases of
large frequency and small frequency. It is interesting that in the limit of large
field and small frequency the production rate approach the one of the Sauter,
Heisenberg, Euler and Schwinger, discussed in Section 5. In the following
Section 7.2.2 we recall the actually reached experimental limits quoted by
Ringwald Ringwald (2001) for a X-ray laser and give a reference to the rele-
vant literature. In Section 7.2.3 we summarize some of the most recent the-
oretical estimates for pair production by a circularly polarized laser beam
by Narozhny, Popov and their collaborators. In this case the field invariants
(3.5.23) are not vanishing and pair creation can be achieved by a single laser
beam. They computed the total number of electron–positron pairs produced
as a function of intensity and focusing parameter of the laser. Particularly
interesting is their analysis of the case of two counter-propagating focused
laser pulses with circular polarizations, pair production becomes experimen-
tally observable when the laser intensity Ilaser ∼ 1026W/cm2 for each beam,
which is about 1 ∼ 2 orders of magnitude lower than for a single focused
laser pulse, and more than 3 orders of magnitude lower than the critical in-
tensity (7.2.4). Equally interesting are the considerations which first appear
in treating this problem that the back reaction of the pairs created on the field
has to be taken into due account. We give the essential references and we will
see in Section 9 how indeed this feature becomes of paramount importance in
the field of astrophysics. We finally review in Section 7.2.4 the technological
situation attempting to increase both the frequency and the intensity of laser
beams.

The difficulty of evidencing the Breit–Wheeler process even when the high-
energy photon beams have a center of mass energy larger than the energy-
threshold 2mec2 = 1.02 MeV was clearly recognized since the early days. We
discuss the crucial role of the effective nonlinear terms originating in strong
electromagnetic laser fields: the interaction needs not to be limited to initial
states of two photons Reiss (1962, 1971). A collective state of many interact-
ing laser photons occurs. We turn then in Section 7.3 of the review to an even
more complex and interesting procedure: the interaction of an ultrarelativis-
tic electron beam with a terawatt laser pulse, performed at SLAC Kotseroglou
et al. (1996), when strong electromagnetic fields are involved. A first nonlin-
ear Compton scattering process occurs in which the ultrarelativistic electrons
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absorb multiple photons from the laser field and emit a single photon via
the process (5.9.1). The theory of this process has been given in Section 5.10.
The second is a drastically improved Breit–Wheeler process (5.9.2) by which
the high-energy photon γ, created in the first process, propagates through
the laser field and interacts with laser photons nω to produce an electron–
positron pair Burke et al. (1997). In Section 7.3.1 we describe the status of
this very exciting experiments which give the first evidence for the observa-
tion in the laboratory of the Breit–Wheeler process although in a somewhat
indirect form. Having determined the theoretical basis as well as attempts
to verify experimentally the Breit–Wheeler formula we turn in Section 7.4 to
a most important application of the Breit–Wheeler process in the framework
of cosmology. As pointed out by Nikishov Nikishov (1961) the existence of
background photons in cosmology puts a stringent cutoff on the maximum
trajectory of the high-energy photons in cosmology.

Having reviewed both the theoretical and observational evidence of the
Dirac and Breit–Wheeler processes of creation and annihilation of electron–
positron pairs we turn then to one of the most conspicuous field of theoretical
and experimental physics dealing with the process of electron–positron pair
creation by vacuum polarization in the field of a heavy nuclei. This topic has
originated one of the vastest experimental and theoretical physics activities
in the last forty years, especially by the process of collisions of heavy ions.
We first review in Section 7.5 of the article the Z = 137 catastrophe, a collapse
to the center, in semi-classical approach, following the Pomeranchuk work
Pomeranchuk and Smorodinskii (1945) based on the imposing the quantum
conditions on the classical treatment of the motion of two relativistic parti-
cles in circular orbits. We then proceed showing in Section 7.5.3 how the
introduction of the finite size of the nucleus, following the classical work of
Popov and Zeldovich Zeldovich and Popov (1971), leads to the critical charge
of a nucleus of Zcr = 173 above which a bare nucleus would lead to the level
crossing between the bound state and negative energy states of electrons in
the field of a bare nucleus. We then review in Section 7.5.5 the recent theoret-
ical progress in analyzing the pair creation process in a Coulomb field, taking
into account radial dependence and time variability of electric field. We fi-
nally recall in Section 7.6 the attempt to use heavy-ion collisions to form tran-
sient superheavy “quasimolecules”: a long-lived metastable nuclear complex
with Z > Zcr. It was expected that the two heavy ions of charges respectively
Z1 and Z2 with Z1 + Z2 > Zcr would reach small inter-nuclear distances well
within the electron’s orbiting radii. The electrons would not distinguish be-
tween the two nuclear centers and they would evolve as if they were bounded
by nuclear “quasimolecules” with nuclear charge Z1 + Z2. Therefore, it was
expected that electrons would evolve quasi-statically through a series of well
defined nuclear “quasimolecules” states in the two-center field of the nuclei
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as the inter-nuclear separation decreases and then increases again. When
heavy-ion collision occurs the two nuclei come into contact and some deep
inelastic reaction occurs determining the duration ∆ts of this contact. Such
“sticking time” is expected to depend on the nuclei involved in the reac-
tion and on the beam energy. Theoretical attempts have been proposed to
study the nuclear aspects of heavy-ion collisions at energies very close to
the Coulomb barrier and search for conditions, which would serve as a trig-
ger for prolonged nuclear reaction times, to enhance the amplitude of pair
production. The sticking time ∆ts should be larger than 1 ∼ 2 · 10−21 sec
Greiner and Reinhardt (1999) in order to have significant pair production.
Up to now no success has been achieved in justifying theoretically such a
long sticking time. In reality the characteristic sticking time has been found
of the order of ∆t ∼ 10−23 sec, hundred times shorter than the needed to
activate the pair creation process. We finally recall in Section 7.6.2 of the re-
view the Darmstadt-Brookhaven dialogue between the Orange and the Epos
groups and the Apex group at Argonne in which the claim for discovery of
electron–positron pair creation by vacuum polarization in heavy-ion colli-
sions was finally retracted. Out of the three fundamental processes addressed
in this report, the Dirac electron–positron annihilation and the Breit–Wheeler
electron–positron creation from two photons have found complete theoretical
descriptions within Quantum Electro-Dynamics. The first one is very likely
the best tested process in physical science, while the second has finally ob-
tained the first indirect experimental evidence. The third process, the one of
the vacuum polarization studied by Sauter, Euler, Heisenberg and Schwinger,
presents in Earth-bound experiments presents a situation “terra incognita”.

3.6. Plasma oscillations and radiation in uniform or
nonuniform electric fields, and thermalization
of the mildly relativistic pair plasma

The conditions encountered in the vacuum polarization process around black
holes lead to a number of electron–positron pairs created of the order of 1060

confined in the dyadosphere volume, of the order of a few hundred times
to the horizon of the black hole. Under these conditions the plasma is ex-
pected to be optically thick and is very different from the nuclear collisions
and laser case where pairs are very few and therefore optically thin. We turn
then in Section 9, to discuss a new phenomenon: the plasma oscillations,
following the dynamical evolution of pair production in an external electric
field close to the critical value. In particular, we will examine: (i) the back
reaction of pair production on the external electric field; (ii) the screening
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effect of pairs on the electric field; (iii) the motion of pairs and their interac-
tions with the created photon fields. In review Secs. 9.1 and 9.2, we review
semi-classical and kinetic theories describing the plasma oscillations using
respectively the Dirac-Maxwell equations and the Boltzmann-Vlasov equa-
tions. The electron–positron pairs, after they are created, coherently oscillate
back and forth giving origin to an oscillating electric field. The oscillations
last for at least a few hundred Compton times. We review the damping due to
the quantum decoherence. The energy from collective motion of the classical
electric field and pairs flows to the quantum fluctuations of these fields. This
process is quantitatively discussed by using the quantum Boltzmann-Vlasov
equation in Sections 9.4 and 9.5. The damping due to collision decoherence is
quantitatively discussed in Sections 9.6 and 9.7 by using Boltzmann-Vlasov
equation with particle collisions terms. This damping determines the energy
flows from collective motion of the classical electric field and pairs to the
kinetic energy of non-collective motion of particles of these fields due to col-
lisions. In Section 9.7, we particularly address the study of the influence of
the collision processes e+e− � γγ on the plasma oscillations in supercritical
electric field Ruffini et al. (2003b). It is shown that the plasma oscillation is
mildly affected by a small number of photons creation in the early evolution
during a few hundred Compton times (see Fig. 9.4 of the review). In the later
evolution of 103−4 Compton times, the oscillating electric field is damped to
its critical value with a large number of photons created. An equipartition of
number and energy between electron–positron pairs and photons is reached
(see Fig. 9.4). In Section 9.8, we introduce an approach based on the fol-
lowing three equations: the number density continuity equation, the energy-
momentum conservation equation and the Maxwell equations. We describe
the plasma oscillation for both overcritical electric field E > Ec and under-
critical electric field E < Ec Ruffini et al. (2007b). In additional of reviewing
the result well known in the literature for E > Ec we review some novel re-
sult for the case E < Ec. It was traditionally assumed that electron–positron
pairs, created by the vacuum polarization process, move as charged particles
in external uniform electric field reaching arbitrary large Lorentz factors. It
is reviewed how recent computations show the existence of plasma oscilla-
tions of the electron–positron pairs also for E . Ec. For both cases we quote
the maximum Lorentz factors γmax reached by the electrons and positrons as
well as the length of oscillations. Two specific cases are given. For E0 = 10Ec
the length of oscillations 10 h̄/(mec), and E0 = 0.15Ec the length of oscilla-
tions 107 h̄/(mec). We also review the asymptotic behavior in time, t → ∞,
of the plasma oscillations by the phase portrait technique. Finally we review
some recent results which differentiate the case E > Ec from the one E < Ec
with respect to the creation of the rest mass of the pair versus their kinetic
energy. For E > Ec the vacuum polarization process transforms the electro-
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magnetic energy of the field mainly in the rest mass of pairs, with moderate
contribution to their kinetic energy.

Plasma oscillations and radiation in nonuniform electric fields

We also study electron-positron pair oscillation in spatially inhomogeneous
and bound electric fields by integrating the equations of energy-momentum
and particle-number conservations and Maxwell equations. The space and
time evolutions of the pair-induced electric field, electric charge- and current-
densities are calculated. The results show non-vanishing electric charge-den-
sity and the propagation of pair-induced electric fields, that are different from
the case of homogeneous and unbound electric fields. The space and time
variations of pair-induced electric charges and currents emit an electromag-
netic radiation. We obtain the narrow spectrum and intensity of this radi-
ation, whose peak ωpeak locates in the region around 4 keV for electric field
strength∼ Ec. We discuss their relevances to both the laboratory experiments
for electron and positron pair-productions and the astrophysical observations
of compact stars with an electromagnetic structure.

The origin of electron-positron pairs being created strong electric field and
their oscillations has been considered in Ruffini et al. (2007b). There it was
shown that plasma oscillations occur not only for overcritical electric field,
but also for undercritical electric field, provided the electric field is main-
tained on spatial distances larger than the distance of oscillations determined
explicitly in Ruffini et al. (2007b).

In the paper by Han et al. (2010) the spectrum of electromagnetic radia-
tion seen by far observer for initial phase of oscillations has been computed.
It was shown there that the spectrum contain a narrow feature which corre-
sponds to the frequency of plasma oscillations. We revisited the approach of
Ruffini et al. (2007b) and showed that for the case of uniform external electric
field it is possible to reduce the system of four first order ordinary differential
equations governing the dynamics of particle number density, energy den-
sity, momentum and electric field to just one second order equation.

Then in the paper by Han et al. (2010); Benedetti et al. (2011) we analyzed
the frequency of oscillations, and found that the frequency of oscillations
coincides up to a factor close to unity with the plasma frequency, which is
strongly time dependent due to pair creation process. Analytical arguments
suggest that the frequency of oscillations should asymptotically reach the
plasma frequency, and this fact has been demonstrated. The results of this
work allow simple estimation of the frequency of plasma oscillations, and
then of the spectrum of electromagnetic radiation generated by these oscilla-
tions. For the details of this parts, see Appendex B.
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Thermalization of the mildly relativistic pair plasma

We then turn in Section 10 of the review to the last physical process needed
in ascertaining the reaching of equilibrium of an optically thick electron–
positron plasma. The average energy of electrons and positrons we illustrate
is 0.1 < ε < 10 MeV. These bounds are necessary from the one hand to
have significant amount of electron–positron pairs to make the plasma opti-
cally thick, and from the other hand to avoid production of other particles
such as muons. As we will see in the next report these are indeed the rel-
evant parameters for the creation of ultrarelativistic regimes to be encoun-
tered in pair creation process during the formation phase of a black hole.
We then review the problem of evolution of optically thick, nonequilibrium
electron–positron plasma, towards an equilibrium state, following Aksenov
et al. (2007, 2008). These results have been mainly obtained by two of us
(RR and GV) in recent publications and all relevant previous results are also
reviewed in this Section 10. We have integrated directly relativistic Boltz-
mann equations with all binary and triple interactions between electrons,
positrons and photons two kinds of equilibrium are found: kinetic and ther-
mal ones. Kinetic equilibrium is obtained on a timescale of few (σTn±c)−1,
where σT and n± are Thomson’s cross-section and electron–positron concen-
trations respectively, when detailed balance is established between all binary
interactions in plasma. Thermal equilibrium is reached on a timescale of few
(ασTn±c)−1, when all binary and triple, direct and inverse interactions are
balanced. In Section 10.1 basic plasma parameters are illustrated. The com-
putational scheme as well as the discretization procedure are discussed in
Section 10.2. Relevant conservation laws are given in Section 10.3. Details
on binary interactions, consisting of Compton, Møller and Bhabha scatter-
ings, Dirac pair annihilation and Breit–Wheeler pair creation processes, and
triple interactions, consisting of relativistic bremsstrahlung, double Compton
process, radiative pair production and three photon annihilation process, are
presented in Section 10.5 and 10.6, respectively. In Section 10.5 collisional
integrals with binary interactions are computed from first principles, using
QED matrix elements. In Section 10.7 Coulomb scattering and the corre-
sponding cutoff in collisional integrals are discussed. Numerical results are
presented in Section 10.8 where the time dependence of energy and number
densities as well as chemical potential and temperature of electron–positron-
photon plasma is shown, together with particle spectra. The most interest-
ing result of this analysis is to have differentiate the role of binary and triple
interactions. The detailed balance in binary interactions following the classi-
cal work of Ehlers Ehlers (1973) leads to a distribution function of the form
of the Fermi-Dirac for electron–positron pairs or of the Bose-Einstein for the
photons. This is the reason we refer in the text to such conditions as the
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Ehlers equilibrium conditions. The crucial role of the direct and inverse three-
body interactions is well summarized in fig. 10.1, panel A from which it is
clear that the inverse three-body interactions are essential in reaching thermal
equilibrium. If the latter are neglected, the system deflates to the creation of
electron–positron pairs all the way down to the threshold of 0.5MeV. This last
result which is referred as the Cavallo–Rees scenario Cavallo and Rees (1978)
is simply due to improper neglection of the inverse triple reaction terms (see
Appendix 10).

3.7. The energy extraction from a black hole by
pair-productions, and
Einstein-Euler-Heisenberg theory and charged
black holes

We turn then to astrophysics, where, in the process of gravitational collapse
to a black hole and in its outcomes these three processes will be for the first
time verified on a much larger scale, involving particle numbers of the or-
der of 1060, seeing both the Dirac process and the Breit–Wheeler process
at work in symbiotic form and electron–positron plasma created from the
“blackholic energy” during the process of gravitational collapse. It is becom-
ing more and more clear that the gravitational collapse process to a Kerr–
Newman black hole is possibly the most complex problem ever addressed
in physics and astrophysics. What is most important for this report is that
it gives for the first time the opportunity to see the above three processes
simultaneously at work under ultrarelativistic special and general relativis-
tic regimes. The process of gravitational collapse is characterized by the
timescale ∆tg = GM/c3 ' 5 · 10−6M/M� sec and the energy involved are
of the order of ∆E = 1054M/M� ergs. It is clear that this is one of the
most energetic and most transient phenomena in physics and astrophysics
and needs for its correct description such a highly time varying treatment.
Our approach in Section 8 is to gain understanding of this process by sep-
arating the different components and describing 1) the basic energetic pro-
cess of an already formed black hole, 2) the vacuum polarization process of
an already formed black hole, 3) the basic formula of the gravitational col-
lapse recovering the Tolman-Oppenheimer-Snyder solutions and evolving to
the gravitational collapse of charged and uncharged shells. This will allow
among others to obtain a better understanding of the role of irreducible mass
of the black hole and the maximum blackholic energy extractable from the
gravitational collapse. We will as well address some conceptual issues be-
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tween general relativity and thermodynamics which have been of interest to
theoretical physicists in the last forty years. Of course in these brief chap-
ter we will be only recalling some of these essential themes and refer to the
literature where in-depth analysis can be found. In Section 8.1 we recall the
Kerr–Newman metric and the associated electromagnetic field. We then re-
call the classical work of Carter Carter (1968) integrating the Hamilton-Jacobi
equations for charged particle motions in the above given metric and elec-
tromagnetic field. We then recall in Section 8.2 the introduction of the ef-
fective potential techniques in order to obtain explicit expression for the tra-
jectory of a particle in a Kerr–Newman geometry, and especially the intro-
duction of the reversible–irreversible transformations which lead then to the
Christodoulou-Ruffini mass formula of the black hole

M2c4 =

(
Mirc2 +

c2Q2

4GMir

)2

+
L2c8

4G2M2
ir

,

where Mir is the irreducible mass of a black hole, Q and L are its charge and
angular momentum. We then recall in article Section 8.3 the positive and neg-
ative root states of the Hamilton–Jacobi equations as well as their quantum
limit. We finally introduce in Section 8.4 the vacuum polarization process
in the Kerr–Newman geometry as derived by Damour and Ruffini Damour
and Ruffini (1975) by using a spatially orthonormal tetrad which made the
application of the Schwinger formalism in this general relativistic treatment
almost straightforward. We then recall in Section 8.5 the definition of a dya-
dosphere in a Reissner–Nordström geometry, a region extending from the
horizon radius

r+ = 1.47 · 105µ(1 +
√

1− ξ2) cm

out to an outer radius
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(
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=
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where the dimensionless mass and charge parameters µ = M
M� , ξ = Q

(M
√

G)
≤

1. In Section 8.6 of the review the definition of a dyadotorus in a Kerr–
Newman metric is recalled. We have focused on the theoretically well de-
fined problem of pair creation in the electric field of an already formed black
hole. Having set the background for the blackholic energy we recall some
fundamental features of the dynamical process of the gravitational collapse.
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In Section 8.7 we address some specific issues on the dynamical formation of
the black hole, recalling first the Oppenheimer-Snyder solution Oppenheimer
and Snyder (1939) and then considering its generalization to the charged non-
rotating case using the classical work of W. Israel and V. de la Cruz Israel
(1966); De la Cruz and Israel (1967). In Section 8.7.1 we recover the classi-
cal Tolman-Oppenheimer-Snyder solution in a more transparent way than it
is usually done in the literature. In the Section 8.7.2 we are studying using
the Israel-de la Cruz formalism the collapse of a charged shell to a black hole
for selected cases of a charged shell collapsing on itself or collapsing in an
already formed Reissner–Nordström black hole. Such elegant and powerful
formalism has allowed to obtain for the first time all the analytic equations
for such large variety of possibilities of the process of the gravitational col-
lapse. The theoretical analysis of the collapsing shell considered in the pre-
vious section allows to reach a deeper understanding of the mass formula
of black holes at least in the case of a Reissner–Nordström black hole. This
allows as well to give in Section 8.8 of the review an expression of the irre-
ducible mass of the black hole only in terms of its kinetic energy of the initial
rest mass undergoing gravitational collapse and its gravitational energy and
kinetic energy T+ at the crossing of the black hole horizon r+

Mir = M0 −
M2

0
2r+ + T+.

Similarly strong, in view of their generality, are the considerations in Sec-
tion 8.8.2 which indicate a sharp difference between the vacuum polarization
process in an overcritical E � Ec and undercritical E � Ec black hole. For
E � Ec the electron–positron plasma created will be optically thick with av-
erage particle energy 10 MeV. For E� Ec the process of the radiation will be
optically thin and the characteristic energy will be of the order of 1021 eV. This
argument will be further developed in a forthcoming report. In Section 8.9
we show how the expression of the irreducible mass obtained in the previ-
ous Section leads to a theorem establishing an upper limit to 50% of the total
mass energy initially at rest at infinity which can be extracted from any pro-
cess of gravitational collapse independent of the details. These results also
lead to some general considerations which have been sometimes claimed in
reconciling general relativity and thermodynamics.

Einstein-Euler-Heisenberg theory and charged black holes

Taking into account the Euler-Heisenberg effective Lagrangian of one-loop
nonperturbative quantum electrodynamics (QED) contributions, we formu-
late the Einstein-Euler-Heisenberg theory and study the solutions of nonro-
tating black holes with electric and magnetic charges in spherical geometry.
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In the limit of strong and weak electromagnetic fields of black holes, we calcu-
late the black hole horizon radius, area, and total energy up to the leading or-
der of QED corrections and discuss the black hole irreducible mass, entropy,
and maximally extractable energy as well as the Christodoulou-Ruffini mass
formula. We find that these black hole quantities receive the QED corrections,
in comparison with their counterparts in the Reissner-Nordström solution.
The QED corrections show the screening effect on black hole electric charges
and the paramagnetic effect on black hole magnetic charges. As a result, the
black hole horizon area, irreducible mass, and entropy increase; however, the
black hole total energy and maximally extractable energy decrease, compared
with the Reissner-Nordström solution. In addition, we show that the condi-
tion for extremely charged black holes is modified due to the QED correction.
The reason is that the QED vacuum polarization gives rise to the screening ef-
fect on the black hole electric charge and the paramagnetic effect on the black
hole magnetic charge. It is mentioned that in the Einstein-Euler-Heisenberg
theory, it is worthwhile to study Kerr-Newman black holes, whose electric
field E and magnetic field B are determined by the black hole mass M, charge
Q, and angular momentum a Newman et al. (1965). In addition, it will be
interesting to study the QED corrections in black hole physics by taking into
account the one-loop photon-graviton amplitudes of the effective Lagrangian
(E.3.11) Drummond and Hathrell (1980) and its generalizations Gilkey (1975);
Bastianelli et al. (2000); Barvinsky and Vilkovisky (1985); Gusev (2009); Bas-
tianelli et al. (2009). We leave these studies for future work. For the details of
this part, see Appendix E.

3.8. Dyadosphere of electron-positron pairs and
photons formed in gravitational collapses

In Refs. Ruffini et al. (2003b,a), first initiating with supercritical electric fields
on the core surface, we study electron-positron pair production and oscilla-
tion together with gravitational collapse. We use the exact solution of Einstein–
Maxwell equations describing the gravitational collapse of a thin charged
shell. Recall that the region of space–time external to the core is Reissner–
Nordström with line element

ds2 = −α2dt2 + α−2dr2 + r2dΩ2 (3.8.1)

in Schwarzschild like coordinate (t, r, θ, φ) , where α2 = 1− 2M/r + Q2/r2;
M is the total energy of the core as measured at infinity and Q is its total
charge. Let us label with r0 and t0 the radial and time–like coordinate of the
core surface, and the equation of motion of the core is Israel (1966); De la Cruz
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Figure 3.1.: In left figure: We plot for t < 150τC, from the top to the bottom
panel: a) electromagnetic field strength; b) electrons energy density; c) elec-
trons number density; d) photons energy density; e) photons number density
as functions of time. The right figure: We plot for t < 7000τC as the same
quantities as in left.

and Israel (1967); Bekenstein (1971):

dr0
dt0

= − α2(r0)
Ω(r0)

√
Ω2 (r0)− α2 (r0), Ω (r0) =

M
M0
− M2

0+Q2

2M0r0
; (3.8.2)

M0 being the rest mass of the shell. The analytical solutions of Eq. (3.8.2) were
found t0 = t0 (r0) , and the core collapse speed V∗(r0) as a function of r0 is
plotted in Fig. 3.2, where we indicate V∗ds ≡ V∗|r0=rds as the velocity of the
core at the Dyadosphere radius rds.

We now turn to the pair creation and plasma oscillation taking place in the
classical electric and gravitational fields during the gravitational collapse of
a charged overcritical stellar core. As already show in Fig. 3.1, (i) the electric
field oscillates with lower and lower amplitude around 0; (ii) electrons and
positrons oscillates back and forth in the radial direction with ultra relativistic
velocity, as result the oscillating charges are confined in a thin shell whose
radial dimension is given by the elongation ∆l of the oscillations. In Fig. 3.3,
we plot the elongation ∆l as a function of time and electron mean velocity v as
a function of the elongation during the first half period ∆t of oscillation. This
shows precisely the characteristic time ∆t and size ∆l of charge confinement
due to plasma oscillation.

In the time ∆t the charge oscillations prevent a macroscopic current from
flowing through the surface of the core. Namely in the time ∆t the core moves
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Figure 3.2.: Collapse velocity of a charged stellar core of mass M0 = 20M�
as measured by static observers as a function of the radial coordinate of
the core surface. Dyadosphere radii for different charge to mass ratios
(ξ = 10−3, 10−2, 10−1) are indicated in the plot together with the correspond-
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Figure 3.3.: In left figure: Electrons elongation as function of time in the case
r = rds/3. The oscillations are damped in a time of the order of 103 − 104τC.
The right figure: Electrons mean velocity as a function of the elongation dur-
ing the first half oscillation. The plot summarize the oscillatory behaviour: as
the electrons move, the mean velocity grows up from 0 to the speed of light
and then falls down at 0 again.
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inwards of
∆r∗ = V∗∆t� ∆l. (3.8.3)

Since the plasma charges are confined within a region of thickness ∆l, due to
Eq. (3.8.3) no charge “reaches” the surface of the core which can neutralize it
and the initial charge of the core remains untouched. For example in the case
M = 20M�, ξ = 0.1, and r = 1

3rds, we have

∆l . 30λC, ∆t ∼ 103τC, V∗ ∼ 0.3c, (3.8.4)

and ∆r∗ � ∆l. We conclude that the core is not discharged or, in other words,
the electric charge of the core is stable against vacuum polarization and elec-
tric field E = Q/r2

0 is amplified during the gravitational collapse. As a conse-
quence, an enormous amount (N ∼ Qrds/eλC as claimed in Refs. Preparata
et al. (1998, 2003); Ruffini and Xue (2008b,a)) of pairs is left behind the col-
lapsing core and Dyadosphere Ruffini and Xue (2008a); Preparata et al. (1998,
2003) is formed.

Recently, we study this pair-production process in a neutral collapsing
core, rather than a charged collapsing core, as described above. Neutral
stellar cores at or over nuclear densities are described by positive charged
baryon cores and negative charged electron gas since they possess different
masses and interactions (equations of state). In static case, the equilibrium
configuration of positive charged baryon cores and negative charged electron
gas described by Thomas-Fermi equation shows an overcritical electric field
on the surface of baryon core. Based on such an initial configuration and
a simplified model of spherically collapsing cores, we approximately inte-
grate the Einstein-Maxwell equations and the equations for the particle num-
ber and energy-momentum conservations. It is shown that in gravitational
core-collapse, such an electric field dynamically evolves in the space-time and
electron-positron pairs are produced and gravitational energy is converted to
electron-positron energy. This important result has been published in Physics
Review D. The details on this topic can be found in Appendix C.

The e+e− pairs generated by the vacuum polarization process around the
core are entangled in the electromagnetic field Ruffini et al. (2003a), and ther-
malize in an electron–positron–photon plasma on a time scale∼ 104τC Ruffini
et al. (2003b) (see Fig. 3.1). As soon as the thermalization has occurred, the hy-
drodynamic expansion of this electrically neutral plasma starts Ruffini et al.
(1999, 2000). While the temporal evolution of the e+e−γ plasma takes place,
the gravitationally collapsing core moves inwards, giving rise to a further
amplified supercritical field, which in turn generates a larger amount of e+e−

pairs leading to a yet higher temperature in the newly formed e+e−γ plasma.
We report progress in this theoretically challenging process which is marked
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by distinctive and precise quantum and general relativistic effects. As pre-
sented in Ref. Ruffini et al. (2003a): we follow the dynamical phase of the
formation of Dyadosphere and of the asymptotic approach to the horizon by
examining the time varying process at the surface of the gravitationally col-
lapsing core. The details on this topic can be found in Appendix A

3.9. Polarization of strong electromagnetic fields
and its applications in polarizations of laser
fields, GRBs and CMB photons, as well as
neutrinos

Euler-Heisenberg Lagrangian and CMB photon circular polarization

Considering the effective Euler-Heisenberg Lagrangian, i.e., non-linear photon-
photon interactions, we study the circular polarization of electromagnetic ra-
diation based on the time-evolution of Stokes parameters. To the leading
order, we solve the Quantum Boltzmann Equation for the density matrix
describing an ensemble of photons in the space of energy-momentum and
polarization states, and calculate the intensity of circular polarizations. Ap-
plying these results to a linear polarized thermal radiation, we calculate the
circular polarization intensity, and discuss its possible relevance to the cir-
cular polarization intensity of the Cosmic Microwave Background radiation.
For the details of this part, see I. Motie, S.-S. Xue, European Physics Letter,
100, 17006, (2012)

To probe the nonlinear effects of photon-photon interaction in the quantum
electrodynamics, we study the generation of circular polarized photons by
the collision of two linearly polarized laser beams. In the framework of the
Euler-Heisenberg effective Lagrangian and the Quantum Boltzmann equa-
tion for the time evolution of the density matrix of polarization, we calculate
the intensity of circular polarization generated by the collision of two linearly
polarized laser beams and estimate the rate of generation that is proportional
to α2. As a result, we show that the generated circular polarization can be
experimentally measured by two head-on colliding optical laser beams of the
cross-sectional area . 0.01 cm2 and the laser pulse energy ∼ mJ. which are
currently available in laboratories. Our study presents a valuable supplement
to other theoretical and experimental frameworks to study and measure the
nonlinear effects of photon-photon interaction in the quantum electrodynam-
ics. For the details of this part, see “Circular polarization from linearly polar-
ized laser beam collisions”, I. Motie, R. Mohammadi, and S.-S. Xue, Physics
Review A377 (2013) 2450.
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CMB or laser photon circular polarization via interaction with neutrino
beam or cosmic background

We study the phenomenon that laser photons acquire circular polarization
by interacting with a Dirac or Majorana neutrino beam. It is shown that for
the reason of neutrinos being left-handed and their gauge-couplings being
parity-violated, linearly polarized photons acquire their circular polarization
by interacting with neutrinos. Calculating the ratio of linear and circular po-
larizations of laser photons interacting with either Dirac or Majorana neu-
trino beam, we obtain this ratio for the Dirac neutrino case, which is about
twice less than the ratio for the Majorana neutrino case. Based on this ra-
tio, we discuss the possibility of using advanced laser facilities and the T2K
neutrino experiment to measure the circular polarization of laser beams in-
teracting with neutrino beams in ground laboratories. This could be an ad-
ditional and useful way to gain some insight into the physics of neutrinos,
for instance their Dirac or Majorana nature. For the details of this part, see R.
Mohammadi and S.-S. Xue Physics Letters B731 272278, (2014).

Photon-neutrino scattering and the B-mode spectrum of CMB photons

On the basis of the quantum Boltzmann equation governing the time-evolution
of the density matrix of polarized CMB photons in the primordial scalar per-
turbations of metric, we calculate the B-mode spectrum of polarized CMB
photons contributed from the scattering of CMB photons and CNB neutri-
nos (Cosmic Neutrino Background). We show that such contribution to the
B-mode spectrum is negligible for small `, however is significantly large for
50 < ` < 200 by plotting our results together with the BICEP2 data. Our
study and results imply that in order to theoretically better understand the
origin of the observed B-mode spectrum of polarized CMB photons (r-parameter),
it should be necessary to study the relevant and dominate processes in both
tensor and scalar perturbations. For the details of this part, see the Rapid
communication section of Physics Review D 90, 091301(R) (2014), J. Khodagholizadeh,
R. Mohammadi and S.-S. Xue.

In addition, we study the cosmic microwave background polarization, es-
pecially the B-mode due to the weak interaction of the cosmic neutrino back-
ground and cosmic microwave background, in addition to the Compton scat-
tering in both cases of scalar and tensor metric perturbations. It is shown that
the power spectrum CBl of the B-mode polarization receives some contribu-
tions from scalar and tensor modes, which have effects on the value of the
r-parameter. We also show that the B-mode polarization power spectrum
can be used as an indirect probe into the cosmic neutrino background. B-
mode polarization receives some contributions from scalar and tensor modes,
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which have effects on the value of the r-parameter. We also show that the B-
mode polarization power spectrum can be used as an indirect probe into the
cosmic neutrino background. For the details of this part, see Physics Review
D 93, 091301 (2016), R. Mohammadi, J. Khodagholizadeh, M. Sadegh, and
She-Sheng Xue.

Generation of circular polarization of gamma ray bursts

We study the generation of the circular polarization of gamma ray burst
(GRB) photons via their interactions with astroparticles in the presence or
absence of background fields such as magnetic fields. Solving the quantum
Boltzmann equation for GRB photons as a photon ensemble, we discuss the
generation of circular polarization (as Faraday conversion phase shift ∆ϕFC
of GRBs in the following cases: (i) intermediate interactions, i.e., the Compton
scattering of GRBs in the galaxy cluster magnetic field, and the scattering of
GRBs in the cosmic neutrino background (CNB), as well as cosmic microwave
background (CMB); (ii) interactions with particles and fields in shockwaves,
i.e., the Compton scattering of GRBs with accelerated charged particles in the
presence of magnetic fields. We found that (i) after shockwave crossing, the
greatest contribution of ∆ϕFC for energetic GRBs (of the order of GeV and
larger) comes from GRB-CMB interactions, but for low-energy GRBs the con-
tributions of the Compton scattering of GRBs in the galaxy cluster magnetic
field dominate; (ii) in shockwave crossing, the magnetic field has significant
effects on converting a GRBs linear polarization to a circular one, and this
effect can be used to better understand the magnetic profile in shockwaves.
The main aim of this work is to study and measure the circular polarization of
GRBs for a better understanding of the physics and mechanism of the gener-
ation of GRBs and their interactions before reaching us. For the details of this
part, see the reference Phys. Rev. D 94, 065033 Published 22 September 2016
S. Batebi, R. Mohammadi, R. Ruffini, S. Tizchang, and S.-S. Xue. This work is
also presented in the conference MG14, Rome, Italy 2015, see the conference
proceeding of MG14, World Scientific, Singapore.
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3.10. Pair production and interactions of fields and
matter in the cosmology within the
framework of quantum
Einstein-Cartan-Maxwell theory

Fermionic and bosonic current and Schwinger effect in de Sitter
spacetime

Semiclassical fermion pair creation in de Sitter spacetime is studied, we present
a method to semiclassically compute the pair creation rate of bosons and
fermions in de Sitter spacetime. The results in the bosonic case agree with
the ones in the literature. We find that for the constant electric field the
fermionic and bosonic pair creation rate are the same. This analogy of bosons
and fermions in the semiclassical limit is known from several flat spacetime
examples.

We study the fermionic Schwinger effect in two dimensional de Sitter space-
time. To do so we first present a method to semiclassically compute the num-
ber of pairs created per momentum mode for general time dependent fields.
In addition the constant electric field is studied in depth. In this case solu-
tions for the Dirac equation can be found and the number of pairs can be
computed using the standard Bogoliubov method. This result is shown to
agree with the semiclassical one in the appropriate limit. The solutions are
also used to compute the expectation value of the induced current. Compar-
ing these results to similar studies for bosons we find that while the results
agree in the semiclassical limit they do not generally. Especially there is no
occurrence of a strong current for small electric fields.

We present a method to semiclassically compute the pair creation rate of
bosons and fermions in de Sitter spacetime. The results in the bosonic case
agree with the ones in the literature. We find that for the constant electric
field the fermionic and bosonic pair creation rate are the same. This analogy
of bosons and fermions in the semiclassical limit is known from several flat
spacetime examples.

For the details of this part, see C. Stahl, E. Strobel, and S.-S. Xue, “Fermionic
current and Schwinger effect in de Sitter spacetime”, for the details, see the
reference Physics Review D 93,025004 (2016), and AIP Conf. Proc. 1693,
050005 (2015), arXiv:1507.01401 [hep-th].

In a further study, we consider a charged scalar field in a D dimensional
de Sitter spacetime and investigate pair creation by Schwinger mechanism
in a constant electric field background. Using a semiclassical approxima-
tion the current of the created pairs has been estimated. We find that, the
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semiclassical current of the created pairs in the strong electric field limit re-
sponds as E

D
2 . Going further but restricting to D = 3 dimensional de Sitter

spacetime, the quantum expectation value of the spacelike component of the
induced current has been computed in the in-vacuum state by applying an
adiabatic subtraction scheme. We find that, in the strong electric field limit,
the current responds as E

3
2 . In the weak electric field limit the current has

a linear response in E and an inverse dependence on the mass of the scalar
field. In the case of a massless scalar field, the current varies with E−1 which
leads to a phenomenon of infrared hyperconductivity. A new relation be-
tween infrared hyperconductivity, tachyons and conformality is discussed
and a scheme to avoid an infrared hyperconductivity regime is proposed. In
D dimension, we eventually presented some first estimates of the backreac-
tion of the Schwinger pairs to the gravitational field, we find a decrease of
the Hubble constant due to the pair creation. For more details, see the ref-
erence “Scalar current of created pairs by Schwinger mechanism in de Sitter
spacetime”, Ehsan Bavarsad, Clément Stahl and She-Sheng Xue, to appear in
Physics Review D.

Schwinger effect and backreaction in de Sitter spacetime

For the backreaction of created pairs on external fields, we first consider the
particle-antiparticle pairs produced by both a strong electric field and de Sit-
ter curvature. We investigate in 1 + 1 D the backreaction of the pairs on the
electromagnetic field. To do so we describe the canonical quantization of an
electromagnetic field in de Sitter space and add in the Einstein-Maxwell equa-
tion the fermionic current induced by the pairs. After solving this equation,
we find that the electric field gets either damped or unaffected depending
on the value of the pair mass and the gauge coupling. No enhancement of
the electromagnetic field to support a magnetogenesis scenario is found. The
physical picture is that the Schwinger pairs locally created screen the produc-
tion and amplification of the electromagnetic field. However, if one considers
light bosons created by the Schwinger mechanism, we report a solution to the
Einstein-Maxwell equation with an enhancement of the electromagnetic field.
This solution could be a new path to primordial magnetogenesis. For more
details, see the reference Clement Stahl and She-Sheng Xue Physics Letters B,
Volume 760, p. 288-292.

In addition, we also study the pair creation in the early universe, and
present a short review in the conference proceeding of the the MG14 meet-
ing. In the very early universe, a generalized Schwinger effect can create
pairs from both electrical and gravitational fields. The expectation value of
fermionic current induced by these newly created pairs has been recently
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computed in de Sitter spacetime. I will discuss different limiting cases of
this result and some of its possible physical interpretations. See the confer-
ence proceeding of MG14, World scientific, Stahl Clément Strobel Eckhard
and Xue She-Sheng

Quantum Regge calculus of Einstein-Cartan theory and its phase and
critical point

We study the Quantum Regge Calculus of Einstein-Cartan theory to describe
quantum dynamics of Euclidean space-time discretized as a 4-simplices com-
plex. Tetrad field eµ(x) and spin-connection field ωµ(x) are assigned to each
1-simplex. Applying the torsion-free Cartan structure equation to each 2-
simplex, we discuss parallel transports and construct a diffeomorphism and
local gauge-invariant Quantum Regge Calculus of Einstein-Cartan action. In-
variant holonomies of field ωµ(x) along large loops are also given. Quantiza-
tion is defined by a bounded partition function with the measure of SO(4)-
group valued ωµ(x) fields and Dirac-matrix valued eµ(x) fields over 4-simplices
complex.

We present detailed discussions and calculations of the Quantum Regge
calculus of Einstein-Cartan theory. The Euclidean space-time is discretized
by a four-dimensional simplicial complex. We adopt basic tetrad and spin-
connection fields to describe the simplicial complex. By introducing diffeo-
morphism and local Lorentz invariant holonomy fields, we construct a reg-
ularized Einstein-Cartan theory for studying the quantum dynamics of the
simplicial complex and fermion fields. This regularized Einstein-Cartan ac-
tion is shown to properly approach to its continuum counterpart in the con-
tinuum limit. Based on the local Lorentz invariance, we derive the dynamical
equations satisfied by invariant holonomy fields. In the mean-field approxi-
mation, we show that the averaged size of 4-simplex, the element of the sim-
plicial complex, is larger than the Planck length. This formulation provides a
theoretical framework for analytical calculations and numerical simulations
to study the quantum Einstein-Cartan theory.

On the basis of strong coupling expansion, mean-field approximation and
dynamical equations satisfied by holonomy fields, we present calculations
and discussions to show the phase structure of the quantum Einstein-Cartan
gravity, (i) the order phase: long-range condensations of holonomy fields in
strong gauge couplings; (ii) the disorder phase: short-range fluctuations of
holonomy fields in weak gauge couplings. According to the competition of
the activation energy of holonomy fields and their entropy, we give a simple
estimate of the possible ultra-violet critical point and correlation length for
the second-order phase transition from the order phase to disorder one. At
this critical point, we discuss whether the continuum field theory of quantum
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Einstein-Cartan gravity can be possibly approached when the macroscopic
correlation length of holonomy field condensations is much larger than the
Planck length. For the details of this part, see Physical Review D 82, 064039
(2010), Physics Letters B665 54 (2008), B682 (2009) 300 and B711 (2012) 404.

How universe evolves with cosmological and gravitational constants in
the field theory of quantum Einstein-Cartan gravity

With a basic varying space-time cutoff ˜̀, we study a regularized and quan-
tized Einstein-Cartan gravitational field theory and its domains of ultraviolet-
unstable fixed point gir & 0 and ultraviolet-stable fixed point guv ≈ 4/3 of the
gravitational gauge coupling g = (4/3)G/GNewton. Because the fundamental
operators of quantum gravitational field theory are dimension-2 area opera-
tors, the cosmological constant is inversely proportional to the squared corre-
lation length Λ ∝ ξ−2. The correlation length ξ characterizes an infrared size
of a causally correlate patch of the universe. The cosmological constant Λ and
the gravitational constant G are related by a generalized Bianchi identity. As
the basic space-time cutoff ˜̀ decreases and approaches to the Planck length
`pl, the universe undergoes inflation in the domain of the ultraviolet-unstable
fixed point gir, then evolves to the low-redshift universe in the domain of
ultraviolet-stable fixed point guv. We give the quantitative description of the
low-redshift universe in the scaling-invariant domain of the ultraviolet-stable
fixed point guv, and its deviation from the ΛCDM can be examined by low-
redshift (z . 1) cosmological observations, such as supernova Type Ia. For
the details of this part, see Nuclear Physics B897 (2015) 326345.

Quantum Einstein-Cartan theory with four-fermion interactions and its
resulted particle mass spectra for matter and dark matter

In the fermion content and gauge symmetry of the standard model (SM), we
study the four-fermion operators in the torsion-free quantum Einstein-Cartan
theory. The collider signatures of irrelevant operators are suppressed by the
high-energy cutoff (torsion-field mass) Λ, and cannot be experimentally ac-
cessible at TeV scales. Whereas the dynamics of relevant operators accounts
for (i) the SM symmetry-breaking in the domain of infrared-stable fixed point
with the energy scale v ≈ 239.5 GeV and (ii) composite Dirac particles restor-
ing the SM symmetry in the domain of ultraviolet-stable fixed point with the
energy scale E & 5 TeV. To search for the resonant phenomena of composite
Dirac particles with peculiar kinematic distributions in final states, we dis-
cuss possible high-energy processes: multi-jets and dilepton Drell-Yan pro-
cess in LHC p p collisions, the resonant cross-section in e−e+ collisions an-
nihilating to hadrons and deep inelastic lepton-hadron e− p scatterings. To
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search for the nonresonant phenomena due to the form-factor of Higgs boson,
we calculate the variation of Higgs-boson production and decay rate with the
CM energy in LHC. We also present the discussions on four-fermion opera-
tors in the lepton sector and the mass-squared differences for neutrino and
sterile neutrinos, as well as its resulted particle spectra for matter and the can-
didates for dark matter. We also present the discussions on the fermion-mass
generation and vectorlike gauge-boson coupling due to the four-fermion op-
erators in Quantum Einstein-Cartan theory For the details this part, see “ Res-
onant and nonresonant phenomena as well as fermion-mass generations due
to the four-fermion operators in quantum Einstein-Cartan theory” Physics
Letters B744 8894 (2015), B737 (2014) 172, B727, 308 (2013), B721 (2013) 347,
and Physics Review D 93, 073001 (2016).

Fractal matter distribution and supernovae

Recently, we report here a work on a simple inhomogeneous cosmological
model within the Lematre-Tolman-Bondi (LTB) metric. The mass-scale func-
tion of the LTB model is taken to be M(r) ∝ rd and would correspond to a
fractal distribution for 0 < d < 3. The luminosity distance for this model is
computed and then compared to supernovae data. Unlike LTB models which
have in the most general case two free functions, our model has only two free
parameters as the flat standard model of cosmology. The best fit obtained
is a matter distribution with an exponent of d = 3.44. Finally by adding an
upper cutoff on the scale r = 2300 Mpc, we find a better fit than the simple
fractal model with an exponent d = 3.36. For some details, see the reference,
C. Stahl, R. Ruffini, the conference proceedings of the 15th Italian and Korean
meeting, Pescara Italy July, 2015, World scientific, Singapore. The proceeding
is published together with the MG XIV proceedings.

Testing the cosmological parameters and isotropy principle by use of
gamma-ray bursts data

We perform a model independent analysis to study the constraints on the
cosmological parameter by use of gamma-ray bursts data. Most gamma-ray
bursts have higher redshifts than the traditional probes, such as SNe Ia. We
employ 118 long gamma-ray bursts to constrain the cosmological parameter
in model independent manner. We find the best value indicates Ωm0 = 0.32,
which is consistent with other latest observations, like Planck CMB 2015 re-
leased result.

A cosmological preferred direction was reported from the type Ia super-
novae (SNe Ia) data in recent years. Most gamma-ray bursts have higher
redshifts than SNe Ia. We use the long gamma-ray bursts data to give a sim-
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ple classification of such studies for the first time. Because the maximum
anisotropic direction is independent of isotropic cosmological models, we
adopt two cosmological models (ΛCDM, wCDM) for the hemisphere com-
parison analysis and ΛCDM model for dipole fit approach. In hemisphere
comparison method, the matter density and the equation of state of dark en-
ergy are adopted as the diagnostic qualities in the ΛCDM model and wCDM
model, respectively. In dipole fit approach, we fit the fluctuation of distance
modulus. We find that there is a null signal for the hemisphere comparison
method, while a preferred direction (b = −14.3◦ ± 10.1◦, l = 307.1◦ ± 16.2◦)
for the dipole fit method. This result indicates that the dipole fit is more sen-
sitive than the hemisphere comparison method. Y. Wang, X. F. Yang, C. Stahl,
R. Ruffini .

This work is in progress....

3.11. Semiclassical approach to pair production
rate for strong time-dependent electrical
fields with more than one component

Semi-classical description of pair production in a general electric field

In review Section 6, after recalling studies of pair production in inhomoge-
neous electromagnetic fields in the literature by Dunne and Schubert (2005a);
Dunne et al. (2006); Dunne and Wang (2006); Kim and Page (2002, 2006, 2007),
we present a brief review of our recent work Kleinert et al. (2008) where the
general formulas for pair production rate as functions of either crossing en-
ergy level or classical turning point, and total production rate are obtained in
external electromagnetic fields which vary either in one space direction E(z)
or in time E(t). In Sections 6.1 and 6.2, these formulas are explicitly derived
in the JWKB approximation and generalized to the case of three-dimensional
electromagnetic configurations. We apply these formulas to several cases of
such inhomogeneous electric field configurations, which are classified into
two categories. In the first category, we study two cases: a semi-confined
field E(z) 6= 0 for z . ` and the Sauter field

E(z) = E0/cosh2 (z/`) , V(z) = −σs mec2 tanh (z/`) ,

where ` is width in the z-direction, and

σs ≡ eE0`/mec2 = (`/λC)(E0/Ec).
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In these two cases the pairs produced are not confined by the electric po-
tential and can reach an infinite distance. The resultant pair production rate
varies as a function of space coordinate. The result we obtained is drasti-
cally different from the Schwinger rate in homogeneous electric fields with-
out any boundary. We clearly show that the approximate application of the
Schwinger rate to electric fields limited within finite size of space overesti-
mates the total number of pairs produced, particularly when the finite size
is comparable with the Compton wavelength λC, see article Figs. 6.2 and 6.3
where it is clearly shown how the rate of pair creation far from being constant
goes to zero at both boundaries. The same situation is also found for the case
of the semi-confined field z(z) 6= 0 for |z| . `, see Eq. (6.3.34). In the second
category, we study a linearly rising electric field E(z) ∼ z, corresponding to
a harmonic potential V(z) ∼ z2, see Figs. 6.1. In this case the energy spectra
of bound states are discrete and thus energy crossing levels for tunneling are
discrete. To obtain the total number of pairs created, using the general formu-
las for pair production rate, we need to sum over all discrete energy crossing
levels, see Eq. (6.4.11), provided these energy levels are not occupied. Other-
wise, the pair production would stop due to the Pauli principle.

Semiclassical approach to pair production rate for strong time-dependent
electrical fields with more than one component

Since Sauter in 1931 Sauter (1931) and Heisenberg and Euler Heisenberg and
Euler (1936) four years later gave a first description of the vacuum proper-
ties of QED, there have been a lot of investigations of the pair creation rate
in strong electric fields. In particular, Schwinger Schwinger (1951, 1954a,b)
reformulated their result in an elegant way using quantum-field theoretic
methods (see also Nikishov (1970); Batalin and Fradkin (1970b)).
The formulation was extended to space-time-dependent fields using differ-
ent methods, e.g. the imaginary time method Brezin and Itzykson (1970);
Popov (1972d,c, 1973b); Marinov and Popov (1977); Popov (2001b) and a
tunneling picture Kleinert (2008); Kleinert and Xue (2013), both using WKB-
approximations or the world-line instanton method Dunne and Schubert (2005b);
Dunne et al. (2006).
By comparing numerical with analytic results it was found that for more com-
plicated field configurations, i.e. for those which have more than one distinct
pair of semiclassical turning points, interference effects arise. This was al-
ready discussed as a resonance effect for oscillating fields in Popov (1973).
Interference effects were recently studied in Dumlu and Dunne (2010, 2011b)
for the WKB-method and in Dumlu and Dunne (2011a) for the world-line in-
stanton approach. In this study we consider only fields with one dominant
pair of turning points where interference effects are negligible. This enables
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us to use scalar quantum-electrodynamics, since it is known to give the same
results as spinor quantum electrodynamics at the leading non-perturbative
order if there are no interference effects Dumlu and Dunne (2011b).
All the analytic methods mentioned above give the same results for electric
fields with only one component depending on either space or time. A more
general case, namely electric fields with two or three components depending
on space was discussed in Dunne and Wang (2006) in the world-line instan-
ton approach.
A special case namely a (two component) rotating electrical field was dis-
cussed in Popov (1973b). Recently pair production in rotating fields has been
studied numerically in Blinne and Gies (2013) using the Wigner formalism.
These results can be used to calculate the pair creation rate of a plane wave
in a plasma as shown in Bulanov et al. (2003).
So far, electron-positron pair production has not been directly observed in
experiments due to the necessity of high field strengths which are out of the
range reached by nowadays laser systems. However recent theoretical inves-
tigations have shown that less strong fields are needed if one uses carefully-
shaped multi-component laser pulses Schützhold et al. (2008); Dunne et al.
(2009); Bell and Kirk (2008); Di Piazza et al. (2009); Monin and Voloshin (2010a,b);
Heinzl et al. (2010); Bulanov et al. (2010).
For this reason, we generalize the above mentioned analytic methods to com-
pute the pair creation rate for a general time-dependent periodic electrical
field which is characterized by the potential

Aµ(t) = [0, A1(t), A2(t), A3(t)] =
1
e c

[0, V1(t), V2(t), V3(t)]. (3.11.1)

To do so we use the WKB-approximation as well as the world-line instanton
method of Dunne et al. (2006).
As is well known, the WKB approach the pair creation rate per volume V
takes the general form (see, e.g., Kleinert (2008); Kleinert and Xue (2013))

ΓWKB

V
∼
∫ d3P

(2πh̄)3 exp
(
−π

Ec

E0
G(~P)

)
. (3.11.2)

where the integral over ~P is over the momentum modes of the produced
pairs. We introduce the critical electrical field

Ec =
m2c3

eh̄
. (3.11.3)

In Eq. (3.11.2) E0 is a characteristic electric field strength and G(~P) is a func-
tion depending on the explicit form of the electric field, which is straightfor-
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wardly generalized to more than one component.
We find that if the momentum spectrum exp(−πEc/E0G(~P)) is peaked around
zero canonical momentum ~P = 0 it can be approximated by expanding around
this point and it is possible to simplify the result via Gaussian integration.
In the world-line instanton framework of Dunne et al. (2006) the momentum,
arising as an integration constant, was implicitly taken to vanish with a Gaus-
sian momentum integration producing the prefactors, as discussed in Dumlu
and Dunne (2011a). We argue that this is a de facto expansion around ~P = 0.
We generalize this method to the case of electric fields with more than one
component and show that the result agrees with the WKB result expanded
around ~P = 0.
The momentum spectrum is usually peaked around ~P = 0 for the examples of
one-component fields studied in the literature (see, e.g., Dunne et al. (2006)).
Thus the expansion around ~P = 0 presents a good approximation. However
this situation changes if one goes to the case of two-component fields. By
looking at rotating electric fields we find that their momentum spectra are
not peaked around ~P = 0.
If the momentum spectrum is not peaked around ~P = 0 one can not use the
expanded WKB result since it does not present a good approximation. Also
the world-line instanton method of Dunne et al. (2006) and the generalized
form presented here implicitly require the momentum spectrum to be peaked
around ~P = 0. This implies that it is not appropriate to calculate the pair pro-
duction rate for cases where the momentum spectrum is not peaked around
~P = 0 in the form discussed here.
Rotating field configurations such as the one studied here are of interest since
they are related to circularly-polarized laser waves. A circularly-polarized
wave in medium can be described by a rotating electric field, since it is possi-
ble to make a transformation into the co-moving Lorentz frame (see, e.g., Bu-
lanov et al. (2003)).
Recently it has become obvious that the pair production rate of lasers de-
pends sensitively on the pulse shape Schützhold et al. (2008); Dunne et al.
(2009); Bell and Kirk (2008); Di Piazza et al. (2009); Monin and Voloshin (2010a,b);
Heinzl et al. (2010); Bulanov et al. (2010). For the design of feasible experi-
ments to directly measure pair production it is therefore of interest to find a
pulse profile which enhances this process. Obviously for complicated laser
pulse profiles the calculation has to be done numerically. The development
of semiclassical analytical methods discussed in this study certainly helps to
provide some physical intuition for these numerical simulations. For the de-
tails of this part, see E. Strobel and S.-S. Xue, Nuclear Physics B 886, 1153
(2014).

Using semiclassical WKB-methods, we calculate the rate of electron- positron
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pair-production from the vacuum in the presence of two external fields, a
strong (space- or time-dependent) classical field and a monochromatic elec-
tromagnetic wave. We discuss the possible medium effects on the rate in the
presence of thermal electrons, bosons, and neutral plasma of electrons and
protons at a given temperature and chemical potential. Using our rate for-
mula, we calculate the rate enhancement due to a laser beam, and discuss the
possibility that a significant enhancement may appear in a plasma of elec-
trons and protons with self-focusing properties. For details of this part, see
H. Kleinert and S.-S. Xue, “Vacuum pair-production in a classical electric field
and an electromagnetic wave”, Annals of Physics 333 (2013) 104.

By using this approach, we semiclassically investigate Schwinger pair pro-
duction for pulsed rotating electric fields depending on time. To do so we
solve the Dirac equation for two-component fields in a WKB-like approxima-
tion. The result shows that for two-component fields the spin distribution
of produced pairs is generally not 1:1. As a result the pair creation rates of
spinor and scalar quantum electro dynamics (QED) are different even for one
pair of turning points. For rotating electric fields the pair creation rate is dom-
inated by particles with a specific spin depending on the sense of rotation for
a certain range of pulse lengths and frequencies. We present an analytical
solution for the momentum spectrum of the constant rotating field. We find
interference effects not only in the momentum spectrum but also in the total
particle number of rotating electric fields. For the details of this part, see E.
Strobel and S.-S. Xue Physics Review D 91, 045016 (2015).

Nonlinear Breit-Wheeler process in the collision of a photon with two
plane waves

Electron-positron pair creation by the collision of two real photons (Breit-
Wheeler process [Breit and Wheeler, Phys. Rev. 46, 1087 (1934)]) is one
of most relevant elementary processes in high-energy astrophysics. It can
lead to observable effects such as cutoff in the high-energy Gamma spectra.
In order to access the observations of this fundamental phenomenon in the
earth-based experiments, the generalization of the Breit-Wheeler process to
the nonlinear Breit-Wheeler process of pair production in the collision a pho-
ton with an intensive monochromatic plane wave has been fully analyzed
and discussed in the past few decades [e.g., Reiss, J. Math. Phys. 3, 59 (1962)
and Ritus, J. Sov. Laser Res. 6, 497 (1985)]. Such a nonlinear Breit-Wheeler
process has been detected in the SLAC-E-144 experiment [Burke et al., Phys.
Rev. Lett. 79, 1626 (1997)]. In this article, we analyzed the nonlinear Breit-
Wheeler process of pair production off a probe photon colliding with a bifre-
quent field. The bifrequent field is composed of a low-frequency and a high-
frequency electromagnetic wave that propagate in the same direction. We cal-
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culate the pair-production probability and the spectra of created pairs in the
nonlinear Breit-Wheeler processes of pair production off a probe photon col-
liding with two plane waves or one of these two plane waves. The differences
of these two cases are discussed. We evidently show, in the two-wave case,
the possibility of Breit-Wheeler pair production with simultaneous photon
emission into the low-frequency wave and the high multiphoton phenom-
ena: (i) Breit-Wheeler pair production by absorption of the probe photon and
a large number of photons from the low-frequency wave, in addition to the
absorption of one photon from the high-frequency wave; (ii) Breit-Wheeler
pair production by absorption of the probe photon and one photon from the
high-frequency wave with simultaneous emission of a large number of pho-
tons into the low-frequency wave. The phenomenon of photon emission into
the wave cannot happen in the one-wave case. Compared with the one-wave
case, the contributions from high multiphoton processes are largely enhanced
in the two-wave case. A multipeak structure of the spectra (multipeak struc-
ture) of created e− e+ pairs in the two-wave process is shown, as a result of
the effects of the phenomenon of pair production with simultaneous photon
emission into the low-frequency wave and high multiphoton (absorption and
emission) phenomenon. The results presented in this article show a possible
way to access the observations of the phenomenon of photon emission into
the wave and high multiphoton phenomenon in Breit-Wheeler pair produc-
tion even with the laser-beam intensity of order 1018 W/cm2. For the details
of this part, see Yuan-Bin Wu and S.-S. Xue, Physics Review D 90, 013009
(2014).

Fractional Effective Action at strong electromagnetic fields

In 1931 Sauter Sauter (1931) and four years later Heisenberg and Euler Heisen-
berg and Euler (1936) provided a first description of the vacuum properties
of QED. They identified a characteristic scale of strong field Ec = m2

e c3/eh̄, at
which the field energy is sufficient to create electron positron pairs from the
vacuum, and calculated an effective Lagrangian that will replace the Maxwell
Lagrangian at strong fields. In 1951, Schwinger Schwinger (1951, 1954a,b)
gave an elegant quantum-field theoretic reformulation of their result in the
spinor and scalar QED framework (see also Nikishov (1970); Batalin and
Fradkin (1970b)). The description was further extended to space-time de-
pendent electromagnetic fields in Refs. Popov (1972d,c, 2001b); Narozhnyi
and Nikishov (1970); Schubert (2001); Dunne and Schubert (2005b); Kleinert
and Xue (2013). The monographs Itzykson and Zuber (2006); Kleinert (2008);
Greiner et al. (1985); Grib et al. (1980); Fradkin et al. (1991) and the recent re-
view articles Dunne and Schubert (2000); Dunne (2005); Ruffini et al. (2010)
can be consulted for more detailed calculations, discussions and bibliogra-
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phies. Since then, the properties of QED in strong electromagnetic fields have
become vast arena of theoretical research, awaiting experimental verification
as well as further theoretical understanding.

An interesting aspect of effective field theories in the strong-field limit
has recently been emphasized in a completely different class of quantum
field theories. These have the property of developing in the strong-field
limit an anomalous power behavior. It is experimentally observable at the
critical point in second-order phase transitions, and for this reason such a
power behavior is also called critical behavior. Such a behavior arises if the
the so-called beta function (also called the Stueckelberg–Petermann function
or the Gell-Mann–Low function) Stueckelberg and Petermann (1953); Gell-
Mann and Low (1954), which governs the logarithmic growth of the cou-
pling strength for varying energy scale, has a fixed point in the infrared. In
such theories, it is possible to take the theory to the limit of infinite coupling
strength. The effective action can usually be calculated in perturbation theory
as a power series in the fields. The coefficients are the one-particle irreducible
n-point vertex functions of the theory. In the limit of large field strength, this
power series can be shown to develop an anomalous power behavior with ir-
rational exponents Kleinert and Frohlinde (2001); Kleinert. Also the gradient
terms in this effective action show anomalous powers Kleinert (2012).

In QED such a fixed point is presently believed to be absent Suslov (2001),
even though many authors have in the past argued that it may exist John-
son et al. (1963, 1964); Maris et al. (1964, 1965); Frishman (1965) and could
ultimately explain the numerical value of the fine structure constant. In this
study we shall not assume the existence of such a fixed point, but point out
that at strong fields, the effective action exhibits nevertheless a power behav-
ior that is typical for critical phenomena.

We conclude that in the strong fields expansion, the leading order behav-
ior of the Euler-Heisenberg effective Lagrangian is logarithmic, and can be
formulated as a power law for three different cases:

1. |S/P| � 1,

2. ε, β� Ec and ε/β ∼ O(1),

3. |P/S| � 1.

The the general form is the same for scalar and spinor QED. The only differ-
ence is a factor of four in the anomalous power δ.

We have not been able to conclude a result for S, P � E2
c . This case is

equivalent to |~E| � |~B| � Ec or |~B| � |~E| � Ec while the fields are almost
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parallel. If we combine the result

L< =
1
2

E−δ
c (~E2 − ~B2)|~E2 − ~B2|δ/2

+ . . . , (3.11.4)

for the cases 1. and the result

L< =
1
2

E−δ
c (~E2 − ~B2)|~E · ~B|δ/2

+ . . . , (3.11.5)

for the cases 3. with the anomalous power δ := e2/12π, we can conjecture the
more general result:

Leff =
1
2

E−2δ
c (~E2 − ~B2)

(
|~E2 − ~B2||~E · ~B|

)δ/2
+ . . . . (3.11.6)

This correctly reduces to the cases 1. and 3. in the respective limits and thus is
more general. As a result, Eq. (3.11.6) defines a fractional formulation for the
QED in the regime of strong fields. Thus our finding exhibits an interesting
similarity to the fractional quantum field theory discussed in Kleinert (2012).

The Euler-Heisenberg-Lagrangian is obtained in the configuration of con-
stant electromagnetic fields. Nevertheless, for the case of smooth and slow
variations of electromagnetic fields in space and time, it can be approximately
used to study interesting effects like light-by-light scattering, photon splitting
or electron-positron pair production (for reviews see Dunne (2005); Ruffini
et al. (2010)). This implies that the fractional QED obtained in this article
could find some applications in the regime of strong electromagnetic fields.
This is particularly important for the recent rapid developments of experi-
mental facilities using novel strong laser sources to reach the field strength
and intensity of theoretical interest. Such facilities include the Extreme Light
Infrastructure (ELI)1, the Exawatt Center for Extreme Light studies (XCELS)2,
or the High Power laser Energy Research (HiPER)3 facility, which are planned
to exceed powers of 100 PW. Both theoretical and experimental studies of the
QED of strong electromagnetical fields at the Sauter-Euler-Heisenberg scale
Ec promise to become increasingly fascinating in the coming years. For the
details of this part, see H. Kleinert, E. Strobel and S.-S. Xue, “Fractional Ef-
fective Action at strong electromagnetic fields”, Physics Review D88, 025049
(2013).

1http://www.extreme-light-infrastructure.eu/
2 http://www.xcels.iapras.ru/
3http://www.hiper-laser.org/
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3.12. Pair-production, ultra-high energy particles,
gravitational and electromagnetic energies in
gravitational collapse and accretion processes

Electron and positron pair-production in gravitational collapses

We attempt to study possible electric processes in the dynamical perturba-
tions of neutral stellar cores. These dynamical perturbations can be caused
by either the gravitational collapse or pulsation of neutral stellar cores. The
basic equations are the Einstein-Maxwell equations and those governing the
particle number and energy-momentum conservation

(n̄e,BUν
e,B);ν = 0,
Gµν = −8πG(Tµν + Tem

µν ),

(Tν
µ);ν = −Fµν Jν,

Fµν
;ν = 4π Jµ, (3.12.1)

in which the Einstein tensor Gµν, the electromagnetic field Fµν (satisfying
F[αβ,γ] = 0) and its energy-momentum tensor Tem

µν appear; Uν
e,B and n̄e,B are,

respectively, the four velocities and proper number-densities of the electrons
and baryons. The electric current density is

Jµ = en̄pUµ
B − en̄eU

µ
e , (3.12.2)

where n̄p is the proper number-density of the positively charged baryons.
The energy-momentum tensor Tµν = Tµν

e + Tµν
B is taken to be that of two

simple perfect fluids representing the electrons and the baryons, each of the
form

Tµν
e,B = p̄e,Bgµν + ( p̄e,B + ρ̄e,B)U

µ
e,BUν

e,B, (3.12.3)

where ρ̄e,B(r, t) and p̄e,B(r, t) are the respective proper energy densities and
pressures. Baryon fluid and electron fluid are separately described for the
reason that in addition to baryons being much more massive than electrons,
the EOS of baryons p̄B = p̄B(ρ̄B) is very different from the electron one
p̄e = p̄e(ρ̄e) due to the strong interaction. Therefore, in the dynamical per-
turbations of neutral stellar cores, one should not expect that the space-time
evolution of number density, energy density, four velocity, and pressure of
baryon fluid be identical to the space-time evolution of counterparts of elec-
tron fluid. The difference of space-time evolutions of two fluids results in
the electric current Jµ and field Fµν, possibly leading to some electric pro-

578



3.12. Pair-production, ultra-high energy particles, gravitational and
electromagnetic energies in gravitational collapse and accretion processes

cesses. In a simplified model for the dynamical perturbations of neutral stel-
lar cores, we approximately study possible electric processes by assuming
that the equilibrium configurations of neutral stellar cores are initial configu-
rations.

As a result, we find that total electric field, electron number density, en-
ergy density, and pressure oscillate around their equilibrium configurations.
These oscillations with frequency ω = τ−1

osci ∼ 1.5me around the equilibrium
configuration take place in a thin layer of a few Compton lengths around
the boundary of baryon core, which undergo the dynamical perturbations
caused by the gravitational collapse or pulsation. Suppose that the dynamical
perturbation of the baryon core is caused by either the gravitational collapse
or pulsation of the baryon core, that gains the gravitational energy. Then, in
this oscillating process, energy transforms from the dynamical perturbation
of the baryon core to the electron fluid via an oscillating electric field. This
can been seen from the energy conservation along a flow line of the electron
fluid for ve 6= vp

Uµ
e (Tν

µ);ν = en̄pFµνUµ
e Uν

B = en̄pγeγB(vp − ve)grrE. (3.12.4)

The energy densities of the oscillating electric field and electron fluid are
converted from one to another in the oscillating process with frequencies
ω ∼ τ−1

osci ∼ 1.5me around the equilibrium configuration. Oscillating elec-
tric fields E(r, t) > Eeq(r), this leads to electron-positron pair production in
strong electric fields and converts electric energy into the energy of electron-
positron pairs, provided the pair-production rate τ−1

pair ≈ 6.6me is faster than

the oscillating frequency ω = τ−1
osci.

It is an assumption that the gravitationally collapsing process is repre-
sented by the sequence of events: the baryon core starts to collapse from rest
by gaining gravitational energy, the increasing Coulomb energy results in
decreasing kinetic energy and slowing down the collapse process, the electric
processes mentioned above convert the Coulomb energy into the radiative
energy of electron-positron pairs, and as a result the baryon core restarts to
accelerate the collapse process by further gaining gravitational energy. This
indicates that in the gravitationally collapsing process, the gravitational en-
ergy must be partly converted into the radiative energy of electron-positron
pairs. By summing over all events in the sequence of the gravitationally col-
lapsing process, we approximately estimate the total number and energy of
electron-positron pairs produced in the range Rc ∼ 5× 105 − 107cm: from
1056–1057 and 1052–1053 erg to 1055–1056 and 1051–1052 erg for different ra-
tios of charged and neutral baryon numbers. These electron-positron pairs
undergo the plasma oscillation in strong electric fields and annihilate to pho-
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tons to form a neutral plasma of photons and electron-positron pairs Ruffini
et al. (2003b,a). This is reminiscent of the vacuum polarization of a charged
black hole Damour and Ruffini (1975); Cherubini et al. (2009) and the Dyado-
sphere supposed to be dynamically created during gravitational collapse in
Refs. Ruffini and Xue (2008a); Preparata et al. (1998, 2003). For the details of
this part, see Appendix C.

Gravitational and electric energies in gravitational collapses

In our previous work “Electron and positron pair-production in gravitational
collapses” (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study
of strong oscillating electric fields and electron-positron pair-production in
gravitational collapse of a neutral stellar core at or over nuclear densities. In
order to understand the back-reaction of such electric energy building and
radiating on collapse, we adopt a simplified model describing the collapse
of a spherically thin capacitor to give an analytical description how gravi-
tational energy is converted to both kinetic and electric energies in collapse.
It is shown that (i) averaged kinetic and electric energies are the same or-
der, about an half of gravitational energy of spherically thin capacitor in col-
lapse; (ii) caused by radiating and rebuilding electric energy, gravitational
collapse undergoes a sequence of “on and off” hopping steps in the micro-
scopic Compton scale. Although such a collapse process is still continuous in
terms of macroscopic scales, it is slowed down as kinetic energy is reduced
and collapsing time is about an order of magnitude larger than that of col-
lapse process eliminating electric processes. These results indicate that it is
essential to take into account, rather than ignore, electric processes in more
realistic models for studying gravitational collapse of neutral stellar core at
or over the nuclear density. For the details of this part, see Appendix D.

Electromagnetic field generated by neutral plasma Accretion into a Kerr
Black hole

Recently, we have exploited Ruffini-Wilson model to describe strong elec-
tromagnetic fields generated by neutral plasma Accretion into a Kerr Black
hole, which can be account for a possible engine for GRBs and AGNs. In this
work we study the accretion of magnetized plasma to an extremely rotating
(a = M) Kerr black hole. Using infinite conductivity condition (FU = 0) and
Carter solutions as geodesics of falling plasma components we have plotted
the electromagnetic field configuration and current density lines around Kerr
black hole. The total amount of electromagnetic energy which can be ex-
tracted from such an engine has been discussed. We have concluded that the
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total charge which is induced on the Kerr black hole can be around Q/M 10−4,
which is quite significant.

C. Cherubini, R. Moradi, R. Ruffini, Y Wang, and S.-S. Xue, this work is in
progress...

3.13. Strong and pulsating electromagnetic field in
gravitational collapse core or heavy atoms

Surface tension for heavy atoms

Based on the relativistic mean field theory and the Thomas-Fermi approxi-
mation, we study the surface properties of giant-nucleus compressed atoms;
a giant-nucleus compressed atom has a giant nuclear core (giant nucleus) and
degenerate electrons some of which have penetrated into the giant nucleus.
Taking into account the strong, weak, and electromagnetic interactions, we
numerically study the structure of giant-nucleus compressed atoms and cal-
culate the nuclear surface tension and Coulomb energy. We analyze the in-
fluence of the electron component and the background matter on the nuclear
surface tension and Coulomb energy of giant-nucleus compressed atoms. We
also compare and contrast these results in the case of giant-nucleus com-
pressed atoms with phenomenological results in nuclear physics and the re-
sults of the core-crust interface of neutron stars with global charge neutrality.
Based on the numerical results we study the instability against Bohr-Wheeler
surface deformations in the case of giant-nucleus compressed atoms. The
results in this article provide the evidence of strong effects of the electromag-
netic interaction and electrons on the structure of giant-nucleus compressed
atoms. For details of this part, see J. Rueda, R. Ruffini, Y.-B. Wu and S.-S. Xue,
“Surface tension for heavy atoms”, to submitted to Physics Review C.

Critical fermion density for restoring spontaneously broken symmetry

We show how the phenomenon of spontaneous symmetry breakdown is af-
fected by the presence of a sea of fermions in the system. When its density
exceeds a critical value, the broken symmetry can be restored. We calculate
the critical value and discuss the consequences for three different physical
systems: First, for the standard model of particle physics, where the spon-
taneous symmetry breakdown leads nonzero masses of intermediate gauge
bosons and fermions. The symmetry restoration will greatly enhance vari-
ous processes with dramatic consequences for the early universe. Second, for
the Gell-Mann–Lèvy σ-model of nuclear physics, where the symmetry break-
down gives rise to the nucleon and meson masses. The symmetry restora-
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tion may have important consequences for formation or collapse of stellar
cores. Third, for the superconductive phase of condensed-matter, where the
BCS condensate at low-temperature may be destroyed by a too large electron
density. For the details of this part, see H. Kleinert and S.-S. Xue, Mod. Phys.
Lett. A, Vol. 30, No. 24 (2015) 1550122.

Strong and pulsating electromagnetic field in gravitational collapse core
or heavy atoms

Then we study collective electronic pulsation of compressed atoms in Thomas-
Fermi model. Based on the Thomas-Fermi solution for compressed electron
gas around a giant nucleus, we study electric pulsations of electron number-
density, pressure and electric fields, which could be caused by an external
perturbations acting on the nucleus or the electrons themselves. We numer-
ically obtain the eigen-frequencies and eigen-functions for stationary pulsa-
tion modes that fulfill the boundary-value problem established by electron-
number and energy-momentum conservation, equation of state, and Maxwell’s
equations, as well as physical boundary conditions, and assume the nucleons
in β-equilibrium at nuclear density. We particularly study the configuration
of ultra-relativistic electrons with a large fraction contained within the nu-
cleus. Such configurations can be realized for a giant nucleus or high exter-
nal compression on the electrons. The lowest modes turn out to be heav-
ily influenced by the relativistic plasma frequency induced by the positive
charge background in the nucleus. Our results can be applied to heavy nu-
clei in the neutron star crust, as well as to the whole core of a neutron star.
We discuss the possibility to apply our results to dynamic nuclei using the
spectral method. For the details of this part, see L. Hendrik, R. Ruffini, and
S.-S. Xue, “Collective electronic pulsation of compressed atoms in Thomas-
Fermi model”, Nuclear Physics A 941, 115 (2015).

We are proceeding to further study the phenomenon of pulsating electro-
magnetic field and electron-positron pair-production in gravitational collapse
process of neutral core, and its astrophysics applications, GRBs etc.

R. Moradi, R. Ruffini, S. Shakeri, Y. Wang, and S.-S. Xue, The work is in
progress.
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3.14. The Breit-Wheeler cutoff in high-energy
γ-rays and cosmic absorption (opacity) of
ultra high energy particles

The Breit-Wheeler process for the photon-photon pair production is one of
most relevant elementary processes in high energy astrophysics (see review
Sec. 7.4). In addition to the importance of this process in dense radiation
fields of compact objects (Bonometto and Rees, 1971), the essential role of this
process in the context of intergalactic absorption of high-energy γ-rays was
first pointed out by Nikishov (Nikishov, 1961; Gould and Schréder, 1967).
The spectra of TeV radiation observed from distant (d > 100 Mpc) extra-
galactic objects suffer essential deformation during the passage through the
intergalactic medium, caused by energy-dependent absorption of primary γ-
rays at interactions with the diffuse extragalactic background radiation, for
the optical depth τγγ most likely significantly exceeding one (Gould and
Schréder, 1967; Stecker et al., 1992; Vassiliev, 2000; Coppi and Aharonian,
1999). A relevant broad-band information about the cosmic background ra-
diation (CBR) is important for the interpretation of the observed high-energy
γ spectra (Aharonian et al., 2000; Kneiske et al., 2002; Dwek and Krennrich,
2005; Aharonian et al., 2006). For details see Hauser and Dwek (2001); Aharo-
nian (2003). In this section, we are particularly interested in such absorption
effect of high-energy γ-ray, originated from cosmological sources, interacting
with the Cosmic Microwave Background (CMB) photons. Fazio and Stecker
(Fazio and Stecker, 1970; Stecker et al., 1977) were the first who calculated the
cutoff energy versus redshift for cosmological γ-rays. This calculation was
applied to further study of the optical depth of the Universe to high-energy
γ-rays (MacMinn and Primack, 1996; Kneiske et al., 2004; Stecker et al., 2006).
With the Fermi telescope, such study turns out to be important to understand
the spectrum of high-energy γ-ray originated from GRBs’ sources at cosmo-
logical distance, we therefore offer the details of theoretical analysis as follow.

Breit-Wheeler cross-section in arbitrary frame

Breit and Wheeler (1934) studied the process

γ1 + γ2 → e+ + e−, (3.14.1)

in the center of mass of the system, the momenta of the electron and positron
are equal and opposite p1 = −p2. The same thing holds for the momenta of
the photons in the initial state: k1 = −k2. As a consequence, the energies
of electron and positron are equal: E1 = E2 = E, and so are the energies of
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the photons: h̄ω1 = h̄ω2 = Eγ = E. They found the total cross-section in the
center of mass of the system:

σγγ =
π

2

(
αh̄
m c

)2

(1− β̂2)
[
2β̂(β̂2− 2)+ (3− β̂4) ln

(1 + β̂

1− β̂

)]
, with β̂ =

c|p|
E

,

(3.14.2)
where p and β̂ are respectively momentum and the reduced velocity of an
electron or positron. The necessary kinematic condition in order for the pro-
cess (3.14.1) taking place is that the energy of two colliding photons is larger
than the energetic threshold 2mec2, i.e.,

Eγ > mec2. (3.14.3)

The cross-section in line (3.14.2) can be easily generalized to an arbitrary ref-
erence frame K, in which the two photons k1 and k2 are moving in opposite
directions; for Lorentz invariance of (k1 · k2), one has ω1ω2 = E2

γ. Since

Eγ = E = mec2/
√

1− β̂2, (3.14.4)

to obtain the total cross-section in the arbitrary frame K, we must therefore
make the following substitution (Landau and Lifshitz, 1975),

β̂→
√

1−m2
e c4/(ω1ω2), (3.14.5)

in Eq. (3.14.2). For E� mec2, the total effective cross-section is approximately
proportional to

σγγ ' π

(
αh̄

mec

)2 (mec2

E

)2

= πr2
e

(
mec2

E

)2

, (3.14.6)

where re =
(

αh̄
mec

)
is the electron classical radius and πr2

e ' 2.5 · 10−25cm2.

Opacity of high-energy GRB photons colliding with CMB photons

We study the Breit-Wheeler process (3.14.1) to the case that high-energy GRB
photons ω1, originated from GRBs sources at cosmological distance z, on
their way traveling to us, collide with CMB photons ω2 in the rest frame
of CMB photons, leading to electron-positron pair production. We calculate
the opacity and mean free-path of these high-energy GRB photons, find the
energy-range of absorption as a function of the cosmological red-shift z.

In general, a high-energy GRB photon with a give energy ω1, collides with
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background photons in all possible energies ω2. We assume that i-type back-
ground photons have the spectrum distribution fi(ω2/Ti), where Ti is the
characteristic energy scale of the distribution, the opacity is then given by

τi
γγ(ω1, z) =

∫
dr
∫ ∞

m2
e c4/ω1

ω2
2dω2

π2 fi(ω2/Ti)σγγ(
ω1ω2

m2
e c4 ), (3.14.7)

where m2
e c4/ω1 is the energy-threshold (3.14.3) above which the Breit-Wheeler

process (3.14.1) can occurs and the cross-section σγγ(x) is given by Eqs. (3.14.2),
depending only on x = ω1ω2

m2
e c4 . The total opacity is then given by

τtotal
γγ (ω1, z) = ∑

i
τi

γγ(ω1, z), (3.14.8)

which the sum is over all types of photon background in the Universe. The
high-energy photons traveling path

∫
dr is given by ,

∫ t0

t

dt′

R(t′)
=
∫ r(t)

0

dr
(1− kr2)1/2 =

∫ r(t)

0
dr, (3.14.9)

where R(t) is the scalar factor, t0 is the present time and t corresponds to
epoch of the red-shift z for a flat (k = 0) Freemann Universe. Using the
relationship z + 1 = R0/R(t), we change integrand variable from t′ to the
red-shift z,

dt′ = − dz
(z′ + 1)H(z′)

, (3.14.10)

so that we have ∫ r(t)

0
dr =

∫ t0

t

dt′

R(t′)
=

1
R0

∫ z

0

dz
H(z)

, (3.14.11)

where H(z) = Ṙ(t)/R(t0) is the Hubble function, obeyed the Friedmann
equation

H(z) = H0[ΩM(z + 1)3 + ΩΛ]
1/2, ΩM + ΩΛ = 1, (3.14.12)

ΩM ' 0.3 and ΩM ' 0.7.

In the case of CMB photons in a black-body distribution 1/(eω2/T− 1) with
the temperature T, the opacity is given by

τγγ(ω1, z) =
∫

dr
∫ ∞

m2
e c4/ω1

dω2

π2
ω2

2
eω2/T − 1

σγγ(
ω1ω2

m2
e c4 ), (3.14.13)
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where the Boltzmann constant kB = 1. To simply Eq. (3.14.13), we set x =
ω1ω2
m2

e c4 ,

τγγ(ω1, z) =
∫

dr
(

m2
e c4

ω1

)3 ∫ ∞

1

dx
π2

x2

exp xm2
e c4

ω1T − 1
σγγ(x). (3.14.14)

In terms of CMB temperature and GRB-photons energy at the present time,

T = (z + 1)T0; ω1,2 = (z + 1)ω0
1,2, (3.14.15)

we obtain,

τγγ(ω
0
1, z) =

1
R0

∫ z

0

dz′

H(z′) (z + 1)3

(
m2

e c4

ω0
1

)3 ∫ ∞

1

dx
π2

x2

exp(x/θ)− 1
σγγ(x),

(3.14.16)
where

θ = x0(z + 1)2; x0 =
ω0

1T0

m2
e c4 , (3.14.17)

and x0 is the energy ω0
1 in unit of mec2(mec2/T0) = 1.15 · 1015eV. For the

purpose of numerical calculations, we rewrite the expression,

τγγ(x0, z) =
πr2

e
R0H0/c

(
T0

x0

)3 ∫ z

0

dz′

[ΩM(z′ + 1)3 + ΩΛ]1/2
1

(z′ + 1)3×

×
∫ ∞

1

dx
2π2

x2 fγγ(x)
exp(x/θ)− 1

=

=
23.8
R0h

(
1
x0

)3 ∫ z

0

dz′

[ΩM(z′ + 1)3 + ΩΛ]1/2
1

(z′ + 1)3×

×
∫ ∞

1

dx
2π2

x2 fγγ(x)
exp(x/θ)− 1

, (3.14.18)

where R0 = 1, present Hubble constant h = H0/100km/sec/Mpc and

fγγ(x) = (1− β̂2)
[
2β̂(β̂2 − 2) + (3− β̂4) ln

(1 + β̂

1− β̂

)]
, β̂ =

√
1− 1/x.

The τγγ(ω0
1, z) = 1 give the relationship ω0

1 = ω0
1(z) that separates the ab-

sorbed regime τγγ(ω0
1, z) > 1 and transparent regime τγγ(ω0

1, z) < 1 in the
ω0

1 − z plane.

The numerical result is shown in Fig. 3.4. It clearly shows the following
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properties:

1. for the redshift z smaller than a critical value zc ' 0.1 (z < zc), the CMB
photons are transparent τγγ(ω0

1, z) < 1 to GRB photons in any energy
bands, this indicates a minimal mean-free path of photons traveling in
CMB photons background;

2. for the redshift z larger than the value (z > zc), there are two branches
of solutions for τγγ(ω0

1, z) = 1, respectively corresponding to the dif-
ferent energy-dependence of the cross-section (3.14.2): the cross-section
increases with the center-mass-energy x = E2

γ/(mec2)2 from the energy-
threshold x = 1 to x ' 1.99, and decreases (3.14.6) from x ' 1.99 to
x → ∞. The turn point (z ' 0.1, ω0

1 ' 1.15 · 1015eV) from one solution
to another is determined by the maximal cross-section at x ' 1.99. Due
to these two solutions, CMB photons are transparent to GRB photons of
large and small energies, opaque to those GRB photons in an interme-
diate energy-range large for a given finite z-value;

3. CMB photons are transparent to very low-energy GRB photons ω0
1 <

1012eV, i.e., x0 < 10−3, due to their energies are below the energetic
threshold for the Breit-Wheeler process (3.14.1). In addition, CMB pho-
tons are transparent to very large-energy GRB photons ω0

1 > 1018eV,
i.e., x0 > 103, due to the cross-section of Breit-Wheeler process (3.14.1)
is very small for extremely high-energy photons. For very large z ∼ 103,
the Universe becomes completely opaque and photon distribution can-
not be described by the black body spectrum, we disregard this regime.

Due to the fact that there are other radiation backgrounds (3.14.7), the back-
ground of CMB photons gives the lowest bound of opacity, absorption limit,
to GRB photons with respect to the Breit-Wheeler process (3.14.1). Finally, we
point out that Fazio and Stecker (Fazio and Stecker, 1970; Stecker et al., 1977)
gave only asymptotic form of small-energy solution indicated in Fig. (3.4).

Cosmic absorption of ultra high energy particles

We summarize the limits on propagation of ultra high energy particles in the
Universe, set up by their interactions with cosmic background of photons and
neutrinos. By taking into account cosmic evolution of these backgrounds and
considering appropriate interactions we derive the mean free path for ultra
high energy photons, protons and neutrinos. For photons the relevant pro-
cesses are the Breit-Wheeler process as well as the double pair production
process. For protons the relevant reactions are the photopion production and
the Bethe-Heitler process. We discuss the interplay between the energy loss
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Figure 3.4.: This is a Log-Log plot for GRB photon energy x0 (in unit of
1.11 · 1015) vs redshift z. For z > zc ' 0.1, the line that bounds shadow
area indicates two solutions for the opacity τγγ = 1: (i) large-energy solu-
tion for ω0

1 > 1.15 · 1015eV; (ii) small-energy solution for ω0
1 < 1.15 · 1015eV,

which separate the optically thick regime (shadow area) τγγ(ω0
1, z) > 1 and

optically thin regime τγγ(ω0
1, z) < 1.
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length and mean free path for the Bethe-Heitler process. Neutrino opacity is
determined by its scattering off the cosmic background neutrino. We com-
pute for the first time the high energy neutrino horizon as a function of its
energy. For the details of this part, see R. Ruffini, G. Vereshchagin and S.-S.
Xue, “Cosmic absorption of ultra high energy particles”, Astrophysics and
Space Science, Volume 361, article id.82, 2016 11 pp.

In addition, we study the high energy photon interaction with cosmic mi-
crowave background (CMB) and calculate the optical depth due to Euler-
Heisenberg photon-photon scattering at cosmological redshift. According
to our results the photon-photon scattering is predominant with respect to
the Breit-Wheeler pair production at energies below 1 GeV. However, it is
relevant for sources of high energy photons at high redshift z > 100. We
also discuss implications of our results for two astrophysical observations of
gamma-ray bursts and blazars. Tizchang, Seddigheh; Batebi, Saghar; Mo-
hammadi, Rohollah; Ruffini, Remo; Vereshchagin, Gregory; S.-S. Xue, the
conference proceeding of MG14, Rome, Italy 2015.

The work in progress with two Iran students Seddigheh Tizchang and
Saghar Batebi on the opacity of high-energy photons interacting with cos-
mic background photons (CMB) via Euler-Heisenberg photon-photon inter-
action.
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4. Publications (before 2005)

1. R. Ruffini and J. A. Wheeler, “Introducing the black hole ”, Phys. Today,
January (1971) 178.

This article proved to be popular and was written with the intention of com-
municating some of the major processes made in understanding the final con-
figurations of collapsed stars to the largest possible audience. In this article,
the authors summarized the results of their students’ work with particular
emphasis on the work of D. Christodoulou (graduate student of R. Ruffini’s at
that time) together with some of their most significant new results. Moreover,
it was emphasized that of all the procedures for identifying a collapsed object
in space at a great distance, the most promising consisted of analyzing a close
binary system in which one member is a normal star and the other a black hole.
The X–ray emission associated with the transfer of material from the normal
star to the collapsed object would then be of greatest importance in determin-
ing the properties of the collapsed object. This article has been reprinted many
times and has been translated into many languages (Japanese, Russian, and
Greek, among others). It has created much interest in the final configuration of
stars after the endpoint of their thermonuclear evolution. The analysis of the
possible processes leading to the formation of a black hole, via either a one–
step process of a multistep process, was also presented for the first time in this
article.

2. D. Christodoulou and R. Ruffini, “Reversible Transformations of a Charged
Black Hole”, Phys. Rev. D4 (1971) 3552.

A formula is derived for the mass of a black hole as a function of its ”irre-
ducible mass,” its angular momentum, and its charge. It is shown that 50%
of the mass of an extreme charged black hole can be converted into energy as
contrasted with 29% for an extreme rotating black hole.

3. T. Damour and R. Ruffini, “Quantum electrodynamical effects in Kerr-
Newman geometries”, Phys. Rev. Lett. 35 (1975) 463.

Following the classical approach of Sauter, of Heisenberg and Euler and of
Schwinger the process of vacuum polarization in the field of a ”bare” Kerr-
Newman geometry is studied. The value of the critical strength of the elec-
tromagnetic fields is given together with an analysis of the feedback of the
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discharge on the geometry. The relevance of this analysis for current astro-
physical observations is mentioned.

4. J. Ferreirinho, R. Ruffini and L. Stella, “On the relativistic Thomas-Fermi
model”, Phys. Lett. B 91, (1980) 314. The relativistic generalization of the
Thomas-Fermi model of the atom is derived. It approaches the usual nonrela-
tivistic equation in the limit Z � Zcrit, where Z is the total number of electrons
of the atom and Zcrit = (3π/4)1/2α−3/2 and α is the fine structure constant. The
new equation leads to the breakdown of scaling laws and to the appearance of
a critical charge, purely as a consequence of relativistic effects. These results
are compared and contrasted with those corresponding to N self-gravitating
degenerate relativistic fermions, which for N ≈ Ncrit = (3π/4)1/2(m/mp)3

give rise to the concept of a critical mass against gravitational collapse. Here
m is the mass of the fermion and mp = (h̄c/G)1/2 is the Planck mass.

5. R. Ruffini and L. Stella,“Some comments on the relativistic Thomas-
Fermi model and the Vallarta-Rosen equation”, Phys. Lett. B 102 (1981)
442. Some basic differences between the screening of the nuclear charge due
to a relativistic cloud of electrons in a neutral atom and the screening due to
vacuum polarization effects induced by a superheavy ion are discussed.

6. G. Preparata, R. Ruffini and S.-S. Xue, “The dyadosphere of black holes
and gamma-ray bursts”, Astron. Astroph. Lett. 337 (1998) L3.

The ”dyadosphere” has been defined (Ruffini, Preparata et al.) as the region
outside the horizon of a black hole endowed with an electromagnetic field (ab-
breviated to EMBH for ”electromagnetic black hole”) where the electromag-
netic field exceeds the critical value, predicted by Heisenberg & Euler for e+e−

pair production. In a very short time (∼ O(h̄/(mc2))), a very large number of
pairs is created there. We here give limits on the EMBH parameters leading to
a Dyadosphere for 10M� and 105M� EMBH’s, and give as well the pair densi-
ties as functions of the radial coordinate. We here assume that the pairs reach
thermodynamic equilibrium with a photon gas and estimate the average en-
ergy per pair as a function of the EMBH mass. These data give the initial con-
ditions for the analysis of an enormous pair-electromagnetic-pulse or ”P.E.M.
pulse” which naturally leads to relativistic expansion. Basic energy require-
ments for gamma ray bursts (GRB), including GRB971214 recently observed at
z = 3.4, can be accounted for by processes occurring in the dyadosphere. In
this letter we do not address the problem of forming either the EMBH or the
dyadosphere: we establish some inequalities which must be satisfied during
their formation process.

7. R. Ruffini, “On the dyadosphere of black holes”, at the XLIXth Yamada
Conference on “Black Holes and High-Energy Astrophysics”, H. Sato
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Ed., Univ. Acad. Press, Tokyo, 1998.

The ”dyadosphere” (from the Greek word ”duas-duados” for pairs) is here
defined as the region outside the horizon of a black hole endowed with an
electromagnetic field (abbreviated to EMBH for ”electromagnetic black hole”)
where the electromagnetic field exceeds the critical value, predicted by Heisen-
berg and Euler for electron-positron pair production. In a very short time, a
very large number of pairs is created there. I give limits on the EMBH pa-
rameters leading to a Dyadosphere for 10 solar mass and 100000 solar mass
EMBH’s, and give as well the pair densities as functions of the radial coordi-
nate. These data give the initial conditions for the analysis of an enormous
pair-electromagnetic-pulse or ”PEM-pulse” which naturally leads to relativis-
tic expansion. Basic energy requirements for gamma ray bursts (GRB), includ-
ing GRB971214 recently observed at z=3.4, can be accounted for by processes
occurring in the dyadosphere.

8. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On the Pair
Electromagnetic Pulse of a Black Hole with Electromagnetic Structure”,
Astron. Astroph. 350 (1999) 334.

Starting from a nonequilibrium configuration we analyse the essential role of
the direct and the inverse binary and triple interactions in reaching an asymp-
totic thermal equilibrium in a homogeneous isotropic electron-positron-photon
plasma. We focus on energies in the range 0.1–10 MeV. We numerically inte-
grate the integro-partial differential relativistic Boltzmann equation with the
exact QED collisional integrals taking into account all binary and triple inter-
actions in the plasma. We show that first, when detailed balance is reached
for all binary interactions on a timescale tk . 10−14sec, photons and electron-
positron pairs establish kinetic equilibrium. Successively, when triple inter-
actions fulfill the detailed balance on a timescale teq . 10−12sec, the plasma
reaches thermal equilibrium. It is shown that neglecting the inverse triple in-
teractions prevents reaching thermal equilibrium. Our results obtained in the
theoretical physics domain also find application in astrophysics and cosmol-
ogy.

9. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On Evolution of
the Pair-Electromagnetic Pulse of a Charge Black Hole ”, Astron. Astro-
phys. Suppl. Ser. 138 (1999) 511.

Using hydrodynamic computer codes, we study the possible patterns of rel-
ativistic expansion of an enormous pair-electromagnetic-pulse (P.E.M. pulse);
a hot, high density plasma composed of photons, electron-positron pairs and
baryons deposited near a charged black hole (EMBH). On the bases of baryon-
loading and energy conservation, we study the bulk Lorentz factor of expan-
sion of the P.E.M. pulse by both numerical and analytical methods.
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10. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On the pair-
electromagnetic pulse from an electromagnetic Black Hole surrounded
by a Baryonic Remnant ”, Astron. Astrophys 359, 855-864 (2000).

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with
a shell of baryonic matter surrounding a Black Hole with electromagnetic struc-
ture (EMBH) is analyzed for selected values of the baryonic mass at selected
distances well outside the dyadosphere of an EMBH. The dyadosphere, the
region in which a super critical field exists for the creation of electron-positron
pairs, is here considered in the special case of a Reissner-Nordstrom geometry.
The interaction of the PEM pulse with the baryonic matter is described us-
ing a simplified model of a slab of constant thickness in the laboratory frame
(constant-thickness approximation) as well as performing the integration of
the general relativistic hydrodynamical equations. The validation of the constant-
thickness approximation, already presented in a previous paper Ruffini, et
al.(1999) for a PEM pulse in vacuum, is here generalized to the presence of
baryonic matter. It is found that for a baryonic shell of mass-energy less than
1% of the total energy of the dyadosphere, the constant-thickness approxima-
tion is in excellent agreement with full general relativistic computations. The
approximation breaks down for larger values of the baryonic shell mass, how-
ever such cases are of less interest for observed Gamma Ray Bursts (GRBs). On
the basis of numerical computations of the slab model for PEM pulses, we de-
scribe (i) the properties of relativistic evolution of a PEM pulse colliding with
a baryonic shell; (ii) the details of the expected emission energy and observed
temperature of the associated GRBs for a given value of the EMBH mass; 103

solar masses, and for baryonic mass-energies in the range 10−8 to 10−2 the total
energy of the dyadosphere.

11. G. Preparata, R. Ruffini and S.-S. Xue,“The role of the screen factor in
GRBs ”, Il Nuovo Cimento B115 (2000) 915.

We derive the screen factor for the radiation flux from an optically thick plasma
of electron-positron pairs and photons, created by vacuum polarization pro-
cess around a black hole endowed with electromagnetic structure.

12. C. L. Bianco, R. Ruffini and S.-S. Xue, “The elementary spike produced
by a pure e+e− pair-electromagnetic pulse from a Black Hole: The PEM
Pulse ”, Astron. Astrophys. 368 (2001) 377.

In the framework of the model that uses black holes endowed with electro-
magnetic structure (EMBH) as the energy source, we study how an elemen-
tary spike appears to the detectors. We consider the simplest possible case of a
pulse produced by a pure e+e− pair-electro-magnetic plasma, the PEM pulse,
in the absence of any baryonic matter. The resulting time profiles show a Fast-
Rise-Exponential-Decay shape, followed by a power-law tail. This is obtained
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without any special fitting procedure, but only by fixing the energetics of the
process taking place in a given EMBH of selected mass, varying in the range
from 10 to 103 M� and considering the relativistic effects to be expected in an
electron-positron plasma gradually reaching transparency. Special attention is
given to the contributions from all regimes with Lorentz γ factor varying from
γ = 1 to γ = 104 in a few hundreds of the PEM pulse travel time. Although the
main goal of this paper is to obtain the elementary spike intensity as a function
of the arrival time, and its observed duration, some qualitative considerations
are also presented regarding the expected spectrum and on its departure from
the thermal one. The results of this paper will be comparable, when data will
become available, with a subfamily of particularly short GRBs not followed by
any afterglow. They can also be propedeutical to the study of longer bursts in
presence of baryonic matter currently observed in GRBs.

13. R. Ruffini and L. Vitagliano, “Irreducible mass and energetics of an elec-
tromagnetic black hole ”, Phys. Lett. B545 (2002) 233.

The mass-energy formula for a black hole endowed with electromagnetic struc-
ture (EMBH) is clarified for the nonrotating case. The irreducible mass Mirr is
found to be independent of the electromagnetic field and explicitly expressable
as a function of the rest mass, the gravitational energy and the kinetic energy of
the collapsing matter at the horizon. The electromagnetic energy is distributed
throughout the entire region extending from the horizon of the EMBH to in-
finity. We discuss two conceptually different mechanisms of energy extraction
occurring respectively in an EMBH with electromagnetic fields smaller and
larger than the critical field for vacuum polarization. For a subcritical EMBH
the energy extraction mechanism involves a sequence of discrete elementary
processes implying the decay of a particle into two oppositely charged parti-
cles. For a supercritical EMBH an alternative mechanism is at work involving
an electron-positron plasma created by vacuum polarization. The energetics of
these mechanisms as well as the definition of the spatial regions in which thay
can occur are given. The physical implementations of these ideas are outlined
for ultrahigh energy cosmic rays UHECR) and gamma ray bursts (GRBs).

14. C. Cherubini, R. Ruffini and L. Vitagliano, “On the electromagnetic field
of a charged collapsing spherical shell in general relativity ”, Phys. Lett. B545
(2002) 226.

A new exact solution of the Einstein-Maxwell equations for the gravitational
collapse of a shell of matter in an already formed black hole is given. Both
the shell and the black hole are endowed with electromagnetic structure and
are assumed spherically symmetric. Implications for current research are out-
lined.
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15. R. Ruffini, L. Vitagliano and S.-S. Xue, “On Plasma Oscillations in Strong
Electric Fields ”, Phys. Lett. B559 (2003) 12.

We describe the creation and evolution of electron-positron pairs in a strong
electric field as well as the pairs annihilation into photons. The formalism
is based on generalized Vlasov equations, which are numerically integrated.
We recover previous results about the oscillations of the charges, discuss the
electric field screening and the relaxation of the system to a thermal equilib-
rium configuration. The timescale of the thermalization is estimated to be
∼ 103 − 104h̄/mec2.

16. R. Ruffini, L. Vitagliano and S.-S. Xue, “Electron-positron-photon plasma
around a collapsing star ”, (invited talk) in Proc. of the 28th Joint ICFA
Conference on Quantum Aspects of Beam Physics and Other Critical
Issues of Beams in Physics and Astrophysics, January 7–11, 2003, Hi-
roshima University, Higashi–Hiroshima, Japan, Pisin Chen Ed., World
Scientific, Singapore.

We describe electron-positron pairs creation around an electrically charged
star core collapsing to an electromagnetic black hole (EMBH), as well as pairs
annihilation into photons. We use the kinetic Vlasov equation formalism for
the pairs and photons and show that a regime of plasma oscillations is estab-
lished around the core. As a byproduct of our analysis we can provide an
estimate for the thermalization time scale.

17. G. Preparata, R. Ruffini and S.-S. Xue, “On the Dyadosphere of Black
Hole”, J. Korean Phys.Soc. 42 (2003) S99-S104 (astro-ph/0204080).

Basic energy requirements of Gamma Ray Burst(GRB) sources can be easily
accounted for by a pair creation process occurring in the ”Dyadosphere” of
a Black Hole endowed with an electromagnetic field (abbreviated to EMBH
for ”electromagnetic Black Hole”). This includes the recent observations of
GRB971214 by Kulkarni et al. The ”Dyadosphere” is defined as the region
outside the horizon of an EMBH where the electromagnetic field exceeds the
critical value for e+e− pair production. In a very short time ∼ O(h̄mc2), very
large numbers of pairs are created there. Further evolution then leads nat-
urally to a relativistically expanding pair-electromagnetic-pulse (PEM-pulse).
Specific examples of Dyadosphere parameters are given for 10 and 105 solar
mass EMBH’s. This process does occur for EMBH with charge-to-mass ratio
larger than 2.210−5 and strictly smaller than one. From a fundamental point of
view, this process represents the first mechanism proved capable of extracting
large amounts of energy from a Black Hole with an extremely high efficiency
(close to 100%).
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18. R. Ruffini and L. Vitagliano, “Energy Extraction From Gravitational Col-
lapse to Static Black Holes ”, Int. J. Mod. Phys. D12 (2003) 121.

The mass–energy formula of black holes implies that up to 50% of the energy
can be extracted from a static black hole. Such a result is reexamined using the
recently established analytic formulas for the collapse of a shell and expression
for the irreducible mass of a static black hole. It is shown that the efficiency of
energy extraction process during the formation of the black hole is linked in
an essential way to the gravitational binding energy, the formation of the hori-
zon and the reduction of the kinetic energy of implosion. Here a maximum
efficiency of 50% in the extraction of the mass energy is shown to be generally
attainable in the collapse of a spherically symmetric shell: surprisingly this re-
sult holds as well in the two limiting cases of the Schwarzschild and extreme
Reissner-Nordström space-times. Moreover, the analytic expression recently
found for the implosion of a spherical shell onto an already formed black hole
leads to a new exact analytic expression for the energy extraction which re-
sults in an efficiency strictly less than 100% for any physical implementable
process. There appears to be no incompatibility between General Relativity
and Thermodynamics at this classical level.
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1. R. Ruffini, F. Fraschetti, L. Vitagliano and S.-S. Xue,“Observational sig-
natures of an electromagnetic overcritical gravitational collapse ”, Int.
Journ. Mod. Phys. D14 (2005) 131.

We present theoretical predictions for the spectral, temporal and intensity sig-
natures of the electromagnetic radiation emitted during the process of the
gravitational collapse of a stellar core to a black hole, during which electro-
magnetic field strengths rise over the critical value for e+e− pair creation. The
last phases of this gravitational collapse are studied, leading to the formation
of a black hole with a subcritical electromagnetic field, likely with zero charge,
and an outgoing pulse of initially optically thick e+e−-photon plasma. Such
a pulse reaches transparency at Lorentz gamma factors of 102–104. We find a
clear signature in the outgoing electromagnetic signal, drifting from a soft to a
hard spectrum, on very precise time-scales and with a very specific intensity
modulation. The relevance of these theoretical results for the understanding
of short gamma-ray bursts is outlined.

2. Federico Fraschetti, Remo Ruffini, Luca Vitagliano, and She-Sheng Xue,
“Theoretical predictions of spectral evolution of short GRBs ”, in Venice
(Italy), June 5-9, 2006, IL NUOVO CIMENTO Vol. 121 (2006) 1477.

We present the properties of spectrum of radiation emitted during gravita-
tional collapse in which electromagnetic field strengths rise over the critical
value for e+e− pair creation. A drift from soft to a hard energy and a high en-
ergy cut off have been found; a comparison with a pure black body spectrum
is outlined.

3. R. Ruffini and S.-S. Xue, “Effective Lagrangian of QED”, Journal of the
Korean physical society, Vol. 49, No. 2, august 2006, pp. 715.

From the Euler-Heisenberg formula we calculate the exact real part of the one-
loop effective Lagrangian of Quantum Electrodynamics in a constant electro-
magnetic field, and determine its strong-field limit.

4. C. Cherubini, A. Geralico, J. Rueda and R. Ruffini, “On the “Dyado-
torus” of Kerr-Newman space time ”, Phys. Rev. D 79 124002 (2009).

We present the geometrical properties of the region where vacuum polariza-
tion precess occur int he Kerr-Newman space time. We find that the shape of
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the region can be ellipsoid-like or torus-like depending on the charge of the
black hole.

5. H. Kleinert, R. Ruffini and S.-S. Xue, “Electron-positron pair-production
in nonuniform electric fields”, Phys. Rev. D 78 (2008) 025011.

Treating the production of electron and positron pairs in vacuum as quantum
tunneling, at the semiclassical level O(h̄), we derive a general expression, both
exponential and pre-exponential factors, of the pair-production rate in nonuni-
form electric fields varying only in one direction. In particularly we discuss the
expression for the case when produced electrons (or positrons) fill into bound
states of electric potentials with discrete spectra of energy-level crossings. This
expression is applied to the examples of the confined field E(z) 6= 0, |z| . `,
half-confined field E(z) 6= 0, z & 0, and linear increasing field E(z) ∼ z, as well
as the Coulomb field E(r) = eZ/r2 for a nucleus with finite size rn and large
Z � 1.

6. R. Ruffini, G. V. Vereshchagin and S.-S. Xue, “Vacuum polarization
and plasma oscillations”, Phys. Lett. A 371(2007) 399 ( arXiv:0706.4363).

We evidence the existence of plasma oscillations of electrons-positron pairs
created by the vacuum polarization in an uniform electric field with E < Ec.
Our general treatment, encompassing also the traditional, well studied case of
E > Ec, shows the existence in both cases of a maximum Lorentz factor ac-
quired by electrons and positrons and allows determination of the a maximal
length of oscillation. We quantitatively estimate how plasma oscillations re-
duce the rate of pair creation and increase the time scale of the pair production.
These results are particularly relevant in view of the experimental progress in
approaching the field strengths E < Ec.

7. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
a nonequilibrium electron-positron-photon plasma ”, Phys.Rev.Lett. 99
(2007) 125003 .

Starting from a nonequilibrium configuration we analyse the essential role of
the direct and the inverse binary and triple interactions in reaching an asymp-
totic thermal equilibrium in a homogeneous isotropic electron-positron-photon
plasma. We focus on energies in the range 0.1–10 MeV. We numerically inte-
grate the integro-partial differential relativistic Boltzmann equation with the
exact QED collisional integrals taking into account all binary and triple inter-
actions in the plasma. We show that first, when detailed balance is reached
for all binary interactions on a timescale tk . 10−14sec, photons and electron-
positron pairs establish kinetic equilibrium. Successively, when triple inter-
actions fulfill the detailed balance on a timescale teq . 10−12sec, the plasma
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reaches thermal equilibrium. It is shown that neglecting the inverse triple in-
teractions prevents reaching thermal equilibrium. Our results obtained in the
theoretical physics domain also find application in astrophysics and cosmol-
ogy.

8. S.-S. Xue, “Gravitational Instanton and Cosmological term ”, Int. Journ.
Mod. Phys. A Vol. 24, Nos. 20 & 21 (2009) 38653891.

Quantum fluctuation of unstable modes about gravitational instantons causes
the instability of flat space at finite temperature, leading to the spontaneous
process of nucleating quantum black holes. The energy-density of quantum
black holes, depending on the initial temperature, gives the cosmological term,
which naturally accounts for the inflationary phase of the early universe. The
reheating phase is attributed to the Hawking radiation and annihilation of
these quantum black holes. Then, the radiation energy-density dominates over
the energy-density of quantum black holes, the universe started the standard
cosmology phase. In this phase the energy-density of quantum black holes
depends on the reheating temperature. It asymptotically approaches to the
cosmological constant in matter domination phase, consistently with current
observations.

9. R. Ruffini, M. Rotondo and S.-S. Xue, “Electrodynamics for Nuclear
Matter in Bulk ”, Int. Journ. Mod. Phys. D Vol. 16, No. 1 (2007) 1-9.

A general approach to analyze the electrodynamics of nuclear matter in bulk
is presented using the relativistic Thomas-Fermi equation generalizing to the
case of N ' (mPlanck/mn)3 nucleons of mass mn the approach well tested in
very heavy nuclei (Z ' 106). Particular attention is given to implement the
condition of charge neutrality globally on the entire configuration, versus the
one usually adopted on a microscopic scale. As the limit N ' (mPlanck/mn)3

is approached the penetration of electrons inside the core increases and a rel-
atively small tail of electrons persists leading to a significant electron density
outside the core. Within a region of 102 electron Compton wavelength near the
core surface electric fields close to the critical value for pair creation by vacuum
polarization effect develop. These results can have important consequences on
the understanding of physical process in neutron stars structures as well as on
the initial conditions leading to the process of gravitational collapse to a black
hole.

10. V. Popov, M. Rotondo, R. Ruffini and S.-S. Xue, “Analytic treatment of
the electrodynamics for nuclear matter in bulk”, Int. Journal of Modern
Physics D 20 (2011) 1995.

Using the relativistic Thomas-Fermi equation, we present an analytic treat-
ment of the electrodynamic properties of nuclear matter in bulk. Following
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the works of Migdal and Popov we generalize to the case of a massive core
with the mass number A ∼ 1057 the analytic approach well tested in very
heavy nuclei with A ∼ 106. Attention is given to implement the condition of
charge neutrality globally on the entire configuration, versus the one usually
adopted on a microscopic scale. It is confirmed that also in this limit A, an
electric field develops near the core surface of magnitude close to the critical
value of vacuum polarization. It is shown that such a configuration is ener-
getically favorable with respect to the one which obeys local charge neutrality.
These results can have important consequences on the understanding of the
physical process in neutron stars as well as on the initial conditions leading to
the process of gravitational collapse to a black hole.

11. R. Ruffini, M. Rotondo and S.-S. Xue, “Neutral nuclear core vs super
charged one ”, in Proceedings of the Eleventh Marcel Grossmann Meet-
ing, R. Jantzen, H. Kleinert, R. Ruffini (eds.), (World Scientific, Singa-
pore, 2008).

Based on the Thomas-Fermi approach, we describe and distinguish the elec-
tron distributions around extended nuclear cores: (i) in the case that cores are
neutral for electrons bound by protons inside cores and proton and electron
numbers are the same; (ii) in the case that super charged cores are bare, elec-
trons (positrons) produced by vacuum polarization are bound by (fly into)
cores (infinity).

12. R. Ruffini and S.-S. Xue, “Dyadosphere formed in gravitational collapse
”, AIP Conf. Proc. 1059 (2008) 72.

We first recall the concept of Dyadosphere (electron-positron-photon plasma
around a formed black holes) and its motivation, and recall on (i) the Dirac pro-
cess: annihilation of electron-positron pairs to photons; (ii) the Breit-Wheeler
process: production of electron-positron pairs by photons with the energy
larger than electron-positron mass threshold; the Sauter-Euler-Heisenberg ef-
fective Lagrangian and rate for the process of electron-positron production in
a constant electric field. We present a general formula for the pair-production
rate in the semi-classical treatment of quantum mechanical tunneling. We also
present in the Quantum Electro-Dynamics framework, the calculations of the
Schwinger rate and effective Lagrangian for constant electromagnetic fields.
We give a review on the electron-positron plasma oscillation in constant elec-
tric fields, and its interaction with photons leading to energy and number
equipartition of photons, electrons and positrons. The possibility of creating an
overcritical field in astrophysical condition is pointed out. We present the dis-
cussions and calculations on (i) energy extraction from gravitational collapse;
(ii) the formation of Dyadosphere in gravitational collapsing process, and (iii)
its hydrodynamical expansion in Reissner Nordström geometry. We calculate
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the spectrum and flux of photon radiation at the point of transparency, and
make predictions for short Gamma-Ray Bursts.

13. Jorge A. Rueda, Remo Ruffini, and S.-S. Xue, “On the electrostatic struc-
ture of neutron stars”, AIP Conference Proceedings Volume 1205, page
143 (2009), International Conference in Honor of Ya.B. Zeldovich’s 95th
Anniversary, Minsk, (Belarus), 20-23 April 2009.

We consider neutron stars composed by, (1) a core of degenerate neutrons, pro-
tons, and electrons above nuclear density; (2) an inner crust of nuclei in a gas
of neutrons and electrons; and (3) an outer crust of nuclei in a gas of electrons.
We use for the strong interaction model for the baryonic matter in the core an
equation of state based on the phenomenological Weizsacker mass formula,
and to determine the properties of the inner and the outer crust below nuclear
saturation density we adopt the well–known equation of state of Baym–Bethe–
Pethick. The integration of the Einstein–Maxwell equations is carried out un-
der the constraints of β–equilibrium and global charge neutrality. We obtain
baryon densities that sharply go to zero at nuclear density and electron den-
sities matching smoothly the electron component of the crust. We show that
a family of equilibrium configurations exists fulfilling overall neutrality and
characterized by a non–trivial electrodynamical structure at the interface be-
tween the core and the crust. We find that the electric field is overcritical and
that the thickness of the transition surface–shell separating core and crust is of
the order of the electron Compton wavelength.

14. Jorge A. Rueda H., B. Patricelli, M. Rotondo, R. Ruffini, and S. S. Xue,
“The Extended Nuclear Matter Model with Smooth Transition Surface”,
to be published in the Proceedings of The 3rd Stueckelberg Workshop
on Relativistic Field Theories, Pescara-Italy (2008).

The existence of electric fields close to their critical value Ec = m2
e c3/(eh̄) has

been proved for massive cores of 107 up to 1057 nucleons using a proton dis-
tribution of constant density and a sharp step function at its boundary. We
explore the modifications of this effect by considering a smoother density pro-
file with a proton distribution fulfilling a Woods-Saxon dependence. The oc-
currence of a critical field has been confirmed. We discuss how the location of
the maximum of the electric field as well as its magnitude is modified by the
smoother distribution.

15. B. Patricelli, M. Rotondo and R. Ruffini, “On the Charge to Mass Ratio
of Neutron Cores and Heavy Nuclei”, AIP Conference Proceedings, Vol.
966 (2008), pp. 143-146.

We determine theoretically the relation between the total number of protons
Np and the mass number A (the charge to mass ratio) of nuclei and neutron
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cores with the model recently proposed by Ruffini et al. (2007) and we compare
it with other Np versus A relations: the empirical one, related to the Periodic
Table, and the semi-empirical relation, obtained by minimizing the Weizsäcker
mass formula. We find that there is a very good agreement between all the
relations for values of A typical of nuclei, with differences of the order of per
cent. Our relation and the semi-empirical one are in agreement up to A ≈
104 for higher values, we find that the two relations differ. We interpret the
different behavior of our theoretical relation as a result of the penetration of
electrons (initially confined in an external shell) inside the core, that becomes
more and more important by increasing A; these effects are not taken into
account in the semi-empirical mass-formula.

16. M. Rotondo, R. Ruffini and S.-S Xue, “On the Electrodynamical proper-
ties of Nuclear matter in bulk”, AIP Conference Proceedings, Vol. 966
(2008), pp. 147-152.

We analyze the properties of solutions of the relativistic Thomas-Fermi equa-
tion for globally neutral cores with radius of the order of R ≈ 10 Km, at
constant densities around the nuclear density. By using numerical tecniques
as well as well tested analytic procedures developed in the study of heavy
ions, we confirm the existence of an electric field close to the critical value
Ec = m2

e c3/eh̄ in a shell ∆R ≈ 104h̄/mπc near the core surface. For a core of
≈ 10 Km the difference in binding energy reaches 1049 ergs. These results can
be of interest for the understanding of very heavy nuclei as well as physics of
neutron stars, their formation processes and further gravitational collapse to a
black hole.

17. B. Patricelli, M. Rotondo, J. A. Rueda H. and R. Ruffini, “The Electro-
dynamics of the Core and the Crust components in Neutron Stars”, AIP
Conference Proceedings, Vol. 1059 (2008), pp. 68-71.

We study the possibility of having a strong electric field (E) in Neutron Stars.
We consider a system composed by a core of degenerate relativistic electrons,
protons and neutrons, surrounded by an oppositely charged leptonic compo-
nent and show that at the core surface it is possible to have values of E of the
order of the critical value for electron-positron pair creation, depending on the
mass density of the system. We also describe Neutron Stars in general relativ-
ity, considering a system composed by the core and an additional component:
a crust of white dwarf - like material. We study the characteristics of the crust,
in particular we calculate its mass Mcrust. We propose that, when the mass
density of the star increases, the core undergoes the process of gravitational
collapse to a black hole, leaving the crust as a remnant; we compare Mcrust

with the mass of the baryonic remnant considered in the fireshell model of
GRBs and find that their values are compatible.
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18. Iman Motie and She-Sheng Xue, “High energy neutrino oscillation at
the presence of the Lorentz Invariance Violation ”, International Journal
of Modern Physics A Vol. 27, No. 19 (2012) 1250104.

Due to quantum gravity fluctuations at the Planck scale, the space-time mani-
fold is no longer continuous, but discretized. As a result the Lorentz symmetry
is broken at very high energies. In this article, we study the neutrino oscilla-
tion pattern due to the Lorentz Invariance Violation (LIV), and compare it with
the normal neutrino oscillation pattern due to neutrino masses. We find that
at very high energies, neutrino oscillation pattern is very different from the
normal one. This could provide an possibility to study the Lorentz Invariance
Violation by measuring the oscillation pattern of very high energy neutrinos
from a cosmological distance.

19. R. Ruffini, “The Role of Thomas-Fermi approach in Neutron Star Mat-
ter”, to be published in the Proceedings of the 9th International Confer-
ence “Path Integrals - New trends and perspectives”, Max Planck Insti-
tute for the Physics of Complex Systems, Dresden, Germany, Semptem-
ber 23 - 28 2007, World Scientific 207 - 218 (2008), eds. W. Janke and A.
Pelster

The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-
sented and discussed with special attention to solutions globally neutral and
not fulfilling the traditional condition of local charge neutrality. A new sta-
ble and energetically favorable configuration is found. This new solution can
be of relevance in understanding unsolved issues of the gravitational collapse
processes and their energetics.

20. S.-S. Xue, “The phase structure of Einstein-Cartan theory ”, Physics Let-
ters B665 54 (2008).

In the EinsteinCartan theory of torsion-free gravity coupling to massless fermions,
the four-fermion interaction is induced and its strength is a function of the
gravitational and gauge couplings, as well as the Immirzi parameter. We
study the dynamics of the four-fermion interaction to determine whether effec-
tive bilinear terms of massive fermion fields are generated. Calculating one-
particle-irreducible two point functions of fermion fields, we identify three
different phases and two critical points for phase transitions characterized by
the strength of four-fermion interaction: (1) chiral symmetric phase for mas-
sive fermions in strong coupling regime; (2) chiral symmetric broken phase
for massive fermions in intermediate coupling regime; (3) chiral symmetric
phase for massless fermions in weak coupling regime. We discuss the scaling-
invariant region for an effective theory of massive fermions coupled to torsion-
free gravity in the low-energy limit.
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21. S.-S. Xue, “Quantum Regge calculus of Einstein-Cartan theory and its
phase and critical point”, Physics Letters B682 (2009) 300.

We study the Quantum Regge Calculus of Einstein-Cartan theory to describe
quantum dynamics of Euclidean space-time discretized as a 4-simplices com-
plex. Tetrad field eµ(x) and spin-connection field ωµ(x) are assigned to each 1-
simplex. Applying the torsion-free Cartan structure equation to each 2-simplex,
we discuss parallel transports and construct a diffeomorphism and local gauge-
invariant Einstein-Cartan action. Invariant holonomies of tetrad and spin-
connection fields along large loops are also given. Quantization is defined by
a bounded partition function with the measure of SO(4)-group valued ωµ(x)
fields and Dirac-matrix valued eµ(x) fields over 4-simplices complex.

22. S.-S. Xue, “Quantum Regge calculus of Einstein-Cartan theory”, Physi-
cal Review D 82, 064039 (2010),

We then present detailed discussions and calculations of Quantum Regge cal-
culus of Einstein-Cartan theory. The Euclidean space-time is discretized by a
four-dimensional simplicial complex. We adopt basic tetrad and spin-connection
fields to describe the simplicial complex. By introducing diffeomorphism and
local Lorentz invariant holonomy fields, we construct a regularized Einstein-
Cartan theory for studying the quantum dynamics of the simplicial complex
and fermion fields. This regularized Einstein-Cartan action is shown to prop-
erly approach to its continuum counterpart in the continuum limit. Based on
the local Lorentz invariance, we derive the dynamical equations satisfied by
invariant holonomy fields. In the mean-field approximation, we show that
the averaged size of 4-simplex, the element of the simplicial complex, is larger
than the Planck length. This formulation provides a theoretical framework
for analytical calculations and numerical simulations to study the quantum
Einstein-Cartan theory.

23. S.-S. Xue, “The phase and critical point of quantum Einstein-Cartan
gravity ”, Physics Letters B711 (2012) 404.

By introducing diffeomorphism and local Lorentz gauge invariant holonomy
fields, we study the quantum Einstein-Cartan gravity in the framework of
Regge calculus. On the basis of strong coupling expansion, mean-field approx-
imation and dynamical equations satisfied by holonomy fields, we present in
this Letter calculations and discussions to show the phase structure of the
quantum Einstein-Cartan gravity, (i) the order phase: long-range condensa-
tions of holonomy fields in strong gauge couplings; (ii) the disorder phase:
short-range fluctuations of holonomy fields in weak gauge couplings. Accord-
ing to the competition of the activation energy of holonomy fields and their
entropy, we give a simple estimate of the possible ultra-violet critical point and
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correlation length for the second-order phase transition from the order phase
to disorder one. At this critical point, we discuss whether the continuum field
theory of quantum Einstein-Cartan gravity can be possibly approached when
the macroscopic correlation length of holonomy field condensations is much
larger than the Planck length.

24. R. Ruffini and S.-S. Xue, “Electron-positron pairs production in a macro-
scopic charged core”, Phys. Lett. B 696 (2011) 416.

Classical and semi-classical energy states of relativistic electrons bounded by a
massive and charged core with the charge-mass-radio Q/M and macroscopic
radius Rc are discussed. We show that the energies of semi-classical (bound)
states can be much smaller than the negative electron mass-energy (−mc2),
and energy-level crossing to negative energy continuum occurs. Electron-
positron pair production takes place by quantum tunneling, if these bound
states are not occupied. Electrons fill into these bound states and positrons go
to infinity. We explicitly calculate the rate of pair-production, and compare it
with the rates of electron-positron production by the Sauter-Euler-Heisenberg-
Schwinger in a constant electric field. In addition, the pair-production rate for
the electro-gravitational balance ratio Q/M = 10−19 is much larger than the
pair-production rate due to the Hawking processes.

25. W.-B. Han, R. Ruffini and S.-S. Xue, “Electron-positron pair oscillation
in spatially inhomogeneous electric fields and radiation ”, Physics Let-
ters B, Vol. 691 (2010), pp. 99-104.

It is known that strong electric fields produce electron and positron pairs from
the vacuum, and due to the back-reaction these pairs oscillate back and forth
coherently with the alternating electric fields in time. We study this phe-
nomenon in spatially inhomogeneous and bound electric fields by integrating
the equations of energy-momentum and particle-number conservations and
Maxwell equations. The space and time evolutions of the pair-induced electric
field, electric charge- and current-densities are calculated. The results show
non-vanishing electric charge-density and the propagation of pair-induced elec-
tric fields, that are different from the case of homogeneous and unbound elec-
tric fields. The space and time variations of pair-induced electric charges and
currents emit an electromagnetic radiation. We obtain the narrow spectrum
and intensity of this radiation, whose peak ωpeak locates in the region around
4 keV for electric field strength ∼ Ec. We discuss their relevances to both the
laboratory experiments for electron and positron pair-productions and the as-
trophysical observations of compact stars with an electromagnetic structure.

26. A. Benedetti, W.-B. Han, R. Ruffini, G. V. Vereshchagin, “On the fre-
quency of oscillations in the pair plasma generated by a strong electric
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field ”, Phys. Lett. B698:75-79,2011.

We study the frequency of the plasma oscillations of electron-positron pairs
created by the vacuum polarization in an uniform electric field with strength
E in the range 0.2Ec < E < 10Ec. Following the approach adopted in [1] we
work out one second order ordinary differential equation for a variable re-
lated to the velocity from which we can recover the classical plasma oscillation
equation when E→ 0. Thereby, we focus our attention on its evolution in time
studying how this oscillation frequency approaches the plasma frequency. The
time-scale needed to approach to the plasma frequency and the power spec-
trum of these oscillations are computed. The characteristic frequency of the
power spectrum is determined uniquely from the initial value of the electric
field strength. The effects of plasma degeneracy and pair annihilation are dis-
cussed.

27. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “The self-consistent
general relativistic solution for a system of degenerate neutrons, pro-
tons and electrons in beta-equilibrium ”, Physics Letters B, Volume 701,
Issue 5, p. 667-671 (2011).

We present the self-consistent treatment of the simplest, nontrivial, self-gravitating
system of degenerate neutrons, protons and electrons in β-equilibrium within
relativistic quantum statistics and the Einstein-Maxwell equations. The impos-
sibility of imposing the condition of local charge neutrality on such systems is
proved, consequently overcoming the traditional Tolman-Oppenheimer-Volkoff
treatment. We emphasize the crucial role of imposing the constancy of the
generalized Fermi energies. A new approach based on the coupled system
of the general relativistic Thomas-Fermi-Einstein-Maxwell equations is pre-
sented and solved. We obtain an explicit solution fulfilling global and not local
charge neutrality by solving a sophisticated eigenvalue problem of the general
relativistic Thomas-Fermi equation. The value of the Coulomb potential at the
center of the configuration is eV(0) ' mπc2 and the system is intrinsically
stable against Coulomb repulsion in the proton component. This approach is
necessary, but not sufficient, when strong interactions are introduced.

28. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “On Compressed
Nuclear Matter: from Nuclei to Neutron Stars ”, International Journal
of Modern Physics D, Volume 20, Issue 10, pp. 1789-1796 (2011).

We address the description of neutron-proton-electron degenerate matter in
beta equilibrium subjected to compression both in the case of confined nucle-
ons into a nucleus as well as in the case of deconfined nucleons. We follow a
step-by-step generalization of the classical Thomas-Fermi model to special and
general relativistic regimes, which leads to a unified treatment of beta equi-
librated neutron-proton-electron degenerate matter applicable from the case
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of nuclei all the way up to the case of white-dwarfs and neutron stars. New
gravito-electrodynamical effects, missed in the traditional approach for the de-
scription of neutron star configurations, are found as a consequence of the new
set of general relativistic equilibrium equations.

29. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “The relativistic Feynman-
Metropolis-Teller theory for white-dwarfs in general relativity ”, Physi-
cal Review D, vol. 84, Issue 8, 084007 (2011).

The recent formulation of the relativistic Thomas-Fermi model within the Feynman-
Metropolis-Teller theory for compressed atoms is applied to the study of gen-
eral relativistic white dwarf equilibrium configurations. The equation of state,
which takes into account the β-equilibrium, the nuclear and the Coulomb in-
teractions between the nuclei and the surrounding electrons, is obtained as a
function of the compression by considering each atom constrained in a Wigner-
Seitz cell. The contribution of quantum statistics, weak, nuclear, and electro-
magnetic interactions is obtained by the determination of the chemical po-
tential of the Wigner-Seitz cell. The further contribution of the general rela-
tivistic equilibrium of white dwarf matter is expressed by the simple formula√

g00µws= constant, which links the chemical potential of the Wigner-Seitz cell
µws with the general relativistic gravitational potential g00 at each point of the
configuration. The configuration outside each Wigner-Seitz cell is strictly neu-
tral and therefore no global electric field is necessary to warranty the equi-
librium of the white dwarf. These equations modify the ones used by Chan-
drasekhar by taking into due account the Coulomb interaction between the nu-
clei and the electrons as well as inverse β-decay. They also generalize the work
of Salpeter by considering a unified self-consistent approach to the Coulomb
interaction in each Wigner-Seitz cell. The consequences on the numerical value
of the Chandrasekhar-Landau mass limit as well as on the mass-radius rela-
tion of 4He, 12C, 16O and 56Fe white dwarfs are presented. All these effects
should be taken into account in processes requiring a precision knowledge of
the white dwarf parameters.

30. M. Rotondo, Jorge A. Rueda, R. Ruffini, S.-S. Xue, “On the relativistic
Thomas-Fermi treatment of compressed atoms and compressed nuclear
matter cores of stellar dimensions ”, Physics Review C83, 045805 (2011).

The Feynman, Metropolis and Teller treatment of compressed atoms is ex-
tended to the relativistic regimes. Each atomic configuration is confined by
a Wigner-Seitz cell and is characterized by a positive electron Fermi energy.
The non-relativistic treatment assumes a point-like nucleus and infinite val-
ues of the electron Fermi energy can be attained. In the relativistic treatment
there exists a limiting configuration, reached when the Wigner-Seitz cell radius
equals the radius of the nucleus, with a maximum value of the electron Fermi
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energy (EF
e )max, here expressed analytically in the ultra-relativistic approxima-

tion. The corrections given by the relativistic Thomas-Fermi-Dirac exchange
term are also evaluated and shown to be generally small and negligible in
the relativistic high density regime. The dependence of the relativistic elec-
tron Fermi energies by compression for selected nuclei are compared and con-
trasted to the non-relativistic ones and to the ones obtained in the uniform ap-
proximation. The relativistic Feynman, Metropolis, Teller approach here pre-
sented overcomes some difficulties in the Salpeter approximation generally
adopted for compressed matter in physics and astrophysics. The treatment
is then extrapolated to compressed nuclear matter cores of stellar dimensions
with A ' (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M�. A new family of equilibrium
configurations exists for selected values of the electron Fermi energy varying
in the range 0 < EF

e ≤ (EF
e )max. Such configurations fulfill global but not local

charge neutrality. They have electric fields on the core surface, increasing for
decreasing values of the electron Fermi energy reaching values much larger
than the critical value Ec = m2

e c3/(eh̄), for EF
e = 0. We compare and contrast

our results with the ones of Thomas-Fermi model in strange stars.

31. Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo;
Xue, She-Sheng, “Neutron star equilibrium configurations within a fully
relativistic theory with strong, weak, electromagnetic, and gravitational
interactions ”, Nuclear Physics A, Volume 883, p. 1-24, 2012.

We formulate the equations of equilibrium of neutron stars taking into ac-
count strong, weak, electromagnetic, and gravitational interactions within the
framework of general relativity. The nuclear interactions are described by
the exchange of the sigma, omega, and rho virtual mesons. The equilibrium
conditions are given by our recently developed theoretical framework based
on the Einstein-Maxwell-Thomas-Fermi equations along with the constancy
of the general relativistic Fermi energies of particles, the ”Klein potentials”,
throughout the configuration. The equations are solved numerically in the case
of zero temperatures and for selected parametrization of the nuclear models.
The solutions lead to a new structure of the star: a positively charged core at
supranuclear densities surrounded by an electronic distribution of thickness
∼ h̄/(mec) of opposite charge, as well as a neutral crust at lower densities.
Inside the core there is a Coulomb potential well of depth ∼ mπc2/e. The con-
stancy of the Klein potentials in the transition from the core to the crust, impose
the presence of an overcritical electric field ∼ (mπ/me)2Ec, the critical field be-
ing Ec = m2

e c3/(eh̄). The electron chemical potential and the density decrease,
in the boundary interface, until values µcrust

e < µcore
e and ρcrust < ρcore. For

each central density, an entire family of core-crust interface boundaries and,
correspondingly, an entire family of crusts with different mass and thickness,
exist. The configuration with ρcrust = ρdrip ∼ 4.3× 1011 g/cm3 separates neu-
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tron stars with and without inner crust. We present here the novel neutron star
mass-radius for the case ρcrust = ρdrip and compare and contrast it with the one
obtained from the Tolman-Oppenheimer-Volkoff treatment.

32. H. Kleinert and S.-S. Xue, “Vacuum pair-production in a classical elec-
tric field and an electromagnetic wave ”, Annals of Physics 333 (2013)
104.

Using semiclassical WKB-methods, we calculate the rate of electron- positron
pair-production from the vacuum in the presence of two external fields, a
strong (space- or time-dependent) classical field and a monochromatic elec-
tromagnetic wave. We discuss the possible medium effects on the rate in the
presence of thermal electrons, bosons, and neutral plasma of electrons and pro-
tons at a given temperature and chemical potential. Using our rate formula,
we calculate the rate enhancement due to a laser beam, and discuss the possi-
bility that a significant enhancement may appear in a plasma of electrons and
protons with self-focusing properties.

33. Jorge A. Rueda, R. Ruffini, S.-S. Xue, “The Klein first integrals in an
equilibrium system with electromagnetic, weak, strong and gravita-
tional interactions ”, Nuclear Physics A, Volume 872, Issue 1, 286-295
(2011).

The isothermal Tolman condition and the constancy of the Klein potentials
originally expressed for the sole gravitational interaction in a single fluid are
here generalized to the case of a three quantum fermion fluid duly taking into
account the strong, electromagnetic, weak and gravitational interactions. The
set of constitutive equations including the Einstein-Maxwell-Thomas-Fermi
equations as well as the ones corresponding to the strong interaction descrip-
tion are here presented in the most general relativistic isothermal case. This
treatment represents an essential step to correctly formulate a self-consistent
relativistic field theoretical approach of neutron stars.

34. H. Kleinert, E. Strobel and S.-S. Xue, “Fractional Effective Action at
strong electromagnetic fields ”, Physics Review D88, 025049 (2013).

In 1936, Weisskopf showed that for vanishing electric or magnetic fields the
strong-field behavior of the one loop Euler-Heisenberg effective Lagrangian
of quantum electro dynamics (QED) is logarithmic. Here we generalize this
result for different limits of the Lorentz invariants (~E2 − ~B2) and (~B · ~E). The
logarithmic dependence can be interpreted as a lowest-order manifestation of
an anomalous power behavior of the effective Lagrangian of QED, with critical
exponents (δ = e2/(12π)) for spinor QED, and (δS = δ/4) for scalar QED.
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35. A. Benedetti, R. Ruffini and G. Vereshchagin, “Phase space evolution of
pairs created in strong electric fields ”, Phys. Lett. A377, 206-215 (2013).

We study the process of energy conversion from overcritical electric field into
electron-positron-photon plasma. We solve numerically Vlasov-Boltzmann
equations for pairs and photons assuming the system to be homogeneous and
anisotropic. All the 2-particle QED interactions between pairs and photons
are described by collision terms. We evidence several epochs of this energy
conversion, each of them associated to a specific physical process. Firstly pair
creation occurs, secondly back reaction results in plasma oscillations. Thirdly
photons are produced by electron-positron annihilation. Finally particle in-
teractions lead to completely equilibrated thermal electron-positron-photon
plasma.

36. W.-B. Han, R. Ruffini and S.-S. Xue, “Electron and positron pair produc-
tion in gravitational collapse ”, Physics Review D86, 084004 (2012).

Neutral stellar core at or over nuclear densities is described by a positive charged
baryon core and negative charged electron fluid since they possess different
masses and interactions. Based on a simplified model of a gravitationally
collapsing or pulsating baryon core, we approximately integrate the Einstein-
Maxwell equations and the equations for the number and energy-momentum
conservation of complete degenerate electron fluid. We show possible electric
processes that lead to the production of electron-positron pairs in the bound-
ary of a baryon core and calculate the number and energy of electron-positron
pairs. This can be relevant for understanding the energetic sources of super-
novae and gamma-ray bursts.

37. S.-P. Kim, H. W. Lee and R. Ruffini, “Schwinger Pair Production in
Pulsed Electric Fields ”, arXiv:1207.5213 (2012).

We numerically investigate the temporal behavior and the structure of longi-
tudinal momentum spectrum and the field polarity effect on pair production
in pulsed electric fields in scalar quantum electrodynamics (QED). Using the
evolution operator expressed in terms of the particle and antiparticle opera-
tors, we find the exact quantum states under the influence of electric pulses
and measure the number of pairs of the Minkowski particle and antiparti-
cle. The number of pairs, depending on the configuration of electric pulses,
exhibits rich structures in the longitudinal momentum spectrum and under-
goes diverse dynamical behaviors at the onset of the interaction but always
either converges to a momentum-dependent constant or oscillates around a
momentum-dependent time average after the completion of fields.

38. R. Ruffini, Y.-B. Wu and S.-S. Xue, “Einstein-Euler-Heisenberg theory
and charged black holes ”, Physics Review D88, 085004 (2013).
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Taking into account the Euler-Heisenberg effective Lagrangian of one-loop
nonperturbative quantum electrodynamics (QED) contributions, we formu-
late the Einstein-Euler-Heisenberg theory and study the solutions of nonrotat-
ing black holes with electric and magnetic charges in spherical geometry. In
the limit of strong and weak electromagnetic fields of black holes, we calculate
the black hole horizon radius, area, and total energy up to the leading order
of QED corrections and discuss the black hole irreducible mass, entropy, and
maximally extractable energy as well as the Christodoulou-Ruffini mass for-
mula. We find that these black hole quantities receive the QED corrections, in
comparison with their counterparts in the Reissner-Nordström solution. The
QED corrections show the screening effect on black hole electric charges and
the paramagnetic effect on black hole magnetic charges. As a result, the black
hole horizon area, irreducible mass, and entropy increase; however, the black
hole total energy and maximally extractable energy decrease, compared with
the Reissner-Nordström solution. In addition, we show that the condition for
extremely charged black holes is modified due to the QED correction.

39. I. Motie and S.-S. Xue, “Euler-Heisenberg Lagrangian and CMB photon
circular polarization”, European Physics Letter, 100, 17006, (2012).

Considering the effective Euler-Heisenberg Lagrangian, i.e., non-linear photon-
photon interactions, we study the circular polarization of electromagnetic ra-
diation based on the time-evolution of Stokes parameters. To the leading order,
we solve the Quantum Boltzmann Equation for the density matrix describing
an ensemble of photons in the space of energy-momentum and polarization
states, and calculate the intensity of circular polarizations. Applying these
results to a linear polarized thermal radiation, we calculate the circular polar-
ization intensity, and discuss its possible relevance to the circular polarization
intensity of the Cosmic Microwave Background radiation.

40. R. Mohammadi, I. Motie and S.-S. Xue, “Circular polarization from lin-
early polarized laser beam collisions ”, Physics Review A377 (2013)
2450.

To probe the nonlinear effects of photon-photon interaction in the quantum
electrodynamics, we study the generation of circular polarized photons by the
collision of two linearly polarized laser beams. In the framework of the Euler-
Heisenberg effective Lagrangian and the Quantum Boltzmann equation for the
time evolution of the density matrix of polarization, we calculate the intensity
of circular polarization generated by the collision of two linearly polarized
laser beams and estimate the rate of generation that is proportional to α2. As a
result, we show that the generated circular polarization can be experimentally
measured by two head-on colliding optical laser beams of the cross-sectional
area. 0.01 cm2 and the laser pulse energy∼ mJ. which are currently available
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in laboratories. Our study presents a valuable supplement to other theoretical
and experimental frameworks to study and measure the nonlinear effects of
photon-photon interaction in the quantum electrodynamics.

41. R. Mohammadi and S.-S. Xue, “CMB or laser photon circular polar-
ization via interaction with neutrino beam or cosmic background ”,
Physics Letters B731 272278, (2014).

We study the phenomenon that laser photons acquire circular polarization by
interacting with a Dirac or Majorana neutrino beam. It is shown that for the
reason of neutrinos being left-handed and their gauge-couplings being parity-
violated, linearly polarized photons acquire their circular polarization by inter-
acting with neutrinos. Calculating the ratio of linear and circular polarizations
of laser photons interacting with either Dirac or Majorana neutrino beam, we
obtain this ratio for the Dirac neutrino case, which is about twice less than
the ratio for the Majorana neutrino case. Based on this ratio, we discuss the
possibility of using advanced laser facilities and the T2K neutrino experiment
to measure the circular polarization of laser beams interacting with neutrino
beams in ground laboratories. This could be an additional and useful way
to gain some insight into the physics of neutrinos, for instance their Dirac or
Majorana nature.

42. J. Khodagholizadeh, R. Mohammadi and S.-S. Xue, “Photon-neutrino
scattering and the B-mode spectrum of CMB photons ”, the Rapid com-
munication section of Physics Review D 90, 091301(R) (2014).

On the basis of the quantum Boltzmann equation governing the time-evolution
of the density matrix of polarized CMB photons in the primordial scalar per-
turbations of metric, we calculate the B-mode spectrum of polarized CMB
photons contributed from the scattering of CMB photons and CNB neutri-
nos (Cosmic Neutrino Background). We show that such contribution to the
B-mode spectrum is negligible for small `, however is significantly large for
50 < ` < 200 by plotting our results together with the BICEP2 data. Our study
and results imply that in order to theoretically better understand the origin
of the observed B-mode spectrum of polarized CMB photons (r-parameter),
it should be necessary to study the relevant and dominate processes in both
tensor and scalar perturbations.

43. R. Mohammadi, J. Khodagholizadeh, M. Sadegh, and S.-S. Xue, “B-
mode polarization of the CMB and the cosmic neutrino background ”,
PHYSICAL REVIEW D93, 125029 (2016).

It is known that in contrast with the E-mode polarization the B-mode polariza-
tion of the cosmic microwave background cannot be generated by the Comp-
ton scattering in the case of the scalar mode of metric perturbation. However,
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it is possible to generate the B mode by the Compton scattering in the case of
the tensor mode of metric perturbation. For this reason, the ratio of tensor to
scalar modes of metric perturbation (r ∼ CBl/CEl) is estimated by comparing
the B-mode power spectrum with the E mode at least for small `. We study the
cosmic microwave background polarization, especially the B-mode due to the
weak interaction of the cosmic neutrino background and cosmic microwave
background, in addition to the Compton scattering in both cases of scalar and
tensor metric perturbations. It is shown that the power spectrum CBl of the B-
mode polarization receives some contributions from scalar and tensor modes,
which have effects on the value of the r- parameter. We also show that the
B-mode polarization power spectrum can be used as an indirect probe into
the cosmic neutrino background. B-mode polarization receives some contri-
butions from scalar and tensor modes, which have effects on the value of the
r-parameter. We also show that the B-mode polarization power spectrum can
be used as an indirect probe into the cosmic neutrino background. For the de-
tails of this part, see Physics Review D 93, 091301 (2016), R. Mohammadi, J.
Khodagholizadeh, M. Sadegh, and S.-S. Xue.

44. R. Ruffini and S.-S. Xue, “Gravitational and electric energies in collapse
of spherically thin capacitor ”, Physics Letters A377 (2013) 2450.

We adopt a simplified model describing the collapse of a spherically thin ca-
pacitor to give an analytical description how gravitational energy is converted
to both kinetic and electric energies in collapse. It is shown that (i) averaged
kinetic and electric energies are the same order, about an half of gravitational
energy of spherically thin capacitor in collapse; (ii) caused by radiating and
rebuilding electric energy, gravitational collapse undergoes a sequence of “on
and off” hopping steps in the microscopic Compton scale. Although such a
collapse process is still continuous in terms of macroscopic scales, it is slowed
down as kinetic energy is reduced and collapsing time is about an order of
magnitude larger than that of collapse process eliminating electric processes.

45. Y.-B. Wu and S.-S. Xue, “Nonlinear Breit-Wheeler process in the colli-
sion of a photon with two plane waves ”, Physics Review D 90, 013009
(2014).

The nonlinear Breit-Wheeler process of electron-positron pair production off
a probe photon colliding with a low-frequency and a high-frequency electro-
magnetic wave that propagate in the same direction is analyzed. We calculate
the pair-production probability and the spectra of created pairs in the non-
linear Breit-Wheeler processes of pair production off a probe photon colliding
with two plane waves or one of these two plane waves. The differences of these
two cases are discussed. We evidently show, in the two-wave case, the pos-
sibility of Breit-Wheeler pair production with simultaneous photon emission
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into the low-frequency wave and the high multiphoton phenomena: (i) Breit-
Wheeler pair production by absorption of the probe photon and a large num-
ber of photons from the low-frequency wave, in addition to the absorption of
one photon from the high-frequency wave; (ii) Breit-Wheeler pair production
by absorption of the probe photon and one photon from the high-frequency
wave with simultaneous emission of a large number of photons into the low-
frequency wave. The phenomenon of photon emission into the wave cannot
happen in the one-wave case. Compared with the one-wave case, the con-
tributions from high multiphoton processes are largely enhanced in the two-
wave case. The results presented in this article show a possible way to access
the observations of the phenomenon of photon emission into the wave and
high multiphoton phenomenon in Breit-Wheeler pair production even with
the laser-beam intensity of order 1018 W/cm2.

46. E. Strobel and S.-S. Xue, “Semiclassical pair production rate for time-
dependent electrical fields with more than one component: -WKB-approach
and world-line instantons ”, Nuclear Physics B886 (2014) 1153.

We present an analytic calculation of the semiclassical electron-positron pair
creation rate by time-dependent electrical fields. We use two methods, first
the imaginary time method in the WKB-approximation and second the world-
line instanton approach. The analytic tools for both methods are generalized
to time-dependent electric fields with more than one component.
For the WKB method an expansion of the momentum spectrum of produced
pairs around the canonical momentum ~P = 0 is presented which simplifies
the computation of the pair creation rate. We argue that the world-line instan-
ton method of Dunne et al. (2006) implicitly performs this expansion of the
momentum spectrum around ~P = 0. Accordingly the generalization to more
than one component is shown to agree with the WKB result obtained via this
expansion.
However the expansion is only a good approximation for the cases where the
momentum spectrum is peaked around ~P = 0. Thus the expanded WKB re-
sult and the world-line instanton method of Dunne et al. (2006) as well as the
generalized method presented here are only applicable in these cases.
We study the two component case of a rotating electric field and find a new
analytic closed form for the momentum spectrum using the generalized WKB
method. The momentum spectrum for this field is not peaked around ~P = 0.

47. H. Kleinert and S.-S. Xue, “Critical fermion density for restoring spon-
taneously broken symmetry ”, Mod. Phys. Lett. A, Vol. 30, No. 24
(2015) 1550122.

We show how the phenomenon of spontaneous symmetry breakdown is af-
fected by the presence of a sea of fermions in the system. When its density
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exceeds a critical value, the broken symmetry can be restored. We calculate
the critical value and discuss the consequences for three different physical
systems: First, for the standard model of particle physics, where the spon-
taneous symmetry breakdown leads nonzero masses of intermediate gauge
bosons and fermions. The symmetry restoration will greatly enhance various
processes with dramatic consequences for the early universe. Second, for the
Gell-Mann–Lèvy σ-model of nuclear physics, where the symmetry breakdown
gives rise to the nucleon and meson masses. The symmetry restoration may
have important consequences for formation or collapse of stellar cores. Third,
for the superconductive phase of condensed-matter, where the BCS conden-
sate at low-temperature may be destroyed by a too large electron density.

48. S.-S. Xue, “Particle spectra for matter and the candidates for dark mat-
ter, resonant and nonresonant phenomena of four-fermion operators in
quantum Einstein-Cartan theory ”, Physics Letters B744 8894 (2015),
B737 (2014) 172, B727, 308, B721, 347 (2013), and Physical Review D
93, 073001 (2016).

In the fermion content and gauge symmetry of the standard model (SM), we
study the four-fermion operators in the torsion-free quantum Einstein-Cartan
theory. The collider signatures of irrelevant operators are suppressed by the
high-energy cutoff (torsion-field mass) Λ, and cannot be experimentally ac-
cessible at TeV scales. Whereas the dynamics of relevant operators accounts
for (i) the SM symmetry-breaking in the domain of infrared-stable fixed point
with the energy scale v ≈ 239.5 GeV and (ii) composite Dirac particles restor-
ing the SM symmetry in the domain of ultraviolet-stable fixed point with the
energy scale E & 5 TeV. To search for the resonant phenomena of composite
Dirac particles with peculiar kinematic distributions in final states, we discuss
possible high-energy processes: multi-jets and dilepton Drell-Yan process in
LHC p p collisions, the resonant cross-section in e−e+ collisions annihilating to
hadrons and deep inelastic lepton-hadron e− p scatterings. To search for the
nonresonant phenomena due to the form-factor of Higgs boson, we calculate
the variation of Higgs-boson production and decay rate with the CM energy
in LHC. We also present the discussions on four-fermion operators in the lep-
ton sector and the mass-squared differences for neutrino oscillations in short
baseline experiments, as well as its resulted particle spectra for matter and the
candidates for dark matter.

49. S.-S. Xue, “How universe evolves with cosmological and gravitational
constants in the field theory of Einstein-Cartan gravity ”, Nuclear Physics
B897 326345 (2015).

With a basic varying space-time cutoff ˜̀, we study a regularized and quan-
tized Einstein-Cartan gravitational field theory and its domains of ultraviolet-
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unstable fixed point gir & 0 and ultraviolet-stable fixed point guv ≈ 4/3 of
the gravitational gauge coupling g = (4/3)G/GNewton. Because the funda-
mental operators of quantum gravitational field theory are dimension-2 area
operators, the cosmological constant is inversely proportional to the squared
correlation length Λ ∝ ξ−2. The correlation length ξ characterizes an infrared
size of a causally correlate patch of the universe. The cosmological constant
Λ and the gravitational constant G are related by a generalized Bianchi iden-
tity. As the basic space-time cutoff ˜̀ decreases and approaches to the Planck
length `pl, the universe undergoes inflation in the domain of the ultraviolet-
unstable fixed point gir, then evolves to the low-redshift universe in the do-
main of ultraviolet-stable fixed point guv. We give the quantitative description
of the low-redshift universe in the scaling-invariant domain of the ultraviolet-
stable fixed point guv, and its deviation from the ΛCDM can be examined by
low-redshift (z . 1) cosmological observations, such as supernova Type Ia.

50. E. Strobel and S.-S. Xue, “Semiclassical pair production rate for rotating
electric fields ”, Physics Review D 91, 045016 (2015).

We semiclassically investigate Schwinger pair production for pulsed rotating
electric fields depending on time. To do so we solve the Dirac equation for
two-component fields in a WKB-like approximation. The result shows that for
two-component fields the spin distribution of produced pairs is generally not
1:1. As a result the pair creation rates of spinor and scalar quantum electro
dynamics (QED) are different even for one pair of turning points. For rotating
electric fields the pair creation rate is dominated by particles with a specific
spin depending on the sense of rotation for a certain range of pulse lengths
and frequencies. We present an analytical solution for the momentum spec-
trum of the constant rotating field. We find interference effects not only in the
momentum spectrum but also in the total particle number of rotating electric
fields.

51. L. Hendrik, R. Ruffini, and S.-S. Xue, “Collective electronic pulsation of
compressed atoms in Thomas-Fermi model ”, Nuclear Physics A 941,
115 (2015).

Based on the Thomas-Fermi solution for compressed electron gas around a
giant nucleus, we study electric pulsations of electron number-density, pres-
sure and electric fields, which could be caused by an external perturbations
acting on the nucleus or the electrons themselves. We numerically obtain the
eigen-frequencies and eigen-functions for stationary pulsation modes that ful-
fill the boundary-value problem established by electron-number and energy-
momentum conservation, equation of state, and Maxwell’s equations, as well
as physical boundary conditions, and assume the nucleons in β-equilibrium
at nuclear density. We particularly study the configuration of ultra-relativistic
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electrons with a large fraction contained within the nucleus. Such configura-
tions can be realized for a giant nucleus or high external compression on the
electrons. The lowest modes turn out to be heavily influenced by the rela-
tivistic plasma frequency induced by the positive charge background in the
nucleus. Our results can be applied to heavy nuclei in the neutron star crust,
as well as to the whole core of a neutron star. We discuss the possibility to
apply our results to dynamic nuclei using the spectral method.

52. J. Rueda, R. Ruffini, Y.-B. Wu and S.-S. Xue, “Surface tension for heavy
atoms ”, submitted to Physics Review C.

Based on the relativistic mean field theory and the Thomas-Fermi approxima-
tion, we study the surface properties of giant-nucleus compressed atoms; a
giant-nucleus compressed atom has a giant nuclear core (giant nucleus) and
degenerate electrons some of which have penetrated into the giant nucleus.
Taking into account the strong, weak, and electromagnetic interactions, we nu-
merically study the structure of giant-nucleus compressed atoms and calculate
the nuclear surface tension and Coulomb energy. We analyze the influence of
the electron component and the background matter on the nuclear surface ten-
sion and Coulomb energy of giant-nucleus compressed atoms. We also com-
pare and contrast these results in the case of giant-nucleus compressed atoms
with phenomenological results in nuclear physics and the results of the core-
crust interface of neutron stars with global charge neutrality. Based on the
numerical results we study the instability against Bohr-Wheeler surface de-
formations in the case of giant-nucleus compressed atoms. The results in this
article provide the evidence of strong effects of the electromagnetic interaction
and electrons on the structure of giant-nucleus compressed atoms.

53. R. Ruffini, G. Vereshchagin and S.-S. Xue, “Cosmic absorption of ultra
high energy particles ”, Astrophysics and Space Science, Volume 361,
article id.82, 2016 11 pp.

This paper summarizes the limits on propagation of ultra high energy parti-
cles in the Universe, set up by their interactions with cosmic background of
photons and neutrinos. By taking into account cosmic evolution of these back-
grounds and considering appropriate interactions we derive the mean free
path for ultra high energy photons, protons and neutrinos. For photons the
relevant processes are the Breit-Wheeler process as well as the double pair
production process. For protons the relevant reactions are the photopion pro-
duction and the Bethe-Heitler process. We discuss the interplay between the
energy loss length and mean free path for the Bethe-Heitler process. Neutrino
opacity is determined by its scattering off the cosmic background neutrino. We
compute for the first time the high energy neutrino horizon as a function of its
energy.
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54. C. Stahl, and E. Strobel, “Semiclassical fermion pair creation in de Sitter
spacetime”, The proceeding of the 2nd Cesare Lattes Meeting, 2015, AIP
Conf. Proc. 1693, 050005 (2015).

We present a method to semiclassically compute the pair creation rate of bosons
and fermions in de Sitter spacetime. The results in the bosonic case agree
with the ones in the literature. We find that for the constant electric field the
fermionic and bosonic pair creation rate are the same. This analogy of bosons
and fermions in the semiclassical limit is known from several flat spacetime
examples.

55. C. Stahl, E. Strobel, and S.-S. Xue, “Fermionic current and Schwinger
effect in de Sitter spacetime ”, Phys. Rev. D 93, 025004 Published 6
January 2016.

We study the fermionic Schwinger effect in two-dimensional de Sitter space-
time. To do so, we first present a method to semiclassically compute the num-
ber of pairs created per momentum mode for general time dependent fields. In
addition, the constant electric field is studied in depth. In this case, solutions
for the Dirac equation can be found and the number of pairs can be computed
using the standard Bogoliubov method. This result is shown to agree with the
semiclassical one in the appropriate limit. The solutions are also used to com-
pute the expectation value of the induced current. Comparing these results to
similar studies for bosons, we find that while the results agree in the semiclas-
sical limit, they do not generally agree. In particular, there is no occurrence of
a strong current for small electric fields.

56. E. Bavarsad ,C. Stahl, and S.-S. Xue, “Scalar current of created pairs by
Schwinger mechanism in de Sitter spacetime ”, to appear in Phys. Rev.
D.

We consider a charged scalar field in a D dimensional de Sitter spacetime and
investigate pair creation by Schwinger mechanism in a constant electric field
background. Using a semiclassical approximation the current of the created
pairs has been estimated. We find that, the semiclassical current of the created
pairs in the strong electric field limit responds as E

D
2 . Going further but re-

stricting to D = 3 dimensional de Sitter spacetime, the quantum expectation
value of the spacelike component of the induced current has been computed
in the in-vacuum state by applying an adiabatic subtraction scheme. We find
that, in the strong electric field limit, the current responds as E

3
2 . In the weak

electric field limit the current has a linear response in E and an inverse depen-
dence on the mass of the scalar field. In the case of a massless scalar field, the
current varies with E−1 which leads to a phenomenon of infrared hypercon-
ductivity. A new relation between infrared hyperconductivity, tachyons and
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conformality is discussed and a scheme to avoid an infrared hyperconductiv-
ity regime is proposed. In D dimension, we eventually presented some first
estimates of the backreaction of the Schwinger pairs to the gravitational field,
we find a decrease of the Hubble constant due to the pair creation.

57. C. Stahl and S.-S. Xue, “Schwinger effect and backreaction in de Sitter
spacetime ”, Physics Letters B, Volume 760, p. 288-292. 2016.

We consider the particle-antiparticle pairs produced by both a strong electric
field and de Sitter curvature. We investigate in 1 + 1 D the backreaction of the
pairs on the electromagnetic field. To do so we describe the canonical quan-
tization of an electromagnetic field in de Sitter space and add in the Einstein-
Maxwell equation the fermionic current induced by the pairs. After solving
this equation, we find that the electric field gets either damped or unaffected
depending on the value of the pair mass and the gauge coupling. No en-
hancement of the electromagnetic field to support a magnetogenesis scenario
is found. The physical picture is that the Schwinger pairs locally created screen
the production and amplification of the electromagnetic field. However, if one
considers light bosons created by the Schwinger mechanism, we report a solu-
tion to the Einstein-Maxwell equation with an enhancement of the electromag-
netic field. This solution could be a new path to primordial magnetogenesis.

58. S. Batebi, S. Tizchang, R. Mohammadi, R. Ruffini, S.-S. Xue, “The gener-
ation of circular polarization of GRB ”, the MG XIV proceedings, World
scientific, Singapore.

A certain degree of linear polarization has been measured in several GRB af-
terglows. Astonishingly, circular polarization has been recently measured in
GRB121024A for the first time. In this paper by considering Gamma Ray
Burst interactions to cosmic microwave background photons through Euler-
Heisenberg effective Lagrangian, GRB circular polarization is discussed.

59. R. Ruffini and C. Stahl, “Cosmological fractal matter with an upper cut-
off ”, the conference proceedings of the 15th Italian and Korean meeting,
Pescara Italy July, 2016, World scientific, Singapore. The proceeding is
published together with the MG XIV proceedings.

We report here a work on a simple inhomogeneous cosmological model within
the Lematre-Tolman-Bondi (LTB) metric. The mass-scale function of the LTB
model is taken to be M(r) ∝ rd and would correspond to a fractal distribution
for 0 < d < 3. The luminosity distance for this model is computed and then
compared to supernovae data. Unlike LTB models which have in the most
general case two free functions, our model has only two free parameters as the
flat standard model of cosmology. The best fit obtained is a matter distribu-
tion with an exponent of d = 3.44. Finally by adding an upper cutoff on the
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scale r = 2300 Mpc, we find a better fit than the simple fractal model with an
exponent d = 3.36.

60. C. Stahl, Eckhard Strobel and S.-S. Xue, “Pair creation in the early uni-
verse ”, the MG XIV proceedings, World scientific, Singapore.

In the very early universe, a generalized Schwinger effect can create pairs from
both electrical and gravitational fields. The expectation value of fermionic cur-
rent induced by these newly created pairs has been recently computed in de
Sitter spacetime. I will discuss different limiting cases of this result and some
of its possible physical interpretations.

61. S. Tizchang, S. Batebi, R. Mohammadi, R. Ruffini, G. Vereshchagin, S.-S.
Xue, “On the interaction of high energy photons with the cosmic mi-
crowave background ”, the MG XIV proceedings, World scientific, Sin-
gapore.

We study the high energy photon interaction with cosmic microwave back-
ground (CMB) and calculate the optical depth due to Euler-Heisenberg photon-
photon scattering at cosmological redshift. According to our results the photon-
photon scattering is predominant with respect to the Breit-Wheeler pair pro-
duction at energies below 1 GeV. However, it is relevant for sources of high
energy photons at high redshift z > 100. We also discuss implications of our
results for two astrophysical observations of gamma-ray bursts and blazars.

62. S. Batebi, R. Mohammadi, R. Ruffini, S. Tizchang, and S.-S. Xue, “Gen-
eration of circular polarization of gamma ray bursts ”, Phys. Rev. D 94,
065033 Published 22 September 2016.

The generation of the circular polarization of gamma ray burst (GRB) photons
is discussed in this paper via their interactions with astroparticles in the pres-
ence or absence of background fields such as magnetic fields and noncommu-
tative space-time geometry. Solving the quantum Boltzmann equation for GRB
photons as a photon ensemble, we discuss the generation of circular polariza-
tion (as Faraday conversion phase shift FC) of GRBs in the following cases: (i)
intermediate interactions, i.e., the Compton scattering of GRBs in the galaxy
cluster magnetic field and in the presence of noncommutative space-time ge-
ometry, as well as the scattering of GRBs in the cosmic neutrino background
(CNB) and cosmic microwave background (CMB); (ii) interactions with parti-
cles and fields in shockwaves, i.e., the Compton scattering of GRBs with accel-
erated charged particles in the presence of magnetic fields. We found that (i)
after shockwave crossing, the greatest contribution of FC for energetic GRBs
(of the order of GeV and larger) comes from GRB-CMB interactions, but for
low-energy GRBs the contributions of the Compton scattering of GRBs in the
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galaxy cluster magnetic field dominate; (ii) in shockwave crossing, the mag-
netic field has significant effects on converting a GRBs linear polarization to
a circular one, and this effect can be used to better understand the magnetic
profile in shockwaves. The main aim of this work is to study and measure
the circular polarization of GRBs for a better understanding of the physics and
mechanism of the generation of GRBs and their interactions before reaching
us.
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A. Dyadosphere
(electron-positron-photon
plasma) formation in
gravitational collapse.

The e+e− pairs generated by the vacuum polarization process around the
core are entangled in the electromagnetic field Ruffini et al. (2003a), and ther-
malize in an electron–positron–photon plasma on a time scale∼ 104τC Ruffini
et al. (2003b) (see Fig. 3.1). As soon as the thermalization has occurred, the hy-
drodynamic expansion of this electrically neutral plasma starts Ruffini et al.
(1999, 2000). While the temporal evolution of the e+e−γ plasma takes place,
the gravitationally collapsing core moves inwards, giving rise to a further
amplified supercritical field, which in turn generates a larger amount of e+e−

pairs leading to a yet higher temperature in the newly formed e+e−γ plasma.
We report progress in this theoretically challenging process which is marked
by distinctive and precise quantum and general relativistic effects. As pre-
sented in Ref. Ruffini et al. (2003a): we follow the dynamical phase of the
formation of Dyadosphere and of the asymptotic approach to the horizon by
examining the time varying process at the surface of the gravitationally col-
lapsing core.

It is worthy to remark that the time–scale of hydrodynamic evolution (t ∼
0.1s) is, in any case, much larger than both the time scale needed for “all pairs
to be created” (∼ 103τC), and the thermalization time–scale (∼ 104τC, see
Fig. 3.1) and therefore it is consistent to consider pair production, plus ther-
malization, and hydrodynamic expansion as separate regimes of the system.
We assume the initial condition that the Dyadosphere starts to be formed at
the instant of gravitational collapse tds = t0 (rds) = 0, and rds = Rc the ra-
dius of massive nuclear core. Having formulated the core collapse in General
Relativity in Eq. (3.8.2), we discretize the gravitational collapse of a spher-
ically symmetric core by considering a set of events (N−events) along the
world line of a point of fixed angular position on the collapsing core surface.
Between each of these events we consider a spherical shell of plasma of con-
stant coordinate thickness ∆r so that:
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A. Dyadosphere (electron-positron-photon plasma) formation in
gravitational collapse.

1. ∆r is assumed to be a constant which is small with respect to the core
radius;

2. ∆r is assumed to be large with respect to the mean free path of the par-
ticles so that the statistical description of the e+e−γ plasma can be used;

3. There is no overlap among the slabs and their union describes the en-
tirety of the process.

We check that the final results are independent of the special value of the
chosen ∆r and N.

In each slab the processes of e+e−-pair production, oscillation with electric
field and thermalization with photons are considered. While the average of
the electric field E over one oscillation is 0, the average of E2 is of the order of
E2

c , therefore the energy density in the pairs and photons, as a function of r0,
is given by

ε0 (r0) =
1

8π

[
E2 (r0)− E2

c

]
= E2

c
8π

[(
rds
r0

)4
− 1
]

. (A.0.1)

For the number densities of e+e− pairs and photons at thermal equilibrium
we have ne+e− ' nγ; correspondingly the equilibrium temperature T0, which
is clearly a function of r0 and is different for each slab, is such that Ruffini
et al. (1999, 2000)

ε (T0) ≡ εγ (T0) + εe+ (T0) + εe− (T0) = ε0, (A.0.2)

with ε and n given by Fermi (Bose) integrals (with zero chemical potential):

εe+e− (T0) =
2

π2h̄3

∫ ∞

me

(E2−m2
e)

1/2

exp(E/kT0)+1 E2dE, εγ (T0) =
π2

15h̄3 (T0)
4 , (A.0.3)

ne+e− (T0) =
1

π2h̄3

∫ ∞

me

(E2−m2
e)

1/2

exp(E/kT0)+1 EdE, nγ (T0) =
2ζ(3)

h̄3 (T0)
3 . (A.0.4)

From the conditions set by Eqs. (A.0.2), (A.0.3), (A.0.4), we can now turn to
the dynamical evolution of the e+e−γ plasma in each slab. We use the covari-
ant conservation of energy momentum and the rate equation for the number
of pairs in the Reissner–Nordström geometry external to the core:

∇aTab = 0, (A.0.5)

∇a (ne+e−ua) = σv
[
n2

e+e− (T)− n2
e+e−

]
, (A.0.6)
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where Tab = (ε + p) uaub + pgab is the energy–momentum tensor of the plasma
with proper energy density ε and proper pressure p, ua is the fluid 4−velocity,
ne+e− is the number of pairs, ne+e− (T) is the equilibrium number of pairs and
σv is the mean of the product of the e+e− annihilation cross-section and the
thermal velocity of pairs. In each slab the plasma remains at thermal equilib-
rium in the initial phase of the expansion and the right hand side of the rate
Eq. (A.0.6) is effectively 0.

If we denote by ξa the static Killing vector field normalized at unity at spa-
cial infinity and by {Σt}t the family of space-like hypersurfaces orthogonal
to ξa (t being the Killing time) in the Reissner–Nordström geometry, from
Eqs. (A.0.6), the following integral conservation laws can be derived∫

Σt
ξaTabdΣb = E,

∫
Σt

ne+e−ubdΣb = Ne+e− , (A.0.7)

where dΣb = α−2ξbr2 sin θdrdθdφ is the vector surface element, E the total
energy and Ne+e− the total number of pairs which remain constant in each
slab. We then have[

(ε + p) γ2 − p
]

r2 = E, ne+e−γα−1r2 = Ne+e− , (A.0.8)

where E and Ne+e− are constants and

γ ≡ α−1uaξa =

[
1− α−4

(
dr
dt

)2
]−1/2

(A.0.9)

is the Lorentz γ factor of the slab as measured by static observers. We can
rewrite Eqs. (A.0.7) for each slab as(

dr
dt

)2
= α4 fr0 , (A.0.10)(

r
r0

)2
=
(

ε+p
ε0

) (
ne+e−0
ne+e−

)2 (
α
α0

)2
− p

ε0

(
r
r0

)4
, (A.0.11)

fr0 = 1−
(

ne+e−
ne+e−0

)2 ( α0
α

)2
(

r
r0

)4
(A.0.12)

where pedex 0 refers to quantities evaluated at selected initial times t0 > 0,
having assumed r (t0) = r0, dr/dt|t=t0

= 0, T (t0) = T0.
Eq. (A.0.10) is only meaningful when fr0 (r) ≥ 0. From the structural anal-

ysis of such equation it is clearly identifiable a critical radius r0 such that:

• for any slab initially located at r0 > R̄ we have fr0 (r) ≥ 0 for any value
of r ≥ r0 and fr0 (r) < 0 for r . r0; therefore a slab initially located at a
radial coordinate r0 > R̄ moves outwards,
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• for any slab initially located at r0 < R̄ we have fr0 (r) ≥ 0 for any value
of r+ < r ≤ r0 and fr0 (r) < 0 for r & r0; therefore a slab initially
located at a radial coordinate r0 < R̄ moves inwards and is trapped by
the gravitational field of the collapsing core.

We define the surface r = R̄, the Dyadosphere trapping surface (DTS). The
radius R̄ of DTS is generally evaluated by the condition d fR̄

dr

∣∣∣
r=R̄

= 0. R̄
is so close to the horizon value r+ that the initial temperature T0 satisfies
kT0 � mec2 and we can obtain for R̄ an analytical expression. Namely
the ultra relativistic approximation of all Fermi integrals, Eqs. (A.0.3) and
(A.0.4), is justified and we have ne+e− (T) ∝ T3 and therefore fr0 ' 1 −
(T/T0)

6 (α0/α)2 (r/r0)
4 (r ≤ R̄). The defining equation of R̄, together with

(A.0.12), then gives

R̄ = 2M
[

1 +
(

1− 3Q2/4M2
)1/2

]
> r+. (A.0.13)

In the case of an EMBH with M = 20M�, Q = 0.1M, we compute:

• the fraction of energy trapped in DTS:

Ē =
∫

r+<r<R̄
αε0dΣ ' 0.53

∫
r+<r<rds

αε0dΣ; (A.0.14)

• the world–lines of slabs of plasma for selected r0 in the interval (R̄, rds)
(see left figure in Fig. A.1);

• the world–lines of slabs of plasma for selected r0 in the interval (r+, R̄)
(see Fig. A.2).

At time t̄ ≡ t0 (R̄) when the DTS is formed, the plasma extends over a region
of space which is almost one order of magnitude larger than the Dyadosphere
and which we define as the effective Dyadosphere. The values of the Lorentz
γ factor, the temperature and e+e− number density in the effective Dyado-
sphere are given in the right figure in Fig. A.1.
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Figure A.1.: In left figure: World line of the collapsing charged core (dashed
line) as derived from Eq. (3.8.2); world lines of slabs of plasma for selected
radii r0 in the interval (R̄, rds). At time t̄ the expanding plasma extends over a
region which is almost one order of magnitude larger than the Dyadosphere.
The small rectangle in the right bottom is enlarged in Fig. A.2. The right
figure: Physical parameters in the effective Dyadosphere: Lorentz γ factor,
proper temperature and proper e+e− number density as functions at time t̄.
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Figure A.2.: Enlargement of the small rectangle in the right bottom of left
figure in Fig. A.1. World–lines of slabs of plasma for selected radii r0 in the
interval (r+,R̄).
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B. Electron-positron pair
oscillation in spatially
inhomogeneous electric fields
and radiation

Introduction. As reviewed in the recent report Ruffini et al. (2010), since the
pioneer works by Sauter Sauter (1931), Heisenberg and Euler Heisenberg and
Euler (1936) in 1930’s, then by Schwinger Schwinger (1951) in 1950’s, it has
been well known that positron-electron pairs are produced from the vacuum
in external electric fields. In a constant electric field E0 in dependent of space
and time, the pair-creation rate per unit volume is given by Heisenberg and
Euler (1936),

S ≡ dN
dVdt

=
m4

e
4π3

(
E0

Ec

)2

exp
(
−π

Ec

E0

)
, (B.0.1)

where the critical field Ec ≡ m2
e c3/(eh̄), the Plank’s constant h̄, the speed

of light c, the electron mass me, the absolute value of electron charge e and
the fine structure constant α = e2/h̄c (in this article we use the natural units
h̄ = c = 1, unless otherwise specified). The pair-production rate (B.0.1) is sig-
nificantly large for strong electric fields E & Ec ' 1.3 · 1016V/cm. The critical
field will probably be reached by recent advanced laser technologies in labo-
ratory experiments Ringwald (2001); Tajima and Mourou (2002); Gordienko
et al. (2005), X-ray free electron laser (XFEL) facilities1, optical high-intensity
laser facilities such as Vulcan or ELI2, and SLAC E144 using nonlinear Comp-
ton scattering Burke et al. (1997). On the other hand, strong overcritical elec-
tric fields (E ≥ 10Ec) can be created in astrophysical environments, for in-
stance, quark stars Usov (1998); Usov et al. (2005) and neutron stars Ruffini
et al. (2007a)-Popov et al. (2009).

The back-reaction and screening effects of electron and positron pairs on
external electric fields lead to the phenomenon of plasma oscillations: elec-
trons and positrons moving back and forth coherently with alternating elec-

1http://www.xfel.eu
2http://www.extreme-light-infrastructure.eu
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tric fields. This means that external electric fields are not eliminated within
the Compton time h̄/mec2 of pair-production process, rather oscillate collec-
tively with the motion of pairs in a much longer timescale.

In a constant electric field E0 (B.0.1), the phenomenon of plasma oscilla-
tions is studied in the two frameworks Ruffini et al. (2010): (1) the semi-
classical QED with quantized Dirac field and classical electric field Kluger
et al. (1991, 1992); Cooper and Mottola (1989); (2) the kinetic description us-
ing the Boltzmann-Vlasov and Maxwell equations Biro et al. (1984); Gatoff
et al. (1987); Cooper et al. (1993); Ruffini et al. (2003b, 2007b). In the second
framework, the Boltzmann-Vlasov equation is used to obtain the equations
for the continuity and energy-momentum conservations Gatoff et al. (1987).

Ref. Ruffini et al. (2007b) shows the evidence of plasma oscillation in under-
critical field (E < Ec) and the relation between the kinetic energy and num-
bers of oscillating pairs in a given electric field strength E0. Taking into ac-
count the creation and annihilation process e+ + e− ⇔ γ + γ, it is shown
Ruffini et al. (2003b) that the plasma oscillation in an overcritical field is led
to a plasma of photons, electrons and positions with the equipartition of their
number- and energy-densities. The phenomenon of plasma oscillations is
studied in connection with pair creation in heavy ions collisions Biro et al.
(1984)-Cooper et al. (1993), the laser field Ringwald (2001)-Hebenstreit et al.
(2008), and gravitational collapse Ruffini et al. (2003a). It is worthwhile to
emphasize that the plasma oscillation occurs not only at overcritical field-
strengths E0 & Ec (see for instance Refs. Kluger et al. (1991, 1992); Ruffini
et al. (2003b)), but also undercritical field-strengths E0 . Ec (see Ref. Ruffini
et al. (2007b)), and plasma oscillation frequency is related to field-strength
E0, while the number of oscillating pairs depends on the pair-production rate
(B.0.1). More details can be found in the recent review article Ruffini et al.
(2010).

The realistic ultra-strong electric fields are not only vary with space and
time, but also confined in a finite region. In this letter, studying the plasma
oscillations in spatially inhomogeneous electric field, we present the evidence
of electric fields propagation, leading to electromagnetic radiation with a pe-
culiar narrow spectrum in the keV-region, which should be distinctive and
experimentally observable.

In the kinetic description for the plasma fluids of positrons (+) or elec-
trons (−), whose single-particle spectrum p0

± = (p2
± + m2

e )
1/2, we define the
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number-densities n±(t, x) and “averaged” velocities v±(t, x) of the fluids:

n±(t, x) ≡
∫ d3p±

(2π)3 f±(t, p±, x), (B.0.2)

v±(t, x) ≡ 1
n±

∫ d3p±
(2π)3

(
p±
p0
±

)
f±(t, p±, x), (B.0.3)

where f±(t, p±, x) is the distribution function in the phase space. The four-
velocities of the electron and positron fluids Uµ

± = γ±(1, v±), the Lorentz fac-
tor γ± = (1−|v±|2)−1/2, and the comoving number-densities n̄± = n±(γ±)−1,
where we choose the laboratory frame where pairs are created at rest. The
collision-less plasma fluid of electrons and positrons coupling to electromag-
netic fields is governed by the continuity, energy-momentum conservation
and Maxwell equations:

∂
(
n̄±Uµ

±
)

∂xµ = S, (B.0.4)

∂Tµν
±

∂xν
= −Fµ

σ (Jσ
± + Jσ

±pola), (B.0.5)

∂Fµν

∂xν
= −4π(Jµ

cond + Jµ
pola + Jµ

ext), (B.0.6)

where is the pair-production rate, Jµ
± = ±en̄±Uµ

± electric currents and the
energy-momentum tensors Weinberg (1972)

Tµν
± = p̄±gµν + ( p̄± + ε̄±)U

µ
±Uν
±, (B.0.7)

and the pressure p̄± and comoving energy-density ε̄± is related by the equa-
tion of state, in general 0 ≤ p̄± ≤ ε̄±/3. In the laboratory frame, the fluid
energy-density ε± ≡ T00 and momentum-density pi

± ≡ Ti0 are given by

ε± = (ε̄± + p̄±v2
±)γ

2
±, p± = (ε̄± + p̄±)γ2

±v±. (B.0.8)

In Eqs. (B.0.5,B.0.6) Fµ
σ is the tensor of electromagnetic fields (E, B), the con-

ducting four-current density

Jµ
cond ≡ e(n̄+Uµ

+ − n̄−Uµ
−), ∂µ Jµ

cond = 0, (B.0.9)

and polarized four-current density Jµ
pola = ∑± Jµ

±pola and Jµ
±pola =

(
ρ±pola, J±pola

)
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Gatoff et al. (1987); Kajantie and Matsui (1985)

Fν
µ Jµ
±pola = Σν

±, Σν
± ≡

∫ d3p±
(2π)3p0

±
pν
±S, (B.0.10)

and S =
∫

d3p±/[(2π)3p0
±]S. Using “averaged” velocities (B.0.3) of the flu-

ids, we approximately have

J±pola '
meγ±S
|E| Ê, ρ±pola ' ±

meγ±|v±|S
|E| , (B.0.11)

where the magnetic field B = 0. In Eq. (B.0.6), Jµ
ext = (ρext, Jext) is an external

electric current.

Basic equations of motion. For simplicity to start with, we consider the electric
field Eext created by a capacitor made of two parallel plates, one carries an ex-
ternal charge +Q and another −Q. The sizes of two parallel plats are Lx and
Ly, which are much larger than their separation ` in the ẑ-direction, i.e., Lx �
` and Ly � `. For |z| ∼ O(`), the system has an approximate translation sym-
metry in the (x, y) plane. As results the electric field Eext(x, y, z) ≈ Eext(z)ẑ
and Bext(x, y, z) ≈ 0, is approximately homogeneous in the (x, y) plane and
confined within the capacitor. In addition, ∂Eext/∂t ≈ 0, namely, this electric
field is assumed to be continuously supplied by an external source (+Q,−Q)
or slowly varying. In order to do calculations we model this electric field as
the one-dimensional Sauter electric field in the ẑ-direction

Eext(z) = E0/ cosh2(z/`), σ ≡ eE0`/mec2 = (`/λC)(E0/Ec), (B.0.12)

where the λC is Compton wavelength, the external electric charge is given by
∂Eext(z)/∂z = 4πρext and the external electric current vanishes Jext = 0 for
the field being static ∂Eext/∂t = 0. In the electric field configuration (B.0.12)
and B ≈ 0, the “averaged” velocities v± of electrons and positrons fluids are
in the ẑ-direction,

Uµ
± = γ± (1, 0, 0,±v±) , (B.0.13)

and the total fluid current- and charge-densities (B.0.6) Jµ = (ρ, J) are

Jz = en+v+ + en−v− +
me(γ+ + γ−)S

E
, (B.0.14)

ρ = e (n+ − n−) +
me(γ+v+ − γ−v−)S

E
. (B.0.15)

The system can be approximately treated as a 1 + 1 dimensional system in
terms of space-time variables (z, t), and Eqs. (B.0.4-B.0.6) become for zero
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pressure 3,

∂n±
∂t
± ∂n±v±

∂z
= S, (B.0.16)

∂ε±
∂t
± ∂p±

∂z
= en±v±E + meγ±S, (B.0.17)

∂p±
∂t
± ∂p±v±

∂z
= en±E + meγ±v±S, (B.0.18)

∂E
∂t

= −4π Jz, (B.0.19)

∂E
∂z

= 4π(ρ + ρext). (B.0.20)

The total electric field E(z, t) in Eqs. (B.0.14-B.0.20) is the superposition of two
components:

E(z, t) = Eext(z) + Eind(z, t), (B.0.21)

where the space- and time-dependent Eind(z, t) is the electric field created
by electron and positron pairs. We call Jz(z, t) (B.0.14), ρ(z, t) (B.0.15) and
Eind(z, t) pair-induced electric current, charge and field.

As for the pair-production rate S in Eqs. (B.0.16-B.0.19), instead of the pair-
production rate (B.0.1) for a constant field E0, we adopt the following z-
dependent formula for the pair-production rate in the Sauter field (B.0.12),
obtained by using the WKB-method to calculate the probability of quantum-
mechanical tunneling Kleinert et al. (2008),

S(z) =
m4

e
4π3

E0E(z)
E2

c G̃[0,E]
e−πG[0,E]Ec/E0 , (B.0.22)

where G(0,E) and G̃(0,E) are functions of the energy-level crossings E(z)
and we approximately adopt E(z) ≈ E0/G(0,E) ≈ E0/G̃(0,E) in Eq. (B.0.22)
in order to do feasible numerical calculations. As shown by the Fig. 2 in
Ref. Kleinert et al. (2008), the deviation of the pair-production rate (B.0.22)

3For an electric field E ∼ Ec, the number-density of electron-positron pairs is small and the
pressure of pairs can be neglected. While for an over electric field E � Ec, the number-
density of pairs is large and the collisions and annihilation of pairs into photons are im-
portant, leading to the energy equipartition of electron, positrons and photons. In this
case, the pressure, effective temperature and equation of state have to be considered.For
an electric field E ∼ Ec, the number-density of electron-positron pairs is small and the
pressure of pairs can be neglected. While for an over electric field E � Ec, the number-
density of pairs is large and the collisions and annihilation of pairs into photons are im-
portant, leading to the energy equipartition of electron, positrons and photons. In this
case, the pressure, effective temperature and equation of state have to be considered.
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due to this approximation is small. The formula (B.0.22) is derived for
the static Sauter field (B.0.12). However, analogously to the discussions for
the plasma oscillations in spatially homogeneous fields Cooper et al. (1993)-
Ruffini et al. (2007b), it can be approximately used for a time-varying elec-
tric field E(z, t) (B.0.21), provided the time-dependent component Eind(z, t),
created by electron-positron pair-oscillations, varies much slowly compared
with the rate of electron-positron pair-productions O(mec2/h̄). This can be
justified by the inverse adiabaticity parameter Greiner et al. (1985)-Popov
(1973a),

η =
me

ω

E0

Ec
� 1, (B.0.23)

where ω is the frequency of pair-oscillations.
Eqs. (B.0.16,B.0.17,B.0.18) describe the motion of electron-positron plasma

coupling to the electric field E and source S of pair-productions. The Maxwell
equations (B.0.19,B.0.20) describe the motion of the electric field (B.0.21) cou-
pled to the current- and charge-densities (B.0.15), leading to the wave equa-
tion of the propagating electric field Eind(z, t) Jackson (1998),

∂2Eind

∂t2 − 1
c2

∂2Eind

∂z2 = 4π

(
∂ρ

∂z
+

1
c2

∂Jz

∂t

)
, (B.0.24)

where we use ∂Eext/∂z = 4πρext and ∂Eext/∂t = 0. This wave equation
shows the propagating electric field Eind(z, t) in the region R where the non-
vanishing current Jz and charge ρ are, and both the propagation and polar-
ization of the electric field are in the ẑ-direction. This implies a wave trans-
portation of electromagnetic energies inside the region R. Since the current-
and charge-densities (ρ, Jz) are functions of the field E(t, z) (B.0.21), the wave
equation is highly nonlinear, the dispersion relation of the field is very com-
plex and the velocity of field-propagation is not the speed of light.
Numerical integrations. Given the parameters E0 = Ec and ` = 105λC of the
Sauter field (B.0.12) as an initial electric field Eext, we numerically integrate
Eqs.(B.0.16-B.0.19) in the spatial region R: −`/2 ≤ z ≤ `/2 and time interval
T: 0 ≤ t ≤ 3500τC, where τC is the Compton time. The value T ≤ 3500τC
is chosen so that the adiabatic condition (B.0.23) is satisfied, and the spatial
range R is determined by the capacity of computer for numerical calculations.
The electric field strength E0 is chosen around the critical value Ec, so that the
semiclassical pair-production rate (B.0.22) can be approximately used. Actu-
ally, E0, ` and T are attributed to the characteristics of external ultra-strong
electric fields Eext established by either experimental setups or astrophysical
conditions.

In Figs. B.1 and B.2, we respectively plot the time- and space-evolution
of the total electric fields E(z, t) (B.0.21) as functions of t and z at three dif-
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ferent spatial points and times. As discussed in Figure captions, numerical
results show the properties of the electric field wave Eind(z, t) propagating
in the plasma of oscillating electron-positron pairs, as described by the wave
equation (B.0.24). This electric field wave propagates along the directions
in which external electric field-strength decreases. The wave propagation is
rather complex, depending on the space and time variations of the net charge
density ρ(z, t) and current density jz(z, t), as shown in Figs. B.4-B.5. The net
charge density ρ oscillates (see Figs. B.3 and B.4) proportionally to the field-
gradient (B.0.20) and at the center z = 0 the charge density and field-gradient
are zero independent of time evolution (see Fig. B.4). However, the total
charge of pairs Q =

∫
R

d3xρ must be zero at any time, as required by the
neutrality. The electric current jz(z, t) alternating in space and time follows
the space and time evolution of the electric field E(z, t) see Eq. (B.0.19), as
shown in Figs. B.5 and B.6.

We recall the discussions of the plasma oscillations in the case of spatially
homogeneous electric field E0 without boundary Ruffini et al. (2003b, 2007b).
Due to the spatial homogeneity of electric fields and pair-production rate S
(B.0.1), the number-densities n±(t, x) = n(t) (B.0.2), “averaged” velocities
|v±(t, x)| = v(t) (B.0.3) and energy-momenta ε±(t, x) = ε(t), |p±(t, x)| =
p(t) (B.0.8) are spatially homogeneous so that the charge density (B.0.15) ρ ≡
0 identically vanishes and current (B.0.14) Jz = Jz(t). All spatial derivative
terms in Eqs. (B.0.16-B.0.18) and Eq. (B.0.24) vanish and Eq. (B.0.20) becomes
irrelevant. As results, the plasma oscillations described is the oscillations of
electric fields and currents with respect time at each spatial point, and the
electric field has no any spatial correlation and does not propagate.

In contrary to the plasma oscillation in homogeneous fields, the presence of
such field-propagation in inhomogeneous fields is due to: (i) non-vanishing
field-gradient ∂zE (B.0.20) and net charge-density ρ (B.0.15), as shown in Figs. B.3
and B.4, give the spatial correlations of the fields at neighboring points; (ii)
the stronger field-strength, the larger field-oscillation frequency is, as shown
in Fig. B.1; (iii) at the center z = 0 the field-strength is largest and the field-
oscillation is most rapid, and the field-oscillations at points |z| > 0 are slower
and in retard phases, as shown in Fig. B.2. The point (i) is essential, the charge
density ρ oscillates (see Figs. B.3 and B.4) proportionally to the field-gradient
Eq. (B.0.20) and at the center z = 0 the charge density and field-gradient are
zero independent of time evolution (see Fig. B.4). Such field-propagation is
reminiscent of the drift motion of particles driven by a field-gradient ( “pon-
deromotive”) force, which is a cycle-averaged force on a charged particle in
a spatially inhomogeneous oscillating electromagnetic field Boot and R.-S.-
Harvie (1957); Kibble (1966); Hopf et al. (1976).
Radiation fields. As numerically shown in Fig. B.1-B.6, the propagation of
the electric field wave Eind(z, t) inside the region R is rather complex, due
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Figure B.1.: Electric fields E(z, t) are plotted as functions of t at three different
points: z = 0 (red), z = `/4 (blue) and z = `/2 (black). Analogously to the
plasma oscillation in homogeneous fields, the stronger initial field-strength,
the larger field-oscillation frequency is, i.e., ω(z = 0) > ω(z = `/4) > ω(z =
`/2), where ω(z) is the field oscillating frequency at the spatial point z.

to th high non-linearity of wave equation (B.0.24). Nevertheless, the electro-
magnetic radiation fields Erad and Brad far away from the region R are com-
pletely determined and could be experimentally observable. At the space-
time point (t, x) of an observer, the electromagnetic radiation fields Erad(z, t)
and Brad(z, t), emitted by the variations of electric charge density ρ(x′, t′) and
current-density J(x′, t′) in the region R (x′ ∈ R) and time t′ (t′ ∈ T), are given
by Jackson (1998)

Erad(t, x) =−
∫
R

d3x′
{ R̂

R2

[
ρ(t′, x′)

]
ret +

R̂
cR

[
∂ρ(t′, x′)

∂t′

]
ret

+
1

c2R

[
∂J(t′, x′)

∂t′

]
ret

}
, (B.0.25)

Brad(t, x) =
∫
R

d3x′
{[

J(t′, x′)
]

ret ×
R̂

cR2 +

[
∂J(t′, x′)

∂t′

]
ret
× R̂

c2R

}
. (B.0.26)

where the subscript “ret” indicates t′ = t−R/c, R = |x− x′|. In the radiation
zone |x| � |x′| and R ≈ |x|, where is far away from the plasma oscillation
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Figure B.2.: Electric fields E(z, t) are plotted as functions of z at three different
times in the Compton unit: t = 1(black), t = 500 (blue) and t = 1500 (red).
As shown in Fig. B.1, the electric field E(z, t) oscillation at the center (z = 0)
is most rapid, and gets slower and slower at spatial points (|z| > 0) further
away from the center. This implies the electric field wave propagating in the
space, and the directions of propagations are indicated.

region R, the radiation fields (B.0.25,B.0.26) approximately are

Erad(t, x) ≈ − 1
c2|x|

∫
d3x′

[
∂J(t′, x′)

∂t′

]
ret

, (B.0.27)

Brad(t, x) ≈ R̂× Erad(t, x), (B.0.28)

where we use the charge conservation (B.0.9) and total neutrality condition
of pairs

∫
R

d3x′ρ(t′, x′) = 0. The first terms in Eqs. (B.0.25,B.0.26) are the
Coulomb-type fields decaying away as O(1/|x|2). The Fourier transforms of
Eqs. (B.0.27) and (B.0.28) are

Ẽrad(ω, x) ≈ − e−ik|x|

c2|x| D̃(ω), B̃rad(ω, x) ≈ R̂× Ẽrad(ω, x) (B.0.29)

D̃(ω) ≡
∫
R

d3x′
∫
T

dt′eiωt′
[

∂J(t′, x′)
∂t′

]
, (B.0.30)

where the wave number k = ω/c and the numerical integration (B.0.30) is
carried out overall the space-time evolution of the electric current J(x′, t′) (see
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Figure B.3.: The net charge density ρ(z, t) [see Eq. (B.0.15)] as a function of
z at three different times: t = 1 (black, nearly zero), t = 500 (blue) and t =
1500 (red). It is shown that the net charged density value |ρ(z, t)| is zero at
the center where the initial electric field gradient vanishes [see Eq. (B.0.20)],
whereas it increases as the initial electric field gradient increases for |z| > 0.

Figs. B.6 and B.5). For definiteness we thinks of the oscillation currents oc-
curring for some finite interval of time T or at least falling off for remote past
and future times, so that the total energy radiated is finite, thus the energy ra-
diated per unit solid angle per frequency interval is given by Jackson (1998)

d2 I
dωdΩ

= 2|D̃(ω)|2. (B.0.31)

The squared amplitude |D̃(ω)|2 as a function of ω gives the spectrum of the
radiation (see Fig. B.7), which is very narrow as expected with a peak locat-
ing at ωpeak ≈ 0.08me = 4keV for E0 = Ec, consistently with the plasma
oscillation frequency (see Fig. B.1). The energy-spectrum and its peak are
shifted to high-energies as the initial electric field-strength increases, and the
relation between the spectrum peak location and the electric field-strength
is shown in Fig. B.8. In addition, the energy-spectrum and its peak are also
shifted to high-energies as the temporary duration T of plasma oscillations
increases (see Fig. B.1). In calculations, the temporary duration T = 3500τC
is chosen, not only to satisfy the adiabaticity condition Eq. (B.0.23) 4, but also

4We check the two cases E0 = Ec and E0 = 10Ec, and find for the first oscillation η = 865
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Figure B.4.: The net electric charge density ρ(z, t) [see Eq. (B.0.15)] as a func-
tion of t at three different points: z = 0 (red, nearly zero) , z = `/4 (blue) and
z = `/2 (black). It is shown that the net electric charge density ρ(z, t) (except
the center z = 0) increases as time.

to be in the time duration when the oscillatory behavior is distinctive (see
Figs. B.1,B.4,B.6), since the oscillations of pair-induced currents damp and
pairs annihilate into photons Ruffini et al. (2003b). The radiation intensity
(B.0.31) depends on the strength, spatial dimension and temporal duration of
strong external electric fields, created by either experimental setups or astro-
physical conditions.
Conclusions and remarks. We show the space and time evolutions of pair-
induced electric charges, currents and fields in strong external electric fields
bounded within a spatial region. These results imply the wave propagation
of the pair-induced electric field and wave-transportation of the electromag-
netic energy in the strong field region. Analogously to the electromagnetic
radiation emitted from an alternating electric current, the space and time vari-
ations of pair-induced electric currents and charges emit an electromagnetic
radiation. We show that this radiation has a the peculiar energy-spectrum
(see Fig. B.7) that is clearly distinguishable from the energy-spectra of the
bremsstrahlung radiation, electron-positron annihilation and other possible
background events. This possibly provides a distinctive way to detect the

and η = 487 respectively. As can be seen for the Fig. B.1 the frequencies ω of pair-
oscillations increase with time which means the parameter η becoming smaller. Eventu-
ally it may reach unity so the formula (B.0.22) becomes inapplicable.
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Figure B.5.: Electric current densities jz(z, t) [see Eq. (B.0.14)] as functions
of z at three different times: t = 1 (black), t = 500 (blue) and t = 1500 (red).
Following Eq. (B.0.19), the electric current alternates following the alternating
electric field (see Fig. B.1), the plateaus indicate the current saturation for
v ∼ c and its spatial distribution is determined by the initial electric field
Eext(z).

radiative signatures for the production and oscillation of electron-positron
pairs in ultra-strong electric fields that can be realized in either ground labo-
ratories or astrophysical environments.

As mentioned in introduction, the critical electric field Ec will be reached
soon in ground laboratories and sensible methods to detect signatures of pair-
productions become important. Recently, the momentum signatures of pair-
production is found Hebenstreit et al. (2009) in a time-varying electric field
E(t) with sub-cycle structure. On the other hand, space-based telescopes the
Swift-BAT NASA (2004), NuSTAR caltech (2010) and Astro-H japan (2010)
focusing high-energy X-ray missions, will also give possibilities of detecting
X-ray radiation signature, discussed in this paper, from compact stars with
electromagnetic structure.
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Figure B.6.: Electric current densities jz(z, t) [see Eq. (B.0.14)] as functions of
t at three different points: z = `/2 (black), z = `/4 (blue) and z = 0 (red).
The plateaus (see also Fig. B.6) for the current saturation values increases
as time, mainly due to the number-densities n± of electron-positron pairs
increase with time. In addition, they are maximal at the center z = 0 where
the initial electric field is maximal, and decrease as the initial electric field
Eext(z) decreasing for |z| > 0.
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Figure B.7.: In the Compton unit, normalizing D̃(ω) [see Eq. (B.0.30)] by
the volume V ≡

∫
d3x′ of the radiation source J(t′, x′), we plot |D̃(ω)|2 [see

Eq. (B.0.31)] representing the narrow energy-spectrum of the radiation field
Erad and peak locates at the frequency ωpeak ≈ 0.08me.
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Figure B.8.: The peak frequency ωpeak of the radiation approximately varies
from 4keV to 70 keV as the initial electric field strength E0 varies from Ec to
10Ec. The values for very large field-strengths E0/Ec > 1 possibly receive
corrections, since the semiclassical pair-production rate (B.0.22) is approxi-
mately adopted and the pressure term (see footnote on page 641) is not prop-
erly taken into account.
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C. Electron and positron pair
production in gravitational
collapse

C.1. Introduction.

In the gravitational collapse or pulsation of neutral stellar cores at densities
comparable to the nuclear density, complex dynamical processes are expected
to take place. These involve both macroscopic processes such as gravitational
and hydrodynamical processes, as well as microscopic processes due to the
strong and electroweak interactions. The time and length scales of macro-
scopic processes are much larger than those of the microscopic processes.
Despite the existence of only a few exact solutions of Einstein’s equations for
simplified cases, macroscopic processes can be studied rather well by numer-
ical algorithms. In both analytical solutions and numerical simulations it is
rather difficult to simultaneously analyze both macroscopic and microscopic
processes characterized by such different time and length scales. In these
approaches, microscopic processes are approximately treated as local and in-
stantaneous processes that are effectively represented by a model-dependent
parametrized equation of state (EOS). We call this approximate locality.

Applying approximate locality to electric processes, as required by the charge
conservation, one is led to local neutrality : positive and negative charge den-
sities are exactly equal over all space and time. As a consequence, all electric
fields and processes are eliminated. An internal electric field (charge sep-
aration) must be developed Olson and Bailyn (1975, 1976); Rotondo et al.
(2011a,b) in a totally neutral system of proton and electron fluids in a gravi-
tational field. If the electric field (process) is weak (slow) enough, approximate
locality is applicable. However, this should be seriously questioned when the
electric field (process) is strong (rapid). For example, neutral stellar cores
reach the nuclear density where positive charged baryons interact via the
strong interaction while electrons do not, in addition to their widely different
masses. As a result, their pressure, number, and energy density are described
by different EOS, and a strong electric field (charge separation) on the baryon
core surface is realized Usov (1998); Popov et al. (2009) in an electrostatic
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equilibrium state.
Furthermore, either gravitationally collapsing or pulsating of the baryon

core leads to the dynamical evolution of electrons. As a consequence, the
strong electric field dynamically evolves in space and time, and some electro-
magnetic processes can result if their reaction rates are rapid enough, for ex-
ample, the electron-positron pair-production process of Sauter-Heisenberg-
Euler-Schwinger (see the review Ruffini et al. (2010)) for electric fields E &
Ec ≡ m2

e c3/(eh̄). If this indeed occurs, gravitational and pulsating energies
of neutral stellar cores are converted into the observable energy of electron-
positron pairs via the space and time evolution of electric fields. In this chap-
ter, we present our studies of this possibility (the natural units h̄ = c = 1 are
adopted, unless otherwise specified).

C.2. Basic equations for dynamical evolution.

We attempt to study possible electric processes in the dynamical perturba-
tions of neutral stellar cores. These dynamical perturbations can be caused
by either the gravitational collapse or pulsation of neutral stellar cores. The
basic equations are the Einstein-Maxwell equations and those governing the
particle number and energy-momentum conservation

(n̄e,BUν
e,B);ν=0,
Gµν=−8πG(Tµν + Tem

µν ),

(Tν
µ);ν=−Fµν Jν,

Fµν
;ν=4π Jµ, (C.2.1)

in which the Einstein tensor Gµν, the electromagnetic field Fµν (satisfying
F[αβ,γ] = 0) and its energy-momentum tensor Tem

µν appear; Uν
e,B and n̄e,B are,

respectively, the four velocities and proper number-densities of the electrons
and baryons. The electric current density is

Jµ = en̄pUµ
B − en̄eU

µ
e , (C.2.2)

where n̄p is the proper number-density of the positively charged baryons.
The energy-momentum tensor Tµν = Tµν

e + Tµν
B is taken to be that of two

simple perfect fluids representing the electrons and the baryons, each of the
form

Tµν
e,B= p̄e,Bgµν + ( p̄e,B + ρ̄e,B)U

µ
e,BUν

e,B, (C.2.3)
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where ρ̄e,B(r, t) and p̄e,B(r, t) are the respective proper energy densities and
pressures.

In this chapter, baryons indicate hadrons, or their constituents (quarks)
that carry baryon numbers. Electrons indicate all negatively charged lep-
tons. Baryon fluid and electron fluid are separately described for the reason
that in addition to baryons being much more massive than electrons, the EOS
of baryons p̄B = p̄B(ρ̄B) is very different from the electron one p̄e = p̄e(ρ̄e)
due to the strong interaction. Therefore, in the dynamical perturbations of
neutral stellar cores, one should not expect that the space-time evolution of
number density, energy density, four velocity, and pressure of baryon fluid
be identical to the space-time evolution of counterparts of electron fluid. The
difference of space-time evolutions of two fluids results in the electric cur-
rent (C.2.2) and field Fµν, possibly leading to some electric processes. In a
simplified model for the dynamical perturbations of neutral stellar cores, we
approximately study possible electric processes by assuming that the equilib-
rium configurations of neutral stellar cores are initial configurations.

C.3. Equilibrium configurations.

In Refs. Olson and Bailyn (1975, 1976); Rotondo et al. (2011a,b), the equi-
librium configurations of neutral stellar cores, whose densities are smaller
than nuclear density nnucl, are studied on the basis of hydrostatic dynam-
ics of baryon and electron fluids in the presence of long-ranged gravitational
and Coulomb forces. In these equilibrium configurations, very weak electric
fields E� Ec are present, resulted from the balance between attractive grav-
itational force and repulsive Coulomb force. This electric field is too weak to
make important electric processes, for example, electron-positron pair pro-
ductions. We are interested in the case where strong electric fields are present.
This leads us to consider strong electric fields in the surface layer of baryon
cores of compact stars (quark or neutron stars) at or over the nuclear den-
sity. In this case, we assume that baryons form a rigid core of radius Rc and
density

n̄B,p(r)
n̄B,p

=

[
exp

r−Rc

ζ
+ 1
]−1

, n̄B,p ≈
NB,p

(4πR3
c /3)

, (C.3.1)

where n̄p/n̄B ≈ Np/NB < 1, NB(Np) is the number of total (charged) baryons
and n̄B,p & nnucl ≈ 1.4× 1038cm−3. The baryon core has a sharp boundary
(r ∼ Rc) of the width ζ ∼ m−1

π due to the strong interaction. The line element

655



C. Electron and positron pair production in gravitational collapse

is Bekenstein (1971); Mashhoon and Partovi (1979)

ds2 = −gttdt2 + grrdr2 + r2dθ2 + r2 sin2 θdφ2 , (C.3.2)

g−1
rr (r) = 1− 2GM(r)/r + GQ2(r)/r2 ,

where mass M(r), charge Q(r) and radial electric field E(r) = Q(r)/r2.

Electrons form a complete degenerate fluid and their density neq
e (r) obeys

the following Poisson equation and equilibrium condition Popov et al. (2009);
Rueda et al. (2011):

d2Veq

dr2 +

[
2
r
− 1

2
d
dr

ln(gttgrr)

]
dVeq

dr
= −4πegrr(n̄pUt

p − neq
e Ut

e), (C.3.3)

EF
e = g1/2

tt

√
|PF

e |2 + m2
e −me − eVeq = const. ,

where Ut
p = Ut

e = (1, 0, 0, 0), EF
e , and PF

e = (3π2neq
e )1/3 are the Fermi energy

and momentum, Veq(r) and Eeq = −(grr)−1/2∂Veq(r)/∂r are the static electric
potential and field. In the ultrarelativistic case |PF

e | � me, we numerically
integrate Eq. (C.3.3) with boundary conditions:

neq
e (r)|r�Rc =nB

neq
e (r)|r�Rc =

dneq
e (r)
dr

∣∣∣
r�Rc

=
dneq

e (r)
dr

∣∣∣
r�Rc

= 0. (C.3.4)

As a result, we obtain on the baryon core boundary r ≈ Rc, the nontrivial
charge-separation (np− neq

e )/nB and overcritical electric field Eeq/Ec > 0 in a
thin layer of a few electron Compton length λe [the curves (t = 0) in Fig. C.1].
This is due to the sharpness boundary (ζ ∼ m−1

π ) of the baryon core (C.3.1) at
the nuclear density, as discussed for compact stars Usov (1998); Popov et al.
(2009). Note that all electronic energy-levels Kleinert et al. (2008)

Eoccupied = e
∫

g1/2
rr drEeq(r) (C.3.5)

are fully occupied and pair-production is not permitted due to Pauli block-
ing, although electric fields in the surface layer are over critical. We want to
understand the space and time evolution of the electric field in this thin layer
and its consequence in the dynamical perturbations of baryon cores, which
can be caused by either the gravitational collapse or pulsation of baryon
cores.
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C.4. Modeling dynamical perturbations of baryon
cores.

It is rather difficult to solve the dynamical system (C.2.1-C.2.3) with the EOS
p̄B = p̄B(ρ̄B) and p̄e = p̄e(ρ̄e) for the gravitational collapse or pulsation of
baryon core and electron fluid, and to examine possible electromagnetic pro-
cesses. The main difficulty comes from the fact that the time and length scales
of gravitational and electromagnetic processes differ by many orders of mag-
nitude. In order to gain some physical insight into the problem, we are bound
to split the problem into three parts: (i) first, we adopt a simplified model
to describe the dynamical perturbations of baryon cores; (ii) second, we ex-
amine how electron fluid responds to this dynamical perturbation of baryon
cores; (iii) third, we check whether the resulted strong electric fields can lead
to very rapid electromagnetic processes, for example, electron-positron pair
production.

As for the first part, we adopt the following simplified model. Suppose
that at the time t = 0 the baryon core is in the equilibrium configuration
(C.3.1) with the radius Rc and starts dynamical perturbations with an inward
velocity Ṙc(t) or pulsation frequency ωpulsa ' Ṙc/Rc. The rate of dynamical
perturbations of baryon cores is defined as τ−1

coll = Ṙc/Rc . c/Rc. We further
assume that in these dynamical perturbations, baryon cores are rigid, based
on the argument that as the baryon core density n̄B,p (C.3.1) increases, the
EOS of baryons p̄B = p̄B(ρ̄B) due to the strong interaction is such that the
baryon core profile (C.3.1) and boundary width ζ ∼ m−1

π are maintained in
the nuclear relaxation rate τ−1

stro ∼ mπ, which is much larger than τ−1
coll. Thus,

due to these properties of strong interaction, the dynamical perturbation of
the baryon core induces an inward charged baryon current-density

Jr
B(Rc) = en̄p(Rc)Ur

B(Rc), (C.4.1)

on the sharp boundary of baryon core density (C.3.1) at Rc, where the baryon
density n̄B,p(Rc) = 0.5n̄B,p and the four-velocity Ur

B(Rc) 6= 0. We have not
yet been able, from the first principle of strong interaction theory, to derive
this boundary property (C.4.1) of baryon cores undergoing dynamical per-
turbations, which essentially are assumptions in the present chapter, and the
boundary density n̄B,p(Rc) and the boundary four-velocity Ur

B(Rc) are two
parameters depending on dynamical perturbations. This is in the same situa-
tion that so far one has not yet been able, from the first principle of strong
interaction theory, to derive the sharp boundary profile (C.3.1) of baryon
core densities of static compact stars Usov (1998); Popov et al. (2009). How-
ever, we have to point out that the boundary properties (C.3.1) and (C.4.1) of
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C. Electron and positron pair production in gravitational collapse

the baryon core undergoing dynamical perturbations are rather technical as-
sumptions for the following numerical calculations of dynamical evolution of
electron fluid and electric processes in the Compton time and length scales.
These assumptions could be abandoned if we were able to simultaneously
make numerical integration of differential equations for both dynamical per-
turbations of baryon cores at macroscopic length scale and strong and electric
processes at microscopic length scale.

C.5. Dynamical evolution of electron fluid

In this section, we attempt to examine how the electron fluid around the
boundary layer of the baryon core responds to the dynamical perturbations
of the baryon core described by the boundary properties (C.3.1) and (C.4.1).
Given these boundary properties at different values of baryon core radii Rc,
we describe electrons and electric fields around the boundary layer of baryon
core by Maxwell’s equations, the electron number and energy-momentum
conservation laws (C.2.1) in the external metric field (C.3.2). In addition, we
assume that the electron fluid is completely degenerate, and its EOS is given
by

ρ̄e(t, r)=2
∫ PF

e

0
p0d3p/(2π)3,

p̄e(t, r)=
1
3

2
(2π)3

∫ PF
e

0

p2

p0 d3p , (C.5.1)

where the single-particle spectrum is p0 = (p2 + m2
e )

1/2 and the Fermi mo-
mentum is PF

e = (3π2n̄e)1/3. In the present chapter, for the sake of simplicity,
we set the temperature of electron fluid to be zero and neglect all temperature
effects, which may be important and will be studied in future.

The electron fluid has four velocity Uµ
e = (Ut, Ur)e, radial velocity ve ≡

(Ur/Ut)e, Ut
e = g−1/2

tt γe and Lorentz factor γe ≡ (1 + UrUr)1/2
e = [1 +

(grr/gtt)v2
e ]
−1/2. In the rest frame at a given radius r it has the number

density ne = n̄eγe, energy density εe = (ρ̄e + p̄ev2
e )γ

2
e , momentum density

Pe = (ρ̄e + p̄e)γ2
e ve, and ve = Pe/(εe + p̄e). In the rest frame, the number and

energy-momentum conservation laws for the electron fluid, and Maxwell’s
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equations are given by(
neg−1/2

tt

)
,t
+
(

neveg−1/2
tt

)
,r
= 0, (C.5.2)

(εe),t + (Pe),r +
1

2gtt

[
∂grr

∂t
Peve −

∂gtt

∂t
(εe + p̄e)

]
= −eneveEg−1/2

tt , (C.5.3)(
Pe

grr

gtt

)
,t
+

(
p̄e + Peve

grr

gtt

)
,r

+
εe + p̄e

2gtt

(
∂gtt

∂r
− ∂grr

∂r
v2

e

)
= −eneEg−1/2

tt , (C.5.4)

(E),t = −4πe(npvp − neve)g−1/2
tt , (C.5.5)

where (· · ·),x ≡ (−g)−1/2∂(−g)1/2(· · ·)/∂x, and in the line (C.5.5), the bound-
ary velocity vp of the baryon core comes from the baryon current-density
(C.4.1). We have the boundary four-velocity Ur

B of the baryon core,

vp = vB ≡ (Ur/Ut)B, Ut
B = g−1/2

tt γB, (C.5.6)

and the Lorentz factor

γB ≡ (1 + UrUr)1/2
B = [1 + (grr/gtt)v2

p]
−1/2, (C.5.7)

at the baryon core boundary Rc.
In the static case for vp = ve = 0, Eqs. (C.5.1-C.5.5) are equivalent to

Eq. (C.3.3). Provided an initial equilibrium configuration (C.3.3) and proper
boundary conditions, we numerically integrate these five equations (C.5.1-
C.5.5) to obtain five variables ne(t, r), εe(t, r), Pe(t, r), p̄(t, r) and E(t, r) de-
scribing the electric processes around the baryon core boundary.

C.6. Oscillations of electron fluid and electric field.

We consider the baryon core of mass M = 10M� and radius Rc ∼ 107cm
at the nuclear density nnucl, and select its boundary velocity vp = 0.2c to
represent possible dynamical perturbations of baryon cores. In the proper
frame of a rest observer at the core radius Rc, where gtt(Rc) ≈ g−1

rr (Rc), we
chose the surface layer boundaries ξ− ≈ −λe, ξ+ ≈ 3.5λe, at which Eeq(ξ±) ≈
0 and proper thickness ` = ξ+ − ξ−, and numerically integrate Eqs. (C.5.1-
C.5.5) for the electron fluid. Numerical results are presented in Figs. C.1 and
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C.2, showing that total electric field

E(t, r) = Eeq(r) + Ẽ(t, r), (C.6.1)

where electron number density, energy density, and pressure oscillate around
their equilibrium configurations Han et al. (2010). This is due to the fact
that electrons do not possess the strong interaction and their mass is much
smaller than the baryon one, as a result, the current density of electron fluid
in the boundary layer does not exactly follow the baryon core current den-
sity (C.4.1). Instead, triggered by the baryon core current (C.4.1), total electric
fields E(t, r) deviate from Eeq(r) and increase, which breaks the equilibrium
condition (C.3.3), namely, the balance between pressure and electric force
acting on electrons, dPF

e /dr + eEeq = 0. Accelerated by increasing electric
fields, electrons outside the core start to move inwards following the collaps-
ing baryon core. This leads to the increase of the electron pressure (C.5.1)
and the decrease of the electric fields. On the contrary, increasing electron
pressure pushes electrons backwards, and bounces them back. Overcritical
electric fields work against the pressure of ultrarelativistic electrons. As a
consequence, oscillations with frequency ω = τ−1

osci ∼ 1.5me around the equi-
librium configuration take place in a thin layer of a few Compton lengths
around the boundary of baryon core. These are the main results presented in
this chapter. We would like to point out that these results should not depend
on the boundary properties (C.3.1) and (C.4.1) that we assume for the dy-
namical perturbations of baryon cores. The reason is that both electron and
proton fluids in baryon cores are at or over nuclear density, and their Fermi
momenta are the order of the pion mass mπ; therefore, electric fields must
be at or over critical value Ec = m2

e /e to do work against motion of charge
separation between positively charged baryon and electron fluids, and the
frequency of oscillation because of the backreaction should also be the order
of me. It is worthwhile that these results are further checked by full numeri-
cal calculations without assuming the boundary properties (C.3.1) and (C.4.1)
of baryon cores, which undergo the dynamical perturbations caused by the
gravitational collapse or pulsation.

Suppose that the dynamical perturbation of the baryon core is caused by
either the gravitational collapse or pulsation of the baryon core, that gains
the gravitational energy. Then, in this oscillating process, energy transforms
from the dynamical perturbation of the baryon core to the electron fluid via
an oscillating electric field. This can been seen from the energy conservation
(C.2.1) along a flow line of the electron fluid for ve 6= vp

Uµ
e (Tν

µ);ν = en̄pFµνUµ
e Uν

B = en̄pγeγB(vp − ve)grrE, (C.6.2)
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Figure C.1.: The space and time evolution of the electric field (left) and
charge-separation (right) around the boundary layer of the baryon core,
M = 10M�, Rc ≈ 107cm, and vp = 0.2c. The coordinate is ξ ≡ r− Rc.

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−150

−100

−50

0

50

100

150

200

250

 t/τc

 E
(ξ

)/
E

c

ξ=0.035λ
C

ξ=−0.139λ
C

ξ=−0.277λ
C

ξ=−0.69λ
C

Figure C.2.: Time evolution of electric fields at different radial positions
around the boundary layer of the baryon core, M = 10M�, Rc ≈ 107cm
and vp = 0.2c. The coordinate is ξ ≡ r− Rc.
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although we have not yet explicitly proved it. The energy density of the os-
cillating electric field is

εosci ≡ [E2(t, r)− E2
eq(r)]/(8π). (C.6.3)

The energy densities of the oscillating electric field and electron fluid are
converted from one to another in the oscillating process with frequencies
ω ∼ τ−1

osci ∼ 1.5me around the equilibrium configuration. However, the oscil-
lating electron fluid has to relax to the new equilibrium configuration deter-
mined by Eqs. (C.3.3) and (C.3.4) with a smaller baryon core radius R′c < Rc.
As a result, the oscillating electric field must damp out and its lifetime τrelax
is actually a relaxation time to the new equilibrium configuration. As shown
in Fig. C.2 the relaxation rate τ−1

relax ∼ 0.05me. We notice very different time
scales of strong interacting processes, electric interacting processes and dy-
namical perturbations of baryon cores: τ−1

stro � τ−1
osci � τ−1

relax � τ−1
coll.

Moreover, when E(r, t) > Eeq(r) (see Fig. C.1), the unoccupied electronic
energy-level can be obtained by Kleinert et al. (2008)

Eunocuppied=e
∫

g1/2
rr drE(t, r)− Eocuppied

=e
∫

g1/2
rr drẼ(t, r), (C.6.4)

see Eq. (C.3.5). This leads to pair production in strong electric fields and con-
verts electric energy into the energy of electron-positron pairs, provided the
pair-production rate τ−1

pair is faster than the oscillating frequency ω = τ−1
osci.

Otherwise, the energy of oscillating electric fields would completely be con-
verted into the electrostatic Coulomb energy of the new equilibrium config-
uration of electron fluid, which cannot be not radiative.

C.7. Electron-positron pair production

We turn to the pair-production rate in spatially inhomogeneous and tempo-
rally oscillating electric fields E(t, r). Although the oscillating frequency ω is
rather large, the pair-production rate τ−1

pair can be even larger due to the very
strong electric fields E(t, r). The pair-production rate can be approximately
calculated by the formula for static fields. The validity of this approximation
is justified (see Ruffini et al. (2010); Brezin and Itzykson (1970)) by the adi-
abaticity parameter η−1 = (ω/me)(Ec/Emax) � 1, where Emax is the maxi-
mal value of the electric field on the baryon core surface r ' Rc. Therefore
we adopt Eqs. (38) and (39) and (64)-(66) in Ref. Kleinert et al. (2008) for the
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Sauter electric field to estimate the density of the pair-production rate in the
proper frame at the core radius Rc

Rpair ≈
e2EẼ

4π3 Ḡ0(σ)
e−π(Ec/E)G0(σ) ∼ e2EẼ

4π3 , (C.7.1)

where Ẽ (instead of E) in the prefactor accounts for the unoccupied elec-
tric energy levels, G0(σ) → 0 and Ḡ0(σ) → 1 for σ = (`/λe)(E/Ec) � 1.
The electron-positron pairs screen the oscillating field Ẽ so that the number
of pairs can be estimated by Npair ≈ 4πR2

c(Ẽ/e). The pair-production rate
is τ−1

pair ≈ Rpair(4πR2
c`)/Npair ∼ αme(`/λe)(E/Ec) ' 6.6me > τ−1

osci. The
number density of pairs is estimated by npair ≈ Npair/(4πR2

c`). Assum-
ing the energy density εosci of oscillating fields is totally converted into the
pair energy density, we have the pair mean energy ε̄pair ≡ εosci/npair. Us-
ing the parameters vp ≈ 0.2c, Rc ≈ 107cm, and M = 10M�, we obtain
εosci ≈ 4.3 × 1028 ergs/cm3, npair ≈ 1.1 × 1033/cm3, and ε̄pair ≈ 24.5MeV.
These estimates are preliminary without considering the efficiency of pair-
productions, possible suppression due to strong magnetic fields, and possible
enhancement due to finite temperature effect.

C.8. Gravitational collapse and Dyadosphere

Up to now, we have not discussed how the dynamical perturbations of baryon
cores can be caused by either the gravitational collapse or pulsation of baryon
cores. Actually, we have not been able to completely integrate the dynami-
cal equations discussed in Sec. C.2 for the reasons discussed in Secs. C.1 and
C.4. Nevertheless, we attempt to use the results of electric field oscillation
and pair production obtained in Secs. C.5, C.6 and C.7 to gain some physical
insight into what and how electric processes could possibly occur in the grav-
itational collapse of baryon cores. For this purpose and in order to do some
quantitative calculations, we first model the gravitational collapse of baryon
cores by the following assumptions:

1. the gravitationally collapsing process is made of the sequence of events
(in time) occurring at different radii Rc of the baryon core;

2. at each event the baryon core maintains its density profile and sharp
boundary as described by Eqs. (C.3.1) and (C.4.1).

The first assumption is based on the arguments that (i) in the electric pro-
cesses discussed in Sec. C.6, the charge-mass ratio Q/M of the baryon core
can possibly be approaching to 1, then the collapse process of the baryon core
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is slowing down and its kinetic energy is vanishing because the attractive
gravitational energy gained is mostly converted into the repulsive Coulomb
energy of the baryon core; (ii) then this Coulomb energy can be possibly con-
verted into the radiative energy of electron-positron pairs as discussed in
Sec. C.7, and the baryon core restarts acceleration by gaining gravitational en-
ergy. We have already discussed the second assumption in Secs. C.4 and C.6.
Here we want to emphasize that (i) the sharp boundary properties (C.3.1) and
(C.4.1) in the second assumption are technically used in order to numerically
calculate the dynamics of electron fluid in the thin shell around the baryon
boundary (Secs. C.5, C.6 and C.7); (ii) in the gravitational collapse or pulsa-
tion of neutral stellar cores at or over nuclear density, these sharp boundary
properties (C.3.1) and (C.4.1) should be abandoned in a more realistic model
of simultaneously integrating dynamical equations of electron and baryon
fluids over the entire stellar core at macroscopic scales. This turns out to be
much more complicated and we will focus on this study in the future.

On the basis of these assumptions, the boundary velocity vp(Rc) (C.5.6)
and boundary radius Rc [or boundary density n̄B,p(Rc) (C.3.1)] of the baryon
core at or over the nuclear density are no longer independent parameters,
instead they should be related by the gravitational collapse equation of the
baryon core. We adopt a simplified model for the gravitational collapse of
the baryon core by approximately using the collapsing equation for a thin
shell Israel (1966); De la Cruz and Israel (1967); Bekenstein (1971); Cherubini
et al. (2002); Ruffini and Vitagliano (2002)(

Ω
F

)2 (dRc

dt

)2

=

[
1 +

GM
2Rc

(1− ξ2
Q)

]2

− 1, (C.8.1)

where at different radii Rc of the baryon core, we define the charge-mass ratio

ξQ≡Qeq/(G1/2M) < 1; Qeq = R2
c Eeq, (C.8.2)

and

Ω≡1− (M/2Rc)(1 + ξ2
Q)

F≡1− (2M/Rc) + (Qeq/Rc)
2. (C.8.3)

The collapsing Eq. (C.8.1) for the collapsing velocity Ṙc is based on the con-
dition that at each collapsing radius Rc, the shell starts to collapse from rest.
As a result, using these Eqs. (C.8.1-C.8.3) we describe the sequence of events
in the gravitationally collapsing process in terms of the collapsing velocities
vp = Ṙc = dRc/dt defined by (C.5.6) and (C.5.7) at different collapsing radii
Rc of the baryon core, as shown in Fig. C.3. Thus, at each event the induced
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Figure C.3.: The estimate of the core collapsing velocity vp ≡ Ṙc = dRc/dt at
different collapsing radii Rc for the baryon core of mass M = 10 M�.

inward charged baryon current-density (C.4.1) is given by

Jr
B = en̄pUr

B ≈ en̄p(ṘcΩ/F), (C.8.4)

as a function of the collapsing radius Rc. The strength of this charged baryon
current density (C.8.4) depends also on the ratio of the charged baryon num-
ber and total baryon number (Np/NB), which varies in the gravitational col-
lapsing process because of the β processes Mohammadi et al. (2012). In this
chapter, the β processes are not considered and the charged baryon (proton)
number Np is constant; we select two values Np/NB ≈ 1/38 or Np/NB ≈
1/380 for the charged baryon current density Eq. (C.8.4). The collapsing
process rate is τ−1

coll = Ṙc/Rc . c/Rc. If the dynamical perturbation of the
baryon core is caused by the gravitational core pulsation, the pulsation fre-
quency can be expressed as ωpulsa ' Ṙc/Rc = τcoll.

In the sequence of the gravitationally collapsing process, at each event
characterized by [Rc, vp(Rc)], we first solve Eqs. (C.3.3) and (C.3.4) of the
equilibrium configuration to obtain the number density (neq

e ) and electric
field (Eeq) as the initial configuration of the electron fluid and electric field.
Then, with this initial configuration we numerically solve the dynamical equa-
tions (C.5.1-C.5.5) to obtain the dynamical evolution of electron fluid and
electric field within the thin shell (a few Compton lengths) around the baryon
core boundary, described by Eqs. (C.3.1) and (C.8.4). As a result, based on the
analysis presented in Sec. C.7 we calculate the energy and number densities
of the electron-positron pairs produced at each event in the sequence of the
gravitationally collapsing process. These results are plotted in Figs. C.4. Lim-
ited by numerical methods, we cannot do calculations for smaller radii.

In addition, at each event in the sequence of the gravitationally collaps-
ing process, using the Gauss law, Q = R2

c E, we calculate the charge-mass
ratio Q/M averaged over oscillations of electric fields, Q/M < 1 as shown
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Figure C.4.: The energy (left) and number (right) densities of electron-
positron pairs at selected values of collapsing radii Rc for M = 10M� and
Np/NB ≈ 1/38 (upper); 1/380 (lower). We select Rmax

c ∼ 107cm so that
n̄B ∼ nnucl.
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Figure C.5.: The charge-mass ratio Q/M averaged over oscillations of electric
fields is plotted at different collapsing radii Rc for the baryon core of mass
M = 10 M�.

in Fig. C.5. The averaged charge-mass ratio Q/M is not very small, rather
about 0.4 (see Fig. C.5), implying the possible validity of the first assumption
we made that the gravitational collapsing process is approximately made of
a sequence of events. In principle, at Q/M = 1 the gravitational collapsing
process should stop, whereas the gravitational collapsing process is continu-
ous for Q/M = 0 without considering electric interactions.

It is clear that the ratio Np/NB becomes larger, the charged baryon cur-
rent density (C.4.1) or (C.8.4) becomes larger, and all effects of electrical pro-
cesses we discussed in Secs. C.5, C.6 and C.7 become larger. As shown in
Figs. C.4, for the ratio Np/NB ≈ 1/38, the energy density of electron-positron
pairs is about 1031 ergs/cm3, and the number density of electron-positron
pairs is about 1035.6 /cm3. The mean energy of electron-positron pairs is
ε̄pair ≡ εosci/npair ∼ 10–50 MeV. While, for the ratio Np/NB ≈ 1/380, the
energy density of electron-positron pairs is about 1030 ergs/cm3, the number
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density of electron-positron pairs is about 1034.6 /cm3, and the mean energy
of electron-positron pairs ε̄pair ≡ εosci/npair ∼ 10–50 MeV does not change
very much.

It this chapter, it is an assumption that the gravitationally collapsing pro-
cess is represented by the sequence of events: the baryon core starts to col-
lapse from rest by gaining gravitational energy, the increasing Coulomb en-
ergy results in decreasing kinetic energy and slowing down the collapse pro-
cess, the electric processes discussed in Secs. C.5, C.6 and C.7 convert the
Coulomb energy into the radiative energy of electron-positron pairs, and as
a result the baryon core restarts to accelerate the collapse process by further
gaining gravitational energy. This indicates that in the gravitationally col-
lapsing process, the gravitational energy must be partly converted into the
radiative energy of electron-positron pairs. However, we have not been able
so far to calculate all processes with very different time and length scales
from one event to another in the sequence, so that it is impossible to quan-
titatively obtain the rate of the conversion of the gravitational energy to the
energy of electron-positron pairs. Nevertheless, by summing over all events
in the sequence of the gravitationally collapsing process, we approximately
estimate the total number and energy of electron-positron pairs produced in
the range Rc ∼ 5 × 105 − 107cm: 1056–1057 and 1052–1053 erg for the ratio
Np/NB ≈ 1/38; 1055–1056 and 1051–1052 erg for the ratio Np/NB ≈ 1/380.
These electron-positron pairs undergo the plasma oscillation in strong elec-
tric fields and annihilate to photons to form a neutral plasma of photons and
electron-positron pairs Ruffini et al. (2003b,a). This is reminiscent of the vac-
uum polarization of a charged black hole Damour and Ruffini (1975); Cheru-
bini et al. (2009) and a sphere of electron-positron pairs and photons, called a
Dyadosphere that is supposed to be dynamically created during gravitational
collapse in Refs. Ruffini and Xue (2008a); Preparata et al. (1998, 2003).

C.9. Summary and remarks.

In the simplified model for the baryon cores of neutral compact stars, we
show possible electric processes for the production of electron-positron pairs
within the thin shell (a few Compton lengths) around the boundary of baryon
cores that undergo gravitationally collapsing or pulsating processes, depend-
ing on the balance between attractive gravitational energy and repulsive elec-
tric and internal energies (see the numerical results in Ref. Ghezzi (2005);
Ghezzi and Letelier (2007)). This indicates a possible mechanism that the
gravitational energy is converted into the energy of electron-positron pairs in
either baryon core collapse or pulsation.

In theory, this is a well-defined problem based on the Einstein-Maxwell
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C. Electron and positron pair production in gravitational collapse

equations, particle-number and energy-momentum conservation (C.2.1)-(C.2.3),
and equations of states, as well as the Sauter-Heisenberg-Euler-Schwinger
mechanism. However, in practice, it is a rather complicated problem that one
has to deal with various interacting processes with very different time and
length scales. The approach we adopt in this chapter is the adiabatic approx-
imation: the interacting processes with very small rates are considered to be
adiabatic processes in comparison with the interacting processes with very
large rates. Therefore, we try to split the problem of rapid microscopic pro-
cesses from the problem of slow macroscopic processes, and focus on study-
ing rapid microscopic processes in the background of adiabatic (slowly vary-
ing) macroscopic processes. The adiabatic approximation we adopted here is
self-consistently and quantitatively justified by process rates

τ−1
strong � τ−1

pair > τ−1
osci � τ−1

relax � τ−1
coll, (C.9.1)

studied in this chapter. In addition to the adiabatic approximation, we have
not considered in this over simplified model the hydrodynamical evolution
of baryon cores, the back-reaction of oscillations and pair-production on the
collapsing or pulsating processes, and the dynamical evolution of the electron-
positron pairs and photons. Needless to say, these results should be further
checked by numerical algorithms integrating the full Einstein-Maxwell equa-
tions and proper EOS of particles in gravitational collapse. Nevertheless,
the possible consequences of these electromagnetic processes discussed in
this chapter are definitely interesting and could be possibly relevant and im-
portant for understanding energetic sources of supernovae and gamma-ray
bursts.
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D. Gravitational and electric
energies in gravitational
collapse

D.1. Introduction

In the gravitational collapse of neutral stellar cores at densities compara-
ble to the nuclear density, both macroscopic processes of gravitational and
hydrodynamical interactions and microscopic processes of the strong and
electroweak interactions occur. In theoretical principle, these can be well de-
scribed by the Einstein-Maxwell equations and the equations for the number
and energy-momentum conservations of particles, duly taking into account
their interactions. In practical calculations of analytical or numerical ap-
proach, however, it is rather difficult to simultaneously analyze both macro-
scopic and microscopic processes for the reason that the time and length
scales of macroscopic processes are much larger than those of the microscopic
processes. The approximation normally adopted is that microscopic pro-
cesses are treated as local and instantaneous processes which are effectively
represented by a model-dependent parameterized equation of state (EOS).
We call this approximate locality.

Applying the approximate locality to electric processes, as required by the
charge conservation, one is led to local neutrality: positive and negative charge
densities are exactly equal overall space and time. As a consequence, all elec-
tric processes are completely eliminated in the assumption of the approximate
locality. On the other hand, it is well known that an internal electric field
(charge-separation) must be developed Olson and Bailyn (1975, 1976); Ro-
tondo et al. (2011a,b) in a totally neutral system of proton and electron fluids
in the presence of gravitational fields. If the electric field (process) is weak
(slow) enough, the approximate locality is applicable. However, this should
be seriously questioned when the electric field (process) is strong (rapid) in
the case that neutral stellar cores reach the nuclear density where positive
charged baryons interact via strong interactions that do not associate to nega-
tive charged electrons, in addition to widely different gravitational masses of
baryons and electrons. In fact, strong electric fields are created on the baryon
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D. Gravitational and electric energies in gravitational collapse

core surface in an electrostatic equilibrium state Usov (1998); Popov et al.
(2009). Furthermore, it is shown in Ref. Han et al. (2012), either pulsating
or gravitationally collapsing of the baryon core results in the dynamical evo-
lution of electrons, as a consequence, the strong electric field dynamically
evolves in space and time, and leads to the electron-positron pair-production
process of Sauter-Heisenberg-Euler-Schwinger (see the review Ruffini et al.
(2010)) for overcritical electric fields E & Ec ≡ m2

e c3/(eh̄). When this occurs in
gravitational collapses of neutral stellar cores, some part of the gravitational
energy of neutral stellar cores converts to the observable energy of electron-
positron pairs, as a result the kinetic and internal energies of neutral stellar
cores are reduced.

As mentioned above, the difficulties of dealing with such a problem come
from very different space-time scales of macroscopic and microscopic pro-
cesses. We are forced to properly split the problem into three parts: (i) mi-
croscopic processes of electrodynamics; (ii) macroscopic processes of gravita-
tional collapses; (iii) the back-reaction of microscopic processes on macro-
scopic processes. In Ref. Han et al. (2012), we study the first part of the
problem: microscopic processes of electrodynamics for strong electric field
oscillations and pair-productions, which form a radiative electric energy, in
a postulated space-time world line of gravitational collapse. However, the
back-reaction of such radiative electric energy on collapse is not considered.
In this chapter, we start to quantitatively understand the second and third
parts of the problem in a simplified model how gravitational, electric and
kinetic energies of neutral stellar cores transfer from one to another in gravi-
tational collapses, to see the possibility of converting the gravitational energy
to the electromagnetic energy by the “breaking process” of reducing kinetic
energy Ruffini and Vitagliano (2003). The Planck units G = h̄ = c = 1 are
adopted, unless otherwise specified.

D.2. Einstein-Maxwell Equations and
conservation laws of two fluids

The gravitational collapse of neutral stellar cores is generally described by
the Einstein-Maxwell equations and those governing the particle number and
energy-momentum conservations

Gµν=−8πG(Tµν + Tem
µν ), Fµν

;ν = 4π Jµ,

(Tν
µ);ν=−Fµν Jν, (n̄e,BUν

e,B);ν = 0, (D.2.1)
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D.2. Einstein-Maxwell Equations and conservation laws of two fluids

in which appear the Einstein tensor Gµν, the electromagnetic field Fµν (satis-
fying F[αβ,γ] = 0) and its energy-momentum tensor

Tem
µν =

1
4π

(
F ρ

µ Fρν −
1
4

gµνFρσFρσ

)
; (D.2.2)

Uν
e,B and n̄e,B are respectively the four-velocities and proper number-densities

of electrons and baryons,

Jµ = en̄pUµ
B − en̄eU

µ
e (D.2.3)

is the electric current density, and n̄p < n̄B the proper number-density of the
positively charged baryons. The energy-momentum tensor Tµν = Tµν

e + Tµν
B

is taken to be that of two simple perfect fluids representing electrons and the
baryons, each of the form

Tµν
B

= p̄B gµν + ( p̄B + ρ̄B)U
µ

B
Uν

B
, (D.2.4)

Tµν
e = p̄egµν + ( p̄e + ρ̄e)U

µ
e Uν

e , (D.2.5)

where ρ̄e,B and p̄e,B are the respective proper energy densities and pressures.
In this scenario, electrons and baryons are respectively described by two per-
fect fluids at or over the nuclear density, and they couple each other via the
electromagnetic interaction.

Baryon fluid and electron fluid must be separately described for the rea-
sons that in addition to the different kinematics of baryons and electrons,
the most important differences between their dynamics are: (i) baryons are
much more massive than electrons in terms of the long-range gravitational
force and baryon cores undergo relativistically collapsing processes; (ii) at
or over the nuclear density n̄nucl, the electron pressure is much larger that
baryon one, and baryons interact each other via the short-range strong force
that does not act on electrons. Electron and baryon fluids interact via the
long-range electromagnetic force, when two fluids are at or over the nuclear
density, this interaction between two fluids becomes rather strong, as will be
specified below. Note that we ignore the short-range weak interactions for the
β-process in this chapter. The long-range gravitational and electromagnetic
forces are explicitly present in Eqs. (D.2.1-D.2.3). Instead, the short-range
strong interaction is taken into account by pressure and energy density in the
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D. Gravitational and electric energies in gravitational collapse

proper frame (see Ref. Weinberg (1972)),

p̄B =
1
3

3

∑
i=1

Tii =
1
3 ∑

B

δ3(x− xB)
p2

B

EB

, (D.2.6)

ρ̄B = Ttt = ∑
B

δ3(x− xB)EB (D.2.7)

where EB = EB(pB) is the energy spectrum of baryons, duly taking into ac-
count their short-range strong interactions (nuclear potential) at a given den-
sity n̄B & n̄nucl. Electrons’ pressure and energy density are analogously given
by Eqs. (D.2.6) and (D.2.7) by replacing the subscript B → e, however, the
spectrum Ee = Ee(pe) is different from baryon one, due to the fact that
electrons are blind with the short-range strong interactions. As a result, the
baryon and electron EOS p̄B = p̄B(ρ̄B) and p̄e = p̄e(ρ̄e) are different, more-
over, the space-time gradients ∇ p̄e,B and ∂ p̄e,B /∂t are different.

We turn now to discuss how the short-range strong interaction effect on
the baryon fluid velocity vi

B
= (Ui/Ut)B . In the Newtonian limit, Eqs. (D.2.1-

D.2.4) lead to the Euler equation (see Ref. Weinberg (1972))

∂vB

∂t
+ (vB · ∇)vB =−

1− v2
B

ρ̄B + p̄B

[
∇ p̄B + vB

∂ p̄B

∂t

]
(D.2.8)

+terms of long−range forces.

The first term in the right-handed side of Eq. (D.2.8) indicates the force due
to the space-time gradients of baryon fluid pressure. This implies that the
space-time gradients of baryon fluid velocity vB(x, t) should have the rates of
short-range strong interactions, which are proportional to the inverses of π,
σ, ρ and ω meson masses (∼ m−1

π,σ,ρ,ω,···), depending on values of the baryon
density n̄B(x, t). These nuclear reaction rates must be larger than the rate
(& m−1

e ) of electromagnetic interactions. In other words, the baryon fluid
and electron fluid have the different values of the incompressibility so that
they have different rates (frequencies) of reactions in space and time. How-
ever, this still remains as an argument, because we has not so far been able
to quantitatively calculate the space-time gradients of baryon fluid pressure
by Eqs. (D.2.6) and (D.2.7), then to obtain the space-time gradients of baryon
fluid velocity by Euler equation (D.2.8) together with the Einstein-Maxwell
field equations.

In the following, we attempt to address our attention to the issue how
the gravitational energy gained by the baryon fluid in collapses is transfered
to the electromagnetic energy and how kinetic and internal energies are re-
duced as a consequence of total energy conservation. The energy conserva-
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tion (D.2.1) along a flow line of the electron fluid yields

Uµ
e (Tν

µ);ν = en̄pFµνUµ
e Uν

B = en̄pγeγB(vB − ve)grrE, (D.2.9)

where e and E are electric charge and field, the fluid velocity v(e,B) ≡ vr
(e,B) =

(Ur/Ut)(e,B) and Lorentz factor γ(e,B) ≡ (1 + UrUr)1/2
(e,B) in the spherical ge-

ometry

ds2 = −gttdt2 + grrdr2 + r2dθ2 + r2 sin2 θdφ2 . (D.2.10)

Eq. (D.2.9) indicates that the dynamical evolutions of the baryon fluid caused
by the gravitational or strong interactions can transfer the energy that the
baryon fluid gains to the electron fluid via an electric field, provided ve 6≡ vB.
As explained in the introductory section, for the reason that the differen-
tial equations governing macroscopic processes (e.g. gravitational collapse)
and the differential equations governing microscopic processes (e.g. electro-
dynamic pair-production, nuclear reaction) have very different space-time
scales at least of the order of 1017, it is very difficult to simultaneously inte-
grate these differential equations and quantitatively show the energy trans-
formation as indicated by Eq. (D.2.9) in the realistic case of gravitational col-
lapses. In order to overcome these difficulties and make steps toward the
understanding of the issue, on the basis of some assumptions and approxi-
mations, we decouple the differential equations governing macroscopic pro-
cesses from the differential equations governing microscopic processes as fol-
lows.

1. The first, we study the static case of compact stars at/over the nuclear
density, e.g., baryons and electrons of neutral compact stars are in their
equilibrium states. The local equilibrium profile of baryons must be de-
termined by the strong interaction, whereas the local equilibrium pro-
file of electrons must be determined instead by the electromagnetic in-
teraction. In the Thomas-Fermi model, an overcritical “equilibrium”
electric fields are found Usov (1998); Popov et al. (2009) on the surface
of baryon cores. These results provide the initial configurations for the
dynamical space-time evolution of baryon core and electron fluid in the
gravitational collapse or pulsation.

2. Because of the dynamics of gravitational collapse or pulsation, the baryon
core deviates from its equilibrium state. We postulate that due to the
nuclear rigidity of baryon cores, an inward velocity vB and charged cur-
rent JB (Eqs. (9) in Han et al. (2012)) of baryon cores are introduced at
the rate of the nuclear reaction scales, rather than the rate of the gravita-
tional collapse, as already indicated in Eqs. (D.2.6,D.2.7,D.2.8).We asked
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D. Gravitational and electric energies in gravitational collapse

the question how the electron fluid responses to this external baryon
current JB. In Ref. Han et al. (2012), by solving the microscopic kinetic
transport equations (particle number and energy-momentum conser-
vations) of the electron fluid as well as the Maxwell equation, we ob-
tained the space-time evolution (non-equilibrium) of the electron fluid
and overcritical electric fields in the Compton scale, and estimated the
rate of pair-productions. These results are essentially due to the postu-
lation that the inward baryon current JB is introduced at the rate of the
strong interaction scale, rather than the gravitational one. The rate of
gravitational collapses is too slow to trigger these electrodynamic pro-
cesses at the Compton scale. In addition, it should be pointed out that
in these calculations we did not solve the differential equations for the
electron fluid and the Maxwell equation together with the differential
equation for the gravitational collapse. The baryon velocity vB is treated
as a parameter and its values are given by a simple collapsing equa-
tion of thin shell at different radii of gravitational collapse (Figure 3 in
Ref. Han et al. (2012)). In summary, two important assumptions were
made: (i) the baryon core is treated as a giant nucleus and the deviation
from its equilibrium state, represented by the baryon electric current
JB ∼ vB, is introduced at the rate of the strong introduction; (ii) the val-
ues of vB are given by a simple collapsing model without considering
dynamics of the gravitational collapses.

3. On the contrary, instead of solving the differential equations for micro-
scopic electrical processes in a given dynamics of gravitational collapse,
in this chapter we focus on solving differential equations for macro-
scopic gravitational collapse processes in a given dynamics of electric
processes studied in Ref. Han et al. (2012), represented by an ansatz
function. Our purpose is to see the back-reaction of microscopic electri-
cal processes on macroscopic gravitational collapse processes. In order
to gain some insight into this issue, we study the gravitational collapse
of a spherically thin capacitor, which might present a thin layer of col-
lapsing stellar cores. Although this spherically thin capacitor is totally
neutral, it carries electric and gravitational energies. Using such a sim-
plified model, we try to find an analytical description and make a step
in understanding the issue how the gravitational energy is converted to
electric, kinetic and internal energies in a neutral stellar core collapse.

This has been so far our approach to the electromagnetic processes in the
gravitational collapse of neutral compact stars at/over nuclear density. This
approach is clearly far from being complete. In order to quantitatively show
that the production, oscillation and annihilation of electron-positron pairs
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with overcritical electric fields indeed dynamically take place, one must solve
altogether the Maxwell equation and the quantum Boltzmann-Vlasov trans-
port equations not only for the electrons fluid Ruffini et al. (2003b), but also
for the baryon fluid with the strong interaction. We have not yet been able
to model the strong interaction for doing these quantitative calculations. On
the basis of the rates of various microscopic processes and interactions, we ar-
gue the possibility of the production, oscillation and annihilation of electron-
positron pairs and dynamical evolution of overcritical electric fields (Eq. (26)
in Ref. Han et al. (2012)). We clarify that in our model these electric processes
are triggered by the rapid action rate of the baryon core due to the strong
interaction, rather than the gravitational interaction. However, the question
is to understand how to quantitatively describe and calculate the dynam-
ics of strongly interacting baryon core in gravitational collapse, and how the
baryon charged current JB is introduced at the rate of strong interactions. This
will be the subject for our future work.

D.3. A thin shell of spherical capacitor

The thin shell of spherical capacitor is composed by a layer of positively
charged baryons and a layer of negatively charged electrons. The baryon
layer is defined as a mathematically thin layer, while the electron layer is
understood as a physically thin layer with a thickness “d” specified below.
The total numbers of charged baryons and electrons are exactly equal so
that the thin shell of spherical capacitor is totally neutral but carries non-
vanishing the electric energy stored inside two spherical layers. The number-
densities of two spherical layers are at least order of the nuclear density, as
a consequence the radial separation “d” between two spherical layers must
be a few orders of the Compton length λC. The reasons are the follow-
ing: electric fields between two layers E ≈ en̄nucld are overcritical and elec-
tric force acting on ultra-relativistic electrons balances their Fermi momenta
eEd ≈ PF

e ≈ n̄1/3
nucl. Let the baryon layer locate at the Schwarzschild-like radial

coordinate r0 and electron layer distributes from r0 to r0 + d. The spherical
capacitor can be physically considered as an infinitely thin shell for d/r0 → 0.
The spherical capacitor is henceforth denoted by “the thin shell” in short.

As the baryon layer is mathematically thin, in Eq. (D.2.4) the baryon pres-
sure p̄B = 0 and mass density ρ̄B(x) = ρ̄Bδ(4) (x, x0), where ρ̄B is the constant
surface density in the proper frame of the baryon layer and the 4-dimensional
Dirac distribution is defined as∫

δ(4) (x, x0)
√
−gd4x = 1,
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where g = det
∥∥gµν

∥∥. Then we have (dΩ = sin θdθdφ)∫
ρ̄Bδ(4) (x, x0) r2drdΩdτ = M0, (D.3.1)

where M0 is the rest mass of the baryon layer, and τ is the proper time along
the world surface S : x0 = x0 (τ, θ, φ) of the baryon layer. S divides the space-
time into two complementary static space-times: an internal one M− and an
external one M+. Their time-like Killing vectors are denoted by ξ

µ
− and ξ

µ
+.

M+ is foliated by the family {Σ+
t : t+ = t} of space-like hypersurfaces of

constant t+.
On the other hand, introducing the orthonormal tetrad

ω
(0)
± = (g±tt )

1/2dt, ω
(1)
± = (g±rr)

−1/2dr, ω(2) = rdθ, ω(3) = r sin θdφ,
(D.3.2)

we describe the electric field E = Eω(1) and electromagnetic tensor (Tem)t
t =

E2/(8π) and (Tem)i
i = −E2/(8π) inside the thin shell (r0 ≤ r ≤ r0 + d). The

electric energy of the thin shell, measured by an observer at rest at infinity, is
obtained by evaluating the Killing integral

∫
Σ+

t

ξ
µ
+Tem

µν dΣν
+ = 4π

∫ ∞

r
r2dr (Tem)t

t ≡
Q2

eff(r)
2r

, (D.3.3)

where dΣν
+ is the surface element vector of the space-like hypersurfaces Σ+

t in
M+. In Eq. (D.3.3), we introduce the quantity Q2

eff(r) 6= 0 for r0 ≤ r ≤ r0 + d
to characterize the electric energy stored inside the thin shell. Q2

eff(r) = 0 for
r > r0 + d and r < r0. The total electric energy inside the thin shell is given
by

Eem(r0) =
Q2

eff(r0)

2r0
, (D.3.4)

where the quantity Q2
eff(r0) parametrizes the total electric energy stored in-

side the thin shell that locates at radius r0(t0) and time t0. Qeff(r) does not
represent an electric charge carried by the thin shell. We express the repulsive
electric energy (D.3.3) or (D.3.4) in the same form of the Coulomb energy of
a spherical charged layer for the reason that it is useful to study the collapse
equation of the thin shell in next section.

The energy-momentum tensor (D.2.5) of the electron layer has a physical
distribution over the size “d” of the thin shell. Analogously to Eq. (D.3.3), we
define the total energy of the electron layer as

Eelectron(r0) ≡
∫

Σ+
t

ξ
µ
+(Te)µνdΣν

+ = 4π
∫ ∞

r0

r2dr (Te)t
t, (D.3.5)
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where (Te)t t = (ρ̄e + p̄e〈v2
e 〉)/(1− 〈v2

e 〉) and ve is the electron fluid velocity.
In Ref. Han et al. (2012), it is shown that the electron fluid velocity ve is ultra-
relativistically oscillating back and forth collectively with oscillating electric
fields inside the thin shell, 〈v2

e 〉 indicates the averaged value over rapid oscil-
lations in the Compton scale. In Eq. (D.3.5), the rest mass of the electron layer
is negligible, compared with its internal energy for ultra-relativistically oscil-
lating electrons. Moreover, at or over the nuclear density, electron Fermi mo-
menta PF

e ∼ mπ in the proper frame of the electron fluid is rather smaller than
the baryon mass mB . Therefore, compared with the rest mass of baryon layer
M0, we neglect the internal energy of electron layer Eelectron(r0) of Eq. (D.3.5)
in this chapter.

Here, we disregard the detailed space-time oscillations of electric field and
electron fluid in the Compton length scale, leading to the energy radiation in
the form of electron-positron pairs. Instead, we attempt to properly model
the quantity Q2

eff(r0) to represent these microscopic processes of building the
electric energy (D.3.4) and radiating it away from the thin shell, so as to study
the back-reaction of these microscopic processes on the macroscopic process
of gravitational collapse of the thin shell.

D.4. Collapse of spherically thin capacitor

A lot of attention has been focused on the exact solution of thin charged shell
in gravitational collapse Israel (1966); De la Cruz and Israel (1967); Beken-
stein (1971); Cherubini et al. (2002); Ruffini and Vitagliano (2002). Following
the line presented in Refs. Cherubini et al. (2002) and Ruffini and Vitagliano
(2002) for finding an exact solution of thin charged shell in gravitational col-
lapse, we try to approximately solve the Einstein equations (D.2.1,D.2.2) for
the gravitational collapse of the spherically thin capacitor (the thin shell). We
have g−tt = (g−rr)

−1 ≡ f− and g+tt ≈ (g+rr)
−1 ≡ f+, where the sign “≈” indi-

cates for the range r0 ≥ r ≥ r0 + d, where we neglect the charge and mass-
energy distributions of the electron layer. From the Gtt Einstein equation, we
get

ds2 =

{
− f+dt2

+ + f−1
+ dr2 + r2(dθ2 + sin2 θdφ2) in M+

− f−dt2
− + f−1

− dr2 + r2(dθ2 + sin2 θdφ2) in M−
, (D.4.1)

where
f+ = 1− 2M

r +
Q2

eff(r)
r2 , and f− = 1; (D.4.2)

t− and t+ are the Schwarzschild-like time coordinates in M− and M+ respec-
tively. M is the total mass-energy of the thin shell, measured by an observer
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at rest at infinity. Indicating by t0± the Schwarzschild-like time coordinate of
the thin shell, from the Gtr Einstein equation we have

M0
2

[
f+ (r0)

dt0+
dτ + f− (r0)

dt0−
dτ

]
= M− Q2

eff
2r0

, (D.4.3)

where we introduce the notation Q2
eff ≡ Q2

eff(r0). The remaining Einstein
equations are identically satisfied. From (D.4.3) we have that the inequality

M− Q2
eff

2r0
> 0, (D.4.4)

holds since the left-handed side of Eq. (D.4.3) is clearly positive. We define
the four-velocity Uµ of the thin shell as the four-velocity Uµ

B of the baryon
layer, for the reasons discussed in the paragraphs where Eqs. (D.2.6-D.2.8)
are. From (D.4.3) and the normalization condition of the four-velocity of the
thin shell UµUµ = −1,[

− f± (r0)
dt0±
dτ + f± (r0)

dt0±
dτ

]
= −1, (D.4.5)

we find (
dr0
dτ

)2
= 1

M2
0

(
M± M2

0
2r0
− Q2

eff
2r0

)2

− f∓ (r0) , (D.4.6)

dt0±
dτ = 1

M0 f±(r0)

(
M∓ M2

0
2r0
− Q2

eff
2r0

)
, (D.4.7)

in the space-times M±. Eqs. (D.4.1-D.4.7) completely describe a 3-parameter
(M, Q2

eff, M0) family of solutions of the Einstein equations. As we will see,
for the description of the collapse we can choose either M− or M+. The two
descriptions are equivalent and relevant for the physical interpretation of the
solutions.

For astrophysical applications, see for example Ref. Ruffini et al. (2003a),
we attempt to approximately solve the equation of motion of the thin shell
and obtain the trajectory r0 = r0 (t0+) as a function of the time coordinate t0+
relative to the space-time region M+. In the following we drop the + index
from t0+. From (D.4.6) and (D.4.7) we have the equation of motion of the thin
shell

dr0
dt0

= dr0
dτ

dτ
dt0

= ± F
Ω

√
Ω2 − F,

dr0
dτ =±

√
Ω2 − F (D.4.8)
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where F ≡ f+ (r0) of Eq. (D.4.2),

Ω ≡ Γ− M2
0+Q2

eff
2M0r0

, Γ ≡ M
M0

. (D.4.9)

Since we are interested in an imploding thin shell, only the minus sign case
in (D.4.8) will be studied. We can give the following physical interpretation
of Γ. For M ≥ M0, Γ coincides with the Lorentz factor of the imploding thin
shell at infinity; from (D.4.8) it satisfies

Γ = 1√
1−
(

dr0
dt0

)2

r0=∞

≥ 1. (D.4.10)

We rewrite equation of motion (D.4.8) as(
dr0

dτ

)2

=

[
Γ +

M0

2r0
(1− ξ2)

]2

− 1,

or (
Ω
F

)2(dr0

dt0

)2

=

[
Γ +

M0

2r0
(1− ξ2)

]2

− 1, (D.4.11)

where Ω ≡ Γ− (M0/2r0)(1 + ξ2) and we define an effective “charge-mass-
ratio”

ξ ≡ Qeff

M0
. (D.4.12)

Actually ξ2 represents the ratio of electric energy and gravitational energy of
the thin shell. For the case Γ = 1 (M = M0), i.e., the thin shell collapses at
rest from infinity. Eq. (D.4.4) requires M0 ≥ Q2

eff/2r0 to start gravitational
collapse and Eq. (D.4.11) requires ξ < 1 to continue gravitational collapse.
When ξ = 1, gravitational collapse stops and kinetic energy of the thin shell
vanishes as will be seen below. The trajectory of the thin shell is given by the
solution: ∫

dt0 = −
∫

Ω
F
√

Ω2−F
dr0. (D.4.13)

to the equation of motion (D.4.8).
To understand the total energy conservation of the thin shell in gravita-

tional collapse, we use the solution (D.4.6) in the flat space-time M−,

(
M0

dr0
dτ

)2
=

(
M +

M2
0

2r0
− Q2

eff
2r0

)2

−M2
0, (D.4.14)
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we can interpret −M2
0

2r0
as the gravitational attractive energy of the thin shell

and Q2
eff

2r0
is its repulsive electric energy. Introducing the total four-momentum

of the shell Pµ = M0Uµ and its radial component P ≡ M0Ur = M0
dr0
dτ , the

kinetic energy of the thin shell as measured by static observers in M− is ex-
pressed as Ruffini and Vitagliano (2002)

T(r0)≡−Pµξ
µ
− −M0 =

√
P2 + M2

0 −M0. (D.4.15)

Then from Eqs. (D.4.14,D.4.15) we have

M(r0)=−
M2

0
2r0

+
Q2

eff
2r0

+
√

P2 + M2
0

=M0 + T(r0)−
M2

0
2r0

+
Q2

eff
2r0

, (D.4.16)

where we choose the positive root solution due to the constraint (D.4.4).
Eq. (D.4.16) is the total energy-conservation of the thin shell, whose rest mass

M0, kinetic energy T(r0), gravitational energy −M2
0

2r0
, and electric energy Q2

eff
2r0

depends on the radial coordinate r0(t0) in gravitational collapse.
In the following discussion, we consider the shell is at rest at infinity and

starts to gravitational collapse, T(r0) = 0, −M2
0

2r0
= 0 and Q2

eff
2r0

= 0 at r0 → ∞.
The initial energy of the thin shell M(r0 → ∞) = M0, i.e., Γ = 1. The total
shell energy M(r0) = M0 is conserved in the entire collapsing process.

D.5. Collapse of the thin shell with varying
electric energy

In Ref. Han et al. (2012), assuming that in gravitational collapses, the baryon
layer induces an inward current-density

Jr
B
(r0) = en̄pUr

B
≈ en̄p(ṙ0Ω/F), ṙ0 = dr0/dt0, (D.5.1)

at the rate of strong interaction scales, we show that triggered by this baryon
current (D.5.1), the current-density Jr

e = en̄eUr
e of the electron layer oscillates

collectively with overcritical electric fields E at frequency ωosci = τ−1
osci '

1.5 me, leading to the production of electron-positron pairs at rate τ−1
pair '

6.6 me. Selecting values Jr
B
(r0) and ṙ0 of Eq. (D.5.1) at different collapsing

radii, we calculated Han et al. (2012) the averaged energy and number den-
sities of electron-positron pairs produced, as well as the averaged electric en-
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ergy (Coulomb energy) of oscillating overcritical electric fields. In addition,
our results presented in Refs. Ruffini et al. (2003b,a) show that these electron-
positron pairs annihilate to photons and the ultra-dense plasma of electron-
positron pairs and photons is formed with the equipartition of energy and
number of electron-positron pairs and photons, beside this plasma undergoes
the hydrodynamical expansion and the photon radiation occurs. This indi-
cates that the electric energy is established by the electron-positron oscilla-
tions collectively with overcritical electric fields, then dissipated by electron-
positron annihilations to photons radiating away. Clearly, these results and
discussions are based on the postulation that the baryon current of Eq. (D.5.1)
introduced by the strong interaction in a gravitational collapse process trig-
gers all electric processes, provided that the reaction rates of processes satisfy
the inequality of Eq. (26) in Ref. Han et al. (2012). In the light of the total en-
ergy conservation in gravitational collapses and Eq. (D.2.9), we further pos-
tulate that the electric energy of these electric processes is converted from the
gravitational energy, as a consequence, the gravitational energy gained by the
collapsing baryon core is transfered to the photon radiation energy. In future
work, we are bound to show this energy conversion by solving the equations
of gravitational collapses altogether with the equations of electric processes
and nuclear processes. In the present chapter, we attempt to study the back-
reaction effect of this energy conversion on the gravitational collapse.

In the simplified model of collapsing thin shell, we represent Q2
eff

2r0
the elec-

tric energy established by electron-positron pair production and oscillation
with overcritical electric fields, then dissipated by electron-positron annihila-
tions to photons radiating away at the collapsing radius r0. The time variation

rate of this electric energy Q2
eff

2r0
is characterized by the frequency ωosci ' 1.5me

Han et al. (2012). On the other hand, from collapse equation (D.4.11) for
Γ = 1, it is shown that the collapsing velocity (dr0/dt0) varies between zero
and its maximal value as the “charge-mass-ratio” ξ varies from 1 and 0, corre-

sponding to the microscopic processes of the electric energy Q2
eff

2r0
built up and

completely radiating away. In order to see the back-reaction of this radiative
electric energy on the gravitational collapse of the thin shell, we model the

electric energy Q2
eff

2r0
by an ansatz function for varying “charge-mass-ratio” ξ

in the collapse equation (D.4.11)

ξ = ξmax| sin(ωoscir0)|+ ξmin, r0 = r0(t0). (D.5.2)

As indicated by the results of Ref. Han et al. (2012) for M0 = 20M�, we
adopt values ωosci ' 1.5me, ξmax = 0.6 and ξmin = 0.1 for illustrating the
back-reaction effect. This postulates that at the collapsing radius r0(t0) of
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the baryon layer, the microscopic processes of the electric energy Q2
eff

2r0
built

up and radiating away are in the rate of the Compton scale ωosci ' 1.5me
and effectively described by a simple function of Eq. (D.5.2), and ξmin 6= 0
representing the part of the electric energy that does not radiate away from
the shin shell. Whereas the case (ξ ≡ 0) represents the collapse of a neutral
thin shell without carrying any electric energy.

We express r0 and t0 in units of GM0 and GM0/c, then ωr0 = 1.5(meGM0)r0,
λC/GM0 = 1.05× 10−16, 20GM�/c2 ' 10−4 second and M0 = 20GM�/c '
3× 106 cm. Plotting the velocity ṙ0 = dr0/dt0 of Eq. (D.4.11) in Fig. D.1, we
find that in collapse process, the thin shell velocity is oscillating between zero
and the envelop curve, which represents the collapsing velocity of the thin
shell carrying the electric energy described by ξmin 6= 0.1. This result shows a
sequence of “on and off” collapsing steps: the thin shell at rest starts to move
inwards due to the gravitational attraction of the baryon layer, and stops due

to the repulsion of the electric energy Q2
eff

2r0
built up to ξ = 1, then restarts to

move inwards again due to the electric energy Q2
eff

2r0
partially radiating away

in the form of electron-positron pairs and photons. The frequency of this “on
and off” hopping sequence is about ωosci ∼ me, the Compton scale. The col-
lapse process is still continuous in terms of macroscopic scale. However, as
will be seen soon, the time scale and kinetic energy of collapses are changed.

The averaged collapsing velocity of the thin shell of Eq. (D.5.2) is smaller
than the collapsing velocity (envelop curve) for the case ξ = 0. As a result,
the time duration of collapse process becomes longer. Assuming that the
thin shell is at rest at the radius R0 = 30M0 and starts to collapse, we plot
in Fig. D.2 the time coordinate t0 of Eq. (D.4.13) as a function of the radial
coordinate r0 of the collapsing thin shell, in comparison with that of the case
ξ = 0. The blue line for the case ξ = 0 shows that the collapsing shell takes
time∼ 102 GM0/c2 to approach the horizon, whereas the red line for the case
ξ of Eq. (D.5.2) shows that the collapsing thin shell takes time ∼ 103 GM0/c2

to approach the horizon. The collapsing time for the case ξ of Eq. (D.5.2) is
about 10 times longer than the collapsing time for the case ξ = 0. This result
is not sensitive to the value of the frequency ωosci in the Compton scale and
the detailed form of an oscillating function (D.5.2) of the frequency ωosci.

It should be pointed out that in this simplified toy model of thin shell col-
lapsing, to evidently illustrate the back-reaction effect that slows down the
collapsing process in comparison with the free fall collapsing process in the
same plot (see Fig. D.2), we select the initial radius R0 = 30M0 at which
the thin shell starts to collapse. As discussed, the baryon core must be at
(over) the nuclear density and the mean distance between baryons is about
one Fermi (smaller than one Fermi), where the strong interaction plays an im-
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portant role. This is the one of necessary conditions for the electric processes
of production and oscillation of electron-positron pairs together with “non-
equilibrium” overcritical electric fields to occur. Under this consideration, the
initial radius R0 of the baryon core starting to collapse should be smaller than
30M0. However, in this simplified toy model of thin shell collapsing, the sur-
face density of the baryon thin shell is over the nuclear density at the initial
radius R0 = 30M0. Nevertheless, the necessary condition of baryon cores be-
ing at/over the nuclear density should be duly taken into account, when we
study the back-reaction in a more realistic model describing the gravitational
collapse of neutral stellar cores.

Using the velocity ṙ0 = dr0/dt0 of Eqs. (D.4.8) and (D.4.11), we plot in
Fig. D.3 the kinetic energy T(r0) of Eq. (D.4.15) and the gravitational energy
M2

0/2r0 of the collapsing thin shell as a function of collapsing radius r0. Fol-
lowing the total energy conservation of Eq. (D.4.16) and M(r0) = M0,

T(r0)−
M2

0
2r0

+
Q2

eff
2r0

= 0, (D.5.3)

the electric energy Q2
eff

2r0
is given by the difference between gravitational en-

ergy and kinetic energy, as shown in Fig. D.3. In the collapse process, the

kinetic energy T(r0) and electric energy Q2
eff

2r0
are rapidly oscillating, following

the ansatz function (D.5.2) with the frequency ωosci of microscopic processes.
Averaging over these rapid oscillations, we obtain the averaged values of the
kinetic energy and electric energy, which are approximately equal to an half
of gravitational energy:

〈T(r0)〉 ≈ 〈
Q2

eff
2r0
〉 ≈ 1

2
M2

0
2r0

. (D.5.4)

This implies that the averaged electric energy radiating away from the thin
shell is about an half of the gravitational energy gained by the collapsing
thin shell in the collapsing process. When the black hole horizon is reached,
using Eq. (D.4.16), the irreducible mass of black hole is introduced Ruffini
and Vitagliano (2002)

M=Mir +
Q2

eff
2r+ , and Mir = M0 −

M2
0

2r+ + T(r+), (D.5.5)

where Q2
eff

2r+ is the total electric energy of the thin shell approaching the horizon

r+. Suppose that the electric energy Q2
eff

2r+ completely radiates away, a black
hole is formed with the horizon r0 → r+ = 2M0 for F ≡ f+(r0) → 0. In this
case, the total electric energy radiating away from the thin shell is about an
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half of gravitational energy of the thin shell

〈
Q2

eff
2r+
〉 ≈ 1

2

(
M2

0
2r+

)
=

1
8

M0, (D.5.6)

and the irreducible mass of the formed black hole is about

Mir=M0 −
M2

0
2r+ + 〈T(r+)〉 ≈

7
8

M0, (D.5.7)

M0=Mir + 〈
Q2

eff
2r+
〉, (D.5.8)

which implies about 1/8 of the gravitational energy extracted in gravitational
collapses.
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Figure D.1.: In unit of the speed of light c, the collapse velocity (dr0/dt0) is
plotted (fast oscillating lines in blue) as a function of radius r0 of the collaps-
ing thin shell. The thin shell is at rest at the radius R0 = 30 GM0 and starts to
collapse. The thin shell mass M0 = 20M�.

D.6. Summary and remarks

In this chapter, on the basis of a simple model for describing the gravitational
collapse of a spherically thin capacitor, we analytically study how the gravi-
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Figure D.2.: In thin shell collapsing process, the time coordinate t0 is plotted
as a function of radial coordinate r0 of the thin shell. t0 and r0 are in unit of
GM0. The red line is for ξ of Eq. (D.5.2) and the blue for ξ = 0. The shell is
at rest at the radius R0 = 30 GM0 and starts to collapse. The thin shell mass
M0 = 20M�.

tational energy gained in collapse converts to the kinetic energy and electric
energy, the latter can be radiated away. Using an ansatz function for the ef-
fective “charge-mass-ratio” (D.4.12) to model the microscopic processes that
create this electric energy and radiate it away in the Compton scale, we study
how the back-reaction of such radiative electric energy on the macroscopic
process of gravitational collapse. We find that the rebuilding and radiating of
repulsive electric energy cause the collapse process undergoing a sequence of
“on and off” hopping steps in the microscopic Compton scale. Although such
a collapse process is still continuous in the macroscopic scales, it is slowed
down as the kinetic energy is reduced and collapsing time is about an order
of magnitude larger than that of collapse process eliminating electric pro-
cesses. The averaged kinetic and electric energies are the same order, about
an half of gravitational energy in collapse.

These results are obtained from an over simplified model for both macro-
scopic and microscopic processes. Nevertheless they indicate that apart from
an electromagnetic energy radiation, the microscopic processes of electrody-
namics have significant back-reaction and effects on gravitational collapsing
processes in macroscopic scales. It is thus essential to take into account, rather

685



D. Gravitational and electric energies in gravitational collapse
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Figure D.3.: In unit of the gravitational energy M2
0/(2r0), the gravitational

energy (constant red line at 1) and kinetic energy (fast oscillating lines in blue)
and electric energy (fast oscillating lines in white) of the thin shell are plotted
as a function of collapsing radius r0.

than ignore, electric processes in more realistic models for studying gravita-
tional collapse of neutral stellar core at/over the nuclear density, even though
calculations are very complicate.

To end this chapter, we would like to mention the relevance of these results
to our previous studies of energetic budget and time duration of Gamma-Ray
Bursts (GRBs) as a signal of the final stage of gravitational collapse of mas-
sive stellar cores. The total electromagnetic energy extractable from a charged
black hole Damour and Ruffini (1975); Ruffini and Xue (2008a); Preparata
et al. (1998, 2003) (from the collapse of a neutral stellar core Han et al. (2012))
is a fraction of its mass, which reasonably accounts for the energetic budget
of GRBs. In addition, the time duration T90 of electromagnetic radiation is
about 10−2 second obtained Ruffini et al. (1999, 2000) by solving hydrody-
namical equations with an initial configuration of electro-positron pairs and
photons sphere (dyadosphere) around a charged black hole. This time du-
ration scale is elongated to be an order of magnitude larger ∼ 10−1 second
Ruffini et al. (2003a); Fraschetti et al. (2006); Ruffini et al. (2005) by consider-
ing both the dynamical formation and hydrodynamical evolution of dyado-
sphere in a collapsing charged core. The results of this chapter imply that due
to the back-reaction of the dynamical formation and hydrodynamical evolu-
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tion of dyadosphere on collapsing neutral stellar cores at or over the nuclear
density, the slowing down of gravitational collapsing processes should elon-
gate this time duration scale by another factor of 10, i.e., T90 ∼ 1 second that
reasonably accounts for the time duration of short GRBs.
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E. Einstein-Euler-Heisenberg
theory and charged black holes

E.1. Introduction

For several decades the nonlinear electromagnetic generalization of the Reissner-
Nordström solution of the Einstein-Maxwell equations has attracted a great
deal of attention. The most popular example is the gravitating Born-Infeld
(BI) theory Born and Infeld (1934). The static charged black holes in gravi-
tating nonlinear electrodynamics were studied in the 1930s Hoffmann (1935);
Hoffmann and Infeld (1937). The discovery that the string theory, as well as
the D-brane physics, leads to Abelian and non-Abelian BI-like Lagrangians in
its low-energy limit (see, e.g., Refs. Fradkin and Tseytlin (1985); Abouelsaood
et al. (1987); Tseytlin (1997)), has renewed the interest in these kinds of non-
linear actions. Asymptotically flat, static, spherically symmetric black hole
solutions for the Einstein-Born-Infeld theory were obtained in the literature
Garcia et al. (1984); Demianski (1986).

Generalization of the exact solutions of spherically symmetric Born-Infeld
black holes with a cosmological constant in arbitrary dimensions has been
considered Fernando and Krug (2003); Dey (2004); Cai et al. (2004), as well as
in other gravitational backgrounds Wiltshire (1998); Aiello et al. (2004). Many
other models of nonlinear electrodynamics leading to static and spherically
symmetric structures have been considered in the last decades, such as the
theory with a nonlinear Lagrangian of a general function of the gauge invari-
ants (FµνFµν and Fµν F̃µν) Diaz-Alonso and Rubiera-Garcia (2010b,a, 2011a,b)
or a logarithmic function of the Maxwell invariant (FµνFµν) Soleng (1995),
and the theory with a generalized nonlinear Lagrangian De Oliveira (1994)
which can lead to the BI Lagrangian and the weak-field limit of the Euler-
Heisenberg effective Lagrangian Heisenberg and Euler (1936). The static
and spherically symmetric black hole, whose gravity coupled to the non-
linear electrodynamics of the weak-field limit of the Euler-Heisenberg effec-
tive Lagrangian as a low-energy limit of the Born-Infeld theory, was stud-
ied in Ref. Yajima and Tamaki (2001). Some attempts in the obtention of
regular (singularity-free) static and spherically symmetric black hole solu-
tions in gravitating nonlinear electrodynamics have been made Ayón-Beato
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and Garcı́a (1998, 1999); Cirilo Lombardo (2009); Burinskii and Hildebrandt
(2002); Dymnikova (2004), and the unusual properties of these solutions have
been discussed in Refs. Novello et al. (2000); Bronnikov (2001). Generaliza-
tion of spherically symmetric black holes in higher dimension in the theory
with a nonlinear Lagrangian of a function of power of the Maxwell invariant
has been considered in the literature Hassaı̈ne and C. Martı́nez (2007, 2008);
González et al. (2009); Mazharimousavi et al. (2010). Finally, we mention that
rotating black branes Dehghani and Rastegar Sedehi (2006); Dehghani et al.
(2007) and rotating black strings Hendi (2010) in the Einstein-Born-Infeld the-
ory have been also considered.

The effective Lagrangian of nonlinear electromagnetic fields has been for-
mulated for the first time by Heisenberg and Euler using the Dirac electron-
positron theory Heisenberg and Euler (1936). Schwinger reformulated this
nonperturbative one-loop effective Lagrangian within the quantum electro-
dynamics (QED) framework Schwinger (1951). This effective Lagrangian
characterizes the phenomenon of vacuum polarization. Its imaginary part
describes the probability of the vacuum decay via the electron-positron pair
production. If electric fields are stronger than the critical value Ec = m2c3/eh̄,
the energy of the vacuum can be lowered by spontaneously creating electron-
positron pairs Heisenberg and Euler (1936); Schwinger (1951); Sauter (1931).
For many decades, both theorists and experimentalists have been interested
in the aspects of the electron-positron pair production from the QED vacuum
and the vacuum polarization by an external electromagnetic field (see, e.g.,
Refs. Ruffini et al. (2010); ELI).

As a fundamental theory, QED gives an elegant description of the electro-
magnetic interaction; moreover, it has been experimentally verified. There-
fore, it is important to study the QED effects in black hole physics. As a result
of one-loop nonperturbative QED, the Euler-Heisenberg effective Lagrangian
deserves to attract more attention in the topic of generalized black hole so-
lutions mentioned above. In this chapter, we adopt the contribution from
the Euler-Heisenberg effective Lagrangian to formulate the Einstein-Euler-
Heisenberg theory, and study the solutions of electrically and magnetically
charged black holes in spherical geometry. We calculate and discuss the QED
corrections to the black hole horizon area, entropy, total energy, and the max-
imally extractable energy.

The chapter is organized as follows. In Sec. E.2, we first recall the Euler-
Heisenberg effective Lagrangian. We formulate the Einstein-Euler-Heisenberg
theory in Sec. E.3. The study of electrically charged black holes in the weak
electric field case is presented in Sec. E.4. The study of magnetically charged
black holes in both weak and strong magnetic field cases is presented in
Sec. E.5. Then we present the study of black holes with both electric and
magnetic charges in the Einstein-Euler-Heisenberg theory in Sec. E.6. A sum-
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mary is given in Sec. E.7. The use of units with h̄ = c = 1 is throughout the
chapter.

E.2. The Euler-Heisenberg effective Lagrangian

The QED one-loop effective Lagrangian was obtained by Heisenberg and Eu-
ler Heisenberg and Euler (1936) for constant electromagnetic fields,

∆Leff=
1

2(2π)2

∫ ∞

0

ds
s3

[
e2εβs2 coth(eεs) cot(eβs)

−1− e2

3
(ε2 − β2)s2

]
e−is(m2

e−iη), (E.2.1)

as a function of two invariants: the scalar S and the pseudoscalar P,

S≡−1
4

FµνFµν =
1
2
(E2 − B2) ≡ ε2 − β2,

P≡−1
4

Fµν F̃µν = E · B ≡ εβ, (E.2.2)

where the field strength is Fµν, F̃µν ≡ εµνλκFλκ/2, and

ε=
√
(S2 + P2)1/2 + S, (E.2.3)

β=
√
(S2 + P2)1/2 − S. (E.2.4)

The effective Lagrangian reads

Leff = LM + ∆Leff, (E.2.5)

where LM = S is the Maxwell Lagrangian. Its imaginary part is related to
the decay rate of the vacuum per unit volume Heisenberg and Euler (1936);
Schwinger (1951),

Γ
V

=
αε2

π2 ∑
n=1

1
n2

nπβ/ε

tanh nπβ/ε
exp

(
−nπEc

ε

)
(E.2.6)

for fermionic fields, and

Γ
V

=
αε2

2π2 ∑
n=1

(−1)n

n2
nπβ/ε

sinh nπβ/ε
exp

(
−nπEc

ε

)
(E.2.7)
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for bosonic fields; here, Ec = m2
e c3

eh̄ is the critical field. Using the expressions
Gradshteyn and Ryzhik (1994)

eεs coth (eεs)=
∞

∑
n=−∞

s2

(s2 + τ2
n)

, τn ≡ nπ/eε, (E.2.8)

eβs cot (eβs)=
∞

∑
m=−∞

s2

(s2 − τ2
m)

, τm ≡ mπ/eβ, (E.2.9)

one obtains the real part of the Euler-Heisenberg effective Lagrangian (E.2.1)
(see Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Mielniczuk (1982);
Valluri et al. (1993); Cho and Pak (2001); Kleinert et al. (2013)),

(∆Lcos
eff )P=

1
2(2π)2

∞

∑
n,m=−∞

1
τ2

m + τ2
n

[
δ̄m0 J(iτmm2

e )− δ̄n0 J(τnm2
e )
]

(E.2.10)

=− 1
(2π)2

[
∞

∑
n=1

eβ

τn
coth (eβτn)J(τnm2

e )−
∞

∑
m=1

eε

τm
coth (eετm)J(iτmm2

e )

]
.(E.2.11)

The symbol δ̄ij ≡ 1− δij denotes the complimentary Kronecker δ, which van-
ishes for i = j, and

J(z) ≡ P

∫ ∞

0
ds

se−s

s2 − z2 = −1
2

[
e−zEi(z) + ezEi(−z)

]
. (E.2.12)

Here, P indicates the principle value integral, and Ei(z) is the exponential-
integral function,

Ei(z) ≡ P

∫ z

−∞
dt

et

t
= log(−z) +

∞

∑
k=1

zk

kk!
. (E.2.13)

Using the series and asymptotic representation of the exponential-integral
function Ei(z) for large z corresponding to weak electromagnetic fields (ε/Ec �
1, β/Ec � 1),

J(z) = − 1
z2 −

6
z4 −

120
z6 −

5040
z8 −

362880
z10 + · · ·, (E.2.14)

the weak-field expansion of Eq. (E.2.10) is

(∆Leff)P =
2α2

45m4
e

{
4S2 + 7P2

}
+

64πα3

315m8
e

{
16S3 + 26SP2

}
+ · · ·, (E.2.15)

which is expressed in terms of a powers series of weak electromagnetic fields
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up to O(α3), the first term was obtained by Heisenberg and Euler in their
original article Heisenberg and Euler (1936).

On the other hand, using the series and asymptotic representation of the
exponential-integral function Ei(z) for small z � 1 Gradshteyn and Ryzhik
(1994) corresponding to strong electromagnetic fields (ε/Ec � 1, β/Ec � 1),

J(z) = −1
2

[
ez ln(z) + e−z ln(−z)

]
− 1

2
γ
[
ez + e−z

]
+O(z), (E.2.16)

the leading terms in the strong-field expansion of Eqs. (E.2.10) and (E.2.11)
are given by (see Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Kleinert
et al. (2013); Kleinert (2011))

(∆Lcos
eff )P =

1
2(2π)2

∞

∑
n,m=−∞

1
τ2

m + τ2
n

[
δ̄n0 ln (τnm2

e )− δ̄m0 ln (τmm2
e )
]
+ · · · (E.2.17)

=
1

2(2π)2

[ ∞

∑
n=1

eβ

τn
coth (eβτn) ln (τnm2

e )−
∞

∑
m=1

eε

τm
coth (eετm) ln (τmm2

e )

]
+ · · ·.(E.2.18)

In the case of vanishing magnetic field B = 0 and a strong electric field E �
Ec using limz→∞ J(iz) = 0 and limz→0 z coth (az) = 1/a, Eq. (E.2.18) becomes
(see Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Kleinert et al. (2013))

(∆Lcos
eff )P=

e2E2

4π4

∞

∑
n=1

1
n2

[
ln
(

nπEc

E

)
+ γ

]
+ · · · (E.2.19)

=
e2E2

24π2

[
ln
(

πEc

E

)
+ γ

]
− e2E2

4π4 ζ ′(2) + · · ·, (E.2.20)

with the Euler-Mascheroni constant γ = 0.577216, the Riemann zeta function
ζ(k) = ∑n 1/nk, and

ζ ′(2) =
π2

6
[γ + ln (2π)− 12 ln A] ' −0.937548, (E.2.21)

with A = 1.28243 being the Glaisher constant. Similarly, in the case of van-
ishing electric field E = 0 and a strong magnetic field B � Ec, Eq. (E.2.18)
becomes (see Refs. Ruffini et al. (2010); Ruffini and Xue (2006); Kleinert et al.
(2013))

(∆Lcos
eff )P=−

e2B2

4π4

∞

∑
m=1

1
n2

[
ln
(

nπEc

B

)
+ γ

]
+ · · · (E.2.22)

=− e2B2

24π2

[
ln
(

πEc

B

)
+ γ

]
+

e2B2

4π4 ζ ′(2) + · · ·. (E.2.23)
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The (n = 1) term in Eq. (E.2.22) is the one obtained by Weisskopf Weisskopf
(1936).

E.3. The Einstein-Euler-Heisenberg theory

Since the real part of the Euler-Heisenberg effective Lagrangian (∆Lcos
eff )P of

Eq. (E.2.10) is expressed in terms of Lorentz invariants (ε, β) or (S, P), the
Euler-Heisenberg effective action in the curve space-time described by metric
gµν can be written as

SEH =
∫

d4x
√
−gLEH, LEH = [S + (∆Lcos

eff )P] . (E.3.1)

The Einstein and Euler-Heisenberg action is then given by

SEEH = − 1
16πG

∫
d4x
√
−gR + SEH, (E.3.2)

where R is the Ricci scalar.

The Einstein field equations are

Gµν ≡ Rµν − 1
2

gµνR = 8πGTµν, (E.3.3)

where the energy-momentum tensor is

Tµν =
2√−g

δSEH

δgµν
. (E.3.4)

The electromagnetic field equations and Bianchi identities are given by

DµPνµ = jν, Dµ F̃µν = 0, (E.3.5)

and the displacement fields Pνµ, Di = P0i, and Hi = −εijkPjk are defined as

Pµν =
δLEH

δFµν
, Di =

δLEH

δEi
, Hi = −δLEH

δBi
. (E.3.6)

Here, electromagnetic fields are treated as smooth varying fields over all
space generated by external charge currents jµ at infinity.
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Using functional derivatives, we obtain

Tµν=−gµν [S + (∆Lcos
eff )P] + 2

[
δS

δgµν

δLEH

δS
+

δP
δgµν

δLEH

δP

]
,

=−gµν [S + (∆Lcos
eff )P] + 2

[
(1 +AS)

δS
δgµν

+AP
δP

δgµν

]
, (E.3.7)

where two invariants are defined as

AS ≡
δ(∆Lcos

eff )P
δS

; AP ≡
δ(∆Lcos

eff )P
δP

. (E.3.8)

It is straightforward to obtain

δS
δgµν

=
1
2

Fµ
λFλν,

δP
δgµν

= Fµ
λ F̃λν = gµνP, (E.3.9)

and as a result, we rewrite Eq. (E.3.7) as

Tµν=Tµν
M + gµν [APP− (∆Lcos

eff )P] +ASFµ
λFλν,

=Tµν
M (1 +AS) + gµν [ASS +APP− (∆Lcos

eff )P] , (E.3.10)

where Tµν
M = −gµνS + Fµ

λFλν is the energy-momentum tensor of the elec-
tromagnetic fields of the linear Maxwell theory. Equation (E.3.10) is in fact
a general result, independent of the explicit form of nonlinear Lagrangian
(∆Lcos

eff )P. Equations (E.3.1)-(E.3.10) in principle give a complete set of equa-
tions for Einstein and Euler-Heisenberg effective theory, together with total
charge (Q), angular-momentum (L), and energy (M) conservations. In this
chapter, adopting the Euler-Heisenberg effective Lagrangian (E.2.10), we ex-
plicitly calculate invariants AS and AP of Eq. (E.3.8) as well as the energy-
momentum Tµν of Eq. (E.3.10) in the following cases.

It is necessary to point out that in present chapter, we do not consider the
couplings between photons and gravitons that are also induced by QED vac-
uum polarization effects at the level of one-fermion loop. Drummond and
Hathrell obtained the photon effective action from the lowest term of one-
loop vacuum polarization on a general curved background manifold; i.e.,
a graviton couples to two on-mass-shell photons through a fermionic loop
Drummond and Hathrell (1980),

SDH=− α

720πm2
e

∫
d4x
√
−g
(
5RFµνFµν − 26RµνFµσFν

σ

+2RµνστFµνFστ + 24DµFµνDσFσ
ν

)
. (E.3.11)
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Further studies of one-loop effective action (E.3.11) were made based on the
approach of the heat-kernel or “inverse mass” expansion Gilkey (1975); Bas-
tianelli et al. (2000), the approach of the so-called “derivative expansion”
Barvinsky and Vilkovisky (1985, 1990a,b); Gusev (2009), and the considera-
tion of the one-loop one particle irreducible of one graviton interacting with
any number of photons Bastianelli et al. (2009). This effective action (E.3.11)
was used to study the modified photon dispersion relation by a generic grav-
itational background Drummond and Hathrell (1980) and the possible con-
sequences Latorre et al. (1995); Dittrich and Gies (1998); Shore (1996); Hol-
lowood and Shore (2007, 2008b,a).

At the level of one-loop quantum corrections of the QED theory in the
presence of gravitational field, the effective Lagrangian (E.3.11) should be
considered as an addition to the Euler and Heisenberg effective Lagrangian
(E.2.15) in the weak-field limit. In this chapter, we try to quantitatively study
the QED corrections in spherically symmetric black holes with mass M and
charge Q. In this case, the corrections from the Euler and Heisenberg effective
Lagrangian (E.2.15) must be much larger than the one from the effective La-
grangian (E.3.11). Studying the discussion and result of Ref. Drummond and
Hathrell (1980) for spherical symmetric black holes, we approximately esti-
mate the ratio of Eqs. (E.2.15) and (E.3.11) around the horizon of black holes

with mass M and charge Q. As a result, this ratio is∼ 10−2
(

Q
M
√

G

)2
α

Gm2
e
� 1.

It is not surprising that the electromagnetic coupling e ∼ 1/
√

137 is much
larger than the effective gravitational counterpart Gm2

e ∼ 10−45. Besides, it is
expected that calculations involving both the Euler-Heisenberg effective La-
grangian (E.2.15) and Eq. (E.3.11) are much more complex and tedious. Nev-
ertheless, it is interesting to investigate the effect of the photon-graviton am-
plitudes on black hole physics. In this chapter, for the sake of simplicity, we
first consider only the Einstein-Euler-Heisenberg action (E.3.2) as a leading
contribution in order to gain some physical insight into the QED corrections
in black hole physics.

E.3.1. B = 0, E 6= 0 or E = 0, B 6= 0

We consider the case of B = 0 and E 6= 0, namely, β = P = 0, ε = E = |E|,
and S = E2/2. AP = 0 and the effective Lagrangian Eq. (E.2.10) becomes

(∆Lcos
eff )P = − e2E2

4π4

∞

∑
n=1

1
n2 J(nπEc/E). (E.3.12)

696



E.3. The Einstein-Euler-Heisenberg theory

Using

P

∫ ∞

0
ds

e−s

(s2 − z2)
= − 1

2z

[
e−zEi(z)− ezEi(−z)

]
, (E.3.13)

we calculate

dJ(z)
dz2 = P

∫ ∞

0
ds

se−s

(s2 − z2)2 =
1

2z2 − P

∫ ∞

0
ds

e−s

(s2 − z2)
(E.3.14)

and obtain

AS=−
e2

2π4

∞

∑
n=1

1
n2 J(nπEc/E)

− e2

4π2 ζ(2) +
e2

4π

Ec

E

∞

∑
n=1

1
n

J̃(nπEc/E), (E.3.15)

where
J̃(z) = e−zEi(z)− ezEi(−z). (E.3.16)

Substituting these quantities into Eq. (E.3.10), we obtain the expression of the
energy-momentum tensor Tµν(ε). In the case of E = 0 and B 6= 0, the energy-
momentum tensor Tµν(β) can be straightforwardly obtained from Tµν(ε) by
the discrete duality transformation ε→ iβ, i.e., |E| → i|B|. In principle, using
the complete Euler-Heisenberg effective Lagrangian (∆Lcos

eff )P (E.2.10) for ar-
bitrary electromagnetic fields E and B, one can obtain the energy-momentum
tensor Tµν(ε, β) of Eq. (E.3.10). For the reason of practical calculations, we
consider the cases of weak and strong fields.

E.3.2. Weak- and strong-field cases

In the weak-field case, using Eq. (E.2.15) and calculating Eqs. (E.3.7)-(E.3.10),
we obtain

AS=
2α2

45m4
e
(8S) +

64πα3

315m8
e
(48S2 + 26P2) + · · ·,

AP=
2α2

45m4
e
(14P) +

64πα3

315m8
e
(52SP) + · · ·, (E.3.17)

and

Tµν = Tµν
M

[
1 + 8

(
2α2

45m4
e

)
S
]
+ gµν

(
2α2

45m4
e

) [
4S2 + 7P2

]
+ · · ·, (E.3.18)

up to the leading order.
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In strong-field case ε/Ec � 1 and β/Ec � 1 using Eq. (E.2.17) and calcu-
lating Eqs. (E.3.7)-(E.3.10), we obtain

AS=
1

2(2π)2
2

ε2 + β2

∞

∑
n,m=−∞

1
(τ2

m + τ2
n)

2

{
δ̄n0

[
(τ2

n − τ2
m) ln(τnm2

e )−
1
2
(τ2

m + τ2
n)
]

−δ̄m0

[
(τ2

n − τ2
m) ln(τmm2

e ) +
1
2
(τ2

m + τ2
n)
]}

+ · · · (E.3.19)

and

AP=
1

2(2π)2
2εβ

ε2 + β2

∞

∑
n,m=−∞

1
(τ2

m + τ2
n)

2

{
δ̄n0

[ (τ2
n

ε2 +
τ2

m
β2

)
ln(τnm2

e )−
1
2
(τ2

m + τ2
n)

ε2

]
−δ̄m0

[ (τ2
n

ε2 +
τ2

m
β2

)
ln(τmm2

e )−
1
2
(τ2

m + τ2
n)

β2

]}
+ · · ·. (E.3.20)

From Eq. (E.2.20) for B = 0 and a strong electric field, we obtain

AS =
e2

24π2

[
2 ln

(
πEc

E

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2) + · · ·, (E.3.21)

and the energy-momentum tensor Tµν of Eq. (E.3.10),

Tµν = Tµν
M

{
1 +

e2

24π2

[
2 ln

(
πEc

E

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2)
}
− gµν e2E2

48π2 + · · · .

(E.3.22)
Analogously, from Eq. (E.2.23) for E = 0 and a strong magnetic field, we
obtain

AS =
e2

24π2

[
2 ln

(
πEc

B

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2) + · · ·, (E.3.23)

and the energy-momentum tensor

Tµν = Tµν
M

{
1 +

e2

24π2

[
2 ln

(
πEc

B

)
+ 2γ− 1

]
− e2

2π4 ζ ′(2)
}
+ gµν e2B2

48π2 + · · · .

(E.3.24)
In the following sections, using the energy-momentum tensors Tµν of Eqs. (E.3.18),
(E.3.22), and (E.3.24), we try to study the solutions of the Einstein-Euler-
Heisenberg theory for nonrotating (spherically symmetric), electrically or mag-
netically charged black holes.
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E.4. Electrically charged black holes

In this section, we study a nonrotating (spherically symmetric) electrically
charged black hole. In this spherical symmetry case, the gauge potential is

Aµ(x) = [A0(r), 0, 0, 0], (E.4.1)

corresponding to the electric field E(r) = −A′0(r) = −∂A0(r)/∂r in the radial
direction, and the metric field is assumed to be

ds2 = f (r)dt2 − f (r)−1dr2 − r2dΩ; f (r) ≡ 1− 2Gm(r)/r. (E.4.2)

The metric function f (r) and the electric field E(r) fulfill the Einstein equa-
tions (E.3.3) and electromagnetic field equations (E.3.5) and their asymptoti-
cally flat solutions at r � 1,

A0(r)→ −
Q

4πr
, E(r)→ Q

4πr2 ,
Gm(r)

r
→ GM

r
(E.4.3)

satisfy the Gauss law, where Q and M are the black hole electric charge and
mass seen at infinity.

In order to find the solution near to the horizon of the black hole by taking
into account the QED effects, we approximately adopt the Euler-Heisenberg
effective Lagrangian for constant fields that leads to the energy-momentum
tensor (E.3.18) or (E.3.22) for B = 0. This approximation is based on the as-
sumption that the macroscopic electric field E(r) is approximated as a con-
stant field E over the microscopic scale of the electron Compton lengths.
When the electric field of charged black holes are overcritical, electron-positron
pair productions take place and the electric field is screened down to its crit-
ical value Ec (see Refs. Damour and Ruffini (1975); Preparata et al. (1998,
2003); Ruffini et al. (2008)). In this chapter, we study the QED effects on elec-
trically charged black holes with spherical symmetry, whose electric field is
much smaller than the critical field Ec. In this weak electric field case using
Eq. (E.3.18) we obtain the energy-momentum tensor

Tµν = Tµν
M

(
1 +

2αE2

45πE2
c

)
+ gµν αE4

90πE2
c
+ · · · . (E.4.4)

As a result, the (0-0) component of Einstein equations is

2m′(r)
r2 = 4π

[
E2(r) +

α

15π
E4(r)/E2

c

]
, (E.4.5)

which relates to the energy conservation. Analogously, using Eqs. (E.3.5) and
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(E.3.6) and the metric of Eq. (E.4.2), we obtain the field equation up to the
leading order,

2α

45π
E3(r)/E2

c + E(r) =
Q

4πr2 , (E.4.6)

which is the zero component of DµPνµ = jν of Eq. (E.3.5) in the spherical
symmetry case. This equation relates to the total charge conservation.

A similar case was studied in Ref. Yajima and Tamaki (2001), in which,
however, the effective Lagrangian [the first term in Eq. (E.2.15)] was consid-
ered as a low-energy limit of the Born-Infeld theory; the coefficients of the S2

and P2 terms in Eq. (E.2.15) are treated as free parameters, so as to either nu-
merically or analytically study the properties of spherically symmetric black
hole solutions in the Einstein-Euler-Heisenberg system. In the following, in
order to analytically study the QED effects on the black hole solution, we use
the Euler-Heisenberg effective Lagrangian (E.2.15) and find the black hole so-
lution by a series expansion in powers of α. Introducing E(r) ≡ E(r)/Ec, up
to the first order of α, the solution to Eq. (E.4.6) is approximately given by

E(r) = EQ

(
1− 2α

45π
E2

Q + · · ·
)

, (E.4.7)

where EQ ≡ EQ(r) ≡ Q/(4πr2Ec). We find that the electric field E(r) is
smaller than Q/4πr2, due to the charge screening effect of the vacuum po-
larization. Substituting this solution (E.4.7) into the Einstein equation (E.4.5),
we obtain the integration

m(r) = M−
∫ ∞

r
4πr2dr

1
2

[
E2(r) +

α

15π
E4(r)/E2

c

]
. (E.4.8)

This equation clearly shows that the energy-mass function m(r) of Eq. (E.4.2)
is the total gravitational mass M (attractive) “screened down” by the electro-
magnetic energy (repulsive). In the Maxwell theory (∆Lcos

eff )P = 0 and E(r) =
Q/(4πr2), we obtain the Reissner-Nordström solution m(r) = M−Q2/8πr.
In the Euler-Heisenberg system, it is not proper to make the integration in
Eq. (E.4.8), since the integrand comes from the Euler-Heisenberg effective La-
grangian, which is valid only for constant fields. In order to gain some phys-
ical insight into the energy-mass function (E.4.8), we integrate Eq. (E.4.8) to
the leading order of α,

m(r) ≈ M− Q2

8πr

[
1− α

225π

1
(4π)2

Q2

r4
1

E2
c

]
= M− Q2

8πr

[
1− α

225π
E2

Q

]
,

(E.4.9)
which shows the QED correction to the Reissner-Nordström solution. Due to
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the QED vacuum polarization effect, the black hole charge Q is screened

Q→ Q
[
1− α

225π
E2

Q

]1/2
. (E.4.10)

As a consequence, the electrostatic energy of Eq. (E.4.9) is smaller than Q2/(8πr)
in the Reissner-Nordström solution.

Moreover, we study the QED correction to the black hole horizon. For
this purpose, we define the horizon radius rH at which the function f (r) of
Eq. (E.4.2) vanishes, i.e., f (rH) = 0, leading to

Gm(rH)

rH

=
1
2

. (E.4.11)

Using the energy-mass function m(r) of Eq. (E.4.9), we obtain

GM
rH

− GQ2

8πr2
H

[
1− α

225π
E2

Qh

]
=

1
2

, (E.4.12)

where EQh ≡ EQ(rH). Up to the leading order of α, we obtain

rH+=GM +

√
G2M2 − GQ2

4π

[
1− α

225π
E2

Q+

]
, (E.4.13)

rH−=GM−
√

G2M2 − GQ2

4π

[
1− α

225π
E2

Q−

]
, (E.4.14)

where EQ+ ≡ EQ(rH+) and EQ− ≡ EQ(rH−). Equation (E.4.13) shows that the
black hole horizon radius rH+ becomes larger than the Reissner-Nordström
one r+ given by Eq. (E.4.13) for setting α = 0. The black hole horizon area
4πr2

H+
becomes larger than the Reissner-Nordström one 4πr2

+ given by Eq. (E.4.13)
for setting α = 0. This is again due to the black hole charge Q screened by the
QED vacuum polarization (E.4.10).

In the Reissner-Nordström solution, the extreme black hole solution is given
by r+ = r− or 4πGM2 = Q2. In our case, this is given by rH+ = rH− = rH

yielding

G2M2 − GQ2

4π

[
1− α

225π
E2

Qh

]
= 0. (E.4.15)
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From Eqs. (E.4.13) and (E.4.14), we obtain

4πr2
H
=4πG2M2 = GQ2

[
1− α

225π
E2

Qh

]
=GQ2

[
1− α

225π

1
G2Q2E2

c

]
, (E.4.16)

rH±
≈Q

[
1− α

225π
E2

Qh

]1/2
= Q

[
1− α

225π

1
(EcQ)2

]1/2

. (E.4.17)

In Eq. (E.4.17) we adopt G/4π = 1. Due to the QED correction, the condi-
tion of extremely electrically charged black holes with spherical symmetry
changes from M = Q/4π to

M =
Q
4π

[
1− α

225π

1
(EcQ)2

]1/2

. (E.4.18)

This implies that for a given M, the black holes are allowed to carry more
charge Q than the Reissner-Nordström case. These results show that when
the black hole mass M is fixed, the horizon area and radius of the extremely
electrically charged black hole are the same as the extreme Reissner-Nordström
one. However, when the black hole charge Q is fixed, the black hole horizon
area and radius are smaller than those of the extreme Reissner-Nordström
black hole. The reason is that the charge screening effect decreases the elec-
trostatic energy; hence, this leads to a smaller mass M for the extreme black
hole.

Now we turn to the maximal energy extractable from a black hole. As
pointed out in Ref. Christodoulou and Ruffini (1971), the surface area Sa of
the black hole horizon is related to the irreducible mass Mir of the black hole

Sa = 16πG2M2
ir = 4πr2

H+
, (E.4.19)

where rH+ is given by Eq. (E.4.13). The surface area of the black hole horizon
cannot be decreased by classical processes Christodoulou and Ruffini (1971);
Christodoulou (1970); Hawking (1971). Any transformation of the black hole
which leaves fixed the irreducible mass is called reversible Christodoulou
and Ruffini (1971); Christodoulou (1970). Any transformation of the black
hole which increases its irreducible mass, for instance, the capture of a par-
ticle with nonzero radial momentum at the horizon, is called irreversible. In
irreversible transformations there is always some kinetic energy that is irre-
trievably lost behind the horizon. Note that transformations which arbitrarily
close to reversible ones are the most efficient transformations for extracting
energy from a black hole Christodoulou and Ruffini (1971); Christodoulou
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(1970). Following the same argument presented in Ref. Christodoulou and
Ruffini (1971), and including the leading-order QED correction (E.4.9), we
obtain the Christodoulou-Ruffini mass formula

M = Mir +
Q2

16πGMir

[
1− α

225π
E2

Q+

]
, (E.4.20)

where the electrostatic energy of the black hole is reduced for the reason that
the black hole charge is screened down by the QED vacuum polarization ef-
fect (E.4.10).

The properties of the surface area Sa of the black hole horizon and irre-
ducible mass Mir can also been understood from the concepts of information
theory Bekenstein (1973). The black hole entropy Sen is introduced as the
measure of information about a black hole interior which is inaccessible to an
exterior observer and is proportional to the surface area Sa of the black hole
horizon Bekenstein (1973)

Sen = Sa/4 = πr2
H+

. (E.4.21)

The physical content of the concept of the black hole entropy derives from the
generalized second law of thermodynamics: when common entropy in the
black hole exterior plus the black hole entropy never decreases Bekenstein
(1973). In the Einstein-Euler-Heisenberg theory, the black hole irreducible
mass of Eq. (E.4.19) and entropy of Eq. (E.4.21) with the QED correction are
determined by the horizon radius rH+ of Eq. (E.4.13) for charged black holes
and Eq. (E.4.16) for extreme black holes.

Now we consider the physical interpretation of the electromagnetic term
in Eq. (E.4.20). This term represents the maximal energy extractable from a
black hole, which can be obtained by evaluating the conserved Killing inte-
gral Ruffini et al. (2010); Ruffini and Vitagliano (2002)∫

Σ+
t

ξ
µ
+TµνdΣν = 4π

∫ ∞

rH+

r2T0
0 dr, (E.4.22)

where Σ+
t is the spacelike hypersurface in the space-time region that is out-

side the horizon r > rH+ described by the equation t = constant, with dΣν

as its surface element vector. ξ
µ
+ is the static Killing vector field. This elec-

tromagnetic term in Eq. (E.4.20) is the total energy of the electromagnetic
field and includes its own gravitational binding energy. Using the energy-
momentum tensor of Eq. (E.4.4) and weak-field solution (E.4.7), we obtain
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the maximal energy extractable from an electrically charged black hole

εex =
Q2

8πrH+

[
1− α

225π
E2

Q+

]
. (E.4.23)

This shows that the black hole maximal extractable energy decreases in com-
parison with the Reissner-Nordström case (Q2/8πr+). This can be explained
by the following: (i) the charge screening effect decreases the electrostatic en-
ergy; (ii) the black hole horizon radius rH+ of Eq. (E.4.13) increases, leading
to the decrease of the maximally extractable energy, because the most effi-
cient transformations that extract energy from a black hole occur near the
horizon. For the extremely electrically charged black hole, the maximally ex-
tractable energy is the same as that in the Reissner-Nordström case, when the
black hole mass M is fixed; however, it becomes smaller than the Reissner-
Nordström one when the black hole electric charge Q is fixed.

E.5. Magnetically charged black holes

Now we turn to study the Einstein-Euler-Heisenberg theory (E.3.18) and (E.3.24)
in the presence of the magnetic field B. As shown by Eq. (E.2.6), the magnetic
field B does not contribute to the pair-production rate so that the process
of the electron-positron pair production does not occur for a strong mag-
netic field B. For this reason, we consider black holes with strong magnetic
fields. The conventional black hole with electric and magnetic fields is the
rotating charged black hole of the Kerr-Newman black hole Newman et al.
(1965). However, the solution to a rotating charged black hole in the Einstein-
Euler-Heisenberg theory is rather complicated, and we do not consider it
in this work. For the sake of simplicity, we study the nonrotating magnet-
ically charged black hole with spherical symmetry in order to investigate the
QED corrections in the presence of the magnetic field B in the Einstein-Euler-
Heisenberg theory.

For a nonrotating magnetically charged black hole with magnetic charge
Qm, the tensor Fµν compatible with spherical symmetry can involve only a
radial magnetic field F23 = −F32. In the Einstein-Maxwell theory, the field
equations (E.3.5) give (see, e.g., Refs. Hawking and Ross (1995); Gibbons and
Rasheed (1995))

F23 =
Qm sin θ

4π
, (E.5.1)

and the gauge potential will be (see, e.g., Refs. Hawking and Ross (1995))

Aµ(x) = [0, 0, 0, Qm(1− cos θ)/4π]. (E.5.2)
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The metric is similar to the one of nonrotating electrically charged black holes,

ds2 = f (r)dt2 − f (r)−1dr2 − r2dΩ, f (r) ≡ 1− 2Gm(r)/r, (E.5.3)

where m(r) is the mass-energy function. In the Einstein-Maxwell theory, the
metric function f (r) of magnetically charged black holes with spherical sym-
metry is given by (see, e.g., Refs. Hawking and Ross (1995))

f (r) = 1− 2GM
r

+
GQ2

m
4πr2 , (E.5.4)

where M is the black hole mass seen at infinity.

E.5.1. Weak magnetic field case

Using Eq. (E.3.18), we obtain the energy-momentum tensor for the weak mag-
netic field B case,

Tµν = Tµν
M

(
1− 2αB2

45πE2
c

)
+ gµν αB4

90πE2
c
+ · · · . (E.5.5)

Similar to the analysis of electrically charged black holes with spherical sym-
metry, we obtain the (0-0) component of Einstein equations,

2m′(r)
r2 = 4π

[
B2(r)− α

45π
B4(r)/E2

c

]
. (E.5.6)

For the magnetically charged black hole with spherical symmetry, only a ra-
dial magnetic field is present. The field equations (E.3.5) give B(r) = Qm/(4πr2)
(see, e.g., Refs. Yajima and Tamaki (2001); Bronnikov (2001)). Substituting
B(r) into the Einstein equation (E.5.6), we obtain the mass-energy function

m(r) = M−
∫ ∞

r
4πr2dr

1
2

[
B2(r)− α

45π
B4(r)/E2

c

]
. (E.5.7)

Neglecting the QED correction of the Euler-Heisenberg effective Lagrangian,
Eq. (E.5.7) gives m(r) = M− Q2

m/8πr, which is the solution of the magneti-
cally charged Reissner-Nordström black hole in the Einstein-Maxwell theory.
Making the integration in Eq. (E.5.7), one obtains Yajima and Tamaki (2001)

m(r) = M− Q2
m

8πr

[
1− α

225π

1
(4π)2

Q2
m

r4
1

E2
c

]
= M− Q2

m
8πr

[
1− α

225π
B2

Q

]
,

(E.5.8)
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where BQ ≡ BQ(r) ≡ Qm/(4πr2Ec). As shown in Eq. (E.5.8), taking into ac-
count the QED vacuum polarization effect, the total magnetostatic energy is
smaller than Q2

m/8πr in the magnetically charged Reissner-Nordström case.
This can be understood as follows. In the magnetic field B of the black holes,
the vacuum polarization effect results in a positive magnetic polarization M.
Then the magnetic H field defined B = H + M is smaller than the magnetic
field B. The magnetostatic energy density εEM ∝ B ·H decreases. This shows
that in weak magnetic fields, the vacuum polarization effect exhibits the para-
magnetic property.

Compared to the result of the electrically charged black hole in the first
order of α, Eqs. (E.4.9) and (E.5.8) have the same expression. One can obtain
Eq. (E.5.8) by simply replacing EQ in Eq. (E.4.9) by BQ, namely, replacing Q
by Qm because of the duality symmetry (see, e.g., Ref. Hawking and Ross
(1995)). Similar to the analysis of electric charged black holes, we obtain the
horizon radii rH+

and rH−
of the magnetically charged black hole, up to the

leading order of α,

rH+=GM +

√
G2M2 − GQ2

m
4π

[
1− α

225π
B2

Q+

]
, (E.5.9)

rH−=GM−
√

G2M2 − GQ2
m

4π

[
1− α

225π
B2

Q−

]
, (E.5.10)

where BQ+ ≡ BQ(rH+) and BQ− ≡ BQ(rH−). The result (E.5.9) shows that the
black hole horizon radius rH+ increases in comparison with the magnetically
charged Reissner-Nordström one r+. This is again due to the paramagnetic
effect of the vacuum polarization that decreases the magnetostatic energy of
the black hole.

Now we turn to the extreme black hole (rH+ = rH− = rH ). Similarly, we
have

G2M2 − GQ2
m

4π

[
1− α

225π
B2

Qh

]
= 0, (E.5.11)

where BQh ≡ BQ(rH), and we obtain the black hole horizon area and radius

4πr2
H
=4πG2M2 = GQ2

m

[
1− α

225π
B2

Qh

]
= GQ2

m

[
1− α

225π

1
G2Q2

mE2
c

]
,(E.5.12)

rH≈Qm

[
1− α

225π
B2

Qh

]1/2
= Qm

[
1− α

225π

1
(EcQm)2

]1/2

. (E.5.13)

In the second line, we adopt G/4π = 1. The QED correction changes the
condition of extremely magnetically charged black holes with spherical sym-
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metry from M = Qm/4π to

M =
Qm

4π

[
1− α

225π

1
(EcQm)2

]1/2

. (E.5.14)

The properties of the horizon area and radius of the extremely magnetically
charged black hole are the same as their counterparts in the extremely elec-
trically charged black hole, given by the duality transformation Q↔ Qm.

Following the same argument presented in Ref. Christodoulou and Ruffini
(1971), we obtain the Christodoulou-Ruffini mass formula

M = Mir +
Q2

m
16πGMir

[
1− α

225π
B2

Q+

]
(E.5.15)

for magnetically charged black holes with spherical symmetry in the Einstein-
Euler-Heisenberg theory. One is able to obtain the irreducible mass Mir by
substituting Eq. (E.5.9) into Eq. (E.4.19), and the black hole entropy Sen by
substituting Eq. (E.5.9) into Eq. (E.4.21). The irreducible mass Mir and the
black hole entropy Sen in terms of black hole horizon radius rH+ Eq. (E.5.9)
have the same paramagnetic property in the presence of the QED vacuum
polarization effect, as already discussed.

As shown in Eq. (E.5.15), the maximal energy extractable from a magneti-
cally charged black hole is

εex =
Q2

m
8πrH+

[
1− α

225π
B2

Q+

]
, (E.5.16)

where rH+ is given by Eq. (E.5.9). The result shows that the maximal energy

extractable from a magnetically charged black hole is smaller than Q2
m

8πr+ of
the magnetically charged Reissner-Nordström black hole. The reasons are
the following: (i) the vacuum polarization effect decreases the magnetostatic
energy; (ii) the black hole horizon radius rH+ of Eq. (E.5.9) increases, therefore
the maximally extractable energy decreases. The maximal energy extractable
from an extremely magnetically charged black hole is the same as that from
an extremely magnetically charged Reissner-Nordström black hole when the
black hole mass M is fixed, while it decreases when the black hole magnetic
charge Qm is fixed, as we have already discussed at the end of Sec. E.4 for the
case of the extremely electrically charged black hole.
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E.5.2. Strong magnetic field case

In this section, we study the magnetically charged black holes with a strong
magnetic field B(r). From Eq. (E.3.24), we obtain the energy-momentum ten-
sor of the magnetically charged black hole with spherical symmetry in the
strong magnetic field case. Analogous to the weak magnetic field case of
magnetically charged black holes with spherical symmetry, we obtain the (0-
0) component of Einstein equations

2m′(r)
4πr2 = 4π

{
B2(r) +

e2B2

12π2

[
ln
(

πEc

B

)
+ γ− 6

π2 ζ ′(2)
]}

, (E.5.17)

and the field equations (E.3.5) give B(r) = Qm/(4πr2). Substituting this mag-
netic field B(r) into the Einstein equation (E.5.17), we obtain

m(r)≈M−
∫ ∞

r
4πr2dr

1
2

{
B2 +

e2B2

12π2

[
ln
(

πEc

B

)
+ γ− 6

π2 ζ ′(2)
]}
(E.5.18)

≈M− Q2
m

8πr

{
1 +

α

3π

[
ln
(

π

BQ

)
+ γ + 2− 6

π2 ζ ′(2)
]}

. (E.5.19)

This result is valid for B � Ec, for which the value of ln
(
π/BQ

)
+ γ +

2 − 6
π2 ζ ′(2) is negative. As a result, Eq. (E.5.19) shows that the total mag-

netostatic energy in the presence of the vacuum polarization is smaller than
Q2

m/8πr of the magnetically charged Reissner-Nordström black hole. Similar
to the weak-field case, this is again due to the paramagnetic effect of the vac-
uum polarization that decreases the magnetostatic energy of black holes. In
the strong magnetic field case, the QED vacuum polarization effect is much
larger than the result (E.5.8) in the weak-field case, where the QED correction
term in Eq. (E.5.8) is small for the smallness of α/(225π) and B2

Q. This re-
sult (E.5.19) shows a significant QED effect of the vacuum polarization on the
energy of magnetically charged black holes in the strong magnetic field case.

Now we turn to the study of the black hole horizon radius and area in the
strong magnetic field case. Using the condition f (rH) = 0, we obtain the
horizon radii rH+ and rH− up to the leading order of α,

rH+=GM +

√
G2M2 − GQ2

m
4π

[
1 +

α

3π
KNR+

]
, (E.5.20)

rH−=GM−
√

G2M2 − GQ2
m

4π

[
1 +

α

3π
KNR−

]
, (E.5.21)
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where

KNR+= ln
(

π

BQ+

)
+ γ + 2− 6

π2 ζ ′(2), (E.5.22)

KNR−= ln
(

π

BQ−

)
+ γ + 2− 6

π2 ζ ′(2). (E.5.23)

Equation (E.5.20) shows that the horizon radius rH+ increases in comparison
with the magnetically charged Reissner-Nordström one r+. This is again due
to the paramagnetic effect of the vacuum polarization that decreases the mag-
netostatic contribution to the total energy of black holes.

For the case of the extreme black hole (rH+ = rH− = rH ), we have

G2M2 − GQ2
m

4π

[
1 +

α

3π
KNR

]
= 0, (E.5.24)

where

KNR = ln
(

π

BQh

)
+ γ + 2− 6

π2 ζ ′(2). (E.5.25)

As a result, we obtain

4πr2
H
=4πG2M2 = GQ2

m

[
1 +

α

3π
KNR

]
, (E.5.26)

rH≈Qm

[
1 +

α

3π
KNR

]1/2
. (E.5.27)

Similar to the weak magnetic field case, the QED correction changes the con-
dition of extremely magnetically charged black holes with spherical symme-
try from M = Qm/4π to

M =
Qm

4π

[
1 +

α

3π
KNR

]1/2
. (E.5.28)

These results show that the horizon area and radius of the extreme black
hole are the same as their counterparts of the extremely magnetically charged
Reissner-Nordström black hole, when the black hole mass M is fixed. Whereas,
the black hole magnetic charge Qm is fixed, Eqs. (E.5.26) and (E.5.27) show
that the black hole horizon area and radius become smaller than their coun-
terparts of extremely magnetically charged Reissner-Nordström black holes.
We have discussed this behavior in Eqs. (E.4.15)-(E.4.18) for the case of ex-
tremely electrically charged black holes.

Analogously, we obtain the Christodoulou-Ruffini mass formula in the strong-
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field case of magnetically charged black holes,

M = Mir +
Q2

16πGMir

[
1 +

α

3π
KNR+

]
. (E.5.29)

It is straightforward to obtain irreducible mass Mir by substituting Eq. (E.5.20)
into Eq. (E.4.19), and the black hole entropy Sen by substituting Eq. (E.5.20)
into Eq. (E.4.21). Analogous to the case of the electrically charged black hole,
the black hole irreducible mass Mir and entropy Sen in the strong magnetic
field case depend on the black hole horizon radius rH+ of Eqs. (E.5.20) and
(E.5.26). Equation (E.5.29) indicates that the maximal energy extractable from
a magnetically charged black hole is

εex =
Q2

m
8πrH+

[
1 +

α

3π
KNR+

]
. (E.5.30)

The properties of the maximally extractable energy in the strong magnetic
field case are similar to those of the magnetically charged black hole in the
weak magnetic field case. However, the QED correction of the vacuum po-
larization effect to the energy of the magnetically charged black hole in the
strong magnetic field case is much more significant in comparison with that
in the weak magnetic field case.

E.6. Black holes with electric and magnetic
charges

If the spherically symmetric (nonrotating) black hole is both electrically and
magnetically charged, electric and magnetic fields do not vanish. As shown
in Eq. (E.2.11), both invariants S and P contribute to the Euler-Heisenberg ef-
fective Lagrangian. The metric takes the same form as the metric of Eq. (E.4.2)
for electrically charged black holes with spherical symmetry. In this case, the
tensor Fµν compatible with spherical symmetry can involve only a radial elec-
tric field F01 = −F10 and a radial magnetic field F23 = −F32, and the gauge
potential is (see, e.g., Ref. Hawking and Ross (1995))

Aµ(x) = [A(r), 0, 0, Qm(1− cos θ)/4π]. (E.6.1)

In the Einstein-Maxwell theory, A(r) = −Q/(4πr), and the metric function
f (r) of Eq. (E.4.2) is given by (see, e.g., Ref. Hawking and Ross (1995))

f (r) = 1− 2GM
r

+
GQ2

4πr2 +
GQ2

m
4πr2 . (E.6.2)
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In the Einstein-Euler-Heisenberg theory, we study the spherically symmet-
ric black hole with electric and magnetic charges in the weak-field case. Us-
ing Eq. (E.3.18), we derive the energy-momentum tensor with a radial electric
field E and a radial magnetic field B,

Tµν = Tµν
M

[
1 +

2α

45πE2
c
(E2 − B2)

]
+ gµν α

90πE2
c

[
(E2 − B2)2 + 7(E · B)2

]
+ · · · .

(E.6.3)
Analogous to the analysis of electrically/magnetically charged black holes
with spherical symmetry, we obtain the (0-0) component of Einstein equa-
tions,

2m′(r)
r2 = 4π

[
E2(r) + B2(r) +

α

15π
E4(r)/E2

c −
α

45π
B4(r)/E2

c +
α

9πE2
c

E2(r)B2(r)
]

.

(E.6.4)
In addition, we obtain the field equations from Eq. (E.3.5) (see also Ref. Yajima
and Tamaki (2001)),

E(r) +
2α

45π
E3(r)/E2

c +
αB2

9πE2
c

E(r) =
Q

4πr2 , (E.6.5)

B(r) =
Qm

4πr2 . (E.6.6)

Note that the mixing terms of the electric and magnetic fields in Eqs. (E.6.4)
and (E.6.5) come from the contribution of the invariant P. Introducing E(r) ≡
E(r)/Ec, we have

E(r) = EQ −
2α

45π
E3

Q −
α

9π
B2

QEQ + · · · , (E.6.7)

up to the first order of α. We substitute the solutions of (E.6.6) and (E.6.7) into
the Einstein equation (E.6.4) and obtain the mass-energy function

m(r) = M−
∫ ∞

r
4πr2dr

1
2

E2
c

[
E2

Q + B2
Q −

α

45π
E4

Q −
α

45π
B4

Q −
α

9π
B2

QE2
Q

]
.

(E.6.8)
Disregarding the QED correction of the Euler-Heisenberg effective Lagrangian,
Eq. (E.6.8) gives the solution m(r) = M−Q2/8πr−Q2

m/8πr for the Reissner-
Nordström black hole with electric and magnetic charges. Performing the
integration in Eq. (E.6.8), we approximately obtain

m(r) = M− Q2

8πr

[
1− α

225π
E2

Q

]
− Q2

m
8πr

[
1− α

225π
B2

Q

]
+

α

45π

Q2
m

8πr
E2

Q. (E.6.9)
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In the limit Q� Qm, Eq. (E.6.9) becomes Eq. (E.4.9) of the electrically charged
black hole. On the contrary, in the limit Qm � Q, Eq. (E.6.9) becomes Eq. (E.5.8)
of the magnetically charged black hole. In order to study the effect of the P
term in the Euler-Heisenberg effective Lagrangian, we consider the case with
large P and small S, i.e., Qm ≈ Q. In this situation, Eq. (E.6.9) becomes

m(r) = M− Q2

8πr

[
2− 7α

225π
E2

Q

]
, (E.6.10)

for Qm = Q, i.e., S = 0 and large P. Comparing to the cases of electri-
cally/magnetically charged black holes, the QED correction to the black hole
energy becomes larger, which results from the combination effects of the
vacuum polarization on electric and magnetic charges of black holes in the
Einstein-Euler-Heisenberg theory.

In the same way that has been discussed in previous sections, up to the
leading order of α, we obtain the horizon radii rH+ and rH− from Eq. (E.6.10),

rH+=GM +

√
G2M2 − GQ2

4π

[
2− 7α

225π
E2

Q+

]
, (E.6.11)

rH−=GM−

√
G2M2 − GQ2

4π

[
2− 7α

225π
E2

Q−

]
, (E.6.12)

and the Christodoulou-Ruffini mass formula

M = Mir +
Q2

16πGMir

[
2− 7α

225π
E2

Q+

]
, (E.6.13)

as well as the maximal energy extractable from a black hole

εex =
Q2

8πrH+

[
2− 7α

225π
E2

Q+

]
. (E.6.14)

Analogously, we obtain the irreducible mass Mir by substituting Eq. (E.6.11)
into Eq. (E.4.19), and the black hole entropy Sen by substituting Eq. (E.6.11)
into Eq. (E.4.21). The irreducible mass Mir, the black hole entropy Sen, and
the maximal energy extractable from a black hole receive the same QED cor-
rection, but a factor of 7/2 larger, as compared with their counterparts in the
case of either electrically or magnetically charged black holes in the weak-
field case.
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E.7. Summary

In this chapter, in addition to the Maxwell Lagrangian, we consider the con-
tribution from the QED Euler-Heisenberg effective Lagrangian to formulate
the Einstein-Euler-Heisenberg theory. On the basis of this theory, we study
the horizon radius, area, total energy, entropy, and irreducible mass as well
as the maximally extractable energy of spherically symmetric (nonrotating)
black holes with electric and magnetic charges. Our calculations are made up
to the leading order of the QED corrections in the limits of strong and weak
fields. Our results show that the QED correction of the vacuum polarization
results in the increase of the black hole horizon area, entropy and irreducible
mass, as well as the decrease of the black hole total energy and maximally
extractable energy. The reason is that the QED vacuum polarization gives
rise to the screening effect on the black hole electric charge and the paramag-
netic effect on the black hole magnetic charge. The condition of the extremely
charged black hole M = Q/4π or M = Qm/4π is modified [ see Eqs. (E.4.18),
(E.5.14), and (E.5.28)], which results from the screening and paramagnetic ef-
fects.

To end this chapter, we would like to mention that in the Einstein-Euler-
Heisenberg theory, it is worthwhile to study Kerr-Newman black holes, whose
electric field E and magnetic field B are determined by the black hole mass
M, charge Q, and angular momentum a Newman et al. (1965). In addition,
it will be interesting to study the QED corrections in black hole physics by
taking into account the one-loop photon-graviton amplitudes of the effective
Lagrangian (E.3.11) Drummond and Hathrell (1980) and its generalizations
Gilkey (1975); Bastianelli et al. (2000); Barvinsky and Vilkovisky (1985); Gu-
sev (2009); Bastianelli et al. (2009). We leave these studies for future work.
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New regular black hole solution from nonlinear electrodynamics.
Phys. Lett. B, 464, pp. 25–29 (1999).

BARVINSKY, A.O. AND VILKOVISKY, G.A.
The generalized schwinger-dewitt technique in gauge theories and quantum grav-
ity.
Phys. Rep., 119, pp. 1–74 (1985).

BARVINSKY, A.O. AND VILKOVISKY, G.A.
Covariant perturbation theory (ii). second order in the curvature. general algo-
rithms.
Nucl. Phys. B, 333, pp. 471–511 (1990a).

BARVINSKY, A.O. AND VILKOVISKY, G.A.
Covariant perturbation theory (iii). spectral representations of the third-order form
factors.
Nucl. Phys. B, 333, pp. 512–524 (1990b).
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Über die elektrodynamik des vakuums auf grund der quantentheorie des elektrons.
Kongelige Danske Videnskabernes Selskab. Math.-fys. Meedelelser, 14, p. 6
(1936).

WILTSHIRE, D.L.
Black holes in string-generated gravity models.
Phys. Rev. D, 38, pp. 2445–2456 (1998).

YAJIMA, H. AND TAMAKI, T.
Black hole solutions in euler-heisenberg theory.
Phys. Rev. D, 63, p. 064007 (2001).

ZELDOVICH, Y.B. AND POPOV, V.S.
Electronic Structure of Superheavy Atoms.
Soviet Physics Uspekhi, 14, pp. 673–+ (1971).

740


	ICRANet
	Presented to
	The Scientific Committee

	By

	Topics
	ICRANet participants
	Students
	Ongoing collaborations

	Brief description
	Publications-2016
	Publications-2010-2015

	Galactic sources of high energy neutrinos: Expectation from gamma-ray data
	Introduction
	The sample
	Conclusion and Discussion

	Gamma-ray Emission from Non-Blazar AGNs
	Introduction
	Fermi-LAT Data Selection and Analysis
	Results
	Discussions

	High Energy Gamma-Rays From PKS 1441+25
	Introduction
	Fermi-LAT Data Analayisis
	Spectral Analysis

	Discusssion and Interpretation

	Topics
	Participants
	ICRANet participants
	Ongoing collaborations
	Past collaborations
	Students/Postdocs

	Brief description
	Implementation of the ICRANet Brazilian Science Data Center (BSDC)
	High energy emitting blazars
	The VHE blazar sample, 2WHSP
	The 1BIGB catalog
	Correlation between HSPs and neutrinos
	Temporal study of the spectral energy distribution of blazars


	Publications
	Topics
	Participants
	PhD and Post Graduate Students
	Research activity
	Exact solutions in General Relativity and Supergravity
	Cosmology and Astrophysics
	Fundamental Relativity

	Topics
	Participants
	ICRANet participants
	Past collaborators
	Ongoing collaborations
	Students

	Brief summary of recent progresses
	Selected publications before 2005
	Refereed journals
	Conference proceedings

	Publications (2005–2016)
	Refereed journals
	Conference proceedings

	Topics
	Participants
	ICRANet participants
	Past collaborators
	Students

	Brief description
	Highlights of recent results
	The luminosity evolution over the EQTSs in the GRB prompt emission
	The apparent size of EQTSs in the sky

	Appendix on previous results
	Exact vs. approximate solutions in GRB afterglows
	Exact analytic expressions for the EQTSs in GRBs
	Exact vs. approximate beaming formulas in GRBs


	Publications on refereed journals
	The luminosity evolution over the EQTSs in the GRB prompt emission
	The Equitemporal surfaces (EQTS)
	The extended afterglow luminosity distribution over the EQTS
	Conclusions

	The EQTS apparent radius in the sky
	Conclusions

	Exact vs. approximate solutions in GRB afterglows
	Differential formulation of the afterglow dynamics equations
	The exact analytic solutions
	Approximations adopted in the current literature
	The fully radiative case
	The adiabatic case

	A specific example

	Exact analytic expressions for the EQTSs in GRB afterglows
	The definition of the EQTSs
	The analytic expressions for the EQTSes
	The fully radiative case
	The adiabatic case
	Comparison between the two cases

	Approximations adopted in the current literature

	Exact vs. approximate beaming formulas in GRB afterglows
	Analytic formulas for the beaming angle
	The fully radiative regime
	The adiabatic regime
	The comparison between the two solutions

	Comparison with the existing literature
	An empirical fit of the numerical solution

	Bibliography
	Topics
	Participants
	Principal Investigator
	ICRANet participants
	Ongoing collaborations
	Students

	Description
	Multi-wavelength analysis of GRBs
	Cosmology with GRBs
	Analysis of nova outbursts
	Support to the Swift and future space missions
	Other activities

	Publications
	Topics
	Topics
	Participants
	ICRANet participants
	Past collaborators
	Ongoing collaborations

	Brief description
	Electron-positron plasma
	Relativistic degeneracy in the pair plasma

	Thermal emission from relativistic plasma and GRBs
	Relativistic kinetic theory and its applications
	Ultra high energy particles
	Cosmic absorption of ultra high energy particles
	Photon-photon scattering and absorption of high energy photons in the Universe

	Self-gravitating systems of Dark Matter particles
	Theoretical evidence of 50 keV fermionic dark matter from galactic observables
	Strong lensing by fermionic dark matter in galaxies
	The role of self-interacting right-handed neutrinos in galactic structure


	Publications
	Publications (2005 – 2015)
	Publications (2016)
	Invited talks at international conferences
	Lecture courses

	Topics
	ICRANet Participants
	Ongoing collaborations
	Students

	Brief description
	Introduction
	The general static vacuum solution
	Line element and field equations
	Static solution

	Stationary generalization
	Ernst representation
	Representation as a nonlinear sigma model
	Representation as a generalized harmonic map
	Dimensional extension
	The general solution

	Quadrupolar metrics
	Introduction
	The gravitational field of compact stars
	Physical conditions

	Static quadrupolar metrics
	Stationary quadrupolar metrics
	Interior quadrupolar metrics
	Remarks

	Rotating gravitation fields in the Newtonian limit
	Introduction
	Slowly rotating stars in Newtonian gravity
	Coordinates
	Spherical harmonics

	Physical properties of the model
	Mass and Central Density
	The Shape of the Star and Numerical Integration
	Moment of Inertia
	Gravitational binding energy and rotational kinetic energy
	Quadrupole Moment
	Ellipticity and Gravitational Love Number

	Summary
	The static case
	The rotating case: l=0 Equations
	The rotating case: l=2 equations

	An example: White dwarfs
	The mass-shedding limit and scaling law
	Comparison with other results in the literature
	Remarks

	Inertia and quadrupole relations for white dwarfs
	Introduction
	Equations of structure
	A non-rotating stellar model
	A rotating stellar model
	Central density and angular velocity
	Spherical deformations of the star
	Quadrupolar deformations of the star
	Matching with the Exterior Solutions
	Polar and equatorial radii and eccentricity
	Ellipticity and Gravitational Love Number
	Quadrupole Moment
	Total Moment of Inertia

	Stability criteria for rotating white dwarfs
	Inverse -decay instability
	Mass-shedding limit
	The turning-point criterion and secular axisymmetric instability

	Equations of state for cold white dwarfs
	Results and discussion
	I-Love-Q and I-Q-e relations for white dwarfs
	Remarks

	Bibliography
	Topics
	Participants
	ICRANet participants
	Past collaborators
	On going collaborations
	Ph.D.  and M.S. Students

	Brief description
	Abstract
	The three fundamental contributions to the electron-positron pair creation and annihilation and the concept of critical electric field
	Nonlinear electrodynamics and rate of pair creation
	Pair production and annihilation in QED
	Phenomenology of electron-positron pair creation and annihilation
	Plasma oscillations and radiation in uniform or nonuniform electric fields, and thermalization of the mildly relativistic pair plasma
	The energy extraction from a black hole by pair-productions, and Einstein-Euler-Heisenberg theory and charged black holes
	Dyadosphere of electron-positron pairs and photons formed in gravitational collapses
	Polarization of strong electromagnetic fields and its applications in polarizations of laser fields, GRBs and CMB photons, as well as neutrinos
	Pair production and interactions of fields and matter in the cosmology within the framework of quantum Einstein-Cartan-Maxwell theory
	Semiclassical approach to pair production rate for strong time-dependent electrical fields with more than one component
	Pair-production, ultra-high energy particles, gravitational and electromagnetic energies in gravitational collapse and accretion processes
	Strong and pulsating electromagnetic field in gravitational collapse core or heavy atoms
	The Breit-Wheeler cutoff in high-energy -rays and cosmic absorption (opacity) of ultra high energy particles

	Publications (before 2005)
	Publications (2005-2016)
	Invited talks in international conferences
	APPENDICES
	Dyadosphere (electron-positron-photon plasma) formation in gravitational collapse.
	Electron-positron pair oscillation in spatially inhomogeneous electric fields and radiation
	Electron and positron pair production in gravitational collapse
	Introduction.
	Basic equations for dynamical evolution.
	Equilibrium configurations.
	Modeling dynamical perturbations of baryon cores.
	Dynamical evolution of electron fluid
	Oscillations of electron fluid and electric field.
	Electron-positron pair production
	Gravitational collapse and Dyadosphere
	Summary and remarks.

	Gravitational and electric energies in gravitational collapse
	Introduction
	Einstein-Maxwell Equations and conservation laws of two fluids
	A thin shell of spherical capacitor
	Collapse of spherically thin capacitor
	Collapse of the thin shell with varying electric energy
	Summary and remarks

	Einstein-Euler-Heisenberg theory and charged black holes
	Introduction
	The Euler-Heisenberg effective Lagrangian
	The Einstein-Euler-Heisenberg theory
	B=0, E=0 or E=0, B=0
	Weak- and strong-field cases

	Electrically charged black holes
	Magnetically charged black holes
	Weak magnetic field case
	Strong magnetic field case

	Black holes with electric and magnetic charges
	Summary

	Bibliography

