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1 Topics

The study of compact objects such as white dwarfs, neutron stars and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories, e.g., general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
theoretical physics aspects, the study of astrophysical scenarios characterized
by the presence of a compact object has also started to be focus of extensive
research within our group. The research which has been done and is cur-
rently being developed within our group can be divided into the following
topics:

• Nuclear and Atomic Astrophysics. Within this subject of research we
study the properties and processes occurring in compact stars in which
nuclear and atomic physics have to be necessarily applied. We focus
on the properties of nuclear matter under extreme conditions of density
and pressure found in these objects. The equation of state of the mat-
ter in compact star interiors is studied in detail taking into account all
the interactions between the constituents within a full relativistic frame-
work.

• White Dwarfs Physics and Structure. The aim of this part of our re-
search is to construct the structure of white dwarfs within a self-consistent
description of the equation of state of the interior together with the solu-
tion of the hydrostatic equilibrium equations in general relativity. Both
unmagnetized and magnetized white dwarfs are studied.

• White Dwarfs Astrophysics. We are within this topic interested in
the astrophysics of white dwarfs both isolated and in binaries systems.
Magnetized white dwarfs, soft gamma repeaters, anomalous X-ray pul-
sars, white dwarf pulsars, cataclysmic variables, binary white dwarf
mergers, and type Ia supernovae are studied. The role of a realistic
white dwarf interior structure is particularly emphasized.

• Neutron Stars Physics and Structure. We calculate the properties of
the interior structure of neutron stars using realistic models of the nu-
clear matter equation of state within the general relativistic equations
of equilibrium. Strong, weak, electromagnetic and gravitational inter-
actions have to be jointly taken into due account within a self-consistent
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1 Topics

fully relativistic framework. Both unmagnetized and magnetized neu-
tron stars are studied.

• Neutron Stars Astrophysics. We study astrophysical systems harbor-
ing neutron stars such as isolated and binary pulsars, low and inter-
mediate X-ray binaries, inspiraling and merging double neutron stars.
Most extreme cataclysmic events involving neutron stars and their role
in the explanation of extraordinarily energetic astrophysical events such
as gamma-ray bursts are analyzed in detail.

• Radiation Mechanisms of White Dwarfs and Neutron Stars. We here
study the possible emission mechanisms of white dwarfs and neutron
stars. We are thus interested in both electromagnetic and gravitational
radiation at work in astrophysical systems such as compact star mag-
netospheres, inspiraling and merging relativistic double neutron stars,
neutron star-white dwarfs, and neutron star-black hole binaries repre-
sent some examples.

• Exact Solutions of the Einstein and Einstein-Maxwell Equations in
Astrophysics. We analyze the ability of analytic exact solutions of the
Einstein and Einstein-Maxwell equations to describe the exterior space-
time of compact stars such as white dwarfs and neutron stars. The prob-
lem of matching between interior and exterior spacetimes is addressed
in detail. The effect of the quadrupole moment on the properties of the
spacetime is also investigated. Particular attention is given to the appli-
cation of exact solutions in astrophysics, e.g. the dynamics of particles
around compact stars and its relevance in astrophysical systems such as
X-ray binaries.

• Critical Fields and Non-linear Electrodynamics Effects in Astrophysics.
We study the conditions under which ultrastrong electromagnetic fields
can develop in astrophysical systems such as neutron stars and in the
process of gravitational collapse to a black hole. The effects of non-
linear electrodynamics minimally coupled to gravity are investigated.
New analytic and numeric solutions to the Einstein-Maxwell equations
representing black holes or the exterior field of a compact star are ob-
tained and analyzed. The consequences on extreme astrophysical sys-
tems, for instance gamma-ray bursts, is studied.

1318



2 Participants

2.1 ICRANet

• D. Arnett (Steward Observatory, University of Arizona, USA)

• D. Bini (Istituto Nazionale per l’Applicazione del Calcolo, Italy)

• L. Izzo (ICRANet, University of Rome, Italy)

• H. Kleinert (Free University of Berlin , Germany)

• V. Popov (ITEP, Moscow, Russia)

• J. A. Rueda (ICRANet, University of Rome, Italy)

• R. Ruffini (ICRANet, University of Rome, Italy)

• G. Vereschagin (ICRANet, University of Rome, Italy)

• S.-S. Xue (ICRANet, University of Rome, Italy)

2.2 External on going collaborations

• K. Boshkayev (Al-Farabi Kazakh National University, Kazakhstan)
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3 Relevant Results (before 2014)

3.1 Nuclear and Atomic Astrophysics

One of the main objectives have been to construct a unified approach for nu-
clei, superheavy nuclei up to atomic numbers of the order of 105–106, and
what we have denominated “nuclear matter cores of stellar dimensions”:

• characterized by atomic number of the order of 1057;

• composed by a degenerate fluid of neutrons, protons and electrons in
β-equilibrium;

• globally neutral configurations;

• expected to be kept at nuclear density by self gravity.

The study of all these objects going from the microscopic to the macro-
scopic is at the base of the theory of white dwarfs, neutron stars, hyperon
stars, strange quark stars, and other related compact objects. It is known that
the Thomas-Fermi model has been extensively applied in atomic physics, also
has been applied extensively in atomic physics in its relativistic form as well
as in the study of atoms with heavy nuclei (see Gombás, 1949, for instance).
Similarly there have been considerations of relativistic Thomas-Fermi model
for quark stars pointing out the existence of critical electric fields on their sur-
faces (Alcock et al., 1986). Similar results have also been obtained in the tran-
sition at very high densities, from the normal nuclear matter phase in the core
to the color-flavor-locked phase of quark matter in the inner core of hybrid
stars (Alford et al., 2001). However, no example exists to the application of
the electromagnetic Thomas-Fermi model to white dwarfs and neutron stars.

The analysis of superheavy nuclei has historically represented a major field
of research, developed by Prof. V. Popov and Prof. W. Greiner and their
schools. This same problem was studied in the context of the relativistic
Thomas-Fermi equation also by R. Ruffini and L. Stella, already in the ’80s.
The recent approach was started with the Ph.D. Thesis of M. Rotondo and
has shown the possibility to extrapolate this treatment of superheavy nuclei
to the case of nuclear matter cores of stellar dimensions (Ruffini et al., 2007).
The very unexpected result has been that also around these massive cores
there is the distinct possibility of having an electromagnetic field close to the
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3 Relevant Results (before 2014)

critical value

Ec =
m2

e c3

eh̄
≈ 1.3× 1016 Volt cm−1 ,

localized in a very narrow shell of the order of the electron Compton wave-
length (see Fig. 3.1).

�2 0 2 4
0.0

200

400

600

800

1000

E
/
E
c

�2 0 2 4
(r�Rc )/�e

�0.8

�0.6

�0.4

�0.2

0.0

�

eV
/
(m

�

c2
)

Figure 3.1: Upper panel: electric field around the surface of a nuclear mat-
ter core of stellar dimensions in units of the critical field Ec. Lower panel:
electron Coulomb potential −eV. Here Rc denotes the core radius and
λe = h̄/(mec) is the electron Compton wavelength.

The welcome result was that all the analytic work developed by Prof. V. Po-
pov and the Russian school can be applied using scaling laws satisfied by the
relativistic Thomas-Fermi equation to the case of nuclear matter cores of stel-
lar dimensions, if the β-equilibrium condition is properly taken into account.
This has been the result obtained and published by Ruffini, Rotondo and Xue
already in 2007. Since then, a large variety of problems has emerged, which
have seen the direct participation of ICRANet Professors, graduate students,
postdocs, as well as collaborators worldwide including Prof. V. W. Greiner,
Prof. Popov, Prof. D. Arnett, and insightful discussions in Pescara with the
Nobel Prize Awarded, Prof. G. ’t Hooft.

One of the crucial issues to be debated is the stability of such cores un-
der the competing effects of self-gravity and Coulomb repulsion. It has been
demonstrated their stability against nuclear fission, as opposed to the case of
heavy nuclei (Rotondo et al., 2011d, see). In particular, on the basis of New-
tonian gravitational energy considerations it has been found the existence of
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3.1 Nuclear and Atomic Astrophysics

a possible new island of stability for mass numbers

A > AR = 0.039
(

Np

A

)1/2 (mPlanck

mn

)3

,

where Np is the number of protons, A is the total number of baryons, mn is
the neutron mass and mPlanck =

√
h̄c/G is the Planck mass.

The equilibrium against Coulomb repulsion originates now from the com-
bined effect of the screening of the relativistic electrons, of the surface ten-
sion due to strong interactions, and of the gravitational interaction of these
massive cores. By enforcing the condition of β-equilibrium, it has been also
obtained a generalization to the relation between the mass number A and
atomic number Np which encompasses phenomenological expressions (see
Rotondo et al., 2011d, for further details).

All these considerations have been made for an isolated core with constant
proton density whose boundary has been sharply defined by a step function.
No external forces are exerted. Consequently, the Fermi energy of the elec-
trons has been assumed to be equal to zero.

Different aspects concerning these macroscopic systems have been also
considered. For instance, the analysis of the electron distribution around such
cores in both the case of global charge neutrality and the case of not global
charge neutrality has been presented by R. Ruffini, M. Rotondo and S.-S. Xue
in Neutral nuclear core versus super charged one, Proc. 11th Marcel Grossmann
Meeting, 2008.

The assumption of a sharp proton density profile has been relaxed and,
consequently, a smooth surface modeled by a Woods-Saxon-like proton dis-
tribution has been introduced in The Extended Nuclear Matter Model with Smooth
Transition Surface by Jorge A. Rueda H., B. Patricelli, M. Rotondo, R. Ruffini,
S.-S. Xue, , Proc. 3rd Stueckelberg Workshop on Relativistic Field Theories,
2008. The presence of overcritical electric fields close to their surface has been
confirmed also in this more general case.

The existence of the scaling laws of the ultrarelativistic Thomas-Fermi equa-
tion (Rotondo et al., 2011d,a) has led to the very exciting possibility of hav-
ing macroscopic configurations of nuclear matter in β-equilibrium exhibiting
strong electric fields on their surfaces. In order to go one step further towards
a more realistic description of macroscopic configurations as white dwarfs
and neutron stars, further improvements and extensions must be applied to
the starting model.

It is therefore interesting, in order to approach both the complex problem
of a neutron star core and its interface with the neutron star crust and the
problem of the equilibrium of gas in a white dwarf taking into account all
possible global electromagnetic interactions between the nucleus and the rel-
ativistic electrons, to extend the model to the compressed case in which the
Fermi energy of electrons turns to be positive.
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3 Relevant Results (before 2014)

The analysis of globally neutral and compressed configurations composed
by a nucleus made of relativistic degenerate neutrons and protons surrounded
by relativistic degenerate electrons in β-equilibrium has been recently accom-
plished. This work generalized the Feynman-Metropolis-Teller treatment of
compressed atoms to relativistic regimes, and the concept of compressed nu-
clear matter cores of stellar dimensions was introduced (see Rotondo et al.,
2011a, for details).

In the relativistic generalization of the Feynman-Metropolis-Teller appro-
ach, the equation to be integrated is the relativistic Thomas-Fermi equation.
The integration of this equation does not admit any regular solution for a
point-like nucleus and both the nuclear radius and the nuclear composition
have necessarily to be taken into account. This introduces a fundamental
difference from the non-relativistic Thomas-Fermi model where a point-like
nucleus was adopted.

Due to the introduction of the concept of Wigner-Seitz cells, the study of
degenerate compressed matter in white dwarfs can be addressed. This prob-
lem presents, still today, open issues of great interest such as the equilibrium
of the electron gas and the associated nuclear component, taking into account
the electromagnetic, the gravitational and the weak interactions formulated
in a correct special and general relativistic framework. A complete analysis of
the properties of such configurations as a function of the compression can be
duly done through the relativistic generalization of the Feynman-Metropolis-
Teller approach (see Rotondo et al., 2011b, for details).

It has been then possible to derive a consistent equation of state for com-
pressed matter which generalizes both the uniform free-electron fluid ap-
proximation, adopted for instance by Chandrasekhar (1931) in his famous
treatment of white dwarfs, and the well-known work of Salpeter (1961) which
describes the electrodynamic and relativistic effects by a sequence of approx-
imations. Apart from taking into account all possible electromagnetic and
special relativistic corrections to the equation of state of white dwarf matter,
the new equation of state that incorporates the β-equilibrium condition, leads
to a self-consistent calculation of the onset for inverse β-decay as function of
the Fermi energy of electrons or the density of the system. This is very im-
portant for the analysis of the stability of white dwarfs against gravitational
collapse (see Rotondo et al., 2011a, for details). The extension of the above
works to the case of finite temperatures has been part of the PhD thesis work
of S. M. de Carvalho. Details can be found in the chapter Highlights of 2014
in chapter 5.

A related topic of current interest concerns the case of rotating nuclear mat-
ter cores of stellar dimensions. The induced magnetic field by electric field
rotation has been recently obtained (Boshkayev et al., 2012, see). Such anal-
ysis has been done in the framework of classical electrodynamics under the
assumption of uniform rigid rotation of the macroscopic nuclear cores in the
non-compressed case. For rotation periods of the order of ∼ 10 ms, overcriti-
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3.2 White Dwarfs Physics and Structure

cal magnetic fields has been obtained near the surface of the configuration.
In neutron star cores, nuclear matter is under very extreme conditions of

density and pressure. The importance of the strong interactions between
nucleons at such extreme pressures it has been known for years (see e.g.
Cameron, 1970; Shapiro and Teukolsky, 1983). However, due to the absence
of a complete theory of the strong interactions, and due to the impossibility
of performing terrestrial experiments with similar extreme pressure-density
conditions, the equation of state of nuclear matter at densities larger than the
nuclear saturation density ∼ 2.7 × 1014 g/cm3, is yet unknown. The con-
struction of nuclear equations of state combined with a fully consistent for-
mulation of the equations of equilibrium in general relativity both for white
dwarfs and neutron stars is an active topic of research within our group (see
below). In the recent past, some graduate theses of our group were devoted
to this topic, for instance the works of M. Rotondo and Jorge A. Rueda, which
were soon followed by the ones of D. Pugliese, R. Belvedere, K. Boshkayev,
and S. M. de Carvalho. Y. Wu has devoted part of his PhD work to compute
the interfacial properties between the core and the crust of neutron stars. The
recent developments in all these topics can be found in the Highlights of 2014
in chapter 5.

3.2 White Dwarfs Physics and Structure

The generalization of the Feynman-Metropolis-Teller treatment to relativis-
tic regimes, which led to a new equation of state of white dwarf matter, has
been recently used to construct equilibrium configurations of white dwarfs
in general relativity (Rotondo et al., 2011a). The description of the inverse β-
decay within the relativistic Feynman-Metropolis-Teller equation of state in
conjunction with general relativity, leads to a self-consistent calculation of the
critical mass of white dwarfs (see Fig. 3.2). The numerical value of the mass,
of the radius, and of the critical mass of white dwarfs turn to be smaller with
respect to the ones obtained with approximate equations of state (see e.g.
Hamada and Salpeter, 1961). Therefore, the analysis of compressed atoms
following the relativistic Feynman-Metropolis-Teller treatment has impor-
tant consequences in the determination of the mass-radius relation of white
dwarfs, leading to the possibility of a direct confrontation of these results
with observations.

The generalization of the above general relativistic theory of white dwarfs
to the case of rotation was accomplished as part of the thesis work of K. Boshkayev
(see Boshkayev et al., 2013b). The entire family of uniformly rotating stable
white dwarfs has been already obtained by studying the mass-shedding, the
inverse β-decay, pycnonuclear reactions, as well as the axisymmetric insta-
bilities. Both the maximum mass and the minimum(maximum) rotation pe-
riod(frequency) have been obtained for selected nuclear compositions.
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3 Relevant Results (before 2014)
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Figure 3.2: Reproduced from Rotondo et al. (2011a). Mass-Radius relation of
general relativistic carbon white dwarfs.

The solution of the hydrostatic equilibrium equations in general relativity
for white dwarfs at finite temperatures was recently accomplished within the
PhD work of S. M. de Carvalho. The analysis of the equilibrium of magne-
tized white dwarfs is part of the PhD thesis of D. L. Cáceres. We refer to
chapter 5 for further details on these two works.

3.3 White Dwarf Astrophysics

The knowledge of the white dwarf structure is relevant for the several astro-
physical scenarios such as the evolution of massive white dwarfs and type
Ia supernovae. Besides, it has been successfully applied to the description
of soft-gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs)
within a model based on rotation powered white dwarfs, as shown by Mal-
heiro et al. (2012). SGRs and AXPs are a class of compact objects that show
interesting observational properties: rotational periods in the range P ∼ (2–
12) s, a narrow range with respect to the wide range of ordinary pulsars
P ∼ (0.001–10) s; spin-down rates Ṗ ∼ (10−13–10−10), larger than ordinary
pulsars Ṗ ∼ 10−15; strong outburst of energies ∼ (1041–1043) erg, and for
the case of SGRs, giant flares of even large energies ∼ (1044–1047) erg, not
observed in ordinary pulsars.

The recent observation of SGR 0418+5729 with a rotational period of P =
9.08 s, an upper limit of the first time derivative of the rotational period
Ṗ < 6.0× 10−15, and an X-ray luminosity of LX = 6.2× 1031 erg/s, promises
to be an authentic Rosetta Stone, a powerful discriminant for alternative mod-
els of SGRs and AXPs. The loss of rotational energy of a neutron star with
this spin-down rate Ṗ cannot explain the X-ray luminosity of SGR 0418+5729,
excluding the possibility of identifying this source as an ordinary spin-down
powered pulsar. The inferred upper limit of the surface magnetic field of SGR
0418+5729 B < 7.5× 1012 G, describing it as a neutron star within the mag-
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3.3 White Dwarf Astrophysics

netic braking scenario, is well below the critical field challenging the power
mechanism based on magnetic field decay purported in the magnetar sce-
nario.

We have shown that the observed upper limit on the spin-down rate of
SGR 0418+5729 is, instead, perfectly in line with a model based on a massive
fast rotating highly magnetized white dwarf of mass M = 1.4M�, radius
R = 103 km, and moment of inertia I ≈ 1049 g cm2. We analyze the energetics
of all SGRs and AXPs including their outburst activities and show that they
can be well explained through the change of rotational energy of the white
dwarf associated to the observed sudden changes of the rotational period,
the glitches. All SGRs and AXPs can be interpreted as rotating white dwarfs
that generate their energetics from the rotational energy and therefore there
is no need to invoke the magnetic field decay of the magnetar model (see
Fig. 3.3). The above calculation of the range of minimum rotation periods of
massive white dwarfs, 0.3 . Pmin . 2.2 seconds, depending on the nuclear
composition (Boshkayev et al., 2013b), implies the rotational stability of SGRs
and AXPs. The relatively long minimum period of 56Fe rotating white dwarfs
∼ 2.2 seconds, implies that the objects describing SGRs and AXPs have are
made of chemical compositions lighter than 56Fe, e.g. 12C or 16O.
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Figure 3.3: Reproduced from Malheiro et al. (2012). Luminosity to rotational
energy loss ratio of SGRs and AXPs for both neutron stars (left panel) as a
white dwarfs (right panel).

We have analyzed within the white dwarf model of SGRs and AXPs, SGR
0418+5729 and Swift J1822.3-1606 the so-called low magnetic field magnetars
(see Boshkayev et al., 2013a, for details). The request of the rotational stability
of the white dwarf gives bounds for the mass, radius, moment of inertia and
magnetic field, through the analysis of constant rotation period sequences of
uniformly rotating white dwarfs. We have also analyzed the emission prop-
erties of these two objects in the optical band, and inferred the cyclotron fre-
quencies associated to their magnetic fields which might cause absorption
features in the optical wavelengths. Concerning the emission of SGRs and
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3 Relevant Results (before 2014)

AXPs in the high-energy bands, such as X and gamma-rays, they are cur-
rently being analyzed as part of the PhD work of D. L. Cáceres.

We have also considered the possible progenitors of these massive, fast ro-
tating, highly magnetized white dwarfs. Recent smoothed particle hydrody-
namics (SPH) simulations of white dwarfs mergers (Garcı́a-Berro et al., 2012)
indicate that the outcomes of these binaries are white dwarfs with the above
desirable properties, and thus they can be progenitors of SGRs and AXPs.
Specifically, the products of these mergers consist of a hot central white dwarf
surrounded by a heavy rapidly rotating disk. We applied these considera-
tions to the specific case of 4U 0142+61 and show that the merger of a double
degenerate system can explain the characteristics of this peculiar AXP (see
Rueda et al., 2013, for details).

The request of the rotational stability of the white dwarf outcome of the
merger gives bounds for the mass, radius, moment of inertia and magnetic
field. Assuming a carbon composition, we find that the mass and radius
of 4U 0142+61 must be in the range 1.16–1.39 M� and 0.0014–0.0086 R�. We
followed the post-merger cooling and rotation evolution of the newly formed
white dwarf. We show that this scenario accounts for the observed infrared
excess and the emission observed in the other optical bands. We demonstrate
that the observed properties of 4U 0142+6 are consistent with a ∼ 1.2 M�
white dwarf, remnant of the coalescence of an original system made of two
white dwarfs of masses 0.6 M� and 1.0 M�. Finally, we infer a post-merging
age τWD ≈ 64 kyr, and a magnetic field B ≈ 2× 108 G. Evidence for such a
magnetic field may come from the possible detection of the electron cyclotron
absorption feature observed between the B and V bands at a frequency ν ≈
1015 Hz in the spectrum of 4U 0142+61. Details can be found in (Rueda et al.,
2013).

3.4 Neutron Star Physics and Structure

In the earliest description of neutron stars in the works of Tolman (1939) and
Oppenheimer and Volkoff (1939) only a gas of neutrons was considered and
the equations of equilibrium (hereafter TOV equations) were written in the
Schwarzschild metric. They considered the model of a degenerate gas of
neutrons to hold from the center to the border, with the density monotoni-
cally decreasing away from the center.

In the intervening years, more realistic neutron star models have been pre-
sented challenging the original considerations of Tolman (1939) and Oppen-
heimer and Volkoff (1939). The TOV equations considered the existence of
neutrons all the way to the surface of the star. The presence of neutrons,
protons and electrons in β-equilibrium were instead introduced by Harri-
son et al. (1965). Still more important, the neutron stars have been shown
to be composed of two sharply different components: the core at nuclear
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and supra-nuclear densities consisting of degenerate neutrons, protons and
electrons in β-equilibrium and a crust of white dwarf like material, namely
a nuclei lattice in a background of degenerate electrons (see Harrison et al.,
1965; Baym et al., 1971, for details). Further works describing the nuclear in-
teractions where later introduced. Clearly all these considerations departed
profoundly from the Oppenheimer and Volkoff (1939) assumption.

The matching between the core and the crust is still today an open issue in
neutron star physics. In order to handle with this interesting problem, a step-
by-step procedure is needed. In such a case, the neutron, proton, and electron
fluid is confined within the core radius due to the compression exerted by the
crust component of the neutron star.

Most of the effort have been given to the construction of self-consistent so-
lutions of the equations of equilibrium for neutron stars in general relativity
taking into account the traditionally neglected electromagnetic interaction. In
nearly all the scientific literature on neutron stars, a “local approach”, where
the equation of state of neutron star matter is constructed ignoring global
gravitational and Coulomb effects by assuming not only flat space but also
local charge neutrality, has been traditionally used. The gravitational effects
are then taken into account by embedding such an equation of state into the
TOV equations of hydrostatic equilibrium.

We have introduced a new approach which thanks to the existence of scal-
ing laws can apply to compressed atoms as well as to massive nuclear matter
cores of stellar dimensions. This approach on the compressed atom has al-
ready given a new contribution in the study of white dwarfs. It represents
the first self-consistent calculation taking into due account the electromag-
netic contribution in a relativistic treatment of the Thomas-Fermi equation,
within global formulation of the equilibrium of white dwarfs in general rela-
tivity.

The application of the above results to the case of neutron stars is much
more complex and it has been approached stepwise. As a first step we have
considered the application of this novel approach to the case of a system of
neutrons, protons, and electrons in β-equilibrium at zero temperatures within
general relativity (Rotondo et al., 2011c). The crucial role of the generalized
Fermi energy of particles, for short Klein potentials, and their constancy on
the entire equilibrium configuration has been outlined. This first solution, al-
though does not represent a complete realistic model for a neutron star, con-
tains all the essential physics of the phenomenon of gravito-polarization in
neutron star interiors: the existence of an electric potential and consequently
an electric field over the entire configuration has been there evidenced. We
have there proved, for the case of this simplified example where strong in-
teractions are neglected, that the traditional approach of describing the sys-
tem imposing the condition of local charge neutrality and solving the cor-
responding TOV equations is conceptually inconsistent. We have then sub-
stitute the condition of local charge neutrality with the condition of global
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charge neutrality and derived the correct equations which we have called
the Einstein-Maxwell-Thomas-Fermi system. The boundary conditions are
also different from a traditional Cauchy data with the values of the functions
and first derivatives at the center into a boundary condition at the center and
delicate eigenvalue problem at the boundary determining the condition of
charge neutrality at the border. The conceptual differences and the alterna-
tive mathematical equations of the two approaches, the ones imposing local
versus global charge neutrality, lead to the presence of additional electro-
dynamic global structures. However, in this specific simple example, they
do not give significant quantitative differences in the mass-radius relation for
the equilibrium configurations. A very different situation occurs when strong
interactions are also taken into account.

The next step was to introduce self-consistently the strong interactions in
the construction of the equilibrium configurations. We have thus generalized
the Einstein-Maxwell-Thomas-Fermi equations to the case of strong interac-
tions, see (Rueda et al., 2011) for details. There, the major aim has been to
prove the constancy of the Klein potentials in the case in which the nuclear
interactions are described by a Lagrangian including in addition to the grav-
itational, electromagnetic, and weak interactions, also the presence of σ, ω,
and ρ virtual mesons that mediate the nuclear interactions.

We have also extended to finite temperatures the theoretical treatment of
gravito-polarization for a system of neutrons, protons and electrons in β-
equilibrium, taking into account strong interactions modeled through the ex-
change of σ, ω and ρ virtual mesons (see Rueda et al., 2011, for details). The
crucial role of the Klein potentials of particles is outlined as well as the condi-
tion of isothermality of Tolman. We have shown that, the gravito-polarization
effect although energetically much weaker than the corresponding gravita-
tional and thermal effects, do survive in the case of finite temperatures. Their
role, when strong interactions are considered, is of fundamental astrophysi-
cal importance.

The construction of realistic neutron stars with core and crust satisfying
global (but not local) charge neutrality has been already accomplished in
(Belvedere et al., 2012). The solutions lead to a new structure of the star:
a positively charged core at supranuclear densities surrounded by an elec-
tronic distribution of thickness ∼ h̄/(mec) ∼ 102h̄/(mπc) of opposite charge,
as well as a neutral crust at lower densities. Inside the core there is a Coulomb
potential well of depth ∼ mπc2/e. The constancy of the Klein potentials in
the transition from the core to the crust, impose the presence of an overcriti-
cal electric field ∼ (mπ/me)2Ec. For each central density, an entire family of
core-crust interface boundaries can be constructed, each of them reaching the
neutrality point at a different electron density at the edge of the crust. This
leads consequently to crusts with masses and thickness smaller than the ones
obtained from the traditional TOV treatment, resulting in a novel neutron
star mass-radius relation (see Fig. 3.4).
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Figure 3.4: Reproduced from Belvedere et al. (2012). Mass-Radius relation
for selected nuclear equations of state and comparison with observational
constraints.

This important work has been recently generalized to the case of uniform
rotation as part of the PhD thesis of R. Belvedere. The analysis of the prop-
erties of the core-crust interface, such as its surface and Coulomb energies,
have been studied by Y. Wu during his PhD research. The thermal properties
of neutron stars accounting for the above interior structure has been studied
by S. M. de Carvalho in her PhD thesis, also in collaboration with R. Ne-
greiros from Universidade Federal Fluminense from Brazil. The establish-
ment of conditions of macroscopic equilibrium of compact stars with phase-
transitions in their interiors, such as the one occurring from the crust to the
core, has been one of the main topics of the PhD research of Jonas P. Pereira.
Further details about these works can be found in Highlights of 2014 in chap-
ter 5.

3.5 Neutron Star Astrophysics

We start by studying the possible progenitors and emission mechanisms lead-
ing to the most energetic radiation observed in astrophysics, the gamma-ray
bursts (GRBs). Focus is given to the termed GRB-Supernova connection and
to Short GRBs. The binary progenitors of these systems are studied in detail
with particular emphasis on the role played by neutron stars.

It is understood that the Supernovae (SNe) associated to GRBs are of type
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Ib/c. However, the temporal coincidence of the GRB and the SN represents
still a major enigma of Relativistic Astrophysics. A novel concept has been re-
cently proposed for explaining the temporal coincidence of some GRBs with
an associated SN in terms of the gravitational collapse of a neutron star to a
Black Hole (BH), induced by a type Ib/c SN explosion (see Rueda and Ruffini,
2012, and the report of activities of the GRB group). There, based on the pio-
neer idea of Ruffini et al. (2008), the specific case of a close (orbital period < 1
h) binary system composed of an evolved star with a neutron star companion
has been considered (see Fig. 3.5). We have computed in (Rueda and Ruffini,
2012) the accretion rate onto the neutron star of the material expelled from
the explosion of the core progenitor as a type Ib/c SN, and give the explicit
expression of the accreted mass as a function of the nature of the components
and binary parameters. We showed that the NS can reach, in a few seconds,
the critical mass and consequently gravitationally collapses to a Black Hole.
This gravitational collapse process leads to the emission of the GRB.

Figure 3.5: Reproduced from Rueda and Ruffini (2012). Mass-Radius relation
for selected nuclear equations of state and comparison with observational
constraints.

We have recently applied in (Izzo et al., 2012) the above considerations
to the case of GRB 090618 (see also report of activities of the GRB group),
for which there is evidence of a SN ∼ 10 days after the GRB occurrence.
We compute the progenitor binary parameters: the mass of the neutron star
companion, MNS, and the mass of the SN core progenitor, Mcore, are in the
following mass ranges: 1.8 . MNS/M� . 2.1 and 3 ≤ Mcore/M� ≤ 8.
We have also discussed in (Rueda and Ruffini, 2012; Izzo et al., 2012) the
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complementarity of these considerations to alternative processes explaining
long and short GRBs. A great further step toward the understanding of these
systems has been recently achieved with the first full numerical simulations
of the above process of induced gravitational collapse. This work has been
done in collaboration with C. L. Fryer from Los Alamos National Laboratory
in New Mexico. We refer to the chapter 5, Highlights 2014, for additional
details on this interesting subject.

It is clear that after the occurrence of the SN and the GRB emission, the
outcome is represented, respectively, by a NS and a BH. A possible strong ev-
idence of the NS formation is represented by the observation of a characteris-
tic late (t = 108–109 s) X-ray emission that has been interpreted as originated
by the young (t ∼ 1 minute–(10–100) years), hot (T ∼ 107–108 K) NS, which
we have called neo-NS (see Negreiros et al., 2012, for details). The traditional
study of neutron star cooling has been generally applied to quite old objects
as the Crab Pulsar (957 years) or the Central Compact Object in Cassiopeia
A (330 years) with an observed surface temperature ∼ 106 K. However, as
we just mentioned in GRB-SN systems there is possible evidence of the cool-
ing of neutron stars with surface temperatures ∼ 107–108 K. The traditional
thermal processes taking place in the neutron star crust might be enhanced
by the extreme high temperature conditions of neo-neutron star and there-
fore the study of the thermal behavior especially of the crust of neo-neutron
stars deserves the appropriate attention. In the chapter 5, Highlights 2014,
we summarize the new results on this latter issue which was part of the PhD
work of S. M. de Carvalho.

3.6 Radiation Mechanisms of White Dwarfs and
Neutron Stars

We here study the possible emission mechanisms of white dwarfs and neu-
tron stars. We are interested in both electromagnetic and gravitational radia-
tion at work in astrophysical systems such as compact star magnetospheres,
as well as inspiraling and merging of relativistic binary systems such as dou-
ble neutron stars, neutron star-white dwarfs, and neutron star-black hole bi-
naries. This is a relatively new research topic within our group and therefore
no results prior to 2014 can be listed here. We have instead our first results in
the present year 2014, which can be found in the chapter 5, Highlights 2014.
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3.7 Exact Solutions of the Einstein and
Einstein-Maxwell Equations in Astrophysics

We analyze the ability of analytic exact solutions of the Einstein-Maxwell
equations to describe the exterior spacetime of compact stars like white dwarfs
and neutron stars. The problem of matching between interior and exterior
spacetimes is addressed in detail. The effect of the quadrupole moment on
the properties of the spacetime is also investigated. Particular attention is
given to the application of exact solutions in astrophysics, e.g. the dynamics
of particles around compact stars and its relevance in astrophysical systems
such as X-ray binaries.

Thus, whether analytic exact vacuum(electrovacuum) solutions of the Ein-
stein(Einstein-Maxwell) field equations can accurately describe or not the
exterior spacetime of compact stars remains still an interesting open ques-
tion. As an attempt to establish their level of accuracy, the radii of the Inner-
most Stable Circular Orbits (ISCOs) of test particles given by analytic exterior
spacetime geometries have been compared with the ones given by numerical
solutions for neutron stars obeying a realistic equation of state. It has been so
shown that the six-parametric solution of Pachón et al. (2006) (hereafter PRS)
is more accurate to describe the neutron star ISCO radii than other analytic
models.

In this line, Pachón et al. (2012) have recently proposed an additional test
of accuracy for analytic exterior geometries based on the comparison of or-
bital frequencies of neutral test particles. The Keplerian, frame-dragging, as
well as the precession and oscillation frequencies of the radial and vertical
motions of neutral test particles for the Kerr and PRS geometries have been
computed in (Pachón et al., 2012). Then, they were compared with the numer-
ical values obtained by Morsink and Stella (1999) for realistic neutron stars.
Contrary to what previously stated in the literature, it has been identified the
role of high-order multipole moments such as the mass quadrupole and cur-
rent octupole in the determination of the orbital frequencies, especially in the
rapid rotation regime. These results are relevant to cast a separatrix between
black holes and neutron star signatures as well as probe the nuclear matter
equation of state and neutron star parameters from the Quasi-Periodic Os-
cillations (QPOs) observed in low mass X-Ray binaries. We refer to (Pachón
et al., 2012) for further details (see Fig. 3.6).

We have performed a detailed analysis of the possibility of extracting the
first multipole moments of a compact object, namely the mass, angular mo-
mentum and quadrupole moment, by extending the relativistic precession
model of QPOs to the Hartle-Thorne solution and applying it to the low mass
X-ray binary GX 5–1. Details can be found in the chapter 5 Highlights 2014.
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Figure 3.6: Reproduced from Pachón et al. (2012). Periastron oscillation fre-
quency, νOS

ρ , as a function of the Keplerian frequency νK for selected NS
realistic models. We indicate the QPO frequencies observed in the sources
GX 5–1, 4U 1735–44, 4U 1636–53, Sco X1, GX 17–2, GX 340+0, Cir X1, 4U
0614+091, and 4U 1728–34. The solid curves depict the results for the mod-
els M1 (solid) and M2 (dashed) with red lines, for the models M3 (solid) and
M4 (dashed) with blue lines, for the models M5 (solid) and M6 (dashed) with
green lines while orange lines stands for the results from models M7 (solid)
and M8 (dashed). In the upper panel we present the results derived from the
PRSs=0 solution while in the lower panel we present the results for the Kerr
solution. In the lower panel we have added, to guide the eye, the inner red
dashed and outer red solid curves of the upper panel using black lines.
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3.8 Critical Fields and Non-Linear Electrodynamics
Effects in Astrophysics

We turn now to a more theoretical topic: the effects of non-linear electrody-
namics minimally coupled to gravity. We construct new analytic and numer-
ical solutions to the Einstein-Maxwell equations representing black holes or
the exterior field of a compact star. Some astrophysical applications are stud-
ied in detail such as the extractable energy of black holes, the mass-formula
of the black hole. This topic has been just recently open within our group
and thus new results has been obtained in the present year 2014; they are
part of the PhD thesis of Jonas P. Pereira. Details can be found in the chapter
5 Highlights 2014.
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5.1 Nuclear and Atomic Astrophysics

The extension of the relativistic Feynman-Metropolis-Teller treatment to the
case of finite temperatures has been part of the PhD work of S. M. de Car-
valho, and the results has been recently published, see de Carvalho et al.
(2014). The inclusion of finite temperature effects is relevant in view of the re-
cent discoveries of ultra-low mass white dwarfs with masses . 0.2M�, which
are companion of neutron stars in relativistic binaries (Antoniadis et al., 2012,
2013, see, e.g.,). These low-mass white dwarfs represent the perfect arena for
testing the equation of state of compressed matter since the central densi-
ties of these objects are . 106 g cm−3, where the degenerate approximation
breaks down and so thermal effects cannot be neglected (see Fig. 5.1).

Turning to neutron stars, we have recently investigated in Razeira et al.
(2014b,a) extensions of the traditional σ−ω− ρ relativistic nuclear mean field
model applied to the nuclear matter in neutron stars, by introducing many-
body correlations within a quantum hadrodynamics (QHD) model with pa-
rameterized couplings. We considered the whole fundamental baryon octet
(n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0) and the many-body forces are simulated by non-
linear self-couplings and meson-meson interaction terms involving scalar-
isoscalar (σ, σ∗), vector-isoscalar (ω, φ), vector-isovector (ρ), and scalar-isovector
(δ).

Concerning neutron stars satisfying global but not local charge neutrality,
we have already shown that a transition layer will develop between their
core and crust of, at densities of the order of the nuclear saturation value. In
(Rueda et al., 2014), we have used relativistic mean field theory together with
the Thomas-Fermi approximation to study the detailed structure of this tran-
sition layer and calculate its surface and Coulomb energy. We find that the
surface tension is proportional to a power-law function of the baryon number
density in the core bulk region. We also analyzed the influence of the electron
component and the gravitational field on the structure of the transition layer
and the value of the surface tension, to compare and contrast with known
phenomenological results in nuclear physics. Based on the above results we
study the instability against Bohr-Wheeler surface deformations in the case
of neutron stars obeying global charge neutrality. Assuming the core-crust
transition at nuclear density ρcore ≈ 2.7× 1014 g cm−3, we find that the in-
stability sets the upper limit to the crust density, ρcrit

crust ≈ 1.2× 1014 g cm−3
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Figure 5.1: Reproduced from de Carvalho et al. (2014). Left panel: mass-
radius relation of helium white dwarfs at zero temperatures contrasted with
observations, deviations at low masses is evident. Right panel: Equation of
state for selected temperatures.

This result implies a nonzero lower limit to the maximum electric field of the
core-crust transition surface and makes inaccessible a limit of almost local
charge neutrality at ρcrust ≈ ρcore. The general framework can be also applied
to study the stability of sharp phase transitions in hybrid stars as well as in
strange stars, both bare and with outer crust. The results of this work open
the way to a more general analysis of the stability of these transition surfaces,
accounting for other effects such as gravitational binding, centrifugal repul-
sion, magnetic field induced by rotating electric field, and therefore magnetic
dipole-dipole interactions.

Following the above treatment, we have just submitted a new article to
Phys. Rev. C [J. A. Rueda, Y. Wu, S.-S. Xue, Surface tension of heavy atoms]. We
compute the surface properties of atoms in which some of the electrons have
penetrated into nuclear cores. Taking into account the strong, weak, and elec-
tromagnetic interactions, we numerically study the structure of heavy atoms
and calculate the surface tension and Coulomb energy. We analyze the in-
fluence of the electron component on the structure of heavy atoms and the
surface tension to compare and contrast with known phenomenological re-
sults in nuclear physics and the results of the core-crust interface of neutron
stars with global charge neutrality. Based on these results we study the insta-
bility against Bohr-Wheeler surface deformations in the case of heavy atoms.
The results in this article provide the evidence of strong effects of the electro-
magnetic interaction and electrons on structure of heavy atoms.

5.2 White Dwarfs Physics and Structure

It has been recently purported by Das and Mukhopadhyay (2013) that the
presence of a extremely large uniform magnetic field of order 1018 G in the
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interior of a white dwarf, increases its maximum mass from the traditional
Chandrasekhar value, ≈ 1.44 M�, to a new upper bound ≈ 2.58 M�. Such a
much larger limit would make these astrophysical objects viable candidates
for the explanation of the superluminous population of type Ia supernovae.
We have shown in (Coelho et al., 2014) that the new mass limit was obtained
neglecting several macro and micro physical aspects such as gravitational,
dynamical stability, breaking of spherical symmetry, general relativity, in-
verse β decay, and pycnonuclear fusion reactions. These effects are relevant
for the self-consistent description of the structure and assessment of stabil-
ity of these objects. When accounted for, they lead to the conclusion that the
existence of such ultramagnetized white dwarfs in nature is very unlikely
due to violation of minimal requests of stability, and therefore the canonical
Chandrasekhar mass limit of white dwarfs has to be still applied.

5.3 White Dwarfs Astrophysics

Recent observations of relativistic white dwarf-neutron star binaries has led
to the discovery that the white dwarfs in these systems are extremely light
with masses . 0.2M� (Antoniadis et al., 2012, 2013). These objects should
have densities lower than ∼ 106 g cm−3, where thermal effects are expected
to become relevant. In this line, we have generalized in (de Carvalho et al.,
2014) the relativistic Feynman-Metropolis-Teller treatment to the case of finite
temperatures. We have used this new equation of state to construct the mass-
radius relation of white dwarfs at finite temperatures in a wide range of cen-
tral densities. We analyze the particular case of the white dwarf companion
of the pulsar PSR J1738+0333, which is expected to have a mass ∼ 0.18 M�
(Antoniadis et al., 2012). Using the observed surface effective temperature
and surface gravity of the white dwarf we infer that the central white dwarf
core temperature should be about∼ 2× 107 K (see Fig. 5.2). In addition to the
analysis of white dwarfs, we have in (de Carvalho et al., 2014) extrapolated
the formulation of the finite temperature relativistic FMT treatment to com-
pressed nuclear matter cores of stellar dimensions. These systems have total
mass numbers A ≈ (mPlanck/mn)3 or mass Mcore ≈ M�, where mPlanck and
mn are the Planck and the nucleon mass. For T � mec2/kB ≈ 5.9× 109 K, a
family of equilibrium configurations can be obtained with analytic solutions
of the ultrarelativistic Thomas-Fermi equation at finite temperatures. Such
configurations fulfill global but not local charge neutrality and have strong
electric fields on the core surface. We find that the maximum electric field at
the core surface is enhanced at finite temperatures with respect to the degen-
erate case.
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Figure 5.2: Reproduced from de Carvalho et al. (2014). Left panel: theoretical
mass-radius relation of helium white dwarfs for selected interior tempera-
tures and surface gravity g and observed photometric radius of the white
dwarf companion of PSR J1738+0333. Right panel: Equation of state for se-
lected temperatures. Theoretical surface gravity as a function of the radius
for the same white dwarfs of the left panel.

5.4 Neutron Star Physics and Structure

In our previous treatment of neutron stars, we formulated a model fulfilling
global but not local charge neutrality. The full system of equilibrium equa-
tions formed a coupled system that we have denominated Einstein-Maxwell-
Thomas-Fermi (EMTF) equations. From the microphysical point of view, the
weak interactions are accounted for vie the request of the β stability of nu-
clear matter, and the strong interactions by introducing a relativistic nuclear
σ − ω − ρ model, where σ, ω and ρ are the mediator massive mesons. In
(Belvedere et al., 2014) we examine the equilibrium configurations of slowly
rotating neutron stars by using the Hartle formalism in the case of the EMTF
equations indicated above. We integrate these equations of equilibrium for
different central densities ρc and circular angular velocities Ω and compute
the mass M, polar Rp and equatorial Req radii, angular momentum J, ec-
centricity ε, moment of inertia I, as well as quadrupole moment Q of the
configurations. Both the Keplerian mass-shedding limit and the axisymmet-
ric secular instability are used to construct the new mass-radius relation. We
compute the maximum and minimum masses and rotation frequencies of
neutron stars. We compare and contrast all the results for the global and local
charge neutrality cases (see Fig. 5.3).

There is the need of seeking for potential observations which could reveal
this new structure of the neutron star. Since the thermal evolution of a neu-
tron star is strongly sensitive to its microscopic and macroscopic properties,
one possibility to unveil the neutron star structure is represented by observ-
ing their cooling-down. We have recently computed in (S. M. de Carvalho,
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Figure 5.3: Reproduced from Belvedere et al. (2014). Comparison of the mass-
radius relation of uniformly rotating neutron stars under the constraints of
global and local charge neutrality.

R. Negreiros, J. A. Rueda, R. Ruffini, to appear in Phys. Rev. C) the cooling
curves by integrating numerically the energy balance and transport equa-
tions in general relativity, for globally neutral neutron stars with crusts of dif-
ferent masses and sizes, according to this theory for different core-crust tran-
sition interfaces. In the simulation we consider all the main radiation emis-
sivities, heat capacity, thermal conductivity, and possible superconductivity
of the nucleons. We compare and contrast our study with known results for
local charge neutrality. We found a new behavior for the relaxation time, de-
pending upon the density at the base of the crust, ρcrust. In particular, we find
that the traditional increase of the relaxation time with the crust thickness
holds only for configurations whose density of the base of the crust is greater
than ≈ 5× 1013 g cm−3 (see Fig. 5.4). The reason for this is that neutron star
crusts with very thin or absent inner crust have some neutrino emission pro-
cess blocked which keep the crust hotter for longer times. Therefore, accurate
observations of the thermal relaxation phase in the first years of evolution of
newly-born neutron stars might give crucial information on the core-crust
transition which may aid us in probing the inner composition/structure of
these objects.
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5.5 Neutron Star Astrophysics

There is an interesting class of pulsars referred to as high-magnetic field pul-
sars, which are thought to be transition objects between pulsars and magne-
tars. The reason for this is that using fiducial of mass M = 1.4 M�, radius
R = 10 km, and moment of inertia, I = 1045 g cm2 for a neutron star, the
magnetic fields inferred using the traditional magneto-dipole rotating model
of pulsars appear to be very close and some of them even higher than the crit-
ical field of quantum electrodynamics, Bc ≈ 4.4× 1013 G. In addition, their
X-ray luminosities appear higher than the rotational energy loss of the object,
avoiding their explanation as rotation-powered pulsars. However, we have
recently shown in (R. Belvedere,J. A. Rueda, R. Ruffini, to appear in ApJ) that
the use of realistic parameters of rotating neutron stars obtained from numer-
ical integration of the self-consistent axisymmetric general relativistic equa-
tions of equilibrium with realistic interior equation of state leads to values
of the magnetic field and radiation efficiency of pulsars very different from
estimates based on fiducial parameters. Furthermore, we compared and con-
trasted the magnetic field inferred from the traditional Newtonian rotating
magnetic dipole model with respect to the one obtained from its general rela-
tivistic analog which takes into due account the effect of the finite size of the
source. We have indeed shown that all the high-magnetic field pulsars can
be described as canonical rotation-powered objects driven by the rotational
energy of the neutron star, and with magnetic fields lower than the quantum
critical field for any value of the neutron star mass (see Fig. 5.5).

We turn now to the role of neutron stars in the induced gravitational col-
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Figure 5.5: Reproduced from R. Belvedere,J. A. Rueda, R. Ruffini, to ap-
pear in ApJ. Left panel: ratio of the magnetic field (Newtonian and Gen-
eral Relativistic) to the fiducial value. Right panel: magnetic field BG.R. of the
high-magnetic field pulsars as obtained from the general relativistic magneto-
dipole formula in units of critical magnetic field, as function of the mass (in
solar masses), for static neutron stars in the global charge neutrality case.

lapse (IGC) paradigm of gamma-ray bursts (GRBs) associated with super-
novae (SNe) Ic. The progenitor of those sources is a tight binary system com-
posed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The
explosion of the SN leads to hypercritical accretion onto the NS companion,
which reaches the critical mass, hence inducing its gravitational collapse to a
black hole (BH) with consequent emission of the GRB. The first estimates of
this process by Rueda and Ruffini (2012) were based on a simplified model
of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We
present new results in (Fryer et al., 2014) with the first full numerical simula-
tions of the IGC phenomenon. We simulate the core-collapse and SN explo-
sion of CO stars to obtain the density and ejection velocity of the SN ejecta.
We follow the hydrodynamic evolution of the accreting material falling into
the Bondi-Hoyle surface of the NS all the way up to its incorporation in the
NS surface. The simulations go up to BH formation when the NS reaches
the critical mass. For appropriate binary parameters, the IGC occurs in short
timescales ∼ 102–103 s owing to the combined effective action of the photon
trapping and the neutrino cooling near the NS surface (see Fig. 5.6). We also
show that the IGC scenario leads to a natural explanation for why GRBs are
associated only with SNe Ic with totally absent or very little helium.
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nario. Lower panel: Simulated accretion rates onto the neutron star compan-
ion of the CO core undergoing SN explosion.
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5.6 Radiation Mechanisms of White Dwarfs and
Neutron Stars

5.6.1 Gravitational Waves Radiation

The progress obtained from the Fermi-GBM and Konus-Wind satellites has
been used to identify through the analysis of GRB 090227B (Muccino et al.,
2013) the new class of genuinely short GRBs: short bursts with the same inner
engine of the long GRBs but endowed with a severely low value of the baryon
load, B ≡ MBc2/EGRB

tot . 5 × 10−5, where MB is the mass of the baryons
engulfed by the expanding ultrarelativistic e+e− plasma of energy EGRB

tot . The
emission from these GRBs mainly consists in a first emission, the peak GRB
(P-GRB), followed by a softer emission squeezed on the first one. The typical
separation between the two components is expected to be shorter than 1–10
ms.

A special case is GRB 090227B. From the 16 ms time-binned light curves it
has been found a significant thermal emission in the first 96 ms, which has
been identified with the P-GRB. The subsequent emission is identified with
the extended afterglow. The P-GRB of 090227B has the highest temperature
ever observed, kBT = 517 keV, where kB is the Boltzmann constant. Other
properties of the GRB have been computed, e.g. the total energy emitted
EGRB

tot , Baryon load B, Lorentz factor at transparency Γtr, cosmological red-
shift z, intrinsic duration of the GRB emission ∆t, and average density of the
CircumBurst Medium (CBM) 〈nCBM〉; we refer to Muccino et al. (2013) for
further details.

These quantitative results lead to the conclusion that the progenitor of GRB
090227B is a neutron star binary: (1) the natal kicks velocities imparted to a
neutron star binary at birth can be even larger than 200 km s−1 and therefore
a binary system can runaway to the halo of its host galaxy, clearly pointing
to a very low average number density of the CBM; (2) the very large total
energy, which we can indeed infer in view of the absence of beaming, and
the very short time scale of emission point again to a neutron star binary; (3)
as we shall show below the very small value of the baryon load is strikingly
consistent with two neutron stars having small crusts, in line with the recent
neutron star theory (Belvedere et al., 2012). This first identification of a gen-
uinely short GRB has allowed us to compute for the first time the total energy
release in form of gravitational waves from a neutron star binary merger that
leads to the emission of a GRB, which we have show, Oliveira et al. (2014).

In Oliveira et al. (2014), we show that the observations of the genuinely
short GRB 090227B lead to crucial information on the binary neutron star
progenitor. The data obtained from the electromagnetic spectrum allows to
probe crucial aspects of the correct theory of neutron stars and their equation
of state. The baryon load parameter B obtained from the analysis of GRB
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Figure 5.7: Reproduced from Oliveira et al. (2014). Left panel: theoretical
baryon load from a neutron star binary merger assuming it comes from the
crust mass of the binary components. Right panel: signal-to-noise ratio ex-
pected at Advanced LIGO for a neutron star merger leading to a GRB at the
cosmological redshift of GRB 090227B estimated by Muccino et al. (2013),
z ≈ 1.6.

090227B, leads to a remarkable agreement of the baryonic matter expected
to be ejected in a neutron star binary merger and validate a choice of the
parameters of the binary components, M1 = M2 = 1.34M�, and R1 = R2 =
12.24 km.

We computed the dynamics of the neutron star binary progenitor prior to
the merger and emission of the GRB. We compare and contrast the classic de-
scription of the dynamics with the more general one given by the framework
of the effective one-body formalism, which we use up to 4-PN order. We esti-
mate the detectability of GRB 090227B by the Advanced LIGO interferometer,
by computing the signal-to-noise ratio up to the contact point of the binary
components, for the theoretically cosmological redshift inferred by Muccino
et al. (2013), z = 1.61 (see Fig. 5.7). We also estimate the redshift at which
Advanced LIGO would detect this GRB with a signal-to-noise ratio equal to
five; we obtained z ≈ 0.08. From the dynamics, we then estimated the total
energy release in form of gravitational waves and concluded that the emis-
sion of electromagnetic radiation in a GRB by a binary neutron star system is
at least one order of magnitude larger than the gravitational wave emission.

5.7 Exact Solutions of the Einstein and
Einstein-Maxwell Equations in Astrophysics

In the light of the relativistic precession model, we have presented in (K. Boshkayev,
D. Bini, J. A. Rueda, A. Geralico, M. Muccino, I. Siutsou, Grav. Cosm. 20,
233, 2014), a detailed analysis of the the kilohertz quasi-periodic oscillations
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of low-mass X-ray binaries of the atoll and Z sources, on the basis of the
relativistic precession model. We have extended previous analyses made in
the Schwarzschild and Kerr backgrounds by deriving the epicyclic frequen-
cies for the Hartle-Thorne exterior spacetime. In particular, we perform an
analysis for the Z source GX 5–1 and show that the QPOs data can provide
information on the parameters, namely, the mass, angular momentum and
quadrupole moment of compact objects in low-mass X-ray binaries.

5.8 Critical Fields and Non-linear Electrodynamics
Effects in Astrophysics

We have presented in (Pereira et al., 2014) a generalization of the Christodoulou-
Ruffini mass formula for charged black holes in the weak field limit of non-
linear Lagrangians for electrodynamics, i.e. for theories in which the electric
fields are much smaller than the scale (threshold) fields introduced by the
nonlinearities. We have shown generically that the black hole outer hori-
zon never decreases, and demonstrated that reversible transformations are,
indeed, fully equivalent to constant horizon solutions for nonlinear theories
encompassing asymptotically flat black hole solutions. This result is used
to decompose, in an analytical and alternative way, the total mass-energy of
nonlinear charged black holes, circumventing the difficulties faced to obtain
it via the standard differential approach. It is also proven that the known first
law of black hole thermodynamics is the direct consequence of the mass de-
composition for general black hole transformations. From all the above we
finally show a most important corollary: for relevant astrophysical scenar-
ios nonlinear electrodynamics decreases the extractable energy from a black
hole with respect to the Einstein-Maxwell theory. Physical interpretations for
these results are also discussed.
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6.1 Refereed Journals

6.1.1 Printed

1. J. G. Coelho, R. M. Jr. Marinho, M. Malheiro, R. Negreiros, Jorge A. Rueda,
R. Ruffini, Dynamical Instability of White Dwarfs and Breaking of Spheri-
cal Symmetry Under the Presence of Extreme Magnetic Fields, ApJ 794, 86
(2014).

Massive, highly magnetized white dwarfs with fields up to 109 G have
been observed and theoretically used for the description of a variety
of astrophysical phenomena. Ultramagnetized white dwarfs with uni-
form interior fields up to 1018 G have been recently purported to obey
a new maximum mass limit, Mmax ≈ 2.58 M�, which largely over-
comes the traditional Chandrasekhar value, MCh ≈ 1.44 M�. Such a
larger limit would make these astrophysical objects viable candidates
for the explanation of the superluminous population of Type Ia super-
novae. We show that several macro and micro physical aspects such as
gravitational, dynamical stability, breaking of spherical symmetry, gen-
eral relativity, inverse β decay, and pycnonuclear fusion reactions are of
most relevance for the self-consistent description of the structure and
assessment of stability of these objects. It is shown in this work that the
first family of magnetized white dwarfs indeed satisfy all the criteria of
stability, while the ultramagnetized white dwarfs are very unlikely to
exist in nature since they violate minimal requests of stability. There-
fore, the canonical Chandrasekhar mass limit of white dwarfs still has
to be applied.

2. Chris L. Fryer, Jorge A. Rueda, R. Ruffini, Hypercritical Accretion, Induced
Gravitational Collapse, and Binary-Driven Hypernovae, ApJ Lett. 793, L36
(2014).

The induced gravitational collapse (IGC) paradigm has been success-
fully applied to the explanation of the concomitance of gamma-ray bursts
(GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary sys-
tem composed of a carbon-oxygen (CO) core and a neutron star (NS)
companion. The explosion of the SN leads to hypercritical accretion
onto the NS companion, which reaches the critical mass, hence induc-
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ing its gravitational collapse to a black hole (BH) with consequent emis-
sion of the GRB. The first estimates of this process were based on a sim-
plified model of the binary parameters and the Bondi-Hoyle-Lyttleton
accretion rate. We present here the first full numerical simulations of
the IGC phenomenon. We simulate the core-collapse and SN explosion
of CO stars to obtain the density and ejection velocity of the SN ejecta.
We follow the hydrodynamic evolution of the accreting material falling
into the Bondi-Hoyle surface of the NS all the way up to its incorpora-
tion in the NS surface. The simulations go up to BH formation when
the NS reaches the critical mass. For appropriate binary parameters,
the IGC occurs in short timescales ∼ 102–103 s owing to the combined
effective action of the photon trapping and the neutrino cooling near
the NS surface. We also show that the IGC scenario leads to a natural
explanation for why GRBs are associated only with SNe Ic with totally
absent or very little helium.

3. M. Razeira, A. Mesquita, C. A. Z. Vasconcellos, R. Ruffini, J. A. Rueda,
R. O. Gomes, Strangeness content of neutron stars with strong Σ-hyperon
repulsion, Astronomische Nachrichten 335, 739 (2014).

A new constraint on the equation of state and composition of the mat-
ter on neutron stars has been provided by the measurement of the mass
2.01 ± 0.04 M� for PSR J0348 +0432. In this contribution we investi-
gate the role of many-body correlations in the maximum mass of neu-
tron stars using the effective relativistic QHD-model with parameter-
ized couplings. The complete expression of our QHD interaction La-
grangian exhausts the whole fundamental baryon octet (n, p, Σ−, Σ0,
Σ+, Λ, Ξ−, Ξ0) and includes many-body forces simulated by nonlin-
ear self-couplings and meson-meson interaction terms involving scalar-
isoscalar (σ, σ∗), vector-isoscalar (ω, φ), vector-isovector (ρ), and scalar-
isovector (δ). We study the behavior of the asymmetry parameter, which
describes the relative neutron excess in the system as well as the be-
havior of the strangeness asymmetry parameter, which specifies the
strangeness content in the system and is strictly connected with the ap-
pearance of a particular hyperon species in the extreme case where the
Σ− experiences such a strong repulsion that it does not appear at all in
nuclear matter.

4. M. Razeira, A. Mesquita, C. A. Z. Vasconcellos, R. Ruffini, J. A. Rueda,
R. O. Gomes, Effective field theory for neutron stars with strong Σ-hyperon
repulsion, Astronomische Nachrichten 335, 733 (2014).

We investigate the role of many-body correlations in the maximum mass
of neutron stars using the effective relativistic QHD-model with pa-
rameterized couplings which represents an extended compilation of
other effective models found in the literature. Our model exhausts
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the whole fundamental baryon octet (n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0) and
simulates corrections to the minimal Yukawa couplings by consider-
ing many-body nonlinear self-couplings and meson-meson interaction
terms involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, φ), vector-
isovector (ρ) and scalar-isovector (δ). Following recent experimental
results, we consider in our calculations the extreme case where the Σ−

experiences such a strong repulsion that it does not appear at all in nu-
clear matter.

5. R. Ruffini, L. Izzo, M. Muccino, G. B. Pisani, J. A. Rueda, Y. Wang,
C. Barbarino, C. L. Bianco, M. Enderli, M. Kovacevic, Induced gravita-
tional collapse at extreme cosmological distances: the case of GRB 090423,
A&A 569, A39 (2014).

The induced gravitational collapse (IGC) scenario has been introduced
in order to explain the most energetic gamma ray bursts (GRBs), Eiso =
1052–1054 erg, associated with type Ib/c supernovae (SNe). It has led to
the concept of binary-driven hypernovae (BdHNe) originating in a tight
binary system composed by a FeCO core on the verge of a SN explosion
and a companion neutron star (NS). Their evolution is characterized by
a rapid sequence of events: 1) the SN explodes, giving birth to a new
NS (νNS). The accretion of SN ejecta onto the companion NS increases
its mass up to the critical value; 2) the consequent gravitational collapse
is triggered, leading to the formation of a black hole (BH) with GRB
emission; 3) a novel feature responsible for the emission in the GeV,
X-ray, and optical energy range occurs and is characterized by specific
power-law behavior in their luminosity evolution and total spectrum; 4)
the optical observations of the SN then occurs. We investigate whether
GRB 090423, one of the farthest observed GRB at z = 8.2, is a member
of the BdHN family. We compare and contrast the spectra, the luminos-
ity evolution, and the detectability in the observations by Swift of GRB
090423 with the corresponding ones of the best known BdHN case, GRB
090618. Identification of constant slope power-law behavior in the late
X-ray emission of GRB 090423 and its overlapping with the correspond-
ing one in GRB 090618, measured in a common rest-frame, represents
the main result of this article. This result represents a very significant
step on the way to using the scaling law properties, proven in Episode
3 of this BdHN family, as a cosmological standard candle. Having iden-
tified GRB 090423 as a member of the BdHN family, we can conclude
that SN events, leading to NS formation, can already occur, namely at
650 Myr after the Big Bang. It is then possible that these BdHNe stem
from 40–60 M� binaries. They are probing the Population II stars after
the completion and possible disappearance of Population III stars.

6. Jonas P. Pereira, Herman J. Mosquera-Cuesta, J. A. Rueda, R. Ruffini, On
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the black hole mass decomposition in nonlinear electrodynamics, Phys. Lett.
B 734, 396 (2014).

In the weak field limit of nonlinear Lagrangians for electrodynamics,
i.e. theories in which the electric fields are much smaller than the scale
(threshold) fields introduced by the nonlinearities, a generalization of
the Christodoulou-Ruffini mass formula for charged black holes is pre-
sented. It proves that the black hole outer horizon never decreases. It
is also demonstrated that reversible transformations are, indeed, fully
equivalent to constant horizon solutions for nonlinear theories encom-
passing asymptotically flat black hole solutions. This result is used to
decompose, in an analytical and alternative way, the total mass-energy
of nonlinear charged black holes, circumventing the difficulties faced
to obtain it via the standard differential approach. It is also proven
that the known first law of black hole thermodynamics is the direct
consequence of the mass decomposition for general black hole trans-
formations. From all the above we finally show a most important corol-
lary: for relevant astrophysical scenarios nonlinear electrodynamics de-
creases the extractable energy from a black hole with respect to the
Einstein-Maxwell theory. Physical interpretations for these results are
also discussed.

7. F. G. Oliveira, J. A. Rueda, R. Ruffini, Gravitational Waves versus X-Ray
and Gamma-Ray Emission in a Short Gamma-Ray Burst, ApJ 787, 150 (2014).

Recent progress in the understanding of the physical nature of neutron
star equilibrium configurations and the first observational evidence of
a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to
give an estimate of the gravitational waves versus the X-ray and gamma-
ray emission in a short GRB.

8. R. Ruffini, L. Izzo, M. Muccino, G. B. Pisani, J. A. Rueda, Y. Wang,
C. Barbarino, C. L. Bianco, M. Enderli, M. Kovacevic, On binary-driven
hypernovae and their nested late X-ray emission, A&A Lett. 565, L10 (2014).

The induced gravitational collapse (IGC) paradigm addresses the very
energetic (1052–1054 erg) long gamma-ray bursts (GRBs) associated to
supernovae (SNe). Unlike the traditional “collapsar” model, an evolved
FeCO core with a companion neutron star (NS) in a tight binary sys-
tem is considered as the progenitor. This special class of sources, here
named ”binary-driven hypernovae” (BdHNe), presents a composite se-
quence composed of four different episodes with precise spectral and
luminosity features. We first compare and contrast the steep decay, the
plateau, and the power-law decay of the X-ray luminosities of three se-
lected BdHNe (GRB 060729, GRB 061121, and GRB 130427A). Second,
to explain the different sizes and Lorentz factors of the emitting regions
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of the four episodes, for definiteness, we use the most complete set of
data of GRB 090618. Finally, we show the possible role of r-process,
which originates in the binary system of the progenitor. We compare
and contrast the late X-ray luminosity of the above three BdHNe. We
examine correlations between the time at the starting point of the con-
stant late power-law decay t∗a , the average prompt luminosity 〈Liso〉,
and the luminosity at the end of the plateau La. We analyze a ther-
mal emission (∼ 0.97–0.29 keV), observed during the X-ray steep decay
phase of GRB 090618. The late X-ray luminosities of the three BdHNe,
in the rest-frame energy band 0.3–10 keV, show a precisely constrained
“nested” structure. In a space-time diagram, we illustrate the different
sizes and Lorentz factors of the emitting regions of the three episodes.
For GRB 090618, we infer an initial dimension of the thermal emitter of
∼ 7× 1012 cm, expanding at Γ ≈ 2. We find tighter correlations than
the Dainotti-Willingale ones. We confirm a constant slope power-law
behavior for the late X-ray luminosity in the source rest frame, which
may lead to a new distance indicator for BdHNe. These results, as well
as the emitter size and Lorentz factor, appear to be inconsistent with
the traditional afterglow model based on synchrotron emission from
an ultra-relativistic (Γ ∼ 102–103) collimated jet outflow. We argue, in-
stead, for the possible role of r-process, originating in the binary system,
to power the mildly relativistic X-ray source.

9. J. A. Rueda, R. Ruffini, Y. Wu, S.-S. Xue, Surface tension of the core-crust
interface of neutron stars with global charge neutrality, Phys. Rev. C 89,
035804 (2014).

It has been shown recently that taking into account strong, weak, elec-
tromagnetic, and gravitational interactions, and fulfilling the global charge
neutrality of the system, a transition layer will happen between the core
and crust of neutron stars, at the nuclear saturation density. We use
relativistic mean field theory together with the Thomas-Fermi approx-
imation to study the detailed structure of this transition layer and cal-
culate its surface and Coulomb energy. We find that the surface tension
is proportional to a power-law function of the baryon number density
in the core bulk region. We also analyze the influence of the electron
component and the gravitational field on the structure of the transi-
tion layer and the value of the surface tension, to compare and con-
trast with known phenomenological results in nuclear physics. Based
on the above results we study the instability against Bohr-Wheeler sur-
face deformations in the case of neutron stars obeying global charge
neutrality. Assuming the core-crust transition at nuclear density ρcore ≈
2.7× 1014 g cm−3, we find that the instability sets the upper limit to the
crust density, ρcrit

crust ≈ 1.2× 1014 g cm−3 This result implies a nonzero
lower limit to the maximum electric field of the core-crust transition
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surface and makes inaccessible a limit of quasilocal charge neutrality
in the limit ρcrust ≈ ρcore. The general framework presented here can
be also applied to study the stability of sharp phase transitions in hy-
brid stars as well as in strange stars, both bare and with outer crust.
The results of this work open the way to a more general analysis of the
stability of these transition surfaces, accounting for other effects such
as gravitational binding, centrifugal repulsion, magnetic field induced
by rotating electric field, and therefore magnetic dipole-dipole interac-
tions.

10. S. M. de Carvalho, M. Rotondo, J. A. Rueda, R. Ruffini, Relativistic Feynman-
Metropolis-Teller treatment at finite temperatures, Phys. Rev. C 89, 015801
(2014).

The Feynman-Metropolis-Teller treatment of compressed atoms has been
recently generalized to relativistic regimes and applied to the descrip-
tion of static and rotating white dwarfs in general relativity. We present
here the extension of this treatment to the case of finite temperatures
and construct the corresponding equation of state (EOS) of the system;
applicable in a wide regime of densities that includes both white dwarfs
and neutron star outer crusts. We construct the mass-radius relation of
white dwarfs at finite temperatures obeying this new EOS and apply it
to the analysis of ultra-low-mass white dwarfs with M . 0.2 M�. In
particular, we analyze the case of the white dwarf companion of PSR
J1738 + 0333. The formulation is then extrapolated to compressed nu-
clear matter cores of stellar dimensions, systems with mass numbers
A ≈ (mPlanck/mn)3 or mass Mcore ≈ M�, where mPlanck and mn are
the Planck and the nucleon mass. For T � mec2/kB ≈ 5.9× 109 K, a
family of equilibrium configurations can be obtained with analytic so-
lutions of the ultrarelativistic Thomas-Fermi equation at finite temper-
atures. Such configurations fulfill global but not local charge neutrality
and have strong electric fields on the core surface. We find that the max-
imum electric field at the core surface is enhanced at finite temperatures
with respect to the degenerate case.

11. R. Belvedere, K. Boshkayev, J. A. Rueda, R. Ruffini, Uniformly rotating
neutron stars in the global and local charge neutrality cases, Nucl. Phys. A
921, 33 (2014).

In our previous treatment of neutron stars, we have developed the model
fulfilling global and not local charge neutrality. In order to implement
such a model, we have shown the essential role by the Thomas-Fermi
equations, duly generalized to the case of electromagnetic field equa-
tions in a general relativistic framework, forming a coupled system of
equations that we have denominated Einstein-Maxwell-Thomas-Fermi
(EMTF) equations. From the microphysical point of view, the weak
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interactions are accounted for by requesting the β stability of the sys-
tem, and the strong interactions by using the σ− ω − ρ nuclear model,
where σ, ω and ρ are the mediator massive mesons. Here we examine
the equilibrium configurations of slowly rotating neutron stars by us-
ing the Hartle formalism in the case of the EMTF equations indicated
above. We integrate these equations of equilibrium for different central
densities ρc and circular angular velocities Ω and compute the mass M,
polar Rp and equatorial Req radii, angular momentum J, eccentricity ε,
moment of inertia I, as well as quadrupole moment Q of the configu-
rations. Both the Keplerian mass-shedding limit and the axisymmetric
secular instability are used to construct the new mass-radius relation.
We compute the maximum and minimum masses and rotation frequen-
cies of neutron stars. We compare and contrast all the results for the
global and local charge neutrality cases.

12. R. Belvedere, J. A. Rueda, R. Ruffini, Static and rotating neutron stars ful-
filling all fundamental interactions, J. Kor. Phys. Soc. 65, 897 (2014).

We summarize the key ingredients of a new neutron star model ful-
filling global, but not local, charge neutrality. The model is described
by what we have called the Einstein-Maxwell-Thomas-Fermi equations,
which account for the strong, weak, electromagnetic, and gravitational
interactions, as well as thermodynamical equilibrium, within the frame-
work of general relativity and relativistic nuclear mean field theory. We
show the results for both the static and uniformly rotating neutron stars
and discuss some astrophysical implications.

13. K. Boshkayev, J. A. Rueda, R. Ruffini, I. Siutsou, General relativistic white
dwarfs and their astrophysical implications, J. Kor. Phys. Soc. 65, 855 (2014).

We present recent results on general relativistic uniformly rotating white
dwarfs. Namely, on the basis of the general relativistic Feynman-Metropolis-
Teller theory for white dwarfs we focus on the applications of the gen-
eral relativistic uniformly rotating white dwarfs to several astrophysi-
cal phenomena related to the spin-up and spin-down stages, delayed
gravitational collapse of super-Chandrasekhar white dwarfs, where we
estimate the “spinning down” lifetime due the magnetic dipole break-
ing. In addition we describe the physical properties of Soft Gamma
Repeaters and Anomalous X-Ray Pulsars (SGRs and AXPs) as massive
fast rotating highly magnetized white dwarfs following Malheiro et al.
(2012). We describe one of the so-called low magnetic field magne-
tars SGR 0418+5729 as a massive fast rotating highly magnetized white
dwarf. We give bounds for the mass, radius, moment of inertia, and
magnetic field for these sources by requesting the stability of realistic
general relativistic uniformly rotating configurations.
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14. S. M. de Carvalho, J. A. Rueda, R. Ruffini, On the cooling of globally-
neutral neutron stars, J. Kor. Phys. Soc. 65, 861 (2014).

We compute the thermal evolution of neutron stars taking account the
strong, weak, electromagnetic and gravitational interactions within the
framework of general relativity, and satisfying the condition of global
but not local charge neutrality. We focus on the isothermal phase fol-
lowing the thermal relaxation of the star and compared with observa-
tional data from isolated neutron stars.

15. D. L. Cáceres, J. A. Rueda, R. Ruffini, On the stability of ultra-magnetized
white dwarfs, J. Kor. Phys. Soc. 65, 846 (2014).

It has been recently proposed that ultra-magnetized white dwarfs with
interior fields up to 1018 G have a critical mass limit, Mmax ≈ 2.58 M�,
which surpasses the traditional Chandrasekhar limit Mch ≈ 1.44M�.
We show that several stability criteria and fundamental physical as-
pects that take place when huge magnetic fields and high densities are
present have been neglected in the determination of such a new mass
limit for white dwarfs, invalidating that result.

16. K. Boshkayev, D. Bini, J. A. Rueda, A. Geralico, M. Muccino, I. Siutsou,
What Can We Extract from Quasiperiodic Oscillations?, Gravitation and
Cosmology 20, 233 (2014).

In the light of the relativistic precession model, we present a detailed
analysis extending the ones performed in the Schwarzschild and Kerr
spacetimes. We consider the kilohertz quasi-periodic oscillations in the
Hartle-Thorne spacetime which describes a rotating and deformed ob-
ject. We derive analytic formulas for epicyclic frequencies in the Hartle-
Thorne spacetime, and by means of these frequencies we interpret the
kilohertz quasi-periodic oscillations of low-mass X-ray binaries of the
atoll and Z sources, on the basis of the relativistic precession model.
Particularly we perform an analysis for the Z source GX 5–1. We show
that the quasi-periodic oscillations data can provide information on the
parameters, namely, the mass, angular momentum and quadrupole mo-
ment of compact objects in low-mass X-ray binaries.

6.1.2 Accepted for publication or in press

1. R. Belvedere, Jorge A. Rueda, R. Ruffini, On the magnetic field of pulsars
with realistic neutron star configurations, to appear in ApJ.

We have recently developed a neutron star model fulfilling global and
not local charge neutrality, both in the static and in the uniformly ro-
tating cases. The model is described by the coupled Einstein-Maxwell-
Thomas-Fermi (EMTF) equations, in which all fundamental interactions
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are accounted for in the framework of general relativity and relativistic
mean field theory. Uniform rotation is introduced following the Har-
tle’s formalism. We show that the use of realistic parameters of rotating
neutron stars obtained from numerical integration of the self-consistent
axisymmetric general relativistic equations of equilibrium leads to val-
ues of the magnetic field and radiation efficiency of pulsars very differ-
ent from estimates based on fiducial parameters assuming a neutron
star mass, M = 1.4 M�, radius R = 10 km, and moment of iner-
tia, I = 1045 g cm2. In addition, we compare and contrast the mag-
netic field inferred from the traditional Newtonian rotating magnetic
dipole model with respect to the one obtained from its general relativis-
tic analog which takes into due account the effect of the finite size of
the source. We apply these considerations to the specific high-magnetic
field pulsars class and show that, indeed, all these sources can be de-
scribed as canonical pulsars driven by the rotational energy of the neu-
tron star, and with magnetic fields lower than the quantum critical field
for any value of the neutron star mass.

2. S. Martins de Carvalho, R.Negreiros, Jorge A. Rueda, R. Ruffini, Thermal
evolution of neutron stars with global and local neutrality, to appear in Phys.
Rev. C.

Globally neutral neutron stars, obtained from the solution of the called
Einstein-Maxwell-Thomas-Fermi equations that account for all the fun-
damental interactions, have been recently introduced. These configura-
tions have a more general character than the ones obtained with the tra-
ditional Tolman-Oppenheimer-Volkoff, which impose the condition of
local charge neutrality. The resulting configurations have a less massive
and thinner crust, leading to a new mass-radius relation. Signatures of
this new structure of the neutron star on the thermal evolution might
be a potential test for this theory. We compute the cooling curves by
integrating numerically the energy balance and transport equations in
general relativity, for globally neutral neutron stars with crusts of dif-
ferent masses and sizes, according to this theory for different core-crust
transition interfaces. We compare and contrast our study with known
results for local charge neutrality. We found a new behavior for the re-
laxation time, depending upon the density at the base of the crust, ρcrust.
In particular, we find that the traditional increase of the relaxation time
with the crust thickness holds only for configurations whose density of
the base of the crust is greater than ≈ 5× 1013 g cm−3. The reason for
this is that neutron star crusts with very thin or absent inner crust have
some neutrino emission process blocked which keep the crust hotter for
longer times. Therefore, accurate observations of the thermal relaxation
phase of neutron stars might give crucial information on the core-crust
transition which may aid us in probing the inner composition/structure
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of these objects.

3. R. Ruffini, Y. Wang, M. Kovacevic, C. L. Bianco, M. Enderli, M. Muccino,
A. V. Penacchioni, G. B. Pisani, J. A. Rueda, GRB 130427A and SN 2013cq:
A Multi-wavelength Analysis of An Induced Gravitational Collapse Event, to
appear in ApJ.

We have performed our data analysis of the observations by Swift and
Fermi satellites in order to probe the induced gravitational collapse
(IGC) paradigm for GRBs associated with supernovae (SNe), in the “terra
incognita” of GRB 130427A. We compare and contrast our data analy-
sis with those in the literature. We have verified that the GRB 130427A
conforms to the IGC paradigm by examining the power law behavior
of the luminosity in the early 104 s of the Swift-XRT observations. This
has led to the successful prediction of the occurrence of SN 2013cq and
to the identification of the four different episodes of the “binary driven
hypernovae” (BdHNe). The exceptional quality of the data has allowed
the identification of novel features in Episode 3 including: a) the con-
firmation and the extension of the existence of the recently discovered
“nested structure” in the late X-ray luminosity in GRB 130427A, as well
as the identification of a spiky structure at 102 s in the cosmological
rest-frame of the source; b) a power law emission of the GeV luminos-
ity light curve and its onset at the end of Episode 2 c) different Lorentz
Γ factors for the emitting regions of the X-ray and GeV emissions in
this Episode 3. These results make it possible to test the details of the
physical and astrophysical regimes at work in the BdHNe: 1) a newly
born neutron star and the supernova ejecta, originating in Episode 1,
2) a newly formed black hole originating in Episode 2, and 3) the pos-
sible interaction among these components, observable in the standard
features of Episode 3.

6.1.3 Submitted

1. Jonas P. Pereira, Jorge A. Rueda, Stability of Stratified Stars, submitted to
ApJ.

We analyze the stability of stars with interfacial layers against radial
perturbations within a generalized distributional approach. We formu-
late here the treatment for both neutral and charged stratified stars in
Newtonian and Einstein’s gravity. We obtain the boundary condition
connecting two any phases and show its relevance for realistic models
of compact stars with phase transitions, owing to the modification of
the star’s set of eigenmodes with respect to the continuous case.

2. Jonas P. Pereira, J. G. Coelho, Jorge A. Rueda, Stability of thin-shell inter-
faces inside compact stars, submitted to Phys. Rev. D.
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We use the thin-shell Darmois-Israel formalism to model and assess the
stability of the interfaces separating phases, e.g. the core and the crust,
within compact stars. We exemplify this treatment in the simplest case
of an incompressible star, in constant pressure phase transitions, and in
the case of strange quark stars with crust.

3. Jonas P. Pereira, A. Geralico, Jorge A. Rueda, Mass-Energy decomposition
of Einstein-Born-Infeld black holes, submitted to Phys. Rev. D.

We analyze the consequences of the recently found generalization of
the Christodoulou-Ruffini black hole mass decomposition for nonlinear
theories of electromagnetism in the case of Einstein-Born-Infeld black
holes, which are characterized by the parameters M, Q, and b, the lat-
ter which establishes departures from the linear Maxwell behavior. We
show in this context that black holes with 2b|Q| ≤ 1, irrespective of
the irreducible black hole mass, Mirr, posses only one horizon (not a
degenerated one). This would naturally lead to an upper limit to the
charge of black holes. Whenever the complementary inequality takes
place, the irreducible masses of black holes that generalize Reissner-
Nordström black holes are constrained to a range irreducible masses.
For the remaining irreducible masses, just solutions with a sole horizon
are possible. Assuming that black holes emit thermal uncharged scalar
particles, we further show that one satisfying 2b|Q| > 1 takes an infinite
amount of time to reach the zero temperature, settling down exactly at
its minimum energy. Finally, we argue that depending on the funda-
mental parameter b, the radiation (electromagnetic plus gravitational)
coming from Einstein-Born-Infeld black holes could differ significantly
from Einstein-Maxwell ones. Hence, it could be used to assess such a
parameter.

4. J. A. Rueda, R. Ruffini, Y. Wu, S.-S. Xue, Surface tension of heavy atoms,
submitted to Phys. Rev. C.

Based on the relativistic mean field theory and the Thomas-Fermi ap-
proximation, we study the surface properties of heavy atoms in which
some of the electrons have penetrated into nuclear cores. Taking into
account the strong, weak, and electromagnetic interactions, we numer-
ically study the structure of heavy atoms and calculate the surface ten-
sion and Coulomb energy. We analyze the influence of the electron
component on the structure of heavy atoms and the surface tension to
compare and contrast with known phenomenological results in nuclear
physics and the results of the core-crust interface of neutron stars with
global charge neutrality. Based on these results we study the instability
against Bohr-Wheeler surface deformations in the case of heavy atoms.
The results in this article provide the evidence of strong effects of the
electromagnetic interaction and electrons on structure of heavy atoms.
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5. R. Belvedere, Jorge A. Rueda, R. Ruffini, On the Keplerian frequency and
moment of inertia of neutron stars, submitted to Phys. Rev. C.

In our previous treatments of static and rotating neutron stars, we have
developed a neutron star model fulfilling global, but not local, charge
neutrality. The model is described by what we have called the Einstein-
Maxwell-Thomas-Fermi (EMTF) equations, which take into account the
strong, weak, electromagnetic, and gravitational interactions within gen-
eral relativity. Uniform rotation is introduced via the Hartle formalism.
We compare and contrast here the moment of inertia and the sequence
of maximally rotating (Keplerian) neutron stars obtained from the solu-
tion of the EMTF equations, with the claimed universal analytic formu-
las 1) for the Keplerian sequence by Lattimer & Prakash (2004), and 2)
for the moment of inertia as a function of the compactness by Ravenhall
& Pethick (1994) and by Lattimer & Schutz (2005). We show that those
simple universal analytic formulas cannot properly describe the above
properties of neutron stars, irrespective of the condition of charge neu-
trality applied, namely local or global, leading to inaccurate qualitative
and quantitative results.
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PACHÓN, L.A., RUEDA, J.A. AND SANABRIA-GÓMEZ, J.D.
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ABSTRACT

Massive, highly magnetized white dwarfs with fields up to 109 G have been observed and theoretically used for
the description of a variety of astrophysical phenomena. Ultramagnetized white dwarfs with uniform interior
fields up to 1018 G have been recently purported to obey a new maximum mass limit, Mmax ≈ 2.58 M�, which
largely overcomes the traditional Chandrasekhar value, MCh ≈ 1.44 M�. Such a larger limit would make these
astrophysical objects viable candidates for the explanation of the superluminous population of Type Ia supernovae.
We show that several macro and micro physical aspects such as gravitational, dynamical stability, breaking of
spherical symmetry, general relativity, inverse β decay, and pycnonuclear fusion reactions are of most relevance for
the self-consistent description of the structure and assessment of stability of these objects. It is shown in this work
that the first family of magnetized white dwarfs indeed satisfy all the criteria of stability, while the ultramagnetized
white dwarfs are very unlikely to exist in nature since they violate minimal requests of stability. Therefore, the
canonical Chandrasekhar mass limit of white dwarfs still has to be applied.

Key words: stars: magnetic field – white dwarfs

Online-only material: color figure

1. INTRODUCTION

There is an increasing interest of the astrophysics community
on highly magnetized white dwarfs (HMWDs) both from the
theoretical and observational point of view. HMWDs with
surface fields from 106 G up to 109 G have been confirmed
observationally mainly via Zeeman splitting of the spectral lines
(Külebi et al. 2009, 2010a; Kepler et al. 2010, 2013). Besides
their high magnetic fields, most of them have been shown to
be massive and responsible for the high-mass peak at 1 M� of
the white dwarf distribution; for instance, REJ 0317–853 with
M ≈ 1.35 M� and B ≈ (1.7–6.6)×108 G (Barstow et al. 1995;
Külebi et al. 2010b); PG 1658+441 with M ≈ 1.31 M� and
B ≈ 2.3 × 106 G (Liebert et al. 1983; Schmidt et al. 1992);
and PG 1031+234 with the highest magnetic field B ≈ 109 G
(Schmidt et al. 1986; Külebi et al. 2009).

From the theoretical point of view, massive, rapidly rotating
HMWDs have been proposed as an alternative scenario to the
magnetar model for the description of soft-gamma repeaters and
anomalous X-ray pulsars (Morini et al. 1988; Paczynski 1990;
Malheiro et al. 2012; Boshkayev et al. 2013a; Rueda et al. 2013;
Coelho & Malheiro 2013a, 2013b, 2014). Such white dwarfs
were assumed to have fiducial parameters M = 1.4 M�, R =
108 cm, I = 1049 g cm2, and magnetic fields B ∼ 107–1010 G,
inferred using a typical oblique rotating magnetic dipole model
and the observed rotation periods, P ∼ (2–12) s, and spin-down
rates, Ṗ ∼ 10−11 s s−1.

Super-Chandrasekhar white dwarfs with high magnetic fields
have been recently used to explain some properties of super-
novae. Their masses overcome the traditional Chandrasekhar
limit,

MCh = 2.015

√
3π

2

m3
Pl

(μemH)2
≈ 1.44 M�, (1)

where μe ≈ 2 is the mean molecular weight per electron,
mH the mass of hydrogen atom, and mPl = √

h̄c/G is the
Planck mass.

Since such objects should be metastable, the magnetic braking
of magnetized, B ∼ 106–108 G, super-Chandrasekhar white
dwarfs with M ∼ 1.5 M� have been adopted to explain the
delayed time distribution of Type Ia supernovae (see Ilkov &
Soker 2012 for details). The explosion would be delayed for
a time typical of the spin-down timescale due to magnetic
braking, providing the result of the merging process is a
magnetized super-Chandrasekhar white dwarf rather than a sub-
Chandrasekhar one.

Super-Chandrasekhar white dwarfs have been also claimed
to be able to explain the observed properties of some peculiar
superluminous Type Ia supernovae, which need white dwarf pro-
genitors with masses (2.1–2.8) M�, depending on the amount
of nickel needed to successfully explain both the low kinetic
energies and high luminosity of these supernovae (Howell et al.
2006; Hicken et al. 2007; Yamanaka et al. 2009; Scalzo et al.
2010; Silverman et al. 2011; Taubenberger et al. 2011).

Following this idea, Das & Mukhopadhyay (2013) recently
purported that the effects of a quantizing strong and uniform
magnetic field on the equation of state (EOS) of a white
dwarf would increase its critical mass up to a new value,
Mmax ≈ 2.58 M�, significantly exceeding the Chandrasekhar
limit (Equation (1)). This result would imply these objects
as viable progenitors of the above superluminous Type Ia su-
pernovae. This new mass limit would be reached, in princi-
ple, for extremely large interior magnetic fields of the order
of 1018 G.

Therefore, since HMWDs are acquiring a most relevant role
in astrophysical systems, it is of major importance to assess
the validity of the assumption of the existence in nature of
these objects on theoretical grounds. The effect of chemical
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composition, general relativity, and inverse β decay on the
determination of the maximum stable mass of non-rotating
white dwarfs was studied both qualitatively and quantitatively
in Rotondo et al. (2011). The extension to the uniformly
rotating case, including the analysis of rotational instabilities
(mass-shedding and secular instability), inverse β decay, and
pycnonuclear reactions, was analyzed in Boshkayev et al.
(2013b). It was shown in the latter that white dwarfs might have
rotation periods as short as 0.3 s. However, the above theoretical
analyses considered the white dwarf to be unmagnetized.

We show in this work that several macro and micro physical
aspects such as gravitational, dynamical stability, breaking of
spherical symmetry, general relativity, inverse β decay, and
pycnonuclear fusion reactions are relevant for the self-consistent
description of the structure and assessment of stability of
ultramagnetized white dwarfs. Our analysis leads to two major
conclusions.

1. In the particular case of sub-Chandrasekhar white dwarfs
(or slightly exceeding the Chandrasekhar limiting value,
e.g., by rotation) with surface magnetic fields in the ob-
served range, i.e., B ∼ 106–109 G, the unmagnetized ap-
proximation for the description of the structure parameters,
e.g.,mass and radius, is approximately correct and therefore
the results of Rotondo et al. (2011) and Boshkayev et al.
(2013b) can be safely used for the static and uniformly
rotating cases, respectively.

2. The new mass limit, Mmax ≈ 2.58 M�, (Das &
Mukhopadhyay 2013) for ultramagnetized white dwarfs
(see Equation (7) below) neglects all the above macro and
micro physical aspects relevant for the self-consistent de-
scription of the structure and assessment of stability of these
objects. When accounted for, they lead to the conclusion
that the existence of such ultramagnetized white dwarfs in
nature is very unlikely due to violation of minimal requests
of stability. Indeed, all these ignored effects make improb-
able that a white dwarf could reach such a hypothetical
extreme state either in single or binary evolution.

Therefore, the canonical Chandrasekhar mass limit of white
dwarfs has to be still applied and consequently, ultramagnetized
white dwarfs cannot be used as progenitors of superluminous
supernovae.

2. ULTRAMAGNETIZED WHITE DWARFS

In a recent work, Das & Mukhopadhyay (2013) studied the
effects of extreme magnetic field in the mass and radius of white
dwarfs. They showed that the EOS of a degenerate electron gas
in presence of a magnetic field B directed along the z-axis, in the
limit B → ∞ when all electrons are constrained to the lowest
Landau level, obeys a polytrope-like,

P = Kmρ2, Km = mec
2π2λ3

e

(μemH)2BD

, (2)

with λe as the electron Compton wavelength and BD = B/Bc as
the magnetic field in units of the critical field Bc = m2

ec
3/(eh̄) =

4.41 × 1013 G. For obtaining the above expression, in Das &
Mukhopadhyay (2013), the density of the system was assumed
to be given by ρ = μemHne, so determined only by the nuclei
component where ne is the electron number density.

Then, the Lane–Emden solution of Newtonian self-
gravitating polytropes of index n = 1 was used to obtain the
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Figure 1. Mass–radius relation of magnetized white dwarfs. The curve repre-
sents the evolutionary track of the white dwarf with the increase of the uniform
magnetic field inside the star obtained in Das & Mukhopadhyay (2013).

mass of an ultramagnetized white dwarf,

M = 4π2ρc

(
Km

2πG

)3/2

, (3)

and the corresponding radius

R =
√

πKm

2G
, (4)

where ρc is the central density.
In the present limit of one Landau level with high-electron

Fermi energies, EF
e , EF

e = EF
max 	 mec

2, with

EF
max = mec

2
√

1 + 2BD ≈ mec
2
√

2BD, (5)

the maximum possible value of EF
e , ρc becomes

ρc = πM

4R3
= μemH√

2π2λ3
e

B
3/2
D . (6)

Introducing Equation (6) into Equation (3), Das &
Mukhopadhyay (2013) obtained the mass limit of ultramag-
netized white dwarfs:

Mmax = π3/2 m3
Pl

(μemH)2
≈ 2.58 M�, (7)

when ρc → ∞ and R → 0. This upper bound is larger than the
canonical Chandrasekhar limit given by Equation (1).

In Figure 1, we reproduce the evolutionary track of the white
dwarf proposed in Das & Mukhopadhyay (2013). The magnetic
field along the curve is increasing as a consequence of accretion
of matter onto the star. It can be seen in the plot how the star
reaches the maximum mass limit (Equation (7)) while reducing
its radius.

At this point, it is already possible to identify some of the
assumptions in the model of Das & Mukhopadhyay (2013),
which led to the above results and which, as we show below,
are unjustified, invalidating their final conclusions. (1) The EOS
assumed in the limit of very intense magnetic fields, B → ∞;
(2) a uniform magnetic field is adopted; (3) the huge magnetic
fields and the obtained mass–radius relation explicitly violate
even the absolute upper limit to the magnetic field imposed by
the virial theorem; (4) dynamical instabilities due to quadrupole
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deformation are not taken into account; (5) spherical symmetry
is assumed for all values of the magnetic field; (6) the role
of the magnetic field in the hydrostatic equilibrium equations
is neglected; (7) general relativistic effects are ignored, even
if the final configuration is almost as compact as a neutron
star and the magnetic energy is larger than the matter energy
density; (8) microphysical effects such as inverse β decay and
pycnonuclear fusion reactions, important in a regime where the
electrons are highly relativistic, EF

e 	 mec
2, are neglected;

and (9) the magnetic field, the density, and the electron Fermi
energy are assumed to increase with time inside the star as a
consequence of a continuous accretion process onto the white
dwarf.

3. EQUATION OF STATE AND VIRIAL
THEOREM VIOLATION

Being much lighter, the electrons in the white dwarf interior
are more easily disturbed by a magnetic field than the ions.
Eventually, the electron gas might become quantized in Landau
levels, providing the magnetic field is larger than the critical field
Bc. However, for “moderate” values of the field, i.e., B ∼ Bc,
the EOS deviates still very little from the unmagnetized one.
Thus, appreciable effects are seen only when the electrons
occupy only the lower Landau levels, which is possible for
BD ∼ [EF

max/(mec
2)]2. Since the electrons in massive white

dwarfs are ultrarelativistic with Fermi energies, EF
e � 10 mec

2

(Rotondo et al. 2011), it implies the necessity of magnetic fields,
BD � 102 (B � 4 × 1015 G), in order to have non-negligible
magnetic field effects. It can be checked from the virial theorem
that such large magnetic fields cannot develop in the interior
of the white dwarf since they violate the absolute upper bound
imposed by the virial theorem applied to a white dwarf that is
approaching the Chandrasekhar mass limit.

The limiting field can be computed following the argument
by Chandrasekhar & Fermi (1953) in their seminal work. There
exists a magnetic field limit, Bmax, above which an equilibrium
configuration is impossible because the electromagnetic energy,
WB, exceeds the gravitational energy, WG, therefore becoming
gravitationally unbound. If one includes the forces derived from
the magnetic field, one can write the virial scalar relation for an
equilibrium configuration as (Chandrasekhar & Fermi 1953)

3Π + WB + WG = 0, (8)

where Π = ∫
PdV , with P the pressure of the system, WB

the positive magnetic energy, and WG the negative gravitational
potential energy. The quantity Π satisfies Π = (γ − 1)U for
a polytrope, P = Kργ , where U is the total kinetic energy
of particles. Since the total energy of the configuration can be
written as E = U + WB + WG, then one can eliminate U from
Equation (8) to obtain E = −[(γ − 4/3)/(γ − 1)](|WG|−WB ),
and therefore the necessary condition for the stability of the star,
E < 0, is given by

(3γ − 4)|WG|
(

1 − WB

|WG|
)

> 0. (9)

From this expression, we can recover, in absence of magnetic
field (WB = 0), the known condition for bound unmagnetized
polytropes γ < 4/3, or n < 3 in terms of the polytrope index
n defined by γ = 1 + 1/n. The presence of a magnetic field
weakens the stability and no matter the value of γ , the star
becomes gravitationally unbound when the magnetic energy
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Figure 2. Maximum magnetic field Bmax as a function of the star mass. We
show (red dots) the three values of the magnetic field of Table 1 that are above
the Bmax line in the dynamical instability region.

(A color version of this figure is available in the online journal.)

exceeds the gravitational one; i.e., WB > |WG|. This condition
clearly implies an upper bound for the magnetic field, obtained
for WB = |WG|. In order to determine such a limit, we first
obtain an expression for the magnetic energy of the star, which
considering a constant magnetic field can be written as

WB = B2

8π

4πR3

3
= B2R3

6
. (10)

As we discussed above, the EOS used by Das &
Mukhopadhyay (2013) adopts a polytrope-like form with γ = 2
or n = 1 under extreme magnetic fields, such that only one Lan-
dau level is populated and EF 	 mec

2. Thus, the gravitational
energy density of the spherical star configuration is (Shapiro &
Teukolsky 1983)

WG = − 3

5 − n

GM2

R
= −3

4

GM2

R
, (11)

where M and R are the mass and star radius, respectively, and
G is the Newton gravitational constant. Using the above expres-
sions and expressing M and R in units of solar mass and solar
radius, we find that the maximum value of magnetic field Bmax
is given by

Bmax = 2.24 × 108 M

M�

(
R�
R

)2

G. (12)

In the case of a Chandrasekhar white dwarf with the maximum
mass M = 1.44M� and a radius of 3000 km, consistent with
the recent calculation of massive white dwarfs (Boshkayev et al.
2013b), we obtain Bmax ∼ 1.7 × 1013 G. This value is clearly
lower than the critical field Bc = 4.4 × 1013 G.

In order to quantify how strong the violation of the virial theo-
rem produced by the magnetic fields used in Das & Mukhopad-
hyay (2013) is, we choose three star configurations whose val-
ues of M and R lie in the region of high-mass configuration,
M > 2 M� (see red points in Figure 2). Using the approxi-
mation of Equation (6), we obtain the corresponding constant
magnetic field B of these stars configurations. We compare these
values of B with the maximum value, Bmax, allowed by the virial
theorem (Equation (12)). In Figure 2, we present the virial limit
Bmax as a function of the star mass obtained by Equation (12)
using the values of mass and radius shown in Figure 1. In this fig-
ure, we show that such extreme magnetic fields with B > Bmax

3
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Table 1
Mass–Radius Configurations of Magnetized White Dwarfs of Das & Mukhopadhyay (2013) with the Correspondent Magnetic Field B,

the Maximum Virial Magnetic Field Bmax, Magnetic Energy WB, Gravitational WG, the Ratio of WB/|WG|, the Magnetic Field
Contribution to the Total Energy Density ρB , and the Values of Eccentricity in Units of the Spherical Star Radius ε/R

M R B Bmax WB |WG| WB/|WG| ρB ε/R

(M�) (km) (G) (G) (×1051 erg) (×1051 erg) (g cm−3)

2.58 7.02 × 101 8.80 × 1017 5.70 × 1016 4.43 × 104 1.88 × 102 235 3.40 × 1013 −195.14
2.38 9.60 × 102 4.44 × 1015 2.81 × 1014 2.90 × 103 1.17 × 101 248 8.71 × 108 −204.16
2.06 1.86 × 103 1.07 × 1015 6.49 × 1013 1.23 × 103 4.52 273 5.10 × 107 −223.03

and the magnetized white dwarfs of Table 1 are in the instability
region, violating the virial theorem. In Table 1, we show also
for these configurations the magnetic energy, WB, and the mag-
nitude of the gravitational energy, |WG|. These results indicate
that the magnetic field obtained in Das & Mukhopadhyay (2013)
are at least one order of magnitude larger than the maximum
magnetic field allowed, Bmax. As a consequence, for the three
star configurations, WB/|WG| ∼ 250, well above the stability
condition that requires WB/|WG| ∼ 1. Thus, these white dwarf
are unstable and unbound.

The repulsive magnetic force due to a possible variable mag-
netic field, as discussed in Malheiro et al. (2007), was not consid-
ered. Furthermore, a uniform magnetic field in the z-direction
inside the star yields a dipole external field (Chandrasekhar
& Fermi 1953). In this case, even if the magnetic fields are
continuous at the star surface, their derivatives are not, pro-
ducing a repulsive magnetic force at the surface. This force
will push against the attractive gravitational force such that for
a large magnetic field, the magnetic force will overcome the
gravitational one, destabilizing the star. This physical situation
is exactly the same expressed in the virial theorem condition
for the star stability (WB < |WG|) discussed above. Ostriker
& Hartwick (1968) analyzed the effect of magnetic fields in
white dwarfs and concluded that they lead to stars with larger
masses but also larger radii. One of the main consequences
of the increasing magnetic field is that even a small ratio of
magnetic to gravitational energy will produce an appreciable
increase in the radii of magnetized white dwarfs. Consequently,
it leads to a reduction of the central density, even for small
mass changes. These conclusions were also confirmed in Suh
& Mathews (2000), where the effect of magnetic fields in the
mass–radius relation for magnetic white dwarfs were also inves-
tigated. Thus, the very compact magnetized white dwarf con-
figuration obtained in Das & Mukhopadhyay (2013), in which
large magnetic field implies large mass and small radius, are
possible only because the effect of the repulsive magnetic force
(Lorentz force) has not been properly considered. Since in Das
& Mukhopadhyay (2013) it is considered the influence of a
very large constant magnetic fields in the star mass and radius,
assuming values for the magnetic field larger than the above lim-
its, we conclude that these extremely magnetized white dwarfs
must be unstable and unbound. The limiting magnetic field val-
ues Bmax shown in Figure 2 and Table 1 are clearly obtained
with the radii given in Das & Mukhopadhyay (2013), which are
much smaller than the self-consistent solution to the equilib-
rium equations would give. Since the maximum magnetic field
depends on R−2, see Equation (12), the real maximum possible
field would actually be smaller than the one computed here.

Indeed, it is worth noting that Equation (12) can be also ex-
pressed as a limit to the magnetic flux: Φmax ∼ BmaxR

2 ≈ 1.1×
1030(M/M�) G cm2. For the hypothetic new maximum mass

(Equation (7)), M = 2.58 M�, this maximum magnetic flux is
Φmax ≈ 2.8 × 1030 G cm2. It is interesting that Equations (2)–(6)
imply magnetic flux-freezing, namely a constant value of the
magnetic flux, Φfrozen/Bc ∼ BDR2 = π3(h̄c/G)(μemH)−2λ2

e ≈
2 × 1018 cm2, or Φfrozen ∼ BR2 ≈ 8.74 × 1031 G cm2. This
constant value highly overcomes the above maximum possible
magnetic flux, Φmax, which shows in a different way the viola-
tion of the stability limit imposed by the virial theorem by the
solution presented by Das & Mukhopadhyay (2013).

4. BREAKING OF SPHERICAL SYMMETRY AND
QUADRUPOLE INSTABILITY

It was shown by Chandrasekhar & Fermi (1953) that the
figure of equilibrium of an incompressible fluid sphere with an
internal uniform magnetic field that matches an external dipole
field is not represented by a sphere. The star becomes oblate
by contracting along the axis of symmetry, namely along the
direction of the magnetic field. Thus, we consider the fluid
sphere to be deformed in such a way that the equation of the
bounding surface is given by

r(μ) = R + εPl(μ), (13)

where μ = cos θ , where θ is the polar angle and Pl(μ) denotes
the Legendre polynomial of the order of l. It is easy to see
that the deviation from the spherical configuration is given
by the term Pl(μ), thus in Chandrasekhar & Fermi (1953),
such a perturbation was called “Pl- deformation.” They have
also concluded that the term with l = 2 contributes to the
corresponding change in the internal magnetic energy density
(for all other values of l, the change in the magnetic energy
is of the second order in ε). The quantity ε satisfies ε 
 R
and measures the deviations from a spherical configuration.
The polar and equatorial radii are Rp = R + εPl(1) and
Req = R + εPl(0), respectively, thus ε = −(2/3)(Req − Rp)
and therefore ε/R = −(2/3)(Req −Rp)/R for the axisymmetric
deformed configuration with l = 2.

It was shown by Chandrasekhar & Fermi (1953) that such
an axisymmetrically deformed object is favorable energetically
with respect to the spherical star. Thus the star becomes unstable
and proceeds to collapse along the magnetic field axis, turning
into an oblate spheroidal shape with ε < 0. The contraction
continues until the configuration reaches a value of ε/R given by

ε

R
= −35

24

B2R4

GM2
. (14)

Using the expression for Bmax given by Equation (12), one
obtains

ε

R
= −315

384

(
B

Bmax

)2

� −0.8

(
B

Bmax

)2

. (15)
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Therefore, when the internal magnetic field is close to the limit
set by the virial theorem, the star deviates to a highly oblate
shape.

We show in the last column of Table 1, the “Pl- deformation,”
ε/R, calculated for three configurations discussed before. The
results show that |ε/R| � 2 × 102, which implies that the
star has a highly oblate shape and thus the spherical symmetry
is strongly broken. Therefore, in order to account for the
deformation caused by the presence of a magnetic field, a
more consistent calculation considering cylindrical symmetry
(see, e.g., Chandrasekhar & Fermi 1953; Ostriker & Hartwick
1968) is mandatory. It is worth mentioning that if we consider
the quantum nature of the EOS of a Fermi gas subjected at
fields B 	 Bc, the actual shape of equilibrium is defined by
a the total (matter+field) pressures parallel and perpendicular
to the magnetic field that are different and vanish at the star
surface (Chaichian et al. 2000; Pérez Martı́nez et al. 2003, 2008;
Strickland et al. 2012).

5. MICROSCOPIC INSTABILITIES

It is known that at sufficiently high densities in the interior of
white dwarfs, the inverse β decay or electron capture process
becomes energetically favorable and therefore a nucleus (Z,A)
transforms into a different nucleus (Z − 1, A) by capturing
energetic electrons. Such a process destabilizes the star since
the electrons are the main responsible for the pressure in a
white dwarf (Harrison et al. 1958, 1965; Shapiro & Teukolsky
1983). The process sets in when the electron chemical potential
reaches the threshold energy, ε

β

Z , given by the difference of the
nuclear binding energy between the initial and final nucleus.
For helium, carbon, oxygen, and iron, ε

β

Z is approximately
20.6, 13.4, 10.4, and 3.7 MeV, respectively (see, e.g., Tuli
2011). For unmagnetized general relativistic white dwarfs, this
occurs at a critical density ρ

β
crit ≈ 1.4 × 1011, 4.0 × 1010,

1.9 × 1010, and 1.2 × 109 g cm−3, respectively, for the same
chemical compositions (see Table II in Rotondo et al. 2011).

This instability was recently analyzed by Chamel et al.
(2013) for the ultramagnetized white dwarfs discussed in Das &
Mukhopadhyay (2013). Using Equation (5), it can be seen that
the electron capture process limits the magnetic field to values
lower than (see, e.g., Chamel et al. 2013)

B
β

D = 1

2

(
ε

β

Z

mec2

)2

≈ 812.6, 342.3, 207.9, 26.2, (16)

or B ≈ 3.6 × 1016, 1.5 × 1016, 9.1 × 1015, and 1.1 × 1015 G,
where we have used the previously mentioned values of ε

β

Z

for helium, carbon, oxygen, and iron, respectively. We can
show that the electron capture in the configurations of Das &
Mukhopadhyay (2013) occurs even at critical central densities
lower than in the unmagnetized case. Indeed, by introducing the
limiting values of Equation (16) into Equation (6), we obtain
the values of the critical densities ρ

β
crit ≈ 9.6 × 1010, 2.6 × 1010,

1.2 × 1010, and 6.0 × 108 g cm−3, respectively, for helium,
carbon, oxygen, and iron. These densities are much smaller
than the ones of the massive ultramagnetized white dwarfs
considered by Das & Mukhopadhyay (2013): the configurations
approaching the maximum mass (Equation (7)) have magnetic
fields BD � 104 (B � 4×1017 G) and therefore central densities
ρc � 4 × 1012 g cm−3. At such high densities, higher than
the neutron drip value (ρdrip ≈ 4.3 × 1011 g cm−3), the less

bound neutrons in nuclei start to drip out forming a free Fermi
gas (Baym et al. 1971). The neutron drip process then starts
when ρc = ρdrip, where ρc is given by Equation (6). For a
carbon composition, it occurs for a magnetic field BD ≈ 531, or
B ≈ 2.3 × 1016 G (see, e.g., Chamel et al. 2013). It is important
to clarify that extremely large magnetic fields (>1017 G) are
needed to modify the neutron drip value appreciable and we
refer the reader to Chamel et al. (2012) for an analysis of
the influence of strong magnetic fields on the precise value
of the neutron drip density and pressure.

As discussed by Chamel et al. (2013), pycnonuclear fusion
reactions might establish a more stringent limit with respect to
the inverse β decay in an ultramagnetized white dwarf. Carbon
fusion leads to 24Mg, which undergoes electron capture and
thus inverse β decay instability, at a density of approximately
ρ

β

crit,Mg ≈ 3 × 109 g cm−3. Therefore, if C+C fusion occurs at

rates high enough at densities lower than ρ
β

crit,Mg to produce
appreciable amounts of 24Mg in times shorter than a Hubble
time, then this process imposes a more tight constraint to the
density of the white dwarf. Based on the up-to-date astrophysical
S-factors computed in Gasques et al. (2005), we recently
computed in Boshkayev et al. (2013b) the pycnonuclear carbon
fusion rates in white dwarfs. We found, for instance, that C+C
fusion occurs at a timescale of 0.1 Myr at a density ρC+C

pyc ≈
1.6 × 1010 g cm−3. Since ρC+C

pyc < ρ
β

crit,C ≈ 2.6 × 1010 g cm−3,
this implies that C+C pycnonuclear fusion does limit further
the magnetic field strength with respect to the inverse β decay
instability of carbon. Indeed, using Equation (6), we obtain that
such a density is reached for a magnetic field BC+C

D,pyc ≈ 246.6,

or BC+C
pyc ≈ 1.1 × 1016 G, a value lower than B

β,C
D ≈ 342.3

or B
β

C ≈ 1.5 × 1016 G. Longer reaction times implies lower
densities and thus lower magnetic fields.

It is important to note that the above limits to the magnetic
field are estimated assuming that the density of the system is
given by Equation (6); however, more realistic estimates of
these limiting fields have to account for the contribution of
the magnetic field to the mass–energy density (see below in
Section 6) and the self-consistent value of the electron density
accounting for the real number of Landau levels populated,
which will be higher than one. The above microscopic limits to
the magnetic field are higher than the maximal values allowed
by the virial theorem. Therefore, the macroscopic dynamical
instabilities appear to set in before both electron captures and
pycnonuclear reactions.

6. GENERAL RELATIVISTIC EFFECTS

We now turn to show that for ultra high magnetic fields as
the ones considered by Das & Mukhopadhyay (2013), general
relativistic effects are relevant; therefore, a Newtonian treatment
of the equations of equilibrium is not appropriate. First, we
can calculate the contribution of an ultra high magnetic field,
such as the ones considered in Das & Mukhopadhyay (2013),
to the total energy density. For the maximum white dwarf
mass in Das & Mukhopadhyay (2013), Equation (7), which
is obtained for a magnetic field B ≈ 1018 G, the magnetic field
contribution to the total energy density is ρB ≈ B2/(8πc2) ≈
4.4 × 1013 g cm−3. This value is indeed larger than the matter
density of the configuration and cannot be therefore neglected
in the energy–momentum tensor of the system. However,
as we have shown such a large magnetic fields cannot be
reached in the star; thus the real configurations of equilibrium
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likely have a magnetic field energy density much smaller than
the matter energy density, implying that the unmagnetized
maximum mass, the Chandrasekhar mass MCh ≈ 1.44 M�,
still applies.

On the other hand, when the maximum mass (Equation (7))
is approached for magnetic fields BD � 104, the central density
of the system as given by Equation (6) is ρc � 4 × 1012 g cm−3.
In particular, the maximum mass configuration would have
a radius R ≈ 70 km and therefore a central density ρc ≈
1.2 × 1013 g cm−3, only one order of magnitude less than the
nuclear saturation density. These values imply that the mass,
radius, and density of the ultramagnetized objects considered
by Das & Mukhopadhyay (2013) are much more similar to the
parameters of neutron star rather than to the ones of a white
dwarf. Therefore, it is natural to ask whether the compactness
of the star is such to require a full general relativistic treatment.
For the above star parameters close to the maximum mass
configuration, it is obtained a compactness GM/(c2R) ≈ 0.05,
a value in clear contrast with a Newtonian treatment of the
equilibrium equations.

In this line, our previous results (Rotondo et al. 2011) become
relevant. We found there that in the case of carbon white
dwarfs, general relativistic instability sets in at a density ρcrit ≈
2 × 1010 g cm−3 prior to the inverse β decay instability. Such a
density is much lower than the densities of the ultramagnetized
white dwarfs of Das & Mukhopadhyay (2013).

7. EVOLUTIONARY PATH

As a possible mechanism of formation of ultramagnetized
white dwarfs, it was proposed in Das & Mukhopadhyay (2013)
and further extended in Das et al. (2013) the traditional idea
that the star by accretion could increase continuously its central
density and its magnetic field owing to magnetic flux conser-
vation. However, it is unlikely that such an accretion could
bring the white dwarf to such extreme regimes without pass-
ing through all the instability channels analyzed in this work.
It can be shown that the magnetic field, by flux conservation,
cannot increase by orders of magnitude during the accretion
process if we account for the stability limits and the realistic
structure of the white dwarf. Flux conservation implies that for
a uniform magnetic field as assumed by Das & Mukhopadhyay
(2013), Bf /B0 = (R0/Rf )2 where “0” and “f” stand for initial
and final values. It is known that in the Newtonian treatment
the critical mass is reached at infinite densities, so when the
radius tends to zero, it causes an unphysical large increase of
the above magnetic field when approaching the critical mass
value. Therefore, it is essential to this computation to take into
due account the general relativistic and microscopic instabilities
leading to a finite critical density and radius for the critical mass
configuration. For this purpose, we use the mass–radius rela-
tion obtained by Rotondo et al. (2011). If we start an accretion
process on a carbon white dwarf with initial mass M0 ∼ 1 M�
(R0 ≈ 5587.43 km), typical of high magnetic field white dwarf
population (see Ferrario et al. 2005 for details), we obtain that
the magnetic field increases only a factor Bf /B0 ≈ 28 up to the
final mass Mf = Mcrit ≈ 1.39 M� (Rf ≈ 1051.44 km). Indeed,
the magnetic flux is Φ ∼ B0R

2
0 ≈ 3.1 × 1025(B0/108) G cm2,

to be contrasted with much higher value of the frozen value
Φfrozen ≈ 8.7 × 1031 G cm2, inferred in Section 3 for the max-
imum mass solution of Das & Mukhopadhyay (2013). This
implies that the accretion will most likely, in due time, lead to
the triggering of the white dwarf gravitational collapse to a neu-

tron star or to an ordinary Type Ia supernovae prior to reach a
stage where the magnetic field causes appreciate changes to the
EOS and to the structure of the star. One could think that the
white dwarf already has a huge magnetic field (�1015 G) before
starting the accretion process. However, as we have shown in
Section 3, the virial theorem imposes a limiting magnetic flux
Φmax ≈ 1.1 × 1030

√
4/(5 − n) (M/M�) G cm2, where n is the

polytropic index, which limits the magnetic field of the initial
configuration to lower values. In addition, huge seed magnetic
fields in the interior of a solar mass white dwarf appear to
be in contradiction with observations since the unmagnetized
mass–radius relation reproduces with appreciable accuracy the
observational data (see, e.g., Vauclair et al. 1997; Provencal
et al. 1998).

8. RECENT DISCUSSION ON
ULTRAMAGNETIZED WHITE DWARFS

Before concluding, it is worth mentioning that during the
refereeing process of this work, several criticisms were raised
about the new mass limit for white dwarfs presented by Das
& Mukhopadhyay (2013). Some of the inconsistencies of the
ultramagnetized super-Chandrasekhar white dwarf model, such
as virial theorem violation, inverse β decay and pycnonuclear
instabilities, breaking of spherical symmetry, and general rel-
ativistic effects have been analyzed here. We refer the reader
to Chamel et al. (2013), Dong et al. (2014), and Nityananda &
Konar (2014a, 2014b) for further details on some of the above
points and for some others such as the neglected effect of the
Lorentz force (magnetic field gradient).

Very recently, Das & Mukhopadhyay (2014) obtained new so-
lutions for ultramagnetized, super-Chandrasekhar white dwarfs
that take into account some of the above criticisms, leading to
an improvement of the treatment. They solve the general rela-
tivistic equations of hydrostatic equilibrium within the assump-
tion of spherical symmetry, including the magnetic pressure
gradient. The effect of the magnetic field gradient was intro-
duced through a phenomenological magnetic field profile. They
solved the equations for two different conditions on the parallel
pressure: (1) that the spherically averaged parallel pressure be
positive throughout the star or (2) the parallel pressure be pos-
itive throughout. The total pressure of the system was assumed
to be isotropic and increased by an isotropized magnetic field
contribution (1/3)B2/(8π ) = B2/(24π ). Clearly, this isotropic
increase of the matter pressure could give, in principle, to sys-
tems with higher masses with respect to an unmagnetized case,
as indeed Das & Mukhopadhyay (2014) obtained. They find that
for the constraint (1), the maximum mass could be (for some
choice of the phenomenological parameters of the magnetic field
profile) as high as Mmax ≈ 3.3 M�, and for the constraint (2),
Mmax ≈ 2.1 M�. The magnetic field at the center in these con-
figurations is Bcenter ≈ 6.8 × 1014 G. Those solutions, although
interesting, use a phenomenological magnetic field profile not
coming from the self-consistent solution of the Maxwell equa-
tions coupled to the Einstein equations. It is not clear that the
self-consistent solution will have a distribution of the magnetic
field similar to the one employed and with a value showing such
a high excursion from the center to the surface. A good example
for the latter is the self-consistent solution by Ferraro (1954), for
which the magnetic field at the center is only five times larger
than its value at the surface. Possibly a more self-consistent cal-
culation has been recently performed by Bera & Bhattacharya
(2014), which includes the break of the spherical symmetry and
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the effect of the quantum pressure anisotropy. They obtain white
dwarf masses as large as 1.9 M�. However, the maximum mass
solution was obtained there for an electron Fermi energy that
overcomes the limiting value for inverse β decay analyzed in
this work and in Chamel et al. (2013).

As a positive support for their model, Das & Mukhopadhyay
(2014) recalled the recent mathematical analysis by Federbush
et al. (2014), who showed that there exist solutions for magnetic
self-gravitating n = 1 polytropes for a specific ansatz of the
current J = βrρ, where r is the cylindrical coordinate, ρ is
the matter density, and β a constant. For the case of constant
density, the above ansatz reduces to the one introduced by
Ferraro (1954). Federbush et al. (2014) proved that there exist
solutions providing the constant β is properly bound by a
sufficiently small value. However, the solutions found by Das &
Mukhopadhyay (2013, 2014) do not conform such an ansatz of
the current and therefore the analysis of Federbush et al. (2014)
does not apply for such a specific solution. It is noteworthy that,
in addition, Federbush et al. (2014) provides a simple proof on
the non-existence of magnetic stars in the spherically symmetric
case since the only possible solution has a magnetic field with a
singularity at the center.

9. DISCUSSION AND CONCLUSIONS

We have shown that the ultramagnetized, B � 1015 G, mas-
sive, M � 2 M� white dwarfs introduced in Das & Mukhopad-
hyay (2013) are unlikely to exist in nature since they are sub-
jected to several macro and micro instabilities that would make
a white dwarf either collapse or explode long before to reaching
such a hypothetical structure. The construction of equilibrium
configurations of a magnetized compact star needs the inclusion
of several effects not accounted for in Das & Mukhopadhyay
(2013) and therefore the acceptance of such ultramagnetized
white dwarfs as possible astrophysical objects has to be con-
sidered with caution. On the contrary, sub-Chandrasekhar white
dwarfs (or slightly exceeding the Chandrasekhar limiting value,
e.g., by rotation) with surface magnetic fields in the observed
range, i.e., B ∼ 106–1010 G, can be safely described using an
unmagnetized approximation for the calculation of the structure
parameters such as mass and radius.
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Külebi, B., Jordan, S., Euchner, F., Gänsicke, B. T., & Hirsch, H. 2009, A&A,

506, 1341
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ABSTRACT

The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the
concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system
composed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to
hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational
collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based
on a simplified model of the binary parameters and the Bondi–Hoyle–Lyttleton accretion rate. We present here the
first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO
stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the
accreting material falling into the Bondi–Hoyle surface of the NS all the way up to its incorporation in the NS
surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary
parameters, the IGC occurs in short timescales ∼102–103 s owing to the combined effective action of the photon
trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural
explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

Key words: gamma-ray burst: general – stars: black holes – stars: neutron – supernovae: general
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1. INTRODUCTION

Continued observations of massive stars have demonstrated
that most, if not all, massive stars are in binary systems (e.g.,
Smith et al. 2004; Kobulnicky & Fryer 2007; Sana et al. 2012,
and references therein). A large fraction (50%–75%) of these
systems are in tight binaries that interact during evolution
(e.g., mass transfer, common envelope phase). The high bi-
nary fraction has led to a growing consensus that most type
Ib/Ic supernova progenitors are produced in interacting binary
systems (Podsiadlowski et al. 1992; De Donder & Vanbeveren
1998; Fryer et al. 2007; Yoon et al. 2010). Since the type of SNe
associated with long-duration gamma-ray bursts (GRBs) are of
type Ic (Della Valle 2011), it is not surprising that binaries, often
involving interactions of a massive star with a compact com-
panion, have been invoked to produce GRB SNe to remove the
hydrogen envelope, spin up the star, or both (Fryer & Woosley
1998; Fryer et al. 1999c, 2007; Fryer & Heger 2005; van den
Heuvel & Yoon 2007; Woosley & Bloom 2006).

The induced gravitational collapse (IGC; Ruffini et al. 2008;
Rueda & Ruffini 2012) model requires a tight binary (produced
in a common envelope phase) between a massive CO star (a
star that has lost its hydrogen envelope and helium shell) and a
neutron star (NS) companion. In this scenario, the SN explosion
and the GRB occur following a precise time sequence (see
Figure 1): explosion of the CO core → hypercritical accretion
onto the NS → the critical mass is reached → gravitational
collapse to a black hole (BH) is induced → emission of the
GRB. The theoretical framework and the first estimates of the
hypercritical accretion onto the NS as a function of the nature of
the binary parameters were first presented in Rueda & Ruffini
(2012).

It has been clear since the analysis of GRB 090618 by Izzo
et al. (2012) that the entire emission of what has been tradition-
ally called a GRB, instead of being a single event, is actually a
multi-episodic source whose understanding requires scrutiny of
the time-resolved data. The IGC has been successfully applied
to a class of energetic (Eiso ∼ 1052–1054 erg) GRB SNe. These
systems, recently named binary-driven hypernovae (BdHNe;
Ruffini et al. 2014b), evolve in a rapid sequence lasting a few
hundreds of seconds in their rest frame. Up to now, the IGC has
been verified in a dozen GRBs, all with cosmological redshift
z � 1 (see Pisani et al. 2013 and references therein), and very
recently in one of the farthest observed sources, GRB 090423,
at z = 8.2 (Ruffini et al. 2014a). These systems are character-
ized by four distinct episodes, each with specific signatures in
its spectrum and luminosity evolution.

Episode 1: the first part of the emission, presenting a soft
X-ray spectrum with peak energies <100 keV and generally
time-separated from the rest of the emission. It shows a com-
plex spectrum, which at times presents a thermal component.
Physically, it has the imprint of the onset of the SN in a tight
binary system with the companion NS. Its emission mainly orig-
inates from the hypercritical accretion, Ṁ ∼ 10−2 M� s−1, of
the SN ejecta onto the NS.

Episode 2: the second part of emission, observed with peak
energies ∼100 keV–1 MeV. It is the canonical GRB emission
originated from the gravitational collapse of the NS to a BH.
The dynamics of the evolution of the highly relativistic (Lorentz
factor Γ � 102) e+e− plasma, which engulfs baryonic matter
and interacts with the circumburst medium (CBM), follows the
fireshell model, which takes into account the special relativistic
effects and the plasma rate equation (see Ruffini 2011 and
references therein).
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Figure 1. Induced gravitational collapse scenario.

(A color version of this figure is available in the online journal.)

Episode 3: the previously called afterglow emission, visible
in optical and X-rays, and with a high energy component up to
GeV energies, which observationally starts at the end of the GRB
prompt emission. Independently from the features of Episode
2 and its energetics, Episode 3 appears to have a remarkable
scaling law and a universal behavior for all the canonical
GRBs. In the Swift/XRT light curve, it consists, starting at
the end of the GRB prompt, of a steep decay followed by a
plateau and a late power-law decay (Pisani et al. 2013). The late
X-ray luminosities of BdHNe, in their rest-frame energy band
0.3–10 keV, evidence a common power-law behavior, LX ∝ tα ,
with a constant decay index clustered around α = −1.5 ± 0.2.
Such a constant afterglow decay represents an authentic nested
structure (Ruffini et al. 2014b) in the late X-ray emission of
GRB SNe and it has been indicated as the qualifying feature
for a GRB to be a BdHN family member. The identification
of GRB 090423 at z = 8.2 as a BdHN (Ruffini et al. 2014a)
implies that SN events, leading to NS formation, can occur
already at 650 Myr after the Big Bang. The above opens the
way to consider the late X-ray power law as a possible distance
indicator.

Episode 4: the emergence of the SN emission after ∼10–15
days from the occurrence of the GRB, in the source rest frame.
It has been observed for almost all the sources fulfilling the IGC
paradigm with z ∼ 1 for which current optical instrumentation
allows their identification.

The first estimates of the IGC process (Rueda & Ruffini 2012;
Izzo et al. 2012; Penacchioni et al. 2012, 2013; Pisani et al.
2013; Ruffini et al. 2013) were based on a simplified model of
the binary parameters and the Bondi–Hoyle–Lyttleton accretion
framework. The aim of this Letter is to better constrain the binary
characteristics that lead to the IGC phenomenon (Episode 1)
using more detailed supernova explosions coupled with models
based on simulations of hypercritical accretion in supernova
fallback (Fryer et al. 1996; Fryer 2009). We consider numerical
simulations of collapsing CO cores leading to SNe Ic in order to
calculate realistic profiles for the density and ejection velocity

of the SN outer layers. We follow the hydrodynamic evolution
of the accreting material falling into the Bondi–Hoyle accretion
region all the way up to its incorporation onto the NS surface.

2. BINARY PROGENITOR
The hypercritical accretion onto the NS from the SN

ejecta in the IGC scenario can be estimated using the
Bondi–Hoyle–Lyttleton formalism (Hoyle & Lyttleton 1939;
Bondi & Hoyle 1944; Bondi 1952):

ṀBHL = 4πr2
BHLρ(v2 + c2

s )1/2, (1)

where ρ is the density of the SN ejecta, v is the ejecta velocity
in the rest frame of the NS (this includes a component from
the ejecta velocity, vej, and another component from the orbital
velocity of the NS, vorb), cs is the sound speed of the SN ejecta,
and rBHL is the Bondi radius:

rBHL = GMNS

v2 + c2
s

, (2)

where G is the gravitational constant and MNS is the NS
mass. Both the velocity components, vorb and vej, are typically
much higher than the sound speed. The ejecta velocity as a
function of time is determined by the explosion energy and
the nature of the SN explosion. The orbital velocity depends
on the orbital separation, which in turn depends on the radius
of the CO star and the binary interactions creating the tight-
orbit binary just prior to the explosion of the CO core. The
effect of the NS magnetic field can be neglected for Ṁ > 2.6 ×
10−8 M� s−1 = 0.8 M� yr−1 (Fryer et al. 1996; Rueda & Ruffini
2012).

The density evolution of the SN ejecta near the NS companion
depends upon the SN explosion and the structure of the
progenitor immediately prior to collapse. In Figure 2, we show
the density profile for three different low-metallicity stars with
initial zero-age main sequence masses of MZAMS = 15, 20, and
30 M� (Woosley et al. 2002). We designate the edge of the CO
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Figure 2. Density profile of different CO core progenitors with MZAMS = 15,
20, and 30 M� for low-metallicity (Z = 0.0001 Z�) stars using the Kepler
stellar evolution code (Woosley et al. 2002). For comparison, we include the
density structure of a solar metallicity star produced by the MESA code (S.
Jones 2014, in preparation). The vertical lines show the radius of the CO core.
As we shall see below, the accretion rate is extremely sensitive to the structure
of the star.

(A color version of this figure is available in the online journal.)

core in all of these stars. The density profile depends on both
on the initial conditions of the star (metallicity, initial mass,
rotation) as well as the stellar evolution code used (in this case,
KEPLER). The density profile of a 20 M�, solar metallicity star
(S. Jones 2014, in preparation) is obtained using the MESA code.
The IGC model assumes that both the hydrogen and helium
layers are removed prior to collapse. There is a 3–4 order of
magnitude pressure jump between the CO core and helium layer,
indicating that the star will not expand significantly when the
helium layer is removed. Comparisons of KEPLER models with
the stripped CO cores from Moriya et al. (2010) suggest that, for
some stellar evolution codes, the CO cores could be 1.5–2 times
larger. We will discuss this effect on the accretion rate below.

The compactness of the CO core (see Figure 2) is such that
there is no Roche lobe overflow4 prior to the SN explosion.
For instance, for a CO core progenitor with MZAMS = 15 M�
(MCO ≈ 5 M�, RCO ≈ 3 × 109 cm), no Roche lobe overflow
occurs for binary periods P � 2 min or binary separation
a � 6 × 109 cm for an NS companion mass MNS � 1.4 M�.

3. BINARY-DRIVEN HYPERCRITICAL ACCRETION

To derive the hypercritical accretion onto the NS, we must
implement an explosion model. Here, we take two approaches.
The first is to assume a homologous outflow with a set explosion
energy on the progenitor star structure. For comparison, we also
use a second approach that follows the collapse, bounce, and
explosion of the 20 M� progenitor discussed above using the
parameterized model developed to study a range of SN explosion

4 The Roche lobe radius is (Eggleton 1983)
RL,CO ≈ 0.49q2/3/[0.6q2/3 + ln(1 + q1/3)], where q = MCO/MNS.

Figure 3. Hypercritical accretion for selected separation distances and for a star
progenitor of 20 M� using our two approaches for the explosive engine. The
supernova shock increases the density of the outgoing material, producing a
pileup at the shock that leads to a spike in the accretion rate over a brief (few
second) period, a much sharper accretion profile than our �100 s accretion time
for our homologous outflow models.

(A color version of this figure is available in the online journal.)

energies for fallback and SN light curves (Frey et al. 2013).
The calculation uses a one-dimensional (1D) core-collapse code
(Fryer et al. 1999a) to follow the collapse and bounce, and
then injects energy just above the proto-NS to drive different
SN explosions, mimicking the convective-engine paradigm.
With this progenitor and explosion, we produce an example
density and velocity evolution history at the position of the
Bondi–Hoyle surface of our binary companion. Figure 3 shows
the Bondi–Hoyle infall rate from both our homologous outflow
and our simulated SN models for a range of orbital separations
(the innermost separation is determined to be just high enough
that the CO star does not overfill its Roche lobe). In our simulated
explosion, the density piles up in the shock, producing a much
sharper burst of accretion onto the NS. The accretion rate can
be an order of magnitude higher in these models, but for a much
shorter time, such that the total mass accreted is only less than
two times higher.

This infall rate is well above the Eddington rate and will be
reset to this rate if the assumptions of the Eddington accretion
limit apply. The Eddington rate is derived assuming that the
energy released when material accretes onto a compact object
is released in photons and these photons exert pressure on the
infalling material, reducing the accretion rate. The Eddington
accretion limit, or critical accretion rate, makes a series of
assumptions: the potential energy is released in the form of
photons, the inflowing material and outflowing radiation is
spherically symmetric, the photons are not trapped in the flow
and can deposit momentum to the inflowing material, and the
opacity is dominated by electron scattering. For a wide variety
of accreting X-ray binaries, the Eddington limit seems to hold
(at the order of magnitude level), but many of these assumptions
break down for accretion rates as high as the ones achieved in
the IGC scenario and these limits do not apply.
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Table 1
Hypercritical Accretion Mass in the IGC scenario

Progenitor Macc
a (M�), tacc (s)

ZAMS Mass aorbit/amin
b = 1 2 4 8

15 M� 0.24, 160 0.15, 400 0.085, 600 0.042, 1300
20 M� 0.38, 150 0.25, 250 0.16, 600 0.096, 1200
20 M�c 0.67, 5 0.34, 6 0.31, 7 0.17, 7
20 M�d 0.084, 150 0.058, 250 0.032, 600 0.001, 1200
30 M� 0.62, 800 0.42, 2000 0.28, 3700 0.16, 8000

Notes.
a Total accretion at super-Eddington rates in M�.
b amin: minimum orbital separation such that the CO core does not fill its Roche
lobe.
c Simulated with the KEPLER code.
d Solar metallicity star, simulated with the MESA code.

First and foremost, the photons in the hypercritical IGC
accretion rates are almost certainly trapped in the flow. Chevalier
(1989) derived the trapping radius where the photons emitted
diffuse outward at a slower velocity than the infalling material
flows inward:

rtrapping = min[(ṀBHLκ)/(4πc), rBHL], (3)

where κ is the opacity (in cm2 g−1) and c is the speed of light. If
the trapping radius is near or equal to the Bondi–Hoyle radius,
the photons are trapped in the flow and the Eddington limit
does not apply. This hypercritical accretion has been studied
in detail for common envelope scenarios where κ is likely to
be dominated by electron scattering. However, in SN fallback
(Fryer et al. 1999b) and the IGC model, heavy elements are
not completely ionized and lines can significantly increase the
opacity. Following Colgan et al. (2013), we estimate for our CO
core a Rosseland mean opacity of roughly 5 × 103 cm2 g−1,
a factor of ∼104 higher than electron scattering. This means
that the trapping radius is higher for the IGC model. Combined
with our high accretion rates, it is clear that the Eddington limit
does not apply in this scenario and hypercritical, largely Super-
Eddington, accretion occurs. The inflowing material shocks as
it piles up onto the NS, producing an atmosphere on top of
the NS (for details, see Zel’dovich et al. 1972; Chevalier 1989;
Houck & Chevalier 1991; Fryer et al. 1996). As the atmosphere
compresses, it becomes sufficiently hot to emit neutrinos that
cool the infalling material, allowing it to be incorporated into
the NS. For details of the simulation of this process, we refer
the reader to Ruffini & Wilson (1973), Fryer et al. (1996), and
Fryer (2009).

Table 1 shows the total mass accreted (Macc) for selected or-
bital separations and progenitor masses using different stellar
evolution codes and different models (homologous versus sim-
ulated) of the SN explosion. We also indicate the time interval
(tacc) in which the accretion rate is integrated to obtain Macc.
For these systems, the accretion rate is largely hypercritical, ex-
ceeding 10−3 M� s−1, so we expect a fraction of these systems
to push beyond the maximum NS mass and collapse to a BH.
Note that for the helium star systems, the accretion rate is not
high enough to produce an IGC. If the radius of the CO core
was twice that of our models (see the discussion on the Moriya
et al. 2010 models), our peak accretion rates would correspond
to the aorbit/a

b
min = 2 values.

As material piles onto the NS and the atmosphere radius, the
accretion shock moves outward. The accretion shock weakens
as it moves out and the entropy jump (derived from the shock

jump conditions) becomes smaller. This creates an atmosphere
that is unstable to Rayleigh–Taylor convection. Simulations of
these accretion atmospheres show that these instabilities can
accelerate above the escape velocity, driving outflows from the
accreting NS with final velocities approaching the speed of light,
and ejecting up to 25% of the accreting material (Fryer et al.
2006; Fryer 2009). The entropy of the material at the base of
our atmosphere, Sbubble, is given by (Fryer et al. 1996)

Sbubble = 38.7
(

MNS
2 M�

)7/8 (
ṀBHL

0.1 M� s−1

)−1/4 (
rNS

106 cm

)−3/8
kB per nucleon (4)

where rNS is the radius of the NS. The corresponding tempera-
ture of the bubble, Tbubble, is

Tbubble = 195S−1
bubble

( rNS

106 cm

)−1
. (5)

For the typical hypercritical accretion conditions of the ICG,
the temperature of the bubble when it begins to rise is
Tbubble ∼ 5 MeV. If it rises adiabatically, expanding in all di-
mensions, its temperature drops to 5 keV at a radius of 109 cm,
far too cool to observe. However, if it is ejected in a jet, as sim-
ulated by Fryer (2009), it may expand in the lateral direction
but not in the radial direction, so ρ ∝ r2 and T ∝ r−2/3. In this
scenario, the bubble outflow would have Tbubble ∼ 50 keV at
109 cm and Tbubble ∼ 15 keV at 6 × 109 cm. This could explain
the temperature and size evolution of the blackbody emitter ob-
served in Episode 1 of several BdHNe (see, e.g., Izzo et al.
2012; Penacchioni et al. 2012, 2013; Pisani et al. 2013; Ruffini
et al. 2013). For instance, the blackbody observed in Episode
1 of GRB 090618 (Izzo et al. 2012) evolves as T ∝ r−m with
m = 0.75 ± 0.09, whose lower value is in striking agreement
with the above simplified theoretical estimate. We are currently
deepening our analysis of the possible explanation of the ther-
mal emission observed in Episode 1 of BdHNe as being due to
the convective instabilities in the accretion process. However,
this is beyond the scope of this work and the results will be
presented elsewhere.

4. DISCUSSION

While in this Letter we address simulations of Episode 1
of the IGC, let us shortly outline some recent progress in
the understanding of the structure of Episode 3, which may
become complementary to this work. (1) The scaling laws are
remarkable in the X-ray luminosity in all BdHNe (see Pisani
et al. 2013; Ruffini et al. 2014b for details). (2) The very high
energy emission, all the way up to 100 GeV in GRB 130427A,
as well as the optical one, follow a power-law behavior similar
to the X-ray emission described above. The corresponding
spectral energy distribution is also described by a power-law
function with quite similar decay indexes (Ruffini et al. 2014c).
These results clearly require a common origin for this emission
process. (3) An X-ray thermal component has been observed in
the early phases of Episode 3 of GRBs 060202, 060218, 060418,
060729, 061007, 061121, 081007, 090424, 100316D, 100418A,
100621A, 101219B, and 120422A (Page et al. 2011; Starling
et al. 2012; Friis & Watson 2013). This feature has been clearly
observed in GRB 090618 and GRB 130427A, implying a size
of the emission region of 1012–1013 cm expanding at velocity
0.1 < v/c < 0.9, and hence a bulk Γ Lorentz factor �2 (Ruffini
et al. 2014b, 2014c).

Recently, Ruffini et al. (2014b) raised the possibility of using
the nuclear decay of ultra-heavy r-process nuclei, originated in
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the close binary phase of Episode 1, as an energy source of
Episode 3. These processes lead to power-law emission (see,
e.g., Kasen et al. 2013) with a decay index similar to the one
observed in Episode 3. The total energy emitted in the nuclear
decays is also in agreement with the observations in Episode 3
of BdHNe. r-process avalanches in BdHNe could also originate
from a mechanism similar to the one outlined by Fryer et al.
(2006) in SN fallback. Additional possibilities for generating
the scale-invariant power law in the luminosity evolution and
spectrum are the type I and type II Fermi acceleration processes
(Fermi 1949) during the evolution of the SN remnant. The
application of the Fermi acceleration mechanisms has two clear
advantages: the generation of the aforementioned power-law
behaviors, and solving the longstanding problem, formulated
by Fermi, of identifying the injection source in order to have his
acceleration mechanism at work on astrophysical scales.

We have advanced our estimates of the NS accretion rate
within the IGC model, which leads to BdHNe with all the above
features. Our estimates assume that the Bondi–Hoyle–Lyttleton
formalism is valid for our calculations. Although it has been
shown that this formalism is valid in steady-state systems (see
Edgar 2004, and references therein), the IGC model, with its
time-variable conditions, may push the validity of these assump-
tions. Full accretion models are required in order to validate our
results and/or to produce more reliable accretion rates.

It appears from observations that a condition necessary to
produce a GRB SN is that the pre-SN core is fully absent of
or has very little helium. We have shown that the IGC process
provides a natural explanation for that condition: hypercritical
accretion rates are favored by the presence of a compact CO
core, since it leads to tighter binaries and produces higher
opacities of the ejecta, which favors the photon trapping. We
showed that helium cores do not trigger enough hypercritical
accretion onto the NS companion to produce an IGC. A number
of mechanisms have been proposed to remove this material (a
common problem for most GRB scenarios): stellar winds (the
difficulty with this model is removing just the helium layer
and not a considerable portion of the CO core), mass transfer
(only low-mass helium cores undergo a helium giant phase,
so conditions for mass transfer or common envelope phases
may be difficult to reproduce), and enhanced mixing, allowing
fusion to consume the helium layer (Frey et al. 2013). Detailed
simulations of the binary evolution, up to the formation of binary
systems, conforming with the IGC conditions are needed in
order to assess this fundamental question.
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Sul, RS, Brazil

3 Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto
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A new constraint on the equation of state and composition of the matter on neutron stars has been provided by the mea-
surement of the mass 2.01 ± 0.04 M� for PSR J0348 +0432. In this contribution we investigate the role of many-body
correlations in the maximum mass of neutron stars using the effective relativistic QHD-model with parameterized cou-
plings. The complete expression of our QHD interaction Lagrangian exhausts the whole fundamental baryon octet (n, p,
Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0) and includes many-body forces simulated by nonlinear self-couplings and meson-meson inter-
action terms involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, φ), vector-isovector (�), and scalar-isovector (δ). We
study the behavior of the asymmetry parameter, which describes the relative neutron excess in the system as well as the
behavior of the strangeness asymmetry parameter, which specifies the strangeness content in the system and is strictly
connected with the appearance of a particular hyperon species in the extreme case where the Σ− experiences such a strong
repulsion that it does not appear at all in nuclear matter.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Neutron stars represent an excellent laboratory for the study
of nuclear matter under extreme conditions of density and
pressure. The pressure at the center of these stars is so high
that many processes of generation of new particles and for-
mation of new states of matter tend to occur, as for instance
the generation of hyperon degrees of freedom, the decon-
finement of quarks, the formation of a quark-gluon plasma
and boson condensation such as kaon condensates and many
others.

In addition there are theoretical predictions involving
for example the formation of quark stars and strange mat-
ter, an absolutely stable composition of strange quarks, the
content of hyperons. This prediction assumes that a neutron
star would consist mostly of quarks up (u), down (d), and
strange (s), surrounded by a thin nuclear crust. Hyperons,
like Λ, Σ, Ξ, the K− meson and the H-dibaryon, which play
a vital role in the structure of neutron stars, may contain an
s quark as one of their constituents. It therefore becomes

� Corresponding author: cesarzen@cesarzen.com

very important to study the presence of hyperons in nuclear
matter and the strangeness content of neutron stars.

Hyperons are very unstable particles under terrestrial
conditions, decaying into nucleons through the weak inter-
action. However, the equilibrium conditions in neutron stars
allow the conversion of nucleons into hyperons to become
energetically favorable. When the density of nuclear matter
increases, the neutron chemical potential, μn, may exceed
the mass of the Λ hyperon allowing this way the transfor-
mation of neutrons into Λ’s. These estimations are based
on experimental hypernuclei constraints, assuming in gen-
eral that the hyperon-nucleon and the hyperon-hyperon in-
teractions in nuclear matter are similar in magnitude to the
nucleon-nucleon interaction. To the extent that the nuclear
density grows, additional hyperons as Σ and Ξ can then be
generated originating a hyperon population as large as 20 %
(Weber 2001).

Ambartsumyan & Saakyan (1960) were the first au-
thors to suggest the appearance of hyperons in neutron
stars. Since then, numerous studies have been performed
in the search for a better understanding of the role of hy-
perons in the structure of the equation of state of neutron

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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stars. For interesting discussions about this topic, see for
instance Pandharipande (1971), Bethe & Johnson (1974),
Moszkowski (1974), Glendenning (1985), Weber & Weigel
(1989), Knorren, Prakash & Ellis (1995), Schaffner &
Mishustin (1996), Huber et al. (1998), Glendenning (1982,
1985, 1996, 2000), Prakash et al. (1997), Balberg & Gal
(1997), Baldo, Burgio & Schulze (1998), Schaffner-Bielich
et al. (2002), Lackey, Nayyar & Owen (2005), Takatsuka et
al. (2006), Djapo, Schaefer & Wambach (2010), Stone, Gui-
chon & Thomas (2010), Blaschke, Klaehn & Weber (2011),
and Gupta & Arumugam (2013), among many others.

In the present contribution, special emphasis is placed
on effects that can be attributed to the multi-species compo-
sition of neutron stars and the role of strangeness content of
neutron stars with strong Σ−-hyperon repulsion.

2 Equilibrium conditions

Assuming that hyperons (Λ, Σ, Ξ) appear in the core of neu-
tron stars when the nucleon chemical potentials become
large enough to compensate for the mass differences be-
tween nucleons and hyperons and that the threshold for the
appearance of the hyperons is tuned by the strong interac-
tions, most studies indicate that hyperons begin to appear at
a density of about 2ρ0 with Fermi momentum greater than
kF ∼ 3 fm−1 and ρ0 = 0.16 fm−3 (Weber 2001).

In the high density domain, different strong interaction
processes for hyperon formation such as

N + N → N + Λ , Λ + N → Σ− + p , Λ + Λ → Ξ− + p

may occur in a typical time scale of 10−20 s.
The equilibrium composition of neutron stars (Glenden-

ning 1996; Prakash et al. 1997) requires chemical equilib-
rium of all weak interaction charge conservation processes:
Bi → Bj + � + ν̄� and Bj + �→ Bi + ν� , (1)
in which Bi, Bj represent baryons, � are leptons and ν and
ν̄ denote respectively, neutrinos and anti-neutrinos on typ-
ical time scales of 10−10 s. These conditions for chemical
equilibrium yields the ground state composition of neutron
stars in beta equilibrium. We assume that neutron stars are
transparent to neutrinos and anti-neutrinos on any relevant
timescale; the chemical potentials of neutrinos and anti-
neutrinos them obey the condition μν = μν̄ = 0. Under this
assumption, the previous equilibrium conditions may then
be summarized by the single generic equation
μi = μn − qiμe , (2)
where μi and qi represent, respectively, the chemical poten-
tial and electric charge of baryon species i, μn is the neutron
chemical potential, and μe denotes the electron chemical
potential. In the absence of neutrinos and anti-neutrinos, the
equilibrium condition requires μe = μn, so muons start to
appear in the system. Moreover, neutron and electron chem-
ical potentials are constrained by the requirements of a con-
stant total baryon number and electric charge neutrality∑

i

ηBi = 1 and
∑

i

qiηBi +
∑

�

q�ηB�
= 0 , (3)

where ηBi = ρBi/ρB and ηB�
= ρB�

/ρB represent respec-
tively the relative species of baryons and leptons as a func-
tion of the total baryon density ρB . The appearance of
muons reduces the number of protons and affects this way
the proton fraction. The resulting neutron excess is de-
scribed by the isospin asymmetry parameter

fia =
Nn −Np

NT
, (4)

whereNn andNp represent respectively the number of neu-
trons and protons with NT = Nn + Np. Similarly, taking
into account that strangeness is not conserved during the
weak interactions, we introduce the strangeness asymmetry
parameter

fsa =
NΛ +NΣ + 2NΞ

NΛ +NΣ +NΞ +NT
, (5)

where NΛ, NΣ, and NΞ represent respectively the number
of the Λ, Σ and Ξ hyperon species. The fsa parameter speci-
fies the strangeness content in the system and is strictly con-
nected with the appearance of a particular hyperon species.

Qualitatively, typical calculations which take into ac-
count attractive nucleon-hyperon potentials (see, for in-
stance, Glendenning 2001), the first hyperon species that
appears is the Σ− closely followed by the Λ and the Σ+.
Then, the other hyperon species follow at higher densities,
Σ0, Σ+, and Ξ−. The appearance of negatively charged hy-
perons at high densities allows deleptonization processes to
occur in the core of neutron stars, i.e, the loss of lepton con-
tent, and thus charge neutrality tends to be guaranteed with-
out lepton contributions.

As already stressed by Glendenning (2001), the uncer-
tainties of hyperon couplings, in particular, that of Σ− in
dense matter raises questions about the behavior of the elec-
trochemical potential, a crucial quantity for the possible
presence of a kaon condensed phase in the core of neutron
stars. As most often assumed, regardless the uncertainties,
we consider that hyperon couplings are constrained by the
hyperon binding in nuclear matter. Kaon condensation in
turn is not taken into account in this study. In the follow-
ing we consider the extreme case where the Σ− experiences
such a strong repulsion that it does not appear at all in nu-
clear matter.

3 Lagrangian density

We consider in the following an effective relativistic model
with parameterized couplings. As a guideline for the
strengths of the various couplings the concept of naturalness
has been adopted. (Vasconcellos et al. 2014a). The interac-
tion Lagrangian density is

Lint=−
∑

Bψ̄B

[
γμΣ

μ
B ξ(σ, σ∗, δ, ω)+ γμτ ·Σμ

Bκ(σ, σ∗, δ,�)

+ γμΣμ
Bη(σ, σ∗, δ, φ)+Σs

Bζ(σ, σ∗, δ)
]
ψB. (6)

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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In this expression, one can identify the following self-
energy insertions:

Σμ
B ξ(σ, σ∗, δ, ω) = g∗ωBξω

μ, Σμ
Bκ(σ, σ∗, δ,�) =

1

2
g∗
Bκ�

μ

Σμ
Bη(σ, σ∗, δ, φ) = g∗φBηφ

μ, Σs
Bζ(σ, σ∗, δ) = MBΣs

Bζ , (7)

where B = n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0, and with the
effective parameterized baryon-meson coupling constants
g∗Φ (Φ = ω, φ, �), defined as g∗ωBξ = gωBm∗

Bξ, g∗
Bκ =
g
Bm∗

Bκ, g∗φBη = gφBm∗
Bη , and with Σs

Bζ = m∗
Bζ , where

m∗
Bα ≡

(
1 +

gσBσ + gσ∗Bσ∗ + 1
2gδBτ · δ

αMB

)−α

, (8)

with α = (ξ, κ, η, ζ).
The effective parameterized baryon mass M∗

Bζ =

MBΣs
Bζ = MBm∗

Bζ , for (gσBσ0

ζMB
,
gσ∗Bσ∗

0

ζMB
, gδBδ03

ζMB
) � 1, in

the mean field approximation, becomes

M∗
Bζ = MB−MB

(
gσBσ0 + gσ∗Bσ∗0 + 1

2gδB <τ3> δ03

MB

)

+

(
ζ
2

)(
gσBσ0 + gσ∗Bσ∗0 + 1

2gδB <τ3> δ03

ζMB

)2

+ O(3) , (9)

with

(
ζ
2

)
representing the generalized binomial coeffi-

cients of the expansion (Taurines et al. 2001; Vasconcellos
et al. 2012). Properties of the fields considered in our for-
mulation are presented in Table 1.

For certain values of the parameters of the model, the
treatment adopted in this work reproduces the same predic-
tions for global properties of neutron stars as most of the
models based on Yukawa-type couplings involving the σ, ω
and � mesons. This can be easily understood looking at the
simplifications shown in Table 2. For other choices of the
model parameters, our approach allows the description of
the effects of self-density-correlations of higher orders in-
volving the extended scalar sector of the strong interaction
on global properties of neutron stars.

Table 1 Properties of the fields considered in our formulation. In
what follows, we use the abbreviations ISS: isoscalar-scalar; IVS:
isovector-scalar; ISV: isoscalar-vector; IVV: isovector-vector.

Fields Classification Particles Coupling Mass
Constants (MeV)

ψB Baryons N, Λ, N/A 939, 1116,
Σ, Ξ 1193, 1318

ψl Leptons e−, μ− N/A 0.5, 106

σ ISS-meson σ g∗σB
550

δ IVS-meson a0 g∗δB 980
ωμ ISV-meson ω g∗ωB

782
�μ IVV-meson ρ g∗�B

770
σ∗ ISS-meson f0 g∗σ∗B 975
φμ ISV-meson φ g∗φB

1020

Table 2 Examples of parameterizations of our model. S: scalar
model; SIV: scalar-isoscalar-vector model; SIIV: scalar-isoscalar-
vector-isovector-vector model. Model II differs from I due to the
presence of the φ meson.

Model ζ ξ κ η

S �= 0 0 0 0
SIV �= 0 �= 0 0 0
SIIV-I �= 0 �= 0 �= 0 0
SIIV-II �= 0 �= 0 �= 0 �= 0

4 Coupling constants

In the following, the values of the sets of parameters
(ζ, ξ, κ, η) have been chosen to allow the model to re-
produce nuclear properties at saturation, like for example
the compressibility modulus of nuclear matter smaller than
300 MeV. We assume for the saturation density of nuclear
matter ρ0 = 0.17 fm−3 and for the binding energy of nu-
clear matter εB = −16.0 MeV. The isovector coupling con-
stant g
 is constrained to the symmetry energy coefficient
aasym = 32.5 MeV (Haensel et al. 2007). In the high den-
sity regime, the intensity of the couplings of scalar mesons
with hyperons is chosen by determining the depth of the
hyperon-nucleon interaction potential on saturated nuclear
matter. For the details of this part of the calculation see the
contribution to this issue (Vasconcellos et al. 2014b).

5 TOV equations and gravitational binding
energy

We have calculated the EoS, population profiles and, by
solving the Tolman-Oppenheimer-Volkoff (TOV) equations
(Tolman 1939; Oppenheimer & Volkoff 1939), we have
determined the mass-radius relation for families of neutron
stars with hyperon content. Our results for different values
of the set of parameter (ζ, ξ, κ, η) are illustrated in Figs.
1–10, where each set of parameters generates a sequence
of neutrons stars with different equations of state, particle
populations, central densities, and maximum masses.

The gravitational mass of a neutron stars is given by one
of the TOV equations,

M�G = 4π

∫ R

0

ε(r) r2dr , (10)

where ε represents the internal density energy of the star.
The quantity M�G represents the mass that is measured by
Keplers law when a satellite orbits the star.

The baryon mass of the star, M�B , is given by the
volume integral of the baryon number density n times the
baryon mass M�B:

M�B = NMB =

∫ R

0

dV

= 4π

∫ R

0

ndr r2
(

1− 2GM(r)

c2r

)−1/2

, (11)
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Fig. 1 Gravitational binding energy as a function of the central
energy density of the stars. For comparison, the curves labelled
with ζ = 0.000 and ζ = 1.000 represent the results of our model
corresponding respectively to the Serot & Walecka (1997) and ZM
(Zimanyi & Moszkowski 1990) models. The remaining curves la-
belled with ζ = 0.100 and ζ = 0.044, κ = 0.040 represent partic-
ular combinations of the parameters of our model. This last result
of our model represents one of the most stable gravitational bind-
ing energy curve that reproduces nuclear phenomenology (as for
instance the compressibility of nuclear matter) and allows, through
the calculation of the TOV equations (Tolman 1939; Oppenheimer
& Volkoff 1939) to obtain a maximum mass of neutron stars in
good agreement with recent experimental observations (Demorest
et al. 2010). The remaining model parameters, not shown in the
curves, are set equal to zero.

where dV = 4πdr r2
(
1− 2GM(r)

c2r

)1/2

is the volume el-

ement in Schwarzschild coordinates, N represents the star
baryon number, and M(r) is the internal neutron star mass.
The difference between M�G and M�B corresponds to the
binding energy

E� bin = (M�G −M�B) c2 . (12)

The behavior of the gravitational energy as a function of the
central density of neutron stars is crucial for determining the
most stable configurations of families of stars.

6 Results

Our calculation indicate that many-body correlations shield
the attractive part of the strong interaction, and intensify this
wat the corresponding repulsive part, favoring in this way
the stiffening of the EoS. On the other hand, the effective
masses of baryons increase as the shielding of the attractive
part of the strong interaction increase, as shown in Eq. (4).
This favors the growth of the internal pressure of the system
and the stiffening of the EoS.

On the other hand, our predictions for the particle popu-
lation show that the threshold equation for a given species
(Glendenning 1996) is also affected by the presence of
many-body correlations (see Eq. 8):

μn − qBμe ≥ gωBfσσ∗δξω0 + g
Bfσσ∗δκ�03I3B

+ gφBfσσ∗δηφ0 + fσσ∗δζMB . (13)

In this expression, μn and μe represent respectively the neu-
tron and electron chemical potential, and qB is the baryon
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Fig. 2 Isospin asymmetry fia and strangeness asymmetry fsa

of nuclear matter as a function of the ratio between the baryon
density ρB and the nuclear saturation density ρ0. The meaning of
the labels is similar to the previous figure.
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Fig. 3 The meson fields condensates as functions of the ra-
tio between the baryon density ρ and the nuclear saturation den-
sity ρ0 for a given parameter set which corresponds to the Serot
and Walecka (1997) model. The remaining model parameters, not
shown in the figure, are set equal to zero.

charge. The sign of g
B�03I3B is determined by the net
isospin density of the star. This term determines whether a
given baryon configuration is isospin favored or unfavored.
Similarly, the term qBμe determines whether a given baryon
state is charge favored or unfavored. Moreover, in this ex-
pression

fσσ∗δα = 1−
(

gσBσ0 + gσ∗Bσ∗0 + 1
2gδB <τ3> δ03

MB

)

+

(
α
2

)(
gσBσ0 + gσ∗Bσ∗0 + 1

2gδB <τ3> δ03

αMB

)2

+ O(3), (14)

with α = ξ, κ, η, ζ. These equation show that the population
of hyperons is affected by many-body correlations, which
shift the critical density for hyperon saturation to higher
densities.

Following recent experimental results (Zhao & Zhang
2013; see also Bednarek, Keska & Manka 2003), we have
considered in our calculations the extreme case where the
Σ− experiences such a strong repulsion that it does not ap-
pear at all in nuclear matter for densities exceeding those
found in neutron stars. The first hyperon species that ap-

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 4 The meson fields condensates as functions of the ratio
between the baryon density ρ and the nuclear saturation density ρ0

for a given parameter set which corresponds to the ZM (Zimanyi &
Moszkowski 1990) model. The remaining model parameters, not
shown in the figure, are set equal to zero.
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Fig. 5 The meson fields condensates as functions of the ratio
between the baryon density ρ and the nuclear saturation density
ρ0 for a given parameter set of our model which reproduces nu-
clear phenomenology (as for instance the compressibility of nu-
clear matter) and allows, through the calculation of the TOV equa-
tions (Tolman 1939; Oppenheimer & Volkoff 1939) to obtain a
maximum mass of neutron stars in good agreement with recent
experimental observations (Demorest et al. 2010). The remaining
model parameters, not shown in the figure, are set equal to zero.

pears is the Λ: free of isospin-dependent forces, as the den-
sity increases, the Λ hyperon continues to accumulate until
short-range repulsion forces cause them to saturate. Other
hyperon species follow at higher densities.

Our model originates moreover an anti-correlation be-
tween the amount of hyperons: for certain values of the
parameters, according to Eqs. (13) and (14), an anti-
correlation associated with the predominance of the scalar
part occurs. This mean that hyperon degrees of freedom be-
come more numerous to the extent that the attractive sector
is favored in comparison with the repulsive part, thus favor-
ing smaller neutron star masses. However, the absence of
the Σ− hyperon reduces this effect.

When considering simultaneously both shielding effects
involving the attractive and repulsive contributions of the
strong interaction, one would expect that, – since the repul-
sive part of the strong interaction is more effective in nuclear
matter at high densities, on the average, than the attractive
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Fig. 6 Isospin asymmetry fia and strangeness asymmetry fsa of
nuclear matter in the configuration for maximum mass for a set of
parameters corresponding to the Serot & Walecka (1997) model
as a function of the star radius. In this configuration the maximum
star mass is approximately equal to 2.2 M�, and the star radius is
∼12.8 km.
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Fig. 7 Isospin asymmetry fia and strangeness asymmetry fsa of
nuclear matter in the configuration for maximum mass for a set of
parameters corresponding to the the ZM (Zimanyi & Moszkowski
1990) model as a function of the star radius. In this configuration
the maximum star mass is approximately equal to 1.6 M�, and the
star radius is ∼11 km.

sector – , that the shielding of the strong interaction would
favor the attractive part, contributing this way to the reduc-
tion of the mass of the neutron star. However, our results
indicate that the combination of these effects with the oth-
ers previously reported favors the stiffening of the EoS. In
other words, the shielding of the attractive part of the strong
interaction combined with the increase of the effective mass
of baryons and the absence of the Σ− hyperon, are domi-
nant when compared with those effects favoring the soften-
ing of the EoS, i.e., the shielding of the repulsive part of the
strong interaction and the increase on the population of the
remaining hyperons beyond the Σ−.

7 Conclusions

The main result of our study is that our predictions for the
properties of neutron stars show a better agreement with
experimental observations when compared with the predic-
tions of other known models found in the literature. In par-
ticular, our predictions for the masses of neutron stars are in
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Fig. 8 Isospin asymmetry fia and strangeness asymmetry fsa of
nuclear matter in the configuration for maximum mass for a set of
parameters of our model. In this configuration, the maximum star
mass is approximately equal to 1.95 M�, in good agreement with
recent experimental observations (Demorest et al. 2010), and the
star radius is ∼11.8 km.
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Fig. 9 The EoS of nuclear matter. Dotted, dashed, and straight
lines represent model parameters for given sets corresponding
to the Serot & Walecka (1997) model, to the ZM (Zimanyi &
Moszkowski 1990) model, and to our model, respectively.

very good agreement with recent experimental observations
(Demorest et al. 2010)

It is worth to recall that in this work we have constructed
the neutron star configurations through the spherically sym-
metric equations of equilibrium given by the TOV equations
which assume the condition of local charge neutrality of
the system; see Eq. (3). It is therefore important to scruti-
nize the effects found in (Belvedere et al 2012, and refer-
ences therein), where it was shown a more general picture
of the equilibrium inside a neutron star, ensuring global but
not local charge neutrality. A more general system of equi-
librium equations including effects of gravito-polarization
throughout the star, the Einstein-Maxwell-Thomas-Fermi
equations, were shown to supersede the TOV ones. The ap-
pearance of other charged degrees of freedom besides pro-
ton and electrons presented here, will certainly change at
least quantitatively, the electric fields inside the neutron star.
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Fig. 10 Maximum masses as functions of the central density of
neutron stars for a given set of parameters of our model. The mean-
ing of the labels is similar to the previous figure.
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We investigate the role of many-body correlations in the maximum mass of neutron stars using the effective relativistic
QHD-model with parameterized couplings which represents an extended compilation of other effective models found in
the literature. Our model exhausts the whole fundamental baryon octet (n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0) and simulates
corrections to the minimal Yukawa couplings by considering many-body nonlinear self-couplings and meson-meson in-
teraction terms involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, φ), vector-isovector (�) and scalar-isovector (δ).
Following recent experimental results, we consider in our calculations the extreme case where the Σ− experiences such a
strong repulsion that it does not appear at all in nuclear matter.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The knowledge of the equation of state (EoS) of nuclear
matter at high densities, such as those found in neutron stars
and pulsars, is still an open problem in physics. The formal
complexity of Quantum Chromodynamics (QCD), the fun-
damental theory of the strong interaction physics, has led
nuclear physicists to search for alternative effective models
for the description of properties of nuclear matter.

In 1977, one of the most popular formulations for
the problem, the effective relativistic quantum field theory
known as Quantum Hadrodynamics (QHD), was proposed
by Walecka & Serot (1997). QHD considers nucleons as ef-
fective fields and assumes that the interaction terms involv-
ing nucleons and meson fields is described by Yukawa-type
minimal couplings which involve the exchange of the long-
range (attractive) and short-range (repulsive) components of
the nuclear force represented, respectively, by the scalar-
isoscalar σ-meson and the vector-isoscalar ω-meson. The
model is linearized by using the mean-field approximation.

To address a few of the shortcomings of the Walecka
model with Yukawa minimal couplings, alternative ap-
proaches have been proposed. Among these we mention the

� Corresponding author: mrazeira@gmail.com

nonlinear model of Boguta & Bodmer (1997) who consid-
ered a correction to the Yukawa minimal coupling in the
scalar sector, by taking into account the leading third- and
fourth-orders of the σ meson self-interaction terms to sim-
ulate density-dependent correlations in the “in-medium”
nucleon-nucleon interaction.

Another important effective model, proposed by Zi-
manyi & Moszkowski (1990), replaces the Yukawa’s mi-
nimum coupling involving the scalar-isoscalar meson σ
and the nucleon by a derivative coupling allowing self-
interaction density-dependent correlation terms of higher
orders than the leading third and fourth ones. We also men-
tion the model of Glendenning (1996), who introduced hy-
peron degrees of freedom into the original versions of the
QHD formalism.

It has been found by many authors that hadronic masses
of the various SU(3) multiplets, including hyperon fields,
and the nuclear matter equation of state can be described
reasonably well within QHD models respecting chiral sym-
metry (see, for instance, Papazoglou et al. 1998; Massot,
Margueron & Chanfray 2012). However, it has been also
shown that the central potentials of hyperon degrees of free-
dom come out too large in such descriptions. These stud-
ies also show that such too high central potentials for hy-
peron fields cannot be corrected within a model with con-

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



734 M. Razeira et al.: Effective field theory for neutron stars with many-body correlations

ventional Yukawa-type baryon-meson interactions. The rea-
sons for this “pathology” may be synthesized as follows:
linear realization of chiral symmetry restricts interaction
coupling terms involving spin-0 meson fields and baryons
to be symmetric (d-couplings), while the couplings involv-
ing spin-1 meson field to baryons must be antisymmetric
(f-couplings); this way, the balance between nuclear repul-
sive contributions due to vector short range potentials and
attractive contributions owing to scalar long range poten-
tials is destroyed. There are other arguments that support
this assertion but will not be mentioned here because they
are outside the scope of this study; see, for instance, Papa-
zoglou et al. 1998; Massot, Margueron & Chanfray 2012).
Note that these issues are not present if the non-linear re-
alization of the sigma model is considered instead (Papa-
zoglou et al. 1999; Dexheimer & Schramm 2008).

In this work, we focus on the role of non-Yukawa cou-
plings involving baryons and meson fields on the equation
of state (EoS) of neutron stars. Particularly, we focus on
the effects of many-body correlations on the polarization of
baryon masses due to the background field fluctuations of
scalar meson fields, induced by a strong interaction scalar
response of the nuclear medium. These polarization effects
are particularly responsible for non Yukawa-type density
correlations on the scalar sector of the strong interaction.

2 Lagrangian density

We consider in the following an effective relativistic model
with parameterized couplings which takes into account, as
a conventional way of classifying and organizing the inte-
raction strengths of the various couplings of the Lagrangian
density Lint, the concept of naturalness (Vasconcellos et al.
2014):

Lint=−
∑

Bψ̄B

[
γμΣ

μ
B ξ(σ, σ∗, δ, ω)+ γμτ ·Σμ

Bκ(σ, σ∗, δ,�)

+ γμΣμ
Bη(σ, σ∗, δ, φ)+Σs

Bζ(σ, σ∗, δ)
]
ψB. (1)

In this expression, one can identify the following self-
energy insertions:

Σμ
B ξ(σ, σ∗, δ, ω) = g∗ωBξω

μ ; Σμ
Bκ(σ, σ∗, δ,�) =

1

2
g∗�Bκ�

μ

Σμ
Bη(σ, σ∗, δ, φ) = g∗φBηφ

μ ; Σs
Bζ(σ, σ∗, δ) = MBΣs

Bζ , (2)

where B = n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0, and with the ef-
fective parameterized baryon-meson coupling constants
g∗Φ (Φ = ω, φ, �), defined as g∗ωBξ = gωBm∗

Bξ, g∗�Bκ =
g�Bm∗

Bκ, g∗φBη = gφBm∗
Bη , and with Σs

Bζ = m∗
Bζ , where

m∗
Bα ≡

(
1 +

gσBσ + gσ∗Bσ∗ + 1
2gδBτ · δ

αMB

)−α

, (3)

with α = (ξ, κ, η, ζ).
The effective parameterized baryon mass

M∗
Bζ = MBΣs

Bζ = MBm∗
Bζ , (4)

for(
gσBσ0

ζMB
,
gσ∗Bσ∗0
ζMB

,
gδBδ03
ζMB

)
� 1 ,

in the mean field approximation becomes

M∗
Bζ = MB−MB

(
gσBσ0 + gσ∗Bσ∗0 + 1

2gδB <τ3> δ03

MB

)

+

(
ζ
2

)(
gσBσ0 + gσ∗Bσ∗0 + 1

2gδB <τ3> δ03

ζMB

)2

+ O(3) , (5)

with

(
ζ
2

)
representing the generalized binomial coeffi-

cients of the expansion (Taurines et al. 2001; Vasconcellos
et al. 2012). Properties of the fields considered in our for-
mulation are presented in Table 1.

For certain values of the parameters of the model, the
treatment adopted in this work reproduces the same predic-
tions for global properties of neutron stars as most of the
models based on Yukawa-type couplings involving the σ,
ω, and � mesons. This can be easily understood looking at
the simplifications shown in Table 2. For other choices of
the model parameters, our approach allows the description
of the effects of self-density-correlations of higher orders
involving the extended scalar sector of the strong interac-
tion on global properties of neutron stars.

3 Coupling constants

In the following, the values of the sets of parameters
(ζ, ξ, κ, η) have been chosen to allow the model to repro-
duce nuclear properties at saturation, like for example the
compressibility modulus of nuclear matter smaller than 300
MeV. We assume for the saturation density of nuclear matter
ρ0 = 0.17 fm−3 and for the binding energy of nuclear mat-
ter εB = −16.0 MeV. The isovector coupling constant g�
is constrained to the symmetry energy coefficient aasym =
32.5 MeV (Haensel et al. 2007).

In the high density regime, hyperon degrees of freedom
must be taken into account. In most models found in the lite-
rature, hyperon degrees of freedom appear in nuclear mat-
ter at around two times the nuclear saturation density ρ0,
as for instance, in relativistic mean-field models (Wang et

Table 1 Properties of the fields considered in our formulation. In
what follows, we use the abbreviations ISS: isoscalar-scalar; IVS:
isovector-scalar; ISV: isoscalar-vector; IVV: isovector-vector.

Fields Classification Particles Coupling Mass
Constants (MeV)

ψB Baryons N, Λ, N/A 939, 1116,
Σ, Ξ 1193, 1318

ψl Leptons e−, μ− N/A 0.5, 106

σ ISS-meson σ g∗σB
550

δ IVS-meson a0 g∗δB 980
ωμ ISV-meson ω g∗ωB

782
�μ IVV-meson ρ g∗�B

770
σ∗ ISS-meson f0 g∗σ∗B 975
φμ ISV-meson φ g∗φB

1020
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Table 2 Examples of parameterizations of our model. S: scalar
model; SIV: scalar-isoscalar-vector model; SIIV: scalar-isoscalar-
vector-isovector-vector model. Model II differs from I due to the
presence of the φ meson.

Model ζ ξ κ η

S �= 0 0 0 0
SIV �= 0 �= 0 0 0
SIIV-I �= 0 �= 0 �= 0 0
SIIV-II �= 0 �= 0 �= 0 �= 0

al. 2006), in non-relativistic potential models (Dabrowski &
Rozynek 2010), in the quark-meson coupling model (Whit-
tenbury et al. 2013), in relativistic Hartree-Fock models
(Huber et al. 1998), in Brueckner-Hartree-Fock calculations
(Shternin, Baldo & Haensel 2013), and within chiral effec-
tive Lagrangian (Banik et al. 2004). Nevertheless, the details
of the hyperon composition of neutron star matter are rather
sensitive to the chosen hyperon potentials.

The intensity of the couplings of scalar mesons with
hyperons can be obtained by determining the depth of the
hyperon-nucleon interaction potential on saturated nuclear
matter

UN
H (ρ0) = −gσHσ0 + gωHω0 , (6)

where H = Λ, Σ, Ξ, and

−gσNσ0 =
∑

N

(
gσN
mσ

)2[
(ζ − 1)m∗

Nζ − ζ(m∗
Nζ)

ζ+1
ζ

]
ρSN

−
∑

N

(
gσN
mσ

)2

gωN

m∗
ξN

MN

ξ+1
ξ

ρN , (7)

and

gωNω0 =
∑

N

(
gωN

mω

)2

m∗
ξNρN ; (8)

in these expressions, ρSN and ρN represent respectively the
scalar and baryonic densities. We adopt the following values
for the depth of the hyperon-nucleus potential: UN

Λ (ρ0) =
−28 MeV; UN

Σ (ρ0) = 20 MeV, UN
Ξ (ρ0) = −18 MeV (Bart

et al. 1999; Batty, Friedman & Gal 1994). Here and in what
follows, other symbols follow the usual convention used in
most of the literature. Tables 3 and 4 show the coupling con-
stants and the corresponding ratios χ

ΦH
≡ g

ΦH

g
ΦN

. Due to the

scarcity of data, some coupling constants (marked with the
symbol †) are determined by the SU(3) symmetry.

The Λ-hyperon is a singlet (it has zero isospin) and
therefore it does not couple to the �-meson. As an exam-
ple of our results, Table 5 shows a particular set of values

Table 3 Ratios χΦH ≡ g
ΦH

g
ΦN

with Φ = ω, � and H = Λ, Σ, Ξ.

χ†ωΛ χ†ωΣ χ†ωΞ χ†�Λ χ†�Σ χ†�Ξ

2
3

2
3

1
3

0.0 2.0 1.0

Table 4 Ratios χΦH ≡ g
ΦH

g
ΦN

with Φ = φ, σ∗ and H = Λ, Σ, Ξ.

χ†φΛ χ†φΣ χ†φΞ χ†σ∗Λ χ†σ∗Σ χ†σ∗Ξ

2
√

2
6

2
√

2
6

2
√

2
3

2
√

2
6

2
√

2
6

2
√

2
3

Table 5 Coupling constants using gδN = 3.1. We only show the
non-zero parameters.

Model gσN gωN gρN gσΛ gσΣ gσΞ

ζ =0.044 9.893 10.719 8.657 5.343 3.832 2.719

ζ =0.044
κ=0.040 9.893 10.719 8.657 5.343 3.832 2.719

ζ =ξ=
η=0.100 11.857 14.520 8.177 9.680 5.764 3.653

Table 6 Saturation properties of nuclear matter and global prop-
erties of families of neutron stars corresponding to the set of cou-
pling constants shown in Table 4. ρc is the central baryon density,
M� is the maximum star mass, and R� is the star radius corre-
sponding to the maximum mass. Only the non-zero parameters are
shown.

Model
M∗

N
MN

K M� R�
ρc
ρ0

(MeV) (M�) (km)

ζ =0.044 0.66 297 1.92 12.19 4.96

ζ =0.044
κ=0.040 0.66 297 1.95 11.96 5.20

ζ =ξ=
κ=η=0.100 0.58 360 2.02 12.10 5.05

of the coupling constants, and Table 6 shows the correspon-
ding equilibrium properties of nuclear matter and the results
for global properties of families of neutron stars which are
in good agreement with recent observation results (Demor-
est et al. 2010).

4 Results

We have calculated the EoS, population profiles and, by
solving the Tolman-Oppenheimer-Volkoff (TOV) equations
(Tolman 1939; Oppenheimer & Volkoff 1939), we have de-
termined the mass-radius relation for families of neutron
stars with hyperon content. Our results for different val-
ues of the set of parameter (ζ, ξ, κ, η) are illustrated in Figs.
1–5, where each set generates a sequence of neutrons stars
with different equations of state, particle populations, cen-
tral densities, and maximum masses for neutron stars.

The analysis of these results demands first to remember
that a stiffer, or equivalently, more rigid equation of state
of nuclear matter is related to higher values of the internal
pressure of the system and, accordingly, to higher values of
the compressibility modulus |Ksym| of nuclear matter. This
in turn requires stronger contributions from repulsive com-
ponents of the nuclear force when compared to the attractive

www.an-journal.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 1 Equation of state for a set of parameters. For compa-
rison, the curves labelled with ζ = 0.000 and ζ = 1.000 repre-
sent the results of our model corresponding respectively to the
Serot & Walecka (1997) and ZM (Zimanyi & Moszkowski 1990)
models. The remaining curves labelled with ζ = 0.100 and ζ =
0.044, κ = 0.040 represent a particular combination of the param-
eters of our model. This last result allows, through the calcula-
tion of the TOV equations (Tolman 1939; Oppenheimer & Volkoff
1939) to a maximum mass of neutron stars in good agreement with
recent experimental observations (Demorest et al. 2010). The re-
maining model parameters, not shown in the curves, are set equal
to zero.
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Fig. 2 For comparison, the curves show the predictions of our
model for the equation of state for a particular set of parameters.
The remaining model parameters, not shown in the curves, are set
equal to zero.

ones. In our general approach, however, many body forces
(density correlations) lower the intensities both of attrac-
tive and repulsive interaction terms due to shielding effects,
which result in higher (lower) values of the compressibil-
ity modulus |Ksym| of nuclear matter in the case of higher
(lower) relative reduction of the attractive (repulsive) con-
tributions.

In this sense, when many-body correlations shield the
attractive part of the strong interaction, they intensify the
corresponding repulsive part, favoring in this way the stiff-
ening of the EoS. On the other hand, the effective masses
of baryons increase as the shielding of the attractive part of
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allows, through the calculation of the TOV equations (Tolman
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tron stars in good agreement with recent experimental observa-
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the strong interaction increase, as shown in Eq. (4). This fa-
vors the growth of the internal pressure of the system and
the stiffening of the EoS.

There is another important effect to be considered, the
presence of hyperons. Our predictions for the particle popu-
lation show that the threshold equation for a given species
(Glendenning 1996) is also affected by the presence of
many-body correlations (see Eq. 3):

μn − qBμe ≥ gωBfσσ∗δξω0 + g�Bfσσ∗δκ�03I3B

+ gφBfσσ∗δηφ0 + fσσ∗δζMB . (9)

In this expression, μn and μe represent respectively the neu-
tron and electron chemical potential, and qB is the baryon
charge. The sign of g�B�03I3B is determined by the net
isospin density of the star. This term determines whether a
given baryon configuration is isospin favored or unfavored.
Similarly, the term qBμe determines whether a given baryon
state is charge favored or unfavored. Moreover, in this ex-
pression

fσσ∗δα = 1−
(

gσBσ0 + gσ∗Bσ∗0 + 1
2gδB <τ3> δ03

MB

)

+

(
α
2

)(
gσBσ0 + gσ∗Bσ∗0 + 1

2gδB <τ3> δ03

αMB

)2

+ O(3), (10)

with α = ξ, κ, η, ζ. These equation show that the population
of hyperons is affected by many-body correlations, which
shift the critical density for hyperon saturation to higher
densities.

Following recent experimental results (Zhao & Zhang
2013; see also Bednarek, Keska & Manka 2003), we have
considered in our calculations the extreme case where the
Σ− experiences such a strong repulsion that it does not ap-
pear at all in nuclear matter for densities exceeding those
found in neutron stars. The first hyperon species that ap-
pears is the Λ: free of isospin-dependent forces, as the den-
sity increases, the Λ hyperon continues to accumulate until
short-range repulsion forces cause them to saturate. Other
hyperon species follow at higher densities.

Our model originates moreover an anti-correlation be-
tween the amount of hyperons: for certain values of the pa-
rameters, according to Eqs. (9) and (10) an anti-correlation
associated with the predominance of the scalar part occurs.
This mean that hyperon degrees of freedom become more
numerous to the extent that the attractive sector is favored
in comparison with the repulsive part, thus favoring smaller
neutron star masses. However, the absence of the Σ− hy-
peron reduces this effect.

When considering simultaneously both shielding effects
involving the attractive and repulsive contributions of the
strong interaction, one would expect that, – since the repul-
sive part of the strong interaction is more effective in nuclear
matter at high densities, on the average, than the attractive
sector –, that the shielding of the strong interaction would
favor the attractive part, contributing this way to the reduc-
tion of the mass of the neutron star. However, our results

indicate that the combination of these effects with the oth-
ers previously reported favors the stiffening of the EoS. In
other words, the shielding of the attractive part of the strong
interaction combined with the increase of the effective mass
of baryons and the absence of the Σ− hyperon, are domi-
nant when compared with those effects favoring the soften-
ing of the EoS, i.e., the shielding of the repulsive part of the
strong interaction and the increase on the population of the
remaining hyperons beyond the Σ−.

5 Conclusions

One of the most controversial and intriguing questions in
modern astrophysics concerns the existence of a maximum
mass of a neutron star. The establishment of this threshold
and the controversies correlated with this conception fol-
lowed historically a logical line of thought quite similar to
the corresponding determination of the maximum mass of
another type of compact star, the white dwarf. For interest-
ing discussions on this topic, see Yakovlev et al. (2010).

Stoner (1929) was the first scientist to predict the exis-
tence of a maximum mass for a white dwarf. In doing this,
Stoner calculated the equation of state of a relativistic Fermi
gas and applied it to stellar configurations of white dwarfs
of uniform density (incompressible matter). A little later,
Chandrasekhar (1931) improved the stellar mass limit of
Stoner by allowing the internal density to vary (compress-
ible matter) within a polytropic model, based on the solu-
tions of the Lane-Emden equation. Chandrasekhar consid-
ered in his calculations non-rotating white dwarf stars com-
posed of a fully ionized plasma of nuclei and electrons with
a net concentration Ye of electrons per nucleon (lepton frac-
tion). In his studies, he assumed that the nuclei do not con-
tribute to the internal pressure of the plasma and that the
electrons could be described by an ideal Fermi gas. More-
over, taking into account that electrons become relativistic
in the high density domain and assuming that the electron
degeneracy pressure resists gravitational collapse, the re-
sult so obtained, now known as the Chandrasekhar limit,
provided that the maximum mass of a stable white dwarf,
MWD, is about 1.4 M�.

Independently, Landau (1932) mentioned the possible
existence of dense stars which look like giant nuclei which
can be regarded as an early theoretical prediction or antici-
pation of neutron stars, prior to the discovery of the neutron.
He showed that hydrostatic equilibria of stars supported by
the pressure of degenerate electrons only exist if the mass of
the star do not exceed 1.5 M�. However, his predictions in
this regard occurred before the discovery of the neutron by
Chadwick (1932). Landau assumed that protons and elec-
trons constitute atomic nuclei and do not annihilate because
his ideas was conceived before the discovery of the neu-
tron. However, his suggestion that sources of stellar energy
were located in pathological cores was convenient, but at the
same time naive (Yakovlev et al. 2010). After the discovery
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of the neutron an adaptation of his calculation provides a
limit of 1.8 M�.

In 2010, Paul Demorest and colleagues (Demorest et al.
2010), using the Shapiro delay, measured the mass of the
millisecond pulsar PSR J1614 –2230. The result obtained
was 1.97± 0.04 M�, a value substantially higher than any
previously measured neutron star mass, placing this way
strong constraints on the interior composition of neutron
stars. Moreover, in 2013, Antoniadis and colleagues (An-
toniadis et al. 2013) measured the mass of the millisecond
pulsar PSR J0348 +0432 to be 2.01 ± 0.04 M�. This con-
firmed the existence of such massive stars using a different
method. Furthermore, this allowed, for the first time, a test
of general relativity using such a massive neutron star.

In Fig. 5, the curves labelled with ζ = 0.000 and
ζ = 1.000 represent the results of our model for the
mass-radius relationship of neutrons stars corresponding
to the Serot & Walecka (1997) and ZM (Zimanyi &
Moszkowski 1990) models, respectively. The remaining
curves labelled with ζ = 0.100 and ζ = 0.044, κ = 0.040
represent a particular combination of the parameters of our
model. This last result allows, through the calculation of
the TOV equations (Tolman 1939; Oppenheimer & Volkoff
1939) to a maximum mass of neutron stars in good agree-
ment with recent experimental observations (Demorest et al.
2010). The remaining model parameters, not shown in the
curves, are set equal to zero.

Our results also indicate that, to compensate the absence
of the Σ− to bring about charge neutrality and chemical
equilibrium, as well as the requirements of the Pauli prin-
ciple and the rearrangement of Fermi populations to mini-
mize energy, the Λ and Ξ− thresholds have been reduced.
This last reduction is charge favored, replacing a neutron
and electron at the top of their Fermi seas, although both
Σ− and Ξ− are isospin unfavored.

Interesting issues for future studies will be the role of fi-
nite temperature, neutrino trapping, and strong magnetic ef-
fects in neutron stars. Work along these lines is in progress.

References

Antoniadis, J., Freire, P.C.C., Wex, N., et al. 2013, Science, 340,
6131, 448

Bandyopadhyay, D., & Greiner, W. 2004, Phys.Rev. D, 70, 123004
Banik, S., Hanauske, M., Bandyopadhyay, D., & Greiner, W. 2004,

Phys.Rev. D, 70, 123004
Bart, S., Chrien, R.E., Franklin, W.A., et al. 1999, Phys. Rev. Lett.

83, 5238
Batty, C.J., Friedmanm E., & Gal, A. 1994, Phys. Lett. A, 335, 273

Bednarek, I., Keska, M., & Manka, R. 2003, Phys. Rev. C, 68,
035805

Boguta, J., Bodmer, A. R. 1997, Nucl. Phys. A 292, 413
Chadwick, J. 1932, Proc.Royal Soc.London A, 136, 692
Chamel, N., Haensel, P., Zdunik, J.L., & Fantina. A.F. 2013, Int. J.

Mod. Phys. E, 22, 1330018
Chandrasekhar, S. 1931, ApJ, 74, 81
Dabrowski, J., & Rozynek, J. 2010, Acta Phys. Polon. B, 41, 357
Demorest, P., Pennucci, T., Ransom, S., Roberts, M., & Hessels, J.

2010, Nature, 467, 1081
Dexheimer, V., & Schramm, S. 2008, arxiv.org/pdf/08021999
Erler, J., Horowitz, C.J., Nazarewicz, W., Rafalski, M., & Rein-

hard, P.-G. 2013, Phys. Rev. C, 86, 044320
Glendenning, N. K. 1996, Compact Stars, (Springer Verlag,

Berlin)
Haensel, P., Potekhin, A.Y., & Yakovlev, D.G. 2007, Neutron Stars

I – Equation of State and Structure, (Springer Verlag, Berlin)
Huber, H., Weber, F., Weigel, M.K., & Schaab, C. 1998, Int. J.

Mod. Phys. E, 7, 301
Landau, L.D.1932, Phys. Z. Sowjetunion, 1, 285
Lattimer, J.M. 2013, Annu. Rev. Nucl. Part. Sci., 62, 485
Massot, E., Margueron, J., & Chanfray, G. 2012, Europhys.Lett.,

97, 39002
Papazoglou, P., Zschiesche, D., Schramm, S., Schaffner-Bielich,

J., Stoecker, H., & Greiner, W. 1998, Phys. Rev. C, 57, 2576
Papazoglou, P., Zschiesche, D., Schramm, S., Schaffner-Bielich,

J., Stocker, H., & Greiner, W.1999, Phys. Rev. C, 59, 411
Oppenheimer, J., & Volkoff, G. 1939, Phys.Rev., 55, 374
Schaffner, J., Dover, C.B., Gal, A., Millener, D.J., Greiner, C., &

Stoecker, H. 1994, Ann. Phys., 235, 35
Serot, B.D., Walecka, J.D. 1997, Int. J. Mod. Phys. E, 515, 6; Serot,

B.D., Walecka, J.D. 1986, The Relativistic Nuclear Many-
Body Problem, in: J.W. Negele, E. Vogt (eds.) Adv. Nucl.
Phys., 16, 1.

Shternin, P.S., Baldo, M., & Haensel, P. 2013, arXiv: 1311.4278
[astro-ph.SR]

Stoner, E.C. 1929, The Limiting Density in White Dwarfs, Philo-
sophical Magazine vii, 63

Taurines, A., Vasconcellos, C.A.Z., Malheiro, M., & Chiapparini,
M. 2001, Phys.Rev. C, 63, 065801

Tolman, R.C. 1939, Phys.Rev., 55, 364
Vasconcellos, C.A.Z., Horvath, J., Hadjimichef, D., Gomes, R.O.

2012, Int. J. Mod. Phys. Conf. Ser., 18, 182
Vasconcellos, C.A.Z., Gomes, R.O, Dexheimer, V., Negreiros,

R.P., Horvath, J., & Hadjimichef, D. 2014, this volume
Wang, Q.L., Dang, L., Zhong, X.H., & Ning, P.Z. 2006, Europhys.

Lett., 75, 36
Whittenbury, D.L., Carroll, J.D., Thomas, A.W., Tsushima, K., &

Stone, J.R. 2013, ADP-13-17-T837 e-Print: arXiv:1307.4166
Zhao, X.F., & Zhang, L. 2013, Int. J. Theor. Phys., 52, 429
Yakovlev, D.G., Haensel, P., Baym, G., & Pethick, C.J.

2013, Physics Uspekhi, 56, 289; 2012, arXiv:1210.0682
[physics.hist-ph]

Zimanyi, J, Moszkowski,S.A. 1990, Phys. Rev. C, 42, 1416

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org





A&A 569, A39 (2014)
DOI: 10.1051/0004-6361/201423457
c© ESO 2014

Astronomy
&

Astrophysics

Induced gravitational collapse at extreme cosmological distances:
the case of GRB 090423

R. Ruffini1,2,3,4, L. Izzo1,2, M. Muccino1, G. B. Pisani1,3, J. A. Rueda1,2,4, Y. Wang1, C. Barbarino1,5, C. L. Bianco1,2,
M. Enderli1,3, and M. Kovacevic1,3

1 Dip. di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
e-mail: Ruffini@icra.it

2 ICRANet, Piazza della Repubblica 10, 65122 Pescara, Italy
3 Université de Nice-Sophia Antipolis, Cedex 2, Grand Château Parc Valrose, Nice, France
4 ICRANet-Rio, Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil
5 INAF-Napoli, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy

Received 17 January 2014 / Accepted 25 May 2014

ABSTRACT

Context. The induced gravitational collapse (IGC) scenario has been introduced in order to explain the most energetic gamma ray
bursts (GRBs), Eiso = 1052−1054 erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hypernovae
(BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron
star (NS). Their evolution is characterized by a rapid sequence of events: 1) the SN explodes, giving birth to a new NS (νNS). The
accretion of SN ejecta onto the companion NS increases its mass up to the critical value; 2) the consequent gravitational collapse is
triggered, leading to the formation of a black hole (BH) with GRB emission; 3) a novel feature responsible for the emission in the
GeV, X-ray, and optical energy range occurs and is characterized by specific power-law behavior in their luminosity evolution and
total spectrum; 4) the optical observations of the SN then occurs.
Aims. We investigate whether GRB 090423, one of the farthest observed GRB at z = 8.2, is a member of the BdHN family.
Methods. We compare and contrast the spectra, the luminosity evolution, and the detectability in the observations by Swift of
GRB 090423 with the corresponding ones of the best known BdHN case, GRB 090618.
Results. Identification of constant slope power-law behavior in the late X-ray emission of GRB 090423 and its overlapping with the
corresponding one in GRB 090618, measured in a common rest frame, represents the main result of this article. This result represents
a very significant step on the way to using the scaling law properties, proven in Episode 3 of this BdHN family, as a cosmological
standard candle.
Conclusions. Having identified GRB 090423 as a member of the BdHN family, we can conclude that SN events, leading to NS for-
mation, can already occur, namely at 650 Myr after the Big Bang. It is then possible that these BdHNe stem from 40−60 M� binaries.
They are probing the Population II stars after the completion and possible disappearance of Population III stars.

Key words. gamma-ray burst: general – gamma-ray burst: individual: GRB 090423 – black hole physics

1. Introduction

The induced gravitational collapse (IGC) paradigm (Ruffini
2011; Rueda & Ruffini 2012; Izzo et al. 2012b) has been pro-
posed to explain a class of very energetic (Eiso ∼ 1052–1054 erg)
long gamma ray bursts (GRBs) associated with supernovae
(SNe). A new class of systems, with progenitor a tight binary
composed by a FeCO core and a companion neutron star (NS),
has been considered. These systems evolve in a very rapid se-
quence lasting a few hundred seconds in their rest frame: 1) the
SN explodes giving birth to a new NS (νNS); 2) the accretion of
the SN ejecta onto the companion NS increases its mass, reach-
ing the critical value; 3) the gravitational collapse is triggered,
leading to the formation of a black hole (BH) with GRB emis-
sion. Such systems have been called binary-driven hypernovae
(BdHN Ruffini et al. 2014a).

Observationally, this authentic cosmic matrix is character-
ized by four distinct episodes, with the “in” state represented

by a FeCO core and a NS and the “out” state by a νNS and
a BH. Each episode contains specific signatures in its spectrum
and luminosity evolution. Up to now, the IGC paradigm has been
verified in a dozen GRBs, all with redshift up to z ∼ 1 (Izzo et al.
2012a; Penacchioni et al. 2012, 2013; Pisani et al. 2013; Ruffini
et al. 2013).

Various approaches have been followed to reach an under-
standing of long GRBs. One of these has been the use of statis-
tical tools to obtain general results that examine the most com-
plete source catalog (see, e.g., Nousek et al. 2006; Kann et al.
2011; Salvaterra et al. 2012; Margutti et al. 2013, and references
therein).

We follow a different approach here. We first identified the
specific class of BdHNe of GRBs related to SNe, as mentioned
above, widely tested at z ≈ 1. We furthermore explore the mem-
bers of this class by extending our analysis to higher values of
the cosmological redshifts. We do that by taking the scaling laws
for the cosmological transformations into account, as well as the
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Fig. 1. Space-time diagram of the induced gravitational collapse applied
to GRB 090618 (Enderli 2013; Ruffini 2013). The sequence is summa-
rized as follows: A) the explosion as a SN of the evolved FeCO core
which creates a ν-NS and its remnant; B) the beginning of the accre-
tion of the SN ejecta onto the companion NS, emitting Episode 1; C) a
prolonged interaction between the ν-NS and the NS binary companion;
D) the companion NS reaches its critical mass by accretion, and a BH
is formed with the consequent emission of a GRB; E) the arrival time
at the separatrix between Episodes 2 and 3; F) the optical emission of
the SN due to the decay of 56Ni after td

a ∼ 10(1 + z) days in the observer
frame (Episode 4).

specific sensitivities of the GRB detectors (in this case Swift,
Gehrels et al. 2005; and Fermi, Meegan et al. 2009).

Our aim is to verify that such BdHNe, originating in a SN
and a companion NS, did form in the earliest phases of the uni-
verse. If this is confirmed, we go on to examine the possibility
that all GRBs with Eiso ∼ 1052−1054 erg are indeed associated to
SN and belong to the BdHN family independently of their space
and time location.

2. The four episodes of BdHNe sources

In order to achieve this goal, we recall the four above-mentioned
episodes, present in the most general BdHN (see Fig. 1):

Episode 1 has the imprint of the onset of a SN in the tight
binary system with the companion neutron star (NS; see Fig. 2).
It stemmed from the hyper-critical accretion of the SN matter
ejecta (∼10−2 M� s−1) (Rueda & Ruffini 2012). Decades of con-
ceptual progress have passed from the original work of Bondi &
Hoyle (1944) and Bondi (1952) to the problem of a “hypercriti-
cal” accretion rate. This problem has acquired growing scientific
interest as it moved from the classical astronomical field to the

Fig. 2. Sketch (not in scale) of the accretion induced gravitational col-
lapse (IGC) scenario.

domain of the relativistic astrophysics. The crucial role of neu-
trino cooling, earlier considered by Zel’dovich et al. (1972) and
later on by Bisnovatyi-Kogan & Lamzin (1984) in SN fallback,
has been recognized to play a crucial role in describing binary
common envelope systems by Chevalier (1989, 1993). In the
work by Fryer et al. (1996), and more recently in Fryer (2009),
it was clearly shown that an accretion rate Ṁ ∼ 10−2 M� s−1

onto a neutron star (NS) could lead in a few seconds to the
formation of a black hole (BH), when neutrino physics in the
description of the accreting NS is taken into due account. The
data acquired in Episode 1 of GRB 090618 (Izzo et al. 2012a),
as well as the one in GRB 101023 (Penacchioni et al. 2012),
GRB 110709B (Penacchioni et al. 2013), and GRB 970828
(Ruffini et al. 2013), give for the first time the possibility to probe
the Bondi-Hoyle hypercritical accretion and possibly the associ-
ated neutrino emission, which was theoretically considered by
Zel’dovich et al. (1972); Chevalier (1993); Fryer et al. (1996),
and Fryer (2009).

Episode 2 is the canonical GRB emission, which originated
in the collapse of the companion NS, which reached its critical
mass by accretion of the SN ejecta and then collapsed to a black
hole (BH), indeed emitting the GRB.

Episode 3 observed in X-rays by Swift-XRT, shows very pre-
cise behavior consisting of steep decay, starting at the end point
of the prompt emission, and then a plateau phase followed by
a late power-law decay (see Pisani et al. 2013 and also Fig. 3).
The late X-ray luminosities of BdHNe, in their rest-frame energy
band 0.3–10 keV, show a common power-law behavior with a
constant decay index clustering around α = −1.5 ± 0.2. The oc-
currence of such a constant afterglow decay has been observed
in all the BdHN sources examined. For example, see in Fig. 4
the data for GRB 130427A, GRB 061121, GRB 060729, respec-
tively. It appears an authentic nested structure, in the late X-ray
emission of GRBs associated to SNe, and it has indeed to be
indicated as the qualifying feature for a GRB to be a member
of the BdHNe family (Ruffini et al. 2014a). It is clear that such
a phenomenon offers a strong challenge for explaining by any
GRB model.

In addition to these X-ray features, the observations of
GRB 130427A by the Swift, Fermi, and Konus-WIND satellites
and a large number of optical telescopes have led to the evi-
dence of such power laws at very high energies, in γ-rays and
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Fig. 3. Rest-frame, X-ray afterglow, luminosity light curves of some IGC GRBs-SNe belonging to the “golden sample” described in Pisani et al.
(2013). The overlapping after 104 s is clearly evident, confirming the presence of an Episode 3 in this GRB.

at the optical wavelengths (Fermi-LAT collaboration & Fermi-
GBM collaboration 2014; Melandri et al. 2014; see also Ruffini
et al. 2014b).

Episode 4 is characterized by the emergence of the SN emis-
sion after about 10–15 days from the occurrence of the GRB in
the rest frame of the source, which has been observed for almost
all the sources fulfilling the IGC paradigm with z ∼ 1.

3. GRB 090423 compared and contrasted
with GRB 090618

We first consider the data of GRB 090423, one of the farthest
GRB ever observed at z = 8.2 (Salvaterra et al. 2009; Tanvir
et al. 2009), with the prototypical member of the BdHNe class,
namely GRB 090618, and its associated SN (Izzo et al. 2012a).
In other words we proceed with a specific ansatz: we verify that
GRB 090423, at z = 8.2, presents analogous intrinsic features to
GRB 090618, which was observed at z = 0.54.

We proceed by examining (see Sect. 4) each one of the
above episodes for both sources, by a detailed spectral analysis
and simulations. We first verify that Episode 1 of GRB 090618
transposed at redshift z = 8.2 should not have triggered the
Swift-BAT detector. Indeed, no precursor in the light curve
of GRB 090423 was detected. Consequently, we do not ad-
dress any theoretical considerations of the hypercritical accre-
tion in Episode 1 of GRB 090423, since it is not observable
in this source (see Sect. 5). We also notice that the distance of

GRB 090423 prevents any possible detection of a SN associated
with this GRB, and therefore Episode 4 cannot be observed in
GRB 090423.

For Episode 2, we have found that indeed the transposed
emission of GRB 090618 should provide a positive trigger:
we show in Sect. 6 that the duration, the observed luminos-
ity and the spectral emission of Episode 2 in GRB 090423
present analogous intrinsic features to the transposed ones of
GRB 090618 and differ only in the spectral energy distribution
due to different circumburst medium properties.

For Episode 3, the crucial result, probing the validity of the
above ansatz, is that the late X-ray emission in GRB 090423,
computed in the rest frame of the burst at z = 8.2, precisely
coincides (overlaps) with the corresponding late X-ray emission
in GRB 090618, as evaluated in the rest frame of the source at
z = 0.54, see Sect. 7. The occurrence of this extraordinary coin-
cidence in Episode 3 proves that GRB 090423 is indeed a mem-
ber of the BdHN family. This in particular opens the possibility
of elaborating a role for the late X-ray emission in BdHNe as a
standard candle.

4. The data

GRB 090423 was discovered on 23 April 2009, 07:55:19
UT, T0 from here, by the Swift Burst Alert Telescope (BAT;
Krimm et al. 2009), at coordinates RA = 09h 55m 35s, Dec =
+18◦ 09′ 37′′ (J2000.0; 3′ at 90% containment radius). The
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 130427A      0.34      1.1x1054          2013cq   
GRB z Eiso(erg)   SN

  

GRB z Eiso(erg)   SN

 061121        1.314     3.0x1053    not detectable

  

GRB z Eiso(erg)   SN

 060729        0.54       1.6x1052          bump

  

 130427A      0.34      1.1x1054          2013cq   
GRB z Eiso(erg)   SN



 061121        1.314     3.0x1053    not detectable
060729        0.54       1.6x1052          bump

Fig. 4. Rest-frame, (0.3−10) keV, and re-binned luminosity light curves of GRB 130427A (upper left), GRB 061121 (upper right), GRB 060729
(lower left) and a combined picture (lower right). The fits to their emission is done using a power-law function for the early steep decay and a
phenomenological function for the following emission, which is described well in Ruffini et al. (2014a).

Swift-BAT light curve showed a double-peaked structure with
a duration of about 20 s. The X-ray Telescope (XRT; Burrows
et al. 2005) on board the same spacecraft started to observe
GRB 090423 72.5 s after the initial trigger, finding a fading
source and providing enhanced coordinates for the follow-up
by on-ground telescopes that have allowed the discovery of its
redshift (z = 8.2, Salvaterra et al. 2009; Tanvir et al. 2009). The
light curve is characterized by an intense and long flare
peaking at about T0 + 180, followed by a power-law de-
cay, observed from the second orbit of Swift (Stratta & Perri
2009). The prompt emission from GRB 090423 was also de-
tected by the Fermi Gamma-Ray Burst Monitor (GBM, trig-
ger 262166127/090423330; von Kienlin 2009a), whose on-
ground location was consistent with the Swift position. The
Large Area Telescope (LAT) on-board the Fermi satellite did
not detected any signal from GRB 090423. The GBM light
curve showed a single-structured peak with a duration of about
12 s, whose spectral energy distribution was best fit with a
power law with an exponential cut-off energy, parameterized as
Epeak = (82 ± 15) keV. The observed fluence was computed
from Fermi data to be S γ = 1.1 × 10−6 ergs/cm2 that, consid-
ering the standard ΛCDM cosmological model, corresponds to
an isotropic energy emitted of Eiso = 1.1 × 1053 ergs for the
spectroscopic redshift z = 8.2 (von Kienlin 2009b). With these
values for Epeak and Eiso, GRB 090423 satisfies the Amati rela-
tion, which is only valid for long GRBs (Amati et al. 2002).

5. The impossibility of detecting Episode 1

It has become natural to ask if observations of Episodes 1 and 2
in the hard X-ray energy range could be addressed for the case
of GRB 090423. We have first analyzed a possible signature of
Episode 1 in GRB 090423. Since the Swift-BAT, (15−150) keV,
light curve is a single-structured peak with duration of ∼19 s,
as detected by Swift-BAT, with no thermal emission in its spec-
trum and no detection of any emission from a precursor in the
Swift and Fermi data, we have considered the definite possibility
that Episode 1 was not observed at all. In this light, the best way
to check this possibility consists in verifying that the Episode 1
emission is below the threshold of the Swift-BAT detector, con-
sequently, it could have not triggered the Swift-BAT. We have
considered the prototype of Episode 1 as the one observed in
GRB 090618 (Izzo et al. 2012b), which is at redshift z = 0.54,
and then we transposed it at redshift z = 8.2, simulating the ob-
served emission of GRB 090618 as if it had been observed at
this large distance. Then, we performed a time-resolved spec-
tral analysis of Episode 1 in GRB 090618, using a Band func-
tion as spectral model, and finally we translated the specific
photon spectra obtained from the analysis at the redshift of
GRB 090423. This last operation consists in two transforma-
tions, concerning the peak energy Epeak of the Band function and
the normalization value KBand. The new value of the peak energy
is simply given by Epeak,8 = Epeak (1 + 0.54)/(1 + 8.2), while the
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normalization, which corresponds to the specific photon flux at
1 keV, requires knowledge of the luminosity distances of the two
bursts, dl(z) :

KBand,8 = KBand

(
1 + 8.2
1 + 0.54

)2 (
dl(0.54)
dl(8.2)

)2

· (1)

Another transformation concerns the observational time of
Episode 1 of GRB 090618 at redshift z = 8.2. At large distances,
any astrophysical event will be dilated in time by the cosmolog-
ical redshift effect, which in the current case modifies the time
interval by a quantity (1 + 8.2)/(1 + 0.54) = 5.97. The knowl-
edge of this time interval is fundamental since it represents the
exposure of a simulated spectrum translated at z = 8.2. We con-
sidered Fermi GBM data for analyzing the time-resolved spec-
tra of GRB 090618, as described by Izzo et al. (2012b). The
wide energy range of Fermi GBM NaI detectors, (8−1000) keV,
allows a more accurate determination of the Band parameters,
which are used as input values for the simulated spectra. We
also rebinned the Fermi data considering a signal-to-noise ratio
(SNR) = 10, and finally performed our spectral analysis. The
next step consisted in transforming the peak energy of the Band
function and of the normalization of all these time-resolved pho-
ton spectra N(E), as described above.

Following the work of Band (2003), the sensitivity of an
instrument to detect a burst depends on its burst trigger algo-
rithm. The Swift-BAT trigger algorithm, in particular, looks for
excesses in the detector count rate above expected background
and constant sources. There are several criteria for determin-
ing the correct BAT threshold significance σ0 for a single GRB
(Barthelmy et al. 2005), but in this work we have considered
the treatment given in Band (2003). Recently, the threshold of
Swift-BAT has been modified to allow detecting of subthreshold
events, but since GRB 090423 was detected before, the Band
(2003) analysis is still valid for our purposes. The preset thresh-
old significance for Swift-BAT can be expressed by the following
formula:

σ0 =
Aeff fdet fmask∆t

∫ 150
15 ε(E)N(E)dE

√
Aeff fdet∆t

∫ 150
15 B(E)dE

, (2)

where Aeff is the effective area of the detector, fdet the fraction of
the detector plane that is active, fmask the fraction of the coded
mask that is open, ∆t the exposure of the photon spectrum N(E),
ε(E) the efficiency of the detector, and B(E) the background.
We considered the values for these parameters as the ones given
in the Band work (with the exception of the detecting area, as-
sumed to be Aeff = 5200 cm2), while the efficiency and the back-
ground were obtained from the Swift-BAT integrated spectrum
of GRB 090423 using the XSPEC fitting package. Then we con-
sidered as input photon spectra N(E) the ones obtained from the
Fermi GBM analysis of Episode 1 of GRB 090618 and trans-
lated for the redshift z = 8.2. It is appropriate to note that the
transformations of spectra presented above are the correct ones:
since the sensitivity of Swift-BAT strongly depends on the peak
energy of the photon flux of the single spectra of the GRB (for
the Swift-BAT case, see e.g. Fig. 7 of Band 2003), we find that at
z = 8.2 the observed peak energies of any spectrum will be low-
ered by a factor (1 + 0.54)/(1 + 8.2). Our procedure also takes
this further effect of the cosmological redshift into account.

Since the threshold significance of Swift-BAT is variable
from a minimum value of σ0 = 5.5 up to a maximum value
of 111, with an average value of σ0 = 6.7, the results of this
1 http://swift.gsfc.nasa.gov/about_swift/bat_desc.html
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Fig. 5. Threshold significance σ0 computed using the treatment of Band
(2003) for any single time-resolved spectra of the first emission episode
in GRB 090618, as if they were emitted at redshift 8.2. The dashed lines
correspond to the values for the threshold significance of σ0 = 5.5 and
σ0 = 6.7.

Fig. 6. Swift-BAT (15−150 keV) light curve emission of GRB 090423.
The red line corresponds to the simulation of the GRB emission in the
fireshell scenario (Izzo et al. 2010).

first analysis suggest that an Episode 1 similar to the one of
GRB 090618 would not have been detected in GRB 090423 (see
Fig. 5).

6. Detection of Episode 2 and its analysis

Episode 2 emission of GRB 090423, detected by Swift-BAT, was
examined in the context of the fireshell scenario (Izzo et al. 2010;
Ruffini 2011). A Lorentz Gamma factor of Γ ∼ 1100 and a
baryon load B = 8 × 10−4 were obtained. The simulations of
the observed spikes in the observed time interval (0−440) s lead
to homogeneous circumburst medium (R = 10−8, see Bianco &
Ruffini 2005 for a complete description), and an average den-
sity of 10−1 particles cm−3. The simulation of the GRB 090423
emission is shown in Fig. 6.

We can now compare and contrast the emission observed in
GRB 090423, expressed at z = 8.2 (see Fig. 6, Izzo et al. 2010),
and the portion of the emission of GRB 090618 if observed at
z = 8.2, (see Fig. 7, Izzo et al. 2012a). In view of the Swift-BAT
threshold, only the dashed region in Fig. 8, lasting 6 s, would be
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Table 1. Results of the spectral fits of the T90 duration of GRB 090423 and of the ∆tA,obs time interval for GRB 090618.

α β Ep,i norm. χ̃2 ∆tobs
(keV) (keV) (ph/cm2/s/keV) (s)

090618 –0.66 ± 0.57 –1.99 ± 0.05 284.57 ± 172.10 0.3566 ± 0.16 0.924 6.1
090423 –0.78 ± 0.34 –3.5 ± 0.5 433.6 ± 133.5 0.015 ± 0.010 0.856 10.4

Notes. The latter is computed in a time interval corresponding to the one expected to be observed if GRB 090618 is transposed at the redshift z =
8.2, and in the observed energy range (89.6−896) keV.

Fig. 7. Light curve of Episode 2 in GRB 090618, ranging from 50 to
150 s. The dashed region represents the portion which would have trig-
gered the Swift-BAT if this GRB had been at the redshift z = 8.2. The
observed duration of that interval is approximately ∆t ' 6 s. The results
obtained in Fig. 6, when scaled to z = 0.54, provide ∆T ' 3 s.
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Fig. 8. Spectra of GRB 090423 (blue data) and of the spectrum of the
emission of GRB 090618 (red data) considered as possible Episode 2
if GRB 090618 had been observed at z = 8.2. The low-energy photon
index is ≈–0.8, which corresponds to the expectations from the Fireshell
scenario (Ruffini 2011; Patricelli et al. 2012).

detectable. The observed flux in Fig. 6 and the one of the dashed
region in Fig. 8 will be similar when compared in a common
frame.

For the above considerations, the analysis presented in the
previous section can be applied to Episode 2 of GRB 090618.
Assuming a detector threshold for Swift-BAT of σ0 = 6.7, see
Eq. (2), only the dashed region in Fig. 7 is detectable when
transposing GRB 090618 at z = 8.2. In the observer frame,
this emission corresponds to the time interval (T0,G + 63.0,
T0,G + 69.1) s, with T0,G the trigger time of Fermi GBM data

of GRB 090618. This time interval, at z = 8.2, has a duration
∆tA,obs = ∆tobs × 5.97 = 36.4 s, owing to the time dilation by the
cosmological redshift z (see Fig. 6). The remaining emission of
GRB 090618 is unobservable, since below the threshold of the
Swift-BAT detector. We note that ∆tA,obs is quite comparable to
the observed duration of GRB 090423 (see Fig. 6).

We turn now to comparing and contrasting the spectral
energy distributions in the rest frame of the two GRBs. We
consider the spectrum of GRB 090618 in the energy range
(89.6−896) keV, which corresponds to the Swift-BAT band
(15−150) keV in the rest frame of GRB 090423. As for the
time interval in GRB 090423, we consider the observational
time interval (63.0−69.1) s, determined from applying Eq. (2)
to the entire Episode 2 of GRB 090618 (see the dashed region in
Fig. 7). We fitted the spectral emission observed in GRB 090423
with a Band function (Band et al. 1993), and the results pro-
vide an intrinsic peak energy Ep,i = (284.57 ± 172.10) keV
(see Table 1). The same model provides for the spectral emis-
sion of GRB 090423, in the T90 time duration, an intrinsic peak
energy of Ep,i = (433.6 ± 133.5) keV. However, the break in
GRB 090423 is steeper, while in GRB 090618 it is more shal-
low. This is clear in Fig. 8, where we show the spectra of both
GRBs that are transformed to a common frame, which is the one
at redshift z = 8.2. Very likely, the difference in the steepen-
ing at high energies is related to the structure of the circumburst
medium (CBM): the more fragmented the CBM, the larger the
cutoff energy of the fireshell spectrum (Bianco & Ruffini 2005).
Another important result is that the low energy index α is quite
similar in both GRBs. This agrees with the expectation from the
fireshell scenario, where a photon index of ≈−0.8 is expected in
the early emission of a GRB (Patricelli et al. 2012).

The isotropic energy emitted in the time interval delineated
by the dashed region in Fig. 7 has been computed to be Eiso =
3.49 × 1052 erg, which is very similar to the one computed for
the T90 duration, in the same energy range, for GRB 090423,
Eiso = 4.99 × 1052 erg.

7. Striking observations of Episode 3

That in long GRBs the X-ray emission, observed by Swift-
XRT in energy range 0.3–10 keV, presents a typical structure
composed of a steep decay, a plateau phase and a late power-
law decay, was clearly expressed by Nousek, Zhang and their
collaborators (Nousek et al. 2006; Zhang et al. 2006). This struc-
ture acquires a special meaning when examined in the most ener-
getic sources, Eiso = 1052−1054 erg, and leads to the fundamental
proof that GRB 090423 is a BdHN source.

It has only been after applying the IGC paradigm to the most
energetic long GRBs associated to SNe that we noticed the most
unique characterizing property of the BdHN sources: while the
steep decay and the plateau phase can be very different from
source to source, the late X-ray power-law component overlaps,
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Fig. 9. Behavior of the Episode 3 luminosity of GRB 090423 (black dots) compared with the prototype case of GRB 090618 (green data).

when computed in the cosmological rest-frame (see Pisani et al.
2013 and Fig. 3). This has become the crucial criterion for assert-
ing membership of a GRB in the BdHN family. Indeed, when we
report the late X-ray emission of Episode 3 in GRB 090423 at
z = 8.2, and GRB 090618 at z = 0.54, we observe a complete
overlapping at times longer than 104 s, see Fig. 9.

7.1. Recent progress in understanding the nature
of Episode 3

We recall:

a) that the X-ray luminosity of Episode 3 in all BdHN sources
presents precise scaling laws (see, e.g., Fig. 3);

b) that the very high energy emission all the way, up to
100 GeV, in GRB 130427A, as well as the optical one, fol-
lows a power-law behavior similar to the one in the X-ray
emission described above. The corresponding spectral en-
ergy distribution is also described by a power-law function
(Kouveliotou et al. 2013; Ruffini et al. 2014b). These results
clearly require a common origin for this emission process in
Episode 3;

c) that an X-ray thermal component has been observed in the
early phases of Episode 3 of GRB 060202, 060218, 060418,
060729, 061007, 061121, 081007, 090424,100316D,
100418A, 100621A, 101219B, and 120422A (Page et al.
2011; Starling et al. 2012; Friis & Watson 2013). In partic-
ular, this feature has been clearly observed in GRB 090618
and GRB 130427A (Ruffini et al. 2014b). This implies an
emission region size of 1012−13 cm in these early phases of
Episode 3, with an expansion velocity of 0.1 < v/c < 0.9,
with a bulk Lorentz Γ factor . 2 (Ruffini et al. 2014a).

The simultaneous occurrence of these three features imposes
very stringent constraints on any possible theoretical models. In

particular, the traditional synchrotron ultra-relativistic scenario
of the Collapsar jet model (Woosley 1993; Meszaros & Rees
2000) does not appear suitable for explaining these observational
facts.

In Ruffini et al. (2014a), we have recently pointed out the
possibility of using the nuclear decay of ultra-heavy nuclei
originally produced in the close binary phase of Episode 1 by
r-process as an energy source of Episode 3. There is the remark-
able coincidence that this set of processes leads to the value of
the power-law emission with decay index α, similar to the one
observed and reported in Metzger et al. (2010). The total energy
emitted in the decay of these ultra-heavy elements agrees with
the observations in Episode 3 of BdHN sources (Ruffini et al.
2014a). An additional possibility of process-generating a scale-
invariant power law in the luminosity evolution and spectrum
are the ones expected from type-I and type-II Fermi acceleration
mechanisms (Fermi 1949). The application of these acceleration
mechanisms to the BdHN remnant has two clear advantages: 1)
for us, to fulfill the above-mentioned power laws, both for the lu-
minosity and the spectrum; and 2) for Fermi, to solve the long-
standing problem, formulated by Fermi in his classic paper, of
identifying the injection source to make his acceleration mecha-
nism operational on an astrophysical level.

8. Conclusions

The ansatz that GRB 090423 is the transposed of GRB 090618 at
z = 8.2 has passed scrutiny. It is viable with respect to Episodes 1
and 4 and has obtained important positive results from the anal-
ysis of Episodes 2 and 3:

– Episodes 1 and 4 have not been detected in GRB 090423.
This is consistent with the fact that the flux of Episodes 1
and 4 of GRB 090618 should not be observed by the
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Swift-BAT detector or by the optical telescopes, owing to the
very high redshift of the source and the current sensitivities
of X-ray and optical detectors;

– Episode 2 of GRB 090423 has definitely been observed by
Swift-BAT: its observed emission is comparable 1) to energy
emitted (3.49×1052 erg for GRB 090618 and 4.99×1052 erg
for GRB 090423); 2) to the observed time duration (34 s
for the observable part of GRB 090618 when transposed to
z = 8.2 and 19 s for GRB 090423); and 3) to the spectral
energy distribution: the low energy part of the spectra of
both GRBs is consistent with the expectation of the fireshell
model (Patricelli et al. 2012). There is a significant difference
only in the high energy part of the spectrum of GRB 090423,
where a cutoff is observed at lower energy than the one in
GRB 090618. This can be explained, in the fireshell sce-
nario, by the existence of a dense and homogeneous CBM
(Bianco & Ruffini 2005), which is expected for bursts at high
redshifts;

– Episode 3 shows the striking feature of the overlapping of
the late X-ray luminosities of Episode 3 in GRB 090618
and GRB 090423, when compared in their cosmological rest
frames (see Fig. 9). This result confirms the extension of the
relation presented in Pisani et al. (2013) for z ≤ 1, all the
way up to z = 8.2.

From an astrophysical point of view, all the above results clearly
indicate that

a) GRB 090423 is fully consistent with being a member of the
BdHN family, and the associated SN did occur already at
z = 8.2: the possibility of having an evolved binary system
about 650 Myr after the Big Bang is not surprising, since the
lifetime of massive stars with a mass up to 30 M� is ∼10 Myr
(Woosley et al. 2002), which is similar to expectations from
normal Population II binary stars also at z = 8.2, as pointed
out by Belczynski et al. (2010);

b) the FeCO core and the NS companion occurring at z = 8.2
also implies the existence, as the progenitor, of a massive bi-
nary ∼40−60 M�2. Such massive binaries have recently been
identified in η Carinae (Damineli et al. 2000). The very rapid
evolution of such very massive stars will lead first to a binary
X-ray source, like Cen-X3 (see, e.g., Gursky & Ruffini 1975)
and Giacconi & Ruffini (1978), which will further evolve in
the FeCO with the binary NS companion. A similar evolu-
tion starting from a progenitor of two very massive stars was
considered by Fryer et al. (1999) and by Bethe & Brown
(1998), leading to the formation of binary NSs or postulat-
ing the occurrence of GRBs. They significantly differ from
the IGC model and also differ in their final outcomes;

c) the results presented in this article open the way to consider-
ing the late X-ray power-law behavior in Episode 3 as a dis-
tance indicator and represents a significant step toward for-
mulating a cosmological standard candle based on Episode 3
of these BdHN sources.

We turn now to fundamental issues in physics.

1) The traditional fireball jet model (Meszaros 2006) describes
GRBs as a single phenomenon, originating in a collapsar
(Woosley 1993) and characterized by jet emission moving
at Lorentz Γ factor in the range ≈200−2000. This contrasts
with the BdHN model where the GRB is actually composed

2 http://nsm.utdallas.edu/texas2013/proceedings/3/1/
Ruffini.pdf

of three different episodes that are conceptually very dif-
ferent among each other (see Fig. 1): Episode 1 is non-
relativistic, and Episode 2 is ultra-relativistic with Lorentz
Γ factor ≈200−2000, Episode 3 is mildly relativistic, with
Γ ≈ 2.

2) The description of Episode 1, see Fig. 2, proposes the cru-
cial role of the Bondi-Hoyle hypercritical accretion process
of the SN ejecta onto the NS companion. This requires an
urgent analysis of the neutrino emission pioneered in the
classic papers of Zel’dovich et al. (1972); Chevalier (1993);
Fryer et al. (1996), and (Fryer 2009).

3) The binary nature of the progenitors in the BdHN model
and the presence of the specific scaling power laws in the
luminosity in Episode 3 of GRB 090423, as well as in all
the other sources of the “golden sample” (see Fig. 3; Pisani
et al. 2013), has led us to consider the decay of heavy nuclear
material originating in r-processes (Ruffini et al. 2014a), as
well as type-I and type-II Fermi acceleration mechanism as
possible energy sources of the mildly relativistic Episode 3
(Ruffini et al. 2014b).
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In the weak field limit of nonlinear Lagrangians for electrodynamics, i.e. theories in which the electric
fields are much smaller than the scale (threshold) fields introduced by the nonlinearities, a generalization
of the Christodoulou–Ruffini mass formula for charged black holes is presented. It proves that the black
hole outer horizon never decreases. It is also demonstrated that reversible transformations are, indeed,
fully equivalent to constant horizon solutions for nonlinear theories encompassing asymptotically flat
black hole solutions. This result is used to decompose, in an analytical and alternative way, the total
mass-energy of nonlinear charged black holes, circumventing the difficulties faced to obtain it via the
standard differential approach. It is also proven that the known first law of black hole thermodynamics
is the direct consequence of the mass decomposition for general black hole transformations. From all
the above we finally show a most important corollary: for relevant astrophysical scenarios nonlinear
electrodynamics decreases the extractable energy from a black hole with respect to the Einstein–Maxwell
theory. Physical interpretations for these results are also discussed.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Black hole solutions to the Einstein equations have always at-
tracted the attention of researchers, not only due to their unusual
properties, but also from the discovery that they could be one of
the most abundant sources of energy in the Universe.

From conservation laws, R. Penrose [1] showed how energy
could be extracted from a black hole [2]. D. Christodoulou [3]
and D. Christodoulou and R. Ruffini [4], through the study of test
particles in Kerr and Kerr–Newman spacetimes [5], quantified the
maximum amount of energy that can be extracted from a black
hole. These works deserve some comments. First, this maximum
amount of energy can be obtained only by means of the there
introduced, reversible processes. Such processes are the only ones
in which a black hole can be brought back to its initial state, af-
ter convenient interactions with test particles. Therefore, reversible
transformations constitute the most efficient processes of energy
extraction from a black hole. Furthermore, it was also introduced
in Refs. [3,4] the concept of irreducible mass. This mass can never
be diminished by any sort of processes and hence would consti-
tute an intrinsic property of the system, namely the fundamental
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energy state of a black hole. This is exactly the case of Schwarzschild
black holes. From this irreducible mass, one can immediately verify
that the area of a black hole never decreases after any infinitesimal
transformation performed on it. Moreover, one can write down the
total energy of a black hole in terms of this quantity [4].

Turning to effective nonlinear theories of electromagnetism,
their conceptual asset is that they allow the insertion of desired
effects such as quantum-mechanical, avoidance of singular solu-
tions, and others e.g. via classical fields [6]. As a first approach,
all of these theories are built up in terms of the two local in-
variants constructed out of the electromagnetic fields [7,8]. Notice
that the field equations of nonlinear theories have the generic
problem of not satisfying their hyperbolic conditions for all physi-
cal situations (see e.g. [9,10]). The aforementioned invariants are
assumed to be functions of a four-vector potential in the same
functional way as their classic counterparts, being therefore also
gauge independent invariants. We quote for instance the Born–
Infeld Lagrangian [11], conceived with the purpose of solving the
problem of the infinite self-energy of an electron in the classic the-
ory of electromagnetism. The Born–Infeld Lagrangian has gained a
renewal of interest since the effective Lagrangian of string theory
in its low energy limit has an analog form to it [12]. It has also
been minimally coupled to general relativity, leading to an exact
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solution [13,14] and this coupling has been studied in a variety
of problems [15–17]. Another worthwhile example of nonlinear
electromagnetic theory is the Euler–Heisenberg Lagrangian [18,
19]. This Lagrangian allows one to take effectively into account
one-loop corrections from the Maxwellian Lagrangian coming from
Quantum Electrodynamics (QED), and it has been extensively stud-
ied in the literature [6]. Nonlinear theories of electromagnetism
have also been investigated in the context of astrophysics. For in-
stance, they could play an important role in the description of the
motion of particles in the neighborhood of some astrophysical sys-
tems [20], as a simulacrum to dark energy and as a simulacrum of
dark energy [21].

In connection with the above discussion, the thermodynamics
of black holes [22] in the presence of nonlinear theories of elec-
tromagnetism has also been investigated. The zeroth and first laws
(see Section 7) have been studied in detail [12,23], allowing the
raise of other important issues. We quote for example the difficulty
in generalizing the so-called Smarr mass [24,25] (a parametrization
of the Christodoulou–Ruffini mass [4]) for nonlinear theories [12].
Many efforts have been pursued in this direction, through the sug-
gestion of systematic ways to write down this mass, which has led
to some inconsistencies (see e.g. Ref. [26]). For some specific non-
linear Lagrangians, this problem has been circumvented [27].

We first deal with static spherically symmetric electrovacuum
solutions to the Einstein equations minimally coupled to Abelian
nonlinear theories of electromagnetism, i.e. nonlinear charged
black holes, for electric fields that are much smaller than the scale
fields introduced by the nonlinearities, i.e. weak field nonlinear La-
grangians. We decompose the total mass-energy of a charged black
hole in terms of its characteristic parameters: charge, irreducible
mass, and nonlinear scale parameter. We also show the constancy
of the black hole outer horizon in the case of reversible trans-
formations. We then generalize the previous results for a generic
nonlinear theory leading to an asymptotically flat black hole solu-
tion. As an immediate consequence of this general result, we show
that the first law of black hole thermodynamics (or mechanics) in
the context of nonlinear electrodynamics [12] is a by-product of
this mass decomposition. These results also allow us to investigate
the extraction of energy from charged black holes in the frame-
work of nonlinear theories of electromagnetism.

The article is organized as follows. In Section 2 the notation is
established and the field equations are stated and solved formally
in the spherically symmetric case for nonlinear electromagnetic
theories that lead to null fields at infinity. In Section 3, reversible
transformations are investigated. In Section 4 the field equations
are solved for the weak field limit of nonlinear theories of elec-
tromagnetism. Section 5 is devoted to the deduction of the total
mass-energy of a charged black hole in terms of irreducible and
extractable quantities, when reversible transformations are taken
into account. In Section 6 variations of the outer horizon associated
with the capture of test particles in nonlinear theories of electro-
magnetism are analyzed. In Section 7, we shall present the way to
decompose the energy of a black hole within nonlinear theories of
electromagnetism and show that it leads automatically to the first
law of black hole mechanics. Finally, in Section 8 we discuss the
results of this work. We use geometric units with c = G = 1, and
metric signature −2.

2. Field equations

The minimal coupling between gravity and nonlinear electro-
dynamics that depends only on the local invariant F can be stated
mathematically through the action

S =
∫

d4x
√−g

(
− R

16π
+ Lem(F )

4π

)
.= S g + Sem

4π
, (1)

where F
.= F μν Fμν , Fμν = ∇μ Aν − ∇ν Aμ = ∂μ Aν − ∂ν Aμ , Aμ is

the electromagnetic four-potential, R is the Ricci scalar, S g is the
action for the gravitational field, Sem is the action of the elec-
tromagnetic theory under interest, and g the determinant of the
metric gμν of the spacetime. Under the variation of Eq. (1) with
respect to gμν , and applying the principle of least action, one ob-
tains (see e.g. Ref. [8])

Rμν − 1

2
Rgμν = 8π T (em)

μν , (2)

with Rμν the Ricci tensor and T (em)
μν the energy–momentum tensor

of the electromagnetic field, defined as

4π T (em)
μν

.= 2√−g

δSem

δgμν
= 4L(em)

F Fμα Fνρ gαρ − L(em) gμν, (3)

where L(em)
F

.= ∂L(em)/∂ F .
Application of the principle of least action in Eq. (1) with re-

spect to Aμ(xβ) gives

∇μ

(
L(em)

F F μν
) = 0, (4)

since we are interested in solutions to general relativity in the ab-
sence of sources.

In the static spherically symmetric case, it is possible to solve
the Einstein equations minimally coupled to nonlinear electromag-
netism theories [see Eqs. (2) and (4)] and due to the form of the
energy–momentum tensor in this case the metric must be of the
form

ds2 = eνdt2 − e−νdr2 − r2dθ2 − r2 sin2 θdϕ2, (5)

with [8,23]

eν = 1 − 2M

r
+ 8π

r

∞∫
r

r′ 2T 0
0

(
r′)dr′, (6)

where the integration constant M stands for the total mass-energy
of the black hole as measured by observers at infinity.

Eq. (4) in this special spherically symmetric case reduce to

L(em)
F Err2 = − Q

4
, (7)

where Q is an arbitrary constant representing physically the total
charge of the black hole.

If one defines

Er
.= −∂ A0

∂r
and

∂F
∂r

.= −L(em)r2, (8)

and take into account Eqs. (4), (5) and (7), then Eq. (6) can be
rewritten as

eν = 1 − 2M

r
+ 2Q A0

r
− 2F

r
, (9)

where it has been imposed a gauge such that the scalar potential
A0 goes to zero when the radial coordinate goes to infinity, which
also holds to F . These conditions guarantee that the associated
nonlinear black holes are asymptotically flat (Minkowskian). In this
work we are not interested in Lagrangian densities which do not
fulfill this condition.

The black hole horizons are given by the solutions to

g00(rh) = eν(rh) = 0. (10)
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3. Reversible and irreversible transformations

A way to investigate the motion of test particles in a static
spherically symmetric spacetime is through the solution to the
Hamilton–Jacobi equation. The trajectories of the test particles can
be obtained in the traditional way (see e.g. Ref. [28]) through the
particle constants of motion (energy E , orbital angular momen-
tum L, and the Carter constant) [5,29]. The energy of the test
particle is given by [3–5,29]

E = q A0 +
√

eν

r2

[
r4

(
pθ

)2 + L2

sin2 θ
+ m2r2

]
+ (

pr
)2

, (11)

where pμ .= mdxμ/dτ , τ an affine parameter along the worldline
of the particle and q its charge. The “+” sign has been chosen in
Eq. (11), because we are interested just in particles traveling to the
future [29,30].

If the worldline of an arbitrary test particle intersects the outer
horizon, i.e. the largest solution to Eq. (10), then the changes in the
energy and charge of the black hole (which lead to another black
hole configuration infinitesimally close to the initial one) reads:
δM = E and δQ = q [29], respectively.

From Eq. (11), one can see that the only way to apply a re-
versible transformation in the sense of Christodoulou–Ruffini [3,4,
6] to a black hole interacting with a test particle is by demand-
ing that its square root term is null. It guarantees that a nonlinear
black hole can always be restored to its initial configuration, as de-
manded by reversible transformations, see Section 1, after a test
particle has crossed the horizon. Hence, from Eq. (11) and the
aforementioned conservation laws, reversible transformations se-
lect geodesics whose changes to the black hole masses are minima
and are given by

δMmin = q A0(r+) = δQ A0(r+). (12)

Clearly, Eq. (12) is the mathematical expression for the physical
case where |pr(r+)| is much smaller than |q A0(r+)|, that is, when
irreversible processes are negligible. Reversible transformations are
important processes since like the internal energy of a thermody-
namical system, the energy M of a black hole is assumed to be
an exact differential. This therefore allows one to describe intrinsic
properties of the spacetime by using test particles; see Eq. (12).

For the sake of completeness, in the case of general black hole
transformations one has

δM ≥ q A0(r+). (13)

4. Weak field nonlinear Lagrangians

An interesting and convenient limit for investigating nonlinear
properties of Lagrangians is when their electric fields are small
compared to their scale or threshold fields, set defined off by
the nonlinearities [21]. In this limit, one expects that their lead-
ing term be the Maxwell Lagrangian [23]. In this line, assuming
the nonexistence of magnetic charges, let us first investigate La-
grangian densities given by

L(em) = − F

4
+ μ

4
F 2, (14)

where μ is related to the scale field of the theory under inter-
est, and as a necessary condition to avoid any violation of the
most experimentally tested physical theory, the Maxwell theory,
this nonlinear term is assumed such that it must be much smaller
than the Maxwell one. This means we are generically interested in
electric fields that satisfy

Er � 1√
μ

. (15)

Physically speaking, the second term of Eq. (14) is a first or-
der correction to the Maxwell theory. For instance, in the case
of the Euler–Heisenberg Lagrangian, the nonlinearities are related
to quantum corrections, whose scale field is Ec = m2

e c3/(eh̄) ≈
1018 V/m, where me is the electron rest-mass, e is the funda-
mental charge, and h̄ is the reduced Planck constant (see e.g. [6],
and references therein). Hence, in virtue of this limit a pertur-
bative analysis could be carried out. The sign of μ in principle
could be arbitrary. Nevertheless, from the inspection of the Euler–
Heisenberg Lagrangian, for instance, this constant turns out to be
positive [19]. The same behavior happens if one expands pertur-
batively the Born–Infeld Lagrangian [6,11–15,21]. It is worth to
stress that the weak field analysis is however not very restrictive
in terms of the strength of the fields. Note for instance that for the
Euler–Heisenberg and Born–Infeld theories, our analysis is indeed
meaningful for electric fields Er ∼ 1018 V/m (see Section 8).

When one interprets nonlinear Lagrangians as the ones related
to effective media [11], then one expects that their associated elec-
tric field solutions should be reduced. This constrains the sign of
μ, as we shall show below. Nevertheless, it is not ruled out in
principle Lagrangians where the associated electric field could in-
crease.

By substituting Eq. (14) into Eq. (7) and the first term of Eq. (8),
solving exactly and then expanding perturbatively (or by directly
working perturbatively), one can easily show that

Er(r) = Q

r2

(
1 − 4μQ 2

r4

)
, A0(r) = Q

r

(
1 − 4μQ 2

5r4

)
. (16)

Expressions (16) are just meaningful if the characteristic distances
of the system are such that

r � rc, r4
c = |μ|M2ξ2, ξ

.= Q

M
. (17)

As we pointed out before, when μ > 0, the modulus of the electric
field diminishes in comparison to the pure Maxwellian case, while
the opposite happens when μ < 0. The former case is exactly what
happens in usual media [31], while the latter could happen in the
so-called metamaterials (see e.g. Refs. [32,33]).

From Eq. (14), the second term of Eq. (8) and Eq. (16), and
assuming that the constraint in Eq. (17) is fulfilled, it is also readly
shown that

F = Q 2

2r

(
1 − 6μQ 2

5r4

)
. (18)

When Eqs. (16) and (18) are substituted in the expression for
the g00 component of the metric, Eq. (9), one obtains

eν = 1 − 2M

r
+ Q 2

r2
− 2μQ 4

5r6
. (19)

The above result agrees with the one obtained in Ref. [34], for the
Euler–Heisenberg Lagrangian density, in the corresponding units.
Notice that when μ = 0, i.e., for the Maxwell Lagrangian [see
Eq. (14)], Eq. (19) gives the well-known Reissner–Nordström so-
lution (see e.g. Ref. [29]).

The outer horizon can be found perturbatively from Eqs. (10)
and (19) and the result is

r+ = R+
(

1 + μQ 4

5(R+)5
√

M2 − Q 2

)
, (20)

where we defined

R+
.= M +

√
M2 − Q 2, (21)
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functionally the same as the outer horizon in the Reissner–
Nordström solution. Besides, in Eq. (20), it was understood that the
second term in the parenthesis is much smaller than one. These
latter equations are not valid in the case Q = M , and up to what
extent the above perturbative analysis is meaningful in the proxim-
ity of this limit is dictated by the value μ/M2. Namely, the smaller
the μ/M2, the closer one can approach Q = M using perturbative
theory. For the sake of reference, in Euler–Heisenberg and standard
Born–Infeld theories, μ ∼ 10−33 (e.s.u)−2 [6,11], hence for objects
of masses around M ∼ 105M� , μ/M2 when brought to geometri-
cal units (μ [cm2] = μ [(e.s.u)−2]c4/G and M [cm] = M [g]G/c2),
would be approximatively 10−4. In this specific example, the limit
Q = M can be therefore approached with a precision of up to four
decimals within the perturbative analysis presented here.

For the classic extreme value Q = M , the perturbative solution
to the outer horizon is

r Q =M
+ = M

{
1 +

√
2μ

5M2
− 4μ

5M2
+ O

[(
μ

M2

) 3
2
]}

, (22)

and there exist inner horizons given by

r Q =M
− = M

{
1 −

√
2μ

5M2
− 4μ

5M2
+ O

[(
μ

M2

) 3
2
]}

(23)

r Q =M
ncl = M

{(
2μ

5M2

) 1
4

+
(

μ

10M2

) 1
2

+ O
[(

μ

M2

) 3
4
]}

, (24)

where r Q =M
− in Eq. (23) is the nonlinear version of the inner

horizon in Reissner–Nordström solution, and the solution given by
Eq. (24) has no classical (ncl) counterpart, being intrinsically due to
corrections to the Maxwell theory, e.g. quantum. Notice that when
μ = 0 the inner and outer horizons are never equal in an arbitrary
nonlinear theory given by Eq. (14) in the case Q = M . Hence, as
we expect, when corrections are added to Maxwell theory, the de-
generacy in the case Q = M , is broken. Nevertheless, due to the
continuity of the metric, there always exists a value of |ξ | where
the horizons degenerate, depending now on μ/M2. We stress that
Eq. (24) is just a mathematical solution to Eqs. (19) and (10), being
physically meaningless, as the following analysis shows. Assume
that the charge of the black hole is comparable with its mass
(minimum value for being relevant the nonclassical horizon), that is
Q 2 ∼ M2. From Eq. (24), however, one has r Q =M

ncl ∼ (μM2)1/4 = rc .
Since just distances much larger than rc are physically meaning-
ful in the realm of our perturbative calculations; see Eq. (17), it
is proved that r Q =M

ncl is not physically relevant. The above reason-
ing implies that perturbative changes in the Maxwell Lagrangian
just lead to corrections in the Reissner–Nordström horizons. This
means that naked singularities still rise in such theories, but now
for values of |ξ | sightly larger or smaller than one, depending upon
the sign and absolute value of μ/M2.

5. The weak field black hole mass decomposition

Assume a test particle being captured by a black hole under a
reversible transformation. In mathematical terms, this means that
the equality in Eq. (13) is to be taken into account and the changes
can be considered as infinitesimals. By taking into account the
second term in Eq. (16) and Eq. (20), one ends up to first order
approximation with

dM

dQ
= Q

R+
− μQ 3

5(R+)5

[
Q 2

R+
√

M2 − Q 2
+ 4

]
. (25)

Since we are supposing that the second term of the above equa-
tion is much smaller than the first one, the method of successive
approximations can be used. We shall suppose that

M(Q ) = M(0)(Q ) + μM(1)(Q ), (26)

where the second term of the above expression is thought of as a
perturbation. At the zeroth order approximation, M(0) satisfies the
differential equation

dM(0)

dQ
= Q

M(0) + √
(M(0))2 − Q 2

. (27)

As it is known, the solution to the above equation is [4]

M(0)(Q ) = Mirr + Q 2

4Mirr
, (28)

where Mirr is a constant of integration known as the irreducible
mass and it accounts for the total energy of the system when
the charge of the black hole is zero. Expression (28) is the
Christodoulou–Ruffini black hole mass formula valid for a classi-
cal spherically symmetric charged black hole. By substituting this
expression into Eq. (21) one obtains R+ = 2Mirr and then it fol-
lows that Q 2/(2R+) ≤ M/2, where the equality is valid in the
case Q = M . Hence, up to 50% of the total mass of a black hole is
due to the electromagnetic energy contribution Q 2/(4Mirr).

Substituting Eq. (26) into Eq. (25) and working now up to first
order approximation, using Eqs. (27) and (28) we have

dM(1)

dQ
= − Q

2Mirr[Mirr − Q 2/(4Mirr)]
[

M(1) + Q 4

160M5
irr

]

− Q 3

40M5
irr

(29)

from which we obtain

M(1)(Q ) = − Q 4

160M5
irr

. (30)

The above equation is obtained by imposing M(1)(0) = 0, which
is physically clear from our previous considerations. Since energy
could be extracted from black holes only when it is charged [see
Eq. (13)], the extractable energy, Mext , or the blackholic energy [6],
in weak fields nonlinear theories of electromagnetism given by
Eq. (14) is

Mext(Q ) = Q 2

4Mirr
− μQ 4

160M5
irr

. (31)

As it can be checked easily, the above equation is exactly the elec-
tromagnetic energy E(em) [35,36] stored in the electric field in the
spacetime given by Eq. (19) viz.,

E(em) = 4π

∞∫
r+

T 0
0 r2dr =

∞∫
r+

0∫
2π

0∫
π

T0
0√gdθdϕdr, (32)

where g is the determinant of the metric, that in Schwarzschild
coordinates is given by r2 sin2 θ ; see Eq. (5). Notice that even in
the case where corrections to the Maxwell Lagrangian are present
(e.g. quantum), r+ = 2Mirr , as is clear from Eqs. (20), (21), (26),
(28) and (30).

From Eq. (31), one clearly sees that the total amount energy
that can be extracted from a nonlinear charged black hole is
reduced if μ > 0, in relation to the Maxwell counterpart. The
positiveness of μ is valid both to the Euler–Heisenberg effective
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nonlinear Lagrangian to one-loop QED as well as to the standard
Born–Infeld Lagrangian, as we pointed out earlier. Hence, in these
theories, the extractable energy is always smaller than 50% of the
total energy. More precisely, from Eqs. (20), (21), (26), (28) and
(30),

Mext ≤ M

2
− μQ 4

320M4
irr

√
M2 − Q 2

, (33)

the equality in this case being true only when μ = 0.

6. Transformations in the outer horizon

Under the capture of a test particle of energy E and charge q,
one has that the black hole undergoes the (infinitesimal) given
changes δM = E and δQ = q, satisfying Eq. (13). Since the outer
horizon of this black hole is dependent upon M and Q , it would
also undergo a change. Such a change can be obtained in the scope
of the perturbative description we are carrying out and the basic
equation for doing so is Eq. (20).

By using Eqs. (20), (21), (13) and the second term of Eq. (16),
one can easily show that

δr+ ≥ − μQ 4δR+
5(R+)5(M2 − Q 2)

[
R+ + 3

√
M2 − Q 2

]
. (34)

As it can be seen from Eqs. (21), (26), (28) and (30), δR+ ∼
O(μ), then, up to first order in μ, we have δr+ ≥ 0. This re-
sult can be easily understood if one notices that up to first order
approximation in μ, based on the two last sections, r+ = 2Mirr .
Under irreversible transformations, however, Eq. (34) shows that
the outer horizon increases. Notice that the above results are just
valid for Q /M < 1.

Another way of realizing whether or not there is an increase
of the outer horizon due to the capture of a test particle is to
search for the solutions to Eqs. (10) and (19) when one performs
the changes M → M + δM and Q → Q + δQ , satisfying Eq. (13).
If one defines generally r+ as the largest solution to Eqs. (10) and
(19), then it is simple to verify that δr+ = 0 for reversible transfor-
mations. For irreversible transformations, δr+ > 0. Hence, generi-
cally, one has δr+ ≥ 0 for an arbitrary infinitesimal transformation
undergone by the black hole in nonlinear weak field electromag-
netism.

7. Energy decomposition for asymptotically flat nonlinear black
holes

Weak field nonlinear Lagrangians suggest that the outer hori-
zon of spherically symmetric L(F ) theories are r+ = 2Mirr when
reversible transformations are considered, for any range of the
electric field, and not only for the one where Er � 1/

√
μ. Now

we shall show that indeed this is the case. This means that is
possible to obtain the total mass-energy of spherically symmetric,
asymptotically flat, nonlinear black holes in an algebraic way, over-
coming the problems in solving differential equations coming from
the thermodynamical approach. Also, it gives us the extractable en-
ergy from nonlinear black holes.

Assume that the invariant F = −2E2
r is such that F = F (r, Q ).

From Eqs. (7)–(9), it follows that

Q
∂ A0

∂ Q
= ∂F

∂ Q
. (35)

Assume now that r+ = C = constant, that is, the outer horizon is
an intrinsic property of the system. From Eqs. (10) and (35), one
shows immediately that

δM = δQ A0|r+=C . (36)

It can be checked that the above equation is valid only when
r+ = C . We recall that we assumed Eq. (36) as the law for
reversible transformations (energy conservation). Thereby, we
showed that reversible transformations are fully equivalent to hav-
ing constant horizons in spherically symmetric black hole solutions
to general relativity. Since Eq. (36) is valid for any stage of the se-
quence of reversible transformations for any theory satisfying the
conditions mentioned before, it is even so when Q = 0 and hence,
C = 2Mirr . So, horizons for reversible transformations are depen-
dent just upon the fundamental energy states black holes, 2Mirr .
Even more remarkable is that we already know the solution to
Eq. (36), which from Eqs. (6), (10) and (9) is

M = Mirr + Q A0|r=2Mirr − F |r=2Mirr

= Mirr + 4π

∞∫
2Mirr

r′ 2T 0
0

(
r′)dr′. (37)

The above equation is the generalization of the Christodoulou–
Ruffini black hole mass decomposition formula to L(F ) theories
that do not depend upon M . If this is not the case, one then have
an algebraic equation to solve. The extractable energy M − Mirr
from L(F ) can be read off immediately from Eq. (37) and as we
expect, it is the same as Eq. (32); it can also be checked that
Eq. (37) is in total agreement with the results for the weak field
Lagrangians in terms of the differential approach.

It is worth to notice that Eq. (37) could be also obtained from
Eq. (30) of Ref. [23], by replacing there the relation rh = 2Mirr .
However, following the purely mathematical approach in [23], this
latter assumption does not find a clear physical justification. Our
approach in this work is completely different from [23]: it is based
on physical requirements of energy and charge conservation laws
and reversible transformations. As a consequence of these physi-
cal requirements, we actually showed that the horizon is indeed a
constant of integration, hence an independent quantity.

Since in the present case the horizon area is A = 4πr2+ , Eq. (37)
can as well be written in terms of it. As we showed above, for re-
versible transformations the outer horizon must be kept constant
and the mass change must be given by Eq. (36). Nevertheless, in-
tuitively, one would expect the total mass of a given black hole
to have a definite meaning. In this sense, Eq. (37) in terms of
the black hole area should be the expression for the mass even
in the case A changes. Such a general statement is reinforced by
the fact that it is true for black holes described by the Maxwell
Lagrangian.1 As we show now, this is precisely the case also in
nonlinear electrodynamics. Initially we recall that the surface grav-
ity [22] in spherically symmetric solutions in the form [37]

κ = (eν)′|r+
2

(38)

where the prime means differentiation with respect to the radial
coordinate and from Eqs. (9) and (10) the above equation can be
cast as

κ = 1

2r+

[
1 + 2Q

∂ A0

∂r+
− 2

∂F
∂r+

]
. (39)

From Eqs. (10) and (35), one can see in the general case that

δM = A0δQ + κ

8π
δA, (40)

1 This can be seen in Refs. [24,25] when one works with its final mass expression,
M , and check it is exactly the same as Eq. (2) of Ref. [4] in the context of reversible
transformations.
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where Eq. (39) was used. Nevertheless, this is nothing but the
generalized first law of black hole mechanics for nonlinear electro-
dynamics [12]. Since M as given in Eq. (37) was derived from
Eqs. (10) and (35), it is assured its variation satisfies Eq. (40).
Hence, it is the generalization under the physical approach of
the parametrization done by Smarr [24,25] for the classical
Christodoulou–Ruffini black hole mass formula in the context of
nonlinear electrodynamics. We would like to stress that all the
previous reasoning is a direct consequence of having M as an ex-
act differential. Besides, Eq. (37) can be written in the suggestive
way as

M = Q A0(r+) + A

8πr+

[
1 − 2

F(r+)

r+

]
. (41)

From Eq. (39), we see that in general the term in the square
brackets of the above equation does not coincide with 2κr+ . This
could be easily seen in the scope of weak field nonlinear theo-
ries described by Eq. (14) analyzed previously. Nevertheless, for
the case of the Maxwell Lagrangian, the term inside the square
brackets of Eq. (41) is exactly 2κr+ . It implies that the general-
ized Christodoulou–Ruffini black hole mass formula does not keep
the same functional form in nonlinear electrodynamics as in the
classic Maxwellian case.

8. Discussion

As we have shown above, in the weak field limit of nonlin-
ear Lagrangians, a generalization of the Christodoulou–Ruffini black
hole mass decomposition formula can always be obtained; see
Eqs. (26), (28) and (30).

Indeed, the weak field limit of nonlinear theories of electromag-
netism lead to the constancy of the outer horizon when reversible
transformations are taken into account (2Mirr , exactly as the hori-
zon in the Schwarzschild theory). For irreversible transformations,
it always increases. We have also shown that these results ac-
tually are valid for any nonlinear asymptotically flat black hole,
once it is the only way to lead to the equation coming from the
laws of energy and charge conservation for reversible transforma-
tions; see the equality in Eq. (13). As a by-product, it allowed us
to write down the total mass and the extractable energy (upper
limit) of nonlinear spherically symmetric black holes in terms of
their charge, outer horizon areas and the scale parameters coming
from the electrodynamic theory under interest. When irreversible
transformations are present, for each transformation, δr+ > 0 iff
(1−8π T0

0|r+r2+) > 0, as it can be seen from Eq. (6). From the same
equation, it can be checked that this is always valid when there
exists an outer horizon. Hence, for L(F ), the areas of the outer
horizons never decrease for irreversible processes. With this gen-
eralized Christodoulou–Ruffini black hole mass formula, one can
notice that the known first law of black hole mechanics [12] is just
its direct consequence and hence one could say that it defines such
a law. In general such a mass is not functionally the same as the
one obtained in the case of the classic Maxwell electrodynamics. If
the entropy of a black hole is proportional to its horizon area, the
approach of reversible and irreversible transformations lead to the
conclusion it can never decrease even in the context of nonlinear
electrodynamics.

Turning to astrophysics, it is important to discuss the specific
sign of the nonlinear correction parameter, μ. Its positiveness is in-
deed in agreement with very well-founded nonlinear Lagrangians,
such as the Euler–Heisenberg and the Born–Infeld Lagrangians. We
have shown that μ > 0 implies that the extractable energy of a
black hole described by weak field nonlinear Lagrangian is always
smaller than the one associated with the Maxwell Lagrangian; see
Eqs. (31) and (33). Hence, due to a continuity argument, we are

led to a most important corollary of this work: nonlinear the-
ories of the electromagnetism reduce the amount of extractable
energy from a black hole with respect to the classical Einstein–
Maxwell case. It means that the extractable energy from nonlinear
black holes are always smaller than half of their total mass, which
is the largest amount of extractable energy obtained from the
Christodoulou–Ruffini black hole mass formula. This result might,
in principle, be relevant in the context of gamma-ray bursts (see
e.g. [38] and references therein) since their energy budget, as
shown by Damour & Ruffini [39], comes from the electromagnetic
energy of the black hole extractable by the electron–positron pair
creation process á la Sauter–Heisenberg–Euler–Schwinger. How-
ever, it is important to keep in mind that for quantitative estimates
the perturbative analysis presented in this work is valid only if the
condition (15) is satisfied. In the case of the Euler–Heisenberg La-
grangian (1/

√
μ ≈ 200Ec) and for a black hole mass M ∼ 3M� ,

as expected from the gravitational collapse of a neutron star to
a black hole, μ/M2 ≈ 8.2 × 105, so for a charge to mass ratio
ξ = 5 × 10−4 (at the outer horizon r = r+ , Er/Ec ≈ 21), the re-
duction of the extractable energy is of only 0.5% with respect to
the Maxwell case. For supermassive black holes in active galac-
tic nuclei, e.g. M ∼ 109 M� (μ/M2 ≈ 7.4 × 10−12), we obtain for
ξ = 0.9999 (at r+ , Er/Ec ≈ 5 × 10−4) an extractable energy re-
duced only by 10−8% with respect to the Maxwell case.
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ABSTRACT

Recent progress in the understanding of the physical nature of neutron star equilibrium configurations and the first
observational evidence of a genuinely short gamma-ray burst (GRB), GRB 090227B, allows us to give an estimate
of the gravitational waves versus the X-ray and gamma-ray emission in a short GRB.

Key words: binaries: close – equation of state – gamma-ray burst: individual (GRB 090227B) –
gravitational waves – stars: neutron

1. INTRODUCTION

The first systematic analysis of the temporal distribution of
T90, the observed duration of prompt emission from gamma-ray
bursts (GRBs), made for the sample of GRBs observed by
the BATSE instrument on board the Compton Gamma-Ray
Observer satellite (Meegan et al. 1992), revealed a bimodal
shape. This showed the existence of two different kinds of
sources: long and short GRBs were defined as being longer
or shorter than T90 = 2 s.

Muccino et al. (2013) recently probed the existence of genuine
short GRBs, theoretically predicted by the Fireshell model
(Ruffini et al. 2001b, 2002) as bursts with the same inner engine
as the long bursts but endowed with a severely low value of the
baryon load, B ≡ MBc2/Etot

e+e− � 10−5. Here MB is the mass
of the baryons engulfed by the expanding ultrarelativistic e+e−
plasma whose total energy is denoted by Etot

e+e−; see Section 3 for
further details. The emission from these GRBs mainly consists
of a first emission, the proper GRB (P-GRB), followed by a
softer emission squeezed on the first one. The typical separation
between the two components is expected to be shorter than
1–10 ms. No afterglow emission is expected from these sources.

Indeed, the time-resolved spectral analysis of the Fermi-GBM
and Konus-Wind satellites data of GRB 090227B by Muccino
et al. (2013) has led to an estimate of B = (4.13 ± 0.05) × 10−5

for the baryon load for this burst. The parameters inferred for
GRB 090227B thus lead to the identification of the progenitor
of the genuine short GRB in a neutron star binary (see Section 3
and Muccino et al. 2013 for details): (1) the natal kicks velocities
imparted on a neutron star binary at birth can be even larger than
200 km s−1. Therefore, a binary system can run away to the halo
of its host galaxy, clearly pointing to a very low average number
density of the circumburst medium (CBM); (2) the very large
total energy, which we can indeed infer in view of the absence of
beaming, and the very short timescale of emission again point to
a neutron star binary; (3) as we shall show in Section 2, the very
small value of the baryon load is strikingly consistent with two
neutron stars having small crusts, in line with the recent neutron
star theory (Rotondo et al. 2011; Rueda et al. 2011; Belvedere
et al. 2012).

The aim of this work is to make a detailed analysis of
the neutron star binary progenitor of GRB 090227B. We
compute the structure of the neutron star components following
our recent model of neutron stars fulfilling global charge
neutrality and including the strong, weak, electromagnetic, and

gravitational interactions in the framework of general relativity
and relativistic nuclear mean field theory. We simulate the
evolution of the binary and compute the radiation emitted in
the form of gravitational waves which leads to the shrinking
of the orbit and final merging. We compare and contrast the
results of the dynamics as described by the classical test-mass
limit approximation with the more accurate description based
on the one-body formalism (Buonanno & Damour 1999, 2000;
Damour et al. 2000; Damour 2001; Damour & Nagar 2010). We
estimate the detectability of this kind of neutron star binaries by
the Advanced LIGO interferometer. We also compute the total
energy output in gravitational waves and compare it with the
emission of the system in X-rays and gamma rays.

2. NEUTRON STAR STRUCTURE

We have recently proved how the consistent treatment of neu-
tron star equilibrium configurations, taking into account strong,
weak, electromagnetic, and gravitational interactions, provides
a solution to the general relativistic Thomas–Fermi equations,
coupled with the Einstein–Maxwell system of equations
(Rotondo et al. 2011; Rueda et al. 2011; Belvedere et al. 2012).
These new Einstein–Maxwell–Thomas–Fermi (EMTF) equa-
tions supersede the traditional Tolman–Oppenheimer–Volkoff
(TOV) equations, which impose the condition of local
charge neutrality throughout the configuration (Tolman 1939;
Oppenheimer & Volkoff 1939). We have shown that this lat-
ter imposition of a TOV-like treatment explicitly violates the
thermodynamic equilibrium of the star, which is ensured by the
constancy of the generalized electro-chemical potentials (Klein
potentials) of each system species along the whole configuration
(Rotondo et al. 2011; Rueda et al. 2011).

The solution of the EMTF coupled differential equations
self-consistently introduces the presence of the electromagnetic
interactions in addition to the nuclear, weak, and gravitational
interactions within the framework of general relativity. The
weak interactions are accounted for by requesting the β-stability,
and the strong interactions are modeled via the σ -ω-ρ nuclear
model, where σ , ω, and ρ are the mediator massive vector
mesons within the relativistic mean field theory, á la Boguta &
Bodmer (1977). The nuclear model is fixed once the values of
the coupling constants and the masses of the three mesons are
fixed: in this work, as in the previous ones (Belvedere et al.
2012, 2014), we adopt the NL3 parameter set (Lalazissis et al.
1997). The supranuclear core is composed of a degenerate gas
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Figure 1. Upper panel: particle density profiles in the core-crust boundary
interface in units of cm−3. Middle panel: electric field in the core-crust transition
layer in units of the critical field Ec. Lower panel: density profile inside a neutron
star with central density ρ(0) ∼ 5ρnuc. We show here the differences between
the solution obtained from the TOV equations (locally neutral case) and the
globally neutral solution presented in Belvedere et al. (2012). In this example,
the density at the edge of the crust is ρcrust = ρdrip = 4.3 × 1011 g cm−3 and
λσ = h̄/(mσ c) ∼ 0.4 fm denotes the σ -meson Compton wavelength.

of neutrons, protons, and electrons in β-equilibrium. The crust
in its outer region ρ � ρdrip ≈ 4.3×1011 g cm−3 is composed of
ions and electrons, and in its inner region, at ρdrip < ρ < ρnuc,
where ρnuc ≈ 2.7×1014 g cm−3 is the nuclear saturation density,
there is an additional component of free neutrons dripped out
from nuclei.

The solution of the EMTF equations of equilibrium leads
to a new structure of neutron stars that is very different
from the traditional configurations obtained through the TOV
equations (see Figure 1): the core is positively charged as a
consequence of the balance between gravitational and Coulomb
forces which results in the appearance of a Coulomb potential
energy eV ∼ mπc2 deep. The core-crust transition starts at
ρ = ρnuc. The transition is marked by the existence of a thin,
Δr ∼ few hundreds of femometers, electron layer fully screening
the core charge. In this transition layer the electric field becomes
overcritical, E ∼ m2

πc3/(eh̄), and the particle densities decrease
until the base of the crust, which is reached when global charge
neutrality is achieved. Consequently, the core is matched to the
crust at a density ρcrust � ρnuc.

For each central density, there exists an entire family of core-
crust interface boundaries and, correspondingly, a family of
crusts with different masses Mcrust and thicknesses ΔRcrust. The
larger ρcrust, the smaller the thickness of the core-crust interface,
the peak of the electric field, and the larger the Mcrust and ΔRcrust.
Configurations with ρcrust > ρdrip possess both inner and outer
crusts while in the cases with ρcrust � ρdrip, the neutron stars
have only outer crusts. In the limit ρcrust → ρnuc, both Δr and
E of the transition layer vanish, and the solution approaches
that given by local charge neutrality (see Figures 3 and 5 in
Belvedere et al. 2012). All of the above features lead to a new
mass–radius relation of neutron stars; see Belvedere et al. (2012)
and Figure 2. The extension to the case of uniformly rotating
neutron stars has been recently achieved in Belvedere et al.
(2014).

It is also worth mentioning that in Belvedere et al. (2012)
we showed the agreement of this new mass–radius relation with

Figure 2. Mass–radius relation obtained with the traditional locally neutral TOV
treatment case and the global charge neutrality configurations with ρcrust = ρdrip
(Belvedere et al. 2012). Configurations lying between the solid and dashed
curves have ρcrust > ρdrip and so they possess an inner crust.

Table 1
Critical Mass and Corresponding Radius of Globally Neutral Neutron

Stars for Selected Nuclear Equations of State

NL3 NL-SH TM1 TM2

Mcrit (M�) 2.67 2.68 2.58 2.82
R (km) 12.33 12.54 12.31 13.28

the most stringent observational constraints on the mass–radius
relation of neutron stars, which are provided by the largest
mass, the largest radius, the highest rotational frequency, and
the maximum surface gravity observed from pulsars (Trümper
2011). They are imposed by the mass of PSR J1614−2230
M = 1.97 ± 0.04 M� (Demorest et al. 2010), the lower limit
to the radius of RX J1856-3754 (Trümper et al. 2004), the
716 Hz PSR J1748−2246ad (Hessels et al. 2006), and the
surface gravity of the neutron star in the low-mass X-ray binary
X7 from which 90% confidence level contours of constant R∞
can be extracted (Heinke et al. 2006).

It is known that uncertainties in the behavior of the nuclear
matter at densities larger than the nuclear saturation density
nnuc ≈ 0.16 fm−3, reached in the core of a neutron star, lead to
a variety of nuclear equations of state which lead to different
numerical estimates of the neutron star parameters, in particular
the mass–radius relation. However, as we have mentioned above,
the current observational constraints strongly favor stiff nuclear
equations of state, such as those obtained from relativistic mean
field models á la Boguta & Bodmer (1977) used here, which
provide high values for the critical mass of the neutron star,
larger than the mass of PSR J1614−2230. This has recently
been reconfirmed by the measurements of the high mass of
PSR J0348+0432, M = 2.01 ± 0.04 M� (Antoniadis et al.
2013).

In Table 1 we show the critical mass and corresponding
radius of globally neutral neutron stars obtained for selected
parameterizations of the nuclear model used in Belvedere et al.
(2012): NL3 (Lalazissis et al. 1997) NL-SH (Sharma et al. 1993),
TM1 (Sugahara & Toki 1994), and TM2 (Hirata et al. 1995).

3. PARAMETERS OF GRB 090227B

In parallel, the theoretical progress in the Fireshell model
of GRBs (see Ruffini et al. 2001c, 2001b, 2001a) led to
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Table 2
Properties of GRB 090227B

EGRB
tot (erg) B Γtr z Δt (s) 〈nCBM〉 (cm−3)

2.83 × 1053 4.13 × 10−5 1.44 × 104 1.61 0.35 1.9 × 10−5

Notes. EGRB
tot is the total energy emitted in the GRB, B is the baryon load, Γtr

is the Lorentz factor at transparency, the cosmological redshift is denoted by z,
the intrinsic duration of the GRB is Δt , and the average density of the CBM is
〈nCBM〉. We refer to Muccino et al. (2013) for additional details.

an alternative explanation of the Norris–Bonnell sources as
disguised short burst (Bernardini et al. 2007, 2008; Caito et al.
2009, 2010; de Barros et al. 2011): canonical long bursts
exploding in halos of their host galaxies, with an average value
of the CBM density 〈nCBM〉 ≈ 10−3 particles cm−3.

We now turn to the analysis of GRB 090227B. We first recall
that the canonical GRB within the Fireshell model has two
components: an emission occurring at the transparency of the
optically thick expanding e+e− baryon plasma (Ruffini et al.
2000), the P-GRB, followed by the extended afterglow, due
to the interactions between the accelerated baryons and the
CBM of average density 〈nCBM〉. Such an extended afterglow is
composed of the prompt emission as well as the late phase of the
afterglow (Bianco & Ruffini 2005b, 2005a). The relative energy
of these two components, for a given total energy of the plasma
Etot

e+e− = EGRB
tot , where EGRB

tot is the observed GRB energy, is
uniquely a function of the baryon load B = MBc2/EGRB

tot =
MBc2/Etot

e+e−, where MB is the mass of the baryons engulfed by
the expanding ultrarelativistic e+e− plasma.

As we mentioned, an extremely low value of the baryon load,
B � 10−5, together with a low density of the CBM, lead to a
genuinely short GRB emission, in which no afterglow emission
is observed. This is indeed the case of GRB 090227B.

From the 16 ms time-binned light curves, a significant thermal
emission in the first 96 ms, which has been identified with the
P-GRB, has been found (Muccino et al. 2013). The subsequent
emission is identified with the extended afterglow. The P-
GRB of 090227B has the highest temperature ever observed,
kBT = 517 keV, where kB is the Boltzmann constant. The results
of the fit of the light curve and spectrum of GRB 090227B
are summarized in Table 2. In particular, we show the total
energy emitted EGRB

tot , the baryon load B, the Lorentz factor
at transparency Γtr, the cosmological redshift z, the intrinsic
duration of the GRB emission Δt , and the average density of
the CBM 〈nCBM〉; we refer to Muccino et al. (2013) for further
details.

4. INFERENCE OF NEUTRON STAR
BINARY PARAMETERS

We now infer the binary component parameters. It is clear
that the merging of two neutron stars will lead to a GRB if the
total mass of the binary satisfies

M1 + M2 � Mcrit = 2.67 M� , (1)

where Mcrit is the critical mass over which a neutron star under-
goes gravitational collapse to a black hole. For the numerical es-
timates, we adopt the neutron star configurations obtained with
the NL3 parameterization of the nuclear model (see Table 1).

Assuming for simplicity a binary with twin components
M1 = M2 = M , we obtain masses M = 1.335 M� and
correspondingly radii R1 = R2 = 12.24 km (see Figure 2

Figure 3. Theoretical baryon load expected to be left by a binary neutron star
merger as given by Equation (2), for η = 0.1, as a function of the total mass M.
Upper panel: locally neutral neutron stars, BLN

th , for the NL3 parameterization
of the nuclear model (black dashed curve) in units of 10−2. Lower panel:
globally neutral neutron stars, BGN

th , for the NL3, NL-SH, TM1, and TM2
parameterizations of the nuclear model. We indicate the observed baryon load
of GRB 090227B, B = 4.13 × 10−5, with the dashed-dotted gray horizontal
line; see Table 2 and Muccino et al. (2013).

and Belvedere et al. 2012). The mass of the corresponding
crust of each component is Mcrust ≈ 3.6 × 10−5 M� and the
thickness of the crust is ΔRcrust ∼ 0.47 km. For the other
nuclear parameterizations of the nuclear model, the maximum
stable mass and corresponding radius are given by Table 1,
and consequently the parameters of the single neutron star
components change accordingly if described by such models,
including the estimate of the baryon load, as shown below.

The location of the binary in the very low interstellar density
medium of galactic halos makes it possible to probe the neutron
star theory and equation of state through knowledge of the
baryon load B inferred by fitting the GRB light curve and
spectrum. The GRB interacts with the baryonic matter ejected
from the neutron star crusts during the binary coalescence. Thus,
a theoretical expectation of the baryon load B left in a binary
neutron star merger is

Bth = η
M tot

crustc
2

EGRB
tot

, (2)

where η is the fraction of the total crustal mass, M tot
crust =

M1,crust +M2,crust = 2Mcrust = 7.2×10−5 M�, which is ejected.
We assume that the mass ejected during the merger comes from
the crust of the two neutron star components of the system, as
should be expected from a symmetric binary merger.

In Figure 3 we have plotted the theoretical baryon load given
by Equation (2) for GRB 090227B, namely using EGRB

tot =
2.83 × 1053 erg, as a function of the mass M of the neutron
star for the nuclear equations of state of Table 1. For the locally
neutral case, for the sake of comparison we use only the result
for the NL3 parameterization.

The agreement of the observed baryon load of GRB 090227B
(see Table 2 and Muccino et al. 2013) with the low mass of
the crust obtained from the globally neutral neutron stars of
Belvedere et al. (2012) is evident (see Figure 3). It can be
compared and contrasted with those obtained enforcing the local
charge neutrality condition. For the specific binary neutron star
system adopted here, we obtain a theoretical prediction of the

3
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baryon load from Equation (2) with η = 1, Bth ≈ 4.5 × 10−4,
or a mass of the baryons MB = M tot

crust ≈ 7.2 × 10−5 M�, to
be confronted with that obtained from the fitting procedure of
GRB 090227B, B ∼ 4.13 × 10−5, corresponding to MB =
B × EGRB

tot /c2 ∼ 0.7 × 10−5 M�. A perfect agreement requires
η ≈ 0.1 for the NL3 nuclear model, while the other nuclear
parameterizations require a slightly lower value of η; see
Figure 3. The above theoretical predictions of the neutron star
crust mass Mcrust, and consequently, the value of EB

crust and B,
have been inferred for a crust with a density at its edge equal
to the neutron drip density ρdrip ∼ 4.3 × 1011 g cm−3. Neutron
star crusts with densities ρ < ρdrip are predicted by the new
neutron star theory (Belvedere et al. 2012); therefore, there is
still room for smaller values of the baryonic matter ejected in
a binary process, and, consequently, to still shorter genuinely
short GRBs.

The mass-energy of the baryon ejecta obtained from the
estimate (Equation (2)) provides values for locally neutral
neutron stars 102–103 larger than those analyzed before (see
Figure 3), due to the more massive crusts obtained from the
TOV-like treatment (see Belvedere et al. 2012 for details). It
implies that Equation (2) gives MB ∼ 10−3–10−2 M� in such a
case, in line with previous results obtained from the numerical
simulation of the dynamical evolution of neutron star binaries
(see, e.g., Ruffert & Janka 2001; Goriely et al. 2011), where
locally neutral neutron stars are employed.

Turning to a possible alternative scenario, the crust supported
by strange quark stars has densities strictly lower than ρdrip and
therefore they have crust masses ∼10−5 M� (see, e.g., Alcock
et al. 1986; Glendenning & Weber 1992 for details), similar to
the crust of the globally neutron stars (Belvedere et al. 2012).
This leads to the natural question of whether strange stars could
also be a viable explanation to the low value of the baryon load
of short GRBs. In addition, the quark core-crust transition is
also characterized by overcritical electric fields. However, the
softness of the equation of state of strange quark matter leads
to a mass–radius relation for these stars characterized by a low
maximum stable mass and small radii, ruled out by the current
observational constraints of pulsars which put a lower limit to
the radius of a compact star with M = 1.4 M�, R � 12 km
(Trümper 2011), and the most massive compact star observed,
PSR J0348+0432 with M = 2.01 ± 0.04 M� (Antoniadis et al.
2013).

5. GRAVITATIONAL WAVE EMISSION

The gravitational waves’ signals from neutron star binaries are
the most likely to be detected by the Advanced LIGO3-VIRGO4

interferometers. It is expected that these will be operational
in a few years with a improved sensitivity approximately a
factor of 10 better than the first generation of detectors. The
connection between short gamma-ray signals and gravitational
waves’ signals as a coincidence of the same event would, in
priciple, allow us to understand more about the origin of short
GRBs (see Kobayashi & Mészáros 2003 and references therein).

Here we use the adiabatic approximation to estimate the
gravitational wave emission from the binary neutrons star. We
used the above values of the neutron star binary progenitor
estimated for the short GRB 090227B at a cosmological redshift
z = 1.61 (Muccino et al. 2013). We adopt circular orbits for
simplicity. First, we compute the dynamics following the classic

3 http://www.advancedligo.mit.edu
4 http://wwwcascina.virgo.infn.it

non-relativistic test-mass limit approximation and compare it
with the more accurate description given by the one-body
formalism, which accounts for the effects of general relativity.

5.1. Classical Dynamics

The orbital angular velocity of the binary with components
(M1, R1) and (M2, R2) orbiting each other in a circular orbit of
radius r is given by

Ω =
√

G(M1 + M2)

r3
, (3)

and its total binding energy is

Eb = −1

2

GM1M2

r
. (4)

The leading term driving the loss of binding energy via gravita-
tional wave emission is given by

− dEb

dt
= 32

5

G4

c5

(M1 + M2)(M1M2)2

r5
, (5)

which leads to a decrease of the separation r with time and,
consequently, a shortening of the orbital period P = 2π/Ω
dictated by (Landau & Lifshitz 1980)

1

P

dP

dt
= 3

2

1

r

dr

dt
= −3

2

1

Eb

dEb

dt
. (6)

The loss of orbital binding energy by the emission of
gravitational waves from the neutron star system in spiral phase
for non-relativistic and point-like particles can be written as a
function of the gravitational waves’ frequency f as

dEb

df
= −1

3
(πG)2/3M5/3f −1/3, (7)

where M = (M1M2)3/5/(M1 + M2)1/5 is the chirp mass.

5.2. Effective One-body Dynamics

The effective one-body (EOB) formalism (Buonanno &
Damour 1999, 2000; Damour et al. 2000; Damour 2001;
Damour & Nagar 2010) maps the conservative dynamics of
a binary system of non-spinning objects onto the geodesic
dynamics of one body of reduced mass μ = M1M2/M , where
M = M1 + M2 is the total binary mass. The effective metric is
a modified Schwarzschild metric given by

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θdφ2), (8)

where the rescaled radial coordinate r = c2r12/(GM) has been
introduced, where r12 is the distance between the two stars. The
radial potential is given by

A(u; ν) = 1 − 2u + 2νu3 + a4νu4 + a5νu5, (9)

where u = 1/r = GM/(c2r12), ν = M1M2/(M1 + M2)2 is
the symmetric mass ratio (see Figure 4), with the values of the
three and four post-Newtonian (PN)-level coefficients given by
a4 = 94/3 − (41/32)π2 and a5(ν) = a5c0 + νa5cl (see Bini &
Damour 2013 for details). We will denote the Padè approximant
of the order of (n,m) as P m

n , which, when applied to A(u; ν),

4



The Astrophysical Journal, 787:150 (8pp), 2014 June 1 Oliveira, Rueda, & Ruffini

Figure 4. Comparison between the EOB radial potential as a function of the u
parameter for the cases: A(u; ν) = 3PN (dotted), P 1

3 [A(u; ν) = 3PN] (dashed),
and P 1

5 [A(u; ν) = 4PN] (solid), where P m
n [.] is the Padè approximant.

ensures the convergence of the solution near the merger point
(see Damour & Nagar 2009 and references therein).

The EOB Hamiltonian is

H = Mc2
√

1 + 2ν(Ĥeff − 1), (10)

and the effective Hamiltonian is described by

Ĥ 2
eff = A(u) + p2

φB(u), (11)

where B(u) = u2A(u) and the angular momentum for the
circular orbit is given by

p2
φ = − A′(u)

[u2A(u)]′
, (12)

where the prime represents the derivative with respect to u.
We must write Ĥeff as a function of the orbital angular velocity

Ω, or orbital frequency f. To do so, we must write the u parameter
as a function of Ω or f, which is obtained from the angular
Hamilton equation of motion in the circular case

GMΩ(u) = 1

u

∂H

∂pφ

= MA(u)pφ(u)u2

HĤeff

. (13)

We follow the binary evolution up to the contact orbital fre-
quency, Ωc, which we compute at the location of the innermost
stable circular orbit, RISCO, or when the two stars effectively
touch each other, namely at rAB,min = R1 + R2, if RISCO < R.
Within the EOB formalism, the value of RISCO is given by the
solution of the equation

A′(uISCO)B ′′(uISCO) − A′′(uISCO)B ′(uISCO) = 0, (14)

which, for our binary neutron star, gives uISCO =
[0.25, 0.24, 0.2, 0.2] for A(u) = 1–2u (test-mass limit dy-
namics, RISCO = 6GM/c2), A(u; ν) = 3PN, P 1

3 [A(u) =
3PN], and P 1

5 [A(u; ν) = 4PN], respectively. Since umax =
GM/(c2rAB,min) = 0.16 < uISCO, our contact point is given
by umax and not by uISCO. Therefore, in the present case,
the contact orbital frequency is given by Ωc = Ω(umax). In
Figure 5, we show the result of the numerical integration of the
above equation for the present binary system.

Figure 5. u parameter as a function of the source frequency obtained from
Equation (13) in the case of a symmetric binary, M1 = M2, so ν = 1/4. Here
rAB,min = R1 + R2 is the end point of the adiabatic approximation of the EOB
formalism, which, in this case, is the point where the two neutron stars touch
each other.

Figure 6. Comparison of the EOB binding energies using the radial potential
A(u; ν) = 3PN, P 1

3 [A(u; ν) = 3PN], and P 1
5 [A(u; ν) = 4PN] and the classic

dynamics.

The binding energy as a function of the orbital frequency (see
Figure 6) is

Eb(Ω) = H − Mc2 = Mc2[
√

1 + 2ν(Ĥeff − 1) − 1], (15)

and the gravitational energy spectrum is obtained through the
derivative dEb/dΩ.

6. DETECTABILITY: SIGNAL-TO-NOISE RATIO

A positive detection of the gravitational waves’ emission
implies that the signal overcomes some minimum threshold
value of the signal-to-noise ratio (S/N). The S/N appropriate
for the matched-filtering search is given by (see Flanagan &
Hughes 1998, for details)

S/N2 = 4
∫ ∞

0

|h̃(f )|2
S2

h(f )
df, (16)

where h̃(f ) is the Fourier transform of the gravitational wave-
form h(t) and Sh(f ) is the strain noise spectral density (units

5
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Figure 7. Left panel: comparison of the characteristic gravitational waves’ amplitude per unit square root frequency, hc(fd )/
√

fd (see Equation (18)) with the
noise density spectrum Sh(f ) of the Advanced LIGO interferometer. We use the binary neutron star parameters inferred for the short GRB 090227B, including the
cosmological redshift z = 1.61. The comparison is made for both the dynamics given by the non-relativistic point-like particles approximation described in Section 5.1
(dotted black curve) and the dynamics obtained from the EOB formalism described in Section 5.2. In the case of the EOB approach, the radial potential A(u; ν)
was calculated using the post-Newtonian (PN) approximation. The dotted-dashed black curve is A(u; ν) = 3PN. Using the Padè approximant we calculated the
P 1

3 [A(u; ν) = 3PN] (dashed black curve) and the P 1
5 [A(u; ν) = 4PN] (solid black curve). The noise spectral density of Advanced LIGO, Sh(f ), is represented by the

solid gray curve. Right panel: same as left panel but for a redshift z = 0.09, which would give a gravitational wave detection with 〈S/N〉 = 5 by Advanced LIGO.

1/
√

Hz) in the interferometer. Besides its dependence on the
waveform, the above S/N in general depends on the orientation
and position of the source with respect to the interferometer.

After making an rms average over all the possible source
orientations, positions, and wave polarizations, the S/N given
by Equation (16) becomes

〈S/N2〉 =
∫ fmax

fmin

dfd

h2
c(fd )

5f 2
d S2

h(fd )
, (17)

where we have introduced the characteristic gravitational waves’
amplitude, hc, defined using the Fourier transform of the
gravitational waveform h(t), hc(f ) = f |h̃(f )|, and it is given by

h2
c(f ) = 2(1 + z)2

π2d2
L

G

c3

dEb

df
[(1 + z)fd ]. (18)

where z is the cosmological redshift, fd = f/(1 + z) the
gravitational wave frequency at the detector, f = Ω/π the
frequency in the source frame, Ω is the orbital frequency,
the minimal bandwidth frequency of the detector is fmin, and
fmax = fc/(1 + z) is the maximal bandwidth frequency, where
fc = Ωc/π is the binary contact frequency. In this work, we use
a standard cosmological model with H0 = 75 km s−1 Mpc−1,
ΩM = 0.27, and ΩΛ = 0.73, and a luminosity distance dL(z) =
(c/H0)(1+z)

∫ z

0 [ΩM (1+x)3 +ΩΛ]−1/2dx. In this work, we adopt
work 〈S/N〉 = 5, as threshold value for a positive detection fol-
lowing previous works (see, e.g., Kobayashi & Mészáros 2003).

The rms averaged S/N given by Equation (17) depends only
on the distance to the source, i.e., the cosmological redshift, and
the energy spectrum, dEb/df , of the gravitational waves; we
refer the reader to Flanagan & Hughes (1998) for further details
on the rms averaging.

In order to assess the detectability of the source in the
spiraling-in phase, the integration in Equation (17) is carried out
from the minimum bandwidth frequency of the interferometer
all the way up to the contact frequency, namely the maximum
frequency which is given by the merger point, namely when the
two stars touch each other.

We now compare and contrast the characteristic amplitude
per square root frequency, hc(fd )/

√
fd , with the strain noise

spectral density Sh(f ) of the Advanced LIGO interferometer,
as a function of the frequency at the detector, fd. In this work,
we use the Optimal NSNS noise curve of the LIGO Document
T0900288-v3, which is optimized for a 1.4 M� neutron star,
and gives a 〈S/N〉 = 8 at a distance of 200 Mpc for a single
interferometer.5 The comparison is made for both the dynamics
given by the non-relativistic point-like particles approximation
(see Section 5.1) and the dynamics obtained from the EOB
formalism (see Section 5.2).

In the left panel of Figure 7, we use the theoretically estimated
redshift of GRB 090227B, z = 1.61, which results in a
contact frequency at the detector, fmax ≈ 1534.19/(1 + 1.61)
Hz= 587.81 Hz. At such a redshift, 〈S/N〉 ≈ 0.32 for Advanced
LIGO, a much lower value than the threshold for a positive
detection.

At this point, it is natural to ask at which distance the
gravitational waves’ emission from the progenitor of GRB
090227B would have been detectable by the Advanced LIGO
interferometer. We find that a 〈S/N〉 = 5 would be produced
if the GRB would be located at a redshift z ≈ 0.09, namely
at a distance dL ≈ 381 Mpc. We show in the right panel of
Figure 7 the results for this hypothetical redshift for detection.
In this case, the contact frequency at the detector is, fmax ≈
1534.19/(1 + 0.09) Hz= 1407.51 Hz. The above numerical
values are obtained for the most accurate case, P 1

5 [A(u; ν) =
4PN].

So far, we have discussed the issue of the conditions for a
positive or negative detection by the Advanced LIGO interfer-
ometer of the spiraling phase of the progenitor of a genuine short
GRB, as the binary neutron star progenitor of GRB 090227B.
A different question are the conditions under which such a

5 https://dcc.ligo.org/LIGO-T0900288/public—the curve represent the
incoherent sum of the principal noise sources best understood at this time,
namely the quantum, seismic, and thermal noises. In addition, there will be
technical noise sources. This is not a guaranteed performance, but a good
guide to the overall curve and an early approximation to the anticipated
sensitivity reachable by Advanced LIGO.
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Table 3
Upper Limit for the Total GW Emission, ΔEmax

GW (erg)

Classic EOB A3PN EOB P 1
3 [A3PN] EOB P 1

5 [A4PN]

9.6 × 1052 9.68 × 1052 7.41 × 1052 7.42 × 1052

detection could give us reliable information on the structure
of the neutron star components. In such a case, a much higher
value of the S/N is needed. For instance, Damour et al. (2012)
recently estimated that a 〈S/N〉 ≈ 16 is necessary to obtain
knowledge of the neutron star equation of state, extracted from
the tidal polarizability parameters of the binary components.
This would imply a still shorter distance to the source than that
one derived above.

7. TOTAL ENERGY OUTPUT

The gravitational waves’ emission dominates the energy loss
during the spiraling phase while the X-rays and gamma rays
dominate from the coalescence with the final emission of a short
GRB if the total mass of the binary exceeds the critical mass for
neutron star gravitational collapse. Thus, an upper limit for the
gravitational wave emission can be obtained from the energy
difference between the initial binary at the time t0 = 0 with a
separation r0 and energy E0, and the binary at the time tf and a
separation rf = rAB,min = R1 + R2, with energy Ef , when the
two components touch each other.

An absolute upper limit for the gravitational wave energy
emission, ΔEmax

GW , can therefore be determined by the assumption
of an infinite initial separation r0 → ∞, namely

ΔEmax
GW = ∣∣Eb(tf ) − Eb(t0)

∣∣ . (19)

For the neutron star binary discussed in this work for
GRB 090227B, we obtain the absolute upper bound shown
in Table 3. The gravitational wave energy emission ΔEmax

GW , in
the case of the genuinely short GRB 090227B, is one order
of magnitude smaller than the emitted electromagnetic energy
EGRB

tot = 2.83 × 1053 erg (see Table 2).
It is also worth to mention that this numerical value for ΔEmax

GW
is an uper limit with respect to full numerical integrations of the
gravitational wave radiation emitted in the neutron star binaries
during the entire process of spiraling and merging (see, e.g.,
Ruffert & Janka 2001).

Additional contributions to the power of the gravitational
wave due to higher multipole moments of the components,
such as angular momentum J and quadrupole moment Q
(deformation), are conceptually relevant corrections to the above
formulas (see, e.g., Ryan 1995 and references therein, for
details); however, they are quantitatively negligible for the
present purpose. For instance, the first correction due to the spin
angular momentum J of the neutron star components is given by
−11/4 jΩM in geometric units, where j = cJ/(GM2) is the
dimensionless angular momentum parameter. This correction
is only of the order of 10−2 for a binary orbit of very high
angular frequency ∼ kHz and for neutron stars with M =
1.335 M� and j = 0.4. We recall that the fastest observed
pulsar, PSR J1748−2246ad, has a rotation frequency of 716 Hz
(Hessels et al. 2006), which gives j ∼ 0.51I45/(M0/M�)2 =
0.26I45 with the latter value for a canonical neutron star of
M = 1.4 M� where I45 is the moment of inertia in units
of 1045 g cm2. The first correction due to the quadrupole
deformation multipole moment Q of the neutron star, given by

−2QΩ4/3M−5/3, is of the order of 10−3 for the same parameters
with Q ≈ 4 × 1043 g cm2 ≈ 3 km3, with the latter value in
geometric units.

8. CONCLUSIONS

We show that the observations of the genuinely short GRB
090227B lead to crucial information about the binary neutron
star progenitor. The data obtained from the electromagnetic
spectrum allows us to probe crucial aspects of the correct
theory of neutron stars and their equations of state. The baryon
load parameter B obtained from the analysis of GRB 090227B
leads to a most remarkable agreement of the baryonic matter
expected to be ejected in a neutron star binary merger and
validate the choice of the parameters of the binary components,
M1 = M2 = 1.34 M� and R1 = R2 = 12.24 km. This
represents a test of the actual neutron star parameters described
by the recently developed self-consistent theory of neutron stars
(Belvedere et al. 2012) which takes into account the strong,
weak, electromagnetic, and gravitational interactions within
general relativity and satisfy the condition of global charge
neutrality.

We have discussed how the inference of the neutron star
parameters, mass and radius, and the expected baryon load
produced during the merger process depends on the nuclear
equation of state as well as on the condition of global and
local charge neutrality. We have also argued that the current
observational constraints of pulsars on the mass–radius relation
of compact stars rule out an alternative scenario given by strange
quark stars, although they have core-crust transition and crust
properties similar to those of the globally neutral neutron stars
of Belvedere et al. (2012).

We computed the dynamics of the neutron star binary progen-
itor prior to the merger and emission of the GRB. We compare
and contrast the classic description of the dynamics with the
more general one given by the framework of the EOB formal-
ism, which we use up to 4-PN order. We have shown that the
classic binary dynamics overestimate the energy output in grav-
itational waves with respect to the more accurate dynamics of
the EOB formalism. In addition, we showed the necessity of
using the Padè approximant in order to keep the solution stable
close to the merger point.

We estimate the detectability of GRB 090227B by the
Advanced LIGO interferometer by computing the S/N up to
the contact point of the binary components, for the theoretically
inferred cosmological redshift, z = 1.61 (Muccino et al. 2013);
see the left panel of Figure 7. We find that, at such a redshift, the
gravitational waves’ signal would produce a 〈S/N〉 ≈ 0.32, a
value lower than necessary for a positive detection, 〈S/N〉 = 5.
We turn to estimate the redshift at which Advanced LIGO would
detect this GRB with a 〈S/N〉 = 5 (see Figure 7, right panel)
we obtained z ≈ 0.09 or a distance to the source dL ≈ 381
Mpc. Unfortunately, in the last 40 yr, no such a GRB has been
observed.

From the dynamics, we estimated the total energy release in
form of gravitational waves up to the point where the stars come
in contact with each other (see Table 3); we compare and contrast
it with the energy in X-rays and gamma rays released in the final
emission of the GRB. We conclude that the emission of X-rays
and gamma rays in a short GRB by a binary neutron star merger
is at least one order of magnitude larger than the gravitational
wave emission in the entire life of the binary including the last
plunge.
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Trümper, J. E., Burwitz, V., Haberl, F., & Zavlin, V. E. 2004, NuPhS, 132, 560

8





A&A 565, L10 (2014)
DOI: 10.1051/0004-6361/201423812
c© ESO 2014

Astronomy
&

Astrophysics

L   E

On binary-driven hypernovae and their nested late X-ray emission
R. Ruffini1,2,3,4, M. Muccino1,2, C. L. Bianco1,2, M. Enderli1,3, L. Izzo1,2, M. Kovacevic1,3, A. V. Penacchioni4,

G. B. Pisani1,3, J. A. Rueda1,2,4, and Y. Wang1,2

1 Dip. di Fisica and ICRA, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Rome, Italy
e-mail: marco.muccino@icra.it

2 ICRANet, piazza della Repubblica 10, 65122 Pescara, Italy
3 Université de Nice Sophia Antipolis, CEDEX 2, Grand Château Parc Valrose, BP 2135, 06103 Nice, France
4 ICRANet-Rio, Centro Brasileiro de Pesquisas Fisicas, rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

Received 14 March 2014 / Accepted 28 April 2014

ABSTRACT

Context. The induced gravitational collapse (IGC) paradigm addresses the very energetic (1052–1054 erg) long gamma-ray bursts
(GRBs) associated to supernovae (SNe). Unlike the traditional “collapsar” model, an evolved FeCO core with a companion neutron
star (NS) in a tight binary system is considered as the progenitor. This special class of sources, here named “binary-driven hypernovae”
(BdHNe), presents a composite sequence composed of four different episodes with precise spectral and luminosity features.
Aims. We first compare and contrast the steep decay, the plateau, and the power-law decay of the X-ray luminosities of three selected
BdHNe (GRB 060729, GRB 061121, and GRB 130427A). Second, to explain the different sizes and Lorentz factors of the emitting
regions of the four episodes, for definiteness, we use the most complete set of data of GRB 090618. Finally, we show the possible role
of r-process, which originates in the binary system of the progenitor.
Methods. We compare and contrast the late X-ray luminosity of the above three BdHNe. We examine correlations between the time
at the starting point of the constant late power-law decay t∗a , the average prompt luminosity 〈Liso〉, and the luminosity at the end of the
plateau La. We analyze a thermal emission (∼0.97–0.29 keV), observed during the X-ray steep decay phase of GRB 090618.
Results. The late X-ray luminosities of the three BdHNe, in the rest-frame energy band 0.3–10 keV, show a precisely constrained
“nested” structure. In a space–time diagram, we illustrate the different sizes and Lorentz factors of the emitting regions of the three
episodes. For GRB 090618, we infer an initial dimension of the thermal emitter of ∼7 × 1012 cm, expanding at Γ ≈ 2. We find tighter
correlations than the Dainotti-Willingale ones.
Conclusions. We confirm a constant slope power-law behavior for the late X-ray luminosity in the source rest frame, which may lead
to a new distance indicator for BdHNe. These results, as well as the emitter size and Lorentz factor, appear to be inconsistent with the
traditional afterglow model based on synchrotron emission from an ultra-relativistic (Γ ∼ 102–103) collimated jet outflow. We argue,
instead, for the possible role of r-process, originating in the binary system, to power the mildly relativistic X-ray source.

Key words. supernovae: general – binaries: general – gamma-ray burst: general – black hole physics – stars: neutron –
nuclear reactions, nucleosynthesis, abundances

1. Introduction

The induced gravitational collapse (IGC) paradigm has been
widely illustrated (Ruffini et al. 2006, 2007, 2008; Rueda &
Ruffini 2012; Izzo et al. 2012a). It assumes that long, ener-
getic (1052–1054 erg) gamma-ray bursts (GRBs) associated to
supernovae (SNe) originate in a close binary system composed
of an evolved massive star (likely a FeCO core) in the latest
phases of its thermonuclear evolution and a neutron star (NS)
companion. From an observational point of view, the complete
time sequence of the IGC paradigm binary system has been
identified in GRB 090618 (Izzo et al. 2012b), GRB 101023
(Penacchioni et al. 2012), GRB 110907B (Penacchioni et al.
2013), and GRB 970828 (Ruffini et al. 2013). We name these
especially energetic systems, here, fulfilling the IGC paradigm,
“binary-driven hypernovae” (BdHNe), to differentiate them from
the traditional less energetic hypernovae.

In this Letter we introduce the IGC paradigm space-time di-
agram for the four distinct emission episodes (see Fig. 1):
Episode 1 corresponds to the onset of the FeCO core SN explo-
sion, creating a new-NS (ν-NS, see A). Part of the SN ejecta trig-
gers an accretion process onto the NS companion (see Rueda &
Ruffini 2012; Izzo et al. 2012a, and B in Fig. 1), and a prolonged

interaction between the ν-NS and the NS binary companion oc-
curs (C). This leads to a spectrum with an expanding thermal
component plus an extra power law (see Fig. 16 in Izzo et al.
2012b, and Fig. 4 in Ruffini et al. 2013).
Episode 2 occurs when the companion NS reaches its critical
mass and collapses to a black hole (BH), emitting the GRB (D)
with Lorentz factors Γ ≈ 102–103 (for details, see e.g. Ruffini
et al. 2010; Izzo et al. 2012b; Ruffini et al. 2013).
Episode 3, observed in the X-rays, shows very precise behav-
ior consisting of a steep decay, starting at the end point of the
prompt emission (see E), and then a plateau phase, followed
by a late constant power-law decay (see, e.g., Izzo et al. 2012b;
Penacchioni et al. 2012; Ruffini et al. 2013).
Episode 4, not shown in Fig. 1, corresponds to the optical
SN emission due to the 56Ni decay (see Arnett 1996) occurring
after ∼10–15 days in the cosmological rest frame. In all BdHNe,
the SN appears to have the same luminosity as in the case of
SN 1998bw (Amati et al. 2007). Although the presence of the
SN is implicit in all the sources fulfilling the IGC paradigm, it is
only detectable for GRBs at z . 1, in view of the limitations of
the current optical telescopes.

We are going to see in this Letter that Episodes 1 and 2 can
differ greatly in luminosity and timescale from source to source,
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Fig. 1. IGC space–time diagram (not in scale) illustrates the relativis-
tic motion of Episode 2 (Γ ≈ 500, thick line) and the non-relativistic
Episode 1 (Γ ≈ 1) and Episode 3 (Γ ≈ 2). Emissions from different
radii, R1 (∼1013 cm) and R2 (∼1016–1017 cm), contribute to the transition
point (E). Clearly, the X-ray luminosity originates in the SN remnant or
in the newly-born BH, but not in the GRB.

while we confirm that in Episode 3, the late X-ray luminosities
overlap: they follow a common power-law behavior with a con-
stant slope in the source rest frame (Pisani et al. 2013). We point
out here that the starting point of this power-law component is a
function of the GRB isotropic energy Eiso.

The main goals of this Letter consist in a) comparing and
contrasting the steep decay, the plateau, and the power-law de-
cay of the X-ray luminosities as functions of Eiso by considering
three selected GRBs (060729, 061121, and 130427A); b) point-
ing out the difference in the size and the Lorentz factors of
the emitting regions of Episodes 1, 2, and 3 (for definiteness
we use as prototype the source with the most complete dataset,
GRB 090618); c) drawing attention to the possible role of the
r-process, originating in the binary system of the progenitor, to
power the mildly relativistic X-ray emission in the late phases of
Episode 3.

2. The case of GRB 090618

We illustrate the difference in the emitting region sizes in the
three episodes and their corresponding Lorentz factors:
Episode 1 has a thermal component expanding from ∼109 cm
to ∼1010 cm on a rest-frame timescale of ∼30 s with an average
velocity of ∼4× 108 cm s−1 (see Izzo et al. 2012b). The total en-
ergy is 4.1 × 1052 erg, well above the traditional kinetic energy
expected in the early phases of a SN, and it originates in the ac-
cretion of the material of the SN ejecta on the companion NS in
the binary system (Rueda & Ruffini 2012; Ruffini et al. 2013).
Episode 2 has been shown to be the ultra-relativistic prompt
emission episode (e.g., the actual GRB) stemming from the col-
lapse of the NS to a BH. Its isotropic energy is 2.5 × 1053 erg.
The characteristic Lorentz factor at the transparency of the
fireshell has been found to be Γ = 490 for GRB 090618.
The characteristic spatial extension goes all the way up to
∼1016–1017 cm, reached at the end of Episode 2 (see Fig. 10
in Izzo et al. 2012b).
Episode 3 has an isotropic energy of ≈6 × 1051 erg. A strik-
ing feature occurs during its steep decay phase: in the early
observed 150 s, Page et al. (2011) have found a thermal
component with a decreasing temperature from ∼0.97 keV
to ∼0.29 keV (see also Starling et al. 2012). The surface radius
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Fig. 2. Radii (open blue circles) of the emitting regions, measured in
the cosmological rest frame. Episode 1 radius ranges from ∼109 cm
to ∼1010 and expands at Γ ≈ 1 (Izzo et al. 2012b). The Episode 3
radius, in the early phases of the steep decay, starts from a value of
∼7 × 1012 cm and expands at Γ ≈ 2. The Episode 2 rest-frame duration
is indicated by the shaded purple region. The expansion velocity at late
times is expected to approach the asymptotic value of 0.1c observed
in the optical spectra (Della Valle 2011), in the absence of any further
acceleration process.

of the emitter can be inferred from the observed temperature To
and flux FBB of the thermal component. We have, in fact (Izzo
et al. 2012b),

r ≈ Γ dl (1 + z)−2
√

FBB/
(
σT 4

o

)
, (1)

where dl is the luminosity distance in the ΛCDM cosmolog-
ical model and σ the Stefan-Boltzmann constant. As usual,
Γ = 1/

√
1 − β2, where β = v/c is the expansion velocity in units

of the speed of light c.
In parallel, the relation between the detector arrival time td

a ,
the cosmological rest-frame arrival time ta and the laboratory
time t, is given by td

a ≡ ta(1 + z) = t(1−β cos θ)(1 + z), where θ is
the displacement angle of the considered photon emission point
from the line of sight (see, e.g., Bianco et al. 2001). We can
then deduce the expansion velocity β, assumed to be constant,
from the ratio between the variation of the emitter radius ∆r and
the emission duration in laboratory frame ∆t, i.e. β = ∆r/(c∆t).
Using the condition β ≤ cos θ ≤ 1 (Bianco et al. 2001), we obtain
0.75 ≤ β ≤ 0.89 and, correspondingly, 1.50 ≤ Γ ≤ 2.19 and radii
r ∼ 1013 cm (see Fig. 2).

As is clear from Fig. 1, a sharp transition occurs between the
end of Episode 2, where the characteristic dimensions reached
by the GRB are ∼1016–1017 cm, and the emission at the begin-
ning of X-ray luminosity, with an initial size of ∼7 × 1012 cm.
This leads to the conclusion that the X-ray emission of Episode 3
originates in the SN ejecta or in the accretion on the newly
born BH and, anyway, not from the GRB.

3. The “nested” structure of Episode 3
We now turn to show the “nested” structure of the late X-ray
luminosity. Pisani et al. (2013) have shown that the X-ray rest-
frame 0.3–10 keV luminosity light curves present a constant de-
creasing power-law behavior, at ta & 104 s, with typical slopes
of −1.7 . αX . −1.3. This has been proven in a sample of
six BdHNe: GRBs 060729, 061007, 080319B, 090618, 091127,
and 111228, hereafter golden sample (GS, see, e.g., Izzo et al.
2013; Pisani et al. 2013). That the late X-ray emission could play
a fundamental role as a distance indicator has been explored in-
ferring the redshifts of GRBs 101023 and 110709B (Penacchioni
et al. 2012, 2013). The IGC paradigm also allowed predicting
∼10–15 days in the cosmological rest frame before its discovery,
the occurrence of the SN associated to GRB 130427A, the most
luminous source ever observed in γ rays with Eiso ≈ 1054 erg
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Fig. 3. Rest-frame 0.3–10 keV re-binned luminosity light curves of
GRB 130427A (purple), GRB 061121 (red, shifted by 50 s in rest
frame), and GRB 060729 (pink). The light curves are fitted by using
a power-law for the steep decay phase (dashed lines) and the function
in Eq. (2) for the plateau and the late decay phases (dot-dashed curves).

and z = 0.34 (Xu et al. 2013b; Flores et al. 2013). This was later
confirmed by the observations (de Ugarte Postigo et al. 2013;
Levan et al. 2013; Watson et al. 2013; Xu et al. 2013a).

We compare and contrast GRB 130427A X-ray data with
GRB 060729, a member of the GS, and GRB 061121, which
shows the general behavior of BdHNe. GRB 060729, at z = 0.54,
has Eiso = 1.6×1052 erg (Grupe et al. 2007) and a SN bump in its
optical afterglow (Cano et al. 2011). GRB 061121, at z = 1.314
(Bloom et al. 2006), has Eiso = 3.0 × 1053 erg, and its Episode 4
is clearly missing in view of the high cosmological redshift.

In Fig. 3 we have plotted the rebinned rest-frame 0.3–10 keV
luminosity light curves of GRBs 130427A, 060729, and 061121.
Their steep decay is modeled by a power-law function, i.e.
Lp (ta/100)−αp , where Lp and αp are the power-law parameters.
The plateau and the late power-law decay are instead modeled
by using the following phenomenological function

L (ta) = LX (1 + ta/τ)αX , (2)

where LX, αX, and τ, respectively, are the plateau luminosity, the
late power-law decay index, and the characteristic timescale of
the end of the plateau. From Eq. (2), we have defined the end of
the plateau at the rest-frame time t∗a = τ[(1/2)1/αX − 1], when the
luminosity of the plateau is half of the initial one, La(t∗a) = LX/2.

From this fitting procedure, we can conclude that the three
BdHN systems considered here share the following properties:
a) the power-law decay for the more energetic sources starts di-
rectly from the steep decay, well before the ta ≈ 2 × 104 s, as in-
dicated in Pisani et al. (2013); consequently, the plateau shrinks
as a function of the increasing Eiso (see Fig. 3);
b) the luminosities in the power-law decay are uniquely func-
tions of the cosmological rest-frame arrival time ta indepen-
dently on the Eiso of each source (see Fig. 3);
c) most remarkably, the overlapping of the X-ray light curves
reveals a “nested” structure of BdHN Episodes 3.

In our sample of BdHNe, we verify the applicability of
the Dainotti-Willingale relations 〈Liso〉–t∗a and La–t∗a (Dainotti
et al. 2008, 2011b; Willingale et al. 2007), where 〈Liso〉 =
Eiso/ta,90 is the averaged luminosity of the prompt and ta,90
is the rest-frame t90 duration of the burst. The resulting cor-
relations, log10 Yi = mi log10 Xi + qi, are shown in Fig. 4.
The parameters of each BdHN and the best fit parameters, mi
and qi (where i = 1, 2), are summarized in Table 1. As is
clear from the extra scatter values σi, our total BdHN sam-
ple provides tighter correlations. The extra scatter of the
La–t∗a , σ = 0.26, is less than the Dainotti et al. (2011a)
ones, i.e., σ = 0.76 for the whole sample of 62 bursts and

σ = 0.40 for the best subsample of eight bursts (U0095). The
Dainotti-Willingale correlations consider X-ray afterglows char-
acterized by a steep decay, a plateau phase, and a late power-law
decay (Nousek et al. 2006; Zhang et al. 2006), independently of
their energetics. In our BdHN sample we limit the attention to
a) the most energetic sources, 1052–1054 erg, b) the presence
of four emission episodes (neglecting Episode 4 for z > 1),
and c) sources with determined redshift and complete data at
ta = 104−106 s. All these conditions appear to be necessary to
fulfill the nested structure in Fig. 3 and the tighter correlations
between the astrophysical parameters 〈Liso〉, La, and t∗a in Fig. 4.

To explain the above nested power-law decay and con-
strained correlations, we consider the decay of heavy elements
produced in the r-process as a viable energy source (Burbidge
et al. 1957), originating in binary NS mergers (see, e.g., Li
& Paczyński 1998; Janka et al. 1999; Rosswog et al. 2004;
Oechslin et al. 2007; Goriely et al. 2011; Piran et al. 2014).

Li & Paczyński (1998) have shown that the emission from
the surface of an optically thick expanding ejecta in an adiabatic
regime provides a flat light curve (see also Arnett 1982). This
can explain, in principle, the observed steep decay and plateau
phase of Episode 3 (see Fig. 3). After the ejecta becomes trans-
parent, the heating source term due to the nuclear decays of the
heavy nuclei, generated via r-process, becomes directly observ-
able and dominates. The avalanche of decays with different life-
times then provides the total energy release per unit mass per
time that follows a power-law distribution, whose decay index
has been estimated to be −1.4 . α . −1.1 (Metzger et al. 2010).
These values are strikingly similar to the ones we have found in
the late X-ray luminosity.

This power-law behavior is different from the exponential
decay observed in the optical light curves of traditional SN, pow-
ered by the decay of a single element (56Ni → 56Co → 56Fe),
which is not produced in the avalanche of many decays as in the
r-process.

4. Conclusions
To summarize, short GRBs have been shown to come from bi-
nary NS mergers (see, e.g., Goodman 1986; Paczynski 1986;
Eichler et al. 1989; Meszaros & Rees 1997; Rosswog et al. 2003;
Lee et al. 2004; and more recently Muccino et al. 2013). Our
subclass of long, extremely energetic (1052–1054 erg) sources
is also initially driven by a tight binary system, formed by
a ν-NS and a companion NS, surrounded by the SN ejecta
(see Fig. 1). Then we denoted these most energetic GRBs
by “BdHNe”. This is clearly different from the gravitational
collapse of a single massive progenitor star described by the
collapsar model (Woosley 1993; MacFadyen & Woosley 1999;
Woosley & Bloom 2006).

We compared and contrasted the late X-ray luminosities of
three BdHNe with different Eiso, finding a nested structure. We
showed tight correlations between 〈Liso〉, La and t∗a (see Fig. 4
and Table 1) in agreement with the Dainotti-Willingale ones.

The above scaling laws, the nesting, and the initial dimen-
sion of ∼7 × 1012 cm and Lorentz factor of Γ ≈ 2 obtained from
the steep decay of the X-ray luminosity put stringent limits on
alternative theoretical models. They do not appear to be explain-
able within the traditional fireball jetted model, originating in
the synchrotron radiation emitted by a decelerating relativistic
shell with Γ ∼ 102 and colliding with the circumburst medium
at distances ∼1016 cm (see, e.g., Sari et al. 1998; Piran 2005;
Meszaros 2006; Gehrels et al. 2009, and reference therein). In
this Letter we alternatively proposed that the late X-ray lumi-
nosity comes from the wide angle emission of the SN ejecta or

L10, page 3 of 4



A&A 565, L10 (2014)

��

��

��

��

��

��

��

100 1000 10 4

1 � 10 50

5 � 10 50

1 � 10 51

5 � 10 51

1 � 10 52

5 � 10 52

1 � 10 53

rest frame end plateau time �s�

re
st

fr
am

e
E

is
o
�T

90
�e

rg
s�

1
�

100 1000 10 4

10 46

10 47

10 48

10 49

10 50

rest frame end plateau time s

en
d

pl
at

ea
u

lu
m

in
os

ity
er

g
s

1

Fig. 4. The 〈Liso〉–t∗a (left) and the La–t∗a (right) correlations (solid black lines) and the corresponding 1σ confidence levels (dashed black lines). The
sources considered are GRB 060729 (pink), GRB 061007 (black), GRB 080319B (blue), GRB 090618 (green), GRB 091127 (red), GRB 111228A
(cyan), and GRB 130427A (purple). The tighter BdHNe La–t∗a correlation is compared to the one in Dainotti et al. (2011a), corresponding to
m = −1.04 and q = 51.30 (solid gray line) and σ = 0.76 (dot-dashed gray lines).

Table 1. List of the quantities of the sources considered and best fit
parameters of the correlations in Fig. 4.

GRB 〈Liso〉 (1050 erg/s) t∗a (ks) La (1047 erg/s)
060729 1.25 ± 0.08 27.4 ± 1.4 0.20 ± 0.01
061007 267 ± 18 0.041 ± 0.036 521 ± unc

080319B 279 ± 7 0.12 ± 0.03 430 ± 170
090618 34.7 ± 0.3 0.74 ± 0.03 7.81 ± 0.17
091127 26.8 ± 0.3 1.31 ± 0.10 4.39 ± 0.26

111228A 4.79 ± 0.24 2.17 ± 0.27 1.38 ± 0.10
130427A 98 ± 15 0.16 ± 0.03 121 ± 21

Correlation mi qi σi

〈Liso〉–t∗a −(0.90 ± 0.09) 54.0 ± 0.3 0.20 ± 0.05
La–t∗a −(1.34 ± 0.14) 52.0 ± 0.4 0.26 ± 0.08

in the accretion on the newly born BH. We call the attention on
the role of the energy release in the SN ejecta from the decay
of very heavy nuclei generated by r-process in binary NSs (Li &
Paczyński 1998). This heavy nuclei avalanche decay (see, e.g.,
Metzger et al. 2010) may well explain the late X-ray luminosity
of Episode 3. This emission follows the steep decay and plateau
phase of the adiabatic optically thick expansion, prior to reach-
ing transparency (see Fig. 3).

In the case of binary systems with longer periods and/or a
lower accretion rate, which do not allow the NS companion to
reach its critical mass and to form a BH, Episode 2 is missing.
The presence of the companion NS will neverthless strip the H
and He envelopes of the core progenitor star. These sources have
low energetic bursts (Eiso < 1052 erg), such as GRB 060218
and GRB 980425, and their X-ray luminosity light curves do not
overlap with the ones of our more energetic sample of BdHNe.
These systems do not conform to the IGC paradigm and are tra-
ditional hypernovae1.
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Surface tension of the core-crust interface of neutron stars with global charge neutrality
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It has been shown recently that taking into account strong, weak, electromagnetic, and gravitational interactions,
and fulfilling the global charge neutrality of the system, a transition layer will happen between the core and
crust of neutron stars, at the nuclear saturation density. We use relativistic mean field theory together with the
Thomas-Fermi approximation to study the detailed structure of this transition layer and calculate its surface and
Coulomb energy. We find that the surface tension is proportional to a power-law function of the baryon number
density in the core bulk region. We also analyze the influence of the electron component and the gravitational
field on the structure of the transition layer and the value of the surface tension, to compare and contrast with
known phenomenological results in nuclear physics. Based on the above results we study the instability against
Bohr-Wheeler surface deformations in the case of neutron stars obeying global charge neutrality. Assuming the
core-crust transition at nuclear density ρcore ≈ 2.7 × 1014 g cm−3, we find that the instability sets the upper limit
to the crust density, ρcrit

crust ≈ 1.2 × 1014 g cm−3. This result implies a nonzero lower limit to the maximum electric
field of the core-crust transition surface and makes inaccessible a limit of quasilocal charge neutrality in the limit
ρcrust = ρcore. The general framework presented here can be also applied to study the stability of sharp phase
transitions in hybrid stars as well as in strange stars, both bare and with outer crust. The results of this work open
the way to a more general analysis of the stability of these transition surfaces, accounting for other effects such
as gravitational binding, centrifugal repulsion, magnetic field induced by rotating electric field, and therefore
magnetic dipole-dipole interactions.

DOI: 10.1103/PhysRevC.89.035804 PACS number(s): 26.60.−c, 97.60.Jd, 04.20.−q, 04.40.Dg

I. INTRODUCTION

The relativistic mean field theory (RMFT) of nuclear matter
and the Thomas-Fermi model have attracted great attention
during the last few decades. The simplest relativistic model
of nuclear matter that accounts for the saturation properties
of symmetric nuclear matter includes one scalar field which
gives the attractive long-range part of the nuclear force and
one vector field which gives the repulsive short-range; these
two meson fields interact with nucleons through Yukawa
couplings. This so-called σ -ω model has been considered by
Duerr [1], Miller and Green [2], and later by Walecka [3].
The physical understanding of this model has been very well
studied the literature [4–11]. As recognized in Ref. [5], it is
necessary to introduce additional isovector fields to obtain
agreement with the empirical symmetry energy of nuclear
matter at the saturation density. The model, containing Dirac
nucleons together with a self-interacting scalar σ and a vector
meson ω as well as an isovector meson ρ, has been widely
used to this end.

With a very limited number of parameters, the RMFT has
been shown to be able to give a quantitative description of
a variety of nuclear properties [12–14]. Recently, taking into
account the electromagnetic and weak interactions, the RMFT
with the Thomas-Fermi approximation has gained remarkable
successes in understanding the inhomogeneous structures and
properties of low-density nuclear matter which is realized in

*Corresponding author: wuyb@icranet.org

supernovae cores or in the crusts of neutron stars (see, e.g.,
Refs. [15–18]). The surface properties of nuclear matter such
as surface tension and curvature energy play an important
role in the description of these structures and also in other
phenomena, for instance saddle-point configurations in nuclear
fission, fragment distributions in heavy-ion collisions, and
phase transitions between different phases of nuclear matter.

The nuclear surface properties at saturation density have
been analyzed for a long time in the semi-infinite nuclear
matter model using RMFT [3] or effective field theory
[19–21] with the Thomas-Fermi approximation or Hartree-
Fock approximation [5,22–30]. In the supranuclear regime
realized in the interior of neutron stars, there is the possibility
that phase transition occurs from hadronic to pion and kaon
condensed phase as well as to quark matter phase (see,
e.g., [31–33]). The surface tension of the transition layer
between the hadronic and kaon condensed or quark matter
phases has been calculated in the semi-infinite matter model,
and the surface tension plays an important role in the structure
of the phase transition region [34,35]. In the low-density
(density smaller than the saturation density) case, as pointed
out in [36], the shape of constituent nuclei is expected to
change from spherical droplet to the so-called nuclear pasta
structures such as cylindrical rod, slab, cylindrical tube,
and spherical bubble. The surface tensions of nuclear pasta
structures have been investigated and it has been pointed out
that the pasta phase strongly depends on the value of the surface
tension [15,16,18].

The importance of the extension of the Thomas-Fermi
approximation to general relativistic systems such as neutron

0556-2813/2014/89(3)/035804(11) 035804-1 ©2014 American Physical Society
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stars was emphasized in Ref. [37]. We showed there that the
traditionally imposed condition of local charge neutrality is not
consistent with the field equations and microphysical equilib-
rium for a system of neutrons, protons, and electrons in β

equilibrium and obeying relativistic quantum statistics. Thus,
only the condition of global but not local charge neutrality
can be imposed. This leads to the appearance of gravito-
polarization in the cores of neutron stars. The generalization of
such a work to the case where the strong interactions between
nucleons are accounted for was presented in [38]. Both
the Thomas-Fermi approximation and RMFT were used. It
was shown that the Einstein-Maxwell-Thomas-Fermi (EMTF)
system of equations within RMFT supersede the traditional
Tolman-Oppenheimer-Volkoff (TOV) [39,40] equations used
for the construction of neutron star configurations.

Realistic neutron star configurations, including all the
interactions between particles and the presence of a crust
below nuclear density, were constructed in Ref. [41] by solving
numerically the EMTF equations fulfilling the condition of
global charge neutrality. As pointed out in [41], the self-
consistent solution of these new equations of equilibrium
leads to the existence of a transition layer between the core
and the crust of the star. This is markedly different from the
neutron star structure obtained from the solution of the TOV
equations imposing local charge neutrality (see e.g., [42]),
leading to a new mass-radius (M-R) relation of neutron stars.
The core-crust transition layer in our configurations occurs
near the nuclear saturation density ρnucl. The core (bulk region)
inside this transition layer is a hadronic phase, and the crust
outside this transition is composed of the nuclei lattice and
the ocean of relativistic degenerate electrons and possibly
neutrons at densities below nuclear saturation and larger than
the estimated neutron drip value ∼4.3 × 1011 g cm−3. Inside
the transition region a very strong electric field which is
overwhelming the critical value Ec = m2

ec
3/(e�) for vacuum

break-down is developed, where me is the electron rest-mass.
The e+e− pair creation from vacuum is, however, forbidden in
the system due to the Pauli blocking of degenerate electrons.

In this article we study the surface properties of this
transition layer formed near the nuclear saturation density. We
calculate all the contributions to the surface tension as well
as the electrostatic energy stored in this core-crust layer. We
analyze the stability of these systems under the Bohr-Wheeler
fission mechanism [43]. We analyze the role of the influence of
the gravitational field on the structure of the transition layer and
the surface tension. We also compare and contrast the surface
energy of these neutron stars with the phenomenological
results in nuclear physics.

The article is organized as follows. In Sec. II, we present
the general formulation of the surface tension as well as
the Coulomb energy for this core-crust transition layer. We
formulate in Sec. II A the relativistic equations for a system
of neutrons, protons, and electrons fulfilling the strong,
electromagnetic, and gravitational interactions as well as β

equilibrium. In Sec. II B, we use the semi-infinite matter
model [44] to formulate the equations governing the surface
tension for the transition layer of this system when the electron
density is nearly equal to the proton density in the core bulk
region. In Sec. III, we study the surface tension and the

Coulomb energy, neglecting the presence of the crust and the
gravitational interaction. We calculate the surface structure
and solve these equations to obtain the surface tension and the
Coulomb energy at the nuclear saturation density in Sec. III A.
Then we study in Sec. III B the dependence of the surface
tension and the Coulomb energy on the baryon number density.
In Sec. IV, we study the influence of fermion densities in the
outside region (crust) on the surface tension and the Coulomb
energy. In Sec. V, we study the structure and the surface
tension as well as the Coulomb energy for the core-crust
transition region in the presence of the gravitational field. We
finally summarize and conclude in Sec. VI. We use units with
� = c = 1 throughout the article.

II. RELATIVISTIC EQUATIONS OF MOTION
AND SURFACE TENSION

A. Relativistic equations of motion

As described in Ref. [41], the system we consider is
composed of degenerate neutrons, protons, and electrons
fulfilling global charge neutrality and β equilibrium. We
include the strong, electromagnetic, weak, and gravitational in-
teractions. To describe the nuclear interactions, we employ the
RMFT with the Thomas-Fermi approximation. We adopt the
phenomenological nuclear model of Boguta and Bodmer [5].

We introduce the nonrotating spherically symmetric space-
time metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (1)

where the ν(r) and λ(r) are only functions of the radial
coordinate r .

Within the Thomas-Fermi approximation and mean-field
approximation, we can obtain the full system of general
relativistic equations. A detailed description of this model
can be found in Ref. [41]. We are here interested in the
core-crust transition layer, which as we have shown happens
in a tiny region [41] with a characteristic length scale ∼ λe =
�/(mec) ∼ 100 fm. Correspondingly, the metric functions are
essentially constant in this region. Thus in the core-crust
transition layer the system of equations can be written as

d2V

dr2
+ 2

r

dV

dr
= −4πe eνcore/2eλcore (np − ne), (2)

d2σ

dr2
+ 2

r

dσ

dr
= eλcore [∂σU (σ ) + gsns], (3)

d2ω

dr2
+ 2

r

dω

dr
= −eλcore

(
gωJω

0 − m2
ωω

)
, (4)

d2ρ

dr2
+ 2

r

dρ

dr
= −eλcore

(
gρJ

ρ

0 − m2
ρρ

)
, (5)

EF
e = eνcore/2μe − eV = const, (6)

EF
p = eνcore/2μp + gωω + gρρ + eV = const, (7)

EF
n = eνcore/2μn + gωω − gρρ = const, (8)

where the notations ω0 ≡ ω, ρ0 ≡ ρ, and A0 ≡ V for the time
components of the meson fields have been introduced. Here
μi =

√
(P F

i )2 + m̃2
i and ni = (P F

i )3/(3π2) are the free chem-
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ical potential and number density of the i-fermion species with
Fermi momentum P F

i . The particle effective masses are m̃N =
mN + gsσ and m̃e = me, where mi stands for the rest mass of
each i-fermion species. eνcore ≡ eν(Rcore) and eλcore ≡ eλ(Rcore) are
the metric functions evaluated at the core radius Rcore. gs , gω,
and gρ are the coupling constants of the σ , ω, and ρ fields,
e is the fundamental electric charge, and mω and mρ are the
masses of ω and ρ. The scalar self-interaction potential is

U (σ ) = 1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4, (9)

with the σ meson mass mσ and the third- and fourth- order
constants of the self-scalar interactions g2 and g3.

The generalized Fermi energies of electrons, protons, and
neutrons, EF

e , EF
p , and EF

n (so-called the Klein potentials [38]),
are linked by the β equilibrium [45] of protons, neutrons, and
electrons,

EF
n = EF

p + EF
e . (10)

The scalar density ns is given by the expectation value

ns = 〈ψ̄NψN 〉 = 2

(2π )3

∑
i=n,p

∫ P F
i

0
d3k

m̃N

εi(k)
, (11)

where εi(k) =
√

k2 + m̃2
i is the single-particle energy, and

ψN is the nucleon isospin doublet. In the static case, the
nonvanishing components of the currents are

J ch
0 = eνcore/2(np − ne), (12)

Jω
0 = eνcore/2(nn + np), (13)

J
ρ

0 = eνcore/2(np − nn), (14)

here nb = np + nn is the baryon number density.
The parameters of the nuclear model, namely the coupling

constants gs , gω, and gρ , the meson masses mσ , mω, and mρ ,
and the self-scalar interaction constants g2 and g3 are fixed by
fitting nuclear experimental data. We here use the parameters
of the NL3 parametrization [46], shown in Table I.

Since the equation of state (EOS) obtained from the RMFT
is very stiff (see, e.g., [42]), it is natural to evaluate its
consequences on causality. In order to do this, we compute
the material sound velocity, v2

s = dε/dP , as a function of
the central density ρ(0) = ε(0)/c2 of the configuration, where
ε = T 0

0 and P = −T 1
1 are total energy-density and pressure of

the system, T 0
0 and T 1

1 being the 0–0 and 1–1 components of
the energy-momentum tensor [41].

The result is shown in Fig. 1. We recall that the instability
against gravitational collapse sets in at the turning point in
the M-ρ(0) diagram, namely at the first maximum in the
sequence of equilibrium configurations with increasing central
density, namely dM/dρ(0) = 0. Such a point gives us the

TABLE I. The parameters of the nuclear model from NL3.

mσ (MeV) 508.194 gω 12.8680
mω (MeV) 782.501 gρ 4.4740
mρ (MeV) 763.000 g2 (fm−1) −10.4310
gs 10.2170 g3 −28.8850

FIG. 1. The dependence of the total mass M of the star and
the material sound velocity vs on the central density ρ(0) of the
configuration.

maximum stable mass Mmax, which for the present EOS is
Mmax ≈ 2.67M�, where M� is the solar mass. It can be seen
from Fig. 1 that vs < c, where c is the velocity of light, at any
density in the entire range of ρ(0) of the stable configurations,
and therefore the used EOS does not violate causality.

It is important to mention that the above critical point for
the gravitational collapse does not coincide with the point of
backbending of the M-R relation (see, e.g., Figs. 6 and 14
in [41]). Therefore the backbending in the M-R diagram does
not indicate any sort of instability.

B. Surface tension for semi-infinite matter

As shown in [41], in the bulk hadronic phase of neutron
star cores, the charge separation is very small, so the electron
density neb is nearly equal to the proton density npb. In
addition, the core-crust transition layer has a characteristic
length scale of the order of the electron Compton wavelength;
this is very small compared to the radius of neutron stars. So it
is a good approximation to use the semi-infinite matter model
to construct the surface tension for the system we consider
here. We construct the surface tension for the transition layer
of this system following the method of Baym, Bethe, and
Pethick (BBP) [44].

In the semi-infinite matter model, one assumes a plane
surface with small thickness compared with the bulk region
size separating two semi-infinite regions, represented here
by the inside core bulk and the outside crust. The number
density of the i-fermion species (i = n,p,e) ni(r) approaches
the bulk density of the i-fermion species nib as the position
r̄ ≡ (r − Rcore) → −∞, and approaches the density in the
outside region of the i-fermion species nio as the r̄ → +∞. To
construct the surface tension, one imagines a reference system
with a sharp surface at r̄ = ai at which fermion densities and
meson fields fall discontinuously from the core bulk region to
the outside crust region. Following Ref. [44], the location of
the reference surface for the i-fermion species is defined by
the condition that the reference system has the same number
of the i-fermion species as the original system. Following the
definition of fermion number in the curved spacetime, Eq. (1)
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(see, e.g., [47]), the i-fermion species number Ni is given
by

Ni = 4π

∫
eλ/2r2ni(r)dr. (15)

Since the metric functions are constant in the surface region we
consider as described in Sec. II A, and the size of the surface
region is very small compared to the radius of neutron stars,
we can treat eλ/2r2 as a constant in the integral, the location
of the reference surface for the i-fermion species is given
by∫ ai

−∞
dr̄[ni(r̄) − nib] +

∫ ∞

ai

dr[ni(r̄) − nio] = 0, i = n,p,e.

(16)

Applying the definition of the reference surface in Eq. (16) to
the neutron, proton, and electron distributions yields a slightly
different reference surface.

Similar to the definition of the reference surface for the
fermion, we define the location of the reference surfaces for
meson fields by∫ ai

−∞
dr̄[Fi(r̄) − Fib] +

∫ ∞

ai

dr̄[Fi(r̄) − Fio] = 0, i = σ,ω,ρ,

(17)

where Fi(�r) is the time component of the i-meson field, Fib is
the time component of the i-meson field in the bulk region, and
Fio is the time component of the i-meson field in the outside
region.

The energy associated to the density ε(r) = T 0
0 , where T α

β is
the energy-momentum tensor of the system, can be calculated
in the spherically symmetric metric by (see, e.g., [47])

Et = 4π

∫
e(ν+λ)/2r2ε(r)dr. (18)

Thus, the total surface tension can be written as the sum of
three contributions,

σt = σN + σe + σC, (19)

where we have introduced the nuclear surface tension follow-
ing the method of BBP [44],

σN =
∑

i=n,p,σ,ω,ρ

e(νcore+λcore)/2

×
{∫ ai

−∞
[εi(r̄) − εib]dr̄ +

∫ ∞

ai

[εi(r̄) − εio]dr̄

}
, (20)

the electron surface tension

σe = e(νcore+λcore)/2

×
{ ∫ ae

−∞
[εe(r̄) − εeb]dr̄ +

∫ ∞

ae

[εe(r̄) − εeo]dr̄

}
, (21)

and the surface tension for the electric field as

σC = e(νcore+λcore)/2
∫ ∞

−∞
εE(r̄)dr̄. (22)

with εi(r̄) the energy density of the i species of fermion or
meson fields, εib is the energy density of the i species of
fermion or meson fields in the bulk region, εio is the energy
density of the i species of fermion or meson fields in the
outside region, and εE(r̄) = E2/(8π ) is the electrostatic energy
density. In the curved spacetime equation (1), the electric field
is given by (see, e.g., [41])

E = e−(λcore+νcore)/2 dV

dr
. (23)

It is important to clarify how the values of nio and εio are
obtained. As we showed in Ref. [41], the Einstein-Maxwell-
Thomas-Fermi equations have to be solved under the constraint
of global charge neutrality and not local charge neutrality,
as in the traditional TOV-like treatment. In the latter locally
neutral configurations, the continuity of total pressure leads
to neutron stars with a crust starting from nuclear density,
where the clusterization of nucleons starts to be preferred over
the homogenous phase of the core, all the way up to low
densities in the surface. The region between nuclear density
and the neutron-drip density, ρdrip ≈ 4.3 × 1011 g cm−3, is
called the inner crust, and at lower densities, ρ < ρdrip, the
outer crust. In this case the continuity of the pressure does
not ensure the continuity of the particle generalized chemical
potentials. For electrons it implies an inconsistency since
the mismatching of the electrochemical potential implies the
existence of a Coulomb potential energy, not accounted for in
such a treatment (see, e.g., Ref. [37]).

In the globally neutral case, there is a different core-
crust boundary problem: the generalized fermion chemical
potentials have to match, at the end of the core-crust transition
boundary layer, their corresponding values at the base of the
crust (outside region); i.e., they must satisfy a condition of
continuity (see Ref. [41] for details). It implies that the values
of nio and εio depend on the density at the base of the crust
under consideration.

We first consider below in Sec. III the surface tension of
the system neglecting the presence of the crust. Then, the
more realistic case of a neutron star with a crust is considered
in Sec. IV. Configurations with only outer crust as well as
configurations with both inner and outer crust are studied.

Turning to the Coulomb energy, it is important to remark
that, owing to the small charge separation present in the system
in the core bulk region, we can assume that the electric field
only exists in the transition layer surface. Thus we can consider
the electrostatic energy as a surface property of the system,
hence contributing to the surface energy. This is a major
difference between the present system and an ordinary nucleus
where the electrostatic energy is a volume property.

The relation between the surface energy and Coulomb
energy is very important for a nucleus. As shown by Bohr
and Wheeler [43] when the condition

Ecoul > 2Esur (24)

is satisfied, the nucleus becomes unstable against nuclear
fission; here Ecoul is the Coulomb energy of the nucleus and
Esur is the surface energy of the nucleus. It is important to
recall that the idealized picture of the deformed nucleus of
Bohr and Wheeler is represented by two positively charged
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spheres joined by a nuclear attraction neck. It is thus the
interplay of the Coulomb and nuclear surface energies that
determines the lower energy state. Following this argument one
could think that, since we are treating here a globally neutral
system, such an instability mechanism is absent. However,
the condition (24) can be also obtained by requesting that
a uniformly charged spheroid, constructed from an axially
symmetric deformation at constant volume of a uniformly
charged sphere, be energetically favorable. From a careful
look at the derivation of Eq. (24)—see, e.g., Ref. [48]—it can
be seen that this result follows from the fact that Coulomb
energy of the unperturbed system (the sphere) depends on
the radius as Ecoul ∝ R−1. Such an inverse radius dependence
holds also in the case of a uniformly charged shell, and also in
the case of the globally neutral massive nuclear density cores
studied in Refs. [49,50], which fully reflect the properties
of the system studied in this work. We then expect that the
Bohr-Wheeler condition of instability against fission given by
Eq. (24) applies also to our system. Clearly such a condition is
obtained keeping the system at nuclear density and neglecting
the the extra binding effect of gravity.

In thermodynamics, the surface tension is related to the
mechanical work needed to increase a surface area [51],

dW = σ dS, (25)

here σ is the surface tension, dS is the variation of the surface
area, and dW is the mechanical work needed to increase the
surface area of the system. In this point of view, a system with
a positive surface tension has an attractive nature, and a system
with a negative surface tension has a repulsive nature.

Equations (19)–(22) show that the surface tension mainly
depends on the fermion density and meson field profiles and
the energy densities of fermions and meson fields. The energy
density of the i-fermion species is given by

εi(r̄) = 1

8π2

{
P F

i

√(
P F

i

)2 + m̃2
i

[
2
(
P F

i

)2 + m̃2
i

]

− m̃4 ln
P F

i +
√(

P F
i

)2 + m̃2
i

m̃i

}
, (26)

and the energy densities of the meson fields are (see, e.g., [47])

εσ (r̄) = 1

2
e−λcore

(
dσ

dr̄

)2

+ U (σ ), (27)

εω(r̄) = 1

2
e−(λcore+νcore)

(
dω

dr̄

)2

+ 1

2
e−νcorem2

ωω2, (28)

ερ(r̄) = 1

2
e−(λcore+νcore)

(
dρ

dr̄

)2

+ 1

2
e−νcorem2

ρρ
2, (29)

εE(r̄) = e−(λcore+νcore) 1

8π

(
dV

dr̄

)2

. (30)

We can solve Eqs. (2)–(8) together with the β equilib-
rium (10) to obtain the fermion density and meson field
profiles. Following the similar method in Ref. [41], this system
of equations can be numerically solved with appropriate
conditions and approximations:

(i) set a value for baryon number density of the bulk
region nbb = nnb + npb;

(ii) in the bulk core region the electron density neb is nearly
equal to the proton density npb, i.e., npb  neb;

(iii) set values for eνcore and e−λcore ;
(iv) the values of nio have to match their corresponding

values at the edge of the crust.

III. SURFACE TENSION NEGLECTING
THE PRESENCE OF A CRUST

A. Surface tension at nuclear saturation density

We first consider in this section the surface properties of
this transition layer neglecting the presence of the crust and the
gravitational interaction, i.e., nio = 0 and (eνcore ,e−λcore ) → 1,
as a special case to gain some physical insight into this
transition layer. Also we assume here the baryon number
density of the bulk region to be the nuclear saturation
density, nbb = nnb + npb = nnucl = 0.16 fm−3. The solution
of Eqs. (2)–(8) in this case is shown in Fig. 2. Since the fermion
densities tend to be zero in the outside region, the thickness of
the surface region for electrons should be infinite. However,
we just show the results up to a very small electron density
here, due to the plot scale and the accuracy of the numerical
calculation. As shown in Fig. 2, before a sharp decrease of the
proton and neutron densities, there is a bump on the proton
density profile due to Coulomb repulsion while the electron
density profile decreases.

Using the definitions in Eqs. (19)–(22), we can calculate
the surface tensions for this transition layer. The results are
shown in Table II. In order to study the effect of the ρ meson,
we also show in Table II the surface tensions in the case when
the ρ meson is not present. The presence of ρ decreases the

(a)

0 200 400 600 800
10 4
10 3
10 2
10 1

r ΛΣ

n
fm

3

electrons
protons
neutrons

(b)

0 200 400 600 800
0

500
1000
1500
2000

r ΛΣ

E
Ec

(c) 50 100 150 200 r ΛΣ

40
30
20
10

10
20
30

Ρ
Ω
Σ

FIG. 2. (Color online) (a) Fermion density profiles in units of
fm−3. (b) Electric field in units of the critical field Ec = m2

ec
3/(e�).

(c) Meson fields σ , ω, and ρ in units of MeV. Here nbb = nnucl, nio =
0, and (eνcore ,e−λcore ) → 1. λσ = �/(mσ c) ∼ 0.4 fm is the Compton
wavelength of the σ meson.
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TABLE II. Total and specific surface tensions in MeV fm−2 of
the transition layer with and without the presence of the ρ meson. We
set here nbb = nnucl, nio = 0, and (eνcore ,e−λcore ) → 1.

σt σN σe σC

σ ω 6.28 7.07 −1.72 0.92
σ ω ρ 3.10 7.30 −8.34 4.14

total surface tension σt but increases the Coulomb energy, and
so σC . We can see that the difference of the surface tension
for nucleons, σN , in the presence and absence of the ρ meson
is relatively small with respect to the changes on the electron
component and the electric field. We can explain this small
difference from the fact that, although the ρ meson increases
the proton to neutron density ratio, in neutron stars the β

equilibrium in the presence of degenerate electrons leads to a
high isospin asymmetry 1 − 2Z/A ≈ 1, hence the system is
still dominated by the neutron component, as we show below.

It is interesting to compare the above results with the nuclear
surface tension in the literature. The nuclear surface properties
at saturation density have been widely discussed in relativistic
and nonrelativistic models. The value of the nuclear surface
tension in the literature is around σL ∼ 1 MeV fm−2; see, e.g.,
Refs. [27,28]. The difference between our result in Table II and
σL is mainly due to the fact that the presence of degenerate
electrons changes the proton and neutron density profiles and
also leads to a high isospin asymmetry of our system as a
byproduct of the β-equilibrium condition. Especially, there is
a bump on the density profiles in our system, which would not
appear in the case of normal nuclear matter. Further discussion
about this point is given below; see also Table III.

In order to understand where the surface tension comes
from, we calculate the contribution of each fermion and meson
field to the surface tension as

σn =
∫ an

−∞
[εn(z) − εnb]dz +

∫ ∞

an

[εn(z) − εno]dz, (31)

σp =
∫ ap

−∞
[εp(z) − εpb]dz +

∫ ∞

ap

[εp(z) − εpo]dz, (32)

σe =
∫ ae

−∞
[εe(z) − εeb]dz +

∫ ∞

ae

[εe(z) − εeo]dz, (33)

σσ =
∫ aσ

−∞
[εσ (z) − εσb]dz +

∫ ∞

aσ

[εσ (z) − εσo]dz, (34)

σω =
∫ aω

−∞
[εω(z) − εωb]dz +

∫ ∞

aω

[εω(z) − εωo]dz, (35)

σρ =
∫ aρ

−∞
[ερ(z) − ερb]dz +

∫ ∞

aρ

[ερ(z) − ερo]dz. (36)

The results are shown in Table III. For the sake of comparison
we also show the results in the case of ordinary nuclear matter,
namely for a system without the presence of electrons. As
shown in Ref. [41], comparing to the profiles in the case
without the presence of the ρ meson, the presence of the
ρ meson leads to larger proton and electron densities, and
a larger bump of proton density happens. This effect is felt
indirectly by neutrons (although much less strongly), due to

TABLE III. Contribution of each fermion and meson field to
the surface tension, in MeV fm−2. First row: the transition layer
without the presence of the ρ meson. Second row: the transition layer
with the presence of the ρ meson. Third row: normal nuclear matter
(without the presence of electrons). We set nbb = nnucl, nio = 0, and
(eνcore ,e−λcore ) → 1.

σn σp σe σσ σω σρ

n p e σ ω 3.54 −0.36 −1.72 3.16 0.73
n p e σ ω ρ −27.35 −5.19 −8.34 22.20 19.93 −2.28
n p σ ω ρ 19.43 12.23 −16.08 −13.83 −0.04

the coupled nature of the system of equations (2)–(8). There
is no such bump of the profiles in the case of normal nuclear
matter. Comparing the results of the three cases in Table III,
the effect of the bump of proton density on the surface tension
is significant. The bump on the profiles decreases the value
of the surface tension for fermions and increases the one
for bosons. These results provide evidence of large effect of
electromagnetic interaction and electrons on the proton and
neutron density profiles, and therefore on the global value of
the surface energy of the system. It can be seen from Table III
that we obtain a surface tension of ordinary nuclear matter at
saturation density (see the last line), σN ≈ 1.7 MeV fm−2. In
our calculation, nn is slightly larger than np according to the
β equilibrium. This result is in agreement with the nuclear
surface tension with a small neutron excess, e.g., in Ref. [27].

B. Influence of baryon number density on the surface tension

In order to study the dependence of the surface tension on
the baryon number density, we calculate the surface tensions
for different nbb following the similar procedure in Sec. III A.
The results are shown in Fig. 3. Here the presence of the crust
and the gravitational interaction is neglected, i.e., nio = 0 and
(eνcore ,e−λcore ) → 1. From the results, the total surface tension
can be fitted by

σt,fit = 1.05 + 2.02

(
nbb

nnucl

)3.33

(MeV fm−2), (37)

the surface tension for electric field can be fitted by

σC,fit = −0.37 + 4.50

(
nbb

nnucl

)2

(MeV fm−2), (38)

and the surface tension for nucleons can be fitted by

σN,fit = 0.95 + 6.33

(
nbb

nnucl

)2.91

(MeV fm−2). (39)

As shown by BBP in [44], the phenomenological surface
tension for nucleons within the Thomas-Fermi approximation
can be written as

σ BBP
sur = B(Wo − Wi)

1
2 (ni − no)

3
2 , (40)

where B is a constant, Wo and Wi are the binding energies
per nucleon in the outside and inside bulk regions, no and
ni are the nucleon number densities in the outside and inside
bulk regions. In the case of this section, we set the fermion
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FIG. 3. (Color online) The dependence of the surface tension of
the transition layer on the baryon number density in the bulk region.
Here nio = 0 and (eνcore ,e−λcore ) → 1. (a) The total surface tension σt ,
compared with the fit given in Eq. (37). (b) Surface tension for electric
field σC , compared with the fit given in Eq. (38). (c) Surface tension
for nucleons σN , compared with the fit given in Eq. (39). (d) Ratio of
surface tension for nucleons and the surface tension for electric field
σN/σC .

densities and meson fields to be zero in the outside region, i.e.,
no = Wo = 0. Since the fractional concentration of protons in
the system we consider here is small, the binding energy per
nucleon is [44]

W (k,x) = W (k,0) + f (x)

≈ 19.74k2 − k3 40.4 − 1.088k3

1 + 2.545k
+ f (x), (41)

where k is defined by n = 2k3/(3π2), with n the nucleon
number density, and x is the fractional concentration of
protons. The function f (x) is a small correction to W (k,0)
since x is small in our system. From Eq. (41), one can
estimate that the leading term in the binding energy Wi is the
kinetic term, proportional to k2, i.e., Wi ∝ k2 ∝ n

2/3
bb . Thus one

can estimate that σ BBP
sur ∝ n

11/6
bb in the BBP phenomenological

result [44], where the effect of electromagnetic interaction
on the profile of fermion density is neglected. This BBP
phenomenological result is different from our result in Eq. (39).
This is due to the fact that the electromagnetic interaction and
the presence of electrons change the proton and neutron density
profiles.

For σC , as shown in Eq. (38) the surface tension for
the electric field is proportional to the square of the baryon
number density. This result can be understood as follows.

The Thomas-Fermi equilibrium condition for electrons given
by Eq. (6) tells us that the Coulomb potential in the bulk
core is proportional to the bulk electron chemical potential,
so Vb ∝ μeb, and since the electrons are ultrarelativistic at
these densities we have Vb ∝ P F

eb ∝ n
1/3
eb . The thickness of the

layer is of order �r ∼ n
−1/3
eb and so the electric field scales

as E ∼ −�V/�r ∼ Vb/�r ∝ n
2/3
eb . Thus the contribution of

the Coulomb energy to the surface tension satisfies σC ∝
E2�r ∝ neb and since in the bulk core we have neb  npb

we obtain σC ∝ neb = ynbb, where y = npb/nbb is the proton
fraction in the bulk region. In neutron stars the β equilibrium
between neutrons, protons, and electrons leads to a highly
nuclear isospin asymmetry (y � 1), and since the nucleons are
approximately nonrelativistic and the electrons ultrarelativistic
around nuclear saturation density, it can be estimated from
Eq. (10) that the proton fraction is proportional to the baryon
density, i.e., y ∝ nbb, and therefore we finally obtain our final
result σC ∝ n2

bb.
In Fig. 3 we show also the nuclear-to-Coulomb surface

tension ratio σN/σC . We find that this ratio is larger than unity
for all baryon number densities we considered. This would
in principle imply that the system is stable with respect to the
Bohr-Wheeler condition (24) as we have previously discussed.

It is also worth mentioning that the result that σN/σC > 1
for every nucleon density in our system can be explained as
the result of the penetration of the relativistic electrons into
the nucleus (see Refs. [49,50] for details). This is allowed for
configurations with sufficiently large sizes r0A

1/3 > �/(mec)
or mass numbers A > �3/(r0mec)3 ∼ 107, where r0 ≈ 1.2 fm.
For systems with much larger mass numbers such as neutron
stars, ANS ∼ 1057, the penetration of electrons is such that
they nearly neutralize the system and the electric field becomes
appreciable only near the core surface [49,50].

However, the transition layer could be unbound if the
gravitational binding energy of the shell to the core is
smaller than its electrostatic energy. An approximate com-
putation of the stability of the transition layer in the above
sense can be found in Ref. [49], where it was shown
within Newtonian gravity that the layer is gravitational
bound provided the system has a number of baryons A �
0.004(Z/A)1/2(mPl/mN )3 ∼ 1055(Z/A)1/2 or a mass M =
mNA � 0.01(Z/A)1/2M�, where mN and mPl = (�c/G)1/2

are the nucleon and Planck masses. It is clear that this stability
requirement implies a lower limit for our globally neutral
neutron stars. It would be interesting to perform a detailed
calculation taking into account the effects of general relativity
as well as of the magnetic field on the transition surface induced
by rotation (see Ref. [52]) and the centrifugal potential acting
on the shell. However, such calculation is out of the scope of
this work and will be presented elsewhere.

IV. SURFACE TENSION IN THE PRESENCE
OF THE CRUST

It was shown in Ref. [41] that the properties of the core-crust
transition boundary layer depend on the nuclear parameters,
especially on the nuclear surface tension, and on the density
at the crust edge. The crust is composed of a nuclei lattice
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in a background of degenerate electrons, whose density at
the edge of the crust is denoted here as ncrust

e . There are
in addition free neutrons in the crust when the density of
the crust, ρcrust, is higher than the neutron-drip value ρdrip ∼
4.3 × 1011 g cm−3 [44]. So when the density of the crust ρcrust

is smaller than the neutron-drip value, i.e. ρcrust < ρdrip, we set
the proton and neutron densities to zero in the outside region
while the electron density must match the value ncrust

e , i.e.,
neo = ncrust

e . In the cases when ρcrust > ρdrip both neutrons and
electrons have to match their corresponding crust values at
the end of the core-crust transition layer, i.e., neo = ncrust

e and
nno = ncrust

n , ncrust
n being the neutron density at the crust edge.

As shown by BBP [44] there is no proton-drip at any
density of interest in these systems and therefore we keep
zero as the outside proton density value. In order to set
the matching density values for electrons and neutrons we
use the relation of the free neutron and electron densities in
Sec. 6 of the work by BBP [44]. At the neutron-drip point
the electron Fermi momentum is around P F

eo ≈ 26 MeV or
P F

eo/P
F
eb ≈ 0.18, where P F

eo is the electron Fermi momentum
in the outside region and P F

eb is the electron Fermi momentum
in the bulk region.

The results of the dependence of the surface tension on the
outside electron densities and the density of the crust are shown
in Fig. 4. Here we also neglect the presence of the gravitational
interaction, i.e., (eνcore ,e−λcore ) → 1.

The results of Fig. 4 show that the Bohr-Wheeler condi-
tion (24) for the instability is reached at a crust density ρcrit

crust ∼
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FIG. 4. (Color online) Dependence of the surface tension of the
transition layer on the fermion densities in the outside region and
the density of the crust. Here nbb = nnucl and (eνcore ,e−λcore ) → 1.
(a) Surface tension for the electric field, σC . (b) The total surface
tension σt . (c) The surface tension for nucleons, σN . (d) Ratio of the
surface tension for nucleons and the surface tension for the electric
field, σN/σC , with respect to the density of the crust ρcrust. The neutron
drip point ρdrip ∼ 4.3 × 1011 g cm−3 is around P F

eo/P
F
eb ≈ 0.18.

1.2 × 1014 g cm−3, so the system becomes unstable against
fission when ρcrust > ρcrit

crust, imposing a physical upper limit to
the density at the edge of the crust. It becomes interesting to
include the binding effect of gravity and any other attractive
contribution that strengthens the stability of the system, which
will be analyzed elsewhere. It is interesting that this upper limit
on the crust density implies a lower limit to the maximum
electric field in the core-crust transition region, limiting at
the same time to approaching a state of quasi-local charge
neutrality of the neutron star.

As shown in Fig. 4, the surface tension for the electric
field decreases as increasing the electron number density in
the outside region. The reason is that the increasing electron
number density in the outside region [41] causes a decrease of
the thickness of the interface and of the proton and electron
density difference; i.e., the surface charge density decreases.

It is shown in Fig. 4 that the dependence of the surface
tension for nucleons, σN , on the electron number density
in the outside region is weak before the neutron drip point.
The influence of electron density in the outside region on the
surface structure of nucleons is small in this case. After the
neutron drip point, the free neutrons in the outside region lower
the surface tension significantly, as expected in the BBP phe-
nomenological result [44]. In addition, as shown in Fig. 4, the
total surface tension σt first increases and then decreases with
increasing fermion densities in the outside region. This is due
to the combination of the following two effects. (I) as shown in
Table III, the contribution of electrons to the total surface ten-
sion is negative. For increasing electron density in the outside
region, the effect of electrons on the surface tension becomes
weaker. This increases the total surface tension. (II) After the
neutron drip point, the surface tension for nucleons σN is
lowered significantly by the free neutrons in the outside region.

V. EFFECTS OF THE GRAVITATIONAL INTERACTION
ON THE SURFACE TENSION

We turn now to analyze the effects of the inclusion of the
gravitational field on the surface tension of this transition layer.
For the sake of simplicity, we make this analysis in the simplest
case without a crust, considered in Sec. III.

As shown in Ref. [41], at the core radius (in this case
the surface) of the neutron star, the metric functions are
approximately the same as the Schwarzschild solution, so at
the border of the star we have

eνcore ≈ e−λcore = 1 − 2GM(Rcore)

Rcore
, (42)

with M(Rcore) the mass of the star. The results of the solution
of Eqs. (2)–(8) are shown in Fig. 5 for the case eλcore ≈
e−νcore = 1.5.

Comparing to the results shown in Fig. 2, the fermion den-
sity and meson field profiles are similar to their counterparts in
the case without the gravitational field. In Fig. 5 we see a larger
proton density, a smaller neutron density, and a smaller size of
the core-crust transition layer leading to a larger maximum of
the electric field, comparing to Fig. 2.

Figure 6 shows the results of the dependence of the surface
tension on the value of metric eλcore . As shown in Fig. 6, the total
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FIG. 5. (Color online) (a) Fermion density profiles in units of
fm−3. (b) Electric field in units of the critical field Ec. (c) Meson
fields σ , ω, and ρ in units of MeV. Here we set eλcore ≈ e−νcore = 1.5,
nbb = nnucl, and nio = 0.

surface tension and the surface tension for nucleons increase
as increasing the value of the metric eλcore . There are two effects
which influence the characters of the total surface tension and
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FIG. 6. (Color online) The dependence of the surface tension of
the transition layer on the value of metric eλcore . (a) The total surface
tension σt . (b) Surface tension for nucleons, σN . (c) Surface tension
for electric field, σC . (d) Ratio of surface tension for nucleons and the
surface tension for electric field, σN/σC . We set here nbb = nnucl and
nio = 0.

the surface tension for nucleons. First, as we have seen the
presence of gravitational field changes the fermion density
and meson field profiles. Second, the difference between the
proton density and the neutron density becomes smaller when
the value of the metric eλcore increases, lowering the isospin
asymmetry of the system. The combination of these two effects
leads to the characters of the total surface tension and the
surface tension for nucleons shown in Fig. 6. In addition, as
shown in Fig. 6, the change of the value of the surface tension
for the electric field when increasing the value of eλcore is small.
That is due to the balance of the following two effects: (I) the
electric field in the surface region becomes larger (see Fig. 5);
(II) the thickness of the surface becomes smaller, and then the
Coulomb energy distributes in a smaller region. It can be also
checked from Fig. 5 how in the limit eλcore → 1 all quantities
tend to the values found in Sec. III in the flat case.

VI. SUMMARY AND DISCUSSION

Taking into account strong, weak, electromagnetic, and
gravitational interactions, and fulfilling the global charge
neutrality of the system, a transition layer will happen
between the core and crust of neutron stars [41]. This is
different from the results from traditional TOV equations
imposing local charge neutrality. This core-crust transition
layer happens at the saturation density of nuclear matter.
In this article, using RMFT together with the Thomas-
Fermi approximation, we study the surface properties of this
transition layer. In particular, we computed the surface tension
and Coulomb energy of the transition shell and analyzed the
role of each fermion component and meson fields in the
determination of the properties of this core-crust transition
layer.

Since the length scale of the core-crust transition layer
(∼λe) is much smaller than the radius of neutron stars and
the electron density is nearly equal to the proton density in
the bulk hadronic phase of neutron star cores, we applied the
semi-infinite matter model as an approximation to construct the
surface tension for this core-crust transition layer, following
the method of BBP in Ref. [44]. We first presented the
studies of this transition layer neglecting the presence of the
gravitational interaction. We calculated the surface tension and
the Coulomb energy for the transition layer of this system for
different baryon number densities near the nuclear saturation
density. The results show that the total surface tension as well
as the surface tension for the electric field and the surface
tension for nucleons are proportional to some power-law
function of the baryon number density in the bulk region; see
Eqs. (37)–(39). The difference between the surface energy of
this neutron star matter and the phenomenological results [44]
in nuclear physics has been analyzed. We also studied the
surface structure for different fermion densities in the outside
region, namely for different densities of the neutron star
crust.

We also presented the analysis of the influence the gravita-
tional field and on the structure of the transition layer and the
surface tension. The results show that the fermion density and
meson field profiles are similar to the case without the presence
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of gravitational field, although some quantitative differences
appear. We show that the total surface tension and the surface
tension for nucleons increase with increasing value of the
metric function eλcore .

We studied the instability against Bohr-Wheeler surface
deformation for all the systems. We find that the instability sets
in at a critical density of the crust ρcrit

crust ∼ 1.2 × 1014 g cm−3.
This implies a lower limit to the maximum electric field of
the core-crust transition region and makes inaccessible a state
of quasilocal charge neutrality for the neutron star, which will
in principle be reached when the limit ρcrust = ρcore ≈ ρnucl is
approached.

The results of this work open the way to more general
studies relevant for the analysis of the stability of neutron
stars and the core-crust transition surface. Some of the effects
that need to be addressed for the stability of the shell
include gravitational binding, centrifugal repulsion, magnetic
field induced by rotating electric field, and hence magnetic
dipole-dipole interactions. It would be interesting to perform
a similar analysis for the case of strange stars both bare and in
the presence of an outer crust.

It is also important to mention that surface effects and
boundary layers are contained in the widely discussed nu-
clear pasta phases (see, e.g., Refs. [15–18], and references
therein) expected in the low-density nuclear matter composing
the inner crust of neutron stars. Those configurations also
fulfill the condition of global charge neutrality. However, in
there the condition of global charge neutrality is only imposed
in the pasta phase while keeping the condition of local charge
neutrality in the rest of the configuration, e.g., in the core of
the neutron star. In contrast, in our model, the global charge
neutrality is fulfilled in the whole configuration, which leads
to the phenomenon of gravito-polarization in the core of the
neutron star. Along this line, it would be interesting to study
the differences of these two scenarios and to establish which
is the configuration of minimum energy and therefore realized
in nature. This is a very interesting question which deserves
a detailed and deep analysis; however. it is out of the scope
of the present work and we therefore leave it for a future
publication.

To end, it is interesting to briefly discuss some of the
observables which could shed light into the structure of the
neutron star and therefore to probe the underlying theory.

On one hand, there might be some effects coming from
the microscopic structure. One possibility could be some
electromagnetic processes due to the strong electric field in
the core-crust interface, such as an annihilation line of e−e+
to two photons. These e−e+ pairs can be produced by neutron
star perturbations. However, this effect could be difficult to
observe with the current instrumentation; we are planning to
analyze in detail this interesting problem elsewhere.

On the other hand, as we have pointed out, from the
macroscopic structure point of view the new structure of the
neutron star leads to different radii due to the different size of
the crust. This necessarily leads to the possibility of probing
the theory of neutron stars and in particular the physics of the
core-crust transition from reliable observations of their masses
and radii. Such measurements can come for instance from
observations of the thermal evolution of accreting and isolated
neutron stars. In particular, observations of the cooling of the
neutron star during its thermal relaxation phase (t � 50 yr after
birth), where the core and the crust are thermally decoupled,
carry crucial information on the core-crust transition density
and therefore on the crust mass and size [53].

If we move on to the last stages of the life of a neutron
star, it is clear that the electromagnetic structure of the neutron
star is particularly relevant for the process of its gravitational
collapse. A core endowed with electromagnetic structure leads
to signatures and energetics markedly different from the ones
of a core endowed uniquely of gravitational interactions à la
Oppenheimer and Snyder [54]; see, e.g., Refs. [55–58]. As
pointed out recently [59,60], in these cores there are electric
processes that might lead to a vast e−e+ production in the
process of collapse to a black hole.
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The Feynman-Metropolis-Teller treatment of compressed atoms has been recently generalized to relativistic
regimes and applied to the description of static and rotating white dwarfs in general relativity. We present here
the extension of this treatment to the case of finite temperatures and construct the corresponding equation of state
(EOS) of the system; applicable in a wide regime of densities that includes both white dwarfs and neutron star
outer crusts. We construct the mass-radius relation of white dwarfs at finite temperatures obeying this new EOS
and apply it to the analysis of ultra-low-mass white dwarfs with M � 0.2M�. In particular, we analyze the case
of the white dwarf companion of PSR J1738 + 0333. The formulation is then extrapolated to compressed nuclear
matter cores of stellar dimensions, systems with mass numbers A ≈ (mPlanck/mn)3 or mass Mcore ≈ M�, where
mPlanck and mn are the Planck and the nucleon mass. For T � mec

2/kB ≈ 5.9 × 109 K, a family of equilibrium
configurations can be obtained with analytic solutions of the ultrarelativistic Thomas-Fermi equation at finite
temperatures. Such configurations fulfill global but not local charge neutrality and have strong electric fields on
the core surface. We find that the maximum electric field at the core surface is enhanced at finite temperatures
with respect to the degenerate case.

DOI: 10.1103/PhysRevC.89.015801 PACS number(s): 05.30.Fk, 67.10.Db, 26.60.Kp

I. INTRODUCTION

We have recently generalized in Ref. [1] to relativistic
regimes the classic work of Feynman, Metropolis, and Teller
(FMT) [2], solving a compressed atom by use of the Thomas-
Fermi equation in a Wigner-Seitz cell. The integration of
this equation does not admit any regular solution for a
pointlike nucleus and both the nuclear radius and the nuclear
composition have necessarily to be taken into account [3,4].
This introduces a fundamental difference from the nonrel-
ativistic Thomas-Fermi model where a pointlike nucleus is
adopted. So this approach improves in the following aspects
all previous treatments of the equation of state (EOS) of a
compressed atom, including the classic works based on the
uniform approximation by Chandrasekhar [5] and the EOS by
Salpeter [6]: (1) in order to guarantee self-consistency with a
relativistic treatment of the electrons, the pointlike assumption
of the nucleus is abandoned, introducing a finite-sized nucleus;
(2) the Coulomb interaction energy is fully calculated without
any approximation by solving numerically the relativistic
Thomas-Fermi equation for each given nuclear composition;
(3) the inhomogeneity of the electron distribution inside each
Wigner-Seitz cell; (4) the energy density of the system is
calculated taking into account the contributions of the nuclei,
of the Coulomb interactions, as well as of the relativistic
electrons to the energy of the Wigner-Seitz cells; and (5) the β
equilibrium among neutrons, protons, and electrons is also
taken into account, leading to a self-consistent calculation
of the threshold density for triggering the inverse β decay

*sheyse.martins@icra.it
†michael.rotondo@icra.it
‡jorge.rueda@icra.it
§ruffini@icra.it

of a given nucleus. The computation of the EOS is done by
calculating the dependence of all these ingredients on the level
of compression inside the star interior.

We have shown in Ref. [7] how all these effects together
with general relativity are important in the determination
of the macroscopic structure of white dwarfs as well as
for the determination of their maximum stable mass against
gravitational collapse. More recently, the relativistic FMT EOS
has been used to determine general relativistic equilibrium
configurations of rotating white dwarfs [8].

In Fig. 1 we show the mass-radius relation of T = 0 white
dwarfs for the relativistic FMT, Salpeter, and Chandrasekhar
EOS and compare them with the estimated masses and radii
of white dwarfs from the Sloan Digital Sky Survey Data
Release 4 (SDSS-E06 catalog) [9]. It can be clearly seen
that for masses �0.7–0.8M� deviations from the degenerate
treatments are already evident. It is natural to expect that such
deviations could be related to the neglected effects of finite
temperatures on the structure of the white dwarf. Thus, besides
being interesting on their own, the finite-temperature effects
on the EOS and, consequently, on the mass-radius relation of
the white dwarf are very important. In this work we extend our
previous EOS [1], based on the degenerate relativistic FMT
treatment, by introducing the effects of finite temperatures and
use it to construct equilibrium configurations of white dwarfs
at finite temperatures.

It is very interesting that there have been recently discovered
ultra-low-mass white dwarfs with masses �0.2 M�, which
are companions of neutron stars in relativistic binaries; see,
e.g., Refs. [10,11]. These low-mass white dwarfs represent the
perfect arena to test the EOS of compressed matter since the
central densities of these objects are expected to be �106 g
cm−3, where the degenerate approximation breaks down and
therefore temperature effects cannot be neglected. Using the
mass-radius relation at finite temperatures, we analyze in the
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FIG. 1. Mass-radius relations of white dwarfs obtained with the
relativistic FMT (solid black), Salpeter (dashed black), and Chan-
drasekhar (dotted black) EOS and their comparison with the estimated
masses and radii of white dwarfs taken from the Sloan Digital Sky
Survey Data Release 4 (SDSS-E06 catalog, gray circles) [9].

present work the structure of the white dwarf orbiting the pulsar
PSR J1738 + 0333. We infer its mass, radius, surface gravity,
and internal temperature and compare and contrast them with
previous estimates.

The generalization of the relativistic FMT model presented
in this work will be also useful to extend previous works
in which the nonrelativistic Thomas-Fermi model has been
used to describe the physics of the low-density layers of
neutron stars, including their atmospheres (see, e.g., Ref. [12]).
The proper treatment of the relativistic and Coulomb effects
corrects the over- and underestimates of the total pressure
at high and low densities, respectively, which occurs in
nonrelativistic Thomas-Fermi models and in the approximate
Coulomb corrections of Salpeter [6]; see Ref. [1] for further
details.

In addition to the generalization of the EOS of compressed
matter, we follow the steps in Ref. [1] and extrapolate the
treatment to the case of compressed nuclear matter cores of
stellar dimensions introduced in macroscopic cores composed
of neutrons, protons, and electrons in β equilibrium and
with mass numbers A ∼ (mPlanck/mn)3 ∼ 1057, hence, masses
Mcore ∼ M�, which are expected to be bound by self-gravity.
These objects are idealized configurations that reflect the
properties of macroscopic nuclear matter systems such as
neutron stars.

The paper is organized as follows: first, in Sec. II, we
describe the extension of the relativistic FMT treatment to
finite temperatures. Then, in Sec. III, we summarize the results
of the numerical integration of the equations and describe the
general properties of the new EOS. In Sec. IV we construct
the mass-radius relation of white dwarfs and show specifically
the results for 4He composition and in Sec. V we apply
these results to the case of the ultra-low-mass white dwarf
companion of PSR J1738 + 0333. In Sec. VI we extend the
formulation of compressed matter to the case of the nuclear
matter cores of stellar dimensions introduced in Ref. [1]. We
finally discuss our results in Sec. VII.

II. THE RELATIVISTIC FMT TREATMENT
AT FINITE TEMPERATURES

We now consider the equations of equilibrium of a rela-
tivistic gas of electrons at a temperature T �= 0 surrounding a
finite-sized and positively charged nucleus of mass and atomic
numbers A and Z, respectively. The electron cloud is confined
within a radius RWS of a globally neutral Wigner-Seitz cell
and the system is isothermal.

Following Ref. [1], we adopt a constant distribution of
protons confined in a radius Rc = �λπZ

1
3 , where λπ =

�/(mπc) is the pion Compton wavelength, with mπ the pion
rest-mass. The parameter � is such that at nuclear density,
� ≈ (r0/λπ )(A/Z)1/3, where r0 ≈ 1.2 fm; so in the case
of ordinary nuclei � ≈ 1. Consequently, the proton number
density can be written as

np(r) = 3Z

4πR3
c

θ (r − Rc) = 3

4πλ3
π�3

θ (r − Rc), (1)

where θ (r − Rc) is the Heaviside function centered at the core
(nucleus) radius, r = Rc.

Clearly, the electron number density follows from Fermi-
Dirac statistics and is given by

ne = 2

(2π�)3

∫ ∞

0

4πp2dp

exp
[

Ẽ(p)−μ̃e(p)
kBT

]
+ 1

, (2)

where kB is the Boltzmann constant, μ̃e is the elec-
tron chemical potential without the rest-mass, and Ẽ(p) =√

c2p2 + m2
ec

4 − mec
2, with p and me the electron momentum

and rest-mass, respectively.
Introducing the degeneracy parameter η = μ̃e/(kBT ),

t = Ẽ(p)/(kBT ), and β = kBT /(mec
2), we can write the

electron number density as

ne = 8π
√

2

(2π�)3
m3c3β3/2[F1/2(η,β) + βF3/2(η,β)], (3)

where

Fk(η,β) ≡
∫ ∞

0

t k
√

1 + (β/2)t

1 + et−η
dt (4)

is the relativistic Fermi-Dirac integral.
We consider temperatures that satisfy T � mec

2/kB ≈
6 × 109 K, so we will not take into account the presence of
antiparticles. The Thomas-Fermi equilibrium condition for the
relativistic electron gas is in this case given by

μ̃e(r) − eV (r) = kBT η(r) − eV (r) = const, (5)

where V (r) is the Coulomb potential.
By introducing the dimensionless quantities x = r/λπ ,

xc = Rc/λπ , and χ/r = μ̃e/(�c) and replacing the above
particle densities into the Poisson equation,

∇2V (r) = 4πe[np(r) − ne(r)], (6)
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we obtain the generalization of the relativistic Thomas-Fermi
equation to finite temperatures,

d2χ (x)

dx2
= −4παx

{
3

4π�3
θ (xc − x)

−
√

2

π2

(
me

mπ

)3

β3/2[F1/2(η,β) + βF3/2(η,β)]

}
.

(7)

Equation (7) must be integrated subjected to the same
boundary conditions as in the degenerate case, given by

χ (0) = 0,
dχ

dx

∣∣∣∣
x=0

> 0,
dχ

dx

∣∣∣∣
x=xWS

= χ (xWS)

xWS
, (8)

where the latter condition ensures the global charge neutrality
at the Wigner-Seitz cell radius, RWS, and xWS = RWS/λπ is
the dimensionless cell radius.

We turn now to compute the energy of the Wigner-Seitz cell.
For the present case of finite temperatures, the total energy of
each cell can be split as

EWS = EN + Ek + EC, (9)

where

EN = MN (A,Z)c2 + Uth, Uth = 3

2
kBT , (10)

Ek =
∫ RWS

0
4πr2(Ee − mene)dr, (11)

EC = 1

2

∫ RWS

Rc

4πr2e[np(r) − ne(r)]V (r)dr, (12)

are the nucleus, kinetic, and Coulomb energy. For the nucleus
mass MN (A,Z) we adopt experimental values, Uth is the
thermal energy of nuclei which we here adopt as an ideal
gas,1 and the electron energy density Ee is given by

Ee = mec
2ne +

√
2

π2�3
m4

ec
5β5/2[F3/2(η,β) + βF5/2(η,β)].

(13)

The total density and pressure are then given by

ρ = EWS

c2VWS
, (14)

P = PN + Pe, (15)

where

PN = 2

3

Uth

VWS
= kBT

VWS
, (16)

Pe = 23/2

3π2�3
m4

ec
5β5/2

[
F3/2(ηWS,β) + β

2
F5/2(ηWS,β)

]
,

(17)

1Quantum corrections to the ideal behavior of the ions considered
here can be straightforwardly included following previous treatments
such as in Refs. [13–15].

with ηWS being the value of η at the boundary of the Wigner-
Seitz cell with volume VWS = 4πR3

WS/3.

III. NUMERICAL INTEGRATION OF THE
EQUATIONS AND THE EOS

For a given chemical composition (Z,A), temperature T
(i.e., β), and dimensionless Wigner-Seitz cell radius xWS, the
relativistic Thomas-Fermi equation (7) is integrated subjected
to the boundary conditions (8). We thus obtain both the
Coulomb potential and the function η inside the given Wigner-
Seitz cell. With the knowledge of ηWS, we proceed to evaluate
first the energy of the cell by Eqs. (9)–(13) and, subsequently,
the values of the density and pressure through Eqs. (14)–(17).
For fixed chemical composition and temperature, we repeat
the above steps for different cell radii to obtain different
compression levels of the system; this leads to different
densities and pressures, hence, the EOS. These steps can be
then performed for different compositions and temperatures;
the results are discussed below.

A. Properties of the EOS

As we showed in Ref. [1], as a result of the Coulomb
interaction duly accounted for in the relativistic Thomas-Fermi
treatment, the distribution of the electrons inside a Wigner-
Seitz cell is not uniform. In order to show the effects of the
temperature, in Fig. 2 we show, as an example, the electron
number density inside a Wigner-Seitz cell of 56Fe at a density
of 30 g cm−3 and for temperatures T = [0,107,1010] K.

We can see in Fig. 2 how the effect of the temperature
tends to homogenize the electron distribution inside the
cell. In addition, we notice that the larger the temperature
the larger the value of the electron density at the border of
the Wigner-Seitz cell, thus increasing the electron pressure.
This effect can be clearly seen in Fig. 3, where we show
the value of the electron number density evaluated at

FIG. 2. Electron number density inside a Wigner-Seitz cell of
56Fe at a density of 30 g cm−3 at selected temperatures. Here nBohr =
3/(4πR3

Bohr) ≈ 1.6 × 1024 cm−3, where RBohr = �/(e2me) ≈ 5.3 ×
10−9 cm, is the Bohr radius. In this example we have used both
low density and high temperatures up to 1010 K in order to show an
extreme example of electron density flattening.
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FIG. 3. Electron number density at the radius of a Wigner-Seitz
cell of 12C as a function of the density (14) for the selected
temperatures T = [104,105,106,107,108] K.

the cell radius, RWS, as a function of the density for the
temperatures T = [104,105,106,107,108] K for a given
chemical composition, 12C.

The volume of the Wigner-Seitz cell, VWS = 4πR3
WS/3,

determines the density of the system ρ given by Eq. (14); the
smaller the volume the larger the density. In Fig. 4 we show
the density of the system as a function of the Wigner-Seitz cell
radius RWS for a temperature T = 107 K and 12C chemical
composition. Small deviations of the R−3

WS behavior are due to
the inhomogeneity of the electron distribution inside the cell
and to the contribution of the Coulomb and electron kinetic
energy to the density.

In this line it is important to mention that often in the
literature the density of the system is approximated as

ρ = A

Z
Mune, (18)

which corresponds to the rest-mass density of nuclei in the
system and where a uniform distribution of electrons is

FIG. 4. Total density (in g cm−3) of the system as a function of
the radius of the Wigner-Seitz cell [in units of the electron Compton
wavelength λe = �/(mec) ≈ 3.9 × 10−11 cm] in the case of 12C at a
temperature T = 107 K.

FIG. 5. Total pressure as a function of the matter density ρ =
AMune/Z, given by Eq. (18), and ρ = EWS/(c2VWS), given by
Eq. (14), which includes the thermal, kinetic, and Coulomb energy in
the Wigner-Seitz cell. In this example the composition is 12C and the
temperature T = 104 K.

assumed. Here Mu = 1.6604 × 10−24 g is the unified atomic
mass. We can see from Eq. (9) that this is equivalent to
neglecting the thermal, kinetic, and Coulomb energy of the
cells as well as the inhomogeneity of the electron density.
However, as we showed in Refs. [1,7], the inclusion of the
Coulomb and electron kinetic energies are important at low
and high densities, respectively. In particular, the contribution
of the kinetic energy of the electrons to the energy density
is fundamental in the determination of the critical density for
the gravitational collapse of 12C white dwarfs [7]. We show in
Fig. 5 the effect on the EOS of using as density of the system
only the nuclei rest-mass, Eq. (18), instead of the full mass
density given by Eq. (14), which accounts for the total energy
of the Wigner-Seitz cell given by Eq. (9).

The effects of finite temperatures are clearly expected to
be important at low densities, where the system loses its
degeneracy. The point where the EOS should start to deviate
from its degenerate behavior can be estimated by equating the
degenerate and ideal gas pressures for the electron component.
Assuming the electrons as nonrelativistic, we have nekBT =
(3π2)2/3�2n

5/3
e /me, from which we obtain that temperature

effects are important for densities

ρ � 1.5 × 103

(
T

107 K

)3/2

g cm−3, (19)

where we have used A/Z ≈ 2 and ρ ≈ AMune/Z. In Fig. 6
we compare the relativistic degenerate FMT EOS [1,7] and its
generalization at finite temperatures presented in this work for
the cases T = 107 and 108 K and 12C chemical composition.
For these specific temperatures we see that deviations of the
degenerate EOS start at a density ρ ≈ 2 × 104 g cm−3 and
≈106 g cm−3, respectively. For the same temperatures, Eq. (19)
estimates deviations from degeneracy at ρ ≈ 1.5 × 103 g cm−3

and ≈4.8 × 104 g cm−3, respectively. Thus, the lower the
temperature the better the estimate given by Eq. (19); the
reason for this is that for larger temperatures the system will
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FIG. 6. Comparison of the EOS for 12C at temperatures
T = [0,107,108] K.

lose the degeneracy at larger densities where the nonrelativistic
approximation for the electrons breaks down.

In Fig. 7, we show the nuclei to electron pressure ratio
in cells of 12C as a function of the density and for selected
temperatures. It can be seen that for all temperatures the ratio
approaches the same constant value in the low-density regime.
This is due to the fact that at sufficiently low densities the
electron gas also becomes an ideal gas and, consequently,
its pressure is approximately given by P id

e = ZkBT/VWS.
Therefore, the nuclei-to-pressure ratio approaches the limit
PN/P id

e = 1/Z, where PN is given by Eq. (16). In the example
of Fig. 7 we have Z = 6 so PN/P id

e ≈ 0.17. It is clear that the
density at which each curve reaches such a constant value
increases with the temperature, since at larger temperatures
the electrons reach their ideal gas state at higher densities.

We summarize the finite-temperature generalization of the
relativistic FMT EOS in Fig. 8, where we plot as an example
the total pressure (15) as a function of the total density of
the system (14) at temperatures T = [104,105,106,107,108] K
and for a chemical composition, 12C. All the above features

FIG. 7. Nuclei to electron pressure ratio as a function of the mass
density in the case of 12C white dwarf for selected temperatures in
the range T = 104–108 K.

FIG. 8. Total pressure as a function of the mass density in the
case of 12C white dwarf for selected temperatures in the range
T = 104–108 K.

of the EOS are general and therefore applied also to chemical
compositions other than 12C.

B. Inverse β decay and pycnonuclear reactions

We turn now to the finite-temperature effects on the
inverse β-decay instability. It is known that white dwarfs may
become unstable against the inverse β-decay process (Z,A) →
(Z − 1,A) through the capture of energetic electrons. In order
to trigger such a process the electron energy must be larger
than the mass difference between the initial nucleus (Z,A)
and the final nucleus (Z − 1,A). This threshold energy is
denoted as ε

β
Z . Usually, ε

β
Z − 1 < ε

β
Z is satisfied and therefore

the initial nucleus undergoes two successive decays, i.e.
(Z,A) → (Z − 1,A) → (Z − 2,A); see, e.g., Refs. [6,16].

The critical density ρ
β
crit is then obtained numerically by

looking for the density at which the electron energy equals
ε

β
Z . In Table II of Ref. [7] we showed that, in the degenerate

case, the threshold energies to trigger the inverse β process for
4He, 12C, 16O, and 56Fe are reached at densities ρ

β
crit = 1.37 ×

1011, 3.88 × 1010, 1.89 × 1010, and 1.14 × 109 g cm−3,
respectively.

For the present finite-temperature case, from our numerical
integration we found that the critical densities for the occur-
rence of the inverse β-decay instability are not affected so they
are the same as in the degenerate approximation. This is due
to the fact that the effects of temperatures T � 108 K become
relevant at densities ρ � 106 g cm−3, as can be seen from
Figs. 6 and 8.

We turn now to the pycnonuclear reactions. In a nuclei
lattice the nuclear reactions proceed with the overcoming of
the Coulomb barrier between neighbor nuclei. At zero temper-
atures, T = 0, the Coulomb barrier can be overcome due to
the zero-point energy of the nuclei (see, e.g., Refs. [16,17]),

Ep = �ωp, ωp =
√

4πe2Z2ρ

A2M2
u

. (20)

The number of pycnonuclear reactions per unit volume per
unit time increases with the density of the system [17] and any
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effect that reduces the Coulomb barrier will increase the cross
section of the reaction. The inclusion of the temperature could
then lead to thermo-enhanced pycnonuclear rates (see, e.g.,
Refs. [17,18]). The astrophysical importance of pycnonuclear
reactions, e.g., in the theory of white dwarfs, relies on the
fact that, for instance, the 12C + 12C pycnonuclear fusion,
leading to 24Mg, is possible in a time scale shorter than a
Hubble time, τpyc < 10 Gyr, for densities ∼1010 g cm−3. Such
a density turns to be larger than the critical density ∼3 ×
109 g cm−3 for the double inverse β decay of 24Mg into 24Ne
by electron capture (see, e.g., Refs. [6,16]), which destabilize
the white dwarf due to sudden decrease of its electron pressure.
Under such conditions, 12C + 12C fusion will indirectly induce
the gravitational collapse of the white dwarf rather than to a
supernova explosion.

Following the updated reaction rates of Ref. [18], we
recently computed in Ref. [8] the critical density for pyc-
nonuclear instability in general relativistic uniformly rotating
12C white dwarfs at zero temperatures. It comes out that the
instability agent of white dwarfs can be either general rela-
tivistic effects or inverse β-decay or pycnonuclear reactions
or rotation through mass shedding or secular instabilities (see
Ref. [8] for details).

The electrons around the nuclei screen the positive charge of
the nucleus, reducing the Coulomb barrier; hence, their proper
inclusion could, in principle, increase the reaction rates. On
the other hand, we showed in Figs. 2 and 3 two different
effects due to the finite temperature: (1) it tends to flatten the
electron distribution, thus changing the electron screening of
the Coulomb potential with respect to the degenerate case, and
(2) it increases the electron density, hence, the pressure at the
border of the cell. These effects clearly could lead not only to
qualitative but also to quantitative differences in the estimate
of the rates of the pycnonuclear reactions (see, e.g., Ref. [19]).

However, the inclusion of these combined effects within the
pycnonuclear reactions treatment, following a fully relativistic
approach of the electron gas and the Coulomb interactions as
the one presented here, is a most difficult and complex task
that deserves a detailed and separated analysis and therefore
will not be addressed here.

IV. MASS-RADIUS RELATION

General relativistic effects are important in the high-
density branch of white dwarfs; for instance, they lead to
the gravitational collapse of the star prior to the trigger
of the inverse β-decay instability in 12C white dwarfs [7].
We here construct the mass-radius relation of white dwarfs
in their entire range of stability, so we use the equations
of hydrostatic equilibrium within the framework of general
relativity. Assuming the spherically symmetric metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (21)

the equations of equilibrium can be written in the Tolman-
Oppenheimer-Volkoff form,

dν(r)

dr
= 2G

c2

4πr3P (r)/c2 + M(r)

r2
[
1 − 2GM(r)

c2r

] , (22)

FIG. 9. Total mass versus central density for 4He white dwarfs
for selected temperatures from T = 104 K to T = 108 K.

dM(r)

dr
= 4πr2 E(r)

c2
, (23)

dP (r)

dr
= −1

2

dν(r)

dr
[E(r) + P (r)], (24)

where we have introduced the mass enclosed at the distance
r through e−λ(r) = 1 − 2GM(r)/(c2r), E(r) = c2ρ(r) is the
energy density, and P (r) is the total pressure, given by
Eqs. (14) and (15).

These equations can be integrated for a wide range of central
densities, temperatures, and selected chemical compositions,
for instance 4He, 12C, 16O, and 56Fe. In Figs. 9 and 10, we
show in particular the mass-central density and mass-radius
relations of 4He white dwarfs in the range of densities and
radii where finite-temperature effects are more important.

The minima in these plots mark the transition from the
ideal to the degenerate behavior of the electron gas: from left
to right in the M-ρc relation and from right to left in the M-R
relation. Thus these minima can be used to give an estimate
of the minimum mass that a star should have to be able to
burn stably a given chemical composition since the condition
of a stable burning requires that the gas be nondegenerate.

FIG. 10. Total mass versus radius for 4He white dwarfs for
selected temperatures from T = 104 K to T = 108 K.
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Consequently, stable burning requires that the star lies on the
branch of solutions on the left-hand side of the minimum of
the M-ρc diagram or on the right-hand side of the minimum
of the M-R diagram. For instance, helium burning is triggered
at a temperature THe+He ≈ 108 K, so we can obtain from the
solutions shown in Fig. 9 that the minimum mass for stable
helium burning is MHe+He

min ≈ 0.51M�. The corresponding
radius and density of this configuration is 4.54 × 109 cm ≈
0.065R� and 6.59 × 105 g cm−3, respectively. A similar
analysis can be done for the other compositions.

V. THE ULTRA-LOW-MASS WHITE DWARF
COMPANION OF PSR J1738 + 0333

It is clear that the effects of the temperature are particularly
important at low densities and, hence, for low-mass white
dwarfs. We analyze here the specific case of the white dwarf
companion of the millisecond pulsar PSR J1738 + 0333. We
refer to Ref. [11] for details on the observations and technical
aspects of the derivation of the binary parameters.

Antoniadis et al. [11] obtained, by use of the the
Goodman High Throughput Spectrograph instrument of the
Southern Astrophysical Research Telescope (SOAR) at Cerro
Pachón, Chile, a photometric radius of the white dwarf,
RWD = 0.042 ± 0.004R�. On the other hand, the analysis
of the white dwarf atmosphere spectrum with the mod-
els of Ref. [20] led to an effective surface temperature,
Teff = 9130 ± 150 K, and a logarithm of the surface grav-
ity, log10(g) = log10(GMWD/R2

WD) = 6.55 ± 0.1. Using the
evolutionary mass-radius relation of Painei et al. [21], the
mass of the white dwarf was estimated in Ref. [11] to
be MWD = 0.181+0.007

−0.005M�, with a corresponding radius of
RWD = 0.037+0.004

−0.003R�, in agreement with the photometric
value.

A first attempt to obtain the mass of the white dwarf can
be done directly from the observed data by combining the
spectral and photometric analysis. Assuming the photometric
radius as the star radius, the mass of the white dwarf would
be MWD = gR2

WD/G ≈ 0.23M�, using the central values of
RWD and g, which is roughly consistent with the mass derived
from the mass-radius relation of Ref. [21].

In order to compare our mass-radius relation at finite
temperatures with the above results and infer the internal
temperature of the white dwarf, we plotted in Figs. 11 and
12 our theoretical surface gravity-mass and radius relations
for 4He white dwarfs, together with the above observational
constraints.

An inspection of Fig. 11 does not give us any information on
the possible internal temperature of the white dwarf since, in
principle, we do not have any a priori information on the mass.
However, from Fig. 12 we clearly identify that the interior tem-
perature of the white dwarf core should be T ≈ 2–3 × 107 K.
In Fig. 13 we plot the mass-radius relation for 4He white
dwarfs with the observational constraints of the companion
of PSR J1738 + 0333. We can now compare our results
with an estimate obtained, for instance, using the relation
found by Koester in Ref. [22] between the central and surface
temperatures of the white dwarf, T 4

eff/g = 2.05 × 10−10T 2.56
c .

Using the value Teff = 9130 K and log10(g) = 6.55, this

FIG. 11. Logarithm of the surface gravity, log10(g) =
log10(GMWD/R2

WD), as a function of the mass for 4He white
dwarfs for selected interior temperatures from T = 104 K to
T = 108 K. The horizontal diamonds indicate the maximum and
minimum best-fit values log10(g) = 6.55 ± 0.1.

relation gives Tc ≈ 2.6 × 107 K, in full agreement with our
inference. In this estimate we have neglected the contribution
of the thickness of the envelope to the total surface radius of the
white dwarf. However, this approximation does not introduce
a large error since the envelope would be in this case at most
∼10−2RWD thick.

VI. APPLICATION TO NUCLEAR MATTER
CORES OF STELLAR DIMENSIONS

In Ref. [1] we extended the relativistic FMT model to
what we have called nuclear matter cores of stellar dimen-
sions: macroscopic objects composed by neutrons, protons,
and electrons in β equilibrium, with mass numbers A ∼
(mPlanck/mn)3 ∼ 1057 and corresponding masses Mcore ∼ M�.

FIG. 12. Logarithm of the surface gravity, log10(g) =
log10(GMWD/R2

WD), as a function of the radius for 4He white
dwarfs for selected interior temperatures from T = 104 K to
T = 108 K. The horizontal diamonds and the vertical tick dashed
lines indicate the maximum and minimum best-fit values of the
surface gravity, log10(g) = 6.55 ± 0.1, and photometric radii
RWD = 0.042 ± 0.004R�, respectively.
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FIG. 13. Total mass versus radius for 4He white dwarfs for
selected interior temperatures from T = 104 K to T = 108 K.
The diagonal diamonds and the vertical tick dashed lines indicate
the maximum and minimum best-fit values of the surface grav-
ity, log10(g) = 6.55 ± 0.1 and photometric radii RWD = 0.042 ±
0.004R�, respectively.

These systems are expected to represent idealized cores of
macroscopic systems of nuclear matter kept bound by self-
gravity, such as the cores of neutron stars. We now follow
our treatment in Ref. [1] and use the existence of scaling
laws and proceed to the ultrarelativistic limit of the relativistic
Thomas-Fermi equation at finite temperatures given by Eq. (7).

The β equilibrium of Nn = A − Z neutrons, Z protons,
and Z electrons gives, for massive cores, Nn � Z. Typically,
in these systems we have A/Z ≈ 102, so at nuclear density the
neutron gas will have a Fermi energy EF

n of the order of

EF
n 

(
P F

n

)2

2mn

 (3π2)2/3 �2

2mn

(
A

ρnuc

mn

)2/3

∼ 60 MeV,

(25)

where we have used a nuclear density value ρnuc ≈ 2.7 ×
1014 g cm−3 and 1 − Z/A ≈ 1. Assuming a temperature such
that T � T F

n = EF
n /kB ≈ 7 × 1011 K, the neutron chemical

potential μn can be expanded as

μn = EF
n

[
1 − π2

12

(
kBT

EF
n

)2

− π4

80

(
kBT

EF
n

)4

+ · · ·
]
. (26)

Correspondingly, the protons have Fermi energy EF
p ∼

(Z/A)2/3EF
n ∼ MeV, so for temperatures kBT �EF

p ≈ 1 MeV,
Eq. (26) applies also for protons,

μp = EF
p

[
1 − π2

12

(
kBT

EF
p

)2

− π4

80

(
kBT

EF
p

)4

+ · · ·
]
. (27)

As a result, for temperatures kBT � 1 MeV, both neutrons
and protons can be treated as degenerate particles, whereas in
this limit electrons are semidegenerate and ultrarelativistic. In
the case of ordinary nuclei, due their high isospin symmetry
(A/Z ≈ 2), both neutrons and protons can be treated as
degenerate particles until T ≈ (Z/A)2/3EF

n /kB ∼ 38 MeV.
Since in the ultrarelativistic limit for electrons their kinetic

energy ε is simply pc, the condition μe/(kBT ) � 1 holds.

Consequently, the integral

I =
∫ ∞

0

f (ε)dε

exp
(

ε−μe

kBT

) + 1
, (28)

with f (ε) = ε2 appearing in the electron density given by
Eq. (2), can be expanded as

I =
∫ μe

0
f (ε)dε + 2(kBT )2f ′(μe)

∫ ∞

0

z

ez + 1
dz

+ 1

3
(kBT )4f ′′′(μe)

∫ ∞

0

z3

ez + 1
dz + · · · , (29)

where ∫ ∞

0

zx−1

ez + 1
dz = (1 − 21−x)�(x)

∞∑
n=1

1

nx
, (30)

with � the Gamma function and μe the chemical potential of
electrons and a prime denotes derivative with respect to ε. We
thus obtain the result

I =
∫ μe

0
f (ε)dε + π2

6
(kBT )2f ′(μe)

+ 7π4

360
(kBT )4f ′′′(μe) + · · · , (31)

and, retaining only the first term in T , we have

I ≈ μ3
e

3
+ π2

6
(kBT )2μe. (32)

As discussed in Ref. [1], for a nuclear massive core of stellar
dimensions we can assume the plane-parallel approximation,
which leads to the Poisson equation in the case of finite
temperatures,

d2φ̂

dξ 2
= −θ (ξ − ξc) + φ̂3 + sφ̂, (33)

where φ = 41/3(9π )−1/3χ�/x, x̂ = kx, where k = (12/π )1/6√
α�−1, ξ = x̂ − x̂c, and s = (2π4)1/3�2(kBT )2/(34/3m2

πc2).
Notice that the above equation is the ultrarelativistic version
of Eq. (7) for semidegenerate electrons and how, in the limit
T → 0 (s → 0), it leads to the ultrarelativistic Thomas-Fermi
equation for fully degenerate massive cores obtained in
Ref. [1].

The Coulomb potential is given by

eV (ξ ) =
(

9π

4

)1/3 1

�
mπc2φ̂(ξ ) − C, (34)

with C = (9π/4)1/3�−1mπc2φ̂(ξWS), the electric field is

E(ξ ) = −
(

35π

4

)1/6 √
α

�2

m2
πc3

e�
dφ̂

dξ
, (35)

and the electron number density is

ne(ξ ) = (mπc2)3

3π2�3c3

[(
9π

4

)
1

�3
φ̂3(ξ )

+ π2

2

(
9π

4

)1/3 1

�

(
kBT

mπc2

)2

φ̂(ξ )

]
. (36)
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The global charge neutrality of the system imposes the
boundary condition that the electric field vanishes at ξ = ξWS.
This implies dφ̂/dξ |ξ=ξWS = 0. The function φ̂ and its first
derivative dφ̂/dξ must be continuous at the surface ξ = 0 of
the nuclear density core. This boundary-value problem can be
solved analytically and indeed Eq. (33) has the first integral,

2

(
dφ̂

dξ

)2

=
{
φ̂4(ξ ) + 2sφ̂2 − 4φ̂(ξ ) + 3 − 2s, ξ � 0,

φ̂4(ξ ) + 2sφ̂2 − φ̂4(ξWS) − 2sφ̂2(ξWS), ξ > 0,

(37)

with boundary conditions at ξ = 0,

φ̂(0) = φ̂4(ξWS) + 3

4
+ s

2
[φ̂2(ξWS) − 1], (38)

dφ̂

dξ

∣∣∣∣
ξ=0

= −
{

φ̂4(0) − φ̂4(ξWS)

2
+ s[φ̂2(0) − φ̂2(ξWS)]

}1/2

.

(39)

The solution of Eq. (37) in the interior region ξ � 0 is then

φ̂(ξ ) = 1 − (s + 3)

[
1 +

(
s + 1

2

)1/2

sinh(β − √
s + 3ξ )

]−1

,

(40)

with

sinh β =
√

2

s + 1

{
11 + φ4(ξWS) + 2s[φ2(ξWS) + 1]

1 − φ4(ξWS) − 2s[φ2(ξWS) − 1]

}
.

(41)

In the exterior region ξ > 0 the solution of Eq. (37) is

φ̂(ξ ) =
√

−s + √
s2 + G

cos
(
am

[
(s2 + G)1/4(ξ − ξWS), 1

2 + s

2φ̂2(ξWS)

]) , (42)

where G = φ̂4(ξWS) + 2sφ̂2(ξWS). It can be seen again how in
the limit T → 0 (s → 0), the solution at finite temperatures
given by Eqs. (40)–(42) becomes its degenerate counterpart
obtained in Ref. [1].

From Eqs. (39) it follows that the peak of the electric field
at the surface of the core is larger than the corresponding value
obtained for T = 0. In fact, we have, for any temperature
T > 0 and level of compression ξWS �= 0,∣∣∣∣

(
dφ̂

dξ

)
ξ=0

∣∣∣∣
T >0

>

∣∣∣∣
(

dφ̂

dξ

)
ξ=0

∣∣∣∣
T =0

. (43)

As in the degenerate case, in the limit ξWS → 0, the global
charge neutrality Ne = Z and the local charge neutrality ne =
np are recovered and at the surface of the massive core no
electrodynamical structure is present.

The above analytic equations can be used only in the ultra-
relativistic regime of the electron gas; it can then be checked
from the above formulation that at such high compressions we
have φ̂(ξ )|T >0 ≈ φ̂(ξ )|T =0. More specifically, corrections due

to thermal effects on the density of ultrarelativistic electrons
are smaller than 1% for T � 0.1 MeV/kB ≈ 109 K.

VII. CONCLUSIONS

The Feynman-Metropolis-Teller treatment [1] of com-
pressed matter has been here generalized to the case of finite
temperatures. We have thus obtained the EOS formed by nuclei
and electrons by solving the finite-temperature relativistic
Thomas-Fermi equation (7) within globally neutral Wigner-
Seitz cells. We emphasize in this work the electron component
and the Coulomb interaction between ions and electrons fully
computed within a relativistic Thomas-Fermi approach with
finite-sized nuclei, and therefore applicable to any relativistic
regime of the electrons and densities. This work generalizes
other treatments based on either a uniform distribution of
electrons or the classic Thomas-Fermi treatment; see, e.g.,
Ref. [12]. The quantum corrections to the classic ideal ion fluid
considered in this work can be straightforwardly introduced in
their corresponding ranges of relevance, as done in previous
treatments; see, e.g., Refs. [13–15,23].

We have shown the general features of the new EOS
and compared and contrasted the effects due to the nonzero
temperature with respect to the degenerate case. We have
checked that the onset of the inverse β-decay instability is
not modified for temperatures T � 108 K and therefore the
zero-temperature critical densities computed in Ref. [7] can
be safely used. The enhancement and flattening of the electron
density inside the cell for larger temperatures could have
relevant effect in the pycnonuclear reaction rates in the interior
of white dwarfs and/or in the low density layers of accreting
neutron stars.

Deviations from the degenerate EOS have been shown to
occur in the regions of interest of low-mass white dwarfs and
in the outermost layers of neutron star crusts. Ultra-low-mass
white dwarfs, MWD ∼ 0.2M� [10,11], have been found in
binary systems with neutron star companions. These objects
have central densities �106 g cm−3, where the degenerate
approximation breaks down and so thermal effects cannot
be neglected. We have analyzed here the specific case of
PSR J1738+0333, whose mass and radius was estimated
in Ref. [11] using the evolutionary mass-radius relation of
Painei et al. [21]. They obtained MWD = 0.181+0.007

−0.005M�,
RWD = 0.037+0.004

−0.003R�, in agreement with the spectrometric
and photometric data. We inferred for this object an internal
temperature T ≈ 2–3 × 107 K, and a mass MWD ≈ 0.2M�,
assuming, for instance, the photometric radius, R = 0.042R�,
as the star radius. We checked also our result using the relation
by Koester [22] between the internal and surface white dwarf
temperatures, T 4

eff/g = 2.05 × 10−10T 2.56
c . Using the surface

temperature and the logarithm of the surface gravity obtained
from the spectral analysis, Teff = 9130 K and log10(g) = 6.55,
this relation gives Tc ≈ 2.6 × 107 K, in full agreement with
our results.

Following our previous work [1], we finally extrapolated
the treatment to macroscopic systems with mass numbers
A ≈ (mPlanck/mn)3 ∼ 1057, corresponding to masses Mcore ≈
M�. We showed that the presence of the temperature enhances
the maximum electric field in the core surface of these objects.

015801-9
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Abstract

In our previous treatment of neutron stars, we have developed the model fulfilling global and not local
charge neutrality. In order to implement such a model, we have shown the essential role by the Thomas–
Fermi equations, duly generalized to the case of electromagnetic field equations in a general relativistic
framework, forming a coupled system of equations that we have denominated Einstein–Maxwell–Thomas–
Fermi (EMTF) equations. From the microphysical point of view, the weak interactions are accounted for
by requesting the β stability of the system, and the strong interactions by using the σ–ω–ρ nuclear model,
where σ , ω and ρ are the mediator massive vector mesons. Here we examine the equilibrium configura-
tions of slowly rotating neutron stars by using the Hartle formalism in the case of the EMTF equations
indicated above. We integrate these equations of equilibrium for different central densities ρc and circular
angular velocities Ω and compute the mass M , polar Rp and equatorial Req radii, angular momentum J ,
eccentricity ε, moment of inertia I , as well as quadrupole moment Q of the configurations. Both the
Keplerian mass-shedding limit and the axisymmetric secular instability are used to construct the new mass–
radius relation. We compute the maximum and minimum masses and rotation frequencies of neutron stars.
We compare and contrast all the results for the global and local charge neutrality cases.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

We have recently shown [22,23,2] that the equations of Tolman–Oppenheimer–Volkoff (TOV)
[30,21] traditionally used to describe the neutron star equilibrium configurations, are superseded
once the strong, weak, electromagnetic and gravitational interactions are taken into account.
Instead, the Einstein–Maxwell system of equations coupled with the general relativistic Thomas–
Fermi equations of equilibrium have to be used; what we called the Einstein–Maxwell–Thomas–
Fermi (EMTF) system of equations. While in the TOV approach the condition of local charge
neutrality, ne(r) = np(r) is imposed (see e.g. Haensel et al. [12] and references therein), the
EMTF approach requests the less stringent condition of global charge neutrality, namely∫

ρch d3r =
∫

e
[
np(r) − ne(r)

]
d3r = 0, (1)

where ρch is the charge density, e is the fundamental electric charge, ni is the particle density of
the i-species, and the integral is carried out on the entire volume of the system.

The Lagrangian density taking into account all the interactions include the free-fields terms
Lg , Lγ , Lσ , Lω, Lρ (respectively for the gravitational, the electromagnetic, and the three
mesonic fields), the three fermion species (electrons, protons and neutrons) term Lf and the
interacting part in the minimal coupling assumption, Lint [23,2]:

L = Lg + Lf + Lσ + Lω + Lρ + Lγ + Lint, (2)

where1

Lg = − R

16π
, Lf =

∑
i=e,N

ψ̄i

(
iγ μDμ − mi

)
ψi,

Lσ = ∇μσ∇μσ

2
− U(σ), Lω = −ΩμνΩ

μν

4
+ m2

ωωμωμ

2
,

Lρ = −RμνRμν

4
+ m2

ρρμρμ

2
, Lγ = −FμνF

μν

16π
,

Lint = −gσ σ ψ̄NψN − gωωμJμ
ω − gρρμJμ

ρ + eAμJμ
γ,e − eAμJ

μ
γ,N ,

where the description of the strong interactions between the nucleons is made through the σ–ω–ρ

nuclear model in the version of Boguta and Bodmer [6]. Thus Ωμν ≡ ∂μων − ∂νωμ, Rμν ≡
∂μρν − ∂νρμ, Fμν ≡ ∂μAν − ∂νAμ are the field strength tensors for the ωμ, ρ and Aμ fields
respectively, ∇μ stands for covariant derivative and R is the Ricci scalar. We adopt the Lorenz
gauge for the fields Aμ, ωμ, and ρμ. The self-interaction scalar field potential is U(σ), ψN is the
nucleon isospin doublet, ψe is the electronic singlet, mi states for the mass of each particle-specie
and Dμ = ∂μ + Γμ, being Γμ the Dirac spin connections. The conserved currents are J

μ
ω =

ψ̄Nγ μψN , J
μ
ρ = ψ̄Nτ3γ

μψN , J
μ
γ,e = ψ̄eγ

μψe, and J
μ
γ,N = ψ̄N(1/2)(1 + τ3)γ

μψN , being τ3
the particle isospin.

The nuclear model is fixed once the values of the coupling constants and the masses of
the three mesons are fixed: for instance in the NL3 parameter set Lalazissis et al. [20] used
in [2] and in this work we have mσ = 508.194 MeV, mω = 782.501 MeV, mρ = 763.000 MeV,

1 We use spacetime metric signature (+,−,−,−) and geometric units G = c = 1 unless otherwise specified.
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Fig. 1. In the top and center panels we show the neutron, proton, electron densities and the electric field in units of the
critical electric field Ec in the core–crust transition layer, whereas in the bottom panel we show a specific example of a
density profile inside a neutron star. In this plot we have used for the globally neutral case a density at the edge of the
crust equal to the neutron drip density, ρdrip ∼ 4.3 × 1011 g cm−3.

gσ = 10.2170, gω = 12.8680, gρ = 4.4740, plus two constants that give the strength of the self-
scalar interactions, g2 = −10.4310 fm−1 and g3 = −28.8850.

From the equations of motion of the above Lagrangian we obtain the EMTF equations (see
Rueda et al. [23]; Belvedere et al. [2] for details). The solution of the EMTF coupled differential
equations leads to a new structure of the star, as shown in Fig. 1: a positively charged core at
supranuclear densities, ρ > ρnuc ∼ 2.7 × 1014 g cm−3, surrounded by an electron distribution of
thickness � h̄/(mec) and, at lower densities ρ < ρnuc, a neutral ordinary crust.

The thermodynamic equilibrium is ensured by the constancy of the particle Klein poten-
tials Klein [19] generalized to the presence of electrostatic and strong fields [22,23,2]

1

ut

[
μi + (qiAα + gωωα + gρτ3,iρα)uα

] = constant, (3)

where the subscript i stands for each kind of particle, μi is the particle chemical potential, and qi

is the particle electric charge. In the static case only the time components of the vector fields,
A0, ω0, ρ0 are present. In the above equation ut = (gtt )

−1/2 is the time component of the fluid
four-velocity which satisfies uαuα = 1; gtt is the t–t component of the spherically symmetric
metric

ds2 = eν dt2 − eλ dr2 − dr2 − r2(dθ2 + sin2 θ dφ2). (4)

The equilibrium conditions (3) lead to a discontinuity in the density at the core–crust transition
and, correspondingly, an overcritical electric field ∼ (mπ/me)

2Ec, where Ec = m2
ec

3/(eh̄) ∼
1.3 × 1016 V cm−1, appears in the core–crust boundary interface. The constancy of the Klein
potentials is necessary to fulfill the requirement of thermodynamical equilibrium, together with
the constancy of the gravitationally red-shifted temperature (Tolman condition) [29,19], if finite
temperatures are considered (see e.g. Rueda et al. [23]). In particular, the continuity of the elec-
tron Klein potential leads to a decreasing of the electron chemical potential μe and density at the
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Fig. 2. Neutron star mass–radius relation in the static (non-rotating) case for both global and local charge neutrality
configurations (see Belvedere et al. [2] for details). In this plot we have used for the globally neutral case a density at the
edge of the crust equal to the neutron drip density, ρdrip ∼ 4.3 × 1011 g cm−3.

core–crust boundary interface. They reach values μcrust
e < μcore

e and ρcrust < ρcore at the base of
the crust, where global charge neutrality is achieved.

As we showed in [2], the solution of this new set of equilibrium equations leads to a more
compact neutron star with a less massive and thiner crust. Consequently, it leads to a new mass–
radius relation which markedly differs from the one given by the solution of the TOV equations
in the case of local charge neutrality; see Fig. 2.

We extend in this work the previous results to the case when the neutron star is rotating as
a rigid body. To this end we use the Hartle approach [13] which solves the Einstein equations
accurately up to second order approximation in the angular velocity of the star, Ω (see next
Section 2 for details).

In this rotating case, the condition of the constancy of the particle Klein potential has the same
form as Eq. (3), but the fluid inside the star now moves with a four-velocity of a rigid rotating
body, uα = (ut ,0,0, uφ), with (see Hartle and Sharp [15] and Appendix A, for details)

ut = (
gtt + 2Ωgtφ + Ω2gφφ

)−1/2
, uφ = Ωut , (5)

where φ is the azimuthal angular coordinate with respect to which the metric is symmetric,
namely the metric is independent of φ (axial symmetry). The metric functions gαβ are now given
by Eq. (6) below. It is then clear that in a frame comoving with the rotating star, ut = (gtt )

−1/2,
and the Klein equilibrium condition becomes the same as Eq. (3), as expected.

We applied the Hartle formalism to the seed static solution obtained from the integration of the
EMTF equations [2]. For the construction of the new mass–radius relation we take into account
the Keplerian mass-shedding limit and the secular axisymmetric instability (see Section 3). We
compute in Section 4 the mass M , polar Rp and equatorial Req radii, and angular momentum J ,
as a function of the central density and the rotation angular velocity Ω of stable neutron stars
both in the globally and locally neutral cases. Based on the criteria of equilibrium we calculate
the maximum stable neutron star mass and from the gravitational binding energy of the con-
figurations establish the minimum mass under which the neutron star becomes gravitationally
unbound. We construct in Section 5 the new neutron star mass–radius relation. In Section 6 we
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calculate the moment of inertia as a function of the central density and total mass of the neutron
star. The eccentricity ε, the rotational to gravitational energy ratio T/W , and quadrupole mo-
ment Q are shown in Section 7. The observational constraints on the mass–radius relation are
discussed in Section 8. We finally summarize the results in Section 9.

2. Hartle slow rotation approximation

In his pioneering work, Hartle [13] computed the equilibrium equations of slowly rotating
stars in the context of General Relativity. The solutions of the Einstein equations are obtained
through a perturbative method, expanding the metric functions up to the second order in the an-
gular velocity Ω . Under this assumption the structure of compact objects can be approximately
described by the total mass M , angular momentum J and quadrupole moment Q. The slow rota-
tion regime implies that the perturbations owing to the rotation are relatively small with respect to
the known non-rotating geometry. The interior solution is derived by solving numerically a sys-
tem of ordinary differential equations for the perturbation functions. The exterior solution for
the vacuum surrounding the star, can be written analytically in terms of M , J , and Q (see Har-
tle [13]; Hartle and Thorne [16] for details). The numerical values for all the physical quantities
are derived by matching the interior and the exterior solution on the border of the star.

The spacetime metric for the rotating configuration up to the second order of Ω is given
by [13]

ds2 = eν(1 + 2h)dt2 − eλ

[
1 + 2m

r − 2M0

]
dr2

− r2(1 + 2k)
[
dθ2 + sin2 θ(dφ − ωdt)2], (6)

where ν = ν(r), λ = λ(r), and M0 = MJ=0(r) are the metric functions and mass profiles of
the corresponding seed non-rotating star with the same central density as the rotating one; see
Eq. (4). The functions h = h(r, θ), m = m(r, θ), k = k(r, θ) and the fluid angular velocity in the
local inertial frame, ω = ω(r), have to be calculated from the Einstein equations. Expanding up
to the second order the metric in spherical harmonics we have

h(r, θ) = h0(r) + h2(r)P2(cos θ), (7)

m(r, θ) = m0(r) + m2(r)P2(cos θ), (8)

k(r, θ) = k0(r) + k2(r)P2(cos θ), (9)

where P2(cos θ) is the Legendre polynomial of second order. Because the metric does not change
under transformations of the type r → f (r), we can assume k0(r) = 0.

The functions h = h(r, θ), m = m(r, θ), k = k(r, θ) have analytic form in the exterior (vac-
uum) spacetime and they can be found in Appendix A. The mass, angular momentum, and
quadrupole moment are computed from the matching condition between the interior and exterior
metrics.

First the angular momentum is computed. It is introduced the angular velocity of the fluid
relative to the local inertial frame, ω̄(r) = Ω −ω(r). It can be shown from the Einstein equations
at first order in Ω that ω̄ satisfies the differential equation

1

r4

d

dr

(
r4j

dω̄

dr

)
+ 4

r

dj

dr
ω̄ = 0, (10)

where j (r) = e−(ν+λ)/2 with ν and λ the metric functions of the seed non-rotating solution (4).
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From the matching equations, the angular momentum of the star results to be given by

J = 1

6
R4

(
dω̄

dr

)
r=R

, (11)

so the angular velocity Ω is related to the angular momentum as

Ω = ω̄(R) + 2J

R3
. (12)

The total mass of the rotating star, M , is given by

M = M0 + δM, δM = m0(R) + J 2/R3, (13)

where δM is the contribution to the mass owing to rotation. The second order functions m0
and p∗

0 (related to the pressure perturbation) are computed from the solution of the differential
equation

dm0

dr
= 4πr2 dE

dP
(E + P)p∗

0 + 1

12
j2r4

(
dω̄

dr

)2

− 1

3

dj2

dr
r3ω̄2, (14)

dp∗
0

dr
= −m0(1 + 8πr2P)

(r − 2M0)2
− 4πr2(E + P)

(r − 2M0)
p∗

0

+ 1

12

j2r4

(r − 2M0)

(
dω̄

dr

)2

+ 1

3

d

dr

(
r3j2ω̄2

r − 2M0

)
, (15)

where E and P are the total energy density and pressure.
Turning to the quadrupole moment of the neutron star, it is given by

Q = J 2

M0
+ 8

5
KM3

0 , (16)

where K is a constant of integration. This constant is fixed from the matching of the second order
function h2 obtained in the interior from

dk2

dr
= −dh2

dr
− h2

dν

dr
+

(
1

r
+ 1

2

dν

dr

)[
−1

3
r3ω̄2 dj2

dr
+ 1

6
r4j2

(
dω̄

dr

)2]
, (17)

dh2

dr
= h2

{
−dν

dr
+ r

r − 2M0

(
dν

dr

)−1[
8π(E + P) − 4M0

r3

]}
− 4(k2 + h2)

r(r − 2M0)

(
dν

dr

)−1

+ 1

6

[
r

2

dν

dr
− 1

r − 2M0

(
dν

dr

)−1]
r3j2

(
dω̄

dr

)2

− 1

3

[
r

2

dν

dr
+ 1

r − 2M0

(
dν

dr

)−1]
r2ω̄2 dj2

dr
, (18)

with its exterior counterpart (see Hartle [13] and Appendix A).
It is worth to underline that the influence of the induced magnetic field owing to the rotation

of the charged core of the neutron star in the globally neutral case is negligible [8]. In fact,
for a rotating neutron star of period P = 10 ms and radius R ∼ 10 km, the radial component
of the magnetic field Br in the core interior reaches its maximum at the poles with a value
Br ∼ 2.9 × 10−16Bc , where Bc = m2

ec
3/(eh̄) ≈ 4.4 × 1013 G is the critical magnetic field for

vacuum polarization. The angular component of the magnetic field Bθ , instead, has its maximum
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value at the equator and, as for the radial component, it is very low in the interior of the neutron
star core, i.e. |Bθ | ∼ 2.9×10−16Bc . In the case of a sharp core–crust transition as the one studied
by Belvedere et al. [2] and shown in Fig. 1, this component will grow in the transition layer to
values of the order of |Bθ | ∼ 102Bc (see Boshkayev et al. [8] for further details). However, since
we are here interested in the macroscopic properties of the neutron star, we can ignore at first
approximation the presence of electromagnetic fields in the macroscopic regions where they are
indeed very small, and safely apply the original Hartle formulation without any generalization.

3. Stability of uniformly rotating neutron stars

3.1. Secular axisymmetric instability

In a sequence of increasing central density in the M–ρc curve, ρc ≡ ρ(0), the maximum mass
of a non-rotating neutron star is defined as the first maximum of such a curve, namely the point
where ∂M/∂ρc = 0. This derivative defines the secular instability point, and, if the perturbation
obeys the same equation of state (EOS) as the equilibrium configuration, it coincides also with
the dynamical instability point (see e.g. Shapiro and Teukolsky [24]). In the rotating case, the
situation becomes more complicated and in order to find the axisymmetric dynamical instability
points, the perturbed solutions with zero frequency modes (the so-called neutral frequency line)
have to be calculated. Friedman et al. [10] however, following the works of Sorkin [25,26],
described a turning-point method to obtain the points at which secular instability is reached by
uniformly rotating stars. In a constant angular momentum sequence, the turning point is located
in the maximum of the mass-central density relation, namely the onset of secular axisymmetric
instability is given by[

∂M(ρc, J )

∂ρc

]
J= constant

= 0, (19)

and once the secular instability sets in, the star evolves quasi-stationarily until it reaches a point
of dynamical instability where gravitational collapse sets in [27].

The above equation defines an upper limit for the mass at a given J for a uniformly rotat-
ing star, however this criterion is a sufficient but not necessary condition for the instability. This
means that all the configurations with the given angular momentum J on the right side of the
turning point defined by Eq. (19) are secularly unstable, but it does not imply that the configura-
tions on the left side of it are stable. An example of dynamically unstable configurations on the
left side of the turning-point limiting boundary in neutron stars was recently shown in [28], for a
specific EOS.

3.2. Keplerian mass-shedding instability

The maximum velocity for a particle to remain in equilibrium on the equator of a star, kept
bound by the balance between gravitational and centrifugal force, is the Keplerian velocity of
a free particle computed at the same location. As shown, for instance in [27], a star rotating at
Keplerian rate becomes unstable due to the loss of mass from its surface. The mass shedding
limiting angular velocity of a rotating star is the Keplerian angular velocity evaluated at the
equator, r = Req, i.e. Ω

J �=0
K = ΩK(r = Req). Friedman [11] introduced a method to obtain the

maximum possible angular velocity of the star before reaching the mass-shedding limit; however
Torok et al. [31] and Bini et al. [5], showed a simpler way to compute the Keplerian angular
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velocity of a rotating star. They showed that the mass-shedding angular velocity, Ω
J �=0
K , can

be computed as the orbital angular velocity of a test particle in the external field of the star and
co-rotating with it on its equatorial plane at the distance r = Req. For the Hartle external solution,
this is given by

Ω
J �=0
K (r) =

√
M

r3

[
1 − jF1(r) + j2F2(r) + qF3(r)

]
, (20)

where j = J/M2 and q = Q/M3 are the dimensionless angular momentum and quadrupole
moment. Further details and the analytical expression of the functions Fi can be found in
Appendix A.

3.3. Gravitational binding energy

Besides the above stability requirements, one should check if the neutron star is gravitationally
bound. In the non-rotating case, the binding energy of the star can be computed as

WJ=0 = M0 − M0
rest, M0

rest = mbAJ=0, (21)

where M0
rest is the rest-mass of the star, mb is the rest-mass per baryon, and AJ=0 is the total

number of baryons inside the star. So the non-rotating star is considered bound if WJ=0 < 0.
In the slow rotation approximation the total binding energy is given by [16]

WJ �=0 = WJ=0 + δW, δW = J 2

R3
−

R∫
0

4πr2B(r) dr, (22)

where

B(r) = (E + P)p∗
0

{
dE
dP

[(
1 − 2M

r

)−1/2

− 1

]
− du

dP

(
1 − 2M

r

)−1/2}

+ (E − u)

(
1 − 2M

r

)−3/2[
m0

r
+ 1

3
j2r2ω̄2

]

− 1

4πr2

[
1

12
j2r4

(
dω̄

dr

)2

− 1

3

dj2

dr
r3ω̄2

]
, (23)

where u = E − mbnb is the internal energy of the star, with nb the baryon number density.
We will therefore request that the binding energy be negative, namely WJ �=0 < 0. As we will

show below in Section 4.2.2, this condition leads to a minimum mass for the neutron star under
which the star becomes gravitationally unbound.

4. Structure of uniformly rotating neutron stars

We show now the results of the integration of the Hartle equations for the globally and locally
charge neutrality neutron stars; see e.g. Fig. 1. Following Belvedere et al. [2], we adopt, as an
example, globally neutral neutron stars with a density at the edge of the crust equal to the neutron
drip density, ρcrust = ρdrip ≈ 4.3 × 1011 g cm−3.
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Fig. 3. Total mass versus central density of globally neutral neutron stars. The solid line represents the configuration
with Keplerian angular velocity, the dashed line represents the static configuration, the dotted-dashed lines represent the
J -constant sequences (in units of 1011 cm2). The gray line joins all the turning points of the J -constant sequences, so it
defines the secular instability boundary.

4.1. Secular instability boundary

In Fig. 3 we show the mass-central density curve for globally neutral neutron stars in the
region close to the axisymmetric stability boundaries. Specifically we show some J -constant
sequences to show that indeed along each of these curves there exist a maximum mass point
(turning point). The line joining all the turning points defines the secular instability limit. In
Fig. 3 the axisymmetric stable zone is on the left side of the instability line.

Clearly we can transform the mass-central density relation in a mass–radius relation. In Fig. 4
we show the mass versus the equatorial radius of the neutron star that correspond to the range of
densities of Fig. 3. In this plot the stable zone is on the right side of the instability line.

We can construct a fitting curve joining the turning points of the J -constant sequences line
which determines the secular axisymmetric instability boundary. Defining Mmax,0 as the maxi-
mum stable mass of the non-rotating neutron star constructed with the same EOS, we find that
for globally neutral configurations the instability line is well fitted by the function

MGCN
sec

M	
= 21.22 − 6.68

MGCN
max,0

M	
−

(
77.42 − 28

MGCN
max,0

M	

)(
Req

10 km

)−6.08

, (24)

where 12.38 km � Req � 12.66 km, and MGCN
max,0 ≈ 2.67M	.

The turning points of locally neutral configurations in the mass-central density plane are
shown in Fig. 5. The corresponding mass–equatorial radius plane is plotted in Fig. 6.

For locally neutral neutron stars, the secular instability line is fitted by

MLCN
sec

M	
= 20.51 − 6.35

MLCN
max,0

M	
−

(
80.98 − 29.02

MLCN
max,0

M	

)(
Req

10 km

)−5.71

, (25)

where 12.71 km � Req � 13.06 km, and MLCN
max,0 ≈ 2.70M	.
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Fig. 4. Total mass versus equatorial radius of globally neutral neutron stars. The solid line represents the configuration
with Keplerian angular velocity, the dashed line represents the static configuration, the dotted-dashed lines represent the
J -constant sequences (in units of 1011 cm2). The gray curve joins all the turning points of the J -constant sequences, so
it defines the secular instability boundary.

Fig. 5. Total mass versus central density of locally neutral neutron stars. The solid line represents the configuration
with Keplerian angular velocity, the dashed line represents the static configuration, the dotted-dashed lines represent the
J -constant sequences (in units of 1011 cm2). The gray line joins all the turning points of the J -constant sequences, so it
defines the secular instability boundary.

4.2. Keplerian mass-shedding sequence

We turn now to analyze in detail the behavior of the different properties of the neutron star
along the Keplerian mass-shedding sequence. For the sake of reference we have indicated in the
following plots stars with the selected masses M ≈ [1,1.4,2.04,2.5]M	. The cyan star indicates
the fastest observed pulsar, PSR J1748–2446ad Hessels et al. [18], with a rotation frequency
of f ≈ 716 Hz. The gray filled circles indicate the last stable configuration of the Keplerian
sequence, namely the point where the Keplerian and the secular stability boundaries cross each
other.
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Fig. 6. Total mass versus equatorial radius of locally neutral neutron stars. The solid line represents the configuration
with Keplerian angular velocity, the dashed line represents the static configuration, the dotted-dashed lines represent the
J -constant sequences (in units of 1011 cm2). The gray curve joins all the turning points of the J -constant sequences, so
it defines the secular instability boundary.

Fig. 7. Total mass versus rotational Keplerian frequency both for the global (red in the web version) and local (blue in
the web version) charge neutrality cases.

4.2.1. Maximum mass and rotation frequency
The total mass of the rotating star is computed from Eq. (13). In Fig. 7 is shown the total mass

of the neutron star as a function of the rotation frequency for the Keplerian sequence. It is clear
that for a given mass, the rotational frequency is higher for a globally neutral neutron star with
respect to the locally neutral one.

The configuration of maximum mass, M
J �=0
max , occurs along the Keplerian sequence, and it

is found before the secular instability line crosses the Keplerian curve. Thus, the maximum
mass configuration is secularly stable. This implies that the configuration with maximum ro-
tation frequency, fmax, is located beyond the maximum mass point, specifically at the crossing
point between the secular instability and the Keplerian mass-shedding sequence. The results are
summarized in Table 1.
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Table 1
MJ=0

max and RJ=0
max : maximum mass and corresponding radius of non-rotating stars as computed

in [2]; MJ=0
max and RJ=0

max : maximum mass and corresponding radius of rotating stars; δMmax
and δRmax

eq : increase in mass and radius of the maximum mass configuration with respect to its
non-rotating counterpart; fmax and Pmin: maximum rotation frequency and associated minimum
period.

Global neutrality Local neutrality

MJ=0
max (M	) 2.67 2.70

RJ=0
max (km) 12.38 12.71

M
J �=0
max (M	) 2.76 2.79

R
J �=0
max (km) 12.66 13.06

δMmax 3.37% 3.33%

δRmax
eq 2.26% 2.75%

fmax (kHz) 1.97 1.89
Pmin (ms) 0.51 0.53

It is important to discuss briefly the validity of the present perturbative solution for the
computation of the properties of maximally rotating neutron stars. The expansion of the radial
coordinate of a rotating configuration r(R, θ) in powers of angular velocity is written as [13]

r = R + ξ(R, θ) + O
(
Ω4), (26)

where ξ is the difference in the radial coordinate, r , between a point located at the polar angle θ

on the surface of constant density ρ(R) in the rotating configuration, and the point located at the
same polar angle on the same constant density surface in the non-rotating configuration. In the
slow rotation regime, the fractional displacement of the surfaces of constant density due to the
rotation have to be small, namely ξ(R, θ)/R 
 1, where ξ(R, θ) = ξ0(R) + ξ2(R)P2(cos θ) and
ξ0(R) and ξ2(R) are function of R, proportional to Ω2. From Table 1, we can see that the config-
uration with the maximum possible rotation frequency has a maximum fractional displacement
δRmax

eq = ξ(R,π/2)/R as low as ≈ 2% and ≈ 3%, for the globally and locally neutral neutron
stars respectively.

In this line, it is worth to quote the results of Benhar et al. [3], who showed that the inclusion of
a third-order expansion Ω3 in the Hartle’s method improves the value of the maximum rotation
frequency by less than 1% for different EOS. The reason for this is that as mentioned above,
along the Keplerian sequence the deviations from sphericity decrease with density and frequency
(see Figs. 16 and 17), which ensures the accuracy of the perturbative solution.

Turning to the increase of the maximum mass, Weber and Glendenning [34] showed that the
mass of maximally rotating neutron stars, computed with the Hartle’s second order approxima-
tion, is accurate within an error as low as � 4%.

4.2.2. Minimum mass and rotation frequency
We compute now the gravitational binding energy of the neutron star from Eq. (22) as a

function of the central density and angular velocity. We make this for central densities higher
than the nuclear density, thus we impose the neutron star to have a supranuclear hadronic core.
In Fig. 8 we plot the binding energy W of the neutron star as a function of the neutron star mass
along the Keplerian sequence. For the sake of comparison we show also the binding energy of
the non-rotating configurations.
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Fig. 8. Neutron star binding energy versus total mass along the Keplerian sequence both for the global (red in the web
version) and local (blue in the web version) charge neutrality.

Fig. 9. Neutron star binding energy versus central density along the Keplerian sequence both for the global (red in the
web version) and local (blue in the web version) charge neutrality.

We found that the globally neutral neutron stars studied here are bound up to some minimum
mass at which the gravitational binding energy vanishes. For the static and Keplerian configura-
tions we find that WJ=0 = 0, and WJ �=0 = 0 respectively at

MJ=0
min ≈ 0.177M	, MK

min ≈ 0.167M	, (27)

where with the superscript K we indicate that this value corresponds to the minimum mass on
the Keplerian sequence. Clearly this minimum mass value decreases with decreasing frequency
until it reaches the above value MJ=0

min of the non-rotating case.
We did not find any unbound configuration in the local charge neutrality case for the present

EOS (see Fig. 8). The corresponding plot of W as a function of the central density is shown
in Fig. 9.

The configuration with the minimum mass, MK
min ≈ 0.167M	, has a rotation frequency
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Fig. 10. Neutron star binding energy versus frequency for the Keplerian sequence both for the global (red in the web
version) and local (blue in the web version) charge neutrality neutron stars.

f K
min = f

(
MK

min

) ≈ 700.59 Hz, (28)

that is the minimum rotation rate that globally neutral configurations can have along the Keple-
rian sequence in order to be gravitationally bound. Interestingly, the above value is slightly lower
than the frequency of the fastest observed pulsar, PSR J1748−2446ad, which has a frequency of
716 Hz (Hessels et al. [18]). Further discussions on this issue are given below in Section 8.

In Fig. 10 we show in detail the dependence of W on the rotation frequency.

5. Neutron star mass–radius relation

We summarize now the above results in form of a new mass–radius relation of uniformly ro-
tating neutron stars, including the Keplerian and secular instability boundary limits. In Fig. 11
we show a summary plot of the equilibrium configurations of rotating neutron stars. In partic-
ular we show the total mass versus the equatorial radius: the dashed lines represent the static
(non-rotating, J = 0) sequences, while the solid lines represent the corresponding Keplerian
mass-shedding sequences. The secular instability boundaries are plotted in pink-red and light
blue color for the global and local charge neutrality cases, respectively.

It can be seen that due to the deformation for a given mass the radius of the rotating case is
larger than the static one, and similarly the mass of the rotating star is larger than the correspond-
ing static one. It can be also seen that the configurations obeying global charge neutrality are
more compact with respect to the ones satisfying local charge neutrality.

6. Moment of inertia

The neutron star moment of inertia I can be computed from the relation

I = J

Ω
, (29)
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Fig. 11. Total mass versus total equatorial radius for the global (red) and local (blue) charge neutrality cases. The dashed
curves represent the static configurations, while the solid lines are the uniformly rotating neutron stars. The pink-red and
light-blue color lines define the secular instability boundary for the globally and locally neutral cases, namely the lines
given by Eqs. (24) and (25), respectively. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

where J is the angular momentum and Ω are related via Eq. (12). Since J is a first-order quantity
and so proportional to Ω , the moment of inertia given by Eq. (29) does not depend on the angular
velocity and does not take into account deviations from the spherical symmetry. This implies that
Eq. (11) gives the moment of inertia of the non-rotating unperturbed seed object. In order to find
the perturbation to I , say δI , the perturbative treatment has to be extended to the next order Ω3,
in such a way that I = I0 + δI = (J0 + δJ )/Ω , becomes of order Ω2, with δJ of order Ω3

(see e.g. Hartle [14]; Benhar et al. [3]). In this work we keep the solution up to second order
and therefore we proceed to analyze the behavior of the moment of inertia for the non-rotating
configurations. In any case, as we will show in Section 8 even the fastest observed pulsars rotate
at frequencies much lower than the Keplerian rate, and under such conditions we expect that the
moment of inertia can be approximated with high accuracy by the one of the corresponding static
configurations.

In Figs. 12 and 13 we show the behavior of the total momentum of inertia, i.e. I = Icore +
Icrust, with respect to the total mass and central density for both globally and locally neutral
non-rotating neutron stars.

We can see from Figs. 12 and 13 that the total moment of inertia is quite similar for both
global and local charge neutrality cases. This is due to the fact that the globally neutral con-
figurations differ from the locally ones mostly in the structure of the crust, which however
contributes much less than the neutron star core to the total moment of inertia (see below in
Section 6.1).

6.1. Core and crust moment of inertia

In order to study the single contribution of the core and the crust to the moment of inertia of the
neutron star, we shall use the integral expression for the moment of inertia. Multiplying Eq. (10)
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Fig. 12. Total moment of inertia versus total mass both for globally (red in the web version) and locally (blue in the web
version) neutral non-rotating neutron stars.

Fig. 13. Total moment of inertia versus central density for globally (red in the web version) and locally (blue in the web
version) neutral non-rotating neutron stars.

by r3 and making the integral of it we obtain2

I (r) = −2

3

r∫
0

r3 dj

dr

ω̄(r)

Ω
dr = 8π

3

r∫
0

r4(E + P)e(λ−ν)/2 ω̄(r)

Ω
dr, (30)

where the integration is carried out in the region of interest. Thus, the contribution of the core,
Icore, is obtained integrating from the origin up to the radius of the core, and the contribution of
the crust, Icrust, integrating from the base of the crust to the total radius of the neutron star.

2 It is clear that this expression approaches, in the weak field limit, the classic Newtonian expression INewtonian =
(8π/3)

∫
r4ρ dr where ρ is the mass density [13].
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Fig. 14. Crust to core moment of inertia ratio versus the total mass of both globally and locally neutral non-rotating
neutron stars.

Fig. 15. Crust to core moment of inertia ratio versus the central density both globally and locally neutral non-rotating
neutron stars.

We show in Figs. 14 and 15 the ratio between the moment of inertia of the crust and the one
of the core as a function of the total mass and central density, respectively, for both the globally
and locally neutral configurations.

7. Deformation of the neutron star

In this section we explore the deformation properties of the neutron star. The behavior of the
eccentricity, the rotational to gravitational energy ratio, as well as the quadrupole moment, are
investigated as a function of the mass, density, and rotation frequency of the neutron star.
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Fig. 16. Eccentricity (31) versus frequency for the Keplerian sequence both for the global (red in the web version) and
local (blue in the web version) charge neutrality cases.

7.1. Eccentricity

A measurement of the level of deformation of the neutron star can be estimated with the
eccentricity

ε =
√

1 −
(

Rp

Req

)2

, (31)

where Rp and Req are the polar and equatorial radii of the configuration. Thus, ε = 0 defines the
spherical limit and 0 < ε < 1 corresponds to oblate configurations.

In Fig. 16, we show the behavior of the total eccentricity (31), as a function of the neutron star
frequency.

We can see that in general the globally neutral neutron star has an eccentricity larger than the
one of the locally neutral configuration for almost the entire range of frequencies and the cor-
responding central densities, except for the low frequencies f � 0.8 kHz and central densities
ρ(0) � 1.3ρnuc; see also Fig. 17. Starting from low values of the frequency f and central den-
sity ρ(0), the neutron stars increase their oblateness, and after reaching the maximum value of
the eccentricity, the compactness increases and the configurations tend to a more spherical shape.

7.2. Rotational to gravitational energy ratio

Other property of the star related to the centrifugal deformation of the star is the ratio between
the gravitational energy and the rotational energy of the star. The former is given by Eq. (22),
whereas the latter is

T = 1

2
IΩ2. (32)

We show in Fig. 18 the ratio T/|W | as a function of the mass of the neutron stars along the
Keplerian sequence. In Fig. 19 instead we plot the dependence of the ratio on the central density
and in Fig. 20 on the Keplerian frequency.
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Fig. 17. Eccentricity (31) versus central density for the Keplerian sequence both for the global (red in the web version)
and local (blue in the web version) charge neutrality cases.

Fig. 18. Rotational to gravitational binding energy ratio versus total mass along the Keplerian sequence both for the
global (red in the web version) and local (blue in the web version) charge neutrality.

7.3. Quadrupole moment

In Figs. 21 and 22 we show the quadrupole moment, Q given by Eq. (16), as a function of
the total mass and central density for both globally and locally neutral neutron stars along the
Keplerian sequence. The dependence of Q on the rotation frequency is shown in Fig. 23. We have
normalized the quadrupole moment Q to the quantity MR2 of the non-rotating configuration
with the same central density.

8. Observational constraints

In Fig. 24 we show the above mass–radius relations together with the most recent and stringent
constraints indicated by Trümper [32]:
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Fig. 19. Rotational to gravitational binding energy ratio versus central density along the Keplerian sequence both for the
global (red in the web version) and local (blue in the web version) charge neutrality.

Fig. 20. Rotational to gravitational binding energy ratio versus frequency along the Keplerian sequence both for the
global (red in the web version) and local (blue in the web version) charge neutrality cases.

(1) The largest mass. Until 2013 it was given by the mass of the 3.15 millisecond pulsar PSR
J1614−2230 M = 1.97 ± 0.04M	 Demorest et al. [9], however the recent reported mass
2.01 ± 0.04M	 for the neutron star in the relativistic binary PSR J0348+0432 [1] puts an
even more stringent request to the nuclear EOS. Thus, the maximum mass of the neutron
star has to be larger than the mass of PSR J0348+0432, this constraint is represented by the
orange-color stars in Fig. 24.

(2) The largest radius. It is given by the lower limit to the radius of RX J1856−3754. The lower
limit to the radius as seen by an observer at infinity is R∞ = R[1 − 2GM/(c2R)]−1/2 >

16.8 km, as given by the fit of the optical and X-ray spectra of the source [33]; so in the mass–
radius relation this constraint reads 2GM/c2 > R − R3/(Rmin∞ )2, with Rmin∞ = 16.8 km. We
represent this constraint with the dotted-dashed curve in Fig. 24.
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Fig. 21. Total quadrupole moment versus total mass along the Keplerian sequence both for the global (red in the web
version) and local (blue in the web version) charge neutrality cases. The quadrupole moment Q is here in units of the
quantity MR2 of the non-rotating configuration with the same central density.

Fig. 22. Total quadrupole moment versus central density along the Keplerian sequence both for the global (red in the web
version) and local (blue in the web version) charge neutrality cases. The quadrupole moment Q is here in units of the
quantity MR2 of the non-rotating configuration with the same central density.

(3) The maximum surface gravity. Using a neutron star of M = 1.4M	 to fit the Chandra data
of the low-mass X-ray binary X7, it turns out that the radius of the star satisfies at 90% con-
fidence level, R = 14.5+1.8

−1.6 km, which gives R∞ = [15.64,18.86] km, respectively, Heinke
et al. [17]. Using the same formula as before, 2GM/c2 > R − R3/(Rmin∞ )2, we obtain the
dotted curves shown in Fig. 24.

(4) The highest rotation frequency. The fastest observed pulsar is PSR J1748−2446ad with a
frequency of 716 Hz (Hessels et al. [18]). We show the constant rotation frequency sequence
f = 716 Hz for both globally (dashed pink) and locally (dashed light blue) neutral neutron
stars.
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Fig. 23. Total quadrupole moment versus frequency along the Keplerian sequence both for the global (red in the web
version) and local (blue in the web version) charge neutrality cases. The quadrupole moment Q is here in units of the
quantity MR2 of the non-rotating configuration with the same central density.

We indicated with cyan-color stars the point where these curves cross the corresponding
Keplerian sequences in the two cases (see Fig. 24).

Every f -constant sequence crosses the stability region of the objects in two points: these
crossing points define the minimum and maximum possible mass that an object rotating with
such a frequency may have in order to be stable. In the case of PSR J1748−2446ad, the cut of
the f = 716 Hz constant sequence with the Keplerian curve establishes the minimum mass of
this pulsar. We find that its minimum mass is ≈ 0.175M	 and corresponding equatorial radius
10.61 km for the globally neutral neutron star. For the locally neutral configuration we found
≈ 0.48M	 and 14.8 km, respectively for the minimum mass and corresponding equatorial radius.
This implies that the mass of PSR J1748−2446ad is poorly constrained to be larger than the
above values.

It is interesting that the above minimum mass, given by its constant rotation frequency se-
quence, is slightly larger than the minimum mass for bound configurations on the Keplerian
sequence, MK

min ≈ 0.167M	; see Eq. (27). In fact, as we shown in Eq. (28) the minimum ro-
tation frequency along the Keplerian sequence for bound configurations in the globally neutral
case is, f K

min ≈ 700.59 Hz, which is slightly lower than the frequency of PSR J1748−2446ad.
It would imply that PSR J1748−2446ad is very likely rotating at a rate much lower than the
Keplerian one.

Similarly to what presented in Belvedere et al. [2] for the static neutron stars and introduced
by Trümper [32], the above observational constraints show a preference on stiff EOS that provide
highest maximum masses for neutron stars. Taking into account the above constraints, the radius
of a canonical neutron star of mass M = 1.4M	 is strongly constrained to R � 12 km, disfa-
voring at the same time strange quark matter stars. It is evident from Fig. 24 that mass–radius
relations for both the static and the rotating case presented here, are consistent with all the ob-
servational constraints. In Table 2 we show the radii predicted by our mass–radius relation both
for the static and the rotating case for a canonical neutron star as well as for the most massive
neutron stars discovered, namely, the millisecond pulsar PSR J1614−2230 Demorest et al. [9],
M = (1.97 ± 0.04)M	, and the most recent PSR J0348+0432, M = (2.01 ± 0.04)M	 [1].
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Fig. 24. Observational constraints on the mass–radius relation given by Trümper [32] and the theoretical mass–radius
relation presented in this work in Fig. 11. The red lines represent the configuration with global charge neutrality, while
the blue lines represent the configuration with local charge neutrality. The pink-red line and the light-blue line represent
the secular axisymmetric stability boundaries for the globally neutral and the locally neutral case, respectively. The
red and blue solid lines represent the Keplerian sequences and the red and blue dashed lines represent the static cases
presented in [2]. (For interpretation of the references to color in this figure, the reader is referred to the web version of
this article.)

Table 2
Radii for a canonical neutron star of M = 1.4M	 and for PSR J1614−2230
Demorest et al. [9], M = (1.97 ± 0.04)M	 , and PSR J0348+0432 [1], M =
(2.01 ± 0.04)M	 . These configurations are computed under the constraint of
global charge neutrality and for a density at the edge of the crust equal to the
neutron drip density. The nuclear parameterizations NL3 has been used.

M(M	) RJ=0 (km) R
J �=0
eq (km)

1.40 12.313 13.943
1.97 12.991 14.104
2.01 13.020 14.097

9. Concluding remarks

We have constructed equilibrium configurations of uniformly rotating neutron stars in both the
global charge neutrality and local charge neutrality cases, generalizing our previous work [2]. To
do this we have applied the Hartle method to the seed static solution obtained from the integra-
tion of the Einstein–Maxwell–Thomas–Fermi equations [2]. We calculated the mass, polar and
equatorial radii, angular momentum, moment of inertia, quadrupole moment, and eccentricity, as
functions of the central density and the rotation angular velocity of the neutron star.

The Keplerian mass-shedding limit and the secular axisymmetric instability have been ana-
lyzed for the construction of the region of stability of rotating neutron stars. We have given fitting
curves of the secular instability boundary in Eqs. (24) and (25) for global and local charge neu-
trality, respectively. With this analysis we have established in Section 4.2.1 the maximum mass
and maximum rotation frequency of the neutron star. We computed in Section 4.2.2 the gravita-
tional binding energy of the configurations as a function of the central density and rotation rate.
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Table 3
Maximum mass, maximum frequency, minimum period, minimum mass of globally and locally
neutral neutron stars.

Global neutrality Local neutrality

MJ=0
max (M	) 2.67 2.70

M
J �=0
max (M	) 2.76 2.79

fmax (kHz) 1.97 1.89
Pmin (ms) 0.51 0.53
MJ=0

min (M	) 0.18 –

MK
min(M	) 0.17 –

f K
min (kHz) 0.70 –

We did this for central densities higher than the nuclear one, so imposing that the neutron star
has a supranuclear hadronic core. We found that, in the globally neutral case, there is a mini-
mum mass under which the neutron star becomes gravitationally unbound. Along the Keplerian
sequence, to this minimum mass object we associate a minimum frequency under which an ob-
ject rotating at the Keplerian rate becomes unbound; see Eq. (28). We found that locally neutral
neutron stars with supranuclear cores remained always bound for the present EOS. In Table 3 we
summarize all these results.

We finally analyzed in Section 8 the current observational constraints on the mass–radius
relation of neutron stars. We constructed the constant frequency sequence of PSR J1748−2446ad
to obtain the minimum possible mass of this source, which is given by the crossing point of
the f = 716 Hz constant sequence with the Keplerian one. It gives ≈ 0.17M	 and ≈ 0.48M	
for the global and charge neutrality cases, respectively. The very low mass inferred for PSR
J1748−2446ad assuming that it rotates at the Keplerian rate implies that its frequency is unlikely
to be actually the Keplerian. Otherwise, it would imply that PSR J1748−32446ad could be the
less massive neutron star ever observed.

It would be interesting to analyze the generality of the neutron star features shown in this work
since the most recent measurement of the mass PSR J0348+0432, M = (2.01 ± 0.04)M	 [1],
favors stiff nuclear EOS as the one used here.

Appendix A. The Hartle solution and equatorial circular orbits

A.1. The Hartle–Thorne vacuum solution

It is possible to write the Hartle–Thorne metric given by Eq. (6) in an analytic closed-form in
the exterior vacuum case as function of the total mass M , angular momentum J , and quadrupole
moment Q of the rotating star. The angular velocity of local inertial frames ω(r), proportional
to Ω , and the functions h0, h2, m0, m2, k2, proportional to Ω2, are derived from the Einstein
equations (see Hartle [13]; Hartle and Thorne [16] for details). Following this prescriptions the
Eq. (6) become:

ds2 =
(

1 − 2M

r

)[
1 + 2k1P2(cos θ) + 2

(
1 − 2M

r

)−1
J 2

r4

(
2 cos2 θ − 1

)]
dt2

+ 4J

r
sin2 θ dt dφ −

(
1 − 2M

r

)−1[
1 − 2

(
k1 − 6J 2

r4

)
P2(cos θ)
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− 2

(
1 − 2M

r

)−1
J 2

r4

]
dr2

− r2[1 − 2k2P2(cos θ)
](

dθ2 + sin2 θ dφ2), (A.1)

where

k1 = J 2

Mr3

(
1 + M

r

)
+ 5

8

Q − J 2/M

M3
Q2

2(x),

k2 = k1 + J 2

r4
+ 5

4

Q − J 2/M

M2r
√

1 − 2M/r
Q1

2(x),

and

Q1
2(x) = (

x2 − 1
)1/2

[
3x

2
ln

(
x + 1

x − 1

)
− 3x2 − 2

x2 − 1

]
,

Q2
2(x) = (

x2 − 1
)[3

2
ln

(
x + 1

x − 1

)
− 3x3 − 5x

(x2 − 1)2

]
,

are the associated Legendre functions of the second kind, being P2(cos θ) = (1/2)(3 cos2 θ − 1)

the Legendre polynomial, and where it has been effectuated the re-scaling x = r/M −1. The con-
stants M , J and Q are the total mass, angular momentum and mass quadrupole moment of the
rotating object, respectively. This form of the metric corrects some misprints of the original paper
by Hartle and Thorne [16] (see also Berti et al. [4]; Boshkayev et al. [7]). To obtain the exact
numerical values of M , J and Q, the exterior and interior metrics have to be matched at the
surface of the star. It is worthy underline that in the terms involving J 2 and Q, the total mass M

can be substituted by MJ=0 since δM is already a second order term in the angular velocity.

A.2. Angular velocity of equatorial circular orbits

It is possible to obtain the analytical expression for the angular velocity Ω given by Eq. (20)
with respect to an observer at infinity, taking into account the parameterization of the four-
velocity u of a test particle on a circular orbit in equatorial plane of axisymmetric stationary
spacetime, regarding as parameter the angular velocity Ω itself:

u = Γ [∂t + Ω∂φ], (A.2)

where Γ is a normalization factor such that uαuα = 1. Normalizing and applying the geodesics
conditions we get the following expressions for Γ and Ω = uφ/ut

Γ = ±(
gtt + 2Ωgtφ + Ω2gφφ

)−1/2
, (A.3)

gtt,r + 2Ωgtφ,r + Ω2gφφ,r = 0. (A.4)

Thus, the solution of Eqs. (A.3–A.4) can be written as

Ω±
orb(r) = uφ

ut
=

−gtφ,r ±
√

(gtφ,r )2 − gtt,rgφφ,r

gφφ,r

, (A.5)

where +/− stands for co-rotating/counter-rotating orbits, uφ and ut are the angular and time
components of the four-velocity respectively, and a colon stands for partial derivative with re-
spect to the corresponding coordinate. To determine the mass shedding angular velocity (the
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Keplerian angular velocity) of the neutron stars, we need to consider only the co-rotating orbit,
so from here and thereafter we take into account only the plus sign in Eq. (A.3) and we write
Ω+

orb(r) = Ωorb(r).
For the Hartle external solution given by Eq. (A.1) we obtain Eq. (20) with

F1 =
(

M

r

)3/2

,

F2 = 48M7 − 80M6r + 4M5r2 − 18M4r3

16M2r4(r − 2M)
+ 40M3r4 + 10M2r5 + 15Mr6 − 15r7

16M2r4(r − 2M)
+ F,

F3 = 6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4

16M2r(r − 2M)/5
− F,

F = 15(r3 − 2M3)

32M3
ln

r

r − 2M
.

The maximum angular velocity possible for a rotating star at the mass-shedding limit is the
Keplerian angular velocity evaluated at the equator (r = Req), i.e.

Ω
J �=0
K = Ωorb(r = Req). (A.6)

In the static case, i.e. when j = 0 hence q = 0 and δM = 0 we have the well-known
Schwarzschild solution and the orbital angular velocity for a test particle ΩJ=0

K on the surface
(r = R) of the neutron star is given by

ΩJ=0
K =

√
MJ=0

R3
MJ=0

. (A.7)
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2Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, I-00185 Roma, Italy
3ICRANet, Piazzale della Repubblica 10, I-65122 Pescara, Italy

Received April 16, 2014; in final form, June 19, 2014

Abstract—In the light of the relativistic precession model, we present a detailed analysis extending the ones
performed in the Schwarzschild and Kerr spacetimes. We consider the kilohertz quasiperiodic oscillations
in the Hartle-Thorne spacetime which describes a rotating and deformed object. We derive analytic
formulas for epicyclic frequencies in the Hartle-Thorne spacetime, and by means of these frequencies we
interpret the kilohertz quasiperiodic oscillations of low-mass X-ray binaries of the atoll and Z sources, on
the basis of the relativistic precession model. Particularly we perform an analysis for the Z source GX 5-1.
We show that the quasiperiodic oscillations data can provide information on the parameters, namely, the
mass, angular momentum and quadrupole moment of compact objects in low-mass X-ray binaries.

DOI: 10.1134/S0202289314040033

1. INTRODUCTION
It is believed that quasi-periodic oscillations

(QPOs) data of the X-ray flux from low-mass X-
ray binaries (LMXRBs) may be used to test general
relativity (GR) in the strong field regime [1–4]. QPOs
appear in variabilities of several LMXRBs including
those which contain a neutron star (NS). A certain
kind of these oscillations, the so-called kilohertz
(kHz) (or high-frequency) QPOs, come often in
pairs with frequencies fL = fper = fφ − fr, where
fφ is the azimutal (Keplerian) frequency, fr is the
radial epicyclic frequency of Keplerian motion, and
fU = fφ = fK is typically in the range ∼50−1300 Hz.
This is of the same order as the range of frequencies
characteristic of orbital motion close to a compact
object. Accordingly, most of the kHz QPO models
involve orbital motion in the inner regions of an
accretion disk (see [5, 6]).

To explain the QPOs, various types of models have
been proposed. These are: (i) beat-frequency models,
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**E-mail: binid@icra.it

***E-mail: jorge.rueda@icra.it
****E-mail: geralico@icra.it
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�Based on a plenary talk given at the 11th International
Conference on Gravitation, Astrophysics and Cosmology of
Asia-Pacific Countries (ICGAC-11), October 1–5, 2013,
Almaty, Kazakhstan.

where one assumes that there is some beating of an
orbital frequency by the spin frequency of the central
object, (ii) relativistic precession models where the
QPOs are associated with the orbital motion and the
periastron or nodal precession of a particular orbit,
(iii) relativistic resonance models, where a kind of
resonance between the orbital and epicyclic frequen-
cies is assumed wherever they have simple integer
ratios, and finally (iv) preferred radii models, where
some mechanism chooses a particular radius. These
models generally assume geodesic or almost geodesic
orbits of the fluid elements in the accretion disc to be
the source of the observed frequencies (see, e.g., [5]),
while there are also models in which the frequencies
are produced from oscillatory modes of the entire
disc (see, e.g., [5]). In one way or another, all of
these models use the properties of orbits around the
compact object onto which the accretion takes place.
In our discussion we will refer to the models that
assume that the QPOs are caused by frequencies
associated with the orbital motion of the material in
the accretion disc, such as the relativistic precession
models (RPM) (see [2, 8]).

The RPM has been proposed in a series of pa-
pers [1, 2, 4]. It explains the kHz QPOs as a direct
manifestation of modes of relativistic epicyclic motion
of blobs arising at various radii r in the inner parts of
the accretion disk. The model identifies the lower and
upper kHz QPOs with the periastron precession fper
and Keplerian fK frequency.
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In the past years, the RPM has been considered
among the candidates for explaining the twin-peak
QPOs in several LMXBs, and related constraints on
the sources have been discussed (see, e.g., [6, 9–
13]. While some of the early works discuss these
constraints in terms of both NS mass and spin and
include also the NS oblateness [3, 14], most of the
published implications for individual sources focus on
the NS mass and neglect its rotation, not to mention
its oblateness.

In this paper, we perform an analysis of a mass
estimate carried out by Stella [2] and Boutloukos et
al. [15]. In particular, we consider rotating space-
times that comprehend the effects of frame-dragging
and quadrupole moment of the source and fit directly
the correlation between the twin QPO frequencies.
We show that good fits can be reached for the case
of three parameters, the mass, angular momentum
and quadrupole moment, rather than for the preferred
combination of mass and angular momentum [16].
The importance of the quadrupole moment has been
emphasized in several works [8, 17–21]. Since the
angular momentum of the source is in a nontrivial
way related to its quadrupole moment, they should be
considered together.

2. THE HARTLE-THORNE METRIC

The Hartle-Thorne (HT) metric, describing the
exterior field of a slowly rotating slightly deformed
object, is given by

ds2 = −
(

1 − 2M

r

)[
1 + 2k1P2(cos θ)

+ 2

(
1 − 2M

r

)−1 J2

r4
(2 cos2 θ − 1)

]
dt2

+

(
1 − 2M

r

)−1 [
1 − 2k2P2(cos θ)

− 2

(
1 − 2M

r

)−1 J2

r4

]
dr2

+ r2[1 − 2k3P2(cos θ)](dθ2 + sin2 θdφ2)

− 4
J

r
sin2 θdtdφ (1)

where

k1 =
J2

Mr3

(
1 +

M

r

)
− 5

8

Q − J2/M

M3
Q2

2

( r

M
− 1

)
,

k2 = k1 − 6J2

r4
,

k3 = k1 +
J2

r4
− 5

4

Q − J2/M

M2r

×
(

1 − 2M

r

)−1/2

Q1
2

( r

M
− 1

)
,

P2(x) =
1

2
(3x2 − 1),

Q1
2(x) = (x2 − 1)1/2

[
3x

2
ln

x + 1

x − 1
− 3x2 − 2

x2 − 1

]
,

Q2
2(x) = (x2 − 1)

[
3

2
ln

x + 1

x − 1
− 3x3 − 5x

(x2 − 1)2

]
.

Here P2(x) is Legendre’s polynomial of the first kind,
Qm

l are the associated Legendre polynomials of the
second kind, and the constants M , J and Q are
the total mass, angular momentum and quadrupole
parameter of a rotating star, respectively. The Hartle-
Thorne metric is an approximate solution of vacuum
Einstein field equations that describes the exterior of
any slowly and rigidly rotating, stationary and axially
symmetric body. The metric is given with an accuracy
up to the second order terms in the body’s angular
momentum, and the first order in its quadrupole mo-
ment. The approximate Kerr metric [22] in the Boyer-
Lindquist coordinates (t, R, Θ, φ) up to second order
terms in the rotation parameter a can be obtained
from (1) by setting

J = −Ma, Q = J2/M, (2)

and making a coordinate transformation given by

r = R +
a2

2R

[(
1 +

2M

R

)(
1 − M

R

)

− cos2 Θ

(
1 − 2M

R

)(
1 +

3M

R

)]
,

θ = Θ +
a2

2R2

(
1 +

2M

R

)
sin Θ cos Θ. (3)

3. THE EPICYCLIC FREQUENCIES
The properties of congruences of nearly circular

geodesic orbits in stationary and axially symmet-
ric spacetime such as the HT spacetime are stud-
ied because of their fundamental role in the the-
ory of accretion disks around compact objects with
strong gravity. The radial epicyclic frequency and
vertical epicyclic frequency are the most important
characteristics of these orbits. Analytic formulas
for the frequencies in the Schwarzschild, Kerr and
Hartle-Thorne metrics have been published many
times by several authors (see, e.g., [23–27] and are
well known. Here we give a more explicit derivation
of the frequencies for the HT metric in the equatorial
plane.

The Keplerian angular velocity (angular frequen-
cy) ωK for the Hartle-Thorne solution is given by

ω2
K(u) = ω2

K0(u) [1 ∓ jF1(u)
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+j2F2(u) + qF3(u)
]
, (4)

where (+/−) stands for co-rotating/counter-rota-
ting geodesics, j = J/M2 and q = Q/M3 are the di-
mensionless angular momentum and quadrupole pa-
rameter, and u = M/r. Other quantities are defined
as follows:

ω2
K0(u) = u3/M2, F1(u) = 2u3/2,

F2(u) = (48u7 − 80u6 + 12u5 + 26u4 − 40u3

− 10u2 − 15u + 15)[8u2(1 − 2u)]−1 − F (u),

F3(u) = −5(6u4 − 8u3 − 2u2 − 3u + 3)

8u2(1 − 2u)
+ F (u),

F (u) =
15(1 − 2u3)

16u3
ln

(
1

1 − 2u

)
.

Let us consider oscillations around circular orbits
in the plane θ = π/2. Since Ut = −E and Uφ = L are
integrals of motion, a perturbation of the 4-velocity is

δUα = (−δE, δUr(t), δUθ(t), δL). (5)

To calculate the epicyclic frequencies of these oscilla-
tions, we can use the 4-velocity in the circular orbit

gαβUαUβ = ε, (6)

where ε = 0,−1, and calculate it in the perturbed
trajectory:

gαβ(r + δr, θ + δθ)(Uα + δUα)

× (Uβ + δUβ) = ε, (7)
(

δr
∂gαβ

∂r
+ δθ

∂gαβ

∂θ
+

δr2

2

∂2gαβ

∂r2
+

δθ2

2

∂2gαβ

∂θ2

+ δrδθ
∂2gαβ

∂r∂θ
+ . . .

)
UαUβ

+ 2gαβ(r, θ)δUαUβ + gαβ(r, θ)δUαδUβ = 0. (8)

Since θ = π/2 is the symmetry plane, all deriva-
tives in ∂θ are equal to 0 (but not in ∂θ2). The
equation of circular orbits can be written as

gαβ
,r UαUβ = 0, (9)

where gαβ
,r is the derivative of the metric tensor with

respect to r. As a result, the first nonvanishing terms
give us

(
δr2

2

∂2gαβ

∂r2
+

δθ2

2

∂2gαβ

∂θ2

)
UαUβ

+ (U t)2
[
grr δ̇r

2
+ gθθδ̇θ

2
]

= C, (10)

where the dot denotes a derivative with respect to t
and

C = 2gtφ(EδL + LδE + δEδL)

− gtt(δE2 + 2EδE) − gφφ(δL2 + 2LδL), (11)

is a constant. Explicitly, using the fact that Uα =
(−E, 0, 0, L) is a constant, we have after division by
E2

(
δr2

2

∂2

∂r2
+

δθ2

2

∂2

∂θ2

)
(gtt − 2gtφl + gφφl2)

+
(
gtφl − gtt

)2 [
grr δ̇r

2
+ gθθδ̇θ

2
]

= C/E2, (12)

where l = −Uφ/Ut is the specific orbital angular mo-
mentum of a test particle per unit energy. Taking a
derivative of (12) with respect to t, one has the equa-
tion of uncoupled harmonic oscillations with angular
frequencies given by

ω2
x =

∂xx(gtt − 2gtφl + gφφl2)

2gxx (gtφl − gtt)
2 , x = r or θ. (13)

Defining an effective potential by Ueff(r, θ, l) =

gtt − 2lgtφ + l2gφφ, which can be used to find a gen-
eral formula for epicyclic frequencies on the equatorial
plane, the previous expression becomes

ω2
x =

(gtt + ωKgtφ)2

2gxx

(
∂2Ueff

∂x2

)

l

, x ∈ (r, θ), (14)

where ωK = Uφ/U t is the orbital angular velocity of
a test particle.

The radial frequencies are given by

ω2
r(u) = ω2

r0(u)
[
1 ± jX1(u) + j2X2(u)

+ qX3(u)
]
, (15)

where

ω2
r0(u) = u3(1 − 6u)/M2,

X1(u) =
6u3/2(1 + 2u)

(1 − 6u)
, (16)

X2(u) = X(u) −
(
384u8 − 720u7 − 112u6

+ 404u5 + 162u4 + 130u3 − 635u2 + 375u − 60
)

× [8u2(1 − 2u)(1 − 6u)]−1, (17)

X3(u) =
5(48u5+30u4+26u3−127u2+75u−12)

8u2(1 − 2u)(1 − 6u)

− X(u), (18)

X(u) =
15(1−2u)(2u2+13u−4)

16u3(1 − 6u)
ln

(
1

1−2u

)
. (19)

The vertical frequencies are given by

ω2
θ(u) = ω2

θ0(u) [1 ∓ jY1(u)

+j2Y2(u) + qY3(u)
]
, (20)
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where

ω2
θ0(r) = u3/M2, Y1(u) = 6u3/2, (21)

Y2(u) =
(
48u7 − 224u6 + 28u5 + 66u4 + 170u3

− 295u2 + 165u − 30
)

× [8u2(1 − 2u)]−1 + Y (u), (22)

Y3(u) = −5(6u4 + 34u3 − 59u2 + 33u − 6)

8u2(1 − 2u)

− Y (u), (23)

Y (u) =
15(2 − u)(1 − 2u)2

16u3
ln

(
1

1 − 2u

)
. (24)

4. DETERMINATION OF THE MASS,
ANGULAR MOMENTUM

AND QUADRUPOLE MOMENT

Spacetimes around rotating NSs can be with a
high precision approximated by the three-parameter
Hartle–Thorne solution of the Einstein field equa-
tions ([28]; see [29]). The solution contains the mass
M , angular momentum J and quadrupole moment Q
(supposed to reflect the rotationally induced oblate-
ness of the star). It is known that in most situa-
tions modeled with the present NS equations of state
(EoS), the NS external geometry is very different from
the Kerr geometry (representing the limit of the HT
geometry for q̃ ≡ QM/J2 → 1). However, the situa-
tion changes if the NS mass approaches its maximum
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Fig. 2. The upper frequency fU versus the periastron fre-
quency fper = fφ − fr for the Schwarzschild spacetime
(j = 0, q = 0). From top to bottom, the mass M =
[1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 24]M�.

for a given EoS. For high masses, the quadrupole
moment does not induce large differences from the
Kerr geometry since q̃ takes values close to unity.
Nevertheless, this does not mean that one can easily
neglect the quadrupole moment. For this reason, in
this work we extend the analysis of [2] involving the
Hartle-Thorne solution.
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Usually in the literature the QPOs data are given
by the following frequencies:

fφ(u) = ωK(u)/(2π),

fr(u) = ωr(u)/(2π),

fθ(u) = ωθ(u)/(2π). (25)

In Fig. 1, the radial frequency fr is plotted
versus the upper (Keplerian) frequency fU in the
Schwarzschild spacetime (j = 0, q = 0). The smaller
mass, the higher radial frequency fr. Note for (j =
0, q = 0), the Keplerian frequency fK coincides with
the vertical frequency fθ. The Keplerian frequency
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Fig. 6. The radial frequency fr versus the upper frequency
fU for fixed M = 1.85M� and j = 0. From bottom to top
q = [−2, −1, −0.3, 0, 0.1, 0.3, 0.5].
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Fig. 7. The radial frequency fr versus the upper frequency
fU for fixed M = 1.8M� and q = 0.1. From bottom to
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fφ versus the periastron frequency fper = fφ − fr is
shown in Fig. 2. The observational data points in
Figs. 1 and 2 belong to Atoll (4U0614+091, 4U1608-
52, 4U1636-536, 4U1728-34, 4U1735-44) and Z
(GX 5-1, GX 17+2, GX 340+0, Sco X-1, Cir X-
1) sources. For the sake of clarity, the error bars
have been omitted. The QPOs data have been taken
from [30–33] and references therein. For fixed mass
and zero quadrupole parameter, different curves are
shown in Figs. 3 and 5, varying the value of j.
Figs. 4 and 6 show the frequencies around non-
rotating deformed objects with fixed mass and dif-
ferent quadrupole moments. Indeed, the rotation and
deformation of a central object (in our case a neutron
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fU for fixed M = 1.75M� and q = −0.1. From bottom to
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Fig. 9. The radial frequency fr versus the upper frequency
fU for fixed M = 1.8M� and j = 0.1. From bottom to
top q = [−2.2, −1, −0.3, 0, 0.2, 0.3, 0.4].

star) play a pivotal role in describing quasiperiodic
oscillations. Figs. 7–10 show the radial frequencies
versus the upper frequencies depending on M , j and
q of the central source.

In this work, we have used the minimum set of pa-
rameters such as the total mass M , the dimensionless
angular momentum j and the quadrupole parameter
q of the source. Unfortunately, from observations it
is hard to obtain precise values of LMXB masses.
Different references show contradictory numbers. For
example, Sco X-1 is the well-known X-ray binary
system classified as a low-mass X-ray binary; the
neutron star is roughly 1.4 solar masses, while the
donor star is only 0.42 solar masses [34]. However,
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bottom to top q = [−2, −1.2, −0.5, 0, 0.3, 0.6, 0.9].
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Refs. [2, 35, 36] present various values for the neutron
star mass.

Fig. 11 shows the best fits for the upper frequency
versus the lower frequency for the Z source GX 5-1.
Here we see that the fit with all three parameters is
better than the fit with only one parameter, the mass
M . A statistical test gives χ2 = 0.998 for the three-
parameter fit and χ2 = 0.993 for the one-parameter
fit.

5. CONCLUSION

In this paper we have derived formulas for epicyclic
frequencies of test particles in the Hartle-Thorne
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spacetime. With the help of these frequencies and
according to the relativistic precession model, we
have interpreted the quasi-periodic oscillations of the
low-mass X-ray binaries. We have constructed the
dependence of the higher frequencies with respect to
the lower frequencies varying the main parameters of
the central compact object such as the mass, angular
momentum and quadrupole moment. Eventually
for Z source GX 5-1 we have performed the fitting
analysis and found the best fit to estimate the mass,
angular momentum and quadrupole moment. We
have shown that the three-parameter fit is better
than the one- and two-parameter ones. For better
analyses one needs to consider more sources with
refined data. It would be interesting to perform further
calculations assigning the neutron star equation
of state and construct mass-radius, mass-angular
momentum, angular velocity-quadrupole moment
etc. relations in order to compare and contrast
the theory with observations. The first step in this
direction was recently undertaken by Belvedere et
al. [37], where the authors construct equilibrium
configurations of uniformly rotating neutron stars
taking into account all fundamental interactions in
a self-consistent relativistic fashion. Construction of
an angular momentum-quadrupole moment relation
from a theoretical point of view and its comparison
with the best fit of observational data will be the issue
of future investigations.
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