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3. Brief description

Astroparticle physics is a new field of research emerging at the intersection
of particle physics, astrophysics and cosmology. Theoretical development in
these fields is mainly triggered by the growing amount of experimental data
of unprecedented accuracy, coming both from the ground based laboratories
and from the dedicated space missions.

3.1. Electron-positron plasma

Electron-positron plasma is of interest in many fields of physics and astro-
physics, e.g. in the early universe, active galactic nuclei, the center of our
Galaxy, compact astrophysical objects such as hypothetical quark stars, neu-
tron stars and gamma-ray bursts sources. It is also relevant for the physics
of ultraintense lasers and thermonuclear reactions. We study physical prop-
erties of dense and hot electron-positron plasmas. In particular, we are in-
terested in the issues of its creation and relaxation, its kinetic properties and
hydrodynamic description, baryon loading and radiation from such plasmas.

Two different states exist for electron-positron plasma: optically thin and
optically thick. Optically thin pair plasma may exist in active galactic nuclei
and in X-ray binaries. The theory of relativistic optically thin nonmagnetic
plasma and especially its equilibrium configurations was established in the
80s by Svensson, Lightman, Gould and others. It was shown that relaxation
of the plasma to some equilibrium state is determined by a dominant reac-
tion, e.g. Compton scattering or bremsstrahlung.

Developments in the theory of gamma ray bursts from one side, and ob-
servational data from the other side, unambiguously point out on existence
of optically thick pair dominated non-steady phase in the beginning of for-
mation of GRBs. The spectrum of radiation from optically thick plasma is
usually assumed to be thermal.

These months we have been focusing on two topics: electron-positron
plasma and thermal emission from relativistic plasma and GRBs. In the first
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3. Brief description

topic we focused on effects of relativistic degeneracy. In doing so we have
generalized the numerical schemes for solution of Boltzmann equations for
pairs and photons, used in previous works. As the outcome, we have devel-
oped a computer code.

Then, in a broader context, we consider the appearance of thermal emission
from relativistic plasma, focusing on several topics.

In what follows all this work is discussed in details, while in Appendix all
relevant papers can be found.

3.1.1. Relativistic degeneracy in the pair plasma

It is well known that at relativistic temperatures plasma becomes degenerate
Landau and Lifshitz (1980). In order to study relativistic degeneracy we have
introduced the Bose enhancement and Pauli blocking factors in the Boltz-
mann equation that allows us to follow the relaxation of the pair plasma to
Planck spectrum of photons and Fermi-Dirac distribution of electrons and
positrons. This improvement allows us to study higher energy densities with
respect to those treated before in Aksenov et al. (2007, 2009). However, for
such high energy densities the assumption adopted in these works, namely
that three-particle interactions operate on longer timescale with respect to
two-particle ones, does not hold any longer. For this reason we had to intro-
duce the collisional integrals for three-particle interactions based on the exact
QED matrix elements, in full analogy with previously treated two-particle
interactions.

Thus in this work we consider relaxation of nonequilibrium optically thick
pair plasma to complete thermal equilibrium by integrating numerically rel-
ativistic Boltzmann equations with collisional integrals computed from the
first principles, namely from the QED matrix elements both for two-particle
and three-particle interactions.

We point out that unlike classical Boltzmann equation for binary interac-
tions such as scattering, more general interactions are typically described by
four collisional integrals for each particle that appears both among incoming
and outgoing particles.

Our numerical results indicate that the rates of three-particle interactions
become comparable to those of two-particle ones for temperatures exceeding
the electron rest-mass energy. Thus three particle interactions such as rela-
tivistic bremsstrahlung, double Compton scattering and radiative pair cre-
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3.2. Thermal emission from relativistic plasma and GRBs

ation become essential not only for establishment of thermal equilibrium, but
also for correct evaluation of interaction rates, energy losses etc. Our results
on this topic are reported in Appendix A.

3.2. Thermal emission from relativistic plasma and

GRBs

Emission from optically thick stationary plasma is an important topic in as-
trophysics. Such plasma confined by the gravitational field constitutes stars,
accretion disks and other objects. The light from these systems is coming
from the so called photosphere defined as a region where the optical depth
computed from the interior of the optically thick plasma outwards reaches
unity.

There are also dynamical sources where bulk velocities of plasma reach ul-
trarelativistic values such as microquasars, active galactic nuclei and gamma-
ray bursts (GRBs). While in the former two objects there is clear evidence for
jets which contain optically thin plasma, in the latter objects the issue of jets
is controversial, and the source is required to be optically thick. This observa-
tional fact poses a new problem: the emission from (spherically) expanding
plasma which initially is optically thick. Such plasma eventually becomes
optically thin during its expansion, and initially trapped photons should be
released.

Recently, thermal components were found in spectra of GRBs not only in
the prompt emission, but also in the early afterglow. This motivated us to
extend the study of thermal emission previously focused on ultrarelativistic
photosphere into a more broad context of thermal emission from relativistic
plasma in GRBs.

3.2.1. Transparency of an instantaneously created
electron-positron-photon plasma

We focused in the problem of the expansion of a relativistic plasma gener-
ated when a large amount of energy is released in a small volume, which has
been considered previously by many authors, including Fermi and Landau.
We use the approximate analytical solution of hydrodynamic equations by
Bisnovatyi-Kogan and Murzina for the spherically symmetric relativistic ex-
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3. Brief description

pansion. We obtain the light curves and the spectra from transparency of an
electron–positron–photon plasma by virtue of the recently developed method
by one of us (G.V.) together with I.A. Siutsou and R. Ruffini of approximate
solution of the radiative transfer equation. We compare our results with the
work of Goodman and found that our spectrum is wider than Goodman’s
due to our explicit account for dynamical character of the relativistic photo-
sphere. Our results are reported in Appendix B.

3.2.2. Spreading of ultrarelativistically expanding shell

Optically thick energy dominated plasma created in the source of Gamma-
Ray Bursts (GRBs) expands radially with acceleration and forms a shell with
constant width measured in the laboratory frame. When strong Lorentz fac-
tor gradients are present within the shell it is supposed to spread at suffi-
ciently large radii. There are two possible mechanisms of spreading: hydro-
dynamical and thermal ones. We consider both mechanisms evaluating the
amount of spreading that occurs during expansion up to the moment when
the expanding shell becomes transparent for photons. We compute the hy-
drodynamical spreading of an ultrarelativistically expanding shell. In the
case of thermal spreading we compute the velocity spread as a function of
two parameters: comoving temperature and bulk Lorentz factor of relativis-
tic Maxwellian distribution. Based on this result we determine the value of
thermal spreading of relativistically expanding shell. We found that thermal
spreading is negligible for typical GRB parameters. Instead hydrodynami-
cal spreading appears to be significant, with the shell width reaching ∼ 1010

cm for total energy 1054 erg and baryonic loading B = 10−2. Within the
fireshell model such spreading will result in the duration of Proper Gamma-
Ray Bursts up to several seconds. For details see Appendix C.

3.2.3. Relativistic spotlight

Relativistic motion gives rise to a large number of interesting and sometimes
counterintuitive effects. In this work we consider an example of such effects,
which we term relativistic spotlight. When an isotropic source of soft pho-
tons with proper intensity I0 is placed at rest between a distant observer and
photosphere of relativistic wind, its intensity as seen by the observer gets en-
hanced up to ∼ Γ4 I0, where Γ is bulk Lorentz factor of the wind. In addition,
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these photons may extract a large part of the wind kinetic energy. We specu-
late that such effect may be relevant for the physics of GRBs. For details see
Appendix D.

3.2.4. Interaction of the GRB ejecta with circumburst
medium

We study the physical properties of filamentary structure of overdensities in
circumburst medium near the GRB sources and identify main characteristics
of this structure: density, physical dimension, opacity. We obtain observa-
tional constraints on these quantities, and present consistent treatment of the
interaction of relativistic shell originating from the GRB source and this fil-
amentary structure. We also discuss high energy emission originating from
this interaction. For details see Appendix E.

3.2.5. Thermal emission in early afterglow from the

GRB-SNR interaction

The interaction between the GRB ejecta and a baryonic shell is considered in
the context of the binary driven hypernova model of GRBs. The kinematic
and observational properties of the shell after the interaction are derived. In
particular, the temperature and the duration of the thermal emission are ob-
tained. The model is then applied to GRB 090618 and other sources, and the
observed characteristics of the thermal component are reproduced. For de-
tails see Appendix F.

3.3. Relativistic kinetic theory and its applications

We pay particular attention to presenting our results in relativistic kinetic
theory in a systematic and pedagogic manner. This approach resulted in
a lecture course created by G.V. Vereshchagin for the students of the IRAP
PhD Erasmus Mundus Joint Doctorate program. This lecture course was also
delivered at the XV Brazilian School of Cosmology and Gravitation in Man-
garatiba, Brazil in 2012. The lecture notes summarizing this course are pre-
sented in Appendix G.
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3. Brief description

3.4. Neutrinos in cosmology

Many observational facts make it clear that luminous matter alone cannot
account for the whole matter content of the Universe. Among them there
is the cosmic background radiation anisotropy spectrum, that is well fitted
by a cosmological model in which just a small fraction of the total density is
supported by baryons.

In particular, the best fit to the observed spectrum is given by a flat ΛCDM
model, namely a model in which the main contribution to the energy density
of the Universe comes from vacuum energy and cold dark matter. This result
is confirmed by other observational data, like the power spectrum of large
scale structures.

Another strong evidence for the presence of dark matter is given by the
rotation curves of galaxies. In fact, if we assume a spherical or ellipsoidal
mass distribution inside the galaxy, the orbital velocity at a radius r is given
by Newton’s equation of motion. The peculiar velocity of stars beyond the
visible edge of the galaxy should then decrease as 1/r. What is instead ob-
served is that the velocity stays nearly constant with r. This requires a halo
of invisible, dark, matter to be present outside the edge. Galactic size should
then be extended beyond the visible edge. From observations is follows that
the halo radius is at least 10 times larger than the radius of visible part of the
galaxy. Then it follows that a halo is at least 10 times more massive than all
stars in a galaxy.

Neutrinos were considered as the best candidate for dark matter about
twenty years ago. Indeed, it was shown that if these particles have a small
mass mν ∼ 30 eV, they provide a large energy density contribution up to crit-
ical density. Tremaine and Gunn (1979) have claimed, however, that massive
neutrinos cannot be considered as dark matter. Their paper was very influen-
tial and turned most of cosmologists away from neutrinos as cosmologically
important particles.

Tremaine and Gunn paper was based on estimation of lower and upper
bounds for neutrino mass; when contradiction with these bounds was found,
the conclusion was made that neutrinos cannot supply dark matter. The up-
per bound was given by cosmological considerations, but compared with the
energy density of clustered matter. It is possible, however, that a fraction of
neutrinos lays outside galaxies.

Moreover, their lower bound was found on the basis of considerations of
galactic halos and derived on the ground of the classical Maxwell-Boltzmann
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3.4. Neutrinos in cosmology

statistics. Gao and Ruffini (1980) established a lower limit on the neutrino
mass by the assumption that galactic halos are composed by degenerate
neutrinos. Subsequent development of their approach Arbolino and Ruffini
(1988) has shown that contradiction with two limits can be avoided.

At the same time, in 1977 the paper by Lee and Weinberg (1977) appeared,
in which authors turned their attention to massive neutrinos with mν >>

2 GeV. Such particles could also provide a large contribution into the energy
density of the Universe, in spite of much smaller value of number density.

Recent experimental results from laboratory (see Dolgov (2002) for a re-
view) rule out massive neutrinos with mν > 2 GeV. However, the paper by
Lee and Weinberg was among the first where very massive particles were
considered as candidates for dark matter. This can be considered as the first
of cold dark matter models.

Today the interest toward neutrinos as a candidate for dark matter came
down, since from one side, the laboratory limit on its mass do not allow for
significant contribution to the density of the Universe, and from other side,
conventional neutrino dominated models have problems with formation of
structure on small scales. However, in these scenarios the role of the chem-
ical potential of neutrinos was overlooked, while it could help solving both
problems.

3.4.1. Massive neutrino and structure formation

Lattanzi et al. (2003) have studied the possible role of massive neutrinos in
the large scale structure formation. Although now it is clear, that massive
light neutrinos cannot be the dominant part of the dark matter, their influ-
ence on the large scale structure formation should not be underestimated. In
particular, large lepton asymmetry, still allowed by observations, can affect
cosmological constraints on neutrino mass.

3.4.2. Cellular structure of the Universe

One of the interesting possibilities, from a conceptual point of view, is the
change from the description of the physical properties by a continuous func-
tion, to a new picture by introducing a self-similar fractal structure. This
approach has been relevant, since the concept of homogeneity and isotropy
formerly apply to any geometrical point in space and leads to the concept
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3. Brief description

Figure 3.1.: Cellular structure of the Universe.

of a Universe observer-homogeneous (Ruffini (1989)). Calzetti et al. (1987),
Giavalisco (1992), Calzetti et al. (1988) have defined the correlation length of
a fractal

r0 =
(

1− γ

3

)1/γ
RS, (3.4.1)

where RS is the sample size, γ = 3 − D, and D is the Hausdorff dimen-
sion of the fractal. Most challenging was the merging of the concepts of
fractal, Jeans mass of dark matter and the cellular structure in the Universe,
advanced by Ruffini et al. (1988). The cellular structure emerging from this
study is represented in Figure 3.1. There the upper cutoff in the fractal
structure Rcutoff ≈ 100 Mpc, was associated to the Jeans mass of the ”ino”

Mcell =
(

mpl

mino

)2
mpl.
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3.5. Self-gravitating systems of Dark Matter particles

3.4.3. Lepton asymmetry of the Universe

Lattanzi et al. (2005), Lattanzi et al. (2006) studied how the cosmological con-
straints on neutrino mass are affected by the presence of a lepton asymmetry.
The main conclusion is that while constraints on neutrino mass do not change
by the inclusion into the cosmological model the dimensional chemical po-
tential of neutrino, as an additional parameter, the value of lepton asymmetry
allowed by the present cosmological data is surprisingly large, being

L = ∑
ν

nν − nν̄

nγ
. 0.9. (3.4.2)

Therefore, large lepton asymmetry is not ruled out by the current cosmologi-
cal data.

3.5. Self-gravitating systems of Dark Matter

particles

A general study of Dark Matter (DM) within the particle DM paradigm re-
quires the interconnection between particle Physics (Standard Model (SM)
and beyond SM Physics), together with a fully general relativistic treatment.
The study of the Physics must be always guided by the many different known
astrophysical scenarios where DM plays certainly a role, i.e.: the interac-
tion nature within the primordial plasma in the early universe, leptogenesis,
baryogenesis, the large structure of the Universe, structure formation, gravi-
tational lensing in clusters of galaxies, galaxy rotation curves and the overall
galaxy density profiles. The current attention of research within our group is
focused in the Physics and astrophysics of DM particles in the early Universe,
its effects in the mass and neutrino species number constraints, and mainly,
the role of DM in galaxies at all scales.

The study of all these issues are in part a natural continuation of the
pioneering works developed in the past by former members of the ICRA
group and collaborators, all headed by the director of the institute, Prof. R.
Ruffini (see Ruffini et al. (1983), Ruffini et al. (1988), Ruffini and Stella (1983),
Arbolino and Ruffini (1988), Merafina and Ruffini (1989), Gao et al. (1990),
Ingrosso et al. (1992), Bisnovatyj-Kogan et al. (1993a), Bisnovatyi-Kogan et al.
(1998)).
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The nature of the DM particle interactions for the recently proposed ster-
ile neutrino in the context of the so called neutrino Minimal Standard Model
(νMSM, see Boyarsky et al. (2009b) and references therein), in compatibility
with the early cosmology and further constrained with data coming form the
center of the galaxies, is being studied by the Ph.D student C. R. Argüelles
under the tutorship of the Prof. J. A. Rueda and Prof. R. Ruffini, in collabo-
ration with N. Mavromatos. Some correlated aspects of the role of sterile ν in
the early Universe, as neutrino species number constraints is currently being
studied by the Ph.D student B. Fraga, guided by the professors J. A. Rueda
and Prof. R. Ruffini.

The actual main topic of research respecting the role of fermionic DM par-
ticles in halos as well as in the centers of the galaxies together with its pos-
sible interaction regime is studied by the Ph.D students C. R. Argüelles and
B. Fraga, with the collaboration of the ICRANet colleagues I. Siutsou, J. A.
Rueda, and the external collaboration of the Prof. N. Mavromatos, headed by
Prof. R. Ruffini.

Below we present an introduction for each topic of research together with
a more detailed description through the links to actual results and ongoing
papers.

The problem of the distribution of DM in galaxies as generally studied in
the literature, is mainly focused in the halo regions and associated with the
galactic rotation curves, where the major amount of data is available. The
most common actual mathematical techniques used to deal with this prob-
lem are phenomenological fits (See e.g. Burkert (1995)) as well as best fits re-
sulting from numerical N-body simulations centered in the ΛCDM paradigm
(See Navarro et al. (1997), Navarro et al. (2004a)).

We propose here a new approach for this problem based on the following
main assumptions:

1) that the problem of the galactic core and the halo have to be addressed
unitarily;

2) for definiteness we study the simplest problem of ‘bare’ neutrinos in
thermodynamic equilibrium fulfilling only the Fermi Dirac statistical distri-
bution

f =
1

exp
ǫ−µ
kT + 1

=
1

exp
(

ǫ
βmc2 − θ

)

+ 1
, (3.5.1)

where ǫ is kinetic energy of the particles, µ is chemical potential, T is the tem-
perature, k is Boltzmann constant, m is the mass of ‘ino’, c is the speed of light,
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3.5. Self-gravitating systems of Dark Matter particles

β = kT/mc2, θ = µ/kT, without consider either Fermi weak interactions or
alternative interactions;

3) we consider zero total angular momentum and also we neglect any effect
of Baryonic matter.

The equilibrium configurations of a self-gravitating semi-degenerate sys-
tem of fermions were first studied in Newtonian gravity by Ruffini and Stella
(1983) and then generalized in general relativity by Gao et al. (1990). It is
shown that in any such system the density at large radii scales as r−2 quite
independently of the values of the central density, always providing a flat
rotation curve. These solutions were extended to an energy and angular mo-
mentum cut-off in the distribution function Ingrosso et al. (1992).

A typical mass density profile solution from the model, contrasted with a
Navarro-Frenk-White (NFW) profile Navarro et al. (1997), as well as a Boltz-
mannian Isothermal sphere model is shown in Fig. 3.2,
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Figure 3.2.: The cored behaviour of the dark matter density profiles from our
model is contrasted with the cuspy NFW density profile. The free parameters
of the model are fixed as β0 = 1.251× 10−7, θ0 = 30 and m = 10.54keV/c2,
while the corresponding free parameters in the NFW formula ρNFW(r) =
ρ0r0/(r(1+ r/r0)

2) are chosen as ρ0 = 5× 10−3M⊙pc−3 and r0 = 25 Kpc (i.e.
typical of spiral galaxies according to de Blok et al. (2008)).

It is interesting that the quantum and relativistic treatment of the config-
urations considered here are characterized by the presence of central cored
structures unlike the typical cuspy configurations obtained from a classic
non-relativistic approximation, such as the ones of numerical N-body sim-
ulations in Navarro et al. (1997). This naturally leads to a possible solution to
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3. Brief description

the well-known core-cusp discrepancy de Blok et al. (2001b).

We have recently returned to the Gao et. al. work, and propose a com-
pletely different way for solving the boundary condition problem for the
system of non-linear first order differential equations, in order to fulfill the
observationally inferred values of typical dark matter halos in spiral galaxies
as given in de Blok et al. (2008). Namely, for a given initial condition for the
total mass M(0) = 0 (consistent with no singularity at the center), arbitrary
fixed θ0 (depending on the chosen central degeneracy), and defining the halo
radius rh at the onset of the flat rotation curve, we solve an eigenvalue prob-
lem for the central temperature parameter β0, until the observed halo circular
velocity vh is obtained. After this, we solve a second eigenvalue problem for
the particle mass m until the observed halo mass Mh is reached at the radius
rh.

The quest has been to use all these information in order to put a novel lower
constraints on the mass of the ‘ino’ in galactic halos by introducing the above
mentioned observational properties. This bound is for typical spiral galaxies:

m ≥ 0.42keV/c2. (3.5.2)

The novel density profile solutions as well as the rotation curves in agree-
ment with the observed halo properties are plotted in Fig. K.2 for different
values of the central degeneracy parameter θ0 in correspondence with the
particle mass m,

Another relevant observational aspect on galactic halos is the so called Uni-
versality laws. Donato et al. (2009), fitting DM halos with Burkert profiles,
found out that the surface density µ0D = rBρ0 of galaxy dark matter halos,
where rB and ρ0 are the burkert radius and central halo density, is nearly
constant for a wide number of galaxies with different total masses and ab-
solute magnitudes. This further implies a constant acceleration due to DM
at the Burkert radius aDMGMB/r2

B = 3.2× 10−9 cm/s2. The fact that from
our model we obtain scaling formulas for the magnitudes rB and MB with
respect the free parameters of the model m, β0 and θ0, it allow us to show
that always exist a definite range of the θ0 as well as β0 parameter for a given
particle mass above the limit found in (3.5.2), which is in agreement with the
observational universal result.

In these months the group was focused on the following issues.
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Figure 3.3.: Mass density profiles and rotation curves for specific ino masses
m and central degeneracies θ0 fulfilling the observational constraints Mh =
1.6× 1011M⊙ at rh = 25 Kpc. All the quantum configurations have a dark
matter halo circular velocity vh = 168 km/s in correspondence with β0 =
1.251× 10−7. These solutions are contrasted with a Boltzmannian isothermal
sphere and the observationally inferred dark matter profile of typical spirals
(see Chemin et al. (2011), de Blok et al. (2008)).

3.6. The distribution of dark matter in galaxies

based quantum treatments

The problem of modeling the distribution of dark matter in galaxies in terms
of equilibrium configurations of collisionless self-gravitating quantum par-
ticles is considered. We first summarize the pioneering model of a Newto-
nian self-gravitating Fermi gas in thermodynamic equilibrium developed by
Ruffini and Stella (1983), which is shown to be a generalization of the King
model for fermions. We further review the extension of the former model de-
veloped by Gao, Merafina and Ruffini (1990), done for any degree of fermion
degeneracy at the center (θ0), within general relativity. Finally, we present
here for the first time the solutions of the density profiles and rotation curves
corresponding to the model of Gao et al. Those solutions have a definite mass
Mh and a circular velocity vh at the halo radius rh of the configurations, which
are typical of spiral galaxies. This treatment allows us to determine a novel
core-halo morphology for the dark-matter profiles, as well as a novel bound
on the particle mass associated with those profiles. For details see Appendix
H.
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3. Brief description

3.7. A novel core-halo distribution of dark matter

in galaxies

We investigate the distribution of dark matter in galaxies by solving the equa-
tions of equilibrium of a self-gravitating system of massive fermions (‘inos’)
at selected temperatures and degeneracy parameters within general relativ-
ity. The most general solutions present, as a function of the radius, a segre-
gation of three physical regimes: 1) an inner core of almost constant density
governed by degenerate quantum statistics; 2) an intermediate region with
a sharply decreasing density distribution followed by an extended plateau,
implying quantum corrections; 3) a decreasing density distribution ρ ∝ r−2

leading to flat rotation curves fulfilling the classical Boltzmann statistics. The
mass of the inos is determined as an eigenfunction of the mass of the inner
quantum cores. We compare and contrast this mass value with the lower
limit on the particle mass by Tremaine and Gunn (1979), and show that the
latter is approached for the less degenerate quantum cores in agreement with
the fixed halo observables. Consequences of this alternative approach to the
massive core in SgrA* and to dwarf galaxies are outlined. For details see
Appendix I.

3.8. Critical configurations for a system of

semidegenerate fermions

We study an isothermal system of semidegenerate self-gravitating fermions
in general relativity. Such systems present mass density solutions with a cen-
tral degenerate core, a plateau and a tail, this last following a power law
behavior r−2. The different solutions are governed by the free parameters of
the model: the degeneracy and the temperature parameters at the center and
the particle mass m. We then analyze in detail the free parameter space for a
fixed m in the keV region, by studying the one-parameter sequences of equi-
librium configurations up to the critical point, which is represented by the
maximum in a central density (ρ0) vs. core mass (Mc) diagram. We show that
for fully degenerate cores, the known expression for the critical core mass
Mcr

c ∝ m3
pl/m2 is obtained, while for low degenerate cores, the critical core

mass increases, showing temperature effects in a nonlinear way. The main
result of this work is that when applying this theory to model the distribu-
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3.9. Super massive black holes and dark matter halos in big elliptical
galaxies

tion of dark matter in galaxies from the very center to the outer halos, we do
not find any critical core-halo configuration of self-gravitating fermions that
would be able to explain the super-massive dark object in their centers and
the outer halo simultaneously. For details see Appendix J.

3.9. Super massive black holes and dark matter

halos in big elliptical galaxies

Big elliptical and early-type galaxies, most of them containing super mas-
sive dark objects at their centers, present no definitive evidence for the ex-
istence of DM halos. The low surface brightness beyond Re makes it a hard
task to obtain reliable spectra to determine dispersion velocities. Among the
several methods available to prove the mass distribution beyond Re in el-
liptical galaxies, such as integrated stellar light spectrum, globular cluster
and planetary nebulae kinematics, diffuse X-ray observation or weak gravi-
tational lensing; no evidence for DM halos has been found even out to few Re

in many ellipticals by the use of kinematical methods as shown by Gebhardt
et. al. (2001). Meanwhile, by using X-ray observations in an small sample of
nearby ellipticals, a clear evidence for considerable amounts of DM at radii
r ∼ 10Re was given in Humphrey et. al. (2006). In any case, the more in-
teresting constraints on DM in early-type galaxies are restricted to the more
massive systems, which are placed near the center of group or clusters. This
implies to be a difficult task to confirm whether the existence of extensive
halos is an inherent property of the galaxy itself, or corresponds to the DM
content at the group-scale. We thus propose to use the critical configura-
tions of semi-degenerate self-gravitating fermions in General Relativity (GR)
to model the distribution of dark matter in big elliptical galaxies from mili-
parsec distance-scales up to 102 Kpc. As a partial conclusion we do not find
any critical core-halo configuration of self-gravitating fermions, able to ex-
plain both the most super-massive dark object at their center together with
the DM halo simultaneously. While an interesting discussion in relation with
observations of the most super massive dark compact objects and formation
history at different cosmological redshift z is given. For details see Appendix
K.
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3.10. Dark Einstein clusters within the S2 orbit in

SgrA*

We use the Einstein Cluster model in order to provide an alternative to the
massive black hole thought to be hosted at the center of SgrA*. For this we
model the central sub-miliparsec region of our galaxy in terms of a constant
density Einstein cluster composed by dark matter particles of mass m, re-
gardless of its nature. We analyze its stability conditions by two different
methods considered in the literature, and explicitly show through the total
mass (M)versus radius(R) relation, up to which point an Einstein cluster of
constant particle number can be contracted, without losing its global stabil-
ity. Finally, we compare the uppermost constant density constraints of stable
clusters, with the lowest limit in the mass density of SgrA* as imposed by
modern VLBI mm radio observations. For details see Appendix L.

3.11. Dark matter and baryons in dwarf galaxies

A generalization of the Jeans equations in the context of galactic dynamics is
developed for a multi-component self-gravitating system composed of dark
matter particles and stars. In addition to the luminous profile, an underlying
fermionic phase-space density for the dark component is assumed. Under
the ansatz of isotropy, spherical symmetry and constant dispersion velocities,
this approach is applied to typical well resolved nucleated dwarf galaxies,
to obtain novel dark matter density profiles showing central mass concentra-
tions at pc distance-scales. Narrow constraints on the mass of the dark matter
candidate of m ∼ 1 keV are obtained. For details see Appendix M.
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4. Publications

4.1. Publications before 2005

1. R. Ruffini, D. J. Song, and L. Stella, “On the statistical distribution of
massive fermions and bosons in a Friedmann universe” Astronomy and
Astrophysics, Vol. 125, (1983) pp. 265-270.

The distribution function of massive Fermi and Bose particles in an expanding

universe is considered as well as some associated thermodynamic quantities,

pressure and energy density. These considerations are then applied to cosmo-

logical neutrinos. A new limit is derived for the degeneracy of a cosmological

gas of massive neutrinos.

2. R. Ruffini and D. J. Song, “On the Jeans mass of weakly interacting neu-
tral massive leptons”, in Gamow cosmology, eds. F. Melchiorri and R.
Ruffini, (1986) pp. 370–385.

The cosmological limits on the abundances and masses of weakly interacting

neutral particles are strongly affected by the nonzero chemical potentials of

these leptons. For heavy leptons (mx > GeV), the value of the chemical po-

tential must be much smaller than unity in order not to give very high values

of the cosmological density parameter and the mass of heavy leptons, or they

will be unstable. The Jeans’ mass of weakly interacting neutral particles could

give the scale of cosmological structure and the masses of astrophysical ob-

jects. For a mass of the order 10 eV, the Jeans’ mass could give the scenario

of galaxy formation, the supercluster forming first and then the smaller scales,

such as clusters and galaxies, could form inside the large supercluster.

3. D. Calzetti, M. Giavalisco, R. Ruffini, J. Einasto, and E. Saar, “The corre-
lation function of galaxies in the direction of the Coma cluster”, Astro-
physics and Space Science, Vol. 137 (1987) pp. 101-106.

Data obtained by Einasto et al. (1986) on the amplitude of the correlation func-

tion of galaxies in the direction of the Coma cluster are compared with theo-
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retical predictions of a model derived for a self-similar observer-homogeneous

structure. The observational samples can be approximated by cones of angu-

lar width alpha of about 77 deg. Eliminating sources of large observational

error, and by making a specified correction, the observational data are found

to agree very well with the theoretical predictions of Calzetti et al. (1987).

4. R. Ruffini, D. J. Song, and S. Taraglio, “The ’ino’ mass and the cellu-
lar large-scale structure of the universe”, Astronomy and Astrophysics,
Vol. 190, (1988) pp. 1-9.

Within the theoretical framework of a Gamow cosmology with massive ”inos”,

the authors show how the observed correlation functions between galaxies

and between clusters of galaxies naturally lead to a ”cellular” structure for the

Universe. From the size of the ”elementary cells” they derive constraints on

the value of the masses and chemical potentials of the cosmological ”inos”.

They outline a procedure to estimate the ”effective” average mass density of

the Universe. They also predict the angular size of the inhomogeneities to be

expected in the cosmological black body radiation as remnants of this cellular

structure. A possible relationship between the model and a fractal structure is

indicated.

5. D. Calzetti, M. Giavalisco, and R. Ruffini, “The normalization of the
correlation functions for extragalactic structures”, Astronomy and As-
trophysics, Vol. 198 (1988), pp. 1-15.

It is shown that the spatial two-point correlation functions for galaxies, clus-

ters and superclusters depend explicitly on the spatial volume of the statistical

sample considered. Rules for the normalization of the correlation functions are

given and the traditional classification of galaxies into field galaxies, clusters

and superclusters is replaced by the introduction of a single fractal structure,

with a lower cut-off at galactic scales. The roles played by random and stochas-

tic fractal components in the galaxy distribution are discussed in detail.

6. M. V. Arbolino and R. Ruffini, “The ratio between the mass of the halo
and visible matter in spiral galaxies and limits on the neutrino mass”,
Astronomy and Astrophysics, Vol. 192, (1988) pp. 107-116.

Observed rotation curves for galaxies with values of the visible mass ranging

over three orders of magnitude together with considerations involving equi-

librium configurations of massive neutrinos, impose constraints on the ratio

between the masses of visible and dark halo comporents in spiral galaxies.
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Upper and lower limits are derived for the mass of the particles making up the

dark matter.

7. A. Bianconi, H. W. Lee, and R. Ruffini, “Limits from cosmological nu-
cleosynthesis on the leptonic numbers of the universe”, Astronomy and
Astrophysics, Vol. 241 (1991) pp. 343-357.

Constraints on chemical potentials and masses of ’inos’ are calculated using

cosmological standard nucleosynthesis processes. It is shown that the elec-

tron neutrino chemical potential (ENCP) should not be greater than a value of

the order of 1, and that the possible effective chemical potential of the other

neutrino species should be about 10 times the ENCP in order not to conflict

with observational data. The allowed region (consistent with the He-4 abun-

dance observations) is insensitive to the baryon to proton ratio η, while those

imposed by other light elements strongly depend on η.

8. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair
electromagnetic pulse of a black hole with electromagnetic structure”,
Astronomy and Astrophysics, Vol. 350 (1999) pp. 334-343.

We study the relativistically expanding electron-positron pair plasma formed

by the process of vacuum polarization around an electromagnetic black hole

(EMBH). Such processes can occur for EMBH’s with mass all the way up to

6 · 105M⊙. Beginning with a idealized model of a Reissner-Nordstrom EMBH

with charge to mass ratio ξ = 0.1, numerical hydrodynamic calculations are

made to model the expansion of the pair-electromagnetic pulse (PEM pulse)

to the point that the system is transparent to photons. Three idealized special

relativistic models have been compared and contrasted with the results of the

numerically integrated general relativistic hydrodynamic equations. One of

the three models has been validated: a PEM pulse of constant thickness in the

laboratory frame is shown to be in excellent agreement with results of the gen-

eral relativistic hydrodynamic code. It is remarkable that this precise model,

starting from the fundamental parameters of the EMBH, leads uniquely to the

explicit evaluation of the parameters of the PEM pulse, including the energy

spectrum and the astrophysically unprecedented large Lorentz factors (up to

6 · 103 for a 103 M⊙ EMBH). The observed photon energy at the peak of the

photon spectrum at the moment of photon decoupling is shown to range from

0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total

energy in photons is in the range of 1052 to 1054 ergs, consistent with observed
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gamma-ray bursts. In these computations we neglect the presence of baryonic

matter which will be the subject of forthcoming publications.

9. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair-
electromagnetic pulse from an electromagnetic black hole surrounded
by a baryonic remnant”, Astronomy and Astrophysics, Vol. 359 (2000)
pp. 855-864.

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with

a shell of baryonic matter surrounding a Black Hole with electromagnetic

structure (EMBH) is analyzed for selected values of the baryonic mass at se-

lected distances well outside the dyadosphere of an EMBH. The dyadosphere,

the region in which a super critical field exists for the creation of e+e− pairs,

is here considered in the special case of a Reissner-Nordstrom geometry. The

interaction of the PEM pulse with the baryonic matter is described using a sim-

plified model of a slab of constant thickness in the laboratory frame (constant-

thickness approximation) as well as performing the integration of the general

relativistic hydrodynamical equations. Te validation of the constant-thickness

approximation, already presented in a previous paper Ruffini et al. (1999) for a

PEM pulse in vacuum, is here generalized to the presence of baryonic matter.

It is found that for a baryonic shell of mass-energy less than 1% of the total

energy of the dyadosphere, the constant-thickness approximation is in excel-

lent agreement with full general relativistic computations. The approximation

breaks down for larger values of the baryonic shell mass, however such cases

are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of

numerical computations of the slab model for PEM pulses, we describe (i) the

properties of relativistic evolution of a PEM pulse colliding with a baryonic

shell; (ii) the details of the expected emission energy and observed tempera-

ture of the associated GRBs for a given value of the EMBH mass; 103M⊙, and

for baryonic mass-energies in the range 10−8 to 10−2 the total energy of the

dyadosphere.

10. M. Lattanzi, R. Ruffini, and G. Vereshchagin, “On the possible role of
massive neutrinos in cosmological structure formation”, in Cosmology
and Gravitation, eds. M. Novello and S. E. Perez Bergliaffa, Vol. 668 of
AIP Conference Series, (2003) pp. 263–287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe
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that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

4.2. Publications (2005 – 2013)

1. A. Benedetti, R. Ruffini and G.V. Vereshchagin, ”Evolution of the pair
plasma generated by a strong electric field”, Physics Letters A, Volume
377 (2013), Issue 3-4, p. 206-215.

We study the process of energy conversion from overcritical electric field into

electron-positron-photon plasma. We solve numerically Vlasov-Boltzmann

equations for pairs and photons assuming the system to be homogeneous and

anisotropic. All the 2-particle QED interactions between pairs and photons

are described by collision terms. We evidence several epochs of this energy

conversion, each of them associated to a specific physical process. Firstly pair

creation occurs, secondly back reaction results in plasma oscillations. Thirdly

photons are produced by electron-positron annihilation. Finally particle in-

teractions lead to completely equilibrated thermal electron-positron-photon

plasma.

2. D. Begue, I. A. Siutsou and G. V. Vereshchagin, ”Monte Carlo simula-
tions of the photospheric emission in GRBs”, the Astrophysical Journal
Volume 767 (2013), Issue 2, article id. 139.

We studied the decoupling of photons from ultra-relativistic spherically sym-

metric outflows expanding with constant velocity by means of Monte Carlo

simulations. For outflows with finite widths we confirm the existence of two

regimes: photon-thick and photon-thin, introduced recently by Ruffini et al.

(RSV). The probability density function of the last scattering of photons is

shown to be very different in these two cases. We also obtained spectra as

well as light curves. In the photon-thick case, the time-integrated spectrum

is much broader than the Planck function and its shape is well described by

the fuzzy photosphere approximation introduced by RSV. In the photon-thin

case, we confirm the crucial role of photon diffusion, hence the probability
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density of decoupling has a maximum near the diffusion radius well below

the photosphere. The time-integrated spectrum of the photon-thin case has a

Band shape that is produced when the outflow is optically thick and its peak

is formed at the diffusion radius.

3. R. Ruffni, I. A. Siutsou and G. V. Vereshchagin, ”Theory of photospheric
emission from relativistic outflows” , the Astrophysical Journal, Vol.
772, Issue 1 (2013) article id. 11.

We derive the optical depth and photospheric radius of relativistic outflow

using the model of relativistic wind with finite duration. We also discuss the

role of radiative diffusion in such outflow. We solve numerically radiative

transfer equation and obtain light curves and observed spectra of photospheric

emission. The obtained spectra are nonthermal and in some cases have Band

shape.

4. R. Ruffini and G.V. Vereshchagin, ”Electron-positron plasma in GRBs
and in cosmology”, Il Nuovo Cimento C 36 (2013) 255.

Electron-positron plasma is believed to play imporant role both in the early

Universe and in sources of Gamma-Ray Bursts (GRBs). We focus on anal-

ogy and difference between physical conditions of electron-positron plasma

in the early Universe and in sources of GRBs. We discuss a) dynamical differ-

ences, namely thermal acceleration of the outflow in GRB sources vs cosmo-

logical deceleration; b) nuclear composition differences as synthesis of light

elements in the early Universe and possible destruction of heavy elements in

GRB plasma; c) different physical conditions during last scattering of photons

by electrons. Only during the acceleration phase of the optically thick electron-

positron plasma comoving observer may find it similar to the early Universe.

This similarity breaks down during the coasting phase. Reprocessing of nu-

clear abundances may likely take place in GRB sources. Heavy nuclear ele-

ments are then destroyed, resulting mainly in protons with small admixture of

helium. Unlike the primordial plasma which recombines to form neutral hy-

drogen, and emits the Cosmic Microwave Background Radiation, GRB plasma

does not cool down enough to recombine.

5. A.G. Aksenov, R. Ruffni and G. V. Vereshchagin, ”Comptonization of
photons near the photosphere of relativistic outflows”, MNRAS Letters,
Vol. 436, Issue 1 (2013) pp. L54-L58.
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We consider the formation of photon spectrum at the photosphere of ultra-

relativistically expanding outflow. We use the Fokker–Planck approximation

to the Boltzmann equation, and obtain the generalized Kompaneets equation

which takes into account anisotropic distribution of photons developed near

the photosphere. This equation is solved numerically for relativistic steady

wind and the observed spectrum is found in agreement with previous stud-

ies. We also study the photospheric emission for different temperature depen-

dences on radius in such outflows. In particular, we found that for T ∝ r−2 the

Band low-energy photon index of the observed spectrum is≃ −1, as typically

observed in Gamma-Ray Bursts.

6. R. Ruffini, C. R. Argüelles, B. M. O. Fraga, A. Geralico, H. Quevedo, J.
A. Rueda, I. Siutsou, ”Black Holes in Gamma Ray Bursts and Galactic
Nuclei”, IJMPD 22 No. 11, 1360008, 2013.

Current research marks a clear success in identifying the moment of forma-

tion of a Black Hole of 10M⊙, with the emission of a Gamma Ray Burst. This

explains in terms of the ’Blackholic Energy’ the source of the energy of these

astrophysical systems. Their energetics up to 1054 erg, make them detectable

all over our Universe. Concurrently a new problematic has been arising re-

lated to: (a) The evidence of Dark Matter in galactic halos; (b) The origin of the

Super Massive Black Holes in active galactic nuclei and Quasars and (c) The

purported existence of a Black Hole in the Center of our Galaxy. These three

aspects of this new problematic have been traditionally approached indepen-

dently. We propose an unified approach to all three of them based on a system

of massive self-gravitating neutrinos in General Relativity. Perspectives of fu-

ture research are presented.

7. C. R. Argüelles, I. Siutsou, R. Ruffini, J. A. Rueda, B. Machado, ”On the
core-halo constituents of a semi-degenerate gas of massive fermions”
AAS, Probes of Dark Matter on Galaxy Scales, 45, 30204, 2013.

We propose a model of self-gravitating bare fermions at finite temperature in

General Relativity to describe the dark matter (DM) in galaxies. We obtain

a universal density profile composed by a flat and fully degenerate core for

small radii, a low-degenerate plateau and a Newtonian tail that scales with

r−2 for the outer halo region. The free parameters of the model are fitted using

galactic observables such as the constant rotation velocity, mass of the central

object and the halo radius, concluding that the particle mass should be in the
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keV range. We further show that thighter constraints of a few keV for the mass

of the fermions are obtained when using typical smallest dwarf galaxies.

8. B. M. O. Fraga, C. R. Argüelles, R. Ruffini, ”Self-Gravitating System of
Semidegenerated Fermions as Central Objects and Dark Matter Halos
in Galaxies”, IJMPS 23, 357-362, 2013.

We propose a unified model for dark matter haloes and central galactic objects

as a self-gravitating system of semidegenerated fermions in thermal equilib-

rium. We consider spherical symmetry and then we solve the equations of

gravitational equilibrium using the Fermi integrals in a dimensionless man-

ner, obtaining the density profile and velocity curve. We also obtain scaling

laws for the observables of the system and show that, for a wide range of our

parameters, our model is consistent with the so called universality of the sur-

face density of dark matter.

9. Micol Benetti, S. Pandolfi, M. Lattanzi, M.Martinelli, A. Melchiorri.
“Featuring the primordial power spectrum: new constraints on inter-
rupted slow-roll from CMB and LRG data ”, Physical Review D (2013)
vol. 87, Issue 2, id. 023519

Using the most recent data from the WMAP, ACT and SPT experiments, we

update the constraints on models with oscillatory features in the primordial

power spectrum of scalar perturbations. This kind of features can appear in

models of inflation where slow-roll is interrupted, like multifield models. We

also derive constraints for the case in which, in addition to cosmic microwave

observations, we also consider the data on the spectrum of luminous red galax-

ies from the 7th SDSS catalog, and the SNIa Union Compilation 2 data. We

have found that: (i) considering a model with features in the primordial power

spectrum increases the agreement with data with the respect of the featureless

“vanilla” ΛCDM model by ∆χ2 ≃ 7; (ii) the uncertainty on the determination

of the standard parameters is not degraded when features are included; (iii)

the best fit for the features model locates the step in the primordial spectrum

at a scale k ≃ 0.005 Mpc−1, corresponding to the scale where the outliers in

the WMAP7 data at ℓ = 22 and ℓ = 40 are located.; (iv) a distinct, albeit less

statistically significant peak is present in the likelihood at smaller scales, with

a ∆χ2 ≃ 3.5, whose presence might be related to the WMAP7 preference for

a negative value of the running of the scalar spectral index parameter; (v) the

inclusion of the LRG-7 data do not change significantly the best fit model, but

allows to better constrain the amplitude of the oscillations.
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10. M. Benetti, M. Gerbino, W. H. Kinney, E. W. Kolb, M. Lattanzi, A.
Melchiorri, L. Pagano, A. Riotto. ”Cosmological data and indications
for new physics”, Journal of Cosmology and Astroparticle Physics, 10
(2013) 030.

Data from the Atacama Cosmology Telescope (ACT) and the South Pole Tele-

scope (SPT), combined with the nine-year data release from the WMAP satel-

lite, provide very precise measurements of the cosmic microwave background

(CMB) angular anisotropies down to very small angular scales. Augmented

with measurements from Baryonic Acoustic Oscillations surveys and determi-

nations of the Hubble constant, we investigate whether there are indications

for new physics beyond a Harrison-Zel’dovich model for primordial perturba-

tions and the standard number of relativistic degrees of freedom at primordial

recombination. All combinations of datasets point to physics beyond the mini-

mal Harrison-Zel’dovich model in the form of either a scalar spectral index dif-

ferent from unity or additional relativistic degrees of freedom at recombination

(e.g., additional light neutrinos). Beyond that, the extended datasets including

either ACT or SPT provide very different indications: while the extended-ACT

(eACT) dataset is perfectly consistent with the predictions of standard slow-

roll inflation, the extended-SPT (eSPT) dataset prefers a non-power-law scalar

spectral index with a very large variation with scale of the spectral index. Both

eACT and eSPT favor additional light degrees of freedom. eACT is consis-

tent with zero neutrino masses, while eSPT favors nonzero neutrino masses at

more than 95% confidence.

11. M. Benetti. ”Updating constraints by Planck data on inlationary fea-
tures model”, Physical Review D 88 (2013) 087302.

We present new constraints on possible features in the primordial inflationary

density perturbations power spectrum in light of the recent Cosmic Microwave

Background Anisotropies measurements from the Planck satellite. We found

that the Planck data hints for the presence of features in two different ranges

of angular scales, corresponding to multipoles 10 < l < 60 and 150 < l < 300,

with a decrease in the best fit χ2 value with respect to the featureless ”vanilla”

LCDM model of ∆χ2 around 9 in both cases.

12. B. Patricelli, M.G. Bernardini, C.L. Bianco, L. Caito, G. de Barros, L.
Izzo, R. Ruffini and G.V. Vereshchagin, ”Analysis of GRB 080319B and
GRB 050904 within the Fireshell Model: Evidence for a Broader Spectral
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Energy Distribution”, The Astrophysical Journal, Volume 756, Issue 1,
article id. 16 (2012).

The observation of GRB 080319B, with an isotropic energy Eiso= 1.32 · 1054

erg, and GRB 050904, with Eiso= 1.04 · 1054 erg, offers the possibility of study-

ing the spectral properties of the prompt radiation of two of the most ener-

getic gamma-ray bursts (GRBs). This allows us to probe the validity of the

fireshell model for GRBs beyond 1054 erg, well outside the energy range where

it has been successfully tested up to now (1049-1053erg). We find that in the

low-energy region, the prompt emission spectra observed by Swift Burst Alert

Telescope (BAT) reveals more power than theoretically predicted. The oppor-

tunities offered by these observations to improve the fireshell model are out-

lined in this paper. One of the distinguishing features of the fireshell model

is that it relates the observed GRB spectra to the spectrum in the comoving

frame of the fireshell. Originally, a fully radiative condition and a comoving

thermal spectrum were adopted. An additional power law in the comoving

thermal spectrum is required due to the discrepancy of the theoretical and ob-

served light curves and spectra in the fireshell model for GRBs 080319B and

050904. A new phenomenological parameter α is correspondingly introduced

in the model. We perform numerical simulations of the prompt emission in

the Swift BAT bandpass by assuming different values of within the fireshell

model. We compare them with the GRB 080319B and GRB 050904 observed

time-resolved spectra, as well as with their time-integrated spectra and light

curves. Although GRB 080319B and GRB 050904 are at very different red-

shifts (z = 0.937 and z = 6.29, respectively), a value of α = −1.8 for both

of them leads to a good agreement between the numerical simulations and the

observed BAT light curves, time-resolved and time-integrated spectra. Such a

modified spectrum is also consistent with the observations of previously ana-

lyzed less energetic GRBs and reasons for this additional agreement are given.

Perspectives for future low-energy missions are outlined.

13. A.G. Aksenov, R. Ruffni, I. A. Siutsou and G. V. Vereshchagin, ”Dynam-
ics and emission of mildly relativistic plasma”, International Journal of
Modern Physics: Conference Series, Vol. 12, Issue 01, (2012) pp. 1-9.

Initially optically thick (with τ = 3 · 107) spherically symmetric outflow con-

sisting of electron-positron pairs and photons is considered. We do not as-

sume thermal equilibrium, and include the two-body processes that occur in

such plasma: Moller and Bhaba scattering of pairs, Compton scattering, two-
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photon pair annihilation, two-photon pair production, together with their ra-

diative three-body variants: bremsstrahlung, double Compton scattering, and

three-photon pair annihilation, with their inverse processes. We solve numer-

ically the relativistic Boltzmann equations in spherically symmetric case for

distribution functions of pairs and photons. Three epochs are considered in

details: a) the thermalization, which brings initially nonequilibrium plasma to

thermal equilibrium; b) the self-accelerated expansion, which we find in agree-

ment with previous hydrodynamic studies and c) decoupling of photons from

the expanding electron-positron plasma. Photon spectra are computed, and

appear to be non thermal near the peak of the luminosity. In particular, the

low energy part of the spectrum contain more power with respect to the black

body one.

14. A. Benedetti, W.-B. Han, R. Ruffini and G.V. Vereshchagin, “On the fre-
quency of oscillations in the pair plasma generated by a strong electric
field”, Physics Letters B, Vol. 698 (2011) 75-79.

We study the frequency of the plasma oscillations of electron-positron pairs

created by the vacuum polarization in a uniform electric field with strength E

in the range 0.2Ec < E < 10Ec. Following the approach adopted in Ruffini et

al. (2007) we work out one second order ordinary differential equation for a

variable related to the velocity from which we can recover the classical plasma

oscillation equation when E→0. Thereby, we focus our attention on its evo-

lution in time studying how this oscillation frequency approaches the plasma

frequency. The time-scale needed to approach to the plasma frequency and

the power spectrum of these oscillations are computed. The characteristic fre-

quency of the power spectrum is determined uniquely from the initial value

of the electric field strength. The effects of plasma degeneracy and pair anni-

hilation are discussed.

15. B. Patricelli, M.G. Bernardini, C.L. Bianco, L. Caito, L. Izzo, R. Ruffini
and G.V. Vereshchagin, “A New Spectral Energy Distribution of Pho-
tons in the Fireshell Model of GRBs”, International Journal of Modern
Physics D, Vol. 20 (2011) 1983-1987.

The analysis of various Gamma-Ray Bursts (GRBs) having a low energetics

within the fireshell model has shown how the N(E) spectrum of their prompt

emission can be reproduced in a satisfactory way by a convolution of ther-

mal spectra. Nevertheless, from the study of very energetic bursts such as,
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for example, GRB 080319B, some discrepancies between the numerical simu-

lations and the observational data have been observed. We investigate a dif-

ferent spectrum of photons in the comoving frame of the fireshell in order to

better reproduce the spectral properties of GRB prompt emission within the

fireshell model. We introduce a phenomenologically modified thermal spec-

trum: a thermal spectrum characterized by a different asymptotic power-law

index in the low energy region. Such an index depends on a free parameter α,

so that the pure thermal spectrum corresponds to the case α = 0. We test this

spectrum by comparing the numerical simulations with the observed prompt

emission spectra of various GRBs. From this analysis it has emerged that the

observational data can be correctly reproduced by assuming a modified ther-

mal spectrum with α = −1.8.

16. Elena Giusarma, Martina Corsi, Maria Archidiacono, Roland de Putter,
Alessandro Melchiorri, Olga Mena, Stefania Pandolfi. ”Constraints on
massive sterile neutrino species from current and future cosmological
data”, Phys.Rev. D83, 115023 (2011)

Sterile massive neutrinos are a natural extension of the standard model of ele-

mentary particles. The energy density of the extra sterile massive states affects

cosmological measurements in an analogous way to that of active neutrino

species. We perform here an analysis of current cosmological data and derive

bounds on the masses of the active and the sterile neutrino states, as well as

on the number of sterile states. The so-called (3+2) models, with three sub-

eV active massive neutrinos plus two sub-eV massive sterile species, is well

within the 95% CL allowed regions when considering cosmological data only.

If the two extra sterile states have thermal abundances at decoupling, big bang

nucleosynthesis bounds compromise the viability of (3+2) models. Forecasts

from future cosmological data on the active and sterile neutrino parameters

are also presented. Independent measurements of the neutrino mass from tri-

tium beta-decay experiments and of the Hubble constant could shed light on

sub-eV massive sterile neutrino scenarios.

17. M. Archidiacono, A. Melchiorri, S. Pandolfi, ”The impact of Reioniza-
tion modelling on CMB Neutrino Mass Bounds”, Nuclear Physics B,
Proceedings Supplements, Volume 217, Issue 1, p. 65-67. (2011)

We investigate the bounds on the neutrino mass in a general reionization sce-

nario based on a principal component approach. We found the constraint on
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the sum of the neutrino masses from CMB data can be relaxed by a ∼ 40 % in

a generalized reionization scenario.

18. Erminia Calabrese, Eloisa Menegoni, C. J. A. P. Martins, Alessandro
Melchiorri, and Graca Rocha, ”Constraining variations in the fine struc-
ture constant in the presence of early dark energy”, Phys.Rev. D84
(2011) 023518.

We discuss present and future cosmological constraints on variations of the

fine structure constant α induced by an early dark energy component hav-

ing the simplest allowed (linear) coupling to electromagnetism. We find that

current cosmological data show no variation of the fine structure constant at

recombination respect to the present-day value, with α/α0 = 0.975± 0.020 at

95% c.l., constraining the energy density in early dark energy to Ωe < 0.060 at

95% c.l. Moreover, we consider constraints on the parameter quantifying the

strength of the coupling by the scalar field. We find that current cosmological

constraints on the coupling are about 20 times weaker than those obtainable

locally (which come from Equivalence Principle tests). However forthcoming

or future missions, such as Planck Surveyor and CMBPol, can match and pos-

sibly even surpass the sensitivity of current local tests.

19. Micol Benetti, Massimiliano Lattanzi, Erminia Calabrese, Alessandro
Melchiorri, ”Features in the primordial spectrum: new constraints from
WMAP7+ACT data and prospects for Planck”, Phys. Rev. D 84, 063509
(2011)

We update the constraints on possible features in the primordial inflationary

density perturbation spectrum by using the latest data from the WMAP7 and

ACT Cosmic Microwave Background experiments. The inclusion of new data

significantly improves the constraints with respect to older work, especially to

smaller angular scales. While we found no clear statistical evidence in the data

for extensions to the simplest, featureless, inflationary model, models with

a step provide a significantly better fit than standard featureless power-law

spectra. We show that the possibility of a step in the inflationary potential

like the one preferred by current data will soon be tested by the forthcoming

temperature and polarization data from the Planck satellite mission.

20. Stefania Pandolfi, Elena Giusarma, Edward W. Kolb, Massimiliano
Lattanzi, Alessandro Melchiorri, Olga Mena, Manuel Pena, Asantha
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Cooray, Paolo Serra, ”Impact of general reionization scenarios on ex-
traction of inflationary parameters”, Phys.Rev. D82, 123527, (2010).

Determination of whether the Harrison–Zel’dovich spectrum for primordial

scalar perturbations is consistent with observations is sensitive to assumptions

about the reionization scenario. In light of this result, we revisit constraints

on inflationary models using more general reionization scenarios. While the

bounds on the tensor-to-scalar ratio are largely unmodified, when different

reionization schemes are addressed, hybrid models are back into the inflation-

ary game. In the general reionization picture, we reconstruct both the shape

and amplitude of the inflaton potential. We find a broader spectrum of poten-

tial shapes when relaxing the simple reionization restriction. An upper limit of

1016 GeV to the amplitude of the potential is found, regardless of the assump-

tions on the reionization history.

21. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Pair plasma relax-
ation time scales”, Physical Review E, Vol. 81 (2010) 046401.

By numerically solving the relativistic Boltzmann equations, we compute the

time scale for relaxation to thermal equilibrium for an optically thick electron-

positron plasma with baryon loading. We focus on the time scales of elec-

tromagnetic interactions. The collisional integrals are obtained directly from

the corresponding QED matrix elements. Thermalization time scales are com-

puted for a wide range of values of both the total energy density (over 10 or-

ders of magnitude) and of the baryonic loading parameter (over 6 orders of

magnitude). This also allows us to study such interesting limiting cases as the

almost purely electron-positron plasma or electron-proton plasma as well as

intermediate cases. These results appear to be important both for laboratory

experiments aimed at generating optically thick pair plasmas as well as for

astrophysical models in which electron-positron pair plasmas play a relevant

role.

22. R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Electron-positron pairs in
physics and astrophysics: from heavy nuclei to black holes” Physics
Reports, Vol. 487 (2010) No 1-4, pp. 1-140.

From the interaction of physics and astrophysics we are witnessing in these

years a splendid synthesis of theoretical, experimental and observational re-

sults originating from three fundametal physical processes. They were origi-

nally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg, Eu-

ler and Schwinger. For almost seventy years they have all three been followed
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by a continued effort of experimental verification on Earth-based experiments.

The Dirac process, e+e− → 2γ, has been by far the most successful. It has ob-

tained extremely accurate experimental verification and has led as well to an

enormous number of new physics in possibly one of the most fruitful experi-

mental avenue by introduction of storage rings in Frascati and followed by the

largest accelerators worldwide: DESY, SLAC etc. The Breit-Wheeler process,

2γ → e+e−, although conceptually simple, being the inverse process of the

Dirac one, has been by far one of the most difficult to be verified experimen-

tally. Only recently, through the technology based on free electron X-ray laser

and its numerous applications in Earth-based experiments, some first indica-

tions of its possible verification have been reached. The vacuum polarization

process in strong electromagnetic field, pioneered by Sauter, Heisenberg, Euler

and Schwinger, introduced the concept of critical electric field Ec = m2
e c3/eh̄.

It has been searched without success for more than forty years by heavy-ion

collisions in many of the leading particle accelerators worldwide. The novel

situation today is that these same processes can be studied on a much more

grandiose scale during the gravitational collapse leading to the formation of a

black hole being observed in Gamma Ray Bursts (GRBs). This report is ded-

icated to the scientific race in act. The theoretical and experimental work de-

veloped in Earth-based laboratories is confronted with the theoretical interpre-

tation of space-based observations of phenomena originating on cosmological

scales. What has become clear in the last ten years is that all the three above

mentioned processes, duly extended in the general relativistic framework, are

necessary for the understanding of the physics of the gravitational collapse to a

black hole. Vice versa, the natural arena where these processes can be observed

in mutual interaction and on an unprecedented scale, is indeed the realm of rel-

ativistic astrophysics. We systematically analyze the conceptual developments

which have followed the basic work of Dirac and Breit-Wheeler. We also recall

how the seminal work of Born and Infeld inspired the work by Sauter, Heisen-

berg and Euler on effective Lagrangian leading to the estimate of the rate for

the process of electron-positron production in a constant electric field. In ad-

dition of reviewing the intuitive semi-classical treatment of quantum mechan-

ical tunneling for describing the process of electron-positron production, we

recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and

effective Lagrangian for constant electromagnetic fields. We also review the

electron-positron production in both time-alternating electromagnetic fields,

studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the corre-

sponding processes relevant for pair production at the focus of coherent laser
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beams as well as electron beam-laser collision. We finally report some cur-

rent developments based on the general JWKB approach which allows to com-

pute the Schwinger rate in spatially varying and time varying electromagnetic

fields. We also recall the pioneering work of Landau and Lifshitz, and Racah

on the collision of charged particles as well as experimental success of AdA

and ADONE in the production of electron-positron pairs. We then turn to the

possible experimental verification of these phenomena. We review: A) the ex-

perimental verification of the e+e− → 2γ process studied by Dirac. We also

briefly recall the very successful experiments of e+e− annihilation to hadronic

channels, in addition to the Dirac electromagnetic channel; B) ongoing Earth

based experiments to detect electron-positron production in strong fields by

focusing coherent laser beams and by electron beam-laser collisions; and C) the

multiyear attempts to detect electron-positron production in Coulomb fields

for a large atomic number Z > 137 in heavy ion collisions. These attempts

follow the classical theoretical work of Popov and Zeldovich, and Greiner and

their schools. We then turn to astrophysics. We first review the basic work

on the energetics and electrodynamical properties of an electromagnetic black

hole and the application of the Schwinger formula around Kerr-Newman black

holes as pioneered by Damour and Ruffini. We only focus on black hole masses

larger than the critical mass of neutron stars, for convenience assumed to coin-

cide with the Rhoades and Ruffini upper limit of 3.2M⊙. In this case the elec-

tron Compton wavelength is much smaller than the spacetime curvature and

all previous results invariantly expressed can be applied following well estab-

lished rules of the equivalence principle. We derive the corresponding rate of

electron-positron pair production and the introduction of the concept of Dya-

dosphere. We review recent progress in describing the evolution of optically

thick electron-positron plasma in presence of supercritical electric field, which

is relevant both in astrophysics as well as ongoing laser beam experiments. In

particular we review recent progress based on the Vlasov-Boltzmann-Maxwell

equations to study the feedback of the created electron-positron pairs on the

original constant electric field. We evidence the existence of plasma oscillations

and its interaction with photons leading to energy and number equipartition

of photons, electrons and positrons. We finally review the recent progress ob-

tained by using the Boltzmann equations to study the evolution of an electron-

positron-photon plasma towards thermal equilibrium and determination of

its characteristic timescales. The crucial difference introduced by the correct

evaluation of the role of two and three body collisions, direct and inverse, is

especially evidenced. We then present some general conclusions. The results
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reviewed in this report are going to be submitted to decisive tests in the forth-

coming years both in physics and astrophysics. To mention only a few of the

fundamental steps in testing in physics we recall the starting of experimental

facilities at the National Ignition Facility at the Lawrence Livermore National

Laboratory as well as corresponding French Laser the Mega Joule project. In

astrophysics these results will be tested in galactic and extragalactic black holes

observed in binary X-ray sources, active galactic nuclei, microquasars and in

the process of gravitational collapse to a neutron star and also of two neutron

stars to a black hole giving origin to GRBs. The astrophysical description of

the stellar precursors and the initial physical conditions leading to a gravita-

tional collapse process will be the subject of a forthcoming report. As of today

no theoretical description has yet been found to explain either the emission of

the remnant for supernova or the formation of a charged black hole for GRBs.

Important current progress toward the understanding of such phenomena as

well as of the electrodynamical structure of neutron stars, the supernova ex-

plosion and the theories of GRBs will be discussed in the above mentioned

forthcoming report. What is important to recall at this stage is only that both

the supernovae and GRBs processes are among the most energetic and tran-

sient phenomena ever observed in the Universe: a supernova can reach energy

of ˜1054 ergs on a time scale of a few months and GRBs can have emission of

up to ˜1054 ergs in a time scale as short as of a few seconds. The central role

of neutron stars in the description of supernovae, as well as of black holes and

the electron-positron plasma, in the description of GRBs, pioneered by one of

us (rr) in 1975, are widely recognized. Only the theoretical basis to address

these topics are discussed in the present report.

23. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Kinetics of the
Mildly Relativistic Plasma and GRBs” in the Proceedings of “The Sun,
the stars, the Universe and General Relativity” meeting in honor of 95th
Anniversary of Ya. B. Zeldovich in Minsk, AIP Conference Proceedings
1205 (2010) 11-16.

We consider optically thick photon-pair-proton plasma in the framework of

Boltzmann equations. For the sake of simplicity we consider the uniform and

isotropic plasma. It has been shown that arbitrary initial distribution functions

evolve to the thermal equilibrium state through so called kinetic equilibrium

state with common temperature of all particles and nonzero chemical poten-

tials. For the plasma temperature 0.1− 10 MeV relevant for GRB (Gamma-Ray

Burst) sources we evaluate the thermalization time scale as function of total
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energy density and baryonic loading parameter.

24. E. Menegoni, S. Pandolfi, S. Galli, M. Lattanzi, A. Melchiorri “Con-
straints on the dark energy equation of state in presence of a varying
fine structure constant” in Int. J. Mod. Phys D19, 507 (2010).

We discuss the cosmological constraints on the dark energy equation of state

in the pres- ence of primordial variations in the fine structure constant. We

find that the constraints from CMB data alone on w and the Hubble constant

are much weaker when variations in the fine structure constant are permitted.

Vice versa, constraints on the fine struc- ture constant are relaxed by more

than 50% when dark energy models different from a cosmological constant are

considered.

25. C.J.A.P. Martins, E. Menegoni, S. Galli and A. Melchiorri, “Varying cou-
plings in the early universe: correlated variations of α and G, Physical
Review D 82 023532 (2010)

The cosmic microwave background anisotropies provide a unique opportu-

nity to constrain simultaneous variations of the fine-structure constant α and

Newton’s gravitational constant G. Those correlated variations are possible

in a wide class of theoretical models. In this brief paper we show that the

current data, assuming that particle masses are constant, give no clear indi-

cation for such variations, but already prefer that any relative variations in α

should be of the same sign of those of G for variations of 1%. We also show

that a cosmic complementarity is present with big bang nucleosynthesis and

that a combination of current CMB and big bang nucleosynthesis data strongly

constraints simultaneous variations in α and G. We finally discuss the future

bounds achievable by the Planck satellite mission.

26. E. Menegoni, “New Constraints on Variations of Fine Structure Con-
stant from Cosmic Microwave Background Anisotropies”, GRAVITA-
TIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO
COSMIC: Proceedings of the VIII Mexican School on Gravitation and
Mathematical Physics. AIP Conference Proceedings, Volume 1256, pp.
288-292 (2010).

The recent measurements of Cosmic Microwave Background temperature and

polarization anisotropy made by the ACBAR, QUAD and BICEP experiments

substantially improve the cosmological constraints on possible variations of

the fine structure constant in the early universe. In this work I analyze this

382



4.2. Publications (2005 – 2013)

recent data obtaining the constraint α/α0 = 0.987+/-0.012 at 68% c.l.. The in-

clusion of the new HST constraints on the Hubble constant further increases

the bound to α/α0 = 1.001+/-0.007 at 68% c.l., bringing possible deviations

from the current value below the 1% level.

27. A. Melchiorri, F. De Bernardis, E. Menegoni, “Limits on the neutrino
mass from cosmology”. GRAVITATIONAL PHYSICS: TESTING GRAV-
ITY FROM SUBMILLIMETER TO COSMIC: Proceedings of the VIII
Mexican School on Gravitation and Mathematical Physics. AIP Con-
ference Proceedings, Volume 1256, pp. 96-106 (2010).

We use measurements of luminosity-dependent galaxy bias at several different

redshifts, SDSS at z = 0.05, DEEP2 at z = 1 and LBGs at z = 3.8, combined with

WMAP five-year cosmic microwave background anisotropy data and SDSS

Red Luminous Galaxy survey three-dimensional clustering power spectrum

to put constraints on cosmological parameters.

28. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of the
mildly relativistic plasma”, Physical Review D, Vol. 79 (2009) 043008.

In the recent Letter Aksenov et al. (2007) we considered the approach of

nonequilibrium pair plasma towards thermal equilibrium state adopting a ki-

netic treatment and solving numerically the relativistic Boltzmann equations.

It was shown that plasma in the energy range 0.1-10 MeV first reaches kinetic

equilibrium, on a timescale tk . 10−14 sec, with detailed balance between

binary interactions such as Compton, Bhabha and Møller scattering, and pair

production and annihilation. Later the electron-positron-photon plasma ap-

proaches thermal equilibrium on a timescale tth . 10−12 sec, with detailed

balance for all direct and inverse reactions. In the present paper we system-

atically present details of the computational scheme used in Aksenov et al.

(2007), as well as generalize our treatment, considering proton loading of

the pair plasma. When proton loading is large, protons thermalize first by

proton-proton scattering, and then with the electron-positron-photon plasma

by proton-electron scattering. In the opposite case of small proton loading

proton-electron scattering dominates over proton-proton one. Thus in all cases

the plasma, even with proton admixture, reaches thermal equilibrium config-

uration on a timescale tth . 10−11 sec. We show that it is crucial to account

for not only binary but also triple direct and inverse interactions between elec-

trons, positrons, photons and protons. Several explicit examples are given and
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the corresponding timescales for reaching kinetic and thermal equilibria are

determined.

29. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
pair plasma with proton loading” in the Proceedings of “PROBING
STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE” meet-
ing, AIP Conference Proceedings 1111 (2009) 344-350.

We study kinetic evolution of nonequilibrium optically thick electron-positron

plasma towards thermal equilibrium solving numerically relativistic Boltz-

mann equations with energy per particle ranging from 0.1 to 10 MeV. We gen-

eralize our results presented in Aksenov et al. (2007), considering proton load-

ing of the pair plasma. Proton loading introduces new characteristic timescales

essentially due to proton-proton and proton-electron Coulomb collisions. Tak-

ing into account not only binary but also triple direct and inverse interactions

between electrons, positrons, photons and protons we show that thermal equi-

librium is reached on a timescale tth ≃ 10−11 sec.

30. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of
nonequilibrium electron-positron-photon plasmas”, Physical Review
Letters, Vol. 99 (2007) No 12, 125003.

Starting from a nonequilibrium configuration we analyze the role of the di-

rect and the inverse binary and triple interactions in reaching thermal equi-

librium in a homogeneous isotropic pair plasma. We focus on energies in the

range 0.1− 10 MeV. We numerically integrate the relativistic Boltzmann equa-

tion with the exact QED collisional integrals taking into account all binary and

triple interactions. We show that first, when a detailed balance is reached for

all binary interactions on a time scale tk < 10−14 sec, photons and electron-

positron pairs establish kinetic equilibrium. Subsequently, when triple inter-

actions satisfy the detailed balance on a time scale teq < 10−12 sec, the plasma

reaches thermal equilibrium. It is shown that neglecting the inverse triple in-

teractions prevents reaching thermal equilibrium. Our results obtained in the

theoretical physics domain also find application in astrophysics and cosmol-

ogy.

31. C.L. Bianco, R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Equations of
Motion and Initial and Boundary Conditions for Gamma-ray Burst”,
Journal of the Korean Physical Society, Vol. 49 (2006) No. 2, pp. 722-
731.
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We compare and contrast the different approaches to the optically thick adia-

batic phase of GRB all the way to the transparency. Special attention is given

to the role of the rate equation to be self consistently solved with the rela-

tivistic hydrodynamic equations. The works of Shemi and Piran (1990), Piran,

Shemi and Narayan (1993), Meszaros, Laguna and Rees (1993) and Ruffini,

Salmonson, Wilson and Xue (1999,2000) are compared and contrasted. The role

of the baryonic loading in these three treatments is pointed out. Constraints

on initial conditions for the fireball produced by electro-magnetic black hole

are obtained.

32. P. Singh, K. Vandersloot and G.V. Vereshchagin, “Nonsingular bouncing
universes in loop quantum cosmology”, Physical Review D, Vol. 74
(2006) 043510.

Nonperturbative quantum geometric effects in loop quantum cosmology

(LQC) predict a ρ2 modification to the Friedmann equation at high energies.

The quadratic term is negative definite and can lead to generic bounces when

the matter energy density becomes equal to a critical value of the order of

the Planck density. The nonsingular bounce is achieved for arbitrary matter

without violation of positive energy conditions. By performing a qualitative

analysis we explore the nature of the bounce for inflationary and cyclic model

potentials. For the former we show that inflationary trajectories are attractors

of the dynamics after the bounce implying that inflation can be harmoniously

embedded in LQC. For the latter difficulties associated with singularities in

cyclic models can be overcome. We show that nonsingular cyclic models can

be constructed with a small variation in the original cyclic model potential by

making it slightly positive in the regime where scalar field is negative.

33. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, “Joint constraints on the
lepton asymmetry of the Universe and neutrino mass from the Wilkin-
son Microwave Anisotropy Probe”, Physical Review D, Vol. 72 (2005)
063003.

We use the Wilkinson Microwave Anisotropy Probe (WMAP) data on the spec-

trum of cosmic microwave background anisotropies to put constraints on the

present amount of lepton asymmetry L, parametrized by the dimensionless

chemical potential (also called degeneracy parameter) xi and on the effective

number of relativistic particle species. We assume a flat cosmological model

with three thermally distributed neutrino species having all the same mass

385



4. Publications

and chemical potential, plus an additional amount of effectively massless ex-

otic particle species. The extra energy density associated to these species is

parametrized through an effective number of additional species ∆Nothers
e f f .

We find that 0 < |ξ| < 1.1 and correspondingly 0 < |L| < 0.9 at 2σ, so that

WMAP data alone cannot firmly rule out scenarios with a large lepton number;

moreover, a small preference for this kind of scenarios is actually found. We

also discuss the effect of the asymmetry on the estimation of other parameters

and, in particular, of the neutrino mass. In the case of perfect lepton symmetry,

we obtain the standard results. When the amount of asymmetry is left free, we

find at 2sigma. Finally we study how the determination of |L| is affected by

the assumptions on ∆N
e f f
others. We find that lower values of the extra energy

density allow for larger values of the lepton asymmetry, effectively ruling out,

at 2sigma level, lepton symmetric models with ∆N
e f f
others ≃ 0.

34. G.V. Vereshchagin, “Gauge Theories of Gravity with the Scalar Field in
Cosmology”, in “Frontiers in Field Theory”, edited by O. Kovras, Nova
Science Publishers, New York, (2005), pp. 213-255 (ISBN: 1-59454-127-
2).

Brief introduction into gauge theories of gravity is presented. The most general

gravitational lagrangian including quadratic on curvature, torsion and non-

metricity invariants for metric-affine gravity is given. Cosmological implica-

tions of gauge gravity are considered. The problem of cosmological singularity

is discussed within the framework of general relativity as well as gauge theo-

ries of gravity. We consider the role of scalar field in connection to this prob-

lem. Initial conditions for nonsingular homogeneous isotropic Universe filled

by single scalar field are discussed within the framework of gauge theories of

gravity. Homogeneous isotropic cosmological models including ultrarelativis-

tic matter and scalar field with gravitational coupling are investigated. We

consider different symmetry states of effective potential of the scalar field, in

particular restored symmetry at high temperatures and broken symmetry. Ob-

tained bouncing solutions can be divided in two groups, namely nonsingular

inflationary and

oscillating solutions. It is shown that inflationary solutions exist for quite gen-

eral initial conditions like in the case of general relativity. However, the phase

space of the dynamical system, corresponding to the cosmological equations

is bounded. Violation of the uniqueness of solutions on the boundaries of the

phase space takes place. As a result, it is impossible to define either the past
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or the future for a given solution. However, definitely there are singular solu-

tions and therefore the problem of cosmological singularity cannot be solved

in models with the scalar field within gauge theories of gravity.

35. R. Ruffini, M. G. Bernardini, C. L. Bianco, L. Caito, P. Chardonnet, M.
G. Dainotti, F. Fraschetti, R. Guida, M. Rotondo, G. Vereshchagin, L.
Vitagliano, S.-S. Xue,
”The Blackholic energy and the canonical Gamma-Ray Burst” in Cos-
mology and Gravitation: XIIth Brazilian School of Cosmology and
Gravitation, edited by M. Novello and S.E. Perez Bergliaffa, AIP Con-
ference Proceedings, Vol. 910, Melville, New York, 2007, pp. 55-217.

Gamma-Ray Bursts (GRBs) represent very likely “the” most extensive com-

putational, theoretical and observational effort ever carried out successfully

in physics and astrophysics. The extensive campaign of observation from

space based X-ray and γ-ray observatory, such as the Vela, CGRO, Bep-

poSAX, HETE-II, INTEGRAL, Swift, R-XTE, Chandra, XMM satellites, have

been matched by complementary observations in the radio wavelength (e.g.

by the VLA) and in the optical band (e.g. by VLT, Keck, ROSAT). The net

result is unprecedented accuracy in the received data allowing the determina-

tion of the energetics, the time variability and the spectral properties of these

GRB sources. The very fortunate situation occurs that these data can be con-

fronted with a mature theoretical development. Theoretical interpretation of

the above data allows progress in three different frontiers of knowledge: a) the

ultrarelativistic regimes of a macroscopic source moving at Lorentz gamma

factors up to ∼ 400; b) the occurrence of vacuum polarization process verify-

ing some of the yet untested regimes of ultrarelativistic quantum field theo-

ries; and c) the first evidence for extracting, during the process of gravitational

collapse leading to the formation of a black hole, amounts of energies up to

1055 ergs of blackholic energy — a new form of energy in physics and as-

trophysics. We outline how this progress leads to the confirmation of three

interpretation paradigms for GRBs proposed in July 2001. Thanks mainly to

the observations by Swift and the optical observations by VLT, the outcome of

this analysis points to the existence of a “canonical” GRB, originating from a

variety of different initial astrophysical scenarios. The communality of these

GRBs appears to be that they all are emitted in the process of formation of a

black hole with a negligible value of its angular momentum. The following

sequence of events appears to be canonical: the vacuum polarization process

in the dyadosphere with the creation of the optically thick self accelerating

387



4. Publications

electron-positron plasma; the engulfment of baryonic mass during the plasma

expansion; adiabatic expansion of the optically thick “fireshell” of electron-

positron-baryon plasma up to the transparency; the interaction of the accel-

erated baryonic matter with the interstellar medium (ISM). This leads to the

canonical GRB composed of a proper GRB (P-GRB), emitted at the moment

of transparency, followed by an extended afterglow. The sole parameters in

this scenario are the total energy of the dyadosphere Edya, the fireshell baryon

loading MB defined by the dimensionless parameter B = MBc2/Edya, and the

ISM filamentary distribution around the source. In the limit B −→ 0 the total

energy is radiated in the P-GRB with a vanishing contribution in the afterglow.

In this limit, the canonical GRBs explain as well the short GRBs. In these lec-

ture notes we systematically outline the main results of our model comparing

and contrasting them with the ones in the current literature. In both cases, we

have limited ourselves to review already published results in refereed pub-

lications. We emphasize as well the role of GRBs in testing yet unexplored

grounds in the foundations of general relativity and relativistic field theories.

36. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, ”Do WMAP data con-
straint the lepton asymmetry of the Universe to be zero?” in Albert Ein-
stein Century International Conference, edited by J.-M. Alimi, and A.
Füzfa, AIP Conference Proceedings, Vol. 861, Melville, New York, 2006,
pp.912-919.

It is shown that extended flat ΛCDM models with massive neutrinos, a size-

able lepton asymmetry and an additional contribution to the radiation content

of the Universe, are not excluded by the Wilkinson Microwave Anisotropy

Probe (WMAP) first year data. We assume a flat cosmological model with

three thermally distributed neutrino species having all the same mass and

chemical potential, plus an additional amount of effectively massless exotic

particle species X. After maximizing over seven other cosmological parame-

ters, we derive from WMAP first year data the following constraints for the

lepton asymmetry L of the Universe (95% CL): 0 < |L| < 0.9, so that WMAP

data alone cannot firmly rule out scenarios with a large lepton number; more-

over, a small preference for this kind of scenarios is actually found. We also

find for the neutrino mass mν < 1.2eV and for the effective number of rela-

tivistic particle species −0.45 < ∆Ne f f < 2.10, both at 95% CL. The limit on

∆Ne f f is more restrictive man others found in the literature, but we argue that

this is due to our choice of priors.
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37. R. Ruffini, C.L. Bianco, G.V. Vereshchagin, S.-S. Xue “Baryonic loading
and e+e− rate equation in GRB sources” to appear in the proceedings
of ”Relativistic Astrophysics and Cosmology - Einstein’s Legacy” Meet-
ing, November 7-11, 2005, Munich, Germany.

The expansion of the electron-positron plasma in the GRB phenomenon is

compared and contrasted in the treatments of Meszaros, Laguna and Rees, of

Shemi, Piran and Narayan, and of Ruffini et al. The role of the correct numeri-

cal integration of the hydrodynamical equations, as well as of the rate equation

for the electron-positron plasma loaded with a baryonic mass, are outlined and

confronted for crucial differences.

38. G.V. Vereshchagin, M. Lattanzi, H.W. Lee, R. Ruffini, ”Cosmological
massive neutrinos with nonzero chemical potential: I. Perturbations in
cosmological models with neutrino in ideal fluid approximation”, in
proceedings of the Xth Marcel Grossmann Meeting on Recent Develop-
ments in Theoretical and Experimental General Relativity, World Scien-
tific: Singapore, 2005, vol. 2, pp. 1246-1248.

Recent constraints on neutrino mass and chemical potential are discussed with

application to large scale structure formation. Power spectra in cosmologi-

cal model with hot and cold dark matter, baryons and cosmological term are

calculated in newtonian approximation using linear perturbation theory. All

components are considered to be ideal fluids. Dissipative processes are taken

into account by initial spectrum of perturbations so the problem is reduced to

a simple system of equations. Our results are in good agreement with those

obtained before using more complicated treatments.

39. M. Lattanzi, H.W. Lee, R. Ruffini, G.V. Vereshchagin, ”Cosmological
massive neutrinos with nonzero chemical potential: II. Effect on the es-
timation of cosmological parameters”, in proceedings of the Xth Marcel
Grossmann Meeting on Recent Developments in Theoretical and Exper-
imental General Relativity, World Scientific: Singapore, 2005, vol. 2, pp.
1255-1257.

The recent analysis of the cosmic microwave background data carried out by

the WMAP team seems to show that the sum of the neutrino mass is ¡0.7 eV.

However, this result is not model-independent, depending on precise assump-

tions on the cosmological model. We study how this result is modified when

the assumption of perfect lepton symmetry is dropped out.
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40. R. Ruffini, M. Lattanzi and G. Vereshchagin, ”On the possible role of
massive neutrinos in cosmological structure formation” in Cosmology
and Gravitation: Xth Brazilian School of Cosmology and Gravitation,
edited by M. Novello and S.E. Perez Bergliaffa, AIP Conference Pro-
ceedings, Vol. 668, Melville, New York, 2003, pp.263-287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe

that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

41. A.G. Aksenov, C.L. Bianco, R. Ruffini and G.V. Vereshchagin, “GRBs
and the thermalization process of electron-positron plasmas” in the Pro-
ceedings of the ”Gamma Ray Bursts 2007” meeting, AIP Conf.Proc.
1000 (2008) 309-312.

We discuss temporal evolution of the pair plasma, created in Gamma-Ray

Bursts sources. A particular attention is paid to the relaxation of plasma into

thermal equilibrium. We also discuss the connection between the dynamics of

expansion and spatial geometry of plasma. The role of the baryonic loading

parameter is emphasized.

42. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
Electron-Positron-Photon Plasmas with an Application to GRB” in REL-
ATIVISTIC ASTROPHYSICS: 4th Italian-Sino Workshop, AIP Confer-
ence Proceedings, Vol. 966, Melville, New York, 2008, pp. 191-196.

The pair plasma with photon energies in the range 0.1− 10MeV is believed

to play crucial role in cosmic Gamma-Ray Bursts. Starting from a nonequilib-

rium configuration we analyze the role of the direct and the inverse binary and

triple interactions in reaching thermal equilibrium in a homogeneous isotropic

pair plasma.We numerically integrate the relativistic Boltzmann equation with

the exact QED collisional integrals taking into account all binary and triple in-

teractions. We show that first, when a detailed balance is reached for all bi-

nary interactions on a time scale tk= 10−14sec , photons and electronpositron
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pairs establish kinetic equilibrium. Subsequently, when triple interactions sat-

isfy the detailed balance on a time scale teq= 10−12sec , the plasma reaches

thermal equilibrium. It is shown that neglecting the inverse triple interactions

prevents reaching thermal equilibrium. Our results obtained in the theoretical

physics domain also find application in astrophysics and cosmology.

43. R. Ruffini, G. V. Vereshchagin and S.-S. Xue, “Vacuum Polarization
and Electron-Positron Plasma Oscillations” in RELATIVISTIC ASTRO-
PHYSICS: 4th Italian-Sino Workshop, AIP Conference Proceedings, Vol.
966, Melville, New York, 2008, pp. 207-212.

We study plasma oscillations of electrons-positron pairs created by the vacuum

polarization in an uniform electric field. Our treatment, encompassing the

case of E > Ec, shows also in the case E < Ecthe existence of a maximum

Lorentz factor acquired by electrons and positrons and allows determination

of the a maximal length of oscillation. We quantitatively estimate how plasma

oscillations reduce the rate of pair creation and increase the time scale of the

pair production.

4.3. Publications (2014)

1. D. Begue and G.V. Vereshchagin, “Transparency of an instantaneously
created electron-positron-photon plasma”, MNRAS, Vol. 439 (2014), pp.
924-928.

The problem of the expansion of a relativistic plasma generated when a large

amount of energy is released in a small volume has been considered by many

authors. We use the analytical solution of Bisnovatyi-Kogan and Murzina for

the spherically symmetric relativistic expansion. The light curves and the spec-

tra from transparency of an electron-positron-photon plasma are obtained. We

compare our results with the work of Goodman.

2. I.A. Siutsou and G.V. Vereshchagin, “Relativistic spotlight ”, Physics
Letters B, Volume 730 (2014), pp. 190192.

Relativistic motion gives rise to a large number of interesting and sometimes

counterintuitive effects. In this work we consider an example of such effects,

which we term relativistic spotlight. When an isotropic source of soft photons

with proper intensity I0 is placed at rest between a distant observer and photo-

sphere of relativistic wind, its intensity as seen by the observer gets enhanced
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up to ∼ Γ4 I0, where Γ is bulk Lorentz factor of the wind. In addition, these

photons may extract a large part of the wind kinetic energy. We speculate that

such effect may be relevant for the physics of GRBs.

3. G.V. Vereshchagin, “Physics of non-dissipative ultrarelativistic photo-
spheres ”, International Journal of Modern Physics D Vol. 23, No. 1
(2014) 1430003.

Recent observations, especially by the Fermi satellite, point out the importance

of the thermal component in GRB spectra. This fact revives strong interest in

photospheric emission from relativistic outflows. Early studies already sug-

gested that the observed spectrum of photospheric emission from relativisti-

cally moving objects differs in shape from the Planck spectrum. However, this

component appears to be subdominant in many GRBs and the origin of the

dominant component is still unclear. One of the popular ideas is that energy

dissipation near the photosphere may produce a nonthermal spectrum and ac-

count for such emission. Before considering such models, though, one has to

determine precise spectral and timing characteristics of the photospheric emis-

sion in the simplest possible case. Hence this paper focuses on various physi-

cal effects which make the photospheric emission spectrum different from the

black body spectrum and quantifies them.

4. I.A. Siutsou, R. Ruffini and G.V. Vereshchagin, “Spreading of ultrarela-
tivistically expanding shell: an application to GRBs”, New Astronomy,
Vol. 27 (2014), pp. 30-33.

Optically thick energy dominated plasma created in the source of Gamma-Ray

Bursts (GRBs) expands radially with acceleration and forms a shell with con-

stant width measured in the laboratory frame. When strong Lorentz factor

gradients are present within the shell it is supposed to spread at sufficiently

large radii. There are two possible mechanisms of spreading: hydrodynamical

and thermal ones. We consider both mechanisms evaluating the amount of

spreading that occurs during expansion up to the moment when the expand-

ing shell becomes transparent for photons. We compute the hydrodynamical

spreading of an ultrarelativistically expanding shell. In the case of thermal

spreading we compute the velocity spread as a function of two parameters:

comoving temperature and bulk Lorentz factor of relativistic Maxwellian dis-

tribution. Based on this result we determine the value of thermal spreading

of relativistically expanding shell. We found that thermal spreading is negli-

gible for typical GRB parameters. Instead hydrodynamical spreading appears
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to be significant, with the shell width reaching ∼ 1010 cm for total energy

E = 1054 erg and baryonic loading B = 10−2. Within the fireshell model

such spreading will result in the duration of Proper Gamma-Ray Bursts up to

several seconds.

5. G. V. Vereshchagin, “Relativistic kinetic theory and its applications in
astrophysics and cosmology”, Proceedings of XV Brazilian School of
Cosmology and Gravitation, Mangaratiba - Rio de Janeiro – Brazil, Au-
gust 19 - September 1, 2012, Cambridge Scientific Publishers, 2014, in
press.

A brief introduction into relativistic kinetic theory is given. Some applications

of this theory in plasma physics, astrophysics and cosmology are reviewed.

6. A.G. Aksenov, R. Ruffni, I. A. Siutsou and G. V. Vereshchagin, “Rela-
tivistic degeneracy in the pair plasma ”, in preparation (2014).

7. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Radiative transfer
in relativistic plasma outflows and comptonization of photons near the
photosphere”, Astronomy Reports, 2014, in press.

8. D. Begue and R. Ruffini and G.V. Vereshchagin, “On the filling factor of
the circumburst medium and GRB emission ”, in preparation (2014).

9. R. Ruffini G. V. Vereshchagin Yu Wang, “Thermal emission in early af-
terglow from the GRB-SNR interaction ”, in preparation (2014).

10. R. Ruffini, C. R. Argüelles, and J. A. Rueda, ”On the core-halo dis-
tribution of dark matter in galaxies”, Submitted to PRL, arXiv:astro-
ph/1409.7365, 2014.

We investigate the distribution of dark matter in galaxies by solving the equa-

tions of equilibrium of a self-gravitating system of massive fermions (‘inos’)

at selected temperatures and degeneracy parameters within general relativity.

The most general solutions present, as a function of the radius, a segregation

of three physical regimes: 1) an inner core of almost constant density governed

by degenerate quantum statistics; 2) an intermediate region with a sharply de-

creasing density distribution followed by an extended plateau, implying quan-

tum corrections; 3) a decreasing density distribution ρ ∝ r−2 leading to flat ro-

tation curves fulfilling the classical Boltzmann statistics. The mass of the inos

is determined as an eigenfunction of the mass of the inner quantum cores. We
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compare and contrast this mass value with the lower limit on the particle mass

by Tremaine and Gunn (1979), and show that the latter is approached for the

less degenerate quantum cores in agreement with the fixed halo observables.

Consequences of this alternative approach to the massive core in SgrA* and to

dwarf galaxies are outlined.

11. C. R. Argüelles, R. Ruffini, I. Siutsou, and B. Fraga, ”On the distribution
of dark matter in galaxies: quantum treatments”, JKPS 65: 801, 2014.

The problem of modeling the distribution of dark matter in galaxies in terms of

equilibrium configurations of collisionless self-gravitating quantum particles

is considered. We first summarize the pioneering model of a Newtonian self-

gravitating Fermi gas in thermodynamic equilibrium developed by Ruffini

and Stella (1983), which is shown to be a generalization of the King model for

fermions. We further review the extension of the former model developed by

Gao, Merafina and Ruffini (1990), done for any degree of fermion degeneracy

at the center (θ0), within general relativity. Finally, we present here for the first

time the solutions of the density profiles and rotation curves corresponding to

the model of Gao et al. Those solutions have a definite mass Mh and a circu-

lar velocity vh at the halo radius rh of the configurations, which are typical of

spiral galaxies. This treatment allows us to determine a novel core-halo mor-

phology for the dark-matter profiles, as well as a novel bound on the particle

mass associated with those profiles.

12. C. R. Argüelles, B. Fraga, and R. Ruffini, ”Critical configurations for
a system of semidegenerate fermions”, JKPS 65: 809, arXiv:astro-
ph/1402.1329, 2014.

We study an isothermal system of semidegenerate self-gravitating fermions in

general relativity. Such systems present mass density solutions with a central

degenerate core, a plateau and a tail, this last following a power law behavior

r−2. The different solutions are governed by the free parameters of the model:

the degeneracy and the temperature parameters at the center and the particle

mass m. We then analyze in detail the free parameter space for a fixed m in

the keV region, by studying the one-parameter sequences of equilibrium con-

figurations up to the critical point, which is represented by the maximum in

a central density (ρ0) vs. core mass (Mc) diagram. We show that for fully de-

generate cores, the known expression for the critical core mass Mcr
c ∝ m3

pl/m2

is obtained, while for low degenerate cores, the critical core mass increases,

showing temperature effects in a nonlinear way. The main result of this work
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is that when applying this theory to model the distribution of dark matter in

galaxies from the very center to the outer halos, we do not find any critical

core-halo configuration of self-gravitating fermions that would be able to ex-

plain the super-massive dark object in their centers and the outer halo simul-

taneously.

13. C. R. Argüelles and R. Ruffini, ”Are the most super-massive dark com-
pact objects harbored at the center of dark matter halos?”, Honorable
mention by the Gravity Research Foundation 2014, IJMPD 23 No. 12,
1442020, arXiv:astro-ph/1405.7505, 2014.

We study an isothermal system of semi-degenerate self-gravitating fermions

in General Relativity (GR). The most general solutions present mass density

profiles with a central degenerate compact core governed by quantum statis-

tics followed by an extended plateau, and ending in a power law behaviour

r−2. By fixing the fermion mass m in the keV regime, the different solutions

depending on the free parameters of the model: the degeneracy and temper-

ature parameters at the center, are systematically constructed along the one-

parameter sequences of equilibrium configurations up to the critical point,

which is represented by the maximum in a central density (ρ0) Vs. core mass

(Mc) diagram. We show that for fully degenerate cores, the Oppenheimer-

Volkoff (OV) mass limit Mcr
c ∝ M3

pl/m2 is obtained, while instead for low de-

generate cores, the critical core mass increases showing the temperature effects

in a non linear way. The main result of this work is that when applying this

theory to model the distribution of dark matter in big elliptical galaxies from

miliparsec distance-scales up to 102 Kpc, we do not find any critical core-halo

configuration of self-gravitating fermions, able to explain both the most super-

massive dark object at their center together with the DM halo simultaneously.

14. C. R. Argüelles and R. Ruffini, ”A regular and relativistic Einstein clus-
ter within the S2 orbit centered in SgrA*”, IJMPD in press, 2014.

We use the Einstein Cluster model in order to provide an alternative to the

massive black hole thought to be hosted at the center of SgrA*. For this we

model the central sub-miliparsec region of our galaxy in terms of a constant

density Einstein cluster composed by dark matter particles of mass m, regard-

less of its nature. We analyze its stability conditions by two different meth-

ods considered in the literature, and explicitly show through the total mass

(M)versus radius(R) relation, up to which point an Einstein cluster of constant

particle number can be contracted, without losing its global stability. Finally,
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we compare the uppermost constant density constraints of stable clusters, with

the lowest limit in the mass density of SgrA* as imposed by modern VLBI mm

radio observations.

15. C. R. Argüelles, J. A. Rueda, and R. Ruffini, ”Fermionic dark matter
plus baryons in dwarf galaxies”, Submitted to Nonlinear phenomena
in complex systems, 2014.

A generalization of the Jeans equations in the context of galactic dynamics is

developed for a multi-component self-gravitating system composed of dark

matter particles and stars. In addition to the luminous profile, an underlying

fermionic phase-space density for the dark component is assumed. Under the

ansatz of isotropy, spherical symmetry and constant dispersion velocities, this

approach is applied to typical well resolved nucleated dwarf galaxies, to ob-

tain novel dark matter density profiles showing central mass concentrations at

pc distance-scales. Narrow constraints on the mass of the dark matter candi-

date of m ∼ 1 keV are obtained.
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A. Relativistic degeneracy in
nonequilibrium
electron-positron plasma

The description of processes involving electron-positron plasma is required
in many phenomena in physics and astrophysics (Ruffini et al., 2010). The
standard cosmological model includes lepton era with electron-positron
plasma at high temperature and initially in thermal equilibrium, see e.g.
Weinberg (2008). Strong electromagnetic fields are generated in laser ex-
periments aiming at production of electron-positron pairs (Gerstner, 2010;
Chen et al., 2009). When electromagnetic field invariants E2 −H2 and E ·H
approach critical value, vacuum breakdown is predicted (Schwinger, 1951) to
lead to copious pair production, ultimately forming electron-positron plasma
(Mustafa and Kämpfer, 2009). Strong electromagnetic fields are thought to
occur in astrophysical conditions, near such compact objects as black holes
(Damour and Ruffini, 1975), hypothetical strange stars (Alcock et al., 1986;
Usov, 1998) and possibly neutron stars (Belvedere et al., 2012).

Pair production by vacuum breakdown or by laser beam interactions is
in principle the out of equilibrium process. Relaxation of electron-positron
plasma to thermal equilibrium has been considered in Aksenov et al. (2007,
2009). There relativistic Boltzmann equations with exact QED collision
integrals taking into account all relevant two-particle (Bhabha scattering,
Møller scattering, Compton scattering, pair creation and annihilation) and
three-particle (relativistic bremsstrahlung, three photon annihilation, double
Compton scattering, and radiative pair production) interactions were solved
numerically. It was confirmed that a metastable state called ”kinetic equilib-
rium” (Pilla and Shaham, 1997) exists in such plasma, which is characterized
by the same temperature of all particles, but nonnull chemical potentials.
Such state occurs when the detailed balance of all two-particle reactions is
established. It was pointed out that direct and inverse three-particle inter-
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actions become relevant when kinetic equilibrium has been reached. These
three-particle interactions are shown to be essential (Aksenov et al., 2007) in
bringing electron-positron plasma to thermal equilibrium, as they are particle
non-conserving processes.

In Aksenov et al. (2010) relaxation timescales for optically thick electron-
positron plasma in a wide range of temperatures and proton loadings were
computed numerically using the kinetic code developed in Aksenov et al.
(2007, 2009). These timescales were previously estimated in the literature
by order of magnitude arguments using the reaction rates of the dominant
processes (Gould, 1981; Stepney, 1983). It was shown that these numeri-
cally obtained timescales differ from previous estimations by several orders
of magnitude. In the description of plasma Boltzmann statistics of parti-
cles was used in all these works. However, electrons, positrons and pho-
tons are quantum particles fulfilling Fermi-Dirac and Bose-Einstein statis-
tics, respectively. This leads to change of reaction rates considered firstly
in Uehling and Uhlenbeck (1933); Uehling (1934). The role of relativistic de-
generacy in pair plasma in establishing thermal equilibrium has never been
studied. In this Chapter we bridge this gap.

We generalize previous works on thermalization of uniform isotropic neu-
tral pair plasma. In addition to collision integrals for two-particle interactions
expressed through QED matrix elements we take into account also three-
particle interactions in the same way. Plasma degeneracy is accounted for
by quantum corrections to collision integrals with the corresponding Pauli
blocking and Bose enhancement factors. In Sec. A.1 basic parameters of pair
plasma are introduced. In Sec. A.2 concepts of kinetic and thermal equilib-
ria and their relations to detailed balance conditions are recalled. In Sec. A.3
relativistic Boltzmann equation is introduced. In Sec. A.3.1 two-particle col-
lision integrals are described. In Sec. A.3.2 three-particle collision integrals
are introduced. In Sec. A.4 details of adopted numerical scheme are given.
In Sec. A.6 our numerical results of integration of Boltzmann equations for
several interesting cases are described. Conclusions follow in Sec. A.7.

A.1. Basic parameters

The qualitative character of processes in electron-positron plasma is deter-
mined by a number of parameters, which we recall below, for details see
Aksenov et al. (2009).
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The average energy per particle 〈ε〉 determines wether plasma is in relativistic
or in non-relativistic domain. We consider mildly relativistic plasma with

0.01 .
〈ε〉

mec2
. 10, (A.1.1)

where me is electron mass, c is the speed of light. This range contains both
relativistic and non-relativistic domains. The upper limit is chosen to avoid
thermal production of other particles such as neutrinos and muons, while the
lower limit is required to have sufficient pair density (Aksenov et al., 2010).

The degeneracy parameter (Groot et al., 1980, p. 352) is defined as

D =
1

nλ3
th

, (A.1.2)

where n is number density of particles, λth =
ch̄

kT
is the thermal wave-length,

k is Boltzmann constant, T is temperature, h̄ = h/(2π), h is Planck constant.
In Fig. A.1 on the number density–energy density diagram for relativistic
electron-positron plasma we show nondegenerate (D > 1) and degenerate
(D < 1) regions.

The plasma parameter g is defined as

g =
1

nλ3
D

, (A.1.3)

where the Debye length (Groot et al., 1980, p. 351) is

λD =



















√

kT

4πe2n
, D > 1,

√

EF

4πe2n
, D < 1,

(A.1.4)

e is electron charge, and EF is the Fermi energy. For g ≪ 1 plasma is called
ideal, and Boltzmann equation for one-particle distribution functions can be
used for its description. This is indeed the case for relativistic plasma, as
discussed in Groot et al. (1980, p. 352).
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Figure A.1.: Number density-energy density diagram of relativistic electron-
positron plasma. Solid curve shows critical particle density ncr(ρ), obtained
from Eq. (A.2.1) with ξ = 0. Dashed line corresponds to transition from
nondegenerate D > 1 to degenerate D < 1 plasma, where D is defined by
Eq. (A.1.2).
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A.2. Kinetic and thermal equilibria

The classicality parameter defined by

κ =
e2

h̄vr
=

α

βr
, (A.1.5)

where α is the fine-structure constant, vr = βrc is mean relative velocity of the
particles, determines the type of cross section to be used in charged particle
collisions. In relativistic plasma κ ≪ 1, which requires quantum description.

The Coulomb logarithm defined by

Λ =
MλDΓrvr

h̄
, (A.1.6)

where M is the reduced mass of charged particles, Γr = (1− β2
r)
−1/2, charac-

terizes the strength of screening in Coulomb interactions.
Finally, the optical depth τ characterizes intensity of interactions between

photons and other particles. We discuss the computation of this important
parameter in details in the following Chapters. In static relativistic plasma,
which is the case in this Chapter, the optical depth can be estimated as

τ = σnl, (A.1.7)

where n is electron density, σ is Thompson cross section, and l is plasma
linear dimension. In this Chapter we assume τ ≫ 1.

A.2. Kinetic and thermal equilibria

The concepts of kinetic and thermal equilibria play important role in descrip-
tion of relativistic plasma. They both are connected with conditions of de-
tailed balance established for two-particles and three-particles interactions,
respectively.

A.2.1. Two-particle interactions and kinetic equilibrium

Kinetic equilibrium (Rybicki and Lightman, 1979; Pilla and Shaham, 1997) is
defined as the state with vanishing difference between the rates of direct
and inverse interactions for each of the two-particle processes. Such state
is characterized by two parameters: common temperature of all particles T
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Table A.1.: Two-particle processes in electron-positron plasma and detailed
balance conditions

Binary interactions Conditions

Møller and Bhabha scattering

e±1 e±2 ←→ e±′1 e±′2 n± =
1

exp
ǫ±−µ±

kT±
+ 1

e±e∓ ←→ e±′e∓′ T+ = T−
Compton scattering

e±γ←→ e±γ′ nγ =
1

exp
ǫγ−µγ

kTγ
− 1

T± = Tγ

Pair production and annihilation

γγ′ ←→ e±e∓ 2µγ = µ+ + µ−

and non-null chemical potential µ. Both these parameters can be found from
given energy density ρ and number density n by the system of equations































n =
8πm3

e c3

h3

(

2
∫ ∞

1

ǫ
√

ǫ2 − 1

eǫ/θ−ξ + 1
dǫ +

∫ ∞

0

ǫ2

eǫ/θ−ξ − 1
dǫ

)

,

ρ =
8πm4

e c5

h3

(

2
∫ ∞

1

ǫ2
√

ǫ2 − 1

eǫ/θ−ξ + 1
dǫ +

∫ ∞

0

ǫ3

eǫ/θ−ξ − 1
dǫ

)

,

(A.2.1)

where ǫ =
ε

mec2
is dimensionless energy, θ =

kT

mec2
is dimensionless temper-

ature and ξ =
µ

kT
is dimensionless chemical potential.

For instance, the detailed balance in electron-positron pair creation and an-
nihilation process

e+1 + e−2 ←→ γ3 + γ4 (A.2.2)
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is described by the condition

f+(ε1) f−(ε2)

[

1 +
fγ(ε3)

gγh−3

] [

1 +
fγ(ε4)

gγh−3

]

=

= fγ(ε3) fγ(ε4)

[

1− f+(ε1)

g+h−3

] [

1− f−(ε2)

g−h−3

]

, (A.2.3)

where fα(ε) are distribution functions of particle species α, gα = 2 are spin
weights of particles. Energies of interacting particles related by the conser-
vation law ε1 + ε2 = ε3 + ε4. The distribution functions fα are normalized as

nα(t) =
∫

fα(~p, t)d3
~p, (A.2.4)

where nα are the corresponding number densities. Similar conditions hold
for the detailed balance conditions in all other two-particle interactions listed
in Tab. A.1. Combining these conditions and requiring that distribution func-
tions for electrons and positrons (photons) have Fermi-Dirac (Bose-Einstein)
form we arrive to (Aksenov et al., 2009)

θ = θ+ = θ− = θγ, ξ = ξγ = ξ+ = ξ−. (A.2.5)

In fact, the chemical potential in kinetic equilibrium is constrained by the
condition ξ ≤ 0. The equality in this relation implies that there is a critical
number density ncr given by Eq. (A.2.1) with ξ = 0. Since in two-particle
processes the total number of particles (number density) is conserved, for
n > ncr Bose condensation of photons is expected. However, in reality three-
particle interactions do change the number of particles bringing the system
to thermal equilibrium with ξ = 0 (Khatri et al., 2012).

A.2.2. Three-particle interactions and thermal equilibrium

Thermal equilibrium is defined as the state with vanishing difference between
the rates of direct and inverse interactions of all processes. It was shown in
Aksenov et al. (2007) that in electron-positron plasma two-particle processes
are insufficient to bring the non-equilibrium system to thermal equilibrium.
The necessary condition for reaching thermal equilibrium is detailed balance
in three-particle processes.
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A. Relativistic degeneracy in nonequilibrium electron-positron plasma

For instance, the detailed balance in double Compton scattering

e±1 + γ2 ←→ e±3 + γ4 + γ5 (A.2.6)

is described by the condition

f±(ε1)

2h−3

fγ(ε2)

2h−3

[

1− f±(ε3)

2h−3

] [

1 +
fγ(ε4)

2h−3

] [

1 +
fγ(ε5)

2h−3

]

=

=
f±(ε3)

2h−3

fγ(ε4)

2h−3

fγ(ε5)

2h−3

[

1− f±(ε1)

2h−3

] [

1 +
fγ(ε2)

2h−3

]

. (A.2.7)

Provided that kinetic equilibrium is established, this condition, as any of the
corresponding conditions of all three-particle processes, constrains the chem-
ical potential to vanish, ξ = 0.

A.3. Boltzmann equations

In uniform and isotropic electron-positron plasma relativistic Boltz-
mann equations for distribution functions fα have the following form
(Aksenov et al., 2007):

d

dt
fα(p, t) = ∑

q

(

η
q
α − χ

q
α fα(p, t)

)

, (A.3.1)

where the sum enumerated by index q is taken over all two- and three-
particle processes q listed in Tab. A.2, η

q
α and χ

q
α are, respectively, emission

and absorption coefficients.

A.3.1. Two-particle collision integrals

Consider interaction of two incoming particles of species I and I I in quantum
states 1 and 2, producing two outgoing particles of species I I I and IV in
quantum states 3 and 4. Let initial particle momenta be ~p1 in a given range
d3~p1 and ~p2 in d3~p2, and final particle momenta be ~p3 in d3~p3 and ~p4 in d3~p4,
respectively. This process can be symbolically represented as follows

I1 + I I2 −→ I I I3 + IV4. (A.3.2)
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Table A.2.: Particle interactions in the pair plasma.

Two-particle processes Three-particle processes

Compton scattering Double Compton
e±γ−→e±′γ′ e±γ←→e±′γ′γ′′

Coulomb, Møller and Bhabha scattering Bremmstrahlung
e±1 e±2 −→ e±′1 e±′2 e±1 e±2 ←→e±′1 e±′2 γ
e+e− −→ e+′e−′ e+e−←→e+′e−′γ

Creation/annihilation Three-photon annihilation
e+e− ←→ γ1γ2 e+e−←→γ1γ2γ3

Pair creation/annihilation
γ1γ2←→e+e−γ′

e±γ←→e±′e+e−

The corresponding inverse process is thus

I I I3 + IV4 −→ I1 + I I2. (A.3.3)

Energy and momentum conservations read

ε̂ = ε1 + ε2 = ε3 + ε4, ~̂p = ~p1 + ~p2 = ~p3 + ~p4. (A.3.4)

The number of collisions per unit time and volume is, see e.g.
Landau and Lifshitz (1981, Eq. (2.1)),

dN

dVdt
= d3

~p1d3
~p2d3

~p3d3
~p4×

×W(1,2|3,4) f I(~p1, t) f I I(~p2, t)

(

1± f I I I(~p3, t)

2h−3

)(

1± f IV(~p4, t)

2h−3

)

, (A.3.5)

where W is the transition function, linked to QED matrix elements of the
reaction M f i as

W(1,2|3,4) =
h̄2c6

(2π)2

|M f i|2
16ε1ε2ε3ε4

δ(ε1 + ε2 − ε3 − ε4)δ
3(~p1 + ~p2 − ~p3 − ~p4),

(A.3.6)
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A. Relativistic degeneracy in nonequilibrium electron-positron plasma

δ is Dirac delta-function, and
[

1± fα(~p, t)/(gαh−3)
]

are Bose enhancement
(sign ”+”) and Pauli blocking (sign ”−”) factors. Matrix elements can be
found, for example, in Berestetskii et al. (1982), Eqs. (86.6, 88.4, 81.7, 81.17).

Then collision integral for the particle I in the state 1 is

ηI(~p1, t)− χI(~p1, t) f I(~p1, t) =
∫

d3
~p2d3

~p3d3
~p4×

×
[

W(3,4|1,2) f I I I(~p3, t) f IV(~p4, t)

(

1± f I(~p1, t)

2h−3

)(

1± f I I(~p2, t)

2h−3

)

−

−W(1,2|3,4) f I(~p1, t) f I I(~p2, t)

(

1± f I I I(~p3, t)

2h−3

)(

1± f IV(~p4, t)

2h−3

)]

. (A.3.7)

Specifically, for a scattering with I = I I I and I I = IV the inverse process
is the same as the direct one since pairs of indices (1, 2) and (3, 4) can be in-
terchanged. The relation W(1,2|3,4) = W(3,4|1,2) holds for all processes listed
in Tab. A.1. When incoming or outgoing particles coincide (I = I I and/or
I I I = IV) quantum indistinguishability gives the term 1

2 in front of the cor-
responding emission and absorption coefficients, see e.g. Ehlers (1973, p. 76),
Groot et al. (1980, p. 18).

There are 4 delta-functions in Eq. (A.3.6) representing conservation of en-
ergy and momentum (A.3.4). Three integrations over momentum of particle
I I I can be performed immediately

∫

d~p3δ3(~p1 + ~p2 − ~p3 − ~p4) −→ 1. (A.3.8)

In the integration over energy ε4 of particle IV it is necessary to take into
account that ε3 is now a function of energy and angles of particles I and I I,
as well as angles of particle IV, so we have

∫

dε4δ(ε1 + ε2 − ε3 − ε4) −→
1

1− (β3/β4)~n3 ·~n4
, (A.3.9)

where~n = ~p/p is the unit vector in the direction of particle momentum, p =

|~p| =
√

(ε/c)2 −m2c2 is the absolute value of particle momentum, β = pc/ε,
and a dot denotes scalar product of 3-vectors. We use spherical coordinates
in momentum space: {ε, µ, φ}, µ = cos ϑ, where ε is the particle energy, and ϑ
and φ are polar and azimuthal angles, respectively. Then energy and angles
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A.3. Boltzmann equations

of particle I I I and energy of particle IV follow from energy and momentum
conservations (A.3.4) and relativistic energy-momentum relation, namely

ε4 = c
√

p2
4 + m2

IVc2, ε3 = ε̂− ε4, ~p3 = ~̂p− ~p4,

p4 =
AB±

√

A2 + 4m2
IVc2(B2 − 1)

2(B2 − 1)
, (A.3.10)

A =
c

ε̂
[ p̂2 + (m2

I I I −m2
IV)c

2]− ε̂

c
, B =

c

ε̂
~n4 · ~̂p.

Then we introduce these relations into collision integral (A.3.7). We also
use spherical symmetry in momentum space to fix angles of the particle I:
µ1 = 1, φ1 = 0, and to perform the integration over azimuthal angle of par-
ticle I I:

∫

dφ2 −→ 2π, setting φ2 = 0 in the remaining integrals. Then final
expression for collision integral is

ηI(ε1, t)− χI(ε1, t) f I(ε1, t) =

=
h̄2

32π

∫

dε2dµ2 dµ4dφ4 ×
p2p4|M f i|2

ε1ε3 [1− (β3/β4)~n3 ·~n4]
×

×
[

f I I I(ε3, t) f IV(ε4, t)

(

1± f I(ε1, t)

2h−3

)(

1± f I I(ε2, t)

2h−3

)

−

− f I(ε1, t) f I I(ε2, t)

(

1± f I I I(ε3, t)

2h−3

)(

1± f IV(ε4, t)

2h−3

)]

. (A.3.11)
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For numerical integration, however, another expression is proved useful

ηI(ε, t)− χI(ε, t) f I(ε, t) =

=
h̄2

32π

[

∫

dε3 dε4dµ4 dµ2dφ2 × δ(ε1 − ε)×
p2p4|M f i|2

ε1ε3 [1− (β1/β2)~n1 ·~n2]
×

× f I I I(ε3, t) f IV(ε4, t)

(

1± f I(ε1, t)

2h−3

)(

1± f I I(ε2, t)

2h−3

)

−

−
∫

dε2dµ2 dµ4dφ4 ×
p2p4|M f i|2

εε3 [1− (β3/β4)~n3 ·~n4]
×

× f I(ε, t) f I I(ε2, t)

(

1± f I I I(ε3, t)

2h−3

)(

1± f IV(ε4, t)

2h−3

)

]

, (A.3.12)

where the first term, i.e. emission coefficient, is expressed in the form ready
for replacement by the sum over incoming particles I I I and IV. In this term
ε1, µ1, φ1, ε2 are given by relations (A.3.10) with indices exchange 1↔ 3, 2↔
4, I ↔ I I I, I I ↔ IV.

This collision integral of any of two-particle processes is a four-dimensional
integral in momentum space. In Sec. A.4 we show how such integral is com-
puted numerically on finite grid.

A.3.2. Three-particle collision integrals

Consider interaction of two incoming particles of species I and I I in quantum
states 1 and 2, producing three outgoing particles of species I I I, IV, and V
in quantum states 3, 4, and 5. Let particle momenta be ~p1 and ~p2 before the
interaction, and ~p3, ~p4, and ~p5 after interaction, respectively. This process can
be represented as

I1 + I I2 −→ I I I3 + IV4 + V5. (A.3.13)

The corresponding inverse process is

I I I3 + IV4 + V5 −→ I1 + I I2. (A.3.14)

Energy and momentum conservations give

ε1 + ε2 = ε3 + ε4 + ε5, ~p1 + ~p2 = ~p3 + ~p4 + ~p5. (A.3.15)
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A.3. Boltzmann equations

The number of collisions of the direct process (A.3.13) per unit time and
volume is

dN

dVdt
= d3

~p1d3
~p2d3

~p3d3
~pkd3

~p5 ×W(1,2|3,4,5) × f I(~p1, t) f I I(~p2, t)×

×
(

1± f I I I(~p3, t)

2h−3

)(

1± f IV(~p4, t)

2h−3

)(

1± fV(~p5, t)

2h−3

)

. (A.3.16)

For the inverse process (A.3.14) this number is

dN

dVdt
= d3

~p1d3
~p2d3

~p3d3
~p3d3

~p5×
×W(3,4,5|1,2) × f I I I(~p3, t) f IV(~p4, t) fV(~p5, t)×

×
(

1± f I(~p1, t)

2h−3

)(

1± f I I(~p2, t)

2h−3

)

. (A.3.17)

Then collision integral for particle I in the state 1 becomes

ηI(~p1, t)− χI(~p1, t) f I(~p1, t) =
∫

d3
~p2d3

~p3d3
~p4d3

~p5

×
[

W(3,4,5|1,2) × f I I I(~p3, t) f IV(~p4, t) fV(~p5, t)×

×
(

1± f I(~p1, t)

2h−3

)(

1± f I I(~p2, t)

2h−3

)

−

−W(1,2|3,4,5) × f I(~p1, t) f I I(~p2, t)×

×
(

1± f I I I(~p3, t)

2h−3

)(

1± f IV(~p4, t)

2h−3

)(

1± fV(~p5, t)

2h−3

)]

, (A.3.18)

where the first term in square parenthesis corresponds to emission of particle
I in inverse process (A.3.14), while the second term corresponds to absorption
of particle I in direct process (A.3.13). So far we considered the case when
all incoming and outgoing particles are different. When the same particle
is present among incoming and outgoing ones, the collision integral for this
particle species becomes more complicated.

Consider, for instance, the case when I = V. This particle disappears from
the quantum state 1 and appears in the quantum state 5 in the direct process
(A.3.13). The same particle disappears from the quantum state 5 and appears

419



A. Relativistic degeneracy in nonequilibrium electron-positron plasma

in the quantum state 1 in the inverse process (A.3.14). Consequently two
terms in the collision integral on the RHS of Boltzmann equation (A.3.1) are
ready to be written. These are the absorption coefficient χI(~p1, t) f I(~p1, t) in
the direct process (A.3.13) and the emission coefficient ηI(~p1, t) in the inverse
process (A.3.14). Both these terms appear in Eq. (A.3.18). However, indices
denoted with arabic numbers enumerate quantum particle states, which are
arbitrary. Consequently, indices 1 and 5 can be interchanged both in direct
(A.3.13) and inverse (A.3.14) processes. Then two new terms in collision inte-
gral for particle I in state 1 appear: emission coefficient ηI(~p1, t) in direct pro-
cess I5 + I I2 −→ I I I3 + IV4 + I1, and absorption coefficient χI(~p1, t) f I(~p1, t)
in inverse process I I I3 + IV4 + I1 −→ I5 + I I2. Combining all four terms, the
collision integral in this case becomes

ηI(~p1, t)− χI(~p1, t) f I(~p1, t) =
∫

d3
~p2d3

~p3d3
~p4d3

~p5×

×
[

−W(1,2|3,4,5) × f I(~p1, t) f I I(~p2, t)×

×
(

1± f I I I(~p3, t)

2h−3

)(

1± f IV(~p4, t)

2h−3

)(

1± f I(~p5, t)

2h−3

)

+

+ W(3,4,5|1,2) × f I I I(~p3, t) f IV(~p4, t) f I(~p5, t)×

×
(

1± f I(~p1, t)

2h−3

)(

1± f I I(~p2, t)

2h−3

)

−

+ W(5,2|3,4,1) × f I(~p5, t) f I I(~p2, t)×

×
(

1± f I I I(~p3, t)

2h−3

)(

1± f IV(~p4, t)

2h−3

)(

1± f I(~p1, t)

2h−3

)

+

−W(3,4,1|5,2) × f I I I(~p3, t) f IV(~p4, t) f I(~p1, t)×

×
(

1± f I(~p5, t)

2h−3

)(

1± f I I(~p2, t)

2h−3

)]

. (A.3.19)

Generally speaking, such four terms should be present in collision integral of
any reaction for a particle specie which is present both among incoming and outgoing
particles, unless the process is a scattering. This statement is valid for arbitrary
number of incoming and outgoing particles. It is not limited to QED but
applies to any quantum field theory in general.
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All three-particle QED processes listed in Tab. A.2, with exception of three-
photon annihilation, are indeed represented by four terms in collision inte-
grals. Such four terms for double Compton scattering with corresponding
symmetrization factors were considered by Chluba (2005). It should be noted,
that the detailed balance conditions discussed in Sec. A.2.2 may be obtained
(Lightman, 1981; Thorne, 1981) with only two terms in collision integrals,
without interchanging the states 1 and 5. However, the structure of all four
coefficients is different, and their presence in collision integral (A.3.19) is es-
sential.

In three-particle processes transition function W can be expressed through
the differential cross-section dσ. Using the definition of dσ (Berestetskii et al.,

1982, Eq. (64.18)) and its relation to number of collisions
dN

dVdt
per unit time

in unit volume (A.3.16), given by Eq. (12.7) in Landau and Lifshits (1994), we
have

W(1,2|3,4,5)d
3
~p3d3

~p4d3
~p5 = c

√

[ε1ε2 − (~p1 · ~p2)c2]2 − (mImI Ic4)2

ε1ε2
dσ. (A.3.20)

The differential cross section in turn can be expressed through dimensionless
matrix element squared X, see Jauch and Rohrlich (1976, Eq. (11.31)). Then
we obtain

W(1,2|3,4,5) =
αr2

e

(4π)2
× c7X

ε1ε2ε3ε4ε5
δ(εinitial− ε final)δ

3(pinitial−p final), (A.3.21)

where re =
e2

mec2
is the classical electron radius. For double Compton scat-

tering X is given by Eqs. (3), (9), (10) of Mandl and Skyrme (1952). For rela-
tivistic bremsstrahlung X = 16A, where A is given by Eqs. in Appendix B of
Haug and Nakel (2004).

Matrix elements for all other processes of Tab. A.2 can be obtained from
the ones of double Compton scattering and of relativistic bremsstrahlung by
the substitution law, given in Jauch and Rohrlich (1976, Sec. 8.5). For exam-
ple, exchanging initial photon with the final electron or positron in double
Compton scattering

e−1 + γ2 −→ e−3 + γ4 + γ5, (A.3.22)
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we obtain three-photon annihilation process

e−1 + e+3 −→ γ2 + γ4 + γ5. (A.3.23)

The matrix element squared of this process (A.3.23) can then be obtained from
the one of double Compton process (A.3.22) with the following substitution
law

~p3 −→ −~p3, ε3 −→ −ε3, ~p2 −→ −~p2, ε2 −→ −ε2. (A.3.24)

The detailed balance condition for three-particle processes gives

h3W(1,2|3,4,5) = 2W(3,4,5|1,2). (A.3.25)

Following the same line of reasoning as in the derivation of Eq. (A.3.12), we
arrive to the collision integral in the form

ηI(ε, t)− χI(ε, t) f I(ε, t) =

=
αr2

e c

8π

[

∫

dε3 dε4dµ4 dε5dµ5dφ5 dµ2dφ2 × δ(ε1 − ε)×

× p2p4p5X

ε1ε3 [1− (β1/β2)~n1 ·~n2]
×

× f I I I(ε3, t) f IV(ε4, t) fV(ε5, t)

(

1± f I(ε1, t)

2h−3

)(

1± f I I(ε2, t)

2h−3

)

−

−
∫

dε2dµ2 dµ4dφ4 dε5dµ5dφ5 ×
p2p4p5 X

εε3 [1− (β3/β4)~n3 ·~n4]
×

× f I(ε, t) f I I(ε2, t)

(

1± f I I I(ε3, t)

2h−3

)(

1± f IV(ε4, t)

2h−3

)(

1± fV(ε5, t)

2h−3

)

]

,

(A.3.26)

where again the form of the first integral is ready to be substituted by corre-
sponding sum over incoming particles I I I, IV, and V. In this first integral,
i.e. in the emission coefficient, in order to find energy and angles of parti-
cle I and energy of particle I I relations (A.3.10) should be used with indices
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exchange 1↔ 3, 2↔ 4, I ↔ I I I, I I ↔ IV, and

ε̂ = ε3 + ε4 + ε5, ~̂p = ~p3 + ~p4 + ~p5. (A.3.27)

In the absorption coefficient in order to find energy and angles of particle I I I
and energy of particle IV from relation (A.3.10) instead of (A.3.4) the follow-
ing relations must be used

ε̂ = ε1 + ε2 − ε5, ~̂p = ~p1 + ~p2 − ~p5. (A.3.28)

This collision integral (A.3.26) of any of three-particle processes is a seven-
dimensional integral in momentum space. In the next Section we show how
such integral is computed numerically on finite grid.

A.4. The numerical scheme

The main difficulty arising in computation of collision integrals in compar-
ison with previous works (Aksenov et al., 2007, 2009, 2010) is that particle
emission and absorbtion coefficients contain not only distribution functions
of incoming particles, but also those of outgoing particles. Therefore we
adopt a different approach which we refer to as ”reaction-oriented” instead
of ”particle-oriented” one used earlier.

The phase space is divided in zones. The zone Ωα
a,j,k for particle specie α

corresponds to energy εa, cosine of polar angle µj and azimuthal angle φk,
where indices run in the following ranges 1 ≤ a ≤ amax, 1 ≤ j ≤ jmax, and
1 ≤ k ≤ kmax. The zone boundaries are εa∓1/2, µj∓1/2, φk∓1/2. The length of
the a-th energy zone Ωα

a is ∆εa ≡ εa+1/2 − εa−1/2. On finite grid fα does not
depend on µ and φ, and number density of particle α in zone a is

Yα
a (t) = 4π

∫ εa+1/2

εa−1/2

c−3ε
√

ε2 −m2
αc4 fα(ε, t)dε =

= 4πc−3εa

√

ε2
a −m2

αc4 fα(εa, t)∆εa. (A.4.1)

In this variables discretized Boltzmann equation for particle I and energy
zone a reads

dYα
a (t)

dt
= ∑

[

η I
a(t)− χI

a(t)Y
I
a (t)

]

, (A.4.2)
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where the sum is taken over all processes involving particle I. Emission and
absorption coefficients on the grid are obtained by integration of (A.3.12) for
two-particle processes and of (A.3.26) for three-particle processes over the
zone. The corresponding integrals are replaced by sums on the grid. For
instance, absorption coefficient for incoming particle I in two-particle process
(A.3.2) is

χI
a(t)Y

I
a (t) =

h̄2c4

8(4π)2 ∑
b,j,s,k

∆µj∆µs∆φk × |M f i|2×

× p4

ε3[1− (β3/β4)~n3 ·~n4]
× Y I

a (t)

εa

Y I I
b (t)

εb
×
[

1± Y I I I
c (t)

Ȳ I I I
c

]

[

1± Y IV
d (t)

Ȳ IV
d

]

,

(A.4.3)

where index j denotes polar angle zone of incoming particle I I, index s de-
notes polar angle zone of outgoing particle IV, index k denotes azimuthal
angle zone of outgoing particle IV, and

Ȳα
a = 4π

∫ εa+1/2

εa−1/2

c−3ε
√

ε2 −m2
αc42h−3dε =

= 8π(hc)−3εa

√

ε2
a −m2

αc4∆εa. (A.4.4)

Emission coefficient of particle I in process (A.3.3) from integration of (A.3.12)
is

η I
a(t) =

h̄2c4

8(4π)2 ∑
c,d,j,s,k

Ca(ε1)∆µj∆µs∆φk × |M f i|2×

× p2

ε1[1− (β1/β2)~n1 ·~n2]
× Y I I I

c (t)

εc

Y IV
d (t)

εd
×
[

1± Y I
a (t)

Ȳ I
a

]

[

1± Y I I
b (t)

Ȳ I I
b

]

,

(A.4.5)

where index j denotes polar angle zone of incoming particle IV, index s de-
notes polar angle zone of outgoing particle I I, index k denotes azimuthal
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angle zone of outgoing particle I I, and

Ca(ε1) =































εa − ε1

εa − εa−1
, εa−1 < ε1 < εa,

εa+1 − ε1

εa+1 − εa
, εa < ε1 < εa+1,

0, otherwise.

(A.4.6)

In integration of (A.3.12) over the zone one can integrate out the δ-function
∫

δ(ε1− ε)dε1 −→ 1. However, when energies of incoming particles are fixed
on the grid, the energies of outgoing particles are not on the grid. Hence an
interpolation (A.4.6) is adopted, which enforces the exact number of particles
and energy conservation in each two-particle process due to redistribution
of outgoing particle α with energy ε over two energy zones Ωα

n, Ωα
n+1 with

εn < ε < εn+1.

The redistribution of final particles should also satisfy requirements of
quantum statistics. Therefore if a process occurs, when final particle should
be distributed over the quantum states which are fully occupied, such pro-
cess is forbidden. Thus we introduce the Bose enhancement/Pauli blocking
coefficients in (A.4.3) and (A.4.5) as

[

1± Yα
a (t)

Ȳα
a

]

= min

(

1± Yα
n (t)

Ȳα
n

, 1±
Yα

n+1(t)

Ȳα
n+1

)

. (A.4.7)

The sum over angles µj, µs, φk can be found once and for all at the begin-
ning of the calculations. We then store in the program for each set of the
incoming and outgoing particles the corresponding terms and redistribution
coefficients given by Eq. (A.4.6).

Extension of this scheme to three-particle interactions is straightforward.
However, unlike two-particle case where pairs of indices I, I I and I I I, IV
can be interchanged, in three-particle case there is no such symmetry. Then
we give absorption and emission coefficients for incoming and outgoing par-
ticles in processes (A.3.13) and (A.3.14) separately. Considering the direct
process (A.3.13), finite difference representation of absorption coefficient for
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incoming particle I in (A.3.26) is

χI
a(t)Y

I
a (t) =

αr2
e c3

2(4π)2 ∑
b,j,s,k, f ,p,r

∆µj∆µs∆φk∆ε f ∆µp∆φr×

× X× p4p5

ε3[1− (β3/β4)~n3 ·~n4]
× Y I

a (t)

εa

Y I I
b (t)

εb
×

×
[

1± Y I I I
c (t)

Ȳ I I I
c

]

[

1± Y IV
d (t)

Ȳ IV
d

] [

1±
YV

f (t)

ȲV
f

]

, (A.4.8)

and emission coefficient for outgoing particle I I I is

η I I I
c (t) =

αr2
e c3

2(4π)2 ∑
a,b,j,s,k, f ,p,r

∆µj∆µs∆φk∆ε f ∆µp∆φr×

× Ca(ε3)× X× p4p5

ε3[1− (β3/β4)~n3 ·~n4]
× Y I

a (t)

εa

Y I I
b (t)

εb
×

×
[

1± Y I I I
c (t)

Ȳ I I I
c

]

[

1± Y IV
d (t)

Ȳ IV
d

] [

1±
YV

f (t)

ȲV
f

]

, (A.4.9)

where indices f , p, r denote energy, polar angle and azimuthal angle zone of
outgoing particle V, respectively. Considering the inverse process (A.3.14),
emission coefficient for the outgoing particle I is

η I
a(t) =

αr2
e c5h3

4(4π)3 ∑
c,s,k,d,j, f ,p,r

∆µs∆φk∆µj∆µp∆φr×

× Ca(ǫ1)× X× p2

ε1[1− (β1/β2)~n1 ·~n2]

Y I I I
c (t)

εc

Y IV
d (t)

εd

YV
f (t)

ε f
×

×
[

1± Y I
a (t)

Ȳ I
a

]

[

1± Y I I
b (t)

Ȳ I I
b

]

, (A.4.10)
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while absorption coefficient for the incoming particle I I I is

χI I I
c (t)Y I I I

c (t) =
αr2

e c5h3

4(4π)3 ∑
s,k,d,j, f ,p,r

∆µs∆φk∆µj∆µp∆φr×

× X× p2

ε1[1− (β1/β2)~n1 ·~n2]

Y I I I
c (t)

εc

Y IV
d (t)

εd

YV
f (t)

ε f
×

×
[

1± Y I
a (t)

Ȳ I
a

]

[

1± Y I I
b (t)

Ȳ I I
b

]

, (A.4.11)

where indices s and k denote polar and azimuthal angle zones of outgoing
particle I I, respectively; index j denotes polar angle zone of incoming particle
IV, and indices f , p, r denote energy, polar angle and azimuthal angle zone
of particle V, respectively.

In these sums (A.4.8–A.4.11) summation over angles µj, µs, φk, µp, φr again
can be performed once and for all at the beginning of the calculations. Rep-
resentation of discretized collisional integral for particle I and energy zone a
in processes (A.3.2, A.3.3, A.3.13, A.3.14) is

dY I
a

dt
= −∑ A×Y I

a (t)Y
I I
b (t)×

[

1± Y I I I
c (t)

Ȳ I I I
c

]

[

1± Y IV
d (t)

Ȳ IV
d

]

+

+ ∑ B×Y I I I
c (t)Y IV

d (t)×
[

1± Y I
a (t)

Ȳ I
a

]

[

1± Y I I
b (t)

Ȳ I I
b

]

−

−∑ C×Y I
a (t)Y

I I
b (t)×

[

1± Y I I I
c (t)

Ȳ I I I
c

]

[

1± Y IV
d (t)

Ȳ IV
d

] [

1±
YV

f (t)

ȲV
f

]

+

+ ∑ D×Y I I I
c (t)Y IV

d (t)YV
f (t)×

[

1± Y I
a (t)

Ȳ I
a

]

[

1± Y I I
b (t)

Ȳ I I
b

]

, (A.4.12)

where constant coefficients A, B, C, D are obtained from the summation over
angles in the sums (A.4.3, A.4.5, A.4.8, A.4.10). The full Boltzmann equation
(A.4.2) contains similar sums for all processes from Tab. A.2. Each individual
term in these sums appears in the system of discretized Boltzmann equations
four or five times in emission and absorption coefficients for each particle
entering a given process. Then each term can be computed only once and
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A. Relativistic degeneracy in nonequilibrium electron-positron plasma

added to all corresponding sums, that is the essence of our ”reaction-oriented”
approach.

In our method exact energy and number of particles conservation laws are
satisfied. The number of energy intervals is typically 20, while internal grid
of angles has 32 points in µ and 64 in φ. The system under consideration has
several characteristic times for different processes, and therefore the result-
ing system of ordinary differential equations (A.4.2) is stiff. We use Gear’s
method (Hall and Watt, 1976) to integrate the system numerically.

A.5. Rates of three-particle interactions

In previous works Aksenov et al. (2007, 2009); ? three-particle interactions
were taken into account only approximately. Since in nondegenerate plasma
triple interactions have rates smaller than the binary ones by a factor α, it
was shown that kinetic equilibrium is established well before three-particle
interaction become essential. Once the kinetic equilibrium is reached, each
collision integral contains multipliers proportional to

Fi = exp
νi

θi
, (A.5.1)

called fugacity. The calculation of emission and absorption coefficients can
then be performed using the well established thermal equilibrium rates
Svensson (1984), multiplied by the corresponding fugacities.

When quantum corrections are taken into account the simplification dis-
cussed above does not apply. The three-particle interactions have to be com-
puted from first principles, as described above. Here we present the rates
of three-particle processes in thermal equilibrium in relativistic plasma. In
non-degenerate case these rates are given in Svensson (1982a, 1984).

Once relaxation is finished, the right hand side of Boltzmann equations
for photons and pairs vanishes. However, coefficients for individual pro-
cesses listed in Table A.2 do not. In Fig. A.2 we show normalized emission
and absoprtion coefficients (η/n and χ) for electrons (left panel) and pho-
tons (right panel) in direct and inverse process of double Compton scatter-
ing e + γ ←→ e′ + γ′ + γ′′ in thermal equilibrium at temperature θ = 1 as
functions of electron energy, measured in units of mc2. This equilibrium is
reached on the grid with 20 intervals in energy and 16 and 32 intervals in
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A.5. Rates of three-particle interactions

angles ϑ and φ, respectively. Given strong anisotropy of matrix elements for
three-particle processes, this grid is still relatively coarse. However, given
the computational performance of current computers and intrinsic difficul-
ties in applying well established parallel computational schemes to the code
this is best one can reach. Nevertheless, one can see regular behaviour of
emission and absorption coefficients everywhere except the very last inter-
val which should be excluded from the analysis. One can also see the in-
crease of all emission and absorption coefficients for photons (except for ab-
sorption in direct process) as photon energy decreases below the value mc2.
In Fig. A.3 we show the same normalized emission and absorption coeffi-
cients for electron-electron bremsstrahlung process e1 + e2 ←→ e′1 + e′2 + γ.
While the direct emission and absorption coefficients for electrons in this pro-
cess are almost independent on electron energy, the inverse ones grow as a
power law. Interestingly, different behaviour is seen for emission and ab-
sorption coefficients of photons. While both decrease with photon energy,
the former saturates at energies at relativistic energies, and the latter contin-
ues to decrease as a power law. In Fig. A.4 we present the same normal-
ized emission and absorption coefficients for the radiative pair production
process e + γ ←→ e′ + e+ + e−. One can see the exponential cut-off due to
energy threshold for all coefficients of electrons, except for absorption in the
direct process. Finally, total emission and absorption coefficients for all three-
particle processes is shown in Fig. A.5. As expected, the coefficients for direct
and inverse processes almost coincide, indicating that the system has relaxed
to an equilibrium on the grid. By comparison of these results one can see that
at this temperature the energy dependence of emission and absorption co-
efficients of electrons is determined by the electron bremsstrahlung process,
especially at energies above mc2. Interestingly, the emission and absorption
coefficients of photons behave in nontrivial way. At nonrelativistic energies,
the total emission coefficient in direct reactions is equal to the total absorp-
tion coefficient in inverse ones. Also, the total absorption coefficient in direct
reactions is equal to the total emission coefficient in inverse ones. However,
at energies above mc2 they interchange.
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Figure A.2.: Normalized emission (red) and absoprtion (blue) coefficients for
electrons (left panel) and photons (right panel) in direct (light) and inverse
(dark) process of double Compton scattering in thermal equilibrium at tem-
perature θ = 1 as functions of electron energy, measured in units of mc2.
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Figure A.3.: The same as in Fig. A.2, but for direct and inverse electron-
electron bremsstrahlung for electrons.
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Figure A.4.: The same as in Fig. A.2, but for direct and inverse radiative pair
production for electrons.
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A.6. Characteristic time scales of plasma

relaxation

We solved numerically Boltzmann equation (A.3.1) in two cases. Initially
only photons are present with constant spectral energy density and total en-
ergy density ρ = 1023 erg/cm3 and ρ = 1029 erg/cm3. Such energy densities
corresponds to the temperature θ in thermal equilibrium of 0.3 and 8, respec-
tively.

In Figs. A.6 and A.7 we present number density, energy density, tempera-
ture and chemical potential of photons and pairs in both cases. We also show
the difference between quantum and Boltzmann statistics by including and
omitting the Pauli blocking and Bose enhancement factors in evolution equa-
tions (A.4.12). Time is expressed in units of Compton time

τC =
1

σTn±c
, (A.6.1)

where n± is number density of pairs in thermal equilibrium, σT is Thomson
cross section.

Timescales of relaxation to thermal equilibrium for quantum (classical)
statistics nearly coincide: 15τC (18τC) for ρ = 1023 erg/cm3, and 27τC (23τC)
for ρ = 1029 erg/cm3. Inspection of Figs. A.6 and A.7 indicates that both
temperatures and chemical potentials of leptonic and photon components be-
come nearly equal when the total number density of particles shown by blue
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Figure A.5.: Total normalized emission (red) and absoprtion (blue) coeffi-
cients for electrons (left panel) and photons (right panel) in all direct (light)
and inverse (dark) three-particle processes in thermal equilibrium at temper-
ature θ = 1 as functions of electron energy, measured in units of mc2.
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Figure A.6.: Comparison of evolution of number n and energy ρ densi-
ties, dimensionless temperature θ, chemical potential ξ, for quantum (solid
curves) and classical (dotted curves) statistics with total energy density ρ =
1023 erg/cm3. Black and red curves correspond to photons and pairs, respec-
tively, blue curve gives the sum of densities.
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Figure A.7.: The same as in Fig. A.6, but for total energy density ρ =
1029 erg/cm3.
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curves is almost constant. This fact indicates that three-particle interactions
become relevant when almost detailed balance (kinetic equilibrium) is estab-
lished by two-particle interactions (Aksenov et al., 2007). Notice, however,
that due to energy dependence of reaction rates the characteristic timescale on
which kinetic equilibrium is established is larger than Compton time (A.6.1).
For the same reason the characteristic timescale on which thermal equilib-
rium is established is smaller than the simple estimate α−1τC. Thus the ratio
of the timescales of kinetic and thermal equilibrium is no longer α but higher.
This fact shows why the exact treatment of three-particle interactions, espe-
cially for high energy densities, becomes important.

In Figs. A.8 and A.9 we show spectral evolution for both our initial con-
ditions. The final spectra shown for t = 103τC are in good agreement with
Planck/Fermi-Dirac distribution functions, correspondingly, obtained for the
given energy density, typically within 5 % accuracy. Notice that at the Comp-
ton time both electron/positron and photon spectra are far from equilibrium
shape, with the only exception of leptonic spectrum for ρ = 1023 erg/cm3.
This quick relaxation of leptonic component is due to large Coulomb loga-
rithm for non-relativistic temperatures.

A.7. Conclusions

In this Chapter we consider relaxation of nonequilibrium optically thick pair
plasma to complete thermal equilibrium by integrating numerically relativis-
tic Boltzmann equations with exact QED two-particle and three-particle col-
lision integrals. Quantum nature of particle statistics is accounted for in col-
lision integrals by the corresponding Bose enhancement and Pauli blocking
factors.

We point out that unlike classical Boltzmann equation for binary interac-
tions such as scattering, more general interactions are typically described by
four collision integrals for each particle that appears both among incoming
and outgoing particles.

The partial summations over angles in three-particle processes appears to
be the most time-consuming part of the numerical solution of Boltzmann
equation. Typical number of points in calculations is 1012.

Our numerical results indicate that the rates of three-particle interactions
become comparable to those of two-particle ones for temperatures exceed-
ing the electron rest-mass energy. Thus three particle interactions such as
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Figure A.8.: Numerical spectral energy densities of photons (black line) and
pairs (red line) at t = τC (left) and at t = 103τC (right) for ρ = 1023 erg/cm3.
Thick curves show the corresponding Bose-Einstein and Fermi-Dirac distri-
butions with the same number and energy densities, respectively. Dashed
thin line shows initial photon spectrum.
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Figure A.9.: The same as in Fig. A.8 for ρ = 1029 erg/cm3.
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relativistic bremsstrahlung, double Compton scattering, and radiative pair
creation become essential not only for establishment of thermal equilibrium,
but also for correct estimation of interaction rates, energy losses etc.
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B. Transparency of an
instantaneously created
electron-positron-photon
plasma

B.1. Introduction

The problem of the release of a large amount of energy in a small volume
has been considered for the first time by Fermi (1950), who proposed a sta-
tistical theory for computing high energy collisions of protons with multiple
production of particles. Landau (1953) noticed that the initial expansion of
the system can be treated within relativistic hydrodynamics. Due to highly
relativistic velocities of the colliding particles, the region of collision appears
to be highly contracted in one direction. Consequently the problem can be
reduced to one dimensional relativistic hydrodynamics in plane geometry.
Landau found an approximate solution of this problem. Later on, an exact
solution has been given by Khalatnikov (1954).

A similar problem has been considered in application to Gamma Ray
Bursts (GRBs) within spherical geometry. Goodman (1986) considered the
fate of a large quantity of energy in photons and electron-positron pairs, ini-
tially confined to a sphere in equilibrium at temperature above MeV, and
then allowed to expand freely. He solved numerically the relativistic hydro-
dynamics equations. He found that the plasma expands and cools down to
non relativistic temperatures. Then due to the exponential dependence of
pairs density on temperature and consequently on radius, the system be-
comes transparent suddenly. He computed the energy distribution of the
photon flux received by a distant observer by integrating over the volume of
the system at the moment of transparency. The spectrum was found to be
nearly thermal.

437



B. Transparency of an instantaneously created electron-positron-photon
plasma

An approximate analytic solution for the problem of relativistic spheri-
cal expansion into vacuum of an instantly created ultra-relativistic plasma
has been given by Bisnovatyi-Kogan and Murzina (1995). In this paper we
used this solution in order to find the observed spectra from transparency of
electron-proton-photon plasma. The problem is intrinsically dynamic with
the photosphere evolving rapidly with time. The only method available to
compute the photospheric emission in such dynamical case is the one by
Ruffini et al. (2013b). This method solves the radiative transfer equation as-
suming the source function to be isotropic and thermal.

The applications of the results presented in our paper are twofold. Firstly
in the case of very low baryon contamination, it is a natural extension of
Ruffini et al. (2013b) who considered finite wind profiles. It also finds direct
application in the interpretation of the spectra of some GRBs in the context
of the Fireshell model, see e.g. Ruffini et al. (2007) and references therein. In-
deed, Muccino et al. (2013) analysed the short GRB090227B and interpreted
the thermal first episode as an almost pure electron-positron-photon plasma
reaching transparency. One has to keep in mind that the photospheric com-
ponent of long duration (on the order of seconds) seen in some bursts cannot
be explained within this model. It is usually interpreted within the relativistic
wind model of Paczynski (1990).

B.2. Approximate solution of the relativistic

hydrodynamics equations

Starting from the laws of energy and momentum conservation, and by im-
posing the equation of state ǫc = 3P, one finds:

∂

∂t

(

4vγ2ǫ
)

+
∂

∂r

[

(4v2γ2 + 1)ǫ
]

+
8v2γ2ǫ

r
= 0 (B.2.1)

∂

∂t

[

(4γ2 − 1)ǫ
]

+
∂

∂r

(

4vγ2ǫ
)

+
8vγ2ǫ

r
= 0, (B.2.2)

where v is such that γ = (1− v2)1/2.

Bisnovatyi-Kogan and Murzina (1995) makes the following change of vari-
ables ξ = t − r, g = γ2/r2, ǫ1 = ǫr4, ǫ1 = ǫ10 exp(−4τ), g = g0 exp(2φ),

y1 = y/(2g) = r/(2γ2), x1 = τ − (φ/
√

3) and x2 = τ + (φ/
√

3). Then the
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B.2. Approximate solution of the relativistic hydrodynamics equations

solution is extracted from the value of two functions f and f̃ such that:

f = e−(1+
√

3/2)x1e−(1−
√

3/2)x2ξ (B.2.3)

= f1(0)I0(
√

x1x2) +

x2
∫

0

d f1(x
′
2)

dx
′
2

I0(
√

x1(x2 − x
′
2))dx

′
2 (B.2.4)

+

x1
∫

0

d f2(x
′
1)

dx
′
1

I0(
√

(x1 − x
′
1)x2)dx

′
1, (B.2.5)

f̃ = e−(1+
√

3/2)x1e−(1−
√

3/2)x2y1 (B.2.6)

= f̃1(0)I0(
√

x1x2) +

x2
∫

0

d f̃1(x
′
2)

dx
′
2

I0(
√

x1(x2 − x
′
2))dx

′
2 (B.2.7)

+

x1
∫

0

d f̃2(x
′
1)

dx
′
1

I0(
√

(x1 − x
′
1)x2)dx

′
1, (B.2.8)

where I0s is the Bessel function and f1, f2, f̃1 and f̃2 are the following bound-
ary functions

f1(x2) = (ξa1 + ξae−kx2)e−(1−
√

3/2)x2 , (B.2.9)

f̃1(x2) = (ξayae−(1+k−
√

3/2)x2 , (B.2.10)

f2(x1) = ξbe−x1 + ξb1e−(1+
√

3/2)x1 , (B.2.11)

f̃2(x1) = (2−
√

3)ξbe−x1 , (B.2.12)

where ξa, ξa1, ξb, and ξb1 are:

ξa = (2−
√

3)
ξb

ξa
, (B.2.13)

ξa1 − ξb = ξb − ξa = ξ0 (B.2.14)

=

√

δ f it

2g0

√

1

2−
√

3

(

1 +
2−
√

3

2 +
√

3

k−
√

3

k

)

, (B.2.15)

where finally we imposed ξa1 = 0 and ξ0 = |ξb1|.
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plasma

The hydrodynamic profile is obtained in the following way: firstly, the
equation ξ − (1/y)− t = 0 links x1 and x2 at a given time by using Eq.(B.2.3)
to Eq.(B.2.3), secondly the functions f and f̃ are mapped for a given inter-
val of x1 (and correspondingly x2), and finally the hydrodynamical profile is
determined by using

ǫ =
2ǫ10g0 f f̃

ξr3
(B.2.16)

Γ =

√

r f

2ξ f̃
, (B.2.17)

where r and ξ are computed using Eq.(B.2.3).

B.3. Equation of state

To obtain a realistic profile of the shell, we used the solution of
Bisnovatyi-Kogan and Murzina (1995) described below, that is valid for the
ultra-relativistic equation of state ǫ = 3P, where ǫ is the co-moving energy
density and P is the pressure, and ultra-relativistic expansion velocity v ≈ c.
For an optically thick system of electron-positron pairs and photons, all par-
ticles give a contribution to the equation of state.

Assuming thermal equilibrium, one can find the equation of state in this
system. It is presented in Fig.B.1 for different values of the dimensional co-
moving temperature T.

At high temperatures kBT ≫ mec
2, where kB is the Boltzmann constant,

me the electron mass and c the speed of light, the equation of state is ultra-
relativistic. At non-relativistic temperatures (kBT ≪ mec

2), the equation of
state is also ultra-relativistic since the contribution of non-relativistic electron-
positron pairs is small (see also Goodman (1986)). As can be seen from
Fig.B.1 the maximum deviation from the value 1/3 is achieved at the tem-
perature kBT = 0.33mec

2 and it amounts for 12%. This fact justifies the ultra-
relativistic equation of state in the optically thick electron-positron-photon
plasma. It is also known that such plasma, being optically thick, expands
with acceleration and reaches ultra-relativistic velocity of expansion before
becoming transparent (c.f. Goodman (1986)). Consequently the solution of
Bisnovatyi-Kogan and Murzina (1995) can be applied to this system.
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Figure B.1.: Equation of state of the optically thick electron-positron-photon
plasma as a function of the co-moving temperature T.

The analytical solution of the relativistic hydrodynamic equations given by
Bisnovatyi-Kogan and Murzina (1995) allows to compute the Lorentz factor Γ

and co-moving energy density ǫ at arbitrary laboratory time t and laboratory
radius r:

ǫ(t, r) =
2ǫ10g0 f (t, r) f̃ (t, r)

ξr3
, (B.3.1)

Γ(t, r) =

√

r f (t, r)

2ξ f̃ (t, r)
, (B.3.2)

where f and f̃ are given in section B.2, ξ = ct − r measures the depth
within the shell with g0 and ǫ10 being parameters of the solution1. For
large t, the solution describes a thin shell with constant laboratory width (see
Piran et al. (1993); Ruffini et al. (1999, 2000)) propagating radially with Γ≫ 1,
see Fig.B.2.

From the co-moving energy density, the co-moving temperature can be
found as T(t, r) = (cǫ(t, r)/(4σSB))

1/4, where σSB is the Stefan-Boltzmann
constant. Electron-positron-photon plasma with macroscopic size, gets
transparent when the temperature decreases to the value kBT ∼ 0.04mec

2

1The formula (3.21) for the Lorentz factor in the Bisnovatyi-Kogan and Murzina (1995) pa-
per contains a misprint.
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Ruffini et al. (2013b). At such non-relativistic temperature, the co-moving
number density of pairs is given by (e.g. Sampson (1962)):

n±c (t, r) = 4
(me

h

)3
(

2πkBT(t, r)

me

)
3
2

exp

(

− mec
2

kBT(t, r)

)

, (B.3.3)

where h is the Planck constant.

B.4. Computation of observed flux and spectrum

The transparency of the shell occurs when its optical depth for Compton scat-
tering reaches unity. For a shell, it writes Ruffini et al. (2013b):

τ(t, r, φ0) =
∫ Rout

r
σTn±c Γ(1− β cos φ)

dR

cos(φ)
, (B.4.1)

where φ is the laboratory angle between the radial direction and the four
momentum of the photon, φ0 is that angle at the initial radius from which the
integration is performed, β is the speed in units of the speed of light, r is the
radius of emission of the photon and Rout is the radius at which the photon
leaves the shell. The integration has to be performed along the world line of
a photon.

Ref. Ruffini et al. (2013b) proposed two different approximations to com-
pute the light-curves and the spectra: the fuzzy and the sharp photosphere
ones. In the sharp photosphere approximation, the energy contained in a
small volume is assumed to be released instantly at the time, radius and an-
gle given by the condition τ(t, r, φ) = 1. Then the laboratory energy dE emit-
ted in a laboratory solid angle dΩ is equal to dE = 3ǫdVdΩ/(8Λ4), where
Λ = Γ(1− β cos φ) is the Doppler factor, dV is the laboratory volume associ-
ated with the emission. In order to compute the light-curves, dE is integrated
over the photosphere for a given arrival time ta = te− cos(φ)(re/c), where re

and te are the radial position and the laboratory time of the emitting region,
ta = 0 for a photon emitted at the origin. The spectra are computed assuming
that the energy is released with the Planck spectrum in the co-moving frame,
with the co-moving temperature given by the co-moving energy density at
the point of emission. Then the intensity of radiation in the frequency range
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dνl, solid angle dΩl is given by:

IνdνldΩl =
∫

2h

c2

ν3
l dνldΩldA

exp
(

hνl
kTl

)

− 1
,

where the quantities with index l are measured in the laboratory frame, dΩl

measures the angular size of the detector. The integration over the surface dA
is performed to take into account the emitting area at the photosphere. Due to
the exponential dependence of the optical depth on the radial coordinate (see
Eq.(B.3.3) and Eq.(B.4.1)) the transition from the optically thick to the opti-
cally thin condition is indeed sharp. This fact justifies the sharp photosphere
approximation in this problem.

The basis of the fuzzy photosphere approximation is the transfer equa-
tion for the specific intensity Iν along the ray. Its formal solution is (see e.g
Eq.(1.29) of Rybicki and Lightman (1979)):

Iν = Iν(0) exp(−τν) +
∫ τν

0
exp(τν − τ

′
ν)Sνdτ

′
ν (B.4.2)

where Sν is the source function. At large optical depth, it is well known that
the source function for scattering corresponds to a thermal isotropic distribu-
tion of photon, with temperature T(r, t). In addition, for energy dominated
outflows, Beloborodov (2011) showed that coherent scattering preserves the
isotropy of the radiation field, together with the blackbody shape of the spec-
trum, like if radiation is propagating in vacuum. In fact, a freely propagating
photon in an accelerating shell with Γ ∝ r does not change its angle in the
co-moving frame. This later condition is actually used to obtain the approx-
imate analytic solution by Bisnovatyi-Kogan and Murzina (1995). Since the
radiation diffusion is negligible for accelerating shells Ruffini et al. (2013b),
we can use the source function as a thermal Planck function Sν = Bν(T(t, r))
and Eq.(B.4.2) can be integrated numerically. Then the flux at a given arrival
time is obtained by integration over the frequencies weighted by the surface
of emission, while the total flux is obtained by additional integration over the
arrival time.
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Figure B.2.: Laboratory energy density (top), Lorentz factor (middle) and op-
tical depth (bottom) radial profiles at t = 250R0/c. The two vertical lines
represent the radii at which τ(t, r, φ = 0) = 1. The main part of the energy
has already been emitted, as can be seen from the top panel.
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B.5. Numerical results

B.5. Numerical results

We now apply the approximate analytic solution of relativistic hydrody-
namic equations obtained by Bisnovatyi-Kogan and Murzina (1995) to opti-
cally thick electron-positron plasma. The parameters entering Eq.(B.3.1) and
Eq.(B.3.2) can be related to the total energy E0 confined to a sphere of radius
R0 as follows:

R0 = hshell = 3

√

δ f it

g0
, (B.5.1)

E0 = 4πg0ǫ10 × 1.3hshell , (B.5.2)

δ f it = 2.2× 10−2. (B.5.3)

We perform the computation for E0 = 1054erg and R0 = 108cm, cor-
responding to the initial temperature kBT0 = 6.5MeV. Such parameters
are typical within the Fireshell model of GRBs (see e.g. Ruffini et al.

2007). We fixed the parameter k to the value 1 +
√

3/2, as prescribed by
Bisnovatyi-Kogan and Murzina (1995).

The radial profiles of the laboratory energy density ǫl, Lorentz factor and
optical depth are displayed in Fig.B.2 at t = 250R0/c. Since the solution of
Bisnovatyi-Kogan and Murzina (1995) does not reproduce the separation be-
tween the front of the shell and the light surface, the relative position of a
photon inside the shell does not change substantially with time if it propa-
gates radially. The shell is photon thick Ruffini et al. (2013b): photons decou-
ple because locally the pairs density decreases too fast to sustain collisions.

The dependence of the optical depth on ξ at a given laboratory time t fol-
lows closely the variation of the co-moving energy density: from the outer
boundary toward the centre it firstly increases and then decreases. This be-
haviour has to be contrasted with the one found by Ruffini et al. (2013b) for a
simple shell profile of relativistic wind with finite duration: the optical depth
as a function of ξ increases up to a saturation value from which it stays con-
stant up to the inner boundary of the outflow. This implies that the emission
time te on the line of sight is increasing with the depth ξ inside the shell.
In our more complex profile the outer and inner part of the shell become
transparent before the central part: there are two photospheres for a given
laboratory time te. However, at a given arrival time ta there is only one pho-
tosphere: the emission from the inner part of the shell arrives to the observer
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Figure B.3.: Time integrated spectra: solid line-fuzzy approximation, dot-
ted line-sharp approximation, dotted-dashed line-spectrum from Goodman
(1986) and double-dashed line-Planck spectrum. For the sake of comparison
these two last ones have been shifted to lower energy by a factor 2.3.

later.

Fig.B.3 displays the time-integrated spectra from sharp and fuzzy approx-
imations, as well as the one obtained by Goodman (1986) which has been
shifted to lower energy by a factor 2.3. He obtained the observed spectrum
by integration both over angles of emission and over the radial coordinate
at a fixed laboratory time corresponding to the moment of transparency on
the line of sight, see the lower panel of Fig.B.2. This region of integration
is shown in grey in Fig.B.4. In our computation the dynamics of the pho-
tosphere is taken into account explicitly: for each arrival time the spectrum
from the surface defined by τ(r, t, φ0) = 1 is computed. Eq.(B.4.1) shows
that the optical depth increases with φ0, so the points satisfying τ = 1 for a
given ξ are shifted to larger time and radius than the one on the line of sight.
This surface is displayed schematically by Fig.B.4. Finally an integration is
performed over arrival times.

This explains the two differences between our result and the one of Good-
man. Firstly the time integrated spectrum is broader at low energy because
the observed temperature of a fluid element out of the line of sight is de-
creased in our computation. Secondly the peak energy is shifted to lower
energy because of the joint effect of increased volume of emission and de-
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B.6. Discussion

Figure B.4.: Illustration of the difference in computation methods by Good-
man and ours. The grey region corresponds to the shell at the laboratory time
for which the optical depth of a photon propagating radially equals unity. It
is the region in which the spectrum is computed by Goodman (1986). The
shell is also represented at a larger laboratory time with the curve linking dV
to dV1 being a schematic representation of the τ = 1 surface at a given depth
ξ.

creased observed temperature out of the line of sight.
The low energy slopes are close in all cases and are dominated by the high

latitude emission. On the contrary the high energy part of the spectrum is
dominated by the photons emitted along the line of sight, for which the pro-
file of temperatures plays an important role.

The light-curves for sharp and fuzzy approximations are presented on
Fig.B.5. Both approximations give close results, even if the raising part is not
resolved for the sharp photosphere approximation. Because of the narrow
profile of the laboratory energy density, the emission reaches its maximum
and shortly later decreases: there is no plateau emission lasting the light-
crossing time as reported by Ruffini et al. (2013b) for a finite wind. That is
because they considered a different radial profile for the shell. Nevertheless
the time needed to emit 90% of the energy is of the order of R0/c.

B.6. Discussion

In our computation we used the simplifying assumption that the pairs recom-
bine efficiently, so their number density is given everywhere by Eq.(B.3.3).
Nevertheless Grimsrud and Wasserman (1998) studied their recombination
by considering the Boltzmann equation in the case of a static and infinite
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Figure B.5.: Light-curves for fuzzy (continuous curve) and sharp (dashed
curve) photosphere. They are nearly undistinguishable. For comparison the
light-curve that would be obtained from an optically thin ball of radius R0

uniformly filled by isotropic radiation is displayed by the dash-dotted line.

wind. They showed that the pairs recombination process freezes out at the
radius R±, smaller than Rph. Above R±, the co-moving pair density decreases

proportionally to r−3. The same effect is taken into account in the Fireshell
model, see Ruffini et al. (1999, 2000). The ratio between the optical depth for
Compton scattering and pairs recombination process is:

τ±
τ

=
σ±
σT
≈ 0.8,

where σ± is the cross section for the pairs recombination process.
The co-moving temperature at R± can be found by solving Eq.(54) of
Grimsrud and Wasserman (1998). We found kBT± ∼ 0.042mec

2, being close
from the photosphere where the temperature is kBT ∼ 0.040mec

2 (see e.g.
Ruffini et al. (2013b).

It implies that the optical depth increases when considering the freeze out
of pairs recombination process, which leads to a small increase in the value
of Rph. Secondly the optical depth for the pairs at Rph is given by:

τ±γ(Rph) = τ(Rph)×
nγ

n±
≫ 1,
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where the inequality holds because τ(Rph) = 1 by definition, and nγ ≫ n±.
It follows that even when the radiation streams freely, the pairs are still
strongly coupled to it and keep being accelerated by the radiative pres-
sure: their Lorentz factor Γ± increases proportionally to r. For such outflow,
Beloborodov (2011) showed that the isotropy of the radiation field is pre-
served in the accelerating co-moving frame of pairs and that its temperature
drops as r−1. This means that the observed temperature is constant, and no
effect on the spectrum is expected.

The last point left to be discussed is the influence of the profile of tem-
peratures within the shell. Aksenov et al. (2013) considered the decoupling
of photons from ultra-relativistic coasting winds with different profiles for
the electron temperature. They showed that the spectral index at low energy
depends strongly on the chosen profile. Such kind of temperature depen-
dence naturally arises when considering a realistic profile for the expanding
plasma. Nevertheless the position of a photon in the shell does not change
substantially during the expansion below Rph for accelerated outflows, so no
influence of the temperature profile on the photon Comptonization close to
the photosphere is expected in the spectrum. At larger radii when the radi-
ation streams freely and crosses the shell, the Compton parameter y is much
smaller than unity as the temperature is not relativistic and τ < 1, hence
distortion of the spectrum is small.

B.7. Conclusion

We have considered the analytical solution from
Bisnovatyi-Kogan and Murzina (1995) for the spherical expansion of a
large amount of energy in a small volume and applied it to electron-positron
plasma initially confined to a macroscopic volume. Considering the dynam-
ical evolution of the shell, we computed the flux and the energy distribution
of the photospheric emission as seen by a distant observer at rest in the
laboratory frame.

We found that the spectrum is broader than the Planck one and than the one
of Goodman (1986) and shifted to lower energy, because of the integration
over impact parameters (or angles between the line of sight and the radial
direction) in the dynamical photosphere. The numerical results obtained by
the sharp and fuzzy photosphere approximations coincide.

We additionally presented the light-curve from such event, showing that
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the maximum of the emission is reached in a short time scale compared to
the light-crossing time of the shell R0/c. Then the flux decays sharply.
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C. Spreading of ultrarelativistically
expanding shell: an application
to GRBs

C.1. Introduction

Optically thick pair plasma with baryon loading is assumed to power GRBs
in many models considered in the literature, see, e.g., Piran (1999), Meszaros
(2006), Ruffini et al. (2009). Such plasma is self accelerated to large bulk
Lorentz factors due to initial energy dominance. Due to relativistic kinemat-
ics in laboratory reference frame it forms a shell with width approximately
equal to its initial size. When the plasma becomes transparent to Compton
scattering a flash of radiation is emitted. In the literature such emission is of-
ten associated with so-called precursors (Lazzati, 2005). In the fireshell model
(Ruffini et al., 2009) this emission is called the Proper GRB (P-GRB).

For typical baryonic loading parameters of observed GRBs 10−3 < B <

10−2, where B = Mc2/E0, Mc2 is total baryonic rest mass energy, E0 is to-
tal energy released in the source of GRB, the fraction of energy emitted at
transparency can reach several percents of the total energy. Considering that
typical duration of long GRBs is of the order of hundreds of seconds, and P-
GRB typically lasts for less than few seconds (Ruffini et al., 2009) luminosities
of both events are comparable in magnitude.

Early treatments assuming the absence of baryons and thin shell ap-
proximation (Bianco et al., 2001), and non instantaneous energy release
(Ruffini et al., 2005b) produced estimations of P-GRBs duration ∼ 10−2 −
10−1 sec for the progenitor mass range 10 − 103M⊙, much larger than
the naive estimation of the gravitational collapse time ∼ GM/c3 ≃ 5 ·
10−6M/M⊙ sec, where G is Newton’s constant, M is black hole mass, c is the
speed of light. Observed durations of P-GRBs (Ruffini et al., 2009) of most
energetic GRBs is of the order of several seconds. Main purpose of this paper
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is to outline a possibility of resolution of this tension considering different
mechanisms of spreading of ultrarelativistically expanding shell.

The paper is organized as follows. In Sec. 2 the hydrodynamic phase of
GRB is discussed, hydrodynamical spreading mechanism is recalled, and re-
sults of its application to GRBs are shown. In Sec. 3 the concept of thermal
spreading is introduced, evaluation of spreading for relativistic Maxwellian
distribution function is performed, and the results of thermal spreading com-
putation are applied to GRBs. Discussion of the spreading effects on the du-
ration of P-GRB and conclusions follow in the last section.

C.2. Hydrodynamic phase and optical depth of

GRBs

Energy, entropy and baryonic number conservation laws for each
differential subshell of ultrarelativistically expanding shell imply
(Ruffini and Vereshchagin, 2013)

(p + ρ)Γ2r2dr = const,

σΓr2dr = const, (C.2.1)

nΓr2dr = const,

where ρ and p are respectively comoving energy density and pressure, σ and
n are respectively comoving entropy and comoving baryon number density,
Γ is Lorentz factor, and r is laboratory radial coordinate. Assuming polytropic
equation of state

p = (γ− 1) ρ, σ = ργ, (C.2.2)

where γ is the thermal index, from (C.2) each differential subshell has

Γ ∝ r, ρ ∝ r−4, n ∝ r−3, (C.2.3)

during the energy dominated phase with γ = 4/3. The transition from en-
ergy to matter domination with γ = 1 occurs at Req ≃ R0/B, where R0 is
initial size of the energy dominated region. During the matter dominated
phase for r ≫ Req

Γ ≃ B−1 = const, ρ ∝ r−2, n ∝ r−2. (C.2.4)
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In Ruffini et al. (2013b) we computed the optical depth and dynamics of P-
GRB for the case when Γ is constant across the shell. General expression for
the optical depth of the shell is

τ =
∫ R∗

R
σTnΓ(1− β)dr (C.2.5)

where σT is Thomson’s cross section and R∗ is the radius at which light ray
emitted from the inner boundary of the shell at radius R crosses its outer
boundary. For large baryonic loading with

B≫ 1× 10−3E−1/5
54 R2/5

8 , (C.2.6)

where R0 = R8108 cm, E0 = E541054 erg, optical depth of the shell is

τ = τ0

(

R0

R

)2

, (C.2.7)

where τ0 = σTn0R0, n0 is given by equation (C.2.11) with r0 = R0. Equa-
tion (C.2.7) correspond to the photon thin asymptotics (Ruffini et al., 2013b)
of equation (C.2.5) defined by the condition R∗ − R = 2Γ2R0 ≪ R.

The observed duration of P-GRB is determined in this asymptotics by the
process of radiative diffusion (Ruffini et al., 2013b)

∆ta =
tD

2Γ2
≃ 0.12E1/3

54 B5/3
−2 R1/3

8 s, (C.2.8)

where B = B−210−2 and time of diffusion tD was found by solution of radia-
tive transfer equation.

All these results are derived assuming constant Lorentz factor across the
shell. Hence the width of the shell remains constant during its expan-
sion. This fact has been used within the fireshell model and termed as
the “constant thickness approximation”, provided that the baryon loading
is not too heavy B ≤ 10−2 (Ruffini et al., 2000). Hydrodynamic analytical
(Shemi and Piran (1990), Bisnovatyi-Kogan and Murzina (1995)) and numer-
ical (Piran et al. (1993), Mészáros et al. (1993)) calculations show that Lorentz
factor gradient is developing during shell expansion that leads to spreading
of the shell at sufficiently large radii at the matter dominated phase.

At this phase of expansion each differential subshell is expanding with al-
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most constant speed v = βc ≃ c(1− 1/2Γ2), so the spreading of the shell is
determined by the radial dependence of the Lorentz factor Γ(r). In a variable
shell there can be regions with Γ(r) decreasing with radius and Γ(r) increas-
ing with radius. At sufficiently large radii only the regions with increasing
Γ contribute to the spreading of the shell. From equations of motion of ex-
ternal and internal boundaries of this region we obtain (Piran et al., 1993) the
thickness of the region as function of radial position of the region

l(R) = R0 +
R

2

(

1

Γ2
i

− 1

Γ2
e

)

, (C.2.9)

where Γe and Γi are Lorentz factors at external and internal boundaries, R0

is the width of the region at small R, R being the radial position of inner
boundary. Let us consider such a region in two limiting cases:

a) when relative Lorentz factor difference is strong,
∆Γ = Γe − Γi & Γi;

b) when relative Lorentz factor difference is weak,
∆Γ = Γe − Γi ≪ Γi.

In the case a) the second term in parenthesis in equation (C.2.9) can
be neglected, and we obtain that the spreading becomes efficient at R >

Rb = 2Γ2
i R0, see Mészáros et al. (1993) and Piran et al. (1993). In the case

b) we find the corresponding critical radius of hydrodynamical spreading
Rb = (Γi/∆Γ)Γ2

i l ≫ Γ2
i R0. From equation (C.2.9) one can see that in

both cases for R ≫ Rb width of the shell is increasing linearly with radius
l(R) ≃ (∆Γ/Γi)R/Γ2

i .
The discussion above corresponds to the case b) since for weak Lorentz

factor difference Rb ≫ Rtr. In what follows we focus on the case a) and derive
corresponding relations assuming strong relative Lorentz factor difference
across the shell. Let us take an element of fluid with constant number of
particles dN in the part of the shell with gradient of Γ. Internal boundary
of the element is moving with velocity v, and external one is moving with

velocity v+ dv = v+ dv
dr dr, where dr is the differential thickness at some fixed

laboratory time t = 0 and derivative dv/dr is taken at the same laboratory
time. Then at time t the width of the element is dl = dr + tdv, its radial
position is R(t) = r0 + vt, where r0 ia initial radial position of the element,
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and corresponding laboratory density is

nl =
dN

dV
=

dN

4πR2
(

1 + t dv
dr

)

dr
= n0

r2
0

R2
(

1 + t dv
dr

) , (C.2.10)

where

n0 =
dN

dV0
=

dN

4πr2
0dr

. (C.2.11)

At large enough t using R ≃ ct we have in contrast with (C.2.4)

Γ ≃ const, ρ ∝ r−4, n ∝ r−3, (C.2.12)

R≫ Rb =
1

Γ3

(

dΓ

dr

)−1

.

In order to compute the integral (C.2.5) we need to find the expression for
baryonic number density along the light ray. Taking into account hydrody-
namical spreading (C.2.9) we obtain

n =
n0

Γ

(

R0

r

)2 1

1 + 2r
Γ

dΓ
dr

, (C.2.13)

that is exact in ultrarelativistic limit. Notice the difference between equa-
tions (C.2.13) and (C.2.10): in the former case dΓ/dr is computed along the
light ray, while in the latter case dv/dr is computed along the radial co-
ordinate at fixed laboratory time. The expression (C.2.13) reduces to equa-
tion (C.2.4) when dΓ/dr = 0. Instead when the second term in the denom-
inator of the expression (C.2.13) dominates, namely when r ≫ Γ(dΓ/dr)−1,
density radial dependence coincides with the one given by relations (C.2.12).

An estimate for dΓ/dr can be given for strong relative Lorentz factor differ-
ence ∆Γ ∼ Γ in the shell

dΓ

dr
∼ ∆Γ

∆r
∼ Γ

2Γ2R0
=

1

2ΓR0
, (C.2.14)

where ∆r ∼ 2Γ2R0 is the distance inside the shell along the light ray. Numer-
ical results from Piran et al. (1993), Mészáros et al. (1993) and analytical ones
from Bisnovatyi-Kogan and Murzina (1995) support this estimate.
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Integrating expression (C.2.14) we obtain Lorentz factor dependence on ra-
dial coordinate along the light ray

Γ(r) ∼
√

r− R

R0
. (C.2.15)

Since we are interested in the asymptotics when the hydrodynamical spread-
ing is essential, we can assume in the integral (C.2.5) r ≫ R and R∗ ≫ R.
Under these conditions the optical depth is

τ =
τ0

8

(

R0

R

)2

. (C.2.16)

This result coincide with equation (C.2.7) up to a numerical factor. However
its physical meaning is different. It represents photon thick asymptotics of
equation (C.2.5), since R∗ ≫ R.

Transparency radius is defined by equating (C.2.16) to unity and is given
by

Rtr ≃
(

σTBE0

32π mpc2

)1/2

= 2× 1014B1/2
−2 E1/2

54 cm, (C.2.17)

where mp is proton mass. At the radius of transparency the width of the shell
(C.2.9) spreads up to

∆lhydr ≃ 1010 B1/2
−2 E1/2

54 Γ−2
2 cm, (C.2.18)

where Γi = 100Γ2.

In this case radiative diffusion is irrelevant and duration of P-GRB is then
given by the time of arrival of photons emitted from the shell all the way up
to Rtr

∆ta ≃
Rtr

2Γ2
i c

= 0.3 B1/2
−2 E1/2

54 Γ−2
2 s. (C.2.19)

In contrast to equation (C.2.8) in the case of strong Lorentz factor difference,
namely with Γi < (2B)−1, this duration can be of the order of several seconds
with agreement with observations.
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C.3. Thermal spreading

C.3. Thermal spreading

We now determine the velocity spread of particles as a function of comoving
temperature T and bulk Lorentz factor Γ for relativistic Maxwellian distri-
bution. Based on this result we compute the value of thermal spreading of
expanding shell.

The distribution of particles in the momentum space in the laboratory
frame is a Lorentz-boosted Maxwellian

f (px, py, pz) = A exp

(

− 1

mcθ

[

m2c2 + py
2 + pz

2

+

(

Γpx −
√

(Γ2 − 1)(m2c2 + p2)

)2
]1/2

)

, (C.3.1)

where we assumed that the relative motion of the frames is along their x-axes
and θ = kT/mc2 is dimensionless comoving temperature.

Velocity dispersion in the x-direction is

D(vx) = M(v2
x)−M2(vx), (C.3.2)

where M(χ) denotes the average value of χ, which is defined by the convo-
lution with the distribution function (C.3.1)

M(χ) =

∫

d3p χ(p) f (p)
∫

d3p f (p)
. (C.3.3)

The above written integrals cannot be computed analytically, but their nu-
merical approximations can be found.

Numerical issues in the velocity dispersion calculations by (C.3.2) arise
from the fact that for high Γ we need to subtract two numbers M(v2) and
M2(v) which are very close to each other and to c2. This leads to substantial
reduction of accuracy. A different formula for dispersion

D(vx) = M([vx −M(vx)]
2) (C.3.4)

proves to be more convenient. The spread of particle velocities is then
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(∆v)therm =
√

D(v).

For nonrelativistic comoving temperatures the correct asymptotics is

(

∆v

c

)

θ≪1

= Γ−2θ1/2. (C.3.5)

The case of ultrarelativistic comoving temperature (θ ≫ 1) is more inter-

esting. Starting close to the maximal value 1/
√

2, the velocity spread for
10 . Γ . θ reaches approximately

(

∆v

c

)

10.Γ.θ

≃ Γ−3/2, (C.3.6)

which means that the dispersion is independent on the temperature. For Γ≫
θ the asymptotics (C.3.5) is restored just up to a multiplier close to unity

(

∆v

c

)

1≪θ≪Γ

≃ 1.16 Γ−2θ1/2. (C.3.7)

Our results suggest that (C.3.6) gives absolute upper limit for the velocity
spread, and temperature dependence of (C.3.5) and (C.3.7) reduce the spread
even further.

Initial temperature of the plasma formed in the source of GRB can be esti-
mated from its initial size R0 ∼ 108 cm and total energy released

1048 erg < E0 < 1055 erg.

Assuming that the temperature is determined by e+e− pairs only

E0

V0
=

3E0

4πR3
0

= aT4
0 (C.3.8)

we get for initial temperature

0.40 <
kT0

mec2
< 22. (C.3.9)

At radiation dominated phase the comoving temperature of the plasma de-
creases as T ≃ T0R0/r, at matter dominated phase as T ≃ T0B1/3(R0/r)2/3.
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Now we compute the thermal spreading at both phases.

For the first phase the reasonable approximation of Lorentz factor is

Γ(t) ≃
√

1 +

(

ct

R0

)2

.

Due to the nature of Lorentz transformations in constantly accelerated frame

the final spreading of the shell ∆l1 =
∫ t

0 ∆v dt appears to be finite even if
we extend this phase infinitely in time, and the main part of the spreading is
connected with initial part of motion with relatively small Γ.

While the temperature of protons in the source of GRB is nonrelativistic
θ ≪ 1, velocity spread is given by (C.3.5) which in energy dominated phase
leads to the spreading

∆l1
R0

. 2.2

√

kT0

mpc2
= 0.18 E1/8

54 R−3/8
8 . (C.3.10)

In the matter dominated phase the additional spreading of the shell is

∆l2
R0
≃ 3B7/3

√

kT0

mpc2

(

Rtr

R0

)1/3

=

= 6.7 · 10−4 E7/24
54 R−17/24

8 B5/2
−2 , (C.3.11)

when Rtr ≫ R0. Comparing to the hydrodynamical spreading for reason-
able GRB parameters the spreading coming from both (C.3.10) and (C.3.11) is
negligible.

Note that velocity dispersion in any case does not exceed the value given
by equation (C.3.6) with θ ≫ 1

∆l1
R0

=
1

R0

∫ t1

0
∆v(t)dt .

1

R0

∫ ∞

0
cΓ(t)−3/2dt ≃ 2.6, (C.3.12)

which gives an absolute maximum of the thermal spreading on the energy
dominated phase.
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C.4. Conclusions

In this paper we considered two mechanisms of spreading of relativistically
expanding plasma shell. We also discuss their implications for the duration
of electromagnetic signal from transparency of the plasma.

Firstly, following the proposal of Piran et al. (1993) hydrodynamical
spreading of relativistically expanding shell is estimated. Secondly, thermal
spreading is considered. Assuming relativistic Maxwellian distribution func-
tion we determined the velocity dispersion depending on temperature and
the Lorentz factor of the bulk motion.

We then applied these results to GRBs within the framework of the fireshell
model. It is shown that thermal spreading provides negligible spreading for
typical parameters of GRBs. Instead, hydrodynamical spreading results in
the increase of the duration of P-GRB. For nonspreading shells characterized
by almost constant Lorentz factor distribution within the shell the duration of
P-GRB is determined by the time of diffusion, see equation (C.2.8). If strong
Lorentz factor difference is present within the shell, hydrodynamical spread-
ing prevents occurrence of photon thin asymptotics and leads to duration of
P-GRB given by equation (C.2.19).

Our results imply that for high enough baryon loading and energy of the
burst the duration of the P-GRB is not determined by the initial size of the
plasma R0, but by the value of the hydrodynamical spreading, reaching up
to several seconds.
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D. Relativistic spotlight effect

Winds of high velocity particles moving outwards from their source are
common in astrophysics: the best known example is stellar wind, see e.g.
Lamers and Cassinelli (1999). Winds may exhibit relativistic velocities as in
cases of active galactic nuclei Faucher-Giguère and Quataert (2012), gamma
ray bursts Meszaros (2006) or pulsars Kirk et al. (2009).

It is well known that the mean free path of photons in relativistically mov-
ing medium is anisotropic, see e.g. (Rybicki and Lightman, 1979, §4.9). For
relativistic wind this implies a peculiar shape of the photosphere seen by a
distant observer Abramowicz et al. (1991). In particular, a steady spherical
wind with constant radial velocity has the photosphere r = rph(θ) given by
Pe’er (2008); Beloborodov (2011)

rph(θ) = τ0R0

(

θ

sin θ
− β

)

, (D.0.1)

where r is radius and θ is the polar angle around the line of sight of the ob-
server, τ0 = σn0R0, σ is scattering cross section, n(r) = n0(r/R0)

−2 is the lab-
oratory density of the wind with constant radial velocity v = βc, c is the speed
of light, n0 is the density at the base of the wind with radius R0. The value
of radius Rph = rph(θ = 0) on the line of sight is referred to as photospheric

radius of the wind Rph = τ0R0(1− β) ≃ τ0R0/(2Γ2), where the last equality

holds for large bulk Lorentz factor Γ of the wind, Γ =
(

1− β2
)−1/2 ≫ 1. In

what follows we assume this is always the case.

However, only a small part of the entire photosphere within the rela-
tivistic beaming angle θb = 1/Γ around the line of sight has the radius
rph(θ) ∼ Rph. For θ ≫ θb the radial coordinate of the photosphere is much

larger, rph(θ) ∼ τ0R0 ≃ Γ2Rph. Hence the photosphere of the relativistic wind
described by Eq. (D.0.1) is concave due to a narrow dip along the line of sight.
This specific shape of the photosphere plays a crucial role in determination
of observational properties of emission originating at the photosphere, see
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e.g. Bégué et al. (2013). In fact, almost all radiation originating from the op-
tically thick region of the wind comes to the observer from the part of the
photosphere within the relativistic beaming angle around the line of sight.

λ
R

�

R ph
R

*S

α

ϕ

O

Figure D.1.: Geometry of photon scattering. Photons are emitted isotropically
from the source at R⋆ > Rph. Most photons emitted at the angle ϕ with the
line of sight are scattered at the distance λ from the source in the point with
radial coordinate R. In this point the angle between the direction of photon
propagation and the velocity of the wind is α. The photosphere of the wind
is shown as thin blue curve. The ellipse of local mean free path, given by Eq.
(D.0.3) is shown as dotted red curve. The scattering indicatrix is shown by
dashed-dotted curve. Observer’s detector is located to the right in point O.

In this Letter we discuss another effect of this anisotropy in relativistic
wind. Consider an isotropic stationary point source of photons located on
the line of sight at the radial position r = R⋆, see Fig. D.1. When such a
source is located beyond the photospheric radius of relativistic wind with
Rph . R⋆ . RphΓ2 its intensity for a distant observer gets enhanced by a

large factor up to Γ4. For ultrarelativistic winds occurring e.g. in GRBs the
Lorentz factor may be as large as ∼ 103. Consequently, the source of pho-
tons may be located far above the photospheric radius, up to 106Rph, and its

intensity may be enhanced up to 1012 times! Due to large anisotropy in the
mean free path of photons only small fraction of them reaches the observer
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without any scattering. For all photons emitted beyond some critical angle
ϕmax around the line of sight the wind is opaque. It means that at some point
along their trajectories where the optical depth becomes sufficiently large,
they start to scatter. This point with coordinates r = R, θ = ϕ− α is shown
on Fig. D.1. The scattering indicatrix has a preferential direction, which is
the radial direction of the wind. Thus an essential part of photons is scattered
also towards the observer. The most important aspect here is that for large Γ

the drastic compression of the ellipse of the mean free path, shown in Fig. D.1
by dashed curve, occurs. This effect is accompanied with the compression of
the scattering indicatrix. For very large Γ practically all light emitted from
the source is channeled towards the observer along its line of sight. Hence
the wind plays a role of a reflector which concentrates the scattered emission
within a narrow angle with the line of sight.

The large enhancement in intensity as seen by a distant observer is due to
two effects: the preferential scattering of photons in radial direction and the
increase of photon energy after the scattering by a factor ∼ Γ2. We will refer
to this phenomenon as relativistic spotlight effect. In what follows we give a
quantitative description of this effect.

Consider photons emitted at angle ϕ > ϕmax from the point source de-
scribed above, see Fig. D.1. The optical depth of the wind between two points
with coordinates (R⋆, 0) and (R, ϕ− α(R)) is given by Beloborodov (2011)

τ(R⋆, ϕ, R) = τ0
R0

R⋆

[

ϕ− α(R)

sin ϕ
− β

(

1− R⋆

R

)]

, (D.0.2)

where α(R) is the angle between the direction of wind velocity and the
direction of photon propagation. The expression (D.0.1) is recovered from
this formula for τ(rph, θ, ∞) = 1. Since R⋆ > Rph the wind is transpar-
ent for small angles ϕ < ϕmax, where ϕmax is determined by the condition
τ(R⋆, ϕmax, ∞) = 1. Due to strong dependence on ϕ the wind is opaque for
ϕ > ϕmax. Moreover, the ratio τ(R⋆, ϕ ≫ ϕmax, ∞)/τ(R⋆, ϕ = 0, ∞) is on
the order of Γ2. Photons with angles ϕ > ϕmax will be scattered for the first
time near the point with coordinates defined by equating expression (D.0.2)
to unity. The distance of this point to the source is approximately given by
the local mean free path Abramowicz et al. (1991)

λ(R⋆, ϕ) =
1

σn(R⋆)(1− β cos ϕ)
=

R2
⋆

τ0R0(1− β cos ϕ)
. (D.0.3)
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This equation describes an ellipse with eccentricity β and focus located at the
point R⋆, see Fig. D.1.

Due to relativistic bulk motion of electrons the photons are scattered into
the radial direction of the wind motion with α . θb. The scattering indicatrix
is shown in Fig. D.1 by a dashed-dotted curve. Since the optical depth in this
new direction is small most photons will escape after single scattering event
1. Moreover, the inverse Compton scattering typically increases the energy
of the photon by a factor Γ2, providing an effective way to extract the wind
energy and momentum. Actually, the interaction between the electron and
the photon can be considered as Thomson scattering in the reference frame
comoving with the wind, as soon as electrons in the wind have nonrelativistic
temperature and initial energy of photons is ǫ . mec

2/Γ, where me is electron
mass.

For simplicity we assume that photons emitted with angle ϕ with respect
to the line of sight are scattered exactly at the distance λ from the source.
The distant observer sees only part of the scattered photons that arrive at the
detector, see Fig. D.1. The intensity measured by this observer depends on
the angular size of the ellipse defined by Eq. (D.0.3) as seen from the origin.
For R⋆ < ΓRph the angular size of this ellipse is less than θb. In this case
photons are scattered in the narrow beam with angular spread θb around the
line of sight, independently on the position of the source R⋆. The larger is the
Lorentz factor, the larger is the intensity seen by the distant observer. This
is due to the fact, that both ellipses shown in Fig. D.1 become highly com-
pressed with increasing Γ. For R⋆ > ΓRph the angular size of the scattering
ellipse exceeds θb and the amount of scattered photons reaching the observer
is reduced. This is due to the fact that photons are scattered into a wider cone.
The intensity seen by the distant observer in this case decreases as R−2

⋆ .

These results are confirmed by integration of photon and energy fluxes to-
wards the observer over the ellipse given by Eq. (D.0.3) with the scattering
indicatrix which is isotropic in the reference frame comoving with the wind,
see Figs. D.2 and D.3. The analytic expressions are cumbersome, but can be
approximated by simple formulae. For R⋆ < 2Γ2Rph the enhancement of the

1Indeed, Monte-Carlo simulations show that the average number of photon scatterings is
changing from 2 to 0.5 for Rph . R⋆ . RphΓ2 (D. Bégué, private communication).
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Figure D.2.: Enhancement of the photon number intensity J/J0 along the line
of sight as function of the radial position of the photon source in relativistic
steady winds with Γ = 100. Dashed line shows approximate results obtained
by Eq. (D.0.4).
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photon number intensity is

J/J0 ≃
8Γ2

1 + R2
⋆/(2Γ2R2

ph)
, (D.0.4)

while the enhancement of intensity is

I/I0 ≃
16Γ4

1 + R2
⋆/(2Γ2R2

ph)
. (D.0.5)

For R⋆ > 2Γ2Rph the spotlight effect is negligible, as at this radius the
medium is transparent in almost all directions. The observed intensity en-
hancement is shown in Figs. D.2 and D.3 as function of the position R⋆ of the
isotropic source of photons for the bulk Lorentz factor of the wind Γ = 100.
The agreement between analytic results and their approximations (D.0.4) and
(D.0.5) improves for higher Γ.
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Figure D.3.: The same as in Fig. D.2 for the intensity I/I0. Dashed line shows
approximate results obtained by Eq. (D.0.5).

One may consider an extended stationary isotropic source of photons in
the rest frame of the observer with the center located on the line of sight
in the same range of radii Rph . R⋆ . RphΓ2. When the transverse size
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of the source is larger than R⋆/Γ the photon flux for a distant observer is
equivalent to that of a spherical shell with the radius R⋆ emitting with the
same surface brightness in the absence of the wind. Since most photons are
upscattered and their laboratory energy increases by a factor Γ2 the energy
flux is increased by the same factor Γ2, compared to the case without the
wind.

The enhancement of the intensity is due to the kinetic energy of relativistic
wind. It is interesting to note that this kinetic energy can be efficiently ex-
tracted by the photons2. One can estimate the luminosity of the stationary
spherical source L⋆ required for deceleration of the wind. The wind is tradi-
tionally characterized Paczynski (1990) by its luminosity L = ΓṀc2, where Ṁ
is the rest mass ejection rate. The deceleration of the wind by the spotlight ef-
fect changes the form of the photosphere given by Eq. (D.0.1), making it less
concave. Then for L⋆ & Ṁc2/Γ the kinetic energy of the wind is extracted
almost entirely and the relativistic spotlight effect disappears.

The enhancement of intensity of a photon source by a factor ∼ Γ4 is also
known in several different contexts: the reflection off relativistically mov-
ing mirror (Einstein, 1905, p. 915); the emission of a source, relativistically
moving towards the observer (Rybicki and Lightman, 1979, Eq. (4.97)). Nev-
ertheless, the spotlight effect cannot be reduced to either of the two: the en-
hancement of the static source is due to the presence of relativistic medium
providing strong anisotropy of the optical depth. In particular, in both above
mentioned cases the enhancement of the intensity does not depend on posi-
tion of the source, unlike the effect considered here, c.f. Eq. (D.0.5).

This phenomenon may find an application in GRB physics, provided the
photon source is located within the relativistic beaming cone around the line
of sight. This requirement is rather natural in relativistic context. The prob-
lem of conversion of kinetic energy into radiation is well known. The mech-
anism described above provides an efficient solution to this problem. In fact,
when only a fraction 1/Γ2 of the kinetic energy of relativistic outflow is con-
verted into soft photons emitted isotropically in the rest frame of the observer,
such photons will extract large part of the kinetic energy of the outflow. For
instance, in the relativistic outflow with Γ ∼ 300 thermal photons with tem-
perature 1 eV will be upscattered to energies ∼ 300 keV, typical for GRB

2In the model of Lazzati et al. (2000) the propagation of relativistic wind through photon
bath was considered. However the estimation of ratio of photons dragged by the wind
in transparent region (considered here) is incorrect, since the authors did not take into
account the anisotropy of the optical depth properly.
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spectra.

468



E. On the structure of the
circumburst medium in the
fireshell model of Gamma-Ray
Bursts

E.1. Introduction

In the fireshell model, see Ruffini et al. (2009) and references therein, the light-
curve of long Gamma-Ray Burst (GRB) prompt emission is composed of a
thermal signal (P-GRB) at early time, followed by the peak of the emission
originating from the interaction of the relativistic shell with the circumburst
medium (CBM). This model has been successfully applied to numerous burst,
see e.g. Ruffini et al. (2001, 2002); Izzo et al. (2012); Penacchioni et al. (2012,
2013); Muccino et al. (2013).

In order to fit the spectra, the model uses the additional assumption of
thermal energy emission in the co-moving frame of the shell. To obtain the
observed temperature, the volume of emission has to be reduced by intro-
ducing the filling factor R, which is interpreted as the ratio of the emitting
surface to the total visible area, leading to the interpretation that the CBM is
composed of clouds, which in turn are made of filaments, see Ruffini et al.
(2005a). Each filament is responsible for small local deceleration of the shell.

In this work, we are interested in the case for which each filament produces
strong deceleration of a part of the shell interacting with it. We introduce an
additional parameter to constrain the filaments and use the relativistic en-
ergy and momentum conservation laws to constrain the interaction between
a filament and the shell.

The paper is organized as follows. In section 2, the treatment is described.
Section 3 deals with the new parameter used to constrain the filament. It
is followed by the description of the interaction between a filament and the
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shell. And we conclude by estimating the parameters of a cloud such that the
properties of GRB light-curve and spectrum are recovered together with two
additional conditions: the filaments are optically thick and strong decelera-
tion within filaments occurs.

E.2. Long GRB prompt emission in the fireshell

model

In the fireshell model Ruffini et al. (2009), the main part of long GRB prompt
emission is assumed to originate from a relativistic shell that interacts with
the CBM with some average density n. There are three levels of description
of this medium.

The first level considers the CBM to be homogeneous, with density typi-
cally n ∼ 1 cm−3 (see Ruffini et al. (2001) and references therein). The inter-
action results in gradual deceleration of the shell and a smooth light-curve
that raises up to the maximum and then decays. The emission lasts from few
seconds to few hundreds seconds. The characteristic radius of interaction can
be defined by considering that the initial Lorentz factor Γ of the shell has been
divided by a factor of two at that radius. In other words, half of the kinetic
energy of the shell is extracted. The radius of deceleration reads:

rd =

(

9E

8πmpc2Γ2n

)
1
3

(E.2.1)

∼ 2.9× 1017E
1
3
54Γ−2/3

2 n−1/3
0 cm

where mp is the proton mass, c the speed of light, E the total isotropic energy
of the burst, see also e.g. Rees and Meszaros (1992) for a similar treatment in
the fireball model. In Eq.(1) and below we define any quantity Xn such that
X = 10nXn.

The second level of description introduces over-dense (called clouds) re-
gions at rest in the laboratory frame. Assuming spherical symmetry, they
are described by concentric shells, defined by the following parameters with
their typical values: the density nc ∼ 102 cm−3, thickness lc ∼ 1015cm and
radial position Rc ∼ 1016cm. Such clouds have a typical mass 10−7M⊙
Ruffini et al. (2002). The interactions between each cloud and the shell re-
sult in variability over the smooth light-curve discussed above. Each spike of
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a typical duration of few seconds is associated to one cloud. The interactions
between each clood and the shell is described by the relativistic energy and
momentum conservation equations for inelastic collision. All the internal en-
ergy generated in the interaction is assumed to be radiated away instantly
(”fully radiative condition”, see e.g. Ruffini et al. (2009)).

The third level of description considers inhomogeneities inside a cloud
called filaments. The only constraint on the filaments is given by the filling
factor R = Ae f f /A, where Ae f f is the area that emits at each given time and
A is the total visible area Ruffini et al. (2005a). This last parameter takes into
account the relativistic beaming. This level of description is used to model
observed spectra of GRBs Ruffini et al. (2005a). For not very energetic bursts
(E < 1053ergs) the emission is assumed to be thermal in the co-moving frame
of the shell, while for more energetic bursts (E > 1054ergs) the co-moving
spectrum is phenomenologically modified Patricelli et al. (2012). R is deter-
mined by associating the peak energy to the observed temperature Tob ob-
tained by considering the co-moving internal energy dǫ created in the inter-
action during the co-moving time dτ:

Tob = 2Γ

(

dǫ

σSB ARdτ

)
1
4

, (E.2.2)

where A = 4πR2
c is the area of interaction. The numerical value of the filling

factor R changes from cloud to cloud, but it is always infered from observa-
tions to be small, R ≪ 1, with typical values 10−8, see e.g. Bernardini et al.
(2007); Dainotti et al. (2007); Caito et al. (2009); Muccino et al. (2013). Only
a small fraction of the total area of the shell is interacting with filaments at
a given laboratory time t. It is implicitly assumed that the resulting varia-
tion in the Lorentz factor at a given cross-section of the cloud is small. Such
small perturbations are neglected and the shell, characterised by an average
Lorentz factor Γ, is assumed to be decelerated gradually by many consecutive
interactions with filaments.

The modelling of the light curves and spectra requires 4 local parameters
for each spike: lc, nc, Rc and R, and the global parameter n.

Below we discuss the following problems which were not completely cov-
ered in the previous treatement:

• what are the implications of the filling factor R on the physical proper-
ties of the filaments?
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• how the dynamics of the shell is affected by the filamentary structure?
In particular, is it possible to decelerate to non-relativistic velocities only
a small part of the shell by a single filament?

In order to answer these questions we propose to extend the model by the
introduction of one additional parameter and by making several additional
assumptions about the filaments.

E.3. New description of filaments and its

implication

For simplicity we assume all filaments to be identical. For definiteness, we
also assume they have cylindrical shape1 with the axis aligned with the radial
direction and characterized by the parameters: l f (length), r f (radius) and n f

(density). Besides we assume that the distribution of filaments is homoge-
neous inside the cloud.

In addition, we introduce a new parameter Ω such that ∑ s = ΩA where
s = πr2

f is the surface of a filament and the sum is running over all filaments

in the cloud. A physical interpretation of Ω is given if one considers a small
area of the shell ∆s such that ∆s ≪ s. Then since the filaments are uniformly
distributed in a cloud, Ω can be interpreted as the average number of fila-
ments interacting with ∆s while the shell propagates through the cloud. In
particular Ω > 1 implies that ∆s will propagate through more than one fila-
ment, so there is an overlap between them. For this reason, Ω is referred to as
overlap factor. A schematic representation of R and of Ω is given by Figure
E.1.

Now the model for one cloud involves 8 parameters: nc, lc, Rc, r f , l f , n f , R
and Ω. But these parameters are not independent. To get the relation between
them, let us first consider a section of the cloud of length δl such that δl ≪ l f .
The number of particles in this section of the cloud is Nc = Ancδl while the
number of particles in filaments of that section is N f = ∑

′ sn f δl, where the
sum is running over all filaments that are intersected by the cross-section of the
cloud under consideration (here ∑

′ s = Ae f f ). By considering that the number
of particles is the same in both pictures (since the mass is the same), we write

1The geometrical shape of a filament only changes the following results by a factor of order
1.
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Filling factor

Overlapping factor

Figure E.1.: Schematic representation of a cloud. The filling factor R corre-
sponds to the ratio between the area of the red dots (filaments) and the total
area of the cloud, while Ω is the ratio between the area of the green dots
(projection of all the filaments in the cloud) and the total area.

Nc = N f and obtain:
nc A = n f Ae f f .

That gives Ruffini et al. (2005a); Muccino et al. (2013):

n f =
nc

R
(E.3.1)

Finally, using particle number conservation in the whole cloud, which gives
immediately nclc = Ωl f n f , and Eq.(E.3.1), one obtains the following relation:

l f =
R

Ω
lc (E.3.2)

One can then compute the optical depth for Compton scattering of such fil-
ament by combining Eq.(E.3.1) and Eq.(E.3.2) (n f is assumed to be constant
through a filament):

τf = σTn f l f =
σTnclc

Ω
(E.3.3)

where σT = 6.65 ∗ 10−25cm−2 is the Thomson cross section. In the case Ω > 1,
the optical depth of the cloud τc is given by the sum of the contributions of
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all the filaments on the line of sight.
For the typical values nc = 102cm−3, lc = 1015cm and R = 10−8 given by

Ruffini et al. (2005a), we find: n f = 1010cm−3, l f = 107cm and τc = σTnclc ∼
10−8.

In the fireshell model, the evolution of the shell is computed by consid-
ering its interaction with the clouds. The filaments are introduced only to
compute the spectra: their influence on the dynamics is neglected. It has two
consequences: first, the interaction between the filament and the shell results
in small deceleration, and second, it is required that Ω ≫ 1 to have efficient
energy extraction from the interaction between the shell and the cloud.

Alternatively, one can assume Ω . 1. The lower limit on Ω is the value
of R since the length of a filament can not exceed the length of the cloud.
Considering the definition of Ω as the ratio between the interacting area of
the shell ∑ s and A, we see that for Ω < 1, the shell will not interact with the
cloud on its total area A, but only with a fraction Ω of it. As a consequence,
the amount of energy extracted from the shell by the cloud is less than ΩEk,
where Ek is the total kinetic energy of the shell before the interaction starts.

Thus, efficient extraction of energy by one cloud requires that Ω is not too
small, say 0.1 < Ω . 1. From Eq.(E.3.3), we find that the density in one cloud
should then be of the order of nc ∼ 1010cm−3 for lc = 1015cm (as given by
Ruffini et al. (2005a)) to have optically thick filaments. Let us also note that
the constraints on R and Ω are independent.

E.4. Dynamics of the shell

The relativistic energy and momentum conservation equations for an inelas-
tic collision between the shell and a cloud can be found e.g. in Ruffini et al.
(2009). Here we consider the same equations to describe the interaction be-
tween the shell and a filament. They take the following form:

mshellΓ + m f =
(

mshell + m f +
ǫ

c2

)

Γm (E.4.1)

mshell

√

Γ2 − 1 =
(

mshell + m f +
ǫ

c2

)

√

Γ2
m − 1 (E.4.2)

where Γm is the Lorentz factor of the merged system after the collision, mshell

and m f are the baryonic masses of the interacting part of the shell and that
of the filament, and ǫ is the internal energy in the co-moving frame of the
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merged mass created in the interaction. We also have used the fact that the
filament is assumed to be initially at rest in the laboratory frame.

Using Eq.(E.4.1) and Eq.(E.4.2) we can express the ratio of the masses mshell

and m f as a function of Γ and Γm:

m f

mshell
= Γ





(

1− Γ−2

1− Γ−2
m

)

1
2

− 1



 ≡ Γ f (Γ, Γm) (E.4.3)

Figure E.2 displays the ratio Γm/Γ as a function of m f /mshell according to
Eq.(E.4.3). For m f ∼ mshell/Γ, small deceleration occurs and the final Lorentz
factor is comparable to the initial Lorentz factor Γm ∼ Γ. This is the case
adopted in the fireshell model. For larger mass of the filaments strong de-
celeration occurs. For m f ∼ Γmshell, we have Γm ∼ 1, which means that the
merged system moves with non-relativistic speed after the interaction.

1/Γ

1

1/Γ 1 Γ

Γ m
/Γ

mf / mshell

Figure E.2.: Ratio between the final (Γm) and the initial (Γ) Lorentz factors as
a function of the ratio m f /mshell according to Eq.(E.4.3). Here Γ = 100, but
qualitatively the dependence remains the same for all Γ≫ 1.

The model of inelastic collision adopted in our treatment following
Ruffini et al. (2009) contains the assumption that after the interaction the sys-
tem is merged and has a unique Lorentz factor Γm. This is only possible in
case of tight coupling between particles in the merged system. This tight
coupling requires that the mean free path of all particles (protons, electrons,
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photons) is much less than the size of the merged system. Then the natural
requirement is that the optical depth of the filaments defined in Eq.E.3.3 is
larger than one. It is also required by the assumption of thermal emission in
the co-moving frame of the merged system, see Ruffini et al. (2005a).

For the mass of the cloud, considered here as a spherical shell concen-
tric to the origin of the burst (Ruffini et al., 2001), we have Mc = ncVcmp =

4πR2
c lcncmp and then we find:

Mc > 1.6 ∗ 10−4 Ωτf

(

Rc

1014cm

)2

M⊙. (E.4.4)

In order to obtain the radial position of the cloud Rdec at which the interac-
tion should happen, we can express the mass of the shell interacting with a
filament and the mass of the filament in the form:

m f = πl f r2
f mpn f (E.4.5)

mshell =
Er2

f

4Γ2R2
c

. (E.4.6)

Finally by using Eq.(E.4.3), we obtained the radius at which the filament has
to be placed to decelerate up to an arbitrary Γm the part of shell that interacts
with it:

Rdec =

√

E f (Γ, Γm)

4πmpc2l f n f
=

√

E f (Γ, Γm)σT

4πmpc2τf
. (E.4.7)

In the following, we discuss both extreme cases with slight and complete
deceleration, as well as the intermediate one.

E.5. Deceleration regimes

E.5.1. Slight deceleration (Γm ∼ Γ with m f ∼ mshell/Γ)

First we consider the case in which the shell is still highly relativistic after
the interaction. For the numerical evaluation we chose Γm/Γ = 1/2, the
standard condition determining the deceleration radius Rees and Meszaros
(1992), which means that the interaction extracts 50% of the kinetic energy of
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the interacting section of the shell. Using Eq.(E.4.7) we obtain:

Rdec = 7.3 ∗ 1013

(

E

1054erg

)1/2 (
Γ

102

)−1

τ−1/2
f cm.

The typical duration of the emission from the interaction between a cloud
and the shell is:

δta = lc/(2Γ2
mc) < Rdec/(2Γ2

mc) (E.5.1)

< 0.48

(

E

1054erg

)1/2 (
Γ

102

)−3

τ−1/2
f s, (E.5.2)

which is smaller than the typical variability time-scale expected from the in-
teraction of the relativistic shell and a cloud. For Ω ≫ 1, this estimate also
gives the duration of the emission. While for Ω < 1 this estimate gives the
time-scale of the variability associated with the cloud.

E.5.2. Complete deceleration (Γm ∼ 1 with m f ∼ Γmshell)

In this section we consider the case when the interaction between a filament
and the shell leads to a deceleration up to almost non-relativistic speed of the
interacting part of the shell, choosing Γm = 2.

For Ω > 1, the kinetic energy of the shell would be completely extracted by
this single interaction. On the contrary for Ω . 1, only Ω part of the energy
is extracted and the part of the shell that does not interact with the filaments
of that cloud moves with the original Lorentz factor Γ, being able to interact
with other clouds at larger distances.

The deceleration radius are found to be of the order of:

Rdec = 2.3 ∗ 1015

(

E

1054erg

)
1
2
(

Γ

102

)
1
2

τ
− 1

2
f cm. (E.5.3)

Since the emission is isotropic and not relativistically collimated, the time
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scale of emission is found by:

δta =
2Rdec

c

= 1.5 ∗ 105

(

E

1054erg

)
1
2
(

Γ

102

)
1
2

τ
− 1

2
f s. (E.5.4)

This time scale does not correspond to the typical ones observed in GRBs.

E.5.3. Intermediate regime

We have seen that if one imposes the optical depth of the filament to be larger
than one, none of the regimes studied above reproduces the typical time
scales observed in GRBs. It is necessary to consider low relativistic speed
(Γm ∼ 20 after interaction) to establish a regime consistent with the observa-
tions. We can find both the radial position of the cloud Rdec and Γm as:

Γm = 19

(

E

1054erg

)
1
6

τ
− 1

6
f

(

δt

10s

)− 1
3

(E.5.5)

Rdec = 2.2 ∗ 1014

(

E

1054erg

)
1
3

τ
− 1

3
f

(

δt

10s

)
1
3

cm, (E.5.6)

where δt is the typical duration of one spike. Since Γm ≪ Γ, almost all the
kinetic energy is extracted from the interaction with the filaments. To explain
further variability in the light curve (subsequent spikes), we must require
that Ω . 1 to have energy left in the shell, and a subsequent delay between
the emission from the interaction with two clouds.

Let us call ∆ta the delay between two spikes in the light-curve of a GRB.
With Ω . 1, a part of the shell is strongly decelerated by the first cloud,
while the other part coasts with the initial Lorentz factor up to the second
cloud. The delay between the two emissions is given by

∆ta =
Rc,2 − Rc,1

2Γ2c2
= 0.17

(

∆R

1014cm

)(

Γ

102

)

s. (E.5.7)

In order to have ∆ta of the order of few seconds, it is required either large
radii of interaction of the order of few 1015cm, or deceleration of the shell
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between the two clouds.

Increasing the radii of interaction is impossible. Indeed the energy is fixed,
as well as the duration of one spike to some seconds, leaving only the optical
depth as a free parameter, and Eq.(E.5.6) shows that optically thick filaments
constrains the radius of interaction to be smaller than 2.2 ∗ 1014cm.

Actually, substantial deceleration of the shell can take place between the
two clouds by interaction with the constant CBM. By decreasing the Lorentz
factor of the part of the shell that did not interact with the first cloud from Γ

to Γ̄, an estimate of ∆ta is given by ∆ta = ∆R/(2Γ̄2c). For instance, if between
the two clouds, the Lorentz factor is decreased by a factor of 3, then ∆ta is
10 times larger than if no deceleration had taken place. The mass required
between the two clouds is of the order of mshell/Γ≪ Mc, given by Eq.(E.4.4).

E.6. Estimation of R and n f with Ω < 1

It is not possible to follow the approach of Ruffini et al. (2005a) to constrain
the filling factor R from the observed temperature. Indeed they apply the
energy and momentum conservation equations to the interaction between the
shell and a cloud, considering that the filaments are only responsible for slight
deceleration of the shell and that Ω ≫ 1, which implies that the shell decel-
erates on average by its interaction with many filaments. Here we apply the
energy and momentum conservation equations to the interaction between the
shell and a filament, with no further assumption on Ω and on the deceleration
of the shell by a filament.

So we can constrain R from the energy emitted from all the filaments. The
observed temperature of the emission from one filament writes:

Tob, f il = 2Γm

(

ǫ f

aV
′
f

)
1
4

,

where ǫ f is the co-moving internal energy created in the interaction of one fil-

ament with the shell and V
′
f is the co-moving volume of a filament. Since this

last quantity is not known, one can consider the sum over all the filaments in
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the cloud:

Tob, f il = 2Γm

(

ǫtot

4πaR2
c l
′
f

)
1
4

,

where ǫtotΩ is the total energy released in all the filaments and the co-moving

volume is V
′
f = 4πR2Ωl

′
f with l

′
f being the co-moving length of a filament.

Finally, when using Eq.(E.3.2) and l
′
f = Γml f , one obtains:

Tob, f il = 2Γm

(

ǫtotΩ

4πaR2
cRΓmlc

)
1
4

,

to be compared with Eq.(E.2.2). The filling factor writes:

R =

(

2Γm

Tob

)4
Ωǫtot

4πaR2
c Γmlc

.

Γm and ǫtot are given by the conservation of energy and momentum. From
Eq.(E.4.1) and (E.4.2) it comes:

ǫtot

mshellc2
=

(

Γ

Γm
− 1

)

+ Γ f (Γ, Γm)

(

1

Γm
− 1

)

, (E.6.1)

where mshell is given by E/(Γc2).
The final expression for R is

R =
24Γ3

m

T4
ob

Ωmsc
2
[(

Γ
Γm
− 1
)

+ Γ f (Γ, Γm)
(

1
Γm
− 1
)]

4πaR2lc
. (E.6.2)

The dependence of R as a function of Γm/Γ is given by Fig.(E.3) for E =
2× 1053erg, R = 1014cm, Ω = 0.5 and kBTob = 500keV.

E.7. Discussion

Our analysis shows that when the interaction between the shell and the
clouds is considered in the fireshell model, Ω ≫ 1 is implicitly assumed. In
other words, there is significant ovelap between numerous filaments. The
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typical values for the cloud parameters are given by Ruffini et al. (2005a):
nc = 102cm−3, lc = 1015cm and R = 10−8.

Here we consider the interaction between the shell and a filament. In order
to justify the assumption that the energy is thermal in the co-moving frame
after interaction, we require τf > 1 and express the radius at which the fil-
ament has to be placed as a function of the resulting Lorentz factor. With
τf > 1, it follows that each filament contains a large mass, which in turn
results in a small deceleration radius, see Eq.(E.5.6), as compared to those
adopted in the previous treatment within the fireshell model.

When assuming that Ω < 1, it is needed that the interaction results in
rather strong deceleration of the interacting parts of the shell with Γm of the
order of few tens in order to recover the variability time-scale of the order
of 1s. In this situation, the parameters of a cloud are lc < Rc . 1014cm,
R ∼ 10−10 (imposed by the observed temperature), nc ∼ 1012cm−3 (imposed
by τf > 1). The parameters of each individual filaments are also constrained

n f ∼ 1022cm−3 (a factor of 10 denser than air) and l f ∼ 103cm.

In addition, in order to recover the delay between two spikes in the light-
curve due to interactions with two clouds, together with the constrain of op-
tically thick filaments, it is required that the Lorentz factor of the shell de-
creases substantially between the two clouds by interacting with the CBM. Its
density can be estimated to be of the order of n = 1.6× 1010cm−3E54Γ−2
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14 .

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Fi
lli

ng
 f

ac
to

r

Γm/Γ

Γ=100
Γ=300

Γ=1000

Figure E.3.: R as a function of Γm/Γ is given by Fig.(E.3) for E = 2× 1053erg,
Rc = 1014cm, Ω = 0.5 and kBTob = 500keV.
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One can also attempt a third approach in which an homogeneous decel-
eration of the shell is taking place at the same time as the interaction with
filaments.

Finally, note that there is a similar theoretical treatment of the interaction
between the GRB ejecta and a shell of matter by Badjin et al. (2013) to explain
the thermal component in the UV-range in the late afterglow. Starting from
the requirement that the ISM shell is optically thick, they determined its mass
and density, finding n ∼ 1011cm−3, similar to our estimate. Since they also
require the prompt emission to be seen, they additionally assume that the
surface of interaction of the relativistic outflow is only a fraction of the total
visible area, which in our work translates to Ω < 1.

E.8. Conclusion

In the context of the fireshell model, in addition to the filling factor R we have
introduced a new parameter Ω which is interpreted as the average number
of filaments that interact with a small area of the shell while it propagates
through the cloud. We found that Ω≫ 1 is implicitly assumed in the fireshell
model.

In addition, with the parameters of the clouds adopted in the fireshell
model, we have shown that the requirement that the optical depth of either
a filament or a cloud be larger than one is not consistent with the condition
Ω ≫ 1, see Eq.(E.3.3) . However the application of relativistic energy and
momentum conservation equations to inelastic collision between the rela-
tivistic shell and the filaments requires tight coupling between particles in
the merged system. In other words, it requires the condition τf > 1.

Adopting the energy and momentum conservation approach and requiring
the filaments to be opaque, we studied the interaction between the relativistic
shell and the filaments and identified the typical parameters relevant for the
description of the light-curves of Gamma Ray Bursts. In particular we found
that all the requirements (optical depth larger than unity, variability time-
scale and duration) can be accounted for if a cloud of large mass (comparable
with a fraction of a solar mass, see Eq.(E.4.4) ) is placed at a radius of the
order of 1014cm or less, see Eq.(E.5.6), leading to large deceleration of parts of
the shell.
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interaction of GRBs and
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F.1. Introduction

A thermal X-ray component, regularly coupled with a flare, is observed in
the early afterglow of many gamma-ray bursts (GRBs), for instance, GRB
060729, 081007, 090618, 130427A, see more examples inPage et al. (2011);
Sparre and Starling (2012); Starling et al. (2012); Ruffini et al. (2014a,b). Some
possible mechanisms were proposed, in the literature there is no consen-
sus. The traditional shockwave breakout model has difficulties in generat-
ing the observed high luminosity in a distant radius Ghisellini et al. (2007);
Starling et al. (2012). In ref. Friis and Watson (2013), the authors link the
afterglow thermal radiation to the prompt phase via photospheric emission
from the jet, but from the observation, the cooling of thermal components in
the prompt phase and in the afterglow follows different trends, see an exam-
ple in Fig.F.3. In ref.Pe’er et al. (2006), the thermal emission is interpreted as
coming from a hot plasma “cocoon” heated by the GRB jet, but this model re-
quires much higher Lorentz factors (on the order of 10) than the ones inferred
from the observations.

In this paper, we attempt to explain the thermal component in the early af-
terglow by considering the interaction of GRB outflow with a baryonic shell
encircling a GRB source. In the particular paradigm of induced gravitational
collapse (IGC), see e.g. Ruffini et al. (2014a) and references therein, such shell
is interpreted as a supernova (SN) ejecta. IGC delineates a missive star ex-
ploding as a SN in a close binary system, the companion neutron star accretes
a partial SN ejecta and gravitationally collapses to a blackhole, GRB occurs si-
multaneously. The mechanisms of GRB energy engine and explosive dynam-
ics in the prompt phase are described by fireshell model, see e.g. Ruffini et al.
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(2010); Ruffini et al. (2009) and references therein. Such a GRB then interacts
with the rest of the supernova ejecta, accelerates and heats the supernova
ejecta, as a consequence, the supernova ejecta expands mild-relativistically
and emits the thermal radiation.

The content is organized as follows. In Section F.2 we solve the equations of
relativistic energy-momentum conservation in order to recover the amount
of thermal energy and velocity of the shell after the collision with the GRB
ejecta, also the photon diffusion is considered. In Section F.3 we compute
the resulting temperature and estimate the optical depth of the shell. We
apply the model in Section F.4 and consider the cases of 6 GRBs, including
the prototype GRB 090618. Conclusions follow.

F.2. Velocity and internal energy

Assuming the SN ejecta is a shell comprised of baryonic clumps with differ-
ent sizes and thicknesses at radius R from the SN source, the clumps near
the GRB are thinner than the more distant ones as a result of the accretion by
the initial neutron star. The circumstances we deal with in this paper have
R > 1012 cm, two orders of magnitude larger than the distance (< 1010 cm)
between binary stars in the IGC paradigm, therefore R is also considered
approximatively as the distance between the shell and the GRB Fryer et al.
(2014). This shell interacts with the GRB ultra-relativistic outflow. Here we
approximate the total energy of GRB outflow as the observed isotropic en-
ergy Eiso. In practice, the shell may not fully cover the sphere, also the GRB
outflow may be jetted, so in the following computation, we only consider
the interacting part, involving a portion of the shell with area 4πǫR2 and the
associated mass M = ǫMs, the energy of GRB outflow interacting with this
portion of shell E = ǫEiso, where ǫ is a fractional factor and Ms is a mass of
the spherical shell. For simplicity, in the following text, when we mention the
shell, it means the interacting part of the shell.

F.2.1. Interaction

Interaction transfers energy and momentum from the GRB outflow to the
clumps of the shell. Energy-momentum conservation reads
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E + Mc2 =
(

Mc2 + W
)

Γ, (F.2.1)

E

c
=

(

M +
W

c2

)

Γv, (F.2.2)

where Γ =
[

1− (v/c)2
]−1/2

is the Lorentz factor of radial motion of the shell,

c is the speed of light, W is internal energy. These equations can be used to
find the internal energy and the velocity of the shell after the interaction. If
the shell remains opaque, the internal energy of the shell is transformed into
its kinetic energy resulting in acceleration. At the phase of acceleration the ra-
dial momentum is not conserved, and equation (F.2.2) in the above set cannot
be used. The final velocity after the acceleration phase can be found from the
energy conservation alone, namely from equation (F.2.1). For having concise
expressions, we neglect the initial energy and momentum of the shell, which
only affects less than 5% and 12% of the temperature and mass respectively
for our cases.

In order to solve equations (F.2.1) and (F.2.2) we introduce the new vari-
ables

η =
E

Mc2
, ω =

W

Mc2
, u = Γ

v

c
(F.2.3)

we rewrite the energy-momentum conservation

η = (ω + 1)
√

u2 + 1− 1, (F.2.4)

η = (ω + 1) u. (F.2.5)

The solution to this system reads

u =
η

√

1 + 2η
,

W

E
=

ω

η
=

1

u
− 1

η
. (F.2.6)

In nonrelativistic and ultrarelativistic asymptotics, respectively, the solution
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Figure F.1.: Two functions are shown: the dimensionless velocity parameter
u = Γv/c of the shell after the interaction with photons (thick), as function of
the parameter η = E/(Mc2), as well as the ratio between the internal energy
and the initial energy in photons (thin), ω/η = W/E, as function of the same
parameter η. Dotted (dashed) line shows the nonrelativistic (ultrarelativis-
tic) asymptotics for u, while the dash-dotted line shows the ultrarelativistic
asymptotics for W/E.

becomes

u ≃ v

c
≃ η ≪ 1, ω ≃ η, (F.2.7)

u ≃ Γ ≃
√

η

2
≫ 1,

ω

η
≃
√

2

η
. (F.2.8)

This solution is illustrated in Figure F.1. These results imply the following.
On the one hand, when the energy in photons is much less than the rest
mass of the shell, E ≪ Mc2, most of the energy is transferred into inter-
nal energy W ≃ E, and the resulting velocity of the shell is nonrelativistic,
v/c ≃ E/(Mc2). On the other hand, for E ≫ Mc2 the transfer of momen-

tum is inefficient. We have Γ ≃
√

E/(2Mc2) and W/(Mc2) ≃
√

2Mc2/E.
The shell is accelerated to ultrarelativistic velocity, but some energy goes into
internal energy as well. This internal energy will then be transferred into
kinetic one during the acceleration phase.
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Figure F.2.: The ratio between internal (dashed) and kinetic (solid) energy to
initial energy (dotted) after the interaction. In nonrelativistic case with η ≪ 1
all the energy of the GRB ejecta is transformed into internal energy (heat) of
the baryonic shell. In ultrarelativistic case with η ≫ 1 the energy of the GRB
ejecta is transformed mostly in kinetic energy of the shell.

In Figure F.2 we present the ratio between internal and kinetic energy of
the shell to initial energy of the system, composed of the GRB ejecta and the
baryonic shell, computed after the interaction. One can see that in the non-
relativistic case with E≪ Mc2 all the energy of the GRB ejecta is transformed
into internal energy of the baryonic shell. In contrast, in ultrarelativistic case
with E ≫ Mc2 the energy of the GRB ejecta is transformed mostly in kinetic
energy of the shell. Notice the striking similarity with the corresponding di-
agram for the energies emitted in the P-GRB and in the extended afterglow,
in units of the total energy of the plasma within the fireshell model, see e.g.
Figure 5 in Ruffini et al. (2009).

F.2.2. Acceleration

If the shell is spherically symmetric, assuming all energy is ultimately trans-
ferred into kinetic energy of the shell (W ≪ Mc2) from the energy conserva-
tion, equation (F.2.1), one has

Γ− 1 =
E

Mc2
=

Eiso

Msc2
= η, (F.2.9)
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Again, in nonrelativistic and ultrarelativistic asymptotics, respectively, one
finds

v

c
≃
√

2η, η ≪ 1, (F.2.10)

Γ ≃ η, η ≫ 1. (F.2.11)

As a matter of fact, the values of velocity (Lorentz factor) after the interaction
are always smaller than the final values, reached after the acceleration phase.

Note that in the derivation in this Section we never used the condition W ≪
Mc2. This condition is valid in GRBs context as baryons after collision never
reach relativistic temperatures, kT ≪ mpc2.

F.3. Temperature and optical depth

The comoving temperature of the shell Tc is found from the condition W =
4πǫaR2lT4

c . The observed temperature for the source with angle ϑ with re-
spect to the line of sight is

T =
Tc

Γ (1− β cos ϑ)
=

√

1 + 2η

1 + η − η cos ϑ

(

ω

η

F

al

)1/4

, (F.3.1)

where F = ǫEiso/
(

4πǫR2
)

= Eiso/
(

4πR2
)

is isotropic energy flux. This
expression gives, respectively, in nonrelativistic and ultrarelativistic asymp-
totics

T ≃
(

F

al

)1/4

, E≪ Mc2, (F.3.2)

T ≃ 2Γ

[

F

al

(

2

η

)1/2
]1/4

, E≫ Mc2, (F.3.3)

where in eq. (F.3.3) we assume that the source is on the line of sight.
The shell will emit photons from its photosphere. The case of ultrarelativis-

tic photosphere with Γ ≫ 1 is treated in Ruffini et al. (2013b), see also recent
review Vereshchagin (2014). From now on assume that the photosphere is not
ultrarelativistic. We still retain fully relativistic expression (F.3.1). The valid-
ity of the treatment in the previous section requires that the shell is opaque,
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namely its optical depth τ is large. The latter is given by

τ = σnl =
σM

4πǫR2Zmp
≫ 1, (F.3.4)

where σ is Thomson cross section mp is proton mass, Z is atomic number.
Further acceleration of the shell, considered above, is possible only of the
shell is still opaque during the acceleration phase.

The emission from the photosphere occurs due to radiative diffusion from
the interior of the shell. The emission lasts until all energy diffuses out from
the shell. The characteristic diffusion time form a clump with a given thick-
ness is

tD =
l2

D
= 3τ

l

c
, (F.3.5)

where D = c/(3σn) is the diffusion coefficient for photons. Since τ ≫ 1 we
have l ≪ ctD. The density decrease in diffusion coefficient due to expansion
of the shell can be neglected if the diffusion time is less than the dynamical
time of expansion R/v, namely if

3τ
v

c
≪ R

l
. (F.3.6)

In the opposite case one has to consider the effects of expansion and the ther-
mal spreading of the baryonic shell after interaction with photons on the dif-
fusion time. In any case, this effect reduces the diffusion time.

Note that equations (F.2.8) and especially (F.3.3) are relevant in the context
of the fireshell model Ruffini et al. (2009) as they describe the values of the
Lorentz factor of the PEMB pulse and its temperature at the moment after
the collision of the PEM pulse with the baryonic remnant. The asymptotic
expression (F.2.11) describes the Lorentz factor of the PEMB pulse under the
condition η < 104.

F.4. Application

From the observation one can derive the isotropic energy via the observed
flux and redshift, and by fitting the light curve and spectra, one can obtain
the evolution of temperature from thermal emission, as well as the velocity
of expansion. In practice, the satellites do not cover all the energy band, what
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we can have are only given temperatures with given duration. The Swift-XRT
is the most widely used instrument on detecting the GRB afterglow, it cov-
ers 0.3 ∼ 10 KeV. In other words, by analyzing the data from Swift-XRT, we
can only obtain the thermal temperature in soft X-ray band, and the corre-
sponding duration. For example, in Fig.7 of Ruffini et al. (2014b), clearly the
temperature of blackbody radiation from 196 s to 461 s is within the scope
Swift-XRT, temperature cools along the time. Therefore here we adopt three
parameters Eiso, tD and u given by the observations, then we deduce the tem-
perature using the above equations for the comparison with the observational
one. It is convenient to rewrite equation (F.3.1) using equations (F.2.6) and
(F.3.5) as

T = X(u)F1/2

(

a
mpc2

3σ ZctD

)−1/4

≃ 2.13X(u)E1/2
iso,52R−1

13 t−1/4
100 Z−1/4

10 keV,

(F.4.1)

where E52 = E/1052erg, R13 = R/1013cm, t100 = tD/100s, Z10 = Z/10,

X =
1√
u

1√
1 + u2 − u cos ϑ

(

u +
√

1 + u2 − 1

2u2 + 2u
√

1 + u2 + 1

)1/4

(F.4.2)

=

{

u−1/4, u≪ 1,

23/4u1/4, u≫ 1

is a slowly varying function of u which decreases as u−1/4 for u < 1 and
increases as u1/4 for u > 1, with X(u = 1, ϑ = 0) ≈ 1.7.

In fact, in most cases thermal component in soft X-ray contains small frac-
tion of the GRB energy, see table F.1. The baryonic shell may not necessary
be spherically symmetric as we assumed, clumps have different thickness.
The thinner clumps have earlier emission with higher temperature, and vice
versa. The small ratio between thermal energy in X-ray and GRB energy can
be explained assuming small ratio of the total surface of relatively thin bary-
onic clumps to the total spherical area at that radius. Naturally in the IGC
paradigm, these thin clumps are accumulated around the accreting source,
the progenitor of GRB. Some similar ideas in treatment of thermal emission
in GRBs are discussed in Badjin et al. (2013); Pe’er et al. (2006).
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F.4.1. The case of GRB 090618

A thermal component has been inferred from observations of the early X-
ray afterglow in GRB 090618. Following Izzo et al. (2012) and Ruffini et al.
(2014a) we summarize the parameters:

• isotropic energy of GRB Eiso = 2.9× 1053 erg,

• observed duration of the thermal component in Episode 3, t = 150 s,

• observed temperature T is decreasing from 1 keV to 0.3 keV.

Two alternative models were presented to explain this component: a rela-
tivistic wind model (e.g. Friis and Watson (2013)) and a mild-relativistic shell
model Ruffini et al. (2014a). Here we focus on the second one. In the model
described above we neglected the initial kinetic energy of the shell and as-
sumed that the interaction between the GRB ejecta and the shell results in
two effects: heating of the shell and its acceleration. The parameters of the
shell were inferred from observations Ruffini et al. (2014a):

• radius R = 1013 cm,

• velocity 0.75 < v/c < 0.89.

These parameters are quite close to those discussed above. The observed
trend of decreasing temperature can be explained by the expansion of the
shell, neglected in our simplified treatment in Section F.3. Given relativis-
tic velocities of the shell, neither nonrelativistic nor ultrarelativistic approx-
imations can be used to infer the parameters of the clump. Instead, the full
analytic solution (F.2.6) must be used. So from equation (F.2.6) we determine

3.0 < η < 8.1,

then knowing the energy in the thermal component the mass is

0.02M⊙ < Ms < 0.05M⊙,

then the optical depth of the clump is found from equation (F.3.4), and it is

1.3× 104
< Zτ < 3.4× 104,
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then the length of the clump is obtained from equation (F.3.5) and it gives

4.4× 107cm <
l

Z
< 1.2× 108cm.

Again, with these parameters the constraint equation (F.3.6) is satisfied.

It is clear from Figure F.2, that with these parameters the energy of GRB
ejecta is divided nearly equally between kinetic energy of the shell and its
internal energy.

Assuming the shell is composed of hydrogen with Z = 1 the temperature
of the shell is 8.62 keV, which is a factor 9 higher than the observed one. In-
stead, if the shell is composed of radioactive elements produced at the super-
nova explosion, the atomic number should be around Z = 26, which gives
for the temperature a much closer value to the one observed, namely 3.8 keV.
Clearly, in our simplified treatment this coincidence is remarkable. In fact, we
assumed that the temperature and density distribution in the shell are uni-
form. However, realistic temperature and density profiles will give smaller
temperature at the photosphere, compared to the temperature in the interior
of the shell.

Our model predicts that in non-relativistic case (η . 1) practically all ki-
netic energy of the GRB outflow is transferred into internal energy of the
baryonic shell, namely W ≃ E. In the case of GRB 090618 we have W ≃ E/2.
However, the total energy in the thermal component is estimated to be only
EBB = 2.1× 1049 erg. This can be explained if only a small fraction (ǫ ≃ 0.005)
of the GRB ejecta actually interacts with thin baryonic clumps. Recall that our
model is also valid without imposing the spherical symmetry. It implies that
the mass of thin baryonic material around the GRB source is M ∼ 10−4M⊙.
This is the lower limit to the total mass of baryonic material around the
source. The rest of the material can be much more massive and thicker.

If the GRB ejecta is spherical, interaction of this ejecta with the main part of
the SN remnant will increase the internal energy of the ejecta, thus contribut-
ing to the bolometric luminosity of the optical SN light curve. This effect can
explain why the nickel mass inferred in GRB-SN systems is systematically
higher than in other Ibc type SN .

In the IGC paradigm, accretion contributes to the emission of first seconds,
while in the fireball model, photospheric emission could exist in the begin-
ning. In both cases, as a result, thermal emission could be detected if its flu-
ence is sufficient. For GRB 090618, a decreasing thermal temperature within
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Figure F.3.: Temperature of the thermal component in the prompt emission
(grey points) and in the afterglow (black points). The single power-law fit-
ting of the temperature in the prompt emission clearly shows its extrapola-
tion lays much higher than the temperature in the afterglow. The value of
temperature comes from Ruffini et al. (2014a); Izzo et al. (2012).
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the first 50 s is observed, and we extrapolate this temperature by a single
power-law till hundreds of seconds and find that the extrapolated value is
much higher than the observed one, as shown in Figure F.3. This considera-
tion Begue (2014) supports that the thermal component in the afterglow has a
different origin, as in this article we adopt the proposal from IGC paradigm,
generated by the collision of GRB afterglow and a baryonic shell.

GRB z Eiso Rc td,c ν Tobs,c T Ebb

(×1052 erg) (×1013 cm) (×100s) (×1010 cm/s) (KeV) (KeV) (×1050 er
060218 0.033 0.0053 0.039 25.40 0.040 0.18 5.18 0.063

100316D 0.070 0.0060 0.093 5.53 0.39 0.19 1.83 0.095
081007 0.53 0.15 0.13 0.45 2.15 0.47 5.45 0.42
060729 0.54 1.60 0.58 1.45 2.34 0.32 2.62 4.92
090618 0.54 41 1.00 0.98 2.45 0.97 4.85 24.00

130427A 0.34 140 1.20 2.65 2.40 0.50 9.77 28.68

Table F.1.: Observational parameters and deduced temperature of 5 super-
nova associated GRBs, subscript ’c’ presents the comoving frame. Ob-
servational data is taken from Ruffini et al. (2014a,b); Izzo et al. (2012);
Starling et al. (2012).

F.4.2. More Examples

In order to have a more general comparison, we adopt 5 more GRBs with
isotropic energy from 1049 erg to 1054 erg, all these GRBs show supernova
signal either from the spectral aspect or a bump in the optical lightcurve is
detected. To find a thermal component, two conditions are required due to
the capacity of satellites, that the flux of thermal component is sufficient and
the ratio of thermal flux versus total flux is prominent, the thermal flux within
the observed duration tD adopted in this article fulfills these two conditions.
With this consideration, tD should be shorter than the real thermal emission
time, however, a great fraction of the total thermal energy is released during
tD, it’s reasonable to employ the observed tD as an approximation.

Table (F.1) shows the observational parameters and the temperature de-
duced from equation (F.4.1), and the ratio (defined as ǫ) of observed total
thermal energy Ebb in Episode 3 versus isotropic energy, in Figure F.4, we
demonstrate and fit the Eiso and Ebb relation, which shows approximately
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Figure F.4.: Isotropic energy versus thermal energy, dashed line displays a
simple power-law fitting of the GRBs in Table F.1, the power-law index is 0.6,
as Ebb ∝ E0.6

iso.
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Ebb ∝ E0.6
iso . We notice that in reality, radius R and temperature T are not con-

stants, common pattern are found as radius increases while temperature de-
creases within the duration tD. But some GRBs in our sample do not provide
adequate data for having precise time resolved analysis, instead, averaged
values are given for all the 5 GRBs.

The temperature deduced are universally higher than the observed ones,
and a trend that the deduced temperature increases along with the observed
temperature can be found. These results are within our expectation, because
equation (F.4.1) depicts the average temperature, measured in the interior
of the shell. In reality, a temperature distribution profile should be taken
into consideration, and a steep gradient of temperature always exists at the
outer edge which emits thermal photons. Detailed simulation will be given
elsewhere.

F.5. Conclusions

The observed parameters of the thermal component in the Episode 3 of emis-
sion in GRB 090618 are reproduced by considering the interaction of the GRB
outflow with the thin baryonic shell having mass of 10−4M⊙ and thickness
of 108 cm. In addition, thermal temperature of 5 more GRBs, namely 060218,
100316D, 081007, 060729, 130427A, with observed thermal emission in the
early afteglow were analysed, and the parameters of associated baryonic
shells are obtained.

Our results suggest an alternative explanation of the observed thermal sig-
nal in the early afterglow of some GRBs. While in Friis and Watson (2013) this
signal is associated with the photospheric emission from relativistic wind, in
our approach this emission is due to nonrelativistic photosphere of a thin
baryonic shell, energized and accelerated by the associated GRB.
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G. Relativistic kinetic theory and
its applications

G.1. Introduction

Kinetic theory (KT) was born in the XIX century, the golden age of classical
physics. Based on the atomic picture of a medium Boltzmann (2011) prop-
erties such as heat and electrical conductivity, as well as viscosity and diffu-
sion found natural explanations. The term originates from the Greek where
κινησιζ means motion. In fact all these properties of the medium may be
understood to be emerging from its microscopical structure and motion.

KT now has to be considered in a wider framework of statistical mechan-
ics appearing at the end of XIX century essentially in the works of Maxwell,
Boltzmann and Gibbs. It should be emphasized that the main ideas and
principles of KT influenced the development of many other sciences, includ-
ing the mathematics (probability theory, ergodic theory), biology (evolution-
ary biology, population genetics) and economics (financial markets, econo-
physics).

Within physics, KT is closely related to statistical physics, thermodynam-
ics, hydro- and gasdynamics. Today one can say that the main task of ki-
netic theory is explanation of various macroscopic properties of a medium
based on known microscopic properties and interactions. In a general con-
text, KT is a microscopic theory of nonequilibrium systems. Indeed, all the
above mentioned fields of physics such as e.g. thermodynamics assume that
the medium is in its most probable microphysical state, called equilibrium.
Clearly, any macroscopic manifestation of deviations from this microscopic
equilibrium should be considered within KT.

The first classical applications of KT concerned gases. A successful descrip-
tion of ideal and nonideal gases has been reached within the framework of
Newtonian mechanics. With the discovery of Special Relativity KT had to
be reformulated in a Lorentz invariant fashion, to make it compatible with
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existence of a limiting velocity, the speed of light. Indeed, the generaliza-
tion of Maxwell-Boltzmann equilibrium distributions to relativistic case was
obtained already in 1911 Jüttner (1911). It soon became clear that there is
another natural arena for application of KT which is plasma physics Landau
(1936, 1937). The major difference between plasma and gas is the existence
of long range forces, which has been accommodated by introduction of the
mean field description Vlasov (1938). Formulation of relativistic KT has been
completed in the 1960s and is presented in several monographs, see e.g.
Synge (1957); Groot et al. (1980); Cercignani and Kremer (2002).

Since basic phenomena in the microworld are described on a quantum lan-
guage, KT uses extensively quantum theory. In fact, basic principles and
equations of KT may be derived from Quantum Field Theory, see Groot et al.
(1980).

The purpose of these lecture notes is, however, not to review the founda-
tions of KT that would require an entire dedicated monograph. In this paper
I will only remind basic concepts of KT and introduce the necessary mathe-
matical apparatus. The main goal is essentially to show a wide area of ap-
plications of KT, spanning from astrophysical compact objects to the whole
Universe in its evolution.

G.2. Basic concepts

G.2.1. Distribution function

In classical (also relativistic) mechanics a complete description of a system
composed of N interacting particles is given by their N equations of motion.
In non-relativistic kinetic theory one deals with a space of positions and ve-
locities of these particles, the configuration space. In relativistic kinetic the-
ory it is replaced by the phase space M of positions and momenta. In principle,
equivalent description of the system is given by a function F(Γ) of 6N inde-
pendent variables, defined on M. An equation can be formulated for this
function, called the Liouville equation, that can be written apparently in a
very simple form

dF(Γ)

ds
= 0, (G.2.1)

where the derivative is over the proper time. However, its complexity is
equivalent to the complexity of original N-body problem, and in majority
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of cases it cannot be addressed directly.

A tremendous simplification occurs for some systems, where N is very
large. Under certain conditions, which will be discussed below in Sec. G.6,
they can be described by a function defined on the 6-dimensional phase space
M6. Such function depends only on 7 variables: 3 space coordinates, 3 mo-
mentum components, and time. In such a case the DF is called the one particle
distribution function (DF) f (xµ, pµ). This is the basic object used in statistical
(probabilistic) description of a system composed of large number of particles.
For brevity in what follows denote1 the coordinates in momentum space as
x = xµ = (ct, x), p = pµ = (p0, p), where c is the speed of light. Notice
that p0 is not an independent variable and it satisfies the relativistic energy

equation p0 =
√

p2 + m2c2. The DF is defined such that the integral

N ≡
∫

M6
f (p, x, t)d3pd3x, (G.2.2)

gives the total number of particles. Notice that the integral is clearly Lorentz
invariant. The invariance of the distribution function itself is not obvious
from such a definition and will be demonstrated explicitly below in Sec.
G.2.3. Then one observes that f (x, p)d3pd3x is an average number of parti-
cles having momenta in the range (p, p+d3p) and coordinates in the range
(x, x+d3x) at the moment t, and the integral (G.2.2) is taken in the whole
phase space M6.

Notice that despite symmetrical form of f (x, p) there is a conceptual differ-
ence between x and p. In particular, the integral

n(x, t) ≡
∫ +∞

−∞
f d3p (G.2.3)

is assumed to be finite, leading to certain restrictions on f (p). In particular,
when the DF is isotropic in momentum space, p2 f (|p|) should decrease with
increasing momentum for |p| ≫ 1 fast enough, at least faster than 1/ |p|; it
also should not increase with decreasing momentum for |p| ≪ 1 faster than
1/ |p|.

1In what follows Greek indices run from 0 to 3, while Latin ones run from 1 to 3. Einstein
summation rule is adopted.
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G.2.2. Averaging and macroscopic quantities

It is important to keep in mind that the DF defined by eq. (G.2.2) is not ac-
cessible directly to measurements. In any experiment or observation one has
to deal with averaged quantities. While a microscopic state is defined on the
phase space by the DF, it is useful to introduce a macroscopic quantity A(x)
as

A(x) ≡
∫ +∞

−∞
A(x, p)d3p. (G.2.4)

Particle density (G.2.3) is the simplest example. By definition the macroscopic
quantity does not depend on momentum, but only on coordinates and time.
Such quantity may be further averaged in space or time as follows

〈A〉time (x) ≡ lim
T→∞

1

T

∫ T

0
A(x)dt, 〈A〉space (t) ≡ lim

V→∞

1

V

∫

V
A(x)d3x.

(G.2.5)
The averaging may also be made on finite time T and in finite volume V then
the limits in front of integrals in eq. (G.2.5) are omitted.

In contrast to space and time averaging, statistical (or ensemble) averaging
for a quantity A(x, p) is defined as

〈A〉ens ≡
1

N

∫

M6
A(x, p) f (x, p)d3pd3x. (G.2.6)

While experiments deal with space and time averaged quantities, theory usu-
ally works with ensemble averaged ones. The connection between macro-
scopic and microscopic quantities from the one hand, but also space-time
averaged quantities and ensemble averaged ones from the other hand, is re-
quired. An important concept called statistical equilibrium requires that any
macroscopically large part of the system has macroscopic physical quantities
being equal to their statistical average values. For one particle DF this state-
ment can be represented as follows

1

V

∫

V

∫ +∞

−∞
A(x, p)d3pd3x =

∫

V

∫ +∞

−∞
A(x, p) f (x, p)d3pd3x

∫

V

∫ +∞

−∞
f (x, p)d3pd3x

, (G.2.7)

where V is an arbitrary macroscopic volume.
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One of the most important theorems in statistical mechanics states that for
ergodic systems the time averaged quantity should be equal to its ensemble
average. In a specific case when the system is described by one particle DF it
is reduced to

lim
T→∞

1

T

∫ T

0
A(x, p)dt =

1

N

∫

M6
A(x, p) f (x, p)d3pd3x. (G.2.8)

Note that it is difficult to prove ergodicity of a given physical system. Never-
theless, ergodicity is often assumed in practice.

G.2.3. Invariance of one particle DF

The one particle DF defined by (G.2.2) is not written in a Lorentz invari-
ant way. However, it is an invariant, as demonstrated below following
Ochelkov et al. (1979); Groot et al. (1980), see also Debbasch et al. (2001).
Consider the system of particles of equal mass m with coordinates xi(t) and
momenta pi(t). By definition, from the statistical point of view, the one
particle DF is the averaged particle density in momentum space, see e.g.
Debbasch and van Leeuwen (2009a), that is

f (p, x, t) =

〈

∑
i

δ3 [p− pi(t)] δ3 [x− xi(t)]

〉

ens

. (G.2.9)

In a relativistic context, it is natural to introduce an eight-dimensional one-
particle phase space M8. In such phase space the variable p0 is not necessarily
related to p, likewise t is not related to x. At the end of any calculations in-
volving M8 the physical results can be recovered by restricting every equation
to the sub-manifold of the mass-shell where p0 > 0. Introducing in this way
a new quantity

F(x, p) = 2Θ(p0)δ(pµ pµ −m2c2) f (p, x, t), (G.2.10)

where the term Θ(p0)δ(pµ pµ −m2c2) is Lorentz scalar, one has to show that
this function is a Lorentz scalar. Recalling the identity

δ (Z(x)) = ∑
i

∣

∣

∣

∣

dZ

dx

∣

∣

∣

∣

−1

δ (x− xi) , (G.2.11)
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where xi are the roots of the equation Z(x) = 0, rewrite eq. (G.2.10) using
(G.2.9) as

F(x, p) =

〈

∑
i

1

p0
i (t)

δ3 [p− pi(t)] δ
[

p− p0
i (t)

]

δ3 [x− xi(t)]

〉

ens

. (G.2.12)

Introducing additional integration over a delta function as

F(x, p) =
∫

dt

〈

∑
i

1

p0
i (ti)

δ [t− ti] δ3 [p− pi(ti)] δ
[

p− p0
i (ti)

]

δ3 [x− xi(ti)]

〉

ens
(G.2.13)

and using the relation dsi =
mc

p0
i (ti)

dti one can show that F(x, p) is a scalar since

F(x, p) =
1

mc

∫

ds

〈

∑
i

δ4 [x− xi(s)] δ4 [p− pi(s)]

〉

ens

, (G.2.14)

where xi(s) and momenta pi(s) are trajectories in M8. The last expression can
be understood as the ensemble averaged and time integrated Klimontovich
one particle DF, see e.g. Zakharov (2000) and Sec. G.3.1 below.

G.2.4. Important macroscopic quantities

One can define an invariant quantity instead of eq. (G.2.3) as

jµ(x, t) ≡ c
∫

pµ f
d3p

p0
= c

∫

F(x, p)pµd4p, (G.2.15)

where both f and d3p/p0 are scalars. This first moment of the DF is the par-
ticle four-flux. Its spatial part represents usual three-vector flux j(x, t) ≡
c
∫

v f d3p, where v = cp/p0 is the velocity of a relativistic particle with mo-
mentum p, uµ = dxµ/ds .

Analogously, the second moment can be constructed

Tµν(x, t) ≡ c
∫

pµ pν f
d3p

p0
, (G.2.16)
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and so on. The quantity Tµν is a symmetric tensor by construction. It rep-
resents an energy-momentum tensor of the system of particles. It should be
noted that in eq. (L.0.1) only rest mass energy and kinetic energy of particles
are taken into account, excluding their potential energy.

One more important quantity is entropy flux defined as

Sµ(x, t) ≡ −kBc
∫

pµ f
d3p

p0

[

log
(

h3 f
)

− 1
]

, (G.2.17)

where two new constants appear: kB is Boltzmann’s constant and h is a di-
mensional parameter needed to make the argument of the logarithm dimen-
sionless.

Unlike non-relativistic kinetic theory, in its relativistic counterpart macro-
scopic velocity can be defined in different ways. Two widespread definitions
are due to Eckart Eckart (1940) and Landau and Lifshitz Landau and Lifshitz
(1959):

U
µ
E ≡

cjµ

√

jµ jµ
or U

µ
LL ≡

cTµνUν
√

UρTρσTστUτ
. (G.2.18)

While U
µ
E can be interpreted as the average velocity of particles, U

µ
LL can be

understood as the average velocity of energy-momentum transfer.

G.3. Kinetic equation

This section follows the derivation presented in Groot et al. (1980). One can
introduce a scalar quantity

∆J =
1

c

∫

∆3σ
d3σµ jµ =

∫

∆3σ
d3σµ

∫

d3p

p0
pµ f , (G.3.1)

where the time-like four-vector d3σµ is an oriented three-surface element of

a plane space-like surface σ, the quantity ∆3σ is a small element and the last
equality follows from eq. (G.2.15). In the Lorentz frame where d3σµ is purely

timelike it has components (d3x, 0, 0, 0). In this frame

∆J =
∫

∆3σ

∫

f (x, p) d3pd3x, (G.3.2)
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which is just an average number of world lines crossing the segment ∆3σ.
Considering those world lines which have momenta in the range ∆3p around
p, one can get

∆J =
∫

∆3σ

∫

∆3 p
f (x, p) d3pd3x. (G.3.3)

Accepting this interpretation, consider world lines given by eq. (G.3.1)
which later cross another segment ∆3σ̂. Since there are no collisions it is pos-
sible to write

∫

∆3σ̂
d3σµ

∫

∆3 p

d3p

p0
pµ f −

∫

∆3σ
d3σµ

∫

∆3 p

d3p

p0
pµ f = 0, (G.3.4)

or in other way
∫

∆3x
d3σµ

∫

∆3 p

d3p

p0
pµ f = 0, (G.3.5)

where ∆3x is the surface of Minkowski space element ∆4x. Applying Gauss’
theorem one gets

∫

∆4x
d4x

∫

∆3 p

d3p

p0
pµ∂µ f = 0, (G.3.6)

where ∂µ =
(

c−1∂/∂t,∇
)

, ∆3x and ∆3p are some arbitrary hypersurfaces in
the phase space.

The basic equation represents time evolution of the DF due to microscopic
interactions in the system. In absence of any interactions between particles it
represents continuity of the four-vector pµ f and it follows from eq. (G.3.6) as

pµ∂µ f = 0. (G.3.7)

Written in the vector notation

∂ f

∂t
+ v · ∇ f = 0. (G.3.8)

In general case both collisions and external forces alter eq. (G.3.7) and the
kinetic equation becomes

pµ∂µ f + mFµ ∂ f

∂pµ = St f , (G.3.9)
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G.3. Kinetic equation

where Fµ represents an external four-force, St f is the collision integral. This
is the relativistic transport equation.

One of the main goals of KT is to establish the form of the collision integral.
Consider an elastic collision

1 + 2 −→ 1′ + 2′, (G.3.10)

where particles 1 and 2 have masses m1 and m2, momenta pµ and kµ which
changed after the collision to p′µ and k′µ respectively. Energy-momentum
conservation gives

pµ + kµ = p′µ + k′µ. (G.3.11)

The average number of such collisions is proportional to 1) the number of
particles per unit volume with momenta pµ in the range d3p, 2) the num-
ber of particles per unit volume with momenta kµ in the range d3k and 3)
the intervals d3p′µ, d3k′µ and d4x. The proportionality coefficients, depend-
ing only on four-momenta before and after the collision are represented as
W (p, k | p′, k′) /

(

p0k0p′0k′0
)

. The quantity W (p, k | p′, k′) is called the tran-
sition rate and it is a scalar. By this process particles leave the phase volume
d3p around pµ. Collisions also bring particles back into this volume by the
inverse process with the corresponding rate W (p′, k′ | p, k).

Then Boltzmann equation can be written as

∫

V

∫

P
pµ∂µ f

d3p

p0
d4x =

1

2

∫

V

∫

P

∫

d3p

p0

d3p′

p′0
d3k

k0

d3k′

k′0
× (G.3.12)

×
[

f
(

x, p′
)

f
(

x, k′
)

W
(

p′, k′ | p, k
)

− f (x, p) f (x, k)W
(

p, k | p′, k′
)]

d4x,

or in differential form

pµ∂µ f =
1

2

∫

d3p′

p′0
d3k

k0

d3k′

k′0
× (G.3.13)

×
[

f
(

x, p′
)

f
(

x, k′
)

W
(

p′, k′ | p, k
)

− f (x, p) f (x, k)W
(

p, k | p′, k′
)]

.

The same equation in vector notation becomes

∂ f

∂t
+v · ∇ f =

1

2

∫

d3p′d3k3k′
[

f
(

x, p′
)

f
(

x, k′
)

wp′k′;pk − f (x, p) f (x, k)wpk;p′k′
]

,

(G.3.14)
where wpk;p′k′ = cW (p, k | p′, k′) /

(

p0k0p′0k′0
)

. If in this expression particle
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G. Relativistic kinetic theory and its applications

momenta are substituted by their velocities, this equation will coincide with
the one derived first by Boltzmann Boltzmann (2011). Notice that the factor
1/2 in front of collision integral is due to indistinguishability of particles.

G.3.1. Boltzmann equation in General Relativity

The derivation of Boltzmann equation in General Relativity is presented here
following Zakharov (2000), for more details see Chernikov (1962, 1963b);
Debbasch and van Leeuwen (2009a,b).

Let us start by introducing the 8-dimensional phase space M8. The distri-
bution function FK (x, p) in this phase space is defined Beliaev and Budker
(1956) such that

jµ =
∫

uµFK (x, p) d4p (G.3.15)

is the usual particle-current four-vector (G.2.15). Define the Klimontovich DF
Klimontovich (1960a)

FK(x, p) =
1

mc ∑
i

∫

dsδ4 [x− xi(s)] δ4 [p− pi(s)] , (G.3.16)

where ds =
(

gµνdxµdxν
)1/2

is the proper time. Notice that eq. (G.2.14) de-
fined above is nothing but the ensemble averaged function (G.3.16). The
equations of motion for each particle in the gravitational field are

mc
dxµ

ds
= pµ, mc

dpµ

ds
= −Γ

µ
νλ pν pλ, (G.3.17)

where the Γ
µ
νλ are the Christoffel symbols. Using the property

d

ds
δ [x− g (s)] = − d

dx
δ [x− g (s)]

dg

ds
(G.3.18)

from the identity

∫

ds
d

ds

{

δ4 [x− xi(s)] δ4 [p− pi(s)]
}

= 0 (G.3.19)

506



G.3. Kinetic equation

one can obtain
∂
(

pµFK
)

∂xµ − ∂

∂pµ

(

Γ
µ
νλ pν pλFK

)

= 0. (G.3.20)

Using another identity

∂pµ

∂xµ −
∂

∂pµ

(

Γ
µ
νλ pν pλ

)

= 0, (G.3.21)

see Zakharov (2000), and applying to eq. (G.3.20) the averaging procedure
with F =

〈

FK(x, p)
〉

ens
one finally gets

pµ ∂F

∂xµ − Γ
µ
νλ pν pλ ∂F

∂pµ = 0. (G.3.22)

This is the collisionless kinetic equation for the distribution function defined
in M8. As for the DF f (p, x, t) defined in M6 the corresponding equation can
be obtained using eq. (G.2.10) and integrating eq. (G.3.22) over p0. As the
result one has

pµ ∂ f

∂xµ − Γi
νλ pν pλ ∂ f

∂pi
= 0. (G.3.23)

Finally, assuming that it is possible to introduce a local Lorentz frame and
define the expressions for St f in that frame, one can write by analogy with
eq. (G.3.9) the general expression for the Boltzmann equation as

pµ ∂ f

∂xµ − Γi
νλ pν pλ ∂ f

∂pi
= St f . (G.3.24)

This equation has to be compared with eq. (G.3.9): in General Relativity the
curved nature of space-time results in a term similar to the external force in
eq. (G.3.9). Another form of Boltzmann equation can be written in a different
form, similar to eq. (G.3.13) by introducing the Cartan covariant derivative

∇µΦ(x, p) ≡ ∂Φ

∂xµ + Γλ
µν pλ

∂Φ

∂pν
. (G.3.25)

Then for the ensemble averaged DF one has

pµ∇µ f (x, p) = St f . (G.3.26)
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Comparing this last expression with eq. (G.3.13) one can see that, as often
occurs in General Relativity, usual derivative in eq. (G.3.13) is substituted
with the covariant derivative in eq. (G.3.26).

G.3.2. Uehling-Uhlenbeck collision integral

In this section the collision integral of eq. (G.3.13) is obtained for the
case of elastic collision between two classical particles. When particles
follow quantum statistics it is still possible to use the collision integral
Uehling and Uhlenbeck (1933); Uehling (1934) which is phenomenologically
modified as follows

St f =
1

2

∫

d3p′

p′0
d3k

k0

d3k′

k′0
×

×
{

f
(

x, p′
)

f
(

x, k′
)

[1 + θϕ (x, p)] [1 + θϕ (x, k)]W
(

p′, k′ | p, k
)

− (G.3.27)

− f (x, p) f (x, k)
[

1 + θϕ
(

x, p′
)] [

1 + θϕ
(

x, k′
)]

W
(

p, k | p′, k′
)}

,

where f (x, p) = gϕ (x, p) / (2πh̄)3, g is the degeneracy factor, θ = ±1, 0
for respectively Bose-Einstein, Fermi-Dirac and Boltzmann statistics. Com-
paring this expression to eq. (G.3.13) one finds additional multipliers

1 ± (2πh̄)3 f (x, p) /g, which guarantee that equilibrium distribution func-
tions are indeed Bose-Einstein and Fermi-Dirac ones, respectively, see e.g.
Chernikov (1964a); Ehlers (1973).

G.3.3. Cross-section

An important concept describing the strength of particle interactions is the
cross-section. It plays an important role in the case of two particle collisions,
which is the most simple and hence the most studied case. This concept will
be illustrated for the process of scattering (G.3.10).

It is possible to introduce Mandelstam (1958) the following invariant vari-
ables

s = (pµ + kµ)2 , t =
(

pµ − p′µ
)2

. (G.3.28)

They prove technically useful, but they also possess a physical interpretation:
sc2 is the square of the energy in the center of mass reference system, t is
related to the scattering angle in this system: cos ϑ− 1 = 2t/

(

s− 4m1m2c2
)

.
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Then one may rewrite

W
(

p, k | p′, k′
)

= sσ (s, ϑ) δ4
(

pµ + kµ − p′µ − k′µ
)

, (G.3.29)

where σ (s, ϑ) is the differential cross-section for a given process. Remind
Berestetskii et al. (1982) that the cross-section is defined through

dw = jdσ, (G.3.30)

where dw is the probability of the process per unit time and unit volume and

j =

[

(

pµkµ

)2 −
(

m1m2c2
)2
]1/2

(G.3.31)

is invariant flux of particles in initial state. It is possible to show Groot et al.
(1980) that

∫

d3p′

p′0
d3k′

k′0
1

j
W
(

p, k | p′, k′
)

=
∫

σdΩ =
∫

dσ. (G.3.32)

Then, using the detailed balance condition

W
(

p, k | p′, k′
)

= W
(

p′, k′ | p, k
)

(G.3.33)

one may write Boltzmann equation as

pµ∂µ f =
1

2

∫

d3k

k0
σ
[

f
(

x, p′
)

f
(

x, k′
)

− f (x, p) f (x, k)
]

dΩ, (G.3.34)

or in vector notation as

∂ f

∂t
+ v · ∇ f =

1

2

∫

d3kσv
[

f
(

x, p′
)

f
(

x, k′
)

− f (x, p) f (x, k)
]

dΩ, (G.3.35)

where v = cj/
(

p0k0
)

is the particles relative velocity.

509



G. Relativistic kinetic theory and its applications

G.4. Conservation laws and relativistic

hydrodynamics

In this Section following Groot et al. (1980) the conservation laws fulfilled by
the macroscopic quantities are derived, namely the particle number conser-
vation, the entropy conservation and the energy-momentum conservation, see
also Chernikov (1963a, 1964b).

Consider a mixture of D components whose particles may interact by elas-
tic and inelastic collisions, conserving their total number. Boltzmann equa-
tions for each DF fk (x, pk) then read

p
µ
k ∂µ fk =

D

∑
l=1

Ckl (x, pk) , (G.4.1)

where Latin indices now denote the species kind (not to be confused with
tensor indices) and

Ckl (x, pk) =
1

2

D

∑
i,j=1

∫

d3pl

p0
l

d3pi

p0
i

d3pj

p0
j

(

fi f jWij|kl − fk flWkl|ij
)

. (G.4.2)

An important property of collision integrals follows from the microscopic
conservation laws fulfilled at each interaction, namely

F =
D

∑
k,l=1

∫

d3pk

p0
k

ψk(x)Ckl(x, pk) = 0, (G.4.3)

where ψk(x) are so called summational invariants

ψk(x) = ak(x) + p
µ
k bµ(x), (G.4.4)

they are arbitrary functions, except for the constraint that ak(x) is additively
conserved in all reactions, i.e.

ai(x) + aj(x) = ak(x) + al(x), (G.4.5)

and bµ(x) is an arbitrary vector. The proof of eq. (G.4.3) is based on eq. (G.4.5)

and on energy-momentum conservation in a binary reaction p
µ
i + p

µ
j = p

µ
k +

510



G.4. Conservation laws and relativistic hydrodynamics

p
µ
l . In particular, for elastic scattering

∫

d3pk

p0
k

Ckl(x, pk) = 0. (G.4.6)

Now it is possible to show how the basic equations of relativistic hydrody-
namics, namely the particle number conservation (continuity) equation and
the energy-momentum conservation equations arise from Boltzmann equa-
tion.

Consider the case when in eq. (G.4.4) bµ(x) = 0 and ak(x) = qka(x), where
a(x) is an arbitrary function. Then from eqs. (G.4.1) and (G.4.2) one has

D

∑
k=1

qk

∫

d3pk

p0
k

p
µ
k ∂µ fk = 0. (G.4.7)

Recalling the definition (G.2.15) for each component

j
µ
k = c

∫

d3pk

p0
k

p
µ
k fk, (G.4.8)

one gets

∂µ Jµ = 0, Jµ =
D

∑
k=1

qk j
µ
k , (G.4.9)

where qk is a charge (e.g. electric, leptonic, baryonic). In particular, with q = 1
this is just particle number conservation. Similarly the conservation law for
the total particle number can be obtained. In particular, for elastic scattering
using eq. (G.4.6) one finds

∂µ j
µ
k = 0. (G.4.10)

Consider now the case ak(x) = 0. Then from eq. (G.4.3) one finds

D

∑
k,l=1

∫

d3pk

p0
k

p
µ
k Ckl = 0. (G.4.11)

Substituting this into eqs. (G.4.1) and (G.4.2) and recalling the definition
(L.0.1) one gets

∂νTµν = 0, (G.4.12)
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where

Tµν = c
D

∑
k=1

∫

d3pk

p0
k

p
µ
k pν

k fk, (G.4.13)

is the energy-momentum tensor of the mixture. Equations (G.4.9) and
(G.4.11) represent basic equations of relativistic hydrodynamics, see e.g.
Mihalas and Mihalas (1984).

G.5. Entropy and equilibrium

In this Section the concept of thermodynamic equilibrium will be discussed
from the point of view of kinetic theory.

G.5.1. H-theorem

First let us show, following Groot et al. (1980), that the quantity defined as
divergence of four-vector (G.2.17) as

σ(x) ≡ ∂µSµ, (G.5.1)

can never decrease. For alternative derivation see Chernikov (1963b). From
eqs. (G.2.17) and (G.5.1) it follows

σ = −kBc
∫

d3p

p0

[

log
(

h3 f
)]

pµ∂µ f . (G.5.2)

Substituting Boltzmann equation (G.3.9) into this expression one get

σ = −kBc
∫

d3p

p0

[

log
(

h3 f
)]

St f + kBc
∫

d3p

p0

[

log
(

h3 f
)]

Fµ ∂ f

∂pµ . (G.5.3)

Assume that the force satisfies the following properties: pµFµ = 0 and ∂Fµ

∂pµ =

0. The former condition means that the force is mechanical and does not alter
particle rest mass. Then the second contribution in eq. (G.5.3) can be written
as

2kBc
∫

d4p
∂

∂pµ

{

Θ(p0)δ(pµ pµ −m2c2) f
[

log
(

h3 f
)

− 1
]

Fµ
}

, (G.5.4)
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and it vanishes, provided that the integrand is decreasing fast enough for
large momenta in the sense defined above.

The first contribution can be rewritten as

σ = −1

4
kBc ∑

i,j,k,l

∫

d3pi

p0
i

d3pj

p0
j

d3pk

p0
k

d3pl

p0
l

[

log

(

fk fl

fi f j

)]

fi f jWij|kl . (G.5.5)

Now using the property

∑
i,j,k,l

∫

d3pi

p0
i

d3pj

p0
j

d3pk

p0
k

d3pl

p0
l

(

fk fl − fi f j

)

Wij|kl = 0, (G.5.6)

which follows from the bilateral normalization condition Groot et al. (1980)
one finally gets

σ =
1

4
kBc ∑

i,j,k,l

∫

d3pi

p0
i

d3pj

p0
j

d3pk

p0
k

d3pl

p0
l

A (y) fi f jWij|kl , (G.5.7)

where

A (y) = y− log y− 1 ≥ 0, y =
fk fl

fi f j
. (G.5.8)

Since A (y) is a non-negative function, eq. (G.5.7) implies that σ ≥ 0. This
completes the proof of the Boltzmann H-theorem.

Notice that σ = 0 holds if and only if

fi (x, pi) f j

(

x, pj

)

= fk (x, pk) fl (x, pl) . (G.5.9)

This condition is satisfied, as can be seen from eq. (G.3.34) when collision
integral in the RHS of Boltzmann equation vanishes. This case is identified as
local equilibrium. In fact, the equilibrium DF is characterized by the following
macroscopic quantities as parameters: density, temperature, 4-velocity. It is
possible to show this by turning to a simple system with binary collisions and
rewrite the condition (G.5.9) as

log
(

h3 f1

)

+ log
(

h3 f2

)

= log
(

h3 f ′1
)

+ log
(

h3 f ′2
)

. (G.5.10)

It is clear that the quantity log
(

h3 f
)

is a summational invariant. The most
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general summational invariant, as discussed above, is a linear combination
of a constant and pµ. Then one particle distribution function in equilibrium
is

f eq =
1

h3
exp

[

a(x) + bµ(x)pµ
]

(G.5.11)

with arbitrary space- and time-dependent parameters a(x) and bµ(x).

However, DF f eq will be a solution of the Boltzmann equation only if it
turns to zero also its LHS. Then the parameters of eq. (G.5.11) should satisfy

pµ∂µa(x) + pµ pν∂µbν(x) + mbµ(x)Fµ(x, p) = 0, (G.5.12)

which should be an identity for arbitrary pµ. When the DF satisfies eq.
(G.5.12) it is called global equilibrium DF f EQ.

In the absence of external field f EQ reduces to the Jüttner Jüttner (1911)
momentum distribution

f EQ (p) =
1

h3
exp

[

φ− pµUµ

kBT

]

, (G.5.13)

where φ, T and Uµ are parameters, UµUµ = c2, h and kB are Planck’s and
Boltzmann’s constants.

It is possible now to compute such important macroscopic quantities as
the number density, the energy density and the pressure of a system in local
equilibrium. Using the definition (G.2.15) and jµ = nUµ one has

n =
jµUµ

c2
=

1

ch3
exp

(

φ

kBT

)

∫

d3p

p0
pµUµ exp

(−pνUν

kBT

)

. (G.5.14)

The integral, being a scalar, can be evaluated in the rest frame, where Uµ =
(c, 0, 0, 0) by introducing polar coordinates and dimensionless variables θ =

kBT/
(

mc2
)

, ν = φ/
(

mc2
)

and y = c
√

p2 + m2c2/ (kBT). The result is

n =
4π

λ3
C

exp
(ν

θ

)

K2

(

θ−1
)

, (G.5.15)

where λC = h̄
mc and

Kn

(

θ−1
)

=
2n−1 (n− 1)!

(2n− 2)!
z−n

∫ ∞

z
dy
(

y2 − θ−2
)n− 3

2
y exp (−y) (G.5.16)
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is the modified Bessel function of the second kind.

In full analogy, using the definition of the energy-momentum tensor and
Tµν = c−2ρUµUν − p∆µν, where ∆µν = gµν − c−2UµUν, one can compute the
energy density ρ and pressure p as follows

ρ =
TµνUµUν

c2
=

1

c

∫

d3p

p0

(

pµUµ

)2
f EQ, (G.5.17)

p = −1

3
Tµν∆µν = − c

3

∫

d3p

p0
pµ pν∆µν f EQ. (G.5.18)

Performing the integrals one finally gets

ρ = 4π
mc2

λ3
C

exp
(ν

θ

) [

3θ2K2

(

θ−1
)

+ θK1

(

θ−1
)]

, (G.5.19)

p = 4π
mc2

λ3
C

exp
(ν

θ

)

θ2K2

(

θ−1
)

. (G.5.20)

Introducing the enthalpy as he = (ρ + p) /n one obtains

he = mc2 K3

(

θ−1
)

K2 (θ−1)
. (G.5.21)

Finally, the entropy density is given by

s =
SµUµ

c2
= −kB

c
exp

(

φ

kBT

)

∫

d3p

p0
pµUµ

(

ϕ− pνUν

kBT
− 1

)

exp

(−pνUν

kBT

)

.

(G.5.22)
Taking into account eqs. (G.5.15) and (G.5.19) this integral gives

s =
1

T
(ρ− φn) + kBn. (G.5.23)

Finally, for the thermal index Γ = cp/cv, which is the ratio of specific heat
capacities

cp =

(

∂he

∂T

)

p

, cv =

(

∂ (ρ/n)

∂T

)

v

, (G.5.24)

515



G. Relativistic kinetic theory and its applications

one has
Γ

Γ− 1
= θ−2 + 5

(

he

θ

)

−
(

he

θ

)2

, (G.5.25)

and the limiting cases are

Γ→







5
3 , θ → 0,

4
3 , θ → ∞.

. (G.5.26)

In Fig. G.1 the dependence Γ(θ) computed using eqs. (G.5.25) and (G.5.21) is
shown. Non-relativistic and ultra-relativistic asymptotics are clearly visible.
Interestingly, at temperatures kBT ∼ mc2 usually considered mildly relativis-
tic this function is already close to its ultra-relativistic value.

Combining expressions (G.5.15), (G.5.19), (G.5.20), (G.5.23) and (G.5.21)
above one find the perfect gas laws

p = nkBT,

p = (Γ− 1) ρ, (G.5.27)

φ = he − Ts.

Note that the traditional scheme of thermodynamics is recovered if we iden-
tify T as temperature, φ as the chemical (Gibbs) potential.

G.5.2. Relativistic Maxwellian distribution

It is instructive to consider relativistic Maxwell distribution of particles with
somewhat more attention. Considering eq. (G.5.13) in the local rest frame

f LEQ =
1

h3
exp

(ν

θ

)

exp
(

−γ

θ

)

, (G.5.28)

where γ = p0/ (mc), using eq. (G.2.3) and comparing it with eq. (G.5.15) one
gets

f =
dn

dγ
=

4π

λ3
CθK2 (θ−1)

exp
(ν

θ

)

γ
√

γ2 − 1 exp
(

−γ

θ

)

. (G.5.29)
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The function f (β) with β = |v| /c is shown in Fig. G.2 for selected values of
the dimensionless temperature, each curve is normalized to unity. While the
distribution function with the lowest temperature θ = 0.02 reminds a classi-
cal Maxwellian, the one with the highest temperature θ = 1.78 it is already
far from it: the effect of limiting velocity is clearly visible.

G.5.3. Generalized continuity equation

Up to now only such interactions where particle conservation is satisfied
were discussed. An obvious example is scattering. However, there are pro-
cesses where particle conservation does not hold. The simplest example anni-
hilation of particles-antiparticle pair in two photons and the inverse process
of pair creation from two photons. Even if total number of particles (both
pairs and photons) is conserved, individual number of particles in each com-
ponent can change. Consider this process in more details

e+ + e− ←→ γ1 + γ2, (G.5.30)

with the corresponding energy-momentum conservation p− + p+ = k1 + k2.
For positron (electron) from eq. (G.3.13) one has2

pµ∂µ f± =
∫

d3p∓
p0
∓

d3k1

k0
1

d3k2

k0
2

[ f1 f2W (k1, k2 | p±, p∓)− f± f∓W (p±, p∓ | k1, k2)] ,

(G.5.31)
where f± = f (x, p±), etc. From eqs. (G.3.30) and (G.3.31) one gets

d3k1

k0
1

d3k2

k0
2

W (p±, p∓ | k1, k2) = jdσ, (G.5.32)

vrel =

√

(v− − v+)
2 − (v− × v+)

2 = j
c

p0
±p0∓

,

2Electrons and positrons are distinguishable particles and hence there is no factor 1/2 in
front of the collision integral.
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where vrel is the relative velocity between electron and positron. Then inte-

grating eq. (G.5.31) over
d3 p±

p0
±

and using eq. (G.5.32) one obtains

∂µ

∫

d3p±
p0
±

pµ f± =
∫

d3p±
p0
±

d3p∓
p0
∓

d3k1

k0
1

d3k2

k0
2

f1 f2W (k1, k2 | p±, p∓)− (G.5.33)

−
∫

d3p±
p0
±

d3p∓
p0
∓

f± f∓ jdσ.

In view of eq. (G.2.3) and second equation in (G.5.32) the annihilation rate is
defined as

n±n∓ 〈σv〉ann ≡ c
∫

d3p±
p0
±

d3p∓
p0
∓

f± f∓ jdσ. (G.5.34)

This is an invariant quantity, as can be seen from analysis of the RHS. Notice,
that the LHS in eq. (G.5.33) is nothing but derivative of the particle four-flux
(G.2.15). In equilibrium this quantity is conserved, see eq. (G.4.10). So that in
equilibrium

c
∫

d3p±
p0
±

d3p∓
p0
∓

d3k1

k0
1

d3k2

k0
2

f1 f2W (k1, k2 | p±, p∓) = n
eq
±n

eq
∓ 〈σv〉ann . (G.5.35)

Thus one can write

∂µ j
µ
± = 〈σv〉ann

(

n
eq
+n

eq
− − n+n−

)

, (G.5.36)

and it reduces to eq. (G.4.10) in thermal equilibrium, since in equilibrium
particle non conserving interactions balance each other. This equation finds
numerous applications, especially in cosmology, since it is much easier to
solve compared to integro-differential eq. (G.3.13).

G.6. Relativistic BBGKY hierarchy

In this section following de Jagher and Sluijter (1988), the derivation of
relativistic Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy is briefly
illustrated, see also Klimontovich (1960a),Kuz’menkov (1978),Naumov
(1981),Polyakov (1988) and Hakim (2011). The basic idea in this approach
is that any many-body system can be characterized by the set of equations of
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motion under given interaction. Applying averaging to Klimontovich distri-
bution functions one can derive the infinite chain of equations (hierarchy) for
many particle distribution functions.

For definiteness let us discuss a system of charged particles of equal mass
with the corresponding electromagnetic interaction. In that case it is conve-
nient to use for the four-momentum pµ −→ pµ− q

c Aµ, where Aµ is the vector
potential of the electromagnetic field. The equations of motion are

dpµ

ds
= −q

c
Fµνuν, pµ = muµ, uµ =

dxµ

ds
, (G.6.1)

where Fµν is the electromagnetic field tensor, uµ is the particle four-velocity.
For the point particle the four-current is

jµ = q
∫

uµδ4 [xν − xν (s)] ds. (G.6.2)

Recalling the definition (G.3.16) of the Klimontovich DF one may proceed
in analogy with Sec. G.3.1. Using eq. (G.6.1) one arrives to the Klimontovich
equation

pµ∂µF
K − q

c
pµFµν ∂FK

∂pν
= 0. (G.6.3)

This equation has to be supplemented by the Maxwell field equations

∂µFµν = 4π Jν, εµνσρ∂νFσρ = 0. (G.6.4)

These equations are the basis for derivation of the hierarchy. Notice
that these equations are used in numerical simulations (particle-in-cell algo-
rithms). Solutions of eqs. (G.6.3), (G.6.4) are approximate solutions to the

Vlasov-Maxwell system with the accuracy O(µ), where µ =
(

nλ3
D

)−1
, see

e.g. Sigov (2001) is the plasma parameter, λD is the Debye length, see eq.
(G.7.8) below, n is density.

The usual approach in statistical physics of a many-body system is to start
with the Liouville theorem for ensemble density. In order to generalize the
treatment to include fields with infinite degrees of freedom one has to con-
sider linear spaces. Assume that relativistic Hamilton equations are valid (in
symbolic form)

dX

ds
= G [X (s) , s] , (G.6.5)
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and they are supplied with initial conditions X(s = s0) = X0. Introducing
the N-particle phase space with coordinates X being the element of the linear
space and probability density F (X, s) in this phase space, after rather lengthy
derivation one can show that Liouville’s theorem holds

∂

∂s
F (X, s) + F (X, s)

∂

∂X
· G (X, s) + G (X, s) · ∂

∂X
F (X, s) = 0. (G.6.6)

Then one has to apply statistical averaging to eqs. (G.6.3) and (G.6.4),
which have to be rewritten in the Hamiltonian form. This can be done by
introducing a hypersurface S on which initial conditions are given and which
determines a scalar that can be used as a time parameter. Then a linear space
is constructed in which a point can be interpreted as a state vector for the sys-
tem at the surface S. Assume that fields Fµν restricted on S can be regarded as
an element of a Hilbert space with a set of orthonormal coordinates denoted
by |Ψi〉.

It is possible to show that statistical averaging and differentiation with re-
spect to s commute, i.e.

〈

d

ds
A (X, s)

〉

ens

=
d

ds
〈A (X, s)〉ens . (G.6.7)

Introducing the one-particle DF (G.2.14) as F (x, p) =
〈

FK (x, p)
〉

ens
, aver-

aged fields 〈∑i Fµν (s) |Ψi〉〉ens and currents
〈

q
∫

pµFK (x, p) d4p
〉

ens
it is pos-

sible to write down the hierarchy

uµ∂µF (x, p) =
1

pσuσ

{

∆µν pµ∂ν f +
q

c
pµFµν ∂ f

∂pν
+

q

c
pµ

∂Iµν

∂pν

}

,

uσ∂σFµν (x) = 4π∆
µν
λ

(

Jλ − ∆ησ∂η Fσλ
)

+ ∆
µν
σλρ∂σFλρ, (G.6.8)

uµ∂µ Iµν (x, p) = ...

where

Iµν (x, p) =
〈

[Fµν (x)− 〈Fµν〉ens]
[

FK (x, p)− F (x, p)
]〉

ens
(G.6.9)

is the particle-field correlation, ∆µν = gµν + UµUν is a projection operator
and

∆
µν
λ = uµ∆ν

λ − uν∆
µ
λ, ∆

µν
σλρ =

(

∆
µ
σ∆ν

ρ − ∆ν
σ∆

µ
ρ

)

uλ. (G.6.10)
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Dynamical equation for Iµν (x, p) contains particle variance, field variance

g12 (x, p1, p2) =
〈[

FK (x, p1)− f (x, p1)
] [

FK (x, p2)− f (x, p2)
]〉

ens
,

(G.6.11)

Gµνρσ (x) = 〈[Fµν (x)− 〈Fµν〉ens] [F
ρσ (x)− 〈Fρσ〉ens]〉ens ,

as well as triple correlations and so on, for details see de Jagher and Sluijter
(1988). The system (G.6.8) is the relativistic Bogoliubov–Born–Green–
Kirkwood–Yvon hierarchy. Like in non-relativistic theory this hierarchy is
infinite.

Notice that Klimontovich in his original derivation Klimontovich (1960b)
of relativistic kinetic equation neglecting radiation used solution of Maxwell
equations for the four-potential Aµ. Hence in his chain of equations only
particle-particle correlation functions such as g12 (x, p1, p2) appear, see also
Kuz’menkov (1978).

In order to close the system (G.6.8) additional assumptions are needed. In
plasma physics with Coulomb interactions between particles the rapid atten-
uation of correlations principle Bogoliubov (1946, 1962) is usually adopted.
Notice that such a principle may be considered as a consequence of ergodic-
ity of the system Smolyansky (1968). In this way the assumption of no corre-
lation between particles

G (x, p1, p2) = F (x, p1)F (x, p2) ,

G (x, p1, p2, p3) = F (x, p1)F (x, p2)F (x, p3) , (G.6.12)

...

leads to the system of Vlasov-Maxwell equations

pµ∂µF−
q

c
pµFµν ∂F

∂pν
= 0, (G.6.13)

∂µFµν = 4πq
∫

d3p

p0
pµ∂µF, εµνσρ∂νFσρ = 0. (G.6.14)

Taking into account nonvanishing two point correlation function, but ne-
glecting three point correlations results in the Belyaev-Budker equation
Beliaev and Budker (1956). For its derivation from the BBGKY hierarchy see
Klimontovich (1960b), Naumov (1981) and Polyakov (1988). The result in-
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stead of eq. (G.6.13) is

uµ∂µF = −∂Kµ

∂pµ ,

Kµ =
2π (qq′)2

Λ

c2

∫

d4p′
(

uλu′λ
)2

c
[

(

uλu′λ
)2 − 1

]
3
2

Bµν

(

F
∂F′

∂p′ν
− F′

∂F

∂pν

)

, (G.6.15)

Bµν =
{[

(

uλu′λ
)2 − 1

]

δµν − uµuν − u′µu′ν − uλu′λ
(

uµu′ν + u′µuν

)}

,

where Λ is Coulomb logarithm, see eq. (G.7.22) below, primed and unprimed
values correspond to two incoming particles, and the mean field is neglected.
In non-relativistic case Landau (1936, 1937) this equation reduces to

∂ f

∂t
+ v

∂ f

∂r
+ q

(

E +
1

c
v× B

)

∂ f

∂p
= − ∂sa

∂pa
, (G.6.16)

sa = 2πq2Λ

∫

(

f
∂ f ′

∂p′b
− f ′

∂ f

∂pb

)

(v− v′)2
δab − (va − v′a)

(

vb − v′b
)

(|v− v′|)3
d3p′.

Recall that in dilute plasma collisions with small momentum transfer domi-
nate. For this reason the Coulomb collision integral in non-relativistic plasma
is usually approximated by the Fokker-Planck diffusive term. Such approx-
imation actually becomes invalid for relativistic plasma with kBT & mec

2,
where me is electron mass, since at these temperatures pairs of electrons and
positrons form, see Sec. G.8 below. Description of such relativistic plasma
requires the full Boltzmann collision integral.

It has to be noted that both system (G.6.13), (G.6.14) and equation (G.6.15)
are microscopic equations in the sense that they define one particle distribu-
tion functions for discrete sources and corresponding electromagnetic fields.

The system of particles interacting via gravitational mean field is described
Zakharov (2000) by the Einstein-Vlasov system of equations

Rµν − 1

2
gµνR + gµνΛ =

8πG

c4
c
∫

d3p

p0
pµ pνFK (G.6.17)

pµ ∂FK

∂xµ − Γi
νλ pν pλ ∂FK

∂pi
= 0,
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where FK is the Klimontovich DF defined by eq. (G.3.16). These equations
form the basis for microscopic gravity. For mathematical aspects see recent
review Andréasson (2011).

Macroscopic gravitation theory should be derived from these equations by
applying the averaging procedure. Following the discussion in Sec. G.6 it is
expected that correlations should appear in both equations after the averag-
ing and represent matter-field, matter-matter and field-field correlations. An
attempt to construct such equations up to the second order terms in interac-
tion is made in Zakharov (2000).

G.7. Gases and plasmas

Having derived basic kinetic equation in Sec. G.3 and G.6 let us turn to their
application. Dilute gas and plasma are traditionally considered as primary
applications for KT. The generalization to relativistic case of KT for gas re-
quired mainly terminological changes Synge (1957). However, KT of plasma
had to be build on relativistic basis from the beginning since Maxwell equa-
tions, being intrinsically relativistic, are necessarily a natural part of it. Be-
sides, in relativistic domain (at relativistic temperatures) many qualitatively
new phenomena occur in plasma. In order to understand these phenomena,
as well as to provide the physical foundations for the derivation of the Boltz-
mann and Vlasov equations discussed in the previous section, it is very useful
to discuss characteristic quantities in both gases and plasmas.

G.7.1. Plasma frequency

Let us start from the Maxwell equations (G.6.4) and assume that particles
move collectively with velocity v given by the equation of motion

m
∂Uµ

∂xν
= −q

c
F

µ
ν , (G.7.1)

Taking 0-1 components in eq. (G.6.4) one has

m
d (γβ)

dt
= qE,

dE

dt
= −4πqnβ, (G.7.2)
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where β = v/c and γ =
(

1− β2
)−1/2

. Differentiating the first equation with
respect to time one gets, see e.g. Benedetti et al. (2011)

d2u

dt
+

4πq2n

m

u√
1 + u2

= 0, u = γβ. (G.7.3)

This equation describes nonlinear Langmuir oscillations (reducing to har-
monic ones for v≪ c) with the frequency given by

ω2
p =

4πq2n

mγ
. (G.7.4)

This parameter is one of the most fundamental ones and it is called plasma
frequency.

G.7.2. Correlations in plasma

In order to determine other characteristic quantities of plasma one needs to
consider the notion of correlation in plasma. It is well known that the corre-
lation function in a medium composed of particles interacting via Coulomb
potential is divergent. However, since a neutral plasma contains both posi-
tive and negative charges in equal amount, the field of a charged particle in
plasma is different from the Coulomb field. In order to illustrate this point
consider a charged particle at rest in the origin, see e.g. Chen (1984) and Silin
(1998). The system of equations (G.6.13) and (G.6.14) simplifies for this case
and there remain only two of them:

vi
∂ fi

∂r
− qi

∂ϕ

∂r

∂ fi

∂pi
= 0, ∆ϕ = −4π ∑

i

qini − 4πqδ (r) , (G.7.5)

where ϕ is electrostatic potential, and for clarity the DF defined in eq. (G.2.2)
is used instead of F. In order to solve these equations one has to set up the
boundary conditions. Assume that the electric field vanishes at infinity, i.e.
ϕ (∞) = 0. Assume also that the DF far from the origin is the Maxwell-
Boltzmann one (G.5.28), that is

fi (γi) ∝ ni exp

(

−γimic
2 + qi ϕ(r)

kBT

)

. (G.7.6)
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Then taking into account charge conservation ∑i qini = 0 one can get for the
potential

∆ϕ = −4πqδ (r) + 4π ∑
i

qini

[

1− exp

(

− qi ϕ

kBT

)]

. (G.7.7)

At large radii |qi ϕ| ≪ kBT and instead of eq. (G.7.7) a linear equation is
obtained

∆ϕ− 1

λ2
D

ϕ = −4πqδ (r) , λ2
D =

kBT

∑i 4πq2
i ni

. (G.7.8)

and it gives the solution for the electric potential in equilibrium plasma

ϕ =
q

r
exp

(

− r

λD

)

. (G.7.9)

This result implies that at large distances the Coulomb field of the point
charge is screened.

Define now a two-particle spatial correlation function in equilibrium as

f2 (1, 2) = f1 (γ1) f1 (γ2) g(r), (G.7.10)

where the functions fi (γi) are given by eq. (G.5.29), r = |x2 − x1| and g(r) is
called radial distribution function . Using the normalization

∫

fi (γi) dγi = 1
one can introduce the total correlation function

ξ(r) = g(r)− 1≪ 1, (G.7.11)

where ξ(r) is zero for uncorrelated particles. For dilute plasma in a state close
to equilibrium Klimontovich (1997) this function is

ξ(r) = − 1

kBT

q2

r
exp

(

− r

λD

)

, (G.7.12)

which means that the correlation radius for this plasma is rcor ∼ λD.

G.7.3. Gravitational correlations in expanding Universe

Unlike for the electromagnetic interactions, there is no Debye screening in the
gravitational interactions since there is no negative mass. In an expanding
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Universe it is possible, however, to introduce the gravitational correlation
radius. Following Zakharov (2000) consider the Poisson-Vlasov equations in
the comoving coordinates

∂ f

∂t
+

u

a2

∂ f

∂q
− ∂Φ

∂q

∂ f

∂u
= 0, ∆Φ =

4πG

a

∫

f d3u− a3ρ0, (G.7.13)

where ρ0 is the average density, Φ is gravitational potential. Here comoving
coordinates q and velocities u are related to the physical ones as usual

q =
x

a (t)
, u = a (t) [v− H (t) x] , (G.7.14)

where a (t) is cosmological scale factor. By comparison of eqs. (G.7.13) and
(G.7.5) one finds that the average density in eq. (G.7.13) plays the role of
opposite charge particles. By analogy with eq. (G.7.7) considering a gravitat-
ing particle in a uniform media, insert in eq. (G.7.13) instead of a3ρ0 a new
density

a3ρ = a3ρ0 exp

(

−mΦ

kBT

)

. (G.7.15)

In the physical coordinates one obtains

∆Φ = 4πGρ

[

exp

(

−mΦ

kBT

)

− 1

]

, (G.7.16)

which is similar to eq. (G.7.7). For large distances it reduces to

1

r2

d

dr

(

r2 dΦ

dr

)

+
4πGρ0m

kBT
Φ = 0, (G.7.17)

which gives

Φ ∝
1

r
cos

(

r

rg

)

, r2
g =

kBT

4πGρ0m
. (G.7.18)

It is important that this dependence, being introduced in the correlation func-
tion

gab = fab − fa fb ∝ exp

(

Φ (r1, r2)

kBT
− 1

)

. (G.7.19)

leads to finite integrals at infinity.
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G.7.4. Coulomb collisions

Consider Coulomb collision with large impact parameter and, consequently,
small deflection angle ϑ, measured in the center-of-mass system. The trans-
port cross-section in non-relativistic case Lifshitz and Pitaevskii (1981) is

σt =
∫

(1− cos ϑ) dσ ≃ 1

2

∫

ϑ2dσ. (G.7.20)

Here the differential cross section with small angles is given by the Ruther-
ford formula

dσ =
8π (qq′)2

µ2 (v− v′)4

dϑ

ϑ3
, (G.7.21)

where prime denotes the second particle. Then the total cross-section is

σt =
4π (qq′)2

µ2 (v− v′)4
Λ, Λ = log (L) =

∫

dϑ

ϑ
. (G.7.22)

This result shows that in non-relativistic plasma, due to the long-range na-
ture of the electromagnetic interactions the ”collision” process occurs at large
distances between particles.

Consider now Coulomb logarithm in relativistic plasma. Electron-electron or
electron-positron collisions are then described by Møller and Bhabha cross-
sections, instead of (G.7.21). In this case the Born approximation has to be
used since the relative velocity vr between particles is larger than αc and then

L =
m 〈vγ〉

h
λD ≃ ϑ−1

min. (G.7.23)

In thermal equilibrium, using eqs. (G.7.8) and (G.5.15) one finds

〈v

c
γ
〉

= 3θ +
K1

(

θ−1
)

K2 (θ−1)
−→
θ→∞

3θ, (G.7.24)

so in relativistic case one has

log (Λ) =
3

4π3/2
θ

3
2

(

αλ3
Cn
)− 1

2 −→
θ→∞

O(1), (G.7.25)
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where α is the fine structure constant. This result implies that the mean free
path due to Compton scattering lC = 1

nσT
and the one due to Coulomb scat-

tering lC = 1
log(Λ)σT

become equal in the ultra-relativistic case. This formula

shows also that for relativistic plasmas, when log (Λ) ≃ O(1) the momentum
transfer in Coulomb collisions is no longer small, and so the Fokker-Planck
approximation (G.6.15) does not hold.

G.7.5. Characteristic distances

Following Klimontovich (1983) let us compare the characteristic distances in
gas and plasma: the correlation radius rcor, the average distance between
particles rav and the mean free path l.

For dilute gas interactions between particles occur when they approach
each other, so the correlation length is rcor ∼ r0, where r0 is the particle (atom
or molecule) size. Average distance between particles is determined from
particle density n as rav ∼ n−1/3. The mean free path, i.e. the average distance

that particles travel without interactions is l ∼ (nσ)−1 ∼
(

nr2
0

)−1
, where in

the last relation the fact that the cross-section in gas is typically σ ∼ r2
0 is used.

For dilute plasma, as discussed above, rcor ∼ λD. The mean free path is

instead l ∼
(

nλ2
D

)−1
.

From these quantities it is possible to construct dimensionless parameters
characterizing a given medium: for dilute plasma and gas, respectively

gp =
1

nλ3
D

≪ 1, gg = nr3
0 ≪ 1. (G.7.26)

Relativistic plasma in thermal equilibrium is always dilute, see Fig. G.3. In
general the following inequalities hold for gas and plasma

rcor ≪ rav ≪ l, (gas) (G.7.27)

rav ≪ rcor ≪ l. (plasma)

It is clear that in dilute gas interaction occurs only when two particles en-
counter or ”collide” with each other. Correlations between particles may be
neglected before and after the collision. In dilute plasma the situation is op-
posite. A given particle is interacting simultaneously with many particles
located in the Debye sphere around this particle with radius λD. It means
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that particles move in the mean electromagnetic field, created by many other
particles. This field has to be averaged over some volume, smaller than the
Debye volume λ3

D, but larger than the interparticle volumes r3
av. The Vlasov

approximation (G.6.13),(G.6.14) is valid when the rate of particle collisions is
smaller than the rate of change of these averaged electromagnetic field. In
other words, the relaxation lengths are much larger than the size of the sys-
tem L.

Now it is possible to justify the derivation of the Boltzmann equation in Sec.
G.3, where only binary interactions have been considered and interactions
between three particles, four particles, and so on were neglected. Indeed,
triple collisions in gas are much less probable than binary collisions, since the
correlation function C (1, 2) is small, see e.g. Liboff (2003)

C (1, 2) = f2 (1, 2)− f1 (1) f1 (2) ∼ gg f2 (1, 2) , (G.7.28)

where f2 (1, 2) is two particle DF, f1 (1) and f1 (2) stand for one particle DF
of particle one and two, respectively. Analogously, C (1, 2, 3) ∼ gg f3 (1, 2, 3)
and so on.

From the kinetic point of view physically infinitesimally small scales
should satisfy the inequalities

rph ≪ L, nr3
ph ≫ 1, (G.7.29)

where L is the characteristic size in the problem (the size over which DF
changes significantly). Then one has for such kinetic infinitesimally small
scales

rK ≪ l, (gas) (G.7.30)

rK ≪ λD. (plasma)

From the hydrodynamic point of view the relaxation scale is a function of
the characteristic size L and of one of the three dissipation coefficients: dif-
fusion D, viscosity ν and heat conductivity χ. The corresponding physically
infinitesimally small scale satisfies the following inequality

rHD ≪
vL2

D∗
, D∗ = max (D, ν, χ) . (G.7.31)

The transition from kinetic level of description to the hydrodynamic one is
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realized by the introduction of the physical Knudsen number

Kn =
rph

L
≪ 1. (G.7.32)

The approximate methods of solutions of the Boltzmann equation (such as
Hilbert, Chapman-Enskog, Grad methods, see e.g. Cercignani and Kremer
(2002) and Liboff (2003)) use Kn as a small parameter for expansion of ki-
netic equations. The ratio of the two infinitesimally small scales (kinetic and
hydrodynamic ones) is

rK

rHD
∼ g3/10

g Kn6/5 ≤ 1, (G.7.33)

where equality corresponds to the maximal Knudsen number (minimal scale
L) when a common hydrodynamic and kinetic description of the system is
still possible.

G.7.6. Relativistic degeneracy

If the temperature of plasma decreases for a given density of particles it may
become degenerate Landau and Lifshitz (1980). The same phenomenon oc-
curs when particle density increases, but the temperature is fixed. It is useful
to construct the temperature-density diagram, see Fig. G.4.

The characteristic temperature which separates non-degenerate from de-
generate systems is defined by

θF ≡
EF

mec2
, (G.7.34)

where EF is Fermi energy, corresponding to Fermi momentum

pF =
(

3π2n
)

1
3

h̄. (G.7.35)

For a relativistic gas the total energy and momentum are related E2 =
p2c2 + m2

e c4. Equating the kinetic energy E − mec
2 to the Fermi energy the
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degeneracy temperature is obtained

θF =

[

(

3π2
)

4
3
(

λCn
1
3

)2
+ 1

]1/2

− 1. (G.7.36)

Define the degeneracy parameter

D =
θ

θF
. (G.7.37)

Note that it is related to the degeneracy parameter introduced in Groot et al.

(1980) as D′ = θ3

nλ3
C

≃ D3. Definition (G.7.37) takes into account both non-

relativistic and ultra-relativistic asymptotics in eq. (G.7.36). As can be seen
from Fig. G.4 even in thermal equilibrium relativistic plasma becomes de-
generate, though this degeneracy is weak.

G.7.7. Landau damping

Following Lifshitz and Pitaevskii (1981) consider non-relativistic linear Lan-
dau damping with a simplified treatment. More details, including non-linear
damping are given in the mathematical treatise Mouhot and Villani (2011),
see also Klimontovich (1997). Consider a homogeneous isotropic plasma with
DF f0(p). Assume that a weak electromagnetic field is present, which induces
a small perturbation on DF such that f = f0(p) + δ f . In isotropic plasma
magnetic field in eqs. (G.6.13),(G.6.14) is not important, then linearized eq.
(G.6.13) becomes

∂δ f

∂t
+ v · ∇δ f = qE

∂ f0

∂p
, (G.7.38)

where δ f and E are, respectively, DF and electric field perturbations. Assum-
ing that δ f ∼ exp [i (kr−ωt)], E ∼ exp [i (kr−ωt)], the solution is

δ f =
qE

i (k · v−ω)
·∂ f0

∂p
. (G.7.39)

The dielectric constant, given by 4πP = (ε− 1)E can be found, observing
that

ik · P = −ρ = q
∫

δ f d3p. (G.7.40)
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Since the function δ f has a pole at ω = k · v the integral above should be
evaluated using the Landau rule ω → ω + i0. The result is

ε = 1− 4πq2

k2

∫

k·∂ f0

∂p

d3p

(k · v−ω− i0)
. (G.7.41)

It means that the dielectric constant has an imaginary part. Introducing the
DF along x-axis and choosing the direction of k along the same axis one gets

Im (ε) = −4πq2m

k2

d f (px)

dpx
. (G.7.42)

Non-vanishing Im (ε) means that the electric field looses energy with the rate

Q = − |E|2 πmq2

2k2

d f (px)

dpx
. (G.7.43)

This is collisionless damping of electromagnetic waves as established by Lan-
dau Landau (1946). The validity condition for this result is λD ≪ 2π

k ≪ L.
Actually, the damping of electromagnetic field oscillations in non-

relativistic case is exponentially weak. In contrast, in ultra relativistic case
there are two possibilities: when phase velocity of the wave is smaller than
the speed of light the damping is strong; in the opposite case the damping
is absent Buti (1962). This result is generally confirmed for electron-positron
plasma Laing and Diver (2006).

G.8. Pair plasma

In this section a special case of plasma will be considered, when both negative
and positive charge carriers have equal masses: electron-positron plasma.
Electron-positron plasma is of interest in many fields of physics and as-
trophysics. In cosmology during the lepton era ultra-relativistic electron-
positron pairs contribute to the matter content of the Universe Weinberg
(2008). The cosmic microwave background radiation is created at the black
body photosphere Khatri and Sunyaev (2012), around the cosmic redshift
z = 106.

In astrophysics comparable energy densities are expected to be reached
in gamma-ray bursts sources, hence electron-positron pairs play an essen-
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tial role there Piran (2005). Indications exist that the pair plasma is present
also in active galactic nuclei Wardle et al. (1998), in the center of our Galaxy
Churazov et al. (2005), around hypothetical quark stars Usov (1998). In the
laboratory pair plasma is expected to appear in the fields of ultra intense
lasers Blaschke et al. (2006), see also Benedetti et al. (2013) and Ruffini et al.
(2010) for review.

In many stationary astrophysical sources the pair plasma is thought to
be in thermodynamic equilibrium. A detailed study of the relevant pro-
cesses Bisnovatyi-Kogan et al. (1971), Weaver (1976), Lightman (1982), Gould
(1982), Stepney and Guilbert (1983), Coppi and Blandford (1990), radiation
mechanisms Lightman and Band (1981), possible equilibrium configurations
Lightman (1982), Svensson (1982a), Guilbert and Stepney (1985) and spectra
Zdziarski (1984) in an optically thin pair plasma has been carried out. Partic-
ular attention has been given to collisional relaxation process Gould (1981),
Stepney (1983), pair production and annihilation Svensson (1982b), relativis-
tic bremsstrahlung Gould (1980), Haug (1985), double Compton scattering
Lightman (1981), Gould (1984).

An equilibrium occurs if the sum of all reaction rates vanishes, see eq.
(G.5.9) and discussion that follows. For instance, electron-positron pairs are
in equilibrium when the net pair production (annihilation) rate is zero. This
can be achieved by variety of ways and the corresponding condition can
be represented as a system of algebraic equations Svensson (1984). How-
ever, the main assumption made in all the above mentioned works is that
the plasma is assumed to obey relativistic quantum statistics. The latter is
shown to be possible, in principle, in the range of temperatures up to 10 MeV
Bisnovatyi-Kogan et al. (1971),Stepney (1983). It will be shown that indepen-
dently of a wide set of initial conditions, thermal equilibrium forms for the
phase space distribution functions are recovered during the process of ther-
malization by two body and three body direct and inverse particle-particle
collisions. The pair plasma is assumed to be optically thick. Although mod-
erately thick plasmas have been treated in the literature Guilbert and Stepney
(1985), only qualitative description Bisnovatyi-Kogan et al. (1971),Svensson
(1982a) was available for large optical depths until recently Aksenov et al.
(2007),Aksenov et al. (2009).
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G.8.1. Basic parameters

Consider a mildly relativistic plasma with average energy per particle 0.1 .
ǫ

MeV . 10. Before formulating the relativistic kinetic equations for the
electron-positron plasma recall the basic plasma parameters and their typical
values. The plasma parameter (G.7.26) for electron-positron plasma is typi-
cally gp = (n−λ3

D)
−1 ∼ 10−3, here λD = c

ω

√
θ− is the Debye length (G.7.8),

θ− = kBT−/(mc2) is the dimensionless temperature, ω =
√

4πq2n−/m is
the plasma frequency, n− is the electron number density, m is its mass. It
implies that the relativistic Boltzmann equations for one particle distribution
functions can be used to describe an electron-positron plasma. The classi-
cality parameter κ = e2/(h̄vr) = α/βr < 1, where vr = βrc is the mean
relative velocity of particles. It means that in electron-positron plasma a
quantum description of scattering is required. The Coulomb logarithm is
Λ = MλDvrγr/h̄, where M is the reduced mass. Since this expression con-
tains the Debye length, which is defined only for a thermal plasma, the ex-
pression (G.7.25) for relativistic Coulomb logarithm will be used. As already
mentioned in Sec. G.7.6 a relativistic plasma may be degenerate, but in what
follows such relativistic degeneracy will be neglected.

Intensity of interaction of photons with other particles is characterized by
the optical depth

τ =
∫

L
σ (n− + n+) dl, (G.8.1)

where σ is the cross-section and the integral (G.8.1) is taken over the light-
like worldline L. In what follows consider the case in which plasma linear

dimensions R exceed the photon mean free path λγ = (n−σ)−1, thus τ ≫ 1.

When admixture of protons and electrons is allowed it may be character-
ized by an additional parameter, the baryonic loading

B =
npMc2

ρr
, (G.8.2)

where M is the proton mass, ρr is the energy density in relativistic component
(electrons, positrons and photons).

In thermal equilibrium, while e+e− are relativistic, with average energies
ǫ± ∼ mc2 ∼ kBT, protons are not with kinetic energies Mv2

p ∼ kBT, and thus
vp

c ∼
√

m
M . Also in equilibrium with ǫ± ≥ mc2 one has ρ± ≈ n±mc2 and
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thus the density ratio between protons and pairs is
np

n±
∼ m

M B. Since electron

is subject to interaction with both electrons (positrons) and photons, one has
for the ratio of mean free paths, see e.g. Groot et al. (1980)

λγ

λ±
= log (Λ) +

n± + np

nγ
. (G.8.3)

Note that there are two natural parameters for perturbative expansion in
various expressions: the fine structure constant α ≃ 1/137 and the ration
between electron and proton masses m/M ≃ 1/1836.

G.8.2. Kinetic equation and collision integrals

Relativistic Boltzmann equations (G.3.9) for homogeneous isotropic plasma
are

1

c

∂ fi

∂t
−∇U

∂ fi

∂p
= St f , (G.8.4)

where U is a potential due to external force, fi(ǫ, t) are distribution functions
and the index i stands for electrons, positrons and photons. The second term
on the LHS of eq. (G.8.4) describes the mean field produced by all particles,
plus an external field. Particle collisions, including Coulomb ones, are taken
into account by collision terms on the RHS. Particle motion between colli-
sions is assumed to be subject to the mean field, which is neglected. This is
an assumption, but in dense collision dominated plasma this assumption is
justified, see e.g. Groot et al. (1980). Then eq. (G.8.4) reduces to a coupled
system of partial-integro-differential equations

1

c

∂ fi

∂t
= ∑

q

(

η
q
i − χ

q
i fi

)

, (G.8.5)

where η
q
i and χ

q
i are the emission and the absorption coefficients for a given

process q Mihalas and Mihalas (1984).

The elementary interactions between particles are described by the quan-
tum field theory. In the case under consideration this is quantum electro-
dynamics. These coefficients have to be computed from the probability of
a given process, expressed as function of the corresponding matrix element.
In general, for a process involving a outgoing and b incoming particles the
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Binary interactions Radiative and pair producing variants

Møller and Bhabha scattering Bremsstrahlung
e±1 e±2 −→ e±′1 e±′2 e±1 e±2 ←→ e±′1 e±′2 γ
e±e∓ −→ e±′e∓′ e±e∓ ←→ e±′e∓′γ

Single Compton scattering Double Compton scattering
e±γ −→ e±γ′ e±γ←→ e±′γ′γ′′

Pair production Radiative pair production
and annihilation and three photon annihilation

γγ′ ←→ e±e∓ γγ′ ←→ e±e∓γ′′

e±e∓ ←→ γγ′γ′′

e±γ←→ e±′e∓e±′′

Table G.1.: Microphysical processes in the pair plasma.

differential probability per unit time is (h̄ = c = 1)

dw = c(2πh̄)4δ(4)
(

p f − pi

) ∣

∣M f i

∣

∣

2
V

[

∏
b

h̄c

2ǫbV

] [

∏
a

dp′a
(2πh̄)3

h̄c

2ǫ′a

]

, (G.8.6)

where p′a and ǫ′a (ǫb) are respectively momenta and energies of outgoing (in-

coming) particles, M f i are the corresponding matrix elements, δ(4) stands for
energy-momentum conservation, V is the normalization volume. The list
of processes that are relevant for optically thick electron-positron plasma is
given in Tab. G.1.

The list of the leptonic processes involving protons is given in Tab. G.2.

Each of the above mentioned reactions is characterized by the correspond-
ing time-scale and optical depth. For Compton scattering of an electron, for
instance, one has

tcs =
1

σTn±c
, τcs = σTn±R, (G.8.7)

where σT = 8π
3 α2( h̄

mc )
2 is the Thomson cross-section, R is the linear size of

plasma. There are several time-scales in this problem that characterize the
condition of detailed balance between direct and inverse reactions, namely

• Pair production, Compton and electron-electron scattering: tγe ∼ tγe ∼
(σTnc)−1;
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Binary interactions Radiative and pair producing variants

Coulomb scattering Bremsstrahlung
p1p2 −→ p′1p′2 p1p2 ←→ p′1p′2γ
pe± −→ p′e±′ pe± ←→ p′e±′γ

pe±1 ←→ p′e±′1 e±e∓

Single Compton scattering Double Compton scattering
and radiative pair production

pγ −→ p′γ′ pγ←→ p′γ′γ′′

pγ←→ p′e±e∓

Table G.2.: Microphysical processes involving protons in the pair plasma.

• Cooling: tbr = α−1tc;

• Proton-proton:
(

nptpp

)−1 ≈
√

m
M (n−tee)

−1 , vp ≈
√

m
M ve, ve ≈

c;

• Electron-proton: t−1
ep ≈ ǫ±

Mc2 t−1
ee , ǫ± ≪ ǫp;

• Proton Compton scattering:
(

nptγp

)−1 ≈
(

ǫ
Mc2

)2
(n−tγe)

−1 , ǫ ≥
mc2;

• Dynamical time-scale: thyd ∼ R/c.

As example of collision integral consider the absorption coefficient for
Compton scattering which is given by

χ
cs

fγ =
∫

dk′dpdp′Wk′,p′;k,p fγ(k, t) f±(p, t), (G.8.8)

where p and k are the four-momenta of electron (positron) and photon re-
spectively, p and k are their three-momenta, dp = dǫ±doǫ2

±β±/c3, dk′ =
dǫ′γǫ′2γ do′γ/c3 and the transition rate Wk′,p′;k,p is related to the differential tran-
sition probability dwk′,p′;k,p per unit time as

Wk′,p′;k,pdk′dp′ ≡ Vdwk′,p′;k,p, dwk′,p′;k,p = wk′,p′;k,pdk′dp′. (G.8.9)

One integration over dp′ as
∫

dp′δ(dk+ dp− dk′− dp′)→ 1 can be readily
performed. Then it is necessary to take into account the momentum conser-
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vation in the next integration over dk′, namely

∫

dǫ′γδ(ǫγ + ǫ± − ǫ′γ − ǫ′±)→
1

|∂(ǫ′γ + ǫ′±)/∂ǫ′γ|
≡ Jcs, (G.8.10)

where the Jacobian of the transformation is Jcs =
1

1−β′±b′γ·b′±
, where bi = pi/p,

b′i = p′i/p′ and b′± = (β±ǫ±b± + ǫγbγ − ǫ′γb′γ)/(β′±ǫ′±). Finally, for the
absorption coefficient one has

χcs fγ = −
∫ do′γdp

(2π)2

ǫ′γ|M f i|2h̄2c2

16ǫ±ǫγǫ′±
Jcs fγ(k, t) f±(p, t), (G.8.11)

where the matrix element squared, see e.g. Berestetskii et al. (1982), is

|M f i|2 = 26π2α2

[

m2c2

s−m2c2
+

m2c2

u−m2c2
+

(

m2c2

s−m2c2
+

m2c2

u−m2c2

)2

−1

4

(

s−m2c2

u−m2c2
+

u−m2c2

s−m2c2

)]

, (G.8.12)

s = (p + k)2 and u = (p − k′)2 are invariants, k = (ǫγ/c)(1, eγ) and p =
(ǫ±/c)(1, β±e±) are energy-momentum four-vectors of photons and elec-
trons, respectively, dp = dǫ±doǫ2

±β±/c3, dk′ = dǫ′γǫ′2γ do′γ/c3 and do = dµdφ.

As example of triple interactions consider the relativistic bremsstrahlung

e1 + e2 ↔ e′1 + e′2 + γ′. (G.8.13)

For the time derivative, for instance, of the distribution function f2 in the
direct and in the inverse reactions (G.8.13) one has

ḟ2 =
∫

dp1dp′1dp′2dk′
[

Wp′1,p′2,k′;p1,p2
f ′1 f ′2 f ′k −Wp1,p2;p′1,p′2,k′ f1 f2

]

=

=
∫

dp1dp′1dp′2dk′
c6h̄3

(2π)2

δ(4)(Pf − Pi)|M f i|2
25ǫ1ǫ2ǫ′1ǫ′2ǫ′γ

[

f ′1 f ′2 f ′k −
1

(2πh̄)3
f1 f2

]

,

(G.8.14)

dp1dp2Wp′1,p′2,k′;p1,p2
≡ V2dw1, dp′1dp′2dk′Wp1,p2;p′1,p′2,k′ ≡ Vdw2,

A finite difference method with a computational grid in the phase space can
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Interaction Parameters of DFs

I e+e− scattering θ+ = θ−, ∀ν+,ν−
II e±p scattering θp = θ±, ∀ν±,νp

III e±γ scattering θγ = θ±, ∀νγ,ν±
IV pair production ν+ + ν− = 2νγ, if θγ = θ±
V Tripe interactions νγ, ν± = 0, if θγ = θ±

Table G.3.: Thermodynamic quantities under detailed balance conditions for
a given process.

be used for numerical solution of eq. (G.8.5), see Aksenov et al. (2009). In
what follows a concrete example of numerical solution of the system of rel-
ativistic Boltzmann equations (G.8.5) will be discussed. In order to interpret
this solution it is necessary to introduce the notion of kinetic equilibrium
Aksenov et al. (2007).

G.8.3. Kinetic and thermal equilibria

The number of conservation laws in the problem under consideration imply
the existence of some relations between thermodynamic quantities in equlib-

rium. The following conservation laws exist: energy conservation d
dt ∑i ρi =

0, particle number conservation for binary reactions d
dt ∑i ni = 0, baryonic

number conservation
dnp

dt = 0 and charge conservation n− = n+ + np. The
condition for the chemical potentials coming from detailed balance condi-
tions is ϕ+ + ϕ− = 2ϕγ.

The kinetic equilibrium is defined as the state when the detailed balance
condition is satisfied for any binary process. In this state distribution func-
tions have the following form

fi(ε) =
2

(2πh̄)3
exp

(

− ε− νi

θi

)

, (G.8.15)

with chemical potential νi ≡ φi

mc2 and temperature θi ≡ kBTi

mec2 , where ε ≡ ǫ
mec2

is the energy of the particle. In particular, detailed balance conditions with
respect to a given direct and inverse process listed in Tab. G.1 leads to the
following constraints on temperatures and chemical potentials in eq. (G.8.15):
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Provided conditions I-IV in Tab. G.3 are satisfied, one can obtain the rela-
tion between two couples of quantities: total the number density and the total
energy density on the one hand, and temperature and the chemical potential
on the other hand. In particular, for photons

nγ =
1

V0
exp

(νγ

θ

)

2θ3,
ργ

nγmc2
= 3θ, V0 =

1

8π

(

2πh̄

mc

)3

. (G.8.16)

From eqs. (G.5.15) and (G.5.19) for non-degenerate pairs

n± =
1

V0
exp

(ν±
θ

)

j1(θ),
ρ±

n±mc2
= j2(θ), (G.8.17)

and for non-relativistic protons

np =
1

V0

√

π

2

(

M

m

)3/2

exp

(

νp −M/m

θ

)

θ3/2,
ρp

Mnpc2
= 1 +

3

2

m

M
θ,

(G.8.18)
where

j1(θ) = θK2(θ
−1)→

{ √

π
2 e−

1
θ θ3/2, θ → 0

2θ3, θ → ∞
, (G.8.19)

j2(θ) =
3K3(θ

−1) + K1(θ
−1)

4K2(θ−1)
→
{

1 + 3
2 θ, θ → 0

3θ, θ → ∞
.

With nonzero baryon loading (G.8.2) in kinetic equilibrium θ+ = θ− =
θγ = θk, but it may be that θp 6= θk. Summing up energy densities

∑
e+,e−,γ

ρi =
mc2

V0

{

[

1− npV0

j1(θk)
exp

(

−ν+
θk

)]
1
2

× (G.8.20)

×6θ4
k exp

(

ν+
θk

)

+

[

2j1(θk) exp

(

ν+
θk

)

− npV0

]

j2(θk)

}

,
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and analogously for number densities

∑
e+,e−,γ

ni =
1

V0

{

[

1− npV0

j1(θk)
exp

(

−ν+
θk

)]
1
2

× (G.8.21)

×6θ4
k exp

(

ν+
θk

)

+ 2j1(θk) exp

(

ν+
θk

)}

.

Equations (G.8.20) and (G.8.21) represent the relations between (ρ, n) and
(ν+, θk). Conservation laws allow to determine the rest of chemical poten-
tials, obtained from the following relations

exp

(

ν−
θk

)

= exp

(

ν+
θk

)

+
npV0

j1(θk)
, (G.8.22)

exp

(

νγ

θk

)

= exp

(

ν+
θk

) [

1 +
npV0

j1(θk)
exp

(

−ν+
θk

)]
1
2

, (G.8.23)

The temperature and chemical potential of protons can be found separately.

In thermal equilibrium νγ vanishes and one has

ν− = θkarcsinh

[

npV0

2j1(θk)

]

, ν+ = −ν−, (G.8.24)

which both reduce to ν− = ν+ = 0 for np = 0. At the same time, for np > 0
one always has ν− > 0 and ν+ < 0 in thermal equilibrium. In order to
determine the Coulomb logarithm as function of particle energies, one can
use the relation (G.7.23). The minimal scattering angle in thermal relativistic
plasma in the center of mass system Haug (1985) is

θmin =
2h̄

McD

γr

(γr + 1)
√

2(γr − 1)
, (G.8.25)

where the maximum impact parameter (neglecting the effect of protons) is

D = c2

ω
p0
ǫ10

, where p0 and ǫ10 are CM quantities, and the invariant Lorentz

factor of relative motion is

γr =
1

√

1−
(

vr
c

)2
=

ǫ1ǫ2 − p1p2c2

m1m2c4
. (G.8.26)
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The Coulomb logarithm is

log (Λ) =
1

2
− log

(√
2 sin θmin

)

. (G.8.27)

G.8.4. Numerical example

G.8.5. Numerical example

Consider now an example of thermalization of initially non-equilibrium
electron-positron plasma, following Aksenov et al. (2009). The following ini-
tial conditions are adopted: flat initial spectral energy densities Ei(ǫi) =
4πǫ3

i βi fi

c3 = const, with total energy density ρ = 1024erg/cm3. Plasma is
dominated by photons with small amount of electron-positron pairs, the
ratio between energy densities in photons and in electron-positron pairs
ρ±/ργ = 10−5. Baryonic loading parameter B = 10−3, corresponding to
ρp = 2.7× 1018erg/cm3. The energy density in each component of plasma
changes, as can be seen from Fig. G.5, keeping constant the total energy den-
sity shown by dotted line in Fig. G.5, as the energy conservation requires. As
early as at 10−23 sec the energy starts to redistribute between electrons and
positrons from the one hand and photons from the other hand essentially
by the pair-creation process. This leads to equipartition of energies between
these particles at 3× 10−15 sec. Concentrations of pairs and photons equalize
at 10−14 sec, as can be seen from Fig. G.6. From this moment temperatures
and chemical potentials of electrons, positrons and photons tend to be equal,
see Fig. G.7 and Fig. G.8 respectively, and it corresponds to the approach to
kinetic equilibrium.

This is quasi-equilibrium state since total number of particles is still ap-
proximately conserved, as can be seen from Fig. G.6, and triple interactions
are not yet efficient. At the moment t1 = 4× 10−14 sec, shown by the verti-
cal line on the left in Fig. G.7 and Fig. G.8, the temperature of photons and
pairs is θk ≃ 1.5, while the chemical potentials of these particles are νk ≃ −7.
Concentration of protons is so small that their energy density is not affected
by the presence of other components; also proton-proton collisions are inef-
ficient. In other words, protons do not interact yet and their spectra are not
yet of equilibrium form, see Fig. G.9. The temperature of protons start to
change only at 10−13 sec, when proton-electron Coulomb scattering becomes
efficient.
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As can be seen from Fig. G.8, the chemical potentials of electrons, positrons
and photons evolved by that time due to triple interactions. Since chemical
potentials of electrons, positrons and photons were negative, the particles
were in deficit with respect to the thermal state. This caused the total number
of these particles to increase and consequently the temperature to decrease.
The chemical potential of photons reaches zero at t2 = 10−12 sec, shown by
the vertical line on the right in Fig. G.7 and Fig. G.8, which means that
electrons, positrons and photons are now in thermal equilibrium. However,
protons are not yet in equilibrium with other particle since their spectra are
not thermal, as shown in the lower part of Fig. G.9.

Finally, the proton component thermalize with other particles at 4× 10−12

sec, and from that moment plasma is characterized by unique temperature,
θth ≃ 0.48 as Fig. G.7 clearly shows. Protons have final chemical potential
νp ≃ −12.8.

This state is characterized by thermal distribution of all particles as can be
seen from Fig. G.10. There initial flat as well as final spectral densities are
shown together with fits of particles spectra with the values of the common
temperature and the corresponding chemical potentials in thermal equilib-
rium.

In this particular example relaxation time-scales towards kinetic and ther-
mal equilibria have been determined. One can similarly determine relax-
ation time-scales as the function of total energy density ρ and baryon load-
ing parameter B in wide range range of these parameters. This was done in
Aksenov et al. (2010).

G.9. Collisionless and self-gravitating systems

The kinetic approach is remarkably useful in studying collisionless systems.
In such systems particle do not collide, but interact via long range forces
such as gravitational and electromagnetic fields. The basic equations gov-
erning evolution of the system are, respectively, Vlasov-Einstein and Vlasov-
Maxwell equations. In this Section systems interacting via electromagnetic
and gravitatinal fields will be discussed.
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G.9.1. Plasma instabilities

In Sec. G.7.7 damping of waves in collisionless plasma were discussed.
This process suppresses the amplitude of initial perturbations thus bring-
ing the system to an equilibrium. The opposite can happen, namely initially
small perturbation can grow with time: this process is generally referred to
as instability. There are many plasma instabilities occurring when different
plasma flows, particles with different masses and electromagnetic fields in-
teract Mikhailovskii (1975). The focus will be on two particular kinds, which
are thought to occur in astrophysical conditions: Weibel and two stream insta-
bilities.

The Weibel instability is a plasma instability present in homogeneous or
nearly-homogeneous electromagnetic plasmas which possess an anisotropy
in momentum (velocity) space. In the linear limit the instability causes expo-
nential growth of electromagnetic fields in the plasma which helps to restore
momentum space isotropy.

The two stream instability can be thought of as the inverse of Landau
damping, where the existence of a greater number of particles that move
slower than the wave phase velocity as compared with those that move faster,
leads to an energy transfer from the wave to the particles. Again, focus will be
on non-relativistic case for simplicity, see Achterberg and Wiersma (2007) for
Weibel instability in relativistic plasma and Dieckmann (2005) for relativistic
two-stream instability, see also Bret et al. (2008).

Following Weibel (1959) consider an electron-ion plasma, where electrons
have an anisotropic DF f0(v). The equations for first order perturbations are
obtained from the Vlasov-Maxwell equations (G.6.13),(G.6.14) as

∂δ f

∂t
+ v·∂δ f

∂r
+

q

m
[v× B0] ·

∂δ f

∂v
= − q

m
[E + v× B] ·∂ f0

∂v
, (G.9.1)

where magnetic field B0 is included for generality. In analogy with Sec. G.7.7
assume that perturbations of DF and electromagnetic fields fields are of the
form exp [−i (k · r−ωt)]. Then it follows

i (ω + k · v) δ f − q

m
B0·
[

v×∂δ f

∂v

]

= − q

mω

{

ωE·∂ f0

∂v
+ [k× E] ·

[

v×∂ f0

∂v

]}

,

(G.9.2)
where the effect of anisotropy is seen on the RHS. Actually the external mag-
netic field B0 is not necessary for the development of instability, it is included

544



G.9. Collisionless and self-gravitating systems

for generality. Assume k ‖ ẑ, E ⊥ k and consider a special case of distribution
function

f0 =
n

(2π)3/2 u2
0u3

exp

(

−
v2

x + v2
y

2u2
0

− v2
z

2u2
3

)

. (G.9.3)

Now taking B0 = 0, ω ≫ u3k it is possible to integrate the dispersion relation
and get

ω4 −
(

ω2
p + k2

)

ω2 − u2
0ω2

pk2 = 0, (G.9.4)

where ω2
p = 4πq2n

m is the usual plasma frequency. This equation has four roots

ω = ±
{

1

2

[

ω2
p + k2 ±

√

(

ω2
p + k2

)2
+ 4u2

0ω2
pk2

]}1/2

, (G.9.5)

and the one corresponding to both ”−” signs is negative imaginary. It is
the source of instability. This solution is valid only when u0 ≫ u3 (velocity
dispersion in ẑ direction is much smaller than in other directions).

The two stream instability occurs for instance when there is a stream of
particles uniformly distributed in space through a plasma at rest (counter
streaming beams etc.). Consider electron-ion plasma with electron density ne,
and electrons with much smaller density n′e stream through it with constant
velocity v (total charge is zero).

Following the same steps as before the dispersion relation can be obtained,
see e.g. Lifshitz and Pitaevskii (1981). In this case one has

(ωe

ω

)2
+

(

ω′e
ω− k · v

)2

= 1, ω2
e =

4πq2ne

m
, ω

′2
e =

4πq2n′e
m

, (G.9.6)

and one should search for its solution of the form ω = k · v + δ, where δ ≪
k · v. The solution is

δ = ± ω′e
√

1− (ωe/k · v)2
. (G.9.7)

For k · v≪ ωe purely imaginary δ is found, which again means the presence
of instability. The linear analysis presented above shows that initially small
perturbations grow exponentially with time. Actually, as soon as validity
condition δ f ≪ f0 breaks down, the non-linear character of instabilities has
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to be considered.

G.9.2. Collisionless shock waves

Such instabilities are present in relativistic regime as well. They may play a
crucial role in the Gamma-Ray Burst phenomena, where interaction between
two streams moving relativistically with respect to each other is expected
Spitkovsky (2008b). Similar plasma instabilities are expected also in experi-
ments with ultra-intense lasers Fiuza et al. (2012).

The growth rates for linear Weibel and two-stream instabilities are, respec-
tively

ΓW ∝

(

n′e
ne

)1/2

, ΓTS ∝

(

n′e
ne

)1/3

, (G.9.8)

see e.g. Silva (2006). The typical wavelengths are similar

λW ≃
c

ωe
, λTS ≃

v

ωe
, (G.9.9)

where v is velocity of plasma stream. It is remarkable that currently numerical
experiments in three dimensions, see e.g. Frederiksen et al. (2004),Spitkovsky
(2008a), allow studying not only development of instabilities at their linear
stage, but also following them on much longer time-scales, where saturation
occurs and complex electromagnetic field patterns emerge.

G.9.3. Free streaming

Gas of self-gravitating particles in a flat space time is also known to be un-
stable Jeans (1902). Following Bisnovatyi-Kogan and Zel’Dovich (1971) con-
sider Vlasov-Poisson equations (G.7.13) for collisionless particles in expand-
ing Universe

∂ f

∂t
+ v·∂ f

∂r
− ∂Φ

∂r
·∂ f

∂v
= 0, ∆Φ = 4πGρ, (G.9.10)

where ρ = m
∫

f d3v is mass density of particles. The background solution for
a Newtonian universe with zero spatial curvature is

ρ =
1

6πGt2
, Φ =

2

3
πGρ (t) r2,

∂Φ

∂r
=

2

9

r

t2
. (G.9.11)
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Solving the corresponding linearized equations for a perturbed
Maxwellian distribution with temperature θ by integration over charac-
teristics the gravitational potential is found

ϕ (t) =
2

t2/3

∫ t

0
ϕ
(

t′
)

τ exp

(

−9

4
k2θτ2

)

dt′, τ = t−1/3 − t′−1/3, (G.9.12)

where Φ = exp (ikξ) ϕ (t).

For long waves the exponential is substituted by unity and the result is

ϕ (t) ∝ t−5/3, δρ/ρ ∝ t2/3, (G.9.13)

which is the usual result of gravitational instability in matter dominated
phase of the Universe, see e.g. Weinberg (2008). For short waves with
9
4 k2θ ≫ t1/3 using the method of steepest descents one finds

ϕ (t) ∝ exp

[

1

9

√

2eλ3

π

1

t

]

, λ =
9

4
k2θ, (G.9.14)

which means perturbations are damped with time. This phenomenon is sim-
ilar to Landau damping in plasma and is called gravitational Landau damping
(or free streaming). Distribution function with two counter streams has been
studied as well in Bisnovatyi-Kogan and Zel’Dovich (1971), but it was found
that this does not lead to additional instability. For the formulation of the
problem within General Relativity see Bond and Szalay (1983).

Note that the treatment of perturbations in hydrodynamic limit shows os-
cillations of perturbations at small scales, see e.g. Lattanzi et al. (2003), in-
stead of damping. These oscillations occur due to interplay between gravity
and pressure. Hence the hydrodynamic treatment does not capture an essen-
tial phenomenon in self-gravitating systems.

This result of kinetic theory is so remarkable that it has been one of the main
reasons why purely hot dark matter cosmological scenarios were rejected,
see e.g. White et al. (1983). In fact, light particles which decouple from pri-
mordial plasma when relativistic have the free streaming scale Padmanabhan
(1993)

lFS ≃ 0.5
(mDM

1 keV

)−4/3
(ΩDMh2)1/3 Mpc, (G.9.15)

where mDM is particle mass, ΩDM is the fraction of the dark matter in the
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critical density of the Universe, H = 100h km/s/Mpc is the Hubble parame-
ter. On the scale smaller than lFS structures cannot form as any perturbations
are exponentially suppressed. A corresponding mass scale has an order of
supercluster of galaxies or even larger if the particle mass is mDM < 30 eV,
implying that dark matter cannot consist mainly of particles with such mass.

G.9.4. Phase mixing and violent relaxation

The phenomenon of phase mixing is thought to be important in for-
mation of galaxies and large scale structure of the Universe, see e.g.
Binney and Tremaine (2008). For illustration of this phenomenon let us con-
sider an example. Assume particles are placed in a rectangular potential well
and each one moves with constant velocity, see Fig. G.11. When particles
hit the wall they change the direction of the velocity. While in the beginning
only lower half of the phase space is filled, in course of time the distribution
function tends to fill all the phase space. While the fine grained DF f stays
constant by the Liouville theorem, the coarse grained DF decreases. Another
example of phase mixing is given in Binney and Tremaine (2008).

Relaxation mechanism related to phase mixing is found by Linden-Bell
Lynden-Bell (1967). It should operate in a newly formed gravitationally
bound collisionless systems such as galactic halo or cluster of galaxies. When
a star moves in a fixed potential Φ its specific energy is constant ǫ = 1

2 v2 + Φ.
When the potential is time varying Φ (x, t), the energy is not constant

dǫ

dt
=

1

2

dv2

dt
+

dΦ

dt
= v·

(

dv

dt
+∇Φ

)

+
∂Φ

∂t
=

∂Φ

∂t

∣

∣

∣

∣

x(t)

. (G.9.16)

This is a mechanism of redistributing particles in the phase space, i.e. relax-
ation. It differs from particle collisions, because the energy change does not
depend on mass. Linden-Bell derived also the relaxation time-scale, which is

tLB ≃
3

4
√

2πG 〈ρ〉
=

3

8π
P, (G.9.17)

where P is the typical radial period of the orbit of a star in the galaxy.
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G.9.5. Dark matter structure formation

The processes discussed above provide a mechanism to form the structure in
the Universe. Almost homogeneous matter initially has small density fluc-
tuations being subject to gravitational instability. Structures become gravi-
tationally bound, detach from the Hubble flow, relax by phase mixing and
violent relaxation, and end up as virialized equilibrium systems. The pro-
cess repeats on larger and larger scales. This bottom-up picture of structure
formation is called hierarchical clustering, and it is supported by numerical
simulations. There are additional physical effects such as merging of smaller
structures that influence and possibly even dominate structure formation.

The largest success of the numerical N-body simulations resulted in so
called Navarro-Frenk-While profile of dark mater halos Navarro et al. (1996).
The dark matter halo density profile is inferred from numerical simulations,
and has a universal shape with mass density profile

ρ

ρc
=

δc

(r/rs) (1 + r/rs)
2

, (G.9.18)

where ρc is the critical density, δc is the characteristic density, rs is the scale
radius. It should be noted that other halo profiles are suggested in the litera-
ture which may give better agreement with measurements of rotation curves
of galaxies.

G.10. Conclusions

These brief lecture notes summarize the material presented during five lec-
tures during XV Brazilian School of Cosmology and Gravitation. The idea
has been to illustrate not only the theoretical progress in kinetic theory in rel-
ativistic domain, but also to acknowledge the rapid development of its appli-
cations, especially in the field of astrophysics and cosmology. Many processes
in these fields can be understood on the basis of hydrodynamics. However,
the study of phenomena which generally involve non-equilibrium processes
require a different approach, based on kinetic theory.

I could only touch upon several phenomena, providing references in which
interested reader could find more details. Much more phenomena remain
even not mentioned: the choice is due to personal interests of the author.
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Phenomena that I did not cover include, among others, reheating af-
ter inflation, cosmic recombination, cosmological nucleosynthesis, primor-
dial magnetic fields generation, particle acceleration in shocks, Sunyaev–
Zeldovich effect. I conclude with a general remark: that astrophysics and
cosmology are natural fields of application of kinetic theory, since basic re-
quirements of the theory such as large number of particles are easily satisfied.

550



G.10. Conclusions

0.001 0.01 0.1 1 10 100
Θ

1.2

1.3

1.4

1.5

1.6

1.7

1.8

G

Figure G.1.: The thermal index of relativistic gas as function of dimensionless
temperature.
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Figure G.2.: Relativistic Maxwellian distribution function for selected values
of dimensionless temperature.

552



G.10. Conclusions

0.1 0.2 0.5 1.0 2.0 5.0 10.0
Θ

10-4

10-3

10-2

g

Figure G.3.: The plasma parameter of relativistic plasma in thermal equilib-
rium as function of dimensionless temperature.
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Figure G.4.: The temperature-density diagram for relativistic plasma. Solid
line corresponds to the condition D = 1. To the right of this curve D < 1 and
plasma is degenerate. Dashed curve corresponds to the condition gp = 1.
Above this curve gp < 1 and plasma is ideal. Dotted curve corresponds to
thermal electron-positron plasma.
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Figure G.5.: Depencence on time of energy densities of electrons (green),
positrons (red), photons (black) and protons (blue) for initial conditions I.
Total energy density is shown by dotted black line. Interaction between
pairs and photons operates on very short time-scales up to 10−23 sec. Quasi-
equilibrium state is established at tk ≃ 10−14 sec which corresponds to kinetic
equilibrium for pairs and photons. Protons start to interact with then as late
as at tth ≃ 10−13 sec.
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Figure G.6.: Depencence on time of concentrations of electrons (green),
positrons (red), photons (black) and protons (blue) for initial conditions I.
Total number density is shown by dotted black line. In this case kinetic equi-
librium between electrons, positrons and photons is reached at tk ≃ 10−14

sec. Protons join thermal equilibrium with other particles at tth ≃ 4× 10−12

sec.
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Figure G.7.: Depencence on time of dimensionless temperature of electrons
(green), positrons (red), photons (black) and protons (blue) for initial condi-
tions I. The temperature for pairs and photons acquires physical meaning
only in kinetic equilibrium at tk ≃ 10−14 sec. Protons are cooled by the
pair-photon plasma and acquire common temperature with it as late as at
tth ≃ 4× 10−12 sec.
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Figure G.8.: Depencence on time of dimensionless chemical potential of elec-
trons (green), positrons (red), photons (black) and protons (blue) for initial
conditions I. The chemical potential for pairs and photons acquires physical
meaning only in kinetic equilibrium at tk ≃ 10−14 sec, while for protons this
happens at tth ≃ 4× 10−12 sec. At this time chemical potential of photons has
evolved to zero and thermal equilibrium has been already reached.
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Figure G.9.: Spectral density as function of particle energy for electrons
(green), positrons (red), photons (black) and protons (blue) for initial con-
ditions I at intermediate time moments t1 = 4× 10−14 sec (upper figure) and
t2 = 10−12 sec (lower figure). Fits of the spectra with chemical potentials
and temperatures corresponding to thermal equilibrium state are also shown
by yellow (electrons and positrons), grey (photons) and light blue (protons)
thick lines. The upper figure shows the spectra when kinetic equilibrium is
established for the first time between electrons, positrons and photons while
the lower figure shows the spectra at thermal equilibrium between these par-
ticles. On both figures protons are not yet in equilibrium neither with them-
selves nor with other particles.
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Figure G.10.: Spectral density as function of particle energy are shown as
before at initial and final moments of the computations. The final photon
spectrum is black body one.

Figure G.11.: Phase space of particles moving in rectangular potential well,
see Artsimovich and Sagdeev (1979), p. 80.
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H. The distribution of dark matter
in galaxies based quantum
treatments

H.1. INTRODUCTION

One of the most quoted papers in the study of the dark-matter distribution in
galactic halos is certainly the work of Tremaine & Gunn Tremaine and Gunn
(1979), in which the authors established a lower limit on the mass of
neutrinos composing galactic halos by considering an isothermal classical
distribution of self-gravitating particles and imposing quantum constraints
on the phase space density in the core of the galaxies. That treatment
presenting a peculiar mixture of quantum and classical considerations has
always attracted the attention and the suspicion of many astrophysicists and
theoretical physicists. In particular, the opinion of one of us (R. Ruffini) was
that a self-consistent treatment of quantum constraints in a self-consistent
quantum description of the microphysical system was needed. A long effort
so started.

H.2. HISTORICAL REVIEW: TWO PIONEERING

WORKS

One of the preliminary works in order to prove the analogy and the dif-
ferences between a classical and a quantum self-gravitating system was ad-
vanced within a Newtonian approach in Ref. Ruffini and Stella (1983). There,
the problem of a semi-degenerate system of fermions under a gravitational
interaction was approached, and that model was compared and contrasted
with the classical King model. The authors of Ref. 2 proposed a distribution

561



H. The distribution of dark matter in galaxies based quantum treatments

function built for non-relativistic particles:

f (v) =
1− exp [−j2(v2

e − v2)]

exp [j2(v2 − µ̄)] + 1
, v ≤ ve

= 0, v > ve,

where ve is the escape velocity. In the limit ve → ∞, the usual Fermi distri-
bution is obtained. The other two constant parameters are j2 = m/(2kT) and
µ̄ = 2µ/m. The relevance of this f (v) is that it is an extension of the King
model to the case of a Fermi gas. Moreover, if the degeneracy parameter
θ = j2µ̄ is defined, when θ → −∞, the non-degenerate limit is reached, and
the distribution function used by King is recovered. Instead, when j2 → ∞

and µ̄→ v2
e , the degenerate limit is obtained, and the escape velocity is asso-

ciated with the Fermi energy. The energy integral,

E = v2/2 + V(r) , (H.2.1)

together with the Jeans theorem for spherical systems, allowed them to sim-
ply relate the escape velocity to the gravitational potential by v2

e = −2V
(V being 0 at the surface of the configuration). They finally solved the
Poisson equation for W = −2j2V, with the mass density being given by
ρ ∝

∫

f (v)v2dv, which is related to W via the j parameter.

For simplicity, in an attempt to understand the physical interpretation of
the parameters, only the value for the central degeneracy parameter was as-
sumed for the sake of example,

θ(0) ≡ θ0 = 0 , (H.2.2)

and no other values for θ0 were explored at the time. Different normalized
mass density solutions were given for different values of W(0) ≡ W0, as
shown in Fig. H.1. Under these special conditions, the analogy between a
self-gravitating system of fermions and the King model was proven, and a
first attempt was made to justify the Tremaine & Gunn limit.

It soon became clear that these solutions, although interesting in reproduc-
ing the classical results of the King profiles for a self-gravitating fermion gas,
were really extremely restrictive and were not representative of the general
solutions for a relativistic self-gravitating system of massive fermions. These
restrictions correspond to three different constraints: 1) θ0 = 0; 2) the ap-
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Figure H.1.: Normalized density profiles for different values of W0 and fixed
θ0 = 0. The dotted curve corresponds to the analogous King profiles while
the dashed curve represents the degenerate limit (taken from Ref. 2 with
permission).
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plication of a cut-off in the phase space, which implies the elimination of an
important family of solutions; and 3) the use of a non-relativistic Newtonian
approach.

A fundamental step was taken by Gao et al. (1990) to include special rel-
ativity, as well as general relativity effects in the phase space of the distri-
bution function. Thus, they considered the relativistic Fermi-Dirac distribu-
tion function for the ‘inos’ without any cut-off in their momentum space;

i.e., f (ǫ) = (exp[(ǫ − µ)/(kT)] + 1)−1, where ǫ(p) =
√

c2p2 + m2c4 − mc2

is the particle’s kinetic energy and µ the chemical potential with the particle
rest-energy subtracted off. They wrote the system of Einstein equations in
the spherically-symmetric metric gµν = diag(eν,−eλ,−r2,−r2 sin2 θ), where
ν and λ depend only on the radial coordinate r, together with the thermody-
namic equilibrium conditions of Tolman (1930), and Klein (1949),

eν/2T = const. , eν/2(µ + mc2) = const.,

in the following dimensionless way:

dM̂

dr̂
= 4πr̂2ρ̂ , (H.2.3)

dθ

dr̂
=

β0(θ − θ0)− 1

β0

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (H.2.4)

dν

dr̂
=

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (H.2.5)

β0 = β(r)e
ν(r)−ν0

2 . (H.2.6)

The following dimensionless quantities were introduced: r̂ = r/χ, M̂ =
GM/(c2χ), ρ̂ = Gχ2ρ/c2 and P̂ = Gχ2P/c4, where χ = 2π3/2(h̄/mc)(mp/m)

is a dimensional factor that has a unit of length and scales as m−2, with
mp =

√
h̄c/G being the Planck mass. The temperature and degeneracy

parameters are, β = kT/(mc2) and θ = µ/(kT), respectively. For a rela-
tivistic and semi-degenerate Fermi gas the mass density ρ and pressure P
are expressed in terms of the standard infinite integrals in momentum space
weighted with the f (ǫ) already given (see Ref. Gao et al. (1990)).

In Ref. Gao et al. (1990) the initial condition problem for the variables of the
system, θ(r), β(r), ν(r), and M(r), was solved by using M0 = 0 at r = 0 (indi-
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cated by a subscript ‘0’) while using arbitrary values for the temperature and
the degeneracy parameters β0 and θ0, respectively. In Figs. H.2–H.3, different
normalized mass density solutions for different θ0 < 0 and θ0 ≥ 0, respec-
tively, are shown for a fixed non-relativistic central temperature parameter
β0.

Figure H.2.: Different density profiles for different θ0 < 0 and fixed β0 in
dimensionless variables. Note the simple cored plus r−2 morphology (taken
from Ref. Gao et al. (1990) with permission).

It is important to note that the system in Eqs. (K.2.1)–(K.2.4) has no parti-
cle mass (m) dependence when solved in the dimensionless variables while
instead the physical magnitudes, such as those of r and ρ, have an explicit de-
pendence on m through the dimensional factor χ(m). Because the authors of
Ref. Gao et al. (1990) were mainly interested in the general properties of the
solutions without going through the physical magnitudes, no particle mass
constraints were used.
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Figure H.3.: Different density profiles for different θ0 ≥ 0 and fixed β0 in
dimensionless variables. Note the more complex core plus ‘plateau’ plus r−2

morphology (taken from Ref. Gao et al. (1990) with permission).
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H.3. NOVEL PROCEDURE AND DISCUSSION

We recently returned to the Gao et al. work and propose a completely
different way for solving the boundary condition problem for the system
in Eqs. (K.2.1)–(K.2.4) in order to be consistent with the observationally-
inferred values of typical dark matter halos in spiral galaxies as given in Ref.
de Blok et al. (2008). Namely, using initial conditions M0 = ν0 = 0 and arbi-
trary θ0 (depending on the chosen central degeneracy) and defining the halo
radius rh at the onset of the flat rotation curve, we solve an eigenvalue prob-
lem for the central temperature parameter β0 until the observed halo circular
velocity vh is obtained. Then, we solve a second eigenvalue problem for the
particle mass m until the observed halo mass Mh is reached at the radius rh.

The quest has been to use all this information in order to put constraints on
the mass of the ‘ino’ in galactic halos by introducing the observational prop-
erties that may be utilized in this research. Interestingly enough, as detailed
in Ref. Ruffini et al. (2014), only for an specific range of θ0 > 0 can these
two eigenvalue problems be solved together, implying, as a consequence, a
novel morphology for the density profiles, as well as a novel particle-mass
bound associated with it, is reached. The density profiles present a quantum
degenerate core, followed by a low degeneracy plateau, until they reach the
r−2 Boltzmannian region corresponding to the flat part in the rotation curve.
In Fig. H.4, we show a family of density profiles for different values of θ0

that fulfills the mentioned halo constraints. We also plott for comparison the
purely Boltzmannian curve, which agrees with the same observed halo mag-
nitudes. As can be seen from Fig. H.4, we obtain from this novel analysis a
more stringent lower mass bound for the ‘ino’ mass m, which is ∼ 10 times
higher than the ones inferred in Refs. 2 and 1. That is, m ≥ 0.42 keV/c2 for
typical spiral galaxies.

Interestingly the quantum and relativistic treatment of the configura-
tions considered here are characterized by the presence of central-cored
structures unlike the typical cuspy configurations obtained from a classic
non-relativistic approximation, such as the ones of numerical N-body
simulations in Ref. Navarro et al. (1997). This naturally leads to a possible
solution to the well-known core-cusp discrepancy de Blok et al. (2001a).
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Figure H.4.: Physical density profiles for a specific ino masses m and central
degeneracies θ0 fulfilling the observational constraints Mh = 1.6× 1011M⊙
and vh = 168 km/s at rh = 25 Kpc (as taken from Ref. 7 and detailed in
Ref. 8). The dot-dashed line represents the purely Boltzmannian profile for
comparison.
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I. A novel core-halo distribution of
dark matter in galaxies

The problem of identifying the masses and the fundamental interactions
of the dark matter particles is currently one of the most fundamental is-
sues in physics and astrophysics. As we will show some inferences can
already be derived from general considerations based on quantum statis-
tics and gravitational interactions. Specific constraints on the values of
the mass of the particles can be established using the rotation curves of
galaxies. Indeed, already Tremaine and Gunn Tremaine and Gunn (1979),
in addition of recalling previous cosmological considerations on massive
neutrinos Cowsik and McClelland (1972); Weinberg (1972); Gott et al. (1974);
Lee and Weinberg (1977), addressed the issue of the dark matter component
in galactic halos. They made the following assumptions: 1) that the central
region of these bound systems of self-gravitating massive neutrinos resem-
ble classical Newtonian isothermal gas spheres with a core radius given by
the King radius ; 2) that their velocity distribution is Maxwellian and the
maximum phase-space density is ρ0m−4(2πσ2)−3/2, m being the neutrino
mass, ρ0 the central density, σ the one-dimensional velocity dispersion, and
r2

K = 9σ2/(4πGρ0) the King radius; 3) they further assume that the above
maximum phase-space density at the center of the configurations cannot ex-
ceed, by Liouville’s theorem, the phase-space neutrinos density at decou-
pling, 2g/h3 (g = particle helicity) . Consequently they obtained a limit on
the particle mass

m > 101

(

1

g

100km/s

σ

1 kpc

rK

)1/4

eV/c2 , (I.0.1)

In this Letter we formulate an alternative proposal to the general problem
of the dark matter distribution in galaxies with the following order: 1) we
assume that the dark matter phase-space density is described Fermi-Dirac
quantum statistics; 2) that the equilibrium equations for the configurations be
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solved, for completeness, within a general relativistic treatment; 3) only after
having identified the physical properties of the equilibrium configurations,
constraints on the mass of the inos are inferred from observable quantities.
As a direct outcome of this new approach it is exemplified how the determi-
nation of the ino mass, far from being derived imposing constraints on the
phase-space distribution of a King-like core, e.g. Tremaine and Gunn (1979),
it is obtained from a more composite equilibrium structure.

Following Gao et al. (1990); Ruffini et al. (2013a), we here consider a sys-
tem of general relativistic self-gravitating bare massive fermions in thermo-
dynamic equilibrium. No additional interactions are initially assumed for
the fermions besides their fulfillment of quantum statistics and the relativistic
gravitational equations. In particular, we do not assume weakly interacting
particles as in Tremaine and Gunn (1979). We refer to this bare particles more
generally as inos, leaving the possibility of additional fundamental interac-
tions to be determined by further requirements to be fulfilled by the model.
Already this treatment of bare fermions leads to a new class of equilibrium
configurations and, correspondingly, to new limits to the ino mass. This is a
necessary first step in view of a final treatment involving additional interac-
tions to be treated self-consistently, as we will soon indicate.

The density and pressure of the fermion system are
given by ρ = m(2/h3)

∫

fp

[

1 + ǫ/(mc2)
]

d3p and P =

[2/(3h3)]
∫

fp

[

1 + ǫ/(2mc2)
]

ǫ/
[

1 + ǫ/(mc2)
]

d3p, where the integra-

tion is over all the momentum space, fp = (exp[(ǫ− µ)/(kT)] + 1)−1 is the

distribution function, ǫ =
√

c2p2 + m2c4 −mc2 is the particle kinetic energy,
µ is the chemical potential with the particle rest-energy subtracted off, T is
the temperature, k is the Boltzmann constant, h is the Planck constant, c is
the speed of light, and m is the ino’s particle mass. We do not include the
presence of anti-fermions, i.e. we consider temperatures T ≪ mc2/k.

The Einstein equations for the spherically symmetric metric gµν =

diag(eν,−eλ,−r2,−r2 sin2 θ), where ν and λ depend only on the radial coor-
dinate r, together with the thermodynamic equilibrium conditions of Tolman
(1930), eν/2T =constant, and Klein (1949), eν/2(µ + mc2) =constant, can be
written as Gao et al. (1990)
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dM̂

dr̂
= 4πr̂2ρ̂,

dν

dr̂
=

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (I.0.2)

dθ

dr̂
= −1− β0(θ − θ0)

β0

dν

dr̂
, β0 = β(r)e

ν(r)−ν0
2 . (I.0.3)

The following dimensionless quantities were introduced: r̂ = r/χ, M̂ =
GM/(c2χ), ρ̂ = Gχ2ρ/c2, P̂ = Gχ2P/c4, where χ = 2π3/2(h̄/mc)(mp/m),

with mp =
√

h̄c/G the Planck mass, and the temperature and degeneracy

parameters, β = kT/(mc2) and θ = µ/(kT), respectively.

The system variables are [M(r), θ(r), β(r), ν(r)]. We integrate Eqs. (I.0.2–
I.0.3) for given initial conditions at the center, r = 0, in order to be consistent
with the observed dark matter halo mass M(r = rh) = Mh and radius rh,
defined in our model at the onset of the flat rotation curves. The circular
velocity is v(r) =

√

GM(r)/[r− 2GM(r)/c2] which at r = rh, is v(r = rh) =
vh.

It is interesting that a very similar set of equations have been re-derived
in 2002 in Bilic et al. (2002) apparently disregarding the theoretical approach
already implemented in 1990 in Gao et al. (1990). They integrated the Ein-
stein equations fixing a fiducial mass of the ino of m = 15 keV/c2, and they
derived a family of density profiles for different values of the central degen-
eracy parameter at a fixed temperature consistent with an asymptotic circular
velocity v∞ = 220 km/s. They conclude that a self-gravitating system of such
inos could offer an alternative to the interpretation of the massive black hole
in the core of SgrA* Ghez et al. (2008). Although this result was possible at
that time, it has been superseded by new constraints imposed by further ob-
servational limits on the trajectory of S-stars such as S1 and S2 Ghez et al.
(2008); Gillessen et al. (2009).

In this Letter we give special attention to the flat rotation curves and their
asymptotic value at infinity. We integrate our system of equations using
different boundary conditions to the ones imposed in Bilic et al. (2002) and
reaching different conclusions. We first apply this model to typical spiral
galaxies, similar to our own galaxy, adopting dark matter halo parameters
de Blok et al. (2008); Sofue et al. (2009):

rh = 25 kpc, vh = 168 km/s, Mh = 1.6× 1011M⊙ . (I.0.4)
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I. A novel core-halo distribution of dark matter in galaxies

The initial conditions are M(0) = 0, ν(0) = 0, θ(0) = θ0 and β(0) = β0.
We integrate Eqs. (I.0.2–I.0.3) for selected values of θ0 and m, corresponding
to different degenerate states of the gas at the center of the configuration.
The value of β0 is actually an eigenvalue which is found by a trial and error
procedure until the observed values of vh and Mh at rh are obtained. We
show in Fig. I.1 the density profiles and the rotation curves as a function of
the distance for a wide range of parameters (θ0, m), for which the boundary
conditions in (I.0.4) are exactly fulfilled.
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Figure I.1.: Mass density (left panel), degeneracy parameter (central panel),
and rotation velocity curves (right panel) for specific ino masses m and central
degeneracies θ0 fulfilling the observational constraints (I.0.4). The density so-
lutions are contrasted with a Boltzmannian isothermal sphere with the same
halo properties. It is clear how the Boltzmann distribution, is as it should
be, independent of m. All the configurations for r ∼ rh asymptotically ap-
proaches the Boltzmann distribution. All the configurations, for any value of
θ0 and corresponding m, converge for r & rh to the classical Boltzmannian
isothermal distribution.

The phase-space distribution encompasses both the classical and quantum
regimes. Correspondingly, the integration of the equilibrium equations leads
to three marked different regimes (see Fig. I.1): a) the first consisting in a core
of quantum degenerate fermions. These cores are characterized by having
θ(r) > 0. The core radius rc is defined by the first maximum of the velocity
curve. A necessary condition for the validity of this quantum treatment of the
core is that the interparticle mean-distance, lc, be smaller or of the same order,

of the thermal de Broglie wavelength of the inos, λB = h/
√

2πmkT. As we
show below (see Fig. I.2), this indeed is fulfilled in all the cases here studied
. b) A second regime where θ(r) goes from positive to negative values for
r > rc, all the way up to the so called classical domain where the quantum
corrections become negligible. This transition region consists in a sharply
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decreasing density followed by an extended plateau. c) The classical regime
described by Boltzmann statistics and corresponding with θ(r) ≪ −1 (for
r & rh), in which the solution tends to the Newtonian isothermal sphere with
ρ ∼ r−2, where the flat rotation curve sets in.

We define the core mass, the circular velocity at rc, and the core degeneracy
as Mc = M(rc), vc = v(rc) and θc = θ(rc), respectively. In Table K.1 we show
the core properties of the equilibrium configurations in spiral galaxies, for a
wide range of (θ0, m). For any selected value of θ0 we obtain the correspon-
dent ino mass m to fulfill the halo properties (I.0.4), after the above eigenvalue
problem of β0 is solved.

θ0 m (keV/c2) rc (pc) Mc(M⊙) vc (km/s) θc

11 0.420 3.3× 101 8.5× 108 3.3× 102 2.1
25 4.323 2.5× 10−1 1.4× 107 4.9× 102 5.5
30 10.540 4.0× 10−2 2.7× 106 5.4× 102 6.7
40 64.450 1.0× 10−3 8.9× 104 6.2× 102 8.9

58.4 2.0× 103 9.3× 10−7 1.2× 102 7.5× 102 14.4
98.5 3.2× 106 3.2× 10−13 7.2× 10−5 9.8× 102 21.4

Table I.1.: Core properties for different equilibrium configurations fulfilling
the halo parameters (I.0.4) of spiral galaxies.

It is clear from Table K.1 and Fig. I.1 that the mass of the core Mc is
strongly dependent on the ino mass, and that the maximum space-density
in the core is considerably larger than the maximum value considered in
Tremaine and Gunn (1979) for a Maxwellian distribution. Interestingly, as
can be seen from Fig. I.1, the less degenerate quantum cores in agreement
with the halo observables (I.0.4), are the ones with the largest sizes, of the or-
der of halo-distance-scales. In this limit, the fermion mass acquires a sub-keV
minimum value which is larger, but comparable, than the corresponding sub-
keV Gunn & Tremaine bound (I.0.1), for the same halo observables. Indeed,
Eq. (I.0.1) gives a lower limit m ≈ 0.05 keV/c2 using the proper value for the
King radius, rK ≃ 8.5 kpc, for σ =

√
2/5vh and ρ0 = 2.5 × 10−2M⊙/pc3,

associated to the Boltzmannian density profile in Fig. I.1.
In the case of a typical spiral galaxy, for an ino mass of m ∼ 10 keV/c2,

and a temperature parameter β0 ∼ 10−7, obtained from the observed halo
rotation velocity vh, the de Broglie wavelength λB is higher than the interpar-
ticle mean-distance in the core lc, see Fig. I.2, safely justifying the quantum-
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statistical treatment applied here.
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Figure I.2.: The less degenerate quantum cores in agreement with the halo
observables (I.0.4) corresponds to θ0 ≈ 10 (λB ∼ 3lc). These cores are the
ones which achieve the largest sizes, of order∼ kpc, and implying the lowest
ino masses in the sub-keV region.

If we turn to the issue of an alternative interpretation to the black hole on
SgrA*, we conclude that a compact degenerate core mass Mc ∼ 4× 106M⊙
is definitely possible corresponding to an ino of m ∼ 10 keV/c2 (see Table
K.1). However, the core radius of our configuration is larger by a factor
∼ 102 than the one obtained with the closest observed star to Sgr A*, i.e.
the S2 star Gillessen et al. (2009). We are currently studying how the intro-
duction of additional interactions between the inos affects the mass and ra-
dius of the new dense quantum cores depending on the interaction adopted.
This is analogous for instance to the case of neutron stars, where nuclear
fermion interactions strongly influence the mass-radius relation (see, e.g.,
Lattimer and Prakash (2007)) . This may well make the mass and radius of
this dark matter quantum core to fulfill the observational constraints imposed
by the S2 star Argüelles et al. (2014).

We further compare and contrast in Fig. I.3 our theoretical curves in Fig. I.1
with observationally inferred ones. It is interesting that the quantum and
relativistic treatment of the configurations considered here are characterized
by the presence of central cored structures unlike the typical cuspy config-
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urations obtained from a classic non-relativistic approximation, such as the
ones of numerical N-body simulations in Navarro et al. (1997). This naturally
leads to a solution to the well-known core-cusp discrepancy de Blok et al.
(2001b). Such a difference between the ino’s core and the cuspy NFW profile,
as well as the possible black hole nature of the compact source in SgrA*, will
certainly reactivate the development of observational campaigns in the near
future. There the interesting possibility, in view of the BlackHoleCam Project
based on the largest Very Long Baseline Interferometry (VLBI) array1, to ver-
ify the general relativistic effects expected in the surroundings of the central
compact source in SgrA*. Such effects depend on whether the source is mod-
eled in terms of the RAR model presented here (with the possible inclusion
of fermion interactions Argüelles et al. (2014)), or as a black hole. To compare
and contrast these two alternatives is an observational challenge now clearly
open.

Following the analysis developed here for a typical spiral, we have also
considered two new different sets of physical dark matter halos: rh = 0.6 kpc;
vh = 13 km/s; Mh = 2 × 107M⊙ for typical dwarf spheroidal galaxies,
e.g. Walker et al. (2009); and rh = 75 kpc; vh = 345 km/s; Mh = 2× 1012M⊙
for big spiral galaxies, as analyzed in Boyarsky et al. (2009a). For big spirals,
λB/lc = 5.3, while for typical dwarfs galaxies λB/lc = 4.1, justifying the
quantum treatment in both cases.

A remarkable outcome of the application of our model to such a wide range
of representative dark halo galaxy types, from dwarfs to big spirals, is that
for the same ino mass, m ∼ 10 keV/c2, we obtain respectively core masses
Mc ∼ 104M⊙ and radii rc ∼ 10−1pc for dwarf galaxies, and core masses
Mc ∼ 107M⊙ and radii rc ∼ 10−2pc for big spirals. This leads to a possible
alternative to intermediate (∼ 104M⊙) and more massive (∼ 106−7M⊙) black
holes, thought to be hosted at the center of the galaxies.

We have obtained, out of first principles, a possible universal relation be-
tween the dark matter halos and the super massive dark central objects. For
a fixed ino mass m = 10 keV/c2, we found the Mc-Mh correlation law

Mc

106M⊙
= 2.35

(

Mh

1011M⊙

)0.52

, (I.0.5)

valid for core masses ∼ [104, 107] M⊙ (corresponding to dark matter halo

1http://horizon-magazine.eu/space

575



I. A novel core-halo distribution of dark matter in galaxies

10-4

10-2

100

102

104

106

108

1010

10-2 10-1 100 101 102 103 104 105

ρ 
(M

O• 
pc

-3
)

r (pc)

RAR model (θ0=30)
Einasto

NFW

Figure I.3.: The cored behavior of the dark matter density profile from the
Ruffini-Argüelles-Rueda (RAR) model is contrasted with the cuspy Navarro-
Frenk-White (NFW) density profile Navarro et al. (1997), and with a cored-
like Einasto profile Einasto (1965); Einasto and Haud (1989). The free pa-
rameters of the RAR model are fixed as β0 = 1.251 × 10−7, θ0 = 30 and
m = 10.54 keV/c2. The corresponding free parameters in the NFW formula
ρNFW(r) = ρ0r0/[r(1 + r/r0)

2] are chosen as ρ0 = 5 × 10−3M⊙ pc−3 and
r0 = 25 kpc, and for the Einasto profile ρE(r) = ρ−2 exp [−2n(r/r−2)

1/n − 1],
ρ−2 = 2.4 × 10−3M⊙ pc−3, r−2 = 16.8 kpc, and n = 3/2. In the last two
models, the chosen free parameters are typical of spiral galaxies according to
de Blok et al. (2008); Chemin et al. (2011).
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masses∼ [107, 1012] M⊙). Regarding the observational relation between mas-
sive dark compact objects and bulge dispersion velocities in galaxies (the
Mc-σ relation Ferrarese (2002b)), it can be combined with two observation-
ally inferred relations such as the σ-Vc and the Vc-Mh correlations, where Vc

is the observed halo circular velocity and Mh a typical halo mass. This was
done in Ferrarese (2002a) to find, by transitivity, a new correlation between
central mass concentrations and halo dark masses (Mc-Mh). Interestingly,
such a correlation matches the one found above in Eq. (I.0.5) in the range
Mc = [106, 107] M⊙, without assuming the black hole hypothesis.

Such an approach of a core surrounded by a non-relativistic halo, is a key
feature of the configurations presented in this Letter. It cannot however be
extended to quantum cores with masses of ∼ 109M⊙. Such core masses,
observed in Active Galactic Nuclei (AGN), overcome the critical mass value
for gravitational collapse Mcr ∼ M3

pl/m2 for keV fermions, and therefore

these cores have to be necessarily black holes Argüelles and Ruffini (2014).
The characteristic signatures of such supermassive black-holes, including jets
and X-ray emissions, are indeed missing from the observations of the much
quiet SgrA* source, or the centers of dwarf galaxies.

In conclusion:

I) A consistent treatment of self-gravitating fermions within general rel-
ativity has been here introduced and solved with the boundary conditions
appropriate to flat rotation curves observed in galactic halos of spiral and
dwarf galaxies. A new structure has been identified: 1) a core governed by
quantum statistics; 2) a velocity of rotation at the surface of this core which
is bounded independently of the mass of the particle and remarkably close
to the asymptotic rotation curve; 3) a semi-degenerate region leading to an
asymptotic regime described by a pure Boltzmann distribution, consistent
with the flat rotation curves observed in galaxies.

II) Our treatment is by construction different from the one of Tremaine
and Gunn Tremaine and Gunn (1979). It is interesting to notice that their
conclusions are reached by adopting the maximum phase-space density,
Qh

max ∼ ρh
0m−4σ−3

h , at the center of a halo described by a Maxwellian dis-
tribution, while in our model the maximum phase-space density is reached
at the center of the dense quantum core described by Fermi-Dirac statistics,
Qc

max ∼ ρc
0m−4σ−3

c . An entire new family of solutions exists for larger values
of central phase-space occupation numbers, always in agreement with the
halo observables (see Fig. I.1). Now, since these phase-space values, by the
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Liouville’s theorem, can never exceed the maximum primordial phase-space

density at decoupling, Qd
max, we have Qh,c

max < Qd
max. Then, considering that

all our quantum solutions satisfy Qc
max > Qh

max, it directly implies larger val-
ues of our ino mass with respect to the Tremaine and Gunn limit (I.0.1). As
we have quantitatively shown, e.g. for the case of typical spiral galaxies, the
two limits become comparable for our less degenerate (θ0 ≈ 10) quantum
cores in agreement with the used halo observables (I.0.4) .

III) For m ∼ 10 keV/c2 a universal relation between the mass of the core Mc

and the mass of the halo Mh has been found. This universal relation applies
in a vast region of galactic systems, ranging from dwarf to big spiral galaxies
with core masses ∼ [104, 107] M⊙ (corresponding to dark matter halo masses
∼ [107, 1012] M⊙).

IV) From the basic treatments here introduced, of bare self-gravitating
fermions, we are currently examining the possibility to introduce new
types of interactions Argüelles et al. (2014), including, for example, right-
handed sterile neutrinos in the minimal standard model extension (see
e.g. Boyarsky et al. (2009b)), as a viable candidate for the ino particles in our
new scenario.

The inclusion of the interactions allows, for different central degeneracies,
to reach higher compactness Argüelles et al. (2014). The relevance of the in-
teractions in ultracold atomic collisions has been already shown in labora-
tory, for example, for (effective) Fermi gases, e.g. 6Li, at temperatures of frac-
tions of the Fermi energy. These systems can be studied in terms of a grand-
canonical many-body Hamiltonian in second quantization, with a term ac-
counting for fermion-fermion interaction Giorgini et al. (2008). This should
allow to verify the possibility of the radius of the quantum core to become
consistent with the observations of SgrA* Ghez et al. (2008); Gillessen et al.
(2009).
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J. Critical configurations for a
system of semidegenerate
fermions

J.1. INTRODUCTION

Systems of self-gravitating semidegenerate fermions in general relativity
were studied in Ref. Gao et al. (1990) and more recently with applications
to dark matter in galaxies in Ref. Argüelles et al. (2014). For a given central
temperature parameter (β0) in agreement with the corresponding observed
halo circular velocity, lower bounds were shown to exist for the central de-
generacy parameter (θ0) and the particle mass (m & 0.4 keV) above which
the observed halo mass and radius are fulfilled. The solutions for the density
profiles in this approach present a novel core-halo morphology composed
of a quantum degenerate core followed by a low-degeneracy plateau until
they reach the r−2 Boltzmannian region. This interesting overall morphology
provides flat rotation curves in the outermost part of the galaxies, while the
very dense degenerate cores arising at the center of the configurations pro-
vide a possible alternative to the central massive black holes paradigm (see
Refs. Ruffini et al. (2013a) and Ruffini et al. (2014)).

The system of Einstein equations are written in a spherically-symmetric
spacetime with the metric given by gµν = diag(eν,−eλ,−r2,−r2 sin2 θ),
where ν and λ depend only on the radial coordinate r, with the thermody-
namic equilibrium conditions of Tolman (1930), and Klein (1949),

eν/2T = const, eν/2(µ + mc2) = const,

where T is the temperature, µ the chemical potential, m the particle mass and
c the speed of light. We then write the system of Einstein equations in the
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following dimensionless way:

dM̂

dr̂
= 4πr̂2ρ̂ , (J.1.1)

dθ

dr̂
=

β0(θ − θ0)− 1

β0

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (J.1.2)

dν

dr̂
=

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (J.1.3)

β0 = β(r)e
ν(r)−ν0

2 . (J.1.4)

The variables of the system are the mass M, the metric factor ν , the temper-
ature parameter β = kT/(mc2) and the degeneracy parameter θ = µ/(kT).
The dimensionless quantities are r̂ = r/χ, M̂ = GM/(c2χ), ρ̂ = Gχ2ρ/c2 and
P̂ = Gχ2P/c4, with χ = 2π3/2(h̄/mc)(mp/m) and mp =

√
h̄c/G being the

Planck mass. The mass density ρ and the pressure P are given by Fermi-Dirac
statistics (see also Ref. Gao et al. (1990)).

This system is solved for a fixed particle mass m in the keV range with the
initial conditions M(0) = ν(0) = 0 for the given parameters θ0 > 0 (depend-
ing on the chosen central degeneracy) and β0. We, thus, construct a sequence
of different thermodynamic equilibrium configurations where each point in
the sequence has a different central temperatures T0 and central chemical po-
tential µ0, so that the given θ0 condition is satisfied.

Defining the core radius rc of each equilibrium system at the first maxi-
mum of its rotation curve or equivalently at the degeneracy transition point
in which θ(rc) = 0, we represent the results obtained for each sequence in
a central density (ρ0) vs. core mass (Mc) diagram (see Fig. K.1). The critical
core mass Mcr

c is shown to be reached at the maximum of each Mc(ρ0) curve.

It is important to emphasize that we are not interested in following the
history of the equilibrium states of one specific system. Thus, the standard
stability analysis done for compact stars or dense stellar cluster (see, e.g.,
Ref. Bisnovatyj-Kogan et al. (1993b)), which is based on the constancy of the
entropy per nucleon (S/N) along the equilibrium sequence of a given config-
uration, does not apply here. Nonetheless, in computing the Mc(ρ0) curves
in Fig. K.1, we have explored the full range of θ0 > 1 and β0 > 10−10 pa-
rameters (including the critical ones). Then, the equilibrium sequences with
constant specific entropy (S/N), which differ from the ones with constant θ0
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Figure J.1.: Different sequences of equilibrium configurations plotted in a
central density (ρ0) vs. core mass (Mc) diagram. The critical core mass is
reached at the maximal value of Mc. Each sequence is built for selected val-
ues of θ0 = µ0/kT0 and different values of T0, with µ0 varying accordingly.

considered here, necessarily must be contained within the full (T0, µ0) param-
eter space covered in Fig. K.1.

In Table 1, we show a set of central critical parameters of the model, to-
gether with the corresponding critical core masses, for a very wide range of
fixed central degeneracy parameters θ0 and m = 8.5 keV/c2. Defining the
halo radius of each configuration at the onset of the flat rotation curve, we
show in Table 2 the critical halo magnitudes rcr

h , Mcr
h and vcr

h corresponding to
the same set of critical parameters as given in Table 1. The results obtained in
Tables 1 and 2 imply a marked division into two different families depending
on the value of Mcr

c .
i) The first family: The critical mass has roughly a constant value Mcr

c =
7.44× 109M⊙. This family corresponds to large values of the central degen-
eracy (θ0 ≥ 40), where the critical temperature parameter is always lower
than βcr

0 . 8 × 10−3 and the critical chemical potential µcr
0 ≈ const. Phys-

ically, these highly-degenerate cores are entirely supported against gravita-
tional collapse by the degeneracy pressure. In this case, the critical core
mass is uniquely determined by the particle mass according the relation
Mcr

c ∝ m3
pl/m2 (see also Section III).
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θ0 βcr
0 µcr

0 /mc2 Mcr
c (M⊙)

1 6.45× 10−2 6.45× 10−2 1.59× 1010

5 2.23× 10−2 1.11× 10−1 7.91× 109

40 8.33× 10−3 3.33× 10−1 7.44× 109

55 6.06× 10−3 3.33× 10−1 7.44× 109

100 3.33× 10−3 3.33× 10−1 7.44× 109

Table J.1.: Critical temperature parameter and normalized chemical potential
at the center of each different critical configuration for different fixed central
degeneracies.

θ0 rcr
h (pc) Mcr

h /mc2(M⊙) vcr
h (km/s)

1 4.4× 10−1 5.7× 1011 7.5× 104

5 4.0× 10−1 4.3× 1011 6.2× 104

40 4.3× 103 1.1× 1015 3.3× 104

55 2.9× 105 6.0× 1016 2.9× 104

100 2.0× 1011 2.3× 1022 2.2× 104

Table J.2.: Critical halo magnitudes of different critical configurations for dif-
ferent fixed central degeneracies as given in Table 2.
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J.1. INTRODUCTION

Figure J.2.: Critical temperature profile of the system (in keV) and critical
metric for θ0 = 5 and βcr

0 = 2.23× 10−2. The dashed line corresponds to the

isothermality condition Teν/2 = const.

ii) The second family: The critical core mass increases from
Mcr

c = 7.44 × 109M⊙ to Mcr
c ∼ 1010M⊙. This case corresponds to criti-

cal cores with a lower central degeneracy compared with the former family
(1 < θ0 < 40). Here, the critical temperature parameter (β0 ∼ 10−2) is
closer to the relativistic region with respect to the first family. This result
physically indicates that the thermal pressure term now makes an appre-
ciable contribution to the total pressure, which supports the critical core
against gravitational collapse. In this case, Mcr

c is completely determined
by the particle mass m, the central temperature Tcr

0 and the central chemical
potential µcr

0 (see Section III).

In Figs. (K.2) and (K.3), we show the critical metric factor eν/2 and the
critical temperature kT as function of the radius for the two different families
mentioned above.
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Figure J.3.: Critical temperature of the system (in keV) and critical metric for
θ0 = 55 and βcr

0 = 6.06× 10−3. The red line corresponds to the isothermality

condition Teν/2 = const.
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J.2. Astrophysical application

We will now attempt to use the critical configurations obtained before to ex-
plain the dark matter (DM) distribution in galactic halos and to provide an
alternative candidate to the standard central-black-hole paradigm. From now
on, we will use a fixed particle mass of m =8.5 keV/c2, this choice being moti-
vated by the fact that we want to deal with super-massive dark objects having
critical core masses of the order Mcr

c ∝ m3
pl/m2 ∼ 109M⊙. In Figs. (K.4), (K.5)

and (K.6), we show different critical density profiles, critical rotation curves
and critical mass profiles, respectively, for a wide range of different central
degeneracy parameters.
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Figure J.4.: Critical density profiles for different values of θ0 with the corre-
sponding critical temperature parameters βcr

0 .

From Fig. K.5 and Table 2, we see that the critical configuration of self-
gravitating fermions with central degeneracies ranging from θ0 = 1 (i.e.,
mainly thermal-pressure-supported cores) up to θ0 = 100 (i.e., mainly
degeneracy-pressure-supported cores) have flat rotation velocities vcr

h ∼ 104

km/s. This value is well above any observed value. However, because larger
values of θ0 imply lower values for βcr

0 , as shown in Table 1, there is a point
(at θ0 ∼ 106 and so βcr

0 ∼ 10−7) where the halo rotation curves reach the typ-
ical observed value of vcr

h ∼ 102 km/s. Nonetheless, since even for θ0 = 100
we see (Fig. K.5) that the halo radius is larger than 10 Gpc for a total critical

585



J. Critical configurations for a system of semidegenerate fermions

100

101

102

103

104

105

10-2 100 102 104 106 108 1010 1012 1014

v c
 (

km
/s

)

r (pc)

θ0=1, (β0(cr)=6.4x10-2)
θ0=5, (β0(cr)=2.2x10-2)

θ0=40, (β0(cr)=8.3x10-3)
θ0=100, (β0(cr)=3.3x10-3)

Figure J.5.: Critical rotation curves for different values of θ0 as given in
Fig. K.4. The high values of vc(r) ∼ 104 km/s in the flat parts of each curve
are due to the high critical temperature parameter βcr
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Figure J.6.: Critical mass profiles for different values of θ0 as given in
Figs. K.4–K.5.

mass larger than 1020 M⊙; this is again well above the value observed for any
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galactic halo. We then conclude that any critical configuration belonging to
this model is not able to reproduce the halo of galaxies.

Moving now to a completely different size scale, r < 10−2 pc, even though
at this scale the critical core masses are of the order of the more massive
supermassive black holes in the center of Active Galactic Nuclei (AGN) (see
Table 1), we find that the outer part of the system is either too large or has
an extremely large velocity compared to observations, as explained before.
Even inferred maser velocities for AGNs, with values up to 1000 km/s on a
sub-parsec scale, are always below the critical velocity for any value of θ0,
as seen from Fig. K.5. We conclude, therefore, that critical configurations of
semidegenerate self-gravitating fermions cannot be used to model AGNs.

J.3. An analytical expression for the critical mass

Finding an analytical formula for the critical mass to try to understand the
physics behind it would be useful. For this, we will use the Newtonian hy-
drostatic equilibrium equation corresponding to the last stable configuration,
where the pressure due to gravity is balanced by a highly relativistic semide-
generate Fermi gas:

Pg(r) = Pur
T (r),

GM(r)ρ(r)

r
≈ µ4

12π2(h̄c)3
+

µ2(kT)2

6
√

π(h̄c)3
, (J.3.1)

where Pur
T (r) is an ultra-relativistic approximation of a highly-relativistic

Fermi gas (µ ≫ mc2), which has been expanded up to second order in the
temperature around µ/kT ≫ 1 (see, e.g., Ref. Landau and Lifshitz (1980)).
We have used in Eq. (K.4.1) the Fermi energy (ǫ f = µ) with the rest en-
ergy substracted-off to be consistent with the theoretical formulation of our
model. Considering that the density in the core is nearly constant (see
Fig. K.4), i.e., ρ = ρcr

0 ≈ const., ∀r ≤ rcr
c , we can write the core radius as
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rcr
c = (3Mcr

c /(4πρcr
0 ))

1/3. With this, we can rewrite Eq. (K.4.1) as follows:

(

4π

3

)1/3

G(Mcr
c )

2/3(ρcr
0 )

4/3 ≈

≈ µ4

12π2(h̄c)3

(

1 +
2π2

θ2
0

)

. (J.3.2)

Finally, we write the central mass density as ρcr
0 ≈ nur m, where nur =

µ3/(3π2(h̄c)3) is the number density of the ultra-relativistic particles. With
this expression for ρcr

0 in Eq. (J.3.2), we can directly give Mcr
c in terms of θ0 as

Mcr
c ≈

3
√

π

16

M3
pl

m2

(

1 +
2π2

θ2
0

)3/2

. (J.3.3)

From this equation, clearly for systems with high central degeneracy

(θ0 ≫
√

2π), the critical core mass Mcr
c is independent of θ0 and proportional

to M3
pl/m2. However, for low values of the central degeneracy (θ0 ∼

√
2π),

the second term in Eq. (K.4.2) starts to be relevant, showing finite tempera-
ture effects. In fact, using θ0 = 40, we have Mcr

c = 7.62× 109 M⊙, just a 2%
difference with the numerical result of 7.44× 109 M⊙. However, for θ0 = 5,
we have Mcr

c = 1.79× 1010 M⊙, almost a factor 2 above the numerical value
of 7.91× 109 M⊙ presented in Table 1. This shows that our approximation of
an ultra-relativistic Fermi gas in Newtonian equilibrium breaks down, and
that a fully relativistic treatment is needed.
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K. Super massive black holes and
dark matter halos in big
elliptical galaxies

K.1. Introduction

The nature and role of the dark matter (DM) particle at galactic scales together
with the intricate relation involving the spatial distribution of its density,
mass-to-light ratios and the estimation of the very massive dark object mass,
are yet unsolved issues of major importance in physics and astrophysics.

Observationally, the presence of DM halos is safely confirmed in the small-
est and less luminous (103L⊙ . L . 107L⊙) galactic systems, i.e.: dwarf
galaxies, where DM contributes 90% or more to the total mass even much
inside the half-light radius Re. (see e.g. Strigari et al. (2008)). Instead, in the
case of more luminous galaxies, both baryonic (i.e. stars) and dark matter
contributes in comparable amounts to the total mass, being a big challenge to
disentangle the gravitational effect of the DM component within r ∼ Re (see
e.g. Binney and Tremaine (2008) and refs. therein). In spiral galaxies the ob-
servation of extended HI regions in the disk structure provides an important
and universal dynamical tracer which, through rotation curves analysis, has
provided strong evidence for the existence of DM even up to several Re (see
e.g. de Blok et al. (2008)).

However, in the case of big elliptical and early-type galaxies, most of them
containing super massive dark objects at their centers (see e.g. Gültekin et al.
(2009)), there is no definitive evidence for the existence of DM halos. The
low surface brightness beyond Re makes it a hard task to obtain reliable spec-
tra to determine dispersion velocities. Among the several methods available
to prove the mass distribution beyond Re in elliptical galaxies, such as in-
tegrated stellar light spectrum, globular cluster and planetary nebulae kine-
matics, diffuse X-ray observation or weak gravitational lensing; no evidence
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for DM halos has been found even out to few Re in many ellipticals by the
use of kinematical methods (Gerhard et al. (2001); Romanowsky et al. (2003)).
Meanwhile, by using X-ray observations in an small sample of nearby ellip-
ticals, as for example in Humphrey et al. (2006) , a clear evidence for con-
siderable amounts of DM at radii r ∼ 10Re was given. In any case, the more
interesting constraints on DM in early-type galaxies are restricted to the more
massive systems, which are placed near the center of group or clusters. This
implies to be a difficult task to confirm whether the existence of extensive
halos are an inherent property of the galaxy itself, or whether corresponds to
the group-scale (see e.g. Binney and Tremaine (2008) chapter 4.9.2).

On theoretical and numerical grounds, the paradigm regarding the nature
and spatial distribution of the DM particle in large and small distance-scales
is centered in Newtonian N-body simulations within Lambda Cold Dark
Matter (ΛCDM) cosmologies Navarro et al. (1997, 2004b) , being the beyond
Standard Model (SM) elementary particle WIMP (Weakly Interacting Mas-
sive Particles) the preferred DM candidate. Nonetheless, despite the good
agreement of this model with the large scale structure of the Universe, some
subtle problems remains at galactic scales such as the core-cusp discrepancy
and the lost satellites problem (see e.g. Munshi et al. (2013)).

An alternative and very promising beyond SM particle which has re-
ceived increasing attention in cosmology and structure formation in the last
decade, is the right handed sterile neutrino with masses of ∼ keV (see e.g.
Shi and Fuller (1999); Asaka et al. (2005); Stasielak et al. (2007)) . Moreover,
in Lovell et al. (2012) (see also refs. therein), Warm Dark Matter (WDM) ha-
los has been obtained from numerical simulations solving the discrepancies
which arises at galactic scales in the CDM paradigm, being again the sterile
neutrino a plausible DM candidate.

Continuing on theoretical grounds and from a different and com-
plementary perspective, the problem of modeling the distribution of
dark matter in galaxies in terms of equilibrium configurations of col-
lisionless self-gravitating fermionic particles has already been consid-
ered in Ruffini and Stella (1983) . More recently in Argüelles et al. (2014);
Siutsou et al. (2014); Ruffini et al. (2014) , this approach was developed in a
fully relativistic treatment with applications to dark matter in normal galaxies
being the spin 1/2 fermion with masses m ∼few keV the preferred DM can-
didate in excellent agreement with halo observations (see e.g. Siutsou et al.
(2014)). Again the sterile neutrino appears as an appealing candidate. An in-
teresting characteristic in the density profile solutions of this kind of models
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with m ∼ 10keV, is that they present a novel core-halo morphology com-
posed by: i) a compact degenerate core of constant density at sub-parsec
scales governed by quantum statistics (i.e. Pauli principle); ii) an interme-
diate region with a sharply decreasing density distribution followed by an
extended plateau; iii) a decreasing ρ ∝ r−2 leading to flat rotation curves ful-
filling classical Boltzmann statistics. In Ruffini et al. (2014) , and always for
m ∼ 10keV, using observations from typical dwarf galaxies up to typical big
spirals allowing for DM halo characteristics, it is clearly shown how the com-
pact core described above in i) may work as an alternative to intermediate
(Mc ∼ 104M⊙) and super massive Black Holes (BH) (up to Mc ∼ 107M⊙) at
their centers in simultaneous compatibility with each observed DM halo. It is
then further shown in Ruffini et al. (2014) how, out of first principles, a possi-
ble universal correlation between the DM halos and the massive dark objects
arises for m = 10keV. Interestingly, a very similar correlation law to the one
theoretically found in Ruffini et al. (2014) in the range Mc ∈ (106, 107)M⊙
(with correspondent halo masses Mh from ∼ 1011M⊙ up to ∼ 1012M⊙), has
been found from observations in Ferrarese (2002a) , relating the dark halo
masses to central mass concentrations, these last however identified by Fer-
rarese as black hole masses.

In this essay we present a detailed analysis of the above sketched model
involving full Fermi-Dirac statistics, in an extreme relativistic regime which
will allow us to deal with the most massive central dark objects of Mc ∼
109M⊙ at miliparsec scales. In this context, we present the density profiles
and rotation curves for a fermion mass m ∼ 10keV, when the compact cores
in all the solutions are very near Oppenheimer-Volkoff limit. Clearly, this
approach makes the use of a General Relativistic treatment to be mandatory.
In exploring the full range of the free model parameters such as temperature
and degeneracy, we conclude that if a super massive dark object of Mc ∼
109M⊙ is formed at the center, no astrophysical DM halo structure should be
present simultaneously in that system. A discussion to this respect in relation
with observations and formation history is given in the third section.

K.2. Theoretical Framework

The system of Einstein equations are written in a spherically symmetric
space-time metric gµν = diag(eν,−eλ,−r2,−r2 sin2 θ), where ν and λ depend
only on the radial coordinate r, together with the thermodynamic equilibrium
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conditions of Tolman (1930) , and Klein (1949) ,

eν/2T = const. , eν/2(µ + mc2) = const,

where T is the temperature, µ the chemical potential, m the particle mass
and c the speed of light. We then write the system of Einstein equations in
the following dimensionless way, following Gao et al. (1990) and Ruffini et al.
(2013a) ,

dM̂

dr̂
= 4πr̂2ρ̂ (K.2.1)

dθ

dr̂
=

β0(θ − θ0)− 1

β0

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
(K.2.2)

dν

dr̂
=

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
(K.2.3)

β0 = β(r)e
ν(r)−ν0

2 . (K.2.4)

The variables of the system are the mass M, the metric factor ν , the tempera-
ture parameter β = kT/(mc2) and the degeneracy parameter θ = µ/(kT).
The dimensionless quantities are defined as: r̂ = r/χ, M̂ = GM/(c2χ),
ρ̂ = Gχ2ρ/c2 and P̂ = Gχ2P/c4, with χ = 2π3/2(h̄/mc)(Mp/m) and

Mp =
√

h̄c/G the Planck mass. The mass density ρ and pressure P are given
by Fermi-Dirac statistics (with the particle helicity g = 2):

ρ = m
2

h3

∫

f (p)

[

1 +
ǫ(p)

mc2

]

d3p, (K.2.5)

P =
1

3

2

h3

∫

f (p)

[

1 +
ǫ(p)

mc2

]−1 [

1 +
ǫ(p)

2mc2

]

ǫ d3p, (K.2.6)

where the integration is extended over all the momentum space and f (p) =

(exp[(ǫ(p)− µ)/(kT)] + 1)−1. Here ǫ(p) =
√

c2p2 + m2c4 −mc2 is the parti-
cle kinetic energy, µ the chemical potential with the particle rest-energy sub-
tracted off. We do not include the presence of anti-fermions, i.e. we consider
temperatures that always satisfy T < mc2/k.

We want to further emphasize the central role of the Fermionic quantum
satistics in the model, by recalling the necessity of the Pauli principle to form
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the central degenerate massive compact objects, mentioned above.

This system is solved for a fixed particle mass m in the keV range, with
initial conditions M(0) = ν(0) = 0, and given parameters θ0 > 0 (depending
on the chosen central degeneracy), and β0. We thus construct a sequence of
different thermodynamic equilibrium configurations where each point in the
sequence has different central temperatures T0 and central chemical potential
µ0, so that satisfy the θ0 fixed condition.

Defining the core radius rc of each equilibrium system at the first maximum
of its rotation curve, we represent the results obtained for each sequence in a
central density (ρ0) vs. core mass (Mc) diagram (see Fig.K.1). It is shown that
the critical core mass Mcr

c is reached at the maximum of each Mc(ρ0) curve.

105
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109
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106 108 1010 1012 1014 1016 1018

M
c 

(M
O•)

ρ0 (MO• pc-3)

θ0=1
θ0=5

θ0>40
T0(1), µ0(1)

T0(2)>T0(1), µ0(2)<µ0(1)
T0(cr)>T0(2), µ0(cr)<µ0(2)

Figure K.1.: Different sequences of equilibrium configurations plotted in a
central density (ρ0) Vs. core mass (Mc) diagram. The critical core mass is
reached at the maximal value of Mc. Each sequence is built for selected values
of θ0 = µ0/kT0 and different values of T0, µ0 varying accordingly.

It is important to emphasize that the method followed here to define the
critical points along each family of thermodynamic equilibrium configura-
tions, fulfills the turning point definition given in Schiffrin and Wald (2014) ,
which allows them to formally demonstrate Sorkin’s theorem Sorkin (1981)
showing the existence of a thermodynamic instability on one side of the turn-
ing point 1.

1In reality, to properly implement the formal concept of turning point as used for example
in Schiffrin and Wald (2014) , the total mass of the system Mt (previous choice of a cut-off
in the momentum space at i.e. rt ∼ 10rh to define it) should be used in the central density
(ρ0) Vs. mass (M) diagram, instead of the core mass Mc. Nonetheless, considering that
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In Table I we show a set of central critical parameters of the model together
with the correspondent critical core masses, for a very wide range of fixed
central degeneracy parameters θ0 and particle mass m = 8.5 keV/c2.

Table K.1.: Critical temperature parameter and normalized chemical poten-
tial at the center of each different critical configuration, for different fixed
central degeneracies.

θ0 βcr
0 µcr

0 /mc2 Mcr
c (M⊙)

1 6.45× 10−2 6.45× 10−2 1.59× 1010

5 2.23× 10−2 1.11× 10−1 7.91× 109

40 8.33× 10−3 3.33× 10−1 7.44× 109

55 6.06× 10−3 3.33× 10−1 7.44× 109

100 3.33× 10−3 3.33× 10−1 7.44× 109

Defining the halo radius of each configuration at the onset of the flat rota-
tion curve, we show in Table II the critical halo magnitudes rcr

h , Mcr
h and vcr

h
corresponding to the same set of critical parameters as given in Table I.

Table K.2.: Critical halo magnitudes of different critical configurations, for
different fixed central degeneracies as given in Table I.

θ0 rcr
h Mcr

h /mc2 vcr
h

(pc) (M⊙) (km/s)
1 4.4× 10−1 5.7× 1011 7.5× 104

5 4.0× 10−1 4.3× 1011 6.2× 104

40 4.3× 103 1.1× 1015 3.3× 104

55 2.9× 105 6.0× 1016 2.9× 104

100 2.0× 1011 2.3× 1022 2.2× 104

The results obtained in Tables I and II imply a marked division in two dif-
ferent families depending on the value of Mcr

c .
i) The first family: the critical mass has roughly a constant value Mcr

c =
7.44× 109M⊙. This family corresponds to large values of the central degen-
eracy (θ0 ≥ 40), where the critical temperature parameter is always lower

in fully degenerate systems the critical masses Mcr
c are basically equal to the OV mass,

it should imply that the extended and diluted halo plays no relevant role in the physics
near the critical point, in some analogy to the case of Super-Nova core collapse where
only the fully degenerate core is considered in the process.
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Figure K.2.: The critical temperature profile of the system (in keV) and the
critical metric, for θ0 = 5 and βcr

0 = 2.23× 10−2. The dashed line corresponds

to the isothermality condition, Teν/2 = const.

than βcr
0 . 8 × 10−3 and the critical chemical potential µcr

0 ≈ const. Phys-
ically, these highly degenerate cores are entirely supported against gravi-
tational collapse by the degeneracy pressure. In this case the critical core
mass is uniquely determined by the particle mass according the relation
Mcr

c ∝ M3
pl/m2 (see also last section).

ii) The second family: the critical core mass increases from Mcr
c = 7.44×

109M⊙ up to Mcr
c ∼ 1010M⊙. This case corresponds to critical cores with a

lower central degeneracy compared with the former family (1 < θ0 < 40).
Here the critical temperature parameter (β0 ∼ 10−2), is closer to the relativis-
tic regime with respect to the first family. This result physically indicates that
the thermal pressure term has now an appreciable contribution to the total
pressure, which supports the critical core against gravitational collapse. In
this case Mcr

c is completely determined by the particle mass m, the central
temperature Tcr

0 and the central chemical potential µcr
0 (see last section).

In Figs. (K.2) and (K.3) we show a critical metric factor eν/2 and a critical
temperature kT as a function of the radius for the two different families men-
tioned above.
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K. Super massive black holes and dark matter halos in big elliptical galaxies

Figure K.3.: The critical temperature of the system (in keV) and the critical
metric, for θ0 = 55 and βcr

0 = 6.06× 10−3. The dashed line corresponds to the

isothermality condition, Teν/2 = const.

K.3. Astrophysical Application and Discussion

We will now attempt to use the critical configurations obtained before to ex-
plain the DM distribution in big galactic halos, as well as providing an al-
ternative candidate to the standard central black hole paradigm. From now
on, we will use a fixed particle mass of m =8.5 keV/c2, being this choice mo-
tivated by the fact we want to deal with super massive dark objects having
critical core masses of the order Mcr

c ∝ m3
pl/m2 ∼ 109M⊙. Moreover, such a

relativistic object would have an OV radius ROV very near the Schwarschild
radius Rs (ROV ∼ 3Rs), and then practically indistinguishable from a BH of
the same mass.

In Figs. (K.4), (K.5) and (K.6) we show different critical density profiles,
critical rotation curves and critical mass profiles respectively, for a wide range
of different central degeneracy parameters.

From Fig. K.5 and Table II we see that critical configuration of self-
gravitating fermions with central degeneracies ranging from θ0 = 1 (i.e.
mainly thermal pressure supported cores) up to θ0 = 100 (i.e. mainly de-
generacy pressure supported cores), have flat rotation velocities vcr

h ∼ 104

km/s. Even if for θ0 ∼ 50 the halo sizes could match observations, the halo
masses are well above any observed value and so the circular velocities; fur-
ther implying that none of these mathematical solutions are compatible with
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Figure K.4.: Critical density profiles for different values of θ0 with the corre-
spondent critical temperature parameters βcr
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Figure K.5.: Critical rotation curves for different values of θ0 as given in
Fig. K.4. To note the high values of vc(r) ∼ 104 km/s in the flat parts of
each curve due to the high critical temperature parameters βcr

0 .

any observable astrophysical systems. However, since larger values of θ0 im-
ply lower values for βcr

0 , as shown in Table I, there is a point (at θ0 ∼ 106

and so βcr
0 ∼ 10−7) where the halo rotation curves reach the typical observed

values as in spiral or elliptical galaxies of vcr
h ∼ 102 km/s 2. Nonetheless,

since already at θ0 & 80 (see for example θ0 = 100 in Fig. K.4) the plateau
region of the density profile is lower than the mean DM density of the Uni-

2These values of rotation curves were used in the very low (spetial) relativistic regime ver-
sion of this model (i.e. θ0 ∼ 101), as presented in Argüelles et al. (2014); Siutsou et al.
(2014); Ruffini et al. (2014) , and in that case leading to the correct halo masses and sizes
in galaxies.
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Figure K.6.: Critical mass profiles for different values of θ0 as given in
Figs. K.4–K.5.

verse (ρuni ∼ 3H2
0/(4πG)), then higher central degeneracies will imply even

more diluted halos (i.e. already disappeared), never reaching typical flat rota-
tion curves at 101−2 Kpc halo distance-scales. Thus, the critical configurations
here analyzed in the fully degenerate regime θ0 ≫ 1, should only consist on
a central super-massive compact objects of Mcr

c ∼ 109M⊙ consisting on DM
particles of m ∼ 10keV.

In the light of the present analysis we then conclude that there is no critical
core-halo configuration of self-gravitating DM fermions, able to explain both
the most super-massive dark object at the center together with an outer DM
halo simultaneously.

The concept of simultaneous co-existence of super-massive dark objects
and DM halos at some cosmological epoch z is of central importance to better
understand the structure growth, galaxy formation history and evolution. An
important observational result aiming in these directions has been reported
in Cassata et al. (2011) . In that work there is clear evidence for evolution of
early-type galaxies evolving from z ∼ 2.5 (consistently studied only in terms
of light profiles) up to now (z ∼ 0) enlarging their sizes and masses (low-
ering in density), which imply necessarily subsequent gathering of matter
from larger-scale environments in their complex evolutionary history (prob-
ably in the form of dark and/or baryionic matter). Thus, contrasting the re-
sults obtained in this work with observational results for big ellipticals as
the ones already recalled in Cassata et al. (2011) and Gerhard et al. (2001);
Romanowsky et al. (2003); Humphrey et al. (2006) , but also in Gebhardt et al.
(2011) for the more relevant case of the giant elliptical M87 with the detected
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super-massive dark object of Mc ∼ 7× 109M⊙; could well imply that even if
there is clear evidence in some cases of co-existence of central dark massive
objects and dark halos at z ∼ 0, this could not be the case at early stages
i.e.z ∼ 3. The connection between the formation of super-massive com-
pact dark objects at early epochs, the relation with the host halo and possible
subsequent accretion form their larger-scale environments are still important
open questions.

K.4. An Analytical Expression for the Critical Mass

What one may find very insightful is to derive an analytical (approximate)
formula for the critical mass, so that one can then adventure to explore and
understand the subjacent physics of it. For this we will use the Newtonian
hydrostatic equilibrium equation corresponding to the last stable configura-
tion, where the pressure due to gravity is balanced by a high relativistic semi-
degenerate Fermi gas :

Pg(r) = Pur
T (r),

GM(r)ρ(r)

r
≈ µ4

12π2(h̄c)3
+

µ2(kT)2

6
√

π(h̄c)3
, (K.4.1)

where Pur
T (r) is the ultra relativistic approximation of a highly relativistic

Fermi gas (µ ≫ mc2), which has been expanded up to second order in tem-
perature around µ/kT ≫ 1 (see e.g. Landau and Lifshitz (1980)). We have
used in K.4.1 the fermi energy (ǫ f = µ) with the rest energy substracted-off
in consistency with the theoretical formulation of our model.

Then, after constant density considerations for r . rc in the ultra-
relativistic approximation here adopted, we get,

Mcr
c ≈

3
√

π

16

M3
pl

m2

(

1 +
2π2

θ2
0

)3/2

. (K.4.2)

It is clear from this equation that for high central degenerate systems (θ0 ≫√
2π), the critical core mass Mcr

c is independent of θ0 and then proportional to

M3
pl/m2. However, for low values of the central degeneracy (θ0 ∼

√
2π) the

second term in (K.4.2) starts to be relevant, showing the finite temperature
effects. In fact, using θ0 = 40, we have Mcr

c = 7.62 × 109 M⊙, just a 2%
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difference with the numerical result of 7.44× 109 M⊙. However, for θ0 = 5
we have Mcr

c = 1.79× 1010 M⊙, almost a factor 2 above the numerical value
of 7.91× 109 M⊙ obtained in Table I. This shows that our approximation of
an ultra-relativistic fermi gas in newtonian equilibrium breaks down and a
fully relativistic treatment is needed.
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L. Dark Einstein clusters within
the S2 orbit in SgrA*

In 1939 Einstein [Einstein (1939)] provided a model of self-gravitating masses,
each moving along geodesic circular orbits under the influence of the grav-
itational field of the rest of the particle in the system. This model allowed
him to argue that ‘Schwarzschild singularities’ do not exist in physical reality
because a cluster with a given number of masses cannot be arbitrarily con-
centrated. This is due to the fact that otherwise the particles constituting the
cluster would reach the speed of light. Of course, this model can actually
only be considered as an interesting possibility to try to provide a counterex-
ample of a singularity within Einstein’s theory of gravity, since Black Holes
are a physical reality within the theory of General Relativity.

The aim of this paper is to model the central (sub-milliparsec) region of our
galaxy in terms of a dark ‘Einstein Cluster’ (EC) in order to provide an alter-
native to the Super Massive Black Hole (SMBH) of mass M = 4.4× 106M⊙
thought to be hosted at very center [Ghez et al. (2008); Gillessen et al. (2009)].
A dark EC is understood as an EC composed by dark matter particles of mass
m (regardless of its nature), and therefore no contribution to the pressure in
form of radiation is assured as the cluster shrinks till relativistic regimes. The
model is based on the assumption of a constant density distribution harbored
inside the peri-center of the S2 star (rp(S2)), the closest to SgrA* as observed in
[Gillessen et al. (2009)]. We will first analyze the stability condition in the spe-
cific case of a regular and relativistic energy density EC, contained marginally
inside the S2 peri-center. Secondly, and for an EC with fixed particle number
N, we will explicitly show through the R vs. M relation, and for particle ve-
locities ranging from zero up to the speed of light, up to which point an EC
can be shrank before loosing its global stability.

The full theoretical formalism of ‘Einstein Clusters’ and their differ-
ent stability analysis has been extensively studied in [Zapolsky (1968);
Gilbert (1954); Hogan (1973); Florides (1974); Comer and Katz (1993);
Cocco and Ruffini (1997); Böhmer and Harko (2007); Geralico et al. (2012)].
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We give in next a short summary of the most important outcomes of this the-
ory, pointing out the principal formulas which will allow us to deal with the
astrophysical application object of this work. Thus, consider a static spheri-
cally symmetric distribution of particles all with rest mass m which are mov-
ing along circular geodetic orbits about the center of symmetry. The associ-
ated line element ds2 is written in terms of a Schwarzschild metric of the form
gµν = diag(−eν, eλ, r2, r2 sin2 θ), where ν and λ depend only on the radial co-
ordinate r. From now and on we will work in the geometric unit system
(G = c = 1).

The stress-energy tensor in the laboratory frame is assumed to take the
form

Tµν = m n0 UµUν , U = γ[et̂ + vθ̂eθ̂ + vφ̂eφ̂] , (L.0.1)

which is just the Einstein’s ansatz [Einstein (1939)] (or a dust-like ansatz). n0

is the proper particle number density (i.e. defined at rest w.r.t a coordinate
system of special relativity), U is the particle 4-velocity satisfying the circular

geodetic equations in the laboratory frame with vθ̂ and vφ̂ the linear velocities
along the angular directions, γ = (1− v2)−1/2 (v2 = δθφvθvφ), and the uni-
tary vectors introduced in U corresponds to the following orthonormal frame
(adapted to the static observers)

et̂ = e−ν/2∂t , er̂ = e−λ/2∂r , eθ̂ =
1

r
∂θ , eφ̂ =

1

r2 sin θ
∂φ . (L.0.2)

In the laboratory frame, and after applying the killing vector formalism to
this specific spacetime (see also [Geralico et al. (2012)]) naturally appears the
two constants of motion associated with each trajectory, the energy E and the
angular momentum L which reads

E = mγ eν/2, L2 = L2
θ + L2

φ/ sin2 θ = m2γ2r2v2. (L.0.3)

The angular momentum formula in (L.0.3) together with the definition of γ
directly implies γ = (1+ L̃2/r2)1/2 which will be very useful in what follows,
with L̃ = L/m.

By writing the conserved L2 in terms of each angular component Lθ =
mγrvθ and Lφ = mγrvφ sin θ as done in (L.0.3), implies the following relation

1 = (Lθ/L)2 + (Lφ/(L sin2 θ))2. This last equation further implies that the

possible values of Lθ/L and Lφ/(L sin2 θ) lie on a circle of unit radius, and
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then each angular component can be written in terms of an angle α respect to
the eθ̂-axis. This decomposition allow us to make an average of the angular
momentum components in the eθ̂ − eφ̂ plane (i.e. around each orbit with α ∈
[0, 2π]), as originally proposed by Einstein [Einstein (1939)]. The averaged
variables reads1.

〈Lθ〉 = 〈Lφ〉 = 0, 〈L2
θ〉 = 〈L2

φ/ sin2 θ〉 = L2/2 . (L.0.4)

The above averaging allows to express the averaged stress-energy compo-
nents without any angular dependence, and reads

〈Tt
t〉 = −mn0

(

1 +
L̃2

r2

)

≡ −ρ , 〈Tθ
θ〉 = 〈Tφ

φ〉 =
mn0

2

L̃2

r2
≡ pt , (L.0.5)

where ρ is the energy density of the system and pt the tangential pressure. It
can be easily verified that the divergence of the stress-energy tensor vanishes
identically.

The relevant Einstein equations are

1

r2
[r(1− e−λ)]′ = 8πρ , (L.0.6)

ν′ =
1

r
(eλ − 1) , (L.0.7)

e−λ

2

[

ν′′ +
ν′2

2
+

ν′ − λ′

r
− ν′λ′

2

]

= 8πpt , (L.0.8)

where a prime denotes differentiation with respect to r. By using the standard
definition of the mass function in terms of λ, eλ = (1 − 2M(r)/r)−1, the
system (L.0.6–L.0.8) is solved to give:

M(r) = 4π
∫ r

0
ρr2dr, eν = (1− 2M/R)e−2Φ(r) , (L.0.9)

where

Φ(r) =
∫ R

r

v2
k

r
dr, v2

k =
M(r)

r− 2M(r)
, L̃ = γ vk r (L.0.10)

1The average or mean value is defined by 2π〈La(α)〉 =
∫ 2π

0 La(α)dα, with a either θ or φ.
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where vk is the Keplerian speed. Thus, in order to completely solve the prob-
lem we have to provide a the energy density ρ(r) (or equivalently the mass
profile).

Another needed relevant quantity is the total particle number N. It can be
easily shown that the averaged 4-current 〈Jµ〉 = −n0〈Uµ〉 is divergence-free.
The associated conserved particle number is thus given byMisner and Sharp
(1964)

N =
∫

Σ
〈Jµ〉 dΣµ , (L.0.11)

where Σ denotes a spacelike hypersurface with infinitesimal element dΣν =
nνdΣ and unit timelike normal n. By choosing Σ to be a t = const hyper-
surface with unit normal n = et̂ and dΣ = eλ/2r2 sin θ dr dθ dφ, Eq. (L.0.11)
gives

N = 4π
∫ R

0
n0(r)γeλ/2r2 dr . (L.0.12)

A constant energy density ρ = 3M/(4πR3) implies a radial distribution
mass M(r) = Mr3/R3, and consequently through second and third Eqs. in
(L.0.10), an angular momentum per unit mass L̃ with the corresponding num-
ber distribution of the particles mn0 given by

L̃ =

√

M

R

r2

R

(

1− 3Mr2

R3

)−1/2

, mn0 =
3M

4πR3

R3 − 3Mr2

R3 − 2Mr2
. (L.0.13)

where 0 ≤ r ≤ R. Thus, the full solution of the Einstein equations (L.0.6–
L.0.8) gives for the metric functions

eν =

(

1− 2M

R

)3/2 (

1− 2Mr2

R3

)−1/2

, eλ =

(

1− 2Mr2

R3

)−1

, (L.0.14)

The stability conditions for particles moving along a circular geodetic orbit on
the equatorial plane is studied in next for the specific case of an EC of constant
energy density, in terms of the effective potential Ve f f = eν/2(1 + L̃2/r2)1/2

(see e.g. Ref. [Geralico et al. (2012)] for a general discussion of Stability). The
existence of circular orbit at r0 is calculated through the necessary condition
V′e f f (r0) = 0, while the the necessary condition for stability is V′′e f f (r0) > 0.
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In general (for any given EC) both necessary conditions reads respectively

r > 3M(r),
d(ln M(r))

d(ln r)
+ 1− 6M(r)

r
> 0 , (L.0.15)

In particular, for ρ = 3M/(4πR3) =const, the stability analysis directly im-
plies that stable circular orbits exist within the cluster in the range

r < R

√

R

3M
. (L.0.16)

Note that there is no upper limit on r if R > 3M, implying that circular orbits
are stable all the way up to the boundary of the configuration.

For outer particles r > R, the stability conditions in (L.0.15) makes possible
to distinguish the following classes: models with R > 6M and models with
3M < R < 6M. If R > 6M the cluster is said to be globally stable, because
circular orbits are always stable both inside and outside the configuration
(see also Fig. L.3 (a)).

If 3M < R < 6M all particles constituting the cluster move on stable orbits,
but in the adjacent exterior region of the configuration there is a region of
instability (R < r < 6M), so that the cluster is meta-stable (see also Fig. L.3
(b)). This stability criterion was first applied in [Cocco and Ruffini (1997)].

Another formal criterion which will be also used in next to classify an EC
regarding the stability, is the one adopted in [Zapolsky (1968)] based on the
behaviour of the gravitational binding energy of the system. Where the frac-
tional binding energy of the cluster is defined by

E
f
b =

mN−M

mN
. (L.0.17)

A regular and relativistic EC marginally inside the pericenter of the S2 star,
has to fulfill the following observational constraints for its boundary R and
total mass M

R = rp(S2) = 6× 10−4 pc, M = 4.4× 106 M⊙, (L.0.18)

where both values are subject to some ∼ few % of error due to propagated
error in the distance from the sun to the galactic center R0 ≈ 8.3 kpc (see e.g.
Ref. [Gillessen et al. (2009)]). These constraints implies (in geometrical units)
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a ratio R/M = 2840.9 ≫ 6, which safely indicates global stability, i.e. both
inside and outside the cluster according with the criterion presented above
with Ref. [Cocco and Ruffini (1997)].

In next we analyze, for an EC of constant number particles N, up to which
extent it can be shrank inside rp(S2) without becoming meta-stable, and more-
over, what happens when the particles approach the ultra-relativistic regime.
For this we first calculate the relation between M and R for fixed values of the
rest mass mN of the system, taking the velocity 0 < vk ≤ 1 as a parameter. By
use of Eq. (L.0.12) we have

mN = M [1/v2
k + 2]3/2F(vk) , (L.0.19)

where F(vk) = −3/4[arctan (x(vk)− 3)−1/2 + (x(vk) − 3)1/2/x(vk)] +
(3/4)1/2 arctan (3/(x(vk)− 3))1/2, since x(vk) = R/M(vk) = 1/v2

k + 2. The
direct relation between R/M and vk is easily understood from the Keplerian
velocity formula in (L.0.10) evaluated at r = R. Eq. (L.0.19) together with
x(vk) automatically leads to the following total mass and radius normalized
variables

R

mN
=

1

F(vk)[1/v2
k + 2]1/2

,
M

mN
=

1

F(vk)[1/v2
k + 2]3/2

. (L.0.20)

In Fig. (L.1) we explicitly show the R vs. M relation (normalized with the
constant rest mass) with vk taken as a free parameter. Regions of stability
and meta-stability are differentiated depending on the value of the rotation
velocity (vk) at the boundary of the EC (see caption for details). Instead, in
Fig. (L.2) we show the behaviour of the binding energy as a function of the
velocity vk, this is, showing the fraction of the total mass that turns into bind-
ing energy when the cluster is contracted from R ≫ 1 to a given R. After
the maximum a change of stability takes place and the cluster itself becomes
unstable according to this criterion (see caption for details).

Even though these systems reach meta-stability (according to the classi-
fication given in [Cocco and Ruffini (1997)]) or become unstable (according
the binding energy analysis), well before the velocity vk reaches the ultra-
relativistic regime; it is interesting to note that these tangential pressure sup-
ported self-gravitating systems, never reaches a critical mass as in the case
of radial pressure supported self-gravitating systems, being neutron stars a
typical example of this last case.
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Figure L.1.: Gravitational mass vs. boundary radius relation (in units of rest
mass) for an EC with constant energy density. The velocity at the boundary
0 < vk < 1 is taken as a parameter. In Fig. (a): for vk → 0 the total mass
approaches the rest mass at R/(mN) → ∞. At vk = 0.5 the EC becomes
meta-stable (i.e. R/M = 6), while vk = 0.6 corresponds to the minimum in
M/(mN) = 0.955 which further implies the maximum bounded state for the
cluster (see Fig. L.2 for comparison). At vk = 0.903 the gravitational mass
equals the rest mass, and at vk = 0.98 a turning point in the radius appears
(see Fig. (b) for a zoom). Finally, the onset of instability R/M = 3 (accord-
ing to the classification given in [Cocco and Ruffini (1997)]) is asymptotically
approached when vk → 1.

In Fig. (L.3) we present two examples of constant energy density EC, the
case of R/M = 10 (Fig. a) where circular stable orbits exist either for parti-
cles forming the EC but also for outside ones, and the case of R/M = 3.1
(Fig. b) where unstable orbits (i.e. a maximum in Ve f f ) appears for outer
particles located in the outer vicinity of the border of the EC. In the second
case the EC is called meta-stable according to the characterization given in
[Cocco and Ruffini (1997)].

The fact of working with a fixed rest mass energy mN which can be cal-
culated with the observational constraints (L.0.20), implies that the constant
energy density ρ = 3M/(4πR3) increases more and more according the ve-
locity vk increases. From Eqs. (L.0.19) and (R/M(vk) = 1/v2

k + 2) it is possi-

ble to give an explicit expression for ρ(vk) = 3/(4π)(F(vk)/(mN))2, from
which we can give the uppermost limits for the density of a dark EC in-
side SgrA*. Changing units to M⊙/pc3, the first upper limit corresponds
to ρ(vk = 0.5) ≈ 5.5 × 1023M⊙/pc3, below which the EC is always glob-
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Figure L.2.: The behaviour of the fractional binding energy (L.0.17) as a func-
tion of vk with fixed particle number. The maximum corresponds to an EC

which has shrank to R/(mN) = 4.5 where E
f
b ≈ 0.045. The latter vanishes

at R/(mN) = 3.22 for a velocity vk = 0.903 where the cluster is considered
unstable according to this criterion. At vk = 0.5 the radius of the cluster is
R/(mN) = 5.75 implying R/M = 6 (see Fig. L.1 for comparison).
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Figure L.3.: Behaviour of the effective potential as a function of r/M for an
EC with constant energy density. In Fig. (a) we show a globally stable cluster
with R/M = 10, and in Fig. (b) a meta-stable one with R/M = 3.1. Only
in Fig. (b) and for relatively high values of L̃ an external maximum appears
showing the existence of unstable orbits in the outer vicinity of the cluster.
The dots corresponds to the point a maximum angular momentum at the
border of the cluster.

ally stable. The second limit is given by ρ(vk = 0.6) ≈ 1.1× 1024M⊙/pc3,
and will be considered as the uppermost limit for a regular and relativistic
EC inside S2 and centered in SgrA*, due to the fact that above this veloc-
ity the value of the binding energy (L.0.17) starts to decrease from its maxi-
mum, undergoing a change of stability (see also Fig. L.2). These results are
in consistency with the bound obtained in [Böhmer and Harko (2007)] from
a different stability analysis, based on the lose of isotropy of the fluid due
to non-radial perturbations; since anisotropy serves as a source of instability
(see [Herrera and Santos (1997)] and refs. therein).

It is important to note that this specific EC model composed by dark matter
particles with ρ = const. provides a good alternative for the SMBH thought
to be hosted in the center of SgrA*. This due to the fact that the upper limit for
ρ(vk = 0.5) given above, is already about one order of magnitude higher than
the lowest limit for the mass density of SgrA* as imposed in [Doeleman et al.
(2008)] through the 1.3 mm Very Large Baseline Interferometry observations,
but below the critical density required for a black hole of 4.4× 106M⊙.
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M. Dark matter and baryons in
dwarf galaxies

M.1. Introduction

In the realm of galactic dynamics, baryonic and Dark Matter (DM) compo-
nents are usually treated in the literature in terms of the Jeans equations (see
e.g. Binney and Tremaine (2008) for a full development of the theory and
next section for a brief introduction). When leading with dwarf galaxies it is
usually assumed that the underlying gravitational potential Φ(r) in the halo
regions is dominated by the DM component. This ansatz together with the
assumptions of time-independent systems in spherical symmetry with no an-
gular momentum dependence and constant line-of-sight velocity dispersions
σlos (LOSVD), allows to break the Jeans degeneracy appearing in anisotropic
systems with σ2

θ 6= σ2
r (see e.g. Binney and Tremaine (2008)). In this case it is

possible to fully solve the Jeans equations to express the DM density profile
in terms of the observables: σlos and Σ(R), the last being the surface bright-
ness (see e.g. Evans et al. (2009) for a theoretical approach on this matter, and
Walker et al. (2009) for a phenomenological approach).

The main motivation of this chapter is to establish a connection between the
observations of the well resolved and nucleated dwarf galaxies as observed
and studied in Kourkchi et al. (2012), with the model of semi-degenerate
self-gravitating system of fermions introduced in Ruffini et al. (2014) and
Argüelles et al. (2014). The fact that phase-space densities (Q ∼ ρ0m−4σ−3)
through the center of the configurations can rise to values much higher than
its outer halo counterparts (see also conclusions in Chapter 2.2), suggests a
natural way to explain the observed nucleated regions at the center of the
dwarf galaxies. Indeed, this nucleated structure arising in the majority of
dwarfs galaxies below pc scales is a non-well understood issue, many times
associated with complex merging processes (see e.g. a discussion on this mat-
ter in Kourkchi et al. (2012)). Thus, the final objective of this more general
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approach, even under the simplifying symmetries here adopted, is to give
more light on this matter by providing an underlying fermionic phase-space
distribution for the dark component which naturally condenses through the
center due to the quantum pressure.

In next we provide a theoretical background based on the Jeans equations
to deal, in a more consistent way, with the baryonic and DM components
from the center up to the halo of well resolved dwarf galaxies. In this new pic-
ture, the assumption of considering an overall gravitational potential domi-
nated by the DM component has to be relaxed to properly account for the
gravitational effect of the baryons towards the center.

M.2. Standard Jeans equations & galactic DM

The Jeans equations corresponds to the theoretical framework of major im-
portance when studying the problem of equilibrium distribution of matter in
galaxies. These formalism, being written in terms of the collisionless Boltz-
mann equation, allow to study ideal systems of N collisionless identical point
masses in dynamical equilibrium, which may represent stars or even dark
matter particles. This treatment involves a smoothly distributed system’s
mass (or particle number, or even luminosity) in space, expressed in terms of
an underlying phase-space distribution function f (x, v, t). It has been shown
that the assumption of a smooth, rather than discretized, distribution of mat-
ter in space is a very good approximation in order to give a complete de-
scription of the dynamics of the system. In fact, when N is a large number
(& 104), the possible deviation from the true trajectory of the particle in this
idealized model, is very small even for times scales of the order of the age of
the Universe (see e.g Binney and Tremaine (2008) chapter 7).

For time-independent systems, each of these spatial density distributions:
of mass (ρ(x)), particle number (n(x)) or luminosity (j(x)), is obtained by
simply multiplying the probability density of finding a particular component
of the system at x,

ν(x) ≡ g/h3
∫

d3v f (x, v) , (M.2.1)

by M, N or L respectively, where M is the total mass, N the total number of
particles and L the total luminosity. With g the particle state degeneracy, and
h the Planck constant.

Since the astrophysical systems we are interested here are mainly isolated
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dwarf spheroidal galaxies (dSph), we will work with the specific Jeans equa-
tions under the general assumptions of time-independent systems in spheri-
cal symmetry with no angular momentum dependence1, which reads (see e.g
Binney and Tremaine (2008) chapter 4):

d

dr
(νv2

r ) = −ν
d

dr
Φ(r) . (M.2.2)

Where Φ(r) is the gravitational potential and v2
r is the mean square radial

velocity which, in this special symmetry, coincides with the radial dispersion
velocity:

v2
r = σ2

r = 4π/(3ν(r))
∫

dvv4 f (r, v2) . (M.2.3)

The probability density (M.2.1) in this case is simply given by,

ν(r) = 4π(g/h3)
∫ ∞

0
dv v2 f (r, v2) . (M.2.4)

The equation (M.2.2) is an hydrostatic equilibrium-like equation, and differs
only in that ν(r) represents a probability density instead of a mass density,
and that the mean particle velocity replaces the fluid velocity; being therefore

ν(r)v2
r the pressure-like term.

The application of this Jeans analysis to the spatial distribution of matter
in galaxies, depends on which kinds of matter components are pretended to
be studied in relation with the observables. For example, in studying galactic
halos of dSph galaxies, is usually assumed in the literature that ν(r) repre-
sents the distribution of luminous matter (i.e. stars), while the underlying
gravitational potential Φ(r) is dominated by the dark matter component (see
e.g. Walker et al. (2009); Evans et al. (2009)), allowing thus to write the Pois-
son equation uniquely in terms of the dark matter density (ρDM(r)), this is,

∇2Φ(r) = 4πGρDM(r) (M.2.5)

The observables are the surface brightness Σ(R) (where R is the projected
radius perpendicular to the line of sight), and the line-of-sight velocity dis-
persion σ2

los(R).

1This systems are characterized by a distribution function just depending on the total en-

ergy f (H = 1/2v2 + Φ(r)), and then having zero anisotropy (i.e. v2
r = v2

θ = v2
φ)
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The connection between the observables and the theoretical functions in
(M.2.2) are expressed in terms of the following formulas:

j(r) = − 1

π

∫ ∞

r

d

dR
Σ

dR√
R2 − r2

, ρL(r) = ΥL j(r) , (M.2.6)

where j(r) is the three-dimensional luminosity density, related with the prob-
ability density by,

j(r) = Lν(r) . (M.2.7)

This function is related with the measured surface brightness Σ(R) through
the Abel de-projection formula as shown in (M.2.6). The factor which relates
the mass density of the luminous material ρL(r) and the luminous density
j(r) is the mass-to-light ratio of the given stellar population ΥL, which in
general is assumed to be a constant. The line-of-sight velocity dispersion
σ2

los(R) relates with the radial velocity dispersion σ2
r by the corresponding

Abel de-projection formula (see e.g. Binney and Tremaine (1987)):

σ2
r (r) = −

1

π j(r)

∫ ∞

r

d

dR
(Σσ2

los)
dR√

R2 − r2
(M.2.8)

Once the link between the observables and the theoretical variables has
been established, and using the simplifying assumption of constant disper-
sion velocity σ2

los(R) = const. (as suggested by obervations in most dSphs
Walker et al. (2009)), it is possible to obtain an explicit expression for the dark
matter density profile purely in terms of the observables. First of all, it is im-
portant to notice that if σ2

los(R) is a constant, then from (M.2.8) one directly

obtains (σ2
r = σ2

los). Then, taking equation (M.2.2) in terms of the luminous
mass density ρL(r) = Υj(r) (Υ = const.), and equation (M.2.5), we have the
system:

σ2
los

d

dr
j(r) = −j(r)

d

dr
Φ(r) , (M.2.9)

∇2Φ(r) = 4πGρDM(r) . (M.2.10)

These two equations can be easily combined to yield

ρDM(r) = − σ2
los

4πG
∇2 ln j(r) , (M.2.11)
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with j(r) given by equation (M.2.6). Moreover, it is even possible to have
analytic expressions for ρDM(r) if standard light profiles as King, Plummer,
Sérsic, etc. are obtained using parametric best fits from the observed sur-
face brightness Σ(R). The analysis presented above has been taken from
Evans et al. (2009), and we have just shown here the part relevant to this
work.

It is interesting to notice that with this kind of Jean analysis it is possible to
make use of the observables (expressed in terms of the stellar density ν(x)),
without the need of knowing explicitly the underlying phase-space distribu-
tion function f (x, v).

M.3. Generalized formalism for a system of DM

plus baryons

The objective of this section is to generalize the hydrostatic equilibrium-like
equation (M.2.2) to the more general case of a multiple-component system of
point masses in dynamical equilibrium. For definiteness, we will consider
a self-gravitating system composed by N1 identical collisionless dark matter
particles and N2 identical collisionless stars, neglecting any possible inter-
action (other than gravitational) between both kinds of matter. Therefore,
within this more general effective treatment, we can write the analogous of
Eq. (M.2.2) but in terms of the mass density and pressure terms as follows:

d

dr
PT = −ρT

d

dr
Φ(r) , (M.3.1)

where PT and ρT are the total pressure and total mass density of the multi-
component system composed by DM particles and stars.

There are many motivations for this generalization. In what follows we
present three main important reasons:

1) We want to build a model to account in a more consistent way for the
dynamical equilibrium of systems with two different matter components, lu-
minous objects (i.e. stars), and dark matter particles.

2) Being interested in the overall distribution of matter in dSph galaxies,
from sub-parsec up to kilo-parsec scales, we will relax the hypothesis of
ρDM(r) ≫ ρL(r)

2 usually considered in the literature (see e.g. Evans et al.

2Even if in Strigari et al. (2008) has been demonstrated that the dSphs are the most dark
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(2009); Walker et al. (2009)).

3) Have a formal approach to analyze the fundamental problem of under-
standing the detailed spatial distribution of dark matter relative to the bary-
onic one in relation with the observed central nucleated regions in dwarfs
galaxies.

We will work here only under the simplifying assumptions of time-
independent systems in spherical symmetry and with no angular momentum
dependence.

The following step is to write Eq. (M.3.1) in terms of each pressure and
density components. This is, by assuming the following decompositions
PT = PL + PDM and ρT = ρL + ρDM, Eq. (M.3.1) reads

dPL

dr
+

dPDM

dr
+ ρL

dΦT

dr
+ ρDM

dΦT

dr
= 0 . (M.3.2)

Because we are here assuming a possible linear independence between the
gravitational effects of each component, plus the non-interacting (other than
gravity) nature between the two matter components, we can write (M.3.2) as
a coupled system of two ordinary differential equations as follows,

d

dr
(j(r)σ2

r ) = −j(r)
d

dr
ΦT(r) , (M.3.3)

d

dr
PDM(r) = −ρDM(r)

d

dr
ΦT(r) . (M.3.4)

We have expressed the luminous pressure term above in terms of the lumi-
nosity density, which has been also introduced in the right side of the equa-
tion for compatibility. Notice moreover that this is possible because we are
considering here constant (luminous) mass-to-light ratios.

The above system equations is considered together with the Poisson equa-
tion,

∇2ΦT(r) = 4πGρT(r) . (M.3.5)

With the aim of obtaining an unique equation which contain the informa-
tion of the coupled system (M.3.3–M.3.4), we divide both equations to elim-
inate the gravitational gradient, and separate each matter component func-

matter dominant galaxies in the Universe, this result corresponds only for halo regions.
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tions at each side of the new equation, to obtain,

1

ρDM(r)

d

dr
PDM(r) =

1

j(r)

d

dr
j(r)σ2

r . (M.3.6)

Equation (M.3.6) will be considered from now on as a Jean master equation,
containing the information of both kinds of matter which self-gravitates in an
unique system.

We turn now to deal with the equation of state of the dark matter model.
Here we will limit to deal with the parametric equation of state of a non-
relativistic self-gravitating Fermi gas, being this physical regime more than
sufficient when dealing with normal galaxies, and in particular as in this
work, dwarf galaxies. Thus we have (the spin degeneracy has been taken
g = 2),

ρDM =
m4

π2h̄3

∫ ∞

0
v2 fDM(r, v2) dv, (M.3.7)

PDM =
1

3

m4

π2h̄3

∫ ∞

0
v4 fDM(r, v2) dv, (M.3.8)

where fDM(r, v2) is given by

fDM(r, v2) =
1

exp [(mv2/(2kT)− θ(r)] + 1
. (M.3.9)

with m the fermion mass, T = constant, the temperature of the isothermal
dark matter component, θ(r) = µ(r))/kT is the degeneracy parameter de-
fined in terms of the gravitationally coupled chemical potential µ(r), and k
the Boltzmann constant. The infinite integrals in (M.3.7–M.3.8) can be ex-
pressed in terms of the Polylogarithmic spetial functions Lis(z) of order s and
argument z. Considering that Lis(−z) = −Γ(s)−1

∫ ∞

0 dt ts−1/[exp (t)/z + 1],

with t = mv2/(2kT), z = exp (θ(r)), and s = 3/2 or s = 5/2 in corre-
spondence with (M.3.7) or (M.3.8) respectively. If the following property for
the derivative of the Polylogarithm d[Lis(z(r))]/dr = z′(r)/z(r) Lis−1(z(r))
is used, we directly have for the left side in Eq. (M.3.6)

1

ρDM(r)

dPDM(r)

dr
=

kT

m

d

dr
θ(r) . (M.3.10)
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Equation (M.3.10) will be considered from now on as a dark matter master
equation, containing only information about the equation of state of the dark
matter component.

Thus, we now combine the two master equations (M.3.6) and (M.3.10) in
one unique equation given by,

1

j(r)

d

dr
(j(r)σ2

r ) =
kT

m

d

dr
θj(r) . (M.3.11)

It is important to notice that equation (M.3.11) is an ordinary linear differen-
tial equation in θj(r), this last being interpreted as the degeneracy parameter
affected by the gravitational effect of the baryonic distribution j(r). Notice
that on the left side of Eq. (M.3.11) we have the observables, and on the right
side we have the parameters of the dark matter component (T,θ,m), with T
the DM temperature which must be found to fully solve the equations.

Once the solution for the degeneracy parameter θj(r) is obtained from the
observables σ ≡ σr and j(r), this must be replaced in the Polylogarithm vari-
ant of equation (M.3.7) to yield the following important expression for the
dark matter density function,

ρDM(r) = −m5/2(kT)3/2

√
2π3/2h̄3

Li3/2[− exp[θj(r)]] (M.3.12)

The importance of Eq. M.3.12 lays in the fact that if analytic expressions
can be obtained for the luminosity density j(r) and σ from observations,
then we can have semi-analytic dark matter density profiles from it. This
would further imply a valuable possibility to constraint the dark matter can-
didate mass m, when the observationally inferred magnitudes as core and
halo mass are provided. In next section I proceed to apply this generalized
treatment to a sample of well resolved nucleated dwarf galaxies, for which
either spectrometric and photometric measurements has been obtained from
parsec distance-scales up to ∼ 102 pc.

M.4. Application to nucleated dwarf galaxies

The dwarf galaxies are an excellent astrophysical laboratory to study the
distribution and nature of the dark matter particles because they belong to
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the most dark matter-dominated objects in the Universe as demonstrated in
Strigari et al. (2008). Recently, in Kourkchi et al. (2012) a big sample of about
70 dwarf galaxies in the Coma cluster (of distance D = 100Mpc) were ana-
lyzed from high-resolution spectroscopic and photometric data, evidencing
a nucleated luminosity profile through the center in the majority of the cases.
It is believed that this central light excess is an imprint of the formation his-
tory of these galaxies, but there is no closed explanation of the causes and
processes which leads to this new structure at pc distance-scales or below.
The application of the generalized approach here introduced pretends to give
more light to this important issue.

The nucleated surface brightness profiles observed in dwarf galaxies
Kourkchi et al. (2012), are typically modeled by a Sérsic+Gaussian model of
the form3 (see also Fig. M.1)

Σ(R)

(L⊙/pc2)
= Σ0 e−0.5(R/Rc)2

+ Σe e−b(R/Re−1). (M.4.1)

where Σ0 is the central observed value of the surface brightness and Σe the
effective surface brightness, while Rc and Re are the central core scale radius
and the effective radius respectively. It is important to notice that the Sérsic
index n in (M.4.1) has been taken equal to unity as it is representative of the
majority of the sample considered in Kourkchi et al. (2012). The value of b
depends on n (see e.g. Prugniel and Simien (1997)), and in the cases analyzed
here (i.e. n = 1) it is b ≈ 1.66. The three dimensional luminosity density
profile j(r) is obtained through the Abel de-projection formula to yield the
following analytic expression,

j(r)

(L⊙/pc3)
=

1.25

π

Σ0

Rc
e−0.5(r/Rc)2

+
7.92

π

Σe

Re
K0(1.6r/Re) (M.4.2)

where K0(x) is the modified Bessel function of second kind and of order 0.
We adopt typical values of luminosity and scale-radii in dwarfs as shown
in Kourkchi et al. (2012): Σ0 = 560 L⊙/pc2, Σe = 40 L⊙/pc2, Rc = 25 pc,
Re = 850 pc. The constant line-of-sight velocity dispersion adopted here is
σlos ≡ σr = 9 km/s, according to Kourkchi et al. (2012), thus implying a total

3We take the nucleated dwarf GMP3080 as a prototype galaxy of the sample studied in
Kourkchi et al. (2012), from which typical photometric and spectroscopic observed values
are taken as a reference.
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(integrated) mass-to-light ratio of Υ = 1.6 as obtained from Kourkchi et al.
(2012) (see Fig. 12 of that paper).

The DM temperature T needed to finally solve Eqtn. (M.3.11) is obtained by
assuming DM predomination in the halo region, where clearly the Mawellian
regime in the Fermi-Dirac distribution function is reached (i.e. µ(r)/kT <<

−1). Therefore we must have necessarily T ≈ mσ2
DM/k, where σDM is the DM

one-dimensional dispersion velocity. Now, σDM can be obtained from the flat
part of the DM rotation curve proper of this classical regime, where the fol-

lowing relation holds (see e.g. Binney and Tremaine (2008)) vcirc =
√

2σDM.
With this we have the desired DM temperature as T = mv2

circ/(2k). In what
follows we adopt vcirc = 13 km/s, being a typical circular velocity in dwarf
galaxies as shown in Walker et al. (2009); leading to kT/m = v2

circ/2 (km/s)2,
most important in order to solve Eq. (M.3.11).

The function θj(r) is obtained by integration of the equation (M.3.11) be-

tween r0 and r, with σ2
r = 81 (km/s)2 and kT/m = 84.5 (km/s)2, to yield

θj(r) = 0.95 ln [j(r)/j(r0)] + θj(r0), with j(r0 = 4 pc)= 12.3 L⊙/pc3, be-
ing r0 the innermost resolved radius for a typical dwarf galaxy as studied
in Kourkchi et al. (2012).

Once with the solution for θj(r), and by using Eq. (M.3.12) together
with the total mass density ρT(r) = Υj(r), it is possible to obtain the ra-
tio between them. This ratio is calculated in dimensionless units to obtain
an expression only in terms of the free parameter θ0

j (i.e. independently

of the fermion mass). For this, Eq. (M.3.12) is normalized dividing by

ρDM
∗ = m4v3

circ/(4π3/2h̄3), while ρT(r) is normalized dividing by the central

total mass density ρT
0 ≈ 20M⊙/pc3. Therefore the new normalized formulas

are

ρDM
n = −Li3/2[−(j(r)/j0)

0.95e
θ0

j ]; ρT
n = Υj(r)/ρT

0 . (M.4.3)

In Fig. M.2 we show the (normalized) total mass density profile typical of a
nucleated dwarf galaxy in the Coma cluster ρT

n together with two different
ρDM

n for two different values of θ0
j . The value of θ0

j = −0.4 is selected assum-

ing a dark matter dominance of ∼ 94% at Re (and a dominance of ∼ 55% at
r0), while θ0

j = −0.7 corresponds for a dark matter dominance of∼ 70% at Re

(with a ∼ 42% at r0). Values of θ0
j > 0 are prohibited because otherwise the

dark matter density would overcome the total mass density.

Once the precise DM dominance at the center of the configuration r0 is
known, the ‘ino’ mass m can be obtained from the DM density equation ρDM

n
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Figure M.1.: A double-component Sérsic-Gaussian model fit to a typical ob-
served surface brightness Σ(R) in (L⊙/pc2), as considered in Kourkchi et al.
(2012).

together with the normalization factor ρDM
∗ . The calculations in the two cases

here assumed θ0
j = −0.4 and θ0

j = −0.7 leads respectively, to rest fermion

masses of m = 1.15 keV/c2 and m = 1.14 keV/c2; implying an small effect
of few 101 eV/c2 due to the different dark matter halo dominance adopted.
These mass values has to be seriously considered only as order of magnitude
due to the many different simplifying assumptions adopted such as spherical
symmetry and constant σlos and Υ, being not necessarily the case in real dwarf
galaxies.

M.5. Conclusions

In conclusion, from this two-component (DM plus stars) dynamic approach,
and due to the semi-degenerate nature of the dark matter phase-space
adopted here, it is possible to better understand the so-called central light
excess observed in the light profiles of many dwarf galaxies. This is, the
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Figure M.2.: Two different dimensionless dark matter density profiles in cor-
respondence with the free parameters θ0

j = −0.4 and θ0
j = −0.7 implying a

dark matter dominance of ∼ 94% and ∼ 70% at Re respectively. These dark
profiles are obtained from the dynamical multi-component approach here de-
veloped and are contrasted against the total mass density profile as obtained
directly from the observables, nicely showing how light follows dark matter
all along the configuration.

fact that the dominating DM component condenses through the center due
the (fermionic) quantum pressure, it generates a deepen in the gravitational
potential well in which the baryonic component naturally falls in, generat-
ing as a response a nucleated behaviour in the light profile we observe at pc
distance-scales or below. The second, and most important outcome of this
approach, is that once the dark matter dominance is known at the effective
radius Re, the ‘ino’ mass value can be obtained from the equations, falling
in the keV region. Nevertheless, a subtle point remains regarding the rela-
tion between the DM temperature and the observed dispersion velocity. It is
important to notice that the DM density solution (see Eq. (M.4.3)) is very sen-
sitive to the rate σ2

los/(kT/m), which enters as a power in the argument of the
Polylogarythmic function Li3/2. The fact that the DM temperature is calcu-
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lated through the observed circular velocity at halo scales (vcirc) as explained
above, while σlos cames from the distribution of light, makes crucial to obtain
accurate data in both cases. In any case, if we center the attention in dwarf
spheroidal galaxies (in better consistency with the symmetries adopted) as
studied for example in Walker et al. (2009), we see that σlos is always around
10 km/s, while typical vcirc are about 13 km/s for cored DM profiles, exactly
as considered here.

Moreover, we want to emphasize the potential importance of this approach
in views of future high-resolution observations through the center of nearby
dwarfs which will reach sub-pc distance-scales; leading to a better under-
standing in the role of dark matter in connection with massive dark central
objects generally interpreted as intermediate massive black holes.
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