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3. Brief Description of Quantum
Gravity

3.1. The cosmological sector of Loop Quantum

Gravity

In section “The cosmological sector of Loop Quantum Gravity” [30] a pre-
scription is given to define in Loop Quantum Gravity the electric field opera-
tor related to the scale factor of an homogeneous and isotropic cosmological
space-time. This procedure allows to link the fundamental theory with its
cosmological implementation. In view of the conjugate relation existing be-
tween holonomies and fluxes, the edge length and the area of surfaces in the
fiducial metric satisfy a duality condition. As a consequence, the area oper-
ator has a discrete spectrum also in Loop Quantum Cosmology. This feature
makes the super-Hamiltonian regularization an open issue of the whole for-
mulation.

The people involved in this line of research are Francesco Cianfrani and
Giovanni Montani.

3.2. Semiclassical isotropization during a deSitter

phase

In section “Semiclassical isotropization during a deSitter phase” semiclassi-
cal states for the Wheeler-DeWitt equation of a Bianchi type I model in the
presence of a scalar field are analyzed [31]. It is outlined how this scheme
can effectively describe more general situations, where the curvature of the
Bianchi type IX model and a proper potential term for the scalar field are
present. The introduction of a cosmological constant term accounts for the
quasi-isotropization mechanism which bridges the proposed framework with
a late isotropic phase. This result makes the semi-classical Bianchi I model a
plausible scenario for the Universe pre-inflationary phase.

The people involved in this line of research are Francesco Cianfrani, Gio-
vanni Montani and Marco Muccino.
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3. Brief Description of Quantum Gravity

3.3. Canonical Quantum Gravity without the time

gauge

In section “Canonical Quantum Gravity without the time gauge” the descrip-
tion of gravitational degrees of freedom in a 4-bein formulation has been per-
formed without any restriction on the local Lorentz frame. This analysis al-
lows to investigate whether the SU(2) gauge structure, which arises in the
Holst formulation with the time gauge, is an artifact of the gauge fixing or a
proper feature of the gravitational field. The emergence of this SU(2) symme-
try is one of the key points of Loop Quantum Gravity (LQG) and makes the
Hamiltonian formulation for gravity close to the one of other fundamental
interactions.

In particular, the analysis starts with vacuum gravity [23], for which it is
outlined that, once second-class constraints are solved, boost degrees of free-
dom become non-dynamical and the Gauss constraints of a SU(2) gauge the-
ory are inferred. This way, it is provided the extension of Ashtekar-Barbero-
Immirzi connections to a generic local Lorentz frame. Then, matter fields are
introduced and the corresponding Hamiltonian structure is analyzed. The
case of a non-minimally coupled scalar field and the possible connection with
f (R) theories of gravity is discussed in [24]. The Immirzi field is added in [25]
and it is demonstrated that the kinematical sector for such a model coincides
with the one in which a minimally coupled scalar field is present, while the
dynamics manifests interesting peculiar features. Among them, it is worth
noting the possibility to explain the relaxation of the Immirzi field to a non-
vanishing vacuum expectation value. Finally, the case in which spinor fields
are present has been investigated[29].

The people involved in this line of research are Francesco Cianfrani and
Giovanni Montani.

3.4. The problem of time in quantum gravity

In section “The problem of time in quantum gravity”, several ways for defin-
ing a proper time variable in quantum gravity are discussed.

The so called Kučhar-Brown mechanism for a perfect fluid in the Schutz
velocity potential representation is analyzed [11],[18]. This model is espe-
cially interesting in cosmology, since the Schutz fluid is a much more realistic
description of the cosmological bath with respect to dust, especially when
the cosmological singularity is approached. The Hamiltonian analysis is per-
formed and second-class constraints are avoided by using Dirac brackets. Fi-
nally, a proper Hamiltonian can be defined by solving the super-Hamiltonian
constraints and treating the Schutz fluid as a matter clock. Therefore, such a
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3.5. Quantum suppression of weak-anisotropies

model of the cosmological bath provides a solution to the problem of time in
Quantum Cosmology.

The people involved in this line of research are Francesco Cianfrani, Si-
mone Zonetti and Giovanni Montani.

Moreover, the emergence of an evolutionary paradigm in canonical quan-
tum geometro-dynamics from Hamiltonian equations is analyzed for Bianchi
type I and type II cosmological models. The predicted dynamics are going to
be compared with the behavior of Gaussian wave-packets expectation values.

The people involved in this line of research are Francesco Cianfrani, Marco
Muccino and Giovanni Montani.

Finally, the extended phase space representation for gravity is developed
for inhomogenous cosmological models. This representation is the starting
point for a path integral formulation, in which the reference frame is expected
to play a highly non-trivial role.

The people involved in this line of research are Francesco Cianfrani, Marco
Renzelli and Giovanni Montani in collaboration with Tatyana Shestakova.

3.5. Quantum suppression of weak-anisotropies

In section “Quantum suppression of weak-anisotropies” we explain some
results [21] of a research line in which a wave function of the inhomoge-
neous Mixmaster Universe, which has a meaningful probabilistic interpre-
tation in agreement with the Copenhagen school, is obtained. To achieve
this results, we followed an approach suggested by Vilenkin allowing us to
write a Schröedinger-like equation of motion for the pure quantum part of
the wave function of the Universe. Our result is that this wave function of the
Universe is spread over all values of anisotropy near the cosmological singu-
larity but, when the radius of the Universe grows, it is asymptotically peaked
around the isotropic configuration. Therefore, the FRW cosmological model
is naturally the privileged state when the Universe expands sufficiently and
a semi-classical isotropization mechanism for the Universe naturally arises.

The people involved in this line of research are Riccardo Belvedere, Marco
Valerio Battisti and Giovanni Montani.

3.6. Quantum behavior of the Universe for the

small oscillations

In section “Quantum behavior of the Universe for the small oscillations”, we
deal with the analysis of the wave function of the inhomogeneous Mixmaster
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3. Brief Description of Quantum Gravity

Universe, in the case in which one of the two anisotropy parameter (β−) is
small on respect both the other one parameter (β+) and the volume of the
Universe (α). Following a WKB approximation we are able to regard α and
β+ as semi-classical variables, and β− as a purely quantum one. The advan-
tage in using this approximation is that it lead to a probabilistic interpretation
in the Copenhagen school sense. What we obtain is that the quantum part of
the wave function of the Universe seems approach the Taub model β− → 0
once the region in which the volume is not too big is investigated. At the
same time we are now investigating the region in which the volume of the
Universe is far from the cosmological singularity.

The people involved in this line of research are Riccardo Belvedere, Marco
Valerio Battisti and Giovanni Montani.

3.7. Regularization and Quantization of

Einstein-Cartan theory

In the Einstein-Cartan theory of torsion-free gravity coupling to massless
fermions, the four-fermion interaction is induced and its strength is a function
of the gravitational and gauge couplings, as well as the Immirzi parameter.
We study the dynamics of the four-fermion interaction to determine whether
effective bilinear terms of massive fermion fields are generated. Calculat-
ing one-particle-irreducible two-point functions of fermion fields, we identify
three different phases and two critical points for phase transitions character-
ized by the strength of four-fermion interaction: (1) chiral symmetric phase
for massive fermions in strong coupling regime; (2) chiral symmetric broken
phase for massive fermions in intermediate coupling regime; (3) chiral sym-
metric phase for massless fermions in weak coupling regime. We discuss the
scaling-invariant region for an effective theory of massive fermions coupled
to torsion-free gravity in the low-energy limit.

The person involved in this line of research is She-Sheng Xue.

3.8. Quantum Regge Calculus of Einstein-Cartan

theory

We study the Quantum Regge Calculus of Einstein-Cartan theory to describe
quantum dynamics of Euclidean space-time discretized as a 4-simplices com-
plex. Tetrad field eµ(x) and spin-connection field ωµ(x) are assigned to each
1-simplex. Applying the torsion-free Cartan structure equation to each 2-
simplex, we discuss parallel transports and construct a diffeomorphism and
local gauge-invariant Einstein-Cartan action. Invariant holonomies of tetrad
and spin-connection fields along large loops are also given. Quantization is
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3.8. Quantum Regge Calculus of Einstein-Cartan theory

defined by a bounded partition function with the measure of SO(4)-group
valued ωµ(x) fields and Dirac-matrix valued eµ(x) fields over 4-simplices
complex.

In the 2-dimensional case (2-simplices complex), we calculate: (i) system’s
entropy and free-energy, being proportional to its surface; (ii) the average of
regularized Einstein-Cartan action, implying that the Planck length sets the
scale for the minimal distance between two space-time points. calculations of
partition function, entropy and averaged EC action in 2-dimensional case.

The person involved in this line of research is She-Sheng Xue.
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4. Brief Description of Unification
Theories

In chapter “Unification theories”, the geometrical description of gauge inter-
actions in a Kaluza-Klein framework is investigated.

Within the unification picture provided by the Kaluza Klein (KK) theory,
the 5- Dimensional (5D) model is the simplest one and the starting point for
the investigation of the breaking of multidimensional gravity into the usual
gravity plus Yang-Mills fields. It is characterized by an abelian structure;
indeed, it provides the coupling between gravity, a U(1) gauge field and an
extra scalar field. If the scalar field it is assumed to be constant from the
beginning, the 5D model reproduces exactly the Einstein-Maxwell theory in
vacuum. The research line about this topic is focused on following points:

- Brown-Kuchar̆ approach in 5D Kaluza-Klein model;

- test-particles dynamics [50], 51;

- coupling with matter [52];

- geodesic deviation [53];

- massive test particles motion in Kaluza-Klein gravity.

The people involved in this research line are Riccardo Benini, Valentino
Lacquaniti, Giovanni Montani, Francesco Vietri, Daniela Pugliese and Si-
mone Zonetti.

The extension of the Kaluza-Klein framework to non-Abelian gauge inter-
actions requires the introduction of more than one extra-dimension. In these
cases huge mass terms for fermions fields are predicted when searching for
a geometric gauge connection. However, in our analysis there are indica-
tions that such mass terms can be avoided and a proper phenomenology for
a SU(2) gauge theory is achieved when Riemannian connections are consid-
ered and a suitable form for the extra-dimensional spinor is chosen.

The people involved in this research line are Alaudio Chingotuane, Francesco
Cianfrani and Giovanni Montani.
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5. Selected Publications before
2005

5.1. Quantum Gravity

[1] G. Montani, Canonical Quantization of Gravity without “Frozen For-
malism”, Nucl. Phys. B, 634, 370 (2002).

We write down a quantum gravity equation which generalizes the Wheel-
erDeWitt one in view of including a time dependence in the wave func-
tional. The obtained equation provides a consistent canonical quan-
tization of the 3-geometries resulting from a “gauge-fixing” (3 + 1)-
slicing of the spacetime. Our leading idea relies on a criticism to the
possibility that, in a quantum spacetime, the notion of a (3+1)-slicing
formalism (underlying the WheelerDeWitt approach) has yet a precise
physical meaning. As solution to this problem we propose of adding
to the gravity-matter action the so-called kinematical action (indeed in
its reduced form, as implemented in the quantum regime), and then
we impose the new quantum constraints. As consequence of this re-
vised approach, the quantization procedure of the 3-geometries takes
place in a fixed reference frame and the wave functional acquires a time
evolution along a one-parameter family of spatial hypersurfaces filling
the spacetime. We show how the states of the new quantum dynamics
can be arranged into an Hilbert space, whose associated inner product
induces a conserved probability notion for the 3-geometries. Finally,
since the constraints we quantize violate the classical symmetries (i.e.,
the vanishing nature of the super-Hamiltonian), then a key result is to
find a (non-physical) restriction on the initial wave functional phase,
ensuring that general relativity outcomes when taking the appropriate
classical limit. However, we propose a physical interpretation of the
kinematical variables which, based on the analogy with the so-called
Gaussian reference fluid, makes allowance even for such classical sym-
metry violation.

[2] G. Montani, Cosmological Issues for revised canonical quantum grav-
ity, Int. J. Mod. Phys. D, 12, 8, 1445 (2003)

In a recent work we presented a reformulation of the canonical quan-
tum gravity, based on adding the so-called kinematical term to the gravity-
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5. Selected Publications before 2005

matter action. This revised approach leads to a self-consistent canonical
quantization of the 3-geometries, which referred to the external time as
provided via the added term. Here, we show how the kinematical term
can be interpreted in terms of a non- relativistic dust fluid which plaies
the role of a “real clock” for the quantum gravity theory, and, in the
WKB limit of a cosmological problem, makes account for a dark matter
component which, at present time, could play a dynamical role.

[3] G. Aprea, G. Montani and R. Ruffini, Test particles behavior in the
framework of a Lagrangian geometric theory with propagating torsion,
Int. J. Mod. Phys. D, 12, 10, 1875 (2003)

Working in the Lagrangian framework, we develop a geometric theory
in vacuum with propagating torsion; the antisymmetric and trace parts
of the torsion tensor, considered as derived from local potential fields,
are taken and, using the minimal action principle, their field equations
are calculated. Actually these will show themselves to be just equations
for propagating waves giving torsion a behavior similar to that of met-
ric which, as known, propagates through gravitational waves. Then
we establish a principle of minimal substitution to derive test particles
equation of motion, obtaining, as result, that they move along autopar-
allels. We then calculate the analogous of the geodesic deviation for
these trajectories and analyze their behavior in the nonrelativistic limit,
showing that the torsion trace potential φ has a phenomenology which
is indistinguishable from that of the gravitational Newtonian field; in
this way we also give a reason for why there have never been evidence
for it.

[4] G. Imponente and G. Montani, Mixmaster Chaoticity as Semiclassical
Limit of the Canonical Quantum Dynamics, Int. J. Mod. Phys. D, 12(6),
977-984 (2003).

Within a cosmological framework, we provide a Hamiltonian analysis
of the Mixmaster Universe dynamics on the base of a standard Arnowitt-
Deser-Misner approach, showing how the chaotic behavior characteriz-
ing the evolution of the system near the cosmological singularity can be
obtained as the semiclassical limit of the canonical quantization of the
model in the same dynamical representation. The relation between this
intrinsic chaotic behavior and the indeterministic quantum dynamics is
inferred through the coincidence between the microcanonical probabil-
ity distribution and the semiclassical quantum one.

[5] S. Mercuri and G. Montani, Revised Canonical Quantum Gravity via
the Frame Fixing, Int. J. Mod. Phys. D, 13, 165 (2004).

We present a new reformulation of the canonical quantum geometro-
dynamics, which allows one to overcome the fundamental problem of
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5.1. Quantum Gravity

the frozen formalism and, therefore, to construct an appropriate Hilbert
space associate to the solution of the restated dynamics. More precisely,
to remove the ambiguity contained in the Wheeler-DeWitt approach,
with respect to the possibility of a (3 + 1)-splitting when space-time is
in a quantum regime, we fix the reference frame (i.e. the lapse func-
tion and the shift vector) by introducing the so-called kinematical ac-
tion. As a consequence the new super-Hamiltonian constraint becomes
a parabolic one and we arrive to a Schrödingerlike approach for the
quantum dynamics. In the semiclassical limit our theory provides Gen-
eral Relativity in the presence of an additional energy-momentum den-
sity contribution coming from non-zero eigenvalues of the Hamiltonian
constraints. The interpretation of these new contributions comes out in
natural way that soon as it is recognized that the kinematical action can
be recasted in such a way that it describes a pressureless, but, in general,
non-geodesic perfect fluid.

[6] S. Mercuri and G. Montani, Dualism between physical frames and time
in quantum gravity, Mod. Phys. Lett. A, 19, 20, 1519 (2004).

In this work we present a discussion of the existing links between the
procedures of endowing the quantum gravity with a real time and of
including in the theory a physical reference frame. More precisely, as a
first step, we develop the canonical quantum dynamics, starting from
the Einstein equations in presence of a dust fluid and arrive at a Schrödi-
nger evolution. Then, by fixing the lapse function in the path-integral
of gravity, we get a Schrödinger quantum dynamics, of which eigen-
values problem provides the appearance of a dust fluid in the classical
limit. The main issue of our analysis is to claim that a theory, in which
the time displacement invariance, on a quantum level, is broken, is in-
distinguishable from a theory for which this symmetry holds, but a real
reference fluid is include.

[7] G. Montani, Minisuperspace model for revised canonical quantum grav-
ity, Int. J. Mod. Phys. D, 13, 8, 1703 (2004)

We present a reformulation of the canonical quantization of gravity, as
referred to the minisuperspace; the new approach is based on fixing
a Gaussian (or synchronous) reference frame and then quantizing the
system via the reconstruction of a suitable constraint; then the quantum
dynamics is re-stated in a generic coordinates system and it becomes de-
pendent on the lapse function. The analysis follows a parallelism with
the case of the non-relativistic particle and leads to the minisuperspace
implementation of the so-called kinematical action as proposed in Ref.
1 (here almost coinciding also with the approach presented in Ref. 2).
The new constraint leads to a Schrödinger equation for the system, i.e.
to nonvanishing eigenvalues for the super-Hamiltonian operator; the
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5. Selected Publications before 2005

physical interpretation of this feature relies on the appearance of a “dust
fluid” (non-positive definite) energy density, i.e. a kind of “materializa-
tion” of the reference frame. As an example of minisuperspace model,
we consider a Bianchi type IX Universe, for which some dynamical im-
plications of the revised canonical quantum gravity are discussed. We
also show how, on the classical limit, the presence of the dust fluid can
have relevant cosmological issues. Finally we upgrade our analysis by
its extension to the generic cosmological solution, which is performed
in the so-called long-wavelength approximation. In fact, near the Big-
Bang, we can neglect the spatial gradients of the dynamical variables
and proceed to implement, in each space point, the same minisuper-
space paradigm valid for the Bianchi IX model.

[8] G.V. Vereshchagin, On stability of simplest nonsingular inflationary cos-
mological models within general relativity and gauge theories of grav-
ity, Int. J. Mod. Phys. D, 13, 695 (2004).

In this paper we provide approximate analytical analysis of stability
of nonsingular inflationary chaotic-type cosmological models. Initial
conditions for nonsingular solutions at the bounce correspond to dom-
inance of potential part of the energy density of the scalar field over its
kinetic part both within general relativity and gauge theories of gravity.
Moreover, scalar field at the bounce exceeds the planckian value and on
expansion stage these models correspond to chaotic inflation. Such so-
lutions can be well approximated by explicitly solvable model with con-
stant effective potential (cosmological term) and massless scalar field
during the bounce and on stages of quasi-exponential contraction and
expansion. Perturbative analysis shows that nonsingular inflationary
solutions are exponentially unstable during contraction stage. This re-
sult is compared with numerical calculations.

[9] G.V. Vereshchagin, Qualitative Approach to Semi-Classical Loop Quan-
tum Cosmology, JCAP, 0407, 013 (2004).

Recently the mechanism was found which allows avoidance of the cos-
mological singularity within the semi-classical formulation of Loop Quan-
tum Gravity. Numerical studies show that the presence of self-interaction
potential of the scalar field allows generation of initial conditions for
successful slow-roll inflation. In this paper qualitative analysis of dy-
namical system, corresponding to cosmological equations of Loop Quan-
tum Gravity is performed. The conclusion on singularity avoidance in
positively curved cosmological models is confirmed. Two cases are con-
sidered, the massless (with flat potential) and massive scalar field. Ex-
planation of initial conditions generation for inflation in models with
massive scalar field is given. The bounce is discussed in models with
zero spatial curvature and negative potentials.
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5.2. Quantum Field on Classical Background

5.2. Quantum Field on Classical Background

[10] G. Montani, A scenario for the dimensional compactification in eleven-
dimensional space-time, Int. J. Mod. Phys. D, 13, 6, 1029 (2004).

We discuss the inhomogeneous multidimensional mixmaster model in
view of the appearing, near the cosmological singularity, of a scenario
for the dimensional compactification in correspondence to an 11-dimen-
sional spacetime. Our analysis candidates such a collapsing picture to-
ward the singularity to describe the actual expanding 3-dimensional
Universe and an associated collapsed 7-dimensional space. To this end,
a conformal factor is determined in front of the 4-dimensional metric
to remove the 4-curvature divergences and the resulting Universe ex-
pands with a power-law inflation. Thus we provide an additional pe-
culiarity of the eleven space-time dimensions in view of implementing
a geometrical theory of unification.
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6. Publications 2005-2010

6.1. Quantum Gravity

[1] E. Cerasti and G. Montani, Generating functional for the gravitational
filed: implementation of an evolutionary quantum dynamics, Int. J.
Mod. Phys. D, 14, 10, 1739 (2005)

We provide a generating functional for the gravitational field that is
associated with the relaxation of the primary constraints by extend-
ing to the quantum sector. This requirement of the theory relies on
the assumption that a suitable time variable exists, when taking the T-
products of the dynamical variables. More precisely, we start from the
gravitational field equations written in the Hamiltonian formalism and
expressed via Misner-like variables; hence we construct the equation to
which the T-products of the dynamical variables obey and transform
this paradigm in terms of the generating functional, as taken on the
theory phase-space. We show how the relaxation of the primary con-
straints (which corresponds to the breakdown of the invariance of the
quantum theory under the four-diffeomorphisms) is summarized by a
free functional taken on the Lagrangian multipliers, accounting for such
constraints in the classical theory. The issue of our analysis is equiva-
lent to a Gupta-Bleuler approach on the quantum implementation of all
the gravitational constraints; in fact, in the limit of small h̄, the quantum
dynamics is described by a Schrödinger equation as soon as the mean
values of the momenta, associated to the lapse function and the shift
vector, are not vanishing. Finally we show how, in the classical limit,
the evolutionary quantum gravity reduces to General Relativity in the
presence of an Eckart fluid, which corresponds to the classical counter-
part of the physical clock, introduced in the quantum theory.

[2] M.V. Battisti and G. Montani, Evolutionary Quantum Dynamics of a
Generic Universe, Phys. Lett. B, 637, 203 (2006).

The implications of an evolutionary quantum gravity are addressed
in view of formulating a new dark matter candidate. We consider a
Schroedinger dynamics for the gravitational field associated to a generic
cosmological model and then we solve the corresponding eigenvalue
problem, inferring its phenomenological issue for the actual universe.
The spectrum of the super-Hamiltonian is determined including a free
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inflaton field, the ultrarelativistic thermal bath and a perfect gas into
the dynamics. We show that, when a Planckian cut-off is imposed in
the theory and the classical limit of the ground state is taken, then a
dark matter contribution cannot arise because its critical parameter Ωdm

is negligible today when the appropriate cosmological implementation
of the model is provided. Thus, we show that, from a phenomenolog-
ical point of view, an evolutionary quantum cosmology overlaps the
Wheeler-DeWitt approach and therefore it can be inferred as appropri-
ate to describe early stages of the universe without significant traces on
the later evolution.

[3] P. Singh, K. Vandersloot and G.V. Vereshchagin, Nonsingular bouncing
universes in loop quantum cosmology Phys. Rev. D, 74, 043510 (2006).

Nonperturbative quantum geometric effects in loop quantum cosmol-
ogy (LQC) predict a ρ2 modification to the Friedmann equation at high
energies. The quadratic term is negative definite and can lead to generic
bounces when the matter energy density becomes equal to a critical
value of the order of the Planck density. The nonsingular bounce is
achieved for arbitrary matter without violation of positive energy con-
ditions. By performing a qualitative analysis we explore the nature of
the bounce for inflationary and cyclic model potentials. For the former
we show that inflationary trajectories are attractors of the dynamics af-
ter the bounce implying that inflation can be harmoniously embedded
in LQC. For the latter difficulties associated with singularities in cyclic
models can be overcome. We show that nonsingular cyclic models can
be constructed with a small variation in the original cyclic model po-
tential by making it slightly positive in the regime where scalar field is
negative.

[4] M.V. Battisti and G. Montani, The big-bang singularity in the frame-
work of a generalized uncertainty principle, Phys. Lett. B, 656, 96 (2006).

We analyze the quantum dynamics of the FriedmannRobertsonWalker
Universe in the context of a Generalized Uncertainty Principle. Since
the isotropic Universe dynamics resembles that of a one-dimensional
particle, we quantize it with the commutation relations associated to
an extended formulation of the Heisenberg algebra. The evolution of
the system is described in terms of a massless scalar field taken as a
relational time. We construct suitable wave packets and analyze their
dynamics from a quasi-classical region to the initial singularity. The ap-
pearance of a non-singular dynamics comes out as far as the behavior
of the probability density is investigated. Furthermore, reliable indi-
cations arise about the absence of a big-bounce, as predicted in recent
issues of loop quantum cosmology.
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[5] M.V. Battisti and G. Montani, Evolutionary Quantization of Cosmolog-
ical Models, Nuovo Cimento B, 122, 179-184 (2007).

We consider a Schrödinger quantum dynamics for the gravitational field
associated to a FRW spacetime and then we solve the corresponding
eigenvalue problem. We show that, from a phenomenological point
of view, an Evolutionary Quantum Cosmology overlaps the Wheeler-
DeWitt approach. We also show how a so peculiar solution can be in-
ferred to describe the more interesting case of a generic cosmological
model.

[6] F. Cianfrani and G. Montani, Boost invariance of the gravitational field
dynamics: quantization without time gauge, Class. Quant. Grav., 24,
4161 (2007).

We perform a canonical quantization of gravity in a second-order for-
mulation, taking as configuration variables those describing a 4-bein,
not adapted to the spacetime splitting. We outline how, if we either fix
the Lorentz frame before quantizing or perform no gauge fixing at all,
the invariance under boost transformations is affected by the quantiza-
tion.

[7] R. Benini and G. Montani, Inhomogeneous Quantum Mixmaster: from
Classical toward Quantum Mechanics, Class. Quant. Grav., 24, 387
(2007).

Starting from the Hamiltonian formulation for the inhomogeneous Mix-
master dynamics, we approach its quantum features through the link of
the quasiclassical limit. We fix the proper operator-ordering which en-
sures that the WKB continuity equation overlaps the Liouville theorem
as restricted to the configuration space. We describe the full quantum
dynamics of the model in some detail, providing a characterization of
the (discrete) spectrum with analytic expressions for the limit of high
occupation number. One of the main achievements of our analysis re-
lies on the description of the ground state morphology, showing how it
is characterized by a non-vanishing zero-point energy associated with
the universe anisotropy degrees of freedom.

[8] N. Carlevaro, O.M. Lecian and G. Montani, Macroscopic and micro-
scopic paradigms for the torsion field: from the test-particles motion to
a Lorentz gauge theory, Ann. Fond. Louis de Broglie, 32, 281 (2007).

Torsion represents the most natural extension of General Relativity and
it attracted interest over the years in view of its link with fundamental
properties of particle motion. The bulk of the approaches concerning
the torsion dynamics focus their attention on their geometrical nature
and they are naturally lead to formulate a non-propagating theory. Here
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we review two different paradigms to describe the role of the torsion
field, as far as a propagating feature of the resulting dynamics is con-
cerned. However, these two proposals deal with different pictures, i.e.,
a macroscopic approach, based on the construction of suitable poten-
tials for the torsion field, and a microscopic approach, which relies on
the identification of torsion with the gauge field associated with the lo-
cal Lorentz symmetry. We analyze in some detail both points of view
and their implications on the coupling between torsion and matter. In
particular, in the macroscopic case, we analyze the test-particle motion
to fix the physical trajectory, while, in the microscopic approach, a nat-
ural coupling between torsion and the spin momentum of matter fields
arises

[9] F. Cianfrani and G. Montani, The role of the time gauge in the 2nd order
formalism, Int. J. Mod. Phys. A, 23, 8, 1214 (2008).

We perform a canonical quantization of gravity in a second-order for-
mulation, taking as configuration variables those describing a 4-bein,
not adapted to the space-time splitting. We outline how, neither if we
fix the Lorentz frame before quantizing, nor if we perform no gauge
fixing at all, is invariance under boost transformations affected by the
quantization.

[10] M. Castellana and G. Montani, Physical state condition in Quantum
General Relativity as a consequence of BRST symmetry, Class. Quant.
Grav., 25, 105018 (2008).

Quantization of systems with constraints can be carried on with sev-
eral methods. In the Dirac formulation the classical generators of gauge
transformations are required to annihilate physical quantum states to
ensure their gauge invariance. Carrying on BRST symmetry it is pos-
sible to get a condition on physical states which, differently from the
Dirac method, requires them to be invariant under the BRST trans-
formation. Employing this method for the action of general relativity
expressed in terms of the spin connection and tetrad fields with path
integral methods, we construct the generator of BRST transformation
associated with the underlying local Lorentz symmetry of the theory
and write a physical state condition consequence of BRST invariance.
We observe that this condition differs form the one obtained within
Ashtekar’s canonical formulation, showing how we recover the latter
only by a suitable choice of the gauge fixing functionals. We finally dis-
cuss how it should be possible to obtain all the requested physical state
conditions associated with all the underlying gauge symmetries of the
classical theory using our approach.
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[11] G. Montani and S. Zonetti, Parametrizing fluids in canonical quantum
gravity, Int. J. Mod. Phys. A, 23, 8, 1240-1243 (2008).

The problem of time is an unsolved issue of canonical General Relativ-
ity. A possible solution is the Brown-Kuchar mechanism which couples
matter to the gravitational field and recovers a physical, i.e. non vanish-
ing, observable Hamiltonian functional by manipulating the set of con-
straints. Two cases are analyzed. A generalized scalar fluid model pro-
vides an evolutionary picture, but only in a singular case. The Schutz’
model provides an interesting singularity free result: the entropy per
baryon enters the definition of the physical Hamiltonian. Moreover in
the co-moving frame one is able to identify the time variable tau with
the logarithm of entropy.

[12] M.V.Battisti and G.Montani, Quantum dynamics of the Taub Universe
in a generalized uncertainty principle framework, Phys. Rev. D, 77,
023518 (2008).

The implications of a Generalized Uncertainty Principle on the Taub
cosmological model are investigated. The model is studied in the ADM
reduction of the dynamics and therefore a time variable is ruled out.
Such a variable is quantized in a canonical way and the only physical
degree of freedom of the system (related to the Universe anisotropy) is
quantized by means of a modified Heisenberg algebra. The analysis is
performed at both classical and quantum level. In particular, at quan-
tum level, the motion of wave packets is investigated. The two main
results obtained are as follows. i) The classical singularity is probabilis-
tically suppressed. The Universe exhibits a stationary behavior and the
probability amplitude is peaked in a determinate region. ii) The GUP
wave packets provide the right behavior in the establishment of a quasi-
isotropic configuration for the Universe.

[13] G. Montani and F. Cianfrani, General Relativity as Classical Limit of
Evolutionary Quantum Gravity, Class. Quant. Grav., 25, 065007 (2008).

In this paper we analyze the dynamics of the gravitational field when
the covariance is restricted to a synchronous gauge. In the spirit of the
Noether theorem, we determine the conservation law associated to the
Lagrangian invariance and we outline that a non-vanishing behavior
of the Hamiltonian comes out. We then interpret such resulting non-
zero “energy” of the gravitational field in terms of a dust fluid. This
new matter contribution is co-moving to the slicing and it accounts
for the “materialization” of a synchronous reference from the corre-
sponding gauge condition. Further, we analyze the quantum dynam-
ics of a generic inhomogeneous Universe as described by this evolu-
tionary scheme, asymptotically to the singularity. We show how the
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phenomenology of such a model overlaps the corresponding Wheeler-
DeWitt picture. Finally, we study the possibility of a Schrödinger dy-
namics of the gravitational field as a consequence of the correspondence
inferred between the ensemble dynamics of stochastic systems and the
WKB limit of their quantum evolution. We demonstrate that the time
dependence of the ensemble distribution is associated with the first or-
der correction in h̄ to the WKB expansion of the energy spectrum.

[14] F. Cianfrani and G. Montani, Synchronous Quantum Gravity, Int. J.
Mod. Phys. A, 23, 8, 1105-1112 (2008).

The implications of restricting the covariance principle within a Gaus-
sian gauge are developed both on a classical and a quantum level. Hence,
we investigate the cosmological issues of the obtained Schrödinger Quan-
tum Gravity with respect to the asymptotically early dynamics of a
generic Universe. A dualism between time and the reference frame fix-
ing is then inferred.

[15] M.V. Battisti, O.M. Lecian and G. Montani, Quantum cosmology with a
minimal length, Int. J. Mod. Phys. A, 23, 1257-1265 (2008).

Quantum cosmology in the presence of a fundamental minimal length
is analyzed in the context of the flat isotropic and the Taub cosmological
models. Such minimal scale comes out from a generalized uncertainty
principle and the quantization is performed in the minisuperspace rep-
resentation. Both the quantum Universes are singularity-free and (i) in
the isotropic model no evidences for a Big-Bounce appear; (ii) in the
Taub one a quasi-isotropic configuration for the Universe is predicted
by the model.

[16] N. Carlevaro, O.M. Lecian and G. Montani, Lorentz Gauge Theory and
Spinor Interaction, Int. J. Mod. Phys. A, 23(8), 1282 (2008).

A gauge theory of the Lorentz group, based on the different behavior of
spinors and vectors under local transformations, is formulated in a flat
space-time and the role of the torsion field within the generalization to
curved space-time is briefly discussed. The spinor interaction with the
new gauge field is then analyzed assuming the time gauge and station-
ary solutions, in the non-relativistic limit, are treated to generalize the
Pauli equation.

[17] M.V. Battisti, O.M. Lecian and G. Montani, Polymer Quantum Dynam-
ics of the Taub Universe, Phys. Rev. D, 78, 103514 (2008).

Within the framework of non-standard (Weyl) representations of the
canonical commutation relations, we investigate the polymer quanti-
zation of the Taub cosmological model. The Taub model is analyzed
within the Arnowitt-Deser-Misner reduction of its dynamics, by which
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a time variable arises. While the energy variable and its conjugate mo-
mentum are treated as ordinary Heisenberg operators, the anisotropy
variable and its conjugate momentum are represented by the polymer
technique. The model is analyzed at both classical and quantum level.
As a result, classical trajectories flatten with respect to the potential
wall, and the cosmological singularity is not probabilistically removed.
In fact, the dynamics of the wave packets is characterized by an inter-
ference phenomenon, which, however, is not able to stop the evolution
towards the classical singularity.

[18] F. Cianfrani, G. Montani and S. Zonetti,Definition of a time variable
with Entropy of a perfect fluid in Canonical Quantum Gravity, Class.
Quant. Grav., 26, 125002 (2009).

The Brown-Kuchař mechanism is applied in the case of General Rel-
ativity coupled with the Schutz’ model for a perfect fluid. Using the
canonical formalism and manipulating the set of modified constraints
one is able to recover the definition of a time evolution operator, i.e. a
physical Hamiltonian, expressed as a functional of gravitational vari-
ables and the entropy.

[19] M.V. Battisti and G. Montani, The Mixmaster Universe in a generalized
uncertainty principle framework, Phys. Lett. B, 681, 179 (2009).

The Bianchi IX cosmological model is analyzed in a generalized uncer-
tainty principle framework. The Arnowitt-Deser-Misner reduction of
the dynamics is performed and a time-coordinate, namely the volume
of the Universe, naturally arises. Such a variable is treated in the or-
dinary way while the anisotropies (the physical degrees of freedom of
the Universe) are described by a deformed Heisenberg algebra. The
analysis of the model (passing through Bianchi I and II) is performed at
classical level by studying the modifications induced on the symplectic
geometry by the deformed algebra. We show that, the triangular al-
lowed domain is asymptotically stationary with respect to the particle
(Universe) and that its bounces against the walls are not interrupted by
the deformed effects. Furthermore, no reflection law can be in general
obtained since the Bianchi II model is no longer analytically integrable.
This way, the deformed Mixmaster Universe can be still considered a
chaotic system.

[20] M.V. Battisti, Cosmological bounce from a deformed Heisenberg alge-
bra, Phys. Rev. D, 79, 083506 (2009).

The implications of a deformed Heisenberg algebra on the Friedmann-
Robertson-Walker cosmological models are investigated. We consider
the Snyder non-commutative space in which the translation group is
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undeformed and the rotational invariance preserved. When this frame-
work is implemented to one-dimensional systems (which is this case)
the modifications are uniquely fixed up to a sign. A cosmological quan-
tum bounce ‘a la loop quantum cosmology is then obtained. We also
get the Randall-Sundrum braneworld scenario and this way a Snyder-
deformed quantum cosmology can be considered as a common phe-
nomenological description for both theories.

[21] M.V. Battisti, R. Belvedere and G. Montani, Semi-classical suppression
of weak anisotropies of a generic Universe, Europhys. Lett., 86, 69001
(2009).

A semiclassical mechanism which suppresses the weak anisotropies of
an inhomogeneous cosmological model is developed. In particular, a
wave function of this Universe having a meaningful probabilistic inter-
pretation is obtained that is in agreement with the Copenhagen School.
It describes the evolution of the anisotropies with respect to the isotropic
scale factor which is regarded as a semiclassical variable playing an
observer-like role. Near the cosmological singularity the solution spreads
over all values of the anisotropies while, when the Universe expands
sufficiently, the closed Friedmann-Robertson-Walker model appears to
be the favorite state.

[22] N. Carlevaro, O.M. Lecian and G. Montani, Fermion dynamics by inter-
nal and space-time symmetries, Mod. Phys. Lett. A, 24, 415 (2009).

This manuscript is devoted to introduce a gauge theory of the Lorentz
Group based on the ambiguity emerging in dealing with isometric diffeo-
morphism-induced Lorentz transformations. The behaviors under lo-
cal transformations of fermion fields and spin connections (assumed to
be ordinary world vectors) are analyzed in flat space-time and the role
of the torsion field, within the generalization to curved space-time, is
briefly discussed. The fermion dynamics is then analyzed including the
new gauge fields and assuming time-gauge. Stationary solutions of the
problem are also studied in the non-relativistic limit, to study the spinor
structure of an hydrogen-like atom.

[23] F. Cianfrani and G. Montani, Towards Loop Quantum Gravity without
the time gauge, Phys. Rev. Lett., 102, 091301 (2009).

The Hamiltonian formulation of the Holst action is reviewed and it
is provided a solution of second-class constraints corresponding to a
generic local Lorentz frame. Within this scheme the form of rotation
constraints can be reduced to a Gauss-like one by a proper generaliza-
tion of Ashtekar- Barbero-Immirzi connections. This result emphasizes
that the Loop Quantum Gravity quantization procedure can be applied
when the time-gauge condition does not stand.
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[24] F. Cianfrani and G. Montani, Matter in Loop Quantum Gravity without
time gauge: a non-minimally coupled scalar field , Phys. Rev. D, 80,
084045 (2009).

We analyze the phase space of gravity non-minimally coupled to a scalar
field in a generic local Lorentz frame. We reduce the set of constraints
to a first-class one by fixing a specific hypersurfaces in the phase space.
The main issue of our analysis is to extend the features of the vacuum
case to the presence of scalar matter by recovering the emergence of an
SU(2) gauge structure and the non-dynamical role of boost variables.
Within this scheme, the super-momentum and the super- Hamiltonian
are those ones associated with a scalar field minimally coupled to the
metric in the Einstein frame. Hence, the kinematical Hilbert space is
defined as in canonical Loop Quantum Gravity with a scalar field, but
the differences in the area spectrum are outlined to be the same as in the
time-gauge approach.

[25] F. Cianfrani and G. Montani, The Immirzi parameter from an external
scalar field, Phys. Rev. D, 80, 084040 (2009).

We promote the Immirzi parameter to be a minimally coupled scalar
field and we analyzed the Hamiltonian constraints in the framework
of Loop Quantum Gravity without the time gauge. Proper SU(2) con-
nections can be defined and a term containing derivatives of the field β
enters into their definition. Furthermore, boost degrees of freedom are
non-dynamical, while the super-momentum constraints coincide with
the scalar field case. Hence, the kinematical Hilbert space can be de-
fined as for gravity in presence of a minimally coupled scalar field.
Then, we analyzed the dynamical implications of this scenario and we
outline how a dynamical relaxation to a non-vanishing vacuum expec-
tation value is predicted, so recovering the standard Loop Quantum
Gravity formulation.

[26] N. Carlevaro, O.M. Lecian and G. Montani, Fermion Dynamics by In-
ternal and Space-Time Symmetries, Mod. Phys. Lett. A, 24, 415 (2009).

This manuscript is devoted to introduce a gauge theory of the Lorentz
Group based on the ambiguity emerging in dealing with isometric diffeo-
morphism-induced Lorentz transformations. The behaviors under lo-
cal transformations of fermion fields and spin connections (assumed to
be ordinary world vectors) are analyzed in flat space-time and the role
of the torsion field, within the generalization to curved space-time, is
briefly discussed. The fermion dynamics is then analyzed including
the new gauge fields and assuming time-gauge. Stationary solutions of
the problem are also analyzed in the non-relativistic limit, to study the
spinor structure of an hydrogen-like atom.
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[27] M.V. Battisti and G. Montani, Bianchi IX in the GUP approach, Phys.
Lett. B, 681, 179 (2009).

We have analyzed the Bianchi IX cosmological model (the Mixmas-
ter Universe) in a generalized uncertainty principle framework. The
Arnowitt-Deser-Misner reduction of the dynamics is performed and a
time-coordinate, namely the volume of the Universe, naturally arises.
Such a variable is treated in the ordinary way while the anisotropies
(the physical degrees of freedom) are described by a deformed Heisen-
berg algebra. The analysis of the model (passing through Bianchi I and
II) is performed at classical level by studying the modifications induced
on the symplectic geometry by the deformed algebra. We show that, the
Universe can not isotropize because of the deformed Kasner dynamics,
the triangular allowed domain is asymptotically stationary with respect
to the particle (Universe) and its bounces against the walls are not in-
terrupted by the deformed effects. Furthermore, no reflection law can
be in general obtained since the Bianchi II model is no longer analyt-
ically integrable. This way, the deformed Mixmaster Universe can be
still considered a chaotic system.

[28] S.S. Xue, Quantum Regge Calculus of EinsteinCartan theory, Phys. Lett.
B, 682, 300 (2009).

We study the Quantum Regge Calculus of EinsteinCartan theory to de-
scribe quantum dynamics of Euclidean spacetime discretized as a 4-
simplices complex. Tetrad field eµ(x) and spin-connection field ωµ(x)
are assigned to each 1-simplex. Applying the torsion-free Cartan struc-
ture equation to each 2-simplex, we discuss parallel transports and con-
struct a diffeomorphism and local gauge-invariant EinsteinCartan ac-
tion. Invariant holonomies of tetrad and spin-connection fields along
large loops are also given. Quantization is defined by a bounded parti-
tion function with the measure of SO(4)-group valued ωµ(x) fields and
Dirac-matrix valued eµ(x) fields over 4-simplices complex.

[29] F. Cianfrani and G. Montani, Gravity in presence of fermions as a SU(2)
gauge theory, Phys. Rev. D, 81, 044015 (2010).

The Hamiltonian formulation of the Holst action in presence of a mass-
less fermion field with a non-minimal Lagrangian is performed without
any restriction on the local Lorentz frame. It is outlined that the phase
space structure does not resemble that one of a background indepen-
dent Lorentz gauge theory, as some additional constraints are present.
Proper phase space coordinates are introduced, such that SU(2) con-
nections can be defined and the vanishing of conjugate momenta to
boost variables is predicted. Finally, it is demonstrated that for a partic-
ular value of the non-minimal parameter the kinematics coincides with
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that one of a background independent SU(2) gauge theory and the Im-
mirzi parameter becomes the coupling constant of such an interaction
between fermions and the gravitational field.

[30] F. Cianfrani and G. Montani, Shortcomings of the Big Bounce derivation
in Loop Quantum Cosmology, Phys. Rev. D, 82, 021501 (2010).

We give a prescription to define in Loop Quantum Gravity the elec-
tric field operator related to the scale factor of an homogeneous and
isotropic cosmological space-time. This procedure allows to link the
fundamental theory with its cosmological implementation. In view of
the conjugate relation existing between holonomies and fluxes, the edge
length and the area of surfaces in the fiducial metric satisfy a duality
condition. As a consequence, the area operator has a discrete spec-
trum also in Loop Quantum Cosmology. This feature makes the super-
Hamiltonian regularization an open issue of the whole formulation.

[31] F. Cianfrani, G. Montani and M. Muccino, Semi-Classical Isotropization
of the Universe during a de Sitter phase, Phys. Rev. D, in press.

Semi-classical states for the Wheeler-DeWitt equation of a Bianchi type
I model in the presence of a scalar field are analyzed. It is outlined how
this scheme can effectively describe more general situations, where the
curvature of the Bianchi type IX model and a proper potential term for
the scalar field are present. The introduction of a cosmological constant
term accounts for the quasi-isotropization mechanism which bridges
the proposed framework with a late isotropic phase. This result makes
the semi-classical Bianchi I model a plausible scenario for the Universe
pre-inflationary phase.

6.2. Quantum Field on Classical Background

[32] V. Belinski , On the existence of black hole evaporation yet again, Phys.
Lett. A, 354, 249 (2006).

A new argument is presented confirming the point of view that a Schwa-
rzshild black hole formed during a collapse process does not radiate.

[33] F. Cianfrani, G. Montani, Curvature-spin coupling from the semi-classical
limit of the Dirac equation, Int. J. Mod. Phys. A, 23, 8, 1274-1277 (2008).

The notion of a classical particle is inferred from Dirac quantum fields
on a curved space-time, by an eikonal approximation and a localiza-
tion hypothesis for amplitudes. This procedure allows to define a semi-
classical version of the spin-tensor from internal quantum degrees of
freedom, which has a Papapetrou-like coupling with the curvature.
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[34] F. Cianfrani and G. Montani, Dirac equations in curved space-time ver-
sus Papapetrou spinning particles, Europhys. Lett., in press.

We recover classical particles, starting from Dirac quantum fields on
a curved space-time, by an eikonal approximation and a localization
hypothesis for amplitudes. We conclude that the semi-classical dynam-
ics of spinors is neither a geodesics one, nor resembling a Papapetrou-
like spinning body. However, the spin-curvature coupling predicted by
the Papapetrou theory is recovered in the weak-gravitational-field limit,
but still an additional contribution to the dynamics arises

6.3. Unification Theories

[35] G. Montani, Geometrization of the Gauge Connection within a Kaluza-
Klein Theory, Int. J. Theor. Phys., 44, 43-52 (2005).

Within the framework of a Kaluza-Klein theory, we provide the ge-
ometrization of a generic (Abelian and non-Abelian) gauge coupling,
which comes out by choosing a suitable matter fields dependence on the
extra-coordinates. We start by the extension of the Nother theorem to
a multidimensional spacetime being the direct sum of a 4-dimensional
Minkowski space and of a compact homogeneous manifold (whose isome-
tries reflect the gauge symmetry); we show, how on such a “vacuum”
configuration, the extra-dimensional components of the field momen-
tum correspond to the gauge charges. Then we analyze the structure
of a Dirac algebra as referred to a spacetime with the Kaluza-Klein re-
strictions and, by splitting the corresponding free-field Lagrangian, we
show how the gauge coupling terms outcome.

[36] E. Alesci and G. Montani, Can gravitational waves be markers for an
extra-dimension?, Int. J. Mod. Phys. D, 14, 6, 923 (2005).

The main issue of the present paper is to fix specific features (which turn
out being independent of extradimension size) of gravitational waves
generated before a dimensional compactification process. Valuable is
the possibility to detect our prediction from gravitational wave exper-
iment without high energy laboratory investigation. In particular we
show how gravitational waves can bring information on the number of
Universe dimensions. Within the framework of Kaluza-Klein hypothe-
ses, a different morphology arises between waves generated before than
the compactification process settled down and ordinary 4-dimensional
waves. In the former case the scalar and tensor degrees of freedom can-
not be resolved. As a consequence if gravitational waves having the
feature predicted here were detected (anomalous polarization ampli-
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tudes), then they would be reliable markers for the existence of an extra
dimension.

[37] F. Cianfrani, A. Marrocco and G. Montani, Gauge Theories as a Geo-
metrical Issue of a Kaluza-Klein Framework, Int. J. Mod. Phys. D, 14(7),
1095 (2006).

We present a geometrical unification theory in a Kaluza-Klein approach
that achieve the geometrization of a generic gauge theory bosonic com-
ponent. We show how it is possible to derive gauge charge conservation
from the invariance of the model under extra-dimensional translations
and to geometrize gauge connections for spinors, in order to make pos-
sible to introducing matter just through free spinorial fields. Then we
present the applications to (i) a pentadimensional manifold so repro-
ducing the original Kaluza-Klein theory with some extensions related to
the rule of the scalar field contained in the metric and to the introduction
of matter through spinors with a phase dependance from the fifth coor-
dinate, (ii) a seven-dimensional manifold, in which we geometrize the
electroweak model by introducing two spinors for every leptonic fam-
ily and quark generation and a scalar field with two components with
opposite hypercharge responsible for spontaneous symmetry breaking.

[38] F. Cianfrani and G. Montani, Non Abelian gauge symmetries induced
by the unobservability of extra-dimensions in a Kaluza-Klein approach,
Mod. Phys. Lett. A, 21(3), 265 (2006).

In this work we deal with the extension of the Kaluza-Klein approach
to a non-Abelian gauge theory; we show how we need to consider the
link between the n-dimensional model and a four-dimensional observer
physics, in order to reproduce field equations and gauge transforma-
tions in the four-dimensional picture. More precisely, in field equations
any dependence on extra coordinates is canceled out by an integra-
tion, as consequence of the unobservability of extra dimensions. Thus,
by virtue of this extra dimension unobservability, we are able to re-
cast the multidimensional Einstein equations into the four-dimensional
Einstein-Yang-Mills ones, as well as all the right gauge transformations
of fields are induced. The same analysis is performed for the Dirac
equation describing the dynamics of the matter fields and, again, the
gauge coupling with Yang-Mills fields are inferred from the multidi-
mensional free fields theory, together with the proper spinors transfor-
mations.
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The geometrization of the Electroweak Model is achieved in a five-
dimensional RiemannCartan framework. Matter spinorial fields are
extended to 5 dimensions by the choice of a proper dependence on
the extracoordinate and of a normalization factor. weak hypercharge
gauge fields are obtained from a KaluzaKlein scheme, while the tetradic
projections of the extradimensional contortion fields are interpreted as
weak isospin gauge fields. generators are derived by the identifica-
tion of the weak isospin current to the extradimensional current term
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dure and how this leads to a well-defined and unique ADM reformu-
lation. This allows us to consider the Hamiltonian formulation of the
model and moreover it can be viewed as the first step for the Ashtekar
reformulation of the KK scheme. Moreover, we show how the time
component of the gage vector arises naturally from the geometrical con-
straints of the dynamics; this is a positive check for the autoconsistency
of the KK theory and for an Hamiltonian description of the dynamics
which will take into account the compactification scenario; this result
enforces the physical meaning of the KK model.
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from the curvature dimensional reduction Einstein-Yang-Mills action is
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S2 where isospin doublets are identified with spinors; 2) V4 ⊗ S1 ⊗ S3

in which both quarks and leptons doublets can be recast into the same
spinor, such that the equal number of quark generations and leptonic
families is explained. Finally a self-interacting complex scalar field is
introduced to reproduce the spontaneous symmetry breaking mecha-
nism; in this respect, at the end we get an Higgs fields whose two com-
ponents have got opposite hypercharges.
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a well defined Hamiltonian; we provide the outcome. The electromag-
netic constraint is derived from a geometrical one and this result en-
forces the physical meaning of KK model. Moreover we study the role
of the extra scalar field we have in our model; classical hints from geodesic
motion and cosmological solutions suggest that the scalar field can be
an alternative time variable in the relational point of view.

[47] F. Cianfrani and G. Montani, Low-energy sector of 8-dimensional Gen-
eral Relativity: Electro-Weak model and neutrino mass, Int. J. Mod.
Phys. D, 17(5), 785 (2008).

In this paper we demonstrate that in a Kaluza-Klein space-time V4 ⊗ S3

the dimensional reduction of spinors provides a 4-field, whose associ-
ated SU(2) gauge connections are geometrized. However, additional
and gauge-violating terms arise, but they are highly suppressed by a
factor β, which fixes the amount of the spinor dependence on extra-
coordinates. The application of this framework to the Electro-Weak
model is performed, thus giving a lower bound for β from the request
of the electric charge conservation. Moreover, we emphasize that also
the Higgs sector can be reproduced, but neutrino masses are predicted
and the fine-tuning on the Higgs parameters can be explained, too.

[48] F. Cianfrani and G. Montani, Elementary particle interaction from a
Kaluza-Klein scheme, Int. J. Mod. Phys. A, 23, 8, 1182-1189 (2008).

We discuss properties of particles and fields in a multi-dimensional
space-time, where the geometrization of gauge interactions can be per-
formed. As far as spinors are concerned, we outline how the gauge cou-
pling can be recognized by a proper dependence on extra-coordinates
and by the dimensional reduction procedure. Finally applications to the
Electro-Weak model are presented.

[49] O.M. Lecian and G. Montani, Fundamental Symmetries of the extended
Spacetime, Int. J. Mod. Phys. A, 23, 1266-1269 (2008).

On the basis of Fourier duality and Stone-von Neumann theorem, we
will examine polymer-quantization techniques and modified uncertainty
relations as possible 1-extraD compactification schemes for a phenomeno-
logical truncation of the extraD tower.

[50] V. Lacquaniti and G. Montani, On matter coupling in 5D Kaluza-Klein
framework, Int. J. Mod. Phys. A 23, 1270-1273 (2008).

We analyze some unphysical features of the geodesic approach to mat-
ter coupling in a compactified Kaluza-Klein scenario, like the q/m puz-
zle and the huge massive modes. We propose a new approach, based
on Papapetrou multipole expansion, that provides a new equation for
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the motion of a test particle. We show how this equation provides right
couplings and does not generate huge massive modes.

[51] V. Lacquaniti and Giovanni Montani, Dynamics of Matter in a Com-
pactified Kaluza-Klein Model, Int.J. Mod. Phys. D, 18, 929 (2009).

A longstanding problem in Kaluza-Klein models is the description of
matter dynamics. Within the 5D model, the dimensional reduction of
the geodesic motion for a 5D free test particle formally restores electro-
dynamics, but the reduced 4D particle shows a charge-mass ratio that
is upper bounded, such that it cannot fit to any kind of elementary par-
ticle. At the same time, from the quantum dynamics viewpoint, there is
the problem of the huge massive modes generation. We present a criti-
cism against the 5D geodesic approach and face the hypothesis that in
Kaluza-Klein space the geodesic motion does not deal with the real dy-
namics of test particle. We propose a new approach: starting from the
conservation equation for the 5D matter tensor, within the Papapetrou
multipole expansion, we prove that the 5D dynamical equation differs
from the 5D geodesic one. Our new equation provides right coupling
terms without bounding and in such a scheme the tower of massive
modes is removed.

[52] V. Lacquaniti and G. Montani, Geometry and Matter Reduction in a 5D
Kaluza-Klein Framework, Mod. Phys. Lett. A, 24, No. 20, 1565 (2009).

In this paper we consider the Kaluza-Klein fields equations in presence
of a generic 5D matter tensor which is governed by a conservation equa-
tion due to 5D Bianchi identities. Following a previous work, we pro-
vide a consistent approach to matter where the problem of huge mas-
sive modes is removed, without relaxing the compactification hypothe-
ses; therefore we perform the dimensional reduction either for metric
fields and for matter, thus identifying a pure 4D tensor term, a 4D vec-
tor term and a scalar one. Hence we are able to write down a consistent
set of equations for the complete dynamics of matter and fields; with re-
spect to the pure Einstein-Maxwell system we now have two additional
scalar fields: the usual dilaton one plus a scalar source term. Some sig-
nificant scenarios involving these terms are discussed and perspectives
for cosmological applications are suggested.

[53] V. Lacquaniti, G. Montani and F. Vietri, Dimensional Reduction of the 5D
Kaluza-Klein Geodesic Deviation Equation, to appear on Gen. Rel. Grav..

In a work of Kerner et al. (2001) the problem of the geodesic deviation
in 5D Kaluza-Klein background is faced. The 4D space-time projection
of the resulting equation coincides with the usual geodesic deviation
equation in the presence of the Lorenz force, provided that the fifth
component of the deviation vector satisfies an extra constraint which
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takes into account the q/m conservation along the path. The analysis
was performed setting as a constant the scalar field which appears in
Kaluza-Klein model. Here we focus on the extension of such a work to
the model where the presence of the scalar field is considered. Our re-
sults coincide with those of Kerner et al. when the minimal case φ = 1
is considered, while it shows some departures in the general case. The
novelty due to the presence of φ is that the variation of the q/m between
the two geodesic line is not conserved during the motion; an exact law
for such a behavior has been derived.
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7.1. The cosmological sector of Loop Quantum

Gravity

A cosmological space-time is assumed to be homogeneous and isotropic. The
metric compatible with these assumptions and with Einstein equations is the
Friedman-Robertson-Walker one, i.e.

ds2 = −dt2 + a(t)2

(
1

1 + kr
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (7.1.1)

where k = 1, 0,−1 for a closed, flat and open Universe, respectively. It is
worth noting that the scale factor a is the only dynamical variable, which on
spatial hypersurfaces behaves as a conformal factor in front of the fiducial
line element

0dl2 =
1

1 + kr
dr2 + r2dθ2 + r2 sin2 θdφ2. (7.1.2)

Loop Quantum Cosmology (LQC) is based on fixing Ashtekar-Barbero-
Immirzi connections and densitized 3-bein vectors as follows

Aa
i = c0ea

i , Ei
a = p

√
0h0ei

a, (7.1.3)

where 0ea
i and 0ei

a denote 3-bein vectors of the fiducial metric 0hij and their
inverses, respectively, while

|p| = a2, c =
1

2
(k + γȧ). (7.1.4)

The most general connections and momenta compatible with the FRW met-
ric (7.1.1) are obtained from the expressions (7.1.3) by a generic SU(2) trans-
formation. This means that although the metric has been partially fixed, nev-
ertheless the local SU(2) gauge symmetry is not lost (this is not surprising,
because such gauge transformations are related with rotations in the tangent
space).

Let us now depict a possible description of a cosmological space-time in
terms of LQG variables. Holonomies ha

α are now being evaluated along straight
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edges α parallel to 0ei
a, so finding

ha
α = eiµcjτa , (7.1.5)

µ being the edge length, µ =
∫

α
0ea

i
dαi

dt dt, while jτa denotes the SU(2) gener-
ator in the j-representation. In what follows we will label the holonomies by
ha

µ.

Similarly, fluxes Ea(S) are restricted to those ones across surfaces S, xi =
xi(u, v), whose normal coincide with 0ea

i and their classical expression reads

Ea(S) = p∆, ∆ =
∫

S

0ei
aǫijk∂uxj∂vxkdudv, (7.1.6)

where ∆ gives the flux of 0ei
a through S, so it measures the area of S itself in

the fiducial metric. In the following, ∆ will be used as a label for Ea.

If S and α intersects, the action of fluxes on holonomies on a quantum level
according with LQG gives

Êa(∆)h
b
µ = 8πγl2

Phb
µ

jτaδa
bsign∆µ (7.1.7)

where in the last relation repeated indexes are not summed.

Substituting the expression for Ea(S) in terms of p, one finds

p̂∆ha
µ = 8πγl2

Pha
µ

jτasign∆µ, (7.1.8)

but from the classical Poisson brackets expression, the operator p can be
represented as

p̂ = −i
8πγl2

P

3V0

d

dc
, (7.1.9)

whose action on holonomies (7.1.5) gives

p̂ha
µ =

8πγl2
Pµ

3V0
ha

µ
jτa. (7.1.10)

Therefore, relations (7.1.8) and (7.1.10) are consistent when

|∆µ| = 3V0. (7.1.11)

This relation fixes a fundamental duality between the length of edges across which
holonomies are evaluated and the area of surfaces across which fluxes are defined.

Within this scheme it is possible to establish a clear correspondence be-
tween the Hilbert space of functions of holonomies (7.1.5) and the one of
quasi-periodic functions proper of LQC. This correspondence is realized via
the trace on SU(2) indexes.
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In fact, tracing both sides of Eq. (7.1.7) one gets

tr(Ea(S)h
a
µ) = 2p̂|∆|Σj−θ

n=0 cos (µc(n + θ)) =

= 8πγl2
Ptr(ha

µ
jτa) = −16πγl2

PΣ
j−θ
n=0nθ sin (µc(n + θ)), (7.1.12)

where θ = 1/2, 0 for j half-integer and integer, respectively.
It is worth noting that after the trace has been performed, linear combina-

tions of quasi-periodic functions come out.
As soon as the action of p̂ on such quasi-periodic functions is concerned,

one immediately finds

p̂eiµ̃c =
8πγl2

p

3V0
µ̃eiµ̃c. (7.1.13)

It is worth noting that in LQG two kind of information are present, the one
related with the edge length µ and the one giving the SU(2) quantum number
n. These two notions are condensed in the factor µ̃ = nµ, such that the SU(2)
gauge structure is not manifest. However such an information is required to
infer the area spectrum.

In fact, within this scheme, the regularized area operator can be repre-
sented by the square root of p̂2∆2, thus its action on quasi periodic functions
is

Âeiµnc =
√

p̂2∆2eiµnc = 8πγl2
pθ|n|eiµnc. (7.1.14)

Hence, the area operator has a discrete spectrum whatever value takes the
parameter µ. Indeed, the spectrum do not coincide with the one of the fun-
damental theory, which is related with the Casimir of the SU(2) group.

Therefore, the procedure adopted in LQC to infer the parameter µ̄ required
for the super-Hamiltonian regularization cannot be justified on the level of
the area discrete spectrum. By other words, the existence of a low-bound
for µ is not a consequence of fundamental properties of LQG and this short-
coming of the previous derivation leaves open the question about the proper
implementation of the dynamical constraint.

As soon as the super-Hamiltonian is concerned, the corresponding opera-
tor is inferred from the following expression one deals with in LQG

H = − 1

32π2γ3l4
P

∑
v

Hv, (7.1.15)

Hv = −ǫijkTr[h(sij)h(sk)[V, h−1(sk)]], (7.1.16)

where the sum is on all vertices v of the graph on which H acts, while sij

denotes the square starting in v with edges along directions ij and sk the edge
along k. All holonomies in the expression (7.1.16) are in the fundamental
representation. V is the volume operator in the full space.

The restriction to a FRW space-time implies to replace V and h(si) with
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p̂3/2V0 and ha
µ̄, µ̄ being the value at which the regularization should take

place, respectively. From Eq. (7.1.10) one finds

[V, ha
µ̄] = V0[p̂

3/2, ha
µ̄] = 8πγµ̄l2

P p̂1/21/2τaha
µ̄, (7.1.17)

which reproduces the following expression when inserted into the super-
Hamiltonian (7.1.16)

H = −∑
v

3µ̄

8πl2
Pγ2

p̂1/2 ˆsin
2
µ̄c. (7.1.18)

If we assume that each vertex gives the same contribution, then H can be
written as

H = − 3Nvµ̄3

8πl2
Pγ2µ̄2

p̂1/2 ˆsin
2
µ̄c, (7.1.19)

Nv being the total number of vertices of the fundamental graph underlying
the continuous space-time manifold. It is worth noting that the two expres-
sion (7.1.19) coincides with the analogous one in LQC if

V0 = Nvµ̄3 → µ̄ =

(
V0

Nv

)1/3

. (7.1.20)

Therefore, the assumption that the regularized super-Hamiltonian retains
the same expression as in LQC links µ̄ with the total number of vertices.

7.2. Semiclassical isotropization during a deSitter

phase

When describing the early Universe dynamics, it is convenient to distinguish
between the variables α, the isotropic component, and βab, the anisotropies.
In the ADM decomposition, the metric of a generic cosmological model can
be written in the form

ds2 = N2(t)dt2 − e2α(e2β)ab ωa ⊗ ωb , (7.2.1)

where α, N and βab are space-time functions, while ωa (a = 1, 2, 3) denote
the 1-forms of the spatial metric. The matrix βab is taken diagonal and with a
vanishing trace, and it has only two independent components, the so-called
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Misner variables β±, which are defined in terms of βab as follows

β11 = β+ +
√

3β−
β22 = β+ −

√
3β− (7.2.2)

β33 = −2β+.

When all spatial gradients are neglected, the super-Hamiltonian constraint
in the presence of a scalar field is given by

− p2
α + p2

+ + p2
− + p2

φ + e4αU(β+, β−) + e6αV(φ) = 0 , (7.2.3)

in which, pα and p± are the conjugate momenta to α and β± , respectively,
while V denotes the interaction potential of the scalar field φ.

The presence of the potential U(β+ , β−) is due to the spatial curvature of
the specific model and it is negligible when the Kasner-like regime holds
(Bianchi I model), while in the Bianchi IX case it reads as

U(β+β−) = e−8β+ + e4(β++
√

3β−) + e4(β+−
√

3β−) −
−2
[

e4β+ + e−2(β++
√

3β−) + e−2(β+−
√

3β−)
]

. (7.2.4)

It has been show that a classical limit for the gravitational field dynam-
ics can not take place before the Mixmaster ends and therefore the scenario
we are addressing here requires that inflation emerges from a quantum (or
a semiclassical) phase of the Universe. Thus, despite its apparent simplicity,
the following Hamiltonian constraint

− p2
α + p2

+ + p2
− + p2

φ + e6αρΛ(x
γ) = 0 (7.2.5)

properly describes a real phase of the early Universe evolution.

The canonical quantum dynamics is implemented by the requirement that
the constraint (7.2.3) is translated into an operator annihilating the local state
function ψx(α, β±). The Universe wavefunctional is then obtained as the in-
finite product of state functions taken on independent horizons, say Ψ =
Πxψx. To avoid many of the subtle questions concerning the inhomogeneous
functional sector, we address our main goal, the possibility that the vac-
uum energy isotropizes the Universe on a quantum or a semiclassical level,
by the analysis of the homogeneous Bianchi IX cosmological model. Apart
from the heuristic character of the long-wavelength approximation and some
technicalities concerning the supermomentum constraint, we are really confi-
dent that the simplified homogeneous analysis already contains all the phys-
ical ingredients to qualitatively describe the sub-horizon physics even in the
generic inhomogeneous case.

Let us now investigate the quantum dynamics of the Bianchi IX model,
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starting from the Bianchi type I.

At first, momenta are replaced by derivatives in the conjugate coordinates.
Then, the super-Hamiltonian constraint H = 0 leads to the Wheeler-DeWitt
equation (WDW), i.e.

[
ecα∂α

(
e−2bα∂αecα

)
− e−3α∆ + e3αV(φ)

]
ΨI(α, βr)=0 (7.2.6)

in which the Laplacian in the variables βr =β±, φ is

∆ = ∂2
+ + ∂2

− + ∂2
φ .

In Eq. (7.2.6) we wrote a symmetric super-Hamiltonian operator, introduc-
ing generic parameters b and c=b−3

2 . Such a choice for the operator ordering
is not the most general one, but it captures several cases. Moreover, we will
emphasize that the value of the parameter b does not affect the proposed
semi-classical picture.

Approaching the singularity the scalar field potential term can be neglected
and the solution is given by

ΨI(α, β±, φ) = e
3
2 α
∫

dk+dk−dkφ

√
2

3 Kk
(ak e

3
2 ıKα+ıkr βr

+ bk e−
3
2 ıKkα+ıkr βr

),

(7.2.7)
in which kr = {k±, kφ}, while ak and bk denote weights of the Fourier expan-
sion. The conjugate momentum to the variable α is

K =
2

3

√
ε2 − b2 , ε2 = k2

+ + k2
− + k2

φ . (7.2.8)

It is worth noting that the parameter b labeling the operator ordering enters
merely the definition of K. This fact means that b fixes the interval in the ǫ-
line where the solution has an oscillatory behavior. Because, we are interested
in developing wave-packets, we assume wave-functions to be negligible for
ǫ . b. In this regime, expectation values have actually no b-dependence.

The Hilbert space is L2(βr , dµ), where the scalar product is given by

< ψ2|ψ1 >=
ı

2

∫
e−3α [Ψ∗

2(∂αΨ1)− (∂αΨ∗
2)Ψ1] dβ+dβ−dφ (7.2.9)

which is positive-defined as far as the proper separation of frequencies oc-
curs by fixing ak =0 (such that the case of an expanding Universe is selected
out).

The localization of the solution (7.2.7) in the phase space at a given initial
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position βr
0 is achieved by the following Gaussian wave packets

bk =
1

(2π σ2)
3
4

exp

(
−

δk2
+ + δk2

− + δk2
φ

4 σ2

)
e−ikr βr

0 , (7.2.10)

where δkr = kr − k̄r, while the variances have the same values σ .

The evolution of wave-packets is investigated by virtue of a saddle point
expansion around k̄r and a proper semi-classical behavior is found. In partic-
ular, the evaluation of expectation values and variances gives

〈βr〉 = βr
0 − v̄r α +O(ε̄−

3
2 ), Σr v̄2

r = 1, (7.2.11)

〈∆βr2〉 = 1

4σ2
+

σ2 α2

ε̄2
+O(ε̄−3). (7.2.12)

Hence, for sufficient high values of ε̄ = ε(k̄r) the behavior of expectation
values is approximated by the Kasner-like dynamics. The restriction to high
values of ε̄ corresponds to the well-known result that the semi-classical pic-
ture is inferred only for high values of the initial momenta. In what follows,

we will consider the corrections of the ε̄−
3
2 order to be negligible.

In this scheme a measure of the spread of wave packets is given by the ratio
of the square root of variances with 〈βr〉. In particular, such a quantity at late
times goes as √

〈∆βr2〉
〈βr〉 ≈ σ

v̄r ε̄
+ O(ε̄−

3
2 ) , (7.2.13)

such that the wave-function spread tends to a constant value. This fact im-
plies that proper initial conditions can be chosen for gaussian wave-packets
such that they remain well-localized around expectation values and the semi-
classical picture holds.

Therefore, Gaussian wave functions are proper semi-classical states for the
Bianchi type I model in the presence of the scalar field.

The WDW equation for a Bianchi type IX model is modified by the pres-
ence of the 3-dimensional scalar curvature, which acts as a potential term and
whose expectation value on semi-classical states gives

lim
α→−∞

〈e4αU〉 ∝ lim
α→−∞

e
8

σ2 [e4α(1+2v̄+) +

+e4α(1−v̄+−
√

3v̄−) + e4α(1−v̄++
√

3v̄−)] +O(ε̄−
3
2 ) . (7.2.14)
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This expression approaches 0 when






1 + 2 v̄+ > 0

1 − v̄+ −
√

3 v̄− > 0

1 − v̄+ +
√

3 v̄− > 0

⇒






v̄2
+ <

1
4

v̄2
− <

1
12

2
3 < v̄2

φ < 1

. (7.2.15)

The conditions above coincide with the relations found in a classical frame-
work to remove the chaotic behavior. Hence, to restrict the domain of the
parameters v̄±, v̄φ according with inequalities (7.2.15) guarantees that both
the classical and the semi-classical dynamics of the Bianchi type IX model
resembles that of a Bianchi type I space.

Therefore, the obtained results support the idea that the proposed scenario
realizes a proper semi-classical description of the Early phases of the Uni-
verse.

A quasi-isotropization mechanism is required in order to suppress anisotropies,
so reconciling the early Universe dynamics with its late evolution. Inflation
can provide such a suppression on a classical level. Here we are going to
realize the inflationary phase via the introduction of a scalar field (the infla-
ton), which acquires a non-vanishing vacuum expectation value modeled by
a cosmological constant ρΛ.

The WDW equation associated with a Bianchi type I model in the presence
of a scalar field and of a cosmological constant is given by (we fix c = 0,
because as in the previous case a different operator ordering does not provide
any significant modification to the quasi-isotropization mechanism)

e−3α
[

∂2
α − 3∂α − ∆ + e6αρΛ

]
Ψ(α, β±, φ) = 0 . (7.2.16)

The solution of such an equation restricted to negative frequencies has the
following form

Ψ(α, βr)=
∫

dk+dk−dkφbk
Γ(1+nk)√

Nk
Jnk

[z(ρΛ, α)]e
3
2 α−ıkr βr

, (7.2.17)

in which Nk is the normalization factor, K retains the form (7.2.8), while Γ(1+
nk) and Jnk

(z) denote the Gamma function and the Bessel function of the first

kind, respectively, where nk =− ı
2K and z(ρΛ, α)=

√
ρΛ

3 e3α.

Eq. (7.2.16) aims to describe the phase of the Universe when the transition
from the anisotropic to the isotropic regime takes place. In order to charac-
terize such a transition, the two relevant cases z ≪ 1 and z ≫ 1 are going to
be discussed separately.

Let us consider the early phase, where z =
√

ρΛ

3 e3α ≪ 1 and the Bessel
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function can be expanded as follows

Jn(z) =
+∞

∑
l=0

(
z
2

)2l+n

Γ(1 + l + n) l!
−→

(
z
2

)n

Γ(1 + n)
, (7.2.18)

such that the solution (7.2.17) can be approximated by the following asymp-
totic form

Ψ(α′, βr) = e
3
2 α′
∫

dk+dk−dkφ

√
2

3 K
bk e−ı( 3

2 Kkα′+kr βr).

The expression above coincides to the solution of the Bianchi type I case
in the presence of a scalar field (7.2.7) in terms of the re-defined isotropic
variable α′, which is given by

α′ = α +
1

3
ln

√
ρΛ

6
. (7.2.19)

The wave packets can be developed according with the procedure adopted
in the previous cases and all quantities are now functions of α′.

The evaluation of expectation values for operators corresponding to phase-
space coordinates can be carried on just like in the case of a Bianchi type I
model. Hence, wave-packets remain well localized around the classical tra-
jectory.

Therefore, for α ≪ 1
3 ln 3√

ρΛ
, the presence of the cosmological constant term

ρΛ does not modify significantly the semi-classical picture inferred for the
early Universe dynamics, which can be described by the Bianchi type I model
in the presence of a scalar field.

For z ≫ 1, the Bessel functions can be approximated with the following
expression

Jn(z) ≈
1√
2πz

[
eı(z− n π

2 − π
4 ) + e−ı(z− n π

2 − π
4 )
]

.

The solution of the WDW equation within this scheme turns out to be given
by

Ψ(α, βr)=
∫

dk+dk−dkφ
bke−ı(kr βr) e−ı(

√
ρΛ
3 e3α− π

4 −
nk
2 )

√√
ρΛ sinh(ınk)

. (7.2.20)

The explicit computation of Gaussian wave-packets is performed by a saddle-
point expansion around the expectation value. Finally, the behavior of the
expectation values and of the variances at late time is given by

〈βr〉 = βr
0 +O(ε̄−

3
2 ), 〈∆βr2〉 = 1

4σ2
+O(ε̄−3). (7.2.21)
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It is worth noting that in the adopted approximation scheme the evaluation

of
√
〈∆βr2〉/〈βr〉 gives

√
〈∆βr2〉
〈βr〉 ≈ 1

4σ2βr
0

+ O(ε̄−
3
2 ). (7.2.22)

The quantity above does not depend on the time-like variable and it can be
set smaller than any given quantity by a proper choice of initial conditions βr

0
and σ. This fact implies that the semi-classical picture is consistent with the
adopted approximation scheme.

Furthermore, the expectation values of anisotropies freeze out to constant
values, corresponding to the chosen initial conditions. Because constant β can
always be avoided by a re-definition of the 1-form ωa of the spatial metric,
the final space does not contain anisotropies and this scenario offers a bridge
between a Bianchi type I model and a late isotropic phase.

Hence, the quasi-isotropization mechanism works also in the semi-classical
regime. Therefore, a cosmological constant term can determine the isotropiza-
tion of the Universe, even if the spontaneous symmetry breaking process
(by which a vacuum energy expectation value arises) takes place during the
quantum phase of the Universe.

7.3. Canonical Quantum Gravity without the time

gauge

The development of a proper Hilbert space representation for the diffeomor-
phism group is one of the most compelling issue in Quantum Gravity. The
major achievements have been obtained by Loop Quantum Gravity (LQG),
in which the action of spatial diffeomorphisms can be properly implemented
on a quantum level and the invariant subspace can be defined. The situa-
tion with time re-parameterizations is different, since the associated gener-
ator can be represented on the kinematical Hilbert space, but the physical
Hilbert space has not been achieved yet. For these reasons, LQG is the most
promising approach to Quantum Gravity, but still not a definitive theory.

LQG is based on applying quantization techniques proper of lattice gauge
theory, as soon as the emergence of a SU(2) gauge structure alá Yang-Mills at
the Hamiltonian level has been recognized. This SU(2) symmetry has been
inferred after a gauge fixing of the full local Lorentz group, via the so-called
time-gauge condition. Our analysis is devoted to investigate whether this
SU(2) gauge invariance can be find out without any restriction of the local
Lorentz frame.

At first we consider the case of vacuum gravity [23], described by the Holst

2396



7.3. Canonical Quantum Gravity without the time gauge

action, which reads as follows (in units 8πG = 1)

S =
1

2

∫ √
−ge

µ
Aeν

BRCD
µν (ωFG

µ )γpAB
CDd4x, (7.3.1)

g being the determinant of the metric tensor gµν with 4-bein vectors eA
µ and

spinor connections ωAB
µ , while the expressions for RAB

µν and γpAB
CD are

RAB
µν = 2∂[µωAB

ν] − 2ωA
C[µωCB

ν] , γpAB
CD = δAB

CD − 1

2γ
ǫAB

CD. (7.3.2)

Here γ is the Immirzi parameter.

Let us take ωAB
i as configuration variables. By a Legendre transformation,

conjugate momenta γπi
AB = γpCD

ABπi
CD can be defined.

The full Hamiltonian turns out to be

H =
∫ [

1

egtt
H − gti

gtt
Hi − ωAB

t
γpCD

ABGCD + λijC
ij + ηijD

ij

]
d3x, (7.3.3)

where 1/egtt, gti/gtt, γpCD
ABωAB

t , λij, are ηij behave as Lagrangian multi-
pliers, while constraints are given by





H = πi
CFπ

jF
D

γpCD
ABRAB

ij = 0

Hi =
γp CD

AB π
j
CDRAB

ij = 0

GAB = Diπ
i
AB = ∂iπ

i
AB − 2ω C

i[A
πi
|C|B] = 0

Cij = ǫABCDπ
(i
ABπ

j)
CD = 0

Dij = ǫABCDπk
AFπ

(iF
BDkπ

j)
CD = 0

. (7.3.4)

H and Hi denote the super-Hamiltonian and the super-momentum, re-
spectively, and their vanishing accounts for the invariance under time re-
parameterizations and spatial diffeomorphisms, respectively. GAB = 0 are
the Gauss constraints of the Lorentz symmetry and the whole Hamiltonian
formulation looks close to a Yang-Mills gauge theory for the local Lorentz
group. But the presence of Cij = 0 and Dij = 0 makes the constraint algebra
second-class and before performing the analysis of constraints the reduction
to a first class set must be provided.

This reduction is performed by fixing ωab
i and πi

ab such that the conditions
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Cij = 0 and Dij = 0 hold identically. In particular we set

ω b
a i =

πω b
a i + χaω0b + χb(ω 0

a i − πDiχa), πi
ab = χ[aπi

b] (7.3.5)

πi
b being πi

0b, while πω b
a i =

1
π1/2 πb

l
3∇i(π

1/2πl
a) with π the determinant of

πa
i and T−1

ab = ηab + χaχb.
The function χa are three arbitrary space-time functions which gives the

components et
a of the frame. Hence, χa are promoted to configuration vari-

ables, such that no gauge fixing of the local Lorentz frame occurs, while
second-class constraints are solved.

Therefore, we defined the new phase coordinates as χa and conjugate mo-
menta πa, while other variables are fixed such that the associated momenta
are densitized 3-bein of the spatial metric π̃i

a, which read as follows

π̃i
a = Sb

aπi
b, Sa

b =
√

1 + χ2δa
b +

1 −
√

1 + χ2

χ2
χaχb, (7.3.6)

From the analysis of the induced symplectic form, remaining configuration
variables are

(γ)Ãa
i = S−1a

b

(
γ(1 + χ2)Tbc (ω0ci +

πDiχc)−

−1

2
ǫb

cd
πω

c f
iT

−1d
f +

2 + χ2 − 2
√

1 + χ2

2χ2
ǫbcd∂iχcχd

)
. (7.3.7)

In the adopted set of coordinates the conditions GAB = 0 are equivalent to

Ga = ∂i
(γ)π̃i

a + ǫabc
(γ)Ãb

i
(γ)π̃i

c = 0. πa = 0. (7.3.8)

It is worth noting that

- the Gauss constraints of a SU(2) gauge structure arises also when the

time-gauge condition is relaxed, such that ((γ)Ãa
i are generalized Ashtekar-

Barbero-Immirzi connections;

- χa are non-dynamical variables.

Summarizing the previous analysis, the action of GR with the Holst modi-
fication can be written in a generic local Lorenz frame as follows

S =
∫

d4x

[
(γ)π̃i

a∂t
(γ)Ãa

i + πa∂tχa −
1√
ggtt

H +
gti

gtt
Hi + ηaGa + λaπa

]
.

The set of kinematical Hamiltonian constraints reproduces a background-
independent SU(2) gauge theory.
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7.3. Canonical Quantum Gravity without the time gauge

As soon as a quantum description is addressed, any dependence from
χa variables can be avoided (as for the lapse function and the shift vector).
Therefore, the LQG standard quantization in terms of holonomies and fluxes of the
SU(2) group works, even though no gauge fixing of the local Lorentz frame has been
performed. As a consequence, the discrete geometrical operator spectra which
are inferred on a quantum level are invariant under local Lorentz transfor-
mations and no modification of the local Lorentz symmetry is expected to be
induced by the existence of a minimal length.

The same achievements are obtained in presence of fundamental matter
fields:

- in [24] a non-minimally coupled scalar field φ is added. This case is
interesting since it mimics some feature of f (R) model for gravity, as
soon as a scalar-tensor representation is addressed.

The full action action reads

S =
∫ √

−g

[
F(φ)e

µ
Aeν

BRCD
µν

γpAB
CD +

1

2
gµνK(φ)∂µφ∂νφ − V(φ)

]
d4x,

(7.3.9)

V being the potential, while a non-standard kinetic term is considered,
by taking an arbitrary function K(φ).

The function F(φ) − 1 gives the amount of the non-minimal coupling
between the geometry and the scalar field.

The Hamiltonian analysis is performed along the lines of the vacuum
case and the conditions (7.3.8) still arise. Therefore, the LQG quantiza-
tion can be applied also in this case and this feature opens interesting
perspectives for the quantum analysis of f (R)-models.

It is worth noting that in view of the non-minimal coupling the fun-
damental quantity on a quantum level is the re-scaled metric φhij =
F(φ)hij , such that the field φ enters the spectra of geometrical opera-
tors.

- in [25] β = 1/γ is promoted to be an external scalar field, in order to
remove the Immirzi ambiguity. The associated Lagrangian density is
developed via a canonical kinetic term and a potential V(β), such that
the full action reads

S =
∫ √

−g

[
e

µ
Aeν

B

(
RAB

µν − β

2
RCD

µν ǫAB
CD

)
+

1

2
gµν∂µβ∂νβ − V(β)

]
d4x.

(7.3.10)
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To carry on the procedure adopted in the previous cases, second-class
constraints solutions have to be generalized as follows

ω b
a i =

πω b
a i + χaω0b + χb(ω 0

a i − πDiχa) +
1ω b

a i πi
ab = 2χ[aπi

b]

(7.3.11)

where the modification reads

1ωab
i = T

[a
c

(
− 2(1 + χ2)2

χ4 + 2χ2 + 2
ηb]d +

2 + χ2

χ4 + 2χ2 + 2
χb]χd

)
πc

i π
j
d

β∂jβ

β2 + 1
.

(7.3.12)

The new set of canonically conjugate variables is given by

{(β)Ãa
i , χb, (β)π̃

j
c, πd, β, (β)π̃}, where configuration variables associated with

the geometry take the expressions

(β)Ãa
i = S−1a

b

(
1 + χ2

β
Tbc

(
ω0ci +

πDiχc −
1

1 + χ2
1ω d

c iχd

)
−

−1

2
ǫb

cd(
πω

c f
iT

−1d
f + 1ωcd

i) +
2 + χ2 − 2

√
1 + χ2

2χ2
ǫabc∂iχbχc

)
,(7.3.13)

while conjugate momentum to β changes as

(β)π̃ = βπ − 1

β
(β)π̃i

a

(
(β)Ãa

i +
1

2
ǫa

bc
(β)ω̃bc

i

)
. (7.3.14)

Also in this scheme geometrical variables (β)π̃i
a describe the fictitious re-

scaled spatial metric βhij = βhij and the true one hij is a derived quantity.

Finally, the kinematical sector is given by the constraints

Ga = ∂i
(β)π̃i

a + ǫ c
ab

(β)Ãb
i
(β)π̃i

c = 0, πa = 0, Hi =
(β)π̃

j
a

βF̃a
ij +

(β)π̃∂iβ = 0.

(7.3.15)

The emergence of the SU(2) Gauss constraints makes the whole LQG
quantization procedure well-grounded, while χa do not play any dy-
namical role. As for the super-momentum, it coincides with the one of
gravity in presence of a scalar field non-minimally coupled to gravity,
so the kinematical Hilbert space is the same as for a scalar field.

The super-Hamiltonian is given by

H =
(β)π̃i

a
(β)π̃

j
b

2
ǫ c

ab
(β)F̃c

ij −
(β2 + 1)

β2
(β)π̃i

a
(β)π̃

j
b

(
∂[i

(β)ωab
j] − (β)ωac

[i
(β)ω b

c j]

)
+

+
1

2
βπ2 − ββhβhij(β)∇̃i∂j

(
1

β

)
+

βhβhij

2
∂iβ∂jβ + βh

V

β3
, (7.3.16)
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and it differs significantly with respect to the case a scalar field is present.
Hence the Immirzi field has peculiar dynamical features, whose analy-
sis will allow to identify it as a distinctive component of the cosmolog-
ical bath, once the implementation of this scenario in the framework of
Loop Quantum Cosmology is addressed.

Among these peculiarities, it is worth noting that if a quartic potential
is assumed for β, i.e. V(β) = µ2β2 + 1

4λβ4, a non-vanishing minimum
is predicted for the effective potential

Ve f f (β) =
V

β3
=

µ2

β
+

λ

4
β → β2

min = 4
µ2

λ
. (7.3.17)

Hence neglecting spatial gradients and the interaction with the geome-
try, a dynamical relaxation to a non-vanishing expectation value is predicted
for the Immirzi field. This relaxation is able to explain the parametric
role of γ in standard LQG. The contributions that oscillations around
this minimum give to the dynamics of the gravitation field are actually
under investigation.

- in [29] it has been added a spinor field with a nonminimal lagrangian
density, whose action reads

Sψ =
i

2

∫ √
−g
[
(ψ̄γµ(1 + iαγ5)Dµψ − Dµψ̄(1 + iαγ5)γ

µψ)
]

d4x, (7.3.18)

α being the nonminimal parameter.

The Hamiltonian analysis outlines that the constraints Cij = Dij = 0
are modified, such that new solutions are given by the following ex-
pressions

πi
ab = 2χ[aπi

b], ω b
a i =

πω c
a iT

−1b
c + χaω0b

i + χb(ω 0
a i − ∂iχa) +

ψω b
a i,

(7.3.19)

where

ψω b
a i =

1

4

γ(γ − α)

(1 + γ2)
√

1 + χ2
ǫab

cπc
i (J0 +χd Jd)− 1

2

γ(1 + αγ)

γ2 + 1
πc

i T
−1[a
c ηb]d(Jd −χd J0),

(7.3.20)

with JA =
√

hψ̄γ5γAψ.
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By redefining connections as follows

Ãa
i = S−1a

b

(
(1 + χ2)Tbc (ω0ci +

πDiχc)−
1

2γ
ǫb

cd(
πω

c f
iT

−1d
f +

+ψωcd
i) +

2 + χ2 − 2
√

1 + χ2

2γχ2
ǫbcd∂iχcχd

)
,(7.3.21)

and boosting spinors, i.e. ψ = eiχaΣ0aψ∗, the SU(2) Gauss constraints
with a source term arise, while χa turn out to be nondynamical,

∂iπ̃
i
a + γǫ c

ab Ãb
i π̃i

c = −γ

2
J∗a , πa = 0, (7.3.22)

where J∗A =
√

hψ̄∗γAγ5ψ∗ is the axial component of the fermion current.

The super-momentum and the super-Hamiltonian for the spinor part
get simplified for α = γ,

H
ψ
i =

i

2

√
h(ψ̄∗γ0(1 + iγγ5)

(A)Diψ
∗ − (A)Diψ̄

∗(1 + iγγ5)γ
0ψ∗),

Hψ =
i

2
π̃i

a

(
ψ̄∗γa(1 + iγγ5)

(A)Diψ
∗ − (A)Diψ̄

∗(1 + iγγ5)γ
aψ∗
)
− 1 + γ2

16
√

h

AJc
AJc.

where (A)Diψ = ∂iψ− i
2γÃa

i Taψ and the gauge generator is Ta = ǫ bc
a Σbc.

Within this scheme, the Immirzi parameter resembles the coupling con-
stant for a Yang-Mills SU(2) interaction. Moreover, it is worth noting
the presence of the 4-fermion terms, which makes the theory nonrenor-
malizable in the perturbative approach.

7.4. The problem of time in quantum gravity

The definition of a proper time variable is among the most compelling issues
in Quantum Gravity. This problem originates from the 4-diffeomorphism in-
variance of General Relativity, which implies that the total Hamiltonian is a
linear combination of constraints and it vanishes on physical states. There-
fore, no evolution at all is predicted as soon as the constraints are imple-
mented alà Dirac on the wave-function.

A possible solution consists is using some kind of matter as a physical
clock. In this respect, Brown and Kučhar considered the case in which a
dust-fluid is coupled with the gravitational field and they found that the
super-Hamiltoian constraint can be re-written in the form of a meaningful
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Schrödingher equation, i.e.

π(x)− h(q, P)(x) = 0 (7.4.1)

where π is the momentum conjugate to one of the fluid variables, τ. This
way one can write down the equation for the physical evolutionary quantum
states:

− ih̄
d

dτ
ψ = ĥψ, (7.4.2)

where the notion of time is recovered from the coupling of GR with the
fluid. This is the so called Kučhar-Brown mechanism, which is applied here
to a perfect fluid composed by baryons (Schutz fluid).

The equation of state describing such a fluid depends on two parameters
and it can be wrtitten as

p =

(
µ

1 + Π
− 1

)
ρ, (7.4.3)

ρ being the density of total mass-energy, while Π is the specific internal en-
ergy. Hence the whole dynamical system is much more complicated than the
standard dust fluid and, in a cosmological setting, we think it better approx-
imates the behavior of the thermal bath.

The relativistic description of the fluid is addressed using six scalar fields,
which enter the 4-velocity as follows

Uν = µ−1(φ,ν + αβ,ν + θS,ν) = µ−1vν. (7.4.4)

The Lagrangian is given by

LF =
√
−gρ0(

√
vµvµ − TS), (7.4.5)

ρ0 being the rest mass-energy distribution, while T is the temperature and the
field S can be interpreted as the entropy per barion.

After defining conjugate momenta, the following second-class system of
constraints is obtained

χ1 = pα = 0, χ2 = pβ − απ = 0, χ3 = pθ = 0, χ4 = pS − θπ,
(7.4.6)

π being the conjugate momentum to φ. Finally, the Hamiltonian of the
fluid reads

HF = N

(√
(π2 − qρ2

0)V + qρ0TS

)
+ Naπva, (7.4.7)

N and Na being the lapse function and the shift vector, respectively.

In presence of gravity the total Hamiltonian contains the super-Hamiltonian
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HG and the super-momentum HG
a of the gravitational field as follows

H =
∫

d3x(HN + HaNa) = (7.4.8)

=
∫

d3x

[
N

(√
V(π2 − qρ2

0) +
√

qρ0ST + HG) + Na(πva + HG
a

)]
. (7.4.9)

It can be shown, using Dirac brackets to account for the presence of the
conditions (7.4.6), that H and Ha preserve their role of generators of the diffeomor-
phisms and exhibit a closed algebra.

The Brown-Kuchař mechanism can be applied by squaring the
super-momentum and imposing it on the super-Hamiltonian. The resulting
expression can be solved for π, so finding

π ±
√

ρ0q
d

d − Ξ2
= 0 = π − h, (7.4.10)

where Ξ =
√

qρ0ST + HG and d = HG
a HG

b qab. The smeared version of the h
function is invariant under 3-diffeomorphisms and commutes with itself, so
it has all the properties to be the physical Hamiltonian.

In the case of a co-moving frame, the time-variable so obtained coincides
with the specific entropy of the fluid. In fact, in this case one has

SpS =
θHG

T
= h, (7.4.11)

which integrated over the spatial manifold gives the equation:

{H̄phys,O f (τ)} =
d

dlnS
O f (τ). (7.4.12)

So one can identify the time parameter τ with the logarithm of the entropy per
baryon. This result fixes an intriguing correspondence between time in Quan-
tum Gravity and the thermodynamical time. Therefore, the implementation
of this model in a cosmological setting could give an insight on the interplay
between matter and geometry in Quantum Cosmology.

7.5. Quantum suppression of weak-anisotropies

In this section we show how a semi-classical mechanism, which leads to
an isotropic configuration for an inhomogeneous quasi-isotropic Universe,
can be developed. In particular, we obtain a wave function of the Universe
which has a clear probabilistic interpretation when the isotropic scale factor
a of the Universe is regarded as a semi-classical variable, differently from the

2404



7.5. Quantum suppression of weak-anisotropies

anisotropy parameters that are regarded as purely quantum ones. The quan-
tum part of this wave function describes the evolution of the anisotropies
of the inhomogeneous Mixmaster Universe and its dynamics is traced with
respect to a, which can be regarded as a semi-classical variable when the Uni-
verse expands sufficiently.
The scalar constraint H = 0, in the Misner scheme, reads

H(xi) = κ

[
− p2

a

a
+

1

a3

(
p2
+ + p2

−
)]

+
a

4κ
V(β±) + U(a) = 0. (7.5.1)

where the potential term V(β±) accounts for the spatial curvature and the
potential term U(α) is the isotropic one.
In agreement with the WKB approximation, assuming ab initio that the ra-
dius of the Universe is of different nature with respect to its shape changes,
the wave functional of the Universe Ψ = Ψ(a, β±) reads

Ψ
a→0−→ ∏

i

Ψi(x
i), Ψi = ψ0χ = A(a)eiS(a)χ(a, β±) (7.5.2)

where the factorization is due to decoupling of the spatial point.
The Wheeler-DeWitt (WDW) equation for this model leads, considering (7.5.2),
to three different equations. We obtain the Hamilton-Jacobi equation for S
and the equation of motion for A, which respectively read

− κA
(
S′)2

+ aUA + Vq = 0,
1

A

(
A2S′

)′
= 0. (7.5.3)

Here (·)′ = ∂a and Vq = κA′′ is the so-called quantum potential which is
negligible far from the singularity even if the h̄ → 0 limit is not taken into ac-
count. The action S(a) defines a congruence of classical trajectories, while the
second equation in (7.5.3) is the continuity equation for the amplitude A(a).
The third equation we achieve, once simplified in the asymptotic region a ≫
λ/

√
Λ, and once the quasi-isotropic regime, i.e. |β±| ≪ 1 is taken into ac-

count, describes the evolution of the quantum subsystem and is given by

i∂τχ = Ĥqχ =
1

2

(
−∆β + ω2(τ)(β2

+ + β2
−)
)

χ, (7.5.4)

where ω2(τ) = C/τ4/3 is a time-dependent frequency, C being a constant,

and where τ behaves as τ = (κ/12
√

Λ)a−3 +O(a−5) and it is chosen as time
coordinate.
The dynamics of the Universe anisotropies subsystem can then be regarded
as a time-dependent bi-dimensional harmonic oscillator with frequency ω(τ).

The exact solution can be obtained by the use of the invariants method and
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Figure 7.1.: The absolute value of the ground state of the wave function
χ(β± , τ) far from the cosmological singularity. In the plot we take C = 1.

by means of some time-dependent transformations and is given by

χn±(β±, τ) = A
eiαn(τ)

√
ρ

hn(ξ±) exp

[
i

2

(
ρ̇ρ−1 + iρ−2

)
β2
±

]
, (7.5.5)

where ρ = ρ(τ) and αn(τ) are functions depending by the solving method,
A is the normalization constant and hn are the usual Hermite polynomial of
order n.

The wave function of the Universe is spread over all values of anisotropy
near the cosmological singularity but, when the radius of the Universe grows,
it is asymptotically peaked around the isotropic configuration. In other words,
the closed FRW model is naturally the privileged state when a sufficient large
volume of the Universe is taken into account. This way, a semi-classical
isotropization mechanism for the Universe is obtained.

7.6. Quantum behavior of the Universe for the

small oscillations

In this section we study the behavior of the wave function of the Universe,
when the small oscillations regime is approached. In particular, we obtain a
wave function of the Universe which has a clear probabilistic interpretation
when the volume α of the Universe and one of the anisotropy parameters β+

are regarded as semi-classical variables, on respect the remaining anisotropy
parameter that is regarded as purely quantum one. The quantum part of this
wave function describes the evolution of the anisotropies of the inhomoge-
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neous Mixmaster Universe and its dynamics is traced with respect to α.
In this regime, the potential term accounting for the curvature of the model,
in the scalar constraint is approximated so that

V(β) ∼ 1 + 16e4b+β2
− ; β+ → +∞ ; |β−| ≪ 1 (7.6.1)

The scalar constraint H = 0, in the Misner scheme, reads

H(xi) = e−3α
(
−p2

α + p2
+ + p2

−
)
+ eα [V(β)− 1] + Λe3α = 0 (7.6.2)

and with the last approximation on the V(β) term, it transforms as

H(xi) = e−3α
(
−p2

α + p2
+ + p2

−
)
+ 16eα+4β+ + Λe3α = 0 (7.6.3)

Distinguishing between semi-classical and quantum variables, following the
initial reasoning, the wave functional of the Universe reads:

Ψ = Ψ0χ = A(α, β+)e
i
h̄ S(α,β+)χ (α, β+, β−) (7.6.4)

This wave function is WKB-like in α and β+, the function χ depends on the
quantum variable β− and parametrically only on the scale factor and the
other anisotropy parameter.

The Wheeler-DeWitt (WDW) equation for this model leads to three differ-
ent equations. We obtain the Hamilton-Jacobi equation for S and the equation
of motion for A, which respectively read

1

h̄2
A
[
(∂+S)2 − (∂αS)2

]
+
(

∂2
αA − ∂2

+A
)
+ Λe6α A = 0 (7.6.5)

2

h̄
(∂αA∂αS − ∂+A∂+S) +

1

h̄
A
(

∂2
αS − ∂2

+S
)
= 0 (7.6.6)

Lastly we achieve an equation describing the evolution of the quantum sub-
system: We obtain:

2i

h̄
(∂αS∂αχ − ∂+S∂+χ) = −Hqχ (7.6.7)

where
− Hq = ∂2

− − 16e4(α+β+)β2
− (7.6.8)

Rescaling the lapse function to have a positive foliation of the space-time,
introducing a new time coordinate τ related to α and connecting the semi-
classical anisotropy parameter to the volume of the Universe, we obtain a
Schröedinger-like equation for the quantum sub-system, ruled by the new
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time coordinate:

i
∂χ

∂τ
= −∂2

− + Ω2 (τ) β2
− (7.6.9)

where
Ω (τ) = B

1
2 τ

1
2 (7.6.10)

with B = const.

The exact solution can be obtained by the use of the invariants method and
by means of some time-dependent transformations and is given by

χ− (β−, τ) = eiαn(τ)

(
1

π
1
2 h̄

1
2 n−!2n

−ρ

) 1
2
∣∣∣∣∣Hn−

(
β−

h̄
1
2 ρ

)∣∣∣∣∣ e
i

2h̄

(
ρ̇
ρ+

i
ρ2

)
β2
−

(7.6.11)

Analyzing the probability density related to this wave function we can see
that it’s peaked around small values of the anisotropy parameter β−, or in
other words, the Taub configuration is deeply favored from the probabilistic
point of view once we are not too far from cosmological singularity.
The last step of this work that we are attempting to solve, is analyze the
beahviour of the quantum sub-system once are investigated region far from
the cosmological singularity.

7.7. Regularization and Quantization of

Einstein-Cartan theory

The self-dual connection of a Yang-Mills gauge theory introduced in the Ashtekar
formalism for General Relativity is crucial for the canonical quantization pro-
cedure, leading to the non-perturbative quantum theory of gravity, Loop Quan-
tum Gravity. The complex Ashtekar’s connection with reality condition and
the real Barbero real connection are linked by a canonical transformation
of the connection with the Immirzi parameter γ 6= 0, which has crucial
effects on quantum gravity at the Planck energy scale, but does not affect
the classical dynamics of torsion-free gravity. However, when fermion fields
are present and coupled to gravity, yielding a non-vanishing torsion tensor,
and the Einstein-Cartan theory for torsion-free gravity coupling to fermions
should be modified. Indeed, the four-fermion interacting strength in the
Einstein-Cartan theory is related to the Immirzi parameter, which can pos-
sibly lead to physical effects observable. Thus, it is worthwhile to study the
dynamics of these quadralinear terms of fermion fields in terms of the four-
fermion interacting strength to see whether effective bilinear terms of mas-
sive fermions are generated.
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Einstein-Cartan theory.

To derive the Einstein-Cartan theory we use the following notations. M the
4-dimensional Euclidean space-time manifold, In the Ashtekar formalism for
General Relativity and gµν space-time matrix with signature (+,+,+,+). For
the tetrad formalism, we fix a four-dimensional vector space V equipped with
a fixed metric ηab of signature (+,+,+,+), which will serve as the ‘internal
space’. Orthonormal co-tetrats will be denoted by by ea

µ; thus gµν = ηabea
µeb

ν.
In this vector space, the conventions of Dirac γ-matrices are: communication
{γa, γb} = −2ηab; anti-hermitian γ†

a = −γa and γ2
a = −1 (a = 0, 1, 2, 3). The

hermitian γ5-matrix γ†
5 = γ5, γ5 = γ5 = γ0γ1γ2γ3 = γ0γ1γ2γ3 and γ2

5 = 1.

The hermitian spinor matrix σab = i
2 [γ

a, γb], and ǫµνρσ = ǫabcdea
µeb

νec
ρed

σ is
totally antisymmetric tensor.

In the Palatini framework, the basic gravitational variables constitute a pair
of tetrat and spin-connection fields (ea

µ, ωab
µ ). They are 1-form fields on M the

4-dimensional Euclidean space-time manifold, taking values, respectively, in
the vector space V and in the Lie algebra so(η) of the group SO(η) of the
linear transformations of V preserving ηab = (+,+,+,+). The 2-form cur-
vature associating with the spin-connection is

Rab = dωab − ωae ∧ ωb
e. (7.7.1)

The Palatini action for gravitational field is given by,

SP(e, ω) =
1

4k

∫

M

d4x det(e)ǫabcdea ∧ eb ∧ Rcd, (7.7.2)

where k ≡ 8πG. The relationship between spin-connection ωab
µ and the tetrat

ea
µ is determined by δSP(e, ω)/δω = 0, Cartan’s structure equation,

dea − ωab ∧ eb = 0, (7.7.3)

which gives the torsion-free spin-connection: ω = ω(e). Replacing ω in
Eq. (7.7.2) by ω = ω(e), the Palatini action SP[e, ω(e)] reduces to the Einstein-
Hilbert action and its variation with respect to the tetrad field ea

µ leads to the
Einstein field equation,

ǫabcdeb ∧ Rcd[ω(e)] = 0. (7.7.4)

Adding the Host modification with the Immirzi parameter γ, one has

SH(e, ω) = SP(e, ω)− 1

2kγ

∫

M

d4x det(e)ea ∧ eb ∧ Rab. (7.7.5)

Introducing massless Dirac fermions ψ coupled to the gravitational field de-
scribed by (ea

µ, ωab
µ ), we adopt the fermion action of Ashtekar-Romano-Tate
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type,

SF(e, ω, ψ, ψ̄) =
1

2

∫

M

d4x det(e)
[
ψ̄eµ

Dµψ + h.c.
]

, (7.7.6)

where the covariant derivative

Dµ = ∂µ −
i

4
βωµ, (7.7.7)

β is the gauge coupling between fermion and spin-connection fields, Dirac-
matrix valued tetrad and spin-connection fields are eµ ≡ e

µ
a γa and ωµ ≡

ωab
µ σab. The anti-hermitian Dirac matrix γ†

a = −γa, γ2
a = −1 (a = 0, 1, 2, 3),

{γa, γb} = −2ηab, and the hermitian spinor matrix σab = i
2 [γ

a, γb]. The ac-
tions (7.7.2,7.7.6) are invariant under the diffeomorphisms of the manifold M,
and can be separated into left- and right-handed parts, with respect to local
SUL(2)− and SUR(2)− Lorentz symmetries.

This can be shown by writing Dirac fermion ψ = ψL + ψR, where Weyl
fermions ψL,R = PL,Rψ, PL,R = (1 ∓ γ5)/2; and Dirac-matrix valued tetrad
and spin-connection fields eµ = PLeµ + PReµ and ωµ = PLωµ + PRωµ.

The Palatini action (7.7.2) and fermion action (7.7.6) give the Einstein-Cartan
action,

SEC = SP(e, ω) + SF(e, ω, ψ, ψ̄). (7.7.8)

Analogously to Eq. (7.7.3), δSEC(e, ω)/δω = 0 gives Cartan’s structure equa-
tion,

dea − ωab ∧ eb − Ta = 0, (7.7.9)

where the non-vanishing torsion field Ta = kβeb ∧ ec Jab,c, relating to the
fermion spin-current

Jab,c =
i

4
ψ̄{σab, γc}ψ =

1

4
ǫabcdψ̄γdγ5ψ, (7.7.10)

and {σab, γc} = iǫabcdγ5γd. The hermitian γ5-matrix γ5 = γ5 = γ0γ1γ2γ3 =
γ0γ1γ2γ3, γ†

5 = γ5 and γ2
5 = 1. The totally antisymmetric tensor ǫµνρσ =

ǫabcdea
µeb

νec
ρed

σ. The solution to Eq. (7.7.9) is

ωab
µ = ωab

µ (e) + ω̃ab
µ , ω̃ab

µ = kβec
µ Jab

c, (7.7.11)

where the connection ωab
µ (e) obeys Eq. (7.7.3) for torsion-free case. The fermion

spin-current (7.7.10) contributes only to the pseudo-trace axial vector of tor-
sion tensor, which is one of irreducible parts of torsion tensor. Replacing the

2410



7.7. Regularization and Quantization of Einstein-Cartan theory

spin-connection ω in the Einstein-Cartan action (7.7.8) by (7.7.11),

SP[e, ω, ψ, ψ̄] → SP[e, ω(e)] − 1

16
kβ2

∫

M

d4x det(e)(ψ̄γdγ5ψ)(ψ̄γdγ5ψ);(7.7.12)

SF[e, ω, ψ, ψ̄] → SF[e, ω(e), ψ, ψ̄]− 2

16
kβ2

∫

M

d4x det(e)(ψ̄γdγ5ψ)(ψ̄γdγ5ψ),(7.7.13)

one obtains the well-known Einstein-Cartan theory: the standard tetrad ac-
tion of torsion-free gravity coupling to fermions,

SEC[e, ω(e), ψ, ψ̄] = SP[e, ω(e)] + SF[e, ω(e), ψ, ψ̄]

− 3

16
kβ2

∫

M

d4x det(e)(ψ̄γdγ5ψ)(ψ̄γdγ5ψ).(7.7.14)

In the case of the Host action (7.7.5), the four-fermion interaction term is given
by

− 3

16

γ2

γ2 + 1
kβ2

∫

M

d4x det(e)(ψ̄γdγ5ψ)(ψ̄γdγ5ψ). (7.7.15)

As we can see from Eqs. (7.7.6) to (7.7.14), the bilinear term (7.7.6) of mass-
less fermion fields coupled to the spin-connection (7.7.7) is bound to yield a
non-vanishing torsion field Ta (7.7.9), which is local and static. As a result,
the spin-connection ω is no longer torsion-free and acquires a torsion-related
spin-connection ω̃ab

µ (7.7.11), in addition to the torsion-free spin-connection

ωab
µ (e). The torsion-related spin-connection ω̃ab

µ is related to the fermion
spin-current (7.7.10). The quadratic term of the spin-connection field ω in
Eq. (7.7.1) and the coupling between the spin-connection field and fermion
spin-current in Eqs. (7.7.6,7.7.7) lead to the quadrilinear terms of fermion
fields in Eqs. (7.7.12) and (7.7.13). Another way to see this is to treat the static
torsion-related spin-connection ω̃ab

µ (7.7.11) as a static auxiliary field, which
has its quadratic term and linear coupling to the spin-current of fermion
fields. Performing the Gaussian integral of the static auxiliary field, we ex-
actly obtain the quadrilinear term (7.7.14), in addition to the torsion-free ac-
tion.

A postulation and fermion-mass generation. The gauge principle requires
the action of gravitational and fermion fields be invariant under the diffeo-
morphisms of the manifold M and local Lorentz transformations. This leads
to a pseudo-trace axial vector of static (non-dynamics) torsion field, which
is related to the spin-current of fermion fields. The interaction between the
pseudo-trace axial vector of torsion fields and the spin-current of fermion
fields results in the four-fermion interaction (quadrilinear terms in massless
fermion fields). As a consequence, the gauge-invariant action consists of the
torsion-free action of gravitational and fermion fields and four-fermion inter-
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action. We thus postulate that it is impossible to have any gauge-invariant
theories made by the bilinear terms of massless fermion fields coupled to
torsion-free gravitational field, and quadrilinear terms (or high-order terms)
of massless fermion fields must be present.

The quadrilinear term (7.7.15) is a dimension-6 operator, and four-fermion
couping is in terms of the Immirzi parameter γ, gravitational-coupling k
and gauge-coupling β. If quantum gravity is taken into account, we expect
non-local and high-dimensional operators (d > 6), which contain high-order
derivatives. In this case, the torsion-related spin-connection ω̃ab

µ (7.7.11) is
not completely static, rather has a mass of the order of the Planck mass,
mediating in a few Planck length to form effective high-dimensional oper-
ators of massless fermion fields. The fundamental fields e, ω, ψ, and opera-
tors O(e, ω, ψ, k, β) are functions of the couplings k, β, γ, depending on the
energy-scale E. First we should adopt appropriate vacuum expectational
value (e.v.e) of operators 〈O(e, ω, ψ, k, β)〉 as order parameters, to describe
different phases and phase transitions in the space of couplings k, β, and pa-
rameter γ. Second, we try to identify the scaling-invariant regime (ultraviolet
fix points) for the low-energy limit (E/mp → 0), where the variation of funda-
mental fields, couplings and operators as functions of the energy-scale E is
govern by renormalization group equations. Third, in such scaling-invariant
regime we try to determine the relevant and renormalizable operators that
are effective dimension-4 operators, to obtain an effective low-energy theory
for the present Universe.

In this Letter, we are interested in the one-particle-irreducible (1PI) two-
point functions of fermion fields 〈ψ(0)ψ̄(x)〉, since they contribute to effective
operators for the energy-momentum tensor entering the right-hand side of
the Einstein equation (7.7.4) for classical gravity. Our goal is limited to find
non-trivial fermion-mass operators (〈ψψ̄〉 6≡ 0) in terms of the four-fermion
interacting strength. For convenience in calculations, using the Planck mass
mp, we rescale fermion fields ψ → ψ/mp and rewrite four-fermion interaction
(7.7.15) as

g
∫

M

d4x det(e)(ψ̄γdγ5ψ)(ψ̄γdγ5ψ); g =
3

16

γ2

γ2 + 1
kβ2m4

p (7.7.16)

where the four-fermion coupling g has dimension [m2
p]. We assume the gauge-

coupling β to be perturbatively small.

Weak four-fermion coupling. In the weak-coupling limit g/m2
p ≪ 1, the

dimension-3 fermion-mass operators 〈ψψ̄〉 identically vanish (〈ψψ̄〉 ≡ 0), the
action (7.7.14) gives a weakly interacting, massless SUL(2)⊗ SUR(2) fermion
spectrum. We define this as the “weak-coupling symmetric phase”. In the in-
termediate range of coupling g, there is a “broken phase” where spontaneous
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symmetry breaking occurs. Using large-N f expansion technique 1 shows that
the four-fermion interaction (7.7.14) undergoes Nambu-Jona-Lasinio (NJL)
spontaneous chiral-symmetry breaking. In this symmetry broken phase, SUL(2)⊗
SUR(2) chiral symmetry is violated by non-vanishing mass-operators

1

2
Σ(p) = g

∫
d4x det(e)e−ipx〈ψ̄(0) · ψ(x)〉 6= 0, (7.7.17)

where 〈· · ·〉 is the average with respect to the partition function Z of fermionic
part of the action (7.7.14)

〈· · ·〉 = 1

Z

∫
dψ̄dψ (· · ·) exp {−SEC[e, ω(e), ψ, ψ̄]} . (7.7.18)

The non-vanishing mass operator (7.7.17) obeys the NJL gap-equation,

Σ(p) = g̃
∫

d4q

(2π)4

Σ(q)

q2 + (Σ(q)/mp)2
, (7.7.19)

where momentum q and coupling g̃ = gN f /m2
p are dimensionless. The criti-

cal point g̃c = 8π2, which can be obtained by Σ → 0+, separates the “bro-
ken phase” (Σ 6= 0, g̃ > g̃c) from the “weak-coupling symmetric phase”
(Σ ≡ 0, g̃ < g̃c). Σ(p) ∼ O(mp) for g̃ > g̃c. The inverse propagators of
these fermions can then be written as,

S−1(p) = iγµpµ + Σ(p). (7.7.20)

The SUL(2) ⊗ SUR(2) chiral symmetry is realized to be SU(2) with three
Goldstone modes and a massive Higgs mode that are not presented here.
Eq. (7.7.20) corresponds to the bilinear term of massive fermion fields in the
effective action, which does not preserves chiral symmetries.

Strong four-fermion coupling. We turn to the strong-coupling region, where
four-fermion coupling g in (7.7.14) is sufficiently larger than a certain critical
value gcrit, bound states of three fermions (three-fermion states) are formed

Ψ =
mp

2
(ψ̄ · ψ)ψ, (7.7.21)

which can be understood as a bound state of one fermion and one compos-
ite boson (ψ̄ · ψ). These three-fermion states (7.7.21) carry the appropriate
quantum numbers of the gauge group that accommodates ψ. The fermion-
mass operator is ψ̄Ψ and thus massive fermion spectrum is consistent with
the chiral symmetry SUL(2)⊗ SUR(2).

1g ≪ 1, N f ≫ 1 and gN f fixed, N f is the number of fermion flavors
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For the purpose of understanding three-fermion states and their spectra,
we henceforth focus on the strong-coupling region (g/m2

p ≫ 1). We make a
rescaling of fermion fields,

ψ(x) → g1/4ψ(x), (7.7.22)

and rewrite the fermion action in terms of the new fermion fields

S f (x) =
1

2g1/2

[
ψ̄(x)γµ∂µψ(x) + h.c.

]
(7.7.23)

Si(x) = (ψ̄γdγ5ψ)(ψ̄γdγ5ψ). (7.7.24)

where the gauge coupling β is assumed to be weak. For the limit of strong
coupling g/m2

p → ∞, the kinetic terms S f (x) can be dropped and we calcu-

late the partition function Z (7.7.18) in this strong-coupling limit. With Si(x)

given in Eq. (7.7.24), the integral of e−Si(x) is calculated by Grassmann anti-
commuting algebra,

Z = Πx

∫
[dψ̄(x)dψ(x)] exp [−Si(x)] = Πx24 6= 0, (7.7.25)

which shows a non-trivial strong-coupling limit. About this strong-coupling

limit (7.7.25), we now can perform the strong-coupling expansion of e−S f (x)

in powers of 1/g to calculate Green-functions of fermion fields 〈ψ(x1)ψ(x2) ·
· · ψ(xn)〉. In order to do integral of Grassmann anticommuting algebra, we
rewrite the kinetic term S f (x) (7.7.23) as a hopping term in the Planck spacing
aµ, |aµ| = a = 1/mp,

S f (x) =
1

2g1/2a

[
ψ̄(x)γµψ(x + aµ)− ψ̄(x + aµ)γµψ(x)

]
. (7.7.26)

We consider the following two-point functions that form the propagator of
the composite Dirac particle

SLL(x) ≡ 〈ψ(0), ψ̄(x)〉, (7.7.27)

SML(x) ≡ (2a)〈ψ(0), Ψ̄(x)〉, (7.7.28)

SMM(x) ≡ (2a)2〈Ψ(0), Ψ(x)〉. (7.7.29)

In the lowest non-trivial order O(1/g), we obtain the following recursion
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relations

SLL(x) =
1

g

(
1

2a

)3 †

∑
µ

SML(x + aµ)γµ, (7.7.30)

SML(x) =
δ(x)

2g
+

1

g

(
1

2a

) †

∑
µ

SLL(x + aµ)γµ, (7.7.31)

SMM(x) =
1

g

(
1

2a

) †

∑
µ

γµγ0S†
ML(x + aµ)γ0, (7.7.32)

where for an arbitrary function f (x),

†

∑
µ

f (x) = ∑
µ

[ f (x + aµ)− f (x − aµ)] .

Transforming these two-point functions (7.7.27,7.7.28,7.7.29) into momentum
space,

SX(p) =
∫

d4xe−ipxSX(x), (7.7.33)

where X = LL, ML, MM respectively, we obtain three recursion relations in
momentum space

SLL(p) =
1

g

(
i

4a3

)
∑
µ

sin(pµa)SML(p)γµ, (7.7.34)

SML(p) =
1

2g
+

i

ga ∑
µ

sin(pµa)SLL(p)γµ. (7.7.35)

SMM(p) =
1

g

(
i

a

)
∑
µ

sin(pµa)γµγ0S†
ML(p)γ0. (7.7.36)

We solve these recursion relations (7.7.34,7.7.35,7.7.36) and obtain

SLL(p) =
i

2a ∑µ sin(pµa)γµ

1
a2 ∑µ sin2(pµa) + M2

, (7.7.37)

1

2a
SML(p) =

1
2 M(p)

1
a2 ∑µ sin2(pµa) + M2

, (7.7.38)

(
1

2a

)2

SMM(p) =
i

2a ∑µ sin(pµa)γµ

1
a2 ∑µ sin2(pµa) + M2

, (7.7.39)

where the chiral-invariant mass is

M = 2ga. (7.7.40)
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In addition, the two-point function,

〈Ψ(x), ψ̄(0)〉 = 1

2a
γ0S†

ML(x)γ0. (7.7.41)

As a result, in the lowest non-trivial order of the strong-coupling expansion
we obtain the massive propagator of the composite Dirac fermions,

S(p) =
i
a ∑µ sin(pµa)γµ + M
1
a2 ∑µ sin2(pµa) + M2

≃ ipµγµ + M

p2 + M2
, (7.7.42)

for modes pµa ≪ 1. Eq. (7.7.42) corresponds to the bilinear term of massive
fermion fields preserving chiral symmetries in the effective action, which can
be written as,

Seff
F (e, ω, Ψ, Ψ̄) =

1

2

∫

M

d4x det(e)
[
Ψ̄eµ

DµΨ + MΨ̄Ψ
]
+ h.c., (7.7.43)

and its variation with respect to the tetrat field ea
µ gives rise to the energy-

momentum tensor that contributes to the right-handed side of the Einstein
equation (7.7.4). This is the “strong-coupling symmetric phase”, where fermion
fields are massive.

The critical value gcrit that separates the “ strong-coupling symmetric phase”
from the “broken phase” can be qualitatively determined by considering the
complex composite scalar field,

A = ψ̄ · ψ, (7.7.44)

and its propagator, i.e., the two-point function:

G(x) = 〈A(0),A†(x)〉. (7.7.45)

Analogously, using the strong-coupling expansion in powers of 1/g (g/m2
p ≫

1), we obtain the following recursion relation in the lowest order,

G(x) =
δ(x)

g
+

1

g

(
1

2a

)2

∑
±µ

G(x + aµ). (7.7.46)

Going to momentum space,

G(q) =
∫

d4xe−iqxG(x),

where q is the momentum of the composite scalar A, we obtain the recursion
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relation (7.7.46) in momentum space

G(q) =
1

g
+

(
1

2a2

)
1

g ∑
±µ

cos(qµa)G(q). (7.7.47)

As a result, we find the propagator of the massive composite scalar field A,

G(q) =
4

4
a2 ∑µ sin2 (qµa)

2 + µ2
≃ 4

q2 + µ2
; (7.7.48)

µ2 = 4

(
g − 2

a2

)
, (7.7.49)

where the factor 4 is due to the four components of the composite scalar field
A. Thus, µ2AA† gives the mass term of the composite scalar field A in the
effective Lagrangian. We assume that the 1PI vertex AA†AA† is positive and
the energy of ground states of the theory is bound from the bellow. Then, we
can qualitatively discuss the second order phase transition (threshold) from
the “strong-coupling symmetric phase” to the “broken phase” by examining
the mass term of these composite scalars µ2

AA
†. Spontaneous symmetry

breaking SU(2) → U(1) occurs, where µ2
> 0 turns to µ2

< 0. Eq. (7.7.49) for
µ2 = 0 gives rise to the critical value gcrit:

gcrita
2 = 2, (7.7.50)

where a phase transition takes place between the “strong-coupling symmetric
phase” and the “broken phase”.

Some discussions. As already mentioned, high-dimensional operators of
massless fermion fields containing high-order derivatives are expected if the
quantum gravity is included. In this case the four-fermion coupling (7.7.16)
and fermion-mass (7.7.40) should be functions of fermion’s momentum pµ.
Both the phase-structure and critical points for phase-transition character-
ized by the coupling g (7.7.16) depend clearly also on the Immirzi param-
eter γ. Although three different phases have been differentiated, we have
not been able to identify the scaling-invariant region for the low-energy limit
where some of high-dimensional operators receive anomalous dimensions
become relevant operators of effective dimension-4, others are non-relevant
and suppressed. We expect that the scaling-invariant regime be probably
near to the critical point (7.7.50) so that the low-energy effective theory pre-
serves chiral-gauge symmetry in high-energies and has a soft symmetry-
breaking for fermion masses in low-energies. In this Letter we discuss the
phase-structure of the Einstein-Cartan theory and a theoretical possibility to
understand how fermion fields become massive and couple to torsion-less
gravitational field.
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7.8. Quantum Regge Calculus of Einstein-Cartan

theory

Introduction. Since the Regge Calculus was proposed for the discretization of
gravity theory in 1961, many progresses have been made in the approach of
Quantum Regge Calculus and its variant dynamical triangulations. In partic-
ular, the renormalization group treatment is applied to discuss any possible
scale dependence of gravity. In Lagrangian formalism, gauge-theoretic for-
mulation of quantum gravity using connection variables on a flat hypercubic
lattice of the space-time was inspired by the success of lattice regularization
of non-Abelian gauge theories. A locally finite model for gravity has been
recently proposed. In this Letter, based on the scenario of Quantum Regge
Calculus, we present a diffeomorphism and local gauge-invariant invariant
regularization and quantization of Euclidean Einstein-Cartan (EC) theory, in-
variant holonomies of tetrad and spin-connection fields ωµ(x) along large
loops in 4-simplices complex, and some calculations in 2-dimensional case.

Euclidean Einstein-Cartan gravity. The basic gravitational variables in the Einstein-
Cartan gravity constitute a pair of tetrad and spin-connection fields (ea

µ, ωab
µ ),

whose Dirac-matrix values eµ = ea
µγa and ωµ = ωab

µ σab. The space-time

metric of 4-dimensional Euclidean manifold M is gµν(x) = ea
µ(x)e

b
ν(x)δab,

where δab = (+,+,+,+). The diffeomorphism invariance under general
coordinate transformations x → x′(x) is preserved by all derivatives and
d-form fields on M made to be coordinate scalars with the help of tetrad
fields ea

µ = ∂ξa/∂xµ. Under the local Lorentz coordinate transformation

ξ
′a(x) = [Λ(x)]abξb(x), the local (w.r.t ξ) gauge transformations are:

e′µ(ξ) = V(ξ)eµ(ξ)V
†(ξ), (7.8.1)

ω′
µ(ξ) = V(ξ)ωµ(ξ)V

†(ξ) + V(ξ)∂µV
†(ξ); (7.8.2)

and fermion field ψ′(ξ) = V(ξ)ψ(ξ), the covariant derivative D′
µ = V(ξ)DµV

†(ξ),

Dµ = ∂µ − igωµ(ξ) where g is the gauge coupling, ∂µ = ea
µ(∂/∂ξa), V(ξ) =

exp i[θab(ξ)σab ] ∈ SO(4), and θab(ξ) is an arbitrary function of ξ. In an SU(2)
gauge theory, gauge field Aa(ξE) can be viewed as a connection

∫
Aa(ξE)dξa

E
on the global flat manifold. On a locally flat manifold, the spin-connection
ωµdxµ = ωa(ξ)dξa , where ωa(ξ) = e

µ
a ωµ, one can identify that the spin-

connection field ωµ(x) or ωa(ξ) is the gravity analog of gauge field and its
local curvature is given by

Rab = dωab − gωae ∧ ωb
e, (7.8.3)

and R
′ab = V(ξ)Rab(ξ)V†(ξ) under the transformation (7.8.1,7.8.2). The dif-

feomorphism and local gauge-invariant EC action for gravity is given by the
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Palatini action SP and Host modification SH

SEC(e, ω) = SP(e, ω) + SP(e, ω) (7.8.4)

SP(e, ω) =
1

4κ

∫

M

d4x det(e)ǫabcdea ∧ eb ∧ Rcd, (7.8.5)

SH(e, ω) =
1

2κγ̃

∫

M

d4x det(e)ea ∧ eb ∧ Rab (7.8.6)

where κ ≡ 8πG, the Newton constant G = 1/m2
Planck, and det(e) is the Jacobi

of mapping x → ξ(x).

In addition, the diffeomorphism invariance under the general coordinate
transformation x → x′(x) is preserved by all fields in Eqs. (7.7.5-7.7.6) made
to be coordinate scalars by using tetrad fields. The derivatives represents the
propagation of fields in coordinate space is related to the connection field
in local Lorentz frame. spin-connection is the gravity analog of gauge field,
how ever it is constructed by the general coordinate derivatives of tetrad field
relating to general connection.

The complex Ashtekar connection with reality condition and the real Bar-
bero connection are linked by a canonical transformation of the connection
with a finite complex Immirzi parameter γ̃ 6= 0, which is crucial for Loop
Quantum Gravity.

A quantum theory of gravity in Hamiltonian formalism, where intrinsic
discrete eigenvalues of invariant area and volume operators are obtained in
the diffeomorphism invariant Hilbert space, as results, the space-time is dis-
cretized with the Planck length and the black-hole entropy is obtained.

Classical equations can be obtained by the invariance of the EC action
(7.8.4) under the transformation (7.8.1-7.8.2),

δSEC =
δSEC

δeµ
δeµ +

δSEC

δωµ
δωµ = 0, (7.8.7)

where δeµ and δωµ are infinitesimal variations, which can be expressed in
terms of independent Dirac matrix bases γ5 and γµ. Therefore, for an arbi-
trary function θab, we have δSEC/δeµ = 0 and δSEC/δωµ = 0, respectively
leading to Einstein equation and Cartan’s structure equation (torsion-free)

dea − ωab ∧ eb = 0. (7.8.8)

Regularized EC action. The four-dimensional Euclidean manifold M is dis-
cretized as an ensemble of N0 space-time points “x” and N1 links (edges)
“lµ(x)” connecting two neighboring points, which is a simplicial manifold.
The way to construct a simplicial manifold depends also on the assumed
topology of the manifold, which gives geometric constrains on the numbers
of sub-simplices (N0,N1, · · ·. In this Letter, analogously to the simplicial man-
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h(x)

x x + aµ
eµ(x)Uµ(x)

x + aµ + aνx + aν

e†
µ(x + aν)

e†
ν(x)
U†

ν(x) eρ

Uρ
eν(x + aµ)

Figure 7.2.: Assuming edge spacing aµ,ν(x) is so small that the geometry of
the interior of 4-simplex and its sub-simplex (3- and 2-simplex) is approxi-
mately flat, we assign a local Lorentz frame to each 4-simplex. On a local
Lorentz manifold ξa(x) at a space-time point “x”, we sketch a closed par-
allelogram CP(x) lying in the 2-simplex h(x). Its edges eµ(x) and e†

ν(x) =
eν(x + aν) are two edges of the 2-simplex h(x), and other edges (dashed lines)
e†

µ(x + aν) and eν(x + aµ) are parallel transports of eµ(x) and e†
ν(x) along

ν- and µ-directions respectively. Each 2-simplex in the 4-simplices complex
has a closed parallelogram lying in it. Group-valued gauge fields Uµ(x) and

U†
ν(x) = Uν(x + aν) are respectively associated to edges eµ(x) and e†

ν(x) of
the 2-simplex h(x), as indicated. The fields eρ(x + aµ) and Uρ(x + aµ) are
associated to the third edge (x + aµ, x + aν) of the 2-simplex h(x).

ifold adopted by Regge Calculus we consider a 4-simplices complex, whose
elementary building block is a 4-simplex (pentachoron). The 4-simplex has 5
vertexes – 0-simplex (a space-time point “x”), 5 “faces” – 3-simplex (a tetra-
hedron), and each 3-simplex has 4 faces – 2-simplex (a triangle), and each
2-simplex has three faces – 1-simplex (an edge or a link “lµ(x)”). Different
configurations of 4-simplices complex correspond to variations of relative
vertex-positions {x}, edges “{lµ(x)}” and “deficit angle” around each vertex
x. These configurations will be described by the configurations of dynamical
fields eµ(x) and ωµ(x) (its group-valued Uµ(x)) in a regularized EC-theory.

To illustrate how to construct a regularized EC theory describing dynamics
of 4-simplices complex, we consider a 2-simplex (triangle) h(x) (see Fig. 7.2).
The fundamental tetrad field eµ(x) and “gauge” field ωµ(x) are assigned to
each 1-simplex (edge) of the 4-simplices complex. The values of eµ(x)-field
characterize edge spacings aµ(x) ≡ |lµ(x)|, where lµ(x) = aeµ(x) and the

Planck length a = (8πG)1/2 . The fundamental area operator Sh
µν ≡ lµ(x) ∧

lν(x)/2, where µ 6= ν indicates edges of the 2-simplex. The 2-simplex area
Sh(x) = |Sh

µν(x)|.
The Cartan equation (7.8.8) is actually an equation for infinitesimal parallel

transports of eν(x) fields. Applying this equation to the 2-simplex h(x), as
shown in Fig. 7.2, we show that eν(x) [eµ(x)] undergoes its parallel transport
to eν(x + aµ) [eµ(x + aν)] along the µ [ν]-direction for an edge spacing aµ(x)
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[aν(x)], following the discretized Cartan equation

ea
ν(x + aµ)− ea

ν(x)− aµωab
µ (x) ∧ eνb(x) = 0, (7.8.9)

and µ ↔ ν. The parallel transports ea
ν(x + aµ) and ea

µ(x + aν) are neither inde-
pendent fields, nor assigned to any edges of the 4-simplices complex. They
are related to eµ(x) and ωµ(x) fields assigned to edges of the 2-simplex h(x)
by the Cartan equation (7.8.9). Because of torsion-free, eµ(x), eν(x) and their
parallel transports eµ(x + aν), eν(x + aµ) form a closed parallelogram CP(x)
(Fig. 7.2). Otherwise this would means the curved space-time could not be
approximated locally by a flat space-time.

Thus, for each 2-simplex, there is a closed parallelogram, whose two edges
lying in the 2-simplex and other two edges of parallel transports not lying in
any 2-simplex.

We define ωµ(x + aν) and ων(x + aµ) by using the discretized equation for
curvature (7.8.3),

ωab
ν (x+aµ)−ωab

ν (x)−aµωae
µ (x) ∧ ωb

eν(x) = aµRab
µν(x), (7.8.10)

and µ ↔ ν. For zero curvature case, analogously to (7.8.9), parallel transports
ω̄ab

ν (x + aµ) [ω̄ab
µ (x + aν)] can be defined as

ω̄ab
ν (x + aµ)− ωab

ν (x)− aµωae
µ (x) ∧ ωb

eν(x) = 0, (7.8.11)

and µ ↔ ν. The difference (“deficit angle”) between ωab
ν (x + aµ) and ω̄ab

ν (x +

aµ) is the curvature aµRab
µν(x).

Instead of ωµ(x) field, we assign a group-valued field Uµ(x) to each 1-
simplex of 4-simplices complex. For example, at edges (x, µ) and (x, ν) of
the 2-simplex h(x) (µ 6= ν see Fig. 7.2), we define SO(4) group-valued spin-
connection fields,

Uµ(x) = eigaωµ(x), Uν(x) = eigaων(x), (7.8.12)

which take value of fundamental representation of the compact group SO(4),
and their local gauge transformations,

Uµ(x) → V(x)Uµ(x)V
†(x + aµ), (7.8.13)

and µ ↔ ν in accordance with (7.8.2). Actually, these group-valued fields
(7.8.12) can be viewed as unitary operators for finite parallel transportations.
Eq. (7.8.9) can be generalized to

eν(x + aµ) = Uµ(x)eν(x)U
†
µ(x), (7.8.14)
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and µ ↔ ν. While, corresponding to (7.8.10) for the field ων(x + aµ), we
define

Uν(x + aµ) ≡ Uµ(x)Uν(x)U
†
µ(x), (7.8.15)

Uν(x + aµ) ≡ eigaων(x+aµ), (7.8.16)

Uµν(x) ≡ Uµ(x)Uν(x) ≡ Uν(x + aµ)Uµ(x), (7.8.17)

and µ ↔ ν. Eq. (7.8.17) characterizes relative angles θµν(x) between two
neighboring edges eµ(x) and eν(x) (see Fig. 7.2). In the naive continuum limit:
agωµ ≪ 1 (small coupling or weak-field), indicating that the wavelengths of
weak and slow-varying fields ωµ(x) are much larger than the edge spacing
aµ,ν, we have

Uµν(x) = exp
{

ig[aων(x) + aωµ(x)] + iga2∂µων(x)

− 1

2
(ga)2

[
ων(x), ωµ(x)

]
+O(a3)

}
, (7.8.18)

where O(a3) indicates high-order powers of agωµ.

Using the tetrad fields eµ(x) to construct coordinate and Lorentz scalars
so as to obtain a regularized EC action preserving the diffeomorphism and
local gauge-invariance, we define the smallest holonomy along closed triangle
path of 2-simplex:

Xh(v, U) = tr
[
vνµ(x)Uµ(x)vµρ(x + aµ)Uρ(x + aµ)vρν(x + aν)Uν(x + aν)

]
,(7.8.19)

whose orientation is anti-clock-like, and X†
h(e, U) is clock-like (see Fig. 7.2).

We have following two possibilities for the vertex-field vνµ(x). The first
vµν(x) = eµν(x)γ5:

AP(e, U) =
1

8g2 ∑
h

{Xh(v, U) + h.c.} , (7.8.20)

eµν(x) ≡ (ea ∧ eb)σab, (7.8.21)

where ∑h is the sum over all 2-simplices h(x). In the limit: agωµ ≪ 1,
Eq. (7.8.20) becomes

AP(e, Uµ) =
1

a2 ∑
h

S2
h(x)ǫcdab ec ∧ ed ∧ Rab + O(a4). (7.8.22)

We define a 4-d volume element V(x) = ∑h(x) S2
h(x) around the vertex x. The
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interior of 4-simplex is approximately flat, leading to

∑
x

V(x) ⇒
∫

d4ξ(x) =
∫

d4xdet[e(x)], (7.8.23)

and Eq. (7.8.22) approaches to SP(e, ω) (7.7.5) with an effective Newton con-
stant Geff = gG/4. The second vµν(x) = eµν(x):

AH(e, Uµ) =
1

8g2γ ∑
h

[Xh(v, U) + h.c.] , (7.8.24)

where the real parameter γ = iγ̃. Analogously, in the limit: agωµ ≪ 1,
Eq. (7.8.24) approaches to SH(e, ω) (7.8.6),

AH(e, Uµ) =
1

2κγ̃

∫
d4xdet[e(x)]ea ∧ eb ∧ Rab +O(a4). (7.8.25)

Under the gauge transformation (7.8.1),

vµν(x) → V(x)vµν(x)V
†(x). (7.8.26)

The diffeomorphism and local gauge-invariant regularized EC action is then
given by

AEC = AP +AH. (7.8.27)

a = π/Λcutoff, the momentum cutoff Λcutoff = mp(π/8)1/2

Considering the following diffeomorphism and local gauge-invariant holonomies
along a large loop C on the Euclidean manifold M

XC(v, ω) = PCTr exp

{
ig
∮

C

vµν(x)ω
µ(x)dxν

}
, (7.8.28)

where PC is the path-ordering and “Tr” denotes the trace over spinor space,
we attempt to regularize these holonomies on the 4-simplices complex. Sup-
pose that an orientating closed path C passes space-time points x1, x2, x3, · ·
·, xN = x1 and edges connecting between neighboring points in the 4-simplices
complex. At each point xi two tetrad fields eµ(xi) and eµ′(xi) (µ 6= µ′) respec-
tively orientating path incoming to (i − 1 → i) and outgoing from (i → i + 1)
the point xi, we have the vertex-field vµµ′(xi) defined by Eqs. (7.8.21,7.8.24).
Link fields Uµ(xi) are defined on edges lying in the loop C, recalling the rela-

tionship Uµ(xi) = U−µ(xi+1) = U†
µ(xi+1), we can write the regularization of

2423



7. Quantum Gravity

the holonomies (7.8.28) as follows,

XC(v, U) = PCTr
[
vµµ′(x1)Uµ′(x1)vµ′ν(x2)Uν(x2)

· · · vρρ′(xi)Uρ′(xi)vρ′σ(xi+1)

· · · vλµ(xN−1)U
†
µ(xN−1)

]
, (7.8.29)

preserving diffeomorphism and local gauge-invariances. Eq. (7.8.29) is con-
sistent with Eq. (7.8.19).

Euclidean partition function. The partition function ZEC and effective action
Aeff

EC are

ZEC = exp−A
eff
EC =

∫
DeDU exp−AEC, (7.8.30)

with the diffeomorphism and local gauge-invariant measure

∫
DeDU≡∏

x,µ

∫
deµ(x)dUµ(x) (7.8.31)

where ∏x,µ indicates the product of overall edges, dUµ(x) is the Haar mea-

sure of compact gauge group SO(4) or SU(2), and deµ(x) is the measure of
Dirac-matrix valued field eµ(x) = ∑a ea

µ(x)γa, determined by the functional

measure dea
µ(x) of the bosonic field ea

µ(x). It should be mentioned that the
measure (7.8.31) is just a lattice form of the standard DeWitt functional mea-
sure over the continuum degrees, with the integral of the spin-connection
field ωµ(x) replaced by the Haar integral over the Uµ(x)’s, analytical integra-
tion or numerical simulations runs overall configuration space of continuum
degrees and no gauge fixing is needed.

Note that the measure DUµ(x) includes all link fields lying in both edges
(eµ, eν) of 2-simplices and their parallel transports (eµ, eν), as shown in Fig. 7.2.

[ea
µ(x), eb

ν(x
′)] = δµν(x)δ

abδ(x − x′), (7.8.32)

and equivalently

{eµ(x), e†
ν(x

′)} = δµν(x)δ(x − x′). (7.8.33)

In this path-integral quantization formalism, values of the partition func-
tion (7.8.30) presents all dynamical configurations of 4-simplices complex,
described by field configurations eµ(x) and Uµ(x) in the weight exp−AEC.
The vacuum expectational values (v.e.v.) of diffeomorphism and local gauge-
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invariant quantities, for instance holonomies (7.8.29), are given by

〈XC(e, U)〉 = 1

ZEC

∫
DeDU

[
XC(e, U)

]
exp−AEC . (7.8.34)

In the action (7.8.20,7.8.24), Xh(v, U) (7.8.19) contains the quadric term of
eµ(x)-field associated to each edge (x, µ), the partition function ZEC (7.8.30)
and v.e.v. (7.8.34) are converge.

and we have the following formula:

∫
Dee−el∆

lk(U)e†
k = det[∆(U)], (7.8.35)

∫
De(eie

†
j )e

−el∆
lk(U)e†

k = ∆ij(U), (7.8.36)
∫

De[eiΛ
ij(U)e†

j ]e
−el∆

lk(U)e†
k = Tr[Λ(U)∆(U)], (7.8.37)

where ∆(U) and Λ(U) are operators in terms of links fields {Uµ(x)}. Ap-
plying Eq. (7.8.35) to the partition function (7.8.30), we integrate over tetrad
fields eµ(x) and formally obtain,

ZEC =
∫

DU det
[ 1

8g
γ5Uµν

i

2
+

1

8gγ
Uµν + h.c.

]
. (7.8.38)

Analogously to Eq. (7.8.7), the local gauge-invariance of the partition func-
tion (7.8.30) (δZEC = 0) leads to

〈δAEC

δeµ
δeµ + Uµ

δAEC

δUµ
+ h.c.〉 = 0, (7.8.39)

which becomes “averaged” Einstein equation 〈δAEC/δeµ〉+ h.c. = 0, and

〈Uµ
δAEC

δUµ
− U†

µ
δAEC

δU†
µ
〉 = 0. (7.8.40)

Eq. (7.8.40) is “averaged” torsion-free Cartan equation (7.8.8), which actually
shows the impossibility of spontaneous breaking of local gauge symmetry.
This should not be surprised, since the torsion-free (7.8.8) is a necessary con-
dition to have a local Lorentz frame, therefore a local gauge-invariance.

The local gauge-invariance of (7.8.34) (δ〈X〉 = 0) leads to dynamical equa-
tions for holonomies (7.8.29), which can be formally written as

〈 δX

δeµ
δeµ + X

δAEC

δeµ
δeµ + X + XUµ

δAEC

δUµ
+ h.c.〉 = 0, (7.8.41)
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leading to 〈δX/δeµ + XδAEC/δeµ〉+ h.c. = 0, and

〈X〉+ 〈X
(

Uµ
δAEC

δUµ
− U†

µ
δAEC

δU†
µ

)
〉 = 0. (7.8.42)

Eq. (7.8.42) has the same form as the Schwinger-Dyson equation for Wilson
loops in lattice gauge theories.

The regularized EC theory (7.8.27) can be separated into left- and right-

handed parts by replacing Uµ(x) = UL
µ(x)⊗UR

µ (x), where UL,R
µ (x) ∈ SUL,R(2).

In addition, we can generalize the link field Uµ(x) to be all irreducible rep-

resentations U
j
µ(x) of the gauge group SO(4). The regularized EC action

(7.8.27) should be a sum over all representations j ≡ jL,R = 1/2, 3/2, · · ·,

AEC = ∑
j

[
A

j
P(eµ, U

j
µ) +A

j
H(eµ, U

j
µ)
]

, (7.8.43)

and the measure (7.8.31) should include all representations of gauge group.

Some calculations in 2-dimensional case. We consider a 2-simplices complex,
i.e., random simplicial surface, whose elementary building block is a triangle
h(x) (see Fig. 7.2). In this case, local gauge transformations (7.8.13,7.8.26) can
be made so that all fields vµρ(x + aµ)Uρ(x + aµ)vρν(x + aν) = 1 in Eq. (7.8.19),
as if we choose a particular gauge. The partition function (7.8.30) can be cal-
culated by integrating over eµ(x)- and Uµ(x)-fields, using the Cayley-Hamilton
formula for a determinant and the properties of invariant Haar measure:∫

dU
j
µ(x) = 1,

∫
dU

j
µ(x)U

j
µ(x) = 0 and

∫
dU

j
µ(x)U

ab
µ (x)U†cd

ν (x′) =
1

dj
δµνδacδbdδ(x − x′), (7.8.44)

where dj = njL
njR ( njL,jR = 2jL,R + 1), the dimension of irreducible represen-

tations j = (jL, jR) of SUL(2)⊗ SUR(2).

We calculate Eq. (7.8.30) for all representations j

ZEC = ∏
[ i

2djg2
γ5 +

2

2djg2γ

]
. (7.8.45)

We obtain the entropy S = ln ZEC

S = ∑ Tr
[
γ5

i

2djg2
+

2

2djg2γ

]
= ∑

j

4

djg2γa2
Ssurf, (7.8.46)

where ∑ is the sum over all 2-simplices, degrees of freedom of gauge group
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representations and Dirac spinors. The 2-dimensional surface

Ssurf = ∑
h

Sh(x) = NhPa, Pa =
1

Nh
∑
h

Sh(x) (7.8.47)

where Nh is the total number of 2-simplices and Pa averaged area of 2-simplices.
The free energy F = − 1

β ln ZEC,

F = − 1

β
ln ZEC = −∑

j

4

djγ
Ssurf, (7.8.48)

where the inverse “temperature” β = 1/g2, see Eqs. (7.8.20,7.8.24). Select-
ing fundamental representation dj = 4, we obtain S = Ssurf/(g

2γa2) and

F = −Ssurf/(γa2) .

In the same way, we calculate the average of regularized EC action AEC

(7.8.43),

a single 2-complex action

A
j
EC[eµ(x), U

j
µ(x)] =

1

8g2
tr

{
eµν(x)γ5U

p
µν(x) +

1

γ
τµν(x)U

p
µν(x) + h.c.

}
,

(7.8.49)
which is the regularized EC action A (7.8.43) at a single 2-simplex h(x), i.e.,
Eqs. (7.8.20,7.8.24) without the sum ∑x,µν = ∑h(x).

We integrate over tetrad fields eµ(x) and obtain,

〈Aj
EC[eµ, U

j
µ]〉 =

(
1

8g2

)2 1

ZEC

∫
DU ∑

h

· (7.8.50)

· tr

{
γ5Uµν(x)

(
i

2

)
+

1

γ
Uµν(x) + h.c.

}2

,

where ZEC is given by Eq. (7.8.30). In the strong coupling (field) limit g ≫ 1
or gaωµ ∼ O(1), implying that ωµ field’s wavelength is comparable to the
Planck length a, we expand ZEC in powers of 1/g and use Eq. (7.8.44) to
compute the average (7.8.50). As a result, the leading term is given by

〈Aj
EC[eµ, U

j
µ]〉 ≃

1

dj

(
1

8g2

)2(
1 +

4

γ2

)
Nh, (7.8.51)

in the strong coupling (field) limit g ≫ 1 or gaωµ ∼ O(1), which implies
that ωµ field’s wavelength is comparable to the Planck length a, The aver-
age (7.8.51) of regularized EC action has discrete values corresponding to the
fundamental state dj = 4 and excitation states dj = 16.
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The average of total regularized EC action

〈Aj
EC[eµ, U

j
µ]〉 = ∑

h(x)

〈Aj
EC[eµ(x), U

j
µ(x)]〉 ≃

1

2djg2γ
Nh, (7.8.52)

where Nh is the total number of 2-simplices.

Using the convexity inequality 〈e−A
j
EC〉 ≥ e−〈Aj

EC〉, we have

〈Aj
EC[eµ, U

j
µ]〉 ≤ ln Z

j
EC(2/g2)− ln Z

j
EC(1/g2). (7.8.53)

Using Eqs. (7.8.46,7.8.47), we obtain

1

dj

(
1

8g2

)2(
1 +

4

γ2

)
Nh ≤ 4

djg2γa2
Ssurf, (7.8.54)

and averaged area of a 2-simplex

Pa ≥
π

32g2

(
1 +

4

γ2

)
8π

m2
Planck

, (7.8.55)

implying that the Planck length is minimal separation between two space-
time points.

Pa ≥ π/m2
p. (7.8.56)

Using Eq. (7.8.51), we show the Planck area Pa has to be larger than π/m2
p.

Some remarks.

The quantum dynamics of 4-simplices complex (space time) is described
by quantum fields eµ(x) and ωµ(x) of regularized and quantized EC theory
(7.8.27-7.8.34). 4-simplex, an elementary building block of 4-simplices com-
plex, has the size of order of the Planck length, which is probed by short
wavelengths of quantum fluctuations of fields eµ, ωµ in strong gauge cou-
plings g. The genuine violation of the diffeomorphism invariance at the size
of a 4-simplex is negligible, when we consider large scales probed by long
wavelengths of fields.

We have to point out that the regularization action (7.8.27) is not unique, it
can possibly contain non-local high-dimensional (d > 6) operators of tetrad
and link fields, permitted by diffeomorphism and local gauge-invariances.

Although the regularized EC action (7.8.27) approaches to the EC action
(7.8.4) in the “naive continuous limit” agωµ ≪ 1, the regularized EC theory is
physically sensible, provided it has a non-trivial continuum limit. It is cru-
cial, on the basis of non-perturbative methods and renormalization group
invariance, to find: (1) the scaling invariant regimes (ultraviolet fix points) gc,
where phase transition takes place and physical correlation length ξ is much
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larger than the Planck length a; (2) β-function β(g) and renormalization-
group invariant equation ξ = const. a exp

∫ g
dg′/β(g′); (3) all relevant and

renormalizable operators (one-particle irreducible (1PI) functions) with ef-
fective dimension-4 in these regimes to obtain effective low-energy theories.

One may add by hand the cosmological Λ-term λ
4·4! ǫ

µνρσ ∑x tr[eµeνeρeσ]+h.c.,

where λ = Λa2, into the regularized EC action (7.8.27). However, 1PI func-
tions Aeff

EC (7.8.30) effectively contain this dimensional operator, which is re-
lated to the truncated Green function 〈AECAEC〉. It is then a question what is
the scaling property of this operator in terms of ξ−2, where inverse correla-
tion length ξ−1 gives the mass scale of low-energy excitations of the theory.

One can consider the following regularized fermion action,

AF(eµ, Uµ, ψ) =
1

2 ∑
xµ

[
ψ̄(x)eµ(x)Uµ(x)ψ(x + aµ)

− ψ̄(x + aµ)U
†
µ(x)e

µ(x)ψ(x)
]

, (7.8.57)

where fermion fields ψ(x) and ψ(x + aµ) are defined at two neighboring
points (vertexes) of 4-simplices complex, fields Uµ(x) and eµ(x) are added
to preserve local gauge and diffeomorphism invariances, and ∑xµ is the sum
over all edges (1-simplices) of 4-simplices complex. This bilinear fermion
action (7.8.57) introduces a non-vanishing torsion field. We need to study
whether the regularized EC action (7.8.27) with fermion action (7.8.57) can
be effectively written in form of a torsion-free part and four fermion interac-
tions, as the EC theory in continuum. In addition, the bilinear fermion action
(7.8.57) has the problem of either fermion doubling or chiral (parity) gauge
symmetry breaking, due to the No-Go theorem. Resultant four fermion in-
teractions can possibly be resolution to this problem.
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8.1. Brown-Kuchar approach in 5D Kaluza-Klein

model

The 5D Kaluza-Klein model in vacuum describes the coupling between grav-
ity and electromagnetism plus a scalar field. It is interesting to check whether
such a field could play the role of a relational time. In the scenario of a vanish-
ing electromagnetic field the Hamiltonian density governing fields dynamics
reads as follows :

H = NHN + Si H
i , (8.1.1)

where Superhamiltonian and Supermomenta are:

HN = b
√

θφR − 2b
√

θDi∂iφ − T

2b
√

θφ
− φπ2

6b
√

θ
+

πΣ

3b
√

θ
(8.1.2)

Hi = −2DjΣ
ij + π∂iφ . (8.1.3)

Here we have defined TijklΣ
ijΣkl = T and Σijθ

ij = Σ, where φ is the scalar
field , θij the spatial 3D induced metrics , π , Σij are their conjugate momenta
and Tijkl is the supermetrics.

Via the eq. ( 8.1.3 ) we can rule out the spatial gradient of φ from eq. (

8.1.2 ); then, multiplying by b
√

θ we get a new constraint equivalent to the
superhamiltonian one HN = 0, i.e.

H̃N[x] = b2θφR[x]− 2b2θDi

(
Hi

π

)
[x]− T

2φ
[x]− π2φ

6
[x]+

πΣ

3
[x] = 0 (8.1.4)

Now, we upgrade H̃N to an operator acting on some functions space; there-
fore the constraint becomes H̃N( f ) = 0 for any given function f (x). There-
after we consider its integral on a probe function f ; in such a way, using
integration by parts, we can shift the derivative operator Di to such a func-
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tion:

H̃N( f ) =
∫

d3x

[(
b2θφR − T

2φ
− π2φ

6
+

πΣ

3

)
[x] f [x] +

+2b2θ

(
Hi

π

)
[x]Di f [x]

]
= H̃N · f = 0 (8.1.5)

Via some algebraic step we can solve the constraint with respect the momen-
tum π. There exist three solutions, but only the following one does not con-
tain imaginary parts:

π =
1

3φ


−2Σ +

Ξ

φ
(

Γ ±
√

Ξ3 + Γ2
)1/3

− φ
(

Γ ±
√

Ξ3 + Γ2
)1/3


 (8.1.6)

where:

Ξ = −9T − 4Σ2 + 18b2Rθφ2 =

= 2Σ2 − 18
(

ΣijΣ
ij + b2Rθφ2

)

Γ = 27TΣ + 8Σ3 − 54b2θ(3Di Hi + RΣ)φ2 =

= −10Σ3 + 54
(

ΣijΣ
ijΣ − b2θφ2(3Di Hi + RΣ2)

)
(8.1.7)

It is worth noting now that the new constraint ( 8.1.6 ) fulfils the first re-
quest needed by the BK procedure: the member on the right side does not
depend on spatial derivatives of φ, which is indeed the field conjugate to
π. Clearly, to claim that this procedure yields a successful BK scheme other
checks are needed: it must be shown whether the constraint here derived
satisfies the same algebraic properties of the Superhamiltonian and, together
with the others constraints, act as a generator for diffeomorphisms ( this is
actually an expected result ), and moreover we have to study the sign of the
new Hamiltonian and the probability flow induced by π. The fact , however,
that the field φ deparametrizes in such a way that it leads to the relation (
8.1.6 ) - which was anyway a not so guaranteed result - is an interesting issue
that deserves further investigations and represents, indeed, the first step in
the definition of a well defined BK scheme in the Kaluza-Klein model.

8.2. Test Particle Dynamics

The problem of the matter coupling is a longstanding puzzle that affects KK
models from the foundation. Indeed, while KK models are successful in vac-
uum, they show unsatisfactory features when the presence of matter is con-
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sidered. The standard approach to the dynamics of test particles is to gener-
alize to five dimensions the ”geodesic” Action usually adopted in 4D, namely
S = m

∫
ds. Therefore, starting from S5 = m̂

∫
ds5, where m̂ is the 5D mass

parameter, it is shown via dimensional reduction, that the motion of a free
5D test particle is reduced into the motion of a 4D test particle interacting
with the electromagnetic field, plus the extra scalar field. In such a scheme,
the q/m ratio is defined in term of the fifth component of the 5D-velocity
w5, which is a constant of the motion. Even if electrodynamics is formally
restored, setting φ = 1, the q/m ratio results to be upper bounded in such a
way that this bound cannot be satisfied by every known elementary particles.
In the simple case φ = 1, indeed we have:

{
d
ds w5 = 0
D
Ds uµ =

√
4GFµνuν(

w5√
1+w2

5

) ,

where
q/m

√
4G =

w5√
1 + w2

5

< 1 .

The problem of the geodesic approach relies in a bad definition of the rest
mass of the particle. By studying the Hamiltonian formulation of the dy-
namics we can get the dispersion relation for the 4D reduced particle: such a
relation is consistent with an interacting particle whose charge q and mass m
arise defined as follows:

q =
√

4GP5 m2 = m̂2 + P2
5 /φ2

Given that P5 = m̂w5, in the case φ = 1, we recover the previous bound.
These relations show that the physical mass m of the particle does not coin-
cide with the mass parameter m̂ we put in the Action; moreover, if we con-
sider the compactification of the extra dimension, we get a quantized charge,
as well as a tower of massive modes; but, fixing the length of the extra dimen-
sion using the value of the elementary charge, we get massive modes beyond
Planck scale ( which is indeed the order of magnitude of mass requested by
the q/m bound ). Hence, the 5D geodesic approach , within the compactified
model, is not able to take into account the definition of the rest mass for a test
particle. The weak point of the geodesic procedure relies in the assumption
of the existence of a 5D point-like particle, which is actually not guaranteed
due to the presence of a compactified extra dimension, whose size could be
comparable to the size of the particle.
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8.3. Coupling with matter: Papapetrou approach

We propose a new scheme , that allows us to deal rigourously with test parti-
cle, without giving up with the compactification scenario. Such a new scheme
is based on the multipole expansion of Papapetrou and the particle turns out
to be described as a localized source in M4 but still delocalized along the fifth
dimension as a consequence of the compactification. Introducing a generic
energy-momentum tensor TAB associated to the body, governed by conser-
vation laws and not depending on the fifth coordinate, like it happens for
metric fields, the following equations are considered:

(5)∇A TAB = 0 ∂5 TAB = 0 (8.3.1)

Performing a multipole expansion centred on a trajectory Xa, at the lowest
order the procedure gives the motion equation for a test particle:

m
Duν

Ds
= (uνuρ − gνρ)

(
∂ρφ

φ3

)
A + qFνρuρ (8.3.2)

Below the definitions for coupling factor m, q, A and the according definitions
for the effective test-particle tensor component follow:

m =
1

u0

∫
d3x

√
gφT00, φ

√
gTµν =

∫
dsmδ4 (x − X) uµuν

q = ek
∫

d3x
√

gφT0
5 , ekφ

√
gT

µ
5 =

∫
dsqδ4 (x − X) uµ =

√
gJµ

A = u0
∫

d3x
√

gφT55, φ
√

gT55 =
∫

dsAδ4 (x − X)

The parameter m correctly represents the mass of the particle, which turns
out to be localized just in the ordinary 4D space, as it is envisaged by the
presence of a 4D Dirac delta function in the above definitions. Charge q is
still conserved, in consequence of the continuity equation ∇µ Jµ = 0, which
arises from (8.3.1). Mass is in general not conserved and its behaviour is given
by

∂m

∂xµ = − A

φ3

∂φ

∂xµ . (8.3.3)

Therefore the behaviour of mass is related to the variation of the scalar field
and the new coupling A (which has a pure extra-dimensional origin) along
the path. The equation 8.3.2 admits an effective action, S5 = −

∫
m ds +

q(Aµdxµ + dx5√
4G

), where m is now a variable function whose derivatives are

known, which does not coincides to the geodesic action given by the old pro-
cedure. Via an Hamiltonian analysis of such a revised action, it can be proved
that the KK tower of massive modes is suppressed, due to the presence of a
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proper counterterm, and the
q
m ratio is no more upper bounded. Therefore

such an approach allows to deal with test particle consistently without giv-
ing up with the compactification hypothesis.

Kakuza-Klein model with source Given that such a new scheme allows us
to deal with matter we consider a generic model with matter: hence, start-
ing from 5D Einstein equation 5RAB = 8πG5τAB, being G5 the unknown 5D
Newton constant, we get the following set:

Gµν =
1

φ
∇µ∂νφ − 1

φ
gµνgαβ∇α∂βφ + 8πGφ2T

µν
em + 8πG

Tµν

φ
, (8.3.4)

∇ν

(
φ3Fνµ

)
= 4πjµ , (8.3.5)

gαβ∇α∂βφ = −Gφ3FµνFµν +
8

3
πG

(
T + 2

ϑ

φ2

)
. (8.3.6)

In the above equations Gµν is the usual Einstein tensor, Fµν the Faraday ten-
sor, φ the extra scalar field governing the expansion of the extra dimension,
and, given the coordinate length of the fifth dimension l5 =

∫
dx5, we have :

Tµν = l5φτµν, jµ =
√

4Gl5φτ
µ
5 , ϑ = l5φτ55, G = G5l−1

5 . (8.3.7)

We are now focusing just on some simple scenarios in absence of electromag-
netic fields: equations of particular interest are 8.3.6, 8.3.2, 8.3.3 which in such
a case read:

gαβ∇α∂βφ =
8

3
πG

(
T + 2

ϑ

φ2

)
, (8.3.8)

dm

ds
= − A

φ3

dφ

ds
, m

Duµ

Ds
= A(uρuµ − gµρ)

∂ρφ

φ3
. (8.3.9)

Interesting equations of state we would like to outline are the following:

- 2ϑ = −φ2T

Here φ = 1 is a suitable solution and it yields m = cost, Duµ

Ds = 0;
therefore the Free Falling Universality ( FFU ) of particles still holds
and we just recover General Relativity.

- ϑ = 0
Now m = cost, being A = 0 and we have Duµ

Ds = 0. Therefore the FFU
holds, but we can have φ variable, thus we have a modified theory.

- A = αmφ2

Now φ is variable as well as m but the equation of motion is: Duµ

Ds =

α(uρuµ − gµρ)
∂ρφ
φ . The mass is ruled out and then FFU still holds even

if the theory is now modified by two additional degrees of freedom.
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Noticeably, in the last scenario the equation for mass behaviour admits an
easy integration and we get a scaling law for mass:

m = m0

(
φ

φ0

)−α

. (8.3.10)

Promising perspectives of this model deal with its developments within ho-
mogeneous background. In the last case a recent proposal under investiga-
tion concern the role of Tµν. It has been suggested that such a tensor depends
in general on ordinary matter degrees of freedom plus extra-dimensional de-
grees of freedom. Requiring that it reduces to the ordinary matter tensor
when the extra-dimensional source vanishes, a suitable parametrization ap-

pears Tµν = T
µν
matter + λ θ

φ2 . With such a choice there exist solutions, in an ho-

mogeneous background, characterized by an accelerating universe together
with a collapsing extra dimension. Indeed such a term provides a pressure
source, described by a dark energy equation of state. At the same time, as-
suming that particles we observe are given by localized matter distribution
without pressure, effective particles turn out to be associated with distribu-
tion with vanishing θ ; therefore, being A = 0 we restore all the properties of
our observed particles.

8.4. Geodesic deviation

In a work of Kerner et al. (2000) the problem of geodesic deviation in 5D KK
is faced. The 4D space-time projection of the obtained equation is identical
with the equations obtained by direct variation of the usual geodesic equa-
tion in the presence of the Lorenz force, provided that the fifth component of
the deviation vector satisfies an extra constraint there derived . The analysis
was performed taking φ = 1 and it was developed within the scheme of the
geodesic approach. Therefore, our research focused on the extension of this
work to the model where the presence of the scalar field is considered. Our
results coincide with those of Kerner et al. when the minimal case φ = 1 is
considered, while it shows some departures in the general case. The novelty
due to the presence of φ is that the variation of the q/m between the two
geodesic line is not conserved during the motion; an exact law for such a be-
havior has been derived. In principle such a results is interesting in order to
check if it is possible to find a mark of the extra dimension via tidal effects
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due to the scalar field.

D2δxα

Ds2
−




w2
5

1 +
w2

5

φ2




1

φ3

dφ

ds

Dδxα

ds
= −Rα

βγλuβδxγuλ +

+
w5√

1 +
w2

5

φ2

δxν∇ν

[
Fαβuβ

]
+




w2
5

1 +
w2

5

φ2


 δxν∇ν

(
∂αφ

φ3

)
−

−


Fα

ν uν − 2
w5√

1 +
w2

5

φ2

∂αφ

φ3


 δ

(
δ

q

m

)
. (8.4.1)

d

ds

(
δ

q

m

)
=

[
φ

w2
5

d

ds
δx5 − αδα

φ3

w2
5

− δQ

α

]
d

ds
α. (8.4.2)

The above equation thus gives the deviation of the factor δQ in term of the
re-parameterization factor α; in such a way we can link the problem of the
not conservation of the charge-mass ratio with the projection factor from ds5

to ds.

8.5. Massive test particles motion in Kaluza-Klein

gravity

The metric family

5ds2 =

(
1 − 2M

r

)ǫk

dt2 −
(

1 − 2M

r

)−ǫ(k−1)

dr2 −

−r2

(
1 − 2M

r

)1−ǫ(k−1)

dΩ2 −
(

1 − 2M

r

)−ǫ

dx5 2 (8.5.1)

in the 4D–spherical polar coordinate is a solution of 5D–Kaluza Klein equa-
tion in the vacuum RAB = 0, with 4D–spherical symmetry. The free “met-
ric parameters” (ǫ, k) are real constants related by ǫ2

(
k2 − k + 1

)
= 1. Met-

ric (8.5.1) reduces to the Schwarzschild solution on the surface x5 = cost
as ǫ → 0 and k → ∞. In this limit the parameter M is the central body
mass. We explored k ≥ 0 and ǫ ≥ 0, analyzing particle motion in the region
r > 2M, as interesting regions in which to investigate the physical properties
of solutions (8.5.1). For these values of the metric parameters, the Gross and
Perry solution presents a naked singularity behavior: it is a black hole one
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only in the Schwarzschild’s limit for (ǫ, k). Particles dynamic has been stud-
ied first by classical approach, considering particle motion as described by a
geodesic in 5D-spacetime, then the analysis has been performed by approach
an a la Papapetrou to the motion in Kaluza Klein, therefore considering a
5D-particle described by an energy momentum tensor picked along the par-
ticle 4D-world-tube. Finally a comparison of the results obtained into the two
different approaches has been made. In both cases we find the effective po-
tential for the circular polar orbits of charges as well as neutral test particles
In the first case, assuming a geodesic motion in 5D manifold with a constant
particle mass µ5 the effective potential reads

5Ve f f ≡

√√√√
(

1 − 2M

r

)ǫk
[

1 + r2

(
1 − 2M

r

)−1+ǫ(k−1)
5L2

µ2
5

+

(
1 − 2M

r

)ǫ 5Γ2

µ2
5

]

(8.5.2)
where Γ is the conserved fifth component of the particle momentum. The
analysis shows that last circular orbits radius, rco = [1 + ǫ(2k − 1)]M is al-
ways located under the expected values of rco = 3M of the Schwarzschild’s
limit: circular orbits (instable and stable) are possible also in a region r < 3M.
The energy and angular momentum of circular orbits have also been found.

8.5.1. Papapetrou analysis

Here we investigated motion in the backgrounds 8.5.1 by an approach a la Pa-
papetrou. Consider the following 4D–dispersion relation PµPµ = m2, where
Pµ = muµ, where m is the particle mass and uµ the 4-velocity of the particle;

the followings constants of motion can be defined E = p0 = mg00u0 L =
pϕ = mgϕϕuϕ An effective potential for a test particle of mass m can be de-

fined1 as

Ve f f ≡ E =

√
g00

(
m2 − L2

gϕϕ

)
(8.5.3)

We focus attention on particulary scenarios.
First we consider the case A = 0 where ua 4∇aub = 0 and ∂µm = 0
they describe a geodetic motion in the ordinary 4D–spacetime for a test par-

ticle of constant mass m, where no scalar field coupling term appears. Last

stable circular orbit is rLSCO =
[
1 + ǫ(3k − 2) + ǫ

√
(−1 + k)(−1 + 4k)

]
M

with rLSCO < 6M ∀k > 0 It is worthwhile noting that last stable circular
orbit radius is located under its Schwarzschild’ limit; this means that in prin-
ciple there could be particles in stable orbits for values of radius orbit just less
that 6M, and this could represent a valid constraint to compare theory with
experimental data. The energy and angular momentum of the last circular

1In this case the Ve f f has unit of mass.
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8.5. Massive test particles motion in Kaluza-Klein gravity

orbits are respectively:

L±
ǫk

Mm
= ±r+LSCO

M

(
1 − 2M

r+LSCO

) 1
2 [(1−k)ǫ+1]√√√√√

−ǫk

ǫ (2k − 1) +

(
1 − r+LSCO

M

) (8.5.4)

Eǫk

m
=

(
1 − 2M

r+LSCO

) kǫ
2
√√√√√1 +

−ǫk

ǫ(2k − 1) +

(
1 − r+LSCO

M

) (8.5.5)

The energy Eǫk for all values of k–parameter is always under its Schwarzschild
limit, the angular momentum Lǫk is over the Schwarzschild limit for k >

3.45644. This fact should not be read as a direct consequence of a possi-
ble motion along a 5–dimension, since the equation of motion does not de-
pend on it but neither on the g55–metric component, but on the contrary it
seems us more suitable interpret it a features related to deformation of the
Schwarzschild metric as long as k is sufficiently small. This seems to be con-
firmed also by the fact that Eqs.(8.5.4, 8.5.5) are, as matter of fact, the same one
can obtain from the geodesic approach with ω5 = 0. In the following anal-
ysis we choice different values of the dynamical parameter A where ELSCO

and LLSCO have the same behavior.

As a simplest generalization of the previous case we are going to consider

A = cost, with ua (4)∇aub = (ubuc − gbc)
(

∂cφ
2φ5

)
we set A = 2φ2

0m0, therefore

m = A/2φ2 where in the Schwarzschild’s limit m = m0. Last circular orbit is
located at r = rLCO ≡ M [1 + ǫ (2k + 1)] Last stable circular orbit is in

r = rLSCO ≡
√

M2 [4 + (15k − 8)ǫ2 + 5(8 − 3k)ǫ4] + M [3 + ǫ(2 + k − 11ǫ + 5kǫ)]

(2 + k)ǫ
(8.5.6)

this is a free–A quantity, but it is a function of the only metric parameter. Also
in this case rLSCO < 6M and in the Schwarzschild’s limit rLSCO = 6M.

In the case A = βmφ2 where β is a real number. the mass m is no more a
constant but integrating along a curve γ = γ(s) between the points P = γ(s)

and P0 = γ(s0) follows the scaling law m =
(

m0φ
β
0

)
φ−β and the equations

of motion became ua (4)∇aub =
(
ubuc − gbc

) ∂cφ
φ β where φ0 is a constant. This

equation does not depend on m but on the constant β. Introducing the param-

eter B2 ≡ m2
0φ

2β
0 , and the notation ḡ55 ≡ −g55 = φ2. The angular momentum

L and the energy E of timelike circular orbits are respectively

L2 = (−1)β
(

1 − 2M

r

)(β+1−k)ǫ (2M − r)(k + β)ǫB2 Mr

M − r + (2k − 1)Mǫ
(8.5.7)
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and

E =

√√√√B2
(
1 − 2M

r

)(k+β)ǫ
(−1)β [M − r + M(−1 + k − β)ǫ]

M − r + (2k − 1)Mǫ
(8.5.8)

In the Schwarzschild’s limit thy became respectively:

L2 = (−1)β r2B2M

r − 3M
, E =

√

− (−1)βB2(r − 2M)2

(3M − r)r
(8.5.9)

where B = m0 and β = 2n with n ∈ Z. In general for k > −β last circular
orbit is located at r = rc ≡ M [1 + ǫ (2k + 1)] and rc < 3M. Last stable circular
orbit is in

r = rLSCO ≡ M
3 + ǫ[k + β + (−3 + k + 2kβ − β(2 + β))ǫ]

(k + β)ǫ
+

+M

√
4 + ǫ2 [−3k(1 + 2β) (ǫ2 − 1) + (2 + β) (β − 4 + (β3 + 2) ǫ2)]

(k + β)ǫ

note that in the Schwarzschild’s limit rLSCO = 6M. Radius of last stable circu-
lar orbit depends on two free parameters, k as the independent metric param-
eter and β as a “dynamical” one. Moreover rLSCO < 6M for β > 0, meanwhile
for β < 0 and k > −β, rLSCO > 6M is possible. For β = 2 we recover the
same physical situations sketched in the case A = 0. More generally it is pos-
sible to see that at an increase of β > 0 for fixed values of the parameter k, an
increase of the difference ∆rLSCO = |r − 6M| occurs.

2440



9. Activities

This group lives within the Relativistic Astrophysics Center at the Physics
Department of “Sapienza” University of Rome (Prof. Remo Ruffini - 2nd

Chair in Theoretical Physics). It deals with three main research lines, each of
them aimed to specific topics, according to the following scheme:

- Early Cosmology:

Chaotic Universes, Dissipative cosmologies

- Quantum Gravity:

Quantum cosmology, The problem of time

- Multidimensional Physics:

Particle and Field dynamics in Kaluza-Klein theories,
Geometrization of the gauge connection (the electroweak model)

The group is directed by Dr. Giovanni Montani and it is composed of
about ten members, undergraduate students, PhD students and post-docs.
The main goal of this investigation paradigm is to find, through different
aspects of the gravitational field, markers for a unification picture of the fun-
damental interactions. In this respect, the Cosmological framework is the
natural arena of this expected scenario.

9.1. Seminars and Workshops

9.1.1. Seminar at University of Trento, Italy.

Trento, May 15 2009.

- Title: “The Taub Universe: Polymer Quantum Dynamics”

Authors: O. M. Lecian and G. Montani

Abstract: After briefly comparing difference operators with differen-
tial operators, I will review the main features of the so-called polymer
representation of quantum mechanics, as far as the kynematics, the dy-
namics and the continuum limit are concerned. I will then recall the key
points of Loop Quantum Gravity as a quantum theory of gravity based
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9. Activities

on holonomies of the connections and fluxes of the densitized triads,
and the fundamental aspects of Loop Quantum Cosmology, based on
the strong simplification arising from considering isotropic and homo-
geneous geometries. I will eventually apply these tools to the analysis
of the Taub cosmological model in the ADM splitting. The behaviour
of the gaussian wave-packets will show that, despite the appearence of
’polymer’ modifications, the cosmological singularity is not probabilis-
tically suppressed for the polymer Taub universe.

9.1.2. “The directions of moderm cosmologies” meeting

Barcellona, March 2 marzo 2009.

- Title: “An example of f(R) model passing Solar-System tests”

Authors: O. M. Lecian and G. Montani

Abstract: The weak-field limit of a f(R) model consisting in the Ricci
scalar plus a non-analytic function of it will be proposed, and the pa-
rameter space of the model will be constrained by means of the validity
range of the weak-field limit approximation and of the planetary mo-
tion. These results will be compared with those obtained for the analyt-
ical case.

9.1.3. 6th Italian-Sino Workshop on Relativistic Astrophysics

Pescara, June 29-July 1, 2009.

- Title: “Higgs Field from a Scalar-Tensor Theory with Barbero-Immirzi
Variables”

Authors: F. Cianfrani and G. Montani

Abstract: The Hamiltonian formulation of a scalar field non-minimally
coupled to gravity is performed in a first-order approach. It is shown
how the scalar field itself enters into the definition of the discrete spa-
tial structure proper of Loop Quantum Gravity. This result suggests to
work in the Einstein frame, where the scalar field is minimally-coupled
to a fictitious metric. Within this scheme the Higgs potential naturally
arises and a non-vanishing vacuum expectation value is predicted for
the scalar field.
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9.1.4. 2nd Italian-Pakistani Workshop on Relativistic

Astrophysics

Pescara, July 8-10, 2009.

- Title: “Massive test particles motion in Kaluza-Klein gravity”

Authors: V. Lacquaniti, G. Montani, D. Pugliese, R. Ruffini

Abstract: A class of static, vacuum solutions of (free-electromagnetic)
Kaluza-Klein equations with three-dimensional spherical symmetry is
studied. In order to explore the dynamic in such spacetimes, geodesic
equations are obtained and the effective potential for massive test par-
ticles is analyzed. Particular attention is devoted to the properties of the
four-dimensional counterpart of these solutions in their Schwarzschild’s
limit. A modification of the circular stable orbits compared with the
Schwarzschild’s case is investigated.

9.1.5. XII Marcel Grossman meetings

Paris, July 12-18, 2009.

- Title: “On the Removal of Time-Gauge in Loop Quantum Gravity, with
and without Matter”.

Authors: F. Cianfrani and G. Montani

Abstract: We perform the Hamiltonian formulation of gravity at the
first order without fixing the local Lorentz frame. We demonstrate that
the Gauss constraints of the Lorentz group reduce to SU(2)-Gauss con-
straints plus the vanishing of some momenta. This result definitively
clarifies the peculiar role played by the SU(2) gauge symmetry in the
phase space of gravity. Hence the Loop Quantum Gravity quantization
procedure can be safely applied and no gauge condition has to be fixed
for the local Lorentz frame.

- Title: “Quantum Suppression of Weak Universe Anisotropy”.

Authors: R. Belvedere, M. V. Battisti and G. Montani

Abstract: An exact solution of the quantum quasi-isotropic Mixmaster
model is described through a semi-classical mechanism. The volume of
the Universe is regarded as an external-like observer and a probabilistic
interpretation of the wave function naturally arises. We show that near
the cosmological singularity all values of the anisotropies are almost
equally favored but, once large volume regions are investigated, the
closed FRW Universe configuration is deeply privileged.
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- Title: “Comparison of the Cosmological Singularity in the Polymer and
GUP Frameworks”.

Authors: O. M. Lecian and G. Montani

Abstract: We investigate the role played by quantization schemes and
the choice of the variables to be quantized in the removal of the cos-
mological singularity. In particular, we analyze the Taub cosmologi-
cal model, for which an internal time variable can be found, such that
the only degree of freedom left is the space-like variable describing the
anisotropy. The quantization of this remaining degree of freedom is
performed within the frameworks of a generalized uncertainty princi-
ple (GUP) and of the polymer representation of quantum mechanics.
As a result, the cosmological singularity is probabilistically removed in
the Gup Taub Universe, while the polymer effects do not suppress the
singularity. We compare these two approaches and results with other
proposals, outline the main differences, which can be interpreted as re-
sponsible for different results, and consider possible generalizations.

- Title: “Bianchi IX in the GUP approach”.

Authors: M. V. Battisti and G. Montani

Abstract: We describe the dynamics of the Bianchi I, II and IX cosmo-
logical models in the generalized uncertainty principle framework. We
show that the Mixmaster Universe is still a chaotic system.

- Title: “Big-bounce from a deformed Heisenberg algebra”.

Authors: M. V. Battisti

Abstract: The implementation of the Snyder non-commutative geomery
in the FRW minisuperspace is analyzed. We show that a big-bounce a
la LQC is obtained.

- Title: “Effective potential approach to the motion of massive test parti-
cles in Kaluza-Klein gravity”

Authors: V. Lacquaniti, G. Montani, D. Pugliese, R. Ruffini

Abstract: Effective potential for a class of static solutions of Kaluza-
Klein equations with three-dimensional spherical symm etry is stud-
ied. Test particles motion is analyzed. In attempts to read the obtained
results with the experimental data, particular attention is devoted to
the Schwarzschild’s limit of the four–dimensional counterpart of these
(free-electromagnetic) solutions. Massive particles stable circular orbits
in particular are studied, and a comparison between the well–known
results if the Schwarzschild’s case and ones found for the static higher-
dimensional case is performed. A modification of the circular stable
orbits is investigated in agreement with the experimental constraints.
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- Title: “Restated Dynamics for Particles and Fields in a 5-D Framework:
solution of the q/m problem”

Authors: V. Lacquaniti and G Montani

Abstract: In this work we present a revised approach to the problem of
matter in the framework of the 5D compactified Kaluza-Klein model.
We introduce a 5D external matter tensor and perform a simultaneous
reduction of matter and geometry, facing the test-particle motion via an
appropriate multipole expansion. Within this scheme the q/m puzzle
is solved and the tower of huge massive modes is removed, without
giving up with the compactification hypothesis. The model looks like
a consistent modified gravity theory, where an extra scalar source term
appears. Interesting scenarios and perspectives related to dark energy
are discussed.

9.1.6. Invited talk at the Rudjer Boskovic Institute

Zagreb, October 2009.

- Title: “Loop quantum gravity”

Author: M. V. Battisti

Abstract: We review the main aspects of the loop approach to quantum
gravity. Particular attention will be paid at the connection formulation
of GR and at the kinemetic sector of the quantum theory.

9.1.7. ICRA Seminars

Roma, October 29 2009.

- Title: SU(2) gauge structure in Quantum Gravity and the Immirzi field.

Authors: F. Cianfrani and G. Montani

Abstract: It is outlined the relevance for Quantum Gravity of inferring
a kinematical SU(2) gauge structure in a generic Lorentz frame. Then,
the analysis of Hamiltonian constraints is performed in vacuum and in
presence of matter fields. SU(2) Gauss constraints are shown to arise
even though no restriction of the local Lorentz frame takes place. Fi-
nally, it is presented the application of the proposed scheme to an ex-
ternal Immirzi scalar field, for which a dynamical relaxation to a fixed
vacuum expectation value is proposed.
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9.1.8. 19th International Conference on General Relativity

and Gravitation (GR19)

Mexico City, July 5-9, 2010.

Poster

- Title: “On the SU(2) gauge symmetry in the Holst formulation of grav-
ity”

Author: F. Cianfrani

9.2. Review Work

9.2.1. Fundamentals and recent developments in
non-perturbative canonical Quantum Gravity

- Authors: F. Cianfrani, O.M. Lecian and G. Montani

In this work fundamental and recent aspects of canonical quantum gravity
are reviewed. The aim of the presentation is to provide a pedagogical ap-
proach to the problem of quantizing the gravitational field which provides
the tools for a proper understanding of recent issues in this research line.

After a detailed discussion of some relevant features concerning the classi-
cal and quantum field dynamics, the Wheeler-DeWitt formulation of canoni-
cal quantum gravity is presented with a careful discussion of its main short-
comings. Then a detailed analysis of the Loop Quantum Gravity approach is
given starting from the basic mathematical notions at the ground of this mod-
ern formulation. Finally the full paradigm is developed giving emphasis on
the successes and the open questions concerning the loop representation of
space-time.

Contents:

- 1. Quantization methods

1.1 Classical and quantum dynamics

1.2 Quantum operators and wave functions

1.3 Difference operators Vs differential operators

1.4 Time

1.5 Quantization of Hamiltonian constraints

1.6 Weyl quantization

1.7 GNS construction
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- 2. Hamiltonian formulation of the geometrodynamics

2.1 The action for the gravitational field

2.2 The space-time slicing

2.3 The Hamiltonian structure

2.4 The Hamilton-Jacobi equation

2.5 Reduction to the canonical form

- 3. Gravity as a gauge theory

3.1 Gauge theories

3.2 First-order formulation for the gravitational field

3.3 Gravity as a gauge theory of the Lorentz group?

3.4 Poincaré gauge theory

3.5 The Holst formulation

3.6 The Kodama state

- 4. Quantization of the gravitational field

4.1 The WDW equation

4.2 The problem of time

4.3 Interpretation of the wave function

4.4 The idea of Third Quantization

- 5. Loop Quantum Gravity

5.1 Holonomies and Fluxes

5.1.1 Why a reformulation in terms of Wilson loops?

5.1.2 Lattice gauge theories

5.1.3 Holonomies and fluxes in Quantum Gravity

5.2 Spectrum of space-time operators

5.3 Quantum dynamics in LQG

5.4 Open issues in Loop Quantum Gravity

5.4.1 Master Constraint and Algebraic QG

5.5 Loop Quantum Cosmology

5.6 On the physical meaning of the Immirzi parameter

5.7 Time gauge and boost invariance

5.8 The picture of the space-time
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A. Brief description of Quantum
Gravity

A.1. The time gauge problem in the path integral

formalism

In section “The time gauge problem in the path integral formalism” we turn
our attention to general relativity expressed in first-order formalism, in or-
der to investigate [10] the physicality condition for the states of the gravita-
tional field arising from BRST invariance of the theory, following the same
procedure employed for non-Abelian gauge theories. In this procedure we
will intentionally avoid to use canonical quantization methods. We are to
determine a physical state condition on quantum states without thinking of
classical Hamiltonian constraints in order to compare, at the end of our cal-
culation, our physicality condition required by BRST symmetry and derived
with path-integral methods with the one obtained using the Dirac quantiza-
tion method employed within Ashtekar’s canonical formulation.

The people involved in this line of research are Michele Castellana and
Giovanni Montani.

A.2. Minisuperspace and Generalized Uncertainty

Principle

In section “Minisuperspace and Generalized Uncertainty Principle” we ex-
plain some results obtained in a recent approach to quantum cosmology, in
which the notion of a fundamental scale naturally appears. This scheme re-
alizes in quantizing a cosmological model by using a deformed Heisenberg
algebra, which reproduces a Generalized Uncertainty Principle as arises from
studies on string theory. We find that the classical cosmological singularity
of the Taub model is solved by this approach in the sense that the quantum
Universe can be regarded as probabilistically singularity-free [4], [12]. More-
over, the Taub GUP wave packets provide the right behavior in the establish-
ment of a quasi-isotropic configuration for the Universe. The Bianchi I, II and
IX cosmological models are also analyzed in the GUP framework [27] and
the ordinary dynamics appears to be deeply modified and, in particular, the
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Mixmaster Universe can be still considered a chaotic system. Furthermore,
in the context of a deformed Heisenberg minisuperspace algebra framework,
a deep phenomenological relation between loop quantum cosmology, brane
cosmology and the κ-Poincaré scheme is obtained.

The people involved in this line of research are Marco Valerio Battisti and
Giovanni Montani.

A.3. Evolutionary Quantum Gravity

In section “Evolutionary Quantum Gravity” we review the fundamental as-
pects of the so-called evolutionary quantum gravity.

An evolutionary paradigm is inferred by restricting the covariance princi-
ple within a Gaussian gauge and the corresponding implications for a generic
cosmological scenario are investigated both on a classical and a quantum
level [13]. A dualism between time and the reference frame fixing is then
inferred.

The people involved in this line of research are M.Valerio Battisti, Francesco
Cianfrani and Giovanni Montani (past collaborator: Simone Mercuri).

A.4. Polymer quantum cosmology

In section “Polymer quantum cosmology” we explain some results obtained
applying the polymer quantization paradigm to the Taub Universe. The poly-
mer approach is based on a inequivalent representation of the Weyl alge-
bra and its physical relevance arises from consideration on the mechanical-
system-limit of the loop quantum gravity theory. As a result of our analysis,
the cosmological singularity is not probabilistically removed, as in the GUP
approach, since the dynamics of the wave packets is not able to stop the evo-
lution toward the classical singularity.

The people involved in this line of research are Marco Valerio Battisti, Or-
chidea Maria Lecian and Giovanni Montani.

A.5. Lorentz Gauge Theory

In section “Lorentz Gauge Theory” we implement a non-standard gauge the-
ory of the local Lorentz group both in flat and in curved space-time, based on
diffeomorphism induced Lorentz transformation and the ambiguity which
emerges in the transformation laws of the usual spin connection and spinors.

We propose a model [8][22] to analyze the interaction of a 4-spinor with
the new connections of the Lorentz group (addressed in flat space). This
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scheme exhibits strong analogies with the electro-magnetic case and the so-
called Pauli equation. The analysis of this interaction is devoted to find out
anomalous selection rules for a hydrogen-like model and, of course, energy-
level splits. According to standard quantum mechanics new energy levels
are present, but no new transitions arise.

The peoples involved in this line of research are Giovanni Montani, Nakia
Carlevaro and Orchidea M. Lecian (past collaborator: Simone Mercuri).

A.6. Quantum Mixmaster

In section “Quantum Mixmaster” we propose a semiclassical treatment and
a Schrödinger quantization scheme applied to the Mixmaster dynamics; the
associated eigenvalue problem is solved. This approach gives a set of eigen-
functions (here we assume an ordering for the position and momentum op-
erators such that v2p2

v → v̂p̂v
2v̂, which is the only one able to reproduce

the proper statistical dynamics). As soon as (approximated) Dirichlet bound-
ary condition are taken into account, the energy spectrum is obtained. This
spectrum is a discrete one, and it admits a minimum value given by E2

0 =

19.831h̄2. In the figures in the section the wave function of the ground state
and its probability distribution are plotted [7]. The persons working on this
topic are Riccardo Benini and Giovanni Montani.

A.7. Loop Quantum Cosmology

In section “Loop Quantum Cosmology” we perform a general analysis of the
equations governing the evolution of the Universe within semi-classical Loop
Quantum Cosmology by using qualitative methods of the theory of dynami-
cal systems. Specifically, two cases are considered with different type of cor-
rections to the Friedmann equations [8], [3]. Quadratic terms on the energy
density correction to the Friedmann equation, coming from effective Hamil-
tonian of Loop Quantum Cosmology, and corrections due to the inverse scale
factor operator (both in the gravitational and the matter part of the effective
Hamiltonian) were analyzed, respectively.

Our general conclusion, considering both types of corrections, is the ab-
sence of cosmic singularity, so in all solutions the usual expansion stage fol-
lows after the generic bounce. Moreover, we have shown that in both cases
there exist successful mechanisms for generation of initial conditions suitable
for inflation.

This work is relevant for the development of the theory of Early Universe.
In particular, better understanding of background solutions and their prop-
erties should be reached to study of the cosmological perturbations.The dy-
namics of these perturbations, in turn, is crucial in view of verifications of
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predictions of the theory, confronted with observational data.
The peoples involved in this line of research are Giovanni Montani and

Gregory V. Vereshchagin.

A.8. Lorentz gauge connection

The Yang-Mills picture of the local Lorentz transformations is approached in
a second-order formalism. For the Lagrangian approach to reproduce the sec-
ond Cartan structure equation, as soon as the Lorentz gauge connections are
identified with the contortion tensor, an interaction term between the Lorentz
gauge fields and the spin connections ω has to be postulated. This interac-
tion term induces a Riemannian source to the Yang-Mills equations; thus,
the real vacuum dynamics of the Lorentz gauge connection takes place on
a Minkowski space only, when the Riemannian curvature and the spin cur-
rents provide negligible effects. In fact, it is the geometrical interpretation
of the torsion field as a gauge field that generates the non-vanishing part of
the Lorentz connection on flat space-time. The full picture involving gravity,
torsion and spinors is described by a coupled set of field equations, which
allows one to interpret both gravitational spin connections and matter spin
density as the source term for the Yang-Mills equations. The contortion ten-
sor acquires a propagating character, because of its non-Abelian feature, and
the pure contact interaction is restored in the limit of vanishing Lorentz con-
nections [8].
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B. Brief description of Quantum
Fields on Classical Background

B.1. Dirac equation on a curved spaces and

classical trajectories

In section “Dirac equation on a curved space-time and classical trajectories”,
the interaction between geometry and internal spinor-like degrees of free-
dom has been investigated with the aim to infer the analogous of Papapetrou
equations for a quantum spin. This task has been approached by an eikonal
approximation, and a localization hypothesis along the integral curve of the
momentum [34]. Hence, a dispersion relation has been recovered starting
from the squared Dirac equation and by virtue of an integration on spatial co-
ordinates. It is worth noting the emergence of a Papapetrou-like interaction
between the Riemann tensor and a tensor, which characterizes the internal
structure of spinors.

The persons involved in this research line are Giovanni Montani and Fran-
cesco Cianfrani.
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C. Brief description of Unification
Theories

C.1. Classical and Quantum spinning particles in

Kaluza-Klein space-times

In the section “Classical and Quantum spinning particles in Kaluza-Klein
space-times”, we analyze the introduction of spinor fields in a KK model. The
dynamics of a classical spinning particle, in a KK space-time, is inferred from
the extension of Papapetrou equations to the 5-dimensional case, with Pirani
conditions. This way, the system reproduces exactly equations of motion of a
spinning particle, endowed with a charge and an electro-magnetic moment.
This result demonstrates that the geometrization of electro-dynamics does
not modify the dynamics of spinning objects [43].

The introduction of spinor fields in a KK model is the main open point
of such an approach. The standard way to deal with them is to extend the
Dirac equation to the multi-dimensional case and to try to identify extra-
dimensional quantum numbers with internal ones. However this procedure
fails, because of the emergence of mass terms of the compactification scale
order and because quantum numbers of Standard model particles cannot be
inferred. In this respect, our investigation has been focused on a more phe-
nomenological approach, based on recovering 4-dimensional properties by
an averaging procedure on the extra-dimensional manifold. This average is
motivated by the undetectability of the extra-space and the need for it is not
restricted to the case spinors are present. In fact, we showed that it is re-
quired in order to reproduce non-Abelian gauge transformations from extra-
dimensional isometries and to get the equations of motion, proper of the 4-
dimensional picture, starting from multi-dimensional ones. As far as spinors
are concerned, the average produces a non-trivial effect on extra-dimensional
symmetries, such that some of the above mentioned issues can be solved [37],
[38], [47].

The people involved in this research line are Francesco Cianfrani, Irene
Milillo, Andrea Marrocco and Giovanni Montani.
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C.2. Generalized 5-Dimensional Theories

In section “Generalized 5-Dimensional Theories”, we analyze possible gen-
eralizations of the 5D Kaluza-Klein model. The introduction of torsion has
been shown to produce interesting structures after dimensional reduction. In
a 5D scenario, the geometrization of the Electro-weak model has been worked
out on the ground of the broken 5D Lorentz group and the properties of tor-
sion [39], and proposal for the introduction of Ashtekar variables within this
scheme has been evaluated.On the other hand, the truncation of the infinite
tower that characterizes KK theories has been evaluated within the frame-
work of polymer representation and generalized uncertainty principle: in
the first case, compactification is illustrated to occur because of the trunca-
tion, while, in the second case, compactification is illustrated to be compatible
with the main hypotheses of the scheme.

The people involved in this research line are Orchidea M. Lecian and Gio-
vanni Montani.
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D. Quantum Gravity

D.1. The time gauge problem in the path integral

formalism

The problem of quantization of constrained systems arises in many contexts
of physical interest. The presence of constraints at a classical level avoids
us to threat all the dynamical variables as independent ones, and entails
several difficulties when we are to construct the quantum theory. In a pro-
gram of canonical quantization which promotes all classical canonical vari-
ables to quantum operators one has to deal with the problem of quantum-
mechanically imposing the constraints. In the procedure à la Dirac, the con-
straint operators are imposed to annihilate physical states. This procedure
stems from the observation that in the classical theory, the constraint func-
tions are generators of infinitesimal canonical transformations which don’t
alter the physical state of the system.
The Dirac procedure is widely used in different contexts, including quanti-
zation of general relativity. Nevertheless this procedure of quantization en-
counters several difficulties when we require the Dirac conditions on physi-
cal states to be consistent with each other and the physical states selected by
constraint operators to posses a finite scalar product allowing a probabilistic
interpretation: moreover, in some cases this procedure can lead to a physical
subspace of the entire Hilbert space that is curiously empty. Other difficul-
ties arise when one tries to implement the Dirac procedure, which are not
properly to be ascribed to the Dirac theory for constrained systems, but to
the canonical quantization framework this procedure is developed in. As a
matter of fact, our experience on quantum field theory in special relativity
showed us how canonical quantization methods, when applied to systems
with infinite degrees of freedom, lead to several inconsistencies: for example,
it is a remarkable fact that the Glashow - Weinberg - Salam theory for elec-
troweak interactions cannot be consistently formulated by canonical quanti-
zation methods, while the only way by which can be coherently written by is
the Feynman path integral technique. Even if Feynman’s path integral can be
derived after constructing the quantum theory by means of canonical quanti-
zation methods, such inconsistencies need to postulate the path-integral ap-
proach as a founding element of the quantum theory when we deal with
systems with infinite degrees of freedom. It is for these reasons that we de-
veloped all of our work (Castellana and Montani, 2008) avoiding using the
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Dirac procedure for constrained systems and canonical quantization meth-
ods at all, employing a method to derive conditions on physical states based
on BRST symmetry and path=integral methods uniquely.

BRST symmetry was conceived at first within non-Abelian gauge theories
and shown to apply to a really wide class of systems of physical interest.
Anyway, in the literature, there are different formulations for the BRST for-
malism, with substantial differences from each other. First of all, there exists
a formulation of BRST symmetry for constrained systems based on canoni-
cal quantization methods which is widely diffused, being also employed in
quantization of general relativity. Another approach, the one we followed in
this work, is to derive BRST symmetry, based entirely on path integral meth-
ods, and it is applicable to systems with infinite degrees of freedom, avoiding
those inconsistencies proper of canonical quantization methods we discussed
above.

We start with an enlightening and more or less known example, consid-
ering BRST symmetry for a non-Abelian gauge theory. In order to compare
path integral methods with canonical quantization ones, one can consider the
Nöether charge following from BRST symmetry of the action and, taking an
appropriate choice for the gauge fixing functionals in the DeWitt - Fadeev -
Popov method, show it to be the generator of quantum BRST transformation
within a canonical quantization framework.
Otherwise, using solely path integral methods, we show the BRST Nöether
charge

Q ≡
∫

d3xJ0(x) (D.1.1)

related to the BRST current Jµ to generate quantum BRST transformation
by means of Ward’s identities for the ensemble of gauge fields, ghost and
antighost fields and Nakanishi - Lautrup fields, designed by ψi(x), i. e.

0 = ∂x
µ

〈
ψik

(xk) · · · ψi1 (x1) Jµ(x)
〉

j=0
− i

k

∑
l=1

σi1 · · · σil〈ψik
(xk) · · ·(D.1.2)

· · ·ψil+1
(xl+1) sψil

(x)ψil−1
(xl−1) · · ·ψi1 (x1)〉j=0δ(4) (x − xl) .

where σi = ±1 for ψi bosonic or fermionic respectively. The fact that in
(D.1.2) the gauge fixing functionals are completely arbitrary allows us to infer
a physical-state condition on states of the gauge fields following from BRST
invariance, given by the usual Gauss’

DaF0aα(x) |ψ〉 = 0. (D.1.3)

Afterward, we turn our attention to general relativity expressed in first-
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order formalism, in order to investigate the physicality condition for the states
of the gravitational field arising from BRST invariance of the theory, follow-
ing the same procedure employed for non-Abelian gauge theories. In this
procedure we will intentionally avoid to use canonical quantization meth-
ods. We are to determine a physical state condition on quantum states with-
out thinking of classical Hamiltonian constraints in order to compare, at the
end of our calculation, our physicality condition required by BRST symme-
try and derived with path-integral methods with the one obtained using the
Dirac quantization method employed within Ashtekar’s canonical formula-
tion. Employing the same method leading us to the usual Gauss’ constraint
for non-Abelian gauge theories, we arrive at the following physical state con-
dition for the densitized triad Ea

i

Da

[
Ea

j (x) + iejb(x)e0c(x)ǫ
abc
]
|ψ〉 = 0. (D.1.4)

Comparing our physicality condition with the one used in loop quantum
gravity, we find they differ by an additional non-vanishing term. We think
the origin of this discrepancy is in the choice of a particular gauge in the
classical theory which is made within Ashtekar’s approach and which was
intentionally avoided in our work. Finally, we show how we recover the
Dirac canonical condition in our BRST quantization only by a suitable choice
of gauge fixing functionals within the DeWitt - Fadeev - Popov method.

D.2. Minisuperspace and Generalized Uncertainty

Principle

This section is devoted to explain some results obtained in a recent approach
to quantum cosmology, in which the notion of a minimal length naturally ap-
pears. In particular, this scheme realizes in quantizing a cosmological model
by using a modified Heisenberg algebra, which reproduces a Generalized
Uncertainty Principle (GUP)

∆q∆p ≥ 1

2

(
1 + β(∆p)2 + β〈p〉2

)
, (D.2.1)

where β is a “deformation” parameter. The above uncertainty principle (D.2.1)
can be obtained by considering an algebra generated by q and p obeying the
commutation relation

[q, p] = i(1 + βp2). (D.2.2)

Such a deformed Heisenberg uncertainty principle was appeared in studies
on string theory and leads to a fundamental minimal scale. More precisely,
from the string theory point of view, a minimal observable length it is a con-
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sequence of the fact that strings can not probe distance below the string scale.
However, we have to stress that the minimal scale predicted by the GUP is, by
its nature, different from the minimal length predicted by other approaches.
In fact, the equation (D.2.1) implies a finite minimal uncertainty in position
∆qmin =

√
β. This way, we will introduce a minimal scale in the quantum

dynamics of a cosmological model.

Of course the appearance of a nonzero uncertainty in position pose some
difficulty in the construction of an Hilbert space. In fact, as well-known, no
physical state which is a position eigenstate can be constructed. An eigen-
state of an observable necessarily has to have vanishing uncertainty on it.
Although it is possible to construct position eigenvectors, they are only for-
mal eigenvectors but not physical states. In order to recover information on
position, we have to study the so-called quasiposition wave functions

ψ(ζ) ∼
∫ +∞

−∞

dp

(1 + βp2)3/2
exp

(
i

ζ√
β

tan−1(
√

βp)

)
ψ(p), (D.2.3)

where ζ is the quasiposition defined by the main value of the position q on
certain functions, i.e., 〈q〉 = ı. The quasiposition wave function (D.2.3) rep-
resent the probability amplitude to find a particle being maximally localized
around the position ζ (i.e., with standard deviation ∆qmin).

It is notable to stress how, the GUP approach relies on a modification of the
canonical prescription for quantization, and therefore it can be reliable ap-
plied to any dynamical system. Moreover, the application of such a formal-
ism in quantizing a cosmological model allows us to analyze some peculiar
features of string theory in the minisuperspace dynamics.

Let us now extend the above framework to the Taub general cosmological
model, discussing its quantization in the GUP scheme. The Taub model is
a particular case of the Bianchi IX model which line element (in the Misner
parametrization) reads

ds2 = N2dt2 − e2α
(

e2γ
)

ij
ωi ⊗ ω j, (D.2.4)

where N = N(t) is the lapse function, the variable α = α(t) describes the
isotropic expansion of the Universe and γij = γij(t) is a traceless symmetric
matrix which determines the shape change (the anisotropy) via γ±. Since the
determinant of the 3-metric is given by h = det eα+γij = e3α, it is easy to
recognize that the classical singularity appears for α → −∞.The Taub model
is the Bianchi IX model in the γ− = 0 case and thus its dynamics is equivalent
to the motion of a particle in a one-dimensional closed domain. Its ADM
Hamiltonian in the Poincaré-plane framework is

HT
ADM = px ≡ p, x ∈ [x0 ≡ ln(1/2), ∞), (D.2.5)
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where x = ln v and the classical singularity now appears for τ → ∞.

The canonical quantization of this model is not able to solve the classi-
cal singularity problem. In fact, the incoming Universe (τ < 0) bounces at
the potential wall at x = x0 and then falls toward the classical singularity
(τ → ∞). Such situation is drastically changed in the GUP scheme and two
main conclusions can be inferred: (i) The probability amplitude to find the
Universe is peaked near the potential wall. In other words, the GUP Taub
Universe exhibits a singularity-free behavior. (ii) The large anisotropy states,
i.e. those for |γ+| ≫ 1, are probabilistically suppressed. In fact the Universe
wave function appears to be peaked at values of anisotropy |γ+| ≃ O(10−1).
In this respect, the GUP wave packets predict the establishment of a quantum
isotropic Universe differently from what happens in the WDW theory.

When this approach is applied to the Bianchi IX cosmological model we
show that three important features. i) The velocity of the anasotropy-particle
(Universe) inside the allowed domain of the Mixmaster model grows with
respect to the undeformed case. Furthermore, although the dynamics is still
Kasner-like, two negative Kasner indices are now allowed. Therefore, during
each Kasner era, the volume of the Universe can contracts in one direction
while expands in the other two. ii) The velocity γ̇w of the potential walls,
bounding the triangular domain of Bianchi IX, is increased by the deforma-
tion terms. However, it no rises so much to avoid the bounces of the γ-particle
against the walls, i.e. the particle bounces are not stopped by the GUP effects.
As matter of fact, when the ultra-deformed regime is reached the dynamics
is that of a particle which bounces against stationary walls (no maximum
incidence angle appears). iii) No BKL map (reflection law θ f = θ f (θi)) can
be in general analytically computed. In fact, such a map arises from the
analysis of the Bianchi II model which is no longer analytically integrable
in the deformed scheme. Thus, a non-vanishing minimal uncertainty in the
anisotropies complicates so much the Mixmaster dynamics in such a way that
each its wall-side is no longer an integrable system. This way, we can con-
clude that the chaoticity of the Bianchi IX model is not tamed by the GUP
effects on the Universe anisotropies.

A relation between the effective dynamics of loop quantum cosmology and
the Randall-Sundrum braneworlds scenario can by obtained quantizing the
FRW models with the use of the following deformed algebra

[q, p] = i
√

1 ± αp2, (D.2.6)

where α > 0 is a deformation parameter such that for α = 0 the ordinary
Heisenberg algebra is recovered. In particular, such an algebra is related to
the κ-Poincaré one which is the mathematical structure which describes the
so-called doubly special relativity, where an other invariant, observer inde-
pendent, scale (the Planck scale) is included ab initio in the theory. From this
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approach the deformed Friedmann equation

H2
k=0 =

8πG

3
ρ

(
1 ± ρ

ρP

)
, (D.2.7)

for the flat case is obtained. The most interesting point to be stressed is the
equivalence, at phenomenological level, between the (−)-deformed Fried-
mann equation (D.2.7) and the one obtained considering the effective dy-
namics in loop quantum cosmology. On the other hand, the string inspired
Randall-Sundrum braneworlds scenario leads to a modified Friedmenn equa-
tion as in (D.2.7) with the positive sign. The opposite sign of the ρ2-term in
such an equation, is the well-known key difference between the effective loop
quantum cosmology and the Randall-Sundrum framework. In fact, the for-
mer approach leads to a non-singular bouncing cosmology while in the latter,
because of the positive sign, ȧ can not vanish and there is not place for a big-
bounce.

D.3. Evolutionary Quantum Gravity

We establish a fundamental link between the identification of a reference and
the appearance of a matter term from the point of view of Lagrangian sym-
metries. In particular, by fixing a synchronous frame of reference, which
is characterized by a metric tensor having the following fixed components
g00 = 1 and g0i = 0, general covariance is restricted to the invariance under
the following set of coordinate transformations

t′ = t + ξ(xl) , xi′ = xi + ∂jξ
∫

hijdt + φi(xl) , (D.3.1)

ξ and φi being three generic space functions.

This feature implies replacing the super-Hamiltonian and the super-momentum
constraints with the following ones,

H∗ ≡ H − E(xl) = 0, Hi = 0, (D.3.2)

E being a scalar density of weight 1/2, hence it can be written as E ≡
−2

√
hρ(t, xi), with ρ a scalar function.

Hence the super-momentum still vanishes, while the super-Hamiltonian
acquires a non-vanishing eigen-value, which can be interpreted as the emer-
gence of a dust fluid co-moving with the slicing.

One can think at this contribution as the physical realization of the syn-
chronous reference. However, it is clear that we are not dealing with an ex-
ternal matter field since its energy density ρ is not always positive and E(xi)
is fixed, once initial conditions are assigned on a non-singular hypersurface.

2462



D.3. Evolutionary Quantum Gravity

We perform quantization of the synchronous gravitational field in a canon-
ical way and we implemented according with the Dirac prescription, so fixing
an evolutionary character for wave functional, which can be described by the
Schrödinger equation

ih̄∂tχ =
∫

Σ3
t

Ĥd3xχ . (D.3.3)

Therefore, the quantum features of the dust contribution outline its behav-
ior as a clock-like matter. The next task is to find out a negative portion of the
super-Hamiltonian spectrum, which allows to interpret the additional contri-
bution as a physical matter field.

This can be done in a generic inhomogeneous cosmological setting, where
the 3-metric is given by

hij = eqaδadOa
bOd

c ∂iy
b∂jy

c, a, b, c, d, α, β = 1, 2, 3, (D.3.4)

with qa = qa(xl, t) and yb = yb(xl , t) six scalar functions and Oa
b = Oa

b(x
l) a

SO(3) matrix.

The dynamics of different points decouples near the singularity and the
Schrödinger functional equation splits to the sum of ∞3 independent point-
like contributions as follows (we denote by the subscript x any minisuper-
space quantity)

ih̄∂tψx = Ĥxψx =
c2h̄2k

3

[
∂αe−3α∂α − e−3α

(
∂2
+ + ∂2

−
)]

ψx −

−3h̄2

8π
e−3α∂2

ϕψx −
(

1

2k | J |2 eαV(β±)−
Λ

k
e3α

)
ψx (D.3.5)

ψx = ψx(t, α, β±, ϕ) , (D.3.6)

where a cosmological constant Λ and a scalar field ϕ have been added to
the dynamical description.

If an integral representation is taken for the wave function ψx

ψx =
∫

dExB(Ex)σx(α, β±, ϕ, Ex)exp

{
− i

h̄

∫ t

t0

NxExdt′
}

(D.3.7)

σx = ξx(α, Ex)πx(α, β±, ϕ) , (D.3.8)

where B is fixed by the initial conditions at t0, the dynamics is given by
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Ĥσx = Exσx (D.3.9)(
−∂2

+ − ∂2
− − 9h̄2

8πc2k
∂2

ϕ

)
πx −

3e4α

2c2h̄2k2 | J |2
V(β±)πx = v2(α)πx (D.3.10)

[
c2h̄2k

3

(
∂αe−3α∂αξx + e−3αv2(α)

)
+

Λ

k
e3α

]
ξx = Exξx . (D.3.11)

Let us now consider wave packets which are flat over the width ∆β ∼
1/∆vβ ≫ 1 (∆vβ being the standard deviation in the momenta space).

In the new variable τ = e3α, the equation (D.3.10) reads

c2h̄2k

3

(
9

d2

dτ2
+

v2

τ2

)
ξx +

Λ

k
ξx =

Ex

τ
ξx . (D.3.12)

A solution to equation (D.3.12) is provided by

ξx = τδ fx(τ), δ =
1

2

(
1 ±

√
1 − 4

9
v2

)
(D.3.13)

f = Ce−β2τ2+γτ, γ = 2 | β |
√

δ +
1

2
− 1

12L2
Λ

l4
Pβ2

,
1

LEl2
P

= 6δγ ,(D.3.14)

LE = h̄c
E

being the characteristic length associated to the Universe “energy”,

while lP ≡
√

h̄ck denotes the Planck scale length. However, the validity of the

solution above requires the condition β2τ ≪ γ = 2
√

δ + 1
2 − 1

12L2
Λ

l4
Pβ2 | β |.

Hence, the quantum dynamics in a fixed space point (i.e. over a causal
portion of the Universe) is described, in the considered approximation (τ ≪
1), by a free wave-packet for the variables β± and ϕ and by a profile in τ

which has a maximum in τ = (γ +
√

γ2 + 8δβ2)/4β2.

If a lattice structure for the space-time is assumed on the Planckian scale,
to preserve the reality of E we have to impose some inequalities, leading to

| Ex |≪ c2kh̄2

l3
Pl

∼ O(MPlc
2) → LE ≫ lP , (D.3.15)

MPl ≡ h̄/(lPlc) being the Planck mass.

Therefore, the existence of a cut-off implies that a ground state exists for the
evolutionary approach. Hence it is a natural request to assume the Universe
to approach this state during its evolution.

The associated critical parameter turns out to be
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ΩE ≡ ρE
ρc

≪ O

(
10−2GMPl

c2R0

)
∼ O

(
10−2lPl

R0

)
∼ O

(
10−60

)
. (D.3.16)

Therefore, the dust contribution cannot play the role of dark matter.

Within this scheme a proper quantum to classical transition for the Uni-
verse volume can also be described.

D.4. Polymer Quantum Cosmology

The polymer representation of quantum mechanics is based on a non-standard
representation of the canonical commutation relations. In particular, in a
two-dimensional phase space, it is possible to choose a discretized opera-
tor, whose conjugate variable cannot be promoted as an operator directly.
From a physical point of view, this scheme can be interpreted as the quantum-
mechanical framework for the introduction of a cutoff. Its continuum limit,
which corresponds to the removal of the cutoff, has to be understood as the
equivalence of microscopically-modified theories at different scales. This ap-
proach is relevant in treating the quantum-mechanical properties of a background-
independent canonical quantization of gravity. In fact, the holonomy-flux
algebra used in Loop Quantum Gravity reduces to a polymer-likealgebra,
when a system with a finite number of degrees of freedom is taken into ac-
count. From a quantum-field theoretical point of view, this is substantially
equivalent to introducing a lattice structure on the space. Loop Quantum
Cosmology can be regarded as the implementation of this quantization tech-
nique in the minisuperspace dynamics.
The Taub model is approached in the scheme of an Arnowitt-Deser-Misner
(ADM) reduction of the dynamics in the Poincare plane. As a result, a time
variable naturally emerges, and the Universe is described by an anisotropy-
like variable. The anisotropy variable and its conjugate momentum are quan-
tized within the framework of the polymer representation. More precisely,
the former appears as discretized, while the latter cannot be implemented as
an operator in an appropriate Hilbert space directly, but only its exponenti-
ated version exists. The analysis is performed at both classical and quantum
levels. The modifications induced by the cutoff scale on ordinary trajectories
are analyzed from a classical point of view. On the other hand, the quantum
regime is explored in detail by the investigation of the evolution of the wave
packets of the universe (Battisti et al., 2008).
From a classical point of view, in the ordinary case, the model can be inter-
preted as a photon in the Lorentzian minisuperspace, and the classical tra-
jectory is its light-cone. More precisely, the incoming particle bounces on the
wall and falls into the classical cosmological singularity. Contrastingly, in
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the discretized case, the one-parameter family of trajectories flattens, i.e. the
angle between the incoming trajectory and the outgoing one is greater than
π/2.
From a quantum point of view, the modified Schroedinger equation is solved.
As a result, a modified dispersion relation is found, and wave functions de-
pend on this modified dispersion relation.
The analysis of the corresponding wavepackets shows the implications of
the polymer representation of quantum mechanics mostly when a spread
weighting function is taken into account. In fact, in this case, as a result, a
strong interference phenomenon appears between the incoming (outgoing)
wave and the wall. However, as a matter of fact, such an interference phe-
nomenon is not able to localize the wave packet in a determined region of
the configuration space, so that the probability density to find the Universe
far away the singularity is not peaked, i.e. the cosmological singularity of
this model is not tamed by the polymer representation from a probabilistic
point of view. Consequently, the incoming particle (Universe) is initially lo-
calized around the classical polymer trajectory. It then bounces against the
wall, where the wave packet spreads in the ’outer’ region, regains the classi-
cal polymer trajectory and eventually falls into the cosmological singularity.
This way, we claim that the classical singularity is not solved by this quanti-
zation of the model.
The result can be also discussed as compared with the application of the poly-
mer representation of quantum mechanics to other cosmological models, as
well as with the implementation of a generalized uncertainty principle to the
Taub model itself. In these cases, the peculiarity of this scheme are clarified.

D.5. Lorentz Gauge Theory

General Relativity admits two different symmetries, namely the diffeomor-
phism invariance, defined in the real space-time, and the local Lorentz in-
variance, associated to the tangent fiber. Such two symmetries reflect the
different behavior of tensors and spinors, respectively, when global Lorentz
transformations become local, i.e., while tensors do not experience the dif-
ference between the two transformations, spinors do. In our proposal, the
diffeomorphism invariance concerns the metric structure of the space-time
and it finds in the vier-bein fields the natural gauge counterpart, though the
gauge picture holds on a qualitative framework. On the other hand, the real
gauge symmetry corresponds to the local rotations in the tangent fiber and
admits a geometrical gauge field induced by the space-time torsion and its
properties.

This picture has led us to infer the existence of (metric-independent) gauge
fields of the Lorentz group, identified with A ab

µ , which interacts with spinors.

The Ricci spin connection ω ab
µ could not be identified with the suitable gauge
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field, for it is not a primitive object (it depends on bein vectors) and defines
local Lorentz transformations on the tangent bundle.

Perspectives on observability We propose here a model to analyze the inter-
action of a 4-spinor ψ with the gauge field Aµ of the Lorentz group (addressed
in flat space) (Carlevaro et al., 2009). Using the tetrad formalism, the imple-
mentation of the local Lorentz symmetry leads to the Lagrangian density

L = L0 +Lint , L0 = i
2 ψ̄γae

µ
a ∂µψ − i

2 e
µ
a ∂µψ̄γaψ − m ψ̄ψ , (D.5.1)

Lint =
1
8 e

µ
c ψ̄{γc, τab} Aab

µ ψ = 1
8 e

µ
c ψ̄ 2ǫc

abd γ5 γd Aab
µ ψ . (D.5.2)

To study the interaction terms, we perform a 3+1 splitting of the gauge field

and impose the time-gauge condition associated to this picture (i.e., A
ij
0 = 0).

Using variational principles, we are able to write down the motion equations
for the spinor field. In this scheme, it is convenient to express the Lorentz

gauge field trough the fields C0 = 1
4 ǫk

ij0Ai
k, and Ci = 1

4 ǫk
0ji A

0j
k , describing

rotations and Lorentz boosts respectively.

Our purpose is the analysis of corrections, due to the implementation of
the Lorentz gauge theory, and to a one-electron-atom model. In this respect,
we look for stationary solutions of the Dirac equation and we express the 4-
component spinor ψ(t, x) in terms of two stationary 2-spinors χ(x) and φ(x),
assuming standard-representation Dirac matrices. To investigate the low-
energy limit, we can write the spinor-field total energy in the form E = E+m,
obtaining the expression

φ = 1
2m (σi pi + C0) χ . (D.5.3)

It is immediate to see that φ is smaller than χ by a factor of order
p
m (i.e., v

c
where v is the magnitude of the velocity): the 2-component spinors φ and χ
form the so-called small and large components, respectively.

Using standard Pauli relations, we finally get the following equation for
the large components

E χ = 1
2m

[
p2 + C2

0 + 2C0 σi pi + σiCi

]
χ . (D.5.4)

This equation exhibits strong analogies with the electro-magnetic case and
the so-called Pauli equation

E χ(x) = 1
2m

[
(p + A)2 + µB σ · B + Φ

]
χ(x) , (D.5.5)

where µB = e/2m is the Bohr magneton and A denotes the vector potential
(B and Φ are the external magnetic and electric field respectively). These eqs
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can be used in the analysis of the energy levels as in the Zeeman effect.

Let us now neglect the term C2
0 in eq. (D.5.4) and implement the symmetry

∂µ → ∂µ + A
U(1)
µ + A ab

µ Σab , (D.5.6)

with a vanishing electromagnetic potential A = 0. This way, we can intro-
duce a Coulomb central potential V(r) (E → E − V(r)), obtaining the expres-
sions

H0 =
p2

2m
− Ze2

(4πǫ0)r
, (D.5.7)

H ′ = 1
2m

[
2C0 (σi · p i) + σ · Ci

]
, (D.5.8)

which characterize the electron dynamics in a hydrogen-like atom in presence
of a gauge field of the LG. It is worth noting the presence of a term related
to the helicity of the 2-spinor: this coupling is controlled by the rotation-like
component associated to C0. A Zeeman-like coupling associated to the boost-
like component Ci is also present.

D.6. Boost invariance in a second order

formulation

Given an hyperbolic space-time manifold V, endowed with a metric gµν, a
3 + 1 splitting consists in a map V → Σ ⊗ R, Σ being spatial 3-hypersurfaces
(in the following xi (i = 1, 2, 3) indicate spatial coordinates, while t is the co-
ordinate on the real time-like axis). The crucial choice consists in introducing
an arbitrary vier-bein, i.e.,

e0 = Ndt + χaEa
i dxi , ea = Ea

i Nidt + Ea
i dxi , (a = 1, 2, 3) , (D.6.1)

where the time-gauge is obtained for χa = 0.
From a physical point of view, χa gives the velocity components of the eA

frame with respect to one at rest, i.e., adapted to the spatial splitting.
The standard variables of the ADM formulation (the lapse function Ñ, the
shift vector Ñi and the 3-geometry hij) read as follows in terms of eA

µ compo-
nents

Ñ =
1√

1 − χ2
(N − NiEa

i χa) , Ñi = Ni +
Ec

l χc Nl−N

1−χ2 Ei
aχa , χa = χbδab ,

hij = Ea
i Eb

j (δab − χaχb) . (D.6.2)
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Once the 3 + 1 splitting of the Einstein-Hilbert action has been performed,
by taking as configuration variables Ñ, Ñi, Ea

i and χa, the full Hamiltonian
density turns out to be

H = Ñ′H + Ñi Hi + λÑπÑ + λiπi + λabΦab + λaΦa , (D.6.3)

Ñ′ being
√

hÑ, while the super-Hamiltonian and the super-momentum, H
and Hi, respectively, take the following forms

H = πi
aπ

j
b

(
1

2
Ea

i Eb
j − Eb

i Ea
j

)
+ h3R , (D.6.4)

Hi = Dj(π
j
aEa

i ) , (D.6.5)

Di being the covariant derivative built up from hij.

Lagrangian multipliers λÑ, λi, λa and λab = −λba ensure the standard first-
class constraints

πÑ = 0 , πi = 0 , (D.6.6)

and new conditions, coming out as a consequence of variables adopted,

Φa = πa − πbχbχa + δabπi
bχcEc

i = 0 , (D.6.7)

Φab = πcδc[aχb] − δc[aπi
b]E

c
i = 0 . (D.6.8)

The investigation on these new constraints is performed by analyzing their
action on the phase space, once a canonical symplectic structure is intro-
duced. It outlines that Φab and Φa generate rotations and boosts, modulo
a time re-parametrization, respectively, on the phase space. Therefore, they
arise because General Relativity is a Lorentz-invariant theory.
We also probe that the algebra of constraints is first-class.
Before performing the quantization, a formal fixing of the boost symmetry is
performed, such that transformations between χ-sectors can be studied. In
this respect, we set χa = χ̄a(t; x), χ̄a(t; x) being arbitrary functions of space-
time coordinates. The boost constraint can be solved classically, so finding

πa = −
(

δab +
χaχb

1 − χ2

)
πi

bχcEc
i . (D.6.9)

Hence the action becomes

S = − 1
16πG

∫
[πi

a∂tE
a
i + πÑ′∂tÑ

′ + πi∂tÑ
i − Ñ′Hχ̄ − Ñi H

χ̄
i − λabΦ′

ab+

− λÑπÑ − λiπi]dtd3x , (D.6.10)
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where the new constraint for rotations is

Φ′
ab = χ̄[aπi

b]E
d
i χ̄d − δc[aπi

b]E
c
i , (D.6.11)

while, in Hχ̄ and in H
χ̄
i , χ are replaced by functions χ̄.

In this picture, we have completely fixed the gauge associated with the boost
symmetry, because χ̄a are three functions to be assigned explicitly together
with the Cauchy data.

The canonical quantization consists in promoting to operators Ñ, Ñi, Ea
i

and the corresponding conjugated momenta, then Poisson brackets are re-
placed by commutators in a canonical way. Once an Hilbert space has been
defined to which wave functionals ψ = ψχ̄(Ñ, Ñi, Ea

i ) belong, according with
the Dirac prescription for constrained systems, physical states are defined as
states annihilated by quantum constraints.
In order to investigate if the transformation between different χ̄-sectors can
be implemented in a quantum setting, an operator connecting Hilbert spaces
with different forms of χ̄ must be defined.
Let us now consider a wave functional ψ0 in the time gauge: it is a solution of
the following system of constraints (we do not consider primary constraints
(D.6.6), since they are not affected by transformations changing χ̄a)

H0ψ0 = 0 , H0
i ψ0 = 0 , −δc[aπi

b]E
c
i ψ0 = 0 , (D.6.12)

H0 and H0
i being the super-Hamiltonian and super-momentum built up from

the metric tensor hij = δabEa
i Eb

j , i.e., in the case χ̄ ≡ 0, respectively.

The action of the boost constraint Φa, restricted to the hypersurface χa = 0, is
reproduced by the unitary operator Uǫ

Uǫ = I − i

4

∫
ǫaǫb(E

b
i πi

a + πi
aEb

i )d
3x + O(ǫ4) , (D.6.13)

which maps the metric hij from χ̄ = 0 to χ̄a = ǫa ≪ 1. The new state ψ′ =
Uǫψ satisfies, at the ǫ2 order,

UǫH0U−1
ǫ ψ′ = Hǫ = ψ′0 , UǫH0

i U−1
ǫ ψ′ = Hǫ

i ψ′ = 0 , (D.6.14)

Uǫ(−δc[aπi
b]E

c
i )U

−1
ǫ ψ′ = −

[
δc[aπi

b]E
c
i +

1

2
δc[aǫb]ǫ

dEc
i πi

d −
1

2
ǫdǫ[aπi

b]E
d
i χd

]
ψ′ = 0 . (D.6.15)

While the first two relations reproduce the vanishing of the super-Hamiltonian
and of the super-momentum in the ǫ-sector, the last condition can be shown
to be equivalent to Φ′

abψ′ = 0 for χ̄a = ǫa.
Therefore, since the unitary operator Uǫ maps physical states corresponding
to χ̄ = 0 and χ̄ = ǫ, the transformation between a frame at rest and one mov-
ing with respect to Σ can be implemented as a symmetry on a quantum level.
This provides us with an explanation for the use of the time-gauge condition,
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because any other choice for the Lorentz frame gives the same expectation
values for observables.

D.7. Quantum Mixmaster

The quantization of the Bianchi IX geometry is investigated in the approxi-
mation of a squared potential well, after an ADM reduction of the dynamics
with respect to the super-momentum constraint only. A functional represen-
tation of the quantum dynamics, equivalent to the Misner-like one, was ex-
tended point by point, since the Hilbert space factorizes into ∞3 independent
components, due to the parametric role that the three-coordinates assume in
the asymptotic potential term. Finally, we obtain the conditions for a semi-
classical behavior of the dynamics, equivalent to mean occupation numbers
n = O(102) [Imponente and Montani (2006)].

A physical link between the chaoticity characterizing the system at a classi-
cal level and the quantum indeterminism appearing in the Planckian era was
constructed through the canonical quantization of the model via a Schrödinger
approach (equivalent to the Wheeler-DeWitt scheme) and then developed the
WKB semiclassical limit to be compared with the classical dynamics
[Imponente and Montani (2003a)], [Imponente and Montani (2003b)]. We found
a correspondence between the continuity equation of the microcanonical dis-
tribution function and that one describing the dynamics of the first-order cor-
rections in the wave function for h̄ → 0 [Imponente and Montani (2002)].

The dynamics of the homogeneous model of the type IX of the Bianchi clas-
sification (the Mixmaster model) exhibits an oscillatory like behavior while
approaching the Big Bang; furthermore, Belinskii et al. showed in the 70’s
how this model can be used to construct a generic cosmological solution in
the neighborhood of a time-like singular point, in the sense of the correct
number of physically-arbitrary functions.

However, this classical description is in conflict with the requirement of
a quantum behavior of the Universe through the Planck era; there are re-
liable indications that the Mixmaster dynamics overlaps the quantum Uni-
verse evolution, requiring an appropriate analysis of the transition between
these two different regimes. Indeed, the dynamics of the very early Universe
corresponds to a very peculiar situation, with respect to the link existing be-
tween the classical and quantum regimes. The expansion of the Universe is
the crucial phenomenon which maps into each other these two stages of the
evolution. The appearance of a classical background takes place essentially
at the end of the Mixmaster phase, when the anisotropy degrees of freedom
can be treated as small perturbations; this result indicates that the oscillatory
regime takes place almost during the Planck era and therefore it is a problem
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Q1(u, v) = −u/δ ≥ 0
Q2(u, v) = (1 + u)/δ ≥ 0
Q3(u, v) = (u2 + u + v2)/δ ≥ 0
δ = u2 + u + 1 + v2

(D.7.3)
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Figure D.1.: The billiard where the
Mixmaster Universe moves.

of quantum dynamics. However the end of the Mixmaster (and in princi-
ple the quantum to classical transition phase) is fixed by the initial conditions
on the system and, in particular, it takes place when the cosmological hori-
zon reaches the inhomogeneity scale of the model; therefore the question of
an appropriate treatment for the semiclassical behavior arises when the in-
homogeneity scale is so larger than the Planck scale, so that the horizon can
approach it only in the classical limit.

In the Arnowitt-Deser-Misner (ADM) formalism, the classical dynamics of
the Mixmaster can be reduced to the physical degrees of freedom: the evo-
lution resembles that one of a billiard ball on a constant negative curved 2-
dimensional surface, described in the Poincaré half-plane by the following
action principle:

I =
∫

ΓQ

(pu∂tu + pv∂tv − HADM) dt , (D.7.1)

HADM = ǫ = v
√

p2
u + p2

v , (D.7.2)

where ΓQ is a portion of the full Poincarè plane described by the inequalities
above.

A Schrödinger quantization scheme can be applied to the squared Hamil-
tonian operator, and the associated eigenvalue problem is solved. This ap-
proach gives a set of eigenfunctions (here we assume an ordering for the
position and momentum operators such that v2p2

v → v̂p̂v
2v̂, which is the

only one able to reproduce the proper statistical dynamics). As soon as (ap-
proximated) Dirichlet boundary condition are taken into account, the energy
spectrum results to be given by

(E/h̄)2 = t2 + 1/4 . (D.7.4)

where the values of the parameter t have to be evaluated solving Kit(2n) = 0
for a generic integer n. This spectrum is a discrete one, and it admits a min-

imum value given by E2
0 = 19.831h̄2. In the figures below the wave function
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of the ground state and its probability distribution are plotted.
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Figure D.2.: The ground state wave function and the probability distribution.

D.8. Dualism between time evolution and matter

fields

In this section we review the fundamental aspects of the so-called evolution-
ary quantum gravity as presented in (Montani, 2002), (Mercuri and Montani,
2004). First we analyze the implication of a Schrödinger formulation of the
quantum dynamics for the gravitational field and then we establish a dualism
between time evolution and matter fields. Finally, we stress how an evolu-
tionary paradigm can be fixed by restricting the admissible set of coordinate
transformations to synchronous ones (Montani and Cianfrani, 2008).

Let us assume that the quantum evolution of the gravitational field is gov-
erned by the smeared Schrödinger equation

i∂tΨ = ĤΨ ≡
∫

Σ
d3x

(
NĤ

)
Ψ , (D.8.1)

being Ĥ the super-Hamiltonian operator, N the lapse function and the wave
functional Ψ is defined on the Wheeler superspace, i.e., it is annihilated by
the super-momentum operator Ĥα. Let us now take the following expansion
for the wave functional

Ψ =
∫

Dǫχ(ǫ,
{

hαβ

}
) exp

{
−i
∫ t

t0

dt′
∫

Σ
d3x(Nǫ)

}
, (D.8.2)

Dǫ being the Lebesgue measure in the space of the functions ǫ(xρ). Such an
expansion reduces the Schrödinger dynamics to an eigenvalues problem of
the form

Ĥχ = ǫχ, Ĥαχ = 0, (D.8.3)
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which outlines the appearance of a non zero super-Hamiltonian eigenvalue.

In order to reconstruct the classical limit of the above dynamical constraints,
we address the limit h̄ → 0 and replace the wave functional χ by its corre-
sponding zero-order WKB approximation χ ∼ eiS/h̄. Under these restrictions,
the eigenvalues problem (D.8.3) reduces to the following classical counterpart

Ĥ JS = ǫ ≡ −2
√

hT00, Ĥ JαS = 0 , (D.8.4)

where Ĥ J and Ĥ Jα denote operators which, acting on the phase S, reproduce
the super-Hamiltonian and super-momentum Hamilton-Jacobi equations re-
spectively. We see that the classical limit of the adopted Schrödinger quantum
dynamics is characterized by the appearance of a new matter contribution
(associated with the non zero eigenvalue ǫ) whose energy density reads

ρ ≡ T00 = −ǫ(xρ)

2
√

h
, (D.8.5)

where by Tij we refer to the new matter energy-momentum tensor.

Since the spectrum of the super-Hamiltonian has, in general, a negative
component, we can then infer that, when the gravitational field is in the
ground state, this matter out-coming in the classical limit has a positive en-
ergy density. The explicit form of (D.8.5) is that of a dust fluid co-moving
with the slicing 3-hypersurfaces, i.e., the field ni begin the 4-velocity normal
to the 3-hypersurfaces (in other words, we deal with an energy-momentum
tensor Tij = ρninj).

We stress that in this approach, it is possible to turn the solution space
into Hilbert one and therefore a notion of probability density naturally arises,
from the squared modulus of the wave-functional.

Let us now consider the opposite sector, i.e., a gravitational system in the
presence of a macroscopic matter source. In particular, we choice a perfect
fluid having a generic equation of state p = (ξ − 1)ρ (p being the pressure
and ξ the polytropic index). The energy-momentum tensor, associated to this
system reads

Tij = ξρuiuj − (ξ − 1)ρgij . (D.8.6)

To fix the constraints when matter is included in the dynamics, let us make
use of the relations

Gijn
inj = −κ

H

2
√

h
, (D.8.7)

Gijn
i∂αyj = κ

Hi

2
√

h
, (D.8.8)

where ∂αyi are the tangent vectors to the 3-hypersurfaces, i.e., ni∂αyi = 0.
Equations (D.8.7) and (D.8.8), by (D.8.6) and identifying ui with ni (i.e., the
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physical space is filled by the fluid), rewrite

ρ = − H

2
√

h
, Hi = 0 ; (D.8.9)

furthermore, we get the equations

Gij∂αyi∂βyj ≡ Gαβ = κ(ξ − 1)ρhαβ . (D.8.10)

We now observe that the conservation law ∇jT
j
i = 0 implies the following

two conditions
ξ∇i

(
ρui
)
= (ξ − 1)ui∂iρ , (D.8.11)

uj∇jui =

(
1 − 1

ξ

)(
∂i ln ρ − uiu

j∂j ln ρ
)

. (D.8.12)

If we now adapt the spacetime slicing, looking the dynamics into the fluid
frame (i.e., ni = δi

0), then, by the relation ni = (1/N, −Nα/N), we see that
the co-moving constraint implies the synchronous nature of the reference
frame. As it is well-known that a synchronous reference is also a geodesic
one, the right-hand-side of equation (D.8.12) must vanish identically and, for
a generic inhomogeneous case, this means to require ξ ≡ 1. Hence, equa-

tions (D.8.11) yields ρ = −ǭ(xρ)/2
√

h; substituting the last expression into
(D.8.9), we get the same Hamiltonian constraints associated to the Evolution-
ary Quantum Gravity at the point i), as soon as the function ǭ is turned into
the eigenvalue ǫ. In this respect, we stress that, while ǭ is positive by defini-
tion, the corresponding eigenvalue can also take negative values because of
the H-structure.

Thus, we conclude that a dust fluid is a good choice to realize a clock in
Quantum Gravity, because it induces a non-zero super-Hamiltonian eigen-
value into the dynamics; furthermore, for vanishing pressure (ξ = 1), the
equations (D.8.10) reduces to the right vacuum evolution for hαβ. Moreover,
we stress how the above two points outline, in quantum gravity, a real dual-
ism between time evolution and the presence of a dust fluid.

The approach above was applied to a generic cosmological model in
(Battisti and Montani, 2006c) where is shown how, from a phenomenological
point of view, an evolutionary quantum cosmology overlaps the Wheeler-
DeWitt framework.

In particular, for such a model, the eigenvalues problem (D.8.3) rewrite as

{
κ

[
∂R

1

R
∂R − 1

R3

(
∂2
+ + ∂2

−
)]

− 3

8πR3
∂2

φ −
R3

4κl2
in

V(β±) + R3(ρur + ρpg)

}
χ = ǫχ.

(D.8.13)
where κ = 8πl2

P and we have added to the dynamics of the system an ultra-
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relativistic energy density (ρur = µ2/R4), a perfect gas contribution (ρpg =

σ2/R5) and a scalar field φ (a free inflaton field). Such a problem can be ana-
lytically solved and the spectrum of the super-Hamiltonian reads as

ǫn,γ =
σ2

l2
P(n + γ − 1/2)

. (D.8.14)

Therefore the ground state n = 0 eigenvalue, for γ < 1/2, is negative and so
it is associated via (D.8.5) to a positive dust energy density.

In order to analyze the cosmological implication of the new matter con-
tribution, we have to impose a cut-off length in our model, requiring that
the Planck length lP is the minimal physical length accessible by an observer
(l ≥ lP). This way, we get σ2 ≤ O(lP) and so |ǫ0| ≤ (1/lP): the spectrum is
limited by below. Moreover the contribution of such a dust fluid to the actual
critical parameter is

Ωdust ∼
ρdust

ρToday
∼ O

(
10−60

)
. (D.8.15)

As matter of fact, such a parameter is much less then unity and so no phe-
nomenology can came out (today) from our dust fluid. In this sense we claim
that an evolutionary quantum cosmology overlaps the Wheeler-DeWitt ap-
proach and therefore it can be inferred as appropriate to describe early stages
of the Universe without significant traces on the later evolution.

D.9. Loop Quantum Cosmology

Standard cosmological model raises several fundamental issues such as ini-
tial singularity and the problem of horizon. We analyze these well known
problems within the framework of cosmological models based on Loop Quan-
tum Gravity.

One of the fundamental issues of the theory of Early Universe is cosmic
singularity. Many researchers, such as J.A. Wheeler, believed that appear-
ance of initial singularity in Friedmann Equations marks a breakdown of
General Relativity theory and searched for a possible solution in quantiza-
tion of gravity. The well known Wheeler-de Witt equation is one example of
such an approach, although unsuccessful. At the same time, it is clear that at-
tempts to construct viable nonsingular cosmologies within classical theories
of gravitation did not succeed, as discussed by (Vereshchagin, 2004a, 2005).

Loop Quantum Gravity is at present the main background independent
and nonperturbative candidate for a quantum theory of gravity; Loop Quan-
tum Cosmology is the application of Loop Quantum Gravity to a homoge-
neous minisuperspace environment. The underlying geometry in LQG is
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discrete and the continuum spacetime is obtained from quantum geometry
in a large eigenvalue limit. Numerical calculations performed within Loop
Quantum Gravity theory established the possibility of resolution of singular-
ities in various situations.
The underlying dynamics in LQC is governed by a discrete quantum differ-
ence equation in quantum geometry. However, using semiclassical states one
can construct an effective Hamiltonian description on a continuum spacetime
which has been shown to very well approximate the quantum dynamics.

We have performed a general analysis of equations governing evolution of
the Universe within semiclassical Loop Quantum Cosmology by using qual-
itative methods of the theory of dynamical systems. Specifically, two cases
were considered with different type of corrections to the Friedmann equa-
tions.
In the work by (Singh et al., 2006) quadratic on the energy density correc-
tion to the Friedmann equation, coming from effective Hamiltonian of Loop
Quantum Cosmology was studied. The modified Friedmann equation takes
the form (

1

a

da

dt

)2

+
kc2

a2
=

8πG

3c2
ρ

(
1 − ρ

ρcrit

)
, (D.9.1)

where a is the scale factor, k denotes spatial curvature, c and G are the speed
of light and the gravitational constant respectively. The energy density of the
scalar field is

ρ =
1

2

(
dφ

dt

)2

+ V. (D.9.2)

The critical energy density is

ρcrit =

√
3

16π2γ3
ρpl, (D.9.3)

where γ is Barbero-Immirzi parameter, ρpl is the Planckian density. The usual
continuity equation for the real scalar field φ with effective potential V(φ)
takes the form

d2φ

dt2
+ 3

1

a

da

dt

dφ

dt
+

∂V

∂φ
= 0. (D.9.4)

Equations (D.9.1) and (D.9.4) can be analysed by means of qualitative the-
ory of dynamical systems. First of all, the derivative of the scale factor can be
expressed from (D.9.1) and substituted into (D.9.4) thus reducing the phase
space to two dimensions. The corresponding phase space variables are the

scalar field φ and its time derivative φ̇ ≡ dφ
dt . Expample of the phase portrait

is represented in Fig. D.3 The boundary of the phase space, defined as

ρ = ρcrit, (D.9.5)
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Figure D.3.: Phase portrait for massive scalar field V = m2φ2/2 potential.
Dashed curves represent GR case and solid curves shown LQC case.

prevents appearance of singularities for positive energy density, unlike the
case of General Relativity, where the boundary is absent. Details see in (Singh et al.,
2006).

In the work of (Vereshchagin, 2004b) corrections due to the inverse scale
factor operator both in the gravitational and the matter part of the effective
Hamiltonian were analyzed. These corrections appear both in the energy
density (D.9.2) and in the continuity equation as

(
1

a

da

dt

)2

+
kc2

a2
=

8πG

3c2

[
1

2D

(
dφ

dt

)2

+ V

]
, (D.9.6)

d2φ

dt2
+ 3

1

a

da

dt

dφ

dt
− 1

D

dD

dt

dφ

dt
+ D

∂V

∂ϕ
= 0, (D.9.7)

where the function D is defined as

D(q) =

(
8

77

)6

q3/27
[
(q + 1)11/4 − |q − 1|11/4

]
− (D.9.8)

− 11q
[
(q + 1)7/4 − sign(q − 1)|q − 1|7/4

]6
,

with q = (a/a∗)2 and a2
∗ =

j ln 2

3
√

3π
l2
P being the scale where quantum corrections

become essential. The latter can be larger than the planckian length lP, since
the quantization parameter j, which must take half integer values, but is ar-
bitrary. Equation (D.9.7) can be substituted into (D.9.6) and role of dynamical
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variables is then played by the scale factor and its derivative H ≡ 1
a

da
dt . Exam-

ples of phase portraits are shown in Fig. D.4. The left figure represents the
case of General Relativity, while central and right figures correspond to Loop
Quantum Cosmology. Due to different structure of the phase space, again
singular solutions do not appear.

Our general conclusion, considering both types of corrections, is the ab-
sence of cosmic singularity, so in all solutions the usual expansion stage fol-
lows after the generic bounce. Moreover, we have shown that in both cases
there exist successful mechanisms for generation of initial conditions suitable
for inflation.

This work is relevant for the development of the theory of Early Universe.
In particular, better understanding of background solutions and their prop-
erties should be reached prior to study of the cosmological perturbations.
Dynamics of these perturbations, in turn, is crucial in view of verification of
predictions of the theory, confronted with observational data.

D.10. FRW cosmological model in the GUP

framework

Let us now investigate the consequences of the an Heisenberg deformed al-
gebra (D.2.2) of the quantum dynamics of the flat (k = 0) FRW model in the
presence of a massless scalar field φ. In particular, we will interested about
the fate of the classical singularity in this framework. In which follows we
summarize the discussion and results reported in [1]. The Hamiltonian con-
straint for this model has the form

Hgrav + Hφ ≡ −9κp2
x x +

3

8π

p2
φ

x
≈ 0 , x ≡ a3, (D.10.1)

where a is the scale factor. In the classical theory, the phase space is 4- dimen-
sional, with coordinates (x, px; φ, pφ) and at x = 0 the physical volume of the
Universe goes to zero and the singularity appears. Moreover, it is not diffi-
cult to see that each classical trajectory can be specified in the (x, φ)-plane,
i.e., φ can be considered as a relational time for the dynamics. In particular,
the dynamical trajectories read as

φ = ± 1√
24πκ

ln

∣∣∣∣
x

x0

∣∣∣∣+ φ0 , (D.10.2)

where x0 and φ0 are integration constants. In this equation, the plus sign
describes an expanding Universe from the Big-Bang, while the minus sign a
contracting one into the Big-Crunch. We now stress that the classical cosmo-
logical singularity is reached at φ = ±∞ and every classical solution, in this
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model, reaches the singularity.

As well-known the canonical approach (the WDW theory) to this problem
does not solve the singularity problem. More precisely, it is possible to con-
struct a state localized at some initial time. Then, in the backward evolution,
its peak will moves along the classical trajectory (D.10.2) and thus it falls into
the classical singularity. This way, the classical singularity is not tamed by
quantum effects.

This picture is radically changed in the GUP framework and the modifica-
tions can be realized in two different steps. At first, it is possible to show how
the probability density |Ψ(ζ, t)|2 to find the Universe around ζ ≃ 0 (around
the Planckian region) can be expanded as

|Ψ(ζ, t)|2 ≃ |A(t)|2 + ζ2|B(t)|2 . (D.10.3)

Here t is a dimensionless time t =
√

24πκφ and the wave packets

Ψ(ζ, t) =
∫ ∞

0
dǫg(ǫ)Ψǫ(ζ)e

iǫt , (D.10.4)

are such that the state is initially packed at late time, i.e., the weight func-
tion g(ǫ) is a Gaussian distribution peaked at some ǫ∗ ≪ 1 (at energy much
less then the Plank energy 1/lP). Of course, Ψǫ(ζ) rapresent the quasiposition
eigenfunctions (D.2.3) of this problem.

Therefore, near the Planckian region, the probability density to find the
Universe is |A(t)|2 , which is very well approximated by a Lorentzian func-
tion packed in t = 0. This value corresponds to the classical time for which
x(t) = x0. Thus, for x0 ∼ O(l3

P), the probability density to find the Universe
in a Planckian volume is peaked around the corresponding classical time. As
a matter of fact this probability density vanishes for t → −∞, where the clas-
sical singularity appears. This is the meaning when we claim that the classical
cosmological singularity is solved by this model.

Of course the more interesting differences between the WDW and the GUP
approaches can be recognized in the wave packets dynamics. In particular,
we consider a wave packet initially peaked at late times and let it evolve nu-
merically “backward in time”. The result of the integration is that the prob-
ability density, at different fixed values of ζ, is very well approximated by a
Lorentzian function yet. Moreover, the width of this function remains, actu-
ally, the same as the states evolves from large ζ (103) to ζ = 0. The peaks
of Lorentzian functions, at different ζ values, move along the classically ex-
panding trajectory (D.10.2) for values of ζ larger then ∼ 4. Near the Planck-
ian region, i.e., when ζ ∈ [0, 4], we observe a modification of the trajectory of
the peaks. In fact they follow a power-law up to ζ = 0, reached in a finite
time interval and “escape” from the classical trajectory toward the classical
singularity. The peaks of the Lorentzian at fixed time t, evolves very slowly
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remaining close to the Planckian region. Such behavior outlines that the Uni-
verse has a stationary approach to the cutoff volume.

An important fact has now to be stressed. The peculiar behavior of our
quantum Universe is different from other approaches to the same problem.
In fact, recently, it was shown how the classical Big-Bang is replaced by a Big-
Bounce in the framework of Loop Quantum Cosmology (LQC). Intuitively,
one can expect that the bounce and so the consequently repulsive features
of the gravitational field in the Planck regime are consequences of a Planck-
ian cut-off length. But this is not the case. As matter of fact that there is
not a bounce for our quantum Universe. The main differences between the
two approaches resides in the quantum modification of the classical trajec-
tory. In fact, in the LQC framework we observe a “quantum bridge” between
the expanding and contracting Universes; in our approach, contrarily, the
probability density of finding the Universe reaches the Planckian region in a
stationary way.

D.11. Gauge potential of a Lorentz gauge theory

A gauge theory of the local Lorentz group has been implemented both in flat
and in curved space-time, and the resulting dynamics is analyzed in view of
the geometrical interpretation of the gauge potential. The Yang-Mills picture
of the local Lorentz transformations in curved space-time is first approached
in a first-order formalism. For the Lagrangian approach to reproduce the
II Cartan Structure Equation as soon as the Lorentz gauge connections are
identified with the contortion tensor, an interaction term between the new
Lorentz gauge fields A ab

µ and the spin connections ω ab
µ ,has to be postulated,

i.e.,

Sint = 2
∫

det(e) d4x e
µ
aeν

b ω
[a

µc A
bc]

ν . (D.11.1)

This interaction term induces a Riemannian source to the Yang-Mills equa-
tions; thus, the real vacuum dynamics of the Lorentz gauge connections takes
place on a Minkowski space only, when the Riemannian curvature and the
spin currents provide negligible effects. In fact, it is the geometrical interpre-
tation of the torsion field as a gauge field that generates the non-vanishing
part of the Lorentz connection on flat space-time. The full picture involving
gravity, torsion and spinors is described by a coupled set of field equations,
which allows one to interpret both gravitational spin connections and matter
spin density as the source term for the Yang-Mills equations. The contortion
tensor acquires a propagating character, because of its non-Abelian feature,
and the pure contact interaction is restored in the limit of vanishing Lorentz
connections (Carlevaro et al., 2007).

To better understand the physical implications of first- and second-order
approaches, a comparison between field equations has been accomplished in
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the linearized regime, by considering the case of small perturbations hµν of a
flat Minkowskian metric ηµν. Because of the interaction term (D.11.1) postu-
lated in the first-order approach, it is possible to solve the structure equation
and to express the connection as a sum of the pure gravitational (Ricci) con-
nection plus other contributions, both in absence and in presence of spinor
matter. The Ricci connection ω ab

µ = ebν∇µe a
ν rewrites, because of the lin-

earization,

ω ab
µ = δbν

(
∂νζa

ν − Γ̃(ζ)
ρ
µνδb

ρ

)
, (D.11.2)

where Γ̃(ζ)
ρ
µν are the linearized Christoffel symbols. Since it acquires the

physical meaning of a source for torsion, it can be interpreted as a spin-
current density. Nevertheless, it is linear in ζ, since the interaction term
(D.11.1) is linear itself; as suggested by the comparison with gauge theories,
and with the current

M
τ β
α =

∂L

∂hµν,τ
Σ

ρβσ
αµνhρσ =

(
δcµζν,τ

c + δcνζ
µ,τ
c

)
Σ

ρβσ
αµν

(
δ f ρζ

f
σ + δ f σζ

f
ρ

)
,

(D.11.3)

(where Σ
ραβσ
µν = ηγ[α(δ

ρ
γδ

β]
µ δσ

ν + δ
ρ
µδσ

γδ
β]
ν )), the interaction term is quadratic. In

this case, however, it would be very difficult to split up the solution of the
structure equation as the sum of the pure gravitational connection plus other
contributions.
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Figure D.4.: Phase portraits of cosmological models with the scalar field with
flat effective potential. Left figure corresponds to the case of GR, V0 = 0.05ρpl.
Central figure represents the phase space with focus and saddle for V0 =
0.006ρpl. Right figure represents the phase space with V0 = 0.05ρpl. Thick

curves surround regions where the derivative of the scalar field φ̇ is complex
and there are no solutions. For central and right figure j = 100. Dashed lines
again surround the region where semi-classical approach is valid.
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E. Quantum Fields on Classical
Background

E.1. Dirac equation on a curved spaces and

classical trajectories

The interaction between geometry and internal spinor-like degrees of free-
dom has been investigated with the aim to infer the analogous of Papapetrou
equations for a quantum spin (Cianfrani and Montani, 2008a). This task has
been approached by an eikonal approximation, i.e., ψ = eiSu, and a localiza-
tion hypothesis for u along the integral curve of the momentum Kµ. Hence, a
dispersion relation has been recovered starting from the squared Dirac equa-
tion and by virtue of an integration on spatial coordinates. This way, the
following relation has been obtained

(KµKµ − KµSµ)(1 + O(λ2)) + µ2 = 0, (E.1.1)

λ and µ being the Compton length of the particle and the mass, respectively,
while the quantity Sµ reads as

Sµ = 2i
ū0γ0̄Dµu0 − Dµū0γ0̄u0

ū0γ0̄u0

. (E.1.2)

Hence the dynamics of Kµ is obtained by acting on the relation (E.1.1) with
the derivative operator ∇ν and we have






Uµ∇µPν − h̄
2 RρσµνUµSρσ − h̄∇νUµSµ−

−2ih̄UµD[νū0γ0̄Dµ]u0 + O(λ2) = 0

Pν = Kν − Sν

. (E.1.3)

Here the quantity Sµν is given by the expression

Sµν =

∫
d3x

√
hū{γ0̄, Σµν}u

2
∫

d3x
√

hūγ0̄u
=

ū0{γ0̄, Σµν}u0

2ū0γ0̄u0

+ O(λ2), (E.1.4)

for which we have
SνµUν = 0, (E.1.5)

2485



E. Quantum Fields on Classical Background

Since we are performing a multi-pole expansion, it is possible to assume
that

Dµu0 = iUµv, (E.1.6)

v being an arbitrary spinor. It can be shown that this hypotheses is well-
grounded by an analysis on the dynamics of the wave-function.

This way, the following equations are obtained

Uµ∇µUν −
h̄

2
RρσµνUµSρσ = 0 (E.1.7)

Therefore, Dirac particles follow the trajectory of classical spinning ones
(according with the Mathisson-Papapetrou formulation), whose spin tensor
is given by Sµν (E.1.4).
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F.1. Hamiltonian Formulation of the 5-dimensional

Kaluza-Klein model

A first line of research is the analysis of the ADM splitting of the 5D KK
model, to achieve the Hamiltonian formulation of the dynamics and get in-
sights onto the gauge-symmetry generation. The ADM slicing of KK model,
and its physical meaning, is not obvious, due to the existence of two possi-
ble procedures; we refer to these as KK-ADM and ADM-KK procedures. In
KK-ADM we firstly perform the usual KK reduction of the metrics, and then
a 3+1 ADM splitting of the gravitational tensor and the abelian gauge vector.
The 5D metric jAB splits as follows

jAB ⇒





gµν → ϑij, Si, N
Aµ → Ai, A0

φ → φ
→




N2 − SiS

i − φ2 A2
0 −Si − φ2 A0 Ai −φ2 A0

−S2
i φ2 A0 Ai −ϑij − φ2Ai Aj −φ2 Ai

−φ2 A0 −φ2 Ai −φ2



 .

Here N, Si, ϑij are the lapse function, the 3D shift vector and the 3D induced
metrics (A, B = 0, 1, 2, 3, 5; µ, ν = 0, 1, 2, 3; i, j = 1, 2, 3). This way, we have
a non-complete space-time slicing, due to the fact that we are doing a 3+1
splitting of a 5-D background, so that the extra-dimension is not included. In
the ADM-KK procedure we firstly deal with a 4+1 splitting that includes the
extra-dimension and then we consider the KK reduction related to the pure
spatial manifold:

jAB ⇒





h Î, Ĵ → Ai, ϑij, φ

NÎ → Ni, N5

N → N
⇒




N2 − h Î Ĵ N Î N Ĵ −Ni −N5

−Ni −ϑij −2 φ2 Ai Aj −φ2 Ai

−N5 −φ2 Ai −φ2


 .

Here NÎ and h Î Ĵ are the 4D shift vector and the 4D spatial induced metric

( Î, Ĵ = 1, 2, 3, 5). Now we have a complete slicing but, in this set of variables,
the component A0 is missing. Hence, both procedures are unsatisfactory and
it must be checked if they commute. Despite the outcoming metric seem to be
different, we are dealing with objects that must show well defined properties
under pure spatial KK diffeomorphisms. This allow us to look for “conver-
sion formulas” between this two metrics. Indeed, we can implement the KK
reduction on NÎ ; it is possible to recognize that NÎ is not a pure 4D spatial
vector neither simple gauge vector but a mixture of them. A detailed study
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of the 5-bein structure yields the following formulas for NÎ

{
Ni = Si + φ2A0Ai

N5 = φ2A0
,

{
Ni = Si

N5 = N2A0 .

As soon as the Lagrangians resulting from these two procedures are recasted
in the same set of variables, it is possible to recognize that they differ only
for surface terms. Then, we conclude that we are dealing with equivalent
dynamics and with a unique well defined Hamiltonian. Hence, ADM split-
ting is provided to commute with KK reduction and this allows us to com-
pute the Hamiltonian. Moreover, the Hamiltonian formulation, together with
conversion formulas, clearly shows how the time component of the electro-
magnetic field is given by a combination of the geometrical Lagrangian mul-
tipliers coming out in a 5D scheme.
People involved in this topic are Valentino Lacquaniti and Giovanni Montani
(Lacquaniti and Montani, 2006a).

F.2. Classical and Quantum spinning particles in

Kaluza-Klein space-times

The dynamics of a classical spinning particle, in a KK space-time, is inferred
from the extension of Papapetrou equations to the 5-dimensional case, with
Pirani conditions, i.e.,






D
(5)Ds

(5)PA = 1
2
(5)R A

BCD ΣBC(5)uD

D
(5)Ds

ΣAB = (5)PA(5)uB − (5)PB(5)uA

(5)PA = (5)m(5)uA − DΣAB

(5)Ds
(5)uB

ΣAB(5)uA = 0

. (F.2.1)

The main new feature is the 4 additional components of the spin-tensor ΣAB,
whose physical meaning is going to be clarified by our analysis. At first, un-
der coordinate transformations, proper of a KK model, Σµν and Σ5µ behave
like 4-dimensional quantities, in particular a tensor Sµν and a vector Sµ, re-
spectively.
By rewriting the full system above in terms of 4-dimensional quantities, Sµν,
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Sµ, Aµ and gµν, one finds, after some manipulations,





D
Ds P̂µ = 1

2 R
µ

αβγ Sαβuγ + qF
µ
νuν + 1

2∇µFνρ Mνρ
Dq
Ds = D

Ds(α
2P̃5 +

1
4ekFαβSαβ)

DSµν

Ds = P̂µuν − P̂νuµ + F
µ
ρMρν − Fν

ρMρµ

P̂µ = α2Pµ + u5
DSµ

Ds − ekFρνuρSνµu5 +
1
2 ekF

µ
ρSρ

Sνµuν + Sµu5 = 0

. (F.2.2)

The quantity Mµν has the following expression

Mµν = 1
2 ek(Sµνu5 + uµSν − uνSµ) , (F.2.3)

and becouse of its coupling into equations of motion it has to be identified
with the electro-magnetic moment.
This way, it is worth nothing that the system (F.2.2) reproduces exactly equa-
tions of motion of a spinning particle, endowed with a charge q and an electro-
magnetic moment Mµν. This result demonstrates that the geometrization of
the electro-dynamics does not modify the dynamics of spinning objects.
In this scenario, from the expression (F.2.3), the quantity Sµ is recognized as
describing an electric dipole moment. The emergence of an electric dipole
moment term seems to be a proper feature of a KK approach, since it arises
also for spinors, in the Riemannian case.

The introduction of spinor fields in a KK model is the main open point
of such an approach. The standard way to deal with them is to extend the
Dirac equation to the multi-dimensional case and to try to identify extra-
dimensional quantum numbers with internal ones. However this procedure
fails, because of the emergence of mass terms of the compactification scale
order and because quantum numbers of Standard model particles cannot be
inferred.
In this respect, our investigation has been focused on a more phenomenolog-
ical approach, based on recovering 4-dimensional properties by an averaging
procedure on the extra-dimensional manifold. This average is motivated by
the undetectability of the extra-space and the need for it is not restricted to the
case spinors are present. In fact, we showed that it is required in order to re-
produce non-Abelian gauge transformations from extra-dimensional isome-
tries and to get the equations of motion, proper of the 4-dimensional picture,
starting from multi-dimensional ones. As far as spinors are concerned, the
average produces a non-trivial effect on extra-dimensional symmetries, such
that some of the above mentioned issues can be solved.
For instance, we considered the case of a 3-sphere in view of performing the
geometrization of an SU(2) gauge theory. We look for a solution of the Dirac
equation integrated over the sphere. Even though we do not find an exact
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solution, an approximated one, with corrections controlled by an order pa-
rameter, is inferred. This is given by

χr =
1√
V

e
− i

2 σ(p)rsλ
(p)
(q)

Θ(q)(ym)
, (F.2.4)

V being the volume of S3, σ(p) SU(2) generators, while the constant matrix λ
satisfies

(λ−1)
(p)
(q)

=
1

V

∫

S3

√−γem
(q)∂mΘ(p)d3y . (F.2.5)

Θ functions are fixed as having the following form

Θ(p) =
1

β
c(p)e−βη , η > 0 , (F.2.6)

with c(p) and η some arbitrary functions, while β is the order parameter, such
that corrections to the Dirac equation are of the β−1 order.
This form for the spinor is able to geometrize the SU(2) gauge connection at
the leading order in β−1, while, at next orders, gauge-violating terms come
out. Hence, this procedure can be used to geometrize the electro-weak model
and infer a lower bound for β from current limits on gauge-violating pro-
cesses. Moreover, the introduction of the Higgs field in such a scenario suc-
ceeds in stabilizing its mass and in reproducing mass terms for neutrinos,
too.

F.3. Generalized 5-Dimensional Theories

5D KK models provide an interesting toy-model for the analysis of compact-
ification schemes, and the features of generalized 5D models has been inves-
tigated, and the symmetries arising after dimensional reduction have been
considered. In particular, alternative mechanisms that can imply compactifi-
cation have been proposed, and broken 5D symmetries have been explored.
On the one hand, the presence of torsion in a 5D model has been shown
to produce interesting structures after dimensional reduction. In a 5D sce-
nario, the geometrization of the Electro-weak model has been worked out
on the ground of the broken 5D Lorentz group and the properties of torsion
[Lecian and Montani (2006)], and proposal for the introduction of Ashtekar
variables within this scheme has been evaluated [Lecian and Montani (2007)].
Starting from the 5D Gauss-Codacci formula, and making sure that the resid-
ual symmetry of the metric components does not violate the Frobenius-Geroch
requirements, evolutionary variables have been proposed.
On the other hand, a truncation of the KK towers has proposed from both
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theoretical and phenomenological points of views. In particular, the simplest
toy model of a scalar field in 5 dimensions has been analyzed: the trunca-
tion of such a tower has been considered as the hint of a modification of the
extraD geometrical structures and related symmetries and compactification
scenarios.
In the simplest toy model, i.e., a scalar field in a 5-dimensional (5D) space-
time, described as the Dirac product of a 4D manifold plus a ring, M5 =
M4 ⊗ S1, the Kaluza-Klein (KK) tower is defined as

Ψ5(xρ, x5) =
+∞

∑
−∞

ψn(x
ρ)eix5m/L, L ≡ 2πR, (F.3.1)

that is the infinite sum of the Fourier harmonics, labeled by m. In this com-
pactification scheme, because of the periodic (boundary) condition on the
modes of the tower,

ψ(x5) = ψ(x5 + L), L = 2πR,

i.e., of the identification of the points 0 ↔ 2πR, ψ(x5) is defined on S1/Z ∼
R.
The scalar-field wavefunction obeys the Klein-Gordon equation

(∂µ∂µ +
5M

2
m)Ψ = 0 ⇒ 5M

2
m ≡ 4M

2
+ (m/L)2 , (F.3.2)

and it expression in the momentum representation reads

ψ̃m(P5) = δ(P5 − m/L).

From F.3.1, it is easy to understand the the structure of the extraD geometry
can be described by means of the extraD projection of physical objects.
The analysis of truncated Kaluza-Klein (KK) tower can be performed on the
ground of several considerations.
In fact, as it can be easily seen in (F.3.2), the label of the mode is deeply
connected both with mass and extraD momentum, which can also be iden-
tified with the quantum number of a geometrized interaction, thus allow-
ing for supposing a strict connection between the extraD and the internal
structure. From theoretical point of view, the truncation of the tower would
correspond to the introduction of a cutoff in the extra D, based on the fact
that it would make little sense to specify the localization of a particle below
its Schwartzschield radius. The exact localization of a particle in the extraD
geometry would yield interpretative difficulties, such that a more general de-
scription of the internal structure, which does not automatically allow for
an exact notion of point, should be looked for. Furthermore, an infinite spec-
trum of particles brings field-theoretical as well as algebraic difficulties. From
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a phenomenological point of view, possible indications of the existence of an
extraD would be provided both by geodesic deviation and scattering ampli-
tudes. In the second case, the truncation would simplify the calculation of
scattering amplitudes and would anyhow account for the impossibility of
reaching an infinite energy in experiments.
As a result, the symmetries that characterize KK theories can be compared in
the cases of infinite and truncated series. Since, in this toy model, the extraD
expansion of the wavefunction of the scalar field is the only feature that ac-
counts for the extraD, the truncation of the series would correspond to some
modifications of the extraD geometry, as remarked for F.3.1. This way, it will
be possible to analyze KK symmetries in both cases and possible compactifi-
cation scenarios.
It has already been proposed to gain insight into the geometrical interpreta-
tion of truncated harmonics expansion on a circle by considering it as worked
out from a higher-dimensional structure, thus obtaining a ”fuzzy circle”, in
a ”matrix-manifold” scheme. As a result, the ultraviolet cutoff of the model
implies a minimal wavelength. As a first attempt, we propose a finite set of
approximating wave functions, whose finite sum should reproduce the peri-
odicity on the extraD coordinate, with the aim of pointing out the main diffi-
culties of the problem.This preliminary speculation will be aimed at pointing
out the main difficulties of the problem.
As a second strategy, we have considered the truncated wavefunction as a
quasi-periodic function, projected on a finite set of Fourier modes. For this
purpose, we have analyzed different representations of the standard operator
algebra, given by the canonical commutation relations of the extraD opera-
tors x̂5 and P̂5, within the framework of the polymer representation. In this
case, compactification has been illustrated to occur because of the truncation.
We have then established generalized commutation relations; this way, the
occurrence of compactification has been investigated through the fundamen-
tal wavelength of the theory.
The investigation of the role of the operators x̂5 and P̂5 in the extra-D sym-
metry and the different compactification mechanisms that arise from these
scheme have motivated the comparison between the different approaches
from a mathematical point of view [Cianfrani and Montani (2008b)].
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