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1. Topics

• The Gamma-Ray Burst (GRB) extended afterglow luminosity evolution
over the equitemporal surfaces (EQTS).

• The apparent radius of the equitemporal surfaces in the sky.

• Exact versus approximate equations of motion in GRB afterglows.

• Exact analytic expressions for the EQTS in GRB afterglows.

• Exact versus approximate beaming formulas in GRB afterglows.
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• Jurgen Ehlers (Max-Plank Institut, Germany)

• Federico Fraschetti (CEA Saclay, France)

• Eliana La Francesca (Undergraduate, Italy)

• Francesco Alessandro Massucci (Undergraduate, Italy)

215





3. Brief description

3.1. Highlights of recent results

3.1.1. The luminosity evolution over the equitemporal
surfaces in the prompt emission of Gamma-Ray Bursts

It is widely accepted that Gamma-Ray Burst (GRB) afterglows originate from
the interaction of an ultrarelativistically expanding shell into the CircumBurst
Medium (CBM). Differences exists on the detailed kinematics and dynamics
of such a shell (see e.g. Bianco and Ruffini, 2005a; Meszaros, 2006, and refs.
therein).

Due to the ultrarelativistic velocity of the expanding shell (Lorentz gamma
factor γ ∼ 102 − 103), photons emitted at the same time in the laboratory
frame (i.e. the one in which the center of the expanding shell is at rest) from
the shell surface but at different angles from the line of sight do not reach
the observer at the same arrival time. Therefore, if we were able to resolve
spatially the GRB afterglows, we would not see the spherical surface of the
shell. We would see instead the projection on the celestial sphere of the EQ-
uiTemporal Surface (EQTS), defined as the surface locus of points which are
source of radiation reaching the observer at the same arrival time (see e.g.
Couderc, 1939; Rees, 1966; Sari, 1998; Panaitescu and Meszaros, 1998; Gra-
not et al., 1999a; Bianco et al., 2001; Bianco and Ruffini, 2004, 2005b, and refs.
therein). The knowledge of the exact shape of the EQTSs is crucial, since any
theoretical model must perform an integration over the EQTSs to compute
any prediction for the observed quantities (see e.g. Gruzinov and Waxman,
1999; Oren et al., 2004; Bianco and Ruffini, 2004, 2005b; Granot et al., 2005;
Meszaros, 2006; Huang et al., 2006, 2007, and refs. therein).

One of the key problems is the determination of the angular size of the vis-
ible region of each EQTS, as well as the distribution of the luminosity over
such a visible region. In the current literature it has been shown that in the
latest afterglow phases the luminosity is maximum at the boundaries of the
visible region and that the EQTS must then appear as expanding luminous
“rings” (see e.g. Waxman, 1997; Sari, 1998; Panaitescu and Meszaros, 1998;
Granot et al., 1999a,b; Waxman et al., 1998; Galama et al., 2003; Granot and
Loeb, 2003; Taylor et al., 2004; Granot, 2008, and refs. therein). Such an anal-
ysis is applied only in the latest afterglow phases to interpret data from radio
observations (Frail et al., 1997; Waxman et al., 1998; Galama et al., 2003; Tay-
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3. Brief description

lor et al., 2004; Granot et al., 2005; Taylor et al., 2005; Pihlström et al., 2007)
or gravitational microlensing (Garnavich et al., 2000; Gaudi et al., 2001; Ioka
and Nakamura, 2001; Granot and Loeb, 2001). The shell dynamics is usually
assumed to be fully adiabatic and to be described by a power-law γ ∝ r−3/2,
following the Blandford and McKee (1976) self similar solution, where γ and
r are respectively the Lorentz gamma factor and the radius of the expanding
shell. Such a power-law behavior has been extrapolated backward from the
latest phases of the afterglow all the way to the prompt emission phase.

In Bianco and Ruffini (2004, 2005b,a) there have been presented the analytic
solutions of the equations of motion for GRB afterglow, compared with such
approximate solutions, both in the fully radiative and adiabatic regimes, and
the corresponding analytic expressions for the EQTSs. It has been shown
that the approximate power-law regime can be asymptotically reached by
the Lorentz gamma factor only in the latest afterglow phases, when γ ∼ 10,
and only if the initial Lorentz gamma factor γ◦ of the shell satisfies γ◦ > 102

in the adiabatic case or γ◦ > 104 in the radiative case. Therefore, in no way
the approximate power-law solution can be used to describe the previous
dynamical phases of the shell, which are the relevant ones for the prompt
emission and for the early afterglow.

Starting from these premises, in the appendix “The luminosity evolution
over the EQuiTemporal Surfaces in the prompt emission of Gamma-Ray Bursts”
(see section A) we present the distribution of the extended afterglow lumi-
nosity over the visible region of a single EQTSs within the “fireshell” model
for GRBs. Such a model uses the exact solutions of the fireshell equations
of motion and assumes a fully radiative dynamics (see Ruffini et al., 2001a,
2009, and refs. therein for details). We recall that within the fireshell model
the peak of the extended afterglow encompasses the prompt emission. We
focus our analysis on the prompt emission and the early afterglow phases.
Our approach is therefore complementary to the other ones in the current lit-
erature, which analyze only the latest afterglow phases, and it clearly leads
to new results when applied to the prompt emission phase. For simplicity,
we consider only the bolometric luminosity (Ruffini et al., 2002), since during
the prompt phase this is a good approximation of the one observed e.g. by
BAT or GBM instruments (Ruffini et al., 2002, 2004b). The analysis is sepa-
rately performed over different selected EQTSs. The temporal evolution of
the luminosity distribution over the EQTSs’ visible region is presented. As a
consequence of these results, we show the novel feature that at the beginning
of the prompt emission the most luminous regions of the EQTSs are the ones
closest to the line of sight. On the contrary, in the late prompt emission and
in the early afterglow phases the most luminous EQTS regions are the ones
closest to the boundary of the visible region.
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3.2. Appendix on previous results

3.1.2. The apparent size of equitemporal surfaces in the sky

A consequence of the results presented above is that we were able to derive an
analytic expression for the temporal evolution, measured in arrival time, of
the apparent size of the EQTSs in the sky, valid in both the fully radiative and
the adiabatic regimes. Such an expression is presented in the appendix “The
apparent radius of the equitemporal surfaces in the sky” (section B). We will
also discuss analogies and differences with other approaches in the current
literature which assumes an adiabatic dynamics instead of a fully radiative
one.

3.2. Appendix on previous results

3.2.1. Exact versus approximate solutions in Gamma-Ray
Burst afterglows

In the appendix “Exact versus approximate solutions in Gamma-Ray Burst
afterglows” (section C) we first write the energy and momentum conserva-
tion equations for the interaction between the ABM pulse and the Circum-
Burst Medium (CBM) in a finite difference formalism, already discussed in
the previous report about “Gamma-Ray Bursts”. We then express these same
equations in a differential formalism to compare our approach with the ones
in the current literature. We write the exact analytic solutions of such dif-
ferential equations both in the fully radiative and in the adiabatic regimes.
We then compare and contrast these results with the ones following from
the ultra-relativistic approximation widely adopted in the current literature.
Such an ultra-relativistic approximation, adopted to apply to Gamma-Ray
Bursts (GRBs) the Blandford and McKee (1976) self-similar solution, led to
a simple power-law dependence of the Lorentz gamma factor of the bary-
onic shell on the distance. On the contrary, we show that no constant-index
power-law relations between the Lorentz gamma factor and the distance can
exist, both in the fully radiative and in the adiabatic regimes. The exact solu-
tion is indeed necessary if one wishes to describe properly all the phases of
the afterglow including the prompt emission.

3.2.2. Exact analytic expressions for the equitemporal
surfaces in Gamma-Ray Burst afterglows

In the appendix “Exact analytic expressions for the equitemporal surfaces in
Gamma-Ray Burst afterglows” (section D) we follow the indication by Paul
Couderc (1939) who pointed out long ago how in all relativistic expansions
the crucial geometrical quantities with respect to a physical observer are the
“equitemporal surfaces” (EQTSs), namely the locus of source points of the
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3. Brief description

signals arriving at the observer at the same time. After recalling the formal
definition of the EQTSs, we use the exact analytic solutions of the equations
of motion recalled in the previous section to derive the exact analytic expres-
sions of the EQTSs in GRB afterglow both in the fully radiative and adiabatic
regimes. We then compare and contrast such exact analytic solutions with the
corresponding ones widely adopted in the current literature and computed
using the approximate “ultra-relativistic” equations of motion discussed in
the previous section. We show that the approximate EQTS expressions lead
to uncorrect estimates of the size of the ABM pulse when compared to the
exact ones. Quite apart from their academic interest, these results are crucial
for the interpretation of GRB observations: all the observables come in fact
from integrated quantities over the EQTSs, and any minor disagreement in
their definition can have extremely drastic consequences on the identification
of the true physical processes.

3.2.3. Exact versus approximate beaming formulas in
Gamma-Ray Burst afterglows

In the appendix “Exact versus approximate beaming formulas in Gamma-
Ray Burst afterglows” (section E) we discuss the possibility that GRBs origi-
nate from a beamed emission, one of the most debated issue about the nature
of the GRB sources in the current literature after the work by Mao and Yi
(1994) (see e.g. Piran, 2005; Meszaros, 2006, and references therein). In par-
ticular, on the ground of the theoretical considerations by Sari et al. (1999), it
was conjectured that, within the framework of a conical jet model, one may
find that the gamma-ray energy released in all GRBs is narrowly clustered
around 5 × 1050 ergs (Frail et al., 2001). We have never found in our GRB
model any necessity to introduce a beamed emission. Nevertheless, we have
considered helpful and appropriate helping the ongoing research by giving
the exact analytic expressions of the relations between the detector arrival
time td

a of the GRB afterglow radiation and the corresponding half-opening
angle ϑ of the expanding source visible area due to the relativistic beaming.
We have done this both in the fully radiative and in the adiabatic regimes, us-
ing the exact analytic solutions presented in the previous sections. Again, we
have compared and contrasted our exact solutions with the approximate ones
widely used in the current literature. We have found significant differences,
particularly in the fully radiative regime which we consider the relevant one
for GRBs, and it goes without saying that any statement on the existence of
beaming can only be considered meaningful if using the correct equations.
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4. Publications on refereed journals

1. C.L. Bianco, R. Ruffini; “Exact versus approximate equitemporal sur-
faces in Gamma-Ray Burst afterglows”; The Astrophysical Journal, 605,
L1 (2004).

By integrating the relativistic hydrodynamic equations introduced by Taub we
have determined the exact EQuiTemporal Surfaces (EQTSs) for the Gamma-
Ray Burst (GRB) afterglows. These surfaces are compared and contrasted to
the ones obtained, using approximate methods, by Panaitescu and Meszaros
(1998); Sari (1998); Granot et al. (1999a).

2. C.L. Bianco, R. Ruffini; “On the exact analytic expressions for the equi-
temporal surfaces in Gamma-Ray Burst afterglows”; The Astrophysical
Journal, 620, L23 (2005).

We have recently shown (see Bianco and Ruffini, 2004) that marked differences
exist between the EQuiTemporal Surfaces (EQTSs) for the Gamma-Ray Burst
(GRB) afterglows numerically computed by the full integration of the equa-
tions of motion and the ones found in the current literature expressed ana-
lytically on the grounds of various approximations. In this Letter the exact
analytic expressions of the EQTSs are presented both in the case of fully ra-
diative and adiabatic regimes. The new EQTS analytic solutions validate the
numerical results obtained in Bianco and Ruffini (2004) and offer a powerful
tool to analytically perform the estimates of the physical observables in GRB
afterglows.

3. C.L. Bianco, R. Ruffini; “Exact versus approximate solutions in Gamma-
Ray Burst afterglows”; The Astrophysical Journal, 633, L13 (2005).

We have recently obtained the exact analytic solutions of the relativistic equa-
tions relating the radial and time coordinate of a relativistic thin uniform shell
expanding in the interstellar medium in the fully radiative and fully adiabatic
regimes. We here re-examine the validity of the constant-index power-law re-
lations between the Lorentz gamma factor and its radial coordinate, usually
adopted in the current Gamma-Ray Burst (GRB) literature on the grounds of
an “ultrarelativistic” approximation. Such expressions are found to be math-
ematically correct but only approximately valid in a very limited range of the
physical and astrophysical parameters and in an asymptotic regime which is
reached only for a very short time, if any, and are shown to be not applicable
to GRBs.
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4. C.L. Bianco, R. Ruffini; “Exact versus approximate beaming formulae
in Gamma-Ray Burst afterglows”; The Astrophysical Journal, 644, L105
(2006).

We present the exact analytic expressions to compute, assuming the emitted
Gamma-Ray Burst (GRB) radiation is not spherically symmetric but is con-
fined into a narrow jet, the value of the detector arrival time at which we start
to “see” the sides of the jet, both in the fully radiative and adiabatic regimes.
We obtain this result using our exact analytic expressions for the EQuiTempo-
ral Surfaces (EQTSs) in GRB afterglows. We re-examine the validity of three
different approximate formulas currently adopted for the adiabatic regime in
the GRB literature. We also present an empirical fit of the numerical solu-
tions of the exact equations, compared and contrasted with the three above
approximate formulas. The extent of the differences is such as to require a re-
assessment on the existence and entity of beaming in the cases considered in
the current literature, as well as on its consequences on the GRB energetics.

5. C.L. Bianco, F.A. Massucci, R. Ruffini: “The luminosity evolution over
the EQuiTemporal Surfaces in the prompt emission of Gamma-Ray Bursts”;
Int. J. Mod. Phys D, 20, 1919 (2011).

Due to the ultrarelativistic velocity of the expanding “fireshell” (Lorentz gamma
factor γ ∼ 102 − 103), photons emitted at the same time from the fireshell
surface do not reach the observer at the same arrival time. In interpreting
Gamma-Ray Bursts (GRBs) it is crucial to determine the properties of the EQ-
uiTemporal Surfaces (EQTSs): the locus of points which are source of radiation
reaching the observer at the same arrival time. In the current literature this
analysis is performed only in the latest phases of the afterglow. Here we study
the distribution of the GRB bolometric luminosity over the EQTSs, with spe-
cial attention to the prompt emission phase. We analyze as well the temporal
evolution of the EQTS apparent size in the sky. We use the analytic solutions
of the equations of motion of the fireshell and the corresponding analytic ex-
pressions of the EQTSs which have been presented in recent works and which
are valid for both the fully radiative and the adiabatic dynamics. We find the
novel result that at the beginning of the prompt emission the most luminous
regions of the EQTSs are the ones closest to the line of sight. On the contrary,
in the late prompt emission and in the early afterglow phases the most lumi-
nous EQTS regions are the ones closest to the boundary of the visible region.
This transition in the emitting region may lead to specific observational sig-
natures, i.e. an anomalous spectral evolution, in the rising part or at the peak
of the prompt emission. We find as well an expression for the apparent ra-
dius of the EQTS in the sky, valid in both the fully radiative and the adiabatic
regimes. Such considerations are essential for the theoretical interpretation of
the prompt emission phase of GRBs.
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A. The luminosity evolution over
the EQuiTemporal Surfaces in
the prompt emission of
Gamma-Ray Bursts

A.1. The Equitemporal surfaces (EQTS)

For the case of a spherically symmetric fireshell considered in this Letter, the
EQTSs are surfaces of revolution about the line of sight. The general expres-
sion for their profile, in the form ϑ = ϑ(r), corresponding to an arrival time ta
of the photons at the detector, can be obtained from (e.g. Bianco and Ruffini,
2005b):

cta = ct (r)− r cos ϑ + r? , (A.1.1)

where r? is the initial size of the expanding fireshell, ϑ is the angle between
the radial expansion velocity of a point on its surface and the line of sight,
t = t(r) is its equation of motion, expressed in the laboratory frame, and c is
the speed of light.

In the case of a fully radiative regime, the dynamics of the system is given
by the following solution of the equations of motion (e.g. Piran, 1999; Bianco
and Ruffini, 2005b, and refs. therein):

γ =
1 + (Mcbm/MB)

(
1 + γ−1

◦
)
[1 + (1/2) (Mcbm/MB)]

γ−1
◦ + (Mcbm/MB)

(
1 + γ−1

◦
)
[1 + (1/2) (Mcbm/MB)]

, (A.1.2)

where γ is the Lorentz gamma factor of the fireshell, Mcbm is the amount
of CBM mass swept up within the radius r and γ◦ and MB are respectively
the values of the Lorentz gamma factor and of the mass of the fireshell at
the beginning of the extended afterglow phase. Correspondingly, the exact
analytic expression for t = t(r) is (Bianco and Ruffini, 2005b):

t (r) = (MB−m◦i )(r−r◦)
2c
√

C
+ r◦

√
3C

6cm◦i A2

[
arctan 2r−Ar◦

Ar◦
√

3
− arctan 2−A

A
√

3

]
+ r◦

√
C

12cm◦i A2 ln
{

[A+(r/r◦)]3(A3+1)
[A3+(r/r◦)3](A+1)3

}
+ t◦ +

m◦i r◦
8c
√

C

(
r4−r4

◦
r4◦

)
, (A.1.3)

223
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Figure A.1.: The Fireshell Lorentz gamma factors in the fully radiative regime
(red line), given by Eq.(A.1.2), and in the adiabatic regime (blue line), given
by Eq.(A.1.5).

where A = 3
√
(MB −m◦i )/m◦i , C = MB

2(γ◦ − 1)/(γ◦ + 1), t◦ is the value
of the time t at the beginning of the extended afterglow phase and m◦i =
(4/3)πmpncbmr3

◦. Inserting Eq.(A.1.3) into Eq.(A.1.1) we have the analytic
expression for the EQTS in the fully radiative regime (Bianco and Ruffini,
2005b):

cos ϑ =
(MB−m◦i )(r−r◦)

2r
√

C
+ r◦

√
3C

6rm◦i A2

[
arctan 2r−Ar◦

Ar◦
√

3
− arctan 2−A

A
√

3

]
+

m◦i r◦
8r
√

C

(
r4−r4

◦
r4◦

)
+ r◦

√
C

12rm◦i A2 ln
{

[A+(r/r◦)]3(A3+1)
[A3+(r/r◦)3](A+1)3

}
+ ct◦−cta+r?

r . (A.1.4)

Instead, the corresponding equations in the adiabatic regime are (Bianco
and Ruffini, 2005b):

γ2 =
γ2
◦ + 2γ◦ (Mcbm/MB) + (Mcbm/MB)

2

1 + 2γ◦ (Mcbm/MB) + (Mcbm/MB)
2 , (A.1.5)

t (r) =
(

γ◦ −
m◦i
MB

)
r−r◦

c
√

γ2◦−1
+

m◦i
4MBr3◦

(
r4−r4

◦
c
√

γ2◦−1

)
+ t◦ , (A.1.6)

cos ϑ =
m◦i

4MB
√

γ2◦−1

(
r4−r4

◦
r3◦r

)
+ ct◦−cta+r?

r − γ◦−(m◦i /MB)√
γ2◦−1

( r◦−r
r
)

. (A.1.7)

A comparison between the Lorentz gamma factors in the two regimes is
presented in Fig. A.1. Here and in the following we assume the same ini-
tial conditions as in Bianco and Ruffini (2005b), namely γ◦ = 310.131, r◦ =
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A.2. The extended afterglow luminosity distribution over the EQTS

1.943× 1014 cm, t◦ = 6.481× 103 s, r? = 2.354× 108 cm, ncbm = 1.0 particles/cm3,
MB = 1.61× 1030 g. For simplicity, and since we are interested in the overall
behavior of the luminosity distribution, we assume a constant CBM density,
neglecting the inhomogeneities which are responsible of the temporal vari-
ability of the prompt emission (Ruffini et al., 2002).

A.2. The extended afterglow luminosity
distribution over the EQTS

Within the fireshell model, the GRB extended afterglow bolometric luminos-
ity in an arrival time dta and per unit solid angle dΩ is given by (details in
Ruffini et al., 2009, and refs. therein):

dEγ

dtadΩ
≡
∫

EQTS
L(r, ϑ, ϕ; ta)dΣ =

∫
EQTS

∆ε cos ϑvdt
4πΛ4dta

dΣ, (A.2.1)

where ∆ε is the energy density released in the interaction of the ABM pulse
with the CBM measured in the comoving frame, Λ = γ(1− (v/c) cos ϑ) is
the Doppler factor, dΣ is the surface element of the EQTS at arrival time ta
on which the integration is performed, and it has been assumed the fully
radiative condition. We are here not considering the cosmological redshift
of the source, which is constant during the GRB explosion and therefore it
cannot affect the results of the present analysis. We recall that in our case
such a bolometric luminosity is a good approximation of the one observed
in the prompt emission and in the early afterglow by e.g. the BAT or GBM
instruments (Ruffini et al., 2002, 2004b).

We are now going to show how this luminosity is distributed over the
EQTSs, i.e. we are going to plot over selected EQTSs the luminosity density
L(r, ϑ, ϕ; ta). The results are represented in Fig. A.2. We chose eight differ-
ent EQTSs, corresponding to arrival time values ranging from the prompt
emission (5 seconds) to the early (1 hour) afterglow phases. For each EQTS
we represent also the boundaries of the visible region due to relativistic colli-
mation, defined by the condition (see e.g. Bianco and Ruffini, 2006, and refs.
therein):

cos ϑ ≥ v/c . (A.2.2)

We obtain that, at the beginning (ta = 5 seconds), when γ is approximately
constant, the most luminous regions of the EQTS are the ones along the line
of sight. However, as γ starts to drop (ta & 30 seconds), the most luminous
regions of the EQTSs become the ones closest to the boundary of the visible
region. This transition in the emitting region may lead to specific observa-
tional signatures, i.e. an anomalous spectral evolution, in the rising part or at
the peak of the prompt emission.
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A. The luminosity evolution over the EQTSs in the GRB prompt emission

Figure A.2.: We plot the luminosity density L given in Eq.(A.2.1) over 8 dif-
ferent EQTSs, corresponding to 8 different ta values ranging from the prompt
emission (5 seconds) to the early (1 hour) afterglow phases (see title above
each plot). Each EQTS is represented as its projection on a plane containing
the line of sight, which coincides with the X axis of each plot and which is
represented by a dashed gray line. The observer is far away along the X axis.
The luminosity density distribution over each EQTS is represented by a color
gradient, with the highest values corresponding to the lightest colors (see the
key on the left of each plot). The scales of the different axes and of the color
gradient are different among the different plots, since it was not possible to
choose a single scale suitable for all of them. The black curves represent the
condition cos ϑ = v/c, see Eq.(A.2.2). The boundaries of the visible regions
are therefore defined by the intersections of such lines with the EQTS exter-
nal profiles, which coincide with the points where the EQTS external profiles
show an horizontal tangent in the plots.
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A.3. Conclusions

A.3. Conclusions

Within the fireshell model, using the exact analytic expressions for the fireshell
equations of motion and for the corresponding EQTSs in the fully radiative
condition, we analyzed the temporal evolution of the distribution of the ex-
tended afterglow luminosity over the EQTS during the prompt emission and
the early afterglow phases. We find that, at the beginning of the prompt emis-
sion (ta = 5 seconds), when γ is approximately constant, the most luminous
regions of the EQTS are the ones along the line of sight. As γ starts to drop
(ta & 30 seconds), the most luminous regions of the EQTSs become the ones
closest to the boundary of the visible region. This transition in the emitting re-
gion may lead to specific observational signatures, i.e. an anomalous spectral
evolution, in the rising part or at the peak of the prompt emission. The EQTSs
of GRB extended afterglows should therefore appear in the sky as point-like
sources at the beginning of the prompt emission but evolving after a few sec-
onds into expanding luminous “rings”, with an apparent radius evolving in
time and always equal to the maximum transverse EQTS visible radius r⊥.
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B. The apparent radius of the
equitemporal surfaces in the sky

From sec. A.2 we obtain that within the fireshell model the EQTSs of GRB
extended afterglows should appear in the sky as point-like sources at the
beginning of the prompt emission but evolving after a few seconds into ex-
panding luminous “rings”, with an apparent radius evolving in time and
always equal to the maximum transverse EQTS visible radius r⊥ which can
be obtained from Eqs.(A.1.1,A.2.2):

r⊥ = r sin ϑ
cta = ct (r)− r cos ϑ + r?

cos ϑ = v/c
. (B.0.1)

where t = t(r) is given by Eq.(A.1.3). With a small algebra we get:{
r⊥ = r/γ(r)
ta = t(r)− (r/c)

√
1− γ(r)−2 + (r?/c)

, (B.0.2)

where γ ≡ γ (r) is given by Eq.(A.1.2) and t ≡ t (r) is given by Eq.(A.1.3),
since we assumed the fully radiative condition. Eq.(B.0.2) defines parametri-
cally the evolution of r⊥ ≡ r⊥ (ta), i.e. the evolution of the maximum trans-
verse EQTS visible radius as a function of the arrival time. In Fig. A.2 we
saw that such r⊥ coincides with the actual value of the EQTS apparent ra-
dius in the sky only for ta & 30 s, since for ta . 30 s the most luminous
EQTS regions are the ones closest to the line of sight (see the first three plots
in Fig. A.2). Therefore, in Fig. B.1 we plot r⊥ given by Eq.(B.0.2) in the fully
radiative regime together with the actual values of the EQTS apparent radius
in the sky taken from Fig. A.2 in the three cases in which they are different.
It is clear that, during the early phases of the prompt emission, even the “ex-
act solution” given by Eq.(B.0.2) can be considered only an upper limit to the
actual EQTS apparent radius in the sky.

In the current literature (see e.g. Sari, 1998; Waxman et al., 1998; Granot
et al., 1999a,b; Garnavich et al., 2000; Granot and Loeb, 2001; Gaudi et al.,
2001; Galama et al., 2003; Granot and Loeb, 2003; Taylor et al., 2004; Oren
et al., 2004; Granot et al., 2005; Granot, 2008) there are no analogous treat-
ments, since it is always assumed an adiabatic dynamics instead of a fully
radiative one and only the latest afterglow phases are addressed. It is usually
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B. The EQTS apparent radius in the sky
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Figure B.1.: The EQTS apparent radius in the sky as a function of the arrival
time ta in the fully radiative regime. The red line represents the maximum
transverse EQTS visible radius r⊥ following Eq.(B.0.2). The three blue points
represents the actual EQTS apparent radius in the sky in the three cases ta =
5.0 s, ta = 10.0 s and ta = 30.0 s in which, as shown in Fig. A.2, it is smaller
than r⊥. The blue line is a linear interpolation of such points.
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assumed the Blandford and McKee (1976) self similar solution for the adia-
batic dynamics γ ∝ r−3/2. A critical analysis of the applicability to GRBs of
this approximate dynamics, instead of the exact solutions in Eqs.(A.1.5,A.1.6,A.1.7),
has been presented in Bianco and Ruffini (2005a), as recalled in the introduc-
tion. The most widely applied formula for the EQTS apparent radius in the
above mentioned current literature is the one proposed by Sari (1998):

r⊥ = 3.91× 1016 (E52/n1)
1/8 [Tdays/(1 + z)

]5/8 cm, (B.0.3)

where E52 is the initial energy of the shell in units of 1052 ergs, n1 is the CBM
density in units of 1 particle/cm3, Tdays is the arrival time at the detector of the
radiation measured in days, and z is the source cosmological redshift. Wax-
man et al. (1998) however derived a numerical factor of 3.66× 1016 instead of
3.91× 1016. Eq.(B.0.3) cannot be compared directly with Eq.(B.0.2), since they
assume two different dynamical regimes. Therefore, we first plot in Fig. B.2
the exact solution for r⊥ given by Eq.(B.0.2) both in the fully radiative case,
using Eqs.(A.1.2,A.1.3), and in the adiabatic one, using Eqs.(A.1.5,A.1.6). We
see that they almost coincide during the prompt emission while they start
to diverge in the early afterglow phases, following the behavior of the cor-
responding Lorentz gamma factors (see Fig. A.1 and details in Bianco and
Ruffini, 2005a).

Now, in Fig. B.3 and for the same initial conditions assumed in previous
figures, we plot the maximum transverse EQTS visible radius r⊥ given by
Eq.(B.0.2) in the adiabatic case, using Eqs.(A.1.5,A.1.6), together with Eq.(B.0.3),
proposed by Sari (1998), and with the corresponding modification in the nu-
merical factor proposed by Waxman et al. (1998). From such a comparison,
we can see that the approximate regime r⊥ ∝ t5/8

a overestimates the exact so-
lution for r⊥ during the prompt emission and the early afterglow phases. It is
asymptotically reached only in the latest afterglow phases (ta & 103 s), in the
very small region in which the approximate power-law dynamics starts to be
applicable (see details in Bianco and Ruffini, 2005a). However, there is still
a small discrepancy in the normalization: the constant numerical factor in
front of Eq.(B.0.3) should be ∼ 3.1× 1016 instead of 3.91× 1016 or 3.66× 1016

to reproduce the behavior of the exact solution for large ta. Moreover, we
must emphasize that, in analogy with what we obtained in the fully radia-
tive case (see Fig. B.1), in the early phases of the prompt emission, when the
fireshell Lorentz γ factor is almost constant, the maximum transverse EQTS
visible radius r⊥ given by Eq.(B.0.2) can only be considered an upper limit to
the actual value of the EQTS apparent radius in the sky. In such phases the
approximation implied by Eq.(B.0.3) can therefore be even worse that what
represented in Fig. B.3.
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Figure B.2.: Comparison between the maximum transverse EQTS visible ra-
dius r⊥ computed with Eq.(B.0.2) in the adiabatic (blue line) and in the fully
radiative (red line) cases respectively.

232



10
13

10
14

10
15

10
16

10
0

10
1

10
2

10
3

10
4

E
Q

T
S

 a
p
p
a
re

n
t 
ra

d
iu

s
 (

c
m

)

Arrival time (ta) (s)

Max. trans. visible radius, adiabatic

Sari (1998), adiabatic

Waxman, Kulkarni, Frail (1998), adiabatic
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time ta in the adiabatic regime. The red line represents the maximum trans-
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Eq.(B.0.3) proposed by Sari (1998). The blue line represents the correspond-
ing modification in the numerical factor proposed by Waxman et al. (1998).
These last two lines are almost coincident on the scale of this plot.
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B. The EQTS apparent radius in the sky

B.1. Conclusions

We derived an exact analytic expression for the maximum transverse EQTS
visible radius r⊥, both in the fully radiative and in the adiabatic conditions,
and we compared it with the approximate formulas commonly used in the
current literature in the adiabatic case. We found that these last ones can not
be applied in the prompt emission nor in the early afterglow phases. Even
when the asymptotic regime is reached (ta & 103 s), it is necessary a correction
to the numerical factor in front of the expression given in Eq.(B.0.3) which
should be ∼ 3.1× 1016 instead of 3.91× 1016 or 3.66× 1016.
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C. Exact versus approximate
solutions in Gamma-Ray Burst
afterglows

The consensus has been reached that the afterglow emission originates from
a relativistic thin shell of baryonic matter propagating in the CBM and that its
description can be obtained from the relativistic conservation laws of energy
and momentum. In both our approach and in the other ones in the current
literature (see e.g. Piran, 1999; Chiang and Dermer, 1999; Ruffini et al., 2003;
Bianco and Ruffini, 2005a) such conservations laws are used. The main differ-
ence is that in the current literature it is widely adopted an ultra-relativistic
approximation, following the Blandford and McKee (1976) self-similar so-
lution, while we use the exact solution of the equations of motion (see the
previous report about “Gamma-Ray Bursts”). We here express such equa-
tions in a differential formulation which will be most useful in comparing
and contrasting our exact solutions with the ones in the current literature.

C.1. Differential formulation of the afterglow
dynamics equations

We recall from the previous report about “Gamma-Ray Bursts”that the rel-
ativistic conservation laws of energy and momentum lead to the following
finite difference expression for the equations of the afterglow dynamics:

∆Eint = ρB1V1

√
1 + 2γ1

∆Mcbmc2

ρB1V1
+

(
∆Mcbmc2

ρB1V1

)2

− ρB1V1

(
1 +

∆Mcbmc2

ρB1V1

)
,

(C.1.1)

γ2 =
γ1 +

∆Mcbmc2

ρB1 V1√
1 + 2γ1

∆Mcbmc2

ρB1 V1
+
(

∆Mcbmc2

ρB1 V1

)2
. (C.1.2)

Under the limit:
∆Mcbmc2

ρB1V1
� 1 , (C.1.3)
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C. Exact vs. approximate solutions in GRB afterglows

and performing the following substitutions:

∆Eint → dEint , γ2 − γ1 → dγ , ∆Mcbm → dMcbm , (C.1.4)

Eqs.(C.1.1,C.1.2) are equivalent to:

dEint = (γ− 1) dMcbmc2 , (C.1.5a)

dγ = −γ2−1
M dMcbm , (C.1.5b)

dM = 1−ε
c2 dEint + dMcbm , (C.1.5c)

dMcbm = 4πmpncbmr2dr , (C.1.5d)

where, we recall, Eint, γ and M are respectively the internal energy, the Lorentz
factor and the mass-energy of the expanding pulse, ncbm is the CBM num-
ber density which is assumed to be constant, mp is the proton mass, ε is the
emitted fraction of the energy developed in the collision with the CBM and
Mcbm is the amount of CBM mass swept up within the radius r: Mcbm =
(4/3)π(r3 − r◦3)mpncbm, where r◦ is the starting radius of the baryonic shell.

C.2. The exact analytic solutions

A first integral of these equations has been found in both our work and the
current literature (see e.g. Piran, 1999; Chiang and Dermer, 1999; Ruffini et al.,
2003; Bianco and Ruffini, 2005a). This leads to expressions for the Lorentz
gamma factor as a function of the radial coordinate. In the “fully radiative
condition” (i.e. ε = 1) we have:

γ =
1 + (Mcbm/MB)

(
1 + γ−1

◦
)
[1 + (1/2) (Mcbm/MB)]

γ−1
◦ + (Mcbm/MB)

(
1 + γ−1

◦
)
[1 + (1/2) (Mcbm/MB)]

, (C.2.1)

while in the “fully adiabatic condition” (i.e. ε = 0) we have:

γ2 =
γ2
◦ + 2γ◦ (Mcbm/MB) + (Mcbm/MB)

2

1 + 2γ◦ (Mcbm/MB) + (Mcbm/MB)
2 , (C.2.2)

where γ◦ is the initial value of the Lorentz gamma factor of the accelerated
baryons at the beginning of the afterglow phase.

A major difference between our treatment and the ones in the current liter-
ature is that we have integrated the above equations analytically. Thus we ob-
tained the explicit analytic form of the equations of motion for the expanding
shell in the afterglow for a constant CBM density. For the fully radiative case
we have explicitly integrated the differential equation for r (t) in Eq.(C.2.1),
recalling that γ−2 = 1 − [dr/ (cdt)]2, where t is the time in the laboratory
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C.3. Approximations adopted in the current literature

reference frame. The new explicit analytic solution of the equations of mo-
tion we have obtained for the relativistic shell in the entire range from the
ultra-relativistic to the non-relativistic regimes is (Bianco and Ruffini, 2005b):

t = MB−m◦i
2c
√

C
(r− r◦) + r◦

√
C

12cm◦i A2 ln
{

[A+(r/r◦)]3(A3+1)
[A3+(r/r◦)3](A+1)3

}
− m◦i r◦

8c
√

C

+ t◦ +
m◦i r◦
8c
√

C

(
r
r◦

)4
+ r◦

√
3C

6cm◦i A2

[
arctan 2(r/r◦)−A

A
√

3
− arctan 2−A

A
√

3

]
(C.2.3)

where we have A = 3
√(

MB −m◦i
)

/m◦i , C = MB
2(γ◦− 1)/(γ◦+ 1) and m◦i =

(4/3)πmpncbmr3
◦.

Correspondingly, in the adiabatic case we have (Bianco and Ruffini, 2005b):

t =
(

γ◦ −
m◦i
MB

)
r−r◦

c
√

γ2◦−1
+

m◦i
4MBr3◦

r4−r4
◦

c
√

γ2◦−1
+ t◦ . (C.2.4)

C.3. Approximations adopted in the current
literature

We turn now to the comparison of the exact solutions given in Eqs.(C.2.3)
with the approximations used in the current literature. We show that such an
approximation holds only in a very limited range of the physical and astro-
physical parameters and in an asymptotic regime which is reached only for
a very short time, if any, and that therefore it cannot be used for modeling
GRBs. Following Blandford and McKee (1976), a so-called “ultrarelativistic”
approximation γ◦ � γ � 1 has been widely adopted to solve Eqs.(C.1.5)
(see e.g. Sari, 1997, 1998; Waxman, 1997; Rees and Meszaros, 1998; Granot
et al., 1999a; Panaitescu and Meszaros, 1998; Panaitescu and Mészáros, 1999;
Chiang and Dermer, 1999; Piran, 1999; Gruzinov and Waxman, 1999; van
Paradijs et al., 2000; Mészáros, 2002, and references therein). This leads to
simple constant-index power-law relations:

γ ∝ r−a , (C.3.1)

with a = 3 in the fully radiative case and a = 3/2 in the fully adiabatic case.

We address now the issue of establishing the domain of applicability of the
simplified Eq.(C.3.1) used in the current literature both in the fully radiative
and adiabatic cases.
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C. Exact vs. approximate solutions in GRB afterglows

C.3.1. The fully radiative case

We first consider the fully radiative case. If we assume:

1/ (γ◦ + 1)� Mcbm/MB � γ◦/ (γ◦ + 1) < 1 , (C.3.2)

we have that in the numerator of Eq.(C.2.1) the linear term in Mcbm/MB is
negligible with respect to 1 and the quadratic term is a fortiori negligible,
while in the denominator the linear term in Mcbm/MB is the leading one.
Eq.(C.2.1) then becomes:

γ ' [γ◦/ (γ◦ + 1)] MB/Mcbm . (C.3.3)

If we multiply the terms of Eq.(C.3.2) by (γ◦ + 1)/γ◦, we obtain 1/γ◦ �
(Mcbm/MB)[(γ◦ + 1)/γ◦]� 1, which is equivalent to:

γ◦ � [γ◦/(γ◦ + 1)](MB/Mcbm)� 1 , (C.3.4)

or, using Eq.(C.3.3), to:
γ◦ � γ� 1 , (C.3.5)

which is indeed the inequality adopted in the “ultrarelativistic” approxima-
tion in the current literature. If we further assume r3 � r3

◦, Eq.(C.3.3) can be
approximated by a simple constant-index power-law as in Eq.(C.3.1):

γ ' [γ◦/ (γ◦ + 1)] MB/
[
(4/3)πncbmmpr3

]
∝ r−3 . (C.3.6)

We turn now to the range of applicability of these approximations, consis-
tently with the inequalities given in Eq.(C.3.2). It then becomes manifest that
these inequalities can only be enforced in a finite range of Mcbm/MB. The
lower limit (LL) and the upper limit (UL) of such range can be conservatively
estimated: (

Mcbm
MB

)
LL

= 102 1
γ◦+1 ,

(
Mcbm
MB

)
UL

= 10−2 γ◦
γ◦+1 . (C.3.7a)

The allowed range of variability, if it exists, is then given by:(
Mcbm
MB

)
UL
−
(

Mcbm
MB

)
LL

= 10−2 γ◦−104

γ◦+1 > 0 . (C.3.7b)

A necessary condition for the applicability of the above approximations is
therefore:

γ◦ > 104 . (C.3.8)

It is important to emphasize that Eq.(C.3.8) is only a necessary condition for
the applicability of the approximate Eq.(C.3.6) but it is not sufficient: Eq.(C.3.6)
in fact can be applied only in the very limited range of r values whose upper
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C.3. Approximations adopted in the current literature

and lower limits are given in Eq.(C.3.7a). See for explicit examples section
C.4 below.

C.3.2. The adiabatic case

We now turn to the adiabatic case. If we assume:

1/ (2γ◦)� Mcbm/MB � γ◦/2 , (C.3.9)

we have that in the numerator of Eq.(C.2.2) all terms are negligible with re-
spect to γ2

◦, while in the denominator the leading term is the linear one in
Mcbm/MB. Eq.(C.2.2) then becomes:

γ '
√
(γ◦/2) MB/Mcbm . (C.3.10)

If we multiply the terms of Eq.(C.3.9) by 2/γ◦, we obtain:

1/γ2
◦ � (2/γ◦)(Mcbm/MB)� 1 , (C.3.11)

which is equivalent to γ2
◦ � (γ◦/2)(MB/Mcbm) � 1, or, using Eq.(C.3.10),

to:
γ2
◦ � γ2 � 1 . (C.3.12)

If we now further assume r3 � r3
◦, Eq.(C.3.10) can be approximated by a

simple constant-index power-law as in Eq.(C.3.1):

γ '
√
(γ◦/2) MB/

[
(4/3)πncbmmpr3

]
∝ r−3/2 . (C.3.13)

We turn now to the range of applicability of these approximations, consis-
tently with the inequalities given in Eq.(C.3.9). It then becomes manifest that
these inequalities can only be enforced in a finite range of Mcbm/MB. The
lower limit (LL) and the upper limit (UL) of such range can be conservatively
estimated: (

Mcbm
MB

)
LL

= 102 1
2γ◦

,
(

Mcbm
MB

)
UL

= 10−2 γ◦
2 . (C.3.14a)

The allowed range of variability, if it exists, is then given by:(
Mcbm
MB

)
UL
−
(

Mcbm
MB

)
LL

= 10−2 γ2
◦−104

2γ◦
> 0 . (C.3.14b)

A necessary condition for the applicability of the above approximations is
therefore:

γ◦ > 102 . (C.3.15)

Again, it is important to emphasize that Eq.(C.3.15) is only a necessary condi-
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Figure C.1.: In the upper panel, the analytic behavior of the Lorentz γ factor
during the afterglow era is plotted versus the radial coordinate of the ex-
panding thin baryonic shell in the fully radiative case of GRB 991216 (solid
red line) and in the adiabatic case starting from the same initial conditions
(dotted blue line). In the lower panel are plotted the corresponding values
of the “effective” power-law index ae f f (see Eq.(C.4.1)), which is clearly not
constant, is highly varying and systematically lower than the constant values
3 and 3/2 purported in the current literature (horizontal dotted black lines).
Details in Bianco and Ruffini (2005a).

tion for the applicability of the approximate Eq.(C.3.13), but it is not sufficient:
Eq.(C.3.13) in fact can be applied only in the very limited range of r values
whose upper and lower limits are given in Eq.(C.3.14a). See for explicit ex-
amples section C.4 below.

C.4. A specific example

Having obtained the analytic expression of the Lorentz gamma factor for the
fully radiative case in Eq.(C.2.1), we illustrate in Fig. C.1 the corresponding
gamma factor as a function of the radial coordinate in the afterglow phase
for GRB 991216 (see Ruffini et al., 2003, and references therein). We have
also represented the corresponding solution which can be obtained in the
adiabatic case, using Eq.(C.2.2), starting from the same initial conditions. It is
clear that in both cases there is not a simple power-law relation like Eq.(C.3.1)
with a constant index a. We can at most define an “instantaneous” value ae f f
for an “effective” power-law behavior:

ae f f = −
d ln γ

d ln r
. (C.4.1)
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Figure C.2.: In these four diagrams we reproduce the same quantities plotted
in Fig. C.1 for four higher values of γ◦. The upper (lower) left diagram corre-
sponds to γ◦ = 103 (γ◦ = 105). The upper (lower) right diagram corresponds
to γ◦ = 107 (γ◦ = 109). It is manifest how asymptotically, by increasing the
value of γ◦, the values a = 3 and a = 3/2 (horizontal black dotted lines) are
reached, but only in a limited range of the radial co-ordinate and anyway for
values of γ◦ much larger than the ones actually observed in GRBs. Details in
Bianco and Ruffini (2005a).

Such an “effective” power-law index of the exact solution smoothly varies
from 0 to a maximum value which is always smaller than 3 or 3/2, in the
fully radiative and adiabatic cases respectively, and finally decreases back
to 0 (see Fig. C.1). We see in particular, from Fig. C.1, how in the fully
radiative case the power-law index is consistently smaller than 3, and in the
adiabatic case ae f f = 3/2 is approached only for a small interval of the radial
coordinate corresponding to the latest parts of the afterglow with a Lorentz
gamma factor of the order of 10. In this case of GRB 991216 we have, in fact,
γ◦ = 310.13 and neither Eq.(C.3.5) nor Eq.(C.3.12) can be satisfied for any
value of r. Therefore, neither in the fully radiative nor in the adiabatic case
the constant-index power-law expression in Eq.(C.3.1) can be applied.

For clarity, we have integrated in Fig. C.2 an ideal GRB afterglow with
the initial conditions as GRB 991216 for selected higher values of the initial
Lorentz gamma factor: γ◦ = 103, 105, 107, 109. For γ◦ = 103, we then see that,
again, in the fully radiative condition ae f f = 3 is never reached and in the
adiabatic case ae f f ' 3/2 only in the region where 10 < γ < 50. Similarly, for
γ◦ = 105, in the fully radiative case ae f f ' 3 is only reached around the point
γ = 102, and in the adiabatic case ae f f ' 3/2 for 10 < γ < 102, although the
non-power-law behavior still remains in the early and latest afterglow phases
corresponding to the γ ≡ γ◦ and γ → 1 regimes. The same conclusion can
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C. Exact vs. approximate solutions in GRB afterglows

be reached for the remaining cases γ◦ = 107 and γ◦ = 109.
We like to emphasize that the early part of the afterglow, where γ ≡ γ◦,

which cannot be described by the constant-index power-law approximation,
do indeed corresponds to the rising part of the afterglow bolometric lumi-
nosity and to its peak, which is reached as soon as the Lorentz gamma factor
starts to decrease. We have shown (see e.g. Ruffini et al., 2001a, 2003, 2005,
and references therein) how the correct identifications of the raising part and
the peak of the afterglow are indeed crucial for the explanation of the ob-
served “prompt radiation”. Similarly, the power-law cannot be applied dur-
ing the entire approach to the newtonian regime, which corresponds to some
of the actual observations occurring in the latest afterglow phases.
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the equitemporal surfaces in
Gamma-Ray Burst afterglows

D.1. The definition of the EQTSs

For a relativistically expanding spherically symmetric source the “equitem-
poral surfaces” (EQTSs, namely the locus of source points of the signals ar-
riving at the observer at the same time) are surfaces of revolution about the
line of sight. The general expression for their profile, in the form ϑ = ϑ(r),
corresponding to an arrival time ta of the photons at the detector, can be ob-
tained from (see e.g. Ruffini et al., 2003; Bianco and Ruffini, 2004, 2005b, and
Figs. D.1–D.4):

cta = ct (r)− r cos ϑ + r? , (D.1.1)

where r? is the initial size of the expanding source, ϑ is the angle between the
radial expansion velocity of a point on its surface and the line of sight, and
t = t(r) is its equation of motion, expressed in the laboratory frame, obtained
by the integration of Eqs.(C.1.5). From the definition of the Lorentz gamma
factor γ−2 = 1− (dr/cdt)2, we have in fact:

ct (r) =
∫ r

0

[
1− γ−2 (r′)]−1/2

dr′ , (D.1.2)

where γ(r) comes from the integration of Eqs.(C.1.5).

It is appropriate to underline a basic difference between the apparent su-
perluminal velocity orthogonal to the line of sight, v⊥ ' γv, and the appar-
ent superluminal velocity along the line of sight, v‖ ' γ2v. In the case of
GRBs, this last one is the most relevant: for a Lorentz gamma factor γ ' 300
we have v‖ ' 105c. This is self-consistently verified in the structure of the
“prompt radiation” of GRBs (see e.g. Ruffini et al., 2002).
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Figure D.1.: Not all values of ϑ are allowed. Only photons emitted at an angle
such that cos ϑ ≥ (v/c) can be viewed by the observer. Thus the maximum
allowed ϑ value ϑmax corresponds to cos ϑmax = (v/c). In this figure we
show ϑmax (i.e. the angular amplitude of the visible area of the ABM pulse)
in degrees as a function of the arrival time at the detector for the photons
emitted along the line of sight (see text). In the earliest GRB phases v ∼ c and
so ϑmax ∼ 0. On the other hand, in the latest phases of the afterglow the ABM
pulse velocity decreases and ϑmax tends to the maximum possible value, i.e.
90◦. Details in Ruffini et al. (2002, 2003).
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Figure D.2.: The diameter of the visible area is represented as a function of
the ABM pulse radius. In the earliest expansion phases (γ ∼ 310) ϑmax is very
small (see Fig. D.3), so the visible area is just a small fraction of the total ABM
pulse surface. On the other hand, in the final expansion phases ϑmax → 90◦

and almost all the ABM pulse surface becomes visible. Details in Ruffini et al.
(2002, 2003).

245



D. Exact analytic expressions for the EQTSs in GRB afterglows

0

5.0×10
17

1.0×10
18

1.5×10
18

0

5.0×10
17

1.0×10
18

1.5×10
18

0 5.0×10
17

1.0×10
18

1.5×10
18

D
is

ta
n
c
e
 f
ro

m
 t
h
e
 E

M
B

H
 (

c
m

)

Distance from the EMBH (cm)

Line of sight

Figure D.3.: This figure shows the temporal evolution of the visible area of
the ABM pulse. The green half-circles are the expanding ABM pulse at radii
corresponding to different laboratory times. The red curve marks the bound-
ary of the visible region. The black hole is located at position (0,0) in this
plot. Again, in the earliest GRB phases the visible region is squeezed along
the line of sight, while in the final part of the afterglow phase almost all the
emitted photons reach the observer. This time evolution of the visible area is
crucial to the explanation of the GRB temporal structure. Details in Ruffini
et al. (2002, 2003).
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Figure D.4.: Due to the extremely high and extremely varying Lorentz
gamma factor, photons reaching the detector on the Earth at the same arrival
time are actually emitted at very different times and positions. We repre-
sent here the surfaces of photon emission corresponding to selected values of
the photon arrival time at the detector: the equitemporal surfaces (EQTS). Such
surfaces differ from the ellipsoids described by Rees in the context of the ex-
panding radio sources with typical Lorentz factor γ ∼ 4 and constant (see
Rees, 1966). In fact, in GRB 991216 the Lorentz gamma factor ranges from
310 to 1. The EQTSs represented here (red lines) correspond respectively to
values of the arrival time ranging from 5 s (the smallest surface on the left of
the plot) to 60 s (the largest one on the right) in the case of GRB 991216. Each
surface differs from the previous one by 5 s. To each EQTS contributes emis-
sion processes occurring at different values of the Lorentz gamma factor. The
green lines are the boundaries of the visible area of the ABM pulse and the
black hole is located at position (0, 0) in this plot. Note the different scales on
the two axes, indicating the very high EQTS “effective eccentricity”. The time
interval from 5 s to 60 s has been chosen to encompass the E-APE emission,
ranging from γ = 308.8 to γ = 56.84. Details in Ruffini et al. (2002, 2003).
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D.2. The analytic expressions for the EQTSes

D.2.1. The fully radiative case

The analytic expression for the EQTS in the fully radiative regime can then
be obtained substituting t(r) from Eq.(C.2.3) in Eq.(D.1.1) (see Bianco and
Ruffini, 2005b). We obtain:

cos ϑ =
MB −m◦i

2r
√

C
(r− r◦) +

m◦i r◦
8r
√

C

[(
r
r◦

)4

− 1

]

+
r◦
√

C
12rm◦i A2 ln

 [A + (r/r◦)]
3 (A3 + 1

)[
A3 + (r/r◦)

3
]
(A + 1)3

+
ct◦
r
− cta

r

+
r?

r
+

r◦
√

3C
6rm◦i A2

[
arctan

2 (r/r◦)− A
A
√

3
− arctan

2− A
A
√

3

]
, (D.2.1)

where A, C and m◦i are the same as in Eq.(C.2.3).

D.2.2. The adiabatic case

The analytic expression for the EQTS in the adiabatic regime can then be ob-
tained substituting t(r) from Eq.(C.2.4) in Eq.(D.1.1) (see Bianco and Ruffini,
2005b). We obtain:

cos ϑ =
m◦i

4MB
√

γ2
◦ − 1

[(
r
r◦

)3

− r◦
r

]
+

ct◦
r

− cta

r
+

r?

r
−

γ◦ −
(
m◦i /MB

)√
γ2
◦ − 1

[r◦
r
− 1
]

. (D.2.2)

D.2.3. Comparison between the two cases

The two EQTSs are represented at selected values of the arrival time ta in
Fig. D.5, where the illustrative case of GRB 991216 has been used as a proto-
type. The initial conditions at the beginning of the afterglow era are in this
case given by γ◦ = 310, r◦ = 1.94× 1014 cm, t◦ = 6.48× 103 s, r? = 2.35× 108

cm (see Ruffini et al., 2001b,a, 2002, 2003; Bianco and Ruffini, 2005b).
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Figure D.5.: Comparison between EQTSs in the adiabatic regime (blue lines)
and in the fully radiative regime (red lines). The upper plot shows the EQTSs
for ta = 5 s, ta = 15 s, ta = 30 s and ta = 45 s, respectively from the inner
to the outer one. The lower plot shows the EQTS at an arrival time of 2 days.
Details in Bianco and Ruffini (2005b).
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D.3. Approximations adopted in the current
literature

In the current literature two different treatments of the EQTSs exist: one by
Panaitescu and Meszaros (1998) and one by Sari (1998) later applied also by
Granot et al. (1999a) (see also Piran, 1999, 2000; van Paradijs et al., 2000, and
references therein).

In both these treatments, instead of the more precise dynamical equations
given in Eqs.(C.2.2,C.2.1), the simplified formula, based on the “ultrarela-
tivistic” approximation, given in Eq.(C.3.1) has been used. A critical analysis
comparing and contrasting our exact solutions with Eq.(C.3.1) has been pre-
sented in the previous section and in Bianco and Ruffini (2005a). As a further
approximation, instead of the exact Eq.(D.1.2), they both use the following
expansion at first order in γ−2:

ct (r) =
∫ r

0

[
1 +

1
2γ2 (r′)

]
dr′ . (D.3.1)

Correspondingly, instead of the exact Eq.(C.2.4) and Eq.(C.2.3), they find:

t (r) =
r
c

[
1 +

1
2 (2a + 1) γ2 (r)

]
, (D.3.2a)

t (r) =
r
c

[
1 +

1
16γ2 (r)

]
. (D.3.2b)

The first expression has been given by Panaitescu and Meszaros (1998) and
applies both in the adiabatic (a = 3/2) and in the fully radiative (a = 3)
cases (see their Eq.(2)). The second one has been given by Sari (1998) in the
adiabatic case (see his Eq.(2)). Note that the first expression, in the case a =
3/2, does not coincide with the second one: Sari (1998) uses a Lorentz gamma
factor Γ of a shock front propagating in the expanding pulse, with Γ =

√
2γ.

Instead of the exact Eqs.(D.1.1), Panaitescu and Meszaros (1998) and Sari
(1998) both uses the following equation:

cta = ct (r)− r cos ϑ , (D.3.3)

where the initial size r? has been neglected. The following approximate ex-
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pressions for the EQTSs have been then presented:

ϑ = 2 arcsin

 1
2γ◦

√
2γ2
◦cta

r
− 1

2a + 1

(
r
r◦

)2a
 , (D.3.4a)

cos ϑ = 1− 1
16γ2

L

[(
r
rL

)−1

−
(

r
rL

)3
]

. (D.3.4b)

The first expression has been given by Panaitescu and Meszaros (1998) and
applies both in the adiabatic (a = 3/2) and in the fully radiative (a = 3) cases
(see their Eq.(3)). The second expression, where γL ≡ γ(ϑ = 0) over the
given EQTS and rL = 16γ2

Lcta, has been given by Sari (1998) in the adiabatic
case (see his Eq.(5)).

Without entering into the relative merit of such differing approaches, we
show in Figs. D.6–D.7 that both of them lead to results different from the ones
computed with the exact solutions. The consequences of using the approxi-
mate formula given in Eq.(C.3.1) to compute the expression t ≡ t(r), instead
of the exact solution of Eqs.(C.1.5), are clearly shown in Figs. D.6–D.7. The
EQTSs represented in these figures are computed at selected values of the de-
tector arrival time both in the early (∼ 35 s) and in the late (∼ 4 day) phases
of the afterglow. Both the fully radiative and fully adiabatic cases are exam-
ined. Note the approximate expression of the EQTS can only be defined for
γ < γd and r > rd (see Bianco and Ruffini, 2005b). Consequently, at td

a = 35 s
the approximate EQTSs are represented by arcs, markedly different from the
exact solution (see the upper panels of Figs. D.6–D.7). The same conclusion
is found for the EQTS at td

a = 4 days, where marked differences are found
both for the fully radiative and adiabatic regimes (see the lower panels of
Figs. D.6–D.7).
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Figure D.6.: Comparison between the EQTSs computed using the approx-
imate formulas given by Panaitescu and Meszaros (1998) (blue line) and
by Sari (1998); Granot et al. (1999a) (green line) in the fully adiabatic case
(a = 3/2 in Eqs.(D.3.4)) and the corresponding ones computed using the
exact analytic expression given in Eq.(D.2.2) (red line). The difference be-
tween the green line and the blue line is due to the factor

√
2 in the Lorentz

γ factor adopted by Sari (see text). The upper (lower) panel corresponds to
td
a = 35 s (td

a = 4 day). The approximate curves are not drawn entirely be-
cause Eqs.(D.3.4) are declared to be valid only where γ < 2/3γ◦. Details in
Bianco and Ruffini (2004, 2005b).
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Figure D.7.: Comparison between the EQTSs computed using the approx-
imate formulas given by Panaitescu and Meszaros (1998) (blue line) in the
fully radiative case (a = 3 in the first of Eqs.(D.3.4)) and the corresponding
ones computed using the exact analytic expression given in Eq.(D.2.1) (red
line). The upper (lower) panel corresponds to td

a = 35 s (td
a = 4 day). Details

in Bianco and Ruffini (2004, 2005b).
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E. Exact versus approximate
beaming formulas in
Gamma-Ray Burst afterglows

Using the exact solutions introduced in the previous sections, we here in-
troduce the exact analytic expressions of the relations between the detector
arrival time td

a of the GRB afterglow radiation and the corresponding half-
opening angle ϑ of the expanding source visible area due to the relativistic
beaming (see e.g. Ruffini et al., 2003). Such visible area must be computed
not over the spherical surface of the shell, but over the EQuiTemporal Sur-
face (EQTS) of detector arrival time td

a , i.e. over the surface locus of points
which are source of the radiation reaching the observer at the same arrival
time td

a (see Bianco and Ruffini, 2004, 2005b, for details). The exact analytic
expressions for the EQTSs in GRB afterglows, which have been presented in
Eqs.(D.2.2)–(D.2.1) and in Bianco and Ruffini (2005b), are therefore crucial in
our present derivation. This approach clearly differs from the ones in the
current literature, which usually neglect the contributions of the radiation
emitted from the entire EQTS.

The analytic relations between td
a and ϑ presented in this section allow to

compute, assuming that the expanding shell is not spherically symmetric but
is confined into a narrow jet with half-opening angle ϑ◦, the value (td

a)jet of
the detector arrival time at which we start to “see” the sides of the jet. A cor-
responding “break” in the observed light curve should occur later than (td

a)jet

(seee.g. Sari et al., 1999). In the current literature, (td
a)jet is usually defined as

the detector arrival time at which γ ∼ 1/ϑ◦, where γ is the Lorentz factor of
the expanding shell (see e.g. Sari et al., 1999, and also our Eq.(E.1.2) below).
In our formulation we do not consider effects of lateral spreadings of the jet.

In the current literature, in the case of adiabatic regime, different approxi-
mate power-law relations between (td

a)jet and ϑ◦ have been presented, in con-
trast to each other (see e.g. Sari et al., 1999; Panaitescu and Mészáros, 1999;
Panaitescu, 2006). We show here that in four specific cases of GRBs, encom-
passing more than 5 orders of magnitude in energy and more than 2 orders of
magnitude in CBM density, both the one by Panaitescu and Mészáros (1999)
and the one by Sari et al. (1999) overestimate the exact analytic result. A third
relation just presented by Panaitescu (2006) slightly underestimate the exact
analytic result. We also present an empirical fit of the numerical solutions
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of the exact equations for the adiabatic regime, compared and contrasted
with the three above approximate relations. In the fully radiative regime,
and therefore in the general case, no simple power-law relation of the kind
found in the adiabatic regime can be established and the general approach
we have outlined has to be followed.

Although evidence for spherically symmetric emission in GRBs is emerg-
ing from observations (Sakamoto et al., 2006) and from theoretical argumen-
tations (Ruffini et al., 2004b, 2006), it is appropriate to develop here an exact
theoretical treatment of the relation between (td

a)jet and ϑ◦. This will allow to
make an assessment on the existence and, in the positive case, on the extent
of beaming in GRBs, which in turn is going to be essential for establishing
their correct energetics.

E.1. Analytic formulas for the beaming angle

The boundary of the visible region of a relativistic thin and uniform shell
expanding in the CBM is defined by Ruffini et al. (see e.g. 2003, and references
therein):

cos ϑ =
v
c

, (E.1.1)

where ϑ is the angle between the line of sight and the radial expansion veloc-
ity of a point on the shell surface, v is the velocity of the expanding shell and
c is the speed of light. To find the value of the half-opening beaming angle
ϑ◦ corresponding to an observed arrival time (td

a)jet, this equation must be
solved together with the equation describing the EQTS of arrival time (td

a)jet
(Bianco and Ruffini, 2005b). In other words, we must solve the following
system:  cos ϑ◦ = v(r)

c

cos ϑ◦ = cos
{

ϑ
[
r; (td

a)jet
]∣∣

EQTS[(td
a)jet]

}
. (E.1.2)

It should be noted that, in the limit ϑ◦ → 0 and v→ c, this definition of (td
a)jet

is equivalent to the one usually adopted in the current literature (see above).

E.1.1. The fully radiative regime

In this case (see Eq.(C.2.1) and Bianco and Ruffini, 2005b,a), the analytic solu-
tion of the equations of motion gives:

v
c
=

√(
1− γ−2

◦
) [

1 + (Mcbm/MB) + (Mcbm/MB)
2
]

1 + (Mcbm/MB)
(

1 + γ−1
◦
) [

1 + 1
2 (Mcbm/MB)

] . (E.1.3)
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Using the analytic expression for the EQTS given in Bianco and Ruffini (2005b)
and in Eq.(D.2.1), Eq.(E.1.2) takes the form (Bianco and Ruffini, 2006):

cos ϑ◦ =

√
(1−γ−2

◦ )[1+(Mcbm/MB)+(Mcbm/MB)
2]

1+(Mcbm/MB)(1+γ−1
◦ )

[
1+ 1

2 (Mcbm/MB)
]

cos ϑ◦ =
MB−m◦i

2r
√

C
(r− r◦) +

m◦i r◦
8r
√

C

[(
r
r◦

)4
− 1
]

+ r◦
√

C
12rm◦i A2 ln

{
[A+(r/r◦)]3(A3+1)
[A3+(r/r◦)3](A+1)3

}
+ ct◦

r −
c(td

a)jet
r(1+z) +

r?
r

+ r◦
√

3C
6rm◦i A2

[
arctan 2(r/r◦)−A

A
√

3
− arctan 2−A

A
√

3

]
(E.1.4)

where t◦ is the value of the time t at the beginning of the afterglow phase,
m◦i = (4/3)πmpncbmr3

◦, r? is the initial size of the expanding source, A =

[(MB − m◦i )/m◦i ]
1/3, C = MB

2(γ◦ − 1)/(γ◦ + 1) and z is the cosmological
redshift of the source.

E.1.2. The adiabatic regime

In this case, the analytic solution of the equations of motion gives (see Eq.(C.2.2)
and Bianco and Ruffini, 2005b,a):

v
c
=
√

γ2
◦ − 1

(
γ◦ +

Mcbm
MB

)−1

(E.1.5)

Using the analytic expression for the EQTS given in Bianco and Ruffini (2005b)
and in Eq.(D.2.2), Eq.(E.1.2) takes the form (Bianco and Ruffini, 2006):

cos ϑ◦ =
√

γ2
◦ − 1

(
γ◦ +

Mcbm
MB

)−1

cos ϑ◦ =
m◦i

4MB
√

γ2◦−1

[(
r
r◦

)3
− r◦

r

]
+ ct◦

r

− c(td
a)jet

r(1+z) +
r?
r −

γ◦−(m◦i /MB)√
γ2◦−1

[ r◦
r − 1

]
(E.1.6)

where all the quantities have the same definition as in Eq.(E.1.4).

E.1.3. The comparison between the two solutions

In Fig. E.1 we plot the numerical solutions of both Eq.(E.1.4), corresponding
to the fully radiative regime, and Eq.(E.1.6), corresponding to the adiabatic
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Figure E.1.: Comparison between the numerical solution of Eq.(E.1.4) assum-
ing fully radiative regime (blue line) and the corresponding one of Eq.(E.1.6)
assuming adiabatic regime (red line). The departure from power-law behav-
ior at small arrival time follows from the constant Lorentz γ factor regime,
while the one at large angles follows from the approach to the non-relativistic
regime (see details in Fig. E.4, as well as in Bianco and Ruffini, 2005a, 2006).
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Figure E.2.: Comparison between the numerical solution of Eq.(E.1.6) (red
line) and the corresponding approximate formulas given in Eq.(E.2.2) (blue
line), in Eq.(E.2.1) (black line), and in Eq.(E.2.3) (green line). All four curves
have been plotted for four different GRBs: a) GRB 991216 (Ruffini et al., 2003),
b) GRB 980519 (Ruffini et al., in preparation), c) GRB 031203 (Bernardini et al.,
2005), d) GRB 980425 (Ruffini et al., 2004a, 2007). The ranges of the two axes
have been chosen to focus on the sole domains of application of the approxi-
mate treatments in the current literature. Details in Bianco and Ruffini (2006).

one. Both curves have been plotted assuming the same initial conditions,
namely the ones of GRB 991216 (see Ruffini et al., 2003).

E.2. Comparison with the existing literature

Three different approximated formulas for the relation between (td
a)jet and ϑ◦

have been given in the current literature, all assuming the adiabatic regime.
Panaitescu and Mészáros (1999) proposed:

cos ϑ◦ ' 1− 5.9× 107
(ncbm

E

)1/4
[
(td

a)jet

1 + z

]3/4

, (E.2.1)
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Sari et al. (1999), instead, advanced:

ϑ◦ ' 7.4× 103
(ncbm

E

)1/8
[
(td

a)jet

1 + z

]3/8

. (E.2.2)

In both Eq.(E.2.1) and Eq.(E.2.2), (td
a)jet is measured in seconds, E is the source

initial energy measured in ergs and ncbm is the CBM number density in particles/cm3.
The formula by Sari et al. (1999) has been applied quite often in the current
literature (see e.g. Frail et al., 2001; Ghirlanda et al., 2004; Fox et al., 2005).

Both Eq.(E.2.1) and Eq.(E.2.2) compute the arrival time of the photons at the
detector assuming that all the radiation is emitted at ϑ = 0 (i.e. on the line
of sight), neglecting the full shape of the EQTSs. Recently, a new expression
has been proposed by Panaitescu (2006), again neglecting the full shape of
the EQTSs but assuming that all the radiation is emitted from ϑ = 1/γ, i.e.
from the boundary of the visible region. Such an expression is:

ϑ◦ ' 5.4× 103
(ncbm

E

)1/8
[
(td

a)jet

1 + z

]3/8

. (E.2.3)

In Fig. E.2 we plot Eq.(E.2.1), Eq.(E.2.2) and Eq.(E.2.3) together with the
numerical solution of Eq.(E.1.6) relative to the adiabatic regime. All four
curves have been plotted assuming the same initial conditions for four dif-
ferent GRBs, encompassing more than 5 orders of magnitude in energy and
more than 2 orders of magnitude in CBM density:

• GRB 991216 (Ruffini et al., 2003),

• GRB 980519 (Ruffini et al., in preparation),

• GRB 031203 (Bernardini et al., 2005),

• GRB 980425 (Ruffini et al., 2004a, 2007).

The approximate Eq.(E.2.2) by Sari et al. (1999) and Eq.(E.2.3) by Panaitescu
(2006) both imply a power-law relation between ϑ◦ and (td

a)jet with constant
index 3/8 for any value of ϑ◦, while Eq.(E.2.1) by Panaitescu and Mészáros
(1999) implies a power-law relation with constant index 3/8 only for ϑ◦ → 0
(for greater ϑ◦ values the relation is trigonometric).

All the above three approximate treatments are based on the approximate
power-law solutions of the GRB afterglow dynamics which have been shown
in the previous sections and in Bianco and Ruffini (2005a) to be not appli-
cable to GRBs. They also do not take fully into account the structure of the
EQTSs, although in different ways. Both Eq.(E.2.1) and Eq.(E.2.2), which as-
sume all the radiation coming from ϑ = 0, overestimate the behavior of the
exact solution. On the other hand, Eq.(E.2.3), which assumes all the radiation
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Figure E.3.: The overlapping between the numerical solution of Eq.(E.1.6)
(thick green lines) and the approximate fitting function given in Eq.(E.3.1)
(thin red lines) is shown in the four cases (a–d) represented in Fig. E.2.

coming from ϑ ∼ 1/γ, is a better approximation than the previous two, but
still slightly underestimates the exact solution.

E.3. An empirical fit of the numerical solution

For completeness, we now fit our exact solution with a suitable explicit func-
tional form in the four cases considered in Fig. E.2. We chose the same func-
tional form of Eq.(E.2.3), which is the closer one to the numerical solution,
using the numerical factor in front of it (i.e. 5.4× 103) as the fitting parame-
ter. We find that the following approximate expression (Bianco and Ruffini,
2006):

ϑ◦ ' 5.84× 103
(ncbm

E

)1/8
[
(td

a)jet

1 + z

]3/8

(E.3.1)

is in agreement with the numerical solution in all the four cases presented in
Fig. E.2 (see Fig. E.3). However, if we enlarge the axis ranges to their full
extension (i.e. the one of Fig. E.1), we see that such approximate empirical
fitting formula can only be applied for ϑ◦ < 25◦ and (td

a)jet > 102 s (see the
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Figure E.4.: Comparison between the numerical solution of Eq.(E.1.6) (think
green lines) and the approximate fitting function given in Eq.(E.3.1) (thin red
lines) in all the four cases (a–d) represented in Fig. E.2. The ranges of the two
axes have been chosen to have their full extension (i.e. the one of Fig. E.1).
The dashed gray lines are the boundaries of the region where the empirical
fitting function can be applied. Details in Bianco and Ruffini (2006).

gray dashed rectangle in Fig. E.4).
An equivalent empirical fit in the fully radiative regime is not possible. In

this case, indeed, there is a domain in the ((td
a)jet, ϑ◦) plane where the numer-

ical solution shows a power-law dependence on time, with an index ∼ 0.423
(see Fig. E.1). However, the dependence on the energy cannot be factorized
out with a simple power-law. Therefore, in the fully radiative regime, which
is the relevant one for our GRB model (see e.g. Ruffini et al., 2003), the appli-
cation of the full Eq.(E.1.4) does not appear to be avoidable.
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�Dynamical evolution, light curves, and spectra of spherical and colli-
mated gamma-ray burst remnants�.
ApJ, 526, pp. 707–715 (1999).
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