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0.4 Brief description

This group has started recently the study of problems of nonlinear dynamics
of complex systems focusing on biological problems using a theoretical physics
approach. The term ”biophysics” is today changing in its meaning and appears
not to be sufficient to contain areas like ”theoretical biology”, ”living matter
physics” of ”"complex biological systems”. On the other hand, the term ”The-
oretical Physics applied to biological systems” appears to be wide enough to
describe very different areas. It is well established both numerically and experi-
mentally that nonlinear systems involving diffusion, chemotaxis, and/or convec-
tion mechanisms can generate complicated time-dependent patterns. Specific
examples include the Belousov-Zhabotinskii reaction ,the oxidation of carbon
monoxide on platinum surfaces, slime mold, the cardiac muscle, nerve fibres
and more in general excitable media. Because this phenomenon is global in
nature, obtaining a quantitative mathematical characterization that to some
extent records or preserves the geometric structures of the complex patterns is
difficult.

Following Landau’s course in theoretical physics, we have worked in Theoret-
ical Biophysics focusing our studies on pathological physiology of cardiac and
neural tissues. Finite element simulations of electro-thermo-visco-elastic models
describing heart and neural tissue dynamics in 1D and 2D have been performed
([1],[2]), finding a possible experimental way to evidence the topological defects
which drive the spiral associated with typical arrythmias (Figure 1), typical of
reaction diffusion equations, whose prototype, with two variables for the sake of
simplicity, is shown below

Vi =D, V*V + f(U,V)
U, = Dy;V?U +g(U, V), (0.1)

where the V variable refers to an activator and the U variable to the inhibitor
respectively. The f and g terms are typically highly nonlinear in U and V. We
have analyzed [3] in particular the coupling of the reaction-diffusion equations
governing the electric dynamics of the tissue with finite elasticity (see Figures 2,
3 and 4). The problem, due to the free boundary conditions, must be formulated
in weak form (integral form) of deformable domains, and requires massive use of
differential geometry and numerical techniques like finite elements methods. The
experience obtained in this field will be adapted in future studies for problems of
self-gravitating systems and cosmology. Moreover computational cardiology and
neurology for cancer research in 3D using NMR imported real heart geometries
have been studied ([4]-[6]) (Figures 5,6 and 7 ). More in detail the RMN import
of a real brain geometry in Comsol Multiphysics (a powerful finite element
PDEs solver) via an interpolating function has been performed. The physical
property associated with the greyscale is the diffusivity tensor, assumed to be
isotropic but inhomogeneous. Applications to antitumoral drug delivery and
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cancer growth processes have been presented. In 2009 specifically the group
has published an article on heat transfer in excitable biological tissues of neural
type extending the previous studies focused on the FitzHugh-Nagumo model.
More in detail, an extension of the Hodgkin-Huxley mathematical model for
the propagation of nerve signal taking into account dynamical heat transfer
in biological tissue has been derived in accordance with existing experimental
data[7]. The model equations, summarized are:

oV Lo

Cnor = V- (GIV) + (D) lgram*h(Via = V) + gien (Vi = V) + g0V = V)],
88_’: = (D) (V)1 —m) = Bu(V)m,
% = ¢(D)[an(V)(1 —h) — Bu(V)H],
o o) aalV(1 )~ BV, (02)

where a;(V'), 8;(V) (with j = m,n, h) are specific functions (the rate constants)
of the form

0.01(10 + V) Vs
a, (V) = [e(0+V)/10 _ 1] Bn(V) = 0.125¢ )
0.1(25+ V) v/18
am(V) = [e@+1)/10 1]’ Bm(V) = 4e’/°°,
1
_ V/20 _

ah<v) = 0.07e ) 6h<v) - e(30+V)/10 +1 ) (03)
P Cp o,T = V,(k:,lVgT) + aZkV,VVkK+ w*(T* — T) , (04)
N—— \ -~ J/ - ~ ~ ,

energy storage rate conduction heat source perfusion—sink

(the meaning of the remaining quantities can be found in the publication rela-
tive to this study). The medium, heated by the Joule’s effect associated with
action potential propagation, manifests characteristic thermal patterns (see fig-
urd(.8| and [0.9)) in association with spiral and scroll waves. The introduction
of heat transfer—mnecessary on physical grounds—has provided a novel way to
directly observe the movement, regular or chaotic, of the tip of 3D scroll waves
in numerical simulations and possibly in experiments. The model will open new
perspective also in the context of cardiac dynamics: at the moment in fact the
authors are approaching the problem in the same context. The group has also
developed a more fundamental study on general theory of reaction diffusion
[8]. Tt is commonly accepted in fact that reaction-diffusion equations cannot
be obtained by a Lagrangian formulation. Guided by the well known connec-
tion between quantum and diffusion equations, we implemented a Lagrangian
approach valid for totally general nonlinear reacting-diffusing systems allowing
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the definition of global conserved observables derived using Noethers theorem.
Specifically, for the case of two diffusing species, denoting with an odd suffix
the physical real field and with an even one the auxiliary ones, we define the
following Lagrangian density

L= = Di(Vip) - (Vi) = Da(Vihy) - (Vi3) +
1 0 0
- 5 (w5 -0 ) + st - o+
1 0 0
~ 3 (M% - ws%) + H (1, ¢3) (s — Co) . (0.5)
This quantity, once inserted into Euler-Lagrange equations gives:
0 oS OH
% = —D V), + 9un (C1 — 1) + B (Ca2 — ty)
My 9 ) o
o= — D,V w4+a—%(01—¢2)+a—%(02—¢4)
% = D1V + S(¢y,¢3)
% - D2V2w3 + H(wla ’ll)g) ) (06)

Noether’s theorem then can be adopted to obtain conserved quantities as sum-
marized in figures 10-13 for FitzHugh-Nagumo model. In 2009 the group has
published a chapter devoted on mathematical modelling of cardiac tissue dy-
namics on a monograph on Mechano-sensitivity in biological cells [9].

0.5 2010 results

In 2010 the group has published a series of works regarding the role of spiral
structures in nature, more in detail in cardiology and in intestinal electrophysiol-
ogy. Spiral waves as already discussed appear in many different natural contexts.
It has been explored the fact that self-sustained spiral wave regime is already
present in the linear heat operator, in terms of integer Bessel functions of com-
plex argument, which although diverging at spatial infinity, play a central role
in the understanding of the universality of spiral process. Nonlinearities in fact
correct the divergences. Let’s take the dimensionless diffusion equation

oC' 9

— =V 0.7

oT v (0.7)
where V? denotes here the Laplacian in dimensionless Cartesian coordinates. It

is convenient to write the diffusion equation above in dimensionless cylindrical

1752



Contents

coordinates (R, ¢, Z) with R and ¢ defined so that
(X,Y) = R(cos¢,sing). (0.8)
We use then the following separation of variables ansatz
C(R,¢,Z,T) = P(R)e™TTikatime, (0.9)

The linearity of the problem ensures us that the real and imaginary parts of this
quantity both are solutions of Eq. (0.7). Solutions in cylindrical coordinates
are

C = (Re[Jn(Q)] + ilm[J,, (Q)]) e TTikZFime = Re[C] + i Im[C] (0.10)
where

Re[C] = Re[Jn(Q)] cos(wT + kZ + m¢) — Im[J,,,(¢)] sin(wT + kZ + mo)
Im[C] = Rel[J,(Q)]sin(wT + kZ + m¢) — Im[J,,,(¢)] cos(wT + kZ + ma) .
(0.11)

When k£ = 0, i.e. an infinite cylinder solution, the real and imaginary parts of
C give moving target patterns and rotating spirals of various chiralities and num-
bers of arms as shown at a fixed time in Fig. [[.L14. We have then extended our
discussion including nonlinearities typical of reaction-diffusion problems show-
ing that these spirals diverging at infinity get bound instead by nonlinear terms.

The next topic of research has been a study of the pinning properties of
reaction-diffusion induced vortices by impurtities/anatomical obstacles in car-
diac tissue (see Fig. [0.I5). What there has been found is that unpinning of
vortices attached to obstacles smaller than the core radius of the free vortex
is possible through pacing. The wave-train frequency necessary for unpinning
increases with the obstacle size and we present a geometric explanation of this
dependence. These results can have dramatic relevance for saving lives in dan-
gerous cases of fibrillation.

We have finally concluded our studies by understanding the potential role of
temperature gradients (typical of surgery theater) in producing turbulent be-
haviors in the underlying nonlinear electrophysiology of intestine. This study
can have important applications in avoiding a common outcome of abdominal
surgery, the postoperative paralytic ileus which increases the amount of time
spent by the patient in hospital causing an increase of general costs. Schematic
field equations (of reaction-diffusion class together with bio-heat diffusion equa-
tion), numerically integrated via finite element methods are, for the electrophys-
iology of the double layered intestinal domain (v and u are electrical variables)

ow = f(w)+ DNV — v+ F (ug, u;)
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Figure 0.1: Spiral wave in the temperature domain at a given time.

o = g [71 (Ul - ﬁz) - Uz]
Oy = g(uw)+ DV?u; — v; + F; (ug, u;)
o = ¢ (Z) [%‘ (Uz - ﬁz‘) - Uz‘], (0-12)

together with the thermal diffusion equation (T stands for temperature)
COT — kNV?*T — wy, (T)Cy (T, = T) — ¢ (T) — p(x,t) = 0. (0.13)

In Fig [0.16] we show a typical electrical turbulent situation generated by tem-
perature gradients on a model of an intestinal segment.

0.6 Publications (2005-2010)

1. Bini D., Cherubini C., Filippi S., "Heat Transfer in FitzHugh-Nagumo
models,” Physical Review E, Vol. 74 041905 (2006).

Abstract: An extended FitzHugh-Nagumo model coupled with dynamic al heat
transfer in tissue, as described by a bioheat equation, is derived and confronted
with experiments. The main outcome of this analysis is that traveling pulses and
spiral waves of electric activity produce temperature variations on the order of
tens of C . In particular, the model predicts that a spiral wave’s tip, heating the
surrounding medium as a consequence of the Joule effect, leads to characteristic
hot spots. This process could possibly be used to have a direct visualization of
the tip’s position by using thermal detectors
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Figure 0.2: 2D Evolution of a spiral wave in voltage domain coupled to finite

elastic deformations at a given time.
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Figure 0.3: 3D spiral wave coupled to strong mechanical deformations.
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Isosurface: v Boundary: v Deformation: ul,u2,u3

Time=100

Figure 0.4: 3D spiral waves iso-voltage lines embedded in a mechanically de-

formed domain.

heart geometry.

Figure 0.5: Voltage distribution at a given time on a real 3D NMR imported
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Time=200  Subdoma: mi_testa(e/0.77,y/0.77,2/0.77) [m] Max: 255

Min: 588,962

Figure 0.7: Mathematical model of tumor growth on the reconstructed brain
geometry.
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Figure 0.8: 3D scroll wave of action potential
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Figure 0.9: 3D thermal pattern associated with the electric scroll wave of the
previous figure.
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Figure 0.10: Case A: spiral waves of variable ¢;: notice the Dirichlet bound-
ary condition behavior of the spiral to be confronted with case B
simulations.
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Figure 0.11: Case A: Total angular momentum L., and total field momenta P,
and P, in time: conservation laws hold for all these quantities.
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Figure 0.12: Case B: spiral waves of variable 1);: notice the typical Neumann
zero flux boundary condition behavior of the spirals.

Figure 0.13: Case B: Total angular momentum L,, and total field momenta
P, and P, in time: conservation laws do not hold for all these
quantities.
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Figure 0.14: Real part of C' (solution of the diffusion problem (0.7)), at 7" =0
assuming moreover k = 0 (cylindrical symmetry). Surface levels
C' = (0,0.15,0.5,1) are shown (grey color means high values while
white is the opposite). For different m one obtains the following
patterns: a) for m = 0 which is reminiscent of target patterns
b) m = 1 which is a spiral ¢) m = —1 is a spiral with opposite
chirality d) m = 2 a two armed spiral e) m = 3 a three armed
spiral f) m = —5 a five armed spiral with opposite chirality.

1761



Contents

Figure 0.15: Action potential electrical configuration of a vortex pinned by a
large spherical hole. The obstacle in this case acts as an attracting
center for these arrhythmical configurations which must be manda-
torily detached and pushed on the boundary in order to annihilate
it.

1762



Contents

Dimensionless transmembrane potentials
(time fixed) 3D Scale (ul)

1 Tine 1.0
ul(z)

o
=N
=)

120 180 , 500
Space (cm) < /

Dimensionless transmembrane potentials
(space fixed)

Point

0 20 40 60 80 100
Time (s)

Figure 0.16: Schematic representation of the 3D FEM ionic intestine model. In
figure the point-time evolution and the line-space distribution of
the two transmembrane ionic potentials, u; and u; are described.
These are both referred to the three-dimensional regime state of
intestine activity simulated.
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2.

Bini D., Cherubini C., Filippi S., ”Viscoelastic FitzZHugh-Nagumo mod-
els,” Physical Review E, Vol. 72 041929 (2005).

Abstract: An extended Fitzhugh-Nagumo model including linear viscoelastici
ty is derived in general and studied in detail in the one-dimensional case. The
equations of the theory are numerically integrated in two situations: i) a free
insulated fiber activated by an initial Gaussian distribution of action potential,
and ii) a clamped fiber stimulated by two counter phased currents, located at
both ends of the space domain. The former case accounts for a description of
the physiological experiments on biological samples in which a fiber contracts
because of the spread of action potential, and then relaxes. The latter case,
instead, is introduced to extend recent models discussing a strongly electrically
stimulated fiber so that nodal structures associated on quasistanding waves are
produced. Results are qualitatively in agreement with physiological behavior
of cardiac fibers. Modifications induced on the action potential of a standard
Fitzhugh-Nagumo model appear to be very small even when strong external
electric stimulations are activated. On the other hand, elastic backreaction is
evident in the model

Cherubini C., Filippi S., Nardinocchi P., Teresi L., 7 An electromechani-
cal model of cardiac tissue: Constitutive issues and electrophysiological
effects,” Progress in Biophysics and Molecular Biology vol. 97, 562—573
(2008)

Abstract: We present an electromechanical model of myocardium tissue cou-
pling a modified FitzHughNagumo type system, describing the electrical activ-
ity of the excitable media, with finite elasticity, endowed with the capability of
describing muscle contractions. The high degree of deformability of the medium
makes it mandatory to set the diffusion process in a moving domain, thereby
producing a direct influence of the deformation on the electrical activity. Vari-
ous mechanoelectric effects concerning the propagation of cylindrical waves, the
rotating spiral waves, and the spiral breakups are discussed

S.Filippi, C.Cherubini, Electrical Signals in a Heart, Comsol Multiphysics
Model Library, Sept. p.106-116.(2005)

S.Filippi, C.Cherubini, Models of Biological System, Procceedings of COM-
SOL Conference, Milan (2006).

Abstract: This article discusses the RMN import of a brain geometry in Comsol
Multiphysics via an interpolating function. The physical property associated
with the grayscale is the diffusivity tensor, assumed here to be isotropic but
inhomogeneous. Applications to antitumoral drug delivery and cancer growth
processes are discussed.

C.Cherubini, S.Filippi, A.Gizzi, Diffusion processes in Human Brain us-
ing Comsol Multiphysics, Procceedings of COMSOL Conference, Milan
(2006).
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10.

Abstract:This article presents different applications of Comsol Multiphysics in
the context of mathematical modeling of biological systems. Simulations of
excitable media like cardiac and neural tissues are discussed.

Bini D., Cherubini C., Filippi S., ”On vortices heating biological excitable
media,” Chaos, Solitons and Fractals vol. 42 (2009) 20572066

Abstract: An extension of the HodgkinHuxley mathematical model for the
propagation of nerve signal which takes into account dynamical heat transfer in
biological tissue is derived and fine tuned with existing experimental data. The
medium is heated by Joules effect associated with action potential propagation,
leading to characteristic thermal patterns in association with spiral and scroll
waves. The introduction of heat transfernecessary on physical groundsprovides
a novel way to directly observe the movement, regular or chaotic, of the tip
of spiral waves in numerical simulations and possibly in experiments regarding
different biological excitable media.

Cherubini C. and Filippi S., ” Lagrangian field theory of reaction-diffusion,”
Physical Review E, Vol. 80 046117 (2009).

Abstract: It is commonly accepted that reaction-diffusion equations cannot be
obtained by a Lagrangian field theory. Guided by the well known connection
between quantum and diffusion equations, we implement here a Lagrangian ap-
proach valid for totally general nonlinear reacting-diffusing systems which allows
the definition of global conserved observables derived using Nthers theorem

Cherubini C., Filippi S., Nardinocchi P., Teresi L., ”Electromechanical
modelling of cardiac tissue”, in ”Mechanosensitivity of the Heart Series:
Mechanosensitivity in Cells and Tissues , Vol. 3”7, Kamkin, A.; Kiseleva,
I. (Eds.) (2009), Springer.

D. Bini, C. Cherubini, S. Filippi, A.Gizzi and P. E. Ricci, ”On Spiral
Waves Arising in Natural Systems”, Commun. Comput. Phys. Vol. 8,
No. 3, pp. 610-622 (2010)

Abstract: Spiral waves appear in many different natural contexts: ex-
citable biological tissues, fungi and amoebae colonies, chemical reactions,
growing crystals, fluids and gas eddies as well as in galaxies. While the
existing theories explain the presence of spirals in terms of nonlinear
parabolic equations, it is explored here the fact that self-sustained spi-
ral wave regime is already present in the linear heat operator, in terms
of integer Bessel functions of complex argument. Such solutions, even
if commonly not discussed in the literature because diverging at spatial
infinity, play a central role in the understanding of the universality of
spiral process. In particular,we have studied how in nonlinear reaction-
diffusion models the linear part of the equations determines the wave front
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11.

12.

appearance while nonlinearities are mandatory to cancel out the blowup
of solutions. The spiral wave pattern still requires however at least two
cross-reacting species to be physically realized. Biological implications of
such a results are discussed.

A. Pumir, S. Sinha, S. Sridhar, M. Argentina, M. Horning, S. Filippi, C.
Cherubini, S. Luther, and V. Krinsky, ” Wave-train-induced termination of

weakly anchored vortices in excitable media”, Phys Rev E vol. 81, 010901
(2010).

Abstract: A free vortex in excitable media can be displaced and removed
by a wave train. However, simple physical arguments suggest that vor-
tices anchored to large inexcitable obstacles cannot be removed similarly.
We show that unpinning of vortices attached to obstacles smaller than
the core radius of the free vortex is possible through pacing. The wave-
train frequency necessary for unpinning increases with the obstacle size
and we present a geometric explanation of this dependence. Our model-
independent results suggest that decreasing excitability of the medium can
facilitate pacing-induced removal of vortices in cardiac tissue.

A Gizzi, C Cherubini, S Migliori, R Alloni, R Portuesi and S Filippi, ”On
the electrical intestine turbulence induced by temperature changes”, Phys.
Biol. vol.7 016011 (2010)

Abstract: Paralytic ileus is a temporary syndrome with impairment of
peristalsis and no passage of food through the intestine. Although im-
provements in supportive measures have been achieved, no therapy useful
to specifically reduce or eliminate the motility disorder underlying post-
operative ileus has been developed yet. In this paper, we draw a plausible,
physiologically fine-tuned scenario, which explains a possible cause of par-
alytic ileus. To this aim we extend the existing 1D intestinal electrophysio-
logical AlievRichardsWikswo ionic model based on a double-layered struc-
ture in two and three dimensions. Thermal coupling is introduced here to
study the influence of temperature gradients on intestine tissue which is an
important external factor during surgery. Numerical simulations present
electrical spiral waves similar to those experimentally observed already in
the heart, brain and many other excitable tissues. This fact seems to sug-
gest that such peculiar patterns, here electrically and thermally induced,
may play an important role in clinically experienced disorders of the intes-
tine, then requiring future experimental analyses in the search for possible
implications for medical and physiological practice and bioengineering.
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