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2 Brief description

One of the most important metrics in general relativity is the Kerr-Newman
solution which describes the gravitational and electromagnetic fields of a ro-
tating charged mass. For astrophysical purposes, however, it is necessary
to take into account the effects due to the moment of inertia of the object.
To attack this problem we have derived exact solutions of Einstein-Maxwell
equations which posses an infinite set of gravitational and electromagnetic
multipole moments.

To study the physical relevance of such solutions in the context of rela-
tivistic astrophysics we analyze the particular case of a rotating mass with
an arbitrary quadrupole moment. The investigation of the motion of test
particles in the corresponding gravitational field shows that the quadrupole
drastically affects the structure of spacetime. In particular, effects associated
with repulsive gravity take place due to the presence of naked singularities.
We perform an analytical study of circular motion around naked singulari-
ties in the specific case of the Reissner-Nordstrom spacetime. To study the
physical effects of repulsive gravity in an invariant manner we propose to
use the eigenvalues of the curvature tensor which are scalar quantities and
provide physically reasonable results in the case of naked singularities with
black hole counterparts as well as in the case of naked singularities generated
by higher multipole moments.

We study the problem of the interior solution for a rotating mass with
quadrupole moment. In particular, we show that the approximate interior
Hartle-Thorne solution can be matched with an approximate exterior solu-
tion which is a particular case of the exact Mashhoon—Quevedo exterior so-
lution. The quadrupole parameter is interpreted as an additional degree of
freedom that can be used to attack the problem of finding physically reason-
able interior solutions. We study the Zipoy-Voorhees static solution and find
a particular interior counterpart which is described by a static perfect fluid
with quadrupole moment. We also study the problem of matching stationary
and axisymmetric exterior and interior solutions, and propose an invariant
approach based upon the use of curvature invariants.
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3 Introduction

It is hard to overemphasize the importance of the Kerr geometry not only
for general relativity itself, but also for the very fundamentals of physics.
It assumes this position as being the most physically relevant rotating gen-
eralization of the static Schwarzschild geometry. Its charged counterpart,
the Kerr-Newman solution, representing the exterior gravitational and elec-
tromagnetic fields of a charged rotating object, is an exact solution of the
Einstein-Maxwell equations.
Its line element in Boyer-Lindquist coordinates can be written as

2 2 2

g2 = | _rZZ—Ai—/IZz—t:cb)lsz—g < (dt — asin®0dg)?
sin? 6

124+ a2cos20
% + a? cos? 6

12— 2Mr +a? + Q2

[(rz + az)dgo — adt]z

dr? — (r? + a® cos? 0)d6? , (3.0.1)

where M is the total mass of the object, 2 = |/ M is the specific angular mo-
mentum, and Q is the electric charge. In this particular coordinate system,
the metric functions do not depend on the coordinates t and ¢, indicating the
existence of two Killing vector fields ¢ = 9; and ¢! = 9, which represent
the properties of stationarity and axial symmetry, respectively.

An important characteristic of this solution is that the source of gravity is
surrounded by two horizons situated at a distance

e =M=+ VM2 —a?2— Q2 (3.0.2)

from the origin of coordinates. Inside the interior horizon, r_, a ring singular-
ity is present which, however, cannot be observed by any observer situated
outside the exterior horizon. If the condition M? < a? + Q? is satisfied, no
horizons are present and the Kerr-Newman spacetime represents the exterior
tield of a naked singularity.

Despite of its fundamental importance in general relativity, and its theo-
retical and mathematical interest, this solution has not been especially useful
for describing astrophysical phenomena, first of all, because observed astro-
physical objects do not possess an appreciable net electric charge. Further-
more, the limiting Kerr metric takes into account the mass and the rotation,
but does not consider the moment of inertia of the object. For astrophysi-
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3 Introduction

cal applications it is, therefore, necessary to use more general solutions with
higher multipole moments which are due not only to the rotation of the body
but also to its shape. This means that even in the limiting case of a static
spacetime, a solution is needed that takes into account possible deviations
from spherically symmetry.
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4 The general static vacuum
solution

In general relativity, stationary axisymmetric solutions of Einstein’s equa-
tions (1) play a crucial role for the description of the gravitational field of
astrophysical objects. In particular, the black hole solutions and their gener-
alizations that include Maxwell fields are contained within this class.

This type of exact solutions has been the subject of intensive research dur-
ing the past few decades. In particular, the number of know exact solutions
drastically increased after Ernst (2) discovered an elegant representation of
the field equations that made it possible to search for their symmetries. These
studies lead finally to the development of solution generating techniques (1))
which allow us to find new solutions, starting from a given seed solution. In
particular, solutions with an arbitrary number of multipole moments for the
mass and angular momentum were derived in (3) and used to describe the
gravitational field of rotating axially symmetric distributions of mass.

The first analysis of stationary axially symmetric gravitational fields was
carried out by Weyl (4) in 1917, soon after the formulation of general rela-
tivity. In particular, Weyl discovered that in the static limit the main part of
the vacuum field equations reduces to a single linear differential equation.
The corresponding general solution can be written in cylindrical coordinates
as an infinite sum with arbitrary constant coefficients. A particular choice of
the coefficients leads to the subset of asymptotically flat solutions which is
the most interesting from a physical point of view. In this section we review
the main properties of stationary axisymmetric gravitational fields. In par-
ticular, we show explicitly that the main field equations in vacuum can be
represented as the equations of a nonlinear sigma model in which the base
space is the 4-dimensional spacetime and the target space is a 2-dimensional
conformally Euclidean space.

4.1 Line element and field equations

Although there exist in the literature many suitable coordinate systems, sta-
tionary axisymmetric gravitational fields are usually described in cylindric
coordinates (t,p,z, ¢). Stationarity implies that ¢ can be chosen as the time
coordinate and the metric does not depend on time, i.e. dg,,/dt = 0. Con-

sequently, the corresponding timelike Killing vector has the components 4}'.
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4 The general static vacuum solution

A second Killing vector field is associated to the axial symmetry with respect
to the axis p = 0. Then, choosing ¢ as the azimuthal angle, the metric satis-
fies the conditions dg,,/d¢@ = 0, and the components of the corresponding
spacelike Killing vector are 55.

Using further the properties of stationarity and axial symmetry, together
with the vacuum field equations, for a general metric of the form S =
Suv(p, z), it is possible to show that the most general line element for this type
of gravitational fields can be written in the Weyl-Lewis-Papapetrou form as
4;5;16)

ds? = f(dt — wdg)? — f1 [eZW(de +d2?) + pquoz} ) 4.1.1)

where f, w and 7 are functions of p and z, only. After some rearrangements
which include the introduction of a new function Q) = Q)(p, z) by means of

the vacuum field equations Ry, = 0 can be shown to be equivalent to the
following set of partial differential equations

%ap (P3pf) +02f + %[(5p0)2 +(0:0)? = (9f)* = (92f)°] =0, (413)

%ap(papn) P % (3pf 3,0 + 0.5 9.Q) =0, (4.1.4)
%7 = 4 |@of P+ @007 - @2 - 207 .  @15)
9,y = ZL}Z (Bpf 3= +9,02,Q) . (4.1.6)

It is clear that the field equations for 7 can be integrated by quadratures,
once f and ) are known. For this reason, the equations (4.1.3) and {.1.4)
for f and ) are usually considered as the main field equations for stationary
axisymmetric vacuum gravitational fields. In the following subsections we
will focus on the analysis of the main field equations, only. It is interesting
to mention that this set of equations can be geometrically interpreted in the
context of nonlinear sigma models (7).

Let us consider the special case of static axisymmetric fields. This corre-
sponds to metrics which, apart from being axially symmetric and indepen-
dent of the time coordinate, are invariant with respect to the transformation
¢ — —¢ (i.e. rotations with respect to the axis of symmetry are not allowed).
Consequently, the corresponding line element is given by with w =0,
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4 The general static vacuum solution

and the field equations can be written as

N+ %apnp +2Yp =0, f=exp(2y), (4.1.7)

97 =p |¥)? — (02|, 3y =200, 9. (4.1.8)

We see that the main field equation (.1.7) corresponds to the linear Laplace
equation for the metric function ¢.

4.2 Static solution

The general solution of Laplace’s equation is known and, if we demand addi-
tionally asymptotic flatness, we obtain the Weyl solution which can be writ-
ten as (4; 1)

Z —————Py(cosh), cosf = , (4.2.1)

p +Zz)n+1 /p2+zz

where a, (n = 0,1,...) are arbitrary constants, and Py, (cos 0) represents the
Legendre polynomials of degree n. The expression for the metric function v
can be calculated by quadratures by using the set of first order differential
equations (4.1.8). Then

> anam(n+1)(m+1)
y=— 5z (PP = PasiPuit) - (422)
n;O(H—Fm—FZ)(P —|—Zz) ntm+2 +z( n+1 m—|—1)

Since this is the most general static, axisymmetric, asymptotically flat vac-
uum solution, it must contain all known solution of this class. In particular,
one of the most interesting special solutions which is Schwarzschild’s spher-
ically symmetric black hole spacetime must be contained in this class. To see
this, we must choose the constants 4, in such a way that the infinite sum
(4.2.1) converges to the Schwarzschild solution in cylindric coordinates. But,
or course, this representation is not the most appropriate to analyze the inter-
esting physical properties of Schwarzchild’s metric.

In fact, it turns out that to investigate the properties of solutions with mul-
tipole moments it is more convenient to use prolate spheroidal coordinates
(t,x,y, ¢) in which the line element can be written as

2 xZ 2
dSZ :fdtz_ 07 [EZV(XZ_yZ) < d_l + 1[1_]/]/2) + (x —1)( -V )dqo

xz
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4 The general static vacuum solution

where

ry+re
x=—

Yo —7r—
20

(*>1), y=——, <1 (42.3)

ri=p"+(z£0)*, o= const, (4.2.4)

and the metric functions are f, w, and 7y depend on x and y, only. In this
coordinate system, the general static solution which is also asymptotically
flat can be expressed as

(o]

f=exp2y), yp= Z(_l)nH%Pn(y)Qn(x) ,  qn = const

n=0

where P, (y) are the Legendre polynomials, and Q, (x) are the Legendre func-
tions of second kind. In particular,

1
Ph=1, Pi=y, P= E(3;/2 —1),..

1. x+1 1 x+1
QO_Elnx—ll Ql—EXh’Ix_l—].,
1., x+1 3
Q2—§(3x —1)1nx_1—§x,

The corresponding function y can be calculated by quadratures and its gen-
eral expression has been explicitly derived in (8). The most important special
cases contained in this general solution are the Schwarzschild metric

1, x*—1
¥ =—qoPo(y)Qo(x), 7= EIHW ,
and the Erez-Rosen metric (9)
1. x>—1
P = —4oPo(y)Qo(x) — 2P2(y)Qa(x) , v =5In_5— ”

In the last case, the constant parameter g, turns out to determine the quadrupole
moment. In general, the constants g, represent an infinite set of parameters
that determines an infinite set of mass multipole moments.
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5 Stationary generalization

The solution generating techniques (12) can be applied, in particular, to any
static seed solution in order to obtain the corresponding stationary general-
ization. One of the most powerful techniques is the inverse method (ISM)
developed by Belinski and Zakharov (13). We used a particular case of the
ISM, which is known as the Hoenselaers-Kinnersley-Xanthopoulos (HKX)
transformation to derive the stationary generalization of the general static
solution in prolate spheroidal coordinates.

5.1 Ernst representation

In the general stationary case (w # 0) with line element
ds* = f(dt — wdg)?

a2 [, dx? dy?
U272 2 Y 2 2\ 2
7 {e (x y)< _1+1_y2)+(x (1 —y")dg

it is useful to introduce the the Ernst potentials

1—-E

where the function (2 is now determined by the equations
o(x* — 1) = fPw,, o(1—y*)Qy = —flwy.

Then, the main field equations can be represented in a compact and symmet-
ric form:

@& - {6 =D&l + 1 -2&) } =28 [(2 - DG+ (1 -)F] -

This equation is invariant with respect to the transformation x <> y. Then,
since the particular solution

x2—1

1 1

1781



5 Stationary generalization

represents the Schwarzschild spacetime, the choice =1 = v is also an exact
solution. Furthermore, if we take the linear combination ¢ 1 =(x+ coy and
introduce it into the field equation, we obtain the new solution

o . a
Fl=Zx+i—y,oc=vVM2—a?,
M M
which corresponds to the Kerr metric in prolate spheroidal coordinates.
In the case of the Einstein-Maxwell theory, the main field equations can be
expressed as

(58" —FF* —1)V?E =2(F"VE — FVH)VE,
(& —FF* —1)V2F = 2(F*'VE — F'VF)VF

where V represents the gradient operator in prolate spheroidal coordinates.
Moreover, the gravitational potential ¢ and the electromagnetic I Ernst po-
tential are defined as

1-f—i0 D

= 7 =2— .
C=1vfrin 1+7+i0

The potential ® can be shown to be determined uniquely by the electromag-
netic potentials A; and A, One can show that if {p is a vacuum solution, then

the new potential
g=¢Gov1l—e?

represents a solution of the Einstein-Maxwell equations with effective elec-
tric charge e. This transformation is known in the literature as the Harrison
transformation (10). Accordingly, the Kerr-Newman solution in this repre-
sentation acquires the simple form

V1= e2
MmX T iy M

¢ =

In this way, it is very easy to generalize any vacuum solution to include the
case of electric charge. More general transformations of this type can be used
in order to generate solutions with any desired set of gravitational and elec-
tromagnetic multipole moments (11).

5.2 The general solution

If we take as seed metric the general static solution, the application of two
HXK transformations generates a stationary solution with an infinite number
of gravitoelectric and gravitomagnetic multipole moments. The HKX method
is applied at the level of the Ernst potential from which the metric functions
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5 Stationary generalization

can be calculated by using the definition of the Ernst potential E and the
tield equations for <. The resulting expressions in the general case are quite
cumbersome. We quote here only the special case in which only an arbitrary
quadrupole parameter is present. In this case, the result can be written as

R >
— L, 2qP
f L e 7

w = —2a-— ZO'MeZqPZQZ ,
R
1 M\? R A
2y = (14 2) 5.2.1
¢ 4 ( + 0) xZ — yze ’ (-2.1)

where

R = aja_+0bib_, L:ai—i—bz,

M= wx(1— ) (e 4 M Yay 4 y(x? —1)(1 — 2200,
2

7

T= %(1 +4)*In ;2 _—ylz +29(1—=P)Q1 + 4> (1 — P») {(1 +P)(Q%— @3)
+%( 2 —1)(2Q3 — 3xQ1Q2 + 3Q0Q2 — Qé)} : (5.2.2)

Here P;(y) and Q)(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

ay = x(l _ aZeZq(5++5_)) :|: (1 + aZeZq(M—M_)) ,
by = ay(e*®+ 4+ e210-) F q(e210+ — 2107,

1 (xxy)? 3 ’ 3 ’ ’ x—1
br = s+ S (L Fay) + g x(1—y) Fy(® = Dln =7,

the quantity « being a constant

tx:U_M, c=VM?2—a2. (5.2.3)

The physical significance of the parameters entering this metric can be clar-
ified by calculating the Geroch-Hansen (14;15) multipole moments

Mys1 =Jo =0, k=0,1,2,... (5.2.4)
2 a2 3/2

My=M, M,=—Mada+ qu\/ﬁ (1 — W) (5.2.5)
4 2\ 2

Ji=Ma, J3=—-Md+ ﬁqM3a (1 — W) (5.2.6)
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5 Stationary generalization

The vanishing of the odd gravitoelectric (M) and even gravitomagnetic (J,)
multipole moments is a consequence of the symmetry with respect to the
equatorial plane. From the above expressions we see that M is the total mass
of the body, a represents the specific angular momentum, and g is related to
the deviation from spherical symmetry. All higher multipole moments can
be shown to depend only on the parameters M, a, and g.

We analyzed the geometric and physical properties of the above solution.
The special cases contained in the general solution suggest that it can be used
to describe the exterior asymptotically flat gravitational field of rotating body
with arbitrary quadrupole moment. This is confirmed by the analysis of the
motion of particles on the equatorial plane. The quadrupole moment turns
out to drastically change the geometric structure of spacetime as well as the
motion of particles, especially near the gravitational source.

We investigated in detail the properties of the Quevedo-Mashhoon (QM)
spacetime which is a generalization of Kerr spacetime, including an arbitrary
quadrupole. Our results show (16) that a deviation from spherical symme-
try, corresponding to a non-zero electric quadrupole, completely changes the
structure of spacetime. A similar behavior has been found in the case of the
Erez-Rosen spacetime. In fact, a naked singularity appears that affects the
ergosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into non simply-connected regions. All these changes occur near the
naked singularity which is situated at x = 1, a value that corresponds to the
radial distance r = M + v/ M? — a? in Boyer-Lindquist coordinates. In the
limiting case a/M > 1, the multipole moments and the metric become com-
plex, indicating that the physical description breaks down. Consequently,
the extreme Kerr black hole represents the limit of applicability of the QM
spacetime.

Since standard astrophysical objects satisfy the condition a/M < 1, we
can conclude that the QM metric can be used to describe their exterior grav-
itational field. Two alternative situations are possible. If the characteristic
radius of the body is greater than the critical distance M + vV M? —a?, i.e.
x > 1, the exterior solution must be matched with an interior solution in or-
der to describe the entire spacetime. If, however, the characteristic radius of
the body is smaller than the critical distance M + vV M? — a2, the QM metric
describes the field of a naked singularity.

The presence of a naked singularity leads to interesting consequences in
the motion of test particles. For instance, repulsive effects can take place in
a region very closed to the naked singularity. In that region stable circular
orbits can exist. The limiting case of static particle is also allowed. Due to
the complexity of the above solution, the investigation of naked singularities
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5 Stationary generalization

can be performed only numerically. To illustrate the effects of repulsive grav-
ity analytically, we used the simplest possible case which corresponds to the
Reissner-Nordstron spacetime.

1785






6 Circular motion in the
Reissner-Nordstrom spacetime

In general relativity, the gravitational field of a static, spherically symmet-
ric, charged body with mass M and charge Q is described by the Reissner-
Nordstrom metric which in standard spherical coordinates can be expressed
as

2 Ao f 2 0.2 (302 1 win2 adne2
ds® = rzdt + Adr +r°(d0° +sin” 0d¢” ) , (6.0.1)

where A = 12 — 2Mr + Q?. The horizons are situated atr+ = M 4/ M? — Q2.
The study of the motion of test particles in this gravitational field is simplified
by the fact that the equatorial plane, 8 = 71/2, is a geodesic plane.

The tangent u? vector to a curve x*(7) is u* = dx*/dt = x*, where T is
an affine parameter along the curve. The momentum p* = ux* of a particle
with mass p can be normalized so that g,xﬁx“xﬁ = —k, where k = 0,1, —1 for
null, timelike, and spacelike curves, respectively. For the Reissner-Nordstrom
metric we obtain

Ap Cay g 6.0.2
— 2 +Kr+rqb—— (6.0.2)

on the equatorial plane. The last equation reduces to a first-order differential
equation

E242 r2 5 12
_ —7 — = —k .0.
y2A+Ar +y2r2 , (6.0.3)
where we have used the expressions for the energy E = —g,587 pP = y%i,

and angular momentum L = gupGs pP = ur’¢ of the test particle, which are
constants of motion associated with the Killing vector fields {; = d; and {y =
dy, respectively. Equation (6.0.3) can be rewritten as

E2 L? 2M - Q2
-2 2 : —
4+ Ve = 5 with V = \/(k-I- 272) (1 + 2 ) . (604)

r

The investigation of the motion of test particles in the gravitational field of
the Reissner-Nordstrom metric is thus reduced to the study of motion in the
effective potential V. In this work, we will focus mainly on circular orbits for
which # = 0 and V = E/u, with the condition 0V /dr = 0. A straightforward
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6 Circular motion in the Reissner-Nordstrom spacetime

calculation shows that this condition leads to

L_2 _ r2(Mr— Qz)
2 r2—3Mr+2Q2’

(6.0.5)

an expression which we substitute in Eq.(6.0.4) to obtain

2 2 2)\2
E_y r —2Mre Q) (6.0.6)
1 r2(r?2 — 3Mr +2Q?)

Moreover, from the physical viewpoint it is important to find the minimum
radius for stable circular orbits which is determined by the inflection points
of the effective potential function, i.e., by the equation 02V /9?r = 0. It is easy
to show that for the potential (6.0.4), the last equation is equivalent to

Mr® — 6M?r* + 9IMQ*r —4Q* = 0. 6.0.7)

We performed a detailed analysis of the circular motion of test particles
governed by the above equations. Since the behavior of test particles strongly
depends on the ratio Q/M, it is necessary to consider separately the cases of
black holes (Q/M < 1), extreme black holes (Q/M = 1) and naked singu-
larities (Q/M > 1).

6.1 Black holes

From the expressions for the energy and angular momentum of a timelike
particle (k = 1) one sees that motion is possible only for r > Q*/M = r,
and for 72 — 3M1’—i—2Q2 > 0. i e r <ryandr > ry,, withr,, =
[BM + /(9M? — 8Q?)] /2. In fact, from Egs.(6.0.5) and (6.0.6) it follows that
the motion inside the regions » < r, and r € (r,_, . ) is possible only along
spacelike geodesics. Atr = r,, one finds instead that the velocity of test par-
ticles at v, = 1 must be equal to the velocity of light, i.e., the circles r = r,,
represent null hypersurface.

At infinity, the effective potential tends to a constant which is independent
of the value of the parameters of the test particle and of the gravitational
source. In our case, we have normalized this constant by choosing the value
of the total energy of the particle as E/u. Moreover, as the outer horizon is
approached from outside, the effective potential reaches its global minimum
value and vanishes. The radius of circular orbits, ., is determined by the
real positive root of the equation

2 2 212
M — <Q2+ L—z) Py oML, 201 (6.1.1)
H H H
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6 Circular motion in the Reissner-Nordstrém spacetime

In general, in the region r > r, circular orbits do not always exist. For
instance, for Q = 0 no circular orbits exist for |L/(uM)| < V12 =~ 3.45,
whereas for Q = M and Q = 0.5M the existence condition implies that
IL/(uM)| < /8 =~ 2.83and |L/(uM)| < 3.33774, respectively.

In this context, it is interesting to explore the stability properties of the cir-
cular motion at r = r,. To find the explicit value of the last stable radius we
solve the condition (6.0.7) in the black hole region and find

2 4 2/3
2( _ [5_9Q% | 4Q%
302 20t Q ( 9+4/5 2 +M4>
d-qEt |8t 72
r;fflo — 24 s 6.1.2)
8+t M2

As expected, in the limiting case Q — 0, we obtain the Schwarzschild value
rre = 6M. The value of 1,4, decreases as Q/M increases, until it reaches its
minimum value e, =4Mat Q/M = 1.

Orbits with r > 1.4 are stable, whereas the circular motion in the region
ry, < r < Iso is completely unstable. Since the velocity of a test particle
at r = r,, must equal the velocity of light, one can expect that a particle in
the unstable region will reach very rapidly the orbit at r = r,5.,. For a static
observer inside the unstable region, the hypersurface r = r,, might appear
as a source of “repulsive gravity”. This intuitive result can be corroborated
by analyzing the behavior of energy and angular momentum of test parti-
cles. Both quantities diverge as the limiting radius r = r,, is approached,
indicating that an infinite amount of energy and angular momentum is nec-
essary to reach r = r,,_ . As the ratio Q/M increases, the values of the energy
and angular momentum at the last stable orbit decrease. For large values of
the radius, the energy of circular orbits approaches the limit E = y, and the
angular momentum L/ (Mpy) increases monotonically.

As a general result we obtain that the values for the radius of the last stable
orbit as well as of the corresponding energy and angular momentum dimin-
ish due to the presence of the electric charge. Physically, this means that the
additional gravitational field generated by the electric charge acts on neutral
particles as an additional attractive force which reduces the radius of the last
stable orbit.
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6 Circular motion in the Reissner-Nordstrom spacetime

6.2 Extreme black holes

In the case of an extreme black hole (Q = M) the outer and inner horizons
coincide at r+ = M. The effective potential vanishes at the horizon and tends
to 1 as spatial infinity is approached. In this open interval no divergencies
are observed. The effective potential reduces to

12 M
V= 1+W(1_7) : (6.2.1)

so that the radius of circular orbits is

L2 - L\/—-8u2M2 + 12

feo _ V8 M + 6.2.2)
M 2u2 M?

The energy and angular momentum of test particles moving along circular

orbits are given by

E2  (r—M)? L2 Mr?

w2 r2(r—2M) w2 r—2M’

(6.2.3)

Consequently, timelike circular orbits are restricted by the condition r >
Tor = 2M. Asr — 2M, the energy and angular momentum diverge, in-
dicating that the circular motion at 7, is possible only along null geodesics.
As expected, the local minimum of these graphics determine the radius of
the last stable orbit. Atr = 7., the energy is E ~ 0.918yu and the angular
momentum L = 2\/§yM.

In general, we can see that this limiting case is very similar to the case of
an arbitrary black hole. The radius of the last stable circular orbits reaches its
minimum value, rfi, = 4M, for a black hole, and the energy and angular mo-

7 7 LSCO
mentum of the test particle diminishes as the minimum radius is approached.

6.3 Naked singularities

In the naked singularity case, Q > M, an inspection of the values for the
energy and angular momentum

(6.3.1)

E_ Q*+(r—2M)r Ly r rM — Q2
no o202+ (r—3M)r (uM) M\ 2Q7 —3Mr +72°

of the test particle shows that it is necessary to study separately four different
regions: the region 1 < Q?/M? < 9/8, the value Q> = gM?, the region
Q?/M? > 9/8 and tinally the value r = Q?/M.
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6 Circular motion in the Reissner-Nordstrém spacetime

The main results obtained from the study of the black hole and naked sin-
gularity cases are here summarized and compared in the plots of Fig.(6.1H6.3).
In the three-dimensional plots of Figl6.1l the energy and the angular momen-
tum (6.0.6) are shown as functions of the circular orbits radius and the ratio
Q/M, for both black hole and naked singularity cases.

o
5 g“‘
sEEEsa
musw

/™

(a) (b)

Figure 6.1: The pictures show the energy E/u (a), and the angular momentum L /(uM)
(b), of a circular orbit for a neutral particle of mass y in a Reissner-Nordstrom geometry of
charge Q and mass M as function of /M and charge-mass ratio Q/ M in the range [0, 2]. The
T =1y = Q2/ M line is also plotted. Numbers close to the points sign the energy and the
angular momentum (underlined numbers) of the last stable circular orbits.

Figl6.2]shows the circular orbits radius as a function of the angular momen-
tum for black hole as well as for naked singularity configurations. One can
see that the value of the central charge affects very drastically the motion of
test particles. A naked singularity presents a very peculiar behavior due to
the appearance of regions in which repulsive gravity plays an important role
and even dominates over attractive gravity, for some values of the central
charge. In Figl6.2] the limiting Schwarzschild and Newtonian cases are also
included for the sake of generality. It can be seen that for large values of r/ M
the radius approaches the Schwarzschild and Newtonian limiting cases. This
is in agreement with the fact that asymptotically the mass term dominates
over the charge term and that far away from the source the effective potential
approaches the Newtonian gravitational potential.

Finally, the study of the stability of circular orbits is summarized in the
Figl6.3lwhere the radius of the last stable circular orbits is plotted as a func-
tion of the charge-to-mass ratio Q/M. We see that the location and struc-
ture of the stability zones of neutral particles around a black differs in a very
strong way from the case of a naked singularity. In the case of a black hole, it
is possible to find a stable circular orbit for any radius value greater that the
value of the last stable orbit.

1791



6 Circular motion in the Reissner-Nordstrom spacetime
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Figure 6.2: The radius /M of circular orbits for a neutral particle of mass y in a Reissner-
Nordstrom spacetime, with charge Q and mass M, is plotted as a function of the angular
momentum L/ (uM) for different values of the ratio Q/M in the interval [0,2]. The radius
of circular orbits for the Newtonian limit (dashed line) and the radius of the circular orbits
for Schwarzschild case (dot-dashed line) are also plotted. The points represent the last circu-
lar orbits. Black-lines represent stable circular orbits, gray-lines represent unstable circular
orbits. The curve r = r, = Q?/M is also plotted for comparison.

If we assume that test particles on circular motion around a black can be
considered as being the constituents of an accretion disk, we conclude that
such an accretion disk presents a continuous structure with a minimum ra-
dius which coincides with the radius of the last stable circular orbit. Accord-
ingly, the minimum radius of such a hypothetical accretion disk is equal to
4M in the case of an extreme black hole, whereas the maximum radius value
of 6M is reached in the case of the Schwarzschild black hole with vanishing
charge.

In the case of a naked singularity configuration, the situation is completely
different. Figl6.4lrepresents this particular case in more detail. The main dif-
ference consists now in the possible structure of an accretion disk. Indeed, we
see that in the open interval 1 < Q?/M? < 9/8, two zones of stability are pos-
sible, namely, in the interval (r4,7.—) and in the region r > r.;. This means
that an accretion disk in this region must have a discontinuous structure. In
fact, particles can move on stable circular orbits in the interval (7, r.—) which
determines the interior and the exterior radius of the first accretion disk with
a ring-like structure. In the region r > r.; a second disk can exist with inte-
rior radius r.4. This structure is schematically illustrated in Fig. A more
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6 Circular motion in the Reissner-Nordstrém spacetime

A9 Q=1.061M

Figure 6.3: The minimum radius /M for a stable circular orbit of a neutral particle of
mass y in a Reissner-Nordstrom geometry of charge Q and mass M is plotted as a function
of Q/M. The ratio Q/ M varies in the interval [0, 1.5]; in particular, for Q = 0 we find r = 6 M
withr, =2Mand r,, = 3M, for Q = 1 we find r = 4M withr, = M and r,, = 2M. Here,

ryy = BM+ /(9M? —8Q?)]/2 and r1 = M + \/M? — Q2. Numbers close to the points

represent the energy E/y and the angular momentum L/ (uM) (underlined numbers) of the
last stable circular orbits.

detailed analysis will be necessary in order to establish whether this discon-
tinuous structure of an accretion disk around a naked singularity can lead to
observable effects.
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6 Circular motion in the Reissner-Nordstrom spacetime
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Figure 6.4: The minimum radius (black line) for the last stable circular orbit of a neutral
particle of mass y in a Reissner-Nordstréom naked singularity of charge Q and mass M is
plotted as a function of the ratio Q/M in the interval [1,2.2]. The dashed curve represents
r = r. = Q*/M, the dotted curve is r = r,_ = [3M — /(9M2 —8Q2)]/2, while the dot-
dashed curveis r = r,, = [3M + \/(9M? — 8Q?)]/2. The shaded regions are forbidden, for
1 < Q/M < 1.061 circular orbits can exist only for 7. < r < r,_ (all stable) and r > r,
(unstable in r,, < r < 7, stable for r > r.), while for Q/M > 1.061 circular orbits can
exist only for r > r,. The effective potential has a minimum in = r, where L/ (uM)(r«) =
0. Numbers close to the points sign the energy E/u and the angular momentum L/ (M)
(underlined numbers) of the last stable circular orbits.

Figure 6.5: Structure of an accretion disk around a naked singularity. The
interior ring is situated within the interior region of stability.
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7 Toward an invariant definition of
repulsive gravity

It is well known that the field equations of Einstein’s theory of gravity allow
the existence of exact solutions containing naked singularities. In fact, in this
report we have mentioned several times that such solutions are contained as
special cases in the QM class of solutions.

Moreover, recent studies indicate that under certain circumstances naked
singularities can appear as the result of a realistic gravitational collapse (38).
An intriguing property of many naked singularities is that they can gener-
ate repulsive gravity. To understand this repulsive nature one can study the
motion of test particles which, for example in the case of stationary axially
symmetric fields, reduces to the study of an effective potential. Although
the explicit form of the effective potential depends on the type of motion un-
der consideration, in general one can find certain similitudes between the
effective potential for geodesic motion and the effective Newtonian potential
which follows from the metric as gy ~ 1 —2VNy = 1 —2M, ff /r, where the
effective mass reduces to the physical mass M at infinity. One can then intu-
itively expect that in the regions where M, s becomes negative, the effects of
repulsive gravity may occur. In the case of the Schwarzschild metric the effec-
tive mass coincides with the physical mass, and repulsive gravity is obtained
only if we change M — —M; hence, the source of repulsion can be considered
as unphysical. However, in the cases of the Reissner-Nordstréom and Kerr
metrics we have respectively M,rr = M — % and Mg = M — L(a,r,0),(47)
leading to spacetime regions where repulsive gravity exists. The disadvan-
tage of this approach is that it is clearly coordinate and observer dependent.
The attempts to define gravitational repulsion in terms of curvature invari-
ants (39) and the behavior of light cones (40) are also not definite. In this
work we propose to use the eigenvalues of the curvature tensor to charac-
terize repulsive gravity in an invariant manner. We first consider the main
second order curvature invariants and show that they do not reproduce the
simple case of the Schwarzschild naked singularity. Then we show that the
curvature eigenvalues provide a reasonable solution to the problem.
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7 Toward an invariant definition of repulsive gravity

7.1 An invariant approach

From the curvature tensor one can form 14 functionally independent scalars
of which only 4 are non-zero in empty space (48). As for the second order
invariants, the most interesting are the Kretschmann scalar, K; = R, /3751{“/57‘5 ,
the Chern-Pontryagin scalar, K, = [*R],X/;WR“/S'Y‘S, and the Euler scalar K3 =
[*R*], m(gR“m‘s , where the asterisk represents dual conjugation. Although the
use of these invariants has been proposed to define “repulsive domains” and
negative effective masses in curved spacetimes (39), their quadratic structure
does not allow to consider all possible cases of naked singularities. Indeed,
for the Schwarzschild spacetime we get K; = 48M? /1°, whereas K, and K3
are proportional to Kj. Since the change M — —M does affect the behavior of
K, these invariants do not recognize the presence of a Schwarzschild naked
singularity. Similar difficulties appear in more general cases like the Kerr and
Kerr-Newman naked singularities (41). Therefore, it seems necessary to con-
sider the only first order invariant which is the curvature scalar R; however,
it vanishes identically in the empty space of naked singularities.

As an alternative approach we propose to use the eigenvalues of the cur-
vature. To this end, consider the SO(3, C)—representation of the curvature as
follows. Let the line element be written in an (pseudo-)orthonormal frame as

ds* = 10" @ 8P (7.1.1)
with 7,, = diag(+1, —1, —1, —1). From the curvature 2-form
1
Q) = dw’y + W Nwy = SR8 A 97, (7.1.2)

where d§* = —w", A 8", one obtains the components of the curvature tensor
whose irreducible parts are: the Weyl tensor,

1

Wabea = Raved + 21(a) [cRay o) + ¢ RMTafa”lcp / (7.1.3)

the trace-free Ricci tensor,

1
Eavea = 201(p)(cRajja) = 5 RMafa"le]p - (7.1.4)
and the curvature scalar,
1

Sabed = —ngWC]b, (7.1.5)

with R, = nCdRcabd. Furthermore, using the bivector notation for the indices
ab — A, according to 01 —+ 1, 02 — 2, 03 — 3, 23 — 4, 31 — 5, 12 — 6, the
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7 Toward an invariant definition of repulsive gravity

curvature tensor can be written as R = Wag + Eag + Sag with

(N M /P R[5 0
WAB—<M _N>/EAB—<Q _P)/SAB—E<O I3)- (7.1.6)

Here M, N and P are (3 x 3) real symmetric matrices, whereas Q is antisym-
metric. The SO(3,C)—representation corresponds to R = W + E + S with
W=M+IiIN,E=P+iQ,and S = 11—2R I3 (see (49) for more details.) The
eigenvalues of the curvature matrix R are in general complex A, = a, + ib,
and, according to Petrov’s classification (1), are an invariant characterization
of the curvature tensor. Moreover, in the most general case of gravitational
tields belonging to Petrov’s class I, we obtain the largest number of eigenval-
ues, namely n = 3.

In the special case of the Schwarzschild metric there is only one eigenvalue
A = M/r® and the change M — —M induces a drastic change in the eigen-
value and in the structure of spacetime as well. An analysis of the more
general Kerr-Newman naked singularity indicates that in fact the curvature
eigenvalues change their sign and present several maxima and minima in the
vicinity of the singularity which is exactly the region where repulsive gravity
appears. It then seems reasonable to introduce the concept of region of repul-
sion as the region of spacetime contained between the first extremum of the
eigenvalue, when approaching from spatial infinity, and the singularity. The
extremum is defined in an invariant manner as dA,, /9x’ = 0, where x' are the
spatial coordinates. This invariant approach leads to the following values for
the Reissner-Nordstrom and Kerr naked singularities

2
Rf:r], = 2% , Rfep = (1 + \/§> acost, (7.1.7)
respectively. These results are in agreement with the analysis of test par-
ticles. In fact, the Reissner-Nordstrom singularity presents repulsion effects

outside the classical radius R.j,s; = Q?/M, and the radius of repulsion Rf:; =
2R 1455 is always situated within the zone of instability of circular motion. The

Kerr naked singularity turns out to be attractive only on the equatorial plane
[Rfep (7t/2) = 0], and it is repulsive otherwise. The case of the Kerr-Newman

singularity cannot be solved analytically in a compact form. On the axis,
however, the radius of repulsion is given by the largest root of the equation

Mr* — 2Q%° + 2a%Q%r — 6Ma*r* + Ma* = 0. (7.1.8)

Introducing values for the mass, charge and angular momentum the resulting
radius of repulsion is always situated in the region where the motion of test
particles is affected by repulsive gravity.

Our invariant approach to define repulsive gravity leads to plausible and
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7 Toward an invariant definition of repulsive gravity

physical reasonable results in the case of naked singularities which possess a
black hole counterpart. The investigation of naked singularities generated by
a mass quadrupole moment (without black hole counterparts) indicates that
our method consistently delivers the expected results. Moreover, it turns out
that the concept of region of repulsion can be used as a criterion to study the
problem of matching interior and exterior solutions of Einstein’s equations.
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8 Geometric and physical effects of
the gravitational quadrupole

The problem of describing the gravitational field of astrophysical bodies is
of central importance in general relativity, both as an issue of principle and
as a foundation for explaining the results of observations. It is an issue of
principle because general relativity is believed to be the most accurate theory
of the gravitational field. Consequently, Einstein’s theory should accept the
existence of exact solutions that correctly describe the gravitational field of
realistic sources. On the other hand, the explanation of effects observed at
the astrophysical level is extremely important.

Astrophysical bodies are characterized in general by a non-spherically sym-
metric distribution of mass. In many cases, like ordinary planets and satel-
lites, it is possible to neglect the deviations from spherical symmetry; it seems
instead reasonable to expect that deviations should be taken into account in
case of strong gravitational fields.

The general metric describing the gravitational field of a rotating deformed
mass was found in 1991 by Quevedo and Mashhoon and involves an infinite
set of gravitoelectric and gravitomagnetic multipoles. This is a stationary
axisymmetric solution of the vacuum Einstein’s equations belonging to the
class of Weyl-Lewis-Papapetrou and is characterized, in general, by the pres-
ence of a naked singularity. To capture the main properties of the general
solution, we concentrate for the sake of simplicity on the special case of the
general solution that involves only three parameters: the mass M, the angu-
lar momentum per unit mass 2 and the mass quadrupole parameter g of the
source. This special case was first found by Quevedo and Mashhoon in 1985.
Hereafter this solution will be denoted as the QM solution.

The corresponding line element in prolate spheroidal coordinates (t, x, y, ¢)
withx >1, -1 <y <1is givenby

ds? = fdt
T (4 ) ).

(8.0.1)

where f, w and 1y are functions of x and y only and ¢ is a constant. They have
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8 Geometric and physical effects of the gravitational quadrupole

the form
R _,
— o
f Le 4
w = —2a—20@ezqP2Q2,
R
1 M\? R .
2y = Z(14+ ) —— .0.2
e 4<+0) xz—le , (8.0.2)
where

R = aja_+byb_, Lza%r—l—bz,
M = ax(1—y?) (2% + 29 )a, +y(x® —1)(1 — a?10+T-Np,

2 _
7= S0t _ylz +29(1 = P)Q1 + (1~ ) [(1 +P)(Q3 - QD)
5 (% - 1203 - 30102 + 3000~ B3] 609

Here P;(y) and Q,(x) are Legendre polynomials of the first and second kind
respectively. Furthermore

ay = x(l . aZeZq((5++(S,)) + (1 I lxzeZq(MﬂL)) ,
by = [Xy(eZq(h + e2q5,) == [X(eZq(h _ eZq(L) ,
1, (x£y)? 3 ) 3 ’ By x—1
by = Eln 21 +§(1_y :ny)-l—z[x(l—y ) Fy(x _1)]lnx—i—1 ,
(8.0.4)
the quantity « being a constant
-M
a:‘fa . o=+vM_a2. (8.0.5)
The Geroch-Hansen moments are given by
M1 =Ju=0, k=0,12,.. (8.0.6)
2, 2 413 2\
My=M, Mp;=—Ma" + EqM (1 - W) e (8.0.7)
4 2\
— — 3 3
Ji=Ma, J3=-—-Ma’ + EqM a (1 — W) ) e (8.0.8)

The vanishing of the odd gravitoelectric (M) and even gravitomagnetic (J,)
multipole moments is a consequence of the reflection symmetry of the so-
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8 Geometric and physical effects of the gravitational quadrupole

lution about the hyperplane y = 0, which we will refer to as “symmetry”
(or equivalently “equatorial”) plane hereafter. From the above expressions
we see that M is the total mass of the body, a represents the specific angular
momentum, and g is related to the deviation from spherical symmetry. All
higher multipole moments can be shown to depend only on the parameters
M, a,and g.

We limit our analysis here to the case o > 0,i.e. M > a. Inthe case c = 0
the solution reduces to the extreme Kerr spacetime irrespective of the value
of g. The case o complex, i.e. a > M, requires a different definition of the
quadrupole parameter in order to have real Geroch-Hansen moments and
can be better discussed by using Weyl cylindrical coordinates. We will not
explore this case here.

In this work we analyze some geometric and physical properties of the QM
solution. The limiting cases contained in the general solution suggest that it
can be used to describe the exterior asymptotically flat gravitational field of
a rotating body with arbitrary quadrupole moment. This is confirmed by the
analysis of the motion of particles on the equatorial plane. It turns out that
the whole geometric structure of the QM spacetime is drastically changed
in comparison with Kerr spacetime, leading to a number of previously un-
explored physical effects strongly modifying the features of particle motion,
especially near the gravitational source. In fact, the QM solution is charac-
terized by a naked singularity at x = 1, whose existence critically depends
on the value of the quadrupole parameter g. In the case g = 0 (Kerr solu-
tion) x = 1 represents instead an event horizon. This bifurcating behaviour
accounts for the above mentioned drastic changes with respect to the Kerr
metric.

Due to the very complicated form of the metric most of the analysis will be
performed numerically.

8.1 Limiting cases

The QM solution reduces to the Kerr spacetime in the limiting case g — 0
and to the Erez-Rosen spacetime when a — 0. Furthermore, it can be shown
that the general form of the QM solution (see Appendix A) is equivalent, up
to a coordinate transformation, to the exterior vacuum Hartle-Thorne solu-
tion once linearized to first order in the quadrupole parameter and to second
order in the rotation parameter.
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8 Geometric and physical effects of the gravitational quadrupole

8.1.1 Kerr solution

For vanishing quadrupole parameter we recover the Kerr solution, with func-
tions

c2x? +d?y? — 1 (cx+1)(1 -y
fk = T pgp WK=20 g o
(ex +1)2 4 d?y c2x? + d?y? — 1
1 c2x? +d*y? — 1
= -1 , 8.1.1
= o (Ta ) 1D
where o 4
_ Y d= = 2442 -1 1.2
c=1 A © + , (8.1.2)
so that « = (¢ —1)/d. Transition of this form of Kerr metric to the more

familiar one associated with Boyer-Lindquist coordinates is accomplished by

the map y
X = r_a , Yy =cosf, (8.1.3)

so that x = 1 corresponds to the outer horizonr =, = M + 0.
To first order in g the QM solution becomes

= fk—29PQafx + Aydi + A 5] +0(q%),

c(x? —y?) + x(1 —y?
( czxé/—: dzl/z(— 1y : T Y04+ Y0 | +0(5),

w = wg+2acqg [ZPQQZ

x2—1
Y = Yktq {2(1 —P)Q1+In <m)

(a2 —y?) 1y

d
tad— oy 22— 1

(64 + 5_)} +0(4%), (8.1.4)

c(xFy) +1]° -y

2

Y = (c2x2 -E;Z;é —1)2 {cd?(x F y)*(1 £ xy) +c(x*> — 1) (1 F xy)
+HaFyl(? -1 +d (1 -y} (8.1.5)

This approximate metric could be used to describe the exterior field of an
arbitrarily rotating mass source with a small quadrupole moment. The lowest
Geroch-Hansen multipole moments in this case coincide with those of the
exact solution as given in Eqgs. (8.0.7) and (8.0.8). Differences will appear in
higher moments where all terms containing g% and higher exponents must be
neglected.

It is interesting to mention that in the limiting case a — M, the QM metric
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8 Geometric and physical effects of the gravitational quadrupole

leads to the extreme Kerr black hole solution, regardless of the value of the
quadrupole q. This can be easily seen both at the level of the multipole mo-
ments (8.0.7) and (8.0.8) and by directly computing the limiting metric. The
latter determines in turn the limit of applicability of the QM solution, since
for values in the range a/M > 1 the multipole moments and the metric both
become complex. As stated in the Introduction we will not consider such a
situation here.

8.1.2 Erez-Rosen solution

Similarly, for vanishing rotation parameter we recover the Erez-Rosen solu-
tion. It is a solution of the static Weyl class of solutions (i.e. w = 0) with
functions

x—1 _ .
fer = 5 7¢ MR =1, (8.1.6)
which reduce to
x—1 1 x2—1
= —), = —1 —_ 8.1.7

when g = 0, corresponding to the Schwarzschild solution.
To first nonvanishing order in a/M we find

f = fER{1+2(x2_11)(x+1) [ y)(y = 1) — (x—y)(y + 1)

_2(x2 _ y2)62q(5++5_)] (i)z} + O[(a/M)4] ,

M

e2qP2Q2 p

w = —2M {1 + ﬁ [(X +y)(y -1’ — (x —y)(y + 1)e2q5—] } -
+0[(a/M)’],

— 1 _ 1 12\ ( 490+ 4q6_
o= 7ER+4{1 2(3(?2—1) |:(1 y )(e te )

+2(x% — yz)e2”f<5++5—>] } (%)2 +0[(a/M)4] . (8.1.8)
This approximate solution can be interpreted as a generalization of the Lense-
Thirring spacetime, which is obtained in the limit 4 — 0 by retaining terms
up to the linear order in a/ M. Consequently, the approximate solution (8.1.8)
could be used to investigate the exterior gravitational field of slowly rotating
deformed bodies. A similar approximate solution, accurate to second order
in the rotation parameter and to first order in the quadrupole moment, was
found long ago by Hartle and Thorne.
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8 Geometric and physical effects of the gravitational quadrupole

8.1.3 Hartle-Thorne solution

The Hartle-Thorne metric describing the exterior field of a slowly rotating
slightly deformed object is given by

2M
2 _ _
ds® = (1 R )

(5

+R?(d@? + sin? ©d¢?)[1 — 2k3P;(cos ®)] — 4% sin? @dtd¢ , (8.1.9)

82
R4

1+ 2k1Py(cos ®) + 2 <1 — T) (2cos® @ — )] dt?

dR?

82
1 —2kpPy(cos ®) — 2 <1 — T) Ri

where

2 2
ki = B_(HM) SMQZ(__l)

MR3 R 8
652
ky = kl—ﬁ,
P 59-F/M v\ ~ 12 R

Here Q;" are the associated Legendre functions of the second kind and the
constants M, J and Q are the total mass, angular momentum and mass quadrupole
moment of the rotating star respectively.

It is interesting to find out the connection between the Hartle-Thorne solu-
tion and the QM solution in the appropriate limit. To this end it is necessary
to start with the general form of the QM solution as given in Appendix A
containing an additional parameter, the Zipoy-Voorhees constant parameter
6. For our purposes it is convenient to set such a parameter as 6 = 1 + sg,
where s is a real number. For s = 0,i.e. § = 1, we recover the solution (8.0.1)-
(8.0.5). To first order in the quadrupole parameter g4 and to second order in
the rotation parameter a/M the metric functions turn out to be

x—1 1 X%+ x—2y% /a2
fo= x+1[1_ <2P2Q2_Sln +1)}_ (x + 1) (31) -

2

o = M ().
y =~ '?(1+25q)—%)1c2__yi (%)2 (8.1.11)

where 4 is defined in Eq. (8.0.3) and terms of the order of q(a/M) have also
been neglected.
Introduce first Boyer-Lindquist coordinates (t,7, 6, ¢) through the transfor-
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mation

t=t, X = , Yy =cosf, p=¢. (8.1.12)

Then sets = —1 and M = M'(1 + g). The further transformation

t=t, r:r(R,G)), 9:6(R,®), p=0¢ (8.1.13)
with
3 R 1 R2 2M’ 2M’
- / AN 4 ain2 o - e o
ro= R+Mq—|—2Mq5m ®{M’ 1+2M’2<1 R)ln(l R)}

a® 2M’ M ) 2M’ 3M’
SR [(1—1— R ) (1—?)—&5 @(1— R ) (1—|— R )] ,

, 3 R 2M’ a? 2M’
0 = @—sm@cos@{iq[Z-i—(M—l)ln(l— R )}_FZRZ (1+ R )}

(8.1.14)

finally gives the mapping between the general form of QM solution and the
Hartle-Thorne metric (8.1.9) with parameters
/ 32 4 3

M=M=M1-9q), §=-Ma, Q:M—l—qu. (8.1.15)
Note that the previous transformation is obtained simply by combining the
corresponding transformation from Kerr to Hartle-Thorne solution as given
by Hartle and Thorne themselves and that from Erez-Rosen to Hartle-Thorne
solution as found by Mashhoon and Theiss.

8.2 Geometric properties of the solution

The solution admits two Killing vectors associated with translation in time
and rotation about the symmetry axis. The timelike Killing vector d; changes
its causality property when f = 0, defining a hypersurface which in the
Kerr limiting case is called ergosurface as the boundary of the ergosphere
(or equivalently ergoregion). Using this terminology also in this case we com-
pare in Figs.[8.1land [8.2 the ergoregions of Kerr solution and QM solution (for
different values of the quadrupole parameter) respectively. The situation is
completely different. In fact, while in the Kerr case such a hypersurface is the
boundary of a simply-connected domain, in the case of the QM solution this
property is no more true, as soon as the magnitude of the quadrupole param-
eter exceeds a certain critical value (for example, for the choice a/M = 0.5
the range of Kerr-like behaviour corresponds to —1 < g < 1.21).
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8 Geometric and physical effects of the gravitational quadrupole

The spacelike Killing vector dy also changes its causality condition in some
regions, leading to the existence of closed timelike curves in the QM solution.
These regions are depicted in Fig. [8.3| for different values of the quadrupole
parameter.

In order to investigate the structure of singularities in the QM metric we
have to consider the curvature invariants. Since the solution is a vacuum one
there exist just two independent quadratic scalar invariants, the Kretschmann
invariant K; and the Chern-Pontryagin invariant K, defined by

Ki =R%¥"Ruprs, Ko =*R¥"Ryps, (8.2.1)

where the star denotes the dual. The behaviour of curvature invariants as
functions of x for selected values of y, 2/ M and g is shown in Fig. It turns
out that K; diverges when approaching x = 1 along the direction y = 0, but
it is finite there moving along a different path. Furthermore, the invariant
K; vanishes identically for y = 0. Therefore, the metric has a directional
singularity at x = 1.

It is now interesting to investigate what kind of hypersurface is x = 1.
Consider the normal to a x = const hypersurface. The behaviour of its norm
g** when approaching x = 1 discriminates between its character being either
null or timelike depending on the value of the quadrupole parameter. The
limit of g** as x — 1 also depends on y. For instance, approaching x = 1
along any direction on the equatorial plane y = 0 gives

g%~ (x — 1) (8.2.2)

implying that the singular hypersurface x = 1 is null when |g — 1| < /5 and
timelike otherwise. On the other hand, moving along the axis y = 1 gives

(x — 1)+, qg>0
! (x—1), ~1<g<0 (8.2.3)
(x—1)71, g<-—1,

implying that the singular hypersurface x = 1 is always null.

A similar discussion can be done also for the metric determinant. Ap-
proaching x = 1 along any direction on the equatorial plane y = 0 gives

Vg~ (x = 1)/ (8.2.4)

implying that the volume element vanishes approaching the singular hyper-
surface x = 1 when g < 0, g > 2 and diverges otherwise. On the other hand,
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8 Geometric and physical effects of the gravitational quadrupole

moving along the axis y = 1 gives

(x—1)71, qg>0
\/—¢ ~ { const, -1<g<0 (8.2.5)
(x —1)7+1, qg<-1.

We note that if the presence of the quadrupole moment totally changes the
situation with respect to the Kerr spacetime, the smooth horizon of the Kerr
solution becoming a singular hypersurface in the QM solution, the properties
of the naked singularity are also different with respect to the limiting case of
the Erez-Rosen spacetime.

Finally, the spectral index S (see Appendix B for the definition of S in terms
of Weyl scalars) shows that the solution is algebraically general. The real part
of S is plotted in Fig.[8.5 as a function of x for y = 0 and selected values of
a/M and g. The imaginary part is identically zero in this case. A numerical
analysis of the spectral index for different values of the quadrupole moment
shows that S — 1 as x — oo, i.e. it is algebraically special. We conclude that
the asymptotic behavior of the spacetime is dominated by the Kerr spacetime
which is algebraically special of type D. This is in agreement with the ex-
pectation which follows from the analysis of relativistic multipole moments,
according to which any stationary axisymmetric asymptotically flat vacuum
solution of Einstein’s equations must approach the Kerr metric asymptoti-
cally.

Note that drawing a Penrose diagram would help to easier understand the
global aspects of the geometry of the QM solution. However, due to the
rather involved form of the metric functions it is a very hard task to con-
struct it. Analytic calculations can be performed only in the case of small
values of the quadrupole parameter 4. But in this simplest case (7 < 1) it
is possible to show that the resulting conformal diagram is closely similar to
the corresponding one for a Kerr naked singularity.
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8 Geometric and physical effects of the gravitational quadrupole

Figure 8.1: The shape of the ergoregion is shown in the case of vanishing
quadrupole parameter 4 = 0 (Kerr spacetime) for the choice a/M = 0.5 in
prolate spheroidal coordinates.

8.3 Geodesics

The geodesic motion of test particles is governed by the following equations:

. E wf f

t = ?—F ZXZYZ(L (,UE) (P O'ZXZYZ(L_wE)I

1Y Iy 2x y

¥ = 2% {7 xz+yz] { ElChe X2+Y2}xy
fy e 27

» | T 27127 2
+2 {f Z'Yy XZ-I-YZ YZ} 2f0'4X2Y2(X2—|—Y2) {Y [f (L CUE)
+E2?X*Y* f, + 2(L — wE) f*ly(L — wE) — EYzwy]} )
X2 e 27 X? fz
2 = 2 ) )
Ty +m[’5 _P‘f—m(L—wE)}, (8.3.1)

where Killing symmetries and the normalization condition have been used.
Here E and L are the energy and angular momentum of the test particle re-
spectively,  is the particle mass and dot denotes differentiation with respect
to the affine parameter; furthermore, the notation

X=vx2-1, Y=/1-42 (8.3.2)

has been introduced.
Let us consider the motion on the symmetry plane y = 0. If y = 0 and
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Figure 8.2: The shape of the ergoregion is shown for a/M = 0.5 and different
values of the quadrupole parameter: 4 = [—10,—1,1,10], from (a) to (d) re-
spectively. For § = —1 and g = 1 the shape is similar to the Kerr case, i.e. the
regions are simply-connected.
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1 1
067 067
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R -1
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Figure 8.3: The regions where the metric component g4, changes its sign are
shown for a/M = 0.5 and different values of the quadrupole parameter: (a)
g = 10 and (b) g = —10. The existence of closed timelike curves is allowed
there.

y = 0 initially, Eq. (8.3.1)3 ensures that the motion will be confined on the
symmetry plane, since f,, wy and 7, all vanish at y = 0, so that jj = 0 too.
Egs. (8.3.1) thus reduce to

E wf . f B
t ?-i—UZXZ(L—wE), ¢ = —O'ZXZ(L wE),
~27x2 2
2 e 2 2r f _ 2
X = 205 X9 E°—u“f azXz(L wE)*| , (8.3.3)

where metric functions are meant to be evaluated at y = 0. The motion turns
out to be governed by the effective potential V defined by the equation

V- f — U{; (L-wV)*=0. (8.3.4)

In fact, for E = V the rhs of Eq. (8.3.3)3 vanishes.

The behaviour of V as a function of x is shown in Fig. Repulsive effects
occur for decreasing values of x approaching x = 1.

The case of a geodesic particle at rest will be analyzed below. Circular
geodesics will be discussed in detail in the next section, where accelerated
orbits are also studied.
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Figure 8.4: The behaviour of the Kretschmann invariant K; as a function of
x is shown for the choice of parameters a/M = 0.5 and g = 10 for different
values of y: (a) y = 0 and (b) y = 0.5. Figure (c) shows instead the behaviour
of the Chern-Pontryagin invariant K, for the same choice of parameters as in
Fig. (b). Figs. (b) and (c) show how both the invariants K; and K; change
their signs as x approaches unity. This is a manifestation of the appearence
of repulsive gravity regions, typical of naked singularity solutions. When
x — oo the invariants K; and K; both vanish, as expected.
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8 Geometric and physical effects of the gravitational quadrupole

Re(S) ||

Figure 8.5: The behaviour of the real part of the speciality index S as a func-
tion of x is shown for the choice of parameters a/M = 0.5,g = 10and y = 0.
In this case (y = 0) we have also Im(S) = 0.

8.3.1 Particle at rest

For the QM solution which is characterized by the presence of a naked sin-
gularity it is even possible to satisfy the conditions for a geodesic particle to
be at rest for certain values of the quadrupole moment. This effect can be
explained when the attractive behaviour of gravity is balanced by a repulsive
force exerted by the naked singularity. Usually, repulsive effects are inter-
preted as a consequence of the presence of an effective mass which varies
with distance and can thus become negative. The consideration of the corre-
sponding post-Newtonian limit shows that an effective mass can be indeed
introduced, depending on the distance from the source and the value of the
Geroch-Hansen quadrupole moment. We see that in the case of the corre-
sponding exact solution under consideration a similar situation takes place.
A particle at rest is characterized by the four velocity

U= ——-3. (8.3.5)

-

The corresponding four acceleration a(U) = VU is given by

e 27

a(U) = m[xzfxax + Yzfyay] . (836)

On the symmetry plane y = 0 we have f, = 0, so that the geodesic condition
a(U) = 0 implies fr = 0. The pairs (x, q) satisfying this condition are shown
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(a) (b)

(©)

Figure 8.6: The behaviour of the effective potential V as a function of x is
shown for the choice of parameters a/M = 0.5 and L/ (uM) = 10 for differ-
ent values of the quadrupole parameter: (a) g = 0, (b) ¢ = 10and (c) g = —10.
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Figure 8.7: The pairs (x,q) allowing a test particle to be at rest in the QM
spacetime are shown for a/M = 0.5. Fig. (b) is a detail of Fig. (a) close to
x = 1. No equilibrium positions exist for g < 0.

in Fig.[8.7/for a fixed value of 2/ M. As an example, fora/M = 0.5and g = 10
we get x ~ 1.588 as the equilibrium position. In this case the corresponding
energy and angular momentum per unit mass of the particle are given by
E/pu ~ 0553 and L/(uM) ~ 0.257 respectively. No equilibrium positions
exist for g < 0.

8.4 Circular orbits on the symmetry plane
Let us introduce the ZAMO family of fiducial observers, with four velocity

n=N"1(9; — N%9y); (8.4.1)

here N = (—g")71/2 and N? = gi4/gy¢ are the lapse and shift functions
respectively. A suitable orthonormal frame adapted to ZAMOs is given by

1 1 1

e;=™n, €4=——0y, €;j—=——0,, €;=——0¢p, (8.4.2)
f kY Tex x g Sy y ¢ oo ¢
with dual
wh=Ndt, w'= Veudx, @’ = /gydy, w? = V3o (dg + N?dt) .
(8.4.3)

The 4-velocity U of uniformly rotating circular orbits can be parametrized
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8 Geometric and physical effects of the gravitational quadrupole

either by the (constant) angular velocity with respect to infinity { or, equiva-
lently, by the (constant) linear velocity v with respect to ZAMOs

U =T[0:+79p] = vler+veg), 7= (1-v*)""2, (8.4.4)
where I' is a normalization factor which assures that U,U* = —1 given by:
-1/2
D= [N —g(@+N"?2| =21 (8.4.5)
and
{=—N?+ v. (8.4.6)

V8¢

We limit our analysis to the motion on the symmetry plane (y = 0) of the
solution (8.0.1)-(8.0.5). Note both y = 0 and x = xg are constants along
any given circular orbit, and that the azimuthal coordinate along the orbit
depends on the coordinate time ¢ or proper time T along that orbit according
to

¢—¢o=7Ct=0Qutu, Qu=I¢, (8.4.7)

defining the corresponding coordinate and proper time orbital angular ve-
locities ¢ and ;7. These determine the rotation of the spherical frame with
respect to a nonrotating frame at infinity.

The spacetime Frenet-Serret frame along a single timelike test particle world-
line with 4-velocity U = Ejp and parametrized by the proper time Ty; is de-
scribed by the following system of evolution equations

DE, DE,

dTu KLq , dTU KL + Lo,

DE, DE,

—— = -—7qE E;, — = —1pE,. 8.4.8
ey TE1 + »E3 ey nE; ( )

The absolute value of the curvature « is the magnitude of the acceleration
a(U) = DU/dty = xE;, while the first and second torsions 7; and 1 are the
components of the Frenet-Serret angular velocity vector

wrs) = TEs+1E1,  |lwesll = 17 +13]", (8.4.9)

with which the spatial Frenet-Serret frame {E,} rotates with respect to a
Fermi-Walker transported frame along U. It is well known that any circu-
lar orbit on the symmetry plane of a reflection symmetric spacetime has zero
second torsion T, while the geodesic curvature x and the first torsion 7; are

simply related by

1 dx
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8 Geometric and physical effects of the gravitational quadrupole

On the symmetry plane there exists a large variety of special circular orbits;
particular interest is devoted to the co-rotating (+) and counter-rotating (—)
timelike circular geodesics whose linear velocities is

fCE [fPw? —o?(x2-1)] VD
Va2 = 1o{ fx[f?w? + 02(x2 — 1)] + 2f (fPwwyx — 02x) } ’

V(geo) 4+ =V =

(8.4.11)
where
C = —20%(x* = Dwfy — f{ws[fPw? 4+ d?(x* —1)] — 20%xw} ,
D = f'2 -2 f[fu(x® —1) —2xf] . (8.4.12)

All quantities in the previous expressions are meant to be evaluated at y = 0.
The corresponding timelike conditions |v4+| < 1 together with the reality con-
dition D > 0 identify the allowed regions for the “radial” coordinate where
co/counter-rotating geodesics exist.

Other special orbits correspond to the “geodesic meeting point observers”
with
. V4 +v_

amp) = — 5 - (8.4.13)

Y
A Frenet-Serret (FS) intrinsic frame along U is given by

Eo=U=7v[n+ve], Ei=ex, Ex=ey, Ex=Ez=1[vn+eg.
(8.4.14)

It is also convenient to introduce the Lie relative curvature of each orbit

kiiey = —921n\/gpp
_ e TVx2—1 {02[(x2 — 1) fy — 2xf] + fPw(2fwy + wfy) }
20x\/f 22— 1) — f2u? .

(8.4.15)
It then results
ko= kY (v—vi)(v—v-),
a = k(lie)v(gmp)'yz (V - 1/(Crit)—}-)(v - 1/(crit)—) ’ (8.4.16)
where
Y-V-F Y4V
Vierit)£ = Y_T ,),i - V(erit)+V(erit)— = 1, (8.4.17)
identify the so called “extremely accelerated observers”: Viey) = V(crit)—,

which satisfies the timelike condition in the regions where timelike geodesics
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exist, while vy, is always spacelike there.

The geodesic velocities are plotted in Fig. 8.8 both as functions of
the quadrupole parameter q for fixed “radial” distance (see Fig. (a)) and as
tunctions of x for different values of g (see Fig. (b)). In the first case (Fig. (a))
we have shown how the quadrupole moment affects the causality condition:
there exist a finite range of values of 4 wherein timelike circular geodesics are
allowed: q1 < g < g3 for co-rotating and > < q < g3 for counter-rotating cir-
cular geodesics. The critical values g1, 4 and g3 of the quadrupole parameter
can be (numerically) determined from Eq. (8.4.11). The difference from the
Kerr case is clear instead from Fig. (b): the behaviour of the velocities differs
significantly at small distances from the source, whereas it is quite similar for
large distances.

A similar discussion concerning the linear velocity v(gn,,) of “geodesic meet-
ing point observers” as well as v(q,) of “extremely accelerated observers” is
done in Figs.[8.9and respectively.

The behaviours of both the acceleration x and the first torsion 7 as func-
tions of v are shown in Figs.[8.1Tland[8.12 for different values of the quadrupole
parameter and fixed x as well as for different values of the “radial” distance
and fixed 4. A number of interesting effects do occur. For instance, from
Fig. (a) and (b) one recognizes certain counter-intuitive behaviours of the
acceleration, in comparison with our Newtonian experience. These effects
have their roots also in the Kerr solution and are well known and studied
since the 90’s. For instance, for negative values of q (§ = —500, —250) we see
that by increasing the speed v (for positive values over that corresponding to
the local minimum) the acceleration also increases; hence, in order to main-
tain the orbit, the particle (a rocket, say) should accelerate outwards. This is
counter-intuitive in the sense that for a circular orbit at a fixed radius increas-
ing the speed corresponds to an increase of the centrifugal acceleration and
therefore to maintain the orbit “classically” one would expect to supply an
acceleration inward. All such effects have been analyzed in the past decades
in the Kerr spacetime in function of the radius of the orbit, i.e. the distance
from the black hole. The novelty here is represented by Fig. (a) where
the various curves do not correspond to different orbital radii (i.e. different
values of the coordinate x, as it is for the cases (b) and (c)), but to different val-
ues of the quadrupole parameter g at a fixed radial distance. Therefore, the
conclusion is that a spacecraft orbiting around an extended body —according
to general relativity and the QM solution— should expect counter-intuitive
engine acceleration to remain on a given orbit. Outward or inward extra ac-
celeration for an increase of the speed critically depend on the quadrupole
moment (i.e. the physical structure) of the source, a fact that should be taken
into account.

Fig. shows instead that at a fixed radius one can always find a value
of the quadrupole parameter and a value of the speed at which the first tor-
sion vanishes. Being the second torsion identically vanishing, in these con-
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(geo)

B

(a) (b)

+

Figure 8.8: The geodesic linear velocities V(geo) AT€ plotted in Fig. (a) as func-

tions of the quadrupole parameter g for fixed distance parameter x = 4
from the source and a/M = 0.5. Co-rotating and counter-rotating circu-
lar geodesics exist for g1 < g < g3 and g2 < q < g3 respectively, with
g1 ~ —105.59, g» = —36.29 and g3 ~ 87.68 for this choice of parameters. The

behaviour of véeo) as functions of x is shown in Fig. (b) for different values

of g = [—80,—30,—10,0, 2,4, 10, 50]. The thick curves correspond to the Kerr
case (g = 0). Curves corresponding to great positive value of the quadrupole
parameter in the allowed range exhibit both a local maximum (V(+geo)) and a

local mimimum (1/(_g e0)). For decreasing values of g the local minimum first

disappears; for g further decreasing also the local maximum disappears (the
curves are thus ordered from left to right for increasing values of q). Curves
corresponding to negative values of 4 never present extrema as in the case of
Kerr spacetime (g = 0), the lightlike condition being reached at greater values
of the “radial” distance for decreasing values of 4.
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Figure 8.9: The linear velocity v(gmp) corresponding to the “geodesic meeting
point observers” is plotted in Fig. (a) as a function of the quadrupole param-
eter g for fixed distance parameter x = 4 from the source and a/M = 0.5.
The behaviour of V(gmp) aS @ function of x is shown in Fig. (b) for different
values of g = [-50,—-10,0,2,5,10,30,80]. It exists only in those ranges of x

where both vi! and v;__ exist (solid black lines). These ranges are listed
(geo) (geo)

below: ¢ = =50, x 2 4.23; g = —10,x 2 336; 4 = 0, x 2 292, 9 = 2,
1.0012 < x <1.13and x >2.79;9 = 5,1.21 < x < 1.64 and x > 2.48; g = 10,
x 2 154,q=230,x2244;,9 =80, x 2 3.83.
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Figure 8.10: The linear velocity v(,) corresponding to the “extremely accel-
erated observers” is plotted in Fig. (a) as a function of the quadrupole param-
eter g for fixed distance parameter x = 4 from the source and a/M = 0.5. The
behaviour of v (e as a function of x is shown in Fig. (b) for different values
of g = [-50,—-10,0,5,10,30,80]. The dashed curve corresponds to the case
q = 0. It exists only in those ranges of x where both V(;eo) and V (geo) exist (see

Fig.8.9).
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ditions the Frenet-Serret frame becomes also a Fermi-Walker frame: in fact
the Frenet-Serret angular velocity represent the rate of rotation of the Frenet-
Serret frame with respect to a Fermi-Walker one. The precession of a test
gyroscope (Fermi-Walker dragged along a circular orbit) has been related to
the first torsion of an observer-adapted Frenet-Serret frame. The same dis-
cussion repeated here together with a simple inspection of Fig. allows us
to include the effects of the presence of the quadrupole parameter 4.

8.5 General form of QM solution with arbitrary
Zipoy-Voorhees parameter

The general form of QM solution with arbitrary Zipoy-Voorhees parameter &
is given by Eq. (8.0.1) with functions

R
— p7290PQ
f Le 4
w = —2a-— ZU—R ¢210PaQ2

1 M\?> R 2s
21 = (14 =) ———e¥7 8.5.1
e 4( +0~) el (8.5.1)

where 4 is the same as in Eq. (8.0.3), while

R = aja_+0bib_, L:a2++b2,
M = (x+1)°x(1 =) A+ pas +y(® = 1)(1 - Ap)by] .

(8.5.2)
The functions a4 and b+ are now given by
1 = (1)l —Ap) £ (14 Ap)],
by = (x£1)° x(A+p) FA-p), (8.5.3)
with
A = a(xz _ 1)1—(5(x _|_y)2(5—262q(5(5+ ,
o= a(x®—1)10(x — )20 22000 (8.5.4)

The functions J+ and the constants « and ¢ are instead the same as in Egs.

(8.0.4) and (8.0.5) respectively.
This solution reduces to the solution (8.0.1)—(8.0.5) for § = 1.
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8 —0.6 —0.4 —0.2 O
-0.21

Figure 8.11: The acceleration « for circular orbits at y = 0 is plotted in Fig. (a)
as a function of v for a/M = 0.5, x = 4 and different values of the quadrupole
parameter: g = [—500, —250, —100, 0, 80,250,500]. The curves are ordered
from top to bottom for increasing values of q. The values of v associated

with ¥ = 0 correspond to geodesics, i.e. Va:geo)' The behaviour of x as a

function of v for different x is shown in Figs. (b) and (c) for fixed values of
the quadrupole parameter: (b) g = 1, x = [1.1,1.25,1.5,2.5,4] and (c) g = 100,
x = [2.5,3,4,10].
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Figure 8.12: The first torsion 7 for circular orbits at y = 0 is plotted as a func-
tion of v for a/M = 0.5, x = 4 and different values of the quadrupole param-
eter: (a) g = [0,100,250,500,750], (b) g = [—1000, —750, —500, —250, —150]
and (c) g = [—150,—80,0]. The curves are ordered from left to right for
increasing/decreasing values of g in Fig. (a)/Fig. (b) respectively. Figure
(c) shows the changes of behavior occurring in the different regions q < g1,

g1 < q < g and g > g, (see Fig. [8.9).
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8.6 Newman-Penrose quantities

Let us adopt here the metric signature (4, —, —, —) in order to use the Newman-
Penrose formalism in its original form and then easily get the necessary phys-
ical quantities. The Weyl-Lewis-Papapetrou metric is thus given by

ds? = f(dt —wdg)?

_072 {ez"f () <x;-:bi21 * 1%2) =D -yt }
| (8.6.1)

Introduce the following tetrad

Flar— (w+ 2
I = > dt w + 7 de| ,
_ S (w2
n = \/; dt — (w 7 do| ,
A N [%Hﬂ} (8.6.2)
Va7 x Ty ©
where
X=vVx2-1, Y=,/1—-y2. (8.6.3)
The nonvanishing spin coefficients are
Kk = —A —XTY(Xfx+iny)+§(wa-|—iwa)+xY—in] ,
T = =AY —iyX),
v = —A );Y(Xfx iny)+§(wa—iwa)—xY—in},
 axvet [ x vy L (g
N o= .AXYO'|: f(Xfx iYfy) + Xy —iYyy 2(7<Y lX)
X+iyY
4 X 2+zy2 ’
Xe+Y
_ iy, = (0
B = AXYc* {f(Xfx—l—szy) Xyx — Yy ZO'(Y —|—1X>
iyY
X2+Y2} ’ (8.6.4)
where
f f (8.6.5)

ocXYV X24+Y2"

1824



8 Geometric and physical effects of the gravitational quadrupole

The nonvanishing Weyl scalars are

2
P = AXY [T(Xfx +iY fy) +2f (Xry +iYx,) — aj}f(Y (K + 7)(Xwy + iwa)}

+2kp+ (K —T),

1 A2X2Y2 2 . f?

+3i§(fxw — fywy) — Xz(fxx = 2fYxx) = Y*(fyy — 2f vyy)
2
+h (i— ¥ x—5>

Py = AXY [—N(Xfx —iYfy) = 2f (Xvy —iYvy) — fTZY(v + 71) (Xwy — iwa)}

Fva 4+ (v — 1) . (8.6.6)

4

Finally the two scalar invariants of the Weyl tensor whose ratio defines
the speciality index have the following expressions in terms of the Newman-
Penrose curvature quantities
]2

I=tops+393, ] =topaps—¢3, S=27% (8.6.7)

S has the value 1 for algebraically special spacetimes.

8.7 Remarks

We investigated some properties of the QM spacetime which is a general-
ization of Kerr spacetime, including an arbitrary mass quadrupole moment.
Our results show that a deviation from spherical symmetry, corresponding
to a non-zero gravitoelectric quadrupole moment, completely changes the
structure of spacetime. A similar behaviour has been found in the case of
the Erez-Rosen spacetime. A naked singularity appears that affects the er-
gosphere and introduces regions where closed timelike curves are allowed.
Whereas in the Kerr spacetime the ergosphere corresponds to the boundary
of a simply-connected region of spacetime, in the present case the ergosphere
is distorted by the presence of the quadrupole and can even become trans-
formed into multiply-connected regions. All these changes occur near the
naked singularity.

The presence of a naked singularity leads to interesting consequences in
the motion of test particles. For instance, repulsive effects can take place in
a region very close to the naked singularity. In that region stable circular
orbits can exist. The limiting case of static particle is also allowed, due to the
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8 Geometric and physical effects of the gravitational quadrupole

balance of the gravitational attraction and the repulsive force exerted by the
naked singularity.

We have studied the family of circular orbits on the symmetry plane of the
QM solution, analyzing all their relevant intrinsic properties, namely Frenet-
Serret curvature and torsions. We have also selected certain special circu-
lar orbits, like the “geodesic meeting points” orbits (i.e. orbits which con-
tain the meeting points of two oppositely rotating circular geodesics) and the
“extremely accelerated” orbits (i.e. orbits with respect to which the relative
velocities of two oppositely rotating circular geodesics are opposite), whose
kinematical characterization was given in the 90’s with special attention to
Kerr spacetime. Here we have enriched their properties specifying the de-
pendence on the quadrupole parameter.

The question about the stability of the QM solution is important for astro-
physical purposes. In this context, we have obtained some preliminary re-
sults by using the variational formulation of the perturbation problem as de-
veloped explicitly by Chandrasekhar for stationary axisymmetric solutions.
A numerical analysis performed for fixed values of the parameters entering
the QM metric shows that it is unstable against perturbations that preserve
axial symmetry. One can indeed expect that, once an instability sets in, the
final state of gravitational collapse will be described by the Kerr spacetime,
the multipole moments of the initial configuration decaying during the black
hole formation. Nevertheless, a more detailed analysis is needed in order to
completely establish the stability properties of this solution.

Finally, we mention the fact that it is possible to generalize the metric in-
vestigated in this work to include the case of a non spherically symmetric
mass distribution endowed with an electromagnetic field. The resulting ex-
act solution of Einstein-Maxwell equations turns out to be asymptotically flat,
contains the Kerr-Newman black hole spacetime as a special case, and is char-
acterized by two infinite sets of gravitational and electromagnetic multipole
moments. For a particular choice of the parameters, the solution is character-
ized by the presence of a naked singularity. It would be interesting to explore
repulsive effects generated by the electromagnetic field of the naked singu-
larity also in this case.
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9 Exact and approximate solutions
for astrophysical compact objects

In astrophysics, the term compact object is used to refer to objects which are
small for their mass. In a wider sense, the class of compact objects is often de-
fined to contain collectively planet-like objects, white dwarfs, neutron stars,
other exotic dense stars, and black holes. It is well known that Newtonian
theory of gravitation provides an adequate description of the gravitational
tield of conventional astrophysical objects. However, the discovery of exotic
compact objects such as quasars and pulsars together with the possibility of
continued gravitational collapse to a black hole points to the importance of
relativistic gravitation in astrophysics. Moreover, advances in space explo-
ration and the development of modern measuring techniques have made it
necessary to take relativistic effects into account even in the Solar system. It is
therefore of importance and interest to describe the relativistic gravitational
tields of astrophysical compact objects in terms of their multipole moments,
in close analogy with the Newtonian theory, taking into account their rotation
and their internal structure.

In this context, the first exterior solution with only a monopole moment
was discovered by Schwarzschild (17), soon after the formulation of Ein-
stein’s theory of gravity. In 1917, Weyl (4) showed that the problem of finding
static axisymmetric vacuum solutions can generically be reduced to a single
linear differential equation whose general solution can be represented as an
infinite series. The explicit form of this solution resembles the correspond-
ing solution in Newtonian’s gravity, indicating the possibility of describing
the gravitational field by means of multipole moments. In 1918, Lense and
Thirring (18) discovered an approximate exterior solution which, apart from
the mass monopole, contains an additional parameter that can be interpreted
as representing the angular momentum of the massive body. From this so-
lution it became clear that, in Einstein’s relativistic theory, rotation gener-
ates a gravitational field that leads to the dragging of inertial frames (Lense-
Thirring effect). This is the so—called gravitomagnetic field which is of es-
pecial importance in the case of rapidly rotating compact objects. The case
of a static axisymmetric solution with monopole and quadrupole moment
was analyzed in 1959 by Erez and Rosen (9) by using spheroidal coordi-
nates which are specially adapted to describe the gravitational field of non-
spherically symmetric bodies. The exact exterior solution which considers
arbitrary values for the angular momentum was found by Kerr only in 1963.
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9 Exact and approximate solutions for astrophysical compact objects

The problem of finding exact solutions changed dramatically after Ernst (2)
discovered in 1968 a new representation of the field equations for station-
ary axisymmetric vacuum solutions. In fact, this new representation was the
starting point to investigate the Lie symmetries of the field equations. To-
day, it is known that for this special case the field equations are completely
integrable and solutions can be obtained by using the modern solution gen-
erating techniques (12). In this work, we will analyze a particular class of so-
lutions, derived by Quevedo and Mashhoon (20) in 1991, which in the most
general case contains infinite sets of gravitational and electromagnetic multi-
pole moments. Hereafter this solution will be denoted as the QM solution.

As for the interior gravitational field of compact objects, the situation is
more complicated. There exists in the literature a reasonable number of in-
terior spherically symmetric solutions which can be matched with the exte-
rior Schwarzschild metric. Nevertheless, a major problem of classical general
relativity consists in finding a physically reasonable interior solution for the
exterior Kerr metric. Although it is possible to match numerically the Kerr
solution with the interior field of an infinitely tiny rotating disk of dust, such
a hypothetical system does not seem to be of relevance to describe astrophys-
ical compact objects. It is now widely believed that the Kerr solution is not
appropriate to describe the exterior field of rapidly rotating compact objects.
Indeed, the Kerr metric takes into account the total mass and the angular
momentum of the body. However, the moment of inertia is an additional
characteristic of any realistic body which should be considered in order to
correctly describe the gravitational field. As a consequence, the multipole
moments of the field created by a rapidly rotating compact object are differ-
ent from the multipole moments of the Kerr metric. For this reason a solution
with arbitrary sets of multipole moments, such as the QM solution, can be
used to describe the exterior field of arbitrarily rotating mass distributions.

In the case of slowly rotating compact objects it is possible to find approx-
imate interior solutions with physically meaningful energy-momentum ten-
sors and state equations. Because of its physical importance, in this work we
will study the Hartle-Thorne (22;23) interior solution which can be coupled
to an approximate exterior metric. Hereafter this solution will be denoted
as the HT solution. One of the most important characteristics of this family
of solutions is that the corresponding equation of state has been constructed
using realistic models for the internal structure of relativistic stars. Semi-
analytical and numerical generalizations of the HT metrics with more sophis-
ticated equations of state have been proposed by different authors. A com-
prehensive review of these solutions is given in (21). In all these cases, how-
ever, it is assumed that the multipole moments (quadrupole and octupole)
are relatively small and that the rotation is slow.

To study the physical properties of solutions of Einstein’s equations, Fock
(24) proposed an alternative method in which the parameters entering the
exterior metric are derived by using physical models for the internal struc-
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ture of the body. In this manner, the significance of the exterior parameters
become more plausible and the possibility appear of determining certain as-
pects of the interior structure of the object by using observations performed
in the exterior region of the body. Fock’s metric in its first-order approxima-
tion was recently generalized in 1985 by Abdildin (25) to include the case of
a rotating object.

9.1 The Hartle-Thorne metrics

If a compact object is rotating slowly, the calculation of its equilibrium prop-
erties reduces drastically because it can be considered as a linear perturbation
of an already-known non-rotating configuration. This is the main idea of Har-
tle’s formalism (22). To simplify the computation the following conditions are
assumed to be satisfied.

1) There exist an one-parameter equation of state. The matter in equilibrium
configuration is assumed to satisfy a one-parameter equation of state, P =
P(€), where P is the pressure and € is the density of total mass-energy.

2) Axial and reflection symmetry. The configuration is symmetric with re-
spect to an arbitrary axis which can be taken as the rotation axis. Further-
more, the rotating object should be invariant with respect to reflections about
a plane perpendicular to the axis of rotation

3) Uniform rotation. Only uniformly rotating configurations were consid-
ered. It was shown previously that configurations which minimize the total
mass-energy (e.g., all stable configurations) must rotate uniformly (26).

4) Slow rotation. It means that angular velocities () are small enough so that
the fractional changes in pressure, energy density and gravitational field due
to the rotation are all less than unity, i.e.

c\2GM
< () T 11
<\») 2z ©.1.1)
where M is the mass and R is the radius of the non-rotating configuration.
The above condition is equivalent to the physical requirement () < ¢/R.
Under the above assumptions, the line element for the interior solution is
given by

20 2R d®o(R)
2 _ 2 742 0 2
ds® = <1 + c_2> codt — [1 t 2R +(D2(R)P2(COS®)} dR

—R? {1+ %Z(R)Pp_(cos @)} (d®? +sin® @dp?), (9.1.2)

where
P = Oy(R) + P2(R)P2(cos ©), (9.1.3)
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9 Exact and approximate solutions for astrophysical compact objects

is the interior Newtonian potential, ® is the interior Newtonian potential for
the non-rotating configuration, ®; is the perturbation due to the rotation, and
P5(cos ©) is the Legendre polynomial of first kind (22). The interior solution
(©.1.2) satisfies Einstein field equations

1 81G
1% v 1%
Ry — E(SHR = i Ty (9.14)

where the stress-energy tensor is that of a perfect fluid
T, = (€ +P)u"uy + Poy,. (9.1.5)

The 4-velocity which satisfies the normalization condition u* Uy = 1is

/2
MR = u® = 0, u‘P = Qut, ut = (gtt +20gt(j) + Q2g¢¢) , (916)

where the angular velocity () is a constant throughout the fluid.

The HT metric describing the exterior field of a slowly rotating slightly
deformed object is given by

2GM 2GM\ ! G2J2
2 2 2 142
ds™ = <1— 2R ) 1+ 2k1Py(cos ©) +2 (1— 2R ) R (2cos“® — 1) | codt™—
2GM\ ! 2GM\ ! G2J2
—(1- 1 — 2k, P —2(1- dR?
< 2R ) [ 2P2(cos ©) ( 2R ) CORA
—R?[1 — 2k3P,(cos ©)](d®? 4 sin® Od¢?) + 4% sin? @dtd¢
9.1.7)
where
GJ? GM 5¢2 ¢2Q — J?/M _, [ ¢*R
kh = —— (1 —1
! A MR3 ( c2R) tse T e & (GM ) ’
6G2]2
@ = g

G2 5 Q- J*/M 2GM\ V% | /2R
ks = kl+W‘EW<l_ CZR) Qz(w‘l)-

Here Q7" are the associated Legendre functions of the second kind, and the
constants M, | and Q are related to the total mass, angular momentum and
mass quadrupole moment of the rotating star, respectively. The HT metric
represents an approximate vacuum solution, accurate to second order in the
angular momentum | and to first order in the quadrupole parameter Q. In
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the case of ordinary stars, such as the Sun, the metric (9.1.8) can be further
simplified due to the smallness of the parameters:

GZMSLH’Z ~ 10—6, f]szun ~ 10—12[ GZqui’l ~ 10—12. (9‘1.8)
c*Rsun R C“Reun

There are two ways to incorporate this limit into the metric (9.1.8): either R —
oo or ¢ — oo. For the first case, it is necessary that R be a well-defined radial
coordinate, whereas the second one can be carried out in an invariant manner
only by using the frame theory developed sometime ago by Ehlers (29). The
result of the limit R — oo has been presented in (23) and the corresponding
metric describes the gravitational field of the Sun with an accuracy of one
part in 10'2. In order to compare in a invariant manner, the HT metric with
other metrics we present here the result of applying Ehlers’ formalism:

2GM  2GQ 2G*MQ 4GJ .
2 _ 2 7.2 2
ds™ = [1 ~2r T 2re ———=DP,(cos©) + 7P2(cos @)} codt” + g Sin Odtd¢
2GM  2GQ 2 2GQ 2 2 .2 2
|:1 + —— R — WPZ(COS @):| dR — |:1 — WPZ (COS @):| R (d@ =+ sin @d(P ) .

(9.1.9)

The accuracy of this metric is of one part in 10'8. Consequently, it describes
the gravitational field for a wide range of compact objects, and only in the
case of very dense (GM ~ c2R) or very rapidly rapidly rotating (G] ~ ¢>®R?)
objects large discrepancies will appear.

9.2 Extended first-order approximation metric

Fock’s first-order approximation metric was recently derived and investi-
gated by Abdildin (30). Initially this metric was written in its original form
in harmonic coordinate system (31;/32) as follows

ds?® =

2 /(3.2 I1— /_p/
. _2u+£_2c_§/p (o +11-U) — Py (x| ar

7

2U 8
— [1 + —2:| (d.X12 + dez + d.X32> + - (Uldxl + Updxy, + U3dX3) dt,
c c
(9.2.1)
where U is the Newtonian gravitational potential, p is the mass density of
the body, v is the speed of the particles inside the body (liquid), II is the

elastic energy per unit mass, Py is the stress tensor, U is the gravitational
vector potential. Newton’s potential satisfies the equation AU = 471Gp. The
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solution of this equation which satisfies the asymptotically flatness condition
at infinity can be written in the form of a volume integral:

/
U=—-G / C__ax'dy'dz . (9.2.2)

F-7

Furthermore, the vector potential must satisfy the equation AU; = 47 Gpv;
whose general asymptotically flat solution can be represented as

\/
U= -G / (‘”’1)7 dx'dy'dz. 9.2.3)

7=l

In order to completely determine the metric, it is necessary to calculate the
above integrals. Clearly, the result will depend on the internal structure of
the body which is determined by the density p’ and velocity v/ distributions.
Once these functions are given, the calculation of the integrals can be per-
formed in accordance with the detailed formalism developed by Fock (24)
and then extended and continued by Abdildin (25) and Brumberg (33). Intro-
ducing spherical coordinates, the resulting metric can be written as

GS2
ds? = | — 2GM 0 (1 — 3cos? 9)] dt* — (1 + 2GM) dar?

—x
r c2Mr3 c2r

2 (d6? + sin 0dg? ) + % sin® 0dgdt, (9.2.4)
where S is the angular momentum of the body, M is the total (effective)
mass. Here we added the constant x and verified that in fact the above met-
ric is an approximate solution for any arbitrary real value of x. This simple
observation allows us to interpret Fock’s procedure as a method to find out
how the internal structure of the object influences the values of the external
parameters. For instance, the total mass in the above metric is M but it can
decomposed as

¢

M=m+ 3, (9.2.5)

where m is the rest mass of the body, and ¢ is an arbitrary real constant which,
as the constant x, depends on the internal properties of the body. In particular,
the cases of a liquid and a solid sphere have been analyzed in detail with the
result

F - %T + %5, for a liquid sphere, = %, for a liquid sphere,
4T+ %8, for a solid sphere, N %, for a solid sphere.
(9.2.6)

where T is the rotational kinetic energy of the body and ¢ is the energy of
mutual gravitational attraction of the particles inside the body. In the case
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of a static configuration (Sp = 0), the extended metric (9.2.4) reduces to the
approximate Schwarzschild metric, where M is the total mass expressed in
terms of the internal parameters of the body as given in Eqs.(9.2.5) and (9.2.6).
Notice that in this case the field does not depend on the constant .

In the general case (Sp # 0), the angular momentum of the source gener-
ates a gravitational field which, to second order of accuracy in Sy, depends
on the constant x. This opens the possibility of determining the value of k by
measuring the effects of the gravitomagnetic exterior field on test particles.
For planet-like compact objects this effect is quite small. Nevertheless, in the
case of test particles in the field of more dense sources it should be possible
to perform measurements and determine the value of the parameter «.

9.3 Relation to the Kerr solution

The Kerr metric (19) in Boyer-Lindquist coordinates (35;33) can be written as

2u 2+ 4% cos? ¥
2 9 232 9 2 2, 2.2 2
ds (1 2t 2o ) codt o~ 210 aZdQ (Q + a“cos 19) dd

21042 sin? 9 4110a sin? 9

2 2 Hoa~s .2 2 Hoas

- <Q +a° + @+ o2 9 cos219> sin” 0d¢” — &+ Pcos2d COSZﬁCdtd(P
(9.3.1)

where
M S

H="2 %= " Me
Expanding this metric to the order ch' one obtains
2 2
ds? = {Cz — 2GQM + 2G(])\;Ia cos? 19} dar* — (1 + ZQGT];/I - %sin2 19) do*—
a? a?
—0? (1 + 2 cos? 19) d9? — o? (1 + ?) sin? 9d¢p? —

(9.3.2)

4GMa sin? 9dodt .

(9.3.3)

Furthermore, if we introduce new coordinates ¢ = o(r,6), @ = 9(r,0) by
means of the equations

a%sin% 0 a2 sin 6 cos @
Q:i’— ’ 0=0-— > ’
2r 2r

(9.3.4)
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then the Kerr metric (9.3.3) can be reduced to the following form

GM  GS? 2GM
2 2 . 0 _ 2 2 2
ds® = |c 2 . M3 (1 3 cos 9)] dt <1 + 2, )dr

- (d92 + sin? 9d¢2) + 423250 sin20dgdt,  (9.3.5)
which coincides with the metric (9.2.4) with x = 1. Consequently, the ex-
tended Fock metric can be interpreted as describing the exterior field
of a rotating body to second order in the angular velocity. The advantage
of using Fock’s method to derive this approximate solution is that it allows
to determine the arbitrary constant x. In fact, whereas x = x; = 4/7 for a
liquid sphere and ¥ = ks = 15/28 for a solid sphere, the value for the Kerr
metric ¥ = kx = 1 does not seem to correspond to a concrete internal model.
On the other hand, all the attempts to find a physically meaningful interior
Kerr solution have been unsuccessful. Perhaps the relationship with Fock’s
formalism we have established here could shed some light into the structure
of the interior counterpart of the Kerr metric.

Furthermore, the coordinate transformation (23)

a2 2GM GM ’ 2GM 3GM
r=R=3R K”ﬁ) <1‘7) - cos @<1‘ 2R ) (”ﬁ)] /
(9.3.6)

2
=0 — 2% (1 + %) cosOsin @ 9.3.7)
transforms the approximate Kerr solution into the HT solution (9.1.7) with
] = —ua and a particular quadrupole parameter Q = [/ .

In this way, we have shown that the extended Fock metric coincides for
x = 1 with the approximate Kerr solution which, in turn, is equivalent to
the exterior HT solution with a particular value of the quadrupole parameter.
The fact that in the Kerr solution the quadrupole moment is completely spec-
ified by the angular momentum is an indication that it can be applied only
to describe the gravitational field of a particular class of compact objects. A
physically meaningful generalization of the Kerr solution should include a
set or arbitrary multipole moments which are not completely determined by
the angular momentum. In the next section we present a particular exact
solution characterized by an arbitrary quadrupole moment.

9.4 The exact Quevedo-Mashhoon metric

In this section we study the general metric describing the gravitational field
of a rotating deformed mass found by Quevedo and Mashhoon (8;20), which
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is a stationary axisymmetric solution of the vacuum Einstein’s equations be-
longing to the class of Weyl-Lewis-Papapetrou (4;5; 6). For the sake of sim-
plicity we consider here a particular solution involving only four parameters:
the mass parameter M, the angular momentum parameter 4, the quadrupole
parameter ¢, and the additional Zipoy-Voorhees (36;37) constant 6. For brevity,
in this section we use geometric units with G = ¢ = 1. The corresponding
line element in spheroidal coordinates (t,7,6,¢) withr > o+ My, 0 <6 < 7
is given by

dSZ — f(dt _wd(P)Z . 072{627 <d92 + Y d1’2 ) ((MO _1")2 _COSZQ)

Z—2Mor + 12 — 02 02

+ ((1\/1007;1’)2 — 1) sin’ 9d4)2},
(9.4.1)

where f, w and 7 are functions of ¥ and 6 only, and ¢ is a constant. They have
the form [x = (r — My) /o, y = cosb)]

R
f= fe—2‘1‘51’2QZ, (9.4.2)
w=—2a— 2(7%8‘7”2@2, (9.4.3)
1 M\? R 24
V= (14 =) ——— 27 9.4.4
&= (1+%) oo™ 9.44)
where

R=aja_ +bib_, L=a%+13, (9.4.5)

M= (x+1)°! [x(l — A +g)a; +y(x2—1)(1— /\17)b+] . (9.4.6)

2

7= 301+ +20(1 = P)Qu + 421~ Po)[(1+ P)(@F - Q)+

502~ 1)(203 ~ 3xQ1 Q2 +3Q0Q2 — Qb))
(9.4.7)
Furthermore
ar = (x£1)° 7 x(1 = Ay) £ (1+ An)], (9.4.8)
be = (x £ 1)°My(A +17) F (A —1)], (9.4.9)
with
A =a(x® = 1) (x + y) 2022000, (9.4.10)
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n=a(x®—1)°"1(x — y)20 22000, (9.4.11)
1 (xEy)? 3 ’ 3 ’ ’ x—1
(9.4.12)

the quantity « is a constant.

To establish the relationship with the HT solution it is convenient to choose
the Zipoy-Voorhees parameter as 6 = 1 + sq, where s is a real constant. Then,
expanding the metric to first order in the quadrupole parameter g and
to second order in the rotation parameter 2, we obtain

2M  2a’M cos?6 2M 2M
e G +q(1+s)(1—7)1n<1—7)++3q(i—1)

r r3 2M
M ’ r ’ M ., 2M
X [(1 7) <3cos 6 1) —I—{(m 1) (3cos“0—1) —-sin O}In (1 T)] ,
(9.4.13)
2aMr sin® @
— W, (9.4.14)
B lln r(r—2M) N a_z M? cos? sin® 0
T 2 G M2 - M2cos28 T 2 | r(r — 2M)((r — M)2 — M2cos2 )
r(r—2M) 1 /7 2M .
+4g(1+s)In r = M)T= MEcos20 3q {1-1— 5 (M 1) In (1 T)} sin” 6.
(9.4.15)
The further simplification s = —1, and the coordinate transformation (16)
3 R R? 2M 2M
=R “Mgsin?® | — —14+— (1-==)In(1-=2) | —
r +Mq+2Mq5m @{M +2M2< R)n( R)}

_% KH%) (1_%) —cosz®<1—%) (1+%)} (9.4.16)

: 3 R 2M a? 2M
9—®—sm®cos®{§q {24— (ﬁ_l) In (1—T)} +ﬁ (1—1—?)}
(9.4.17)
transforms the approximate QM solution (9.4.13)-(9.4.15) into the HT solu-
tion (9.1.7) with parameters
2 4

M=M1-gq), ]=—-Ma, Q= v gM3q . (9.4.18)

Introducing units with G # 1 and ¢ # 1, in a similar manner, it is also possi-
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ble to show that choosing § = 1 — g, and expanding the approximate metric
(0.413)-(@.414) in powers of 1/c?, the resulting solution can be made to co-
incide with Fox’s extended solution (9.2.4). In other words, the parameter x
turns out to be related with the Zipoy-Voorhees parameter 6.

We presented the main exact and approximate solutions of Einstein’s equa-
tions which can be used to describe the interior and exterior field of astro-
physical compact objects. We found that a particular QM solution, which
in general possesses an infinite set of gravitational and electromagnetic mul-
tipole moments, contains the exact Kerr metric, as well as the approximate
HT and the extended Fock solutions. Moreover, since the HT solution is en-
dowed with its interior counterpart, we conclude that the approximate QM
solution (to the second order in the angular momentum and to the first order
in the quadrupole parameter) can be matched with the interior HT solution,
indicating that it can be used to correctly describe the gravitational field of
astrophysical compact objects.

We found that Fock’s formalism can be used to construct models for the
inner structure of compact objects from which it is possible to determine the
parameters of the exterior approximate solution in terms of the inner parame-
ters. A particular parameter which enters the extended Fock metric turns out
to have very specific values in the case of a liquid sphere and a solid sphere.
In the case of approximate Kerr metric, this parameter does not seem to cor-
respond to any known interior model analyzed in the framework of Fock’s
formalism. This opens the possibility of attacking the problem of finding the
interior counterpart of the exterior Kerr metric by using Fock’s method. We
expect to investigate this possibility in the near future.
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10 Matching with an exact interior
solution

Rather few exact stationary solutions that involve a matter distribution in ro-
tation are to be found in the literature. In particular, the interior solution for
the rotating Kerr solution is still unknown. In fact, the quest for a realistic
exact solution, representing both the interior and exterior gravitational field
generated by a self-gravitating axisymmetric distribution of a perfect fluid
mass in stationary rotation is considered as a major problem in general rel-
ativity. We believe that the inclusion of a quadrupole in the exterior and in
the interior solutions adds a new physical degree of freedom that could be
used to search for realistic interior solutions. We will study in this section
the entire Riemannian manifold corresponding to the simple case of a static
exterior solution with only quadrupole moment.

The simplest generalization of the Schwarzschild spacetime which includes
a quadrupole parameter can be obtained from the Zipoy—Voorhees solution
with § = 1 — ¢q. The corresponding line element in spherical-like coordinates
can be represented as

1—q
ds? = (1 — 27’”) d? (10.0.1)

. (2—q)
2m\ 1 m2sin? 0\ dr? 9 10 5 a4 D

T r

This solution is axially symmetric and reduces to the spherically symmetric
Schwarzschild metric in the limit 4 — 0. It is asymptotically flat for any
finite values of the parameters m and g. Moreover, in the limiting case m —
0 it can be shown that the metric is flat. This means that, independently
of the value of g, there exists a coordinate transformation that transforms
the resulting metric into the Minkowski solution. From a physical point of
view this is an important property because it means that the parameter g is
related to a genuine mass distribution, i.e., there is no quadrupole moment
without mass. To see this explicitly, we calculate the multipole moments of
the solution by using the invariant definition proposed by Geroch (14). The
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lowest mass multipole moments M;,, n = 0,1, ... are given by

3
My=(1—q)m, Mp="q(1—q)2-q), (10.0.2)

whereas higher moments are proportional to mg and can be completely rewrit-
ten in terms of My and M. This means that the arbitrary parameters m and
g determine the mass and quadrupole which are the only independent mul-
tipole moments of the solution. In the limiting case 4 = 0 only the monopole
My = m survives, as in the Schwarzschild spacetime. In the limit m = 0, with
q # 0, all moments vanish identically, implying that no mass distribution is
present and the spacetime must be flat. This is in accordance with the re-
sult mentioned above for the metric (10.0.2). Furthermore, notice that all odd
multipole moments are zero because the solution possesses an additional re-
flection symmetry with respect to the equatorial plane.

We conclude that the above metric describes the exterior gravitational field
of a static deformed mass. The deformation is described by the quadrupole
moment M, which is positive for a prolate mass distribution and negative for
an oblate one. Notice that in order to avoid the appearance of a negative total
mass My the condition g < 1 must be satisfied .

10.0.1 Matching conditions

In this subsection we analyze several approaches which could be used to de-
termine the matching hypersurface 2. Instead of presenting a rigorous anal-
ysis, we will present an intuitive method based on the behavior of the curva-
ture and the motion of test particles.

To investigate the structure of possible curvature singularities, we consider
the Kretschmann scalar K = Ry, A RMAT A straightforward computation
leads to

K- 16m2(1 — )2 (r2 — 2mr + m? sin? 0)27°—49-1
r4(2-29+9?) (1 —2m/r)2@*=q+1)

L(r,0), (10.0.3)

with

L(r,0) =  3(r —2m+qm)?(r* — 2mr + m*sin® §)
—q(2 — q)sin?8[q* — 29 +3(r — m)(r — 2m + qm)] (10.0.4)

In the limiting case g = 0, we obtain the Schwarzschild value K = 48m?2 /r®
with the only singularity situated at the origin of coordinates » — 0. In gen-
eral, one can show that the singularity at the origin, » = 0, is present for any
values of 4. Moreover, an additional singularity appears at the radius r = 2m
which, according to the metric (10.0.2), is also a horizon in the sense that the
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(a) b) ©

Figure 10.1: Structure of naked singularities of a spacetime with quadrupole
parameter q. Plot (a) represents the limiting case of a Schwarzschild space-
time (g = 0) with a singularity at the origin of coordinates surrounded by
the horizon (dashed curve) situated at ¥ = 2m. Once the quadrupole pa-
rameter g is included, the horizon transforms into a naked singularity (solid
curve) and the central singularity becomes naked as well. This case is illus-
trated in plot (b). For values of the quadrupole parameter within the interval
q € (1-+3/2,14++/3/2)\{0}, two additional naked singularities appear
as depicted in plot (c).

norm of the timelike Killing tensor vanishes at that radius. Outside the hyper-
surface r = 2m no additional horizon exists, indicating that the singularities
situated at the origin and at r = 2m are naked. Moreover, for values of the
quadrupole parameter within the interval

g€ (1 —3/2,1+ \/3/2) \{0} (10.0.5)
a singular hypersurface appears at a distance
r+ =m(1 =+ cos0) (10.0.6)

from the origin of coordinates. This type of singularity is always contained
within the naked singularity situated at the radius r = 2m, and is related
to a negative total mass My for 4§ > 1. Nevertheless, in the interval q &
(1 —+/3/2,1]\{0} the singularity is generated by a more realistic source with
positive mass. This configuration of naked singularities is schematically il-
lustrated in Fig. [10.1]

The analysis of singularities is important to determine the matching hy-
persurface 2. Indeed, in the case under consideration it is clear that > cannot
be situated inside the sphere defined by the radius r = 2m. To eliminate all
the singularities it is necessary to match the above solution (10.0.2) with an
interior solution which covers completely the naked hypersurface r = 2m.

Another important aspect related to the presence of naked singularities is
the problem of repulsive gravity. In fact, it now seems to be established that
naked singularities can appear as the result of a realistic gravitational collapse
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Figure 10.2: The effective potential for the motion of timelike particles. Plot
(a) shows the typical behavior of the effective potential of a black hole config-
uration with g = 0. The case of a naked singularity with g = 1/2 is depicted
in plot (b).

(38) and that naked singularities can generate repulsive gravity. Currently,
there is no invariant definition of repulsive gravity in the context of general
relativity, although some attempts have been made by using invariant quan-
tities constructed with the curvature of spacetime (39; 40; 41). Nevertheless,
it is possible to consider an intuitive approach by using the fact that the mo-
tion of test particles in stationary axisymmetric gravitational fields reduces
to the motion in an effective potential. This is a consequence of the fact that
the geodesic equations possess two first integrals associated with stationarity
and axial symmetry. The explicit form of the effective potential depends also
on the type of motion under consideration.

In the case of a massive test particle moving along a geodesic contained in
the equatorial plane (6 = 71/2) of the Zipoy—Voorhees spacetime (10.0.2), one
can show that the effective potential reduces to

2m\ 171 12 2m\ 1
2
Vi = (1 — 7) [1 +3 (1 - 7) ] , (10.0.7)

where L is constant associated to the angular momentum of the test particle
as measured by a static observer at rest at infinity. This expression shows that
the behavior of the effective potential strongly depends on the value of the
quadrupole parameter g. This behavior is illustrated in Fig.

Whereas the effective potential of a black corresponds to the typical poten-
tial of an attractive field, the effective potential of a naked singularity is char-
acterized by the presence of a barrier which acts on test particles as a source
of repulsive gravity. Although this result is very intuitive, the disadvantage
of this analysis is that it is not invariant. In fact, a coordinate transforma-
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Figure 10.3: Behavior of the curvature eigenvalue on the equatorial plane
(0 = 711/2) of the Zipoy-Voorhees metric. Plot (a) corresponds to a black
hole solution with g = 0. Plot (b) illustrates the behavior in case of a naked
singularity with g = —2.

tion can be used to arbitrarily change the position of the barrier of repulsive
gravity. Moreover, the identification of the spatial coordinate r as a radial
coordinate presents certain problems in the case of metrics with quadrupole
moments (42). To avoid this problem we investigate a set of scalars that can
be constructed from the curvature tensor and are linear in the parameters that
enter the metric, namely, the eigenvalues of the Riemann tensor. Let us recall
that the curvature of the Zipoy—Voorhees metric belongs to type I in Petrov’s
classification. On the other hand, type I metrics possess three different curva-
ture eigenvalues whose real parts are scalars (43). The explicit calculation of
the curvature eigenvalues for this metric shows (44) that all of them are real
and, consequently, they behave as scalars under arbitrary diffeomorphisms.
The resulting analytic expressions are rather cumbersome. For this reason we
performed a numerical analysis and found out the main differences between
black holes and naked singularities. The results are illustrated in Fig.

We took a particular eigenvalue which represents the qualitative behavior
of all the eigenvalues. In the case of a black hole, the eigenvalue diverges near
the origin of coordinates, where the curvature singularity is situated, and it
decreases rapidly as r increases, tending to zero at spatial infinity. In the case
of a naked singularity the situation changes drastically. The eigenvalue van-
ishes at spatial infinity and then increases as the value of the radial coordinate
decreases. At a specific radius r = r;,, the eigenvalue reaches a local max-
imum and then rapidly decreases until it vanishes. This oscillatory behavior
becomes more frequent as the origin of coordinates is approached. It seems
plausible to interpret this peculiar behavior as an invariant manifestation of
the presence of repulsive gravity. On the other hand, if one would like to
avoid the effects of repulsive gravity, one would propose r,,;, as the mini-
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mum radius where the matching with an interior solution should be carried
out. If we denote the eigenvalue as A, then r,,;, can be defined invariantly by

means of the equation

oA
= =0. (10.0.8)

=Tmin

Then, the radius r,,;, determines the matching hypersurface . and one could
interpret condition (I0.0.8) as a C>—matching condition. In concrete cases,
one must calculate all possible eigenvalues A; and all possible points satisfy-
ing the matching condition dA;/dr = 0. The radius r,,;,, corresponds then to
the first extremum that can be found when approaching the origin of coordi-
nates from infinity. In the next section we will show that this approach can
be successfully carried out in the case of the Zipoy—Voorhees metric.

10.0.2 An interior solution

In the search for an interior solution that could be matched to the exterior
solution with quadrupole moment given in Eq.(10.0.2), we found that an ap-
propriate form of the line element can be written as

2
ds? = fdi? — f (d; dGZ) P} de?, (10.0.9)
where
210 = (¥2 — 2mr + m? cos? 0?10 (10.0.10)

and f = f(r,0), h = h(r), and u = pu(r,0). This line element preserves axial
symmetry and staticity.

The inner structure of the mass distribution with a quadrupole moment
can be described by a perfect fluid energy—-momentum tensor. In general, in
order to solve Einstein’s equations completely, pressure and energy must be
functions of the coordinates r and 6. However, if we assume that p = const,
the resulting system of differential equations is still compatible. The assump-
tion of constant density drastically reduces the complexity of the problem.
Then, the corresponding field equations reduce to

_ 1 fr _ 1 fo
pr= 2(p+p)f , P = 2(P+p)f , (10.0.11)
L o — 30l 10.0.12
Hir = “on ( Moo + Nypr — 327TP 7 ) (10.0.12)

frr=f772—(£l—;l+y)fr+f9 Hofe %+8n(3p+—p)ezw. (10.0.13)

Moreover, the function < turns out to be determined by a set of two partial
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Figure 10.4: Plot of the inner pressure as a function of the spatial coordinates.

differential equations which can be integrated by quadratures once f and u
are known. The integrability condition of these partial differential equations
turns out to be satisfied identically by virtue of the remaining field equations.

Although we have imposed several physical conditions which simplify the
form of the field equations, we were unable to find analytic solutions. How-
ever, it is possible to perform a numerical integration by imposing appropri-
ate initial conditions. In particular, we demand that the metric functions and
the pressure are finite at the axis. Then, it is possible to plot all the metric

functions and thermodynamic variables. In particular, the pressure behaves
as shown in Fig[10.4

It can be seen that the pressure is finite in the entire interior domain, and
tends to zero at certain hypersurface R(r,0) which depends on the initial
value of the pressure on the axis. Incidentally, it turns out that by increas-
ing the value of the pressure on the axis, the “radius fuction” R(r,#) can be
reduced. Furthermore, if we demand that the hypersurface R(r,6) coincides
with the origin of coordinates, the value of the pressure at that point diverges.
From a physical point of view, this is exactly the behavior that is expected
from a physically meaningful pressure function.

This solution can be used to calculate numerically the corresponding Rie-
mann tensor and its eigenvalues. As a result we obtain that the solution is
free of singularities in the entire region contained within the radius function
R(r,0). In particular, one of the eigenvalues presents on the equatorial plane
the behavior depicted in Fig[I0.5] All the eigenvalues have a finite value at

1845



10 Matching with an exact interior solution

0.000582+

0.000580

0.000578

0.000576

0.000574+

0.000572+

0.000570

0.000568

0.000566

0.000564+

T T T T T T T T
0 2 4 6 8 10 12 14 16

Figure 10.5: Behavior of the curvature eigenvalue on the equatorial plane
(0 = 71t/2) of the interior solution.

the symmetry axis and decrease as the boundary surface is approached.

To apply the C3—matching procedure proposed above we compare the be-
havior of the eigenvalue plotted in Fig[10.3] with the corresponding eigen-
value plotted in Fig[I0.5] using the same scale in both graphics. The result
is illustrated in Fig[10.6l It then becomes clear that the first possible point
where the matching can be performed is exactly at r,,;, which in this particu-
lar case corresponds to r,,;; =~ 5Mp. This fixes the initial value of the pressure
on the axis which is then used to attack the problem of matching the inte-
rior and exterior metric functions. In all the cases we analyzed, we obtained
a reasonable matching, withing the accuracy of the numerical calculations.
We repeated the same procedure for different values of the angular coordi-
nate (0 = 7/4 and 0 = 0), and obtained that the matching can always be
reached by fixing in an appropriate manner the arbitrary constants that enter
the metric functions f and p.

10.1 Concluding remarks

We presented an exact electrovacuum solution of Einstein-Maxwell equations
which contains four different sets of multipole moments. An invariant calcu-
lation shows that they can be interpreted as the gravitoelectric, gravitomag-
netic, electric and magnetic multipole moments. The solution is asymptoti-
cally flat and is free of singularities in a region situated around the origin of
coordinates. The rotating Kerr metric is contained as a special case. The NUT
parameter can also be included by a suitable choice of the arbitrary constants
which enter the Ernst potentials. We conclude that this solution can be used
to describe the exterior gravitational field a charged rotating mass distribu-
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Figure 10.6: Curvature eigenvalues of the interior solution and of the exterior
solution with the same scale.

tion.

In the particular case of slowly rotating and slightly deformed mass dis-
tribution we obtained the explicit form of the metric, and showed that it can
be matched with an interior solution which is contained within the class of
Hartle-Thorne solutions. This reinforces the conclusion that the solution rep-
resents the interior as well as the exterior gravitational field of astrophysical
compact objects.

We studied the problem of matching the interior and exterior spacetimes.
We propose a C3—matching which consists in demanding that the derivatives
of a particular curvature eigenvalue are smooth on the matching hypersur-
face. To prove the validity of this approach we derived an interior solution
for the simplest case of a static mass with an arbitrary quadrupole moment,
represented by the Zipoy—Voorhees vacuum solution. The numerical inte-
gration of the corresponding field equations shows that interior perfect fluid
solutions exist which are characterized by a constant density profile with a
variable pressure. Fixing the value of the angular coordinate 6, we performed
numerically the C3—matching. As a result we obtain a minimum radius at
which the matching can be carried out and a fixed value for the pressure on
the symmetry axis. These values are then used to reach the smooth matching
of the interior and exterior metric functions. In all the cases analyzed in this
manner we obtained a reasonable numerical matching.

The idea of using the C*>—matching condition to determine the minimum
radius, at which an interior solution can be matched with an exterior one,
has been proved also in a particular case where analytical methods can be
applied, namely, in the case of the Kerr-Newman class of solutions. The
obtained results are reasonable and compatible with other results obtained
by analyzing the motion of test particles (45). These results indicate that
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it should be possible to determine the minimum radius of an astrophysical
compact object by using the idea of the C>—matching presented here. To
prove this conjecture in general, it will be necessary to use more powerful
methods related to the mathematical behavior of geodesics and curvature.
This problem is currently under investigation (46). An important application
of this analysis would be to relate the minimum size of a compact object with
its binding energy. As a result we would obtain the maximum binding energy
which is physically allowed for an astrophysical compact object.

For astrophysical applications, the most important multipole moment is
the quadrupole one. The importance of the quadrupole has been investigated
also very intensively in connection with the motion of extended bodies in
general relativity. In particular, the relationship between the interior and the
exterior quadrupole moments has been analyzed in detail. The research topic
“Symmetries in General Relativity” of this report contains a brief summary
of these results.
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