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Sophia-Antipolis, France)

• Y. Wu (ICRANet, University of Rome, Italy and Universitè de Nice
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2. Brief Description of the
Research Activities

The study of compact objects such as white dwarfs, neutron stars and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories e.g. general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
physical aspects, the study of astrophysical scenarios characterized by the
presence of a compact object has also started to be focus of extensive research
within our group. The research which has been done and is currently being
developed within our group can be divided into the following topics:

1. Nuclear and Atomic Astrophysics

2. White Dwarfs Physics and Astrophysics

3. Neutron Stars Physics and Astrophysics

4. Emission-Radiation Mechanisms of White Dwarfs and Neutron Stars

5. Neutron Star Physics and Astrophysics with Gamma Ray Bursts

6. Exact Solutions of the Einstein and Einstein-Maxwell equations in As-
trophysics

7. Critical Fields and Non-linear Electrodynamics Effects in Astrophysics

2.1. Nuclear and Atomic Astrophysics

Within this subject of research we study the properties and processes occur-
ring in compact stars such as white dwarfs and neutron stars in which nuclear
and atomic physics have to be necessarily applied. We focus on the properties
of nuclear matter under extreme conditions of density and pressure found in
these objects. The equation of state of the matter in compact star interiors
is studied in detail taking into account all the interactions between the con-
stituents within a full relativistic framework.

The aim is to have a unified approach for nuclei, superheavy nuclei up
to atomic numbers of the order of 105–106, and what we have denominated
“nuclear matter cores of stellar dimensions”:
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2. Brief Description of the Research Activities

• characterized by atomic number of the order of 1057;

• composed by a degenerate fluid of neutrons, protons and electrons in
β-equilibrium;

• globally neutral configurations;

• expected to be kept at nuclear density by self gravity.

The study of all these objects going from the microscopic to the macro-
scopic is at the base of the theory of white dwarfs, neutron stars, hyperon
stars, strange quark stars, and other related compact objects.

It is known that the Thomas-Fermi model has been extensively applied
in atomic physics, also has been applied extensively in atomic physics in
its relativistic form as well as in the study of atoms with heavy nuclei (see
Gombás, 1949, for instance). Similarly there have been considerations of rel-
ativistic Thomas-Fermi model for quark stars pointing out the existence of
critical electric fields on their surfaces (Alcock et al., 1986). Similar results
have also been obtained in the transition at very high densities, from the nor-
mal nuclear matter phase in the core to the color-flavor-locked phase of quark
matter in the inner core of hybrid stars (Alford et al., 2001). However, no ex-
ample exists to the application of the electromagnetic Thomas-Fermi model
to white dwarfs and neutron stars.

The analysis of superheavy nuclei has historically represented a major field
of research, developed by Prof. V. Popov and Prof. W. Greiner and their
schools. This same problem was studied in the context of the relativistic
Thomas-Fermi equation also by R. Ruffini and L. Stella, already in the ’80s.
The recent approach was started with the Ph.D. Thesis of M. Rotondo and
has shown the possibility to extrapolate this treatment of superheavy nuclei
to the case of nuclear matter cores of stellar dimensions (see appendix A.1).
The very unexpected result has been that also around these massive cores
there is the distinct possibility of having an electromagnetic field close to the
critical value

Ec =
m2

e c3

eh̄
≈ 1.3 × 1016 Volt cm−1 ,

localized in a very narrow shell of the order of the electron Compton wave-
length (see Fig. 2.1).

The welcome result was that all the analytic work developed by Prof. V. Po-
pov and the Russian school can be applied using scaling laws satisfied by the
relativistic Thomas-Fermi equation to the case of nuclear matter cores of stel-
lar dimensions, if the β-equilibrium condition is properly taken into account.
This has been the result obtained and published by Ruffini, Rotondo and Xue
already in 2007. Since then, a large variety of problems has emerged, which
have seen the direct participation of ICRANet Professors, graduate students,
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2.1. Nuclear and Atomic Astrophysics
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Figure 2.1.: Upper panel: electric field around the surface of a nuclear mat-
ter core of stellar dimensions in units of the critical field Ec. Lower panel:
electron Coulomb potential −eV. Here Rc denotes the core radius and
λe = h̄/(mec) is the electron Compton wavelength.

postdocs, as well as collaborators worldwide including Prof. V. W. Greiner,
Prof. Popov, Prof. D. Arnett and the Nobel Prize Awarded, Prof. G. ’t Hooft.

One of the crucial issues to be debated is the stability of such cores un-
der the competing effects of self-gravity and Coulomb repulsion. It has been
demonstrated their stability against nuclear fission, as opposed to the case of
heavy nuclei; see appendix A.1. In particular, on the basis of Newtonian grav-
itational energy considerations it has been found the existence of a possible
new island of stability for mass numbers

A > AR = 0.039

(

Np

A

)1/2 (mPlanck

mn

)3

,

where Np is the number of protons, A is the total number of baryons, mn is

the neutron mass and mPlanck =
√

h̄c/G is the Planck mass.

The equilibrium against Coulomb repulsion originates now from the com-
bined effect of the screening of the relativistic electrons, of the surface ten-
sion due to strong interactions, and of the gravitational interaction of these
massive cores. By enforcing the condition of β-equilibrium, it has been also
obtained a generalization to the relation between the mass number A and
atomic number Np which encompasses phenomenological expressions (see
appendix A.1 for details).
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All these considerations have been made for an isolated core with constant
proton density whose boundary has been sharply defined by a step function.
No external forces are exerted. Consequently, the Fermi energy of the elec-
trons has been assumed to be equal to zero.

Different aspects concerning these macroscopic systems have been also
considered. For instance, the analysis of the electron distribution around such
cores in both the case of global charge neutrality and the case of not global
charge neutrality has been presented by R. Ruffini, M. Rotondo and S.-S. Xue
in Neutral nuclear core versus super charged one, Proc. 11th Marcel Grossmann
Meeting, 2008.

The assumption of a sharp proton density profile has been relaxed and,
consequently, a smooth surface modeled by a Woods-Saxon-like proton dis-
tribution has been introduced in The Extended Nuclear Matter Model with Smooth
Transition Surface by Jorge A. Rueda H., B. Patricelli, M. Rotondo, R. Ruffini,
S.-S. Xue, , Proc. 3rd Stueckelberg Workshop on Relativistic Field Theories,
2008. The presence of overcritical electric fields close to their surface has been
confirmed also in this more general case.

The existence of the scaling laws of the ultrarelativistic Thomas-Fermi equa-
tion (see appendix A.1) has led to the very exciting possibility of having
macroscopic configurations of nuclear matter in β-equilibrium exhibiting strong
electric fields on their surfaces. In order to go one step further towards a
more realistic description of macroscopic configurations as white dwarfs and
neutron stars, further improvements and extensions must be applied to the
starting model.

It is therefore interesting, in order to approach both the complex problem
of a neutron star core and its interface with the neutron star crust and the
problem of the equilibrium of gas in a white dwarf taking into account all
possible global electromagnetic interactions between the nucleus and the rel-
ativistic electrons, to extend the model to the compressed case in which the
Fermi energy of electrons turns to be positive.

The analysis of globally neutral and compressed configurations composed
by a nucleus made of relativistic degenerate neutrons and protons surrounded
by relativistic degenerate electrons in β-equilibrium has been recently accom-
plished. This work generalized the Feynman-Metropolis-Teller treatment of
compressed atoms to relativistic regimes, and the concept of compressed nu-
clear matter cores of stellar dimensions was introduced (see appendix A.2 for
details).

In the relativistic generalization of the Feynman-Metropolis-Teller appro-
ach, the equation to be integrated is the relativistic Thomas-Fermi equation.
The integration of this equation does not admit any regular solution for a
point-like nucleus and both the nuclear radius and the nuclear composition
have necessarily to be taken into account. This introduces a fundamental
difference from the non-relativistic Thomas-Fermi model where a point-like
nucleus was adopted.
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Due to the introduction of the concept of Wigner-Seitz cells, the study of
degenerate compressed matter in white dwarfs can be addressed. This prob-
lem presents, still today, open issues of great interest such as the equilibrium
of the electron gas and the associated nuclear component, taking into account
the electromagnetic, the gravitational and the weak interactions formulated
in a correct special and general relativistic framework.

A complete analysis of the properties of such configurations as a function
of the compression can be duly done through the relativistic generalization
of the Feynman-Metropolis-Teller approach (see appendix A.2 for details).

It has been then possible to derive a consistent equation of state for com-
pressed matter which generalizes both the uniform free-electron fluid ap-
proximation, adopted for instance by Chandrasekhar (1931b) in his famous
treatment of white dwarfs, and the well-known work of Salpeter (1961a)
which describes the electrodynamic and relativistic effects by a sequence of
approximations. Apart from taking into account all possible electromagnetic
and special relativistic corrections to the equation of state of white dwarf mat-
ter, the new equation of state that incorporates the β-equilibrium condition,
leads to a self-consistent calculation of the onset for inverse β-decay as func-
tion of the Fermi energy of electrons or the density of the system. This is
very important for the analysis of the stability of white dwarfs against gravi-
tational collapse (see below and appendix B.1).

The extension of the above works to the case of finite temperatures is part
of the doctoral work of S. Martins de Carvalho. The generalization of the
relativistic Feynman-Metropolis-Teller treatment to the case T 6= 0 has been
already accomplished, see appendix A.3. The inclusion of finite tempera-
ture effects is becoming of primary importance in view of the recent discov-
eries of ultra-low mass white dwarfs with masses . 0.2M⊙ (Antoniadis et
al. 2012,2013), which are companion of neutron stars in relativistic binaries.
These low-mass white dwarfs represent the perfect arena for testing the equa-
tion of state of compressed matter since the central densities of these objects
are expected to be . 106 g cm−3, where the degenerate approximation breaks
down and so thermal effects cannot be neglected.

A related topic of current interest concerns the case of rotating nuclear mat-
ter cores of stellar dimensions. The induced magnetic field by electric field
rotation has been recently obtained (see appendix A.4). Such analysis has
been done in the framework of classical electrodynamics under the assump-
tion of uniform rigid rotation of the macroscopic nuclear cores in the non-
compressed case. For rotation periods of the order of ∼ 10 ms, overcritical
magnetic fields has been obtained near the surface of the configuration.

In neutron star cores, nuclear matter is under very extreme conditions of
density and pressure. The importance of the strong interactions between
nucleons at such extreme pressures it has been known for years (see e.g.
Cameron, 1970; Shapiro and Teukolsky, 1983a). However, due to the absence
of a complete theory of the strong interactions, and due to the impossibility
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of performing terrestrial experiments with similar extreme pressure-density
conditions, the equation of state of nuclear matter at densities larger than
the nuclear saturation density ∼ 2.7 × 1014 g/cm3, is still today unknown.
The construction of nuclear equations of state combined with a fully con-
sistent formulation of the equations of equilibrium in general relativity both
for white dwarfs and neutron stars is an active topic of research within our
group. In the recent past, some graduate theses of our group were devoted to
this topic, for instance the works of M. Rotondo and Jorge A. Rueda, which
were soon followed by the ones of D. Pugliese, R. Belvedere, K. Boshkayev.
Currently, S. Martins de Carvalho and Y. Wu are developing their graduate
theses following these guidelines.

2.2. White Dwarf Physics and Astrophysics

A branch of research which is currently under continuous evolution corre-
sponds to the extension to the case of general relativity, all the previous the-
ory about the Thomas-Fermi model and the relativistic Thomas-Fermi model,
applied initially to the study of heavy nuclei, superheavy nuclei as well as to
the theoretical hypothesis of nuclear matter cores of stellar dimensions. The
aim is to construct a self-consistent theory of self-gravitating systems obeying
relativistic quantum statistics, electromagnetic, weak and strong interactions
in the framework of general relativity, from which it is possible to study the
properties of compact objects, such as white dwarfs and neutron stars.

The recent generalization of the Feynman-Metropolis-Teller treatment to
relativistic regimes, which led to a new equation of state of white dwarf mat-
ter (see appendix A.2), has been recently used to construct equilibrium con-
figurations of white dwarfs in general relativity (see appendix B.1).

The description of the inverse β-decay within the relativistic Feynman-
Metropolis-Teller equation of state in conjunction with general relativity, leads
to a self-consistent calculation of the critical mass of white dwarfs (see ap-
pendix B.1 for details). The numerical value of the mass, of the radius, and of
the critical mass of white dwarfs turn to be smaller with respect to the ones
obtained with approximate equations of state (see e.g. Hamada and Salpeter,
1961). Therefore, the analysis of compressed atoms following the relativistic
Feynman-Metropolis-Teller treatment has important consequences in the de-
termination of the mass-radius relation of white dwarfs, leading to the pos-
sibility of a direct confrontation of these results with observations, in view
of the current great interest for the cosmological implications of the type Ia
supernovae.

The generalization of the above general relativistic theory of white dwarfs
to the case of rotation is the thesis work of K. Boshkayev; see appendix B.2 for
details. The entire family of uniformly rotating stable white dwarfs has been
already obtained by studying the mass-shedding, the inverse β-decay, pyc-
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nonuclear reactions, as well as the axisymmetric instabilities. Both the max-
imum mass and the minimum(maximum) rotation period(frequency) have
been obtained for selected nuclear compositions. This work is relevant for
the evolution of massive white dwarfs and type Ia supernovae. Besides, it
has been successfully applied to the description of soft-gamma-ray repeaters
(SGRs) and anomalous X-ray pulsars (AXPs) within a model based on rota-
tion powered white dwarfs, as shown in appendixes B.3–B.5.

SGRs and AXPs are a class of compact objects that show interesting obser-
vational properties: rotational periods in the range P ∼ (2–12) s, a narrow
range with respect to the wide range of ordinary pulsars P ∼ (0.001–10) s;
spin-down rates Ṗ ∼ (10−13–10−10), larger than ordinary pulsars Ṗ ∼ 10−15;
strong outburst of energies ∼ (1041–1043) erg, and for the case of SGRs, gi-
ant flares of even large energies ∼ (1044–1047) erg, not observed in ordinary
pulsars.

The recent observation of SGR 0418+5729 with a rotational period of P =
9.08 s, an upper limit of the first time derivative of the rotational period
Ṗ < 6.0 × 10−15, and an X-ray luminosity of LX = 6.2 × 1031 erg/s, promises
to be an authentic Rosetta Stone, a powerful discriminant for alternative mod-
els of SGRs and AXPs. The loss of rotational energy of a neutron star with
this spin-down rate Ṗ cannot explain the X-ray luminosity of SGR 0418+5729,
excluding the possibility of identifying this source as an ordinary spin-down
powered pulsar. The inferred upper limit of the surface magnetic field of SGR
0418+5729 B < 7.5 × 1012 G, describing it as a neutron star within the mag-
netic braking scenario, is well below the critical field challenging the power
mechanism based on magnetic field decay purported in the magnetar sce-
nario.

We have shown that the observed upper limit on the spin-down rate of SGR
0418+5729 is, instead, perfectly in line with a model based on a massive fast
rotating highly magnetized white dwarf of mass M = 1.4M⊙, radius R = 103

km, and moment of inertia I ≈ 1049 g cm2. We analyze the energetics of all
SGRs and AXPs including their outburst activities and show that they can be
well explained through the change of rotational energy of the white dwarf as-
sociated to the observed sudden changes of the rotational period, the glitches.
All SGRs and AXPs can be interpreted as rotating white dwarfs that generate
their energetics from the rotational energy and therefore there is no need to
invoke the magnetic field decay of the magnetar model. Details can be found
in appendix B.3. The above calculation of the range of minimum rotation
periods of massive white dwarfs, 0.3 . Pmin . 2.2 seconds, depending on
the nuclear composition (see appendix B.2), implies the rotational stability of
SGRs and AXPs. The relatively long minimum period of 56Fe rotating white
dwarfs ∼ 2.2 seconds, implies that the objects describing SGRs and AXPs
have are made of chemical compositions lighter than 56Fe, e.g. 12C or 16O.

We have analyzed within the white dwarf model of SGRs and AXPs, SGR
0418+5729 and Swift J1822.3-1606 the so-called low magnetic field magnetars;
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see appendix B.4. The request of the rotational stability of the white dwarf
gives bounds for the mass, radius, moment of inertia and magnetic field,
through the analysis of constant rotation period sequences of uniformly ro-
tating white dwarfs. We have also analyzed the emission properties of these
two objects in the optical band, and inferred the cyclotron frequencies asso-
ciated to their magnetic fields which might cause absorption features in the
optical wavelengths (see appendix B.4). Concerning the emission in the high-
energy bands, such as X and gamma-rays, it is part of the graduate work of
D. Cáceres.

We are in addition considering the possible progenitors of these massive
fast rotating highly magnetized white dwarfs. Recent smoothed particle hy-
drodynamics (SPH) simulations of white dwarfs mergers (Garcia-Berro et
al. 2012) indicate that the outcomes of these binaries are white dwarfs with
the above desirable properties, and thus they can be progenitors of SGRs and
AXPs. Specifically, the products of these mergers consist of a hot central white
dwarf surrounded by a heavy rapidly rotating disk. We applied these consid-
erations to the specific case of 4U 0142+61 (see appendix B.5) and show that
the merger of a double degenerate system can explain the characteristics of
this peculiar AXP.

The request of the rotational stability of the white dwarf outcome of the
merger gives bounds for the mass, radius, moment of inertia and magnetic
field. Assuming a carbon composition, we find that the mass and radius
of 4U 0142+61 must be in the range 1.16–1.39 M⊙ and 0.0014–0.0086 R⊙. We
followed the post-merger cooling and rotation evolution of the newly formed
white dwarf. We show that this scenario accounts for the observed infrared
excess and the emission observed in the other optical bands. We demonstrate
that the observed properties of 4U 0142+6 are consistent with a ∼ 1.2 M⊙
white dwarf, remnant of the coalescence of an original system made of two
white dwarfs of masses 0.6 M⊙ and 1.0 M⊙. Finally, we infer a post-merging
age τWD ≈ 64 kyr, and a magnetic field B ≈ 2 × 108 G. Evidence for such a
magnetic field may come from the possible detection of the electron cyclotron
absorption feature observed between the B and V bands at a frequency ν ≈
1015 Hz in the spectrum of 4U 0142+61. Details can be found in appendix B.5.

We now turn from the above massive white dwarfs to low-mass white
dwarfs. Recent observations of relativistic white dwarf-neutron star bina-
ries has led to the discovery that the white dwarfs in these systems are light
objects with masses . 0.2M⊙ (Antoniadis et al. 2012,2013). These objects
should have densities lower than ∼ 106 g cm−3, where thermal effects might
become relevant. In this line the generalization of the relativistic Feynman-
Metropolis-Teller treatment to the case of finite temperatures acquires im-
portance (see appendix A.3). We have used this new equation of state to
construct the mass-radius relation of white dwarfs at finite temperatures in a
wide range of central densities; we refer to appendix B.6 for details. We ana-
lyze in particular the white dwarf companion of the pulsar PSR J1738+0333,
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which is expected to have a mass ∼ 0.18M⊙ (Antoniadis et al. 2012). Using
the observed surface effective temperature and surface gravity of the white
dwarf we infer that the central core temperature of the object should be close
to ∼ 2 × 107 K.

Going back to magnetized white dwarfs, it has been recently purported
by Das and Mukhopadhyay (2013) that the presence of a extremely large
uniform magnetic field of order 1018 G in the interior of a white dwarf, in-
creases the maximum mass of the star from the traditional Chandrasekhar
value, ≈ 1.44 M⊙, to a new upper bound ≈ 2.58 M⊙. Such a much larger
limit would make these astrophysical objects viable candidates for the expla-
nation of the superluminous population of type Ia supernovae. We show in
App. B.7 that the new mass limit was obtained neglecting several macro and
micro physical aspects such as gravitational, dynamical stability, breaking of
spherical symmetry, general relativity, inverse β decay, and pycnonuclear fu-
sion reactions. These effects are relevant for the self-consistent description of
the structure and assessment of stability of these objects. When accounted
for, they lead to the conclusion that the existence of such ultramagnetized
white dwarfs in nature is very unlikely due to violation of minimal requests
of stability, and therefore the canonical Chandrasekhar mass limit of white
dwarfs has to be still applied.

2.3. Neutron Star Physics and Astrophysics

In the earliest description of neutron stars in the works of Tolman (1939) and
Oppenheimer and Volkoff (1939) only a gas of neutrons was considered and
the equations of equilibrium (hereafter TOV equations) were written in the
Schwarzschild metric. They considered the model of a degenerate gas of
neutrons to hold from the center to the border, with the density monotoni-
cally decreasing away from the center.

In the intervening years, more realistic neutron star models have been pre-
sented challenging the original considerations of Tolman (1939) and Oppen-
heimer and Volkoff (1939). The TOV equations considered the existence of
neutrons all the way to the surface of the star. The presence of neutrons,
protons and electrons in β-equilibrium were instead introduced by Harri-
son et al. (1965). Still more important, the neutron stars have been shown
to be composed of two sharply different components: the core at nuclear
and supra-nuclear densities consisting of degenerate neutrons, protons and
electrons in β-equilibrium and a crust of white dwarf like material, namely
a nuclei lattice in a background of degenerate electrons (see Harrison et al.,
1965; Baym et al., 1971a, for details). Further works describing the nuclear in-
teractions where later introduced. Clearly all these considerations departed
profoundly from the Oppenheimer and Volkoff (1939) assumption.

The matching between the core and the crust is still today an open issue in
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neutron star physics. In order to handle with this interesting problem, a step-
by-step procedure is needed. In such a case, the neutron, proton, and electron
fluid is confined within the core radius due to the compression exerted by the
crust component of the neutron star.

Most of the effort have been given to the construction of self-consistent so-
lutions of the equations of equilibrium for neutron stars in general relativity
taking into account the traditionally neglected electromagnetic interaction. In
nearly all the scientific literature on neutron stars, a “local approach”, where
the equation of state of neutron star matter is constructed ignoring global
gravitational and Coulombian effects by assuming not only flat space but
also local charge neutrality, has been traditionally used. The gravitational ef-
fects are then taken into account by embedding such an equation of state into
the TOV equations of hydrostatic equilibrium.

We have introduced a new approach which thanks to the existence of scal-
ing laws can apply to compressed atoms as well as to massive nuclear matter
cores of stellar dimensions. This approach on the compressed atom has al-
ready given a new contribution in the study of white dwarfs. It represents
the first self-consistent calculation taking into due account the electromag-
netic contribution in a relativistic treatment of the Thomas-Fermi equation,
within global formulation of the equilibrium of white dwarfs in general rela-
tivity.

The application of the above results to the case of neutron stars is much
more complex and it has been approached stepwise. As a first step we have
considered the application of this novel approach to the case of a system of
neutrons, protons, and electrons in β-equilibrium at zero temperatures within
general relativity (see appendix C.1). The crucial role of the generalized Fermi
energy of particles, for short Klein potentials, and their constancy on the en-
tire equilibrium configuration has been outlined. Such a solution, although
does not represent a realistic model for a neutron star, contains all the essen-
tial physics of the phenomenon of gravito-polarization in neutron star inte-
riors: the existence of an electric potential and consequently an electric field
over the entire configuration has been there evidenced.

We have there proved, for the case of this simplified example where strong
interactions are neglected, that the traditional approach of describing the sys-
tem imposing the condition of local charge neutrality and solving the corre-
sponding TOV equations is conceptually inconsistent. We have then sub-
stitute the condition of local charge neutrality with the condition of global
charge neutrality and derived the correct equations which we have called the
Einstein-Maxwell-Thomas-Fermi system. The boundary conditions are also
different from a traditional Cauchy data with the values of the functions and
first derivatives at the center into a boundary condition at the center and deli-
cate eigenvalue problem at the boundary determining the condition of charge
neutrality at the border (see appendix C.1). The conceptual differences and
the alternative mathematical equations of the two approaches, the ones im-
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posing local versus global charge neutrality, lead to the presence of additional
electrodynamic global structures. However, in this specific simple example,
they do not give significant quantitative differences in the mass-radius re-
lation for the equilibrium configurations. A very different situation occurs
when strong interactions are also taken into account.

The next step has been to introduce self-consistently the strong interactions
in the construction of the equilibrium configurations. We have indeed re-
cently generalized the Einstein-Maxwell-Thomas-Fermi equations to the case
of strong interactions, see appendix C.2 for details. There the major aim has
been to prove the constancy of the Klein potentials in the case in which the
nuclear interactions are described by a Lagrangian including in addition to
the gravitational, electromagnetic, and weak interactions, also the presence
of σ, ω, and ρ virtual mesons that mediate the nuclear interactions.

We have also extended to finite temperatures the theoretical treatment of
gravito-polarization for a system of neutrons, protons and electrons in β-
equilibrium, taking into account strong interactions modeled through the ex-
change of σ, ω and ρ virtual mesons (see appendix C.3 for details). The cru-
cial role of the Klein potentials of particles is outlined as well as the condition
of isothermality of Tolman. We have shown that, the gravito-polarization
effect although energetically much weaker than the corresponding gravita-
tional and thermal effects, do survive in the case of finite temperatures. Their
role, when strong interactions are considered, is of fundamental astrophysi-
cal importance.

The construction of realistic neutron stars with core and crust satisfying
global (but not local) charge neutrality has been already accomplished (see
appendix C.4). The solutions lead to a new structure of the star: a positively
charged core at supranuclear densities surrounded by an electronic distribu-
tion of thickness ∼ h̄/(mec) ∼ 102h̄/(mπc) of opposite charge, as well as a
neutral crust at lower densities. Inside the core there is a Coulomb potential
well of depth ∼ mπc2/e. The constancy of the Klein potentials in the transi-
tion from the core to the crust, impose the presence of an overcritical electric
field ∼ (mπ/me)2Ec. For each central density, an entire family of core-crust
interface boundaries can be constructed, each of them reaching the neutral-
ity point at a different electron density at the edge of the crust. This leads
consequently to crusts with masses and thickness smaller than the ones ob-
tained from the traditional TOV treatment, resulting in a novel neutron star
mass-radius relation.

The generalization of this important work to the case of uniformly rotat-
ing neutron stars has been already accomplished (see appendix C.5). This
part of the graduate thesis of R. Belvedere has been based on the previous
results obtained by K. Boshkayev for the case of rotating white dwarfs. We
determine the equilibrium configurations by solving the Einstein-Maxwell-
Thomas-Fermi equations within the slow rotation formalism by Hartle. We
integrate these equations of equilibrium for different central densities and
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circular angular velocities and compute the mass, polar and equatorial radii,
angular momentum, eccentricity, moment of inertia, as well as quadrupole
moment Q of the configurations. Both the Keplerian mass-shedding limit
and the axisymmetric secular instability are used to construct the new mass-
radius relation. We compute the maximum and minimum masses and rota-
tion frequencies of neutron stars.

The analysis of the properties of the core-crust interface, such as its surface
and Coulomb energies, are being studied by Y. Wu, as part of his graduate
work (see appendix C.6, for details). we study the instability against Bohr-
Wheeler surface deformations in the case of neutron stars obeying global
charge neutrality. Assuming the core-crust transition at nuclear density ρcore ≈
2.7 × 1014 g cm−3, we find that the instability sets the upper limit to the crust
density, ρcrit

crust ≈ 1.2 × 1014 g cm−3. This result implies a non-zero lower
limit to the maximum electric field of the core-crust transition surface and
makes inaccessible a limit of quasi-local charge neutrality reachable in the
limit ρcrust = ρcore. The general framework presented in this work can be
also applied to study the stability of sharp phase-transitions in hybrid stars
as well as in strange stars both bare and with outer crust. The results of
this work open the way to a more general analysis of the stability of these
transition surfaces accounting for other effects such as gravitational binding,
centrifugal repulsion, magnetic field induced by rotating electric field and
therefore magnetic dipole-dipole interactions.

We turn now to the thermal evolution of neutron stars, which is part of the
PhD thesis of Sheyse M. de Carvalho. Some properties of neutron stars, such
as the equation of state and the composition in their cores are still uncertain.
All the microscopic calculations are model dependent an give us a variety of
possible equations of state with different compositions of the core. Owing to
the strong sensitivity of the thermal evolution of a neutron star to its micro-
scopic and macroscopic properties, the simulation of the neutron star cooling
is one of the potential methods to probe their interior structure. As we show
in Apps. C.7 and C.8, the theoretical cooling curves depend on the adopted
stellar interior, emissivities, heat capacity and thermal conductivity.

Neutron stars have temperatures around 1011 K at birth, but gradually cool
down in a process realized by two channels: neutrino emission from the stel-
lar body and heat conduction from the internal layers in the surface resulting
in a photon emission. We neglect the possible reheating mechanisms, the
magnetic fields, and the superfluidity effects. In Apps. C.7 and C.8 we com-
pute the cooling curves, namely the thermal evolution, of the neutron stars
with global neutrality and to compare them with the locally neutral neutron
star (TOV-like) cooling curves.

The cooling curves have been computed considering the isothermal ap-
proximation in App. C.7, that is we first do not take into account the thermal
relaxation phase in which the core and the crust of the neutron star are ther-
mally decoupled. The size and mass fraction of the neutron star core where
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the direct Urca is active for the case of NL3 parametrization of the nuclear
model was also computed. The full cooling curves are computed in App. C.8.
We noticed a different behavior of the thermal relaxation phase with respect
to the locally neutral neutron stars, when the density at the base of the crust
is lower than ≈ 5 × 1013 g cm−3. We conclude that in a very thin crust with
a small or absent inner crust, some neutrino emission processes are blocked
keeping the crust hotter for longer times, so increasing the time for the inte-
rior to reach isothermality.

It is clear from all the above discussion on neutron stars, that in the in-
tervening years from the seminal work of Oppenheimer and Volkoff (1939),
much more has been learned concerning the equation of state including the
nuclear interactions, and on a more complex description of the structure pa-
rameters and stability of both static and rotating neutron stars. In spite of
this fact, it is common in the pulsar literature to infer neutron star astrophys-
ical observables such as surface magnetic field and luminosity by adopting
as fiducial structure parameters for the mass, radius, and moment of inertia,
M = 1.4 M⊙, R = 10 km, I = 1045 g cm2, respectively. The same argu-
ment applies to the use of some analytic formulas existing in the literature for
the determination of the maximum rotation frequency (see e.g. Lattimer and
Prakash, 2004a) and of the moment of inertia (see e.g. Ravenhall and Pethick,
1994; Lattimer and Schutz, 2005) of a neutron star. However, it is clear that
both different theoretical models or, for a fixed model, different structure pa-
rameters by varying central density and/or rotation frequency, can give rise
to quite different quantitative estimates of the astrophysical quantities.

In App. C.9, we summarize a recent work part of the PhD thesis of R. Belvedere,
in which it is analyzed the consequences of using fiducial parameters and an-
alytic formulas for the Keplerian sequence and moment of inertia, on the es-
timation of pulsar observables. We construct the Keplerian sequence of glob-
ally and locally neutral neutron stars and compare qualitatively and quan-
titatively our results with the approximate analytic formula given by Lat-
timer and Prakash (2004a). We analyze specifically the case of the fastest
observed pulsar PSR J1748–2446ad (Hessels et al., 2006a) with a frequency of
716 Hz, which is often used in the literature to constraint the mass-radius
relation and so the EOS of neutron stars (see e.g. Trümper, 2011). Then,
we calculate the moment of inertia of globally and locally neutral neutron
stars and compare and contrast the results with the approximate formulas
given by Ravenhall and Pethick (1994) and also Lattimer and Schutz (2005)
for the moment of inertia as a function of the star compactness. Finally, we
turn to the astrophysical observables of pulsars and analyze the estimates
of the magnetic field and radiation efficiency of the high-magnetic field pul-
sars class. We compare and contrast the values of realistic neutron star con-
figurations with the ones derived using the above fiducial parameters, with
which fields larger than the quantum critical value for vacuum breakdown,
Bc = m2

e c2/(eh̄) ≈ 4.4 × 1013 G, are obtained (see e.g. Ng and Kaspi, 2011).
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2.4. Neutron Star Physics with Gamma Ray Bursts

The progenitors and emission mechanisms leading to the most energetic ra-
diation observed in astrophysics, the Gamma Ray Bursts (GRBs), are studied.
Focus is given to the termed GRB-Supernova connection and to Short GRBs.
The binary progenitors of these systems are studied in detail with particular
emphasis on the role played by neutron stars.

It is understood that the Supernovae (SNe) associated to Gamma Ray Bursts
(GRBs) are of type Ib/c. However, the temporal coincidence of the GRB and
the SN represents still a major enigma of Relativistic Astrophysics. A novel
concept has been recently proposed for explaining the temporal coincidence
of some Gamma Ray Bursts (GRBs) with an associated Supernova (SN) in
terms of the gravitational collapse of a neutron star to a Black Hole (BH),
induced by a type Ib/c SN explosion (see Rueda and Ruffini, 2012, and the
report of activities of the GRB group). There, based on the pioneer idea of
Ruffini et al. (2008a), the specific case of a close (orbital period < 1 h) binary
system composed of an evolved star with a neutron star companion has been
considered. We have computed in (Rueda and Ruffini, 2012) the accretion
rate onto the neutron star of the material expelled from the explosion of the
core progenitor as a type Ib/c SN, and give the explicit expression of the ac-
creted mass as a function of the nature of the components and binary param-
eters. We showed that the NS can reach, in a few seconds, the critical mass
and consequently gravitationally collapses to a Black Hole. This gravitational
collapse process leads to the emission of the GRB.

We have recently applied in (Izzo et al., 2012a) the above considerations
to the case of GRB 090618 (see also report of activities of the GRB group),
for which there is evidence of a SN ∼ 10 days after the GRB occurrence.
We compute the progenitor binary parameters: the mass of the neutron star
companion, MNS, and the mass of the SN core progenitor, Mcore, are in the
following mass ranges: 1.8 . MNS/M⊙ . 2.1 and 3 ≤ Mcore/M⊙ ≤ 8.
We have also discussed in (Rueda and Ruffini, 2012; Izzo et al., 2012a) the
complementarity of these considerations to alternative processes explaining
long and short GRBs.

It is clear that after the occurrence of the SN and the GRB emission, the
outcome is represented, respectively, by a NS and a BH. A possible strong
evidence of the NS formation is represented by the observation of a charac-
teristic late (t = 108–109 s) X-ray emission that has been interpreted as origi-
nated by the young (t ∼ 1 minute–(10–100) years), hot (T ∼ 107–108 K) NS,
which we have called neo-NS (see Negreiros et al. (2012) and appendix D.1,
for details). This has been indeed observed in GRB 090618 (Izzo et al., 2012b)
and also in GRB 101023 (Penacchioni et al., 2012). If the NS and the BH are
gravitationally bound they give origin to a new kind of binary system, which
can lead itself to the merging of the NS and the BH and consequently to a
new process of gravitational collapse of the NS into the BH. In this case the
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system could originate a yet additional process of GRB emission and possibly
a predominant emission in gravitational waves.

The traditional study of neutron star cooling has been generally applied to
quite old objects as the Crab Pulsar (957 years) or the Central Compact Ob-
ject in Cassiopeia A (330 years) with an observed surface temperature ∼ 106

K. However, as we just mentioned in GRB-SN systems there is possible evi-
dence of the cooling of neutron stars with surface temperatures ∼ 107–108 K.
The traditional thermal processes taking place in the neutron star crust might
be enhanced by the extreme high temperature conditions of neo-neutron star
and therefore the study of the thermal behavior especially of the crust of neo-
neutron stars deserve the appropriate attention. This issue is part of the grad-
uate work of S. Martins de Carvalho. The influence of possible fallback ac-
cretion after the SN explosion, as well as the study of possible thermal emis-
sion processes in the early evolution of the neo-neutron stars is being studied
within the thesis work of F. Gomes de Oliveira.

We now turn to the so-called short GRBs. The progress obtained from the
Fermi-GBM and Konus-Wind satellites has been used to identify through the
analysis of GRB 090227B (Muccino et al., 2013) the new class of genuinely
short GRBs: short bursts with the same inner engine of the long GRBs but
endowed with a severely low value of the baryon load, B ≡ MBc2/EGRB

tot .
5× 10−5, where MB is the mass of the baryons engulfed by the expanding ul-
trarelativistic e+e− plasma of energy EGRB

tot . The emission from these GRBs
mainly consists in a first emission, the peak GRB (P-GRB), followed by a
softer emission squeezed on the first one. The typical separation between
the two components is expected to be shorter than 1–10 ms.

A special case is GRB 090227B. From the 16 ms time-binned light curves a
significant thermal emission in the first 96 ms, which has been identified with
the P-GRB, has been found Muccino et al. (2012). The subsequent emission is
identified with the extended afterglow. The P-GRB of 090227B has the highest
temperature ever observed, kBT = 517 keV, where kB is the Boltzmann con-
stant. Other properties of the GRB have been computed, e.g. the total energy
emitted EGRB

tot , Baryon load B, Lorentz factor at transparency Γtr, cosmologi-
cal redshift z, intrinsic duration of the GRB emission ∆t, and average density
of the CircumBurst Medium (CBM) 〈nCBM〉; we refer to Muccino et al. (2013)
for further details.

These quantitative results lead to the conclusion that the progenitor of GRB
090227B is a neutron star binary: (1) the natal kicks velocities imparted to a
neutron star binary at birth can be even larger than 200 km s−1 and therefore
a binary system can runaway to the halo of its host galaxy, clearly pointing
to a very low average number density of the CBM; (2) the very large total
energy, which we can indeed infer in view of the absence of beaming, and
the very short time scale of emission point again to a neutron star binary; (3)
as we shall show below the very small value of the baryon load is strikingly
consistent with two neutron stars having small crusts, in line with the recent
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neutron star theory (Belvedere et al., 2012). This first identification of a gen-
uinely short GRB has allowed us to compute for the first time the total energy
release in form of gravitational waves from a neutron star binary merger that
leads to the emission of a GRB, which we show in App D.2.

In App D.2 we show that the observations of the genuinely short GRB
090227B lead to crucial information on the binary neutron star progenitor.
The data obtained from the electromagnetic spectrum allows to probe crucial
aspects of the correct theory of neutron stars and their equation of state. The
baryon load parameter B obtained from the analysis of GRB 090227B, leads
to a remarkable agreement of the baryonic matter expected to be ejected in
a neutron star binary merger and validate a choice of the parameters of the
binary components, M1 = M2 = 1.34M⊙, and R1 = R2 = 12.24 km.

We computed the dynamics of the neutron star binary progenitor prior to
the merger and emission of the GRB. We compare and contrast the classic
description of the dynamics with the more general one given by the frame-
work of the effective one-body formalism, which we use up to 4-PN order.
We estimate the detectability of GRB 090227B by the Advanced LIGO inter-
ferometer, by computing the signal-to-noise ratio up to the contact point of
the binary components, for the theoretically inferred cosmological redshift,
z = 1.61 (Muccino et al., 2013). We also estimate the redshift at which Ad-
vanced LIGO would detect this GRB with a signal-to-noise ratio equal to five;
we obtained z ≈ 0.08. From the dynamics, we then estimated the total en-
ergy release in form of gravitational waves (see Table D.3). From this, we
concluded that the emission of electromagnetic radiation in a GRB by a bi-
nary neutron star system is at least one order of magnitude larger than the
gravitational wave emission.

There are other applications connected with GRBs where the physics of
neutron stars plays an important role and where the different aspects of a de-
tailed description of the neutron star interior described in this report acquire
a specific value. This is the case of the process of induced gravitational col-
lapse described at the beginning of this summary. We refer for further details
on this process, the distinction between long and short GRBs, as well as the
GRB-SN connection, to the report of the GRB group.

2.5. Emission-Radiation Mechanisms of White

Dwarfs and Neutron Stars

In this new topic, we are studying the possible emission mechanisms of white
dwarfs and neutron stars. We are thus interested in the radiation generated
in the magnetospheres of magnetized white dwarfs and neutron stars. Both
energetics and spectrum of different radiation mechanisms operating in the
magnetosphere of compact objects are analyzed and applied to the observa-
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tions of white dwarfs and neutron star pulsars, Soft Gamma-Ray Repeaters
(SGRs), X-ray pulsars (ordinary and anomalous), and other similar systems.
This is one of the main fields of the Ph. D. work of D. Cáceres.

There are some preliminary results regarding the high-energy emission in
X and Gamma rays from magnetized white dwarfs. It comes out that a mas-
sive (M ∼ M⊙), fast rotating (P ∼ 1 s), highly magnetized (B ∼ 108 G),
can emit persistent high-energy emission as a by-product of the pair-creation
process in the magnetosphere. The positrons bombard the polar caps of the
magnetosphere producing an X-ray emission with luminosities of the order
of 1035 erg s−1. This is in line with what observed in SGRs and AXPs and
similar mechanisms are also at work in ordinary pulsars. We are currently
preparing a manuscript with the first application of this work to some SGRs
and AXPs.

2.6. Exact Solutions of the Einstein-Maxwell

equations in Astrophysics

We analyze the ability of analytic exact solutions of the Einstein-Maxwell
equations to describe the exterior spacetime of compact stars like white dwarfs
and neutron stars. The problem of matching between interior and exterior
spacetimes is addressed in detail. The effect of the quadrupole moment on
the properties of the spacetime is also investigated. Particular attention is
given to the application of exact solutions in astrophysics, e.g. the dynamics
of particles around compact stars and its relevance in astrophysical systems
like X ray binaries.

Thus, whether analytic exact vacuum(electrovacuum) solutions of the Ein-
stein(Einstein-Maxwell) field equations can accurately describe or not the
exterior spacetime of compact stars remains still an interesting open ques-
tion. As an attempt to establish their level of accuracy, the radii of the Inner-
most Stable Circular Orbits (ISCOs) of test particles given by analytic exterior
spacetime geometries have been compared with the ones given by numerical
solutions for neutron stars obeying a realistic equation of state. It has been so
shown that the six-parametric solution of Pachón, Rueda, and Sanabria (2006)
(hereafter PRS) is more accurate to describe the neutron star ISCO radii than
other analytic models.

In this line, Pachón et al. (2012) have recently proposed an additional test
of accuracy for analytic exterior geometries based on the comparison of or-
bital frequencies of neutral test particles. The Keplerian, frame-dragging, as
well as the precession and oscillation frequencies of the radial and vertical
motions of neutral test particles for the Kerr and PRS geometries have been
computed in (Pachón et al., 2012). Then, they were compared with the numer-
ical values obtained by Morsink and Stella (1999) for realistic neutron stars.
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Contrary to what previously stated in the literature, it has been identified the
role of high-order multipole moments such as the mass quadrupole and cur-
rent octupole in the determination of the orbital frequencies, especially in the
rapid rotation regime. These results are relevant to cast a separatrix between
black holes and neutron star signatures as well as probe the nuclear matter
equation of state and neutron star parameters from the Quasi-Periodic Oscil-
lations (QPOs) observed in Low Mass X-Ray Binaries. We refer to (Pachón
et al., 2012) and appendix E.1, for further details.

2.7. Critical fields and Non Linear Electrodynamics

Effects in Neutron Stars and Black Holes

We turn now to a more theoretical topic: the effects of non-linear electrody-
namics minimally coupled to gravity. We construct new analytic and numeric
solutions to the Einstein-Maxwell equations representing black holes or the
exterior field of a compact star. Some astrophysical applications are studied
in detail such as the extractable energy of black holes, the mass-formula of the
black hole; see for instance appendix F.1. This is part of the graduate work of
J. Pereira.
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A. Nuclear and Atomic
Astrophysics

A.1. On gravitationally and electrodynamically

bound massive nuclear density cores

A.1.1. Introduction

Models involving e+e− plasmas of total energy ≤ 1055 ergs originating from
a vacuum polarization process during the formation of a black hole are being
studied to explain a variety of ultra-relativistic astrophysics events (Ruffini
et al., 2010b; Cherubini et al., 2009; Aksenov et al., 2007). The formation of
such a Kerr-Newman black hole with overcritical electromagnetic fields can
only occur during the process of gravitational collapse, e.g., of two coalescing
neutron stars. Accordingly in this article we consider new electrodynamical
properties of massive nuclear density cores which have been neglected in the
astrophysics literature. This issue has been overlooked in the traditional de-
scription of neutron stars by considering only neutrons (Oppenheimer and
Volkoff, 1939) or by imposing ab initio local charge neutrality, i.e., local iden-
tity of the densities of protons and electrons np = ne, thus bypassing the de-
scription of any possible electrodynamical effect (Harrison et al., 1965; Baym
et al., 1971a).

The model we consider here generalizes the relativistic Thomas-Fermi treat-
ment for neutral atoms with heavy nuclei (Pieper and Greiner, 1969; Müller
et al., 1972; Greenberg and Greiner, 1982; Popov, 1971b; Zeldovich and Popov,
1972; Migdal et al., 1976). The study of neutral atoms with nuclei of mass
number A ∼ 102–106 is a classic problem of theoretical physics (Zeldovich
and Popov, 1972; Ruffini et al., 2010b). Special attention has been given to a
possible vacuum polarization process and the creation of e+e− pairs (Pieper
and Greiner, 1969; Zeldovich and Popov, 1972; Ruffini et al., 2010b) as well as
to the study of nuclear stability against Coulomb repulsion (Greenberg and
Greiner, 1982). The existence of electric fields larger than the critical value
Ec = m2

e c3/(eh̄) near their surfaces (Popov, 1971b) has also been shown. We
have generalized these models by enforcing the beta equilibrium conditions
(Ruffini et al., 2007b).

We have then extrapolated those results by numerical integration to the
case of massive nuclear density cores of mass ≈ 1M⊙ and radius Rc ≈ 10 km
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(Ruffini et al., 2007b). Such a massive nuclear density core is a globally neu-
tral system of Nn neutrons, Np protons and Ne electrons in beta equilibrium

at nuclear density having mass numbers A ∼ (mPlanck/mn)
3 where mn (me)

is the neutron (electron) mass and mPlanck = (h̄c/G)1/2 (Ruffini et al., 2007b).
As in the nuclear model (Migdal et al., 1976), the proton distribution is here
assumed to be constant up to the core radius Rc. We have obtained configu-
rations with global charge neutrality Np = Ne but np 6= ne, in contrast with
the local condition np = ne traditionally assumed in astrophysics. As a result
electric fields of critical value are confirmed to exist, near the surface, also
in the case of massive nuclear density cores in analogy to the case of heavy
nuclei.

Recently a new dimensionless form of the relativistic Thomas-Fermi treat-
ment for a nuclear density core has been obtained which reveals the existence
of new scaling laws for this model.

In this article we present a unified treatment extending from heavy nuclei
to massive nuclear density cores by using an explicit analytic solitonic solu-
tion of the new dimensionless form of the relativistic Thomas-Fermi equation.
We confirm the existence of and give an analytic expression for the overcriti-
cal electric field near the surface of massive nuclear density cores already ob-
tained in (Ruffini et al., 2007b) by numerical integration. Furthermore there
are a variety of new results made possible by the new analytic formulation.
First we give an explicit expression for the Coulomb energy of such cores,
demonstrating their stability against nuclear fission, as opposed to the case
of heavy nuclei. Secondly on the basis of Newtonian gravitational energy
considerations we propose the existence of a possible new island of stabil-

ity for mass numbers A > AR = 0.039
(

Np

A

)1/2 (mPlanck
mn

)3
. The equilibrium

against Coulomb repulsion originates now from the combined effect of the
screening of the relativistic electrons, of the surface tension due to strong in-
teractions and of the gravitational interaction of the massive dense cores. By
enforcing the condition of beta equilibrium, we also obtain a generalized rela-
tion between the mass number A and atomic number Np which encompasses
previous phenomenological expressions.

All the above solutions have been obtained assuming the electron Fermi
energy to be equal to zero. The necessity and the methodology of extending
these results to the case of compressed atoms along the lines of the Feynman-
Metropolis-Teller treatment (Feynman et al., 1949), corresponding to positive
values of the Fermi energy of electrons, are outlined here. We also motivate
the clear necessity and the general methodology of justifying the above re-
sults using a self-consistent general relativistic treatment of the system. These
ideas will be pursued in detail elsewhere.
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A.1.2. The relativistic Thomas-Fermi equation and the beta
equilibrium condition

It has been known since the classic work of Fermi (Fermi, 1950) that the phe-
nomenological drop model of the nucleus gives excellent results for a variety
of properties including the isobaric behavior and nuclear fission. In addition
to the masses of the baryonic components and the asymmetry energy and
pairing term, the mass formula contains terms estimating the surface tension
energy of the nucleus (Fermi, 1950)

Es = 17.5 · A2/3 MeV, (A.1.1)

and the Coulomb energy (Fermi, 1950)

Ec =
3αN2

p

5Rc
, (A.1.2)

where Rc = r0A1/3, r0 = 1.5 · 10−13 cm and the numerical factors are derived
by fitting the observational data. From the extremization of the mass formula
the following relation between A and Np is obtained (Fermi, 1950)

Np ≃
[

2

A
+

3

200

1

A1/3

]−1

, (A.1.3)

which in the limit of small A gives

Np ≃ A

2
. (A.1.4)

The analysis of the stability of the nucleus against finite deformation leads to
a stability condition against fission given by the equality of the surface energy
term to the Coulomb energy. This leads to the condition (Fermi, 1950)

N2
p

A
< 45. (A.1.5)

A novel situation occurs when super-heavy nuclei (A > Ã ∼ 104) are ex-
amined (Ferreirinho et al., 1980; Ruffini et al., 2007b). The distribution of
electrons penetrates inside the nucleus: a much smaller effective net charge
of the nucleus occurs due to the screening of relativistic electrons (Migdal
et al., 1976; Ferreirinho et al., 1980). In Ruffini and Stella (1981) a definition
of an effective nuclear charge due to the penetration of the electrons was pre-
sented. A treatment based on the relativistic Thomas-Fermi model has been
developed in order to describe the penetration of the electrons and their ef-
fective screening of the positive nuclear charge. In particular, by assuming
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Np ≃ A/2, Pieper and Greiner (1969); Müller et al. (1972); Greenberg and
Greiner (1982) and Popov (1971b); Zeldovich and Popov (1972); Migdal et al.
(1976) in a series of papers were able to solve the non-linear Thomas-Fermi
equation. It was demonstrated in Migdal et al. (1976) that the effective pos-
itive nuclear charge is confined to a small layer of thickness ∼ h̄/

√
αmπc

where mπ is the pion mass and as usual α = e2/h̄c. Correspondingly electric
fields of strength much larger than the critical value Ec for vacuum polariza-
tion at the surface of the core are created. However, the creation of electron-
positron pairs due to the vacuum polarization process does not occur because
of the Pauli blocking by the degenerate electrons Ruffini et al. (2010b).

Here we generalize the work of Pieper and Greiner (1969); Müller et al.
(1972); Greenberg and Greiner (1982) and Popov (1971b); Zeldovich and Popov
(1972); Migdal et al. (1976). We have relaxed the condition Np ≃ A/2 adopted

by Popov and Greiner as well as the condition Np ≃
[

2/A + 3/200A1/3
]−1

adopted by Ferreirinho et al. (1980). Instead we explicitly impose the beta
decay equilibrium between neutrons, protons and electrons. We then extrap-
olate such model to the case A ≈ (mPlanck/mn)3 ∼ 1057. A supercritical
field still exists in a shell of thickness ∼ h̄/

√
αmπc at the core surface, and

a charged lepton-baryonic core is surrounded by an oppositely charged lep-
tonic component. Such massive nuclear density cores, including the leptonic
component, are globally neutral.

As usual we assume that the protons are distributed at constant density np

within a radius

Rc = ∆
h̄

mπc
N1/3

p , (A.1.6)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear
(supranuclear) densities when applied to ordinary nuclei. The overall Cou-
lomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.1.7)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and finiteness of V(0). The density ne(r) of the electrons of
charge −e is determined by the Fermi energy condition on their Fermi mo-
mentum PF

e ; we assume here

EF
e = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − eV(r) = 0 , (A.1.8)

which leads to

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
.

(A.1.9)
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By introducing x = r/[h̄/mπc], xc = Rc/[h̄/mπc] and χ/r = eV(r)/ch̄, the
relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

(A.1.10)

where χ(0) = 0, χ(∞) = 0. The neutron density nn(r) is determined by the
Fermi energy condition on their Fermi momentum PF

n imposed by beta decay
equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 − mnc2

= [(PF
p c)2 + m2

pc4]1/2 − mpc2 + eV(r), (A.1.11)

which in turn is related to the proton and electron densities by Eqs. (A.1.7),
(A.1.9) and (A.1.10). These equations have been integrated numerically (see
Ruffini et al. (2007b)).

A.1.3. The ultra-relativistic analytic solutions

In the ultrarelativistic limit, the relativistic Thomas-Fermi equation admits an

analytic solution. Introducing the new function φ defined by φ = 41/3

(9π)1/3 ∆
χ
x

and the new variables x̂ = (12/π)1/6 √α∆−1x, ξ = x̂ − x̂c, where x̂c =

(12/π)1/6 √α∆−1xc, then Eq. (A.1.10) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.1.12)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at the massive nuclear density core center) and φ̂(ξ) → 0 as
ξ → ∞. The function φ̂ and its first derivative φ̂′ must be continuous at the
surface ξ = 0 of the massive nuclear density core. Equation (A.1.12) admits
an exact solution

φ̂(ξ) =











1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,√
2

(ξ + b)
, ξ > 0 ,

(A.1.13)

where the integration constants a and b have the values a = arcsinh(11
√

2) ≈
3.439, b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential energy
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function

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) , (A.1.14)

and by differentiation, the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ) . (A.1.15)

Details are given in Figs. A.1 and A.2.
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Figure A.1.: The electron Coulomb potential energy −eV, in units of pion
mass mπ is plotted as a function of the radial coordinate ξ = x̂ − x̂c, for
selected values of the density parameter ∆.

We now estimate three crucial quantities:
1) the Coulomb potential at the center of the configuration,

eV(0) ≈
(

9π

4

)1/3 1

∆
mπc2 , (A.1.16)

2) the electric field at the surface of the core

Emax ≈ 0.95
√

α
1

∆2

m2
πc3

eh̄
= 0.95

√
α

∆2

(

mπ

me

)2

Ec . (A.1.17)
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Figure A.2.: The electric field is plotted in units of the critical field Ec as a
function of the radial coordinate ξ for ∆=2, showing a sharp peak at the core
radius.
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Figure A.3.: The A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Np ≃ A/2 (dashed line) and Eq. (A.1.3) (dotted line). The asymptotic value,

for A → (mPlanck/mn)3, is Np ≈ 0.0046A).
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3) the Coulomb electrostatic energy of the core

Eem =
∫

E2

8π
d3r ≈ 0.15

3h̄c(3π)1/2

4∆
√

α
A2/3 mπc

h̄

(

Np

A

)2/3

. (A.1.18)

These three quantities are functions only of the pion mass mπ, the density
parameter ∆ and of the fine structure constant α. Their formulas apply over
the entire range from superheavy nuclei with Np ∼ 103 all the way up to

massive cores with Np ≈ (mPlanck/mn)3.

A.1.4. New results derived from the analytic solutions

Starting from the analytic solutions of the previous section we obtain the fol-
lowing new results.

a) Using the solution (A.1.13), we have obtained a new generalized relation
between A and Np for any value of A. In the limit of small A this result agrees
well with the phenomenological relations given by Eqs. (A.1.3) and (A.1.4), as
is clearly shown in Fig. A.3. It appears that the explicit evaluation of the beta
equilibrium, in contrast with the previously adopted Eqs.(3,4), leads to an
effect comparable in magnitude and qualitatively similar to the asymmetry
energy in the phenomenological liquid drop model.

b) The charge-to-mass ratio of the effective charge Q at the core surface to
the core mass M is given by

Q√
GM

≈ EmaxR2
c√

Gmn A
≈ mPlanck

mn

(

1

Np

)1/3 Np

A
. (A.1.19)

For superheavy nuclei with Np ≈ 103 , the charge-to-mass ratio for the
nucleus is

Q√
GM

>
1

20

mPlanck

mn
∼ 1018. (A.1.20)

Gravitation obviously plays no role in the stabilization of these nuclei.
Instead for massive nuclear density cores where Np ≈ (mPlanck/mn)3, the

ratio Q/
√

GM given by Eq. (A.1.19) is simply

Q√
GM

≈ Np

A
, (A.1.21)

which is approximatively 0.0046 (see Fig. A.3). It is well-known that the
charge-to-mass-ratio (A.1.21) smaller than 1 evidences the equilibrium of self-
gravitating mass-charge system both in Newtonian gravity and general rela-
tivity (see, e.g., Chandrasekhar (1992)).
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c) For a massive core at nuclear density the criterion of stability against
fission (Eem < 2Es) is satisfied. In order to see this we use Eqs. (A.1.1) and (
A.1.18)

Eem

2Es
≈ 0.15

3

8

√

3π

α

1

∆

(

Np

A

)2/3 mπc2

17.5MeV
∼ 0.1 < 1. (A.1.22)

A.1.5. Estimates of gravitational effects in a Newtonian

approximation

In order to investigate the possible effects of gravitation on these massive
neutron density cores we proceed to some qualitative and quantitative esti-
mates based on the Newtonian approximation.

a) The maximum Coulomb energy per proton is given by Eq. (A.1.16) where
the potential is evaluated at the center of the core. The Newtonian gravi-
tational potential energy per proton (of mass mp) in the field of a massive

nuclear density core with A ≈ (mPlanck/mn)3 is given by

Eg = −G
Mmp

Rc
= − 1

∆

mPlanck

mn

mπc2

N1/3
p

≃ −mπc2

∆

(

A

Np

)1/3

.

(A.1.23)

Since A/Np ∼ 0.0046 (see Fig. A.3 ) for any value of ∆, the gravitational en-
ergy is larger in magnitude than and opposite in sign to the Coulomb poten-
tial energy per proton of Eq. (A.1.16) so the system should be gravitationally
stable.

b) There is yet a more accurate derivation of the gravitational stability
based on the analytic solution of the Thomas-Fermi equation Eq. (A.1.12).
The Coulomb energy Eem given by (A.1.18) is mainly distributed within a thin
shell of width δRc ≈ h̄∆/(

√
αmπc) and proton number δNp = np4πR2

c δRc at
the surface. To ensure the stability of the system, the attractive gravitational
energy of the thin proton shell

Egr ≈ −3
G

∆

A4/3

√
α

(

Np

A

)1/3

m2
n

mπc

h̄
(A.1.24)

must be larger than the repulsive Coulomb energy (A.1.18). For small A, the
gravitational energy is always negligible. However, since the gravitational
energy increases proportionally to A4/3 while the Coulomb energy only in-
creases proportionally to A2/3, the two must eventually cross, which occurs
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at

AR = 0.039

(

Np

A

)1/2 (mPlanck

mn

)3

. (A.1.25)

This establishes a lower limit for the mass number AR necessary for the ex-
istence of an island of stability for massive nuclear density cores. The upper
limit of the island of stability will be determined by general relativistic effects.

c) Having established the role of gravity in stabilizing the Coulomb inter-
action of the massive nuclear density core, we outline the importance of the
strong interactions in determining its surface. We find for the neutron pres-
sure at the surface:

Pn =
9

40

(

3

2π

)1/3 (mπ

mn

)

mπc2

(h̄/mπc)3

(

A

Np

)5/3 1

∆5
,

(A.1.26)

and for the surface tension, as extrapolated from nuclear scattering experi-
ments,

Ps = −
(

0.13

4π

)

mπc2

(h̄/mπc)3

(

A

Np

)2/3 1

∆2
. (A.1.27)

We then obtain

|Ps|
Pn

= 0.39 · ∆3

(

Np

A

)

= 0.24 · ρnucl

ρsurf
, (A.1.28)

where ρnucl = 3mn A/4πR3
c . The relative importance of the nuclear pressure

and nuclear tension is a very sensitive function of the density ρsurf at the
surface.

It is important to emphasize a major difference between nuclei and the
massive nuclear density cores treated in this article: the gravitational binding
energy in these massive nuclear density cores is instead Egr ≈ GM⊙mn/Rc ≈
0.1mnc2 ≈ 93.8 MeV. In other words it is much bigger than the nuclear energy

in ordinary nuclei Enuclear ≈ h̄2/mnr2
0 ≈ 28.8 MeV.

A.1.6. Possible applications to neutron stars

All the above considerations have been made for an isolated massive core at
constant density whose boundary has been sharply defined by a step func-
tion. No external forces are exerted. Consequently due to the global charge
neutrality, the Fermi energy of the electrons has been assumed to be equal to
zero. In the earliest description of neutron stars in the work of Oppenheimer
and Volkoff (1939) only a gas of neutrons was considered and the equation
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of equilibrium was written in the Schwarzchild metric. They considered the
model of a degenerate gas of neutrons to hold from the center to the border,
with the density monotonically decreasing away from the center.

In the intervening years a more realistic model has been presented chal-
lenging the original considerations of Tolman (1939); Oppenheimer and Volkoff
(1939). Their TOV equations considered the existence of neutrons all the way
to the surface of the star. The presence of neutrons, protons and electrons in
beta equilibrium were instead introduced in Harrison et al. (1965). Still more
important the neutron stars have been shown to be composed of two sharply
different components: the core at nuclear and/or supra-nuclear density con-
sisting of neutrons, protons and electrons and a crust of white dwarf like
material, namely of degenerate electrons in a nuclei lattice (Harrison et al.,
1965; Baym et al., 1971a). The pressure and the density of the core are mainly
due to the baryons while the pressure of the crust is mainly due to the elec-
trons with the density due to the nuclei and possibly with some free neutrons
due to neutron drip (see e.g. Baym et al. (1971a)). Further works describ-
ing the nuclear interactions where later introduced (see e.g. Haensel et al.
(2007)). Clearly all these considerations departed profoundly from the TOV
approximation. The matching between the core component and the crust is
the major unsolved problem. To this issue this article introduce some prelimi-
nary results in a simplified model which has the advantage to present explicit
analytic solutions.

In all the above treatments in order to close the system of equations the con-
dition of local charge neutrality ne = np was adopted without a proof. The
considerations of massive neutron density cores presented in this article offer
an alternative to the local charge neutrality condition ne = np. In a specific
example which can be solved also analytically such condition is substituted
by the Thomas-Fermi relativistic equations implying ne 6= np and an overall
charge neutral system (Ne = Np). The condition of global charge neutrality
as opposed to the local one, leads to the existence of overcritical electric fields
at the core surface which may be relevant in the description of neutron stars.

A.1.7. Conclusions

We have first generalized the treatment of heavy nuclei by enforcing the con-
dition of beta equilibrium in the relativistic Thomas-Fermi equation, avoid-
ing the imposition of Np ≃ A/2 between Np and A traditionally assumed
in the literature. In doing so we have obtained (see Fig. A.3) an A − Np re-
lation which extends the ones adopted in the literature. Using the existence
of scaling laws for the system of equations considered, we extend the results
obtained for heavy nuclei to the case of massive nuclear density cores. The
novelty in this article is to show how both the considerations of heavy nuclei
and of systems of macroscopic astrophysical dimensions can take advantage
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from a rigorous and analytic solution of the Thomas-Fermi relativistic equa-
tions and the beta equilibrium conditions. This task is achieved by obtaining
explicit analytic solutions fulfilling precise boundary conditions and using
the scaling laws introduced in this article.

Indeed the Thomas-Fermi treatment has been considered also in the con-
text of quark stars with a charge and a density distribution analogous to the
one of massive nuclear density cores we consider in this article Itoh (1970);
Witten (1984); Alcock et al. (1986); Kettner et al. (1995); Usov (1998). There are
however a variety of differences both in the boundary conditions adopted
and in the solution obtained. In the present article we show that we can
indeed obtain overcritical electric fields at nuclear density on macroscopic
scales of Rc ≈ 10 Km and M ≈ 1M⊙ for existing field theories involving
only neutrons, protons and electrons and their fundamental interactions and
no quarks present. We obtain explicit analytic solutions of the relativistic
Thomas-Fermi equations, self-consistently solved with the condition of beta
equilibrium. Such analytic solutions allow to give explicit expressions for the
Coulomb energy, surface energy and Newtonian gravitational energy of such
massive nuclear density cores.

These cores are stable against fission (see Eq. (A.1.22)), the surface tension
determines the sharpness of their boundary (see Eq. (A.1.28)) and the gravi-
tational interaction, at Newtonian level, balances the Coulomb repulsion for
mass numbers larger than the critical value given by Eq. (A.1.25).

As a by-product of these results, we also conclude that the arguments of-
ten quoted concerning limits on the electric fields of an astrophysical system
based on a free test particle (the dust approximation) considering only the
gravitational and electric interactions

(Emax)dust ≈ me

e

mnc3

h̄

mn

mPlanck
, (A.1.29)

(

Q√
GM

)

dust

≈
√

G
me

e
=

1√
α

me

mPlanck
, (A.1.30)

appear to be inapplicable for A ∼ (mPlanck/mn)3. Here nuclear densities
are reached and the roles of all fundamental interactions, including weak
and strong interactions in addition to the electromagnetic and gravitational
ones and including as well quantum statistics, have to be taken into account
through the relativistic Thomas-Fermi model. Eqs. (A.1.29) and (A.1.30) are
replaced by Eqs. (A.1.17) and (A.1.21),

Emax ≈ 0.95
√

α

∆2

mPlanck

me

(

mπ

mn

)2

(Emax)dust, (A.1.31)

Q√
GM

≈ Np

A

√
α

mPlanck

me

(

Q√
GM

)

dust

. (A.1.32)
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A.2. On the relativistic Thomas-Fermi treatment

of compressed atoms and compressed nuclear

matter cores of stellar dimensions

A.2.1. Introduction

In a classic article Baym et al. (1971a) presented the problem of matching, in
a neutron star, a liquid core, composed of Nn neutrons, Np protons and Ne

electrons, to the crust taking into account the electrodynamical and surface
tension effects. After discussing the different aspects of the problem they con-
cluded: The details of this picture requires further elaboration; this is a situation for
which the Thomas-Fermi method is useful. This statement, in first instance, may
appear surprising: the Thomas-Fermi model has been extensively applied in
atomic physics (see e.g. Gombás (1949); March (1957); Lundqvist and March
(1983)), also has been applied extensively in atomic physics in its relativis-
tic form (see e.g. Ferreirinho et al. (1980); Ruffini and Stella (1981)) as well
as in the study of atoms with heavy nuclei in the classic works of Migdal
et al. (1976, 1977). Similarly there have been considerations of relativistic
Thomas-Fermi model for quark stars pointing out the existence of critical
electric fields on their surfaces (see e.g. Alcock et al. (1986); Usov (1998)).
Similar results have also been obtained by Alford et al. (2001) in the transi-
tion at very high densities, from the normal nuclear matter phase in the core
to the color-flavor-locked phase of quark matter in the inner core of hybrid
stars. No example exists of the application of the electromagnetic Thomas-
Fermi model for neutron stars. This problem can indeed be approached with
merit by studying the simplified but rigorous concept of a nuclear matter core
of stellar dimensions which fulfills the relativistic Thomas-Fermi equation as
discussed by Ruffini et al. (2007b), by Rotondo et al. (2011e) and by Popov
(2010). As we will see this work leads to the prediction of the existence of a
critical electric field at the interface between the core and the crust of a neu-
tron star.

In Ruffini et al. (2007b) and Rotondo et al. (2011e) it is described a degener-
ate system of Nn neutrons, Np protons and Ne electrons constrained to a con-
stant density distribution for the protons and it is solved the corresponding
relativistic Thomas-Fermi equation and derived for the neutrons the distri-
bution following the implementation of the beta equilibrium condition. This
generalizes e.g. the works of Migdal et al. (1976, 1977); Popov (1971b,a) and
Pieper and Greiner (1969); Greenberg and Greiner (1982) by eliminating the
constraint Np ≈ A/2, clearly not valid for heavy nuclei, and enforcing self-
consistently in a new relativistic Thomas-Fermi equation the condition of beta
equilibrium. Using then the existence of scaling laws we have extended in
Rotondo et al. (2011e) the results from heavy nuclei to the case of nuclear
matter cores of stellar dimensions. In both these treatments we had assumed
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the Fermi energy of the electrons EF
e = 0. The aim of this article is to proceed

with this dual approach and to consider first the case of compressed atoms
and then, using the existence of scaling laws, the compressed nuclear mat-
ter cores of stellar dimensions with a positive value of their electron Fermi
energies.

It is well known that Salpeter has been among the first to study the behav-
ior of matter under extremely high pressures by considering a Wigner-Seitz
cell of radius RWS (Salpeter, 1961a). Salpeter assumed as a starting point the
nucleus point-like and a uniform distribution of electrons within a Wigner-
Seitz cell, and then considered corrections to the above model due to the in-
homogeneity of electron distribution. The first correction corresponds to the
inclusion of the lattice energy EC = −(9N2

pα)/(10RWS), which results from
the point-like nucleus-electron Coulomb interaction and, from the electron-
electron Coulomb interaction inside the cell of radius RWS. The second cor-
rection is given by a series-expansion of the electron Fermi energy about the
average electron density ne of the uniform approximation. The electron den-
sity is then assumed equals to ne[1 + ǫ(r)] with ǫ(r) considered as infinitesi-
mal. The Coulomb potential energy is assumed to be the one of the point-like
nucleus with the uniform distribution of electrons of density ne thus the cor-
rection given by ǫ(r) is neglected on the Coulomb potential. The electron dis-
tribution is then calculated at first-order by expanding the relativistic electron
kinetic energy about its value given by the uniform approximation consider-
ing as infinitesimal the ratio eV/EF

e between the Coulomb potential energy

eV and the electron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 − eV. The
inclusion of each additional Coulomb correction results in a decreasing of the
pressure of the cell PS by comparison to the uniform one.

It is quite difficult to assess the self-consistency of all the recalled different
approximations adopted by Salpeter. In order to validate and also to see the
possible limits of the Salpeter approach, we consider the relativistic general-
ization of the Feynman, Metropolis, Teller treatment (Feynman et al., 1949)
which takes automatically and globally into account all electromagnetic and
special relativistic contributions. We show explicitly how this new treatment
leads in the case of atoms to electron distributions markedly different from
the ones often adopted in the literature of constant electron density distri-
butions. At the same time it allows to overcome some of the difficulties in
current treatments.

Similarly the point-like description of the nucleus often adopted in litera-
ture is confirmed to be unacceptable in the framework of a relativistic treat-
ment.

In Sec. A.2.2 we first recall the non-relativistic treatment of the compressed
atom by Feynman, Metropolis and Teller. In Sec. A.2.3 we generalize that
treatment to the relativistic regime by integrating the relativistic Thomas-
Fermi equation, imposing also the condition of beta equilibrium. In Sec. A.2.4
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we first compare the new treatment with the one corresponding to a uniform
electron distribution often used in the literature and to the Salpeter treat-
ment. We also compare and contrast the results of the relativistic and the
non-relativistic treatment.

In Sec. A.2.5, using the same scaling laws adopted by Ruffini et al. (2007b)
and Rotondo et al. (2011e) we turn to the case of nuclear matter cores of stellar
dimensions with mass numbers A ≈ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙
where mn is the neutron mass and mPlanck = (h̄c/G)1/2 is the Planck mass.
Such a configuration presents global but not local charge neutrality. Analytic
solutions for the ultra-relativistic limit are obtained. In particular we find:

1) explicit analytic expressions for the electrostatic field and the Coulomb
potential energy,

2) an entire range of possible Fermi energies for the electrons between zero
and a maximum value (EF

e )max, reached when RWS = Rc, which can be ex-
pressed analytically,

3) the explicit analytic expression of the ratio between the proton number
Np and the mass number A when RWS = Rc.

We turn then in Sec. A.2.6 to the study of the compressional energy of the
nuclear matter cores of stellar dimensions for selected values of the electron
Fermi energy. We show that the solution with EF

e = 0 presents the largest
value of the electrodynamical structure.

We finally summarize the conclusions in Sec. A.2.7.

A.2.2. The Thomas-Fermi model for compressed atoms: the

Feynman-Metropolis-Teller treatment

The classical Thomas-Fermi model

The Thomas-Fermi model assumes that the electrons of an atom constitute a
fully degenerate gas of fermions confined in a spherical region by the Coulomb
potential of a point-like nucleus of charge +eNp. Feynman, Metropolis and
Teller have shown that this model can be used to derive the equation of state
of matter at high pressures by considering a Thomas-Fermi model confined
in a Wigner-Seitz cell of radius RWS (Feynman et al., 1949).

We recall that the condition of equilibrium of the electrons in an atom, in
the non-relativistic limit, is expressed by

(PF
e )

2

2me
− eV = EF

e , (A.2.1)

where me is the electron mass, V is the electrostatic potential and EF
e is their

constant Fermi energy.

1703



A. Nuclear and Atomic Astrophysics

The electrostatic potential fulfills, for r > 0, the Poisson equation

∇2V = 4πene, (A.2.2)

where the electron number density ne is related to the Fermi momentum PF
e

by

ne =
(PF

e )
3

3π2h̄3
. (A.2.3)

For neutral atoms and ions ne vanishes at the boundary so the electron Fermi
energy is, respectively, zero or negative. In the case of compressed atoms
ne does not vanish at the boundary while the Coulomb potential energy eV
does. Consequently EF

e is positive.

Defining

eV(r) + EF
e = e2Np

φ(r)

r
, (A.2.4)

and introducing the new dimensionless radial coordinate η as

r = bη with b =
(3π)2/3

27/3

1

N1/3
p

h̄2

mee2
=

σ

N1/3
p

rBohr, (A.2.5)

where σ = (3π)2/3/27/3 ≈ 0.88, rBohr = h̄2/(mee
2) is the Bohr radius, we

obtain the following expression for the electron number density

ne(η) =
Np

4πb3

(

φ(η)

η

)3/2

, (A.2.6)

and then Eq. (A.2.2) can be written in the form

d2φ(η)

dη2
=

φ(η)3/2

η1/2
, (A.2.7)

which is the classic Thomas-Fermi equation. A first boundary condition for
this equation follows from the point-like structure of the nucleus

φ(0) = 1. (A.2.8)

A second boundary condition comes from the conservation of the number of

electrons Ne =
∫ RWS

0 4πne(r)r2dr

1 − Ne

Np
= φ(η0)− η0φ′(η0), (A.2.9)
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where η0 = RWS/b defines the radius RWS of the Wigner-Seitz cell. In the case

 0

 0.2

 0.4

 0.6
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φ
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Figure A.4.: Physically relevant solutions of the Thomas-Fermi Equation
(A.2.7) with the boundary conditions (A.2.8) and (A.2.9). The curve 1 refers
to a neutral compressed atom. The curve 2 refers to a neutral free atom. The
curve 3 refers to a positive ion. The dotted straight line is the tangent to the
curve 1 at the point (η0, φ(η0)) corresponding to overall charge neutrality (see
Eq. (A.2.9)).

of compressed atoms Ne = Np so the Coulomb potential energy eV vanishes
at the boundary RWS. As a result, using Eqs. (A.2.1) and (A.2.3), the Fermi
energy of electrons satisfies the universal relation

σrBohr

e2

EF
e

N4/3
p

=
φ(η0)

η0
, (A.2.10)

while the Wigner-Seitz cell radius RWS satisfies the universal relation

RWS

σrBohrN−1/3
p

= η0. (A.2.11)

Therefore in the classic treatment η0 can approach zero and consequently the
range of the possible values of the Fermi energy extends from zero to infinity.

The results are summarized in Figs. A.4 and A.5.

The Thomas-Fermi-Dirac model

Dirac has introduced modifications to the original Thomas-Fermi theory to
include effects of the exchange interaction (Dirac, 1930). In this case the con-
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Figure A.5.: The electron Fermi energy EF
e , in units of e2N4/3

p /(σrBohr) is plot-

ted as a function of the Wigner-Seitz cell radius RWS, in units of σrBohrN−1/3
p

(see Eqs. (A.2.10), (A.2.11)). Points refer to the numerical integrations of the
Thomas-Fermi equation (A.2.7) performed originally by Feynman, Metropo-
lis and Teller in Feynman et al. (1949).

dition of equilibrium of the electrons in the atom is generalized as follows

(PF
e )

2

2me
− eV − e2

πh̄
PF

e = EF
e . (A.2.12)

The electron number density is now connected to the Coulomb potential
energy by

ne =
1

3π5

1

r3
Bohr

[

1 +

√

1 + 2π2
rBohr

e2
(eV + EF

e )

]3

. (A.2.13)

Defining

1

2π2

e2

rBohr
+ eV(r) + EF

e = e2Np
χ(r)

r
, (A.2.14)

the Eq. (A.2.2) can be written in dimensionless form as
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d2φ(η)

dη2
= η

[

d +

(

φ(η)

η

)1/2
]3

, (A.2.15)

where d = (3/(32π2))1/3(1/Np)2/3. The boundary condition for Eq. (A.2.15)
are φ(0) = 1 and η0φ′(η0) = φ(η0).

A.2.3. The relativistic generalization of the
Feynman-Metropolis-Teller treatment

The relativistic Thomas-Fermi model for atoms

In the relativistic generalization of the Thomas-Fermi equation the point-like
approximation of the nucleus must be abandoned (Ferreirinho et al., 1980;
Ruffini and Stella, 1981) since the relativistic equilibrium condition

EF
e =

√

(PF
e c)2 + m2

e c4 − mec
2 − eV(r) , (A.2.16)

which generalizes the Eq. (A.2.1), would lead to a non-integrable expression
for the electron density near the origin. Consequently we adopt an extended
nucleus. Traditionally the radius of an extended nucleus is given by the phe-
nomenological relation Rc = r0A1/3 where A is the number of nucleons and
r0 = 1.2 × 10−13 cm. Further it is possible to show from the extremization of
the semi-empirical Weizsacker mass-formula that the relation between A and
Np is given by (see e.g. Segré (1977) and Ferreirinho et al. (1980))

Np ≈
[

2

A
+

2aC

aA

1

A1/3

]−1

≈
[

2

A
+

3

200

1

A1/3

]−1

, (A.2.17)

where aC ≈ 0.71 MeV, aA ≈ 93.15 MeV are the Coulomb and the asymmetry
coefficients respectively. In the limit of small A Eq. (A.2.17) gives

Np ≈ A

2
. (A.2.18)

In Rotondo et al. (2011e) we have relaxed the condition Np ≈ A/2 adopted

e.g. in Migdal et al. (1977) as well as the condition Np ≈ [2/A+ 3/(200A1/3)]−1

adopted e.g. in Ferreirinho et al. (1980); Ruffini and Stella (1981) by imposing
explicitly the beta decay equilibrium between neutron, protons and electrons.

In particular, following the previous treatments (see e.g. Rotondo et al.
(2011e)), we have assumed a constant distribution of protons confined in a
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radius Rc defined by

Rc = ∆
h̄

mπc
N1/3

p , (A.2.19)

where mπ is the pion mass and ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corre-
sponds to nuclear (supranuclear) densities when applied to ordinary nuclei.
Consequently, the proton density can be written as

np(r) =
Np

4
3 πR3

c

θ(Rc − r) =
3

4π

m3
πc3

h̄3

1

∆3
θ(Rc − r), (A.2.20)

where θ(x) is the Heaviside function which by definition is given by

θ(x) =

{

0, x < 0,
1, x > 0.

(A.2.21)

The electron density is given by

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
, (A.2.22)

where V is the Coulomb potential.

The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.2.23)

with the boundary conditions V(∞) = 0 (due to global charge neutrality)
and finiteness of V(0).

Using Eqs. (A.2.4), (A.2.5) and replacing the particle densities (A.2.20) and
(A.2.22) into the Poisson equation (A.2.23) we obtain the relativistic Thomas-
Fermi equation

d2φ(η)

dη2
= −3η

η3
c

θ(ηc − η) +
φ3/2

η1/2



1 +

(

Np

Ncrit
p

)4/3
φ

η





3/2

,

(A.2.24)

where φ(0) = 0, φ(∞) = 0 and ηc = Rc/b. The critical number of protons
Ncrit

p is defined by

Ncrit
p =

√

3π

4
α−3/2, (A.2.25)

where, as usual, α = e2/(h̄c).
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It is interesting that by introducing the new dimensionless variable

x =
r

λπ
=

b

λπ
η, (A.2.26)

and the function

χ = αNpφ, (A.2.27)

where λπ = h̄/(mπc), Eq. (A.2.24) assumes a canonical form, the master
relativistic Thomas-Fermi equation (see Ruffini (2008a))

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

(A.2.28)

where xc = Rc/λπ with the boundary conditions χ(0) = 0, χ(∞) = 0.
The neutron density nn(r), related to the neutron Fermi momentum PF

n =

(3π2h̄3nn)1/3, is determined, as in the previous case Rotondo et al. (2011e),
by imposing the condition of beta equilibrium

EF
n =

√

(PF
n c)2 + m2

nc4 − mnc2

=
√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r), (A.2.29)

which in turn is related to the proton density np and the electron density
by Eqs. (A.2.22), (A.2.23). Integrating numerically these equations we have
obtained a new generalized relation between A and Np for any value of A.
In the limit of small A this result agrees with the phenomenological relations
given by Eqs. (A.2.17, A.2.18), as is clearly shown in Fig. (A.6).

The relativistic Thomas-Fermi model for compressed atoms

We turn now to the case of compressed atoms in which the electron Fermi
energy is positive. The relativistic generalization of the equilibrium condition
(A.2.1) now reads

EF
e =

√

(PF
e c)2 + m2

e c4 − mec
2 − eV(r) > 0 . (A.2.30)

Adopting an extended-nucleus with a radius given by Eq. (A.2.19) and a pro-
ton density given by Eq. (A.2.20) the Poisson equation (A.2.23), with the fol-
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Figure A.6.: The A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Np ≈ A/2 (dashed line) and Eq. (A.2.17) (dotted line). The asymptotic value,

for A → (mPlanck/mn)3, is Np ≈ 0.0046A.

lowing electron density

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V̂2(r) + 2mec
2eV̂(r)

]3/2
, (A.2.31)

gives again the master relativistic Thomas-Fermi equation (A.2.28) where
χ/r = eV̂(r)/(ch̄) and eV̂ = eV + EF

e .

In this case Eq. (A.2.28) has to be integrated with the boundary condi-
tions χ(0) = 0, χ(xWS) = xWSχ′(xWS), xWS = RWS/λπ. Using Eqs. (A.2.4),
(A.2.26) and (A.2.27) we obtain the electron Fermi energy in the form

EF
e = mπc2 χ(xWS)

xWS
. (A.2.32)

The neutron density nn(r), related to the neutron Fermi momentum PF
n =

(3π2h̄3nn)1/3, is determined by imposing the condition of beta equilibrium

EF
n =

√

(PF
n c)2 + m2

nc4 − mnc2

=
√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r) + EF
e . (A.2.33)

Using this approach, it is then possible to determine the beta equilibrium
nuclide as a function of the density of the system. Infact, electrons and pro-
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tons can be converted to neutrons in inverse beta decay p+ e− → n+ νe if the

condition EF
n <

√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r) + EF
e holds. The condition

of equilibrium (A.2.33) is crucial, for example, in the construction of a self-
consistent equation of state of high energy density matter present in white
dwarfs and neutron star crusts. In the case of zero electron Fermi energy the
generalized A − Np relation of Fig. (A.6) is obtained.

The relativistic Thomas-Fermi-Dirac model for compressed atoms

We now take into account the exchange corrections to the relativistic Thomas-
Fermi equation (A.2.28). In this case we have (see Migdal et al. (1977) for
instance)

EF
e =

√

(cPF
e )

2 + m2
e c4 − mec

2 − eV − α

π
cPF

e = constant . (A.2.34)

Introducing the function χ(r) as before

EF
e + eV = eV̂ = h̄c

χ

r
, (A.2.35)

we obtain the electron number density

ne =
1

3π2h̄3c3

{

γ
(

mec
2 + eV̂

)

+
[

(

eV̂
)2

+ 2mec
2eV̂

]1/2

×
[

(1 + γ2)(mec
2 + eV̂)2 − m2

e c4

(mec2 + eV̂)2 − m2
e c4

]1/2
}3

, (A.2.36)

where γ = (α/π)/(1 − α2/π2).

If we take the approximation 1 + γ2 ≈ 1 the above equation becomes

ne =
1

3π2h̄3c3

{

γ
(

mec
2 + eV̂

)

+
[

(

eV̂
)2

+ 2mec
2eV̂

]1/2
}3

. (A.2.37)

The second term on the right-hand-side of Eq. (A.2.37) has the same form of
the electron density given by the relativistic Thomas-Fermi approach with-
out the exchange correction (A.2.31) and therefore the first term shows the
explicit contribution of the exchange term to the electron density.

Using the full expression of the electron density given by Eq. (A.2.36) we
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obtain the relativistic Thomas-Fermi-Dirac equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

{

γ

(

me

mπ
+

χ

x

)

+

[

(χ

x

)2
+ 2

me

mπ

χ

x

]1/2

×
[

(1 + γ2)(me/mπ + χ/x)2 − (me/mπ)2

(me/mπ + χ/x)2 − (me/mπ)2

]1/2
}3

, (A.2.38)

which by applying the approximation 1 + γ2 ≈ 1 becomes

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

{

γ

(

me

mπ
+

χ

x

)

+

[

(χ

x

)2
+ 2

me

mπ

χ

x

]1/2
}3

.

(A.2.39)

The boundary conditions for Eq. (A.2.38) are χ(0) = 0 and χ(xWS) =
xWSχ′(xWS). The neutron density can be obtained as before by using the
beta equilibrium condition (A.2.33) with the electron Fermi energy given by
Eq. (A.2.34).

In Fig. A.7 we show the results of the numerical integration of the rela-
tivistic Thomas-Fermi equation (A.2.28) and of the relativistic Thomas-Fermi-
Dirac equation (A.2.38) for helium, carbon and iron. In particular, we show

the electron Fermi energy multiplied by N−4/3
p as a function of the ratio

RWS/Rc between the Wigner-Seitz cell radius RWS and the nucleus radius
Rc given by Eq. (A.2.19).

The effects of the exchange term are appreciable only in the low density
(low compression) region, i.e. when RWS >> Rc (see Fig. A.7). We can
then conclude in total generality that the correction given by the Thomas-
Fermi-Dirac exchange term is, small in the non-relativistic low compression
(low density) regime, and negligible in the relativistic high compression (high
density) regime.

A.2.4. Comparison and contrast with approximate treatments

There exists in the literature a variety of semi-qualitative approximations
adopted in order to describe the electron component of a compressed atom
(see e.g. Bürvenich et al. (2007) for applications of the uniform approxima-
tion and e.g. Chabrier and Potekhin (1998a); Potekhin et al. (2009); Douchin
and Haensel (2001); Haensel and Zdunik (1990a,b), for applications of the
Salpeter approximate treatment).

We shall see how the relativistic treatment of the Thomas-Fermi equation
affects the current analysis of compressed atoms in the literature by introduc-
ing qualitative and quantitative differences which deserve attention.
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Figure A.7.: The electron Fermi energy in units of mπc2N4/3
p is plotted for

helium, carbon and iron, as a function of the ratio RWS/Rc in the relativistic
Feynman-Metropolis-Teller (FMT) treatment with and without the exchange
effects. Here RWS denotes the Wigner-Seitz cell radius and Rc is the nucleus
radius as given by Eq. (A.2.19). It is clear that the exchange terms are appre-
ciable only in the low density region and are negligible as RWS → Rc

.
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Relativistic FMT treatment vs. relativistic uniform approximation

One of the most used approximations in the treatment of the electron distri-
bution in compressed atoms is the one in which, for a given nuclear charge
+eNp, the Wigner-Seitz cell radius RWS is defined by

Np =
4π

3
R3

WSne, (A.2.40)

where ne = (PF
e )

3/(3π2h̄3). The Eq. (A.2.40) ensures the global neutrality
of the Wigner-Seitz cell of radius RWS assuming a uniform distribution of
electrons inside the cell.

We shall first compare the Feynman-Metropolis-Teller treatment, previ-
ously introduced, with the uniform approximation for the electron distri-
bution. In view of the results of the preceding section, hereafter we shall
consider the non-relativistic and the relativistic formulation of the Feynman-
Metropolis-Teller treatment with no Thomas-Fermi-Dirac exchange correc-
tion.

In Fig. A.8 we have plotted the electron number density obtained from
Eq. (A.2.31) where the Coulomb potential is related to the function χ, which
is obtained from numerical integration of the relativistic Thomas-Fermi equa-
tion (A.2.28) for different compressions for helium and iron. We have nor-
malized the electron density to the average electron number density n0 =
3Ne/(4πR3

WS) = 3Np/(4πR3
WS) as given by Eq. (A.2.40).

We can see in Fig. A.8 how our treatment, based on the numerical inte-
gration of the relativistic Thomas-Fermi equation (A.2.28) and imposing the
condition of beta equilibrium (A.2.33), leads to electron density distributions
markedly different from the constant electron density approximation.

From Eqs. (A.2.30), (A.2.40) and taking into account the global neutrality
condition of the Wigner-Seitz cell eV(RWS) = 0, the electron Fermi energy in
the uniform approximation can be written as

EF
e ≃






− me

mπ
+

√

√

√

√

(

me

mπ

)2

+

(

9π

4

)2/3 N2/3
p

x2
WS






mπc2. (A.2.41)

We show in Fig. A.9 the electron Fermi energy as a function of the average
electron density n0 = 3Ne/(4πR3

WS) = 3Np/(4πR3
WS) in units of the nuclear

density nnuc = 3A/(4π∆3Npλ3
π). For selected compositions we show the

results for the relativistic Feynman-Metropolis-Teller treatment, based on the
numerical integration of the relativistic Thomas-Fermi equation (A.2.28), and
for the relativistic uniform approximation.

As clearly shown in Fig. A.8 and summarized in Fig. A.9 the relativistic
treatment leads to results strongly dependent at low compression from the
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Figure A.8.: The electron number density ne in units of the average electron
number density n0 = 3Ne/(4πR3

WS) is plotted as a function of the dimen-
sionless radial coordinate x = r/λπ for the selected compressions xWS = 9.7
(upper panels), xWS = 3 × 103 (middle panels) and xWS = 104 (bottom pan-
els), in both the relativistic Feynman, Metropolis, Teller approach and the
uniform approximation respectively for helium (panels on the left) and iron
(panels on the right).
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nuclear composition. The corresponding value of the electron Fermi energy
derived from a uniform approximation overevaluates the true electron Fermi
energy (see Fig. A.9). In the limit of high compression the relativistic curves
asymptotically approach the uniform one (see also Fig. A.8).

The uniform approximation becomes exact in the limit when the electron
Fermi energy acquires its maximum value as given by

(EF
e )max ≃



− me

mπ
+

√

(

me

mπ

)2

+

(

3π2

2

)2/3 (Np

A

)2/3


mπc2, (A.2.42)

which is attained when RWS coincides with the nuclear radius Rc. Here, the
maximum electron Fermi energy (A.2.42) is obtained by replacing in Eq. (A.2.41)
the value of the normalized Wigner-Seitz cell radius xWS = xc = Rc/λπ ≈
[(3/2)π]1/3A1/3.
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Figure A.9.: The electron Fermi energy EF
e in units of the pion rest energy is

plotted as a function of the average electron density n0 = 3Ne/(4πR3
WS) in

units of the nuclear density nnuc = 3A/(4π∆3Npλ3
π) for a uniform approx-

imation (solid line), compared and contrasted to the ones obtained consid-
ering the relativistic Feynman, Metropolis, Teller approach. The arrow and
the dot indicate the value of the maximum electron Fermi energy as given by
Eq. (A.2.42), consistent with the finite size of the nucleus.

Relativistic FMT treatment vs. Salpeter approximate treatment

Corrections to the uniform distribution were also studied by Salpeter (1961a)
and his approximations are largely applied in physics (see e.g. Chabrier and
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Potekhin (1998a); Potekhin et al. (2009)) and astrophysics (see e.g. Douchin
and Haensel (2001); Haensel and Zdunik (1990a,b)).

Keeping the point-like nucleus assumption, Salpeter (1961a) studied the
corrections to the above models due to the inhomogeneity of the electron dis-
tribution inside the Wigner-Seitz cell. He expressed an analytic formula for
the total energy of a Wigner-Seitz cell based on Coulomb corrections to the
uniform distribution of electrons. The first correction corresponds to the in-
clusion of the lattice energy EC = −(9N2

pα)/(10RWS), which results from
the point-like nucleus-electron Coulomb interaction and, from the electron-
electron Coulomb interaction inside the cell of radius Rws. The second cor-
rection is given by a series-expansion of the electron Fermi energy about the
average electron density ne given by Eq. (A.2.40) the uniform approxima-
tion ne = 3Np/(4πR3

WS). The electron density is then assumed equals to
ne[1 + ǫ(r)] with ǫ(r) considered as infinitesimal. The Coulomb potential
energy is assumed to be the one of the point-like nucleus with the uniform
distribution of electrons of density ne, thus the correction given by ǫ(r) is ne-
glected on the Coulomb potential. The electron distribution is then calculated
at first-order by expanding the relativistic electron kinetic energy

ǫk =
√

[cPF
e (r)]

2 + m2
e c4 − mec

2

=
√

(3π2ne)2/3[1 + ǫ(r)]2/3 + m2
e c4 − mec

2, (A.2.43)

about its value given by the uniform approximation

ǫunif
k =

√

(3π2ne)2/3 + m2
e c4 − mec

2 , (A.2.44)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential

energy eV and the electron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 −
eV.

The effect of the Dirac electron-exchange correction (Dirac, 1930) on the
equation of state was also considered by Salpeter (1961a). However, adopting
the general approach of Migdal et al. (1977), these effects are negligible in the
relativistic regime (see Subsec. A.2.3 ).

The inclusion of each additional Coulomb correction results in a decreas-
ing of the pressure of the cell PS. However, despite to be very interesting in
identifying piecewise contributions to the total pressure, the validity of the
Salpeter approach needs a verification by a more general treatment. For in-
stance, the failure of the Salpeter formulas can be seen at densities of the order
of ∼ 102 − 103 g cm−3 for nuclei with large Np, as in the case of iron, where the
pressure becomes negative (see Table (A.1)). Therefore, the problem of solv-
ing the relativistic Thomas-Fermi equation within the Feynman, Metropolis,
Teller approach becomes a necessity, since this approach gives all the possible
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Table A.1.: Pressure for iron as a function of the density ρ in the uniform
approximation (P), in the Salpeter approximation (PS) and in the relativis-
tic Feynman-Metropolis-Teller approach (PFMTrel). Here xS = PF

e,S/(mec),

xFMTrel = PF
e /(mec) are respectively the normalized Salpeter Fermi momen-

tum and the relativistic Feynmann-Metropolis-Teller Fermi momentum.

ρ xS xFMTrel P PS PFMTrel

(g/cm3) (bar) (bar) (bar)
2.63 × 102 0.05 0.0400 2.9907 × 1010 −1.8800 × 108 9.9100 × 109

2.10 × 103 0.10 0.0857 9.5458 × 1011 4.4590 × 1011 5.4840 × 1011

1.68 × 104 0.20 0.1893 3.0227 × 1013 2.2090 × 1013 2.2971 × 1013

5.66 × 104 0.30 0.2888 2.2568 × 1014 1.8456 × 1014 1.8710 × 1014

1.35 × 105 0.40 0.3887 9.2964 × 1014 8.0010 × 1014 8.0790 × 1014

2.63 × 105 0.50 0.4876 2.7598 × 1015 2.4400 × 1015 2.4400 × 1015

4.53 × 105 0.60 0.5921 6.6536 × 1015 6.0040 × 1015 6.0678 × 1015

7.19 × 105 0.70 0.6820 1.3890 × 1016 1.2693 × 1016 1.2810 × 1016

1.08 × 106 0.80 0.7888 2.6097 × 1016 2.4060 × 1016 2.4442 × 1016

2.10 × 106 1.00 0.9853 7.3639 × 1016 6.8647 × 1016 6.8786 × 1016

3.63 × 106 1.20 1.1833 1.6902 × 1017 1.5900 × 1017 1.5900 × 1017

5.77 × 106 1.40 1.3827 3.3708 × 1017 3.1844 × 1017 3.1898 × 1017

8.62 × 106 1.6 1.5810 6.0754 × 1017 5.7588 × 1017 5.7620 × 1017

1.23 × 107 1.80 1.7790 1.0148 × 1018 9.6522 × 1017 9.6592 × 1017

1.68 × 107 2.0 1.9770 1.5981 × 1018 1.5213 × 1018 1.5182 × 1018

3.27 × 107 2.50 2.4670 4.1247 × 1018 3.9375 × 1018 3.9101 × 1018

5.66 × 107 3.00 2.965 8.8468 × 1018 8.4593 × 1018 8.4262 × 1018

1.35 × 108 4.00 3.956 2.9013 × 1019 2.7829 × 1019 2.7764 × 1019

2.63 × 108 5.00 4.939 7.2160 × 1019 6.9166 × 1019 6.9062 × 1019

8.85 × 108 7.50 7.423 3.7254 × 1020 3.5700 × 1020 3.5700 × 1020

Coulomb and relativistic contributions automatically and correctly.

Relativistic FMT treatment vs. non-relativistic FMT treatment

We now compare and contrast the Fermi energy, given by Eq. (A.2.32), of a
compressed atom in the non-relativistic and the relativistic limit (see Fig. A.10).

There are major differences:
1) The electron Fermi energy in the relativistic treatment is strongly de-

pendent on the nuclear composition, while the non-relativistic treatment presents
a universal behavior in the units of Fig. A.10. In the limit of low densities the
relativistic curves approach the universal non-relativistic curve. In the non

relativistic treatment the ratio EF
e /(mπc2N4/3

p ) does not depend on the num-
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Figure A.10.: The electron Fermi energies in units of mπc2N4/3
p for helium,

carbon and iron are plotted as a function of the ratio RWS/(λπ N−1/3
p ) re-

spectively in the non-relativistic and in the relativistic Feynman-Metropolis-
Teller (FMT) treatment. The dimensionless quantities have been chosen in
order to obtain an universal curve in the non relativistic treatment following
Eqs. (A.2.10) and (A.2.11). The relativistic treatment leads to results of the
electron Fermi energy dependent on the nuclear composition and system-
atically smaller than the non-relativistic ones. The electron Fermi energy can
attain arbitrary large values, in the non relativistic treatment, as the point-like
nucleus is approached.
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ber of protons Np if the Wigner-Seitz cell radius RWS is multiplied by N1/3
p

(see Eqs. (A.2.10), (A.2.11)). This universality is lost in the relativistic treat-
ment since there is no way to eliminate the dependence of the electron Fermi
energy on the nuclear composition (see Eq. (A.2.28)).

2) The relativistic treatment leads to values of the electron Fermi energy
consistently smaller than the ones of the non-relativistic treatment.

3) While in the non-relativistic treatment the electron Fermi energy can
reach, by compression, infinite values as RWS → 0, in the relativistic treat-
ment it reaches a perfectly finite value given by Eq. (A.2.42) attained when
RWS coincides with the nuclear radius Rc.

It is clear then, from above considerations, the relativistic treatment of
the Thomas-Fermi equation introduces significant differences from the cur-
rent approximations in the literature: a) the uniform electron distribution
(Bürvenich et al., 2007), b) the approximate perturbative solutions depart-
ing from the uniform distribution (Salpeter, 1961a) and c) the non-relativistic
treatment (Feynman et al., 1949). We have recently applied these results of
the relativistic Feynman, Metropolis, Teller treatment of a compressed atom
to the study of white dwarfs and their consequences on the determination of
their masses, radii and critical mass (Rotondo et al., 2011b).

A.2.5. Application to nuclear matter cores of stellar

dimensions

We turn now to nuclear matter cores of stellar dimensions of A ≃ (mPlanck/mn)3 ∼
1057 or Mcore ∼ M⊙.

Following the treatment presented in Rotondo et al. (2011e), we use the
existence of scaling laws and proceed to the ultra-relativistic limit of Eqs.
(A.2.20), (A.2.28), (A.2.31), (A.2.33). For positive values of the electron Fermi
energy EF

e , we introduce the new function φ = 41/3(9π)−1/3χ∆/x and the

new variable x̂ = kx where k = (12/π)1/6 √α∆−1, as well as the variable
ξ = x̂ − x̂c in order to describe better the region around the core radius.

Eq. (A.2.28) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.2.45)

where φ̂(ξ) = φ(ξ + x̂c) and the curvature term 2φ̂′(ξ)/(ξ + x̂c) has been
neglected.

The Coulomb potential energy is given by

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ)− EF

e , (A.2.46)
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corresponding to the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ), (A.2.47)

and the electron number-density

ne(ξ) =
1

3π2h̄3c3

(

9π

4

)

1

∆3
(mπc2)3φ̂3(ξ). (A.2.48)

In the core center we must have ne = np. From Eqs. (A.2.20) and (A.2.48) we
than have that, for ξ = −x̂c, φ̂(−x̂c) = 1.

In order to consider a compressed nuclear density core of stellar dimen-
sions, we then introduce a Wigner-Seitz cell determining the outer boundary
of the electron distribution which, in the new radial coordinate ξ is character-
ized by ξWS. In view of the global charge neutrality of the system the electric
field goes to zero at ξ = ξWS. This implies, from Eq. (A.2.47), φ̂′(ξWS) = 0.

We now turn to the determination of the Fermi energy of the electrons in
this compressed core. The function φ̂ and its first derivative φ̂′ must be con-
tinuous at the surface ξ = 0 of the nuclear density core.
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Figure A.11.: The electron Coulomb potential energies in units of the pion
rest energy in a nuclear matter core of stellar dimensions with A ≃ 1057 or
Mcore ∼ M⊙ and Rc ≈ 106 cm, are plotted as a function of the dimension-
less variable ξ, for different values of the electron Fermi energy also in units
of the pion rest energy. The solid line corresponds to the case of null elec-
tron Fermi energy. By increasing the value of the electron Fermi energy the
electron Coulomb potential energy depth is reduced.
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Figure A.12.: Solutions of the ultra-relativistic Thomas-Fermi equation
(A.2.45) for different values of the Wigner-Seitz cell radius RWS and corre-
spondingly of the electron Fermi energy in units of the pion rest energy as in
Fig. A.11, near the core surface. The solid line corresponds to the case of null
electron Fermi energy.
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Figure A.13.: The electric field in units of the critical field for vacuum po-
larization Ec = m2

e c3/(eh̄) is plotted as a function of the coordinate ξ, for
different values of the electron Fermi energy in units of the pion rest energy.
The solid line corresponds to the case of null electron Fermi energy. To an
increase of the value of the electron Fermi energy it is found a reduction of
the peak of the electric field.
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Figure A.14.: The Fermi energy of electrons in units of the pion rest energy is
plotted for different Wigner-Seitz cell dimensions (i.e for different compres-
sions) ξWS in the ultra-relativistic approximation . In the limit ξWS → 0 the
electron Fermi energy approaches asymptotically the value (EF

e )max given by
Eq. (A.2.63).

This boundary-value problem can be solved analytically and indeed Eq. (A.2.45)
has the first integral,

2[φ̂′(ξ)]2 =

{

φ̂4(ξ)− 4φ̂(ξ) + 3, ξ < 0,
φ̂4(ξ)− φ4(ξWS), ξ > 0,

(A.2.49)

with boundary conditions at ξ = 0:

φ̂(0) =
φ̂4(ξWS) + 3

4
,

φ̂′(0) = −

√

φ̂4(0)− φ̂4(ξWS)

2
. (A.2.50)

Having fullfilled the continuity condition we integrate Eq. (A.2.49) obtaining
for ξ ≤ 0

φ̂(ξ) = 1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, (A.2.51)
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where the integration constant a has the value

sinh(a) =
√

2

(

11 + φ̂4(ξWS)

1 − φ̂4(ξWS)

)

. (A.2.52)

In the interval 0 ≤ ξ ≤ ξWS, the field φ̂(ξ) is implicitly given by

F

(

arccos
φ̂(ξWS)

φ̂(ξ)
,

1√
2

)

= φ̂(ξWS)(ξ − ξWS), (A.2.53)

where F(ϕ, k) is the elliptic function of the first kind, and F(0, k) ≡ 0. For
F(ϕ, k) = u, the inverse function ϕ = F−1(u, k) = am(u, k) is the well known
Jacobi amplitude. In terms of it, we can express the solution (A.2.53) for ξ > 0
as,

φ̂(ξ) = φ̂(ξWS)

{

cos

[

am

(

φ̂(ξWS)(ξ − ξWS),
1√
2

)]}−1

. (A.2.54)

In the present case of EF
e > 0 the ultra-relativistic approximation is indeed

always valid up to ξ = ξWS for high compression factors, i.e. for RWS ≃ Rc.
In the case EF

e = 0, ξWS → ∞, there is a breakdown of the ultra-relativistic
approximation when ξ → ξWS.

Details are given in Figs. A.11, A.12, A.13.

We can now estimate two crucial quantities of the solutions: the Coulomb
potential at the center of the configuration and the electric field at the surface
of the core

eV(0) ≃
(

9π

4

)1/3 1

∆
mπc2 − EF

e , (A.2.55)

Emax ≃ 2.4

√
α

∆2

(

mπ

me

)2

Ec|φ̂′(0)| , (A.2.56)

where Ec = m2
e c3/(eh̄) is the critical electric field for vacuum polarization.

These functions depend on the value φ̂(ξWS) via Eqs. (A.2.49)–(A.2.53). At
the boundary ξ = ξWS, due to the global charge neutrality, both the electric
field E(ξWS) and the Coulomb potential eV(ξWS) vanish. From Eq. (A.2.46),
we determine the value of φ̂(ξ) at ξ = ξWS

φ̂(ξWS) = ∆

(

4

9π

)1/3 EF
e

mπc2
, (A.2.57)

as a function of the electron Fermi energies EF
e . From the above Eq. (A.2.57),
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one can see that there exists a solution, characterized by the value of electron
Fermi energy

(EF
e )max

mπc2
=

1

∆

(

9π

4

)1/3

, (A.2.58)

such that φ̂(ξWS) = 1. From Eq. (A.2.53) and ξ = 0, we also have

ξWS(φ̂(ξWS)) =

{

1

φ̂(0)
F

[

arccos

(

4 − 3

φ̂(0)

)

,
1√
2

]}

. (A.2.59)

For φ̂(ξWS) = 1, from Eq. (A.2.50) follows φ̂(0) = 1 hence Eq. (A.2.59) be-
comes

ξWS(φ̂(0)) = F

[

0,
1√
2

]

. (A.2.60)

It is well known that if the inverse Jacobi amplitude F[0, 1/
√

2] is zero, then

ξWS(φ̂(ξWS) = φ̂(0) = 1) = 0. (A.2.61)

Indeed from φ̂(ξWS) = 1 follows φ̂(0) = 1 and ξWS = 0. When ξWS = 0
from Eq. (A.2.50) follows φ̂′(0) = 0 and, using Eq. (A.2.56), Emax = 0. In
other words for the value of EF

e fulfilling Eq. (A.2.57) no electric field exists
on the boundary of the core and from Eq. (A.2.48) and Eqs. (A.2.19, A.2.20)
it follows that indeed this is the solution fulfilling both global Ne = Np and
local ne = np charge neutrality. In this special case, starting from Eq. (A.2.33)
and A = Np + Nn, we obtain

(EF
e )

3/2
max =

9π
4 (h̄c)3 A

R3
c
− (EF

e )
3
max

23/2

[

(

9π
4 (h̄c)3 A

R3
c
− (EF

e )
3
max

)2/3
+ m2

nc4

]3/4
. (A.2.62)

In the ultra-relativistic approximation (EF
e )

3
max/ 9π

4 (h̄c)3 A
R3

c
<< 1 so Eq. (A.2.62)

can be approximated to

(EF
e )max = 21/3 mn

mπ
γ

[

−1 +

√

1 +
β

2γ3

]2/3

mπc2, (A.2.63)

where

β =
9π

4

(

h̄

mnc

)3 A

R3
c

, γ =
√

1 + β2/3. (A.2.64)
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The corresponding limiting value to the Np/A ratio is obtained as follows

Np

A
=

2γ3

β

[

−1 +

√

1 +
β

2γ3

]2

. (A.2.65)

Inserting Eqs. (A.2.63), (A.2.64) in Eq. (A.2.65) one obtains the ultra-relativistic
limit of Eq. (A.2.42), since the electron Fermi energy, in view of the scaling
laws introduced in Rotondo et al. (2011e), is independent of the value of A
and depends only on the density of the core.

The Np-independence in the limiting case of maximum electron Fermi en-
ergy attained when RWS = Rc, in which the ultra-relativistic treatment ap-
proaches the uniform one, and the Np-dependence for smaller compressions
RWS > Rc can be understood as follows. Let see the solution to the ultra-
relativistic equation (A.2.45) for small ξ > 0. Analogously to the Feynman-
Metropolis-Teller approach to the non-relativistic Thomas-Fermi equation,
we solve the ultra-relativistic equation (A.2.45) for small ξ. Expanding φ̂(ξ)
about ξ = 0 in a semi convergent power series,

φ̂(ξ)

φ̂(0)
= 1 +

∞

∑
n=2

anξn/2 (A.2.66)

and substituting it into the ultra-relativistic equation (A.2.45), we have

∞

∑
k=3

ak
k(k − 2)

4
ξ(k−4)/2 = φ2(0) exp

[

3 ln(1 +
∞

∑
n=2

anξn/2)

]

. (A.2.67)

This leads to a recursive determination of the coefficients:

a3 = 0, a4 = φ2(0)/2, a5 = 0, a6 = φ2(0)a2/2, a7 = 0,

a8 = φ2(0)(1 − a2
2)/8, · · ·, (A.2.68)

with a2 = φ̂′(0)/φ̂(0) determined by the initial slope, namely, the boundary
condition φ̂′(0) and φ̂(0) in Eq. (A.2.50):

φ̂(0) =
φ̂4(ξWS) + 3

4
, φ̂′(0) = −

√

φ̂4(0)− φ̂4(ξWS)

2
(A.2.69)

Thus the series solution (A.2.66) is uniquely determined by the boundary
value φ̂(ξWS) at the Wigner-Seitz cell radius.
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Now we consider the solution up to the leading orders

φ̂(ξ) = φ̂(0) + φ̂′(0)ξ +
1

2
φ̂3(0)ξ2 +

1

2
φ̂3(0)a2ξ3

+
1

8
φ̂3(0)(1 − a2

2)ξ
4 + · · ·. (A.2.70)

Using Eq. (A.2.70), the electron Fermi energy (A.2.57) becomes

EF
e = (EF

e )max

[

1 + a2ξWS +
1

2
φ̂2(0)(ξWS)2 +

1

2
φ̂2(0)a2(ξ

WS)3

+
1

8
φ̂2(0)(1 − a2

2)(ξ
WS)4 + · · ·

]

φ̂(0), (A.2.71)

where (EF
e )max = (9π/4)1/3∆−1 is the maximum Fermi energy which is at-

tained when the Wigner-Seitz cell radius equals the nucleus radius Rc (see
Eq. A.2.58). For φ̂(ξWS) < 1, we approximately have φ̂(0) = 3/4, φ̂′(0) =

−(3/4)2/
√

2 and the initial slope a2 = φ̂′(0)/φ̂(0) = −(3/4)/
√

2. Therefore
Eq. (A.2.71) becomes

EF
e ≈ (EF

e )max

[

1 − 3

4
√

2
ξWS +

1

2

(

3

4

)2

(ξWS)2 − 1

23/2

(

3

4

)3

(ξWS)3

+
1

8

(

3

4

)2 (41

32

)

(ξWS)4 + · · ·
]

. (A.2.72)

By the definition of the coordinate ξ, we know all terms except the first term
in the square bracket depend on the values of Np. In the limit of maximum
compression when the electron Fermi energy acquires its maximum value,
namely when ξWS = 0, the electron Fermi energy (A.2.72) is the same as the
one obtained from the uniform approximation which is independent of Np.

For smaller compressions, namely for ξWS > 0 the electron Fermi energy
deviates from the one given by the uniform approximation becoming Np-
dependent.

In Fig. A.14 we plot the Fermi energy of electrons, in units of the pion rest
energy, as a function of the dimensionless parameter ξWS and, as ξWS → 0,
the limiting value given by Eq. (A.2.63) is clearly displayed.

In Alcock et al. (1986), in order to study the electrodynamical properties of
strange stars, the ultra-relativistic Thomas-Fermi equation was numerically
solved in the case of bare strange stars as well as in the case of strange stars
with a crust (see e.g. curves (a) and (b) in Fig. 6 of Alcock et al. (1986)). In
Fig. 6 of Alcock et al. (1986) was plotted what they called the Coulomb po-
tential energy, which we will denote as VAlcock. The potential VAlcock was
plotted for different values of the electron Fermi momentum at the edge of
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the crust. Actually, such potential VAlcock is not the Coulomb potential eV but
it coincides with our function eV̂ = eV + EF

e . Namely, the potential VAlcock

corresponds to the Coulomb potential shifted by the the Fermi energy of the
electrons. We then have from Eq. (A.2.46)

eV̂(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) = VAlcock. (A.2.73)

This explains why in Alcock et al. (1986), for different values of the Fermi
momentum at the crust the depth of the potential VAlcock remains unchanged.
Instead, the correct behavior of the Coulomb potential is quite different and,
indeed, its depth decreases with increasing of compression as can be seen in
Fig. A.11.

A.2.6. Compressional energy of nuclear matter cores of

stellar dimensions

We turn now to the compressional energy of these family of compressed
nuclear matter cores of stellar dimensions each characterized by a different
Fermi energy of the electrons. The kinematic energy-spectra of complete de-
generate electrons, protons and neutrons are

ǫi(p) =
√

(pc)2 + m2
i c4, p ≤ PF

i , i = e, p, n. (A.2.74)

So the compressional energy of the system is given by

E = EB + Ee + Eem , EB = Ep + En , (A.2.75)

Ei = 2
∫

i

d3rd3p

(2πh̄)3
ǫi(p) , i = e, p, n , Eem =

∫

E2

8π
d3r . (A.2.76)

Using the analytic solution (A.2.54) we calculate the energy difference be-
tween two systems, I and I I,

∆E = E(EF
e (I I))− E(EF

e (I)), (A.2.77)

with EF
e (I I) > EF

e (I) ≥ 0, at fixed A and Rc.

We first consider the infinitesimal variation of the total energy δEtot with
respect to the infinitesimal variation of the electron Fermi energy δEF

e

δE =

[

∂E

∂Np

]

VWS

[

∂Np

∂EF
e

]

δEF
e +

[

∂E

∂VWS

]

Np

[

∂VWS

∂EF
e

]

δEF
e . (A.2.78)
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For the first term of this relation we have
[

∂E

∂Np

]

VWS

=

[

∂Ep

∂Np
+

∂En

∂Np
+

∂Ee

∂Np
+

∂Eem

∂Np

]

VWS

≃
[

EF
p − EF

n + EF
e +

∂Eem

∂Np

]

VWS

, (A.2.79)

where the general definition of chemical potential ∂ǫi/∂ni = ∂Ei/∂Ni is used
(i = e, p, n) neglecting the mass defect mn − mp − me. Further using the
condition of the beta-equilibrium (A.2.33) we have

[

∂E

∂Np

]

VWS

=

[

∂Eem

∂Np

]

VWS

. (A.2.80)

For the second term of the Eq. (A.2.78) we have

[

∂E

∂VWS

]

Np

=

[

∂Ep

∂VWS
+

∂En

∂VWS
+

∂Ee

∂VWS
+

∂Eem

∂VWS

]

Np

=

[

∂Ee

∂VWS

]

Np

+

[

∂Eem

∂VWS

]

Np

, (A.2.81)

since in the process of increasing the electron Fermi energy namely, by de-
creasing the radius of the Wigner-Seitz cell, the system by definition main-
tains the same number of baryons A and the same core radius Rc.

Now δE reads

δE =

{

[

∂Ee

∂VWS

]

Np

∂VWS

∂EF
e

+

[

∂Eem

∂VWS

]

Np

∂VWS

∂EF
e

+

[

∂Eem

∂Np

]

VWS

∂Np

∂EF
e

}

δEF
e ,

(A.2.82)
so only the electromagnetic energy and the electron energy give non-null con-
tributions.

From this equation it follows that

∆E = ∆Eem + ∆Ee, (A.2.83)

where ∆Eem = Eem(EF
e (I I))−Eem(EF

e (I)) and ∆Ee = Ee(EF
e (I I))−Ee(EF

e (I)).

In the particular case in which EF
e (I I) = (EF

e )max and EF
e (I) = 0 we obtain

∆E ≃ 0.75
35/3

2

(π

4

)1/3 1

∆
√

α

( π

12

)1/6
N2/3

p mπc2, (A.2.84)

which is positive.

The compressional energy of a nuclear matter core of stellar dimensions
increases with its electron Fermi energy as expected.
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A.2.7. Conclusions

The results presented in this article are in the realm of theoretical physics
of nuclear physics and of atomic physics and give special attention to rel-
ativistic effects. They generalize to the relativistic regimes classical results
obtained by Feynman, Metropolis and Teller (Feynman et al., 1949) and, by
the introduction of scaling laws, they generalize the classical results obtained
by Migdal et al. (1976, 1977); Rotondo et al. (2011e) in heavy nuclei to massive
cores of ∼ M⊙. As such they find their justification. They acquire also special
meaning in astrophysics: the considerations contained in Secs. I–IV lead to a
consistent treatment of white dwarfs and the ones in Secs. V and VI lead to a
deeper understanding of neutron star physics.

We have generalized to the relativistic regime the classic work of Feynman,
Metropolis and Teller by solving the relativistic Thomas-Fermi equation in a
Wigner-Seitz cell corresponding to a compressed atom. The integration of
this equation does not admit regular solutions for a point-like nucleus and
both the nuclear radius and the nuclear composition have necessarily to be
taken into account (Ferreirinho et al., 1980; Ruffini and Stella, 1981). This
introduces a fundamental difference from the non-relativistic Thomas-Fermi
model where a point-like nucleus is traditionally adopted.

As in previous works by Ferreirinho et al. (1980), Ruffini and Stella (1981)
and Rotondo et al. (2011e), the protons in the nuclei have been assumed to
be at constant density, the electron distribution has been derived by the rela-
tivistic Thomas-Fermi equation and the neutron component by the beta equi-
librium between neutrons, protons and electrons.

We have examined, for completeness, the relativistic generalization of the
Thomas-Fermi-Dirac equation by taking into due account the exchange terms
(Dirac, 1930), adopting the general approach of Migdal et al. (1977), and
shown that these effects, generally small, can be neglected in the relativis-
tic treatment.

There are marked differences between the relativistic and the non-relativistic
treatments.

The first is that the existence of a finite size nucleus introduces a limit to the
compressibility: the dimension of the Wigner-Seitz cell can never be smaller
then the nuclear size. Consequently the electron Fermi energy which in the
non-relativistic approach can reach arbitrarily large values, reaches in the
present case a perfectly finite value: an expression for this finite value of the
electron Fermi energy has been given in analytic form. There are in the liter-
ature many papers adopting a relativistic treatment for the electrons, with a
point-like approximation for the nucleus, which are clearly inconsistent (see
e.g. Chabrier and Potekhin (1998a) and Potekhin et al. (2009)).

The second is the clear difference of the electron distribution as a function
of the radius and of the nuclear composition as contrasted to the uniform
approximation (see Fig. A.8 of Sec. A.2.4), often adopted in the literature (see
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e.g. Bürvenich et al. (2007)). Therefore the validity of inferences based on a
uniform approximation should be duly verified both in the relativistic and in
the non-relativistic regime.

The third is that the relativistic Feynman-Metropolis-Teller treatment al-
lows to treat precisely the electrodynamical interaction within a compressed
atom with all the relativistic corrections. This allows to validate and in some
cases overcome the difficulties of treatments describing the electrodynamical
effect by a sequence of successive approximations. This is the case of vali-
dation of the Salpeter approach at high densities and the overcome of neg-
ative pressures at low densities. The new treatment evidences a softening
of the dependence of the electron Fermi energy on the compression factor,
as well as a gradual decrease of the exchange terms in proceeding from the
non-relativistic to the fully relativistic regimes. It is then possible to derive, as
shown in Table A.1 of Sec. A.2.4, a consistent equation of state for compressed
matter.

The equation of state obtained in Table A.1 of Sec. A.2.4 has been recently
applied to the study of the general relativistic white-dwarf equilibrium con-
figurations by Rotondo et al. (2011b). The contribution of quantum statistics,
weak and electromagnetic interactions here considered have been further
generalized there by considering the contribution of the general relativistic
equilibrium of white dwarf matter. This is expressed by the simple formula√

g00µws =constant, which links the chemical potential of the Wigner-Seitz
cell µws with the general relativistic gravitational potential g00 at each point of
the configuration. The configuration outside each Wigner-Seitz cell is strictly
neutral and therefore no global electric field is necessary to warranty the equi-
librium of the white dwarf. These equations modify the ones used by Chan-
drasekhar by taking into due account the Coulomb interaction between the
nuclei and the electrons as well as inverse beta decay. They also generalize
the work of Salpeter by considering a unified self-consistent approach to the
Coulomb interaction in each Wigner-Seitz cell. The consequences on the nu-
merical value of the Chandrasekhar-Landau mass limit have been then pre-
sented as well as on the mass-radius relation of white dwarfs (Rotondo et al.,
2011b). This leads to the possibility of a direct confrontation of these results
with observations, in view of the current great interest for the cosmological
implications of the type Ia supernovae (Phillips, 1993; Riess et al., 1998; Perl-
mutter et al., 1999; Riess et al., 2004) and in the case of low mass white dwarf
companion of the Pulsar PSRJ1141-6545 (Kramer, 2010) as well as the role of
white dwarfs in novae.

In Secs. V and VI we have then extrapolated these results to the case of
nuclear matter cores of stellar dimensions for A ≈ (mPlanck/mn)3 ∼ 1057 or
Mcore ∼ M⊙. The aim here is to explore the possibility of obtaining for these
systems a self-consistent solution presenting global and not local charge neu-
trality. The results generalize the considerations presented in the previous
article by Rotondo et al. (2011e) corresponding to a nuclear matter core of stel-
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lar dimensions with null Fermi energy of the electrons. The ultra-relativistic
approximation allows to obtain analytic expressions for the fields in the case
of positive electron Fermi energies. An entire family of configurations exist
with values of the Fermi energy of the electrons ranging from zero to a max-
imum value (EF

e )max which is reached when the Wigner- Seitz cell coincides
with the core radius. The configuration with EF

e = (EF
e )max corresponds to

the configuration with Np = Ne and np = ne: for this limiting value of the
Fermi energy the system fulfills both the global and the local charge neutral-
ity and, correspondingly, no electrodynamical structure is present in the core.
The other configurations present generally overcritical electric fields close to
their surface. The configuration with EF

e = 0 has the maximum value of the
electric field at the core surface, well above the critical value Ec (see Fig. A.11,
Fig. A.12 and Fig. A.13 of Section A.2.5). All these cores with overcritical elec-
tric fields are stable against the vacuum polarization process due to the Pauli
blocking by the degenerate electrons (see e.g. Ruffini et al. (2010b)). We have
also compared and contrasted our treatment of the relativistic Thomas-Fermi
solutions to the corresponding one addressed in the framework of strange
stars by Alcock et al. (1986), pointing out in these treatments some inconsis-
tency in the definition of the Coulomb potential. We have finally compared
the compressional energy of configurations with selected values of the elec-
tron Fermi energy.

The above problem is theoretically well defined, represents a necessary
step in order to approach the more complex problem of a neutron star core
and its interface with the neutron star crust.

Neutron stars are composed of two sharply different components: the liq-
uid core at nuclear and/or supra-nuclear density consisting of neutrons, pro-
tons and electrons and a crust of degenerate electrons in a lattice of nuclei
(see e.g. Baym et al. (1971a)) and Harrison et al. (1965)) and possibly of free
neutrons due to neutron drip when this process occurs (see e.g. Baym et al.
(1971a)). Consequently, the boundary conditions for the electrons at the sur-
face of the neutron star core will have generally a positive value of the elec-
tron Fermi energy in order to take into account the compressional effects of
the neutron star crust on the core. The case of zero electron Fermi energy
corresponds to the limiting case of absence of the crust.

In a set of interesting papers Glendenning (1992); Glendenning and Pei
(1995); Christiansen and Glendenning (1997); Glendenning and Schaffner-
Bielich (1999); Christiansen et al. (2000); Glendenning (2001) have relaxed the
local charge neutrality condition for the description of the mixed phases in
hybrid stars. In such configurations the global charge neutrality condition,
as opposed to the local one, is applied to the limited regions where mixed
phases occur while in the pure phases the local charge neutrality condition
still holds. We have generalized Glendenning’s considerations by looking to
a violation of the local charge neutrality condition on the entire configuration,
still keeping its overall charge neutrality. This effect cannot occur locally, and
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requires a global description of the equilibrium configuration. To exempli-
fied this novel approach we have considered in Rotondo et al. (2011d) the
simplest, nontrivial, self-gravitating system of degenerate neutrons, protons
and electrons in beta equilibrium in the framework of relativistic quantum
statistics and the Einstein-Maxwell equations. The impossibility of imposing
the condition of local charge neutrality on such systems is proved in complete
generality. The crucial role of the constancy of the generalized electron Fermi
energy is emphasized and consequently the coupled system of the general
relativistic Thomas-Fermi equations and the Einstein-Maxwell equations is
solved. We then give an explicit solution corresponding to a violation of the
local charge neutrality condition on the entire star, still fulfilling the global
charge neutrality when electromagnetic, weak and general relativistic effects
are taken into account.

The results presented in the second part of this article on nuclear matter
cores of stellar dimensions evidence the possibility of having the existence of
critical electromagnetic fields at the core surface.
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A.3. The relativistic Feynman-Metropolis-Teller

equation of state at finite temperatures

A.3.1. Introduction

We have recently generalized in Ref. Rotondo et al. (2011c) to relativistic
regimes the classic work of Feynman, Metropolis and Teller (FMT) Feynman
et al. (1949), solving a compressed atom by the Thomas-Fermi equation in a
Wigner-Seitz cell. The integration of this equation does not admit any reg-
ular solution for a point-like nucleus and both the nuclear radius and the
nuclear composition have necessarily to be taken into account Ferreirinho
et al. (1980); Ruffini and Stella (1981). This introduces a fundamental differ-
ence from the non-relativistic Thomas-Fermi model where a point-like nu-
cleus is adopted. So, this approach improves all previous treatments of the
equation of state (EOS) of a compressed atom, including the classic work of
Salpeter Salpeter (1961a), in the following aspects: 1) in order to guarantee
self-consistency with a relativistic treatment of the electrons, the point-like
assumption of the nucleus is abandoned introducing a finite sized nucleus;
2) the Coulomb interaction energy is fully calculated without any approx-
imation by solving numerically the relativistic Thomas-Fermi equation for
each given nuclear composition; 3) the energy-density of the system is cal-
culated taking into account the contributions of the nuclei, of the Coulomb
interactions as well as of the relativistic electrons; 4) the β-equilibrium be-
tween neutrons, protons and electrons is also taken into account leading to a
self-consistent calculation of the threshold density for triggering the inverse
β-decay of a given nucleus.

We have shown in Ref. Rotondo et al. (2011b) how these effects are impor-
tant in the determination of the macroscopic structure of general relativistic
white dwarfs, for instance we demonstrated the relevance of the above items
4) and 5) to determine the critical mass of white dwarfs against gravitational
collapse, which can be induced either by the inverse β decay or by general
relativistic effects. More recently, the relativistic FMT EOS has been used
to determine general relativistic equilibrium configurations of rotating white
dwarfs Boshkayev et al. (2013b).

In this work we extend our previous work Rotondo et al. (2011c) on the
degenerate relativistic FMT treatment by including the effects of finite tem-
peratures. Besides being interesting by its own, the inclusion of finite tem-
perature effects is becoming of primary importance in view of the recent dis-
coveries of ultra-low mass white dwarfs with masses . 0.2M⊙ Antoniadis
et al. (2013a, 2012), companion of neutron stars in relativistic binaries. These
low-mass white dwarfs represent the perfect arena for testing the EOS of
compressed matter since the central densities of these objects are expected
to be . 106 g cm−3, where the degenerate approximation breaks down and
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so thermal effects cannot be neglected. The generalization of the relativistic
FMT model presented here represent serves also as an extension of previous
works in which the non-relativistic Thomas-Fermi model has been used to
describe the physics of the low density layers of neutron stars including their
atmospheres (see e.g. Ref. Thorolfsson et al. (1998)). The proper treatment
of the relativistic and Coulomb effects corrects the over and underestimate
of the total pressure at high and low densities respectively, which occurs in
non-relativistic Thomas-Fermi models and in the approximate Coulomb cor-
rections of Salpeter Salpeter (1961a); see Rotondo et al. (2011c), for further
details.

Besides the generalization of the EOS of compressed matter, we follow the
steps in Rotondo et al. (2011c) and extrapolate the treatment to the case of
compressed nuclear matter cores of stellar dimensions introduced in : macro-
scopic cores composed of neutrons, protons, and electron in β equilibrium
and with mass numbers A ∼ (mPlanck/mn)3 ∼ 1057, hence masses Mcore ∼
M⊙; expected to be bound by self-gravity. These objects are idealized con-
figurations that reflect the properties of macroscopic nuclear matter systems
such as neutron stars.

The paper is organized as follows: first in Sec. A.3.2 we briefly describe
the relativistic FMT treatment both in the completely degenerate case and
the extension to finite temperatures. Then in Sec. A.3.3 we summarize the
results of the numerical integration of the equations and describe the general
properties of the new EOS. In Sec. A.3.4 we extend the formulation to the case
of the nuclear matter cores of stellar dimensions introduced in Rotondo et al.
(2011c). Finally the conclusions are presented in Sec. A.3.5.

A.3.2. The relativistic FMT treatment

The degenerate case

We briefly describe now the relativistic generalization of the classic FMT
treatment of compressed atoms recently achieved in Rotondo et al. (2011c).
One of the main differences is that, in order to allow for the presence of a
cloud of relativistic electrons (see e.g. Ferreirinho et al. (1980); Ruffini and
Stella (1981)), the point-like nucleus approximation must be abandoned. The
relativistic equilibrium condition of compressed atoms for the degenerate
case is expressed by

EF
e =

√

c2(PF
e )

2 + m2
e c4 − m2

e c2 − eV(r) = constant > 0, (A.3.1)

where V denotes the Coulomb potential, PF
e is the electron Fermi momen-

tum and EF
e denotes the Fermi energy of electrons. In Ref. Rotondo et al.

(2011c), we adopted a constant distribution of protons confined in a radius
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Rc = ∆λπZ
1
3 , where λπ = h̄/(mπc) is the pion Compton wavelength, with

mπ the pion rest mass, and Z is the number of protons. The parameters ∆ is
such that at nuclear density, ∆ ≈ (r0/λπ)(A/Z)1/3, where r0 ≈ 1.2 fm and
A is the atomic weight; so in the case of ordinary nuclei ∆ ≈ 1. The proton
density can be then written as

np(r) =
Z

4
3 πR3

c

θ(r − Rc), (A.3.2)

where θ(r − Rc) is the Heaviside function centered at the core/nucleus ra-
dius, r = Rc. The electron density follows from Fermi-Dirac statistics and is
given by

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3
[V̂2(r) + 2mec

2V̂(r)]
3
2 , (A.3.3)

where V̂ = eV̂ + EF
e and we have used the equilibrium condition (A.3.1).

By introducing the dimensionless quantities x = r/λπ, xc = Rc/λπ, χ/r =
V̂(r)/(h̄c) and replacing the particle densities into the Poisson Equation

∇2V = 4πe(np − ne), (A.3.4)

we obtain the relativistic Thomas-Fermi equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+

2me

mπ

χ(x)

x

]

3
2

. (A.3.5)

The above differential equation has to be integrated subjected to the bound-
ary conditions

χ(0) = 0,
dχ

dx

∣

∣

∣

∣

x=0

> 0,
dχ

dx

∣

∣

∣

∣

x=xWS

=
χ(xWS)

xWS
, (A.3.6)

where the latter condition ensures the global charge neutrality at the Wigner-
Seitz cell radius RWS, and xWS = RWS/λπ is the dimensionless cell radius.

The total energy of the Wigner-Seitz cell can be written as the sum of three
contributions

EWS = EN + Ek + EC, (A.3.7)

where

EN = MN(A, Z)c2, (A.3.8)

Ek =
∫ RWS

0
4πr2(Ee − mene)dr, (A.3.9)

EC =
1

2

∫ RWS

Rc

4πr2e[np(r)− ne(r)]V(r)dr, (A.3.10)
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are the nucleus, kinetic, and Coulomb energy of the cell. For the nucleus
mass, MN(A, Z), we adopt experimental values, and Ee is the electron energy
density

Ee =
2

(2πh̄)3

∫ PF
e

0

√

c2p2 + m2
e c44πp2dp,

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (1 + 2x2

e )− arcsinh(xe)], (A.3.11)

where we have avoided double-counting of the electrons rest-energy and the
nucleus Coulomb energy which are already accounted for in the experimental
values of nuclear masses.

The total pressure at the border of the Wigner-Seitz cell is exerted only by
the relativistic degenerate electron gas

Prel
FMT =

1

3

2

(2πh̄)3

∫ PF,WS
e

0

c2p2

√

c2p2 + m2
e c4

4πp2dp,

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (2x2

e /3 − 1) + arcsinh(xe)] (A.3.12)

where xe = PF,WS
e /(mec) ≡ PF

e (RWS)/(mec) is the dimensionless electron
Fermi momentum, often called relativistic parameter, evaluated at the radius
of the Wigner-Seitz cell, RWS.

A detailed analysis of this EOS and how it generalizes previous works
based either on non-relativistic electrons or on the uniform approximation
of the electron gas or on first order corrections of it owing to Coulomb effects
can be found in Refs. Rotondo et al. (2011c,b).

Generalization of the EOS to finite temperatures

We turn now to consider a relativistic gas of electrons at temperature T 6= 0
surrounding the finite sized and positively charged nucleus. We assume the
proton number density as in the degenerate case, i.e. given by Eq. (A.3.3), and
we can write the electron number density following Fermi-Dirac statistics as

ne =
2

(2πh̄)3

∫ ∞

0

4πp2dp

exp
[

Ẽ(p)−µ̃e(p)
kBT

]

+ 1
, (A.3.13)

where kB is the Boltzmann constant, µ̃e is the electron chemical potential with

the rest-mass subtracted off, and Ẽ(p) =
√

c2p2 + m2
e c4 −mec

2, with p and me

the electron momentum and rest-mass, respectively.

Introducing the degeneracy parameter η = µ̃e/(kBT), t = Ẽ(p)/(kBT) and
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β = kBT/(mec
2), we can write the electron number density as

ne =
8π

√
2

(2πh̄)3
m3c3β3/2 [F1/2(η, β) + βF3/2(η, β)] , (A.3.14)

where

Fk(η, β) ≡
∫ ∞

0

tk
√

1 + (β/2)t

1 + et−η dt (A.3.15)

is the relativistic Fermi-Dirac integral.

We consider configurations with temperatures T ≪ mec
2/kB ≈ 5.94 × 109

K, so we will not take into account the presence of anti-particles. Using
the same dimensionless quantities and replacing the particle densities into
the Poisson equation we obtain the generalization of the relativistic Thomas-
Fermi equation at finite temperatures

d2χ(x)

dx2
= −4παx

{

3

4π∆3
θ(xc − x)

−
√

2

π2

(

me

mπ

)3

β3/2 [F1/2(η, β) + βF3/2(η, β)]

}

, (A.3.16)

where we have defined a new Thomas-Fermi function χ by µ̃e = kBTη =
h̄χ/r, and used the electron equilibrium condition which now reads

µ̃e − eV = kBTη − eV = constant, (A.3.17)

with V the Coulomb potential.

The Eq. (A.3.16) must be integrated subjected to the same boundary condi-
tions as in the degenerate case, given by Eq. (A.3.6).

For the present case at finite temperature, the total energy of each Wigner-
Seitz can be again written as

EWS = EN + Ek + EC, (A.3.18)

but now the nucleus energy

EN = MN(A, Z)c2 + Uth, Uth =
3

2
kBT, (A.3.19)

accounts for the internal energy of nuclei, Uth, which we here adopt as an
ideal gas. Quantum corrections to the ion fluid considered here can be straight-
forwardly computed following previous treatments such as Stolzmann and
Bloecker (1996); Chabrier and Potekhin (1998b); Potekhin and Chabrier (2000).

The electron kinetic energy is given by Eq. (A.3.9) but in this case the elec-
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tron energy density is

Ee = mec
2ne +

√
2

π2h̄3
m4

e c5β5/2 [F3/2(η, β) + βF5/2(η, β)] , (A.3.20)

and finally the Coulomb energy is computed again as in Eq. (A.3.10) with the
electron density now given by Eq. (A.3.14).

The total density and pressure are then given by

ρ =
EWS/c2

VWS
, (A.3.21)

P = PN + Pe, (A.3.22)

where

PN =
2

3

Uth

VWS
=

kBT

VWS
, (A.3.23)

Pe =
23/2

3π2h̄3
m4

e c5β5/2

[

F3/2(ηWS, β) +
β

2
F5/2(ηWS, β)

]

, (A.3.24)

with ηWS is the value of η at the boundary of the Wigner-Seitz cell whose
volume is VWS = 4πR3

WS/3.

A.3.3. Numerical integration of the equations and the EOS

For a given chemical composition (Z, A), temperature T (i.e. β), and Wigner-
Seitz cell radius xWS, the relativistic Thomas-Fermi equation (A.3.16) is inte-
grated subjected to the boundary conditions (A.3.6). We thus obtain both the
Coulomb potential and the function η inside the given Wigner-Seitz cell. With
the knowledge of ηWS, we proceed to evaluate first the energy of the cell by
Eqs. (A.3.18–A.3.20) and subsequently the EOS through Eqs. (A.3.21–A.3.24).
Thus, for given composition and temperature, we repeat the above steps for
different cell radii, which give us different compression levels of the system,
and therefore leads to different densities and pressures, hence the EOS. These
steps can be performed for different compositions and temperatures; the re-
sults are discussed below.

Properties of the EOS

As we showed in Ref. Rotondo et al. (2011c), as a result of the Coulomb in-
teraction duly accounted for in the relativistic Thomas-Fermi treatment, the
distribution of the electrons inside a Wigner-Seitz cell is not uniform. In order
to show the effects of the temperature, in Fig. A.15 we show as an example
the electron number density inside a Wigner-Seitz cell of 56Fe at a density of
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30 g cm−3 and for temperatures T = [0, 107, 1010] K.
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Figure A.15.: Electron number density inside a Wigner-Seitz cell of 56Fe at a
density of 30 g cm−3 at selected temperatures. Here nBohr = 3/(4πR3

Bohr) ≈
1.6× 1024 cm−3, where RBohr = h̄/(e2me) ≈ 5.3× 10−9 cm, is the Bohr radius.
In this example we have used both low density and high temperatures up to
1010 K in order to show an extreme example of electron density flattening.

We can see in Fig. A.15 how the effect of the temperature tends to homog-
enize inside the cell. In addition, we notice that the larger the temperature
the larger the value of the electron density at the border of the Wigner-Seitz
cell, thus increasing the electron pressure. This effect can be clearly seen in
Fig. A.16 where we show the value of the electron number density evalu-
ated at the cell radius, RWS, as a function of the density for the temperatures
T = [104, 105, 106, 107, 108] K, for a given chemical composition, 12C.

The volume of the Wigner-Seitz cell, VWS = 4πR3
WS/3, determines the den-

sity of the system ρ given by Eq. (A.3.21); the smaller the volume the larger
the density. In Fig. A.17 we show the density of the system as a function of
the Wigner-Seitz cell radius RWS for a temperature T = 107 K and chemical
composition 12C.

It is important to mention that often in the literature is used as density of
the system the quantity ρ = AMune/Z, which clearly corresponds to the rest-
mass density of nuclei in the system (assuming a uniform distribution of elec-
trons), where Mu = 1.6604 × 10−24 g is the unified atomic mass. We can see
from Eq. (A.3.7) that this is equivalent to neglect the internal and Coulomb
energy of the cells. However, as we showed in Refs. Rotondo et al. (2011c,b),
the inclusion of the Coulomb and electron kinetic energies are important at
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Figure A.16.: Electron number density at the radius of a Wigner-Seitz cell of
12C as a function of the density (A.3.21) for the selected temperatures T =
[104, 105, 106, 107, 108] K.
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Figure A.17.: Total density (in g cm−3) of the system as a function of the ra-
dius of the Wigner-Seitz cell (in units of the electron Compton wavelength
λe = h̄/(mec) ≈ 3.9 × 10−11 cm) in the case of 12C at a temperature T = 107

K.
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low and high densities, respectively. In particular, the contribution of the
kinetic energy of the electrons to the energy density is fundamental in the de-
termination of the critical density for the gravitational collapse of 12C white
dwarfs Rotondo et al. (2011b). We show in Fig. A.18 the effect on the EOS
of using as density of the system only the nuclei rest-mass, ρ = AMune/Z,
instead of the full mass density given by Eq. (A.3.21) with the energy of the
Wigner-Seitz cell given by Eq. (A.3.7), which takes into account the internal
energy (thermal and electron kinetic energies) as well as the Coulomb energy
of the Wigner-Seitz cell.
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Figure A.18.: Total pressure as a function of the matter density ρ = AMune/Z
and ρ = EWS/(c2VWS) which includes the internal (nuclei thermal and elec-
tron kinetic energies) and Coulomb energy in the Wigner-Seitz cell. In this
example the composition is 12C and the temperature T = 104 K.

The effects of finite temperatures are clearly expected to be important at
low densities, where the system looses its degeneracy. The point where the
EOS should start to deviate from its degenerate behavior can be estimated by
equating the degenerate and ideal gas pressures for the electron component.

Assuming the electrons as non-relativistic we have, nekBT = (3π2)2/3h̄2n5/3
e /me,

from which we obtain that temperature effects are important for densities

ρ . 1.5 × 103

(

T

107 K

)3/2

g cm−3 , (A.3.25)

where we have used A/Z ≈ 2 and ρ ≈ AMune/Z. In Fig. A.19 we compare
the relativistic degenerate FMT EOS Rotondo et al. (2011c,b) and its general-
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ization at finite temperatures presented in this work, for the cases T = 107

and 108 K and 12C chemical composition. For these specific temperatures,
T = 107 and 108 K, we see that deviations of the degenerate EOS start at a
density ρ ≈ 2 × 104 and ≈ 106 g cm−3, respectively. For the same tempera-
tures, Eq. (A.3.25) estimate deviations from degeneracy at ρ ≈ 1.5 × 103 and
≈ 4.8 × 104 g cm−3, respectively. Thus, the lower the temperature the better
the estimate given by Eq. (A.3.25); the reason for this is that for larger tem-
peratures the system will loose the degeneracy at larger densities where the
non-relativistic approximation for the electrons breaks down.
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Figure A.19.: Comparison of the EOS for 12C at temperatures T = [0, 107, 108]
K.

We summarize the finite temperature generalization of the relativistic FMT
EOS in Fig. A.21, where we plot as an example the total pressure (A.3.22)
as a function of the total density of the system (A.3.21) at temperatures T =
[104, 105, 106, 107, 108] K and for a chemical composition, 12C. All the above
features of the EOS are general and therefore applied also to chemical com-
positions other than 12C.

Inverse β decay and pycnonuclear reactions

We turn now to the finite temperature effects on the inverse β decay instabil-
ity. It is known that white dwarfs may become unstable against the inverse
β decay process (Z, A) → (Z − 1, A) through the capture of energetic elec-
trons. In order to trigger such a process the electron energy must be larger
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Figure A.20.: Nuclei to electron pressure ratio as a function of the mass den-
sity in the case of 12 C white dwarf for selected temperatures in the range
T = 104–108 K.
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Figure A.21.: Total pressure as a function of the mass density in the case of 12

C white dwarf for selected temperatures in the range T = 104–108 K.
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than the mass difference between the initial nucleus (Z, A) and the final nu-

cleus (Z− 1, A). This threshold energy is denoted as ǫ
β
Z. Usually it is satisfied

ǫ
β
Z − 1 < ǫ

β
Z and therefore the initial nucleus undergoes two successive de-

cays, i.e. (Z, A) → (Z − 1, A) → (Z − 2, A); see e.g. Refs. Salpeter (1961b);
Shapiro and Teukolsky (1983b).

The critical density ρ
β
crit is then obtained numerically by looking for the

density at which the electron energy equals ǫ
β
Z. In Table II of Ref. Rotondo

et al. (2011b) we showed that, in the degenerate case, the threshold energies
to trigger the inverse β process for 4He, 12C, 16O, and 56Fe are reached at den-
sities, 1.37× 1011, 3.88× 1010, 1.89× 1010, and 1.14× 109 g cm−3, respectively.
Since the effects of temperatures T . 108 K are important at densities ρ . 106

g cm−3 (see Figs. A.19 and A.21), we found that the critical densities for the
occurrence of the inverse β decay instability are roughly the same as the ones
computed in the degenerate approximation.

We turn now to the pycnonuclear reactions. In a nuclei lattice the nu-
clear reactions proceed with the overcoming of the Coulomb barrier between
neighbor nuclei. At zero temperatures, T = 0, the Coulomb barrier can be
overcome due to the zero-point energy of the nuclei (see e.g. Salpeter and
van Horn (1969); Shapiro and Teukolsky (1983b))

Ep = h̄ωp , ωp =

√

4πe2Z2ρ

A2M2
u

. (A.3.26)

The number of pycnonuclear reactions per unit volume per unit time in-
creases with the density of the system Salpeter and van Horn (1969) and
any effect that reduces the Coulomb barrier will increase the cross-section
of the reaction. The inclusion of the temperature could then lead to thermo-
enhanced pycnonuclear rates (see e.g. Refs. Salpeter and van Horn (1969);
Gasques et al. (2005)). The astrophysical importance of pycnonuclear reac-
tions e.g. in the theory of white dwarfs relies on the fact that for instance
the 12C+12C pycnonuclear fusion, leading to 24Mg, is possible in a time scale
shorter than a Hubble time, τpyc < 10 Gyr, for densities ∼ 1010 g cm−3. Such

a density turns to be larger than the critical density ∼ 3 × 109 g cm−3 for the
double inverse β decay of 24Mg into 24Ne by electron capture (see e.g. Salpeter
(1961a); Shapiro and Teukolsky (1983b)), which destabilize the white dwarf
due to sudden decrease of its electron pressure. For instance, following the
updated reaction rates of Ref. Gasques et al. (2005), we recently computed
Boshkayev et al. (2013b) the critical density for pycnonuclear instability in
general relativistic uniformly rotating 12C white dwarfs, at zero tempera-
tures. It comes out that the instability agent of white dwarfs can be either
general relativistic effects or inverse β decay or pycnonuclear reactions or
rotation through mass-shedding or secular instabilities (see Boshkayev et al.
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(2013b), for details).
The electrons around the nuclei lead to a screening of the positive charge

of the nucleus reducing the Coulomb barrier; hence their proper inclusion
could in principle increase the reaction rates. On the other hand, we showed
in Figs. A.15 and A.16 two different effects owing to the finite temperature: 1)
it tends to flatten the electron distribution, thus changing the electron screen-
ing of the Coulomb potential with respect to the degenerate case; and 2) it
increases the electron density hence the pressure at the border of the cell.
These effects clearly could lead to consequences on the estimates of the rates
of the pycnonuclear reactions (see e.g. Potekhin and Chabrier (2012)).

However, the inclusion of these combined effects within the pycnonuclear
reactions treatment, following a fully relativistic approach of the electron gas
and the Coulomb interactions as the one presented here, is a most difficult
and complex task that deserves to be the subject of a fully separate work, and
therefore will not be addressed here.

A.3.4. Application to nuclear matter cores of stellar

dimensions

The degenerate case

In Ref. Rotondo et al. (2011c) we extended the relativistic FMT model to
what we have called nuclear matter cores of stellar dimensions: objects with
mass numbers A ∼ (mPlanck/mn)3 ∼ 1057, thus with corresponding masses
Mcore ∼ M⊙. These systems are expected to represent idealized macroscopic
objects composed of neutrons, protons, and electrons in β equilibrium and
kept bound by self-gravity, such as the cores of neutron stars.

Following our treatment in Ref. Rotondo et al. (2011c), we use the existence
of scaling laws and proceed to the ultra-relativistic limit of Eqs. (A.3.3) and
(A.3.5). For positive values of the electron Fermi energy EF

e , we introduce the
new function φ = 41/3(9π)−1/3χ∆/x and the new variable x̂ = kx where

k = (12/π)1/6 √α∆−1, as well as the variable ξ = x̂ − x̂c in order to describe
better the region around the core radius.

Thus, Eq. (A.3.5) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.3.27)

where φ̂(ξ) = φ(ξ + x̂c) and the term 2φ̂′(ξ)/(ξ + x̂c) has been neglected,
namely we introduce a plane-parallel approximation.

The Coulomb potential energy is given by

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ)− EF

e , (A.3.28)
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corresponding to the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄

dφ̂

dξ
, (A.3.29)

and the electron number-density

ne(ξ) =
1

3π2h̄3c3

(

9π

4

)

1

∆3
(mπc2)3φ̂3(ξ), (A.3.30)

and the function φ(ξ) satisfies φ̂(−x̂c) = 1.

In order to consider a compressed nuclear density core of stellar dimen-
sions, we then introduce a Wigner-Seitz cell determining the outer boundary
of the electron distribution which, in the new radial coordinate ξ is character-
ized by ξWS. In view of the global charge neutrality of the system the electric
field goes to zero at ξ = ξWS. This implies, from Eq. (A.3.29), dφ̂/dξ = 0 at
ξ = ξWS.

We now turn to the determination of the Fermi energy of the electrons in
this compressed core. The function φ̂ and its first derivative dφ̂/dξ must be
continuous at the core surface ξ = 0.

This boundary-value problem can be solved analytically and indeed Eq. (A.3.27)
has the first integral,

2

(

dφ̂

dξ

)2

=

{

φ̂4(ξ)− 4φ̂(ξ) + 3, ξ < 0,
φ̂4(ξ)− φ4(ξWS), ξ > 0,

(A.3.31)

with boundary conditions at ξ = 0:

φ̂(0) =
φ̂4(ξWS) + 3

4
,

dφ̂

dξ

∣

∣

∣

∣

ξ=0

= −

√

φ̂4(0)− φ̂4(ξWS)

2
. (A.3.32)

Having fulfilled the continuity condition we integrate Eq. (A.3.31) obtaining
for ξ ≤ 0

φ̂(ξ) = 1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, (A.3.33)

where the integration constant a has the value

sinh(a) =
√

2

(

11 + φ̂4(ξWS)

1 − φ̂4(ξWS)

)

. (A.3.34)
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In the interval 0 ≤ ξ ≤ ξWS, the field φ̂(ξ) is implicitly given by

F

(

arccos
φ̂(ξWS)

φ̂(ξ)
,

1√
2

)

= φ̂(ξWS)(ξ − ξWS), (A.3.35)

where F(ϕ, k) is the elliptic function of the first kind, and F(0, k) ≡ 0. For
F(ϕ, k) = u, the inverse function ϕ = F−1(u, k) = am(u, k) is the well known
Jacobi amplitude. We can thus express the solution (A.3.35) for ξ > 0 as

φ̂(ξ) =
φ̂(ξWS)

cos
[

am
(

φ̂(ξWS)(ξ − ξWS),
1√
2

)] . (A.3.36)

The finite temperature case

A nuclear matter core of stellar dimensions, by definition, is a system com-
posed by neutrons, protons and electrons at nuclear density and in β equi-
librium, hence the number of protons Z and neutrons Nn = A − Z satisfy
Nn ≫ Z. Typically, in such a degenerate massive cores we have A/Z ≈ 102,
so at nuclear density the neutron gas will have a Fermi energy EF

n of the order
of

EF
n ∼ PF

n

2mn
∼ (3π2)2/3 h̄2

2mn

(

A − Z

A

ρnuc

mn

)2/3

∼ 60 MeV, (A.3.37)

where we have used a nuclear density value ρnuc ≈ 2.7 × 1014 g cm−3 and
1 − Z/A ≈ 1. Assuming a temperature such that T ≪ TF

n = EF
n /kB ≈

7 × 1011 K, the neutron chemical potential µn can be expanded as

µn = EF
n

[

1 − π2

12

(

kBT

EF
n

)2

− π4

80

(

kBT

EF
n

)4

+ ...

]

. (A.3.38)

Correspondingly, the protons have Fermi energy EF
p ∼ (Z/A)2/3EF

n ∼
MeV, so for temperatures kBT ≪ EF

p ≈ 1 MeV, Eq. (A.3.38) applies also for
protons

µp = EF
p



1 − π2

12

(

kBT

EF
p

)2

− π4

80

(

kBT

EF
p

)4

+ ...



 . (A.3.39)

As a result, for temperatures kBT . 1 MeV, both neutrons and protons can
be treated as degenerate particles whereas in this limit electrons are semi-
degenerate and ultra-relativistic. In the case of ordinary nuclei, due their
high isospin symmetry (A/Z ≈ 2), both neutrons and protons can be treated
as degenerate particles until T ≈ (Z/A)2/3EF

n /kB ∼ 38 MeV.
Since in the ultra-relativistic limit for electrons their kinetic energy ǫ is sim-
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ply pc, the condition µe/(kBT) ≫ 1 holds. Consequently the integral

I =
∫ ∞

0

f (ǫ)dǫ

exp
(

ǫ−µe

kBT

)

+ 1
, (A.3.40)

with f (ǫ) = ǫ2 appearing in the electron density given by Eq. (A.3.13) can be
expanded as

I =
∫ µe

0
f (ǫ)dǫ + 2(kBT)2 f ′(µe)

∫ ∞

0

z

ez + 1
dz

+
1

3
(kBT)4 f ′′′(µe)

∫ ∞

0

z3

ez + 1
dz + ..., (A.3.41)

where
∫ ∞

0

zx−1

ez + 1
dz = (1 − 21−x)Γ(x)

∞

∑
n=1

1

nx
, (A.3.42)

with Γ the Gamma function and µe the chemical potential of electrons and a
prime denotes derivative with respect to ǫ. We thus obtain the result

I =
∫ µe

0
f (ǫ)dǫ +

π2

6
(kBT)2 f ′(µe) +

7π4

360
(kBT)4 f ′′′(µe) + ..., (A.3.43)

and retaining only the first term in T we have

I ≈ µ3
e

3
+

π2

6
(kBT)2µe. (A.3.44)

As previously discussed for a nuclear massive core of stellar dimensions we
can assume the planar approximation so, introducing the same dimensionless
quantities as before, the Poisson equation assumes the form

d2φ̂

dξ2
= −θ(ξ − ξc) + φ̂3 + sφ̂, (A.3.45)

where s = (2π4)1/3∆2(kBT)2/(34/3m2
πc2).

The Coulomb potential is given by

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ)− C, (A.3.46)

with C = (9π/4)1/3∆−1mπc2φ̂(ξWS), the electric field is given by the same
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expression as Eq. (A.3.29), and the electron number density is

ne(ξ) =
(mπc2)3

3π2h̄3c3

[

(

9π

4

)

1

∆3
φ̂3(ξ) +

π2

2

(

9π

4

)1/3 1

∆

(

kBT

mπc2

)2

φ̂(ξ)

]

.

(A.3.47)

The global charge neutrality of the system imposes the boundary condition
that the electric field vanishes at ξ = ξWS. This implies dφ̂/dξ|ξ=ξWS

= 0. The
function φ̂ and its first derivative dφ̂/dξ must be continuous at the surface
ξ = 0 of the nuclear density core. This boundary-value problem can be solved
analytically and indeed Eq. (A.3.45) has the first integral,

2

(

dφ̂

dξ

)2

=

{

φ̂4(ξ) + 2sφ̂2 − 4φ̂(ξ) + 3 − 2s, ξ ≤ 0,
φ̂4(ξ) + 2sφ̂2 − φ̂4(ξWS)− 2sφ̂2(ξWS), ξ > 0,

(A.3.48)

with boundary conditions at ξ = 0:

φ̂(0) =
φ̂4(ξWS) + 3

4
+

s

2

[

φ̂2(ξWS)− 1
]

, (A.3.49)

dφ̂

dξ

∣

∣

∣

∣

ξ=0

= −
{

φ̂4(0)− φ̂4(ξWS)

2
+ s[φ̂2(0)− φ̂2(ξWS)]

}1/2

. (A.3.50)

The solution of Eq. (A.3.48) in the interior region ξ ≤ 0 is then

φ̂(ξ) = 1 − (s + 3)

[

1 +

(

s + 1

2

)1/2

sinh(β −
√

s + 3ξ)

]−1

, (A.3.51)

with

sinh β =

√

2

s + 1

{

11 + φ4(ξWS) + 2s[φ2(ξWS) + 1]

1 − φ4(ξWS)− 2s[φ2(ξWS)− 1]

}

. (A.3.52)

In the exterior region ξ > 0 the solution of Eq. (A.3.48) is

φ̂(ξ) =

√

−s +
√

s2 + G

cos
(

am
[

(s2 + G)1/4(ξ − ξWS),
1
2 +

s
2φ̂2(ξWS)

]) , (A.3.53)

where G = φ̂4(ξWS) + 2sφ̂2(ξWS). It can be seen how in the limit T → 0 (s →
0), the solution at finite temperatures given by Eqs. (A.3.51), (A.3.52), and
(A.3.53) becomes the degenerate solution Eqs. (A.3.33), (A.3.34), and (A.3.36),
respectively.

From Eqs. (A.3.50) follows that the peak of the electric field at the surface
of the core is larger than the corresponding value obtained for T = 0. In fact
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we have, for any temperature T > 0 and level of compression ξWS 6= 0

∣

∣

∣

∣

∣

(

dφ̂

dξ

)

ξ=0

∣

∣

∣

∣

∣

T>0

>

∣

∣

∣

∣

∣

(

dφ̂

dξ

)

ξ=0

∣

∣

∣

∣

∣

T=0

. (A.3.54)

As in the degenerate case, in the limit ξWS → 0, the global charge neutrality
Ne = Z and the local charge neutrality ne = np are recovered and at the
surface of the massive core no electrodynamical structure is present.

The above analytic equations can be used only in the ultra-relativistic regime
of the electron gas; it can then be checked from the above formulation that at
such high compressions we have φ̂(ξ)|T>0 ≈ φ̂(ξ)|T=0. More specifically, cor-
rections due to thermal effects on the density of ultra-relativistic electrons are
smaller than 1% for T . 0.1 MeV/kB ≈ 109 K.

A.3.5. Conclusions

The Feynman-Metropolis-Teller treatment of compressed matter Rotondo et al.
(2011c) has been here generalized to the case of finite temperatures. We have
thus obtained the EOS formed by nuclei and electrons by solving the finite
temperature relativistic Thomas-Fermi equation (A.3.16) within globally neu-
tral Wigner-Seitz cells. We emphasize in this work on the electron compo-
nent and the Coulomb interaction between ions and electrons fully computed
within a relativistic Thomas-Fermi approach with finite sized nuclei, and
therefore applicable to any relativistic regime of the electrons and densities.
This work generalizes other treatments based on either a uniform distribu-
tion of electrons or the classic Thomas-Fermi treatment; see e.g. Thorolfsson
et al. (1998). The quantum corrections to the classic ideal ion fluid consid-
ered in this work can be straightforwardly introduced in their corresponding
ranges of relevance as done in previous treatments; see e.g. Stolzmann and
Bloecker (1996); Chabrier and Potekhin (1998b); Potekhin and Chabrier (2000,
2013).

We have shown the general features of the new EOS and compared and
contrasted the effects owing to the non-zero temperature with respect to the
degenerate case. We have checked that the onset of the inverse β decay in-
stability is not modified for temperatures T . 108 K and therefore the zero-
temperature critical densities computed in Ref. Rotondo et al. (2011b) can be
safely used. The enhancement and flattening of the electron density inside
the cell for larger temperatures could have relevant effect in the pycnonu-
clear reaction rates in the interior of white dwarfs and/or in the low density
layers of accreting neutron stars.

Deviations from the degenerate EOS have been shown to occur in the re-
gions of interest of low-mass white dwarfs and in the outermost layers of
neutron star crusts. Ultra-low mass white dwarfs MWD ∼ 0.2M⊙ Anto-
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niadis et al. (2013a, 2012) have been found in binary systems with neutron
stars companions. These objects have central densities . 106 g cm−3, where
the degenerate approximation breaks down and so thermal effects cannot be
neglected. The application of the treatment presented in this work to these
configurations is under current consideration.

Following our previous work Rotondo et al. (2011c), we have then ex-
trapolated the treatment to macroscopic systems with mass numbers A ≈
(mPlanck/mn)3 ∼ 1057, corresponding to masses Mcore ≈ M⊙. We showed
that the presence of the temperature enhances the maximum electric field in
the core surface of these objects.
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A.4. On Magnetic Fields in Rotating Nuclear

Matter Cores of Stellar Dimensions

A.4.1. Introduction

Neutron stars are mainly detected as pulsars, whose regular pulsations in the
radio, X-ray, and optical bands are produced by constant, ordered magnetic
fields that are the strongest known in the Universe. However the origin of
the magnetic field in the neutron stars is not fully understood, so far. Never-
theless in the literature one may find various hypotheses explaining the for-
mation of the magnetic field (Ginzburg, 1964; Woltjer, 1964; Ruderman, 1972,
1995; Reisenegger, 2001, 2007; Reisenegger et al., 2007). The simplest hypoth-
esis to explain the presence of the strong fields observed in neutron stars is
the conservation of the magnetic flux already present in the progenitor stars
during the gravitational collapse. This idea is based on the assumption that
all stars at all stages of their evolution have some magnetic field, due to elec-
tronic currents circulating in their interiors. Thus this argument led to the pre-
diction of the fields B ≈ 1012 G in neutron stars a few years before the discov-
ery of pulsars (Ginzburg, 1964; Woltjer, 1964). However, there is no detailed
physical picture of such a flux conserving collapse. Thompson and Dun-
can (1993) put forward the hypothesis that newborn neutron stars are likely
to combine vigorous convection and differential rotation making a dynamo
process operate in them. They predicted fields up to 1015 − 1016 G in neu-
tron stars with few millisecond initial periods, and suggested that such fields
could explain much of the phenomenology associated with Soft Gamma Re-
peaters and Anomalous X-ray Pulsars (Thompson and Duncan, 1995, 1996).

Probably, these processes are not mutually exclusive. A strong field might
be present in the collapsing star, but later be deformed and perhaps ampli-
fied by some combination of convection, differential rotation, and magnetic
instabilities (Tayler, 1973; Spruit, 2002). The relative importance of these in-
gredients depends on the initial field strength and rotation rate of the star.
For both mechanisms, the field and its supporting currents are not likely to
be confined to the solid crust of the star, but distributed inmost of the stellar
interior, which is mostly a fluid mixture of neutrons, protons, electrons, and
other, more exotic particles.

Unlike aforementioned hypotheses which are based on the assumptions
that all stars are magnetized or charged with some net charge different from
zero, we explore the system recently considered by Ruffini et al. (2007b). Ac-
cording to that work the system consisting of degenerate neutrons, protons
and electrons in beta equilibrium is globally neutral and expected to be kept
at nuclear density by self gravity. In what follows these systems are termed
as Nuclear Matter Cores of Stellar Dimensions. Despite the global neutrality
the charge distribution turned out to be different from zero inside and out-
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side (near the surface) the star. The magnitude of the net charge inside and
outside the core is equal, but the sign is opposite. Such an effect takes place
as a consequence of the beta equilibrium, the penetration of electrons into the
core, hence the screening of the core charge and global charge neutrality. As a
result of this effect, one may show the presence of an electric field close to the
critical value Ec = m2

e c3/eh̄ near the surface of the massive cores, although
localized in a very narrow shell. Thus in this case the magnetic field of the
neutron star may be generated only if it spins like pulsars, even though the
progenitor star has not been magnetized or electrically charged.

A.4.2. The Relativistic Thomas-Fermi equation

The Thomas-Fermi equation is the exact theory for atoms, molecules and
solids as Z → ∞ (Lieb and Simon, 1973). The relativistic Thomas-Fermi the-
ory developed for the study of atoms for heavy nuclei with Z = 106 (Ferreir-
inho et al., 1980; Ruffini and Stella, 1981) gives important basic new informa-
tion on the study of nuclear matter in bulk in the limit of A = (mPlanck/mn)3

nucleons of mass mn and on its electrodynamic properties. The analysis of
nuclear matter bulk in neutron stars composed of degenerate gas of neutrons,
protons and electrons, has traditionally been approached by implementing
microscopically the charge neutrality condition by requiring the electron den-
sity ne(r) to coincide with the proton density np(r),

ne(r) = np(r). (A.4.1)

It is clear however that especially when conditions close to the gravitational
collapse occur, there is an ultra-relativistic component of degenerate elec-
trons whose confinement requires the existence of very strong electromag-
netic fields, in order to guarantee the overall charge neutrality of the neutron
star. Under these conditions equation (A.4.1) will be necessarily violated.

Using substantially a statistical approach based on the relativistic Thomas-
Fermi equation, Ferreirinho et al. (1980); Ruffini and Stella (1981) have ana-
lyzed the electron densities around an extended nucleus in a neutral atom all
the way up to Z = 6000. They have shown the effect of penetration of the
electron orbital well inside the nucleus, leading to a screening of the nuclei
positive charge and to the concept of an “effective” nuclear charge distribu-
tion.

In the work of Ruffini et al. (2007b) and Rotondo et al. (2011e) the rela-
tivistic Thomas-Fermi equation has been used to extrapolate the treatment of
super heavy nuclei to the case of nuclear matter cores of stellar dimensions.
These cores represent the inner part of neutron stars and are characterized by
an atomic number of order of A = (mPlanck/mn)3 ≈ 1057, composed of de-
generate Nn neutrons, Np protons and Ne electrons in beta equilibrium and
expected to be kept at nuclear density by self gravity. It has been shown that

1754



A.4. On Magnetic Fields in Rotating Nuclear Matter Cores of Stellar
Dimensions

near the surface of the massive cores it is possible to have an electric field
close to the critical value Ec, although localized in a very narrow shell of the
order of the λe electron Compton wavelength. Now let us review the main
assumptions and results of those works.

According to Ruffini et al. (2007b) and Rotondo et al. (2011e) the protons
are distributed at constant density np within a radius

Rc = ∆
h̄

mπc
N1/3

p , A9 (A.4.2)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear
(supranuclear) densities when applied to ordinary nuclei. The overall Cou-
lomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.4.3)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and finiteness of V(0). The density ne(r) of the electrons of
charge −e is determined by the Fermi energy condition on their Fermi mo-
mentum PF

e ; we assume here

EF
e = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − eV(r) = 0 , (A.4.4)

which leads to

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
. (A.4.5)

Introducing the dimensionless quantities x = r/[h̄/mπc], xc = Rc/[h̄/mπc]
and χ/r = eV(r)/ch̄, the relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
H(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

, (A.4.6)

where α = e2/(h̄c) is the fine structure constant, H(xc − x) is the Heaviside
step function and the boundary conditions for χ(x) are χ(0) = 0, χ(∞) = 0.
The neutron density nn(r) is determined by the Fermi energy condition on
their Fermi momentum PF

n imposed by beta decay equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 − mnc2 = [(PF

p c)2 + m2
pc4]1/2 − mpc2 + eV,(A.4.7)

which in turn is related to the proton and electron densities by Eqs. (A.4.3),
(A.4.5) and (A.4.6).
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A.4.3. The ultra-relativistic analytic solutions

In the ultrarelativistic limit with the planar approximation the relativistic
Thomas-Fermi equation admits an analytic solution. Introducing the new
function φ defined by φ = 41/3(9π)−1/3∆χ/x and the new variables x̂ =

(12/π)1/6 √α∆−1x, ξ = x̂ − x̂c, where x̂c = (12/π)1/6 √α∆−1xc, Eq. (A.4.6)
becomes

d2φ̂(ξ)

dξ2
= −H(−ξ) + φ̂(ξ)3, (A.4.8)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at the nuclear matter core center) and φ̂(ξ) → 0 as ξ → ∞.
The function φ̂ and its first derivative φ̂′ must be continuous at the surface
ξ = 0 of the nuclear matter core of stellar dimensions. Hence equation (A.4.8)
admits an exact solution

φ̂(ξ) =











1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,√
2

(ξ + b)
, ξ > 0 ,

(A.4.9)

where the integration constants a and b have the values a = arccosh(9
√

3) ≈
3.439, b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential func-

tion

V(ξ) =

(

9π

4

)1/3 mπc2

∆e
φ̂(ξ), (A.4.10)

and by differentiation, the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ) . (A.4.11)

Details are given in Figs. A.22 and A.23.

A.4.4. Rotating Nuclear Matter Cores of Stellar Dimensions

in Classical Electrodynamics

In section A.4.2 and A.4.3 we have seen that in the massive nuclear density
cores the electric charge distribution is different from zero, although it is glob-
ally neutral. In this section we investigate the case when this charge distri-
bution is allowed to rotate with the constant angular velocity Ω around the
axis of symmetry. Thus the magnetic field of the resultant current density is
calculated in terms of the charge distribution.
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Figure A.22.: The electron Coulomb
potential energy eV, in units of pion
mass mπ is plotted as a function of
the radial coordinate ξ = x̂ − x̂c,
for selected values of the density pa-
rameter ∆.

Figure A.23.: The electric field is
plotted in units of the critical field
Ec as a function of the radial coordi-
nate ξ, showing a sharp peak at the
core radius, for selected values of ∆.

Consider a charge distribution moving in a such way that at every point in
space the charge density and the current density remain constant. In this case
the magnetic field is defined by

B(r) = ∇× A(r), A(r) = (Ω/c2)× F(r), F(r) =
1

4π

∫

r′ρ(r′)d3r′

|r − r′| ,

(A.4.12)
where A is the vector potential of the magnetic field, F(r) is the ”superpoten-
tial” in general form. In the case of spherical symmetry, F(r) may be taken as
radial (see Marsh (1982)). Writing F(r) = erF(r), where er is the unit radial
vector, one has

F(r) =
1

r2

∫ r

0
r′2

d

dr′
[r′V(r′)]dr′. (A.4.13)

This expression allows to calculate the magnetic field due to rotation of any
spherically symmetric distribution of charge in terms of its electrostatic Coulomb
potential. Note that in fact due to rotation the shape of the neutron star must
deviate from spherical symmetry. Since we are interested in the estimation of
the order of the magnetic field the distortions to the shape of the star can be
neglected for simplicity. Thus the magnetic field is defined by

B(r) = Brer + Bθeθ, Br =
2Ω

c2

F

r
cos θ, Bθ = −2Ω

c2

[

F

r
+

r

2

d

dr

(

F

r

)]

sin θ,

(A.4.14)
where Br is the radial component and Bθ is the angular component of the
magnetic field, θ is the angle between r and z axis, and eθ is the unit vector
along θ. Consequently the expression for the magnitude (the absolute value)
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of the magnetic field can be written as

B(r, θ) =
Ωr

c2

√

√

√

√

(

2F

r2

)2

+

{

4F

r2

d

dr

(

F

r

)

+

[

d

dr

(

F

r

)]2
}

sin2 θ. (A.4.15)

Using the relation between r and ξ

r = Rc +
( π

12

)1/6 ∆√
α

h̄

mπc
ξ, (A.4.16)

one may estimate the value of the magnetic field. In Figs. A.24, A.25, A.26
and A.27 details are given.
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Figure A.24.: The radial component
of the magnetic field is plotted as
a function of the radial coordinate
ξ in units of the critical field Bc =
m2

e c3/eh̄ ≈ 4.5 × 1013 G. Here the
period is taken to be P = 10 ms,
θ = 0, ∆ = 1 and the radius of the
core Rc = 10 km. Note that Br is con-
sidered at the poles of star, where
it has maximum value. Outside the
star Br has very small negative value
and it tends to zero. Because of visu-
alization difficulties it is not seen in
the figure.

Figure A.25.: The angular compo-
nent of the magnetic field is plot-
ted in units of the Bc. Here P =
10 ms, θ = π/2, ∆ = 1 and Rc =
10 km. Note that Bθ is considered
at the equator, where it has maxi-
mum value. Inside the star it has
very small constant negative value.
Outside the star first it becomes neg-
ative (the value is very small) then it
tends to zero. Because of scale prob-
lems this behavior is not seen from
the figure.

Examining the Fig. A.24 one can see very small value of Br which almost
does not make a significant contribution to the magnitude of the field, except
for the poles of the star. On the contrary, Bθ Fig. A.25 has values exceeding
the critical magnetic field near the surface of the core although localized in a
narrow region between positively and negatively charged shells as expected.
Outside the core the magnetic field becomes negative. The magnitude of the
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Figure A.26.: The magnitude of the
magnetic field is plotted as a func-
tion of the period of the star P in
the units of the critical field Bc at the
surface of the core Rc = 10 km on
the equator in the logarithmic scale.

Figure A.27.: The magnetic lines of
forces. Outside the star the mag-
netic field looks like a dipole field.
Extra lines along the surface of the
star indicate overcritical value of the
field between positively and nega-
tively charged shells.

field has very small and eventually vanishing values. This effect can not be
seen from the figures, because of visualization difficulties.

In Fig. A.26 the magnitude of the magnetic field is presented as a function
of the rotational period P on the surface of the core at the equator. Practically
it demonstrates the upper limit of possible values of the magnetic field in
the range between 1ms and 100s. Fig. A.27 represents magnetic lines of force
inside, outside and on the surface of the star. It turned out that the lines
of force of the overcritical magnetic field are oppressed between two shells
along the surface of the core.

A.4.5. Conclusions

In this paper we have investigated the behavior of the magnetic field induced
due to rotation on the basis of the research works considered in Ruffini et al.
(2007b) and Rotondo et al. (2011e) using the technique developed by Marsh
(1982).

For this purpose considering a rotating neutron star with the period of
10 ms we have obtained the magnetic field of order of the critical field near
the surface of the star and analyzed the magnetic lines of forces.

According to our results the magnetic fields of the neutron stars could be
generated due to the rotation of the star as a whole rigid body. We believe that
the generation of the magnetic field due to the rotation is the reason for the
formation of the constant magnetic fields at the initial moments of neutron
stars birth.

The problem of investigating the magnetic field in general relativity for a
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self-gravitating system of degenerate fermions in beta equilibrium is beyond
the scope of the present work. We expect to investigate this problem in the
nearest future.
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B.1. The relativistic Feynman-Metropolis-Teller

theory for white dwarfs in general relativity

B.1.1. Introduction

The necessity of introducing the Fermi-Dirac statistics in order to overcome
some conceptual difficulties in explaining the existence of white dwarfs lead-
ing to the concept of degenerate stars was first advanced by (Fowler, 1926)
in a classic paper. Following that work, Stoner (1929) introduced the effect of
special relativity into the Fowler considerations and he discovered the critical
mass of white dwarfs

MStoner
crit =

15

16

√
5π

M3
Pl

µ2m2
n
≈ 3.72

M3
Pl

µ2m2
n

, (B.1.1)

where MPl =
√

h̄c/G ≈ 10−5 g is the Planck mass, mn is the neutron mass,
and µ = A/Z ≈ 2 is the average molecular weight of matter which shows
explicitly the dependence of the critical mass on the chemical composition of
the star.

Following the Stoner’s work, Chandrasekhar (1931b) pointed out the rel-
evance of describing white dwarfs by using an approach, initiated by Milne
(1930), of using the mathematical method of the solutions of the Lane-Emden
polytropic equations (Emden, 1907). The same idea of using the Lane-Emden
equations taking into account the special relativistic effects to the equilibrium
of stellar matter for a degenerate system of fermions, came independently to
Landau (1932). Both the Chandrasekhar and Landau treatments were explicit
in pointing out the existence of the critical mass

MCh−L
crit = 2.015

√
3π

2

M3
Pl

µ2m2
n
≈ 3.09

M3
Pl

µ2m2
n

, (B.1.2)

where the first numerical factor on the right hand side of Eq. (B.1.2) comes
from the boundary condition −(r2du/dr)r=R = 2.015 (see last entry of Table
7 on Pag. 80 in Emden (1907)) of the n = 3 Lane-Emden polytropic equation.
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Namely for M > MCh−L
crit , no equilibrium configuration should exist.

Some of the basic assumptions adopted by Chandrasekhar and Landau in
their idealized approach e.g. the treatment of the electron as a free-gas with-
out taking into due account the electromagnetic interactions, as well as the
stability of the distribution of the nuclei against the gravitational interaction
led to some criticisms by Eddington (1935). It was unfortunate that the ab-
sence of interest of E. Fermi on the final evolution of stars did not allow Fermi
himself to intervene in these well-posed theoretical problems (Boccaletti and
Ruffini, 2010). Indeed, we are showing in this article how the solution of the
conceptual problems of the white dwarf models, left open for years, can be
duly addressed by considering the relativistic Thomas-Fermi model of the
compressed atom (see Subsec. B.1.2 and Sec. B.1.4).

The original work on white dwarfs was motivated by astrophysics and
found in astrophysics strong observational support. The issue of the equi-
librium of the electron gas and the associated component of nuclei, taking
into account the electromagnetic, the gravitational and the weak interactions
is a theoretical physics problem, not yet formulated in a correct special and
general relativistic context.

One of the earliest alternative approaches to the Chandrasekhar-Landau
work was proposed by Salpeter (1961a). He followed an idea originally pro-
posed by Frenkel (1928): to adopt in the study of white dwarfs the concept
of a Wigner-Seitz cell. Salpeter introduced to the lattice model of a point-like
nucleus surrounded by a uniform cloud of electrons, corrections due to the
non-uniformity of the electron distribution (see Subsec. B.1.2 for details). In
this way Salpeter (1961a) obtained an analytic formula for the total energy in
a Wigner-Seitz cell and derived the corresponding equation of state of matter
composed by such cells, pointing out explicitly the relevance of the Coulomb
interaction.

The consequences of the Coulomb interactions in the determination of the
mass and radius of white dwarfs, was studied in a subsequent paper by
Hamada and Salpeter (1961) by using the equation of state constructed in
Salpeter (1961a). They found that the critical mass of white dwarfs depends
in a nontrivial way on the specific nuclear composition: the critical mass of
Chandrasekhar-Landau which depends only on the mass to charge ratio of
nuclei A/Z, now depends also on the proton number Z.

This fact can be seen from the approximate expression for the critical mass
of white dwarfs obtained by Hamada and Salpeter (1961) in the ultrarelativis-
tic limit for the electrons

MH&S
crit = 2.015

√
3π

2

1

µ2
eff

M3
Pl

m2
n

, (B.1.3)
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where

µeff = µ

(

PS

PCh

)−3/4

, (B.1.4)

being PS the pressure of the Wigner-Seitz cell obtained by Salpeter (1961a)
(see Subsec. B.1.2) and PCh is the pressure of a free-electron fluid used by
Chandrasekhar (see Subsec. B.1.2). The ratio PS/PCh is a function of the num-
ber of protons Z (see Eq. (20) in Salpeter (1961a)) and it satisfies PS/PCh < 1.
Consequently, the effective molecular weight satisfies µeff > µ and the critical
mass of white dwarfs turns to be smaller than the original one obtained by
Chandrasekhar-Landau (see Eq. (B.1.2)).

In the mean time, the problem of the equilibrium gas in a white dwarf
taking into account possible global electromagnetic interactions between the
nucleus and the electrons was addressed by Olson and Bailyn (1975, 1976).
They well summarized the status of the problem: Traditional models for the
white dwarf are non-relativistic and electrically neutral. Although an elec-
tric field is needed to support the pressureless nuclei against gravitational
collapse, the star is treated essentially in terms of only one charge compo-
nent, where charge neutrality is assumed. Their solution to the problem in-
vokes the breakdown of the local charge neutrality and the presence of an
overall electric field as a consequence of treating also the nuclei inside the
white dwarf as a fluid. They treated the white dwarf matter through a two-
fluid model not enforcing local charge neutrality. The closure equation for the
Einstein-Maxwell system of equations was there obtained from a minimiza-
tion procedure of the mass-energy of the configuration. This work was the
first pointing out the relevance of the Einstein-Maxwell equations in the de-
scription of an astrophysical system by requiring global and non local charge
neutrality. As we will show here, this interesting approach does not apply to
the case of white dwarfs. It represents, however, a new development in the
study of neutron stars (see e.g. Rotondo et al. (2011d))

An alternative approach to the Salpeter treatment of a compressed atom
was reconsidered in gur (2000) by applying for the first time to white dwarfs
a relativistic Thomas-Fermi treatment of the compressed atom introducing a
finite size nucleus within a phenomenological description (see also Bertone
and Ruffini (2000)).

Recently, the study of a compressed atom has been revisited in Rotondo
et al. (2011c) by extending the global approach of Feynman et al. (1949) tak-
ing into account weak interactions. This treatment takes also into account all
the Coulomb contributions duly expressed relativistically without the need
of any piecewise description. The relativistic Thomas-Fermi model has been
solved by imposing in addition to the electromagnetic interaction also the
weak equilibrium between neutrons, protons and electrons self-consistently.
This presents some conceptual differences with respect to previous approaches
and can be used in order both to validate and to establish their limitations.
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In this article we apply the considerations presented in Rotondo et al. (2011c)
of a compressed atom in a Wigner-Seitz cell to the description of non-rotating
white dwarfs in general relativity. This approach improves all previous treat-
ments in the following aspects:

1. In order to warranty self-consistency with a relativistic treatment of the
electrons, the point-like assumption of the nucleus is abandoned intro-
ducing a finite sized nucleus (Rotondo et al., 2011c). We assume for the
mass as well as for charge to mass ratio of the nucleus their experimen-
tal values instead of using phenomenological descriptions based on the
semi-empirical mass-formula of Weizsacker (see e.g. gur (2000); Bertone
and Ruffini (2000)).

2. The electron-electron and electron-nucleus Coulomb interaction energy
is calculated without any approximation by solving numerically the
relativistic Thomas-Fermi equation for selected energy-densities of the
system and for each given nuclear composition.

3. The energy-density of the system is calculated taking into account the
contributions of the nuclei, of the Coulomb interactions as well as of
the relativistic electrons; the latter being neglected in all previous treat-
ments. This particular contribution turns to be very important at high-
densities and in particular for light nuclear compositions e.g. 4He and
12C.

4. The β-equilibrium between neutrons, protons, and electrons is also taken
into account leading to a self-consistent calculation of the threshold
density for triggering the inverse β-decay of a given nucleus.

5. The structure of the white dwarf configurations is obtained by integrat-
ing the general relativity equations of equilibrium.

6. Due to 4) and 5) we are able to determine if the instability point leading
to a maximum stable mass of the non-rotating white dwarf is induced
by the inverse β-decay instability of the composing nuclei or by general
relativistic effects.

Paradoxically, after all this procedure which takes into account many ad-
ditional theoretical features generalizing the Chandrasekhar-Landau and the
Hamada and Salpeter works, a most simple equation is found to be fulfilled
by the equilibrium configuration in a spherically symmetric metric. Assum-
ing the metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (B.1.5)

we demonstrate how the entire system of equations describing the equilib-
rium of white dwarfs, taking into account the weak, the electromagnetic and
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the gravitational interactions as well as quantum statistics all expressed con-
sistently in a general relativistic approach, is simply given by

√
g00µws = eν(r)/2µws(r) = constant , (B.1.6)

which links the chemical potential of the Wigner-Seitz cell µws, duly solved
by considering the relativistic Feynman-Metropolis-Teller model following
Rotondo et al. (2011c), to the general relativistic gravitational potential at each
point of the configuration. The overall system outside each Wigner-Seitz cell
is strictly neutral and no global electric field exists, contrary to the results
reported in Olson and Bailyn (1976). The same procedure will apply as well
to the case of neutron star crusts.

The article is organized as follows. In Sec. B.1.2 we summarize the most
common approaches used for the description of white dwarfs and neutron
star crusts: the uniform approximation for the electron fluid (see e.g. Chan-
drasekhar (1931b)); the often called lattice model assuming a point-like nu-
cleus surrounded by a uniform electron cloud (see e.g. Baym et al. (1971b));
the generalization of the lattice model due to Salpeter (1961a); the Feynman,
Metropolis and Teller approach (Feynman et al., 1949) based on the the non-
relativistic Thomas-Fermi model of compressed atoms and, the relativistic
generalization of the Feynman-Metropolis-Teller treatment recently formu-
lated in Rotondo et al. (2011c).

In Sec. B.1.3 we formulate the general relativistic equations of equilibrium
of the system and show how, from the self-consistent definition of chemical
potential of the Wigner-Seitz cell and the Einstein equations, comes the equi-
librium condition given by Eq. (B.1.6). In addition, we obtain the Newtonian
and the first-order post-Newtonian equations of equilibrium.

Finally, we show in Sec. B.1.4 the new results of the numerical integration
of the general relativistic equations of equilibrium and discuss the corrections
to the Stoner critical mass MStoner

crit , to the Chandrasekhar-Landau mass limit

MCh−L
crit , as well as to the one of Hamada and Salpeter MH&S

crit , obtained when
all interactions are fully taken into account through the relativistic Feynman-
Metropolis-Teller equation of state (Rotondo et al., 2011c).

B.1.2. The Equation of State

There exists a large variety of approaches to model the equation of state of
white dwarf matter, each one characterized by a different way of treating or
neglecting the Coulomb interaction inside each Wigner-Seitz cell, which we
will briefly review here. Particular attention is given to the calculation of the
self-consistent chemical potential of the Wigner-Seitz cell µws, which plays
a very important role in the conservation law (B.1.6) that we will derive in
Sec. B.1.3.
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The uniform approximation

In the uniform approximation used by Chandrasekhar (1931b), the electron
distribution as well as the nucleons are assumed to be locally constant and
therefore the condition of local charge neutrality

ne =
Z

Ar
nN , (B.1.7)

where Ar is the average atomic weight of the nucleus, is applied. Here nN

denotes the nucleon number density and Z is the number of protons of the
nucleus. The electrons are considered as a fully degenerate free-gas and then
described by Fermi-Dirac statistics. Thus, their number density ne is related
to the electron Fermi-momentum PF

e by

ne =
(PF

e )
3

3π2h̄3
, (B.1.8)

and the total electron energy-density and electron pressure are given by

Ee =
2

(2πh̄)3

∫ PF
e

0

√

c2p2 + m2
e c44πp2dp

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (1 + 2x2

e )− arcsinh(xe)] , (B.1.9)

Pe =
1

3

2

(2πh̄)3

∫ PF
e

0

c2p2

√

c2p2 + m2
e c4

4πp2dp

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (2x2

e /3 − 1) + arcsinh(xe)] , (B.1.10)

where we have introduced the dimensionless Fermi momentum xe = PF
e /(mec)

with me the electron rest-mass.

The kinetic energy of nucleons is neglected and therefore the pressure is
assumed to be only due to electrons. Thus the equation of state can be written
as

Eunif = EN + Ee ≈
Ar

Z
Muc2ne + Ee , (B.1.11)

Punif ≈ Pe , (B.1.12)

where Mu = 1.6604 × 10−24 g is the unified atomic mass and Ee and Pe are
given by Eqs. (B.1.9–B.1.10).

Within this approximation, the total self-consistent chemical potential is
given by

µunif = Ar Muc2 + Zµe , (B.1.13)
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where

µe =
Ee + Pe

ne
=
√

c2(PF
e )

2 + m2
e c4 , (B.1.14)

is the electron free-chemical potential.

As a consequence of this effective approach which does not take into any
account the Coulomb interaction, it is obtained an effective one-component
electron-nucleon fluid approach where the kinetic pressure is given by elec-
trons of mass me and their gravitational contribution is given by an effec-
tive mass (Ar/Z)Mu attached to each electron (see e.g. Landau and Lifshitz
(1980)). This is even more evident when the electron contribution to the
energy-density in Eq. (B.1.11) is neglected and therefore the energy-density
is attributed only to the nuclei. Within this approach followed by Chan-
drasekhar (1931b), the equation of state reduces to

ECh =
Ar

Z
Muc2ne , (B.1.15)

PCh = Punif = Pe . (B.1.16)

The lattice model

The first correction to the above uniform model, corresponds to abandon
the assumption of the electron-nucleon fluid through the so-called “lattice”
model which introduces the concept of Wigner-Seitz cell: each cell contains a
point-like nucleus of charge +Ze with A nucleons surrounded by a uniformly
distributed cloud of Z fully-degenerate electrons. The global neutrality of the
cell is guaranteed by the condition

Z = Vwsne =
ne

nws
, (B.1.17)

where nws = 1/Vws is the Wigner-Seitz cell density and Vws = 4πR3
ws/3 is

the cell volume.

The total energy of the Wigner-Seitz cell is modified by the inclusion of the
Coulomb energy, i.e

EL = EunifVws + EC , (B.1.18)

being

EC = Ee−N + Ee−e = − 9

10

Z2e2

Rws
, (B.1.19)

where Eunif is given by Eq. (B.1.11) and Ee−N and Ee−e are the electron-nucleus
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and the electron-electron Coulomb energies

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

enedr = −3

2

Z2e2

Rws
, (B.1.20)

Ee−e =
3

5

Z2e2

Rws
. (B.1.21)

The self-consistent pressure of the Wigner-Seitz cell is then given by

PL = − ∂EL

∂Vws
= Punif +

1

3

EC

Vws
, (B.1.22)

where Punif is given by Eq. (B.1.12). It is worth to recall that the point-like
assumption of the nucleus is incompatible with a relativistic treatment of
the degenerate electron fluid (see Ferreirinho et al. (1980); Ruffini and Stella
(1981) for details). Such an inconsistency has been traditionally ignored by
applying, within a point-like nucleus model, the relativistic formulas (B.1.9)
and (B.1.10) and their corresponding ultrarelativistic limits (see e.g. Salpeter
(1961a)).

The Wigner-Seitz cell chemical potential is in this case

µL = EL + PLVws = µunif +
4

3
EC . (B.1.23)

By comparing Eqs. (B.1.12) and (B.1.22) we can see that the inclusion of the
Coulomb interaction results in a decreasing of the pressure of the cell due
to the negative lattice energy EC. The same conclusion is achieved for the
chemical potential from Eqs. (B.1.13) and (B.1.23).

Salpeter approach

A further development to the lattice model came from Salpeter (1961a) whom
studied the corrections due to the non-uniformity of the electron distribution
inside a Wigner-Seitz cell.

Following the Chandrasekhar (1931b) approximation, Salpeter also neglects
the electron contribution to the energy-density. Thus, the first term in the
Salpeter formula for the energy of the cell comes from the nuclei energy
(B.1.15). The second contribution is given by the Coulomb energy of the lat-
tice model (B.1.19). The third contribution is obtained as follows: the electron
density is assumed as ne[1 + ǫ(r)], where ne = 3Z/(4πR3

ws) is the average
electron density as given by Eq. (B.1.17), and ǫ(r) is considered infinitesi-
mal. The Coulomb potential energy is assumed to be the one of the point-like
nucleus surrounded by a uniform distribution of electrons, so the correction
given by ǫ(r) on the Coulomb potential is neglected. The electron distribution
is then calculated at first-order by expanding the relativistic electron kinetic
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energy

ǫk =
√

[cPF
e (r)]

2 + m2
e c4 − mec

2

=
√

h̄2c2(3π2ne)2/3[1 + ǫ(r)]2/3 + m2
e c4 − mec

2, (B.1.24)

about its value in the uniform approximation

ǫunif
k =

√

h̄2c2(3π2ne)2/3 + m2
e c4 − mec

2 , (B.1.25)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential

energy eV and the electron Fermi energy

EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 − eV . (B.1.26)

The influence of the Dirac electron-exchange correction (Dirac, 1930) on the
equation of state was also considered by Salpeter (1961a). However, adopting
the general approach of Migdal et al. (1977), it has been shown that these
effects are negligible in the relativistic regime (Rotondo et al., 2011c). We will
then consider here only the major correction of the Salpeter treatment.

The total energy of the Wigner-Seitz cell is then given by (see Salpeter
(1961a) for details)

ES = ECh + EC + ETF
S , (B.1.27)

being

ETF
S = −162

175

(

4

9π

)2/3

α2Z7/3µe , (B.1.28)

where ECh = EChVws, EC is given by Eq. (B.1.19), µe is given by Eq. (B.1.14),
and α = e2/(h̄c) is the fine structure constant.

Correspondingly, the self-consistent pressure of the Wigner-Seitz cell is

PS = PL + PS
TF , (B.1.29)

where

PS
TF =

1

3

(

PF
e

µe

)2
ETF

S

Vws
. (B.1.30)

The Wigner-Seitz cell chemical potential can be then written as

µS = µL + ES
TF

[

1 +
1

3

(

PF
e

µe

)2
]

. (B.1.31)

From Eqs. (B.1.29) and (B.1.31), we see that the inclusion of each additional
Coulomb correction results in a further decreasing of the pressure and of the
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chemical potential of the cell. The Salpeter approach is very interesting in
identifying piecewise Coulomb contribution to the total energy, to the total
pressure and, to the Wigner-Seitz chemical potential. However, it does not
have the full consistency of the global solutions obtained with the Feynman-
Metropolis-Teller approach (Feynman et al., 1949) and its generalization to
relativistic regimes (Rotondo et al., 2011c) which we will discuss in detail
below.

The Feynman-Metropolis-Teller treatment

Feynman et al. (1949) showed how to derive the equation of state of matter at
high pressures by considering a Thomas-Fermi model confined in a Wigner-
Seitz cell of radius Rws.

The Thomas-Fermi equilibrium condition for degenerate non-relativistic
electrons in the cell is expressed by

EF
e =

(PF
e )

2

2me
− eV = constant > 0 , (B.1.32)

where V denotes the Coulomb potential and EF
e denotes the Fermi energy of

electrons, which is positive for configurations subjected to external pressure,
namely, for compressed cells.

Defining the function φ(r) by eV(r) + EF
e = e2Zφ(r)/r, and η by r =

bη, where b = (3π)2/3(λe/α)2−7/3Z−1/3, being λe = h̄/(mec) the electron
Compton wavelength; the Poisson equation from which the Coulomb poten-
tial V is calculated self-consistently becomes

d2φ(η)

dη2
=

φ(η)3/2

η1/2
. (B.1.33)

The boundary conditions for Eq. (B.1.33) follow from the point-like structure
of the nucleus φ(0) = 1 and, from the global neutrality of the Wigner-Seitz
cell φ(η0) = η0dφ/dη|η=η0 , where η0 defines the dimensionless radius of the
Wigner-Seitz cell by η0 = Rws/b.

For each value of the compression, e.g. η0, it corresponds a value of the
electron Fermi energy EF

e and a different solution of Eq. (B.1.33), which de-
termines the self-consistent Coulomb potential energy eV as well as the self-
consistent electron distribution inside the cell through

ne(η) =
Z

4πb3

[

φ(η)

η

]3/2

. (B.1.34)

In the non-relativistic Thomas-Fermi model, the total energy of the Wigner-
Seitz cell is given by (see Slater and Krutter (1935); Feynman et al. (1949) for
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details)

Ews = EN + E
(e)
k + EC , (B.1.35)

being

EN = MN(Z, A)c2 , (B.1.36)

E
(e)
k =

∫ Rws

0
4πr2

Ee[ne(r)]dr

=
3

7

Z2e2

b

[

4

5
η1/2

0 φ5/2(η0)− φ′(0)
]

, (B.1.37)

EC = Ee−N + Ee−e

= −6

7

Z2e2

b

[

1

3
η1/2

0 φ5/2(η0)− φ′(0)
]

, (B.1.38)

where MN(Z, A) is the nucleus mass, Ee[ne(r)] is given by Eq. (B.1.9) and
Ee−N and Ee−e are the electron-nucleus Coulomb energy and the electron-
electron Coulomb energy, which are given by

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

ene(r)dr , (B.1.39)

Ee−e =
1

2

∫ Rws

0
4πr2ene(~r)dr

∫ Rws

0
4πr′2

ene(~r′)
|~r −~r′|dr′ . (B.1.40)

From Eqs. (B.1.37) and (B.1.38) we recover the well-known relation between
the total kinetic energy and the total Coulomb energy in the Thomas-Fermi
model (Slater and Krutter, 1935; Feynman et al., 1949)

E
(e)
k = Eunif

k [ne(Rws)]−
1

2
EC , (B.1.41)

where Eunif
k [ne(Rws)] is the non-relativistic kinetic energy of a uniform elec-

tron distribution of density ne(Rws), i.e.

Eunif
k [ne(Rws)] =

3

5
Z∗µe(Rws) , (B.1.42)

with Z∗ defined by
Z∗ = Vwsne(Rws) , (B.1.43)

and µe(Rws) = h̄2[3π2ne(Rws)]2/3/(2me).

The self-consistent pressure of the Wigner-Seitz cell in the non-relativistic
Thomas-Fermi model is (see Slater and Krutter (1935); Feynman et al. (1949)
for details)

PTF =
2

3

Eunif
k [ne(Rws)]

Vws
. (B.1.44)
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The pressure of the Thomas-Fermi model (B.1.44) is equal to the pressure
of a free-electron distribution of density ne(Rws). Being the electron density
inside the cell a decreasing function of the distance from the nucleus, the
electron density at the cell boundary, ne(Rws), is smaller than the average
electron distribution 3Z/(4πR3

ws). Then, the pressure given by (B.1.44) is
smaller than the one given by the non-relativistic version of Eq. (B.1.10) of the
uniform model of Subsec. B.1.2. Such a smaller pressure, although faintfully
given by the expression of a free-electron gas, contains in a self-consistent
fashion all the Coulomb effects inside the Wigner-Seitz cell.

The chemical potential of the Wigner-Seitz cell of the non-relativistic Thomas-
Fermi model can be then written as

µTF = MN(Z, A)c2 + Z∗µe(Rws) +
1

2
EC , (B.1.45)

where we have used Eqs. (B.1.41)–(B.1.43).

Integrating by parts the total number of electrons

Z =
∫ Rws

0
4πr2ne(r)dr = Z∗ + I(Rws) , (B.1.46)

where

I(Rws) =
∫ Rws

0

4π

3
r3 ∂ne(r)

∂r
dr , (B.1.47)

we can rewrite finally the following semi-analytical expression of the chemi-
cal potential (B.1.45) of the cell

µTF = MN(Z, A)c2 + Zµunif
e

[

1 +
I(Rws)

Z

]2/3

+ µunif
e I(Rws)

[

1 +
I(Rws)

Z

]2/3

+
1

2
EC , (B.1.48)

where µunif
e is the electron free-chemical potential (B.1.14) calculated with the

average electron density, namely, the electron chemical potential of the uni-
form approximation. The function I(Rws) depends explicitly on the gradient
of the electron density, i.e. on the non-uniformity of the electron distribution.

In the limit of absence of Coulomb interaction both the last term and the
function I(Rws) in Eq. (B.1.48) vanish and therefore in this limit µTF reduces
to

µTF → µunif , (B.1.49)

where µunif is the chemical potential in the uniform approximation given by
Eq. (B.1.13).
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The relativistic Feynman-Metropolis-Teller treatment

We recall now how the above classic Feynman, Metropolis, and Teller treat-
ment of compressed atoms has been recently generalized to relativistic regimes
(see Rotondo et al. (2011c) for details). One of the main differences in the rel-
ativistic generalization of the Thomas-Fermi equation is that, the point-like
approximation of the nucleus, must be abandoned since the relativistic equi-
librium condition of compressed atoms

EF
e =

√

c2(PF
e )

2 + m2
e c4 − mec

2 − eV(r) = constant > 0 , (B.1.50)

would lead to a non-integrable expression for the electron density near the
origin (see e.g.Ferreirinho et al. (1980); Ruffini and Stella (1981)).

It is then assumed a constant distribution of protons confined in a radius
Rc defined by

Rc = ∆λπZ1/3 , (B.1.51)

where λπ = h̄/(mπc) is the pion Compton wavelength. If the system is at
nuclear density ∆ ≈ (r0/λπ)(A/Z)1/3 with r0 ≈ 1.2 fm. Thus, in the case of
ordinary nuclei (i.e., for A/Z ≈ 2) we have ∆ ≈ 1. Consequently, the proton
density can be written as

np(r) =
Z

4
3 πR3

c

θ(r − Rc) =
3

4π

(

1

∆λπ

)3

θ(r − Rc) , (B.1.52)

where θ(r − Rc) denotes the Heaviside function centered at Rc. The electron
density can be written as

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

V̂2(r) + 2mec
2V̂(r)

]3/2
, (B.1.53)

where V̂ = eV + EF
e and we have used Eq. (B.1.50).

The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (B.1.54)

with the boundary conditions dV/dr|r=Rws = 0 and V(Rws) = 0 due to the
global charge neutrality of the cell.

By introducing the dimensionless quantities x = r/λπ, xc = Rc/λπ, χ/r =
V̂(r)/(h̄c) and replacing the particle densities (B.1.52) and (B.1.53) into the
Poisson equation (B.1.54), it is obtained the relativistic Thomas-Fermi equa-
tion (Ruffini, 2008a)

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2

, (B.1.55)
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which must be integrated subjected to the boundary conditions χ(0) = 0,
χ(xws) ≥ 0 and dχ/dx|x=xws = χ(xws)/xws, where xws = Rws/λπ.

The neutron density nn(r), related to the neutron Fermi momentum PF
n =

(3π2h̄3nn)1/3, is determined by imposing the condition of beta equilibrium

EF
n =

√

c2(PF
n )

2 + m2
nc4 − mnc2 =

√

c2(PF
p )

2 + m2
pc4

− mpc2 + eV(r) + EF
e , (B.1.56)

subjected to the baryon number conservation equation

A =
∫ Rc

0
4πr2[np(r) + nn(r)]dr . (B.1.57)

In Fig. B.1 we see how the relativistic Feynman-Metropolis-Teller treatment
leads to electron density distributions markedly different from the constant
electron density approximation. The electron distribution is far from being
uniform as a result of the solution of Eq. (B.1.55), which takes into account
the electromagnetic interaction between electrons and between the electrons
and the finite sized nucleus. Additional details are given in Rotondo et al.
(2011c).
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x
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1.00
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Wigner�Seitz cell boundary

Relativistic FMT treatment
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Figure B.1.: The electron number density ne in units of the average electron
number density n0 = 3Z/(4πR3

ws) inside a Wigner-Seitz cell of 12C. The di-
mensionless radial coordinate is x = r/λπ and Wigner-Seitz cell radius is
xws ≈ 255 corresponding to a density of ∼ 108 g/cm3. The solid curve
corresponds to the relativistic Feynman-Metropolis-Teller treatment and the
dashed curve to the uniform approximation. The electron distribution for
different levels of compression as well as for different nuclear compositions
can be found in Rotondo et al. (2011c).
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Rotondo et al. (2011e) have shown how the solution of the relativistic Thomas-
Fermi equation (B.1.55) together with the self-consistent implementation of
the β-equilibrium condition (B.1.56) leads, in the case of zero electron Fermi
energy (EF

e = 0), to a theoretical prediction of the β-equilibrium line, namely
a theoretical Z-A relation. Within this model the mass to charge ratio A/Z of
nuclei is overestimated, e.g. in the case of 4He the overestimate is ∼ 3.8%, for
12C ∼ 7.9%, for 16O ∼ 9.52%, and for 56Fe ∼ 13.2%. These discrepancies are
corrected when the model of the nucleus considered above is improved by
explicitly including the effects of strong interactions. This model, however,
illustrates how a self-consistent calculation of compressed nuclear matter can
be done including electromagnetic, weak, strong as well as special relativis-
tic effects without any approximation. This approach promises to be useful
when theoretical predictions are essential, for example in the description of
nuclear matter at very high densities, e.g. nuclei close and beyond the neu-
tron drip line.

The densities in white dwarf interiors are not highly enough to require
such theoretical predictions. Therefore, in order to ensure the accuracy of
our results we use for (Z, A), needed to solve the relativistic Thomas-Fermi
equation (B.1.55), as well as for the nucleus mass MN(Z, A), their known
experimental values. In this way we take into account all the effects of the
nuclear interaction.

Thus, the total energy of the Wigner-Seitz cell in the present case can be
written as

Erel
FMT = EN + E

(e)
k + EC , (B.1.58)

being

EN = MN(Z, A)c2 , (B.1.59)

E
(e)
k =

∫ Rws

0
4πr2(Ee − mene)dr , (B.1.60)

EC =
1

2

∫ Rws

Rc

4πr2e[np(r)− ne(r)]V(r)dr , (B.1.61)

where MN(Z, A) = Ar Mu is the experimental nucleus mass, e.g. for 4He,
12C, 16O and 56Fe we have Ar = 4.003, 12.01, 16.00 and 55.84 respectively. In
Eq. (B.1.61) the integral is evaluated only outside the nucleus (i.e. for r > Rc)
in order to avoid a double counting with the Coulomb energy of the nucleus
already taken into account in the nucleus mass (B.1.59). In order to avoid
another double counting we subtract to the electron energy-density Ee in
Eq. (B.1.60) the rest-energy density mec

2ne which is also taken into account
in the nucleus mass (B.1.59).

The total pressure of the Wigner-Seitz cell is given by

Prel
FMT = Pe[ne(Rws)] , (B.1.62)
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where Pe[ne(Rws)] is the relativistic pressure (B.1.10) computed with the value
of the electron density at the boundary of the cell.

The electron density at the boundary Rws in the relativistic Feynman-Metropolis-
Teller treatment is smaller with respect to the one given by the uniform den-
sity approximation (see Fig. B.1). Thus, the relativistic pressure (B.1.62) gives
systematically smaller values with respect to the uniform approximation pres-
sure (B.1.10) as well as with respect to the Salpeter pressure (B.1.29).

In Fig. B.2 we show the ratio between the relativistic Feynman-Metropolis-
Teller pressure Prel

FMT (B.1.62) and the Chandrasekhar pressure PCh (B.1.10)

and the Salpeter pressure PS (B.1.29) in the case of 12C. It can be seen how
Prel

FMT is smaller than PCh for all densities as a consequence of the Coulomb

interaction. With respect to the Salpeter case, we have that the ratio Prel
FMT/PS

approaches unity from below at large densities as one should expect.

However, at low densities . 104–105 g/cm3, the ratio becomes larger than
unity due to the defect of the Salpeter treatment which, in the low density
non-relativistic regime, leads to a drastic decrease of the pressure and even
to negative pressures at densities . 102 g/cm3 or higher for heavier nuclear
compositions e.g. 56Fe (see Salpeter (1961a); Rotondo et al. (2011c) and Table
B.1). This is in contrast with the relativistic Feynman-Metropolis-Teller treat-
ment which matches smoothly the classic Feynman-Metropolis-Teller equa-
tion of state in that regime (see Rotondo et al. (2011c) for details).

103 104 105 106 107 108 109

� (g/cm3 )

0.90

0.95

1.00

1.05

P rel
FMT/PCh

P rel
FMT/PS

Figure B.2.: Ratio of the pressures in the different treatments as a function
of the density for 12C white dwarfs (see Table B.1). The solid curve corre-
sponds to the ratio between the relativistic Feynman-Metropolis-Teller pres-
sure Prel

FMT given by Eq. (B.1.62) and the Chandrasekhar pressure PCh given
by Eq. (B.1.10). The dashed curve corresponds to the ratio between the rel-
ativistic Feynman-Metropolis-Teller pressure Prel

FMT given by Eq. (B.1.62) and
the Salpeter pressure PS given by Eq. (B.1.29).
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ρ PCh PS Prel
FMT

10 1.46731 × 1014 −1.35282 × 1013 4.54920 × 1014

40 1.47872 × 1015 4.60243 × 1014 7.09818 × 1014

70 3.75748 × 1015 1.60860 × 1015 2.05197 × 1015

102 6.80802 × 1015 3.34940 × 1015 3.90006 × 1015

103 3.15435 × 1017 2.40646 × 1017 2.44206 × 1017

104 1.45213 × 1019 1.28976 × 1019 1.28965 × 1019

105 6.50010 × 1020 6.14494 × 1020 6.13369 × 1020

106 2.62761 × 1022 2.54932 × 1022 2.54431 × 1022

107 8.46101 × 1023 8.28899 × 1023 8.27285 × 1023

108 2.15111 × 1025 2.11375 × 1025 2.10896 × 1025

109 4.86236 × 1026 4.78170 × 1026 4.76613 × 1026

1010 1.05977 × 1028 1.04239 × 1028 1.03668 × 1028

Table B.1.: Equation of state for 12C within the different treatments. The pres-
sure in the uniform approximation for µ = 2 is PCh, the Salpeter pressure is
PS and the relativistic Feynman-Metropolis-Teller pressure is Prel

FMT. The units

for the density are g/cm3 and for the pressure dyn/cm2.

No analytic expression of the Wigner-Seitz cell chemical potential can be
given in this case, so we only write its general expression

µrel
FMT = Erel

FMT + Prel
FMTVws , (B.1.63)

where Erel
FMT and Prel

FMT are given by Eqs. (B.1.58) and (B.1.62) respectively. The
above equation, contrary to the non-relativistic formula (B.1.45), in no way
can be simplified in terms of its uniform counterparts. However, it is easy to
check that, in the limit of no Coulomb interaction ne(Rws) → 3Z/(4πR3

ws),
EC → 0, and Ek → EChVws and, neglecting the nuclear binding and the
proton-neutron mass difference, we finally obtain

µrel
FMT → µunif , (B.1.64)

as it should be expected.

Now we summarize how the equation of state of compressed nuclear mat-
ter can be computed in the Salpeter case and in the relativistic Feynman-
Metropolis-Teller case, parameterized by the total density of the system:

(i) For a given radius Rws of the Wigner-Seitz cell the relativistic Thomas-
Fermi equation (B.1.55) is integrated numerically and the density of the con-
figuration is computed as ρ = Erel

FMT/(c2Vws) where Erel
FMT is the energy of the

cell given by Eq. (B.1.58).

(ii) For that value of the density, the radius of the Wigner-Seitz cell in the

1777



B. White Dwarfs Physics and Astrophysics

Salpeter treatment is

Rws =

(

3Ar Mu

4πρ

)1/3

, (B.1.65)

where Eq. (B.1.15) has been used. On the contrary, in the relativistic Feynman-
Metropolis-Teller treatment no analytic expression relating Wigner-Seitz cell
radius and density can be written.

(iii) From this Wigner-Seitz cell radius, or equivalently using the value of
the density, the electron density in the Salpeter model is computed from the
assumption of uniform electron distribution and the charge neutrality condi-
tion, i.e. Eq. (B.1.15). In the relativistic Feynman-Metropolis-Teller treatment,
the electron number density at the boundary of the Wigner-Seitz cell is, fol-
lowing Eq. (B.1.53), given by

nrelFMT
e =

1

3π2λ3
π

[

χ2(xws)

x2
ws

+ 2
me

mπ

χ(xws)

xws

]3/2

, (B.1.66)

where the function χ(x) is the solution of the relativistic Thomas-Fermi equa-
tion (B.1.55).

(iv) Finally, with the knowledge of the electron density at Rws, the pressure
can be calculated. In the Salpeter approach it is given by Eq. (B.1.29) while in
the relativistic Feynman-Metropolis-Teller case it is given by Eq. (B.1.62).

B.1.3. General relativistic equations of equilibrium

Outside each Wigner-Seitz cell the system is electrically neutral, thus no over-
all electric field exists. Therefore, the above equation of state can be used to
calculate the structure of the star through the Einstein equations. Introducing
the spherically symmetric metric (B.1.5), the Einstein equations can be writ-
ten in the Tolman-Oppenheimer-Volkoff form Tolman (1939); Oppenheimer
and Volkoff (1939)

dν(r)

dr
=

2G

c2

4πr3P(r)/c2 + M(r)

r2
[

1 − 2GM(r)
c2r

] , (B.1.67)

dM(r)

dr
= 4πr2E(r)

c2
, (B.1.68)

dP(r)

dr
= −1

2

dν(r)

dr
[E(r) + P(r)] , (B.1.69)

where we have introduced the mass enclosed at the distance r through eλ(r) =
1 − 2GM(r)/(c2r), E(r) is the energy-density and P(r) is the total pressure.

We turn now to demonstrate how, from Eq. (B.1.69), it follows the gen-
eral relativistic equation of equilibrium (B.1.6), for the self-consistent Wigner-
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Seitz chemical potential µws. The first law of thermodynamics for a zero tem-
perature fluid of N particles, total energy E, total volume V, total pressure
P = −∂E/∂V, and chemical potential µ = ∂E/∂N reads

dE = −PdV + µdN , (B.1.70)

where the differentials denote arbitrary but simultaneous changes in the vari-
ables. Since for a system whose surface energy can be neglected with respect
to volume energy, the total energy per particle E/N depends only on the par-
ticle density n = N/V, we can assume E/N as an homogeneous function
of first-order in the variables N and V and hence, it follows the well-known
thermodynamic relation

E = −PV + µN . (B.1.71)

In the case of the Wigner-Seitz cells, Eq. (B.1.71) reads

Ews = −PwsVws + µws , (B.1.72)

where we have introduced the fact that the Wigner-Seitz cells are the building
blocks of the configuration and therefore we must put in Eq. (B.1.71) Nws =
1. Through the entire article we have used Eq. (B.1.72) to obtain from the
knowns energy and pressure, the Wigner-Seitz cell chemical potential (see
e.g. Eqs. (B.1.13) and (B.1.23)). From Eqs. (B.1.70) and (B.1.71) we obtain the
so-called Gibbs-Duhem relation

dP = ndµ . (B.1.73)

In a white dwarf the pressure P and the chemical potential µ are decreas-
ing functions of the distance from the origin. Thus, the differentials in the
above equations can be assumed as the gradients of the variables which, in
the present spherically symmetric case, become just derivatives with respect
to the radial coordinate r. From Eq. (B.1.73) it follows the relation

dPws

dr
= nws

dµws

dr
. (B.1.74)

From Eqs. (B.1.69), (B.1.72) and (B.1.74) we obtain

nws(r)
dµws(r)

dr
= −1

2

dν(r)

dr
nws(r)µws(r) , (B.1.75)

which can be straightforwardly integrated to obtain the first integral

eν(r)/2µws(r) = constant . (B.1.76)

The above equilibrium condition is general and it also applies for non-zero
temperature configurations ( see e.g. Klein (1949)). In such a case, it can be
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shown that in addition to the equilibrium condition (B.1.76) the temperature

of the system satisfies the Tolman isothermality condition eν(r)/2T(r) = con-
stant Tolman (1930); Tolman and Ehrenfest (1930).

The weak-field non-relativistic limit

In the weak-field limit we have eν/2 ≈ 1 + Φ, where the Newtonian gravi-
tational potential has been defined by Φ(r) = ν(r)/2. In the non-relativistic
mechanics limit c → ∞, the chemical potential µws → µ̃ws + Mwsc2, where
µ̃ws denotes the non-relativistic free-chemical potential of the Wigner-Seitz
cell and Mws is the rest-mass of the Wigner-Seitz cell, namely, the rest-mass
of the nucleus plus the rest-mass of the electrons. Applying these considera-
tions to Eq. (B.1.76) we obtain

eν/2µws ≈ Mwsc2 + µ̃ws + MwsΦ = constant . (B.1.77)

Absorbing the Wigner-Seitz rest-mass energy Mwsc2 in the constant on the
right-hand-side we obtain

µ̃ws + MwsΦ = constant . (B.1.78)

In the weak-field non-relativistic limit, the Einstein equations (B.1.67)–(B.1.69)
reduce to

dΦ(r)

dr
=

GM(r)

r2
, (B.1.79)

dM(r)

dr
= 4πr2ρ(r) , (B.1.80)

dP(r)

dr
= −GM(r)

r2
ρ(r) , (B.1.81)

where ρ(r) denotes the rest-mass density. The Eqs. (B.1.79)–(B.1.80) can be
combined to obtain the gravitational Poisson equation

d2Φ(r)

dr2
+

2

r

dΦ(r)

dr
= 4πGρ(r) . (B.1.82)

In the uniform approximation (see Subsec. B.1.2), the equilibrium condition
given by Eq. (B.1.78) reads

µ̃e +
Ar

Z
MuΦ = constant , (B.1.83)

where we have neglected the electron rest-mass with respect to the nucleus
rest-mass and we have divided the equation by the total number of electrons
Z. This equilibrium equation is the classical condition of thermodynamic
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equilibrium assumed for non-relativistic white dwarf models (see e.g. Lan-
dau and Lifshitz (1980) for details).

Introducing the above equilibrium condition (B.1.83) into Eq. (B.1.82), and
using the relation between the non-relativistic electron chemical potential and

the particle density ne = (2me)3/2µ̃3/2
e /(3π2h̄3), we obtain

d2µ̃e(r)

dr2
+

2

r

dµ̃e(r)

dr
= −27/3m3/2

e (Ar/Z)2m2
NG

3πh̄3
µ̃3/2

e (r) , (B.1.84)

which is the correct equation governing the equilibrium of white dwarfs
within Newtonian gravitational theory (Landau and Lifshitz, 1980). It is re-
markable that the equation of equilibrium (B.1.84), obtained from the cor-
rect application of the Newtonian limit, does not coincide with the equation
given by Chandrasekhar (1931b,a, 1935, 1939), which, as correctly pointed out
by Eddington (1935), is a mixture of both relativistic and non-relativistic ap-
proaches. Indeed, the consistent relativistic equations should be Eq. (B.1.76).
Therefore a dual relativistic and non-relativistic equation of state was used
by Chandrasekhar. The pressure on the left-hand-side of Eq. (B.1.81) is taken
to be given by relativistic electrons while, the term on the right-hand-side
of Eq. (B.1.80) and (B.1.81) (or the source of Eq. (B.1.82)), is taken to be the
rest-mass density of the system instead of the total relativistic energy-density.
Such a procedure is equivalent to take the chemical potential in Eq. (B.1.78)
as a relativistic quantity. As we have seen, this is inconsistent with the weak-
field non-relativistic limit of the general relativistic equations.

The Post-Newtonian limit

Indeed, if one were to treat the problem of white dwarfs approximately with-
out going to the sophistications of general relativity, but including the effects
of relativistic mechanics, one should use at least the equations in the post-
Newtonian limit. The first-order post-Newtonian expansion of the Einstein
equations (B.1.67)–(B.1.69) in powers of P/E and GM/(c2r) leads to the equi-
librium equations (Ciufolini and Ruffini, 1983)

dΦ(r)

dr
= − 1

E(r)

[

1 − P(r)

E(r)

]

dP(r)

dr
, (B.1.85)

dM(r)

dr
= 4πr2E(r)

c2
, (B.1.86)

dP(r)

dr
= −GM(r)

r2

E(r)

c2

[

1 +
P(r)

E(r)
+

4πr3P(r)

M(r)c2

+
2GM(r)

c2r

]

, (B.1.87)
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where Eq. (B.1.87) is the post-Newtonian version of the Tolman-Oppenheimer-
Volkoff equation (B.1.69).

Replacing Eq. (B.1.74) into Eq. (B.1.85) we obtain

[

1 − P(r)

E(r)

]

dµws(r)

dr
+

E(r)/c2

nws(r)

dΦ(r)

dr
= 0 . (B.1.88)

It is convenient to split the energy-density as E = c2ρ+U, where ρ = Mwsnws

is the rest-energy density and U the internal energy-density. Thus, Eq. (B.1.88)
becomes

dµws(r)

dr
+ Mws

dΦ(r)

dr
− P(r)

E(r)

dµws(r)

dr

+
U/c2

nws(r)

dΦ(r)

dr
= 0 , (B.1.89)

which is the differential post-Newtonian version of the equilibrium equa-
tion (B.1.76) and where the post-Newtonian corrections of equilibrium can
be clearly seen. Applying the non-relativistic limit c → ∞ to Eq. (B.1.89):
P/E → 0, U/c2 → 0, and µws → Mwsc2 + µ̃ws, we recover the Newtonian
equation of equilibrium (B.1.78).

B.1.4. Mass and radius of general relativistic stable white

dwarfs

Inverse β-decay instability

It is known that white dwarfs may become unstable against the inverse β-
decay process (Z, A) → (Z − 1, A) through the capture of energetic elec-
trons (see e.g. Hund (1936); Landau (1938); Zel’Dovich (1958a); Harrison et al.
(1958)). In order to trigger such a process, the electron Fermi energy must be
larger than the mass difference between the initial nucleus (Z, A) and the fi-

nal nucleus (Z − 1, A). We denote this threshold energy as ǫ
β
Z. Usually it is

satisfied ǫ
β
Z−1 < ǫ

β
Z and therefore the initial nucleus undergoes two succes-

sive decays, i.e. (Z, A) → (Z − 1, A) → (Z − 2, A) (see e.g. Salpeter (1961a);
Shapiro and Teukolsky (1983a)). Some of the possible decay channels in white

dwarfs with the corresponding known experimental threshold energies ǫ
β
Z

are listed in Table B.2. The electrons in the white dwarf may eventually reach

the threshold energy to trigger a given decay at some critical density ρ
β
crit.

Configurations with ρ > ρ
β
crit become unstable (see Harrison et al. (1958);

Salpeter (1961a) for details).
Within the uniform approximation, e.g. in the case of the Salpeter equation

of state Salpeter (1961a), the critical density for the onset of inverse β-decay
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Decay ǫ
β
Z ρ

β,relFMT
crit ρ

β,unif
crit

4He →3 H + n → 4n 20.596 1.39 × 1011 1.37 × 1011

12C →12B →12Be 13.370 3.97 × 1010 3.88 × 1010

16O →16N →16C 10.419 1.94 × 1010 1.89 × 1010

56Fe →56Mn →56Cr 3.695 1.18 × 109 1.14 × 109

Table B.2.: Onset of inverse beta decay instability for 4He, 12C, 16O and 56Fe.

The experimental inverse β-decay energies ǫ
β
Z are given in MeV and they

have been taken from Table 1 of Audi et al. (2003a). The corresponding critical

density for the uniform electron density model, ρ
β,unif
crit given by Eq. (B.1.90),

is given in g/cm3 as well as the critical density ρ
β,relFMT
crit for the relativistic

Feynman-Metropolis-Teller case. The numerical values of ǫ
β
Z are taken from

Audi et al. (2003a), see also Shapiro and Teukolsky (1983a)
.

is given by

ρ
β,unif
crit =

Ar

Z

Mu

3π2h̄3c3
[(ǫ

β
Z)

2 + 2mec
2ǫ

β
Z]

3/2 , (B.1.90)

where Eq. (B.1.15) has been used.
Because the computation of the electron Fermi energy within the relativis-

tic Feynman-Metropolis-Teller approach Rotondo et al. (2011c) involves the
numerical integration of the relativistic Thomas-Fermi equation (B.1.55), no

analytic expression for ρ
β
crit can be found in this case. The critical density

ρ
β,relFMT
crit is then obtained numerically by looking for the density at which the

electron Fermi energy (B.1.50) equals ǫ
β
Z.

In Table B.2 we show, correspondingly to each threshold energy ǫ
β
Z, the

critical density both in the Salpeter case ρ
β,unif
crit given by Eq. (B.1.90) and in

the relativistic Feynman-Metropolis-Teller case ρ
β,relFMT
crit . It can be seen that

ρ
β,relFMT
crit > ρ

β,unif
crit as one should expect from the fact that, for a given den-

sity, the electron density at the Wigner-Seitz cell boundary satisfies nrelFMT
e <

nunif
e . This means that, in order to reach a given energy, the electrons within

the relativistic Feynman-Metropolis-Teller approach must be subjected to a
larger density with respect to the one given by the approximated Salpeter
analytic formula (B.1.90).

General relativistic instability

The concept of the critical mass has played a major role in the theory of stellar
evolution. For Newtonian white dwarfs the critical mass is reached asymp-
totically at infinite central densities of the object. One of the most important
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Figure B.3.: Mass in solar masses as a function of the central density in the
range (left panel) 105–108 g/cm3 and in the range (right panel) 108–5 × 1011

g/cm3 for 4He white dwarfs. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and
Salpeter and the dashed curve are the Newtonian configurations of Chan-
drasekhar.

general relativistic effects is to shift this critical point to some finite density
ρGR

crit.
This general relativistic effect is an additional source of instability with re-

spect to the already discussed instability due to the onset of inverse β-decay
which, contrary to the present general relativistic one, applies also in the
Newtonian case by shifting the maximum mass of Newtonian white dwarfs
to finite densities (see e.g. Harrison et al. (1958)).

Numerical results

In Figs. B.3–B.10 we have plotted the mass-central density relation and the
mass-radius relation of general relativistic 4He, 12C, 16O and 56Fe white dwarfs.
In particular, we show the results for the Newtonian white dwarfs of Hamada
and Salpeter (1961), for the Newtonian white dwarfs of Chandrasekhar (1931b)
and the general relativistic configurations obtained in this work based on
the relativistic Feynman-Metropolis-Teller equation of state (Rotondo et al.,
2011c).

Since our approach takes into account self-consistently both β-decay equi-
librium and general relativity, we can determine if the critical mass is reached
due either to inverse β-decay instability or to the general relativistic instabil-
ity.

A comparison of the numerical value of the critical mass as given by Stoner
(1929), Eq. (B.1.1), by Chandrasekhar (1931b) and Landau (1932), Eq. (B.1.2),
by Hamada and Salpeter (1961) and, by the treatment presented here can be
found in Table B.3.

From the numerical integrations we have obtained:
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Figure B.4.: Mass in solar masses as a function of the radius in units of 104 km
for 4He white dwarfs. The left and right panels show the configurations for
the same range of central densities of the corresponding panels of Fig. B.3.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.
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Figure B.5.: Mass in solar masses as a function of the central density in
the range (left panel) 105–108 g/cm3 and in the range (right panel) 108–1011

g/cm3 for 12C white dwarfs. The solid curve corresponds to the present work,
the dotted curves are the Newtonian configurations of Hamada and Salpeter
and the dashed curve are the Newtonian configurations of Chandrasekhar.
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Figure B.6.: Mass in solar masses as a function of the radius in units of 104 km
for 12C white dwarfs. The left and right panels show the configurations for
the same range of central densities of the corresponding panels of Fig. B.5.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.
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Figure B.7.: Mass in solar masses as a function of the central density in the
range (left panel) 105–108 g/cm3 and in the range (right panel) 108–1011

g/cm3 for 16O white dwarfs. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and
Salpeter and the dashed curve are the Newtonian configurations of Chan-
drasekhar.
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Figure B.8.: Mass in solar masses as a function of the radius in units of 104 km
for 16O white dwarfs. The left and right panels show the configurations for
the same range of central densities of the corresponding panels of Fig. B.7.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.
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Figure B.9.: Mass in solar masses as a function of the central density in the
range (left panel) 105–108 g/cm3 and in the range (right panel) 108–3 × 109

g/cm3 for 56Fe white dwarfs. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and
Salpeter and the dashed curve are the Newtonian configurations of Chan-
drasekhar.
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Figure B.10.: Mass in solar masses as a function of the radius in units of 104

km for 56Fe white dwarfs. The left and right panels show the configurations
for the same range of central densities of the corresponding panels of Fig. B.9.
The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are
the Newtonian configurations of Chandrasekhar.

1. 4He and 12C white dwarfs satisfy ρGR
crit < ρ

β
crit (see Figs. B.3–B.6 and Ta-

bles B.2 and B.3), so they are unstable with respect to general relativistic
effects. The critical density of 12C white dwarfs is ∼ 2.12 × 1010 g/cm3,
to be compared with the value 2.65× 1010 g/cm3 obtained from calcula-
tions based on general relativistic corrections to the theory of polytropes
(see e.g. Shapiro and Teukolsky (1983a)).

2. White dwarfs composed of heavier material than 12C, e.g. 16O and 56Fe
are unstable due to inverse β-decay of the nuclei (see Figs. B.7–B.10 and
Tables B.2 and B.3). It is worth to notice that the correct evaluation
of general relativistic effects and of the combined contribution of the
electrons to the energy-density of the system introduce, for 12C white
dwarfs, a critical mass not due to the inverse beta decay. When the con-
tribution of the electrons to the energy-density is neglected (e.g. Chan-
drasekhar (1931b) and Hamada and Salpeter (1961), see Eq. (B.1.15)) the
critical density for Carbon white dwarfs is determined by inverse beta
decay irrespective of the effects of general relativity.

3. It can be seen from Figs. B.3–B.10 that the drastic decrease of the Salpeter
pressure at low densities (see Salpeter (1961a); Rotondo et al. (2011c)
and Table B.1 for details) produces an underestimate of the mass and
the radius of low density (low mass) white dwarfs.

4. The Coulomb effects are much more pronounced in the case of white
dwarfs with heavy nuclear compositions e.g. 56Fe (see Figs. B.9 and
B.10).
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ρH&S
crit MH&S

crit /M⊙ ρFMTrel
crit MFMTrel

crit /M⊙
4He 1.37 × 1011 1.44064 1.56 × 1010 1.40906
12C 3.88 × 1010 1.41745 2.12 × 1010 1.38603
16O 1.89 × 1010 1.40696 1.94 × 1010 1.38024
56Fe 1.14 × 109 1.11765 1.18 × 109 1.10618

Table B.3.: Critical density and corresponding critical mass for the onset
of gravitational collapse of the Newtonian 4He, 12C, 16O and 56Fe white
dwarfs of Hamada and Salpeter (1961), based on the Salpeter equation of
state (Salpeter, 1961a), and of the corresponding general relativistic configu-
rations obtained in this work based on the relativistic Feynman-Metropolis-
Teller equation of state (Rotondo et al., 2011c). Densities are in g/cm3 and
masses in solar masses. For the sake of comparison, the critical mass of Stoner
(B.1.1) and of the one of Chandrasekhar-Landau (B.1.2) are MStoner

crit ∼ 1.72M⊙
and MCh−L

crit ∼ 1.45M⊙, for the average molecular weight µ = Ar/Z = 2.

B.1.5. Conclusions

We have addressed the theoretical physics aspects of the white dwarf config-
urations of equilibrium, quite apart from the astrophysical application.

The recently accomplished description of a compressed atom within the
global approach of the relativistic Feynman, Metropolis and Teller (Rotondo
et al., 2011c) has been here solved within the Wigner-Seitz cell and applied
to the construction of white dwarfs in the framework of general relativity.
From a theoretical physics point of view, this is the first unified approach
of white dwarfs taking into account consistently the gravitational, the weak,
the strong and the electromagnetic interactions, and it answers open theoret-
ical physics issues in this matter. No analytic formula for the critical mass
of white dwarfs can be derived and, on the contrary, the critical mass can ob-
tained only through the numerical integration of the general relativistic equa-
tions of equilibrium together with the relativistic Feynman-Metropolis-Teller
equation of state.

The value of the critical mass and the radius of white dwarfs in our treat-
ment and in the Hamada and Salpeter (1961) treatment becomes a function
of the composition of the star. Specific examples have been given in the case
of white dwarfs composed of 4He, 12C, 16O and 56Fe. The results of Chan-
drasekhar, of Hamada and Salpeter and ours have been compared and con-
trasted (see Table B.3 and Figs. B.3–B.10).

The critical mass is a decreasing function of Z and Coulomb effects are
more important for heavy nuclear compositions. The validity of the Salpeter
approximate formulas increases also with Z, namely for heavy nuclear com-
positions the numerical values of the masses as well as of the radii of white
dwarfs obtained using the Salpeter equation of state are closer to the ones ob-
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tained from the full numerical integration of the general relativistic treatment
presented here.

Turning now to astrophysics, the critical mass of white dwarfs is today ac-
quiring a renewed interest in view of its central role in the explanation of
the supernova phenomena (Phillips, 1993; Riess et al., 1998; Perlmutter et al.,
1999; Riess et al., 2004). The central role of the critical mass of white dwarfs as
related to supernova was presented by Hoyle and Fowler (1960) explaining
the difference between type I and type II Supernova. This field has developed
in the intervening years to a topic of high precision research in astrophysics
and, very likely, both the relativistic and the Coulomb effects outlined in this
article will become topic of active confrontation between theory and obser-
vation. For instance, the underestimate of the mass and the radius of low
density white dwarfs within the Hamada and Salpeter (1961) treatment (see
Figs. B.3–B.10) leads to the possibility of a direct confrontation with observa-
tions in the case of low mass white dwarfs e.g. the companion of the Pulsar
J1141-6545 (Kramer, 2010).

We have finally obtained a general formula in Eq. (B.1.76) as a “first inte-
gral” of the general relativistic equations of equilibrium. This formula relates
the chemical potential of the Wigner-Seitz cells, duly obtained from the rela-
tivistic Feynman-Metropolis-Teller model (Rotondo et al., 2011c) taking into
account weak, nuclear and electromagnetic interactions, to the general rela-
tivistic gravitational potential at each point of the configuration. Besides its
esthetic value, this is an important tool to examine the radial dependence of
the white dwarf properties and it can be also applied to the crust of a neutron
star as it approaches to the physical important regime of neutron star cores.

The formalism we have introduced allows in principle to evaluate subtle
effects of a nuclear density distribution as a function of the radius and of
the Fermi energy of the electrons and of the varying depth of the general
relativistic gravitational potential. The theoretical base presented in this ar-
ticle establishes also the correct framework for the formulation of the more
general case when finite temperatures and magnetic fields are present. This
treatment naturally opens the way to a more precise description of the crust
of neutron stars, which will certainly become an active topic of research in
view of the recent results by Goriely et al. (2011a,b) on the importance of the
Coulomb effects in the r-process nucleosynthesis of the crust material during
its post-ejection evolution in the process of gravitational collapse and/or in
the merging of neutron star binaries.
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B.2. On general relativistic uniformly rotating

white dwarfs

B.2.1. Introduction

The relevance of rotation in enhancing the maximum stable mass of a white
dwarf (WD) have been discussed for many years both for uniform rotation
(see e.g. James, 1964; Anand, 1965; Roxburgh and Durney, 1966; Monaghan,
1966; Geroyannis and Hadjopoulos, 1989) and differential rotation (see e.g.
Ostriker and Bodenheimer, 1968; Ostriker and Tassoul, 1969; Tassoul and Os-
triker, 1970; Durisen, 1975). Newtonian gravity and post-Newtonian approx-
imation have been mainly used to compute the structure of the star, with
the exception of the work of Arutyunyan et al. (1971), where rotating white
dwarfs (RWDs) were computed in full General Relativity (GR). From the mi-
croscopical point of view, the equation of state (EOS) of cold WD matter has
been assumed to be either the one of a microscopically uniform degenerate
electron fluid used by Chandrasekhar (1931b) in his classic work, or assumed
to have a polytropic form.

However, as shown first by Salpeter (1961a) in the Newtonian case and
then by (Rotondo et al., 2011c,b) in General Relativity (GR), a detailed de-
scription of the EOS taking into account the effects of the Coulomb interac-
tion are essential for the determination of the maximum stable mass of non-
rotating WDs. Specific microphysics of the ion-electron system forming a
Coulomb lattice, together with the detail computation of the inverse β-decays
and the pycnonuclear reaction rates, play a fundamental role.

A new EOS taking into account the finite size of the nucleus, the Coulomb
interactions, and the electroweak equilibrium in a self-consistent relativis-
tic fashion has been recently obtained by Rotondo et al. (2011c). This rela-
tivistic Feynman-Metropolis-Teller (RFMT) EOS generalizes both the Chan-
drasekhar (1931b) and Salpeter (1961a) works in that a full treatment of the
Coulomb interaction is given through the solution of a relativistic Thomas-
Fermi model. This leads to a more accurate calculation of the energy and
pressure of the Wigner-Seitz cells, hence a more accurate EOS. It has been
shown how the Salpeter EOS overestimates at high densities and underesti-
mates at low densities the electron pressure. The application of this new EOS
to the structure of non-rotating 4He, 12C, 16O and 56Fe was recently done in
(Rotondo et al., 2011b). The new mass-radius relations generalize the works
of Chandrasekhar (1931b) and Hamada and Salpeter (1961); smaller maxi-
mum masses and a larger minimum radii are obtained. Both GR and inverse
β-decay can be relevant for the instability of non-rotating WDs depending
on the nuclear composition, as we can see from Table B.4, which summarizes
some results of Rotondo et al. (2011b).

We here extend the previous results of Rotondo et al. (2011b) for uniformly
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Composition ρJ=0
crit (g/cm3) Instability MJ=0

max/M⊙
4He 1.56 × 1010 GR 1.40906
12C 2.12 × 1010 GR 1.38603
16O 1.94 × 1010 inverse β-decay 1.38024
56Fe 1.18 × 109 inverse β-decay 1.10618

Table B.4.: Critical density and mass for the gravitational collapse of non-
rotating 4He, 12C, 16O and 56Fe WDs in GR obtained by Rotondo et al. (2011b),
based on the RFMT EOS Rotondo et al. (2011c). We indicate in the third col-
umn if the critical density is due either to inverse β-decay or to general rela-
tivistic effects.

RWDs at zero temperatures obeying the RFMT EOS. We use the Hartle’s ap-
proach (Hartle, 1967) to solve the Einstein equations accurately up to second
order approximation in the angular velocity of the star. We calculate the mass
M, equatorial Req and polar Rp radii, angular momentum J, eccentricity ǫ,
and quadrupole moment Q, as a function of the central density ρc and rota-
tion angular velocity Ω of the WD. We construct also RWD models for the
Chandrasekhar and Salpeter EOS and compare and contrast the differences
with the RFMT ones.

We analyze in detail the stability of RWDs both from the microscopic and
macroscopic point of view in Sec. B.2.3. Besides the inverse β-decay instabil-
ity, we also study the limits to the matter density imposed by zero-temperature
pycnonuclear fusion reactions using up-to-date theoretical models (Gasques
et al., 2005; Yakovlev et al., 2006). The mass-shedding limit as well as the
secular axisymmetric instability boundary are calculated.

The general structure and stability boundaries of 4He, 12C, 16O and 56Fe
WDs are discussed in in Sec. B.2.4. From the maximally rotating models
(mass-shedding sequence), we calculate in Sec. B.2.5 the maximum mass of
uniformly rotating 4He, 12C, 16O and 56Fe WDs for the Chandrasekhar, Salpeter,
and RFMT EOS, and compare the results with the existing values in the lit-
erature. We calculate the minimum(maximum) rotation period(frequency) of
a RWD for the above nuclear compositions, taking into account both inverse
β-decay and pycnonuclear restrictions to the density; see Sec. B.2.6.

We discuss in Sec. B.2.7 the axisymmetric instabilities found in this work. A
comparison of Newtonian and general relativistic WDs presented in App. B.2.11
show that this is indeed a general relativistic effect. Furthermore, we estimate
in App. B.2.11 the accuracy of the “slow” rotation approximation (power-
series solutions up to order Ω2) for the determination of the maximally rotat-
ing sequence of WDs. In this line, we calculate the rotation to gravitational
energy ratio and the deviations from spherical symmetry.

In addition, we construct in Sec. B.2.8 constant rest-mass evolution tracks
of RWDs at fixed chemical composition and show that RWDs may experi-
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ence both spin-up and spin-down epochs while loosing angular momentum,
depending on their initial mass and rotation period.

Finally, in Sec. B.2.9 we outline some astrophysical implications of the re-
sults presented in this work, which we summarized in Sec. B.2.10.

B.2.2. Spacetime geometry and Hartle’s formalism

Hartle (1967) described for the first time the structure of rotating objects ap-
proximately up to second order terms in the angular velocity of the star Ω,
within GR. In this “slow” rotation approximation, the solution of the Ein-
stein equations in the exterior vacuum can be written in analytic closed form
in terms of the total mass M, angular momentum J and quadrupole moment
Q of the star (see App. B.2.11). The interior metric is constructed by solving
numerically a system of ordinary differential equations for the perturbation
functions (see Hartle, 1967; Hartle and Thorne, 1968, for details).

The spacetime geometry up to order Ω2, with an appropriate choice of co-
ordinates is, in geometrical units c = G = 1, described by (Hartle, 1967)

ds2 =
{

eν(r)[1 + 2h0(r) + 2h2(r)P2(cos θ)]− ω2r2 sin2 θ
}

dt2

+ 2ωr2 sin2 θdtdφ − eλ(r)

[

1 + 2
m0(r) + m2(r)P2(cos θ)

r − MJ=0(r)

]

dr2

− r2 [1 + 2k2(r)P2(cos θ)] (dθ2 + sin2 θdφ2) , (B.2.1)

where P2(cos θ) is the Legendre polynomial of second order, eν(r) and eλ(r) =
[1 − 2MJ=0(r)/r]−1, and MJ=0(r) are the metric functions and mass of the
corresponding static (non-rotating) solution with the same central density as
the rotating one. The angular velocity of local inertial frames ω(r), propor-
tional to Ω, as well as the functions h0, h2, m0, m2, k2, proportional to Ω2,
must be calculated from the Einstein equations (see Hartle, 1967; Hartle and
Thorne, 1968, for details); their analytic expressions in the vacuum case can
be found in App. B.2.11.

The parameters M, J and Q, are then obtained for a given EOS from the
matching procedure between the internal and external solutions at the sur-
face of the rotating star. The total mass is defined by M = MJ 6=0 = MJ=0 +
δM, where MJ=0 is the mass of a static (non-rotating) WD with the same cen-
tral density as MJ 6=0, and δM is the contribution to the mass due to rotation.

B.2.3. Limits on the stability of rotating white dwarfs

The mass-shedding limit

The velocity of particles on the equator of the star cannot exceed the Keple-
rian velocity of “free” particles, computed at the same location. In this limit,
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particles on the star’s surface keep bound to the star only due to a balance
between gravity and centrifugal forces. The evolution of a star rotating at
this Keplerian rate is accompanied by loss of mass, becoming thus unstable
(see e.g. Stergioulas, 2003, for details). A procedure to obtain the maximum
possible angular velocity of the star before reaching this limit was developed
e.g. by Friedman et al. (1986a). However, in practice, it is less complicated
to compute the mass-shedding (or Keplerian) angular velocity of a rotating

star, Ω
J 6=0
K , by calculating the orbital angular velocity of a test particle in the

external field of the star and corotating with it at its equatorial radius, r = Req.
For the Hartle-Thorne external solution, the Keplerian angular velocity can

be written as (see e.g. Torok et al. (2008) and App. B.2.11, for details)

Ω
J 6=0
K =

√

G
M

R3
eq

[

1 − jF1(Req) + j2F2(Req) + qF3(Req)
]

, (B.2.2)

where j = cJ/(GM2) and q = c4Q/(G2M3) are the dimensionless angular
momentum and quadrupole moment, and the functions Fi(r) are defined in

App. B.2.11. Thus, the numerical value of Ω
J 6=0
K can be computed by gradu-

ally increasing the value of the angular velocity of the star, Ω, until it reaches

the value Ω
J 6=0
K expressed by Eq. (B.2.2).

It is important to analyze the issue of the accuracy of the slow rotation ap-
proximations, e.g. accurate up to second order in the rotation expansion pa-
rameter, for the description of maximally rotating stars as WDs and neutron
stars (NSs). We have performed in App. B.2.11 a scrutiny of the actual physi-
cal request made by the slow rotation regime. Based on this analysis, we have
checked that the accuracy of the slow rotation approximation increases with
the density of the WD, and that the mass-shedding (Keplerian) sequence of
RWDs can be accurately described by the Ω2 approximation within an error
smaller than the one found for rapidly rotating NSs, . 6%.

The turning-point criterion and secular axisymmetric instability

In a sequence of increasing central density the mass of non-rotating star is
limited by the first maximum of the M-ρc curve, i.e. the turning-point given
by the maximum mass, ∂M/∂ρc = 0, marks the secular instability point
and it coincides also with the dynamical instability point if the perturbation
obeys the same EOS as of the equilibrium configuration (see e.g. Shapiro and
Teukolsky, 1983a, for details). The situations is, however, much more com-
plicated in the case of rotating stars; the determination of axisymmetric dy-
namical instability points implies to find the perturbed solutions with zero
frequency modes, that is, perturbed configurations whose energy (mass) is
the same as the unperturbed (equilibrium) one, at second order. However,
Friedman et al. (1988) formulated, based on the works of Sorkin (1981, 1982),
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a turning-point method to locate the points where secular instability sets in
for uniformly rotating relativistic stars: along a sequence of rotating stars
with fixed angular momentum and increasing central density, the onset of
secular axisymmetric instability is given by

(

∂M(ρc, J)

∂ρc

)

J

= 0 . (B.2.3)

Thus, configurations on the right-side of the maximum mass of a J-constant
sequence are secularly unstable. After the secular instability sets in, the con-
figuration evolves quasi-stationarily until it reaches a point of dynamical in-
stability where gravitational collapse should take place (see Stergioulas, 2003,
and references therein). The secular instability boundary thus separates sta-
ble from unstable stars. It is worth stressing here that the turning-point of a
constant J sequence is a sufficient but not a necessary condition for secular
instability and therefore it establishes an absolute upper bound for the mass
(at constant J). We construct the boundary given by the turning-points of
constant angular momentum sequences as given by Eq. (B.2.3). The question
whether dynamically unstable RWDs can exist or not on the left-side of the
turning-point boundary remains an interesting problem and deserves further
attention in view of the very recent results obtained by Takami et al. (2011)
for some models of rapidly rotating NSs.

Inverse β-decay instability

It is known that a WD might become unstable against the inverse β-decay
process (Z, A) → (Z − 1, A) through the capture of energetic electrons. In
order to trigger such a process, the electron Fermi energy (with the rest-
mass subtracted off) must be larger than the mass difference between the
initial (Z, A) and final (Z − 1, A) nucleus. We denote this threshold energy

as ǫ
β
Z. Usually it is satisfied ǫ

β
Z−1 < ǫ

β
Z and therefore the initial nucleus un-

dergoes two successive decays, i.e. (Z, A) → (Z − 1, A) → (Z − 2, A) (see
e.g. Salpeter (1961a); Shapiro and Teukolsky (1983a)). Some of the possible
decay channels in WDs with the corresponding known experimental thresh-

old energies ǫ
β
Z are listed in Table B.5. The electrons in the WD may even-

tually reach the threshold energy to trigger a given decay at some critical

density ρ
β
crit. Since the electrons are responsible for the internal pressure of

the WD, configurations with ρ > ρ
β
crit become unstable due to the softening

of the EOS as a result of the electron capture process (see e.g. Salpeter, 1961a).

In Table B.5, correspondingly to each threshold energy ǫ
β
Z, the critical density

ρ
β
crit given by the RFMT EOS is shown; see Rotondo et al. (2011b) for details.
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Decay ǫ
β
Z (MeV) ρ

β
crit (g/cm3)

4He →3 H + n → 4n 20.596 1.39 × 1011

12C →12B →12Be 13.370 3.97 × 1010

16O →16N →16C 10.419 1.94 × 1010

56Fe →56Mn →56Cr 3.695 1.18 × 109

Table B.5.: Onset for the inverse β-decay of 4He, 12C, 16O and 56Fe. The ex-

perimental values of the threshold energies ǫ
β
Z have been taken from Table

1 of Audi et al. (2003b); see also (Shapiro and Teukolsky, 1983a). The cor-

responding critical density ρ
β
crit are for the RFMT EOS (see Rotondo et al.,

2011b)
.

Pycnonuclear fusion reactions

In our WD model, we assume a unique nuclear composition (Z, A) through-
out the star. We have just seen that inverse β-decay imposes a limit to the
density of the WD over which the current nuclear composition changes from
(Z, A) to (Z − 1, A). There is an additional limit to the nuclear composition
of a WD. Nuclear reactions proceed with the overcoming of the Coulomb
barrier by the nuclei in the lattice. In the present case of zero temperatures
T = 0, the Coulomb barrier can be overcome because the zero-point energy
of the nuclei (see e.g. Shapiro and Teukolsky, 1983a)

Ep = h̄ωp , ωp =

√

4πe2Z2ρ

A2M2
u

, (B.2.4)

where e is the fundamental charge and Mu = 1.6605 × 10−24 g is the atomic
mass unit.

Based on the pycnonuclear rates by Zel’Dovich (1958b); Cameron (1959),
Salpeter (1961a) estimated that in a time of 0.1 Myr, 1H is converted into 4He
at ρ ∼ 5 × 104 g cm−3, 4He into 12C at ρ ∼ 8 × 108 g cm−3, and 12C into 24Mg
at ρ ∼ 6 × 109 g cm−3. The threshold density for the pycnonuclear fusion
of 16O occurs, for the same reaction time 0.1 Myr, at ρ ∼ 3 × 1011 g cm−3,
and for 10 Gyr at ∼ 1011 g cm−3. These densities are much higher that the
corresponding density for inverse β-decay of 16O, ρ ∼ 1.9 × 1010 g cm−3 (see
Table B.5). The same argument applies to heavier compositions e.g. 56Fe; so
pycnonuclear reactions are not important for heavier than 12C in WDs.

It is important to analyze the case of 4He WDs in detail. At densities
ρpyc ∼ 8 × 108 g cm−3 a 4He WD should have a mass M ∼ 1.35M⊙ (see

e.g. Fig. 3 in Rotondo et al., 2011b). However, the mass of 4He WDs is con-
strained to lower values from their previous thermonuclear evolution: a cold
star with mass > 0.5M⊙ have already burned an appreciable part of its He-
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lium content at earlier stages. Thus, WDs of M > 0.5M⊙ with 4He cores
are very unlikely (see Hamada and Salpeter, 1961, for details). It should
be stressed that 4He WDs with M . 0.5M⊙ have central densities ρ ∼ 106

g cm−3 (Rotondo et al., 2011b) and at such densities pycnonuclear reaction
times are longer than 10 Gyr, hence unimportant. However, we construct
in this work 4He RWDs configurations all the way up to their inverse β-
decay limiting density for the sake of completeness, keeping in mind that
the theoretical 4He WDs configurations with M & 0.5M⊙ could actually not
be present in any astrophysical system.

From the above discussion we conclude that pycnonuclear reactions can
be relevant only for 12C WDs. It is important to stress here that the reason
for which the pycnonuclear reaction time, τC+C

pyc , determines the lifetime of

a 12C WD is that reaction times τC+C
pyc < 10 Gyr are achieved at densities

∼ 1010 g cm−3, lower than the inverse β decay threshold density of 24Mg,
24Mg→24Na→24Ne, ρ ∼ 3.2 × 109 g cm−3 (see e.g. Salpeter, 1961a; Shapiro
and Teukolsky, 1983a). Thus, the pycnonuclear 12C+12C fusion produces un-
stable 24Mg that almost instantaneously decay owing to electron captures,
and so the WD becomes unstable as we discussed in Subsec. B.2.3.

However, the pycnonuclear reaction rates are not known with precision
due to theoretical and experimental uncertainties. Hamada and Salpeter (1961)
had already pointed out in their work that the above pycnonuclear density
thresholds are reliable only within a factor 3 or 4. The uncertainties are re-
lated to the precise knowledge of the Coulomb tunneling in the high den-
sity low temperature regime relevant to astrophysical systems, e.g. WDs and
NSs, as well as with the precise structure of the lattice; impurities, crystal im-
perfections, as well as the inhomogeneities of the local electron distribution
and finite temperature effects, also affect the reaction rates. The energies for
which the so-called astrophysical S-factors are known from experiments are
larger with respect to the energies found in WD and NS crusts, and therefore
the value of the S-factors have to be obtained theoretically from the extrapo-
lation of experimental values using appropriate nuclear models, which at the
same time are poorly constrained. A detailed comparison between the differ-
ent theoretical methods and approximations used for the computation of the
pycnonuclear reaction rates can be found in (Gasques et al., 2005; Yakovlev
et al., 2006).

The S-factors have been computed in (Gasques et al., 2005; Yakovlev et al.,
2006) using up-to-date nuclear models. Following these works, we have com-
puted the pycnonuclear reaction times for C+C fusion as a function of the
density as given by Eq. (B.2.27), τC+C

pyc , which we show in Fig. B.11; we refer
to App. B.2.11 for details.

We obtain that for τC+C
pyc = 10 Gyr, ρpyc ∼ 9.26 × 109 g cm−3 while, for

τC+C
pyc = 0.1 Myr, ρpyc ∼ 1.59 × 1010 g cm−3, to be compared with the value

ρ ∼ 6 × 109 g cm−3 estimated by Salpeter (1961a). In order to compare
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Figure B.11.: Pycnonuclear reaction times at zero temperature for C+C fusion
as a function of the density.

the threshold densities for inverse β-decay and pycnonuclear fusion rates,
we shall indicate in our mass-density and mass-radius relations the above
two density values corresponding to these two lifetimes. It is important to
stress that the computation of the pycnonuclear reactions rates is subjected
to theoretical and experimental uncertainties (see Gasques et al., 2005, for de-
tails). For instance, Hamada and Salpeter (1961) stated that these pycnonu-
clear critical densities are reliable within a factor 3 or 4. If three times larger,
the above value of ρpyc for τC+C

pyc = 0.1 Myr becomes ρpyc ∼ 4.8 × 1010 g

cm−3, larger than the inverse β-decay threshold density ρC
β ∼ 3.97 × 1010

g cm−3 (see Table B.5). As we will see in Sec. B.2.7, the turning-point con-
struction leads to an axisymmetric instability boundary in the density range

ρC,J=0
crit = 2.12 × 1010 < ρ < ρC

β g cm−3 in a specific range of angular veloc-

ities. This range of densities is particularly close to the above values of ρpyc

which suggests a possible competition between different instabilities at high
densities.

B.2.4. WD structure and stability boundaries

The structure of uniformly RWDs have been studied by several authors (see
e.g. James, 1964; Anand, 1965; Roxburgh and Durney, 1966; Monaghan, 1966;
Geroyannis and Hadjopoulos, 1989). The issue of the stability of both uni-
formly and differentially rotating WDs has been studied as well (see e.g. Os-
triker and Bodenheimer, 1968; Ostriker and Tassoul, 1969; Tassoul and Os-
triker, 1970; Durisen, 1975). All the above computations were carried out
within Newtonian gravity or at the post-Newtonian approximation. The EOS
of cold WD matter has been assumed to be either the one of a microscopi-
cally uniform degenerate electron fluid, which we refer hereafter as Chan-
drasekhar EOS (Chandrasekhar, 1931b), or assuming a polytropic EOS. How-
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Figure B.12.: Mass in solar masses versus the central density for 12C (left
panel) and for 16O (right panel) WDs. The solid curve corresponds to the
mass of non-rotating WDs, the Keplerian sequence is the red thick dashed
curve, the blue thick dotted-dashed curve is the inverse β instability bound-
ary, and the green thick solid curve is the axisymmetric instability boundary.
The orange and purple dashed boundaries correspond to the pycnonuclear
densities for reaction times τpyc = 10 Gyr and 0.1 Myr, respectively. All rotat-
ing stable WDs are in the shaded region.

ever, microscopic screening caused by Coulomb interactions as well as the
process of inverse β-decay of the composing nuclei cannot be properly stud-
ied within such EOS (see Rotondo et al., 2011c,b, for details).

The role of general relativistic effects, shown in Rotondo et al. (2011b), has
been neglected in all the above precedent literature. The only exception to
this rule is, up to our knowledge, the work of Arutyunyan et al. (1971), who
investigated uniformly RWDs for the Chandrasekhar EOS within GR. They
use an Ω2 approximation following a method developed by Sedrakyan and
Chubaryan (1968), independently of the work of Hartle (1967). A detailed
comparison of our results with the ones of Arutyunyan et al. (1971) can be
found in App. B.2.11.

In Figs. B.12–B.13 we show the mass-central density relation and the mass-
radius relation of general relativistic rotating 12C and 16O WDs. We explicitly
show the boundaries of mass-shedding, secular axisymmetric instability, in-
verse β-decay, and pycnonculear reactions.

Turning now to the rotation properties, in Fig. B.14 we show the J-M plane
especially focusing on RWDs with masses larger than the maximum non-
rotating mass, hereafter Super-Chandrasekhar WDs (SCWDs). It becomes
clear from this diagram that SCWDs can be stable only by virtue of their non-
zero angular momentum: the lower-half of the stability line of Fig. B.14, from

J = 0 at M/MJ=0
max all the way up to the value of J at MJ 6=0

max ∼ 1.06MJ=0
max, de-

termines the critical(minimum) angular momentum under which a SCWDs
becomes unstable. The upper half of the stability line determines, instead,
the maximum angular momentum that SCWDs can have.
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Figure B.13.: Mass in solar masses versus the equatorial radius in units of
103 km for 12C (left panel) and for 16O (right panel) WDs. The left and right
panels show the configurations for the same range of central densities of the
corresponding panels of Fig. B.12.

Composition ρ
M

J 6=0
max

k M
J=0
max /M⊙ R

M
J=0
max

Pmin R
Pmin
p R

Pmin
eq (T/|W|)Pmin ǫPmin jPmin qPmin

4He 5.46×109 1.0646 1.40906 1163 0.284 564 736 0.0163 0.642 1.004 526
12C 6.95×109 1.0632 1.38603 1051 0.501 817 1071 0.0181 0.647 1.287 1330
16O 7.68×109 1.0626 1.38024 1076 0.687 1005 1323 0.0194 0.651 1.489 2263
56Fe 1.18×109 1.0864 1.10618 2181 2.195 2000 2686 0.0278 0.667 2.879 23702

Table B.6.: Properties of uniformly rotating general relativistic 4He, 12C, 16O
and 56Fe WDs: ρ

MJ 6=0
max

is the central density in g cm−3 corresponding to the

rotating maximum mass MJ 6=0
max; k is the dimensionless factor used to express

the rotating maximum mass MJ 6=0
max as a function of the non-rotating maximum

mass MJ=0
max of WDs, in solar masses, obtained in Rotondo et al. (2011b), as de-

fined in Eq. (B.2.5); the corresponding minimum radius is R
M

J=0
max

, in km; Pmin

is the minimum rotation period in seconds. We recall that the configuration
with Pmin is obtained for a WD rotating at the mass-shedding limit and with
central density equal to the critical density for inverse β-decay (see Table B.5

and the right panel of Fig. B.16). The polar R
Pmin
p and equatorial R

Pmin
eq radii of

the configuration with Pmin are also given in km. The quantity (T/|W|)Pmin is
the ratio between the kinetic and binding energies, the parameter ǫPmin is the
eccentricity of the star, rotating at Pmin. Finally, jPmin and qPmin are the dimen-
sionless angular momentum and quadrupole moment of WDs, respectively.
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Figure B.14.: Dimensionless angular momentum j ≡ cJ/(GM2) versus the
mass of rotating 12C (left panel) and 16O (right panel) WDs, normalized to
the maximum non-rotating mass. All rotating stable WDs are in the shaded
region.

Nuclear Composition EOS ρ
M

J 6=0
max

(g/cm3) R
M

J 6=0
max

p (km) R
M

J 6=0
max

eq (km) M
J 6=0
max /M⊙ PM

J 6=0
max (sec)

µ = 2 Chandrasekhar 1.07 × 1010 1198.91 1583.47 1.5159 0.884

Salpeter 1.07 × 1010 1193.08 1575.94 1.4996 0.883
4He RFMT 5.46 × 109 1458.58 1932.59 1.5001 1.199

Salpeter 1.08 × 1010 1183.99 1564.16 1.4833 0.878
12C RFMT 6.95 × 109 1349.15 1785.98 1.4736 1.074

Salpeter 1.09 × 1010 1178.88 1556.68 1.4773 0.875
16O RFMT 7.68 × 109 1308.09 1730.65 1.4667 1.027

Salpeter 1.14 × 109 2002.43 2693.17 1.2050 2.202
56Fe RFMT 1.18 × 109 2000.11 2686.06 1.2017 2.195

Table B.7.: The maximum rotating mass of general relativistic uniformly ro-

tating 4He, 12C, 16O and 56Fe WDs for different EoS. ρ
M

J 6=0
max

, RMJ 6=0
max

p , RMJ 6=0
max

eq , and

PM
J 6=0
max are central density, polar and equatorial radii, and rotation period of

the configuration with the maximum mass, MJ 6=0
max.

B.2.5. The maximum mass

The maximum masses of rotating WDs belongs to the Keplerian sequence
(see Figs. B.12–B.14) and it can be expressed as

MJ 6=0
max = k MJ=0

max , (B.2.5)

where MJ=0
max is the maximum stable mass of non-rotating WDs and k is a

numerical factor that depends on the chemical composition, see Table B.6 for

details. For 4He, 12C, 16O, and 56Fe RWDs, we found MJ 6=0
max ∼ 1.500, 1.474,

1.467, 1.202 M⊙, respectively.
In Table B.7 we compare the properties of the configuration with maximum

mass using different EOS, namely Chandrasekhar µ = 2, Salpeter, and RFMT
EOS. A comparison with classical results obtained with different treatments
and EOS can be found in App. B.2.11.

It is worth mentioning that the maximum mass of RWDs is not associated
with a critical maximum density for gravitational collapse. This is in con-
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Nuclear composition EoS ρ
β
crit (g/cm3) R

Pmin
p (km) R

Pmin
eq (km) M

J 6=0
Pmin

/M⊙ Pmin (sec)

µ = 2 Chandra 1.37 × 1011 562.79 734.54 1.4963 0.281

Salpeter 1.37 × 1011 560.41 731.51 1.4803 0.281
4He RFMT 1.39 × 1011 563.71 735.55 1.4623 0.285

Salpeter 3.88 × 1010 815.98 1070.87 1.4775 0.498
12C RFMT 3.97 × 1010 816.55 1071.10 1.4618 0.501

Salpeter 1.89 × 1010 1005.62 1324.43 1.4761 0.686
16O RFMT 1.94 × 1010 1005.03 1323.04 1.4630 0.687

Salpeter 1.14 × 109 2002.43 2693.17 1.2050 2.202
56Fe RFMT 1.18 × 109 2000.11 2686.06 1.2018 2.195

Table B.8.: The minimum rotation period of general relativistic rotating 4He,
12C, 16O and 56Fe WDs. ρ

β
crit is the critical density for inverse β decay. MJ 6=0

Pmin
,

R
Pmin
p , and R

Pmin
e are the mass, polar, and equatorial radii corresponding to the

configuration with minimum rotation period, Pmin.

trast with the non-rotating case where the configuration of maximum mass
(turning-point) corresponds to a critical maximum density over which the
WD is unstable against gravitational collapse.

The angular momentum J along the mass-shedding sequence is not con-
stant and thus the turning-point criterion (B.2.3) does not apply to this se-
quence. Therefore the configuration of maximum rotating mass (B.2.5) does
not separate stable from secular axisymmetrically unstable WDs. We have
also verified that none of the RWDs belonging to the mass-shedding sequence
is a turning-point of some J =constant sequence, and therefore they are in-
deed secularly stable. We therefore extend the Keplerian sequence all the way

up to the critical density for inverse β decay, ρ
β
crit, see Table B.5 and Fig. B.12.

B.2.6. The minimum rotation period

The minimum rotation period Pmin of WDs is obtained for a configuration ro-
tating at Keplerian angular velocity, at the critical inverse β-decay density; i.e.
is the configuration lying at the crossing point between the mass-shedding
and inverse β-decay boundaries, see Figs. B.12 and B.14. For 4He, 12C, 16O,
and 56Fe RWDs we found the minimum rotation periods ∼ 0.28, 0.50, 0.69
and 2.19 seconds, respectively (see Table B.6 for details). In Table B.7 we
compare the properties of the configuration with minimum rotation period
using different EOS, namely Chandrasekhar µ = 2, Salpeter, and RFMT EOS.

In the case of 12C WDs, the minimum period 0.50 seconds have to be com-
pared with the value obtained assuming as critical density the threshold for
pycnonuclear reactions. Assuming lifetimes τC+C

pyc = 10 Gyr and 0.1 Myr,

corresponding to critical densities ρpyc ∼ 9.26 × 109 g cm−3 and ρpyc ∼
1.59 × 1010 g cm−3, we obtain minimum periods P

pyc
min = 0.95 and 0.75 sec-

onds, respectively.
It is interesting to compare and contrast some classical results with the ones

presented in this work. Using post-Newtonian approximation, Roxburgh
and Durney (1966) analyzed the problem of dynamical stability of maximally
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rotating RWDs, i.e. WDs rotating at the mass-shedding limit. The result was
a minimum polar radius of 363 km, assuming the Chandrasekhar EOS with
µ = 2. The Roxburgh critical radius is rather small with respect to our min-
imum polar radii, see Table B.6. It is clear that such a small radius would
lead to a configuration with the central density over the limit established by
inverse β-decay: the average density obtained for the Roxburgh’s critical con-
figuration is ∼ 1.47 × 1010 g/cm3, assuming the maximum mass 1.48M⊙ ob-
tained in the same work (see Table B.9 in App. B.2.11). A configuration with
this mean density will certainly have a central density larger than the inverse
β-decay density of 12C and 16O, 3.97 × 1010 g/cm3 and 1.94 × 1010 g/cm3,
respectively (see Table B.5). The rotation period of the WD at the point of dy-
namical instability of Roxburgh must be certainly shorter than the minimum
values presented here.

The above comparison is in line with the fact that we did not find any
turning-point that cross the mass-shedding sequence (see Figs. B.12–B.13).
Presumably, ignoring the limits imposed by inverse β-decay and pycnonu-
clear reactions, the boundary determined by the turning-points could cross
at some higher density the Keplerian sequence. Such a configuration should
have a central density very similar to the one found by Roxburgh and Durney
(1966).

In the work of Arutyunyan et al. (1971) the problem of the minimum rota-
tion period of a WD was not considered. However, they showed their results
for a range of central densities covering the range of interest of our analy-
sis. Thus, we have interpolated their numerical values of the rotation period
of WDs in the Keplerian sequence and calculated the precise values at the
inverse β-decay threshold for 4He, 12C, and 16O that have µ = 2 and there-
fore in principle comparable to the Chandrasekhar EOS results with the same
mean molecular weight. We thus obtained minimum periods ∼ 0.31, 0.55,
0.77 seconds, in agreement with our results (see Table B.8).

It is important to stress that, although it is possible to compare the re-
sults using the Chandrasekhar EOS µ = 2 with the ones obtained for the
RFMT EOS, both qualitative and quantitative differences exist between the
two treatments. In the former a universal mass-density and mass-radius
relation is obtained assuming µ = 2 while, in reality, the configurations of
equilibrium depend on the specific values of Z and A in non-trivial way. For
instance, 4He, 12C, and 16O have µ = 2 but the configurations of equilib-
rium are rather different. This fact was emphasized by Hamada and Salpeter
(1961) in the Newtonian case and further in GR by Rotondo et al. (2011b),
for non-rotating configurations. In Fig. B.15 we present a comparison of the
mass-density and mass-radius for the universal Chandrasekhar µ = 2 and
the RFMT EOS for specific nuclear compositions.
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Figure B.15.: Mass versus central density (left panel) and mass versus equato-
rial radius (right panel) for general relativistic WDs using the Chandrasekhar
and the RFMT EOS.

B.2.7. Occurrence of secular axisymmetric instability

Regarding the stability of rotating WDs, Ostriker and Bodenheimer (1968);
Ostriker and Tassoul (1969); Durisen (1975) showed that uniformly rotating
Newtonian polytropes and WDs described by the uniform degenerate elec-
tron fluid EOS are axisymmetrically stable at any rotation rate. In clear con-
trast with these results, we have shown here that uniformly RWDs can be in-
deed be secularly axisymmetric unstable as can be seen from Figs. B.12–B.14
(green boundary). We have constructed in App. B.2.11 Newtonian RWDs
for the Chandrasekhar EOS and compare the differences with the general
relativistic counterpart. Apart from the quantitative differences for the de-
termination of the mass at high densities, it can be seen from Fig. B.17 (left
panel) the absence of turning-points in the Newtonian mass-density relation.
This can be understood from the fact that the maximum stable mass of non-
rotating WDs is, in the Newtonian case, reached formally at infinite central
density. We should then expect that turning-points will appear only from
a post-Newtonian approximation, where the critical mass is shifted to finite
densities (see e.g. Roxburgh and Durney, 1966, for the calculation of dynam-
ical instability for post-Newtonian RWDs obeying the Chandrasekhar EOS).

In this respect the Fig. B.14 is of particular astrophysical relevance. Con-
figurations lying in the filled region are stable against mass-shedding, in-
verse β-decay and secular axisymmetric instabilities. RWDs with masses
smaller than the maximum non-rotating mass (Sub-Chandrasekhar WDs),

i.e. MJ 6=0 < MJ=0
max, can have angular momenta ranging from a maximum

at the mass-shedding limit all the way down to the non-rotating limit J = 0.
SCWDs, however, are stabilized due to rotation and therefore there exist a
minimum angular momentum, Jmin > 0, to guarantee their stability. We have
shown above that secular axisymmetric instability is relevant for the determi-
nation of this minimum angular momentum of SCWDs (see green boundary
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in Fig. B.14). It is interesting to note in this respect that from our results it
turns out that SCWDs with light chemical compositions such as 4He and 12C,
are unstable against axisymmetric, inverse β-decay and mass-shedding insta-
bilities. On the opposite, in SCWDs with heavier chemical compositions, such
as 16O and 56Fe, the secular axisymmetric instability does not take place; see
Fig. B.14. The existence of the new boundary due to secular axisymmetric
instability is a critical issue for the evolution of SCWDs since their lifetime
might be reduced depending on their initial mass and angular momentum.

From the quantitative point of view, we have found that axisymmetric in-

stability sets in for 12C SCWDs in the range of masses MJ=0
max < M . 1.397M⊙,

for some specific range of rotation periods & 1.24 seconds. We can express
the minimum rotation period that a SCWD with a mass M within the above
mass range can have through the fitting formula

Paxi = 0.062

(

M − MJ=0
max

M⊙

)−0.67

seconds , (B.2.6)

where MJ=0
max is the maximum mass of general relativistic non-rotating 12C

WDs, MJ=0
max ≈ 1.386M⊙ (see Table B.4 and Rotondo et al. (2011b)). Thus,

Eq. (B.2.6) describes the rotation periods of the configurations along the green-
dotted boundary in Figs. B.12, B.13, and B.14. Correspondingly, the cen-
tral density along this instability boundary varies from the critical density of

static 12C WDs, ρC,J=0
crit = 2.12 × 1010 g cm−3 (see Table B.4), up to the inverse

β-decay density, ρC
β = 3.97 × 1010 g cm−3 (see Table B.5).

It is important to note that at the lower edge of the density range for ax-

isymmetric instability, ρC,J=0
crit , the timescale of C+C pycnonuclear reactions

are τC+C
pyc ≈ 339 yr (see Fig. B.11). It becomes then of interest to compare this

timescale with the corresponding one of the secular axisymmetric instability
that sets in at the same density.

The growing time of the secular instability is given by the dissipation time
driven either by gravitational radiation or viscosity (Chandrasekhar, 1970).
However, gravitational radiation reaction is expected to drive secular insta-
bilities for systems with rotational to gravitational energy ratio T/|W| ∼ 0.14,
the bifurcation point between McClaurin spheroids and Jacobi ellipsoids (see
Chandrasekhar, 1970, for details). Therefore, we expect gravitational radi-
ation to become important only for differentially rotating WDs, which can
attain more mass and more angular momentum (Ostriker and Bodenheimer,
1968). In the present case of general relativistic uniformly RWDs, only the vis-
cosity timescale τv is relevant. A rotating star that becomes secularly unstable
first evolve with a characteristic time τv and eventually reach a point of dy-

namical instability, thus collapsing within a time τdyn ≈ Ω−1
K ∼

√
R3/GM .

1 s, where R is the radius of the star (see e.g. Stergioulas, 2003).
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The viscosity timescale can be estimated as τv = R2ρ/η (see e.g. Lindblom,
1987), where ρ and η are the density and viscosity of the star. The viscosity of
a WD assuming degenerate relativistic electrons is given by (Durisen, 1973)

η f luid = 4.74 × 10−2 HΓ(Z)

Z
ρ5/3

[

(

ρ

2 × 106

)2/3

+ 1

]−1

, (B.2.7)

where HΓ(Z) is a slowly varying dimensionless contstant that depends on
the atomic number Z and the Coulomb to thermal energy ratio

Γ =
e2Z2

kBT

(

4π

3

ρ

2ZMu

)1/3

, (B.2.8)

where kB is the Boltzmann constant and A ≃ 2Z has been used.

The expression (B.2.7) is valid for values of Γ smaller than the critical value
for crystallization Γcry. The critical Γcry is not well constrained but its value
should be of the order of Γcry ∼ 100 (see e.g. Durisen, 1973; Shapiro and
Teukolsky, 1983a). The critical value Γcry defines a crystallization tempera-
ture Tcry under which the system behaves as a solid. For Γcry ∼ 100, we have

Tcry ≈ 8 × 107[ρ/(1010 g cm−3)]1/3 K, for Z = 6. When Γ approaches Γcry the
viscosity can increase drastically to values close to (van Horn, 1969; Durisen,
1973)

ηcry = 4.0 × 10−2

(

Z

7

)2/3

ρ5/6 exp[0.1(Γ − Γcry)] . (B.2.9)

For instance, we find that at densities ρC,J=0
crit and assuming a central tem-

perature T & 0.5Tcry with Tcry ≈ 108 K, the viscous timescale is in the range
10 . τv . 1000 Myr, where the upper limit is obtained using Eq. (B.2.7) and
the lower limit with Eq. (B.2.9). These timescales are longer than the pyc-
nonuclear reaction timescale τC+C

pyc = 339 yr at the same density. So, if the
pycnonuclear reaction rates are accurate, it would imply that pycnonuclear
reactions are more important to restrict the stability of RWDs with respect to
the secular instability. However, we have to keep in mind that, as discussed
in Sec. B.2.3, the pycnonuclear critical densities are subjected to theoretical
and experimental uncertainties, which could in principle shift them to higher
values. For instance, a possible shift of the density for pycnonuclear insta-

bility with timescales τC+C
pyc ∼ 1 Myr to higher values ρC+C

pyc > ρC,J=0
crit , would

suggest an interesting competition between secular and pycnonuclear insta-

bility in the density range ρC,J=0
crit < ρ < ρC

β .
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Figure B.16.: Left panel: mass versus the central density for 12C RWDs.
The solid black curves correspond to J=constant sequences, where the static
case J = 0 the thickest one. The color thin-dashed curves correspond to
Ω=constant sequences. The Keplerian sequence is the red thick dashed curve,
the blue thick dotted-dashed curve is the inverse β-decay instability bound-
ary, and the green thick dotted curve is the axisymmetric secular instability
boundary. Right panel: contours of constant rest-mass in the Ω − J plane;
RWDs that evolve along a track with ∂Ω/∂J > 0 spin-down by loosing angu-
lar momentum while, the ones with ∂Ω/∂J < 0, spin-up.

B.2.8. Spin-up and spin-down evolution

It is known that at constant rest-mass M0, entropy S and chemical composi-
tion (Z, A), the spin evolution of a RWD is given by (see Shapiro et al., 1990,
for details)

Ω̇ =
Ė

Ω

(

∂Ω

∂J

)

M0,S,Z,A

, (B.2.10)

where Ω̇ ≡ dΩ/dt and Ė ≡ dE/dt, with E the energy of the star.
Thus, if a RWD is loosing energy by some mechanism during its evolution,

that is Ė < 0, the change of the angular velocity Ω in time depends on the
sign of ∂Ω/∂J; RWDs that evolve along a track with ∂Ω/∂J > 0, will spin-
down (Ω̇ < 0) and the ones following tracks with ∂Ω/∂J < 0 will spin-up
(Ω̇ > 0).

In Fig. B.16 we show, in the left panel, the Ω =constant and J =constant se-
quences in the mass-central density diagram and, in the right panel, contours
of constant rest-mass in the Ω − J plane.

The sign of ∂Ω/∂J can be analyzed from the left panel plot of Fig. B.16
by joining two consecutive J = constant sequences with an horizontal line
and taking into account that J decreases from left to right and from up to
down. The angular velocity Ω, instead, decreases from right to left and from
up to down for SCWDs and, for sub-Chandrasekhar WDs, from left to right
and from up to down. We note that, in the SCWDs region Ω = constant se-
quences satisfy ∂Ω/∂ρc < 0 while, in the sub-Chandrasekhar region, both
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∂Ω/∂ρc < 0 and ∂Ω/∂ρc > 0 appear (see minima). SCWDs can only ei-
ther spin-up by angular momentum loss or spin-down by gaining angular
momentum. In the latter case, the RWD becomes decompressed with time
increasing its radius and moment of inertia, and then SCWDs following this
evolution track will end at the mass-shedding limit (see Fig. B.16). Some evo-
lutionary tracks of sub-Chandrasekhar WDs and SCWDs are shown in the
right panel of Fig. B.16. It is appropriate to recall here that Shapiro et al.
(1990) showed that spin-up behavior by angular momentum loss occurs for
rapidly rotating Newtonian polytropes if the polytropic index is very close
to n = 3, namely for an adiabatic index Γ ≈ 4/3. It was shown explicitly by
Geroyannis and Papasotiriou (2000) that these conditions are achieved only
by Super-Chandrasekhar polytropes.

Besides the confirmation of the above known result for SCWDs in the gen-
eral relativistic case, we report here the presence of minima ∂Ω/∂ρc = 0 for
some sub-Chandrasekhar masses (see e.g. the evolution track of the RWD
with M = 1.38M⊙ in the right panel of Fig. B.16) which raises the possibility
that sub-Chandrasekhar WDs can experience, by angular momentum loss,
not only the intuitively spin-down evolution, but also spin-up epochs.

B.2.9. Astrophysical implications

It is appropriate to analyze the astrophysical consequences of the general rel-
ativistic RWDs presented in this work.

Most of the observed magnetic WDs are massive; for instance REJ 0317-853
with M ∼ 1.35M⊙ and B ∼ (1.7–6.6) × 108 G (see e.g. Barstow et al., 1995;
Külebi et al., 2010b); PG 1658+441 with M ∼ 1.31M⊙ and B ∼ 2.3 × 106 G
(see e.g. Liebert et al., 1983; Schmidt et al., 1992); and PG 1031+234 with the
highest magnetic field ∼ 109 G (see e.g. Schmidt et al., 1986; Külebi et al.,
2009). However, they are generally found to be slow rotators. It is worth
mentioning that such a magnetic WDs can be indeed the result of the merger
of double degenerate binaries; the misalignment of the final magnetic dipole
moment of the newly born RWD with the rotation axis of the star depends on
the difference of the masses of the WD components of the binary.

The precise computation of the evolution of the rotation period have to
account for the actual value at each time of the moment of inertia and the
equatorial and polar radii of the WD. Whether magnetic and gravitational
radiation braking can explain or not the current relatively long rotation peri-
ods of some observed magnetic WDs is an important issue that deserves the
appropriate attention and will be addressed elsewhere.

Magnetic braking of SCWDs has been recently invoked as a possible mech-
anism to explain the delayed time distribution of type Ia supernovae (SNe)
(see Ilkov and Soker, 2012, for details): a type Ia SN explosion is delayed for
a time typical of the spin-down time scale τB due to magnetic braking, pro-
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viding the result of the merging process of a WD binary system is a magnetic
SCWD rather than a sub-Chandrasekhar one. The characteristic timescale
τB of SCWD has been estimated to be 107 . τB . 1010 yr for magnetic fields
comprised in the range 106 . B . 108 G. A constant moment of inertia ∼ 1049

g cm2 and a fixed critical(maximum) rotation angular velocity

Ωcrit ∼ 0.7Ω
J=0
K = 0.7

√

GMJ=0

R3
MJ=0

, (B.2.11)

have been adopted (Ilkov and Soker, 2012).

It is important to recall here that, as discussed in Sec. B.2.8, SCWDs spin-
up by angular momentum loss, and therefore the reference to a “spin-down”
time scale for them is just historical. SCWDs then evolve toward the mass-
shedding limit, which determines in this case the critical angular velocity for
rotational instability.

If we express Ω
J 6=0
K in terms of Ω

J=0
K (see App. B.2.11), taking into account

the values of j and q from the numerical integration, we find for RWDs that
the Keplerian angular velocity can be written as

Ω
J 6=0
K = σΩ

J=0
K , (B.2.12)

where the coefficient σ varies in the interval [0.78,0.75] in the range of cen-
tral densities [105, 1011] g cm−3. It is important to mention that the above
range of σ hold approximately the same independently on the chemical com-
position of the WD. However, the actual numerical value of the critical angu-

lar velocity, Ω
J 6=0
K , is different for different compositions owing to the depen-

dence on (Z, A) of mass-radius relation of non-rotating WDs.

Furthermore, as we have shown, the evolution track followed by a SCWD
depends strongly on the initial conditions of mass and angular momentum
as well as on chemical composition, and evolution of the moment of iner-
tia (see Fig. B.16 and Sec. B.2.8 for details). It is clear that the assumption
of fixed moment of inertia I ∼ 1049 g cm2, leads to a spin-down time scale
depending only on the magnetic field strength. A detailed computation will
lead to a strong dependence on the mass of the SCWD; resulting in a two-
parameter family of delayed times τB(M, B). Detailed calculations of the
lifetime of SCWDs braking-down due to magnetic dipole radiation are then
needed to shed light on this important matter. Theoretical work along these
lines is currently in progress and the results will be presented in a forthcom-
ing publication.

Massive fast rotating and highly magnetized WDs have been proposed as
an alternative scenario of Soft Gamma Ray Repeaters (SGRs) and Anomalous
X-ray Pulsars (AXPs); see Malheiro et al. (2012) for details. Within such sce-
nario, the range of minimum rotation periods of massive WDs found in this
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work, 0.3 . Pmin . 2.2 seconds, depending on the nuclear composition (see
Table B.8), implies the rotational stability of SGRs and AXPs, which possess
observed rotation periods 2 . P . 12 seconds. The relatively long minimum
period of 56Fe RWDs ∼ 2.2 seconds, implies that RWDs describing SGRs and
AXPs have to be composed of nuclear compositions lighter than 56Fe, e.g. 12C
or 16O.

B.2.10. Concluding remarks

We have calculated the properties of uniformly RWDs within the framework
of GR using the Hartle formalism and our new EOS for cold WD matter based
on the relativistic Feynman-Metropolis-Teller treatment (Rotondo et al., 2011c),
which generalizes previous approaches including the EOS of Salpeter (1961a).
A detailed comparison with RWDs described by the Chandrasekhar and the
Salpeter EOS has been performed.

We constructed the region of stability of RWDs taking into account the
mass-shedding limit, secular axisymmetric instability, inverse β-decay, and
pycnonuclear reaction lifetimes. The latter have been computed using the
updated theoretical models of Gasques et al. (2005); Yakovlev et al. (2006).
We found that the minimum rotation periods for 4He, 12C, 16O, and 56Fe
RWDs are ∼ 0.3, 0.5, 0.7 and 2.2 seconds, respectively (see Table B.8). For
12C WDs, the minimum period 0.5 seconds needs to be compared with the
values P

pyc
min = 0.75 and 0.95 seconds, obtained assuming as critical density

the threshold for pycnonuclear reactions for lifetimes τC+C
pyc = 0.1 Myr and 10

Gyr, respectively. For the same chemical compositions, the maximum masses
are ∼ 1.500, 1.474, 1.467, 1.202 M⊙ (see Table B.7). These results and addi-
tional properties of RWDs can be found in Table B.6.

We have presented a new instability boundary of general relativistic SCWDs,
over which they become axisymmetrically unstable. We have expressed the
range of masses and rotation periods where this occurs through a fitting for-
mula given by Eq. (B.2.6). A comparison with Newtonian RWDs in App. B.2.11
show to the conclusion that this new boundary of instability for uniformly ro-
tating WDs is a general relativistic effect.

We showed that, by loosing angular momentum, sub-Chandrasekhar RWDs
can experience both spin-up and spin-down epochs while, SCWDs, can only
spin-up. These results are particularly important for the evolution of WDs
whose masses approach, either from above or from below, the maximum
non-rotating mass. The knowledge of the actual values of the mass, radii,
and moment of inertia of massive RWDs are relevant for the computation of
delay collapse times in the models of type Ia SN explosions. A careful analy-
sis of all the possible instability boundaries as the one presented here have to
be taken into account during the evolution of the WD at pre-SN stages.

We have indicated specific astrophysical systems where the results of this
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work are relevant; for instance the long rotation periods of observed massive
magnetic WDs; the delayed collapse of SCWDs as progenitors of type Ia SNe;
and the alternative scenario for SGRs and AXPs based on massive RWDs.

B.2.11. Supplementary information

The Hartle-Thorne solution and equatorial circular orbits

The HT metric given by Eq. (B.2.1) can be written in an analytic closed-form
in the exterior vacuum case in terms of the total mass M, angular momentum
J, and quadrupole moment Q of the rotating star. The angular velocity of
local inertial frames ω(r), proportional to Ω, and the functions h0, h2, m0, m2,
k2, proportional to Ω2, are derived from the Einstein equations (see Hartle,
1967; Hartle and Thorne, 1968, for details). Thus, the metric can be written as

ds2 =

(

1 − 2M

r

)

[

1 + 2k1P2(cos θ) + 2

(

1 − 2M

r

)−1 J2

r4
(2 cos2 θ − 1)

]

dt2

+
4J

r
sin2 θdtdφ

−
(

1 − 2M

r

)−1
[

1 − 2

(

k1 −
6J2

r4

)

P2(cos θ)− 2

(

1 − 2M

r

)−1 J2

r4

]

dr2

− r2[1 − 2k2P2(cos θ)](dθ2 + sin2 θdφ2) (B.2.13)

where

k1 =
J2

Mr3

(

1 +
M

r

)

+
5

8

Q − J2/M

M3
Q2

2

( r

M
− 1
)

,

k2 = k1 +
J2

r4
+

5

4

Q − J2/M

M2r

(

1 − 2M

r

)−1/2

Q1
2

( r

M
− 1
)

,

and

Q1
2(x) = (x2 − 1)1/2

[

3x

2
ln

x + 1

x − 1
− 3x2 − 2

x2 − 1

]

,

Q2
2(x) = (x2 − 1)

[

3

2
ln

x + 1

x − 1
− 3x3 − 5x

(x2 − 1)2

]

,

are the associated Legendre functions of the second kind, with x = r/M − 1,
and P2(cos θ) = (1/2)(3 cos2 θ − 1) is the Legendre polynomial. The con-
stants M, J and Q the total mass, angular momentum and mass quadrupole
moment of the rotating object, respectively. This form of the metric corrects
some misprints of the original paper by Hartle and Thorne (1968). The precise
numerical values of M, J and Q are calculated from the matching procedure
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of the exterior and interior metrics at the surface of the star.

The total mass of a rotating configuration is defined as M = MJ 6=0 =
MJ=0 + δM, where MJ=0 is the mass of non-rotating configuration and δM is
the change in mass of the rotating from the non-rotating configuration with
the same central density. It should be stressed that in the terms involving J2

and Q the total mass M can be substituted by MJ=0 since δM is already a
second order term in the angular velocity.

The four-velocity u of a test particle on a circular orbit in equatorial plane
of axisymmetric stationary spacetime can be parametrized by the constant
angular velocity Ω with respect to an observer at infinity

u = Γ[∂t + Ω∂φ], (B.2.14)

where Γ is a normalization factor which assures that uαuα = 1. From normal-
ization and geodesics conditions we obtain the following expressions for Γ

and Ω = uφ/ut

Γ = ±(gtt + 2Ωgtφ + Ω2gφφ)
−1/2, (B.2.15)

gtt,r + 2Ωgtφ,r + Ω2gφφ,r = 0, (B.2.16)

hence, Ω, the solution of (B.2.15), is given by

Ω±orb(r) =
uφ

ut
=

−gtφ,r ±
√

(gtφ,r)2 − gtt,rgφφ,r

gφφ,r
, (B.2.17)

where (+/−) stands for co-rotating/counter-rotating orbits, uφ and ut are
the angular and time components of the four-velocity, and a colon stands
for partial derivative with respect to the corresponding coordinate. In our
case one needs to consider only co-rotating orbits (omitting the plus sign
in Ω+orb(r) = Ωorb(r)) to determine the mass shedding (Keplerian) angu-
lar velocity on the surface of the WD. For the Hartle-Thorne external solution
Eq. (B.2.13) we have

Ωorb(r) =

√

M

r3

[

1 − jF1(r) + j2F2(r) + qF3(r)
]

, (B.2.18)

where j = J/M2 and q = Q/M3 are the dimensionless angular momentum
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and quadrupole moment,

F1 =

(

M

r

)3/2

,

F2 =
48M7 − 80M6r + 4M5r2 − 18M4r3 + 40M3r4 + 10M2r5 + 15Mr6 − 15r7

16M2r4(r − 2M)

+ F,

F3 =
6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4

16M2r(r − 2M)/5
− F,

F =
15(r3 − 2M3)

32M3
ln

r

r − 2M
.

The mass shedding limiting angular velocity of a rotating star is the Keple-
rian angular velocity evaluated at the equator (r = Req), i.e.

Ω
J 6=0
K = Ωorb(r = Req). (B.2.19)

In the static case i.e. when j = 0 hence q = 0 and δM = 0 we have the
well-known Schwarzschild solution and the orbital angular velocity for a test

particle Ω
J=0
ms on the surface (r = R) of the WD is given by

Ω
J=0
K =

√

MJ=0

R3
MJ=0

. (B.2.20)

We turn now to the weak field limit. Let us estimate the values of j and q re-
covering physical units with c and G. The dimensionless angular momentum
is

j =
cJ

GM2
=

c

G

αMR2Ω

M2
= α

(

ΩR

c

)(

GM

c2R

)−1

, (B.2.21)

where we have used the fact that J = IΩ, with I = αMR2, and α ∼ 0.1
from our numerical integrations. For massive and fast rotating WDs we have
(ΩR)/c ∼ 10−2 and (GM)/(c2R) ∼ 10−3, so j ∼ 1.

The dimensionless quadrupole moment q is

q =
c4

G2

Q

M3
=

c4

G2

βMR2

M3
= β

(

GM

c2R

)−2

, (B.2.22)

where we have expressed the mass quadrupole moment Q in terms of mass
and radius of the WD, Q = βMR2, where β ∼ 10−2, so we have q ∼ 104.

The large values of j and q might arise some suspicion on the products jF1,
j2F2 and qF3 as real correction factors in Eq. (B.2.18). It is easy to check this in
the weak field limit M/r ≪ 1, where the functions Fi can be expanded as a
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power-series

F1 =

(

M

r

)3/2

,

F2 ≈ 1

2

(

M

r

)3

− 117

28

(

M

r

)4

− 6

(

M

r

)5

− ...,

F3 ≈ 3

4

(

M

r

)2

+
5

4

(

M

r

)3

+
75

28

(

M

r

)4

+ 6

(

M

r

)5

+ ...

so evaluating at r = R

jF1 = α

(

ΩR

c

)(

GM

c2R

)1/2

, j2F2 =
α

2

(

ΩR

c

)(

GM

c2R

)2

, (B.2.23)

so we finally have jF1 ∼ 10−9/2, j2F2 ∼ 10−9, and qF3 ∼ 10−2. We can there-
fore see that the products are indeed corrections factors and, in addition, that
effect due to the quadrupole deformation is larger than the frame-dragging
effect.

Pycnonuclear fusion reaction rates

The theoretical framework for the determination of the pycnonuclear reac-
tion rates was developed by Salpeter and van Horn (1969). The number of
reactions per unit volume per unit time can be written as

Rpyc = Z4AρS(Ep)3.90 × 1046λ7/4 exp(−2.638/
√

λ) cm−3 s−1 ,(B.2.24)

λ =
1

Z2A4/3

(

ρ

1.3574 × 1011 g cm−3

)1/3

, (B.2.25)

where S are astrophysical factors in units of Mev barns (1 barn=10−24 cm2)
that have to be evaluated at the energy Ep given by Eq. (B.2.4).

For the S-factors we adopt the results of Gasques et al. (2005) calculated
with the NL2 nuclear model parameterization. For center of mass energies
E ≥ 19.8 MeV, the S-factors can be fitted by

S(E) = 5.15 × 1016 exp

[

−0.428E − 3E0.308

1 + e0.613(8−E)

]

MeV barn , (B.2.26)

which is appropriate for the ranges of the zero-point energies at high densi-
ties. For instance, 12C nuclei at ρ = 1010 g cm−3 have a zero-point oscillation
energy Ep ∼ 34 keV.
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All the nuclei (Z, A) at a given density ρ will fuse in a time τpyc given by

τpyc =
nN

Rpyc
=

ρ

AMuRpyc
, (B.2.27)

where nN = ρ/(AMu) is the ion-density. Gasques et al. (2005) estimated that
the S-factors (B.2.26) are uncertain within a factor ∼ 3.5; it is clear from the
above equation that for a given lifetime τpyc such uncertainties reflect also in
the determination of the density threshold.

Comparison with the Newtonian treatment and other works

We have constructed solutions of the Newtonian equilibrium equations for
RWDs accurate up to order Ω2, following the procedure of Hartle (1967). In
Fig. B.17 (left panel) we compare these Newtonian configurations with gen-
eral relativistic RWDs for the Chandrasekhar EOS with µ = 2. We can see
clearly the differences between the two mass-density relations toward the
high density region, as expected. A most remarkable difference is the ex-
istence of axisymmetric instability boundary in the general relativistic case,
absent in its Newtonian counterpart.

Up to our knowledge, the only previous work on RWDs within GR is the
one of Arutyunyan et al. (1971). A method to compute RWDs configurations
accurate up to second order in Ω was developed by two of the authors (see
Sedrakyan and Chubaryan, 1968, for details), independently of the work of
Hartle (1967). In (Arutyunyan et al., 1971), RWDs were computed for the
Chandrasekhar EOS with µ = 2.

In Fig. B.17 (right panel) we show the mass-central density relation ob-
tained with their method with the ones constructed in this work for the same
EOS. We note here that the results are different even at the level of static
configurations, and since the methods are based on construction of rotating
configurations from seed static ones, those differences extrapolate to the cor-
responding rotating objects. This fact is to be added to the possible additional
difference arising from the different way of approaching the order Ω2 in the
approximation scheme. The differences between the two equilibrium config-
urations are evident.

Turning now to the problem of the maximum mass of a RWD, in Table
B.9 we present the previous results obtained in Newtonian, Post-Newtonian
approach and GR by several authors. Depending on their method, approach,
treatment, theory and numerical code the authors showed different results.
These maximum mass of RWDs are to be compared with the ones found in
this work and presented in Table B.7 for the Chandrasekhar µ = 2, Salpeter,
and RFMT EOS.
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Figure B.17.: Left panel: Mass versus central density of Newtonian and gen-
eral relativistic WDs for the Chandrasekhar EOS with µ = 2. Both the non-
rotating case and the Keplerian sequence are shown. We have stopped the
density, just for sake of comparison, at the critical density for the onset of
inverse β-decay of 4He ρ = 1.39 × 1011 g cm−3. Right panel: Mass versus
central density relation for general relativistic WDs for the Chandrasekhar
EOS with µ = 2 for the static and the Keplerian sequence in this work and
the one of Arutyunyan et al. (1971).

Treatment/EOS MJ 6=0
max/M⊙ References

Newtonian/Chandrasekhar µ = 2 1.474 Anand (1965)
Newtonian/Polytrope n = 3 1.487 Roxburgh (1965)

Post-Newtonian/Chandrasekhar µ = 2 1.482 Roxburgh and Durney (1966)
GR/Chandrasekhar µ = 2 1.478 Arutyunyan et al. (1971)

Table B.9.: Maximum rotating mass of WDs in literature.
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Accuracy of the Hartle’s approach

In his classic work, Hartle (1967) described the slow rotation regime by re-
questing that fractional changes in pressure, energy density, and gravitational
field due to the rotation of the star are all much smaller with respect to a non-
rotating star with the same central density. From a dimensional analysis, such
a condition implies

Ω2 ≪
( c

R

)2 GMJ=0

c2R
, (B.2.28)

where MJ=0 is the mass of the unperturbed configuration and R its radius.
The expression on the right is the only multiplicative combination of M, R, G,
and c, and in the Newtonian limit coincides with the critical Keplerian angu-

lar velocity Ω
J=0
K given by Eq. (B.2.20). For unperturbed configurations with

(GM)/(c2R) < 1, the condition (B.2.28) implies ΩR/c ≪ 1. Namely, ev-
ery particle must move at non-relativistic velocities if the perturbation to the
original geometry have to be small in terms of percentage. Eq. (B.2.28) can be
also written as

Ω ≪ Ω
J=0
K , (B.2.29)

which is the reason why it is often believed that the slow rotation approxima-
tion is not suitable for the description of stars rotating at their mass-shedding
value.

Let us discuss this point more carefully. It is clear that the request that the
contribution of rotation to pressure, energy density, and gravitational field
to be small can be summarized in a single expression, Eq. (B.2.28), since all
of them are quantitatively given by the ratio between the rotational and the
gravitational energy of the star. The rotational energy is T ∼ MR2Ω2 and
the gravitational energy is |W| ∼ GM2/R = (GM/c2R)Mc2, hence the con-
dition T/|W| ≪ 1 leads to Eq. (B.2.28) or (B.2.29). Now we will discuss the
above condition for realistic values of the rotational and gravitational energy
of a rotating star, abandoning the assumption of either fiducial or order of
magnitude calculations. We show below that the actual limiting angular ve-
locity on the right-hand-side of the condition (B.2.29) has to be higher than
the Keplerian value.

We can write the gravitational binding energy of the star as |W| = γGM2/R
and the rotational kinetic energy as T = (1/2)IΩ2 = (1/2)αMR2Ω2, where
the constants γ and α are structure constants that depends on the density and
pressure distribution inside the star. According to the slow rotation approxi-
mation, T/|W| ≪ 1, namely

T

|W| =
αMR2Ω2/2

γGM2/R
=

(

α

2γ

)(

GM

R3

)−1

Ω2 =

(

α

2γ

)

(

Ω

Ω
J=0
K

)2

≪ 1,

(B.2.30)
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which can be rewritten in analogous form to Eq. B.2.29 as

Ω ≪
√

2γ

α
Ω

J=0
K . (B.2.31)

Now we check that the ratio of the structural constants is larger than unity.
Let us first consider the simplest example of a constant density sphere. In

this case α = 2/5 and γ = 3/5, so
√

2γ/α ≈ 1.73, and the condition (B.2.31)

is Ω ≪ 1.73Ω
J=0
K . If we consider now a more realistic density profile, for

instance, a polytrope of index n = 3, we have (see e.g. Shapiro and Teukolsky,
1983a)

|W| = 3

5 − n

GM2

R
=

3

2

GM2

R
, T =

1

2
IΩ2 =

1

2

2

3
M〈r2〉Ω2 (B.2.32)

where 〈r2〉 = 0.11303R2. Therefore we have in this case γ = 3/2 and α =

0.075, and so Eq. (B.2.31) becomes Ω ≪ 6.32Ω
J=0
K . This is not surprising since

T/|W| → 0.025 when Ω → Ω
J=0
K .

The above analysis has been done assuming spherical symmetry. When
deviations from the spherical shape are taken into account, the ratio T/|W|
turn to be even smaller than the previous estimates based on spherical poly-
tropes. Since the equatorial radius satisfies Req > R, at mass-shedding we

will have Ω < Ω
J=0
K . In fact, in the Roche model the mass-shedding angular

velocity is Ω
J 6=0
K = (2/3)3/2Ω

J=0
K ≈ 0.544Ω

J=0
K , corresponding to a rotational

to gravitational energy ratio T/|W| ≈ 0.0074 (see e.g. Shapiro and Teukolsky,
1983a).

In our RWDs we have obtained that the mass-shedding angular velocity

satisfies Ω
J 6=0
K ≈ 0.75Ω

J=0
K at any density; see Eq. (B.2.12). Accordingly to this,

we show in the left panel of Fig. B.18 the ratio T/|W| for RWDs as a function
of the central density for the Keplerian sequence. For an increasing central
density T/|W| decreases. On the right panel we have plotted the eccentric-
ity versus the central density. For increasing central density the eccentricity
decreases, so RWDs become less oblate at higher densities.

Now we turn to evaluate more specifically the deviations from the spheri-
cal symmetry. The expansion of the radial coordinate of a rotating configura-
tion r(R, θ) in powers of the angular velocity is written as (Hartle, 1967)

r = R + ξ(R, θ) + O(Ω4), (B.2.33)

where ξ is the difference in the radial coordinate, r, between a point located
at the polar angle θ on the surface of constant density ρ(R) in the rotating
configuration, and the point located at the same polar angle on the same
constant density surface in the non-rotating configuration. In the slow ro-
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Figure B.18.: Left panel: rotational to gravitational energy ratio versus the
central density for maximally rotating RWDs, calculated with the Chan-
drasekhar EOS µ = 2. Right panel: the eccentricity versus the central density
for the same sequence of RWDs.

tation regime, the fractional displacement of the surfaces of constant den-
sity due to the rotation have to be small, namely ξ(R, θ)/R ≪ 1, where
ξ(R, θ) = ξ0(R) + ξ2(R)P2(cos θ) and ξ0(R) and ξ2(R) are function of R pro-
portional to Ω2. On the right panel of Fig. B.19 the difference in the radial
coordinate over static radius versus the central density is shown. Here we
see the same tendency as in the case of the eccentricity, that these differences
are decreasing with an increasing central density. On the left panel the ro-
tation parameter ΩR/c versus the central density is shown. Here, with an
increasing central density the rotation parameter increases. Thus, for higher
densities the system becomes less oblate, smaller in size with a larger rotation
parameter i.e. higher angular velocity.
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Figure B.19.: Left panel: the rotation parameter normalized to the speed of
light versus the central density. Right panel: the difference in the radial co-
ordinate over the static radius versus the central density. The solid curve
corresponds to the difference between equatorial (θ = π/2) and static radii
and the dashed curve corresponds to the difference between polar (θ = 0)
and static radii.
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In order to estimate the accuracy of the slow rotation approximation for
RWDs, based on the above results, it is useful to compare all the above num-
bers with the known results for NSs. For instance, we notice that in NSs
ΩR/c ∼ 10−1, ξ(R, 0)/R ∼ 10−2 and ξ(R, π/2)/R ∼ 10−1 (see e.g. Berti
et al., 2005), to be compared with the corresponding values of RWDs shown
in Fig. B.19, ΩR/c . 10−2, ξ(R, 0)/R ∼ 10−2 and ξ(R, π/2)/R ∼ 10−1.
Weber and Glendenning (1992) calculate the accuracy of the Hartle’s second
order approximation and found that the mass of maximally rotating NSs is
accurate within an error . 4%; Benhar et al. (2005a) found that the inclusion
of third order expansion Ω3 improved the mass-shedding limit numerical
values in less than 1% for NSs obeying different EOS. On the other-hand, it
is known that the ratio T/|W| in the case of NSs is as large as ∼ 0.1 in the
Keplerian sequence (see e.g. Tables 1–5 of Berti and Stergioulas (2004)). Since
RWDs have T/|W| and ΩR/c smaller than NSs, and δR/R = ξ/R at least
of the same order (see left panel of Fig. B.18), we expect that the description
of the strucure of RWDs up to the mass-shedding limit within the Hartle’s
approach to have at least the same accuracy as in the case of NSs.
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B.3. SGRs and AXPs as rotation powered massive

white dwarfs

B.3.1. Introduction

Soft Gamma Ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are
a class of compact objects that show interesting observational properties (see
e.g. Mereghetti, 2008a): rotational periods in the range P ∼ (2–12) s, a narrow
range with respect to the wide range of ordinary pulsars P ∼ (0.001–10) s;
spin-down rates Ṗ ∼ (10−13–10−10), larger than ordinary pulsars Ṗ ∼ 10−15;
strong outburst of energies ∼ (1041–1043) erg, and for the case of SGRs, gi-
ant flares of even large energies ∼ (1044–1047) erg, not observed in ordinary
pulsars.

The recent observation of SGR 0418+5729 with a rotational period of P =
9.08 s, an upper limit of the first time derivative of the rotational period Ṗ <

6.0 × 10−15 (Rea et al., 2010), and an X-ray luminosity of LX = 6.2 × 1031

erg/s promises to be an authentic Rosetta Stone, a powerful discriminant for
alternative models of SGRs and AXPs.

If described as a neutron star of M = 1.4M⊙, R = 10 km and a moment of
inertia I ≈ 1045 g cm2, which we adopt hereafter as fiducial parameters, the
loss of rotational energy of the neutron star

ĖNS
rot = −4π2 I

Ṗ

P3
= −3.95 × 1046 Ṗ

P3
erg/s , (B.3.1)

associated to its spin-down rate Ṗ, cannot explain the X-ray luminosity of
SGR 0418+5729, i.e. ĖNS

rot < LX, excluding the possibility of identifying this
source as an ordinary spin-down powered pulsar.

The magnetar model of SGRs and AXPs, based on a neutron star of fiducial
parameters, needs a magnetic field larger than the critical field for vacuum
polarization Bc = m2

e c3/(eh̄) = 4.4 × 1013 G in order to explain the observed
X-ray luminosity in terms of the release of magnetic energy (see Duncan and
Thompson, 1992; Thompson and Duncan, 1995, for details). However, the
inferred upper limit of the surface magnetic field of SGR 0418+5729 B < 7.5×
1012 G describing it as a neutron star (see Rea et al., 2010, for details), is well
below the critical field challenging the power mechanism based on magnetic
field decay purported in the magnetar scenario.

We show that the observed upper limit on the spin-down rate of SGR
0418+5729 is, instead, perfectly in line with a model based on a massive fast
rotating highly magnetized white dwarf (see e.g. Paczynski, 1990) of mass
M = 1.4M⊙, radius R = 103 km, and moment of inertia I ≈ 1049 g cm2,
which we adopt hereafter as fiducial white dwarf parameters. Such a con-
figuration leads for SGR 0418+5729 to a magnetic field B < 7.5 × 108 G. The
X-ray luminosity can then be expressed as originating from the loss of rota-
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tional energy of the white dwarf leading to a theoretical prediction for the
first time derivative of the rotational period

LXP3

4π2 I
≤ ṖSGR0418+5729 < 6.0 × 10−15 , (B.3.2)

where the lower limit is established by assuming that the observed X-ray
luminosity of SGR 0418+5729 coincides with the rotational energy loss of the
white dwarf. For this specific source, the lower limit of Ṗ given by Eq. (B.3.2)
is ṖSGR0418+5729 ≥ 1.18 × 10−16. This prediction is left to be verified by the
dedicated scientific missions.

The assumption of massive fast rotating highly magnetized white dwarfs
appears to be very appropriate since their observation has been solidly con-
firmed in the last years thanks to observational campaigns carried out by the
X-ray Japanese satellite Suzaku (see e.g. Terada et al., 2008c; Terada, 2008; Ter-
ada et al., 2008d,b,a). The magnetic fields observed in white dwarfs are larger
than 106 G all the way up to 109 G (see e.g Angel et al., 1981; Ferrario et al.,
1997; Należyty and Madej, 2004; Ferrario and Wickramasinghe, 2005; Terada
et al., 2008c; Külebi et al., 2009). These observed massive fast rotating highly
magnetized white dwarfs share common properties with SGRs/AXPs. The
specific comparison between SGR 0418+5729 and the white dwarf AE Aquarii
(Terada et al., 2008c) is given in Sec. B.3.4.

The aim of this article is to investigate the implications of the above consid-
erations to all observed SGRs and AXPs. The article is organized as follows.
In Sec. B.3.2 we summarize the main features of a model for SGRs and AXPs
based on rotation powered white dwarfs while, in Sec. B.3.3, we recall the
magnetar model. In Sec. B.3.4 we present the observations of massive fast
rotating highly magnetized white dwarfs. The constraints on the rotation
rate imposed by the rotational instabilities of fast rotating white dwarfs are
discussed in Sec. B.3.5 and in Sec. B.3.6 we analyze the glitch-outburst con-
nection in SGRs and AXPs. The magnetospheric emission from the white
dwarf is discussed in Sec. B.3.7 and the possible connection between SGRs
and AXPs with supernova remnants is presented in Sec. B.3.8. In Sec. B.3.9
we address the problem of fiducial parameters of both white dwarfs and neu-
tron stars and, in Sec. B.3.10, we summarize conclusions and remarks.

B.3.2. SGRs and AXPs within the white dwarf model

We first recall the pioneering works of Morini et al. (1988) and Paczynski
(1990) on 1E 2259+586. This source is pulsating in the X-rays with a period
P = 6.98 s (Fahlman and Gregory, 1981), a spin-down rate of Ṗ = 4.8 × 10−13

(Davies et al., 1990) and X-ray luminosity LX = 1.8× 1034 erg/s (Gregory and
Fahlman, 1980; Hughes et al., 1981; Morini et al., 1988). Specially relevant in
the case of 1E 2259+586 is also its position within the supernova remnant
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G109.1-1.0 with age estimated t − t0 = (12–17) kyr (Gregory and Fahlman,
1980; Hughes et al., 1981).

Paczynski developed for 1E 2259+586 a model based on a massive fast ro-
tating highly magnetized white dwarf. The upper limit on the magnetic field
(see e.g. Ferrari and Ruffini, 1969) obtained by requesting that the rotational
energy loss due to the dipole field be smaller than the electromagnetic emis-
sion of the dipole, is given by

B =

(

3c3

8π2

I

R6
PṖ

)1/2

, (B.3.3)

where P and Ṗ are observed properties and the moment of inertia I and
the radius R of the object are model dependent properties. For the afore-
mentioned fiducial parameters of a fast rotating magnetized white dwarf,
Eq. (B.3.3) becomes

B = 3.2 × 1015
(

PṖ
)1/2

G . (B.3.4)

The loss of rotational energy within this model is given by

ĖWD
rot = −4π2 I

Ṗ

P3
= −3.95 × 1050 Ṗ

P3
erg/s , (B.3.5)

which amply justifies the steady X-ray emission of 1E 2259+586 (see Table
B.12).

A further development for the source 1E 2259+586, came from Usov (1994),
who introduced the possibility in a white dwarf close to the critical mass
limit, to observe sudden changes in the period of rotation, namely glitches.

When the rotation of the white dwarf slows down, centrifugal forces of the
core decrease and gravity pulls it to a less oblate shape thereby stressing it.
The release of such stresses leads to a sudden decrease of moment of inertia
and correspondingly, by conservation of angular momentum

J = IΩ = (I + ∆I)(Ω + ∆Ω) = constant , (B.3.6)

to a shortening of the rotational period

∆I

I
=

∆P

P
= −∆Ω

Ω
, (B.3.7)

leading to a gain of rotational energy in the spin-up process of the glitch

∆EWD
rot = −2π2 I

P2

∆P

P
= −1.98 × 1050 ∆P

P3
erg , (B.3.8)

which is then released in the burst activity on the time scales from months to
years (see e.g. Fig. B.20).
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For the evolution of the period close to a glitch we follow the parameteriza-
tion by Manchester and Taylor (1977). The angular velocity Ω = 2π/P, since
the glitch time t = tg, until the complete or partial recovery, can be described
as

Ω = Ω0(t) + ∆Ω[1 − Q(1 − e−(t−tg)/τd)] , (B.3.9)

where Ω0(t) = Ω0 + Ω̇(t− tg) is the normal evolution of the frequency in ab-

sence of glitch, being Ω0 the frequency prior to the glitch, ∆Ω = −2π∆P/P2

is the initial frequency jump, which can be decomposed in the persistent and
decayed parts, ∆Ωp and ∆Ωd respectively, τd is the timescale of the exponen-
tial decay of the frequency after the glitch and Q = ∆Ωd/∆Ω = 1−∆Ωp/∆Ω

is the recovery fraction or “healing parameter”. For full recovery we have
Q = 1, Ω(t >> τd) = Ω0, and for zero recovery Q = 0, Ω(t >> τd) =
Ω0(t) + ∆Ω. For simplicity we assume in the following and especially below
in Sec. B.3.6, complete recovery Q = 1.

This mechanism in white dwarfs is similar, although simpler, than the one
used to explain e.g. glitches in ordinary pulsars (see e.g. Baym and Pines,
1971; Shapiro and Teukolsky, 1983a). The essential difference is that neutron
stars are composed by a superfluid core and a solid crust, being the latter the
place where starquakes can originate leading to glitches. A two-component
description is then needed, see e.g. Shapiro and Teukolsky (1983a). In the
present case of a massive rotating white dwarf, such a two-component struc-
ture does not exist and the white dwarf behaves as a single solid system.
What is important to stress is that the rotational energy released for Q ≥ 1 is
largely sufficient for the explanation of the bursting phenomena, see Sec. B.3.6
for details.

The crystallization temperature of a white dwarf composed of nuclei (Z, A)
and mean density ρ̄ is given by (see e.g. Shapiro and Teukolsky, 1983a; Usov,
1994)

Tcry ≃ 2.28 × 105 Z2

A1/3

(

ρ̄

106g/cm3

)1/3

K . (B.3.10)

Thus, assuming an internal white dwarf temperature ∼ 107 K we find
that the mean density for the crystallization of the white dwarf should be
∼ 2.2× 107 g/cm3 for 12C, ∼ 5.2× 106 g/cm3 for 16O and ∼ 1.25× 106 g/cm3

for 56Fe. Very massive white dwarfs as the ones we are considering here have
mean densities ∼ 109 g/cm3 and therefore a considerable fraction of their
size should be in principle solid at these high temperatures (see also Althaus
et al., 2005, 2007). It is worth to mention that, the phase separation of the
constituents of CO white dwarfs, theoretically expected to occur in the crys-
tallization process (see Garcia-Berro et al., 1988, for details), has been recently
observationally confirmed solving the puzzle of the age discrepancy of the
open cluster NGC 6791 (Garcı́a-Berro et al., 2010a).

Under these physical conditions, starquakes leading to glitches in the white

1824



B.3. SGRs and AXPs as rotation powered massive white dwarfs

dwarf may occur with a recurrence time (see e.g. Baym and Pines, 1971; Usov,
1994)

δtq =
2D2

B

|∆P|/P

|Ėrot|
, (B.3.11)

where Ėrot is the loss of rotational energy (B.3.5), D = (3/25) GM2
c /Rc, B =

0.33 (4π/3)R3
c e2Z2[ρ̄c/(Amp)]4/3, Mc, Rc and ρ̄c are the mass, the radius and

the mean density of the solid core, and mp is the proton mass.
For the specific case of 1E 2259+586, Usov predicted the possible existence

of changes of period ∆P/P ≈ −(1–3)× 10−6 with a recurrence time between
cracks δtq ≈ 7 × 106 |∆P| /P yr ≈ a few times (1–10) yr. It is impressive that

in 2002 indeed changes of the order of ∆P/P ≈ −4 × 10−6 were observed in
1E 2259+586 (Kaspi et al., 2003; Woods et al., 2004) (see Fig. B.20 for details).

Figure B.20.: Timing analysis of the glitch of 1E 2259+586 on June 2002 (taken
from Woods et al., 2004). The vertical axis shows the evolution of the spin fre-
quency and the horizontal axis the date time. The observed fractional change
of period is ∆P/P = −∆Ω/Ω ∼ −4× 10−6 and the observed energy released
during the event is ∼ 3 × 1041 erg (Woods et al., 2004). Within the white
dwarf model from such a ∆P/P we obtain ∆EWD

rot ∼ 1.7 × 1043 erg as given
by Eq. (B.3.8). We have modified the original figure (Woods et al., 2004) by
indicating explicitly where the rotational energy is released after the spin-up,
recovering its initial period prior to the glitch by the emission of a sequence
of bursts on time scales from months to years (see e.g. Mereghetti, 2008a).

Our aim in the following is to show that this model can be also applied
to the other SGRs and AXPs. Their entire energetics is explained by the ro-
tational energy loss of fast rotating magnetized white dwarfs: 1) the X-ray
luminosity is well below the rotational energy loss of the white dwarf (see
Fig. B.21); 2) in all cases the large magnetic field is well below the critical field
for vacuum polarization (see Fig. B.22 and Table B.12); 3) the energetics of all
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the bursts can be simply related to the change of rotational energy implied by
the observed change of rotational period (see Fig. B.23, Sec. B.3.5 and Table
B.11).
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Ė
W
D

ro
t

Figure B.21.: X-ray luminosity LX versus the loss of rotational energy Ėrot

describing SGRs and AXPs by rotation powered white dwarfs. The green
star and the green triangle correspond to SGR 0418+5729 using respectively
the upper and the lower limit of Ṗ given by Eq. (B.3.2). The blue squares are
the only four sources that satisfy LX < Ėrot when described as neutron stars
(see Fig. B.25 for details).

B.3.3. SGRs and AXPs within the magnetar model

Let us turn to the alternative model commonly addressed as “magnetar” (see
e.g. Duncan and Thompson, 1992; Thompson and Duncan, 1995) based on
an ultramagnetized neutron star of M = 1.4M⊙ and R = 10 km and then
I ≈ 1045 g cm2 as the source of SGRs and AXPs. The limit of the magnetic
field obtained from Eq. (B.3.3) becomes

B = 3.2 × 1019
(

PṖ
)1/2

G , (B.3.12)

which is four orders of magnitude larger than the surface magnetic field
within the fast rotating magnetized white dwarf model (see Fig. B.24).

There are innumerous papers dedicated to this model and for a review
covering more than 250 references on the subject see Mereghetti (2008a). The
crucial point is that in this model there is no role of the rotational energy of
the source: the X-ray luminosity is much bigger than the loss of rotational
energy of the neutron star (see Fig. B.25).

Paradoxically, although the bursts appear to be correlated to the presence
of glitches in the rotational period, the corresponding increase of change of
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Figure B.22.: Ṗ-P diagram for all known SGRs and AXPs. The curves of con-
stant magnetic field for white dwarfs given by Eq. (B.3.4) are shown. The
blue dashed line corresponds to the critical magnetic field Bc = m2

e c3/(eh̄).
The green star and the green triangle correspond to SGR 0418+5729 using re-
spectively the upper and the lower limit of Ṗ given by Eq. (B.3.2). The blue
squares are the only four sources that satisfy LX < Ėrot when described as
rotation powered neutron stars (see Fig. B.25 for details).
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Figure B.23.: Change in the rotational energy of the white dwarf ∆EWD
rot given

by Eq. (B.3.8) as a function of the rotational period P in seconds for selected
fractional changes of period ∆P/P.
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Figure B.24.: Ṗ-P diagram for all known SGRs and AXPs. The curves of con-
stant magnetic field for neutron stars given by Eq. (B.3.12) are shown. The
blue dashed line corresponds to the critical magnetic field Bc = m2

e c3/(eh̄).
The green star corresponds to SGR 0418+5729 using the upper limit of Ṗ
given by Eq. (B.3.2). The blue squares are the only four sources that satisfy
LX < Ėrot when described as rotation powered neutron stars (see Fig. B.25
for details).
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Ė
N
S

ro
t

Figure B.25.: X-ray luminosity LX versus the loss of rotational energy Ėrot

describing SGRs and AXPs as neutron stars. The green star corresponds to
SGR 0418+5729 using the upper limit of Ṗ given by Eq. (B.3.2). The blue
squares are the only four sources with LX < Ėrot: 1E 1547.0-5408 with P =
2.07 s and Ṗ = 2.3 × 10−11; SGR 1627-41 with P = 2.59 s and Ṗ = 1.9 × 10−11;
PSR J 1622-4950 with P = 4.33 s and Ṗ = 1.7 × 10−11; and XTE J1810–197
with P = 5.54 s and Ṗ = 7.7 × 10−12.
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rotational energy of the neutron star

∆ENS
rot = −2π2 I

P2

∆P

P
= −1.98 × 1046 ∆P

P3
erg , (B.3.13)

cannot explain the burst energetic ∼ (1044–1047) erg. This is a clear major
difference between the two models based respectively on neutron stars and
white dwarfs (see Figs. B.23 and B.26 for details).
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Figure B.26.: Change in the rotational energy of the neutron star ∆ENS
rot given

by Eq. (B.3.13) as a function of the rotational period P in seconds for selected
fractional changes of period ∆P/P.

In magnetars, the value of the rotational period and its first time derivative
are only used to establish an upper limit to the magnetic field of the neu-
tron star. In view of the smallness of the moment of inertia of a neutron star
with respect to the moment of inertia of a white dwarf, the magnetic field
reaches in many cases outstandingly large values B >> Bc ∼ 4.4 × 1013 G,
from here the name magnetars (see Fig. B.24). The attempt has been pro-
posed by Duncan and Thompson (1992) and Thompson and Duncan (1995)
to assume a new energy source in physics and astrophysics: the magnetic en-
ergy in bulk. The role of thermonuclear energy has been well established by
physics experiments on the ground as well as in astrophysics in the explana-
tion of the energetics, life time, and build-up process of the nuclear elements
in main sequence stars (see e.g. Bethe, 1968, and references therein); equally
well established has been the role of rotational energy in pulsars (see e.g.
Hewish, 1974; Bell and Hewish, 1967, and references therein); similarly well
established has been the role of gravitational energy in accretion process into
neutron stars and black holes and binary X-ray sources (see e.g. Giacconi,
2002; Giacconi and Ruffini, 1978 Reprinted 2010, and references therein). In
the magnetars instead, it is introduced an alternative primary energy source
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not yet tested neither in the laboratory (the case of magnetic monopoles) nor
in astrophysics: a primary energy source due to overcritical magnetic fields.

The mostly qualitative considerations in the magnetar model can be sum-
marized, see e.g. Ng et al. (2010): in the twisted magnetosphere model of
magnetars (Thompson et al., 2002), the observed X-ray luminosity of a mag-
netar is determined both by its surface temperature and by magnetospheric
currents, the latter due to the twisted dipolar field structure. The surface tem-
perature in turn is determined by the energy output from within the star due
to magnetic field decay, as well as on the nature of the atmosphere and the
stellar magnetic field strength. This surface thermal emission is resonantly
scattered by the current particles, thus resulting in an overall spectrum sim-
ilar to a Comptonized blackbody (e.g. Lyutikov and Gavriil, 2006; Rea et al.,
2008; Zane et al., 2009). In addition, the surface heating by return currents
is believed to contribute substantially to LX, at least at the same level as the
thermal component induced from the interior field decay (Thompson et al.,
2002). Magnetar outbursts in this picture occur with sudden increases in twist
angle, consistent with the generic hardening of magnetar spectra during out-
bursts (e.g. Kaspi et al., 2003; Woods et al., 2004; Israel et al., 2007).

It is worth to recall that magnetic field configurations corresponding to a
dipole twisted field have been routinely adopted in rotating neutron stars
(see e.g. Cohen et al., 1973). Magnetic field annihilation and reconnection
have been analogously adopted in solar physics (see e.g. Parker, 1957; Sweet,
1958) and also magnetic instabilities have been routinely studied in Tokamak
(see e.g. Coppi et al., 1976). These effects certainly occur in magnetized white
dwarfs. What is important to stress here is that in none of these systems
the magnetic field has been assumed to be the primary energy source of the
phenomena, unlike in magnetars.

It is appropriate to recall just a few of the difficulties of the magnetar model
in fitting observations, in addition to the main one of SGR 0418+5729 ad-
dressed in this article. In particular, e.g.: (1) as recalled by S. Mereghetti
2008, “up to now, attempts to estimate the magnetic field strength through
the measurement of cyclotron resonance features, as successfully done for ac-
creting pulsars, have been inconclusive”; (2) the prediction of the high-energy
gamma ray emission expected in the magnetars has been found to be incon-
sistent with the recent observation of the Fermi satellite (see e.g. Tong et al.,
2010, 2011); (3) finally, it has been shown to be not viable the attempt to relate
magnetars to the energy of the supernova remnants (see e.g. Allen and Hor-
vath, 2004; Ferrario and Wickramasinghe, 2006; Vink and Kuiper, 2006; Vink,
2008) or to the formation of black holes (see e.g. Kasen and Bildsten (2010);
Woosley (2010), see however e.g. Patnaude et al. (2009)) and of Gamma Ray
Bursts (see e.g. Levan et al. (2006); Castro-Tirado et al. (2008); Stefanescu et al.
(2008); Bernardini et al. (2009), see however e.g. Goldstein et al. (2011); Rea
et al. (2011)).

In Table B.12 we compare and contrast the parameters of selected SGRs
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and AXPs sources in the magnetar model and in the fast rotating highly mag-
netized white dwarf model: the larger radius of a white dwarf with respect
to the radius of a neutron star of the same mass M = 1.4M⊙, leads to the
two models differing on the scale of mass density, moment of inertia, and ro-
tational energy which imply a different scale for the surface magnetic fields,
leading to a very different physical interpretation of the observations of SGRs
and AXPs.

B.3.4. Observations of massive fast rotating highly

magnetized white dwarfs

Some general considerations are appropriate. The white dwarf model ap-
peals to standard and well tested aspects of physics and astrophysics. The
observation of fast rotating white dwarfs with magnetic fields larger than 106

G all the way up to 109 G has been in the mean time solidly confirmed by
observations (see e.g Angel et al., 1981; Ferrario et al., 1997; Należyty and
Madej, 2004; Ferrario and Wickramasinghe, 2005; Terada et al., 2008c). For a
recent and extensive analysis of the magnetic field structure of highly mag-
netized white dwarfs see Külebi et al. (2009) and for a catalog of them see
Külebi et al. (2010a) and also Kepler et al. (2010).

A specific example is the highly magnetized white dwarf AE Aquarii. The
rotational period of this fast rotating magnetized white dwarf obtained from
the sinusoidal pulsed flux in soft X-rays < 4 keV (see e.g. Eracleous et al.,
1991; Choi and Dotani, 2006) has been established to be P = 33 s and it is
spinning down at a rate Ṗ = 5.64 × 10−14. The mass of the white dwarf is
∼ M⊙ (de Jager et al., 1994) and the observed temperature is kT ∼ 0.5 keV. In
addition to the soft X-ray component, hard X-ray pulsations were observed
with the Japanese satellite Suzaku in October-November 2005 and October
2006. The luminosity of AE Aquarii ∼ 1031 erg/s accounts for the 0.09% of
the spin-down energy of the white dwarf (see Terada et al., 2008c, for details)
and the infereed magnetic field of the source is B ∼ 108 G (Ikhsanov and
Beskrovnaya, 2008).

This white dwarf is one of the most powerful particle accelerators: there
is at least one event of detected TeV emission from this source during its
optical flaring activity monitored between 1988 and 1992 (see e.g. Meintjes
et al., 1992, 1993; de Jager et al., 1994; Ikhsanov and Biermann, 2006; Ikhsanov
and Beskrovnaya, 2008; Kashiyama et al., 2011). In addition, it shows burst
activity in X-rays (Terada et al., 2008c). Although AE Aquarii is a binary
system with orbital period ∼ 9.88 hr (see de Jager et al., 1994, e.g.), very
likely the power due to accretion of matter is inhibited by the fast rotation of
the white dwarf (e.g. Itoh et al., 2006; Terada et al., 2008c).

Many of the observed physical properties of this white dwarf are very sim-
ilar to the recently discovered SGR 0418+5729, as we explicitly show in Table
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B.10.

SGR 0418+5729 AE Aquarii

P (s) 9.08 33.08

Ṗ (10−14) < 0.6 5.64

Age (Myr) 24 9.4

LX (erg/s) 6.2 × 1031 ∼ 1031

kT (keV) 0.67 0.5

B (G) < 7.45 × 108 ∼ 108

Pulsed Fraction 0.3 ∼ 0.2–0.3

Table B.10.: Comparison of the observational properties of SGR 0418+5729
and the white dwarf AE Aquarii. For SGR 0418+5729 P, Ṗ, and LX have been
taken from Rea et al. (2010). The characteristic age is given by Age = P/(2Ṗ)
and the surface magnetic field B is given by Eq. (B.3.4). The pulsed fraction
of SGR 0418+5729 is taken from Esposito et al. (2010) and the one of the white
dwarf AE Aquarii from Eracleous et al. (1991) and Choi and Dotani (2006).

Although very fast, AE Aquarii is not the fastest white dwarf observed.
The rotational period obtained from the pulsed X-ray emission of RXJ 0648.0-
4418, the white dwarf in the binary system HD49798/RXJ 0648.0-4418, is P =
13.2 s (Israel et al., 1997). This white dwarf is one of the most massive white
dwarfs with M = 1.28 ± 0.05M⊙ (see Mereghetti et al., 2009, for details).
Other very massive and highly magnetized white dwarfs are: REJ 0317-853
with M ∼ 1.35M⊙ and B ∼ (1.7–6.6) × 108 G (see e.g. Barstow et al., 1995;
Külebi et al., 2010b); PG 1658+441 with M ∼ 1.31M⊙ and B ∼ 2.3 × 106 G
(see e.g. Liebert et al., 1983; Schmidt et al., 1992); and PG 1031+234 with the
highest magnetic field ∼ 109 G (see e.g. Schmidt et al., 1986; Külebi et al.,
2009). It is interesting to note that the most highly magnetized white dwarfs
are massive as well as isolated (see e.g. Należyty and Madej, 2004, for details).

B.3.5. Rotational instability of white dwarfs

In order to be stable against secular instability of the MacClaurin versus the
Jacobi ellipsoid (Ferrari and Ruffini, 1969), the minimal period of a white
dwarf with the parameters discussed here is Pcrit ∼ 0.94 s. For P . Pcrit

we would expect very significant emission of gravitational waves due to the
transition from the triaxial Jacobi ellipsoids to the axially symmetric Mac-
Claurin ellipsoids. This is well in agreement and explains the observed long
periods of SGRs and AXPs & 2 s (see Fig. B.27). In the specific case of the
source 1E 2259+586, assuming that the supernova remnant G109.1-1.0 and
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1E 2259+586 are coeval, we obtain the initial rotational period of the white
dwarf in the range 0.94 s < P0 < 6.8 s where, the lower limit, is given by the
bifurcation point between MacClaurin spheroids and Jacobi ellipsoids (see
e.g. Ferrari and Ruffini, 1969) and, the upper limit, is obtained for a constant
value of Ṗ. Describing today 1E 2259+586 by a MacClaurin spheroid, we
obtain the ratio between the rotational energy and the gravitational energy
Erot/

∣

∣Egrav

∣

∣ ∼ 0.011 (see Fig. B.27), well below the secular instability ∼ 0.14
and the dynamical instability ∼ 0.25 (see Chandrasekhar, 1969; Shapiro and
Teukolsky, 1983a, for details).
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Figure B.27.: Ratio between the rotational energy and the gravitational en-
ergy of a MacClaurin spheroid of M = 1.4M⊙ and R = 103 km as a function
of its rotational period P. The rotational period between 2 and 12 s appears to
be very appropriate for fast rotating white dwarfs. Fast rotating neutron stars
present much shorter period in the millisecond region. We show on the curve
the position of all known SGRs and AXPs. The green star corresponds to SGR
0418+5729. The blue squares are the only four sources that satisfy LX < Ėrot

when described as rotation powered neutron stars (see Fig. B.25 for details).

The above considerations add interest in the recent theoretical analysis of
white dwarfs taking into account nuclear, weak and electromagnetic interac-
tions within a general relativistic treatment (Rotondo et al., 2011b). A spe-
cially relevant result has been recently obtained (Boshkayev et al., 2013b)
by analyzing a white dwarf endowed with mass, angular momentum, and
quadrupole moment within the Hartle-Thorne formalism (Hartle, 1967; Har-
tle and Thorne, 1968). The rotating white dwarfs have been studied for the
new equation of state given by Rotondo et al. (2011c) used for the construc-
tion of the non-rotating configurations by Rotondo et al. (2011b). The critical
rotational periods for the onset of the axisymmetric, the mass-shedding and
the inverse β-decay instabilities have been studied in detail. The exact value
of the critical period of a white dwarf depends upon the central density of
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the configuration; rotationally stable white dwarfs exist for rotational peri-
ods P > PWD

min ∼ 0.3 s. The shortest values for configurations supported by
rotation with critical masses larger than the classical Chandrasekhar limit for
non-rotating white dwarfs all the way up to Mmax ∼ 1.5M⊙ (see Boshkayev
et al., 2013b, for details).

Consequently, also the fastest sources e.g. 1E 1547.0-5408 with P = 2.07 s,
SGR 1627-41 with P = 2.59 s, and PSR J 1622-4950 with P = 4.33 s, can be
safely described as massive fast rotating white dwarfs as shown in Fig. B.21.

B.3.6. Glitches and outbursts in SGRs and AXPs

The energetic of the observed bursts within the white dwarf model of SGRs
and AXPs can be fully explained by the observed change of period ∆P < 0
(glitches). In the case of the famous event of 5th March 1979 in the SGR 0526-
66 (P = 8.05 s), a fractional change of period of the white dwarf ∆P/P ∼
−10−4 (see Fig. B.23) would be sufficient to explain the energetics ∼ 3.6× 1044

erg (Mereghetti, 2008a). Unfortunately, such a change of period could not be
observed at the time (see e.g. Mazets et al., 1979), lacking the observations of
the source prior to the event. Instead, in the case of the flares of 1E 2259+586
on June 2002 (P = 6.98 s) and of 1E 1048.1-5937 (P = 6.45 s) on March 2007,
observational data are available. For 1E 2259+586, using the observed frac-
tional change of period ∆P/P ∼ −4 × 10−6 (Woods et al., 2004) (see also
Fig. B.20), we obtain within the white dwarf model a change of rotational
energy

∣

∣∆EWD
rot

∣

∣ ∼ 1.7 × 1043 erg, to be compared with the measured energy

released during the event ∼ 3 × 1041 erg. For the glitch on the 26th March
2007 in 1E 1048.1-5937 with observed ∆P/P ∼ −1.63 × 10−5, we obtain
∣

∣∆EWD
rot

∣

∣ ∼ 7.73 × 1043 erg which is strikingly in agreement (and safely supe-

rior) with the observed energy released in the event 4.3× 1042 erg (see e.g. Dib
et al., 2009). In the case of super giant flares, there is no clear observational
evidence of their association to glitches. However, changes in the moment of
inertia of the white dwarf originating fractional changes of period of order
∆P/P ∼ −(10−5 − 10−3) (see Fig. B.23) could explain their large energetics
ranging from 1044 erg all the way up to 1047 erg (see e.g. Mereghetti, 2008a).
For the giant flare of SGR 1806-20 on 27th December 2004 (see e.g. Borkowski
et al., 2004; Hurley et al., 2005) with observed energy ∼ 1046 erg there is a
gap of timing data of the source between October 2004 and March 2005 (see
Mereghetti et al., 2005; Tiengo et al., 2005). The observed rotational period of
SGR 1806-20 after March 2005 is not consistent with the expected rotational
period obtained from the spin-down rate Ṗ = 5.5 × 10−10; instead, this is
consistent with Ṗ = 1.8 × 10−10. The change of rotational period has been at-
tributed to “global reconfigurations of the neutron star magnetosphere” (see
e.g. Tiengo et al., 2005). Within the white dwarf model, such a burst activity
is consistent with a glitch with fractional change of period ∼ −3 × 10−3. All
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SGR 0526-66 1E 2259+586 1E 1048.1-5937 SGR 1806-20
Date March 1979 June 2002 March 2007 December 2004

Observed Energy (erg) 3.6 × 1044 3 × 1041 4.2 × 1042 ∼ 1046

|∆P|/P 1.2 × 10−4 (predicted) 4.24 × 10−6 (observed) 1.63 × 10−5 (observed) 3 × 10−3 (predicted)

Predicted Energy (erg) 3.6 × 1044 1.7 × 1043 7.7 × 1043 ∼ 1046

Table B.11.: Glitches and Outbursts of some SGRs and AXPs within the white
dwarf model. The predicted values of |∆P|/P are calculated with Eq. (B.3.8)
assuming

∣

∣∆EWD
rot

∣

∣ equals the observed energy of the burst event. The pre-
dicted values of the energy released in the burst event is calculated with
Eq. (B.3.8) using the observed fractional change of rotational period |∆P|/P.

the above discussion is summarized in Table B.11 and Figs. B.20 and B.23.

In all the above cases the gain of rotational energy in the glitch is much
larger than the energy observed in the flaring activities following the glitches.
This means that there is ample room to explain these glitch-outburst events
in a large range of recovery fractions Q. It appears to be appropriate to sys-
tematically monitor the Q factors for all the glitches in SGRs and AXPs.

It is interesting that PSR J1846-0258, P = 0.3 s, experienced in June 2006 a
radiative event with estimated isotropic energy ∼ (3.8–4.8) × 1041 erg (Ku-
mar and Safi-Harb, 2008). Assuming that such an event was triggered by a
glitch in the neutron star one obtains an associated fractional change of pe-
riod ∆P/P ∼ −(1.73–2.2)× 10−6, as given by Eq. (B.3.13). Indeed, as shown
by Kuiper and Hermsen (2009), the outburst emission was accompanied by a
large glitch ∆P/P ∼ −(2.0–4.4)× 10−6 in perfect agreement with the theoret-
ical prediction given by the loss of rotational power after the spin-up of the
neutron star without advocate any magnetar phenomena. This fact reinforces
the idea that PSR J1846-0258 is not a magnetar but an ordinary rotationally
powered neutron star, also in line with the recent suggestions by Kuiper and
Hermsen (2009) and Rea et al. (2010).

B.3.7. Magnetosphere emission from white dwarfs

We return now to the structure of the magnetosphere of the white dwarf
model for SGRs and AXPs. In order to have an agreement between the ob-
served X-ray luminosity and the X-ray spectral distribution, it is necessary
that only a part of the surface of the white dwarf has to be X-ray emitter.

We can define the dimensionless filling factor

R =
LX

4πR2σT4
, (B.3.14)

where σ is the Stefan-Boltzmann constant and T the temperature of the source.
This factor gives an estimate of the effective area of X-ray emission and con-
sequently information about the structure of the magnetic field from the sur-
face of the object. It is interesting that this factor for the white dwarf is in
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the range 10−6–10−5 (see Table B.12), quite similar to the one of the Sun R⊙ =
LX
⊙/(4πR2

⊙σT4
⊙) ≈ (7.03× 10−8–1.2× 10−6) in the minimum LX

⊙ = 2.7× 1026

erg/s and in the maximum LX
⊙ = 4.7× 1027 erg/s of solar activity respectively

(see e.g. Peres et al., 2000; Judge et al., 2003). This should be expected by the
general argument of the conservation of flux in the transition from a highly
magnetized main sequence star to a white dwarf. The magnetic field of the
order of ∼ 109 G on the surface of these white dwarfs must clearly have a
filamentary structure in the range R ∼ 10−6–10−5.

In the specific case of SGR 0418+572 such an R factor is ∼ 10−9, which is of
the same order as the one of the white dwarf AE Aquarii, as can be seen from
Table B.10 by comparing the values of LX and KT, which are the quantities
involved in Eq. (B.3.14).

At times the presence of an R factor has been interpreted as originating
from a spot-like radial emission of the radiation from the surface of the white
dwarf. If one were to assume that the radiation occurs radially beamed and
occurring just from the surface either of the neutron star or the white dwarf,
a spot radiation would lead to a pulsed fraction of the emission flux deter-

mined by
√

1/n ∑
n
i=1(yi − ȳ)2/ȳ ∼ 1, where n is the number of phase bins

per cycle, yi is the number of counts in the ith phase bin and ȳ is the mean
number of counts in the cycle (see e.g. Esposito et al., 2010, for details about
this definition). This problem, which seems to be in contradiction with the
observations of pulsed fractions < 1 in SGRs and AXPs (see e.g. Esposito
et al., 2010), would be equally severe both for neutron stars and white dwarfs
(see e.g. Table B.10).

It is appropriate to recall that all the SGRs and AXPs within a rotating white
dwarf model have magnetic fields in the range 108 G . B . 1011 G (see
Table B.12). It is quite natural to assume that the X-ray emission be linked
to the presence of the magnetic field. It is worth to note that the modeling
of the physics and the geometrical structure of the magnetic field and of the
magnetospheres is a most active field field of current research. As shown by
Romani and Watters (2010), the morphology of the pulses as well as of the
light curves strongly depend on many model parameters, e.g. special and
general relativistic effects, the viewing angle, the magnetic moment-spin axis
angle, the spin axis-line of sight angle, the specific location of the emission
zone, and the adopted magnetospheric model including possible corrections
due to deviations from a pure dipolar structure.

From the broad sinusoidal pulsed flux of SGRs/AXPs (see e.g. Mereghetti,
2008a), we know that the pulsed fraction is less than one and that the lu-
minosity differs remarkably from a spiky one. We find then natural to as-
sume that the emission comes from an area covering the white dwarf surface
with a very marked filamentary structure. Similar considerations for neu-
tron stars magnetospheres have been purported e.g. by Michel and Dessler
(1981); Michel (1983) giving evidence of magnetospheric activity from the
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pole all the way up to the equator; see also the most interesting case of the
pair production activities in the magnetosphere of a rotating white dwarf
considered for the transient radio source GCRT J1745–3009 by Zhang and Gil
(2005). Moreover, such structures are regularly observed in the Sun and in
the Earth Aurora. Explicit sinusoidal pulsed flux in soft X-rays (< 4 keV)
have been observed in AE Aquarii (see e.g. Eracleous et al., 1991; Choi and
Dotani, 2006); and see also Fig. 6 in Mereghetti et al. (2011) for similar sinu-
soidal pulsed emission of the white dwarf RXJ 0648.0-4418 with rotational
period P = 13.2 s. For all the above sources, a filamentary structure of the
magnetic field is clearly expected.

We do not discuss here the issue of the spectral features within the white
dwarf model. The aim of this article is just to point out that all these prob-
lems can be address with merit starting from the rotational energy of a rotat-
ing white dwarf rather than the magnetic energy of a magnetar. The spec-
trum of the persistent emission of SGRs and AXPs for energies < 10 keV is
well fitted either by the superposition of a blackbody and a high energy tail
or by a single blackbody or a double blackbody (see e.g. Mereghetti, 2008a).
Such a spectral feature is clearly already evidenced for rotating white dwarfs;
following the work of Terada et al. (2008c): in addition to the thermal mod-
ulation in the softer X-ray band, spiky pulsations like the ones of pulsars
have been observed by the Suzaku satellite in the hard X-ray band of over
4 keV in the white dwarf AE Aquarii. The X-ray spectrum requires an ad-
ditional hard X-ray component on the well-known thermal emissions with
temperatures of 0.5 and 2.9 keV. Combined with results from timing analy-
ses, spectral shapes and flux, it was there concluded that the hard X-ray pul-
sations should have a non-thermal origin, for example, possible Synchrotron
emission with sub MeV electrons. The claim of the first discovery of a white
dwarf equivalent to a neutron star pulsar was there made. In view of the
possible evidence of very high energy emission in the TeV region observed
during the optical flares of AE Aquarii (see e.g. de Jager et al., 1994; Ikhsanov
and Biermann, 2006; Ikhsanov and Beskrovnaya, 2008; Terada et al., 2008c,d;
Kashiyama et al., 2011, and references therein), it would be important to have
observations by INTEGRAL and Fermi of rotating magnetized white dwarf
in the 20-200 keV band in order to establish further analogies between fast
rotating highly magnetized white dwarfs and magnetar candidates.

More specifically, for the source SGR 0418+5729 and its interpretation as
a white dwarf, a crucial result has been recently obtained by Durant et al.
(2011). We first recall the observed range of temperatures of massive isolated
white dwarfs 1.14 × 104 K ≤ T ≤ 5.52 × 104 K; see Table 1 in (Ferrario et al.,
2005). From the broad band Hubble Space Telescope imaging of the field
of SGR 0418+5729, the upper limits of the black body surface temperature,
T < 3.14 × 104 K and T < 1.18 × 104 K in the F110W and F606W filters,
can be established for a radius R = 108 cm. In this respect is also worth to
recall the optical observations of AXP 4U0142+61 of Hulleman et al. (2000).
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The photometric results of the field of 4U0142+61 at the 60-inch telescope on
Palomar Mountain are in agreement with a 1.3M⊙ white dwarf with a surface
temperature ∼ 4× 105 K (see Hulleman et al., 2000, for details). These results
are therefore fully consistent with the SGR/AXP white dwarf model, and
follow-on missions of Hubble and VLT are strongly recommended.

B.3.8. The connection with supernova remnants

We would like to address the special issue of the supernova remnants ener-
getics and their association with SGRs and AXPs. A firm association between
SGRs/AXPs and supernovae have been purported by Gaensler et al. (2001)
in the cases 1E 1841–045 (SNR G27.4+0.0, Kes 73), AX J1845.0–0258 (SNR
G29.6+0.1), and 1E 2259+586 (SNR G109.1–1.0, CTB 109). See also Gelfand
and Gaensler (2007) for the possible association 1E 1547.0-5408 (SNR G327.24-
0.13). What is of interest for us here is the special issue of the energetics of the
supernova remnant and the present of an SGR or an AXP.

Paczynski, in the case of AXP 1E 2259+586, attempted to explain the su-
pernova remnant by assuming a merger of a binary system of ordinary white
dwarf of mass ∼ (0.7–1)M⊙ based on models by Iben and Tutukov (1984)
and Paczynski (1985) leading both to the formation of a fast rotating white
dwarf and to the supernova remnant. Recent simulations of white dwarf-
white dwarf mergers (see e.g. Pakmor et al., 2010) point that mergers of (0.8–
0.9M⊙) produce supernova events generally not very efficient energetically,
well below the observed explosion energy ∼ 7.4 × 1050 erg of the supernova
remnant G109.1-1.0 associated to 1E 2259+586 (see e.g. Sasaki et al., 2004).

In the intervening years much more has been understood on the process
of gravitational collapse and on the composition of the material surrounding
neutron stars and black holes both from pulsar observations and Gamma Ray
Bursts. Fascinating evidence for the presence of planets around pulsars in su-
pernova remnants has been established (see e.g. Konacki et al., 1999; Hansen,
2002; Konacki and Wolszczan, 2003). Similarly, the presence of many body
process of gravitational collapse has been evidenced for Gamma Ray Bursts
(see e.g. Ruffini, 2009).

In view of this, we advance the possible scenario in which the SGRs/AXPs
and the supernova remnant originate from a very close binary system com-
posed of a white dwarf and a companion late evolved star, close to the pro-
cess of gravitational collapse. The collapse of the companion star, either to
a neutron star or to a black hole, leads to mass loss which can unbind the
original binary system. Three possible cases can occur (see e.g. Ruffini, 1973):
if the loss of mass in the supernova explosion is Mloss < M/2, being M the
total mass of the binary, the system holds bound; 2) if Mloss ∼ M/2 then the
system becomes unbound and the white dwarf is expelled at nearly orbital
motion velocity; and 3) if Mloss >> M/2 the white dwarf is kicked out with

1838



B.3. SGRs and AXPs as rotation powered massive white dwarfs

very high runaway velocities. Only in the first case the object will lie at the
center of the supernova remnant. For a review on the evolution of binary sys-
tems see Stairs (2004) and for a detailed treatment of the problem of runaway
velocities from supernova explosions see Tauris and Bailes (1996); Tauris and
Takens (1998). The white dwarf in this picture does not participate either to
the gravitational collapse nor to the formation of the supernova remnant: it
can have a period and a life time determine essentially by the prior evolution
of the binary system. This explains the disagreement between the age of the
supernova remnant and the characteristic age of the SGR/AXP when inferred
by a neutron star model. In the case of large kick velocities the runaway white
dwarf can collide with the surrounding material in the supernova remnant
and very likely also with planets. Such collisions may well originate changes
in the moment of inertia of the white dwarf, consequently in its rotational
period, leading to glitches and burst activity.

In the above context it is appropriate to recall the pioneering work of Katz
(1996) on explaining the super-Eddington luminosities in the flaring episodes
of SGRs and AXPs as originating in accretion process of planetary fragments,
in particular, the important role of magnetic confinement of an e+e− pair
plasma. The model explains the observed self-absorbed thermal spectrum
of flares and their nearly independence on their luminosity. Katz (1996) has
shown that the infall of planetary fragments may lead to a continuous injec-
tion of energy to the magnetosphere which leads to magnetic confinement of
the source if the magnetic field satisfies

B >

√

2L

cR2
= 2.6 × 107

√

L41

R2
8

G , (B.3.15)

where L41 is the luminosity in units of 1041 erg/s and R8 is the radius of the
source in units of 108 cm.

In the case when the radiation is not being continuously resupplied, but it
is initially contained within the volume ∼ 4πR3/3, the minimum magnetic
field for confinement is given by

B >

√

6Lτ

R3
= 2.45 × 108

√

L41τ0.1

R3
8

G , (B.3.16)

where τ0.1 is the time τ during which the source is radiating at a luminosity
L, in units of 0.1 s. The fiducial values for L and for τ has been chosen here to
be typical of the bursting activity of SGRs/AXPs (see e.g. Mereghetti, 2008a).
The above two bounds for the magnetic field are indeed in line with the sur-
face magnetic fields obtained in this paper; see Fig. B.22 for details. Thus,
the super-Eddington luminosities observed in the outbursts can be well ex-
plained within the white dwarf model and there is no need of introducing

1839



B. White Dwarfs Physics and Astrophysics

the huge magnetic fields of the magnetar model (Paczynski, 1992; Thompson
and Duncan, 1995).

B.3.9. On the fiducial neutron star and white dwarf

parameters in light of recent theoretical progress

Before concluding, we would like to introduce a word of caution on the fidu-
cial values adopted both for the neutron star and the white dwarf in the above
Sections. In the intervening years much more have been learned on the equa-
tion of state and on a more complex description of the structure parameters
of both white dwarfs and neutron stars.

The equations of equilibrium of neutron stars, traditionally based on the
Tolman-Oppenheimer-Volkoff equations, have been superseded by an alter-
native formulation based on the general relativistic Thomas-Fermi condi-
tions of equilibrium within the Einstein-Maxwell equations Belvedere et al.

(2012). Correspondingly, the above values of
√

I/R6 in Eq. (B.3.3) estimated
int he fiducial parameters, leading to Eq. (B.3.12), can acquire in fact val-

ues in the range 0.44 .
√

I/R6/
√

I f /R6
f . 0.56, where the subscript ‘f’

stands for fiducial parameter. This range corresponds to the range of masses
0.5 . M/M⊙ . 2.6 (Belvedere et al., 2012). Correspondingly, the magnetic
field is in the range 0.44 . B/BNS

f . 0.56, where BNS
f is given by Eq. (B.3.12).

Similar considerations apply for the white dwarf case. General relativistic
white dwarfs taking into account nuclear, weak and electromagnetic inter-
actions have been recently constructed (Rotondo et al., 2011b) following the
new equation of state for compressed nuclear matter given by Rotondo et al.
(2011c). The case of rotating white dwarfs in general relativity has been stud-
ied by Boshkayev et al. (2013b). It has been found that white dwarfs can
be as fast as PWD

min ∼ 0.3 s and as massive as Mmax ∼ 1.5M⊙; see Sec. B.3.5
for details. For example, a white dwarf of M = 1.44M⊙ rotating with pe-
riod P = 3.2 s, will have an equatorial radius Req ∼ 3604 km, polar radius

Rp ∼ 2664 km, and moment of inertia I ∼ 2.9 × 1049 g cm2. In this case we

will have
√

I/R6/
√

I f /R6
f ∼ 0.01 and therefore B/BWD

f ∼ 0.01 where BWD
f

is given by Eq. (B.3.4).

This issue is particularly relevant to the study of the four sources in Fig. B.25.
These sources can be definitely explained within a unified framework of ro-
tating white dwarfs with all the other SGRs and AXPs. In view of the pa-
rameters recently obtained they may be also interpreted as regular neutron
stars with a barely critical magnetic field. For these sources an option remain
open for their interpretation as white dwarfs or neutron stars. A more refined
analysis will clarify the correctness of the two possible interpretations both,
in any case, alternative to the magnetar model.

1840



B.3. SGRs and AXPs as rotation powered massive white dwarfs

B.3.10. Conclusions and remarks

The recent observations of the source SGR 0418+5729 cast a firm separatrix in
comparing and contrasting the two models for SGRs and AXPs based respec-
tively on an ultramagnetized neutron star and on a white dwarf. The limit
on the magnetic field derived in the case of a neutron star B = 7.5 × 1012

G makes it not viable as an explanation based on the magnetar model both
from a global energetic point of view and from the undercritical value of the
magnetic field. In the white dwarf model, the picture is fully consistent. It
is interesting that the rotational energy loss appears to approach the value of
the observed X-ray luminosity with time (see Fig. B.28) as the magnetospheric
activity settles down.

10<4 10<2 1 102 104

Age (Myr)

10<6

10<5

10<4

10<3

10<2

10<1

1

L
X
/
Ė
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Figure B.28.: Ratio between the observed X-ray luminosity LX and the loss of
rotational energy Ėrot describing SGRs and AXPs by rotation powered white
dwarfs. The green star and the green triangle correspond to SGR 0418+5729
using respectively the upper and the lower limit of Ṗ given by Eq. (B.3.2). The
blue squares are the only four sources that satisfy LX < Ėrot when described
as rotation powered neutron stars (see Fig. B.25 for details).

The description of SGR 0418+5729 as a white dwarf predicts the lower limit
of the spin-down rate Ṗ given by Eq. (B.3.2), the surface magnetic field field
is, accordingly to Eq. (B.3.4), constrained by 1.05 × 108 G < BSGR0418+5729 <

7.47 × 108 G (see Fig. B.22). The campaign of observations launched by the
Fermi and Agile satellites will address soon this issue and settle in the near
future this theoretical prediction.

The characteristic changes of period ∆P/P ∼ −(10−7–10−3) and the re-
lating bursting activity ∼ (1041–1046) erg in SGRs and AXPs can be well
explained in term of the rotational energy released after the glitch of the
white dwarf. It is also appropriate to recall that fractional changes, on scales
|∆P|/P . 10−6 are also observed in pulsars and routinely expressed in terms
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of the release of rotational energy of the neutron star, without appealing to
any magnetars phenomena; e.g. the glitch/outburst activity experienced in
June 2006 by PSR J1846-0258 (see Sec. B.3.7) and the most recent event ob-
served in the prototypical Crab pulsar B0531+21 in the Crab nebula (see e.g.
Tavani, 2011; Fermi-LAT Collaboration, 2010).

The observation of massive fast rotating highly magnetized white dwarfs
by dedicated missions as the one leadered by the X-ray Japanese satellite
Suzaku (see e.g. Terada et al., 2008c) has led to the confirmation of the ex-
istence of white dwarfs sharing common properties with neutron star pul-
sars, hence their name white dwarf pulsars. The theoretical interpretation of
the high-energy emission from white dwarf pulsars will certainly help to the
understanding of the SGR and AXP phenomena (see e.g. Kashiyama et al.,
2011).

We have given evidence that all SGRs and AXPs can be interpreted as rotat-
ing white dwarfs providing that the rotational period satisfies P > PWD

min ∼ 0.3
s. The white dwarf generate their energetics from the rotational energy and
therefore there is no need to invoke the magnetic field decay of the magnetar
model.

Concerning magnetized white dwarfs, the coupling between rotation and
Rayleigh-Taylor instabilities arising from chemical separation upon crystal-
lization may have an important role in the building of the magnetic field of
the white dwarf.
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SGR 1806-20 SGR 0526-66 SGR 1900+14 SGR 0418+5729
P (s) 7.56 8.05 5.17 9.08

Ṗ(10−11) 54.9 6.5 7.78 < 6.0 × 10−4

Age (kyr) 2.22 1.97 1.05 24.0 × 103

LX(1035 erg/s) 1.50 2.1 1.8 6.2 × 10−4

kT (kev) 0.65 0.53 0.43 0.67

ĖWD
rot (1037 erg/s) 50.24 4.92 22.24 3.2 × 10−4

BWD(109 G) 206.10 73.18 64.16 0.75

RWD(10−5) 0.65 2.06 4.07 2.4 × 10−4

ĖNS
rot (1035 erg/s) 0.502 0.05 0.22 3.2 × 10−6

BNS(1014 G) 20.61 7.32 6.42 0.075

RNS 0.065 0.21 0.41 2.4 × 10−5

1E 1547-54 1E 1048-59 1E 1841-045 1E 2259+586
P (s) 2.07 6.45 11.78 6.98

Ṗ(10−11) 2.32 2.70 4.15 0.048

Age (kyr) 1.42 3.79 4.50 228.74

LX(1035 erg/s) 0.031 0.054 2.2 0.19

kT (kev) 0.43 0.62 0.38 0.41

ĖWD
rot (1037 erg/s) 103.29 3.97 1.01 0.056

BWD(109 G) 22.17 42.22 70.71 5.88

RWD(10−5) 0.07 0.028 8.16 0.49

ĖNS
rot (1035 erg/s) 1.03 0.040 0.010 5.62 × 10−4

BNS(1014 G) 2.22 4.22 7.07 0.59

RNS 0.007 0.0028 0.82 0.049

Table B.12.: SGRs and AXPs as white dwarfs and neutron stars. The
rotational period P, the spin-down rate Ṗ, the X-ray luminosity LX and
the temperature T have been taken from the McGill online catalog at
www.physics.mcgill.ca/∼pulsar/magnetar/main.html. The characteristic
age is given by Age = P/(2Ṗ), the loss of rotational energy Ėrot is given
by Eqs. (B.3.5) and Eq. (B.3.1) and the surface magnetic field is given by
Eqs. (B.3.4) and (B.3.12) for white dwarfs and neutron stars respectively. The
filling factor R is given by Eq. (B.3.14).
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B.4. SGR 0418+5729 and Swift J1822.3-1606 as

massive fast rotating highly magnetized white

dwarfs

B.4.1. Introduction

Soft Gamma Ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are
a class of compact objects that show interesting observational properties (see
e.g. Mereghetti, 2008a): rotational periods in the range P ∼ (2–12) s, spin-
down rates Ṗ ∼ (10−13–10−10), strong outburst of energies ∼ (1041–1043)
erg, and in the case of SGRs, giant flares of even large energies ∼ (1044–1047)
erg.

The most popular model for the description of SGRs and AXPs, the magne-
tar model, based on a neutron star of fiducial parameters M = 1.4M⊙, R = 10
km and a moment of inertia I = 1045 g cm2, needs a neutron star magnetic
field larger than the critical field for vacuum polarization Bc = m2

e c3/(eh̄) =
4.4 × 1013 G in order to explain the observed X-ray luminosity in terms of
the release of magnetic energy (see Duncan and Thompson, 1992; Thomp-
son and Duncan, 1995, for details). There exist in the literature other models
based still on neutron stars but of ordinary fields B ∼ 1012 G: these models
involve either the generation of drift waves in the magnetosphere or the ac-
cretion of fallback material via a circumstellar disk (see Malov, 2010; Trümper
et al., 2013, respectively, and references therein).

Turning to the experimental point of view, the observation of SGR 0418+5729
with a rotational period of P = 9.08 s, an upper limit of the first time deriva-
tive of the rotational period Ṗ < 6.0 × 10−15 (Rea et al., 2010), and an X-ray
luminosity of LX = 6.2 × 1031 erg s−1 can be considered as the Rosetta Stone
for alternative models of SGRs and AXPs. The inferred upper limit of the
surface magnetic field of SGR 0418+5729 B < 7.5 × 1012 G describing it as a
neutron star (see Rea et al., 2010, for details), is well below the critical field,
which has challenged the power mechanism based on magnetic field decay
in the magnetar scenario.

Alternatively, it has been recently pointed out how the pioneering works
of Morini et al. (1988) and Paczynski (1990) on the description of 1E 2259+586
as a white dwarf can be indeed extended to all SGRs and AXPs. Such white
dwarfs were assumed to have fiducial parameters M = 1.4M⊙, R = 103 km,
I = 1049 g cm2, and magnetic fields B & 107 G (see Malheiro et al., 2012, for
details) inferred from the observed rotation periods and spindown rates.

It is remarkable that white dwarfs with large magnetic fields from 107 G
all the way up to 109 G have been indeed observed; see e.g. Külebi et al.
(2009), Külebi et al. (2010a), Kepler et al. (2010), and more recently Kepler
et al. (2012). It is worth to mention also the fact that most of the observed mag-
netized white dwarfs are massive; see e.g. REJ 0317-853 with M ∼ 1.35M⊙
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and B ∼ (1.7–6.6)× 108 G (see e.g. Barstow et al., 1995; Külebi et al., 2010b);
PG 1658+441 with M ∼ 1.31M⊙ and B ∼ 2.3 × 106 G (see e.g. Liebert et al.,
1983; Schmidt et al., 1992); and PG 1031+234 with the highest magnetic field
∼ 109 G (see e.g. Schmidt et al., 1986; Külebi et al., 2009).

The energetics of SGRs and AXPs including their steady emission, glitches,
and their subsequent outburst activities have been shown to be powered by
the rotational energy of the white dwarf (Malheiro et al., 2012). The occur-
rence of a glitch, the associated sudden shortening of the period, as well as
the corresponding gain of rotational energy, can be explained by the release
of gravitational energy associated with a sudden contraction and decrease of
the moment of inertia of the uniformly rotating white dwarf, consistent with
the conservation of their angular momentum.

Describing SGR 0418+5729 as a white dwarf, Malheiro et al. (2012) calcu-
lated an upper limit for the magnetic field B < 7.5 × 108 G and show that
the X-ray luminosity observed from SGR 0418+5729 can be well explained as
originating from the loss of rotational energy of the white dwarf leading to a
theoretical prediction for the spindown rate

LXP3

4π2 I
= 1.18 × 10−16 ≤ ṖSGR0418+5729 < 6.0 × 10−15 , (B.4.1)

where the lower limit was established by assuming that the observed X-ray
luminosity of SGR 0418+5729 coincides with the rotational energy loss of the
white dwarf. As we will show below, these predictions can be still improved
by considering realistic white dwarf parameters instead of fiducial values. It
is important to mention at this point that, after the submission of this work,
Rea et al. (2013) presented the X-ray timing analysis of the long term mon-
itoring of SGR 0418+5729 with RXTE, SWIFT, Chandra, and XMM-Newton;
which allowed the determination of the spin-down rate of SGR 0418+5729,
Ṗ = 4 × 10−15. These results confirm both our prediction given by Eq. (B.4.1)
and the more stringent limits presented in this work in Sec. B.4.4 and given
by Eq. (B.4.10), which being presented in advance to the observational results
presented in (Rea et al., 2013), are to be considered as a predictions of the
white dwarf model.

The situation has become even more striking considering the X-ray timing
monitoring with Swift, RXTE, Suzaku, and XMM-Newton satellites of the re-
cently discovered SGR Swift J1822.3–1606 (Rea et al., 2012). The rotation pe-
riod P = 8.437 s, and the spindown rate Ṗ = 9.1 × 10−14 have been obtained.
Assuming a NS of fiducial parameters, a magnetic field B = 2.8 × 1013 G is
inferred, which is again in contradiction with a magnetar explanation for this
source.

We recently computed (Boshkayev et al., 2013b) general relativistic uni-
formly rotating white dwarfs within the Hartle’s formalism (Hartle, 1967).
We used the relativistic Feynman-Metropolis-Teller equation of state (Ro-
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tondo et al., 2011c), which generalizes the traditionally used equation of state
of Salpeter (1961a). It has been there shown that rotating white dwarfs can be
stable up to rotation periods close to 0.3 s (see Boshkayev et al. (2013b) and
Sec. B.4.3 for details). This range of stable rotation periods for white dwarfs
amply covers the observed rotation rates of SGRs and AXPs P ∼ (2–12) s.

The aim of this work is to give a detailed description of the so-called low
magnetic field magnetars, SGR 0418+5729 and Swift J1822.3-1606 as massive
fast rotating highly magnetized white dwarfs. In addition to these two sources,
we also present a similar analysis of the AXP prototype 1E 2259+586; which
is the source on which Morini et al. (1988) and Paczynski (1990) proposed the
idea of a description of AXPs based on white dwarfs. We thus extend the
work of Malheiro et al. (2012) by using precise white dwarf parameters re-
cently obtained by Boshkayev et al. (2013b) for general relativistic uniformly
rotating white dwarfs. We present an analysis of the expected Optical and
near-Infrared emission from these sources within the white dwarf model and
confront the results with the observational data.

B.4.2. Rotation powered white dwarfs

The loss of rotational energy associated with the spindown of the white dwarf
is given by

|Ėrot| = 4π2 I
Ṗ

P3
= 3.95 × 1050 I49

Ṗ

P3
ergs−1 , (B.4.2)

where I49 is the moment of inertia of the white dwarf in units of 1049 g cm2.
This rotational energy loss amply justifies the steady X-ray emission of all
SGRs and AXPs (see Malheiro et al., 2012, for details).

The upper limit on the magnetic field obtained by requesting that the rota-
tional energy loss due to the dipole field be smaller than the electromagnetic
emission of the magnetic dipole, is given by (see e.g. Ferrari and Ruffini, 1969)

B =

√

3c3

8π2

I

R̄6
PṖ = 3.2 × 1015

√

I49

R̄6
8

PṖ G , (B.4.3)

where R̄8 is the mean radius of the white dwarf in units of 108 cm. The mean
radius is given by R̄ = (2Req + Rp)/3 (see e.g. Hartle and Thorne, 1968) with
Req and Rp the equatorial and polar radius of the star.

It is clear that the specific values of the rotational energy loss and the mag-
netic field depend on observed parameters, such as P and Ṗ, as well as on
model parameters, such as the mass, moment of inertia, and mean radius of
the rotating white dwarf. It is worth mentioning that Eq. (B.4.3) gives infor-
mation only on the dipole component of the magnetic field while there is the
possibility that close to the star surface contributions from higher multipoles
could be also important. As shown by Qadir et al. (1980), the presence of
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higher electromagnetic multipoles increases the pulsar braking index to val-
ues larger than the traditional value n = 3 of the magneto-dipole radiation.

B.4.3. Structure and stability of rotating white dwarfs

The rotational stability of fast rotating white dwarfs was implicitly assumed
by Malheiro et al. (2012). The crucial question of whether rotating white
dwarfs can or not attain rotation periods as short as the ones observed in
SGRs and AXPs has been recently addressed by Boshkayev et al. (2013b).
The properties of uniformly rotating white dwarfs were computed within
the framework of general relativity through the Hartle’s formalism (Hartle,
1967). The equation of state for cold white dwarf matter is based on the rel-
ativistic Feynman-Metropolis-Teller treatment (Rotondo et al., 2011c), which
generalizes the equation of state of Salpeter (1961a). The stability of rotat-
ing white dwarfs was analyzed taking into account the mass-shedding limit,
inverse β-decay and pycnonuclear instabilities, as well as the secular axisym-
metric instability, with the latter determined by the turning point method of
Friedman et al. (1988); see Fig. B.29 and Boshkayev et al. (2013b), for details.

Pycnonuclear, lifetime 105 years
Pycnonuclear, lifetime 1010 years
Static configuration
Secular instability
Inverse Β-decay instability
Keplerian sequence

1.0 10.05.02.0 3.01.5 7.0
1.0

1.1

1.2
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1.4
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Req @ 103 km D

M
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Figure B.29.: Mass versus equatorial radius of rotating 12C white dwarfs
(Boshkayev et al., 2013b). The solid black curves correspond to J=constant
sequences, where the static case J = 0 the thickest one. The color thin-dashed
curves correspond to P=constant sequences. The Keplerian sequence is the
red thick dashed curve, the blue thick dotted-dashed curve is the inverse β
instability boundary, and the green thick dotted curve is the axisymmetric
instability line. The orange and purple dashed boundaries correspond to the
pycnonuclear C+C fusion densities with reaction mean times τpyc = 10 Gyr
and 0.1 Myr, respectively. The gray-shaded region is the stability region of
rotating white dwarfs.

The minimum rotation period Pmin of white dwarfs is obtained for a config-
uration rotating at Keplerian angular velocity, at the critical inverse β-decay
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density, namely this is the configuration lying at the crossing point between
the mass-shedding and inverse β-decay boundaries. The numerical values of
the minimum rotation period Pmin ≈ (0.3, 0.5, 0.7, 2.2) s were found for He-
lium, Carbon, Oxygen, and Iron white dwarfs, respectively (Boshkayev et al.,
2013b). As a byproduct, these values show that indeed all SGRs and AXPs
can be described as rotating white dwarfs because their rotation periods are
in the range 2 . P . 12 s.

The relatively long minimum period of rotating 56Fe white dwarfs, Pmin ≈
2.2 s, lying just at the lower edge of the observed range of rotation periods of
SGRs and AXPs, reveals crucial information on the chemical composition of
SGRs and AXPs, namely they are very likely made of elements lighter than
Iron, such as Carbon or Oxygen.

It can be seen from Fig. B.29 that every Ω = 2π/P constant sequence in-
tersects the stability region of general relativistic uniformly rotating white
dwarfs (M-Req curves inside the shaded region of Fig. B.29) in two points.
These two points determine the minimum(maximum) mass Mmin,max and

maximum(minimum) equatorial radius Rmax,min
eq , for the stability of a white

dwarf rotating at the given angular velocity. Associated to the boundary val-

ues Mmin,max and Rmax,min
eq , we can obtain the corresponding bounds for the

moment of inertia of the white dwarf, Imax,min, respectively.

We turn now to a specific analysis of the two sources, SGR 0418+5729 and
SGR SGR 1822–1606.

B.4.4. SGR 0418+5729

Bounds on the white dwarf parameters

SGR 0418+5729 has a rotational period of P = 9.08 s, and the upper limit of
the spindown rate Ṗ < 6.0 × 10−15 was obtained by Rea et al. (2010). The
corresponding rotation angular velocity of the source is Ω = 2π/P = 0.69
rad s−1. We show in Table B.13 bounds for the mass, equatorial radius, mean
radius, and moment of inertia of SGR 0418+5729 obtained by the request of
the rotational stability of the rotating white dwarf, as described in Section
B.4.3, for selected chemical compositions. Hereafter we consider only general
relativistic rotating Carbon white dwarfs.

Solidification and glitches

It has been shown by Malheiro et al. (2012) that the massive white dwarfs
consistent with SGRs and AXPs possibly behave as solids since the internal
temperature of the white dwarf (∼ 107 K) is very likely lower than the crys-
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Composition Mmin Mmax Rmin
eq Rmax

eq R̄min R̄max Imin
48 Imax

50 B
upper
min B

upper
max

Helium 1.18 1.41 1.16 6.88 1.15 6.24 3.59 1.48 1.18 2.90
Carbon 1.15 1.39 1.05 6.82 1.05 6.18 2.86 1.42 1.19 3.49
Oxygen 1.14 1.38 1.08 6.80 1.08 6.15 3.05 1.96 1.42 3.30

Iron 0.92 1.11 2.21 6.36 2.21 5.75 12.9 1.01 1.25 0.80

Table B.13.: Bounds on the properties of SGR 0418+5729. The masses

Mmin,max are in M⊙, the equatorial Rmin,max
eq and mean R̄min,max radii area

in units of 108 cm, the moments of inertia Imin
48 and Imax

50 are in units of 1048 g

cm2 and 1050 g cm2, respectively. The magnetic fields B
upper
min and B

upper
max are in

units of 107 G and 108 G, respectively.

tallization temperature (see e.g. Shapiro and Teukolsky, 1983a; Usov, 1994)

Tcry ≃ 2.3 × 105 Z2

A1/3

(

ρ̄

106g/cm3

)1/3

K , (B.4.4)

where (Z, A) and ρ̄ denote the chemical composition and mean density, re-
spectively.

This fact introduces the possibility in the white dwarf to observe sudden
changes in the period of rotation, namely glitches. The expected theoretical
values of the fractional change of periods of massive white dwarfs have been
shown to be consistent with the values observed in many SGRs and AXPs
(see Malheiro et al., 2012, for details).

From the bounds of M and Req we obtain that the mean density of SGR

0418+5729 must be in the range 2.3× 106 . ρ̄ . 5.7× 108 g cm3. Correspond-
ingly, the crystallization temperature is comprised in the range 4.8 × 106 K
. Tcry . 3.0 × 107 K, where the lower and upper limits correspond to the
configurations of minimum and maximum mass, respectively.

The crystallization temperature obtained here indicates that SGR 0418+5729
should behave as a rigid solid body and therefore glitches during the ro-
tational energy loss, accompanied by radiative events, could happen. Star-
quakes leading to glitches in the white dwarf will occur with a recurrence
time (see e.g. Baym and Pines, 1971; Usov, 1994; Malheiro et al., 2012)

δtq =
2D2

B

|∆P|/P

|Ėrot|
, (B.4.5)

where

B = 0.33
4π

3
R3

c e2Z2

(

ρ̄c

Amp

)4/3

, D =
3

25

GM2
c

Rc
,

with Ėrot the loss of rotational energy given by Eq. (B.4.2), Mc, Rc, and ρ̄c

are the mass, the radius and the mean density of the solid core, and mp is the
proton mass.
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For the minimum and maximum mass configurations and the upper limit
of the spindown rate Ṗ < 6 × 10−15, we obtain a lower limit for recurrence
time of starquakes

δtq >

{

4.2 × 109(|∆P|/P) yr, M = Mmin

2.0 × 1012(|∆P|/P) yr, M = Mmax
. (B.4.6)

For typical fractional change of periods |∆P|/P = 10−6, observed in SGRs
and AXPs, we obtain δtq > 4 × 103 yr and δtq > 2 × 106 yr, for Mmin and
Mmax respectively. These very long starquake recurrent times are in agree-
ment with the possibility that SGR 0418+5729 is an old white dwarf whose
magnetospheric activity is settling down, in line with its relatively low spin-
down rate, magnetic field, and high efficiency parameter LX/Ėrot, with re-
spect to the values of other SGRs and AXPs (see e.g. Fig. 9 in Malheiro et al.,
2012).

Rotation power and magnetic field

Introducing the values of P and the upper limit Ṗ into Eq. (B.4.2) we obtain
an upper limit for the rotational energy loss

|Ėrot| <
{

9.1 × 1032 erg s−1, M = Mmax

4.5 × 1034 erg s−1, M = Mmin
, (B.4.7)

which for any possible mass is larger than the observed X-ray luminosity of
SGR 0418+5729, LX = 6.2 × 1031 erg s−1, assuming a distance of 2 kpc (Rea
et al., 2010).

The corresponding upper limits on the magnetic field of SGR 0418+5729,
obtained from Eq. (B.4.3) are (see also Table B.13)

B < B
upper
min,max =

{

1.2 × 107 G, M = Mmin

3.5 × 108 G, M = Mmax
. (B.4.8)

It is worth noting that the above maximum possible value of the surface
magnetic field of SGR 0418+5729 obtained for the maximum possible mass
of a white dwarf with rotation period 9.08 s, B < 3.49 × 108 G, is even more
stringent and improves the previously value given by Malheiro et al. (2012),
B < 7.5 × 108 G, based on fiducial white dwarf parameters.

The presence of the magnetic field quantizes the electron spectrum and
thus, their scattering with the photons, could generate absorption features in
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the spectrum at frequencies of the order of

νcyc,e =
eB

2πmec
=

{

3.4 × 1013 Hz, M = Mmin

9.8 × 1014 Hz, M = Mmax
, (B.4.9)

corresponding to wavelengths 8.9 and 0.3 µm, respectively.

Prediction of the spindown rate

Assuming that the observed X-ray luminosity is lower than |Ėrot|, we obtain
the lower limit for the spindown rate

Ṗ >
LXP3

4π2 I
=

{

8.3 × 10−18, M = Mmin

4.1 × 10−16, M = Mmax
, (B.4.10)

which in the case of the white dwarf with the maximum possible mass is more
stringent than the value reported by Malheiro et al. (2012), Ṗ = 1.18 × 10−16,
for a massive white dwarf of fiducial parameters.

Optical spectrum and luminosity

Durant et al. (2011) observed SGR 0418+5729 with the two wide filters F606W
and F110W of the Hubble Space Telescope within the positional error circle
derived from Chandra observations of the field of SGR 0418+5729 (Rea et al.,
2010). They derive the upper limits of the apparent magnitudes, mF606W >

28.6 and mF110W > 27.4 (Vega system). The approximate distance to the
source is d = 2± 0.5 kpc (see Durant et al., 2011, for details). Assuming an in-
terstellar extinction obtained from the NH column absorption value observed
in the X-ray data, AV = 0.7, Durant et al. (2011) obtained the corresponding
luminosity upper bounds LF606W < 5 × 1028 erg s−1 and LF110W < 6 × 1028

erg s−1, respectively.

We use here a similar method, i.e. computing the interstellar extinction
values for the V band from the NH column absorption value observed in the
X-ray data, NH = 1.5× 1021 cm−2 (Rea et al., 2010), and then using the empir-
ical formula described in Predehl and Schmitt (1995). Then we have extrap-
olated the extinction to the other filters by using the method delineated in
Cardelli et al. (1989). Since the F606W and the F110W are well approximated
by the V and J band, we obtained for the extinction values AF606W = 0.83 and
AF110W = 0.235 respectively. The corresponding luminosity upper bounds
are, consequently, LF606W < 6.82 × 1028 erg s−1 and LF110W < 3.05 × 1028 erg
s−1.

An estimate of the effective surface temperature can be obtained by approx-
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imating the spectral luminosity in these bands by the black body luminosity

L = 4πR2σT4 , (B.4.11)

where σ = 5.67 × 10−5 erg cm−2 s−1 K −4 is the Stefan-Boltzmann constant.
For a white dwarf of fiducial radius R = 108 cm, the upper limits for the
surface temperature, T < 9.6 × 103 K and T < 9.2 × 103 K, can be obtained
for the F110W and F606W filters, replacing the upper limits for LF110W and
LF606W in Eq. (B.4.11). These bounds of the surface temperature of the white
dwarf can be improved by using the explicit dependence on the radius of the
black body surface temperature for each filter. The black body flux at a given
frequency ν, in the source frame, is given by

ν fν = π
2h

c2

ν4

exp[hν/(kT)]− 1
, (B.4.12)

where h, k, and ν are the Planck constant, the Boltzmann constant, and the
spectral frequency respectively. From this expression we can obtain the tem-
perature as a function of the frequency, the observed flux, the distance d and
radius R of the black body source

T =
hν

k ln
(

1 + π2hν4R2

c2d2Fν,obs

) , (B.4.13)

where we have used the relation between the flux in the observed and source
frames, Fν,obs = (R/d)2 ν fν.

The observed fluxes, in units of erg , cm−2 , s−1 , corrected for the extinction
are given by

FF606W
ν,obs = 3.6 × 10−20νF606W × 10−0.4(mF606W−AF606W) , (B.4.14)

and
FF110W

ν,obs = 1.8 × 10−20νF110W × 10−0.4(mF110W−AF110W) , (B.4.15)

where νF606W = 5.1 × 1014 Hz and νF110W = 2.6 × 1014 Hz are the pivot fre-
quencies of the F606W and F110W filters, respectively.

Introducing the upper limits of the apparent magnitudes of Durant et al.
(2011) with the extinction values computed in this work, Eq. (B.4.13) gives
the upper bounds on the temperature

T <

{

1.3 × 104 [ln(1 + 0.44R2
8)]

−1 K, F110W

2.4 × 104 [ln(1 + 6.35R2
8)]

−1 K, F606W
, (B.4.16)

where R2
8 is the radius of the white dwarf in units of 108 cm and, following

Durant et al. (2011), we have approximated the band integrated flux as νcFν,
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with νc the pivot wavelength of the corresponding band filter.
In Fig. B.30, we show the constraints on the T-R relation obtained from

Eq. (B.4.16). We have used the range of radii defined by the minimum and
maximum radius of SGR 0418+5729 inferred from the white dwarf stability
analysis and summarized in Table B.13.
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Figure B.30.: Temperature-Radius constraint given by Eq. (B.4.16). The gray
region corresponds to the possible values for the temperature and the radius
of the white dwarf. The range of radii correspond to the one defined by the
minimum and maximum mean radius of SGR 0418+5729 inferred from the
white dwarf stability analysis and summarized in Table B.13.

Malheiro et al. (2012) obtained for a white dwarf of fiducial parameters the
upper limits for the white dwarf surface temperature, T < 3.14 × 104. We
now improve these bounds on the surface temperature using realistic white
dwarf parameters. From the minimum and maximum values we have ob-
tained for the mean radius of SGR 0418+5729 (see Table B.13) we obtain for
the F110W filter

TF110W <

{

4.3 × 103 K, M = Mmin

3.2 × 104 K, M = Mmax
, (B.4.17)

and for the F606W filter

TF606W <

{

4.4 × 103 K, M = Mmin

1.2 × 104 K, M = Mmax
. (B.4.18)

It is clear that these constraints are in agreement with a model based on
a massive fast rotating highly magnetic white dwarf for SGR 0418+5729. It
is appropriate to recall in this respect some of the observed temperatures of
massive isolated white dwarfs, 1.14 × 104 K ≤ T ≤ 5.52 × 104 K as shown
in the Table 1 in (Ferrario et al., 2005). It is also worth recalling the optical
observations of 4U 0142+61 of Hulleman et al. (2000) where the photometric
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results of the field of 4U 0142+61 at the 60-inch telescope on Palomar Moun-
tain were found to be in agreement with a 1.3M⊙ white dwarf with a surface
temperature ∼ 4 × 105 K (see Hulleman et al., 2000, for details).

We show in Fig. B.31 the expected optical magnitudes of a white dwarf
with surface temperature T = 104 K and radius R = 1.5 × 108 cm, located at
a distance of 2 kpc. This radius corresponds to the upper limit given by the
gray region shown in Fig. B.30, for this specific value of the temperature.
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Figure B.31.: Expected optical magnitudes of SGR 0418+5729 obtained as-
suming a simple blackbody for the spectral emission from a white dwarf with
surface temperature T = 104 K and a radius of 1.5 × 108 cm, according to the
constraints shown in Fig. B.30.

B.4.5. Swift J1822.3–1606

Bounds of the white dwarf parameters

Swift J1822.3–1606 (or SGR 1822–1606) was recently discovered in July 2011
by Swift Burst Alert Telescope (BAT). A recent X-ray timing monitoring with
Swift, RXTE, Suzaku, and XMM-Newton satellites found that SGR 1822-1606
rotates with a period of P = 8.44 s and slows down at a rate Ṗ = 9.1 × 10−14

(see Rea et al., 2012, for details). The corresponding rotation angular velocity
of the source is Ω = 2π/P = 0.74 rad s−1. Bounds for the mass, equatorial
radius, and moment of inertia of SGR 0418+5729 obtained by the request of
the rotational stability of the rotating white dwarf, as described in Section
B.4.4, are shown in Table B.14.

Solidification and glitches

The mean density of SGR 1822–1606 is in the range 2.7 × 106 . ρ̄ . 5.7 × 108

g cm3. The crystallization temperature for such a range following Eq. (B.4.4)
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Composition Mmin Mmax Rmin
eq Rmax

eq R̄min R̄max Imin
48 Imax

50 Bmin Bmax

Helium 1.21 1.41 1.16 6.61 1.15 5.99 3.59 1.38 4.84 1.09
Carbon 1.17 1.39 1.05 6.55 1.05 5.93 2.86 1.32 4.87 1.31
Oxygen 1.16 1.38 1.08 6.53 1.08 5.91 3.05 1.83 5.80 1.24

Iron 0.95 1.11 2.21 6.11 2.20 5.53 12.9 0.94 5.09 0.30

Table B.14.: Bounds on the properties of Swift J1822.3–1606. The masses

Mmin,max are in M⊙, the equatorial Rmin,max
eq and mean R̄min,max radii area

in units of 108 cm, the moments of inertia Imin
48 and Imax

50 are in units of 1048

g cm2 and 1050 g cm2, respectively. The magnetic fields Bmin and Bmax are in
units of 107 G and 109 G, respectively.

is then in the range 5.0 × 106 K . Tcry . 3.0 × 107 K, which indicates that
SGR 1822-1606 will likely behave as a rigid solid body.

For the minimum and maximum mass configurations and the spindown
rate Ṗ = 9.1× 10−14, we obtain a lower limit for recurrence time of starquakes

δtq >

{

2.6 × 108(|∆P|/P) yr, M = Mmin

1.1 × 1011(|∆P|/P) yr, M = Mmax
, (B.4.19)

which for a typical fractional change of period |∆P|/P ∼ 10−6 gives δtq >

3 × 102 yr and δtq > 105 yr, for Mmin and Mmax respectively. The long re-
currence time for starquakes obtained in this case, confirms the similarities
between SGR 1822–1606 and SGR 0418+5729 as old objects with a settling
down magnetospheric activity.

Rotation power and magnetic field

Using the observed values of P and Ṗ, we obtain from Eq. (B.4.2) a rotational
energy loss

|Ėrot| ≈
{

1.7 × 1034 erg s−1, M = Mmax

7.9 × 1035 erg s−1, M = Mmin
, (B.4.20)

which amply justifies the observed X-ray luminosity of SGR 1822–1606, LX =
4 × 1032 erg s−1, obtained assuming a distance of 5 kpc (see Rea et al., 2012,
for details).

The surface magnetic field of SGR 1822.3–1606, as given by Eq. (B.4.3), is
then between the values (see Table B.14)

B =

{

4.9 × 107 G, M = Mmin

1.3 × 109 G, M = Mmax
. (B.4.21)

Corresponding to the above magnetic fields, the electron cyclotron fre-
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quencies are

νcyc,e =
eB

2πmec
=

{

1.4 × 1014 Hz, M = Mmin

3.6 × 1015 Hz, M = Mmax
, (B.4.22)

that correspond to wavelengths 2.2 and 0.08 µm, respectively.

Optical spectrum and luminosity

Rea et al. (2012) observed the field of SGR 1822–1606 with the Gran Telesco-
pio Canarias (GranTeCan) within the Swift-XRT position (Pagani et al., 2011).
Three sources (S1, S2, and S3) were detected with the Sloan z filter with corre-
sponding z-band magnitudes mz,S1 = 18.13 ± 0.16, mz,S2 = 20.05 ± 0.04, and
mz,S3 = 19.94 ± 0.04 (see Rea et al., 2012, for details). No additional objects
were found to be consistent with the Swift-XRT position up to a magnitude
mz = 22.2 ± 0.2 (3σ).

In addition, data from the UK Infrared Deep Sky Survey (UKIDSS) for
the field of SGR 1822–1606 were found to be available, giving the magni-
tudes of the three aforementioned sources in the J, H, and K bands; mJ,i =
(13.92, 16.62, 16.43), mH,i = (12.37, 15.75, 15.40), and mK,i = (11.62, 15.20, 14.88),
where the index i indicates the values for the sources S1, S2, and S3. In addi-
tion to S1, S2, and S3, no sources were detected within the consistent position
up to the limiting magnitudes mJ = 19.3, mH = 18.3, and mK = 17.3 (5σ).

We repeat the same analysis for SGR 0418+5729 to the case of SGR 1822–
1606. We consider only the upper limits, since the three sources reported in
Rea et al. (2012), S1, S2 and S3, are very luminous to be a white dwarf at the
distance considered for the SGR, d ≈ 5 kpc. From the column density value,
NH = 7 × 1021 cm−2, we obtain an extinction in the V-band of AV = 3.89.
From the Cardelli et al. (1989) relation we obtain the extinction values for the
four bands considered, Az = 1.86, AJ = 1.10, AH = 0.74 and AK = 0.44. The
extinction corrected upper limits do not put very strong constraints to the
temperature and the radius of the white dwarf, due to the very large distance
assumed for SGR 1822–1606. We show in Fig B.32 the expected extinction-
corrected magnitudes for a white dwarf with a temperature T = 104 K and a
radius R = 1.5× 108 cm at a distance of 5 kpc. We obtain a very deep value for
the K-band of ≈ 30. We conclude that, if SGR 1822–1606 is at the distance of 5
kpc assumed by Rea et al. (2012), it will be hard to detect the white dwarf. On
the contrary, a possible detection would lead to a more precise determination
of the distance.
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Figure B.32.: Expected optical magnitudes of SGR 1822–1606 assuming a
blackbody spectral emission from a white dwarf with surface temperature
T = 104 K and a radius of 1.5 × 108 cm.

B.4.6. 1E 2259+586

Bounds of the white dwarf parameters

In addition to be considered as the AXP prototype, 1E 2259+586 is the source
on which Morini et al. (1988) and Paczynski (1990) based their pioneering
idea of describing AXPs as massive fast rotating and highly magnetized white
dwarfs. This source is pulsating in X-rays with a period of P = 6.98 s (Fahlman
and Gregory, 1981), its spindown rate is Ṗ = 4.8 × 10−13 (Davies et al., 1990)
and emits X-rays with a luminosity of LX = 1.8 × 1034 erg s−1 (Gregory and
Fahlman, 1980; Hughes et al., 1981; Morini et al., 1988). The corresponding
rotation angular velocity of the source is Ω = 2π/P = 0.90 rad s−1. The
obtained bounds for the mass, equatorial radius, and moment of inertia of 1E
2259+586 are shown in Table B.15.

Composition Mmin Mmax Rmin
eq Rmax

eq R̄min R̄max Imin
48 Imax

50 Bmin Bmax

Helium 1.28 1.41 1.15 5.94 1.15 5.39 3.56 1.12 1.26 2.30
Carbon 1.24 1.39 1.04 5.88 1.04 5.34 2.84 1.08 1.27 2.76
Oxygen 1.23 1.38 1.08 5.86 1.08 5.32 3.05 1.52 1.52 2.60

Iron 1.00 1.11 2.23 5.49 2.21 4.98 13.1 0.78 1.33 0.62

Table B.15.: Bounds on the properties of 1E 2259+586. The masses Mmin,max

are in M⊙, the equatorial Rmin,max
eq and mean R̄min,max radii area in units of

108 cm, the moments of inertia Imin
48 and Imax

50 are in units of 1048 g cm2 and

1050 g cm2, respectively. The magnetic fields Bmin and Bmax are in units of 108

G and 109 G, respectively.
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Solidification and glitches

The mean density of SGR 1822–1606 is in the range 3.9 × 106 . ρ̄ . 5.9 × 108

g cm3. The crystallization temperature for such a range following Eq. (B.4.4)
is then in the range 5.7 × 106 K . Tcry . 3.0 × 107 K, which indicates that
SGR 1822-1606 will likely behave as a rigid solid body.

For the minimum and maximum mass configurations and the spindown
rate Ṗ = 4.8× 10−13, we obtain a lower limit for recurrence time of starquakes

δtq >

{

4.5 × 107(|∆P|/P) yr, M = Mmin

1.2 × 1010(|∆P|/P) yr, M = Mmax
, (B.4.23)

which for a typical fractional change of period |∆P|/P ∼ 10−6 gives δtq > 45

yr and δtq > 1.2 × 104 yr, for Mmin and Mmax respectively. This recurrence
time for starquakes is much shorter than the ones of SGR 0418+5729 and SGR
1822–1606, indicating 1E 2259+586 as a very active source in which glitches
and outburst activity, as the one observed in 2002 (Kaspi et al., 2003; Woods
et al., 2004), can occur with relatively high frequency. It is interesting to note
that even more frequent, with recurrence times of . 4 yr, can be glitches of
minor intensity |∆P|/P . 10−7.

Rotation power and magnetic field

Using the observed values of P and Ṗ, we obtain from Eq. (B.4.2) a rotational
energy loss

|Ėrot| ≈
{

1.6 × 1035 erg s−1, M = Mmax

6.0 × 1036 erg s−1, M = Mmin
, (B.4.24)

much larger than the observed X-ray luminosity, LX = 1.8 × 1034 erg s−1,
obtained assuming a distance of 3.2 ± 0.2 kpc (see Kothes and Foster, 2012,
for details).

The surface magnetic field of 1E 2259+586 inferred from Eq. (B.4.3) is (see
Table B.15)

B =

{

1.3 × 108 G, M = Mmin

2.8 × 109 G, M = Mmax
. (B.4.25)

Corresponding to the above magnetic fields, the electron cyclotron fre-
quencies are

νcyc,e =

{

3.6 × 1014 Hz, M = Mmin

7.8 × 1015 Hz, M = Mmax
, (B.4.26)

that correspond to wavelengths 0.8 and 0.04 µm, respectively.
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Optical spectrum and luminosity

Using date from the Keck telescope, Hulleman et al. (2001) established a faint
near-IR counterpart of 1E 2259+586 with a magnitude Ks = 21.7 ± 0.2, con-
sistent with the position given by Chandra. In addition, upper limits in the
optical bands R = 26.4, I = 25.6, and J = 23.8, were placed. From the column
density obtained by Patel et al. (2001), NH = 9.3 ± 0.3 × 1021 cm−2, and us-
ing again the empirical formula described of Predehl and Schmitt (1995), one
obtains the absorption AV = NH/(1.79 × 1021 cm−2), which Hulleman et al.
(2001) used to obtain the extinction in the other bands AR = 4.3, AI = 3.1,
AJ = 1.4, AK = 0.6.

It is known that the emission in the K band, the excess in the near-IR, is typ-
ically produced by the presence of a disk; see for instance (Hulleman et al.,
2000) for the case of 4U 0142+61 and (Hulleman et al., 2001) for the present
source 1E2259+586, although in the context of a fallback disk around a neu-
tron star. We fit the spectrum of 1E 2259+586 as the sum of a black body
component

FBB = π
2h

c2

(

RWD

d

)2 ν3

ehν/(kBT) − 1
, (B.4.27)

where RWD and T the radius and effective temperature of the white dwarf,
and a passive flat, opaque dust disk (see e.g. Jura, 2003; Lorén-Aguilar et al.,
2009)

Fdisk = 12π1/3 cos i

(

RWD

d

)2 (2kBT

3hν

)8/3 (hν3

c2

)

∫ xout

xin

x5/3

ex − 1
dx , (B.4.28)

where i is the inclination angle of the disk, which we assume as zero de-
grees, xin = hν/(kBTin), xin = hν/(kBTout), with Tin and Tout the temper-
atures of the disk at the inner and outer radii, respectively. These temper-
atures are related to the radii Rin and Rout of the disk through Tin,out =
(2/3π)1/4(RWD/Rin,out)

3/4T.
The total flux is then given by FBB+disk = FBB + Fdisk. Since we have only

one point from the observational data, the flux in the Ks band, it is difficult
to place constraints on the spectrum parameters. However, we can use the
fact that the emission has to respect the upper limits in the R, I, and J bands.
We have fixed the radius of the white dwarf as RWD = 3 × 108 cm, a value in
the interval of stability of Table B.15, and for the outer radius of the passive
disk we give a typical value Rout = R⊙. We found that good fitting values
of the other parameters are T = 7.0 × 104 K and Tin = 2.0 × 103 K. We show
in Fig. B.33 the observed spectrum of 1E 2259+586 in the IR, optical, and UV
bands and the composite black body + disk model spectrum. The knowledge
of more data besides the Ks band will lead to a definite determination of the
parameter of the model and to the confirmation of the white dwarf nature of
1E 2259+586.
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Figure B.33.: Observed and fitted spectrum of 1E 2259+586. The filled circle
is the observed flux int he Ks band, and the triangles are the upper limits in
the R, I, and J bands. The parameters of the black body+disk spectrum are
RWD = 3.0 × 108 cm, T = 7.0 × 104 K, Tin = 2.0 × 103 K, and Rout = R⊙. The
blue-dashed curve is the contribution of the disk and the red-dashed curve is
the contribution from a pure black body, the total spectrum is represented by
the solid black curve.

It is worth to recall that the location of 1E 2259+586 appears to be associ-
ated to the supernova remnant G109.1–1.0 (CTB 109) whose age is estimated
to be t − t0 = (12–17) kyr (Gregory and Fahlman, 1980; Hughes et al., 1981).
Paczynski (1990) proposed a merger of a binary of ∼ (0.7–1)M⊙ white dwarfs
that leads both to the formation of a fast rotating white dwarf and to the
supernova remnant. Recent simulations of (0.8–0.9M⊙) white dwarf-white
dwarf mergers (see e.g. Pakmor et al., 2010) point however to supernova
events not very efficient energetically, below the observed explosion energy
∼ 7.4× 1050 erg of G109.1–1.0 (see e.g. Sasaki et al., 2004). Another interesting
possibility was advanced by Malheiro et al. (2012) that this system could be
originated from a tight binary system composed of a white dwarf and a late
evolved companion star, approaching the process of gravitational collapse.
The collapse of the companion star, either to a neutron star or to a black hole,
leads to mass loss which can unbind the original binary system. If the loss of
mass in the supernova explosion is Mloss < M/2 with M the total mass of the
binary (see e.g. Ruffini, 1973), the system holds bound and therefore the object
will lie close to the center of the supernova remnant. Both explanations are
interesting and deserve further investigation. These two scenarios may well
explain the presence of a disk of material around the white dwarf, either as
material expelled from the white dwarf binary merger (see e.g. Lorén-Aguilar
et al., 2009) in the scenario of Paczynski (1990), or as material coming from
the supernova explosion and which is captured by the white dwarf in the sce-
nario of Malheiro et al. (2012). As we have seen, the presence of such a disk
explains the emission in the near-IR observed in sources such as 4U 0142+61
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(see e.g. Hulleman et al., 2000) and in the present case of 1E 2259+586.

B.4.7. Concluding Remarks

We have described SGR 0418+5729, Swift J1822.3-1606, and 1E 2259+586 as
massive fast rotating highly magnetized white dwarfs. The reasons for the
choice of these three sources are twofold: 1) the observations of SGR 0418+5729
(Rea et al., 2010), P = 9.08 and Ṗ < 6.0 × 10−15, and more recently the ones
of Swift J1822.3-1606 (Rea et al., 2012), P = 8.44 s and Ṗ = 9.1 × 10−14, chal-
lenge the description of these sources as ultramagnetized neutron stars, as
required by the magnetar model; 2) 1E 2259+586 is considered the AXP pro-
totype with very good observational data including the best example of the
glitch-outburst connection (see e.g. Woods et al., 2004) and, in addition, it rep-
resents a historical object being the one analyzed by Morini et al. (1988) and
Paczynski (1990), where the canonical description based on white dwarfs was
proposed.

We have shown that SGR 0418+5729 and Swift J1822.3–1606 are in full
agreement with massive fast rotating highly magnetic white dwarfs. We
have improved the white dwarf parameters given by Malheiro et al. (2012)
for these sources and also for 1E 2259+586. From an analysis of the rotational
stability of Boshkayev et al. (2013b), we have given bounds for the mass, ra-
dius, moment of inertia, and magnetic field of these sources; see Tables B.13,
B.14, and B.15 for details.

We have improved the theoretical prediction of the lower limit for the spin-
down rate of SGR 0418+5729, for which only the upper limit, Ṗ < 6.0× 10−15,
is currently known (Rea et al., 2010). Based on a white dwarf of fiducial pa-
rameters, Malheiro et al. (2012) predicted for SGR 0418+5729 the lower limit
Ṗ > 1.18 × 10−16. Our present analysis based on realistic general relativistic
rotating white dwarfs allows us to improve this prediction; see Eq. (B.4.10)
in Sec. B.4.4 for the new numerical values. In the case of a white dwarf close
to the critical mass, this new lower limit gives a very stringent constraint on
the spindown rate of SGR 0418+5729, Ṗ = 4 × 10−16 < Ṗ < 6 × 10−15, which
we submit for observational verification. Indeed, after the submission of this
work, Rea et al. (2013) reported the confirmation of the spin-down rate of
SGR 0418+5729, Ṗ = 4 × 10−15, at 3.5 sigma confidence level. This measure-
ment fully confirms the results of Malheiro et al. (2012), see Eq. (B.4.1), as
well as the more stringent constraints presented in this work, see Eq. (B.4.10),
which being presented in advance to the observations have to be considered
as predictions. This fact clearly represents an observational support for the
white dwarf model of SGRs/AXPs.

In this line it is worth to mention the recent discussions on the high un-
certainties and different results claimed by different authors on the value of
the first period time derivative of Swift J1822.3–1606 (see Tong and Xu, 2012,
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and references therein for details). Here we have used the value reported by
Rea et al. (2012). However, it would be interesting also in this case to put
a theoretical lower limit with the white dwarf mode. Using LX = 4 × 1032

erg s−1 at a distance of 5 kpc (Rea et al., 2012), we obtain a lower limit
Ṗ ≥ LXP3/(4π2 I) ≈ 2.13 × 10−15 for a 12C white dwarf close to its max-
imum mass; see Table B.15. Indeed, this limit bounds from below all the
observationally claimed spin-down rates for this source, known up to now.

We have given in Eqs. (B.4.9), (B.4.22), and (B.4.26) an additional prediction
of the frequencies at which absorption features could be present in the spec-
trum of SGR 0418+5729, Swift J1822.3-1606, and 1E2259+586 respectively, as
a result of the scattering of photons with electrons whose energy spectrum is
quantized due to the magnetic field. The range we have obtained for such fre-
quencies fall between the infrared and UV bands. In this line it is important
to remark that magnetic fields in white dwarfs raging from 107 G up to 109

G are routinely observed; see e.g. Külebi et al. (2009), Külebi et al. (2010a),
Kepler et al. (2010), and very recently Kepler et al. (2012) where from the
Data Release 7 of the Sloan Digital Sky Survey, white dwarfs with magnetic
fields in the range from around 106 G to 7.3 × 108 G has been found from the
analysis of the Zeeman splitting of the Balmer absorption lines. Deep photo-
metric and spectrometric observations in the range of cyclotron frequencies
predicted in this work are therefore highly recommended to detect possible
absorptions and line splitting features in the spectra of SGRs and AXPs.

We have presented the optical properties of SGR 0418+5729, Swift J1822.3–
1606, and 1E 2259+586 as expected from a model based on white dwarfs. We
have inferred the surface temperature and predicted the emission fluxes in
the UV, Optical, and IR bands. We have shown that indeed the available
observational data are consistent with a white dwarf model for these objects.
In the particular case of 1E 2259+586 the observed excess in the near-IR is
explained with the presence of a disk of dust around the white dwarf. Such
a disk might be the result of material expelled during the merger of a white
dwarf binary progenitor (Paczynski, 1990; Rueda et al., 2013) or as the result
of material from the supernova explosion of an evolved star companion of
the white dwarf in the binary scenario proposed by Malheiro et al. (2012) for
the SGR/AXP-supernova connection.

It is important to discuss briefly the persistent X-ray emission of SGRs/AXPs.
The time integrated X-ray spectrum is often well described by a composite
black body + power-law model with temperatures of the order of kBTBB ∼
0.1 keV (see e.g. Göhler et al., 2005). Such a black body component corre-
sponds to temperatures TBB ∼ 106 K, higher than the surface temperature of
a white dwarf, as the ones predicted in this work. This clearly Spoints to an
X-ray emission of magnetospheric origin and so this black body temperature
of the X-ray spectrum is not to be associated with the white dwarf effective
temperature (see e.g. Malheiro et al., 2012). A possible mechanism for the
X-ray quiescent emission from a magnetized white dwarf was underlined by
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Usov (1993): the reheating of the magnetosphere owing to the bombardment
of the backward moving positrons created in the pair cascades formed in the
interaction of the high-energy photons with the ultra-relativistic electrons. As
shown by Usov (1993) in the specific case of 1E 2259+586, such a reheating of
the polar caps is able to produce a stable X-ray luminosity LX ∼ 1035 erg s−1,
in agreement with observations.

It is worth to mention that a well-known observational problem of SGRs
and AXPs is the uncertainty in the estimation of the distances of the sources
(see e.g. Kothes and Foster, 2012, for a critical discussion on the distance of
1E2259+586). These uncertainties strongly affect the estimates of the inter-
stellar reddening AV , which is crucial for the precise calculation of the source
properties and therefore for a clear identification of the nature of the compact
object. Deeper observations of Hubble and VLT are thus strongly recom-
mended to establish the precise values of the luminosity in the Optical and
in the near-IR bands, which will verify the white dwarf nature of SGRs and
AXPs.

We encourage future observational campaigns from space and ground to
verify all the predictions presented in this work.
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B.5. A white dwarf merger as progenitor of the

AXP 4U 0142+61?

SGRs are sources of short (∼ 100 ms), repeating bursts of soft γ-ray and X-
ray radiation at irregular intervals, and share with AXPs several similarities,
like rotation periods clustered between 2 and 12 s, and high magnetic fields.
Their observed spindown rates range from Ṗ ∼ (10−15 to 10−10), and have
typical X-ray luminosities in quiescent state LX ∼ 1035 ergs−1. Currently, it
is widely accepted that these objects are magnetars (Duncan and Thompson,
1992; Thompson and Duncan, 1995), although there are competing scenarios
that challenge this model — see, for instance, the excellent and recent review
of Mereghetti (2008b), and references therein. Recently, Malheiro et al. (2012),
following the pioneering works of Morini et al. (1988) and Paczynski (1990),
have suggested an alternative model that could explain some properties of
these sources. This model involves highly-magnetized white dwarfs. For
this model to be viable the masses of the white dwarfs need to be rather large
(M & 1.2 M⊙), their magnetic fields should range from B ≈ 107 G all the
way to 1010 G, and the rotation periods should be rather small, of the order
of a few seconds. The most apparent drawback of this scenario, namely the
rotational stability of fast rotating white dwarfs, has been recently analyzed.
Specifically, the crucial question of whether rotating white dwarfs can have
rotation periods as short as the ones observed in AXPs has been recently ad-
dressed by Boshkayev et al. (2013b), who found that the minimum rotation
period of typical carbon-oxygen white dwarfs is ∼ 0.5 s. Thus, since AXPs
have rotation periods larger than this value they could be white dwarfs.

The existence of white dwarfs with magnetic fields ranging from 107 G up
to 109 G is solidly confirmed by observations (Külebi et al., 2009). Obser-
vations show that most HFMWDs are massive, and moreover, that none of
them belongs to a non-interacting binary system, pointing towards a binary
origin. However, although long-suspected (Wickramasinghe and Ferrario,
2000), it has only been recently shown that HFMWDs might be the result of
white dwarf mergers. SPH simulations of the coalescence process indicate
that the result of the merger is a white dwarf that contains the mass of the
undisrupted primary, surrounded by a hot corona made of about half of the
mass of the disrupted secondary. In addition, a rapidly rotating Keplerian
disk which contains the rest of the material of the secondary is also formed,
as little mass is ejected from the system during the coalescence process. The
rapidly-rotating hot corona is convective and an efficient αω dynamo can
produce magnetic fields of up to B ∼ 1010 G (Garcı́a-Berro et al., 2012).

In view of these considerations it is natural to ask ourselves if such binary
mergers could also explain the properties of some AXPs. Here we explore
such possibility for the specific case of the peculiar AXP 4U 0142+61. This
AXP is by far the best observed source in the near-infrared (NIR), optical,
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Minimum Maximum
M (M⊙) 1.16 1.39
Req (108 cm) 1.05 6.66
〈R〉 (108 cm) 1.05 6.03
I (g cm2) 2.9 × 1048 1.4 × 1050

Table B.16.: Bounds for the mass, radius and moment of inertia of
4U 0142+61.

and ultraviolet (UV) bands and has two characteristics that make it a peculiar
object. The first one is that 4U 0142+61 presents a confirmed infrared excess
(Hulleman et al., 2000) that might be attributed to an accretion disk, whereas
the second one is that it is too bright for its cooling age, thus challenging the
conventional magnetar model. Here we show that the properties of this AXP
can be well explained by a model in which the central compact remnant is a
massive magnetized white dwarf resulting from the merger of two otherwise
ordinary white dwarfs, surrounded by the heavy accretion disk produced
during the merger.

B.5.1. A model for 4U 0142+61

To start with, we compute the approximate mass and radius of 4U 0142+61.
The stability of general relativistic uniformly rotating white dwarfs has been
recently studied (Boshkayev et al., 2013b), and it has been shown that con-
stant rotation period sequences intersect the stability region of white dwarfs
in two points that determine lower and upper bounds for the mass, equato-
rial/polar radii and moment of inertia. In Table B.16 we show the bounds
for 4U 0142+61. In this table 〈R〉 = (2Req + Rp)/3 denotes the mean-radius,
where Req and Rp are, respectively, the equatorial and polar radii.

IR, optical and UV photometry

We next fitted the spectrum of 4U 0142+61 as the sum of two components.
The first one is a black body:

FBB = π
2h

c2

(

RWD

d

)2 ν3

ehν/(kBTeff) − 1
, (B.5.1)

where RWD and Teff are, respectively, the radius and effective temperature of
the white dwarf. As it will be shown in Sect. B.5.1, the system now behaves
as an ejector, inhibiting the accretion of the disk material onto the central
white dwarf. Thus, for the second component we adopted the black body
disk model of Chiang and Goldreich (1997), which is more appropriate for

1865



B. White Dwarfs Physics and Astrophysics

these systems (Garcı́a-Berro et al., 2007):

Fdisk = 12π1/3 cos i

(

RWD

d

)2 (2kBTeff

3hν

)8/3 (hν3

c2

)

×
∫ xout

xin

x5/3

ex − 1
dx , (B.5.2)

where i is the inclination angle of the disk, which we assume to be face-on,
and x = hν/(kBT). In this model the disk temperature T varies as r−3/4 (Chi-
ang and Goldreich, 1997), with r the distance from the center of the white
dwarf. It is worth mentioning that in previous studies of 4U 0142+61 (Hulle-
man et al., 2000; Wang et al., 2006) the irradiated disk model of Vrtilek et al.
(1990) has been used instead, but this model is more appropriate for accreting
sources.

We obtained that the spectrum best-fit parameters are: RWD ≈ 0.006 R⊙,
Teff ≈ 1.31 × 105 K, inner and outer disk radii Rin = 0.97 R⊙, Rout = 51.1 R⊙
and correspondingly inner and outer disk temperatures Tin ≈ 1950 K and
Tout ≈ 100 K, respectively. In Fig. B.34 we show the photometric data of
4U 0142+61 and our best-fit composite spectrum. The agreement of the com-
posite spectrum with the observational data is quite good, taking into account
that the high variability of the source in these bands can lead to changes in
the optical fluxes of up to one order of magnitude (Durant and van Kerkwijk,
2006c). Thus, the white dwarf model is compatible with the observed pho-
tometry of 4U 0142+61, as it seems to occur for SGR 0418+5729, Swift J1822.3–
1606, and 1E 2259+586 (Boshkayev et al., 2013a).

To check whether this is a realistic and consistent model for 4U 0142+61,
we ran a SPH simulation of the merger of a 0.6 + 1.0 M⊙ binary white dwarf,
which results in a central remnant of ≈ 1.1 M⊙, with a radius RWD ≈ 0.006 R⊙,
in agreement with the photometric value. We recall that the central white
dwarf will accrete some material from the surrounding disk (of mass Mdisk ≈
0.5 M⊙) and, thus, will shrink a little. Moreover, the rotation period is P ≈
15.7 s and the moment of inertia of the central white dwarf and the hot corona
is I ≈ 2.0 × 1050 g cm2, which is slightly larger than our maximum esti-
mate — see Table B.16. Furthermore, the magnetic field generated in the
differentially-rotating hot corona produced in the aftermath of the merger
amounts to B ∼ 1010 G (Garcı́a-Berro et al., 2012) which amply explains the
magnetic field of 4U 0142+61, see Sect. B.5.1.

The age and magnetic field of 4U 0142+61

The presence of a disk around the magnetized white dwarf plays a key role
in the evolution of its rotation period. This results from a delicate interplay
between the interaction of the disk with the magnetosphere of the star, and
accretion of disk matter onto the surface of the white dwarf. A solution
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Figure B.34.: Observed and fitted spectrum of 4U 0142+61. Due to the high
variability of the source in the optical bands we average all the existing data
of the source in the different bands. All these data come from observations
from 31 October 1994 up to 26 July 2005 (Hulleman et al., 2000, 2004; Dhillon
et al., 2005; Morii et al., 2005; Durant and van Kerkwijk, 2006c; Morii et al.,
2009). The result of the average is V = 25.66, R = 25.25, I = 23.76, J = 22.04,
H = 20.70, K = 19.97. There are upper limits in the U and B bands, U = 25.8
(Dhillon et al., 2005) and B = 28.1 (Hulleman et al., 2004), respectively. We
also consider the observations of Wang et al. (2006) with the Spitzer/IRAC
instrument at wavelengths 4.5 µm and 8.0 µm. The fluxes are 36.3 µJy and
51.9 µJy, respectively. We corrected the data for the interstellar extinction,
using the estimated distance d = 3.6 kpc (Durant and van Kerkwijk, 2006a)
and an absorption in the V band AV = 3.5 (Durant and van Kerkwijk, 2006b).
For the rest of the bands we used AU = 1.569AV , AB = 1.337AV , AR =
0.751AV , AI = 0.479AV , AJ = 1.569AV , AJ = 0.282AV , AH = 0.190AV ,
and AK = 0.114AV (Cardelli et al., 1989). The extinction in the Spitzer/IRAC
bands for AK < 0.5 are A4.5µm = 0.26AK and A8.0µm = 0.21AK (Chapman
et al., 2009).
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of the magneto-hydrodynamic equations including the explicit coupling of
magnetosphere-disk system and the mass and angular momentum transfer
from the disk to the star is not yet available. For this reason the torque act-
ing on the star it is often followed using a phenomenological treatment. We
adopt the model of Armitage and Clarke (1996), which assumes that the mag-
netic field lines threading the disk are closed. In this model the evolution of
ω is dictated by

ω̇ = − 2B2〈R〉6ω3

3Ic3
sin2 θ +

B2〈R〉6

3I

[

1

R3
mag

− 2

(RcRmag)3/2

]

+
ṀR2

magω

I
, (B.5.3)

where θ is the angle between the rotation axis and the magnetic dipole mo-

ment, Rmag = [B2〈R〉6/(Ṁ
√

2GM)]2/7 is the magnetospheric radius (Chat-
terjee et al., 2000; Toropina et al., 2012; Matt et al., 2012; Rueda and Ruffini,
2012), and Rc = (GM/ω2)1/3 is the corotation radius. The first term in
Eq. (B.5.3) describes the traditional magneto-dipole braking, the second one
is the star-disk coupling, while the last one describes the angular momentum
transfer from the disk to the white dwarf. We adopt an accretion rate cor-
responding to a Shakura-Sunyaev viscosity parameter αSS = 0.1 (Cannizzo
et al., 1990; Chatterjee et al., 2000; Ertan et al., 2009). Adopting a misalign-
ment angle θ = π/2 and integrating Eq. (B.5.3) using the parameters result-
ing from our SPH simulation and it results that, for a wide range of magnetic
field strengths, at early stages Rmag ≈ RWD. Thus, initially the star is spun-up
due to the large accretion rates — see the insets of Fig. B.35. However, after
∼ 1 kyr, the inner radius of the disk — which is approximately given by the
magnetospheric radius — becomes larger than the the light cylinder radius,
Rlc = c/ω. Hence, the disk cannot torque any longer the white dwarf, the ro-
tation period reaches a minimum, and from this point on the disk and the star
evolve independently, and accretion onto the magnetic poles stops. Thus, the
star behaves as a normal pulsar, spinning-down by magneto-dipole radiation
(Lamb et al., 1973; Chatterjee et al., 2000). The surface magnetic field needed
to fit the observed values of P and Ṗ when a mass M = 1.2 M⊙ is adopted is
B ≈ 2.3× 108 G at an age τsd = 64 kyr — see Fig. B.35. This age estimate com-
pares well with the spin-down characteristic age P/(2Ṗ) ≈ 68 kyr. Moreover,
the strength of the magnetic field can be compared with that directly derived
using the traditional misaligned dipole expression

B =

√

3c3 I

〈R〉6

PṖ

8π2
, (B.5.4)
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Figure B.35.: Time evolution of the period (left panel) and period derivative
(right panel) of 4U 0142+61. The insets show to the early evolutionary phases
of the system.

(Ferrari and Ruffini, 1969; Lamb et al., 1973) — which in our case is valid be-
cause Rin ≈ R⊙ (see Sect. B.5.1) is larger than the radius of the light cylinder
Rlc ≈ 0.6 R⊙. From the observed values P = 8.69 s and Ṗ = 2.03 × 10−12

(Hulleman et al., 2000), we obtain B = 2.3 × 108 G for Mmin, and 6.2 × 109 G
for Mmax, in agreement with the result obtained integrating Eq. (B.5.3). Ad-
ditionally, there are other indications that the magnetic field derived in this
way is sound. In particular, the spectrum of 4U 0142+61 exhibits a signifi-
cant drop-off between the B and V bands, at a frequency ν ≈ 1015 Hz, see
Fig. B.34. Hulleman et al. (2004) concluded that this feature is not due to vari-
ability and, moreover, they advanced that it is consistent with the electron
cyclotron emission of a magnetic field B ∼ 108 G. Adopting the minimum
and maximum masses derived from our model we obtain electron cyclotron
frequencies νcyc = eB/(2πmec) = 6.3× 1014 Hz and 1.7× 1016 Hz, which cor-
respond to wavelengths that fall between the NIR and the UV, 0.5 and 176 µm,
respectively. This suggests that the magnetic field must be closer to the lower
value, and therefore that the corresponding mass should be ∼ 1.2 M⊙. Ac-
tually, it is interesting to realize that although the mass of the remnant of
the coalescence is slightly smaller than our fiducial mass for 4U 0142+61 —
∼ 1.1 and ∼ 1.2 M⊙, respectively — the mass accreted during the spin-up
phase is Macc ∼ 0.05 M⊙, in good agreement with the mass derived from
the photometric solution. It could be argued that this is the maximum possi-
ble accreted mass, since during these early stages super-Eddington accretion
rates are needed to accrete all the material inflowing from the disk. Never-
theless, during the very early stages after the merger the temperature of the
coalesced system is very high, and the emission of neutrinos is not negligible
(Garcı́a-Berro et al., 2012).

We now compute the cooling age of 4U 0142+61, and compare it with the
spin-down age. As the hot, convective corona resulting from the merger is
very short-lived (Garcı́a-Berro et al., 2012) the evolution of the surface lumi-
nosity of the white dwarf can be estimated using Mestel’s cooling law (Mes-
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tel, 1952):

τcool =
1

〈A〉

(

bMZ2/5

LWD

)1/x

− 0.1 , (B.5.5)

where 〈A〉 is the average atomic weight of the core of the white dwarf, Z is
the metallicity of its envelope, x = 1.4, b = 635 (Hurley and Shara, 2003), and
the rest of the symbols have their usual meaning. Adopting a carbon-oxygen
core and Z ≈ 0.001, which is a reasonable value (Althaus et al., 2010a), we
obtain a cooling age τcool ≈ 64 kyr, in good agreement with the spin-down
age.

X-ray luminosity

For a distance d = 3.6 kpc, Durant and van Kerkwijk (2006a) estimated an
isotropic X-ray luminosity LX = 4πd2 f unabs

X ≈ 1.3 × 1035 erg s−1, using the

unabsorbed X-ray flux f unabs
X = 8.3 × 10−11 erg s−1 cm−2 obtained by Patel

et al. (2003). We use the result of the latest observations of 4U 0142+61 with
the EPIC cameras onboard XMM-Newton, f unabs

X = 7.2 × 10−11 erg s−1 cm−2

(Göhler et al., 2005), obtaining LX ≈ 1.1 × 1035 erg s−1 when the same dis-
tance is adopted. The loss of rotational energy associated with the spin-down
of 4U 0142+61, Ėrot = −4π2 IṖ/P3 gives |Ėrot| = 1.7 × 1037 erg s−1 for Mmin

and 3.4 × 1035 erg s−1 for Mmax, that cover the estimated X-ray luminosity.

The time integrated X-ray spectrum of 4U 0142+61 is well described by a
black body and a power-law model with kBTBB = 0.4 keV and photon index
Γ = 3.62 (Göhler et al., 2005). The black body component corresponds to a
temperature TBB ∼ 4.6 × 106 K, which is higher than the surface temperature
of a hot white dwarf. However, these systems may have coronal tempera-
tures much higher than that of the surface (Malheiro et al., 2012), and thus the
X-ray emission would be of magnetospheric origin. Because the inner radius
of the disk is larger than the radius of the light cylinder Rlc (see Sect. B.5.1) the
mechanisms producing such radiation are similar to those of pulsars. In par-
ticular, a possible mechanism was delineated by Usov (1993), who showed
that reheating of the magnetosphere by the bombardment of positrons mov-
ing backward to the surface of the star can produce large X-ray luminosities.
Positrons are produced the interaction of high-energy photons with ultra-
relativistic electrons, resulting in the creation of electron-positron pairs. Fol-
lowing closely the calculations of Usov (1993) we computed the theoretically
expected X-ray luminosity of 4U 0142+61. We found that the reheating of
polar caps produces a persistent X-ray luminosity LX ∼ 2 × 1035 erg s−1, in
agreement with observations. Nonetheless, there are other possibilities. If the
conventional magnetar interpretation is adopted, the X-ray luminosity would
be due to the neutron star. Alternatively, it could also be due to ongoing ac-
cretion from a fossil disk onto the neutron star (Alpar, 2001). In such cases
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the white dwarf product of the merger would have accreted enough material
to undergo accretion induced collapse to a neutron star.

B.5.2. Conclusions

We studied the possibility that the peculiar AXP 4U 0141+61 is a massive,
fast-rotating, highly magnetized white dwarf, and we explored the viabil-
ity of this object being the result of the coalescence of a binary white dwarf.
Specifically, from its observed rotational velocity we first derived bounds
for the mass, radius, and moment of inertia. Afterwards, we fitted the IR,
optical, and UV data of 4U 0142+61 with a composite spectrum made of
two components, a black body and a dust disk, finding a good agreement
with the observations. Moreover, we showed that the characteristics of the
disk are consistent with the results of a SPH simulation of the merger of a
0.6 + 1.0 M⊙ binary system. We then estimated the age and the magnetic
field of this AXP. Adopting the results of our SPH simulation we obtained
a magnetic field B = 2.3 × 108 G, and a post-merger age ≈ 64 kyr. The cy-
clotron frequency of this magnetic field νcyc ∼ 6 × 1014 Hz would explain an

absorption feature observed in the spectrum of 4U 0142+61 at ν ∼ 1015 Hz.
Furthermore, our age estimate is in excellent agreement with the white dwarf
cooling age. We also showed that the X-ray luminosity of 4U 0142+61 can
be well explained by the rotational energy loss, and we inferred a theoreti-
cal estimate LX ≈ 2 × 1035 erg s−1, which agrees with the observed value,
LX ≈ 1.09 × 1035 erg s−1. All these findings may support the hypothesis that
the peculiar AXP 4U 0141+61 was originated in a white dwarf binary merger.
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B.6. Finite temperature effects on the mass-radius

relation of white dwarfs

General relativistic effects are important in the high density branch of white
dwarfs; for instance they lead to the gravitational collapse of the star prior
to the trigger of the inverse β decay instability in 12C white dwarfs Rotondo
et al. (2011b). We here construct the mass-radius relation of white dwarfs in
their entire range of stability, so we use the equations of hydrostatic equilib-
rium within the framework of general relativity. Assuming the spherically
symmetric metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (B.6.1)

the equations of equilibrium can be written in the Tolman-Oppenheimer-
Volkoff form

dν(r)

dr
=

2G

c2

4πr3P(r)/c2 + M(r)

r2
[

1 − 2GM(r)
c2r

] , (B.6.2)

dM(r)

dr
= 4πr2E(r)

c2
, (B.6.3)

dP(r)

dr
= −1

2

dν(r)

dr
[E(r) + P(r)] , (B.6.4)

where we have introduced the mass enclosed at the distance r through e−λ(r) =
1 − 2GM(r)/(c2r), E(r) = c2ρ(r) is the energy-density and P(r) is the total
pressure, given in App. A.3.

These equations can be integrated for a wide range of central densities,
temperatures, and for selected chemical compositions, for instance 4He, 12C,
16O, and 56Fe. In Figs. B.36 and B.37, we show in particular the mass-central
density and mass-radius relations of 4He white dwarfs in the range of densi-
ties and radii where finite temperature effects are more important.

The minima in these plots mark the transition from the ideal to the de-
generate behavior of the electron gas: from left to right in the M − ρc rela-
tion and from left to right in the M − R relation. Thus these minima can
be used to give an estimate of the minimum mass that a star should have
to be able to burn stably a given chemical composition since the condition
of a stable burning requires that the gas be non-degenerate. Consequently,
stable burning requires that the star lies on the branch of solutions on the
left-hand side of the minimum of the M − ρc diagram or on the right-hand
side of the minimum of the M − R diagram. For instance, helium burning is
triggered at a temperature THe+He ≈ 108 K, so we can obtain from the solu-
tions shown in Fig. B.36 that the minimum mass for stable helium burning is

MHe+He
min ≈ 0.51 M⊙. The corresponding radius and density of this configura-
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Figure B.36.: Total mass versus radius for 4He white dwarfs for selected tem-
peratures from T = 104 K to T = 108 K.
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Figure B.37.: Total mass versus central density for 4He white dwarfs for se-
lected temperatures from T = 104 K to T = 108 K.

1873



B. White Dwarfs Physics and Astrophysics

tion is 4.54× 109 cm≈ 0.065 R⊙ and 6.59× 105 g cm−3, respectively. A similar
analysis can be done for the other compositions.

B.6.1. The ultra low-mass white dwarf companion of PSR

J1738+0333

It is clear that the effects of the temperature are particularly important at low
densities, and hence for low-mass white dwarfs. We analyze here the specific
case of the white dwarf companion of the millisecond pulsar PSR J1738+0333.
We refer to Antoniadis et al. (2012), for details on the observations and tech-
nical aspects of the derivation of the binary parameters.

Antoniadis et al. Antoniadis et al. (2012) obtained with the the Goodman
High Throughput Spectrograph instrument of the Southern Astrophysical
Research Telescope (SOAR) at Cerro Pachón, Chile, a photometric radius of
the white dwarf, RWD = 0.042 ± 0.004R⊙. On the other hand, the analy-
sis of the white dwarf atmosphere spectrum with the models of Ref. Koester
(2008) led to an effective surface temperature, Teff = 9130± 150 K, and a loga-
rithm of the surface gravity, log(g) = log(GMWD/R2

WD) = 6.55 ± 0.1. Using
the evolutionary mass-radius relation of Painei et al. Panei et al. (2000), the
mass of the white dwarf was estimated in Ref. Antoniadis et al. (2012) to be
MWD = 0.181+0.007

−0.005 M⊙, and a corresponding radius RWD = 0.037+0.004
−0.003 R⊙,

in agreement with the photometric value.

A first attempt to obtain the mass of the white dwarf can be done directly
from the observed data by combining the spectral and photometric analysis.
Assuming the photometric radius as the star radius the mass of the white
dwarf would be MWD = gR2

WD/G ≈ 0.23 M⊙, using the central values of
RWD and g, which is roughly consistent with the mass derived from the mass-
radius relation of Ref. Panei et al. (2000).

In order to compare our mass-radius relation at finite temperatures with
the above results and infer the internal temperature of the white dwarf, we
plotted in Figs. B.38 and B.39 our theoretical surface gravity-mass and radius
relations for 4He white dwarfs, together with the above observational con-
straints.

An inspection of Fig. B.38 does not give us any information on the possible
internal temperature of the white dwarf since, in principle, we do not have
any a priori information on the mass. However, from Fig. B.39 we clearly
identify that the interior temperature of the white dwarf core should be T ≈
2–3 × 107 K.

In Fig. B.40 we plot the mass-radius relation for 4He white dwarfs with the
observational constraints of the companion of PSR J1738+0333. We can now
compare our results with an estimate obtained for instance using the relation
found by Koester in Ref. Koester (1976) between the central and surface tem-
peratures of the white dwarf, T4

eff/g = 2.05 × 10−10T2.56
c . Using the value
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Figure B.38.: Logarithm of the surface gravity, log(g) = log(GMWD/R2
WD),

as a function of the mass for 4He white dwarfs for selected interior tempera-
tures from T = 104 K to T = 108 K. The horizontal dashed lines indicate the
maximum and minimum best-fit values log(g) = 6.55 ± 0.1.
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Figure B.39.: Logarithm of the surface gravity, log(g) = log(GMWD/R2
WD),

as a function of the radius for 4He white dwarfs for selected interior temper-
atures from T = 104 K to T = 108 K. The horizontal dashed and dot-dashed
lines indicate the maximum and minimum best-fit values of the surface grav-
ity, log(g) = 6.55 ± 0.1 and photometric radii RWD = 0.042 ± 0.004R⊙, re-
spectively.
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Teff = 9130 K and log(g) = 6.55, this relation gives Tc ≈ 2.6 × 107 K, in full
agreement with our inference. In this estimate we have neglected the contri-
bution of the thickness of the envelope to the total surface radius of the white
dwarf. However, this approximation does not introduce a large error since
the envelope would be in this case at most ∼ 10−2 RWD thick.

1 2 3 4 5 7 10
R/(0.01 R⊙)

0.05

0.1

0.2

0.5

1.0

M
/
M

⊙
Core Temperature (K)

T=104

T=105

T=106

T=107

T=2×107
T=3×107

T=108

log(g) =6.55±0.1
R/R⊙=0.042±0.004

Figure B.40.: Logarithm of the surface gravity log(g) = log(GMWD/R2
WD)

as a function of the radius for 4He white dwarfs for selected interior tem-
peratures from T = 104 K to T = 108 K. The dashed and dot-dashed lines
indicate the maximum and minimum best-fit values of the surface gravity,
log(g) = 6.55 ± 0.1 and photometric radii RWD = 0.042 ± 0.004R⊙, respec-
tively.

B.6.2. Discussion

Deviations from the degenerate equation of state have been shown to occur in
the regions of interest of low-mass white dwarfs and in the outermost layers
of neutron star crusts. Ultra-low mass white dwarfs, MWD ∼ 0.2M⊙ Anto-
niadis et al. (2013a, 2012), have been found in binary systems with neutron
stars companions. These objects have central densities . 106 g cm−3, where
the degenerate approximation breaks down and so thermal effects cannot be
neglected. We have analyzed here the specific case of PSR J1738+0333, whose
mass and radius was estimated in Antoniadis et al. (2012) using the evolu-
tionary mass-radius relation of Painei et al. Panei et al. (2000). They obtained

MWD = 0.181+0.007
−0.005 M⊙, RWD = 0.037+0.004

−0.003 R⊙, in agreement with the spec-
trometric and photometric data. We inferred for this object an internal tem-
perature T ≈ 2–3 × 107 K, and a mass MWD ≈ 0.2 M⊙ assuming for instance
the photometric radius, R = 0.042 R⊙, as the star radius. We checked also
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our result using the relation by Koester Koester (1976) between the internal
and surface white dwarf temperatures, T4

eff/g = 2.05 × 10−10T2.56
c . Using the

surface temperature and the logarithm of the surface gravity obtained from
the spectral analysis, Teff = 9130 K and log(g) = 6.55, this relation gives
Tc ≈ 2.6 × 107 K, in full agreement with our results.
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B.7. Dynamical instability of white dwarfs and

breaking of spherical symmetry under the

presence of extreme magnetic fields

It has been recently purported that the presence of a extremely large uni-
form magnetic field of order 1018 G in the interior of a white dwarf, increases
the maximum mass of the star from the traditional Chandrasekhar value,
≈ 1.44 M⊙, to a new upper bound ≈ 2.58 M⊙. Such a much larger limit
would make these astrophysical objects viable candidates for the explanation
of the superluminous population of type Ia supernovae. We show that the
new mass limit was obtained neglecting several macro and micro physical
aspects such as gravitational, dynamical stability, breaking of spherical sym-
metry, general relativity, inverse β decay, and pycnonuclear fusion reactions.
These effects are relevant for the self-consistent description of the structure
and assessment of stability of these objects. When accounted for, they lead
to the conclusion that the existence of such ultramagnetized white dwarfs in
nature is very unlikely due to violation of minimal requests of stability, and
therefore the canonical Chandrasekhar mass limit of white dwarfs has to be
still applied.

B.7.1. Introduction

It has been proposed that the light curves of some peculiar superluminous
Ia supernovae could be explained by white dwarf progenitors whose masses
are larger than the traditional Chandrasekhar limit,

MCh = 2.015

√
3π

2

m3
Pl

(µemH)2
≈ 1.44 M⊙, (B.7.1)

where µe ≈ 2 is the mean molecular weight per electron, mH the mass of hy-
drogen atom, and mPl =

√
h̄c/G is the Planck mass. These objects are called

super-Chandrasekhar white dwarfs. The higher binding energy of these ob-
jects could then explained both the low kinetic energies and high luminos-
ity observed in these supernovae Howell et al. (2006). In this scenario, such
white dwarfs do need a gravitational mass in the range (2.1–2.8) M⊙, de-
pending on the amount of nickel needed to successfully explain the super-
novae Howell et al. (2006); Hicken et al. (2007); Yamanaka et al. (2009); Scalzo
et al. (2010); Silverman et al. (2011); Taubenberger et al. (2011).

Upasana & Banibrata Das and Mukhopadhyay (2013) recently purported
that the effects of a quantizing strong and uniform magnetic field on the equa-
tion of state of a white dwarf, would increase its critical mass up to a new
value Mmax ≈ 2.58 M⊙, significantly higher than the Chandrasekhar limit
(B.7.1), thus becoming a viable candidate progenitor of superluminous type
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Ia supernovae. This a new mass limit would be reached for extremely large
magnetic fields of the order of 1018 G.

However, as we show in this Letter the existence of such ultramagnetized
white dwarfs in nature is quite dubious, since the approach followed in Das
and Mukhopadhyay (2013) for the construction of the configurations ignores
several macro and micro physical effects and instabilities needed for a com-
plete and accurate description of a magnetized white dwarf. We show that
indeed all these ignored effects make improbable that a white dwarf could
reach such a hypothetical extreme state either in single or binary evolution.

B.7.2. Ultramagnetized white dwarfs

In a recent work, Upasana & Banibrata Das and Mukhopadhyay (2013) stud-
ied the effects of extreme magnetic field in the mass and radius of white
dwarfs. The equation of state of a degenerate electron gas in presence of a
magnetic field B directed along the z-axis, in the limit B → ∞ when all elec-
trons are constrained to the lowest Landau level, obeys a polytrope-like for
P = Kmρ2, where

Km =
mec

2π2λ3
e

(µemH)2BD
, (B.7.2)

with λe the electron Compton wavelength, and BD = B/Bc the magnetic field
in units of the critical field Bc = m2

e c3/(eh̄) = 4.41× 1013 G. For obtaining the
above expression, in Ref. Das and Mukhopadhyay (2013) the density of the
system was assumed to be given by ρ = µemHne, so determined only by the
nuclei component, where ne is the electron number density.

Then, Lane-Emden solution of Newtonian self-gravitating polytropes of
index n = 1 was used to obtain the mass of an ultramagnetized white dwarf

M = 4π2ρc

(

Km

2πG

)3/2

, (B.7.3)

and the corresponding radius

R =

√

πKm

2G
, (B.7.4)

where ρc is the central density.

In the present limit of one Landau level with high electron Fermi energies
EF

e , EF
e = EF

max ≫ mec
2, with

EF
max = mec

2
√

1 + 2BD ≈ mec
2
√

2BD (B.7.5)

the maximum possible value of EF
e , ρc becomes Das and Mukhopadhyay

1879



B. White Dwarfs Physics and Astrophysics

(2013)

ρc =
πM

4R3
=

µemH√
2π2λ3

e

B3/2
D . (B.7.6)

Introducing Eq. (B.7.6) into Eq. (B.7.3), Upasana & Banibrata Das and Mukhopad-
hyay (2013) obtained the mass limit of ultramagnetized white dwarfs

Mmax = π3/2 m3
Pl

(µemH)2
≈ 2.58 M⊙, (B.7.7)

when ρc → ∞ and R → 0. This upper bound is larger than the canonical
Chandrasekhar limit given by Eq. (B.7.1).

We reproduce in Fig. B.41 the evolutionary track of the white dwarf pro-
posed in Das and Mukhopadhyay (2013). The magnetic field along the curve
is increasing as a consequence of accretion of matter onto the star. It can be
seen in the plot how the star reaches the maximum mass limit (B.7.7) while
reducing its radius.
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Figure B.41.: Mass-radius relation of magnetized white dwarfs - the curve
represents the evolutionary track of the white dwarf with the increase of the
uniform magnetic field inside the star obtained in Ref. Das and Mukhopad-
hyay (2013).

Already at this point it is possible to identify some of the assumptions in
the model of Ref. Das and Mukhopadhyay (2013) that led to the above results,
and which we show below are incorrect and/or unjustified, invalidating their
final conclusions. 1) The equation of state assumed in the limit of very intense
magnetic fields, B → ∞; 2) a uniform magnetic field is adopted; 3) the huge
magnetic fields and the obtained mass-radius relation explicitly violate even
the absolute upper limit to the magnetic field imposed by the Virial theorem;
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4) dynamical instabilities due to quadrupole deformation are not taken into
account either; 5) spherical symmetry is assumed for all values of the mag-
netic field; 6) the role of the magnetic field in the hydrostatic equilibrium
equations is neglected; 7) general relativistic effects are ignored even if the
final configuration is almost as compact as a neutron star and the magnetic
energy is larger than the matter energy-density; 8) microphysical effects such
as inverse β decay and pycnonuclear fusion reactions, important in a regime
where the electrons are highly relativistic, EF

e ≫ mec
2, are neglected; and 9)

the magnetic field, the density, and the electron Fermi energy are assumed to
increase with time inside the star as a consequence of a continuous accretion
process onto the white dwarf.

B.7.3. Equation of state and virial theorem violation

Being much lighter, the electrons in the white dwarf interior are more easily
disturbed by a magnetic field than the ions. Eventually, the electron gas might
become quantized in Landau levels, providing the magnetic field is larger
than the critical field Bc. However, for “moderate” values of the field, i.e.
B ∼ Bc, the equation of state deviates still very little from the unmagnetized
one. Thus, appreciable effects are seen only when the electrons occupy only
the lower Landau levels, which is possible for BD ∼ [EF

max/(mec
2)]2. Since

the electrons in massive white dwarfs are ultrarelativistic with Fermi energies
EF

e & 10mec
2, it implies the necessity of magnetic fields BD & 102 or B & 4 ×

1015 G, in order to have not negligible magnetic field effects. It can be checked
from the virial theorem that such large magnetic fields cannot develop in
the interior of the white dwarf since they violate the absolute upper bound
imposed by the virial theorem applied to a white dwarf which is approaching
the Chandrasekhar mass limit.

The limiting field can be computed following the argument by Chandrasekhar
& Fermi in their seminal paper Chandrasekhar and Fermi (1953). There ex-
ists a magnetic field limit, Bmax, above which an equilibrium configuration is
impossible because the electromagnetic energy, WB, exceeds the gravitational
energy, WG, therefore becoming gravitationally unbound. If one includes the
forces derived from the magnetic field, one can write the virial scalar relation
for an equilibrium configuration as as Chandrasekhar and Fermi (1953)

3Π + WB + WG = 0, (B.7.8)

where Π =
∫

PdV, with P the pressure of the system, WB the positive mag-
netic energy, and WG the negative gravitational potential energy. The quan-
tity Π satisfies Π = (γ − 1)U for a polytrope, P = Kργ, where U is the total
kinetic energy of particles. Since the total energy of the configuration can be
written as E = U + WB + WG, then one can eliminate U from Eq. (B.7.8) to
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obtain

E = − 3γ − 4

3(γ − 1)
(|WG|−WB), (B.7.9)

and therefore the necessary condition for the stability of the star, E < 0, is
given by

(3γ − 4)|WG|
(

1 − WB

|WG|

)

> 0. (B.7.10)

From this expression we can recover, in absence of magnetic field (WB = 0),
the known condition for bound unmagnetized polytropes γ < 4/3, or n< 3
in terms of the polytrope index n defined by γ = 1 + 1/n.

The presence of a magnetic field weakens the stability, and as shown in
Eq. (B.7.10), no matter the value of γ, the star becomes gravitationally un-
bound when the magnetic energy exceeds the gravitational one; i.e. WB >

|WG|. This condition clearly implies an upper bound for the magnetic field,
obtained for WB = |WG|. In order to determine such limit we first obtain an
expression for the magnetic energy of the star, which considering a constant
magnetic field can be written as

WB =
B2

8π

4πR3

3
=

B2R3

6
. (B.7.11)

As we discussed above, the equation of state assumes a polytrope-like for
with γ = 2 or n = 1 under extreme magnetic fields, such that only one
Landau level is populated and EF >> mec

2 Das and Mukhopadhyay (2013).
Thus, the gravitational energy density of the spherical star configuration is
(see e.g. Shapiro and Teukolsky (1983a))

WG = − 3

5 − n

GM2

R
= −3

4

GM2

R
, (B.7.12)

where M and R are the mass and star radius, respectively, and G is the New-
ton gravitational constant. Using Eqs. (B.7.11) and (B.7.12), and expressing
M and R in units of solar mass and solar radius, we find that the maximum
value of magnetic field Bmax is given by

Bmax = 2.24 × 108 M

M⊙

(

R⊙
R

)2

. (B.7.13)

In the case of a Chandrasekhar white dwarf with the maximum mass M =
1.44M⊙ and a radius of 3000 km, consistent with the recent calculation of
massive white dwarfs Boshkayev et al. (2013b), we obtain Bmax ∼ 1.7 × 1013

G. This value is clearly lower than the critical field Bc = 4.4 × 1013 G.

Since the Fermi energy of the electrons is of the order of 10mec
2 at the

high densities of massive white dwarfs approaching the maximum mass, the
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above conclusions, reached on the basis on a classic analysis, hold approxi-
mately up to magnetic fields of the order of 1015 G, from which the magnetic
field start to modify appreciably the equation of state of the ultrarelativistic
electrons.

In order to quantify how strong is the violation of the virial theorem pro-
duced by the magnetic fields used in Das and Mukhopadhyay (2013), we
choose three star configurations whose values of M and R lie in the region of
high mass configuration, M > 2M⊙ (see red points in Fig. B.42). Using the
approximation of Eq. (B.7.6), we obtain the corresponding constant magnetic
field B of these stars configurations. We compare these values of B with the
maximum value, Bmax, allowed by the virial theorem (B.7.13). In Fig. B.42 we
show that such extreme magnetic fields with B > Bmax and the magnetized
white dwarfs of Table B.17 are in the instability region, violating the virial
theorem. In Table B.17 we show also for these configurations the magnetic
energy WB given by Eq. (B.7.11), and the magnitude of the gravitational en-
ergy |WG|. These results indicate that the magnetic field obtained in Ref. Das
and Mukhopadhyay (2013), are at least one order of magnitude larger than
the maximum magnetic field allowed, Bmax. As a consequence, for the three
star configurations, WB/|WG|∼ 250 well above the stability condition which
requires WB/|WG|∼ 1. Thus, these white dwarf are unstable and unbound.
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Figure B.42.: (Color online) Maximum magnetic field Bmax as a function of
the star mass. We show the three values of the magnetic field of Table 1 that
are above the Bmax line, in the dynamical instability region.

The repulsive magnetic force due to a possible variable magnetic field, as
discussed in Ref. Malheiro et al. (2007), was not considered. Furthermore, a
uniform magnetic field in the z-direction inside the star, yields a dipole exter-
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nal field Chandrasekhar and Fermi (1953). In this case, even if the magnetic
fields are continuous at the star surface, their derivatives are not, producing
a repulsive magnetic force at the surface. This force will push against the at-
tractive gravitational force such that for a large magnetic field, the magnetic
force will overcome the gravitational one, destabilizing the star. This physical
situation is exactly the same expressed in the virial theorem condition for the
star stability (WB < |WG|) discussed above.

Ostriker & Hartwick Ostriker and Hartwick (1968) analyzed the effect of
magnetic fields in white dwarfs, and concluded that they lead to stars with
larger masses but also larger radii. One of the main consequences of the in-
creasing magnetic field is that even a small ratio of magnetic to gravitational
energy will produce an appreciable increase in the radii of magnetized white
dwarfs. Consequently, it leads to a reduction of the central density, even
for small mass changes. This conclusions were also confirmed in Ref. Suh
and Mathews (2000), where the effect of magnetic fields in the mass-radius
relation for magnetic white dwarfs were also investigated. Thus, the very
compact magnetized white dwarf configuration obtained in Ref. Das and
Mukhopadhyay (2013), in which large magnetic field implies large mass and
small radius, are possible only because the effect of the repulsive magnetic
force (Lorentz force) has not been properly considered.

Since in Ref. Das and Mukhopadhyay (2013) it is considered the influence
of a very large constant magnetic fields in the star mass and radius, assuming
values for the magnetic field larger than the above limits, we conclude that
these extremely magnetized white dwarfs must be unstable and unbound.
The limiting magnetic field values shown in Table B.17 are clearly obtained
with the radii given in Ref. Das and Mukhopadhyay (2013), which are much
smaller than the self-consistent solution of the equilibrium equations would
give. Since the maximum magnetic field depends on R−2, see Eq. (B.7.13),
the real maximum possible field would actually be smaller than the one com-
puted here.

B.7.4. Breaking of spherical symmetry and quadrupole

instability

It was shown by Chandrasekhar & Fermi Chandrasekhar and Fermi (1953)
that the figure of equilibrium of an incompressible fluid sphere with an in-
ternal uniform magnetic field that matches an external dipole field, is not
represented by a sphere. The star becomes oblate by contracting along the
axis of symmetry, namely along the direction of the magnetic field. Thus, we
consider the fluid sphere to be deformed in such a way that the equation of
the bounding surface is given by

r(µ) = R + ǫPl(µ), (B.7.14)
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where µ = cos θ, with θ the polar angle, and Pl(µ) denotes the Legendre
polynomial of order l. It is easy to see that the deviation from the spher-
ical configuration is given by the term Pl(µ), thus in Ref. Chandrasekhar
and Fermi (1953), such a perturbation was called “Pl- deformation”. The
quantity ǫ satisfies ǫ << R and measures the deviations from a spheri-
cal configuration. The polar and equatorial radii are Rp = R + ǫPl(1) and
Req = R + ǫPl(0) respectively, thus ǫ = −(2/3)(Req − Rp) and therefore
ǫ/R = −(2/3)(Req − Rp)/R, for the axisymmetric deformed configuration
with l = 2.

It was shown in Chandrasekhar and Fermi (1953) that such an axisymmet-
rically deformed object is favorable energetically with respect to the spheri-
cal star. Thus, the star becomes unstable and proceeds to collapse along the
magnetic field axis, turning into an oblate spheroidal shape with ǫ < 0. The
contraction continues until the configuration reaches a value of ǫ/R given by

ǫ

R
= −15

8

B2R4

GM2
. (B.7.15)

Using the expression for Bmax given by Eq. (B.7.13), one obtains

ǫ

R
= −135

16

(

B

Bmax

)2

≃ −8.4

(

B

Bmax

)2

. (B.7.16)

Therefore, when the internal magnetic field is close to the limit set by the
virial theorem, the star deviates to a highly oblate shape.

We show in the last column of Table B.17, the “Pl- deformation”, ǫ/R. The
results show that |ǫ/R|& 2 × 103, which implies that the star has a highly
oblate shape and thus the spherical symmetry is strongly broken. Therefore,
in order to account for the deformation caused by the presence of a magnetic
field, a more consistent calculation considering cylindrical symmetry, as in
Chandrasekhar and Fermi (1953); Ostriker and Hartwick (1968), is manda-
tory.

B.7.5. Microscopic instabilities

It is known that at sufficiently high densities in the interior of white dwarfs,
the inverse β decay or electron capture process becomes energetically fa-
vorable, and therefore a nucleus (Z, A) transforms into a different nucleus
(Z − 1, A) by capturing energetic electrons. Such a process destabilizes the
star since the electrons are the main responsible for the pressure in a white
dwarf Harrison et al. (1958, 1965); Shapiro and Teukolsky (1983a). The pro-
cess sets in when the electron chemical potential reaches the threshold energy,

ǫ
β
Z, given by the difference of the nuclear binding energy between the initial

and final nucleus. For helium, carbon, oxygen, and iron, ǫ
β
Z is approximately
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20.6, 13.4, 10.4, and 3.7 MeV (see e.g. Shapiro and Teukolsky (1983a)). For un-
magnetized general relativistic white dwarfs, this occurs at a critical density

ρ
β
crit ≈ 1.4 × 1011, 4.0 × 1010, 1.9 × 1010, and 1.2 × 109 g cm−3, respectively for

the same chemical compositions (see Table II in Rotondo et al. (2011b)).

This instability was recently analyzed in Ref. Chamel et al. (2013) for the
ultramagnetized white dwarfs discussed here. Using Eq. (B.7.5), it can be
seen that the electron capture process limits the magnetic field to values lower
than

B
β
D =

1

2

(

ǫ
β
Z

mec2

)2

≈ 812.6, 342.3, 207.9, 26.2, (B.7.17)

or B ≈ 3.6 × 1016, 1.5 × 1016, 9.1 × 1015, and 1.1 × 1015 G, where we have

used the previously mentioned values of ǫ
β
Z for helium, carbon, oxygen, and

iron, respectively. The electron capture in this case is shown to occur even
at critical central densities lower than in the unmagnetized case. The values

of the critical densities are ρ
β
crit ≈ 9.6 × 1010, 9.6 × 1010, 1.2 × 1010, and 6.0 ×

108 g cm−3, respectively for helium, carbon, oxygen, and iron. These densities
are obtained by introducing the limiting values of Eq. (B.7.17) into Eq. (B.7.6).
The above densities are much smaller than the densities of the massive ultra-
magnetized white dwarfs considered in Ref. Das and Mukhopadhyay (2013);
configurations approaching the maximum mass given by Eq. (B.7.7) have
magnetic fields with BD & 104 and therefore central densities ρc & 4 ×
1012 g cm−3. These densities are even higher than the neutron drip density,
ρdrip ≈ 4.3 × 1011 g cm−3, at which the less bound neutrons in nuclei start to
drip out forming a Fermi gas Baym et al. (1971a). The neutron drip process
will then start when ρc = ρdrip where ρc is given by Eq. (B.7.6). For a carbon

composition it occurs for a magnetic field BD ≈ 531, or B ≈ 2.3 × 1016 G
Chamel et al. (2013).

Pycnonuclear fusion reactions might establish a more stringent limit with
respect to the inverse β decay in an ultramagnetized white dwarf Chamel
et al. (2013). Carbon fusion leads to 24Mg, which undergoes electron cap-

ture, thus inverse β decay instability, at a density of approximately ρ
β
crit,Mg ≈

3 × 109 g cm−3. Therefore, if C+C fusion occurs at rates highly enough at

densities ρ
β
crit,Mg to produce appreciable amounts of 24Mg in times shorter

than a Hubble time, then this process imposes a more tight constraint to the
density of the white dwarf. Based on the up-to-date astrophysical S-factors
computed in Ref. Gasques et al. (2005), we recently obtained in Boshkayev
et al. (2013b) the pycnonuclear carbon fusion in white dwarfs. We found
for instance that, C+C fusion occurs at a timescale of 0.1 Myr at a density
ρC+C

pyc ≈ 1.6 × 1010 g cm−3. Using Eq. (B.7.6), we infer that such a density is

reached for a magnetic field BD ≈ 246.6, or B ≈ 1.1 × 1016 G. Longer reaction
times implies lower densities and thus lower magnetic fields.

1886



B.7. Dynamical instability of white dwarfs and breaking of spherical
symmetry under the presence of extreme magnetic fields

The above limits to the magnetic field obtained from microscopic instability
processes are, however, still higher than the maximal values allowed by the
virial theorem. Thus, the macroscopic dynamical instabilities sets in before
both electron captures and pycnonuclear reactions.

B.7.6. General relativistic effects

We now turn to show that for ultra high magnetic fields as the ones consid-
ered in Das and Mukhopadhyay (2013), general relativistic effects are rele-
vant; therefore a Newtonian treatment of the equations of equilibrium is not
appropriate. First we can calculate the contribution to the star mass owing
to ultra high magnetic fields, as the ones considered in Das and Mukhopad-
hyay (2013). This can be approximately obtained by estimating the magnetic
energy stored in the volume of the white dwarf given by Eq. (B.7.11). This
gives for the maximum white dwarf mass in Das and Mukhopadhyay (2013),
obtained for a magnetic field B ≈ 1018 G, a contribution mB = WB/c2 ≈
24.7 M⊙. This values is approximately one order of magnitude larger than
the mass computed in Das and Mukhopadhyay (2013), which implies a total
star mass of ≈ 27.3 M⊙, instead of 2.6 M⊙. However, as we have shown such
a large magnetic fields cannot be reached in the star; thus the real configura-
tions of equilibrium likely have a magnetic field energy-density much smaller
than the matter energy-density, implying that the unmagnetized maximum
mass, the Chandrasekhar mass (B.7.1), still applies.

On the other hand, as we have seen when the maximum mass (B.7.7) is
approached for magnetic fields BD & 104, the central density of the system is
ρc & 4 × 1012 g cm−3. In particular, the maximum mass configuration would
have a radius R ≈ 70 km and thus a central density ρc ≈ 1.2 × 1013 g cm−3,
just one order of magnitude less than the nuclear saturation density. These
values imply that the mass, radius, and density of the ultramagnetized ob-
jects considered in Das and Mukhopadhyay (2013) are much more similar to
the parameters of neutron star rather than to the ones of white dwarfs. Thus,
it is natural to ask whether the compactness of the star, C = GM/(c2R), is
such to require a full general relativistic treatment. For the above star param-
eters close to the maximum mass configuration, we see that C ≈ 0.05, a value
in clear contrast with a Newtonian treatment of the equilibrium equations.

In this line, our previous results of Ref. Rotondo et al. (2011b) become rel-
evant. We found there that, in the case of carbon white dwarfs, general rel-
ativistic instability sets in at a density ρcrit ≈ 2 × 1010 g cm−3, prior to the
inverse β decay instability. Such a density is much lower than the densities
of the ultramagnetized white dwarfs of Ref. Das and Mukhopadhyay (2013).
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M (M⊙) R (km) B (G) Bmax (G) WB (×1051erg) |WG| (×1051erg) WB/|WG| mB (M⊙) ǫ/R

2.58 7.02×101 8.80×1017 5.67×1016 4.43×104 1.88×102 235 24.71 -2008.34
2.38 9.60×102 4.44×1015 2.79×1014 2.90×103 1.17×101 248 1.62 -2119.34
2.06 1.86×103 1.07×1015 6.42×1013 1.23×103 4.52 273 0.69 -2333.49

Table B.17.: Mass-Radius configurations of magnetized white dwarfs of Ref. Das and Mukhopadhyay (2013) with the
correspondent magnetic field B, the maximum virial magnetic field Bmax, magnetic energy WB and gravitational WG,
the ratio of them WB/|WG|, the magnetic mass in units of solar mass mB, and the values of eccentricity in units of the
spherical star radius ǫ/R.
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B.7.7. Evolutionary path

As a possible mechanism of formation of ultramagnetized white dwarfs, in
Ref. Das and Mukhopadhyay (2013) it was proposed that the star by accre-
tion could increase continuously its central density and magnetic field. How-
ever, as we have shown it is unlikely that such an accretion could bring the
white dwarf to such extreme regimes without passing through all the insta-
bility channels analyzed in this work; most likely a continuous increase of the
central density by accretion leads to the triggering of the white dwarf gravi-
tational collapse to a neutron star, or to explosive burning processes leading
to ordinary type Ia supernovae.

B.7.8. Conclusions

We have shown that the ultramagnetized, B & 1015 G, massive, M & 2M⊙,
white dwarfs introduced in Das and Mukhopadhyay (2013) are unlikely to
exist in nature since their are subjected to several macro and micro instabili-
ties which would make a white dwarf either to collapse or to explode much
prior to the reaching of such a hypothetical structure. The construction of
equilibrium configurations of a magnetized compact star needs the inclusion
of several effects not accounted for in Ref. Das and Mukhopadhyay (2013),
and therefore the acceptance of such ultramagnetized white dwarfs as possi-
ble astrophysical objects has to be considered with most caution.
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C. Neutron Stars Physics and
Astrophysics

C.1. Self-gravitating system of degenerate

neutrons, protons and electrons in beta

equilibrium

C.1.1. Introduction

The insurgence of critical electric fields in the process of gravitational collapse
leading to vacuum polarization process (Ruffini et al., 2010b) has convinced
us of the necessity of critically reexamining the gravitational and electrody-
namical properties in neutron stars. In this light we have recently general-
ized the Feynman, Metropolis and Teller treatment of compressed atoms to
the relativistic regimes (Rotondo et al., 2011c). We have so enforced, self-
consistently in a relativistic Thomas-Fermi equation, the β equilibrium con-
dition extending the works of Popov (1971b), Zeldovich and Popov (1972),
Migdal et al. (1976, 1977), Ferreirinho et al. (1980) and Ruffini and Stella
(1981) for heavy nuclei. Thanks to the existence of scaling laws (see Ro-
tondo et al. (2011c) and Ruffini (2008b)) this treatment has been extrapolated
to compressed nuclear matter cores of stellar dimensions with mass numbers
A ≃ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. Such configurations fulfill global
but not local charge neutrality. They have electric fields on the core surface,
increasing for decreasing values of the electron Fermi energy EF

e reaching
values much larger than the critical value Ec = m2

e c3/(eh̄), for EF
e = 0. The

assumption of constant distribution of protons at nuclear densities simulates,
in such a treatment, the confinement due to the strong interactions in the case
of nuclei and heavy nuclei and due to both the gravitational field and the
strong interactions in the case of nuclear matter cores of stellar sizes.

In this work we introduce explicitly the effects of gravitation by consid-
ering a general relativistic system of degenerate fermions composed of neu-
trons, protons and electrons in β-equilibrium: this is the simplest nontrivial
system in which new electrodynamical and general relativistic properties of
the equilibrium configuration can be clearly and rigorously illustrated. We
first prove that the condition of local charge neutrality can never be imple-
mented since it violates necessary conditions of equilibrium at the micro-
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physical scale. We then prove the existence of a solution with global, but
not local, charge neutrality. Such a solution accounts for essential gravito-
electrodynamical effects. First we recall the constancy of the general rela-
tivistic Fermi energy of each specie pioneered by Klein (1949). We subse-
quently introduce the general relativistic Thomas-Fermi equations for the
three fermion species fulfilling relativistic quantum statistics, governed by
the Einstein-Maxwell equations. The solution of this system of equations
presents a formidable mathematical challenge in theoretical physics. The tra-
ditional difficulties encountered in proving the existence and unicity of the
solution of the Thomas-Fermi equation are here enhanced by the necessity
of solving the general relativistic Thomas-Fermi equation coupled with the
Einstein-Maxwell system of equations. We present the general solution for
the equilibrium configuration, from the center of the star all the way to the
border, giving the details of the gravitational field, of the electrodynamical
field as well as of the conserved quantities.

We illustrate such a solution by selecting a central density ρ(0) = 3.94ρnuc,
where ρnuc ≃ 2.7 × 1014 g cm−3 is the nuclear density. We point out the exis-
tence near the boundary of the core in the equilibrium configuration of three
different radii, in decreasing order: Re corresponding to the vanishing of the
Fermi momentum of the electron component; PF

e = 0, Rp corresponding to

the vanishing of the Fermi momentum of the proton component; PF
p = 0 and

Rn corresponding to the radius at which the Fermi momentum of neutrons
vanishes: PF

n = 0. We then give explicit expressions for the proton versus
electron density ratio and the proton versus neutron density ratio for any
value of the radial coordinate as well as for the electric potential at the center
of the configuration. A novel situation occurs: the description of the pressure
and density is not anylonger a local one. Their determination needs prior
knowledge of the global electrodynamical and gravitational potentials on the
entire system as well as of the radii Rn, Rp and Re. This is a necessary outcome
of the self-consistent solution of the eigenfunction within general relativistic
Thomas-Fermi equation in the Einstein-Maxwell background. As expected
from the considerations in Rotondo et al. (2011c), the electric potential at the
center of the configuration fulfills eV(0) ≃ mπc2 and the gravitational poten-

tial 1− eν(0)/2 ≃ mπ/mp. The implementation of the constancy of the general
relativistic Fermi energy of each particle species and the consequent system
of equations illustrated here is the simplest possible example admitting a rig-
orous nontrivial solution. It will necessarily apply in the case of additional
particle species and of the inclusion of nuclear interactions: in this cases how-
ever it is not sufficient and the contribution of nuclear fields must be taken
into due account.
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C.1.2. The impossibility of a solution with local charge
neutrality

We consider the equilibrium configurations of a degenerate gas of neutrons,
protons and electrons with total matter energy density and total matter pres-
sure

E = ∑
i=n,p,e

2

(2πh̄)3

∫ PF
i

0
ǫi(p) 4πp2dp , (C.1.1)

P = ∑
i=n,p,e

1

3

2

(2πh̄)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp , (C.1.2)

where ǫi(p) =
√

c2p2 + m2
i c4 is the relativistic single particle energy. In ad-

dition, we require the condition of β-equilibrium between neutrons, protons
and electrons

µn = µp + µe , (C.1.3)

where PF
i denotes the Fermi momentum and µi = ∂E/∂ni =

√

c2(PF
i )

2 + m2
i c4

is the free-chemical potential of particle-species with number density ni =

(PF
i )

3/(3π2h̄3). We now introduce the extension to general relativity of the

Thomas-Fermi equilibrium condition on the generalized Fermi energy EF
e of

the electron component

EF
e = eν/2µe − mec

2 − eV = constant , (C.1.4)

where e is the fundamental charge, V is the Coulomb potential of the config-
uration and we have introduced the metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (C.1.5)

for a spherically symmetric non-rotating neutron star. The metric function

λ is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2V′ (a
prime stands for radial derivative) through

e−λ = 1 − 2GM(r)

c2r
+

G

c4
r2E2(r) . (C.1.6)

Thus the equations for the neutron star equilibrium configuration consist of
the following Einstein-Maxwell equations and general relativistic Thomas-
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Fermi equation

M′ = 4πr2 E

c2
− 4πr3

c2
e−ν/2V̂′(np − ne), (C.1.7)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(

1 − 2GM
c2r

+ Gr2

c4 E2
) , (C.1.8)

P′ +
ν′

2
(E+ P) = −(Pem)′ − 4Pem

r
, (C.1.9)

V̂′′ +
2

r
V̂′
[

1 − r(ν′ + λ′)
4

]

= −4παh̄c eν/2eλ

{

np

−e−3ν/2

3π2
[V̂2 + 2mec

2V̂ − m2
e c4(eν − 1)]3/2

}

, (C.1.10)

where α denotes the fine structure constant, V̂ = EF
e + eV, Pem = −E2/(8π)

and we have used Eq. (C.1.4) to obtain Eq. (C.1.10).

It can be demonstrated that the assumption of the equilibrium condition
(C.1.4) together with the β-equilibrium condition (C.1.3) and the hydrostatic
equilibrium (C.1.9) is enough to guarantee the constancy of the generalized
Fermi energy

EF
i = eν/2µi − mic

2 + qiV , i = n, p, e , (C.1.11)

for all particle species separately. Here qi denotes the particle unit charge of
the i-species. Indeed, as shown by Olson and Bailyn (1975, 1978), when the
fermion nature of the constituents and their degeneracy is taken into account,
in the configuration of minimum energy the generalized Fermi energies EF

i
defined by (C.1.11) must be constant over the entire configuration. These
minimum energy conditions generalize the equilibrium conditions of Klein
(1949) and of Kodama and Yamada (1972) to the case of degenerate multi-
component fluids with particle species with non-zero unit charge.

If one were to assume, as often done in literature, the local charge neutral-
ity condition ne(r) = np(r) instead of assuming the equilibrium condition
(C.1.4), this would lead to V = 0 identically (since there will be no electric
fields generated by the neutral matter distribution) implying via Eqs. (C.1.3)
and (C.1.9)

EF
e + EF

p = eν/2(µe + µp)− (me + mp)c
2 = EF

n

+ (mn − me − mp)c
2 = constant . (C.1.12)

Thus the neutron Fermi energy would be constant throughout the configu-
ration as well as the sum of the proton and electron Fermi energies but not
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the individual Fermi energies of each component. In Fig. C.1 we show the
results of the Einstein equations for a selected value of the central density
of a system of degenerate neutrons, protons, and electrons in β-equilibrium
under the constraint of local charge neutrality. In particular, we have plotted
the Fermi energy of the particle species in units of the pion rest-energy. It
can be seen that indeed the Fermi energies of the protons and electrons are
not constant throughout the configuration which would lead to microscopic
instability. This proves the impossibility of having a self-consistent configu-
ration fulfilling the condition of local charge neutrality for our system. This
result is complementary to the conclusion of Eq. (4.6) of Olson and Bailyn
(1975) who found that, at zero temperature, only a dust solution with zero
particle kinetic energy can satisfy the condition of local charge neutrality and
such a configuration is clearly unacceptable for an equilibrium state of a self-
gravitating system.
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Figure C.1.: Fermi energies for neutrons, protons and electrons in units of
the pion rest-energy for a locally neutral configuration with central density
ρ(0) = 3.94ρnuc, where ρnuc = 2.7 × 1014 g cm−3 denotes the nuclear density.

C.1.3. The solution with global charge neutrality

We turn now to describe the equilibrium configurations fulfilling only global
charge neutrality. We solve self-consistently Eqs. (C.1.7) and (C.1.8) for the
metric, Eq. (C.1.9) for the hydrostatic equilibrium of the three degenerate
fermions and, in addition, we impose Eq. (C.1.3) for the β-equilibrium. The
crucial equation relating the proton and the electron distributions is then
given by the general relativistic Thomas-Fermi equation (C.1.10). The bound-
ary conditions are: for Eq. (C.1.7) the regularity at the origin: M(0) = 0, for
Eq. (C.1.9) a given value of the central density, and for Eq. (C.1.10) the reg-
ularity at the origin ne(0) = np(0), and a second condition at infinity which
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results in an eigenvalue problem determined by imposing the global charge
neutrality conditions

V̂(Re) = EF
e , V̂′(Re) = 0 , (C.1.13)

at the radius Re of the electron distribution defined by

PF
e (Re) = 0 , (C.1.14)

from which follows

EF
e = mec

2eν(Re)/2 − mec
2

= mec
2

√

1 − 2GM(Re)

c2Re
− mec

2 . (C.1.15)

Then the eigenvalue problem consists in determining the gravitational poten-
tial and the Coulomb potential at the center of the configuration that satisfy
the conditions (C.1.13)–(C.1.15) at the boundary.

C.1.4. Numerical integration of the equilibrium equations

The solution for the particle densities, the gravitational potential, the Coulomb
potential and the electric field are shown in Fig. (C.2) for a configuration with
central density ρ(0) = 3.94ρnuc. In order to compare our results with those
obtained in the case of nuclear matter cores of stellar dimensions Rotondo
et al. (2011c) as well as to analyze the gravito-electrodynamical stability of the
configuration we have plotted the electric potential in units of the pion rest-
energy and the gravitational potential in units of the pion-to-proton mass ra-
tio. One particular interesting new feature is the approach to the boundary of
the configuration: three different radii are present corresponding to distinct
radii at which the individual particle Fermi pressure vanishes. The radius Re

for the electron component corresponding to PF
e (Re) = 0, the radius Rp for

the proton component corresponding to PF
p (Rp) = 0 and the radius Rn for

the neutron component corresponding to PF
n (Rn) = 0.

The smallest radius Rn is due to the threshold energy for β-decay which
occurs at a density ∼ 107 g cm−3. The radius Rp is larger than Rn because the
proton mass is slightly smaller than the neutron mass. Instead, Re > Rp due
to a combined effect of the difference between the proton and electron masses
and the implementation of the global charge neutrality condition through the
Thomas-Fermi equilibrium conditions.

For the configuration of Fig. C.2 we found Rn ≃ 12.735 km, Rp ≃ 12.863

km and Re ≃ Rp + 103λe where λe = h̄/(mec) denotes the electron Compton
wavelength. We find that the electron component follows closely the pro-
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ton component up to the radius Rp and neutralizes the configuration at Re

without having a net charge, contrary to the results e.g in Olson and Bailyn
(1978).
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Figure C.2.: Top panel: particle number density of neutrons, protons, and
electrons approaching the boundary of the configuration in units of the nu-
clear density nnuc ≃ 1.6 × 1038 cm−3. Bottom panel: proton and elec-
tron Coulomb potentials in units of the pion rest-energy eV/(mπc2) and
−eV/(mπc2) respectively and the proton gravitational potential in units of
the pion mass mpΦ/mπ where Φ = (eν/2 − 1).
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Figure C.3.: Top panel: electron number density for r ≥ Rp normalized to its
value at r = Rp. Bottom panel: electric field for r ≥ Rp normalized to its
value at r = Rp. We have shown also the behavior of the solution of the gen-
eral relativistic Thomas-Fermi equation (C.1.10) for two different eigenvalues
close to the one which gives the globally neutral configuration.

It can be seen from Fig. C.2 that the negative proton gravitational potential
energy is indeed always larger than the positive proton electric potential en-
ergy. Therefore the configuration is stable against Coulomb repulsion. This
confirms the results in the simplified case analyzed by Rotondo et al. (2011c).
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From Eq. (C.1.11) and the relation between Fermi momentum and the par-

ticle density PF
i = (3π2h̄3ni)

1/3, we obtain the proton-to-electron and proton-
to-neutron ratio for any value of the radial coordinate

np(r)

ne(r)
=

[

f 2(r)µ2
e (r)− m2

pc4

µ2
e (r)− m2

e c4

]3/2

, (C.1.16)

np(r)

nn(r)
=

[

g2(r)µ2
n(r)− m2

pc4

µ2
n(r)− m2

nc4

]3/2

, (C.1.17)

where f (r) = (EF
p + mpc2 − eV)/(EF

e + mec
2 + eV), g(r) = (EF

p + mpc2 −
eV)/(EF

n + mnc2) and the constant values of the generalized Fermi energies
are given by

EF
n = mnc2eν(Rn)/2 − mnc2 , (C.1.18)

EF
p = mpc2eν(Rp)/2 − mpc2 + eV(Rp) , (C.1.19)

EF
e = mec

2eν(Re)/2 − mec
2 . (C.1.20)

A novel situation occurs: the determination of the quantities (C.1.16) and
(C.1.18) necessarily require the prior knowledge of the global electrodynam-
ical and gravitational potential from the center of the configuration all the
way out to the boundary defined by the radii Re, Rp and Rn. This necessity
is an outcome of the solution for the eigenfunction of the general relativistic
Thomas-Fermi equation (C.1.10).

From the regularity condition at the center of the star ne(0) = np(0) to-
gether with Eq. (C.1.16) we obtain the Coulomb potential at the center of the
configuration

eV(0) =
(mp − me)c2

2

[

1 +
EF

p − EF
e

(mp − me)c2
− (mp + me)c2

EF
n + mnc2

eν(0)

]

,(C.1.21)

which after some algebraic manipulation and defining the central density in
units of the nuclear density η = ρ(0)/ρnuc can be estimated as

eV(0) ≃ 1

2

[

mpc2eν(Rp)/2 − mec
2eν(Re)/2 − mnc2eν(Rn)/2

1 + [PF
n (0)/(mnc)]2

]

≃ 1

2

[

(3π2η/2)2/3mp

(3π2η/2)2/3mπ + m2
n/mπ

]

mπc2 , (C.1.22)

where we have approximated the gravitational potential at the boundary as

eν(Re)/2 ≃ eν(Rp)/2 ≃ eν(Rn)/2 ≃ 1. Then for configurations with central den-
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sities larger than the nuclear density we necessarily have eV(0) & 0.35mπc2.
In particular, for the configuration we have exemplified with η = 3.94 in
Fig. C.2, from the above expression (C.1.22) we obtain eV(0) ≃ 0.85mπc2.
This value of the central potential agrees with the one obtained in the simpli-
fied case of nuclear matter cores with constant proton density (Rotondo et al.,
2011c).

C.1.5. Conclusions

We have proved in the first part of this letter that the treatment generally used
for the description of neutron stars adopting the condition of local charge
neutrality, is not consistent with the Einstein-Maxwell equations and micro-
physical conditions of equilibrium consistent with quantum statistics (see
Fig. C.1). We have shown how to construct a self-consistent solution for a
general relativistic system of degenerate neutrons, protons and electrons in
β-equilibrium fulfilling global but not local charge neutrality.

Although the mass-radius relation in the simple example considered here
in our new treatment, differs slightly from the one of the traditional ap-
proaches, the differences in the electrodynamic structure are clearly very large.
As is well-known these effects can lead to important astrophysical conse-
quences on the physics of the gravitational collapse of a neutron star to a
black hole Ruffini et al. (2010b).

Having established in the simplest possible example the new set of Einstein-
Maxwell and general relativistic Thomas-Fermi equations, we now proceed
to extend this approach when strong interactions are present Rueda et al.
(2011). The contribution of the strong fields to the energy-momentum tensor,
to the four-vector current and consequently to the Einstein-Maxwell equa-
tions have to be taken into account. Clearly in this more general case, the con-
ditions introduced in this letter have to be still fulfilled: the r-independence
of the generalized Fermi energy of electrons and the fulfillment of the general
relativistic Thomas-Fermi equation Rueda et al. (2011). In addition, the gen-
eralized Fermi energy of protons and neutrons will depend on the nuclear
interaction fields. The fluid of neutrons, protons and electrons in this more
general case does not extend all the way to the neutron star surface but is
confined to the neutron star core endowed with overcritical electric fields, in
precise analogy with the case of the compressed nuclear matter core of stellar
dimension described in Rotondo et al. (2011c).
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C.2. The Klein first integrals in an equilibrium

system with electromagnetic, weak, strong

and gravitational interactions

C.2.1. Introduction

The unsolved problems of supernovae theories as well as the necessity of
processes leading to electrodynamical phenomena during the gravitational
collapse to a black hole (Ruffini et al., 2010b) lead to the necessity of critically
reexamining the current treatment of neutron stars. In a series of articles (see
Rotondo et al. (2011c,d)), we have recently developed the first steps towards
a new consistent treatment for the description of neutron stars, well beyond
the traditional Tolman-Oppenheimer-Volkoff equations.

First we have generalized the treatment of compressed atoms of Feynman,
Metropolis and Teller to the relativistic regimes (see Rotondo et al. (2011c) for
details). There, it has been enforced self-consistently in a relativistic Thomas-
Fermi equation, the condition of β-equilibrium extending the works of Popov
(1971b), Zeldovich and Popov (1972), Migdal et al. (1976, 1977), Ferreirinho
et al. (1980) and Ruffini and Stella (1981) for heavy nuclei. Then, through
the using of scaling laws, following Ruffini (2008b); Popov (2010), this treat-
ment was extrapolated to compressed nuclear matter cores at nuclear and
supranuclear densities. Such cores have stellar dimensions and mass num-
bers A ≃ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. In addition, they fulfill
global but not local charge neutrality having electric fields on the core sur-
face, increasing for decreasing values of the electron Fermi energy EF

e reach-
ing values much larger than the critical value Ec = m2

e c3/(eh̄), for EF
e = 0.

The assumption of constant distribution of protons at nuclear densities sim-
ulates, in such a treatment, the confinement due to the strong interactions in
the case of nuclei and heavy nuclei and due to both the gravitational field
and strong interactions in the case of nuclear matter cores of stellar sizes at
nuclear and supranuclear densities.

In a subsequent work Rotondo et al. (2011d), we have generalized the
above approach explicitly including the effects of the gravitational field by
considering the most simplified nontrivial but rigorous treatment of a general
relativistic system of neutrons, protons and electrons in β-equilibrium. It has
been there proved that the traditional treatment for the description of neutron
stars adopting the condition of local charge neutrality is not consistent with
the Einstein-Maxwell equations and with microphysical conditions of equi-
librium within quantum statistics. The role of the constancy of the general
relativistic Fermi energy of each particle species pioneered by Klein (1949)
has been there emphasized and, the full system of equilibrium equations con-
sisting of the Einstein-Maxwell and general relativistic Thomas-Fermi equa-
tions has been formulated. The corresponding solution of such a system of

1900



C.2. The Klein first integrals in an equilibrium system with electromagnetic,
weak, strong and gravitational interactions

equations has been there given in the simplest possible example of a config-
uration of neutrons, protons and electrons in β-equilibrium with electromag-
netic, weak and gravitational interactions. New electrodynamic and general
relativistic properties of the equilibrium configurations have been there illus-
trated.

The aim of this work is to make an essential new step: we further proceed
to the description of a system of neutrons, protons and electrons fulfilling
strong, electromagnetic, weak and gravitational interactions. The essential
role of the Klein first integrals is evidenced and their theoretical formulation
is presented in the Einstein-Maxwell background. For the sake of generality
the treatment is performed in the most general case in which finite temper-
ature effects are also taking into account. We adopt throughout the work
natural units h̄ = c = 1.

C.2.2. The Constitutive General Relativistic Equations

The densities in the core of a neutron star exceed the nuclear density ρnuc ∼
2.7 × 1014 g/cm3 and may reach densities of order ∼ 1017 g/cm3 at the verge
of the gravitational collapse of the neutron star to a black hole. There is there-
fore the need of a consistent relativistic theory for the description of the in-
teractions between the matter constituents. In particular, approaches for the
nuclear interaction between nucleons based on phenomenological potentials
and non-relativistic many-body theory become inapplicable (see Bowers et al.
(1973b,a)).

A self-consistent relativistic and well-tested model for the nuclear inter-
actions is the Walecka model (see Duerr (1956); Walecka (1974) for details).
This model share common features with the model adopted by Bowers et al.
in (Bowers et al., 1973b,a); in both of them the nucleons interact through a
Yukawa coupling and the flat spacetime has been considered to construct the
equation of state of nuclear matter. The technique of constructing the equa-
tion of state assuming flat spacetime has been generally used since, as pointed
out in Bowers et al. (1973b,a), as long as ρ < 1049 g/cm3 the gravitational con-
tributions to interactions between particles are negligible. However, when we
turn to neutron star configurations at nuclear and supranuclear densities, it
has been shown in Rotondo et al. (2011d) how the solution of the Einstein-
Maxwell system of equations is mandatory.

In the often called extended version of the Walecka model, the strong inter-
action between nucleons is described by the exchange of three virtual mesons:
σ is an isoscalar meson field providing the attractive long-range part of the
nuclear force; ω is a massive vector field that models the repulsive short range
and; ρ is the massive isovector field that takes account surface as well as
isospin effects of nuclei (see also Boguta and Bodmer (1977); Ring (1996)).
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The total Lagrangian density of the system is given by

L = Lg +L f +Lσ +Lω +Lρ +Lγ +Lint, (C.2.1)

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
, (C.2.2)

Lγ = −1

4
FµνFµν, (C.2.3)

Lσ =
1

2
∇µσ∇µσ − U(σ), (C.2.4)

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, (C.2.5)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρµ, (C.2.6)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µ Aν − ∂ν Aµ are the
field strength tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for
covariant derivative and R is the Ricci scalar. We adopt the Lorenz gauge for
the fields Aµ, ωµ, and ρµ. The self-interaction scalar field potential U(σ) is
a quartic-order polynom for a renormalizable theory (see e.g. Lee and Wick
(1974)). The specific functional form of U(σ) is not relevant for the scope of
this work, thus we will not adopt any particular form of it hereafter.

The Lagrangian density for the three fermion species is

L f = ∑
i=e,N

ψ̄i

(

iγµDµ − mi

)

ψi, (C.2.7)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states
for the mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac spin
connections that satisfy the commutation relation

[γµ, Γν] = ∂νγµ − Γα
µνγα, (C.2.8)

where Γα
µν denotes the Christoffel symbols.

The interacting part of the Lagrangian density is, in the minimal coupling
assumption, given by

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ + eAµ J

µ
γ,e − eAµ J

µ
γ,N, (C.2.9)
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where the conserved currents are

J
µ
ω = ψ̄NγµψN, (C.2.10)

J
µ
ρ = ψ̄Nτ3γµψN, (C.2.11)

J
µ
γ,e = ψ̄eγ

µψe, (C.2.12)

J
µ
γ,N = ψ̄N

(

1 + τ3

2

)

γµψN. (C.2.13)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is
the fundamental electric charge. The Dirac matrices γµ and the isospin Pauli
matrices satisfy the Dirac algebra in curved spacetime (see e.g. Lee and Pang
(1987))

{γµ, γν} = 2gµν, (C.2.14)
{

γµ, γν

}

= 2gµν, (C.2.15)

{γµ, γν} = 2δ
µ
ν , (C.2.16)

[

τi, τj

]

= 2ıǫijkτk. (C.2.17)

The Einstein-Maxwell-Dirac system of equations is then given by

Gµν + 8πGTµν = 0, (C.2.18)

∇µFµν − eJν
ch = 0, (C.2.19)

∇µΩµν + m2
ωων − gω Jν

ω = 0, (C.2.20)

∇µR
µν + m2

ρρν − gρ Jν
ρ = 0, (C.2.21)

∇µ∇µσ + ∂σU(σ) + gsns = 0, (C.2.22)
[

γµ

(

iDµ − V
µ
N

)

− m̃N

]

ψN = 0, (C.2.23)
[

γµ (iD
µ + eAµ)− me

]

ψe = 0, (C.2.24)

where the scalar density ns = ψ̄NψN, the nucleon effective mass m̃N ≡ mN +
gσσ, and

V
µ
N ≡ gωωµ + gρτρµ + e

(

1 + τ3

2

)

Aµ, (C.2.25)

is the effective four potential of nucleons. The energy-momentum tensor of
free-fields and free-fermions Tµν of the system (C.2.3)–(C.2.6) is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (C.2.26)
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where

T
µν
γ = −F

µ
α Fαν − 1

4
gµνFαβFαβ, (C.2.27)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (C.2.28)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ + m2

ω

(

ωµων − 1

2
gµνωαωα

)

,(C.2.29)

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ + m2

ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

, (C.2.30)

are the contribution due to free-fields and T
µν
f is the contribution of free-

fermions which we discuss below.

C.2.3. The Thermodynamic Laws and the Field Equations in
the Spherically Symmetric Case

We first introduce the non-rotating spherically symmetric spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (C.2.31)

where the ν(r) and λ(r) are only functions of the radial coordinate r.
For very large number of fermions, we can adopt the mean-field approx-

imation in which fermion-field operators are replaced by their expectation
values (see e.g. Walecka (1974) for details).

We write the nucleon doublet and the electronic spinor as ψi = ψi(k)e
−ikµxµ

in the phase-space. Suppose that neutrons, protons and electrons, and the
corresponding antiparticles, are in thermodynamic equilibrium with a finite
temperature T. The occupation fermion-number operators of the “k”-state,
Ni(k) = ψ†

i (k)ψi(k) with i = e, p, n, are replaced by their Fermi-distributions

f±i (k) = 〈ψ±
i (k)†ψ±

i (k)〉 =
[

exp

(

ǫi(k)∓ µi

kBT

)

+ 1

]−1

, (C.2.32)

where kB is the Boltzmann constant, µi and ǫi(k) =
√

k2 + m̃2
i denote the

single-particle chemical potential and energy-spectrum (we recall that for
electrons m̃e = me). The sign ‘+’ correspond to particles and ‘−’ to antiparti-
cles. We do not consider “real” bosons to be present in the system; the only
distribution functions involved in the computation are due to fermions and
antifermions and therefore phenomena as Bose-Einstein condensation does
not occur within this theory (see e.g. Bowers et al. (1973b) for details).

It is worth to recall that all the thermodynamic quantities, e.g. k, ǫ, T ..., are
written here in the local frame which is related to the coordinate frame by the
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Lorentz “boost”
Λ

(a)
α = (uα, χα, Θα, Φα), (C.2.33)

where uα = eν/2δ0
α, χα = eλ/2δ1

α, Θα = rδ2
α, and Φα = r sin θδ3

α, being δα
β the

usual Kronecker delta symbol.
The number-density ni of the i-specie, taking into account the antiparticle

contribution is, within the mean-field approximation, given by

ni =
2

(2π)3

∫

d3k[ f+i (k)− f−i (k)]. (C.2.34)

The contribution of free-fermions and antifermions to the energy-momentum
tensor can be then written in the perfect fluid form (see e.g. Ruffini and
Bonazzola (1969))

T
µν
f = (E+ P)uµuν − Pgµν, (C.2.35)

where uµ is the four-velocity of the fluid which satisfies uµuµ = 1, and the
energy-density E and the pressure P are given by

E = ∑
i=n,p,e

Ei, P = ∑
i=n,p,e

Pi, (C.2.36)

being Ei and Pi the single fermion-antifermion fluid contributions

Ei =
2

(2π)3

∫

d3kǫi(k)[ f+i (k) + f−i (k)], (C.2.37)

Pi =
1

3

2

(2π)3

∫

d3k
k2

ǫi(k)
[ f+i (k) + f−i (k)]. (C.2.38)

The equation of state (C.2.36)–(C.2.38) satisfies the thermodynamic law

E+ P− TS = ∑
i=n,p,e

niµi, (C.2.39)

where S = S/V is the entropy per unit volume (entropy density) and µi =
∂E/∂ni is the free-chemical potential of the i-specie. At zero-temperature T =

0, µi =
√

(KF
i )

2 + m̃2
i and ni = (KF

i )
3/(3π2), where KF

i denotes the Fermi

momentum of the i-specie.
The scalar density ns, within the mean-field approximation, is given by the

following expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3 ∑
i=n,p

∫

d3k
m̃N

ǫi(k)
[ f+i (k) + f−i (k)]. (C.2.40)

In the static case, only the temporal components of the covariant currents
survive, i.e. 〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of
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Eqs. (C.2.10)–(C.2.13), we obtain the non-vanishing components of the cur-
rents

Jch
0 = nchu0 = (np − ne)u0, (C.2.41)

Jω
0 = nbu0 = (nn + np)u0, (C.2.42)

J
ρ
0 = n3u0 = (np − nn)u0, (C.2.43)

where nb, np, nn and ne are the baryon, proton, neutron and electron num-
ber densities which are functions only of the spatial coordinates, and u0 =√

g00 = eν/2.

Making a variation of Eq. (C.2.39) and using Eqs. (C.2.36)–(C.2.38) and
(C.2.40), we obtain the generalized Gibbs-Duhem relation

dP = ∑
i=n,p,e

nidµi − gσnsdσ + SdT, (C.2.44)

which can be rewritten as

dP = ∑
i=n,p,e

nidµi − gσnsdσ +

(

E+ P− ∑
i=n,p,e

niµi

)

dT

T
, (C.2.45)

where we have used Eq. (C.2.39) to eliminate S, and we have used the relation
between the scalar density and the fluid energy-density ns = ∂E/∂m̃N, which
follows from Eqs. (C.2.36)–(C.2.38) and (C.2.40).

Thus, the Einstein-Maxwell equations (C.2.18–C.2.22) become

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (C.2.46)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (C.2.47)

e−λ(r)

[

1

2

(

dν

dr
− dλ

dr

)(

1

r
+

1

2

dν

dr

)

+
1

2

d2ν

dr2

]

= −8πGT3
3 , (C.2.48)

d2V

dr2
+

dV

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλeJ0
ch, (C.2.49)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (C.2.50)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gω J0
ω − m2

ωω
]

, (C.2.51)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gρ J0
ρ − m2

ρρ
]

, (C.2.52)

where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V. The
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metric function λ is related to the mass M(r) and the electric field E(r) =
−e−(ν+λ)/2V′ through

e−λ(r) = 1 − 2GM(r)

r
+ Gr2E2(r) = 1 − 2GM(r)

r
+

GQ2(r)

r2
, (C.2.53)

where we have introduced also the conserved charge Q(r) = r2E(r).

An important equation, although not independent of the Einstein-Maxwell
equations (C.2.46)–(C.2.52), is given the energy-momentum conservation law

∇µTµν = −gω Jω
µ Ωµν − gρ J

ρ
µR

µν + eJch
µ Fµν, (C.2.54)

from which we have

dP

dr
= − (E+ P)

2

dν

dr
− gσns

dσ

dr
− gω J0

ω
dω

dr
− gρ J0

ρ
dρ

dr
− eJ0

ch

dV

dr
, (C.2.55)

where we have used the energy-momentum tensor Tµν given by Eq. (C.2.26).

C.2.4. Constancy of the Klein potentials and beta equilibrium

Introducing the nucleon doublet and the electronic spinor in the wave-form

ψi = ψi(k)e
−ikµxµ

in phase-space, the Dirac equations (C.2.24) become

(γµK
µ
i − m̃i)ψi(k) = 0, (C.2.56)

where
K

µ
i ≡ kµ − V

µ
i , V

µ
e = −eAµ. (C.2.57)

In the mean-field approximation, making the quadrature of Dirac operators
in Eq. (C.2.56) and averaging over all states “k”, we obtain the generalized
chemical potentials or, for short Klein potentials for electrons Ee, neutrons En

and protons Ep

Ee =
√

g00µe − eV = eν/2µe − eV, (C.2.58)

Ep =
√

g00µp + gωω + gρρ + eV = eν/2µp + gωω + gρρ + eV,(C.2.59)

En =
√

g00µn + gωω − gρρ = eν/2µn + gωω − gρρ, (C.2.60)

where we have used Eqs. (C.2.14)–(C.2.17) and Eqs. (C.2.32), (C.2.34), (C.2.36)–
(C.2.38). In the zero-temperature case, they are generalized Fermi energies for
electrons Ee = EF

e , neutrons En = EF
n and protons Ep = EF

p .

Using the equations of motion for the fields ρ, ω and σ, and using the gen-
eralized Gibbs-Duhem relation (C.2.45), the energy-momentum conservation
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equation (C.2.55) can be rewritten as

eν/2 ∑
i=n,p,e

ni

(

dµi −
dT

T
µi

)

+ (E+ P)eν/2

(

dT

T
+

1

2
dν

)

+ gωnbdω + gρn3dρ + enchdV = 0. (C.2.61)

The isothermal Tolman condition (Tolman, 1930) (see also Klein (1949)) de-
mands the constancy of the gravitationally red-shifted temperature

dT

T
+

1

2
dν = 0, or eν/2T = constant. (C.2.62)

Such a condition can be used into Eq. (C.2.61) to obtain

∑
i=n,p,e

nid(e
ν/2µi) + gωnbdω + gρn3dρ + enchdV = 0. (C.2.63)

Moreover, using the expressions (C.2.58)–(C.2.59) of the generalized chemical
potentials, Eq. (C.2.63) can be rewritten as

∑
i=n,p,e

nidEi = 0, (C.2.64)

which leads for independent and non-zero particle number densities ni 6= 0
to the constancy of the Klein potentials (C.2.58)–(C.2.60) for each particle-
species, i.e.

Ee = eν/2µe − eV = constant, (C.2.65)

Ep = eν/2µp + Vp = constant, (C.2.66)

En = eν/2µn + Vn = constant, (C.2.67)

where

Vp = gωω + gρρ + eV, (C.2.68)

Vn = gωω − gρρ. (C.2.69)

In the case of nuclear matter in β-equilibrium (assuming not trapped neu-
trinos), the values of the constant Klein potentials (C.2.65)–(C.2.67) are linked
by the condition

En = Ep + Ee, (C.2.70)

which can be rewritten explicitly in terms of the chemical potentials as

µn = µp + µe + 2gρρe−ν/2. (C.2.71)
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C.2.5. Concluding Remarks

We have presented the self-consistent equations of equilibrium at finite tem-
peratures for a system of neutrons, protons and electrons in β-equilibrium
within general relativity including quantum statistics, electro-weak, and strong
interactions. In the mean-field approximation, we obtained the generalized
particle chemical potentials from the Dirac equations for nucleons and elec-
trons.

From the Einstein-Maxwell equations, the thermodynamic laws and energy-
momentum conservation, we obtain the constancy of the Klein potential of
each particle-specie and of the gravitationally red-shifted temperature through-
out the configuration, i.e. the first Klein integrals and the Tolman isother-
mal condition respectively. In the non-interacting degenerate case, following
a minimization energy procedure, it was demonstrated that the thermody-
namic equilibrium condition of constancy of the generalized particle Fermi
energy of all particle species holds (see Olson and Bailyn (1975)). Such a pro-
cedure can be straightforwardly applied to the present case, being the final
result given by the equilibrium conditions (C.2.65) and (C.2.66).

The precise values of such constants are linked, in the case of nuclear mat-
ter in β-equilibrium, by Eq. (C.2.70), and their full determination needs the
inclusion of additional constraints to the system, e.g. global charge neutrality
(see e.g. Rotondo et al. (2011d)).

The correct implementation of such generalized Thomas-Fermi equilibrium
conditions needs the self-consistent solution of the global problem of equilib-
rium of the configuration following from the solution of the Einstein-Maxwell
equations (C.2.46), (C.2.47), (C.2.49)–(C.2.53), the general relativistic thermo-
dynamic equilibrium conditions (C.2.62), (C.2.65) and (C.2.66), together with
the constraints, e.g. β-equilibrium and global charge neutrality.

Thus, the full system of Einstein-Maxwell-Thomas-Fermi equations can be
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rewritten in the form

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (C.2.72)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (C.2.73)

V′′ +
2

r
V′
[

1 − r(ν′ + λ′)
4

]

= −4πe eν/2eλ(np − ne), (C.2.74)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (C.2.75)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gω J0
ω − m2

ωω
]

, (C.2.76)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
[

gρ J0
ρ − m2

ρρ
]

, (C.2.77)

Ee = eν/2µe − eV = constant, (C.2.78)

Ep = eν/2µp + Vp = constant, (C.2.79)

En = eν/2µn + Vn = constant, (C.2.80)

eν/2T = constant, (C.2.81)

where the constants En, Ep and Ee are linked by Eq. (C.2.70) and Vp,n is given
by Eq. (C.2.68). In particular, in the degenerate case T = 0, Eq. (C.2.74) be-
comes

V̂′′ +
2

r
V̂′
[

1 − r(ν′ + λ′)
4

]

= −4πα eν/2eλ

{

np

− e−3ν/2

3π2
[V̂2 + 2meV̂ − m2

e (e
ν − 1)]3/2

}

,

(C.2.82)

where V̂ ≡ eV + Ee and we have used Eq. (C.2.78) into Eq. (C.2.74). This
equation is the general relativistic extension of the relativistic Thomas-Fermi
equation recently introduced in Rotondo et al. (2011c) for the study of com-
pressed atoms. In addition, Eq. (C.2.82) has been recently used to obtain the
globally neutral configurations in the simpler case of degenerate neutrons,
protons and electrons in β-equilibrium (Rotondo et al., 2011d).
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C.3. The constitutive equations of a

self-gravitating system of neutrons, protons

and electrons

C.3.1. Introduction

We have recently introduced a new approach which thanks to the existence
of scaling laws can apply to compressed atoms as well as to massive nuclear
matter cores of stellar dimensions (Rotondo et al., 2011c). This approach con-
cerning the compressed atom has already given a new contribution in the
study of white dwarfs. It represents the first self-consistent calculation taking
into due account the electromagnetic contribution in a relativistic treatment
of the Thomas-Fermi equation, within global formulation of the equilibrium
of white dwarfs in general relativity (Rotondo et al., 2011b).

The application of the above results (Rotondo et al., 2011c,b) to the case of
neutron stars is much more complex and it has been approached stepwise.
As a first step we have considered the application of this novel approach to
the case of a system of neutrons, protons, and electrons in β-equilibrium at
zero temperatures within general relativity (Rotondo et al., 2011d). These re-
sults are shortly recalled in Sec. C.3.2. The essential role of the generalized
Fermi energy of particles (the Klein potentials) and their constancy on the en-
tire equilibrium configuration has been outlined. The existence of an electric
potential over the entire configuration has been evidenced.

We have there proved, for the case of this simplified example where strong
interactions are neglected, that the traditional approach of describing the sys-
tem imposing the condition of local charge neutrality and solving the corre-
sponding TOV equations (see e.g. Shapiro and Teukolsky (1983a)) is concep-
tually inconsistent. We have then substitute the condition of local charge neu-
trality with the condition of global charge neutrality and derived the correct
system of equations within the Einstein-Maxwell-Thomas-Fermi system. The
boundary conditions are also different from a traditional Cauchy data with
the values of the functions and first derivatives at the center into a boundary
condition at the center and delicate eigenvalue problem at the boundary de-
termining the condition of charge neutrality at the border; see Sec. C.3.2. The
conceptual differences and the alternative mathematical equations of the two
approaches, the ones imposing local versus global charge neutrality, lead to
the presence of additional electrodynamical global structures. However, in
the specific simple example considered in Rotondo et al. (2011d), they do not
give significant quantitative differences in the mass-radius relation for the
equilibrium configurations. A very different situation occurs when strong
interactions are also taken into account.

Interestingly, these results should have been expected on the ground of
some classical works dating back to Rosseland (1924) about the gravito-polarization
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in self-gravitating ideal Boltzmann electron-ion plasma. We indeed show that
our general relativistic equations for the case of global charge neutrality in
the Newtonian regime reproduce the Rosseland result. The work of Rosse-
land has attracted in time additional attention and has been generalized to
the case of multicomponent systems; see e.g. Iosilevskiy (2009) and also in
the case of general relativity the important results (Klein, 1949; Kodama and
Yamada, 1972; Olson and Bailyn, 1975).

In order to transfer these results in the treatment of realistic neutron stars,
the introduction of strong interactions is clearly necessary. We have recently
generalized our treatment to the case of strong interactions in Rueda et al.
(2011). There the major aim has been to prove the constancy of the Klein
potentials in the case in which the nuclear interactions are described by a
Lagrangian including in addition to the gravitational, electromagnetic, and
weak interactions, also the presence of σ, ω, and ρ virtual mesons that medi-
ate the nuclear interactions. These results are shortly summarized for com-
pleteness in Sec. C.3.3.

It is clear that neutron stars are not at zero temperatures but have tempera-
tures which in the case of the Crab pulsar are T ∼ 106 K, see e.g. Tennant et al.
(2001); Weisskopf et al. (2004). It has been pointed out to us that the thermal
energy expected in a neutron star is much larger than the Coulomb energy
obtained e.g. in Rotondo et al. (2011d). Before proceeding further in this re-
search we have to prove that these gravito-polarization effect do survive in
the presence of a system at T 6= 0. In any way, the study of the equilibrium
of a system of neutrons, protons, and electrons including all the interactions
need to be generalized to the case of finite temperatures. This treatment is
here presented in Sec. C.3.4. The constancy of the Klein potentials in this
more general case is presented in Sec. C.3.5 where it is also explicitly shown
how the thermal effects do not modify the existence of gravito-polarization.
The generality of the formalism here introduced allows to approach as well
the classical Boltzmann limit consistently.

we have finally outlined in the conclusions how this theoretical formula-
tion is now sufficient to approach the problem of the possible existence of
overcritical fields at the interface between the the core and the crust of the
neutron star.

C.3.2. Einstein-Maxwell-Thomas-Fermi equations in the

degenerate case

Following Rotondo et al. (2011d), we consider the equilibrium configurations
of a degenerate gas of neutrons, protons and electrons with total matter en-
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ergy density and total matter pressure

E = ∑
i=n,p,e

2

(2πh̄)3

∫ PF
i

0
ǫi(p) 4πp2dp , (C.3.1)

P = ∑
i=n,p,e

1

3

2

(2πh̄)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp , (C.3.2)

where ǫi(p) =
√

c2p2 + m2
i c4 is the relativistic single particle energy and PF

i

denote the Fermi momentum, related to the particle number density ni by

ni = (PF
i )

3/(3π2h̄3).
Introducing the metric for a spherically symmetric non-rotating configura-

tion
ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (C.3.3)

the full system of equations composed by the Einstein-Maxwell-Thomas-Fermi
equations can be written as (see Rotondo et al. (2011d) for details)

M′ = 4πr2 E

c2
− 4πr3

c2
e−ν/2V̂′

{

np

−e−3ν/2

3π2
[V̂2 + 2mec

2V̂ − m2
e c4(eν − 1)]3/2

}

, (C.3.4)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(

1 − 2GM
c2r

+ Gr2

c4 E2
) , (C.3.5)

EF
e = eν/2µe − mec

2 − eV = constant, (C.3.6)

EF
p = eν/2µp − mpc2 + eV = constant, (C.3.7)

EF
n = EF

e + EF
p − (mn − me − mp)c

2, (C.3.8)

V̂′′ +
2

r
V̂′
[

1 − r(ν′ + λ′)
4

]

= −4παh̄c eν/2eλ

{

np

−e−3ν/2

3π2
[V̂2 + 2mec

2V̂ − m2
e c4(eν − 1)]3/2

}

, (C.3.9)

where a prime stands for radial derivative, Eqs. (C.3.6)–(C.3.7) are the exten-
sion to general relativity of the Thomas-Fermi equilibrium condition on the
generalized Fermi energies of electrons and protons, Eq. (C.3.8) is the condi-
tion of β-equilibrium between neutrons, protons, and electrons. We recall
that from Eqs. (C.3.6)–(C.3.8) it follows also the constancy of the general-
ized neutron Fermi energy. The Eq. (C.3.9) is the general relativistic exten-
sion of the relativistic Thomas-Fermi equation recently introduced in the rel-
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ativistic Feynman-Metropolis-Teller treatment for the study of compressed
atoms (Rotondo et al., 2011c). In the above equations e is the fundamental
charge, α is the fine structure constant, V is the Coulomb potential, µi =

∂E/∂ni =
√

c2(PF
i )

2 + m2
i c4 is the free-chemical potential of particle-species,

λ(r) is the metric function related to the mass M(r) and the electric field

E(r) = −e−(ν+λ)/2V′ through

e−λ = 1 − 2GM(r)

c2r
+

G

c4
r2E2(r) . (C.3.10)

and V̂ = EF
e + eV.

As shown in Rotondo et al. (2011d), the condition of local charge neutrality
ne(r) = np(r) often adopted in literature is not consistent with Eqs. (C.3.6)
and (C.3.7), see Fig. 1 of Rotondo et al. (2011d) for details. Therefore, we
consider equilibrium configurations fulfilling only global charge neutrality.
We solve self-consistently Eq. (C.3.4) and (C.3.5) for the metric, Eqs. (C.3.6)–
(C.3.8) for the equilibrium of the three degenerate fermion species and for
the β-equilibrium. The crucial equation relating the proton and the electron
distributions is then given by the general relativistic Thomas-Fermi equation
(C.3.9). The boundary conditions are: for Eq. (C.3.4) the regularity at the
origin: M(0) = 0, for Eqs. (C.3.6)–(C.3.8) a given value of the central density,
and for Eq. (C.3.9) the regularity at the origin ne(0) = np(0), and a second
condition at infinity which results in an eigenvalue problem determined by
imposing the global charge neutrality conditions

V̂(Re) = EF
e , V̂′(Re) = 0 , (C.3.11)

at the radius Re of the electron distribution defined by

PF
e (Re) = 0 , (C.3.12)

from which follows

EF
e = mec

2eν(Re)/2 − mec
2

= mec
2

√

1 − 2GM(Re)

c2Re
− mec

2 . (C.3.13)

The eigenvalue problem consists in determining the gravitational potential
and the Coulomb potential at the center of the configuration that satisfy the
conditions (C.3.11)–(C.3.13) at the boundary. In Fig. 2 of Rotondo et al. (2011d)
we have shown the solution for the density, the gravitational potential and
electric potential for a configuration with central density ρ(0) = 3.94ρnuc,
where ρnuc ∼ 2.7 × 1014 g/cm3.

A particular interesting new feature is the approach to the boundary of the
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configuration where three different radii are present corresponding to distinct
radii at which the individual particle Fermi pressures vanish. The radius Re

for the electron component corresponding to PF
e (Re) = 0, the radius Rp for

the proton component corresponding to PF
p (Rp) = 0 and the radius Rn for

the neutron component corresponding to PF
n (Rn) = 0. For a configuration

with the aforementioned central density we found, for instance, Rn ≃ 12.735
km, Rp ≃ 12.863 km and Re ≃ Rp + 103λe where λe = h̄/(mec) denotes the
electron Compton wavelength (see Figs. 2 and 3 of Rotondo et al. (2011d), for
details). The occurrence of the radius Rn is due to the threshold energy for
inverse β-decay equilibrium between free neutrons, protons, and electrons,
at around ρ ∼ 107 (see e.g. Shapiro and Teukolsky (1983a)). The electron
component follows closely the proton component up to the radius Rp where
the proton density drops to zero. The “proton skin”, Rp − Rn ∼ 0.1 km,
can be understood as being due to the difference between the proton and
the neutron mass. The charge difference leads to gravitational and Coulomb
forces acting on protons and only gravitational force on neutrons. The elec-
tron component then fully neutralizes the positive charge at Re leading to a
global configuration without net charge, contrary to the results presented e.g
in Olson and Bailyn (1978).

It can be seen from Fig. 2 in Rotondo et al. (2011d) that the depth of the
Coulomb potential is of the order of . mπc2. In Fig. C.4 we have plotted the
Coulomb potential and the corresponding electric field of the configuration
studied here and in Rotondo et al. (2011d). A Coulomb potential ∼ mπc2/e
decreasing in a typical macroscopic neutron star radius R ∼ λπ(mPlanck/mp)

creates an electric field ∼ (mp/mPlanck)(mπ/me)2Ec ∼ 10−14Ec, being Ec =

m2
e c3/(eh̄) the critical electric field for vacuum polarization.
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Figure C.4.: Electric field and electron Coulomb potential energy of the con-
figuration of neutrons, protons, and electrons in β-equilibrium studied here
and in Rotondo et al. (2011d).
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C.3.3. Newtonian limit

Despite the fact that the strong gravitational field of neutron stars requires a
general relativistic treatment, it is interesting to explore the Newtonian limit
of all the above considerations. This can help to elucidate if the gravito-
electromagnetic effects we have found are of general relativistic nature or
to prove their validity in a Newtonian regime.

The Newtonian limit of the equilibrium equations can be obtained by the
weak-field non-relativistic limit. We expand the gravitational potential at
first-order eν/2 ≈ 1+Φ/c2, where Φ is the Newtonian gravitational potential.
In the non-relativistic mechanics limit c → ∞, the particle chemical potential
becomes µi → µ̃i +mic

2, where µ̃i = (PF
i )

2/(2mi) denotes the non-relativistic
free-chemical potential. Applying these considerations, the electron and pro-
ton equilibrium law (C.3.6) becomes

EF,Newt
p = µ̃p + mpΦ + eV = constant , (C.3.14)

EF,Newt
e = µ̃e + meΦ − eV = constant , (C.3.15)

which is the classical condition of thermodynamic equilibrium of a fluid of
charged particles in presence of external gravitational an electrostatic fields.

The condition of β-equilibrium is, in this case, given by

EF,Newt
n = EF,Newt

p + EF,Newt
e , (C.3.16)

which links the constants EF,Newt
p and EF,Newt

e to the constant neutron Fermi

energy EF,Newt
n .

From the constancy of the proton and electron Fermi energies it follows the
relation

µ̃p − µ̃e + (mp − me)Φ + 2eV = constant , (C.3.17)

which in the case of an ideal electron-ion gas becomes the Rosseland relation
of equilibrium (see Eq. 7 in Rosseland (1924)). It is interesting to obtain from
the above equation an estimate of the Coulomb potential well inside the con-
figuration. Evaluating Eq. (C.3.17) at the radius of the configuration where
the particle free chemical potentials go to zero, we obtain an estimate of the
ratio of the Coulomb potential energy and the gravitational energy close to
the surface of the configuration

eV(R)

Φ(R)
∼ −mp − me

2
. (C.3.18)

Assuming that the system is at nuclear density, ρ ∼ mp/λ3
π where λπ =

h̄/(mπc) is the pion Compton wavelength, the mass and the radius of the con-
figuration are roughly given by M ∼ m3

Planck/m2
p and R ∼ λπ(mPlanck/mp)
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and therefore the gravitational potential will be Φ(R) = −GM/R ∼ (mπ/mp)c2.
Consequently, the Coulomb potential energy close to the border is approxi-
mately eV(R) ∼ mπc2/2. Assuming a constant charge density approxima-
tion, the Coulomb potential energy at the center of the configuration is 3/2
times its value at the surface, thus we obtain approximately

eV(0) ∼ 3

4
mπc2 , (C.3.19)

which is in full agreement with both with the numerical results and with
the general relativistic formulas given by Eqs. (21) and (22) of Rotondo et al.
(2011d). This numerical value is also in line with the Coulomb potential well
obtained from the idealized treatment presented in Ruffini (2008b); Popov
(2010); Rotondo et al. (2011e,c).

In the weak-field non-relativistic limit, the Einstein-Maxwell equations (C.3.4)–
(C.3.9) become

M′ = 4πr2ρ(r) , (C.3.20)

Φ′ =
GM

r2
, (C.3.21)

P′ = −GM

r2
ρ −

[

np −
(2me)3/2

3π2h̄3
(V̂ − meΦ)3/2

]

V̂′ , (C.3.22)

V̂′′ +
2

r
V̂′ = −4πe2

[

np −
(2me)3/2

3π2h̄3
(V̂ − meΦ)3/2

]

, (C.3.23)

where ρ in this case is the rest-mass density

ρ = ∑
i=n,p,e

mini . (C.3.24)

The solution of Eqs. (C.3.14), (C.3.20)–(C.3.23) together with the β-equilibrium
condition (C.3.16) leads to qualitatively similar electrodynamical properties
as the one obtained in the general relativistic case. In Fig. C.5 we show the
electric field in the region r < Rn (RNewt

n < RGR
n ) both for the Newtonian as

well as for the General Relativistic configuration for the given central den-
sity ρ(0) = 3.94ρnuc. From the quantitative point of view, the electric field
of the Newtonian configuration is larger than the electric field of the general
relativistic configuration.

C.3.4. Introducing strong interactions

It is clear now that if one considers a fluid of only neutrons, protons, and
electrons in β-equilibrium neglecting the effects of the strong interactions and
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Figure C.5.: Electric field (multiplied by 1014) in units of the critical field Ec =
m2

e c3/(eh̄) ∼ 1016 Volt/cm in the region r < Rn both for the Newtonian and
the General Relativistic configurations. The central density of both systems
is ρ(0) = 3.94ρnuc where ρnuc = 2.7 × 1014 g cm−3 is the nuclear density.

the presence of a crust, then the electromagnetic structure is the one shown
in Figs. C.4 and C.5.

The effect of having different radii Rn, Rp, and Re needs to be also studied
in the more general case when strong interactions and the presence of the
crust of the neutron star are included. The complete study of such a problem
must to be necessarily done within a fully relativistic approach taking into
account the strong, weak, electromagnetic, and gravitational interactions.

Indeed, in the mean time we have given an essential step forward in Rueda
et al. (2011) by formulating such a treatment. The nuclear interactions have
been there included through the Walecka model (see Duerr (1956); Walecka
(1974) for details, and Bowers et al. (1973b,a) for a similar theory) in which nu-
cleons interact by Yukawa-like couplings. The strong interaction between nu-
cleons is thus described by the exchange of three virtual mesons: an isoscalar
meson field σ providing the attractive long-range part of the nuclear force;
the massive vector field ωµ that models the repulsive short range and; the
massive isovector field ρµ which takes account of the isospin effects of nuclei
(see also Boguta and Bodmer (1977); Ring (1996)).

As shown in Rueda et al. (2011), the more general Einstein-Maxwell-Thomas-
Fermi equations including strong interactions which generalizes Eqs. (C.3.65)–

1918



C.3. The constitutive equations of a self-gravitating system of neutrons,
protons and electrons

(C.3.71) can be written as (in units with h̄ = c = 1)

e−λ(r)

(

1

r2
− λ′

r

)

− 1

r2
= −8πGT0

0 , (C.3.25)

e−λ(r)

(

1

r2
+

ν′

r

)

− 1

r2
= −8πGT1

1 , (C.3.26)

∇µ∇µV = −4πeλeJch
0 , (C.3.27)

∇µ∇µσ = eλ [∂σU(σ) + gσns] , (C.3.28)

∇µ∇µω = −eλ(gω J0
ω − m2

ωω), (C.3.29)

∇µ∇µρ = −eλ(gρ J0
ρ − m2

ρρ), (C.3.30)

Ee = eν/2µe − eV = constant, (C.3.31)

Ep = eν/2µp + Vp = constant, (C.3.32)

En = eν/2µn + Vn = constant, (C.3.33)

eν/2T = constant, (C.3.34)

where ∇µ∇µ = d2/dr2 + [2/r − (1/2)(ν′ + λ′)]d/dr, being ∇µ the covariant
derivative and

Vp = gωω + gρρ + eV, (C.3.35)

Vn = gωω − gρρ, (C.3.36)

are the effective potentials of nucleons, being V ≡ A0, ω ≡ ω0, ρ ≡ ω0 the
time components of the electromagnetic and the meson potentials, and gσ ,
gω, gρ denote the coupling constants between the nucleons and the massive
mesons. The self-interaction scalar field potential U(σ) can be in general a
quartic-order polynom for a renormalizable theory (see e.g. Lee and Wick
(1974)).

The scalar density is given by ns = ∂E/∂m̃N where m̃N = mN + gσσ is the
effective nucleon mass. The only non-vanishing components of the currents
are

Jch
0 = (np − ne)u0, (C.3.37)

Jω
0 = (nn + np)u0, (C.3.38)

J
ρ
0 = (np − nn)u0, (C.3.39)

where u0 =
√

g00 = eν/2 is the covariant time component of the four-velocity
of the fluid.

The function λ(r) satisfies also in this case Eq. (C.3.10) and the energy-
momentum tensor is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (C.3.40)
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where

T
µν
γ = − 1

4π

(

F
µ
α Fαν +

1

4
gµνFαβFαβ

)

, (C.3.41)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (C.3.42)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ

+ m2
ω

(

ωµων − 1

2
gµνωαωα

)

, (C.3.43)

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ

+ m2
ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

, (C.3.44)

T
µν
f = (E+ P)uµuν − Pgµν, (C.3.45)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µ Aν − ∂ν Aµ are the
field strength tensors for the ωµ, ρµ and Aµ fields respectively.

The equilibrium conditions of the constancy of the Klein potentials of the
particles throughout the configuration is expressed by Eqs. (C.3.31)–(C.3.33)
and Eq. (C.3.34) is the Tolman isothermality condition analogous to Eq. (C.3.71).

There are additional contributions of the strong interaction to the nuclear
symmetry energy given within this theory mainly by the ρ-meson. Such con-
tributions change the proton skin structure Rp > Rn shown in this work to
a “neutron skin” effect Rn > Rp in the core-crust boundary layer at nuclear
density Belvedere et al. (2012), in close analogy to the neutron skin observed
in neutron rich nuclei, see e.g. Tamii et al. (2011).

C.3.5. Finite temperature effects

The above results have been obtained within the zero temperature approx-
imation. Temperatures of the order of ∼ 106 K are expected to exist at the
surface of old neutron stars (Tennant et al., 2001; Weisskopf et al., 2004), or
temperatures of 108 − 109 K could, in principle, exist in neutron star interiors.
We are going to show that these thermal effects do not affect the considera-
tions on gravito-polarization here introduced. For neutron stars, the Fermi
temperature

TF
i =

µi − mic
2

k
, (C.3.46)

where k is the Boltzmann constant, can be as large as ∼ 1012 K for electrons,
∼ 1011 K for protons and ∼ 1013 K for neutrons for typical central densities of
neutron stars. This means that neutron stars interiors are, at a high degree of
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accuracy, degenerate systems. However, the total thermal energy of a neutron
star Eth ∼ 1048T2

9 erg (see e.g. Yakovlev and Pethick (2004a)) where T9 is the
temperature in units of 109 K, is much larger than the Coulomb energy EC ∼
(1/6)R3E2 ∼ 1016 erg, where E is the internal electric field here considered
(see Figs. C.4 and C.5) and R is the radius of the configuration. It can be then
of interest to ask the question if our electrodynamical structure will still occur
in presence of thermal effects.

In this more general case, the equation of state given by Eqs. (C.3.1) and
(C.3.2), is replaced by

E = ∑
i=n,p,e

2

(2πh̄)3

∫ ∞

0
ǫ̃i(p) fi(p) 4πp2dp , (C.3.47)

P = ∑
i=n,p,e

1

3

2

(2πh̄)3

∫ ∞

0

p2 fi(p)

ǫ̃i(p) + mic2
4πp2dp , (C.3.48)

where

fi(p) =
1

exp[(ǫ̃i(p)− µ̃i)/(kT)] + 1
, (C.3.49)

is the Fermi-Dirac fermion distribution function which gives the particle num-
ber density ni

ni =
2

(2πh̄)3

∫ ∞

0
fi(p) 4πp2dp, , (C.3.50)

where ǫ̃i(p) = ǫi(p)− mic
2 =

√

c2p2 + m2
i c4 − mic

2 and µ̃i are the free single

particle energy and the free particle chemical potential with the particle rest
mass-energy mic

2 subtracted off.

Tolman isothermality and conserved Klein potentials

We turn now to demonstrate the constancy of the Klein potentials and the
constancy of the gravitationally red-shifted temperature throughout the con-
figuration.

The equation of state (C.3.47)–(C.3.48) satisfies the thermodynamic law

E+ P − Ts = ∑
i=n,p,e

niµi , (C.3.51)

where s = S/V is the entropy per unit volume and µi = ∂E/∂ni is the
free-chemical potential of the i-specie. At zero-temperature T = 0, µi =
√

(cPF
i )

2 + m̃2
i c4 and ni = (PF

i )
3/(3π2h̄3), where PF

i denotes the Fermi mo-

mentum of the i-specie.
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From Eq. (C.3.51) follows the Gibbs-Duhem relation

dP = ∑
i=n,p,e

nidµi + sdT , (C.3.52)

which can be rewritten as

dP = ∑
i=n,p,e

nidµi +

(

E+ P − ∑
i=n,p,e

niµi

)

dT

T
. (C.3.53)

Using the Gibbs-Duhem relation (C.3.53) the energy-momentum conserva-
tion equation (see Rotondo et al. (2011d) for details)

eν/2dP + eν/2 dν

2
(E+ P) + edV(np − ne) = 0 , (C.3.54)

can be rewritten as

eν/2 ∑
i=n,p,e

ni

(

dµi −
dT

T
µi

)

+ (E+ P)eν/2

(

dT

T

+
1

2
dν

)

+ e(np − ne)dV = 0 . (C.3.55)

The Tolman isothermal condition (Tolman, 1930) (see also Klein (1949)) de-
mands the constancy of the gravitationally red-shifted temperature

dT

T
+

1

2
dν = 0 , or T∞ = eν/2T = constant , (C.3.56)

which can be used into Eq. (C.3.55) to obtain

∑
i=n,p,e

nid(e
ν/2µi) + e(np − ne)dV = 0 . (C.3.57)

We now introduce the generalized chemical potentials, or Klein potentials,
for electrons Ee, protons Ep and neutrons En

Ee = eν/2µe − mec
2 − eV , (C.3.58)

Ep = eν/2µp − mpc2 + eV , (C.3.59)

En = eν/2µn − mnc2 , (C.3.60)

which in the zero temperature limit are the generalized Fermi energies for
electrons Ee = EF

e , neutrons En = EF
n and protons Ep = EF

p introduced in
Sec. II (see Eq. (C.3.6)). Using Eqs. (C.3.58), (C.3.59) and (C.3.60), Eq. (C.3.57)
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becomes

∑
i=n,p,e

nidEi = 0 , (C.3.61)

which leads for independent and non-zero particle number densities ni 6= 0
to the constancy of the Klein potentials (C.3.58)–(C.3.60) for each particle-
species, i.e.

Ee = eν/2µe − mec
2 − eV = constant , (C.3.62)

Ep = eν/2µp − mpc2 + eV = constant , (C.3.63)

En = eν/2µn − mnc2 = constant . (C.3.64)

In the zero temperature limit the constancy of the Klein potential of each
particle-specie becomes the constancy of the generalized Fermi energies in-
troduced in Sec. C.3.2 (see Eqs. (C.3.6)–(C.3.8)). This is a crucial point be-
cause, as discussed in Rotondo et al. (2011d), the constancy of the generalized
Fermi energies proves the impossibility of having a self-consistent configura-
tion fulfilling the condition of local charge neutrality and β-equilibrium (see
e.g. Fig. 1 of Rotondo et al. (2011d)). Further, as shown in Rueda et al. (2011),
the constancy of the Klein potentials holds in the more general case when the
strong interactions between nucleons are taken into account.

Therefore, introducing the new dimensionless variables ηi = µ̃i/(kT) and
βi = kT/(mic

2), the new set of Einstein-Maxwell-Thomas-Fermi equations
generalizing the system (C.3.4)–(C.3.9) to the case of finite temperatures is

M′ = 4πr2 E

c2
− 4πr3

c2
e−ν/2V̂′(np − ne) , (C.3.65)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(

1 − 2GM
c2r

+ Gr2

c4 E2
) , (C.3.66)

Ee = mec
2eν/2(1 + βeηe)− mec

2 − eV

= constant, (C.3.67)

Ep = mpc2eν/2(1 + βpηp)− mpc2 + eV

= constant, (C.3.68)

En = Ee + Ep − (mn − me − mp)c
2, (C.3.69)

V̂′′ +
2

r
V̂′
[

1 − r(ν′ + λ′)
4

]

= −4παh̄c eν/2eλ(np

−ne) , (C.3.70)

eν/2βi = constant , i = n, p, e , (C.3.71)

where Eq. (C.3.69) is the condition of β-equilibrium between neutrons, pro-
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tons and electrons, and the number density of the i-specie is given by

ni =
21/2m3

i c3

π2h̄3
β3/2

i (Fi
1/2 + βiF

i
3/2) , (C.3.72)

where we have introduced the relativistic Fermi-Dirac integrals of order j

Fi
j = Fj(ηi, βi) =

∫ ∞

0

xj
(

1 + 1
2 βix

)1/2

1 + ex−ηi
dx . (C.3.73)

The above formulation generalizes to the case of finite temperatures the
Einstein-Maxwell-Thomas-Fermi equations obtained in Rotondo et al. (2011d)
and recalled here in Sec. C.3.2. This formulation can be also straightforwardly
done in the presence of strong interactions generalizing the formulation of
Sec. C.3.4 (see Rueda et al. (2011) for details).

Numerical results

We have integrated numerically the system of equations (C.3.65)–(C.3.71) for
given temperatures T∞ 6= 0. As expected, the results are both qualitatively
and quantitatively similar to the ones obtained with the degenerate approx-
imation. The largest difference we found is at the surface boundary of the
configuration, where, due to the low density of the system, finite tempera-
ture effects are more effective. As an example, we compare in Fig. C.6 the
electron density for r > Rp in the degenerate and in the non-degenerate case

for T∞ = 2.3 × 105 K. For distances r < Rp the results are essentially the
same as in the degenerate case. In the region r << Rn at large densities
> ρnuc = 2.7 × 1014 g/cm3, the electrodynamical properties of the config-
uration i.e. Coulomb potential and electric field remain unperturbed even
for very large temperatures T∞ ∼ 1011 K. This is due to the fact that ther-
mal effects are largely compensated by the gravitational potential as given by
Eq. (C.3.56); the Coulomb interaction is not involved in this balance and is
not affected by the thermal energy.

It is worth to mention that from general computations of the heating and
cooling mechanisms it turns out that neutron star interiors are highly isother-
mal (in the sense of Tolman) due to the high thermal conductivity of degen-
erate particles (Yakovlev and Pethick, 2004a). In real neutron stars, the fluid
of neutrons, protons and electrons in β-equilibrium studied in this work does
not extend all the way to the neutron star surface but is confined to the neu-
tron star core surrounded by the neutron star crust. In this more general case,
the surface structure shown in Fig. C.6 is replaced by the crust composed of
nuclei and degenerate electrons. The condition of isothermality breaks down
in the surface non-degenerate layers of the star due to existence of high tem-
perature gradients (see e.g. Yakovlev and Pethick (2004a), for details).
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Figure C.6.: Electron number density for r ≥ Rp normalized to its value at
r = Rp both for T = 0 K (degenerate case) and for a finite temperature of

T∞ = 2.3 × 105 K.

C.3.6. Concluding Remarks

In this work we have addressed three additional aspects of the description of
a self-gravitating system of neutrons, protons and electrons in β-equilibrium:

1) We have first recall the formulation of the constitutive Einstein-Maxwell-
Thomas-Fermi equations and their solution in the simple case of self-gravitating
neutrons, protons, and electrons in β-equilibrium. The properties of the elec-
tromagnetic structure of the configuration shown in Rotondo et al. (2011d)
have been also recalled; the Coulomb potential energy inside the configura-
tion is eV ∼ mπc2 and the electric field E ∼ (mp/mPlanck)(mπ/me)2Ec and
explicitly given in Fig. C.4.

2) We have presented the Newtonian limit of the treatment (Rotondo et al.,
2011d) by taking the weak field approximation and the non-relativistic c → ∞

limit of the general relativistic Thomas-Fermi and Einstein-Maxwell equa-
tions (C.3.4)–(C.3.9). The numerical integration of the Newtonian equations
shows that the gravito-electrodynamic structure evidenced in Rotondo et al.
(2011d) (see also Sec. C.3.2) is already present in the Newtonian regime. We
have also shown how our equations fulfill the Rosseland relation of equilib-
rium (Rosseland, 1924) for an electron-ion ideal gas in the case of a New-
tonian gravitational field, see Eqs. (C.3.17)–(C.3.18), Eqs. (C.3.20)–(C.3.23),
and Eqs. (C.3.4)–(C.3.9). The differences in the electromagnetic structure be-
tween the Newtonian and the general relativistic treatments are very large
(see Fig. C.5).

3) We have recalled in Sec. C.3.4 the extension of the Einstein-Maxwell-
Thomas-Fermi equations (C.3.4–C.3.9) to the case when strong interactions
between nucleons are taking into account by introducing the presence of σ,
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ω and ρ virtual mesons which mediate nuclear interactions in a Yukawa-like
fashion, following (Rueda et al., 2011), see Eqs. (C.3.25–C.3.34).

4) We have then extended all our previous works to the case of finite tem-
peratures enforcing the Tolman “isothermal” condition in general relativity.
We have reached a fundamental conclusion: although the thermal energy
stored in old neutron stars with surface temperatures ∼ 106 K (Tennant et al.,
2001; Weisskopf et al., 2004) is much larger than the internal Coulomb energy
(see Sec. C.3.4), still the electromagnetic structure (see Fig. C.5) is unaffected
by the presence of the thermal component. Physically this effect is due to
the very large Fermi energy of the neutrons ∼ 1 GeV, of the protons ∼ 10
MeV and of the electrons ∼ 0.1 GeV, as can be seen from Eq. (C.3.46). In the
general relativistic “isothermal” system there exists a temperature gradient,
compensated by the variation of the gravitational potential as dictated by the
Tolman condition given by Eq. (C.3.56). The Coulomb interaction is not in-
volved in the balance between the thermal and the gravitational energies and
is not affected by the presence of large thermal energies.

We recalled that a surface structure characterized by the presence of three
different radii, one for each particle specie, emerges when global Coulomb ef-
fects are taken into due account. The radius Re in the case T 6= 0 is larger with
respect to the one obtained in the degenerate approximation (see Fig. C.6).
However, in realistic neutron stars the surface structure of Fig. C.6 is replaced
by the surface layers composed of nuclei and non-degenerate electrons where
isothermality breaks down due to existence of high temperature gradients
(Yakovlev and Pethick, 2004a).

As a by product, we have given the explicit demonstration of the constancy
throughout the configuration of the Klein potentials of each species in the
more general case of finite temperatures. This generalizes the condition of
the constancy of the general relativistic Fermi energies derived in the special
case T = 0 in Rotondo et al. (2011d).

The above results are relevant to the extension to thermal effects of the rela-
tivistic Feynman-Metropolis-Teller treatment of compressed atoms (Rotondo
et al., 2011c), recently applied to the construction of general relativistic white
dwarf equilibrium configurations (Rotondo et al., 2011b). They are therefore
relevant for the description of the neutron star crust as well as of hot white
dwarfs.

The study of the Thomas-Fermi equation within the Einstein-Maxwell sys-
tem of equations responds to a precise request of consistency of a theoretical
treatment. As evidenced in Rotondo et al. (2011d) it overcomes the concep-
tual difficulties of the Tolman-Oppenheimer-Volkoff treatment. Nevertheless,
the two treatments when applied to the case of neutrons, protons, and elec-
trons in β-equilibrium do not give quantitative appreciable differences in the
masses and radii of the equilibrium configurations. It becomes therefore nat-
ural to ask under which physical conditions the gravito-polarization effects
become quantitatively relevant.
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When strong interactions are considered (Rueda et al., 2011) a new situ-
ation occurs. The neutron star core necessarily presents a sharp boundary
surrounded by a crust of nuclei and electrons described by the generalized
Feynman-Metropolis-Teller treatment presented in Rotondo et al. (2011c). Un-
der these conditions, the entire theoretical treatment presented in this work
and in Rotondo et al. (2011d); Rueda et al. (2011) are not optional and become
a necessity.

The presence of a Coulomb potential affects the structure of the phase-
transition leading to the occurrence of overcritical electric fields through core-
crust boundary interface. Similar electrostatic effects are expected to occur at
the interlayer boundaries within the crust of a neutron star where changes
of the nucleus charge Z and mass number A of the composing nuclei oc-
cur (see e.g. Haensel and Pichon (1994)), as well as at the surface of quark
stars (Alcock et al., 1986; Stejner and Madsen, 2005), at the transition from
the hadronic phase to the color flavor locked phase in hybrid stars (Alford
et al., 2001) and in liquid white dwarfs where it may cause sedimentation
of heavy nuclei (Bildsten and Hall, 2001; Althaus et al., 2010b; Garcı́a-Berro
et al., 2010b).

In Fig. C.7 we show the expected behavior of the Coulomb potential as
modeled in the heuristic simplified approach (Ruffini, 2008b; Popov, 2010;
Rotondo et al., 2011e). If the electron Coulomb potential −eV ∼ mπc2 suffers
a sharp increasing in a scale typical of the electron screening length ∼ λe =
h̄/(mec), it will create an electric field of order ∼ (mπ/me)2Ec ∼ 103Ec.
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Figure C.7.: Expected enhancement of the electric field at a sharp increasing
of the electron Coulomb potential −eV e.g. at a phase transition from the core
to the crust in a neutron star as modeled in the simplified approach (Ruffini,
2008b; Popov, 2010; Rotondo et al., 2011e). Here Rc denotes the core radius.

A key result in the present work is that the gravito-polarization effects
survive at finite temperatures and we can therefore proceed to the study of
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neutron star configurations through the theoretical framework formulated in
Rueda et al. (2011) and recalled in Sec. C.3.4. It is now possible to confirm
if the phase-transition at the boundary of the neutron star core follows the
idealization advanced in Ruffini (2008b); Popov (2010); Rotondo et al. (2011e)
and shown in Fig. C.7. It is clear that the formation of overcritical fields is of
great astrophysical interest. The mass and thickness of the neutron star crust
in the two alternative treatments are markedly different. The continuity of
the generalized Klein potentials, at the boundary of the core, plays a crucial
role in the determination of the mass and thickness of the crust (Belvedere
et al., 2012). The process of gravitational collapse of a core endowed with
electromagnetic structure leads to signatures and energetics markedly differ-
ent from the ones of a core endowed uniquely of gravitational interactions
(Ruffini et al., 2003b,a; Ruffini and Xue, 2008; Ruffini et al., 2010b).
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C.4. Neutron stars fulfilling all fundamental

interactions

C.4.1. Introduction

It is well known that the classic works of Tolman (1939) and of Oppenheimer
and Volkoff (1939), for short TOV, addresses the problem of neutron star equi-
librium configurations composed only of neutrons. For the more general case
when protons and electrons are also considered, in all of the scientific liter-
ature on neutron stars it is assumed that the condition of local charge neu-
trality applies identically to all points of the equilibrium configuration (see
e.g. Haensel et al. (2007)). Consequently, the corresponding solutions in this
more general case of a non-rotating neutron star, are systematically obtained
also on the base of the TOV equations. We have recently shown the the con-
dition of local charge neutrality is

In general, the formulation of the equilibrium of systems composed by dif-
ferent particle species must be established within the framework of statistical
physics of multicomponent systems. Thermodynamic equilibrium of these
systems is warrantied by demanding the constancy throughout the configu-
ration of the generalized chemical potentials, often called “electro-chemical”,
of each of the components of the system; see e.g. Klein (1949); Kodama and
Yamada (1972); Olson and Bailyn (1975). Such generalized potentials include
not only the contribution due to kinetic energy but also the contribution due
to the potential fields, e.g. gravitational and electromagnetic potential ener-
gies per particle, and in the case of rotating stars also the centrifugal poten-
tial. For such systems in presence of gravitational and Coulomb fields, global
electric polarization effects at macroscopic scales occur. The balance of the
gravitational and electric forces acting on ions and electrons in ideal electron-
ion plasma leading to the occurrence of gravito-polarization was pointed out
in the classic work of Rosseland (1924).

If one turns to consider the gravito-polarization effects in neutron stars,
the corresponding theoretical treatment acquires remarkable conceptual and
theoretical complexity, since it must be necessarily formulated consistently
within the Einstein-Maxwell system of equations. Klein (1949) first intro-
duced the constancy of the general relativistic chemical potential of particles,
hereafter “Klein potentials”, in the study of the thermodynamic equilibrium
of a self-gravitating one-component fluid of neutral particles throughout the
configuration within the framework of general relativity. The extension of
the Klein’s work to the case of neutral multicomponent degenerate fluids can
be found in Kodama and Yamada (1972) and to the case of multi-component
degenerate fluid of charged particles in Olson and Bailyn (1975).

Using the concept of Klein potentials, we have recently proved the impossi-
bility of imposing the condition of local charge neutrality in the simplest case
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of a self-gravitating system of degenerate neutrons, protons and electrons in
β-equilibrium Rotondo et al. (2011d): it has been shown that the consistent
treatment of the above system implies the solution of the general relativistic
Thomas-Fermi equations, coupled with the Einstein-Maxwell ones, being the
TOV equations thus superseded.

We have recently formulated the theory of a system of neutrons, protons
and electrons fulfilling strong, electromagnetic, weak and gravitational in-
teractions (Rueda et al., 2011). The role of the Klein first integrals has been
again evidenced and their theoretical formulation in the Einstein-Maxwell
background and in the most general case of finite temperature has been there
presented, generalizing the previous results for the “non-interacting” case
(Rotondo et al., 2011d). The strong interactions, modeled by a relativistic nu-
clear theory, are there described by the introduction of the σ, ω and ρ virtual
mesons (Duerr, 1956; Walecka, 1974; Bowers et al., 1973b,a) (see Subsec. C.4.2
for details).

In this work we construct for the first time the equilibrium configurations
of non-rotating neutron stars following the new approach (Rotondo et al.,
2011d; Rueda et al., 2011). The full set of the Einstein-Maxwell-Thomas-Fermi
equations is solved numerically for zero temperatures and for selected pa-
rameterizations of the nuclear model.

C.4.2. The Constitutive Relativistic Equations

Core Equations

It has been clearly recognized that, since neutron stars cores may reach den-
sity of order ∼ 1016–1017 g/cm3, much larger than the nuclear density ρnuc ∼
2.7 × 1014 g/cm3, approaches for the nuclear interaction between nucleons
based on phenomenological potentials and non-relativistic many-body theo-
ries become inapplicable (see Bowers et al. (1973b,a)). A self-consistent rel-
ativistic and well-tested model for the nuclear interactions has been formu-
lated in Duerr (1956); Walecka (1974); Bowers et al. (1973b,a). Within this
model the nucleons interact with σ, ω and ρ mesons through Yukawa-like
couplings and assuming flat spacetime the equation of state of nuclear mat-
ter has been determined. However, it has been clearly stated in Rotondo
et al. (2011d); Rueda et al. (2011) that, when we turn into a neutron star con-
figuration at nuclear and supranuclear, the global description of the Einstein-
Maxwell-Thomas-Fermi equations is mandatory. Associated to this system
of equations there is a sophisticated eigenvalue problem, especially the one
for the general relativistic Thomas-Fermi equation is necessary in order to
fulfill the global charge neutrality of the system and to consistently describe
the confinement of the ultrarelativistic electrons.

The strong interactions between nucleons are described by the exchange of
three virtual mesons: σ is an isoscalar meson field providing the attractive
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long-range part of the nuclear force; ω is a massive vector field that models
the repulsive short range and; ρ is the massive isovector field that takes ac-
count surface as well as isospin effects of nuclei (see also Boguta and Bodmer
(1977); Ring (1996)).

The total Lagrangian density of the system is given by

L = Lg +L f +Lσ +Lω +Lρ +Lγ +Lint, (C.4.1)

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
, (C.4.2)

Lγ = − 1

16π
FµνFµν, (C.4.3)

Lσ =
1

2
∇µσ∇µσ − U(σ), (C.4.4)

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, (C.4.5)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρµ, (C.4.6)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µ Aν − ∂ν Aµ are the
field strength tensors for the ωµ, ρ and Aµ fields respectively, ∇µ stands for
covariant derivative and R is the Ricci scalar. We adopt the Lorenz gauge for
the fields Aµ, ωµ, and ρµ. The self-interaction scalar field potential U(σ) is
a quartic-order polynom for a renormalizable theory (see e.g. Lee and Wick
(1974)).

The Lagrangian density for the three fermion species is

L f = ∑
i=e,N

ψ̄i

(

iγµDµ − mi

)

ψi, (C.4.7)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states
for the mass of each particle-specie and Dµ = ∂µ + Γµ, being Γµ the Dirac spin
connections.

The interacting part of the Lagrangian density is, in the minimal coupling
assumption, given by

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ

+ eAµ J
µ
γ,e − eAµ J

µ
γ,N, (C.4.8)
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where the conserved currents are

J
µ
ω = ψ̄NγµψN, (C.4.9)

J
µ
ρ = ψ̄Nτ3γµψN, (C.4.10)

J
µ
γ,e = ψ̄eγ

µψe, (C.4.11)

J
µ
γ,N = ψ̄N

(

1 + τ3

2

)

γµψN. (C.4.12)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is
the fundamental electric charge. The Dirac matrices γµ and the isospin Pauli
matrices satisfy the Dirac algebra in curved spacetime (see e.g. Lee and Pang
(1987) for details).

We first introduce the non-rotating spherically symmetric spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (C.4.13)

where the ν(r) and λ(r) are only functions of the radial coordinate r.

For very large number of fermions, we adopt the mean-field approximation
in which fermion-field operators are replaced by their expectation values (see
Ruffini and Bonazzola (1969) for details). Within this approximation, the full
system of general relativistic equations can be written in the form

e−λ(r)

(

1

r2
− 1

r

dλ

dr

)

− 1

r2
= −8πGT0

0 , (C.4.14)

e−λ(r)

(

1

r2
+

1

r

dν

dr

)

− 1

r2
= −8πGT1

1 , (C.4.15)

V′′ +
2

r
V′
[

1 − r(ν′ + λ′)
4

]

= −4πe eν/2eλ(np − ne), (C.4.16)

d2σ

dr2
+

dσ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= eλ [∂σU(σ) + gsns] , (C.4.17)

d2ω

dr2
+

dω

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
(

gω J0
ω − m2

ωω
)

, (C.4.18)

d2ρ

dr2
+

dρ

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −eλ
(

gρ J0
ρ − m2

ρρ
)

, (C.4.19)

EF
e = eν/2µe − eV = constant, (C.4.20)

EF
p = eν/2µp + Vp = constant, , (C.4.21)

EF
n = eν/2µn + Vn = constant, , (C.4.22)

where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V for the

temporal components of the meson-fields. Here µi = ∂E/∂ni =
√

(PF
i )

2 + m̃2
i
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and ni = (PF
i )

3/(3π2) are the free-chemical potential and number density of

the i-specie with Fermi momentum PF
i . The particle effective mass is m̃N =

mN + gsσ and m̃e = me and the effective potentials Vp,n are given by

Vp = gωω + gρρ + eV , (C.4.23)

Vn = gωω − gρρ . (C.4.24)

The constancy of the generalized Fermi energies EF
n , EF

p and EF
e , the Klein

potentials, derives from the thermodynamic equilibrium conditions given by
the statistical physics of multicomponent systems, applied to a system of de-
generate neutrons, protons, and electrons within the framework of general
relativity (see Rueda et al. (2011) for details). These constants are linked by
the β-equilibrium between the matter constituents

EF
n = EF

p + EF
e . (C.4.25)

The electron density ne is, via Eq. (C.4.20), given by

ne =
e−3ν/2

3π2
[V̂2 + 2meV̂ − m2

e (e
ν − 1)]3/2 , (C.4.26)

where V̂ ≡ eV + EF
e . Substituting Eq.( C.4.26) into Eq. (C.4.16) one obtains

the general relativistic extension of the relativistic Thomas-Fermi equation re-
cently introduced for the study of compressed atoms (Rotondo et al., 2011c,b).
This system of equations has to be solved with the boundary condition of
global neutrality; see Rotondo et al. (2011d); Rueda et al. (2011) and below
for details.

The scalar density ns, within the mean-field approximation, is given by the
following expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3 ∑
i=n,p

∫

d3k
m̃N

ǫi(p)
, (C.4.27)

where ǫi(p) =
√

p2 + m̃2
i is the single particle energy.

In the static case, only the temporal components of the covariant currents
survive, i.e. 〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of
Eqs. (C.2.10)–(C.2.13), we obtain the non-vanishing components of the cur-
rents

Jch
0 = nchu0 = (np − ne)u0, (C.4.28)

Jω
0 = nbu0 = (nn + np)u0, (C.4.29)

J
ρ
0 = n3u0 = (np − nn)u0, (C.4.30)
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where nb = np + nn is the baryon number density and u0 =
√

g00 = eν/2

is the covariant temporal component of the four-velocity of the fluid, which
satisfies uµuµ = 1.

The metric function λ is related to the mass M(r) and the electric field

E(r) = −e−(ν+λ)/2V′ through

e−λ(r) = 1 − 2GM(r)

r
+ Gr2E2(r)

= 1 − 2GM(r)

r
+

GQ2(r)

r2
, (C.4.31)

being Q(r) the conserved charge, related to the electric field by Q(r) = r2E(r).

The energy-momentum tensor of free-fields and free-fermions Tµν of the
system is

Tµν = T
µν
f + T

µν
γ + T

µν
σ + T

µν
ω + T

µν
ρ , (C.4.32)

where

T
µν
γ = − 1

4π

(

F
µ
α Fαν +

1

4
gµνFαβFαβ

)

, (C.4.33)

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, (C.4.34)

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ

+ m2
ω

(

ωµων − 1

2
gµνωαωα

)

, (C.4.35)

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ

+ m2
ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

, (C.4.36)

T
µν
f = (E+ P)uµuν − Pgµν, (C.4.37)

where the energy-density E and the pressure P are given by

E = ∑
i=n,p,e

Ei, P = ∑
i=n,p,e

Pi, (C.4.38)

being Ei and Pi the single fermion fluid contributions

Ei =
2

(2π)3

∫ PF
i

0
ǫi(p) 4πp2dp, (C.4.39)

Pi =
1

3

2

(2π)3

∫ PF
i

0

p2

ǫi(p)
4πp2dp. (C.4.40)
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It is worth to recall that the equation of state (C.4.38)–(C.4.40) satisfies the
thermodynamic law

E+ P = ∑
i=n,p,e

niµi. (C.4.41)

The parameters of the nuclear model, namely the coupling constants gs,
gω and gρ, and the meson masses mσ, mω and mρ are usually fixed by fitting
experimental properties of nuclei, e.g. saturation density, binding energy per
nucleon (or experimental masses), symmetry energy, surface energy, and nu-
clear incompressibility. In Table C.1 we present selected fits of the nuclear pa-
rameters. In particular, we show the following parameter sets: NL3 (Lalazis-
sis et al., 1997), NL-SH (Sharma et al., 1993), TM1 (Sugahara and Toki, 1994),
and TM2 (Hirata et al., 1995).

NL3 NL-SH TM1 TM2
mσ (MeV) 508.194 526.059 511.198 526.443
mω (MeV) 782.501 783.000 783.000 783.000
mρ (MeV) 763.000 763.000 770.000 770.000
gs 10.2170 10.4440 10.0289 11.4694
gω 12.8680 12.9450 12.6139 14.6377
gρ 4.4740 4.3830 4.6322 4.6783
g2 (fm−1) -10.4310 -6.9099 -7.2325 -4.4440
g3 -28.8850 -15.8337 0.6183 4.6076
c3 0.0000 0.0000 71.3075 84.5318

Table C.1.: Selected parameter sets of the σ-ω-ρ model.

The constants g2 and g3 are the third and fourth order constants of the self-
scalar interaction as given by the scalar self-interaction potential

U(σ) =
1

2
m2

σσ2 +
1

3
g2σ3 +

1

4
g3σ4 . (C.4.42)

The non-zero constant c3 that appears in the TM1 and TM2 models corre-
sponds to the self-coupling constant of the non-linear vector self-coupling
1
4 c3(ωµωµ)2. We have not include such a self-coupling vector interaction in
the general formulation presented above. However, we show also here the
results of the integration when such a self-interaction is taken into account
and we refer to Sugahara and Toki (1994); Hirata et al. (1995) for details about
the motivations of including that contribution.

The numerical integration of the core equations can be started given a cen-
tral density and the regularity conditions at the origin; see below Sec. C.4.3
for details. At nuclear density the phase-transition to the “solid” crust takes
place. Thus, the radius of the core Rcore is given by E(r = Rcore)/c2 = ρnuc.
These equations must be solved with the boundary conditions given by the
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fulfillment of the condition of global charge neutrality and the continuity of
the Klein potentials of particles between the core and the crust.

Core-crust transition layer equations

In the core-crust interface, the mean-field approximation for the meson-fields
is not valid any longer and thus a full numerical integration of the meson-
field equations of motion, taking into account all gradient terms, must be
performed. We expect the core-crust transition boundary-layer to be a re-
gion with characteristic length scale of the order of the electron Compton
wavelength ∼ λe = h̄/(mec) ∼ 100 fm corresponding to the electron screen-
ing scale. Then, in the core-crust transition layer, the system of equations
(C.4.14)–(C.4.22) reduces to

V′′ +
2

r
V′ = −eλcoreeJ0

ch , (C.4.43)

σ′′ +
2

r
σ′ = eλcore [∂σU(σ) + gsns] , (C.4.44)

ω′′ +
2

r
ω′ = −eλcore

[

gω J0
ω − m2

ωω
]

, (C.4.45)

ρ′′ +
2

r
ρ′ = −eλcore

[

gρ J0
ρ − m2

ρρ
]

, (C.4.46)

eνcore/2µe − eV = constant , (C.4.47)

eνcore/2µp + eV + gωω + gρρ = constant , (C.4.48)

µn = µp + µe + 2 gρρe−νcore/2 , (C.4.49)

due to the fact that the metric functions are essentially constant on the core-
crust transition layer and thus we can take their values at the core-radius

eνcore ≡ eν(Rcore) and eλcore ≡ eλ(Rcore).

The system of equations of the transition layer has a stiff nature due to the
existence of two different scale lengths. The first one is associated with the
nuclear interactions ∼ λπ = h̄/(mπc) ∼ 1.5 fm and the second one is due
to the aforementioned screening length ∼ λe = h̄/(mec) ∼ 100 fm. Thus,
the numerical integration of Eqs. (C.4.43)–(C.4.49) has been performed sub-
dividing the core-crust transition layer in the following three regions: (I) a
mean-field-like region where all the fields vary slowly with length scale ∼ λe,
(II) a strongly interacting region of scale ∼ λπ where the surface tension due
to nuclear interactions dominate producing a sudden decrease of the proton
and the neutron densities and, (III) a Thomas-Fermi-like region of scale ∼ λe

where only a layer of opposite charge made of electrons is present producing
the total screening of the positively charged core. The results of the numeri-
cal integration of the equilibrium equations are shown in Fig. C.8-C.9 for the
NL3-model.
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We have integrated numerically Eqs. (C.4.14)–(C.4.22) for the models listed
in Table C.1. The boundary conditions for the numerical integration are fixed
through the following procedure. We start assuming a value for the central
baryon number density nb(0) = nn(0) + np(0). From the regularity condi-

tions at the origin we have e−λ(0) = 1 and ne(0) = np(0).

The metric function ν at the origin can be chosen arbitrarily, e.g. ν(0) =
0, due to the fact that the system of equations remain invariant under the
shift ν → ν+ constant. The right value of ν is obtained once the end of the
integration of the core has been accomplished and duly matched to the crust,
by fulfilling the following identity at the surface of the neutron star,

eν(R) = e−λ(R) = 1 − 2GM(R)

c2R
, (C.4.50)

being M(R) and R the total mass and radius of the star. Then, taking into
account the above conditions, we solve the system (C.4.17)–(C.4.22) at the
origin for the other unknowns σ(0), ω(0), ρ(0), nn(0), np(0), ne(0).

The initial conditions for the numerical integration of the core-crust transi-
tion layer equations are determined by the final values given by the numeri-
cal integration of the core equations, i.e. we take the values of all the variables
at the core-radius Rcore.

In the region I the effect of the Coulomb interaction is clear: on the proton-
profile we can see a bump due to Coulomb repulsion while the electron-
profile decreases as expected. Such a Coulomb effect is indirectly felt also
by the neutrons due to the coupled nature of the system of equations. How-
ever, the neutron-bump is much smaller than the one of protons and it is
not appreciable in Fig. C.8-C.9 due to the plot-scale. In the region II we see
clearly the effect of the surface tension due to nuclear interaction which pro-
duces a sharp decrease of the neutron and proton profiles in a characteristic
scale ∼ λπ. In addition, it can be seen a neutron skin effect, analogous to the
one observed in heavy nuclei, which makes the scale of the neutron density
falloff slightly larger with respect to the proton one, in close analogy to the
neutron skin effect observed in neutron rich nuclei, see e.g. Tamii et al. (2011).
The region III is characterized by a smooth decreasing of the electron density
which resembles the behavior of the electrons surrounding a nucleus in the
Thomas-Fermi model.

The matching to the crust must be done at the radius Rcore + δR where
full charge neutrality is reached. The thickness of the core-crust transition
boundary layer δR as well as the value of the electron density at the edge of
the crust, Rcore + δR, depends on the nuclear parameters, especially on the
nuclear surface tension.

The equilibrium conditions given by the constancy of the Klein potentials
(C.4.20)–(C.4.22) throughout the configuration, impose in the transition layer
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Figure C.8.: Upper panel: electric field in the core-crust transition layer in
units of the critical field Ec. Lower panel: particle density profiles in the core-
crust boundary interface in units of cm−3. Here we use the NL3-model of
Table C.1 and λσ = h̄/(mσc) ∼ 0.4 fm denotes the sigma-meson Compton
wavelength. The density at the edge of the crust in this example is ρcrust =
ρdrip = 4.3 × 1011 g/cm3.
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Figure C.9.: The same as Fig. C.8, but setting gρ = 0 in order to see the effects
of the ρ-meson with respect to the case gρ 6= 0.
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the following continuity condition

eνcore/2µcore
e − eVcore = eνcrust/2µcrust

e . (C.4.51)

where µcore
e = µe(Rcore), eVcore = eV(Rcore), and µcrust

e = µe(Rcore + δR), and
eνcrust ≃ eνcore .

The electron chemical potential and the density decrease, in the boundary
interface, until values µcrust

e < µcore
e and ρcrust < ρcore. For each central den-

sity, an entire family of core-crust interface boundaries and, correspondingly,
an entire family of crusts with different mass and thickness, exist. The config-
uration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 separates neutron stars with
and without inner crust. In the so-called inner crust, the neutrons dripped
from the nuclei in the crust form a fluid that coexist with the nuclei lattice
and the degenerate electrons (Baym et al., 1971a). The presence of the neu-
tron fluid in the crust changes the nuclear surface tension at the core radius, in
close analogy to the reduction of the surface tension of the nuclei in the crust
due to the presence of the dripped neutrons, see e.g. Baym et al. (1971a)) for
details. This reduction of the nuclear tension is not taken into account in the
nuclear parameters which are obtained to fit the properties of bare nuclei, see
Table C.1. Thus we present here the results for configurations ρcrust ≤ ρdrip,
i.e for neutron stars possessing only outer crust. The construction of configu-
rations with ρcrust > ρdrip needs to be studied in more detail and will be the
subject of a forthcoming work.

In Figs. C.8 and C.9, we show the core-crust transition layer for the NL3
model of Table C.1 with and without the presence of the ρ-meson respectively.
The presence of the ρ-meson is responsible for the nuclear asymmetry within
this nuclear model. The relevance of the nuclear symmetry energy on the
structure of nuclei and neutron stars is continuously stressed in literature;
see e.g. Müther et al. (1987); Kubis (2007); Sharma and Pal (2009); Hebeler
et al. (2010); Loan et al. (2011). The precise value of the nuclear symmetry
energy plays here a crucial in determining the precise value of the ρ-meson
coupling which, in the present case, is essential in the determination of the
intensity of the electric field in the core-crust boundary interface; as can be
seen from the comparison of Figs. C.8 and C.9.

Crust equations

Turning now to the crust, it is clear from our recent treatment of white dwarfs
(Rotondo et al., 2011b) that also this problem can be solved by the adop-
tion of Wigner-Seitz cells and from the relativistic Feynman-Metropolis-Teller
(RFMT) approach (Rotondo et al., 2011c) it follows that the crust is clearly
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neutral. Thus, the structure equations to be integrated are the TOV equations

dP

dr
= −G(E+ P)(M + 4πr3P)

r2(1 − 2GM
r )

, (C.4.52)

dM

dr
= 4πr2

E, (C.4.53)

where M = M(r) is the mass enclosed at the radius r.

The effects of the Coulomb interaction in “solid”-like electron-ion systems
appears only at the microscopic level e.g. Debye-Hueckel screening in classi-
cal systems (Debye and Hueckerl, 1923) and Thomas-Fermi screening in the
degenerate case (Mott, 1936). In order to analyze the effects of the micro-
scopic screening on the structure of the configuration we will consider two
equations of state for the crust: the locally neutral case or uniform approxi-
mation (see e.g. Chandrasekhar (1931b)) and, for simplicity, instead of using
the RFMT EoS (Rotondo et al., 2011c), we use as second EoS the one due to
Baym, Pethick and Sutherland (BPS) (Baym et al., 1971a), which is by far the
most used equation of state in literature for the description of the neutron
star crust (see e.g. Haensel et al. (2007)).

In the uniform approximation, both the degenerate electrons and the nu-
cleons distribution are considered constant inside each cell of volume Vws.
This kind of configuration can be obtained only imposing microscopically
the condition of local charge neutrality

ne =
Z

Vws
. (C.4.54)

The total pressure of the system is assumed to be entirely due to the elec-
trons, i.e.

P = Pe =
2

3 (2πh̄)3

∫ PF
e

0

c2p24πp2

√

c2p2 + m2
e c4

dp, (C.4.55)

and the total energy-density due to the nuclei, i.e. E=(A/Z)mNne, where mN

is the nucleon mass.

We turn now to the BPS equation of state. The first correction to the uni-
form model, corresponds to abandon the assumption of the electron-nucleon
fluid through the so-called “lattice” model which introduces the concept of
Wigner-Seitz cell: each cell of radius Rws contains a point-like nucleus of
charge +Ze with A nucleons surrounded by a uniformly distributed cloud
of Z fully-degenerate electrons.

The sequence of the equilibrium nuclides present at each density in the
BPS equation of state is obtained by looking for the nuclear composition that
minimizes the energy per nucleon for each fixed nuclear composition (Z, A)
(see Table C.2 and Baym et al. (1971a) for details). The pressure P and the
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energy-density E of the system are, within this model, given by

P = Pe +
1

3
WLnN, (C.4.56)

E

nb
=

WN + WL

A
+

Ee(nbZ/A)

nb
, (C.4.57)

where the electron energy-density is given by

Ee =
2

(2π)3

∫ PF
e

0

√

p2 + m2
e 4πp2dp, (C.4.58)

and WN(A, Z) is the total energy of an isolated nucleus given by the semi-
empirical formula

WN = mnc2(A − Z) + mpc2Z − bA, (C.4.59)

with b being the Myers and Swiatecki binding energy per nucleon (Myers,
1966). The lattice energy per nucleus WL is given by

WL = −1.819620Z2e2

a
, (C.4.60)

where the lattice constant a is related to the nucleon density nN by nNa3 = 2.

C.4.3. Neutron star structure

In the traditional TOV treatment the density and the pressure are a priori
assumed to be continuous as well as the local charge neutrality of the system.
The distinguishing feature of our new solution is that the Klein potentials are
constant throughout the three regions; the core, the crust and the transition
interface boundary. An overcritical electric field is formed and consequently
a discontinuity in density is found with a continuous total pressure including
the surface tension of the boundary. In Figs. C.10 and C.11, we compare and
contrast the density profiles of configurations obtained from the traditional
TOV treatment and with the treatment presented here.

In Figs. C.12–C.18 we show the results of the numerical integration of the
system of the general relativistic constitutive equations of the configuration
from the center all the way up to the surface with the appropriate boundary
conditions between the involved phases. In particular, we have plotted the
mass-radius relation as well as the compactness of the neutron stars obtained
with the models listed in Table C.1.

It is worth to note that the inclusion of the Coulomb interaction and in par-
ticular the presence of the negative lattice energy WL results in a decreasing
of the pressure of the cells. Such an effect, as shown in Fig. C.15–C.18, leads
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Figure C.10.: Upper panel: electric field in the core-crust transition layer,
in units of the critical field Ec. Middle panel: particle density profiles in
the core-crust boundary interface, in units of cm−3. Lower panel: density
profile inside a neutron star with central density ρ(0) ∼ 5ρnuc. We com-
pare and contrast the structural differences between the solution obtained
from the traditional TOV equations (locally neutral case) and the globally
neutral solution presented here. We use here the NL3 nuclear parametriza-
tion of Table C.1 and λσ = h̄/(mσc) ∼ 0.4 fm, denotes the sigma-meson
Compton wavelength. In this example the density at the edge of the crust is
ρcrust = ρdrip = 4.3 × 1011 g/cm3.
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Figure C.11.: Same as Fig. C.10. In this example the density at the edge of the
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1942



C.4. Neutron stars fulfilling all fundamental interactions

8 10 12 14
R (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/
M

i

NL3
NLjSH
TM1
TM2
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nuclear models listed in Table C.1. In the crust we have used the BPS equation
of state. The mass is given in solar masses and the radius in km.

to a decreasing of the mass and the thickness of the crust with respect to the
uniform-approximation case where no Coulomb interactions are taken into
account.
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Figure C.13.: Compactness of the star GM/(c2R) as a function of the star
mass M. In the crust we have used the BPS equation of state and the nuclear
models are in Table C.1.

Comparing the mass and the thickness of the crust obtained with these two
different EoS, we obtain systematically crusts with smaller mass and larger
thickness when Coulomb interactions are taken into account. This results are
in line with the recent results in Rotondo et al. (2011b), where the mass-radius
relation of white-dwarfs has been calculated using an EoS based on the rel-
ativistic Feynman-Metropolis-Teller model for compressed atoms (Rotondo

1943



C. Neutron Stars Physics and Astrophysics

8 10 12 14
R (km)

0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
M
/
(c

2
R
)

NL3
NLmSH
TM1
TM2

Figure C.14.: Compactness of the star GM/(c2R) as a function of the star
radius R. In the crust we have used the BPS equation of state and the nuclear
models are in Table C.1.
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Figure C.15.: Mass of the crust as a function of the compactness for the crust
EoS without Coulomb interactions.
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Figure C.16.: Crust-thickness as a function of the compactness for the crust
EoS without Coulomb interactions.
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Figure C.17.: Crust mass as a function of the compactness for crust with the
BPS EoS.
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Figure C.18.: Crust thickness as a function of the compactness for crust with
the BPS EoS.

et al., 2011c).

In the case of the BPS EoS, the average nuclear composition in the outer
crust, namely the average charge to mass ratio of nuclei Z/A, is obtained by
calculating the contribution of each nuclear composition present to the mass
of the crust. We exemplified the analysis for two different cores: Mcore =
2.56M⊙, Rcore = 12.79 km; Mcore = 1.35M⊙, Rcore = 11.76 km. The relative
abundance of each nuclide within the crust of the star can be obtained as

R.A. =
1

MBPS
crust

∫

∆r
4πr2

Edr , (C.4.61)

where the integration is carried out in the layer of thickness ∆r where the par-
ticular nuclide is present; see C.2 and Fig. C.19. Our results are in agreement
with the analysis on the neutron star crust composition obtained in Goriely
et al. (2011a,b). In both cases we obtain as average nuclear composition 105

35 Br.

The corresponding crusts with fixed nuclear composition 105
35 Br for the two

chosen cores are calculated neglecting Coulomb interactions (i.e. using the
first EoS). The mass and the thickness of these crusts with fixed 105

35 Br are dif-
ferent with respect to the ones obtained using the full BPS EoS, leading to
such average nuclear composition. For the two selected examples we obtain
that the mass and the thickness of the crust with average 105

35 Br are, respec-
tively, 18% larger and 5% smaller with respect to the ones obtained with the
corresponding BPS EoS. This result shows how small microscopic effects due
to the Coulomb interaction in the crust of the neutron star leads to quantita-
tive not negligible effects on the macroscopic structure of the configuration.
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Equilibrium Nuclei Below Neutron Drip

Nucleus Z ρmax(g cm−3) ∆ R1 (km) R.A.1(%) ∆ R2 (km) R.A.2(%)
56Fe 26 8.1 × 106 0.0165 7.56652 × 10−7 0.0064 6.96927 × 10−7

62Ni 28 2.7 × 108 0.0310 0.00010 0.0121 0.00009
64Ni 28 1.2 × 109 0.0364 0.00057 0.0141 0.00054
84Se 34 8.2 × 109 0.0046 0.00722 0.0017 0.00683
82Ge 32 2.2 × 1010 0.0100 0.02071 0.0039 0.01983
80Zn 38 4.8 × 1010 0.1085 0.04521 0.0416 0.04384
78Ni 28 1.6 × 1011 0.0531 0.25635 0.0203 0.25305
76Fe 26 1.8 × 1011 0.0569 0.04193 0.0215 0.04183

124Mo 42 1.9 × 1011 0.0715 0.02078 0.0268 0.02076
122Zr 40 2.7 × 1011 0.0341 0.20730 0.0127 0.20811
120Sr 38 3.7 × 1011 0.0389 0.23898 0.0145 0.24167
118Kr 36 4.3 × 1011 0.0101 0.16081 0.0038 0.16344

Table C.2.: ρmax is the maximum density at which the nuclide is present;∆ R1,
∆ R2 and R.A.1(%), R.A.2(%) are rispectively the thickness of the layer where
a given nuclide is present and their relative abundances in the outer crust for
two different cases: Mcore = 2.56M⊙, Rcore = 12.79 km; Mcore = 1.35M⊙,
Rcore = 11.76 km.
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Figure C.19.: Relative abundances of chemical elements in the crust for the
two cores analyzed in Table C.2
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C.4.4. Observational constraints on the mass-radius relation

It has been recently pointed out that the most up-to-date stringent constraints
to the mass-radius relation of neutron stars are provided by the largest mass,
the largest radius, the highest rotational frequency, and the maximum surface
gravity, observed for pulsars (Trümper, 2011).

So far, the highest neutron star mass measured with a high level of experi-
mental confidence is the mass of the 3.15 millisecond pulsar PSR J1614-2230,
M = 1.97± 0.04M⊙, obtained from the Shapiro time delay and the Keplerian
orbital parameters of the binary system (Demorest et al., 2010a). The fitting of
the thermonuclear burst oscillation light curves from the accreting millisec-
ond pulsar XTE J1814-338 weakly constrain the mass-radius relation impos-
ing an upper limit to the surface gravity of the neutron star, GM/(c2R) < 0.24
(Bhattacharyya et al., 2005). A lower limit of the radius of RX J1856-3754, as
seen by an observer at infinity R∞ = R[1 − 2GM/(c2R)]−1/2 > 16.8 km,
has been obtained from the fit of the optical and X-ray spectra of the source
(Trümper et al., 2004); it gives the constraint 2GM/c2 > R − R3/(Rmin

∞ )2,
being Rmin

∞ = 16.8 km. Assuming a neutron star of M = 1.4M⊙ to fit the
Chandra data of the low-mass X-ray binary X7, it turns out that the radius

of the star satisfies R = 14.5+1.8
−1.6 km, at 90% confidence level, corresponding

to R∞ = [15.64, 18.86] km, respectively (see Heinke et al. (2006) for details).
The maximum rotation rate of a neutron star taking into account both the
effects of general relativity and deformations has been found to be νmax =
1045(M/M⊙)1/2(10 km/R)3/2 Hz, largely independent of the equation of
state (Lattimer and Prakash, 2004a). The fastest observed pulsar is PSR J1748-
2246ad with a rotation frequency of 716 Hz (Hessels et al., 2006a), which re-
sults in the constraint M ≥ 0.47(R/10 km)3M⊙. In Fig. C.20 we show all
these constraints and the mass-radius relation presented in this work.

As discussed by J. E. Trümper in Trümper (2011), the above constraints
strongly favor stiff equations of state which provide high maximum masses
for neutron stars. In addition, putting all of them together, the radius of a
canonical neutron star of mass M = 1.4M⊙ is highly constrained to the range
R & 12 km disfavoring, at the same time, the strange quark hypothesis for
these specific objects. It is clear from Fig. C.20 that the mass-radius relation
presented here is consistent with all the observation constraints, for all the
nuclear parametrizations of Table C.1. We present in Table C.3, the radii pre-
dicted by our mass-radius relation for a canonical neutron star of M = 1.4M⊙
as well as for the millisecond pulsar PSR J1614-2230, M = 1.97 ± 0.04M⊙.

C.4.5. Comparison with the traditional TOV treatment

In the traditional TOV treatment local charge neutrality as well as the con-
tinuity of the pressure and the density in the core-crust transition are as-
sumed. This leads to explicit violation of the constancy of the Klein poten-
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Figure C.20.: Constraints on the mass-radius relation given by J. E. Trümper
in Trümper (2011) and the theoretical mass-radius relation presented in this
work in Fig. C.12. The solid line is the upper limit of the surface gravity
of XTE J1814-338, the dotted-dashed curve corresponds to the lower limit to
the radius of RX J1856-3754, the dashed line is the constraint imposed by
the fastest spinning pulsar PSR J1748-2246ad, and the dotted curves are the
90% confidence level contours of constant R∞ of the neutron star in the low-
mass X-ray binary X7. Any mass-radius relation should pass through the
area delimited by the solid, the dashed and the dotted lines and, in addition,
it must have a maximum mass larger than the mass of PSR J1614-2230, M =
1.97 ± 0.04M⊙.

M(M⊙) RNL3 RNL−SH RTM1 RTM2

1.40 12.31 12.47 12.53 12.93
1.93 12.96 13.14 13.13 13.73
2.01 13.02 13.20 13.17 13.82

Table C.3.: Radii (in km) predicted by the nuclear parametrizations NL3, NL-
Sh, TM1 and TM2 of Table C.1, for a canonical neutron star of M = 1.4M⊙
and for the millisecond pulsar PSR J1614-2230, M = 1.97 ± 0.04M⊙.
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tials throughout the configuration (see e.g. Rotondo et al. (2011d)). In such
a case there is a smooth transition from the core to the crust without any
density discontinuity and therefore the density at the edge of the crust is
∼ ρnuc ∼ 2.7 × 1014 g/cm3. The so-called inner crust in those configura-
tions extends in the range of densities ρdrip . ρ . ρnuc while, at densities
ρ . ρdrip, there is the so-called outer crust.

Due to the continuity of the Klein potentials in the transition from the core
to the crust, there is a decrease of the Coulomb potential from ∼ mπc2/e at the
core radius Rcore down to zero at the edge of the neutral crust.Correspondingly,
the electron chemical potential decreases from its value at the core radius un-

til a value approximately given by µcrust
e ∼ µ

drip
e ∼ 26 MeV (see Fig. C.8-

C.9). Therefore, no crusts with densities larger than the neutron drip density
ρdrip ∼ 4.3 × 1011 g/cm3 exist, leading to crusts made only of outer crust.

In Figs. C.21 and C.22 we compare and contrast the mass and the thickness
of the crust as obtained from the traditional TOV treatment with the new
configurations presented here.
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Figure C.21.: Mass of the crust given by the traditional locally neutral
Tolman-Oppenheimer-Volkoff treatment and by the new globally neutral
equilibrium configurations presented in this work. We use here the NL3 nu-
clear model, see Table C.1.

The markedly differences both in mass and thickness of the crusts (see
Figs. C.21 and C.22) obtained from the traditional Tolman-Oppenheimer-Volkoff
approach and the new equilibrium configurations presented here, leads to
a very different mass-radius relations which we compare and contrast in
Fig. C.23.
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Figure C.22.: Thickness of the crust given by the traditional locally neu-
tral Tolman-Oppenheimer-Volkoff treatment and by the new globally neutral
equilibrium configurations presented in this work3. We use here the NL3
nuclear model, see Table C.1.
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Figure C.23.: Mass-Radius relation obtained with the traditional locally neu-
tral TOV treatment and with the new globally neutral equilibrium configura-
tions presented here. We use here the NL3 nuclear model, see Table C.1.
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C.4.6. Concluding Remarks

We have formulated the equations of equilibrium of neutron stars based on
our recent works (Rueda et al., 2011; Rotondo et al., 2011c,b,d). The strong,
weak, electromagnetic, and gravitational interactions are taken into due ac-
count within the framework of general relativity. In particular, the strong
interactions between nucleons is described by the exchange of the σ, ω, and ρ
mesons. The equilibrium conditions are given by the set of Einstein-Maxwell-
Thomas-Fermi equations and by the constancy of the general relativistic Fermi
energies of particles, the Klein potentials, throughout the configuration.

We have solved these equilibrium equations numerically, in the case of zero
temperatures, for the nuclear parameter sets NL3 (Lalazissis et al., 1997), NL-
SH (Sharma et al., 1993), TM1 (Sugahara and Toki, 1994), and TM2 (Hirata
et al., 1995); see Table C.1 for details.

A new structure of the star is found: the positively charged core at supranu-
clear densities is surrounded by an electronic distribution of thickness &
h̄/(mec) ∼ 102h̄/(mπc) of opposite charge and, at lower densities, a neutral
ordinary crust.

In the core interior the Coulomb potential well is ∼ mπc2/e and corre-
spondingly the electric field is ∼ (mp/mPlanck)(mπ/me)2Ec ∼ 10−14Ec. Due
to the equilibrium condition given by the constancy of the Klein potentials,
there is a discontinuity in the density at the transition from the core to the
crust, and correspondingly an overcritical electric field ∼ (mπ/me)2Ec devel-
ops in the boundary interface; see Fig. C.8–C.9.

The continuity of the Klein potentials at the core-crust boundary inter-
face leads to a decreasing of the electron chemical potential and density, un-
til values µcrust

e < µcore
e and ρcrust < ρcore at the edge of the crust, where

global charge neutrality is achieved. For each central density, an entire fam-
ily of core-crust interface boundaries and, correspondingly, an entire family
of crusts with different mass and thickness, exist. The larger ρcrust, the smaller
the thickness of the interface, the peak of the electric field, and the larger the
mass and the thickness of the crust. The configuration with ρcrust = ρdrip ∼
4.3 × 1011 g/cm3 separates neutron stars with and without inner crust. The
neutron stars with ρcrust > ρdrip deserve a further analysis in order to account
for the reduction of the nuclear tension at the core-crust transition due to the
presence of dripped neutrons from the nuclei in the crust.

All the above new features lead to crusts with masses and thickness smaller
than the ones obtained from the traditional TOV treatment, and we have
shown specifically neutron stars with ρcrust = ρdrip; see Figs. C.21–C.22. The
mass-radius relation obtained in this case have been compared and contrasted
with the one obtained from the locally neutral TOV approach; see Fig. C.23.
We have shown that our mass-radius relation is in line with observations,
based on the recent work by J. E. Trümper (Trümper, 2011); see Fig. C.20 for
details.
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The electromagnetic structure of the neutron star presented here is of clear
astrophysical relevance. The process of gravitational collapse of a core en-
dowed with electromagnetic structure leads to signatures and energetics very
different from the ones of a core endowed uniquely of gravitational interac-
tions; see e.g. Ruffini et al. (2003b,a); Ruffini and Xue (2008); Ruffini et al.
(2010b).

It is clear that the release of gravitational energy in the process of gravita-
tional collapse of the core, following the classic work of Gamow and Schoen-
berg (1941), is carried away by neutrinos. The additional nuclear and elec-
tromagnetic energy ∼ 1051 erg of the collapsing core introduced in this work
are expected to be carried away by electron-positron plasma created in the
overcritical electromagnetic field in the collapsing core.
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C.5. Uniformly rotating neutron stars

C.5.1. Introduction

We have recently shown (Rotondo et al., 2011d; Rueda et al., 2011; Belvedere
et al., 2012) that the Tolman-Oppenheimer-Volkoff (TOV) equations (Tolman,
1939; Oppenheimer and Volkoff, 1939), traditionally used to describe the neu-
tron star equilibrium configurations, are superseded once the strong, weak,
electromagnetic and gravitational interactions are taken into account. In-
stead, the Einstein-Maxwell system of equations coupled with the general
relativistic Thomas-Fermi equations have to be used, namely what we called
the EMTF system of equations. While in the TOV approach the condition
of local charge neutrality, ne(r) = np(r) is imposed (see e.g. Haensel et al.
(2007) and references therein), the EMTF approach requests the less stringent
condition of global charge neutrality, namely

∫

ρchd3r =
∫

e[np(r)− ne(r)]d
3r = 0, (C.5.1)

where ρch is the charge density, e is the fundamental electric charge, and the
integral is carried out on the entire volume of the system.

The Lagrangian density taking into account all the interactions include the
free-fields terms Lg, Lγ, Lσ, Lω, Lρ (respectively for the gravitational, the
electromagnetic, and the three mesonic fields), the three fermion species (elec-
trons, protons and neutrons) term L f and the interacting part in the minimal
coupling assumption, Lint (Rueda et al., 2011; Belvedere et al., 2012):

L = Lg +L f +Lσ +Lω +Lρ +Lγ +Lint , (C.5.2)

where1

Lg = − R

16π
, L f = ∑

i=e,N

ψ̄i

(

iγµDµ − mi

)

ψi,

Lσ =
∇µσ∇µσ

2
− U(σ), Lω = −ΩµνΩµν

4
+

m2
ωωµωµ

2
,

Lρ = −RµνR
µν

4
+

m2
ρρµρµ

2
, Lγ = −FµνFµν

16π
,

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ + eAµ J

µ
γ,e

− eAµ J
µ
γ,N,

where the description of the strong interactions between the nucleons is made
through the σ-ω-ρ nuclear model in the version of Boguta & Bodmer Boguta

1We use spacetime metric signature (+,-,-,-) and geometric units G = c = 1 unless otherwise
specified.
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and Bodmer (1977). Thus Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡
∂µ Aν − ∂ν Aµ are the field strength tensors for the ωµ, ρ and Aµ fields respec-
tively, ∇µ stands for covariant derivative and R is the Ricci scalar. We adopt
the Lorenz gauge for the fields Aµ, ωµ, and ρµ. The self-interaction scalar
field potential is U(σ), ψN is the nucleon isospin doublet, ψe is the electronic
singlet, mi states for the mass of each particle-specie and Dµ = ∂µ + Γµ, being

Γµ the Dirac spin connections. The conserved currents are J
µ
ω = ψ̄NγµψN,

J
µ
ρ = ψ̄Nτ3γµψN, J

µ
γ,e = ψ̄eγ

µψe, and J
µ
γ,N = ψ̄N(1/2)(1 + τ3)γ

µψN, being τ3

the particle isospin.

The nuclear model is fixed once the values of the coupling constants and
the masses of the three mesons are fixed: for instance in the NL3 parameter
set Lalazissis et al. (1997) used in Belvedere et al. (2012) and in this work
we have mσ = 508.193 MeV,mω = 782.501 MeV, mρ = 763.000 MeV, gσ =
10.2170, gω = 12.8680, gρ = 4.4740, plus two constants that give the strength

of the self-scalar interactions, g2 = −10.4310 fm−1 and g3 = −28.8850.

From the equations of motion of the above Lagrangian we obtain the EMTF
equations (see Rueda et al. (2011); Belvedere et al. (2012), for details). The so-
lution of the EMTF coupled differential equations leads to a new structure of
the star, as shown in Fig C.24: a positively charged core at supranuclear den-
sities, ρ > ρnuc ∼ 2.7 × 1014 g cm−3, surrounded by an electron distribution
of thickness & h̄/(mec) and, at lower densities ρ < ρnuc, a neutral ordinary
crust.

The thermodynamic equilibrium is ensured by the constancy of the particle
Klein potentials Klein (1949) generalized to the presence of electrostatic and
strong fields (Rotondo et al., 2011d; Rueda et al., 2011; Belvedere et al., 2012)

1

ut
[µi + (qi Aα + gωωα + gρτ3,iρα)u

α] = constant, (C.5.3)

where the subscript i stands for each kind of particle, µi is the particle chem-
ical potential, and qi is the particle electric charge. In the static case only the
time components of the vector fields, A0, ω0, ρ0 are present. In the above
equation ut = (gtt)−1/2 is the time component of the fluid four-velocity
which satisfies uαuα = 1; gtt is the t–t component of the spherically sym-
metric metric

ds2 = eνdt2 − eλdr2 − dr2 − r2(dθ2 + sin2 θdφ2) . (C.5.4)

The equilibrium conditions (C.5.3) lead to a discontinuity in the density
at the core-crust transition and, correspondingly, an overcritical electric field
∼ (mπ/me)2Ec, where Ec = m2

e c3/(eh̄) ∼ 1.3× 1016 Volt cm−1, appears in the
core-crust boundary interface. The constancy of the Klein potentials is neces-
sary to fulfill the requirement of thermodynamical equilibrium, together with
the constancy of the gravitationally red-shifted temperature (Tolman condi-
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Figure C.24.: In the top and center panels we show the neutron, proton, elec-
tron densities and the electric field in units of the critical electric field Ec in
the core-crust transition layer, whereas in the bottom panel we show a spe-
cific example of a density profile inside a neutron star. In this plot we have
used for the globally neutral case a density at the edge of the crust equal to
the neutron drip density, ρdrip ∼ 4.3 × 1011 g cm−3.

tion) Tolman (1930); Klein (1949), if finite temperatures are considered (see
e.g. Rueda et al. (2011)). In particular, the continuity of the electron Klein
potential leads to a decreasing of the electron chemical potential µe and den-
sity at the core-crust boundary interface. They reach values µcrust

e < µcore
e

and ρcrust < ρcore at the edge of the crust, where global charge neutrality is
achieved.

As we have shown in (Belvedere et al., 2012), the solution of this new
set of equilibrium equations leads to neutron star crusts with smaller mass
and thiner thickness, and consequently to a new mass-radius relation which
markedly differs from the one given by the solution of the TOV equations in
the case of local charge neutrality; see Fig. C.25.

We extend in this work the previous results to the case when the neutron
star is rotating as a rigid body. To this aim we use the Hartle’s approach
(Hartle, 1967) which solves the Einstein equations accurately up to second
order approximation in the angular velocity of the star, Ω (see next section
C.5.2 for details).

In this rotating case, the condition of the constancy of the particle Klein
potential has the same form as Eq. (C.5.3), but the fluid inside the star now
moves with a four-velocity of a rigid rotating body, uα = (ut, 0, 0, uφ), with
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Figure C.25.: Neutron star mass-radius relation in the static (non-rotating)
case for both global and local charge neutrality configurations (see Belvedere
et al. (2012), for details). In this plot we have used for the globally neutral case
a density at the edge of the crust equal to the neutron drip density, ρdrip ∼
4.3 × 1011 g cm−3.

(see Hartle and Sharp (1967) and C.5.10, for details)

ut = (gtt + 2Ω gtφ + Ω2 gφφ)
−1/2, uφ = Ωut, (C.5.5)

where φ is the azimuthal angular coordinate with respect to which the metric
is symmetric, namely the metric is independent of φ (axial symmetry). The
metric functions gαβ are now given by Eq. (C.5.6) below. It is then clear that

in a frame comoving with the rotating star, ut = (gtt)−1/2, and the Klein
equilibrium condition becomes the same as Eq. (C.5.3), as expected.

We applied the Hartle’s formalism to the seed static solution obtained from
the integration of the EMTF equations (Belvedere et al., 2012). For the con-
struction of the new mass-radius relation we take into account the Keple-
rian mass-shedding limit and the secular axisymmetric instability (see sec-
tion C.5.3). We compute in section C.5.4 the mass M, polar Rp and equatorial
Req radii, angular momentum J, eccentricity ǫ, and quadrupole moment Q,
as a function of the central density and the rotation angular velocity Ω of the
stable neutron star. Based on the criteria of equilibrium we calculate the max-
imum stable neutron star mass and from the gravitational binding energy of
the configurations establish the minimum mass under which the neutron star
becomes gravitationally unbound. We compare and contrast the results for
both globally and locally neutral rotating neutron stars. Observational con-
straints on the mass-radius relation are discussed in section C.5.8. We finally
summarize the results in section C.5.9.
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C.5.2. Hartle’s slow rotation approximation

In his pioneering work, Hartle (1967) computed the equilibrium equations of
slowly rotating stars in the context of General Relativity. The solutions of the
Einstein equations are obtained through a perturbative method, expanding
the metric functions up to the second order in the angular velocity Ω. Under
this assumption the structure of compact objects can be approximately de-
scribed by the total mass M, angular momentum J and quadrupole moment
Q. The slow rotation regime implies that the perturbations owing to the ro-
tation are relatively small with respect to the known non-rotating geometry.
The interior solution is derived by solving numerically a system of ordinary
differential equations for the perturbation functions. The exterior solution for
the vacuum surrounding the star, can be written analytically in terms of M,
J, and Q (see Hartle (1967); Hartle and Thorne (1968) for details). The numer-
ical values for all the physical quantities are derived by matching the interior
and the exterior solution on the border of the star.

The spacetime metric for the rotating configuration up to the second order
of Ω is given by (Hartle, 1967)

ds2 = eν (1 + 2h) dt2 − eλ

[

1 +
2m

r − 2MJ=0

]

dr2

− r2 (1 + 2k)
[

dθ2 + sin2 θ (dφ − ωdt)2
]

, (C.5.6)

where ν = ν(r), λ = λ(r), and MJ=0 = MJ=0(r) are the metric functions
and mass profiles of the corresponding seed non-rotating star with the same
central density as the rotating one; see Eq. (C.5.4). The functions h = h(r, θ),
m = m(r, θ), k = k(r, θ) and the fluid angular velocity in the local inertial
frame, ω = ω(r), have to be calculated from the Einstein equations. Expand-
ing up to the second order the metric in spherical harmonics we have

h(r, θ) = h0(r) + h2(r)P2(cos θ) , (C.5.7)

m(r, θ) = m0(r) + m2(r)P2(cos θ) , (C.5.8)

k(r, θ) = k0(r) + k2(r)P2(cos θ) , (C.5.9)

where P2(cosθ) is the Legendre polynomial of second order. Because the met-
ric does not change under transformations of the type r → f (r), we can as-
sume k0(r) = 0.

The functions h = h(r, θ), m = m(r, θ), k = k(r, θ) have analytic form
in the exterior(vacuum) spacetime and they can be found in C.5.10. From
the matching condition between the interior and exterior metrics, the mass,
angular momentum, and quadrupole moment can be computed.

First the angular momentum is computed. It is introduced the angular
velocity of the fluid relative to the local inertial frame, ω̄(r) = Ω − ω(r). It
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can be shown from the Einstein equations at first order in Ω that ω̄ satisfies
the differential equation

1

r4

d

dr

(

r4 j
dω̄

dr

)

+
4

r

dj

dr
ω̄ = 0 , (C.5.10)

where j(r) = e−(ν+λ)/2 with ν and λ the metric functions of the seed non-
rotating solution (C.5.4).

From the matching equations, the angular momentum of the star results to
be given by

J =
1

6
R4

(

dω̄

dr

)

r=R

, (C.5.11)

so the angular velocity Ω is related to the angular momentum as

Ω = ω̄(R) +
2J

R3
. (C.5.12)

The total mass of the rotating star, M, is given by

M = MJ=0 + δM , δM = m0(R) + J2/R3 , (C.5.13)

where δM is the contribution to the mass owing to rotation. The first order
perturbation function m0 is computed from the solution of the differential
equation

dm0

dr
= 4πr2 dE

dP
(E+ P)p∗0 +

1

12
j2r4

(

dω̄

dr

)2

− 1

3

dj2

dr
r3ω̄2 , (C.5.14)

dp∗0
dr

= −m0(1 + 8πr2P)

(r − 2M)2
− 4πr2(E+ P)

(r − 2M)
p∗0 +

1

12

j2r4

(r − 2M)

(

dω̄

dr

)2

+
1

3

d

dr

(

r3 j2ω̄2

r − 2M

)

. (C.5.15)

where E and P are the total energy-density and pressure.

Turning to the quadrupole moment of the neutron star, it is given by

Q =
J2

M
+

8

5
KM3 , (C.5.16)

where K is a constant of integration. This constant is fixed from the matching
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of the second order function h2 obtained in the interior from

dk2

dr
= −dh2

dr
− h2

dν

dr
+

(

1

r
+

1

2

dν

dr

) [

− 1

3
r3ω̄2 dj2

dr
(C.5.17)

+
1

6
r4 j2

(

dω̄

dr

)2 ]

, (C.5.18)

dh2

dr
= h2

{

− dν

dr
+

r

r − 2M

(

dν

dr

)−1 [

8π(E+ P)

− 4M

r3

]}

− 4(k2 + h2)

r(r − 2M)

(

dν

dr

)−1

+
1

6

[

r

2

dν

dr
− 1

r − 2M

(

dν

dr

)−1 ]

r3 j2
(

dω̄

dr

)2

− 1

3

[

r

2

dν

dr
+

1

r − 2M

(

dν

dr

)−1 ]

r2ω̄2 dj2

dr
, (C.5.19)

with its exterior counterpart (see Hartle (1967) and C.5.10).
It is worth to underline that the influence of the induced magnetic field

owing to the rotation of the charged core of the neutron star in the globally
neutral case is negligible (Boshkayev et al., 2012b). In fact, for a rotating neu-
tron star of period P = 10 ms and radius R ∼ 10 km, the radial component
of the magnetic field Br in the core interior has its is maximum at the poles
with a value Br ∼ 2.9 × 10−16Bc, where Bc = m2

e c3/(eh̄) ≈ 4.4 × 1013 G is
the critical magnetic field for vacuum polarization. The angular component
of the magnetic field Bθ, instead, has its maximum value at the equator and,
as for the radial component, it is very low in the interior of the neutron star
core, i.e. |Bθ| ∼ 2.9 × 10−16Bc. In the case of a sharp core-crust transition as
the one studied in (Belvedere et al., 2012) and shown in Fig. C.24, this com-
ponent will grow in the transition layer to values of the order of |Bθ| ∼ 102Bc

(see Boshkayev et al. (2012b), for further details). However, since we are here
interested in the macroscopic properties of the neutron star, we can ignore at
first approximation the presence of the electromagnetic magnetic field in the
macroscopic regions where they are indeed very small, and safely apply the
original Hartle’s formulation without any generalization to the electromag-
netic case.

C.5.3. Stability of uniformly rotating neutron stars

Secular axisymmetric instability

In a sequence of increasing central density in the M-ρc curve, ρc ≡ ρ(0), the
maximum mass of a non-rotating neutron star is defined as the first maxi-
mum of such a curve, namely the point where ∂M/∂ρc = 0. This derivative
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defines the secular instability point, and, if the perturbation obeys the same
EOS as the equilibrium configuration, it coincides also with the dynamical in-
stability point (see e.g. Shapiro and Teukolsky (1983a)). In the rotating case,
the situation becomes more complicate and in order to find the axisymmet-
ric dynamical instability points, the perturbed solutions with zero frequency
modes (the so-called neutral frequency line) have to be calculated. However
Friedman et al. (1988), following the works of Sorkin (1981, 1982), described
a turning-point method to obtain the points at which secular instability is
reached by uniformly rotating stars. In a constant angular momentum se-
quence, the turning point is located in the maximum of the mass-central den-
sity relation, namely the onset of secular axisymmetric instability is given by

[

∂M (ρc, J)

∂ρc

]

J=constant

= 0 , (C.5.20)

and once the secular instability sets in, the star evolves quasi-stationarily un-
til it reaches a point of dynamical instability where gravitational collapse sets
in (Stergioulas, 2003).

The above equation defines an upper limit for the mass at a given J for a
uniformly rotating star, however this criterion is a sufficient but not neces-
sary condition for the instability. This means that all the configurations with
the given angular momentum J on the right side of the turning point defined
by Eq. (C.5.20) are secularly unstable, but it does not imply that the configu-
rations on the left side of it are stable. An example of dynamically unstable
configurations on the left side of the turning-point limiting boundary in neu-
tron stars was recently shown in (Takami et al., 2011), for a specific EOS.

Keplerian mass-shedding instability

The maximum velocity for a particle to remain in equilibrium on the equa-
tor of a star, kept bound by the balance between gravitational and centrifu-
gal force, is the Keplerian velocity of a free particle computed at the same
location. As shown, for instance in (Stergioulas, 2003), a star rotating at Ke-
plerian rate becomes unstable due to the loss of mass from its surface. The
mass shedding limiting angular velocity of a rotating star is the Keplerian

angular velocity evaluated at the equator, r = Req, i.e. Ω
J 6=0
K = ΩK(r = Req).

Friedman et al. (1986b) introduced a method to obtain the maximum possible
angular velocity of the star before reaching the mass-shedding limit; however
Torok et al. (2008) and Bini et al. (2013), demonstrated a simpler way to com-
pute the Keplerian angular velocity of a rotating star. They showed that the

mass-shedding angular velocity, Ω
J 6=0
K , can be computed as the orbital angu-

lar velocity of a test particle in the external field of the star and corotating
with it on its equatorial plane at the distance r = Req. For the Hartle external
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solution, this is given by

Ω
J 6=0
K (r) =

√

M

r3

[

1 − jF1(r) + j2F2(r) + qF3(r)
]

, (C.5.21)

where j = J/M2 and q = Q/M3 are the dimensionless angular momentum
and quadrupole moment. Further details and the analytical expression of the
functions Fi can be found in C.5.10.

Gravitational binding energy

Besides the above stability requirements, one should check that the neutron
star is gravitationally bound. In the non-rotating case, the binding energy of
the star can be computed as

WJ=0 = MJ=0 − MJ=0
rest , MJ=0

rest = mb AJ=0 , (C.5.22)

where MJ=0
rest is the rest-mass of the star, mb is the rest-mass per baryon, and

AJ=0 is the total number of baryons inside the star. So the non-rotating star is
considered bound if WJ=0 < 0.

In the slow rotation approximation the total binding energy is given by (see
Eqs. (114–115) of Hartle (1967))

WJ 6=0 = WJ=0 + δW , δW =
J2

R3
−
∫ R

0
4πr2B(r)dr , (C.5.23)

where

B(r) = (E+ P)p∗0

{

dE

dP

[

(

1 − 2M

r

)−1/2

− 1

]

− du

dP

(

1 − 2M

r

)−1/2}

+ (E− u)

(

1 − 2M

r

)−3/2 [m0

r

+
1

3
j2r2ω̄2

]

− 1

4πr2

[

1

12
j2r4

(

dω̄

dr

)2

− 1

3

dj2

dr
r3ω̄2

]

, (C.5.24)

where u = E − mbnb is the internal energy of the star, with nb the baryon
number density.

We will therefore request that the binding energy be negative, namely WJ 6=0 <

0. As we will show below in Sec. C.5.5 this condition leads to a minimum
mass for the neutron star under which the star becomes gravitationally un-
bound.
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C.5.4. Structure of uniformly rotating neutron stars

In this section we show the results of the integration of the Hartle equations
for the globally and locally charge neutrality neutron stars constructed in
(Belvedere et al., 2012); see e.g. Fig. C.24. Following Belvedere et al. (2012),
we adopt, as an example, globally neutral neutron stars with a density at the
edge of the crust equal to the neutron drip density, namely ρcrust = ρdrip ≈
4.3 × 1011 g cm−3.

Secular instability boundary

In Fig. C.26 we show the mass-central density curve for globally neutral neu-
tron stars in the region close to the axisymmetric stability boundaries. Specif-
ically we show some J-constant sequences to show that indeed along each
of these curves there exist a maximum mass point (turning point). The line
joining all the turning points defines the secular instability limit. In Fig. C.26
the axisymmetric stable zone is on the left side of the instability line.

3.5 4.5 5.5 6.5
ρ(0)/ρnuc

2.5

2.6

2.7

M
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t/
M

⊙
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J = 0.2
J = 0.5
J = 0.7
J = 1.0
J = 1.2
J = 1.3
Keplerian
Secular Inst.

Figure C.26.: Total mass versus central density of globally neutral neutron
stars. The continuous line represents the configuration with Keplerian an-
gular velocity, the dashed line represents the static configuration, the dotted-
dashed lines represent the J-constant sequences (in units of 1011 cm2). The
gray line joins all the turning points of the J-constant sequences, so it defines
the secular instability boundary.

Clearly we can transform the mass-central density relation in a mass-radius
relation. In Fig. C.27 we show the mass versus the equatorial radius of the
neutron star that correspond to the range of densities of Fig. C.26. In this plot
the stable zone is on the right side of the instability line.

We can construct a fitting curve joining the turning points of the J-constant
sequences line which determines the secular axisymmetric instability bound-
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Figure C.27.: Total mass versus equatorial radius of globally neutral neutron
stars. The continuous line represents the configuration with Keplerian an-
gular velocity, the dashed line represents the static configuration, the dotted-
dashed lines represent the J-constant sequences (in units of 1011 cm2). The
gray curve joins all the turning points of the J-constant sequences, so it de-
fines the secular instability boundary.

ary. Defining mmax,0 ≡ MJ=0
max/M⊙ as the maximum stable mass (in solar

mass units) of the non-rotating neutron star constructed with the same EOS
and Req,10 as the equatorial radius in units of 10 km, we find that for globally
neutral configurations the instability line can be fitted by the function

[

M(Req)

M⊙

]

GCN

= 21.22 − 6.68 mGCN
max,0 −

9.29 − 3.36mGCN
max,0

0.12R6.08
eq,10

, (C.5.25)

in the appropriate range of radii, 1.24 . Req,10 . 1.27, and mGCN
max,0 ≈ 2.67.

The turning points of locally neutral configurations in the mass-central
density plane are shown in Fig. C.28. the corresponding mass-equatorial ra-
dius plane is plotted in Fig. C.29.

As for globally neutral neutron stars, the secular instability line can be fit-
ted with some function that in this case reads

[

M(Req)

M⊙

]

LCN

= 20.51 − 6.35mLCN
max,0 −

4.13 − 1.48mLCN
max,0

0.051R5.71
eq,10

, (C.5.26)

where now 1.27 . Req,10 . 1.30, and mLCN
max,0 ≈ 2.70.
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Figure C.28.: Total mass versus central density of locally neutral neutron
stars. The continuous line represents the configuration with Keplerian an-
gular velocity, the dashed line represents the static configuration, the dotted-
dashed lines represent the J-constant sequences (in units of 1011 cm2). The
gray line joins all the turning points of the J-constant sequences, so it defines
the secular instability boundary.
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Figure C.29.: Total mass versus equatorial radius of locally neutral neutron
stars. The continuous line represents the configuration with Keplerian an-
gular velocity, the dashed line represents the static configuration, the dotted-
dashed lines represent the J-constant sequences (in units of 1011 cm2). The
gray curve joins all the turning points of the J-constant sequences, so it de-
fines the secular instability boundary.
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Keplerian mass-shedding sequence

We turn now to analyze in detail the behavior of the different properties of
the neutron star along the Keplerian mass-shedding sequence. For the sake
of reference we have indicated in the following plots stars with the selected
masses M ≈ [1, 1.4, 2.04, 2.5] M⊙. The cyan star indicates the fastest observed
pulsar, PSR J1748–2446ad Hessels et al. (2006a), with a rotation frequency of
f ≈ 716 Hz. The gray filled circles indicate the last stable configuration of the
Keplerian sequence, namely the point where the Keplerian and the secular
stability boundaries cross each other.

Maximum mass and rotation frequency The total mass of the rotating star
is computed from Eq. (C.5.13). In Fig. C.30 is shown the total mass of the neu-
tron star as a function of the rotation frequency for the Keplerian sequence. It
is clear that for a given mass, the rotational frequency is higher for a globally
neutral neutron star with respect to the locally neutral one.

0.6 1.0 1.4 1.8 2.2
f (kHz)

0
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M
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⊙

GCN
LCN
∼1.0M⊙∼1.4M⊙∼2.0M⊙∼2.5M⊙
J1748−2446ad
Secular Inst.

Figure C.30.: Total mass versus rotational Keplerian frequency both for the
global (red) and local (blue) charge neutrality cases.

The maximum neutron star mass is obtained at the crossing point between
the secular instability and the Keplerian limit. For the global charge neutral-
ity case we obtain MJ 6=0 ≈ 2.76 M⊙ with a corresponding equatorial radius
Req ≈ 12.66 km. This implies an increase in mass and radius of 3.37% and
2.26% respectively with respect to the non-rotating maximum mass config-

uration, MJ=0
max ≈ 2.67M⊙ and R ≈ 12.38 km, obtained in (Belvedere et al.,

2012). For the local charge neutrality configurations, the maximum mass of
rotating neutron stars is MJ 6=0 ≈ 2.79 M⊙ and the corresponding m Req ≈
13.04 km. Thus, for this case the increase with respect the maximum mass
of non-rotating neutron stars is 3.33% and 2.6% in radius; we recall that for
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this nuclear EOS the critical mass and corresponding radius of locally neutral

neutron stars are MJ=0
max ≈ 2.7 M⊙ and R ≈ 12.71 km.

These maximum mass configurations have at the same time the maximum
possible rotation rates. In the global charge neutrality we obtain f GCN

max =≈
1.97 kHz or equivalently a minimum rotation period PGCN

min ≈ 0.51 ms. For

locally neutral neutron stars we obtain f LCN
max =≈ 1.89 kHz, or PGCN

min ≈ 0.53
ms.

Minimum mass and rotation frequency We compute now the gravitational
binding energy of the neutron star from Eq. (C.5.23) as a function of the cen-
tral density and angular velocity. We make this for central densities higher
than the nuclear density, thus we impose the neutron star to have a supranu-
clear hadronic core. In Fig. C.31 we plot the binding energy W of the neutron
star as a function of the neutron star mass along the Keplerian sequence. For
the sake of comparison we show also the binding energy of the non-rotating
configurations.
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Figure C.31.: Neutron star binding energy versus total mass along the the Ke-
plerian sequence both for the global (red) and local (blue) charge neutrality.

We found that the globally neutral neutron stars studied here are bound
up to some minimum mass at which the gravitational binding energy van-
ishes. For the static and Keplerian configurations we find that WJ=0 = 0, and
WJ 6=0 = 0 respectively at

MJ=0
min ≈ 0.17 M⊙ , MJ 6=0

min =≈ 0.18 M⊙, (C.5.27)

while in the local charge neutrality case all the configurations are bound for
the present EOS (see Fig. C.31).

The corresponding plot of W as a function of the central density is shown
in Fig. C.32.
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Figure C.32.: Neutron star binding energy versus central density along the
Keplerian sequence both for the global (red) and local (blue) charge neutral-
ity.

Interestingly, the rotation frequency of the configuration with the mini-

mum mass, MJ 6=0
min ≈ 0.18 M⊙, has a rotation frequency

fmin = f (MJ 6=0
min) ≈ 0.72 kHz , (C.5.28)

that is the minimum rotation rate that globally neutral configurations can
have along the Keplerian sequence in order to be gravitationally bound. The
above value is slightly higher than the frequency of the fastest observed pul-
sar, PSR J1748–2446ad, which has a frequency of 716 Hz Hessels et al. (2006a).
This implies that PSR J1748–2446ad cannot be rotating at the Keplerian rate.
Details can be seen in Fig. C.33 where we show the dependence of W on the
rotation frequency.

C.5.5. Neutron star mass-radius relation

We summarize now the above results in form of a new mass-radius relation
of uniformly rotating neutron stars, including the Keplerian and secular in-
stability boundary limits. In Fig. C.34 we show a summary plot of the equilib-
rium configurations of rotating neutron stars. In particular we show the total
mass versus the equatorial radius: the dashed lines represent the static (non-
rotating, J = 0) sequences, while the solid lines represent the corresponding
Keplerian mass-shedding sequences. The secular instability boundaries are
plotted in pink-red and light blue color for the global and local charge neu-
trality cases, respectively.

It can be seen that due to the deformation for a given mass the radius of
the rotating case is larger than the static one, and similarly the mass of the
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Figure C.33.: Neutron star binding energy versus frequency for the Keplerian
sequence both for the global (red) and local (blue) charge neutrality neutron
stars.
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Figure C.34.: Total mass versus total equatorial radius for the global (red)
and local (blue) charge neutrality cases. The dashed curves represent the
static configurations, while the solid lines are the uniformly rotating neutron
stars. The pink-red and light-blue color lines define the secular instability
boundary for the globally and locally neutral cases, namely the lines given
by Eqs. (C.5.25) and (C.5.25), respectively.

rotating star is larger than the corresponding static one. It can be also seen
that the configurations obeying global charge neutrality are more compact
with respect to the ones satisfying local charge neutrality.
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C.5.6. Deformation of the neutron star

In this section we explore the deformation properties of the neutron star. The
behavior of the eccentricity, the rotational to gravitational energy ratio, as
well as the quadrupole moment, are investigated as a function of the mass,
density, and rotation frequency of the neutron star.

Eccentricity

A measurement of the level of deformation of the neutron star can be esti-
mated with the eccentricity

ǫ =

√

1 −
(

Rp

Req

)2

, (C.5.29)

where Rp and Req are the polar and equatorial radii of the configuration.
Thus, ǫ = 0 defines the spherical limit and 0 < ǫ < 1 correspond to oblate
configurations.

In Fig. C.35, we show the behavior of the total eccentricity (C.5.29), as a
function of the neutron star frequency.
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Figure C.35.: Eccentricity (C.5.29) versus frequency for the Keplerian se-
quence both for the global (red) and local (blue) charge neutrality cases.

We can see that in general the globally neutral neutron star has an eccen-
tricity larger than the one of the locally neutral configuration for almost the
entire range of frequencies and the corresponding central densities, except
for the low frequencies f . 0.8 kHz and central densities ρ(0) . 1.3ρnuc;
see also Fig. C.36. Starting from low values of the frequency f and central
density ρ(0), the neutron stars increase their oblateness, and after reaching
the maximum value of the eccentricity, the compactness increases and the
configurations tend to a more spherical shape.
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Figure C.36.: Eccentricity (C.5.29) versus central density for the Keplerian se-
quence both for the global (red) and local (blue) charge neutrality cases.

Rotational to gravitational energy ratio

Other property of the star related to the centrifugal deformation of the star
is the ratio between the gravitational energy and the rotational energy of the
star. The former is given by Eq. (C.5.23) where as the latter is

T =
1

2
IΩ2 , (C.5.30)

where I is the neutron star moment of inertia, which can be computed from
the relation

I =
J

Ω
, (C.5.31)

with J the angular momentum given by Eq. (C.5.11) and the angular veloc-
ity by Eq. (C.5.12). Since J is a first-order quantity and so proportional to
Ω, the moment of inertia given by Eq. (C.5.31) does not depend on the an-
gular velocity. This implies that I corresponds to the moment of inertia of
the non-rotating unperturbed seed object. Thus, in order to account for both
frame dragging and quadrupole deformation effects, the perturbation has to
be extended to O(Ω3).

In Figs. C.37 and C.38 we show the behavior of the total momentum of
inertia, i.e. I = Icore + Icrust, with respect to the total mass and central density
for both globally and locally neutral non-rotating neutron stars.

We can see from Figs. C.37 and C.38 that the total moment of inertia is
quite similar for both global and local charge neutrality cases. This is due to
the fact that the globally neutral configurations differ from the locally ones
mostly in the structure of the crust, which however contributes much less
than the neutron star core to the total moment of inertia (see below in section
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Figure C.37.: Total moment of inertia versus total mass both for globally (red)
and locally (blue) neutral non-rotating neutron stars.
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Figure C.38.: Total moment of inertia versus central density for globally (red)
and locally (blue) neutral non-rotating neutron stars.
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C.5.7).

We show in Fig. C.39 the ratio T/|W| as a function of the mass of the neu-
tron stars along the Keplerian sequence. In Fig. C.39 instead we plot the de-
pendence of the ratio on the central density and in Fig. C.41 on the Keplerian
frequency.
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Figure C.39.: Rotational to gravitational binding energy ratio versus total
mass along the the Keplerian sequence both for the global (red) and local
(blue) charge neutrality.
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Figure C.40.: Rotational to gravitational binding energy ratio versus central
density along the the Keplerian sequence both for the global (red) and local
(blue) charge neutrality.
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Figure C.41.: Rotational to gravitational binding energy ratio versus fre-
quency along the Keplerian sequence both for the global (red) and local (blue)
charge neutrality cases.

Quadrupole moment

In Figs. C.42 and C.43 we show the quadrupole moment, Q given by Eq. (C.5.16),
as a function of the total mass and central density for both globally and lo-
cally neutral neutron stars along the Keplerian sequence. The dependence of
Q on the rotation frequency is shown in Fig. C.44. We have normalized the
quadrupole moment Q to the quantity MR2 of the non-rotating configuration
with the same central density.
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Figure C.42.: Total quadrupole moment versus total mass along the Keplerian
sequence both for the global (red) and local (blue) charge neutrality cases.
The quadrupole moment Q is here in units of the quantity MR2 of the non-
rotating configuration with the same central density.
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Figure C.43.: Total quadrupole moment versus central density along the Ke-
plerian sequence both for the global (red) and local (blue) charge neutrality
cases. The quadrupole moment Q is here in units of the quantity MR2 of the
non-rotating configuration with the same central density.
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Figure C.44.: Total quadrupole moment versus frequency along the Keplerian
sequence both for the global (red) and local (blue) charge neutrality cases.
The quadrupole moment Q is here in units of the quantity MR2 of the non-
rotating configuration with the same central density.
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C.5.7. Core and crust moment of inertia

In order to study the single contribution of the core and the crust to the mo-
ment of inertia of the neutron star, we shall use the integral expression for the
moment of inertia. Multiplying Eq. (C.5.10) by r3 and making the integral of
it we obtain2

I(r) = −2

3

∫ r

0
r3 dj

dr

ω̄(r)

Ω
dr =

8π

3

∫ r

0
r4(E+ P)e(λ−ν)/2 ω̄(r)

Ω
dr , (C.5.32)

where the integration is carried out in the region of interest. Thus, the con-
tribution of the core, Icore, is obtained integrating from the origin up to the
radius of the core, and the contribution of the crust, Icrust, integrating from
the core to the total radius of the neutron star.

We show in Figs. C.45 and C.46 the ratio between the moment of inertia of
the crust and the one of the core as a function of the total mass and central
density, respectively, for both the globally and locally neutral configurations.
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Figure C.45.: Crust to core moment of inertia ratio versus the total mass of
both globally and locally neutral non-rotating neutron stars.

C.5.8. Observational constraints

In Fig. C.47 we show the above mass-radius relations together with the most
recent and stringent constraints indicated by Trümper (2011):

1. The largest mass. Until 2013 it was given by the mass of the 3.15 millisec-
ond pulsar PSR J1614-2230 M = 1.97 ± 0.04M⊙ Demorest et al. (2010a),
however the recent reported mass 2.01± 0.04M⊙ for the neutron star in

2It is clear that this expression approaches, in the weak field limit, the classic Newtonian
expression INewtonian = (8π/3)

∫

r4ρ dr where ρ is the mass-density (Hartle, 1967).
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Figure C.46.: Crust to core moment of inertia ratio versus the central density
both globally and locally neutral non-rotating neutron stars.

the relativistic binary PSR J0348+0432 (Antoniadis et al., 2013b) puts
an even more stringent request to the nuclear EOS. Thus, the maxi-
mum mass of the neutron star has to be larger than the mass of PSR
J0348+0432, this constraint is represented by the orange-color stars in
Fig. C.47.

2. The largest radius. It is given by the lower limit to the radius of RX J1856-
3754. The lower limit to the radius as seen by an observer at infinity
is R∞ = R[1 − 2GM/(c2R)]−1/2 > 16.8 km, as given by the fit of the
optical and X-ray spectra of the source Trümper et al. (2004); so in the
mass-radius relation this constraint reads 2GM/c2 > R − R3/(Rmin

∞ )2,
with Rmin

∞ = 16.8 km. We represent this constraint with the dotted-
dashed curve in Fig. C.47.

3. The maximum surface gravity. Using a neutron star of M = 1.4M⊙ to
fit the Chandra data of the low-mass X-ray binary X7, it turns out that

the radius of the star satisfies at 90% confidence level, R = 14.5+1.8
−1.6 km,

which gives R∞ = [15.64, 18.86] km, respectively Heinke et al. (2006).
Using the same formula as before, 2GM/c2 > R − R3/(Rmin

∞ )2, we ob-
tain the dotted curves shown in Fig. C.47.

4. The highest rotation frequency. Given by the frequency of PSR J1748–
2446ad, 716 Hz Hessels et al. (2006a). We constructed the constant
frequency sequence f = 716 Hz for both globally (dashed pink) and
locally (dashed light blue) neutral neutron stars and indicated with a
cyan-color star the point where these curves cross the corresponding
Keplerian sequence (see Fig. C.47).
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It is worth to analyze with some detail the latter constraint given by the
highest measured rotation rate of a pulsar. Lattimer and Prakash Lattimer
and Prakash (2004a) claimed that the Keplerian frequency of a neutron star,
taking into account the effects of general relativity and deformation can be
computed independently on the EOS, with the simple formula

f LP
K = 1045

(

M

M⊙

)1/2 (10 km

R

)3/2

Hz , (C.5.33)

where M and R are the mass and radius of the non-rotating neutron star. This
formula in principle should be valid for neutron star masses not very close to
the maximum stable mass Lattimer and Prakash (2004a).

The Eq. (C.5.33) is often used to impose a constraint to the neutron star
mass-radius relation by replacing f LP

K with the frequency 716 Hz of PSR J1748–
2446ad (see e.g. Trümper (2011)), namely

M =

(

716

1045

)2 ( R

10 km

)3

M⊙ ≈ 0.47

(

R

10 km

)3

M⊙ . (C.5.34)

This constraint is represented by the gray dashed curve in Fig. C.47. One
should therefore expect the dashed curve to pass over the cyan-color stars,
which represent the actual position of PSR J1748-2446ad assuming it is at
the Keplerian limit. It is clear that Eq. (C.5.34) is very far from representing
correctly the real position of the star on the Keplerian curve, and this happens
for both globally and locally neutral neutron stars.

Specifically, we obtained that if PSR J1748-2446ad is rotating at the Keple-
rian rate, it should have a mass and equatorial radius of 0.17 M⊙ and 10.61
km for the globally neutral neutron star. As we have shown the minimum
mass on the Keplerian sequence is Mmin = 0.18 M⊙, see Eq. (C.5.27), which
implies that PSR J1748–2446ad actually does not impose any constraint to this
mass-radius relation. The frequency of PSR J1748–2446ad is just too low to
be on the Keplerian sequence and be bound. For the locally neutral configu-
ration we found 0.48 M⊙ and 14.8 km, respectively for mass and equatorial
radius; we can see from Fig. C.47 that instead Eq. (C.5.34) would predict for
the same radius a mass M ∼ 1.5 M⊙.

The reason for this result is as follows. Eq. (C.5.21) can be written in terms
of the non-rotating mass and radius of the neutron star as

Ω
J 6=0
K = β

√

GMJ=0

R3
, (C.5.35)

where β is some coefficient to be determined. We find that β has a non-trivial
dependence on the central density of the star, in fact ranging from 0.72 to
0.91 for central densities from 1.08ρnuc to 10.56ρnuc, both for global and local
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M(M⊙) RJ=0 RJ 6=0
eq

1.40 12.313 13.943
1.93 12.959 14.109
1.97 12.991 14.104
2.01 13.020 14.097
2.05 13.046 14.087

Table C.4.: Radii (in km) for a canonical neutron star of M = 1.4M⊙ and
for PSR J1614–2230 Demorest et al. (2010a), M = 1.97 ± 0.04M⊙, and PSR
J0348+0432 (Antoniadis et al., 2013b), M = 2.01 ± 0.04M⊙. These configura-
tions are computed under the constraint of global charge neutrality and for a
density at the edge of the crust equal to the neutron drip density. The nuclear
parameterizations NL3 has been used.

charge neutrality. This dependence is caused by the effects of general rela-
tivity, the angular momentum, and the quadrupole deformation mostly ow-
ing to the presence of the factor [1 − jF1(r) + j2F2(r) + qF3(r)] in Eq. (C.5.21).
Thus, we have found that Eq. (C.5.33) and consequently Eq. (C.5.34) are not
applicable, in general.

Similarly to what presented in (Rueda et al., 2011) for the static neutron
stars and introduced by Trümper (2011), the above observational constraints
show a preference on stiff EOS that provide highest maximum masses for
neutron stars. Taking into account the above constraints, the radius of a
canonical neutron star of mass M = 1.4M⊙ is strongly constrained to R ≥ 12
km, disfavoring at the same time strange quark matter stars. It is evident
from Fig. C.47 that mass-radius relations for both the static and the rotating
case presented here, are consistent with all the observational constraints. In
Table C.4 we show the radii predicted by our mass-radius relation both for
the static and the rotating case for a canonical neutron star as well as for the
most massive neutron stars discovered, namely, the millisecond pulsar PSR
J1614–2230 Demorest et al. (2010a), M = 1.97 ± 0.04M⊙, and the most recent
PSR J0348+0432, M = 2.01 ± 0.04M⊙ (Antoniadis et al., 2013b).

C.5.9. Concluding remarks

We have constructed equilibrium configurations of uniformly rotating neu-
tron stars in both the global charge neutrality and local charge neutrality
cases, generalizing our previous work (Belvedere et al., 2012). To do this we
have applied the Hartle’s method to the seed static solution obtained from
the integration of the Einstein-Maxwell-Thomas-Fermi equations (Belvedere
et al., 2012). We calculated the mass, angular momentum, quadrupole mo-
ment, polar and equatorial radii and eccentricity, as functions of the central
density and the rotation angular velocity of the neutron star.
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Figure C.47.: Observational constraints on the mass-radius relation given by
Trümper (2011) and the theoretical mass-radius relation presented in this
work in Fig. C.34. The red lines represent the configuration with global
charge neutrality, while the blue lines represent the configuration with lo-
cal charge neutrality. The pink-red line and the light-blue line represent the
secular axisymmetric stability boundaries for the globally neutral and the lo-
cally neutral case, respectively. The red and blue solid lines represent the
Keplerian sequences and the red and blue dashed lines represent the static
cases presented in (Belvedere et al., 2012).
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Global Neutrality Local Neutrality

MJ=0
max(M⊙) 2.67 2.69

MJ 6=0
max(M⊙) 2.76 2.79

fmax (kHz) 1.97 1.89
Pmin (ms) 0.51 0.53

MJ=0
min(M⊙) 0.17 –

MJ 6=0
min(M⊙) 0.18 –

f K
min (kHz) 0.20 –

Table C.5.: Maximum mass, maximum frequency, minimum period, mini-
mum mass of globally and locally neutral neutron stars.

The Keplerian mass-shedding limit and the secular axisymmetric instabil-
ity have been analyzed for the construction of the region of stability of ro-
tating neutron stars. We have given fitting curves of the secular instability
boundary in Eqs. (C.5.25) and (C.5.26) for global and local charge neutrality,
respectively. With this analysis we have established in section C.5.4 the max-
imum mass and maximum rotation frequency of the neutron star. We com-
puted in section C.5.4 the gravitational binding energy of the configurations
as a function of the central density and rotation rate. We did this for cen-
tral densities higher than the nuclear one, so imposing that the neutron star
has a supranuclear hadronic core. We found that there is a minimum mass
under which the neutron star becomes gravitationally unbound. To this con-
figuration it is associated a minimum frequency with which the start should
rotate; see Eq. (C.5.28). We gave these values in particular for the Keple-
rian sequence. We found that locally neutral neutron stars with supranuclear
cores remained always bound for the present EOS. In Table C.5 we summa-
rize all these results.

We finally analyzed in section C.5.8 the current observational constraints
on the mass-radius relation of neutron stars. We found that the formula given
by Lattimer and Prakash (2004a), see Eqs. (C.5.33) and (C.5.34), to compute
the Keplerian limit of a neutron star of given mass and radius is not valid in
general. Assuming that PSR J1748–2446ad rotates at the Keplerian rate we
obtained that it should have a mass of 0.17 M⊙ and an equatorial radius of
10.61 km, for the global charge neutrality case. For locally neutral configu-
rations, we obtained 0.48 M⊙ and 14.8 km, respectively for mass and equa-
torial radius. Instead, Eq. (C.5.34) would predict for the same radius a mass
M ∼ 1.5 M⊙ (see Fig. C.47).

This implies that PSR J1748–32446ad does not constrain the mass-radius
relation since it cannot rotate with the Keplerian angular velocity, otherwise
it would not be gravitationally bound. On the other hand, if its frequency
of 716 Hz were lower but close to the Keplerian one, it would imply that
PSR J1748–32446ad is the less massive neutron star ever observed. Although
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locally neutral neutron stars hold bound along the entire Keplerian sequence,
we have shown that PSR J1748–2446ad represents a much weaker constraint
to their mass-radius relation to what previously thought.

It would be interesting to analyze the generality of the above results since
the most recent measurement of the mass PSR J0348+0432, M = 2.01± 0.04M⊙
(Antoniadis et al., 2013b), favors stiff nuclear EOS as the one used here.

C.5.10. Supplementary material

The Hartle solution and equatorial circular orbits

The Hartle-Thorne vacuum solution It is possible to write the Hartle-Thorne
metric given by eq. C.5.6 in an analytic closed-form in the exterior vacuum
case as function of the total mass M, angular momentum J, and quadrupole
moment Q of the rotating star.The angular velocity of local inertial frames
ω(r), proportional to Ω, and the functions h0, h2, m0, m2, k2, proportional
to Ω2, are derived from the Einstein equations (see Hartle, 1967; Hartle and
Thorne, 1968, for details). Following this prescriptions the eq. C.5.6 become:

ds2 =

(

1 − 2M

r

) [

1 + 2k1P2(cos θ)

+ 2

(

1 − 2M

r

)−1 J2

r4
(2 cos2 θ − 1)

]

dt2

+
4J

r
sin2 θdtdφ −

(

1 − 2M

r

)−1

×
[

1 − 2

(

k1 −
6J2

r4

)

P2(cos θ)

− 2

(

1 − 2M

r

)−1 J2

r4

]

dr2

− r2[1 − 2k2P2(cos θ)](dθ2 + sin2 θdφ2), (C.5.36)

where

k1 =
J2

Mr3

(

1 +
M

r

)

+
5

8

Q − J2/M

M3
Q2

2(x) ,

k2 = k1 +
J2

r4
+

5

4

Q − J2/M

M2r
√

1 − 2M/r
Q1

2(x) ,
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and

Q1
2(x) = (x2 − 1)1/2

[

3x

2
ln

(

x + 1

x − 1

)

− 3x2 − 2

x2 − 1

]

,

Q2
2(x) = (x2 − 1)

[

3

2
ln

(

x + 1

x − 1

)

− 3x3 − 5x

(x2 − 1)2

]

,

are the associated Legendre functions of the second kind, being P2(cos θ) =
(1/2)(3 cos2 θ − 1) the Legendre polynomial, and where it has been effectu-
ated the re-scaling x = r/M − 1. The constants M, J and Q are the total mass,
angular momentum and mass quadrupole moment of the rotating object, re-
spectively. This form of the metric corrects some misprints of the original
paper by Hartle and Thorne (1968) (see also Berti et al. (2005) and Boshkayev
et al. (2012a)). To obtain the exact numerical values of M, J and Q, the ex-
terior and interior metrics have to be matched at the surface of the star. It
is worthy underline that in the terms involving J2 and Q, the total mass M
can be substituted by MJ=0 since δM is already a second order term in the
angular velocity.

Angular velocity of equatorial circular orbits It is possible to obtain the
analytical expression for the angular velocity Ω given by Eq. (C.5.21) with
respect to an observer at infinity, taking into account the parameterization
of the four-velocity u of a test particle on a circular orbit in equatorial plane
of axisymmetric stationary spacetime, regarding as parameter the angular
velocity Ω itself:

u = Γ[∂t + Ω∂φ] , (C.5.37)

where Γ is a normalization factor such that uαuα = 1. Normalizing and ap-
plying the geodesics conditions we get the following expressions for Γ and
Ω = uφ/ut

Γ = ±(gtt + 2Ωgtφ + Ω2gφφ)
−1/2 , (C.5.38)

gtt,r + 2Ωgtφ,r + Ω2gφφ,r = 0 . (C.5.39)

Thus, the solution of Eq. (C.5.38) can be written as

Ω±
orb(r) =

uφ

ut
=

−gtφ,r ±
√

(gtφ,r)2 − gtt,rgφφ,r

gφφ,r
, (C.5.40)

where +/− stands for co-rotating/counter-rotating orbits, uφ and ut are the
angular and time components of the four-velocity respectively, and a colon
stands for partial derivative with respect to the corresponding coordinate.
To determine the mass shedding angular velocity (the Keplerian angular ve-
locity) of the neutron stars, we need to consider only the co-rotating orbit, so
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from here and thereafter we take into account only the plus sign in Eq. (C.5.38)
and we write Ω+

orb(r) = Ωorb(r).
For the Hartle external solution given by Eq. (C.5.36) we obtain Eq. (C.5.21)

with

F1 =

(

M

r

)3/2

, F =
15(r3 − 2M3)

32M3
ln

r

r − 2M
,

F2 =
48M7 − 80M6r + 4M5r2 − 18M4r3

16M2r4(r − 2M)

+
40M3r4 + 10M2r5 + 15Mr6 − 15r7

16M2r4(r − 2M)
+ F ,

F3 =
6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4

16M2r(r − 2M)/5
− F .

The maximum angular velocity possible for a rotating star at the mass-
shedding limit is the Keplerian angular velocity evaluated at the equator (r =
Req), i.e.

Ω
J 6=0
K = Ωorb(r = Req) . (C.5.41)

In the static case i.e. when j = 0 hence q = 0 and δM = 0 we have the
well-known Schwarzschild solution and the orbital angular velocity for a test

particle Ω
J=0
K on the surface (r = R) of the neutron star is given by

Ω
J=0
K =

√

MJ=0

R3
MJ=0

. (C.5.42)
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C.6. On the surface tension of neutron star matter

C.6.1. Introduction

The relativistic mean field theory (RMFT) of nuclear matter and Thomas-
Fermi model have attracted great attention during the last few decades. The
simplest relativistic model of nuclear matter that accounts for the saturation
properties of symmetric nuclear matter includes one scalar field which gives
the attractive long-range part of the nuclear force and one vector field which
gives the repulsive short-range; these two meson fields interact with nucle-
ons through Yukawa couplings. This so-called σ-ω model has been consid-
ered by Duerr (1956), Miller and Green (1972), and later by Walecka (1974).
The relevance of such interactions and relativistic effects in the determination
of the equation of state and in the properties of nuclear matter such as com-
pressibility and the nucleon effective mass was clearly pointed out in (Miller
and Green, 1972; Boguta and Rafelski, 1977; Boguta and Bodmer, 1977). In
(Lee and Wick, 1974; Lee, 1975; Lee and Margulies, 1975), Lee and collabora-
tors considered a model with only one scalar field with self-interaction up to
quartic order based on the σ-model. They introduced the repulsive contribu-
tion of nuclear force through a hard-sphere model that artificially increases the
nucleon Fermi momentum, emulating the effect of a massive vector field cou-
pled to nucleons. The importance of allowing scalar meson self-interactions
(cubic and quartic terms in the scalar field potential) as adjustable parame-
ters to reproduce physical nuclear properties and not due to renormalization
(see e.g. Walecka, 1974) was stressed in (Boguta and Bodmer, 1977; Boguta
and Stocker, 1983; Boguta and Moszkowski, 1983; Boguta, 1989). As recog-
nized in (Boguta and Bodmer, 1977), it is necessary to introduce additional
isovector fields to obtain the agreement with the empirical symmetry energy
of nuclear matter at the saturation density. The model contained Dirac nucle-
ons together with a self-interacting scalar σ and a vector meson ω as well as
an isovector meson ρ has been widely used to the end.

With a very limited number of parameters, the RMFT has been shown to
be able to give a quantitative description of a variety of nuclear properties
(Serot, 1992; Ring, 1996; Bender et al., 2003). Recently, taking into account the
electromagnetic and weak interactions, the RMFT with the Thomas-Fermi
approximation has gained remarkable successes in understanding the inho-
mogeneous structures and properties of low-density nuclear matter which
is realized in the supernovae core or in the crust of neutron stars (see e.g.
Maruyama et al., 2005; Avancini et al., 2008; Okamoto et al., 2012; Grill et al.,
2012). The surface properties of nuclear matter such as surface tension and
curvature energy play an important role in the description of these struc-
tures and also in other phenomena, for instance saddle-point configurations
in nuclear fission, fragment distributions in heavy-ion collisions, and phase
transition between different phases of nuclear matter.
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The nuclear surface properties at saturation density have been analyzed
for a long time in the semi-infinite nuclear matter model using RMFT or
effective field theory (Furnstahl et al., 1996, 1997, 1998; Serot and Walecka,
1997) with the Thomas-Fermi approximation or Hartree-Fock approximation
(Boguta and Bodmer, 1977; Brack et al., 1985; Sharma et al., 1991; von-Eiff
et al., 1994b,a, 1995; Centelles et al., 1998; del Estal et al., 1999; Patra et al.,
2002; Danielewicz and Lee, 2009). In the supranuclear regime realized in the
interior of neutron stars, there is the possibility that phase transition occurs
from hadronic to pion and kaon condensed phase as well as to quark matter
phase (see e.g. Glendenning, 1992, 2001; Glendenning and Schaffner-Bielich,
1999). The surface tension of the transition layer between the hadronic and
kaon condensed or quark matter phases has been calculated in the semi-
infinite matter model and the surface tension plays an important role for the
structure of the phase transition region (Christiansen et al., 2000; Alford et al.,
2001). In the low-density (density smaller than the saturation density) case,
as pointed out in (Ravenhall et al., 1983), the shape of constituent nuclei is ex-
pected to change from spherical droplet to the so-called nuclear pasta struc-
tures such as cylindrical rod, slab, cylindrical tube, and spherical bubble. The
surface tensions of nuclear pasta structures have been investigated and it has
pointed out that the pasta phase strongly depends on the value of the surface
tension (Maruyama et al., 2005; Avancini et al., 2008; Grill et al., 2012).

The importance of the extension of the Thomas-Fermi approximation to
general relativistic systems such as neutron stars was emphasized in (Ro-
tondo et al., 2011d). We showed there that the traditionally imposed condi-
tion of local charge neutrality is not consistent with the field equations and
microphysical equilibrium for a system of neutrons, protons, and electrons
in β-equilibrium and obeying relativistic quantum statistics. Thus, only the
condition of global but not local charge neutrality can be imposed. This leads
to the appearance of gravito-polarization in the cores of neutron stars. The
generalization of such a work to the case where the strong interactions be-
tween nucleons are accounted for was presented in (Rueda et al., 2011). Both
the Thomas-Fermi approximation and RMFT were used. It was shown that
the Einstein-Maxwell-Thomas-Fermi system of equations within RMFT su-
persede the traditional Tolman-Oppenheimer-Volkoff (Tolman, 1939; Oppen-
heimer and Volkoff, 1939) equations used for the construction of neutron star
configurations.

Realistic neutron star configurations including all the interactions between
particles and the presence of a crust below nuclear density, were constructed
in (Belvedere et al., 2012) by solving numerically the Einstein-Maxwell-Thomas-
Fermi equations fulfilling the condition of global charge neutrality. As pointed
out in (Belvedere et al., 2012), the self-consistent solution of these new equa-
tions of equilibrium leads to the existence of a transition layer between the
core and the crust of the star. This is markedly different from the neutron star
structure obtained from the solution of the TOV equations imposing local
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charge neutrality (Haensel et al., 2007), leading to a new mass-radius relation
of neutron stars. Such core-crust transition layer occurs near the nuclear satu-
ration density. The core (bulk region) inside this transition layer is a hadronic
phase and the crust outside this transition is composed by the nuclei lattice
and the ocean of relativistic degenerate electrons and possibly neutrons at
densities below nuclear saturation and larger than the estimated neutron drip
value ∼ 4.3 × 1011 g cm−3. Inside the transition region it is developed a very
strong electric field overwhelming the critical value for vacuum break-down
Ec = m2

e c3/(eh̄), where me is the electron rest-mass. The e+e− pair creation
out from vacuum is however forbidden in the system due to the Pauli block-
ing of degenerate electrons.

In this article we study the detailed structure of this transition layer formed
near the nuclear saturation density. We calculate all the contributions to the
surface tension as well as the electrostatic energy stored in this core-crust
layer. We analyze the stability of these systems under the Bohr-Wheeler fis-
sion mechanism (Bohr and Wheeler, 1939). We analyze the role of the electron
contribution and compare and contrast the surface energy of these neutron
stars with the phenomenological results in nuclear physics for both ordinary
and superheavy nuclei.

The article is organized as follows. In Sec. C.6.2, we study the surface
structure and the surface tension as well as the Coulomb energy for neu-
tron star matter without the influence of the gravitational field. We formu-
late in Sec. C.6.2 the relativistic equations for a system of neutrons, protons
and electrons fulfilling strong and electromagnetic interactions as well as β-
equilibrium. In Sec. C.6.2, we use the semi-infinite matter model (Baym et al.,
1971a) to formulate the equations governing the surface tension for the tran-
sition layer of this system when the electron density is nearly equal to the
proton density in the core bulk region. In Sec. C.6.2, we calculate the sur-
face structure and solve these equations to obtain the surface tension and the
Coulomb energy at the nuclear saturation density and neglecting the pres-
ence of the crust. Then we study in Sec. C.6.2 the dependence of the surface
tension and the Coulomb energy on the baryon number density. In Sec. C.6.2,
we study the influence of fermion densities in the outside region (crust) on
the surface tension and the Coulomb energy. In Sec. C.6.3, we study the struc-
ture and the surface tension as well as the Coulomb energy for the core-crust
transition region in the presence of the gravitational field within the frame-
work of general relativity. We present the set of general relativistic equations
in Sec. C.6.3. Then in Sec. C.6.3, we calculate the surface tension for the tran-
sition layer with these equations including the presence of the gravitational
interactions. In Sec. C.6.4, we calculate the surface tension and the Coulomb
energy for the transition layer of the system when the electron density is
smaller than the proton density in the bulk region and compare the results
with known phenomenological results in nuclear physics. We finally sum-
marize and conclude in Sec. C.6.5. We use units with h̄ = c = 1 throughout
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the article.

C.6.2. Surface properties for neutron star matter without
gravitational interaction

Relativistic equations of motion

As described in (Belvedere et al., 2012), the system we consider is composed
of degenerate neutrons, protons, and electrons fulfilling global charge neu-
trality and β-equilibrium. To describe the nuclear interactions, here we em-
ploy the RMFT with the Thomas-Fermi approximation. We adopt the phe-
nomenological nuclear model of Boguta and Bodmer (1977).

Taking into account the strong, electromagnetic, and weak interactions, the
total Lagrangian density of the system is given by

L = L f +Lσ +Lω +Lρ +Lγ +Lint, (C.6.1)

where the Lagrangian densities for the free-fields are

Lγ = − 1

16π
FµνFµν, (C.6.2)

Lσ =
1

2
∇µσ∇µσ − U(σ), (C.6.3)

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, (C.6.4)

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρµ, (C.6.5)

where Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν − ∂νρµ, Fµν ≡ ∂µ Aν − ∂ν Aµ are the
field strength tensors for the vector meson field ω, isovector meson field ρ,
and electromagnetic field A respectively, ∇µ stands for covariant derivative.
The Lorenz gauge is adopted for the fields Aµ, ωµ, and ρµ.

The Lagrangian density for the three fermion species is

L f = ∑
i=e,N

ψ̄i(iγ
µ∂µ − mi)ψi, (C.6.6)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, and mi

stands for the rest-mass of each i-fermion specie.

The scalar self-interaction potential is

U(σ) =
1

2
m2

σσ2 +
1

3
g2σ3 +

1

4
g3σ4. (C.6.7)
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The interacting part of the Lagrangian density is given by

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ + eAµ J

µ
γ,e − eAµ J

µ
γ,N, (C.6.8)

where the conserved currents are

J
µ
ω = ψ̄NγµψN, (C.6.9)

J
µ
ρ = ψ̄Nτ3γµψN, (C.6.10)

J
µ
γ,e = ψ̄eγ

µψe, (C.6.11)

J
µ
γ,N = ψ̄N

(

1 + τ3

2

)

γµψN, (C.6.12)

with gσ, gω, and gρ the coupling constants of the σ, ω and ρ fields, and e
is the fundamental electric charge. τ3 is the third component of the isospin
Pauli matrices.

Within the Thomas-Fermi approximation, the position-dependent equa-
tions of motion for this system are given by

∇2V = −4πe(np − ne), (C.6.13)

∇2σ = ∂σU(σ) + gsns, (C.6.14)

∇2ω = −(gω Jω
0 − m2

ωω), (C.6.15)

∇2ρ = −(gρ J
ρ
0 − m2

ρρ), (C.6.16)

EF
e = µe − eV = constant, (C.6.17)

EF
p = µp + gωω + gρρ + eV = constant, (C.6.18)

EF
n = µn + gωω − gρρ = constant, (C.6.19)

where the notation ω0 ≡ ω, ρ0 ≡ ρ, and A0 ≡ V for the time compo-

nents of the meson fields have been introduced. Here µi =
√

(PF
i )

2 + m̃2
i

and ni = (PF
i )

3/(3π2) are the free chemical potential and number density

of the i-specie with Fermi momentum PF
i . The particle effective masses are

m̃N = mN + gsσ and m̃e = me.

The generalized chemical potential of electrons, protons, and neutrons, EF
e ,

EF
p , and EF

n , derived from the thermodynamic equilibrium conditions given
by the statistical physics of multicomponent systems, are linked by the β-
equilibrium (Boguta, 1981) of protons, neutrons, and electrons

EF
n = EF

p + EF
e . (C.6.20)
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The scalar density ns is given by the expectation value

ns = 〈ψ̄NψN〉 =
2

(2π)3 ∑
i=n,p

∫ PF
i

0
d3k

m̃N

ǫi(k)
, (C.6.21)

where ǫi(k) =
√

k2 + m̃2
i is the single particle energy. In the static case, only

the time components of the covariant currents survive, i.e. 〈ψ̄(x)γiψ(x)〉 = 0.
The nonvanishing components of the currents are

Jch
0 = np − ne, (C.6.22)

Jω
0 = nb = nn + np, (C.6.23)

J
ρ
0 = np − nn, (C.6.24)

here nb = np + nn is the baryon number density.

For the system of static uniform matter in its ground state, the source cur-
rents ψ̄ψ and ψ̄γµψ are position-independent. The derivative terms in Eqs. (C.6.14)-
(C.6.16) are zero. As a consequence, equations (C.6.14)-(C.6.16) reduce to the
simpler form

∂σU(σ) + gsns = 0, (C.6.25)

−(gω Jω
0 − m2

ωω) = 0, (C.6.26)

−(gρ J
ρ
0 − m2

ρρ) = 0. (C.6.27)

Surface tension for semi-infinite matter

As shown in (Belvedere et al., 2012), in the bulk hadronic phase of neutron
star cores, the charge separation is very small, so the electron density neb

is nearly equal to the proton density npb. For the system with neb ≃ npb

in the bulk region and obeying global charge neutrality, we can apply the
semi-infinite matter model to calculate the surface tension. We construct the
surface tension for the transition layer of this system following the method of
Baym et al. (1971a) (BBP).

In the semi-infinite matter model, one assumes a plane surface (with small
thickness compared with the bulk region size) perpendicular to the z-axis
separating two semi-infinite regions, represented here by the inside core bulk
and the outside crust. The number density of the i-specie (i = n, p, e) fermion
ni(~r) approaches the bulk density of the i-specie fermion nib as the position
z → −∞, and approaches the density in the outside region of the i-specie
fermion nio as the z → +∞. The semi-infinite matter is a one-dimensional
system, namely there is only z-dependence. To construct the surface tension,
one imagines a reference system with a sharp surface at z = ai at which
fermion densities and meson fields fall discontinuously from the bulk region
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to the outside region. Following Baym et al. (1971a), the location of the ref-
erence surface for the i-specie fermion is defined by the condition that the
reference system has the same number of the i-specie fermion as the original
system

∫ ai

z=−∞
d3r[ni(~r)− nib] +

∫ ∞

z=ai

d3r[ni(~r)− nio] = 0; i = n, p, e. (C.6.28)

Apply the definition of reference surface in Eq. (C.6.28) to neutron, proton,
and electron yields slightly different reference surface.

Similar to the definition of reference surface for fermion, we define the lo-
cation of the reference surfaces for meson fields by

∫ ai

z=−∞
d3r[Fi(~r)− Fib] +

∫ ∞

z=ai

d3r[Fi(~r)− Fio] = 0; i = σ, ω, ρ, (C.6.29)

where Fi(~r) is the time component of the i-specie meson field, Fib is the time
component of the i-specie meson field in the bulk region, and Fio is the time
component of the i-specie meson field in the outside region.

Thus, the total surface tension can be written as the sum of three contribu-
tions

σt = σN + σe + σC, (C.6.30)

where we have introduced the nuclear surface tension following the method
of BBP (Baym et al., 1971a),

σN = ∑
i=n,p,σ,ω,ρ

{

∫ ai

−∞
[ǫi(z)− ǫib]dz +

∫ ∞

ai

[ǫi(z)− ǫio]dz

}

, (C.6.31)

the electron surface tension

σe =

{

∫ ae

−∞
[ǫe(z)− ǫeb]dz +

∫ ∞

ae

[ǫe(z)− ǫeo]dz

}

, (C.6.32)

and the surface tension for the electric field as

σC =
∫ ∞

−∞
ǫE(z)dz, (C.6.33)

with ǫi(z) the energy density of the i-specie fermion or meson field, ǫib is the
energy density of the i-specie fermion or meson field in the bulk region, ǫio

is the energy density of the i-specie fermion or meson field in the outside
region, and ǫE(z) = E2/(8π) is the electrostatic energy density.

It is important to remark here that owing to the small charge separation
present in the system in the core bulk region, we can assume that the electric
field only exists in the transition layer surface. Thus we can consider the
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electrostatic energy as a surface property of the system, hence contributing to
the surface energy. This is a major difference between the present system and
an ordinary nucleus where the electrostatic energy is a volume property.

The relation between the surface energy and Coulomb energy is very im-
portant for a nucleus. As shown by Bohr and Wheeler (1939) when the con-
dition

Ecoul > 2Esur (C.6.34)

satisfies, the nucleus becomes unstable against nuclear fission, here Ecoul is
the Coulomb energy of the nucleus and Esur is the surface energy of the nu-
cleus. It is important to recall that the idealized picture of the deformed nu-
cleus of Bohr and Wheeler is represented by two positively charged spheres
joined by a nuclear attraction neck. It is thus the interplay of the Coulomb
and nuclear surface energies that determines the lower energy state. Follow-
ing this argument one could think that since we are treating here a globally
neutral system such an instability mechanism is absent. However, the con-
dition (C.6.34) can be also obtained by requesting that a uniformly charged
spheroid constructed from an axially symmetric deformation at constant vol-
ume of a uniformly charged sphere, be energetically favorable. From a care-
ful look at the derivation of Eq. (C.6.34), it can be seen that this result follows
from the fact that Coulomb energy of the unperturbed system (the sphere)
depends on the radius as Ecoul ∝ R−1. Such an inverse radius dependence
holds also in the case of a uniformly charged shell, and also in the case of
the globally neutral massive nuclear density cores studied in (Rotondo et al.,
2011e,c); which fully reflect the properties of the system studied in this work.
We then expect that the Bohr-Wheeler condition of instability against fission
given by Eq. (C.6.34) applies also to our system. Clearly such a condition is
obtained keeping the system at nuclear density and neglecting the the extra
binding effect of gravity.

In thermodynamics, the surface tension is related to the mechanical work
needed to increase a surface area,

dW = σdS, (C.6.35)

here σ is the surface tension, dS is the variation of the surface area, and dW
is the mechanical work needed to increase the surface area of the system. In
this point of view, a system with a positive surface tension has an attractive
nature, and a system with a negative surface tension has a repulsive nature.

The Eqs. (C.6.30)–(C.6.33) show that the surface tension mainly depends
on the fermion density and meson field profiles and the energy densities of
fermions and meson fields. For semi-infinite matter, the system is only z-
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dependence and Eqs. (C.6.13)–(C.6.16) become

d2V

dz2
= −4πe(np − ne), (C.6.36)

d2σ

dz2
= ∂σU(σ) + gsns, (C.6.37)

d2ω

dz2
= −(gω Jω

0 − m2
ωω), (C.6.38)

d2ρ

dz2
= −(gρ J

ρ
0 − m2

ρρ). (C.6.39)

The energy density of the i-specie fermion is given by

ǫi(z) =
1

8π2

{

PF
i

√

(PF
i )

2 + m̃2
i [2(PF

i )
2 + m̃2

i ]

−m̃4 ln
PF

i +
√

(PF
i )

2 + m̃2
i

m̃i

}

, (C.6.40)

and the energy densities of the meson fields are

ǫσ(z) =
1

2

(

dσ

dz

)2

+ U(σ), (C.6.41)

ǫω(z) =
1

2

(

dω

dz

)2

+
1

2
m2

ωω2, (C.6.42)

ǫρ(z) =
1

2

(

dρ

dz

)2

+
1

2
m2

ρρ2, (C.6.43)

ǫE(z) =
1

8π

(

dV

dz

)2

. (C.6.44)

We can solve Eqs. (C.6.36)–(C.6.39) and Eqs. (C.6.17)-(C.6.19) to obtain the
fermion density and meson field profiles. This system of equations can be
numerically solved with appropriate boundary conditions.

The parameters of the nuclear model, namely the coupling constants gσ ,
gω, and gρ, the meson masses mσ, mω, and mρ, and the third and fourth order
constants of the self-scalar interaction g2 and g3 are fixed by fitting exper-
imental properties of nuclei, such as saturation density, binding energy per
nucleon, symmetry energy, surface energy, and nuclear incompressibility. We
here use the parameters of the NL3 parameterization (Lalazissis et al., 1997),
shown in Table C.6.
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NL3 NL3
mσ (MeV) 508.194 gω 12.8680
mω (MeV) 782.501 gρ 4.4740

mρ (MeV) 763.000 g2 (fm−1) −10.4310
gσ 10.2170 g3 −28.8850

Table C.6.: The parameters of the nuclear model from NL3.

Surface structure and surface tension at the nuclear saturation density

The boundary conditions for the numerical integration are fixed through the
following procedure. We start assuming that the bulk region is formed by
uniform matter, so we can apply Eqs. (C.6.25)-(C.6.27) to the bulk core. We
assume the baryon number density of the bulk region to be the nuclear satu-

ration density, nbb = nnb + npb = nnucl = 0.16 fm−3.
First we will compute the surface properties in the case when the fermion

densities and meson fields to be zero in the outside region, namely neglecting
the influence of the outside crust region. We have also in the bulk core the
condition npb ≃ neb. Taking into account the above conditions, we can solve
the equations (C.6.25)–(C.6.27) together with the β-equilibrium (C.6.20) in the
bulk region to obtain σb, ωb, ρb, nnb, npb, and neb. Using this bulk region val-
ues as boundary conditions, we solve Eqs. (C.6.36)–(C.6.39) and Eqs. (C.6.17)–
(C.6.19) in the surface region. The results are shown in Fig. C.48. Since the
fermion densities tend to be zero in the outside region, the thickness of the
surface region for electrons should be infinite. However we just show the
results up to a very small electron density here, due to the plot-scale and the
accuracy of the numerical calculation.

There exist two scale lengths in this system, one is related to the nuclear
interactions (∼ λπ = h̄/(mπc) ∼ 1.5 fm) and another one is related to the
electron screening (∼ λe = h̄/(mec) ∼ 100 fm). It is shown in Fig. C.48 that
the transition layer can be divided by three regions due to the existence of
these two different scale lengths. (I) due to the electromagnetic interaction,
all the fields vary slowly with the length scale ∼ λe. In this region the effect
of the Coulomb interaction is clear: on the proton density profile we can see a
bump due to Coulomb repulsion while the electron density profile decreases.
The neutrons also feels this Coulomb effect indirectly due to the coupled na-
ture of the system of equations. But this effect is much smaller than the effect
on protons and it is not appreciable in Fig. C.48 due to the plot-scale. (II) due
to the nuclear interactions, a sharp decrease of the proton and neutron densi-
ties happens in the length scale λπ. It can be seen a neutron skin effect, which
makes the scale of the neutron density falloff slightly larger with respect to
the proton one, in analogy to the one observed in heavy nuclei and in neutron
rich nuclei (Tamii et al., 2011). (III) the electron density decreases smoothly
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Figure C.48.: (a): fermion density profiles in units of fm−3. (b): electric field
in units of the critical field Ec = m2

e c3/(eh̄). (c): meson fields σ, ω, and ρ in
the unit of MeV. Here the baryon number density of the bulk region is the
nuclear saturation value, and the fermion densities and meson fields tend
to be zero in the outside region. λσ = h̄/(mσc) ∼ 0.4 fm is the Compton
wavelength of the σ meson.
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in the length scale λe and this produces the total screening of the positively
charged core. As shown in Fig. C.48, we can obtain an electric field that is
larger than critical field in the surface region. However, no e+e− pair can be
produced in this region due to the Pauli blocking owing to the presence of
degenerate electrons.
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Figure C.49.: (a): fermion density profiles in units of fm−3. (b): electric field
in units of the critical field Ec. (c): meson fields σ and ω in the unit of MeV.
Here the baryon number density of the bulk region is the nuclear saturation
density, the fermion densities and meson fields tend to be zero in the outside
region, and ρ meson is not included in the calculation.

In order to study the effect of the ρ meson, we solve Eqs. (C.6.36)–(C.6.39)
and Eqs. (C.6.17)–(C.6.19) without the presence of the ρ meson. The results
are shown in Fig. C.49. The fermion density and meson field profiles are
similar to those in the case with the presence of the ρ meson, as shown in
Figs. C.48 and C.49. Due to the absence of the ρ meson, the proton (and hence
the electron) to neutron density ratio decreases, so if the baryon density is the
same it causes a lowering of the electric field intensity.

Using the definitions in Eqs. (C.6.30)-(C.6.33), we can calculate the sur-
face tensions for this transition layer. The results are shown in Table C.7.
The presence of ρ decreases the total surface tension σt but increases the
Coulomb energy, and so σC. We can see that the difference of the surface
tension for nucleons σN in the presence and absence of the ρ meson is rela-
tively small with respect to the changes on the electron component and the
electric field. We can explain this small difference from the fact that although
the ρ meson increases the proton to neutron density ratio, in neutron stars
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C.6. On the surface tension of neutron star matter

σt σN σe σC

σ ω 6.28 7.07 −1.72 0.92
σ ω ρ 3.10 7.30 −8.34 4.14

Table C.7.: Total and specific surface tensions in MeV fm−2 of semi-infinite
matter with and without the presence of the ρ meson. Here the baryon num-
ber density in the bulk region is set to the nuclear saturation value and the
fermion densities and meson fields tend to be zero in the outside region.

the β-equilibrium in presence of degenerate electrons leads to a high isospin
asymmetry 1− 2Z/A ≈ 1, hence the system is still dominated by the neutron
component, as we show below.

It is interesting to compare the above results with the ones in (Alford et al.,
2001) where the surface tension of the interface between quark matter in
color-flavor-locked (CFL) phase and ordinary hadronic phase. The surface
tension was obtained as the sum of two contributions: (I) the first due to
the QCD-scale interface, which they treated as infinitely sharp and estimated
based on dimensional analysis, σQCD ∼ 300 MeV fm−2; (II) a surface tension

σboundarylayer ≈ 420 MeV fm−2 associated to the electron screening length and
computed from the particle number density profiles similarly as here. Thus,
they obtained a total surface tension σsur = σQCD + σboundarylayer ≈ 720 MeV

fm−2. The difference between our result in Table C.7 and the result in (Alford
et al., 2001) is mainly due to the fact that the CFL-hadronic interface occurs
in the inner core of the neutron star at baryon densities much higher than the
nuclear saturation value separating the core and the crust.

In order to understand where the surface tension comes from, we calculate
the contribution of each fermion and meson field to the surface tension as

σn =
∫ an

−∞
[ǫn(z)− ǫnb]dz +

∫ ∞

an

[ǫn(z)− ǫno]dz, (C.6.45)

σp =
∫ ap

−∞
[ǫp(z)− ǫpb]dz +

∫ ∞

ap

[ǫp(z)− ǫpo]dz, (C.6.46)

σe =
∫ ae

−∞
[ǫe(z)− ǫeb]dz +

∫ ∞

ae

[ǫe(z)− ǫeo]dz, (C.6.47)

σσ =
∫ aσ

−∞
[ǫσ(z)− ǫσb]dz +

∫ ∞

aσ

[ǫσ(z)− ǫσo]dz, (C.6.48)

σω =
∫ aω

−∞
[ǫω(z)− ǫωb]dz +

∫ ∞

aω

[ǫω(z)− ǫωo]dz, (C.6.49)

σρ =
∫ aρ

−∞
[ǫρ(z)− ǫρb]dz +

∫ ∞

aρ

[ǫρ(z)− ǫρo]dz. (C.6.50)

The results are shown in Table C.8. For sake of comparison we also show the
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results in the case of ordinary nuclear matter, namely for a system without the
presence of electrons. As shown in Eqs. (C.6.45)–(C.6.50), the contribution of
each fermion and meson field to the surface tension strongly depends on the
profile and the energy density of the fermion and meson field. As shown in
Figs. C.48 and C.49, comparing to the profiles in the case without the presence
of the ρ meson, the presence of the ρ meson leads to larger proton and elec-
tron densities, and a larger bump of proton density happens. This effect is felt
indirectly by neutrons (although much less strong), due to the coupled nature
of the system of equations (C.6.36)–(C.6.39) and (C.6.17)–(C.6.19). There is no
such a bump of the profiles in the case of normal nuclear matter. Comparing
the results of the three cases in Table C.8, the effect of the bump of proton den-
sity on the surface tension is significant. The bump on the profiles decreases
the value of the surface tension for fermions and increases the one for bosons.
These results provide an evidence of large effect of electromagnetic interac-
tion and electrons on the proton and neutron density profiles, and therefore
on the global value of the surface energy of the system.

σn σp σe σσ σω σρ

n p e σ ω 3.54 −0.36 −1.72 3.16 0.73
n p e σ ω ρ −27.35 −5.19 −8.34 22.20 19.93 −2.28
n p σ ω ρ 19.43 12.23 −16.08 −13.83 −0.04

Table C.8.: Contribution of each fermion and meson field to the surface ten-
sion, in MeV fm−2. First row: semi-infinite matter without the presence of the
ρ meson. Second row: semi-infinite matter with the presence of the ρ meson.
Third row: normal nuclear matter (without the presence of electrons). Here
the baryon number density in the bulk region is the nuclear saturation den-
sity, and the fermion densities and meson fields tend to be zero in the outside
region.

Influence of baryon number density on the surface tension

In order to study the dependence of the surface tension on the baryon num-
ber density, we calculate the surface tensions for different nbb following the
similar procedure in Sec. C.6.2. The results are shown in Fig. C.50. From the
results, the total surface tension can be fitted by

σt, f it = 1.05 + 2.02

(

nbb

nnucl

)3.33
(

MeV fm−2
)

, (C.6.51)
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the surface tension for electric field can be fitted by

σC, f it = −0.37 + 4.50

(

nbb

nnucl

)2
(

MeV fm−2
)

, (C.6.52)

and the surface tension for nucleons can be fitted by

σN, f it = 0.95 + 6.33

(

nbb

nnucl

)2.91
(

MeV fm−2
)

. (C.6.53)
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Figure C.50.: The dependence of the surface tension of semi-infinite matter
on the baryon number density in the bulk region. Here the fermion densities
and meson fields tend to be zero in the outside region. (a): the total surface
tension σt, compared with the fit given in Eq. (C.6.51). (b): surface tension
for electric field σC, compared with the fit given in Eq. (C.6.52). (c): surface
tension for nucleons σN, compared with the fit given in Eq. (C.6.53). (d):
ratio of surface tension for nucleons and the surface tension for electric field
σN/σC.

As shown by Baym et al. (1971a), the phenomenological surface tension for
nucleons within the Thomas-Fermi approximation can be written as

σBBP
sur = B(Wo − Wi)

1
2 (ni − no)

3
2 , (C.6.54)

where B is a constant, Wo and Wi are the binding energy per nucleon in the
outside and inside bulk regions, no and ni are the nucleon number density
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in the outside and inside bulk regions. In the case of this section, we set
the fermions densities and meson fields to be zero in the outside region, i.e.
no = Wo = 0. Since the fractional concentration of protons in the system we
consider here is small, the binding energy per nucleon is (Baym et al., 1971a)

W(k, x) = W(k, 0) + f (x) ≈ 19.74k2 − k3 40.4 − 1.088k3

1 + 2.545k
+ f (x), (C.6.55)

where k is defined by n = 2k3/(3π2), with n the nucleon number density,
and x is the fractional concentration of protons. The function f (x) is a small
correction to W(k, 0) since x is small in our system. From Eq. (C.6.55), one
can estimate that the leading term in the binding energy Wi is the kinetic

term, proportional to k2, i.e. Wi ∝ k2 ∝ n2/3
bb . Thus one can estimate that

σBBP
sur ∝ n11/6

bb in the BBP phenomenological result Baym et al. (1971a), where
the effect of electromagnetic interaction on the profile of fermion density is
neglected. This BBP phenomenological result is different from our result in
Eq. (C.6.53). This is due to the fact that the electromagnetic interaction and
the presence of electron change the proton and neutron density profiles.

For σC, as shown in Eq. (C.6.52) the surface tension for electric field is pro-
portional to the square of the baryon number density. This results can be un-
derstood as follows. The Thomas-Fermi equilibrium condition for electrons
given by Eq. (C.6.17) tell us that the Coulomb potential in the bulk core is pro-
portional to the bulk electron chemical potential, so Vb ∝ µeb, and since the

electrons are ultra-relativistic at these densities we have Vc ∝ PF
eb ∝ n1/3

eb . The

thickness of the layer is of order ∆r ∼ n−1/3
eb and so the electric field scales as

E ∼ −∆V/∆r ∼ Vb/∆r ∝ n2/3
eb . Thus the contribution of the Coulomb energy

to the surface tension satisfies σC ∝ E2∆r ∝ neb and since in the bulk core we
have neb ≃ npb we obtain σC ∝ neb = ynbb, where y = npb/nbb is the pro-
ton fraction in the bulk region. In neutron stars the β-equilibrium between
neutrons, protons and electrons leads to a highly nuclear isospin asymmetry
(y ≪ 1), and since the nucleons are approximately non-relativistic and the
electrons ultra-relativistic around nuclear saturation density, it can be esti-
mated from Eq. (C.6.20) that the proton fraction is proportional to the baryon
density, i.e. y ∝ nbb, and therefore we finally obtain our final result σC ∝ n2

bb.

In Fig. C.50 we show also the nuclear to Coulomb surface tension ratio
σN/σC. We find that this ratio is larger than unity for all baryon number den-
sities we considered. This would in principle imply that the system is stable
with respect to the Bohr-Wheeler condition (C.6.34) as we have previously
discussed.

It is also worth to mention that the result that σN/σC > 1 for every nucleon
density in our system can be explained as the result of the penetration of the
relativistic electrons into the nucleus (see Rotondo et al., 2011e,c, for details).
This is allowed for a configurations with sufficiently large sizes r0A1/3 >
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h̄/(mec) or mass numbers A > h̄3/(r0mec)3 ∼ 107, where r0 ≈ 1.2 fm. For
systems with much larger mass numbers as neutron stars ANS ∼ 1057 the
penetration of electrons is such that they nearly neutralize the system and
the electric field becomes appreciable only near the core surface (Rotondo
et al., 2011e,c).

However the transition layer could be unbound if the gravitational binding
energy of the shell to the core is smaller than its electrostatic energy. An
approximate computation of the stability of the transition layer in the above
sense can be found in (Rotondo et al., 2011e), where it was shown within
Newtonian gravity that the layer is gravitational bound providing the system
has a number of baryons A & 0.004(Z/A)1/2(mPl/mN)

3 ∼ 1055(Z/A)1/2 or
a mass M = mN A & 0.01(Z/A)1/2M⊙, where mN and mPl = (h̄c/G)1/2 are
the nucleon and Planck mass. It is clear that this stability requirement implies
a lower limit for our globally neutral neutron stars. It would be interesting
to perform a detailed calculation taking into account the effects of general
relativity as well as of the magnetic field on the transition surface induced by
rotation (see e.g. Boshkayev et al., 2012b) and the centrifugal potential acting
on the shell. However such calculation is out of the scope of this work and
will be presented elsewhere.

Influence of fermion densities in the outside region on the surface tension

As described in (Belvedere et al., 2012) the generalized fermion chemical po-
tentials have to match, at the end of the core-crust transition boundary layer,
their corresponding values at the edge of the crust (outside region), i.e. they
must satisfy a condition of continuity. This implies a non-zero particle density
as matching value. The thickness of the core-crust transition boundary layer
as well as the value of the electron density at the edge of the crust ncrust

e de-
pend on the nuclear parameters (Belvedere et al., 2012), especially on the nu-
clear surface tension. So it is important to study the surface structure for dif-
ferent fermion densities in the outside region. The crust is composed by a nu-
clei lattice in a background of degenerate electrons, whose density at the edge
of the crust is denoted here as ncrust

e . There are in addition free neutrons in the
crust when the density of the crust ρcrust is higher than the neutron-drip value
ρdrip ∼ 4.3× 1011 g cm−3 (Baym et al., 1971a). So when the density of the crust
ρcrust is smaller than the neutron-drip value, i.e. ρcrust < ρdrip, we set the pro-
ton and neutron densities as zero in the outside region while the electron
density must to match the value ncrust

e . In the cases when ρcrust > ρdrip both
neutrons and electrons have to match their corresponding crust values at the
end of the core-crust transition layer. As shown by Baym et al. (1971a) there
is no proton-drip at any density of interest in these systems and therefore we
keep zero as outside proton density value. In order to set the matching den-
sity values for electrons and neutrons we use the relation of the free neutron
and electron densities of Baym et al. (1971a). At the neutron-drip point the
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electron Fermi momentum is around PF
eo ≈ 26 MeV or PF

eo/PF
eb ≈ 0.18.

Following a similar procedure as in Sec. C.6.2, we obtain the fermion den-
sity and meson field profiles in this case and calculate its surface tension.
The results of the dependence of the surface tension on the outside electron
densities and the density of the crust are shown in Fig. C.51.
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Figure C.51.: Dependence of the surface tension of semi-infinite matter on the
fermion densities in the outside region and the density of the crust. Here the
baryon number density of the bulk region is the nuclear saturation density.
(a) surface tension for electric field σC. (b): the total surface tension σt. (c):
the surface tension for nucleons σN. (d): ratio of the surface tension for nu-
cleons and the surface tension for electric field σN/σC, respect to the density
of the crust ρcrust. The neutron-drip point ρdrip ∼ 4.3 × 1011 g cm−3 is around

PF
eo/PF

eb ≈ 0.18.

The results of Fig. C.51 show that the Bohr-Wheeler condition (C.6.34) for
the instability is reached at a crust density ρcrit

crust ∼ 1.2 × 1014 g cm−3, so the
system becomes unstable against fission when ρcrust > ρcrit

crust ; imposing a
physical upper limit to the density at the edge of the crust. It becomes inter-
esting to include the binding effect of gravity and any other attractive con-
tribution that strengthen the stability of the system; which will be analyzed
elsewhere. It is interesting that this upper limit on the crust density implies a
lower limit to the maximum electric field in the core-crust transition region,
limiting at the same time to approach a state of quasi-local charge neutrality
of the neutron star.

As shown in Fig. C.51, the surface tension for electric field decreases as in-
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creasing the electron number density in the outside region. The reason is that
the increasing electron number density in the outside region (Belvedere et al.,
2012) causes a decreasing of the thickness of the interface and of the proton
and electron density difference, i.e. the surface charge density decreases.

It is shown in Fig. C.51 that the dependence of the surface tension for nu-
cleons σN on the electron number density in the outside region is weak before
the neutron-drip point. The influence of electron density in the outside region
on the surface structure of nucleons is small in this case. After the neutron-
drip point, the free neutrons in the outside region lower the surface tension
significantly, as expected in the BBP phenomenological result (Baym et al.,
1971a). In addition, as shown in Fig. C.51, the total surface tension σt first
increases and then decreases as increasing the fermion densities in the out-
side region. This is due to the combination of the following two effects. (I)
as shown in Table C.8, the contribution of electrons to the total surface ten-
sion is negative. When increasing the electron density in the outside region,
the effect of electrons on the surface tension becomes weaker. This increases
the total surface tension. (II) After the neutron-drip point, the surface tension
for nucleons σN is lowered significantly by the free neutrons in the outside
region.

C.6.3. Surface properties for neutron star matter with

gravitational interaction

Relativistic equations

Here we add the gravitational interaction to the system we studied above.
Taking into account the strong, electromagnetic, weak and gravitational in-
teractions, the total Lagrangian density of the system is given by

L
G = Lg +L

G
f +Lσ +Lω +Lρ +Lγ +Lint. (C.6.56)

Here the Lagrangian densities for the gravity is

Lg = − R

16πG
, (C.6.57)

where G is the gravitational constant, and R is the Ricci scalar. The La-
grangian density for the three fermion species in the gravity field is

L
G
f = ∑

i=e,N

ψ̄i(iγ
µDµ − mi)ψi, (C.6.58)

where Dµ = ∂µ + Γµ, being Γµ the Dirac spin connections. The other parts of
the Lagrangian density in Eq. (C.6.56) have the same formulations as given
in Sec. C.6.2.
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We introduce the non-rotating spherically symmetric spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (C.6.59)

where the ν(r) and λ(r) are only functions of the radial coordinate r.

Within the Thomas-Fermi approximation and mean-field approximation,
we can get the full system of general relativistic equations. We are here
interested in the core-crust transition layer, which as we have shown hap-
pens in a tiny region (Belvedere et al., 2012) with a characteristic length scale
∼ λe = h̄/(mec) ∼ 100 fm. Correspondingly, the metric functions are es-
sentially constant in this region. Thus in the core-crust transition layer the
system of equations can be written as

d2V

dr2
+

2

r

dV

dr
= −4πeeνcore/2eλcore(np − ne), (C.6.60)

d2σ

dr2
+

2

r

dσ

dr
= eλcore [∂σU(σ) + gsns], (C.6.61)

d2ω

dr2
+

2

r

dω

dr
= −eλcore(gω JωG

0 − m2
ωω), (C.6.62)

d2ρ

dr2
+

2

r

dρ

dr
= −eλcore(gρ J

ρG
0 − m2

ρρ), (C.6.63)

EFG
e = eνcore/2µe − eV = constant, (C.6.64)

EFG
p = eνcore/2µp + gωω + gρρ + eV = constant, (C.6.65)

EFG
n = eνcore/2µn + gωω − gρρ = constant, (C.6.66)

where the notation is the same as in Sec. C.6.2. In addition, eνcore ≡ eν(rcore) and
eλcore ≡ eλ(rcore) are the metric functions evaluated at the core radius rcore. The
generalized Fermi energies EFG

e , EFG
p , and EFG

n (so-called the Klein potentials
(Rueda et al., 2011)) are linked by the β-equilibrium of protons, neutrons, and
electrons

EFG
n = EFG

p + EFG
e . (C.6.67)

Within the mean-field approximation and Thomas-Fermi approximation,
the scalar density ns is the same as in the case without gravitational interac-
tion given by Eq. (C.6.21) and the non-vanishing components of the currents
are

JchG
0 = eνcore/2(np − ne), (C.6.68)

JωG
0 = eνcore/2(nn + np), (C.6.69)

J
ρG
0 = eνcore/2(np − nn). (C.6.70)
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Surface tension for semi-infinite matter

Since the core-crust transition layer has a characteristic length scale of the
order of the electron Compton wavelength, this is very small compared to the
radius of neutron stars. So it is a good approximation to use the semi-infinite
matter model to construct the surface tension for the system with the electron
density neb is approximately equal to proton density npb in bulk region.

We follow the same procedure described in Sec. C.6.2 to construct the sur-
face tension. We assume a surface with small thickness separating two semi-
infinite regions (bulk region and outside region). Also we imagine a reference
system with a sharp surface at the position ai at which the matter and meson
fields fall discontinuously from the bulk region to the outside region. Follow-
ing the definition of fermion number in curved space-time Eq. (C.6.59) (see
e.g. Lee and Pang, 1987), the i-specie fermion number Ni is given by

Ni = 4π
∫

eλ/2r2ni(r)dr. (C.6.71)

Since the metric functions are constant in the surface region we consider as
described in Sec. C.6.3, and the size of the surface region is very small com-
pared to the radius of neutron stars, we can treat eλ/2r2 as a constant in the
integral, the location of the reference surfaces of fermions and meson fields
have the similar expressions in Eq. (C.6.28) and Eq. (C.6.29)

∫ ai

−∞
dr[ni(r)− nib] +

∫ ∞

ai

dr[ni(r)− nio] = 0; i = n, p, e, (C.6.72)

∫ ai

−∞
dr[Fi(r)− Fib] +

∫ ∞

ai

dr[Fi(r)− Fio] = 0; i = σ, ω, ρ, (C.6.73)

where ni(r) is the number density of the i-specie fermion, and Fi(r) is the time
component of the i-specie meson field.

The energy associated to the density ε(r) = T0
0 , where Tα

β is the energy-

momentum tensor of the system, can be calculated in the spherically sym-
metric metric by (see e.g. Lee and Pang, 1987)

E = 4π
∫

e(ν+λ)/2r2ε(r)dr. (C.6.74)

So we can calculate the total surface tension by

σG
t = ∑

i=n,p,e,σ,ω,ρ

e(νcore+λcore)/2

{

∫ ai

−∞
[ǫG

i (r)− ǫG
ib]dr +

∫ ∞

ai

[ǫG
i (r)− ǫG

io]dr

}

+e(νcore+λcore)/2
∫ ∞

−∞
ǫG

E (r)dr, (C.6.75)
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where ǫG
i (r) is the energy density of the i-specie fermion or meson field, ǫG

ib is
the energy density of the i-specie fermion or meson field in the bulk region,
ǫG

io is the energy density of the i-specie fermion or meson field in the outside

region, and ǫE(r)
G is the energy density of the electric field.

For later discussions, we define the surface tension for nucleons as

σG
N = ∑

i=n,p,σ,ω,ρ

e(νcore+λcore)/2

{

∫ ai

−∞
[ǫG

i (r)− ǫG
ib]dr +

∫ ∞

ai

[ǫG
i (r)− ǫG

io]dr

}

,

(C.6.76)
and the surface tension for electric field as

σG
C = e(νcore+λcore)/2

∫ ∞

−∞
ǫG

E (r)dr. (C.6.77)

The energy density of the i-specie fermion ǫG
i (r) has the same formulation as

Eq. (C.6.40), and the energy densities of the meson fields are (see e.g. Lee and
Pang, 1987)

ǫG
σ (r) =

1

2
e−λcore

(

dσ

dr

)2

+ U(σ), (C.6.78)

ǫG
ω(r) =

1

2
e−(λcore+νcore)

(

dω

dr

)2

+
1

2
e−νcore m2

ωω2, (C.6.79)

ǫG
ρ (r) =

1

2
e−(λcore+νcore)

(

dρ

dr

)2

+
1

2
e−νcore m2

ρρ2, (C.6.80)

ǫG
E (r) = e−(λcore+νcore) 1

8π

(

dV

dr

)2

. (C.6.81)

As described in (Belvedere et al., 2012), fields vary slowly in the core of
neutron stars, so it is a good approximation to treat the bulk region as the
uniform matter. For the uniform matter, the equations (C.6.61)-(C.6.63) re-
duce to

0 = ∂σU(σ) + gsns, (C.6.82)

0 = gω JωG
0 − m2

ωω, (C.6.83)

0 = gρ J
ρG
0 − m2

ρρ. (C.6.84)

Following the similar procedure in Sec. C.6.2, we solve the Eqs. (C.6.60)-
(C.6.66) to obtain the fermion density and meson field profiles. We assume
the baryon number density in the bulk region to be the nuclear saturation
density, nbb = nnb + npb = nnucl = 0.16 fm−3. We have again assumed
npb ≃ neb in the bulk (core) region, and we set the fermion densities and
meson fields to be zero in the outside region for sake of comparison with the
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previous results of Fig. C.48. At the core-radius (in this case the surface) of the
neutron star, the metric functions have to match the Schwarzschild solution
due to the global neutrality condition, so at the border of the star we have

eνcore = e−λcore = 1 − 2GM(rcore)

rcore
, (C.6.85)

with M(rcore) the total mass of the star. The results of the solution are shown
in Fig. C.52 for the case eλcore = e−νcore = 1.5.
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Figure C.52.: (a): fermion density profiles in units of fm−3. (b): electric field
in units of the critical field Ec. (c): meson fields σ, ω, and ρ in the unit of
MeV. Here we set eλcore = e−νcore = 1.5, the baryon number density in the
bulk region is the nuclear saturation density, and the fermion densities and
meson fields tend to be zero in the outside region.

In curved spacetime, the electric field is given by (see e.g. Belvedere et al.,
2012)

|E| = e−(λcore+νcore)/2 dV

dr
. (C.6.86)

Comparing to the results shown in Fig. C.48, the fermion density and me-
son field profiles are similar to their counterparts in the case without the grav-
itational field. In Fig. C.52 we see a larger proton density, a smaller neutron
density, and a smaller size of the core-crust transition layer leading to a larger
maximum of the electric field, comparing to Fig. C.48.

Using the definitions in Eqs. (C.6.75)-(C.6.77), we obtain the surface ten-
sions for the transition layer of this system. Fig. C.53 shows the results of the
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Figure C.53.: The dependence of the surface tension of semi-infinite matter
on the value of metric eλcore . (a): the total surface tension σG
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Here the baryon number density in the bulk region is the nuclear saturation
density, and the fermion densities and meson fields tend to be zero in the
outside region.
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dependence of the surface tension on the value of metric eλcore . As shown in
Fig. C.53, the total surface tension and the surface tension for nucleons in-
crease as increasing the value of the metric eλcore . As described in Sec. C.6.2,
the surface tension mainly depends on the profiles of the fermion and meson
densities and energy densities. There are two effects which influence on the
characters of the total surface tension and the surface tension for nucleons.
First, as we have seen the presence of gravitational field changes the fermion
density and meson field profiles. Second, the difference between the pro-
ton density and the neutron density becomes smaller when the value of the
metric eλcore increases; lowering the isospin asymmetry of the system. The
combination of these two effects leads to the characters of the total surface
tension and the surface tension for nucleons shown in Fig. C.53. In addi-
tion, as shown in Fig. C.53, the change of the value of the surface tension for
electric field when increasing the value of eλcore is small. That is due to the
balance of the following two effects: (I) the electric field in the surface re-
gion becomes larger (see Fig. C.52); (II) the thickness of the surface becomes
smaller, and then the Coulomb energy distributes in a smaller region. It can
be also checked from Fig. C.52 how in the limit eλcore → 1 all quantities tend
to the values found in Sec. C.6.2 in the flat case.

C.6.4. Surface tension for the system with small electron

density

Now we turn to consider a system with the electron density in the bulk region
smaller than the proton one, i.e. neb < nbp, to study the effects of electrons
on the surface structure and surface tension. In this section we did not take
into account the gravitational field. In order to construct the surface tension,
we consider this system as a superheavy nucleus whose nucleon number is
so large that electrons can penetrate inside the nucleus. We adopt this su-
perheavy nucleus as a spherical droplet, so we have spherical symmetry in
this system. We assume a spherical surface (the size of the system we con-
sider here is larger than ordinary nuclei, so the curvature energy here is small
compared to the surface energy) with small thickness separating one finite re-
gion (inside the nuclear region) and one semi-infinite region (outside region).
The number density of the i-specie fermion ni(r) approaches the density of
the i-specie fermion nib in the origin as the position r → 0, and approaches
the density in the outside region of the i-specie fermion nio as the r → +∞.
To construct the surface tension, as in the case of the semi-infinite matter
model, we imagine a reference system with a sharp surface at radius ri at
which the matter and meson fields fall discontinuously from the bulk region
to the outside region. Following the similar method of Baym et al. (1971a),
the location of the reference surface for the i-specie fermion is defined by the
condition that the reference system has the same number of i-specie fermion
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as the original system

4π
∫ ri

0
r2dr[ni(r)− nib] + 4π

∫ ∞

ri

r2dr[ni(r)− nio] = 0; i = n, p, e. (C.6.87)

Similar to definition of reference surface for fermions, the location of the ref-
erence surfaces for meson fields are defined by

4π
∫ ri

0
r2dr[Fi(r)− Fib] + 4π

∫ ∞

ri

r2dr[Fi(r)− Fio] = 0; i = σ, ω, ρ, (C.6.88)

where Fi(r) is the time component of the i-specie meson field, Fib is the time
component of the i-specie meson field in the inside region, and Fio is the time
component of the i-specie meson field in the outside region.

Similar to the way of Baym et al. (1971a), the surface energy can be com-
puted as the total energy subtracting off the bulk energy,

Esur = ∑
i=n,p,σ,ω,ρ

{

4π
∫ ri

0
r2[ǫi(r)− ǫib]dr + 4π

∫ ∞

ri

r2[ǫi(r)− ǫio]dr

}

,

(C.6.89)
and the Coulomb energy is

Ecoul = 4π
∫ ∞

0
r2ǫE(r)dr, (C.6.90)

where ǫi(r) is the energy density of the i-specie fermion or meson field, ǫib

is the energy density of the i-specie fermion or meson field in the center of
the system, ǫio is the energy density of the i-specie fermion or meson field in
the outside region, and ǫE(r) is the energy density of the electric field. The
surface tension for nucleons is given as the surface energy per unit area,

σNs =
Esur

4πr2
n

, (C.6.91)

and similarly we obtain the Coulomb energy per unit area

σCs =
Ecoul

4πr2
n

, (C.6.92)

where rn is the reference radius of neutrons defined by Eq. (C.6.87). Since the
neutron number is much larger than the proton number in the system, so it is
reasonable to set the radius of neutrons to be the radius of nucleus to estimate
the surface tension; this is consistent with the existence of the neutrons halo
or neutron skin effect.
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For this spherical system, the equations (C.6.13)-(C.6.16) become

d2V

dr2
+

2

r

dV

dr
= −4πe(np − ne), (C.6.93)

d2σ

dr2
+

2

r

dσ

dr
= ∂σU(σ) + gsns, (C.6.94)

d2ω

dr2
+

2

r

dω

dr
= −(gω Jω

0 − m2
ωω), (C.6.95)

d2ρ

dr2
+

2

r

dρ

dr
= −(gρ J

ρ
0 − m2

ρρ). (C.6.96)

The energy density of the i-specie fermion ǫi(r) has the same formulation
as Eq. (C.6.40), and the energy densities of the meson fields in this spherical
system are

ǫσ(r) =
1

2

(

dσ

dr

)2

+ U(σ), (C.6.97)

ǫω(r) =
1

2

(

dω

dr

)2

+
1

2
m2

ωω2, (C.6.98)

ǫρ(r) =
1

2

(

dρ

dr

)2

+
1

2
m2

ρρ2, (C.6.99)

ǫE(r) =
1

8π

(

dV

dr

)2

. (C.6.100)

Following the similar procedure in Sec. C.6.2, we solve the equations (C.6.93)-
(C.6.96) and (C.6.17)-(C.6.19) to obtain the fermion density and meson field
profiles. We assume the baryon number density in the region near the center
to be the nuclear saturation density, nbb = nnb + npb = nnucl = 0.16 fm−3, and
we set a small electron density neb = yenpb in the region near the center with
electron fraction ye < 1. We set the fermion densities and meson fields to be
zero in the outside region. The results of the solution are shown in Fig. C.54
for the case PF

e = 0.95PF
p in the region near the center of the system, and in

Fig. C.55 for the case PF
e = 0.5PF

p in the region near the center of the system.

As shown in Fig. C.54, when the difference between the electron and proton
density in the region near the center of the system (npb − neb) is small, the
fermion density and meson field profiles are similar to their counterparts in
the case of semi-infinite matter (electron density nearly equal to the proton
density in the bulk region neb ≃ npb). Comparing to the results in the case
of semi-infinite matter in Fig. C.48, the bump of the proton profile is larger
in this case, as expected from the fact that the internal electric field is less
screened in this case than when neb ≃ npb. We can also see how the fermion
and meson field profiles change for increasing charge separations npb − neb.
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Figure C.54.: (a): fermion density profiles in units of fm−3. (b): electric field in
units of the critical field Ec. (c): meson fields σ, ω, and ρ in the unit of MeV.
Here we set PF

e = 0.95PF
p in the region near the center of the system, the

baryon number density in the region near the center is the nuclear saturation
density, and the fermion densities and meson fields tend to be zero in the
outside region.
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Figure C.55.: (a): fermion density profiles in units of fm−3. (b): electric field
in units of the critical field Ec. (c): meson fields σ, ω, and ρ in the unit of
MeV. Here we set PF

e = 0.5PF
p in the region near the center of the system, the

baryon number density in the region near the center is the nuclear saturation
density, and the fermions densities and meson fields tend to be zero in the
outside region.
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Using the definitions in Eqs. (C.6.91) and (C.6.92), we obtain the surface
tensions for the transition layer of this system. The results of the dependence
of the surface tension on the ratio of the electron Fermi momentum and the
proton Fermi momentum in the region near the center of the system (PF

eb/PF
pb)

are shown in Fig. C.56. From the results, the system is stable with respect to
the Bohr-Wheeler condition Eq. (C.6.34) of the stability, in all ratios PF

eb/PF
pb

we considered. As shown in Fig. C.56, the surface tension for nucleons first
increases and then decreases when the difference between the electron and
proton density increases, and the surface tension tends to the phenomeno-
logical result (∼ 1 MeV fm−2) in nuclear physics without the presence of
electrons in the inside bulk region (Baym et al., 1971a). There are two effects
which influence on the surface tension for nucleons: (I) for neb < npb the
bump of the proton profile around the nuclear surface enhances as shown in
Figs. C.54–C.55, and (II) the higher the difference npb − neb the lower the nu-
clear asymmetry. As a consequence, the total energy of the system decreases.
The combination of these two effects leads to the results of the surface tension
for nucleons shown in Fig. C.56.
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Figure C.56.: The dependence of the surface tension on the ratio PF
eb/PF

pb. PF
eb

is the Fermi momentum of electrons in the region near the center of the sys-
tem, and PF

pb is the Fermi momentum of protons in the region near the center

of the system. The baryon number density in the region near the center is the
nuclear saturation density, and the fermion densities and meson fields tend
to be zero in the outside region. (a): surface tension for nucleons, σNs. (b):
Coulomb energy per unit area, σCs.

C.6.5. Summary

Taking into account strong, weak, electromagnetic, and gravitational interac-
tions, and fulfilling the global charge neutrality of the system, a transition
layer will happen between the core and crust of neutron stars (Belvedere
et al., 2012). This is different from the results from traditional TOV equa-
tions imposing local charge neutrality. This core-crust transition layer hap-
pens at the saturation density of nuclear matter. In this article, using RMFT
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together with the Thomas-Fermi approximation, we give a detailed descrip-
tion of the structure of this transition layer. We computed the surface ten-
sion and Coulomb energy of the transition shell and analyze the role of each
fermion component and meson fields in the determination of the properties
of this core-crust transition layer.

Following the method of Baym et al. (1971a), we applied the semi-infinite
matter model to construct the surface tension for the transition layer of this
system with the electron density is approximately equal to the proton density
in the bulk region. The results show that, in the surface region, a proton bump
appears due to Coulomb repulsion. The neutron skin effect and electron
screening effect are described in detail. We calculated the surface tension and
the Coulomb energy for the transition layer of this system for different baryon
number densities near the nuclear saturation density. The results show that
the total surface tension as well as surface tension for electric field and the
surface tension for nucleons are proportional to some power-law function of
the baryon number density in the bulk region; see Eqs. (C.6.51), (C.6.53) and
(C.6.52). The difference between the surface energy of this neutron star mat-
ter and the phenomenological results (Baym et al., 1971a) in nuclear physics
has been analyzed. We also studied the surface structure for different fermion
densities in the outside region, namely for different densities of the neutron
star crust.

We presented this analysis both in flat and curved spacetime. In the lat-
ter case we treated the system in the background of non-rotating spherically
symmetric case as in (Belvedere et al., 2012). Since the length scale (the or-
der of the electron Compton wavelength) of the core-crust transition layer is
much smaller than the radius of neutron stars, we used the semi-infinite mat-
ter model as an approximation to construct the surface tension for the transi-
tion layer of this system with the electron density is approximately equal to
the proton density in the bulk region. The results show that the fermion den-
sity and meson field profiles are similar to the case without the presence of
gravitational field, although some quantitative differences appear. We show
that the total surface tension and the surface tension for nucleons increase as
increasing the value of the metric function eλcore .

We then calculated the surface tension and the Coulomb energy for the
transition layer of the system with the electron density is smaller than the
proton density in the bulk region using the spherical droplet model. We
show how the surface tension and the electrostatic energy per unit area are
drastically affected by the increasing proton repulsion and decreasing nuclear
asymmetry with a decreasing electron to proton density ratio (see Figs. C.54,
C.55 and C.56).

We studied the instability against Bohr-Wheeler surface deformation for
all the systems. We find that the instability sets in at a critical density of the
crust ρcrit

crust ∼ 1.2 × 1014 g cm−3. This implies a lower limit to the maximum
electric field of the core-crust transition region and makes inaccessible a state

2015



C. Neutron Stars Physics and Astrophysics

of quasi-local charge neutrality for the neutron star, which will in principle
be reached when the limit ρcrust = ρcore ≈ ρnuc, is approached.

The results of this work open the way to more general studies relevant for
the analysis of the stability of neutron stars and the core-crust transition sur-
face. Some of the effects that need to be addressed for the stability of the shell
include gravitational binding, centrifugal repulsion, magnetic field induced
by rotating electric field and hence magnetic dipole-dipole interactions. It
would be interesting to perform a similar analysis for the case of strange stars
both bare and in presence of outer crust.

As pointed out in (Sotani et al., 2012), the frequencies of shear oscillations
due to the hadron-quark mixed phase in neutron stars depend strongly on
the surface tension of the hadron-quark interface. It would be interesting to
perform a analysis for the dependence of the surface waves on the surface
tension of the core-crust transition surface.

2016



C.7. On the cooling of globally neutral neutron stars

C.7. On the cooling of globally neutral neutron

stars

In our previous work Belvedere et al. (2012), we developed a new model
of neutron star fulfilling global and not local charge neutrality. We showed
that the equilibrium equations of this new treatment supersede the traditional
ones based on the Tolman-Oppenheimer-Volkoff (TOV) system of equations,
which obeys local charge neutrality. The new coupled system equations,
what we called Einstein-Maxwell-Thomas-Fermi (EMTF) equations, intro-
duces self-consistently the presence of the electromagnetic interactions in ad-
dition to the nuclear, weak, and gravitational interactions within the frame-
work of general relativity. The weak interactions are accounted for by re-
questing the β-stability, and the strong interactions are modeled via the σ-ω-
ρ nuclear model, where σ, ω and ρ are the mediator massive vector mesons.
In this work we use the NL3 parameterization of this nuclear model (see
Ref. Belvedere et al. (2012) for more details). In the supranuclear core is com-
posed by a degenerate gas of neutrons, protons, and electrons in β-equilibrium.
The crust in its outer region ρ ≤ ρdrip ≈ 4.3 × 1011 g cm−3 is composed
ions and electrons and in its inner region, at ρdrip < ρ < ρnuc, where ρnuc ≈
2.7× 1014 g cm−3 is the nuclear saturation density, there is an additional com-
ponent of free neutrons dripped out from nuclei.

The solution of the EMTF equations of equilibrium leads to a new struc-
ture of the neutron stars very different from the traditional configurations ob-
tained through the TOV equations: the core is positively charged as a conse-
quence of the balance between gravitational and Coulomb forces that results
in the appearance of a Coulomb potential energy eV ∼ mπc2 deep. The core-
crust transition starts at ρ = ρnuc. The transition is marked by the existence of
a a thin, ∆r ∼few hundreds fm, electron layer fully screening the core charge.
In this transition layer the electric field becomes overcritical, E ∼ m2

πc3/(eh̄),
and the particle densities decrease until the base of the crust, which is reached
when global charge neutrality is achieved. Consequently, the core is matched
to the crust at a density ρcrust ≤ ρnuc. In the limit ρcrust → ρnuc, both ∆r and E
of the transition layer vanish, and the solution approaches the one given by
local charge neutrality (see Figs. 3 and 5 in Belvedere et al. (2012)).

Configurations with ρcrust > ρdrip possess both inner and outer crust while
in the cases with ρcrust ≤ ρdrip the neutron star have only outer crust. All
the above features lead to a new mass-radius relation of neutron stars; see
Belvedere et al. (2012) and Fig. C.57.

The aim of this work is to compute the thermal evolution of globally neu-
tral neutron stars. Here we focus on the cooling curves in the stage of evo-
lution where the thermal structure of the neutron star can be considered as
formed by a large isothermal core and an insulating thin radiative envelope
at the bottom layers. As we will see, this stage of the evolution is appropriate
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Figure C.57.: Mass-radius relation obtained with the traditional locally neu-
tral TOV treatment case and the global charge neutrality configurations, with
ρcrust = ρdrip Belvedere et al. (2012). Configurations lying between the red
and blue curves possess inner crust.

to describe the thermal evolution of the isolated neutron stars for which ob-
servational data is available. We use geometric units G = c = 1 throughout.

C.7.1. Thermal evolution equations

The general relativistic equations of thermal evolution are energy balance and
the energy transport equations which for a spherically symmetric star read

∂(Leν)

∂r
= − 4πr2

√
1 − 2m/r

[

ǫνeν + cv
∂(Teν/2)

∂t

]

, (C.7.1)

Leν

4πr2κ
=

√
1 − 2m/r

∂(Teν/2)

∂r
, (C.7.2)

where ǫν is the neutrino emissivity, cv is the heat capacity per unit volume,
κ is the thermal conductivity, T(r, t) is the interior temperature, L(r, t) is the
radiation luminosity, m is the mass enclose within a radius r, and ν = ln g00,
with g00 the 0–0 component of the metric.

We have two boundary conditions required by the equations C.7.1 and
C.7.2, one for the center L(r = 0) = 0 and another one for the surface
T(r = R) = Ts Yakovlev and Pethick (2004b).

We included all the relevant process of neutrino emission: in the core we
consider the direct and modified Urca processes, neutron-neutron (nn), proton-
proton (pp) and neutron-proton (np) Bremsstrahlung. In the crust we have
plasmon decay, e−e+ pair annihilation, electron-nucleus and nucleon-nucleon
Bremsstrahlung. The heat capacity is due to by electrons, protons and neu-
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trons in the core and by electrons and ions in the crust. The thermal conduc-
tivity in the core is given mainly by electrons and neutrons and in the crust is
the result of the scattering of electrons with atomic nuclei Gnedin et al. (2001).

C.7.2. General relativistic isothermality

Most of the available observational data on the surface temperature of iso-
lated neutron stars correspond to middle-ages, t ∼ 104–106 yr, see e.g. Yakovlev
and Pethick (2004b). By that times, the neutron star has already passed the
thermal relaxation phase following the neutron star birth. In such a phase the
crust stays hotter than the core and so heat flows from the crust to the core as a
cooling wave that expands from the center outward. The thermal relaxation
epoch ends when this cooling wave reaches the surface. The temperature
gradient between the core and the crust vanishes and the thermal structure
of the neutron star can be described as formed by an isothermal core and a
thin insulating envelope without any sink of energy and from where photons
scape. The isothermal core extends from the center up to a boundary layer
at density ρb ≈ 1010 g cm−3 Gudmundsson et al. (1983), and the envelope
is found at the lower density layers and where large temperature gradients
exist.

In the isothermal core, the energy balance and transport equations (C.7.1)
and (C.7.2) become

ǫνeν + cv
∂(Teν/2)

∂t
= 0,

∂eν/2T

∂r
= 0. (C.7.3)

C.7.3. Occurrence of the direct Urca process

The direct Urca process, n → p + e + ν̄e and p + e → n + νe, is possible in
neutron star cores only if the fraction of particles involved in the reaction are
such that the energy and momentum can be conserved simultaneously. The
process is then possible if the triangle inequality, PF

n < PF
p + PF

e , is satisfied,

where PF
n,p,e are the Fermi momenta of neutrons, protons, and electrons, re-

spectively.
We computed the region in the core of the globally neutral neutron stars

shown in Fig. C.57 where the direct Urca process occurs. In Fig. C.58 we
show the size and mass fraction of the neutron star core where the process
occurs as a function of the total mass of the star.

C.7.4. Cooling curves

The thermal relaxation epoch in which the isothermal core with temperature
Tb is developed is of the order of ∆t . 100 yr (see e.g. Gnedin et al. (2001)),
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Figure C.58.: Fraction of the mass and size of the core of a globally neutral
neutron star where the direct Urca process occurs.

a time well within the ages of the observed isolated neutron stars, t ∼ 104–
106 yr. Therefore, lacking observational data at the early phases, we can start
our thermal evolution from the point where the star already has reached the
isothermality, so without need considering the relaxation phase.

We computed the cooling curves by integrating numerically Eq. (C.7.3)
with initial condition the temperature Tb. The surface temperature is cal-
culated using the results by Gudmundsson et al. (1983), which obtained a
relation between the surface temperature Ts and Tb,

Tb = 1.288 × 108

(

T4
s6

gs14

)0.455

K, (C.7.4)

where Ts6 is the surface temperature in units of 106 K and gs14 is the surface
gravity, g = (GM/R2)

√
1 − 2M/R, in units of 1014 cm s−2, with M and R the

total mass and radius of the neutron star.

In the following we show our results for the surface temperature as ob-
served at infinity,

T∞
s = eν(R)/2Ts =

√

1 − 2M

R
Ts. (C.7.5)

In Fig. C.59 we show the surface temperature Ts as a function of the time t
for a global neutrality neutron star with and without considering the occur-
rence of the direct Urca process in the core. It can be seen that when active,
the direct Urca reactions make the star to cool faster with respect to the case
when they are absent. The reason for this is that this process has ǫν ∝ T6 while
the other processes have ǫν ∝ T8, which leads via Eq. (C.7.3) to T ∝ t−1/4 and
∝ t−1/6 respectively.
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Figure C.59.: Surface temperature at infinity T∞
s as a function of time t in yr

with (blue curve) and without (red curve) considering Direct Urca process
(DU).

We show in Fig. C.60 the cooling curves for selected neutron star masses,
for 1.4 M⊙ and 2.0 M⊙, at the same central temperature, while Fig. C.61
shows the evolution of a neutron star with 1.4 M⊙ for two different central
temperature, T = 3 × 109 K and T = 5 × 109 K. We contrast our theoret-
ical curves with some isolated neutron stars observational data taken from
Ref. Yakovlev and Pethick (2004b).
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Figure C.60.: Surface temperature at infinity T∞
s as a function of time t in yr

for two neutron star with slected masses, 1.4 M⊙ and 2.0 M⊙, at the same
central temperature T = 3 × 109 K.

C.7.5. Conclusions

We calculated the thermal evolution of globally neutral neutron stars in the
isothermal stage of their evolution, which follows the thermal relaxation phase.
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Figure C.61.: Surface temperature at infinity T∞
s as a function of time t for

neutron star with selected central temperatures T = 3 × 109 K and T = 5 ×
109 K, and mass 1.4 M⊙.

We contrast the cooling curves with some observational data of middle-ages
isolated neutron stars. We computed the fraction of the core where the di-
rect Urca process is active for the case of the NL3 parameterization of the
σ-ω-ρ nuclear model. This work is a first step towards the full calculation of
the thermal evolution considering the early phases where the star is far from
isothermality, which reveals crucial information from the properties of the
crust of the neutron star.
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cases

C.8. Thermal evolution of neutron stars: global

and local charge neutrality cases

In recent works Rotondo et al. (2011d); Rueda et al. (2011); Belvedere et al.
(2012), we developed a new model of neutron star fulfilling global but not lo-
cal charge neutrality. We showed that the equilibrium equations of this new
treatment supersede the traditional ones based on the Tolman-Oppenheimer-
Volkoff (TOV) system of equations, which obeys local charge neutrality. The
new coupled system equations, what we called Einstein-Maxwell-Thomas-
Fermi (EMTF) equations, introduces self-consistently the presence of the elec-
tromagnetic interactions in addition to the nuclear, weak, and gravitational
interactions within the framework of general relativity. The weak interac-
tions are accounted for by requesting the β-stability, and the strong inter-
actions are modeled via the σ-ω-ρ nuclear model, where σ, ω and ρ are
the mediator massive vector mesons. In this work we use the NL3 param-
eterization of this nuclear model (see Ref. Belvedere et al. (2012) for more
details). In the supranuclear core is composed by a degenerate gas of neu-
trons, protons, and electrons in β-equilibrium. The crust in its outer region
ρ ≤ ρdrip ≈ 4.3 × 1011 g cm−3 is composed ions and electrons and in its inner

region, at ρdrip < ρ < ρnuc, where ρnuc ≈ 2.7 × 1014 g cm−3 is the nuclear
saturation density, there is an additional component of free neutrons dripped
out from nuclei.

The solution of the EMTF equations of equilibrium leads to a new struc-
ture of the neutron stars very different from the traditional configurations
obtained through the TOV equations (see Fig. C.62): the core is positively
charged as a consequence of the balance between gravitational and Coulomb
forces that results in the appearance of a Coulomb potential energy eV ∼
mπc2 deep. The core-crust transition starts at ρ = ρnuc. The transition is
marked by the existence of a a thin, ∆r ∼few hundreds fm, electron layer fully
screening the core charge. In this transition layer the electric field becomes
overcritical, E ∼ m2

πc3/(eh̄), and the particle densities decrease until the base
of the crust, which is reached when global charge neutrality is achieved. Con-
sequently, the core is matched to the crust at a density ρcrust ≤ ρnuc.

Configurations with ρcrust > ρdrip possess both inner and outer crust while
in the cases with ρcrust ≤ ρdrip the neutron star have only outer crust. In
the limit ρcrust → ρnuc, both ∆r and E of the transition layer vanish, and the
solution approaches the one given by local charge neutrality (see Figs. 3 and
5 in Belvedere et al. (2012)). All the above features lead to a new mass-radius
relation of neutron stars; see Belvedere et al. (2012) and Fig. C.63.

The aim of this work is to compute the thermal evolution of globally neu-
tral neutron stars with and without inner crust, all the way up to approach the
limit when ρcrust ≤ ρnuc, which corresponds to TOV-like solutions satisfying
local charge neutrality. We use geometric units G = c = 1 throughout.
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Figure C.62.: In the top and center panels we show the neutron, proton, elec-
tron densities and the electric field in units of the critical electric field Ec in
the core-crust transition layer, whereas in the bottom panel we show a spe-
cific example of a density profile inside a neutron star. In this plot we have
used for the globally neutral case a density at the edge of the crust equal to
the neutron drip density, ρdrip ≈ 4.3 × 1011 g cm−3. λσ = h̄/(mσc) ∼ 0.4 fm
denotes the σ-meson Compton wavelength.
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Figure C.63.: Mass-radius relation obtained with the traditional locally neu-
tral TOV treatment case and the global charge neutrality configurations, with
ρcrust = ρdrip Belvedere et al. (2012). Configurations lying between the solid
and dashed curves have ρcrust > ρdrip and so they possess inner crust.

2024



C.8. Thermal evolution of neutron stars: global and local charge neutrality
cases

C.8.1. Thermal evolution equations

For a spherically symmetric spacetime appropriate for non-rotating neutron
stars

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (C.8.1)

the general relativistic equations of energy balance and energy transport for
the description of the thermal evolution read (see e.g. Thorne (1977))

∂(Leν)

∂r
= − 4πr2

√
1 − 2m/r

[

ǫνeν + cv
∂(Teν/2)

∂t

]

, (C.8.2)

Leν

4πr2κ
=

√
1 − 2m/r

∂(Teν/2)

∂r
. (C.8.3)

Eqs. (C.8.2–C.8.3) depend on the structure of the star through the variables
r, ρ(r), m(r), and ν(r) that represent the radial distance, the energy den-
sity, the mass function, and the general relativistic gravitational potential, re-
spectively. The thermal variables are represented by the interior temperature
T(r, t), the radiation luminosity L(r, t), neutrino emissivity ǫν(r, T), thermal
conductivity κ(r, T) and specific heat per unit volume cv(r, T).

The boundary conditions of Eqs. (C.8.2–C.8.3) are determined by the lu-
minosity at the center and at the surface. The luminosity vanishes at the
stellar center, i.e. L(r = 0) = 0, since at this point the heat flux is zero. At
the surface, the luminosity is defined by the relationship between the mantle
temperature, which we denote to as Tb, and the temperature outside of the
star, T(r = R) = Ts.

We included all the relevant process of neutrino emission: in the core we
consider the direct and modified Urca processes, neutron-neutron (nn), proton-
proton (pp) and neutron-proton (np) Bremsstrahlung. In the crust we have
plasmon decay, e−e+ pair annihilation, electron-nucleus and nucleon-nucleon
Bremsstrahlung. The heat capacity is due to by electrons, protons and neu-
trons in the core and by electrons and ions in the crust. The thermal conduc-
tivity in the core is given mainly by electrons and neutrons and in the crust is
the result of the scattering of electrons with atomic nuclei Gnedin et al. (2001).

C.8.2. Cooling curves and relaxation time

The thermal relaxation epoch in which the isothermal core with temperature
Tb is developed is of the order of ∆t . 100 yr (see e.g. Gnedin et al. (2001)),
a time well within the ages of the observed isolated neutron stars, t ∼ 104–
106 yr. Therefore, lacking observational data at the early phases, we can start
our thermal evolution from the point where the star already has reached the
isothermality, so without need considering the relaxation phase.

We computed the cooling curves by integrating numerically Eqs. (C.8.2–
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Figure C.64.: Density profiles of globally neutral neutron star with mass M ≈
1.4 M⊙ for selected values of the density at the base of the crust, ρcrust. Notice
that the transition to the crust occurs at the nuclear saturation density, ρnuc.

C.8.3). The surface temperature is calculated using the results by Gudmunds-
son et al. (1983), which obtained a relation between the surface temperature
Ts and Tb,

Tb = 1.288 × 108

(

T4
s6

gs14

)0.455

K, (C.8.4)

where Ts6 is the surface temperature in units of 106 K and gs14 is the surface
gravity, g = (GM/R2)

√
1 − 2M/R, in units of 1014 cm s−2, with M and R the

total mass and radius of the neutron star.

In the following we show our results for the surface temperature as ob-

served at infinity, T∞
s = eν(R)/2Ts where eν(R)/2 =

√
1 − 2M/R. We com-

puted the full cooling curves for a globally neutral neutron star with mass
1.4 M⊙ for selected values of ρcrust.

In Fig. C.65 we show the surface temperature at infinity, T∞
s , as a function

of time t in yr for the neutron star configurations shown in Fig. C.64. In
Fig. C.66 we show the temperature at the base of the crust as a function of
t for the same configurations. The Fig. C.67 is an enlargement of Fig. C.65
around the temperature drop at the end of the thermal relaxation phase.

We can see in this figure that the time to the temperature drop is different
for the star with densities higher and lower than 5 × 1013 g cm−3. For stars
with ρ . 5 × 1013 g cm−3, the thicker the crust the shorter relaxation time,
while for ρ > 5 × 1013 g cm−3, the thicker the crust the longer the relaxation
time. The latter behavior is in agreement with the results by Lattimer et al.
(1994), while the former is in clear contrast. The reason for this is that in
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Figure C.65.: Surface temperature at infinity T∞
s as a function of time t in yr

for the neutron star configurations shown in Fig. C.64.
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Figure C.66.: Temperature at the base of the crust as a function of time t in yr
for the neutron star configurations shown in Fig. C.64.
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a very thin crust with a small or absent inner crust, some neutrino emission
processes are blocked. This leads to a crust that is kept hotter for longer times.
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Figure C.67.: Enlargement of the evolution of the surface temperature around
its drop at the end of the thermal relaxation phase, for the neutron stars
shown in Fig. C.64.
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C.9. Realistic versus fiducial parameters of

rotating neutron stars

We have recently shown in (Rotondo et al., 2011d; Rueda et al., 2011; Belvedere
et al., 2012), both for the static and the rotating case, how the traditional ap-
proach to study the equilibrium configurations for neutron stars, based on
the solution of the Tolman-Oppenheimer-Volkoff (TOV) system of equations
(Oppenheimer and Volkoff, 1939; Tolman, 1939), has to be superseded once
the weak, strong, gravitational and electromagnetic interactions are taken
into account. The TOV equations must be then replaced by the Einstein-
Maxwell system of equations coupled to the general relativistic Thomas-Fermi
equations of equilibrium, giving raise to the what we have called the Einstein-
Maxwell-Thomas-Fermi (EMTF) equations.

While in the TOV approach the condition of local charge neutrality, ne(r) =
np(r), is applied, in the EMTF model the condition of global charge neutral-
ity, Ne = Np, is imposed, where ni and Ni are the number density and total
number of particles of the i-specie, respectively. The thermodynamic equi-
librium of the star is ensured by the constancy of the generalized chemical
potentials (Klein potentials) of each system species along the whole config-
uration (Klein, 1949; Rotondo et al., 2011d; Rueda et al., 2011) as well as of
the gravitationally redshifted temperature if finite temperatures are consid-
ered (Tolman, 1930). To introduce the strong interactions we follow the σ-ω-ρ
nuclear model within relativistic mean field theory á la Boguta & Bodmer
(Boguta and Bodmer, 1977), while the weak interactions are modeled via β-
equilibrium. The nuclear model is fixed once the values of the coupling con-
stants and the masses of the three mesons are fixed: in this work, as in the
previous ones (Belvedere et al., 2012, 2013), we follow the so-called NL3 pa-
rameter set (Lalazissis et al., 1997), with mσ=508.194 MeV, mω=782.501 MeV,
mρ=763.000 MeV, gσ=10.2170, gω=12.8680, gρ=4.4740, plus two constants that

give the strength of the self-scalar interactions, g2 = −10.4310 fm−1 and
g3 = −28.8850.

The solution of the EMTF equations of equilibrium leads to a new struc-
ture of the neutron stars markedly different from the traditional configura-
tions obtained through the TOV equations, as shown in Fig C.68: from the
supranuclear central density up to the nuclear density ρnuc ≈ 2.7× 1014 g cm−3,
we find the neutron star core, which is composed by a degenerate gas of
neutrons, protons, and electrons in β-equilibrium, and is positively charged.
The core is surrounded by an electron layer a few hundreds fermi thick that
fully screens its charge. In this core-crust transition layer the electric field
reaches values as large as E ∼ (mπ/me)2Ec, where Ec = m2

e c3/(eh̄) ≈ 1.3 ×
1016 Volt cm−1 is the critical field for vacuum polarization. The e+e− pair
creation is however inhibited by Pauli blocking. In this layer the particle
densities decrease until the point where global charge neutrality is reached
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and the crust is found. Consequently, the core is matched to the crust via this
interface at a density ρcrust ≤ ρnuc. In the limit ρcrust → ρnuc, the thickness of
the transition layer as well as the electric field inside it vanish, and the solu-
tion approaches the one given by local charge neutrality (see Figs. 3 and 5 in
Belvedere et al. (2012)). The crust in its outer region ρ ≤ ρdrip ≈ 4.3 × 1011

g cm−3 is composed by white dwarf-like material (ions and electrons), fol-
lowing for instance the BPS equation of state (EOS) (Baym et al., 1971b). In
its inner region, at densities ρ > ρdrip, free neutrons are present and the EOS
follows for instance the BBP description (Baym et al., 1971b). Configurations
with ρcrust > ρdrip possess both inner and outer crust while in the cases with
ρcrust ≤ ρdrip the neutron star have only outer crust. As shown by Belvedere
et al. (2012), all the above new features lead to a new mass-radius relation of
static neutron stars.
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Figure C.68.: In the top and center panels we show the neutron, proton, elec-
tron densities and the electric field in units of the critical electric field Ec in
the core-crust transition layer, whereas in the bottom panel we show a spe-
cific example of a density profile inside a neutron star. In this plot we have
used for the globally neutral case a density at the edge of the crust equal to the
neutron drip density, ρdrip ≈ 4.3 × 1011 g cm−3, and λσ = h̄/(mσc) ∼ 0.4 fm
denotes the σ-meson Compton wavelength.

The static case has been recently extended to the rotating one in (Belvedere
et al., 2013), assuming the neutron star as a rotating rigid body within the
Hartle formalism (Hartle, 1967). In this method the Einstein equations are
computed perturbatively by expanding the metric functions with respect to
the star rotation angular velocity, Ω, up to second order. We refer to (Belvedere
et al., 2013) and references therein for further technical details.

In Fig. C.69 we show the mass-radius relation that results from the integra-
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tion of the EMTF equations for the equilibrium configurations of static and
rotating neutron stars. The dashed lines represent the non-rotating, (J = 0),
sequences, while the solid lines represent the corresponding Keplerian se-
quences. The pink-red and light blue lines represent the secular instabil-
ity boundaries for the global and local charge neutrality cases respectively.
Once the secular instability line is crossed, the star evolves quasi-stationarily
until it reaches a dynamically unstable point and the gravitational collapse
get started (Stergioulas, 2003). The horizontal thin red lines give the mini-
mum mass for the static (solid line) and rotating (dashed line) sequences for
the global charge neutrality case. This minimum mass limits are defined by
change on sign of the gravitational binding energy W of the star, namely by
the condition W=0. We did not find any minimum mass limit for the local
charge neutrality case.
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Figure C.69.: Total mass versus total equatorial radius for the global (red) and
local (blue) charge neutrality cases. The dashed curves represent the static
configurations, while the solid lines are the uniformly rotating neutron stars.
The pink-red and light-blue color lines define the secular instability boundary
for the globally and locally neutral cases respectively. The horizontal thin red
lines define the minimum mass in the GCN case.

From all the above we can see that in the intervening years from the sem-
inal work of Oppenheimer and Volkoff (1939) on neutron stars, much more
has been learned concerning the EOS including the nuclear interactions, and
on a more complex description of the structure parameters and stability of
both static and rotating neutron stars. In spite of this fact, it is common in the
pulsar literature to infer neutron star astrophysical observables such as sur-
face magnetic field and luminosity by adopting as fiducial structure param-
eters for the mass, radius, and moment of inertia, M = 1.4 M⊙, R = 10 km,
I = 1045 g cm2, respectively. However, it is clear that both different theo-
retical models or, for a fixed model, different structure parameters by vary-
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ing central density and/or rotation frequency, can give rise to quite different
quantitative estimates of the astrophysical quantities.

In this line, we would like to introduce a word of caution also on the use
of some analytic formulas existing in the literature for the determination of
the maximum rotation frequency (see e.g. Lattimer and Prakash, 2004a) and
of the moment of inertia (see e.g. Ravenhall and Pethick, 1994; Lattimer and
Schutz, 2005) of a neutron star.

This work is organized as follows. In section C.9.1 we briefly summarize
the perturbative method followed to solve the Einstein equations in the rotat-
ing case, recalling the quantities involved in our analysis, namely the angular
velocity of the star Ω, the moment of inertia I and the variation on mass due
to the rotation. Moreover we discuss the validity of our method in describing
the moment of inertia obtained through the Hartle’s formalism.

In section C.9.2 we construct the Keplerian sequence of globally and lo-
cally neutral neutron stars. We compare qualitatively and quantitatively our
results with the approximate analytic formula given by Lattimer and Prakash
(2004a). We analyze specifically the case of the fastest observed pulsar PSR
J1748–2446ad (Hessels et al., 2006a) with a frequency of 716 Hz, which is often
used in the literature to constraint the mass-radius relation and so the EOS of
neutron stars (see e.g. Trümper, 2011).

In section C.9.3 we calculate the moment of inertia of globally and locally
neutral neutron stars and compare and contrast the results with the approxi-
mate formulas given by Ravenhall and Pethick (1994) and also Lattimer and
Schutz (2005) for the moment of inertia as a function of the star compactness.

Turning to the astrophysical observables of pulsars, in section C.9.4, we
analyze the estimates of the magnetic field and radiation efficiency of the
high-magnetic field pulsars class. We compare and contrast the values of
realistic neutron star configurations with the ones derived using the above
fiducial parameters, with which fields larger than the quantum critical value
for vacuum breakdown, Bc = m2

e c2/(eh̄) ≈ 4.4 × 1013 G, are obtained (see
e.g. Ng and Kaspi, 2011).

We use geometric units with G = c = 1 throughout unless otherwise spec-
ified.

C.9.1. Neutron star’s quantities

In 1967 Hartle showed in his trailblazing work (Hartle, 1967), that the equi-
librium equations for a slowly rotating star can be obtained through an ex-
pansion of the metric functions up to some order in the angular velocity Ω.
In particular, he shown that conducting the expansion up to the second or-
der, it is possible to describe the structure of a compact star by its total mass
M, angular momentum J and quadrupole moment Q. To obtain such quan-
tities , the interior and the exterior solutions has to be matched at the border
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of the star. More in detail, the interior solution is derived trough a numeri-
cal solving of a system of ordinary differential equations for the perturbation
functions, while the exterior solution, for the vacuum surrounding the star,
can be written in an analytical form in terms of M, J, and Q (Hartle, 1967;
Hartle and Thorne, 1968).

Up to the second order in Ω, the spacetime metric for the rotating configu-
ration is given by (Hartle, 1967):

ds2 = eν (1 + 2h) dt2 − eλ

[

1 +
2m

r − 2M0

]

dr2

− r2 (1 + 2k)
[

dθ2 + sin2 θ (dφ − ωdt)2
]

, (C.9.1)

where ν = ν(r), λ = λ(r), and M0 = M0(r) are the metric functions and mass
profiles of the corresponding seed static star with the same central density as
the rotating one. The functions h = h(r, θ), m = m(r, θ), k = k(r, θ) and the
fluid angular velocity in the local inertial frame, ω = ω(r), have to be cal-
culated from the Einstein equations. The functions h = h(r, θ), m = m(r, θ),
k = k(r, θ) have analytic form in the exterior (vacuum) spacetime (Belvedere
et al., 2013).

Through an expansion up to the first order in Ω and the matching between
the interior and exterior solutions, it is possible to obtain the angular momen-
tum J of the star as well as the total mass M. The former is given by:

J =
1

6
R4

(

dω̄

dr

)

r=R

, (C.9.2)

related to the angular velocity Ω by

Ω = ω̄(R) +
2J

R3
, (C.9.3)

where R is the total radius of the non-rotating star and ω̄(r) = Ω − ω(r) is
the angular velocity of the fluid relative to the local inertial frame, being ω
the fluid angular velocity in the local inertial frame. The latter is given by:

M = M0 + δM , δM = m0(R) + J2/R3 , (C.9.4)

where M0 is the mass of the non-rotating star and δM is the contribution to
the mass due to the rotation, while m0 with its connected quantity p∗0 are
two second order functions related to the pressure perturbation, computed
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by solving the coupled differential equations:

dm0

dr
= 4πr2 dE

dP
(E+ P)p∗0 +

1

12
j2r4

(

dω̄

dr

)2

− 1

3

dj2

dr
r3ω̄2 , (C.9.5)

dp∗0
dr

= −m0(1 + 8πr2P)

(r − 2M0)2
− 4πr2(E+ P)

(r − 2M0)
p∗0

+
1

12

j2r4

(r − 2M0)

(

dω̄

dr

)2

+
1

3

d

dr

(

r3 j2ω̄2

r − 2M0

)

, (C.9.6)

where E and P are the total energy-density and pressure.

The moment of inertia can be computed from the relation

I =
J

Ω
, (C.9.7)

which tell us that, since J a first-order quantity, i.e. proportional to Ω, this
moment of inertia given by Eq. (C.9.7) does not depend on the angular veloc-
ity and so it does not take into account deviations from spherical symmetry.
Thus, it represents the moment of inertia of the non-rotating unperturbed
spherical object; contributions of the angular velocity and deformation are
accounted for only in an expansion up to the third order in Ω.

Indeed, owing to the high density of neutron stars, most of the observed
pulsars are accurately described by a perturbed spherical geometry and the
accuracy of the moment of inertia of the non-rotating star is a good approx-
imation for the actual value of the rotating object. The accuracy of the ap-
proximation increases for stiffer EOS (see Benhar et al., 2005b, for details), as
it is the case of the EOS obtained from σ-ω-ρ relativistic nuclear mean field
models (Boguta and Bodmer, 1977) such as the one used in this work.

C.9.2. Accuracy of approximate analytic formulas for the

Keplerian sequence

It has been obtained by Lattimer and Prakash (2004a) that the numerical
value of the Keplerian frequency, namely the maximum rotation frequency,
of a neutron star accounting for the effects of general relativity, deformation,
and independent on the EOS, can be well fitted from the simple formula

f L&P
K =

ΩL&P
K

2π
= 1045

(

M0

M⊙

)1/2 (10 km

R

)3/2

Hz , (C.9.8)
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providing the neutron star mass is not very close to the maximum stable
value.

The Eq. (C.9.8) is often used to impose a constraint to the neutron star mass-
radius relation (see e.g. Trümper, 2011), by replacing f LP

K with the frequency
of the fastest observed pulsar PSR J1748–2446ad (Hessels et al., 2006a), 716 Hz.
Specifically, by doing this it can be obtained either an upper bound to the ra-
dius or a lower bound to the mass:

M0 ≥
(

716

1045

)2 ( R

10 km

)3

M⊙ ≈ 0.47

(

R

10 km

)3

M⊙ . (C.9.9)

In Fig. C.70 we show the approximate constraint given by Eq. (C.9.9) repre-
sented by the gray dot-dashed curve together with the Keplerian sequence of
globally and locally neutral neutron stars obtained in this work. We have also
constructed the constant frequency sequence for fastest observed pulsar PSR
J1748–2446ad with f = 716 Hz. The crossing point of this constant frequency
curve with the Keplerian one is represented by a cyan-color star.
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Figure C.70.: Gray dot-dashed line: constraint on the mass-radius relation
given by Eq. C.9.9, as shown in (Trümper, 2011). Light-red and light-blue
dashed lines: mass-radius relation for a constant rotational frequency f =
716 Hz, for the global and local charge neutrality respectively. The two cyan-
color stars at the bottom of the plot represent the pulsar PSR J1748-2446ad
for our new configuration and the traditional one, both along the Keplerian
sequence.

One should therefore expect that, if accurate, the dot-dashed curve passes
over (or close to) the two cyan-color stars at the bottom of Fig. C.70. It is clear
that Eq. (C.9.9) is very far from representing correctly the position of a star
on the Keplerian sequence, and this inconsistency is equally severe for both
globally and locally neutral neutron stars. Quantitatively, we can see that
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Eq. (C.9.9) would predict for the same radius a much larger mass, namely
M ≈ 0.56 M⊙ in the globally neutral case and M ≈ 1.5 M⊙ in the locally
neutral one; see Fig. C.70.

The reason of the discrepancy between Eq. (C.5.33) and the real results, is
as follows. The maximum Keplerian velocity can be written in terms of the
non-rotating mass and radius of the neutron star as (see Belvedere et al., 2013)

Ω
J 6=0
K = C

√

M0

R3
, (C.9.10)

or in terms of rotation frequency

fK = C× 1833

(

M0

M⊙

)1/2 (10 km

R

)3/2

Hz , (C.9.11)

where ρc ≡ ρ(0) is the central density, and C is a coefficient given by

C =

√

1 + δM/M0

(1 + δR/R)3

[

1 − jF1(r) + j2F2(r) + qF3(r)
]

. (C.9.12)

Here δR is the contribution to the radius due to rotation, j = J/M2
0 and q =

Q/M3
0 are the dimensionless angular momentum and quadrupole moment.

The functions Fi can be found in Appendix A of (Belvedere et al., 2013), and
the quadrupole moment Q is given by

Q =
J2

M0
+

8

5
KM3

0 , (C.9.13)

where K is a constant of integration fixed from the matching of the function
h2 between the interior and exterior spacetimes, being h2 the second order
function of the expansion of h = h(r, θ); see Hartle (1967) and Appendix A in
(Belvedere et al., 2013).

In Fig. C.71 we plot the dependence of the coefficient C in Eq. (C.9.10) as a
function of the static neutron star mass, M0. In contrast to the constancy of
such a coefficient in the approximate analytic formula (C.5.33), we find that
C has a non-trivial dependence on the central density (or the mass) of the
star. Indeed, we obtain 0.720 . CGCN . 0.912 and 0.750 . CLCN . 0.916
for the global and local charge neutrality cases, respectively (see Fig. C.71).
This dependence is caused by the effects of general relativity, the angular mo-
mentum, the quadrupole deformation, and the specific EOS used. Therefore,
the Eqs. (C.5.33) and (C.9.9) are, in general, not applicable for all neutron star
models.

We show in Fig. C.72 the accuracy of the approximate analytic formula for
the Keplerian sequence given by Eq. (C.5.33) with respect to the actual value
obtained from our numerical integrations, 1− f L&P

K / fK, where fK is obtained
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Figure C.71.: Coefficient C in Eq. (C.9.10) as a function of the mass of the
non-rotating neutron star for both global and local charge neutrality.

via Eqs. (C.9.11) and (C.9.12).
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Figure C.72.: Accuracy of the approximate formula (C.5.33) by Lattimer
and Prakash (2004a) with respect to the numerical values obtained from
Eqs. (C.9.11) and (C.9.12) for both global (red dashed) and local (blue dashed)
charge neutrality cases, as a function of the non-rotating neutron star mass,
M0.

C.9.3. Accuracy of approximate analytic formulas for the
moment of inertia

It has been claimed in the literature the possibility of constructing model-
independent approximate analytic formulas to compute the moment of iner-
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tia of a neutron star as a function of its compactness, GM0/(c2R).
Ravenhall and Pethick (1994) for instance obtained that, within 10% of ac-

curacy, the moment of inertia for a large variety of the EOS existing at the
time is fitted by the formula

I

M0R2
= 0.21

(

1 − 2
GM0

c2R

)−1

, (C.9.14)

except for those configurations with masses M0 . M⊙.
Lattimer and Schutz (2005) calculated the moment of inertia for several

hadronic EOS and concluded that I/(M0R2) follows approximately the fol-
lowing universal expression

I

M0R2
= (C.9.15)

(0.237 ± 0.008)

[

1 + 2.84
GM0

c2R
+ 18.9

(

GM0

c2R

)4
]

,

for EOS that leads to maximum masses larger than 1.6M⊙ and for values
M0/R & 0.07 M⊙/km and M ≥ M⊙.

In Fig. C.73 we compare the approximate formulas (C.9.14) and (C.9.15)
with the actual behavior of I/(M0R2) as a function of the neutron star com-
pactness.
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Figure C.73.: Comparison between the approximate formulas (C.9.15) and
(C.9.14) by Lattimer and Schutz (2005) and Ravenhall and Pethick (1994), re-
spectively, with the real behavior of I/(M0R2) as a function of the compact-
ness parameter of the neutron star, GM0/(c2R). We have also plotted the
errors of the formula (C.9.15) as calculated by Lattimer and Schutz (2005).

We show in Fig. (C.74) the accuracy of the approximate formulas (C.9.14)
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and (C.9.15) with respect to the numerical values obtained from Eq. (C.5.31)
for both globally and locally neutral neutron stars. Namely we plot as a func-
tion of the compactness the value of 1− IGCN/IR&P,L&P and 1− ILCN/IR&P,L&P.

0 0.05 0.10 0.15 0.20 0.25 0.30

GM0 /(c
2 R)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

A
cc
u
ra
cy

o
f
I R

&
P
,L
&
P

1−IGCN/IR&P
1−ILCN/IR&P
1−IGCN/IL&P
1−ILCN/IR&P

Figure C.74.: Accuracy of the approximate formulas (C.9.15) and (C.9.14) by
Lattimer and Schutz (2005) and Ravenhall and Pethick (1994), respectively,
with respect to the numerical values obtained from Eq. (C.5.31) for both
globally and locally neutral neutron stars, as a function of the compactness,
GM0/(c2R).

We can see the performance of the above approximate formulas is in gen-
eral not accurate. The accuracy improves with increasing compactness and in
particular for configurations very close to the one of maximum mass. How-
ever, it is clear that the above approximate formulas cannot be considered
as good approximations for the moment of inertia of any neutron star since
the qualitative and quantitative behavior of it depends very strongly on the
nuclear EOS. As we have shown here, these particular descriptions fail in the
case of stiff EOS as the ones given by relativistic nuclear mean field theory
models.

C.9.4. Implications on the magnetic-dipole model of pulsars

The upper limit on the magnetic field of a pulsar (see e.g. (Ferrari and Ruffini,
1969)), obtained by requesting that the rotational energy loss due to the dipole
field be smaller than the electromagnetic emission of the dipole, is given by

B =

(

3c3

8π2

I

R6
PṖ

)1/2

, (C.9.16)
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where P and Ṗ are the rotational period and the spin-down rate of the pul-
sar which are observational properties, and the moment of inertia I and the
radius R of the object are model dependent properties. For the often used
in literature, fiducial parameters of the canonical neutron star M = 1.4M⊙,
R = 10 km, and moment of inertia I = 1045 g cm2, Eq. (C.9.16) becomes

B f = 3.2 × 1019
(

PṖ
)1/2

G . (C.9.17)

The loss of rotational energy within this model is given by

Ėrot = −4π2 I
Ṗ

P3
, (C.9.18)

which in the case of fiducial neutron star parameters becomes

Ė
f
rot = −3.95 × 1046 Ṗ

P3
erg s−1 . (C.9.19)

There is an interesting family of pulsars known as high-magnetic field pul-
sars characterized by surface magnetic fields, inferred from their period and
spin-down rates thorough Eq. (C.9.17), close or in some cases even larger than
the quantum critical field (see e.g. Ng and Kaspi, 2011; Zhu et al., 2011, and
Table C.9 for details):

Bc =
m2

e c2

eh̄
= 4.41 × 1013 G . (C.9.20)

Pulsar B f /Bc LX (1033 erg s−1) P (s) Ṗ (10−12)

J1846–0258 1.11 25-28, 120-170 0.326 7.083
J1819–1458 1.13 1.8 − 2.4 4.263 0.575
J1734–3333 1.18 0.1 − 3.4 1.169 2.279
J1814–1744 1.24 < 43 1.169 2.279
J1718–3718 1.67 0.14 − 2.6 3.378 1.598
J1847–0130 2.13 < 34 6.707 1.275

Table C.9.: Magnetic fields of the overcritical high-magnetic field pulsars
obtained assuming fiducial neutron star parameters, R = 10 km and I =
1045 g cm2, respectively, namely using Eq. (B.3.12). See Zhu et al. (2011); Ng
and Kaspi (2011) for additional details of these pulsars.

Due to this fact, it has been suggested the possibility that this family of pul-
sars can be the missing link, i.e. transition objects, between rotation powered
pulsars and the so-called magnetars: neutron stars powered by the decay of
overcritical magnetic fields. In principle this would lead to a large unseen
population of magnetars in a quiescence state which could be disguised as
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radio pulsars (see e.g. Zhu et al., 2011, for details). However, as we shall
show below, these conclusions might be premature since the magnetic fields,
inferred using a neutron star of fiducial parameters, are in general overesti-
mated. In particular, they could be in some cases larger by almost an order of
magnitude when compared with the magnetic field obtained from Eq. (B.4.3)
using realistic mass-radius relations and the corresponding general relativis-
tic moment of inertia.

In Fig. C.75 we show the ratio between the magnetic field obtained via
Eq. (C.9.16) using the realistic mass-radius relations of globally and locally
neutral neutron stars used in this work and the one obtained with fiducial pa-
rameters given by Eq. (C.9.17), which we denote to as B f . We did this for both
static and maximally rotating (Keplerian sequence) neutron stars. For the ro-
tating stars we substitute the radius R in Eq. (C.9.16) by the mean-radius,
〈R〉 = (2Req + Rp)/3, where Req and Rp are, respectively, the equatorial and
polar radii.
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Figure C.75.: Ratio between the magnetic field given by Eq. (C.9.16) obtained
with the realistic mass-radius relations of globally and locally neutral neutron
stars of this work and the one obtained with fiducial parameters, given by
Eq. (C.9.17). The stars

We can see from this figure that the inferred magnetic field decreases with
the neutron star mass. Therefore, the configurations of maximum and mini-
mum mass give us respectively upper and lower limits to the magnetic field.

In Fig. C.76 we have plotted the magnetic fields inferred for the high-
magnetic field pulsars of Table C.9 within the static approximation, namely
using the radius of the non-rotating configurations. This is in principle a
good approximation for this family of pulsars since their rotation periods are
well far the millisecond region, where appreciable deviations from spherical
symmetry are expected. As can be noticed from Fig. C.75, the non-rotating
approximation give us an upper limit to the magnetic field with respect to
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the value obtained from the actual rotating configuration.
We find that, in the global neutrality case, PSR J1847–0130 and PSR J1718–

3718 are under-critical up to a mass M0 ≈ 0.25 M⊙, and M0 ≈ 0.65 M⊙, re-
spectively, while the other pulsars are under-critical up to masses M0 ≈ 2.3–
2.5 M⊙. In the local charge neutrality case, PSR J1847–0130 and PSR J1718–
3718 are under-critical up to a mass M0 ≈ 0.9 M⊙ and M0 ≈ 1.5 M⊙ respec-
tively, while the other sources up to masses M0 ≈ 2.5–2.7 M⊙.
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Figure C.76.: Magnetic field B in the dipole approximation, in units of critical
magnetic field Bc, as function of the mass (in solar masses) for static neutron
stars in the global (left panel) and local (right panel) charge neutrality cases.
We show the high-magnetic field pulsar of Table C.9 for which overcritical
values (B/Bc > 1) are obtained using fiducial neutron star parameters.

We turn now to the efficiency of pulsars in converting rotational energy
into electromagnetic radiation. In Fig. C.77 we show the X-ray luminosity to
rotation energy loss ratio, LX/Ėrot as a function of the neutron star mass, for
both global and local charge neutrality.

In the global charge neutrality case, we have LX < Ėrot for PSR J1718–
3718 for M0 & 1.2 M⊙ and for the entire range of masses if we adopt as
LX the observational upper or lower limit, respectively; PSR J1814–1744 for
M0 & 0.8 M⊙ assuming LX as given by its upper limit, and the rest of objects
in the entire range of stable masses with the only exception of PSR J1847–
0130 and PSR J1819–1458, for which no range of masses with LX < Ėrot can
be obtained. Analogous conclusions are found for the case of local charge
neutrality.

For PSR J1847–0130 it is only known an upper limit for LX, so there is still
room for solutions with LX < Ėrot if future observations lead to an observed
value smaller than this present upper limit. In this line, the only object with
LX > Ėrot for any mass is PSR J1819–1458. For this particular object there
is still the possibility of being a rotation powered neutron star since the cur-
rently used value of the distance to the source, 3.6 kpc, inferred from its dis-
persion measure, is poorly accurate with a considerable uncertainty of at least
25% (see McLaughlin et al., 2007, for details). It is also worth to note that the
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/Ė

ro
t

J1847−0130up
J1819−1458max

J1819−1458min

J1718−3718max

J1814−1744up
J1718−3718min

J1734−3333max

J1846−0258max
A.O.

J1846−0258min
A.O.

J1846−0258max

J1846−0258min

J1734−3333min

0.5 1.0 1.5 2.0 2.5
M0 /M⊙

10−3
10−2
10−1
100

101

102

103

L
X
/Ė
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Figure C.77.: Ratio between the observed X-ray luminosity LX and the loss of
rotational energy Ėrot versus total mass of the rotating neutron star, in units
of M⊙. Are drawn the high-B pulsar from the work by Ng and Kaspi (2011)
for which a magnetic field higher than the critical field Bc is inferred, once the
fiducial value for the moment of inertia I = 1045 g cm2 is taken into account
(see Table C.9). Pulsars with luminosity LX defined by an upper limit are
labeled with “up”, for pulsars with luminosity LX not well established we
have assumed the existent lower limits (label “min”) and upper limits (label
“max”) on it. The values for the pulsar PSR J1846-0258 are dived in prior
the 2006 outburst and after the 2006 outburst (label “A.O.”). Left plot: global
charge neutrality. Right plot: local charge neutrality. The magnetic fields
shown are referred to the high-magnetic field pulsars of Table C.9.
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rotation energy loss, see Eq. (C.9.18), depends on the neutron star structure
only through the moment of inertia, which can be very different for different
nuclear EOS and/or owing to the improved value for rotating objects, ob-
tained for instance with a third-order series expansion in Ω, which is larger
than the non-rotating value used here (see e.g. Fig. 5 in Benhar et al., 2005b).

C.9.5. Conclusions

We have constructed equilibrium configurations of uniformly rotating neu-
tron stars in the globally and locally neutral pictures. We calculated the neu-
tron star parameters from the numerical integration of the general relativistic
equations of equilibrium and compared and contrasted them with the tradi-
tionally adopted fiducial values. We showed that the sequence of maximally
rotating neutron stars cannot be fitted by some existent approximate analytic
formulas in the literature (Lattimer and Prakash, 2004a). A similar conclusion
was reached for the moment of inertia of the configurations, as compared
with the formulas given by Ravenhall and Pethick (1994) and Lattimer and
Schutz (2005).

We then explored the consequences of our results on the astrophysics of
pulsars. We showed that the magnetic field inferred from the magnetic-
dipole formula can be overestimated up to one order of magnitude if fidu-
cial parameters are adopted. We analyzed in addition the specific case of the
high-magnetic field pulsar class, for which overcritical magnetic fields have
been obtained in the literature with the use of fiducial neutron star param-
eters. We found that, instead, the magnetic field of all the high-magnetic
field pulsars turn to be under-critical for appropriate values of the neutron
star mass. This nontrivial dependence of the inferred magnetic field on the
neutron star mass in addition to the dependence on P and Ṗ, namely B =
B(I(M0), R(M0), P, Ṗ), leads to the impossibility of accommodating the pul-
sars in a typical Ṗ− P diagram together with a priori fixed values of the mag-
netic field; see Fig. C.76.

We finally showed that the X-ray luminosity of these pulsars can be well
explained via the loss of rotational energy and therefore they fall into the fam-
ily of ordinary rotation powered pulsars. The only possible exceptions were
found to be PSR J1847–0130 and PSR J1819–1458, which however present still
observational uncertainties in the determination of their distances and/or
luminosities, which leave still room for a possible explanation in terms of
spin-down power. We also discussed the possible effects of different nuclear
models as well as the improved values of the moment of inertia given by fur-
ther expansion orders of the slow rotation approximation or full numerical
integration of the equilibrium equations in the rotating case.
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D. Neutron Stars Physics with
Gamma-Ray Bursts

D.1. Cooling of young neutron stars in GRBs

associated to Supernovae

D.1.1. Introduction

The investigation of the thermal evolution of neutron stars is a powerful tool
to probe the inner composition of these objects. The cooling of neutron stars
has been investigated by many authors, where many different microscopic
models were assumed (see Schaab et al., 1996; Page et al., 2004, 2006, 2009;
Blaschke et al., 2000; Grigorian et al., 2005; Blaschke et al., 2006; Negreiros
et al., 2010). Most of the research on the thermal evolution of compact stars
focus on objects with ages greater than 10-100 years, which is comprehensible
if one consider that the thermal data, currently available to us, is for pulsars
with estimated ages of or greater than 330 years (Page et al., 2004, 2009). In
this letter we discuss the thermal evolution of young neutron stars, in the
little explored time window that spans from ages greater than 1 minute (just
after the proto-neutron star regime (Prakash et al., 2001)) to ages ≤ 10–100
years, when the neutron star becomes isothermal (see Gnedin et al., 2001, for
details).

We discuss the possibility that the late X-ray emission (URCA hereafter
1) following a few GRBs associated with SNe; e.g. URCA-1 in GRB980425-
SN1998bw (Ruffini et al., 2004; Fraschetti et al., 2005; Bernardini et al., 2008),
URCA-2 in GRB030329-SN2003dh (Bernardini et al., 2004, 2005b), and URCA-
3 in the system GRB031203-SN2003lw (Bernardini et al., 2005a; Ruffini et al.,
2007a, 2008b) (see Fig. D.3 for details), might actually be originated by young
(t ∼ 1 minute–(10–100) years), hot (T ∼ 107–108 K) neutron stars, that are
remnants of the SN (Ruffini et al., 2007a) and which we have here called
neo-neutron stars. Relevant also are the observations of the isolated Type

1The name URCA-1 and URCA-2 mentioned here were given to these sources when pre-
sented for the first time at the MG10 meeting held in Rio de Janeiro in the town of URCA.
The location of the MG10 meeting was very close to the “Cassino da URCA” where
George Gamow and Mario Schoenberg conceived the process of neutrino emission for
the cooling process of neutron stars which also took the name from the town of URCA,
the URCA process (see e.g detailed history in Ruffini et al., 2005; Gamow, 1970)
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Ic Supernova SN 1994I (Immler et al., 2002) and SN 2002ap (Soria et al., 2004)
which present late emissions similar to the ones observed in URCA-1, URCA-
2, and URCA-3.

In this letter we propose a revision of the boundary conditions usually em-
ployed in the thermal cooling theory of neutron stars, in order to match the
proper conditions of the atmosphere at young ages. We also discuss the im-
portance of the thermal processes taking place in the crust, which also have
important effects on the initial stages of thermal evolution. We stress that we
are not calling into question the validity of the current treatment of the at-
mosphere of compact stars but, instead, we point out the need of extending
them to appropriately describe the conditions of neo-neutron stars.

D.1.2. Cooling of Young, Hot Neutron Stars

There are three important ingredients that govern the thermal evolution of a
compact star, these are: 1) the microscopic input, that accounts for the neu-
trino emissivities, specific heat and thermal conductivity; 2) the macroscopic
structure of the star, namely its mass, radius, pressure profile, crust size, etc.;
and 3) the boundary condition at the surface of the star, that provides a re-
lationship between the mantle temperature and that of the atmosphere, the
latter being what we ultimately observe. These ingredients have been ex-
tensively studied, and a comprehensive review can be found in Page et al.
(2006). As discussed in Gnedin et al. (2001), during the initial stages of ther-
mal evolution (ages ≤ 10 − 100 years), the core and the crust of the neutron
star are thermally decoupled. This is due to the fact that the high density core
is emitting neutrinos at a much higher rate than the crust, which causes it to
cool down more quickly. This effectively means, that initially the neutron
star is cooling “inside out”, with the core colder than the outer layers. This
scenario is schematically depicted in Figure D.1.

The dominant neutrino emission processes in the crust are given by the
Bremsstrahlung, plasmon decay, and electron-positron annihilation processes.
Following the footsteps of Gnedin et al. (2001), we calculate the thermal evo-
lution of neutron stars, by adding artificially a phenomenological source of
heat (see details in Sec. D.1.4). This allow us to estimate how much heat is
needed, so that the thermal evolution of a neo-neutron star matches the X-
ray light curve of late emission of GRB-SN.

After this initial core-crust decoupled state, the “cooling wave” originated
in the core reaches the crust, and the object becomes isothermal. The time
scale of this process is between 10–100 years, depending on the properties
of the crust (Gnedin et al., 2001). This means that during the initial stages of
thermal evolution the crust shields the core, and all the information we might
obtain at this stage, refers only to the crust and to the atmosphere of the star.
This raises another issue, that concerns the atmosphere of the star. The ther-
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Figure D.1.: Schematic representation of the cooling of a young neutron star.
Due to stronger neutrino emissivities, the core of the star cools down more
quickly than the crust, causing the star to cool inside out. Darker and lighter
areas represent higher and lower temperatures respectively.

mal connection between the mantle and the atmosphere is what defines the
photon luminosity, which is what we observe. Therefore, the appropriate de-
scription of the atmosphere is key to the correct understanding of the thermal
evolution of neutron stars. In the usual approach, the thermal relaxation-time
of the atmosphere is assumed to be much smaller than that of the neutron
star, furthermore neutrino emissions from the atmosphere are also consid-
ered negligible (see Gudmundsson et al., 1983). Under these assumptions,
and assuming a plane-parallel approximation (which is reasonable since the
atmosphere is ∼ 100 m thick), one can get a relationship between the temper-
ature of the mantle Tb and the temperature of atmosphere Te, or equivalently
the luminosity Le. Gudmundsson et al. (1983) have originally found a Tb-
Te relationship that depends on the surface gravity of the neutron star. This
relationship was further developed by Potekhin et al. (1997), to account for
the possibility of mass accreted in the initial stages, and of magnetic fields
effects. As pointed out by Gudmundsson et al. (1983), such assumptions for
the atmosphere of the star are only valid for objects older than a few 10 years,
when the temperature, for densities below 1010 g/cm3, has dropped below
109K. In fact, we see that the current boundary conditions yields tempera-
tures ∼ 107 K (L ∼ 1037 erg/s, equivalently) for young neutron stars (age
< 1–10 years). This should raise some suspicion since proto-neutron stars
studies (see Prakash et al., 2001, and references therein), indicate that neu-
tron stars just after this regime have temperatures ∼ 1010–1011 K.

The properties of the atmosphere of a sufficiently hot, nascent neutron
star should differ significantly from those considered in Gudmundsson et al.
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(1983) and Potekhin et al. (1997). Especially since at hot temperatures (T &
109 K) the atmosphere might not be transparent to neutrinos, and thus the
neutrino transport equations have to be considered. The coupled equations
of neutrino and photon transport, in the atmosphere of a neutron star, were
solved by Salpeter and Shapiro (1981), and Duncan et al. (1986). In these
works the authors have performed detailed calculations of the atmosphere
properties of hot neutron stars. They have found the following photon lumi-
nosity, as observed at infinity,

L∞ = 50 × t−7/12 × (T10)
7/4 × (R10)

17/9 ×
(

M

M⊙

)−1

× LE, (D.1.1)

where t is time in seconds, T10 is the initial temperature in units of 10 MeV,
R10 is the neutron star radius in units of 10 km, M is the neutron star mass,
and LE ∼ 2.0 × 1038 erg/s is the Eddington luminosity. Duncan et al. (1986)
found that the above expression should be valid for at least the initial 100 s.
In Fig. D.2 we can see how the luminosity of the star changes for the first 100
s, for stars with different initial temperatures.
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Figure D.2.: Luminosity of a hot nascent neutron star as observed at infinity
given by Eq. (D.1.1) during the initial 100 s (Duncan et al., 1986), with the
initial temperatures indicated. The neutron star is assumed to have a mass of
1.4M⊙, and a radius of 13 km.

According to these results, during the initial 100 s, the photon luminosity
emerging from the atmosphere will be higher than the Eddington luminosity.
This implies that there will be mass loss, due to neutrino-driven winds from
the young atmosphere. As shown by Duncan et al. (1986), the total mass loss
only becomes appreciable for neutron stars with large radii and high initial
temperatures. For a typical neutron star with the canonical mass of 1.4M⊙, a
radius of 13 km and initial temperature of ∼ 1011 K, the total mass loss was
estimated to be ∼ 6.2 × 10−6M⊙.
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In addition to the high luminosities associated to the atmosphere of young
neutron stars, one need also to consider fallback onto the surface of the neu-
tron star. Potekhin et al. (1997) discussed how fallback, at earlier stages of
evolution, would modify the properties of the atmosphere, and hence of the
boundary conditions. Once more however, in this investigation, such a fall-
back is assumed to have happened at early times and the modified boundary
conditions are only valid if the fallback has already ceased. Chevalier (1989)
has studied the fallback onto young neutron stars, and found that while there
is an envelope, a luminosity near the Eddington limit should be present. Fur-
thermore, the authors have found that in this case the energy from the en-
velope can be radiated away in a time of ∼ 1 year. This timescale however,
might be lengthened if effects of rotation are accounted during the fallback.
In addition to that, Turolla et al. (1994) have discussed the possibility of “hot
solutions” for the atmosphere of neutron stars undergoing spherical accre-
tion. It was shown that for L ≥ 10−2LE the temperature at the atmosphere of
a neutron star might be ∼ 109–1011 K.

D.1.3. Late X-Ray Emission in GRBs associated to
Supernovae: URCAs

It seems clear to us that, after the analysis of the scenario described above,
we must extend the current model for the boundary conditions used in cool-
ing calculations, to include the effects of a high temperature atmosphere,
with possibly super-Eddington luminosity. Up until this point however, lit-
tle attention has been given to the thermal evolution of young neutron stars,
mainly due to the absence of observational data of neutron stars with ages
< 330 years. It has been recently proposed (Ruffini et al., 2007a) that the long
lasting X-ray emission called there URCA (see Fig. D.3) of a few GRBs as-
sociated to SNe; URCA-1 in GRB980425-SN1998bw, URCA-2 in GRB030329-
SN2003dh, and URCA-3 in GRB031203-SN2003lw, might actually be origi-
nated in the compact star remnant of the SN: a neo-neutron star. In this
scenario the GRB is described as the core collapse of a massive star, whose
remnant is a black hole. This massive star is supposed to be in a binary sys-
tem, whose companion is on the verge of going supernova. The GRB triggers
the supernova explosion in the companion star, which in turns leaves behind
a neutron star (Ruffini et al., 2001). An alternative scenario has been recently
suggested in which the so-called GRB is actually not a GRB but the observed
X-ray emission originates from a collapsing core: a proto-neutron star leading
directly to a SN explosion. This concept is is very similar to the one of a proto-
black hole introduced in Ruffini et al. (2011, 2010a); Izzo et al. (2011), where
the emission from the collapsing core is clearly well distinguished from the
GRB. In that case the collapsing core leads to the formation of the black hole
while in the present case it leads to the formation of a neutron star.
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Both scenarios lead to the formation of a neo-neutron star and they are
supported by the observation of Supernova 1979C (Patnaude et al., 2011),
where a similar X-ray light curve also followed the supernova. In Fig. D.3 we
show the X-ray light curve associated with the URCAs.

From Fig. D.3 we can see that the X-ray luminosities of these sources are
of the same magnitude as that expected for neo-neutron stars, as discussed
above. In Table D.1 we summarize the representative parameters of the four
GRB-SN systems, including the very large kinetic energy observed in all SNe
(Mazzali, 2006). We have also included the association GRB060218-SN2006aj
(see Dainotti et al., 2007, 2010, for details). It must be noted that similar pro-
longed X-ray emission has been observed also in connection with other Type
Ic SN not associated with GRBs, like e.g. SN1994I (Immler et al., 2002) and
SN2002ap (Soria et al., 2004) (see Fig. D.4 for details).

GRB
Etot

e±
(erg)

Ebolom
SN

(erg)a
Ekin

SN
(erg)b

EURCA
(erg)c

Etot
e±

EURCA

Ekin
SN

EURCA

RNS

(km)d ze

980425 1.2 × 1048 2.3 × 1049 1.0 × 1052 3 × 1048 0.4 1.7 × 104 8 0.0085

030329 2.1 × 1052 1.8 × 1049 8.0 × 1051 3 × 1049 6 × 102 1.2 × 103 14 0.1685

031203 1.8 × 1050 3.1 × 1049 1.5 × 1052 2 × 1049 8.2 3.0 × 103 20 0.105

060218 1.8 × 1050 9.2 × 1048 2.0 × 1051 ? ? ? ? 0.033

Table D.1.: a) see Kaneko et al. (2007); b) Mazzali, P., private communica-
tion at MG11 meeting in Berlin, July 2006, Iwamoto et al. (1998); c) evaluated
fitting the URCAs with a power law followed by an exponentially decay-
ing part; d) evaluated assuming a mass of the neutron star M = 1.5M⊙ and
T ∼ 5–7 keV in the source rest frame; e) see Galama et al. (1998); Greiner
et al. (2003); Prochaska et al. (2004); Mirabal et al. (2006). Here Etot

e± is the total

energy of GRB, Ebolom
SN and Ekin

SN are the bolometric and the kinetic energy of
the SN, EURCA is the energy of the late X-ray emission URCA (see Fig. D.3),
RNS is the radius of the neutron star and z is the redshift of the event.

D.1.4. Neo-Neutron Star Luminosity and the URCAs

Another important ingredient for the cooling of young neutron stars are the
crust properties. As illustrated in Fig. D.1, due to the stronger neutrino emis-
sion from the core, during the initial stages the core and crust are thermally
decoupled. For that reason, the initial stages of the thermal evolution reflects
the properties of the crust, while the core remains invisible. Thus the proper
description of the crust structure and composition, is also fundamental for
understanding the initial thermal evolution stages of a neutron star. We now
briefly discuss the current understanding of the crustal processes and how
such might be related with the data available from the URCAs.

There are several active emission mechanisms in the neutron star crust,
e.g. e-Ion Bremsstrahlung, plasmon decay, e+-e− annihilation, e-e and n-n
Bremsstrahlung, synchrotron emission, as well as Cooper pair processes for
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Figure D.3.: Synthetic light curves of GRB980425 (A) (Ruffini et al., 2004;
Fraschetti et al., 2005; Bernardini et al., 2008) , GRB030329 (B) (Bernardini
et al., 2004, 2005b) and GRB031203 (C) (Bernardini et al., 2005a; Ruffini et al.,
2007a, 2008b) . The solid curves represent the hard X-ray emission (10-200
keV range) and the triangles are 2-10 keV flux points. The optical lumi-
nosities of the SNe accompanying these GRBs are also reported with crosses
(see Ruffini et al., 2007a, for details). The curves fitting the late X-ray lumi-
nosity (URCAs) are qualitative cooling curves based on Canuto (1978); see
also Ruffini et al. (2004, 2007a, 2008b); Bernardini et al. (2004, 2005a,b, 2008);
Fraschetti et al. (2005), for details.
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Figure D.4.: X-ray light curves of the counterparts of GRB980425-SN1998bw
and of two Type Ic SNe not accompanied by GRBs: SN1994I (“normal”) and
SN2002ap (broad-lined). The data are from Pian et al. (2000); Immler et al.
(2002); Kouveliotou et al. (2004); Soria et al. (2004).

temperatures smaller than the critical temperature for superfluidity Tcrit. How-
ever, as shown by Yakovlev et al. (2001), for temperatures above 108 K, which
is the regime we are interested, the first three processes are the dominant
ones. For instance, synchrotron emission channels might become slightly rel-
evant, but only for T < 108 K and for very high magnetic fields > 1014 G.
The Cooper pair mechanism, possibly important for objects of a few hundred
years old like Cas A (see e.g. Page et al., 2011; Shternin et al., 2011, for details),
is irrelevant in the present case since we are dealing with neutron star ages
< 10 years and thus temperatures well above Tcrit.

At temperatures T ∼ 3 × 109 K, we can write for the most important emis-
sion processes in the crust

ǫB ∼ 1021erg s−1cm−3, (D.1.2)

ǫP ∼ 1022erg s−1cm−3, (D.1.3)

ǫep ∼ 1019erg s−1cm−3, (D.1.4)

where ǫi denotes the emissivity and the indexes B, P, ep denote the follow-
ing processes: Bremsstrahlung, plasmon decay, and pair annihilation, respec-
tively.

In order to estimate the amount of heat needed to match the theoretical
thermal evolution of a neo-neutron star to the light curve of the URCAs we
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have added a phenomenological source of heat parametrized by

H = H0 e−t/τS , (D.1.5)

with H0 being the magnitude of the heat source, and τS being the time scale
in which it is active. For our calculations we set τS = 1 year.

In addition, we have introduced a phenomenological boundary condition
for the early stages of evolution of the surface temperature Ts that follows

the form Ts = Tx gs1/4
14 T0.55

8 K, where Tx = 0.87 × 106 + (T0 − 0.87x106) e−t/τS

K, T8 is the mantle temperature Tb in units of 108 K, T0 is the initial tem-
perature of the atmosphere, and gs14 is the surface acceleration of gravity in
units of 1014 cm/s2. With this new boundary condition we can mimic the
high temperature of the atmosphere for young neutron stars by setting the
temperature at early times to a higher value and, for times greater than τS, it
asymptotically goes to its traditional value ∼ 0.87 × 106 K.

In Fig. D.5 we show the cooling curves of neo-neutron stars resulting from
the presence of the heating source given by Eq. (D.1.5), in addition to the
traditional cooling processes of neutron stars. The cooling curves are ob-
tained self-consistently by solving the full, general relativistic, energy trans-
port and balance equations with no approximations as described in Schaab
et al. (1996); Page et al. (2006); Negreiros et al. (2010). We show also the ob-
served data for the X-ray light curve associated with the URCAs. This allow
us to identify the key factor leading to the matching of the neo-neutron star
luminosity with the X-ray emission of the URCAs.
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Figure D.5.: Thermal evolution of neo-neutron stars for selected values of the
heating source H0 = [1012, 5 × 1012, 1015] erg/g/s and for an initial temper-
ature of the atmosphere T0 = 8.7 × 106 K. The observed data represents the
X-ray light curve associated with the URCAs.
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D.1.5. Discussion and Conclusions

The major role played by the neutrino emissions from the crust of a neo-
neutron star at the initial stages of the object is illustrated by Fig. D.5. In addi-
tion, by calibrating our additional heating source at early times to H0 ∼ 1012–
1015 erg/g/s, we find a striking agreement of the luminosity obtained from
the cooling of a neo-neutron stars with the prolonged (t = 108–109 s) X-ray
emission observed in GRB associated with Supernova (see Fig. D.5 for de-
tails). This could indicate that something might be missing in our current
understanding of the crust of neutron stars. It might be that, as is the case
for the atmosphere, we need to further develop our current models for the
crust, as to describe properly the properties of neo-neutron stars. The tra-
ditional thermal processes taking place in the crust might be enhanced by
the extreme high temperature conditions of neo-neutron star and, additional
heating processes not yet studied within this context could also take place
under such conditions and deserve further analysis.

Particularly interesting in this respect are the processes of e+e− pair cre-
ation expected to occur in the interphase between the core and the crust dur-
ing the neutron star formation leading to the appearance of critical fields (see
Ruffini et al., 2007c; Ruffini, 2008a; Rueda et al., 2010a,b; Popov, 2010; Ruffini
et al., 2010b; Rotondo et al., 2011c,d,e,a; Rueda et al., 2011, for details)

It is also worth to mention that the additional heating source needed at
early times, H0 ∼ 1012–1015 erg/g/s (or H0 ∼ 10−6–10−3 MeV/Nucleon/s),
is in striking agreement with the heat released from nuclear fusion reactions,
radiative neutron captures and photodisintegrations in the early stages of
neutron star mergers found by Goriely et al. (2011a,b). Fission as well as
β-decays have been also there included; i.e neutron-induced fission, sponta-
neous fission, β-delayed fission, photofission, as well as β-delayed neutron
emission.

All this suggests the exciting possibility that we are, for the first time, ob-
serving a nascent hot neutron star. This possibility alone warrants further
studies on this subject, so we might obtain a more concrete picture of the ther-
mal evolution of neo-neutron stars. A proposal has been recently submitted
by E. Pian et al. to the Chandra satellite to observe if a similar prolonged
X-ray emission exists also in GRB100316D associated with SN2010bh (Pian
et al., 2011). We encourage also dedicated observations of isolated SN in view
of the similarities between URCA-1–URCA-3 and the Type Ic Supernova SN
1994I (Immler et al., 2002) and SN 2002ap (Soria et al., 2004).
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D.2. Gravitational Waves versus Electromagnetic

Emission in Gamma-Ray Bursts

The recent progress in the understanding the physical nature of neutron star
equilibrium configurations and the first observational evidence of a genuinely
Short Gamma-Ray Burst, GRB 090227B, allows to give an estimate of the
gravitational waves versus electromagnetic emission in a Gamma-Ray Burst.

D.2.1. Global versus local charge neutrality

We first recall that we have recently proved Belvedere et al. (2012); Rueda
et al. (2011); Rotondo et al. (2011d) how the consistent treatment of neutron
star equilibrium configurations, taking into account the strong, weak, electro-
magnetic, and gravitational interactions, implies the solution of the general
relativistic Thomas-Fermi equations, coupled with the Einstein-Maxwell sys-
tem of equations. This new set of equations supersede the traditional Tolman-
Oppenheimer-Volkoff (TOV) equations, which imply the condition of local
charge neutrality throughout the configuration (Tolman, 1939; Oppenheimer
and Volkoff, 1939).

The solution of the Einstein-Maxwell-Thomas-Fermi coupled differential
equations leads to a new structure of the star (Belvedere et al., 2012): the posi-
tively charged core at supranuclear densities, ρ > ρnuc ∼ 2.7× 1014 g cm−3, is
surrounded by an electron distribution of thickness & h̄/(mec) and, at lower
densities ρ < ρnuc, a neutral ordinary crust. The equilibrium condition given
by the constancy of the particle Klein potentials leads to a discontinuity in
the density at the core-crust transition and, correspondingly, an overcritical
electric field ∼ (mπ/me)2Ec, where Ec = m2

e c3/(eh̄) ∼ 1.3 × 1016 Volt/cm,
develops in the boundary interface; see Fig. D.6. In particular, the continuity
of the electron Klein potential leads to a decreasing of the electron chemical
potential µe and density at the core-crust boundary interface. They reach val-
ues µcrust

e < µcore
e and ρcrust < ρcore at the edge of the crust, where global

charge neutrality is achieved (see Fig. D.6). We shall adopt some features of
these neutron stars computed using the NL3 parameterization Lalazissis et al.
(1997) of the phenomenological σ-ω-ρ nuclear model; we refer to Belvedere
et al. (2012) for details.

For each central density there exists an entire family of core-crust inter-
face boundaries and, correspondingly, a family of crusts with different mass
Mcrust and thickness ∆Rcrust. The larger ρcrust, the smaller the thickness of
the core-crust interface, the peak of the electric field, and the larger the Mcrust

and ∆Rcrust. The configuration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3 sepa-
rates neutron stars with and without inner crust. All the above new features
lead to crusts with masses and thickness smaller than the ones obtained from
the traditional TOV treatment. The mass-radius relation obtained in this case
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Figure D.6.: Upper panel: particle density profiles in the core-crust boundary
interface, in units of cm−3. Middle panel: electric field in the core-crust transi-
tion layer, in units of the critical field Ec. Lower panel: density profile inside
a neutron star with central density ρ(0) ∼ 5ρnuc. We show here the differ-
ences between the solution obtained from the TOV equations (locally neutral
case) and the globally neutral solution presented in Belvedere et al. (2012). In
this example the density at the edge of the crust is ρcrust = ρdrip = 4.3 × 1011

g/cm3 and λσ = h̄/(mσc) ∼ 0.4 fm denotes the σ-meson Compton wave-
length.

2056



D.2. Gravitational Waves versus Electromagnetic Emission in Gamma-Ray
Bursts

have been compared and contrasted with the one obtained from the locally
neutral TOV approach; see Fig. D.7 and Belvedere et al. (2012) for details.

In Fig. D.7 we show how our new neutron star theory is in agreement with
the most up-to-date stringent observational constraints to the mass-radius
relation of neutron stars, that are provided by the largest mass, the largest
radius, the highest rotational frequency, and the maximum surface gravity,
observed from pulsars Trümper (2011). They are imposed by the mass of PSR
J1614-2230 M = 1.97 ± 0.04M⊙ Demorest et al. (2010a), the lower limit to the
radius of RX J1856-3754 Trümper et al. (2004) (dotted-dashed curve), the 716
Hz PSR J1748-2246ad Hessels et al. (2006a) (dashed curve), and the surface
gravity of the neutron star in the Low Mass X-Ray Binary X7 from which 90%
confidence level contours of constant R∞ can be extracted Heinke et al. (2006)
(dotted curves); see Belvedere et al. (2012) for further details.

The above constraints strongly favor stiff nuclear equations of state such
as the ones obtained from relativistic mean field models, which provide high
maximum masses for neutron stars Trümper (2011). In addition, the radius
of a canonical neutron star of mass M = 1.4M⊙ is highly constrained to the
range R & 12 km, ruling out a strange quark hypothesis for these objects. Our
new neutron star mass-radius relation fully agrees with all the above require-
ments, for instance, we find that a canonical neutron star with M = 1.40M⊙
has a radius R = 12.31 km, for the NL3 parameterization of the nuclear EoS
(see Belvedere et al., 2012, for details).

D.2.2. GRB 090227B

We now turn to the observations of GRB 090227B (see Muccino et al., 2013,
for details). The progress obtained from the Fermi-GBM and Konus-Wind
satellites has been used to identify the new class of genuinely short GRBs:
short bursts with the same inner engine of the long GRBs but endowed with
a severely low value of the baryon load, B ≡ MBc2/EGRB

tot . 5 × 10−5, where
MB is the mass of the baryons engulfed by the expanding ultrarelativistic
e+e− plasma of energy EGRB

tot . The emission from these GRBs mainly con-
sists in a first emission, the peak GRB (P-GRB), followed by a softer emission
squeezed on the first one. The typical separation between the two compo-
nents is expected to be shorter than 1–10 ms.

A special case is GRB 090227B. From the 16 ms time-binned light curves
a significant thermal emission in the first 96 ms, which has been identified
with the P-GRB, has been found Muccino et al. (2013). The subsequent emis-
sion is identified with the extended afterglow. The P-GRB of 090227B has the
highest temperature ever observed, kBT = 517 keV, where kB is the Boltz-
mann constant. The results of the fit of the light curve and spectrum of GRB
090227B are summarized in Table D.2. In particular we show the total energy
emitted EGRB

tot , Baryon load B, Lorentz factor at transparency Γtr, cosmologi-
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Figure D.7.: Constraints on the neutron star mass-radius relation (see
Trümper, 2011, and references therein). We compare and contrast the the-
oretical M-R relation of globally neutral neutron stars Belvedere et al. (2012)
(blue curve) obtained from the solution of the Einstein-Maxwell-Thomas-
Fermi equations and locally neutral neutron stars (red curve) obtained by
solving the TOV equations. Any mass-radius relation have a maximum mass
larger than M = 1.97 ± 0.04M⊙ and should pass through the area delimited
by the solid, dotted-dashed, dashed, and dotted curves.

cal redshift z, intrinsic duration of the GRB emission ∆t, and average density
of the CircumBurst Medium (CBM) 〈nCBM〉; we refer to Muccino et al. (2013)
for further details.

The above quantitative results lead to the conclusion that the progenitor of
GRB 090227B is a neutron star binary: (1) the natal kicks velocities imparted
to a neutron star binary at birth can be even larger than 200 km s−1 and there-
fore a binary system can runaway to the halo of its host galaxy, clearly point-
ing to a very low average number density of the CBM; (2) the very large total
energy, which we can indeed infer in view of the absence of beaming, and
the very short time scale of emission point again to a neutron star binary; (3)
as we shall show below the very small value of the baryon load is strikingly
consistent with two neutron stars having small crusts, in line with the recent
neutron star theory Belvedere et al. (2012).

D.2.3. Inference of neutron star binary parameters

We now infer the binary component parameters. It is clear that the merging
of two neutron stars will lead to a GRB if the total mass of the binary satisfies

M1 + M2 & Mcrit = 2.67M⊙ , (D.2.1)
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EGRB
tot (erg) 2.83 × 1053

B 4.13 × 10−5

Γtr 1.44 × 104

z 1.61
∆t (s) 0.35

〈nCBM〉 (cm−3) 1.9 × 10−5

Table D.2.: Properties of GRB 090227B: EGRB
tot is the total energy emitted in

the GRB, B is the Baryon load, Γtr is the Lorentz factor at transparency, the
cosmological redshift is denotes by z, the intrinsic duration of the GRB is ∆t,
and the average density of the CBM is 〈nCBM〉. We refer to Muccino et al.
(2013) for additional details.

where Mcrit is the critical mass over which a neutron star undergoes gravi-
tational collapse to a black hole. The numerical value reported in Eq. (D.2.1)
has been taken from Belvedere et al. (2012).

Assuming for simplicity a binary with twin components M1 = M2 = M,
we obtain masses M = 1.335M⊙ and correspondingly radii R1 = R2 = 12.24
km (see Fig. D.7 and Belvedere et al. (2012)). The mass of the corresponding
crust of each component is Mcrust ∼ 3.6 × 10−5M⊙ and the thickness of the
crust is ∆Rcrust ∼ 0.47 km.

The location of the binary in the very low interstellar density medium of
galactic halos makes possible to probe the neutron star theory and equation
of state through the knowledge of the baryon load B inferred from the fitting
of the GRB light curve and spectrum. The baryonic matter which the GRB
interact with is in these systems provided by the material of the neutron star
crusts ejected during the binary coalescence. Thus, a theoretical expectation
of the baryon load B left in a binary neutron star merger is

B =
ηMcrustc

2

EGRB
tot

, (D.2.2)

where η is the fraction of the crustal mass ejected. Here we are assuming
that the mass ejected during the merger comes from the outer layers of the
neutron star, namely from the crust of the star.

In Fig. D.8 we have plotted the theoretical baryon load given by Eq. (D.2.2)
for GRB 090227B, namely using EGRB

tot = 2.83 × 1053 erg, as a function of the
mass M of the globally and locally neutral neutron stars shown in Fig. D.7.

The agreement of the observed baryon load of GRB 090227B (see Table
D.2 and Muccino et al. (2013)) with the low mass of the crust obtained from
the globally neutral neutron stars of Belvedere et al. (2012) is evident (see
Fig. D.8). It can be compared and contrasted with the ones obtained enforc-
ing the local charge neutrality condition. For the specific binary neutron star
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Figure D.8.: Baryon load expected to be left by a binary neutron star merger,
given by Eq. (D.2.2) for η = 1, as a function of the total mass M of glob-
ally (lower panel, units 10−5) and locally neutral (upper panel, units 10−2)
neutron stars, for the case of GRB 090227B. We have indicated the observed
baryon load of GRB 090227B, B = 4.13 × 10−5; see Table D.2 and Muccino
et al. (2013).

system studied here we obtain a theoretical prediction of the baryon load
from Eq. (D.2.2) with η = 1, B ∼ 7.6 × 10−5, or a mass of the baryons
MB = EB

crust/c2 ∼ 1.2 × 10−5M⊙, to be confronted with the one obtained
from the fitting procedure of GRB 090227B, B ∼ 4.13 × 10−5, corresponding
to MB = BEGRB

tot /c2 ∼ 0.7 × 10−5M⊙. The above theoretical predictions of
the neutron star crust mass Mcrust and consequently the value of EB

crust and B
have been inferred for a crust with a density at its edge equal to the neutron
drip density ρdrip ∼ 4.3 × 1011 g cm−3. Neutron star crusts with densities
ρ < ρdrip are predicted by the new neutron star theory Belvedere et al. (2012),
there is still room for smaller values of the baryonic matter ejected in a binary
process, and consequently to still shorter genuinely short GRBs.

The mass-energy of the baryon ejecta obtained from the estimate (D.2.2)
gives for locally neutral neutron stars values 102–103 bigger than the ones
analyzed before (see Fig. D.8), due to the more massive crusts obtained from
the TOV-like treatment (see Belvedere et al., 2012, for details). It implies that
Eq. (D.2.2) gives in such a case MB ∼ 10−3–10−2M⊙, in line with previous
results obtained from the numerical simulation of the dynamical evolution of
neutron star binaries (see e.g. Ruffert and Janka, 2001; Goriely et al., 2011b),
where locally neutral neutron stars are employed.
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D.2.4. Gravitational wave emission

The emission of gravitational waves signals from binaries system are the most
expected signals to be detect by the interferometers called Advanced LIGO2-
VIRGO3 and they have been planned for to be operational in a few years
with a improved sensitivity approximately a factor of 10 better than the first
generation of detectors. The connexion between short gamma-ray signals
and gravitational waves signals as a coincidence of the same event would
allow us in principle to understand more about the origin of short GRBs (see
Kobayashi and Mészáros (2003), and references therein).

We use here the adiabatic approximation to estimate the gravitational wave
emission from the binary neutrons star. We used the above values of the
neutron star binary progenitor estimated for the short GRB 090227B at a cos-
mological redshift z = 1.61 Muccino et al. (2013). We assume for simplicity
a circular orbit r (separation between the two neutron star centers) and the
emission in the spiral phase until the both stars touch each other at a distance,
r = R1 + R2 = 24.48 km, from the radial coordinate origin.

Classical Dynamics

The orbital angular velocity of the binary with components (M1, R1) and
(M2, R2) orbiting each other in a circular orbit of radius r, is given by

ω =

√

G(M1 + M2)

r3
, (D.2.3)

and its total binding energy is

Eb = −1

2

GM1M2

r
. (D.2.4)

The leading term driving the loss of binding energy via gravitational wave
emission is given by

− dEb

dt
=

32

5

G4

c5

(M1 + M2)(M1M2)
2

r5
, (D.2.5)

which leads to a decreasing of the separation r with time and consequently a
shortening of the orbital period P = 2π/ω dictated by (Landau and Lifshitz,
1980)

1

P

dP

dt
=

3

2

1

r

dr

dt
= −3

2

1

Eb

dEb

dt
. (D.2.6)

The loss of orbital binding energy by emission of gravitational waves from

2http://www.advancedligo.mit.edu
3http://www.cascina.virgo.inft.it
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the neutron star system in spiral phase for non-relativistic and point-like par-
ticles can be written as a function of the gravitational waves frequency f as

dEb

d f
= −1

3
(πG)2/3

M
5/3 f−1/3, (D.2.7)

where M = (M1M2)
3/5/(M1 + M2)

1/5 is the called chirp mass.

Effective one-body dynamics

The effective one-body (EOB) formalism (Damour and Nagar, 2010) maps
the conservative dynamics of a binary system of non spinning objects onto
the geodesic dynamics of one body of reduced mass µ = M1M2/M, with
M = M1 + M2 the total binary mass. The effective metric is a modified
Schwarzschild metric given by

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2θdφ2) (D.2.8)

where r = GM/R and the radial potential is given by,

A(u; ν) = P1
5 [1 − 2u + 2νu3 + a4νu4 + a5νu5], (D.2.9)

with u = 1/r, ν = M1M2/(M1 + M2)
2 is the symmetric mass ratio (see

Fig. D.9), Pm
n denotes the Padè approximant Damour and Nagar (2009) or

order (n, m) and the values of the 3 and 4 post-Newtonian (PN)-level coef-
ficients are a4 = 94/3 − (41/32)π2 and a5(ν) = a5c0 + νa5cl (see Bini and
Damour (2013), for details).
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Figure D.9.: Comparation between the EOB radial potential as a function of
the u-parameter for the cases: A(u; ˚ ) = 3PN (blue line), P1

3 [A(u; ˚ ) = 3PN]
(green line) and P1

5 [A(u; ˚ ) = 4PN] (dashed-black line), where the Pm
n [.] is

the Padè approximant.
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The EOB Hamiltonian is

H = M

√

1 + 2ν(Ĥeff − 1), (D.2.10)

and effective Hamiltonian is described by

Ĥ2
eff = A(u) + p2

φB(u), (D.2.11)

where B(u) = u2A(u) and the angular momentum for the circular orbit is
given by

p2
φ = − A′(u)

[u2A(u)]′
. (D.2.12)

We need to write Ĥeff as a function of the orbital frequency Ω for which we
need to write the u-parameter as a function of Ω. This is obtained from the
angular Hamilton equation of motion in the circular case

GMΩ(u) =
1

u

∂H

∂pφ
=

MA(u)pφ(u)u2

HĤeff

, (D.2.13)

which we can solve numerically (see e.g. Fig. D.10).
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Figure D.10.: The u parameter as a function of the source frequency obtained
from Eq. D.2.13 in the case of a symmetric binary, M1 = M2, so ν = 1/4.

The binding energy as a function of the orbital frequency (see Fig. D.11) is,

Eb(Ω) = H − M = M[
√

1 + 2ν(Ĥeff − 1)− 1], (D.2.14)

and the gravitational energy spectrum is obtained through the derivative
dEb/dΩ.
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Figure D.11.: Comparation of the EOB binding energies using the radial po-
tential A(u; ˚ ) = 3PN, P1
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5 [A(u; ˚ ) = 4PN].

Signal-to-noise ratio

The signal-to-noise ratio (SNR) is defined by

ρ2 = 4
∫ ∞

0

|h̃( f )|
Sh( f )

d f , (D.2.15)

where h̃( f ) is the Fourier transform of h(t) and Sh( f ) is the noise spectral
density of the detector.

The response of the detector is defined as R = h(t) + n(t), where the signal
is

h(t) = F+h+ + F×h× (D.2.16)

and n(t) is the noise. The F+,× are the called beam patterns and depend on
the detector, and the functions h+,× are the polarizations of the gravitational
wave, which depend on the source (see e.g. Thorne (1987), for details).

The average of the square SNR 〈ρ2〉 over all orientations and directions to
the source, depends on the energy spectrum dEb/d f of the emitted gravita-
tional waves (see Flanagan and Hughes (1998), for details),

〈ρ2〉 = 2(1 + z)2

5π2d2
L

∫ fmax

fmin

1

f 2
d Sh( fd)

dEb

d f
[(1 + z) fd]d fd, (D.2.17)

where z is the cosmological redshift, dL is the luminosity distance, fd =
f /(1 + z) is the gravitational wave frequency at the detector, f = Ω/π is the
frequency in the source frame, Ω is the orbital frequency, the minimal band-
with frequency of the detector is fmin, and fmax = fc/(1 + z) is the maximal
bandwith frequency where fc is the binary contact frequency.

The characteristic gravitational waves amplitude is defined using the Fourier
transform of the gravitational wave signal h(t), hc( f ) = f |h̃( f )| and is given
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by,

h2
c( f ) =

2(1 + z)2

π2d2
L

dEb

d f
[(1 + z) fd], (D.2.18)

Note that this definition of the hc( f ) is as a function of the gravitational
waves energy spectrum (see e.g. Flanagan and Hughes (1998); Kobayashi and
Mészáros (2003), for details).

The gravitational waves emission dominates the energy loss during the
spiraling phase while the electromagnetic radiation dominates from the co-
alescence with the final emission of a short GRB if the total mass of the bi-
nary exceeds the critical mass for neutron star gravitational collapse. Thus,
an upper limit for the gravitational wave emission radiated away can be ob-
tained from the energy difference between the initial binary at time t0 = 0
with separation r0 and energy E0, and the binary at time t f and separation
r f = R1 + R2, with energy Ef, when the two components touch each other.

An absolute upper limit, for the gravitational wave energy emission, ∆Emax
GW ,

can be therefore determined by the assumption of an infinite initial separa-
tion r0 → ∞, i.e.

∆Emax
GW =

∣

∣Eb(t f )− Eb(t0)
∣

∣ . (D.2.19)

For the neutron star binary discussed in this work for GRB 090227B, we
obtain the absolute upper bound shown in Table D.3. The gravitational wave
energy emission ∆Emax

GW which in the case of the genuinely short GRB 090227B
is one order of magnitude smaller than the emitted electromagnetic energy
EGRB

tot = 2.83 × 1053 erg (see Table D.2).

Classical EOB A3PN EOB P1
5 [A3PN] EOB P1

5 [A4PN]

9.6 × 1052 9.68 × 1052 7.41 × 1052 7.42 × 1052

Table D.3.: Upper limit for the total gravitational waves emission, ∆Emax
GW , in

erg.

It is also worth mentioning that indeed this numerical value for ∆Emax
GW lim-

its from above the results of full numerical integrations of the gravitational
wave radiation emitted in the neutron star binaries during the entire process
of spiraling and merging (see e.g. Ruffert and Janka (2001)).

In Figs. D.12 and D.13 we show the characteristic gravitational wave am-
plitude as a function of the energy spectrum dEb/d f for both cases, the non-
relativistic point-like particles, Eq. D.2.7, and for the EOB formalism, see
Eq. (D.2.13). In the same plot is possible to compare the amplitude hc( f )

in [strain/
√

Hz] units with the the noise density spectrum Sh( f ) of the Ad-
vanced LIGO interferometer.

The difference between Figs. D.12 and D.13 is because the first one was
calculated using the estimated redshift of GRB 090227B, z = 1.61, while in
Fig. D.13, we show the results for a hypothetical redshift z = 0.08, at which
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such a short GRB would be detected by Advanced Ligo with a signal-to-noise
ratio SNR=5.
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Figure D.12.: The characteristic gravitational waves amplitude, Eq.(D.2.18),
was calculated using the progenitor’s values of the short GRB 090227B, a cos-
mological redshift z = 1.61, and the hc( f ) as a function of the gravitational
wave energy spectrum dEb/d f for both cases, the non-relativistic point-like
particles D.2.7 (red line) and the EOB formalism, see Eq. (D.2.13). The radial
potential A(u; ν) was calculated using post-Newtonian approximation (PN).
The blue line is A(u; ˚ ) = 3PN, using the Padè approximant we calculated
the P1

3 [A(u; ˚ ) = 3PN] (green line) and the P1
5 [A(u; ˚ ) = 4PN] (dashed-black

line). The Sh( f ) is the noise spectral density of Advanced LIGO.
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Figure D.13.: We estimated the signal-to-noise (SNR) and we found the
redshift z = 0.08 for a gravitational wave detection with SNR=5 by Ad-
vanced LIGO. We calculated the characteristic gravitational wave amplitude

hc( f ) =
√

f Sh( f ) for the classical case (red line) and for the EOB formalism.
The blue line is A(u; ˚ ) = 3PN, using the Padè approximant we calculated
the P1

3 [A(u; ˚ ) = 3PN] (green line) and the P1
5 [A(u; ˚ ) = 4PN] (dashed-black

line). The Sh( f ) is the noise spectral density of Advanced LIGO.
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Additional contributions to the gravitational wave power due to higher
multipole moments of the components such as angular momentum J and
quadrupole moment Q (deformation) are conceptually relevant corrections
to the above formulas (see e.g. Ryan (1995) and references therein, for de-
tails); however they are quantitatively negligible for the present purpose.
For instance, the first correction due to the spin angular momentum J of the
neutron star components is given by −11/4 jωM in geometric units, where
j = cJ/(GM2) is the dimensionless angular momentum parameter. This cor-
rection is only of order 10−2 for a binary orbit of very high angular frequency
∼ kHz and for neutron stars with M = 1.335M⊙ and j = 0.4. We recall that
the fastest observed pulsar, PSR J1748-2246ad, has a rotation frequency of 716
Hz Hessels et al. (2006a), which gives j ∼ 0.51 I45/(M0/M⊙)2 = 0.26 I45 with
the latter value for a canonical NS of M = 1.4M⊙, I45 is the moment of inertia
in units of 1045 g cm2. The first correction due to the quadrupole deforma-
tion multipole moment Q of the neutron star, given by −2 Qω4/3M−5/3, is of
order 10−3 for the same parameters with Q ∼ 4 × 1043 g cm2 ∼ 3 km3, the
latter value in geometric units.

D.2.5. Conclusions

We showed that the observations of the genuinely short GRB 090227B lead
to crucial information on the binary neutron star progenitor. The data ob-
tained from the electromagnetic spectrum allows to probe crucial aspects of
the correct theory of neutron stars and their equation of state. The baryon
load parameter B obtained from the analysis of GRB 090227B, leads to a most
remarkable agreement of the baryonic matter expected to be ejected in a neu-
tron star binary merger and validate the choice of the parameters of the bi-
nary components, M1 = M2 = 1.34M⊙, and R1 = R2 = 12.24 km. This
represents a test of the actual neutron star parameters described by the re-
cent developed self-consistent theory of neutron stars Belvedere et al. (2012)
that takes into account the strong, weak, electromagnetic and gravitational
interactions within general relativity.

We computed the dynamics of the neutron star binary progenitor prior to
the merger and emission of the GRB. We compare and contrast the classic
description of the dynamics with the more general one given by the frame-
work of the effective one-body formalism, which we use up to 4-PN order.
We estimate the detectability of GRB 090227B by the Advanced LIGO inter-
ferometer, by computing the signal-to-noise ratio up to the contact point of
the binary components, for the theoretically inferred cosmological redshift,
z = 1.61 (Muccino et al., 2013). We also estimate the redshift at which Ad-
vanced LIGO would detect this GRB with a signal-to-noise ratio equal to five;
we obtained z ≈ 0.08. From the dynamics, we then estimated the total en-
ergy release in form of gravitational waves (see Table D.3). From this, we
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concluded that the emission of electromagnetic radiation in a GRB by a bi-
nary neutron star system is at least one order of magnitude larger than the
gravitational wave emission.
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E. Exact Solutions of the
Einstein-Maxwell equations in
Astrophysics

E.1. On the relativistic precession and oscillation

frequencies of test particles around rapidly

rotating compact stars

E.1.1. Introduction

One of the greatest challenges of the general theory of relativity has been the
construction of solutions to the Einstein-Maxwell field equations represent-
ing the gravitational field of compact stars such as neutron stars (NSs). Sta-
tionary axially symmetric spacetimes satisfy basic properties one expects for
rotating objects, namely time symmetry and reflection symmetry with respect
to the rotation axis (see e.g. Pachón and Sanabria-Gómez, 2006). The simplest
stationary axially symmetric exact exterior vacuum solution describing a ro-
tating configuration is the well-known Kerr metric (Kerr, 1963). The Kerr
metric is fully described by two free parameters: the mass M and the angu-
lar momentum J of the object. However, it is known from numerical models
that the quadrupole moment of rotating NSs deviates considerably from the
one given by the Kerr solution QKerr = −J2/(Mc2) (see e.g. Laarakkers and
Poisson, 1999, for details).

In the mean time, a considerable number of analytic exterior solutions
with a more complex multipolar structure than the one of the Kerr solution
have been developed (see e.g. Manko et al., 1995, 2000; Stephani et al., 2003).
Whether analytic exterior solutions are accurate or not to describe the gravita-
tional field of compact stars is an interesting and very active topic of research
(see e.g. Stute and Camenzind, 2002; Berti and Stergioulas, 2004; Pachón et al.,
2006, and references therein).

The accuracy of analytic solutions to describe the exterior geometry of a
realistic rotating compact star has been tested by comparing physical prop-
erties, e.g. the radius of the Innermost Stable Circular Orbit (ISCO) on the
equatorial plane and the gravitational redshift (see Sibgatullin and Sunyaev,
1998; Berti and Stergioulas, 2004; Pachón et al., 2006, for details). In order
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to do such a comparison, the free parameters (i.e. the lowest multipole mo-
ments) of the analytic exterior spacetime, are fixed to the corresponding low-
est multipole moments given by numerical interior solutions of the Einstein
equations, for NS realistic models (see e.g. Berti and Stergioulas, 2004).

Following such a procedure, the solution of Manko et al. (2000) has been
compared by Stute and Camenzind (2002) and by Berti and Stergioulas (2004)
with the numerical solutions for NSs calculated by Cook et al. (1994) and with
those derived by Berti and Stergioulas (2004), respectively. However, being
a generalization of the solution of Tomimatsu and Sato (1972), it cannot de-
scribe slowly rotating compact stars (see e.g. Berti and Stergioulas, 2004), but
the dynamics of astrophysical objects with anisotropic stresses (see Dubeibe
et al., 2007, for details).

Following a similar procedure, based on tests of the ISCOs radii on the
equatorial plane of the rotating neutron stars obtained by Berti and Ster-
gioulas (2004), it has been shown that the six-parametric solution of Pachón
et al. (2006) (hereafter PRS solution, see Sec. E.1.2 for details) is more accurate
than the model of Manko et al. (2000). In addition, being a generalization of
the Kerr solution, this solution can be used for arbitrary rotation rates.

Besides the ISCOs radii, there are additional physical properties that can
be computed with analytic and numerical models and thus useful to com-
pare and contrast the accuracy of analytic exact models. The aim of this work
is to analyze the properties of orbital frequencies of neutral test particles in
the PRS and in the Kerr geometries with especial focus on the Keplerian νK,
frame-dragging (Lense-Thirring) νLT, as well as the precession(oscillation)
frequencies of the radial and vertical motions, νP

ρ (νOS
ρ ) and νP

z (νOS
z ), respec-

tively.
The relevance of these frequencies relies on the fact that they are often in-

voked to explain the Quasi-Periodic Oscillations (QPOs) observed in some
relativistic astrophysical systems such as Low Mass X-ray Binaries (LMXBs),
binary systems harboring either a NS or a black hole (BH) accreting matter
from a companion star. For instance, within the Relativistic Precession Model
(RPM) introduced by Stella and Vietri (1998); Morsink and Stella (1999); Stella
et al. (1999); Stella and Vietri (1999), the kHz QPOs are interpreted as a direct
manifestation of the modes of relativistic epicyclic motion of blobs arising at
various radii r in the inner parts of the accretion disk around the compact
object (see Sec. E.1.6, for details).

In addition to the RPM, the Keplerian, precession and oscillation frequen-
cies are used in other QPO theoretical models (see e.g. Lin et al., 2011, for a
recent comparison of the existing models). Due to the influence of general
relativistic effects in the determination of such frequencies, an observational
confirmation of any of the models might lead to an outstanding test of gen-
eral relativity in the strong field regime. In this line, it is of interest to compare
and contrast the orbital frequencies given by the Kerr solution and by the PRS
solution (see Sec. E.1.3), which help to establish the differences between pos-
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sible BH and NS signatures. We emphasize in this work the major role of the
quadrupole moment as well as of the octupole moment of the object, whose
possible measurement can be used as a tool to test the no-hair theorem of
BHs (see e.g. Johannsen and Psaltis, 2011). In the case of NSs, the interpreta-
tion of QPOs as the manifestation of orbital motion frequencies might lead to
crucial information of the NS parameters such as mass, angular momentum
(see e.g. Stella and Vietri, 1998; Török et al., 2010), and quadrupole moment
(see e.g. Morsink and Stella, 1999). These parameters reveal, at the same time,
invaluable information about the EoS of nuclear matter.

The work is organized as follows. In Sec. E.1.2 we recall the properties of
the PRS solution. The computation of the orbital frequencies as well as the
comparison of their features in the Kerr and in the PRS spacetimes, is shown
in Sec. E.1.3. In Sec. E.1.4 we study the accuracy of the analytic formulas of
the periastron and nodal frequencies derived by Ryan (1995) for stationary
axially symmetric spacetimes. In Sections 5 and 6 we discuss the accuracy of
the PRS solution in describing the frequencies of realistic NS models and its
relevance in the Relativistic Precession Model, respectively. The conclusions
of this work and a discussion on possible additional effects to be accounted
for in the determination of the orbital frequencies, e.g. the effect of magnetic
dipole moment, are outlined in Sec. E.1.7.

E.1.2. The PRS analytic exact solution

We first recall the PRS analytic model (Pachón et al., 2006), for the exterior
gravitational field of a compact object1. In the stationary axisymmetric case,
the simplest form of the metric can be written as (Papapetrou, 1953)

ds2 = − f (dt − ωdφ)2 + f−1
[

e2γ(dρ2 + dz2) + ρ2dφ2
]

, (E.1.1)

where f , ω and γ are functions of the quasi–cylindrical Weyl coordinates
(ρ, z). Thus, the components of the metric tensor gµν are

gφφ =
ρ2

f (ρ, z)
− f (ρ, z)ω(ρ, z)2, gtt = − f (ρ, z), (E.1.2)

gtφ = f (ρ, z)ω(ρ, z), gzz = gρρ =
e2γ(ρ,z)

f (ρ, z)
=

1

gzz
=

1

gρρ . (E.1.3)

Using the above line element, the Einstein-Maxwell equations can be re-
formulated, via Ernst’s procedure in terms of two complex potentials E(ρ, z)
and Φ(ρ, z) (Ernst, 1968a,b). By means of Sibgatullin’s integral method (Sib-

1Mathematica 8.0 scripts with the solution, some limiting cases as
well as the the calculations presented in this paper are available at
http://www.chem.utoronto.ca/∼lpachon/scripts/nstars
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gatullin, 1991; Manko and Sibgatullin, 1993) this system of equations can be
solved va

E(z, ρ) =

1
∫

−1

dσ

π

e(ξ)µ(σ)√
1 − σ2

, Φ(z, ρ) =

1
∫

−1

dσ

π

f (ξ)µ(σ)√
1 − σ2

, (E.1.4)

where e(z) := E(z, ρ = 0) and f (z) := Φ(z, ρ = 0). The unknown function
µ(σ) must satisfy the singular integral equation

−
∫ 1

−1

µ(σ)[e(ξ) + ẽ(η) + 2 f (ξ) f̃ (η)]dσ

(σ − τ)
√

1 − σ2
= 0 (E.1.5)

and the normalizing condition

∫ 1

−1

µ(σ)dσ√
1 − σ2

= π, (E.1.6)

where ξ = z + iρσ, η = z + iρτ, ρ and z being the Weyl-Papapetrou quasi–

cylindrical coordinates, σ, τ ∈ [−1, 1], ẽ(η) := e(η̄), f̃ (η) := f (η̄) and the
overbar stands for complex conjugation. In (Pachón et al., 2006), the Ernst
potentials were chosen as

e(z) =
z3 − z2(m + ia)− kz + is

z3 + z2(m − ia)− kz + is
, f (z) =

qz2 + iµz

z3 + z2(m − ia)− kz + is
.

(E.1.7)

We calculate the multipole moments following the procedure of Hoense-
laers and Perjes (1990). We denote the mass multipoles by Mi while, the cur-
rent (rotation) multipoles, by Si. The electric multipoles are denoted by Qi

and the magnetic ones by Bi. Thus, for the PRS solution we have

M0 = m , M2 = mk − ma2 , . . .

S1 = ma , S3 = −ma3 + 2mak − ms , . . .

(E.1.8)

Q0 = q , Q2 = −a2q − aµ + kq , . . .

B1 = µ + aq , B3 = −a2µ + µk − a3q + 2akq − qs , . . . (E.1.9)

This allows us to identify m as the total mass, a as the total angular moment
per unit mass (a = J/m, being J the total angular moment); while k, s, q and
µ are associated to the mass-quadrupole moment M2, current octupole S3,
electric charge and magnetic dipole, respectively.
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The potentials (E.1.7) can be written in an alternative way, we mean

e(z) = 1 +
3

∑
i=3

ei

z − βi
, f (z) =

3

∑
i=3

fi

z − βi
, (E.1.10)

with (i, k 6= j)

ej = (−1)j
2mβ2

j

(β j − βk)(β j − βi)
, f j = (−1)j+1 iµ + dβ j

(β j − βk)(β j − βi)
. (E.1.11)

Then, using Eqs. (E.1.4) and (E.1.7), we obtain the Ernst potentials

E =
A + B

A − B
, Φ =

C

A − B
, (E.1.12)

and the metric functions in the whole spacetime

f =
AĀ − BB̄ + CC̄

(A − B)(Ā − B̄)
, e2γ =

AĀ − BB̄ + CC̄

KK̄
6

∏
n=1

rn

, (E.1.13)

ω =
Im[(A + B)H̄ − (Ā + B̄)G − CĪ]

AĀ − BB̄ + CC̄
, (E.1.14)

where the functions A, B, C, H, G, K, and I can be found in the Appendix
E.1.8.

The PRS electrovacuum exact solution belongs to the extended N-soliton
solution of the Einstein-Maxwell equations derived by Ruiz et al. (1995), in
the particular case N = 3. In addition, the functional form of the metric func-
tions resembles the one derived previously by Bretón et al. (1999). Besides the
limiting cases discussed in Pachón et al. (2006) it is worth mentioning that, in
the vacuum case q = 0 and µ = 0, for s = 0 this solution reduces to the solu-
tion of Manko et al. (1995) under the same physical conditions, namely q = 0,
c = 0 and b = 0 in Manko et al. (1995).

E.1.3. Orbital Motion Frequencies on the Equatorial Plane

Although for the case of compact stars contributions from the magnetic field
could be relevant (see e.g. Bakala et al., 2010; Sanabria-Gómez et al., 2010;
Bakala et al., 2012), we focus in this work on the frequencies of neutral par-
ticles orbiting a neutral compact object. We calculate here the Keplerian
νK = ΩK/(2π), frame-dragging (Lense-Thirring) νLT = ΩLT/(2π), radial
oscillation and precession, νOS

ρ = ΩOS
ρ /(2π) and νP

ρ = ΩP
ρ /(2π), and vertical

oscillation and precession frequencies, νOS
z = ΩOS

z /(2π) and νP
ρ = ΩP

ρ /(2π),
respectively.
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The geodesic motion of test particles along the radial coordinate, on the
equatorial plane z = 0, is governed by the effective potential (see e.g. Ryan,
1995)

V(ρ) = 1 − E2gφφ + 2ELgtφ + L2gtt

g2
tφ − gttgφφ

, (E.1.15)

where, for circular orbits, the energy E and angular momentum L are deter-
mined by the conditions V = 0 and dV/dρ = 0 (see Eqs. E.1.18–E.1.19). The
frequencies at the ISCO’s location (determined by the additional condition
d2V/dρ2 = 0) are of particular interest. Thus, before starting the discussion
of the frequencies, it is important to explore the ISCO parametric dependence.
We report here, as standard in the literature, the physical ISCO radius given by√

gφφ evaluated at the root of Eq. (E.1.15) that gives the coordinate ISCO ra-
dius. In the upper panel of Fig. E.1 we plotted contours of constant ISCO radii
as a function of the dimensionless angular momentum parameter j = J/M2

0
and the star quadrupole moment M2, for the PRS solution. The use of the
dimensionless parameter j in the horizontal axis allows to, qualitatively, re-
late deviations of the contour lines from vertical lines to the influence of the
quadrupole moment. We can see that the ISCO radius decreases for increas-
ing j and decreasing M2. A quantitative measurement of this influence could
be derived from the effective slope of the contour lines. We are interested
in the comparison with the Kerr geometry, so in the lower panel, we plotted
contours of constant ratio rISCO,PRS/rISCO,Kerr as a function of j and the dif-
ference between the quadrupole moment of the PRS solution M2,PRS and the
Kerr quadrupole M2,Kerr = −ma2, i.e. M2,PRS − M2,Kerr = M2,PRS +ma2 = mk,
see Eq. (E.1.8). Deviations from the Kerr geometry are evident. Negative val-
ues of the angular momentum correspond to the radii of the counter-rotating
orbits obtained here through the change gtφ → −gtφ (see discussion below).

We stress that the accuracy of the PRS solution for describing the ISCO
radius of realistic NSs was already shown to be higher with respect to other
analytic models (see Pachón et al., 2006, for details). In Table E.1 we compare
the ISCO radius for two rapidly rotating NS, models 20 and 26, of Table VI of
Pappas and Apostolatos (2012) for the EoS L. The lowest multipole moments
of the analytic models are fixed to the numerical values obtained by Pappas
and Apostolatos (2012). In the case of the Kerr solution, only M0 and J can be
fixed, while M2, and S3 have values that depend on M0 and J and therefore
cannot be fixed. For the PRS solution with s = 0, M0, J and M2 can be fixed
while S3 remains induced by the lower moments. We present also the ISCO
radius obtained by fixing M0, J, M2, as well as S3 in the PRS analytic exact
model.

In Figs. E.1–E.6, we have fixed as an example M0 = m = 1.88M⊙ =
2.78 km, and s = 0. We recall that the quadrupole moment in the geo-
metric units used here (km3) is related to the one in CGS units by MCGS

2 =

(1015c2/G)M
geo
2 = 1.35 × 1043(M

geo
2 /km3) g cm2, and the mass of the Sun is
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Figure E.1.: Left panel: Contours of constant ISCO radius as a function
of the dimensionless angular momentum parameter j = J/M2

0 and the
quadrupole moment M2 for the PRS solution, for a compact object with
mass M0 = m = 1.88M⊙ = 2.78 km. Contours are labeled by the cor-
responding the value of the ISCO radius in km. Negative values of j de-
pict the counter-rotating case and negative values of the quadrupole moment
M2 correspond to oblate configurations. The values of M2 are in the range
0 ≤ M2 ≤ 20 km3 that corresponds in CGS units to 0 ≤ M2 ≤ −2.7 × 1044

g cm2, which covers the typical range of fast rotating NSs. Right panel: Con-
tours of constant ratio rISCO,PRS/rISCO,Kerr as a function of j and the difference
M2,PRS − M2,Kerr. The quadrupole moment difference is comprised in the
range −2.7 × 1044 ≤ M2 ≤ 6.8 × 1043 g cm2.

RN[km] RSS[km] RKerr[km] RPRS,s=0[km] RPRS[km]
M20 19.81 13.39 16.14 19.28 18.99
M26 19.87 17.16 15.94 19.65 19.54

Table E.1.: Comparison of the ISCO radius for the selected NS models 20 and
26 of Table VI of Pappas and Apostolatos (2012) for the EoS L. Model 20:
M0 = 4.167 km (2.82M⊙), j = J/M2

0 = 0.70, M2 = −79.8 km3 (−1.08× 1045 g

cm2) and S3 = −401.0 km4. Model 26: M0 = 4.36 km (2.95M⊙), j = J/M2
0 =

0.56, M2 = −45.2 km3 (−6.10 × 1044 g cm2) and S3 = −170.0 km4. The
subscript N stands for the numerical calculation of Pappas and Apostolatos
(2012) and SS stands for the Shibata and Sasaki (1998) approximated ISCO
radius expression.
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M
geo
⊙ = 1.477 km. The dimensionless angular momentum j is obtained from

the CGS values of J and M0 as j = cJ/(GM2
0).

It is appropriate to compare the range of values of j = J/M2
0 and M2 used

in Figs. E.1–E.6 with typical values of a NS. For the used mass M0 = 1.88M⊙,
Morsink and Stella (1999) obtained a quadrupole moment M2 = −5.3 × 1043

g cm2 = 3.93 km3, with the latter value in geometric units, for a NS of angular
rotation frequency νs = 290 Hz (rotation period of 3.45 milliseconds), corre-
sponding to a dimensionless angular momentum j = J/M2

0 = 0.19, for the
EoS L. For a fixed mass the quadrupole moment is an increasing function of
j because an increasing of the angular momentum at fixed mass results in an
increasing of the oblateness (eccentricity) of the star, and so the quadrupole
moment. Based on this fact, it is clear that not all the pairs of quadrupole and
angular momentum pairs depicted in, e.g., Fig. E.1 are physically realizable.
The maximum rotation rate of a neutron star taking into account both the
effects of general relativity and deformations has been found to be νs,max =
1045(M0/M⊙)1/2(10 km/R)3/2 Hz, largely independent on the EoS (see Lat-
timer and Prakash, 2004b, for details). Corresponding to this maximum ro-
tation rate, the angular momentum is Jmax = 2πνs,max I ∼ 6.56 × 1048 I45 g
cm2 s−1, and jmax = GJmax/(cM2

0) ∼ 0.74I45/(M0/M⊙)2, where I45 is the

moment of inertia of the NS in units of 1045 g cm2. The fastest observed pul-
sar is PSR J1748-2246ad with a rotation frequency of 716 Hz (Hessels et al.,
2006b), which constrains the mass of the NS to M0 ≥ 0.47(R/10 km)3M⊙,
and j ∼ 0.51I45/(M0/M⊙)2, which becomes j ∼ 0.26I45 for a canonical NS of
M0 = 1.4M⊙.

Keplerian Frequency

Now we turn into the frequencies analysis. For stationary axially symmetric
spacetimes, the frequency of Keplerian orbits is given by (see e.g. Ryan, 1995)

ΩK =
−gtφ,ρ ±

√

g2
tφ,ρ − gφφ,ρgtt,ρ

gφφ,ρ
, (E.1.16)

where a colon stands for partial derivative with respect to the indicated co-
ordinate and ‘+’ and ‘-’ stands for corotating and counter-rotating orbits, re-
spectively.

For the case of static spacetimes, i.e. for ω = 0 and therefore gtφ = 0, ΩK =
±√−gφφ,ρgtt,ρ/gφφ,ρ and the energy E and angular momentum L per mass µ
of the test particle can be expressed in terms of the metric tensor components
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(see e.g. Ryan, 1995),

E

µ
=

−gtt
√

−gtt − gφφΩ2
K

,
L

µ
=

gφφΩK
√

−gtt − gφφΩ2
K

. (E.1.17)

From here, it is clear that taking the negative branch of the root for ΩK in
Eq. (E.1.16) is equivalent to studying a particle with opposite angular mo-
mentum, i.e. Lcount−rot = −Lco−rot. Thus, in the static case the magni-
tude of the energy and angular momentum are invariant under the change
ΩK → −ΩK.

Now we consider the case of stationary space times, ω 6= 0. The energy
E and angular momentum L per mass µ are, in this case, given by (see e.g.
Ryan, 1995)

E

µ
=

−gtt − gtφΩK
√

−gtt − 2gtφΩK − gφφΩ2
K

, (E.1.18)

L

µ
=

gtφ + gφφΩK
√

−gtt − 2gtφΩK − gφφΩ2
K

. (E.1.19)

The counter-rotating condition given by the negative branch of Eq. (E.1.16),
can be generated by the change gtφ → −gtφ, which seems to be a more phys-
ical and transparent condition. In contrast to the static case, the counter-
rotating orbit has now different energy and different magnitude of the an-
gular momentum due the presence of the dragging of inertial frames, char-
acterized by the metric component gtφ (cf. Eq. (E.1.22) below). In a nutshell,
the dynamics of counter-rotating orbits of a test-particle can be derived, start-
ing from the positive branch of Eq. (E.1.16), by considering a spacetime with
gtφ → −gtφ.

For the vacuum case, a similar analysis as the one developed by Herrera
et al. (2006), clearly shows that the change in the global sign of gtφ is achieved
by changing not only the angular momentum of the star, J → −J, but all the
rotational multipolar moments. For the Kerr metric this change is obtained by
changing the sign of the parameter a (see Appendix E.1.8) while in the PRS
solution we need additionally change the sign of the parameter s associated
to differential rotation, i.e., by changing a → −a and s → −s2.

Once we have clarified this important issue about the co-rotating and counter-
rotating orbits, we proceed to analyze the functional dependence of the Ke-
plerian frequency on the multipole moments. In the upper panel of Fig. E.2
we plotted contours of constant Keplerian frequency for the PRS solution,
νK,PRS = ΩK,PRS/(2π), as a function of the dimensionless angular momen-

2For the vacuum case, in the solution by Manko et al. (2000), the sign change of gtφ is
obtained after performing simultaneously the replacements a → −a and b → −b.
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tum parameter j and the quadrupole moment M2,PRS, at the ISCO radius. It
can be seen that the influence of the quadrupole moment is non-negligible,
as evidenced from the departure of the contour lines from vertical lines. The
Keplerian frequency grows for increasing J and M2. In the lower panel, we
plotted contours of constant ratio νK,PRS/νK,Kerr as a function of j and the dif-
ference between the quadrupole moment of the PRS solution, M2,PRS, and the
Kerr quadrupole, M2,Kerr.

0.8

0.9

1

1.1

1.2

1.4

1.6

-0.4 -0.2 0.0 0.2 0.4
-20

-15

-10

-5

0

j

M
2,

P
R

S@
km

3 D

0.8
0.85

0.9

0.95

1

1.05

-0.4 -0.2 0.0 0.2 0.4
-20

-15

-10

-5

0

5

j

M
2,

P
R

S-
M

2,
K

er
r

Figure E.2.: Left panel: Contours of constant νK (in kHz) as a function of the
the dimensionless angular momentum parameter j = J/M2

0 and quadruple
moment M2 for the PRS solution, at the ISCO radius, for a compact object
with mass M0 = m = 1.88M⊙ = 2.78 km. Right panel: Contours of constant
ratio νK,PRS/νK,Kerr as a function of j and the difference M2,PRS − M2,Kerr, at
the ISCO radius.

It is appropriate to recall here that because the Keplerian as well as the
other frequencies calculated below are evaluated using formulas in the coor-
dinate frame, see for instance Eq. (E.1.16), they must be evaluated at coordi-
nate radii ρ and not at physical radii given by

√
gφφ. In the specific case of the

ISCO the frequencies are evaluated at the radius that simultaneously solves
the equations V = 0, dV/dρ = 0, and d2V/dρ2 = 0, where V is the effective
potential (E.1.15).

Oscillation and Precession Frequencies

The radial and vertical oscillation (or epicyclic) frequencies are the frequen-
cies at which the periastron and orbital plane of a circular orbit oscillates if we
apply slightly radial and vertical perturbations to it, respectively. According
to Ryan (1995), in stationary axially symmetric vacuum spacetimes described
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by the Weyl-Papapetrou metric (E.1.1), the radial and vertical epicyclic fre-
quencies can be obtained as

νOS
α =

1

2π

{

−gαα

2

[

(gtt + gtφΩ)2

(

gφφ

ρ2

)

,αα

+ (gtφ + gφφΩ)2

(

gtt

ρ2

)

,αα

− 2(gtt + gtφΩ)(gtφ + gφφΩ)

(

gtφ

ρ2

)

,αα

]}1/2 , (E.1.20)

and the corresponding periastron (νP
ρ ) and nodal (νP

z ) precession frequencies
as

νP
α = νK − νOS

α . (E.1.21)

where α = {ρ, z}, respectively, and νK = ΩK/(2π) is the Keplerian orbital
frequency with ΩK given by Eq. (E.1.16).

In the upper panel of Fig. E.3, we plotted contours of constant nodal pre-
cession frequency νP

z at the ISCO radius as a function of j = J/M2
0 and M2

for the PRS solution, at the ISCO radius. We can see now that the influence of
the quadrupole moment is quite important. The nodal precession frequency
increases for increasing J and decreasing M2, at fixed M0. In the lower panel
we plotted contours of constant ratio νP

z,PRS/νP
z,Kerr, at the ISCO radius, as a

function of j and the difference M2,PRS − M2,Kerr, in order to evidentiate devi-
ations from the Kerr solution. The radial oscillation frequency νOS

ρ vanishes at
the ISCO radius and therefore at such location the radial precession frequency
equals the Keplerian frequency, whose contours have been plotted in Fig. E.2.

In Figs. E.4 and E.5 we plotted the nodal precession frequency νP
z and the

radial oscillation frequency νOS
ρ as a function of the Keplerian frequency νK,

respectively, for both the Kerr and PRS solutions. As an example, we have
shown the results for rotating NS models 20 and 26 of Table VI of Pappas and
Apostolatos (2012), for the EoS L. The lowest multipole moments of the PRS
solution M0, J, M2, and S3 have been fixed to the numerical values obtained
by Pappas and Apostolatos (2012). In the case of the Kerr solution, only M0

and J can be fixed, while M2, and S3 have values induced by the lower mo-
ments M0 and J. For the PRS solution with s = 0, M0, J and M2 can be fixed
while S3 cannot be fixed and depends on the lower moments. The results for
the PRS analytic model obtained by fixing M0, J, M2, as well as S3 are also
shown.

The deviations of the quadrupole and current octupole moments given by
the Kerr solution from the numerical values of Pappas and Apostolatos (2012)
can be used to show the low accuracy of the Kerr solution to describe fast
rotating NSs. The accuracy of the PRS solution in describing the ISCO radii
of these two models has been shown in Table E.1 of Section E.1.3.

In Figs. E.4 and E.5 we can see the differences of the νP
z –νK and νOS

ρ –νK re-
lations between the Kerr and PRS solutions for realistic NS models. The devia-

2079



E. Exact Solutions of the Einstein-Maxwell equations in Astrophysics

-0.05

-0.04

-0.02

0

0.02

0.04

0.06

0.08

-0.4 -0.2 0.0 0.2 0.4
-20

-15

-10

-5

0

j

M
2,

P
R

S@
km

3 D

0.7

0.8

0.9
1

1

1.2

1.2

1.4

1.4

1.8

0.8

-0.4 -0.2 0 0.2 0.4
-20

-15

-10

-5

0

5

j

M
2,

P
R

S-
M

2,
K

er
r@

km
3 D

Figure E.3.: Left panel: νP
z (in kHz) as a function of the the dimensionless

angular momentum parameter j = J/M2
0 and quadruple moment M2 for the

PRS solution, at the ISCO radius, for a compact object with mass M0 = m =
1.88M⊙ = 2.78 km. Right panel: Contours of constant ratio νP

z,PRS/νP
z,Kerr as a

function of j and the difference M2,PRS − M2,Kerr, at the ISCO radius.
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Figure E.4.: Nodal precession frequency νP
z versus Keplerian frequency νK

given by the Kerr and PRS analytic solutions. The lowest multipole moments
have been fixed from the rotating NS models 20 (red curves) and 26 (blue
curves) of the Table VI of Pappas and Apostolatos (2012) for the EoS L. Model
20: M0 = 4.167 km (2.82M⊙), j = J/M2

0 = 0.70, M2 = −79.8 km3 (−1.08 ×
1045 g cm2) and S3 = −401.0 km4. Model 26: M0 = 4.36 km (2.95M⊙),
j = J/M2

0 = 0.56, M2 = −45.2 km3 (−6.10 × 1044 g cm2) and S3 = −170.0

km4.
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Figure E.5.: Radial oscillation frequency νOS
ρ versus Keplerian frequency νK

given by the Kerr and PRS analytic solutions. The lowest multipole mo-
ments has been fixed from the rotating NS models 20 (red curves) and 26
(blue curves) of the Table VI of Pappas and Apostolatos (2012) for the EoS
L. Model 20: M0 = 4.167 km (2.82M⊙), j = J/M2

0 = 0.70, M2 = −79.8

km3 (−1.08 × 1045 g cm2) and S3 = −401.0 km4. Model 26: M0 = 4.36 km
(2.95M⊙), j = J/M2

0 = 0.56, M2 = −45.2 km3 (−6.10 × 1044 g cm2) and

S3 = −170.0 km4.

tions of the Kerr solution, especially at fast rotation rates, are evident because
of the influence of the deformation (quadrupole M2) of the star as well as,
although in less proportion, of the octupole current S3. In general, we ob-
serve that the larger the angular momentum, the poorer the performance of
the predictions of Kerr solution.

We have also shown in Figs. E.4–E.5 the influence of the current octupole S3

in the determination of the precession and oscillation frequencies. We found
that the effect of S3 is only appreciable for the fastest models. The minor
influence, in this case, of the current octupole S3 is expected from the small
values of the parameter s needed to fit the numerical values of Pappas and
Apostolatos (2012). Clearly, larger values of the parameter s needed to fit
realistic values of S3 will enhance as well deviations from the Kerr spacetime.

The effects of a multipolar structure that deviates from the one of the Kerr
geometry on the various quantities analyzed here are relevant for instance in
the RPM of the QPOs observed in LMXBs (see e.g. Stella and Vietri (1998);
Morsink and Stella (1999); Stella et al. (1999); Stella and Vietri (1999) and Sec-
tion E.1.6, for details).

Dragging of Inertial Frames

It is known that a prediction of general relativity is that a rotating object
makes a zero angular momentum test particle to orbit around it, namely it
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drags the particle into the direction of its rotation angular velocity; such an
effect is called dragging of inertial frames or Lense-Thirring effect. Conse-
quently, oblique particle orbit planes with respect to the source equatorial
plane will precess around the rotation axis of the object. In stationary axi-
ally symmetric spacetimes described by the metric (E.1.1) the frame dragging
precession frequency is given by (see e.g. Ryan, 1995)

νLT = − 1

2π

gtφ

gφφ
. (E.1.22)

Many efforts have been done to test the predictions of general relativity
around the Earth such as the analysis of the periastron precession of the or-
bits of the LAser GEOdynamics Satellites, LAGEOS and LAGEOS II, (see e.g.
Lucchesi and Peron, 2010) and the relativistic precession of the gyroscopes
on-board the Gravity Probe B satellite (see Everitt et al., 2011, for details).
The latter experiment measured a frame dragging effect within an accuracy
of 19% with respect to the prediction of general relativity.

The smallness of this effect around the Earth makes such measurements
quite difficult and has represented a multi year challenge for Astronomy. The
frame dragging precession increases with the increasing of the angular mo-
mentum of the rotating object and therefore a major hypothetical arena for
the searching of more appreciable Lense-Thirring precession is the spacetime
around compact objects such as BHs and NSs. The much stronger gravita-
tional field of these objects with respect to the Earth one allow them to attain
much faster angular rotation rates and so larger angular momentum.

Stella and Vietri (1998) showed how, in the weak field slow rotation regime,
the vertical precession frequency νP

z (orbital plane precession frequency) can
be divided into one contribution due to the Lense-Thirring precession and
another one due to the deformation (non-zero quadrupole moment) of the
rotating object, both of them comparable from the quantitative point of view.
These frequencies could be in principle related to the motion of the matter
in the accretion disks around BHs and NSs and thus particularly applicable
to LMXBs. For fast rotating NSs and BHs the frequency at which the orbital
plane, and so the frame dragging precession frequency, can reach values of
the order of tens of Hz (see e.g. Stella and Vietri (1998) and Figs. E.3 and E.4).

Thus, it is clear that an observational confirmation of the relativistic preces-
sion of matter around either a NS or a BH will lead to an outstanding test of
the general relativity in the strong field regime and, at the same time, an indi-
rect check of the large effects of the frame dragging in the exterior spacetime
of compact objects (see e.g. Morsink and Stella, 1999, for details).

Although making independent measurements of the frame dragging effect
around BHs and NSs is a very complicate task, it is important to know the
numerical values of the precession frequency due to the frame dragging with
respect to other relativistic precession effects, e.g. geodetic precession. In
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addition, it is important to know the sensitivity of the precession frequency
to the object parameters such as mass, angular momentum, quadrupole, and
octupole moment.

In the upper panel of Fig. E.6 we plotted contours of constant frame drag-
ging frequency νLT for the PRS solution, at the ISCO radius, as a function of
the the angular momentum per unit mass J/M0 and the quadruple moment
M2, for a compact object mass M0 = m = 1.88M⊙. Correspondingly, in the
lower panel of Fig. E.6, we show the differences between the frame dragging
precession frequency as predicted by the Kerr and PRS solutions, at the ISCO
radius, as a function of j = J/M2

0 and the difference between the quadrupole
moments, M2,PRS − M2,Kerr.
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Figure E.6.: Left panel: Contours of constant νLT (in Hz) as a function of the
the angular momentum per unit mass j = J/M2

0 and the quadruple moment
M2 for the PRS solution, at the ISCO radius, for a compact object with mass
M0 = m = 1.88M⊙ = 2.78 km. Right panel: Contours of constant ratio
νLT,PRS/νLT,Kerr as a function of j0 and the difference M2,PRS − M2,Kerr, at the
ISCO radius.

The influence of the quadrupole moment in the determination of the frame
dragging frequency is evident; the frequency νLT given by a NS is generally
smaller than the one given by a BH as can be seen from the value of the ratio
νLT,PRS/νLT,Kerr < 1 obtained for configurations with a quadrupole moment
that deviates with respect to the one given by the Kerr solution, namely for
M2,PRS − M2,Kerr = M2,PRS + ma2 = mk 6= 0, see Eq. (E.1.8).

It is also worth mentioning that frame dragging precession can be affected
as well by the presence of electromagnetic fields (Herrera et al., 2006, see) and
further research in this respect deserves the due attention.
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E.1.4. Accuracy of Ryan’s Analytic Formulas

Following a series expansion procedure in powers of 1/ρ, Ryan (1995) found
that the periastron (radial) and nodal (vertical) precession frequencies, νP

ρ and

νP
z given by Eq. (E.1.20), can be written as a function of the Keplerian fre-

quency νK as

νP
ρ
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and
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where V = (2πM0νK)
1/3, [M0, M2, M4] are the lowest three mass moments

and, [S1, S3], are the lowest two current moments. For the PRS solution in the
vacuum case, M4 = m(a4 − 3a2 + k2 + 2as).

The above formulas are approximate expressions of the periastron and
nodal precession frequencies in the weak field (large distances from the source)
and slow rotation regimes. We should therefore expect that they become less
accurate at distances close to the central object, e.g. at the ISCO radius, and
for fast rotating objects. However, such formulas are an important tool to
understand the role of the lowest multipole moments on the values of the
relativistic precession frequencies, such as the importance of the higher mul-
tipole moments at short distances and high frequencies as can be seen from
Eqs. (E.1.23–E.1.24).

At high frequencies, for instance of the order of kHz, deviations from the
above scaling laws are appreciable. In Figs. E.7 and E.8 we compare the radial
precession and vertical oscillation frequencies, νP

ρ and νOS
z , as a function of the
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Keplerian frequency νK, as given by the full expressions (E.1.20) for the PRS
solution and by the approximate formulas (E.1.23) and (E.1.24), respectively.3

The lowest multipole moments M0, J, M2, and S3 of the PRS solution have
been fixed to the values of two models of the Table VI of Pappas and Aposto-
latos (2012); Model 2 with M0 = 2.071 km (1.402M⊙), j = 0.194, M2 = −2.76
km3 (3.73 × 1043 g cm2), S3 = −2.28 km4 and Model 20 with M0 = 4.167
km (2.82M⊙), j = J/M2

0 = 0.70, M2 = −79.8 km3 (−1.08 × 1045 g cm2) and

S3 = −401.0 km4.
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Figure E.7.: Comparison of the νOS
z –νK and νP

ρ –νK relations given by the PRS
solution and the approximate expressions (E.1.23–E.1.24) derived by Ryan
(1995). The lowest multipole moments M0, J, M2, and S3 have been fixed to
the values of the Model 2 of the Table VI of Pappas and Apostolatos (2012):
M0 = 2.071 km (1.402M⊙), j = 0.194, M2 = −2.76 km3 (3.73 × 1043 g cm2),
and S3 = −2.28 km4.

In the νOS
z –νK relation, the blue dotted curve depicts the contribution from

the angular momentum (we plot the series (E.1.24) up to V3), for the blue dot-
dashed curve we added the first contribution from the quadrupole moment
M2 (we cut the series at V4), for the dashed blue line we added the first contri-
bution from the octupole mass-current (series expansion up to V7) and finally
in the continuos blue line we consider contributions for higher multipole mo-
ments and stop the series at the order V9, not shown in Eqs. (E.1.24). For this
case, we can see that Ryan’s expressions clearly tend, from the bottom, to the
exact result (continuous black curve) obtained by using the PRS solution.

For the analysis of the νP
ρ –νK relation we followed the same procedure as

described above. In this case, the Ryan’s expressions tend from the top to the
exact result, the continuous black curve, represented by the PRS solution. It
is interesting to see that the introduction of the octupole moment (dashed red

3Because the scale of the νP
ρ and νP

z frequencies are very similar, we decided to plot in Fig. E.7

νP
ρ and νOS

z whose scales are different allowing a more clear comparison with the PRS
solution in a single figure.
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Figure E.8.: Comparison of the νOS
z –νK and νP

ρ –νK relations as given by the
PRS solution and the approximate expressions (E.1.23-E.1.24) derived by
Ryan (1995). The lowest multipole moments M0, J, M2, and S3 have been
fixed to the values of the Model 20 of the Table VI of Pappas and Aposto-
latos (2012): M0 = 4.167 km (2.82M⊙), j = J/M2

0 = 0.70, M2 = −79.8 km3

(−1.08 × 1045 g cm2) and S3 = −401.0 km4

line) makes the approximation to deviate from the exact result, however by
including more terms the accuracy is enhanced. As can be seen from Figs. E.7
and E.8 the quantitative accuracy of the Ryan’s approximate formulas in the
periastron precession frequency νP

ρ is less than the one obtained in the vertical

oscillation frequency νOS
z .

The importance of the high-order multipole moments such as the quadrupole
and the octupole moments is evident in the high-frequency regime. This is in
line with the results shown in Figs. E.2–E.3 and in Figs. E.4–E.5. We can see
from Figs. E.7 and E.8 that the Ryan’s approximate formulas describe more
accurately the Model 2 than the Model 20. The reason is that, as we men-
tioned above, we should expect a better accuracy of the series expansions
from low to moderate moderate rotation rates and consequently the same
occur for the quadrupole deformations. It is clear that there are appreciable
differences both in rotation and deformation between the two selected mod-
els; we recall also that the rotation frequency of the star can be expressed
as a function of the dimensionless j parameter as νs = GjM2

0/(2πcI) =
1.4(M/M⊙)2/I45 kHz.

It is noteworthy that we have checked that the Ryan’s series expansions,
Eqs. (E.1.23) and (E.1.24), fit quite accurately the exact results if taken up to
order V10. In particular the values of the vertical oscillation and precession
frequencies are fit better than the corresponding radial ones. For the Model
2 the radial oscillation frequency is well fitted by the Ryan’s expression up
to Keplerian frequencies of order ∼ 1.2 kHz while, for the Model 20, the
approximate formulas break down at a lower value ∼ 0.7 kHz. These results
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are of particular relevance because it makes possible the extraction of the
object parameters (for instance the lowest multipoles up to S3) by the fitting of
the observed QPO frequencies in LMXBs, providing they are indeed related
to the precession and oscillation frequencies of matter in the accretion disk
(see Section E.1.6, for details) and for Keplerian motion not exceeding a few
kHz of frequency.

E.1.5. Accuracy of PRS solution

We turn now to analyze the behavior of the Kerr and PRS solutions in pre-
dicting results for the Keplerian, frame dragging, and vertical oscillation fre-
quencies, for realistic NSs. In particular, we compare their predictions with
the frequencies calculated by Morsink and Stella (1999). Since Morsink and
Stella (1999) did not include the values of the octupole current moment S3,
here we set s = 0 in Eq. (E.1.7) for the PRS solution. For the sake of com-
parison, we choose the results derived by Morsink and Stella (1999) for the
EoS L, because for this EoS the highest rotating parameter j and quadrupole
moment M2 were found. In addition, the stiffness of such an EoS allows the
maximum mass of the NS to be larger than the highest observed NS mass,
M0 = 1.97 ± 0.04M⊙, corresponding to the 317 Hz (3.15 milliseconds rota-
tion period) pulsar J1614-2230 (see Demorest et al., 2010b, for details).

This regime of high j and M2 in realistic models is particularly interesting
to test the deviations of the Kerr solution in the description of NS signatures
as well as to explore the accuracy of the PRS solution. In Table E.2, we present
the results for four different sets of the star spin frequency νs, namely νs = 290
Hz (M1 and M2), νs = 360 Hz (M3 and M4), νs = 580 Hz (M5 and M6) and
νs = 720 Hz (M7 and M8).

Model rMS
+ [km] rKerr

+ rPRS
+ νMS

K [kHz] νKerr
K νPRS

K νMS
LT [Hz] νKerr

LT νPRS
LT νP,MS

z [Hz] νP,Kerr
z νP,PRS

z

M1 15.4 14.90 15.42 1.31 1.363 1.304 39.7 42.248 38.476 18.6 39.697 22.040
M2 22.2 22.16 22.23 0.90 0.906 0.902 19.6 19.676 19.493 17.2 18.809 17.629
M3 15.6 14.89 15.63 1.29 1.380 1.296 49.8 57.001 49.804 17.5 52.608 26.197
M4 21.8 21.62 21.74 0.93 0.937 0.931 26.1 27.245 26.833 21.9 25.670 23.635
M5 16.3 14.18 16.06 1.26 1.514 1.289 84.3 125.75 88.905 -10.5 109.04 31.140
M6 20.6 20.05 20.45 1.01 1.041 1.015 53.5 57.467 54.391 35.8 51.861 42.854
M7 17.0 13.58 16.53 1.22 1.637 1.269 106.7 201.52 116.25 -51.8 166.55 29.804
M8 19.8 18.85 19.65 1.06 1.136 1.077 78.8 90.821 80.895 38.4 79.079 57.187

Table E.2.: ISCO radius r+, Keplerian frequency νK, frame-dragging (Lense-
Thirring) frequency νLT, and vertical precession frequency νP

z of the co-
rotating orbits calculated numerically by Morsink and Stella (1999) (upper
index MS) and comparison with the corresponding predicted values given
by the Kerr (upper index Kerr) and the PRSs=0 solution (upper index PRS).
The quadrupole moment M2 have been normalized for convenience to the
value Q0 = 1043 g cm2.

In Table E.2, we clearly observe that the results predicted by the PRSs=0

solution for the Keplerian and frame-dragging frequencies are in excellent
agreement with those calculated by Morsink and Stella (1999) for even highly
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massive, rotating and deformed models such as the model M7 with M0 =
2.17M⊙, j = 0.51 and M2 = −39.4Q0. We notice that Morsink and Stella
(1999) reported some configurations with negative values of νz (see Table E.2).
We advance the possibility that this is due to instabilities of the numerical
code that occur when the ISCO radius is located very close or inside the sur-
face of the object. Thus, the values of the frequencies given by the analytic
solution in these cases are to be considered predictions to be tested for future
numerical computations. This fact can be checked within the calculations
of Morsink and Stella (1999) by exploring the properties of counter-rotating
orbits which produce in general ISCO radii larger than the ones of the coro-
tating ones. In Table E.3, we depicted the results in the counter-rotating case
where we can notice an improvement of the accuracy of the PRS solution with
respect to the co-rotating case.

Model rMS
− [km] rKerr

− rPRS
− νMS

K [kHz] νKerr
K νPRS

K νMS
LT [Hz] νKerr

LT νPRS
LT νMS

z [Hz] νKerr
z νPRS

z
M1 18.8 18.35 18.73 0.99 1.023 0.997 21.7 22.61 21.39 29.0 23.88 29.70
M2 25.9 25.82 25.88 0.73 0.734 0.732 12.4 12.43 12.36 13.6 12.95 13.46
M3 19.9 19.39 19.89 0.93 0.960 0.928 24.0 25.79 24.04 32.9 27.61 34.20
M4 26.4 26.33 26.42 0.71 0.715 0.712 14.7 15.08 14.94 16.4 15.88 16.57
M5 23.3 22.22 23.24 0.77 0.816 0.768 28.2 32.59 28.78 41.3 36.31 44.65
M6 28.2 27.94 28.18 0.65 0.660 0.652 20.5 21.19 20.70 24.1 23.03 24.51
M7 25.9 24.37 25.78 0.67 0.731 0.678 28.9 34.62 29.64 43.4 39.56 47.90
M8 29.7 29.18 29.58 0.61 0.623 0.611 23.2 24.40 23.48 28.4 27.12 29.22

Table E.3.: Same as in Table E.2, but for the counter-rotating case.

In this line, we consider worth performing numerical computations of the
precession and oscillation frequencies of particles around realistic NSs in a
wider space of parameters and using up-to-date numerical techniques which
will certainly help to establish and elucidate more clearly the accuracy of an-
alytic models. It is also appropriate recalling the recent results of Pappas and
Apostolatos (2012) on the computation of the general relativistic multipole
moments in axially symmetric spacetimes.

E.1.6. The Relativistic Precision Model

The X-ray light curves of LMXBs show a variability from which a wide vari-
ety of QPOs have been measured, expanding from relatively low ∼ Hz fre-
quencies all the way up to high ∼ kHz frequencies (see e.g. van der Klis, 1995,
for details). In particular, such frequencies usually come in pairs (often called
twin peaks), the lower and upper frequencies, νl and νh respectively. BHs and
NSs with similar masses can show similar signatures and therefore the iden-
tification of the compact object in a LMXB is not a simple task. If the QPO
phenomena observed in these systems are indeed due to relativistic motion
of accretion disk matter, the knowledge of the specific behavior of the particle
frequencies (e.g. rotation, oscillation, precession) in the exterior geometry of
NSs and BHs becomes essential as a tool for the identification of the nature of
the compact object harbored by a LMXB.
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It is not the scope of this work to test a particular model for the QPO
phenomenon in LMXBs but instead to show the influence of the high mul-
tipole moments on the orbital motion of test particles especially the role of
the quadrupole moment which is of particular interest to differentiate a NS
from a BH. There are in the literature several models that describe the QPOs
in LMXBs through the frequencies of particles around the compact object,
and for a recent review and comparison of the different models we refer to
the recent work of Lin et al. (2011). In order to show here the main features
and differences between the Kerr and the PRS solutions we shall use the Rel-
ativistic Precession Model (RPM).

The RPM model identifies the lower and higher (often called twin-peaks)
kHz QPO frequencies, νl and νh, with the periastron precession and Keple-
rian frequencies, namely νl = νP

ρ and νh = νK, respectively. The so-called
horizontal branch oscillations (HBOs), which belong to the low frequency
QPOs observed in high luminosity Z-sources (see e.g. van der Klis, 1995, for
details), are related within the RPM model to the nodal precession frequency
νP

z of the same orbits (Morsink and Stella, 1999, see). We will use here in
particular the realistic NS models of Morsink and Stella (1999) for the EoS L.

One of the salient features of the RPM model is that in the case of the
HBO frequencies, the relations inferred from the first term of the expansions
(E.1.23) and (E.1.24)

νK = 3−3/5(2π)−2/5m−2/5(νP
ρ )

3/5 , (E.1.25)

νP
z = (2/3)6/5π1/5 j m1/5(νP

ρ )
6/5 , (E.1.26)

which implies a nodal precession frequency proportional to the square of the
Keplerian frequency has been observed in some sources, for instance in the
LMXB 4U 1728–34 (see Ford and van der Klis, 1998, for details). In addition,
6/5 power law relating the nodal and periastron precession frequencies can
explain (see Stella et al., 1999) the correlation between two of the observed
QPO frequencies found in the fluxes of NSs and BHs LMXBs (see Psaltis et al.,
1999, for details). This fact provides, at the same time, a significant test of the
Ryan’s analytic expressions.

It is interesting to analyze the level of predictability of the precession and
oscillation frequencies on particular astrophysical sources. In Fig. E.9 we
show the νl–νh relation within the RPM model, namely νP

ρ versus νK for the
models M1–M8 of Table E.2. In the upper panel we show the results for the
PRS solution while, in the lower panel, we present the results for the Kerr
solution. We have indicated the QPO frequencies observed in the sources GX
5–1 (see e.g. Wijnands et al., 1998; Jonker et al., 2002), 4U 1735–44 (see e.g.
Ford et al., 1998), 4U 1636–53 (see e.g. Wijnands et al., 1997), Sco X1 (see e.g.
van der Klis et al., 1996), GX 17–2 (see e.g. Homan et al., 2002), GX 340+0 (see
e.g. Jonker et al., 2000), Cir X1 (see e.g. van der Klis et al., 1996), 4U 0614+091
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(see e.g. Ford et al., 1997), and 4U 1728–34 (see e.g. Strohmayer et al., 1996).
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Figure E.9.: Periastron oscillation frequency, νOS
ρ , as a function of the Keple-

rian frequency νK for the NS realistic models in Table E.2. We indicate the
QPO frequencies observed in the sources GX 5–1, 4U 1735–44, 4U 1636–53,
Sco X1, GX 17–2, GX 340+0, Cir X1, 4U 0614+091, and 4U 1728–34. The solid
curves depict the results for the models M1 (solid) and M2 (dashed) with red
lines, for the models M3 (solid) and M4 (dashed) with blue lines, for the mod-
els M5 (solid) and M6 (dashed) with green lines while orange lines stands for
the results from models M7 (solid) and M8 (dashed). In the upper panel
we present the results derived from the PRSs=0 solution while in the lower
panel we present the results for the Kerr solution. In the lower panel we have
added, to guide the eye, the inner red dashed and outer red solid curves of
the upper panel using black lines.

Both the upper and lower panels of Fig. E.9 have been plotted using the
same frequency scales in order to aid the identification of the differences be-
tween the Kerr and the PRS solutions. One can notice that all the solid curves
in the Kerr solution (lower panel of Fig. E.9) are outside the range of the ob-
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served QPO frequencies exemplified, while all dashed and solid curves of the
PRS are inside the QPO range. It is then clear that making a fit of the observed
QPO frequencies of the selected LMXBs of Fig. E.9 will necessarily require a
different choice of parameters in the Kerr and PRS solutions. Therefore, con-
clusions for instance on the NS parameters (e.g. mass, angular momentum,
quadrupole deformation) based on fitting QPOs using the Kerr geometry will
deviate from the actual parameters (see e.g. Laarakkers and Poisson, 1999, for
details), extractable more reliably from a more complex geometry, such as the
PRS one, that allows a better estimate for instance of the quadrupole moment
of a compact star.

In Fig. E.9 we show the relation νP
z versus νK for the models M1–M8 of

Table E.2. For the sake of comparison we show the low frequency branch ob-
served in the LMXB 4U 1728–34 (see Ford and van der Klis, 1998, for details).
From the analysis of the pulsating X-ray flux it turns out that very likely the
spin frequency of the NS in 4U 1728–34 is ∼ 363 Hz (see Strohmayer et al.,
1996, for details). Thus, the models M3 (M0 = 1.94M⊙, j = 0.24) and M4
(M0 = 2.71M⊙, j = 0.18) in Table E.2 that correspond to a NS of spin fre-
quency 360 Hz are of particular interest for the analysis of this source. It was
suggested by Stella et al. (1999); Stella and Vietri (1999) that the low frequency
observed in 4U 1728–34 are likely to be due to excitations of the second har-
monic of the vertical motion and therefore a better fit of the lower-higher
QPO frequencies of 4U 1728–34 (and of similar sources) will be obtained for
the relation 2νP

z -νK. The black curves in Fig. E.10 indicate the 2νP
z -νK relation

for the models M3 and M4 (solid and dashed) following the above sugges-
tion. Although the improvement of the fit is evident, we notice that the NS
parameters that correctly reproduce the features of 4U 1728–34 are likely in
between the models M3 and M4.

E.1.7. Concluding Remarks

We have done an extensive comparison of the orbital motion of neutral test
particles in the PRS and Kerr spacetime geometries. In particular we have
emphasized on the Keplerian and frame-dragging frequencies, as well as the
precession and oscillation frequencies of the radial and vertical motions.

We have evidentiated the differences in this respect between the Kerr and
PRS solution, especially in the rapid ∼kHz rotation regime. Such differences
are the manifestation of the influence of the high order multipole moments
such as the quadrupole and octupole.

The analysis of the deviations between the Kerr and PRS features for given
mass and angular momentum of a source studied in this work are useful to
distinguish the signatures between BHs and NSs, which relevant to establish
a separatrix for the identification of the compact objects harboring in X-Ray
Binaries. In the case of BH candidates, these results might become impor-
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Figure E.10.: Nodal precession frequency, νP
z , as a function of the Keplerian

frequency νK for the NS realistic models in Table E.2. The convention is as
Fig. E.9. We indicate the QPO frequencies observed in the LMXB 4U 1728–34
(see Ford and van der Klis, 1998). The black curves indicate the 2νP

z -νK rela-
tion for the models M3 and M4 (solid and dashed) following the suggestion
of Stella et al. (1999); Stella and Vietri (1999).
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tant for testing the no-hair theorem of BHs (see e.g. Johannsen and Psaltis,
2011). Equally important, the application of the precession and oscillation
frequencies to the explanation of QPOs in LMXBs possessing a NS, can un-
veil information on the NS parameters, leading to a possible identification
of the behavior of the nuclear matter EoS at supranuclear densities. In this
line, the identification of the rotation frequency of NSs in LMXBs from the
pulsating X-ray flux νburst, e.g. the case of 4U 1728–34 (Ford and van der
Klis, 1998), 4U 1916–053 (Galloway et al., 2001) and more recently the case
of IGR J17191–2821 (Altamirano et al., 2010), will certainly help to constrain
QPO models as well as the NS parameters. Additional information coming
from recent modeling of the photospheric radius expansion phenomena ob-
served in these systems (see e.g. Muno et al., 2001, for details) during their
transient activity with Super-Eddington emission can become of paramount
importance if combined with the QPO information.

The generalization of the present work to the electrovacuum case is im-
portant to establish the influence of the magnetic dipole and quadrupole
moments on the orbital motion of particles around compact objects (see e.g.
Bakala et al., 2010; Sanabria-Gómez et al., 2010; Bakala et al., 2012).

Interesting effects on the epicyclic frequencies due to the presence of the
magnetic dipole have been already pointed out recently by Bakala et al. (2010)
and Bakala et al. (2012). These effects were predicted after neglecting the con-
tribution of the electromagnetic field to the curvature, for j = 0 Bakala et al.
(2010) and for j 6= 0 Bakala et al. (2012). In Bakala et al. (2010) the authors
assume the model of the star as a dipole magnetic field superimposed on
a Schwarzschild black hole. In the second work, they studied the case of a
magnetized slowly rotating neutron stars; to build the model they superim-
pose an dipolar magnetic field on the Lense-Thirring geometry. The effects of
the magnetic dipole on the location of the ISCO, within the PRS solution, has
been investigated by Sanabria-Gómez et al. (2010).

A complete analysis of the effects due to the emergence of electromag-
netic structure on the orbital motion of charged particles is therefore of inter-
est and deserve the appropriate attention. Recent observations have shown
that for stars with strong magnetic fields the quadrupole and octupole mag-
netic terms make significant contributions to the magnetic field (Donati et al.,
2006), which indicates that arbitrary higher order multipole components might
be required in a realistic model. The presence of a magnetic quadrupole de-
mands the breaking of the reflection symmetry (see Pachón and Sanabria-
Gómez, 2006, for details), by means of a slightly change to the Ernst electric
potential over the symmetry axis

f (z) =
qz2 + iµz + iζ

z3 + z2(m − ia)− kz + is
, (E.1.27)
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a quadrupolar magnetic component B2 = ζ can be introduced to the PRS
solution. Such a change generates just a redefinition of the coefficients fi in
Eq. (E.1.11). In this way the PRS solution can be readily use to explore the
effect of strong magnetic fields with non-dipolar structure.

E.1.8. Supplementary information

Metric Functions

The functions A, B, C, H, G, K, and I used to express the metric functions
(E.1.13) are given by

A = ∑
1≤i<j<k≤6

aij kri rj rk , B = ∑
1≤i<j≤6

bijri rj, (E.1.28)

C = ∑
1≤i<j≤6

cijri rj , K = ∑
1≤i<j<k≤6

aij k , (E.1.29)

H = z A − (β1 + β2 + β3)B + ∑
1≤i<j<k≤6

hij kri rj rk + ∑
1≤i<j≤6

(αi + αj) bij ri rj,

(E.1.30)

G = −(β1 + β2 + β3) A + z B + ∑
1≤i<j≤6

gij ri rj

+ ∑
1≤i<j<k≤6

(αi + αj + αk)aij kri rj rk, (E.1.31)

I = ( f1 + f2 + f3)(A − B) + (β1 + β2 + β3 − z)C

+ ∑
1≤i<j<k≤6

pij kri rj rk +
6

∑
i=1

pi ri + ∑
1≤i<j≤6

[pij − (αi + αj)cij]ri rj, (E.1.32)
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with

ri =
√

ρ2 + (z − αi)2 , aij k = (−1)i+j+1Λijk Γl|mn ,

bij = (−1)i+jλij Hl|mnp ,

cij = (−1)i+jλij[ f (αl) Γm|np − f (αm) Γn|pl + f (αn) Γp|lm − f (αp) Γl|mn] ,

hij k = (−1)i+j+kΛijk(e
∗
1 δ23|lmn + e∗2 δ31|lmn + e∗3 δ12|lmn) ,

gij = (−1)i+jλij(αl Γm|np − αm Γn|pl + αn Γp|lm − αp Γl|mn) ,

pi = (−1)iDi[ f (αl) Hm|nps − f (αm) Hn|psl + f (αn) Hp|slm − f (αp) Hs|lmn

+ f (αs) Hl|mnp] ,

pij = (−1)i+jλij(e
∗
1 Υ23|lmnp + e∗2 Υ31|lmnp + e∗3 Υ12|lmnp) ,

pij k = (−1)i+j+1Λij k(e
∗
1 Ψ23|lmn + e∗2 Ψ31|lmn + e∗3 Ψ12|lmn) ,

λij = (αi − αj) Di Dj , Λij k = (αi − αj)(αi − αk)(αj − αk) Di Dj Dk ,

Di =
1

(αi − β1)(αi − β2)(αi − β3)
,

Γl|mn = H3(αl)∆12|mn + H3(αm)∆12|nl + H3(αn)∆12|lm ,

and

∆lm|np = Hl(αn) Hm(αp)− Hl(αp) Hm(αn) ,

Hl(αn) =
2 ∏p 6=n(αp − β∗

l )

∏
3
k 6=l(β∗

l − β∗
k) ∏

3
k=1(β∗

l − βk)
−

3

∑
k=1

2 f ∗l fk

(β∗
l − βk)(αn − βk)

,

δlm|nps = ∆lm|np + ∆lm|ps + ∆lm|sn, hl|mnp = H3(αl) δ12|mnp ,

Hl|mnp = hl|mnp + hm|npl + hn|plm + hp|lmn ,

Ψlm|nps = f (αn)∆lm|ps + f (αp)∆lm|sn + f (αs)∆lm|np ,

Υlm|nprs = f (αn) δlm|prs − f (αp) δlm|rsn + f (αr) δlm|snp − f (αs) δlm|npr ,

being α’s the roots of the Sibgatullin equation Sibgatullin (1991); Manko and
Sibgatullin (1993)

e(z) + ẽ(z) + 2 f̃ (z) f (z) = 0. (E.1.33)

Kerr’s metric in Weyl-Papapetrou quasi-cylindrical coordinates

In order to keep comparisons in the save place, we consider useful to display
the Kerr solution in the Weyl-Papapetrou quasi-cylindrical coordinates. For
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this case,

f =
AĀ − BB̄

(A − B)(Ā − B̄)
, e2γ =

AĀ − BB̄

KK̄
2

∏
n=1

rn

, ω =
Im[(A + B)H̄ − (Ā + B̄)G]

AĀ − BB̄
,

(E.1.34)

where for our own convenience we do not present the definition of each term,
but present the final combination of them, i.e.,

AĀ − BB̄ = −8
(

a2 − m2
)3 (

ρ2 + z2
)

(

m2
√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

√

(
√

m2 − a2 + z
)2

+ ρ2 − 2a2
√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

√

(
√

m2 − a2 + z
)2

+ ρ2 + a2m2 − m4 + m2ρ2 + m2z2

)

, (E.1.35)

(A − B)(Ā − B̄) = −8(m2 − a2)3(ρ2 + z2)

(a2(2m(

√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

+

√

2z
√

m2 − a2 − a2 + m2 + ρ2 + z2)

+ 2

√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

√

2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

+ 3m2 − m2(2m(

√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

+

√

2z
√

m2 − a2 − a2 + m2 + ρ2 + z2)

+

√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

√

2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

+ 3m2 + ρ2 + z2)), (E.1.36)

KK̄
2

∏
n=1

rn = 16(m2 − a2)4(ρ2 + z2)

√

(z −
√

m2 − a2)2 + ρ2

×
√

(
√

m2 − a2 + z)2 + ρ2 , (E.1.37)
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Im[(A + B)H̄ − (Ā + B̄)G] = 16am(m2 − a2)3(ρ2 + z2)

(−m2
√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

−
√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

√

(
√

m2 − a2 + z)2 + ρ2 + a2
√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

− z
√

m2 − a2

√

−2z
√

m2 − a2 − a2 + m2 + ρ2 + z2

− m2
√

(
√

m2 − a2 + z)2 + ρ2

+ a2

√

(
√

m2 − a2 + z)2 + ρ2 + z
√

m2 − a2

√

(
√

m2 − a2 + z)2 + ρ2

+ a2m − m3 + mρ2 + mz2). (E.1.38)

From here, it is clear how changing a → −a will cause only a global change
in the sign of the metric function ω and therefore only a change in the gtφ

metric component.
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F.1. On the black hole mass-formula in nonlinear

electrodynamics

F.1.1. Introduction

Black hole solutions to Einstein equations have always attracted the attention
of researchers, not only due to their unusual properties, but also from the
discovery that they could be one of the most abundant sources of energy in
the Universe. From conservation laws, Penrose (1969) has shown primarily
how energy could be extracted from a charged black hole.

Christodoulou (1970) and Christodoulou and Ruffini (1971), through the
study of test particles in Kerr and Kerr-Newmann spacetimes (Carter, 1968),
have quantified the maximum amount of energy that can be extracted from
a black hole. These papers deserve some comments. First, this maximum
amount of energy can be obtained only by means of the called “reversible
processes”. Such processes are the only ones in which black hole config-
urations can be brought back to their initial states, after convenient inter-
actions with test particles. Therefore, reversible transformations constitute
the most efficient processes of energy extraction of a black hole. Further-
more, by studying the interaction between black holes and test particles,
Christodoulou (1970); Christodoulou and Ruffini (1971) also introduced the
concept of “irreducible mass”. This quantity can never be diminished by any
sort of processes and hence would constitute an intrinsic property of the sys-
tem. Such configuration would constitute the “fundamental energy state for
any black hole”. This is exactly the case of Schwarzschild black holes. From
this irreducible mass, one can immediately verify that the area of a black
hole never decreases after any infinitesimal transformation performed on it.
Moreover, one can write down the total energy of a black hole in terms of this
quantity (Christodoulou and Ruffini, 1971).

The conceptual asset of effective nonlinear theories of electromagnetism
(Ruffini et al., 2010b) is that they allow the insertion of desired effects (eg.
quantum, avoidance of singular solutions, etc.) at the classical level in the
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problem being addressed. As a first approach, all of these theories are built in
terms of the two local invariants constructed out of the electromagnetic fields
(Dittrich and Gies, 1998; Landau and Lifshitz, 1975), these invariants assumed
to be functions of a four-vector potential in the same functional way as their
classical counterpart (i.e., they are gauge independent invariants). We quote
for instance Born-Infeld Lagrangian (Born and Infeld, 1934), conceived with
the purpose of solving the problem of the infinite self-energy of an electron
in the classical theory of electromagnetism. Born-Infeld theory has gained a
renewal of interest due to its appearance-like as an effective theory in the low
energy limit of String Theory (Rasheed, 1997). Born-Infeld theory has also
been minimally coupled to general relativity and it allows for an exact solu-
tion (Demianski, 1986; Breton and Garcia-Salcedo, 2007), and this coupling
has been studied in a variety of problems (Bretón, 2002; Myung et al., 2008;
Olmo and Rubiera-Garcia, 2011). Another worthwhile example of nonlin-
ear electrodynamic theory is the Heisenberg-Euler Lagrangian (Heisenberg
and Euler, 1936; Schwinger, 1951). This Lagrangian allows one to take ef-
fectively into account one-loop corrections from the Maxwellian Lagrangian
coming from Quantum Electrodynamics (QED). This Lagrangian has been
extensively studied in the literature (Ruffini et al., 2010b; De Lorenci et al.,
2000, 2001). Nonlinear theories of electromagnetism have also been inves-
tigated in the context of astrophysics (Mosquera Cuesta and Salim, 2004a,b;
Dupays et al., 2008). It has also been claimed that it could be used as a sim-
ulacrum of dark energy (Labun and Rafelski, 2010a), and it could play an
important role in the description of the motion of particles in the neighbor-
hood of some astrophysical systems (Labun and Rafelski, 2010b).

In connection with the above discussion, the thermodynamics of black holes
(Bardeen et al., 1973) in the presence of nonlinear theories of electromag-
netism has also been investigated. The zeroth and first laws have been stud-
ied in detail (Rasheed, 1997), allowing the raise of other important issues. We
quote for example the difficulty of generalizing the Smarr mass for nonlinear
theories (Rasheed, 1997). Many efforts have been pursued in this direction,
through the suggestion of systematic ways to write down this mass, which
has led to some inconsistencies (see e.g. Bretón, 2005). For some specific
nonlinear Lagrangians, this problem has been claimed to be circumvented
(González et al., 2009).

In this work we shall first deal with static spherically symmetric solutions
to general relativity minimally coupled to Abelian nonlinear electrodynam-
ics in the weak field case. We shall be interested in finding general results
concerning reversible transformations. Motivated by the previous results,
it will be showed how to express the total energy (mass) of any spherically
symmetric nonlinear black hole (a black hole solution to a nonlinear theory
of electromagnetism) in terms its characteristic parameters (charge and scale
fields). This will allow one to investigate the issue related to the extraction of
energy from any spherically symmetric black hole in the framework of non-
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linear theories.

This paper is organized as follows. In Section II the notation is established
and the field equations are stated and solved formally in the spherically sym-
metric case for any nonlinear theory. In Section III, reversible transforma-
tions for nonlinear theories are investigated in details. In section IV the field
equations of general relativity are solved for nonlinear theories of electro-
magnetism in the weak field case. Section V is devoted to the deduction of
the total energy of the black hole in terms of irreducible and extractable quan-
tities, when reversible transformations are taken into account. In Section VI
variations of the outer horizon associated with the capture of test particles
in nonlinear theories of electromagnetism are analyzed. In section VII, moti-
vated by the results of the weak field case, we shall find the energy decom-
position of any nonlinear theory of electromagnetism for any range of the
electric field. Section VIII closes this paper, with a discussion about the issues
raised. Units are such that c = G = 1. The metric signature chosen is −2.

F.1.2. Field Equations

The minimal coupling between gravity and nonlinear electrodynamics de-
pending just upon one parameter can be stated mathematically through the
action

S =
∫

d4x
√

−g

(

LEH

16π
− Lem(F)

4π

)

.
=

SEH

16π
− Sem

4π
, (F.1.1)

where SEH is the Einstein–Hilbert action and Sem is the action of the elec-
tromagnetic theory under interest. Under the variation of Eq. (F.1.1) with
respect to gµν, and applying the least principle action, one obtains

Gµν = 8π T
(em)
µν , (F.1.2)

with Gµν the Einstein tensor (defined following the convention of Landau

and Lifshitz (1975)) and T
(em)
µν the energy-momentum tensor of the electro-

magnetic field, defined as

4π T
(em)
µν

.
=

2√−g

δSem

δgµν = 4 L
(em)
F FµαFνρgαρ − Lem gµν, (F.1.3)

where L
(em)
F

.
= ∂Lem/∂F, F

.
= FµνFµν, Fµν = ∇µ Aν −∇ν Aµ = ∂µ Aν − ∂ν Aµ,

being Aµ the four-potential associated with the electromagnetic fields.

Application of the Principle of least action in Eq. (F.1.1) concerning the field
Aµ(xβ) gives

∇µ(L
(em)
F Fµν) = 0, (F.1.4)

since we are interested just in solutions to general relativity in the absence of
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sources.

In the static spherically symmetric case, it is possible to solve Einstein equa-
tions (minimally) coupled to any nonlinear electrodynamic theory [see Eqs.
(F.1.2) and (F.1.3)] and due to the form of the energy-momentum tensor in
this case the metric must be of the form

gµν = diag(eν,−e−ν,−r2,−r2 sin2 θ), (F.1.5)

where (Landau and Lifshitz, 1975; Diaz-Alonso and Rubiera-Garcia, 2012)

eν = 1 − 2M

r
+

8π

r

∫ ∞

r
r′2 T0

0(r
′)dr′, (F.1.6)

with M the total energy (mass) of the black hole as measured by observers at
infinity.

The Eqs. (F.1.4) in this special spherically symmetric case reduce just to

L
(em)
F Err

2 = −Q

4
, (F.1.7)

where Q as an arbitrary constant representing physically the charge of the
black hole.

If one defines

Er
.
= −∂A0

∂r
and

∂F

∂r

.
= −Lemr2, (F.1.8)

and take into account Eqs. (F.1.3), (F.1.5) and (F.1.7), then Eq. (F.1.6) can be
rewritten as

eν = 1 − 2M

r
+

2QA0

r
− 2F

r
, (F.1.9)

where it has been imposed a gauge such that the scalar potential A0 goes to
zero when the radial coordinate goes to infinity, which also holds for F.

Horizons in spherically symmetric solutions to general relativity are de-
fined as the solutions to

g00(rh) = eν(rh) = 0. (F.1.10)

F.1.3. Reversible and Irreversible transformations

A way to investigate the motion of test particles in a static spherically sym-
metric spacetime would be through the solution to the Hamilton-Jacobi equa-
tion. The trajectories of the test particles can be obtained by deriving its so-
lutions with respect to the particle constants of motion (energy E, orbital an-
gular momentum L, the rest mass m and the Carter constant) (Carter, 1968;
Misner et al., 1973). The energy of the test particle is given by Christodoulou
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(1970); Christodoulou and Ruffini (1971); Carter (1968); Misner et al. (1973)

E = q A0 +

√

eλ

r2

[

r4(pθ)2 +
L2

sin2 θ
+ m2r2

]

+ (pr)2, (F.1.11)

where pµ .
= mdxµ/dτ, τ an affine parameter along the worldline of the par-

ticle and q its charge. The “+” sign has been chosen in Eq. (F.1.11), because
we are interested just in particles traveling to the future (Misner et al., 1973;
Deruelle and Ruffini, 1974).

From Eq. (F.1.11), one can see that the only way to apply a reversible
transformation in the sense of Christodoulou-Ruffini (Christodoulou, 1970;
Christodoulou and Ruffini, 1971; Ruffini et al., 2010b) to a black hole inter-
acting with a test particle is by demanding that the square root term is null.
Hence, the minimum energy that the particle (oppositely-charged) could have
in a reversible process is given by

Emin = q A0(r+), (F.1.12)

where r+ is the largest solution to Eq. (F.1.10) and is called the outer (event)
horizon of the black hole. Expression (F.1.12) is valid only for a particle that
arrives on the outer event horizon with zero radial velocity, otherwise, an
inevitable loss of energy will happen, and thus the process will become irre-
versible. In other words, the insertion of any other test particles would not
bring the energy of the black hole into its initial configuration.

If the worldline of an arbitrary test particle intersects the outer horizon,
then the first law of black hole thermodynamics states that the changes in the
energy and charge of the black hole reads: δM = E and δQ = q (Misner et al.,
1973), respectively. Hence, from Eq. (F.1.12),

δM ≥ δQ A0(r+). (F.1.13)

F.1.4. Weak Field Lagrangians

An interesting and convenient limit for investigating nonlinear properties
of Lagrangians is when the fields are small compared to some fundamen-
tal fields in the theory, which would introduce scales to the theory (Labun
and Rafelski, 2010a). In this limit, one expects that the leading term of the
Lagrangian be the linear (Maxwellian) term. When one is interested only in
the static spherically symmetric case in the absence of magnetic charge, the
general way of writing down the weak field nonlinear Lagrangian is

Lem = −F

4
+

µ

4
F2, (F.1.14)
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where µ is related to the fundamental constants of the theory under interest.
The above nonlinear Lagrangian is assumed to be such that its second term
is much smaller than the first one. Physically speaking, this term is just a
first order correction to Maxwell theory. Hence, a perturbative analysis could
be carried out. The sign of µ in principle could be arbitrary. Nevertheless,
from the inspection of the Euler-Heinsenberg Lagrangian, for instance, this
constant turns out to be positive (Ruffini et al., 2010b). The same behavior
happens if one expands perturbatively the Born-Infeld Lagrangian (Ruffini
et al., 2010b; Born and Infeld, 1934; Rasheed, 1997; Demianski, 1986; Breton
and Garcia-Salcedo, 2007; Bretón, 2002; Labun and Rafelski, 2010a).

When one interprets nonlinear Lagrangians as the ones related to effective
media (Born and Infeld, 1934; Novello et al., 2000a), then one expects that
the associated electric field solution should be reduced. This would impose
conditions to the sign of µ, as we shall show. Nevertheless, it is not ruled out
in principle Lagrangians where the associated electric field could increase.

By substituting Eq. (F.1.14) into Eq. (F.1.7) and the first term of Eq. (F.1.8),
solving exactly and then expanding perturbatively (or by directly working
perturbatively), one can show that

Er(r) =
Q

r2

(

1 − 4µQ2

r4

)

, A0(r) =
Q

r

(

1 − 4µQ2

5r4

)

, (F.1.15)

Expressions (F.1.15) are just meaningful if the characteristic distances of the
system are much larger than

r4
c = 4|µ|M2α2, α

.
=

Q

M
. (F.1.16)

As we pointed out before, when µ > 0, the modulus of the electric field
diminishes in comparison to the pure Maxwellian case, while the opposite
happens when µ < 0. The former case is exactly what happens in usual
media (Landau and Lifshitz, 1960), while the latter could happen in the so-
called metamaterials (see e.g. Zhuromskyy et al., 2009).

From Eq. (F.1.14), the second term of Eq. (F.1.8) and Eq. (F.1.15) and as-
suming Eq. (F.1.16) is valid, it is also easily shown that

F =
Q2

2r

(

1 − 6µQ2

5r4

)

. (F.1.17)

When Eqs. (F.1.15) and (F.1.17) are put into Eq. (F.1.9), one obtains

eλ = 1 − 2M

r
+

Q2

r2
− 2µQ4

5r6
. (F.1.18)

The above result is the same one as obtained in (De Lorenci et al., 2001),
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in the corresponding units. Notice that when µ = 0, i.e., for the Maxwell
Lagrangian [see Eq. (F.1.14)], Eq. (F.1.18) gives the well-known Reissner-
Nordström solution (Misner et al., 1973).

The outer horizon can be found perturbatively from Eqs. (F.1.10) and (F.1.18)
and the result is

r+ = R+

(

1 +
µQ4

5 (R+)5
√

M2 − Q2

)

, (F.1.19)

where we defined
R+

.
= M +

√

M2 − Q2, (F.1.20)

as the outer horizon in the Reissner-Nordström solution (Misner et al., 1973).
Besides, in Eq. (F.1.19), it was assumed that the second term in parenthesis is
much smaller than one. Fig. F.1 shows the comparison of the numerical outer
horizon and the perturbative solution given by Eq. (F.1.19) for a selected
value of µ/M2 as a function of Q/M, for 0 < Q/M < 1.

When one approaches the extreme (extr) value Q = M, the expression to
be taken into account tends to

r
(extr)
+ = M

{

1 +

√

2µ

5M2
− 4µ

5M2
+O

[

( µ

M2

)
3
2

]

}

, (F.1.21)

which is just a solution to Eq. (F.1.18), when one assumes M = Q and Eq.
(F.1.10). The other (perturbative) solutions to this equation are

r
(extr)
− = M

{

1 −
√

2µ

5M2
− 4µ

5M2
+O

[

( µ

M2

)
3
2

]

}

(F.1.22)

r
(extr)
ncl = M

{

(

2µ

5M2

)
1
4

+
( µ

10M2

)
1
2
+O

[

( µ

M2

)
3
4

]

}

, (F.1.23)

where r
(ext)
− in Eq. (F.1.22) stands for the nonlinear version of the inner hori-

zon in Reissner–Nordstrom solution, and the solution given by Eq. (F.1.23)
has a nonclassical (ncl) version, being intrinsically due to the corrections in
the Maxwell theory. Notice that when µ 6= 0 the inner and outer horizons
are never equal in nonlinear theories given by Eq. (F.1.14) in the extreme
case. Hence, when corrections are added to Maxwell theory, the degeneracy
in the extreme case (Q = M) is broken. We stress that Eq. (F.1.23) is just a
mathematical solution to Eqs. (F.1.18) and (F.1.10), being physically mean-
ingless, as given by the first term of Eq. (F.1.15) and Eq. (F.1.23), for being
it possible the perturbative analysis leading to Eq. (F.1.18). It can be seen
as follows. Assume that the charge of the black hole is comparable with its
mass (minimum value for being relevant the “nonclassical horizon”), that is
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Μ�M 2 = 10-3

Numerical Outer Solution

Perturbative Solution [Eq. (18)]

0.2 0.4 0.6 0.8 1.0

Q

M

0.5

1.0

1.5

2.0

r+

M

Figure F.1.: Plots of the outer horizon for µ/M2 = 10−3 as a function of Q/M. The

dotted curve represents a numerical solution to Eq. (F.1.10) and (F.1.18) related to its

largest solution (outer horizon). The thick curve represents Eqs. (F.1.19) and (F.1.20).

The latter equations are not valid when Q = M. The proximity to Q = M up to when

the perturbative analysis is meaningful is dictated by µ/M2. The smaller this parameter,

the closer one can arrive to Q = M using perturbative theory. Just for reference, in Euler-

Heisenberg and standard Born-Infeld theories, µ ∼ 10−32(e.s.u)−2 (Ruffini et al., 2010b;

Born and Infeld, 1934), hence for objects of masses around M ∼ 105M⊙, µ/M2 when

brought to the geometrical system of units (µ[cm2] = µ[(e.s.u)−2]c4/G and M[cm2] =

M[g]G/c2) would be approximatively 10−4. This would allow one to reach a precision

up to four figures concerning Q = M and yet being meaningful the perturbative analysis

given by Eq. (F.1.19). This is due to an ineluctable breakdown of the previous equation

when α → 1−, not a problem with the perturbative equation (F.1.18), which is valid with

any precision when this limit is reached. The smaller the ratio Q/M, the better is the

perturbative approximation for the outer horizon, Eq. (F.1.19).
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Q2 ∼ M2. Then, from Eq. (F.1.16) it follows that rc ∼ (µM2)1/4. From

Eq. (F.1.23), however, one has r
(extr)
ncl ∼ (µM2)1/4 = rc. Since just distances

much larger than rc are physically meaningful in the realm of our perturba-

tive calculations, it is proved that r
(extr)
ncl is not physically relevant. It implies

that perturbative changes of the Maxwell Lagrangian just lead to corrections
of the Reissner-Nordstrom horizons and naked singularities are present in
these theories when Q/M > 1.

F.1.5. The Black Hole Mass Formula

Assume a test particle being captured by a black hole under a reversible trans-
formation. In mathematical terms, this means that the equality in Eq. (F.1.13)
is to be taken into account and the changes can be considered as infinitesi-
mals. By taking into account the second term in Eq. (F.1.15) and Eq.(F.1.19),
one ends up to first order of approximation with

dM

dQ
=

Q

R+
− µQ3

5(R+)5

[

Q2

R+

√

M2 − Q2
+ 4

]

. (F.1.24)

Since we are supposing that the second term of the above equation is much
smaller than the first one, the method of successive approximations can be
used. We shall suppose that

M(Q) = M(0)(Q) + µM(1)(Q), (F.1.25)

where the second term of the above expression is thought of as a perturba-

tion. In zeroth order approximation, M(0) satisfies the differential equation

dM(0)

dQ
=

Q

M(0) +
√

(M(0))2 − Q2
. (F.1.26)

As it is known, the solution to the above equation is (Christodoulou and
Ruffini, 1971)

M(0)(Q) = Mirr +
Q2

4Mirr
, (F.1.27)

where Mirr is a constant of integration known as the irreducible mass and it
accounts for the total energy of the system when the charge of the black hole
is zero. Expression (F.1.27) is the Christodoulou-Ruffini black hole mass for-
mula valid for a classical spherically symmetric charged black hole (Maxwell
Lagrangian coupled to general relativity). By substituting this expression into
Eq. (F.1.20) one obtains R+ = 2Mirr and then it follows that Q2/2R+ ≤ M/2,
where the equality is valid in the case Q = M. Hence, up to 50% of the
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total mass of a black hole is due to the electromagnetic energy contribution
Q2/4Mirr.

Substituting Eq. (F.1.25) into Eq. (F.1.24) and working now up to first order
of approximation, after Eqs. (F.1.26) and (F.1.27) are taken into account, one
obtains as a solution to the resulting differential equation

M(1)(Q) = − Q4

160M5
irr

. (F.1.28)

The above equation is obtained by imposing M(1)(0) = 0, which is physi-
cally clear from our previous considerations. Since energy could be extracted
from black holes only when it is charged [see Eq. (F.1.13)], the extractable en-
ergy (Mext) (or the “blackholic energy” (Ruffini et al., 2010b)) in weak fields
nonlinear theories of electromagnetism given by Eq. (F.1.14) is

Mext(Q) =
Q2

4Mirr
− µQ4

160M5
irr

. (F.1.29)

As it can be checked easily, this is exactly the electromagnetic energy (Eem)
(Ruffini and Vitagliano, 2002; Cherubini et al., 2009) stored in the electric field
in the spacetime given by Eq. (F.1.18) viz.,

E(em) = 4π
∫ ∞

r+
T0

0r2dr =
∫ ∞

r+

∫ 0

2π

∫ 0

π
T0

0
√

gdθdϕdr, (F.1.30)

where (−g) is the determinant of the metric, that in Schwarzschild-like coor-
dinates is given by r2 sin2 θ [see Eq. (F.1.5)].

From Eq. (F.1.29), one clearly sees that the total amount energy that can
be extracted is reduced if µ > 0, in relation to the Maxwell counterpart. The
positiveness of µ is valid both to the Euler-Heisenberg effective nonlinear La-
grangian to one-loop QED as well as to the standard Born-Infeld Lagrangian,
as we pointed out before. Hence, in these theories, the extractable energy
is always smaller than 50% of the total energy. More precisely, from Eqs.
(F.1.19), (F.1.20), (F.1.25), (F.1.27) and (F.1.28),

Mext ≤
M

2
− µQ4

320M4
irr

√

M2 − Q2
, (F.1.31)

the equality in this case being true just when µ = 0. A clarification about the
previous mathematical procedure is in order. Take as examples the weak
field standard Born-Infeld Lagrangian (Born and Infeld, 1934) and Euler-
Heisenberg Lagrangian (Heisenberg and Euler, 1936; Schwinger, 1951; Ruffini
et al., 2010b). As we pointed out before for these theories, our perturbative
analysis is valid up to values close to α ≃ 1 just if M & 105M⊙ ∼ 1010cm.
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Assume besides that the masses of the systems under interest are of this or-
der of magnitude. By re-scaling the masses and the charges of the systems by
respectively

M = 1010M10 and Q = 1010Q10, (F.1.32)

it is simple to see that µ10 = 10−20µ is the new quantity that should be con-
sidered into the equations, replacing µ. For the Lagrangians under interest,
one has µ10 ∼ 10−4cm2. Hence, this would physically justify the perturbative
analysis carried out before. In general, one should just conveniently re-scale
the theory under interest for applying physically the previous results coming
from the method of successive approximations.

F.1.6. Transformations in the outer horizon

Under the capture of a test particle of energy E and charge q, from the first
law of thermodynamics of black holes one has that the black hole undergoes
the (infinitesimal) given changes δM = E and δQ = q, satisfying Eq. (F.1.13).
Since the outer horizon of this black hole is dependent upon M and Q, it
also undergoes a change. Such a change can be obtained in the scope of the
perturbative description we are carrying out and the basic equation for doing
so is Eq. (F.1.19).

By using Eqs. (F.1.19), (F.1.20), (F.1.13) and the second term of Eq. (F.1.15),
one can easily show that

δr+ ≥ − µQ4δR+

5(R+)5(M2 − Q2)
[R+ + 3

√

M2 − Q2]. (F.1.33)

As it can be seen from Eqs. (F.1.20), (F.1.25), (F.1.27) and (F.1.28), δR+ ∼
O(µ), then, up to first order in µ, we have δr+ ≥ 0. Hence, when reversible
transformations are taken into account, the outer horizon of any perturbative
nonlinear black hole solution to general relativity remains constant. Under
irreversible transformations, however, it increases. This result can be easily
seen if one notices that up to first order of approximation in µ, r+ = 2Mirr.
Notice that these results are just valid for Q/M < 1.

Another way of realizing whether or not there is an increase of the outer
radius due to the capture of a test particle is to search the solutions to Eqs.
(F.1.10) and (F.1.18) when one performs the changes M → M + δM and Q →
Q + δQ, satisfying Eq. (F.1.13). If one defines generally r+ as the largest
solution to Eqs. (F.1.10) and (F.1.18), then it is simple to verify that δr+ = 0 for
reversible transformations. For irreversible transformations, δr+ > 0. Hence,
generically, one has δr+ ≥ 0 for an arbitrary infinitesimal transformation
undergone by the black hole in nonlinear weak field electromagnetism.
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F.1.7. Energy decomposition for any nonlinear theory

Weak fields nonlinear Lagrangians suggest that the outer horizon of any
spherically symmetric L(F) theory is 2Mirr when reversible transformations
are considered, for any range of the electric field. Now we shall show that
in fact r+ must be 2Mirr for any L(F) theory whenever one is interested in
reversible transformations. This tells us one is able to obtain the total energy
of any spherically symmetric nonlinear black hole in an algebraic way, over-
coming the tremendous problems in solving differential equations coming
from the thermodynamical approach. Also, it gives us the extractable energy
from any nonlinear black hole.

Assume that the invariant F = −2E2
r is such that F = F(r, Q; ζ), where ζ

are all the other parameters needed for fixing the units of the theory under
interest. From Eqs. (F.1.7)-(F.1.9), one trivially shows that

Q
δA0

δQ
=

δF

δQ
, (F.1.34)

since the constant present must be zero for accounting for the neutral case.
Assume now that r+ = C = const, that is, the outer horizon is an intrinsic
property of the system. From Eqs. (F.1.10) and (F.1.34), one shows immedi-
ately that

δM = δQA0|r+=C. (F.1.35)

It can be easily shown that the above equation is valid just when r+ = C. We
recall we assumed Eq. (F.1.35) as a law for reversible transformations (energy
conservation). Thereby, we showed that reversible transformations are fully
equivalent to having constant horizons in spherically symmetric solutions to
general relativity. Since Eq. (F.1.35) is valid for any stage of the sequence
of reversible transformations for any theory, it is even so when Q = 0 and
hence, C = 2Mirr. So, horizons for reversible transformations are dependent
just upon the “fundamental energy state” of any black hole, 2Mirr. Even more
remarkable is that we already know the solution to Eq. (F.1.35), which from
Eqs. (F.1.6), (F.1.10) and (F.1.9) is

M = Mirr +QA0|r=2Mirr
−F|r=2Mirr

= Mirr + 4π
∫ ∞

2Mirr

r′2 T0
0(r

′)dr′. (F.1.36)

The above equation is the generalized Christodoulou-Ruffini black hole mass
decomposition formula to any L(F) theory for any electric field range when
the nonlinear electromagnetic theory does not depend upon M. If this is not
the case, one then have an algebraic equation to solve. The extractable energy
(M − Mirr) from any L(F) can be read off immediately from Eq. (F.1.36).

In the spherically symmetric case, one knows that the horizon area is A =
4πr2

+. So, Eq. (F.1.36) can as well be written in terms of A. As we showed
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above, for reversible transformations the outer horizon must be kept con-
stant and the mass change must be given by Eq. (F.1.35). Nevertheless, as it is
very intuitive, one would expect the total mass of a given black hole to have
a definite meaning. In this sense, Eq. (F.1.36) in terms of the black hole area
should be the expression for the mass even in the case A changes. Such a gen-
eral statement is reinforced by fact it is true for black holes described by the
Maxwell Lagrangian (this can be seen in (Smarr, 1973a,b) when one works
with its final mass expression, M, and check it is exactly the same as Eq. (2)
of Christodoulou and Ruffini (1971) in the context of reversible transforma-
tions). Let us show this should be the case also in nonlinear electrodynamics.
Initially recall that the surface gravity (Bardeen et al., 1973) in spherically
symmetric solutions of general relativity is (Kothawala et al., 2007)

κ =
(eν)′|r+

2
(F.1.37)

where the prime means derivation with respect to the radial coordinate and
from Eqs. (F.1.9) and (F.1.10) the above equation can be cast as

κ =
1

2r+

[

1 + 2Q
∂A0

∂r+
− 2

∂F

∂r+

]

. (F.1.38)

From Eqs. (F.1.10) and (F.1.34), one can see in the general case that

δM = A0δQ +
κ

8π
δA, (F.1.39)

where Eq. (F.1.38) was used. Nevertheless, this is nothing but the gener-
alized first law of black hole thermodynamics for nonlinear electrodynam-
ics (Rasheed, 1997). Since M as given in Eq. (F.1.36) was derived from Eqs.
(F.1.10) and (F.1.34), it is assured its variation satisfies Eq. (F.1.39). Hence, it is
the generalization under the physical approach of the parametrization done
by Smarr (1973a,b) of the classical Christodoulou-Ruffini black hole mass for-
mula in the context of nonlinear electrodynamics. Besides, Eq. (F.1.36) can be
written in the suggestive way as

M = QA0(r+) +
A

8πr+

[

1 − 2
F(r+)

r+

]

. (F.1.40)

From Eq. (F.1.38), we see that in general the term in the square brackets of the
above equation does not coincide with 2κr+. This could be easily seen in the
scope of perturbative theories generically described by Eq. (F.1.14) analyzed
by us previously. Nevertheless, for the case of the Maxwell Lagrangian, the
term inside the square brackets of Eq. (F.1.40) is 2κr+. It implies that the
generalized Christodoulou-Ruffini black hole mass formula does not keep
the same classical (Maxwell Electromagnetism) functional form in nonlinear
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electrodynamics.

F.1.8. Discussion

When the first law of thermodynamics of black holes is applied for infinites-
imal reversible transformations, one is led naturally after integration to the
total electromagnetic energy of a given black hole solution to general rela-
tivity in the weak field case, as shown by Eqs. (F.1.29) and (F.1.30). As we
showed in this work, this is nothing but a general result coming from re-
versible transformations, as given by Eq. (F.1.36).

In nonlinear theories, it is known that the propagation of disturbances is
steered by the so-called effective geometries (Novello et al., 2000a,a,b). Since
this effective geometry is a need just for the propagation of photons, it does
not play any role in the description given in this work, once we were just
interested in massive and charged particles, the only ones that could canalize
the process of energy extraction of a black hole.

As we showed in perturbative nonlinear theories of electromagnetism, a
generalization of the Christodoulou-Ruffini black hole mass decomposition
formula can always be obtained [see Eqs. (F.1.25), (F.1.27) and (F.1.28)]. For
the case where the perturbative nonlinear coupling constant is positive, i.e.,
µ > 0, the extractable energy is smaller than its Maxwellian counterpart. It
means that the extractable electromagnetic energy is always smaller than the
half of the total energy. The positiveness of µ is compatible with usual media
results when this interpretation is given to nonlinear Lagrangians. Hence,
we expect this to be exact the case in the Astrophysical scenario, as corrob-
orated by the Euler-Heisenberg and the standard Born-Infeld Lagrangians.
This above mentioned energy decrease could be interpreted as related to the
self-interaction energy of the field, an unavoidable quantity of energy that
must be stored into the system and could not be extracted. It can be visual-
ized as the intrinsic energy stored in usual media when electromagnetic fields
are present.

Weak field nonlinear theories of electromagnetism lead to the constancy
of the outer horizon (2Mirr, exactly the horizon in the Schwarzschild the-
ory) when reversible transformations are taken into account. For irreversible
transformations, it always increases. Due to the generality of the Lagrangian
given by Eq. (F.1.14), this suggests it should always be the case for any range
of the electric field in any nonlinear theory. This is exactly the case, as we
showed, since it is the only way to lead to the equation coming from the
law of energy conservation for reversible transformations [the equality in
Eq. (F.1.13)]. As a by-product, it allowed us to write down the total mass
and the extractable energy (upper limit) of any nonlinear spherically sym-
metric black hole in terms of its charge, black hole area and the scale pa-
rameter coming from the electrodynamic theory under interest. When ir-
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reversible transformations are present, for each transformation, δr+ > 0 iff
(1 − 8πT0

0|r+r2
+) > 0, as it can be seen by Eq. (F.1.6). From the same equa-

tion, it can be checked this is always valid when there exists an outer hori-
zon. Hence, for any L(F), the area of the outer horizon never decreases for
irreversible processes. We also showed that the generalized Christodoulou-
Ruffini black hole mass decomposition formula must be valid in the gen-
eral case concerning infinitesimal transformations (i.e., those transformations
where the black hole area also changes). In general such a mass is not func-
tionally the same as the one obtained in the scope of the Maxwell Lagrangian.
Finally, with this generalized Christodoulou-Ruffini black hole mass formula,
one can notice that the known first law of black hole mechanics (Rasheed,
1997) is just its direct consequence.
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≪Warm and cold pasta phase in relativistic mean field theory≫.
Physical Review C, 78(1), 015802 (2008).
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PARADIJS, J., MÉNDEZ, M., FORD, E.C., KUULKERS, E. AND LAMB, F.K.
≪The Power Spectral Properties of the Z Source GX 340+0≫.
Astrophysical Journal, 537, pp. 374–386 (2000).

JUDGE, P.G., SOLOMON, S.C. AND AYRES, T.R.
≪An Estimate of the Sun’s ROSAT-PSPC X-Ray Luminosities Using SNOE-
SXP Measurements≫.
Astrophysical Journal, 593, pp. 534–548 (2003).

JURA, M.
≪A Tidally Disrupted Asteroid around the White Dwarf G29-38≫.
Astrophysical Journal, 584, pp. L91–L94 (2003).

KANEKO, Y., RAMIREZ-RUIZ, E., GRANOT, J., KOUVELIOTOU, C.,
WOOSLEY, S.E., PATEL, S.K., ROL, E., ZAND, J.J.M.I., VAN DER HORST,
A.J., WIJERS, R.A.M.J. ET AL.
≪Prompt and afterglow emission properties of gamma-ray bursts with
spectroscopically identified supernovae≫.
ApJ, 654, pp. 385–402 (2007).

KASEN, D. AND BILDSTEN, L.
≪Supernova Light Curves Powered by Young Magnetars≫.
Astrophysical Journal, 717, pp. 245–249 (2010).

KASHIYAMA, K., IOKA, K. AND KAWANAKA, N.
≪White dwarf pulsars as possible cosmic ray electron-positron factories≫.
Physical Review D, 83(2), pp. 023002–+ (2011).

KASPI, V.M., GAVRIIL, F.P., WOODS, P.M., JENSEN, J.B., ROBERTS, M.S.E.
AND CHAKRABARTY, D.
≪A Major Soft Gamma Repeater-like Outburst and Rotation Glitch in the
No-longer-so-anomalous X-Ray Pulsar 1E 2259+586≫.
Astrophysical Journal, 588, pp. L93–L96 (2003).

KATZ, J.I.
≪The Eddington Limit and Soft Gamma Repeaters≫.
Astrophysical Journal, 463, p. 305 (1996).

KEPLER, S.O., KLEINMAN, S.J., PELISOLI, I., PEÇANHA, V., DIAZ, M.,
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LORÉN-AGUILAR, P., ISERN, J. AND GARCÍA-BERRO, E.
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SANABRIA-GÓMEZ, J.D., HERNÁNDEZ-PASTORA, J.L. AND DUBEIBE, F.L.
≪Innermost stable circular orbits around magnetized rotating massive
stars≫.
Physical Review D, 82(12), 124014 (2010).

SASAKI, M., PLUCINSKY, P.P., GAETZ, T.J., SMITH, R.K., EDGAR, R.J. AND

SLANE, P.O.
≪XMM-Newton Observations of the Galactic Supernova Remnant CTB 109
(G109.1-1.0)≫.
Astrophysical Journal, 617, pp. 322–338 (2004).

SCALZO, R.A., ALDERING, G. AND ANTILOGUS, ET AL., P.
≪Nearby Supernova Factory Observations of SN 2007if: First Total Mass
Measurement of a Super-Chandrasekhar-Mass Progenitor≫.
Astrophysical Journal, 713, pp. 1073–1094 (2010).

SCHAAB, C., WEBER, F., WEIGEL, M. AND GLENDENNING, N.K.
≪Thermal evolution of compact stars≫.
Nuclear Phys A, 605, p. 531 (1996).

SCHMIDT, G.D., BERGERON, P., LIEBERT, J. AND SAFFER, R.A.
≪Two ultramassive white dwarfs found among candidates for magnetic
fields≫.
Astrophysical Journal, 394, pp. 603–608 (1992).

SCHMIDT, G.D., WEST, S.C., LIEBERT, J., GREEN, R.F. AND STOCKMAN,
H.S.
≪The new magnetic white dwarf PG 1031 + 234 - Polarization and field
structure at more than 500 milion Gauss≫.

2162



Bibliography

Astrophysical Journal, 309, pp. 218–229 (1986).

SCHWINGER, J.
≪On Gauge Invariance and Vacuum Polarization≫.
Physical Review, 82, pp. 664–679 (1951).

SEDRAKYAN, D.M. AND CHUBARYAN, E.V.
≪Internal solution for stationary axially symmetric gravitational fields≫.
Astrophysics, 4, pp. 227–233 (1968).

SEGRÉ, E.
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≪An Accretion Model for the Anomalous X-Ray Pulsar 4U 0142+61≫.
Astrophysical Journal, 764, 49 (2013).

TUROLLA, R., ZAMPIERI, L., COLPI, M. AND TREVES, A.
≪Spherical accretion onto neutron stars revisited: Are hot solutions possi-
ble?≫

ApJ, 426, p. L35 (1994).
ISSN 0004-637X.

USOV, V.V.
≪High-frequency emission of X-ray pulsar 1E 2259+586≫.
Astrophysical Journal, 410, pp. 761–763 (1993).

USOV, V.V.
≪Glitches in the X-ray pulsar 1E 2259+586≫.
Astrophysical Journal, 427, pp. 984–986 (1994).

USOV, V.V.
≪Bare Quark Matter Surfaces of Strange Stars and e+e− Emission≫.
Physical Review Letters, 80, pp. 230–233 (1998).

VAN DER KLIS, M.
≪Quasi-periodic Oscillations and Noise in Accreting Black Holes and Low-
Magnetic Field Neutron Stars≫.
In J. Greiner, H.W. Duerbeck and R.E. Gershberg (eds.), IAU Colloq. 151:
Flares and Flashes, volume 454 of Lecture Notes in Physics, Berlin Springer
Verlag, p. 321 (1995).

VAN DER KLIS, M., SWANK, J.H., ZHANG, W., JAHODA, K., MORGAN, E.H.,
LEWIN, W.H.G., VAUGHAN, B. AND VAN PARADIJS, J.
≪Discovery of Submillisecond Quasi-periodic Oscillations in the X-Ray
Flux of Scorpius X-1≫.
Astrophysical Journal, 469, p. L1 (1996).

2170



Bibliography

VAN HORN, H.M.
≪Physical processes in white dwarfs≫.
In S.S. Kumar (ed.), Low-Luminosity Stars, p. 297 (1969).

VINK, J.
≪Supernova remnants with magnetars: Clues to magnetar formation≫.
Advances in Space Research, 41, pp. 503–511 (2008).

VINK, J. AND KUIPER, L.
≪Supernova remnant energetics and magnetars: no evidence in favour of
millisecond proto-neutron stars≫.
Monthly Notices of the Royal Astronomical Society, 370, pp. L14–L18 (2006).

VON-EIFF, D., FREYER, H., STOCKER, W. AND WEIGEL, M.K.
≪The relativistic spin-orbit force near the neutron-drip line≫.
Physics Letters B, 344, pp. 11–17 (1995).

VON-EIFF, D., PEARSON, J.M., STOCKER, W. AND WEIGEL, M.K.
≪Relativistic Hartree calculations of nuclear compressional properties≫.
Physical Review C, 50, pp. 831–835 (1994a).

VON-EIFF, D., PEARSON, J.M., STOCKER, W. AND WEIGEL, M.K.
≪Relativistic semi-classical analysis of nuclear surface-symmetry proper-
ties≫.
Physics Letters B, 324, pp. 279–285 (1994b).

VRTILEK, S.D., RAYMOND, J.C., GARCIA, M.R., VERBUNT, F., HASINGER,
G. AND KURSTER, M.
≪Observations of Cygnus X-2 with IUE - Ultraviolet results from a multi-
wavelength campaign≫.
Astronomy & Astrophysics, 235, pp. 162–173 (1990).

WALECKA, J.D.
≪A theory of highly condensed matter.≫

Annals of Physics, 83, pp. 491–529 (1974).

WANG, Z., CHAKRABARTY, D. AND KAPLAN, D.L.
≪A debris disk around an isolated young neutron star≫.
Nature, 440, pp. 772–775 (2006).

WEBER, F. AND GLENDENNING, N.K.
≪Application of the improved Hartle method for the construction of gen-
eral relativistic rotating neutron star models≫.
Astrophysical Journal, 390, pp. 541–549 (1992).

WEISSKOPF, M.C., O’DELL, S.L., PAERELS, F., ELSNER, R.F., BECKER, W.,
TENNANT, A.F. AND SWARTZ, D.A.

2171



Bibliography

≪Chandra Phase-Resolved X-Ray Spectroscopy of the Crab Pulsar≫.
Astrophysical Journal, 601, pp. 1050–1057 (2004).

WICKRAMASINGHE, D.T. AND FERRARIO, L.
≪Magnetism in Isolated and Binary White Dwarfs≫.
Publications of the Astronomical Society of the Pacific, 112, pp. 873–924 (2000).

WIJNANDS, R., MENDEZ, M., VAN DER KLIS, M., PSALTIS, D., KUULKERS,
E. AND LAMB, F.K.
≪Discovery of Kilohertz Quasi-periodic Oscillations in the Z Source GX 5-
1≫.
Astrophysical Journal, 504, p. L35 (1998).

WIJNANDS, R.A.D., VAN DER KLIS, M., VAN PARADIJS, J., LEWIN, W.H.G.,
LAMB, F.K., VAUGHAN, B. AND KUULKERS, E.
≪Discovery in 4U 1636-53 of Two Simultaneous Quasi-periodic Oscillations
near 900 HZ and 1176 HZ≫.
Astrophysical Journal, 479, p. L141 (1997).

WITTEN, E.
≪Cosmic separation of phases≫.
Physical Review D, 30, pp. 272–285 (1984).

WOLTJER, L.
≪X-Rays and Type i Supernova Remnants.≫

Astrophysical Journal, 140, pp. 1309–1313 (1964).

WOODS, P.M., KASPI, V.M., THOMPSON, C., GAVRIIL, F.P., MARSHALL,
H.L., CHAKRABARTY, D., FLANAGAN, K., HEYL, J. AND HERNQUIST, L.
≪Changes in the X-Ray Emission from the Magnetar Candidate 1E
2259+586 during Its 2002 Outburst≫.
Astrophysical Journal, 605, pp. 378–399 (2004).

WOOSLEY, S.E.
≪Bright Supernovae from Magnetar Birth≫.
Astrophysical Journal, 719, pp. L204–L207 (2010).

YAKOVLEV, D.G., GASQUES, L.R., AFANASJEV, A.V., BEARD, M. AND WI-
ESCHER, M.
≪Fusion reactions in multicomponent dense matter≫.
Physical Review C, 74(3), 035803 (2006).

YAKOVLEV, D.G., KAMINKER, A.D., GNEDIN, O.Y. AND HAENSEL, P.
≪Neutrino emission from neutron stars≫.
Physics Reports, 354(1-2), pp. 1–155 (2001).
ISSN 03701573.

2172



Bibliography

YAKOVLEV, D.G. AND PETHICK, C.J.
≪Neutron Star Cooling≫.
Annual Review of Astronomy & Astrophysics, 42, pp. 169–210 (2004a).

YAKOVLEV, D.G. AND PETHICK, C.J.
≪Neutron Star Cooling≫.
Ann. Rev. A&A, 42, pp. 169–210 (2004b).

YAMANAKA, M., KAWABATA, K.S. AND KINUGASA, ET AL., K.
≪Early Phase Observations of Extremely Luminous Type Ia Supernova
2009dc≫.
Astrophysical Journal, 707, pp. L118–L122 (2009).

ZANE, S., REA, N., TUROLLA, R. AND NOBILI, L.
≪X-ray spectra from magnetar candidates - III. Fitting SGR/AXP soft X-ray
emission with non-relativistic Monte Carlo models≫.
Monthly Notices of the Royal Astronomical Society, 398, pp. 1403–1413 (2009).

ZEL’DOVICH, I.B.
≪Nuclear Reactions in Super-Dense Cold Hydrogen≫.
Soviet Journal of Experimental and Theoretical Physics, 6, pp. 760–+ (1958a).

ZEL’DOVICH, I.B.
≪Nuclear Reactions in Super-Dense Cold Hydrogen≫.
Soviet Journal of Experimental and Theoretical Physics, 6, p. 760 (1958b).

ZELDOVICH, Y.B. AND POPOV, V.S.
≪Reviews of Topical Problems: Electronic Structure of Superheavy
Atoms≫.
Soviet Physics Uspekhi, 14, pp. 673–694 (1972).

ZHANG, B. AND GIL, J.
≪GCRT J1745-3009 as a Transient White Dwarf Pulsar≫.
Astrophysical Journal, 631, pp. L143–L146 (2005).

ZHU, W.W., KASPI, V.M., MCLAUGHLIN, M.A., PAVLOV, G.G., NG, C.Y.,
MANCHESTER, R.N., GAENSLER, B.M. AND WOODS, P.M.
≪Chandra Observations of the High-magnetic-field Radio Pulsar J1718-
3718≫.
Astrophysical Journal, 734, 44 (2011).

ZHUROMSKYY, O., SYDORUK, O., SHAMONINA, E. AND SOLYMAR, L.
≪Slow waves on magnetic metamaterials and on chains of plasmonic
nanoparticles: Driven solutions in the presence of retardation≫.
Journal of Applied Physics, 106(10), p. 104908 (2009).

2173


