
Generalizations of the
Kerr-Newman solution





Contents

1 Topics 391
1.1 ICRANet Participants . . . . . . . . . . . . . . . . . . . . . . . . 391
1.2 Ongoing collaborations . . . . . . . . . . . . . . . . . . . . . . . 391
1.3 Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

2 Brief description 393

3 Introduction 395

4 The general static vacuum solution 397
4.1 Line element and field equations . . . . . . . . . . . . . . . . . 397
4.2 Static solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

5 Stationary generalization 401
5.1 Ernst representation . . . . . . . . . . . . . . . . . . . . . . . . 401
5.2 Representation as a nonlinear sigma model . . . . . . . . . . . 402
5.3 Representation as a generalized harmonic map . . . . . . . . . 405
5.4 Dimensional extension . . . . . . . . . . . . . . . . . . . . . . . 409
5.5 The general solution . . . . . . . . . . . . . . . . . . . . . . . . 411

6 Quadrupolar metrics 415
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
6.2 The gravitational field of compact stars . . . . . . . . . . . . . 417

6.2.1 Physical conditions . . . . . . . . . . . . . . . . . . . . . 418
6.3 Static quadrupolar metrics . . . . . . . . . . . . . . . . . . . . . 419
6.4 Stationary quadrupolar metrics . . . . . . . . . . . . . . . . . . 423
6.5 Interior quadrupolar metrics . . . . . . . . . . . . . . . . . . . . 427
6.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

7 Rotating gravitation fields in the Newtonian limit 439
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
7.2 Slowly rotating stars in Newtonian gravity . . . . . . . . . . . 441

7.2.1 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 442
7.2.2 Spherical harmonics . . . . . . . . . . . . . . . . . . . . 444

7.3 Physical properties of the model . . . . . . . . . . . . . . . . . 446
7.3.1 Mass and Central Density . . . . . . . . . . . . . . . . . 446

389



Contents

7.3.2 The Shape of the Star and Numerical Integration . . . . 448
7.3.3 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . 450
7.3.4 Gravitational binding energy and rotational kinetic en-

ergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
7.3.5 Quadrupole Moment . . . . . . . . . . . . . . . . . . . . 453
7.3.6 Ellipticity and Gravitational Love Number . . . . . . . 454

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
7.4.1 The static case . . . . . . . . . . . . . . . . . . . . . . . . 456
7.4.2 The rotating case: l = 0 Equations . . . . . . . . . . . . 457
7.4.3 The rotating case: l = 2 equations . . . . . . . . . . . . 458

7.5 An example: White dwarfs . . . . . . . . . . . . . . . . . . . . . 460
7.6 The mass-shedding limit and scaling law . . . . . . . . . . . . 468
7.7 Comparison with other results in the literature . . . . . . . . . 470
7.8 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

8 Inertia and quadrupole relations for white dwarfs 473
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
8.2 Equations of structure . . . . . . . . . . . . . . . . . . . . . . . 474

8.2.1 A non-rotating stellar model . . . . . . . . . . . . . . . 474
8.2.2 A rotating stellar model . . . . . . . . . . . . . . . . . . 475
8.2.3 Central density and angular velocity . . . . . . . . . . . 477
8.2.4 Spherical deformations of the star . . . . . . . . . . . . 477
8.2.5 Quadrupolar deformations of the star . . . . . . . . . . 478
8.2.6 Matching with the Exterior Solutions . . . . . . . . . . 479
8.2.7 Polar and equatorial radii and eccentricity . . . . . . . 480
8.2.8 Ellipticity and Gravitational Love Number . . . . . . . 480
8.2.9 Quadrupole Moment . . . . . . . . . . . . . . . . . . . . 482
8.2.10 Total Moment of Inertia . . . . . . . . . . . . . . . . . . 482

8.3 Stability criteria for rotating white dwarfs . . . . . . . . . . . . 483
8.3.1 Inverse β-decay instability . . . . . . . . . . . . . . . . . 483
8.3.2 Mass-shedding limit . . . . . . . . . . . . . . . . . . . . 484
8.3.3 The turning-point criterion and secular axisymmetric

instability . . . . . . . . . . . . . . . . . . . . . . . . . . 485
8.4 Equations of state for cold white dwarfs . . . . . . . . . . . . . 485
8.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 487
8.6 I-Love-Q and I-Q-e relations for white dwarfs . . . . . . . . . 492
8.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Bibliography 499

390



1 Topics

• Generalizations of the Kerr-Newman solution

• Properties of Kerr-Newman spacetimes

1.1 ICRANet Participants

• Donato Bini

• Andrea Geralico

• Roy P. Kerr

• Hernando Quevedo

• Jorge A. Rueda

• Remo Ruffini

1.2 Ongoing collaborations

• Medeu Abishev (Kazakh National University - KazNU, Kazakhstan)

• Kuantay Boshkayev (Kazakh National University - KazNU, Kazakhstan)

• Antonio C. Gutierrez (University of Bolivar, Colombia)

• Orlando Luongo (University of Naples, Italy)

• Daniela Pugliese (Silesian University in Opava, Czech Republic)

• Saken Toktarbay (Kazakh National University - KazNU, Kazakhstan)

391



1 Topics

1.3 Students

• Viridiana Pineda (UNAM PhD, Mexico)

• Pedro Sánchez (UNAM PhD, Mexico)

• Bakytzhan Zhami (KazNU PhD, Kazakhstan)

392



2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman
solution that describes the gravitational and electromagnetic fields of a ro-
tating charged mass. For astrophysical purposes, however, it is necessary to
take into account the effects due to the moment of inertia of the object. To
attack this problem we investigate new exact solutions of Einstein-Maxwell
equations which posses an infinite set of gravitational and electromagnetic
multipole moments and contain the Kerr-Newman solution as special case.

We review the problem of describing the gravitational field of compact
stars in general relativity. We focus on the deviations from spherical sym-
metry which are expected to be due to rotation and to the natural defor-
mations of mass distributions. We assume that the relativistic quadrupole
moment takes into account these deviations, and consider the class of ax-
isymmetric static and stationary quadrupolar metrics which satisfy Einstein’s
equations in empty space and in the presence of matter represented by a per-
fect fluid. We formulate the physical conditions that must be satisfied for
a particular spacetime metric to describe the gravitational field of compact
stars. We present a brief review of the main static and axisymmetric exact
solutions of Einstein’s vacuum equations, satisfying all the physical condi-
tions. We discuss how to derive particular stationary and axisymmetric so-
lutions with quadrupolar properties by using the solution generating tech-
niques which correspond either to Lie symmetries and Bäckund transforma-
tions of the Ernst equations or to the inverse scattering method applied to
Einstein’s equations. As for interior solutions, we argue that it is necessary
to apply alternative methods to obtain physically meaningful solutions, and
review a method which allows us to generate interior perfect-fluid solutions.

We apply the Hartle formalism to study equilibrium configurations in the
framework of Newtonian gravity. This approach allows one to study in a sim-
ple manner the properties of the interior gravitational field in the case of static
as well as stationary rotating stars in hydrostatic equilibrium. It is shown that
the gravitational equilibrium conditions reduce to a system of ordinary dif-
ferential equations which can be integrated numerically. We derive all the
relevant equations up to the second order in the angular velocity. Moreover,
we find explicitly the total mass, the moment of inertia, the quadrupole mo-
ment, the polar and equatorial radii, the eccentricity and the gravitational
binding energy of the rotating body. We also present the procedure to calcu-
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2 Brief description

late the gravitational Love number. We test the formalism in the case of white
dwarfs and show its compatibility with the known results in the literature.

We investigate the equilibrium configurations of uniformly rotating white
dwarfs, using Chandrasekhar and Salpeter equations of state in the frame-
work of Newtonian physics. The Hartle formalism is applied to integrate the
field equation together with the hydrostatic equilibrium condition. We con-
sider the equations of structure up to the second order in the angular veloc-
ity, and compute all basic parameters of rotating white dwarfs to test the so-
called moment of inertia, rotational Love number and quadrupole moment
(I-Love-Q) relations. We found that the I-Love-Q relations are also valid for
white dwarfs regardless of the equation of state and nuclear composition.
In addition, we show that the moment of inertia, quadrupole moment and
eccentricity (I-Q-e) relations are valid as well.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only
for general relativity itself, but also for the very fundamentals of physics.
It assumes this position as being the most physically relevant rotating gen-
eralization of the static Schwarzschild geometry. Its charged counterpart,
the Kerr-Newman solution, representing the exterior gravitational and elec-
tromagnetic fields of a charged rotating object, is an exact solution of the
Einstein-Maxwell equations.

Its line element in Boyer–Lindquist coordinates can be written as

ds2 =
r2 − 2Mr + a2 + Q2

r2 + a2 cos2 θ
(dt− a sin2 θdϕ)2

− sin2 θ

r2 + a2 cos2 θ
[(r2 + a2)dϕ− adt]2

− r2 + a2 cos2 θ

r2 − 2Mr + a2 + Q2 dr2 − (r2 + a2 cos2 θ)dθ2 , (3.0.1)

where M is the total mass of the object, a = J/M is the specific angular mo-
mentum, and Q is the electric charge. In this particular coordinate system,
the metric functions do not depend on the coordinates t and φ, indicating the
existence of two Killing vector fields ξ I = ∂t and ξ I I = ∂ϕ which represent
the properties of stationarity and axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is
surrounded by two horizons situated at a distance

r± = M±
√

M2 − a2 −Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r−, a ring singular-
ity is present which, however, cannot be observed by any observer situated
outside the exterior horizon. If the condition M2 < a2 + Q2 is satisfied, no
horizons are present and the Kerr–Newman spacetime represents the exterior
field of a naked singularity.

Despite of its fundamental importance in general relativity, and its theo-
retical and mathematical interest, this solution has not been especially useful
for describing astrophysical phenomena, first of all, because observed astro-
physical objects do not possess an appreciable net electric charge. Further-
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3 Introduction

more, the limiting Kerr metric takes into account the mass and the rotation,
but does not consider the moment of inertia of the object. For astrophysi-
cal applications it is, therefore, necessary to use more general solutions with
higher multipole moments which are due not only to the rotation of the body
but also to its shape. This means that even in the limiting case of a static
spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum
solution

In general relativity, stationary axisymmetric solutions of Einstein’s equa-
tions [1] play a crucial role for the description of the gravitational field of
astrophysical objects. In particular, the black hole solutions and their gener-
alizations that include Maxwell fields are contained within this class.

This type of exact solutions has been the subject of intensive research dur-
ing the past few decades. In particular, the number of know exact solutions
drastically increased after Ernst [2] discovered an elegant representation of
the field equations that made it possible to search for their symmetries. These
studies lead finally to the development of solution generating techniques [1]
which allow us to find new solutions, starting from a given seed solution. In
particular, solutions with an arbitrary number of multipole moments for the
mass and angular momentum were derived in [3] and used to describe the
gravitational field of rotating axially symmetric distributions of mass.

The first analysis of stationary axially symmetric gravitational fields was
carried out by Weyl [4] in 1917, soon after the formulation of general rela-
tivity. In particular, Weyl discovered that in the static limit the main part of
the vacuum field equations reduces to a single linear differential equation.
The corresponding general solution can be written in cylindrical coordinates
as an infinite sum with arbitrary constant coefficients. A particular choice of
the coefficients leads to the subset of asymptotically flat solutions which is
the most interesting from a physical point of view. In this section we review
the main properties of stationary axisymmetric gravitational fields. In par-
ticular, we show explicitly that the main field equations in vacuum can be
represented as the equations of a nonlinear sigma model in which the base
space is the 4-dimensional spacetime and the target space is a 2-dimensional
conformally Euclidean space.

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, sta-
tionary axisymmetric gravitational fields are usually described in cylindric
coordinates (t, ρ, z, ϕ). Stationarity implies that t can be chosen as the time
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4 The general static vacuum solution

coordinate and the metric does not depend on time, i.e. ∂gµν/∂t = 0. Con-
sequently, the corresponding timelike Killing vector has the components δ

µ
t .

A second Killing vector field is associated to the axial symmetry with respect
to the axis ρ = 0. Then, choosing ϕ as the azimuthal angle, the metric satis-
fies the conditions ∂gµν/∂ϕ = 0, and the components of the corresponding
spacelike Killing vector are δ

µ
ϕ.

Using further the properties of stationarity and axial symmetry, together
with the vacuum field equations, for a general metric of the form gµν =
gµν(ρ, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
[4, 5, 6]

ds2 = f (dt−ωdϕ)2 − f−1
[
e2γ(dρ2 + dz2) + ρ2dϕ2

]
, (4.1.1)

where f , ω and γ are functions of ρ and z, only. After some rearrangements
which include the introduction of a new function Ω = Ω(ρ, z) by means of

ρ∂ρΩ = f 2∂zω , ρ∂zΩ = − f 2∂ρω , (4.1.2)

the vacuum field equations Rµν = 0 can be shown to be equivalent to the
following set of partial differential equations

1
ρ

∂ρ(ρ∂ρ f ) + ∂2
z f +

1
f
[(∂ρΩ)2 + (∂zΩ)2 − (∂ρ f )2 − (∂z f )2] = 0 , (4.1.3)

1
ρ

∂ρ(ρ∂ρΩ) + ∂2
zΩ− 2

f
(
∂ρ f ∂ρΩ + ∂z f ∂zΩ

)
= 0 , (4.1.4)

∂ργ =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (4.1.5)

∂zγ =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (4.1.6)

It is clear that the field equations for γ can be integrated by quadratures,
once f and Ω are known. For this reason, the equations (4.1.3) and (4.1.4)
for f and Ω are usually considered as the main field equations for stationary
axisymmetric vacuum gravitational fields. In the following subsections we
will focus on the analysis of the main field equations, only. It is interesting
to mention that this set of equations can be geometrically interpreted in the
context of nonlinear sigma models [7].

Let us consider the special case of static axisymmetric fields. This corre-
sponds to metrics which, apart from being axially symmetric and indepen-
dent of the time coordinate, are invariant with respect to the transformation
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4.2 Static solution

ϕ→ −ϕ (i.e. rotations with respect to the axis of symmetry are not allowed).
Consequently, the corresponding line element is given by (4.1.1) with ω = 0,
and the field equations can be written as

∂2
ρψ +

1
ρ

∂ρψ + ∂2
zψ = 0 , f = exp(2ψ) , (4.1.7)

∂ργ = ρ
[
(∂ρψ)2 − (∂zψ)2

]
, ∂zγ = 2ρ∂ρψ ∂zψ . (4.1.8)

We see that the main field equation (4.1.7) corresponds to the linear Laplace
equation for the metric function ψ.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand addi-
tionally asymptotic flatness, we obtain the Weyl solution which can be writ-
ten as [4, 1]

ψ =
∞

∑
n=0

an

(ρ2 + z2)
n+1

2
Pn(cos θ) , cos θ =

z√
ρ2 + z2

, (4.2.1)

where an (n = 0, 1, ...) are arbitrary constants, and Pn(cos θ) represents the
Legendre polynomials of degree n. The expression for the metric function γ
can be calculated by quadratures by using the set of first order differential
equations (4.1.8). Then

γ = −
∞

∑
n,m=0

anam(n + 1)(m + 1)

(n + m + 2)(ρ2 + z2)
n+m+2

2
(PnPm − Pn+1Pm+1) . (4.2.2)

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solution of this class. In particular,
one of the most interesting special solutions which is Schwarzschild’s spher-
ically symmetric black hole spacetime must be contained in this class. To see
this, we must choose the constants an in such a way that the infinite sum
(4.2.1) converges to the Schwarzschild solution in cylindric coordinates. But,
or course, this representation is not the most appropriate to analyze the inter-
esting physical properties of Schwarzchild’s metric.

In fact, it turns out that to investigate the properties of solutions with mul-
tipole moments it is more convenient to use prolate spheroidal coordinates
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4 The general static vacuum solution

(t, x, y, ϕ) in which the line element can be written as

ds2 = f dt2 − σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
where

x =
r+ + r−

2σ
, (x2 ≥ 1), y =

r+ − r−
2σ

, (y2 ≤ 1) (4.2.3)

r2
± = ρ2 + (z± σ)2 , σ = const , (4.2.4)

and the metric functions are f , ω, and γ depend on x and y, only. In this
coordinate system, the general static solution which is also asymptotically
flat can be expressed as

f = exp(2ψ) , ψ =
∞

∑
n=0

(−1)n+1qnPn(y)Qn(x) , qn = const

where Pn(y) are the Legendre polynomials, and Qn(x) are the Legendre func-
tions of second kind. In particular,

P0 = 1, P1 = y, P2 =
1
2
(3y2 − 1) , ...

Q0 =
1
2

ln
x + 1
x− 1

, Q1 =
1
2

x ln
x + 1
x− 1

− 1 ,

Q2 =
1
2
(3x2 − 1) ln

x + 1
x− 1

− 3
2

x , ...

The corresponding function γ can be calculated by quadratures and its gen-
eral expression has been explicitly derived in [8]. The most important special
cases contained in this general solution are the Schwarzschild metric

ψ = −q0P0(y)Q0(x) , γ =
1
2

ln
x2 − 1
x2 − y2 ,

and the Erez-Rosen metric [9]

ψ = −q0P0(y)Q0(x)− q2P2(y)Q2(x) , γ =
1
2

ln
x2 − 1
x2 − y2 + ....

In the last case, the constant parameter q2 turns out to determine the quadrupole
moment. In general, the constants qn represent an infinite set of parameters
that determines an infinite set of mass multipole moments.
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5 Stationary generalization

The solution generating techniques [12] can be applied, in particular, to any
static seed solution in order to obtain the corresponding stationary general-
ization. One of the most powerful techniques is the inverse method (ISM)
developed by Belinski and Zakharov [13]. We used a particular case of the
ISM, which is known as the Hoenselaers–Kinnersley-Xanthopoulos (HKX)
transformation to derive the stationary generalization of the general static
solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (ω 6= 0) with line element

ds2 = f (dt−ωdϕ)2

− σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
it is useful to introduce the the Ernst potentials

E = f + iΩ , ξ =
1− E
1 + E

,

where the function Ω is now determined by the equations

σ(x2 − 1)Ωx = f 2ωy , σ(1− y2)Ωy = − f 2ωx .

Then, the main field equations can be represented in a compact and symmet-
ric form:

(ξξ∗ − 1)
{
[(x2 − 1)ξx]x + [(1− y2)ξy]y

}
= 2ξ∗[(x2 − 1)ξ2

x + (1− y2)ξ2
y] .

This equation is invariant with respect to the transformation x ↔ y. Then,
since the particular solution

ξ =
1
x
→ Ω = 0→ ω = 0→ γ =

1
2

ln
x2 − 1
x2 − y2
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5 Stationary generalization

represents the Schwarzschild spacetime, the choice ξ−1 = y is also an exact
solution. Furthermore, if we take the linear combination ξ−1 = c1x + c2y and
introduce it into the field equation, we obtain the new solution

ξ−1 =
σ

M
x + i

a
M

y , σ =
√

M2 − a2 ,

which corresponds to the Kerr metric in prolate spheroidal coordinates.
In the case of the Einstein-Maxwell theory, the main field equations can be

expressed as

(ξξ∗ − FF∗ − 1)∇2ξ = 2(ξ∗∇ξ − F∗∇F)∇ξ ,

(ξξ∗ − FF∗ − 1)∇2F = 2(ξ∗∇ξ − F∗∇F)∇F
where ∇ represents the gradient operator in prolate spheroidal coordinates.
Moreover, the gravitational potential ξ and the electromagnetic F Ernst po-
tential are defined as

ξ =
1− f − iΩ
1 + f + iΩ

, F = 2
Φ

1 + f + iΩ
.

The potential Φ can be shown to be determined uniquely by the electromag-
netic potentials At and Aϕ One can show that if ξ0 is a vacuum solution, then
the new potential

ξ = ξ0

√
1− e2

represents a solution of the Einstein-Maxwell equations with effective elec-
tric charge e. This transformation is known in the literature as the Harrison
transformation [10]. Accordingly, the Kerr–Newman solution in this repre-
sentation acquires the simple form

ξ =

√
1− e2

σ
M x + i a

M y
, e =

Q
M

, σ =
√

M2 − a2 −Q2 .

In this way, it is very easy to generalize any vacuum solution to include the
case of electric charge. More general transformations of this type can be used
in order to generate solutions with any desired set of gravitational and elec-
tromagnetic multipole moments [11].

5.2 Representation as a nonlinear sigma model

Consider two (pseudo)-Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let M be coordinatized by xa, and N by Xµ, so
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5.2 Representation as a nonlinear sigma model

that the metrics on M and N can be, in general, smooth functions of the cor-
responding coordinates, i.e., γ = γ(x) and G = G(X). A harmonic map is a
smooth map X : M → N, or in coordinates X : x 7−→ X so that X becomes
a function of x, and the X’s satisfy the motion equations following from the
action [14]

S =
∫

dmx
√
|γ| γab(x) ∂aXµ ∂bXν Gµν(X) , (5.2.1)

which sometimes is called the “energy” of the harmonic map X. The straight-
forward variation of S with respect to Xµ leads to the motion equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν ∂bXλ = 0 , (5.2.2)

where Γµ
νλ are the Christoffel symbols associated to the metric Gµν of the

target space N. If Gµν is a flat metric, one can choose Cartesian-like coor-
dinates such that Gµν = ηµν = diag(±1, ...,±1), the motion equations be-
come linear, and the corresponding sigma model is linear. This is exactly
the case of a bosonic string on a flat background in which the base space is
the 2-dimensional string world-sheet. In this case the action (5.2.1) is usually
referred to as the Polyakov action [16].

Consider now the case in which the base space M is a stationary axisym-
metric spacetime. Then, γab, a, b = 0, ..., 3, can be chosen as the Weyl-Lewis-
Papapetrou metric (4.1.1), i.e.

γab =


f 0 0 − f ω

0 − f−1e2k 0 0
0 0 − f−1e2k 0
− f ω 0 0 f ω2 − ρ2 f−1

 . (5.2.3)

Let the target space N be 2-dimensional with metric Gµν = (1/2) f−2δµν,
µ, ν = 1, 2, and let the coordinates on N be Xµ = ( f , Ω). Then, it is straight-
forward to show that the action (5.2.1) becomes

S =
∫

L dtdϕdρdz , L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
,

(5.2.4)
and the corresponding motion equations (5.2.2) are identical to the main field
equations (4.1.3) and (4.1.4).

Notice that the field equations can also be obtained from (5.2.4) by a direct
variation with respect to f and Ω. This interesting result was obtained orig-
inally by Ernst [2], and is the starting point of what today is known as the
Ernst representation of the field equations.
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5 Stationary generalization

The above result shows that stationary axisymmetric gravitational fields
can be described as a (4 → 2)−nonlinear harmonic map, where the base
space is the spacetime of the gravitational field and the target space corre-
sponds to a 2-dimensional conformally Euclidean space. A further analy-
sis of the target space shows that it can be interpreted as the quotient space
SL(2, R)/SO(2) [15], and the Lagrangian (5.2.4) can be written explicitly [17]
in terms of the generators of the Lie group SL(2, R). Harmonic maps in which
the target space is a quotient space are usually known as nonlinear sigma
models [14].

The form of the Lagrangian (5.2.4) with two gravitational field variables,
f and Ω, depending on two coordinates, ρ and z, suggests a representation
as a harmonic map with a 2-dimensional base space. In string theory, this
is an important fact that allows one to use the conformal invariance of the
base space metric to find an adequate representation for the set of classical
solutions. This, in turn, facilitates the application of the canonical quantiza-
tion procedure. Unfortunately, this is not possible for the Lagrangian (5.2.4).
Indeed, if we consider γab as a 2-dimensional metric that depends on the pa-
rameters ρ and z, the diagonal form of the Lagrangian (5.2.4) implies that√
|γ|γab = δab. Clearly, this choice is not compatible with the factor ρ in front

of the Lagrangian. Therefore, the reduced gravitational Lagrangian (5.2.4)
cannot be interpreted as corresponding to a (2 → n)-harmonic map. Never-
theless, we will show in the next section that a modification of the definition
of harmonic maps allows us to “absorb” the unpleasant factor ρ in the met-
ric of the target space, and to use all the advantages of a 2-dimensional base
space.

Notice that the representation of stationary fields as a nonlinear sigma
model becomes degenerate in the limiting case of static fields. Indeed, the
underlying geometric structure of the SL(2, R)/SO(2) nonlinear sigma mod-
els requires that the target space be 2-dimensional, a condition which is not
satisfied by static fields. We will see below that by using a dimensional exten-
sion of generalized sigma models, it will be possible to treat the special static
case, without affecting the underlying geometric structure.

The analysis performed in this section for stationary axisymmetric fields
can be generalized to include any gravitational field containing two com-
muting Killing vector fields [1]. This is due to the fact that for this class of
gravitational fields it is always possible to find the corresponding Ernst rep-
resentation in which the Lagrangian contains only two gravitational variables
which depend on only two spacetime coordinates.
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5.3 Representation as a generalized harmonic map

Consider two (pseudo-)Riemannian manifolds (M, γ) and (N, G) of dimen-
sion m and n, respectively. Let xa and Xµ be coordinates on M and N, re-
spectively. This coordinatization implies that in general the metrics γ and
G become functions of the corresponding coordinates. Let us assume that
not only γ but also G can explicitly depend on the coordinates xa, i.e. let
γ = γ(x) and G = G(X, x). This simple assumption is the main aspect of our
generalization which, as we will see, lead to new and nontrivial results.

A smooth map X : M → N will be called an (m → n)−generalized har-
monic map if it satisfies the Euler-Lagrange equations

1√
|γ|

∂b

(√
|γ|γab∂aXµ

)
+ Γµ

νλ γab ∂aXν∂bXλ + Gµλγab ∂aXν ∂bGλν = 0 ,

(5.3.1)
which follow from the variation of the generalized action

S =
∫

dmx
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.2)

with respect to the fields Xµ. Here the Christoffel symbols, determined by
the metric Gµν, are calculated in the standard manner, without considering
the explicit dependence on x. Notice that the new ingredient in this general-
ized definition of harmonic maps, i.e., the term Gµν(X, x) in the Lagrangian
density implies that we are taking into account the “interaction” between the
base space M and the target space N. This interaction leads to an extra term
in the motion equations, as can be seen in (5.3.1). It turns out that this inter-
action is the result of the effective presence of the gravitational field.

Notice that the limiting case of generalized linear harmonic maps is much
more complicated than in the standard case. Indeed, for the motion equations
(5.3.1) to become linear it is necessary that the conditions

γab(Γµ
νλ ∂bXλ + Gµλ ∂bGλν)∂aXν = 0 , (5.3.3)

be satisfied. One could search for a solution in which each term vanishes sep-
arately. The choice of a (pseudo-)Euclidean target metric Gµν = ηµν, which
would imply Γµ

νλ = 0, is not allowed, because it would contradict the as-
sumption ∂bGµν 6= 0. Nevertheless, a flat background metric in curvilinear
coordinates could be chosen such that the assumption Gµλ∂bGµν = 0 is ful-
filled, but in this case Γµ

νλ 6= 0 and (5.3.3) cannot be satisfied. In the general
case of a curved target metric, conditions (5.3.3) represent a system of m first
order nonlinear partial differential equations for Gµν. Solutions to this system
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5 Stationary generalization

would represent linear generalized harmonic maps. The complexity of this
system suggests that this special type of maps is not common.

As we mentioned before, the generalized action (5.3.2) includes an inter-
action between the base space N and the target space M, reflected on the
fact that Gµν depends explicitly on the coordinates of the base space. Clearly,
this interaction must affect the conservation laws of the physical systems we
attempt to describe by means of generalized harmonic maps. To see this ex-
plicitly we calculate the covariant derivative of the generalized Lagrangian
density

L =
√
|γ| γab(x) ∂a Xµ∂bXνGµν(X, x) , (5.3.4)

and replace in the result the corresponding motion equations (5.3.1). Then,
the final result can be written as

∇bT̃ b
a = − ∂L

∂xa (5.3.5)

where T̃ b
a represents the canonical energy-momentum tensor

T̃ b
a =

∂L

∂(∂bXµ)
(∂aXµ)− δb

aL = 2
√

γGµν

(
γbc∂aXµ ∂cXν − 1

2
δb

aγcd∂cXµ ∂dXν

)
.

(5.3.6)
The standard conservation law is recovered only when the Lagrangian does
not depend explicitly on the coordinates of the base space. Even if we choose
a flat base space γab = ηab, the explicit dependence of the metric of the target
space Gµν(X, x) on x generates a term that violates the standard conservation
law. This term is due to the interaction between the base space and the target
space which, consequently, is one of the main characteristics of the general-
ized harmonic maps introduced in this work.

An alternative and more general definition of the energy-momentum ten-
sor is by means of the variation of the Lagrangian density with respect to the
metric of the base space, i.e.

Tab =
δL

δγab . (5.3.7)

A straightforward computation shows that for the action under consideration
here we have that T̃ab = 2Tab so that the generalized conservation law (5.3.5)
can be written as

∇bT b
a +

1
2

∂L

∂xa = 0 . (5.3.8)

For a given metric on the base space, this represents in general a system of m
differential equations for the “fields” Xµ which must be satisfied “on-shell”.
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5.3 Representation as a generalized harmonic map

If the base space is 2-dimensional, we can use a reparametrization of x to
choose a conformally flat metric, and the invariance of the Lagrangian den-
sity under arbitrary Weyl transformations to show that the energy-momentum
tensor is traceless, T a

a = 0.
In Section 5.1 we described stationary, axially symmetric, gravitational fields

as a (4 → 2)−nonlinear sigma model. There it was pointed out the conve-
nience of having a 2-dimensional base space in analogy with string theory.
Now we will show that this can be done by using the generalized harmonic
maps defined above.

Consider a (2 → 2)−generalized harmonic map. Let xa = (ρ, z) be the
coordinates on the base space M, and Xµ = ( f , Ω) the coordinates on the
target space N. In the base space we choose a flat metric and in the target
space a conformally flat metric, i.e.

γab = δab and Gµν =
ρ

2 f 2 δµν (a, b = 1, 2; µ, ν = 1, 2). (5.3.9)

A straightforward computation shows that the generalized Lagrangian (5.3.4)
coincides with the Lagrangian (5.2.4) for stationary axisymetric fields, and
that the equations of motion (5.3.1) generate the main field equations (4.1.3)
and (4.1.4).

For the sake of completeness we calculate the components of the energy-
momentum tensor Tab = δL/δγab. Then

Tρρ = −Tzz =
ρ

4 f 2

[
(∂ρ f )2 + (∂ρΩ)2 − (∂z f )2 − (∂zΩ)2

]
, (5.3.10)

Tρz =
ρ

2 f 2

(
∂ρ f ∂z f + ∂ρΩ ∂zΩ

)
. (5.3.11)

This tensor is traceless due to the fact that the base space is 2-dimensional. It
satisfies the generalized conservation law (5.3.8) on-shell:

dTρρ

dρ
+

dTρz

dz
+

1
2

∂L

∂ρ
= 0 , (5.3.12)

dTρz

dρ
−

dTρρ

dz
= 0 . (5.3.13)

Incidentally, the last equation coincides with the integrability condition for
the metric function k, which is identically satisfied by virtue of the main field
equations. In fact, as can be seen from Eqs.(4.1.5,4.1.6) and (5.3.10,5.3.11),
the components of the energy-momentum tensor satisfy the relationships
Tρρ = ∂ρk and Tρz = ∂zk, so that the conservation law (5.3.13) becomes an
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5 Stationary generalization

identity. Although we have eliminated from the starting Lagrangian (5.2.4)
the variable k by applying a Legendre transformation on the Einstein-Hilbert
Lagrangian (see [17] for details) for this type of gravitational fields, the for-
malism of generalized harmonic maps seems to retain the information about
k at the level of the generalized conservation law.

The above results show that stationary axisymmetric spacetimes can be
represented as a (2 → 2)−generalized harmonic map with metrics given as
in (5.3.9). It is also possible to interpret the generalized harmonic map given
above as a generalized string model. Although the metric of the base space
M is Euclidean, we can apply a Wick rotation τ = iρ to obtain a Minkowski-
like structure on M. Then, M represents the world-sheet of a bosonic string
in which τ is measures the time and z is the parameter along the string. The
string is “embedded” in the target space N whose metric is conformally flat
and explicitly depends on the time parameter τ. We will see in the next sec-
tion that this embedding becomes more plausible when the target space is
subject to a dimensional extension. In the present example, it is necessary to
apply a Wick rotation in order to interpret the base space as a string world-
sheet. This is due to the fact that both coordinates ρ and z are spatial coordi-
nates. However, this can be avoided by considering other classes of gravita-
tional fields with timelike Killing vector fields; examples will be given below.

The most studied solutions belonging to the class of stationary axisymmet-
ric fields are the asymptotically flat solutions. Asymptotic flatness imposes
conditions on the metric functions which in the cylindrical coordinates used
here can be formulated in the form

lim
xa→∞

f = 1 + O
(

1
xa

)
, lim

xa→∞
ω = c1 + O

(
1
xa

)
, lim

xa→∞
Ω = O

(
1
xa

)
(5.3.14)

where c1 is an arbitrary real constant which can be set to zero by appropri-
ately choosing the angular coordinate ϕ. If we choose the domain of the
spatial coordinates as ρ ∈ [0, ∞) and z ∈ (−∞,+∞), from the asymptotic
flatness conditions it follows that the coordinates of the target space N satisfy
the boundary conditions

Ẋµ(ρ,−∞) = 0 = Ẋµ(ρ, ∞) , X′µ(ρ,−∞) = 0 = X′µ(ρ, ∞) (5.3.15)

where the dot stands for a derivative with respect to ρ and the prime rep-
resents derivation with respect to z. These relationships are known in string
theory [16] as the Dirichlet and Neumann boundary conditions for open strings,
respectively, with the extreme points situated at infinity. We thus conclude
that if we assume ρ as a “time” parameter for stationary axisymmetric grav-
itational fields, an asymptotically flat solution corresponds to an open string
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with endpoints attached to D−branes situated at plus and minus infinity in
the z−direction.

5.4 Dimensional extension

In order to further analyze the analogy between gravitational fields and bosonic
string models, we perform an arbitrary dimensional extension of the target
space N, and study the conditions under which this dimensional extension
does not affect the field equations of the gravitational field. Consider an
(m → D)−generalized harmonic map. As before we denote by {xa} the
coordinates on M. Let {Xµ, Xα} with µ = 1, 2 and α = 3, 4, ..., D be the
coordinates on N. The metric structure on M is again γ = γ(x), whereas
the metric on N can in general depend on all coordinates of M and N, i.e.
G = G(Xµ, Xα, xa). The general structure of the corresponding field equa-
tions is as given in (5.3.1). They can be divided into one set of equations for
Xµ and one set of equations for Xα. According to the results of the last sec-
tion, the class of gravitational fields under consideration can be represented
as a (2 → 2)−generalized harmonic map so that we can assume that the
main gravitational variables are contained in the coordinates Xµ of the target
space. Then, the gravitational sector of the target space will be contained in
the components Gµν (µ, ν = 1, 2) of the metric, whereas the components Gαβ

(α, β = 3, 4, ..., D) represent the sector of the dimensional extension.
Clearly, the set of differential equations for Xµ also contains the variables

Xα and its derivatives ∂aXα. For the gravitational field equations to remain
unaffected by this dimensional extension we demand the vanishing of all the
terms containing Xα and its derivatives in the equations for Xµ. It is easy to
show that this can be achieved by imposing the conditions

Gµα = 0 ,
∂Gµν

∂Xα
= 0 ,

∂Gαβ

∂Xµ = 0 . (5.4.1)

That is to say that the gravitational sector must remain completely invariant
under a dimensional extension, and the additional sector cannot depend on
the gravitational variables, i.e., Gαβ = Gαβ(Xγ, xa), γ = 3, 4, ..., D. Further-
more, the variables Xα must satisfy the differential equations

1√
|γ|

∂b

(√
|γ|γab∂aXα

)
+ Γα

βγ γab ∂aXβ∂bXγ + Gαβγab ∂aXγ ∂bGβγ = 0 .

(5.4.2)
This shows that any given (2→ 2)−generalized map can be extended, with-
out affecting the field equations, to a (2→ D)−generalized harmonic map.
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5 Stationary generalization

It is worth mentioning that the fact that the target space N becomes split in
two separate parts implies that the energy-momentum tensor Tab = δL/δγab

separates into one part belonging to the gravitational sector and a second one
following from the dimensional extension, i.e. Tab = Tab(Xµ, x) + Tab(Xα, x).
The generalized conservation law as given in (5.3.8) is satisfied by the sum of
both parts.

Consider the example of stationary axisymmetric fields given the metrics
(5.3.9). Taking into account the conditions (5.4.1), after a dimensional exten-
sion the metric of the target space becomes

G =


ρ

2 f 2 0 0 · · · 0
0 ρ

2 f 2 0 · · · 0
0 0 G33(Xα, x) · · · G3D(Xα, x)
. . · · · · · · · · ·
0 0 GD3(Xα, x) · · · GDD(Xα, x)

 . (5.4.3)

Clearly, to avoid that this metric becomes degenerate we must demand that
det(Gαβ) 6= 0, a condition that can be satisfied in view of the arbitrariness
of the components of the metric. With the extended metric, the Lagrangian
density gets an additional term

L =
ρ

2 f 2

[
(∂ρ f )2 + (∂z f )2 + (∂ρΩ)2 + (∂zΩ)2

]
+
(

∂ρXα∂ρXβ + ∂zXα∂zXβ
)

Gαβ , (5.4.4)

which nevertheless does not affect the field equations for the gravitational
variables f and Ω. On the other hand, the new fields must be solutions of the
extra field equations(

∂2
ρ + ∂2

z

)
Xα + Γα

βγ

(
∂ρXβ∂ρXγ + ∂zXβ∂zXγ

)
(5.4.5)

+ Gαγ
(

∂ρXβ∂ρGβγ + ∂zXβ∂zGβγ

)
= 0 . (5.4.6)

An interesting special case of the dimensional extension is the one in which
the extended sector is Minkowskian, i.e. for the choice Gαβ = ηαβ with addi-
tional fields Xα given as arbitrary harmonic functions. This choice opens the
possibility of introducing a “time” coordinate as one of the additional dimen-
sions, an issue that could be helpful when dealing with the interpretation of
gravitational fields in this new representation.

The dimensional extension finds an interesting application in the case of
static axisymmetric gravitational fields. As mentioned in Section 4.1, these
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fields are obtained from the general stationary fields in the limiting case Ω =
0 (or equivalently, ω = 0). If we consider the representation as an SL(2, R)/SO(2)
nonlinear sigma model or as a (2 → 2)−generalized harmonic map, we see
immediately that the limit Ω = 0 is not allowed because the target space
becomes 1-dimensional and the underlying metric is undefined. To avoid
this degeneracy, we first apply a dimensional extension and only then calcu-
late the limiting case Ω = 0. In the most simple case of an extension with
Gαβ = δαβ, the resulting (2 → 2)−generalized map is described by the met-
rics γab = δab and

G =

(
ρ

2 f 2 0
0 1

)
(5.4.7)

where the additional dimension is coordinatized by an arbitrary harmonic
function which does not affect the field equations of the only remaining grav-
itational variable f . This scheme represents an alternative method for explor-
ing static fields on nondegenerate target spaces. Clearly, this scheme can be
applied to the case of gravitational fields possessing two hypersurface or-
thogonal Killing vector fields.

Our results show that a stationary axisymmetric field can be represented as
a string “living” in a D-dimensional target space N. The string world-sheet is
parametrized by the coordinates ρ and z. The gravitational sector of the tar-
get space depends explicitly on the metric functions f and Ω and on the pa-
rameter ρ of the string world-sheet. The sector corresponding to the dimen-
sional extension can be chosen as a (D− 2)−dimensional Minkowski space-
time with time parameter τ. Then, the string world-sheet is a 2-dimensional
flat hypersurface which is “frozen” along the time τ.

5.5 The general solution

If we take as seed metric the general static solution, the application of two
HXK transformations generates a stationary solution with an infinite number
of gravitoelectric and gravitomagnetic multipole moments. The HKX method
is applied at the level of the Ernst potential from which the metric functions
can be calculated by using the definition of the Ernst potential E and the
field equations for γ. The resulting expressions in the general case are quite
cumbersome. We quote here only the special case in which only an arbitrary
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quadrupole parameter is present. In this case, the result can be written as

f =
R
L

e−2qP2Q2 ,

ω = −2a− 2σ
M

R
e2qP2Q2 ,

e2γ =
1
4

(
1 +

M
σ

)2 R
x2 − y2 e2γ̂ , (5.5.1)

where

R = a+a− + b+b− , L = a2
+ + b2

+ ,

M = αx(1− y2)(e2qδ+ + e2qδ−)a+ + y(x2 − 1)(1− α2e2q(δ++δ−))b+ ,

γ̂ =
1
2
(1 + q)2 ln

x2 − 1
x2 − y2 + 2q(1− P2)Q1 + q2(1− P2)

[
(1 + P2)(Q2

1 −Q2
2)

+
1
2
(x2 − 1)(2Q2

2 − 3xQ1Q2 + 3Q0Q2 −Q′2)
]

. (5.5.2)

Here Pl(y) and Ql(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

a± = x(1− α2e2q(δ++δ−))± (1 + α2e2q(δ++δ−)) ,
b± = αy(e2qδ+ + e2qδ−)∓ α(e2qδ+ − e2qδ−) ,

δ± =
1
2

ln
(x± y)2

x2 − 1
+

3
2
(1− y2 ∓ xy) +

3
4
[x(1− y2)∓ y(x2 − 1)] ln

x− 1
x + 1

,

the quantity α being a constant

α =
σ−M

a
, σ =

√
M2 − a2 . (5.5.3)

The physical significance of the parameters entering this metric can be clar-
ified by calculating the Geroch-Hansen [18, 19] multipole moments

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (5.5.4)

M0 = M , M2 = −Ma2 +
2
15

qM3
(

1− a2

M2

)3/2

, ... (5.5.5)

J1 = Ma , J3 = −Ma3 +
4

15
qM3a

(
1− a2

M2

)3/2

, .... (5.5.6)
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The vanishing of the odd gravitoelectric (Mn) and even gravitomagnetic (Jn)
multipole moments is a consequence of the symmetry with respect to the
equatorial plane. From the above expressions we see that M is the total mass
of the body, a represents the specific angular momentum, and q is related to
the deviation from spherical symmetry. All higher multipole moments can
be shown to depend only on the parameters M, a, and q.

We analyzed the geometric and physical properties of the above solution.
The special cases contained in the general solution suggest that it can be used
to describe the exterior asymptotically flat gravitational field of rotating body
with arbitrary quadrupole moment. This is confirmed by the analysis of the
motion of particles on the equatorial plane. The quadrupole moment turns
out to drastically change the geometric structure of spacetime as well as the
motion of particles, especially near the gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM)
spacetime which is a generalization of Kerr spacetime, including an arbitrary
quadrupole. Our results show [20] that a deviation from spherical symme-
try, corresponding to a non-zero electric quadrupole, completely changes the
structure of spacetime. A similar behavior has been found in the case of the
Erez-Rosen spacetime. In fact, a naked singularity appears that affects the
ergosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into non simply-connected regions. All these changes occur near the
naked singularity which is situated at x = 1, a value that corresponds to the
radial distance r = M +

√
M2 − a2 in Boyer-Lindquist coordinates. In the

limiting case a/M > 1, the multipole moments and the metric become com-
plex, indicating that the physical description breaks down. Consequently,
the extreme Kerr black hole represents the limit of applicability of the QM
spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we
can conclude that the QM metric can be used to describe their exterior grav-
itational field. Two alternative situations are possible. If the characteristic
radius of the body is greater than the critical distance M +

√
M2 − a2, i.e.

x > 1, the exterior solution must be matched with an interior solution in or-
der to describe the entire spacetime. If, however, the characteristic radius of
the body is smaller than the critical distance M +

√
M2 − a2, the QM metric

describes the field of a naked singularity.
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6.1 Introduction

It is well known that the Kerr solution describes the exterior gravitational
field of a mass M with specific angular momentum a = J/M. It is asymp-
totically flat and reduces to the Minkowski metric in the limit M = 0 and
a = 0, and to the Schwarzschild metric in the limit a = 0. The Kerr spacetime
is characterized by the presence of a curvature singularity determined by the
equation

r2 + a2 cos2 θ = 0 (6.1.1)

which corresponds to a ring located on the equatorial plane θ = π/2. This
ring singularity, however, cannot be observed from outside because it is cov-
ered by a horizon located on a sphere of radius

rh = m +
√

m2 − a2 . (6.1.2)

Since no information can be extracted from behind the horizon, an external
observer will never be aware about the existence of the ring singularity. In
this sense, the singularity can be considered as non-existing for observers lo-
cated outside the horizon. The Kerr spacetime can be therefore interpreted
as describing the exterior gravitational field of a rotating black hole. Further-
more, the black hole uniqueness theorems [21] state that the Kerr spacetime is
the most general vacuum solution that corresponds to a black hole. In other
words, to describe a black hole, we only need two parameters, namely, mass
and angular momentum.

In the case a2 > m2, no horizon exists and the ring singularity becomes
naked. However, several studies [22, 23, 24] show that in realistic situations,
where astrophysical objects are surrounded by accretion disks, a Kerr naked
singularity is an unstable configuration that rapidly decays into a Kerr black
hole. Furthermore, it now seems to be well established that in generic situ-
ations a gravitational collapse cannot lead to the formation of a Kerr naked
singularity. These results seem to indicate that rotating Kerr naked singu-
larities do not exist in Nature. Again, these results corroborate that the Kerr
spacetime describes rotating black holes.

From an astrophysical point of view, black holes belong to the class of com-
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pact objects which include also neutron stars and white dwarfs. The ques-
tion arises whether the Kerr metric can also be used to describe the exterior
gravitational field of neutron stars and white dwarfs. To try to answer this
question, let us recall that from the point of view of general relativity, the
gravitational field of a compact source should be described by a complete
Riemannian differential manifold, i.e., it should include an exterior metric
and an interior metric as well. Let us suppose for a moment that the Kerr
spacetime describes the exterior field of all compact objects, and consider the
interior counterpart. In the case of black holes, in which the matter content
of the original star has collapsed to form a curvature singularity, we argue
that it is not possible to find the interior counterpart within the framework
of classical general relativity. Indeed, since all the information about the in-
ternal structure of a black hole is located inside the singularity, where the
classical theory is not valid any more, we should apply an alternative theory
that must take into account the effects of gravity under extreme pressures
and densities, as intuitively expected at the singularities. Such a theory could
be quantum gravity which, in the best case, is still under construction. This
argument implies that the quantum interior counterpart of the Kerr metric is
well beyond our reach in the short term.

Consider now the interior field of neutron stars and white dwarfs. An
interior metric should describe an equilibrium structure, probably a fluid,
bounded by a surface of zero pressure and matched across this surface to
the exterior Kerr metric. The search for such an interior solution has been
conducted for over 50 years, and not even a single physical meaningful so-
lution has been found to date. Many arguments can be found to explain this
negative result, especially, regarding the relatively simple models used to de-
scribe the internal structure of such compact stars. Nevertheless, if we con-
sider a more elaborated internal model, the mathematical complexity of the
field equations and the matching conditions usually increases as well, imply-
ing that the possibility of solving the problem decreases. This is probably the
reason why the search for physically meaningful interior solutions has not
been very successful. In our opinion, the simplest solution to this problem is
to assume that the Kerr metric does not describe the exterior field of rotating
compact objects, but black holes. This is exactly the working hypothesis we
will assume henceforth.

The question arises: What metric should we use to describe the exterior
field of neutron stars and white dwarfs? The black hole uniqueness theo-
rems [21] sheds some light on how to look for an answer to this question. In
fact, black holes are described by only the mass m and the angular momen-
tum J. From the point of view of the multipole structure of exact vacuum
solutions (for a review see, for instance, [25]), this is equivalent to saying
that only the lowest multipoles are present in black holes, namely, the mass
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monopole m and the angular-momentum dipole J. Then, it seems reason-
able to include higher moments in order to describe the exterior field of com-
pact objects, other than black holes. The simplest choice to begin with is the
mass quadrupole. Consequently, we assume in this work that to describe
the exterior field of neutron stars and white dwarfs, we need a vacuum met-
ric with three physical parameters, namely, mass m, angular momentum J,
and quadrupole q1. From a physical point of view, it is also reasonable to
consider the mass quadrupole as an additional parameter, because it repre-
sents the natural deviations of a mass distribution from the ideal spherical
symmetry. In other words, we assume that in the case of neutron stars an
white dwarfs, it is not possible to neglect the gravitational field generated by
the quadrupole, whereas in the case of black holes, the uniqueness theorems
prove that the quadrupole is zero.

On the other hand, since the uniqueness theorems are valid only in the case
of mass and angular momentum, with the Kerr metric as the only exact solu-
tion, there must exist several exact solutions with mass, angular momentum
and quadrupole. The main goal of this work is to present a review and a brief
description of the main exact vacuum solutions of Einstein equations with
mass quadrupole.

This chapter is organized as follows. In Sec. 6.3, we focus on static gravita-
tional sources. We present the most important properties that a metric should
satisfy in order to describe the exterior field of a compact source. We present
the explicit form of the metrics that, to our knowledge, have been used in
general relativity to describe the field of static mass distributions. In Sec. 6.4,
we study the rotating generalizations of the quadrupolar metrics. Then, in
Sec. 6.5, we describe the uninspiring situation in the case of interior solu-
tions. Finally, in Sec. 7.8, we discuss the situation in general and comment
on the open problems regarding the description of the gravitational field of
neutron stars and white dwarfs.

6.2 The gravitational field of compact stars

To describe the exterior gravitational field it is necessary to obtain exact solu-
tions of Einstein’s equations in empty space. Since Einstein’s field equations
are in general difficult to handle, especially when the aim is to obtain phys-
ically meaningful solutions, it is necessary to assume the validity of certain
physical conditions about the problem under consideration. We assume that
the gravitational field of compact stars do not change drastically in time so

1Of course, one could also include higher multipoles like the mass octupole, the angular-
momentum quadrupole, etc. However, we limit ourselves here to the lowest non-
ignorable multipole which is the mass quadrupole.
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6 Quadrupolar metrics

that stationarity can be adopted. In general, we know from observations that
this condition is satisfied in most astrophysical objects. Moreover, the as-
sumption of stationarity does not exclude the possibility of rotation which is
an important characteristic of all known compact stars. To consider the devi-
ations of the mass distribution from spherical symmetry, we will assume the
existence of an axis of symmetry which for the sake of simplicity is supposed
to coincide with the axis of rotation. Moreover, to take into account the de-
formations of the mass distribution with respect to the axis of symmetry, we
will consider only the quadrupole moment.

The above assumptions imply that we must focus our analysis on the case
of stationary axisymmetric gravitational fields. The corresponding line el-
ement in the case of empty space is known as the Weyl-Lewis-Papapetrou
[26, 27, 28] line element that in cylindrical coordinates can be written as in
Eq.(4.1.1). The corresponding field equations have been presented previously
in Section 4. Due to the implementation of solution generating techniques the
number of exact stationary solutions has increased enormously. In fact, given
a particular static solution, it is possible to generate, in principle, an infinite
number of stationary solutions which contain the seed static solution as a par-
ticular case. It is therefore necessary to establish some criteria to classify the
solutions. In particular, we are interested in the conditions that must imposed
in order for a given solution to be physically meaningful.

6.2.1 Physical conditions

One can find many stationary axisymmetric solutions of Einstein’s equations,
but not all them are necessarily suitable to describe the gravitational field of
compact stars. Several physical conditions must be imposed which can be
described as follows.

i) The spacetime must be asymptotically flat. This means that far away from
the source the gravitational field should be negiglible small, and can be
described approximately by the Minkowski metric.

ii) The spacetime must be elementary flat, i.e., the axis of symmetry must
be free of conical singularities. This property means that the coordinate
ϕ is a well-defined angle coordinate that can be used to represent the
rotation of the compact star.

iii) The spacetime must be free of singularities outside the surface of the star.
Curvature singularities can exist inside the surface where the vacuum
solution is not valid any more and, instead, an interior solution should
exist that “covers” the singularity.
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6.3 Static quadrupolar metrics

iv) The spacetime must be free of horizons in order to be in accordance with
the black hole uniqueness theorems.

v) The solution must reduce to the Minkowski metric in the limiting case
when the mass monopole vanishes, independently of the values of the
remaining parameters. This condition guarantees that there are no rota-
tions and no deviations from spherical symmetry without the presence
of a physical mass distribution.

vi) The solution must be matched with a physically meaningful interior so-
lution across the surface of the star where the pressure and the density
of the interior configuration should vanish.

The fulfillment of these conditions represents the real challenge for describ-
ing the gravitational field of compact stars. Whereas there many metrics that
can be used to represent the exterior field, the interior counterparts are still
unknown.

6.3 Static quadrupolar metrics

The simplest case of a multipolar spacetime is described by the Schwarzschild
metric which possesses only the mass monopole. Birkhoff’s theorem [1] guar-
antees that this metric is unique. Furthermore, from a physical point of view,
one expects that a dipole moment can be made to vanish by an appropriate
coordinate transformation which, in the Newtonian limit, corresponds to lo-
cating the origin of spatial coordinates on the center of mass of the object. The
next interesting configuration consists of a mass with quadrupole moment.
In this case, no uniqueness theorem exists and, therefore, we can expect that
Einstein’s equations permit the existence of several solutions describing such
a gravitational system. Indeed, several exact solutions are known.

Weyl [26] found the most general static axisymmetric asymptotically flat
solution in cylindrical coordinates. The set of parameters an entering this so-
lution essentially determines the set of mass multipoles Mn as computed by
using the Geroch-Hansen definition [31, 32, 33], for instance. Then, a config-
uration composed of a mass and a quadrupole can be written as

1
2

ln f =
a0

(ρ2 + z2)1/2 +
a2

(ρ2 + z2)3/2 P2(cos θ) (6.3.1)

The first term is called the Chazy-Curzon metric [1] and describes the field
of two particles located along the symmetry axis with a curvature singular-
ity among them, i.e., it corresponds to a strut located along the axis. The
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6 Quadrupolar metrics

second term can be considered as representing a quadrupole deformation of
the strut. Far away from the source, the Chazy-Curzon metric leads to the
Newtonian potential of a point particle. One could therefore expect that in
the Newtonian limit the second term generates a quadrupole moment. From
a physical point of view, one would expect that close to a non-rotating com-
pact star with no quadrupole, the metric is spherically symmetric. We see that
the above Weyl metric does not satisfy this condition. We therefore conclude
that it cannot be used to describe the exterior field of compact stars.

To our knowledge, Erez and Rosen [9] found the first quadrupolar metric
which reduces to the Schwarzschild metric in the limit of vanishing quadrupole.
In prolate spheroidal coordinates, it can be expressed as (q2 is a constant)

ln f = ln
x− 1
x + 1

+ q2(3y2 − 1)
[

1
4
(3x2 − 1) ln

x− 1
x + 1

+
3
2

x
]

, (6.3.2)

γ =
1
2
(1 + q2)

2 ln
x2 − 1
x2 − y2 −

3
2

q2(1− y2)

(
x ln

x− 1
x + 1

+ 2
)

+
9

16
q2

2(1− y2)

[
x2 + 4y2 − 9x2y2 − 4

3

+x
(

x2 + 7y2 − 9x2y2 − 5
3

)
ln

x− 1
x + 1

+
1
4
(x2 − 1)(x2 + y2 − 9x2y2 − 1) ln2 x− 1

x + 1

]
. (6.3.3)

In the limiting case q2 → 0, the Erez-Rosen metric reduces to the Schwarzschild
metric, as expected for a compact star. In general, this solution is asymp-
totically flat and free of singularities outside the spatial region determined
by x = 1, which in the case of vanishing quadrupole corresponds to the
Schwarzschild radius. It also satisfies the condition of elementary flatness.
From this point of view, the Erez-Rosen solution satisfies all the conditions
to describe the exterior field of a deformed mass with quadrupole moment.
However, no interior solution is known that could be matched with the exte-
rior metric on the surface of the body.

Gutsunayev and Manko [34] derived the following exact static solution (A2
is a constant)

ln f = ln
x− 1
x + 1

+ 2A2
x(x2 − 3x2y2 + 3y2 − y4)

(x2 − y2)3 , (6.3.4)
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γ =
1
2

ln
x2 − 1
x2 − y2 +

A2(1− y2)

2(x2 − y2)4 [3(1− 5y2)(x2 − y2)2

+8y2(3− 5Y2)(x2 − y2) + 24y4(1− y2)] +
A2

2(1− y2)

8(x2 − y2)8

×[−12(1− 14y2 + 25y4)(x2 − y2)5 + 3(3− 153y2

+697y4 − 675y6)(x2 − y2)4

+32y2(9− 105y2 + 259y4 − 171y6)(x2 − y2)3

+32y4(45− 271y2 + 451y4 − 225y6)(x2 − y2)2

+2304y6(1− 4y2 + 5y4 − 2y6)(x2 − y2)

+1152y8(1− 3y2 + 3y4 − y6)] . (6.3.5)

Although at first glance these two solutions look quite different, it is possible
to show [35] that if we choose the parameters as

A2 =
1

15
q2 , (6.3.6)

the quadrupole moment of both metrics coincide, but differences appear at
the level of the 24-pole moment.

A different quadrupolar metric was derived by Hernández-Pastora and
Martı́ [36] which is also given in prolate spheroidal coordinates as:

ln f = ln
x− 1
x + 1

+
5
4

B2

{
3
4
[(3x2− 1)(3y2− 1)− 4] ln

x− 1
x + 1

− 2x
x2 − y2 +

3
2

x(3y2− 1)

}
.

(6.3.7)
As in the previous cases, the corresponding γ function can be calculated by
quadratures by using the explicit for of f only. The resulting expression is
quite complicated. We refer to the original paper for the explicit expression.
In the above solution, the constant parameter B2 essentially determines the
quadrupole moment of the mass distribution.

Recently, in [37], the multipole moment structure of the above solutions
with free parameters q2, A2 and B2 was investigated in detail with the result
that the Geroch quadrupole moment of all three metrics can be made to coin-
cide by choosing the free parameters appropriately. On the other hand, it is
known that in general relativity, stationary and axisymmetric vacuum space-
times can be completely characterized by their multipolar structure and if
two spacetimes have the same moments, then they represent essentially the
same spacetime. If then follows that the above metrics with free parame-
ters q2, A2 and B2 are in fact the same spacetime, if we consider only the
quadrupole moment. However, if higher moments are taken into account,
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6 Quadrupolar metrics

differences appear that make the three metrics different from a physical point
of view.

As can be seen from the above expressions, the explicit form of the known
quadrupolar metrics is not simple, usually making them difficult to be ana-
lyzed. In a recent work [38], we proposed an alternative solution as the sim-
plest generalization of the Schwarzschild solution which contains a quadrupole
parameter q. In spherical coordinates, it has the simple and compact expres-
sion

ds2 =

(
1− 2m

r

)1+q
dt2 −

(
1− 2m

r

)−q

×

(1 +
m2 sin2 θ

r2 − 2mr

)−q(2+q)(
dr2

1− 2m
r

+ r2dθ2

)
+ r2 sin2 θdϕ2

 .(6.3.8)

This solution is obtained from the Schwarzschild metric by applying a Zipoy-
Voorhees transformation [39, 40]. In the literature, for notational reasons this
solution is known as the δ−metric or as the γ−metric [41]. Instead, we pro-
pose to use the term quadrupole metric (q−metric) to emphasize the role
of the parameter q which determines the quadrupole moment. Indeed, a
straightforward computation of the Geroch multipole moments leads to a
monopole

M0 = (1 + q)m (6.3.9)

and a quadrupole

M2 = −m3

3
q(1 + q)(2 + q). (6.3.10)

If q = 0, we obtain the limiting case of the Schwarzschild metric. Moreover,
the free parameters m and q can be chosen in such a way that the quadrupole
moment M2 is negative (oblate objects) or positive (prolate objects). Further-
more, one can easily show that this solution satisfies all physical conditions
mentioned in the previous section for exterior solutions. This implies that it
can be used to describe the exterior gravitational field of static compact stars.
A detailed analysis of the circular motion of test particles around a compact
object described by the q−metric shows that the presence of the quadrupole
parameter can drastically change the physical behavior of test particles, and
the obtained effects corroborate the interpretation of q as determining the de-
viation of the mass distribution from spherical symmetry [43].
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6.4 Stationary quadrupolar metrics

6.4 Stationary quadrupolar metrics

All the solutions presented in the previous section do not take into account
an important characteristic of compact objects, namely, the rotation. Realistic
exact solutions should contain at least one additional parameter that could
be interpreted as rotation. In terms of multipole moments, this means that
the angular-momentum dipole should be nonzero. The first exact solution
with a non-trivial angular-momentum dipole was discovered by Kerr in 1963
[? ]. Soon after, Ernst proposed a general representation for stationary and
axisymmetric vacuum and electrovacuum spacetimes (see Section 5.1) that al-
lowed researchers in this field to derive a new type of internal symmetries of
the field equations. As a result, some solution generating techniques [1] were
developed whose main objective is to generate new solutions from known
ones.

The first generating methods such as the Kerr-Schild Ansatz, the complex
Newman-Janis Ansatz, and the Hamilton-Jacobi separability procedure were
limited to generate only the (charged) Kerr-NUT (Newman-Unti-Tamburino)
class of stationary solutions. Nevertheless, the simple and compact Ernst
representation was used by Tomimatsu and Sato and Yamazaki and Hori to
find exact solutions with a particular functional dependence for the Ernst
potential. Furthermore, Ernst developed two generating methods that were
generalized by Kinnersley [1].

All the early methods were based on particular symmetries of the field
equations. The discovery of Lie symmetries of the Ernst representation in
the late seventies determined the starting point for the development of mod-
ern solution generating techniques. All the symmetry transformations of the
field equations involve in general an infinite dimensional group of transfor-
mations. One of the main difficulties was to isolate only those transforma-
tions that preserve asymptotic flatness and do not generate unphysical cur-
vature singularities a priori. Finally, Hoenselaers, Kinnersley and Xanthopou-
los found subgroups of the Geroch group which preserve asymptotic flatness
and can easily be extrapolated by purely algebraic methods.

Particular cases of Bäcklund transformations of the Ernst equations were
found by Harrison and Neugebauer. Bäcklund transformations were first
used to generate asymptotically flat solutions, using the Minkowski metric
as seed solution. In general, it can be shown that the generated solution is
asymptotically flat, if this is also a property of the seed solution.

A different method was proposed by Belinsky and Zakharov in which
the nonlinear Einstein field equations are represented as a linear eigenvalue
problem which can be solved by means of the inverse scattering method. This
method allows one to generate solitonic solutions, one of which corresponds
to the Kerr-NUT solution.
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All the above methods imply several detailed procedures with quite com-
plicated calculations. A particularly simple and different method was devel-
oped by Sibgatullin [44] in which only the value of the Ernst potential on the
axis of symmetry is required in order to calculate the general form of the po-
tential from which the corresponding metric can be calculated. Suppose that
the Ernst potential in cylindrical coordinates is given as an arbitrary function
e(z) on the axis ρ = 0. Then, the Ernst potential for the entire spacetime can
be calculated as

E(ρ, z) =
1
π

∫ +1

−1

e(ξ)µ(σ)√
1− σ2

dσ , (6.4.1)

where ξ = z + iρσ and the unknown function µ(σ) satisfies the singular inte-
gral equation ∫ +1

−1

µ(σ)[e(ξ) + e∗(η∗)]
(σ− τ)

√
1− σ2

dσ = 0 , (6.4.2)

and the normalizing condition∫ +1

−1

µ(σ)√
1− σ2

dσ = π , (6.4.3)

where η = z + iρτ, and the asterisk represents complex conjugation. This
method has been used to generate several stationary and axisymmetric so-
lutions [45, 46] which satisfy all the conditions to describe the exterior field
of neutron stars and are in accordance with a series of observations. These
solutions are characterized by a finite number of parameters which are inter-
preted in terms of multipoles. For instance, the most general solution of this
class has six parameters and is determined on the axis by the Ernst potential
[46]

e(z) =
z3 − (m + ia)z2 − kz + is
z3 + (m− ia)z2 − kz + is

, (6.4.4)

which contains four parameters. An additional function corresponding to the
electromagnetic potential on the axis contains the two remaining parameters.
In the case of vanishing electromagnetic field (s = 0) and rotation (a = 0),
this solution reduces to a particular static Tomimatsu-Sato solution which can
be shown to be equivalent to the q−metric with q = 1, so that the quadrupole
moment is entirely determined by the mass monopole. In the stationary case
(a 6= 0), the mass quadrupole is M2 = −1/4m(m2 − a2) and depends on the
rotation parameter and the mass monopole. This indicates that deviations
from spherical symmetry are due to rotation only and there is no parameter
that could be changed in order to modify the deviations. In the case of all the
static metrics mentioned above, there is always a free quadrupole parameter
(q2, A2, B2 or q) that is responsible for the deviations. This can be interpreted
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6.4 Stationary quadrupolar metrics

as an indication that metrics with arbitrary quadrupole could describe more
general configurations of compact stars.

Most stationary and axisymmetric solutions in empty space have been ob-
tained by using the solution generating methods mentioned above. In par-
ticular, a rotating generalization of the Erez-Rosen metric was obtained in
[47, 48, 49]. The explicit form of the metric functions is given in Eqs.(5.5.1). It
can be shown that this solution satisfies all the physical conditions mentioned
in the previous section. Therefore, it can be used to describe the exterior field
of compact stars.

In the previous section, we presented the q−metric as the simplest general-
ization of the Schwarzschild metric which contains a free quadrupole param-
eter. Therefore, it can be expected that the stationary generalizations of the
q−metric should also have a simple representation. To show this, we apply a
particular Lie transformation to the Ernst potential

E =

(
x− 1
x + 1

)1+q
(6.4.5)

of the q−metric in prolate spheroidal coordinates. To obtain the explicit form
of the new stationary Ernst potential, we use the solution generating tech-
niques that allow us to generate stationary solutions from a static solution.
The procedure involves several differential equations which must be solved
under the condition of asymptotic flatness. Here, we only present the final
expression for the new Ernst potential [50]

E =

(
x− 1
x + 1

)q x− 1 + (x2 − 1)−qd+
x + 1 + (x2 − 1)−qd−

, (6.4.6)

where
d± = α2(1± x)h+h− + iα[y(h+ + h−)± (h+ − h−)] , (6.4.7)

h± = (x± y)2q , x =
r
m
− 1 , y = cos θ . (6.4.8)

The new parameter α is introduced by the Lie transformation. As expected,
we obtain the q−metric in the limiting case α = 0. The behavior of the Ernst
potential shows that this new solution is asymptotically flat. The correspond-
ing metric functions corroborate this result. Furthermore, the behavior of the
new potential near the axis, y = ±1, shows that the spacetime is free of sin-
gularities outside a spatial region determined by the radius xs = m

σ , which
in the case of vanishing α, corresponds to the exterior singularity situated at
rs = 2m. The expression for the Kretschmann scalar shows that the outermost
singularity is situated at xs = m

σ . Inside this singular hypersurface, several
singular structures can appear that depend on the value of q and σ.
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The coordinate invariant multipole moments as defined by Geroch and
Hansen [31, 32, 33] can be found by using a procedure proposed in [25] that
allows us to perform the computations directly from the Ernst potential. In
the limiting case q = 0, with α = σ−m

a , the resulting multipoles are

M2k+1 = J2k = 0 , k = 0, 1, 2, ... (6.4.9)

M0 = m , M2 = −ma2 , ... (6.4.10)

J1 = ma , J3 = −ma3 , .... (6.4.11)

which are exactly the mass Mn and angular Jn multipole moments of the Kerr
solution. In the general case of arbitrary q parameter, we obtain the following
multipole moments

M0 = m + σq , (6.4.12)

M2 =
7
3

σ3q− 1
3

σ3q3 + mσ2 −mσ2q2 − 3 m2σ q−m3 , (6.4.13)

J1 = ma + 2aσq , (6.4.14)

J3 = −1
3

a(−8 σ3q + 2 σ3q3 − 3 mσ2 + 9 mσ2q2 + 12 m2σ q + 3 m3) . (6.4.15)

The even gravitomagnetic and the odd gravitoelectric multipoles vanish iden-
tically because the solution is symmetric with respect to the equatorial plane
y = 0. Moreover, higher odd gravitomagnetic and even gravitoelectric multi-
poles are all linearly dependent since they are completely determined by the
parameters m, a, σ and q.

In this section, we have seen that there are several exact solutions with
quadrupole moment that can be used to describe the exterior field of com-
pact stars. This is in accordance with the black hole uniqueness theorems be-
cause the presence of the quadrupole invalidates the conditions under which
the theorems have been proved. On the other hand, all the quadrupolar so-
lutions must contain naked singularities, also as a consequence of the black
hole uniqueness theorems. In the case of the stationary q−metric and the
rotating Erez-Rosen spacetime, we have shown explicitly that the naked sin-
gularities are located inside or on the Schwarzschild radius which in compact
stars is always located inside the surface of the star. We do not know if this is
also true in the case of other quadrupolar metrics mentioned in this section.
Suppose, for instance, that a particular quadrupolar metric has a singularity
at a distance of say 15km from the center of a source with a mass of 2M�.
Then, this metric cannot be used to represent the exterior field of an isolated
neutron star whose radius is about 11.5km, i.e., the singularity is located out-
side the surface of the neutron star where the spacetime should be vacuum.
Nevertheless, such a solution can still be a candidate to describe the exterior
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field, for instance, of a white dwarf of mass 1.1M� whose radius is of the or-
der of thousand kilometers, so that the curvature singularity could be located
inside the star.

The above discussion is related to the conditions that a general solution
must satisfy in order to become physically meaningful. Indeed, if a curvature
singularity is present, it should be possible to “cover” it by an interior solu-
tion that can be matched with an exterior solution across the surface of the
star. In our opinion, the problem of solving the matching conditions in the
presence of a physically meaningful interior solution is one of the most im-
portant challenges of modern relativistic astrophysics in general relativity. It
is also an important conceptual problem since general relativity, as a theory of
gravity, should be able to describe physical configurations like compact stars
in which the gravitational field plays an important role. We will consider this
issue in the next section.

6.5 Interior quadrupolar metrics

The problem of finding an interior solution for a stationary and axisymmet-
ric spacetime is still open. Even in the case of vanishing quadrupole, the
problem is still not completely solved. Indeed, in the case of a perfect fluid
with constant energy density, an interior Schwarzschild solution can be ob-
tained analytically, but its physical properties do not allow us to use it to
describe the interior field of a spherically symmetric compact star because it
violates causality, i.e., a sound wave propagates inside the star with super-
luminal velocity. Other spherically symmetric interior solutions are usually
non-physical or cannot be matched with the exterior Schwarzschild metric
[1]. In the case of quadrupolar metrics, the situation is quite similar. The
only rigidly rotating perfect-fluid solution, containing the Kerr spacetime in
the vacuum limit, is the Wahlquist metric [51, 52] which, however, is charac-
terized by an unphysical equation of state (ρ + 3p = const.). Moreover, in
the slow rotation approximation, the zero pressure surface corresponds to a
prolate ellipsoid rather than an oblate ellipsoid, as expected from a physical
point of view. Other solutions with quadrupole represent anisotropic fluids
[53, 54, 55] which, however, either they do not satisfy the energy conditions
[53, 54] or either the boundary surface of zero pressure cannot be fixed be-
cause the hydrostatic pressure cannot be isolated from the other stresses [55].

All the interior solutions mentioned above have been obtained by analyz-
ing carefully the corresponding field equations and, as we have seen, the
results are not very satisfactory. In view of this situation, we believe that it
is necessary to apply a different approach. We propose to develop solution
generating techniques for interior spacetimes. Indeed, the discovery of Lie
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symmetries, Bäcklund transformations and the inverse scattering method in
the Ernst equations represented a radical change in the search for exterior
stationary and axisymmetric solutions. We believe that a similar approach
could be useful also in the case of interior solutions.

To illustrate the problem of finding interior solutions, we first consider the
case of spherically symmetric spacetimes. To this end, let us consider the
following line element in spherical coordinates

ds2 = eφ(r)dt2 − dr2

1− 2m(r)
r

− r2(dθ2 + sin2 θdϕ2) . (6.5.1)

We choose a perfect fluid as the physical model for the interior gravitational
field. Then, Einstein’s equations

Rµν −
1
2

Rgµν = 8π[(ρ + p)uµuν − pgµν] (6.5.2)

reduce to
dφ

dr
=

m + 4πr3p
r(r− 2m)

, m = 4πρr2 . (6.5.3)

In addition, there is a second order differential equation which is equivalent
to the energy-momentum conservation law Tµν

;µ = 0. In this case, it can be
written as the Tolman-Oppenheimer-Volkoff equation

dp
dr

= − (p + ρ)(m + 4πr3p)
r(r− 2m)

. (6.5.4)

We see that we have only three equations for determining four unknowns
(φ, m, p, and ρ). To close the system of differential equations, it is necessary
to impose an additional condition which is usually taken as the equation of
state p = p(ρ). In particular, one can use the barotropic equation of state
p = wρ, where w is the constant barotropic factor. Many barotropic solutions
are known in the literature [1] which, however, usually are either not related
to realistic equations of state or show a singular behavior at the level of the
pressure or energy density. To obtain more realistic solutions, we propose to
start from a physically realistic energy density, for instance. Indeed, suppose
that the energy density is given a priori by the polynomial equation [56]

ρ(r) = ρc − c1r− c2r2 − c3r3 , (6.5.5)

where c1, c2, and c3 are real constants and ρc is the energy density at the
center of the body. Then, the mass function can be integrated explicitly and
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we obtain
m(r) =

π

15
r3(20ρc − 15c1r− 12c2r2 − 10c3r3) . (6.5.6)

Clearly, the above particular Ansatz allows us to obtain a realistic behav-
ior for the energy density, provided the constants are chosen appropriately.
For instance, at the surface of the sphere r = R we demand that the energy
density vanishes, ρ(r = R) = 0, and so we obtain

ρc = c1R + c2R2 + c3R3 , (6.5.7)

which establishes an algebraic relationship between the free constants. The
mass function m(r) is then determined by the free constants only. Moreover,
we impose the physical condition that the total mass

M =
∫ R

0
m(r)dr (6.5.8)

coincides with the mass of the exterior Schwarzschild metric which implies a
boundary condition for the function φ(r), namely

e2φ(r=R) = 1− 2M
R

. (6.5.9)

The procedure consists now in solving the differential equations for φ(r)
and p(r) with the boundary conditions specified above. We did not success
in finding analytic solutions and, therefore, we integrate the system of differ-
ential equations numerically. To this end, it is necessary to impose additional
boundary conditions as follows. At the center and at the surface of the sphere,
the pressure must satisfy the boundary conditions

pR ≡ p(R) = 0 , p(r = 0) ≡ pc < ∞ . (6.5.10)

Moreover, we demand that the pressure is a well behaved function inside the
sphere, i.e.,

0 < p(r) < ∞ for 0 ≤ r ≤ R , (6.5.11)

which means that the pressure function should be free of singularities inside
the sphere.

The method consists now in integrating numerically the equations for the
total mass M and for the pressure p, under the conditions mentioned above.
The goal is to find values for the constants c1, c2 and c3 such that M is positive
and p(r) is positive and free of singularities. In fact, it turns out that there are
several intervals of values in which all conditions are satisfied. The particular
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Figure 6.1: Behavior of the pressure inside a spherically symmetric body of
radius R = 0.4. All the conditions for the pressure to be physically meaning-
ful are satisfied.

simple choice

c1 =
1
2

, c2 =
1
6

, c3 =
1

24
(6.5.12)

with the particular radius value

R = 0.4 (6.5.13)

leads to boundary values

ρc = 0.2293 , M = 0.002633 , φ(R) = −0.0066 . (6.5.14)

Then, the integration of the differential equation for the pressure is straight-
forward. In Fig. 6.1, we illustrate the behavior of the pressure. The graphic
shows that everywhere inside the sphere, the pressure has a very physical
and realistic behavior. The corresponding function for the energy density
shows also a physical behavior as demanded a priori with the polynomial
Ansatz and the chosen values for the constants c1, c2 and c3.

The differential equation for the function φ(r) can also be integrated and
its behavior is represented in Fig. 6.2. It can be seen that this function is well
behaved inside the sphere. Moreover, the value at the boundary R = 0.4,
together with the value of the total mass, matches exactly the corresponding
metric function for the exterior Schwarzschild solution.

An important condition that must be satisfied by any interior solution is
the Buchdahl limit [1] which, in principle, can be associated with the Chan-
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Figure 6.2: Numerical integration of the metric function φ(r) for a sphere of
radius R = 0.4 and energy density constants c1 = 1

2 , c2 = 1
6 , c3 = 1

24 .

drasekhar limit about the maximum mass of compact stars. An analysis of
the differential equations that determine the spherically symmetric case un-
der consideration here shows that in order to avoid unstable configurations,
which could lead to a collapse of the sphere, it is necessary that the condition

M
R

<
4
9

(6.5.15)

be satisfied. In fact, for a mass-to-radius ratio with M
R ≥

4
9 , the gravitational

collapse is imminent and the staticity condition of the mass distribution is
no longer valid. So, Buchdahl’s limit is an essential requirement for a solu-
tion to be physically meaningful. From the boundary values obtained above,
it is easy to see that this requirement is satisfied at the surface of the body.
However, it could be that the behavior of the mass function inside the star
violates Buchdahl’s limit for a specific value of the radial coordinate, leading
to an internal instability. To corroborate the stable behavior inside the body,
we plot in Fig. 6.3 the behavior of the mass function for all values of the ra-
dial coordinate. We can see that inside the sphere the mass-to-radius ratio
is everywhere less than the limiting value 4

9 , indicating that no instabilities
can occur. This result reinforces the physical interpretation of the numerical
solution presented here.

The simple example for a static perfect-fluid sphere as a source of a com-
pact star shows that it is possible to find physically meaningful solutions of
the interior field equations. But it also shows that it is very difficult to inte-
grate analytically the resulting differential equations. We started from a par-
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Figure 6.3: Buchdahl’s limit inside the compact sphere of radius R = 0.4. The
condition m(r)/r < 4/9 = 0.44 is satisfied everywhere inside the sphere.

ticular polynomial Ansatz for the energy density which guarantees a mean-
ingful physical behavior. This allows us to integrate the mass function, but
the pressure and the remaining metric function φ(r) cannot be integrated an-
alytically. A numerical analysis seems to be always necessary. For this reason
we believe that the standard method of solving directly the field equations
should be complemented by a solution generating technique, similar to the
methods used for obtaining exterior solutions.

We now turn back to the study of quadrupolar interior metrics. As men-
tioned above, all the known solutions are either unphysical or they cannot be
matched with the exterior Kerr metric. To attack this problem, we propose to
consider the mass quadrupole as an additional degree of freedom and to ana-
lyze the symmetry properties of the field equations in the presence of matter.
To begin with, we have considered first the case of static quadrupole metrics
with a perfect fluid as the source of gravity. If we consider the spherically
symmetric line element analyzed above, and try to generalize it to include
the case of axisymmetric fields, it turns out to be convenient to use the fol-
lowing line element [57]

ds2 = e2ψdt2 − e−2ψ

[
e2γ

(
dr2

h
+ dθ2

)
+ µ2dϕ2

]
, (6.5.16)

where ψ = ψ(r, θ), γ = γ(r, θ), µ = µ(r, θ), and h = h(r). A detailed analysis
of the Einstein equations with an energy-momentum tensor represented by
a perfect fluid shows that the resulting set of differential equations can be
split into two systems in a manner which resembles the splitting in the case
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of vacuum spacetimes. Indeed, the main field equations can be written as

µ,rr

µ
+

µ,θθ

hµ
+

h,rµ,r

2hµ
=

16π

h
pe2γ−2ψ , (6.5.17)

ψ,rr +
ψ,θθ

h
+

(
h,r

2h
+

µ,r

µ

)
ψ,r +

µ,θψ,θ

hµ
=

4π

h
(3p + ρ)e2γ−2ψ . (6.5.18)

Moreover, the metric function γ is determined by two first order differential
equations

γ,r =
1

hµ2
,r + µ2

,θ

{
µ
[
µ,r

(
hψ2

,r − ψ2
,θ

)
+ 2µ,θψ,θψ,r + 8πµ,r p̄

]
+µ,θµ,rθ−µ,rµ,θθ

}
,

(6.5.19)

γ,θ =
1

hµ2
,r + µ2

,θ

{
µ
[
µ,θ

(
ψ2

,θ − hψ2
,r

)
+ 2hµ,rψ,θψ,r − 8πµ,θ p̄

]
+ hµ,rµrθ +µ,θµ,θθ

}
,

(6.5.20)
where

p̄ = pe2γ−2ψ . (6.5.21)

The equations for γ can be integrated by quadratures once the main field
equations (6.5.17) and (6.5.18) are solved, and the pressure p̄ is given a pri-
ori as an independent function. Notice that if we introduce the differential
equations (6.5.17)-(6.5.20) into the original Einstein equations, a second order
differential equation for γ is obtained

γ,rr +
γ,θθ

h
+ ψ2

,r +
ψ2

,θ

h
+

h,rγ,r

2h
=

8π

h
p̄ , (6.5.22)

which must also be satisfied. However, a straightforward computation shows
that this equation is identically satisfied if the two first-order differential equa-
tions (6.5.19) and (6.5.20) for γ and the conservation equation for the param-
eters of the perfect fluid

p,r = −(ρ + p)ψ,r , p,θ = −(ρ + p)ψ,θ , (6.5.23)

are satisfied. The conservation equations resemble the Tolman-Oppenheimer-
Volkov relation for the spherically symmetric case.

We see that the particular choice of the above line element leads to a split-
ting of the field field equations into two separated sets of equations, and to
a generalization of the Tolman-Oppenheimer-Volkov equation for the case
of two spatial coordinates. This is an important advantage when trying to
perform the integration of the main field equations. Indeed, in this manner
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we found a series of relatively simple approximate solutions with non-trivial
quadrupole moment. The presentation and physical investigation of those
solutions requires several detailed analysis. A byproduct of such analysis
was the discovery of certain symmetries of the field equations for a perfect
fluid which can be used to generate new solutions from known ones by using
the procedure described below.

Suppose that an exact interior solution of Einstein’s equations (6.5.17)-(6.5.20)
for the static axisymmetric line element (6.5.16) is given explicitly by means
of the functions

h0 = h0(r), µ0 = µ0(r, θ), ψ0 = ψ0(r, θ), γ0 = γ0(r, θ), (6.5.24)

p̄0 = p̄0(r, θ), ρ̄0 = ρ̄0(r, θ) , (6.5.25)

where we have introduced the notation

p̄0 = p0e2γ0−2ψ0 , ρ̄0 = ρ0e2γ0−2ψ0 , (6.5.26)

and p0 and ρ0 are also known functions. Then, for any arbitrary real values
of the constant parameter δ, a class of new solutions of the field equations
(6.5.17)-(6.5.20) can be obtained explicitly from the functions

h = h0(r), µ = µ0(r, θ̃), ψ = δψ0(r, θ̃), (6.5.27)

p̄ = δ p̄0(r, θ̃), ρ̄ = δρ̄0(r, θ̃), θ̃ =
θ√
δ

, (6.5.28)

γ(r, θ̃) = δ2γ0(r, θ̃) + (δ2 − 1)
∫

νθ̃

h0 + ν2 dr + 8πδ(1− δ)
∫ µ0

µ0,r
p̄0

h0 + ν2 dr + κ ,

(6.5.29)
where κ is an arbitrary real constant and

ν =
µ0,θ̃

µ0,r
. (6.5.30)

To illustrate the application of this solution generating method, let us con-
sider the spherically symmetric Schwarzschild solution which describes the
interior field of a perfect-fluid sphere of radius R and total mass m. The cor-
responding line element can be written as

ds2 =

[
3
2

f (R)− 1
2

f (r)
]2

dt2 − dr2

f 2(r)
− r2(dθ2 + sin2 θdϕ2) , (6.5.31)
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with

f (r) =

√
1− 2mr2

R3 . (6.5.32)

The physical parameters of the perfect fluid are the constant density ρ0 and
the pressure p0, which is a function of the radial coordinate r only

p0 = ρ0
f (r)− f (R)

3 f (R)− f (r)
. (6.5.33)

We now consider the interior Schwarzschild metric as the seed solution
(6.5.24) for the general transformation (6.5.27). A straightforward comparison
with the general line element (6.5.16) yields

eψ0 =
3
2

f (R)− 1
2

f (r) , h0 = r2 f 2(r) , µ0 = r sin θ eψ0 , eγ0 = reψ0 . (6.5.34)

According to the procedure described above, the new solution can be ob-
tained from Eq.(6.5.34) by multiplying the corresponding metric functions
with the new parameter δ. Then, the new line element can be represented as

ds2 = e2δψ0dt2 − e−2δψ0

[
e2γ

(
dr2

r2 f 2(r)
+ dθ̃2

)
+ r2e2ψ0 sin2 θ̃dϕ2

]
, (6.5.35)

where the new function γ is given by

γ = δ2γ0 +
∫

(1− δ2) + 8πδ(1− δ) sin2 θ̃r2p0

r f 2(r)(1 + rψ0 r) sin2 θ̃ + r
1+rψ0 r

cos2 θ̃
dr + κ , (6.5.36)

with
ψ0 r =

2mr
R3 f (r)[3 f (R)− f (r)]

. (6.5.37)

Moreover, the physical parameters of the perfect-fluid source are

ρ = δρ0e2γ0−2γ+2(δ−1)ψ0 , p = δp0e2γ0−2γ+2(δ−1)ψ0 , (6.5.38)

from which the equation of state

p =
p0

ρ0
ρ (6.5.39)

can be obtained. This is clearly not a barotropic equation of state since the
seed pressure p0 depends explicitly on the radial coordinate r. Nevertheless,
it can be interpreted as a generalized barotropic equation of state p = w(r)ρ.
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Interestingly, the physical parameters of the perfect fluid are axisymmetric,
but the equation of state preserves spherical symmetry in the sense that the
generalized barotropic factor depends on the radial coordinate only.

Notice that the new function γ depends explicitly on the new coordinate
θ̃, in contrast to the seed metric function γ0 which depends on the radial
coordinate r only. This proves that the new solution is not spherically sym-
metric, but axisymmetric. Notice also that the density and pressure of the
new solution are functions of the angular coordinate too, as expected for an
axisymmetric mass distribution. It is expected that the obtained deviations
from spherical symmetry are related to the quadrupole moment of the per-
fect fluid; however, a more detailed investigation is necessary to define an
interior quadrupole which should be related to the exterior quadrupole.

6.6 Remarks

In this chapter, we presented a review of the problem of describing the in-
terior and exterior gravitational field of compact objects in general relativ-
ity, which include black holes and compact stars (white dwarfs and neutron
stars). To take into account rotation and deformation of the mass distribu-
tion, we consider stationary and axisymmetric solutions of Einstein’s equa-
tions with quadrupole moment. We formulate the physical conditions which,
in our opinion, should be satisfied by a Riemannian manifold in order to rep-
resent the interior and exterior gravitational field of compact objects.

We review the main static solutions in which the quadrupole is represented
by a free parameter. We argue that the q−metric represents the simplest gen-
eralization of the Schwarzschild solution with a quadrupole parameter. We
then present a particular generalization of the Erez-Rosen metric which in-
cludes a rotational parameter, and reduces to the Kerr metric in absence of
the quadrupole parameter. In addition, we present the Ernst potential of a
stationary q−metric which turns out to be represented by a quite simple ex-
pression.

We notice that in this review, we limited ourselves to the study of the mass
quadrupole as additional parameter only. In general and in more realistic sit-
uations, it is necessary to consider also the electromagnetic field. Fortunately,
the solution generating techniques have been developed also for Einstein-
Maxwell equations as well and, therefore, the generalization of the vacuum
solutions presented in this review to include electromagnetic multipoles is
straightforward.

We argue that the interior counterpart of the exterior Kerr metric cannot be
found in general relativity because it is directly related to a curvature sin-
gularity at which the classical theory breaks down. Probably, a quantum
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description of gravity is necessary in order to understand the interior field
of a black hole. In the case of compact stars, however, we argue that gen-
eral relativity should allow the existence of spacetimes which describe both
the interior and exterior gravitational field. In view of the precarious situa-
tion regarding physically meaningful interior solutions, we propose to study
the symmetries of the field equations in order to develop solution generat-
ing techniques. We present a particularly simple method which allows us
to generate new static and axisymmetric perfect-fluid solutions from known
solutions.

Summarizing, we propose to apply a different strategy to search for interior
physically meaningful solutions of Einstein’s equations. Firstly, we propose
to include the quadrupole as an additional degree of freedom and, secondly,
we propose to investigate the symmetry properties of the field equations in
the presence of matter.
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7 Rotating gravitation fields in the
Newtonian limit

7.1 Introduction

In physics, rotation may introduce many changes in the structure of any sys-
tem. In the case of celestial objects such as stars and planets, rotation plays a
crucial role. Rotation does not only change the shape of the celestial objects
but also influences the processes occurring inside stars, i.e., it may accelerate
or decelerate thermonuclear reactions under certain conditions, it changes
the gravitational field outside the objects and it is one of the main factors that
determines the lifespan of all stars (giant stars, main sequence, white dwarfs,
neutron stars, etc.) [58, 59, 60, 61, 62, 63, 64].

For instance, let us consider a white dwarf. A non-rotating white dwarf
has a limiting mass of 1.44M� which is well-known as the Chandrasekhar
limit [65]. The central density and pressure corresponding to this limit define
the evolution of white dwarfs. If the white dwarf rotates, then due to the
centrifugal forces the central density and pressure decrease [66, 67]. In order
to recover the initial values of the central density and pressure of a rotating
star one needs to add extra mass. Here we see that a rotating star with the
same values for central density and pressure, as those of a non-rotating star,
possesses a larger mass [68].

In this work, we derive the equations describing the equilibrium configu-
rations of slowly rotating stars within Hartle’s formalism [69]. The advantage
of this approach is that it allows us to consider in a simple way the influence
of the rotation on the internal properties of the gravitational source. In fact,
we will see that the complexity of the differential equations, which govern
the dynamical properties of equilibrium configurations, is reduced to a high
degree. When solving this kind of problems in celestial mechanics, astron-
omy and astrophysics, it is convenient to consider the internal structure of
stars and planets as being described by a fluid. In the case of slow rotation,
we derive equations that are valid for any fluid up to the second order in the
angular velocity.

As a result we obtain the equations defining the main parameters of the
rotating equilibrium configuration such as the mass, radius, moment of iner-
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tia, gravitational potential, angular momentum and quadrupole moment as
functions of the central density and angular velocity (rotation period). Fur-
thermore, we show how to calculate the ellipticity and by means of it the
gravitational Love number [70]. In turn, these parameters are of great impor-
tance in defining the evolution of a star.

In order to pursue all these issues in detail we revisit the Hartle formalism
in classical physics for a slowly rotating configuration as the calculation of its
equilibrium properties is much more simpler, because then the rotation can
be considered as a small perturbation of an already-known non-rotating con-
figuration. We therefore will consider in this paper a rotating configuration
under the following conditions [69]:

• A one-parameter equation of state is specified, p = p(ρ), where p is the
pressure and ρ is the density of matter [71].

• A static equilibrium configuration is calculated using this equation of
state and the classical equation of hydrostatic equilibrium for spherical
symmetry.

• Axial and reflection symmetry. The configuration is symmetric about a
plane perpendicular to the axis of rotation.

• A uniform angular velocity sufficiently slow so that the changes in pres-
sure, energy density, and gravitational field are small.

• Slow rotation. This requirement implies that the angular velocity Ω of
the star

Ω2 � GM
a3 , (7.1.1)

where M is the mass of the unperturbed configuration, a is its radius, G
is the gravitational constant. Consequently, the condition in Eq. (7.1.1)
also implies

Ω� c
a

, (7.1.2)

where c is the speed of light.

• The Newtonian field equations are expanded in powers of the angular
velocity and the perturbations are calculated by retaining only the first-
and second-order terms.

In this chapter, the equations necessary to investigate this issue are obtained
explicitly. The problem of describing rotating configurations in Newtonian
gravity has been investigated in many articles and textbooks [71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81]. Here, we present a different approach. Indeed, we will
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use the Hartle formalism, which was originally proposed in general relativity,
to consider a non-relativistic Newtonian configuration. The very intuitive
coordinate approach of Hartle’s formalism is utilized in order to handle the
Newtonian gravity equation and the corresponding equilibrium condition.
It is worth mentioning that the Hartle formalism has been recently extended
for relativistic configurations up to the fourth order terms in angular velocity
[82].

This chapter is organized as follows. In Sec. 7.2, we present the conditions
under which the rotating compact object becomes a configuration in hydro-
static equilibrium. Moreover, we show that the use of a particular coordinate,
which is especially adapted to describing the deformation due to the rotation,
together with an expansion in spherical harmonics reduces substantially the
system of differential equations up to the level that they can be integrated by
quadratures. In Sec. 7.3, we derive expressions for the main physical quan-
tities of the rotating object. A summary of the method to be used to find
explicit numerical solutions by using our formalism is presented in Sec. 7.4.
In Sec. 7.5 we apply the formalism to rotating white dwarfs in Newtonian
physics and in Sec. 7.6 we show the procedure of calculating the Keplerian
angular velocity and the scaling law for the physical quantities describing ro-
tating configurations. In Sec. 7.7 we compare and contrast the results of this
work with similar works in the literature.

7.2 Slowly rotating stars in Newtonian gravity

In Newtonian gravitational theory the equilibrium configuration of uniformly
rotating stars are determined by the solution of the three equations of New-
tonian hydrostatic equilibrium [66, 67, 69]. These are (1) the Newtonian field
equation:

∇2Φ(r, θ) = 4πGρ(r, θ); (7.2.1)

where Φ is gravitational potential and ρ is the density of a fluid mass rotating
with a uniform angular velocity Ω;

(2) the equation of state that shows the relationship between pressure p and
density ρ is assumed to have a one-parameter form

p = p(ρ); (7.2.2)

(3) the equation of hydrostatic equilibrium for uniformly rotating configu-
rations which can be written as

d~v
dt

= −1
ρ
~∇p− ~∇Φ , (7.2.3)
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with
~v =

d~r
dt

= ~Ω×~r . (7.2.4)

For uniform rotation (Ω=constant) we have that

d~v
dt

= ~Ω×~v = ~Ω× (~Ω×~r) = −1
2
~∇(~Ω×~r)2 . (7.2.5)

Therefore, substituting this expression in (7.2.3), we obtain

− 1
2
~∇(~Ω×~r)2 = −1

ρ
~∇p− ~∇Φ (7.2.6)

or
dp
ρ
− 1

2
d(~Ω×~r)2 + dΦ = 0 , (7.2.7)

which can be reexpressed in terms of its first integral∫ p

0

dp(r, θ)

ρ(r, θ)
− 1

2
Ω2r2 sin2 θ + Φ(r, θ) = const, (7.2.8)

where r is the radial coordinate and θ is the polar coordinate of the rotating
configuration.

The main task now is to expand the equations of Newtonian hydrostatics
in powers of Ω2. The solution to the first term of the expansion is given by
Φ(0), p(0), and ρ(0) in the absence of rotation. Then, it is necessary to find
the equations which govern the second-order terms. It is expected that the
resulting differential equations can be integrated in terms of the known non-
rotating solution.

7.2.1 Coordinates

An important point to be considered is the choice of the coordinate system
in which the expansions in powers of Ω are carried out. As pointed out by
Hartle in 1967 [69], one should be very careful when considering perturba-
tion near the surface of the star. In fact, a simple expansion of the density as
a function of the old polar coordinates r, θ is not valid throughout the star as
the surface of the configuration will be displaced from its non-rotating posi-
tion and the perturbation in the density may be finite where the unperturbed
density vanishes. Therefore, following Hartle’s approach [69] we select a co-
ordinate transformation such that the density of the star in terms of the new
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W(a)

(b)

Θ=Q r

R

Ξ

Figure 7.1: Definition of the coordinates R, Θ, and the displacement ξ(R, Θ). The surface
(a) is the surface of constant density ρ(R) in the non-rotating configuration. The surface (b)
is the surface of constant density ρ(R) in the rotating configuration (reproduced from [69]).

radial coordinate is the same as in the static configuration:

ρ[r(R, Θ), Θ] = ρ(R) = ρ(0)(R). (7.2.9)

Thus, the relationships between the old coordinates (r, θ) and the new coor-
dinates (R, Θ) are given by

θ = Θ, r = R + ξ(R, Θ) + O(Ω4) . (7.2.10)

The function r(R, Θ) then replaces the density as a function to be calculated in
the rotating configuration. These definitions are given pictorially in Fig. 7.1.

Following Hartle’s formalism, we are always free to consider the rotating
configuration as a perturbation of a non-rotating configuration with the same
central density. Consequently, in the R, Θ coordinate system, the density
(7.2.9) and pressure are known functions of R

p[r(R, Θ), Θ] = p(R) = p(0)(R) (7.2.11)

related by the one-parametric equation of state.
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7.2.2 Spherical harmonics

The expansion of r in terms of Ω2 is given by equation (7.2.10) and the expan-
sion of the gravitational potential Φ can be represented as

Φ(R, Θ) ≈ Φ(0)(R) + Φ(2)(R, Θ) + O(Ω4) (7.2.12)

where Φ(0)(R) is the spherical part of the potential and Φ(2)(R, Θ) is the per-
turbed part. Calculating the Taylor expansion in terms of the new the coordi-
nates, we obtain

Φ(r, θ) = Φ(R + ξ, Θ) ≈ Φ(R, Θ) + ξ
dΦ(R, Θ)

dR
+ O(Ω4) (7.2.13)

≈ Φ(0)(R) + ξ
dΦ(0)(R)

dR
+ Φ(2)(R, Θ) + O(Ω4).

In order to simplify the equations we expand the functions ξ and Φ(2) in
spherical harmonics

ξ(R, Θ) =
∞

∑
l=0

ξl(R)Pl(cos Θ), Φ(2)(R, Θ) =
∞

∑
l=0

Φ(2)
l (R)Pl(cos Θ),(7.2.14)

where Pl(cos Θ) are the Legendre polynomials.

Now let us perform the computations in detail taking the polar axis to
be the axis of rotation. Using the expressions for the Legendre polynomials
P0(cos Θ) = 1 and P2(cos Θ) = 1

2(3 cos2 Θ− 1), it is easy to show that

sin2 Θ =
2
3
[P0(cos Θ)− P2(cos Θ)], (7.2.15)

From here we see that l accepts only two values, namely, 0 and 2. The equa-
tions for ξl(R), Φ(2)

l (R), with l ≥ 4 are thus independent of Ω and their
solution is

ξl = 0, Φ(2)
l = 0, l ≥ 4. (7.2.16)

Rewriting the condition of hydrostatic equilibrium (7.2.8) in coordinates
(R, Θ) and expanding it in spherical harmonics by using Eqs. (7.2.9), (7.2.12),
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and (7.2.14), we get

∫ p

0

dp(0)(R)
ρ(R)

− 1
3

Ω2R2[P0(cos Θ)− P2(cos Θ)] + Φ(0)(R) (7.2.17)

+
n

∑
l=0

Φ(2)
l (R)Pl(cos Θ) +

n

∑
l=0

ξl(R)Pl(cos Θ)
dΦ(0)(R)

dR
= const .

We now collect the terms proportional to ∼ Ω0 and Ω2 with l = 0, 2 and
obtain: ∫ p

0

dp(0)(R)
ρ(R)

+ Φ(0)(R) = const(0), (7.2.18)

−1
3

Ω2R2 + Φ(2)
0 (R) + ξ0(R)

dΦ(0)(R)
dR

= const(2)0 , (7.2.19)

1
3

Ω2R2 + Φ(2)
2 (R) + ξ2(R)

dΦ(0)(R)
dR

= 0, (7.2.20)

where const is defined as const = const(0)+ const(2)0 P0(cos Θ), so that const(0)

and const(2)0 are found from the matching between the interior and exterior
solutions. The first of the above equations corresponds to the Newtonian
hydrostatic equation for a static configuration.

Using the same procedure, the Newtonian field equation becomes

∇2Φ(r, θ) =
1
r2

∂

∂r

(
r2 ∂Φ(r, θ)

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Φ(r, θ)

∂θ

)
(7.2.21)

= ∇2
r Φ(r, θ) +

1
r2∇

2
θΦ(r, θ) ≈ ∇2

r Φ(0)(r) +∇2
r Φ(2)

0 (r)

+∇2
r Φ(2)

2 (r)P2(cos θ) +
1
r2∇

2
θΦ(2)

2 (r)P2(cos θ) = 4πGρ(r, θ).

Since the functions Φ(2)
0 and Φ(2)

2 are already proportional to Ω2, we can di-
rectly write them in (R, Θ) coordinates. However∇2

r Φ(0)(r) ≈ ∇2
RΦ(0)(R) +

ξ(R, Θ) d
dR∇

2
RΦ(0)(R). Thus

∇2Φ(r, θ) = ∇2
RΦ(0)(R) + ξ(R, Θ)

d
dR
∇2

RΦ(0)(R) (7.2.22)

+∇2
RΦ(2)

0 (R) +∇2
RΦ(2)

2 (R)P2(cos Θ) +
1

R2∇
2
ΘΦ(2)

2 (R)P2(cos Θ) = 4πGρ(R).

Taking into account that ξ(R, Θ) = ξ0(R)+ ξ2(R)P2(cos Θ) and collecting the
corresponding terms, we obtain the Newtonian field equations of both static
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7 Rotating gravitation fields in the Newtonian limit

and rotating configurations:

∇2
RΦ(0)(R) = 4πGρ(R), (7.2.23)

ξ0(R)
d

dR
∇2

RΦ(0)(R) +∇2
RΦ(2)

0 (R) = 0, (7.2.24)

ξ2(R)
d

dR
∇2

RΦ(0)(R) +∇2
RΦ(2)

2 (R)− 6
R2 Φ(2)

2 (R) = 0. (7.2.25)

The differential equations for Φ(2)
0 (R), Φ(2)

2 (R), ξ0(R), and ξ2(R), which
establish the relation between mass and central density for rotating star and
determine the shape of the star, will now be given in forms suitable for solv-
ing these problems.

7.3 Physical properties of the model

The above description of the rotating equilibrium configuration allows us to
derive all the main quantities that are necessary for establishing the physical
significance and determining the physical properties of the rotating source.
In this section, we will derive all the equations that must be solved in order
to find the values of all the relevant quantities.

7.3.1 Mass and Central Density

The total mass of the rotating configuration is given by the integral of the
density over the volume,

Mtot =
∫

V
ρ(r, θ)dV =

∫
V

ρ(r, θ)r2dr sin θdθdφ .

To proceed with the computation of the integral, we use formula (7.2.10) and
obtain the relationship

r2dr = (R + ξ)2(dR + dξ) ≈ R2
(

1 +
2ξ

R

)(
1 +

dξ

dR

)
dR

≈
(

1 +
2ξ

R
+

dξ

dR

)
R2dR , (7.3.1)
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which implies that

Mtot =
∫

V
ρ(R)R2dR sin ΘdΘdφ

+
∫

V
ρ(R)R2

(
2ξ(R, Θ)

R
+

dξ(R, Θ)

dR

)
dR sin ΘdΘdφ . (7.3.2)

Performing the integration within the range of angles 0 < Θ < π and
0 < φ < 2π and using the identities∫ π

0
sin ΘdΘ = 2,

∫ π

0
P2(cos Θ) sin ΘdΘ = 0 , (7.3.3)

one finds that the change in mass M(2) of the rotating configuration from the
non-rotating one can be written as

Mtot(R) = M(0)(R) + M(2)(R), (7.3.4)

M(0)(R) = 4π
∫ R

0
ρ(R)R2dR, (7.3.5)

M(2)(R) = 4π
∫ R

0
ρ(R)R2

(
2ξ0(R)

R
+

dξ0(R)
dR

)
dR (7.3.6)

= 4πξ0(R)ρ(R)R2
∣∣∣R
0
+ 4π

∫ R

0

(
−ξ0(R)

dρ(R)
dR

)
R2dR .

The last integral is obtained via integration by parts. On the surface of the star

R = a the density vanishes and the first term in the last integral ξ0(R)ρ(R)R2
∣∣∣a
0

vanishes too. So

M(2)(a) = 4π
∫ a

0

(
−ξ0(R)

dρ(R)
dR

)
R2dR . (7.3.7)

Here we have used the following expressions that follow from the field equa-
tions and definitions of the masses

∇2Φ(0)(R) = 4πGρ(R), (7.3.8)
d

dR
∇2Φ(0)(R) = 4πG

dρ(R)
dR

, (7.3.9)

dM(0)(R)
dR

= 4πR2ρ(R), (7.3.10)

dM(2)(R)
dR

= 4π

(
−ξ0(R)

dρ(R)
dR

)
R2 . (7.3.11)
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7 Rotating gravitation fields in the Newtonian limit

Using the condition that Φ(0)(R) → const(0) and Φ(2)
0 (R) → const(2)0 , as

R→ 0, and taking into account (7.2.24) the masses of both configurations can
be expressed as

GM(0)(R)
R2 =

dΦ(0)(R)
dR

, (7.3.12)

GM(2)(R)
R2 =

dΦ(2)
0 (R)
dR

. (7.3.13)

It is convenient to display the l = 0 equation in a form in which it resembles
the equation of hydrostatic equilibrium. To do this, we define

p∗0(R) = ξ0(R)
dΦ(0)(R)

dR
. (7.3.14)

Moreover, taking derivative of (7.2.19) and taking into account (7.3.13), we
obtain

−dp∗0(R)
dR

+
2
3

Ω2R =
GM(2)(R)

R2 . (7.3.15)

The above equation along with

dM(2)(R)
dR

= 4πR2ρ(R)
dρ(R)
dp(R)

p∗0(R), (7.3.16)

show the balance between the pressure, centrifugal, and gravitational forces
per unit mass in the rotating star. The latter expression was obtained by using
(7.2.18).

7.3.2 The Shape of the Star and Numerical Integration

If the surface of the non-rotating star has radius a, then equations (7.2.9) and
(7.2.14) show that the equation for the surface of the rotating star has the form

r(a, Θ) = a + ξ0(a) + ξ2(a)P2(cos Θ). (7.3.17)

The value of ξ0(a) is already determined in the l = 0 calculation

ξ0(a) =
a2

GM
p∗0(a), (7.3.18)
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where M = M(0)(a) is the mass of the non-rotating configuration. However,
the determination of ξ2(R) from l = 2 equations is not straightforward. So
far, we have the l = 2 equations (7.2.20) and (7.2.25) representing the hy-
drostatic equilibrium and the field equation, respectively. From (7.2.20) we
obtain the expression

ξ2(R) = − R2

GM(R)

{
1
3

Ω2R2 + Φ(2)
2 (R)

}
, (7.3.19)

which we insert into (7.2.25) and get

∇2
RΦ(2)

2 (R)− 6
R2 Φ(2)

2 (R) =
4πR2

M(R)

{
1
3

Ω2R2 + Φ(2)
2 (R)

}
dρ(R)

dR
, (7.3.20)

where M(R) = M(0)(R) denotes the non-rotating mass. In order to solve
the latter equation numerically, one needs to rewrite it as first-order linear
differential equations. To this end, we introduce new functions ϕ = Φ(2)

2 and
χ so that Eq. (7.3.20) generates the system

dχ(R)
dR

= −2GM(R)
R2 ϕ(R) +

8π

3
Ω2R3Gρ(R), (7.3.21)

dϕ(R)
dR

=

(
4πR2ρ(R)

M(R)
− 2

R

)
ϕ(R)− 2χ(R)

GM(R)

+
4π

3M(R)
ρ(R)Ω2R4. (7.3.22)

The above equations can be solved by quadratures. The computation of
the solution can be performed numerically by integrating outward from the
origin. At the origin the solution must be regular. An examination of the
equations shows that, as R→ 0,

ϕ(R) → AR2, χ(R)→ BR4, (7.3.23)

where A and B are any constants related by

B +
2π

3
Gρc A =

2π

3
GρcΩ2 (7.3.24)

and ρc is the value of the density in the center of the star. The remaining con-
stant in the solution is determined by the boundary condition that ϕ(R)→ 0
at large values of R. The constant is thus determined by matching the interior
solution with the exterior solution which satisfies this boundary condition.
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7 Rotating gravitation fields in the Newtonian limit

In the exterior region, the solutions of the equations (7.3.21) and (7.3.22) are

ϕex(R) =
K1

R3 , χex(R) =
K1GM(0)

2R4 . (7.3.25)

The interior solution to the equations (7.3.21) and (7.3.22) may be written as
the sum of a particular solution and a homogeneous solution. The particu-
lar solution may be obtained by integrating the equations outward from the
center with any values of A and B which satisfy (7.3.24). The homogeneous
solution is then obtained by integrating the equations

dχh(R)
dR

= −2GM(R)
R2 ϕh(R), (7.3.26)

dϕh(R)
dR

=

(
4πR2ρ(R)

M(R)
− 2

R

)
ϕh(R)− 2χh(R)

GM(R)
, (7.3.27)

with A and B related now by

B +
2π

3
Gρc A = 0 (7.3.28)

The general solution may then be written as

ϕin(R) = ϕp(R) + K2ϕh(R), χin(R) = χp(R) + K2χh(R). (7.3.29)

By matching (7.3.25) and (7.3.29) at R = a, the constants K1 and K2 can be
determined. Thus, ϕin(R) is determined and ξ2(R) can be easily calculated
from

ξ2(R) = − R2

GM(R)

{
1
3

Ω2R2 + ϕin(R)
}

. (7.3.30)

7.3.3 Moment of Inertia

Similarly to the total mass of the star, the total moment of inertia can be cal-
culated as

Itot =
∫

V
ρ(r, θ)(r sin θ)2dV =

∫
V

ρ(r, θ)r4dr sin3 θdθdφ . (7.3.31)
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Using the definition of the radial coordinate r, we find the expression

r4dr = (R + ξ)4(dR + dξ) ≈ R4
(

1 +
4ξ

R

)(
1 +

dξ

dR

)
dR

≈
(

1 +
4ξ

R
+

dξ

dR

)
R4dR , (7.3.32)

which allows us to rewrite the moment of inertia as

Itot =
∫

V
ρ(R)R4dR sin3 ΘdΘdφ (7.3.33)

+
∫

V
ρ(R)R4

(
4ξ(R, Θ)

R
+

dξ(R, Θ)

dR

)
dR sin3 ΘdΘdφ .

Performing the integration within the range 0 < Θ < π and 0 < φ < 2π,
we obtain

Itot(R) = I(0)(R) + I(2)(R), (7.3.34)

I(0)(R) =
8π

3

∫ R

0
ρ(R)R4dR, (7.3.35)

I(2)(R) =
8π

3

∫ R

0
ρ(R)R4

(
dξ0(R)

dR
− 1

5
dξ2(R)

dR

+
4
R

[
ξ0(R)− 1

5
ξ2(R)

])
dR (7.3.36)

=
8π

3

[
ξ0(R)− 1

5
ξ2(R)

]
ρ(R)R4

∣∣∣R
0

+
8π

3

∫ R

0

(
−
[

ξ0(R)− 1
5

ξ2(R)
]

dρ(R)
dR

)
R4dR, (7.3.37)

where the last expression has been obtained via integration by parts and we
have used the integrals∫ π

0
sin3 ΘdΘ =

4
3

,
∫ π

0
P2(cos Θ) sin3 ΘdΘ = − 4

15
. (7.3.38)

When R = a the expression for the change in moment of inertia due to rota-
tion becomes

I(2)(a) =
8π

3

∫ a

0

(
−
[

ξ0(R)− 1
5

ξ2(R)
]

dρ(R)
dR

)
R4dR (7.3.39)
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7 Rotating gravitation fields in the Newtonian limit

In the corresponding limit, our results coincide with the definition of the
moment of inertia for slowly rotating relativistic stars as given in [108]. No-
tice that, knowing the value of the moment of inertia, one can easily calculate
the total angular momentum of the rotating stars

Jtot = J(0) + J(2), (7.3.40)

where J(0) = I(0)Ω is the angular momentum of the spherical configuration
and J(2) = I(2)Ω is the change of the angular momentum due to rotation and
deformation.

7.3.4 Gravitational binding energy and rotational kinetic
energy

The total gravitational binding energy of a rotating configuration can be cal-
culated in analogy to the total mass and moment of inertia as

Wtot =
1
2

∫
V

Φ(r, θ)ρ(r, θ)dV =
1
2

∫
V

Φ(r, θ)ρ(r, θ)r2dr sin θdθdφ, (7.3.41)

where the radial coordinate r can be expressed in coordinates R, Θ by using
Eq. (7.2.10), the density is simply given by Eq. (7.2.9) and the gravitational
potential by Eq. (7.2.13). Then, we rewrite Eq. (7.3.41) as

Wtot =
1
2

∫
V

[
Φ(0)(R) + Φ(0)(R)

(
2ξ(R, Θ)

R
+

dξ(R, Θ)

dR

)]
ρ(R)dV

+
1
2

∫
V

(
ξ(R, Θ)

dΦ(0)(R)
dR

+ Φ(2)(R, Θ)

)
ρ(R)R2dV+ O(Ω4),

dV = R2dR sin ΘdΘdφ, (7.3.42)

Expanding the functions Φ(2)(R, Θ) and ξ(R, Θ) in spherical harmonics,
according to Eq. (7.2.14), and integrating the above expression in the range
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0 < Θ < π, 0 < φ < 2π, taking into account Eq. (7.3.3), we obtain

Wtot(R) = W(0)(R) + W(2)(R) (7.3.43)

W(0)(R) = 2π
∫ R

0
Φ(0)(R)ρ(R)R2dR, (7.3.44)

W(2)(R) = 2π
∫ R

0

[
ξ0(R)

dΦ(0)(R)
dR

+ Φ(2)
0 (R)

+Φ(0)(R)
(

2ξ0(R)
R

+
dξ0(R)

dR

)]
ρ(R)R2dR (7.3.45)

= 2πξ0(R)Φ(0)(R)ρ(R)R2
∣∣∣R
0

− 2π
∫ R

0

(
ξ0(R)Φ(0)(R)

dρ(R)
dR

−Φ(2)
0 (R)ρ(R)

)
R2dR,

where W(0) is the gravitational binding energy of the static configuration and
W(2) is the change in the gravitational binding energy due to rotation. On the
surface W(2) becomes

W(2)(a) = −2π
∫ a

0

(
ξ0(R)Φ(0)(R)

dρ(R)
dR

−Φ(2)
0 (R)ρ(R)

)
R2dR. (7.3.46)

In the second-order approximation in Ω, the rotational kinetic energy can be
written as

T =
JtotΩ

2
≈ J(0)Ω

2
+ O(Ω4) =

I(0)Ω2

2
+ O(Ω4). (7.3.47)

The ratio of the rotational kinetic energy to the binding energy allows one to
investigate the stability of rotating configurations.

7.3.5 Quadrupole Moment

The Newtonian potential Φ(R, Θ) outside the star will be written as before as
(see Eq. (7.2.12))

Φ(R, Θ) = Φ(0)(R) + Φ(2)
0 (R) + Φ(2)

2 (R)P2(cos Θ), (7.3.48)
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where

Φ(0)(R) = −GM(0)

R
, (7.3.49)

Φ(2)
0 (R) = −GM(2)

R
, (7.3.50)

Φ(2)
2 (R) =

K1

R3 . (7.3.51)

In view of (7.3.4), equation (7.3.48) can be written as follows

Φ(R, Θ) = −GMtot

R
+

K1

R3 P2(cos Θ), (7.3.52)

It follows that the constant K1 determines the mass quadrupole moment
Q of the star as K1 = GQ. For a vanishing K1 we recover the non-rotating
configuration. Moreover, according to Hartle’s definition Q > 0 represents
an oblate object and Q < 0 corresponds to a prolate object.

7.3.6 Ellipticity and Gravitational Love Number

The quantity defined by

ε(R) = − 3
2R

ξ2(R), (7.3.53)

is the ellipticity of the surface of constant density labeled by R. We use this
expression and (7.3.19), and eliminate Φ(2)

2 from (7.3.20), to obtain the follow-
ing equation for ε(R):

M(R)
R

d2ε(R)
dR2 +

2
R

dM(R)
dR

dε(R)
dR

+
2dM(R)

dR
ε(R)
R2 −

6M(R)ε(R)
R3 = 0,

(7.3.54)
or equivalently in a compact form

d
dR

1
R4

d
dR

[
ε(R)M(R)R2

]
= 4πε(R)

dρ(R)
dR

. (7.3.55)

This equation is equivalent to Clairaut’s equation. Here both M(R) and ρ(R)
are known functions of R. The ellipticity must be regular at small values
of R, and equation (7.3.55) shows that it approaches a constant at R = 0.
With this boundary condition, equation (7.3.55) may be integrated to find
the shape of ε(R). To find the magnitude of ε(R) one needs to use (7.3.30).
The procedure for considering the boundary condition at the surface given
in the previous section, together with the condition of regularity at the origin
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and the differential equation (7.3.55), uniquely determine the ellipticity of the
surfaces of constant density as a function of the coordinate R.

It is easy to show that equation (7.3.54) can be written in the form given in
Ref. [73]

R2 d2ε(R)
dR2 + 6

ρ(R)
ρm(R)

[
R

dε(R)
dR

+ ε(R)
]
= 6ε(R), (7.3.56)

where

ρm(R) =
3M(R)
4πR3 (7.3.57)

is the average mass density. By introducing a new function as

η2(R) =
R

ε(R)
dε(R)

dR
, (7.3.58)

Eq. (7.3.56) reduces to the well known Clairaut-Radau equation [70]

R
dη2(R)

dR
+ 6D(R)[η2(R) + 1] + η2(R)[η2(R)− 1] = 6, (7.3.59)

where

D(R) =
ρ(R)

ρm(R)
(7.3.60)

encodes the relevant information about the structure of the body. The differ-
ential equation is integrated outward from R = 0, with the boundary condi-
tions D(0) = 1 and η(R = 0) = 0, up to R = a, obtaining the value η2(R = a).
The Love number is then given by

k2 =
3− η2(a)

2[2 + η2(a)]
(7.3.61)

In the astronomical and celestial mechanics literature, the dimensionless
quantity k2 is called “apsidal constant”, because it controls the size of tidal
and rotational deformations of stars in close binary systems, which lead to
observable perturbations in the “line of apsides”. Sometimes, the quantity
defined as λ = 2k2a5/(3G) is called the Love number. In this work, how-
ever, we use k2 as the Love number; it is named after the British geophysi-
cists A.E.H. Love (1863-1940), who introduced it early in the 20th century
[70]. The Love number characterizes the rigidity and the susceptibility of
the body’s shape to changes in response to a rotational deformation or to a
tidal potential. For a rigid body k2 = 0, meaning that a rigid body cannot
change its shape. In classical physics, the tidal and rotational Love numbers
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7 Rotating gravitation fields in the Newtonian limit

coincide with each other. However, in general relativity due to the Lense-
Thirring effect they differ. The knowledge of the Love numbers has a wide
range of applications in the astrophysical context. Namely, using the Love
numbers, one can simulate the motion of binary systems with tidal interac-
tions, and estimate the correct values of the orbital parameters. The Love
numbers are directly related to the quadrupole moment and the moment of
inertia of a deformed object; hence, knowing the Love numbers, one can es-
tablish the relationship between the quadrupole moment and the moment of
inertia through the I-Love-Q relations [83, 84]. Finally, Love numbers are in-
volved in the expansions of the exterior gravitational potential for deformed
objects. Consequently, whenever one considers gravitational interactions be-
tween astrophysical objects, the Love numbers play a central role in these
processes [70].

Note that once ξ2(R) is known, then ε(R) is also known from Eq. (7.3.53),
and we have

η2(a) =
a

ε(a)
dε(R)

dR
|R=a =

a
ξ2(a)

dξ2(R)
dR

|R=a − 1 (7.3.62)

One can see from here that η2(a) does not depend on the angular velocity
of the star, neither does the Love number.

7.4 Summary

Our results show that it is possible to write explicitly all the differential equa-
tions that determine the behavior of a slowly rotating compact object. For a
better presentation of the results obtained in preceding sections, we summa-
rize the steps that must be followed to integrate the resulting equations.

7.4.1 The static case

To determine the relation between mass and central density, one must pro-
ceed as follows. (1) Specify the equation of state p = p(ρ) (polytrope, tab-
ulated, etc.). (2) Choose the value of the central density ρ(R = 0) = ρc.
Calculate the mass and pressure from the Newtonian field equation and the
equation of hydrostatic equilibrium with the regularity condition at the cen-
ter M(0)(R = 0) = 0  dM(0)(R)

dR = 4πR2ρ(R),
dp(0)(R)

dR = −ρ(R)GM(0)(R)
R2 .

(7.4.1)
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The gravitational potential of the non-rotating star is obtained as

dΦ(0)(R)
dR

=
GM(0)(R)

R2 = − 1
ρ(R)

dp(0)(R)
dR

. (7.4.2)

On the surface, the pressure must vanish p(0)(R = a) = 0.

The solution of Eq. (7.4.1) gives the mass, pressure and density profile in-
side the star and, in turn, the density profile allows us to calculate the mo-
ment of inertia from Eq. (7.3.35).

In order to determine the correct value of the internal gravitational po-
tential for the static configuration Φ(0)(R), one should calculate const(0) by
matching the potential with its external counterpart on the spherical surface.
The exterior potential is given by Eq. (7.3.49). By employing the matching
condition

Φ(0)
in (R)|R=a = Φ(0)

ex (R)|R=a, (7.4.3)

along with Eq. (7.2.18), one can determine const(0) as

const(0) =
∫ a

0

1
ρ(R)

dp(0)(R)
dR

dR + Φ(0)
ex (a). (7.4.4)

Knowing the value of const(0), the correct expression for the internal po-
tential is

Φ(0)(R) = Φ(0)
in (R) = const(0) −

∫ R

0

1
ρ(R)

dp(0)(R)
dR

dR. (7.4.5)

7.4.2 The rotating case: l = 0 Equations

Select the value of the angular velocity of the star. For instance, take as a test
value the Keplerian orbit with

Ωtest = Ω =

√
GM(0)(a)

a3 (7.4.6)
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Integrate the coupled equations
dp∗0(R)

dR = 2
3 Ω2R− GM(2)(R)

R2 ,
dM(2)(R)

dR = 4πR2ρ(R) dρ(R)
dp(R) p∗0(R),

(7.4.7)

out from the origin with boundary conditions

p∗0(R)→ 1
3

Ω2R2, M(2)(R)→ 0. (7.4.8)

These boundary conditions guarantee that the central density of the rotating
and non-rotating configurations are the same.

In addition, to calculate const(2)0 from Eq. (7.2.19), one makes use of the

matching condition for Φ(2)
0 (R)

Φ(2)
0in(R)|R=a = Φ(2)

0ex(R)|R=a, (7.4.9)

where Φ(2)
0ex(R) is given by Eq. (7.3.50). Hence

const(2)0 = −1
3

Ω2a2 + Φ(2)
0ex(a) + p∗0(a) (7.4.10)

and eventually

Φ(2)
0 (R) = Φ(2)

0in(R) = const(2)0 +
1
3

Ω2R2 − p∗0(R). (7.4.11)

To calculate the gravitational binding energy and its correction due to rota-
tion, one should integrate Eq. (7.3.44) and Eq. (7.3.46) by using Eq. (7.4.5) and
Eq. (7.4.11).

7.4.3 The rotating case: l = 2 equations

Particular Solution

Integrate the equations
dχ(R)

dR = −2GM(R)
R2 ϕ(R) + 8π

3 Ω2R3Gρ(R)
dϕ(R)

dR =
(

4πR2ρ(R)
M(R) −

2
R

)
ϕ(R)− 2χ(R)

GM(R) +
4π

3M(R)ρΩ2R4
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outward from the center with arbitrary initial conditions satisfying the equa-
tions, as R→ 0

ϕ(R)→ AR2, χ(R)→ BR4, B +
2π

3
Gρc A =

2π

3
GρcΩ2, (7.4.12)

where A and B are constants subject to the above algebraic relation. There-
fore, we can freely select only one of the constants. Set, for instance, A = 1
and define B from the above equation. This determines a particular solution
ϕp(R) and χp(R).

Homogeneous Solution

Integrate the homogeneous equations
dχh(R)

dR = −2GM(R)
R2 ϕh(R)

dϕh(R)
dR =

(
4πR2ρ(R)

M(R) −
2
R

)
ϕh(R)− 2χh(R)

GM(R)

outward from the center with arbitrary initial conditions satisfying the equa-
tions, as R→ 0

ϕh(R)→ AR2, χh(R)→ BR4, B +
2π

3
Gρc A = 0 (7.4.13)

This determines a homogeneous solution ϕh(R) and χh(R). Thus, the interior
solution is

ϕin(R) = ϕp(R) + K2ϕh(R), χin(R) = χp(R) + K2χh(R) (7.4.14)

Matching with an Exterior Solution

The exterior solution is given as

ϕex(R) =
K1

R3 , χex(R) =
K1GM(0)

2R4 . (7.4.15)

By matching (7.4.15) and (7.4.14) at R = a,

ϕex(R = a) = ϕin(R = a), χex(R = a) = χin(R = a) , (7.4.16)

the constants K1 and K2 can be obtained.
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7 Rotating gravitation fields in the Newtonian limit

Moment of inertia, eccentricity and Love number

Once functions ξ0(R) and ξ2(R) are known from

ξ0(R) =
R2

GM(R)
p∗0(R), (7.4.17)

ξ2(R) = − R2

GM(R)

{
1
3

Ω2R2 + ϕin(R)
}

.

one can easily calculate the perturbation of the moment of inertia and other
important quantities.

The surface of the rotating configuration is described by the the polar rp
and equatorial re radii that are determined from the relationships

r(a, Θ) = a + ξ0(a) + ξ2(a)P2(cos Θ), (7.4.18)
rp = r(a, 0) = a + ξ0(a) + ξ2(a), (7.4.19)
re = r(a, π/2) = a + ξ0(a)− ξ2(a)/2 . (7.4.20)

In addition, the eccentricity is defined as

eccentricity =

√
1−

r2
p

r2
e

(7.4.21)

and determines completely the matching surface.
In terms of function ξ2(R) one can easily calculate ellipticity ε(R), function

η2(R), hence the gravitational Love number k2.

7.5 An example: White dwarfs

In this section, we study an example of the formalism presented in the pre-
ceding sections to test the applicability of the method. To appreciate the va-
lidity of our results, we consider a very realistic case, namely, white dwarfs
whose equation of state at zero temperature is given by the Chandrasekhar
relationships [85]

ε = ρc2 =
32
3

(
me

mn

)3

Kn

(
Ā
Z

)
x3,

p =
4
3

(
me

mn

)4

Kn

[
x(2x2 − 3)

√
1 + x2 + 3 ln(x +

√
1 + x2)

]
. (7.5.1)
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Figure 7.2: Pressure versus density for the Chandrasekhar equation of state.
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Figure 7.3: Total mass and central density relation obtained from the Chandrasekhar equa-
tion of state.

This means that the energy density ε = ε(R) is determined by the nuclei,
while the pressure p = p(R) is determined by the degenerate electronic gas.
Here Ā and Z are the average atomic weight and atomic number of the corre-
sponding nuclei; Kn = (m4

nc5)/(32π2h̄3) and x = x(R) = pe(R)/(mec) with
pe(R), me, mn, and h̄ being the Fermi momentum, the mass of the electron,
the mass of the nucleon and the reduced Planck constant, respectively. Here
we consider the particular case Ā/Z = 2. The behavior of the above equa-
tion of state is illustrated in Fig. 7.2 for the case of a degenerate electronic gas.
Although the Chandrasekhar equation of state has been derived upon the ba-
sis of a phenomenological, physical approach, we see that it can be modeled
with certain accuracy by means of a polytropic equation of state p ∝ ρα with
α =constant

In Fig. 7.3, we plot the behavior of the total mass as a function of the central
density for a static star and for a rotating star with our test angular velocity. It
is clear that for a given central density the value of the total mass is larger in
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Figure 7.4: Total mass and equatorial radius relation for Chandrasekhar equation of state.
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Figure 7.5: Equatorial radius versus central density. Note that Ω→ 0 as re → a.

the case of a rotating object than for a static body. This is in accordance with
the physical expectations based upon other alternative studies [74, 75, 76, 77,
78, 79, 80, 81]. A similar behavior takes place when we explore the mass as a
function of the equatorial radius, as shown in Fig. 7.4.

The relationship between the central density and the equatorial radius is
illustrated in Fig. 7.5. As expected, the equatorial radius diminishes as the
density increases, and it is larger in the case of a rotating body. In the limit of
vanishing angular velocity, the equatorial radius approaches the value of the
static radius a.

The moment of inertia depends also on the central density and on the value
of the angular velocity, as illustrated in Fig. 7.6. For each value of the angular
velocity, there is particular value of the central density at which the moment
of inertia acquires a maximum. The value of the moment of inertia at the
maxima increases as the angular velocity increases. For very large values of
the central density, the gap between the moment of inertia of static and ro-
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Figure 7.6: Total moment of inertia versus central density.
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Figure 7.7: Angular momentum versus central density.

tating configurations is narrowing. Notice, however, that this happens for
values close to or larger than 1011 g/cm3 which should be considered as un-
physical because they are larger than the critical value ρc ∼ 1.37× 1011 g/cm3

at which the equation of state under consideration can no longer be applied
because of the inverse β-decay process for white dwarfs consisting of helium
ions. It should be mentioned that, in general, the inverse β-decay instability
is affected by the rotation indirectly, since the main ingredient for the onset
of the β-instability is the value of the density at the center of the white dwarf.
Rotation affects the central density and, in turn, it affects the β-instability.
Nevertheless, we are considering in all our plots the interval (105 − 1013)
g/cm3 for the sake of generality.

The total angular momentum as a function of the central density is given in
Fig. 7.7. With increasing central density, first, it increases up to its maximum
value and then it decreases. The dimensionless angular momentum or the
spin parameter is shown in Fig. 7.8. It turns out that for white dwarfs the spin
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Figure 7.8: Dimensionless angular momentum j = (cJ)/(GM2) versus central density.
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Figure 7.9: Mass quadrupole moment versus central density.

parameter is quite large for small central densities and it is less than unity
for central densities larger than the inverse β-decay density for helium white
dwarfs. Thus, if we assume that a white dwarf collapses into a neutron star at
the inverse β-decay instability density and the spin parameter is conserved,
then the spin parameter will be in agreement with the theoretical upper limits
for neutron stars [86, 87, 88, 89].

In Figs. 7.9 and 7.10 we plot the quantities which determine the shape
of the surface where the interior solution is matched with the exterior one,
namely, the quadrupole moment and the eccentricity. Obviously, both quan-
tities vanish in the limiting case of vanishing rotation. The quadrupole pos-
sesses a maximum at a certain value of the central density which coincides
with the position of the maximum of the moment of inertia.

The quadrupole moment normalized by the Kerr quadrupole moment as
a function of the central density is illustrated in Fig. 7.11. One can see here
that the quadrupole moment for white dwarfs is always larger than the Kerr
quadrupole.
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Figure 7.12: Rotational kinetic energy over gravitational binding energy T/|W| versus
central density of rotating configurations.
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7 Rotating gravitation fields in the Newtonian limit

The ratio of the rotational kinetic energy to the gravitational binding en-
ergy as a function of the central density is shown in Fig. 7.12. The values
of the ratio and the eccentricity are well below the upper limits for secular
and dynamical instabilities. According to Ref. [90], the conditions (values)
T/|W| = 0.14, e = 0.81 and T/|W| = 0.25, e = 0.95, for rigidly rotating
fluids (liquids) with uniform density the so-called Maclaurin spheroids, are
considered to be the upper limits for secular and dynamical instabilities, re-
spectively.

The secular instability determines the instability of rotating configurations
with respect to small perturbations. In fact, in order to investigate the secu-
lar instability of realistic objects Friedman et al. [91] formulated the method
of turning points. According to this method, one needs to calculate constant
angular momentum sequences, compute the mass-central density relations,
and estimate the maximum mass. The maximum mass is the indicator (turn-
ing point) for the onset of the secular instability. For different values of the
angular momentum there are different maximum masses and by joining all
the points for the maxima one obtains the secular instability curve. In the
mass-central density diagram the configurations on the left hand side of the
maxima are considered to be secularly stable, and the configurations on the
right hand side are unstable configurations.

We constructed the constant angular momentum sequences and found that
the maximum mass is reached for configurations with central densities be-
yond our range of consideration. This fact allows us to state that, unlike their
relativistic counterparts, the Newtonian uniformly rotating white dwarfs are
secularly stable [61, 63].

The ellipticity of the rotating deformed star is illustrated as a function of the
central density in Fig. 7.13. On the surface of the star the ellipticity shows sim-
ilar behavior as the eccentricity and as density increases it decreases. Thus,
the star becomes more compact and more spherical.

The dependence of function η2 is shown as a function of the spherical ra-
dius a in Fig. 7.14. As the radius increases the function decreases. The func-
tion η2 is necessary to calculate the Love number. Finally, in Figs. 7.15 and
7.16 we depict the gravitational Love number as a function of the central
density and spherical radius, respectively. For increasing central density the
Love number decreases. This implies that with the increasing central density
or decreasing radius white dwarfs become less susceptible to rotational and
tidal deformations, since k2 = 0 for a rigid body. It should be mentioned that
the values for the Love number in agreement with those presented in Ref.
[92].

Notice that in all the plots, the selected values for the central mass and
the equatorial radius are in accordance with the expected values for white
dwarfs. We conclude that the results obtained from the numerical integration
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Figure 7.16: Love number versus spherical radius of static configurations.

of the differential equations derived by using the approach proposed in this
work are consistent with the physical expectations, when restricted to the
region in which the formalism can be applied [75, 76, 77, 78, 79, 80, 81, 93, 94,
95].

7.6 The mass-shedding limit and scaling law

In this section we will discuss about some technical details related to the com-
putation of the Keplerian mass-shedding limit of any rotating configurations
and the scaling law for physical quantities that can be rescaled without addi-
tional numerical integrations for various objectives.

The mass-shedding limit. It is well known that the velocity of particles on
the equator of the star cannot exceed the Keplerian velocity of free particles,
computed at the same location. At this limit, particles on the star’s surface
remain bound to the star only because of a balance between gravitational
and centrifugal forces. The evolution of a star rotating at the Keplerian rate
is accompanied by a loss of mass, thus becoming unstable. The Keplerian
angular velocity in Newtonian physics is determined as follows

ΩKep =

√
GMtot

r3
e

(7.6.1)

where G is the gravitational constant, Mtot is the total mass of the rotating
configuration and re is the equatorial radius. This is the critical angular ve-
locity at which rotational shedding will occur, and it is thus an upper bound
on those angular velocities for which the assumption of slow rotation could
be valid.

In order to estimate this quantity correctly, one needs to select a test value
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7.6 The mass-shedding limit and scaling law

of the angular velocity, for example, in our computations we used Ωtest =√
GM(0)/a3. Usually Ωtest > ΩKep, hence one needs to decrease the values

of Ωtest gradually and estimate ΩKep successively, until Ωtest = ΩKep with
a given precision. For that purpose, in practice, it is convenient to use the
shooting method [96].

If we express ΩKep = κΩtest, then the value of multiplicative factor κ can be
estimated from the above procedure by numerical integration and the results
are shown in Table 7.1.

Table 7.1: The values of multiplicative factor κ for different values of the cen-
tral density.

ρ [g/cm3] 105 106 107 108 109 1010 1011 1012 1013

κ 0.781 0.780 0.777 0.770 0.762 0.755 0.751 0.748 0.747

As one can see from the Table, indeed Ωtest > ΩKep and this results are in
agreement with the ones in the literature [75, 76, 77, 78, 79, 80, 81]. It should
be stressed that the Keplerian angular velocity allows one to estimate the
maximum rotation rate (the minimum rotation period) and the maximum
rotating mass of stars. Moreover it allows us to determine the stability region
of a rotating star, inside which all rotating configurations can exist (see [61]
for details).

Although the data presented in Table 7.1 seem to indicate that the value of
κ is close to 0.75, it is important to note that this multiplicative factor is not
the same at any density. In fact, it depends on the equation of state of the
white dwarf matter and for different central densities with different nuclear
compositions, it accepts distinct values. Even in the case of neutron stars
the parameter κ possesses various values for a variety of the models used
to construct the equations of state. For example, in [97], this parameter has
been calculated for a particular equation of state and a fixed range of values
for the central density, leading to the result that the parameter varies in the
range (0.63-0.67). So, in general, there is no reason for this parameter to be
independent of the density in the case of white dwarfs, as well.

In all our computations, we used the value ΩKep =
√

GMtot/r3
e . Of course,

this is a rough approximation. Nevertheless, as it was pointed out by Berti
et al. [98] (see also [99]), Hartle’s approach with ΩKep gives only small dif-
ferences (errors) with respect to the exact numerical methods used in general
relativity for neutron stars. In the case of white dwarfs, the errors should be
even smaller than for neutron stars since white dwarfs rotate more slowly
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7 Rotating gravitation fields in the Newtonian limit

than neutron stars (see Appendix D of Ref. [61]). Moreover, we compare in
Table 7.2 our results with other more sophisticated approaches used in the
literature; our results are in good agreement with other works.

Scaling law. The scaling procedure is used in order to rescale all the known
values of physical quantities for different objectives. For instance, the an-
gular momentum J is directly proportional to Ω, hence there is always the
possibility for the following scaling law Jnew/Ωnew = Jold/Ωold to be held.
This means that knowing the old value of the angular momentum Jold for the
given angular velocity Ωold, one can easily evaluate a new value of the angu-
lar momentum Jnew for a given new angular velocity Ωnew without reintegrat-
ing the structure equations. The same is true for all the physical quantities
which are directly proportional to the second order of the angular velocity
Ω2. The following quantities are subject to scaling: M(2)

new/Ω2
new = M(2)

old/Ω2
old,

Qnew/Ω2
new = Qold/Ω2

old, I(2)new/Ω2
new = I(2)old /Ω2

old and W(2)
new/Ω2

new = W(2)
old /Ω2

old.
From a practical point of view it is very convenient to make use of the scaling
law for various computational goals.

On the other hand, a careful examination of the scaling law for the quadrupole
moment shows some resemblance with the I-Love-Q relations. Indeed, Q/Ω2

is a constant quantity which is a function of the central density only, and it
can be identified with the gravitational Love number λ. In the Ω2 approxima-
tion, expressing Ω in terms of I(0) through J(0) = I(0)Ω and normalizing Q to
the Kerr quadrupole moment, one obtains the I-Love-Q relations as shown in
Refs. [83, 84]. Of course, it would be interesting to check these relations also
for white dwarfs. In this case, in accordance to the generally accepted theo-
retical models for white dwarfs, one needs to analyze at least two different
equations of state with several nuclear compositions. This requires a detailed
analysis which will be presented in a separate chapter.

7.7 Comparison with other results in the literature

In this section, we compare and contrast our results with other known results.
The configurations of uniformly rotating white dwarfs have been intensively
investigated since their first theoretical descriptions. Here we present pre-
vious results obtained in this context. For example, in Table 7.2, we show
some results for the maximum static and rotating masses computed by sev-
eral authors in Newtonian gravity, the post-Newtonian approximation and
in general relativity. Regardless of the approximation, approach, treatment,
theory and numerical codes, the results are very similar. These maximum
masses for rotating white dwarfs are to be compared with the ones found in
this work using the Chandrasekhar equation of state with µ = 2. In New-
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Table 7.2: Maximum static and rotating masses of white dwarfs. NP stands
for Newtonian physics, PN stands for Post-Newtonian weak field (1/c2 ap-
proximation), GR stands for general relativity, µ = 2 indicates the average
molecular weight in the Chandrasekhar equation of state and n = 3 stands
for the polytrope index.

Treatment/EoS MJ=0
max/M� MJ 6=0

max/M� Approximation Formalism
NP/ µ = 2 1.437 1.474 slow ∼ Ω4 Chandrasekhar
NP/ n = 3 1.437 1.487 rapid Monaghan-Roxburgh
PN/ µ = 2 1.417 1.482 slow ∼ Ω2 Durney-Roxburgh
NP/ µ = 2 1.435 1.513 (1.506) slow ∼ Ω2 (Ω4) Sedrakyan-Chubaryan
NP/ µ = 2 1.437 1.516 rapid Chandrasekhar
NP/ µ = 2 1.459 1.534 slow ∼ Ω2 Hartle
GR/ µ = 2 1.405 1.478 slow ∼ Ω2 Sedrakyan-Chubaryan
GR/ µ = 2 1.429 1.516 slow ∼ Ω2 Hartle

ton’s gravity, the maximum static mass is 1.459M� and for a rotating mass
we obtain 1.534M�. The difference appears already at the level of the static
configuration and this, in turn, translates to the rotating configurations.

For the sake of clarity, it should be mentioned that the structure equations
describing uniformly rotating configurations, as derived in general relativity
by Hartle in [69], reduce identically to the equations shown in this work for
c → ∞. Correspondingly, the structure equations formulated by Sedrakyan
and Chubaryan [101] in general relativity also reduce to their Newtonian
counterparts in the corresponding limiting case [79]. The mathematical and
physical equivalence of these two formalisms has been recently shown in
Ref. [102] by comparing the exterior Hartle-Thorne [103] and the Sedrakyan
Chubaryan [101] solutions. Thus, the difference in numbers of these two ap-
proaches in Table 7.2 can be due to the numerical integrations, only.

7.8 Remarks

In the present work, we have revisited the Hartle formalism to describe in
Newtonian gravity the structure of rotating compact objects under the con-
dition of hydrostatic equilibrium. We use a particular set of polar coordi-
nates that is especially constructed to take into account the deformation of
the source under rotation. Moreover, we use an expansion in terms of spher-
ical harmonics and consider all the equations only up to the second order in
the angular velocity. The main point is that these assumptions allow us to
reduce the problem to a system of ordinary differential equations, instead of
partial differential equations. As a consequence, we derive all the equations
explicitly and show how to perform their numerical integration. Numerical
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7 Rotating gravitation fields in the Newtonian limit

solutions for particular equations of state and the analysis of the stability of
the resulting configurations will be discussed in a subsequent work.

In addition, the formalism developed here allows us to find explicit ex-
pressions for the main physical quantities that determine the properties of
the rotating configuration. In particular, we derived the equation which de-
termines the relation between mass and central density, and showed that it
takes the form of an equation of hydrostatic equilibrium. It enforces the bal-
ance of pressure, gravitational, and centrifugal forces correctly to order Ω2.
In this approximation, the surfaces of constant density are spheroids whose
ellipticity varies from zero at the center of the star up to the values which de-
scribe the shape of the star at the surface. The ellipticity, as a function of the
radius, turns out to be determined by the Clairaut’s differential equation. The
equations which determine the relation between mass and central density
and those which determine the ellipticity are systems of ordinary differential
equations whose solution may be obtained by numerical integration. Fur-
thermore, we also derived analytic expressions for the quadrupole moment
and moment of inertia of the source. In addition we derived and integrated
the expressions for the rotational kinetic energy and gravitational binding
energy. We constructed T/|W| ratio versus central density and checked its
consistency with the instability criteria for secular and dynamical instabil-
ities of the Maclaurin spheroids. Finally, we obtained the Clairaut-Radau
equation from the Clairaut equation and calculated the gravitational Love
number, which indicates rotational or tidal response to the exterior field.

We have tested the formalism developed here by using the Chandrasekhar
equation of state for white dwarfs. All the derived physical quantities are in
accordance with the results in the literature. This result reinforces the validity
of the assumptions and approximations applied in this work to formulate a
method that takes into account the rotation in the context of hydrostatic equi-
librium in Newtonian gravity. Eventually, on top of everything the procedure
of computing the Keplerian mass-shedding angular velocity along with the
scaling law of physical quantities have been presented for rotating configu-
rations.

In view of recent works [83, 84] on the so-called I-Love-Q relations in neu-
tron stars and quark stars, it would be interesting to investigate these rela-
tions in white dwarf stars [104].

It would be interesting to consider also the case of differential rotation.
However, this implies the generalization of the entire Hartle formalism to
include an arbitrary rotation function. This is a task for future works.
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8 Inertia and quadrupole relations
for white dwarfs

8.1 Introduction

White dwarfs are the end-product of evolution of all stars with initial masses
up to 9M�. As the most common endpoint of stellar evolution, white dwarf
stars account for around 97% of all evolved stars. Therefore, their properties
and distribution contain abundant information about star formation history
and evolution of galaxies. In 1933, Chandrasekhar [74] formulated the theory
of white dwarfs by using Newtonian gravity and the condition of hydrostatic
equilibrium together with an equation of state corresponding to a degener-
ate Fermi gas. He solved the differential equations numerically and found
the limiting mass of 1.44M� (Chandrasekhar limit). This study was followed
by a number of analysis in which non-rotating and rotating equilibrium con-
figurations were considered [75, 76, 77, 66, 79]. Slightly modifications of the
Chandrasekhar limit have been found, depending on the rotation and the
equation of state.

As compared to Newtonian stars, the conditions determining the hydro-
static equilibrium of a star changes drastically when the full system of Ein-
stein’s equations is taken into account. In fact, in general relativity, the New-
tonian equation of hydrostatic equilibrium for compact stars becomes modi-
fied to what is known as Tolman-Oppenheimer-Volkoff equation. A general
analysis of spherically symmetric compact stars, taking into account general
relativistic effects, was performed in [105]. By considering an equation of
state valid for both non-relativistic and ultra-relativistic electron velocities, it
was found that in the case of white dwarfs, general relativistic effects lead
only to small perturbations of the values obtained in Newtonian gravity. It
follows that it is justified to use Newton’s theory to investigate the essential
part of the physical properties of white dwarfs. In this work, we will follow
this hypothesis.

Although many approaches can be used to investigate the properties of
compact stars in Newtonian gravity, a particularly useful method was pro-
posed recently [106, 107] in which the relativistic Hartle formalism is applied
explicitly to solve the corresponding set of differential equations. Hartle’s
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formalism has been widely used in the scientific community to describe rel-
ativistic objects such as neutron stars, quark stars, and other exotic objects
[69, 108, 68]. One of the advantages of its application is that it is very in-
tuitive from a geometric and a physical point of view, because it uses co-
ordinates that are especially adapted to the shape and dynamics of rotating
bodies. When applied to describe equilibrium configurations in Newtonian
gravity, Hartle’s formalism transforms the dynamic equations to be solved
into a system of ordinary differential equations. Moreover, it allows us to de-
rive in detail all physically relevant quantities such as the total rotating mass
Mtot, equatorial re and polar rp radii, angular momentum J, eccentricity e, el-
lipticity ε, rotational Love number λ, moment of inertia I, and the quadrupole
moment Q. All these parameters play a pivotal role in the investigation of the
stability and the lifespan of white dwarfs [109, 110, 63, 93, 94, 95].

In this chapter, we investigate the effects that rotation causes in the struc-
ture of white dwarfs; namely, we construct the I-Q, I-e, Q-e, I-Love and
Love-Q relations, and show that they are universal and independent of the
equations of state for white dwarfs. We focus on the case of slow and rigid
rotation. We integrate the equations of structure for slowly rotating white
dwarfs numerically by using the Chandrasekhar and Salpeter equations of
state [65, 71, 111, 112, 85]. In addition, we analyze the stability properties of
white dwarfs against the mass-shedding limit, the inverse β-decay instability,
and the secular instabilities [109].

8.2 Equations of structure

The method used to construct models for uniformly and slowly rotating rel-
ativistic stars is summarized briefly here. For details and derivations the
reader may refer to [69, 106, 107], the notation of which we follow. The main
idea consists in considering a spherically symmetric non-rotating compact
object as starting point. Then, the rotation is considered up to the second
order as a small perturbation of the non-rotating model.

8.2.1 A non-rotating stellar model

For a given value of the central density, the non-rotating equilibrium config-
uration is determined by integrating with respect to the radial coordinate, R,
the Newtonian equation of hydrostatic equilibrium for the pressure p(0)(R),
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and the mass interior to a given radius, M(0)(R): dp(0)(R)
dR = −ρ(0)(R)GM(0)(R)

R2 ,
dM(0)(R)

dR = 4πR2ρ(0)(R),
(8.2.1)

where G is the gravitational constant. The integration is performed outwards,
starting at the star’s center, R = 0, where M(0)(R = 0) = 0, ρ(R = 0) = ρc is
the given central density, and p(0)(R = 0) = p(0)c = p(0)(ρc) is determined by
the equation of state. The radius of the spherical surface of the star, a, is that
value of R at which p(0)(R) drops to zero; and the value M(0)(a) is the star’s
total static (non-rotating) mass.

The internal gravitational potential of a non-rotating star is determined by
integrating outwards from the center to the surface of the star the equation

dΦ(0)
in (R)
dR

=
GM(0)(R)

R2 . (8.2.2)

The external gravitational potential is given by

Φ(0)
ex (R) = −GM(0)(a)

R
, (8.2.3)

with the boundary condition Φ(0)(∞) = 0.
Finally, the moment of inertia of the static configuration is determined from

the following expression:

I(0)(a) =
8π

3

∫ a

0
ρ(R)R4dR. (8.2.4)

8.2.2 A rotating stellar model

In the case of rigid and slow rotation, we can apply the approximate method
proposed originally by Hartle in [69], and applied to Newtonian gravity in
Refs. [106, 107]. First, we introduce the new radial coordinate r(R, Θ) =
R + ξ(R, Θ), where ξ(R, Θ) is a function that takes into account, up to the
second order in the angular velocity Ω, the deviations from spherical symme-
try. Note, that Θ = θ. For simplicity, the deviations are assumed to preserve
axial symmetry, with the rotation axis oriented along the symmetry axis, and
equatorial symmetry so that in many quantities the odd powers of Ω can be
neglected. Within this approximation, it is possible to assume that the den-
sity and the pressure, in terms of the new radial coordinate, have the same
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numerical values as in the static configuration, i.e.,

ρ(r, θ) = ρ(R) = ρ(0)(R) , p(r, θ) = p(R) = p(0)(R) . (8.2.5)

Then, all the relevant quantities are Taylor expanded up to the second or-
der in Ω, leading to a system of partial differential equations for the New-
tonian potential and the pressure. The important point now is that due to
the axial symmetry all the perturbations can be expanded in spherical har-
monics, i.e, Legendre polynomials, Pl(cos θ), which leads to a crucial simpli-
fication of the dynamic equations, namely, they all become ordinary differ-
ential equations. Indeed, Newton’s equation for the gravitational potential
Φ(R, θ) = Φ(0)(R) + Φ(2)

0 (R) + Φ(2)
2 (R)P2(cos θ) splits into three ordinary

equations that can be expressed as

∇2Φ(0)(R) = 4πGρ(R) , (spherical) ,(8.2.6)

ξ0(R) d
dR∇

2Φ(0)(R) +∇2Φ(2)
0 = 0 , (l = 0) , (8.2.7)

ξ2(R) d
dR∇

2Φ(0)(R) +∇2Φ(2)
2 (R)− 6

R2 Φ(2)
2 (R) = 0 , (l = 2) , (8.2.8)

where∇ is the gradient operator in coordinates R and θ, and the deformation
function ξ(R, θ) has been decomposed as ξ(R, θ) = ξ0(R) + ξ2(R)P2(cos θ).
Furthermore, the equilibrium condition leads to the following equations∫ p

0
dp(0)(R)

ρ(R) + Φ(0)(R) = const(0) , (spherical) , (8.2.9)

ξ0(R) dΦ(0)(R)
dR + Φ(2)

0 (R)− 1
3 Ω2R2 = const(2)0 , (l = 0) , (8.2.10)

ξ2(R) dΦ(0)(R)
dR + Φ(2)

2 (R) + 1
3 Ω2R2 = 0 . (l = 2) , (8.2.11)

where const is defined as const = const(0)+ const(2)0 P0(cos Θ), so that const(0)

and const(2)0 are found from the matching between the interior and exterior
solutions. All the physically relevant quantities for a rigidly and slowly ro-
tating star should be derived from this set of ordinary differential equations.
For instance, the total mass of the star Mtot =

∫
ρ(r, θ) sin θdrdθdφ gets a con-

tribution from the deformation function and becomes

Mtot(R) = M(0)(R) + M(2)(R)

= 4π
∫ R

0
ρ(R)R2dR

−4π
∫ R

0
ξ0(R)

dρ(R)
dR

R2dR + 4πξ0(R)ρ(R)R2
∣∣∣R
0

, (8.2.12)
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which can be expressed equivalently as

dΦ(0)(R)
dR

=
GM(0)(R)

R2 ,
dΦ(2)

0 (R)
dR

=
GM(2)(R)

R2 . (8.2.13)

8.2.3 Central density and angular velocity

For slow rotation, once the equation of state is specified, there is a unique
equilibrium configuration for each choice of the central density and angular
velocity. The small perturbations away from a non-rotating equilibrium con-
figuration are all proportional to the angular velocity or to its square. Conse-
quently, for a given central density, all the models of different angular veloc-
ities can be obtained from a single model by scaling. In this work, the results
are given in graphical form for the angular velocity satisfying

Ω = ΩKep =

√
GMtot

r3
e

(8.2.14)

where Mtot = Mtot(a) is the total mass of the rotating configuration and re is
the equatorial radius. This is the critical angular velocity at which rotational
shedding will occur, and it is thus an upper bound on those angular velocities
for which the assumption of slow rotation could be valid.

Knowing the value of the moment of inertia I(0) and the angular velocity
Ω, one can determine the angular momentum of a spherical star by

J = I(0)(a)Ω + O(Ω3) , (8.2.15)

where a is the spherical (unperturbed) radius of the star.
Having chosen a value of the angular velocity for each value of the central

density, one constructs a sequence of equilibrium models by integrating the
Newtonian equations of structure for a sequence of central densities.

8.2.4 Spherical deformations of the star

To determine the deformations, we first must choose a particular value for
the angular velocity of the star. For instance, as a test value we can take

Ω =

√
GM(0)(a)

a3 . (8.2.16)

The spherical part of the rotational deformation is calculated by integrating
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the l = 0 equations of hydrostatic equilibrium for the change of mass M(2)

and the pressure perturbation function p∗0 which is defined as

p∗0 = ξ0(R)
dΦ(0)(R)

dR
. (8.2.17)

The hydrostatic equilibrium condition for the pressure is obtained by dif-
ferentiating Eq.(8.2.10) and using Eq.(8.2.13). Then, we obtain the balance
equations 

dp∗0(R)
dR = 2

3 Ω2R− GM(2)(R)
R2 ,

dM(2)(R)
dR = 4πR2ρ(R) dρ(R)

dp(R) p∗0(R) ,
(8.2.18)

which must be integrated out from the origin with boundary conditions

p∗0(R)→ 1
3

Ω2R2, M(2)(R)→ 0 . (8.2.19)

These boundary conditions guarantee that the central density of the rotating
and non-rotating configurations are the same [69]. The system of equations
(8.2.18) represents the balance between the pressure, centrifugal and gravita-
tional forces of rotating configurations. Consequently the total mass of the
star with central density ρc and angular velocity Ω is

Mtot = M(0)(a) + M(2)(a), (8.2.20)

where a is again the radius of the spherical configuration.

8.2.5 Quadrupolar deformations of the star

The quadrupolar part of the rotational deformation is calculated by integrat-
ing the l = 2 equation of the field equations (8.2.8) together with the condi-
tion for hydrostatic equilibrium (8.2.11). This is equivalent to a second-order
differential equation that can be split into two first-order inhomogeneous dif-
ferential equations

dχ(R)
dR = −2GM(R)

R2 ϕ(R) + 8π
3 Ω2R3Gρ(R)

dϕ(R)
dR =

(
4πR2ρ(R)

M(R) −
2
R

)
ϕ(R)− 2χ(R)

GM(R) +
4π

3M(R)ρ(R)Ω2R4 (8.2.21)
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to be integrated outward from the center of the star with arbitrary initial con-
ditions, satisfying the relationships

ϕ(R)→ AR2, χ(R)→ BR4, B +
2π

3
Gρc A =

2π

3
GρcΩ2, (8.2.22)

where A and B are constants. Set, for example, A = 1 and define B from
the above algebraic equation; this determines particular solutions ϕp(R) and
χp(R). Then, the homogeneous solution should be considered by integrating
the homogeneous equations

dχh(R)
dR = −2GM(R)

R2 ϕh(R)
dϕh(R)

dR =
(

4πR2ρ(R)
M(R) −

2
R

)
ϕh(R)− 2χh(R)

GM(R)

(8.2.23)

outward from the center with arbitrary initial conditions, satisfying the rela-
tionships

ϕh(R)→ AR2, χh(R)→ BR4, B +
2π

3
Gρc A = 0 . (8.2.24)

If we set, for instance, A = 1 and take B as given by the above equation, we
obtain homogeneous solutions ϕh(R) and χh(R). Thus, the interior solution
is determined by the sum of the particular and the homogeneous solutions

ϕin(R) = ϕp(R) + K2ϕh(R), χin(R) = χp(R) + K2χh(R), (8.2.25)

where K2 is the constant to be determined from the matching with the exterior
solutions.

8.2.6 Matching with the Exterior Solutions

The exterior solutions of (8.2.21) are given by

ϕex(R) =
K1

R3 , χex(R) =
K1GM(0)

2R4 , (8.2.26)

where K1 is an integration constant to be determined from the matching with
the interior solutions. Indeed, the matching of (7.4.15) with (7.4.14) at R = a
leads to the conditions

ϕex(R = a) = ϕin(R = a), χex(R = a) = χin(R = a), (8.2.27)

from which the constants K1 and K2 can be determined.
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8.2.7 Polar and equatorial radii and eccentricity

The surface of the rotating configuration, and the polar rp and equatorial re
radii are given by

r(a, Θ) = a + ξ0(a) + ξ2(a)P2(cos Θ), (8.2.28)
rp = r(a, 0) = a + ξ0(a) + ξ2(a), (8.2.29)
re = r(a, π/2) = a + ξ0(a)− ξ2(a)/2, (8.2.30)

where ξ0(R) and ξ2(R) are determined from Eqs.(8.2.18) and (7.4.14), respec-
tively. Then,

ξ0(R) =
R2

GM(0)(R)
p∗0(R), (8.2.31)

ξ2(R) = − R2

GM(0)(R)

{
1
3

Ω2R2 + ϕin(R)
}

, (8.2.32)

where M(0)(R) is the static mass.
The eccentricity is defined as

e =

√
1−

(
rp

re

)2

(8.2.33)

On the other hand, one can write the eccentricity in terms of the function
ξ2(a) as follows

e =

√
−3ξ2(a)

a
, (8.2.34)

an expression that is convenient for further analysis which will be presented
below.

8.2.8 Ellipticity and Gravitational Love Number

The quantity defined by

ε(R) = − 3
2R

ξ2(R), (8.2.35)

is the ellipticity of the surface of constant density labeled by R. The equation
for ε(R) is known as the Clairaut differential equation:

M(R)
R

d2ε(R)
dR2 +

2
R

dM(R)
dR

dε(R)
dR

+
2dM(R)

dR
ε(R)
R2 −

6M(R)ε(R)
R3 = 0 .

(8.2.36)
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Here both M(R) and ρ(R) are known functions of R. The ellipticity must be
regular at small values of R, and Eq.(7.3.54) shows that it approaches a con-
stant at R = 0. With this boundary condition, Eq.(7.3.54) may be integrated
to find the shape of ε(R). To find the magnitude of ε(R) one needs to use
(8.2.32).

By comparing the expressions for the eccentricity (8.2.34) and ellipticity
(7.3.53), we see that they are interrelated by means of the function ξ2. The
only difference is that the eccentricity is usually determined only on the sur-
face of the rotating configurations, whereas the ellipticity can be considered
from the center to the surface as a function of the radial coordinate.

It is easy to show that Eq.(7.3.54) can be written in the form given in Ref.[73]

R2 d2ε(R)
dR2 + 6

ρ(R)
ρm(R)

[
R

dε(R)
dR

+ ε(R)
]
= 6ε(R), (8.2.37)

where

ρm(R) =
3M(R)
4πR3 (8.2.38)

is the average mass density. By introducing the new function

η2(R) =
R

ε(R)
dε(R)

dR
, (8.2.39)

Eq.(7.3.56) reduces to the well known Clairaut-Radau equation [70]

R
dη2(R)

dR
+ 6D(R)[η2(R) + 1] + η2(R)[η2(R)− 1] = 6, (8.2.40)

where

D(R) =
ρ(R)

ρm(R)
(8.2.41)

encodes the relevant information about the structure of the body. The differ-
ential equation is integrated outward from R = 0, with the boundary condi-
tions D(0) = 1 and η(R = 0) = 0, up to R = a, obtaining the value η2(R = a).

Note, on the other hand, that if ξ2(R) is known from Eq.(8.2.32), then ε(R)
can also be determined from Eq.(7.3.53), so that it is not necessary to integrate
Eq.(7.3.59). Accordingly, we obtain

η2(a) =
a

ε(a)
dε(R)

dR

∣∣∣∣∣
R=a

=
a

ξ2(a)
dξ2(R)

dR

∣∣∣∣∣
R=a

− 1 . (8.2.42)

One can see from here that η2(a) does not depend on the angular velocity
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of the star as ξ2(R) ∼ Ω2 and dξ2(R)/dR ∼ Ω2, hence their ratio does not
depend on Ω. Therefore, in this work, we will use the quantity

k2 =
3− η2(a)

2[2 + η2(a)]
, (8.2.43)

as the rotational apsidal constant which allows us to introduce the rotational
Love number λ as

λ =
2a5

3G
k2 (8.2.44)

where a is the static (spherical) radius as before.
The rotational Love number can be written in the dimensionless form as

λ̄ =
c10

G4
λ

M5 =
2
3

(
c2a
GM

)5

k2 (8.2.45)

where M is the total static mass.

8.2.9 Quadrupole Moment

The Newtonian potential Φ(R, Θ) outside the star R > a will be written as

Φ(R, Θ) = −GMtot

R
+

GQ
R3 P2(cos Θ), (8.2.46)

where Q is the mass quadrupole moment of the star. For a vanishing Q one
recovers the static configuration. Moreover, according to Hartle’s definition
Q > 0 represents an oblate object and Q < 0 corresponds to a prolate object
[69]. One can define the dimensionless quadrupole moment as

Q̄ =
c2Q

J2/M
. (8.2.47)

Knowing the fact that the quadrupole moment Q and the square of the an-
gular momentum J2 are proportional to Ω2 one defines Q̄ as a function that
does not depend on the angular velocity at all. This will have some practical
importance.

8.2.10 Total Moment of Inertia

The total moment of inertia of a rotating configuration is determined as the
sum of the moment of inertia of a static star and the change in the moment of
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inertia due to rotation and deformation

Itot(a) = I(0)(a) + I(2)(a) , (8.2.48)

where the moment of inertia of the non-rotating star is determined as before
as in Eq. (8.2.4) and its change due to rotation is given by

I(2)(a) =
8π

3

∫ a

0
ρ(R)R4

(
dξ0

dR
− 1

5
dξ2

dR
+

4
R

[
ξ0 −

1
5

ξ2

])
dR

=
8π

3

∫ a

0

([
1
5

ξ2(R)− ξ0(R)
]

dρ(R)
dR

)
R4dR. (8.2.49)

In the corresponding limit, our results coincide with the definition of the mo-
ment of inertia for slowly rotating relativistic stars as given in [113].

It is convenient to define the total dimensionless moment of inertia as

Ītot(a) = Ī(0)(a) + Ī(2)(a) =
(

c2

G

)2 Itot(a)
M3 =

(
c2

G

)2 I(0)(a)
M3 +

(
c2

G

)2 I(2)(a)
M3 .

(8.2.50)

8.3 Stability criteria for rotating white dwarfs

8.3.1 Inverse β-decay instability

The inverse β-decay instability allows us to determine the critical density
which in turn defines the onset of instability for a white dwarf to collapse
into a neutron star. The inverse β-decay instability is crucial both for static
and rotating configurations. It represents one of the boundaries of the stabil-
ity region in rotating white dwarfs [109].

It is known that a white dwarf might become unstable against the inverse
β-decay process (Z, A) → (Z− 1, A) through the capture of ultra-relativistic
electrons, when the central density increases. In order to trigger such a pro-
cess, the electron Fermi energy (with the rest-mass subtracted off) must be
larger than the mass difference between the initial (Z, A) and final (Z −
1, A) nucleus. We denote this threshold energy as ε

β
Z. Usually, the condi-

tion ε
β
Z−1 < ε

β
Z is satisfied and therefore the initial nucleus undergoes two

successive decays, i.e., (Z, A) → (Z− 1, A) → (Z− 2, A) (see e.g. [111, 67]).
Some of the possible decay channels in white dwarfs with the corresponding
known experimental threshold energies ε

β
Z are listed in Table 8.1. The elec-

trons in the white dwarf may eventually reach the threshold energy to trigger
a given decay at some critical density ρ

β
crit. Since the electrons are responsi-
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Decay ε
β
Z (MeV) ρ

β
crit (g/cm3)

4He→3 H + n→ 4n 20.596 1.37× 1011

12C→12B→12Be 13.370 3.88× 1010

16O→16N→16C 10.419 1.89× 1010

56Fe→56Mn→56Cr 3.695 1.14× 109

Table 8.1: Onset for the inverse β-decay of 4He, 12C, 16O and 56Fe. The exper-
imental values of the threshold energies ε

β
Z have been taken from Table 1 of

[115]; see also [116, 67].

ble for the internal pressure of the white dwarf, configurations with ρ > ρ
β
crit

become unstable due to the softening of the equation of state, as a result of
the electron capture process (see [114, 111] for details). In Table 8.1, for each
threshold energy ε

β
Z, the critical density ρ

β
crit given by the Salpeter equation

of state is shown (see also [85] for more details).

8.3.2 Mass-shedding limit

The velocity of particles on the equator of the star cannot exceed the Keple-
rian velocity of free particles, computed at the same location. At this limit,
particles on the star’s surface remain bound to the star only because of a bal-
ance between gravity and centrifugal forces. The evolution of a star rotating
at the Keplerian rate is accompanied by a loss of mass, thus becoming unsta-
ble.

The Keplerian angular velocity is determined as follows

ΩKep =

√
GMtot

r3
e

. (8.3.1)

In order to compute this quantity correctly, one needs to select a test value for
the angular velocity, for example Ωtest =

√
GM(0)/a3. Usually, Ωtest > ΩKep,

hence one needs to decrease gradually the values of Ωtest and estimate ΩKep
successively, until Ωtest = ΩKep with a given precision. For that purpose, in
practice it is convenient to use the shooting method.

The Keplerian angular velocity allows us to estimate the maximum angular
velocity, mass, moment of inertia, and other parameters of the star. Moreover,
it allows us to determine the stability region inside which rotating configura-
tions can exist.
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8.3.3 The turning-point criterion and secular axisymmetric
instability

Friedman et al. formulated a turning-point method to locate the points where
secular instability sets in for uniformly rotating relativistic stars. Along a se-
quence of rotating stars with fixed angular momentum and increasing central
density, the onset of secular axisymmetric instability is given by(

∂M(ρc, J)
∂ρc

)
J
= 0. (8.3.2)

Thus, the configurations on the right hand side of the maximum mass of a J-
constant sequence are secularly unstable. After the secular instability sets in,
the configuration evolves quasi-stationarily until it reaches a point of dynam-
ical instability where gravitational collapse should take place (see Stergioulas
2003). The secular instability boundary thus separates stable from unstable
stars. It is worth stressing here that the turning point of a constant J sequence
is a sufficient but not a necessary condition for secular instability; therefore,
it establishes an absolute upper bound for the mass (at constant J).

8.4 Equations of state for cold white dwarfs

In this section, we consider the Chandrasekhar [65, 71] and the Salpeter [111,
112] equations of state at zero temperature to describe the white dwarf matter.
The Chandrasekhar relationship is given by

εCh = ρc2 =
32
3

(
me

mn

)3

Kn

(
Ā
Z

)
x3,

pCh =
4
3

(
me

mn

)4

Kn

[
x(2x2 − 3)

√
1 + x2 + 3 ln(x +

√
1 + x2)

]
.(8.4.1)

This means that the energy density εCh = εCh(R) is determined only by the
nuclei, while the pressure pCh = pCh(R) is determined by means of the de-
generate electronic gas. Here Ā and Z are the average atomic weight and
atomic number of the corresponding nuclei; Kn = (m4

nc5)/(32π2h̄3) and
x = x(R) = pe(R)/(mec) with pe(R), me, mn, and h̄ being the Fermi mo-
mentum, the mass of the electron, the mass of the nucleon, and the reduced
Planck constant, respectively. Here we consider the particular case for the
average molecular weight Ā/Z = µ = 2. In our diagrams, we will refer to
µ = 2 as the Chandrasekhar equation of state.

The extension of the Chandrasekhar approximation has been developed by

485



8 Inertia and quadrupole relations for white dwarfs

Salpeter. Here, for the sake of simplicity, we will define the energy density
exactly as in the case of Chandrasekhar [111]. However, the electron-electron
and electron-nuclei Coulomb interactions and the Thomas-Fermi corrections,
which consider deviations of the electron charge distribution from unifor-
mity, have been accounted when constructing the expression for the pressure
of the degenerate white dwarf matter [112],

εSal = εCh,
pSal = pCh + pC + pTF , (8.4.2)

where pC + pTF are the contributions to the pressure due to the Coulomb
interactions and the Thomas-Fermi corrections. This sum is given by

pC + pTF = −mec2
(mec

h̄

)3
[

αZ2/3

10π2

(
4

9π

)1/3

x4

+
162
175

(
αZ2/3)2

9π2

(
4

9π

)2/3 x5
√

1 + x2

]
, (8.4.3)

where α = 1/137.036 is the fine structure constant.
The Salpeter equation of state allows one to take into account the nuclear

composition of the white dwarf matter. We have chosen white dwarfs con-
sisting of pure helium 4He, carbon 12C, oxygen 16O and iron 56Fe, according
to Table 8.1. The behavior of the Chandrasekhar and Salpeter equations of
state is illustrated in Figs. 8.1 and 8.2 in terms of the mass-central density and
mass-radius relations. As one can see from these figures, the equations of
state display different features, especially, in the case of white dwarfs com-
posed of pure iron.
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Figure 8.1: Mass versus central density.
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Figure 8.2: Mass versus radius.

8.5 Results and discussion

In equilibrium, a rotating star attains a balance between pressure, gravita-
tional and centrifugal forces. In classical physics, the magnitude of the cen-
trifugal force is determined by the angular velocity Ω of the fluid relative to
a distant observer. We adopt this angular velocity Ω as the mass shedding or
the Keplerian angular velocity for the sake of generality.

In Fig. 8.1, the mass of a white dwarf is shown as a function of the central
density. The mass is given in units of one solar mass and the central density is
given in g/cm3. We have selected two equations of state: the Chandrasekhar
equation of state with average molecular weight µ=2, and the Salpeter equa-
tion of state for pure helium 4He, carbon 12C, oxygen 16O and iron 56Fe white
dwarfs, as limiting cases. All solid curves indicate non-rotating (static) white
dwarfs, whereas all dashed curves indicate rotating white dwarfs at the mass
shedding rate. As expected, rotating white dwarfs have larger masses with
respect to their static counterparts. In all our computations we restricted the
maximum values of the central density to the values of inverse β-decay den-
sity to fulfill the stability condition of white dwarfs [85, 109]. In addition,
by using the turning point method, we investigated secular instability of the
white dwarfs. It turned out that in classical physics all uniformly rotating
white dwarfs are stable against axisymmetric secular instabilities.

Fig. 8.2 shows the mass and equatorial radius relation. The equatorial ra-
dius for a static case reduces to the static radius. All legends in the plot are
the same as in Fig. 7.3 and hereafter we keep these legends in all our plots.
Depending on the equation of state and chemical composition, white dwarfs
display different mass-radius relations. This explains the variety of observed
white dwarfs. Nowadays, we have data for more than thirty two thousand
white dwarfs and all of them have diverse characteristics [117, 118, 119, 120,

487



8 Inertia and quadrupole relations for white dwarfs

105 106 107 108 109 1010 1011

5

10

15

20

Ρc @g�cm3D

r e
@1

03
km
D

Rotating 56Fe WDs
Static 56Fe WDs

Rotating 16O WDs
Static 16O WDs

Rotating 12C WDs
Static 12C WDs

Rotating 4He WDs
Static 4He WDs

Rotating Μ=2 WDs

Static Μ=2 WDs
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121].
Fig. 8.3 shows the radius and central density relations of both rotating

(equatorial radius) and non-rotating (static radius) white dwarfs. For increas-
ing central densities, the gap between equatorial and static radii is narrowed.
Thus, white dwarfs become more gravitationally bound and spherical.

Fig. 8.4 illustrates the behavior of the normalized moment of inertia in
terms of the static mass and the square of the static radius as a function of
the central density. For lower densities, the difference in the moment of in-
ertia between rotating and static white dwarfs is quite large. However, for
higher densities the difference becomes smaller. A different representation of
the moment of inertia in terms of the total mass is given in Fig. 8.5, where
one can see a similar behavior.

The total mass as a function of the angular momentum for rotating white
dwarfs is presented in Fig. 8.6. The dependence between mass and angular
momentum is nonlinear. This is obvious for large values of the angular mo-
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mentum. This is a very important fact, especially when one deals with its
astrophysical implications.

The rotating mass as a function of the angular velocity is presented in
Fig. 8.7. As one can see, due to their compactness, massive white dwarfs
can reach higher values for the angular velocity than less massive stars. In
addition, Fig. 8.7 shows the maximum rotation rate for a given mass.
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Figure 8.8: Angular momentum versus angular velocity.

The angular momentum as a function of the angular velocity along the
Keplerian sequence is given in Fig. 8.8. It should be noted that the angular
momentum is not always directly proportional to the angular velocity. De-
pending on the mass, one can observe either spin-up or spin-down effects.
White dwarfs having mass close to the Chandrasekhar mass limit can expe-
rience both spin-up and spin-down effects [109, 110].

The eccentricity of rotating white dwarfs as a function of the central den-
sity is shown in Fig. 8.9. For higher densities, the eccentricity decreases and
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vice versa. Thus, white dwarfs with increasing central density become more
spherical as they approach their maximum mass.
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Figure 8.10: Normalized moment of inertia versus central density.

The normalized moment of inertia is shown as a function of the central
density in Fig.8.10. The behavior of both rotating and static moments of iner-
tia is similar to the eccentricity.

The normalized quadrupole moment as a function of the central density
is shown in Fig. 8.11. Here the normalized quadrupole moment shows the
same behavior as the eccentricity and the moment of inertia. So, for more
massive white dwarfs it decreases as the radius decreases.
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8.6 I-Love-Q and I-Q-e relations for white dwarfs

First, we notice that an inspection of Figs. 8.9, 8.10 and 8.11 shows an intrigu-
ing correlation between the moment of inertia and the quadrupole moment
as functions of the eccentricity of rotating white dwarfs. We therefore ana-
lyze the behavior of the moment of inertia as a function of the eccentricity
in Fig. 8.12, where the moment of inertia is divided by 1022 cm3 for the sake
of convenience. As expected, the moment of inertia increases with the ec-
centricity until it reaches a maximum value which depends on the angular
velocity and composition of the star. This graphic does not present any es-
pecial peculiarities. However, the situation changes completely, if instead we
consider the normalized moment of inertia I/(10MR2) with respect to the
static configuration. The result is presented in Fig. 8.13 for static and rotating
stars. It shows an universal behavior for the I-e relation, independently of
the equation of state and chemical composition of the white dwarf.

Consider now the quadrupole moment; in Fig. 8.14, we show its behavior
as a function of the eccentricity. The value of the quadrupole is bounded,
reaching a maximum value which depends on the chemical composition of
the star. Furthermore, in Fig. 8.15, we consider the normalized quadrupole
Q/(100MR2), where M and R correspond to the static configuration. The
universality of this Q-e relation is evident because no dependence can be ob-
served neither from the equation of state nor from the chemical composition
of the white dwarf.

We now consider the quadrupole moment as a function of the moment of
inertia. This behavior is illustrated in Figs. 8.16 and 8.17. Similar to the pre-
vious cases for the I-e and Q-e relations, the Q-I relation displays the same
trend, i.e., only for the normalized quantities one can establish the same uni-
versality, independently of the equation of state.
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