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We examine the properties of a recently proposed observationally viable alternative to homogeneous

cosmology with smooth dark energy, the timescape cosmology. In the timescape model cosmic accel-

eration is realized as an apparent effect related to the calibration of clocks and rods of observers in bound

systems relative to volume-average observers in an inhomogeneous geometry in ordinary general

relativity. The model is based on an exact solution to a Buchert average of the Einstein equations with

backreaction. The present paper examines a number of observational tests which will enable the timescape

model to be distinguished from homogeneous cosmologies with a cosmological constant or other smooth

dark energy, in current and future generations of dark energy experiments. Predictions are presented for

comoving distance measures; HðzÞ; the equivalent of the dark energy equation of state, wðzÞ; the OmðzÞ
measure of Sahni, Shafieloo, and Starobinsky; the Alcock-Paczyński test; the baryon acoustic oscillation

measure, DV ; the inhomogeneity test of Clarkson, Bassett, and Lu; and the time drift of cosmological

redshifts. Where possible, the predictions are compared to recent independent studies of similar measures

in homogeneous cosmologies with dark energy. Three separate tests with indications of results in possible

tension with the �CDM model are found to be consistent with the expectations of the timescape

cosmology.
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I. INTRODUCTION

The paradigm for our current standard model of the
Universe assumes that the Universe is well described by
a geometry which is exactly homogeneous and isotropic,
with additional Newtonian perturbations. The underlying
geometry is assumed to be that of a Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) geometry, and in matching the
cosmological observables that derive from such a geome-
try, we have been led to the conclusion over the past decade
that the present-day Universe is dominated by a cosmo-
logical constant or other fluidlike ‘‘dark energy’’ with an
equation of state, P ¼ w�, which violates the strong en-
ergy condition.

Although the matter distribution was certainly very ho-
mogeneous at the epoch of last scattering when the cosmic
microwave background (CMB) radiation was laid down, in
the intervening aeons the matter distribution has become
very inhomogeneous through the growth of structure.
Large-scale surveys reveal the present epoch universe to
possess a cosmic web of structure, dominated in volume by
voids, with galaxy clusters strung in sheets and filaments
that surround the voids, and thread them. Statistical homo-
geneity of this structure appears only to be reached by
averaging on scales of order 100h�1 Mpc or more, where
h is the dimensionless parameter related to the Hubble
constant by H0 ¼ 100h km s�1 Mpc�1. The problem of
fitting a smooth geometry to a universe with such a lumpy

matter distribution [1,2] is a nontrivial one, but central to
relating observations to the numerical values of the aver-
aged parameters which describe the Universe and its evo-
lution as a whole.
Given the observed inhomogeneity of the present epoch

universe, a number of cosmologists have questioned
whether the FLRW geometries are adequate as a descrip-
tion of the Universe at late times [3–9]. In particular, the
deduction that the Universe is accelerating might in fact be
a result of trying to fit the wrong cosmological model. One
central question in the fitting problem is the issue of
deriving the average evolution of the inhomogeneous ge-
ometry. If one considers irrotational dust cosmologies, and
averages just inhomogeneous scalar quantities, in
Buchert’s scheme [3] one finds an average of the Einstein
equation in which there is a Friedmann-like evolution
modified by backreaction [10,15,20],
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brackets denote the spatial volume average of a quantity, so

that hRi � ðRD d3x
ffiffiffiffiffiffiffiffiffiffiffiffi
det3g

p
Rðt;xÞÞ=V ðtÞ is the average

spatial curvature, and

Q ¼ 2
3ðh�2i � h�i2Þ � 2h�2i; (5)

is the kinematic backreaction, �2 ¼ 1
2����

�� being the

scalar shear. We use units in which c ¼ 1. Equation (4) is
an integrability condition needed to ensure that Eq. (1) is
the integral of Eq. (2).

One must be careful in interpreting Eqs. (1)–(5) since
the spatial averages refer to average quantities which de-
pend on the domain of integration on a spatial hypersur-
face. Observers measure invariants of the local metric, not
a spatially averaged metric, and cosmological information
comes to us on null geodesics. Given these problems, the
Buchert approach has been criticized [27], and the whole
area of backreaction is the subject of some debate and
controversy. In recent work [28–30] I have developed an
interpretation of solutions to the Buchert equations which
circumvents the criticisms of Sec. 3 of Ref. [27]. It differs
from other approaches to the Buchert equations that have
been used in the literature [31–36]. As well as circum-
venting objections that have been raised against Buchert
averaging, the new interpretation has a conceptual basis
which can be understood as an extension of the equivalence
principle [37], and it leads to a quantitative model universe
with predictions [28,38] which thus far are in good agree-
ment with observation. In particular, by Bayesian compari-
son the Riess07 gold supernovae Ia (SneIa) data set [39]
agrees with the model predictions at a level which is
statistically indistinguishable from the standard spatially
flat �CDM [38,40]. The same best-fit parameters also fit
the angular scale of the sound horizon seen in CMB data,
and the effective comoving baryon acoustic oscillation
(BAO) scale seen in angular diameter tests of galaxy
clustering statistics [28,38].

Given these promising indications, it is important that
the cosmology of Refs. [28,29] is developed well beyond
the stage of what might be regarded as a ‘‘toy model,’’ so
that it can be confronted by all the same observational tests
that are applied to the �CDM model. For example, many
current precision tests involve the detailed analysis of the
CMB [44], and of galaxy clustering statistics [45–52]. To
construct tests of similar precision will require the develop-
ment of new numerical codes for the analysis of large data
sets adapted to the present cosmology, analogous to those
based on the decades of detailed work that have been
applied to the standard cosmology.

Such goals represent an arduous project, and here I will
simply take a few steps in the direction of confronting the
observations. The aim of the present paper is not to present
a detailed analysis of current data sets, but to outline a
number of observable quantities which might be tested in
the future. Since the predictions obtained for a number of
these quantities can be readily compared to existing inde-

pendent analyses of homogeneous cosmologies with dark
energy, I will make relevant comparisons where possible. I
will confine the discussion here to average quantities which
are relevant at all redshifts on scales greater than the scale
of statistical homogeneity. Other relatively local tests
which deal with quantities within the 100h�1 Mpc scale
of statistical homogeneity [28,53] will be left to future
work.
The plan of the papers is as follows. In Sec. II I will

summarize the key features of the model introduced in
Refs. [28,29], while also providing some further discus-
sion. Additional technical details which were not provided
in Ref. [29] on account of space restrictions are given in the
Appendixes. In Sec. III I discuss the luminosity distance
and angular diameter distance relations, and their interpre-
tation in terms of the equivalent of a ‘‘dark energy equation
of state,’’ which enables a direct comparison to recent
studies to be made. In Sec. IV related diagnostics, HðzÞ
and the OmðzÞ measure are evaluated and discussed in
relation to recent studies. The Alcock-Paczyński and
BAO tests are treated similarly in Sec. V. The expected
nontrivial signature of a test of the Friedmann equation of
Clarkson, Bassett, and Lu is determined in Sec. VI. A
prediction for the Sandage-Loeb test of the time drift of
cosmological redshifts is presented in Sec. VII.
Section VIII contains a concluding discussion.

II. OVERVIEW OF THE TIMESCAPE MODEL

A. Voids and walls

I will begin by briefly reviewing the two-scale ‘‘fractal
bubble model’’ [28] which I am hereby renaming the
‘‘timescape model’’ [54], concentrating on the operational
interpretation of observations. The model is constructed by
identifying the observed scales most relevant to the ob-
served present epoch inhomogeneous structure as being
negatively curved voids and spatially flat walls, which
surround bound structures.
Since galaxies and galaxy clusters formed from pertur-

bations which were greater than critical density, then given
an observable universe which on average has negative
Ricci scalar curvature, we have a natural separation be-
tween walls and voids. As there is assumed to be a gradient
in spatial curvature, it is assumed we can always enclose
the bound structures which formed from overcritical per-
turbations within regions which are spatially flat on aver-
age, and marginally expanding at the boundary. These
boundaries are called finite infinity regions [28], with local
average metric

ds2fi ¼ �d�2w þ a2wð�wÞ½d�2
w þ �2

wd�
2�: (6)

The walls constitute the union of such finite infinity re-
gions. Observationally they would correspond to all ex-
tended structures that contain galaxy clusters, namely,
sheets, filaments, and knots [55].
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Voids of a characteristic diameter 30h�1 Mpc are ob-
served to fill 40%–50% of the Universe at the present
epoch [56]. In addition there are numerous minivoids,
which have been well studied in the local volume [57].
Together voids of all sizes appear to dominate the volume
of the present epoch universe, the exact volume fraction
depending on the empirical definition of a void in terms of
some particular negative density contrast. In the two-scale
approximation of Refs. [28,29] both the dominant voids
and minivoids are assumed to be characterized by the same
negatively spatial curvature scale, with a metric at the void
centers being given by

ds2Dv
¼ �d�2v þ a2vð�vÞ½d�2

v þ sinh2ð�vÞd�2�: (7)

We construct an average over the disjoint union of wall
and void regions over the entire present horizon volume
V ¼ V i �a

3, where

�a 3 ¼ fviav
3 þ fwiaw

3; (8)

with fvi and fwi ¼ 1� fvi being the respective initial void
and wall volume fractions at last scattering. The finite
infinity scale only becomes operationally defined once
regions start collapsing and structure forms. Thus at last
scattering a different interpretation of the wall and void
components in (8) is required. At this epoch the wall
fraction fw is understood as that fraction of the present
horizon volume which comprises perturbations whose
combined mean density is the same as the mean density
of the statistical ensemble of perturbations, including those
beyond the horizon. The void fraction, fv, is understood to
be that (small) fraction of the present horizon volume in
underdense perturbations which was not compensated by
overdense perturbations at last scattering. It is convenient
to rewrite (8) as fvðtÞ þ fwðtÞ ¼ 1, where fwðtÞ ¼
fwiaw

3= �a3 is the wall volume fraction and fvðtÞ ¼
fviav

3= �a3 is the void volume fraction.

B. The scale of ‘‘statistical homogeneity’’

In order to physically identify observables we must
specify what is to be identified as a ‘‘particle’’ of dust.
The question of what constitutes a particle of dust is not
directly addressed in Buchert’s scheme, although perhaps
implicitly many researchers think of galaxies as being the
particles of dust, as historically this is the way the matter is
treated in the FLRW model. However, galaxies evolve
considerably over time and are not homogeneously distrib-
uted at the present epoch. Thus if we wish to follow cosmic
evolution from the epoch of last scattering to the present,
with no assumptions about homogeneity, then we must
coarse grain the dust on scales over which mass flows
can be neglected, so that each dust particle remains of a
roughly fixed mass, even if the mass differs somewhat from
particle to particle.

Here we take a ‘‘dust particle’’ to be of at least the scale
of statistical homogeneity, 100h�1 Mpc or somewhat

larger [58]. The scale of statistical homogeneity is taken
to refer to a scale volume within which the structure of
voids and walls is roughly similar, if such a box is chosen at
random on a spatial slice in the observable universe at late
epochs. It is important to realize such volumes will not
have the same density. Rather they will have a density
which is distributed about a mean with a standard deviation
of order several percent, by an argument that follows from
Eq. (9).
Wemust stress that the Universe is not considered to be a

FLRW model, and our terminology of a scale of statistical
homogeneity is not the same as in a FLRW model. A scale
of homogeneity, in its sense in the FLRW model, is not
assumed to exist. The principal difference is that in a
FLRW model the density of the observable universe,
sampled over the present horizon volume, is assumed to
be the mean density of the ensemble from which our
observable horizon volume was drawn. In the FLRW
case the standard deviation of the density of spatial vol-
umes would decrease to zero as one sampled ever larger
volumes greater than the homogeneity scale, as is the case
for any stationary stochastic process [59].
Such a state of affairs cannot be expected to prevail,

however, given cosmic variance and an initial spectrum of
density contrasts of all possible length scales which are
nested within each other, which is the expectation from
primordial inflation. Given cosmic variance, then as one
samples larger and larger volumes that become comparable
with the horizon volume, one is dealing with fewer and
fewer individual fluctuations rather than a statistical en-
semble. The assumption in the timescape scenario is that
the present horizon volume is underdense relative to the
ensemble mean density, which at last scattering is ex-
tremely close to critical.
The fact that it does nonetheless make sense to think of a

scale of statistical homogeneity as above, however, is a
simple consequence of the fact that although the density
perturbations have all possible length scales, the magnitude
of these contrasts was strongly bounded at the time of last
scattering. In other words, given a universe which was
close to homogeneous at last scattering, it can only evolve
so far from homogeneity within the finite age of the
Universe.
The relevant scale for a cutoff to the scale of statistical

homogeneity is a scale of the largest acoustic wave in the
plasma at last scattering—of order 110h�1 Mpc. The sim-
ple reason for such a cutoff is that below this scale initial
density contrasts may be amplified by acoustic waves in
the plasma, so that rather than having initial density con-
trasts of say 	�=�� 10�4 in nonbaryonic dark matter, the
initial density contrasts will be somewhat larger. The sec-
ond acoustic peak in the CMB anisotropy spectrum—i.e.,
the first refraction peak—for example, will amplify the
density contrast of underdense regions, and may therefore
be the feature of the primordial spectrum responsible for
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the fact that the dominant void fraction is associated with a
specific scale 30h�1 Mpc [56].

Given that some initial density perturbations are ampli-
fied below the acoustic scale, and that the CMB anisotropy
spectrum is fairly flat at long wavelengths, the acoustic
scale provides a cutoff analogous to the cutoff between the
nonlinear and linear regimes of structure formation,
although here there is no single global FLRW model about
which such linear regimes are defined [60]. Below the scale
of statistical homogeneity we will typically find density
contrasts j	�=�j � 1 which characterize the nonlinear
regime, as is the observed case for 30h�1 Mpc diameter
voids [56]. Above the acoustic scale, we can be sure that
the perturbations at last scattering have very similar am-
plitudes as a function of scale. Although the perturbations
in the photon-baryon plasma have contrasts 	�=�� 10�5

at this epoch, the density contrast in nonbaryonic dark
matter is expected to be somewhat larger, e.g., of order
	�=�� 10�4–10�3, depending on one’s dark matter
model.

The standard deviation of the density of cells on scales
larger than the scale of statistical homogeneity can be
estimated crudely by assuming that such cells evolve as
an independent Friedmann universe from a smooth pertur-
bation at the epoch of last scattering. This approximation is
justified since the relevant scale is the one over which there
are no appreciable average mass flows from one dust cell to
another. We assume that the backreaction contributions do
not dominate the volume-average evolution, and make our
rough estimate from the Friedmann equation with pressur-
eless dust only, for which

a20H
2
0ð�M0 � 1Þ ¼ a2ðtÞH2ðtÞ½�MðtÞ � 1�:

This leads to a present epoch density contrast

	�0 ’
�
H

H0

�
2 	�t

ð1þ zÞ2 ; (9)

where the density contrast is relative to the critical density,
so that 	�t ¼ �MðtÞ � 1, etc., where �M is a density
parameter for the isolated region only. (Physically, the
critical density is that within a spatially flat wall region.)
Thus if we take 	�t ’ 10�4 at last scattering, when z ’
1090 and whenH ’ 2=ð3tÞ with t ’ 380 000 yr, we are led
to 	�0 ’ 0:025=h2 ’ 0:06 if h ’ 0:65.

This crude estimate can be compared to the actual
density variance determined from large-scale structure
surveys [61,62]. Sylos Labini et al. [62] have recently
determined the variance in the number density of luminous
red galaxies (LRGs) in the SDSS-DR7 by dividing the full
sample of 53 066 galaxies in the redshift range 10�4 < z <
0:3 into N equal nonoverlapping volumes. Over the range
4 � N � 15, the standard deviation is found to be of order
8%, consistent with an earlier measurement of 7% by Hogg
et al. [61] in a smaller LRG sample. These values are very
close to our order of magnitude estimate of 6%. Provided

LRGs are correlated to the actual density, then the variance
in the percentage density contrast will be commensurate. In
fact, such variances can be used to constrain the dark
matter density contrast at last scattering. A measurement
of 8% would indicate, reversing the argument above, that a
contrast of 	�=�� 10�3 in nonbaryonic dark matter at last
scattering is an order of magnitude too large.
Given a nearly scale-invariant spectrum of density per-

turbations, with perturbations nested in perturbations, our
expectation is that the variance in density should not
decrease appreciably if sample volumes are increased at
nearby redshifts. In principle, it should be possible to
calculate it as a function of scale, given the constraints
from the CMB anisotropy spectrum at long wavelengths.
For spatial slices at higher redshifts, looking farther back in
time, the variance would decrease in accord with (9)—
provided that a sample of objects such as LRGs can be
found which does not exhibit strong evolutionary effects
over the range of redshifts in question.
Of course, the estimate based on (9) could be further

refined to take backreaction into account; but further ac-
curacy can only be gained when one has a tighter estimate
of the dark matter density contrast than simply an order of
magnitude. Furthermore, the statistical physics of cosmic
structures in the timescape scenario may well differ from
that of the FLRW model [59] in significant ways; one has
to revisit the whole problem from first principles.
In summary, the observed Universe is not assumed to be

homogeneous or to approach any single global FLRW
model at any scale. The ‘‘statistical homogeneity scale’’—
which will coincide roughly with the BAO scale—repre-
sents a scale above which the variance in density contrasts
is bounded at the 10% level, and below which density
contrasts become as large as they can possibly be.

C. The bare Hubble flow and bare cosmological
parameters

Given our identification of dust particles coarse grained
at the scale of statistical homogeneity, and possible very
large differences in spatial curvature and gravitational
energy within such a cell, we do not assume that Buchert
average time parameter, t, is the relevant parameter mea-
sured by every isotropic observer—those who see an iso-
tropic CMB—within any dust cell. Rather it is the time
parameter measured by an isotropic observer whose local
spatial curvature happens to coincide with the Buchert
volume-average spatial curvature hRi. We employ an an-
satz of an underlying quasilocal uniform Hubble flow
within a dust cell, below the scale of statistical homoge-
neity, in terms of local proper lengths with respect to local
proper times, which both vary with gradients in spatial
curvature and gravitational energy. This ansatz provides
an implicit resolution of the Sandage–de Vaucouleurs para-
dox [28] and can be understood in terms of a generalization
of the equivalence principle [37].
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The metrics (6) and (7) are assumed to represent the
local geometry for isotropic observers at finite infinity and
at void centers, respectively. Within the scale of statistical
homogeneity the metrics (6) and (7) are assumed to be
patched together with a condition of uniform quasilocal
bare Hubble flow [28,37]

�H ¼ daw
d�w

¼ dav
d�v

; (10)

which will preserve isotropy of the CMB. The mean CMB
temperature and angular anisotropy scale will vary with the
gradients in gravitational energy and spatial curvature,
however.

For the purpose of the Buchert average we refer all
quantities to one set of volume-average clocks: those that
keep the time parameter t of Eqs. (1)–(5) so that

�H � _�a

�a
¼ �
wHw ¼ �
vHv; (11)

where

Hw � 1

aw

daw
dt

; and Hv � 1

av

dav
dt

; (12)

and

�
 w � dt

d�w
; and �
v ¼ dt

d�v
(13)

are lapse functions of volume-average time, t, relative to
wall and void- center observers, respectively. The ratio of
the relative Hubble rates hr ¼ Hw=Hv < 1 is related to the
wall lapse function by

�
 w ¼ 1þ ð1� hrÞfv
hr

; (14)

and �
v ¼ hr �
w.
The Buchert equations for pressureless dust with

volume-average density ��M are solved [29] in the two-
scale approximation by assuming that there is no back-
reaction within walls and voids separately [63], but only in
the combined average. With this assumption, the kinematic
backreaction term becomes [28]

Q ¼ 6fvð1� fvÞðHv �HwÞ2 ¼ 2 _fv
2

3fvð1� fvÞ : (15)

The resulting independent Buchert equations consist of
two coupled nonlinear ordinary differential equations
[28] for �aðtÞ and fvðtÞ, which may be written as

��M þ ��k þ ��Q ¼ 1; (16)

�a�6@tð ��Q
�H2 �a6Þ þ �a�2@tð ��k

�H2 �a2Þ ¼ 0; (17)

where

��M ¼ 8�G ��M0 �a
3
0

3 �H2 �a3
; (18)

��k ¼ �kvfvi
2=3fv

1=3

�a2 �H2
; (19)

��Q ¼ � _fv
2

9fvð1� fvÞ �H2
(20)

are the volume average or ‘‘bare’’ matter density, curvature
density, and kinematic backreaction density parameters,
respectively, with �a0 and ��M0 being the present epoch
values of �a and ��M. The average curvature is due to the
voids only, which are assumed to have kv < 0. The
volume-average deceleration parameter is given by

�q � � €�a
�H2 �a

¼ 1

2
��M þ 2 ��Q: (21)

Equations (16) and (17) are readily integrated to yield an
exact solution [29], which is listed in Appendix A, together
with its simple tracking limit in Appendix B. For initial
conditions at last scattering consistent with observations,
solutions are found to reach within 1% of the tracking limit
by a redshift z� 37 [29]. Thus the tracker solution will be
used for the purposes of the specific cosmological tests
which are investigated in this paper [65].
It should be noted that for the solution found in

Ref. [29], the backreaction term is at most of order 4.2%
[66]. Its redshift dependence for the best-fit parameters is

exhibited in Fig. 1. Although ��Q is negative, it is never

large enough relative to ��M to dominate the right-hand
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FIG. 1 (color online). The bare backreaction density parameter
��Q as a function of redshift for the timescape model with fv0 ¼
0:762, H0 ¼ 61:7 km s�1 Mpc�1.
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side of (21) and give volume-average cosmic acceleration.
The backreaction itself is not the sole reason for apparent
cosmic acceleration; that is also a question of how volume-
average evolution is interpreted in terms of a local metric.

D. Dressed cosmological parameters

One must take care in physically interpreting the solu-
tion of the Buchert equation, since it does not represent a
single exact solution of Einstein’s equations, but rather a
spatial average. Observers measure invariants of the local
metric and information carried by radial null geodesics
from distant parts of the Universe. In Ref. [28] a means
of interpreting the Buchert equation was developed as
follows.

First, since cosmological information is obtained by a
radial spherically symmetric average, we construct a
spherically symmetric geometry relative to an observer
who measures volume-average time, and with a spatial
volume scaling as �a3ðtÞ,

d�s2 ¼ �dt2 þ �a2ðtÞd ��2 þAð ��; tÞd�2; (22)

where the area quantity, Að ��; tÞ, satisfiesR ��H
0 d ��Að ��; tÞ ¼ �a2ðtÞV ið ��H Þ=ð4�Þ, with ��H being

the conformal distance to the particle horizon relative to
an observer at �� ¼ 0, since we have chosen the particle
horizon as the scale of averaging. The metric (22) is
spherically symmetric by construction, but is not a
Lemaı̂tre-Tolman-Bondi (LTB) solution since it is not an
exact solution of Einstein’s equations, but rather of the
Buchert average of the Einstein equations.

In terms of the wall time, �w, of finite infinity observers
the metric (22) is

d�s2 ¼ � �
2
wð�wÞd�2w þ �a2ð�wÞd ��2 þAð ��; �wÞd�2:

(23)

However, this geometry, which has negative spatial curva-
ture is not the locally measured geometry at finite infinity,
which is given instead by (6). Since (6) is not a global
geometry, we match (6) to (23) to obtain a dressed wall
geometry, which is effectively the closest thing there is to a
FLRW geometry adapted to the rods and clocks of wall
observers. The matching is achieved in two steps. First we
conformally match radial null geodesics of (6) and (23),
bearing in mind that null geodesics are unaffected by an
overall conformal scaling. This leads to a relation

d�w ¼ fwi
1=3d ��

�
wð1� fvÞ1=3
(24)

along the geodesics. Second, we account for volume and
area factors by taking �w in (6) to be given by the integral
of (24).

The wall geometry (6), which may also be written

ds2fi ¼ �d�2w þ ð1� fvÞ2=3 �a2
fwi

2=3
½d�2

w þ �2
wd�

2�; (25)

on account of (8), is a local geometry only valid in spatially
flat wall regions. We now use (24) and its integral to extend
this metric beyond the wall regions to obtain the dressed
global metric

ds2 ¼ �d�2w þ �a2

�
2
w

d ��2 þ �a2ð1� fvÞ2=3
fwi

2=3
�2
wð ��; �wÞd�2

¼ �d�2w þ a2ð�wÞ½d ��2 þ r2wð ��; �wÞd�2�; (26)

where a � �
�1
w �a, and

rw � �
wð1� fvÞ1=3fwi�1=3�wð ��; �wÞ:
Whereas (6) represents a local geometry only valid in
spatially flat wall regions, the dressed geometry (26) ex-
tends as an average effective geometry [67] to the cosmo-
logical scales parametrized by the volume-average
conformal time, which satisfies d �� ¼ dt= �a ¼ d�w=a.
Since the geometry on cosmological scales does not have
constant Gaussian curvature the average metric (26), like
(22), is spherically symmetric but not homogeneous.
In trying to fit a FLRW model to the Universe, the

cosmological parameters we obtain effectively have nu-
merical values close to those of the dressed geometry (26).
In particular, we infer a dressed matter density parameter

�M ¼ �
3
w
��M; (27)

a dressed Hubble parameter

H � 1

a

da

d�w
¼ 1

�a

d �a

d�w
� 1

�
w

d �
w

d�w
¼ �
w

�H � _�
w; (28)

and similarly a dressed deceleration parameter, where the
overdot still denotes a derivate with respect to volume-
average time. As demonstrated in Refs. [28,29] in a void-
dominated universe the dressed deceleration parameter is
negative at late epochs, even though the bare deceleration
parameter (21) is positive. Thus cosmic acceleration is
realized as an apparent effect due to the variance of local
geometry from the average, leading to variance in the
calibration of clocks and rods.
In the rest of the paper we will drop the subscript ‘‘w’’

from both �w and �
w, as we will not need to make explicit
reference to the time measured in void centers. Thus � and
�
 will be assumed to refer to wall time.

III. COMOVING DISTANCE DðzÞ AND
EQUIVALENT OF THE ‘‘EQUATION OF STATE’’

In testing fluidlike dark energy scenarios, or modified
gravity theories that can be cast as an effective fluid with an
equation of state P ¼ w�, a common question is how can
the equation of state parameter, wðzÞ, be constrained as a
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function of redshift? Unfortunately, if dark energy is some
purely unknown physics, then it is completely unclear how
one should expand it as a power series. A linear series in z
will not converge for z > 1, for example, so series in
z=ð1þ zÞ are sometimes considered. Unless one has a
precise physical model of dark energy to be tested, then
any constraints are completely dependent on how one
chooses to characterize such a power series. When con-
straints on the value of w from cosmological observations
are quoted in the literature, it is often on the basis that w is
simply a constant, even though there is no known physics
for making such an assumption, apart from the cosmologi-
cal constant case of w ¼ �1.

In this section I will derive the equivalent of the equation
of state style observational tests, although the terminology
equation of state does not have a meaning in terms of actual
observables, given that the model in question is not char-
acterized by a fluid with PD ¼ w�D. Let us recall that in
the case of the standard FLRW models, the equation of
continuity for such a dark energy component in a back-

ground universe with scale factor aðtÞ, viz.,

_�D þ 3
_a

a
ð1þ wÞ�D ¼ 0; (29)

may be integrated to give

ln

�
�D

�D0

�
¼

Z 3½1þ wðzÞ�dz
1þ z

(30)

using a0=a ¼ 1þ z, where it is assumed that the equation
of state parameter varies with redshift. To obtain an ex-
pression for the luminosity distance one substitutes (30) in
the spatially flat Friedmann equation for matter plus dark
energy,

_a2

a2
¼ 8�G

3

�
�M0

�
a0
a

�
3 þ �D

�
(31)

and uses the resulting expression for _a, to determine the
conformal time integral

rFLRW �
Z t0

t

dt

a
¼

Z a0

a

da

a _a
¼

Z z

0

dz0

a0H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M0ð1þ z0Þ3 þ�D0 exp½3

R
z0
0

ð1þwðz00ÞÞdz00
1þz00 �

q ; (32)

where �M0 ¼ 8�G�M0=ð3H2
0Þ and �D0 ¼

8�G�D0=ð3H2
0Þ ¼ 1��M0. The standard luminosity dis-

tance is then given by dL ¼ a0rFLRWð1þ zÞ. The quantity

D ¼ a0rFLRW ¼ dL
1þ z

(33)

is the comoving distance quantity directly related to the
luminosity distance. The angular diameter distance is also
related by

dA ¼ D

1þ z
¼ dL

ð1þ zÞ2 : (34)

We observe from (32) that H0D does not depend on the
value of the Hubble constant,H0, but only directly on�M0.

Given observed quantities such as the apparent
luminosity-redshift relation or an angular size redshift
relation for standard candles or standard rulers, we can
take derivatives of (32) to obtain

wðzÞ ¼
2
3 ð1þ zÞD0�1D00 þ 1

�M0ð1þ zÞ3H2
0D

02 � 1
; (35)

where the prime denotes a derivative with respect to z. This
gives a formal equation of state to any comoving distance
relation, assuming an underlying spatially flat dark energy
model. Such a relation can be applied to observed distance
measurements, regardless of whether the underlying cos-
mology has dark energy or not. We should note, however,
that such a wðzÞ has first and second derivatives of the
observed quantities, and so is much more difficult to

determine observationally than direct fits to a quantity
such as DðzÞ.
For the timescape universe, equivalent comoving, angu-

lar diameter and luminosity distances can be defined in
terms of the dressed geometry (6). We have a dressed
luminosity distance relation

dL ¼ a0ð1þ zÞrw; (36)

where a0 ¼ �
�1
0 �a0, and the effective comoving distance to

a redshift z is D ¼ a0rw, where

rw ¼ �
ð1� fvÞ1=3
Z t0

t

dt0

�
ðt0Þð1� fvðt0ÞÞ1=3 �aðt0Þ
: (37)

As discussed in Sec. II, since spatial sections are not of
constant Gaussian curvature, this effective comoving dis-
tance represents a fit to our spatially flat rods once radial
null geodesics are conformally matched, and geometric
factors are taken into account.
For the tracker solution (B1) and (B2) the cosmological

redshift satisfies

zþ 1 ¼ �a0 �


�a �
0

¼ ð2þ fvÞfv1=3
3f1=3v0

�H0t
¼ 24=3t1=3ðtþ bÞ

f1=3v0
�H0tð2tþ 3bÞ4=3 ;

(38)

where

b ¼ 2ð1� fv0Þð2þ fv0Þ
9fv0 �H0

: (39)
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The integral in (37) is readily evaluated to give

dA ¼ D

1þ z
¼ t2=3

Z t0

t

2dt0

ð2þ fvðt0ÞÞðt0Þ2=3
¼ t2=3ðF ðt0Þ �F ðtÞÞ; (40)

where

F ðtÞ ¼ 2t1=3 þ b1=3

6
ln

� ðt1=3 þ b1=3Þ2
t2=3 � b1=3t1=3 þ b2=3

�

þ b1=3ffiffiffi
3

p tan�1

�
2t1=3 � b1=3ffiffiffi

3
p

b1=3

�
: (41)

It is straightforward now to compare distance measure-
ments in the timescape model with those in spatially
flat �CDM models. The timescape model which best fits
the Riess07 gold data set had a void fraction fv0 ¼
0:76þ0:12

�0:09, and dressed Hubble constant H0 ¼
61:7þ1:2

�1:1 km s�1 Mpc�1, where 1� uncertainties are quoted
[38]. In Fig. 2 we plot

H0D ¼ H0t
2=3½F ðt0Þ �F ðtÞ�ð1þ zÞ (42)

for the best-fit model with fv0 ¼ 0:762, as compared to
three spatially flat �CDM models with different values of
�M0 (or of ��0 ¼ 1��M0). Figure 2 shows that over
redshifts between the present epoch and last scattering, the
timescape model interpolates between �CDM models
with different values of �M0. For redshifts z & 1:5, DTS

is very close to D�CDM for the parameter values

ð�M0;��0Þ ¼ ð0:34; 0:66Þ [model (iii)] which best fit the
Riess07 SneIa data only [38]. For very large redshifts
that approach the surface of last scattering, z & 1100, on
the other hand, DTS very closely matches D�CDM for the
parameter values ð�M0;��0Þ ¼ ð0:249; 0:751Þ [model (i)]
which best fit WMAP5 only [44]. Over redshifts 2 & z &
10, at which scales independent tests are conceivable, DTS

makes a transition over corresponding curves of D�CDM

with intermediate values of ð�M0;��0Þ. TheD�CDM curve
for joint best-fit parameters to SneIa, BAO measurements,
and WMAP5 [44], ð�M0;��0Þ ¼ ð0:279; 0:721Þ is best
matched over the range 5 & z & 6, for example.
Given the difference of DTS from any single D�CDM

curve becomes pronounced only in the range 2 & z & 6,
it may be difficult to distinguish the models on the basis of
the measurement of dA alone from BAO surveys, which
will be able to measure dAðzÞ up to 1% to z < 3. However,
joint measurements of other parameters, such asHðzÞ, may
make for definitive tests, as will be discussed later.
Gamma-ray bursters (GRBs) do probe distances to red-
shifts z & 8:3, and could be very useful. There has already
been much work deriving Hubble diagrams using GRBs
(see, e.g., [69]). It would appear that more work needs to be
done to nail down systematic uncertainties, but GRBs may
provide a definitive test in the future. An analysis of the
timescape model Hubble diagram using 69 GRBs has just
been performed by Schaefer [70], who finds that it fits the
data better than the concordance�CDMmodel, but not yet
by a huge margin. As more data are accumulated, it should
become possible to distinguish the models.
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FIG. 2 (color online). The effective comoving distance H0DðzÞ is plotted for the best-fit timescape model, with fv0 ¼ 0:762 (solid
line), and for various spatially flat �CDM models (dashed red lines). The parameters for the dashed lines are (i)�M0 ¼ 0:249 (best fit
to WMAP5 only); (ii)�M0 ¼ 0:279 ( joint best fit to SneIa, BAO, and WMAP5); and (iii)�M0 ¼ 0:34 (best fit to Riess07 SneIa only).
(a) shows the redshift range z < 6, with an inset for z < 1:5, which is the range tested by current SneIa data. (b) shows the range
z < 1100 up to the surface of last scattering, tested by WMAP5.
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A. Effective dark energy equation of state

The equivalent of an equation of state,wðzÞ, for the timescape model may be determined from (35) and (40). The specific
analytic expressions for the first and second derivatives of D are

dD

dz
¼ t½ð2t� bÞdA þ ð2tþ 3bÞ2�

3ð2t2 þ 3btþ 2b2Þ ; (43)

d2D

dz2
¼ �tð2tþ 3bÞ½2ðtþ bÞð2tþ 5bÞð2t2 þ 3bt� b2ÞdA þ ð2tþ 3bÞð8t4 þ 26bt3 þ 53b2t2 þ 56b3tþ 18b4Þ�

9ð1þ zÞð2t2 þ 3btþ 2b2Þ3 : (44)

In these expressions dA is given by (40) and t is given implicitly in terms of the redshift, z, via (38). We now substitute (43)
and (44) in (35) and use the fact that by (B9), H0 ¼ ð4f2v0 þ fv0 þ 4Þ �H0=½2ð2þ fv0Þ�, to obtain

w ¼ ð40t5 � 28bt4 � 274b2t3 � 349b3t2 � 92b4tþ 24b5ÞdA þ tð2tþ 3bÞ2ð20t3 þ 56bt2 þ 47b2t� 4b3Þ
fð2t� bÞdA þ ð2tþ 3bÞ2gfA0ðzþ 1Þ3t2½ð2t� bÞdA þ ð2tþ 3bÞ2�2 � 9ð2t2 þ 3btþ 2b2Þ2g ; (45)

where

A0 ¼ �M0ð4f2v0 þ fv0 þ 4Þ2
4ð2þ fv0Þ2

(46)

and dA is given by (39) and (40). In fact, �M0 ¼
1
2 ð1� fv0Þð2þ fv0Þ, so that

A0 ¼ ð1� fv0Þð4f2v0 þ fv0 þ 4Þ2
8ð2þ fv0Þ :

Since the wðzÞ expression is an artificial mathematical
construction for the present model, we can also determine
wðzÞ if a value of �M0 different from the canonical value
1
2 ð1� fv0Þð2þ fv0Þ is assumed. In this way, we arrive at

the example wðzÞ curves plotted in Fig. 3. The fact that the
denominator of (45) goes through zero means that wðzÞ
becomes formally infinite and changes sign at a value of z

which depends on the value of �M0 assumed [71]. This
feature illustrates how pointless it is to talk about an
equation of state of dark energy, or to choose to ‘‘recon-
struct’’ wðzÞ if the underlying unknown physics has noth-
ing to do with a fluid in the vacuum of space. What is
actually measured is a quantity such as DðzÞ, illustrated in
Fig. 2, and this is perfectly smooth.
Phenomenologically, for the canonical best-fit dressed

value of �M0 ¼ 0:33 [38], one finds that wð0Þ ’ �0:758
and that wðzÞ crosses the ‘‘phantom divide’’ wðzÞ ¼ �1 at
z ’ 0:464. The average value of wðzÞ ’ �1 on the range
z & 0:7, while the average value of wðzÞ<�1 if the range
of redshifts is extended to higher values. This agrees with
the evidence of the SneIa data.
In fact, in a recent study [73] which examines constraints

on the equation of state by combining the Constitution
SneIa data [42] with WMAP5 [44] and SDSS constraints,
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FIG. 3. The artificial equivalent of an equation of state (45), constructed using the effective comoving distance (35), plotted for the
timescape tracker solution with best-fit value fv0 ¼ 0:762, and two different values of �M0: (a) the canonical dressed value �M0 ¼
1
2 ð1� fv0Þð2þ fv0Þ ¼ 0:33; (b) �M0 ¼ 0:279.

AVERAGE OBSERVATIONAL QUANTITIES IN THE . . . PHYSICAL REVIEW D 80, 123512 (2009)

123512-9



Zhao and Zhang find 95% confidence level evidence in
favor of a model with wðzÞ>�1 2 ð0:25; 0:5Þ, wðzÞ<
�1 2 ð0:5; 0:75Þ, meaning that wðzÞ must cross the phan-
tom divide in the range 0:25<w< 0:75. The fiducial
model of Fig. 3(a) crosses the phantom divide almost in
the center of this redshift range.

Another recent investigation [74] draws different con-
clusions about evidence for dynamical dark energy.
However, while the results of Serra et al. [74] are consis-
tent with a cosmological constant at the 2� level, they are
also consistent with the best-fit timescape model at the
same level, as illustrated in Fig. 4. The different conclu-
sions drawn by the authors of Refs. [73,74] result not only
from using somewhat different data sets, but also from
differences in the treatments of data bins.

In considering Fig. 4 one should also bear in mind that
there are significant systematic issues between the SALT
and MLCS data reduction methods, as will be discussed in
Sec. VIII. The Union [41] and Constitution [42] compila-
tions use the SALTmethod. A new analysis of 103 SDSS-II
SneIa [75] in the redshift range, 0:04< z < 0:42 when
combined with 185 SneIa from other surveys, yields
best-fit parameters w ¼ �0:96� 0:06ðsystÞ � 0:12ðstatÞ
and �M0 ¼ 0:265� 0:016ðsystÞ � 0:025ðstatÞ using
SALT-II to fit to spatially flat FLRW models with constant
w, but w ¼ �0:76� 0:07ðsystÞ � 0:11ðstatÞ and �M0 ¼
0:307� 0:019ðsystÞ � 0:023ðstatÞ using MLCS2K2. Use of
MLCS2K2 data reduction is therefore also likely to some-

what change the data values in Table I and Fig. 4.
At this stage the uncertainties, especially systematic

ones in data reduction, are too large to draw firm conclu-
sions, but future measurements may change the picture. Of
course given specific models of dark energy, greater sta-

tistical leverage is obtained simply by comparing H0D
directly on a model by model basis.

B. Angular-size redshift relation

The angular size, 	 ¼ ‘=dA, of a class of objects of
uniform proper length, ‘, is readily determined from (40)
and (41). Empirically the differences from the �CDM
model are not very large. For the best-fit value fv0 ¼
0:762 the minimum angle occurs at z ¼ 1:74, as opposed
to z ¼ 1:67 for a spatially flat �CDM model with �M0 ¼
0:249, or z ¼ 1:56 for a spatially flat �CDM model with

-4

-3

-2

-1

 0

 1
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FIG. 4 (color online). The artificial equivalent of an equation
of state (45) is compared with a recent analysis of Serra et al.
[74]. The third panel of Fig. 1 of Ref. [74] is combined with the
curve of wðzÞ for the best-fit value fv0 ¼ 0:76þ0:12

�0:09 (solid curve;

1� limits dotted curves). Following Ref. [74] 2� uncertainties
are plotted. The 1� uncertainties are tabulated in Table I.

TABLE I. Values of wðzÞ determined by Serra et al. [74] using
a standard FLRW cosmology are compared to the artificial
equivalent of wðzÞ for the timescape model: wU and wC are
the values determined by combining WMAP5 CMB and SDSS-
DR7 BAO data with the Union and Constitution SneIa data sets,
respectively, as given in Table I of Ref. [74]. The equivalent wTS

for the timescape model uses a void fraction fv0 ¼ 0:76þ0:12
�0:09 as

determined in Ref. [38]. 1� uncertainties are listed in each case.

Redshift wU wC wTS

0.0 �0:97� 0:22 �0:86� 0:13 �0:76þ0:11
�0:07

0.25 �1:05� 0:10 �1:04� 0:07 �0:86þ0:17
�0:15

0.5 �0:65þ0:29
�0:30 �1:06þ0:41

�0:40 �1:02� 0:28
0.75 �0:71þ0:44

�0:47 �0:47þ0:34
�0:33 �1:31þ0:49

�0:65

1.0 �1:72þ0:73
�0:81 �1:68þ0:73

�0:85 �1:88þ0:96
�2:76

1

2
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4

5

1 2 3 4 5 6
z

δ

FIG. 5. The angle, 	 (in arcsec), subtended by a 10 kpc source
as a function of redshift for the timescape model with fv0 ¼
0:762, H0 ¼ 61:7 km s�1 Mpc�1 (solid line) as compared to
the equivalent angular-size relation for three spatially flat
�CDM models (dashed lines from top to bottom):
(a) ð�M0;��0Þ ¼ ð0:279; 0:721Þ, H0 ¼ 71:9 km s�1 Mpc�1;
(b) ð�M0;��0Þ ¼ ð0:249; 0:751Þ, H0 ¼ 71:9 km s�1 Mpc�1;
(c) ð�M0;��0Þ ¼ ð0:34; 0:66Þ, H0 ¼ 62:7 km s�1 Mpc�1.
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�M0 ¼ 0:34 (see Fig. 5). The angle subtended by standard
rulers in the timescape model is very slightly less than for
the comparison spatially flat �CDM models. At z ¼ 6 the
difference is of order 9%–15%.

IV. THE HðzÞ AND OmðzÞ MEASURES

Recently Sahni, Shafieloo, and Starobinsky [76] pro-
posed a new diagnostic of dark energy [77], the function

OmðzÞ �
H2ðzÞ
H2

0

� 1

ð1þ zÞ3 � 1
; (47)

on account of the fact that it is equal to the constant present
epoch matter density parameter, �M0, at all redshifts for a
spatially flat FLRW model with pressureless dust and a
cosmological constant, but is not constant if the cosmo-
logical constant is replaced by other forms of dark energy.
For a spatially flat universe with pressureless dust plus
some arbitrary dark energy one has

OmðzÞ ¼ �M0 þ ð1��M0Þ ð1þ zÞ3ð1þwÞ � 1

ð1þ zÞ3 � 1
: (48)

For general FLRWmodelsH ¼ D0�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�k0H

2
0D

2
q

only

involves a single derivative of DðzÞ, and so the diagnostic
(47) is easier to reconstruct observationally than the equa-
tion of state parameter, wðzÞ.

The quantity OmðzÞ is readily calculated for the time-
scape model, and is shown in Fig. 6. What is striking about
Fig. 6, as compared to the curves for quintessence and
phantom dark energy models plotted in Ref. [76], is that
the z ¼ 0 intercept

Omð0Þ ¼ 2

3
H0j0 ¼ 2ð8f3v0 � 3f2v0 þ 4Þð2þ fv0Þ

ð4f2v0 þ fv0 þ 4Þ2 (49)

is substantially larger than in the dark energy models.
We note from (49) that limfv0!0Omð0Þ ¼ 1, and

limfv0!1Omð0Þ ¼ 2
3 , with a minimum value of Omð0Þ ’

0:638 at fv0 ’ 0:774. The best-fit present epoch void frac-
tion [38] gives a value of Omð0Þ very close to the mini-
mum. For the range fv0 ¼ 0:76þ0:12

�0:9 [38], Omð0Þ is tightly
constrained to the range 0:638<Omð0Þ< 0:646.

A further difference for the timescape model is that
OmðzÞ does not asymptote to the dressed density parameter
�M0 in any redshift range. For quintessence models
OmðzÞ>�M0, while for phantom models OmðzÞ<�M0,
and in both cases OmðzÞ ! �M0 as z ! 1. In the time-
scape model, OmðzÞ>�M0 ’ 0:33 for z & 1:7, while
OmðzÞ<�M0 for z * 1:7. It thus behaves more like a
quintessence model for low z, in accordance with Fig. 3.
However, the steeper slope and the completely different
behavior at large z mean the diagnostic is generally very
different to that of dark energy models. For large z,

lim
z!1OmðzÞ ¼ 2ð1� fv0Þð2þ fv0Þ3

ð4f2v0 þ fv0 þ 4Þ2 ; (50)

giving a value ��M0 <Omð1Þ<�M0, if fv0 > 0:25. For
example, for fv0 ¼ 0:762, we find Omð1Þ ’ 0:2.
Shafieloo, Sahni, and Starobinsky [80] recently tested

the OmðzÞ statistic against CMB, BAO, and SneIa data,
including the Constitution SneIa data [42]. In comparing
their results with Fig. 6 it should be noted that their
analysis entails taking particular empirical functions for
wðzÞ, and then best fitting the free parameters. The two
functions they choose are (i) wðzÞ ¼ w0 þ w1z=ð1þ zÞ;
and (ii) wðzÞ ¼ � 1

2 ½1þ tanhððz� ztÞ�Þ�, where w0, w1,

zt, and � are empirically fit constants. In both these cases
wðzÞ is monotonic and cannot completely accommodate
the equivalent ‘‘artificial dark energy equation of state’’ for
the timescape model as depicted in Fig. 3 at large z.
Furthermore, the effective wðzÞ of Fig. 3(a) becomes non-
linear in the range 0:5 & z & 1, contradicting the parame-
trization of case (i) of [80]. Also, it crosses the phantom
divide at z ’ 0:464 contradicting the parametrization of
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FIG. 6. The dark energy diagnostic OmðzÞ of Sahni, Shafieloo,
and Starobinsky [76] plotted for the timescape tracker solution
with best-fit value fv0 ¼ 0:762 (solid line), and 1� limits
(dashed lines) from Ref. [38]: (a) for the redshift range 0< z <
1:6 as shown in Ref. [80]; (b) for the redshift range 0< z < 6.
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case (ii). However, we can expect that the empirical forms
ofwðzÞ assumed by Shafieloo et al. have some comparative
value for the timescape model at very low values of z. The
greatest leverage should come as z ! 0. It is therefore
interesting to note that of the two empirical forms for
wðzÞ assumed by Shafieloo et al., the one that provides
the better fit, case (ii), gives a best-fit intercept Omð0Þ
remarkably close to the expectation from (49) for fv0 ¼
0:762, viz.Omð0Þ ¼ 0:638. (See Fig. 3, right-hand panel of
Ref. [80].) Since this is not the expectation for either a
typical quintessence or phantom energy model, it is an
encouraging result for the timescape model, which is also
consistent with the study of Zhao and Zhang [73].

Shafieloo et al. suggested [80] that their analysis of the
recent data might give a hint that ‘‘dark energy is decay-
ing.’’ Given the fact that the results of Ref. [80] appear to
be consistent with the expectations of the timescape model,
our analysis sheds a different light on this interpretation. It
should also be noted that a pure FLRW model with sub-
stantial negative spatial curvature, i.e., with �k0 > 0, will
give an intercept Omð0Þ ¼ �M0 þ 2

3�k0, whose value

could assume a similar value to that obtained for the time-
scape model. Of course, this would require a value of �k0

which is ruled out by the WMAP analysis for the FLRW
case, which is why such values have not been considered
by Shafieloo et al. As observed above Omð0Þ has a very
tight range of values for a wide range of reasonable values
of fv0. Thus if the tests of the OmðzÞ statistic could be
improved to include a wider range of empirical wðzÞ func-
tions, including those that more closely mimic our relation
(45), then this would be an interesting test once signifi-
cantly more data become available.

The strong differences seen in the OmðzÞ diagnostic
between the timescape model and typical dark energy
models might be seen to arise from the fact that it accen-
tuates the differences which already exist in the dressed
HðzÞ function, which is quite different from that of the
Friedmann equation. Using (B9) we plot HðzÞ=H0 for the
best-fit timescape model in Fig. 7, and compare it to the
spatially flat�CDMmodels that were plotted in Fig. 2. For
z < 1:5, HðzÞ=H0 for the timescape model with fv0 ¼
0:762 is greater than for the �CDM models shown. The
absolute value of HðzÞ is partly compensated for, however,
by the higher value of H0 that is generally assumed for the
�CDM models.

Gaztañaga, Cabré, and Hui [81] have recently given
measurements of HðzÞ at three redshifts, inferred from
the separation of radial and transverse BAO scales in the
SDSS-DR6 data, as will be discussed in Sec. V. However,
their values are model dependent, being estimated accord-
ing to

HðzÞtrue ¼ rBAO
rWMAP

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25ð1þ zÞ3 þ 0:75

q

with a fiducial expansion rate for a spatially flat �CDM

model, with �M0 ¼ 0:25, used to convert redshifts to
distances. Any estimates of HðzÞ will inevitably involve
some model dependence, unless one can perform a test
such as the time drift of cosmological redshifts, which will
be discussed in Sec. VII.

V. THE ALCOCK-PACZYŃSKI TESTAND BARYON
ACOUSTIC OSCILLATIONS

Alcock and Paczyński devised a test [82] which relies on
comparing the radial and transverse proper length scales of
spherical standard volumes comoving with the Hubble
flow [83]. This test was originally conceived to distinguish
FLRW models with a cosmological constant from those
without a � term. The test is free from many evolutionary
effects, but relies on one being able to remove systematic
distortions due to peculiar velocities.
For the timescape model the Alcock-Paczyński test

function determined from the dressed geometry is

fAP ¼ 1

z

��������	�	z
��������¼ HD

z
¼ 3ð2t2 þ 3btþ 2b2Þð1þ zÞdA

tð2tþ 3bÞ2z ;

(51)

where t is given implicitly in terms of z by (38).
In Fig. 8 the Alcock-Paczyński test function (51) is

compared to that of the spatially flat �CDM model with
different values of (�M0, ��0). The curve for the time-
scape model has a distinctly different shape from those of
the �CDM models, being convex. However, the extent to
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FIG. 7. The function H�1
0 HðzÞ for the timescape model with

fv0 ¼ 0:762 (solid line) is compared to H�1
0 HðzÞ for three

spatially flat �CDM models with the same values of
ð�M0;��0Þ as in Fig. 2 (dashed lines): (i) ð�M0;��0Þ ¼ ð0:249;
0:751Þ; (ii) ð�M0;��0Þ ¼ ð0:279; 0:721Þ; (iii) ð�M0;��0Þ ¼
ð0:34; 0:66Þ.
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which the curves can be reliably distinguished would
require detailed analysis based on the precision attainable
with any particular experiment.

Current detections of the BAO scale in clustering statis-
tics of LRGs [45–50] can in fact be viewed as a variant of
the Alcock-Paczyński test, as they make use of both the
transverse and radial dilations of the fiducial comoving

BAO scale to present a measure

DV ¼
�
zD2

HðzÞ
�
1=3 ¼ Df�1=3

AP : (52)

In Fig. 9 the BAO radial test function (52) is compared to
that of the same spatially flat �CDM models plotted in
Fig. 8, for the same redshift ranges.
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FIG. 8. The Alcock-Paczyński test function fAP ¼ 1
z j 	�	z j for

the timescape model with fv0 ¼ 0:762 (solid line) is compared
to fAP for three spatially flat �CDM models with the same
values of ð�M0;��0Þ as in Fig. 2 (dashed lines):
(i) ð�M0;��0Þ ¼ ð0:249; 0:751Þ; (ii) ð�M0;��0Þ ¼ ð0:279;
0:721Þ; (iii) ð�M0;��0Þ ¼ ð0:34; 0:66Þ. Two redshift ranges
are shown: (a) 0< z < 1; (b) 0< z < 6.
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FIG. 9. The BAO radial test function H0DV ¼ H0Df�1=3
AP for

the timescape model with fv0 ¼ 0:762 (solid line) is compared
to H0DV for three spatially flat �CDM models with the same
values of ð�M0;��0Þ as in Fig. 2 (dashed lines):
(i) ð�M0;��0Þ ¼ ð0:249; 0:751Þ; (ii) ð�M0;��0Þ ¼ ð0:279;
0:721Þ; (iii) ð�M0;��0Þ ¼ ð0:34; 0:66Þ. Two redshift ranges
are shown: (a) 0< z < 1; (b) 0< z < 6.
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Although the DV measure for the timescape model is
significantly different from that of the�CDMmodel at the
higher redshifts shown in Fig. 9(b), we see from Fig. 9(a)
that at the nearby redshifts the DV measure gives consid-
erably less discriminatory leverage. A case in point is
provided by the ratio r0:35:0:2 � DVð0:35Þ=DVð0:2Þ, which
has been determined observationally [46,50]. In this case
the timescape model with fv0 ¼ 0:76þ0:12

�0:09 gives r0:35:0:2 ¼
1:632þ0:005

�0:007, as compared to r0:35:0:2 ¼ 1:664þ0:009
�0:007 for a

spatially flat �CDM model with �M0 ¼ 0:28� 0:03, val-
ues which are close. By comparison the observed ratio was
initially estimated to be r0:35:0:2 ¼ 1:812� 0:060 [46], but
this estimate has recently been revised to r0:35:0:2 ¼
1:736� 0:065 [50].

In fact, one must exercise caution in comparing the
prediction of r0:35:0:2 for the timescape model with the
‘‘observed’’ ratio [46,50] since the galaxy clustering data
have been analyzed in a manner which assumes an under-
lying FLRW model. The relevant analyses [46,50] involve
transformations to Fourier space to treat the power spec-
trum. To revisit such an analysis for the timescape model is
far from trivial, as it requires a recalibration of transfer
functions, and of the cosmological drag epoch, zd, for a
rather different cosmological parametrization given that
we are dealing with a model which does not evolve as a
homogeneous isotropic cosmology. In particular, the mass
ratio of nonbaryonic dark matter to baryonic matter can be
somewhat different [38] from the concordance �CDM
model, and this needs to be considered. Given that the
difference in the value of r0:35:0:2 quoted between
Refs. [46,50] is due to changes in the manner in which
the data are treated, as well as the fact that there are more
data, it is clear the differences in calibration due to a
change of the nonbaryonic to baryonic mass ratio could
also similarly affect the value of the observed ratio.

A derivation of tools which would enable us to perform
the BAO tests to the extent of Refs. [46,50] is beyond the
scope of the present paper. Instead, it is our aim to simply
explore what the best possible discriminating tests will
be. In this regard, we note that if we compare Figs. 8(a)
and 9(a), then it is clear that the Alcock-Paczyński test
provides much more significant differences between the
timescape model and�CDMmodels than theDV measure.
In fact, the DV measure is currently employed because
there are not yet sufficient data to separately estimate
both the radial and transverse BAO signals directly, as
would be required for the Alcock-Paczyński test.

Gaztañaga, Cabré, and Hui [81] recently claimed to
separate the radial and angular scales corresponding to
the BAO in the 2-point correlation function, by assuming
a nonlinear gravitational lensing magnification bias. Using
SDSS-DR6 data they have exhibited a correlation function
in both the radial and transverse dimensions, for redshift
slices at z ¼ 0:15–0:30 and at z ¼ 0:40–0:47. They have
not yet provided separate estimates of both the radial and

transverse BAO scales. However, provided their techniques
are robust, then a direct Alcock-Paczyński test may soon be
on the horizon. Naturally such estimates will have model
dependence. From the point of view of the timescape
model, one must carefully consider not only the treatment
of redshift space distortions, but also any assumptions
which rely on calibrations of FLRW models, as discussed
above.
One point of the analysis of Gaztañaga, Cabré, and Hui

is suggestive. They find some tension between their best-fit
value of the baryon density parameter �B0 ’ 0:06 and the
WMAP5 value [44] �B0 ’ 0:0432. The discrepancy is
greater in the higher redshift slice. Their results are sum-
marized in Table II. The inferred values for the mass ratio
of nonbaryonic dark matter to baryonic matter of
�C0=�B0 ¼ ð�M0 ��B0Þ=�B0 are 3.6 in the whole sam-
ple, 3.7 in the lower z slice, and 2.1 in the higher z slice, as
compared to the expectation of a ratio of 6.1 from
WMAP5, for which ð�B0h

2;�M0h
2Þ ¼ ð0:0227; 0:1308Þ

[44]. In other words, the best-fit values indicate a some-
what higher mass fraction of baryons than the fit to
WMAP5 with a FLRW model. This is confirmed by the
analysis of the 3-point correlation function [85] and is a
feature which the authors find difficult to explain as a
systematic error. The analysis of the 3-point function yields
a best fit [85] �M0 ¼ 0:28� 0:05, �B0 ¼ 0:079� 0:025.
For the timescape model by comparison, analysis of the

Riess07 gold data [38,86] yields dressed parameters
�M0 ¼ 0:33þ0:11

�0:16, �B0 ¼ 0:080þ0:021
�0:013, and a ratio

�C0=�B0 ¼ 3:1þ2:5
�2:4 from supernovae alone. Demanding

a fit of the angular diameter distance of the sound horizon
[28] to within 4% would reduce these bounds to
�C0=�B0 ¼ 3:1þ1:8

�1:3 for the timescape model. Thus the

higher baryon density indicated by the analysis of
Gaztañaga, Cabré, and Hui is consistent with the expecta-
tions of the timescape model.
Finally, we note that although the reality of the BAO

measure is accepted by most researchers [45–52],
Sylos Labini et al. [62] have questioned this. Although
Sylos Labini et al. detect the BAO scale in the LRG
sample, they point out that its amplitude is less than the
overall density variations of 8% at large scales, and fur-
thermore the correlation function remains positive where
the �CDM model predicts it should be negative. Sample
uncertainties may limit the strength of this conclusion [51],
however.

TABLE II. Values of �M0h
2, �B0h

2 inferred by Gaztañaga,
Cabré, and Hui [81], and the resulting mass ratio of nonbaryonic
dark matter to baryonic matter, �C0=�B0.

Redshift range �M0h
2 �B0h

2 �C0=�B0

0.15–0.30 0.132 0.028 3.7

0.15–0.47 0.12 0.026 3.6

0.40–0.47 0.124 0.04 2.1
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In my view, although the results of Ref. [62] may
potentially indicate problems with a statistical analysis
based on the expectations of a FLRW cosmology, the
BAO is a real feature which will survive despite the ob-
served inhomogeneities. The point is that given a universe
which was very close to homogeneous and isotropic at last
scattering, it can only evolve so far away from homoge-
neity in the time available since that epoch. Thus there is
every reason to expect that statistical analyses of the type
that are being performed can pick up a feature in the two-
point correlation function, even if there are larger scale
variations in density of order 8%. The exact properties of
the statistical correlation functions within a framework
such as the timescape cosmology await a detailed analysis.
The main difference is that the density of the observable
universe when measured on scales larger than that of
statistical homogeneity will retain some intrinsic variance,
and furthermore is not the time evolution of the mean
density of the statistical ensemble at last scattering. This
is likely to have important consequences for the statistical
analysis.

VI. TEST OF (IN)HOMOGENEITY

Recently Clarkson, Bassett, and Lu [87] constructed
what they call a ‘‘test of the Copernican principle’’ based
on the observation that for homogeneous, isotropic models
which obey the Friedmann equation, the present epoch
curvature parameter, a constant, may be written as

�k0 ¼ ½HðzÞD0ðzÞ�2 � 1

½H0DðzÞ�2 (53)

for all z, irrespective of the dark energy model or any other
model parameters. Consequently, taking a further deriva-
tive, the quantity

C ðzÞ � 1þH2ðDD00 �D02Þ þHH0DD0 (54)

must be zero for all redshifts for any FLRW geometry.
A deviation of CðzÞ from zero, or of (53) from a constant

value, would therefore mean that the assumption of homo-
geneity is violated. Clarkson, Bassett, and Lu refer to this
as a ‘‘violation’’ of the Copernican principle. Given the
viewpoint outlined in Ref. [28], simply associating FLRW
models with the Copernican principle is too great a re-
striction on its general philosophy. One should distinguish
the Copernican principle, which is generally understood as
the statement that we do not occupy a privileged position in
the Universe, from the cosmological principle that the
Universe is described by a spatially homogeneous isotropic
geometry.

In the presence of inhomogeneity there can still be
statistically average cells—taken here to be of size
100h�1 Mpc—but with a variance of the geometry within
such cells. As observers in an average galaxy, our position
is unremarkable from the point of view of the Copernican
principle. Nonetheless, the local geometry in an average

void can be markedly different from the geometry in an
average galaxy. Given that observers and the things they
observe are necessarily in bound structures, structure for-
mation provides a selection effect in terms of our local
geometry vis-à-vis the volume-average geometry in a void.
Given this improved understanding of the Copernican
principle, one should not call the test of Clarkson,
Bassett, and Lu a test of the Copernican principle. It is
simply a test of the validity of the FLRW models.
Since the timescape model is inhomogeneous, it will

certainly violate the test of Clarkson, Bassett, and Lu. If
one can determine HðzÞ in a model independent way, then
tests of relations (53) or (54) could not only rule on
whether the FLRW model is violated, but also test the
timescape model. Analytic expressions for HD0 and HD00
are obtained by multiplying (53) and (54) by (B8).
Combining the results with (40) and (B11) we find that
(53) becomes

�k0 ¼ BðzÞ
H2

0ð1þ zÞ2d2A
; (55)

where

B ¼ ð2t� bÞdA
ð2tþ 3bÞ2

�
2þ ð2t� bÞdA

ð2tþ 3bÞ2
�
; (56)

while (54) becomes

C ¼ �ð2t� bÞdA
ð2tþ 3bÞ2 �

3bð10t2 þ 11bt� 2b2Þd2A
tð2tþ 3bÞ4 : (57)
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FIG. 10. The homogeneity test function BðzÞ ¼ ½HD0�2 � 1 is
plotted for the timescape tracker solution with best-fit value
fv0 ¼ 0:762 (solid line), and compared to the equivalent curves
B ¼ �k0ðH0DÞ2 for two different �CDM models with small
curvature: (a) �M0 ¼ 0:28, ��0 ¼ 0:71, and �k0 ¼ 0:01;
(b) �M0 ¼ 0:28, ��0 ¼ 0:73, and �k0 ¼ �0:01. A spatially
flat FLRW model would have BðzÞ � 0.
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Once again, dA is given by (40) and t is given implicitly in
terms of z via (38).

We plot the functions BðzÞ and CðzÞ in Figs. 10 and 11.
The function C differs appreciably from the FLRW value of
zero. However, two derivatives are required to determine
CðzÞ, which is subject to greater uncertainties for actual
data, given that DðzÞ is effectively what is measured. Thus
it would be more feasible to determine BðzÞ ¼ ½HD0�2 �
1, which involves a single derivative of the observed curve.
[It makes more sense to plot BðzÞ, rather than the right-
hand side of Eq. (53), which involves a division by zero as
z ! 0.] In Fig. 10 BðzÞ for the timescape model is com-
pared to the expectations for �CDM models with a small
amount of spatial curvature, as compatible with WMAP.
The form ofBðzÞ is very different at small redshifts, which
suggests that this will be a useful observational test.
Furthermore, since BðzÞ has a maximum value and also
changes sign, its form for the timescape model is very
different from that of any FLRW model. In the FLRW
case BðzÞ is always a monotonic function whose sign is
determined by that of �k0. At large z, or equivalently at
early times as t ! 0, BðzÞ ! 0, and CðzÞ ! 0 for the
timescape model, consistent with the fact that it coincides
with a spatially flat Einstein–de Sitter universe at early
times. Since CðzÞ involves second derivatives, it goes to
zero more slowly than BðzÞ: for the best-fit solution of
Figs. 10 and 11, Bð1100Þ ’ �0:0029, while Cð1100Þ ’
0:075.

It is interesting to compare Fig. 11 with the correspond-
ing plot of CðzÞ for a LTB model with a large void recently
given in Fig. 14 of Ref. [88]. The magnitude of CðzÞ is
considerably larger for the timescape model.

VII. TIME DRIFT OF COSMOLOGICAL
REDSHIFTS

For the purpose of the (in)homogeneity test considered
in the last section, HðzÞ must be observationally deter-
mined, and this is difficult to achieve in a model indepen-
dent way. There is one way of achieving this, however,
namely, by measuring the time variation of the redshifts of
different sources over a sufficiently long time interval [89],
as has been discussed recently in relation to tests of (in)
homogeneity by Uzan, Clarkson, and Ellis [90]. Although
the measurement is extremely challenging, it may be fea-
sible over a 20 yr period by precision measurements of the
Lyman-� forest in the redshift range 2< z < 5 with the
next generation of extremely large telescopes [91].
For FLRW models one has

dz

dt
¼ H0ð1þ zÞ �HðzÞ; (58)

which in the case of a �CDM model with possible spatial
curvature leads directly to

1

H0

dz

dt
¼ ð1þ zÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M0ð1þ zÞ3 þ��0 þ�k0ð1þ zÞ2

q
:

(59)

For the timescape model one has an expression identical to
(58) in terms of the dressed Hubble parameter if the time
derivative is taken with respect to wall time, �. Using (B8)
we find that
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FIG. 11. The homogeneity test function CðzÞ given by (54) is
plotted for the timescape tracker solution with best-fit value
fv0 ¼ 0:762. Any FLRWmodel would have CðzÞ � 0, regardless
of its spatial curvature.
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FIG. 12. The function H�1
0

dz
d� for the timescape model

with fv0 ¼ 0:762 (solid line) is compared to H�1
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dz
dt for three

spatially flat�CDMmodels with the same values of ð�M0;��0Þ
as in Fig. 2 (dashed lines): (i) ð�M0;��0Þ ¼ ð0:249; 0:751Þ;
(ii) ð�M0;��0Þ ¼ ð0:279; 0:721Þ; (iii) ð�M0;��0Þ ¼ ð0:34;
0:66Þ.
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1

H0

dz

d�
¼ 1þ z� H

H0

¼ 1þ z� 3ð2t2 þ 3btþ 2b2Þ
H0tð2tþ 3bÞ2 ;

(60)

where t is given implicitly in terms of z by (38).
In Fig. 12 we compare H�1

0
dz
d� for the best-fit timescape

model with fv0 ¼ 0:762 to the equivalent function for three
different spatially flat �CDM models. What is notable is
that the curve for the timescape model is considerably
flatter than those of the �CDM models. The origin of
this feature may be understood qualitatively to arise from
the fact that the magnitude of the apparent acceleration is
considerably smaller in the timescape model, as compared
to the magnitude of the acceleration in�CDMmodels. For
models in which there is no apparent acceleration what-
soever, one finds that H�1

0
dz
d� is always negative. If there is

cosmic acceleration, real or apparent, at late epochs then
H�1

0
dz
d� will become positive at low redshifts, though at a

somewhat larger redshift than that at which acceleration is
deemed to have begun.

Figure 12 demonstrates that a very clear signal of dif-
ferences in the redshift time drift between the timescape
model and �CDM models might be determined at low
redshifts when H�1

0
dz
d� should be positive. In particular, the

magnitude of H�1
0

dz
d� is considerably smaller for the time-

scape model as compared to �CDM models. Ob-
servationally, however, it is expected that measurements
will be best determined for sources in the Lyman-� forest
in the range, 2< z < 5. At such redshifts the magnitude of
the drift is somewhat more pronounced in the case of the
�CDM models. For a source at z ¼ 4, over a period of
	� ¼ 10 years we would have 	z ¼ �3:3� 10�10 for the
timescape model with fv0 ¼ 0:762 and H0 ¼
61:7 km s�1 Mpc�1. By comparison, for a spatially flat
�CDM model with H0 ¼ 70:5 km s�1 Mpc�1 [44], a
source at z ¼ 4 would over 10 years give 	z ¼ �4:7�
10�10 for ð�M0;��0Þ ¼ ð0:249; 0:751Þ, and 	z ¼ �7:0�
10�10 for ð�M0;��0Þ ¼ ð0:279; 0:721Þ.

VIII. DISCUSSION

In conclusion, the combination of tests we have de-
scribed here has the potential to decide between the time-
scape cosmology, the �CDM cosmology, and other
homogeneous isotropic cosmologies with other sources
of dark energy. A number of the tests have been devised
by other researchers with homogeneous dark energy cos-
mologies in mind. In these cases, the results of independent
analyses performed to date are encouraging for the time-
scape model. In particular,

(i) A study of wðzÞ from recent data sets by Zhao and
Zhang [73] provides mild evidence at the 95% con-
fidence level for an effective wðzÞ which crosses the
phantom divide near the redshift z ’ 0:46 indicated
in Fig. 3(a), with wðzÞ þ 1 of the same sign over the
relevant redshift ranges for z & 1;

(ii) Fits of classes of empirical wðzÞ functions by
Shafieloo, Sahni, and Starobinsky [80] yield, in
the best-fit case, an OmðzÞ function with intercept
Omð0Þ which appears to coincide with the time-
scape expectation, Omð0Þ ’ 0:64;

(iii) Studies of the BAO scale in SSDS-DR6 data by
Gaztañaga et al. [81,85] yield a relative mass frac-
tion of baryonic matter to nonbaryonic dark matter,
which is higher than the WMAP5 expectation with
a FLRW cosmology, but which is perfectly consis-
tent with the timescape model fit to the angular
scale of the sound horizon [38].

While one can conceive of dark energy models with a wðzÞ
which mimics Fig. 3(a) at redshifts z & 1, there is no
reason to expect a different normalization of �C0=�M0

for such models. Indeed primordial nucleosynthesis
bounds are a very strong constraint on all cosmological
models. It is precisely because the mean CMB temperature
at a volume-average location unbound to physical struc-
tures in a void is cooler in the timescape scenario than the
mean temperature we measure in a galaxy, that a different
normalization of the primordial baryon-to-photon ratio
relative to present epoch cosmological parameters is ob-
tained. This would not be true for any homogeneous iso-
tropic cosmology, regardless of the type of dark energy
fluid.
Other future tests discussed in this paper also have

definitive predictions. The expectation for the (in)homo-
geneity test of Clarkson, Bassett, and Lu [87] yields a
diagnostic BðzÞ, which is distinctively different from
both FLRW models with spatial curvature as shown in
Fig. 10, and from LTB models. The time drift of cosmo-
logical redshifts would be most definitively tested by
monitoring as many redshifts as possible in the range 1 &
z & 2. As shown in Fig. 12, in this range H�1

0
dz
d� should be

very close to zero, and only very marginally positive as
compared to the �CDM expectation. In the redshift range,
2 & z & 5, which is expected to be the range most readily
tested with the next generation of extremely large tele-
scopes, the functionH�1

0
dz
d�will have a flatter z dependence

for the timescape model than comparable �CDM models,
as seen in Fig. 12. The redshift range 2 & z & 8 can also be
tested by GRB Hubble diagrams, and initial investigations
are in progress [70].
This paper has considered tests on scales greater than

that of statistical homogeneity. There are many other such
tests in addition to those which we have discussed. A
number of these involve the CMB, such as the determina-
tion of the amplitude of the late-time integrated Sachs-
Wolfe effect. Such tests require first a computation of the
detailed structure of the CMB acoustic peaks, recalibrated
to the timescape cosmology. This is a very complicated
task, which is why it has not been attempted here.
However, it is an important goal for future work.
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Below the scale of statistical homogeneity we expect to
see apparent variance in the Hubble parameter, with a peak
value 17% larger than the dressed global average value,
measured over the scale of the dominant void fraction of
30h�1 Mpc. Since voids dominate by volume, a spheri-
cally symmetric average out to a fixed redshift will yield
generally higher values until we average over volumes for
which a typical line of sight intersects as many walls and
voids as the global average. That is, the spherically aver-
aged Hubble parameter should decrease from a maximum
at the 30h�1 Mpc scale to the global average value at
roughly the 100h�1 Mpc scale. This general pattern is
indeed borne out by the analysis of Li and Schwarz [34].
Much more detailed predictions of the expected variance
could be made for the timescape model, by performing
Monte Carlo simulations assuming a reasonable distribu-
tion of voids and minivoids packed into 100h�1 Mpc
spheres. This is an important goal for future work, as it
would give a Hubble bubble feature with unique character-
istics, providing a test of a feature for which there is no
counterpart in the standard cosmology.

The recent determination of H0 ¼ 74:2�
3:6 km s�1 Mpc�1 by the SH0ES survey [92] does provide
a challenge for the timescape model. However, as we have
just noted, in the timescape scenario spatial curvature
gradients and apparent variance in the Hubble flow below
the scale of statistical homogeneity introduce systematic
issues which complicate the determination of H0. Riess
et al. [92] have done a very careful analysis, and make
efforts to account for a Hubble bubble—which they cut off
at z ¼ 0:023, approximately two-thirds of the scale of
statistical homogeneity. However, while they do not use
supernovae with z < 0:023 in the measurement of the
Hubble flow, their calibration of the distance ladder is
necessarily made on nearby scales, in particular, using
the maser distance to NGC 4258, at 7:2� 0:5 Mpc, as an
anchor. In the timescape scenario the effects of spatial
inhomogeneity and spatial curvature gradients are greatest
on scales up to 30h�1 Mpc. Given that our own galaxy
appears to be in a filament, this may have an impact in
calibrating standard candles in the distance ladder.

The megamaser project [93] will therefore provide an
interesting test, as it will yield purely geometric dis-
tances—independent of standard candle calibrations—on
scales much larger than has been tested to date [94]. The
relevant scales are considered to be well into the Hubble
flow in the standard cosmology, and if distances of order
�60=h Mpc could be measured, would represent a sub-
stantial up to a large fraction of the scale of statistical
homogeneity. The expectation in the timescape scenario
is that provided such sources are sampled in directions in
which the line of sight passes though a variety of different
density fields, then there should be variance in the values of
the Hubble constant so derived. The sample of maser
distances required to test the statistical expectations of

the timescape scenario would be considerably larger than
the ten or so masers currently under investigation, but may
become feasible in coming decades.
In comparing future measurements with model predic-

tions it is important not only to extend the timescape model
to develop counterparts of all the standard tests of the
FLRW models, but also to carefully examine the methods
by which astronomical data are reduced, as in many cases
the standard cosmology is either explicitly or implicitly
assumed. As one case in point, BAO analyses at present
typically use a transformation to Fourier space and the use
of spectral transfer functions calibrated to the FLRW mod-
els. Thus while the results of Gaztañaga et al. [81,85] are
suggestive in that they find results in agreement with our
expected �C0=�B0—which is the physical parameter re-
sponsible for the degree of baryon drag in the primordial
plasma—in applying results of independent analyses to the
timescape model one must exercise caution until each step
in the BAO data reduction is understood directly from
calibrations with the timescape model.
Another important case in which data reduction must be

carefully considered is that of supernovae. It was recently
pointed out [95] that on Bayesian evidence the timescape
model is disfavored as compared to the �CDM model
using the Union [41] and Constitution [42] compilations.
However, the Union and Constitution data sets have been
reduced using the SALT method in which one simulta-
neously marginalizes over both empirical light curve pa-
rameters and cosmological parameters, assuming a FLRW
cosmology. Hicken et al. [42] discuss and compare four
different methods of data reduction: SALT, SALT2,
MLCS31, and MLCS17. They find some systematic dif-
ferences between the methods; for example, the SALT
methods give larger scatter at higher redshifts.
As will be discussed in a forthcoming paper [43], use of

the MLCS17 reduced data gives a different picture to the
conclusions drawn by Kwan, Francis, and Lewis [95]. In
particular, analysis of the MLCS17-reduced 372 SneIa of
Hicken et al. gives Bayesian evidence which favors the
timescape model over the �CDM model. Thus there are
already enough supernovae in principle to distinguish be-
tween the models, except that systematic uncertainties in
the empirical methods by which standard candles are
standardized at present limit the conclusions that can be
drawn. Such issues are likely to also be a feature of many
other astrophysical observations, and thus it is important
that as many independent tests as possible are devised, and
carried out carefully in a way in which any model-
dependent assumptions are scrutinized.
It is hoped that the tests discussed in this paper will

provide a basis for comparing the �CDM model with a
physically well-grounded competing cosmological model.
To fully compete, much further development of the time-
scape model is of course required. The standard cosmology
consists of a base model for expansion of the Universe—
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the FLRW model dating from the 1920s—on top of which
a sophisticated superstructure has been built over the last
few decades. This superstructure includes features such as
the generation of initial conditions from inflation, the
bottom-up hierarchical structure formation process, and
the results of large-scale structure simulations using
Newtonian gravity on top of the base expansion. The
model of Refs. [28,29] replaces the base expansion of the
FLRW model by an average expansion which is not based
on the Friedmann equation, and this paper has explored a
number of tests which can be performed based solely on
the average geometrical properties.

Many current cosmological tests of the standard cosmol-
ogy—including detailed analysis of the CMB, galaxy clus-
tering, redshift space distortions, and weak lensing—can
only be extended to the timescape model once the standard
cosmology superstructure built on top of the FLRW model
is adapted to the timescape model to understand the growth
of structure at a more detailed level. Although this may
seem a daunting task, it is perhaps not quite as tall an order
as one might at first think. In particular, the differences
from a standard FLRW model with inflationary initial
conditions at last scattering are negligible, and conse-
quently many large portions of the standard cosmology
would not change. In particular, the mechanisms of physi-
cal processes are largely still the same, but what does
change is the relationship of present average cosmological
parameters to the initial perturbations. Rederivation of the
standard cosmology superstructure may largely be an issue
of recalibration. Where the calculations involve transfer
functions that relate initial perturbation spectra to their
time evolved distributions, such recalibrations may be
quite nontrivial, however. Thus a careful first principles
reexamination is required. This is left to future work.
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APPENDIX A: GENERALTWO-SCALE SOLUTION
TO THE BUCHERT EQUATIONS

The general solution for the two-scale [96] Buchert
equations (16) and (17) for the independent functions
�aðtÞ and fvðtÞ is given implicitly by [29]

ð1� fvÞ1=3 �a ¼ �a0½ð1� �iÞ ��M0�1=3ð32 �H0tÞ2=3; (A1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðuþ C�Þ

q
� C� ln

��������� u

C�

��������1=2þ
��������1þ u

C�

��������1=2
�

¼ �

�a0
ðtþ t�Þ; (A2)

where u � f1=3v �a= �a0 ¼ f1=3vi av= �a0 is proportional to av;

C� � �i ��M0f
1=3
v0 = ��k0; � � �a0 �H0

��1=2
k0 =f1=6v0 ; �i and t�

are constants of integration, while fv0, �H0,
��M0, and

��k0

are the present epoch values of fv, �H, ��M, and ��k,

respectively. Since f1=3wi aw ¼ ð1� fvÞ1=3 �a, Eq. (A1) may

also be written as aw ¼ aw0t
2=3, where aw0 �

�a0½94 f�1
wi ð1� �iÞ ��M0

�H0
2�1=3.

The lapse function, �
, bare matter density parameter,
��M, and void fraction, fv, satisfy the integral constraint

ð1� �iÞ �
2 ��M

ð1� fvÞ
¼ 1: (A3)

Furthermore, Hw ¼ 2=ð3tÞ, while Hv ¼ Hw=hr where

hr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �iÞ ��M0f
1=3
v0 fv

ð ��k0uþ ��M0f
1=3
v0 �iÞð1� fvÞ

vuut : (A4)

Of the six constants �i, t�, fv0, �H0,
��M0, and

��k0, only
four are independent since there are additional constraints
[29] ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �iÞ ��M0ð1� fv0Þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ��k0 þ ��M0�iÞfv0

q
¼ 1;

(A5)

��3=2
k0

f1=2v0

�H0ðt0 þ t�Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��k0ð ��k0 þ ��M0�iÞ

q
� ��M0�i

� ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������
��k0

��M0�i

��������
vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������1þ
��k0

��M0�i

��������
vuut �

; (A6)

where the age of the Universe in volume-average time is

t0 ¼ 2

3 �H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fv0

ð1� �iÞ ��M0

s
; (A7)

on account of (A1).
Of the four independent parameters, two can be elimi-

nated by demanding priors at the surface of last scattering
which are consistent with the evidence of the CMB. The
redshift of the surface of last scattering relative to wall
observers at the present epoch, z ’ 1100, is fixed by the
ratio of our locally measured CMB temperature relative to
the temperature scale of matter-radiation decoupling and
recombination, which is for the most part determined by
the binding energy of hydrogen. We require that the veloc-
ity perturbations and density perturbations at this epoch
when z ’ 1100 are consistent with observation. For ex-
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ample, we can fix velocity perturbations by demanding
1� hri ’ 10�5 and density perturbations by restricting
fvi. Physically, fvi is to be understood as the fraction of
our present horizon volume,H , which by cosmic variance
was in uncompensated underdense perturbations at last
scattering. If this uncompensated fraction is viewed as a
single density perturbation then

	H �
�
	�

�

�
H i

¼ fvi

�
	�

�

�
vi
: (A8)

We might demand 	Q 2 f�10�6;�10�5g, which means

we might take fvi 2 f10�4; 10�2g, depending on what
values of ð	�=�Þvi are acceptable for the nonbaryonic
dark matter power spectrum.

Once values of hri and fvi are specified, then by (14),
(dropping the index w), �
i ¼ 1� fvi þ fvih

�1
ri , while the

initial matter density parameter, ��Mi, is fixed in terms of
�
i, �i, and fvi by (A3). At the present epoch, the integral
constraint (A3), combined with the relation for the cosmo-
logical redshift determined by wall observers, zþ 1 ¼
�a0 �
=ð �a �
0Þ, gives

1� fv0 ¼ ð1� �iÞ ��M0 �

2
i f

2=3
vi

��2
k0

ð1þ ziÞ2f2=3v0 A2
i

; (A9)

where zi ’ 1100, and

Ai � f1=3vi
��k0 �ai

f1=3v0 �a0
¼ ��M0

�
fvið1� �iÞ
ð1� fviÞh2ri

� �i

�
; (A10)

where we have used (A4) to express �a0= �ai in terms of hri
and other parameters in the last step. We evaluate both (A1)
and (A2) at the present epoch t0 and at the time of last
scattering, ti, and compare them at each epoch to eliminate
t0 and ti. We then further eliminate t� from the two result-
ing expressions to also obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AiðAi þ ��M0�iÞ

q
� ��M0�i

� ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai

��M0j�ij

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������1þ Ai

��M0�i

��������
s �

� 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� fviÞA3

i

fv0ð1� �iÞfvi ��M0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��k0ð ��k0 þ ��M0�iÞ

q

� ��M0�i ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��k0

��M0j�ij

vuut þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��������1þ

��k0

��M0�i

��������
vuut �

� 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� fv0Þ ��3

k0

fv0ð1� �iÞfvi ��M0

vuut : (A11)

For fixed zi, fvi, and hri the combination of Eqs. (A5),
(A9), and (A11) determines three of the parameters

f ��M0; ��k0; �i; fv0g, leaving one independent parameter in
addition to �H0. Of course, the values of zi, fvi, and hri,
which are consistent with the observed CMB, do vary over

some small ranges. Given the existence of the tracker
solution, however, these small variations do not signifi-
cantly affect macroscopic cosmological parameters. The
macroscopic properties of the Universe depend signifi-
cantly on the two independent parameters �H0 and fv0.

APPENDIX B: TRACKER SOLUTION TO THE
BUCHERT EQUATIONS

As noted in Ref. [29], setting �i ¼ 0 in the general
solution gives a solution which is a strong attractor in the
phase space. Physically this solution represents one in
which the void regions expand as empty Milne universes

in volume average time, av ¼ av0t, where av0 �
��1=2
k0 �a0 �H0f

�1=6
v0 f�1=3

vi , and hr ¼ 2=3. The solution is given
by

�a ¼ �a0ð3 �H0tÞ2=3
2þ fv0

½3fv0 �H0tþ ð1� fv0Þð2þ fv0Þ�1=3;
(B1)

fv ¼ 3fv0 �H0t

3fv0 �H0tþ ð1� fv0Þð2þ fv0Þ
; (B2)

with two independent parameters �H0 and fv0.
All other quantities of interest may be determined from

(B1) and (B2). For example, the parameters (18)–(20) are
given by

��M ¼ 4ð1� fvÞ
ð2þ fvÞ2

¼ bð2tþ 3bÞ
3ðtþ bÞ2 ; (B3)

�� k ¼ 9fv
ð2þ fvÞ2

¼ tð2tþ 3bÞ
2ðtþ bÞ2 ; (B4)

��Q ¼ �fvð1� fvÞ
ð2þ fvÞ2

¼ �bt

6ðtþ bÞ2 ; (B5)

where b ¼ ð1� fv0Þð2þ fv0Þ=½9fv0 �H0�, as in (39). From
(B3)–(B5) we obtain equivalent expressions for their

present epoch values, ��M0,
��k0, and

��Q0, in terms of

fv0 or t0 ¼ ð2þ fv0Þ=ð3 �H0Þ. The bare Hubble parameter,
lapse function, and dressed Hubble are given, respectively,
by

�H ¼ 2þ fv
3t

¼ 2ðtþ bÞ
tð2tþ 3bÞ ; (B6)

�
 ¼ 1

2
ð2þ fvÞ ¼ 3ðtþ bÞ

ð2tþ 3bÞ ; (B7)

H ¼ 4fv
2 þ fv þ 4

6t
¼ 3ð2t2 þ 3btþ 2b2Þ

tð2tþ 3bÞ2 : (B8)

It also follows that
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H ¼ ð4fv2 þ fv þ 4Þ �H
2ð2þ fvÞ ¼ 3ð2t2 þ 3btþ 2b2Þ �H

2ðtþ bÞð2tþ 3bÞ : (B9)

For a number of the tests described in the paper, it is
necessary to perform a derivative of observational quanti-
ties with respect to the redshift, z, as given by (38). For this
purpose, a useful intermediate step is provided by

dt1=3

dz
¼ �t1=3ð2tþ 3bÞðtþ bÞ

3ðzþ 1Þð2t2 þ 3btþ 2b2Þ ; (B10)

which follows from (38). Thus, for example, by (38), (B8),
and (B10),

dH

dz
¼ 6ðtþ bÞð2t3 þ 3bt2 þ 6b2tþ 3b3Þ

ðzþ 1Þtð2t2 þ 3btþ 2b2Þð2tþ 3bÞ2 ;

¼ 3f1=3v0
�H0ð2t3 þ 3bt2 þ 6b2tþ 3b3Þ

ð2tÞ1=3ð2t2 þ 3btþ 2b2Þð2tþ 3bÞ2=3 : (B11)

The above expressions all involve volume-average time,
t. To relate them to wall time, �, which is assumed to be a
good approximation to the time measured by typical ob-
servers in galaxies, one has to invert the relation

� ¼ 2

3
tþ 4�M0

27fv0 �H0

ln

�
1þ 9fv0 �H0t

4�M0

�
; (B12)

where �M0 ¼ 1
2 ð1� fv0Þð2þ fv0Þ is the present epoch

dressed matter density.
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López-Corredoira, Astron. Astrophys. 505, 981 (2009).
[63] In the notation of Buchert and Carfora [64]: HM ¼ Hw;

HE ¼ Hv; �M ¼ 1� fv; QM ¼ 0 or 	2HM ¼ 1
3 h�2iM;

QE ¼ 0 or 	2HE ¼ 1
3 h�2iE; and QD ¼ 6�Mð1� �MÞ�

ðHE �HMÞ2.
[64] T. Buchert and M. Carfora, Classical Quantum Gravity 25,

195001 (2008).
[65] The best-fit values for the fit to the Riess07 data set

obtained in Ref. [38] were fit using the full exact solution

for hri ¼ 0:999 99, fvi ¼ 10�4, and zi ¼ 1100. The dif-

ference in best-fit parameter values between the full

solution and the tracker solution in this case turns out to

be 0.1% inH0, 1% in fv0, and 3% in�M0. Thus the tracker

solution is accurate at the precision of current tests. If

higher precision is required it will become necessary to

also incorporate radiation species.
[66] The magnitude of ��Q is of similar order to the volume-

average variance of the expansion rate found by Clarkson,

Ananda, and Larena [24] in an independent study, using a

somewhat different averaging scheme. In comparing re-

sults one should be careful to note that Clarkson et al.

consider domain averages on spatial hypersurfaces, when

determining the ‘‘variance in the Hubble rate.’’ Such

spatial volume averages relate to our bare cosmological

quantities, rather than dressed parameters. In the present

scheme one finds a greater variance in the apparent

Hubble flow, once one takes into account the fact that

we dress parameters using rods and clocks calibrated to

our local geometry whose spatial curvature differs from

the spatial volume-average one.
[67] In the terminology of Kolb, Marra, and Matarrese [68]

(26) is a ‘‘phenomenological background solution,’’

whereas (22) is an ‘‘averaged background solution.’’
[68] E.W. Kolb, V. Marra, and S. Matarrese, arXiv:0901.4566

[Gen. Relativ. Grav. (to be published)].

DAVID L. WILTSHIRE PHYSICAL REVIEW D 80, 123512 (2009)

123512-22



[69] B. E. Schaefer, Astrophys. J. 660, 16 (2007); N. Liang,
W.K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685,
354 (2008); L. Amati, C. Guidorzi, F. Frontera, M. Della
Valle, F. Finelli, R. Landi, and E. Montanari, Mon. Not. R.
Astron. Soc. 391, 577 (2008); R. Tsutsui, T. Nakamura, D.
Yonetoku, T. Murakami, Y. Kodama, and K. Takahashi, J.
Cosmol. Astropart. Phys. 08 (2009) 015.

[70] B. E. Schaefer (private communication).
[71] Similar discontinuous wðzÞ functions are found in �CDM

models with a small amount of spatial curvature, j�k0j ¼
0:02, if wðzÞ is mistakenly reconstructed with the assump-
tion of a spatially flat cosmology [72].

[72] G. Barenboim, E. Fernández-Martı́nez, O. Mena, and L.
Verde, arXiv:0910.0252.

[73] G. B. Zhao and X. Zhang, arXiv:0908.1568.
[74] P. Serra, A. Cooray, D. E. Holz, A. Melchiorri, S. Pandolfi,

and D. Sarkar, arXiv:0908.3186.
[75] R. Kessler et al., Astrophys. J. Suppl. Ser. 185, 32

(2009).
[76] V. Sahni, A. Shafieloo, and A.A. Starobinsky, Phys. Rev.

D 78, 103502 (2008).
[77] Equivalent diagnostics were also given independently by

Gu, Chen, and Chen [78], and by Zunckel and Clarkson
[79].

[78] J. A. Gu, C.W. Chen, and P. Chen, New J. Phys. 11,
073029 (2009).

[79] C. Zunckel and C. Clarkson, Phys. Rev. Lett. 101, 181301
(2008).

[80] A. Shafieloo, V. Sahni, and A.A. Starobinsky, Phys. Rev.
D 80, 101301 (2009).
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