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3. Brief description

3.1. From heavy nuclei and superheavy nuclei to

nuclear matter cores of stellar dimensions

One of the most active field of research has been to analyze a general ap-
proach to Compact Stars like White-Dwarfs and Neutron Stars, based on the
Thomas-Fermi ultrarelativistic equations amply adopted in the study of su-
perheavy nuclei. The aim is to have a unified approach for nuclei, for su-
perheavy nuclei up to atomic numbers of the order of 105–106, and for what
we have called “nuclear matter cores of stellar dimensions”. These massive
nuclear cores are

• characterized by atomic number of the order of 1057;

• composed by a degenerate fluid of neutrons, protons and electrons in
beta equilibrium;

• globally neutral configurations;

• expected to be kept at nuclear density by self gravity.

The analysis of superheavy nuclei has historically represented a major field
of research, developed by Prof. V. Popov and Prof. W. Greiner and their
schools. This same problem was studied in the context of the relativistic
Thomas-Fermi equation also by R. Ruffini and L. Stella, already in the ’80s.
The recent approach was started with the Ph.D. Thesis of M. Rotondo and
has shown the possibility to extrapolate this treatment of superheavy nuclei
to the case of nuclear matter cores of stellar dimensions (see App. A.3). The
very unexpected result has been that also around these massive cores there is
the distinct possibility of having an electromagnetic field close to the critical
value

Ec =
m2

e c3

eh̄
,

although localized in a very narrow shell of the order of the electron Compton
wavelength (see Figs. 3.1, 3.2).

The welcome result has been that all the analytic work developed by Prof.
V. Popov and the Russian school can be applied using scaling laws satisfied
by the relativistic Thomas-Fermi equation to the case of nuclear matter cores
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Figure 3.1.: Number density of electrons, protons and neutrons.
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3.1. From heavy nuclei and superheavy nuclei to nuclear matter cores of
stellar dimensions

of stellar dimensions, if the beta equilibrium condition is properly taken into
account (see App. A.1 and A.3). This has been the result obtained and pub-
lished by Ruffini, Rotondo and Xue already in 2007. Since then, a large va-
riety of problems has emerged, which have seen the direct participation at
ICRANet of Prof. Greiner, Prof. Popov, and Prof. ’t Hooft.

One of the crucial issues to be debated is the stability of such cores under
the competing effects of self gravity and Coulomb repulsion. In App. A.1
it has been demonstrated their stability against nuclear fission, as opposed
to the case of heavy nuclei. In particular, on the basis of Newtonian gravi-
tational energy considerations it has been found the existence of a possible

new island of stability for mass numbers A > AR = 0.039
(

Np

A

)1/2 (mPlanck
mn

)3
,

where Np is the number of protons, A is the total number of baryons, mn is

the neutron mass and mPlanck = (h̄c/G)1/2 is the Planck mass. The equilib-
rium against Coulomb repulsion originates now from the combined effect of
the screening of the relativistic electrons, of the surface tension due to strong
interactions and of the gravitational interaction of these massive cores.

By enforcing the condition of beta equilibrium, it has been also obtained a
generalization to the relation between the mass number A and atomic num-
ber Np which encompasses phenomenological expressions (see App. A.1 and
A.4 for details).

All these considerations have been made for an isolated core with constant
proton density whose boundary has been sharply defined by a step function.
No external forces are exerted. Consequently, the Fermi energy of the elec-
trons has been assumed to be equal to zero.

Different aspects concerning these macroscopic systems are also consid-
ered. For instance, the analysis of the electron distribution around such cores
in both the case of global charge neutrality and the case of not global charge
neutrality has been presented (see App. A.5).

For instance, the assumption of a sharp proton density profile has been re-
laxed and, consequently, a smooth surface modeled by a Woods-Saxon-like
proton distribution has been introduced (see App. A.6 for details). The pres-
ence of overcritical electric fields close to their surface has been confirmed
also in this more general case.

The classical and semi-classical energy states of relativistic electrons boun-
ded by a massive and charged core with the charge-mass-ratio Q/M and
macroscopic radius Rc are discussed (see App. A.7). It is shown that the en-
ergies of semi-classical (bound) states can be much smaller than the nega-
tive electron mass-energy (−mc2), and thus energy-level crossing to negative
energy continuum occurs. It has been then advanced the possibility that in
neutral cores with equal proton and electron number, the configuration of rel-
ativistic electrons in these semi-classical (bound) states should be stabilized
by photon emission.
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3. Brief description

Another topic of current interest concerns the case of rotating nuclear mat-
ter cores of stellar dimensions. Preliminary results on the induced magnetic
field by electric field rotation has been recently obtained (see App. A.8). Such
analysis has been done in the framework of classical electrodynamics under
the assumption of uniform rigid rotation of the macroscopic nuclear cores
in the non-compressed case. For a period of rotation ∼ 10 ms, overcritical
magnetic fields has been obtained near the surface of the configuration.

3.2. The equation of state of nuclear matter under

high pressures

It has been the existence of the scaling laws of the ultrarelativistic Thomas-
Fermi equation (see App. A.1), which has led to the very exciting possibility
of having macroscopic configurations of nuclear matter in beta equilibrium
exhibiting strong electric fields on their surfaces. In order to go one step fur-
ther towards a more realistic description of macroscopic configurations like
white-dwarfs and/or neutron stars, further improvements and extensions
must be applied to the starting model.

In the earliest description of neutron stars in the work of Oppenheimer
and Volkoff (1939) only a gas of neutrons was considered and the equation
of equilibrium was written in the Schwarzschild metric. They considered the
model of a degenerate gas of neutrons to hold from the center to the border,
with the density monotonically decreasing away from the center.

In the intervening years, a more realistic model has been presented chal-
lenging the original considerations of Tolman (1939) and Oppenheimer and
Volkoff (1939) (TOV). The TOV equations considered the existence of neu-
trons all the way to the surface of the star. The presence of neutrons, protons
and electrons in beta equilibrium were instead introduced by Harrison et al.
(1965). Still more important, the neutron stars have been shown to be com-
posed of two sharply different components: the core at nuclear and supra-
nuclear densities consisting of degenerate neutrons, protons and electrons in
beta equilibrium and a crust of white dwarf like material, namely a nuclei lat-
tice in a background of degenerate electrons (see Harrison et al. (1965); Baym
et al. (1971a) for details). Further works describing the nuclear interactions
where later introduced. Clearly all these considerations departed profoundly
from the TOV approximation.

The matching between the core and the crust is still today an open issue in
neutron star physics. In order to handle with this interesting problem, a step-
by-step procedure is needed. In such a case, the neutron, proton, and electron
fluid is confined within the core radius due to the compression exerted by the
crust component of the neutron star.

It is well known that the Thomas-Fermi model has been extensively ap-
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3.2. The equation of state of nuclear matter under high pressures

plied in atomic physics, also has been applied extensively in atomic physics
in its relativistic form as well as in the study of atoms with heavy nuclei (see
Gombás (1949) for instance). Similarly there have been considerations of rel-
ativistic Thomas-Fermi model for quark stars pointing out the existence of
critical electric fields on their surfaces Alcock et al. (1986). Similar results
have also been obtained in the transition at very high densities, from the nor-
mal nuclear matter phase in the core to the color-flavor-locked phase of quark
matter in the inner core of hybrid stars Alford et al. (2001). However, no ex-
ample exists to the application of the electromagnetic Thomas-Fermi model
for neutron stars.

It is therefore interesting, in order to approach both the complex problem
of a neutron star core and its interface with the neutron star crust and the
problem of the equilibrium of gas in a white dwarf taking into account all
possible global electromagnetic interactions between the nucleus and the rel-
ativistic electrons, to extend the model to the compressed case in which the
Fermi energy of electrons turns to be positive.

The analysis of globally neutral and compressed configurations composed
by a relativistic fluid of degenerate neutrons, protons, and electrons in beta
equilibrium has been recently accomplished. It has been generalized the
Feynman-Metropolis-Teller treatment of compressed atoms to relativistic re-
gimes, and the concept of compressed nuclear matter cores of stellar dimen-
sions has been introduced (see App. A.2 for details).

In the relativistic generalization of the Feynman-Metropolis-Teller appro-
ach, the equation to be integrated is the relativistic Thomas-Fermi equation,
also called the Vallarta-Rosen equation. The integration of this equation does
not admit any regular solution for a point-like nucleus and both the nuclear
radius and the nuclear composition have necessarily to be taken into account.
This introduces a fundamental difference from the non-relativistic Thomas-
Fermi model where a point-like nucleus was adopted.

Due to the introduction of the concept of Wigner-Seitz cells, the study of
degenerate compressed matter in white dwarfs can be addressed. This prob-
lem presents, still today, open issues of great interest such as the equilibrium
of the electron gas and the associated nuclear component, taking into account
the electromagnetic, the gravitational and the weak interactions formulated
in a correct special and general relativistic framework.

A complete analysis of the properties of such configurations as a function
of the compression can be duly done through the relativistic generalization of
the Feynman-Metropolis-Teller approach (see App. A.2 for details). It is then
possible to derive a consistent equation of state for compressed matter which
generalizes both the uniform free-electron fluid approximation, adopted for
instance by Chandrasekhar (1931b) in his famous treatment of white-dwarfs,
and the well-known work of Salpeter (1961) which describes the electrody-
namical and relativistic effects by a sequence of approximations.

Apart from taking into account all possible electromagnetic and special rel-
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3. Brief description

ativistic corrections to the equation of state of white-dwarf matter, the new
equation of state, which incorporates the beta equilibrium condition, leads
to a self-consistent calculation of the onset for inverse beta-decay of a given
nuclear composition as function of the Fermi energy of electrons or equiva-
lently, as a function of the density of the system. This important achievement,
leads to a self-consistent calculation of the critical mass of white-dwarfs with
heavy nuclear composition (see App. B.1 for details).

In addition, the numerical value of the mass, of the radius, and of the crit-
ical mass of white-dwarfs turn to be smaller with respect to the ones ob-
tained with approximate equations of state (see e.g. Hamada and Salpeter
(1961)). Therefore, the analysis of compressed atoms following the relativis-
tic Feynman-Metropolis-Teller treatment has important consequences in the
determination of the mass-radius relation of white dwarfs, leading to the pos-
sibility of a direct confrontation of these results with observations, in view of
the current great interest for the cosmological implications of the type Ia su-
pernovae.

In neutron star cores, nuclear matter is under very extreme conditions of
density and pressure. The importance of the strong interactions between
nucleons at such extreme pressures it has been known for years (see e.g.
Cameron (1970)). However, due to the absence of a complete theory of the
strong interactions, and due to the impossibility of performing terrestrial ex-
periments with similar extreme pressure-density conditions, the equation of
state of nuclear matter at densities larger than the so-called nuclear saturation
density ∼ 2.7 × 1014 g/cm3, is still today unknown.

The construction of nuclear equations of state within a fully consistent for-
mulation of the equations of equilibrium in general relativity is an active
topic of research, which is being covered currently in the Ph. D. thesis of D.
Pugliese (see App. B.8 for instance), R. Belvedere and S. Martins de Carvalho.

3.3. Electrodynamics of compact stars in general

relativity

A branch of research which is currently under continuous evolution corre-
sponds to the extension to the case of general relativity, all the previous the-
ory about the Thomas-Fermi model and the relativistic Thomas-Fermi model,
applied initially to the study of heavy nuclei, superheavy nuclei as well as to
the theoretical hypothesis of nuclear matter cores of stellar dimensions. The
aim is to construct a self-consistent theory of self-gravitating systems rela-
tivistic quantum statistics, electromagnetic, weak and strong interactions in
the framework of general relativity, from which it is possible to study the
properties of compact objects like white-dwarfs and neutron stars.

The recent generalization of the Feynman-Metropolis-Teller treatment to
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3.3. Electrodynamics of compact stars in general relativity

relativistic regimes, which led to a new equation of state of white-dwarf mat-
ter (see App. A.2), has been recently used to construct equilibrium config-
urations of white-dwarfs in general relativity (see App. B.1). Thus, a fully
consistent special and general relativistic theory of white-dwarfs has been
formulated leading to a new mass-radius relation of white-dwarfs.

Concerning to neutron stars, most of effort have been given to the con-
struction of self-consistent solutions of the equations of equilibrium for neu-
tron stars in general relativity taking into account the traditionally neglected
electromagnetic interaction. In nearly all the scientific literature on neutron
stars, a “local approach”, where the equation of state of neutron star matter is
constructed ignoring global gravitational and Coulombian effects by assum-
ing not only flat space but also local charge neutrality, has been traditionally
used. A barotropic relation P = P(E) between the energy-density E and pres-
sure P is then obtained. The gravitational effects are then taken into account
by embedding such an equation of state into the so-called TOV equations of
hydrostatic equilibrium.

Then, the first step has been to obtain the first self-consistent globally but
not locally neutral solution of the Einstein-Maxwell equations for a self-gravi-
tating system of degenerate neutrons, protons and electrons in beta equilib-
rium (see App. B.9). The impossibility of imposing the condition of local
charge neutrality on such systems has been proved in complete generality
and the crucial role of the constancy of the generalized Fermi energy has
been emphasized. Such a solution, although does not represent a realistic
model for a neutron star, contains all the essential physics with respect to the
Coulomb interactions between protons and electrons in neutron star interi-
ors.

Subsequently, the generalization to the case of realistic neutron stars with
core and crust has been examined (see App. B.2). The role of the constancy
of the general relativistic Thomas-Fermi energy of particles is there evidenti-
ated by demonstrating that they lead to the neutron star equilibrium config-
urations with a core-crust transition interface which shows similar electrody-
namical properties to the ones predicted by the nuclear matter cores of stellar
dimensions.

The next step is to introduce self-consistently the strong interaction in the
construction of the equilibrium configurations. Neutron star equilibrium
configurations satisfying global but not local charge neutrality can be found
in App. B.6 where the nuclear interaction was derived from phenomenolog-
ical models. A fully consistent formulation of the equations of equilibrium
taking into account relativistic quantum statistics, electromagnetic, weak and
strong interactions in the framework of general relativity has been one of the
research topics of the Ph. D. of D. Pugliese (see App. B.8).

The many interesting aspects of the physics and the structure of the crust
of neutron stars are the research topic of the Ph. D. thesis of R. Belvedere.
The entire formulation of the equilibrium equations of rotating neutron stars
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as well as their numerical integration are part of the K. Boshkayev’s Ph. D.
thesis. M. Haney is studying the problem of the pulsational modes of these
neutron star configurations with strong electric fields in the core-crust bound-
ary and, S. Martins de Carvalho, is starting to analyze the influence of the
temperature on the properties of these new neutron star equilibrium config-
urations.
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4. Publications (before 2009)

4.1. Refereed Journals

1. R. Ruffini, M. Rotondo and S.-S. Xue,“Electrodynamics for Nuclear Mat-
ter in Bulk ”, Int. J. Mod. Phys. D Vol. 16, No. 1 (2007) 1-9.

A general approach to analyze the electrodynamics of nuclear matter in bulk

is presented using the relativistic Thomas-Fermi equation generalizing to the

case of N ≃ (mPlanck/mn)3 nucleons of mass mn the approach well tested in

very heavy nuclei (Z ≃ 106). Particular attention is given to implement the

condition of charge neutrality globally on the entire configuration, versus the

one usually adopted on a microscopic scale. As the limit N ≃ (mPlanck/mn)3

is approached the penetration of electrons inside the core increases and a rel-

atively small tail of electrons persists leading to a significant electron density

outside the core. Within a region of 102 electron Compton wavelength near the

core surface electric fields close to the critical value for pair creation by vacuum

polarization effect develop. These results can have important consequences on

the understanding of physical process in neutron stars structures as well as on

the initial conditions leading to the process of gravitational collapse to a black

hole.

2. R. Ruffini and L. Stella,“Some comments on the relativistic Thomas-
Fermi model and the Vallarta-Rosen equation”, Phys. Lett. B 102 (1981)
442.

Some basic differences between the screening of the nuclear charge due to a

relativistic cloud of electrons in a neutral atom and the screening due to vac-

uum polarization effects induced by a superheavy ion are discussed.

3. J. Ferreirinho, R. Ruffini and L. Stella, “On the relativistic Thomas-Fermi
model”, Phys. Lett. B 91, (1980) 314. The relativistic generalization of the

Thomas-Fermi model of the atom is derived. It approaches the usual nonrela-

tivistic equation in the limit Z ≪ Zcrit, where Z is the total number of electrons

of the atom and Zcrit = (3π/4)1/2α−3/2 and α is the fine structure constant. The

new equation leads to the breakdown of scaling laws and to the appearance of

a critical charge, purely as a consequence of relativistic effects. These results

are compared and contrasted with those corresponding to N self-gravitating

degenerate relativistic fermions, which for N ≈ Ncrit = (3π/4)1/2(m/mp)3

give rise to the concept of a critical mass against gravitational collapse. Here

m is the mass of the fermion and mp = (h̄c/G)1/2 is the Planck mass.
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4. Publications (before 2009)

4.2. Conference Proceedings

1. R. Ruffini, M. Rotondo and S.-S. Xue, “Neutral nuclear core vs super
charged one ”, in Proceedings of the Eleventh Marcel Grossmann Meet-
ing, R. Jantzen, H. Kleinert, R. Ruffini (eds.), (World Scientific, Singa-
pore, 2008).

Based on the Thomas-Fermi approach, we describe and distinguish the elec-

tron distributions around extended nuclear cores: (i) in the case that cores are

neutral for electrons bound by protons inside cores and proton and electron

numbers are the same; (ii) in the case that super charged cores are bare, elec-

trons (positrons) produced by vacuum polarization are bound by (fly into)

cores (infinity).

2. B. Patricelli, M. Rotondo and R. Ruffini, “On the Charge to Mass Ratio
of Neutron Cores and Heavy Nuclei”, AIP Conference Proceedings, Vol.
966 (2008), pp. 143-146.

We determine theoretically the relation between the total number of protons

Np and the mass number A (the charge to mass ratio) of nuclei and neutron

cores with the model recently proposed by Ruffini et al. (2007) and we compare

it with other Np versus A relations: the empirical one, related to the Periodic

Table, and the semi-empirical relation, obtained by minimizing the Weizsäcker

mass formula. We find that there is a very good agreement between all the

relations for values of A typical of nuclei, with differences of the order of per

cent. Our relation and the semi-empirical one are in agreement up to A ≈
104 for higher values, we find that the two relations differ. We interpret the

different behavior of our theoretical relation as a result of the penetration of

electrons (initially confined in an external shell) inside the core, that becomes

more and more important by increasing A; these effects are not taken into

account in the semi-empirical mass-formula.

3. M. Rotondo, R. Ruffini and S.-S Xue, “On the Electrodynamical proper-
ties of Nuclear matter in bulk”, AIP Conference Proceedings, Vol. 966
(2008), pp. 147-152.

We analyze the properties of solutions of the relativistic Thomas-Fermi equa-

tion for globally neutral cores with radius of the order of R ≈ 10 Km, at

constant densities around the nuclear density. By using numerical tecniques

as well as well tested analytic procedures developed in the study of heavy

ions, we confirm the existence of an electric field close to the critical value

Ec = m2
e c3/eh̄ in a shell ∆R ≈ 104h̄/mπc near the core surface. For a core of

≈ 10 Km the difference in binding energy reaches 1049 ergs. These results can

be of interest for the understanding of very heavy nuclei as well as physics of

neutron stars, their formation processes and further gravitational collapse to a

black hole.
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4. Publications (before 2009)

4. B. Patricelli, M. Rotondo, J. A. Rueda H. and R. Ruffini, “The Electro-
dynamics of the Core and the Crust components in Neutron Stars”, AIP
Conference Proceedings, Vol. 1059 (2008), pp. 68–71.

We study the possibility of having a strong electric field (E) in Neutron Stars.

We consider a system composed by a core of degenerate relativistic electrons,

protons and neutrons, surrounded by an oppositely charged leptonic compo-

nent and show that at the core surface it is possible to have values of E of the

order of the critical value for electron-positron pair creation, depending on the

mass density of the system. We also describe Neutron Stars in general relativ-

ity, considering a system composed by the core and an additional component:

a crust of white dwarf - like material. We study the characteristics of the crust,

in particular we calculate its mass Mcrust. We propose that, when the mass

density of the star increases, the core undergoes the process of gravitational

collapse to a black hole, leaving the crust as a remnant; we compare Mcrust

with the mass of the baryonic remnant considered in the fireshell model of

GRBs and find that their values are compatible.

5. R. Ruffini, “The Role of Thomas-Fermi approach in Neutron Star Mat-
ter”, Proceedings of the 9th International Conference “Path Integrals-
New trends and perspectives”, Max Planck Institute for the Physics of
Complex Systems, Dresden, Germany, Semptember 23–28 2007, World
Scientific 207–218 (2008), eds. W. Janke and A. Pelster

The role of the Thomas-Fermi approach in Neutron Star matter cores is pre-

sented and discussed with special attention to solutions globally neutral and

not fulfilling the traditional condition of local charge neutrality. A new sta-

ble and energetically favorable configuration is found. This new solution can

be of relevance in understanding unsolved issues of the gravitational collapse

processes and their energetics.
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5.1. Refereed Journals

1. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, “A self-consistent
approach to neutron stars”, J. Korean Phys. Soc. 57, 560 (2010).

We present a set of equilibrium equations for a self-gravitating system of de-

generate neutrons, protons and electrons in beta equilibrium in the framework

of relativistic quantum statistics and the Einstein-Maxwell equations. Special

emphasis is given to the crucial role of the constancy of the generalized Fermi

energy of particles, from which we formulate the general relativistic version

of the Thomas-Fermi equation. We discuss briefly the consequences of this

approach in the general case of neutron star configurations with a core and a

crust.

2. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, “A self-consistent
general relativistic solution for a self-gravitating system of degener-
ate neutrons, protons and electrons in beta equilibrium”, submitted to
Phys. Rev. Lett.

A self-consistent treatment of the simplest, nontrivial, self-gravitating system

of degenerate neutrons, protons and electrons in beta equilibrium is presented

in the framework of relativistic quantum statistics and the Einstein-Maxwell

equations. The impossibility of imposing the condition of local charge neutral-

ity on such systems is proved in complete generality. The crucial role of the

constancy of the generalized Fermi energy is emphasized and consequently

the coupled system of the general relativistic Thomas-Fermi equations and the

Einstein-Maxwell equations is solved. We then give an explicit solution corre-

sponding to a violation of the local charge neutrality condition over the entire

star, still fulfilling the global charge neutrality, which is obtained by solving a

sophisticated eigenvalue problem. The complete electrodynamical and grav-

itational potentials for such a system are given, from the center all the way

to the surface boundary layers. The value of the Coulomb potential at the

center of the configuration is eV(0) ≃ mπc2 and the system is intrinsically

stable against Coulomb repulsion in the proton component. Also, the more

general systems, including nuclear interactions, must have a constant elec-

tron Fermi energy and fulfill the associated general relativistic Thomas-Fermi

equations here introduced with the proper boundary conditions. Such require-
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ments have been neglected in the current literature, based on the Tolman-

Oppenheimer-Volkoff equilibrium equations.

3. Jorge A. Rueda, R. Ruffini, and S.-S. Xue, “On the self-consistent gen-
eral relativistic equilibrium equations of neutron stars”, submitted to
Phys. Rev. Lett.

We address the existence of globally neutral neutron star configurations in

contrast with the traditional ones constructed by imposing local neutrality.

The equilibrium equations describing this system are the Einstein-Maxwell

equations which must be solved self-consistently with the general relativistic

Thomas-Fermi equation and β-equilibrium condition. To illustrate the appli-

cation of this novel approach we adopt the Baym, Bethe, and Pethick (1971)

strong interaction model of the baryonic matter in the core and of the white-

dwarf-like material of the crust. We illustrate the crucial role played by the

boundary conditions satisfied by the leptonic component of the matter at the

interface between the core and the crust. For every central density an en-

tire new family of equilibrium configurations exists for selected values of the

Fermi energy of the electrons at the surface of the core. Each such configura-

tion fulfills global charge neutrality and is characterized by a non-trivial elec-

trodynamical structure. The electric field extends over a thin shell of thickness

∼ h̄/(mec) between the core and the crust and becomes largely overcritical in

the limit of decreasing values of the crust mass.

4. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, “The relativistic
Feynman-Metropolis-Teller theory for white-dwarfs in general relativ-
ity”, submitted to Phys. Rev. D.

The recently formulation of the relativistic Thomas-Fermi model within the

Feynman-Metropolis-Teller theory for compressed atoms is applied to the stu-

dy of general relativistic white-dwarf equilibrium configurations. The equa-

tion of state, which takes into account the beta equilibrium of the nuclei with

the surrounding electrons, is obtained as a function of the compression by

considering each atom constrained in a Wigner-Seitz cell and leading to the

estimate of the Coulomb interaction. The general relativistic equilibrium of

white-dwarf matter can be expressed by the simple formula
√

g00µws = con-

stant, which links the chemical potential of the Wigner-Seitz cell µws with the

general relativistic gravitational potential at each point of the configuration.

The configuration outside each Wigner-Seitz cell is strictly neutral and there-

fore no global electric field is necessary to warranty the equilibrium of the

white-dwarf. These equations correct the ones used by Chandrasekhar by

taking into due account the Coulomb interaction between the nuclei and the

electrons. They also generalize the work of Salpeter by considering a unified

self-consistent approach to the Coulomb interaction in each Wigner-Seitz cell.

The consequences on the numerical value of the Chandrasekhar-Landau mass

limit are presented. The modifications of the mass-radius relation for 4He and
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56Fe white-dwarf equilibrium configurations are also presented. These effects

become observable in processes requiring a precision knowledge of the white-

dwarf parameters.

5. M. Rotondo, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, “On the rela-
tivistic Thomas-Fermi treatment of compressed atoms and compressed
nuclear matter cores of stellar dimensions ”, submitted to Phys. Rev. C.

The Feynman, Metropolis and Teller treatment of compressed atoms is ex-

tended to the relativistic regimes. Each atomic configuration is confined by

a Wigner-Seitz cell and is characterized by a positive electron Fermi energy.

The non-relativistic treatment assumes a point-like nucleus and infinite val-

ues of the electron Fermi energy can be attained. In the relativistic treatment

there exists a limiting configuration, reached when the Wigner-Seitz cell radius

equals the radius of the nucleus, with a maximum value of the electron Fermi

energy (EF
e )max, here expressed analytically in the ultra-relativistic approxima-

tion. The corrections given by the relativistic Thomas-Fermi-Dirac exchange

term are also evaluated and shown to be generally small and negligible in

the relativistic high density regime. The dependence of the relativistic elec-

tron Fermi energies by compression for selected nuclei are compared and con-

trasted to the non-relativistic ones and to the ones obtained in the uniform ap-

proximation. The relativistic Feynman, Metropolis, Teller approach here pre-

sented overcomes some difficulties in the Salpeter approximation generally

adopted for compressed matter in physics and astrophysics. The treatment

is then extrapolated to compressed nuclear matter cores of stellar dimensions

with A ≃ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. A new family of equilibrium

configurations exists for selected values of the electron Fermi energy varying

in the range 0 < EF
e ≤ (EF

e )max. Such configurations fulfill global but not local

charge neutrality. They have electric fields on the core surface, increasing for

decreasing values of the electron Fermi energy reaching values much larger

than the critical value Ec = m2
e c3/(eh̄), for EF

e = 0. We compare and contrast

our results with the ones of Thomas-Fermi model in strange stars.

6. V. Popov, M. Rotondo, R. Ruffini, and S.-S. Xue, “On gravitationally and
electrodynamically bound massive nuclear density cores”, submitted to
Phys. Rev. C.

In a unified treatment we extrapolate results for neutral atoms with heavy nu-

clei to massive nuclear density cores with mass number A ≈ (mPlanck/mn)3 ∼
1057. We give explicit analytic solutions for the relativistic Thomas-Fermi equa-

tion of Nn neutrons, Np protons and Ne electrons in beta equilibrium, full-

filling global charge neutrality, with Np = Ne. We give explicit expressions

for the physical parameters including the Coulomb and the surface energies

and we study as well the stability of such configurations. Analogous to heavy

nuclei these macroscopic cores exhibit an overcritical electric field near their

surface.
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7. R. Ruffini and S.-S. Xue, “Electron-positron pairs production in an elec-
tric potential of massive cores ”, to be submitted to Phys. Lett. B

Classical and semi-classical energy states of relativistic electrons bounded by a

massive and charged core with the charge-mass-radio Q/M and macroscopic

radius Rc are discussed. We show that the energies of semi-classical (bound)

states can be much smaller than the negative electron mass-energy (−mc2),

and energy-level crossing to negative energy continuum occurs. Electron-

positron pair production takes place by quantum tunneling, if these bound

states are not occupied. Electrons fill into these bound states and positrons go

to infinity. We explicitly calculate the rate of pair-production, and compare it

with the rates of electron-positron production by the Sauter-Euler-Heisenberg-

Schwinger in a constant electric field. In addition, the pair-production rate for

the electro-gravitational balance ratio Q/M = 10−19 is much larger than the

pair-production rate due to the Hawking processes. We point out that in neu-

tral cores with equal proton and electron numbers, the configuration of rela-

tivistic electrons in these semi-classical (bound) states should be stabilized by

photon emissions.

5.2. Conference Proceedings

1. Jorge A. Rueda, R. Ruffini, and S.-S. Xue, “On the electrostatic structure
of neutron stars”, AIP Conf. Proc. 1205, 143 (2010).

We consider neutron stars composed by, (1) a core of degenerate neutrons,

protons, and electrons above nuclear density; (2) an inner crust of nuclei in

a gas of neutrons and electrons; and (3) an outer crust of nuclei in a gas of

electrons. We use for the strong interaction model for the baryonic matter in

the core an equation of state based on the phenomenological Weizsacker mass

formula, and to determine the properties of the inner and the outer crust below

nuclear saturation density we adopt the well-known equation of state of Baym-

Bethe-Pethick. The integration of the Einstein–Maxwell equations is carried

out under the constraints of β-equilibrium and global charge neutrality. We

obtain baryon densities that sharply go to zero at nuclear density and electron

densities matching smoothly the electron component of the crust. We show

that a family of equilibrium configurations exists fulfilling overall neutrality

and characterized by a non-trivial electrodynamical structure at the interface

between the core and the crust. We find that the electric field is overcritical and

that the thickness of the transition surface–shell separating core and crust is of

the order of the electron Compton wavelength.

2. D. Pugliese, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, “A general rel-
ativistic Thomas Fermi treatment of neutron star cores II. Generalized
Fermi energies and beta equilibrium ”, to be published by Int. J. Mod.
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Phys. D as a contribution for the Proceedings of the 2nd Galileo-Xu
Guangqi Meeting, Ventimiglia-Italy (2010).

We formulate the set of self-consistent ground-state equilibrium equations of

a system of degenerate neutrons, protons and electrons in beta equilibrium

taking into account quantum statistics, electro-weak, and strong interactions,

within the framework of general relativity. The strong interaction between nu-

cleons is modeled through sigma-omega-rho meson exchange in the context

of the extended Walecka model, all duly expressed in general relativity. We

demonstrate that, as in the non-interacting case, the thermodynamic equilib-

rium condition given by the constancy of the Fermi energy of each particle-

specie can be properly generalized to include the contribution of all fields.

3. K. Boshkayev, M. Rotondo, and R. Ruffini, “On Magnetic Fields in Ro-
tating Nuclear Matter Cores of Stellar Dimensions ”, to be published by
Int. J. Mod. Phys. D as a contribution for the Proceedings of the 2nd
Galileo-Xu Guangqi Meeting, Ventimiglia-Italy (2010).

We consider a globally neutral system of a stellar dimension consisting of de-

generate and mostly non-interacting Nn neutrons, Np protons and Ne electrons

in beta equilibrium. Such a system at nuclear density having mass numbers

A ≈ 1057 can exhibit a charge distribution different from zero. We present the

analysis in the framework of classical electrodynamics to investigate the mag-

netic field induced by this charge distribution when the system is allowed to

rotate as a whole rigid body with constant angular velocity around the axis of

symmetry.

4. R. Mohammadi, Jorge A. Rueda, R. Ruffini, and S.-S. Xue, “The solution
of the Thomas-Fermi equation in the presence of strong magnetic fields
”, to be published by Int. J. Mod. Phys. D as a contribution for the
Proceedings of the 2nd Galileo-Xu Guangqi Meeting, Ventimiglia-Italy
(2010).

We study the influence of strong constant magnetic fields on a globally but

not locally neutral compressed system of degenerate neutrons, protons and

electrons in beta equilibrium. The ultrarelativistic Thomas-Fermi equation for

such a compressed magnetized system is obtained and solved analytic closed

form. We analyze the effects of the magnetic field on the properties of the

configuration such as the Coulomb potential, the electric field, and the proton

fraction.

5. Jorge A. Rueda H., B. Patricelli, M. Rotondo, R. Ruffini, and S. S. Xue,
“The Extended Nuclear Matter Model with Smooth Transition Surface”,
Proceedings of the 3rd Stueckelberg Workshop on Relativistic Field The-
ories, Pescara-Italy (2008). In press.

The existence of electric fields close to their critical value Ec = m2
e c3/(eh̄) has

been proved for massive cores of 107 up to 1057 nucleons using a proton dis-
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tribution of constant density and a sharp step function at its boundary. We

explore the modifications of this effect by considering a smoother density pro-

file with a proton distribution fulfilling a Woods-Saxon dependence. The oc-

currence of a critical field has been confirmed. We discuss how the location of

the maximum of the electric field as well as its magnitude is modified by the

smoother distribution.

6. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, “On compressed
nuclear matter: from nuclei to neutron stars”, to be published in the
Proceedings of the 1st Galileo-Xu Guangqi Meeting, Shanghai-China
(2009).

We address the description of neutron-proton-electron degenerate matter in

beta equilibrium subjected to compression both in the case of confined nucle-

ons into a nucleus as well as in the case of deconfined nucleons. We follow a

step-by-step generalization of the classical Thomas-Fermi model to special and

general relativistic regimes, which leads to a unified treatment of beta equi-

librated neutron-proton-electron degenerate matter applicable from the case

of nuclei all the way up to the case of white-dwarfs and neutron stars. New

gravito-electrodynamical effects, missed in the traditional approach for the de-

scription of neutron star configurations, are found as a consequence of the new

set of general relativistic equilibrium equations.

7. Jorge A. Rueda, M. Rotondo, R. Ruffini, and S.-S. Xue, “A New Family
of Neutron Star Models: Global Neutrality vs. Local Neutrality”, to be
published in the Proceedings of the 12th Marcel Grossmann Meeting
On General Relativity, Paris-France (2009).

We formulate the set of self-consistent ground-state equilibrium equations of a

system of degenerate neutrons, protons and electrons in beta equilibrium tak-

ing into account quantum statistics and electro-weak interactions within the

framework of general relativity. We point out the existence of globally neu-

tral neutron star configurations in contrast with the traditional locally neutral

ones. We discuss new gravito-electrodynamic effects present in such globally

neutral neutron star equilibrium configurations.

8. R. Ruffini, A. G. Aksenov, M. G. Bernardini, C. Bianco, L. Caito, P. Char-
donnet, M. G. Dainotti, G. De Barros, R. Guida, L. Izzo, B. Patricelli,
L. J. Rangel Lemos, M. Rotondo, Jorge A. Rueda, G. Vereshchagin, and
S.-S. Xue, “The Blackholic energy and the canonical Gamma-Ray Burst
IV: the “long”, “genuine short” and “fake - disguised short” GRBs”, AIP
Conf. Proc. 1132, 199 (2009).

We report some recent developments in the understanding of GRBs based on

the theoretical framework of the “fireshell” model, already presented in the

last three editions of the “Brazilian School of Cosmology and Gravitation”. Af-

ter recalling the basic features of the “fireshell model”, we emphasize the fol-
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lowing novel results: 1) the interpretation of the X-ray flares in GRB afterglows

as due to the interaction of the optically thin fireshell with isolated clouds in

the CircumBurst Medium (CBM); 2) an interpretation as “fake - disguised”

short GRBs of the GRBs belonging to the class identified by Norris & Bonnell;

we present two prototypes, GRB 970228 and GRB 060614; both these cases are

consistent with an origin from the final coalescence of a binary system in the

halo of their host galaxies with particularly low CBM density ncbm ∼ 10−3

particles/cm3; 3) the first attempt to study a genuine short GRB with the anal-

ysis of GRB 050509B, that reveals indeed still an open question; 4) the interpre-

tation of the GRB-SN association in the case of GRB 060218 via the “induced

gravitational collapse” process; 5) a first attempt to understand the nature of

the “Amati relation”, a phenomenological correlation between the isotropic-

equivalent radiated energy of the prompt emission Eiso with the cosmolog-

ical rest-frame νFν spectrum peak energy Ep,i. In addition, recent progress

on the thermalization of the electron-positron plasma close to their formation

phase, as well as the structure of the electrodynamics of Kerr-Newman Black

Holes are presented. An outlook for possible explanation of high-energy phe-

nomena in GRBs to be expected from the AGILE and the Fermi satellites are

discussed. As an example of high energy process, the work by Enrico Fermi

dealing with ultrarelativistic collisions is examined. It is clear that all the GRB

physics points to the existence of overcritical electrodynamical fields. In this

sense we present some progresses on a unified approach to heavy nuclei and

neutron stars cores, which leads to the existence of overcritical fields under the

neutron star crust.
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A. The Thomas-Fermi model:
from nuclei to nuclear matter
cores of stellar dimensions

A.1. On gravitationally and electrodynamically

bound massive nuclear density cores

A.1.1. Introduction

Models involving e+e− plasmas of total energy ≤ 1055 ergs originating from
a vacuum polarization process during the formation of a black hole are being
studied to explain a variety of ultra-relativistic astrophysics events Ruffini
et al. (2010); Cherubini et al. (2009); Aksenov et al. (2007). The formation of
such a Kerr-Newman black hole with overcritical electromagnetic fields can
only occur during the process of gravitational collapse, e.g., of two coalescing
neutron stars. Accordingly in this article we consider new electrodynamical
properties of massive nuclear density cores which have been neglected in the
astrophysics literature. This issue has been overlooked in the traditional de-
scription of neutron stars by considering only neutrons Oppenheimer and
Volkoff (1939) or by imposing ab initio local charge neutrality, i.e., local iden-
tity of the densities of protons and electrons np = ne, thus bypassing the de-
scription of any possible electrodynamical effect Harrison et al. (1965); Baym
et al. (1971a).

The model we consider here generalizes the relativistic Thomas-Fermi treat-
ment for neutral atoms with heavy nuclei Pieper and Greiner (1969); Müller
et al. (1972); Greenberg and Greiner (1982); Popov (1971b); Zeldovich and
Popov (1972); Migdal et al. (1976). The study of neutral atoms with nuclei of
mass number A ∼ 102–106 is a classic problem of theoretical physics Zel-
dovich and Popov (1972); Ruffini et al. (2010). Special attention has been
given to a possible vacuum polarization process and the creation of e+e−

pairs Pieper and Greiner (1969); Zeldovich and Popov (1972); Ruffini et al.
(2010) as well as to the study of nuclear stability against Coulomb repulsion
Greenberg and Greiner (1982). The existence of electric fields larger than the
critical value Ec = m2

e c3/(eh̄) near their surfaces Popov (1971b) has also been
shown. We have generalized these models by enforcing the beta equilibrium
conditions Ruffini et al. (2007b).
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dimensions

We have then extrapolated those results by numerical integration to the
case of massive nuclear density cores of mass ≈ 1M⊙ and radius Rc ≈ 10 km
Ruffini et al. (2007b). Such a massive nuclear density core is a globally neu-
tral system of Nn neutrons, Np protons and Ne electrons in beta equilibrium

at nuclear density having mass numbers A ∼ (mPlanck/mn)
3 where mn (me)

is the neutron (electron) mass and mPlanck = (h̄c/G)1/2 Ruffini et al. (2007b).
As in the nuclear model Migdal et al. (1976), the proton distribution is here
assumed to be constant up to the core radius Rc. We have obtained configu-
rations with global charge neutrality Np = Ne but np 6= ne, in contrast with
the local condition np = ne traditionally assumed in astrophysics. As a result
electric fields of critical value are confirmed to exist, near the surface, also
in the case of massive nuclear density cores in analogy to the case of heavy
nuclei.

Recently a new dimensionless form of the relativistic Thomas-Fermi treat-
ment for a nuclear density core has been obtained which reveals the existence
of new scaling laws for this model.

In this article we present a unified treatment extending from heavy nuclei
to massive nuclear density cores by using an explicit analytic solitonic solu-
tion of the new dimensionless form of the relativistic Thomas-Fermi equation.
We confirm the existence of and give an analytic expression for the overcrit-
ical electric field near the surface of massive nuclear density cores already
obtained in Ruffini et al. (2007b) by numerical integration. Furthermore there
are a variety of new results made possible by the new analytic formulation.
First we give an explicit expression for the Coulomb energy of such cores,
demonstrating their stability against nuclear fission, as opposed to the case
of heavy nuclei. Secondly on the basis of Newtonian gravitational energy
considerations we propose the existence of a possible new island of stabil-

ity for mass numbers A > AR = 0.039
(

Np

A

)1/2 (mPlanck
mn

)3
. The equilibrium

against Coulomb repulsion originates now from the combined effect of the
screening of the relativistic electrons, of the surface tension due to strong in-
teractions and of the gravitational interaction of the massive dense cores. By
enforcing the condition of beta equilibrium, we also obtain a generalized rela-
tion between the mass number A and atomic number Np which encompasses
previous phenomenological expressions.

All the above solutions have been obtained assuming the electron Fermi
energy to be equal to zero. The necessity and the methodology of extending
these results to the case of compressed atoms along the lines of the Feynman-
Metropolis-Teller treatment Feynman et al. (1949), corresponding to positive
values of the Fermi energy of electrons, are outlined here. We also motivate
the clear necessity and the general methodology of justifying the above re-
sults using a self-consistent general relativistic treatment of the system. These
ideas will be pursued in detail elsewhere.
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A.1.2. The relativistic Thomas-Fermi equation and the beta

equilibrium condition

It has been known since the classic work of Fermi Fermi (1950) that the phe-
nomenological drop model of the nucleus gives excellent results for a variety
of properties including the isobaric behavior and nuclear fission. In addition
to the masses of the baryonic components and the asymmetry energy and
pairing term, the mass formula contains terms estimating the surface tension
energy of the nucleus Fermi (1950)

Es = 17.5 · A2/3 MeV, (A.1.1)

and the Coulomb energy Fermi (1950)

Ec =
3αN2

p

5Rc
, (A.1.2)

where Rc = r0A1/3, r0 = 1.5 · 10−13 cm and the numerical factors are derived
by fitting the observational data. From the extremization of the mass formula
the following relation between A and Np is obtained Fermi (1950)

Np ≃
[

2

A
+

3

200

1

A1/3

]−1

, (A.1.3)

which in the limit of small A gives

Np ≃ A

2
. (A.1.4)

The analysis of the stability of the nucleus against finite deformation leads to
a stability condition against fission given by the equality of the surface energy
term to the Coulomb energy. This leads to the condition Fermi (1950)

N2
p

A
< 45. (A.1.5)

A novel situation occurs when super-heavy nuclei (A > Ã ∼ 104) are ex-
amined Ferreirinho et al. (1980); Ruffini et al. (2007b). The distribution of
electrons penetrates inside the nucleus: a much smaller effective net charge of
the nucleus occurs due to the screening of relativistic electrons Migdal et al.
(1976); Ferreirinho et al. (1980). In Ruffini and Stella (1981) a definition of
an effective nuclear charge due to the penetration of the electrons was pre-
sented. A treatment based on the relativistic Thomas-Fermi model has been
developed in order to describe the penetration of the electrons and their ef-
fective screening of the positive nuclear charge. In particular, by assuming
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Np ≃ A/2, Greiner et al. Pieper and Greiner (1969); Müller et al. (1972);
Greenberg and Greiner (1982) and Popov et al. Popov (1971b); Zeldovich and
Popov (1972); Migdal et al. (1976) in a series of papers were able to solve
the non-linear Thomas-Fermi equation. It was demonstrated in Migdal et al.
(1976) that the effective positive nuclear charge is confined to a small layer of
thickness ∼ h̄/

√
αmπc where mπ is the pion mass and as usual α = e2/h̄c.

Correspondingly electric fields of strength much larger than the critical value
Ec for vacuum polarization at the surface of the core are created. However,
the creation of electron-positron pairs due to the vacuum polarization pro-
cess does not occur because of the Pauli blocking by the degenerate electrons
Ruffini et al. (2010).

Here we generalize the work of Greiner Pieper and Greiner (1969); Müller
et al. (1972); Greenberg and Greiner (1982) and Popov Popov (1971b); Zel-
dovich and Popov (1972); Migdal et al. (1976). We have relaxed the con-
dition Np ≃ A/2 adopted by Popov and Greiner as well as the condition

Np ≃
[

2/A + 3/200A1/3
]−1

adopted by Ferreirinho, Ruffini and Stella Fer-
reirinho et al. (1980). Instead we explicitly impose the beta decay equilibrium
between neutrons, protons and electrons. We then extrapolate such model to
the case A ≈ (mPlanck/mn)3 ∼ 1057. A supercritical field still exists in a shell
of thickness ∼ h̄/

√
αmπc at the core surface, and a charged lepton-baryonic

core is surrounded by an oppositely charged leptonic component. Such mas-
sive nuclear density cores, including the leptonic component, are globally
neutral.

As usual we assume that the protons are distributed at constant density np

within a radius

Rc = ∆
h̄

mπc
N1/3

p , (A.1.6)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear
(supranuclear) densities when applied to ordinary nuclei. The overall Cou-
lomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.1.7)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and finiteness of V(0). The density ne(r) of the electrons of
charge −e is determined by the Fermi energy condition on their Fermi mo-
mentum PF

e ; we assume here

EF
e = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − eV(r) = 0 , (A.1.8)
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which leads to

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
.

(A.1.9)

By introducing x = r/[h̄/mπc], xc = Rc/[h̄/mπc] and χ/r = eV(r)/ch̄, the
relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

(A.1.10)

where χ(0) = 0, χ(∞) = 0. The neutron density nn(r) is determined by the
Fermi energy condition on their Fermi momentum PF

n imposed by beta decay
equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 − mnc2

= [(PF
p c)2 + m2

pc4]1/2 − mpc2 + eV(r), (A.1.11)

which in turn is related to the proton and electron densities by Eqs. (A.1.7),
(A.1.9) and (A.1.10). These equations have been integrated numerically (see
Ruffini et al. (2007b)).

A.1.3. The ultra-relativistic analytic solutions

In the ultrarelativistic limit, the relativistic Thomas-Fermi equation admits an

analytic solution. Introducing the new function φ defined by φ = 41/3

(9π)1/3 ∆
χ
x

and the new variables x̂ = (12/π)1/6 √α∆−1x, ξ = x̂ − x̂c, where x̂c =

(12/π)1/6 √α∆−1xc, then Eq. (A.1.10) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.1.12)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at the massive nuclear density core center) and φ̂(ξ) → 0 as
ξ → ∞. The function φ̂ and its first derivative φ̂′ must be continuous at the
surface ξ = 0 of the massive nuclear density core. Equation (A.1.12) admits
an exact solution

φ̂(ξ) =











1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,√
2

(ξ + b)
, ξ > 0 ,

(A.1.13)
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where the integration constants a and b have the values a = arcsinh(11
√

2) ≈
3.439, b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential energy

function

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) , (A.1.14)

and by differentiation, the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ) . (A.1.15)

Details are given in Figs. A.1 and A.2.
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Figure A.1.: The electron Coulomb potential energy −eV, in units of pion
mass mπ is plotted as a function of the radial coordinate ξ = x̂ − x̂c, for
selected values of the density parameter ∆.

We now estimate three crucial quantities:
1) the Coulomb potential at the center of the configuration,

eV(0) ≈
(

9π

4

)1/3 1

∆
mπc2 , (A.1.16)
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Figure A.2.: The electric field is plotted in units of the critical field Ec as a
function of the radial coordinate ξ for ∆=2, showing a sharp peak at the core
radius.
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Figure A.3.: The A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Np ≃ A/2 (dashed line) and Eq. (A.1.3) (dotted line). The asymptotic value,

for A → (mPlanck/mn)3, is Np ≈ 0.0046A).
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2) the electric field at the surface of the core

Emax ≈ 0.95
√

α
1

∆2

m2
πc3

eh̄
= 0.95

√
α

∆2

(

mπ

me

)2

Ec . (A.1.17)

3) the Coulomb electrostatic energy of the core

Eem =
∫

E2

8π
d3r ≈ 0.15

3h̄c(3π)1/2

4∆
√

α
A2/3 mπc

h̄

(

Np

A

)2/3

. (A.1.18)

These three quantities are functions only of the pion mass mπ, the density
parameter ∆ and of the fine structure constant α. Their formulas apply over
the entire range from superheavy nuclei with Np ∼ 103 all the way up to

massive cores with Np ≈ (mPlanck/mn)3.

A.1.4. New results derived from the analytic solutions

Starting from the analytic solutions of the previous section we obtain the fol-
lowing new results.

a) Using the solution (A.1.13), we have obtained a new generalized relation
between A and Np for any value of A. In the limit of small A this result agrees
well with the phenomenological relations given by Eqs. (A.1.3) and (A.1.4), as
is clearly shown in Fig. A.3. It appears that the explicit evaluation of the beta
equilibrium, in contrast with the previously adopted Eqs.(3,4), leads to an
effect comparable in magnitude and qualitatively similar to the asymmetry
energy in the phenomenological liquid drop model.

b) The charge-to-mass ratio of the effective charge Q at the core surface to
the core mass M is given by

Q√
GM

≈ EmaxR2
c√

GmnA
≈ mPlanck

mn

(

1

Np

)1/3 Np

A
. (A.1.19)

For superheavy nuclei with Np ≈ 103 , the charge-to-mass ratio for the
nucleus is

Q√
GM

>
1

20

mPlanck

mn
∼ 1018. (A.1.20)

Gravitation obviously plays no role in the stabilization of these nuclei.
Instead for massive nuclear density cores where Np ≈ (mPlanck/mn)3, the

ratio Q/
√

GM given by Eq. (A.1.19) is simply

Q√
GM

≈ Np

A
, (A.1.21)
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which is approximatively 0.0046 (see Fig. A.3). It is well-known that the
charge-to-mass-ratio (A.1.21) smaller than 1 evidences the equilibrium of self-
gravitating mass-charge system both in Newtonian gravity and general rela-
tivity (see, e.g., Chandrasekhar (1992)).

c) For a massive core at nuclear density the criterion of stability against
fission (Eem < 2Es) is satisfied. In order to see this we use Eqs. (A.1.1) and (
A.1.18)

Eem

2Es
≈ 0.15

3

8

√

3π

α

1

∆

(

Np

A

)2/3 mπc2

17.5MeV
∼ 0.1 < 1. (A.1.22)

A.1.5. Estimates of gravitational effects in a Newtonian

approximation

In order to investigate the possible effects of gravitation on these massive
neutron density cores we proceed to some qualitative and quantitative esti-
mates based on the Newtonian approximation.

a) The maximum Coulomb energy per proton is given by Eq. (A.1.16) where
the potential is evaluated at the center of the core. The Newtonian gravi-
tational potential energy per proton (of mass mp) in the field of a massive

nuclear density core with A ≈ (mPlanck/mn)3 is given by

Eg = −G
Mmp

Rc
= − 1

∆

mPlanck

mn

mπc2

N1/3
p

≃ −mπc2

∆

(

A

Np

)1/3

.

(A.1.23)

Since A/Np ∼ 0.0046 (see Fig. A.3 ) for any value of ∆, the gravitational en-
ergy is larger in magnitude than and opposite in sign to the Coulomb poten-
tial energy per proton of Eq. (A.1.16) so the system should be gravitationally
stable.

b) There is yet a more accurate derivation of the gravitational stability
based on the analytic solution of the Thomas-Fermi equation Eq. (A.1.12).
The Coulomb energy Eem given by (A.1.18) is mainly distributed within a thin
shell of width δRc ≈ h̄∆/(

√
αmπc) and proton number δNp = np4πR2

c δRc at
the surface. To ensure the stability of the system, the attractive gravitational
energy of the thin proton shell

Egr ≈ −3
G

∆

A4/3

√
α

(

Np

A

)1/3

m2
n

mπc

h̄
(A.1.24)
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must be larger than the repulsive Coulomb energy (A.1.18). For small A, the
gravitational energy is always negligible. However, since the gravitational
energy increases proportionally to A4/3 while the Coulomb energy only in-
creases proportionally to A2/3, the two must eventually cross, which occurs
at

AR = 0.039

(

Np

A

)1/2 (mPlanck

mn

)3

. (A.1.25)

This establishes a lower limit for the mass number AR necessary for the ex-
istence of an island of stability for massive nuclear density cores. The upper
limit of the island of stability will be determined by general relativistic effects
Rueda et al. (2010c).

c) Having established the role of gravity in stabilizing the Coulomb inter-
action of the massive nuclear density core, we outline the importance of the
strong interactions in determining its surface. We find for the neutron pres-
sure at the surface:

Pn =
9

40

(

3

2π

)1/3 (mπ

mn

)

mπc2

(h̄/mπc)3

(

A

Np

)5/3 1

∆5
,

(A.1.26)

and for the surface tension, as extrapolated from nuclear scattering experi-
ments,

Ps = −
(

0.13

4π

)

mπc2

(h̄/mπc)3

(

A

Np

)2/3 1

∆2
. (A.1.27)

We then obtain

|Ps|
Pn

= 0.39 · ∆3

(

Np

A

)

= 0.24 · ρnucl

ρsurf
, (A.1.28)

where ρnucl = 3mnA/4πR3
c . The relative importance of the nuclear pressure

and nuclear tension is a very sensitive function of the density ρsurf at the
surface.

It is important to emphasize a major difference between nuclei and the
massive nuclear density cores treated in this article: the gravitational binding
energy in these massive nuclear density cores is instead Egr ≈ GM⊙mn/Rc ≈
0.1mnc2 ≈ 93.8 MeV. In other words it is much bigger than the nuclear energy

in ordinary nuclei Enuclear ≈ h̄2/mnr2
0 ≈ 28.8 MeV.
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A.1.6. Possible applications to neutron stars

All the above considerations have been made for an isolated massive core at
constant density whose boundary has been sharply defined by a step func-
tion. No external forces are exerted. Consequently due to the global charge
neutrality, the Fermi energy of the electrons has been assumed to be equal to
zero. In the earliest description of neutron stars in the work of Oppenheimer
and Volkoff Oppenheimer and Volkoff (1939) only a gas of neutrons was con-
sidered and the equation of equilibrium was written in the Schwarzchild met-
ric. They considered the model of a degenerate gas of neutrons to hold from
the center to the border, with the density monotonically decreasing away
from the center.

In the intervening years a more realistic model has been presented chal-
lenging the original considerations of Tolman, Oppenheimer and Volkoff,
Tolman (1939); Oppenheimer and Volkoff (1939). Their TOV equations con-
sidered the existence of neutrons all the way to the surface of the star. The
presence of neutrons, protons and electrons in beta equilibrium were instead
introduced in Harrison et al. (1965) . Still more important the neutron stars
have been shown to be composed of two sharply different components: the
core at nuclear and/or supra-nuclear density consisting of neutrons, protons
and electrons and a crust of white dwarf like material, namely of degenerate
electrons in a nuclei lattice Harrison et al. (1965); Baym et al. (1971a). The
pressure and the density of the core are mainly due to the baryons while the
pressure of the crust is mainly due to the electrons with the density due to
the nuclei and possibly with some free neutrons due to neutron drip (see e.g.
Baym et al. (1971a)). Further works describing the nuclear interactions where
later introduced (see e.g. Haensel et al. (2007)). Clearly all these considera-
tions departed profoundly from the TOV approximation. The matching be-
tween the core component and the crust is the major unsolved problem. To
this issue this article introduce some preliminary results in a simplified model
which has the advantage to present explicit analytic solutions.

In all the above treatments in order to close the system of equations the con-
dition of local charge neutrality ne = np was adopted without a proof. The
considerations of massive neutron density cores presented in this article offer
an alternative to the local charge neutrality condition ne = np. In a specific
example which can be solved also analytically such condition is substituted
by the Thomas-Fermi relativistic equations implying ne 6= np and an overall
charge neutral system (Ne = Np). The condition of global charge neutrality
as opposed to the local one, leads to the existence of overcritical electric fields
at the core surface which may be relevant in the description of neutron stars.

Two important generalizations of the results here presented have been done
:

1) we have studied the solution for massive neutron density cores with pos-
itive values of their Fermi energy of electrons, as contrasted to the one here
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studied with zero Fermi energy of electrons. This is a necessary step in order
to take into due account the compressional effects of the neutron star crusts
on the core. Such a treatment leads, as a by-product, to the generalization of
the classic work of Feynman, Metropolis and Teller considering compressed
atoms in a Thomas-Fermi model Feynman et al. (1949).

2) the condition of the proton constant density adopted in this article has
been relaxed by considering consistently also the gravitational self-interaction
of the core. To this scope the Thomas-Fermi equations here considered has
been formulated within general relativity: a covariant formulation with the
metric and the electrodynamic potential fulfilling the system of the Einstein-
Maxwell equations Rueda et al. (2010c). The results presented in this article
have been confirmed by this more general treatment.

A.1.7. Conclusions

We have first generalized the treatment of heavy nuclei by enforcing the con-
dition of beta equilibrium in the relativistic Thomas-Fermi equation, avoid-
ing the imposition of Np ≃ A/2 between Np and A traditionally assumed
in the literature. In doing so we have obtained (see Fig. A.3) an A − Np re-
lation which extends the ones adopted in the literature. Using the existence
of scaling laws for the system of equations considered, we extend the results
obtained for heavy nuclei to the case of massive nuclear density cores. The
novelty in this article is to show how both the considerations of heavy nuclei
and of systems of macroscopic astrophysical dimensions can take advantage
from a rigorous and analytic solution of the Thomas-Fermi relativistic equa-
tions and the beta equilibrium conditions. This task is achieved by obtaining
explicit analytic solutions fulfilling precise boundary conditions and using
the scaling laws introduced in this article.

Indeed the Thomas-Fermi treatment has been considered also in the con-
text of quark stars with a charge and a density distribution analogous to the
one of massive nuclear density cores we consider in this article Itoh (1970);
Witten (1984); Alcock et al. (1986); Kettner et al. (1995); Usov (1998). There are
however a variety of differences both in the boundary conditions adopted
and in the solution obtained. In the present article we show that we can
indeed obtain overcritical electric fields at nuclear density on macroscopic
scales of Rc ≈ 10 Km and M ≈ 1M⊙ for existing field theories involving
only neutrons, protons and electrons and their fundamental interactions and
no quarks present. We obtain explicit analytic solutions of the relativistic
Thomas-Fermi equations, self-consistently solved with the condition of beta
equilibrium. Such analytic solutions allow to give explicit expressions for the
Coulomb energy, surface energy and Newtonian gravitational energy of such
massive nuclear density cores.

These cores are stable against fission (see Eq. (A.1.22)), the surface tension
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determines the sharpness of their boundary (see Eq. (A.1.28)) and the gravi-
tational interaction, at Newtonian level, balances the Coulomb repulsion for
mass numbers larger than the critical value given by Eq. (A.1.25).

As a by-product of these results, we also conclude that the arguments of-
ten quoted concerning limits on the electric fields of an astrophysical system
based on a free test particle (the dust approximation) considering only the
gravitational and electric interactions

(Emax)dust ≈ me

e

mnc3

h̄

mn

mPlanck
, (A.1.29)

(

Q√
GM

)

dust

≈
√

G
me

e
=

1√
α

me

mPlanck
, (A.1.30)

appear to be inapplicable for A ∼ (mPlanck/mn)3. Here nuclear densities
are reached and the roles of all fundamental interactions, including weak
and strong interactions in addition to the electromagnetic and gravitational
ones and including as well quantum statistics, have to be taken into account
through the relativistic Thomas-Fermi model. Eqs. (A.1.29) and (A.1.30) are
replaced by Eqs. (A.1.17) and (A.1.21),

Emax ≈ 0.95
√

α

∆2

mPlanck

me

(

mπ

mn

)2

(Emax)dust, (A.1.31)

Q√
GM

≈ Np

A

√
α

mPlanck

me

(

Q√
GM

)

dust

. (A.1.32)

Details are presented in Rueda et al. (2010c).
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A.2. On the relativistic Thomas-Fermi treatment

of compressed atoms and compressed nuclear

matter cores of stellar dimensions

A.2.1. Introduction

In a classic article Baym, Bethe and Pethick Baym et al. (1971a) presented
the problem of matching, in a neutron star, a liquid core, composed of Nn

neutrons, Np protons and Ne electrons, to the crust taking into account the
electrodynamical and surface tension effects. After discussing the differ-
ent aspects of the problem they concluded: The details of this picture requires
further elaboration; this is a situation for which the Thomas-Fermi method is use-
ful. This statement, in first instance, may appear surprising: the Thomas-
Fermi model has been extensively applied in atomic physics (see e.g Gombás
Gombás (1949), March March (1957), Lundqvist and March Lundqvist and
March (1983)), also has been applied extensively in atomic physics in its rel-
ativistic form (see e.g Ferreirinho, Ruffini and Stella Ferreirinho et al. (1980),
Ruffini and Stella Ruffini and Stella (1981)) as well as in the study of atoms
with heavy nuclei in the classic works of Migdal, Popov and Voskresenskii
Migdal et al. (1976, 1977). Similarly there have been considerations of rel-
ativistic Thomas-Fermi model for quark stars pointing out the existence of
critical electric fields on their surfaces (see e.g. Alcock, Farhi, Olinto Alcock
et al. (1986), Usov Usov (1998)). Similar results have also been obtained by
Alford et al. Alford et al. (2001) in the transition at very high densities, from
the normal nuclear matter phase in the core to the color-flavor-locked phase
of quark matter in the inner core of hybrid stars. No example exists to the ap-
plication of the electromagnetic Thomas-Fermi model for neutron stars. This
problem can indeed be approached with merit by studying the simplified but
rigorous concept of a nuclear matter core of stellar dimensions which fulfills
the relativistic Thomas-Fermi equation as discussed in Ruffini et al. (2007b);
Popov et al. (2010). As we will see this work leads to the prediction of the
existence of a critical electric field at the interface between the core and the
crust of a neutron star.

In Ruffini et al. (2007b); Popov et al. (2010) we have first generalized the
treatment of heavy nuclei by enforcing self-consistently the condition of beta
equilibrium in the relativistic Thomas-Fermi equation. Using then the exis-
tence of scaling laws we have extended the results from heavy nuclei to the
case of nuclear matter cores of stellar dimensions. In both these treatments
we had there assumed the Fermi energy of the electrons EF

e = 0. The aim
of this article is to proceed with this dual approach and to consider first the
case of compressed atoms and then, using the existence of scaling laws, the
compressed nuclear matter cores of stellar dimensions with a positive value
of their electron Fermi energies.
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It is well known that Salpeter has been among the first to study the behav-
ior of matter under extremely high pressures by considering a Wigner-Seitz
cell of radius RWS Salpeter (1961). Salpeter assumed as a starting point the
nucleus point-like and a uniform distribution of electrons within a Wigner-
Seitz cell. He then considered corrections to the above model due to the in-
homogeneity of electron distribution. The first correction corresponds to the
inclusion of the lattice energy EC = −(9N2

pα)/(10RWS), which results from
the point-like nucleus-electron interaction and, from the electron-electron in-
teraction inside the cell of radius RWS. The second correction is given by
a series-expansion of the electron Fermi energy about the average electron
density ne given by the uniform approximation. The electron density is then
assumed equals to ne[1 + ǫ(r)] with ǫ(r) considered as infinitesimal. The
Coulomb potential energy is assumed to be the one of the point-like nucleus
with the uniform distribution of electrons of density ne thus the correction
given by ǫ(r) is neglected on the Coulomb potential. The electron distribu-
tion is then calculated at first-order by expanding the relativistic electron ki-
netic energy about its value given by the uniform approximation considering
as infinitesimal the ratio eV/EF

e between the Coulomb potential energy eV

and the electron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 − eV. The in-
clusion of each additional Coulomb correction results in a decreasing of the
pressure of the cell PS by comparison to the uniform one.

It is quite difficult to assess the self-consistency of all the recalled different
approximations adopted by Salpeter. In order to validate and also to see the
possible limits of the Salpeter approach, we consider the relativistic gener-
alization of the Feynman, Metropolis, Teller treatment Feynman et al. (1949)
which takes automatically and globally into account all electromagnetic and
special relativistic contributions. We show explicitly how this new treatment
leads in the case of atoms to electron distributions markedly different from
the ones often adopted in the literature of constant electron density distri-
butions. At the same time it allows to overcome some of the difficulties in
current treatments.

Similarly the point-like description of the nucleus often adopted in litera-
ture is confirmed to be unacceptable in the framework of a relativistic treat-
ment.

In Sec. A.2.2 we first recall the non-relativistic treatment of the compressed
atom by Feynman, Metropolis and Teller. In Sec. A.2.3 we generalize that
treatment to the relativistic regime by integrating the relativistic Thomas-
Fermi equation, imposing also the condition of beta equilibrium. In Sec. A.2.4
we first compare the new treatment with the one corresponding to a uniform
electron distribution often used in the literature and to the Salpeter treat-
ment. We also compare and contrast the results of the relativistic and the
non-relativistic treatment.

We then proceed to analyze the case of compressed nuclear matter cores of
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stellar dimensions.

In Sec. A.2.5, using the same scaling laws adopted in Ruffini et al. (2007b);
Popov et al. (2010) we turn to the case of nuclear matter cores of stellar di-
mensions with mass numbers A ≈ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙
where mn is the neutron mass and mPlanck = (h̄c/G)1/2 is the Planck mass.
Such a configuration present global but not local charge neutrality. Analytic
solutions for the ultra-relativistic limit are obtained. In particular we find:

1) explicit analytic expressions for the electrostatic field and the Coulomb
potential energy,

2) an entire range of possible Fermi energy for the electrons between
zero and a maximum value (EF

e )max, reached when RWS = Rc, which can be
expressed analytically,

3) the explicit analytic expression of the ratio between the proton number
Np and the mass number A when RWS = Rc.

We turn then in Sec. A.2.6 to the study of the compressional energy of the
nuclear matter cores of stellar dimensions for selected values of the electron
Fermi energy. We show that the solution with EF

e = 0 presents the largest
value of the electrodynamical structure.

We finally summarize the conclusions in Sec. A.2.7.

A.2.2. The Thomas-Fermi model for compressed atoms: the
Feynman-Metropolis-Teller treatment

The classical Thomas-Fermi model

The Thomas-Fermi model assumes that the electrons of an atom constitute a
fully degenerate gas of fermions confined in a spherical region by the Cou-
lomb potential of a point-like nucleus of charge +eNp Thomas (1927); Fermi
(1927). Feynman, Metropolis and Teller have shown that this model can be
used to derive the equation of state of matter at high pressures by consid-
ering a Thomas-Fermi model confined in a Wigner-Seitz cell of radius RWS

Feynman et al. (1949).

We recall that the condition of equilibrium of the electrons in an atom, in
the non-relativistic limit, is expressed by

(PF
e )

2

2me
− eV = EF

e , (A.2.1)

where me is the electron mass, V is the electrostatic potential and EF
e is their

Fermi energy.

The electrostatic potential fulfills, for r > 0, the Poisson equation

∇2V = 4πene, (A.2.2)
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where the electron number density ne is related to the Fermi momentum PF
e

by

ne =
(PF

e )
3

3π2h̄3
. (A.2.3)

For neutral atoms and ions ne vanishes at the boundary so the electron Fermi
energy is, respectively, zero or negative. In the case of compressed atoms ne

does not vanish at the boundary while the Coulomb potential energy eV is
zero. Consequently EF

e is positive.

Assuming

eV(r) + EF
e = e2Np

φ(r)

r
, (A.2.4)

we obtain the following expression for the electron number density

ne(η) =
Np

4πb3

(

φ(η)

η

)3/2

, (A.2.5)

where the new dimensionless radial coordinate η is given by r = bη, where

b = (3π)2/3 h̄2

mee2

1

27/3

1

N1/3
p

. (A.2.6)

Eq. (A.2.2) can be then written in the form

d2φ(η)

dη2
=

φ(η)3/2

η1/2
, (A.2.7)

which is the classic Thomas-Fermi equation Fermi (1927). A first boundary
condition for this equation follows from the point-like structure of the nu-
cleus

φ(0) = 1. (A.2.8)

A second boundary condition comes from the conservation of the number of

electrons Ne =
∫ RWS

0 4πne(r)r
2dr

1 − Ne

Np
= φ(η0)− η0φ′(η0), (A.2.9)

where η0 = RWS/b defines the radius RWS of the Wigner-Seitz cell. In the case
of compressed atoms Ne = Np so the Coulomb potential energy eV vanishes
at the boundary RWS. As a result, using Eqs. (A.2.1) and (A.2.3), the Fermi
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Figure A.4.: Physically relevant solutions of the Thomas-Fermi Equation
(A.2.7) with the boundary conditions (A.2.8) and (A.2.9). The curve 1 refers
to a neutral compressed atom. The curve 2 refers to a neutral free atom. The
curve 3 refers to a positive ion. The dotted straight line is the tangent to the
curve 1 at the point (η0, φ(η0)) corresponding to overall charge neutrality (see
Eq. (A.2.9)).

energy of electrons is given by

EF
e =

Npe2

b

φ(η0)

η0
. (A.2.10)

Therefore in the classic treatment η0 can approach zero and consequently the
range of the possible values of the Fermi energy extends from zero to infinity.

The results are summarized in Figs. A.4 and A.5.

The Thomas-Fermi-Dirac model

Dirac has introduced modifications to the original Thomas-Fermi theory to
include effects of exchange Dirac (1930). In this case the condition of equilib-
rium of the electrons in the atom is generalized as follows

(PF
e )

2

2me
− eV − α

π
cPF

e = EF
e , (A.2.11)

where as usual α = e2/h̄c denotes the fine structure constant.

The electron number density is now connected to the Coulomb potential
energy by
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Figure A.5.: The electron Fermi energies for iron, in units of the electron
mass, are plotted as a function of the dimensionless compression parameter
η0. Points refer to the numerical integrations of the Thomas-Fermi equation
(A.2.7) performed originally by Feynman, Metropolis and Teller in Feynman
et al. (1949).

ne =
1

3π2h̄3c3

[

α

π
mec

2 +

√

( α

π
mec2

)2
+ 2mec2(eV + EF

e )

]3

. (A.2.12)

Assuming

1

2

( α

π

)2
mec2 + eV(r) + EF

e = e2Np
φ(r)

r
, (A.2.13)

and r = bη, the Poisson equation can be written as

d2φ(η)

dη2
= η

[

d +

(

φ(η)

η

)1/2
]3

, (A.2.14)

where b is given by Eq.(A.2.6) and d = (3/(32π2))1/3(1/Np)2/3. The
boundary condition for Eq. (A.2.14) are φ(0) = 1 and η0φ′(η0) = φ(η0).
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A.2.3. The relativistic generalization of the

Feynman-Metropolis-Teller treatment

The relativistic Thomas-Fermi model for atoms

In the relativistic generalization of the Thomas-Fermi equation the point-like
approximation of the nucleus must be abandoned Ferreirinho et al. (1980);
Ruffini and Stella (1981) since the relativistic equilibrium condition

EF
e =

√

(PF
e c)2 + m2

e c4 − mec
2 − eV(r) , (A.2.15)

which generalizes the Eq. (A.2.1), would lead to a non-integrable expres-
sion for the electron density near the origin. Consequently we adopt a finite
extended-nucleus. Traditionally the radius of an extended-nucleus is given
by the phenomenological relation Rc = r0A1/3 where A is the number of
nucleons and r0 = 1.2 × 10−13cm. Further it is possible to show from the ex-
tremization of the semi-empirical Weizsacker mass-formula that the relation
between A and Np is given by

Np =

[

2

A
+

3

200

1

A1/3

]−1

, (A.2.16)

which in the limit of small A gives

Np ≈ A

2
, (A.2.17)

In Popov et al. (2010) we have relaxed, for EF
e = 0, the condition Np ≈

A/2 (adopted, for example, in Migdal, Popov and Voskresenski Migdal et al.
(1977)) as well as the condition Np = [2/A+ 3/(200A1/3)]−1 (adopted for ex-
ample in Ferreirinho, Ruffini and Stella Ferreirinho et al. (1980); Ruffini and
Stella (1981)) imposing explicitly the beta decay equilibrium between neu-
tron, protons and electrons.

In particular, following the previous treatments (see e.g. Popov et al. (2010)),
we have assumed a constant distribution of protons confined in a radius Rc

defined by

Rc = ∆
h̄

mπc
N1/3

p , (A.2.18)

where mπ is the pion mass and ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corre-
sponds to nuclear (supranuclear) densities when applied to ordinary nuclei.
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Consequently, the proton density can be written as

np(r) =
Np

4
3πR3

c

θ(Rc − r) =
3

4π

m3
πc3

h̄3

1

∆3
θ(Rc − r), (A.2.19)

where θ(x) is the Heaviside function which by definition is given by

θ(x) =

{

0, x < 0,
1, x > 0.

(A.2.20)

The electron density is given by

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
, (A.2.21)

where V is the Coulomb potential.

The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.2.22)

with the boundary conditions V ′(∞) = 0 (due to global charge neutrality).

By introducing the dimensionless quantities x = r/λπ , xc = Rc/λπ and
χ(r)/r = eV(r)/(ch̄) with λπ = h̄/(mπc), and replacing the particle den-
sities (A.2.19) and (A.2.26) into the Poisson equation (A.2.22) we obtain the
relativistic Thomas-Fermi equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2

,

(A.2.23)

where χ(0) = 0, χ(x∞) = 0. The neutron density nn(r), related to the neutron

Fermi momentum PF
n = (3π2h̄3nn)1/3, is determined, as in the previous case

Popov et al. (2010), by imposing the condition of beta equilibrium

EF
n =

√

(PF
n c)2 + m2

nc4 − mnc2

=
√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r), (A.2.24)

which in turn is related to the proton density np and the electron density
by Eqs. (A.2.21), (A.2.22). Integrating numerically these equations we have
obtained a new generalized relation between A and Np for any value of A.
In the limit of small A this result agrees with the phenomenological relations
given by Eqs. (A.2.16, A.2.17), as is clearly shown in Fig. (A.6)
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Figure A.6.: The A-Np relation at nuclear density (solid line) obtained from
first principles compared with the phenomenological expressions given by
Np ≃ A/2 (dashed line) and Eq. (A.2.16) (dotted line). The asymptotic value,

for A → (mPlanck/mn)3, is Np ≈ 0.0046A).

The relativistic Thomas-Fermi model for compressed atoms

We turn now to the case of compressed atoms in which the electron Fermi
energy is positive. The relativistic generalization of the equilibrium condition
(A.2.1) now reads

EF
e =

√

(PF
e c)2 + m2

e c4 − mec
2 − eV(r) > 0 , (A.2.25)

Adopting an extended-nucleus with a radius given by Eq. (A.2.18) and a
proton density given by Eq. (A.2.19) the Poisson equation (A.2.22), with the
following electron density

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V̂2(r) + 2mec
2eV̂(r)

]3/2
, (A.2.26)

can be written as

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2

,

(A.2.27)

where x = r/λπ , xc = Rc/λπ , χ(r)/r = eV̂(r)/(ch̄), λπ = h̄/(mπc) and
eV̂ = eV + EF

e . The equation (A.2.27) has to be integrated with the boundary
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conditions χ(0) = 0, χ(xWS) = xWSχ′(xWS), xWS = RWS/λπ .

The neutron density nn(r), related to the neutron Fermi momentum PF
n =

(3π2h̄3nn)1/3, is determined by imposing the condition of beta equilibrium

EF
n =

√

(PF
n c)2 + m2

nc4 − mnc2

=
√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r) + EF
e . (A.2.28)

Using this approach, it is then possible to determine the beta equilibrium
nuclide as a function of the density of the system. Infact, as suggested by
Hund Hund (1936) and Landau Landau (1938), when the electron Fermi en-
ergy is sufficiently high, electrons can be absorbed by protons and converted
to neutrons in inverse beta decay p + e− → n + νe because the condition

EF
n <

√

(PF
p c)2 + m2

pc4 − mpc2 + eV(r) + EF
e holds. The condition of equilib-

rium (A.2.28) is crucial, for example, in the construction of a self-consistent
equation of state of high energy density matter present in white dwarfs and
neutron star crusts Rueda et al. (2010d). In the case of zero electron Fermi
energy the generalized A − Np relation of Fig. (A.6) is obtained.

The relativistic Thomas-Fermi-Dirac model for compressed atoms

We now take into account the exchange corrections to the relativistic Thomas-
Fermi equation (A.2.27). In this case we have (see Migdal et al. (1977) for
instance)

EF
e =

√

(cPF
e )

2 + m2
e c4 − mec

2 − eV − α

π
cPF

e = constant . (A.2.29)

Introducing the function χ(r) as before

EF
e + eV = eV̂ = h̄c

χ

r
, (A.2.30)

we obtain the electron number density

ne =
1

3π2h̄3c3

{

γ
(

mec
2 + eV̂

)

+
[

(

eV̂
)2

+ 2mec
2eV̂

]1/2
×

×
[

(1 + γ2)(mec2 + eV̂)2 − m2
e c4

(mec2 + eV̂)2 − m2
e c4

]1/2
}3

, (A.2.31)

where γ = (α/π)/(1 − α2/π2).
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If we take the approximation 1 + γ2 ≈ 1 the above equation becomes

ne =
1

3π2h̄3c3

{

γ
(

mec
2 + eV̂

)

+
[

(

eV̂
)2

+ 2mec
2eV̂

]1/2
}3

. (A.2.32)

The second term on the right-hand-side of Eq. (A.2.32) has the same form of
the electron density given by the relativistic Thomas-Fermi approach with-
out the exchange correction (A.2.26) and therefore the first term shows the
explicit contribution of the exchange term to the electron density.

Using the full expression of the electron density given by Eq. (A.2.31) we
obtain the relativistic Thomas-Fermi-Dirac equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

{

γ

(

me

mπ
+

χ(x)

x

)

+

[

(

χ(x)

x

)2

+ 2
me

mπ

χ(x)

x

]1/2




(1 + γ2)( me
mπ

+ χ(x)
x )2 − ( me

mπ
)2

( me
mπ

+ χ(x)
x )2 − ( me

mπ
)2





1/2
}3

,

(A.2.33)

which by applying the approximation 1 + γ2 ≈ 1 becomes

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x) +

4α

9π

{

γ

(

me

mπ
+

χ(x)

x

)

+

[

(

χ(x)

x

)2

+ 2
me

mπ

χ(x)

x

]1/2






3

. (A.2.34)

The boundary conditions for Eq. (A.2.33) are χ(0) = 0 and χ(xWS) =
xWSχ′(xWS). The neutron density can be obtained as before by using the
beta equilibrium condition (A.2.28) with the electron Fermi energy given by
Eq. (A.2.29).

In Fig. A.7 we show the results of the numerical integration of the rela-
tivistic Thomas-Fermi equation (A.2.27) and of the relativistic Thomas-Fermi-
Dirac equation (A.2.33) for helium, carbon and iron. In particular, we show

the electron Fermi energy multiplied by N−4/3
p as a function of the ratio

RWS/Rc between the Wigner-Seitz cell radius RWS and the nucleus radius
Rc given by Eq. (A.2.18).

The effects of the exchange term are appreciable only in the low density
(low compression) region, i.e. when RWS >> Rc (see Fig. A.7). We can
then conclude in total generality that the correction given by the Thomas-
Fermi-Dirac exchange term is, small in the non-relativistic low compression
(low density) regime, and negligible in the relativistic high compression (high
density) regime.
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Figure A.7.: The electron Fermi energies in units of mπc2N4/3
p is plotted for

helium, for carbon and for iron, as a function of the ratio RWS/Rc in the rel-
ativistic Feynman-Metropolis-Teller (FMT) treatment with and without the
Thomas-Fermi-Dirac exchange effects. Here RWS denotes the Wigner-Seitz
cell radius and Rc is the nucleus radius as given by Eq. (A.2.18). It is clear
that the exchange terms are appreciable only in the low density region and
are negligible as RWS → Rc

.
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A.2.4. Comparison and contrast with approximate treatments

There exists in the literature a variety of semi-qualitative approximations
adopted in order to describe the electron component of a compressed atom
(see e.g. Bürvenich et al. (2007) for applications of the uniform approxima-
tion and e.g Chabrier and Potekhin (1998); Potekhin et al. (2009); Haensel
and Zdunik (1990a,b, 2008); Douchin and Haensel (2001) for applications of
the Salpeter approximate treatment).

We shall see how the relativistic treatment of the Thomas-Fermi equation
affects the current analysis of compressed atoms in the literature by introduc-
ing qualitative and quantitative differences which deserve attention.

Relativistic FMT treatment vs. relativistic uniform approximation

One of the most used approximations in the treatment of the electron distri-
bution in compressed atoms is the one in which, for a given nuclear charge
+eNp, the Wigner-Seitz cell radius RWS is defined by

Np =
4π

3
R3

WSne, (A.2.35)

where ne = (PF
e )

3/(3π2h̄3). The Eq. (A.2.35) ensures the global neutrality
of the Wigner-Seitz cell of radius RWS assuming a uniform distribution of
electrons inside the cell.

We shall first compare the Feynman-Metropolis-Teller treatment, previ-
ously introduced, with the uniform approximation for the electron distri-
bution. In view of the results of the preceding section, hereafter we shall
consider the non-relativistic and the relativistic formulation of the Feynman-
Metropolis-Teller treatment with no Thomas-Fermi-Dirac exchange correc-
tion.

In Fig. A.8 we have plotted the electron number density obtained from
Eq. (A.2.26) where the Coulomb potential is related to the function χ, which
is obtained from numerical integration of the relativistic Thomas-Fermi equa-
tion (A.2.27) for different compressions for helium and iron. We have nor-
malized the electron density to the average electron number density n0 =
3Ne/(4πR3

WS) = 3Np/(4πR3
WS) as given by Eq. (A.2.35).

We can see in Fig. A.8 how our treatment, based on the numerical inte-
gration of the relativistic Thomas-Fermi equation (A.2.27) and imposing the
condition of beta equilibrium (A.2.28), leads to electron density distributions
markedly different from the constant electron density approximation.

From Eqs. (A.2.15), (A.2.35) and taking into account the global neutrality
condition of the Wigner-Seitz cell eV(RWS) = 0, the electron Fermi energy in
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Figure A.8.: The electron number density ne in units of the average electron
number density n0 = 3Ne/(4πR3

WS) is plotted as a function of the dimen-
sionless radial coordinate x = r/λπ for the selected compressions xWS = 9.7
(upper panels), xWS = 3 × 103 (middle panels) and xWS = 104 (bottom pan-
els), in both the relativistic Feynman, Metropolis, Teller approach and the
uniform approximation respectively for Helium (panels on the left) and Iron
(panels on the right).
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the uniform approximation can be written as

EF
e ≃






− me

mπ
+

√

√

√

√

(

me

mπ

)2

+

(

9π

4

)2/3 N2/3
p

x2
WS






mπc2. (A.2.36)

We show in Fig. A.9 the electron Fermi energy as a function of the average
electron density n0 = 3Ne/(4πR3

WS) = 3Np/(4πR3
WS) in units of the Bohr

density nBohr = 3/(4πR3
Bohr) where RBohr = h̄2/(e2me) is the Bohr radius.

For selected compositions we show the results for the relativistic Feynman-
Metropolis-Teller treatment, based on the numerical integration of the rela-
tivistic Thomas-Fermi equation (A.2.27), and for the relativistic uniform ap-
proximation.

As clearly shown in Fig. A.8 and summarized in Fig. A.9 the relativistic
treatment leads to results strongly dependent at low compression from the
nuclear composition. The corresponding value of the electron Fermi energy
derived from a uniform approximation overevaluates the true electron Fermi
energy (see Fig. A.9). In the limit of high compression the relativistic curves
asymptotically approach the uniform one (see also Fig. A.8).

The uniform approximation becomes exact in the limit when the electron
Fermi energy acquires its maximum value as given by

(EF
e )max ≃



− me

mπ
+

√

(

me

mπ

)2

+

(

3π2

2

)2/3(Np

A

)2/3


mπc2, (A.2.37)

which is attained when RWS coincides with the nuclear radius Rc. Here, the
maximum electron Fermi energy (A.2.37) is obtained replacing in Eq. (A.2.36)
the value of the normalized Wigner-Seitz cell radius xWS = xc = Rc/λπ ≈
[(3/2)π]1/3 A1/3, where we have approximated the nuclear density as nnuc ≈
(1/2)λ−3

π .

Relativistic FMT treatment vs. Salpeter approximate treatment

Corrections to the uniform distribution were also studied by Salpeter Salpeter
(1961) and his approximations are largely applied in physics Chabrier and
Potekhin (1998); Potekhin et al. (2009) and astrophysics Haensel and Zdunik
(1990a,b); Douchin and Haensel (2001); Haensel and Zdunik (2008).

Keeping the point-like nucleus assumption, Salpeter Salpeter (1961) stud-
ied the corrections to the above models due to the inhomogeneity of the
electron distribution inside the Wigner-Seitz cell. He expressed an analytic
formula for the total energy of a Wigner-Seitz cell based on Coulomb correc-
tions to the uniform distribution of electrons. The first correction corresponds
to the inclusion of the lattice energy EC = −(9N2

pα)/(10RWS), which re-
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Figure A.9.: The electron Fermi energies EF
e in the relativistic Feynman-

Metropolis-Teller (FMT) treatment and in the uniform approximation in units
of the pion rest mass, are plotted as a function of the average electron den-
sity n0 = 3Ne/(4πR3

WS) = 3Ne/(4πR3
WS) in units of the Bohr density

nBohr = 3/(4πR3
Bohr) where RBohr = h̄2/(e2me) is the Bohr radius. The filled

circles correspond to the case of a relativistic uniform approximation with a
point-like nucleus. In such a case the electron Fermi energy can reach arbi-
trary large values as RWS → 0. The arrow indicates the value of the maximum
electron Fermi energy as given by Eq. (A.2.37).
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sults from the point-like nucleus-electron interaction and, from the electron-
electron interaction inside the cell of radius Rws. The second correction is
given by a series-expansion of the Thomas-Fermi energy about the average
electron density ne given by the uniform approximation ne = 3Z/(4πR3

ws).
The electron density is then assumed equals to ne[1 + ǫ(r)] with ǫ(r) consid-
ered as infinitesimal. The Coulomb potential energy is assumed to be the one
of the point-like nucleus with the uniform distribution of electrons of density
ne given by, thus the correction given by ǫ(r) is neglected on the Coulomb
potential. The electron distribution is then calculated at first-order by ex-
panding the relativistic electron kinetic energy

ǫk =
√

[cPF
e (r)]

2 + m2
e c4 − mec

2

=
√

(3π2ne)2/3[1 + ǫ(r)]2/3 + m2
e c4 − mec

2, (A.2.38)

about its value given by the uniform approximation

ǫunif
k =

√

(3π2ne)2/3 + m2
e c4 − mec

2 , (A.2.39)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential

energy eV and the electron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 −
eV.

The effect of the Dirac electron-exchange correction Dirac (1930) on the
equation of state was also considered by Salpeter Salpeter (1961). However,
adopting the general approach of Migdal et al. Migdal et al. (1977), these
effects are negligible in the relativistic regime (see Subsec. A.2.3 ).

The inclusion of each additional Coulomb correction results in a decreas-
ing of the pressure of the cell PS. However, despite to be very interesting in
identifying piecewise contributions to the total pressure, the validity of the
Salpeter approach needs a verification by a more general treatment. For in-
stance, the failure of the Salpeter formulas can be seen at densities of the order
of ∼ 102 − 103 g cm−3 for nuclei with large Np as in the case of iron where the
pressure becomes negative (see Table A.1). Therefore, the problem of solv-
ing the relativistic Thomas-Fermi equation within the Feynman, Metropolis,
Teller approach becomes a necessity since this approach gives all the possible
Coulomb and relativistic contributions automatically and correctly.

Relativistic FMT treatment vs. non-relativistic FMT treatment

In order to compare and contrast the Fermi energy of a compressed atom in
the non-relativistic and the relativistic limit we first express the non-relativis-
tic equations in terms of the dimensionless variables used for the relativistic
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ρ xS xFMTrel P PS PFMTrel

(g/cm3) (bar) (bar) (bar)
2.63 × 102 0.05 0.0400 2.9907× 1010 −1.8800 × 108 9.9100× 109

2.10 × 103 0.10 0.0857 9.5458× 1011 4.4590× 1011 5.4840 × 1011

1.68 × 104 0.20 0.1893 3.0227× 1013 2.2090× 1013 2.2971 × 1013

5.66 × 104 0.30 0.2888 2.2568× 1014 1.8456× 1014 1.8710 × 1014

1.35 × 105 0.40 0.3887 9.2964× 1014 8.0010× 1014 8.0790 × 1014

2.63 × 105 0.50 0.4876 2.7598× 1015 2.4400× 1015 2.4400 × 1015

4.53 × 105 0.60 0.5921 6.6536× 1015 6.0040× 1015 6.0678 × 1015

7.19 × 105 0.70 0.6820 1.3890× 1016 1.2693× 1016 1.2810 × 1016

1.08 × 106 0.80 0.7888 2.6097× 1016 2.4060× 1016 2.4442 × 1016

2.10 × 106 1.00 0.9853 7.3639× 1016 6.8647× 1016 6.8786 × 1016

3.63 × 106 1.20 1.1833 1.6902× 1017 1.5900× 1017 1.5900 × 1017

5.77 × 106 1.40 1.3827 3.3708× 1017 3.1844× 1017 3.1898 × 1017

8.62 × 106 1.60 1.5810 6.0754× 1017 5.7588× 1017 5.7620 × 1017

1.23 × 107 1.80 1.7790 1.0148× 1018 9.6522× 1017 9.6592 × 1017

1.68 × 107 2.00 1.9770 1.5981× 1018 1.5213× 1018 1.5182 × 1018

3.27 × 107 2.50 2.4670 4.1247× 1018 3.9375× 1018 3.9101 × 1018

5.66 × 107 3.00 2.965 8.8468× 1018 8.4593× 1018 8.4262 × 1018

1.35 × 108 4.00 3.956 2.9013× 1019 2.7829× 1019 2.7764 × 1019

2.63 × 108 5.00 4.939 7.2160× 1019 6.9166× 1019 6.9062 × 1019

8.85 × 108 7.50 7.423 3.7254× 1020 3.5700× 1020 3.5700 × 1020

Table A.1.: Pressure for Iron as a function of the density ρ in the uniform
approximation (P), in the Salpeter approximation (PS) and in the relativis-
tic Feynman-Metropolis-Teller approach (PFMTrel). Here xS = PF

e,S/(mec),

xFMTrel = PF
e /(mec) are respectively the normalized Salpeter Fermi momen-

tum and the relativistic Feynmann-Metropolis-Teller Fermi momentum.
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treatment. We then have

x =
r

λπ
,

χ

r
=

eV̂

ch̄
, (A.2.40)

and the non-relativistic limit of Eq. (A.2.27) becomes

d2χ(x)

dx2
=

27/2

3π
α

(

me

mπ

)3/2 χ3/2

x1/2
, (A.2.41)

with the boundary conditions

χ(0) = αNp, xWSχ(xWS)
′ = χ(xWS), (A.2.42)

and dimensionless variable xWS = RWS/λπ .

In these new variables the electron Fermi energy is given by

EF
e =

χ(xWS)

xWS
mπc2. (A.2.43)

The two treatment, the relativistic and the non-relativistic one, can be now
directly compared and contrasted by using the same units (see Fig. A.10).

There are major differences:

1) The electron Fermi energy in the relativistic treatment is strongly de-
pendent on the nuclear composition, while the non-relativistic treatment pre-
sents a universal behavior in the units of Figs. A.10. In the limit of low densi-
ties the relativistic curves approach the universal non-relativistic curve.

2) The relativistic treatment leads to values of the electron Fermi energy
consistently smaller than the ones of the non-relativistic treatment.

3) While in the non-relativistic treatment the electron Fermi energy can
reach, by compression, infinite values as RWS → 0, in the relativistic treat-
ment it reaches a perfectly finite value given by Eq. (A.2.37) attained when
RWS coincides with the nuclear radius Rc.

The universality of the electron Fermi energy with respect to the number
of protons Np has been obtained by expressing the Coulomb potential energy
eV in terms of the function φ given by Eq. (A.2.4), and by introducing the scale
factor b given by (A.2.6). Accordingly, the radius of the Wigner-Seitz cell has
been expressed in terms of the nucleus radius (A.2.18) which is proportional

to N1/3
p .

It is clear then, from above considerations, the relativistic treatment of
the Thomas-Fermi equation introduces significant differences from the cur-
rent approximations in the literature: a) the uniform electron distribution
Bürvenich et al. (2007), b) the approximate perturbative solutions departing
from the uniform distribution Salpeter (1961) and c) the non-relativistic treat-
ment Feynman et al. (1949). We have recently applied these results of the
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Figure A.10.: The electron Fermi energies in units of mπc2N4/3
p for helium,

for carbon and for iron are plotted as a function of the ratio RWS/Rc respec-
tively in the non-relativistic and in the relativistic Feynman-Metropolis-Teller
(FMT) treatment without the Thomas-Fermi-Dirac exchange effects. Here
RWS is the radius of the Wigner-Seitz cell and Rc is the radius of the nucleus
given by Eq. (A.2.18). The relativistic treatment leads to results of the electron
Fermi energy strongly dependent on the nuclear composition and systemat-
ically smaller than the non-relativistic ones, which can attain arbitrary large
values as the point-like nucleus is approached.
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relativistic Feynman, Metropolis, Teller treatment of a compressed atom to
the study of white dwarfs and their consequences on the determination of
their masses, radii and critical mass Rueda et al. (2010d).

A.2.5. Application to nuclear matter cores of stellar

dimensions

We turn to nuclear matter cores of stellar dimensions of A ≃ (mPlanck/mn)
3 ∼

1057 or Mcore ∼ M⊙. Following the treatment presented in Popov et al.,Popov
et al. (2010), we use the existence of scaling laws and proceed to the ultra-
relativistic limit of Eqs. (A.2.19), (A.2.26), (A.2.27), (A.2.28). For positive
values of the electron Fermi energy EF

e , we introduce the new function φ =

41/3(9π)−1/3χ∆/x and the new variable x̂ = kx where k = (12/π)1/6 √α∆−1,
as well as the variable ξ = x̂− x̂c in order to describe better the region around
the core radius.

Eq. (A.2.27) becomes

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3 , (A.2.44)

where φ̂(ξ) = φ(ξ + x̂c) and the curvature term 2φ̂′(ξ)/(ξ + x̂c) has been
neglected.

The Coulomb potential energy is given by

eV(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) − EF

e , (A.2.45)

corresponding to the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ), (A.2.46)

and the electron number-density

ne(r) =
1

3π2h̄3c3

(

9π

4

)

1

∆3
(mπc2)3φ̂3(ξ). (A.2.47)

In the core center we must have ne = np. From Eqs. (A.2.19) and (A.2.47) we
than have that, for ξ = −x̂c, φ̂(−x̂c) = 1.

In order to consider a compressed nuclear density core of stellar dimen-
sions, we then introduce a Wigner-Seitz cell determining the outer boundary
of the electron distribution which, in the new radial coordinate ξ is character-
ized by ξWS. In view of the global charge neutrality of the system the electric
field goes to zero at ξ = ξWS. This implies, from Eq. (A.2.46), φ̂′(ξWS) = 0.
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We now turn to the determination of the Fermi energy of the electrons in
this compressed core. The function φ̂ and its first derivative φ̂′ must be con-
tinuous at the surface ξ = 0 of the nuclear density core.
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Figure A.11.: The electron Coulomb potential energies in units of the pion rest
mass in a nuclear matter core of stellar dimensions with A ≃ 1057 or Mcore ∼
M⊙ and Rc ≈ 106 cm, are plotted as a function of the dimensionless variable
ξ, for different values of the electron Fermi energy also in units of the pion
rest mass. The solid line corresponds to the case of null electron Fermi energy.
By increasing the value of the electron Fermi energy the electron Coulomb
potential energy depth is reduced.

This boundary-value problem can be solved analytically and Eq. (A.2.44)
has the first integral,

2[φ̂′(ξ)]2 =

{

φ̂4(ξ) − 4φ̂(ξ) + 3, ξ < 0,
φ̂4(ξ) − φ4(ξWS), ξ > 0,

(A.2.48)

with boundary conditions at ξ = 0:

φ̂(0) =
φ̂4(ξWS) + 3

4
,

φ̂′(0) = −

√

φ̂4(0)− φ̂4(ξWS)

2
. (A.2.49)

Having fullfilled the continuity condition we integrate Eq. (A.2.48) obtaining

650



A.2. On the relativistic Thomas-Fermi treatment of compressed atoms and
compressed nuclear matter cores of stellar dimensions

 0

 0.2

 0.4

 0.6

 0.8

 1

-5  0  5  10  15  20  25

φ^

ξ

Ee
F/mπc2

0.00
0.11
0.26
0.32

Figure A.12.: Solutions of the ultra-relativistic Thomas-Fermi equation
(A.2.44) for different values of the Wigner-Seitz cell radius RWS and corre-
spondingly of the electron Fermi energy in units of the pion rest mass as in
Fig. A.11, near the core surface. The solid line corresponds to the case of null
electron Fermi energy.
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Figure A.13.: The electric field in units of the critical field for vacuum po-
larization Ec = m2

e c3/(eh̄) is plotted as a function of the coordinate ξ, for
different values of the electron Fermi energy in units of the pion mass. The
solid line corresponds to the case of null electron Fermi energy. To an increase
of the value of the electron Fermi energy it is found a reduction of the peak
of the electric field.
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Figure A.14.: The Fermi energy of electrons in units of the pion rest mass is
plotted for different Wigner-Seitz cell dimensions (i.e for different compres-
sions) ξWS in the ultra-relativistic approximation . In the limit ξWS → 0 the
electron Fermi energy approaches asymptotically the value (EF

e )max given by
Eq. (A.2.63).

for ξ ≤ 0

φ̂(ξ) = 1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, (A.2.50)

where the integration constant a has the value

sinh(a) =
√

2

(

11 + φ̂4(ξWS)

1 − φ̂4(ξWS)

)

. (A.2.51)

In the interval 0 ≤ ξ ≤ ξWS, the field φ̂(ξ) is implicitly given by

F

(

arccos
φ̂(ξWS)

φ̂(ξ)
,

1√
2

)

= φ̂(ξWS)(ξ − ξWS), (A.2.52)

where F(ϕ, k) is the elliptic function of the first kind, and F(0, k) ≡ 0. For
F(ϕ, k) = u, the inverse function ϕ = F−1(u, k) = am(u, k) is the well known
Jacobi amplitude. In terms of it, we can express the solution (A.2.52) for ξ > 0
as,

φ̂(ξ) = φ̂(ξWS)

{

cos

[

am

(

φ̂(ξWS)(ξ − ξWS),
1√
2

)]}−1

. (A.2.53)
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In the present case of EF
e > 0 the ultra-relativistic approximation is indeed

always valid up to ξ = ξWS for high compression factors, i.e. for RWS ≃ Rc.
In the case EF

e = 0, ξWS → ∞, there is a breakdown of the ultra-relativistic
approximation when ξ → ξWS.

Details are given in Figs. A.11, A.12, A.13.

We can now estimate two crucial quantities of the solutions: the Coulomb
potential at the center of the configuration and the electric field at the surface
of the core

eV(0) ≃
(

9π

4

)1/3 1

∆
mπc2 − EF

e , (A.2.54)

Emax ≃ 2.4

√
α

∆2

(

mπ

me

)2

Ec|φ̂′(0)| , (A.2.55)

where Ec = m2
e c3/(eh̄) is the critical electric field for vacuum polarization.

These functions depend on the value φ̂(ξWS) via Eqs. (A.2.48)–(A.2.52). At
the boundary ξ = ξWS, due to the global charge neutrality, both the electric
field E(ξWS) and the Coulomb potential eV(ξWS) vanish. From Eq. (A.2.45),
we determine the value of φ̂(ξ) at ξ = ξWS

φ̂(ξWS) = ∆

(

4

9π

)1/3 EF
e

mπc2
, (A.2.56)

as a function of the electron Fermi energies EF
e . From the above Eq. (A.2.56),

one can see that there exists a solution, characterized by the value of electron
Fermi energy

(EF
e )max

mπc2
=

1

∆

(

9π

4

)1/3

, (A.2.57)

such that φ̂(ξWS) = 1. From Eq. (A.2.52) and ξ = 0, we also have

ξWS(φ̂(ξWS)) =

{

1

φ̂(0)
F

[

arccos

(

4 − 3

φ̂(0)

)

,
1√
2

]}

. (A.2.58)

For φ̂(ξWS) = 1, from Eq. (A.2.49) follows φ̂(0) = 1 hence Eq. (A.2.58) be-
comes

ξWS(φ̂(0)) = F

[

0,
1√
2

]

. (A.2.59)
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It is well known that if the inverse Jacobi amplitude F[0, 1/
√

2] is zero, then

ξWS(φ̂(ξWS) = φ̂(0) = 1) = 0. (A.2.60)

Indeed from φ̂(ξWS) = 1 follows φ̂(0) = 1 and ξWS = 0. When ξWS = 0
from Eq. (A.2.49) follows φ̂′(0) = 0 and, using Eq. (A.2.55), Emax = 0. In
other words for the value of EF

e fulfilling Eq. (A.2.56) no electric field exists
on the boundary of the core and from Eq. (A.2.47) and Eqs. (A.2.18, A.2.19)
it follows that indeed this is the solution fulfilling both global Ne = Np and
local ne = np charge neutrality. In this special case, starting from Eq. (A.2.28)
and A = Np + Nn, we obtain

(EF
e )

3/2
max =

9π
4 (h̄c)3 A

R3
c
− (EF

e )
3
max

23/2

[

(

9π
4 (h̄c)3 A

R3
c
− (EF

e )
3
max

)2/3
+ m2

nc4

]3/4
. (A.2.61)

In the ultra-relativistic approximation we have

(EF
e )

3
max/

9π

4
(h̄c)3 A

R3
c
<< 1 , (A.2.62)

then Eq. (A.2.61) can be approximated to

(EF
e )max = 21/3 mn

mπ
γ

[

−1 +

√

1 +
β

2γ3

]2/3

mπc2, (A.2.63)

where

β =
9π

4

(

h̄

mnc

)3 A

R3
c

, γ =
√

1 + β2/3. (A.2.64)

The corresponding limiting value to the Np/A ratio is obtained as follows

Np

A
=

2γ3

β

[

−1 +

√

1 +
β

2γ3

]2

. (A.2.65)

Inserting Eqs. (A.2.63), (A.2.64) in Eq. (A.2.65) one obtains the ultra-relativistic
limit of Eq. (A.2.37), since the electron Fermi energy, in view of the scaling
laws introduced in Popov et al. (2010), is independent of the value of A and
depends only on the density of the core.

The Np-independence in the limiting case of maximum electron Fermi en-
ergy attained when RWS = Rc, in which the ultra-relativistic treatment ap-
proaches the uniform one, and the Np-dependence for smaller compressions
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RWS > Rc can be understood as follows. Let see the solution to the ultra-
relativistic equation (A.2.44) for small ξ > 0. Analogously to the Feynman-
Metropolis-Teller approach to the non-relativistic Thomas-Fermi equation,
we solve the ultra-relativistic equation (A.2.44) for small ξ. Expanding φ̂(ξ)
about ξ = 0 in a semi convergent power series,

φ̂(ξ)

φ̂(0)
= 1 +

∞

∑
n=2

anξn/2 (A.2.66)

and substituting it into the ultra-relativistic equation (A.2.44), we have

∞

∑
k=3

ak
k(k − 2)

4
ξ(k−4)/2 = φ2(0) exp

[

3 ln(1 +
∞

∑
n=2

anξn/2)

]

. (A.2.67)

This leads to a recursive determination of the coefficients:

a3 = 0, a4 =
φ2(0)

2
, a5 = 0, a6 =

φ2(0)a2

2
, a7 = 0,

a8 =
φ2(0)(1 − a2

2)

8
, · · ·, (A.2.68)

with a2 = φ̂′(0)/φ̂(0) determined by the initial slop, namely, the boundary
condition φ̂′(0) and φ̂(0) in Eq. (A.2.49):

φ̂(0) =
φ̂4(ξWS) + 3

4
, φ̂′(0) = −

√

φ̂4(0)− φ̂4(ξWS)

2
(A.2.69)

Thus the series solution (A.2.66) is uniquely determined by the boundary
value φ̂(ξWS) at the Wigner-Seitz cell radius.

Now we consider the solution up to the leading orders

φ̂(ξ) = φ̂(0) + φ̂′(0)ξ +
1

2
φ̂3(0)ξ2 +

1

2
φ̂3(0)a2ξ3

+
1

8
φ̂3(0)(1 − a2

2)ξ
4 + · · ·. (A.2.70)

Using Eq. (A.2.70), the electron Fermi energy (A.2.56) becomes

EF
e = (EF

e )max

[

1 + a2ξWS +
1

2
φ̂2(0)(ξWS)2 +

1

2
φ̂2(0)a2(ξ

WS)3

+
1

8
φ̂2(0)(1 − a2

2)(ξ
WS)4 + · · ·

]

φ̂(0), (A.2.71)

where (EF
e )max = (9π/4)1/3∆−1 is the maximum Fermi energy which is at-
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tained when the Wigner-Seitz cell radius equals the nucleus radius Rc (see
Eq. A.2.57). For φ̂(ξWS) < 1, we approximately have φ̂(0) = 3/4, φ̂′(0) =

−(3/4)2/
√

2 and the initial slope a2 = φ̂′(0)/φ̂(0) = −(3/4)/
√

2. Therefore
Eq. (A.2.71) becomes

EF
e ≈ (EF

e )max

[

1 − 3

4
√

2
ξWS +

1

2

(

3

4

)2

(ξWS)2 − 1

23/2

(

3

4

)3

(ξWS)3

+
1

8

(

3

4

)2(41

32

)

(ξWS)4 + · · ·
]

. (A.2.72)

By the definition of the coordinate ξ, we know all terms except the first term
in the square bracket depend on the values of Np. In the limit of maximum
compression when the electron Fermi energy acquires its maximum value,
namely when ξWS = 0, the electron Fermi energy (A.2.72) is the same as the
one obtained from the uniform approximation which is independent of Np.

For smaller compressions, namely for ξWS > 0 the electron Fermi energy
deviates from the one given by the uniform approximation becoming Np-
dependent.

In Fig. A.14 we plot the Fermi energy of electrons, in units of the pion rest
mass, as a function of the dimensionless parameter ξWS and, as ξWS → 0, the
limiting value given by Eq. (A.2.63) is clearly displayed.

In ref. Alcock et al. (1986), in order to study the electrodynamical prop-
erties of strange stars, the ultra-relativistic Thomas-Fermi equation was nu-
merically solved in the case of bare strange stars as well as in the case of
strange stars with a crust (see e.g. curves (a) and (b) in Fig. 6 of ref. Alcock
et al. (1986)). In Fig. 6 of Alcock et al. (1986) was plotted what they called
the Coulomb potential energy, which we will denote as VAlcock. The poten-
tial VAlcock was plotted for different values of the electron Fermi momentum
at the edge of the crust. Actually, such potential VAlcock is not the Coulomb
potential eV but it coincides with our function eV̂ = eV + EF

e . Namely, the po-
tential VAlcock corresponds to the Coulomb potential shifted by the the Fermi
energy of the electrons. We then have from Eq. (A.2.45)

eV̂(ξ) =

(

9π

4

)1/3 1

∆
mπc2φ̂(ξ) = VAlcock. (A.2.73)

This explains why in Alcock et al. (1986), for different values of the Fermi
momentum at the crust the depth of the potential VAlcock remains unchanged.
Instead, the correct behaviour of the Coulomb potential is quite different and,
indeed, its depth decreases with increasing of compression as can be seen in
Fig. A.11.
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A.2.6. Compressional energy of nuclear matter cores of

stellar dimensions

We turn now to the compressional energy of these family of compressed
nuclear matter cores of stellar dimensions each characterized by a different
Fermi energy of the electrons. The kinematic energy-spectra of complete de-
generate electrons, protons and neutrons are

ǫi(p) =
√

(pc)2 + m2
i c4, p ≤ PF

i , i = e, p, n. (A.2.74)

So the compressional energy of the system is given by

E = EB + Ee + Eem , EB = Ep + En , (A.2.75)

Ei = 2
∫

i

d3rd3 p

(2πh̄)3
ǫi(p) , i = e, p, n , Eem =

∫

E2

8π
d3r . (A.2.76)

Using the analytic solution (A.2.53) we calculate the energy difference be-
tween two systems, I and I I,

∆E = E(EF
e (I I))− E(EF

e (I)), (A.2.77)

with EF
e (I I) > EF

e (I) ≥ 0, at fixed A and Rc.

We first consider the infinitesimal variation of the total energy δEtot with
respect to the infinitesimal variation of the electron Fermi energy δEF

e

δE =

[

∂E

∂Np

]

VWS

[

∂Np

∂EF
e

]

δEF
e +

[

∂E

∂VWS

]

Np

[

∂VWS

∂EF
e

]

δEF
e . (A.2.78)

For the first term of this relation we have
[

∂E

∂Np

]

VWS

=

[

∂Ep

∂Np
+

∂En

∂Np
+

∂Ee

∂Np
+

∂Eem

∂Np

]

VWS

≃
[

EF
p − EF

n + EF
e +

∂Eem

∂Np

]

VWS

, (A.2.79)

where the general definition of chemical potential ∂ǫi/∂ni = ∂Ei/∂Ni is used
(i = e, p, n) neglecting the mass defect mn − mp − me. Further using the
condition of the beta-equilibrium (A.2.28) we have

[

∂E

∂Np

]

VWS

=

[

∂Eem

∂Np

]

VWS

. (A.2.80)
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For the second term of the Eq. (A.2.78) we have

[

∂E

∂VWS

]

Np

=

[

∂Ep

∂VWS
+

∂En

∂VWS
+

∂Ee

∂VWS
+

∂Eem

∂VWS

]

Np

=

[

∂Ee

∂VWS

]

Np

+

[

∂Eem

∂VWS

]

Np

, (A.2.81)

since in the process of increasing the electron Fermi energy namely, by de-
creasing the radius of the Wigner-Seitz cell, the system by definition main-
tains the same number of baryons A and the same core radius Rc.

Now δE reads

δE =

{

[

∂Ee

∂VWS

]

Np

∂VWS

∂EF
e

+

[

∂Eem

∂VWS

]

Np

∂VWS

∂EF
e

+

[

∂Eem

∂Np

]

VWS

∂Np

∂EF
e

}

δEF
e ,

(A.2.82)
so only the electromagnetic energy and the electron energy give non-null con-
tributions.

From this equation it follows that

∆E = ∆Eem + ∆Ee, (A.2.83)

where ∆Eem = Eem(EF
e (I I))−Eem(EF

e (I)) and ∆Ee = Ee(EF
e (I I))−Ee(EF

e (I)).
In the particular case in which EF

e (I I) = (EF
e )max and EF

e (I) = 0 we obtain

∆E ≃ 0.75
35/3

2

(π

4

)1/3 1

∆
√

α

( π

12

)1/6
N2/3

p mπc2, (A.2.84)

which is positive.
The compressional energy of a nuclear matter core of stellar dimensions

increases with its electron Fermi energy as expected.

A.2.7. Conclusions

We have generalized to the relativistic regime the classic work of Feynman,
Metropolis and Teller, solving a compressed atom by the Thomas-Fermi equa-
tion in a Wigner-Seitz cell.

In the relativistic generalization the equation to be integrated is the rela-
tivistic Thomas-Fermi equation, also called the Vallarta-Rosen equation Val-
larta and Rosen (1932). The integration of this equation does not admit any
regular solution for a point-like nucleus and both the nuclear radius and the
nuclear composition have necessarily to be taken into account Ferreirinho
et al. (1980); Ruffini and Stella (1981). This introduces a fundamental differ-
ence from the non-relativistic Thomas-Fermi model where a point-like nu-
cleus was adopted.
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As in previous works Ferreirinho et al. (1980); Ruffini and Stella (1981);
Ruffini et al. (2007b) the protons in the nuclei have been assumed to be at
constant density, the electron distribution has been derived by the Thomas-
Fermi relativistic equation and the neutron component has been derived by
the beta equilibrium between neutrons, protons and electrons.

We have also examined for completeness the relativistic generalization of
the Thomas-Fermi-Dirac equation by taking into due account the exchange
terms Dirac (1930), adopting the general approach of Migdal, Popov and
Voskresenskii Migdal et al. (1977), and shown that these effects, generally
small, can be neglected in the relativistic treatment.

There are marked differences between the relativistic and the non-relativistic
treatments.

The first and the most general one is that the existence of a finite size nu-
cleus introduces necessarily a limit to the compressibility: the dimension
of the Wigner-Seitz cell can never be smaller then the nuclear size. Con-
sequently the electron Fermi energy which in the non-relativistic approach
can reach arbitrarily large values, reaches in the present case a perfectly finite
value whose expression has been given in analytic form. There are in the liter-
ature many papers adopting a relativistic treatment for the electrons together
with a point-like approximation for the nucleus, which is clearly inconsistent
(see e.g. Chabrier and Potekhin (1998); Potekhin et al. (2009)).

The second is the clear difference of the electron distribution as a function
of the radius and of the nuclear composition as contrasted to the uniform
approximation often adopted in the literature (see e.g.Bürvenich et al. (2007))
which we have explicitly shown in the Fig. A.8 of Sec. A.2.4. Inferences based
on the uniform approximation are not appropriate both in the relativistic and
in the non-relativistic regime.

The third, one of the most relevant, is that the relativistic Feynman-Metro-
polis-Teller treatment allows to treat globally and in generality the electrody-
namical interaction within the atom and the relativistic corrections leading to
a softening of the dependence of the electron Fermi energy on the compres-
sion factor, as well as a gradual decrease of the exchange terms in proceeding
from the non-relativistic to the fully relativistic regimes. It is then possible
to derive, as shown in Table A.1 of Sec. A.2.4 a consistent equation of state
for compressed matter which overcomes some of the difficulties of existing
treatments describing the electrodynamical effect by a sequence of approxi-
mations which have lead to the occurrence of unphysical regimes e.g. the ex-
istence of negative pressure as in the Salpeter approach. As a direct applica-
tion of this treatment we have reconsidered the study of white dwarfs within
the relativistic Feynman, Metropolis, Teller approach and evaluate their ef-
fects on the value of the radii, of the masses of the equilibrium configurations
as well as on the numerical value of the critical mass Rueda et al. (2010d). We
have there compared and contrasted the results obtained by Chandrasekhar
with a uniform approximation with the ones obtained by the equation of state
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of Salpeter and the ones following from the treatment presented in this arti-
cle.

We have then extrapolated these results to the case of nuclear matter cores
of stellar dimensions for A ≈ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M⊙. The
aim here is to explore the possibility of obtaining for these systems a self-
consistent solution presenting global and not local charge neutrality. The
results generalize the considerations presented in the previous article cor-
responding to a nuclear matter core of stellar dimensions with null Fermi en-
ergy of the electrons Popov et al. (2010). The ultra-relativistic approximation
allows to obtain analytic expressions for the fields. The exchange terms can
in this approximation be safely neglected. An entire family of configurations
exist with values of the Fermi energy of the electrons ranging from zero to a
maximum value (EF

e )max which is reached when the Wigner- Seitz cell coin-
cides with the core radius. The configuration with EF

e = (EF
e )max corresponds

to the configuration with Np = Ne and np = ne. For this limiting value of
the Fermi energy the system fulfills both the global and the local charge neu-
trality and correspondingly no electrodynamical structure is present in the
core. All the other configurations presents overcritical electric fields close to
their surface. The configuration with EF

e = 0 has the maximum value of the
electric field at the core surface, well above the critical value Ec (see Fig. A.11,
Fig. A.12 and Fig. A.13 of Section A.2.5). All these cores with overcritical
electric fields are stable against the vacuum polarization process due to the
Pauli blocking by the degenerate electrons Ruffini et al. (2010). We have also
compared and contrasted our treatment of the relativistic Thomas-Fermi so-
lutions to the corresponding one addressed in the framework of strange stars
Alcock et al. (1986) pointing out in these treatments some inconsistency in the
definition of the Coulomb potential.

We have finally compared the compressional energy of configurations with
selected values of the electron Fermi energy. In both systems of the com-
pressed atoms and of the nuclear matter cores of stellar dimensions a maxi-
mum value of the Fermi energy has been reached corresponding to the case
of Wigner-Seitz cell radius RWS coincident with the core radius Rc.

In conclusion the analysis of compressed atoms following the relativistic
Feynman, Metropolis, Teller treatment presented in the first part of this article
has important consequences in the determination of the mass-radius relation
of white dwarfs leading to the possibility of a direct confrontation of these
results with observations, in view of the current great interest for the cos-
mological implications of the type Ia supernovae Phillips (1993); Riess et al.
(1998); Perlmutter et al. (1999); Riess et al. (2004). The results presented in the
second part of this article on nuclear matter cores of stellar dimensions evi-
dence the possibility of having the existence of critical electromagnetic fields
in the interface of the core and the neutron star crust. The results here ob-
tained in a simplified but rigorous approach of the application of the rela-
tivistic Feynman, Metropolis, Teller treatment to the constant density cores in
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beta equilibrium conform to the prediction of Baym, Bethe and Pethick Baym
et al. (1971a). This treatment has been further extended to the case in which a
self-gravitating system of degenerate neutrons, protons and electrons is con-
sidered within the framework of relativistic quantum statistics and Einstein-
Maxwell equations Rueda et al. (2010c) and to the case in which also strong
interactions are present Pugliese et al. (2010).
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A.3. Electrodynamics for Nuclear Matter in Bulk

It is well know that the Thomas-Fermi equation is the exact theory for atoms,
molecules and solids as Z → ∞ Lieb and Simon (1973). We show in this
letter that the relativistic Thomas-Fermi theory developed for the study of
atoms for heavy nuclei with Z ≃ 106 Pieper and Greiner (1969), Greenberg
and Greiner (1982), Müller et al. (1972), Popov (1971b), Zeldovich and Popov
(1972),Ferreirinho et al. (1980), Ruffini and Stella (1981), Müller and Rafel-
ski (1975), Migdal et al. (1976) gives important basic new information on the
study of nuclear matter in bulk in the limit of N ≃ (mPlanck/mn)3 nucleons of
mass mn and on its electrodynamic properties. The analysis of nuclear matter
bulk in neutron stars composed of degenerate gas of neutrons, protons and
electrons, has traditionally been approached by implementing microscopi-
cally the charge neutrality condition by requiring the electron density ne(x)
to coincide with the proton density np(x),

ne(x) = np(x). (A.3.1)

It is clear however that especially when conditions close to the gravitational
collapse occur, there is an ultra-relativistic component of degenerate elec-
trons whose confinement requires the existence of very strong electromag-
netic fields, in order to guarantee the overall charge neutrality of the neutron
star. Under these conditions equation (A.3.1) will be necessarily violated. We
are going to show in this letter that they will develop electric fields close to
the critical value Ec introduced by Sauter Sauter (1931), Heisenberg and Euler
Heisenberg and Euler (1936), and by Schwinger Schwinger (1951, 1954a,b)

Ec =
m2c3

eh̄
. (A.3.2)

Special attention for the existence of critical electric fields and the possible
condition for electron-positron (e+e−) pair creation out of the vacuum in the
case of heavy bare nuclei, with the atomic number Z ≥ 173, has been given
by Popov Popov (1971b), Popov and Zel’dovich Zeldovich and Popov (1972),
Greenberg and Greiner Greenberg and Greiner (1982), Muller, Peitz, Rafelski
and Greiner Müller et al. (1972). They analyzed the specific pair creation pro-
cess of an electron-positron pair around both a point-like and extended bare
nucleus by direct integration of Dirac equation. These considerations have
been extrapolated to much heavier nuclei Z ≫ 1600, implying the creation of
a large number of e+e− pairs, by using a statistical approach based on the rel-
ativistic Thomas-Fermi equation by Muller and Rafelski Müller and Rafelski
(1975), Migdal, Voskresenskii and Popov Migdal et al. (1976). Using substan-
tially the same statistical approach based on the relativistic Thomas-Fermi
equation, Ferreirinho et al. Ferreirinho et al. (1980), Ruffini and Stella Ruffini
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and Stella (1981) have analyzed the electron densities around an extended
nucleus in a neutral atom all the way up to Z ≃ 6000. They have shown the
effect of penetration of the electron orbitals well inside the nucleus, leading to
a screening of the nuclei positive charge and to the concept of an “effective”
nuclear charge distribution. All the above works assumed for the radius of
the extended nucleus the semi-empirical formulae Segré (1977),

Rc ≈ r0A1/3, r0 = 1.2 · 10−13cm, (A.3.3)

where the mass number A = Nn + Np, Nn and Np are the neutron and proton
numbers. The approximate relation between A and the atomic number Z =
Np,

Z ≃ A

2
, (A.3.4)

was adopted in Refs. Müller and Rafelski (1975); Migdal et al. (1976), or the
empirical formulae

Z ≃ [
2

A
+

3

200

1

A1/3
]−1, (A.3.5)

was adopted in Refs. Ferreirinho et al. (1980); Ruffini and Stella (1981).

The aim of this letter is to outline an alternative approach of the description
of nuclear matter in bulk: it generalizes, to the case of N ≃ (mPlanck/mn)

3

nucleons, the above treatments, already developed and tested for the study
of heavy nuclei. This more general approach differs in many aspects from the
ones in the current literature and recovers, in the limiting case of A smaller
than 106, the above treatments. We shall look for a solution implementing the
condition of overall charge neutrality of the star as given by

Ne = Np, (A.3.6)

which significantly modifies Eq. (A.3.1), since now Ne(Np) is the total number
of electrons (protons) of the equilibrium configuration. Here we present only
a simplified prototype of this approach. We outline the essential relative role
of the four fundamental interactions present in the neutron star physics: the
gravitational, weak, strong and electromagnetic interactions. In addition, we
also implement the fundamental role of Fermi-Dirac statistics and the phase
space blocking due to the Pauli principle in the degenerate configuration.
The new results essentially depend from the coordinated action of the five
above theoretical components and cannot be obtained if any one of them is
neglected. Let us first recall the role of gravity. In the case of neutron stars,
unlike in the case of nuclei where its effects can be neglected, gravitation has
the fundamental role of defining the basic parameters of the equilibrium con-
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figuration. As pointed out by Gamow Gamow (1931), at a Newtonian level
and by Oppenheimer and Volkoff Oppenheimer and Volkoff (1939) in gen-
eral relativity, configurations of equilibrium exist at approximately one solar
mass and at an average density around the nuclear density. This result is ob-
tainable considering only the gravitational interaction of a system of Fermi
degenerate self-gravitating neutrons, neglecting all other particles and inter-
actions. It can be formulated within a Thomas-Fermi self-gravitating model
(see e.g. Ruffini and Bonazzola (1969)). In the present case of our simplified
prototype model directed at evidencing new electrodynamic properties, the
role of gravity is simply taken into account by considering, in line with the
generalization of the above results, a mass-radius relation for the baryonic
core

RNS = Rc ≈
h̄

mπc

mPlanck

mn
. (A.3.7)

This formula generalizes the one given by Eq. (A.3.3) extending its validity
to N ≈ (mPlanck/mn)3, leading to a baryonic core radius Rc ≈ 10km. We also
recall that a more detailed analysis of nuclear matter in bulk in neutron stars
( see e.g. Bethe et al. Bethe et al. (1970) and Cameron Cameron (1970) ) shows
that at mass densities larger than the ”melting” density of

ρc = 4.34 · 1013g/cm3, (A.3.8)

all nuclei disappear. In the description of nuclear matter in bulk we have to
consider then the three Fermi degenerate gas of neutrons, protons and elec-
trons. In turn this naturally leads to consider the role of strong and weak
interactions among the nucleons. In the nucleus, the role of the strong and
weak interaction, with a short range of one Fermi, is to bind the nucleons,
with a binding energy of 8 MeV, in order to balance the Coulomb repulsion
of the protons. In the neutron star case we have seen that the neutrons con-
finement is due to gravity. We still assume that an essential role of the strong
interactions is to balance the effective Coulomb repulsion due to the protons,
partly screened by the electrons distribution inside the neutron star core. We
shall verify, for self-consistency, the validity of this assumption on the final
equilibrium solution we are going to obtain. We now turn to the essential
weak interaction role in establishing the relative balance between neutrons,
protons and electrons via the direct and inverse β-decay

p + e −→ n + νe, (A.3.9)

n −→ p + e + ν̄e. (A.3.10)

Since neutrinos escape from the star and the Fermi energy of the electrons is
null, as we will show below, the only non-vanishing terms in the equilibrium
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condition given by the weak interactions are:

√

(PF
n c)2 + M2

nc4 − Mnc2 =
√

(PF
p c)2 + M2

pc4 − Mpc2 + eV
p

coul, (A.3.11)

where PF
n and PF

p are respectively, the neutron and proton Fermi momenta,

and V
p

coul is the Coulomb potential of protons. At this point, having fixed all
these physical constraints, the main task is to find the electrons distributions
fulfilling in addition to the Dirac-Fermi statistics also the Maxwell equations
for the electrostatic. The condition of equilibrium of the Fermi degenerate
electrons implies the null value of the Fermi energy:

√

(PF
e c)2 + m2c4 − mc2 + eVcoul(r) = 0, (A.3.12)

where PF
e is the electron Fermi momentum and Vcoul(r) the Coulomb poten-

tial. In line with the procedure already followed for the heavy atoms Fer-
reirinho et al. (1980),Ruffini and Stella (1981) we here adopt the relativistic
Thomas-Fermi Equation:

1

x

d2χ(x)

dx2
= −4πα







θ(x − xc)−
1

3π2

[

(

χ(x)

x
+ β

)2

− β2

]3/2






, (A.3.13)

where α = e2/(h̄c), θ(x − xc) represents the normalized proton density dis-
tribution, the variables x and χ are related to the radial coordinate and the
electron Coulomb potential Vcoul by

x =
r

Rc

(

3Np

4π

)1/3

; eVcoul(r) ≡
χ(r)

r
, (A.3.14)

and the constants xc(r = Rc) and β are respectively

xc ≡
(

3Np

4π

)1/3

; β ≡ mcRc

h̄

(

4π

3Np

)1/3

. (A.3.15)

The solution has the boundary conditions

χ(0) = 0; χ(∞) = 0, (A.3.16)

with the continuity of the function χ and its first derivative χ′ at the boundary
of the core Rc. The crucial point is the determination of the eigenvalue of the
first derivative at the center

χ′(0) = const., (A.3.17)
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which has to be determined by fulfilling the above boundary conditions (A.3.16)
and constraints given by Eq. (A.3.11) and Eq. (A.3.6). The difficulty of the
integration of the Thomas-Fermi Equations is certainly one of the most cel-
ebrated chapters in theoretical physics and mathematical physics, still chal-
lenging a proof of the existence and uniqueness of the solution and stren-
uously avoiding the occurrence of exact analytic solutions. We recall after
the original papers of Thomas Thomas (1927) and Fermi Fermi (1927), the
works of Sommerfeld Sommerfeld (1932), all the way to the many hundredth
papers reviewed in the classical articles of Lieb and Simon Lieb and Simon
(1973), Lieb Lieb (1981) and Spruch Spruch (1991). The situation here is more
difficult since we are working on the special relativistic generalization of the
Thomas-Fermi Equation. Also in this case, therefore, we have to proceed
by numerical integration. The difficulty of this numerical task is further en-
hanced by a consistency check in order to fulfill all different constraints. It
is so that we start the computations by assuming a total number of protons
and a value of the core radius Rc. We integrate the Thomas-Fermi Equation
and we determine the number of neutrons from the Eq. (A.3.11). We iterate
the procedure until a value of A is reached consistent with our choice of the
core radius. The paramount difficulty of the problem is the numerical deter-
mination of the eigenvalue in Eq. (A.3.17) which already for A ≈ 104 had
presented remarkable numerical difficulties Ferreirinho et al. (1980). In the
present context we have been faced for a few months by an apparently un-
surmountable numerical task: the determination of the eigenvalue seemed
to necessitate a significant number of decimals in the first derivative (A.3.17)
comparable to the number of the electrons in the problem! The solution is
given in Fig. (A.15) and Fig. (A.16).

A relevant quantity for exploring the physical significance of the solution
is given by the number of electrons within a given radius r:

Ne(r) =
∫ r

0
4π(r′)2ne(r

′)dr′. (A.3.18)

This allows to determine, for selected values of the A parameter, the distri-
bution of the electrons within and outside the core and follow the progres-
sive penetration of the electrons in the core at increasing values of A [ see
Fig. (A.17)]. We can then evaluate, generalizing the results in Ferreirinho
et al. (1980), Ruffini and Stella (1981) , the net charge inside the core

Nnet = Np − Ne(Rc) < Np, (A.3.19)

and consequently determine the electric field at the core surface, as well as
within and outside the core [see Fig. (A.18)] and evaluate as well the Fermi
degenerate electron distribution outside the core [see Fig. (A.19)]. It is inter-
esting to explore the solution of the problem under the same conditions and
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Figure A.15.: The solution χ of the relativistic Thomas-Fermi Equation for
A = 1057 and core radius Rc = 10km, is plotted as a function of radial coor-
dinate. The left red line corresponds to the internal solution and it is plotted
as a function of radial coordinate in unit of Rc in logarithmic scale. The right
blue line corresponds to the solution external to the core and it is plotted as
function of the distance ∆r from the surface in the logarithmic scale in cen-
timeter.
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Figure A.16.: The same as Fig. (A.15): enlargement around the core radius Rc

showing explicitly the continuity of function χ and its derivative χ′ from the
internal to the external solution.

constraints imposed by the fundamental interactions and the quantum statis-
tics and imposing instead of Eq. (A.3.1) the corresponding Eq. (A.3.6). Indeed
a solution exist and is much simpler

nn(x) = np(x) = ne(x) = 0, χ = 0. (A.3.20)

Before concluding as we announce we like to check on the theoretical con-
sistency of the solution. We obtain an overall neutral configuration for the
nuclear matter in bulk, with a positively charged baryonic core with

Nnet = 0.92

(

m

mπ

)2( e

mn

√
G

)2 (1

α

)2

, (A.3.21)

and an electric field on the baryonic core surface (see Fig. (A.18) )

E

Ec
= 0.92. (A.3.22)

The corresponding Coulomb repulsive energy per nucleon is given by

Umax
coul =

1

2α

(

m

mπ

)3

mc2 ≈ 1.78 · 10−6(MeV), (A.3.23)

668



A.3. Electrodynamics for Nuclear Matter in Bulk

 0

 0.2

 0.4

 0.6

 0.8

 1

10-2 10-1 100 101 102 103 104 105

N
e
(r

)/
N

p

r/Rc

A = 2.0 x 102 

A = 3.7 x 104 

A = 1.0 x 106 

A = 1.0 x 1057

Figure A.17.: The electron number (A.3.18) in the unit of the total proton
number Np, for selected values of A, is given as function of radial distance
in the unit of the core radius Rc, again in logarithmic scale. It is clear how
by increasing the value of A the penetration of electrons inside the core in-
creases. The detail shown in Fig. (A.18) and Fig. (A.19) demonstrates how for
N ≃ (mPlanck/mn)3 a relatively small tail of electron outside the core exists
and generates on the baryonic core surface an electric field close to the critical
value. A significant electron density outside the core is found.
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Figure A.18.: The electric field in the unit of the critical field Ec is plotted
around the core radius Rc. The left (right) diagram in the red (blue) refers
the region just inside (outside) the core radius plotted logarithmically. By
increasing the density of the star the field approaches the critical field.
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Figure A.19.: The density of electrons for A = 1057 in the region outside the
core; both scale are logarithmically.
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well below the nucleon binding energy per nucleon. It is also important to
verify that this charge core is gravitationally stable. We have in fact

Q√
GM

= α−1/2

(

m

mπ

)2

≈ 1.56 · 10−4. (A.3.24)

The electric field of the baryonic core is screened to infinity by an electron dis-
tribution given in Fig. (A.19). As usual any new solution of Thomas-Fermi
systems has relevance and finds its justification in the theoretical physics
and mathematical physics domain. We expect that as in the other solutions
previously obtained in the literature of the relativistic Thomas-Fermi equa-
tions also this one we present in this letter will find important applications
in physics and astrophysics. There are a variety of new effects that such a
generalized approach naturally leads to: (1) the mass-radius relation of neu-
tron star may be affected; (2) the electrodynamic aspects of neutron stars and
pulsars will be different; (3) we expect also important consequence in the ini-
tial conditions in the physics of gravitational collapse of the baryonic core as
soon as the critical mass for gravitational collapse to a black hole is reached.
The consequent collapse to a black hole will have very different energetics
properties.
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A.4. On the Charge to Mass Ratio of Neutron

Cores and Heavy Nuclei

A.4.1. Introduction

It is well known that stable nuclei are located, in the Nn-Np plane (where
Nn and Np are the total number of neutrons and protons respectively), in a
region that, for small values of Np, is almost a line well described by the rela-
tion Nn = Np.
In the past, several efforts have been made to explain theoretically this prop-
erty, for example with the liquid drop model of atoms, that is based on two
properties common to all nuclei: their mass densities and their binding ener-
gies for nucleons are almost independent from the mass number A = Nn +
Np Segré (1977). This model takes into account the strong nuclear force and
the Coulombian repulsion between protons and explains different properties
of nuclei, for example the relation between Np and A (the charge to mass
ratio).

In this work Patricelli et al. (2008) we derive theoretically the charge to
mass ratio of nuclei and extend it to neutron cores (characterized by higher
values of A) with the model of Ruffini et al. Ruffini et al. (2007b). We consider
systems composed of degenerate neutrons, protons and electrons and we use
the relativistic Thomas-Fermi equation and the equation of β-equilibrium to
determine the number density and the total number of these particles, from
which we obtain the relation between Np and A.

A.4.2. The theoretical model

Following the work of Ruffini et al. Ruffini et al. (2007b), we describe nuclei
and neutron cores as spherically symmetric systems composed of degenerate
protons, electrons and neutrons and impose the condition of global charge
neutrality.
We assume that the proton’s number density np(r) is constant inside the core
(r ≤ RC) and vanishes outside the core (r > RC):

np(r) =

(

3Np

4πR3
C

)

θ(RC − r), (A.4.1)

where Np is the total number of protons and RC is the core-radius, parame-
trized as:

RC = ∆
h̄

mπc
N1/3

p . (A.4.2)

We choose ∆ in order to have ρ ∼ ρN, where ρ and ρN are the mass density of
the system and the nuclear density respectively (ρN = 2.314 · 1014g cm−3).

672



A.4. On the Charge to Mass Ratio of Neutron Cores and Heavy Nuclei

The electron number density ne(r) is given by:

ne(r) =
1

3π2h̄3

[

pF
e (r)

]3
, (A.4.3)

where pF
e (r) is the electron Fermi momentum. It can be calculated from the

condition of equilibrium of Fermi degenerate electrons, that implies the null
value of their Fermi energy ǫF

e (r):

ǫF
e (r) =

√

[pF
e (r)c]

2 + m2
e c4 − mec

2 + Vc(r) = 0, (A.4.4)

where Vc(r) is the Coulomb potential energy of electrons.

From this condition we obtain:

pF
e (r) =

1

c

√

V2
c (r)− 2mec2Vc(r), (A.4.5)

hence the electron number density is:

ne(r) =
1

3π2h̄3c3

[

V2
c (r)− 2mec

2Vc(r)
]3/2

. (A.4.6)

The Coulomb potential energy of electrons, necessary to derive ne(r), can be
determined as follows. Based on the Gauss law, Vc(r) obeys the following
Poisson equation:

∇2Vc(r) = −4πe2[ne(r)− np(r)], (A.4.7)

with the boundary conditions Vc(∞) = 0, Vc(0) = f inite. Introducing the
dimensionless function χ(r), defined by the relation:

Vc(r) = −h̄c
χ(r)

r
, (A.4.8)

and the new variable x = rb−1 = r
(

h̄
mπc

)−1
, from Eq. (A.4.7) we obtain the

relativistic Thomas-Fermi equation:

1

3x

d2χ(x)

dx2
= −α

{

1

∆3
θ(xc − x)− 4

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2
}

. (A.4.9)

The boundary conditions for the function χ(x) are:

χ(0) = 0, χ(∞) = 0, (A.4.10)

as well as the continuity of χ(x) and its first derivative χ
′
(x) at the boundary
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of the core.
The number density of neutrons nn(r) is:

nn(r) =
1

3π2h̄3

[

pF
n(r)

]3
, (A.4.11)

where pF
n(r) is the neutron Fermi momentum. It can be calculated with the

condition of equilibrium between the processes

e− + p → n + νe; (A.4.12)

n → p + e− + ν̄e, (A.4.13)

Assuming that neutrinos escape from the core as soon as they are produced,
this condition (condition of β-equilibrium) is

ǫF
e (r) + ǫF

p(r) = ǫF
n(r). (A.4.14)

Eq. (A.4.14) can be explicitly written as:

√

[pF
p(r)c]

2 + m2
pc4 − mpc2 − Vc(r) =

√

[pF
n(r)c]

2 + m2
nc4 − mnc2. (A.4.15)

A.4.3. Np versus A relation

Using the previous equations, we derive ne(r), nn(r) and np(r) and, by in-
tegrating these, we obtain the Ne, Nn and Np. We also derive a theoretical
relation between Np and A and we compare it with the data of the Periodic
Table and with the semi-empirical relation:

Np =

(

A

2

)

· 1

1 +
(

3
400

)

· A2/3
(A.4.16)

that, in the limit of low A, gives the well known relation Np = A/2 Segré
(1977).
Eq. (A.4.16) can be obtained by minimizing the semi-empirical mass formula,
that was first formulated by Weizsäcker in 1935 and is based on empirical
measurements and on theory (the liquid drop model of atoms).
The liquid drop model approximates the nucleus as a sphere composed of
protons and neutrons (and not electrons) and takes into account the Coulom-
bian repulsion between protons and the strong nuclear force. Another im-
portant characteristic of this model is that it is based on the property that the
mass densities of nuclei are approximately the same, independently from A.
In fact, from scattering experiments it was found the following expression for
the nuclear radius RN :

RN = r0A1/3, (A.4.17)
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with r0 = 1.2 fm. Using eq. (A.4.17) the nuclear density can be write as
follows:

ρN =
AmN

V
=

3AmN

4πr3
0 A

=
3mN

4πr3
0

, (A.4.18)

where mN is the nucleon mass. From eq. (A.4.18) it is clear that nuclear
density is indipendent from A, so it is constant for all nuclei.
The property of constant density for all nuclei is a common point with our
model: in fact, we choose ∆ in order to have the same mass density for every
value of A; in particular we consider the case ρ ∼ ρN, as previously said.
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Figure A.20.: The Np − A relation obtained with our model and with the semi-empirical
mass formula, the Np = A/2 relation and the data of the Periodic Table; relations are plotted
for values of A from 0 to 200.

In table (A.2) are listed some values of A obtained with our model and the
semi-empirical mass formula, as well as the data of the Periodic Table; in fig.
(A.20) and (A.21) it is shown the comparison between the various Np − A
relations.

It is clear that there is a good agreement between all the relations for values
of A typical of nuclei, with differences of the order of per cent. Our relation
and the semi-empirical one are in agreement up to A ∼ 104; for higher values,
we find that the two relations differ. We interprete these differences as due to
the effects of penetration of electrons inside the core [see fig. (A.22)]: in our
model we consider a system composed of degenerate protons, neutrons and
electrons. For the smallest values of A, all the electrons are in a shell outside
the core; by increasing A, they progressively penetrate into the core Ruffini
et al. (2007b). These effects, which need the relativistic approach introduced
in Ruffini et al. (2007b), are not taken into account in the semi-empirical mass
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Figure A.21.: The Np − A relation obtained with our model and with the semi-empirical

mass formula and the Np = A/2 relation; relations are plotted for values of A from 0 to 108.
It is clear how the semi-empirical relation and the one obtained with our model are in good
agreement up to values of A of the order of 104; for greater values of A the two relation differ
because our model takes into account the penetration of electrons inside the core, which is
not considered in the semi-empirical mass formula.
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Figure A.22.: The electron number in units of the total proton number Np as function of
the radial distance in units of the core radius RC, for different values of A. It is clear that, by
increasing the value of A, the penetration of electrons inside the core increases. Figure from
R. Ruffini, M. Rotondo and S. S. Xue Ruffini et al. (2007b).
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formula.
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Figure A.23.: The Np − A relation obtained with our model and the asymptotic limit Np =
0.026A

We also note that the charge to mass ratio become constant for A greater
that 107; in particular, it is well approximated by the relation Np = 0.026A
[see fig. (A.23)].

A.4.4. Conclusions

In this work we have derived theoretically a relation between the total num-
ber of protons Np and the mass number A for nuclei and neutron cores with
the model recently proposed by Ruffini et al. Ruffini et al. (2007b)).
We have considered spherically symmetric systems composed of degenerate
electrons, protons and neutrons having global charge neutrality and the same
mass densities (ρ ∼ ρN). By integrating the relativistic Thomas-Fermi equa-
tion and using the equation of β-equilibrium, we have determined the total
number of protons, electrons and neutrons in the system and hence a theo-
retical relation between Np and A.
We have compared this relation with the empirical data of the Periodic Table
and with the semi-empirical relation, obtained by minimizing the Weizsäcker
mass formula by considering systems with the same mass densities. We have
shown that there’s a good agreement between all the relations for values of
A typical of nuclei, with differences of the order of per cent. Our relation and
the semi-empirical one are in agreement up to A ∼ 104; for higher values, we
find that the two relations differ. We interprete the different behaviour of our
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Np AM APT ASE

5 10.40 10.811 10.36
10 21.59 20.183 21.15
15 32.58 30.9738 32.28
20 44.24 40.08 43.72
25 56.17 54.938 55.45
30 68.43 65.37 67.46
50 120.40 118.69 118.05
70 176.78 173.04 172.54
90 237.41 232.038 230.79

110 302.18 271 292.75
150 443.98 427.73
200 644.03 617.56
250 869.32 831.63
300 1119.71 1071.08
350 1395.12 1337.23
450 2019.48 1955.57
500 2367.77 2310.96
550 2739.60 2699.45
600 3134.28 3122.83
103 6.9·103 8·103

104 2.0·105 3.45·106

105 3.0·106 3.38·109

106 3.4·107 3.37·1012

107 3.7·108 3.37·1015

1010 3.9·1011 3.37·1024

Table A.2.: Different values of Np (column 1) and corresponding values of A
from our model (AM, column 2), the Periodic Table (APT, column 3) and the
semi-empirical mass formula (ASE, column 4).
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theoretical relation as a result of the penetration of electrons (initially con-
fined in an external shell) inside the core [see fig.(A.22)], that becomes more
and more important by increasing A; these effects, which need the relativistic
approach introduced in Ruffini et al. (2007b), are not taken into account in the
semi-empirical mass-formula.
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A.5. Supercritical fields on the surface of massive

nuclear cores: neutral core v.s. charged core

A.5.1. Equilibrium of electron distribution in neutral cores.

In Refs. Ruffini et al. (2007b); Ferreirinho et al. (1980); Ruffini and Stella (1981),
the Thomas-Fermi approach was used to study the electrostatic equilibrium
of electron distributions ne(r) around extended nuclear cores, where total
proton and electron numbers are the same Np = Ne. Proton’s density np(r)
is constant inside core r ≤ Rc and vanishes outside the core r > Rc,

np(r) = npθ(Rc − r), (A.5.1)

where Rc is the core radius and np proton density. Degenerate electron den-
sity,

ne(r) =
1

3π2h̄3
(PF

e )
3, (A.5.2)

where electron Fermi momentum PF
e , Fermi-energy Ee(PF

e ) and Coulomb po-
tential energy Vcoul(r) are related by,

Ee(P
F
e ) = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − Vcoul(r). (A.5.3)

The electrostatic equilibrium of electron distributions is determined by

Ee(P
F
e ) = 0, (A.5.4)

which means the balance of electron’s kinetic and potential energies in Eq. (A.5.3)
and degenerate electrons occupy energy-levels up to +mec2. Eqs. (A.5.2),
(A.5.3), and (A.5.4) give the relationships:

PF
e =

1

c

[

V2
coul(r) + 2mec

2Vcoul(r)
]1/2

; (A.5.5)

ne(r) =
1

3π2(ch̄)3

[

V2
coul(r) + 2mec

2Vcoul(r)
]3/2

. (A.5.6)

The Gauss law leads the following Poisson equation and boundary condi-
tions,

∆Vcoul(r) = 4πα
[

np(r)− ne(r)
]

; Vcoul(∞) = 0, Vcoul(0) = finite.(A.5.7)

These equations describe a Thomas-Fermi model for neutral nuclear cores,
and have numerically solved together with the empirical formula Ferreirinho
et al. (1980); Ruffini and Stella (1981) and β-equilibrium equation Ruffini et al.
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(2007b) for the proton number Np and mass number A = Np + Nn, where Nn

is the neutron number.

A.5.2. Equilibrium of electron distribution in super charged
cores

In Ref. Müller and Rafelski (1975); Migdal et al. (1976), assuming that super
charged cores of proton density (A.5.1) are bare, electrons (positrons) pro-
duced by vacuum polarization fall (fly) into cores (infinity), one studied the
equilibrium of electron distribution when vacuum polarization process stop.
When the proton density is about nuclear density, super charged core creates
a negative Coulomb potential well −Vcoul(r), whose depth is much more pro-
found than −mec

2 (see Fig. [A.24]), production of electron-positron pairs take
places, and electrons bound by the core and screen down its charge. Since the
phase space of negative energy-levels ǫ(p)

ǫ(p) = [(pc)2 + m2
e c4]1/2 − Vcoul(r), (A.5.8)

below −mec2 for accommodating electrons is limited, vacuum polarization
process completely stops when electrons fully occupy all negative energy-
levels up to −mec

2, even electric field is still critical. Therefore an equilibrium
of degenerate electron distribution is expected when the following condition
is satisfied,

ǫ(p) = [(pc)2 + m2
e c4]1/2 − Vcoul(r) = −mec

2, p = PF
e , (A.5.9)

and Fermi-energy

Ee(P
F
e ) = ǫ(PF

e )− mec
2 = −2mec

2, (A.5.10)

which is rather different from Eq. (A.5.4). This equilibrium condition (A.5.10)
leads to electron’s Fermi-momentum and number-density (A.5.2),

PF
e =

1

c

[

V2
coul(r)− 2mec

2Vcoul(r)
]1/2

; (A.5.11)

ne(r) =
1

3π2(ch̄)3

[

V2
coul(r)− 2mec

2Vcoul(r)
]3/2

. (A.5.12)

which have a different sign contracting to Eqs. (A.5.5,A.5.6). Eq. (A.5.7) re-
mains the same. However, contracting to the neutrality condition Ne = Np

and ne(r)|r→∞ → 0 in the case of neutral cores, the total number of electrons
is given by

Nion
e =

∫ r0

0
4πr2drne(r) < Np, (A.5.13)
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where r0 is the finite radius at which electron distribution ne(r) (A.5.12) van-
ishes: ne(r0) = 0 , i.e., Vcoul(r0) = 2mec

2, and ne(r) ≡ 0 for the range r > r0.
Nion < Np indicates that such configuration is not neutral. These equations
describe a Thomas-Fermi model for super charged cores, and have numeri-
cally Müller and Rafelski (1975) and analytically Migdal et al. (1976) solved
with assumption Np = A/2.

A.5.3. Ultra-relativistic solution

In analytical approach Migdal et al. (1976), the ultra-relativistic approxima-
tion is adopted for Vcoul(r) ≫ 2mec

2, the term 2mec
2Vcoul(r) in Eqs. (A.5.5),

(A.5.6), (A.5.11), and (A.5.12) is neglected. It turns out that approximated
Thomas-Fermi equations are the same for both cases of neutral and charged
cores, and solution Vcoul(r) = h̄c(3π2np)1/3φ(x),

φ(x) =







1 − 3
[

1 + 2−1/2 sinh(3.44 −
√

3x)
]−1

, for x < 0,
√

2
(x+1.89)

, for x > 0,







, (A.5.14)

where x = 2(π/3)1/6α1/2n1/3
p (r − Rc) ∼ 0.1(r − Rc)/λπ and the pion Comp-

ton length λπ = h̄/(mπc). At the core center r = 0(x → −∞), Vcoul(0) =
h̄c(3π2np)1/3 ∼ mπc2. On the surface of the core r = Rc, namely x = 0,

and Vcoul(Rc) = (3/4)Vcoul(0) ≫ mec2, indicating that the ultra-relativistic
approximation is applicable for r . Rc. This approximation breaks down
at r & r0. Clearly, it is impossible to determine the value r0 out of ultra-
relativistically approximated equation, and full Thomas-Fermi equation (A.5.7)
with source terms Eq. (A.5.6) for the neutral case, and Eq. (A.5.12) for the
charged case have to be solved.

For r < r0 where Vcoul(r) > 2mec
2, we treat the term 2mec

2Vcoul(r) in
Eqs. (A.5.6,A.5.12) as a small correction term, and find the following inequal-
ity is always true

nneutral
e (r) > n

charged
e (r), r < r0, (A.5.15)

where nneutral
e (r) and n

charged
e (r) stand for electron densities of neutral and

super charged cores. For the range r > r0, n
charged
e (r) ≡ 0 in the case of

super charged core, while nneutral
e (r) → 0 in the case of neutral core, which

should be calculated in non-relativistic approximation: the term V2
coul(r) in

Eq. (A.5.6) is neglected.

In conclusion, the physical scenarios and Thomas-Fermi equations of neu-
tral and super charged cores are slightly different. When the proton den-
sity np of cores is about nuclear density, ultra-relativistic approximation ap-

plies for the Coulomb potential energy Vcoul(r) ≫ mec
2 in 0 < r < r0 and

r0 > Rc, and approximate equations and solutions for electron distributions
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inside and around cores are the same. As relativistic regime r ∼ r0 and non-
relativistic regime r > r0 (only applied to neutral case) are approached, solu-
tions in two cases are somewhat different, and need direct integrations.
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Figure A.24.: Potential energy-gap ±mec
2 − Vcoul(r) and electron mass-gap

±mec2 in the unit of mec
2 are plotted as a function of (r − Rc)/(10λπ). The

potential depth inside core (r < Rc) is about pion mass mπc2 ≫ mec
2 and po-

tential energy-gap and electron mass-gap are indicated. The radius r0 where
electron distribution ne(r0) vanishes in super charged core case is indicated
as r0−, since it is out of plotting range.

683



A. The Thomas-Fermi model: from nuclei to nuclear matter cores of stellar
dimensions

A.6. The Extended Nuclear Matter Model with

Smooth Transition Surface

A.6.1. The Relativistic Thomas-Fermi Equation

Let us to introduce the proton distribution function fp(x) by mean of np(x) =
nc

p fp(x), where nc
p is the central number density of protons. We use the di-

mensionless unit x = (r − b)/a, with a−1 =
√

4παλenc
p, λe is the electron

Compton wavelength, b the length where initial conditions are given (x = 0)
and α is the fine structure constant.

Using the Poisson’s equation and the equilibrium condition for the gas of
electrons

Ee
F = mec

2
√

1 + x2
e − mec2 − eV = 0 , (A.6.1)

where e is the fundamental charge, xe the normalized electron Fermi momen-
tum and V the electrostatic potential, we obtain the relativistic Thomas–Fermi
equation

ξ′′e (x) +
(

2

x + b/a

)

ξ′e(x)−
[ξ2

e (x)− 1]3/2

µ
+ fp(x) = 0 , (A.6.2)

where µ = 3π2λ3
e nc

p and we have introduced the normalized electron chem-

ical potential in absence of any field ξe =
√

1 + x2
e . For a given distribution

function fp(x) and a central number density of protons nc
p, the above equa-

tion can be integrated numerically with the boundary conditions

ξe(0) =

√

1 +
[

µ δ fp(0)
]2/3

, ξ′e(0) < 0 , (A.6.3)

where δ ≡ ne(0)/np(0).

A.6.2. The Woods-Saxon-like Proton Distribution Function

We simulate a monotonically decreasing proton distribution function fulfill-
ing a Woods–Saxon dependence

fp(x) =
γ

γ + eβx
, (A.6.4)

where γ > 0 and β > 0. In Fig. A.25 we show the proton distribution function
for a particular set of parameters.
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Figure A.25.: Proton distribution function for γ = 1.5, β ≈ 0.0585749.

A.6.3. Results of the Numerical Integration.

We have integrated numerically the Eq. (A.6.2) for several sets of parameters
and initial conditions. As an example, we show the results for the proton
distribution function shown in Fig. A.25, with nc

p = 1.38 × 1036(cm−3). This

system was integrated with Ne = Np = 1054, mass number A = 1.61 × 1056

and δ ≈ 0.967.
We summarize the principal features of our model in Figs. A.26 and A.27,

where we have plotted the electric field in units of the critical field Ec =
m2

e c3

eh̄ , (me and e are the electron mass and charge), and the normalized charge
separation function

∆(x) =
np(x)− ne(x)

np(0)
. (A.6.5)

We see that the electric field is overcritical but smaller respect to the case of
a sharp step proton distribution used in Ruffini et al. (2007b); Migdal et al.
(1976). We have performed several numerical integrations expanding the
transition surface and confirm the existence of overcritical fields but it is
worth to mention that it could be subcritical expanding the width of the tran-
sition surface several orders of magnitude in electron Compton wavelength
units.

We also see a displacement of the location of the maximum of intensity.
This effect is due to the displacement of the point where ne = np. After this
point, the charge density becomes negative producing an effect of screening
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Figure A.26.: Electric field in units of the critical field Ec.
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Figure A.27.: Charge separation function.
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of the charged core up to global charged neutrality is achieved.
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A.7. Electron-positron pairs production in an

electric potential of massive cores

A.7.1. Introduction

Very soon after the Dirac equation for a relativistic electron was discovered
Dirac (1928a,b, 1958), Gordon Gordon (1928) (for all Z < 137) and Darwin
Darwin (1928) (for Z = 1) found its solution in the point-like Coulomb po-
tential V(r) = −Zα/r, they obtained the well-known Sommerfeld’s formula
for energy-spectrum,

E(n, j) = mc2

[

1 +

(

Zα

n − |K|+ (K2 − Z2α2)1/2

)2
]−1/2

, (A.7.1)

where the fine-structure constant α = e2/h̄c, the principle quantum number
n = 1, 2, 3, · · · and

K =

{

−(j + 1/2) = −(l + 1), if j = l + 1
2 , l ≥ 0

(j + 1/2) = l, if j = l − 1
2 , l ≥ 1

(A.7.2)

l = 0, 1, 2, · · · is the orbital angular momentum corresponding to the upper
component of Dirac bi-spinor, j is the total angular momentum. The integer
values n and j label bound states whose energies are E(n, j) ∈ (0, mc2). For
the example, in the case of the lowest energy states, one has

E(1S 1
2
) = mc2

√

1 − (Zα)2 , (A.7.3)

E(2S 1
2
) = E(2P1

2
) = mc2

√

1 +
√

1 − (Zα)2

2
, (A.7.4)

E(2P3
2
) = mc2

√

1 − 1

4
(Zα)2. (A.7.5)

For all states of the discrete spectrum, the binding energy mc2 − E(n, j) in-
creases as the nuclear charge Z increases. No regular solution with n = 1, l =
0, j = 1/2 and K = −1 (the 1S1/2 ground state) is found for Z > 137, this
was first noticed by Gordon in his pioneer paper Gordon (1928). This is the
problem so-called “Z = 137 catastrophe”.

The problem was solved Case (1950); Werner and Wheeler (1958); Popov
(1970, 1971b,a) by considering the fact that the nucleus is not point-like and
has an extended charge distribution, and the potential V(r) is not divergent
when r → 0. The Z = 137 catastrophe disappears and the energy-levels
E(n, j) of the bound states 1S, 2P and 2S, · · · smoothly continue to drop to-
ward the negative energy continuum (E− < −mc2), as Z increases to values
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larger than 137. The critical values Zcr for E(n, j) = −mc2 were found Werner
and Wheeler (1958); Popov (1970, 1971b,a); Rafelski et al. (1978); Kleinert
et al. (2008): Zcr ≃ 173 is a critical value at which the lowest energy-level
of the bound state 1S1/2 encounters the negative energy continuum, while
other bound states 2P1/2, 2S3/2, · · · encounter the negative energy continuum
at Zcr > 173, thus energy-level-crossings and productions of electron and
positron pair takes place, provided these bound states are unoccupied. We
refer the readers to Popov (1970, 1971b,a); Rafelski et al. (1978); Kleinert et al.
(2008) for mathematical and numerical details.

The energetics of this phenomenon can be understood as follow. The energy-
level of the bound state 1S1/2 can be estimated as follow,

E(1S1/2) = mc2 − Ze2

r̄
< −mc2, (A.7.6)

where r̄ is the average radius of the 1S1/2 state’s orbit, and the binding energy
of this state Ze2/r̄ > 2mc2. If this bound state is unoccupied, the bare nucleus
gains a binding energy Ze2/r̄ larger than 2mc2, and becomes unstable against
the production of an electron-positron pair. Assuming this pair-production
occur around the radius r̄, we have energies of electron (ǫ−) and positron
(ǫ+):

ǫ− =
√

(c|p−|)2 + m2c4 − Ze2

r̄
; ǫ+ =

√

(c|p+|)2 + m2c4 +
Ze2

r̄
, (A.7.7)

where p± are electron and positron momenta, and p− = −p+. The total
energy required for a pair production is,

ǫ−+ = ǫ− + ǫ+ = 2
√

(c|p−|)2 + m2c4, (A.7.8)

which is independent of the potential V(r̄). The potential energies ±eV(r̄) of
electron and positron cancel each other and do not contribute to the total en-
ergy (A.7.8) required for pair production. This energy (A.7.8) is acquired from
the binding energy (Ze2/r̄ > 2mc2) by the electron filling into the bound state
1S1/2. A part of the binding energy becomes the kinetic energy of positron
that goes out. This is analogous to the familiar case that a proton (Z = 1)
catches an electron into the ground state 1S1/2, and a photon is emitted with
the energy not less than 13.6 eV.

In this article, we study classical and semi-classical states of electrons, electron-
positron pair production in an electric potential of macroscopic cores with
charge Q = Z|e|, mass M and macroscopic radius Rc.
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A.7.2. Classical description of electrons in potential of cores

Effective potentials for particle’s radial motion

Setting the origin of spherical coordinates (r, θ, φ) at the center of such cores,
we write the vectorial potential Aµ = (A, A0), where A = 0 and A0 is the
Coulomb potential. The motion of a relativistic electron with mass m and
charge e is described by its radial momentum pr, total angular momenta pφ

and the Hamiltonian,

H± = ±mc2

√

1 + (
pr

mc
)2 + (

pφ

mcr
)2 − V(r), (A.7.9)

where the potential energy V(r) = eA0, and ± corresponds for positive
and negative energies. The states corresponding to negative energy solu-
tions are fully occupied. The total angular momentum pφ is conserved, for
the potential V(r) is spherically symmetric. For a given angular momentum
pφ = mv⊥r, where v⊥ is the transverse velocity, the effective potential energy
for electron’s radial motion is

E±(r) = ±mc2

√

1 + (
pφ

mcr
)2 − V(r). (A.7.10)

Outside the core (r ≥ Rc), the Coulomb potential energy V(r) is given by

Vout(r) =
Ze2

r
, (A.7.11)

where ± indicates positive and negative effective energies. Inside the core
(r ≤ Rc), the Coulomb potential energy is given by

Vin(r) =
Ze2

2Rc

[

3 −
(

r

Rc

)2
]

, (A.7.12)

where we postulate the charged core has a uniform charge distribution with
constant charge density ρ = Ze/Vc , and the core volume Vc = 4πR3

c /3.
Coulomb potential energies outside the core (A.7.11) and inside the core (A.7.12)
is continuous at r = Rc. The electric field on the surface of the core,

Es =
Q

R2
c
=

λe

Rc
Ec, β ≡ Ze2

mc2Rc
(A.7.13)

where the electron Compton wavelength λe = h̄/(mc), the critical electric
field Ec = m2c3/(eh̄) and the parameter β is the electric potential-energy on
the surface of the core in unit of the electron mass-energy.
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Stable classical orbits (states) outside the core.

Given different values of total angular momenta pφ, the stable circulating
orbits RL (states) are determined by the minimum of the effective potential
E+(r) (A.7.10) (see Fig. A.28), at which dE+(r)/dr = 0. We obtain stable
orbits locate at the radii RL,

RL =

(

p2
φ

Ze2m

)

√

1 −
(

Ze2

cpφ

)2

, RL ≥ Rc, (A.7.14)

for different pφ-values. Substituting Eq. (A.7.14) into Eq. (A.7.10), we find the
energy of electron at each stable orbit,

E ≡ min(E+) = mc2

√

1 −
(

Ze2

cpφ

)2

. (A.7.15)

For the condition RL & Rc, we have

(

Ze2

cpφ

)2

.
1

2

[

β(4 + β2)1/2 − β2
]

, (A.7.16)

where the semi-equality holds for the last stable orbits outside the core RL →
Rc + 0+. In the point-like case Rc → 0, the last stable orbits are

cpφ → Ze2 + 0+, RL → 0+, E → 0+. (A.7.17)

Eq. (A.7.15) shows that only positive or null energy solutions (states) to exists
in the case of a point-like charge, which is the same as the energy-spectrum
Eqs. (A.7.3,A.7.4,A.7.5) in quantum mechanic scenario. While for pφ ≫ 1,

radii of stable orbits RL ≫ 1 and energies E → mc2 + 0−, classical electrons
in these orbits are critically bound for their banding energy goes to zero. We
conclude that the energies (A.7.15) of stable orbits outside the core must be
smaller than mc2, but larger than zero, E > 0. Therefore, no energy-level
crossing with the negative energy spectrum occurs.

Stable classical orbits inside the core.

We turn to the stable orbits of electrons inside the core. Analogously, using
Eqs. (A.7.10,A.7.12) and dE+(r)/dr = 0, we obtain the stable orbit radius
RL ≤ 1 in the unit of Rc, obeying the following equation,

β2(R8
L + κ2R6

L) = κ4; κ =
pφ

mcRc
. (A.7.18)
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and corresponding to the minimal energy (binding energy) of these states

E =
Ze2

Rc

[

( cpφ

Ze2

)2 1

R4
L

− 1

2
(3 − R2

L)

]

. (A.7.19)

There are 8 solutions to this polynomial equation (A.7.18), only one is physi-
cal solution RL that has to be real, positive and smaller than one. As example,
the numerical solution to Eq. (A.7.18) is RL = 0.793701 for β = 4.4 · 1016 and
κ = 2.2 · 1016. In following, we respectively adopt non-relativistic and ultra-
relativistic approximations to to obtain analytical solutions.

First considering the non-relativistic case for those stable orbit states whose
the kinetic energy term characterized by angular momentum term pφ, see

Eq. (A.7.10), is much smaller than the rest mass term mc2, we obtain the fol-
lowing approximate equation,

β2R8
L ≃ κ4, (A.7.20)

and the solutions for stable orbit radii are,

RL ≃ κ1/2

β1/4
=
( cpφ

Ze2

)1/2
β1/4

< 1, (A.7.21)

and energies,

E ≃
(

1 − 3

2
β +

1

2
κβ1/2

)

mc2. (A.7.22)

The consistent conditions for this solution are β1/2 > κ for RL < 1, and
β ≪ 1 for non-relativistic limit v⊥ ≪ c. As a result, the binding energies
(A.7.22) of these states are mc2 > E > 0, are never less than zero. These
in fact correspond to the stable states which have large radii closing to the
radius Rc of cores and v⊥ ≪ c.

Second considering the ultra-relativistic case for those stable orbit states
whose the kinetic energy term characterized by angular momentum term pφ,

see Eq. (A.7.10), is much larger than the rest mass term mc2, we obtain the
following approximate equation,

β2R6
L ≃ κ2, (A.7.23)

and the solutions for stable orbit radii are,

RL ≃
(

κ

β

)1/3

=
( pφc

Ze2

)1/3
< 1, (A.7.24)

which gives RL ≃ 0.7937007 for the same values of parameters β and κ in
above. The consistent condition for this solution is β > κ ≫ 1 for RL < 1.
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The energy levels of these ultra-relativistic states are,

E ≃ 3

2
β

[

( pφc

Ze2

)2/3
− 1

]

mc2, (A.7.25)

and mc2 > E > −1.5βmc2. The particular solutions E = 0 and E ≃ −mc2 are
respectively given by

( pφc

Ze2

)

≃ 1;
( pφc

Ze2

)

≃
(

1 − 2

3β

)3/2

. (A.7.26)

These in fact correspond to the stable states which have small radii closing to
the center of cores and v⊥ . c.

To have the energy-level crossing to the negative energy continuum, we
are interested in the values β > κ ≫ 1 for which the energy-levels (A.7.25) of
stable orbit states are equal to or less than −mc2,

E ≃ 3

2
β

[

( pφc

Ze2

)2/3
− 1

]

mc2 ≤ −mc2. (A.7.27)

As example, with β = 10 and κ = 2, RL ≃ 0.585, Emin ≃ −9.87mc2. The
lowest energy-level of electron state is pφ/(Ze2) = κ/β → 0 with the binding
energy,

Emin = −3

2
βmc2, (A.7.28)

locating at RL ≃ (pφc/Ze2)1/3 → 0, the bottom of the potential energy Vin(0)
(A.7.12).

A.7.3. Semi-Classical description

Bohr-Sommerfeld quantization

In order to have further understanding, we consider the semi-classical sce-
nario. Introducing the Planck constant h̄ = h/(2π), we adopt the semi-
classical Bohr-Sommerfeld quantization rule

∫

pφdφ ≃ h(l +
1

2
), ⇒ pφ(l) ≃ h̄(l +

1

2
), l = 0, 1, 2, 3, · · ·, (A.7.29)

which are discrete values selected from continuous total angular momentum
pφ in the classical scenario. The variation of total angular momentum ∆pφ =
±h̄ in th unit of the Planck constant h̄. Substitution

( pφc

Ze2

)

⇒
(

2l + 1

2Zα

)

, (A.7.30)

693



A. The Thomas-Fermi model: from nuclei to nuclear matter cores of stellar
dimensions

where the fine-structure constant α = e2/(h̄c), must be performed in classical
solutions that we obtained in section (A.7.2).

1. The radii and energies of stable states outside the core (A.7.14) and
(A.7.15) become:

RL = λ

(

2l + 1

Zα

)

√

1 −
(

2Zα

2l + 1

)2

, (A.7.31)

E = mc2

√

1 −
(

2Zα

2l + 1

)2

, (A.7.32)

where λ is the electron Compton length.

2. The radii and energies of non-relativistic stable states inside the core
(A.7.21) and (A.7.22) become:

RL ≃
(

2l + 1

2Zα

)1/2

β1/4, (A.7.33)

E ≃
(

1 − 3

2
β +

λ(2l + 1)

4Rc
β1/2

)

mc2. (A.7.34)

3. The radii and energies of ultra-relativistic stable states inside the core
(A.7.24) and (A.7.25) become:

RL ≃
(

2l + 1

2Zα

)1/3

, (A.7.35)

E ≃ 3

2
β

[

(

2l + 1

2Zα

)2/3

− 1

]

mc2. (A.7.36)

Note that radii RL in the second and third cases are in unit of Rc.

Stability of semi-classical states

When these semi-classical states are not occupied as required by the Pauli
Principle, the transition from one state to another with different discrete val-
ues of total angular momentum l (l1, l2 and ∆l = l2 − l1 = ±1) undergoes
by emission or absorption of a spin-1 (h̄) photon. Following the energy and
angular-momentum conservations, photon emitted or absorbed in the transi-
tion have angular momenta pφ(l2) − pφ(l1) = h̄(l2 − l1) = ±h̄ and energy
E(l2) − E(l1). In this transition of stable states, the variation of radius is
∆RL = RL(l2)− RL(l1).

We first consider the stability of semi-classical states against such transition
in the case of point-like charge, i.e., Eqs. (A.7.31,A.7.32) with l = 0, 1, 2, · · ·. As
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required by the Heisenberg indeterminacy principle ∆φ∆pφ ≃ 4πpφ(l) & h,
the absolute ground state for minimal energy and angular momentum is

given by the l = 0 state, pφ ∼ h̄/2, RL ∼ λ(Zα)−1
√

1 − (2Zα)2 > 0 and

E ∼ mc2
√

1 − (2Zα)2 > 0, which corresponds to the last stable orbit (A.7.17)
in the classical scenario. Thus the stability of all semi-classical states l > 0
is guaranteed by the Pauli principle. This is only case for Zα ≤ 1/2. While
for Zα > 1/2, there is not an absolute ground state in the semi-classical sce-
nario. This can be understood by examining how the lowest energy states
are selected by the quantization rule in the semi-classical scenario out of the
last stable orbits (A.7.17) in the classical scenario. For the case of Zα ≤ 1/2,
equating pφ in Eq. (A.7.17) to pφ = h̄(l + 1/2) (A.7.29), we find the selected
state l = 0 is only possible solution so that the ground state l = 0 in the semi-
classical scenario corresponds to the last stable orbits (A.7.17) in the classical
scenario. While for the case of Zα > 1/2, equating pφ in Eq. (A.7.17) to
pφ = h̄(l + 1/2) (A.7.29), we find the selected semi-classical state

l̃ =
Zα − 1

2
> 0, (A.7.37)

in the semi-classical scenario corresponds to the last stable orbits (A.7.17) in
the classical scenario. This state l = l̃ > 0 is not protected by the Heisenberg
indeterminacy principle from quantum-mechanically decaying in h̄-steps to
the states with lower angular momenta and energies (correspondingly smaller
radius RL (A.7.31)) via photon emissions. This clearly shows that the “Z =
137-catastrophe” corresponds to RL → 0, falling to the center of the Coulomb
potential and all semi-classical states (l) are unstable.

Then we consider the stability of semi-classical states against such transi-
tion in the case of charged cores Rc 6= 0. Substituting pφ in Eq. (A.7.29) into

Eq. (A.7.16), we obtain the selected semi-classical state l̃ corresponding to the
last stable orbit outside the core,

l̃ =
√

2

(

Rc

λ

)

[

(

4Rc

Zαλ
+ 1

)1/2

− 1

]−1/2

≈ (Zα)1/4

(

Rc

λ

)3/4

> 0. (A.7.38)

Analogously to Eq. (A.7.37), the same argument concludes the instability of
this semi-classical state, which must quantum-mechanically decay to states
with angular momentum l < l̃ inside the core, provided these semi-classical
states are not occupied. This conclusion is independent of Zα-value.

We go on to examine the stability of semi-classical states inside the core. In
the non-relativistic case (1 ≫ β > κ2), the last classical stable orbits locate
at RL → 0 and pφ → 0 given by Eqs. (A.7.21,A.7.22), corresponding to the

lowest semi-classical state (A.7.33,A.7.34) with l = 0 and energy mc2 > E > 0.
In the ultra-relativistic case (β > κ ≫ 1), the last classical stable orbits locate
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at RL → 0 and pφ → 0 given by Eqs. (A.7.24,A.7.25), corresponding to the
lowest semi-classical state (A.7.35,A.7.36) with l = 0 and minimal energy,

E ≃ 3

2
β

[

(

1

2Zα

)2/3

− 1

]

mc2 ≈ −3

2
βmc2. (A.7.39)

This concludes that the l = 0 semi-classical state inside the core is an absolute
ground state in both non- and ultra-relativistic cases. The Pauli principle
assure that all semi-classical states l > 0 are stable, provided all these states
accommodate electrons. The electrons can be either present inside the neutral
core or produced from the vacuum polarization, later will be discussed in
details.

We are particular interested in the ultra-relativistic case β > κ ≫ 1, i.e.,
Zα ≫ 1, the energy-levels of semi-classical states can be profound than −mc2

(E < −mc2), energy-level crossings and pair-productions occur if these states
are unoccupied, as discussed in introductory section. It is even more im-
portant to mention that neutral cores like neutron stars of proton number
Z ∼ 1052, the Thomas-Fermi approach has to be adopted to find the con-
figuration of electrons in these semi-classical states, which has the depth of
energy-levels E ∼ −mπc2 to accommodate electrons and a supercritical elec-
tric field (E > Ec) on the surface of the core Ruffini et al. (2007b).

A.7.4. Production of electron-positron pair

When the energy-levels of semi-classical (bound) states E ≤ −mc2 (A.7.27),
energy-level crossings between these energy-levels (A.7.25) and negative en-
ergy continuum (A.7.10) for pr = 0, as shown in Fig. A.29. The energy-level-
crossing indicates that E (A.7.25) and E− (A.7.10) are equal,

E = E−, (A.7.40)

where angular momenta pφ in E (A.7.36) and E− (A.7.10) are the same for
angular-momentum conservation. The production of electron-positron pairs
must takes place, provided these semi-classical (bound) states are unoccu-
pied. The phenomenon of pair production can be understood as a quantum-
mechanical tunneling process of relativistic electrons. The energy-levels E

of semi-classical (bound) states are given by Eq. (A.7.36) or (A.7.27). The
probability amplitude for this process can be evaluated by a semi-classical
calculation using WKB method Kleinert et al. (2008):

WWKB(|p⊥|) ≡ exp

{

−2

h̄

∫ Rn

Rb

prdr

}

, (A.7.41)
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where |p⊥| = pφ/r is transverse momenta and the radial momentum,

pr(r) =
√

(c|p⊥|)2 + m2c4 − [E+ V(r)]2. (A.7.42)

The energy potential V(r) is either given by Vout(r) (A.7.11) for r > Rc, or
Vin(r) (A.7.12) for r < Rc. The limits of integration (A.7.41): Rb = RL <

Rc (A.7.24) or (A.7.35) indicating the location of the classical orbit (classical
turning point) of semi-classical (bound) state; while another classical turning
point Rn is determined by setting pr(r) = 0 in Eq. (A.7.42). There are two
cases: Rn < Rc and Rn > Rc, depending on β and κ values.

To obtain a maximal WKB-probability amplitude (A.7.41) of pair produc-
tion, we only consider the case that the charge core is bare and

• the lowest energy-levels of semi-classical (bound) states: pφ/(Ze2) =
κ/β → 0, the location of classical orbit(A.7.24) RL = Rb → 0 and energy
(A.7.25) E → Emin = −3βmc2/2 (A.7.28);

• another classical turning point Rn ≤ Rc, since the probability is expo-
nentially suppressed by a large tunneling length ∆ = Rn − Rb.

In this case (Rn ≤ Rc), Eq. (A.7.42) becomes

pr =
√

(c|p⊥|)2 + m2c4

√

1 − β2m2c4

4[(c|p⊥|)2 + m2c4]

(

r

Rc

)4

, (A.7.43)

and pr = 0 leads to

Rn

Rc
=

(

2

βmc2

)1/2

[(c|p⊥|)2 + m2c4]1/4. (A.7.44)

Using Eqs. (A.7.41,A.7.43,A.7.44), we have

WWKB(|p⊥|) = exp

{

−23/2[(c|p⊥|)2 + m2c4]3/4Rc

ch̄(mc2β)1/2

∫ 1

0

√

1 − x4dx

}

= exp

{

−0.87
23/2[(c|p⊥|)2 + m2c4]3/4Rc

ch̄(mc2β)1/2

}

. (A.7.45)

Dividing this probability amplitude by the tunneling length ∆ ≃ Rn and time
interval ∆t ≃ 2h̄π/(2mc2) in which the quantum tunneling occurs, and inte-
grating over two spin states and the transverse phase-space 2

∫

dr⊥dp⊥/(2πh̄)2,
we approximately obtain the rate of pair-production per the unit of time and
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volume,

ΓNS ≡ d4N

dtd3x
≃ 1.15

6π2

(

Zα

τR3
c

)

exp

{

− 2.46

(Zα)1/2

(

Rc

λ

)3/2
}

, (A.7.46)

=
1.15

6π2

(

β

τλR2
c

)

exp

{

−2.46Rc

β1/2λ

}

, (A.7.47)

=
1.15

6π2

(

1

τλ2Rc

)(

Es

Ec

)

exp

{

−2.46

(

Rc

λ

)1/2 (Ec

Es

)1/2
}

,

(A.7.48)

where Es = Ze/R2
c being the electric field on the surface of the core and the

Compton time τ = h̄/mc2.

To have the size of this pair-production rate, we compare it with the Sauter-
Euler-Heisenberg-Schwinger rate of pair-production in a constant field E Heisen-
berg and Euler (1936); Sauter (1931); Schwinger (1951, 1954a,b),

ΓS ≡ d4N

dtd3x
≃ 1

4π3τλ3

(

E

Ec

)2

exp

{

−π
Ec

E

}

. (A.7.49)

When the parameter β ≃ (Rc/λ)2, Eq. (A.7.47) becomes

ΓNS ≡ d4N

dtd3x
≃ 1.15

6π2

(

1

τλ3

)

exp {−2.46} = 1.66 · 10−3/(τλ3), (A.7.50)

which is close to the Sauter-Euler-Heisenberg-Schwinger rate (A.7.49) ΓS ≃
3.5 · 10−4/(τλ3) at E ≃ Ec. Taking a neutron star with core mass M = M⊙
and radius Rc = 10km, we have Rc/λ = 2.59 · 1016 and β = 3.86 · 10−17Zα,
leading to Z ≃ 2.4 · 1051 and the electric field on the core surface Es/Ec =
Zα(λ/Rc)2 ≃ 2.6 · 1016. In this case, the charge-mass radio Q/(G1/2 M) =
2 · 10−6|e|/(G1/2mp) = 2.2 · 1012, where where G is the Newton constant and

proton’s charge-mass radio |e|/(G1/2mp) = 1.1 · 1018.

Let us consider another case that the electric field on the core surface Es

(A.7.13) is about the critical field (Es ≃ Ec). In this case, Z = α−1(Rc/λ)2 ≃
9.2 · 1034, β = Zαλ/Rc = Rc/λ ≃ 2.59 · 1016, and the rate (A.7.47) becomes

ΓNS ≡ d4N

dtd3x
≃ 1.15

6π2

(

1

τλ3

)(

λ

Rc

)

exp

{

−2.46

(

Rc

λ

)}

, (A.7.51)

which is exponentially smaller than Eq. (A.7.50) for Rc ≫ λ. In this case, the
charge-mass radio Q/(G1/2 M) = 8.46 · 10−5.

It is interesting to compare this rate of electron-positron pair-production
with the rate given by the Hawking effect. We take Rc = 2GM/c2 and the
charge-mass radio Q/(G1/2 M) ≃ 10−19 for a naive balance between gravita-

698



A.7. Electron-positron pairs production in an electric potential of massive
cores

tional and electric forces. In this case β = 1
2(Q/G1/2 M)(|e|/G1/2m) ≃ 102,

the rate (A.7.47) becomes,

ΓNS =
1.15

6π2

(

25

τλ3

)(

1

mM

)

exp {−0.492(mM)} , (A.7.52)

where mM = Rc/(2λ). This is much larger than the rate of electron-positron
emission by the Hawking effect Hawking (1974, 1975); Gibbons and Hawking
(1977),

ΓH ∼ exp {−8π(mM)} , (A.7.53)

since the exponential factor e−0.492mM is much larger than e−8πmM, where
2mM = Rc/λ ≫ 1.

A.7.5. Summary and remarks

In this letter, analogously to the study in atomic physics with large atomic
number Z, we study the classical and semi-classical (bound) states of elec-
trons in the electric potential of a massive and charged core, which has a uni-
form charge distribution and macroscopic radius. We have found negative
energy states of electrons inside the core, whose energies can be smaller than
−mc2, and the appearance of energy-level crossing to the negative energy
spectrum. As results, quantum tunneling takes place, leading to electron-
positron pairs production, electrons then occupy these semi-classical (bound)
states and positrons are repelled to infinity. Assuming that massive charged
cores are bare and non of these semi-classical (bound) states are occupied, we
analytically obtain the maximal rate of electron-positron pair production in
terms of core’s radius, charge and mass, and we compare it with the Sauter-
Euler-Heisenberg-Schwinger rate of pair-production in a constant field. We
have seen that even for very small charge-mass radio of the core that is given
by the the naive balance between gravitational and electric forces, this rate is
much larger than the rate of electron-positron pair-production by the Hawk-
ing effect.

Any electron occupations of these semi-classical (bound) states must screen
core’s charge and the massive core is no longer bare. The electric potential po-
tential inside the core is changed. For the core consists of a large number of
electrons, the Thomas-Fermi approach has to be adopted. We recently study
Ruffini et al. (2007b) the electron distribution inside and outside the massive
core, i.e., the distribution of electrons occupying stable states of the massive
core, and find the electric field on the surface of the massive core is overcriti-
cal.

699



A. The Thomas-Fermi model: from nuclei to nuclear matter cores of stellar
dimensions

2 4 6 8 10
r�Rc

-4

-3

-2

-1

1

2
E±�mc2

E+

E-

Figure A.28.: In the case of point-like charge distribution, we plot the pos-
itive and negative effective potential energies E± (A.7.10), pφ/(mcRc) = 2

and Ze2 = 1.95mc2Rc, to illustrate the radial location RL (A.7.14) of stable
orbits where E+ has a minimum (A.7.15). All stable orbits are described by
cpφ > Ze2. The last stable orbits are given by cpφ → Ze2 + 0+, whose radial
location RL → 0 and energy E → 0+. There is no any stable orbit with energy
E < 0 and the energy-level crossing with the negative energy spectrum E− is
impossible.
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Figure A.29.: For the core κ = 2 and β = 6, we plot the positive and nega-
tive effective potentials E± (A.7.10) , in order to illustrate the radial location
(A.7.24) RL < Rc of stable orbit, where E+’s minimum (A.7.25) E < mc2 is.
All stable orbits inside the core are described by β > κ > 1. The last stable or-
bit is given by κ/β → 0, whose radial location RL → 0 and energy E → Emin

(A.7.28). We indicate that the energy-level crossing between bound state (sta-
ble orbit) energy at RL = Rb and negative energy spectrum E− (A.7.25) at the
turning point Rn.
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A.8. On Magnetic Fields in Rotating Nuclear

Matter Cores of Stellar Dimensions

A.8.1. Introduction

Neutron stars are mainly detected as pulsars, whose regular pulsations in the
radio, X-ray, and optical bands are produced by constant, ordered magnetic
fields that are the strongest known in the Universe. However the origin of
the magnetic field in the neutron stars is not fully understood, so far. Nev-
ertheless in the literature one may find various hypotheses explaining the
formation of the magnetic field Ginzburg (1964); Woltjer (1964); Ruderman
(1972, 1995); Reisenegger (2001, 2007); Reisenegger et al. (2007). The simplest
hypothesis to explain the presence of the strong fields observed in neutron
stars is the conservation of the magnetic flux already present in the progeni-
tor stars during the gravitational collapse. This idea is based on the assump-
tion that all stars at all stages of their evolution have some magnetic field, due
to electronic currents circulating in their interiors. Thus this argument led to
the prediction of the fields B ≈ 1012 G in neutron stars a few years before the
discovery of pulsars Ginzburg (1964); Woltjer (1964). However, there is no
detailed physical picture of such a flux conserving collapse. Thompson and
Duncan Thompson and Duncan (1993) put forward the hypothesis that new-
born neutron stars are likely to combine vigorous convection and differential
rotation making a dynamo process operate in them. They predicted fields
up to 1015 − 1016 G in neutron stars with few millisecond initial periods, and
suggested that such fields could explain much of the phenomenology asso-
ciated with Soft Gamma Repeaters and Anomalous X-ray Pulsars Thompson
and Duncan (1995, 1996).

Probably, these processes are not mutually exclusive. A strong field might
be present in the collapsing star, but later be deformed and perhaps ampli-
fied by some combination of convection, differential rotation, and magnetic
instabilities Tayler (1973); Spruit (2002). The relative importance of these in-
gredients depends on the initial field strength and rotation rate of the star.
For both mechanisms, the field and its supporting currents are not likely to
be confined to the solid crust of the star, but distributed inmost of the stellar
interior, which is mostly a fluid mixture of neutrons, protons, electrons, and
other, more exotic particles.

Unlike aforementioned hypotheses which are based on the assumptions
that all stars are magnetized or charged with some net charge different from
zero, we explore the system recently considered by Ruffini et. al. Ruffini
et al. (2007b). According to that work the system consisting of degenerate
neutrons, protons and electrons in beta equilibrium is globally neutral and
expected to be kept at nuclear density by self gravity. In what follows these
systems are termed as Nuclear Matter Cores of Stellar Dimensions. Despite
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the global neutrality the charge distribution turned out to be different from
zero inside and outside (near the surface) the star. The magnitude of the net
charge inside and outside the core is equal, but the sign is opposite. Such an
effect takes place as a consequence of the beta equilibrium, the penetration
of electrons into the core, hence the screening of the core charge and global
charge neutrality. As a result of this effect, one may show the presence of an
electric field close to the critical value Ec = m2

e c3/eh̄ near the surface of the
massive cores, although localized in a very narrow shell. Thus in this case the
magnetic field of the neutron star may be generated only if it spins like pul-
sars, even though the progenitor star has not been magnetized or electrically
charged.

A.8.2. The Relativistic Thomas-Fermi equation

The Thomas-Fermi equation is the exact theory for atoms, molecules and
solids as Z → ∞ Lieb and Simon (1973). The relativistic Thomas-Fermi theory
developed for the study of atoms for heavy nuclei with Z = 106 Ferreirinho
et al. (1980); Ruffini and Stella (1981) gives important basic new information
on the study of nuclear matter in bulk in the limit of A = (mPlanck/mn)3 nu-
cleons of mass mn and on its electrodynamic properties. The analysis of nu-
clear matter bulk in neutron stars composed of degenerate gas of neutrons,
protons and electrons, has traditionally been approached by implementing
microscopically the charge neutrality condition by requiring the electron den-
sity ne(r) to coincide with the proton density np(r),

ne(r) = np(r). (A.8.1)

It is clear however that especially when conditions close to the gravitational
collapse occur, there is an ultra-relativistic component of degenerate elec-
trons whose confinement requires the existence of very strong electromag-
netic fields, in order to guarantee the overall charge neutrality of the neutron
star. Under these conditions equation (A.8.1) will be necessarily violated.

Using substantially a statistical approach based on the relativistic Thomas-
Fermi equation, Ferreirinho et al. Ferreirinho et al. (1980), Ruffini and Stella
Ruffini and Stella (1981) have analyzed the electron densities around an ex-
tended nucleus in a neutral atom all the way up to Z = 6000. They have
shown the effect of penetration of the electron orbital well inside the nucleus,
leading to a screening of the nuclei positive charge and to the concept of an
”effective” nuclear charge distribution.

In the work of Ruffini et. al. Ruffini et al. (2007b) and Popov et. al. Popov
et al. (2010) the relativistic Thomas-Fermi equation has been used to extrapo-
late the treatment of super heavy nuclei to the case of nuclear matter cores of
stellar dimensions. These cores represent the inner part of neutron stars and
are characterized by an atomic number of order of A = (mPlanck/mn)3 ≈ 1057,
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composed of degenerate Nn neutrons, Np protons and Ne electrons in beta
equilibrium and expected to be kept at nuclear density by self gravity. It has
been shown that near the surface of the massive cores it is possible to have an
electric field close to the critical value Ec, although localized in a very narrow
shell of the order of the λe electron Compton wavelength. Now let us review
the main assumptions and results of those works.

According to Ruffini et al. (2007b) and Popov et al. (2010) the protons are
distributed at constant density np within a radius

Rc = ∆
h̄

mπc
N1/3

p , A9 (A.8.2)

where ∆ is a parameter such that ∆ ≈ 1 (∆ < 1) corresponds to nuclear
(supranuclear) densities when applied to ordinary nuclei. The overall Cou-
lomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (A.8.3)

with the boundary conditions V(∞) = 0 (due to the global charge neutrality
of the system) and finiteness of V(0). The density ne(r) of the electrons of
charge −e is determined by the Fermi energy condition on their Fermi mo-
mentum PF

e ; we assume here

EF
e = [(PF

e c)2 + m2
e c4]1/2 − mec

2 − eV(r) = 0 , (A.8.4)

which leads to

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

e2V2(r) + 2mec
2eV(r)

]3/2
. (A.8.5)

Introducing the dimensionless quantities x = r/[h̄/mπc], xc = Rc/[h̄/mπc]
and χ/r = eV(r)/ch̄, the relativistic Thomas-Fermi equation takes the form

1

3x

d2χ(x)

dx2
= − α

∆3
H(xc − x) +

4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

, (A.8.6)

where α = e2/(h̄c) is the fine structure constant, H(xc − x) is the Heaviside
step function and the boundary conditions for χ(x) are χ(0) = 0, χ(∞) = 0.
The neutron density nn(r) is determined by the Fermi energy condition on
their Fermi momentum PF

n imposed by beta decay equilibrium

EF
n = [(PF

n c)2 + m2
nc4]1/2 − mnc2 = [(PF

p c)2 + m2
pc4]1/2 − mpc2 + eV,(A.8.7)

which in turn is related to the proton and electron densities by Eqs. (A.8.3),
(A.8.5) and (A.8.6).
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A.8.3. The ultra-relativistic analytic solutions

In the ultrarelativistic limit with the planar approximation the relativistic
Thomas-Fermi equation admits an analytic solution. Introducing the new
function φ defined by φ = 41/3(9π)−1/3∆χ/x and the new variables x̂ =

(12/π)1/6 √α∆−1x, ξ = x̂ − x̂c, where x̂c = (12/π)1/6 √α∆−1xc, Eq. (A.8.6)
becomes

d2φ̂(ξ)

dξ2
= −H(−ξ) + φ̂(ξ)3, (A.8.8)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at the nuclear matter core center) and φ̂(ξ) → 0 as ξ → ∞.
The function φ̂ and its first derivative φ̂′ must be continuous at the surface
ξ = 0 of the nuclear matter core of stellar dimensions. Hence equation (A.8.8)
admits an exact solution

φ̂(ξ) =











1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,√
2

(ξ + b)
, ξ > 0 ,

(A.8.9)

where the integration constants a and b have the values a = arccosh(9
√

3) ≈
3.439, b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential func-

tion

V(ξ) =

(

9π

4

)1/3 mπc2

∆e
φ̂(ξ), (A.8.10)

and by differentiation, the electric field

E(ξ) = −
(

35π

4

)1/6 √
α

∆2

m2
πc3

eh̄
φ̂′(ξ) . (A.8.11)

Details are given in Figs. A.30 and A.31.

A.8.4. Rotating Nuclear Matter Cores of Stellar Dimensions
in Classical Electrodynamics

In section A.8.2 and A.8.3 we have seen that in the massive nuclear density
cores the electric charge distribution is different from zero, although it is glob-
ally neutral. In this section we investigate the case when this charge distri-
bution is allowed to rotate with the constant angular velocity Ω around the
axis of symmetry. Thus the magnetic field of the resultant current density is
calculated in terms of the charge distribution.
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Figure A.30.: The electron Coulomb
potential energy eV, in units of pion
mass mπ is plotted as a function of
the radial coordinate ξ = x̂ − x̂c,
for selected values of the density pa-
rameter ∆.

Figure A.31.: The electric field is
plotted in units of the critical field
Ec as a function of the radial coordi-
nate ξ, showing a sharp peak at the
core radius, for selected values of ∆.

Consider a charge distribution moving in a such way that at every point in
space the charge density and the current density remain constant. In this case
the magnetic field is defined by

B(r) = ∇× A(r), A(r) = (Ω/c2)× F(r), F(r) =
1

4π

∫

r′ρ(r′)d3r′

|r − r′| ,

(A.8.12)
where A is the vector potential of the magnetic field, F(r) is the ”superpoten-
tial” in general form. In the case of spherical symmetry, F(r) may be taken as
radial (see Marsh Marsh (1982)). Writing F(r) = erF(r), where er is the unit
radial vector, one has

F(r) =
1

r2

∫ r

0
r′2

d

dr′
[r′V(r′)]dr′. (A.8.13)

This expression allows to calculate the magnetic field due to rotation of any
spherically symmetric distribution of charge in terms of its electrostatic Coulomb
potential. Note that in fact due to rotation the shape of the neutron star must
deviate from spherical symmetry. Since we are interested in the estimation of
the order of the magnetic field the distortions to the shape of the star can be
neglected for simplicity. Thus the magnetic field is defined by

B(r) = Brer + Bθeθ , Br =
2Ω

c2

F

r
cos θ, Bθ = −2Ω

c2

[

F

r
+

r

2

d

dr

(

F

r

)]

sin θ,

(A.8.14)
where Br is the radial component and Bθ is the angular component of the
magnetic field, θ is the angle between r and z axis, and eθ is the unit vector
along θ. Consequently the expression for the magnitude (the absolute value)
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of the magnetic field can be written as

B(r, θ) =
Ωr

c2

√

√

√

√

(

2F

r2

)2

+

{

4F

r2

d

dr

(

F

r

)

+

[

d

dr

(

F

r

)]2
}

sin2 θ. (A.8.15)

Using the relation between r and ξ

r = Rc +
( π

12

)1/6 ∆√
α

h̄

mπc
ξ, (A.8.16)

one may estimate the value of the magnetic field. In Figs. A.32, A.33, A.34
and A.35 details are given.
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Figure A.32.: The radial component
of the magnetic field is plotted as
a function of the radial coordinate
ξ in units of the critical field Bc =
m2

e c3/eh̄ ≈ 4.5 × 1013 G. Here the
period is taken to be P = 10 ms,
θ = 0, ∆ = 1 and the radius of the
core Rc = 10 km. Note that Br is con-
sidered at the poles of star, where
it has maximum value. Outside the
star Br has very small negative value
and it tends to zero. Because of visu-
alization difficulties it is not seen in
the figure.

Figure A.33.: The angular compo-
nent of the magnetic field is plot-
ted in units of the Bc. Here P =
10 ms, θ = π/2, ∆ = 1 and Rc =
10 km. Note that Bθ is considered
at the equator, where it has maxi-
mum value. Inside the star it has
very small constant negative value.
Outside the star first it becomes neg-
ative (the value is very small) then it
tends to zero. Because of scale prob-
lems this behavior is not seen from
the figure.

Examining the Fig. A.32 one can see very small value of Br which almost
does not make a significant contribution to the magnitude of the field, except
for the poles of the star. On the contrary, Bθ Fig. A.33 has values exceeding
the critical magnetic field near the surface of the core although localized in a
narrow region between positively and negatively charged shells as expected.
Outside the core the magnetic field becomes negative. The magnitude of the
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Figure A.34.: The magnitude of the
magnetic field is plotted as a func-
tion of the period of the star P in
the units of the critical field Bc at the
surface of the core Rc = 10 km on
the equator in the logarithmic scale.

Figure A.35.: The magnetic lines of
forces. Outside the star the mag-
netic field looks like a dipole field.
Extra lines along the surface of the
star indicate overcritical value of the
field between positively and nega-
tively charged shells.

field has very small and eventually vanishing values. This effect can not be
seen from the figures, because of visualization difficulties.

In Fig. A.34 the magnitude of the magnetic field is presented as a function
of the rotational period P on the surface of the core at the equator. Practically
it demonstrates the upper limit of possible values of the magnetic field in
the range between 1ms and 100s. Fig. A.35 represents magnetic lines of force
inside, outside and on the surface of the star. It turned out that the lines
of force of the overcritical magnetic field are oppressed between two shells
along the surface of the core.

A.8.5. Conclusions

In this paper we have investigated the behavior of the magnetic field induced
due to rotation on the basis of the research works considered in Ruffini et. al.
Ruffini et al. (2007b) and Popov et. al. Popov et al. (2010) using the technique
developed by Marsh Marsh (1982).

For this purpose considering a rotating neutron star with the period of
10 ms we have obtained the magnetic field of order of the critical field near
the surface of the star and analyzed the magnetic lines of forces.

According to our results the magnetic fields of the neutron stars could be
generated due to the rotation of the star as a whole rigid body. We believe that
the generation of the magnetic field due to the rotation is the reason for the
formation of the constant magnetic fields at the initial moments of neutron
stars birth.

The problem of investigating the magnetic field in general relativity for a
self-gravitating system of degenerate fermions in beta equilibrium is beyond
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the scope of the present work. We expect to investigate this problem in the
nearest future.
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B. The Thomas-Fermi model in
general relativistic systems

B.1. The general relativistic Thomas-Fermi theory

of white-dwarfs

B.1.1. Introduction

The necessity of introducing the Fermi-Dirac statistics in order to overcome
some conceptual difficulties in explaining the existence of white-dwarfs lead-
ing to the concept of degenerate stars was first advanced by R. H. Fowler in
a classic paper (Fowler, 1926). Following that work, E. C. Stoner (Stoner,
1929) introduced the effect of special relativity into the Fowler considerations
and, using what later became known as the exclusion principle, generally at-
tributed in literature to Wolfgang Pauli, he discovered the concept of critical
mass of white-dwarfs 1

MStoner
crit =

15

16

√
5π

M3
Pl

µ2m2
n
≈ 3.72

M3
Pl

µ2m2
n

, (B.1.1)

where MPl =
√

h̄c/G ≈ 10−5 g is the Planck mass, mn is the neutron mass,
and µ = A/Z ≈ 2 is the average molecular weight of matter which shows
explicitly the dependence of the critical mass on the chemical composition of
the star.

Following the Stoner’s work, S. Chandrasekhar (Chandrasekhar, 1931b) at
the time a 20 years old graduate student coming to Cambridge from India
pointed out the relevance of describing white-dwarfs by using an approach,
initiated by E. A. Milne (Milne, 1930), of using the powerful mathematical
method of the solutions of the Lane-Emden polytropic equations (Emden,
1907). The same idea of using the Lane-Emden equations taking into account
the special relativistic effects to the equilibrium of stellar matter for a degener-
ate system of fermions, came independently to L. D. Landau (Landau, 1932).
Both the Chandrasekhar and Landau treatments were explicit in pointing out

1For a lucid and scientifically correct historical reconstruction of the contributions to the
critical mass concept see Nauenberg (2008).
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the existence of the critical mass

MCh−L
crit = 2.015

√
3π

2

M3
Pl

µ2m2
n
≈ 3.09

M3
Pl

µ2m2
n

, (B.1.2)

where the first numerical factor on the right hand side of Eq. (B.1.2) comes
from the boundary condition −(r2du/dr)r=R = 2.015 (see last entry of Table
7 on Pag. 80 in Emden (1907)) of the n = 3 Lane-Emden polytropic equation.

Namely for M > MCh−L
crit , no equilibrium configuration should exist.

This unexpected result created a wave of emotional reactions: Landau re-
jected the idea of the existence of such a critical mass as a “ridiculous ten-
dency” (Landau, 1932). Chandrasekhar was confronted by a lively dispute
with A. Eddington on the basic theoretical assumptions he adopted (see Wali
(1982) for historical details). The dispute reached such a heated level that
Chandrasekhar was confronted with the option either to change field of re-
search or to leave Cambridge. As is well known he chose the second option
transferring to Yerkes Observatory near Chicago where he published his re-
sults in his classic book (Chandrasekhar, 1939).

Some of the basic assumptions adopted by Chandrasekhar and Landau in
their idealized approach were not justified e.g. the treatment of the electron
as a free-gas without taking into due account the electromagnetic interac-
tions, as well as the stability of the nuclear component against the gravita-
tional interaction. It is not surprising that such an approach led to the criti-
cisms of Eddington who considered that the physical foundation of the Chan-
drasekhar work did not inspire confidence. It goes to Eddington credit, at the
time Plumian Professor at Cambridge, to have allowed the publication of the
Chandrasekhar work although preceded by his own critical considerations
(Eddington, 1935). It was unfortunate that the absence of interest of E. Fermi
on the final evolution of stars did not allow Fermi himself to intervene in this
contention and solve definitely these well-posed theoretical problems (Boc-
caletti and Ruffini, 2010). Indeed, we are showing in this article how the
solution of the conceptual problems of the white-dwarf models, left open for
years, can be duly addressed by considering the relativistic Thomas-Fermi
model of the compressed atom (see Subsec. B.1.7 and Sec. B.1.11).

The original work on white-dwarfs was motivated by astrophysics and
found in astrophysics strong observational support. From the theoretical
physics point of view, which is the topic of this article, the study of white-
dwarfs presented at the time and still presents today open issues of the great-
est interest. The issue of the equilibrium of the electron gas and the associated
nuclear component taking into account the electromagnetic, the gravitational
and the weak interactions formulated in a correct special and general rela-
tivistic context has been and still is one of the most popular.

One of the earliest alternative approaches to the Chandrasekhar-Landau
work was proposed by E. E. Salpeter in 1961 (Salpeter, 1961). He followed an
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idea originally proposed by Y. I. Frenkel (Frenkel, 1928): to adopt in the study
of white-dwarfs the concept of a Wigner-Seitz cell. Salpeter introduced to the
lattice model of a point-like nucleus surrounded by a uniform cloud of elec-
trons, corrections due to the non-uniformity of the electron fluid surrounding
each nucleus. Thus, to the well-known lattice energy EC = −(9αZ2)/(10Rws)
resulting from the Coulomb interaction between the point-like nucleus with
the uniform surrounding electrons and from the electron-electron interaction,
Salpeter introduced the non-uniform correction by assuming the electron dis-
tribution ne[1+ ǫ(r)] being ǫ(r) infinitesimal and ne the electron number den-
sity in the uniform approximation. The correction ǫ(r) is obtained through a
first-order series expansion of the relativistic electron kinetic energy by con-
sidering the ratio eV/EF

e between the Coulomb potential energy and the elec-

tron Fermi energy EF
e =

√

[cPF
e (r)]

2 + m2
e c4 −m+ec2 − eV as infinitesimal (see

Subsec. B.1.5 for details). In this way Salpeter obtained in (Salpeter, 1961) an
analytic formula for the total energy in a Wigner-Seitz cell and derived the
corresponding equation of state of matter composed by such cells, pointing
out explicitly the relevance of taking into account the Coulomb interaction.

The consequences of taking into account these Coulomb interactions in the
determination of the mass and radius of white-dwarfs, was pointed out in a
subsequent paper by T. Hamada and E. E. Salpeter (Hamada and Salpeter,
1961) by using the equation of state constructed in Salpeter (1961). They
found that the critical mass of white-dwarfs depends in a non-trivial way on
the specific nuclear composition: the critical mass of Chandrasekhar-Landau
which depends only on the mass to charge ratio of nuclei A/Z, now depends
independently on the mass number A and on the proton number Z.

This fact can be seen from the approximate expression for the critical mass
of white dwarfs obtained by Hamada and Salpeter (1961) in the ultrarelativis-
tic limit for the electrons

MH&S
crit = 2.015

√
3π

2

1

µ2
eff

M3
Pl

m2
n

, (B.1.3)

where

µeff = µ

(

PS

PCh

)−3/4

, (B.1.4)

being PS the pressure of the Wigner-Seitz cell obtained by Salpeter (1961) tak-
ing into account Coulomb interactions (see Subsec. B.1.5) and PCh is the pres-
sure of a free-electron fluid used by Chandrasekhar (see Subsec. B.1.3). The
ratio PS/PCh is a function of the number of protons Z (see Eq. (20) in Salpeter
(1961)) and it satisfies PS/PCh < 1. Consequently, the effective molecular
weight satisfies µeff > µ and the critical mass of white-dwarfs turns to be
smaller with respect to the original numerical value obtained by Chandra-
sekhar-Landau (see Eq. (B.1.2)).
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In the mean time, the problem of the equilibrium gas in a white-dwarf
taking into account possible global electromagnetic interactions between the
nucleus and the electrons was addressed by E. Olson and M. Bailyn in (Ol-
son and Bailyn, 1975, 1976). They well summarized the status of the problem:
“Traditional models for the white dwarf are non-relativistic and electrically neutral ...
although a electric field is needed to support the pressureless nuclei against gravita-
tional collapse, the star is treated essentially in terms of only one charge component,
where charge neutrality is assumed ”. Their solution to the problem invokes the
breakdown of the local charge neutrality and the presence of an overall elec-
tric field as a consequence of treating also the nuclei inside the white-dwarf
as a fluid. They treated the white-dwarf matter through a two-fluid model
not enforcing local charge neutrality. The closure equation for the Einstein-
Maxwell system of equations was there obtained from a minimization proce-
dure of the mass-energy of the configuration. This work was the first in point-
ing out the relevance of the Einstein-Maxwell equations in the description of
an astrophysical system by requiring global and non local charge neutrality.
As we will show here, this interesting approach does not apply to the case
of white-dwarfs. It represents, however, a new development in the study of
neutron stars (see e.g. Rueda et al. (2010c))

An alternative approach to the Salpeter treatment of a compressed atom
was reconsidered by introducing the relativistic Thomas-Fermi treatment and
the extended nucleus within a phenomenological description (Ferreirinho
et al., 1980; Ruffini and Stella, 1981).

Recently, the study of a compressed atom has been revisited in (Rotondo
et al., 2009) by extending to special relativity the powerful global approach
of Feynman, Metropolis and Teller (Feynman et al., 1949), which takes into
account all the Coulomb contributions duly expressed relativistically with-
out the need of any piecewise description. In this model a unified approach
is introduced bypassing the phenomenological mass-formula for nuclei. The
relativistic Thomas-Fermi model has been solved by imposing in addition to
the electromagnetic interaction also the weak interaction between neutrons,
protons and electrons, self-consistently. This presents some conceptual dif-
ferences with respect to previous approaches and can be used in order both
to validate and to establish the limitations of previous approaches.

In this article we apply the considerations presented in (Rotondo et al.,
2009) of a compressed atom in a Wigner-Seitz cell to the description of a non-
rotating white-dwarf in general relativity. Paradoxically, after all this proce-
dure which takes into account many additional theoretical features generaliz-
ing the Chandrasekhar-Landau work, a most simple equation is found to be
fulfilled by the equilibrium configuration in a spherically symmetric metric.
Assuming the metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (B.1.5)
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we demonstrate how the entire system of equations describing the equilib-
rium of white-dwarfs, taking into account the weak, the electromagnetic and
the gravitational interactions as well as quantum statistics all expressed con-
sistently in a general relativistic approach, is simply given by

√
g00µws = eν(r)/2µws(r) = constant , (B.1.6)

which links the chemical potential of the Wigner-Seitz cell µws, duly solved
by considering the relativistic Feynman-Metropolis-Teller model following
Rotondo et al. (2009), to the general relativistic gravitational potential at each
point of the configuration. The overall system outside each Wigner-Seitz cell
is strictly neutral and no global electric field exists, contrary to the results
reported in (Olson and Bailyn, 1976). The same procedure will apply as well
to the case of neutron star crusts.

The article is organized as follows. In Sec. B.1.2 we summarize the most
common approaches used for the description of white-dwarfs and neutron
star crusts: the uniform approximation for the electron fluid used by Chan-
drasekhar (1931b) in his theory of white-dwarfs; the lattice model of a point-
like nucleus surrounded by a uniform electron cloud, used for instance by
Baym et al. (1971b); the generalization of the lattice model due to Salpeter
(1961) which introduces non-uniformity corrections on the electron fluid. Salpeter
showed how the white-dwarf matter can be assumed as arranged in a Wigner-
Seitz lattice composed of cells of radius Rws filled by a relativistic gas of Z
electrons in equilibrium with a nucleus of A nucleons. We turn then to the
Feynman, Metropolis and Teller approach (Feynman et al., 1949) based on the
the non-relativistic Thomas-Fermi model for a compressed atom and, to the
relativistic generalization of the Feynman, Metropolis and Teller treatment
recently introduced in (Rotondo et al., 2009).

In Sec. B.1.8 we formulate the general relativistic equations of equilibrium
of the system and show how, from the self-consistent definition of chemi-
cal potential of the Wigner-Seitz cell and the Einstein equations, comes the
equilibrium condition given by Eq. (B.1.6). In addition, we obtain the New-
tonian and the first-order post-Newtonian equations of equilibrium through
by expanding in the appropriate limits the general relativistic equations of
equilibrium.

Finally, we show in Sec. B.1.11 the new results of the numerical integration
of the general relativistic equations of equilibrium and discuss the corrections
to the Stoner critical mass MStoner

crit , to the Chandrasekhar-Landau mass limit

MCh−L
crit , as well as to the one of Hamada and Salpeter MH&S

crit , obtained when
all effects are taken into account through the relativistic Feynman, Metropolis
and Teller approach (Rotondo et al., 2009) in general relativity.
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B.1.2. The Equation of State

There exists a large variety of approaches to model the equation of state of
white-dwarf matter, each one characterized by a different way of treating or
neglecting the Coulomb interaction inside each Wigner-Seitz cell, which we
will briefly review here. Particular attention is given to the calculation of the
self-consistent chemical potential of the Wigner-Seitz cell µws, which plays a
very important role in the conservation law (B.1.6) that we will derive below
in Sec. B.1.8.

B.1.3. The uniform approximation

In the uniform approximation (see e.g. Chandrasekhar (1931b)), the electron
distribution as well as the nucleons are assumed to be constant locally. In
such a model no concept of Wigner-Seitz cell exists and then the condition of
local charge neutrality

ne =
Z

A
nN , (B.1.7)

is applied. Then, the electromagnetic interaction is taken no into account
either between electrons or between a well defined nucleus with surrounding
electrons.

The electrons are considered as a fully degenerate free-gas and then de-
scribed by Fermi-Dirac statistics. Thus, the electron density ne is related to
the electron Fermi-momentum by

ne =
(PF

e )
3

3π2h̄3
, (B.1.8)

and the total electron energy-density and electron pressure are given by

Ee =
2

(2πh̄)3

∫ PF
e

0

√

c2p2 + m2
e c44πp2dp

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (1 + 2x2

e )− arcsinh(xe)] , (B.1.9)

Pe =
1

3

2

(2πh̄)3

∫ PF
e

0

c2p2

√

c2p2 + m2
e c4

4πp2dp

=
m4

e c5

8π2h̄3
[xe

√

1 + x2
e (2x2

e /3 − 1)

+ arcsinh(xe)] . (B.1.10)

where we have introduced xe = PF
e /(mec).

Then, for a given nucleus (A, Z), the total energy-density of the configura-
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tion can be written as
E = EN + Ee , (B.1.11)

being

EN =
A

Z
mNc2ne , (B.1.12)

where we have used Eq. (B.1.7) and mN denotes the nucleon mass.
The total pressure is given by

P = PN + Pe = Pe , (B.1.13)

where Pe is given by Eq. (B.1.10).
The total chemical potential is obtained from thermodynamical consistency

as

µ =
E+ P

ne/Z
. (B.1.14)

Then, the chemical potential in the uniform approximation is given by

µ = AmNc2 + Zµe , (B.1.15)

where

µe =
Ee + Pe

ne
=
√

c2(PF
e )

2 + m2
e c4 , (B.1.16)

is the electron free-chemical potential. As a consequence of this effective ap-
proach which does not take into any account the Coulomb interaction, it is
obtained the effective chemical potential (B.1.15). It can be interpreted as
the chemical potential of an effective one-component electron-nucleon fluid
where the kinetic pressure is given by electrons of mass me and their gravi-
tational contribution is given by an effective mass AmN/Z attached to each
electron.

B.1.4. Uniform approximation with point-like nucleus

The first correction to the above uniform model, corresponds to abandon the
assumption of the electron-nucleon fluid. The concept of Wigner-Seitz cell
is introduced where a point-like nucleus of charge +Ze with A nucleons is
surrounded by a uniformly distributed cloud of Z fully-degenerate electrons.

The global neutrality of the cell is given by

Z = Vwsne =
ne

nws
, (B.1.17)

where nws = 1/Vws is the Wigner-Seitz cell density and Vws = 4πR3
ws/3 is

the cell volume.
The total energy of the Wigner-Seitz cell is now written as the sum of the
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nucleons energy, plus the electron kinetic energy, plus the Coulomb interac-
tion energy

Ews = EN + E
(e)
k + EC , (B.1.18)

being

EN = AmNc2 , (B.1.19)

E
(e)
k = EeVws , (B.1.20)

EC = Ee−N + Ee−e = − 9

10

Z2e2

Rws
, (B.1.21)

where Ee is given by (B.1.9) and Ee−N and Ee−e are the electron-nucleus Cou-
lomb energy and the electron-electron Coulomb energy, which are given by

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

enedr

= −3

2

Z2e2

Rws
, (B.1.22)

Ee−e =
3

5

Z2e2

Rws
. (B.1.23)

The energy given by Eq. (B.1.23) is the well-known Coulomb energy of a uni-
form distribution of charged particles. The total interaction energy (B.1.21) is
the so-called lattice energy.

The self-consistent pressure of the Wigner-Seitz cell is then given by

Pws = −∂Ews

∂Vws
= PN + P

(e)
k + PC , (B.1.24)

being

PN = − ∂EN

∂Vws
= 0 , (B.1.25)

P
(e)
k = −∂E

(e)
k

∂Vws
= Pe(ne) , (B.1.26)

PC = − ∂EC

∂Vws
=

1

3

EC

Vws
, (B.1.27)

where Pe is given by Eq. (B.1.10). It is worth to recall that, the point-like as-
sumption of the nucleus is incompatible with a relativistic treatment of the
electron distribution (see Ferreirinho et al. (1980); Ruffini and Stella (1981) for
details). It is a matter of fact that, such an inconsistency has been tradition-
ally ignored by, applying within a point-like nucleus model, the relativistic
formulas (B.1.9) and (B.1.10) and their corresponding ultrarelativistic limits
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(see e.g. Salpeter (1961)).

The Wigner-Seitz cell chemical potential is, in this case, given by

µws = Ews + PwsVws = AmNc2 + Zµe +
4

3
EC . (B.1.28)

It can be seen from Eq. (B.1.24) and (B.1.27) that the inclusion of the Cou-
lomb interaction results in a decreasing of the pressure of the cell, due to the
negative lattice energy EC. The same conclusion is valid for the chemical
potential µws, as can be seen from Eq. (B.1.28).

B.1.5. Salpeter’s approach

Keeping the point-like nucleus assumption, Salpeter (1961) studied the cor-
rections to the above models due to the non-uniformity of the electron distri-
bution inside the Wigner-Seitz cell.

The first contribution to the energy within the Salpeter treatment corre-
sponds to the lattice energy (B.1.21), which results from the point-like nucleus-
electron interaction and, from the electron-electron interaction inside the cell
of radius Rws.

The second contribution is given by a series-expansion of the Thomas-
Fermi energy about the average electron density ne given by the uniform
approximation (B.1.17), i.e. ne = 3Z/(4πR3

ws). The electron density is then
assumed as ne[1 + ǫ(r)], considering ǫ(r) as infinitesimal. The Coulomb po-
tential energy is assumed to be the one of the point-like nucleus surrounded
by a uniform distribution of electrons, so the correction given by ǫ(r) on the
Coulomb potential is neglected. The electron distribution is then calculated
at first-order by expanding the relativistic electron kinetic energy

ǫk =
√

[cPF
e (r)]

2 + m2
e c4 − mec

2

=

√

h̄2c2(3π2ne)2/3[1 + ǫ(r)]2/3 + m2
e c4

− mec
2, (B.1.29)

about its value in the uniform approximation

ǫunif
k =

√

h̄2c2(3π2ne)2/3 + m2
e c4 − mec

2 , (B.1.30)

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential

energy eV and the electron Fermi energy

EF
e =

√

[cPF
e (r)]

2 + m2
e c4 − mec

2 − eV . (B.1.31)
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The influence of the Dirac electron-exchange correction (Dirac, 1930) on the
equation of state was also considered by Salpeter (1961). However, adopting
the general approach of Migdal et al. (1977), it has been shown that these
effects are negligible in the relativistic regime (Rotondo et al., 2009). We will
then consider here only the major correction of the Salpeter treatment.

The total energy of the Wigner-Seitz cell is then given by (see Salpeter
(1961) for details)

Ews = EN + E
(e)
k + EC + ES

TF , (B.1.32)

being

EN = AmNc2 , (B.1.33)

E
(e)
k = EeVws , (B.1.34)

EC = − 9

10

Z2e2

Rws
, (B.1.35)

ES
TF = −162

175

(

4

9π

)2/3

α2Z7/3µe , (B.1.36)

where Ee is given by Eq. (B.1.9), µe is given by Eq. (B.1.16) and α = e2/(h̄c) is
the fine structure constant.

The self-consistent pressure of the Wigner-Seitz cell is

Pws = −∂Ews

∂Vws
= PN + P

(e)
k + PC + PS

TF , (B.1.37)

being

PN = − ∂EN

∂Vws
= 0 , (B.1.38)

P
(e)
k = −∂E

(e)
k

∂Vws
= Pe(ne) , (B.1.39)

PC = − ∂EC

∂Vws
=

1

3

EC

Vws
, (B.1.40)

PS
TF = −∂ES

TF

∂Vws
=

1

3

(

PF
e

µe

)2
ES

TF

Vws
, (B.1.41)

where Pe is given by Eq. (B.1.10) and the electron Fermi momentum PF
e is re-

lated to the electron density by Eq. (B.1.8), and then to the number of electrons
Z and the volume of the cell Vws through Eq. (B.1.17).

The self-consistent Wigner-Seitz cell chemical potential can be then written
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as

µws = Ews + PwsVws = AmNc2 + Zµe +
4

3
EC

+ ES
TF

[

1 +
1

3

(

PF
e

µe

)2
]

. (B.1.42)

From Eqs. (B.1.37) and (B.1.42), we see that the inclusion of each additional
Coulomb correction results in a decreasing of the pressure of the cell Pws and
of the chemical potential of the cell µws. The Salpeter approach is very inter-
esting in identifying piecewise Coulomb contribution to the total energy, to
the total pressure and, to the Wigner-Seitz chemical potential. However, it
does not have the full consistency of the global solutions obtained with the
Feynman-Metropolis-Teller approach (Feynman et al., 1949) and its general-
ization to relativistic regimes (Rotondo et al., 2009) which we will discuss in
detail below.

B.1.6. The Feynman-Metropolis-Teller treatment

Feynman, Metropolis and Teller (Feynman et al., 1949) showed how to derive
the equation of state of matter at high pressures by considering a Thomas-
Fermi model confined in a Wigner-Seitz cell of radius Rws.

The condition of equilibrium of the electrons in the cell, in the non-relativistic
case, is expressed by

EF
e =

(PF
e )

2

2me
− eV = constant > 0 , (B.1.43)

where V denotes the Coulomb potential and EF
e denotes the Fermi energy of

electrons, which is positive for configurations subjected to external pressure,
namely, for compressed cells.

Defining the function φ(r) by eV(r) + EF
e = e2Zφ(r)/r, and introducing

the dimensionless radial coordinate η by r = bη, where b = (3π)2/3λe

27/3αZ1/3 , being

λe = h̄/(mec) the electron Compton wavelength; the Poisson equation from
which the Coulomb potential V is calculated self-consistently becomes

d2φ(η)

dη2
=

φ(η)3/2

η1/2
. (B.1.44)

The boundary conditions for Eq. (B.1.44) follow from the point-like structure
of the nucleus φ(0) = 1 and, from the global neutrality of the Wigner-Seitz
cell φ(η0) = η0dφ/dη|η=η0 , where η0 defines the dimensionless radius of the
Wigner-Seitz cell by η0 = Rws/b.

For each value of the compression, for instance η0, it corresponds a value
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of the electron Fermi energy EF
e and a different solution of Eq. (B.1.44), which

determines the self-consistent Coulomb potential energy eV as well as the
self-consistent electron distribution inside the cell through

ne(η) =
Z

4πb3

[

φ(η)

η

]3/2

. (B.1.45)

In the non-relativistic Thomas-Fermi model, the total energy of the Wigner-
Seitz cell is given by (see Slater and Krutter (1935); Feynman et al. (1949) for
details)

Ews = EN + E
(e)
k + EC , (B.1.46)

being

EN = AmNc2 , (B.1.47)

E
(e)
k =

∫ Rws

0
4πr2

Ee[ne(r)]dr

=
3

7

Z2e2

b

[

4

5
η1/2

0 φ5/2(η0)− φ′(0)
]

, (B.1.48)

EC = Ee−N + Ee−e

= −6

7

Z2e2

b

[

1

3
η1/2

0 φ5/2(η0)− φ′(0)
]

, (B.1.49)

where Ee[ne(r)] is given by Eq. (B.1.9) and Ee−N and Ee−e are the electron-
nucleus Coulomb energy and the electron-electron Coulomb energy, which
are given by

Ee−N = −
∫ Rws

0
4πr2

(

Ze

r

)

ene(r)dr , (B.1.50)

Ee−e =
1

2

∫ Rws

0
4πr2ene(~r)dr

×
∫ Rws

0
4πr′2

ene(~r′)
|~r −~r′|dr′ . (B.1.51)

From Eqs. (B.1.48) and (B.1.49) we recover the well-known relation between
the total kinetic energy and the total Coulomb energy in the Thomas-Fermi
model (Slater and Krutter, 1935; Feynman et al., 1949)

E
(e)
k = Eunif

k [ne(Rws)]−
1

2
EC , (B.1.52)

where Eunif
k [ne(Rws)] denotes the non-relativistic kinetic energy of a uniform
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electron distribution of density ne(Rws)

Eunif
k [ne(Rws)] =

3

5
Z∗µe(Rws) , (B.1.53)

being Z∗ the number of electrons given by a uniform electron distribution of
density ne(Rws)

Z∗ = Vwsne(Rws) . (B.1.54)

The self-consistent pressure of the Wigner-Seitz cell given by the non-relativistic
Thomas-Fermi model is

Pws = −∂Ews

∂Vws
= PN + PTF , (B.1.55)

being

PN = − ∂EN

∂Vws
= 0 , (B.1.56)

PTF = −∂(E
(e)
k + EC)

∂Vws
=

2

3

Eunif
k [ne(Rws)]

Vws
, (B.1.57)

The electron chemical potential µe(Rws) is given by the non-relativistic
limit of Eq. (B.1.16) calculated at the border of the cell Rws, where ne(Rws)
is the value of the electron density at the boundary of the Wigner-Seitz cell
Rws.

The pressure of the Thomas-Fermi model (B.1.57) is equal to the pressure
of a free-electron distribution of density ne(Rws). Being the electron density
inside the cell a decreasing function of the distance from the nucleus, the
electron density at the radius of the cell ne(Rws) is smaller than the average
electron distribution 3Z/(4πR3

ws). Then, the pressure given by (B.1.57) is
smaller than the one given by the non-relativistic expression (B.1.13) of the
uniform model of Subsec. B.1.3. Such a smaller pressure, although faintfully
given by the expression of a free-electron gas, contains in a self-consistent
fashion all the Coulomb effects inside the Wigner-Seitz cell.

The chemical potential of the Wigner-Seitz cell of the non-relativistic Thomas-
Fermi model can be then written as

µws = Ews + PwsVws

= AmNc2 + E
(e)
k + EC +

2

5
Z∗µe(Rws) , (B.1.58)

which, using Eqs. (B.1.52)–(B.1.54) becomes

µws = AmNc2 + Z∗µe(Rws) +
1

2
EC . (B.1.59)
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Integrating by parts the total number of electrons as

Z =
∫ Rws

0
4πr2ne(r)dr = Z∗ + I(Rws) , (B.1.60)

where

I(Rws) =
∫ Rws

0

4π

3
r3 ∂ne(r)

∂r
dr , (B.1.61)

we can rewrite finally the following semi-analytical expression of the chemi-
cal potential of the cell

µws = AmNc2 + Zµunif
e

[

1 +
I(Rws)

Z

]2/3

+ µunif
e I(Rws)

[

1 +
I(Rws)

Z

]2/3

+
1

2
EC , (B.1.62)

where µunif
e is the electron free-chemical potential (B.1.16) calculated with the

average electron density, namely, the electron chemical potential of the uni-
form approximation. The function I(Rws) depends explicitly on the gradient
of the electron density, i.e., on the non-uniformity of the electron distribution.

In the limit of no Coulomb interaction both the last term and the function
I(Rws) in Eq. (B.1.62) go to zero. Consequently, in such a limit the chemical
potential of the Wigner-Seitz cell reduces to

µunif
ws = AmNc2 + Zµunif

e , (B.1.63)

which is, as expected, the chemical potential (B.1.15) within the uniform ap-
proximation.

B.1.7. The relativistic Feynman-Metropolis-Teller treatment

We recall now how the above classic Feynman, Metropolis, and Teller treat-
ment of compressed atoms has been recently generalized to relativistic regimes
(see Rotondo et al. (2009) for details). We recall first some of the main results
of the Feynman, Metropolis, and Teller approach (Rotondo et al., 2009) and
then proceed to apply them to the computation of the white-dwarf parame-
ters.

One of the main differences in the relativistic generalization of the Thomas-
Fermi equation is that, the point-like approximation of the nucleus, must be
abandoned since the relativistic equilibrium condition of compressed atoms

EF
e =

√

c2(PF
e )

2 + m2
e c4 − mec

2 − eV(r) = constant > 0 , (B.1.64)

would lead to a non-integrable expression for the electron density near the
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origin (see e.g.Ferreirinho et al. (1980); Ruffini and Stella (1981)).

It is then assumed a constant distribution of protons confined in a radius
Rc defined by

Rc = ∆λπ Z1/3 , (B.1.65)

where λπ = h̄/(mπc) is the pion Compton wavelength. If the system is at
nuclear density ∆ ≈ (r0/λπ)(A/Z)1/3 with r0 ≈ 1.2 fm. Thus, in the case of
ordinary nuclei (i.e., for A/Z ≈ 2) we have ∆ ≈ 1. Consequently, the proton
density can be written as

np(r) =
Z

4
3πR3

c

θ(r − Rc) =
3

4π

(

1

∆λπ

)3

θ(r − Rc) , (B.1.66)

where θ(r − Rc) denotes the Heaviside function centered at Rc. The electron
density can be written as

ne(r) =
(PF

e )
3

3π2h̄3
=

1

3π2h̄3c3

[

V̂2(r) + 2mec
2V̂(r)

]3/2
, (B.1.67)

where V̂ = eV + EF
e and we have used Eq. (B.1.64).

The overall Coulomb potential satisfies the Poisson equation

∇2V(r) = −4πe
[

np(r)− ne(r)
]

, (B.1.68)

with the boundary conditions dV/dr|r=Rws = 0 and V(Rws) = 0 due to the
global charge neutrality of the cell.

By introducing the dimensionless quantities x = r/λπ , xc = Rc/λπ , χ/r =
V̂(r)/(h̄c) and replacing the particle densities (B.1.66) and (B.1.67) into the
Poisson equation (B.1.68) we obtain the relativistic Thomas-Fermi equation

1

3x

d2χ(x)

dx2
= − α

∆3
θ(xc − x)

+
4α

9π

[

χ2(x)

x2
+ 2

me

mπ

χ(x)

x

]3/2

, (B.1.69)

which must be integrated subjected to the boundary conditions χ(0) = 0,
χ(xws) ≥ 0 and dχ/dx|x=xws = χ(xws)/xws, where xws = Rws/λπ .

The neutron density nn(r), related to the neutron Fermi momentum PF
n =

(3π2h̄3nn)1/3, is determined by imposing the condition of beta equilibrium

EF
n =

√

c2(PF
n )

2 + m2
nc4 − mnc2 =

√

c2(PF
p )

2 + m2
pc4

− mpc2 + eV(r) + EF
e , (B.1.70)
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subjected to the baryon number conservation equation

A =
∫ Rc

0
4πr2[nn(r) + nn(r)]dr . (B.1.71)

In Fig. B.1 we see how the relativistic generalization of the Feynman-Metro-
polis-Teller treatment leads to electron density distributions markedly differ-
ent from the constant electron density approximation. The electron distribu-
tion is far from being uniform as a result of the solution of Eq. (B.1.69), which
takes into account the electromagnetic interaction between electrons and be-
tween the electrons and the finite sized nucleus. Additional details are given
in (Rotondo et al., 2009).
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Relativistic FMT treatment for Iron
Uniform approximation

Figure B.1.: The electron number density ne in units of the average electron
number density n0 = 3Z/(4πR3

ws) is plotted as a function of the dimen-
sionless radial coordinate x = r/λπ for xws = 9.7 in both the relativistic
Feynman-Metropolis-Teller approach and the uniform approximation respec-
tively for Iron. The electron distribution for different levels of compression
as well as for different nuclear compositions can be found in Rotondo et al.
(2009).

V. Popov et al. (Popov et al., 2010) have shown how the solution of the
relativistic Thomas-Fermi equation (B.1.69) together with the self-consistent
implementation of the beta equilibrium condition (B.1.70) leads, in the case
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of zero electron Fermi energy (EF
e = 0), to a theoretical prediction of the beta

equilibrium line, namely a theoretical Z-A relation (see the solid curve of
Fig. B.2).

In the small mass number region A . 102, such a curve can be well ap-
proximated by the simple formula Z ≈ A/(2 + 0.030A2/3). Such a behavior
resembles the semi-empirical relation Z ≈ A/(2 + 0.015A2/3) obtained from
the mass formula of Weizsacker which fits the experimental masses of nu-
clei. The difference in the coefficient of the term A2/3 between the theoretical
and the semi-empirical relations is due to the simplicity of our nuclear model
which takes no into account explicitly the strong interaction between nucle-
ons. Then, within our model we overestimate the mass to charge ratio A/Z
of nuclei; for instance, in the case of 4He the overestimate is about 3.8%, for
12C about 7.9%, for 16O about 9.52%, and for 56Fe about 13.2%. We focus
here our attention on the effects due to the Coulomb interaction inside the
Wigner-Seitz cells and specially we focus on their influence on the oberv-
able properties of white-dwarfs. Indeed, such small discrepancies due to the
strong interactions disappear when a more refined model of the nucleus is
adopted and will be reported elsewhere (Rueda et al., 2010b).

For light elements like 4He and 12C our estimates are quite good due to the
fact that for lighter elements the beta equilibrium curve approaches the limit
Z ≈ A/2 (see dashed curve of Fig. B.2) which is a common limit of both our
theoretical prediction and the semi-empirical formula.

For non-zero electron Fermi energies (i.e. in the case of compressed config-
urations) the Z-A relation depends on the density of matter. Then, at fixed
mass number A the proton number Z becomes a function of the Fermi energy
of the electrons and so a function of the density. At some critical density, the
proton number changes from the initial value Z to the value Z − 1 which de-
termines the onset of inverse beta decay of the initial nucleus. Thus, from the
relativistic Feynman-Metropolis-Teller treatment (Rotondo et al., 2009) we are
able to obtain in a self-consistent fashion theoretical predictions for the criti-
cal electron Fermi energy as well as for the critical matter density at which a
given nucleus undergoes inverse beta decay. The influence of such a process
on the stability of white-dwarfs will be discussed in Sec. B.1.11.

We turn now to the total energy of the Wigner-Seitz cell within the Feynman-
Metropolis-Teller treatment which can be written as

Ews = EN + Ek + EC , (B.1.72)
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Figure B.2.: The beta-equilibrium curve obtained with: the relativistic
Thomas-Fermi model (Popov et al., 2010) (solid line), the Weizsacker semi-
empirical formula Z ≈ A/(2 + 0.015A2/3) (dotted line) and the curve Z =
A/2 (dashed line).
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being

EN = (A − Z)mnc2 + Zmpc2 , (B.1.73)

Ek =
∫ Rws

0
4πr2

Ee[ne(r)]dr

+
∫ Rc

0
4πr2{En[nn(r)]− mnc2nn(r)}dr

+
∫ Rc

0
4πr2{Ep[np(r)]− mpc2np(r)}dr , (B.1.74)

EC =
1

2

∫ Rws

0
4πr2e[np(r)− ne(r)]V(r)dr , (B.1.75)

where Ei[ni(r)] is the energy-density containing the rest-mass density mic
2ni

given by Eq. (B.1.9), mn is the neutron rest-mass, mp is the proton rest-mass.

The total pressure of the Wigner-Seitz cell is given by

Pws = −∂Ews

∂Vws
= PN + Prel

FMT , (B.1.76)

where

PN = − ∂EN

∂Vws
= 0 , (B.1.77)

Prel
FMT = −∂(Ek + EC)

∂Vws
= Pe[ne(Rws)]

=
−Eunif

k [ne(Rws)] + Z∗µe(Rws)

Vws
, (B.1.78)

being

Eunif
k [ne(Rws)] = Ee[ne(Rws)]Vws , (B.1.79)

the total kinetic energy of a uniform electron distribution of density ne(Rws).
In addition, we have introduced the quantity Z∗ which is given as before by
Eq. (B.1.54) and µe(Rws) is the electron chemical potential (B.1.16) calculated
at the border of the cell. As in the non-relativistic Thomas-Fermi model, in
the relativistic case, the pressure at the boundary of the cell is given by the
expression of a free-electron gas, whose density is the one of the electrons at
the boundary of the cell ne(Rws).

The electron density at the boundary Rws in the relativistic Feynman-Metro-
polis-Teller treatment is smaller with respect to the one given by the uni-
form density approximation (see Fig. B.1 for instance). Then, the relativis-
tic pressure (B.1.76) gives systematically smaller values with respect to the
uniform approximation pressure given by Eq. (B.1.13). A detailed compari-
son between the equations of state for Iron (56Fe) obtained with the uniform
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approximation, with the Salpeter analytic formulas and with the relativistic
Feynman-Metropolis-Teller approach can be found in Table I of Rotondo et al.
(2009).

The Wigner-Seitz cell chemical potential is then

µws = Ews + PwsVws = (A − Z)mnc2 + Zmpc2 + Ek

+ EC − Eunif
k [ne(Rws)] + Z∗µe(Rws) , (B.1.80)

which, contrary to the non-relativistic formula (B.1.58), can not be simplified
in terms of its uniform counterparts. However, it is easy to check that, in the
limit of no Coulomb interaction, we have ne(Rws) → 3Z/(4πR3

ws), Z∗ → Z,
EC → 0, and Ek → Eunif

k [ne(Rws)]. Then, approximating mp = mn = mN we
finally obtain

µunif
ws → AmNc2 + Zµunif

e , (B.1.81)

which corresponds to the Wigner-Seitz chemical potential (B.1.15) given by
the uniform approximation.

B.1.8. General relativistic equations of equilibrium

Outside each Wigner-Seitz cell the system is electrically neutral, thus no over-
all electric field exists. Therefore, the above equation of state can be used to
calculate the structure of the star through the Einstein equations. Introducing
the spherically symmetric metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (B.1.82)

the Einstein equations can be written in the Oppenheimer and Volkoff (1939)
form

dν(r)

dr
=

2G

c2

4πr3P(r)/c2 + M(r)

r2
[

1 − 2GM(r)
c2r

] , (B.1.83)

dM(r)

dr
= 4πr2E(r)

c2
, (B.1.84)

dP(r)

dr
= −1

2

dν(r)

dr
[E(r) + P(r)] , (B.1.85)

where we have introduced the mass enclosed at the distance r by eλ(r) =
1 − 2GM(r)/(c2r), E(r) is the energy-density and P is the total pressure.

We turn now to demonstrate how, from Eq. (B.1.85), it follows the gen-
eral relativistic equation of equilibrium (B.1.6), for the self-consistent Wigner-
Seitz chemical potential µws. The first law of thermodynamics for a zero tem-
perature fluid of N particles, total energy E, total volume V, total pressure
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P = −∂E/∂V, and chemical potential µ = ∂E/∂N reads

dE = −PdV + µdN , (B.1.86)

where the differentials denote arbitrary but simultaneous changes in the vari-
ables. Since for a system whose surface energy can be neglected with respect
to volume energy, the total energy per particle E/N depends only on the par-
ticle density n = N/V, we can assume E/N as an homogeneous function
of first-order in the variables N and V and hence, it follows the well-known
thermodynamic relation

E = −PV + µN . (B.1.87)

In the case of the Wigner-Seitz cells, Eq. (B.1.87) reads

Ews = −PwsVws + µws , (B.1.88)

where we have introduced the fact that the Wigner-Seitz cell are the building
blocks of the configuration and therefore we must put in Eq. (B.1.87) Nws =
1. Through the entire article we have used Eq. (B.1.88) to obtain from the
knowns energy and pressure, the Wigner-Seitz cell chemical potential (see
e.g. Eqs. (B.1.15) and (B.1.28)). From Eqs. (B.1.86) and (B.1.87) we obtain the
so-called Gibbs-Duhem relation

dP = ndµ . (B.1.89)

In the case of the Wigner-Seitz cells in a white-dwarf, the pressure P and the
chemical potential µ are decreasing functions of the distance from the origin.
Then, the differentials in the above equations can be assumed as the gradients
of the variables which, in the present spherically symmetric case, become
just derivatives with respect to the radial coordinate r. Thus, it follows from
the above relation the Gibbs-Duhem relation for the Wigner-Seitz cells in the
white-dwarf

dPws

dr
= nws

dµws

dr
, (B.1.90)

From Eqs. (B.1.85), (B.1.88) and (B.1.90) we obtain

nws(r)
dµws(r)

dr
= −1

2

dν(r)

dr
nws(r)µws(r) , (B.1.91)

which can be straightforwardly integrated to obtain

eν(r)/2µws(r) = constant . (B.1.92)

The above equilibrium condition is completely general and applies also for
non-zero temperature configurations (Klein, 1949). In such a case, it can be
shown that in addition to the equilibrium condition (B.1.92) the temperature
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of the system satisfies eν(r)/2T(r) = constant.

B.1.9. The weak-field non-relativistic limit

In the weak-field limit we have eν/2 ≈ 1+ Φ/c2, where the Newtonian gravi-
tational potential has been defined by Φ(r) = c2ν(r)/2. In the non-relativistic
mechanics limit c → ∞, the chemical potential µws → µ̃ws + Mwsc2, where
µ̃ws denotes the non-relativistic free-chemical potential of the Wigner-Seitz
cell and Mws is the rest-mass of the Wigner-Seitz cell, namely, the rest-mass
of the nucleus plus the rest-mass of the electrons. Applying these considera-
tions to Eq. (B.1.92) we obtain

eν/2µws ≈ Mwsc2 + µ̃ws + MwsΦ = constant . (B.1.93)

Absorbing the Wigner-Seitz rest-mass energy Mwsc2 in the constant on the
right-hand-side we obtain

µ̃ws + MwsΦ = constant . (B.1.94)

In the weak-field non-relativistic limit the Einstein equations (B.1.83)–(B.1.85)
reduce to

dΦ(r)

dr
=

GM(r)

r2
, (B.1.95)

dM(r)

dr
= 4πr2ρ(r) , (B.1.96)

dP(r)

dr
= −GM(r)

r2
ρ(r) , (B.1.97)

where ρ(r) denotes the rest-mass density. The Eqs. (B.1.95)–(B.1.96) can be
combined to obtain the gravitational Poisson equation

d2Φ(r)

dr2
+

2

r

dΦ(r)

dr
= 4πGρ(r) . (B.1.98)

In the uniform approximation (see Subsec. B.1.3), the equilibrium condition
given by Eq. (B.1.94) reads

µ̃e +
A

Z
mNΦ = constant , (B.1.99)

where we have neglected the electron rest-mass with respect to the nucleus
rest-mass and we have divided the equation by the total number of electrons
Z. This equilibrium equation is the classical condition of thermodynamic
equilibrium assumed for non-relativistic white-dwarf models (see e.g. Lan-
dau and Lifshitz (1980) for details).
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Introducing the above equilibrium condition (B.1.99) into Eq. (B.1.98), and
using the relation between the non-relativistic electron chemical potential and

the particle density ne = (2me)
3/2µ̃3/2

e /(3π2h̄3), we obtain

d2µ̃e(r)

dr2
+

2

r

dµ̃e(r)

dr
= −27/3m3/2

e (A/Z)2m2
NG

3πh̄3
µ̃3/2

e (r) , (B.1.100)

which is the correct equation of equilibrium of white-dwarfs within Newto-
nian gravitational theory (Landau and Lifshitz, 1980). It is remarkable that
the equation of equilibrium (B.1.100), obtained from the correct application
of the Newtonian limit, does not coincide with the equation given by Chan-
drasekhar (1931b,a, 1935, 1939), which, as correctly pointed out by Edding-
ton (1935), is a mixture of both relativistic and non-relativistic approaches.
Indeed, the consistent relativistic equations should be Eq. (B.1.92). There-
fore a dual relativistic and non-relativistic equation of state was used by
Chandrasekhar. The pressure on the left-hand-side of Eq. (B.1.97) is taken
to be given by relativistic electrons while, the term on the right-hand-side
of Eq. (B.1.96) and (B.1.97) (or the source of Eq. (B.1.98)), is taken to be the
rest-mass density of the system instead of the total relativistic energy-density.
Such a procedure is equivalent to take the chemical potential in Eq. (B.1.94)
as a relativistic quantity. As we have seen, this is inconsistent with the weak-
field non-relativistic limit of the general relativistic equations.

B.1.10. The Post-Newtonian limit

Although quantitatively justifiable (see next section), the Chandrasekhar ap-
proach was strongly criticized by Eddington because it was conceptually un-
justified. Indeed, if one were to treat the problem of white-dwarfs approxi-
mately without going to the sophistications of general relativity, but includ-
ing the effects of relativistic mechanics, one should use at least the equations
in the post-Newtonian limit. The first-order post-Newtonian expansion of the
Einstein equations (B.1.83)–(B.1.85) in powers of P/E and GM/(c2r) leads to
the equilibrium equations (Ciufolini and Ruffini, 1983)

dΦ(r)

dr
= − 1

E(r)

[

1 − P(r)

E(r)

]

dP(r)

dr
, (B.1.101)

dM(r)

dr
= 4πr2E(r)

c2
, (B.1.102)

dP(r)

dr
= −GM(r)

r2

E(r)

c2

[

1 +
P(r)

E(r)
+

4πr3P(r)

M(r)c2

+
2GM(r)

c2r

]

, (B.1.103)
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where Eq. (B.1.103) is the post-Newtonian version of the Tolman-Oppenheimer-
Volkoff equation (B.1.85).

Replacing Eq. (B.1.90) into Eq. (B.1.101) we obtain

[

1 − P(r)

E(r)

]

dµws(r)

dr
+

E(r)/c2

nws(r)

dΦ(r)

dr
= 0 . (B.1.104)

It is convenient to split the energy-density as E = c2ρ + U, where c2ρ =
Mwsc2nws is the rest-energy density and U the internal energy. Eq. (B.1.104)
becomes

dµws(r)

dr
+ Mws

dΦ(r)

dr
− P(r)

E(r)

dµws(r)

dr

+
U/c2

nws(r)

dΦ(r)

dr
= 0 , (B.1.105)

which is the differential post-Newtonian version of the equilibrium equa-
tion (B.1.92) and where the post-Newtonian corrections of equilibrium can
be clearly seen. Applying the non-relativistic limit c → ∞ to Eq. (B.1.105):
1 − P/E → 1, E/(c2nws) → Mws, and µws → Mwsc2 + µ̃ws, we recover the
Newtonian equation of equilibrium given by Eq. (B.1.94).

B.1.11. Mass and radius of general relativistic stable
white-dwarfs

Inverse beta-decay instability

In 1938, following the earlier suggestions by F. Hund (Hund, 1936), Landau
(1938) pointed out “it is well-known that matter consists of nuclei and electrons.
Nevertheless it can be shown that in bodies of very large mass, this usual electronic
state of matter can become unstable. The reason for this lies in the fact that the elec-
tronic state of matter does not lead to extremely great densities, because at such den-
sities electrons form a Fermi gas having an immense pressure. On the other hand, it
is easy to see that matter can go into another state which is much more compressible-
the state where all nuclei and electrons have combined to form neutrons”. Later
I. B. Zel’dovich (Zel’Dovich, 1958) pointed out, quantitatively, that this neu-
tron condensation for inverse beta decay starts to occur for hydrogen already
at 107 g cm−3. Then B. K. Harrison et al. (Harrison et al., 1958), based on a
pulsational analysis pointed out that all configurations of white-dwarfs after
the onset of the inverse beta decay are indeed unstable and the critical mass
is reached not at an infinite density but at precisely the finite density marked
by the onset of inverse beta decay. The onset for inverse beta decay of a nu-
cleus (Z, A) is reached when the kinetic energy of electrons is higher than the
mass-energy difference between such a nucleus and the nucleus (Z − 1, A).
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For instance, the experimental value of the inverse beta-decay energy ǫ
exp
crit for

4He and for 56Fe is 20.596 MeV and 3.695 MeV respectively (see Table B.1).

In previous works (see e.g. Salpeter (1961); Hamada and Salpeter (1961);
Bertone and Ruffini (2000); H. Gursky, R. Ruffini, & L. Stella (2000)) where,
the condition of beta equilibrium has not been taken self-consistently into ac-
count in the construction of the equation of state, the critical density at which
a given chemical element becomes unstable against inverse beta decay has
been obtained using experimental nuclear data. For instance, when the uni-
form approximation for the electron fluid is assumed (see e.g. Salpeter (1961);
Hamada and Salpeter (1961)), the critical density for the onset of inverse beta
decay is given by

ρunif
crit =

Z

A

mN

3π2h̄3c3
[(ǫ

exp
crit )

2 + 2mec
2ǫ

exp
crit ]

3/2 . (B.1.106)

where the density of the system has been approximated by ρ ≈ (A/Z)mN ne

and consequently the electron Fermi momentum PF
e ≈ h̄[3π2(Z/A)ρ/mN ]1/3

has been used.

Then, replacing the experimental inverse beta-decay energy for 4He and
for 56Fe it is obtained for the critical density 1.37× 1011 g cm−3 and 1.14× 109

g cm−3 respectively (see Table B.1 and e.g. Salpeter (1961)). These numerical
values for the critical densities for the onset of inverse beta decay can be con-
sidered as good estimates. However, such estimates are based on the hybrid
employment of empirical onset energies together with model approximations
and therefore they do not ensure full self-consistency.

As we mentioned in Subsec. B.1.7, from a self-consistent treatment we should
obtain a Z-A relation that depends on the density of matter (or equivalently,
on the electron Fermi energy). Such a relation has been obtained recently in
Rotondo et al. (2009) within the relativistic generalization of the Feynman-
Metropolis-Teller treatment by implementing the beta equilibrium condition
between neutrons, protons and electrons at each matter density, namely at
each level of compression of the Wigner-Seitz cells (see Subsec. B.1.7 and
Rotondo et al. (2009) for details). This implies the numerical solution of
Eq. (B.1.69) subjected to the beta equilibrium condition (B.1.70). At constant
mass number A, we then obtain a non trivial (numerical) relation Z = Z(ρ)
or Z = Z(EF

e ) between the number of protons Z inside each nucleus and the
matter density ρ or the electron Fermi energy EF

e . We are then able to ob-
tain, starting for a given nucleus (Z, A), the critical matter density (or critical
electron Fermi energy) at which the initial nucleus becomes (Z − 1, A) under-
going inverse beta decay. In Table B.1 we report the critical density and the
critical electron Fermi energy for the onset of inverse beta-decay as obtained
from the numerical integrations of the relativistic Thomas-Fermi equations of
equilibrium (Rotondo et al., 2009) in the case of 4He and 56Fe.

The differences between the numerical values we have obtained and the
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ρrelTF
crit (EF

e )crit ρunif
crit ǫ

exp
crit

4He 1.2 × 1012 23.37 1.37× 1011 20.596
4Fe 8.6×108 2.03 1.14 × 109 3.695

Table B.1.: Onset of inverse beta decay instability for 4He and 56Fe. The ex-
perimental inverse beta-decay energy ǫ

exp
crit is given in MeV, the correspond-

ing critical density for the uniform electron density model ρunif
crit given by

Eq. (B.1.106) is given in g cm−3. The self-consistent values for both the inverse
beta decay energy as well as the corresponding critical density obtained with
the relativistic Feynman-Metropolis-Teller treatment are denoted by (EF

e )crit

and ρrelTF
crit and are given in MeV and in g cm−3 respectively.

experimental ones are due to the fact that, we have implemented a refined
model for the electron component and the Coulomb interaction, and we have
adopted a simplified model for the nucleus with constant proton density (see
Rotondo et al. (2009) and Subsec. B.1.7 for details). However, it is remarkable
that from such a simple model which implements the beta equilibrium con-
dition between the neutrons and protons of the nucleus with the electrons
it is possible to overcome some of the current difficulties models such as,
the adoption of ad-hoc nuclear models through phenomenological or semi-
empirical equations (see e.g. Bertone and Ruffini (2000); H. Gursky, R. Ruffini,
& L. Stella (2000)) which are not self-consistent for non-zero electron Fermi
energies and, the employment of experimental data to obtain the critical den-
sity for inverse beta decay without taking into account the value of the Fermi
energy (see e.g. Salpeter (1961) and Eq. (B.1.106)).

The relativistic Feynman-Metropolis-Teller treatment (Rotondo et al., 2009)
which we apply below to construct general relativistic white-dwarf equilib-
rium configurations is a first step towards a fully self-consistent theory of
the description of equilibrium configurations composed by white-dwarf like
matter which shows the essential physics governing these systems. Although
the relativistic Feynman-Metropolis-Teller treatment is here applied in order
to point out the influence of Coulomb effects as well as of special relativistic
effects on the properties of white-dwarfs, the treatment can be refined with
respect to the nucleus model by including strong interaction effects (Rueda
et al., 2010b). However, such a refinement of the model does not change the
essential physics introduced by the relativistic Feynman-Metropolis-Teller
approach (Rotondo et al., 2009). Instead, this refinement only smears out the
small differences between the experimental values and the theoretical predic-
tion obtained for instance for the Z-A relation at zero matter density as well
as in the important case of compressed matter (Rueda et al., 2010b).
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General relativity instability

The concept of the critical maximum mass introduced by Chandrasekhar has
played a major role in the theory of stellar evolution. For Newtonian white-
dwarf stars, however, such a critical mass is reached only asymptotically at
infinite central densities of the object. One of the most important general
relativistic effects is that such a critical mass is reached at finite densities when
general relativity is introduced.

This general relativistic effect is an additional source of instability with
respect to the readily discussed instability due to the onset of inverse beta-
decay which, contrary to the present general relativistic one, applies also
in the Newtonian case by shifting the maximum mass of Newtonian white-
dwarfs to finite densities (Harrison et al., 1958).

In Figs. B.3–B.6 we have plotted respectively the mass-central density re-
lation and the mass-radius relation of general relativistic for 4He and 56Fe
white-dwarfs. In particular, we show the results for general relativistic white-
dwarfs obtained with the Salpeter equation of state (see Subsec. B.1.5 and
Hamada and Salpeter (1961) for details), for general relativistic white-dwarfs
obtained with the relativistic Feynman-Metropolis-Teller equation of state
(see Subsec. B.1.7), and for the Newtonian white-dwarfs of Chandrasekhar
(see Subsec. B.1.3). A comparison of the numerical value of the critical mass
as given by Stoner (1929), by Chandrasekhar (1931b) and Landau (1932), by
Hamada and Salpeter (1961) and, by the treatment presented here can be
found in Table B.2.

Since our approach takes into account self-consistently both beta decay
equilibrium and general relativity, we can determine if the critical mass is
reached due either to the inverse beta-decay instability or to the general rela-
tivity instability. In fact, we find that 4He white-dwarfs becomes unstable at
a density smaller than the critical density for the onset of inverse beta-decay
(see Fig. B.3 and Table B.1) and therefore we see that the instability of white-
dwarfs composed by light material (like 4He) is due to general relativity ef-
fects. On the other hand, in the case of white-dwarfs composed by heavy
material (like 56Fe) the instability is due to inverse beta-decay (see Fig. B.5
and Table B.1).

B.1.12. Conclusions

We have addressed the theoretical physics aspects of the white-dwarf config-
urations of equilibrium, quite apart from the astrophysical application.

In the introduction we have recalled how the study of white-dwarfs has of-
ten stimulated and taken advantage of crucial progress in theoretical physics
and applied mathematics. It is clear that the early considerations of the crit-
ical mass of a white-dwarf were routed in the concept of quantum statistics
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Figure B.3.: Mass in solar masses as a function of the central density in g
cm−3 for 4He white-dwarfs. The solid curve corresponds to the general rela-
tivistic 4He white-dwarfs using the equation of state given by the relativistic
Feynman-Metropolis-Teller approach while, the dotted curve, are the corre-
sponding Newtonian 4He white-dwarfs of Chandrasekhar.

MStoner
crit /M⊙ MCh−L

crit /M⊙ MH&S
crit /M⊙ MFMTrel

crit /M⊙
4He 1.73 1.44 1.42 1.38
4Fe 1.49 1.24 1.11 1.08

Table B.2.: Critical mass of 4 He and 56 Fe white-dwarfs in solar masses. The
critical mass of Stoner MStoner

crit is given by Eq. (B.1.1), the Chandrasekhar-

Landau limiting mass MCh−L
crit is given by Eq. (B.1.2). The critical mass of

Hamada and Salpeter MH&S
crit is obtained, for 4 He white-dwarfs from the ap-

proximated expression (B.1.3) with µeff = 2.011 while, for 56 Fe white-dwarfs
from Table 2 of Hamada and Salpeter (1961). The critical mass obtained in
the present work is denoted by MFMTrel

crit .
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Figure B.4.: Mass in solar masses as a function of the radius in km for 4He
white-dwarfs. The solid curve corresponds to the general relativistic 4He
white-dwarfs using the equation of state given by the relativistic Feynman-
Metropolis-Teller approach while, the dotted curve, are the corresponding
Newtonian 4He white-dwarfs of Chandrasekhar.
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Figure B.5.: Mass in solar masses as a function of the central density in g
cm−3 for 56Fe white-dwarfs. The solid curve corresponds to the general
relativistic 56Fe white-dwarfs using the equation of state given by the rela-
tivistic Feynman-Metropolis-Teller approach. The dashed curve corresponds
to the general relativistic 56Fe white-dwarfs of Hamada and Salpeter (1961)
while, the dotted curve, are the corresponding Newtonian 56Fe white-dwarfs
of Chandrasekhar (1931b).
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Figure B.6.: Mass in solar masses as a function of the radius in km for 56Fe
white-dwarfs. The solid curve corresponds to the general relativistic 56Fe
white-dwarfs using the equation of state given by the relativistic Feynman-
Metropolis-Teller approach. The dashed curve corresponds to the general
relativistic 56Fe white-dwarfs of Hamada and Salpeter (1961) while, the dot-
ted curve, are the corresponding Newtonian 56Fe white-dwarfs of Chan-
drasekhar (1931b).
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and the fermion exclusion principle 2 considered by Fowler (1926) and Stoner
(1924) leading to the value (Stoner, 1929)

MStoner
crit =

15

16

√
5π

M3
Pl

µ2m2
n

. (B.1.107)

The following progress was made by Chandrasekhar (1931b) and Landau
(1932) adopting the monumental work of applied mathematics by Emden
(1907) on the solution of the nonlinear Lane-Emden polytropic differential
equations. They obtained the critical mass

MCh−L
crit = 2.015

√
3π

2

M3
Pl

µ2m2
n

. (B.1.108)

It was Salpeter (1961) and later Hamada and Salpeter (1961) who brought to
full fruition the additional conceptual theoretical physics progress of Wigner
and Seitz (1933, 1934). Salpeter indeed adopted the Wigner-Seitz cell for the
description of white-dwarfs by studying the perturbation to the uniform elec-
tron distribution, given by the Coulomb interactions and their special rel-
ativity corrections. The value of the critical mass, although obtained only
through numerical integration, can be expressed approximately as (see Eq. (3)
of Hamada and Salpeter (1961))

MH&S
crit = 2.015

√
3π

2

1

µ2
eff

M3
Pl

m2
n

, (B.1.109)

where µeff > µ is the effective molecular weight of the white-dwarf given by
Eq. (B.1.4), which becomes here a function of the nuclear composition.

Still many inconsistencies existed in the theoretical model. It has been re-
cently accomplished (Rotondo et al., 2009) the description of a compressed
atom within the global and powerful approach of the relativistic Feynman,
Metropolis and Teller treatment, by using in the relativistic regime the Thomas-
Fermi equation. This new theoretical result is here applied within the Wigner-
Seitz cell and solved in the framework of general relativity. From a theoretical
physics point of view, this is the first unified approach of white-dwarfs taking
into account consistently the gravitational, the weak, the strong and the elec-
tromagnetic interactions, and it answers open theoretical physics issues in
this matter. No analytic formula for the critical mass of white-dwarfs can be
derived and, on the contrary, the critical mass can obtained only through the
numerical integration of the general relativistic equations of equilibrium to-
gether with the relativistic Feynman-Metropolis-Teller equation of state (see
Figs. B.3–B.6).

Turning now to astrophysics, the critical mass of white-dwarfs is today ac-

2For historical details about the exclusion principle see Heilbron (1983); Nauenberg (2008).
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quiring a renewed interest in view of its central role in the explanation of
the supernova phenomena (Phillips, 1993; Riess et al., 1998; Perlmutter et al.,
1999; Riess et al., 2004). The central role of the critical mass of white-dwarfs as
related to supernova was forcefully presented by F. Hoyle and W. A. Fowler
(Hoyle and Fowler, 1960) explaining the difference between type I and type
II Supernova. This field has developed in the intervening years to a topic
of high precision research in astrophysics and, very likely, the relativistic ef-
fect outlined in this article will become topic of active confrontation between
theory and observation.

Paradoxically, the concept of critical mass was not pursued by Chandra-
sekhar in order to explain the supernova phenomena, on the contrary, Chan-
drasekhar purported on the role of the critical mass in discriminating star
masses leading to the formation of a white-dwarf versus stars never reach-
ing a configuration of equilibrium due to radiation pressure (Arnett, 2010;
Giacconi and Ruffini, 1978) 3.

The value of the critical mass and the radius of white-dwarfs in our treat-
ment and in the Hamada and Salpeter (1961) treatment become a function of
the composition of the star. Specific examples have been given in the limit-
ing cases of 4He and 56Fe and the results of Chandrasekhar, of Salpeter and
ours have been compared and contrasted (see Table B.2). The formalism we
have introduced by presenting the study of inverse beta decay equilibrium
allows in principle to evaluate subtle effects of a nuclear density distribution
as a function of the radius and of the Fermi energy of the electrons and of the
varying depth of the general relativistic gravitational potential.

We have finally obtained a general formula in Eq. (B.1.92) as a “first inte-
gral” of the general relativistic equations of equilibrium. This formula relates
the chemical potential of the Wigner-Seitz cells, duly obtained from the rel-
ativistic Feynman-Metropolis-Teller model (Rotondo et al., 2009) taking into
account weak, nuclear and electromagnetic interactions, to the general rel-
ativistic gravitational potential at each point of the configuration. Besides
its esthetic value, this result relates the general relativistic gravitational po-
tential at each point to the chemical potential of the relativistic Wigner-Seitz
cell. This is an important tool to examine the radial dependence of the white-
dwarf properties and, even more important, it can be applied to the crust of
a neutron star as it approaches to the physical important regime of neutron
star cores.

We have discussed many theoretical issues open for years on white-dwarfs,
including the legitimately posed by A. Eddington (Eddington, 1935).

3Chandrasekhar, in an interview with S. Weart Weart (1977), recognized “... at first I didnt
understand what this limit meant and I didnt know how it would end, and how it related
to the 3/2 low mass polytropes ...
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B.2. On the self-consistent general relativistic

equilibrium equations of neutron stars

One of the fundamental issues in physics and astrophysics is the creation
of an electron-positron plasma in overcritical electric fields larger than Ec =
m2

e c3/(eh̄) (see Ruffini et al. (2010) and references therein). Basic progress
toward the understanding of the thermalization process of such a plasma
have been achieved Aksenov et al. (2007). The existence of such an electron-
positron plasma has a central role in a variety of problems ranging from
the acceleration process in gamma ray bursts (GRBs) Ruffini et al. (2010) to
the sharp trigger process in supernova phenomena Pagliaroli et al. (2009b,a).
This has motivated us to reconsider the standard treatment of neutron stars
in order to find a theoretical explanation for the emergence of a wide vari-
ety of astrophysical situations involving such overcritical electric fields. In
a classic article Baym, Bethe and Pethick Baym et al. (1971a) presented the
problem of matching to the crust in a neutron star a liquid core composed of
Nn neutrons, Np protons and Ne electrons. After discussing various aspects
of the problem they conclude: ‘the details of this picture requires further elab-
oration; this is a situation for which the Thomas-Fermi method is useful.’ In
this letter we focus on relaxing the traditional condition of local charge neu-
trality ne = np, which appears to have been assumed only for mathematical
convenience without any physical justification. Instead, we adopt the more
general condition of global charge neutrality Ne = Np. The corresponding
equilibrium equations then follow from self-consistent solution of the rela-
tivistic Thomas-Fermi equation, the Einstein-Maxwell equations and the β-
equilibrium condition, properly expressed in general relativity.

The pressure and the density of the core are mainly due to the baryons
while the pressure of the crust is mainly due to the electrons with the density
due to the nuclei and possibly some free neutrons due to neutron drip (see
e.g. Baym et al. (1971a)). The boundary conditions determined by the match-
ing of the electron distribution in the core with that of the electrons of the
crust are fundamental for the self-consistent construction of the equilibrium
configurations.

We consider the case of a non-rotating neutron star with metric

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 dφ2 , (B.2.1)

where ν and λ are functions only of r. We assume units where G = h̄ = c = 1
and let α denote the fine structure constant. As usual we define the mass of
the star M(r) by e−λ = 1 − 2M/r + r2E2, and denote the Coulomb potential

by V(r), which determines the electric field E = e−(ν+λ)/2V ′, where a prime
indicates the radial derivative. The combined energy-momentum tensor of
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the matter and fields Tµν is given by

Tα
β = diag(E+ E

em,−P − Pem,−P + Pem,−P + Pem) , (B.2.2)

where Eem = −Pem = E2/(8π), and E and P are the energy density and pres-
sure of matter. With all the above definitions, the time-independent Einstein-
Maxwell field equations read

M′ = 4πr2
E+ 4πeλ/2r3eE(np − ne) , (B.2.3)

e−λ

(

ν′

r
+

1

r2

)

− 1

r2
= −8π T1

1 , (B.2.4)

e−λ

[

ν′′ + (ν′ − λ′)
(

ν′

2
+

1

r

)]

= −16πT2
2 , (B.2.5)

(eV)′′ + (eV)′
[

2

r
− (ν′ + λ′)

2

]

= −4παeν/2eλ(np − ne) . (B.2.6)

In order to close the system of equilibrium equations, the condition of local
charge neutrality ne = np has been traditionally imposed for mathematical
simplicity. In this case the problem is reduced to solving only the Einstein
equations for a Schwarzschild metric. When this condition is relaxed, impos-
ing only global charge neutrality Ne = Np, we need to satisfy the Einstein-
Maxwell equations (B.2.3)–(B.2.6). In order to impose global charge neutrality
as well as quantum statistics on the leptonic component, the general relativis-
tic Thomas-Fermi equation must also be satisfied.

The general relativistic electron Fermi energy is given by

EF
e = eν/2µe − eV = constant , (B.2.7)

where µe =
√

(PF
e )

2 + m2
e and PF

e = (3π2ne)
1/3 are respectively the chemical

potential and Fermi momentum of degenerate electrons. From Eqs. (B.2.6)
and (B.2.7) we obtain the general relativistic Thomas-Fermi equation

(eV)′′ + (eV)′
[

2

r
− (ν′ + λ′)

2

]

= −4παeν/2eλ
{

np

− e−3ν/2

3π2
[(EF

e + eV)2 − m2
e eν]3/2

}

. (B.2.8)

The β-equilibrium condition is expressed by

µn = µe + µp . (B.2.9)

In order to take into account the effect of the compression of the crust on
the leptonic component of the core we solve the equilibrium conditions for
the core within a Wigner-Seitz cell Rotondo et al. (2009). The radius RWS of
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this cell determines the Fermi energy of the electrons of the core which has
to be matched with the Fermi energy of the leptonic component of the crust.
Global charge neutrality is specified by

∫ RWS

0
eλ/2npd3r =

∫ RWS

0
eλ/2ned3r . (B.2.10)

From Eqs. (B.2.9) and (B.2.10) we can determine self-consistently the proton,
neutron, electron fractions inside the core as well as the radius RWS of the
Wigner-Seitz cell of the core Rotondo et al. (2009).

The coupled system of equations consisting of the Einstein-Maxwell equa-
tions (B.2.3)–(B.2.5), the general relativistic Thomas-Fermi equation (B.2.8),
the β-equilibrium condition (B.2.9) along with the constraint (B.2.10) needs,
in order to be closed, an equation of state (EOS) for the baryonic component
in the core and for the leptonic component of the crust.

In order to illustrate the application of this approach we adopt, as an exam-
ple, the Baym, Bethe, and Pethick (BBP) Baym et al. (1971a) strong interaction
model for the baryonic matter in the core as well as for the white-dwarf-like
material of the crust. The general conclusions we reach will in fact be inde-
pendent of the details of this model.

At the neutron star radius r = R, all the electrodynamical quantities must
be zero as a consequence of the global charge neutrality condition. Conse-
quently, we have a matching condition with the Schwarzschild spacetime
which imposes the boundary condition

eν(R)/2 =

√

1 − 2M(R)

R
. (B.2.11)

The boundary conditions at the center correspond to M(0) = 0 and the reg-
ularity condition to ne(0) = np(0). From the β-equilibrium condition (B.2.9),
we can evaluate the central chemical potentials µe(0), µp(0), and µn(0), or
equivalently, the central number densities ne(0), np(0), and nn(0) Rueda et al.
(2010a). From Eq. (B.2.7) we also have the relation

eν(0)/2 =
EF

e + eV(0)

µe(0)
. (B.2.12)

Having determined the boundary conditions at infinity and at the center,
we turn now to the matching conditions at the surface of the core. Following
BBP Baym et al. (1971a), the neutron profile at the core-crust interface is given
by

nn(z) = ncrust
n + (ncore

n − ncrust
n ) f (z/b) . (B.2.13)

We have defined ncore
n = nn(Rc) and ncrust

n = nn(RWS). Here Rc is the ra-
dius of the core defined as the point where the rest-mass density reaches
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the nuclear saturation density, i.e., ρ(Rc) = ρ0 ≃ 2.7 × 1014 g cm−3 Baym
et al. (1971a). The function f (z/b) satisfies f (−∞) = 1, f (∞) = 0, where
b ≃ (ncore

n − ncrust
n )−1/3 ≃ 1/mπ Baym et al. (1971a). As proposed by BBP,

an appropriate choice for the function f (z/b) is the Woods-Saxon profile
f (z/b) = (1 + ez/b)−1. The z-coordinate lines are perpendicular to the sharp
surface separating two semi-infinite regions (core and crust) in the planar
approximation Baym et al. (1971a); the neutron density approaches ncore

n as
z → −∞ and ncrust

n as z → ∞.
The matching between the core and the crust occurs at the radius RWS,

where we have V ′(RWS) = 0 by virtue of the global neutrality condition
given by Eq. (B.2.10), and we also choose the value of the Coulomb potential
V(RWS) = 0. From the electron chemical potential µe(RWS) at the edge of the
crust, we calculate the corresponding neutron chemical potential µn(RWS)
according to the BBP treatment. If µn(RWS)− mn > 0, neutron drip occurs.
In this case, the pressure is due to the neutrons as well as to the leptonic
component, so we have the inner crust (see Table B.3 and Baym et al. (1971a)
for details). For larger values of the radii, i.e., for r > RWS the condition
µn(r) − mn < 0 is reached at ρdrip ≃ 4.3 × 1011 g cm−3 and there the outer
crust starts, with the pressure only determined by the leptonic component. If
µn(RWS)− mn < 0, only the outer crust exists.

For a fixed central rest-mass density ρ(0) ≃ 9.8 × 1014 g cm−3 and selected
values of EF

e we have integrated the system of equations composed by the
general relativistic Thomas-Fermi equation (B.2.8), the β-equilibrium condi-
tion (B.2.9), the Einstein-Maxwell equations (B.2.3)-(B.2.5), with the constraint
of overall neutrality (B.2.10).

We found that although the electrodynamical properties of the core are
very sensitive to the Fermi energy of the electrons (see Table B.3 for details),
the bulk properties of the core like its mass and radius are not sensitive to
the value of EF

e . This is perfectly in line with the results of Ruffini et al. in
Rotondo et al. (2009).

Particularly interesting are the electrodynamical structure and the distri-
bution of neutrons, protons, and electrons as the surface of the core is ap-
proached (see Fig. B.7). It is interesting to compare and contrast these results
with the preliminary ones obtained in the simplified model of massive nu-
clear density cores Rotondo et al. (2009). The values of the electric field are
quite close and are not affected by the constant proton density distribution as-
sumed there. In the present case, the proton distribution is far from constant
and increases outward as the core surface is approached.

In conclusion, for any given value of the central density an entire new fam-
ily of equilibrium configurations exists. Each configuration is characterized
by a strong electric field at the core-crust interface. Such an electric field ex-
tends over a thin shell of thickness ∼ 1/me and becomes largely overcritical
in the limit of decreasing values of the crust mass and size (see Table B.3 and
Fig. B.7).
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EF
e

mπ

M(Rc)
M⊙ Rc(km) eV(0)

mπ

eV(Rc)
mπ

Emax
Ec

ρcrust
ρdrip

Mcrust

10−5 M⊙
∆ic

r (m) ∆oc
r (km)

0.10 0.24 5.98 1.085 0.60 388.72 0.125 0.245 0.00 0.797
0.15 0.24 5.98 0.985 0.55 381.04 0.384 1.150 0.00 1.251
0.20 0.24 5.98 0.935 0.50 370.89 1.000 4.450 0.00 1.899
0.30 0.24 5.98 0.835 0.40 346.67 46.19 4.830 1.89 1.899
0.35 0.24 5.98 0.785 0.35 332.43 80.83 5.420 2.85 1.899

Table B.3.: Results of the numerical integration of the BBP model for selected
values of EF

e for ρ(0) ≃ 9.8 × 1014 g cm−3. We show the mass and radius
of the core M(Rc) and Rc, the Coulomb potential at the center and at the
core surface eV(0) and eV(Rc), the peak of the electric field in the core-crust
interface Emax, the rest-mass density at the edge of the crust ρcrust ≡ ρ(RWS),
the mass of the crust Mcrust, and the inner and outer crust thickness ∆ic

r and
∆oc

r .
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Figure B.7.: Left column: the surface electric field in units of the critical field.
Right column: the surface particle number density of neutrons (solid), pro-
tons (short-dashed), and electrons (long-dashed) normalized to the nuclear
density for selected values of EF

e . First row: EF
e = 0.20mπ, second row

EF
e = 0.35mπ.
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B.2. On the self-consistent general relativistic equilibrium equations of
neutron stars

These configurations endowed with overcritical electric fields are indeed
stable against the quantum instability of pair creation because of the Pauli
blocking of the degenerate electrons Ruffini et al. (2010). It is expected that
during the gravitational collapse phases leading to the formation of a neutron
star, a large emission of electron-positron pairs will occur prior to reaching a
stable ground state configuration. Similarly during the merging of two neu-
tron stars or a neutron star and a white-dwarf leading to the formation of
a black hole, an effective dyadotorus Cherubini et al. (2009) will be formed
leading to very strong creation of an electron-positron plasma. In both cases
the basic mechanism which makes gravitational collapse depart from a pure
gravitational phenomena is due to the electrodynamical process introduced
in this letter.

Finally, it is appropriate to recall that the existence of overcritical fields on
macroscopic objects of M ∼ M⊙ and R ∼ 10 km was first noted in the treat-
ment of quark stars Witten (1984); Itoh (1970); Alcock et al. (1986); Kettner
et al. (1995). In that case the relativistic Thomas-Fermi equations were also
considered. However, in all of these investigations, a hybrid combination of
general and special relativistic treatments was adopted, resulting in an incon-
sistency in the boundary conditions. The treatment given here in this letter
is the first self-consistent treatment of the general relativistic Thomas-Fermi
equations, the beta equilibrium condition and the Einstein-Maxwell equa-
tions. Critical fields are indeed obtained on the surface of the neutron star
core involving only neutrons, protons, and electrons, their fundamental in-
teractions, and with no quarks present.

While we were preparing our work an extremely interesting observational
problematic has emerged from the Chandra observations of Cas A CCO Pavlov
and Luna (2009); Ho and Heinke (2009). It is with a similar steadily emitting
and non-pulsating neutron star that our theoretical predictions can be tested.
In particular, the existence for each central density of a new family of neutron
stars with a smaller crust than the one obtained when the local neutrality
condition is adopted.

Indeed, the existence of neutron stars with huge crusts, i.e., with both inner
and outer crusts, is mainly a consequence of assuming no electrodynamical
structure (i.e., assuming local neutrality) and of allowing electrons to have
larger values of their Fermi energy EF

e Rotondo et al. (2009). It can also be
demonstrated that no consistent solution of the Einstein-Maxwell equations
satisfying the local ne = np condition exists, even as a limiting case Rotondo
et al. (2009).

749



B. The Thomas-Fermi model in general relativistic systems

B.3. The Outer Crust of Neutron Stars

B.3.1. The General Relativistic Model

The Outer Crust of Neutron Stars is the region of Neutron Stars characterized
by a mass density less than the “neutron drip” density ρdrip = 4.3 · 1011g cm−3

Baym et al. (1971b) and composed by White Dwarf - like material (fully ion-
ized nuclei and free electrons). Its internal structure can be described by the
Tolman-Oppenheimer-Volkoff (TOV) equation

dP

dr
= −

G
(

ρ + P
c2

) (

m + 4πr3P
c2

)

r2
(

1 − 2Gm
rc2

) , (B.3.1)

together with the equation
dm

dr
= 4πr2ρ, (B.3.2)

where m, ρ and P are the mass, the density and the pressure of the system.
We have determined Mcrust and ∆Rcrust by integrating eq. (B.3.1) and (B.3.2)
from rin = Ris, where Ris is the radius of the inner part of the star (the base of
the Outer Crust).
The pressure and the mass density of the system are

P ≈ Pe, (B.3.3)

ρ ≈ µemnne. (B.3.4)

Pe is the pressure of electrons, given by Shapiro and Teukolsky (1983)

Pe = ke φe, (B.3.5)

where

ke =
mec

2

8π2λ3
e

, (B.3.6)

φe = (B.3.7)

ξe

(

2

3
ξ2

e − 1

)

√

ξ2
e − 1 + log

(

ξe +
√

ξ2
e − 1

)

, (B.3.8)

with λe the Compton wavelenght of electrons, ξe =
√

1 + x2
e and xe the

Fermi momentum of electrons normalized to (mec). µe is the mean molecular
weight per electron that, for a completely ionized element of atomic weight
A and number Z, is equal to A/Z (for simplicity, we assume µe = 2), mn is
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B.3. The Outer Crust of Neutron Stars

the mass of neutrons and ne is the number density of electrons

ne =
x3

e

3π2λ3
e

. (B.3.9)

In eq. (B.3.4) we have assumed the local charge neutrality of the system.

B.3.2. The mass and the thickness of the crust

We have integrated eq. (B.3.1) and (B.3.2) for different sets of initial condi-
tions; in fig. B.8 are shown the results obtained assuming

10 km ≤ Ris ≤ 20 km,

1M⊙ ≤ Mis ≤ 3M⊙

and an initial pressure equal to 1.6 1030dyne cm−2, that corresponds to a mass
density equal to ρdrip.

It can be seen that Mcrust has values ranging from 10−6M⊙ to 10−3M⊙; both
Mcrust and ∆Rcrust increase by increasing Ris and decreasing Mis (see fig. B.8,
B.9).

10-6

10-5

10-4

10-3

 10  12  14  16  18  20

M
cr

us
t (

M
O•

)

Ris (km)

Mis=1.0 MO•
Mis=1.4 MO•
Mis=1.8 MO•
Mis=2.2 MO•
Mis=2.6 MO•
Mis=3.0 MO•

Figure B.8.: Values of Mcrust in units of solar masses, as function of Ris, for
different values of Mis (see legend).

It’s important to note that the values estimated for Mcrust strongly depend
on the values of Mis and Ris used; in particular, the values of Mis considered
are greater that the maximum mass calculated for neutrons stars with a core
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Figure B.9.: Values of thickness of the Outer Crust ∆Rcrust in km, as function
of Ris, for different values of Mis (see legend).

of degenerate relativistic electrons, protons and neutrons in local charge neu-
trality (Mmax = 0.7M⊙ Oppenheimer and Volkoff (1939)). The outstanding
theoretical problem to address is to identify the physical forces influencing
such a strong departure; the two obvious candidate are the electromagnetic
structure in the core and/or the strong interactions.

B.3.3. The Fireshell Model of GRBs

In the Fireshell Model H. Kleinert, R. T. Jantzen, R. Ruffini (2008) GRBs are
generated by the gravitational collapse of the star progenitor to a charged
black hole. The electron-positron plasma created in the process of black hole
(BH) formation expands as a spherically symmetric “fireshell”. It evolves and
encounters the baryonic remnant of the star progenitor of the newly formed
BH, then is loaded with baryons and expands until the trasparency condition
is reached and the Proper - GRB is emitted. The afterglow emission starts
due to the collision between the remaining optically thin fireshell and the
CircumBurst Medium. A schematization of the model is shown in fig. B.10.
The baryon loading is measured by the dimensionless quantity

B =
MBc2

Edya
, (B.3.10)
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BH

Dyadosphere

Baryonic Remnant

P-GRB

Figure B.10.: Schematization of the Fireshell Model of GRBs.

where MB is the mass of the baryonic remnant and Edya is the energy of the
dyadosphere, the region outside the horizon of a BH where the electric field is
of the order of the critical value for electron positron pair creation Heisenberg
and Euler (1936), Sauter (1931) and Schwinger (1951, 1954a,b)

Ec =
m2

e c3

eh̄
≈ 1016 V cm−1. (B.3.11)

B and Edya are the two free parameters of the model.

B.3.4. The mass of the crust and MB

Using the values of B and Edya constrained by the observational data of sev-
eral GRBs and eq. (B.3.10), we have obtained the correspondent values of MB

(see table B.4).
It can be seen that these values are compatible with the ones of Mcrust.
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GRB MB/M⊙
970228 5.0 × 10−3

050315 4.3 × 10−3

061007 1.3 × 10−3

991216 7.3 × 10−4

011121 9.4 × 10−5

030329 5.7 × 10−5

060614 4.6 × 10−6

060218 1.3 × 10−6

Table B.4.: GRBs and correspondent values of MB used to reproduce the ob-
served data within the Fireshell Model, in units of solar masses.
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B.4. The Role of Thomas-Fermi approach in

Neutron Star Matter

B.4.1. Introduction

We first recall how certainly one of the greatest success in human under-
standing of the Universe has been the research activity started in 1054 by
Chinese, Korean and Japanese astronomers by the observations of a “Guest
Star”(see e.g. Shklovsky Shklovskii (1968) ), followed by the discovery of the
Pulsar NPO532 in the Crab Nebula in 1967, (see e.g. Manchester and Tay-
lor Manchester and Taylor (1977)), still presenting challenges in the yet not
identified physical process originating the expulsion of the remnant in the
Supernova explosion (see e.g. Mezzacappa and Fuller Mezzacappa (2005)
and Fig. B.11(a)). We are currently exploring the neutron star equilibrium
configuration for a missing process which may lead to the solution of the
above mentioned astrophysical puzzle.

We also recall an additional astrophysical observation which is currently
capturing the attention of Astrophysicists worldwide: the Gamma ray Bursts
or for short GRBs. Their discovery was accidental and triggered by a very un-
conventional idea proposed by Yacov Borisovich Zel’dovich. It is likely that
this idea served as an additional motivation for the United States of America
to put a set of four Vela Satellites into orbit, 150,000 miles above the Earth.
They were top-secret omnidirectional detectors using atomic clocks to pre-
cisely record the arrival times of both X-rays and γ-rays (see Fig. B.11(b)).
When they were made operational they immediately produced results ( see
Fig. B.11(b)). It was thought at first that the signals originated from nuclear
bomb explosions on the earth but they were much too frequent, one per day!
A systematic analysis showed that they had not originated on the earth, nor
even in the solar system. These Vela satellites had discovered GRBs! The first
public announcement of this came at the AAAS meeting in San Francisco in
a special session on neutron stars, black holes and binary X-ray sources, or-
ganized by Herb Gursky and myself Gursky and Ruffini (1975).

A few months later, Thibault Damour and myself published a theoretical
framework for GRBs based on the vacuum polarization process in the field of
a Kerr–Newman black hole Damour and Ruffini (1975). We showed how the
pair creation predicted by the Heisenberg-Euler-Schwinger theory Heisen-
berg and Euler (1936); Schwinger (1951, 1954a,b) would lead to a transfor-
mation of the black hole, asymptotically close to reversibility. The electron–
positron pairs created by this process were generated by what we now call
the blackholic energy. In that paper we concluded that this “naturally leads
to a very simple model for the explanation of the recently discovered GRBs”.
Our theory had two very clear signatures. It could only operate for black
holes with mass MBH in the range 3.2–106 M⊙ and the energy released had a
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(a)

(b)

Figure B.11.: (a) The expanding shell of the remnant of the Crab Nebulae
as observed by the Hubble Space Telescope. Reproduced from Hubble Tele-
scope web site with their kind permission (News Release Number: STScl-
2005-37). (b) On the upper left the Vela 5A and 5B satellites and a typical
event as recorded by three of the Vela satellites; on the upper right the Comp-
ton satellite and the first evidence of the isotropy of distribution of GRB in
the sky; on the center left the Beppo Sax satellite and the discovery of the
after glow; on the center right a GRB from Integral satellite; in the lower part
the Socorro very large array radiotelescope ,the Hubble, the Chandra and
the XMM telescopes, as well as the VLT of Chile and KECK observatory in
Hawaii. All these instruments are operating for the observations of GRBs
Ruffini et al. (2007a).
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characteristic value of

E = 1.8 × 1054MBH/M⊙ ergs . (B.4.1)

Since nothing was then known about the location and the energetics of
these sources we stopped working in the field, waiting for a clarification of
the astrophysical scenario.

The situation changed drastically with the discovery of the “afterglow” of
GRBs Costa et al. (1997) by the joint Italian-Dutch satellite BeppoSAX (see
Fig. B.11(b)). This X-ray emission lasted for months after the “prompt” emis-
sion of a few seconds duration and allowed the GRB sources to be identi-
fied much more accurately. This then led to the optical identification of the
GRBs by the largest telescopes in the world, including the Hubble Space Tele-
scope, the KECK telescope in Hawaii and the VLT in Chile (see Fig. B.11(b)).
Also, the very large array in Socorro made the radio identification of GRBs
possible. The optical identification of GRBs made the determination of their
distances possible. The first distance measurement for a GRB was made in
1997 for GRB970228 and the truly enormous of isotropical energy of this was
determined to be 1054 ergs per burst. This proved the existence of a single as-
trophysical system emitting as much energy during its short lifetime as that
emitted in the same time by all other stars of all galaxies in the Universe!a

It is interesting that this “quantum” of astrophysical energy coincided with
the one Thibault Damour and I had already predicted, see Eq. (B.4.1). Much
more has been learned on GRBs in recent years confirming this basic result
( see e.g. H. Kleinert, R. T. Jantzen, R. Ruffini (2008)). The critical new im-
portant step now is to understand the physical process leading to the critical
fields needed for the pair creation process during the gravitational collapse
process from a Neutron Stars to a Black Hole.

As third example, we recall the galactic ’X-ray bursters’ as well as some ob-
served X-ray emission precursor of supernovae events. It is our opinion that
the solution of: a) the problem of explaining the energetics of the emission of
the remnant during the collapse to a Neutron Star, b) the problem of forma-
tion of the supercritical fields during the collapse to a Black Hole, c) the less
energetics of galactic ’X-ray bursters’ and of the precursor of the supernovae
explosion event, will find their natural explanation from a yet unexplored
field: the electro-dynamical structure of a neutron star. We will outline a few
crucial ideas of how a Thomas-Fermi approach to a neutron star can indeed
represent an important step in identify this crucial new feature.

1Luminosity of average star = 1033 erg/s, Stars per galaxy = 1012, Number of galaxies
= 109. Finally, 33 + 12 + 9 = 54!
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B.4.2. Thomas-Fermi model

We first recall the basic Thomas-Fermi non relativistic Equations (see e.g.
Landau and Lifshitz Landau and Lifshitz (1980) ). They describe a degen-
erate Fermi gas of Nel electrons in the field of a point-like nucleus of charge
Ze. The Coulomb potential V(r) satisfies the Poisson equation

∇2V(r) = 4πen, (B.4.2)

where the electron number density n(r) is related to the Fermi momentum

pF by n = p3
F/(3π2h̄3). The equilibrium condition for an electron, of mass

m, inside the atom is expressed by
p2

F
2m − eV = EF. To put Eq. (B.4.2) in

dimensionless form, we introduce a function φ, related to Coulomb potential

by φ(r) = V(r) + EF
e = Ze χ(r)

r . Assuming r = bx, with b = (3π)3/2

27/3
1

Z1/3
h̄2

me2 , we
then have the universal equation Thomas (1927); Fermi (1927)

d2χ(x)

dx2
=

χ(x)3/2

x1/2
. (B.4.3)

The first boundary condition for this equation follows from the request that
approaching the nucleus one gets the ordinary Coulomb potential therefore
χ(0) = 1. The second boundary condition comes from the fact that the num-

ber of electrons Nel is 1 − Nel
Z = χ(x0)− x0χ′(x0).

B.4.3. White dwarfs and Neutron Stars as Thomas-Fermi
systems

It was at the 1972 Les Houches organized by Bryce and Cecille de Witt sum-
mer School (see Fig. B.12(a) and C. De Witt, B. S. De Witt (1972)) that, gener-
alizing a splendid paper by Landau Landau (1932), I introduced a Thomas-
Fermi description of both White Dwarfs and Neutron Stars within a New-
tonian gravitational theory and describing the microphysical quantities by a
relativistic treatment. The equilibrium condition for a self-gravitating system

of fermions, in relativistic regime is c
√

p2
F + m2

nc2 − mnc2 − mnV = −mnV0,

where pF is the Fermi momentum of a particle of mass mn, related to the par-
ticle density n by n = 1

3π2 h̄3 p3
F. V(r) is the gravitational potential at a point

at distance r from the center of the configuration and V0 is the value of the

potential at the boundary Rc of the configuration V0 = GNmn
Rc

. N is the total

number of particles. The Poisson equation is ∇2V = −4πGmnn. Assuming

V − V0 = GNmn
χ(r)

r and r = bx, with b = (3π)2/3

27/3
1

N1/3

(

h̄
mnc

) (

mPlanck
mn

)2
we

obtain the gravitational Thomas-Fermi equation
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d2χ

dx2
= −χ3/2

√
x

[

1 +

(

N

N∗

)4/3 χ

x

]3/2

, (B.4.4)

where N∗ =
(

3π
4

)1/2
(

mPlanck
mn

)3
. Eq.(B.4.4) has to be integrated with the

boundary conditions χ(0) = 0, −xb

(

dχ
dx

)

x=xb

= 1. Eq. (B.4.4) can be ap-

plied as well to the case of white dwarfs.

It is sufficient to assume

b =
(3π)2/3

27/3

1

N1/3

(

h̄

mec

)(

mPlanck

µmn

)2

,

N∗ =
(

3π

4

)1/2 (mPlanck

µmn

)3

,

M =
∫ Rc

0
4πr2ne(r)µmndr.

For the equilibrium condition c
√

p2
F + m2c2 − mc2 − µmnV = −µmnV0, in

order to obtain for the critical mass the value Mcrit ≈ 5.7Msunµ−2
e ≈ 1.5Msun.

B.4.4. The relativistic Thomas-Fermi equation

In the intervening years my attention was dedicated to an apparently aca-
demic problem: the solution of a relativistic Thomas-Fermi Equation and ex-
trapolating the Thomas-Fermi solution to large atomic numbers of Z ≈ 104 −
106. Three new features were outlined: a) the necessity of introducing a phys-
ical size for the nucleus, b) the penetration of the electrons in the nucleus, c)
the definition of an effective nuclear charge Ferreirinho et al. (1980); Ruffini
and Stella (1981). The electrostatic potential is given by ∇2V(r) = 4πen,
where the number density of electrons is related to the Fermi momentum pF

by n =
p3

F

3π2 h̄3 . In order to have equilibrium we have c
√

p2
F + m2c2 − mc2 −

eV(r) = EF. Assuming φ(r) = V(r) + EF
e = Ze

χ(r)
r , Zc =

(

3π
4

)1/2
(

h̄c
e2

)3/2
,

and r = bx, with b = (3π)3/2

27/3
1

Z1/3
h̄2

me2 , the Eq. (B.4.3) becomes

d2χ(x)

dx2
=

χ(x)3/2

x1/2

[

1 +

(

Z

Zc

)4/3 χ(x)

x

]3/2

. (B.4.5)
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(a)

(b)

Figure B.12.: (a) Lunch at Les Louces summer school on ’Black Holes’. In
front, face to face, Igor Novikov and the author; in the right the title of the
book in English and in French. It is interesting that in that occasion Cecile de
Witt founded the French translation of the word ’Back Hole’ in ’Trou Noir’
objectionable and she introduced instead the even more objectionable term
’Astres Occlus’. The French neverthless happily adopted in the following
years the literally translated word ’Trou Noir’ for the astrophysical concept
I introduced in 1971 with J.A. Wheeler (Ruffini and Wheeler (1971)). (b) The
number of electrons contained within a distance x of the origin, as a function
of the total number Z for a neutral atom. The lowest curve is that given by
the solution of the non-relativistic Thomas-Fermi equation.
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B.4.5. The essential role of the non point-like nucleus

The point-like assumption for the nucleus leads, in the relativistic case, to
a non-integrable expression for the electron density near the origin. We as-
sumed a uniformly charged nucleus with a radius rnuc and a mass number A
given by the following semi-empirical formulae

rnuc = r0A1/3, r0 ≈ 1.5 × 10−13cm, (B.4.6)

Z ≃
[

2

A
+

3

200

1

A1/3

]−1

, (B.4.7)

Eq.(B.4.5) then becomes

d2χ(x)

dx2
=

χ(x)3/2

x1/2

[

1 +

(

Z

Zc

)4/3 χ(x)

x

]3/2

− 3x

x3
nuc

θ(xnuc − x), (B.4.8)

where θ = 1 for r < rnuc, θ = 0 for r > rnuc, χ(0) = 0, χ(∞) = 0.
Eq.(B.4.8) has been integrated numerically for selected values of Z (see

Fig. B.12(b) and Ferreirinho et al. (1980); Ruffini and Stella (1981)). Similar
results had been obtained by Greiner and his school and by Popov and his
school with special emphasis on the existence of critical electric field at the
surface of heavy nuclei. Their work was mainly interested in the study of the
possibility of having process of vacuum polarization at the surface of heavy
nuclei to be possibly achieved by heavy nuclei collisions. Paradoxically at
the time we were not interested in this very important aspect and we did
not compute the strength of the field in our relativistic Thomas-Fermi model
which is indeed of the order of the Critical Field Ec = m2c3/eh̄ .

B.4.6. Nuclear matter in bulk: A ≈ 300 or A ≈ (mPlanck/mn)3

The situation clearly changed with the discovery of GRBs and the under-
standing that the process of vacuum polarization unsuccessfully sought in
earthbound experiments could indeed be observed in the process of forma-
tion of a Black Hole from the gravitational collapse of a neutron star. The
concept of a Dyadosphere, Ruffini (1998); Preparata et al. (1998), was intro-
duced around an already formed Black Hole and it became clear that this con-
cept was of paramount importance in the understanding the energy source
for GRBs. It soon became clear that the initial conditions for such a process
had to be found in the electro-dynamical properties of neutron stars. Sim-
ilarly manifest came the crucial factor which had hampered the analysis of
the true electro dynamical properties of a neutron star; the unjustified impo-
sition of local charge neutrality as opposed to the global charge neutrality of
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the system. We have therefore proceeded to make a model of a nuclear matter
core of A ≈ (mPlanck/mn)

3 nucleons Ruffini et al. (2007b). We generalized to
this more general case the concept introduced in their important work by W.
Greiner and V. Popov ( see Fig. B.13 ) as follows.

Figure B.13.: Vladimir Popov discussing with the author and Professors She
Sheng Xue and Gregory Vereshchagin (Roma 2007). Also quoted the classical
contributions of Popov and his school.

I have assumed that the proton number density is constant inside the core
r ≤ Rc and vanishes outside the core r > Rc:

np =
1

3π2h̄3
(PF

p )
3 =

3Np

4πR3
c

θ(Rc − r), Rc = ∆
h̄

mπc
N1/3

p ,

where PF
p is the Fermi momentum of protons, θ(Rc − r) is the step-function

and ∆ is a parameter. The proton Fermi energy is

Ep(P
F
p ) = [(PF

p c)2 + m2
pc4]1/2 − mpc2 + eV, (B.4.9)

where e is the proton charge and V is the Coulomb potential. Based on the
Gauss law, V(r) obeys the Poisson equation ∇2V(r) = −4πe

[

np(r)− ne(r)
]

and boundary conditions V(∞) = 0, V(0) = f inite, where the electron
number density ne(r) is given by

ne(r) =
1

3π2h̄3
(PF

e )
3, (B.4.10)

being PF
e the electron Fermi momentum. The electron Fermi energy is
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Ee(P
F
e ) = [(PF

e c)2 + m2c4]1/2 − mc2 − eV. (B.4.11)

The energetic equation for an electrodynamic equilibrium of electrons in
the Coulomb potential V(r) is Ee(P

F
e ) = 0, hence the Fermi momentum and

the electron number density can be written as

ne(r) =
1

3π2h̄3c3

[

e2V2(r) + 2mc2eV(r)
]3/2

.

Introducing the new variable x = r/(h̄/mπc) ( the radial coordinate in
unit of pion Compton length (h̄/mπc), xc = x(r = Rc)), I have obtained the
following relativistic Thomas-Fermi Equation ( Patricelli et al. (2008)):

1

3x

d2χ(x)

dx2
= −α

{

1

∆3
θ(xc − x)− 4

9π

[

χ2(x)

x2
+ 2

m

mπ

χ

x

]3/2
}

, (B.4.12)

where χ is a dimensionless function defined by χ
r = eV

ch̄ and α is the fine

structure constant α = e2/(h̄c). The boundary conditions of the function
χ(x) are χ(0) = 0 , χ(∞) = 0 and Ne =

∫ ∞

0 4πr2drne(r). Instead of using
the phenomenological relation between Z and A, given by Eqs. (B.4.6) and
(B.4.7), we determine directly the relation between A and Z by requiring the
β-equilibrium

En = Ep + Ee. (B.4.13)

The number-density of degenerate neutrons is given by nn(r) =
1

3π2h̄3 (P
F
n )

3,

where PF
n is the Fermi momentum of neutrons. The Fermi energy of degener-

ate neutrons is

En(P
F
n ) = [(PF

n c)2 + m2
nc4]1/2 − mnc2, (B.4.14)

where mn is the neutron mass. Substituting Eqs. (B.4.9, B.4.11, B.4.14) into
Eq. (B.4.13), we obtain [(PF

n c)2 + m2
nc4]1/2 − mnc2 = [(PF

p c)2 + m2
pc4]1/2 −

mpc2 + eV. These equations and boundary conditions form a close set of non-
linear boundary value problem for a unique solution for Coulomb potential
V(r) and electron distribution (B.4.10), as functions of the parameter ∆, i.e.,
the proton number-density np. The solution is given in Fig. B.14(a). A rele-
vant quantity for exploring the physical significance of the solution is given
by the number of electrons within a given radius r, Ne(r) =

∫ r
0 4π(r′)2ne(r′)dr′.

This allows to determine, for selected values of the A = Np + Nn parameter,
the distribution of the electrons within and outside the core and follow the
progressive penetration of the electrons in the core at increasing values of A
( see Fig. B.14(b)). We can then evaluate, generalizing the results in Ferreir-
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inho et al. (1980); Ruffini and Stella (1981) , the net charge inside the core
Nnet = Np − Ne(Rc) < Np, and consequently determine of the electric field
at the core surface, as well as within and outside the core (see Fig. A.18).

B.4.7. The energetically favorable configurations

Introducing the new function φ defined by φ = ∆
[

4
9π

]1/3
χ
x , and putting x̂ =

∆−1
√

α (12/π)1/6 x, ξ = x̂ − x̂c the ultra-relativistic Thomas-Fermi equation
can be written as

d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3, (B.4.15)

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as
ξ → −x̂c ≪ 0 (at massive core center) and φ̂(ξ) → 0 as ξ → ∞. We must also
have the continuity of the function φ̂ and the continuity of its first derivative
φ̂′ at the surface of massive core ξ = 0 .
Eq. (B.4.15) admits an exact solution

φ̂(ξ) =







1 − 3
[

1 + 2−1/2 sinh(a −
√

3ξ)
]−1

, ξ < 0,
√

2
(ξ+b)

, ξ > 0,
(B.4.16)

where integration constants a and b are: sinh a = 11
√

2, a = 3.439; b =

(4/3)
√

2.
We than have for the Coulomb potential energy, in terms of the variable ξ,

eV(ξ) =
(

1
∆3

9π
4

)1/3
mπc2φ̂(ξ), and at the center of massive core eV(0) =

h̄c(3π2np)
1/3 =

(

1
∆3

9π
4

)1/3
mπc2, which plays a fundamental role in order to

determine the stability of the configuration.
It is possible to compare energetic properties of different configurations sat-
isfying the different neutrality conditions ne = np and Ne = Np, with the
same core radius Rc and total nucleon number A. The total energy in the case
ne = np is
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Figure B.14.: (a) The solution χ of the relativistic Thomas-Fermi Equation
for A = 1057 and core radius Rc = 10km, is plotted as a function of radial
coordinate. The left solid line corresponds to the internal solution and it is
plotted as a function of radial coordinate in unit of Rc in logarithmic scale.
The right dotted line corresponds to the solution external to the core and it is
plotted as function of the distance ∆r from the surface in the logarithmic scale
in centimeter. (b) The electron number in the unit of the total proton number
Np, for selected values of A, is given as function of radial distance in the unit
of the core radius Rc, again in logarithmic scale. It is clear how by increasing
the value of A the penetration of electrons inside the core increases.

765



B. The Thomas-Fermi model in general relativistic systems

0

0.2

0.4

0.6

0.8

1

1101001000

E
le

ct
ric

 fi
el

d 
(u

ni
ts

 o
f E

c)

Depth inside the core surface (units of λc)

1 10 100

Distance outside the core surface (units of λc)

Figure B.15.: The electric field in the unit of the critical field Ec is plotted
around the core radius Rc. The left (right) solid (dotted) diagram refers to
the region just inside (outside) the core radius plotted logarithmically. By
increasing the density of the star the field approaches the critical field.

E
loc
tot = ∑

i=e,p,n

E
i
loc,

E
i
loc = 2

∫

d3rd3p

(2πh̄)3
ǫi

loc(p) =

cVc

8π2h̄3

{

P̄F
i [2(P̄

F
i )

2 + (mic)
2][(P̄F

i )
2 + (mic)

2]1/2 − (mic)
4Arsh

(

P̄F
i

mic

)}

The total energy in the case Ne = Np is

E
glob
tot = Eelec + Ebinding + ∑

i=e,p,n

E
i
glob

Eelec =
∫

E2

8π
d3r ≈ 33/2π1/2

4

N2/3
p√
α∆c

mπ

∫ +∞

−κRc

dx
[

φ′(x)
]2

Ebinding = −2
∫

d3rd3 p

(2πh̄)3
eV(r) ≈ − Vc

3π2h̄3
(PF

e )
3eV(0)

E
i
glob = 2

∫

d3rd3p

(2πh̄)3
ǫi

glob(p) =

cVc

8π2h̄3

{

PF
i [2(P

F
i )

2 + (mic)
2][(PF

i )
2 + (mic)

2]1/2 − (mic)
4Arsh

(

PF
i

mic

)}

.
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We have indicated with P̄F
i (i = n, e, p) the Fermi momentum in the case

of local charge neutrality (V = 0) and with PF
i ( i = n, e, p) the Fermi mo-

mentum in the case of global charge neutrality (V 6= 0). The energetic differ-
ence between local neutrality and global neutrality configurations is positive,

∆E = Eloc
tot −E

glob
tot > 0, so configurations which obey to the condition of global

charge neutrality are energetically favorable with respect to one which obey
to the condition of local charge neutrality. For a core of 10 Km the difference
in binding energy reaches 1049 ergs which gives an upper limit to the energy
emittable by a neutron star, reaching its electrodynamical ground state.
The current work is three fold: a) generalize our results considering the heavy
nuclei as special limiting cases of macroscopic nuclear matter cores Patricelli
et al. (2008), b) describe a macroscopic nuclear matter core within the realm
of General Relativity fulfilling the generalized Tolman, Oppenheimer, Volkoff
equation, c) Generalize the concept of a Dyadosphere to a Kerr-Newman Ge-
ometry.

B.4.8. Conclusions

It is clear that any neutron star has two very different components: the core
with pressure dominated by a baryonic component and the outer crust with
pressure dominated by a leptonic component and density dominated by the
nuclear species. The considerations that we have presented above apply to
the first component where the baryonic pressure dominates. It is clear that
when the density increases and baryons become ultra-relativistic is this bary-
onic component which undergoes the process of gravitational collapse and
its dynamics is completely dominated by the electrodynamical process which
we have presented in this talk.
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B.5. A Self-consistent Approach to Neutron Stars

B.5.1. Introduction

Since the seminal work of Oppenheimer and Volkoff (1939) on the general rel-
ativistic equilibrium state of a degenerate gas of neutrons, a colossal amount
of research has been devoted to neutron star physics. In scientific literature on
neutron stars, a “local approach”, where the equation of state of neutron star
matter is constructed ignoring global gravitational and Coulombian effects
by assuming not only flat space but also local charge neutrality, has been tra-
ditionally used. A barotropic relation P = P(E) between the energy-density
E and the pressure P is then obtained (see e.g. Haensel et al. (2007) for a recent
compilation of modern neutron star matter equations of state). The gravita-
tional effects are then taken into account by embedding such an equation of
state into the so-called Tolman-Oppenheimer-Volkoff equation of hydrostatic
equilibrium in spherical symmetry (we use units with h̄ = c = 1 hereafter):

P′ = − (E+ P)(4πGr3P + GM)

r(r − 2GM)
, (B.5.1)

where the mass M(r) is given by

M′ = 4πr2
E , (B.5.2)

we denote radial derivatives with primes, and G = 1/m2
Pl with mPl being

the Planck mass. Thus, in the local approach, the problem of the equilibrium
state of a self-gravitating system composed of different degenerate fermion-
species is reduced to an effective one-component fluid problem by solving
the system of equations, given by Eqs. (B.5.1) and (B.5.2), for a barotropic
equation of state P(E).

We should consider such an approach as an effective solution of the prob-
lem that gives good estimates for the mass and the radius of a neutron star
through an oversimplification of the real physical situation. However, recent
developments in high-energy astrophysics point to the relevance of overcrit-
ical electric fields in neutron stars and black holes Ruffini et al. (2010). It has
then become apparent that a new approach to neutron stars is necessary and
that fundamental gravito-electrodynamical effects are missing in the tradi-
tional approach.

We present here the self-consistent equilibrium equations governing a de-
generate neutron, proton and electron fluid in beta equilibrium within the
framework of relativistic quantum statistics and of the Einstein-Maxwell equa-
tions. From this formulation descend the general relativistic Thomas-Fermi
equation, which, as in the case of atoms, plays a crucial role by joining Coulom-
bian, gravitational and quantum-statistical effects associated with the equilib-
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rium state of a self-gravitating system of degenerate fermions.

B.5.2. The Equilibrium Equations

We consider the equilibrium configurations of a degenerate gas of neutrons,
protons and electrons with total matter energy density and pressure

E = ∑
i=n,p,e

Ei , (B.5.3)

P = ∑
i=n,p,e

Pi , (B.5.4)

that satisfy the condition of beta equilibrium

µn = µp + µe , (B.5.5)

where µi = ∂E/∂ni denotes the free chemical potential of the particle species
with number density ni. In addition, we introduce the extension to gen-
eral relativity of the Thomas-Fermi equilibrium condition on the generalized
Fermi energy EF

e of the electron component:

EF
e = eν/2µe − me − eV = constant , (B.5.6)

where e is the fundamental charge, V is the Coulomb potential of the config-
uration and we have introduced the metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2 , (B.5.7)

for a spherically-symmetric non-rotating neutron star. The metric function λ

is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2V ′ through

e−λ = 1 − 2GM(r)

r
+ Gr2E2(r) . (B.5.8)

Thus, the equations for the neutron star equilibrium configuration consist of
the following Einstein-Maxwell equations and general relativistic Thomas-
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Fermi equation:

M′ = 4πr2
E− 4πr3e−ν/2V̂ ′(np − ne),(B.5.9)

ν′

r
+

1 − eλ

r2
= 8πG eλ

[

P − e−(ν+λ)

8πα
(V̂ ′)2

]

,(B.5.10)

P′ +
ν′

2
(E+ P) = −(Pem)′ − 4Pem

r
, (B.5.11)

V̂ ′′ + V̂ ′
[

2

r
− (ν′ + λ′)

2

]

= −4πα eν/2eλ
{

np

− e−3ν/2

3π2 [(V̂ + me)2 − m2
e eν]3/2

}

, (B.5.12)

where α denotes the fine structure constant, V̂ = EF
e + eV and Pem = −E2/(8π).

The assumption of the equilibrium condition in Eq. (B.5.6), together with
the beta equilibrium condition in Eq. (B.5.5) and the hydrostatic equilibrium
in Eq. (B.5.11), along with the thermodynamic relation Ei + Pi = niµi, can
be demonstrated to be enough to guarantee the constancy of the generalized
Fermi energy

EF
i = eν/2µi − mi + qiV , i = n, p, e , (B.5.13)

for all particle species separately. Here, qi denotes the particle unit charge of
the i-species. Indeed, as shown by Olson and Bailyn Olson and Bailyn (1975),
when the fermion nature of the constituents and their degeneracy are taken
into account, in the configuration of minimum energy, the generalized Fermi
energies EF

i defined by Eq. (B.5.13) must be constant over the entire config-
uration, i.e. r-independent. These minimum energy conditions generalize
the equilibrium conditions of Klein Klein (1949) and of Kodama and Yamada
Kodama and Yamada (1972) to the case of degenerate multicomponent flu-
ids with particle species with non-zero unit charge. Therefore, the solution
to the system of equations composed by Eq. (B.5.5), by Eq. (B.5.6), and by
Eqs. (B.5.9)–(B.5.12) represents the ground-state equilibrium configuration.

B.5.3. Some Specific Solutions

The inconsistency of the local charge neutrality condition ne(r) = np(r) with
this system of equations was proven in Rueda et al. (2010a), where, in ad-
dition, a globally neutral solution was obtained by solving the above self-
consistent equations in the case of non-strongly interacting degenerate neu-
trons, protons and electrons extending from the center of the star all the way
to the border. Although the configuration described in Rueda et al. (2010a)
cannot represent a realistic neutron star, the gravito-electrodynamical effects
discovered there deserve further attention. In addition, the results found in
Rueda et al. (2010a) agree with those predicted in Rotondo et al. (2009) in the
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simpler case of a beta-equilibrated degenerate neutron, proton and electron
fluid at nuclear density fulfilling the relativistic Thomas-Fermi equation with
constant proton density.

In a realistic neuron star, the degenerate neutron, proton and electron fluid
is confined to the core and is subjected to the external pressure of the crust
formed around by white-dwarf-like material. In this more general case, the
constancy of the generalized Fermi energy of the electrons still plays a funda-
mental role in order to fulfill the matching conditions and in the boundary-
value problem Rueda et al. (2010c). It can be shown that as a consequence of
the fulfillment of the core-crust matching conditions and the self-consistent
minimum energy equilibrium equations described here, the surface of the
core develops a sharp exponential transition surrounded by the neutron star’s
crust Rueda et al. (2010c). Furthermore, together with such an exponential
density transition, an electric field with an intensity larger than that of the
critical field for vacuum polarization,

Ec =
m2

e√
α

, (B.5.14)

extending over all the entire surface of the transition surface, whose thickness
is of the order of several electron Compton wavelength λe = 1/me, appears.

B.5.4. Conclusions

We have presented the coupled system of equations that must be solved in or-
der to calculate the ground-state equilibrium configuration of a neutron star.
In addition, we have shown that the minimum energy configuration exhibits
an r-independent generalized particle Fermi energy for all particle species
composing the internal fluid. We have also demonstrated that the minimum
energy problem of neutron stars can be reformulated as an extension to gen-
eral relativity of the Thomas-Fermi atom.

The contribution of the hadronic fields to the energy-momentum tensor,
to the four-vector current and, consequently, to the Einstein-Maxwell equa-
tions are currently under consideration in order to establish a more general
formulation of the problem Pugliese et al. (2010). The introduction of strong
interactions preserves the r-independence of the generalized Fermi energy
of the electrons, requires the fulfillment of the general relativistic Thomas-
Fermi equation, and confirms all the gravito-electrodynamical effects here
described in the simplest possible example Pugliese et al. (2010).
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B.6. On the electrostatic structure of neutron stars

B.6.1. Introduction

From the point of view of Newtonian gravity, an spherically symmetric ob-
ject composed by a free degenerate gas of neutrons has a maximum mass
about Mmax ≃ 5.8M⊙ Landau and Lifshitz (1980). Nevertheless, the strong
gravity expected in neutron star interiors imposes the use of general relativity
equations as structure equations. For the same free gas of neutrons, Einstein
theory strongly reduces the maximum mass limit to Mmax ≃ 0.7M⊙ as calcu-
lated by Oppenheimer & Volkoff (OV) in their seminal paper Oppenheimer
and Volkoff (1939).

Observations of X-Ray Binary systems ruled out rapidly the OV work find-
ing that usually neutron stars have masses MNS & 1.4M⊙. Even very recently
an extraordinary high value of M = 2.74 ± 0.21M⊙ has been reported for the
millisecond pulsar PSR J1748-2021B Freire et al. (2008). Therefore, researchers
directed their attention to the theoretical study of the properties of neutron
stars. In particular, the improvement of the Equation of State (EoS) for nu-
clear matter at densities above the so–called saturation density of ordinary
nuclei ρ0 ≃ 2.7 × 1014 g cm−3, has been one of the challenges of theoretical
physics in the last 40 years.

Despite the effort to understand the nuclear EoS above saturation density
ρ0, the problem is by far unsolved, due mainly to the lack of a theory for the
strong interaction, and to the lack of ground–based experiments able to simu-
late the extreme conditions expected in neutron star interiors. Consequently,
a proliferation of nuclear EoS approaching in different ways the strong in-
teraction is growing day after day. Thus, to avoid any discussion of validity
of the EoS we use, we will construct here a simple phenomenological EoS
based on the Weizsacker mass formula in nuclear physics, which let us to
concentrate the attention to the real scope of the paper, which is devoted to
the self–consistent introduction of the electromagnetic interaction inside the
equilibrium equations governing neutron stars.

The standard picture of a neutron star assumes at least the existence of
three regions: core, inner crust and outer crust. Starting for the more exter-
nal one, the outer crust is composed by a nuclei lattice (or Coulomb lattice)
immersed in sea of free electrons, and extents until a density ρd ≃ 4 × 1011

g cm−3 or neutron drip density. At this density, the dripped neutrons start
to form a background of neutrons. This region composed by a nuclei lattice
in a background of electrons and neutrons is known as inner crust and exists
approximately until the nuclear saturation density ρ0 ≃ 2.7× 1014 g cm−3. At
even higher densities, the core of the star is assumed to be a uniform gas com-
posed mainly by neutrons, and a smaller presence of protons and electrons
under the constraints of β-equilibrium and local charge neutrality ne = np.
Here ne and np stand for the electron and proton number densities. There-
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fore, in the interior of a neutron star conjugate all the interactions we know
in nature, namely, weak, strong, electromagnetic and gravitational. Never-
theless, as we have mentioned, the electromagnetic interaction is not taken
into account because the very stringent assumption of local charge neutrality
condition ne = np is assumed. In this paper we will relax this condition and
impose the more general one Ne = Np where Ne, Np are the total number of
electrons and protons respectively.

As a natural consequence of global neutrality it appears a transition surface–
shell between the core and the crust. The thickness δR of this surface–shell
is of order of the electron Compton wavelength λe = 1/me (we use here-
after h̄ = c = 1), i.e., of the order of some fermi. Inside the surface–shell a
strong electric field develops. It grows until some maximum value and after
drops down up to some distance δR from the core radius Rc where it becomes
null and the configuration becomes neutral. Therefore, the thickness of the
surface–shell δR is given by the global neutrality condition

ϕ(Rc + δR) = 0 , ϕ′(Rc + δR) = 0 , (B.6.1)

where ϕ is the electrostatic potential.

B.6.2. Structure Equations

The metric for a spherically symmetric spacetime can be written as

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 dφ2 , (B.6.2)

where ν and λ are functions of r only. For this metric the Einstein-Maxwell
field equations are

M′ = 4πr2(T0
0 − Eem) + 4πeλ/2r3eE(np − ne) (B.6.3)

e−λ

(

ν′

r
+

1

r2

)

− 1

r2
= −8πGT1

1 (B.6.4)

e−λ

[

ν′′ + (ν′ − λ′)
(

ν′

2
+

1

r

)]

= −16πGT2
2 (B.6.5)

(eϕ)′′ + (eϕ)′
[

2

r
− (ν′ + λ′)

2

]

= −4παeν/2eλ(np − ne) , (B.6.6)

where T
µ
ν is the energy-momentum tensor of matter and fields, E is the elec-

trostatic field and Eem = E2/2 is the electromagnetic energy density.
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B.6.3. The Equation of State

Core EoS

In phenomenological nuclear physics, the Weizsacker binding energy per nu-
cleon is given by

EW

A
= −av + as

(N − Z)2

A2
+ aC

Z2

A4/3
+ asurfA

−1/3

+
δeven−odd

A
, (B.6.7)

where

av = 15.8 MeV asurf = 18.3 MeV as = 23.3 MeV

aC = 0.714 MeV δeven−odd ≃ 12 MeV ,

are the volume, surface, symmetry, Coulomb, and pairing contributions.
If we assume the above formula valid also in the case of neutron rich matter

N >> Z we have
EW

A
≃ −av + as > 0 , (B.6.8)

which implies that neutron rich matter is unbounded. However, for a large
number of baryons A, the gravitational potential plays an important role. In
order to see that, let us to modify the Weizsacker formula by including the
gravitational interaction ( in the constant density case)

EW

A
≃ −av + as −

3

5r0

(

mn

mPlanck

)2

A2/3 , (B.6.9)

where we have assumed

M ≃ mnA , R ≃ r0A1/3 , mn ≃ 939 MeV . (B.6.10)

Then neutron matter is bounded for

A > A∗ =
[

5r0

3
(−av + as)

]3/2 (mPlanck

mn

)3

≃ 0.8 × 1056 . (B.6.11)

Using this minimum mass number A∗ for bounding we calculate the mini-
mum mass as given by the modified Weizsacker formula (B.6.9)

MW & mn A∗ ≃ 0.07M⊙ , (B.6.12)

which is very close to the value given by most accepted nuclear EoS.
Therefore the nuclear potential energy should properly be included into the
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mass–energy of neutron star cores. Applying the Weizsacker formula (B.6.7)
to a local thin–shell of neutron star cores, we write the energy density for the
core in the form

E = Ek + EW + Eem (B.6.13)

where

Ek =
2

(2π)3 ∑
i=e,p,n

∫ kF
i

0
4πk2

√

k2 + m2
i dk , (B.6.14)

EW = −a∗v n + a∗s n T2 + asurf n2/3 δ(r − Rc) , (B.6.15)

where

T ≡ nn − np

n
, n ≡ np + nn , (B.6.16)

are the asymmetry parameter and the baryon number density. The param-
eters a∗v and a∗s must be calculated avoiding double counting of the kinetic
contribution to the volume and symmetry energy. For the surface contribu-
tion we have introduced a δ-distribution about the core radius Rc to recall
that it acts just on the surface of the core. The radius of the core is defined
as the radius at which the rest-mass density of the core reach nuclear density,
namely, ρ(Rc) = ρ0 ≃ 2.7 × 1014 g cm−3. The delta distribution has dimen-
sion L−1, and it is given by the characteristic range of the strong interaction,
so it should be of the order of some fermi.

To obtain the parameters a∗v and a∗s , we expand the kinetic energy (B.6.13)
about nn = np (T = 0), i.e. for symmetric nuclear matter

Ek

n
− m = ãv + ãsT2 + ... , (B.6.17)

ãv ≃ 21.84 MeV , ãs =
kF

0

6
√

(kF
0 )

2 + m2
≃ 11.84 MeV , (B.6.18)

where we have assumed mp ≃ mn ≃ m = 939 MeV, and

kF
p = kF

n = kF
0 =

(

3π2n0

2

)1/3

≃ 263.26 MeV, (B.6.19)

where n0 ≃ 0.16 fm−3. Then we obtain

a∗v = av − ãv ≃ 37.64 MeV , (B.6.20)

a∗as = as − ãs ≃ 11.45 MeV . (B.6.21)

Therefore, the relevant components of the energy-momentum tensor in the
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core are

T0
0 = Ek + Eem + EW , (B.6.22)

T1
1 = −Pk + Eem − PW , (B.6.23)

T2
2 = −Pk − Eem − PW . (B.6.24)

The pressure terms are calculated by thermodynamical self–consistency as

Pi = n2 ∂Ei/n

∂n
. (B.6.25)

where i = k, em, W respectively indicates kinetic, electromagnetic and nu-
clear components. In addition, we calculate chemical potentials of neutrons,
protons and electrons by using usual definition

µn,p,e =
∂E

∂nn,p,e
. (B.6.26)

The system must satisfy some additional constraints. The first one is related
with the equilibrium of the electron gas which can be written as

EF
e = eν/2µe − eϕ = constant > 0 , (B.6.27)

while the second one is the β-equilibrium of the system given by

EF
n = EF

e + EF
p , (B.6.28)

where
EF

p = eν/2µp + eϕ . (B.6.29)

Using the above constraints, we can write the electron and neutron number
densities as

ne =
[e−ν/2(EF

e + eϕ)]3

3π2
(B.6.30)

nn =
(e−ν/2)3

3π2
{(EF

e + EF
p + mn)

2 − m2
neν}3/2 , (B.6.31)

where we have used the ultra–relativistic approximation for the electrons
µe ≃ PF

e , with PF
e the electron Fermi momentum.

Crust EoS

For the inner crust we adopt the well-known EoS by Baym, Bethe and Pethick
(BBP) Baym et al. (1971a), which is well fitted by the following polytropic–like
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form
P = K E

Γ , K = 0.000287961 , Γ = 1.68051 , (B.6.32)

where P and E are the total pressure and energy density. Of course for each
value of pressure (and density) we need the self–consistent values of the
chemical potential of neutrons and electrons, which can be obtained from
the entries on the tables in Baym et al. (1971a).

In the outer crust we have white-dwarf-like material, so we can obtain most
of its properties from the equilibrium condition Landau and Lifshitz (1980)

eν/2(µe + 2mn) = constant = eν(R)/2(me + 2mn) , (B.6.33)

where R is the radius of the configuration, which is calculated as the point
where P(R) = 0. From the matching conditions with the exterior spacetime,
which must be the Schwarzschild solution we obtain

eν(R)/2 =

√

1 − 2M(R)

R
. (B.6.34)

B.6.4. Numerical Integration

We describe now the main steps to construct the solutions:

1. Select a value for the central rest-mass density

ρ(0) = ∑
i=e,p,n

mini(0) . (B.6.35)

2. Select a positive value for EF
e . It determines the electron chemical po-

tential at the edge of the crust

µcrust
e = µe(Rc + δR) = e−ν(Rc)/2EF

e , (B.6.36)

where we have used the global neutrality condition and the fact that at
very small scales the gravitational potential is constant, which is exactly
the case for the region Rc ≤ r ≤ Rc + δR, for δR << Rc.

3. From the regular behavior at the center r = 0 we have ne(0) = np(0).

4. From 1–3 and the β-equilibrium condition (B.6.28) we obtain the central
particle chemical potential µe(0), µp(0), and µn(0).

5. Select a value for the central electrostatic potential ϕ(0).

6. Now we can calculate the central gravitational potential using (B.6.27)
by

eν(0)/2 =
EF

e + eϕ(0)

µe(0)
. (B.6.37)
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7. Having all the initial conditions determined, it is possible to integrate
the equations in the core up to the a radius Rc defined by ρ(Rc) = ρ0,
i.e., until the surface of the core.

8. The next step is to calculate the properties of the transition surface-shell
between the core and the crust. Due to the surface tension neutron and
proton profiles will drop down. In this work the value of the surface
tension is taken to be the one given by the Weizsacker formula (B.6.15).
We calculate properly the electric field coming out from the surface
charge separation between electrons and protons. The transition sur-
face finishes when we reach global charge neutrality.

9. Finally we integrate the crust equations until reach at the radius of the
configuration P(R) = 0. At the end of the integration we verify the
matching condition with the Schwarzschild solution given by (B.6.34).
If it is not satisfied we change the central gravitational potential value
by changing the central potential as dictated by (B.6.37). In other words,
the correct value of the central electrostatic potential is the one for which
we satisfy correctly all the boundary conditions of the system.

Below we show an example of the integration for the initial conditions
ρ(0) ≃ 5.7ρ0 and P(0) ≃ 40.63 MeV/fm3. In Fig. B.16 we have plotted the
mass function in the core of the star in solar masses, while in Fig. B.17 we
show the electrostatic field in the core in unit of the critical electric field for
vacuum polarization Ec = m2

e c3/eh̄ ∼ 1016 V/cm. Fig. B.18 shows the elec-
trostatic potential energy of protons in the core in units of the pion mass and
in Fig. B.19 we show the number density of neutrons, protons, and electrons
normalized to the nuclear number density n0 in the core. In Fig. B.20 it is
shown the internal pressure in the core. In Figs. B.21 and B.22 we show the
electrostatic field and proton Coulomb energy in the transition surface-shell
between the core and the crust, while in Figs. B.23 and B.24 we have plotted
the number density of particles and internal pressure in the surface-shell.
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Figure B.16.: Mass of the core in solar masses.
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Figure B.17.: Electric field of the core in units of the critical field
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Figure B.18.: Electrostatic potential of the core in units of the pion mass.
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Figure B.19.: Number densities inside the core in units of the nuclear density
n0.

780



B.6. On the electrostatic structure of neutron stars

0 1 2 3 4 5 6 7
r HkmL

0

5

10

15

20

25

30

35

P H
MeV
����������������
fm3

L

Figure B.20.: Pressure inside the core.
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Figure B.21.: Surface electric field in units of the critical field.
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Figure B.22.: Surface electrostatic potential of the core in units of the pion
mass.
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Figure B.23.: Surface number densities in units of the nuclear density n0.
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Figure B.24.: Surface pressure
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B.7. A New Family of Neutron Star Models:

Global Neutrality vs. Local Neutrality

B.7.1. Introduction

Traditionally, neutron star equilibrium configurations have been constructed
following a “local approach”. In such an approach, the equation of state of
neutron star matter is constructed ignoring global gravitational and Coulomb
effects by assuming flat spacetime as well as local charge neutrality. Then, it
is obtained a relation P = P(E) between the energy-density E and the pres-
sure P (see Haensel et al. (2007) for a recent compilation of modern neutron
star matter equations of state). The gravitational effects are then taken into
account by embedding such an equation of state into the so-called Tolman-
Oppenheimer-Volkoff equation of hydrostatic equilibrium in spherical sym-
metry

dP(r)

dr
= −G[E(r) + P(r)][4πr3P(r)/c2 + M(r)]

c2r(r − 2GM(r)/c2)
, (B.7.1)

where the mass M(r) is obtained from dM(r)/dr = 4πr2E(r)/c2. Thus, in
the local approach, the problem of the equilibrium state of a self-gravitating
system composed of different particle-species is reduced to an effective one-
component fluid problem by solving the above equations for a certain equa-
tion of state P(E).

This approach, although gives good estimates for the mass and the radius
of a neutron star, should be consider as an effective solution of the problem
that oversimplifies the real physical situation, where fundamental gravito-
electrodynamical effects exist. We present here the self-consistent equilib-
rium equations governing a degenerate neutron, proton and electron fluid in
beta equilibrium within the framework of relativistic quantum statistics and
of the Einstein-Maxwell equations. From this formulation descend the gen-
eral relativistic Thomas-Fermi equation, which, as in the case of atoms, plays
a crucial role by joining Coulombian, gravitational and quantum-statistical
effects associated with the equilibrium state of a self-gravitating system of
degenerate fermions.

B.7.2. The equilibrium equations

We consider equilibrium configurations of a degenerate gas of neutrons, pro-
tons and electrons with total matter energy density E = ∑i=n,p,e Ei and pres-
sure P = ∑i=n,p,e Pi where Ei and Pi are the energy density and pressure of a

degenerate fluid of 1/2-spin fermions of mass mi, Fermi momentum PF
i and

number density ni = (PF
i )

3/(3π2h̄3).

We define at first, the generalized Fermi energy EF
i = eν/2µi − mic

2 + qiV
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for the i-particle specie, where qi is the particle unit charge, µi = ∂E/∂ni

is the free-chemical potential, and V denotes the Coulomb potential of the
configuration. Thus, the equations for the neutron star equilibrium config-
uration are given by the beta equilibrium condition, the general relativistic
Thomas-Fermi equilibrium condition for electrons and the Einstein-Maxwell
equations Rueda et al. (2010c,a)

EF
n + mnc2 = EF

p + mpc2 + EF
e + mec

2 , (B.7.2)

EF
e = eν/2µe − mec

2 − eV = constant , (B.7.3)

dM

dr
= 4πr2 E

c2
− 4πr3e−ν/2 d V̂/c2

dr
(np − ne), (B.7.4)

1

r

dν

dr
+

1 − eλ

r2
=

8πG

c4
eλ

[

P − e−(ν+λ)

8πα h̄ c

(

d V̂

dr

)2
]

, (B.7.5)

dP

dr
+

1

2

dν

dr
(E+ P) = −dPem

dr
− 4Pem

r
, (B.7.6)

d2V̂

dr2
+

d V̂

dr

[

2

r
− 1

2

(

dν

dr
+

dλ

dr

)]

= −4πα h̄ c eν/2eλ

{

np

− e−3ν/2

3π2h̄3c3
[(V̂ + mec

2)2 − m2
e c4eν]3/2

}

, (B.7.7)

where α denotes the fine structure constant, V̂ = EF
e + eV and Pem = −E2/(8π)

and we have introduced the metric gαβ = diag(eν(r),−eλ(r),−r2,−r2 sin2 θ)
for a spherically-symmetric non-rotating neutron star. The metric function λ

is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2dV/dr
through

e−λ = 1 − 2GM(r)

c2r
+

Gr2E2(r)

c4
. (B.7.8)

It has been demonstrated in Rueda et al. (2010a) that, from the above sys-
tem of equations follows that indeed all the generalized particle Fermi ener-
gies EF

i are constant through the entire configuration, for all particle-species
separately. This is in line with the results of Klein Klein (1949), of Kodama
and Yamada Kodama and Yamada (1972), and of Olson and Bailyn Olson and
Bailyn (1975).

B.7.3. Discussion

The inconsistency of locally neutral neutron stars was proven in Rueda et al.
(2010a), where violation of the thermodynamic equilibrium condition of con-
stancy of the generalized particle Fermi energies was explicitly shown for
such configurations. Instead, globally neutral systems can be obtained from
the above self-consistent equations. The specific solution for non-strongly
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interacting degenerate neutrons, protons and electrons extending from the
center of the star all the way to the border was obtained in Ref. Rueda et al.
(2010a). Although such a system cannot represent a realistic neutron star, es-
sential gravito-electrodynamical effects were shown and the typical depth of
the Coulomb potential was obtained.

In realistic neuron stars, the degenerate neutrons, protons and electrons are
confined to the core and are subjected to the external pressure of the crust. In
this more general case, the constancy of the generalized Fermi energy of the
electrons still plays a fundamental role in the matching and boundary con-
ditions Rueda et al. (2010c). It was shown in Ref. Rueda et al. (2010c) that,
as a consequence of the fulfillment of the core-crust matching conditions and
the self-consistent equilibrium equations described here, the surface of the
core develops a sharp exponential transition surrounded by the neutron star
crust. Furthermore, together with the exponential density transition, an elec-
tric field with an intensity larger than that of the critical field Ec = m2

e c3/(e h̄)
extending over all the entire surface of the transition surface, whose thick-
ness is of the order of several electron Compton wavelength λe = h̄/(mec),
appears.

All the new gravito-electrodynamical effects discussed here deserve fur-
ther analysis in view of the recent developments in high-energy astrophysics
pointing to the relevance of overcritical electric fields in neutron stars and
black holes Ruffini et al. (2010). The introduction of strong interactions to
the energy-momentum tensor, to the four-vector current and, consequently,
to the Einstein-Maxwell equations are currently under consideration in order
to establish a more general formulation of the problem Pugliese et al. (2010).
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B.8. A general relativistic Thomas Fermi

treatment of neutron star cores II.

Generalized Fermi energies and beta

equilibrium.

B.8.1. Introduction

It is well known that, in addition to the constancy of the temperature, ther-
modynamic equilibrium demands, in absence of any external field, the con-
stancy of the particle chemical potential throughout the configuration. In
presence of an external field, such a condition becomes Landau and Lifshitz
(1980) µ0 + U = constant, where U denotes the external potential and µ0

is the free-particle chemical potential. The extension of these equilibrium
conditions to the case of general relativity were obtained by O. Klein Klein
(1949), who investigated the thermodynamic equilibrium conditions of a self-
gravitating one-component fluid of non-interacting neutral particles in spher-
ical symmetry. The generalization of the Klein’s equilibrium conditions to
the case of a multi-component fluid of non-interacting neutral particles was
given by T. Kodama and M. Yamada Kodama and Yamada (1972). E. Ol-
son and M. Bailyn Olson and Bailyn (1975) went one step further obtain-
ing the equilibrium conditions for a self-gravitating multi-component fluid
of charged particles taking into account the Coulomb interaction. Having in
mind the case of neutron star interiors, in this article we make a brief descrip-
tion of the generalization of the above works to include the strong interaction
for the hadronic species and the Coulomb interaction for the charged species
within a self-consistent general relativistic treatment. In particular, we as-
sume neutron star cores composed of interacting degenerate neutrons, pro-
tons and electrons in beta equilibrium. Thus, we shall develop a general rela-
tivistic Thomas-Fermi treatment of neutron star cores within the framework
of quantum statistics and of the general relativistic field theory for the grav-
itational, the electromagnetic and the hadronic fields. We consider the elec-
tromagnetic interaction between electrons and protons and, for the hadronic
interaction, we follow the so-called Walecka model or quantum hadrody-
namical model Duerr (1956); Walecka (1974), in which the strong interaction
is modeled by meson-exchange through the sigma, omega and rho meson-
fields. Throughout the paper we adopt units with h̄ = c = 1. The Latin
indexes vary from 1 to 3, Greek indexes from 0 to 4.
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B.8.2. General formulation

The total Lagrangian density of the system is given by

L = Lg +L f +Lσ +Lω +Lρ +Lγ +Lint, (B.8.1)

where σ is an isoscalar meson field, providing the attractive long-range nu-
clear force, ω is the massive vector field, modeling the repulsive short range
nuclear force and ρ is the massive isovector field that takes account of the sur-
face effects of nuclei modeling a repulsive nuclear force Duerr (1956); Walecka
(1974); Boguta and Bodmer (1977); Ring (1996). Therefore the Lagrangian
densities for the free fields are

L f = ∑
i=e,N

ψ̄i

(

ıγµ∂µ − mi

)

ψi, Lσ =
1

2
∇µσ∇µσ − U(σ),

Lω = −1

4
ΩµνΩµν +

1

2
m2

ωωµωµ, Lγ = −1

4
FµνFµν

Lρ = −1

4
RµνR

µν +
1

2
m2

ρρµρµ, Lg = − R

16πG
, (B.8.2)

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states
for the mass of each particle-specie and Ωµν ≡ ∂µων − ∂νωµ, Rµν ≡ ∂µρν −
∂νρµ, Fµν ≡ ∂µ Aν − ∂ν Aµ the field strengths for the ωµ, ρ and Aµ fields re-
spectively. U(σ) denotes the self interaction scalar field potential, which is
a quartic-order polynom for a renormalizable theory Lee and Wick (1974);
Lee (1975); Lee and Margulies (1975); Lee and Pang (1987), and R is the Ricci
scalar. The interacting part of the Lagrangian density is

Lint = −gσσψ̄NψN − gωωµ J
µ
ω − gρρµ J

µ
ρ + eAµ J

µ
γ,e − eAµ J

µ
γ,N (B.8.3)

where the currents are J
µ
ω ≡ ψ̄NγµψN, J

µ
ρ ≡ ψ̄Nτ3γµψN, J

µ
γ,e ≡ ψ̄eγ

µψe and

J
µ
γ,N ≡ ψ̄N

(

1+τ3
2

)

γµψN with a bar denoting usual Hermitian conjugation.

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is
the fundamental electric charge. The Dirac matrices γµ and the isospin Pauli
matrices satisfy the Dirac algebra in curved spacetimeLee and Pang (1987)
{γµ, γν} = 2gµν,

{

γµ, γν

}

= 2gµν, {γµ, γν} = 2δ
µ
ν ,
[

τi, τj

]

= 2ıǫijkτk.

The Einstein-Maxwell-Dirac system of equations is then given by

Gµν + 8πGTµν = 0, ∇µ∇µσ + ∂σU(σ) + gsψ̄NψN = 0, (B.8.4)

∇µΩµν + m2
ωων − gω Jν

ω = 0, ∇µR
µν + m2

ρρν − gρ Jν
ρ = 0, (B.8.5)

[

γµ (ı∂
µ + eAµ)− me

]

ψe = 0,
[

γµ (ı∂
µ − VN)− m̃N

]

ψN = 0, (B.8.6)

∇µFµν − eJν
ch = 0, (B.8.7)
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where VN ≡ gωωµ + gρτρµ + e
(

1+τ3
2

)

Aµ is the effective four potential of

nucleons, and the nucleon effective mass is m̃N ≡ mN + gσσ. The energy
momentum tensor Tµν can be written as the sum of the contributions of all
the fields:

T
µν
σ = ∇µ∇νσ − gµν

[

1

2
∇σσ∇σσ − U(σ)

]

, T
µν
γ = −F

µ
α Fαν − 1

4
gµνFαβFαβ,

T
µν
ω = −Ω

µ
αΩαν − 1

4
gµνΩαβΩαβ + m2

ω

(

ωµων − 1

2
gµνωαωα

)

,

T
µν
ρ = −R

µ
αR

αν − 1

4
gµν

RαβR
αβ + m2

ρ

(

R
µ
R

ν − 1

2
gµν

Rαωα

)

,

T
µν
f = (E+ P)uµuν − Pgµν, (B.8.8)

where uµ denotes the four-velocity. The energy-density E and the pressure P

of the fermion fluid are

E =
2

(2π)3 ∑
i=n,p,e

∫ KF
i

0
ǫid

3k, P =
2

3(2π)3 ∑
i=n,p,e

∫ KF
i

0

k2

ǫi
d3k, (B.8.9)

where ǫi =
√

k2 + (m̃i)2 denotes the single-particle energy spectrum (we re-
call that for electrons m̃e = me) and KF

i denotes the Fermi momentum of each
particle specie. From Eq. (B.8.9) it follows the thermodynamic relation

E+ P = ∑
i=n,p,e

niµi, (B.8.10)

where µi =
√

(KF
i )

2 + (m̃i)2 and ni = (KF
i )

3/(3π2) are the free-chemical po-

tential and number density of the i-specie. In addition, from Eq. (B.8.10) and
the scalar density ns = ∂E/∂m̃N , we obtain the generalized Gibbs-Duhem
relation

dP = ∑
i=n,p,e

nidµi − gσnsdσ. (B.8.11)

We consider non-rotating spherically symmetric neutron stars, so we intro-
duce the spacetime metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (B.8.12)
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for which the Einstein-Maxwell-Dirac equations (B.8.4)-(B.8.7) read

e−λ(r)

(

1

r2
− λ′

r

)

− 1

r2
= −8πGT0

0 , (B.8.13)

e−λ(r)

(

1

r2
+

ν′

r

)

− 1

r2
= −8πGT1

1 , (B.8.14)

P
′ +

ν′

2
(E+ P) = −gσnsσ′ − ω′gω J0

ω − ρ′gρ J0
ρ − V ′eJ0

ch, (B.8.15)

V ′′ + V ′
[

2

r
− (ν′ + λ′)

2

]

= −eλeJ0
ch, (B.8.16)

σ′′ + σ′
[

2

r
+

(ν′ − λ′)
2

]

= eλ [∂σU(σ) + gsns] , (B.8.17)

ω′′ + ω′
[

2

r
− (ν′ + λ′)

2

]

= −eλ
[

gω J0
ω − m2

ωω
]

, (B.8.18)

ρ′′ + ρ′
[

2

r
− (ν′ + λ′)

2

]

= −eλ
[

gρ J0
ρ − m2

ρρ
]

, (B.8.19)

where we use the notation ω0 = w, ρ0 = ρ and A0 = V, a prime stands
for radial derivative, the zero-covariant component of the currents are Jω

0 =

nbu0 = (nn + np)e
ν/2, J

ρ
0 = n3u0 = (np − nn)e

ν/2 and Jch
0 = nchu0 = (np −

ne)eν/2, and nb, np, nn and ne are the baryon, proton, neutron and electron
number density. The scalar density ns is given by ns = ψ̄NψN = ∂E/∂m̃N =

2
(2π)3 ∑i=n,p

∫ KF
i

0
m̃N
ǫi

d3k.

B.8.3. Generalized Fermi energies and beta equilibrium

The nucleon doublet and the electronic spinor written in the phase-space are

ψi = ψi(k)e
−ıkµ xµ

. From the Dirac equations (B.8.6) we obtain the following
equations (γµK

µ − m̃i)ψi(k) = 0 with Kµ ≡ kµ − V
µ
i , Ve = −eV. Making

a quadrature of the Dirac operators in the phase-space we obtain the Fermi
energy for electrons EF

e , neutrons EF
n and protons EF

p

EF
e =

√
g00µe − eV = eν/2µe − eV, (B.8.20)

EF
n =

√
g00µn + gωω − gρρ = eν/2µn + gωω − gρρ, (B.8.21)

EF
p =

√
g00µp + gωω + gρρ + eV = eν/2µp + gωω + gρρ + eV. (B.8.22)

Consequently, the beta equilibrium condition EF
n = EF

p + EF
e , becomes

µn = µp + µe + 2gρρe−ν/2. (B.8.23)
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B.8.4. Constancy of the generalized Fermi energies

The energy-momentum conservation is given by the last equation in (B.8.19),
and can be called generalized Tolman-Oppenheimer-Volkoff equation. Us-
ing the equations of motion for the fields ρ, ω and σ, and using the general-
ized Gibbs-Duhem relation (B.8.11), such an energy-momentum conservation
equation can be rewritten as

∑
i=n,p,e

nid(e
ν/2µi) + gωnbdω + gρn3dρ + enchdV = 0. (B.8.24)

Using the expressions (B.8.20)-(B.8.22) and the beta equilibrium condition
(B.8.23), the Eq. (B.8.24) becomes

∑
i=p,e

(ni + ne)dEF
i = 0. (B.8.25)

It was demonstrated in the non interacting caseOlson and Bailyn (1975) that
from the minimization energy procedure it follows the thermodynamic en-
ergy condition of constancy of the generalized particle Fermi energy of all
particle species. It can be seen from Eq. (B.8.25) that it is enough to request
the constancy of the generalized electron Fermi energy

EF
e = eν/2µe − eV = constant, (B.8.26)

to obtain the constancy of EF
p and consequently, from beta equilibrium, the

constancy of EF
nRueda et al. (2010c,a). Then, in addition to the electron equi-

librium condition (B.8.26) we obtain for the nucleon components

EF
n,p = eν/2µn,p + Vn,p = constant, Vn,p ≡ gωω + gρτρ + e

(

1 + τ3

2

)

V.

(B.8.27)

B.8.5. Conclusions

A self-consistent treatment of self-gravitating system of degenerate neutrons,
protons and electrons in beta equilibrium is presented in the framework of
general relativity including the Coulomb and hadronic interaction. We ob-
tained the generalized particle Fermi energies from the Dirac equations for
nucleons and electrons.

Then, we used the generalized Fermi energies to obtain the modified beta
equilibrium condition for the particle species. Finally, we outlined how from
the Einstein-Maxwell-Dirac equations, the electron equilibrium condition and
the beta equilibrium condition, it follows the constancy of the generalized
Fermi energy of each particle specie including the contribution of all fields.
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B.9. A self-consistent general relativistic solution

for a self-gravitating system of degenerate

neutrons, protons and electrons in beta

equilibrium

B.9.1. Introduction

In nearly all of the scientific literature on neutron stars it is assumed that
the condition of local charge neutrality applies identically to all points of the
equilibrium configuration. The corresponding solutions of the Einstein equa-
tions for a non-rotating neutron star, following the work of Tolman (1939)
and the work of Oppenheimer and Volkoff (1939), have been systematically
applied Haensel et al. (2007). We prove that this approach is conceptually
inconsistent and violates the equations of motion of the system on the mi-
crophysical scale. We also give the new set of Einstein-Maxwell equations
and general relativistic Thomas-Fermi equations substituting the TOV equa-
tions and give the methodology of their integration in the simplest, complete
and nontrivial case. The correct solution necessitates violation of local charge
neutrality. In a set of interesting papers (see Glendenning (1992); Glenden-
ning and Pei (1995); Christiansen and Glendenning (1997); Glendenning and
Schaffner-Bielich (1999); Christiansen et al. (2000)) Glendenning has relaxed
the local charge neutrality condition for the description of the mixed phases
in hybrid stars. In such configurations the global charge neutrality condition,
as opposed to the local one, is applied to the limited regions where mixed
phases occur while in the pure phases the local charge neutrality condition
still holds. In all these works Glendenning, in conformity to the traditional
approaches, assumes that “spacetime, though curved by mass-energy, is flat
to a high degree over regions that are compared to interparticle distances
... We may therefore solve all problems of the structure and composition of
matter in Minkowski spacetime and use the results in the form of the stress-
energy tensor in Einstein’s equations” Glendenning (2001). We here gener-
alize Glendenning’s results with one important difference: we are looking
to a violation of the local charge neutrality condition on the entire star, still
keeping its overall charge neutrality. This effect does not occur in processes
occurring on typical scales of interparticle distances in the Minkowski space-
time, but it requests the global description of the equilibrium configuration.
As clearly exemplified in Eq. (B.9.16) below, the local properties need the pre-
vious knowledge of the entire equilibrium configuration and therefore the
description is necessarily global.

In this article we consider the description of a relativistic self-gravitating
system of degenerate fermions composed of neutrons, protons and electrons
in beta equilibrium: this is the simplest nontrivial system in which new elec-
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trodynamical and general relativistic properties of the equilibrium configura-
tion can be clearly illustrated. We focus attention upon the case in which the
system is not subjected to external forces. We first prove that the condition
of local charge neutrality can never be implemented since it violates neces-
sary conditions of equilibrium at the microphysical scale. We then prove the
existence of a solution with global charge neutrality by taking into account
essential gravito-electrodynamical effects. First we recall the constancy of the
general relativistic Fermi energies and we introduce subsequently the general
relativistic Thomas-Fermi equations and the relativistic quantum statistics for
the three fermion species governed by the Einstein-Maxwell equations. The
solution of this system of equations presents a most formidable mathemati-
cal challenge to theoretical physics. The traditional difficulties encountered
in proving the existence and unicity of the solution of the Thomas-Fermi
equation are here enhanced by the necessity of solving the general relativistic
Thomas-Fermi equation coupled with the Einstein-Maxwell system of equa-
tions. We were helped in solving this problem by the recent progress made in
the analysis of the relativistic Thomas-Fermi equations in the simplified case
of massive nuclear density cores with constant proton density Popov et al.
(2010). We present the general solution for the equilibrium configuration,
from the center of the star all the way to the border, giving the details of the
gravitational field, of the electrodynamical field as well as of the conserved
quantities.

We illustrate such a solution by selecting a central density ρ(0) = 4ρ0,
where ρ0 ≃ 2.7 × 1014 g cm−3 is the nuclear density. We point out the exis-
tence near the boundary of the core in the equilibrium configuration of three
different radii, in decreasing order: Re corresponding to the vanishing of the
Fermi momentum of the electron component; PF

e = 0, Rp corresponding to

the vanishing of the Fermi momentum of the proton component; PF
p = 0 and

Rn corresponding to the radius at which the Fermi momentum of neutrons
vanishes: PF

n = 0. We then give explicit expressions for the proton versus
electron density ratio and the proton versus neutron density ratio for any
value of the radial coordinate as well as for the electric potential at the cen-
ter of the configuration. A novel situation occurs: the determination of these
quantities needs prior knowledge of the global electrodynamical and gravi-
tational potential as well as of the radii Rn, Rp and Re! This is a necessary
outcome of the self-consistent solution for the eigenfunction of the general
relativistic Thomas-Fermi equation in the Einstein-Maxwell background. As
expected from the considerations in Popov et al. (2010), the electric potential
at the center of the configuration fulfills eV(0) ≃ mπc2 and the gravitational

potential 1 − eν(0)/2 ≃ mπ/mp. The implementation of the constancy of the
general relativistic Fermi energy and the consequent system of equations il-
lustrated here in the simplest possible example admitting a rigorous solution
will necessarily apply in the case of additional particle species and of the in-
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clusion of nuclear interactions and/or external forces as well.

B.9.2. Einstein-Maxwell, general relativistic Thomas-Fermi

equations and boundary conditions

We consider the equilibrium configurations of a degenerate gas of neutrons,
protons and electrons with total matter energy density and total matter pres-
sure (we use hereafter units with h̄ = c = 1)

E = ∑
i=n,p,e

Ei = ∑
i=n,p,e

2

(2π)3

∫ PF
i

0

√

p2 + m2
i 4πp2dp , (B.9.1)

P = ∑
i=n,p,e

Pi = ∑
i=n,p,e

1

3

2

(2π)3

∫ PF
i

0

p2

√

p2 + m2
i

4πp2dp , (B.9.2)

that satisfy the condition of beta equilibrium

µn = µp + µe , (B.9.3)

where PF
i is the Fermi momentum and µi = ∂E/∂ni =

√

(PF
i )

2 + m2
i is the

free-chemical potential of particle species of number density ni =
(PF

i )
3

3π2 . In ad-
dition, we introduce the extension to general relativity of the Thomas-Fermi
equilibrium condition on the generalized Fermi energy EF

e of the electron
component

EF
e = eν/2µe − me − eV = constant , (B.9.4)

where e is the fundamental charge, V is the Coulomb potential of the config-
uration and we have introduced the metric

gαβ = diag(eν(r),−eλ(r),−r2,−r2 sin2 θ), (B.9.5)

for a spherically symmetric non-rotating neutron star. The metric function

λ is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2V ′

through e−λ = 1 − 2GM(r)/r + Gr2E2(r). Thus the equations for the neu-
tron star equilibrium configuration consist of the following Einstein-Maxwell
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equations and general relativistic Thomas-Fermi equation

M′ = 4πr2
E− 4πr3e−ν/2V̂ ′(np − ne), (B.9.6)

ν′

r
+

1 − eλ

r2
= 8πG eλ

[

P − e−(ν+λ)

8πα
(V̂ ′)2

]

, (B.9.7)

P′ +
ν′

2
(E+ P) = −(Pem)′ − 4Pem

r
, (B.9.8)

V̂ ′′ +
2

r
V̂ ′
[

1 − r(ν′ + λ′)
4

]

= −4πα eν/2eλ
{

np

− e−3ν/2

3π2
[V̂2 + 2meV̂ − m2

e (e
ν − 1)]3/2

}

, (B.9.9)

where a prime stands for radial derivative, α denotes the fine structure con-
stant, V̂ = EF

e + eV and Pem = −E2/(8π).

It can be demonstrated that the assumption of the equilibrium condition
(B.9.4) together with the beta equilibrium condition (B.5.5) and the hydro-
static equilibrium (B.9.8) is enough to guarantee the constancy of the gener-
alized Fermi energy

EF
i = eν/2µi − mi + qiV , i = n, p, e , (B.9.10)

for all particle species separately. Here qi denotes the particle unit charge of
the i-species. Indeed, as shown by Olson and Bailyn (1975, 1978), when the
fermion nature of the constituents and their degeneracy is taken into account,
in the configuration of minimum energy the generalized Fermi energies EF

i
defined by (B.9.10) must be constant over the entire configuration. These
minimum energy conditions generalize the equilibrium conditions of Klein
(1949) and of Kodama and Yamada (1972) to the case of degenerate multi-
component fluids with particle species with non-zero unit charge.

If one were to assume, as often done in literature, the local charge neutral-
ity condition ne(r) = np(r) instead of assuming the equilibrium condition
(B.9.4), this would lead to V = 0 identically (since there will be no electric
fields generated by the neutral matter distribution) implying via Eqs. (B.9.3)
and (B.9.8)

EF
e + EF

p = eν/2(µe + µp)− (me + mp) = EF
n + mn − (me + mp) = constant .

(B.9.11)
Thus the neutron Fermi energy would be constant throughout the configu-
ration as well as the sum of the proton and electron Fermi energies but not
the individual Fermi energies of each component. In Fig. B.25 we show the
results of the Einstein equations for a selected value of the central density
of a system of degenerate neutrons, protons, and electrons in beta equilib-
rium under the constraint of local charge neutrality. In particular, we have
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plotted the Fermi energy of the particle species in units of the pion mass. It
can be seen that indeed the Fermi energies of the protons and electrons are
not constant throughout the configuration which would lead to microscopic
instability. This proves the impossibility of having a self-consistent configu-
ration fulfilling the condition of local charge neutrality for our system. This
result is complementary to the conclusion of Eq. (4.6) of Olson and Bailyn
(1975) who found that, at zero temperature, only a dust solution with zero
particle kinetic energy can satisfy the condition of local charge neutrality and
such a configuration is clearly unacceptable for an equilibrium state of a self-
gravitating system.

e

p

n

0 2 4 6 8 10 12

-1.0

-0.5
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0.5

1.0

r HkmL

EF
i

mΠ

Figure B.25.: Fermi energies for neutrons, protons and electrons in units of the
pion mass for a locally neutral configuration with central density ρ(0) = 4ρ0,
where ρ0 = 2.7 × 1014 g cm−3 denotes the nuclear density.

We turn now to describe the equilibrium configurations fulfilling only global
charge neutrality. We solve self-consistently Eq. (B.9.6) and (B.9.7) for the
metric, Eq. (B.9.8) for the hydrostatic equilibrium of the three degenerate
fermions and, in addition, we impose Eq. (B.9.3) for the beta equilibrium.
The crucial equation relating the proton and the electron distributions is then
given by the general relativistic Thomas-Fermi equation (B.9.9). The bound-
ary conditions are: for Eq. (B.9.6) the regularity at the origin: M(0) = 0, for
Eq. (B.9.8) a given value of the central density, and for Eq. (B.9.9) the regu-
larity at the origin ne(0) = np(0), and a second condition at infinity which
results in an eigenvalue problem determined by imposing the global charge
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neutrality conditions

V̂(Re) = EF
e , V̂ ′(Re) = 0 , (B.9.12)

at the radius Re of the electron distribution defined for a configuration not
subject to external pressure by

PF
e (Re) = 0 , (B.9.13)

from which follows

EF
e = mee

ν(Re)/2 − me = me

√

1 − 2GM(Re)

Re
− me . (B.9.14)

Then the eigenvalue problem consists in determining the gravitational poten-
tial and the Coulomb potential at the center of the configuration that satisfy
the conditions (B.9.12)–(B.9.14) at the boundary.

B.9.3. Numerical integration of the equilibrium equations

The solution for the density, the gravitational potential and electric potential
are shown in Fig. (B.26) for a configuration with central density ρ(0) = 4ρ0.
In order to compare our results with those obtained in the case of massive
nuclear density cores Popov et al. (2010) as well as to analyze the gravito-
electrodynamical stability of the configuration we have plotted the electric
potential in units of the pion mass and the gravitational potential in units
of the pion-to-proton mass ratio. One particular interesting new feature is
the approach to the boundary of the configuration: three different radii are
present corresponding to distinct radii at which the individual particle Fermi
pressures vanish. The radius Re for the electron component corresponding
to PF

e (Re) = 0, the radius Rp for the proton component corresponding to

PF
p (Rp) = 0 and the radius Rn for the neutron component corresponding to

PF
n (Rn) = 0.
The smallest radius Rn is due to the threshold energy for beta decay which

occurs at a density ∼ 107 g cm−3. The radius Rp is larger than Rn because the
proton mass is slightly smaller than the neutron mass. Instead, Re > Rp due
to a combined effect of the difference between the proton and electron masses
and the implementation of the global charge neutrality condition through the
Thomas-Fermi equilibrium conditions.

For the configuration of Fig. B.26 we found Rn ≃ 12.735 km , Rp ≃ 12.863

km and Re ≃ Rp + 103λe where λe = 1/me denotes the electron Compton
wavelength. We find that the electron component follows closely the proton
component up to the radius Rp and neutralizes the configuration at Re with-
out having a net charge, contrary to the results e.g of Olson and Bailyn (1978).
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Figure B.26.: Upper left panel: energy density normalized to the central den-
sity ρ(0) = 4ρ0 where ρ0 ≃ 2.7 × 1014 g cm−3 denotes the nuclear density.
Bottom left panel: proton and electron Coulomb potential in units of the
pion mass eV/mπ and −eV/mπ respectively and the proton gravitational
potential in units of the pion mass mp(eν/2 − 1)/mπ . Upper right panel: neu-
tron (solid curve) and proton (dashed curve) number density approaching
the boundary of the configuration in units of the nuclear number density
n0 ≃ ρ0/mn. Bottom right panel: electron number density for r ≥ Rp in units
of the nuclear number density n0.

It can be seen from Fig. B.26 that the negative proton gravitational poten-
tial energy is indeed always larger than the positive proton electric potential
energy. Therefore the configuration is stable against Coulomb repulsion. This
confirms the results of Eqs. (18) and (24) in Popov et al. (2010).

From Eq. (B.9.10) and the relation between Fermi momentum and the par-
ticle density PF

i = (3π2ni)
1/3, we obtain the proton-to-electron and proton-

to-neutron ratio for any value of the radial coordinate

np(r)

ne(r)
=

[

f 2(r)µ2
e (r)− m2

p

µ2
e (r)− m2

e

]3/2

,
np(r)

nn(r)
=

[

g2(r)µ2
n(r)− m2

p

µ2
n(r)− m2

n

]3/2

,

(B.9.15)
where f (r) = (EF

p +mp − eV)/(EF
e +me + eV), g(r) = (EF

p +mp − eV)/(EF
n +
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mn) and the constant values of the generalized Fermi energies are given by

EF
n = mneν(Rn)/2 − mn , (B.9.16)

EF
p = mpeν(Rp)/2 − mp + eV(Rp) , (B.9.17)

EF
e = mee

ν(Re)/2 − me . (B.9.18)

A novel situation occurs: the determination of the quantities in Eqs. (B.9.15)
and (B.9.16) necessarily require the prior knowledge of the global electrody-
namical and gravitational potential from the center of the configuration all
the way out to the boundary defined by the radii Re, Rp and Rn! This neces-
sity is an outcome of the solution for the eigenfunction of the general rela-
tivistic Thomas-Fermi equation (B.9.9).

From the regularity condition at the center of the star ne(0) = np(0) to-
gether with Eq. (B.9.15) we obtain the Coulomb potential at the center of the
configuration

eV(0) =
(mp − me)

2

[

1 +

(

EF
p − EF

e

mp − me

)

−
(

mp + me

EF
n + mn

)

eν(0)

]

, (B.9.19)

which after some algebraic manipulation and defining the central density in
units of the nuclear density η = ρ(0)/ρ0 can be estimated as

eV(0) ≃ 1

2

[

mpeν(Rp)/2 − mee
ν(Re)/2 − mneν(Rn)/2

1 + (PF
n (0)/mn)2

]

≃ 1

2

[

(3π2η/2)2/3mp

(3π2η/2)2/3mπ + m2
n/mπ

]

mπ , (B.9.20)

where we have approximated the gravitational potential at the boundary as

eν(Re)/2 ≃ eν(Rp)/2 ≃ eν(Rn)/2 ≃ 1. Then for configurations with central den-
sities larger than the nuclear density we necessarily have eV(0) & 0.35mπ. In
particular, for the configuration we have exemplified with η = 4 in Fig. B.26,
from the above expression (B.9.20) we obtain eV(0) ≃ 0.85mπ. This value
of the central potential agrees with the one obtained in the simplified case
of massive nuclear density cores with constant proton density Popov et al.
(2010).

B.9.4. Conclusions

In conclusion, we have proved in the first part of this article that the treat-
ments generally used in textbooks of neutron stars adopting the condition
of local charge neutrality (see e.g. Haensel et al. (2007)) are not consistent
with the Einstein equations and with the equations of motion of the parti-
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cles (see Fig. B.25). The only self-consistent solution of neutron star structure
for degenerate neutrons, protons and electrons in beta equilibrium is the one
presented here.

Although the mass-radius relation in the simple example considered here
in our new treatment, differs slightly from the one of the traditional ap-
proaches, the difference in electrodynamic structure is clearly very large. As
is well-known these effects can lead to important astrophysical consequences
on the physics of the gravitational collapse of a neutron star to a black hole
Ruffini et al. (2010).

Having established in the simplest possible example the new set of Einstein-
Maxwell and general relativistic Thomas-Fermi equations, we can proceed
to their implementation when strong interactions are present. The contri-
bution of the hadronic fields to the energy-momentum tensor, to the four-
vector current and consequently to the Einstein-Maxwell equations have to
be taken into account. Such more general case preserves the r-independence
of the generalized Fermi energy of the electrons, requires the fulfillment of
the general relativistic Thomas-Fermi equation and confirms all the gravito-
electrodynamical effects here introduced Rueda et al. (2010c); Pugliese et al.
(2010). The fluid of neutrons, protons and electrons in this more general case
does not extend all the way to the neutron star surface but is confined to the
neutron star core surrounded by the neutron star crust.

A recent specific example presented in Rueda et al. (2010c) shows how the
correct boundary conditions derived from our treatment leads to new fam-
ily of neutron stars with crusts of smaller mass and smaller thickness, and
consequently to neutron stars with alternative mass-radius relations. This
result follows from enforcing in the core-crust transition surface the conti-
nuity of the generalized Fermi energy of the electrons. Such a continuity in
turn leads to a discontinuity in the pressure and density, which have been
assumed continuous in the core-crust transition in the current literature. The
order of magnitude of such a difference in the crust mass can be as large as
∆Mcrust ∼ 10−5–10−4M⊙ ∼ 1048–1049 erg. There are on going discussions on
the uniqueness of such solutions.

It is appropriate to mention that all the above considerations can be straight-
forwardly applied in the Newtonian formalism by taking the first-order series-
expansion for small gravitational field of the general relativistic formulas.
However, the challenge has been to find the consistent general relativistic
treatment presented here. Such a treatment is mandatory in view of the large
discrepancies encountered in the gravitational Thomas-Fermi systems in the
Newtonian regime.

The considerations have been formulated for configurations at zero tem-
perature. It is worth to recall that temperatures of the order of ∼ 106 K ex-
pected to exist in old neutron stars would not affect the considerations here
introduced. For neutron stars the Fermi temperature is TF ∼ 1013 K.
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