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3. Brief description

Astroparticle physics is a new field of research emerging at the intersection
of particle physics, astrophysics and cosmology. Theoretical development in
these fields is mainly triggered by the growing amount of experimental data
of unprecedented accuracy, coming both from the ground based laboratories
and from the dedicated space missions.

3.1. Electron-positron plasma

Electron-positron plasma is of interest in many fields of astrophysics, e.g. in
the early universe, gamma-ray bursts, active galactic nuclei, the center of our
Galaxy, hypothetical quark stars. It is also relevant for the physics of ultrain-
tense lasers and thermonuclear reactions. We study some properties of dense
and hot electron-positron plasmas. In particular, we are interested in the is-
sues of its creation and relaxation, its kinetic properties and hydrodynamic
description, baryon loading, transition to transparency and radiation from
such plasmas.

Two completely different states exist for electron-positron plasma: opti-
cally thin and optically thick. Optically thin pair plasma may exist in active
galactic nuclei and in X-ray binaries. The theory of relativistic optically thin
nonmagnetic plasma and especially its equilibrium configurations was es-
tablished in the 80s by Svensson, Lightman, Gould and others. It was shown
that relaxation of the plasma to some equilibrium state is determined by a
dominant reaction, e.g. Compton scattering or bremsstrahlung.

Developments in the theory of gamma ray bursts from one side, and ob-
servational data from the other side, unambiguously point out on existence
of optically thick pair dominated non-steady phase in the beginning of for-
mation of GRBs. The spectrum of radiation from optically thick plasma is as-
sumed to be thermal. However, in such a transient phenomena as gamma-ray
bursts there could be not enough time for the plasma to relax into complete
equilibrium.

3.1.1. Pair plasma relaxation timescales

In previous works (Aksenov et al. (2007), Aksenov et al. (2009b)) relaxation
timescales were computed explicitly only in few cases. Systematic explo-
ration of the space of parameters is performed in a separate publication by
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3. Brief description

Aksenov et al. (2010), see Appendix A. These parameters are: total energy
density ρ and the baryonic loading parameter B = ρb/ρe,γ, the ratio between
the energy densities of baryons and of electron-positron pairs and photons.
We focused on the time scales of electromagnetic interactions only.

Thermalization timescales are computed for a wide range of values of both

the total energy density (1023erg/cm3 ≤ ρ ≤ 1033erg/cm3) and of the bary-
onic loading parameter (10−3 ≤ B ≤ 103). This also allows to study such
interesting limiting cases as the almost purely electron-positron plasma or
electron-proton plasma as well as intermediate cases.

Both dependencies (thermalization time scales of electron-positron-photon
component and final thermalization time scale of pair plasma with baryonic
loading) cannot be fitted by simple power laws, though decrease monotoni-
cally with increasing total energy density, see Figs. A.1,A.2. Thermalization
time scales are not monotonic functions of the baryonic loading parameter.

The relaxation to thermal equilibrium always occurs on a time scale less
than 10−9 sec. It is interesting that the electron-positron-photon component
and/or proton component can thermalize earlier than the time at which com-
plete thermal equilibrium is reached. The relevant time scales are given and
compared with the order-of-magnitude estimates.

These results appear to be important both for laboratory experiments aimed
at generating optically thick pair plasmas as well as for astrophysical models
in which electron-positron pair plasmas play a relevant role.

3.1.2. Degenerate electron-positron plasma

The kinetic code, which is used to compute the evolution of nonequilibrium
distribution functions of electrons, positrons, photons and protons towards
thermal equilibrium, is designed in such a way that particles are considered
nondegenerate. The assumption of nondegeneracy simplifies the computa-
tion, but more importantly, it substantially reduces the computational time.
When temperatures increase the degeneracy of electron-positron-photon com-
ponent increases as well.

It is the aim of the work described in Appendix B to explore the sensitiv-
ity of the timescales of thermalization when degeneracy of pairs and photons
is allowed. The code has been modified in order to take into account Pauli
blocking and Bose enhancment factors in binary reactions involving leptons.
These modifications allow to compute evolution of pair plasma with bary-
onic loading towards kinetic equilibrium, taking into account degeneracy of
the pair plasma. It is shown, that the timescales indeed increase due to de-
generacy, especially for temperatures above 0.5 MeV.
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3.1. Electron-positron plasma

3.1.3. Hydrodynamic phase of GRBs

Having established the thermalization timescales of electron-positron plasma
with baryonic loading we turn to hydrodynamic evolution of this plasma on
much longer timescales. Given that the optical depth of the pair plasma in
GRB sources is huge, of the order of 1015, the dynamical equations are the
total energy-momentum conservation as well as the continuity equation for
baryonic component.

The fireshell model, unlike the fireball model, properly takes into account
nonequilibrium processes in the pair plasma by the rate equation of electron-
positron component. However, it only operates with volume-averaged macro-
scopic quantities such as average number densities, average energy densities,
average bulk Lorentz factors etc.

We developed an Eulerian relativistic code, which solves hydrodynamic
equations in spherically symmetric case (de Barros et al. (2009)), see Appendix
C. We were mainly interested in the issue how different initial spatial dis-
tribution for energy and mass densities influence the early evolution of the
pair plasma with baryonic loading. We found that deviations from a simple
“frozen radial profile” advocated by Piran et al. (1993), see also Piran (1999)
in spatial distributions of energy and matter densities are possible. In fact
when the expansion occurs not in vacuum but in a cold medium, two shocks
are formed, one propagating into the external medium and another occuring
in the expanding shell. It is surprizing that the reverse shock does not prop-
agate into the expanding shell during its acceleration. Such complex struc-
tures in the energy and matter spatial distributions of the expanding plasma,
if survived when transparency is reached, will be reflected in the light curves
of P-GRBs. This gives a fascinating possibility to probe the structure of en-
ergy and matter distributions withing the sources of GRBs where the energy
is released.

3.1.4. Thermal spreading of the fireshell

Within the fireshell model, based on the hydrodynamic approach, the dura-
tion of the P-GRB is determined by the initial size of electron-positron plasma
and is expected to be ∆t ≃ R0/c ≃ 10−2 sec. In Appendix D we present the
results of evaluation of the thermal spreading of the fireshell due to nonzero
velocity dispersion. This spreading is a kinetic effect and is not accounted
for in hydrodynamic approximation. The possibility of such spreading for
GRBs is discussed first in Mészáros et al. (1993). However, the authors of
Mészáros et al. (1993) overestimate the spreading since they consider it inde-
pendent on the temperature, while the latter changes during expansion of the
fireshell.

Our results suggest that the value of thermal spreading is actually signif-
icant and may reach ∆R ≃ 8R0. Thus the P-GRB is expected to last about 8

305



3. Brief description

times longer, than the estimates based on the initial size of the fireshell give.

3.2. Neutrinos in cosmology

Many observational facts make it clear that luminous matter alone cannot
account for the whole matter content of the Universe. Among them there
is the cosmic background radiation anisotropy spectrum, that is well fitted
by a cosmological model in which just a small fraction of the total density is
supported by baryons.

In particular, the best fit to the observed spectrum is given by a flat ΛCDM
model, namely a model in which the main contribution to the energy density
of the Universe comes from vacuum energy and cold dark matter. This result
is confirmed by other observational data, like the power spectrum of large
scale structures.

Another strong evidence for the presence of dark matter is given by the
rotation curves of galaxies. In fact, if we assume a spherical or ellipsoidal
mass distribution inside the galaxy, the orbital velocity at a radius r is given
by Newton’s equation of motion. The peculiar velocity of stars beyond the
visible edge of the galaxy should then decrease as 1/r. What is instead ob-
served is that the velocity stays nearly constant with r. This requires a halo
of invisible, dark, matter to be present outside the edge. Galactic size should
then be extended beyond the visible edge. From observations is follows that
the halo radius is at least 10 times larger than the radius of visible part of the
galaxy. Then it follows that a halo is at least 10 times more massive than all
stars in a galaxy.

Neutrinos were considered as the best candidate for dark matter about
twenty years ago. Indeed, it was shown that if these particles have a small
mass mν ∼ 30 eV, they provide a large energy density contribution up to crit-
ical density. Tremaine and Gunn (1979) have claimed, however, that massive
neutrinos cannot be considered as dark matter. Their paper was very influen-
tial and turned most of cosmologists away from neutrinos as cosmologically
important particles.

Tremaine and Gunn paper was based on estimation of lower and upper
bounds for neutrino mass; when contradiction with these bounds was found,
the conclusion was made that neutrinos cannot supply dark matter. The up-
per bound was given by cosmological considerations, but compared with the
energy density of clustered matter. It is possible, however, that a fraction of
neutrinos lays outside galaxies.

Moreover, their lower bound was found on the basis of considerations of
galactic halos and derived on the ground of the classical Maxwell-Boltzmann
statistics. Gao and Ruffini (1980) established a lower limit on the neutrino
mass by the assumption that galactic halos are composed by degenerate neu-
trinos. Subsequent development of their approach Arbolino and Ruffini (1988)

306



3.2. Neutrinos in cosmology

has shown that contradiction with two limits can be avoided.

At the same time, in 1977 the paper by Lee and Weinberg (1977) appeared,
in which authors turned their attention to massive neutrinos with mν >>

2 GeV. Such particles could also provide a large contribution into the energy
density of the Universe, in spite of much smaller value of number density.

Recent experimental results from laboratory (see Dolgov (2002) for a re-
view) rule out massive neutrinos with mν > 2 GeV. However, the paper by
Lee and Weinberg was among the first where very massive particles were
considered as candidates for dark matter. This can be considered as the first
of cold dark matter models.

Today the interest toward neutrinos as a candidate for dark matter came
down, since from one side, the laboratory limit on its mass do not allow for
significant contribution to the density of the Universe, and from other side,
conventional neutrino dominated models have problems with formation of
structure on small scales. However, in these scenarios the role of the chem-
ical potential of neutrinos was overlooked, while it could help solving both
problems.

3.2.1. Massive neutrino and structure formation

Lattanzi et al. (2003) have studied the possible role of massive neutrinos in
the large scale structure formation. Although now it is clear, that massive
light neutrinos cannot be the dominant part of the dark matter, their influ-
ence on the large scale structure formation should not be underestimated. In
particular, large lepton asymmetry, still allowed by observations, can affect
cosmological constraints on neutrino mass.

3.2.2. Cellular structure of the Universe

One of the interesting possibilities, from a conceptual point of view, is the
change from the description of the physical properties by a continuous func-
tion, to a new picture by introducing a self-similar fractal structure. This
approach has been relevant, since the concept of homogeneity and isotropy
formerly apply to any geometrical point in space and leads to the concept
of a Universe observer-homogeneous (Ruffini (1989)). Calzetti et al. (1987),
Giavalisco (1992), Calzetti et al. (1988) have defined the correlation length of
a fractal

r0 =
(

1− γ

3

)1/γ
RS, (3.2.1)

where RS is the sample size, γ = 3−D, and D is the Hausdorff dimension of
the fractal. Most challenging was the merging of the concepts of fractal, Jeans
mass of dark matter and the cellular structure in the Universe, advanced by
Ruffini et al. (1988). The cellular structure emerging from this study is repre-
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Figure 3.1.: Cellular structure of the Universe.

sented in Figure 3.1. There the upper cutoff in the fractal structure Rcutoff ≈
100 Mpc, was associated to the Jeans mass of the ”ino” Mcell =

(

mpl

mino

)2
mpl.

3.2.3. Lepton asymmetry of the Universe

Lattanzi et al. (2005), Lattanzi et al. (2006) studied how the cosmological con-
straints on neutrino mass are affected by the presence of a lepton asymmetry.
The main conclusion is that while constraints on neutrino mass do not change
by the inclusion into the cosmological model the dimensional chemical po-
tential of neutrino, as an additional parameter, the value of lepton asymmetry
allowed by the present cosmological data is surprisingly large, being

L = ∑
ν

nν − nν̄

nγ
. 0.9, (3.2.2)

Therefore, large lepton asymmetry is not ruled out by the current cosmologi-
cal data. Details see in Appendix C.
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3.3. Dark Matter in the Universe

3.3. Dark Matter in the Universe

The existence in the Universe of an exotic, non-luminous matter component,
the so-called dark matter (DM), is supported, at least indirectly, by a large
number of astrophysical and cosmological observations at different scales.
The most convincing and direct evidence for the existence of DM on galac-
tic scales comes from observations of the rotation curves of galaxies, that do
not have the shape that would be expected just in the presence of the lumi-
nous matter visible in the galaxy (see e.g. Begeman et al., 1991). A similar
discrepancy between the total mass, as estimated through dynamical means,
and the visible mass exists at the scale of galaxy clusters; in fact, the mass-to-
light ratio of galaxy clusters, as inferred from measurements of the velocity
dispersion of galaxies, exceeds the value in the solar neighborhood by two
orders of magnitude (see e.g. Bahcall and Fan, 1998). Finally, according to
the standard cosmological model, motivated by measurements of tempera-
ture anisotropies in the Cosmic Microwave Background (CMB) (Spergel et al.,
2003, 2007; Komatsu et al., 2009; Dunkley et al., 2009; Larson et al., 2010), the
large scale distribution of galaxies (Cole et al., 2005; Tegmark et al., 2006b),
and by evidence of the accelerated expansion of the Universe from super-
nova observations (Astier et al., 2006; Wood-Vasey et al., 2007), the Universe
is spatially flat and roughly 27% of its matter-energy content is made by non-
relativistic matter (the remaining 73% being given by an even more myste-
rious component with negative pressure, dubbed dark energy). However
these observations also indicate that only 4% is baryonic in nature, implying
that the remaining 23% consists of a non-baryonic component, i.e., the DM.
The fact that the evidences for this “missing mass” come from observations at
very different scales (ranging from the galactic scale ∼ 10kpc, up to the cos-
mological scales,∼ 103 Mpc) makes quite difficult to find alternative explana-
tions for these anomalies, although some (mainly modifications of Einstein’s
theory of gravity) are being considered by the scientific community.

Despite this compelling evidence for the existence of DM, its precise na-
ture is still a topic of debate. Even if there is no DM candidate in the frame-
work of the standard model of particle physics, there is definitely no shortage
of well-motivated candidates, since many particle physics theories predict
the existence of plausible DM candidates beyond the standard model. The
most intensely studied DM candidate is definitely the neutralino, a weakly-
interacting massive particle (WIMP) motivated by supersymmetric exten-
sions of the Standard Model of particle physics. In many of these extensions
the neutralino is the lightest supersymmetric particle (LSP). In theories where
the LSP is stable, for example theories where R-Parity is a conserved quan-
tum number (Weinberg, 1982), the neutralino is thus a highly-motivated DM
candidate. Furthermore, an attractive feature of neutralinos is that a large
region of the relevant supersymmetric parameter space can be investigated
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3. Brief description

using CERN’s Large Hadron Collider (LHC)1. A WIMP DM candidate also
appears in the framework of theories of extra-dimensions, like Kaluza-Klein
(KK) theories, and is usually represented by the first KK excitation of the
standard-model B boson. For a review on supersymmetric and KK dark mat-
ter, see Bertone et al. (2005). Other than WIMPs, there are many other can-
didates, like for example the sterile neutrino (Dodelson and Widrow, 1994)
and the axion (Weinberg, 1978; Wilczek, 1978). The axion is an exampe of a
pseudo Nambu-Goldstone boson, associated to the spontaneous breaking of
an (approximate) global symmetry, namely the Pecce-Quinn U(1) symmetry
necessary to solve the strong CP problem. The axion can also be incorpo-
rated in the framework of theories of supergravity (Gates et al., 2009) and of
gravity with torsion (Mercuri, 2009; Lattanzi and Mercuri, 2010). Another ex-
ample of a DM candidate of this kind is the Majoron (Akhmedov et al., 1992;
Berezinsky and Valle, 1993; Lattanzi and Valle, 2007; Bazzocchi et al., 2008; Lattanzi,
2010), namely the pseudo Nambu-Goldstone boson associated to the sponta-
neous breaking of lepton number, and possibly related to the mechanism of
neutrino mass generation.

However, all the evidences about the existence of DM are based on its grav-
itational influence. There is hope that in the next decade or so the dark mat-
ter particle will be detected either directly (by producing it in accelerators,
or revealing it in specifically-designed detection experiments) or indirectly
(through the observation of its decay/annihilation products in an astrophys-
ical or cosmological setting), thus shedding light on its nature.

The research line on DM can be divided in two sub-lines. The first one,
more oriented towards model building, deals with the study of specific DM
candidates, motivated by high-energy physics models, and with the con-
straints that cosmological observations put on their properties. The second
line, more phenomenological, deals with the prospects for indirect dark mat-
ter detection, either through the observations of its decay/annihilation prod-
ucts (electrons and positrons, photons, neutrinos) or through its heating and
ionization effects on the intergalactic medium.

3.3.1. Dark Matter Candidates

The research on this topic has focused on two particular candidates: the Ma-
joron and the Barbero-Immirzi (BI) axion. For details see Appendix E.

The Majoron. While solar and atmospheric neutrino experiments (Fukuda et al.,
1998; Ahmad et al., 2002; Eguchi et al., 2003) are confirmed by recent data
from reactors (Abe et al., 2008) and accelerators indicating unambiguously
that neutrinos oscillate and have mass (Maltoni et al., 2004), current limits on

1www.cern.ch/LHC

310



3.3. Dark Matter in the Universe

the absolute neutrino mass scale,

mν . 1 eV (3.3.1)

that follow from beta (Drexlin, 2005) and double beta decay studies (Avignone et al.,
2008), together with cosmological observations of the cosmic microwave back-
ground (CMB) (Komatsu et al., 2009; Dunkley et al., 2009) and large scale struc-
ture (Lesgourgues and Pastor, 2006) preclude neutrinos from playing a direct
role as dark matter, at least in the framework of the standard cosmological
model.

However, the mechanism of neutrino mass generation may provide the
clue to the origin and nature of DM. If neutrino masses arise from the sponta-
neous violation of ungauged lepton number there must exist a pseudoscalar
gauge singlet Nambu-Goldstone boson, the Majoron (Chikashige et al., 1981;
Schechter and Valle, 1982). This may pick up a mass from non-perturbative
gravitational effects that explicitly break global symmetries (Coleman, 1988;
Giddings and Strominger, 1988; Akhmedov et al., 1993). Despite the fact that
the majorons produced at the corresponding spontaneous L–violation phase
will decay, mainly to neutrinos, they could still provide a sizeable fraction of
the DM in the Universe since its couplings are rather tiny (Akhmedov et al.,
1992; Berezinsky and Valle, 1993) and thus its lifetime can be very long, of
the order of the age of the Universe. In Lattanzi and Valle (2007) and Lattanzi
(2010), the constraints on the Majoron mass and lifetime have been reassessed
in light of the more recent cosmological data. This has also allowed to put
constraints on the Majoron-neutrino coupling in the framework of a definite
see-saw model.

In general the Majoron has also a sub-dominant decay to two photons lead-
ing to a mono-energetic emission line which can be used as a test of the
Majoron scenario. Bazzocchi et al. (2008) have compared the expected pho-
ton emission rates with observations in order to obtain model-independent
restrictions on the relevant parameters, especially on the effective Majoron-
photon coupling.

The BI axion. One of the most successful attempts to construct a non-per-
turbative quantum theory of gravity is Loop Quantum Gravity (Ashtekar and Lewandowski,
2004). Its classical starting point is the Ashtekar-Barbero canonical formula-
tion of General Relativity (GR) (Ashtekar, 1987, 1986; Barbero G., 1995a,b),
which, classically, corresponds to a modification of the Hilbert-Palatini (HP)
action as demonstrated by Holst. This modification consists in adding to the
usual HP action a new term which vanishes on (half-)shell

S[e, ω] = SHP[e, ω] + SHol[e, ω] = − 1

16πG

∫

ea ∧ eb ∧ (⋆Rab + βRab) (3.3.2)
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where β is a constant known as Barbero-Immirzi (BI) parameter (Immirzi,
1997a,b). The parameter β is not fixed by the theory and its origin is still
debated. The quantum theory is, basically, the result of the Dirac quantization
procedure applied to the constraints of classical GR in the Ashtekar-Barbero
formulation.

Recently, Mercuri (2009) gave a general argument to provide the motiva-
tion to consider the BI parameter as a field. Furthermore, by identifying the
BI field with the QCD axion, the strong CP problem can be solved through the
Peccei–Quinn mechanism. A specific energy scale for the Peccei–Quinn sym-
metry breaking is naturally predicted by this model. Lattanzi and Mercuri
(2010) have shown that this provides a complete dynamical setting to evalu-
ate the contribution of such an axion to the DM of the Universe. Furthermore,
a tight upper bound on the tensor-to-scalar ratio production of primordial
gravitational waves can be fixed, representing a strong experimental test for
this model.

3.3.2. Indirect Detection of Dark Matter

The motivation for studying dark matter annihilation signatures (see e.g.
Bertone et al. (2005)) has received considerable recent attention following re-
ports of a 100 GeV excess in the PAMELA data on the ratio of the fluxes of cos-
mic ray positrons to electrons Adriani et al. (2009). In the absence of any com-
pelling astrophysical explanation, the signature is reminiscent of the origi-
nal prediction of a unique dark matter annihilation signal Silk and Srednicki
(1984), although there are several problems that demand attention before any
definitive statements can be made. By far the most serious of these is the
required annihilation boost factor. The remaining difficulties with a dark
matter interpretation, including most notably the gamma ray signals from
the Galactic Centre and the inferred leptonic branching ratio, are plausibly
circumvented or at least alleviated. Recent data from the ATIC balloon ex-
periment provides evidence for a cut-off in the positron flux near 500 GeV
that supports a KK-like candidate for the annihilating particle Chang et al.
(2008) or a neutralino with incorporation of suitable radiative corrections
(Bergstrom et al., 2008).

In a pioneering paper, it was noted (Profumo, 2005) that the annihilation
signal can be boosted by a combination of coannihilations and Sommerfeld
corrrection. We remark first that the inclusion of coannihilations to boost
the annihilation cross-section modifies the relic density, and opens the 1-10
TeV neutralino mass window to the observed (WMAP5-normalised) dark
matter density. As found by Lavalle et al. (2008), the outstanding problem
now becomes that of normalisation. A boost factor of around 100 is required
to explain the HEAT data in the context of a 100 GeV neutralino. The flux
is suppressed by between one and two powers of neutralino mass, and the
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problem becomes far more severe with the 1-10 TeV neutralino required by
the PAMELA/ATIC data (Cirelli et al., 2009b), a boost of 104 or more being
required. These latter authors included a Sommerfeld correction appropriate
to our β ≡ v/c = 0.001 dark halo and incorporated channel-dependent boost
factors to fit the data, but the required boosts still fell short of plausible values
by at least an order of magnitude.

Recently Lattanzi and Silk (2009) proposed a solution to the boost prob-
lem via Sommerfeld correction in the presence of a model of substructure
that incorporates a plausible phase space structure for CDM, also reassess-
ing the difficulty with the leptonic branching ratio and showing that it is not
insurmountable for SUSY candidates. They also evaluated the possibility of
independent confirmation via photon channels.

Then, Pieri et al. (2009b) studied the expected γ-ray flux from two local
dwarf galaxies for which Cherenkov Telescope measurements are available,
namely Draco and Sagittarius, incorporating the Sommerfeld enhancement
of the annihilation cross-section. They used recent stellar kinematical mea-
surements to model the dark matter halos of the dwarfs, and the results of
numerical simulations to model the presence of an associated population of
subhalos. They compared their predictions with the observations of Draco
and Sagittarius performed by MAGIC and HESS, respectively, and derived
exclusion limits on the effective annihilation cross-section. They also stud-
ied the sensitivities of Fermi and of the future Cherenkov Telescope Array to
cross-section enhancements. It is found that the boost factor due to the Som-
merfeld enhancement is already constrained by the MAGIC and HESS data,
with enhancements greater than ∼ 104 being excluded.

Another way to (indirectly) observe DM annihilations is to look for the
heating and ionization effects associated to the DM annihilation products.
In fact, some of the annihilation products (especially photons and electron-
positron pairs) can interact with the particles in the intergalactic medium
(IGM) and in this way alter the heating and ionization history of the IGM.
This leads to some observable consequences: for example, it changes the
optical depth to the last scattering surface, a quantity that can be measured
through the observations of the CMB anisotropy spectrum (Chen and Kamionkowski,
2004; Padmanabhan and Finkbeiner, 2005). Another possible observational
target is the 21 cm cosmic radiation, that is a powerful tracer of the abundance
and temperature of neutral hydrogen in the Universe (Barkana and Loeb,
2007; Madau et al., 1997). Recently, Cumberbatch et al. (2010) studied the 21
cm signature of different DM candidates, fully considering the enhancements
to the annihilation rate from DM halos and substructures within them, and
assessed the necessary level of sensitivity that experiments measuring the
global 21 cm signal should reach in order to detect the signatures of DM an-
nihilations, at least in the most optimistic scenarios. Details of the approaches
described are covered by Appendix F.
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3.4. Estimation of cosmological parameters

Precision measurement of the cosmological observables have led to believe
that we leave in a flat Friedmann Universe, seeded by nearly scale-invariant
adiabatic primordial fluctuations Komatsu et al. (2009). The majority (∼ 70%)
of the energy density of the Universe is in the form of a fluid with a cosmolog-
ical constant-like equation of state (w ∼ −1), dubbed dark energy, that is re-
sponsible for the observed acceleration of the Universe Frieman et al. (2008).
This so-called “concordance model” is adequately described by just six pa-
rameters, namely the baryon density, the cold dark matter density, the Hub-
ble constant, the reionization optical depth, the amplitude and the spectral
index of the primordial spectrum of density fluctuations. These parameters
are measured to a very high precision Komatsu et al. (2009).

However, even if the concordance model gives a very satisfactory fit of
all available data, it is worth to consider extended models and to constraint
their parameters. In some cases these extended models simply arise when
considering properties that, to a first approximation, can be neglected when
interpreting cosmological data. This is the case for parameters like the neu-
trino mass and the curvature of the Universe. Both are very small and can be
put to zero as a first approximation; however, allowing them to vary allows
to put useful constraints on their value. For recent constraints on the neutrino
mass from cosmology, see e.g. Melchiorri et al. (2010); Archidiacono et al.
(2010). Another example is given by the reionization history: in the con-
cordance model, this is assumed to happen istantaneously. A more realistic
description is definetely in order. These more realistic, and more general,
reionization scenarios can be constrained by the observations. It is also im-
portant to check how considering more general models impacts the determi-
nation of the concordance parameters (Pandolfi et al., 2010b,c). Models with
a non-standard spectrum of primordial perturbations have been considered
by Pandolfi et al. (2010a), also in relation to previous claims that in this class
of models the CMB observations can be fitted with ΩΛ = 0. Models with a
dynamical dark energy have been considered by Serra et al. (2009).

A second kind of extended models are those that, in a very general sense,
arise from some new physics. This is the case of models in which the funda-
mental constants are allowed to vary with time (Menegoni et al., 2009; Martins et al.,
2010; Menegoni et al., 2010; Menegoni, 2010) (for details see Appendix G).

314



4. Publications

4.1. Publications before 2005

1. R. Ruffini, D. J. Song, and L. Stella, “On the statistical distribution of
massive fermions and bosons in a Friedmann universe” Astronomy and
Astrophysics, Vol. 125, (1983) pp. 265-270.

The distribution function of massive Fermi and Bose particles in an expanding

universe is considered as well as some associated thermodynamic quantities,

pressure and energy density. These considerations are then applied to cosmo-

logical neutrinos. A new limit is derived for the degeneracy of a cosmological

gas of massive neutrinos.

2. R. Ruffini and D. J. Song, “On the Jeans mass of weakly interacting neu-
tral massive leptons”, in Gamow cosmology, eds. F. Melchiorri and R.
Ruffini, (1986) pp. 370–385.

The cosmological limits on the abundances and masses of weakly interacting

neutral particles are strongly affected by the nonzero chemical potentials of

these leptons. For heavy leptons (mx > GeV), the value of the chemical po-

tential must be much smaller than unity in order not to give very high values

of the cosmological density parameter and the mass of heavy leptons, or they

will be unstable. The Jeans’ mass of weakly interacting neutral particles could

give the scale of cosmological structure and the masses of astrophysical ob-

jects. For a mass of the order 10 eV, the Jeans’ mass could give the scenario

of galaxy formation, the supercluster forming first and then the smaller scales,

such as clusters and galaxies, could form inside the large supercluster.

3. D. Calzetti, M. Giavalisco, R. Ruffini, J. Einasto, and E. Saar, “The corre-
lation function of galaxies in the direction of the Coma cluster”, Astro-
physics and Space Science, Vol. 137 (1987) pp. 101-106.

Data obtained by Einasto et al. (1986) on the amplitude of the correlation func-

tion of galaxies in the direction of the Coma cluster are compared with theo-

retical predictions of a model derived for a self-similar observer-homogeneous

structure. The observational samples can be approximated by cones of angu-

lar width alpha of about 77 deg. Eliminating sources of large observational

error, and by making a specified correction, the observational data are found

to agree very well with the theoretical predictions of Calzetti et al. (1987).
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4. R. Ruffini, D. J. Song, and S. Taraglio, “The ’ino’ mass and the cellu-
lar large-scale structure of the universe”, Astronomy and Astrophysics,
Vol. 190, (1988) pp. 1-9.

Within the theoretical framework of a Gamow cosmology with massive ”inos”,

the authors show how the observed correlation functions between galaxies

and between clusters of galaxies naturally lead to a ”cellular” structure for the

Universe. From the size of the ”elementary cells” they derive constraints on

the value of the masses and chemical potentials of the cosmological ”inos”.

They outline a procedure to estimate the ”effective” average mass density of

the Universe. They also predict the angular size of the inhomogeneities to be

expected in the cosmological black body radiation as remnants of this cellular

structure. A possible relationship between the model and a fractal structure is

indicated.

5. D. Calzetti, M. Giavalisco, and R. Ruffini, “The normalization of the
correlation functions for extragalactic structures”, Astronomy and As-
trophysics, Vol. 198 (1988), pp. 1-15.

It is shown that the spatial two-point correlation functions for galaxies, clus-

ters and superclusters depend explicitly on the spatial volume of the statistical

sample considered. Rules for the normalization of the correlation functions are

given and the traditional classification of galaxies into field galaxies, clusters

and superclusters is replaced by the introduction of a single fractal structure,

with a lower cut-off at galactic scales. The roles played by random and stochas-

tic fractal components in the galaxy distribution are discussed in detail.

6. M. V. Arbolino and R. Ruffini, “The ratio between the mass of the halo
and visible matter in spiral galaxies and limits on the neutrino mass”,
Astronomy and Astrophysics, Vol. 192, (1988) pp. 107-116.

Observed rotation curves for galaxies with values of the visible mass ranging

over three orders of magnitude together with considerations involving equi-

librium configurations of massive neutrinos, impose constraints on the ratio

between the masses of visible and dark halo comporents in spiral galaxies.

Upper and lower limits are derived for the mass of the particles making up the

dark matter.

7. A. Bianconi, H. W. Lee, and R. Ruffini, “Limits from cosmological nu-
cleosynthesis on the leptonic numbers of the universe”, Astronomy and
Astrophysics, Vol. 241 (1991) pp. 343-357.

Constraints on chemical potentials and masses of ’inos’ are calculated using

cosmological standard nucleosynthesis processes. It is shown that the elec-

tron neutrino chemical potential (ENCP) should not be greater than a value of

the order of 1, and that the possible effective chemical potential of the other

neutrino species should be about 10 times the ENCP in order not to conflict
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with observational data. The allowed region (consistent with the He-4 abun-

dance observations) is insensitive to the baryon to proton ratio η, while those

imposed by other light elements strongly depend on η.

8. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair
electromagnetic pulse of a black hole with electromagnetic structure”,
Astronomy and Astrophysics, Vol. 350 (1999) pp. 334-343.

We study the relativistically expanding electron-positron pair plasma formed

by the process of vacuum polarization around an electromagnetic black hole

(EMBH). Such processes can occur for EMBH’s with mass all the way up to

6 · 105M⊙. Beginning with a idealized model of a Reissner-Nordstrom EMBH

with charge to mass ratio ξ = 0.1, numerical hydrodynamic calculations are

made to model the expansion of the pair-electromagnetic pulse (PEM pulse)

to the point that the system is transparent to photons. Three idealized special

relativistic models have been compared and contrasted with the results of the

numerically integrated general relativistic hydrodynamic equations. One of

the three models has been validated: a PEM pulse of constant thickness in the

laboratory frame is shown to be in excellent agreement with results of the gen-

eral relativistic hydrodynamic code. It is remarkable that this precise model,

starting from the fundamental parameters of the EMBH, leads uniquely to the

explicit evaluation of the parameters of the PEM pulse, including the energy

spectrum and the astrophysically unprecedented large Lorentz factors (up to

6 · 103 for a 103 M⊙ EMBH). The observed photon energy at the peak of the

photon spectrum at the moment of photon decoupling is shown to range from

0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total

energy in photons is in the range of 1052 to 1054 ergs, consistent with observed

gamma-ray bursts. In these computations we neglect the presence of baryonic

matter which will be the subject of forthcoming publications.

9. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair-
electromagnetic pulse from an electromagnetic black hole surrounded
by a baryonic remnant”, Astronomy and Astrophysics, Vol. 359 (2000)
pp. 855-864.

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with

a shell of baryonic matter surrounding a Black Hole with electromagnetic struc-

ture (EMBH) is analyzed for selected values of the baryonic mass at selected

distances well outside the dyadosphere of an EMBH. The dyadosphere, the

region in which a super critical field exists for the creation of e+e− pairs, is

here considered in the special case of a Reissner-Nordstrom geometry. The in-

teraction of the PEM pulse with the baryonic matter is described using a sim-

plified model of a slab of constant thickness in the laboratory frame (constant-

thickness approximation) as well as performing the integration of the general

relativistic hydrodynamical equations. Te validation of the constant-thickness

approximation, already presented in a previous paper Ruffini et al. (1999) for a

317



4. Publications

PEM pulse in vacuum, is here generalized to the presence of baryonic matter.

It is found that for a baryonic shell of mass-energy less than 1% of the total

energy of the dyadosphere, the constant-thickness approximation is in excel-

lent agreement with full general relativistic computations. The approximation

breaks down for larger values of the baryonic shell mass, however such cases

are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of

numerical computations of the slab model for PEM pulses, we describe (i) the

properties of relativistic evolution of a PEM pulse colliding with a baryonic

shell; (ii) the details of the expected emission energy and observed tempera-

ture of the associated GRBs for a given value of the EMBH mass; 103M⊙, and

for baryonic mass-energies in the range 10−8 to 10−2 the total energy of the

dyadosphere.

10. M. Lattanzi, R. Ruffini, and G. Vereshchagin, “On the possible role of
massive neutrinos in cosmological structure formation”, in Cosmology
and Gravitation, eds. M. Novello and S. E. Perez Bergliaffa, Vol. 668 of
AIP Conference Series, (2003) pp. 263–287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe

that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

4.2. Publications (2005 – 2009)

1. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of the
mildly relativistic plasma”, Physical Review D, Vol. 79 (2009) 043008.

In the recent Letter Aksenov et al. (2007) we considered the approach of nonequi-

librium pair plasma towards thermal equilibrium state adopting a kinetic treat-

ment and solving numerically the relativistic Boltzmann equations. It was

shown that plasma in the energy range 0.1-10 MeV first reaches kinetic equi-

librium, on a timescale tk . 10−14 sec, with detailed balance between binary

interactions such as Compton, Bhabha and Møller scattering, and pair produc-

tion and annihilation. Later the electron-positron-photon plasma approaches

thermal equilibrium on a timescale tth . 10−12 sec, with detailed balance for

all direct and inverse reactions. In the present paper we systematically present

details of the computational scheme used in Aksenov et al. (2007), as well as

generalize our treatment, considering proton loading of the pair plasma. When
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proton loading is large, protons thermalize first by proton-proton scattering,

and then with the electron-positron-photon plasma by proton-electron scatter-

ing. In the opposite case of small proton loading proton-electron scattering

dominates over proton-proton one. Thus in all cases the plasma, even with

proton admixture, reaches thermal equilibrium configuration on a timescale

tth . 10−11 sec. We show that it is crucial to account for not only binary but

also triple direct and inverse interactions between electrons, positrons, pho-

tons and protons. Several explicit examples are given and the corresponding

timescales for reaching kinetic and thermal equilibria are determined.

2. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
pair plasma with proton loading” in the Proceedings of “PROBING
STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE” meet-
ing, AIP Conference Proceedings 1111 (2009) 344-350.

We study kinetic evolution of nonequilibrium optically thick electron-positron

plasma towards thermal equilibrium solving numerically relativistic Boltz-

mann equations with energy per particle ranging from 0.1 to 10 MeV. We gen-

eralize our results presented in Aksenov et al. (2007), considering proton load-

ing of the pair plasma. Proton loading introduces new characteristic timescales

essentially due to proton-proton and proton-electron Coulomb collisions. Tak-

ing into account not only binary but also triple direct and inverse interactions

between electrons, positrons, photons and protons we show that thermal equi-

librium is reached on a timescale tth ≃ 10−11 sec.

3. M. Lattanzi, J. Silk “Can the WIMP annihilation boost factor be boosted
by the Sommerfeld enhancement? ”, in Phys. Rev. D79, 083523 (2009).

We demonstrate that the Sommerfeld correction to cold dark matter (CDM)

annihilations can be appreciable if even a small component of the dark matter

is extremely cold. Subhalo substructure provides such a possibility given that

the smallest clumps are relatively cold and contain even colder substructure

due to incomplete phase space mixing. Leptonic channels can be enhanced

for plausible models and the solar neighbourhood boost required to account

for PAMELA/ATIC data is plausibly obtained, especially in the case of a few

TeV mass neutralino for which the Sommerfeld-corrected boost is found to

be ∼ 104 − 105. Saturation of the Sommerfeld effect is shown to occur below

β ∼ 10−4, thereby making this result largely independent on the presence of

substructures below ∼ 105M⊙. We find that the associated diffuse gamma ray

signal from annihilations would exceed EGRET constraints unless the chan-

nels annihilating to heavy quarks or to gauge bosons are suppressed. The

lepton channel gamma rays are potentially detectable by the FERMI satellite,

not from the inner galaxy where substructures are tidally disrupted, but rather

as a quasi-isotropic background from the outer halo, unless the outer substruc-

tures are much less concentrated than the inner substructures and/or the CDM

density profile out to the virial radius steepens significantly.
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4. L. Pieri, M. Lattanzi, J. Silk “Constraining the Sommerfeld enhancement
with Cherenkov telescope observations of dwarf galaxies”, in Mon. Not.
Roy. Astron. Soc., 399, 2033 (2009).

The presence of dark matter in the halo of our galaxy could be revealed through

indirect detection of its annihilation products. Dark matter annihilation is one

possible interpretation of the recently measured excesses in positron and elec-

tron fluxes, provided that boost factors of the order of 103 or more are taken

into account. Such boost factors are actually achievable through the velocity-

dependent Sommerfeld enhancement of the annihilation cross-section. Here

we study the expected γ-ray flux from two local dwarf galaxies for which

Cherenkov Telescope measurements are available, namely Draco and Sagit-

tarius. We use recent stellar kinematical measurements to model the dark mat-

ter halos of the dwarfs, and the results of numerical simulations to model the

presence of an associated population of subhalos. We incorporate the Som-

merfeld enhancement of the annihilation cross-section. We compare our pre-

dictions with the observations of Draco and Sagittarius performed by MAGIC

and HESS, respectively, and derive exclusion limits on the effective annihila-

tion cross-section. We also study the sensitivities of Fermi and of the future

Cherenkov Telescope Array to cross-section enhancements. We find that the

boost factor due to the Sommerfeld enhancement is already constrained by

the MAGIC and HESS data, with enhancements greater than ∼ 104 being ex-

cluded.

5. M. Lattanzi, “Mass Varying Neutrinos: A model-independent approach”,
in Nucl. Phys. Proc. Suppl. 188, 40, (2009).

In Mass Varying Neutrinos (MaVaNs) models, the neutrinos are coupled with

the quintessence field supposed to be responsible for the acceleration of the

Universe. Here we propose a new parameterization for the neutrino mass

variation that is independent on the details of the scalar field potential and still

captures the essential of most MaVaNs models. We also find an upper limit on

the mass variation in the case of decreasing mass models, independent of the

particular parameterization.

6. U. Franca, M. Lattanzi, J. Lesgourgues, S. Pastor “Model independent
constraints on mass-varying neutrino scenarios”, in Phys. Rev. D80,
083506 (2009).

Models of dark energy in which neutrinos interact with the scalar field sup-

posed to be responsible for the acceleration of the universe usually imply a

variation of the neutrino masses on cosmological time scales. In this work we

propose a parameterization for the neutrino mass variation that captures the

essentials of those scenarios and allows to constrain them in a model indepen-

dent way, that is, without resorting to any particular scalar field model. Us-

ing WMAP 5yr data combined with the matter power spectrum of SDSS and
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2dFGRS, the limit on the present value of the neutrino mass is m0 ≡ mν(z =

0) < 0.43 (0.28) eV at 95% C.L. for the case in which the neutrino mass was

lighter (heavier) in the past, a result competitive with the ones imposed for

standard (i.e., constant mass) neutrinos. Moreover, for the ratio of the mass

variation of the neutrino mass ∆mν over the current mass m0 we found that

log[|∆mν|/m0] < −1.3 (−2.7) at 95% C.L. for ∆mν < 0 (∆mν > 0), totally
consistent with no mass variation.

7. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of
nonequilibrium electron-positron-photon plasmas”, Physical Review Let-
ters, Vol. 99 (2007) No 12, 125003.

Starting from a nonequilibrium configuration we analyze the role of the di-

rect and the inverse binary and triple interactions in reaching thermal equi-

librium in a homogeneous isotropic pair plasma. We focus on energies in the

range 0.1− 10 MeV. We numerically integrate the relativistic Boltzmann equa-

tion with the exact QED collisional integrals taking into account all binary and

triple interactions. We show that first, when a detailed balance is reached for

all binary interactions on a time scale tk < 10−14 sec, photons and electron-

positron pairs establish kinetic equilibrium. Subsequently, when triple inter-

actions satisfy the detailed balance on a time scale teq < 10−12 sec, the plasma

reaches thermal equilibrium. It is shown that neglecting the inverse triple in-

teractions prevents reaching thermal equilibrium. Our results obtained in the

theoretical physics domain also find application in astrophysics and cosmol-

ogy.

8. C.L. Bianco, R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Equations of
Motion and Initial and Boundary Conditions for Gamma-ray Burst”,
Journal of the Korean Physical Society, Vol. 49 (2006) No. 2, pp. 722-
731.

We compare and contrast the different approaches to the optically thick adia-

batic phase of GRB all the way to the transparency. Special attention is given

to the role of the rate equation to be self consistently solved with the rela-

tivistic hydrodynamic equations. The works of Shemi and Piran (1990), Piran,

Shemi and Narayan (1993), Meszaros, Laguna and Rees (1993) and Ruffini,

Salmonson, Wilson and Xue (1999,2000) are compared and contrasted. The role

of the baryonic loading in these three treatments is pointed out. Constraints

on initial conditions for the fireball produced by electro-magnetic black hole

are obtained.

9. P. Singh, K. Vandersloot and G.V. Vereshchagin, “Nonsingular bouncing
universes in loop quantum cosmology”, Physical Review D, Vol. 74
(2006) 043510.

Nonperturbative quantum geometric effects in loop quantum cosmology (LQC)

predict a ρ2 modification to the Friedmann equation at high energies. The
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quadratic term is negative definite and can lead to generic bounces when the

matter energy density becomes equal to a critical value of the order of the

Planck density. The nonsingular bounce is achieved for arbitrary matter with-

out violation of positive energy conditions. By performing a qualitative anal-

ysis we explore the nature of the bounce for inflationary and cyclic model po-

tentials. For the former we show that inflationary trajectories are attractors

of the dynamics after the bounce implying that inflation can be harmoniously

embedded in LQC. For the latter difficulties associated with singularities in

cyclic models can be overcome. We show that nonsingular cyclic models can

be constructed with a small variation in the original cyclic model potential by

making it slightly positive in the regime where scalar field is negative.

10. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, “Joint constraints on the
lepton asymmetry of the Universe and neutrino mass from the Wilkin-
son Microwave Anisotropy Probe”, Physical Review D, Vol. 72 (2005)
063003.

We use the Wilkinson Microwave Anisotropy Probe (WMAP) data on the spec-

trum of cosmic microwave background anisotropies to put constraints on the

present amount of lepton asymmetry L, parametrized by the dimensionless

chemical potential (also called degeneracy parameter) xi and on the effective

number of relativistic particle species. We assume a flat cosmological model

with three thermally distributed neutrino species having all the same mass

and chemical potential, plus an additional amount of effectively massless ex-

otic particle species. The extra energy density associated to these species is

parametrized through an effective number of additional species ∆Nothers
e f f .

We find that 0 < |ξ| < 1.1 and correspondingly 0 < |L| < 0.9 at 2σ, so that

WMAP data alone cannot firmly rule out scenarios with a large lepton number;

moreover, a small preference for this kind of scenarios is actually found. We

also discuss the effect of the asymmetry on the estimation of other parameters

and, in particular, of the neutrino mass. In the case of perfect lepton symmetry,

we obtain the standard results. When the amount of asymmetry is left free, we

find at 2sigma. Finally we study how the determination of |L| is affected by

the assumptions on ∆N
e f f
others. We find that lower values of the extra energy

density allow for larger values of the lepton asymmetry, effectively ruling out,

at 2sigma level, lepton symmetric models with ∆N
e f f
others ≃ 0.

11. G.V. Vereshchagin, “Gauge Theories of Gravity with the Scalar Field in
Cosmology”, in “Frontiers in Field Theory”, edited by O. Kovras, Nova
Science Publishers, New York, (2005), pp. 213-255 (ISBN: 1-59454-127-
2).

Brief introduction into gauge theories of gravity is presented. The most general

gravitational lagrangian including quadratic on curvature, torsion and non-

metricity invariants for metric-affine gravity is given. Cosmological implica-
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tions of gauge gravity are considered. The problem of cosmological singularity

is discussed within the framework of general relativity as well as gauge theo-

ries of gravity. We consider the role of scalar field in connection to this prob-

lem. Initial conditions for nonsingular homogeneous isotropic Universe filled

by single scalar field are discussed within the framework of gauge theories of

gravity. Homogeneous isotropic cosmological models including ultrarelativis-

tic matter and scalar field with gravitational coupling are investigated. We

consider different symmetry states of effective potential of the scalar field, in

particular restored symmetry at high temperatures and broken symmetry. Ob-

tained bouncing solutions can be divided in two groups, namely nonsingular

inflationary and

oscillating solutions. It is shown that inflationary solutions exist for quite gen-

eral initial conditions like in the case of general relativity. However, the phase

space of the dynamical system, corresponding to the cosmological equations

is bounded. Violation of the uniqueness of solutions on the boundaries of the

phase space takes place. As a result, it is impossible to define either the past

or the future for a given solution. However, definitely there are singular solu-

tions and therefore the problem of cosmological singularity cannot be solved

in models with the scalar field within gauge theories of gravity.

12. R. Ruffini, M. G. Bernardini, C. L. Bianco, L. Caito, P. Chardonnet, M.
G. Dainotti, F. Fraschetti, R. Guida, M. Rotondo, G. Vereshchagin, L.
Vitagliano, S.-S. Xue,
”The Blackholic energy and the canonical Gamma-Ray Burst” in Cos-
mology and Gravitation: XIIth Brazilian School of Cosmology and Grav-
itation, edited by M. Novello and S.E. Perez Bergliaffa, AIP Conference
Proceedings, Vol. 910, Melville, New York, 2007, pp. 55-217.

Gamma-Ray Bursts (GRBs) represent very likely “the” most extensive com-

putational, theoretical and observational effort ever carried out successfully

in physics and astrophysics. The extensive campaign of observation from

space based X-ray and γ-ray observatory, such as the Vela, CGRO, BeppoSAX,

HETE-II, INTEGRAL, Swift, R-XTE, Chandra, XMM satellites, have been matched

by complementary observations in the radio wavelength (e.g. by the VLA)

and in the optical band (e.g. by VLT, Keck, ROSAT). The net result is unprece-

dented accuracy in the received data allowing the determination of the ener-

getics, the time variability and the spectral properties of these GRB sources.

The very fortunate situation occurs that these data can be confronted with a

mature theoretical development. Theoretical interpretation of the above data

allows progress in three different frontiers of knowledge: a) the ultrarelativis-

tic regimes of a macroscopic source moving at Lorentz gamma factors up to

∼ 400; b) the occurrence of vacuum polarization process verifying some of the

yet untested regimes of ultrarelativistic quantum field theories; and c) the first

evidence for extracting, during the process of gravitational collapse leading to

the formation of a black hole, amounts of energies up to 1055 ergs of black-
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holic energy — a new form of energy in physics and astrophysics. We outline

how this progress leads to the confirmation of three interpretation paradigms

for GRBs proposed in July 2001. Thanks mainly to the observations by Swift

and the optical observations by VLT, the outcome of this analysis points to the

existence of a “canonical” GRB, originating from a variety of different initial

astrophysical scenarios. The communality of these GRBs appears to be that

they all are emitted in the process of formation of a black hole with a negligi-

ble value of its angular momentum. The following sequence of events appears

to be canonical: the vacuum polarization process in the dyadosphere with the

creation of the optically thick self accelerating electron-positron plasma; the

engulfment of baryonic mass during the plasma expansion; adiabatic expan-

sion of the optically thick “fireshell” of electron-positron-baryon plasma up

to the transparency; the interaction of the accelerated baryonic matter with

the interstellar medium (ISM). This leads to the canonical GRB composed of a

proper GRB (P-GRB), emitted at the moment of transparency, followed by an

extended afterglow. The sole parameters in this scenario are the total energy of

the dyadosphere Edya, the fireshell baryon loading MB defined by the dimen-

sionless parameter B = MBc2/Edya , and the ISM filamentary distribution

around the source. In the limit B −→ 0 the total energy is radiated in the P-

GRB with a vanishing contribution in the afterglow. In this limit, the canonical

GRBs explain as well the short GRBs. In these lecture notes we systematically

outline the main results of our model comparing and contrasting them with

the ones in the current literature. In both cases, we have limited ourselves to

review already published results in refereed publications. We emphasize as

well the role of GRBs in testing yet unexplored grounds in the foundations of

general relativity and relativistic field theories.

13. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, ”Do WMAP data con-
straint the lepton asymmetry of the Universe to be zero?” in Albert Ein-
stein Century International Conference, edited by J.-M. Alimi, and A.
Füzfa, AIP Conference Proceedings, Vol. 861, Melville, New York, 2006,
pp.912-919.

It is shown that extended flat ΛCDM models with massive neutrinos, a size-

able lepton asymmetry and an additional contribution to the radiation content

of the Universe, are not excluded by the Wilkinson Microwave Anisotropy

Probe (WMAP) first year data. We assume a flat cosmological model with

three thermally distributed neutrino species having all the same mass and

chemical potential, plus an additional amount of effectively massless exotic

particle species X. After maximizing over seven other cosmological parame-

ters, we derive from WMAP first year data the following constraints for the

lepton asymmetry L of the Universe (95% CL): 0 < |L| < 0.9, so that WMAP

data alone cannot firmly rule out scenarios with a large lepton number; more-

over, a small preference for this kind of scenarios is actually found. We also

find for the neutrino mass mν < 1.2eV and for the effective number of rela-
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tivistic particle species −0.45 < ∆Ne f f < 2.10, both at 95% CL. The limit on

∆Ne f f is more restrictive man others found in the literature, but we argue that

this is due to our choice of priors.

14. R. Ruffini, C.L. Bianco, G.V. Vereshchagin, S.-S. Xue “Baryonic loading
and e+e− rate equation in GRB sources” to appear in the proceedings
of ”Relativistic Astrophysics and Cosmology - Einstein’s Legacy” Meet-
ing, November 7-11, 2005, Munich, Germany.

The expansion of the electron-positron plasma in the GRB phenomenon is

compared and contrasted in the treatments of Meszaros, Laguna and Rees, of

Shemi, Piran and Narayan, and of Ruffini et al. The role of the correct numeri-

cal integration of the hydrodynamical equations, as well as of the rate equation

for the electron-positron plasma loaded with a baryonic mass, are outlined and

confronted for crucial differences.

15. G.V. Vereshchagin, M. Lattanzi, H.W. Lee, R. Ruffini, ”Cosmological
massive neutrinos with nonzero chemical potential: I. Perturbations in
cosmological models with neutrino in ideal fluid approximation”, in
proceedings of the Xth Marcel Grossmann Meeting on Recent Develop-
ments in Theoretical and Experimental General Relativity, World Scien-
tific: Singapore, 2005, vol. 2, pp. 1246-1248.

Recent constraints on neutrino mass and chemical potential are discussed with

application to large scale structure formation. Power spectra in cosmologi-

cal model with hot and cold dark matter, baryons and cosmological term are

calculated in newtonian approximation using linear perturbation theory. All

components are considered to be ideal fluids. Dissipative processes are taken

into account by initial spectrum of perturbations so the problem is reduced to

a simple system of equations. Our results are in good agreement with those

obtained before using more complicated treatments.

16. M. Lattanzi, H.W. Lee, R. Ruffini, G.V. Vereshchagin, ”Cosmological
massive neutrinos with nonzero chemical potential: II. Effect on the es-
timation of cosmological parameters”, in proceedings of the Xth Marcel
Grossmann Meeting on Recent Developments in Theoretical and Exper-
imental General Relativity, World Scientific: Singapore, 2005, vol. 2, pp.
1255-1257.

The recent analysis of the cosmic microwave background data carried out by

the WMAP team seems to show that the sum of the neutrino mass is ¡ 0.7 eV.

However, this result is not model-independent, depending on precise assump-

tions on the cosmological model. We study how this result is modified when

the assumption of perfect lepton symmetry is dropped out.

17. R. Ruffini, M. Lattanzi and G. Vereshchagin, ”On the possible role of
massive neutrinos in cosmological structure formation” in Cosmology
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and Gravitation: Xth Brazilian School of Cosmology and Gravitation,
edited by M. Novello and S.E. Perez Bergliaffa, AIP Conference Pro-
ceedings, Vol. 668, Melville, New York, 2003, pp.263-287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe

that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

18. A.G. Aksenov, C.L. Bianco, R. Ruffini and G.V. Vereshchagin, “GRBs
and the thermalization process of electron-positron plasmas” in the Pro-
ceedings of the ”Gamma Ray Bursts 2007” meeting, AIP Conf.Proc.
1000 (2008) 309-312.

We discuss temporal evolution of the pair plasma, created in Gamma-Ray

Bursts sources. A particular attention is paid to the relaxation of plasma into

thermal equilibrium. We also discuss the connection between the dynamics of

expansion and spatial geometry of plasma. The role of the baryonic loading

parameter is emphasized.

19. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
Electron-Positron-Photon Plasmas with an Application to GRB” in REL-
ATIVISTIC ASTROPHYSICS: 4th Italian-Sino Workshop, AIP Confer-
ence Proceedings, Vol. 966, Melville, New York, 2008, pp. 191-196.

The pair plasma with photon energies in the range 0.1− 10MeV is believed

to play crucial role in cosmic Gamma-Ray Bursts. Starting from a nonequilib-

rium configuration we analyze the role of the direct and the inverse binary and

triple interactions in reaching thermal equilibrium in a homogeneous isotropic

pair plasma.We numerically integrate the relativistic Boltzmann equation with

the exact QED collisional integrals taking into account all binary and triple in-

teractions. We show that first, when a detailed balance is reached for all bi-

nary interactions on a time scale tk= 10−14sec , photons and electronpositron

pairs establish kinetic equilibrium. Subsequently, when triple interactions sat-

isfy the detailed balance on a time scale teq= 10−12sec , the plasma reaches

thermal equilibrium. It is shown that neglecting the inverse triple interactions

prevents reaching thermal equilibrium. Our results obtained in the theoretical

physics domain also find application in astrophysics and cosmology.

20. R. Ruffini, and G. V. Vereshchagin, S.-S. Xue, “Vacuum Polarization
and Electron-Positron Plasma Oscillations” in RELATIVISTIC ASTRO-
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PHYSICS: 4th Italian-Sino Workshop, AIP Conference Proceedings, Vol.
966, Melville, New York, 2008, pp. 207-212.

We study plasma oscillations of electrons-positron pairs created by the vacuum

polarization in an uniform electric field. Our treatment, encompassing the

case of E > Ec, shows also in the case E < Ecthe existence of a maximum

Lorentz factor acquired by electrons and positrons and allows determination

of the a maximal length of oscillation. We quantitatively estimate how plasma

oscillations reduce the rate of pair creation and increase the time scale of the

pair production.

4.3. Publications (2010)

1. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Pair plasma relax-
ation time scales”, Physical Review E, Vol. 81 (2010) 046401.

By numerically solving the relativistic Boltzmann equations, we compute the

time scale for relaxation to thermal equilibrium for an optically thick electron-

positron plasma with baryon loading. We focus on the time scales of elec-

tromagnetic interactions. The collisional integrals are obtained directly from

the corresponding QED matrix elements. Thermalization time scales are com-

puted for a wide range of values of both the total energy density (over 10 or-

ders of magnitude) and of the baryonic loading parameter (over 6 orders of

magnitude). This also allows us to study such interesting limiting cases as the

almost purely electron-positron plasma or electron-proton plasma as well as

intermediate cases. These results appear to be important both for laboratory

experiments aimed at generating optically thick pair plasmas as well as for

astrophysical models in which electron-positron pair plasmas play a relevant

role.

2. R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Electron-positron pairs in
physics and astrophysics: from heavy nuclei to black holes” Physics
Reports, Vol. 487 (2010) No 1-4, pp. 1-140.

From the interaction of physics and astrophysics we are witnessing in these

years a splendid synthesis of theoretical, experimental and observational re-

sults originating from three fundametal physical processes. They were origi-

nally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg, Eu-

ler and Schwinger. For almost seventy years they have all three been followed

by a continued effort of experimental verification on Earth-based experiments.

The Dirac process, e+e− → 2γ, has been by far the most successful. It has ob-

tained extremely accurate experimental verification and has led as well to an

enormous number of new physics in possibly one of the most fruitful experi-

mental avenue by introduction of storage rings in Frascati and followed by the

largest accelerators worldwide: DESY, SLAC etc. The Breit-Wheeler process,
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2γ → e+e−, although conceptually simple, being the inverse process of the

Dirac one, has been by far one of the most difficult to be verified experimen-

tally. Only recently, through the technology based on free electron X-ray laser

and its numerous applications in Earth-based experiments, some first indica-

tions of its possible verification have been reached. The vacuum polarization

process in strong electromagnetic field, pioneered by Sauter, Heisenberg, Euler

and Schwinger, introduced the concept of critical electric field Ec = m2
e c3/eh̄.

It has been searched without success for more than forty years by heavy-ion

collisions in many of the leading particle accelerators worldwide. The novel

situation today is that these same processes can be studied on a much more

grandiose scale during the gravitational collapse leading to the formation of a

black hole being observed in Gamma Ray Bursts (GRBs). This report is ded-

icated to the scientific race in act. The theoretical and experimental work de-

veloped in Earth-based laboratories is confronted with the theoretical interpre-

tation of space-based observations of phenomena originating on cosmological

scales. What has become clear in the last ten years is that all the three above

mentioned processes, duly extended in the general relativistic framework, are

necessary for the understanding of the physics of the gravitational collapse to a

black hole. Vice versa, the natural arena where these processes can be observed

in mutual interaction and on an unprecedented scale, is indeed the realm of rel-

ativistic astrophysics. We systematically analyze the conceptual developments

which have followed the basic work of Dirac and Breit-Wheeler. We also recall

how the seminal work of Born and Infeld inspired the work by Sauter, Heisen-

berg and Euler on effective Lagrangian leading to the estimate of the rate for

the process of electron-positron production in a constant electric field. In ad-

dition of reviewing the intuitive semi-classical treatment of quantum mechan-

ical tunneling for describing the process of electron-positron production, we

recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and

effective Lagrangian for constant electromagnetic fields. We also review the

electron-positron production in both time-alternating electromagnetic fields,

studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the corre-

sponding processes relevant for pair production at the focus of coherent laser

beams as well as electron beam-laser collision. We finally report some cur-

rent developments based on the general JWKB approach which allows to com-

pute the Schwinger rate in spatially varying and time varying electromagnetic

fields. We also recall the pioneering work of Landau and Lifshitz, and Racah

on the collision of charged particles as well as experimental success of AdA

and ADONE in the production of electron-positron pairs. We then turn to the

possible experimental verification of these phenomena. We review: A) the ex-

perimental verification of the e+e− → 2γ process studied by Dirac. We also

briefly recall the very successful experiments of e+e− annihilation to hadronic

channels, in addition to the Dirac electromagnetic channel; B) ongoing Earth

based experiments to detect electron-positron production in strong fields by

focusing coherent laser beams and by electron beam-laser collisions; and C) the
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multiyear attempts to detect electron-positron production in Coulomb fields

for a large atomic number Z > 137 in heavy ion collisions. These attempts

follow the classical theoretical work of Popov and Zeldovich, and Greiner and

their schools. We then turn to astrophysics. We first review the basic work

on the energetics and electrodynamical properties of an electromagnetic black

hole and the application of the Schwinger formula around Kerr-Newman black

holes as pioneered by Damour and Ruffini. We only focus on black hole masses

larger than the critical mass of neutron stars, for convenience assumed to coin-

cide with the Rhoades and Ruffini upper limit of 3.2M⊙. In this case the elec-

tron Compton wavelength is much smaller than the spacetime curvature and

all previous results invariantly expressed can be applied following well estab-

lished rules of the equivalence principle. We derive the corresponding rate of

electron-positron pair production and the introduction of the concept of Dya-

dosphere. We review recent progress in describing the evolution of optically

thick electron-positron plasma in presence of supercritical electric field, which

is relevant both in astrophysics as well as ongoing laser beam experiments. In

particular we review recent progress based on the Vlasov-Boltzmann-Maxwell

equations to study the feedback of the created electron-positron pairs on the

original constant electric field. We evidence the existence of plasma oscillations

and its interaction with photons leading to energy and number equipartition

of photons, electrons and positrons. We finally review the recent progress ob-

tained by using the Boltzmann equations to study the evolution of an electron-

positron-photon plasma towards thermal equilibrium and determination of

its characteristic timescales. The crucial difference introduced by the correct

evaluation of the role of two and three body collisions, direct and inverse, is

especially evidenced. We then present some general conclusions. The results

reviewed in this report are going to be submitted to decisive tests in the forth-

coming years both in physics and astrophysics. To mention only a few of the

fundamental steps in testing in physics we recall the starting of experimental

facilities at the National Ignition Facility at the Lawrence Livermore National

Laboratory as well as corresponding French Laser the Mega Joule project. In

astrophysics these results will be tested in galactic and extragalactic black holes

observed in binary X-ray sources, active galactic nuclei, microquasars and in

the process of gravitational collapse to a neutron star and also of two neutron

stars to a black hole giving origin to GRBs. The astrophysical description of

the stellar precursors and the initial physical conditions leading to a gravita-

tional collapse process will be the subject of a forthcoming report. As of today

no theoretical description has yet been found to explain either the emission of

the remnant for supernova or the formation of a charged black hole for GRBs.

Important current progress toward the understanding of such phenomena as

well as of the electrodynamical structure of neutron stars, the supernova ex-

plosion and the theories of GRBs will be discussed in the above mentioned

forthcoming report. What is important to recall at this stage is only that both

the supernovae and GRBs processes are among the most energetic and tran-
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sient phenomena ever observed in the Universe: a supernova can reach energy

of ˜1054 ergs on a time scale of a few months and GRBs can have emission of

up to ˜1054 ergs in a time scale as short as of a few seconds. The central role

of neutron stars in the description of supernovae, as well as of black holes and

the electron-positron plasma, in the description of GRBs, pioneered by one of

us (RR) in 1975, are widely recognized. Only the theoretical basis to address

these topics are discussed in the present report.

3. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Kinetics of the
Mildly Relativistic Plasma and GRBs” in the Proceedings of “The Sun,
the stars, the Universe and General Relativity” meeting in honor of 95th
Anniversary of Ya. B. Zeldovich in Minsk, AIP Conference Proceedings
1205 (2010) 11-16.

We consider optically thick photon-pair-proton plasma in the framework of

Boltzmann equations. For the sake of simplicity we consider the uniform and

isotropic plasma. It has been shown that arbitrary initial distribution functions

evolve to the thermal equilibrium state through so called kinetic equilibrium

state with common temperature of all particles and nonzero chemical poten-

tials. For the plasma temperature 0.1− 10 MeV relevant for GRB (Gamma-

Ray Burst) sources we evaluate the thermalization time scale as function of

total energy density and baryonic loading parameter.

4. D. Cumberbatch, M. Lattanzi, J. Silk, “Signatures of clumpy dark matter
in the global 21 cm background signal ”, in Phys. Rev. D82, 103508
(2010).

We examine the extent to which the self-annihilation of supersymmetric neu-

tralino dark matter, as well as light dark matter, influences the rate of heating,

ionisation and Lyman-α pumping of interstellar hydrogen and helium and the

extent to which this is manifested in the 21 cm global background signal. We

fully consider the enhancements to the annihilation rate from DM halos and

substructures within them. We find that the influence of such structures can re-

sult in significant changes in the differential brightness temperature, δTb. The

changes at redsfhits z < 25 are likely to be undetectable due to the presence

of the astrophysical signal; however, in the most favourable cases, deviations

in δTb, relative to its value in the absence of self-annihilating DM, of up to

≃ 20 mK at z = 30 can occur. Thus we conclude that, in order to exclude

these models, experiments measuring the global 21 cm signal, such as EDGES

and CORE, will need to reduce the systematics at 50 MHz to below 20 mK.

5. M. Lattanzi, S. Mercuri, “A solution of the strong CP problem via the
Peccei-Quinn mechanism through the Nieh-Yan modified gravity and
cosmological implications” in Phys. Rev. D81, 125015 (2010). By identi-

fying the recently introduced Barbero–Immirzi field with the QCD axion, the

strong CP problem can be solved through the Peccei–Quinn mechanism. A
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specific energy scale for the Peccei–Quinn symmetry breaking is naturally pre-

dicted by this model. This provides a complete dynamical setting to evalu-

ate the contribution of such an axion to the cold dark matter content of the

Universe. Furthermore, a tight upper bound on the tensor-to-scalar ratio pro-

duction of primordial gravitational waves can be fixed, representing a strong

experimental test for this model.

6. S. Pandolfi, E. Giusarma, M. Lattanzi, A. Melchiorri, “Inflation with pri-
mordial broken power law spectrum as an alternative to the concor-
dance cosmological model” in Phys. Rev. D81, 103007 (2010).

We consider cosmological models with a non scale-invariant spectrum of pri-

mordial perturbations and assess whether they represent a viable alternative

to the concordance ΛCDM model. We find that in the framework of a model

selection analysis, the WMAP and 2dF data do not provide any conclusive evi-

dence in favour of one or the other kind of model. However, when a marginal-

ization over the entire space of nuisance parameters is performed, models with

a modified primordial spectrum and ΩΛ = 0 are strongly disfavoured.

7. M. Lattanzi, “The majoron: a new dark matter candidate ”in J. Kor.
Phys. Soc 56, 1677 (2010).

We review our recent proposal of the majoron as a suitable dark matter candi-

date. The majoron is the Goldstone boson associated to the spontaneous break-

ing of ungauged lepton number, one of the mechanisms proposed to give rise

to neutrino masses. The majoron can acquire a mass through quantum gravity

effects, and can possibly account for the observed dark matter component of

the Universe. The majoron dark matter scenario is consistent with the current

observations of the cosmic microwave background anisotropy provided that

its lifetime τ & 250 Gyr. In the case of thermal production, the majoron should

lie in the range 0.13 keV < mJ < 0.17 keV, although these limits are modified

in the non-thermal case. Applying this results to a given seesaw model for

the generation of neutrino masses, it is found that the energy scale for the lep-

ton number breaking phase transition is constrained to be EL & 106 GeV. We

thus find that the majoron decaying dark matter (DDM) scenario fits nicely in

models where neutrino masses arise a la seesaw, and may lead to other possible

cosmological implications.

8. M. Archidiacono, A. Cooray, A. Melchiorri, S. Pandolfi, “CMB neutrino
mass bounds and reionization”, Phys. Rev. D 82, 087302 (2010).

Abstract: Current cosmic microwave background (CMB) bounds on the sum

of the neutrino masses assume a sudden reionization scenario described by a

single parameter that determines the onset of reionization. We investigate the

bounds on the neutrino mass in a more general reionization scenario based on

a principal component approach. We found the constraint on the sum of the

neutrino masses from CMB data can be relaxed by a ∼ 40% in a generalized
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reionization scenario. Moreover, the amplitude of the r.m.s. mass fluctuations

σ8is also considerably lower providing a better consistency with a low ampli-

tude of the Sunyaev-Zel’dovich signal.

9. S. Pandolfi, A.Cooray, E.Giusarma, E.W.Kolb, A.Melchiorri, O.Mena
and P.Serra, “Harrison-Zel’dovich primordial spectrum is consistent with
observations”, Phys. Rev. D 81, 123509 (2010).

Abstract: Inflation predicts primordial scalar perturbations with a nearly scale-

invariant spectrum and a spectral index approximately unity (the Harrison–

Zel’dovich (HZ) spectrum). The first important step for inflationary cosmol-

ogy is to check the consistency of the HZ primordial spectrum with current

observations. Recent analyses have claimed that a HZ primordial spectrum is

excluded at more than 99% c.l.. Here we show that the HZ spectrum is only

marginally disfavored if one considers a more general reionization scenario.

Data from the Planck mission will settle the issue.

10. P. Serra, A. Cooray, D. E. Holz, A. Melchiorri, S. Pandolfi, and D. Sarkar,
“No evidence for dark energy dynamics from a global analysis of cos-
mological data”, Phys. Rev. D 80, 121302 (2009).

Abstract: We use a variant of principal component analysis to investigate the

possible temporal evolution of the dark energy equation of state, w(z). We

constrain w(z) in multiple redshift bins, utilizing the most recent data from

Type Ia supernovae, the cosmic microwave background, baryon acoustic oscil-

lations, the integrated Sachs-Wolfe effect, galaxy clustering, and weak lensing

data. Unlike other recent analyses, we find no significant evidence for evolving

dark energy; the data remains completely consistent with a cosmological con-

stant. We also study the extent to which the time-evolution of the equation of

state would be constrained by a combination of current- and future-generation

surveys, such as Planck and the Joint Dark Energy Mission.

11. E. Menegoni, S. Pandolfi, S. Galli, M. Lattanzi, A. Melchiorri “Con-
straints on the dark energy equation of state in presence of a varying
fine structure constant” in Int. J. Mod. Phys D19, 507 (2010).

We discuss the cosmological constraints on the dark energy equation of state

in the pres- ence of primordial variations in the fine structure constant. We

find that the constraints from CMB data alone on w and the Hubble constant

are much weaker when variations in the fine structure constant are permitted.

Vice versa, constraints on the fine struc- ture constant are relaxed by more

than 50% when dark energy models different from a cosmological constant are

considered.

12. C.J.A.P. Martins, E. Menegoni, S. Galli and A. Melchiorri, “Varying cou-
plings in the early universe: correlated variations of α and G, Physical
Review D 82 023532 (2010)
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The cosmic microwave background anisotropies provide a unique opportu-

nity to constrain simultaneous variations of the fine-structure constant α and

Newton’s gravitational constant G. Those correlated variations are possible

in a wide class of theoretical models. In this brief paper we show that the

current data, assuming that particle masses are constant, give no clear indi-

cation for such variations, but already prefer that any relative variations in α

should be of the same sign of those of G for variations of 1%. We also show

that a cosmic complementarity is present with big bang nucleosynthesis and

that a combination of current CMB and big bang nucleosynthesis data strongly

constraints simultaneous variations in α and G. We finally discuss the future

bounds achievable by the Planck satellite mission.

13. E. Menegoni, “New Constraints on Variations of Fine Structure Con-
stant from Cosmic Microwave Background Anisotropies”, GRAVITA-
TIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO
COSMIC: Proceedings of the VIII Mexican School on Gravitation and
Mathematical Physics. AIP Conference Proceedings, Volume 1256, pp.
288-292 (2010).

The recent measurements of Cosmic Microwave Background temperature and

polarization anisotropy made by the ACBAR, QUAD and BICEP experiments

substantially improve the cosmological constraints on possible variations of

the fine structure constant in the early universe. In this work I analyze this

recent data obtaining the constraint α/α0 = 0.987+/-0.012 at 68% c.l.. The in-

clusion of the new HST constraints on the Hubble constant further increases

the bound to α/α0 = 1.001+/-0.007 at 68% c.l., bringing possible deviations

from the current value below the 1% level.

14. A. Melchiorri, F. De Bernardis, E. Menegoni, “Limits on the neutrino
mass from cosmology”. GRAVITATIONAL PHYSICS: TESTING GRAV-
ITY FROM SUBMILLIMETER TO COSMIC: Proceedings of the VIII Mex-
ican School on Gravitation and Mathematical Physics. AIP Conference
Proceedings, Volume 1256, pp. 96-106 (2010).

We use measurements of luminosity-dependent galaxy bias at several different

redshifts, SDSS at z = 0.05, DEEP2 at z = 1 and LBGs at z = 3.8, combined with

WMAP five-year cosmic microwave background anisotropy data and SDSS

Red Luminous Galaxy survey three-dimensional clustering power spectrum

to put constraints on cosmological parameters.

4.4. Invited talks at international conferences

1. “Thermalization of the pair plasma”

(with A.G. Aksenov and R. Ruffini)
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Korean Physical Society 2010 Fall Meeting, Pyeong-chang, Korea, 20-22
October, 2010.

2. “The spatial structure of expanding optically thick relativistic plasma
and the onset of GRBs”

(with A.G. Aksenov, G. de Barros and R. Ruffini)

GRB 2010 / Dall’eV al TeV tutti i colori dei GRB, Secondo Congresso
Italiano sui Gamma-ray Burst, Cefalu’ 15-18 Giugno 2010.

3. “From thermalization mechanisms to emission processes in GRBs”

(G.V. Vereshchagin)

XII Marcel Grossmann Meeting, Paris, 12-18 July 2009.

4. “Kinetics of the mildly relativistic plasma and GRBs”

(A.G. Aksenov R. Ruffini, and G.V. Vereshchagin)

“The Sun, the Stars, the Universe, and General Relativity” - Interna-
tional conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk,
Belarus, April 19-23, 2009.

5. “Pair plasma around compact astrophysical sources: kinetics, electro-
dynamics and hydrodynamics”

(G.V. Vereshchagin and R. Ruffini)

Invited seminar at RMKI, Budapest, February 24, 2009.

6. “Thermalization of the pair plasma with proton loading”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)

Probing Stellar Populations out to the Distant Universe, Cefalu’, Italy,
September 7-19, 2008.

7. “Thermalization of the pair plasma with proton loading”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)

3rd Stueckelberg Workshop, Pescara, Italy, 8-18 July, 2008.

8. “Thermalization of the pair plasma”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)

9. “Non-singular solutions in Loop Quantum Cosmology”

(G.V. Vereshchagin)

2nd Stueckelberg Workshop, Pescara, Italy, 3-7 September, 2007.
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10. “(From) massive neutrinos and inos and the upper cutoff to the fractal
structure of the Universe (to recent progress in theoretical cosmology)”

(G.V. Vereshchagin, M. Lattanzi and R. Ruffini)

A Century of Cosmology, San Servolo, Venice, Italy, 27-31 August, 2007.

11. “Pair creation and plasma oscillations”

(G.V. Vereshchagin, R. Ruffini, and S.-S. Xue)
4th Italian-Sino Workshop on Relativistic Astrophysics, Pescara, Italy,
20-29 July, 2007.

12. “Thermalization of electron-positron plasma in GRB sources”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)
Xth Italian-Korean Symposium on Relativistic Astrophysics, Pescara,
Italy, 25-30 June, 2007.

13. “Kinetics and hydrodynamics of the pair plasma”

(G.V. Vereshchagin, R. Ruffini, C.L. Bianco, A.G. Aksenov)

14. “Pair creation and plasma oscillations”

(G.V. Vereshchagin, R. Ruffini and S.-S. Xue)
Cesare Lattes Meeting on GRBs, Black Holes and Supernovae, Mangaratiba-
Portobello, Brazil, 26 February - 3 March 2007.

15. “Cavallo-Rees classification revisited”

(G.V. Vereshchagin, R.Ruffini and S.-S. Xue)

On recent developments in theoretical and experimental general rela-
tivity, gravitation and relativistic field theories: XIth Marcel Grossmann
Meeting, Berlin, Germany, 23-29 July, 2006.

16. “Kinetic and thermal equilibria in the pair plasma”

(G.V. Vereshchagin)

The 1st Bego scientific rencontre, Nice, 5-16 February 2006.

17. “From semi-classical LQC to Friedmann Universe”

(G.V. Vereshchagin)

Loops ’05, Potsdam, Golm, Max-Plank Institut für Gravitationsphysik
(Albert-Einstein-Institut), 10-14 October 2005.

18. “Equations of motion, initial and boundary conditions for GRBs”

(G.V. Vereshchagin, R. Ruffini and S.-S. Xue)

IXth Italian-Korean Symposium on Relativistic Astrophysics, Seoul, Mt.
Kumgang, Korea, 19-24 July 2005.
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19. “On the Cavallo-Rees classification and GRBs”

(G.V. Vereshchagin, R. Ruffini and S.-S. Xue)

II Italian-Sino Workshop on Relativistic Astrophysics, Pescara, Italy, 10-
20 June, 2005.

20. “Primordial gravitional waves as a probe of the cosmic expansion his-
tory”

(M. Lattanzi)

16th International Symposium on Particles, Strings and Cosmology, Va-
lencia, Spain, 19-23 July 2010.

21. “Detecting Signatures of the Cosmic Thermal History through Pulsar
Observations”

(M. Lattanzi)

14th Gravitational Waves Data Analysis Workshop, Rome, Italy, 26-29
January 2010.

22. “On the Propagation of Gravitational Waves across the Universe: Inter-
action with the Neutrino Component”

(M. Lattanzi)

2nd Italian-Pakistani Workshop on Relativistic Astrophysics, Pescara,
Italy, 8-10 July 2009.

23. “Enhancement of the Darl Matter Annihilation Cross-Section in Cold
Substructures”

(M. Lattanzi)

12th Marcel Grossmann Meeting on General Relativity, Paris, France,
12-18 July 2009.

24. “On the Propagation of Gravitational Waves across the Universe: Inter-
action with the Neutrino Component”

(M. Lattanzi)

12th Marcel Grossmann Meeting on General Relativity, Paris, France,
12-18 July 2009.

25. “Constraining Dark Matter Models Through 21cm Observations”

(M. Lattanzi)

2nd Universenet School and Meeting, Oxford, UK, 22-26 September
2008.
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26. “Constraints on Mass-Varying Neutrino Scenarios”

(M. Lattanzi)

Neutrino Oscillation Workshop 2008, Otranto (Lecce), Italy, 6-13 Septem-
ber 2008.

27. “Constraining Dark Matter Models Through 21cm Observations”

(M. Lattanzi)

3rd Stueckelberg Workshop on Quantum Field Theories, Pescara, Italy,
8-18 July 2008.

28. “Cosmological Constraints on Neutrino Physics”

(M. Lattanzi)

Theta13 Half Day Meeting, Oxford, UK, 24 September 2007.

29. “Decaying warm dark matter, neutrino masses and the cosmic microwave
background”

(M. Lattanzi)

2nd Meeting of the “Red Nacional Tem‡tica de Astroparticulas” (RE-
NATA), Valencia, Spain, 17-19 September 2007.

30. “Decaying majoron dark matter and neutrino masses”

(M. Lattanzi)

Workshop “The Path to Neutrino Mass”, Aarhus, Denmark, 3-6 Septem-
ber 2007.

31. “Decaying majoron dark matter and neutrino masses”

(M. Lattanzi)

4rd Italian-Sino Workshop on Relativistic Astrophysics, Pescara, Italy,
20-30 July 2007.

32. “Decaying majoron dark matter and neutrino masses”

(M. Lattanzi)

10th Italian-Korean Symposium on Relativistic Astrophysics, Pescara,
Italy, 25-30 June 2007.

33. “Constraints on the neutrino asymmetry of the Universe from cosmo-
logical data”

(M. Lattanzi)

11th Marcel Grossmann Meeting, Berlin, Germany, 23-29 July 2006.
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34. “Effect of cosmological neutrinos on the propagation of primordial grav-
itational waves”

(M. Lattanzi)

11th Marcel Grossmann Meeting, Berlin, Germany, 23-29 July 2006.

35. “Does WMAP data constrain the lepton asymmetry of the Universe to
be zero?”

(M. Lattanzi)

“Albert Einstein Century” International Conference, Paris, France, 18-
22 July 2005.

36. “On the interaction bewteen relic neutrinos and primordial gravitational
waves”

(M. Lattanzi)

II Sino-Italian Workshop on Cosmology and Relativistic Astrophysics,
Pescara, Italy, 10-20 June 2005.

37. Impact of general reionization scenarios on inflation

(S. Pandolfi)

Horiba International Conference, COSMO/CosPa 2010, 30th September
2010, at The University of Tokyo, Tokyo, Japan.

38. Impact of general reionization scenarios on inflation

(S. Pandolfi)

Cosmolo Meeting, 8th September 2010, at IFIC, Instituto de Fisica Cor-
puscular, Valencia, Spain.

39. Inflation in general reionization scenarios

(S. Pandolfi)

Summer School in Cosmology, 19-31 July 2010, at ICTP–the Abdus Salam
International Centre for Theoretical Physics, Trieste, Italy.

40. Harrison Zel’dovich spectrum is consistent with observation

(S. Pandolfi)

2nd Galileo-XuGuangqi meeting, 12-17 July 2010, Giardini Botanici Han-
bury, Ventimiglia, Italy

41. Inflation in a general reionization scenario

(S. Pandolfi)

Xth School of Cosmology, 5-10 July 2010 at IESC, Cargese, Corse, France
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42. Harrison-Zel’dovich primordial spectrum is consistent with observa-
tions

(S. Pandolfi)

10th Great Lakes Cosmology Workshop, 14-16 June 2010, KICP at the
University of Chicago (IL), USA.

43. Inflation and Reionization

(S. Pandolfi)

44. University of Michigan, 23rd June, Ann Arbor (MI), USA

45. Inflation with the CMB

(S. Pandolfi)

46. Brookhaven National Laboratory, 8th June 2010

47. Inflation in a General Reionization Scenario

(S. Pandolfi)

48. IberiCos2010 (5th Iberian Cosmology Meeting), Porto, Portugal, 29-31
March 2010

4.5. Posters

1. “Constraints on the cosmological lepton asymmetry”

(M. Lattanzi)

XIXmes Rencontres de Blois: “Matter and Energy in the Universe: from
nucleosynthesis to cosmology”, Blois, France, 20-25

May, 2007.

2. “The interaction between relic neutrinos and cosmological gravitational
waves: implication for interferometric detectors”

(M. Lattanzi)

“Albert Einstein Century” International Conference, Paris, France, 18-
22 July 2005.
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4.6. Lecture courses

1. “Relativistic kinetic theory and its applications in astrophysics and cos-
mology”

(G.V. Vereshchagin)

Lecture course for International Relativistic Astrophysics PhD, Erasmus
Mundus Joint Doctorate Program from the

European Commission, September 6-24, 2010, University of Nice Sophia
Antipilis, Nice, France.

2. “Relativistic kinetic theory and its applications”, IRAP Ph.D. lectures

(G.V. Vereshchagin)

February 1-19, 2010, Observatoire de la Cote d’Azur, Nice, France.

3. Inflationary Constraints and reionization

(S. Pandolfi)

IRAP Ph.D. Lectures in Nice, Observatoire de la Cote d’Azur, 12-16
February 2010
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A. Pair plasma relaxation time
scales

Current interest in electron-positron plasmas is due to the exciting possibil-
ity of generating such plasmas in laboratory facilities already operating or
under construction, see e.g., Myatt et al. (2009); Thoma (2009), for a review
see Ruffini et al. (2010). Impressive progress made with ultra-intense lasers
Chen et al. (2009) has led to the creation of positrons at an unprecedented
density of 1016 cm−3 using ultra-intense short laser pulses, in a region of
space with dimensions on the order of the Debye length. However, such
densities have not yet reached those necessary for the creation of an optically
thick pair plasma Katz (2000); Mustafa and Kämpfer (2009). Particle pairs are
created at the focal point of ultra-intense lasers via the Bethe-Heitler conver-
sion of hard x-ray bremsstrahlung photons Myatt et al. (2009) in the collision-
less regime Wilks et al. (1992). The approach to an optically thick phase may
well be envisaged in the near future.

Electron-positron plasmas are known to be present in compact astrophysi-
cal objects, leaving their characteristic imprint in the observed radiation spec-
tra Churazov et al. (2005). Optically thick electron-positron plasmas do in-
deed play a crucial role in the gamma-ray burst phenomenon Ruffini et al.
(2010, 2009).

From the theoretical point of view electron-positron pair plasmas are inter-
esting because of the mass symmetry between the plasma components. This
symmetry results in the absence of both acoustic modes and Faraday rotation;
waves and instabilities in such plasmas differ significantly from asymmetric
electron-ion plasmas, see e.g. Zank and Greaves (1995). Besides, theoretical
progress in understanding quark-gluon plasma in the high-temperature limit
is linked to understanding QED plasma since the results in these two cases
differ only by trivial factors containing the QCD degrees of freedom (color
and flavor) Thoma (2009).

Most theoretical considerations so far have assumed that an electron-posi-
tron plasma is formed either in thermal equilibrium (common temperature,
zero chemical potentials) or in chemical equilibrium (nonzero chemical po-
tentials), see e.g. Thoma (2009) and references therein. However, it is nec-
essary to establish the time scale for actually reaching such a configuration.
The only way for particles to thermalize, i.e., reach equilibrium distributions
(Bose-Einstein or Fermi-Dirac) is via collisions. Collisions become relevant
when the mean free path of the particles becomes smaller than the spatial di-
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mensions of the plasma, and so the optical thickness condition is crucial for
thermalization to occur.

Thermalization (chemical equilibration) time scales for optically thick plas-
mas are estimated in the literature by order of magnitude arguments using
essentially just the reaction rates of the dominant particle interaction pro-
cesses, see e.g. Gould (1981); Stepney (1983). They have been computed us-
ing various approximations. In particular, electrons have been considered
ultrarelativistic, and Coulomb logarithm has been replaced by a constant.
The accurate determination of such time scales as presented here is instead
accomplished by solving the relativistic Boltzmann equations including the
collisional integrals representing all possible particle interactions. In this case
the Boltzmann equations become highly nonlinear coupled partial integro-
differential equations which can only be solved numerically.

We developed a relativistic kinetic code treating the plasma as homoge-
neous and isotropic and have previously determined the thermalization time
scales for an electron-positron plasma for selected initial conditions Aksenov et al.
(2007). This approach was generalized to include protons in Aksenov et al.
(2009b). We focus only on the electromagnetic interactions, which have a
time scale of less than 10−9 sec for our system, and therefore on the proton
and leptonic component of the plasma. The presence of neutrons and their
possible equilibrium due to weak interactions will occur only on much longer
time scales.

In this paper we report on the systematic results obtained by exploring
the large parameter space characterizing pair plasmas with baryonic loading.
The two basic parameters are the total energy density ρ and the baryonic
loading parameter

B ≡ ρb

ρe,γ
≃ npmpc2

ρe,γ
, (A.0.1)

where ρb and ρe,γ are respectively the total energy densities of baryons and
electron-positron-photon plasma, np and mp are the proton number density
and proton mass, and c is the speed of light. We choose the following range
of plasma parameters

1023 ≤ ρ ≤ 1033 erg/cm3, (A.0.2)

10−3 ≤ B ≤ 103, (A.0.3)

allowing us to also treat the limiting cases of almost pure electron-positron
plasma with B ≪ 1, and almost pure electron-ion plasma with B ≃ mp/me,
respectively. The temperatures in thermal equilibrium corresponding to (A.0.2)
are 0.1 . kBT . 10 MeV.

Given the smallness of the plasma parameter g = (neλ3
D)
−1 ≪ 1, where λD

is the Debye length and ne is the electron number density, it is sufficient to
use one-particle distribution functions. In fact, for the pure electron-positron
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Binary interactions Radiative and
pair producing variants

Møller and Bhabha Bremsstrahlung

e±1 e±2 −→ e±1
′
e±2
′

e±1 e±2 ↔e±′1 e±′2 γ
e±e∓ −→ e±′e∓′ e±e∓↔e±′e∓′γ
Single Compton Double Compton

e±γ−→e±γ′ e±γ↔e±′γ′γ′′

Pair production Radiative pair production
and annihilation and 3-photon annihilation

γγ′↔e±e∓ γγ′↔e±e∓γ′′

e±e∓↔γγ′γ′′

e±γ↔e±′e∓e±′′

Table A.1.: Microphysical processes in the pair plasma.

Binary interactions Radiative and
(Coulomb scattering) pair producing variants

p1p2 −→ p′1p′2 pe± ↔ p
′
e±′γ

pe± −→ p
′
e±′ pγ↔p′e±e∓

Table A.2.: Microphysical processes in the pair plasma involving protons. For
details see also Ruffini et al. (2010).

plasma, the inequality 3 · 10−3 ≤ g ≤ 10−2 holds in the region of the tem-
peratures of interest. In a homogeneous and isotropic plasma the distribu-
tion functions f (ǫ, t) depend on the energy ǫ of the particle and on the time
t. We treat the plasma as nondegenerate, neglecting neutrino channels as
well as the creation and annihilation of baryons and the weak interactions
(Aksenov et al. (2009b)).

The relativistic Boltzmann equations (Belyaev and Budker (1956); Mihalas and Mihalas
(1984)) for photons, electrons, positrons, and protons in our case are

1

c

∂ fi

∂t
= ∑

q

(η
q
i − χ

q
i fi), (A.0.4)

where the index i denotes the type of particle and η
q
i , χ

q
i are the emission

and the absorption coefficients for the production of the ith-particle via the
reaction labeled by q. We account for all relevant binary and triple interac-
tions between electrons, positrons, photons, and protons as summarized in
Tables A.1 and A.2.

It has been shown (Aksenov et al. (2007)) that independent of the func-
tional form of the initial distribution functions fi(ǫ, 0), plasma evolves to a
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Figure A.1.: The thermalization time scale of the electron-positron-photon
component of plasma as a function of the total energy density and the bary-
onic loading parameter. The energy density is measured in erg/cm3, time is
seconds.

thermal equilibrium state through the kinetic equilibrium, when the distri-
bution functions of all the particles acquire the same form

fi(ε) = exp

(

− ε− ϕi

θi

)

, (A.0.5)

where εi = ǫi/(mic
2) is the energy of the particles, ϕi ≡ µi/(mic

2) and θi ≡
kBTi/(mic

2) are their chemical potentials and temperatures, and kB is Boltz-
mann’s constant. The unique signature of kinetic equilibrium is the equal
temperatures of all the particles and the nonzero chemical potential of the
photons. In fact the same is also true for a pair plasma with proton loading
(Aksenov et al. (2009b)). The approach to complete thermal equilibrium is
more complicated in this latter case and depends on the baryon loading. For
B≪

√

mp/me, protons are rare and thermalize via proton-electron (positron)

elastic scattering, while in the opposite case B ≫
√

mp/me, proton-proton
Coulomb scattering dominates over the proton-electron scattering and brings
protons into thermal equilibrium first with themselves. Then protons ther-
malize with the pair plasma through triple interactions, for details see Aksenov et al.
(2009b). The two-body time scales involving protons should be compared
with the three-body time scales bringing the electron-positron-photon plasma
into thermal equilibrium. In fact we found that for B ≪ 1, the electron-
positron-photon plasma reaches thermal equilibrium at a given temperature,
while protons reach thermal equilibrium with themselves at a different tem-
perature; only later the plasma evolves to complete thermal equilibrium with
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Figure A.2.: The final thermalization time scale of a pair plasma with baryonic
loading as a function of the total energy density and the baryonic loading
parameter. The energy density is measured in erg/cm3, time is seconds.

the single temperature on a time scale

τth ≃ Max
[

τ3p, Min
(

τep, τpp

)]

, (A.0.6)

where

τep ≃
mpc

ǫeσTne
, (A.0.7)

τpp ≃
√

mp

me

(

σTnpc
)−1

, (A.0.8)

τ3p ≃ (ασTnec)−1 (A.0.9)

are the proton-electron (positron) elastic scattering time scale, the proton-
proton elastic scattering time scale, and the three-particle interaction time
scale respectively, while σT is the Thomson cross-section and α is the fine
structure constant. In (A.0.7)–(A.0.9) the energy dependence of the corre-
sponding time scales is neglected.

The chemical relaxation (thermalization) time scale is usually computed as

τi = lim
t→∞

{

[Fi(t)− Fi(∞)]

(

dFi

dt

)−1
}

, (A.0.10)

where Fi = exp (ϕi/θi) is the fugacity of a particle of type i. Instead of Fi we
use one of the quantities θi, ϕi, ni, or ρi in this computation.

We solved the Boltzmann equations with parameters (ρ, B) in the range
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Figure A.3.: The final thermalization time scale of pair plasma with bary-
onic loading as a function of the total energy density for selected values of
the baryonic loading parameter B = (10−3, 10−1.5, 1, 10, 102, 103). The energy
density is measured in erg/cm3, time is seconds. Error bars correspond to one
standard deviation of the time scale (A.0.11) away from the average value τth

over the interval tin ≤ t ≤ t f in.

given by Eqs. (A.0.2) and (A.0.3). In total 78 models were computed, starting
from a nonequilibrium configuration until reaching a steady state solution on
the computational grid with 20 intervals for the particle energy and 16 inter-
vals for the angles, for details see Aksenov et al. (2009b). For each model we
computed the corresponding time scales for all particles of the ith kind. For
practical purposes, instead of (A.0.10) we used the following approximation

τth =
1

t f in − tin

∫ t f in

tin

[θ(t)− θ(tmax)]

(

dθ

dt

)−1

dt, (A.0.11)

with tin < t f in < tmax, where tmax is the moment of time where the steady
solution is reached and tin and t f in are the boundaries of the time interval
over which the averaging is performed, for details see Aksenov et al. (2009a).

The thermalization time scale of the electron-positron-photon component
is shown in Fig. A.1 as a function of the total energy density of the plasma
and the baryonic loading parameter. The time scales of electrons, positrons
and photons coincide. The final thermalization time scale of pair plasma with
baryonic loading is shown in Fig. A.2. Its dependence on either variable can-
not be fit by a simple power law, although it decreases monotonically with
increasing total energy density, while it is not even a monotonic function of
the baryonic loading parameter.

In Fig. A.3 the final thermalization time scale is shown for all the models we
computed, along with the “error bars” which mark one standard deviation
of the time scale (A.0.11) away from the average value τth in the averaging
interval tin ≤ t ≤ t f in. The largest source of error comes from the small
values of the time derivative in (A.0.11), although errors are typically below
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Figure A.4.: The thermalization time scale of the electron-positron-photon
component of the plasma as a function of the total energy density (points),
compared with the τ3p time scale (joined points) computed using (A.0.9) for

B = 1. The energy density is measured in erg/cm3, time is seconds.
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Figure A.5.: The final thermalization time scale of a pair plasma with baryonic
loading as a function of the total energy density (points), compared with the
τth time scale (joined points) computed using (A.0.6) for B = 1. The energy
density is measured in erg/cm3, time is seconds.

a few percent.

In Fig. A.4 we compare for B = 1 the actual value of the thermalization time
scale of the electron-positron-photon component with the value estimated
from (A.0.9). Both values clearly differ significantly. Actually the systematic
underestimation by more than one order of magnitude which occurs for B ≤
1 disappears for larger baryonic loading.

In Fig. A.5 we present the computed values of the final thermalization time
scale of the pair plasma with baryonic loading together with the value es-
timated from (A.0.6), again for B = 1. Unlike the previous case, the final
thermalization time scale is a more complex function of the total energy den-
sity. Interestingly, less significant deviations from the value (A.0.6) occur at
the extremes of the interval (A.0.3).

In this paper we have computed for the first time the time scale of ther-
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A. Pair plasma relaxation time scales

malization for an electron-positron plasma with proton loading over wide
ranges of both the total energy density (10 orders of magnitude) and bary-
onic loading parameter (6 orders of magnitude) allowing the treatment of the
limiting cases of almost pure electron-positron plasma, almost pure electron-
ion plasma as well as intermediate cases. The final result is presented in
Fig. A.1 and A.2. The relaxation to thermal equilibrium for the total energy
density (A.0.2) always occurs on a time scale less than 10−9 sec. It is interest-
ing that the electron-positron-photon component and/or proton component
can thermalize earlier than the time at which complete thermal equilibrium
is reached. The relevant time scales are given and compared with the order-
of-magnitude estimates. Unlike previous work there are no simplifying as-
sumptions in our method since collisional integrals in the Boltzmann equa-
tions are computed directly from the corresponding QED matrix elements,
e.g. from the first principles.

These results may be of relevance for the ongoing and future laboratory ex-
periments aimed at creating electron-positron plasmas. Current optical lasers
producing pulses during ∼ 10−15 sec carrying energy ∼ 102 J= 109 erg are
capable to produce positrons with the number density 1016 cm−3 (Chen et al.
(2009)). There are claims that densities of the order of 1022 cm−3 are reachable
(Shen and Meyer-Ter-Vehn (2002)). These densities today are yet far from 1028

cm−3 required for the plasma with the size r0 ≃ µm to be optically thick
(Katz (2000)). Notice, that the expansion timescale of such plasma will be
r0/c ∼ 10−14 sec, while the timescale to establish kinetic equilibrium for the
number density considered is of the same order of magnitude. These ar-
guments show that theoretical results obtained assuming thermal or kinetic
equilibrium, such as in Thoma (2009), cannot be applied to pair plasma, gen-
erated by ultraintense lasers.

However, results presented in this paper are important for understand-
ing astrophysical systems observed today in which optically thick electron-
positron plasmas are present. As specific example we recall that electron-
positron pairs play the crucial rule in the dynamics of GRB sources. Con-
sidering typical energies and initial radii for GRB progenitors (Piran (1999))

1048erg < E0 < 1054erg, 107cm < R0 < 108cm, (A.0.12)

we estimate the range for the energy density in GRB sources

1023 erg

cm3
< ρ < 1032 erg

cm3
, (A.0.13)

which coincides with (A.0.2). As for the baryonic loading of GRBs it is typi-
cally in the lower range of (A.0.2), namely (Ruffini et al. (2009))

10−3
< B < 10−2. (A.0.14)
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Such high energy density leads to large number density of electron-positron
pairs in the source of GRB, of the order of

1030 cm−3
< n < 1037 cm−3, (A.0.15)

making it opaque to photons with huge optical depth of the order of

1013
< τ < 1018. (A.0.16)

In fact, the radiative pressure of optically thick electron-positron plasma in
these systems is responsible for the effect of accelerated expansion (Ruffini et al.
(1999, 2000); Bianco et al. (2006); Ruffini et al. (2009)), leading to unprecedented
Lorentz factors attained Γ ≃ B−1, up to 103, see e.g. Abdo et al. (2009);
Izzo and et al. (In press, 2010). The role of the baryon admixture in electron-
positron plasma in GRBs is to transfer internal energy of pairs and photons
into kinetic energy of the bulk motion thus giving origin to afterglows of
GRBs (Piran (1999); Ruffini et al. (2009)). Notice that in GRBs the timescales of
thermalization are much shorter than the dynamical timescales R0/c ∼ 10−3

sec, which implies that expanding electron-positron plasma even in the pres-
ence of baryons is in thermal equilibrium during the accelerating optically
thick phase (Aksenov et al. (2008)).

After completion of this work we learned about the publication of Kuznetsova et al.
(2010) where work similar to ours has been performed. Between this paper
and our work conceptual differences should be noted which concern the at-
tribution of thermalization to two-body Møller and Bhabha scattering, while
we have pointed out explicitly that three-body interactions play an essential
role. The thermalization time scales obtained by us have been computed with
reference to these three-body interactions.

Acknowledgements. We thank both anonymous referees for their remarks
which allowed to improve remarkably the paper.
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B. Degenerate plasma relaxation

B.1. Introduction

The description of processes in electron-positron plasma is of great impor-
tance for physics and astrophysics (Ruffini et al., 2010). Firstly, the Big Bang
theory involves lepton era with abundant presence of electron-positron pairs
which at high temperature are in thermal equilibrium (Weinberg, 2008). Sec-
ondly, strong electromagnetic fields are generated in laser experiments aim-
ing at production of electron-positron pairs. When this fields approach criti-
cal values copious pair production is expected leading to formation of electron-
positron plasma (Gerstner, 2010; Chen et al., 2009; Mustafa and Kämpfer, 2009).
Such supercritical electromagnetic fields are thought to occur in astrophysical
conditions, near compact objects, such as pulsars and black holes (Damour and Ruffini,
1975; Churazov et al., 2005; Mereghetti, 2008), in the center of our Galaxy
(Prantzos et al., 2010) and during the gravitational collapse of massive star
cores (Bethe, 1990; Janka et al., 2007).

Relaxation of electron-positron plasma to thermal equilibrium has been
considered in Aksenov et al. (2007, 2009b). There relativistic Boltzmann equa-
tions with exact QED collisional integrals taking into account all relevant
two-particle (Compton scattering etc.) and three-particle interactions (rela-
tivistic bremsstrahlung etc.) were solved numerically. It was confirmed that
a metastable state called ”kinetic equilibrium” (Pilla and Shaham, 1997) ex-
ists in such plasma, which is characterized by the same temperature of all
particles, but nonnull chemical potentials. Such state occurs when the de-
tailed balance of all two-particle reactions is established. It was pointed out
in Aksenov et al. (2007, 2009b) that direct and inverse 3p interactions are es-
sential in bringing el-p plasma to thermal equilibrium.

In Aksenov et al. (2010) relaxation timescales for optically thick electron-
positron plasma in a wide range of temperatures and proton loadings were
computed numerically using the kinetic code developed in Aksenov et al.
(2007, 2009b). These timescales were previously estimated in the literature
by order of magnitude arguments using the reaction rates of the dominant
processes (Gould, 1981; Stepney, 1983). It was shown that these numeri-
cally obtained timescales differ from previous estimations by several orders
of magnitude.

Notice that temperature range considered in Aksenov et al. (2007, 2009b,

353



B. Degenerate plasma relaxation

2010)

0.1 <
kT

mec2
< 10 (B.1.1)

was selected in order to avoid production of other particles such as neutrino
Ruffini et al. (2010). At high temperatures the quantum nature of particle
statistics has to be taken into account. The degeneracy parameter

D =
1

neλth3
=

(kT)3

neh̄
3c3

(B.1.2)

determines the temperature when such effects become important. Thermal
electron-positron plasma becomes degenerate (D < 1) at kT & 3mec

2.

In uniform isotropic pair plasma relativistic Boltzmann equation for distri-
bution function fi of the particle specie i has the following form:

1

c

d

dt
fi(pi, t) = ∑

q

(

η
q
i − χ

q
i fi(pi, t)

)

, (B.1.3)

where the sum is taken over all two- and three-particle reactions q, η
q
i and χ

q
i

are, respectively, the emission and absorption coefficients.

These coefficients for interaction of two particles having 4-momenta (ǫk, pk)
and (ǫl , pl) before the reaction and (ǫi , pi) and (ǫj, pj) after it are

ηi =
∫

d3pkd3pld
3pj[1± fi(pi, t)][1± f j(pj, t)]Wpk ,pl ;pi,pj

fk(pk, t) fl(pl , t)

(B.1.4)
and

χi =
∫

d3pkd3pld
3pj[1± fk(pk, t)][1± fl(pl , t)]Wpi ,pj;pk,pl

f j(pj, t), (B.1.5)

where 1± f (p, t) are respectively Bose enhancement (+) and Pauli blocking
(−) factors (Uehling and Uhlenbeck, 1933; Uehling, 1934).

These factors were not included in Aksenov et al. (2007, 2009b, 2010). It
was pointed out in Aksenov et al. (2007) that for nondegenerate plasma two-
particle interactions are generally α−1 ∼ 137 times faster than three-particles
ones. This fact permitted to treat three-particle interactions assuming that
kinetic equilibrium is established and maintained by the detailed balance in
two-particle interactions. In that case the expressions for three-particle emis-
sion and absorption coefficients can be obtained analytically by the averaging
with Boltzmann distributions.

For high temperatures Pauli blocking factors are expected to delay relax-
ation process to kinetic equilibrium. Besides there are no analytic expres-
sions for averaged emission and absorbtion coefficients of three-particle in-
teractions even in kinetic equilibrium due to the presence of Fermi and Bose
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B.2. The computational scheme

Electron-positron interactions Proton interactions

Coulomb, Møller and Bhabha scattering
e±1 e±2 −→ e±′1 e±′2 p1p2 −→ p′1p′2
e±1 e∓2 −→ e±′1 e∓′2 pe± −→ p

′
e±′

Compton scattering
e±γ−→e±′γ′

Creation/annihilation

e±1 e∓2 ←→ γ1γ2

Table B.1.: Binary particles interactions in the pair plasma.

integrals. The three-particle interaction rates then have to be numerically
integrated. It implies additional integration in phase space and consequent
significant increase in computational time. In the present work we are inter-
ested in relaxation timescales to kinetic equilibrium taking into account the
quantum nature of particle statistics. We include in our scheme all relevant
two-particles interactions (Table B.1).

B.2. The computational scheme

The main difficulty arising for quantum statistics treatment is that the rate
of particle emission/absorbtion now depends not only on this particle dis-
tribution function, but also on the density of second particle resulting from
the interaction. We adopt a new approach to solve this issue which we call
”reaction-oriented” instead of previous ”particle-oriented” one.

Recall that the finite difference conservative scheme used in Aksenov et al.
(2007, 2009b, 2010) (see also Aksenov et al. (2004)) instead fo distribution func-
tions operates with spectral energy densities Ei

Ei(ǫi) =
4πǫ3

i βi fi

c3
, (B.2.1)

where βi =
√

1− (mic2/ǫi)2 (mi, is the mass of i-th particle specie), in the
energy phase space ǫi. The number density of particle is given by

ni =
∫

fidpi =
∫

Ei

ǫi
dǫi, dni = fidpi, (B.2.2)

while the corresponding energy density is

ρi =
∫

ǫi fidpi =
∫

Eidǫi.
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In these variables the Boltzmann equations (B.1.3) read

1

c

dEi

dt
= ∑

q

(η̃
q
i − χ

q
i Ei), (B.2.3)

where η̃
q
i = (4πǫ3

i βi/c3)η
q
i .

To obtain emission and absorbtion coefficients the computational grids are
introduced in phase spaces {ǫi, µi, φi} , where µi = cos ϑi, ϑi and φi are usual
angles in spherical coordinates of particle momentum space pi. The zone
boundaries are ǫi,ω∓1/2, µk∓1/2, φl∓1/2 for 1 ≤ ω ≤ ωmax, 1 ≤ k ≤ kmax,
1 ≤ l ≤ lmax. The length of the i-th interval is ∆ǫi,ω ≡ ǫi,ω+1/2− ǫi,ω−1/2. On
the finite grid the functions (B.2.1) become

Ea = Ei,ω ≡
1

∆ǫi,ω

∫

∆ǫi,ω

dǫ Ei(ǫ), (B.2.4)

where for simplification of formulae we introduce collective indices a = {iω}.
The collisional integrals in (B.2.3) are replaced by the corresponding sums.

When particles are treated classically we have for time derivative of each vari-
able the following expression

Ėa = ∑
b,c

A(b,c|a,d)EbEc −∑
b,c

B(a,b|c,d)EaEb, (B.2.5)

where first sum on the right side is for emission in reaction b + c→ a + d and
second is for absorbtion in reaction a + b → c + d. There is no third summa-
tion (by index d) because of delta-function in the initial integrals originating
from the energy conservation. This can be effectively rewritten as just one
sum

Ėa = ∑
b,c

Aa
b,cEbEc, (B.2.6)

Aa
b,c = A(b,c|a,d) − δc

a ∑
e

B(a,b|e,d), (B.2.7)

and this sum can be found by direct computation without any complications.

When the quantum statistics effects are included we have instead

Ėa = ∑
b,c

(1± Ea/ga)(1± Ed/gd)A(b,c|a,d)EbEc

−∑
b,c

(1± Ed/gd)(1± Ec/gc)B(a,b|c,d)EaEb, (B.2.8)

which ga is spectral energy density corresponding to occupation numbers
equal to unity. It turns out that while the sums on the right-hand side of
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(B.2.8) can be reduced to one sum only, but due to different structure of Bose
enhancement and Pauli blocking multipliers the numerical scheme based on
the resulting expression will not be optimal.

Instead noticing that the phase space blocking/enhancement coefficient
(1± Ed/gd)(1± Ee/ge) are the same for all four particles involved in the pro-
cess b + c → d + e (a is one of the b, c, d, e), the corresponding parts of colli-
sional integrals arising in the above-mentioned sums can be computed only
once instead of four times. As a result it is convenient not to fix a and sum
over all possible b, c, as in (B.2.8), which we refer to as ”particle-oriented”
approach, but instead sum over all possible reactions, which we refer to as
”reaction-oriented” approach. It means that at each step of calculations we
fix b, c and for all possible reaction results the emission rates of outcomes d
and e and the absorbtion rates of incomes b, c are added to array of derivatives
Ėa. This approach considerably reduces the computational time and memory
consumption.

In our method exact energy and number of particles conservation laws are
satisfied, as we adopt interpolation of grid functions Ea inside the energy
intervals. The number of energy intervals is 40, while internal grid of angles
has 32 points in µi and φi.

B.3. Fitting the results

It is convenient to use the following dimensionless variables for energy dis-
tribution function: energy εi = ǫi/mec2, temperature θi = kTi/mec2, and
another particle-specific dimensionless quantity νi connected to chemical po-
tential µi

νi =
1

θi

(

µi

mec2
− mi

me

)

. (B.3.1)

In kinetic equilibrium we have for total energy distribution as function of
kinetic energy εi

dρt
i

dǫi
=

1

π2λ̄3
c

(εi + mi/me)2
√

ε2
i + 2εimi/me

exp(εi/θi − νi)± 1

= 2.08 · 1030
(εi + mi/me)2

√

ε2
i + 2εimi/me

exp(εi/θi − νi)± 1
cm−3, (B.3.2)

and kinetic energy distribution function is just

dρi

dǫi
=

εi

εi + mi/me

dρt
i

dǫi
. (B.3.3)
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The same expressions as (B.3.2), (B.3.3), but without ±1 in denominator, hold
in the case of classical Boltzmann statistics. In the previous works Aksenov et al.
(2007, 2009b, 2010) instead of procedure of fitting of real spectra by thermal
ones another approach was used. It was based on the one-to-one correspon-
dence of particle density ni and total energy density ρi to temperature θi and
chemical potential νi of Boltzmann distribution. New approach provides ac-
curate estimation of temperature based on the maximum of the energy spec-
tra. Every step we calculate also the quality of fits by the coefficient of deter-
mination R2. The fit is considered meaningful when R2 exceeds 0.9.

The parameters θ and ν obtained from fits are used to determine relaxation
timescales. For that purpose we fit dependencies of θ and ν on time in the
chosen intervals by functions

f (t) = C1 + C2t + C3 exp(−t/C4), (B.3.4)

with constants Ci, i = 1, 2, 3, 4, representing respectively the final value,
the linear drift, the magnitude of initial deviation from equilibrium and the
timescale of relaxation. It is important to account for the linear drift since
not all the processes share the same timescale but usually timescales of pro-
cesses are well separated (by at least an order of magnitude), so that slower
processes can be treated as introducing linear perturbations to the spectral
parameters. Validity of such an approximation was approved by the fact that
in all cases for time intervals inspected C2∆t≪ C1 (usually C2∆t/C1 . 10−3).

B.4. Case A

As the first example we treat the case which is the same as Case III of Aksenov et al.
(2009b) with the total energy density ρ = 4.85 · 1026 erg/cm3. The initial
ratio between concentrations of electrons and protons is taken to be ς =
np/n− = 10−3. We set up flat initial spectrum for photons Eγ(ǫi) = const,

and power law spectra for the pairs E±(ǫ±) ∝
[

ǫ± −mc2
]−2

and protons

Ep(ǫp) ∝
[

ǫp −Mc2
]−4

. In the regions where the energy density for fermions
was larger than admissible by Pauli principle we take E = 0.95Emax. Fi-
nally, the ratio of initial and final concentrations of positrons is chosen to be
n+ = 10−1nth

+ . Given these initial conditions the baryon loading parameter is
B = 0.2. The initial energy spectra are shown in Fig. B.1. The temperature of
kinetic equilibrium in this case is θ ≃ 2.

In Fig. B.2 and B.3 we compare the results of evolution for temperatures
and chemical potentials in two cases: when blocking/enhancement factors a)
are taken into account and b) are omitted in evolution equations (B.2.8).

The overall qualitative character of evolution is unchanged when we ac-
count for phase space blocking/enhancement, however the timescales in-
crease, as it is illustrated in Tab. B.2. The main source of such an increase is
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0.1 0.5 1.0 5.0 10.0 50.0

Ε

me c2

1022

1024

1026

1028

1030

1032
dΡi�dΕ, cm-3

Figure B.1.: Initial kinetic energy spectral densities as functions of particle ki-
netic energy in the case A. The spectrum of protons is chosen to be steeper
than the one of electrons and positrons. Black, green, red, blue curves corre-
spond to spectrum of photons, electrons, positrons (they coincide within the
accuracy of the plot) and protons, respectively.

the change of reaction rates in low-energy range, where coherent effects in re-
actions involving photons are damped by the Pauli blocking of electrons and
positrons. As a result establishment of the kinetic equilibrium takes two times
longer than in the case of classical statistics (5.9 · 10−17 s versus 11.8 · 10−17 s).

The differences in the final spectra of particles are illustrated in Fig. B.4.
The difference between classical and quantum statistics is seen in photon
spectrum, which is changed almost by half of order of magnitude in low-
energy part, see Fig. B.5.

B.5. Case B

The second example was chosen in such a way that the total energy density
ρ = 2.43 · 1025 erg/cm3 was 20 times less than in previous case A. The same
spectrum shapes and ratios between energy in components were chosen. The
temperature of kinetic equilibrium in this case is θ ≃ 1.

In this case distribution functions in the final state of kinetic equilibrium are
very close to Boltzmann ones, see Fig. B.6. Quantum corrections are tiny as it
follows from limits of ν values νlim = −7.7 (corresponding occupation num-
bers are lower than e−7.7 = 4.5 · 10−4). Nevertheless relaxation timescales for
classical and quantum statistics differ by ∼ 10%, see Tab. B.2.
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Figure B.2.: Comparison of dimensionless temperature evolution for classical
and quantum statistics in the case A. Wide lines represent quantum statistics
case while thin ones are for classical Boltzmann statistics. Values for fits with
coefficient of determination R2 > 0.9 are shown. Colors are the same as at
Fig. B.1.

Figure B.3.: Comparison of dimensionless chemical potential evolution for
classical and quantum statistics in the case A. Colors are the same as at Fig.
B.1, B.2.
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Table B.2.: Comparison of relaxation timescales for temperatures and chemi-
cal potentials for classical and quantum particles treatment

Particle θ timescale, s ν timescale, s
Classical Quantum Classical Quantum

Case A, time interval 10−16÷ 10−15 s

γ 5.7 · 10−17 7.2 · 10−17 5.6 · 10−17 7.7 · 10−17

e− 5.9 · 10−17 9.4 · 10−17 5.7 · 10−17 11.7 · 10−17

e+ 5.9 · 10−17 9.4 · 10−17 5.7 · 10−17 11.8 · 10−17

Case B, time interval 5 · 10−16÷ 1.5 · 10−14 s

γ 5.1 · 10−16 5.4 · 10−16 5.1 · 10−16 5.5 · 10−17

e− 3.4 · 10−16 3.8 · 10−16 3.2 · 10−16 3.6 · 10−17

e+ 3.4 · 10−16 3.8 · 10−16 3.2 · 10−16 3.6 · 10−17

Case C, time interval 5 · 10−19 ÷ 4 · 10−18 s

γ 2.0 · 10−19 − 2.0 · 10−19 −
e± 1.8 · 10−19 2.3 · 10−19 1.8 · 10−19 2.4 · 10−19

Case C, time interval 3 · 10−16 ÷ 2 · 10−15 s

γ − 1.9 · 10−16 − 2.2 · 10−16

e± − 2.2 · 10−16 − 2.8 · 10−16

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

Ε

me c2
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dΡi�dΕ, cm-3

Figure B.4.: Final spectral densities and their thermal fits (blue lines) at time
moment 10−15 s as functions of particle kinetic energy in the case A. Colors
are the same as at Fig. B.1.
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Figure B.5.: Final photon spectral densities at time 10−15 s as functions of par-
ticle kinetic energy in the case A. Black curve (higher) represents the spectrum
for quantum statistics and grey (lower) shows results of classical calculations.
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Figure B.6.: Final spectral densities and their thermal fits (in blue) at time
1.5 · 10−14 s as functions of particle kinetic energy for initial conditions B. Both
spectra and fits for quantum and classical particle treatments are coinciding
within the accuracy of the plot. Colors are the same as at Fig. B.1.
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Figure B.7.: Spectral densities at time 10−17 s as functions of particle kinetic
energy for initial conditions C. A profound excess of photons at low energies
is obvious. Colors are the same as at Fig. B.1.

B.6. Case C

As a third case we treat high energy density ρ = 2.04 · 1029 erg/cm3 with-
out protons, which is at the edge of applicability of our method because of
neutrino interactions becoming substantial with higher energy densities. The
corresponding temperature in kinetic equilibrium is about θ = 10.

Instead of relaxation to kinetic equilibrium at timescale comparable to 10−19 s,
which was found in the case of Boltzmann statistics in Aksenov et al. (2010),
there is a process of relaxation on this timescale, but resulting photon distri-
bution are not really kinetic one (see Fig. B.7). Pair distribution in principle
could be described as thermalized and corresponding timescale is shown in
Table B.2. Thermalization of photons occurs on much longer timescale of
2 · 10−16 s, so remnants of photon excess in low-energy part can be seen in
distribution function up to ∼ 10−15 s (Fig. B.8).

B.7. Discussion

The form of kinetic equilibrium distributions is complicated and depends
on the relation between parameters mi/me, θi and νi. For photons generally

there are two power-law intervals. For ε ≪ θ|ν| we have
dρ
dǫ ∝ ε3 due to

strong degeneracy. For θ|ν| ≪ ε ≪ θ we have
dρ
dǫ ∝ ε2, while for higher

energy the spectral shape is exponential as in the case of classical Boltzmann
distribution.

For electrons and positrons instead with small enough ε≪ 1 the spectrum
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Figure B.8.: Spectral densities and their thermal fits (in blue) at time 10−15 s
as functions of particle kinetic energy for initial conditions C. Note the tiny
difference in fit and distribution function of photons at ǫ/mec2 ∼ 2, this is the
remnant of initial photon excess at this energy. Colors are the same as at Fig.
B.1.

is
dρ
dǫ ∝ ε1/2, while for intermediate region 1 ≪ ε ≪ θ|ν| the spectrum shape

is
dρ
dǫ ∝ ε3, and then again exponential dependence.

As the temperature increases, occupation numbers in electron-positron field
and photon field increase as well. This leads to the damping of the reaction
rates involving not only fermions in the final state, but also for damping of
interactions between bosons and fermions which are enhanced by coherent
effects of bosons. If the occupation numbers n of given states for fermion and
boson are the same then the product of blocking/enhancement multipliers
(1 + n)(1− n) = 1− n2 for the reaction is still less than 1. As a result when
in the system there is no direct interaction between bosons, which is the case
of QED, we have only damping in the reaction rates with the increase of tem-
perature.

In the case C the temperature in kinetic equilibrium is θ ≃ 10 and damp-
ing of two-particles interactions leads to increase of relaxation timescale by
more than three orders of magnitude. This new timescale is even longer than
the thermalization timescale in the case of classical statistics. Therefore tak-
ing into account quantum nature of particle statistics for temperatures above
the electron rest mass energy, where the degeneracy effects become impor-
tant, there is no clear distinction between two-particle and three-particle in-
teraction timescales. By the same argument as in the previous paragraph we
can suppose that the rate of some three-particle reactions will be damped
even more than that of two-particle ones. For example, bremsstrahlung rate
e± + e± −→ e± + e± + γ will be damped by two Pauli blocking factors and

364



B.8. Conclusions

increased by one Bose enhancement factor. For the other three-particle re-
actions involving two photons in the final state we have overall increase of
rates, so the sum of these two effects is uncertain.

Correct estimation of the thermalization timescale for proton component
of plasma also demands three-particle interactions to be taken into account.
Since the inclusion of three-particle interactions requires substantial revision
of the code and will demand much longer computational time in this Letter
we concentrated on two-particle interactions only and consequently on the
relaxation towards kinetic equilibrium.

B.8. Conclusions

In this Letter we have showed that timescale of establishment of kinetic equi-
librium in electron-positron plasma is substantially affected by the effect of
phase space blocking/enhancing of two-particles reaction rates as temper-
ature of the plasma is higher than θ ≃ 1. Degeneracy of the main part of
electron-positron pairs increases the timescale in spite of reaction rates en-
hancement by the coherent effects of photons. We show that the processes
rates at θ = 10 are damped so strong that timescale of photon relaxation to
kinetic equilibrium tph is more than three orders of magnitude larger than
the corresponding timescale of classical thermalization tcl . It is interesting
that on the timescale slightly larger than tcl some marginally stable solution
occurs, that evolves in time towards thermal equilibrium with timescale tph.
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C. Hydrodynamic phase of GRBs

C.1. Introduction

When the importance of ultrarelativistic expansion with application to GRBs
has been realized (the compactness problem) several papers appeared, both
numerical (Piran et al. (1993), Mészáros et al. (1993)) and analytical (Shemi and Piran
(1990), Bisnovatyi-Kogan and Murzina (1995)) dealing with conversion of in-
ternal energy of relativistic plasma into its kinetic energy of expansion. Baryons
play crucial role in this scenario since their inertia is used as the storage of
the energy which was initially released in the source of GRBs. The results
of these investigations showed that initially energy dominated plasma with
baryon loading forms a shell which self accelerates until it becomes matter
dominated.

The next step has been the proposal of relativistic shocks as the mechanism
to convert back (release) the kinetic energy of relativistic baryons into thermal
energy of electrons which can be then emitted in the form of GRBs. In this re-
spect two alternative scenarios were considered: external shock (Rees and Meszaros
(1992)) and internal shock (Narayan et al. (1992), Rees and Meszaros (1994))
models. In the external shock model the key ingredient is the low density
environment which decelerates the expanding shell. In the internal shock
model the presence of multiple subshells having different Lorentz factors is
postulated, and attributed to the activity of a central engine.

In Ruffini et al. (2000) yet different proposal has been made considering
electron-positron plasma formed in the source of GRBs. In this model the
baryon matter is located outside the source of e+e− pairs, the dyadosphere
Preparata et al. (1998), in the form of a thin shell at rest, containing the mass
fullfilling the Ruffini-Wilson relation. This constraint on baryonic mass is
essential in two aspects:

• even if the interaction with the baryonic shell produce some episodic
deceleration of the expanding shell it nevertheless allows that the accel-
eration continues until reaching ultrarelativistic Lorentz factors;

• the interaction between the two shells does not change the thickness of
the expanding shell measured in the laboratory frame (constant thick-
ness approximation holds).

In this chapter we revisit the issue of the hydrodynamic phase in GRB
sources, by studying numerically the evolution of an optically thick plasma.
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In simulations of this kind in literature, one of the main conclusions derived
from the simulations of Piran et al. (1993) is that in the reference frame of the
explosion, short after the beginning of the expansion most of the matter and
energy becomes concentrated in a narrow shell which propagates at nearly
the speed of light with a single peaked “frozen radial profile”. This profile
can be reproduced in subsequent time moments by the set of scaling laws.

Such a simple profile results in single burst of radiation emitted when the
expanding shell becomes transparent for photons (Shemi and Piran (1990);
Ruffini et al. (2001)). In the fireshell model the radiation emitted at this mo-
ment is called proper gamma ray burst (P-GRB). Recent observations show
that the P-GRB may have a more complex light curve, see figure C.1.

In this thesis we propose a mechanism for generation of structured P-GRB
light curves. The general idea is to attribute the structure of the light curve
of P-GRBs to the structure of the expanding plasma. For this reasons we seek
for deviations from the “frozen radial profile”. As we will see below the pos-
sible presence of an external medium in the acceleration phase of the plasma
expansion indeed may be responsible for the generation of this structure.

Figure C.1.: The BAT data and the theoretical simulation for the afterglow within the

fireshell model for GRB060614. In the corner above and right is shown the structured P-

GRB with details. The fireshell model does not predict a structure for the P-GRB, just its

energy. One of the basic motivations of this thesis is to propose a mechanism of formation of

multiple peaks in P-GRB. Figure reproduced from Caito et al. Caito et al. (2009).
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In some recent works results which differs from the “frozen radial pro-
file” were found and discussed as well. In particular, formation of relativistic
jets in collapsar models (Aloy et al. (2000)), gaussian jets (Zhang et al. (2004))
and jets due to neutrino-antineutrino annihilation in compact object mergers
was studied in Aloy et al. (2005), and Poynting jet models were studied in
McKinney (2006) and Barkov and Komissarov (2008). In the fireshell model
in line with observations of Swift and Fermi satellites which never observed
the expected achromatic breaks in the light curve, we do address the issue of
jets in GRBs. In this sense the fireshell model is at variance from the research
such as Aloy et al. (2000), Zhang et al. (2004), McKinney (2006), who consider
the case of jets and magneto-hydrodynamic structure.

Contrary to the model of collapsar which purports the GRB process to oc-
cur inside the star, we focus on process occurring in a vicinity of the form-
ing black hole with baryonic remnants surrounding the black hole. This ap-
proach has been verified by the fit of 10 sources, see figure C.2, and Ruffini et al.
(2009). The observations by Swift and more recently by Fermi have given a
clear confirmation to one of the major prediction of the fireshell model: the
existence of the P-GRB, emitted when the electron-positron-baryon plasma
reaches transparency. In the case of Swift, following previous pioneering ob-
servations of Beppo-SAX in 1997-2005 the P-GRB has been clearly identified
as the crucial feature to explain the disguised short GRBs. Two GRBs with this
characteristic (Bernardini et al. (2007); Caito et al. (2009)) have been analyzed.
The sharp emission has been observed to be of the order of few seconds and
in some cases to be highly structured, see figure C.1 and Gehrels et al. (2005).
Similarly, in the case of Fermi a set of sources has been found with Lorentz
factor larger than 103 and again having a very prominent P-GRB with a du-
ration of the order of few seconds followed by ultra-high energy emission in
the GeV region. It is worth noting that within the fireshell model the emis-
sion of the P-GRB is assumed to be thermal, see Ruffini et al. (2009), and it is
crucial therefore to study the corresponding light curve based on the radial
structure of the expanding plasma.

With the assumption of spherical symmetry we focus on the issue how
different possible initial spatial distributions of matter and energy may influ-
ence subsequent evolution of the plasma. We solve the same equations as in
Piran et al. (1993) and Ruffini et al. (1999) focusing on various different initial
profiles. In addition to considering expansion of γ, e+, e−, b in vacuum, we
also study the case with expansion into an extended uniform distribution of
baryons still satisfying the Ruffini-Wilson condition.

C.2. Physical evolution

We study the evolution of a thermal plasma in the hydrodynamic approxi-
mation, considering the relativistic energy-momentum tensor.
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Figure C.2.: The energies emitted in the P-GRB (red line) and in the extended afterglow

(green line), in units of the total energy of the plasma, are plotted as functions of the B pa-

rameter. When B . 10−5, the P-GRB becomes predominant over the extended afterglow,

giving rise to a “genuine” short GRB. In the figure are also marked in blue the values of the

B parameters corresponding to some GRBs analyzed in the framework of fireshell model, see

Ruffini et al. (2007). All belonging to the class of long GRBs, together with the GRB060614

one (thick brown line). Figure reproduced from Caito et al. Caito et al. (2009)

Assuming that particles are: non relativistic baryons, and ultrarelativistic
photons, electrons and positrons, the fluid variables will be 1:

ǫr = ǫ− + ǫ+ + ǫγ,

ρr = ργ + ρ+ + ρ−,

pr = pγ + p− + p+,

where the subscript “r” denotes relativistic component, ”-“ denotes electrons,
”+“ denotes positrons and ”γ“ denotes photons. We also have

ρnr = ρb,

pnr = pb ≃ 0,

where the subscript “nr” denotes non relativistic component and ”b“ denotes
baryons. The hydrodynamics velocity of both components is the same since

1In this Appendix the speed of light will be c = 1
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they are coupled by collisions, so we have:

ǫ = ǫnr + ǫr ≃ ǫr, (C.2.1)

ρ = ρnr + ρr ≃ ρb, (C.2.2)

p = pr + pnr ≃ (ρrǫr)/3. (C.2.3)

It is useful to introduce new variables following Bowers and Wilson (1991):

D = ρΓ mass density in the laboratory frame, (C.2.4)

E = ǫD energy density in the laboratory frame, (C.2.5)

S = (D + E + Γp)U radial momentum. (C.2.6)

In spherically symmetric case we get from the energy-momentum and num-
ber of particles conservation equations:

∂D

∂t
= −∂(r2Dv)

r2∂r
, (C.2.7)

∂E

∂t
= −∂(r2Ev)

r2∂r
− p

∂(r2U)

r2∂r
− p

∂Γ

∂t
, (C.2.8)

∂S

∂t
= −∂(r2Sv)

r2∂r
− ∂p

∂r
, (C.2.9)

where U, v and Γ are related as follows:

Γ =
√

1 + U2 v = U/Γ. (C.2.10)

Equations (C.2.7)-(C.2.9) form a coupled system of partial differential equa-
tions, and its solutions cannot be found without further approximations. We
implemented a numerical code to solve this system of equations, following
Bowers and Wilson (1991) and Wilson and Mathews (2003).

C.3. Numerical approach

Finite-difference methods can be applied to solve partial differential equa-
tions (C.2.7)-(C.2.9). One approach to the solution of resulting system of cou-
pled nonlinear algebraic equations involves matrix inversion which turns out
to be particularly time consuming for our purposes. Instead we follow an-
other simpler approach called operator splitting. We implement the second
order method described in Bowers and Wilson (1991) and Wilson and Mathews
(2003) successfully applied to relativistic hydrodynamic problems (see e.g.
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Ruffini et al. (1999), Ruffini et al. (2000)). For further developments and im-
plementations of this technique see Anninos et al. (2005).

Below we briefly illustrate the main steps applied for our case.
The main idea of the operator splitting method is to compute separately the

contributions to the left hand side of equations (C.2.7)-(C.2.9) from different
terms on the right hand side.

The terms on the right hand side are solved one by one, in the following
order:

INTERACTION:

∂S

∂t
= −∂p

∂r
, (C.3.1)

U =
S

D + E + pΓ
, (C.3.2)

∂E

∂t
= −p

∂Γ

∂t
, (C.3.3)

∂E

∂t
= −p

∂(r2U)

r2∂r
, (C.3.4)

ADVECTION:

∂D

∂t
= −∂(r2Dv)

r2∂r
, (C.3.5)

∂E

∂t
= −∂(r2Ev)

r2∂r
, (C.3.6)

∂S

∂t
= −∂(r2Sv)

r2∂r
. (C.3.7)

From the physical point of view one may think that first we solve the phys-
ical interactions in the plasma, namely

• the acceleration due to radiative pressure,

• the new velocity,

• the new energy densities for the changes in velocity and pressure.

Then we solve the “advection equations” which can be thought just as a
rearrangement of the densities in space. As the fluid elements move in space,
the “advection equations” will just show where the fluid element located be-
fore in r1 will be after the time iteration, to say r2.
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Using (C.2.3, C.2.4 and C.2.5), equations (C.3.1)-(C.3.4) become,

∂S

∂t
= −∂E/Γ

3∂r
, (C.3.8)

U =
S

D + (4/3)E
, (C.3.9)

∂E

∂t
= − E

3Γ

∂Γ

∂t
, (C.3.10)

∂E

∂t
= − E

3Γ

∂(r2U)

r2∂r
. (C.3.11)

C.3.1. Finite difference form of equations

Using a finite difference method to solve numerically the previous equations,
we can have an iteration system in which, given initial conditions, we can
solve the evolution of the variables step by step in time. We introduce the
following notation:

∆t = tn − tn−1, (C.3.12)

∆r = rk − rk−1, (C.3.13)

∆tG = Gn − Gn−1, (C.3.14)

∆rG = Gk − Gk−1, (C.3.15)

where G represents any of the variables or functions of variables, n is a tem-
poral step and k is a spatial step. The system of equations (C.3.5)-(C.3.11),
after an adapted integration, can be expressed as:

INTERACTION:

∆tS

∆t
= − r2

3∆r
∆r(E/Γ), (C.3.16)

U =
S

D + (4/3)E
, (C.3.17)

∆t(lnE) = −1

3
∆t(lnΓ), (C.3.18)

∆t(lnE) = −∆t

3Γ

∆r(r2U)

r2∆r
, (C.3.19)

ADVECTION:
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∆tD

∆t
= −4π∆r(r2Dv)

∆rV
, (C.3.20)

∆tE

∆t
= −4π∆r(r2Ev)

∆rV
, (C.3.21)

∆tS

∆t
= −4π∆r(r2Sv)

∆rV
, (C.3.22)

where V is the volume.
In order to solve (C.3.16)-(C.3.22), we have to give as initial condition spa-

tial profiles for the physical variables at t = 0, then, by iteration method we
can calculate the spatial distribution for the variables at any later time. There-
fore we have to set initial profiles for: D(t = 0, r), E(t = 0, r), Γ(t = 0, r).

We can study any kind of initial conditions changing initial velocity and
initial energy to mass ratio distribution. This is the main goal of this work:
we intend to study which interesting results can be found using different ini-
tial spatial distributions for E and D.

C.3.2. Numerical issues

Some important points should be kept in mind when making a hydrody-
namic code, especially in relativistic case. These points influence both accu-
racy and stability of the scheme. In many problems in relativistic hydrody-
namics strong shocks occurs. For this reason either artificial viscosity (AV)
schemes or flux limiter (FL) ones are usually implemented. In our case, as
we will see in the following, shocks indeed occur, but they can be resolved
without AV. The FL scheme used in our code in order to avoid spurious os-
cillations near shocks is described in section C.3.3.

Centering

The variables have different position on the grid: some are calculated in the
center of each grid cell (Gk+1) and some are defined in the edge of grid cells
(Gk), where k is a even number (see figure C.3). Odd numbers define the
center of cells and even numbers define the boundary of cells. After the dis-
cretization of the spatial grid we define the volume element as,

∆Vk+1 =
4π

3
(r3

k+2 − r3
k). (C.3.23)

Variables are defined in these volume elements. Volume elements represents
the smallest resolvable part of the problem. Since in a numerical problem the
functions of the variables are not continuous but discretized. The volume ele-
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ment theoretically tends to the differential volume when its dimension tends
to zero. For each one of these volume elements we give a value for these vari-
ables. Inside each volume element the variables have a constant value, this
value can change just from one to another volume element.

For stability we have to define other volume elements translated spatially
with respect to the above ones. Some variables have to be defined in these
new volume elements (for illustration see figure C.4),

∆Vk =
4π

3
(r3

k+1 − r3
k−1). (C.3.24)

There is no general rule, but specifically in our case variables which are not
intrinsically related to motion (ρ, ǫ, E, D,) are computed on the centers of grid
cells, equation (C.3.23); instead, variables related to motion (v, u, γ, S) are
computed in edges of grid cells, what means that the correct volume elements
for these variables are the shifted ones, equation (C.3.24).

After centering one variable, we can construct the variable in the shifted
volume element, for example: D is centered in the middle of the grid cells,
D ≡ D1; but we can construct,

Dk =
1

2
(Dk+1 + Dk−1), (C.3.25)

and mutatis mutandis for the variables centered in the edge of the grid cells.
But the way to compute these shifted values should maintain the order of
accuracy of the code. The equation (C.3.25) is of first order, we can do it with
greater order of accuracy if needed.

To give an example, in equation (C.3.20), as mentioned before, the quantity
D is calculated in the center of grid cell: Dk+1. So the spatial derivative will
be done using the edge values of this cell (Dk, Dk+2). In order to give values
on these edges for variables which are first computed on the center of grid
cells, we use a second order interpolation, like the following algorithm:

If vk > 0, then

Dk = Dk−1−
1

2
∇Dk−1(∆r − vk∆t). (C.3.26)

If vk < 0, then

Dk = Dk+1 +
1

2
∇Dk+1(∆r + vk∆t). (C.3.27)

And if v = 0 we use equation (C.3.25). The gradient ∇Dk+1 is calculated
using flux limiter.
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Figure C.3.: Grid cells are defined with boundaries in rk with even k. One can see that v, S

and U are defined in boundaries of cells, while E and D are define in centers of cells.

Boundary conditions

As in many finite difference methods the differentiation is approximated as:

∂Gk

∂r
≡ Gk+1 − Gk−1

∆r
, (C.3.28)

and
∂Gk+1

∂r
≡ Gk+2 − Gk

∆r
. (C.3.29)

The values on the right hand side are the current time step iteration (Gn)
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Figure C.4.: The volume elements of variables defined in boundaries of cells, are defined

like ∆Vk+2 which is centered in the boundary of cells (rk+2 in this case) and have as bound-

aries rk+1 and rk+3. This is the volume element for Sk+2, for example. For variables defined

in centers of cells, the volume element is defined like ∆Vk−1, with boundaries in rk−2 and rk.

This is the volume element for Ek−1, for example.

while those on the left hand side will be used to construct the variables at
next iteration (Gn+1).

It means that, in the cases where the spatial differentiation appears, in order

to know (Gn+1
k ), we need the values of (Gn

k−1) and (Gn
k+1). If the initial spatial

grid goes from kmin − 1 until kmax + 1, because of the spatial differentiation,
at the next time step we will have just variables going from kmin until kmax
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(we cannot construct the value Gn+1
kmax+1 since we do not have Gn

kmax+2). Doing

so at each time step we lose the values on the edges of the grid in a way that
after n iterations we will loose 2n points (n in the beginning of the grid and
n in the end). In a massive computation, after few “time”, the grid will be
totally lost; to not loose the important information, one could do a grid much
greater than the “really needed” one.

Example: if we need to calculate some physical variable from radius 0 un-
til 100 meters, and we can use just 100 points in the grid to represent this,
it’s possible to construct a grid with 1100 points (corresponding to physical
radius going from rmin = −500 meters and rmax = 600 meters), with the phys-
ical important region in the middle of the grid (from 500 to 600). With this
configuration, after each iteration the points without physical interest will be
lost. After the 500th iteration, the grid will be reduced to the 100 points of
physical interest, if we calculate more then this, information will be lost. This
can be a solution for very simple and small size problems, but it is clearly a
very inefficient way.

In order to solve this problem one can use an extrapolation to set the bound-
ary conditions. The initial grid is from kmin − 1 until kmax + 1, after each iter-
ation, we loose the ends of the grid, so we have to reconstruct them, in order
to keep the same grid size as the initial one. A linear extrapolation can be
done in the following way:

Gkmax+1 = 2Gkmax−1− Gkmax−3, (C.3.30)

Gkmin−1 = 2Gkmin+1− Gkmin+3, (C.3.31)

which is nothing more than the calculation of one point in the line formed by
the last two end points in the grid (at each boundary). It works in the case
when the physical functions in the ends of the grid does not differs too much
from a linear function.

In our case we did in a different way, we simply set to zero the end val-
ues of D, E and Γ. This is equivalent to loosing the matter (E, D) in these
points. It works well when we can neglect the quantities in the end points in
comparison with quantities in points we are interested in. We did (for D and
E):

Gkmax+1 = Gkmin−1 = 0. (C.3.32)

Since Kmin = 2, we have

Gkmin−1 = G1 = 0. (C.3.33)

Since the plasma is expanding radially to outside, from rk0
= 0, we have

vkmin+1 > 0 since it is on the positive part of the grid, and v1 < 0 since it is on
the negative part of the grid. With these velocities and the above boundary
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conditions this means that if the matter arrives to the ends of the grid, then it
is lost to next calculations (transparent boundary conditions).

With this boundary conditions we can use a grid with almost the same
size we want to study the physical evolution of the variables, avoiding using
points outside the range of interest.

Reflection at the origin

The original physical problem is in three dimensions, but, assuming spherical
symmetry we represent it numerically with just one dimension. In order to
reproduce the spherical symmetry in one dimension we impose a reflection
symmetry at the origin (r = 0). The same initial profile for r > 0 is used
also for r < 0, with the difference that for negative radius the velocity is
also negative, so, we set for initial profiles: E(r) = E(−r), D(r) = D(−r),
Γ(r) = Γ(−r), v(r) = −v(−r). In figure C.5 we illustrate the reflection in
the initial profile also for negative radius, as for the non relativistic case, see
section C.4.4.
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Figure C.5.: Initial profiles have a reflection in the origin, as illustrated here
for the non relativistic case considered in section C.4.4.

The negative part is just a reflection of the positive part, in principal it is
not of physical interest. Indeed, the negative part does not need to have the
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same size (in radius) as in the positive part. The positive part has to have the
size which we want for the physical problem, while the negative one is just
necessary to maintain the right solution in the center (r = 0). Remembering
that the boundary conditions (C.3.32) means loss of matter, we need to choose
the size in the negative part in a way that during the total evolution (in time),
the loss of matter in the negative part does not become significant to affect
the positive part. In more detailed way, let’s call k0 as the grid point at the
center of the plasma, in which rk0

= 0. Then, if the profiles for (D, E and Γ)
in k0 − 1 are equal to the profiles in k0 + 1, it means that the solution is not
affected by the grid size in the negative part. If the grid size in the negative
part is too small and the loss of matter is too strong in a way that the values
in k0 − 1 and k0 + 1 become different, then the solution in the positive part is
affected by the grid size in the negative part.

In our simulations the grid size in the negative part is usually 10 times
smaller than the grid size in the positive part, see figure C.6.
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Figure C.6.: Using the boundary conditions (C.3.32), the size in the grid cor-
responding to negative radius can be much smaller then the grid for positive
radius. In this case the negative grid is nine times smaller then the positive
one.
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Time step and diffusion

The steps in radial coordinate ∆r and in time interval ∆t are related, the re-
sults are quite sensitive to these choices, which should satisfy the Courant
condition. Due to relativistic velocities it is better to set the limit for ∆t,
∆t < ∆r/c, (see Wilson & Mathews Wilson and Mathews (2003)). We found
that to avoid instability we can not use values near to ∆t = ∆r. So we fixed
∆t = ∆r/2 in all our simulations. If we use smaller values for ∆t, for a fixed
∆r, the numerical diffusion increases. But if we use smaller values for ∆r, for
a fixed value of ∆r/∆t, the diffusion decreases. For this reason we used high
spatial resolution with the number of spatial intervals Nr > 105.

It is necessary to use large number of spatial intervals specially in Eulerian
simulations where we would like to resolve the structure of shocks occurring
far alway from the source.

C.3.3. Implementation

Here we will show the implementation of the ordered equations (C.3.16)-
(C.3.22). In order to maintain stability, some equations are changed when
written in numerical form. The iteration indices are: k ranging from 2 to kmax

(just even numbers), and n ranging from 1 to tmax .
First we set up initial profiles for E, D and Γ, and we also compute the

volume elements ∆V. All these variables are given in k and k + 1 (for all k
values). Then we begin the temporal iterations, below we show all the steps
in one temporal iteration.

Pressure Acceleration

The acceleration due to pressure is computed first. We solve the term of
the radial moment S which is related to the spatial derivative of pressure p
(recalling that p = E/3Γ). Since S is defined in boundaries of cells (k), the
spatial derivative of p will use the values in the center of cells (k + 1):

∆tSk

∆t
= − r2

k

3∆r
∆r(E/Γ)

∣

∣

k
= − r2

k

3∆r

(

E

Γ

∣

∣

∣

k+1
− E

Γ

∣

∣

∣

k−1

)

, (C.3.34)

which in the code becomes

Sn+1
k = Sn

k −
4πr2

k∆t

An3∆Vk

(

Ek+1

Γk+1
− Ek−1

Γk−1

)

, (C.3.35)

where An is one variable which gives for the first iteration (n = 1) the value
A1 = 1/2, and gives An = 1 for all other iterations (n > 1). This is used
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C. Hydrodynamic phase of GRBs

because in the initial profile we have S computed in the same time moment
as the other variables D, E and Γ, while in the other iterations we have S com-
puted half time step after the pressure (or E and Γ). So in this first iteration
we advance S just half time step from the initial profiles, and in the other it-
erations, we advance S also half time step in comparison with E and Γ, since
we have equations (C.3.96), (C.3.99) which computes E and Γ in the end of
each time iteration.

Another important point here, is the meaning of the upper indexes n and
n + 1. If we had not used the splitting method, the variables would have all
the contributions being calculated in just one equation. Then it would have
sense to say that the temporal variation ∆tS means that we are computing
the difference between one time Sn+1 and the time step before Sn. But, since
we use the splitting method, the contributions to a single variable appears
in more then one equation, so the full contributions to S for the next time
step will be computed just in the end of the total time iteration. In the above

equation Sn
k means the old value of S, and Sn+1

k means the new value of S
after the pressure acceleration contribution; but we can not say that this is
the new value of S after the entire time step, since there is another equations
which is also necessary to compute the total evolution of S. From now on
I will omit the temporal indices. The value in the right hand side has to be
thought as an old value, and the value in the left hand side as the new value
after the contribution of the equation which is being computing in the case.
To thought in the value of the variables S, D and E in different time steps we
have to get the values just after the end of each full time iteration.

Now we apply the acceleration computed in the radial momentum in the
velocities (u, v and Γ),

Velocity

Uk =
Sk

(Dk + (4/3)Ek)
, (C.3.36)

Γ∗k =
√

1 + U2
k , (C.3.37)

vk =
Uk

Γ∗k
. (C.3.38)

(C.3.39)

Since S is defined in center of cells (k), the velocities will be computed in
k, and we need also D and E computed in k. So, as said in the introduction
of this section, in the initial profiles we compute E and D in the center of
shells, to do this we use equation (C.3.25). Here we label the Lorentz factor
as Γ∗ instead of Γ because it will be used again in the end of the time iteration.

382



C.3. Numerical approach

Pressure work

After the computation of new velocity caused by the acceleration due to the
spatial pressure gradient, we compute the change in energy density E due to
the new velocity. We solve first the term in equation for E which depends on
the temporal variation in Γ, equation (C.3.18). Since E is defined in k + 1 and
we do not have any spatial derivatives in this term, all quantities are used in
k + 1,

∆t(lnEk+1) = −
1

3
∆t(lnΓk+1) . (C.3.40)

We stress the importance to use the correct definition of the limits when
solving the integral of this equation, since this is the only term in which a
time derivative in the right hand side appears. In principle the time deriva-
tive in Γ should be calculated in a full time step, which means that the lower
limit on the integral should be the Γ calculated in equation (C.3.36) in the
previous time step (n− 1) and the upper limit should be the Γ calculated in
equation (C.3.36) in the current time step (n). But, as argued in Wilson &
Mathews Wilson and Mathews (2003), it is necessary to split this term (equa-
tion (C.3.18)) and the next one (equation C.3.19) in two parts. To maintain
stability, half of the change in energy due to change in velocity (equations
(C.3.18), (C.3.19)) shall be computed before the advection step (as you can
see in equations (C.3.41), (C.3.42)), and half of the change shall be computed
after the advection step (as you can see in equations (C.3.91), (C.3.92)). In fact
we had then, split these terms in two, and we use half time step in each of
these computations (it is the reason why we write ∆t/2 in these terms).

Then, the limits in the integral in time of Γ will not be computed in a full
time step, but in a ’half’ time step. In the first equation (C.3.40) we use as
lower limit the Γ computed before the equation (C.3.91) (which is Γ′) and as
an upper limit the Γ computed before (C.3.40) (which is Γ∗). In the second
part of this term (equation C.3.91) we use the opposite: as a lower limit Γ∗

and as an upper limit Γ′. Since Γ′ is computed just in the end of the temporal
iterations, to have an initial value for it for the first iteration (n = 1) we set
Γ′ = Γ before the beginning of first temporal iteration.

Ek+1 = Ek+1

(

Γ′k+1

Γ∗k+1

)(1/3)

. (C.3.41)

Now, with the new E computed in the equation above, we compute how it
changes due to the spatial gradient of U:

∆t(lnEk+1) = −
∆t/2

3Γ∗k+1r2
k+1∆r

∆r(r2U)
∣

∣

k+1
. (C.3.42)
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C. Hydrodynamic phase of GRBs

Since this equation is also splitted in two, we use half time step ∆t/2. In the
code, instead of computing the spatial variation of U, we compute the spatial
variation of vΓ, as suggested in Wilson and Mathews (2003). We compute the
spatial finite differences,

(v∇Γ)k+1 =
(vk + vk+2)(Γ

∗
k+2 − Γ∗k )

2∆r
, (C.3.43)

(Γ∇v)k+1 =Γ∗k+1

4πr2
k+2vk+2 − 4πr2

kvk

∆Vk+1
, (C.3.44)

and we apply in the energy equation,

Ek+1 = Ek+1Exp

[

−(∆t/6)

(

(v∇Γ)k+1 + (Γ∇v)k+1

Γ∗k+1

)]

. (C.3.45)

Notice that the factor ∆t/6 appears instead of ∆t/3 because we use half
time step.

Interpolation

To calculate the advection equations (C.3.79), (C.3.80) and (C.3.81), we need
to use in the right hand side the flux of the variables in the boundaries of the
volume element in which the spatial derivative is done. The calculation of
these fluxes is crucial for the stability as well. In the following we illustrate
the steps needed to find these fluxes.

First we calculate the average of densities in the boundaries,

Dk =(1/2)(Dk+1 + Dk−1), (C.3.46)

Ek =(1/2)(Ek+1 + Ek−1). (C.3.47)

And then, since S is defined in the boundary of cells, the volume element
related to it is ∆Vk which has as boundaries k− 1 and k + 1, so, to calculate
the fluxes of S in the boundaries of its volume element, we need the velocities
in k− 1 and k + 1.

Uk+1 =(1/2)(Uk + Uk+2). (C.3.48)

vk+1 =(1/2)





Uk
√

1 + U2
k

+
Uk+2

√

1 + U2
k+2



 . (C.3.49)

Flux limiter
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C.3. Numerical approach

The flux limiter is used to limit the flux of variables in boundaries of the
volume elements Dönmez (2006). It will smooth the steep gradients to avoid
instabilities in shocks. To compute the gradients, we calculate a minimum
value between three possible choices:

• the gradient using the medium values as in equations (C.3.46) and (C.3.47),

• the gradient using the difference from the value of the variable in the
point and in the previous one: Gk − Gk−1,

• and the gradient using the difference from the variable in the point and
in the next one: Gk − Gk+1 .

The algorithm showed bellow, illustrate the choice of the minimum gradi-
ent for each variable.

For D (For E will be equal, just changing D → E):

Dmin =min(Dk−1, Dk+1, Dk+3), (C.3.50)

Dmax =max(Dk−1, Dk+1, Dk+3), (C.3.51)

∆Dmin =min(Dmax −Dk+1, Dk+1−Dmin), (C.3.52)

∆Dmax =max(Dmax −Dk+1, Dk+1−Dmin, |Dk+2−Dk|). (C.3.53)

If we have a point of maximum or minimum, the gradient is set to zero:

if (Dk+3 − Dk+1)(Dk+1 − Dk−1) < 0 then

∇Dk+1 = 0. (C.3.54)

And if the difference of the averaged variables is zero, we also set the gradient
to zero:

if Dk+2− Dk = 0 then
∇Dk+1 = 0. (C.3.55)

Otherwise, we compute the gradient,

∇Dk+1 =
min(∆Dmin, ∆Dmax)

(∆r)

Dk+2− Dk

|Dk+2− Dk|
. (C.3.56)

For U:
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Umin =min(Uk−2, Uk, Uk+2), (C.3.57)

Umax =max(Uk−2, Uk, Uk+2), (C.3.58)

∆Umin =min(Umax −Uk, Uk −Umin), (C.3.59)

∆Umax =max(Umax −Uk, Uk −Umin). (C.3.60)

If we have a point of maximum or minimum, the gradient is set to zero:
if (Uk+2 −Uk)(Uk −Uk−2) < 0 then

∇Uk = 0. (C.3.61)

And if the difference of the averaged variables is zero, we set also the gradient
to zero:

if Uk+1−Uk−1 = 0 then
∇Uk = 0. (C.3.62)

Otherwise, we compute the gradient,

∇Uk =
min(∆Umin, ∆Umax)

∆r

(Uk+1 −Uk−1)

|Uk+1 −Uk−1|
. (C.3.63)

Interpolation (continuation)

Finally we can compute the interpolated variables on boundaries. If the
velocity is positive we use the computed gradients of the previous spatial
grid point:

if (vk > 0) then

Ďk =Dk−1− (1/2)∇Dk−1(∆r − vk∆t), (C.3.64)

Ěk =Ek−1 − (1/2)∇Ek−1(∆r − vk∆t). (C.3.65)

If the velocity is negative we use the computed gradients of the next spatial
grid point:

if (vk < 0) then

Ďk =Dk+1 + (1/2)∇Dk+1(∆r + vk∆t), (C.3.66)

Ěk =Ek+1 + (1/2)∇Ek+1(∆r + vk∆t). (C.3.67)

And if the velocity is zero, we use the simple average:
if (vk = 0) then

Ďk =Dk, (C.3.68)

Ěk =Ek. (C.3.69)
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C.3. Numerical approach

The fluxes on the boundaries of the cells will be:

MDk =Ďk4πr2
kvk∆t, (C.3.70)

MEk =Ěk4πr2
kvk∆t, (C.3.71)

MSk =MDk + MEk(4/3). (C.3.72)

Recalling that S is defined in a different volume element, we have to com-
pute the variables in the apposite grid places.

First we compute the interpolated four-velocity on center of grid cells. As
for densities if the velocity is positive we use the computed gradients of the
previous spatial grid point:

if (vk+1 > 0) then

Ǔk+1 = Uk + (1/2)∇Uk(∆r − vk+1∆t). (C.3.73)

If the velocity is negative we use the computed gradients of the next spatial
grid point:

if (vk+1 < 0) then

Ǔk+1 = Uk+2 − (1/2)∇Uk+2(∆r + vk+1∆t). (C.3.74)

And if the velocity is zero, we use the simple average:

if (vk+1 = 0) then
Ǔk+1 = Uk+1. (C.3.75)

Finally the fluxes for the boundaries of S are evaluated

MSk+1 =(1/2)(MSk + MSk+2). (C.3.76)

φk+1 =MSk+1Ǔk+1. (C.3.77)

(C.3.78)

Advection

Now we compute how the variables will move due to the new velocity,

∆tDk+1

∆t
= − 1

∆rvk+1
∆r(r2Dv)

∣

∣

k+1
, (C.3.79)

∆tEk+1

∆t
= − 1

∆rvk+1
∆r(r2Ev)

∣

∣

k+1
, (C.3.80)

∆tSk

∆t
= − 1

∆rvk
∆r(r2Sv)

∣

∣

k
, (C.3.81)
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which in the code becomes

Dk+1 =
Dk+1− (MDk+2 −MDk)

∆Vk+1
, (C.3.82)

Ek+1 =
Ek+1 − (MEk+2 −MEk)

∆Vk+1
, (C.3.83)

Dk =
1

2
(Dk+1 + Dk−1), (C.3.84)

Ek =
1

2
(Ek+1 + Ek−1), (C.3.85)

Sk = Sk −
(φk+1 − φk−1)

(∆Vk)
. (C.3.86)

After the advection of the variables, we compute the second part of terms
(C.3.18) and (C.3.19), but before this we need to compute the new advected
velocities.

Velocity:

Uk =Sk/(Dk + (4/3)Ek), (C.3.87)

Γ′k =
√

1 + U2
k , (C.3.88)

vk =Uk/Γ′k, (C.3.89)

Γ′k+1 =
√

(1 + (U2
k + U2

k+2)/2). (C.3.90)

Pressure work

Now we compute the second half time step of (C.3.18) and (C.3.19), which
will be the same as (C.3.40) and (C.3.42), but changing Γ∗ by Γ′ and vice-versa.

∆t(lnEk+1) =−
1

3
∆t(lnΓk+1), (C.3.91)

∆t(lnEk+1) =−
∆t/2

3Γ′k+1r2
k+1∆r

∆r(r2U)
∣

∣

k+1
, (C.3.92)

which in the code become,
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(vΓ)k+1 =
1

(2∆r)
(vk + vk+2)(Γ

′
k+2 − Γ′k), (C.3.93)

(Γ∇v)k+1 =Γ′k+1

(4πr2
k+2vk+2 − 4πr2

kvk)

∆Vk+1
, (C.3.94)

(EΓ)k+1 =Ek+1

(

Γ∗k+1

Γ′k+1

)(1/3)

, (C.3.95)

Ek+1 =(EΓ)k+1Exp

[

−(∆t/6)

(

(vΓ)k+1 + (Γ∇v)k+1

Γ′k+1

)]

, (C.3.96)

Ek =
1

2
(Ek+1 + Ek−1). (C.3.97)

Velocity

The only quantity which remains to be updated is the pressure p. We do
not need explicitly p because in our case p = E/3Γ, but for equation (C.3.34)
in the next time step, we need the spatial gradient of p (or of E and Γ). We
have already updated E in the full time step, so we still have to update just Γ,

Uk =Sk/(Dk + (4/3)Ek), (C.3.98)

Γk =
√

(1 + U2
k ), (C.3.99)

vk =Uk/Γk , (C.3.100)

Γk+1 =
√

(1 + (U2
k + U2

k+2)/2). (C.3.101)

This computation of Γ is needed just to use in the place of pressure in equa-
tion (C.3.34), is not like an update to real physical velocities. With this, we
complete one time step iteration.

When we need to know the values of some variables in k = 1 or k = kmax+1

we give the boundary conditions (for E and D),

E1 =0, (C.3.102)

E(kmax+1) =0. (C.3.103)

Let us summarize the most important points one needs to keep in mind
about the code:

• in order to avoid numerical instability and maintain accuracy the se-
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quence of solving the relativistic hydrodynamic equations has to be the
one presented in this section.

• Since by the operator splitting method each term on RHS of evolution
equations has to be solved separately, the presence of time derivative
in equation C.2.8 allows to use the analytic solution C.3.18. However it
requires the knowledge of two values of the Lorentz factor to be used
in that equation.

C.4. Tests

In this section we illustrate the performance of numerical code with several
test problems.

C.4.1. Advection

In order to see if the advection in the code works well (without much disper-
sion), we made a test using a gaussian distribution of matter moving with
constant velocity in a planar geometry with

D(t = 0, r) = 1 + e−(r−25)2/0.9, (C.4.1)

and with initial Lorentz factor Γ = 2. Equations in the planar geometry (cor-
responding to equations (C.2.7) to (C.2.9), written only for matter density)
are:

∂D

∂t
= −∂(Dv)

∂r
, (C.4.2)

∂S

∂t
= −∂(Sv)

∂r
− ∂p

∂r
. (C.4.3)

The result shows that the pulse has the spreading of 3% its original size, after
traveling 8 times its original width. This result can be compared with the one
reproduced in Bowers and Wilson (1991) using a second order monotonicity
scheme with a spreading of 4% after the pulse has traveled 5 times its original
width.

C.4.2. Spatial resolution

In order to avoid numerical spreading, we have to choose a very small value
for the radius step. We show in figure C.7 that the larger ∆r is, the more
spreading appears in the pulse. The difference between the pulses widths at
the end of simulations is significant. The initial profiles are:
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Figure C.7.: The figure shows simulations with five different values of ∆r
using the profiles (C.4.4), (C.4.5). The values of ∆r are: 1/1000, 1/400, 1/200,
1/100, 1/50, for simulations E1, E2, E3, E4, E5 respectively. In all simulations
∆t = ∆r/2. We can see significant difference between simulations 3, 4 and 5,
while for simulations 1 and 2, the difference is not too much, even changing
the resolution more than twice. For all simulations done in this thesis we use
∆r = 1/500.

D(t = 0, r) =
ρ0Γ0

R0 + r8
, (C.4.4)

E(t = 0, r) =ǫ0D(t = 0, r) =
ǫ0ρ0Γ0

R0 + r8
, (C.4.5)

with the following parameters ǫ0 = 50, ρ0 = 0.004, Γ0 = 1 and R0 = 1. And
for the usual hydrodynamic quantities: ρ, ǫρ and p,

ρ(t = 0, r) =
ρ0

R0 + r8
, (C.4.6)

ǫ(t = 0, r)ρ(t = 0, r) =
ǫ0ρ0

R0 + r8
, (C.4.7)

p(t = 0, r) =
ǫ0ρ0

3(R0 + r8)
. (C.4.8)
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Figure C.8.: Comparison between our results and the analytical rarefaction
solution from Thompson (1986).

In figure C.7 the simulations 4 and 5 have respectively ∆r = 1/400 and
∆r = 1/1000. We see that the difference is not significant between these two
simulations. So we used ∆r = 1/500 in all our simulations.

C.4.3. Rarefaction

Another test problem computed with the code is the relativistic rarefaction
wave (Thompson (1986)). The solution for this problem includes the rarefac-
tion wave itself and a shock. Just the rarefaction part is considered here.
Given the values of Γ from our simulations we applied the following equa-
tions from Thompson (1986):

u =
√

Γ2 − 1, y1 =

(

4p0

ρ0

)1/2

, y2 =
f (y1)

2 − f (u)
√

1/3

2 f (y1) f (u)1/(2
√

3)
, (C.4.9)

f (y1) = y1 + (1 + y2
1)

1/2, f (u) = u + (1 + u2)1/2, (C.4.10)

ρ = ρ0

(

y1

y2

)−6

, p = p0

(

ρ

ρ0

)4/3

, Drar = ρΓ, Erar = 3pΓ, (C.4.11)
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where ρ0 = 0.002 and p0 = 2/3. Figure C.8 shows the results of numerical
computation (dashed line) as well as the solutions of rarefaction equations.
There is a complete agreement between analytical and numerical solutions
until the point where the rarefaction solution starts to deviate from the full
solution, see details in Thompson (1986).

C.4.4. Piran profiles

In this section we reproduce the results of Piran et al. (1993), as another test
of the code. We performed a simulation with the same initial conditions as
in that article. Initial profile for E and D with a very steep decay for r > R0

were chosen, namely:

D(t = 0, r) =
ρ0Γ0

R0 + r8
, (C.4.12)

E(t = 0, r) =ǫ0D(t = 0, r) =
ǫ0ρ0Γ0

R0 + r8
, (C.4.13)

where parameters are: ǫ0 = 0.001, ρ0 = 200, Γ0 = 1 and R0 = 1, and we
used a spatial step ∆r = 2 × 10−3 and a time step ∆t = 1 × 10−3 (these
values are the same for all simulations). The high power in r is needed to
represent a dense object with vacuum outside. The material is initially at rest,
and it is never relativistic because from the beginning it is matter dominated
D(t = 0, r) = 103E(t = 0, r). Plasma expands like a gas which was initially
confined. It just tends to fill all the space with equal density (at infinite time),
see figure C.9, in good agreement with figure 3 of Piran et al. (1993).

In the relativistic case we use also the equations (C.4.12), (C.4.13) for the ini-
tial profiles, but with parameters: ǫ0 = 50, ρ0 = 0.004, Γ0 = 1 and R0 = 1. The
matter is initially at rest with Γ(0, r) = 1, but due to the pressure of relativistic
particles, it self accelerates reaching high bulk Lorentz factors. Because of this
peculiarity practically all particles of the shell accelerate together. In contrast
with the non relativistic case, in the central region inside the shell the density
is very small, see figure C.10.

Notice that soon after beginning of expansion matter and energy get con-
centrated in a narrow shell with thickness independent on time. Piran et al.
(1993) call this structure as the “frozen radial profile”. It is found that this ap-
proximation is valid in the energy dominated regime, and in the beginning
of the matter dominated regime. In section C.5 we show that for different
initial distributions of energy and matter the resulting evolution can be also
different from the one found in Piran et al. (1993).
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Figure C.9.: Time evolution of the energy density E(r) and matter density
D(r) profiles for non relativistic case, with initial conditions shown in equa-
tions (C.4.12,C.4.13). All quantities are shown in laboratory frame. In this
case the baryon loading parameter is B = 103.

C.4.5. Scaling laws

Here we show the analysis of the scaling laws. These laws are valid for av-
erage values in each “differential” individual radial shell in the plasma. The
averages are:

〈ρ〉 = 〈nm〉 =
∫

(D/Γ) r2dr
∫

r2dr
, (C.4.14)

〈ǫρ〉 = 〈em〉 =
∫

(E/Γ) r2dr
∫

r2dr
, (C.4.15)

where the limits of the integrals should be the internal and the external radius
of the volume in which the average is being computed. In figure C.11 we
show the evolution of baryon number density, and two curves. The curve
labeled r−2 is a curve which scales as r−2 and is constructed to have the same
value of n evolution in the end of the grid (r ≈ 200). And the curve labeled
r−3 is constructed to have the same value of n in the beginning of the grid
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Figure C.10.: The same as in figure C.9, but for relativistic case. Here B =
2× 10−2.

(r ≈ 10). We see that for very small radius (r < 20) the n slope is much
similar to r−3, and after this its slope changes, until being very similar to r−2

in the end of the grid. Following the above mentioned scaling laws, we did
the same analysis for e, see figure C.12 were the curve which coincides in the
beginning has a slope r−4, and the curve which coincides in the end has a
slope r−8/3.
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Figure C.11.: Analysis of the scaling laws of number density of baryons n. It
is in a good agreement with the scaling laws found in Piran et al. (1993).

C.5. Results

In the previous section we reproduced the results obtained by Piran et al.
(1993) considering the evolution of initially energy dominated plasma loaded
with baryons through the energy dominated and mater dominated phases.
Recall that this solution represents the expansion into vacuum. In what fol-
lows we will consider two examples of generalizations of such simple pic-
ture. In section C.5.1 we will consider the same initial energy density profile
as before but different matter density profile which is chosen to be uniformly
distributed. Our analysis is different from Ruffini et al. (2000) because in that
paper a shell of baryons is considered located initially at some distance from
the origin. Then in section C.5.2 a combination of Piran profile and the con-
stant baryons density one is used for the initial conditions of our simulations.

C.5.1. Constant baryonic distribution profile

Consider the modification to Piran et al. (1993) spatial profile, where the mat-
ter density D and energy density E are:
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Figure C.12.: Analysis of the scaling laws of energy density e. It is in a good
agreement with the scaling laws found in Piran et al. (1993).

D(t = 0, r) = ρ0Γ0, (C.5.1)

E(t = 0, r) = ǫ(t = 0, r)D(t = 0, r) =
ǫ0ρ0Γ0R8

0

R8
0 + r8

, (C.5.2)

with initial parameters: ǫ0 = 0.2× 1010, Γ0 = 1 and ρ0 = 5× 10−10E0, where
E0 = E(r = 0, t = 0). The initial profiles for usual hydrodynamic quantities,
namely, matter density ρ, energy density ǫρ and pressure p, are:

ρ(t = 0, r) = ρ0, (C.5.3)

ǫ(t = 0, r)ρ(t = 0, r) =
ǫ0ρ0R8

0

R8
0 + r8

, (C.5.4)

p(t = 0, r) =
ǫ0ρ0R8

0

3(R8
0 + r8)

. (C.5.5)

For the present section we define a modified baryon loading parameter
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which is more convenient to plot:

B′ =
1

1 + 1
B

. (C.5.6)

Spatial profiles of E, D and Lorentz factor for selected time moments are
presented in figure C.13. The plasma in spatial region dominated by the rel-
ativistic component E self accelerates like in the previous case. However, it
pushes the nonrelativistic baryons which are collected in the front of the shell,
creating an additional leading shell.

More details can be seen in figure C.14. It shows that soon after expansion
starts two shocks are being formed: the forward shock (FS) propagating into
the external medium and the reverse shock (RS) propagating back into the
expanding shell. This radial structure is in some aspects similar to the one
occurring during the interaction of the ultrarelativistic shell with the inter-
stellar medium in the external shock model of GRBs.

The region between the shocks, in what follows, will be referred to as outer
shell. The unshocked part of the expanding shell will be referred to as inner
shell. We also notice that inside the shocked region there are two distinct
regions: the energy dominated one and the matter dominated one.

This picture corresponds to the radial profiles of E, D, B′ and Γ at the time
moment t = 33.2R0. One can see that the forward shock is located at about
r = 36.4R0. It should be noticed that the propagations velocity of the FS is
subluminal. In our case the initial size of the energy dominated shell is given
by the condition E(t = 0) = D(t = 0) which is req(t = 0) = 15R0. The
average Lorentz factor of the inner shell is much larger than the one of the
outer shell, meaning that they should eventually merge.

The development of this structure is shown in figure C.15 for the moment
t = 93.6 and in figure C.16 for t = 173.6. Comparison of figures C.14, C.15
and C.16 shows that while the inner shell is getting accelerated for larger and
larger Lorentz factors, the outer shell stays mildly relativistic reaching Γ ≈ 10
in the last figure. Indeed the shells approach each other with the expansion
and then eventually merge as can be seen from figure C.16. Even when they
merge, there still the signature of the reverse shock propagating back in the
energy dominated shell, clearly visible in the Lorentz factor profile.

The parameters of the simulations and the size of the grid are chosen in
such a way that the total energy exceed the total mass. It means that the
amount of baryonic matter is not sufficient to decelerate the expanding shell.
In other words the reverse shock never crosses entirely the expanding shell.

The deceleration phase begins when the total mass density become equal
to the total initial energy density. Our simulations are done respecting this
condition till the end of the simulation.
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Figure C.13.: Densities and Lorentz factor evolution (at different times) in the
case with a constant baryonic distribution profile, see section C.5.1.

C.5.2. Hybrid profile

Combining the profile used in section C.4.4 with the previous one, we now
choose for E and D the following profiles:
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Figure C.14.: Detailed structure of the spatial distribution of Lorentz factor
and baryonic loading (upper panel), energy and matter density (lower panel)
is shown for the moment t = 33.2. The B parameter changes 8 orders of
magnitude throughout the shell.

D(t = 0, r) = ρ(t = 0, r)Γ(t = 0, r) =
ρ0Γ0R8

0

(aR0)8 + r8
+ d, (C.5.7)

E(t = 0, r) = ǫ(t = 0, r)D(t = 0, r) =
ǫ0ρ0Γ0R8

0

R8
0 + r8

, (C.5.8)
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Figure C.15.: The same as in figure C.14, for the moment t = 93.6. The density
of the outer energy dominated shell increases, and the density of the inner
energy dominated one decreases.

with the parameters: ǫ0 = 5× 105, ρ0 = 0.2× 10−5E0, Γ0 = 1, d = 5×
10−11E0 and a = 10−1/2, which correspond to a dense core of cold baryonic
matter inside the radiation dominated region, immersed in a uniform exter-
nal baryonic medium.

The initial profiles for the usual hydrodynamic quantities, matter density
ρ, energy density ǫρ and pressure p, are:
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Figure C.16.: The same as in figure C.14, for t = 173.6.

ρ(t = 0, r) =
ρ0R8

0

(aR0)8 + r8
+ d, (C.5.9)

ǫ(t = 0, r)ρ(t = 0, r) =
ǫ0ρ0R8

0

R8
0 + r8

, (C.5.10)

p(t = 0, r) =
ǫ0ρ0R8

0

3(R8
0 + r8)

, (C.5.11)

In this case we have a mixture of two previous cases. In fact, two shells
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Figure C.17.: The same as in figure C.13, but for the hybrid case considered
in section C.5.2. The Lorentz factor evolution presents some structure, but its
shape is very similar to the case reproduced in section C.4.4. The densities
profiles instead show a very different structure.

form again, see figure C.17. More details can be seen in figure C.18. The
spatial profiles of energy density and Lorentz factor are similar to previous
case, see figure C.14, the difference between these to figures is the presence
of accelerated baryonic matter in the inner shell. These are baryons located
initially in the center which are carried together with the inner energy domi-
nated shell.

The development of the structure is shown in figure C.19. The separation
between the inner and outer shell decreases with time, similar to the previous
case, due to the difference of their average Lorentz factors. Notice that the
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Figure C.18.: The same as in figure C.14, for the hybrid case, with t = 32.8.

“frozen radial profile” is valid for the inner E-shell.

The presence of the double peak structure in the D profile is crucial here
since the transparency condition is determined by the number density of
baryons. Such double peak structure may then be visible in the light curve
of the radiation emitted at transparency provided that: a) the amplitude of
both peaks is similar b) there is a separation between the peaks. For this rea-
son we performed different simulations with this hybrid profile changing the
value of d for fixed values of a, ǫ0 and ρ0, assuming that the external medium
density does not change up to transparency radius defined by the condition
τ(rtr) = 1. We analyzed the E and the D profiles and we found the relation
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Figure C.19.: The same as in figure C.14, with t = 112.8. Now we can see two
shells for both densities E and D.

between the value of the ratio d/E0 and the ratio of the radius in which the
amplitude of two peaks discussed above (showed in figure C.19) coincides
and R0. Numerically we determined the following relations:

(

reqE

R0

)

≈ 0.49

(

d

E0

)−0.24

, (C.5.12)

(

reqD

R0

)

≈ 0.039

(

d

E0

)−0.35

, (C.5.13)
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where reqE/R0 and reqD/R0 correspond to the radius of equality of ampli-
tudes in E and D profiles respectively.

Assuming for the radius of transparency

103
<

rtr

R0
< 106, (C.5.14)

from (C.5.13) and (C.5.14) we then have

10−23
<

d

E0
< 10−13. (C.5.15)

or expressed in physical units, assuming E0 = 1026 erg/cm3 (corresponding
to the temperature of plasma of 1 MeV)

10−18
< d < 10−8g/cm3. (C.5.16)

If we consider that the baryonic matter is represented just by protons we have

106
< d < 1016 #/cm3. (C.5.17)

C.6. Discussion of the results

Motivated by the recent observations of structured P-GRBs in this Chapter we
performed the analysis of the accelerating phase of electron-positron plasma
expansion. We examined the possibility that the structure seen in P-GRBs
light curves originates from the structure of matter and energy distribution in
the sources of GRBs. For this reason we were looking for possible deviations
from the frozen radial profile of Piran et al. (1993).

We developed a hydrodynamic code based on the operator splitting tech-
nique, following Bowers and Wilson (1991) and Wilson and Mathews (2003).
The same code was used earlier in Ruffini et al. (2000), who also considered
expansion of electron-positron plasma assuming that baryons are engulfed
during the acceleration phase of expansion. The difference between the initial
conditions adopted in Ruffini et al. (2000) and ours is that we are considering
continuous engulfment of baryons uniformly distributed in space while they
considered baryons located in a thin shell at a certain radial distance from
the source of the e+e− plasma. Similarly to Ruffini et al. (2000) we also find
that the thickness of the unshocked part of the expanding shell is constant in
time. The main difference is that our initial conditions result in the formation
of long living shocks propagating both in the external medium (FS) and in
the expanding shell (RS). The shocked region located in between is the new
feature of our solution.

Appearance of shocks caused by the interaction of the relativistic shells

406



C.6. Discussion of the results

with external medium is not new in the literature. Similar situation occurs
for example in the external shock model of GRBs (Rees and Meszaros (1992))
where the forward shock is propagating in the interstellar medium. There is
however an essential difference: the expanding shell playing the role of a pis-
ton is always energy dominated in our case, unlike the called ultrarelativistic
shell considered in the external shock model. This point is crucial since in our
case both forward and reverse shocks are formed at the acceleration phase of
the shell expansion and not in the deceleration phase as in the case of external
shock model.

In the external shock model the deceleration of the expanding shell occurs
when the reverse shock crosses the entire shell. In our case instead we are
interested in the acceleration of the expanding shell.

Its important to stress our assumption that at any time moment the inner
shell is not affected by the presence of the external medium since the reverse
shock did not reach it yet. For this reason the asymptotic Lorentz factor at-
tained by the inner shell is given by the relation

Γasym ≈ B−1
0 , (C.6.1)

where B0 is given by

B0 =
∫ Req

0

D(r)r2dr

E(r)r2dr
, (C.6.2)

and Req is determined from the equality

D(t = 0, Req) = E(t = 0, Req). (C.6.3)

Our assumption will be valid if the radius at which the reverse shock crosses
entirely the inner shell (the deceleration radius Rdec, see Mészáros et al. (1993))
is larger than the radius Rc = ΓasymR0. The deceleration radius is defined by
the condition that total energy of baryons located in both shells is equal to the
initial energy released in the source of GRB. Moreover we also assume that
the transparency is reached before the deceleration begins. In other words
we require

Rc <Rdec, (C.6.4)

Rtr <Rdec, (C.6.5)

where Rtr is the radius at transparency.

Its is our main finding that in the acceleration phase the reverse shock does
not propagate in the expanding shell and the width of the shocked region
(outer shell) does not increase in the laboratory frame. This means that the
inner shell indeed remains unaffected by the external medium, provided that
the acceleration is not saturated.
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As we discussed in section C.5.2 the double peak structure is formed in the
D(r) profile in the hybrid case: the outer peak corresponds to the shocked
region containing the swept up baryons heated by the forward shocks; the
inner one is due to the baryons carried together with the accelerating e+e−

plasma.
We found a relation between the parameter which determines the radius at

which the amplitudes of both peaks in the double peak profile coincide. By
extrapolating this relation to the transparency radius we found the admissi-
ble range of external baryon densities.

The appearance of this double peak structure requires also the separation
between the two shells (outer and inner ones), depending mainly on three
parameters:

• the relative value of external constant baryonic matter density d/E0

which is responsible to the formation of the outer shell (front of the
forward shock);

• the ratio a of the width of the internal baryonic shell and the width of
the E shell;

• the value of the ratio between D and E in the beginning at r = 0, ρ0/E0.

Such structure, if survives until the transparency moment will give rise
to two shells, moving ballistically with different Lorentz factors. Since the
Lorentz factor of the outer shell is smaller than the one of the inner shell, they
will eventually collide and interact in the collisionless regime. This brings
some similarities with the internal shock model of GRBs (Narayan et al. (1992);
Rees and Meszaros (1994)), where the existence of multiple shells having dif-
ferent Lorentz factors is postulated. In our case the appearance of two shells
with different Lorentz factors is the natural consequence of the interaction of
the expanding shell with the external medium in the optically thick phase.

The simulation of the hybrid profile containing only one initial internal
shell of baryons immersed in a uniformly distributed baryonic matter, can
be considered as a toy model for a more refined scenario. In principle more
complex structure of initial matter and energy distribution can give at trans-
parency more complex light curves. In the same way a more complex dis-
tribution of external medium can generate multiple shocks propagating both
in the external medium and in the expanding shells. Such shocks will result
in shells having different Lorentz factors left to interact after transparency
occurred.

It is also important that part of kinetic energy of baryons is used to hit up
the baryons swept up from the external medium (by the reverse shock). Thus
the energy budget of photons emitted at transparency versus kinetic energy
of remaining baryons will be affected by this solution as contrasted to the
“frozen radial profile” one.
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C.6. Discussion of the results

In principle if this scenario will be confirmed by the observations it will
open an interesting possibility to get information from the structure of the
P-GRB and the different Lorentz gamma factors in the spatial distribution of
accelerated baryons left over at transparency, to infer the information about
the matter distribution during the process of the gravitational collapse to a
black hole.
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D. On the thermal spreading of
the fireshell

D.1. Introduction

Optically thick pair plasma with baryon loading is assumed to power GRBs
in many models, considered in the literature, see e.g. Piran (1999); Ruffini et al.
(1999, 2000). Such plasma is self accelerated to large bulk Lorentz factors be-
fore it becomes transparent to Compton scattering. At the moment of trans-
parency a pulse of radiation is expected to be formed. In the fireshell model
(e.g. Ruffini et al. (2009)) this photospheric emission is called the Proper GRB
(P-GRB).

Hydrodynamical analytical and numerical results show that during expan-
sion from the initial size of plasma r0 up to transparency the thickness of the
fireshell ∆r ∼ r0 does not increase substantially. This fact has been used in the
development of the fireshell model and it termed constant thickness approxi-
mation, c.f. Ruffini et al. (2000). Due to relativistic beaming it is believed that
the duration of the P-GRB is of order of ∆r/c.

In 1993 Mészáros, Laguna and Rees (Mészáros et al. (1993)) suggested a
mechanism of the shell expansion based on thermal spreading. The presence
of nonzero thermal velocity dispersion δvr leads to expansion of the shell.
Taking dispersion ∆vr/c ∼ 1/Γ2 for the shell moving with bulk Lorentz fac-
tor Γ, this spreading will be of order ∆r ∼ ∆vr t ∼ r/Γ2. During the matter-
dominated stage of GRB Γ ∼ const is approximately equal to the inverse
of the baryonic loading B, which represents the ratio between baryonic rest
mass and the total energy of pairs. Therefore when the fireshell reaches the
radius of transparency rtr (see (D.4.6) below) we have ∆r ∼ rtrB2 or

∆r/c ∼ 3.42

(

B

10−2

)5/2( Ee+e−

1054 erg

)1/2

sec, (D.1.1)

where Ee+e− is the initial energy deposition of the fireshell. As a result the
amount of thermal spreading, and not the initial size of of the shell, deter-
mines the duration of P-GRB. This statement is usually noncritically repeated
in reviews, see e. g. Piran (1999); Meszaros (2006).

In what follows we argue that the treatment of Mészáros et al. (1993) drasti-
cally overestimates the value of the spreading, since thermal velocity disper-
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sion is taken there as independent on the temperature. In order to show this,
and to compute the real spreading of the fireshell we determine particle ve-
locity spread as a function of comoving temperature and bulk Lorentz factor
for relativistic Maxwellian distribution and then apply the result to compute
the spreading of the fireshell during expansion.

D.2. Problem

We assume that each layer of the expanding shell is in local thermodynamical
equilibrium. It is a reasonable assumption for the hydrodynamic stage of
expansion due to large optical depth of the shell. Then the distribution of
particles in the momentum space (p′x , p′y, p′z) in the rest frame of plasma is
relativistic Maxwellian one

f (p′x , p′y, p′z) = A exp



−mc2

kT

√

1 +

(

p′x
mc

)2

+

(

p′y
mc

)2

+

(

p′z
mc

)2


 , (D.2.1)

where A is a normalization constant determined by the particle density, m is
the mass of particles, c is the speed of light, T is the local temperature and k
is Boltzmann constant. Then in the laboratory frame this distribution will be
transformed to Lorentz-boosted Maxwellian

f (px , py, pz) = A exp

(

− c

kT

[

m2c2+

(

Γpx −
√

(Γ2 − 1)(m2c2 + px
2 + py

2 + pz
2)

)2

+ py
2 + pz

2
]1/2

)

, (D.2.2)

where we assumed that the relative motion of the frames is along their x-axes.

Velocity dispersion in the x-direction will be

D(vx) = M(v2
x)−M2(vx), (D.2.3)

where M(χ) denotes average value of χ, which can be found by convolution
with distribution function

M(χ) =

∫ +∞

−∞
dpx

∫ +∞

−∞
dpy

∫ +∞

−∞
dpz χ(px , py, pz) f (px , py, pz)

∫ +∞

−∞
dpx

∫ +∞

−∞
dpy

∫ +∞

−∞
dpz f (px , py, pz)

. (D.2.4)

In what follows we use the dimensionless velocity β = v/c. The above writ-
ten integrals cannot be computed analytically, but their numerical approxi-
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mations can be found after the following convenient change of variables

px = mc pr, py = mc pp cos φ, pz = mc pp sin φ (D.2.5)

so that for χ with axial symmetry around x-axis

M(χ) =

∫ +∞

−∞
dpr

∫ +∞

0 dpp χ(pr , pp) exp
(

−mc2

kT

√

1+(Γpr−
√

Γ2−1
√

1+p2
r+p2

p)2+p2
p

)

∫ +∞

−∞
dpr

∫ +∞

0 dpp exp
(

−mc2

kT

√

1+(Γpr−
√

Γ2−1
√

1+p2
r+p2

p)2+p2
p

) .

(D.2.6)

Numerical issues in the velocity dispersion calculations by (D.2.3) arise
from the fact that for high Γ we need to subtract two numbers M(β2

r ) and
M2(βr) which are very close to each other and to unity. This leads to substan-
tial reduction of accuracy. A different formula for dispersion

D(vx) = M([vx −M(vx)]
2) (D.2.7)

proves to be more convenient for numerical reasons. The spread of particle

velocities then will be ∆v = c
√

D(βr).

D.3. Velocity spread

Results of the numerical integration are illustrated by fig. D.1–D.4. For non-
relativistic comoving temperatures the correct asymptotics is (see fig. D.1)

∆vr

c
= Γ−2

√

kT

mc2
, (D.3.1)

but not ∆vr/c = Γ−2. This behavior can be understood easily with the fol-
lowing argument: when the initial spread of velocities is small compared to
the bulk velocity, then by the velocity transformation formula we can approx-
imate new spread as

∆v ≃ ∆v′
d

dv′
V + v′

1 + Vv′
c2

∣

∣

∣

∣

∣

v′=0

= ∆v′
(

1− V2

c2

)

, (D.3.2)

that gives us exactly the result obtained numerically.

The case of highly relativistic comoving temperature ( kT
mc2 ≫ 1) is more in-

teresting. Starting from almost maximal value 1/
√

2, ∆v/c for not-so-high

bulk Lorentz factors (intermediate region 10 . Γ . kT
mc2 ) reaches approxi-

mately (see fig. D.2)
∆vr

c
≃ Γ−3/2, (D.3.3)
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Figure D.1.: The velocity dispersion along the direction of bulk motion
for nonrelativistic comoving temperature shown as a function of the bulk
Lorentz factor.

which means that the dispersion is independent on the temperature, but for

fast motion Γ≫ kT
mc2 the asymptotics (D.3.1) is restored just up to a multiplier

close to unity (see fig. D.4)

∆vr

c
≃ 1.16 Γ−2

√

kT

mc2
. (D.3.4)
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Figure D.2.: The velocity dispersion along the direction of bulk motion for
highly relativistic comoving temperature as a function of the bulk Lorentz

factor in intermediate regime 10 . Γ . kT
mc2 .
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Figure D.3.: The asimptotic velocity dispersion along the direction of bulk
motion for highly relativistic comoving temperature as a function of the bulk
Lorentz factor in intermediate regime. Six sets of dots presented on the figure

correspond to values of log kT
mc2 from 0 (lowest curve) to 6 (highest curve) in

steps of 1. Thick gray line is the asymptotic value (D.3.3).
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Figure D.4.: The asimptotic velocity dispersion along the direction of bulk
motion for highly relativistic comoving temperature as a function of the bulk
Lorentz factor in high-Γ regime. Six sets of dots presented on the figure corre-

spond to values of log kT
mc2 from 0 (highest curve) to 6 (lowest curve) in steps

of 1. Thick gray line is the asymptotic value (D.3.4).

D.4. Implications for PGRB

Now we apply these results to the problem of the fireshell spreading. Hy-
drodynamical simulations show that expansion up to transparency can be
roughly divided into two stages: the energy dominated regime with accel-
erated expansion so that Γ ∝ t, and the matter dominated regime when
Γ ≃ const. At very low baryonic loadings the second stage does not occur
and acceleration continues up to transparency of plasma. At both stages tem-
perature decreases as inverse to radius T ≃ T0r0/r. Now we compute the
fireshell spreading at both stages, and then sum them up to obtain overall
spreading.

For the first stage the reasonable approximation of Lorentz factor, giving
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D. On the thermal spreading of the fireshell

correct asimptotics in small and large times, is

Γ(t) ≃
√

1 +

(

ct

R

)2

,

where R is related to the initial size of plasma R ≃ r0. Due to the nature
of Lorentz transformations in constantly accelerated frame (as in the case of

hyperbolic motion), the final spreading of the shell ∆r1 =
∫ t

0 ∆v dt appears to
be finite even if we extend this stage infinitely in time. The main part of the
spreading is connected with initial part of motion with relatively small Γ, that
justifies application of Eq. (D.3.3) for velocity spread under the assumption
of ultrarelativistic initial temperature T0

∆r1 =
∫ t1

0
∆v(t)dt .

∫ ∞

0
cΓ(t)−3/2dt ≃ 2.6r0, (D.4.1)

while for nonrelativistic initial temperatures the spread is given by (D.3.1)
that leads to even smaller spread values

∆r1 . 2.2

√

kT0

mc2
r0. (D.4.2)

At the second stage of expansion Γ ∼ const and temperature is nonrela-
tivistic T(t) ≃ T0

r0
ct (r ≃ ct) so the maximal spread of the shell is of the order

∆r2 =
∫ ttr

t1

∆v(t)dt =
∫ ttr

t1

cΓ−2

√

kT0r0

mc2ct
dt ≃ Γ−2

√

kT0

mc2

√
r0cttr, (D.4.3)

when ttr ≫ r0. The radius at which the shell becomes transparent for photons
is

rtr =

(

3

4π
NbσT

)1/2

(D.4.4)

where Nb is the number of baryons, and σT is Thompson cross-section. By
the definition of baryonic loading

B =
Mbc2

Ee+e−
=

Nbmpc2

Ee+e−
(D.4.5)

we then find

rtr =

(

3

4π

σT

mpc2
BEe+e−

)1/2

, (D.4.6)
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so assuming that the temperature is determined by e+e− pairs only

Ee+e−

V0
=

3Ee+e−

4πr3
0

= aT4
0 (D.4.7)

we get

kT0

mec2
≃ k

mec2

(

3Ee+e−

4πr3
0a

)1/4

. (D.4.8)

Combining everything together we arrive to

∆r2

r0
≃ 0.79

(

h̄

mecr0

)7/8 ( Ee+e−

M⊙c2

)3/8 (mpl

mp

)9/8

B9/4. (D.4.9)

With the numbers r0 = 108cm, B = 10−2, Ee+e− = M⊙c2 ≃ 1054 erg we get

∆r2 ≃ 5r0, (D.4.10)

and total spreading of the fireshell in the first and second stage is ∆rtot =
∆r1 + ∆r2 . 8r0. It should be noted that numbers taken above are somewhat
extreme, for example, if we take B = 10−3 then spreading on this stage will
be really negligible, ∆r2 ≃ 0.03r0.

D.5. Conclusions

In this paper we determined the velocity dispersion of the relativistic fluid
depending on its temperature and the Lorentz factor of the bulk motion. We
then applied these results to the fireshell model and determined the value of
the thermal spreading of the fireshell which occurs before it reaches trans-
parency. The spreading appears to be significant and gives about a tenfold
increase compared to the initial size of the fireshell. It implies that the dura-
tion of the P-GRB is not determined by the initial size of the plasma r0/c, but
by the value of the thermal spreading ∆rtot/c ≃ 8r0/c.

Our results show that the results of authors in Mészáros et al. (1993) are
not valid, in particular their Eqs. (3.5-3.9). Their results are based on the
assumption that the velocity dispersion is independent on the temperature,
which is not the case. Thus the paper Mészáros et al. (1993) overestimates the
value of thermal spreading.
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E. Dark Matter Candidates

Understanding the nature of dark matter (DM) and its origin represents one
of the longest-standing challenges in particle cosmology. We know from cos-
mological observations Spergel et al. (2007); Tegmark et al. (2006b) that only
∼ 5% of the Universe’s energy content is accounted for by normal, baryonic
matter while the remaining is in the form of dark matter (∼ 25%) and of a
similarly elusive energy component, dubbed dark energy (∼ 70%).

E.1. The Majoron

Historically, the neutrino was at first seen as a natural dark matter candidate
due to its weak interaction with ordinary matter. However, it soon became
evident that the high velocity dispersion of relativistic neutrinos would erase
all density perturbations below a critical scale of some tens of megaparsecs
(Bond et al., 1980), thus completely spoiling the whole process of structure
formation. This critical scale is called the free-streaming length; dark matter
candidates with a large free streaming length, like the neutrino, are classified
as Hot Dark Matter (HDM). Nowadays, although we know from neutrino
oscillation experiments that neutrinos do have mass (Maltoni et al., 2004), re-
cent cosmological data (Lesgourgues and Pastor, 2006), as well as searches
for distortions in beta (Drexlin, 2005) and double beta decay spectra (Klapdor-Kleingrothaus et al.
2004), place a stringent limit on the absolute scale of the neutrino mass and
precludes neutrinos from being viable dark matter candidates (Gelmini et al.,
1984) and from playing a direct role in structure formation.

Many candidates for the dark matter particle are presently under consid-
eration: among the most popular are the supersymmetric neutralino, and the
Kaluza-Klein particles [see Bertone et al. (2005) and references therein]. Most
of these candidates share the property of being Cold Dark Matter (CDM) par-
ticles because their velocity dispersion and consequently their free-streaming
length are so small as to be practically irrelevant for cosmological structure
formation. This avoids the problem of small-scale damping of HDM models;
in fact, CDM models agree well with observations down to scales of several
Mpc, once mildly non-linear effects are taken into account (Tegmark et al.,
2006b). However, it seems that the CDM scenario is unable to reproduce
the matter distribution on the smallest scales, i.e, on Mpc scales and below
[see Ostriker and Steinhardt (2003) and references therein]. First, it predicts
a number of dwarf galaxies much larger than observed. Secondly, numerical
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simulations produce DM halos with very high density cores, but this cuspi-
ness is not actually observed in real galactic cores. It is still unclear if these are
shortcomings of the model itself or instead come from our poor understand-
ing of astrophysical processes important at the scale of interest, or even from
numerical issues related to the high non-linearity of the phenomena under
consideration. The problem with the CDM scenario is in some sense oppo-
site that with to the HDM scenario in that the latter predicts too little power
in the small-scale fluctuations while the former predicts too much. In other
words, a HDM Universe is too smooth with respect to the observed one while
a CDM Universe is too clumpy.

Between the two limiting cases of hot and cold dark matter lies the so-
called Warm Dark Matter (WDM). Examples of WMD candidates include the
sterile neutrino (Dodelson and Widrow, 1994) and the light gravitino (Pagels and Primack,
1982). The free-streaming length of WDM particles is in the Mpc range, thus
being quite small with respect to the typical HDM value (hence the name).
This is appealing because it suggest the possibility of keeping the successful
predictions of the CDM scenario at the intermediate and large scales while
the same time alleviating (and hopefully eliminating) the small-scale incon-
sistencies of the model (Bode et al., 2001). Here we describe, our recent pro-
posal for a WDM candidate linking the problem of dark matter with the issue
of the origin of neutrino masses (Lattanzi and Valle, 2007; Lattanzi, 2010).

If neutrinos are Majorana particles, then lepton number is necessariliy bro-
ken. The (spontaneous) symmetry breakdown can be either global or local. If
neutrino masses arise from a spontaneous violation of ungauged lepton num-
ber, there must exist a pseudoscalar gauge singlet Nambu-Goldstone boson,
the majoron (Chikashige et al., 1981; Schechter and Valle, 1982). We shall now
briefly show how the majoron arises from this global symmetry breakdown
in a simple one-generation model, following Chikashige et al. (1981). Let us
assume that, in addition to the ordinary, left-handed neutrinos (arranged in
left-handed doublets, together with the charged leptons), a SU(2)⊗U(1) sin-
glet, right-handed neutrino exists. We also assume that the neutrinos have
both Majorana and Dirac mass terms. The diagonalization of the neutrino
mass matrix yields two Majorana neutrino fields: one that we denote as DL

is part of the doublet ψL = (DL, e−L )
T while the other, SR, is a singlet. Their

charge conjugate partners are Dc
R and Sc

L. We consider two different Yukawa
couplings to a doublet, Φ, and a singlet, φ, Higgs field:

L1 = −h1

(

ψ̄LΦSR + S̄RΦ+ψL

)

, (E.1.1)

L2 = −h2

(

φS̄c
LSR + φ+S̄RSc

L

)

. (E.1.2)

When Φ acquires a non-zero vacuum expectation value, a Dirac mass term
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ensues; however when 〈φ〉 6= 0, a Majorana mass term ensues. Then one has:

Lmass = −
[

(D̄L, S̄c
L)

(

0 m
m M

)(

Dc
R

SR

)

+ (D̄c
R, S̄R)

(

0 m
m M

)(

DL

Sc
L

)]

,

(E.1.3)
where m and M are the Dirac and the Majorana masses, respectively. If M≫
m, the mass eigenstates have approximate eigenvalues M and m2/M. The
physical states are

νL ≃ DL −
m

M
Sc

L, νc
R ≃ Dc

R −
m

M
SR, (E.1.4)

with mass mν ∼ m2/M, and

ηR ≃ SR +
m

M
Dc

R, ηc
L ≃ Sc

L +
m

M
DL, (E.1.5)

with mass mη ∼ M.

The physical fields ν and η are coupled to the Higgs field φ whose sponta-
neus breakdown violates lepton number. We can split the φ field into a scalar
and a pseudoscalar field; i.e.,

φ =
1√
2
(〈φ〉+ ρ + i J). (E.1.6)

The fields ρ and J are, respectively, a massive and a massless field with zero
vacuum expectation value. The field J is the majoron. Although massless, it
may pick up a mass from non-perturbative gravitational effects that explicitly
break global symmetries (Coleman, 1988).

The coupling of the majoron to neutrinos and ordinary matter is given by

LJν = − ih2√
2

J

[

η̄γ5η −
(mν

M

)1/2
(η̄γ5ν + ν̄γ5η) +

mν

M
ν̄γ5ν

+
GF

8
√

2π2
mνm f g f ( f̄ γ5 f )

]

. (E.1.7)

The coupling to neutrinos is quite small, being suppressed by a factor mν/M.
The coupling to the matter fields is even weaker. The only sizeable coupling
is the one to the heavy neutrino η, but these particles are unstable because
they rapidly decay into a majoron and a light neutrino.

The coupling of the majoron to leptons leads to the possibility of J → γγ
decays, mediated, for example, by triangle loops. Actually, in the most gen-
eral case, the current connected with the spontaneously-violated global sym-
metry is anomalous, and the majoron is coupled to photons through the elec-
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tromagnetic anomaly of this symmetry.

E.1.1. Majoron dark matter

Despite the fact that the majorons produced at the corresponding sponta-
neous L–violation phase will decay, mainly to neutrinos, they could still pro-
vide a sizeable fraction of the dark matter in the Universe because their cou-
plings are rather tiny. This scenario was first considered by Berezinsky and Valle
(1993); however, since then, there have been important observational devel-
opments that must be taken into account in order to assess its viability, most
notably the recent cosmological microwave observations from the Wilkinson
Microwave Anisotropy Probe (WMAP) (Spergel et al., 2007).

In the following, we consider the majoron decaying dark matter (DDM)
idea in a modified Lambda Cold Dark Matter (ΛCDM) cosmological model
in which the dark matter particle is identified with the weakly interacting
majoron, J, with a mass in the keV range. A keV weakly interacting particle
could provide a sizeable fraction of the critical density ρcr = 1.88× 10−29h2

g/cm3 and possibly play an important role in structure formation, because
the associated Jeans mass, mJeans ∼ m3

Pl/m2
J , lies in the relevant range.

The majoron is, however, not stable, but decays non-radiatively with a
small decay rate Γ. In this DDM scenario, the anisotropies of the cosmic mi-
crowave background (CMB) can be used to constrain the lifetime, τ = Γ−1,
and the present abundance, ΩJ , of the majoron; here, we show that the cos-
mological constraints on DDM majorons not only can be fulfilled but also can
easily fit into a comprehensive global picture for neutrino mass generation
with spontaneous violation of lepton number.

Majoron Abundance

Although majorons could result from a phase transition, we first consider
them to be produced thermally and in equilibrium with photons in the early
Universe. In this case, the majoron abundance, nJ , at the present time, t0, will
be, owing to entropy conservation and the finite lifetime,

nJ(t0)

nγ(t0)
=

43/11

ND

nJ(tD)

nγ(tD)
e−t0/τ, (E.1.8)

where tD is the time of majoron decoupling, and ND denotes the number of
quantum degrees of freedom at that time. The exponential factor accounts for
majoron decay. If T(tD) & 170 GeV, then ND = 427/4 = 106.75 for the parti-
cle content of the standard model, while in the context of a supersymmetric
extension of the SM, there would possibly be, at sufficiently early times, about
twice that number of degrees of freedom. Finally, in thermal equilibrium the
majoron-to-photon ratio, f ≡ nJ(tD)/nγ(tD), is equal to 1/2. The present
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density parameter of majorons is then, by using ND = 106.75, given by

ΩJh
2 =

mJ

1.25 keV
e−t0/τ. (E.1.9)

Another possibility is that majorons were already produced out of equilib-
rium. In this case, there is a range of possible models, which we can write
generically as

ΩJh
2 = β

mJ

1.25 keV
e−t0/τ, (E.1.10)

where the quantity β parametrizes our ignorance about both the exact pro-
duction mechanism and the exact value of ND. When β = 1, we recover the
scenario described above, with f = 1/2 and ND = 427/4.

Effects of Majoron DM on the CMB

Clearly, if the majoron has to survive as a dark matter particle, it must be
long-lived, τ ≥ t0. However, a more stringent bound follows by studying the
effect of a finite majoron lifetime on the cosmological evolution and, in partic-
ular, on the CMB anisotropy spectrum. In the DDM scenario, due to particle
decays, the dark matter density is decreasing faster than it is in the standard
cosmological picture. This changes the time, teq, of radiation-matter equal-
ity. This means that, for a fixed ΩJ , there will be more dark matter at early
times, and the equality will take place earlier, as illustrated in Fig. E.1. The
present amount of dark matter is ΩDM = 0.25 for both models; Γ−1 = 14 Gyr
in the DDM model. Other relevant parameters are ωb = 2.23× 10−2 and
h = 0.7. The time at which the blue and the red lines cross is the time of
matter-radiation equality; for fixed ΩDM, it shifts to earlier times as the ma-
joron lifetime decreases. Another effect of the majoron having a finite lifetime
is the increase in radiation density close to the present time.

The time of matter-radiation equality has a direct effect on the CMB power
spectrum. The gravitational potentials are decaying during the radiation-do-
minated era; this means that photons will receive an energy boost after cross-
ing potential wells. This so-called early integrated Sachs-Wolfe (EISW) effect
ceases when matter comes to dominate the Universe because the potentials
are constant during matter domination. The overall effect is to increase the
power around the first peak of the spectrum as the equality moves to later
times. On the other hand, since τ & t0, we expect a large production of rela-
tivistic particles (specifically, neutrinos) at low redshifts. This can be seen in
Fig. E.1; it is the rise in radiation density occurring close to a = 1, so that the
universe is not completely matter dominated. Thus, majoron decays cause
the gravitational potentials to vary again in the late stage of the cosmological
evolution. This will induce an effect similar to the one described above, only
affecting larger scales due to the increased horizon size. Thus, late integrated
Sachs-Wolfe (LISW) effect results in an excess of power at small multipoles.

423



E. Dark Matter Candidates

 0

 0.2

 0.4

 0.6

 0.8

 1

-8 -7 -6 -5 -4 -3 -2 -1  0

Ω

Log[a]

Figure E.1.: Evolution of the abundances in the standard (thin lines) and
in the DDM (thick lines) Universe scenario: blue/short dashed, red/long
dashed, and black/solid correspond to the matter, the radiation and the Λ

components, respectively.

Evolution of Perturbations in DDM models

Both the above effects can be used in principle to constrain the majoron life-
time and cosmological abundance. In order to carry out a quantitative anal-
ysis, we have developed a modified version of the CAMB code (Lewis et al.,
2000), which enables us to compute the CMB anisotropy spectrum once the
majoron lifetime and abundance are given in addition to the standard ΛCDM
model parameters.

We stress the fact that even if a keV majoron constitutes a warm dark mat-
ter particle, it actually behaves as cold dark matter insofar as the calculation
of its effect on the CMB spectrum is concerned because CMB measurements
cannot discriminate between cold and warm dark matter. The latter behaves
differently from the former on scales smaller than its free-streaming length
λ f s. For a particle mass in the keV range, we have λ f s ∼ 1 Mpc, which corre-
sponds in the CMB to a multipole ℓ ∼ few thousands.

The formalism needed to account for the cosmological evolution of an un-
stable relic and its light decay products has been developed for example by
Kaplinghat et al. (1999) and Ichiki et al. (2004), including the modifications in
both the background quantities and the perturbation evolution. We report
here the necessary changes to the evolution equations, using the formalism
introduced in by Ma and Bertschinger (1995). The subscript J denotes the
majoron dark matter component while the subscript DP denotes the majoron
relativistic decay products.
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Background equations The equations for the time evolution of the dark
matter and decay products energy density are

ρ̇J + 3
ȧ

a
ρJ = −aΓρJ , (E.1.11a)

ρ̇DP + 4
ȧ

a
ρDP = aΓρJ , (E.1.11b)

where a is the cosmological scale factor, and the dot denotes the derivative
with respect to the conformal time (hence, the extra a factor on the right-
hand side). Note that the source term for the decay products involves the
dark matter density, thus effectively coupling the two equations.

Perturbation equations The perturbations in the dark matter and the decay
products components evolve according to the following set of equations [see
Ma and Bertschinger (1995) for the meaning of the symbols]:

Background equations

δ̇J = −
ḣ

2
, (E.1.12)

Decay products

δ̇DP = −2

3

(

ḣ + 2θDP

)

+
ṙ

r
(δJ − δDP) , (E.1.13a)

θ̇DP = k2

(

δDP

4
− σDP

)

− ṙ

r
θDP, (E.1.13b)

σ̇DP =
2

15

(

2θDP + ḣ + 6η̇
)

− 3

10
kFDP,3 − σDP

ṙ

r
, (E.1.13c)

ḞDP,ℓ =
k

2ℓ+ 1
[ℓFDP,ℓ−1 − (ℓ+ 1)FDP,ℓ+1]

− FDP,ℓ
ṙ

r
, ℓ ≥ 3, (E.1.13d)

where r denotes the ratio of DP to photon energy densities, i.e., r ≡ ρDP/ργ

(any fiducial density scaling as a−4 will actually do the job). The presence of
the dark matter density perturbation δJ on the right-hand side of Eq. (E.1.13a)
again couples the two sets of equations.
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E.1.2. Statistical analysis

Parametrization

Two distinct mechanisms effective at very different times characterize the ef-
fect of the DDM on the CMB. It is, therefore, convenient to choose a parametriza-
tion that can take advantage of this fact. In particular, the “natural” parametriza-
tion (ΩJ , Γ) has the drawback that both parameters affect the time of matter-
radiation equality. It is more convenient to define the quantity

Y ≡ ρJ

ρb

∣

∣

∣

∣

t=tearly

, (E.1.14)

where ρb is the energy density of baryons, and tearly ≪ t0 . τ. As long
as this condition is fulfilled, the value of Y does not depend on the particu-
lar choice of tearly beacuse the ratio ρJ/ρb is asymptotically constant at small
times. Given that teq ≪ τ, we can use the value of Y to parametrize the rela-
tive abundance of majorons at matter-radiation equality. In order to simplify
notation, let us also define Γ18 ≡ Γ/(10−18sec−1); in this way, Γ18 = 1 cor-
responds to a lifetime τ ≃ 30 Gyr. The advantage of using the parametriza-
tion (Y, Γ) is that, when all other parameters are fixed, the time of matter-
radiation equality is uniquely determined by Y while the magnitude of the
LISW effect is largely determined by Γ.

We show in Fig. E.2 how the two physical effects are nicely separated in this
parametrization. We start from a fiducial model with Γ18 = 0 and Y = 4.7;
all other parameters are fixed to their WMAP best-fit values. The values of
Γ18 and Y are chosen in such a way to give ΩJh

2 = 0.10 so that this fiducial
model reproduces exactly the WMAP best-fit. At a larger majoron decay rate
of Γ18 = 1.2, i.e., Γ−1 ≃ 27 Gyr, the LISW effect causes, as expected, the power
at small multipoles to increase while the shape of the spectrum around the
first peak does not change, because the abundance of matter at early times
does not change. Finally, if Y is increased by 20%, the height of the first peak
decreases accordingly while the largest angular scales (small ℓs) are nearly
unaffected. A small decrease in power in this region is actually observed
and can be explained by noticing that increasing the matter content delays
the onset of the Λ-dominated era, reducing the Λ contribution to the LISW
effect. Another advantage of using the above parametrization is that Y is
directly related to the majoron mass through

Y = 0.71×
( mJ

keV

)

(

β

Ωbh2

)

. (E.1.15)
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Figure E.2.: Effect of DDM parameters on the CMB anisotropy spectrum.
The values of the parameters are as follows: red/solid: fiducial model
(Γ18, Y) = (0, 4.7); Green/dashed: (Γ18, Y) = (1.2, 4.7); Blue/dotted:
(Γ18, Y) = (1.2, 5.6). See text.

E.1.3. Results and Discussion

We are now ready to compute the constraints that CMB observations put on
the majoron abundance and lifetime. As seen from Fig. E.2, even a lifetime
twice as long as the present age of the Universe, is quite at variance with
respect to the WMAP data. However, one must take into account the fact that
the values of other cosmological parameters can be arranged in such a way as
to reduce or even cancel the conflict with observation; i. e., degeneracies may
be present in parameter space. In order to obtain reliable constraints for the
majoron mass and lifetime, we perform a statistical analysis allowing for the
variation of all parameters. This is better accomplished using a Markov-chain
Monte Carlo approach; we used for this purpose the widely-known COSMOMC

code.
In our modified flat (Ω = 1) ΛCDM model, all the dark matter is com-

posed of majorons. This means that no stable cold dark matter is present.1

The 7-dimensional parameter space we explore, therefore, includes the two
parameters (Y, Γ) defined above, in addition to the five standard parame-
ters: namely, the baryon density Ωbh2, the dimensionless Hubble constant
h, the reionization optical depth τre, the amplitude As, and spectral index
ns of the primordial density fluctuations. The cosmological constant den-

1This happens, e. g., in models where supersymmetry with broken R parity is the origin of
the neutrino mass (Hirsch and Valle, 2004; Hirsch et al., 2000).
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sity ΩΛ depends on the values of the other parameters due to the flatness
condition. We compare the theoretical prediction obtained with CAMB with
the temperature and polarization data from the following CMB experiments:
WMAP (Hinshaw et al., 2007; Page et al., 2007), ACBAR (Kuo et al., 2007),
BOOMERANG (Piacentini et al., 2006; Jones et al., 2006), CBI (Readhead et al.,
2004), and VSA (Dickinson et al., 2004). Once the full probability distribution
function for the seven base parameters has been obtained in this way, the
probability densities for derived parameters, such as the majoron mass mJ ,
can be consequently calculated.

We start by discussing the results concerning the majoron parameters. The
68% and 95% confidence contours in the (mJ , Γ) plane, for the case β = 1, i.e.,
thermal majoron production and ND = 427/4, are shown in Fig. E.3. It can
be understood from this figure that the parameters are not degenerate with
one another, so the respective constraints are independent. The marginalized
1-dimensional limits for Γ and mJ are

Γ < 1.2× 10−19sec−1, (E.1.16)

0.13 keV < mJ < 0.17 keV. (E.1.17)

Expressed in terms of the majoron lifetime, our result implies τ > 250 Gyr,
nearly a factor 20 improvement with respect to the naive limit τ > t0 ≃ 14 Gyr,
illustrating the power of CMB observations in constraining particle physics
scenarios.
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Figure E.3.: Contours of the 68% (dark) and the 95% (light) confidence regions
in the (ΓJ , mJ) plane.

Let us comment on the possibility that β 6= 1. From Eq. E.1.10, it can be
seen that this amounts to the transformation mJ → βmJ . For example, as
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we have already pointed out, ND can be as large as 427/2 ≃ 200 so that the
above limit would read 0.24 keV < mJ < 0.34 keV. In general, if we allow for
the possibility of extra degrees of freedom in the early Universe, we always
have β < 1 and then mJ > 0.12 keV . If instead majorons are produced non-
thermally, one will in general have β > 1.

The posterior probability distributions for all the parameters in the model
are shown in Fig. E.4, again for the case β = 1 . We show the posterior for the
following combinations of parameters: (Ωbh2, H0, τre, ns, log(1010 A), ΩDM,
Γ, mJ). These are eight parameters, but only seven of them are indepen-
dent because the dark matter density, ΩDM = ΩJ , is determined through Eq.
(E.1.9) once H0, mJ , and Γ are fixed. This is included because in this way, the
first six parameters that appear in Fig. E.4 correspond to the parameters used
to describe a standard ΛCDM model. The plots on the diagonal of the figure
show the one-dimensional posterior distribution for each of the parameters.
It can be noticed that for the standard parameters, there is no significant devi-
ation from the WMAP best estimate (Spergel et al., 2007). The results for the
additional majoron parameters were discussed above. The off-diagonal plots
show the two-dimensional posterior distributions for pairs of parameters. It
can be seen that Γ is not degenerated with any of the other parameters. A de-
generacy exists between the present value of the Hubble constant H0 and the
majoron mass mJ due to the fact that the CMB spectrum actually constrains
the dark matter density ΩJ through the position of the first peak. Then, it can
be clarly seen by Eq. (E.1.9) that mJ and h2 must be anticorrelated.

A recent analysis of the Lyman-α forest data (Seljak et al., 2006) suggests
that the mass of the warm dark matter particle should be larger than at least
1 keV (maybe even an order of magnitude more), the exact result depending
on the candidate under consideration, on the data used, and on the analysis
pipeline. Taken at face value, these results, combined with the limits we ob-
tain from the CMB, seem to exclude the majoron as a viable dark matter can-
didate. However, care should be taken in naively applying these results to the
model presented here. First, the limits on the mass of the WDM particle have
been obtained in the case of a stable particle. The effect of the decay on the
growth of density fluctuations should be taken into account to reliably com-
pare the predicted matter power spectrum to the observations. Second, the
results of the Lyman-α forest analysis actually depend on the phase space dis-
tribution of the particles at the time of decoupling and then ultimately on the
production mechanism. To the contrary, our results, when quoted in terms of
the quantity βmJ , are completely independent of the production mechanism
due to the fact that, as we commented above, it is a good approximation to
consider that the thermal velocities of majorons are negligible, as far as the
CMB is concerned. This means that the particle mass never enters directly
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into the perturbation equations; instead, it only enters indirectly through the
background quantity ΩJ ∝ βmJ , and this should be regarded as the quantity
that is really constrained by CMB observations. A production mechanism re-
sulting in a “sub-thermal” (i.e., β < 1) majoron abundance will result in the
same dark matter energy density being shared between a smaller number of
particles and in a larger particle mass. The same result of a larger mass for
fixed ΩJ can be achieved if the number of quantum degrees of freedom at de-
coupling is substantially larger than the standard model value of 106.75, for
example in theories with larger gauge groups and representations. Finally,
we should remember that there is still no consensus on whether the Lyman-
α data can be considered fully reliable due the various systematics that are
involved in the analysis pipeline.

We now briefly comment on the particle physics model. The simplest pos-
sibility is that neutrino masses arise a la seesaw (Valle, 2006). In the basis ν, νc

(where ν denotes ordinary neutrinos, while νc are the SU(2) ⊗ U(1) singlet
“right-handed” neutrinos), the full neutrino mass matrix is given as

Mν =

(

Y3v3 Yνv2

Yν
Tv2 Y1v1

)

, (E.1.18)

and involves, in addition to the singlet, a Higgs triplet contribution (Schechter and Valle,
1980) whose vacuum expectation value obeys a “vev seesaw” relation of
the type v3v1 ∼ v2

2. The Higgs potential combines spontaneous breaking
of lepton number and electroweak symmetry. The properties of the seesaw
majoron and its couplings follow from the symmetry properties of the po-
tential were extensively discussed by Schechter and Valle (1982). Here we
assume, in addition, that quantum gravity effects (Coleman, 1988) produce
non-renormalizable Planck-mass-suppressed terms, which explicitly break
the global lepton number symmetry and provide the majoron mass, which
we can not reliably compute, but we assume that it lies in the cosmologically
interesting keV range.

In all such models, the majoron interacts mainly with neutrinos in propor-
tion to their mass (Schechter and Valle, 1982), leading to

τ(J → νν) ≈ 16π

mJ

v2
1

m2
ν

. (E.1.19)

The limits obtained above from the WMAP data can be used to roughly con-

strain the lepton number breaking scale as v2
1 & 3×

(

106 GeV
)2

for mν ≃ 1eV.

The massive majoron also has a sub-leading radiative decay mode, J → γγ,
making our DDM scenario potentially testable through studies of the diffuse
photon spectrum in the far ultraviolet (Bazzocchi et al., 2008). A more ex-
tended investigation of these schemes will be presented elsewhere, including
other cosmological data, such as the large-scale structure data from the Sloan
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Digital Sky Survey (SDSS). In contrast, we do not expect the data from up-
coming CMB experiments like Planck to substantially improve our bounds
on the majoron decay rate because they mainly affect the large angular scales
where the error bars have already reached the limit given by the cosmic vari-
ance. We also note that direct detection of a keV majoron is possible in a
suitable underground experiment (Bernabei et al., 2006). Another interesting
possibility is that the entropy production and bulk viscosity associated with
the late decay of the dark matter particle could explain the observed acceler-
ation of the Universe (Mathews et al., 2008), although the decay rate needed
to accomplish this seems to be too large with respect to the limit found in our
analysis of the CMB data.

E.2. The Barbero-Immirzi Axion

According to the Standard Model, two terms contribute to the strong CP vi-
olation. Specifically, the non-hermitian quark mass matrix M introduces a
CP violation term proportional to Arg det M. This sums up to the vacuum
angle of QCD, θ, generating a CP violating interaction that depends on the
parameter θ̃ = θ + Arg det M. By measuring the electric dipole moment of
the neutron, an extremely small upper limit can be fixed for θ̃, which turns
out to be smaller than 10−10. Such a small value implies an extremely precise
compensation between two completely uncorrelated parameters: one associ-
ated to the global structure of the SU(3) gauge group and the other related
to the SU(2)×U(1) breaking symmetry. The unnaturalness of this “fine tun-
ing” goes under the name of strong CP problem.

Peccei and Quinn proposed a dynamical mechanism to solve the strong
CP problem (Peccei and Quinn, 1977a,b). They postulated the existence in
the Standard Model of an additional U(1) axial symmetry, often denoted as
U(1)PQ. On the one hand, if this symmetry were exact, the CP violating in-
teraction could be eliminated through a chiral rotation. On the other hand,
we expect that the U(1)PQ is spontaneously broken by the chiral anomaly.
Interestingly enough, the Peccei–Quinn (PQ) mechanism allows us to solve
the strong CP problem, even though the U(1)PQ additional symmetry is not
preserved by quantization.

In order to briefly describe how the PQ mechanism works, it is worth re-
calling that the spontaneous breaking of the U(1)PQ symmetry generates a
(pseudo) Nambu–Goldstone boson, called axion (Weinberg, 1978; Wilczek,
1978), a possible cold dark matter (CDM) candidate (Kolb and Turner, 1990).

431



E. Dark Matter Candidates

The axion interacts with matter through the following effective action 2.

SEff = S [A] + SDir [ψ, ψ̄, A] + Smatt

[

da

fa
, ψ, ψ̄

]

+
1

2

∫

⋆da ∧ da− g2
s

8π2

∫

(

θ̃ +
a

fa

)

trG ∧ G , (E.2.1)

where fa denotes the scale of the U(1)PQ symmetry breaking. G = dA +
igs A ∧ A is the curvature 2-form associated to the SU(3) valued connection
1-form A = AIλI , λK being the generators of the group, and gs the strong
coupling constant. With the collective symbols ψ and ψ̄ we denoted fermion
matter fields, interacting with the axion through a derivative coupling term,
Smatt.

The CP violating θ̃-term combines with the anomaly-induced interaction
between the axion and the gluon fields; the possible observables of the the-

ory now depend on the effective vacuum angle θ(x) = θ̃ + a(x)
fa

, sometimes

referred as misalignment angle. The effective interaction, θ(x)trG ∧ G, rep-
resents a non-trivial potential for the axion field, which selects a particu-
lar vacuum expectation value. In particular, the periodicity of the potential
in the effective vacuum angle, θ(x), implies that it has a non-trivial min-
imum corresponding to θ(x) = 0 (Peccei, 1998), so that 〈a(x)〉 = − fa θ̃.
Consequently, the gluons effectively interact only with the physical axion
aPhys(x) = a(x) − 〈a(x)〉, preserving the theory from the strong CP violation
3.

The physical features of the axion, as, e.g., its mass and the strength of
its interactions with ordinary matter, strictly depend on the scale of the PQ
symmetry breaking, fa, which remains a completely free parameter, not fixed
by the theory. The scope of this letter is to present a new model that allows
us to solve the strong CP problem à la Peccei–Quinn, with the remarkable
advantage that the parameter fa turns out to be fixed by the theory. This
provides a completely determined dynamics, so that the contribution of such
an axion field to CDM can be estimated as function of the initial misalignment
angle.

Even more interestingly, the model predicts the production of isocurva-
ture fluctuations during inflation, allowing us to fix a tight upper limit to the
tensor-to-scalar ratio, r. This represents an experimentally testable prediction
that can, eventually, rule out the model.

2The signature throughout this section is (+,−,−,−) with ǫ0123 = 1. For convenience, we
set h̄ = c = kB = 1 and 8πG = k.

3It is worth remarking that, even postulating the existence of an additional U(1)PQ chiral

symmetry, the electroweak CP violating effects prevent θ̃ from vanishing exactly. Never-
theless, these electroweak effects induce a CP violation well within the experimental limit
discussed above, i.e. θ̃ew ≈ 10−15.
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Let us start by considering a generic space-time with torsion. The chiral
rotation of the fermionic measure in the Euclidean path-integral generates,
besides the usual Pontryagin class, a Nieh–Yan term (Nieh and Yan, 1982),
which diverges as the square of the regulator (Chandia and Zanelli, 1997;
Obukhov et al., 1997; Soo, 1999; Chang and Soo, 1999) [see also Kreimer and Mielke
(2001); Chandia and Zanelli (2001)], i.e.

δψδψ → δψδψ exp

{

i

8π2

∫

α
[

Rab ∧ Rab

+ 2M2
(

Ta ∧ Ta − ea ∧ eb ∧ Rab
)

]

}

. (E.2.2)

Above, M denotes the regulator, while α is the parameter of the transforma-
tion 4. In order to avoid the appearance of this divergence, one of us has
recently proposed to introduce a field, β(x), interacting with gravity through
the Nieh–Yan density (Mercuri, 2009), namely

STot

[

e, ω, ψ, ψ, β
]

= SHP [e, ω] + SD

[

e, ω, ψ, ψ
]

+ χ
∫

β(x)
(

Ta ∧ Ta − ea ∧ eb ∧ Rab
)

, (E.2.3)

where χ is a generic coupling constant with the dimension of energy. Ac-
cording to this proposal, we assume that (E.2.3) is the fundamental action for
gravity and matter 5.

In order to clarify some aspects related to the proposed modification, we
write below the resulting semi-classical effective action (Mercuri, 2009; Mercuri and Taveras,
2009):

Seff = SHP [e] + S[A] + SDir

[

e, ψ, ψ
]

+
1

2

∫

⋆dβ̃ ∧ dβ̃

+
1

8 f β̃

∫

⋆J(A) ∧ J(A) −
1

2 f β̃

∫

⋆J(A) ∧ dβ̃

− 1

8π2

∫

[(

Θ̃ +
β̃

2 f β̃

)

R ∧ R +

(

θ̃ +
β̃

2 f β̃

)

G ∧ G

]

, (E.2.4)

where we have defined the new field β̃(x) =
√

6kχβ(x) and introduced the
constant f β̃ = 2√

6k
≃ 1.98× 1018GeV. An SU(3) valued connection 1-form A,

4The imaginary unit i disappears in Minkowski space.
5The field β is usually referred as Barbero–Immirzi (BI) field, see Taveras and Yunes (2008);

Calcagni and Mercuri (2009). See also Leigh et al. (2009) and Cianfrani and Montani
(2009) for different approaches).
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representing the strong interaction, has been considered as well; G being its
curvature. In the last line, a trace over internal indexes is understood.

Some comments are now in order. The pure gravitational sector of the ef-
fective theory is reminiscent of the so-called Chern–Simons modified gravity,
vastly studied in the Literature (see the interesting and complete review by
Alexander and Yunes (2009)). So, from an effective point of view, the modi-
fication of the gravitational action proposed in Eq. (E.2.3) reduces to a well
known theory of gravity, originating from String Theory and featuring some
interesting dynamical effects, well within the presently available experimen-
tal limits (Yunes and Pretorius, 2009), thus persuading us to take it seriously.
The resulting semi-classical effective theory does not depend on the free cou-
pling constant χ and shares many common features with that postulated by
Peccei and Quinn. It is worth noting that in fact, in the case of massless
fermions, the full action with the Nieh–Yan modification presents an addi-
tional U(1)A symmetry, which is broken at an effective level by the interac-
tion between the β(x) field and the fields strength in the last line of (E.2.4)
6; exactly analogous to the U(1)PQ introduced above. The presence of these
interaction terms reflects the existence of the chiral anomaly, which, in fact,
spontaneously breaks the U(1)A symmetry at the energy scale f β̃, naturally

determined by the theory; in striking contrast with the Peccei–Quinn sce-
nario, where fa is a free parameter of the theory.

Let us now assume that the system evolves in a symmetric space-time,
characterized by a vanishing Rab ∧ Rab term, as the unperturbed Friedmann–
Robertson–Walker (FRW) cosmological model. In this hypothesis, comparing
action (E.2.4) with (E.2.1), one can appreciate the functional analogy of the
two effective theories. This analogy strongly suggests to identify the field β̃
with the axion field a (see also Gates et al. (2009) for a supersymmetric analo-
gous identification); this is the essence of our proposal, which represents the
main novelty of this model, whereas, in some previous papers (Mercuri, 2009;
Mercuri and Taveras, 2009), the possible coexistence of the β̃(x) field and the
standard axion, a(x) was addressed.

The term in the last line of (E.2.4) represents a non-trivial potential for the
BI-axion field, selecting a particular CP preserving vacuum state. So, by im-
plementing a mechanism analogous to the Peccei–Quinn one, we can solve
the strong CP problem via the BI-axion field.

As was noted above, in this model the symmetry breaking energy scale f β̃

is fixed by the theory, allowing us to estimate the expected zero-temperature
mass of the BI-axion field, which, as for the standard axion, is generated by

6It is worth remarking that the BI field turns out to be a pseudo-scalar as suggested by its
contribution to the irreducible torsion components Mercuri (2009) and confirmed by its
equations of motion Mercuri and Taveras (2009).
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instantonic effects (Peccei, 1998). We obtain,

0mβ̃ =
fπ

f β̃

mπ

√
mumd

mu + md
≃ 3.04× 10−12 eV , (E.2.5)

where we used the value of the pion decay constant, fπ = 93 MeV, measured
in the decay process π+ → µ+ + νµ. As is well known, instantonic effects
depend on the temperature, in particular, we expect that the greater the tem-
perature, the smaller the mass of the BI-axion field becomes; according to the
standard Literature, we have that (Gross et al., 1981; Turner, 1986)

mβ̃(T) =







0m̄β̃b
(

Λ
T

)4
T & Λ ,

0m̄β̃ T . Λ ,
(E.2.6)

where we have assumed b = 0.018 and color anomaly index equal to 1. Λ ≃
200 MeV is the QCD scale.

So, in this model, the physical parameters, namely the mass of the field and
the magnitude of its interaction with matter, are fixed by the theory. Remark-
ably, this allows us to reduce the parameter space of the theory and extract
strong predictions from the cosmological scenario we are going to study.

In general, when dealing with axion scenarios, there are two possibilities.
The first one is that the PQ symmetry is restored after inflation, and then
broken again after the Universe cools down. This happens if the reheating
temperature TRH is larger than the energy scale at which the symmetry is
broken. The second possibility is that the PQ symmetry is broken during
inflation and never restored afterwards. In order for the symmetry to be bro-
ken during inflation, the scale fPQ has to be larger than the Gibbson-Hawking
temperature TGH = HI/2π associated to the cosmological horizon (here HI

is the value of the Hubble expansion rate during inflation) (Lyth and Stewart,
1992); furthermore, in order for the symmetry to stay broken after inflation,
the reheating temperature has to be smaller than fPQ. The inflationary expan-
sion rate is constrained by the WMAP observations (Komatsu et al., 2009) to
be HI ≤ 6.29× 1014GeV. The reheating temperature is poorly constrained
by the observations and could be anywhere in the range 1 MeV− 1016GeV.
However in the context of the model presented here, the relevant energy scale
f β̃ ∼ 1018GeV is so large that we will always have to deal with the second sce-

nario, i.e., the symmetry remains broken after inflation. Nevertheless, we will
also briefly take into account the possibility that inflation never occurred.

The fact that the PQ symmetry stays broken after the end of inflation, has
two important consequences. The first is that the initial misalignment angle
of the BI field is practically constant within the region corresponding to our
present horizon, and can take any value between −π and π. The second is
that isocurvature perturbations are produced in the BI field.
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The cosmological limits on axion properties have been recently reassessed
in light of the 5-year WMAP data (Visinelli and Gondolo, 2009; Hamann et al.,
2009). Here we will do the same for the BI-axion. Axions can be produced
in the early Universe through two distinct mechanisms (thermal production
is excluded by astrophysical constraints), namely coherent production due to
the initial misalignment of the axion field, and the decay of axionic strings.
The latter is relevant only if the symmetry breaking happens after the end of
inflation, then, here, we will be only concerned with the misalignment pro-
duction. The basic idea is that, when the axion field is created, the initial
value θi of the misalignment angle θ is displaced from zero, since no pre-
ferred value of θ exists. Since the axion field is created during inflation, our
present Hubble volume corresponds to a small patch at the time of creation,
where the value of θi can be assumed to be spatially constant.

In a flat FRW Universe, the zero mode of the dynamical field θ(x) evolves
according to:

θ̈ + 3Hθ̇ +
1

f 2
β̃

∂V(θ)

∂θ
= 0, (E.2.7)

where a dot denotes the derivative with respect to cosmological time, H is
the Hubble parameter, and the potential V(θ) = m2

β̃
(T) f 2

β̃
(1− cos θ) 7. It is

clear from Eq. (E.2.6) that in the high temperature limit T ≫ Λ the BI-axion
is effectively massless. Then V(θ) = 0 and θ = const is a solution of the
equation of motion and the misalignment field is frozen to its initial value,
θi, until the mass becomes comparable to the expansion rate of the Universe,
i.e. H ∼ T, and the field starts oscillating around θ = 0. For the value of
the mass considered here, this happens at T ≃ 52 MeV. We have numerically
integrated the Klein-Gordon Eq. (E.2.7) down to a temperature well below
the onset of oscillations and used entropy conservation to obtain the present
number density. In the limit of small θi, this procedure yieds:

nβ̃(T0) ≃ 2.8× 1022θ2
i

axions

cm3
, (E.2.8)

corresponding to an energy density ρβ̃(T0) ≃ 85 θ2
i GeV/cm3. What is re-

markable about this result is that, since the energy scale at which the sym-
metry breaking occurs is fixed by the theory, the present day energy density
of the BI-axion depends only on the initial misalignment angle. Given that
the present critical density of the Universe is ρc ∼ 10−5GeV/cm3, the above
formula points to the necessity of having θi ≪ 1. In particular, we know from
the recent measurements of the WMAP satellite (Komatsu et al., 2009) that
the present dark matter density is Ωdmh2 = 0.1131± 0.0034 at 68% CL, where

7According to the standard Literature (Gross et al., 1981; Turner, 1986), the form of the po-
tential is motivated by the expected periodicity in the misalignment angle, once the grav-
itational instantons, depressed by the symmetries, have been neglected.
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Ωdm ≡ ρdm/ρc is the density in units of the critical density, and h is the Hub-
ble parameter in units of 100 km sec−1 Mpc−1. Then assuming that BI-axions
make up all the dark matter (Ωβ̃ = Ωdm) the initial misalignment angle has to

be very small: θi ≃ 1.2× 10−4. Larger values of the initial misalignment angle
lead to a present axion density too large with respect to the WMAP value, so,
in general, one should require that θi ≤ 1.2× 10−4. The axion density would
be diluted, and then the limits on θi relaxed, in the presence of a significant
entropy production at a temperature below the QCD scale. This could be the
case if the reheating temperature TRH < Λ (Giudice et al., 2001).

Let us also examine the possibility that inflation never occurred 8. In this
case, the initial misalignment angle would be a function of the spatial coordi-
nates and should be replaced with its average over [−π, π], i.e. 〈θ2

i 〉 = π2/3.
Consequently, the present axion energy density would be completely fixed,
leading to a density parameter Ωβ̃h2 ∼ 108, clearly overshooting the ob-

served value by 9 orders of magnitude 9.
Another prediction of the model examined here is the production of axion

isocurvature perturbations. As it happens for the inflaton field, de Sitter-
induced quantum fluctuations in the BI-axion field are generated during in-
flation. The corresponding energy density fluctuations have an amplitude
proportional to HI/(θi f β̃) and are completely uncorrellated to those in the

other components (radiation and matter) since axions were not in thermal
equilibrium with photons during inflation. Moreover, since axions made a
negligible contribution to the energy budget of the Universe at that time, the
fluctuations in their energy density did not produce a corresponding per-
turbation in the curvature, hence the name “isocurvature”. The amplitude
of primordial isocurvature perturbations can be constrained by observations
of the CMB anisotropies; in fact, an analysis of the WMAP data yields the
constraint HI/θi < 4.3× 10−5 f β̃ = 8.25× 1013GeV (Visinelli and Gondolo,

2009; Hamann et al., 2009). This bound can be combined with the constrain
θi < 1.2× 10−4 to obtain the allowed region in the (HI , θi) parameter space
as shown in Fig. E.5. In particular, the two constraints together imply HI .
1010GeV. This low value leads to an interesting prediction of the model.
Since the amount of gravitational waves (corresponding to tensor perturba-
tion modes) produced during inflation is also proportional to HI, the model
yields an upper bound to the amplitude of tensor modes. In particular, in
terms of the tensor-to-scalar ratio r, we get the very tight upper bound r <

1.4 × 10−9. This means that a detection of even a very small amount of
primordial gravitational waves by one of the upcoming CMB experiments
would rule out the model proposed here. This would be the case, in particu-

8Although this is unlikely, it cannot be ruled out since other possible scenarios can avoid
the shortcomings of the standard model and generate the primordial fluctuations.

9One should take into account the axion production via the decay of axionic strings as well,
but this would only make our point stronger.
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lar, if tensor modes are detected by Planck, since it is expected to be sensitive
to r & 0.05.

Finally, let us briefly discuss the astrophysical constraints on the BI-axion.
In the case of the standard axion, the astrophysical constraints mainly depend
on the strength of its interaction with ordinary matter, since this controls the
rate at which the nuclear energy generated in the core of a star is carried away
in the form of axions, thus modifying the standard stellar evolution. In order
to evade these constraints, the axion couplings have to be either small enough
so that few axions are produced as a by-product of the nuclear reactions, or
large enough in order to keep the mean free path of axions well inside the
radius of the star. However, the computation of the couplings of the axion
is completely general, so that the standard results also hold for the BI-axion.
In particular, one has that the couplings are inversely proportional to f β̃, so

that we can expect them to be extremely small 10. In fact, this implies that the
BI-axion is, as long as astrophysical limits are concerned, roughly equivalent
to a DFSZ axion with a mass ma ≃ 3× 10−12eV. The most stringent astro-
physical upper limit on the axion mass comes from the observations of SN
1987A and states that ma . 10−3eV (or, equivalently, fa & 6× 109GeV). Thus
we conclude that astrophysical observations cannot rule out the existence of
a BI-axion.

10A remarkable difference with respect to the PQ model lies is the fact that while, on the one
hand, the U(1)PQ charges of the SM particles are not given by the theory, and thus have

to experimentally measured, on the other hand the Nieh-Yan “charges” X
(NY)
i associated

to the U(1)A symmetry of our model can be calculated exactly from the theory. In partic-
ular, as it can be inferred from the effective action (E.2.4), the charges of the fundamental
fermionic fields (leptons and quarks) all turn out to be equal to unity. This universality
is a direct consequence of the geometrical nature of the interaction. We would also like
to remark that this completely fixes the BI-axion couplings gaii, since these depend, other
than from the Xi’s and from known quantities, only on the BI-axion mass.
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Figure E.4.: One- and two- dimensional posterior distributions for the parameters

of the model, using the CMB data. In the 1D plots, the solid line is the marginalized

posterior while the dotted line is the mean likelihood. In the 2D plots, the lines

bound the 68% and 95% confidence regions; the gray shading indicates regions of

high (dark) and low (light) mean likelihood. See the text for a discussion.
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Figure E.5.: Constraints for the BI-axion in the (HI, θi) plane. The horizontal
line corresponds to the BI-axion making all the dark matter in the Universe
(namely θi ≃ 1.2× 10−4). The diagonal line comes from the constraints on the
isocurvature fluctuations (HI/θi < 8.25× 1013GeV). The shaded area shows
the allowed parameter region. The dashed and dotted diagonal lines corre-
sponds to the expected improvement of the bound on isocurvature fluctua-
tions from the measurements of the Planck satellite and from an ideal, cosmic
variance limited CMB experiment, respectively [see Visinelli and Gondolo
(2009); Hamann et al. (2009) for details].

440



F. Indirect Detection of Dark
Matter

F.1. Boosting the WIMP annihilation through the

Sommerfeld enhancement

The motivation for studying dark matter annihilation signatures (see e.g.
(Bertone et al., 2005)) has received considerable recent attention following re-
ports of a 100 GeV excess in the PAMELA data on the ratio of the fluxes
of cosmic ray positrons to electrons (Adriani et al., 2009). In the absence of
any compelling astrophysical explanation, the signature is reminiscent of the
original prediction of a unique dark matter annihilation signal (Silk and Srednicki,
1984), although there are several problems that demand attention before any
definitive statements can be made. By far the most serious of these is the re-
quired annihilation boost factor. The remaining difficulties with a dark mat-
ter interpretation, including most notably the gamma ray signals from the
Galactic Centre and the inferred leptonic branching ratio, are, as we argue
below, plausibly circumvented or at least alleviated. Recent data from the
ATIC balloon experiment provides evidence for a cut-off in the positron flux
near 500 GeV that supports a Kaluza-Klein-like candidate for the annihilat-
ing particle (Chang et al., 2008) or a neutralino with incorporation of suitable
radiative corrections (Bergstrom et al., 2008).

In a pioneering paper, it was noted (Profumo, 2005) that the annihilation
signal can be boosted by a combination of coannihilations and Sommerfeld
corrrection. We remark first that the inclusion of coannihilations to boost
the annihilation cross-section modifies the relic density, and opens the 1-10
TeV neutralino mass window to the observed (WMAP5-normalised) dark
matter density. As found by Lavalle et al. (2008), the outstanding problem
now becomes that of normalisation. A boost factor of around 100 is required
to explain the HEAT data in the context of a 100 GeV neutralino. The flux
is suppressed by between one and two powers of neutralino mass, and the
problem becomes far more severe with the 1-10 TeV neutralino required by
the PAMELA/ATIC data (Cirelli et al., 2009b), a boost of 104 or more being
required. These latter authors included a Sommerfeld correction appropriate
to our β ≡ v/c = 0.001 dark halo and incorporated channel-dependent boost
factors to fit the data, but the required boosts still fell short of plausible values
by at least an order of magnitude.
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Here we propose a solution to the boost problem via Sommerfeld correc-
tion in the presence of a model of substructure that incorporates a plausible
phase space structure for cold dark matter (CDM). We reassess the difficulty
with the leptonic branching ratio and show that it is not insurmountable for
supersymmetric candidates. Finally, we evaluate the possibility of indepen-
dent confirmation via photon channels.

Substructure survival means that as much as 10% of the dark matter is at
much lower β. This is likely in the solar neighbourhood and beyond, but
not in the inner galaxy where clump destruction is prevalent due to tidal in-
teractions. Possible annihilation signatures from the innermost galaxy such
as the WMAP haze of synchrotron emission and the EGRET flux of diffuse
gamma rays are likely to be much less affected by clumpy substructure than
the positron flux in the solar neighbourhood. We show in the following sec-
tion that incorporation of the Sommerfeld correction means that clumps dom-
inate the annihilation signal, to the extent that the initial clumpiness of the
dark halo survives.

F.1.1. The Sommerfeld enhancement

Dark matter annihilation cross sections in the low-velocity regime can be en-
hanced through the so-called “Sommerfeld effect” (Sommerfeld, 1931; Hisano et al.,
2004, 2005; Cirelli et al., 2007; March-Russell et al., 2008; Arkani-Hamed et al.,
2009; Pospelov and Ritz, 2009). This non-relativistic quantum effect arises be-
cause, when the particles interact through some kind of force, their wave
function is distorted by the presence of a potential if their kinetic energy is
low enough. In the language of quantum field theory, this correspond to the
contribution of “ladder” Feynman diagrams like the one shown in Fig. F.1
in which the force carrier is exchanged many times before the annihilation
finally occurs. This gives rise to (non-perturbative) corrections to the cross
section for the process under consideration. The actual annihilation cross
section times velocity will then be:

σv = S (σv)0 (F.1.1)

where (σv)0 is the tree level cross section times velocity, and in the follow-
ing we will refer to the factor S as the “Sommerfeld boost” or “Sommerfeld
enhancement” 1.

In this section we will study this process in a semi-quantitative way using a
simple case, namely that of a particle interacting through a Yukawa potential.
We consider a dark matter particle of mass m. Let ψ(r) be the reduced two-
body wave function for the s-wave annihilation; in the non-relativistic limit,

1In the case of repulsive forces, the Sommerfeld “enhancement” can actually be S < 1,
although we will not consider this possibility here.
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χ

χ

X̄

X

. . .

Figure F.1.: Ladder diagram giving rise to the Sommerfeld enhancement for
χχ→ XX̄ annihilation, via the exchange of gauge bosons.

it will obey the radial Schrödinger equation:

1

m

d2ψ(r)

dr2
−V(r)ψ(r) = −mβ2ψ(r), (F.1.2)

where β is the velocity of the particle and V(r) = − α
r e−mVr is an attractive

Yukawa potential mediated by a boson of mass mV.
The Sommerfeld enhancement S can be calculated by solving the Schrödinger

equation with the boundary condition dψ/dr = imβψ as r → ∞. Eq. (F.1.2)
can be easily solved numerically. It is however useful to consider some par-
ticular limits in order to gain some qualitative insight into the dependence of
the Sommerfeld enhancement on particle mass and velocity. First of all, we
note that for mV → 0, the potential becomes Coulomb-like. In this case the
Schrödinger equation can be solved analytically; the resulting Sommerfeld
enhancement is:

S =
πα

β
(1− e−πα/β)−1. (F.1.3)

For very small velocities (β → 0), the boost S ≃ πα/β: this is why the Som-
merfeld enhancement is often referred as a 1/v enhancement. On the other
hand, S→ 1 when α/β→ 0, as one would expect.

It should however be noted that the 1/v behaviour breaks down at very
small velocities. The reason is that the condition for neglecting the Yukawa
part of the potential is that the kinetic energy of the collision should be much
larger than the boson mass mV times the coupling constant α, i.e., mβ2 ≫
αmV, and this condition will not be fulfilled for very small values of β. This is
also evident if we expand the potential in powers of x = mVr; then, neglect-
ing terms of order x2 or smaller, the Schrödinger equation can be written as
(the prime denotes the derivative with respect to x):

ψ′′ +
α

ε

ψ

x
=

(

−β2

ε2
+

α

ε

)

ψ, (F.1.4)

having defined ε = mV/m. The Coulomb case is recovered for β2 ≫ αε, or
exactly the condition on the kinetic energy stated above. It is useful to define
β∗ ≡

√
αmV/m such that β ≫ β∗ is the velocity regime where the Coulomb

approximation for the potential is valid.
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Another simple, classical interpretation of this result is the following. The

range of the Yukawa interaction is given by R ≃ m−1
V . Then the crossing time

scale is given by tcross ≃ R/v ≃ 1/βmV. On the other hand, the dynamical

time scale associated to the potential is tdyn ≃
√

R3m/α ≃
√

m/αm3
V. Then

the condition β ≫ β∗ is equivalent to tcross ≪ tdyn, i.e., the crossing time
should be much smaller than the dynamical time-scale. Finally, we note that
since in the Coulomb case S ∼ 1/β for α ≫ β, the region where the Som-
merfeld enhancement actually has a 1/v behaviour is β∗ ≪ β ≪ α. It is
interesting to notice that this region does not exist at all when m . mV/α.

The other interesting regime to examine is β ≪ β∗. Following the dis-
cussion above, this corresponds to the potential energy dominating over the
kinetic term. Referring again to the form (F.1.4) for x ≪ 1 of the Schrödinger
equation, this becomes:

ψ′′ +
α

ε

ψ

x
=

α

ε
ψ. (F.1.5)

The positiveness of the right-hand side of the equation points to the existence
of bound states. In fact, this equation has the same form as the one describing
the hydrogen atom. Then bound states exist when

√
α/ε is an even integer,

i.e. when:
m = 4mVn2/α, n = 1, 2, . . . (F.1.6)

From this result, we expect that the Sommerfeld enhancement will exhibit a
series of resonances for specific values of the particle mass spaced in a 1 :
4 : 9 : ... fashion. The behaviour of the cross section close to the resonances
can be better understood by approximating the electroweak potential by a

well potential, for example: V(r) = −αmVθ(R − r), where R = m−1
V is the

range of the Yukawa interaction, and the normalization is chosen so that the
well potential roughly matches the original Yukawa potential at r = R. The
external solution satisfying the boundary conditions at infinity is simply an
incoming plane wave, ψout(r) ∝ eikoutr, with kout = mβ. The internal solution

is: ψin(r) = Aeikinr + Be−ikinr, where kin =
√

k2
out + αmmV ≃

√
αmmV (the last

approximate equality holds because β ≪ β∗). The coefficients A and B are
as usual obtained by matching the wave function and its first derivative at
r = R; then the enhancement is found to be:

S =

[

cos2 kinR +
k2

out

k2
in

sin2 kinR

]−1

. (F.1.7)

When cos kinR = 0, i.e., when
√

αm/mV = (2n + 1)π/2, the enhancement

assumes the value k2
in/k2

out ≃ β∗2/β2 ≫ 1. This is however cut off by the
finite width of the state.

In summary, the qualitative features that we expect to observe are
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Figure F.2.: Sommerfeld enhancement S as a function of the dark matter par-
ticle mass m, for different values of the particle velocity. Going from bottom
to top β = 10−1, 10−2, 10−3, 10−4, 10−5.

i) at large velocities (β≫ α) there is no enhancement, S ≃ 1;
ii) in the intermediate range β∗ ≪ β ≪ α, the enhancement goes like 1/v:
S ≃ πα/β, this value being independent of the particle mass;
iii) at small velocities (β ≪ β∗), a series of resonances appear, due to the
presence of bound states. Close to the resonances, S ≃ (β∗/β)2. In this
regime, the enhancement strongly depends on the particle mass, because it
is this that determines whether we are close to a resonance or not. Similar
results have been independently obtained in Ref. (March-Russell and West,
2009).

We show the result of the numerical integration of Eq. (F.1.2) in Figure
F.2, where we plot the enhancement S as a function of the particle mass m,
for different values of β. We choose specific values of the boson mass mV =
90 GeV and of the gauge coupling α = α2 ≃ 1/30. These values correspond
to a particle interacting through the exchange of a Z boson.

We note however that, as can be seen by the form of the equation, the en-
hancement depends on the boson mass only through the combination ε =
mV/m, so that a different boson mass would be equivalent to rescaling the
abscissa in the plot. Moreover, the evolution of the wave function only de-
pends on the two quantities α/ε and β/ε, so that a change α → α′ in the

gauge coupling would be equivalent to: β → β′ = α′
α β, ε → ε′ = α′

α ε. This
shows that Fig. F.2 does indeed contain all the relevant information on the
behaviour of the enhancement S.

We see that the results of the numerical evaluation agree with our quali-
tative analysis above. When β = 10−1 (bottom curve), we are in the β >

α ≃ 3× 10−2 regime and there is basically no enhancement. The next curve
β = 10−2 is representative of the β & β∗ regime, at least for m larger than
a few TeV. The enhancement is constant with the particle mass and its value
agrees well with the expected value πα/β ≃ 10. The drop of the enhance-
ment in the mass region below ∼ 3 TeV is due to the fact that here β . β∗,
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Figure F.3.: Top panel: Sommerfeld enhancement S as a function of the par-
ticle velocity β for different values of the dark matter mass. From bottom
to top: m = 2, 10, 100, 4.5 TeV, the last value corresponding to the first res-
onance in Fig. F.2. The black dashed line shows the 1/v behaviour that is
expected in the intermediate velocity range (see text for discussion). Bottom
panel: Sommerefeld enhancement S as a function of the relative distance from
the first resonance shown in Fig. F.2, occurring at m ≃ 4.5 TeV, for different
values of β. From top to bottom: β = 10−4, 10−3, 10−2.

and that there are no resonances for this value of the mass. Decreasing β
again (top three curves, corresponding to β = 10−3, 10−4, 10−5 from bottom
to top) we observe the appearance of resonance peaks. The first peak occurs
for m = m̄ = 4.5 TeV, so that expression (F.1.6) based on the analogy with
the hydrogen atom overestimates the peak position by a factor 2. However,
the spacing between the peaks is as expected, going like n2, as the next peaks
occur roughly at m = 4, 9, 16 m̄. The height of the first peak agrees fairly
well with its expected value of (β∗/β)2. The other peaks are damped; this
is particularly evident for β = 10−3, and in this case it is due to the fact
that β∗ decreases as m increases, so that for m ∼ 100 TeV we return to the
non-resonant, 1/β behaviour, and the enhancement takes the constant value
πα/β ≃ 100.

Complementary information can be extracted from the analysis of the up-
per panel of Fig. F.3, where we plot the Sommerfeld enhancement as a func-
tion of β, for different values of the particle mass. Far from the resonances,
the enhancement factor initially grows as 1/β and then saturates to some con-
stant value. This constant value can be estimated by solving the Schrödinger
equation with β = 0. We find that a reasonable order of magnitude estimate
is given by Smax ∼ 6α/ε; the corresponding value of β ∼ 0.5ε. The 1/β be-
haviour holds down to smaller velocities for larger particle masses, leading
to larger enhancement factors. However, when the particle mass is close to
a resonance, S initially grows like 1/β but at some point the 1/β2 behaviour
”turns on”, leading to very large values of the boost factor, until this also
saturates to some constant value.
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It is clear from the discussion until this point that the best hope for obtain-
ing a large enhancement comes from the possibility of the dark matter mass
lying close to a resonance; for the choice of parameter used above this would
mean m ≃ m̄ ≃ 4.5 TeV. However, one could be interested in knowing how
close the mass should be to the center of the resonance in order to obtain a
sizeable boost in the cross-section. In order to understand this, we show in
Fig. F.3 the enhancement as a function of µ ≡ |m− m̄|/m, i.e., of the fractional
shift from the center of the resonance. Clearly, for β ≤ 10−3, a boost factor of
& 100 can be obtained for µ . 0.2, i.e., for deviations of up to 20% from m̄,
corresponding to the range between 3.5 and 5.5 TeV. This is further reduced
to the 4 to 5 TeV range if one requires S & 103.

F.1.2. The leptonic branching ratio

The relevance of the Sommerfeld enhancement for the annihilation of super-
symmetric particles was first pointed out in Refs (Hisano et al., 2004, 2005),
in the context of the minimal supersymmetric standard model where the neu-
tralino is the lightest supersymmetric particle. A wino-like or higgsino-like
neutralino would interact with the W and Z gauge bosons due to its SU(2)L

nonsinglet nature. In particular, the wino W̃0 is the neutral component of a
SU(2)L triplet , while the higgsinos (H̃0

1 , H̃0
2) are the neutral components of

two SU(2)L doublets. The mass (quasi-) degeneracy between the neutralino
and the other components of the multiplet leads to transitions between them,
mediated by the exchange of weak gauge bosons; this gives rise to a Som-
merfeld enhancement at small velocities. On the other hand, the bino-like
neutralino being a SU(2) singlet, would not experience any Sommerfeld en-
hancement, unless a mass degeneracy with some other particle is introduced
into the model.

The formalism needed to compute the enhancement when mixing among
states is present is slightly more complicated than the one described above,
but the general strategy is the same. As shown in the paper by Hisano et al.
(Hisano et al., 2005) through direct numerical integration of the Schrödinger
equation, the qualitative results of the previous section still hold: for dark
matter masses & 1 TeV, a series of resonances appear, and the annihilation
cross section can be boosted by several order of magnitude.

An interesting feature of this “multi-state” Sommerfeld effect is the possi-
bility of boosting the cross section for some annihilation channels more than
others. This happens when one particular annihilation channel is very sup-
pressed (or even forbidden) for a given two-particle initial state, but not for
other initial states. This can be seen as follows. The general form for the total
annihilation cross section after the enhancement has been taken into account
is

σv = N ∑
ij

Γijdi(v)d
∗
j (v), (F.1.8)
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where N is a multiplicity factor, Γij is the absorptive part of the action, re-
sponsible for the annihilation, the di are coefficients describing the Sommer-
feld enhancement, and the indices i, j run over the possible initial two-particle
states. Let us consider for definiteness the case of the wino-like neutralino:
the possible initial states are {χ0χ0, χ+χ−}. The neutralino and the chargino
are assumed to be quasi-degenerate, since they are all members of the same
triplet. What we will say can anyway be easily generalized to the case of
the higgsino-like neutralino. Let us also focus on two particular annihilation
channels: the W+W− channel and the e+e− channel. It can be assumed that,
close to a resonance, d1 ∼ d2. This can be inferred for example using the
square well approximation as in Ref. (Hisano et al., 2005), where it is found

that, in the limit of small velocity, d1 ≃
√

2(cos
√

2pc)−1−
√

2(cosh pc)−1 and

d2 ≃ (cos
√

2pc)−1 + 2(cosh pc)−1, where pc ≡
√

2α2m/mW . The elements of
the Γ matrix for the annihilation into a pair of W bosons are ∼ α2

2/m2
χ, so that

we can write the following order of magnitude estimate:

σv(χ0χ0 →W+W−) ∼ |d1|2
α2

2

m2
χ

. (F.1.9)

On the other hand, the non-enhanced neutralino annihilation cross section to
an electron-positron pair Γ22 ∼ α2

2m2
e /m4

χ, so that it is suppressed by a fac-

tor (me/mχ)2 with respect to the gauge boson channel. This is a well-known
general feature of neutralino annihilations to fermion pairs and is due to the
Majorana nature of the neutralino. The result is that all low velocity neu-
tralino annihilation diagrams to fermion pairs have amplitudes proportional
to the final state fermion mass. The chargino annihilation cross section to
fermions, however, does not suffer from such an helicity suppression, so that
it is again Γ11 ∼ α2

2/m2
χ ≫ Γ22. Then:

σv(χ0χ0 → e+e−) ∼ |d1|2
α2

2

m2
χ

. (F.1.10)

Then we have that, after the Sommerfeld correction, the neutralino annihi-
lates to W bosons and to e+e− pairs (and indeed to all fermion pairs) with
similar rates, apart from O(1) factors. This means that while the W channel
is enhanced by a factor |d1|2, the electron channel is enhanced by a factor
|d1|2m2

χ/m2
e . The reason is that the annihilation can proceed through a lad-

der diagram like the one shown in Fig. F.4, in which basically the electron-
positron pair is produced by annihilation of a chargino pair close to an on-
shell state. This mechanism can be similarly extended to annihilations to
other charged leptons, neutrinos or quarks.
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Figure F.4.: Diagram describing the annihilation of two neutralinos into a
charged lepton pair, circumventing helicity suppression.

F.1.3. CDM substructure: enhancing the Sommerfeld boost

There is a vast reservoir of clumps in the outer halo where they spend most of
their time. Clumps should survive perigalacticon passage over a fraction (say
ν) of an orbital time-scale, td = r/vr, where vr is the orbital velocity (given
by v2

r = GM/r). It is reasonable to assume that the survival probability
is a function of the ratio between td and the age of the halo tH , and that it
vanishes for td → 0. Thus, at linear order in the (small) ratio td/tH , a first
guess at the clump mass fraction as a function of galactic radius would be

fclump ∝ td. We conservatively adopt the clump mass fraction µcl = νrv−1
r t−1

H
with ν = 0.1− 1. This gives a crude but adequate fit to the highest resolution
simulations, which find that the outermost halo has a high clump survival
fraction, but that near the sun only 0.1-1 % survive (Springel et al., 2008b). In
the innermost galaxy, essentially all clumps are destroyed.

Suppose the clump survival fraction S(r) ∝ fclump ∝ r3/2 to zeroth order.

The annihilation flux is proportional to ρ2 × Volume × S(r) ∝ S(r)/r. This
suggests we should expect to find an appreciable gamma ray flux from the
outer galactic halo. It should be quasi-isotropic with a ∼10% offset from the
centre of the distribution. The flux from the Galactic Centre would be su-
perimposed on this. High resolution simulations demonstrate that clumps
account for as much luminosity as the uniform halo (Diemand et al., 2008),
(Springel et al., 2008a). However much of the soft lepton excess from the in-
ner halo will be suppressed due to the clumpiness being much less in the
inner galaxy.

We see from the numerical simulations of our halo, performed at a mass
resolution of 1000M⊙ that the subhalo contribution to the annihilation lu-
minosity scales as M−0.226

min (Springel et al., 2008a). For Mmin = 105M⊙, this
roughly equates the contribution of the smooth halo at r = 200 kpc from
the center. This should continue down to the minimum subhalo mass. We
take the latter to be 10−6M⊙ clumps, corresponding the damping scale of a
bino-like neutralino (Hofmann et al., 2001; Loeb and Zaldarriaga, 2005). We
consider this as representative of the damping scale of neutralino dark matter,
although it should be noted that the values of this cutoff for a general weakly
interacting massive particle (WIMP) candidate can span several orders of
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magnitude, depending on the details of the underlying particle physics model
(Profumo et al., 2006; Bringmann, 2009). It should also be taken into account
that the substructure is a strong function of galactic radius. Since the dark
matter density drops precipitously outside the solar circle (as r−2), the clump
contribution to boost is important in the solar neighbourhood. However ab-
sent any Sommerfeld boost, it amounts only to a factor of order unity. Inci-
dentally the simulations show that most of the luminosity occurs in the outer
parts of the halo (Springel et al., 2008a) and that the boost here due to sub-
structure is large, typically a factor of 230 at r200.

However there is another effect of clumpiness, namely low internal veloc-
ity dispersion. In fact, the preceding discussion greatly underestimates the
clump contribution to the annihilation signal. This is because the coldest
substructure survives clump destruction albeit on microscopic scales. Within
the clumps, the velocity dispersion σ initially is low. Thus, the annihilation
cross section is further enhanced by the Sommerfeld effect in the coldest sur-
viving substructure. We now estimate that including this effect results in a
Sommerfeld-enhanced clumpiness boost factor at the solar neighborhood of
104 to 105.

To infer σ from the mass M of the clump is straightforward. The scal-
ings can be obtained by combining dynamically self-consistent solutions for
the radial dependence of the phase space density in simulated CDM ha-
los (Dehnen and McLaughlin, 2005) as well as directly from the simulations
(Vass et al., 2009) ρ/σǫ ∝ r−α, combined with our ansatz about clump sur-
vival that relates minimum clump mass to radius and the argument that
marginally surviving clumps have density contrast of order unity. With ǫ = 3
and α = 1.875 (Navarro et al., 2008), we infer (for the isotropic case) that

σ ∝ ρ1/ǫrα/ǫ ∝∼ M1/4. This is a compromise between the two exact solutions
for nonlinear clumps formed from hierarchical clustering of CDM: spherical
(M ∝ r3) or Zeldovich pancakes (M ∝ r), and is just the self-similar scaling
limiting value. The numerical simulations of Springel et al. (2008b) suggest
a scaling Msub ∝ v3.5

max down to the resolution limit of ∼ 103M⊙, somewhat
steeper than self-similar scaling.

So one can combine this result with the previous scaling to compute the
total boost, i.e., taking into account both the clumpiness and the Sommerfeld
enhancement. We know from the analysis of Springel et al. (Springel et al.,
2008a) that for a minimum halo mass of 10−6 M⊙ the luminosity of the sub-
halo component should more or less equate to that of the smooth halo at the
galactocentric radius, i.e. L0

sh ≃ L0
sm at r = 8 kpc, where the superscript 0

stands for the luminosity in the absence of any Sommerfeld correction. Thus
the boost factor with respect to a smooth halo is of order unity, after the pres-
ence of subhalos is taken in consideration. Next we take into account the
Sommerfeld enhancement. The velocity dispersion in the halo is β ∼ 10−3,
while the velocity dispersion in the subhalos is β ∼ 10−5 for a 105 M⊙ clump,
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and can be scaled down to smaller clumps using the σ ∝∼ M1/4 relation. From
the discussion in sec. F.1.1 and in particular from Figs. F.2 and F.3 it appears
that, if the dark matter mass is . 10 TeV and far from the resonance occur-
ring for m ≃ 4.5 TeV: (1) the Sommerfeld enhancement is the same for the
halo and for the subhalos, since it has already reached the saturation regime;
(2) it is of order 30 at most, so that the resulting boost factor still falls short by
at least one order of magnitude with respect to the value needed to explain
the PAMELA data. On the other hand, if the dark matter mass is close to its
resonance value, then a larger value of the boost can be achieved inside the
cold clumps, since (1) the enhancement is growing like 1/v2 and (2) it is satu-
rating at a small value of β. Referring for definiteness to the top curve in the
top panel of Fig. F.3 (m = 4.5 TeV), one finds S ≃ 104− 105 for all clumps with
mass M . 109 M⊙ (that is roughly the mass of the largest clumps) while the
smooth halo is enhanced by a factor 1000. Then the net result is that the boost
factor is of order 104− 105 and is mainly due to the Sommerfeld enhancement
in the cold clumps (the enhancement in the diffuse halo only contributing a
fraction 1-10%). Of course the details will be model dependent; it should also
be stressed that the enhancement strongly depends on the value of the mass
when this is close to the resonance.

F.1.4. Discussion

In the previous section we have shown how it is possible to get a boost factor
of order 104− 105 for a dark matter particle mass of order 4.5 TeV. This is tan-
talizing because this is roughly the value one needs to explain the PAMELA
data for a dark matter candidate with this given mass, as can be inferred by
analysis of Fig. 9 of Ref (Cirelli et al., 2009b). Although we have made several
approximations concerning the clump distribution and velocity, it should be
noted that our results still hold as long as the majority of the clumps are very
cold (β . 10−4) because this is the regime in which the enhancement becomes
constant. The saturation of the Sommerfeld effect also plays a crucial role in
showing that the very coldest clumps are unable to contribute significantly
to the required boost factor if the dark matter mass is not close to one of the
Sommerfeld resonances. Because of saturation below β ∼ 10−4, the Sommer-
feld boost is insensitive to extrapolations beyond the currently resolved scales
in simulations. Note however that the precise value for the dark matter par-
ticle mass is uncertain because of such model-dependent assumptions as the
adopted mass-splitting, the multiplet nature of the supersymmetric particles,
and the possibility of different couplings, weaker than weak.

The model presented here does not pose any problem from the point of
view of the high energy gamma-ray emission from the centre of the galaxy,
since very few clumps are presents in the inner core and thus there is no Som-
merfeld enhancement. Thus there is no possibility of violating the EGRET
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or HESS observations of the galactic center or ridge, contrary to what is ar-
gued in Ref. (Bertone et al., 2009). There is a potential problem however
with gamma ray production beyond the solar radius out to the outer halo.
From (Springel et al., 2008a), the simulations are seen to yield an additional
enhancement due to clumpiness alone above 105M⊙ of around 80% at r200

in the annihilation luminosity. Extrapolating to earth mass clumps, the en-
hancement is 230 in the annihilation luminosity at the same radius. This is
what a distant observer would see. The incorporation of the Sommerfeld fac-
tor would greatly amplify this signal by S ∼ 104− 105.

The expected flux that would be observed by looking in a direction far from
the galactic center can be readily estimated. Assuming an effective cross sec-
tion σv = 3× 10−22 cm3 s−1, corresponding to a Sommerfeld boost of 104

on top of the canonical value of the cross section times velocity, the num-
ber of annihilations on the line of sight is roughly 4× 10−9(m/TeV)−2 cm−2

s−1. We have assumed a Navarro-Frenk-White (NFW) profile. The effect of
the clumpiness is still not included in this estimate. Following the results of
the simulation in Ref. (Springel et al., 2008a), this value should be multiplied
by a factor ∼ 200. Convolving with the single annihilation spectrum of a 5
TeV dark matter particle yields the flux shown in Fig. F.5. There we show
the spectrum that would be produced if the dark matter particle would an-
nihilate exclusively either to W bosons, b quarks or τ leptons (blue, red and
green curves, respectively). We also consider a candidate that annihilates to
τ leptons 90% of the time and to Ws the remaining 10% of the time (model
“Hyb1”) and a candidate that annihilates only to quarks and leptons, with
the same cross section apart from color factors (model “Hyb2”).

The gamma ray signal mostly originates from the outer halo and should
be detectable as an almost isotropic hard gamma-ray background. Candi-
dates annihilating to heavy quarks or to gauge bosons seem to be excluded by
EGRET. On the other hand, a dark matter particle annihilating to τ leptons is
compatible with the measurements of EGRET at these energies (Strong et al.,
2004), and within the reach of FERMI.

There are however at least two reasons that induce significant uncertainty
into any estimates. Firstly, the halo density profile in the outer galaxy may be
substantially steeper than is inferred from an NFW profile, as current models
are best fit by an Einasto profile (Gao, 2008), ρ(r) ∝ exp[(−2/α((r/rs)α − 1)],
as opposed to the asymptotic NFW profile ρ(r) ∝ r−3. Using the Einasto pro-
file yields at least a 10% reduction. Another possibility is to use a Burkert pro-
file (Burkert, 1996), that gives a better phenomenological description of the
dark matter distribution inside the halo, as it is inferred by the rotation curves
of galaxies (Gentile et al., 2004; Salucci et al., 2007). Using a Burkert profile,
the flux is reduced by a factor 3. Secondly, and more importantly, the subha-
los are much less concentrated at greater distances from the Galactic Centre
(Diemand et al., 2007). These effects should substantially reduce the gamma
ray contribution from the outer halo. A future application will be to evalu-
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Figure F.5.: Contribution to the diffuse galactic photon background from the
annihilation of a 5 TeV dark matter particle, for different channels, when both
clumpiness and the Sommerfeld enhancement in cold clumps are taken into
account, compared with the measurements of the diffuse gamma background
from EGRET (Strong et al., 2004). The label “Hyb1” (solid black line) stands
for a hybrid model in which the dark matter annihilates to τ leptons 90% of
the time and to W pairs the rest of the time. The label “Hyb2” (dashed black
line) stands for a model in which the dark matter annihilates to leptons and
quarks only, with the same cross-section apart from color factors. The latter
could be realized through the circumvention of helicity suppression.

ate the extragalactic diffuse gamma ray background where the evolution of
clumpiness with redshift should play an interesting role in producing a pos-
sible spectral feature in the isotropic component. Note that the annihilation
rate originating from very high redshift subhalo substructure and clumpiness
near the neutralino free-streaming scale (Kamionkowski and Profumo, 2008)
is mostly suppressed due to the saturation of the Sommerfeld effect that we
described above.

Because of the saturation of the Sommerfeld boost, it should be possi-
ble to focus future simulations on improved modelling of the radial profiles
and concentrations of substructures in the outer halo. It is these that con-
tribute significantly to the expected diffuse gamma if our interpretation of
the PAMELA and the ATIC data, and in particular the required normalisation
and hence boost, is correct. Of course, there are other possible explanations
of the high energy positron data, most notably the flux from a local pulsar
(Aharonian et al., 1995; Yuksel et al., 2009; Hooper et al., 2009a) that has re-
cently been detected as a TeV gamma ray source.

An interesting consequence of the model proposed here is the production
of synchrotron radiation emitted by the electrons and positrons produced in
the dark matter annihilations, similar to the one that is possibly the cause of
the observed “WMAP haze” (Hooper et al., 2007; Cumberbatch et al., 2009).
For a TeV candidate, this synchrotron emission would be visible in the ν &
100 GHz frequency region. This region will be probed by the Planck mis-
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sion; the synchrotron radiation would then give rise to a galactic foreground
“Planck haze” in the microwave/far infrared part of the spectrum. This
quasi-isotropic high frequency synchrotron component will be an additional
source of B-mode foregrounds that will need to be incorporated into pro-
posed attempts to disentangle any primordial B-mode component in the cos-
mic microwave background. Another interesting application would be to
look at the gamma-ray emission from specific objects, like the Andromeda
Galaxy (M31). M31 has been observed in the relevant energy range by the
CELESTE and HEGRA atmospheric Cherenkov telescopes, and limits on the
partial cross section to photons, in the absence of boost, were obtained by
Mack et al. (2008).

Finally, we note that in Sec. F.1.2 we have described a mechanism that
can enhance the production of leptons (especially light leptons) in neutralino
dark matter annihilations, making the leptonic channel as important as the
gauge boson channel. A dark matter candidate annihilating mainly into lep-
tons can simultaneously fit the PAMELA positron and antiproton data, ow-
ing to the fact that no antiproton excess is produced. The enhancement of
the lepton branching ratio can possibly alleviate the problem of antiproton
production following neutralino annihilation into a pair of gauge bosons. It
should however be noted that the mechanism in question also enhances the
quark channel in a similar way, thus introducing an additional source of an-
tiprotons. It would thus be desirable to suppress in some way the quark anni-
hilation channel. This could be realised in a variation of the above mentioned
mechanism, if the lightest neutralino is quasi-degenerate in mass with the
lightest slepton l̃; this is what happens for example in the τ̃ coannihilation re-
gion. In this case, the Sommerfeld enhancement would proceed through the
creation of an intermediate l̃+ l̃− bound state that would subsequently anni-
hilate to the corresponding standard model lepton pair, without producing
any (tree-level) quark. This points to the necessity of further investigating
different models in order to assess if the boost in the leptonic branching ratio
is indeed compatible with the PAMELA data.

F.2. Constraining the dark matter annihilation

cross-section with Cherenkov telescope

observations of dwarf galaxies

F.2.1. Introduction

Detection of a rise in the high energy cosmic ray e+ fraction by the PAMELA
satellite experiment (Adriani et al., 2009) and of a possible peak in the e++ e−

flux by the ATIC balloon experiment (Chang et al., 2008) has stimulated con-
siderable recent theoretical activity in indirect detection signatures of particle
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dark matter via annihilations of the Lightest Supersymmetric Particle (LSP)
and other massive particle candidates (Bergstrom et al., 2008; Cirelli and Strumia,
2008; Cholis et al., 2008; Liu et al., 2009b; Hooper et al., 2009b; Grajek et al.,
2009; Donato et al., 2009; de Boer, 2009; Hooper and Zurek, 2009). Several
hurdles must be surmounted if these signals are to be associated with dark
matter annihilations. Firstly, a high boost factor (103 − 104) is needed within
a kiloparsec of the solar circle (Cirelli et al., 2008). Secondly, the boost factor
must be suppressed in the inner galaxy to avoid excessive γ-ray and syn-
chrotron radio emission (Bertone et al., 2009). Thirdly, the annihilation chan-
nels must be largely lepton–dominated to avoid p̄ production (Cirelli et al.,
2009b). Finally, account must be taken of the FERMI/HESS observations of
electron/positron fluxes that do not reproduce part of the ATIC data (Abdo et al.,
2009; Aharonian, 2009).

The third of these requirements is addressed in various particle physics
models for the dark matter candidate (Cirelli et al., 2009b). Here we explore
the implications of the first two requirements, and comment on the impli-
cations of the newest data on particle fluxes. The higher annihilation cross-
section needed for the interpretation of the positron excess in terms of dark
matter annihilations can be obtained via the Sommerfeld effect (Arkani-Hamed et al.,
2009; Lattanzi and Silk, 2009). This effect occurs only at low relative velocities
of the annihilating particles, and does not change the thermal cross-section
required by cosmological measurements. Robertson and Zentner (2009) ex-
amined possible signatures of the Sommerfeld enhancement arising from the
non-trivial dependence of the DM velocity distribution upon position within
a DM halo. Here we consider the Sommerfeld enhancement in the substruc-
tures of our galaxy, where the velocity dispersion is as low as 10 km s−1 in
the dwarf galaxies and becomes even lower for smaller subhalo masses. The
boost, which is inversely proportional to the particle velocity, is especially
relevant on the smallest scales that are unresolved by numerical simulations
(Springel et al., 2008a). Throughout this paper, we will not consider the full
velocity distribution function but will take the central values as a reference
for computing the boost.

The second requirement can be understood because the unresolved sub-
structures that dominate the local boost are likely to be tidally disrupted in
the inner galaxy (Lattanzi and Silk, 2009). The predictions for signals coming
from the Galactic Center (GC) are also reduced by adopting a shallower DM
profile. We note that these effects also lower the local p̄ contribution.

In this paper, we focus on the γ-ray signal coming from the Draco dwarf
galaxy. We choose Draco because its DM density profile is determined in
detail (Walker et al., 2009) and because it has been observed by the MAGIC
Cherenkov Telescope (Albert et al., 2008). Our aim is to constraint the Som-
merfeld enhancement through such a measurement. We will show how the
constraints depend sensitively on the astrophysical uncertainties due to both
numerical simulations and astronomical measurements. Moreover, we will
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show how the result is mainly dominated by the smooth DM halo of the
dwarf galaxy, so that it is almost independent of the sub-substructure model
used. We also derive exclusion plots for the effective annihilation cross-
section obtained with the available measurements, as well as for the sensi-
tivities achievable with future detectors. We apply our results to the case of
the Sagittarius dwarf galaxy, which has also been observed with the HESS
Cherenkov Telescope (Aharonian, 2008). This galaxy, much closer to us than
Draco, would give a higher γ-ray flux and thus sets the greatest constraint.
Unfortunately, the tidal stripping of Sagittarius because of its proximity to the
GC makes it difficult to model the DM profile. In this paper we will assume
that its mass profile can be modeled in the same way as Draco, by adopting
the universality of mass profiles in the dwarf galaxies found in Walker et al.
(2009). Since neither MAGIC nor HESS have observed any signal along the
direction of the targets, we therefore set 95% CL upper limits on the γ-ray
coming from these sources.

The paper is organized as follows: in Sec.F.2.2 we model the particle physics
scenarios where the Sommerfeld enhancement is largest, as well as the as-
trophysical uncertainties in the determination of the γ-ray flux; in Sec.F.2.3
we derive the constraints on the effective cross-section set with the avail-
able Cherenkov Telescope measurements, and give exclusion plots achiev-
able with the next generation of experiments that make use of Cherenkov
Telescope technology, namely the proposed Cherenkov Telescope Array (CTA).
We give our conclusions in Sec. F.2.4.

F.2.2. γ-ray flux from Dark Matter annihilation in Draco and

Sagittarius

The observed photon flux from DM annihilations inside a halo can be factor-
ized into two terms:

dΦγ

dEγ
(M, Eγ, Mh, r, d, θ) =

dΦPP

dEγ
(M, Eγ)× LOS(Mh , r, d, θ) (F.2.1)

where M denotes DM particle mass, Eγ is photon energy, Mh halo mass, r the
position inside the halo, d the distance from the observer and θ the angular
resolution of the instrument (θ ∼ 0.1◦ for the Cherenkov Telescopes). The first
term depends on the nature of the DM and describes the yields of photons in
a single annihilation:

dΦPP

dEγ
(M, Eγ) =

1

4π

(σv)0

2M2
·∑

f

dN
f
γ

dEγ
B f . (F.2.2)
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Here, dN
f
γ/dEγ is the differential photon spectrum per annihilation relative

to the final state f , which is produced with branching ratio B f , and (σv)0 de-
notes the tree level s-wave annihilation cross section, which we assume to be
equal to its thermal value necessary for reproducing the observed cosmolog-
ical abundance today: (σv)0 = 3× 10−26 cm3 s−1. The second term in Eq.
F.2.1 is the line of sight integral of the DM density squared which describes
the number of the annihilations which happen along the cone of view defined
by the instrument:

LOS(Mh , r, d, θ) =
∫ ∫

∆Ω
dθdφ

∫

los
dλ

[

ρ2
DM(Mh, c, r(λ, ψ, θ, φ))

d2
J(x, y, z|λ, θ, φ)

]

(F.2.3)

Here, ρDM is the DM density profile inside the halo, c being the concentration
parameter of the halo, defined as the ratio between virial radius and scale
radius and computed following the prescriptions of Bullock et al. (2001); r
is the galactocentric distance, which, inside the cone, can be written as a
function of the line of sight λ, the angular coordinates θ and φ coordinates
and the pointing angle with respect to the observed ψ through the relation

r =
√

λ2 + R⊙2 − 2λR⊙C, where R⊙ is the distance of the Sun from the GC

(R⊙ = 8.5kpc) and C = cos(θ) cos(ψ) − cos(φ) sin(θ) sin(ψ); finally, inside
the cone, d = λ and J(x, y, z|λ, θ, φ) is the Jacobian determinant from carte-
sian to polar coordinates. The presence of the Sommerfeld effect is reflected
by setting σv = S(β(Mh , r), M)(σv)0. The Sommerfeld enhancement S now
enters the line of sight integral of Eq. F.2.3.

The particle physics sector

The dark matter annihilation cross section can be enhanced, with respect to
its primordial value, in the presence of the so-called Sommerfeld effect. This
is a (non-relativistic) quantum effect occurring when the slow-moving anni-
hilating particles interact through a potential (Sommerfeld, 1931). The idea
that the gamma-ray flux from dark matter annihilations can be enhanced in
this way was first proposed in a pioneering paper by Hisano et al. (2004) (see
also Hisano et al., 2005). Recently, the possibility of explaining the large boost
factor required by PAMELA using this mechanism has stimulated several
studies of this effect (see for example Cirelli et al., 2007; March-Russell et al.,
2008; Arkani-Hamed et al., 2009; Pospelov and Ritz, 2009; Lattanzi and Silk,
2009; March-Russell and West, 2009).

As already noticed, in the presence of the enhancement, the effective s-
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wave annihilation cross section times velocity can be written as:

σv = S(β, M) (σv)0 , (F.2.4)

where (σv)0 is the tree level s-wave annihilation cross section, and the Som-
merfeld enhancement S depends (for a given interaction potential) on the
annihilating particle mass M and velocity β = v/c.

The enhancement is effective in the low-velocity regime, and disappears
(S = 1) in the limit β → 1. In general, one can distinguish two distinct
behaviours, resonant and non-resonant, depending on the value of the anni-
hilating particle mass. In the non-resonant case, the cross section grows like
1/β before saturation occurs at a certain value Smax of the enhancement. In
the resonant case, occurring for particular values of M, the cross-section first
grows like 1/β (as in the non-resonant case), then at some point it grows like
1/β2 before saturating. The Sommerfeld boost can reach very large values.
Both in the resonant and non-resonant case, the values of β and S for which
the saturation occurs depend, other than on the particle mass, on the parame-
ters of the interaction potential, namely the coupling constant α and the mass
of the exchange boson mV .

In this paper, we will consider two different particle physics scenarios. In
the first, we consider a weakly interacting massive particle (WIMP) dark mat-
ter candidate. In this case the Sommerfeld effect is caused by the standard
model weak interaction, mediated by W and Z bosons, so that mV = 90 GeV
and α = 1/30. If the dark matter is a Majorana particle, such as for example
the supersymmetric neutralino, its annihilation into a fermionic final state f
is helicity-suppressed by a factor (m f /M)2 . For a dark matter particle in the

1 to 10 TeV range, this is a factor 10−2÷ 10−4 even for the heaviest possible fi-
nal state, i.e. the top quark. Thus we are naturally led to consider a candidate
that annihilates mainly to weak gauge bosons. However, for completeness
we have also considered the heavy quark and lepton annihilation channels.

The differential photon spectra per annihilation dN
f
γ/dEγ for the various final

states have been computed using PYTHIA (Sjostrand et al., 2001), including
also the contribution from final state radiation.

We consider the following values for the mass of the particle: M = (4.3, 4.45, 4.5, 4.55 TeV).
This values are chosen because, in the case of a weak interaction potential, a
resonance in the Sommerfeld-enhanced cross section occurs for M ≃ 4.5TeV
(Lattanzi and Silk, 2009). Being so close to the resonance, even a relatively
small change in the mass of the particle can produce order of magnitude
changes in the Sommerfeld boost. In fact, the maximum achievable boost
goes from S ≃ 1.5× 103 for M = 4.3 TeV to S ≃ 4× 105 for M = 4.55 TeV.

The second scenario we consider has been introduced by Arkani-Hamed et al.
(2009) [AH]. In this model, a new force with a coupling constant α ∼ 10−2 is
introduced in the dark sector, mediated by a boson φ having a mass mV =
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Mass (TeV) mV(GeV) α Smax β̄

4.3 80 1/30 1.5× 103 8.0× 10−4

4.45 80 1/30 1.2× 104 2.8× 10−4

4.5 80 1/30 7.0× 104 1.1× 10−4

4.55 80 1/30 4.2× 105 4.7× 10−5

0.7 1 10−2 750 2.4× 10−5

0.7 0.1 10−2 750 8.5× 10−6

Table F.1.: Values of the maximum possible boost Smax and of the satura-
tion velocity β̄, for different dark matter models. Each model is defined by
the value of the dark matter particle mass M, and by the parameters of the
Yukawa potential responsible for the enhancement, namely the mass mV of
the exchange boson and the coupling constant α.

mφ <∼ 1 GeV. It is this new force that is responsible for the Sommerfeld en-
hancement. In this case, it is found that the large boosts required to explain
the PAMELA and ATIC data can be obtained for a dark matter particle of
mass M ≃ 700 GeV. In AH models, the dark matter annihilates mainly to φ
bosons, that in turn decay into electrons or muons (depending on the mass
of the φ). The gamma rays are produced in the decay of the φ as final state
radiation (Bergstrom et al., 2009). We consider two particular realisations of
this scenario: we take the dark matter mass to be M = 700 GeV in both, and
mφ equal to either 100 MeV or 1 GeV. We note that the dark matter interac-
tion cross section in the first case is only one order of magnitude away from
the upper bound coming from observations of the mass distribution inside
clusters of galaxies (Miralda-Escudé, 2002).

The enhancement as a function of velocity in the models considered is de-
picted in Fig. F.6. The main properties of the enhancement, i.e. the maximum
value Smax and the saturation velocity β̄, are summarised in Table F.1 for the
different models, together with the parameters of the interaction potential
that is responsible for the Sommerfeld boost. We point out that, in the case of
dwarf galaxies and their subhalos, the dispersion velocity is of the order of
10 km s−1, which means that we are always in the saturation regime, and the
enhancement is always maximum, and equal to Smax . As we show in the next
sections, these large boost factors can be tested through Cherenkov telescope
observations of dwarf galaxies.

The astrophysical sector: smooth dark matter halo

We discuss here the modeling of the dark matter inside the Draco dwarf
galaxy. Walker et al. (2009) have recently demostrated the existence of a uni-
versal mass profile for the dwarf spheroidal galaxies of the Local Group, find-
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Figure F.6.: Sommerfeld enhancement S as a function of the particle velocity
β for different values of the dark matter mass close to the resonance in our
model with α= 1/30 and mV = 80 GeV, as well as for a model with α = 10−2

and mV = 1 GeV and 100 MeV (labeled AH).
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ing that the enclosed mass at the half-light radius is well constrained and ro-
bust within a wide range of halo models and velocity anisotropies and that
the dwarfs can be characterized by a ”universal” dark matter halo of fixed
shape and narrow range in normalization. The Draco galaxy lies about 80
kpc away from us, almost at the zenith with respect to the GC (ψD ∼ 85◦).
Walker et al. (2009) found that a cuspy NFW halo:

ρDM(r) =
ρs

(

r
rs

) (

1 + r
rs

)2
(F.2.5)

with scale radius rs ∼ 1kpc is the best fit to the data on the stellar velocity
dispersions, although a cored universal halo:

ρDM(r) =
ρs

(

1 + r
rs

)3
(F.2.6)

with scale radius rs ∼ 200 pc is not yet ruled out. The scale density ρs is
fixed by requiring that the mass embedded in the inner 300 pc equals the
measured value of M300 = 1.9× 107 M⊙. In Table F.2 we list the central values
as well as the 95 % CL ones for the scale radius as universally found for the
dwarfs by Walker et al. (2009). We note the King radius of Draco is ∼ 650 pc
(Armandroff et al., 1995), which roughly corresponds to the scale for the mass
universality in the dwarf galaxy (600 pc). The mass measured within 600 pc in
the case of Draco is about 7× 107 M⊙, and the mass enclosed by the maximum
radius with stellar velocity dispersion measurements is ∼ 9× 107 M⊙, while
the virial mass is estimated to be 4× 109 M⊙ with a concentration parameter
cNFW ∼ 18 (Walker et al., 2007).

The satellites, or subhalos, of our Galaxy suffer from external tidal strip-
ping due to the interaction with the Milky Way. To account for gravitational
tides, we follow Hayashi et al. (2003) and assume that all the mass beyond
the subhalo tidal radius is lost in a single orbit without affecting its central
density profile. The tidal radius is defined as the distance from the subhalo
center at which the tidal forces of the host potential equal the self-gravity of
the subhalo. In the Roche limit, it is expressed as:

rtid(r) =

(

Msub

2Mhost(< r)

)1/3

r (F.2.7)

where r is the distance from the halo center, Msub the subhalo mass and
Mhost(< r) the host halo mass enclosed in a sphere of radius r.
In our case, the host halo is the Milky Way (MW), which we model after the
recent high resolution N-body simulations Aquarius (Springel et al., 2008a,b)
and Via Lactea II (Diemand et al., 2008): while the latter describes the MW
with an NFW profile (Mh ∼ 1.9× 1012 M⊙, rs = 21kpc, ρs = 8.09× 106 M⊙kpc−3),
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the former finds a shallower profile in the inner regions. We have checked
that the difference between the two profiles are irrelevant for our analysis.
At the distance of Draco, we find rtid = 11.2kpc. We note that the condition
rtid > rs holds, which guarantees that the binding energy is negative and the
system is not dispersed by tides. The value of rtid found making use of the
Roche criterium is indeed an upper limit since it has been computed in the
pointlike approximation.
The LOS integral for the Draco galaxy is computed by numerically integrat-
ing Eq. F.2.3, assuming that the integral is different from zero only in the
interval [d− rtid, d + rtid].

In the case of the dwarf galaxies, their mass and therefore the masses of
the sub-subhalos lie in the region at low β where the Sommerfeld enhance-
ment saturates. This is true for every DM mass except for the one which lies
closest to the resonance (in our model, M = 4.55TeV). In this case, however,
the radial dependence of the enhancement produces a variation of a few per-
cent, so that as a good approximation, the Sommerfeld enhancement S can
be considered constant and taken out of the LOS integral. The result of the
computation of the LOS integral (S = 1) according to Eq.F.2.3 in the case of
Draco is depicted in Fig.F.7 as a function of the angle of view ψ with respect
to the center of Draco. Only the LOS relative to the central value for the NFW
fit to the data is shown.

In view of the dark matter profile universality, we model the inner regions
of the closer Sagittarius galaxy using the same profile parameters as in the
case of Draco (see also Evans et al. (2004) for a comparison between the Draco
and Sagittarius inner DM profiles), although there is no direct evidence of the
shape of its DM halo. The Sagittarius dwarf galaxy is located at a distance of
about 24 kpc from us, at low latitudes ψS = 15◦. Its vicinity to the Galac-
tic Center causes significant tidal stripping due to the interaction with the
gravitational potential of the Milky Way. Yet the surviving stellar component
suggests that its inner dark matter halo also survives. Moreover, the obser-
vations show that Sagittarius is indeed dark matter-dominated with a central
stellar velocity dispersion of about 10 km s−1 (Ibata et al., 1997), similar to
the one observed in Draco. At the distance of Sagittarius, the tidal radius is
rtid = 4kpc, still larger than the scale radius.

The results of the line of sight integral towards the center of each dwarf
galaxy are shown in Table F.2, for the central value and the 95 % CL values of
both the best fit NFW and the cored profile obtained by Walker et al. (2009).

In Table F.3 we list the values of the LOS computed for the smooth compo-
nent of the MW in the direction of the dwarf galaxies, which will provide a
foreground for the detection of the dwarfs themselves. We do not describe in
this paper the details of these computations, which are studied extensively in
Pato et al. (2009) and Pieri, Bertone & Branchini (in preparation). We observe
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Draco fit rs(kpc) LOSD
ψD=0 LOSS

ψS=0

NFW 0.795 1.05× 10−3 4.43× 10−3

NFW +2σ 3.0 7.85× 10−4 2.8× 10−3

NFW −2σ 0.3 1.91× 10−3 9.8× 10−3

Core 0.15 7.5× 10−4 2.17× 10−3

Core +2σ 0.3 5.2× 10−4 9.4× 10−4

Core −2σ 0.085 1.54× 10−3 6.9× 10−3

Table F.2.: Line of sight integral for the smooth halo of the dwarf galaxies.
First column: models reflecting the astronomical uncertainties from a fit to
the Draco stellar velocity dispersion. Second column: scale radius for each
model. Third column: values for the LOS integral toward the center of Draco.
Fourth column: values for the LOS integral toward the center of Sagittarius.

MW model LOSψMW=ψD LOSψMW=ψS

VL2 1.18× 10−5 2.73× 10−4

Aquarius 1.13× 10−5 4× 10−4

Table F.3.: Line of sight integral for the smooth component of the Milky Way
integrated along a direction pointing towards the center of the dwarf galaxies.
First column: MW model from numerical simulation. Second column: line of
sight integral towards the center of Draco. Third column: line of sight integral
towards the center of Sagittarius.

that, both for Draco and for Sagittarius, the dwarf center is brighter in γ-ray
than the MW foreground.

The astrophysical sector: substructures

The recent Aquarius and the Via Lactea II simulations have succeeded in deter-
mining the properties of the subhalos and sub-subhalos such as spatial and
mass distribution, density profiles and spatial dependence of the concentra-
tion parameter. We therefore study the effects on the expected γ-ray flux of a
population of sub-subhalos inside the dwarfs according to the recent findings
of numerical simulations, although we do not expect a significant impact on
the expected flux towards the center of the dwarf, where the smooth halo flux
is larger (Giocoli et al., 2008, 2009). We populate Draco with sub-subhalos
with masses as small as 10−6M⊙, corresponding to the damping scale of a
typical DM candidate with M = 100GeV (Hofmann et al., 2001; Green et al.,
2004, 2005; Loeb and Zaldarriaga, 2005). It should howevere be noted that
such a minimum mass may vary between 10−12 and 10−4M⊙ depending on
the particle physics model considered (Profumo et al., 2006).
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We follow the results of Via Lactea II to model the population of sub-substructures:

ρsh(Mh, Msub, r) =
AM−α

sub
(

1 + r
rh

s

)2
M⊙−1kpc−3 (F.2.8)

where rh
s is the scale radius of the host halo and r is the radial coordinate in-

side the host halo. We normalize the subhalo distribution function ρsh(Mh, Msub, r)
such that 10 % of the mass of the host halo before the tidal stripping is dis-
tributed in substructures with masses between 10−5Mh and 10−2Mh, adopt-
ing two choices for the mass slope α = 2 and α = 1.9. We have checked that
modeling the spatial substructure distribution function according to Aquarius
does not significantly change our results.

As a second step, we remove all of the subhalos which lie beyond rtid. This
is indeed an upper value for the number of surviving sub-subhaloes, since we
are not considering here the fifty percent of the subhalos that exit the virial
radius of the parent halo during their first orbit (Tormen et al., 2004) and are
therefore dispersed into the halo of the Milky Way.
The contribution of such a population of sub-substructures to the annihilation
signal can be written as (Pieri et al., 2008):

LOS(Mh , r, d, θ) ∝

∫

Msub

dMsub

∫

c
dc
∫ ∫

∆Ω
dθdφ

∫

los
dλ[ρsh(Mh, Msub, r)P(c(Msub, r))LOSsh(Msh, r, d, θ)] (F.2.9)

where the contribution from each sub-subhalo (LOSsh) is convolved with its
distribution function (ρsh). P(c) is the lognormal distribution of the concen-
tration parameter with dispersion σc = 0.24 (Bullock et al., 2001) and mean
value c̄:

P(c̄, c) =
1√

2πσcc
e
−
(

ln(c)−ln(c̄)√
2σc

)2

. (F.2.10)

Again, the integral along the line-of-sight will be different from zero only in
the interval [d− rtid, d + rtid].

For each sub-substructure, we use an NFW density profile whose concen-
tration parameter c(Msub, r) relative to the radius Rvir that encloses an aver-
age density of 200 × the critical one, depends on its mass and on its position
inside the host halo, according to the results of Via Lactea II and Bullock et al.
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Draco fit mass slope LOSD,sub
ψD=0 LOSS,sub

ψS=0

NFW -2 4.13× 10−5 5.40× 10−5

NFW -1.9 1.03× 10−5 1.34× 10−5

NFW +2σ -2 3.85× 10−6 4.25× 10−6

NFW +2σ -1.9 9.5× 10−7 1.05× 10−6

NFW −2σ -2 1.98× 10−4 3.10× 10−4

NFW −2σ -1.9 4.94× 10−5 7.71× 10−5

Table F.4.: Line of sight integral for the clumpy component of the dwarf galax-
ies. First column: models reflecting the astronomical uncertainties from a fit
to the Draco stellar velocity dispersion. Second column: subhalo mass slope.
Third column: values for the LOS integral toward the center of Draco. Fourth
column: values for the LOS integral toward the center of Sagittarius.

(2001) extrapolated to 10−6 M⊙:

c(Msub, r) =

(

r

Rvir

)−0.286

×
(

89.04

(

Msub

M⊙

)−0.0135

− 42.43

(

Msub

M⊙

)0.006
)

(F.2.11)

We numerically integrate Eq. F.2.9 to estimate the LOS contribution from
the sub-substructures in a 10−5 sr solid angle along the direction ψD or ψS to-
wards the center of the dwarfs. The result of this computation for the subhalo
population of Draco is depicted in Fig.F.7 as a function of ψD, for the central
value of the NFW fit to the stellar kinematics and for a mass slope of -2. As ex-
pected, this contribution becomes relevant only away from the center, where
it anyway gives a flux which is one order of magnitude smaller.

We repeat the same analysis for Sagittarius, assuming its sub-subhalo pop-
ulation is modeled in the same way as the Draco’s one, yet with a smaller
todal radius. The result of the integration of Eq. F.2.9 along a direction point-
ing towards the center of the dwarfs is listed in Table F.4. Although the values
in the case of Sagittarius are slightly larger than for Draco, due to its proxim-
ity to us, the relative strength of the smooth to clumpy component is larger in
Draco, making the presence of sub-subhalos in Sagittarius almost irrelevant
with respect to the smooth component.

In Table F.5 we compute the values of the LOS flux computed for the clumpy
component of the MW in the direction of the dwarf galaxies. We observe that,
both for Draco and for Sagittarius, the dwarf center is brighter in γ-rays than
the MW clumpy foreground. We do not describe in this paper the details
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subhalo mass slope LOSsub
ψMW=ψD

LOSsub
ψMW=ψS

-2 2× 10−5 5.5× 10−5

-1.9 2.5× 10−6 6.5× 10−6

Table F.5.: Line of sight integral for the clumpy component of the Milky Way
integrated along a direction pointing towards the center of the dwarf galax-
ies. First column: Subhalo mass slope. Second column: line of sight integral
towards the center of Draco. Third column: line of sight integral towards the
center of Sagittarius.

of these computations, which can be found in Pato et al. (2009) and Pieri,
Bertone & Branchini (in preparation). The MW foreground contribution to
Draco, computed including its smooth and clumpy component, is shown in
Fig.F.7. The band of values accounts for the different simulations as well
as for the different subhalo mass slope. The MW foreground begins hiding
Draco at around 0.3 degrees from the Draco center. We have checked that the
same happens in the case of Sagittarius.

The mass modeling of the dwarf galaxies at large distances from their cen-
ters is just an educated guess; as a check of consistency of our results, we
repeated our calculations in the case when the DM halo extends only up to
600 pc, that is to say to the King radius (we remind that the mass within the
King radius is directly measured through stellar kinematics). The differences
between the computations extending to Rvir and the ones extending to the
600 pc amount to 5% at most.

In the following section we will compare our predictions with the available
data and expected sensitivities from the atmospheric Cherenkov telescopes
(ACTs). To compare with the data, we will consider the sum of the four con-
tributions to the photon flux: 1) annihilations in the smooth halo of the dwarf
galaxy, 2) annihilations in the subhalos of the dwarf galaxy, 3) annihilations
in the smooth halo of the Milky Way and 4) in the subhalos of the Milky Way,
computed along the direction which corresponds to the position of the dwarf
galaxy in the sky. The relative importance of the four terms depends on the
angle of view from the centre of the dwarf galaxy, as well as on the particle
physics model. The contribution due to the annihilation in the smooth halo
of the dwarf galaxy is always predominant when looking at the dwarf center.

F.2.3. Comparison with the experimental data

The MAGIC and HESS ACTs have put 95 % upper limits on the γ-ray fluxes
from Draco and Sagittarius, respectively. The upper limit for Draco inte-
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Figure F.7.: Φcosmo as a function of the angle of view ψ from the centre of halo,
computed in the case of Draco and Sagittarius, for the smooth halo and from
the subhalo population.
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Figure F.8.: Expected γ-ray flux above 140 GeV as a function of the angle of
view ψ from the centre of Draco.

grated over energies above 140 GeV is 10−11 ph cm−2 s−1. In the case of
Sagittarius, this limit is 3.6× 10−12 ph cm−2 s−1, integrated above 250 GeV.

In Fig. F.8 and F.9 we compare these values with the prediction of the γ-ray
flux from DM annihilations. We compute the flux for the particle DM mod-
els described in Sec.F.2.2. We show the result in the case of the central value
for the scale radius in the NFW best fit to the kinematic data, as derived in
Walker et al. (2009). Indeed, in the case of M=4.45 TeV, we show the astro-
physical uncertainty by plotting the curves relative to NFW and cored fits,
for central and 95 % CL values of the scale radius.
We note that our dwarfs actually appear as point sources for an angular res-
olution of 0.1◦.
The data from both MAGIC and HESS already exclude the highest Sommerfeld-
enhanced cross-sections.

Since the main contribution to the γ-ray flux at the center of the dwarf
comes from halos which are in saturation with respect to the velocity-dependent
enhancement, we can present the previous results in terms of an exclusion
plot on the effective Sommerfeld-enhanced cross-section. In Fig.F.10 we show
the exclusion limit on the effective annihilation cross-section imposed by the
MAGIC upper limit on Draco, in the case when the DM particle annihilates
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Figure F.9.: Expected γ-ray flux above 250 GeV as a function of the angle of
view ψ from the centre of Sagittarius.

in gauge bosons. The band of values reflects the astrophysical uncertainties
due to astronomical data and numerical simulations. For comparison, we
also show the exclusion plot obtained by the observation of the GC with the
HESS telescope. HESS has extensively observed the Galactic Center (GC)
source, measuring an integrated flux above 160 GeV of Φ(> 160TeV) =
1.87× 10−11 ph cm−2 s−1 in 2003 and 2004 (Aharonian et al., 2006).
In order to compute the Sommerfeld enhancement of the MW halo towards
the GC, it is necessary to convolve the information on the rotation curve of
our Galaxy with the β-dependence of the effect, and including the presence
of the black hole at the center of the Galaxy. This computation has been
done in Pato et al. (2009) and brings enhancements of the order of 103 to
104 for the Lattanzi & Silk models, and of the order of 102 for the Arkani-
Hamed model. In Fig.F.10 we report the exclusion limit with respect to a con-
stant effective Sommerfeld-enhanced annihilation cross-section. The band
of values for each experiment reflects the astrophysical uncertainty due to
the inner profile. We have used the spiky NFW profiles obtained by Via
Lactea II and a cored isothermal profile with scale radius rs = 5kpc nor-
malized to the same local value for the DM density as found in Via Lactea
II (i.e. ∼ 0.4GeV cm−3). Since simulations do not include baryons which
may play an important role at the GC, the large uncertainty on the inner pro-
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file prevents this measurement to put strong limits. As an exercise, we com-
puted the sensitivity to Draco to the space-based telescope Fermi and the fu-
ture Cherenkov Telescope Array (CTA) 2. The CTA is a proposed experiment
which will make use of Cherenkov Telescope technology on a large scale, in
order to lower the threshold energy down to ∼ 50GeV. The instrument is be-
ing designed. The tens of telescopes in the array could either look at different
portions of the sky, thus reaching up to ∼ 1 sr of field of view, or focus on
the same source, thus dramatically increasing the single telescope sensitivity.
We take a sample sensitivity from the CTA home page, according to which
the CTA will be able to detect Φ(> 50GeV) = 7 × 10−12 ph cm−2 s−1 and
Φ(> 1TeV) = 2.9× 10−14 ph cm−2 s−1. Such a sensitivity to a single source
could improve if more telescopes could point at the same source. In the case
of Fermi, we took the sensitivity to point sources from Baltz et al. (2008), that
is to say, Φ(> 3GeV) = 10−10 ph cm−2 s−1. We show the sensitivity bands
for Fermi and the CTA in Fig.F.10. The uncertainty always derives from astro-
physics. Although a boost to the thermal annihilation cross-section is always
required to observe Draco (see also Pieri et al., 2009a), the limits will improve
significantly with the future data.
In Fig.F.11 we show the same kind of exclusion limits and expected sensitivi-
ties as in Fig.F.10, yet computed for a DM particle annihilating into e+e− and
producing photons as a final state radiation. The limits and sensitivities at
high DM masses are in this case poorly restrictive.

Finally, in Fig.F.12 we show the sensitivity to Sagittarius with Fermi and
the CTA, under the assumption that we have used all throughout the paper,
namely that the inner DM halo of Sagittarius is modeled as the one of Draco.
We superimpose the effective cross-section as a function of the DM particle
mass in the case of a Sommerfeld effect mediated by a 80 GeV boson, for dif-
ferent values of β. For TeV DM masses close to the resonance, with a boost of
a factor∼ 103, the CTA would be the only instrument able to detect the signal.

In general, the constraints will depend, among other things, on the final
states for annihilation. In the case of the WIMP scenario, the results discussed
so far have been obtained considering a dark matter particle of mass M ≃ 4.5
TeV annihilating exclusively into gauge bosons. Considering instead annihi-
lation into heavy quarks or leptons as possible final states changes the pre-
dicted fluxes by factors of order unity, thus leaving our conclusions basically
unchanged. In particular, a particle that annihilates only to heavy quarks
would produce a flux 1.6-1.7 times larger than that shown in the figures, for
all experiments. The limits on the Sommerfeld boost would then be propor-
tionally tighter. In the case of a particle annihilating to τ leptons, the change
in the flux depends on the energy threshold: for MAGIC, HESS and CTA it
is respectively 0.5, 0.8, and 3.8 times the flux from the gauge boson channel.

2CTA homepage: http://www.cta-observatory.org/
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Figure F.10.: Exclusion plot (MAGIC and HESS GC) and expected sensitiv-
ity (CTA and Fermi) for the effective annihilation cross section, in the case of
γ-ray observations of the Draco galaxy and for dark matter particles annihi-
lating into WW.

Ligther leptonic and quark final states are strongly disfavoured due to the
helicity suppression; however they could become important if the helicity
suppression is lifted in some way. In the case of the AH scenario, the final
spectrum is instead naturally driven to light leptons (electrons and muons)
since heavier states are kinematically forbidden.

F.2.4. Conclusions

The excess in cosmic-ray positrons and electrons has motivated a wealth of
theoretical efforts in order to be explained in terms of DM. In particular, the
annihilation mechanism has been revised in the light of the Sommerfeld en-
hancement, a velocity-dependent effect. Such an effect is maximal in the
dwarf galaxies and in their substructures. The enhancement actually satu-
rates for DM halo masses smaller than the dwarf scale. Several studies (see.
e.g. Bertone et al., 2009; Cirelli and Panci, 2009; Galli et al., 2009; Pato et al.,
2009) have recently constrained the Sommerfeld enhancement and thus the
interpretation of the Pamela excess in terms of dark matter. However, the DM
halo of the dwarf galaxies can now be modeled making use of kinematic stel-
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Figure F.11.: Exclusion plot (MAGIC and HESS GC) and expected sensitiv-
ity (CTA and Fermi) for the effective annihilation cross section, in the case of
γ-ray observations of the Draco galaxy and for dark matter particles annihi-
lating into e+e− in the AH case with MV = 100 MeV.
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Figure F.12.: Expected sensitivity for the effective annihilation cross section,
in the case of γ-ray observations of the Sagittarius galaxy and for dark matter
particles annihilating into WW.
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lar data with a precision which is far better than the uncertainties on the MW
DM profile or on the subhalo population or on the propagation parameters
which affect the limits set by antimatter, radio and γ-ray signals. We have
computed the expected γ-ray flux from the Draco and the Sagittarius dwarf
galaxies, for which upper limits are available from the ACTs. We have com-
puted the flux within the astrophysical uncertainties and we find that the
measurements of MAGIC and HESS are able to constrain the enhancement
and set an upper limit of ∼ 104. We have shown that the future CTA ex-
periment should be able to test the boost relative to the thermal annihilation
cross-sections up to values of a few hundred.

F.3. Signatures of clumpy dark matter in the

global 21 cm background signal

F.3.1. Introduction

The standard cosmological model, motivated by measurements of tempera-
ture anisotropies in the Cosmic Microwave Background (CMB) (Spergel et al.,
2003, 2007; Komatsu et al., 2009; Dunkley et al., 2009), the large scale distri-
bution of galaxies (Cole et al., 2005; Tegmark et al., 2006b), and by evidence
of the accelerated expansion of the Universe from supernova observations
(Astier et al., 2006; Wood-Vasey et al., 2007), requires that the Universe pos-
sesses a flat spatial geometry with a corresponding critical density, approxi-
mately 27 percent of which consists of physical matter. However these obser-
vations also indicate that only 4 percent of this matter is baryonic in nature,
implying that the remaining 23 percent consists of an elusive, non-baryonic
component called dark matter (DM) owing to the severe constraints that cur-
rent astronomical data sets on its radiative capabilities.

Despite this compelling evidence for the existence of DM, its precise nature
is still a topic of debate. Particle physicists have independently supported
DM by postulating the existence of a variety of exotic particles with wide-
ranging properties that may potentially solve problems in particle physics
whilst resulting in a thermal relic particle density that is consistent with cur-
rent observational constraints.

The most intensely studied DM candidate is the lightest neutralino (Bertone, Hooper and Silk,
2005), a weakly-interacting massive particle (WIMP) motivated by supersym-
metric extensions of the Standard Model of particle physics. In many of these
extensions the neutralino is the lightest supersymmetric particle (LSP). In the-
ories where the LSP is stable, for example theories where R-Parity is a con-
served quantum number (Weinberg, 1982; Hall and Suzuki, 1984; Allanach, Dedes and Dreiner,
1999), the neutralino is thus a highly-motivated DM candidate. Furthermore,
an attractive feature of neutralinos is that a large region of the relevant super-
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symmetric parameter space can be investigated using CERN’s Large Hadron
Collider (LHC)3.

Whilst neutralino DM is “cold”, owing to its negligible free-streaming length
(i.e. the length scale below which fluctuations in DM density are suppressed),
warm DM (WDM) is typically lighter and possesses a much longer free-
streaming length. WDM is a viable alternative to cold dark matter (CDM)
models which may potentially resolve several shortfalls of the standard CDM
model, such as for example the over-prediction of low mass satellites and the
existence of cuspy halos (Hogan and Dalcanton, 2000; Dalcanton and Hogan,
2001; Avila-Reese, Colin, Valenzuela, D’Onghia and Firmani, 2001; Colin, Valenzuela and Avila-Reese
2008). Among WDM candidates, there are sterile neutrinos (Dodelson and Widrow,
1994; Asaka, Blanchet and Shaposhnikov, 2005; Asaka and Shaposhnikov, 2005),
majorons (Akhmedov, Berezhiani and Senjanovic, 1992; Berezinsky and Valle,
1993; Lattanzi and Valle, 2007) and light DM (LDM) particles (Boehm and Fayet,
2004). What makes LDM interesting for this study is the fact that it can self-
annihilate, as opposed to other forms of WDM, and therefore its annihilation
rate can be enhanced by overdensities.

In Cumberbatch et al. (2010) we have reexamined the influence of neu-
tralino and LDM annihilations on the thermal history of the Universe at times
between the epochs of recombination and reionisation, commonly referred to
as the “Dark Ages”, when gas existed in a nearly uniform, dark, neutral state.
The investigation of the Dark Ages is one of the frontiers of modern cosmol-
ogy, and will be carried on by a new generation of radio interferometers such
as LOFAR4, MWA5, 21 CMA6, and SKA7, as well as single antenna experi-
ments such as EDGES8 and CORE.

These experiments will look for the redshifted 21 cm signal associated with
the hyperfine triplet-singlet transition of neutral hydrogen. If DM annihilates
or decays, the resulting products subsequently collide and heat the surround-
ing gas, increasing its kinetic temperature and ionisation fraction. This is in
turn manifested as distinct features in the 21 cm background signal that can
be used to constrain the properties of DM Furlanetto et al. (2006b); Shchekinov and Vasiliev
(2007); Valdes et al. (2007).

With few exceptions (e.g. Chuzhoy (2007); Yuan et al. (2010)), past studies
proclaim that the heating effects associated with the annihilation of SUSY
WIMP DM are too small to be detected by current radio interferometers.
However, these studies overlook the enhancements to the DM annihilation
rate in galactic halos and in their substructures (Taylor and Silk, 2003), which
could be large enough to make the DM signature detectable by the next gen-

3www.cern.ch/LHC
4http://www.lofar.org
5http://www.haystack.mit.edu/ast/arrays/mwa
6http://web.phys.cmu.edu/past/
7http://www.skatelescope.org
8http://www.haystack.mit.edu/ast/arrays/Edges/index.html
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eration radio telescopes. In this paper, we calculate the effect of neutralino
and LDM annihilations on the 21 cm signal when accounting for the effect of
DM clustering.

The rest of this section is organized as follows. In § F.3.2 we elaborate on the
basic properties of neutralinos and LDM. We also discuss the basic physics
describing the way in which energy from annihilations is injected into the
intergalactic medium (IGM). In § F.3.3 and § F.3.4 we calculate the enhance-
ment in the DM annihilation rate caused by the presence of halos and their
substructures. In § F.3.5 we estimate how much of the energy produced in
a single DM annihilation is actually injected into the IGM. In § F.3.6 we dis-
cuss the modifications to the differential equations describing the evolution
of the ionised fraction and kinetic temperature of the IGM and subsequently
use these equations to calculate the modified 21 cm background. In §F.3.7 we
calculate the predicted 21 cm background for our benchmark neutralino and
LDM models and discuss the potential for a detection. Finally, in § F.3.9 we
summarise our results and draw our conclusions.

F.3.2. Dark matter candidates

The lightest supersymmetric (SUSY) neutralino is a superposition of higgsi-
nos, winos and binos. Consequently, neutralinos are electrically neutral and
colourless, only interacting weakly and gravitationally, and hence very dif-
ficult to detect directly. In SUSY models that conserve R-parity, the LSP is
stable (Weinberg, 1982; Hall and Suzuki, 1984; Allanach et al., 1999). Conse-
quently, in a scenario where present-day CDM exists as a result of thermal
freeze-out, the dominant species of CDM could quite possibly include the
LSP. The relic density of the LSP will then heavily depend on its mass and
annihilation cross section. Throughout this paper we assume that the LSP
is the lightest SUSY neutralino. The neutralino is a popular candidate for
CDM because the theoretically-motivated values of these parameters yield a
corresponding value of the relic density that is in good agreement with obser-
vations (for a more detailed review of the various properties and motivations
for neutralino DM see, e.g., Bertone et al. (2005)).

Neutralinos possess a wide-range of annihilation spectra owing to the vast
extent of currently unexcluded SUSY parameter space. Owing to the Majo-
rana nature of the neutralino, its annihilation to fermionic channels is sup-
pressed by a factor proportional to the square of the mass of the final state.
This means that, if the neutralino is lighter than the W± and Z bosons, annihi-
lations will be dominated by the process χχ → bb̄ with a minor contribution
by χχ → τ+τ−. Assuming annihilations are dominated by the former pro-
cess, the resulting spectrum will depend entirely on the LSP mass. For heav-
ier LSPs, the annihilation products become more complex, often determined
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by several dominant annihilation modes, including χχ→W+W−, χχ→ ZZ
or χχ→ tt̄ as well as χχ→ bb̄ and χχ→ τ+τ−.

The other DM candidate we consider is LDM, consisting of MeV mass par-
ticles, which annihilate to electron-positron pairs 9 and consequently were
considered to be a possible source of the positrons contributing to the 511 keV
positronium decay signature from the bulge of the Galaxy observed by SPI/INTEGRAL
(Knodlseder et al., 2005). While the current view favours the interpretation
of the 511 keV feature as due to e+e− injection by a population of astrophys-
ical sources, there is nevertheless continued interest in reviving a dark mat-
ter interpretation because of the possible connection with other anomalous
spatially extended signals seen from the innermost Galaxy, specifically the
WMAP and the FERMI hazes Dobler et al. (2010). More exotic dark matter
models are required in this case, most specificaly some form of multicompo-
nent dark matter (see e.g. Refs. Boehm et al. (2004); Feldman et al. (2010)).

Relevant analyses of the 511 keV emission impose the constraint on the
LDM mass mDM < 20 MeV in order not to overproduce detectable gamma-
rays from inner bremsstrahlung processes (Beacom, Bell and Bertone, 2005)
(although see Boehm and Uwer (2006)). A stronger, albeit less conservative
constraint, mDM < 3 MeV can be obtained if one considers the generation
of gamma-rays from the in-flight annihilation between positrons produced
from LDM annihilation and electrons residing in the interstellar medium of
our Galaxy (Beacom and Yuksel, 2006).

Both in the case of neutralinos and LDM, the average rate of energy ab-
sorption per hydrogen atom in the IGM at a redshift z is given by

ǫ̇(z) =
1

2
fabs.(z)

n2
DM,0

nH,0
〈σann.υ〉mDM(1 + z)3 : C(z) (F.3.1)

where mDM is the mass of the DM particle, 〈σann.υ〉 is the thermally-averaged
DM annihilation cross section, nDM,0 and nH,0 are the current average number
densities of DM and hydrogen respectively, and fabs. is the fraction of energy
which is absorbed by the IGM. The “clumping factor” C(z) is the redshift-
dependent enhancement of the annihilation rate owing to the presence of
DM structures, relative to a completely homogeneous Universe10.

9MeV LDM particles can also potentially annihilate directly into neutrinos and photons.
However most theories suppress this emission in order to be consistent with observa-
tional constraints. Here we only consider scenarios where LDM annihilates entirely to
electron-positron pairs, so that our results can be considered as an upper limit to the
more general case.

10The factor of 1/2 in Eq.(F.3.1) assumes Dirac DM particles; for Majorana particles this
should be further multiplied by a factor of 2.
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F.3.3. Extragalactic dark matter Annihilation Rate

In the standard cosmological model, all structure in the Universe originated
from small amplitude quantum fluctuations during an epoch of inflationary
expansion shortly after the Big Bang. The linear growth of the resulting den-
sity fluctuations is then completely determined by their initial power spec-
trum, which for ΛCDM is usually assumed to be a power law with spec-
tral index n. Current limits on n from observations of temperature fluctua-
tions in the CMB conducted by the Wilkinson Microwave Anisotropy Probe,
nWMAP = 0.963± 0.012 (at 68% confidence level) (Dunkley et al., 2009; Komatsu et al.,
2010), support the existence of a power spectrum consistent with inflation.

During the expansion of the Universe, the aforementioned small initial
density fluctuations will eventually grow and produce the structures that we
observe today. In the currently accepted cosmological model, smaller struc-
tures form first and then merge to form larger ones in a process of “bottom-
up” hierarchical structure formation. The mass distribution at any given red-
shift can potentially be determined through the use of numerical simulations.

As a first approximation, the smaller progenitors forming larger isolated
structures are completely disrupted after merging and the resulting “smooth”
DM density distribution can be described by a continuous function, conven-
tionally of the form

ρ(r) =
ρs

(r/rs)γ [1 + (r/rs)α](β−γ)/α
, (F.3.2)

where r is the distance from the centre of the halo, rs is a scale radius, ρs is a
normalisation factor, and α, β and γ are free parameters.

However, N-body simulations of CDM halos reveal that a wealth of sub-
structure halos (henceforth referred to as subhalos) exist within such halos.
Moreover, utilising results from the Via Lactea II simulations, Diemand et al.
(2008) claimed that a further generation of sub-subhalos exist with a near self-
similar mass distribution relative to their parent subhalo. This suggests the
possibility that if one were to conduct simulations with sufficiently high res-
olution, one would find a long nested near self-similar series of halos within
halos within halos etc., all the way down to the smallest halos11. This has
significant implications for the indirect detection of annihilating DM since
the rate of DM annihilations is proportional to the square of the local den-
sity, and hence the presence of over-densities can significantly increase the
annihilation rate relative to that obtained with a smooth DM distribution.

The above scenario applies to structures formed in a CDM-dominated Uni-
verse. In a WDM-dominated Universe, the significant damping of small-scale

11However, there are results from the more recent Aquarius simulations Springel et al.
(2008a,b), conducted by the Virgo consortium, that are in contention with these results
(see §F.3.9).
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density fluctuations, due to the larger free-streaming length, should be taken
into account. Following Bardeen et al. (1986), this can be accounted for by
using the modified power spectrum P(k) = T2

WDM(k)PΛCDM(k), where the
WDM transfer function is approximated by

TWDM(k) = exp

[

−
kR f

2
−

(kR f )
2

2

]

, (F.3.3)

where R f is the free-streaming length.

For WDM particles with negligible interaction rates, the free-streaming
length is related to the particle mass mDM by (Bardeen et al., 1986).

R f ,n = 7.4× 10−6
( mDM

1 MeV

)−4/3
(

ΩDM

0.258

)1/3

×
(

h

0.719

)5/3

h−1 Mpc. (F.3.4)

However, as we will show below, the interaction rates for self-annihilating
LDM in the models considered here are non-negligible. In this case, the free-
streaming length is given by (Boehm and Schaeffer, 2004)

R f ,i = 0.3

(

Γdec.,DM

6× 10−24 s−1(1 + zdec.)3

)1/2

(F.3.5)

×
(

1 MeV

mDM

)1/2

Mpc, (F.3.6)

where Γdec.,DM is the WDM self-annihilation rate at the decoupling redshift
zdec. given by

Γdec.,DM =
1

2

ρc,0ΩDM,0

mDM
〈σann.υ〉dec.(1 + zdec.)

3, (F.3.7)

and 〈σannυ〉dec. is the thermally-averaged product of the WDM annihilation
cross section and relative speed of two annihilating WDM particles, evalu-
ated at the same time. In order to obtain the thermal relic density observed
today, one requires 〈σann.υ〉dec. ≃ 10−26 cm3 s−1.

For mDM = 3 MeV we obtain R f ,n = 2.4 pc and R f ,i = 98 pc, while for
mDM = 20 MeV, we obtain R f ,n = 0.19 pc and R f ,i = 15 pc. Hence, in both
cases the co-moving free-streaming length set by WDM interactions is at least
an order of magnitude larger than that when interactions are completely neg-
ligible, and consequently we must use the former in our determination of the
cut-off scale in the WDM power spectrum.

We follow the treatment by Avila-Reese et al. (2001) and define a charac-
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teristic free-streaming wavenumber k f such that TWDM(k f ) ≃ 0.5, leading to
k f ≃ 0.46/R f . This wavenumber is then related to a characteristic filtering
mass M f by

M f =
4π

3
ρ̄WDM

(

λ f

2

)3

, (F.3.8)

where λ f = 2π/k f = 13.6R f . In this paper we invoke the approximation
Mmin. ∼ M f , where here Mmin. is the minimum mass of a LDM halo, and
equal to approximately 46 M⊙ and 0.16 M⊙ for mDM = 3 MeV and 20 MeV
respectively. Since the mass within a given co-moving volume is constant as
the Universe expands, the result (F.3.8) is independent of redshift.

Below, we perform a series of detailed calculations illustrating the enhance-
ment of the annihilation rate relative to that obtained with a completely smooth
Universe, known as the clumping factor.

F.3.4. Calculation of the clumping factor

We assume a standard homogeneous, isotropic Universe with a flat spatial
geometry. Let R(M, z) be the average annihilation rate within a generic DM
halo of mass M located at redshift z. Even for large M, this source can be
regarded as an unresolved point-source and we assume this throughout, for
all halos considered. The rate of annihilations per unit volume at a given
redshift is then equal to

Γ(z) = (1 + z)3

Mmax.
∫

Mmin.

dM
dn

dM
(M, z)R(M, z), (F.3.9)

where we have introduced the unconditional halo mass function, dn/dM,
i.e. the co-moving number density of virialised halos with mass M located
at redshift z, (the factor (1 + z)3 converts this from co-moving to proper den-
sity). The integral spans over the mass range M > Mmin., where Mmin. can
be as small as ∼ 10−12M⊙, due to kinetic decoupling in the case of CDM
(Profumo et al., 2006), and approximated by the filtering mass (F.3.8) in the
case of WDM.

Three ingredients are required in order to calculate the annihilation rate
(F.3.9). Firstly, we need to specify the annihilation cross section of our DM
candidates (in our case neutralinos or LDM). Secondly, we need to specify
the DM density profile of a generic halo of mass M at redshift z. Finally, we
need an estimate of the distribution of halos, i.e. an estimate of the halo mass
function dn(M, z)/dM.
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The halo mass function

Press-Schechter theory (Press and Schechter, 1974) postulates that the cosmo-
logical mass function of DM halos can be expressed in the universal form

dn

dM
=

ρ̄0

M2
ν f (ν)

d log(ν)

d log(M)
, (F.3.10)

where ρ̄0 is the average co-moving DM density, ρ̄0 = ρcΩM, and ρc is the
present critical density of the Universe. The parameter ν = δsc/σ(M) is de-
fined as the ratio of the critical overdensity required for spherical collapse at
redshift z extrapolated using linear theory to present time, and σ(M) is the
r.m.s. of primordial density fluctuations when smoothed on a scale which
contains mass M, again extrapolated using linear theory to present time. The
form of δsc(z) can be found in Tegmark et al. (2005). σ(M) is related to the
power spectrum P(k) of the linear density field extrapolated to the present
time by

σ2(M) =
∫

d3kW2(kR)P(k), (F.3.11)

where W is the top-hat window function at the length scale R = (3M/4πρ̄)1/3

and ρ̄ is the mean matter density. We utilise the analytical approximation
specified in Tegmark et al. (2006a), relevant in the linear regime long after the
relevant fluctuation modes have entered the horizon, when all modes grow
at the same rate, which means that σ(M) can be factored as a product of two
functions, one solely dependent on redshift z and the other solely dependent
on the comoving spatial scale R. We normalise P and σ by computing σ at
R = 8h−1 Mpc and setting the result equal to the cosmological parameter σ8

as measured by WMAP, σ8 = 0.796± 0.036 (Dunkley et al., 2009).
The first-crossing distribution f (ν) has the following analytical fit (Sheth and Tormen,

2002) to the N-body simulation results from the Virgo consortium (Jenkins et al.,
1998)

ν f (ν) = A
[

1 + (aν)−p
]

( aν

2π

)1/2
exp

(

− aν

2

)

, (F.3.12)

where a ≃ 0.7, p = 0.3, and A is determined by the requirement that all mass
lies within a given halo, i.e.

∫

dν f (ν) = 1 or equivalently
∫

dMMdn/dM =
ρ̄0.

The density profile of dark matter halos

Since the rate of DM annihilation scales with density squared, it depends
sensitively on the density profile of each halo. We consider three universal
density profiles to model the smooth distribution of DM within each halo
(substructure will be dealt with later in this section). Firstly, we consider the
popular profile proposed by Navarro, Frenk and White (1996, 1997) (NFW),

481



F. Indirect Detection of Dark Matter

which corresponds to α = 1, β = 3 and γ = 1 in Eq.(F.3.2). Secondly, we
consider a profile with a significantly larger slope, specifically the one pro-
posed by Moore et al. (1999), corresponding to α = 1.5, β = 3 and γ = 1.5.
Both of these profiles have the same functional form and are both singular
towards the Galactic centre (in fact, the slope of the Moore profile must nec-
essarily be truncated for r < rmin., where rmin. ∼ 0 - see below, otherwise
the integral of density squared will diverge). However, there have been indi-
cations that cuspy profiles are inconsistent with observations, specifically re-
garding the rotation curves of small-scale galaxies (Flores and Primack, 1994;
Moore, 1994; Weldrake et al., 2003; Donato and Salucci, 2004; Gentile et al.,
2007), which are more likely to be consistent with density profiles possessing
flattened cores similar to that which may be achieved with WDM (Hogan and Dalcanton,
2000; Colin et al., 2008). Therefore, we lastly consider the Burkert density pro-
file (Burkert, 1996):

ρ(r) =
ρs

[1 + (r/rs)] [1 + (r/rs)2]
, (F.3.13)

which has been shown to be fairly consistent with the rotation curves of a
large number of spiral galaxies (Salucci and Burkert, 2000).

Concentration-mass relation for dark matter halos

Here we introduce the virial concentration parameter cvir., defined by cvir. =
rvir./rs, where rs is the scale radius defined above and rvir. is the virial radius
of the halo. The latter is defined as the radius encapsulating the virial mass
M of the halo within which the average density is equal to the overdensity
∆vir. times the average cosmological density ρ̄(z) at that redshift

M =
4π

3
∆vir.ρ̄(z)r

3
vir.. (F.3.14)

For ∆vir., we use the approximation provided in Tegmark et al. (2006a), namely
∆vir. ≃ 18π2 + 52.8x0.7 + 16x, where x(z) = ΩΛ(z)/ΩM(z), (∆vir. ≃ 311 at
z = 0 for ΩM = 0.3 and ΩΛ = 0.7). This is accurate to within 4% of the exact
numerical calculation at relevant times.

There has been evidence from simulations revealing a strong correlation
between the halo mass M and its corresponding concentration cvir., with larger
concentrations in smaller mass halos, which is consistent with the idea of
bottom-up hierarchical structure formation with smaller halos collapsing at
earlier times when the average density of the Universe was much greater
(Navarro et al., 1996, 1997). This relationship was later re-affirmed by Bullock et al.
(2001) (B2001 hereafter) using a sample of simulated halos in the mass range
1011 . M/h−1 M⊙ . 1014, who proposed a toy model to describe this be-
haviour, which is popular in the relevant literature: on average, a collapse
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redshift zc is assigned to each halo of mass M through the relation M∗ = FM,
where at a redshift z the typical collapsing mass M∗(z) is defined implicitly
by the relation σ(M∗(z)) = δsc(z) and is postulated to be a fixed fraction F of
M, which, following Wechsler et al. (2002), we set equal to 0.015. The density
of the Universe at redshift zc is then associated with a characteristic density of
the halo at redshift z. Therefore, here we use the average concentration-mass
relation obtained using the above method, which is given by

cvir.(M, z) = K
1 + zc

1 + z
=

cvir.(M, z = 0)

1 + z
(F.3.15)

where K ≃ 5, for ΩΛ = 0.742, ΩM = 0.258, h = 0.719 and σ8 = 0.796
(Dunkley et al., 2009).

Since this relation has been derived for halos with a minimum mass of ∼
1011M⊙, the extrapolation to very small values of the mass, down to the mass
associated with the DM free streaming length (that we take to be as small as
∼ 10−12M⊙), could be unreliable, since small mass halos become increasingly
concentrated. For this reason, following Ullio et al. (2002), we introduce a
cut-off mass Mcut such that cvir.(M, z) = cvir.(Mcut, z) for M < Mcut. In the
following, we will either take Mcut equal to the mass of the smallest DM halos
(i.e. no cut-off) or equal to 106M⊙, which is the typical (mass) resolution of
current numerical simulations of Galaxy-sized DM halos.

Clumping factor for smooth halos

We are now able to calculate the clumping factor C(z) attributed to extra-
galactic halos with smooth DM density profiles and concentrations. We start
by calculating the annihilation rate R(M, z) within a DM halo of mass M lo-
cated at redshift z given by

R(M, z) =
1

2

〈σann.υ〉
m2

DM

rvir.(M,z)
∫

r=0

ρ2(r)4πr2dr. (F.3.16)

The integral in (F.3.16) can be expressed in analytical form for the NFW and
Moore profiles; we present the relevant formulas in Appendix F.3.4. In the
case of the Moore profile, however, in order for the integral over density
squared to be finite, the density must be truncated below a radius rmin ..

To obtain a value for rmin. we assume that, within some minimum distance
from the center of the halo, most of the neutralino DM has self-annihilated,
leaving a flattened density core. The size of the core is roughly determined
by the condition that within it the time-scale for DM annihilation, tann. ∼
(nØ〈σann.υ〉)−1, should be smaller than the average time-scale tin. for the re-
plenishment of the core owing to the infall of DM from larger radii. Then
rmin. will be defined as the radius where tann. ≃ tin.. We do not try to estimate

483



F. Indirect Detection of Dark Matter

tin.; instead, since we must have tin. ≪ th, where th ∼ 1017 s is the Hubble
time, we have that within the core nØ〈σann.υ〉 ≫ th

−1, and since the density
decreases monotonically with increasing radius we can obtain a conservative

upper limit for rmin. from the condition nØ〈σann.υ〉 ≃ t−1
h . Then, we adopt

the conservative criterion (ρØrmin./mχ)〈σann.υ〉 ∼ t−1
h , with canonical values

of the neutralino mass and annihilation cross section of mχ ∼ 100 GeV and
〈σann.υ〉 ∼ 10−26 cm3 s−1. This sets an upper limit for xmin. which is ∼ 10−8

for the Galactic halo at present day, which is consistent with similar approxi-
mations by other authors (see, e.g., Taylor and Silk (2003)).

Then, it follows from Eq.(F.3.9) that the contribution to the DM annihilation
rate per unit volume, Γhalos(z), by halos located at redshift z is

Γhalos(z) =
1

2

〈σann.υ〉
m2

DM

(1 + z)3

×
Mmax.
∫

M=Mmin.

dM
dn

dM
(M, z)

rvir.(M,z)
∫

r=0

ρ2(r)4πr2dr.

(F.3.17)

The corresponding rate of DM annihilation per unit volume contributed by
the smooth background density at redshift z is given by

Γsmooth(z) =
1

2

〈σann.υ〉
m2

DM

ρ̄2
DM(z), (F.3.18)

where ρDM(z) = ρc,0ΩDM,0(1 + z)3. Therefore, we define the clumping factor
for smooth halos, Chalo(z), as

Chalo(z) ≡ 1 +
Γhalo(z)

Γsmooth(z)
=

= 1 +
(1 + z)3

ρ̄2
DM(z)

×
Mmax.
∫

M=Mmin.

dM
dn

dM
(M, z)

rvir.(M,z)
∫

r=0

ρ2(r)4πr2dr,

(F.3.19)

so that Chalo(z) → 1 for a completely smooth universe.

In Fig. F.13 we display plots of Chalo(z) as a function of z for halos with
NFW profiles (top panel), Moore profiles (central panel) and Burkert profiles
(bottom panel). Halos with cuspy density profiles, such as the NFW and
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Figure F.13.: Clumping factor as a function of redshift for DM halos with
mass M > Mmin. with smooth NFW (upper panel), Moore (central panel)
and Burkert (bottom panel) DM density profiles with a cvir. − M relation,
truncated at a halo mass Mcut. The displayed curves correspond to values of
(Mmin./M⊙, Mcut/M⊙) of (10−12, 10−12) (thin black solid), (10−12, 106) (thin
blue dashed), (10−4, 10−4) (thin red dot-dashed), (10−4, 106) (thick green
dashed) and (106, 106) (thick magenta dot-dashed) for the NFW and Moore
profiles, and equal to (0.16, 0.16) (thin black solid), (0.16, 106) (thin blue
dashed), (46, 46) (thin red dot-dashed), (46, 106) (thick green dashed) and
(106, 106) (thick magenta dot-dashed) for the Burkert profile.

Moore profiles, are typical of CDM halos for which the minimum mass cut-off
scale in the matter power spectrum is determined by collisional damping and
free streaming in the early Universe. For WIMP DM the value of Mmin./M⊙
can range from 10−12 to 10−4 for typical kinetic decoupling temperatures.
Hence in the upper panels of Fig. F.13 we illustrate the effect on the clumping
factor for values of Mmin./M⊙ of 10−12, 10−4 and 106, where, as mentioned
above, the latter value is the typical minimum mass of resolved subhalos in
numerical simulations of Galactic halos. We also demonstrate the influence
of truncating the Bullock et al. concentration-mass relation (referred to as
the “B2001 relation” hereafter) below a mass of 106M⊙, as well as using the
relation when extrapolated to Mmin..

In the bottom panel of Fig. F.13 we show the clumping factor for halos with
flattened cores like the ones possibly formed by WDM. In particular, we plot
Chalo for minimum halo masses Mmin. ≃ 46 M⊙ and 0.16M⊙, corresponding
to the values of the damping mass (F.3.8), obtained using mWDM = 3 MeV
and mWDM = 20 MeV respectively. The selected values of mWDM correspond
to the respective upper limits on the LDM particle mass from constraints on
inner bremsstrahlung gamma ray flux from the galactic centre (Beacom et al.,
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2005) (although see Boehm and Uwer (2006)), and from in-flight annihilation
(Beacom and Yuksel, 2006) between positrons from LDM annihilation and
electrons in the interstellar medium.

An analysis of Fig. F.13 reveals some interesting trends. Firstly, Moore pro-
files tend to yield larger clumping factors than NFW profiles, which in turn
yield larger clumping factors than Burkert profiles. This is clearly related
to the relative cuspiness of the three profiles and the fact that DM annihila-
tions are enhanced in higher-density regions. In general, we have that Chalo

at z = 10 is between 104 and 106 for Moore profiles, 103 and 105 for NFW
profiles, and 102 and 104 for Burkert profiles. Secondly, we observe that the
smaller the value of Mmin. the sooner the clumping factor starts to deviate
from unity and the larger the clumping factor is at present day. This is due to
the contribution in the integral in Eq.(F.3.17) of the smaller halos, that form
earlier, and are thus denser, than larger halos. It is however worth stressing
that the mass function and the concentration parameters have not been well
measured for these extremely small, high-z halos. Finally, when the Bullock
et al. relation is truncated at a value Mcut = 106 M⊙ > Mmin., the clumping
factor is smaller. In particular, this roughly amounts to an order of magnitude
difference at z = 10 for the NFW and Moore profiles with Mmin. = 10−12M⊙,
and, as can be expected, the difference is smaller for larger values of Mmin.

and in the case of Burkert profiles.

Clumping factor for halos possessing sub-halos and sub-sub halos

Thus far we have considered the amplification of the DM annihilation rate for
isolated halos with smooth density profiles. However, as already mentioned,
N-body simulations indicate that a significant proportion of the smaller pro-
genitors giving rise to larger mass halos survive the merging processes and
the tidal forces exerted upon them during their orbital motion within halos.
In particular, the Via Lactea II ΛCDM simulations of Galactic halos presented
in Diemand et al. (2008) and in Kuhlen, Diemand and Madau (2008) (KDM
hereafter), revealed a second generation of surviving substructures within
halos (designated as “sub-subhalos”). Further, these simulations suggest that
the mass distribution of sub-subhalos within their host subhalo is approxi-
mately the same as the mass distribution of subhalos within their host halo12.

Since the DM annihilation rate scales with density squared, these subhalos
and sub-subhalos could provide significant enhancement to the annihilation
rate, even for modest substructure mass fractions, within halos/subhalos.
For halos of mass M these have been suggested to be as much as 10% for
subhalo masses Ms in the range 10−5 < Ms/M < 10−2 (Diemand et al., 2008)
(which approximately corresponds to a constant mass fraction per subhalo

12Once again, we remind the reader that there are results from the more recent Aquarius
simulations Springel et al. (2008a,b) that are in contention with these results (see § F.3.9).
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mass decade of 3%, owing to the fact that the subhalo mass function has
a slope of approximately 2 - see below). However, owing to the fact that
substructures invariably form earlier than their host halos, and that tidal
disruption is unlikely to effect the inner density profiles of structures (i.e.
where the majority of the enhancement originates), the concentration of sub-
structures may be significantly greater than that of their host halos. The
simulation results recently presented in KDM are consistent with the ratio
Nc = chalo

vir. /csubhalo
vir. ≃ 3 for subhalos located at solar radii within galactic ha-

los13, whilst the numerical simulations of Bullock et al. show that, on average,
Nc ≃ 1.5 for halos of mass M ∼ 5× 1011M⊙ (B2001).

Here we calculate the contribution to the clumping factor by halos possess-
ing substructures with a self-similar mass distribution. Consider a DM halo
of mass M with a subhalo mass distribution function given by

dN(M)

dMs
∝ M

−β
s , (F.3.20)

where the index β is assumed to be time-independent and approximately
equal to 2, i.e. equal mass per decade in subhalos (KDM). Whilst we adopt a
minimum subhalo mass equal to the minimum halo mass, Mmin., for which
we utilise several values as discussed above, we utilise an upper limit on Ms

of 10−2M, where M is the mass of the host halo, a choice motivated by recent
numerical simulations (see, e.g., Diemand et al. (2008)).

There are indications that β may slightly deviate from this value, particu-
larly for WDM substructures, for which Knebe et al. (2008) claim that β may
be as small as 1.6. However, as shown in Fig. F.14, the effect on the clumping
factor by varying β slightly from 2 is small at the times of interest. We there-
fore adopt the value β = 2 for both CDM and WDM. Consequently, each
subhalo mass decade contributes a constant fraction Fsub. of the halo mass.

Adopting a course of reasoning analogous to that used to derive Eq. (F.3.16),
the rate of DM annihilations within a similar halo, solely due to the subhalos

13Although Nc demonstrates a slight galactocentric radial dependence, the authors of KDM
claim that the effect on the overall annihilation rate is negligible.
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Figure F.14.: Total clumping factor from halos and subhalos Ctotal.(z) = 1 +
Chalos(z) + Csubhalos(z), for different values of the substructure mass function
index β. We show the values of Ctotal for structures with NFW (purple) and
Moore (blue) density profiles for β = 2 and 1.8 (solid and dashed curves
respectively) and β = 2 and 1.6 for the Burkert profile (black solid and dashed
curves respectively). We take Mcut = Mmin. = 10−12 M⊙ for NFW and Moore
profiles and 0.16 M⊙ for Burkert profiles. In all cases Fsub. = 3%, Nc = 3.

within it, possessing smooth density profiles ρ(r), is then given by

Rsub.(M, z) =
〈σann.υ〉
2m2

DM

10−2M
∫

Ms=Mmin.

dMs
dN(M, Fsub.)

dMs

×
rvir.(z,Ms)
∫

r=0

ρ2(r, csub.
vir. [Ms, z])4πr2dr

=
〈σann.υ〉
2m2

DM

A(M, Fsub.)

10−2M
∫

Ms=Mmin.

dMsM
−β
s

×
rvir.(z,Ms)
∫

r=0

ρ2(r, csub.
vir. [Ms, z])4πr2dr,

(F.3.21)

where A is the appropriate normalisation of dN/dMs. The subhalo scale
density can be obtained from the expressions (F.3.29) or (F.3.32) for NFW and
Moore profiles respectively, with the substitutions cvir. → csub.

vir. and M → Ms.
Then integrating this contribution over all halos at redshift z we obtain the
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annihilation rate for all subhalos residing within such halos

Γsubhalos(z) = (1 + z)3

×
Mmax.
∫

M=Mmin.

dM
dn(M, z)

dM
Rsub.(M, z, Fsub.)

=
〈σann.υ〉
2m2

DM

(1 + z)3

×
Mmax.
∫

M=Mmin.

dM
dn(M, z)

dM
A(M, Fsub.)

×
10−2 M
∫

Ms=Mmin.

dMsM
−β
s

×
rvir(z,Ms)
∫

r=0

ρ2(r, csub
vir [Ms, z])4πr2dr,

(F.3.22)

and we obtain the associated subhalo clumping factor

Csubhalos = 1 +
Γsubhalos(z)

Γsmooth(z)

= 1 +
(1 + z)3

ρ̄2
DM(z)

Mmax.
∫

M=Mmin.

dM
dn(M, z)

dM
A(M, Fsub.)

×
10−2M
∫

Ms=Mmin.

dMsM
−β
s

×
rvir.(z,Ms)
∫

r=0

ρ2(r, csub.
vir. [Ms, z])4πr2dr.

(F.3.23)

However as mentioned above, each subhalo is likely to itself host substruc-
tures with mass function approximately equal to

dN

dMss
= A(Ms, Fss, β)M

−βss
s . (F.3.24)

Owing to the near self-similar nature of the mass distribution of substructures
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within halos, we take the values of the index βss and the sub-subhalo mass
fraction per mass decade Fss to be equal to β and Fsub. respectively. Hence,
following the above treatment for halos and their constituent subhalos, the
clumping factor for all sub-subhalos with virial concentration css

vir.residing
within subhalos, themselves residing within halos located at redshift z, is
given by

Csub−subhalos = 1 +
(1 + z)3

ρ̄2
DM(z)

Mmax.
∫

M=Mmin.

dM
dn(M, z)

dM

× A(Ms, Fs)

10−2 M
∫

Ms=Mmin.

dMsM
−β
s

× A(Mss, Fss)

10−2 Ms
∫

Mss=Mmin.

dMssM
−βss
ss

×
rvir.(z,Ms)
∫

r=0

ρ2(r, css
vir.[Mss, z])4πr2dr.

(F.3.25)

where, analogous for subhalos, for a given host subhalo of mass Ms and min-
imum permitted mass Mmin., we allow for sub-subhalo masses in the range
Mmin. ≤ Mss ≤ 10−2Ms.

Finally, using Eqs. (F.3.23) and (F.3.25), we obtain the total clumping factor
for all structures at redshift z

Ctotal = 1 + (Chalo(z)− 1)

+ (Csubhalos(z)− 1)

+ (Csub−subhalos(z)− 1), (F.3.26)

where it should be understood that the normalisation of expressions Chalo

and Csubhalos is modified to take into account the fact that a specified percent-
age of the mass of each halo and subhalo is provided by smaller substruc-
tures.

In Fig. F.15 we show the total clumping factor as a function of z for halos
with NFW profiles (left panel), Moore profiles (central panel) and Burkert
profiles (right panel). We find the same trends as in the case of smooth halos.
However, the presence of substructures boosts the clumping factor, more ef-
fectively so for cuspier (i.e. Moore and NFW) profiles and for smaller values
of (Mmin., Mcut). In particular, we find that Chalo at z = 10 is in the range be-
tween 104 and 108 for Moore profiles, between 103 and 106 for NFW profiles,
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Figure F.15.: Plots of Ctotal(z) for structures with NFW (top panel), Moore
(central panel) and Burkert (bottom panel) density profiles with subhalo and
sub-subhalo mass fractions per decade Fsub. and Fss of 0.03, and a relative
concentration ratio Nc of 3.0. The different curves correspond to different
values of (Mmin./M⊙, Mcut/M⊙), as in Fig. F.13.

and between 102 and ∼ 104 for Burkert profiles.

From the recursive structure of Eq.(F.3.25), one can easily observe how to
extend the present scenario to include higher generations of substructures,
but since there is no evidence for such structures we omit them in this study.
Moreover, we have found that the relative contribution of halos, subhalos and
sub-subhalos to Ctotal(z) is increasingly smaller at the redshifts of interest for
realistic values of the concentration ratio Nc and substructure fraction Fsub

such that further generations of substructures, if they exist, are unlikely to
increase Ctotal(z) by more than a few percent.

Analytical expressions for the halo annihilation rate

In this appendix we report the analytical formulas for the annihilation rate
within halos with NFW and Moore DM density profiles. For the Burkert
profile, it is not possible to express the relevant integrals in analytical form.

Applying Eq. (F.3.16) to the case of a halo of mass M with an NFW profile
with concentration cvir.(M, z), the annihlation rate R(M, z) is easily calculated
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to be

R(M, z) =
1

2
〈σann.υ〉

(

ρs

mDM

)2 4π

3

(

rvi.r(z, M)

cvir.(z, M)

)3

×
{

1− 1

[1 + cvir.(M, z)]3

}

.

(F.3.27)

By equating (F.3.14), for the virial mass, M, to the integral

M =

rvir.
∫

r=0

ρ(r, cvir.(M, z))4πr2dr

= 4π

(

rvir.

cvir.(M, z)

)3

ρs(M, z)

×
[

log [1 + cvir.(z, M)]−
(

cvir.(z, M)

[1 + cvir.(z, M)]

)]

,

(F.3.28)

we obtain the relation for the scale density

ρs(M, z) =
M

4π
(

rvir.
cvir.(M,z)

)3

× 1
[

log [1 + cvir.(z, M)] −
(

cvir.(z,M)
[1+cvir(z,M)]

)] .

(F.3.29)

For the Moore profile, in order for the integral over density squared to be
finite we must truncate the density below a radius rmin . (see discussion in
§ F.3.4). Defining the variable x = rcvir./rvir. with xmin. = rmin.cvir./rvir. we
find that for a Moore profile

R(M, z) =
1

2

〈σann.υ〉
n̄b(z)

(

ρs

mDM

)2 4π

3

(

rvir.(z, M)

cvir.(z, M)

)3

× F1(cvir., xmin.),

(F.3.30)
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where

F1(cvir., xmin.) =
1

3

1

(1 + xmin.)2

+
1

1.5

[

log

(

c1.5
vir.(1 + x1.5

min.)

x1.5
min.(1 + c1.5

vir.)

)]

+
1

1.5

[

1

1 + c1.5
vir.

− 1

1 + x1.5
min.

]

,

(F.3.31)

and

ρs(M, z) =
M

4π
(

rvir.
cvir.(M,z)

)3

×
[

1

1.5
log

(

1 + c1.5
vir.

1 + x1.5
min.

)

+
1

3

x1.5
min.

(1 + x1.5
min.)

]−1

≡ M

4π
(

rvir.
cvir.(M,z)

)3
F2(cvir., xmin.)

(F.3.32)

respectively.

Clumping factor parameters

In this section we conveniently list the relevant parameters associated with
each of the clumping factors utilised throughout this study, for clumping fac-
tors calculated using structures possessing NFW (Table F.6) and Moore (Ta-
ble F.7) DM density profiles for our four neutralino DM models, and for Burk-
ert profiles using our two LDM candidates (Table F.8).

F.3.5. Energy absorbed fraction

A key quantity entering our computations is the fraction fabs. of energy pro-
duced in each DM annihilation that is effectively absorbed by the IGM. In
fact, taking fabs. = 1 would be quite a poor approximation as sometimes just a
very small fraction of the total energy actually goes into the heating/ionisation
of the IGM. We describe in detail the method used to compute fabs. in Ap-
pendix F.3.5; here we describe the annihilation spectra used for the different
particle physics models that we adopt, provide some qualitative arguments
to gain a physical insight on the mechanisms that lead to the absorption of
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nmin. ncut Fsub., Fss (%) Nc Model 1 Model 2 Model 3 Model 4

N014 – – – – −0.022 −0.007 −0.007 −0.001
N1 −12 −12 3 3 – – – –
N2 −12 −12 3 1.5 – 2.35 3.72 −1.12
N3 −12 −12 0.3 3 – 1.89 3.16 −1.07
N4 −12 −12 0.3 1.5 18.0 1.28 2.41 −0.987
N5 −12 6 3 3 – – −0.905 −0.671
N6 −12 6 3 1.5 3.95 −1.26 −1.23 −0.366
N7 −12 6 0.3 3 4.25 −1.28 −1.23 −0.379
N8 −12 6 0.3 1.5 3.87 −1.25 −1.22 −0.360
N9 −4 −4 3 3 – – – −0.587
N10 −4 −4 3 1.5 4.15 −1.59 −1.59 −0.417
N11 −4 −4 0.3 3 3.83 −1.57 −1.58 −0.401
N12 −4 −4 0.3 1.5 3.59 −1.55 −1.56 −0.387
N13 −4 6 3 3 – −1.10 −1.22 −0.199
N14 −4 6 3 1.5 −0.993 −0.925 −1.04 −0.162
N15 −4 6 0.3 3 −1.02 −0.927 −1.04 −0.162
N16 −4 6 0.3 1.5 −1.04 −0.912 −1.03 −0.159
N17 6 6 3 3 −0.034 −0.009 −0.009 −0.002
N18 6 6 3 1.5 −0.034 −0.009 −0.009 −0.002
N19 6 6 0.3 3 −0.033 −0.009 −0.009 −0.002
N20 6 6 0.3 1.5 −0.033 −0.009 −0.009 −0.002

Table F.6.: Parameters used for the calculation of the clumping factors for
structures with NFW DM density profiles.
Column (1) - clumping factor label;
Column (2) - nmin. = log(Mmin./M⊙), where Mmin. is the minimum halo
mass considered [see Eq. (F.3.9)];
Column (3) - ncut = log(Mcut/M⊙), where Mcut is the mass below which the
concentration-mass relation for halos is truncated;
Column (4) - percentage of the host halo (subhalo) mass contributed by each
subhalo (sub-subhalo) mass decade
Column (5) - ratio of concentrations for a subhalo and halo of the same mass
located at the same redshift;
Column (6 - 9) - value of the difference in the differential brightness temper-
ature relative to the standard “no DM” scenario, δTb − δTb,0 (mK), evaluated
at redshift z = 30 in the four SUSY models described in the text. A dash –
indicates that the model does not satisfy the constraints on the reionization
redshift and/or on the diffuse gamma background (see Sec. F.3.7 for details).
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nmin. ncut Fsub., Fss (%) Nc Model 1 Model 2 Model 3 Model 4

M015 – – – – −0.022 −0.007 −0.007 −0.001
M1 −12 −12 3 3 – – – –
M2 −12 −12 3 1.5 – – – –
M3 −12 −12 0.3 3 – – – –
M4 −12 −12 0.3 1.5 – – – 6.69
M5 −12 6 3 3 – – – –
M6 −12 6 3 1.5 – – – −0.912
M7 −12 6 0.3 3 – – 11.3 −0.860
M8 −12 6 0.3 1.5 – 8.61 10.6 −0.910
M9 −4 −4 3 3 – – – –
M10 −4 −4 3 1.5 – – – –
M11 −4 −4 0.3 3 – – – −1.20
M12 −4 −4 0.3 1.5 – – – −1.23
M13 −4 6 3 3 – – 3.62 –
M14 −4 6 3 1.5 – – 2.09 −1.21
M15 −4 6 0.3 3 – – 2.19 −1.22
M16 −4 6 0.3 1.5 – 0.893 2.06 −1.20
M17 6 6 3 3 – −0.025 −0.029 −0.004
M18 6 6 3 1.5 −0.147 −0.025 −0.029 −0.004
M19 6 6 0.3 3 −0.147 −0.025 −0.029 −0.004
M20 6 6 0.3 1.5 −0.147 −0.025 −0.029 −0.004

Table F.7.: Same as for Table F.6 but for clumping factors associated with
structures possessing Moore density profiles.
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nmin ncut Fsub,ss(%) Nc 20 MeV 20 MeV 3 MeV 3 MeV
〈συ〉28

16 = 4.4 〈συ〉28 = 0.44 〈συ〉28 = 1.2 〈συ〉28 = 0.12

B017 – – – – −0.022 −0.007 −0.007 −0.001
B1 −0.80 −0.80 3 3 – – – –
B2 −0.80 −0.80 3 1.5 – – – –
B3 −0.80 −0.80 0.3 3 – 20.2 – –
B4 −0.80 −0.80 0.3 1.5 – 20.0 – –
B5 −0.80 6 3 3 – – – –
B6 −0.80 6 3 1.5 – 13.1 – –
B7 −0.80 6 0.3 3 – 12.8 – –
B8 −0.80 6 0.3 1.5 – 12.8 – –
B9 1.66 1.66 3 3 – – – –
B10 1.66 1.66 3 1.5 – – – –
B11 1.66 1.66 0.3 3 – – – −1.81
B12 1.66 1.66 0.3 1.5 – – – −1.81
B13 1.66 6 3 3 – – – –
B14 1.66 6 3 1.5 – – – −2.32
B15 1.66 6 0.3 3 – – – −2.37
B16 1.66 6 0.3 1.5 – – – −2.37
B17 6 6 3 3 – −0.552 – −0.230
B18 6 6 3 1.5 – −0.552 – −0.230
B19 6 6 0.3 3 0.284 −0.542 −1.01 −0.225
B20 6 6 0.3 1.5 0.284 −0.542 −1.01 −0.225

Table F.8.: Same as for Table F.6 but for clumping factors associated with
structures possessing Burkert density profiles, using LDM of mass 20 MeV
[columns (6) and (7)] and 3 MeV [columns (8) and (9)]).
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particles, and finally, show the results obtained when the full method is in-
voked.

Dark matter annihilation spectra

Neutralino DM can annihilate directly into either a fermion pair or weak
gauge bosons. Since the cross section for annihilation to fermion pairs is pro-
portional to the square of the final state fermion mass, this process will be
dominated by heavy final states, namely bb̄, τ−τ+ and tt̄ (if kinematically al-
lowed), while direct annihilation into electron-positron pairs will be strongly
suppressed. Hence we need only consider the following annihilation modes:
χχ → W+W−, χχ → ZZ, χχ → bb̄, χχ → τ+τ− and χχ → tt̄. Both the
gauge bosons and the fermion pairs produced in neutralino annihilations will
initiate a cascade that will eventually lead to a continuum of photons, neu-
trinos, electron/positrons pairs and protons in the final states, extending to
energies much smaller than the rest mass of the DM particle. Here we utilise
PYTHIA18 (Sjostrand et al., 2001) to calculate these spectra.

The actual spectrum produced by the annihilations will depend on the
branching ratios of the various channels; this in turn will be determined by
the gaugino and higgsino fractions of the neutralino. In the following, we
will consider four representative supersymmetric scenarios, in a similar way
to what was done by Hooper et al. (2004). First, we consider a 50 GeV neu-
tralino with an annihilation branching ratio of 0.96 to bb̄ and of 0.04 to τ+τ−

(designated as model 1). Such a particle could be gaugino-like or higgsino-
like, since for masses below the gauge boson masses, these modes dominate
for either case. Second, we consider two cases for a 150 GeV neutralino: One
(designated as model 2) which annihilates as described in model 1, and an-
other (designated as model 3) which annihillates entirely to gauge bosons
(W+W− or ZZ). Such neutralinos are typically gaugino-like and higgsino-
like respectively. Finally, we consider heavy, 600 GeV neutralinos, which an-
nihilate to bb̄ with a ratio of 0.87 and to τ+τ− or t+t− the remaining time
(designated as model 4). Although these models do not fully encompass
the extensive parameter space available to neutralinos at present, they do
describe effective MSSM benchmarks. Furthermore, the relevant results for
neutralinos with a mixture of the properties of those above can be inferred by
interpolating between those presented.

In Fig. F.16 we show the spectrum of photons and electrons produced in a
single annihilation for our four neutralino models. As we shall describe in
more detail in Appendix F.3.5, in the numerical computation of fabs. we will
be make the approximation that the annihilation spectra are monochromatic
and peaked at the average energy. In Table F.9 we show the average photon
and electron energy for the four models described above, together with the

18http://home.thep.lu.se/ torbjorn/Pythia.html
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Figure F.16.: Photon (left) and electron (right) energy spectra E dN/dE result-
ing from a single neutralino annihilation, for our four benchmark models.

Model N̄γ Ēγ N̄e± Ēe±

SUSY-1 21.6 1.3 GeV 9.2 1.1 GeV
SUSY-2 24.7 3.5 GeV 10.6 2.8 GeV
SUSY-3 31.5 2.1 GeV 14.6 2.6 GeV
SUSY-4 25.8 12 GeV 11.3 9.8 GeV
LDM 3 MeV - - 1 3 MeV
LDM 20 MeV - - 1 20 MeV

Table F.9.: Average number and energy of the photons and electrons
(positrons) produced in a single DM annihilation, for the different models
considered.

average number of particles produced in each annihilation.

In addition to neutralinos, we also consider light (MeV) DM candidates,
which annihilate directly into electron-positron pairs. This will result in a
monochromatic spectrum with Ee± = mDMc2. We consider two different
LDM candidates with masses mDM = 3 and 20 MeV respectively. For com-
pleteness, we present the “average” energy and number of electrons (which is
equal to the number of positrons) produced in each annihilation in Table F.9.

Interaction of the annihilation products with the IGM

In this section we discuss the different processes by which the annihilation
products of our DM candidates inject energy into the IGM. We will be only
concerned with the interaction of photons and electron-positron pairs with
the IGM. Protons are very penetrating and thus do not transfer energy to the
IGM; neutrino interactions are so weak that they are also unable to transfer
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energy to the IGM, so that the annihilation energy that ends up into protons
and neutrinos is effectively lost for the purpose of heating/ionising the IGM.

We will compute the transparency and opacity windows for photons and
e+e− pairs in order to gain a qualitative insight to the regions in the (E, z)
plane where energy injection is expected to be efficient or not. However, for
the actual calculations of the absorbed energy fraction, the energy transfer
between the annihilation products and the IGM is treated in more detail as
explained in Appendix F.3.5.

Photons As far as photons are concerned, we are mostly interested in the
absorption of γ-ray photons. The absorption processes of x-ray and γ-ray
photons at cosmological distances were discussed by Zdziarski (1984). In
principle, the possible energy loss mechanisms for photons are: photoioni-
sation of atoms; Compton scattering on electrons; pair production on atoms;
pair production of free electrons or nuclei; scattering on CMB photons; pair
production on CMB photons. The total rate for fractional energy loss, φγ(z, E),
i.e., the fraction of the photon energy that is lost in a unit time, is given by a
sum over the contributions of the individual processes:

φγ(z, E) = − 1

E

dE

dt
= ∑

i

φγ,i (F.3.33)

where the index i runs over the different processes listed above. However, for
z . 1500, and in the range of energies we are interested (namely E . 10 GeV),
the relevant processes are photoionization, Compton scattering and pair pro-
duction on atoms or free electrons and nuclei. The effectiveness of these pro-
cesses depends upon, other than on the photon energy, the density of the
Universe at the redshift of interest. Roughly speaking, we can say that pho-
toionization is effective for energies below ∼ 10 keV, while pair production is
the dominant absorption mechanism at z & 1000 for 100 MeV . E . 10 GeV.
Compton scattering is effective only for z & 100, in a range of photon energies
roughly centered around ∼ 1 MeV; at z = 500, the region where absorption
is dominated by Compton scattering extends roughly from 10 keV to 30 MeV.
The other processes, namely scattering on CMB photons and photon-photon
pair production, can be safely neglected for our purposes since they are only
relevant either at large redshifts or for very large (E & 100 GeV) energies.

The rate for fractional energy loss by photoionisation φγ,ion. is given by

φγ,ion.(z, E) =
σHe+H(E)

16
nb(z)c, (F.3.34)

where nb(z) is the number density of baryons at redshift z, and σHe+H is the
absorption cross section per helium atom (hence the factor of 16 in Eq.(F.3.34),
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since nHe = nb/16), given by

σHe+H(E) = 5.1× 10−20

(

E

250 eV

)−p

cm2, (F.3.35)

where p = 3.3 for E > 250 eV, p = 2.65 for 25 eV ≤ E ≤ 250 eV.

The fractional energy loss rate by Compton scattering is

φγ,Com.(z, E) = σT ǫ g(ǫ)ne(z)c, (F.3.36)

where σT is the Thomson cross section, ǫ = E/mec2 is the photon energy in
units of the electron mass, ne ≃ 0.88 nb is the total electron density at redshift
z (including both free and bound electrons), and g(ǫ) is

g(ǫ) =
3

8

[

(ǫ− 3)(ǫ + 1)

ǫ4
ln(1 + 2ǫ)

+
2
(

3 + 17ǫ + 31ǫ2 + 17ǫ3 − 10ǫ4/3
)

ǫ3(1 + 2ǫ)3

]

. (F.3.37)

The corresponding term for pair production over atoms is given by

φγ,pair(z, E) = 0.63× ασTne(z)c ln

(

513ǫ

ǫ + 825

)

, (F.3.38)

while the one for pair production over ionized matter is

φγ,pair(z, E) = 0.8× ασTne(z)c

(

ln 2ǫ− 109

42

)

, (F.3.39)

where α is the fine structure constant.

A simple rule of thumb to assess the efficiency of the above energy loss
mechanisms is to compare the rate φγ with the expansion rate, as given by the
value of the Hubble constant H(z). When φγ ≫ H(z), the photon loses all
of its energy on a time scale small compared to the cosmological time, so that
the energy loss mechanisms are very effective and the universe is opaque to
its propagation. It can then be assumed that all the photon energy is instantly
lost, and, in the case of photoionisation and Compton scattering, instantly
deposited into the IGM (in the case of pair production, one should take into
account the subsequent interaction of the pair with the IGM - see Appendix
F.3.5 for details). In the opposite regime, φγ ≪ H(z), the photon loses a
significant fraction of its energy on a time scale larger than the cosmological
time, and the Universe is effectively transparent to the photon propagation.

Following Chen and Kamionkowski (2004), in Fig. F.17 we show the pho-
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Figure F.17.: Photon transparency window. In the black region, the photon
loses all of its energy through interaction with particles in the IGM and CMB
photons. In the white region, the photon can propagate freely. The dashed
lines represent photon trajectories.

ton transparency window in the (E, z) plane. For illustrative purposes, we
consider redshifts as large as z = 1000 and energies up to 10 TeV in the figure,
so that, in addition to the three processes for which we have listed explicitly
the energy loss rates, we have also included the scattering and pair produc-
tion over CMB photons in the total rate φγ. In the filled region, φγ > H(z),
corresponding to the optically thick regime. In the white region, φγ < H(z),
corresponding to the optically thin regime.

Although the transparency window can be useful as a preliminary tool, in
order, for example, to assess which processes are important at a given redshift
and energy range, it has some limitations nevertheless. First of all, it does not
allow us to treat properly the regime φγ ≃ H(z), i.e. the regime where the
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energy loss happens on cosmological time scales. In this case, the approxi-
mation of an instantaneous energy deposition is not appropriate, since part
of the energy can be deposited at a redshift lower than the redshift of emis-
sion. Secondly, even if in the regime φγ ≫ H(z) one can safely conclude
that all the energy of the annihilation products is instantaneously lost, this
does not mean that it is instantaneously transferred (or even transferred at
all) into the IGM: in some cases the interactions of the annihilation products
generate secondary particles, like the e+e− generated by the pair production
of photons on atoms or nuclei, whose propagation has to be followed as well.
For these reasons we follow (with some small modifications) the approach
of (Ripamonti et al., 2007) to calculate fabs.; the detailed calculations and the
results for fabs. are described in Appendix F.3.5.

In any case we can gain some qualitative insight by looking at the Figs. F.16
and F.17. For the supersymmetric models considered, the average energy
of the photons produced in each annihilation is of order of a few GeV, and
their energy is at most a few hundred GeV (in the case of our heaviest can-
didate, the 600 GeV neutralino of model 4, only ∼ 1% of the total energy
produced in the annihilation is released in the form of photons with energy
Eγ > 200 GeV). As it can be seen from Fig. F.17 above, these photons lie in the
middle of the transparency window: their energy is too low for pair produc-
tion, as already noticed, but on the other hand it is too high for photoionisa-
tion (or Compton scattering at z > 100) to be effective. These photons will
propagate freely and their energy will decrease due to cosmological expan-
sion. Although it is in principle possible that, due to cosmological redshifting,
a photon produced in the transparency window at a given time will be ab-
sorbed later, we see from Fig. F.17 that this is practically never the case. In
conclusion, we expect that the absorbed fraction for photons at z < 1000 will
be very small, and that the photons produced in neutralino annihilations will
instead show up in the diffuse gamma-ray background.

Electron-positron pairs Electrons and positrons can lose energy through
collisional ionisation of atoms or through inverse Compton scattering off of
CMB photons. In addition, positrons can annihilate with thermal electrons.
Other energy loss mechanisms, like synchrotron radiation loss, can be safely
neglected.
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The rate of energy loss through collisional ionisation is given by

φe,ion.(E, z) =
v

E

2πe4

mev2

×
{

ZHnH

[

ln

(

mev2γ2Tmax,H

2I2
H

)

+D(γ)

]

+ ZHenHe

[

ln

(

mev
2γ2Tmax,He

2I2
He

)

+D(γ)

]

}

, (F.3.40)

where v is the electron velocity, γ = E/mec2 is the electron Lorentz factor,
IH = 13.59 eV and IHe = 24.6 eV are the hydrogen and helium ionisation
thresholds respectively, ZH and ZHe are the hydrogen and helium atomic
numbers respectively, the function D(γ) is given by

D(γ) =
1

γ2
−
(

2

γ
− 1

γ2

)

ln 2 +
1

8

(

1− 1

γ

)2

, (F.3.41)

and Tmax.,H and Tmax.,He are the maximum energy transfers in a single colli-
sion

Tmax.,H =
2γ2m2

Hmev
2

m2
e + m2

H + 2γmemH
, (F.3.42)

Tmax.,He =
2γ2m2

Hemev
2

m2
e + m2

He + 2γmemHe
. (F.3.43)

The fractional energy loss rate through inverse Compton scattering is given
by

φe,Com.(z, E) =
4

3

σTUCMB(z)

me

γ2 − 1

γ
, (F.3.44)

where UCMB(z) is the CMB energy density at redshift z.

In the case of inverse Compton losses, we must take into account that the
electrons and positrons do not transfer their energy directly into the IGM;
instead, they accelerate the CMB photons they interact with, boosting their
energy by a factor ∼ γ2 . These up-scattered photons can either be absorbed
by the IGM or escape, depending on their energy. As explained above, at red-
shifts below a few hundred, the only relevant photon absorption processes
are photoionisation, Compton scattering and pair production; however, a
simple calculation shows that the electrons and positrons produced in the
annihilation of the DM candidates considered here are not energetic enough
to boost the CMB photons above the threshold for pair production. We can
also safely neglect Compton scattering, since it is only efficient for z > 100

503



F. Indirect Detection of Dark Matter

and in a small energy region around 1 MeV. Therefore we need only consider
photoionisation as the secondary process leading to the absorption of the
photons produced by inverse Compton scattering of electrons and positrons.
The method that we use to estimate the energy injected in the IGM by the
up-scattered photons is described in detail in Appendix F.3.5. Here we just
show the results concerning the opacity window of electrons and positrons.

The behaviour of electron-positron pairs with respect to the energy transfer
to the IGM is summarised in Fig. F.18. In the white region, the total energy
loss rate is smaller than the expansion rate: φe,ion. + φe,Com. < H, so that the
Universe is transparent to the propagation of electrons. In the grey regions,
the electrons and positrons interact by inverse Compton scattering, but the
resulting photons fall in the photon transparency window. This means that
the Universe is opaque to the propagation of electrons, but nevertheless their
energy is not transferred to the IGM. Finally, in the black regions the electron
energy is efficiently transferred to the IGM. In particular, the region on the left
correspond to the case in which collisional ionisation is the dominant process;
the region on the right is where inverse Compton is the dominant interaction,
and the up-scattered CMB photons fall into the photon absorption window.

Computation of the absorbed fraction

Here we describe the method that we have used to compute the energy ab-
sorbed fraction fabs.. It is mainly based on the method first described in
Ripamonti et al. (2007) (henceforth referred to as RMF07).

We denote with N(z, z′) the number of particles (per hydrogen nucleus)
produced in the annihilations at redshift z′, that are still present (and able to
transfer energy to the IGM) at redshift z ≤ z′, and their energy spectrum with
dN(z, E, z′)/dE. The rate ǫ̇ of energy absorption per H nucleus at redshift z
is obtained by integrating over all energies and production redshifts:

ǫ̇ =
∫ ∞

z
dz′

∫

dE
dN

dE
(z, E, z′)EΦ(z, E), (F.3.45)

where Φ(z, E) is the fractional energy transfer rate to the IGM by a particle
with energy E at redshift z. A summation over the different particle species
produced in the annihilations is also implicit in Φ. The upper integration
limit over redshift is formally infinite, but from the numerical point of view
it is enough to take a redshift large enough so that all the absorption happens
locally and does not give contributions at later times. In our calculations, we
have taken, as an upper integration limit, zmax. = 1500, and checked explictly
that increases in zmax. do not significantly alter our results.

This expression can be simplified assuming that the energy spectrum of
the particles is very peaked around the mean energy (as it is often the case)
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Figure F.18.: Transparency window for electrons. In the white region, elec-
trons propagate freely. In the grey regions, electrons transfer all of their en-
ergy to the CMB photons, but these are subsequently lost, so that no energy is
injected in the IGM. In the black regions, all the electron energy is efficiently
injected in the IGM. See text for discussion.
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and thus approximating the energy spectrum with a Dirac delta function:
dN/dE(z, z′ , E) ∝ δ(E − Ē(z, z′)), where of course the peak energy Ē de-
pends on both z and z′. The normalization is given by the condition that
∫

dN/dE(z, z′ , E)dE = N(z, z′). Then:

ǫ̇ =
∫ ∞

z
dz′N(z, z′)Ē(z, z′)Φ(z, Ē(z, z′)). (F.3.46)

Finally, the energy absorbed fraction is simply given by the ratio between
the energy absorbed and the energy produced by the annihilations:

fabs. =
ǫ̇

1
2

n2
DM,0

nH,0
〈σannυ〉mdm(1 + z)3

(F.3.47)

The problem then reduces to the computation of the two functions N(z, z′)
and Ē(z, z′) and to the subsequent computation of the integral in Eq. (F.3.46).
In the following, we will describe how we computed the evolution of N and
Ē for different DM particles (in our case, SUSY neutralinos and LDM) and
annihilation products (in our case, namely photons, electrons and positrons).

In order to compute the evolution of the two quantities N(z, z′) and Ē(z, z′)
with redshift, it is useful to divide the possible interactions of the annihilation
products between those that result in the loss of a particle, without changing
their average energy, and those that, conversely, reduce the average energy
without changing the number of particles. An example of the first class is the
photoionisation of hydrogen atoms by photons produced in the annihilation,
as the photon responsible for the ionisation is effectively removed; an exam-
ple of the second class is the Compton scattering of photons over electrons.
We shall denote with φN(z, E) and φE(z, E) the interaction rates for the two
kind of processes, respectively. Another thing that should be considered is
that the total energy loss rate, φ = φN + φE, is not necessarily equal to the
total rate of energy transfer, Φ, that appears in Eq. (F.3.46). The reason is that
not all the energy that is lost by the particles is actually transferred to the
IGM; for example, as we shall see later, high energy electrons produced in
DM annihilations can lose all of their energy very rapidly by inverse Comp-
ton scattering on CMB photons, but it can be the case that the up-scattered
photons do not subsequently interact with the IGM. The net result is that, al-
though the electrons lose all of their energy, this does not end up heating or
ionising the IGM. We shall take this into account using, for a given process,
an efficiency factor, η(z, E) ≤ 1, such that Φ = ηφ.

We first consider the absorption of photons. We can write the equations
describing the evolution of Nγ(z, z′) and Ēγ(z, z′) (for z < z′) as:

dNγ

dz
(z, z′) = Nγ(z, z′)

φN,γ[z, Ēγ(z, z′)]
H(z)(1 + z)
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and
dĒγ

dz
(z, z′) = Ēγ(z, z′)

(

φE,γ[z, Ēγ(z, z′)]
H(z)(1 + z)

+
1

1 + z

)

,

where the second term takes into account the cosmological redshifts of pho-
tons, and the factor H(z)(1 + z) originates from the transformation from cos-
mological time to redshift. The initial conditions at z = z′ for the above
system are:

Nγ(z
′, z′) = ζγ,1

ṄDM(z′)
H(z′)(1 + z′)

(F.3.48)

Ēγ(z
′, z′) = ζγ,2mdmc2 (F.3.49)

where ṄDM is the rate of decrease of DM particles per H nucleus, ζγ,1 is the
average number of photons produced per every annihilating DM particle
(i.e., it is equal to the number of photons produced in the annihilation, di-
vided by 2), and ζγ,2 is the average fraction of the DM rest mass energy that
goes to each photon. The values of ζγ,1 and ζγ,2 can be easily inferred from
the values presented in Table F.9, while the rate of decrease of DM particles is
given by

ṄDM =
1

2

ndm(z)

nH(z)

2

〈συ〉 (F.3.50)

The next step is to model the rates φN and φE in order to include the rele-
vant processes in the energy and redshift ranges of interests. For the super-
symmetric models we consider here, the average photon energy ranges from
∼ 1 GeV in model 1 to ∼ 10 GeV in model 2. From Zdziarski (1984) and from
the discussion in § F.3.5 we know that at these energies the only relevant ab-
sorption process is pair production over atoms (if z < zdec.) or over ions and
free electrons (if z > zdec.); even this process is only effective for redshifts
larger than a few hundred. At more recent times, the Universe is basically
transparent to GeV photons. Compton scattering over electrons should also
be taken into account as it can contribute to the absorbed fraction, and is
in fact the main mechanism of energy transfer at redshifts z . 100, as we
have checked explicitly by computing the absorbed fraction with and with-
out the Compton term. Since pair production results in the loss of a photon,
while Compton scattering just changes its energy, we take φN = φγ,pair and
φE = φγ,Com..

Once the time evolution of N(z, z′) and Ē(z, z′) is known, the only ingre-
dient required before we can proceed with the computation of the integral in
Eq .(F.3.46) is the estimation of the photon absorption rate, Φγ, i.e. of the total
photon energy loss rate weighted with the absorption efficiency. We can in
general write

Φγ = ∑
i

ηiφi, (F.3.51)
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the sum running over all relevant processes. In the present case, all the energy
lost through Compton scattering over electrons directly goes into the IGM, so
we can take ηCom. = 1. On the other hand, not all electron-positron pairs pro-
duced by the interaction of photons actually inject energy into the IGM. We
model the subsequent absorption as follows. Every photon will produce an
electron and a positron, each with energy Ee± ≃ Eγ/2. These electrons and
positrons very quickly lose all of their energy through inverse Compton scat-
tering off of CMB photons. The up-scattered photons have an average energy
E′2γ kBT0

CMB(1 + z), where γ = Ee±/(mec2) is the Lorentz factor of the electron
or positron. Finally, following RMF07, we assume that these secondary pho-
tons are absorbed through Compton scattering with an efficiency η given by

η(z, Eγ) = f1

[

1− e−τγ(z, E′γ)
]

, (F.3.52)

where τ is the optical depth for Compton scattering, given by

τγ(z, E′γ) =
f2

H(z)
φγ,Com.(z, E′γ), (F.3.53)

where f1 = 0.91 and f2 = 0.6.

We can now proceed with the evaluation of the photon channel contribu-
tion to ǫ̇, as given by expression (F.3.46), and consequently to fabs.. The results
are shown in Fig. F.19. (long dashed green lines).

We now turn our attention to the absorption of electrons and positrons pro-
duced in neutralino annihilations. Relativistic electrons and positrons lose
their energy through inverse Compton scattering off of CMB photons, while
slow electrons and positrons lose their energy through collisional ionisation
of neutral atoms. In addition, positrons can annihilate over thermal electrons;
this process also is very effective for particles with very low kinetic energy,
i.e. Ee+ ≃ mec2. Since the relevant energy range is the same as for photons,
i.e. 1− 10 GeV, we expect inverse Compton scattering to be the only relevant
process. In any case, we included collisional ionisation and annihilation over
thermal electrons (just for positrons) in our equations and explicitly checked
that such terms have a negligible impact on our results. The evolution equa-
tions for ultra-relativistic electrons and positrons then have the same form as
the ones for photons:

dNe±

dz
(z, z′) = Ne±(z, z′)

φN,e±(z, Ēe±(z, z′))
H(z)(1 + z)

(F.3.54)

dĒe±

dz
(z, z′) = Ēe±(z, z′)

[

φE,e±(z, Ēe±(z, z′))
H(z)(1 + z)

+
1

1 + z

]

(F.3.55)

where we take φN,e± = φe,ion. and φE,e± = φe,Com. for electrons, while for
positrons we also include the annihilation term in φN. As we have just men-
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tioned, one can in practice take φN = 0 in both cases and still obtain the same
results.

The efficiency of inverse Compton scattering in transferring energy to the
IGM can be estimated as follows. The average energy of the upscattered pho-
tons is given by E′2γ kBT0

CMB(1 + z); for an electron in the 1 to 10 GeV energy
range, this gives a corresponding photon energy of (1− 100)(1+ z) keV. This
means that, especially at low redshifts, the up-scattered photons can have the
right energy to transfer energy to the IGM by ionising neutral atoms. We
quantify this effect as follows. The energy Eion. corresponding to unitary op-
tical depth for photoionisation (i.e. φγ,ion. = H) at a given redshift z is given
by

Eion.(z) = 0.64 keV× (1 + z)0.45. (F.3.56)

We consider that upscattered photons with E′γ < Eion. transfer their energy
to the IGM, while the others are lost. We then take the efficiency of inverse
Compton scattering as being equal to a fraction F of the total CMB energy
density carried by photons that after scattering have an energy below the
ionisation threshold. The efficiency ηCom. is then given by

ηCom. = F(E < Emax.) =

[

∫ Emax./c

0
p f (p, z)d3 p

]

×
[

∫ ∞

0
p f (p′ , z)d3 p

]−1

, (F.3.57)

where f (p, z) =
[

epc/kBT(z) − 1
]−1

is the Bose-Einstein distribution, and Emax. =

Eion.(z)/γ2 . Using the dimensionless variable y = pc/kBT this can be rewrit-
ten as

ηCom.(z) =
π4

15

[

∫ ymax.

0

y3

ey − 1
dy

]

, (F.3.58)

where ymax. = Emax.c/kBT. Then we finally take the absorption rate in Eq.(F.3.46)
to be

Φe± = ηCom.φCom.. (F.3.59)

The results for fabs. are displayed in Fig. F.19.

In addition to supersymmetric neutralinos, we have also considered the
case of MeV light dark matter annihilating directly to e+e− pairs. In this case
the spectrum is monochromatic at Ee± = mDMc2. We consider two particular
cases of LDM with particle masses mDM = 3 MeV and 20 MeV. The treat-
ment is basically the same as that in the previous section for electrons and
positrons produced in neutralino annihilation, apart from the fact that, espe-
cially for the 3 MeV case, the annihilation of positrons over thermal IGM elec-
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Figure F.19.: Absorbed energy fraction for neutralino models 1, 2, 3 and 4.
We show the total absorbed fraction (solid red line) together with the con-
tribution from the photon (long dashed green curves) and electron/positron
(short dashed blue curves) channels.
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trons gives an appreciable contribution to the total absorbed energy fraction.
Annihilations are only important when the positron has lost all of its kinetic
energy through inverse Compton scattering; it can be seen in fact that the
energy loss rate for ionisation is always larger than the loss rate for annihila-
tions. Then the only regime where annihilations can be effective is when the
kinetic energy of the positron is below the H ionisation threshold at 13.6 eV,
i.e. where Ee+ ≃ mec

2.
We then use the following scheme to follow the evolution of the N and

Ē for positrons. Based on the argument above, we split the integral in the
Eq. (F.3.46) in two parts. The first integral, evaluated from z′ = z to z′ = z1,
takes into account the contribution from positrons that still retain an appre-
ciable fraction of their kinetic energy at redshift z, and are thus losing energy
mainly through inverse Compton scattering and collisional ionisation. The
second integral, evaluated from z′ = z1 to z′ = zmax., takes into account the
contribution of positrons that have already lost all their kinetic energy (i.e.
slow positrons) and can only lose more energy by annihilating with thermal
electrons. The redshift z1 is simply obtained by solving the differential equa-
tion for Ē and finding the redshift where Ē = 13.6 eV.

Finally, it should be taken into account that the photons produced in the
annihilation will not necessarily transfer all of their energy to the IGM. We
follow a method similar to the one described in the previous section, and
assume that energy is transferred via Compton scattering, with an efficiency
given by

ηann.(z, Eγ) = f1

[

1− e−τγ(z, E′γ)
]

, (F.3.60)

where τ is the optical depth for Compton scattering defined above, the pa-
rameters f1 and f2 have also been defined above, and Eγ = mec

2 since the
positron and electron annihilate basically whilst at rest.

The absorbed energy fraction for annihilating MeV DM has been computed
explicitly in RMF07 for mDM = 1, 3 and 10 MeV. We have compared our
results to theirs in the case of 3 MeV and although the results are qualita-
tively similar (the absorbed fraction is appreciable at large redshifts, has a
large decrease at intermediate redshifts, and then starts increasing again to
fabs. ∼ O(0.1) at z = 5) there are also some quantitative differences. As
we could not track down the origin of such discrepancies, we have decided
to compute the expected brightness temperature for 3 MeV annihilating DM
particles using both, the version of the function fabs. that we have obtained in
this paper ( f CLS

abs. ) and the one from RMF07 ( f RMF
abs. ), for which they provide an

analytic approximation. However, for comparison we have also computed
the absorbed fraction for the 10 MeV case (not considered elsewhere in this
paper) and we have found an excellent agreement between our results and
those of RMF07, so the discrepancies are likely due to the different handling
of positron annihilations, which only contribute to the lower masses.

We present our results for the absorbed fraction for MeV DM in Fig. F.20,
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Figure F.20.: Absorbed energy fraction for the 3 MeV (upper panel) and
10 MeV (lower panel) LDM. We show the total fabs. (solid red line) together
with the contribution from electrons and positrons (long dashed green and
short dashed blue lines, respectively). For the 3 MeV case, we also show the
absorbed fraction compute in RMF07 (dotted magenta line).

together with the result for fabs. for 3 MeV LDM from RMF07.

F.3.6. The 21 cm Background

CMB-kinetic temperature coupling

In this section we briefly review the basic physics behind the 21 cm signal. For
a more in-depth discussion, we refer the reader to Refs. Madau et al. (1997);
Furlanetto et al. (2006a); Barkana and Loeb (2007) and references therein.

The emission or absorption of the 21 cm line signal emanating from neutral
gas is associated with the transition between the n = 1 triplet and singlet
hyperfine levels of hydrogen. The transition rate is governed by the spin
temperature, Ts, defined as

n1

n0
= 3 exp

(

−T∗
TS

)

, (F.3.61)

where n0 and n1 are the respective number densities of hydrogen atoms in
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the singlet and triplet states, and T∗ = 0.068K is the equivalent temperature
corresponding to the transition energy.

In the presence of the CMB radiation field, the spin temperature of the
neutral hydrogen gas rapidly tends towards the CMB temperature TCMB ≃
2.725(1 + z)K. In order for neutral hydrogen gas to produce a detectable sig-
nal in the 21 cm background, be it in absorption or emission, that is distin-
guishable from that generated from the CMB, the kinetic temperature TK of
the gas must decouple from TCMB.

In a Universe containing stable, non-annihilating DM, the spin tempera-
ture and the kinetic temperature of HI gas are coupled to TCMB until z ≃ 200
Peebles (1993). At 30 . z . 200, prior to the formation of non-linear bary-
onic structures, the IGM cools adiabatically, i.e. TK ∝ (1 + z)2, compared to
TCMB ∝ (1 + z). During this epoch, spin-exchange collisions between hydro-
gen atoms, protons and electrons are efficient at coupling TK and TS of the
gas, and consequently an absorption at wavelength λ = 21(1 + z) cm can be
observed until approximately z ≃ 70. At later times cosmological expansion
reduces the frequency of these collisions significantly, to the extent where TS

re-couples with TCMB, diminishing the 21 cm absorption signal.

However, in a Universe containing annihilating/decaying DM which in-
jects appreciable energy into the IGM, the thermal history of the gas may
be significantly altered to the extent where the corresponding changes in the
evolution of the 21 cm signal are detectable by current and future radio ex-
periments. Of particular importance is the high sensitivity of these changes
with respect to the nature of the DM, making them a powerful tool for con-
straining the properties of potential DM candidates.

There are two mechanisms which can decouple TS from TCMB: firstly, the
aforementioned spin-exchange collisions between neutral atoms, electrons
and protons (Purcell and Field, 1956), which are effective at z ≥ 70 before the
Hubble expansion has rarefied the gas in the IGM, and secondly, scattering
by Lyman-α radiation (known as the “Wouthuysen-Field” effect, also known
as “Lyman-α pumping” (Wouthuysen, 1952; Field, 1959; Hirata, 2006)), which
couples TS to TK via the mixing of the n = 1 hyperfine states through inter-
mediate transitions to the 2p state.

In the quasi-static approximation for the population of the hyperfine levels
in question, and in the absence of radio sources, the HI spin temperature is a
weighted mean involving TK and TCMB,

TS =
TCMB + yTK

1 + y
, (F.3.62)

The coupling coefficient y can be written as

y = yα + yC, (F.3.63)
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where yα is the term associated with Lyman-α pumping, given by

yα =
P10T∗
A10TK

, (F.3.64)

whilst yC is associated with the de-excitation of the HI hyperfine triplet state
due to collisions with neutral atoms, electrons and protons, collectively writ-
ten as

yC =
T∗

A10TK
(CH + Ce + Cp). (F.3.65)

In the above equations A10 = 2.85× 10−15 s is the rate of spontaneous pho-
ton emission, P10 is the de-excitation rate of the hyperfine triplet state due
to Lyman-α scattering, and CH, Ce and Cp are the de-excitation rates associ-
ated with collisions of hydrogen atoms with other hydrogen atoms, electrons
and protons respectively. We write P10 = (16π Jασα)/(27hpνα), where Jα is
the background intensity of Lyman-α photons, σα is the Lyman-α photon ab-
sorption cross section for neutral hydrogen and hp is Planck’s constant. We
neglect the small corrections to the above expressions proposed by Hirata
(2006). The H-H collision term can be written as CH = k10nHI, where k10

is the effective single-atom collision rate coefficient for which we adopt the
fit: k10 = 3.1× 10−11T0.357

K exp(−32 K/TK) cm3 s−1 proposed by Kuhlen et al.
(2006), which is accurate to within 0.5% in the range 10 < TK < 103 K. For the
e-H collision term, Ce = neγe, we have used the following fit19 proposed by

Liszt (2001): log(γe/cm3 s−1) = −9.607+ 0.5 log(TK/1 K) exp
{

− [log(TK/1 K)]4.5 /1800
}

for 1 < TK < 104 K, log(γe/cm3 s−1) = −9.607 + 0.5 log(TK/1 K) for TK <

1 K (Smith, 1966), and γe(TK > 104 K) = γe(104 K). We ignore de-excitations
involving collisions with protons since they are typically much weaker than
those involving electrons at the same temperature, although it has been shown
that they can be relevant at low temperatures Furlanetto and Furlanetto (2007b).

Modifications to IGM thermal evolution in the presence of DM

In this section we describe the modifications to the standard equations de-
scribing the thermal and ionisation history of the IGM when we incorporate
the potentially significant energy deposition of the products of annihilating
DM.

We parameterize the effect of DM annihilation by the rate of energy in-
jection given by Eq.(F.3.1). This energy is then used to excite and ionise
the hydrogen and helium atoms in the IGM. We will not enter here into
the detail of the partition of energy between hydrogen and helium, but in-
stead assume that it is divided proportionally to the respective number den-
sities. This means that a fraction 1/(1 + fHe) of the absorbed energy will

19Updated rates can be found in Furlanetto and Furlanetto (2007a).
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go to hydrogen, while a fraction fHe/(1 + fHe) will go to helium, fHe be-
ing the helium to hydrogen number ratio. Then we need to know how the
energy is partitioned between the different processes. The relative fractions
χi, χh and χe of the energy absorbed which is diverted towards respectively
ionising, heating and exciting hydrogen and helium atoms were calculated
by Shull and van Steenberg (1985). Their results can be approximated by
(Chen and Kamionkowski, 2004)

χi,j(z) ∼
[1− xj(z)]

3
, (F.3.66)

χh,j(z) ∼
[1 + 2xj(z)]

3
, (F.3.67)

χe,j(z) ∼
[1− xj(z)]

3
, (F.3.68)

where xj(z) is the ionisation fraction of the relevant nuclear species j (i.e. j=H
or He for hydrogen or helium nuclei respectively), defined as

xj =
nj+

nj
, (F.3.69)

where nj+ is the number density of ionised nuclei of the species j. We can

also define a total ionisation efficiency χi ≡ (χi,H + fHeχi,He)/(1 + fHe), and
similar quantities for heating and excitation.

Following (Padmanabhan and Finkbeiner, 2005), we compute the ionisa-
tion and thermal history of the IGM, when incorporating our chosen species
of DM, using the publicly available code RECFAST (Seager, Sasselov and Scott,
1999, 2000), modifying the standard evolution equations for the ionisation
fractions of hydrogen and helium nuclei, as well as the evolution equation
for the kinetic temperature as follows:

−δ

(

dx[H]

dz

)

=
ǫ̇

IH

χi,H

(1 + fHe)

1

H(z)(1 + z)
, (F.3.70)

−δ

(

dx[He]

dz

)

=
ǫ̇

IHe

χi,He

(1 + fHe)

1

H(z)(1 + z)
, (F.3.71)

−δ

(

dTk

dz

)

=
2ǫ̇

3kB

(χh,H + fHeχh,He)

(1 + fHe)H(z)(1 + z)
. (F.3.72)

A further equation needed to calculate the 21 cm signal is that describing the
evolution of the Lyman-α background intensity Jα, which can couple the spin
and kinetic temperatures of the H-atoms in the IGM via the Wouthuysen-
Field effect. H-atoms, excited by collisions with fast photoelectrons sub-
sequently produce a cascade of line photons, including Lyman-α photons
which are then likely to be re-absorbed by the optically-thick IGM. We utilise
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the approximation adopted by Furlanetto et al. (2006b) that approximately
half of the total energy which is diverted to excite hydrogen is used to pro-
duce Lyman-α photons20, i.e. χα ∼ χe,H/2.

Following the treatment by Valdes et al. (2007) we obtain (however, note
the additional correction factor of να in front of the expression)

Jα =
n2

Hhcνα

4πH(z)

[

xexe,Hαeff.
22P + xe,HxHIγeH +

χαǫ̇

nHhνα

]

, (F.3.73)

where the first two terms are the contributions associated with the collisional
excitation involving electrons discussed above, and the last term is the con-
tribution from DM. Also, αeff.

22P
is the effective recombination coefficient to the

22P level (Pengelly, 1964), and γeH ≃ 2.2× 10−8 exp
[

−11.84/(T/104 K)
]

cm3 s−1

is the collisional excitation rate of HI atoms involving electrons (Shull and van Steenberg,
1985).

The quantity most intimately associated with observations of the cosmo-
logical 21 cm signal is the differential brightness temperature deviation, δTb,
between the 21 cm signal and the CMB, approximately given by (Field, 1959;
Ciardi and Madau, 2003)

δTb ≃ 26 mK xHI

(

1− TCMB

TS

)(

Ωbh2

0.02

)

×
[(

1 + z

10

)(

0.3

ΩM

)]1/2

, (F.3.74)

where xHI = 1− xH is the average fraction of neutral hydrogen in the patch
of sky being observed.

F.3.7. Results

In the following section, we illustrate our predictions for the effects on the
thermal history of the IGM caused by the additional energy injected into it
by annihilating neutralino CDM and LDM, when including the enhancement
effects from DM structures.

Since, as we have seen, this enhancement can be very large, boosting the
DM annihilation rate by several orders of magnitude, we want to be sure that
this does not contradict other observations. Consequently, we perform two
tests on each of the clumping factors investigated, before taking into con-
sideration its effect on the 21 cm brightness temperature. First of all, we

20The authors of Pritchard and Furlanetto (2007) actually find that χα is somewhat larger
than the value used here, χα ≃ 0.79χe,H/2. However we do not think this would alter
our results significantly; in any case it would result in a larger deviation of the brightness
temperature, so our results can be considered as more conservative.
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check that the huge injection of energy into the IGM does not lead to pre-
mature re-ionisation. We use for this purpose our modified version of the
RECFAST code described above, and discard all clumping factors for which
the ionised fraction xe > 0.01 at z = 14. We choose this value of the redshift
because it is close to the 3σ upper limit to zreion. coming from WMAP7 ob-
servations Komatsu et al. (2010). Secondly, we check that the diffuse photon
flux produced does not exceed the observed diffuse gamma-ray and x-ray
background (adopting the conservative approximation that fabs. ∼ 0, that
for all the models we consider is quite a good approximation at the present
time z = 0, where the clumping factor reaches its maximum value). We
use to this purpose the measurements of the diffuse gamma-ray background
in the 1 MeV - 100 GeV range conducted by EGRET (Sreekumar et al., 1998;
Strong et al., 2004) and COMPTEL (Weidenspointner et al., 2000), and those
of the diffuse x-ray background in the sub-MeV range conducted by the SPI
spectrometer aboard INTEGRAL (Churazov et al., 2007).

In the following, owing to the fact that the effects on the spin and bright-
ness temperature can be very subtle, we display results only for the the most
optimistic clumping factors, which we define, for a given DM model, as those
which yield the largest difference in the differential brightness temperature,
δTb − δTb,0 (see § F.3.9), at z = 30 (i.e., the smaller z were plausibly astro-
physical effects are not important, see discussion at the end), while at the
same time conforming to the above criteria. For reference, in Appendix F.3.4
we have tabulated the relevant astrophysical parameters associated with all
clumping factors investigated, indicating which have been excluded on the
basis of the criteria described above.

Neutralino dark matter

We show the results for the supersymmetric models described in § F.3.5 in
Figs. F.21 and F.22 for halos with NFW and Moore density profiles respec-
tively. In particular, in each panel we show the evolution of TK and TS for
the most optimistic clumping factors consistent with our selection criteria, as
described above. For comparison, we also display the corresponding results
for the “no DM” scenario, i.e., in the absence of annihilating DM.

We start by considering model 1, i.e., 50 GeV neutralinos that annihilate to
bb̄ pairs 96% of the time and to τ+τ− otherwise, with a canonical annihilation
cross section of 〈σann.υ〉 = 3× 10−27cm3 s−1/ΩDM,0h2 ≃ 2.7× 10−26cm3 s−1.
Owing to the relatively small mass of this neutralino, the associated energy
injection rate into the IGM per annihilation is large (since overall, ǫ̇DM scales

as m−1
DM). Consequently, the majority of the clumping factors calculated using

the Moore profile are excluded based on our criterion involving the diffuse
radiation background. The most optimistic clumping factors consistent with
our selection criteria are N4 and M18, for the NFW and Moore profiles re-
sepectively. It is known that when the enhancement inside structures is ne-
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Figure F.21.: Evolution of the IGM kinetic (thick dashed blue curves) and spin
(dotted red curves) temperatures for our four supersymmetric models. In
each plot we show the results for the most optimistic clumping factors using
the NFW density profile (thick curves) and, for comparison, the kinetic and
spin temperatures in the absence of DM annihilations (thin curves). The CMB
temperature is also shown (black solid curve). The annihilation cross section
〈σann.υ〉 = 2.7× 10−26 cm3 s−1 in all plots. The clumping factors used are N4
for model 1, and N2 for models 2, 3, and 4.

glected (i.e. when C = 1), the energy injection from neutralino annihilation is
insufficient to significantly alter the evolution of the IGM kinetic temperature.
It can then be expected that significant heating of the IGM by annihilations
can only start once the clumping factor is deviates significantly from unity.
This corresponds to z ≃ 25 for M18 and z ≃ 85 for N4, corresponding to the
time when the least massive DM structures start to form in these scenarios.
The function fabs. for model 1 neutralinos is almost constant during the pe-
riod 10 < z < 90, therefore we expect the evolution of the clumping factor
to almost completely determine the evolution of the deviations from the “no
DM” scenario. This is illustrated somewhat by the rapid elevation in TK cor-
responding to the rapid increase in the M18 clumping factor at z ≃ 20, com-
pared to that associated with N4, which maintains a more uniform increase in
log(TK), reflecting the almost constant value of d log(C)/d log(1 + z) at this
time.

Next, we consider DM composed of neutralinos described by model 2, that
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Figure F.22.: Evolution of the IGM kinetic (dashed blue curves) and spin (dot-
ted red curves) temperatures for our four supersymmetric models. In each
plot we show the results for the most optmistic clumping factors using the
Moore density profile (thick curves) and, for comparison, the kinetic and spin
temperatures in the absence of DM annihilations (thin curves). The CMB
temperature is also shown (black solid curve). The annihilation cross section
〈σann.υ〉 = 2.7× 10−26 cm3 s−1 in all plots. The clumping factors used are
M18, M8, M7 and M4 for models 1, 2, 3, and 4 respectively.
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is, 150 GeV gaugino-dominated neutralinos that annihilate 96% to bb̄ and 4%
to τ+τ−. As for model 1 neutralinos, the majority of the clumping factors cal-
culated using the Moore profile are excluded owing to the overproduction of
the diffuse radiation background with M8 being the most optimistic clump-
ing factor to survive this constraint. For structures with NFW profiles, nearly
all clumping factors are permitted, with N2 being the most optimistic. The
clumping factors M8 and N2 are very similar in their evolution, both signifi-
cantly exceeding unity at approximately z = 85, although M8 always exceeds
N2 for the times 100 & z & 2. Hence, we expect the evolution of TK and TS

in both cases to be similar, with larger deviations from the “no DM” scenario
expected for the M8 scenario. Unlike model 1, fabs. for model 2 neutralinos
decreases by nearly a factor of 3 during this period. The decrease in fabs.

largely mitigates the increasing heating rate resulting from the formation of
DM structures, leading to the rather flatter evolution of TK that is observed.
This can be compared with the earlier results for model 1 neutralinos, which
display constantly increasing TK’s (for C ≫ 1), owing to the constant value
of fabs. during such times.

Next we consider DM composed of neutralinos described by model 3, that
is, 150 GeV higgsino-dominated neutralinos that annihilate 58% to W+W−

and 42% to ZZ. Despite the fact that the gaugino fractions of the neutrali-
nos described by models 2 and 3 are significantly different, their spectra of
injected electrons and photons, and thus the absorbed fraction fabs are quite
similar. Hence we expect that the permitted clumping factors will also be
quite similar, and in fact, this is the case: the most optmistic clumping factors
are N2 and M7 for the NFW and Moore profiles, respectively. This results in
the evolution of TK to be very similar to that predicted for model 2, and all
the considerations made above apply.

Finally, we consider DM composed of neutralinos described by model 4,
that is, 600 GeV gaugino-dominated neutralinos that annihilate 87% to bb̄
and 13% to τ+τ−. The relatively low energy injection rate per annihilation
(arising from the large neutralino mass) allows for correspondingly larger
clumping factors that satisfy our diffuse background constraints. In fact,
the most optimistic clumping factors that are allowed are N2 and M4. Both
M4 and N2 have similar patterns of evolution owing to the similar values of
the parameters associated with each model (see Table F.7). However, despite
this, M4 is always much larger than N2 (as can be expected when compar-
ing clumping factors for structures possessing Moore and NFW profiles with
similar structural parameters), with a maximum difference of approximately
one order of magnitude at z ≃ 30. Also, M4 increases slightly more quickly
than N2 for times 20 < z < 90, explaining the correspondingly larger in-
crease in TK associated with the M4 model despite the larger substructure
mass fraction associated with N2. This explains why the displayed M4 result
for TK increases so rapidly compared to that for N2 during these times. The
associated fabs. function for model 4 decreases significantly over the period
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100 > z > 10 (approximately 0.05 to 0.006), owing to the significantly larger
energies of annihilation products produced compared to the lighter neutrali-
nos of models 1, 2 and 3. Further, unlike the other three models, fabs. here has
no minimum within the times of interest. This, in addition to the steeply de-
creasing nature of fabs. explains the distinct lack of a rise in TK at later times,
unlike that observed in models 1, 2 and 3. However, the similar values in
d log(C)/d log(1 + z) for z < 20 for both M4 and N2 result in similar rates of
decrease in log(TK) at such times.

Light dark matter

In this section we consider the effects on the kinetic and spin temperature of
the IGM caused by LDM particles that annihilate entirely to monochromatic
e+e− pairs.

In the following, we calculate results utilising values of the LDM annihi-
lation cross section 〈σann.υ〉 based on constraints derived from the predicted
effects of LDM annihilations on the CMB presented in Zhang et al. (2006);
Ripamonti et al. (2007) as

〈σann.υ〉 ≤ 2.2× 10−29 cm3 s−1 f−1
abs.

( mLDM

1 MeV

)

. (F.3.75)

We follow the conservative treatment in Ripamonti et al. (2007) and substi-
tute a value of fabs. approximately equal to its maximum value, f max.

abs. , into
Eq.(F.3.75), in order to determine our conservative estimate for 〈σann.υ〉. For
comparison, we also calculate results for a value of 〈σann.υ〉 one order of mag-
nitude smaller than this limiting value. We show our results for TK and TS in
Fig. F.23.

Firstly we consider 3 MeV LDM particles. In the left panels of Fig. F.23
we display the effects of DM composed of these particles on the evolution
of TK and TS, when using annihilation cross sections 〈σann.υ〉 equal to 1.2×
10−28 cm3 s−1 (upper left panel) and 1.2 × 10−29 cm3 s−1 (lower left panel).
We display results calculated using the B19 (upper left panel) and B15 (lower
left panel) clumping factors, calculated for structures possessing Burkert den-
sity profiles, deduced to be the most optimistic models consistent with our
constraints involving the diffuse radiation background when using values
of 〈συ〉 equal to 1.2× 10−28 cm3s−1 and 1.2× 10−29 cm3s−1 respectively. As
usual, we compare these results for TK and TS to the “no DM” scenario. In the
3 MeV case, we also compare our results to those obtained using the formula
for fabs. provided by Ripamonti et al. (2007) (see Appendix F.3.5 for details).

The clumping factors B19 and B15 possess significant differences in their
evolution owing to the different values of the minimum halo mass associated
with them (106 M⊙ for B19 and 46 M⊙ for B15). This results in the time at
which B19 starts to significantly exceed unity occurring much more recently
(z ≃ 20) than for B15 (z ≃ 35). As can be observed from Fig. F.23, these times
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closely correspond with the respective minima in TK immediately before its
rapid increase. However, unlike neutralinos, LDM can still significantly heat
the IGM at times when C ∼ 1, provided that 〈σann.υ〉 is large enough. This can
again be observed in Fig. F.23, where in the upper left panel significant devi-
ations in TK relative to the “no DM” scenario occur for z > 20, whereas such
deviations are negligible for 〈σann.υ〉 = 1.2× 10−29 cm3 s−1 at times z > 35, as
can be seen from the lower left panel. Further, at recent times, B19 increases
much more rapidly than B15, resulting in the correspondingly larger value of
d log(TK)/d log(z) that is observed.

We also show the effect of using the function fabs. as calculated in Ref.
Ripamonti et al. (2007). At the respective times when the clumping factors
B19 and B15 are much greater than unity, both the absorbed fraction calcu-
lated in this paper and that of Ref. Ripamonti et al. (2007) are monotonically
increasing, with the former roughly twice larger than the latter (see upper
panel of Fig. F.20). This is illustrated in the left panels of Fig. F.23 by the larger
values TK associated with our fabs. relative to those associated with the fabs.

of Ref. Ripamonti et al. (2007).

Next, we consider 20 MeV LDM particles. In the right panels of Fig. F.23
we display the effects of DM composed of these particles on the evolution
of TK and TS when using annihilation cross sections 〈σann.υ〉 equal to 4.4×
10−28 cm3 s−1 (upper right panel) and 4.4× 10−29 cm3 s−1 (lower right panel).
We display results calculated using the B19 and B3 clumping factors, calcu-
lated for structures possessing Burkert density profiles, deduced to be the
most optimistic models consistent with our constraints involving the diffuse
radiation background when using values of 〈σann.υ〉 equal to 4.4× 10−28 cm3 s−1

and 4.4× 10−29 cm3 s−1 respectively. In all cases, we utilise the function fabs.

calculated according to the procedure described in Appendix F.3.5. Once
again, we compare these results for TK and TS to those when DM is absent.
The function fabs. starts to deviate from unity at z ∼ 1000, but the decrease is
quite slow until z ∼ 30− 50; then it becomes more rapid until it reaches 0.2 at
z ≃ 10 (see lower panel of Fig. F.20). This accounts for the slight decrease in
dTK/dz observed during the period z < 30. Hence, at times z > 30, the evo-
lution of the LDM heating rate is dominated by that of the clumping factor
B19 (upper right panel) or B3 (lower right panel). There are significant dif-
ferences in the evolution of these two clumping factors. In particular, the re-
spective minima in TK closely correspond to the times at which the clumping
factor C starts to become much greater than unity. However, there appears
to be significant heating by LDM at times when C ∼ 1, indicated in the right
panels of Fig. F.23 by the non-negligible deviations from the “no DM” model,
especially when using 〈σann.υ〉 = 4.4× 10−28 cm3 s−1 (upper right panel) at
least up to z = 300, and up to z ≃ 150 when using 〈συ〉 = 4.4× 10−29 cm3s−1

(lower right panel).
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F.3.8. The 21 cm global signature

Using the above results for the evolution of the spin temperature, TS, in this
section we present corresponding results for the differential brightness tem-
perature δTb, calculated using Eq.(F.3.74), that is most readily associated with
measurements of the 21 cm background.

Neutralino dark matter

As in § F.3.7, we firstly consider neutralino DM. In Fig. F.24 we display our
predictions for the evolution of δTb in the presence of neutralino DM, relative
to that calculated for the “no DM” scenario, δTb,0, for our four benchmark
SUSY models. In each case, we utilise an annihilation cross section 〈συ〉 =
2.7× 10−26 cm3 s−1. For each DM model we display results when using the
most optimistic clumping factors associated with Moore (lower panel) and
NFW (upper panel) density profiles. For the Moore profiles, these are the
clumping factors M18, M8, M7, M4 for models 1, 2, 3 and 4 respectively; for
the NFW profile, they are the N4 clumping factors for model 1, and N2 for
models 2, 3 and 4. For comparison, we have also calculated the differential
brightness temperature for the least optimistic clumping factors, and also in
the absence of structures (i.e. C(z) = 1). We do not show the results, but we
have found that in both cases the deviations from the “no DM” behaviour are
smaller than 1 mK at all redshifts greater than 10.

We observe that generally the evolution of δTb using the most optimistic
clumping factors presents some common features among the four models.
In most cases we find a peak in the 21 cm emission at z ≃ 60 of up to
∼ 40 mK. These features emphasise the additional heating by DM at times
prior to the formation of baryonic structures, when the Universe cools adi-
abatically, when there is a characteristic absorption feature in the “no DM”
scenario arising from the efficient coupling (via collisions) between TK and
TS at these times (see, e.g., Ref. Valdes et al. (2007)). In the case of the NFW
profile, we have that the clumping factors used for the four models are very
similar (in fact, models 2, 3 and 4 use the same clumping factor N4, while
model 1 uses N2), so that we expect the differences among the models to be
mainly driven by the difference in the injected energy. In particular, lower-
mass neutralino yield a larger signal, since overall the energy produced by

annihilations scales as m−1
DM. Also, in the case of lighter neutralinos, a larger

part of the energy produced is effectively absorbed by the IGM (see Fig. F.19).
For these reasons, model 1 gives a peak of ≃ 35 mK at z = 60 (≃ 18 mK at
z = 30), while model 4 presents only ∼ 1 mK deviations from the “no dark
matter” case.

In the case of the Moore profile, the clumping factors used differ more, so
that we should factor this in when interpreting the results for δTb. In the
case of model 1, the large energy injection leads to the violation of the con-
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straints on the diffuse background for nearly all clumping factors, so that has
to be compensated by relatively small values of C(z). The result is that there
is actually an overcompensation, so that for the clumping factor considered
there is no significant heating of the IGM and the brightness temperature ba-
sically has the same evolution as in the “no dark matter” case. Of course, our
exploration of the parameter space for the clumping factor is far from com-
plete, so that it could well be possible that there is a “soft spot” in parameter
space (in particular a value of the minimum mass Mmin somewhere between
10−6 and 104M⊙) where the clumping factor is large enough to produce size-
able differences in δTb, without at the same time violating the constraints on
the reionization redshift and on the diffuse gamma backgrund. On the other
hand, the clumping factors used for models 2 and 3 are very similar, and in
fact, considering also that the neutralino mass is the same in the two models,
the results for the brightness temperature are very similar. The differences
can be traced in the larger value of the absorbed energy fraction for model
3. Finally, in the case of model 4, the smaller energy injection with respect
to models 2 and 3 is nearly completely offset by the use of a larger clumping
factor. In general, in models 2, 3 and 4, we find a peak of ≃ 25 mK at z = 60
(≃ 5−−10 mK at z = 30) in the deviation of the differential brightness tem-
perature with respect to the “no dark matter” case.

Light dark matter

We now consider light dark matter. In the top panel of Fig. F.25 we display
predictions for the evolution of δTb − δTb,0 in the presence of DM solely com-
posed of 3 MeV LDM particles. We use values of the annihilation cross section
〈σann.υ〉 equal to 1.2× 10−28 cm3 s−1 (red solid curves) and 1.2× 10−29 cm3 s−1

(blue dashed curves). For comparison, we also show the corresponding re-
sults calculated using the function fabs. derived in Ripamonti et al. (2007)
(thin curves). For each value of 〈σann.υ〉 we utilise the clumping factors as-
sociated with Burkert density profile which were determined to be the most
optimistic, namely, B19 for the larger cross section and B15 for the smaller.

For both values of 〈σann.υ〉, like neutralinos, there is a characteristic peak in
δTb− δTb,0 which, as expected, is more distinct for the larger value of 〈σann.υ〉
because of the larger deviations in the heating rate of the IGM relative to the
“no DM” scenario. However, for LDM this peak occurs, in most cases, quite
earlier (z ≃ 100) than for neutralino DM (with maxima at z ≃ 60).

Finally, in the bottom panel of Fig. F.25 we display predictions for the evo-
lution of δTb − δTb,0 in the presence of DM solely composed of 20 MeV LDM
particles. Our results are calculated using values of the annihilation cross sec-
tion 〈σann.υ〉 equal to 4.4× 10−28 cm3 s−1 (red solid curve) and 4.4× 10−29 cm3 s−1

(blue dashed curve). As for 3 MeV LDM particles, for each of these values of
〈σann.υ〉 we utilise two most optimistic clumping factors associated with the
Burkert density profile, which in this case were B19 for the larger cross section
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and B3 for the smaller.

For 〈σann.υ〉 = 4.4× 10−29 cm3 s−1, the most optimistic clumping factor, B3,
results in a rate of IGM heating that yields a peak in δTb− δTb,0 of≃ 25 mK at
z ≃ 40. This results in a deviation at z ≃ 30 of roughly 20 mK. For 〈σann.υ〉 =
4.4 × 10−28 cm3 s−1, the heating rate is sufficient to produce a significantly
larger deviation of ≃ 40 mK at z ≃ 100; however, the deviation is < 1 mK at
z ≃ 30.

F.3.9. Discussion

We have calculated predictions for the effects on the evolution of the cosmo-
logical HI 21 cm signal during the Dark Ages for various forms of annihilat-
ing neutralino and light dark matter. In doing so, we fully accounted for the
significant enhancements made to the annihilation rate of these DM particles
arising from DM structures. We utilised results from the state-the-art N-body
simulations to calculate the evolution of the aforementioned enhancement
in the annihilation rate, referred to here as the “clumping factor”, owing to
the distribution of halos and the near self-similar distribution of increasingly
smaller substructures predicted to exist within them. We did this for a diverse
range of values of astrophysical parameters consistent with the uncertainties
in the dynamics of the simulated halos. We performed detailed calculations
of the absorbed fraction of the energy injected into the IGM by the annihila-
tion products of our DM candidates. We used the standard equations for the
evolution of the kinetic and spin temperatures of the IGM with modifications
to account for the additional energy injected into by the IGM from DM anni-
hilations. Finally, we calculated the resulting deviations in the evolution of
the differential brightness temperature δTb relative to a scenario where DM is
absent.

In our calculations of δTb we have neglected the influence of astrophysical
processes affecting the 21 cm background. In fact, these effects dominate the
21 cm signal, thus obscuring the cosmological information, once star forma-
tion becomes important at redshifts z ≃ 25 Pritchard and Loeb (2008). This
means that the effect of the presence of annihilating DM at z . 25 (corre-
sponding to frequencies ν & 55 Hz) will likely be undetectable due to the
uncertainity in the astrophysical modelization.

The global 21 cm signal is the target of several experiments, like the “Cos-
mological Reionization Experiment” (CORE) and the “Experiment for Detect-
ing the Global EOR Signature” (EDGES) Bowman et al. (2008); Rogers and Bowman
(2008). Both experiments roughly operate in the frequency range from ∼ 100
to ∼ 200 MHz, corresponding to the redshift range 7 . z . 14. In fact, the
single antenna experiment EDGES has already released preliminary results
Bowman et al. (2008); Rogers and Bowman (2008). This experiment attempts
to separate the redshifted HI 21 cm signal from the contribution of the Galac-
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tic and Extragalactic foregrounds at the same frequencies by taking advan-
tage of the fact that these foregrounds are anticipated to be smooth power-
law spectra. Conversely, the cosmological signal, is expected to have up to
three rapid transitions in brightness temperature corresponding to the cool-
ing and heating of the IGM, and most recently from reionisation. However,
the rapidly varying (with respect to frequency) systematic and instrumental
contributions to the measured power spectrum can easily be mistaken for a
cosmological signal. Currently, the r.m.s. level of systematic contributions
is approximately T ∼ 75 mK, but further reductions in these systematics are
anticipated in the near future21. Unfortunately, both CORE and EDGES op-
erate in a frequency range where, as explained above, the evolution of the
ionized fraction and of the kinetic temperature is dominated by astrophysics,
so that presently they cannot be useful in constraining the models considered
here. However, the EDGES team plans to expand the frequency coverage of
the instrument down to 50 MHz or lower Bowman et al. (2008), thus opening
the possibility of exploring the regime where the 21 cm signal is dominated
by the cosmological contribution. In order to exclude at least the most op-
timistic models considered here, the EDGES experiment should be able to
reduce the systematics at 50 MHz to below ∼ 20 mK, although the contri-
bution of the Galactic synchrotron foreground increases significantly at the
lower frequencies.

Another interesting way to potentially put observational constraints on the
energy injection from DM annihilation would be to consider the effects on the
spatial fluctuations of the brightness temperature, as encoded by their power
spectrum, PTb

, rather than the average signal as we have done in this pa-
per. This was done, for example, in Furlanetto et al. (2006b) (although the
authors neglect the clumpiness of DM). Such fluctuations are somewhat eas-
ier to measure than the average signal since they are less contaminated by
foregrounds.

Even more interestingly, peculiar velocities give rise to an anisotropy of
the 21 cm power spectrum that can be used to separate the cosmological sig-
nal from the (uncertain) astrophysical contribution, thus allowing, at least
in principle, one to detect the effects of DM annihilation in the astrophysics-
dominated regime Barkana and Loeb (2005); McQuinn et al. (2006); Pritchard and Loeb
(2008).

The 21 cm fluctuations are themselves the target of several experimens,
such as LOFAR 22, MWA 23, PAPER 24, 21CMA 25 and SKA 26. In partic-
ular, the impending LOFAR epoch of reionization experiment is designed

21J.D. Bowman (private communication).
22http://www.lofar.org/.
23http://www.haystack.mit.edu/ast/arrays/mwa/; http://www.MWAtelescope.org/.
24http://astro.berkeley.edu/˜dbacker/eor/.
25http://web.phys.cmu.edu/˜past/; http://21cma.bao.ac.cn/.
26http://www.skatelescope.org/.
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to observe radio fluctuations at frequencies 115-215 MHz, corresponding to
the redshifted 21 cm signal in the range 6 < z < 11.5 (Best and Consortium,
2008). Unfortunately, the cosmological signal is contaminated by a plethora
of astrophysical and non-astrophysical components - including, Galactic syn-
chrotron emission from diffuse and localized sources (Shaver et al., 1999),
Galactic free-free emission (Shaver et al., 1999), integrated emission from ex-
tragalactic sources, such as radio galaxies and clusters (Shaver et al., 1999;
Di Matteo et al., 2002; Oh and Mack, 2003; Cooray and Furlanetto, 2004), iono-
spheric scintillation and instrumental response - the fluctuations in which
can significantly exceed the cosmological signal (see e.g. (Harker et al., 2009;
Liu et al., 2009a)).

We did not consider the possibility that the DM annihilation cross section is
enhanced inside cold substructures due to non-perturbative quantum correc-
tions Lattanzi and Silk (2009). This so-called Sommerfeld enhancement could
increase the annihilation cross section by orders of magnitude with respect
to its early-Universe value. The effect of such an enhancement on the heat-
ing/ionisation history of the IGM has been studied in Cirelli et al. (2009a),
where it has been shown that it could similarly increase the IGM tempera-
ture by orders of magnitude.

An interesting extension of our analysis would be to consider other DM
particles, such as “Exciting DM” (XDM) (see, e.g., (Finkbeiner and Weiner,
2007)). XDM can annihilate to produce two intermediate scalars φ that can
subsequently decay to standard model particles. If 2me < mφ < 2mµ, the
φ will mainly decay to an e+e− pair, with an energy spectrum extending up
to the mass of the XDM particle (Cholis et al., 2009). Such particles are well
motivated DM candidates and have been proposed to explain several other
astronomical observations Finkbeiner and Weiner (2007); Chen et al. (2009);
Cholis et al. (2009). Like LDM, the direct production of boosted e+e− pairs
following self-annihilation gives XDM the potential to produce observable
features in the global 21 cm signal. In fact, recently it has been determined
that particles with collisional long-lived excited states, and inspired by XDM
models, may have observable effects on the CMB and the 21 cm background
signal Finkbeiner et al. (2008).

We would also like to acknowledge the recent simulations by the Virgo
Consortium as part of its Aquarius project Springel et al. (2008a,b), conducted
during the writing of the most recent version of this paper. These simula-
tions investigate the properties of a Galaxy-sized DM halo and its substruc-
ture with unprecedented resolution. Whilst the results are largely consistent
with those deduced from the Via Lactea simulations, there are significant dif-
ferences. These include (i) four generations of resolved substructure (rather
than the two in Via Lactea II), (ii) a distribution of substructures that is not
self-similar to its host halo (rather than a fractal-like distribution observed in
Via Lactea), (iii) a subhalo mass function with an index of -1.9 (rather than the
-2.0 used in this study, although a brief discussion of the significance of such
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deviations on the clumping factor are made in § F.3.4). Whilst we acknowl-
edge that these differences may change some of our conclusions regarding
the detectability of the 21 cm global signature, we do not pursue an investi-
gation of these results here, but intend to incorporate them into a subsequent
study.

Finally, we note that the effect of DM annihilations on the 21 cm signal has
been further studied in Natarajan and Schwarz (2009), including the effects
on the brightness temperature fluctuations, that we have not considered here.
On the other hand, the authors do not include the effect of substructures in
their calculations.
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Figure F.23.: Evolution of the IGM kinetic (dashed blue curves) and spin (dot-
ted red curves) temperatures for annihilating LDM particles with a mass
of 3 MeV (left panels) and 20 MeV (right panels). In each plot we show
the results for the most optmistic clumping factors using the Burkert den-
sity profile (thick curves) and, for comparison, the kinetic and spin tem-
peratures in the absence of DM annihilations (thin curves). The CMB tem-
perature is also shown (black solid curve). In the case of 3 MeV LDM,
we also show the results for TK and TS, obtained using the fitting formula
for fabs. of Ripamonti et al. (2007) (dot-dashed thin red curves). The anni-
hilation cross section used is given by 〈σann.υ〉 = 1.2 × 10−28 cm3 s−1 and
〈σann.υ〉 = 4.4× 10−28 cm3 s−1 in the upper left and right plots respectively,
and a factor of 10 smaller in the corresponding lower plots. The clumping
factors used are B19 in the two upper panels, B15 in the lower left panel, and
B3 in the lower right panel.
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Figure F.24.: Evolution of the 21 cm differential brightness temperature δTb,
relative to δTb,0 calculated for the “no DM” model, for the four supersym-
metric models considered in the text, in the case of NFW (upper panel) and
Moore (lower panel) profiles. For each model and density profile we dis-
play results using the most optmistic clumping factors compatible with our
selection criteria based on the reionization redshift and on the gamma-ray
background (top panel: N4 for model 1, N2 for models 2, 3, 4; bottom panel:
M18, M8, M7, M4 for models 1, 2, 3 and 4 respectively). The annihilation
cross section 〈συ〉 = 2.7× 10−26 cm3s−1 for all models.
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Figure F.25.: Evolution of the 21 cm differential brightness temperature δTb,
relative to δTb,0 calculated for the “no DM” model, for LDM particles with
a mass of 3 MeV (upper panel) and 20 MeV (lower panel), for structures
with Burkert profiles. For each value of the mass, we consider two val-
ues of the annihilation cross section. In the case of 3 MeV LDM, we also
show the results obtained using the fitting formula for fabs. of Ripamonti et al.
(2007) (thin curves). For each model we display results using the most opt-
mistic clumping factors compatible with our selection criteria based on the
reionization redshift and on the gamma-ray background [top panel: B19 for
〈συ〉 = 1.2× 10−28 cm3s−1, B15 for 〈συ〉 = 1.2× 10−29 cm3s−1; bottom panel:
B19 for 〈συ〉 = 4.4× 10−28 cm3s−1, B3 for 〈συ〉 = 1.2× 10−28 cm3s−1].
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G. Estimation of cosmological
parameters

G.1. Inflation with primordial broken power law

In the past few years, a cosmological “concordance model” has emerged from
precision measurements of the cosmological observables. According to this
Λ cold dark matter (ΛCDM) model, the Universe has flat spatially geometry
and its overall energy density is contributed by baryons, dark matter, and
by an unclustered “dark energy” component. The structures we observe to-
day have been formed through gravitational instability, from initial, nearly
scale-invariant adiabatic Gaussian fluctuations. The observational basis for
this concordance model mainly lies in the measurements of the anisotropies
of the Cosmic Microwave Background (CMB) radiation Dunkley et al. (2009);
Komatsu et al. (2009), of the large-scale structure (LSS) of the Universe Tegmark et al.
(2004); Cole et al. (2005); Tegmark et al. (2006b), and of the Hubble diagram of
distant type Ia supernovae Riess et al. (1998); Perlmutter et al. (1999); Frieman et al.
(2008).

However, even if the model can satisfactorily explain the majority of cos-
mological observations, it still remains puzzling from a theoretical point of
view. In particular, while there are many theoretically motivated (from the
point of view of particle physics) candidates for the role of dark matter, on the
contrary a satisfactory explanation concerning the nature of dark energy still
does not exists, although many candidates have been proposed Frieman et al.
(2008); Peebles and Ratra (2003); Caldwell and Kamionkowski (2009). In fact,
a strong amount of fine tuning is required in order to explain the smallness
of the dark energy density with respect to any significant high-energy scale,
and the fact that dark energy and matter presently give the same contribu-
tion, within a factor of 3, to the total density of the Universe.

The above difficulties have led some authors to assess the robustness of
the evidence for the existence of dark energy (in the simplest form of a cos-
mological constant), and in particular its dependence on the underlying as-
sumptions related to the choice of a particular cosmological model. Recently,
it has been shown that the CMB data can be well fitted by an Einstein-de Sit-
ter model with zero cosmological constant, by relaxing the assumption that
the primordial power spectrum is a simple power law Blanchard et al. (2003).
Interestingly enough, the authors of Ref. Blanchard et al. (2003) find that the
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best-fit model with broken spectrum and no cosmological constant has a bet-
ter χ2 relative to the CMB power spectrum than the best concordance model.
Models with zero Λ can also fit the spectrum of matter fluctuations provided
that part of the matter content is given by a non-clustering component, for
example neutrinos with eV mass. The price to pay is that these models do
require a very low value of the Hubble constant, H0 ≃ 46 km s−1 Mpc−1, that
is inconsistent with the HST Key Project measurements of the Hubble con-
stant: H0 = 72± 9 km s−1 Mpc−1 Freedman et al. (2001). A possible expla-
nation could be that we live in an underdense region, that is thus expanding
faster than the average: this would imply that the locally measured “Hubble
constant” probed by the HST would be larger than the actual, cosmological
Hubble constant, probed by CMB observations. In any case, the analysis in
Ref. Blanchard et al. (2003) would seemingly indicate that, once the usual as-
sumptions on the form of the primordial power spectrum are dropped, the
Hubble diagram of distant supernovae Ia is the only direct evidence for the
presence of a cosmological constant.

Many generalization of the simple power-law shape of the primordial power
spectrum have been proposed, both on physical and observational grounds.
Here we will only consider models with a broken primordial power spec-
trum, since these were shown in Ref. Blanchard et al. (2003) to provide a
very good fit to the CMB data also with a zero cosmological constant. For
a bayesian analysis of other alternatives to the single power-law spectrum,
see for example Refs. Bridges et al. (2007); Bridges et al. (2006); Bridges et al.
(2009). Pandolfi et al. (2010b) have constrained the parameters of models
with a broken power law primordial spectrum, and assessed whether these
models (and in particular models with a broken power spectrum and ΩΛ = 0)
really represent a viable alternative to the concordance model. In fact, the χ2

goodness of fit is not the proper criterium to select which model, within a set,
does a better job in explaining the experimental data. A very reliable way to
assess the performance of a model is given by bayesian model selection. This
method automatically encodes Occam’s razor principle, since models with a
larger number of parameters are naturally penalised.

This section is thus organized as follows. In section II we describe our data
analysis method used, and we recall the basics of bayesian model compar-
ison. In Sec. III we show our results, and finally in Sec. IV we draw our
conclusions.

G.1.1. Likelihood Analysis

We consider three different cosmological models: the standard ΛCDM model,
a CDM model (i.e. a model with Ωm = 1) with a modified spectrum of pri-
mordial fluctuations, and a ΛCDM model also with a modified spectrum. In
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particular, we consider the case of a broken power law spectrum P(k), i.e.:

P(k) =







A1

(

k
kp

)n1
for k < k∗,

A2

(

k
kp

)n2
for k ≥ k∗,

(G.1.1)

with the continuity condition A1kn1∗ = A2kn2∗ . Then, if the usual, single
power law spectrum is defined in terms of two parameters, namely its am-

plitude As (as measured at the pivot wavenumber kp = 0.002 Mpc−1) and
spectral index ns, the broken power law spectrum will be defined in terms
of four out of the five parameters {A1, A2, n1, n2, k∗}. We choose the four
independent parameters to be n1, n2, k∗, and the amplitude As at kp. This
coincides with A1 or A2 depending if k∗ > kp or k∗ < kp.

The parameters of the ΛCDM model are, as usual, the physical baryon
density ωb, the cold dark matter density ωc, the ratio θ between the sound
horizon and the angular diameter distance to the last scattering surface, the
neutrino fraction fν, the reionization optical depth τ, the amplitude As of the
primordial spectrum at kp, and the scalar spetral index ns. The CDM model
with a broken spectrum, that we will call for simplicity “modified CDM”
(MCDM), is described by the following eigth parameters: ωb, θ, fν, τ, As, n1,
n2, k∗. The value of ωc is derived by the request that Ωm = 1. Finally, the
ΛCDM model with a broken spectrum (“modified ΛCDM”, or MΛCDM) is
described by nine parameters, namely ωb, ωc, θ, fν, τ, As, n1, n2,k∗. In all three
models we impose spatial flatness and purely adiabatic initial conditions, and
we consider three neutrino families with equal mass. We take implicit flat
priors on all the parameters. In particular, we take 0.8 ≤ n1 ≤ 2, 0.2 ≤ n2 ≤ 1

and 0.001 Mpc−1 ≤ k∗ ≤ 0.02 Mpc−1. It is clear that the MΛCDM model
encompasses the other two for particular values of the parameters: it reduces
to the ΛCDM when the two spectral indices are equal, n1 = n2, and thus the
spectrum becomes a single power law; and it reduces to the MCDM when
Ωm = 1.

We have modified the CAMB code in order to compute the spectrum of
CMB anisotropies for models with a broken power law spectrum like the one
in Eq. G.1.1. First, we constrain the variation of the parameters in the more
general MΛCDM model by means of a Markov Chain MonteCarlo (MCMC)
analysis of recent CMB data. The analysis method we adopt is based on
the publicly available Markov Chain Monte Carlo package CosmoMC with a
convergence diagnostics done through the Gelman and Rubin statistics. Since
we are interested, among other things, in assessing whether modifying the as-
sumptions on the shape of the primordial power spectrum reopens the possi-
bility for a purely matter-dominated Universe, we want to make sure that our
chains sufficiently explore the low-probability tails of the posterior distribu-
tion. For this reason, we have performed additional MCMC runs at different
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temperatures.
Our basic data set is the five-year WMAP data (temperature and polariza-

tion) with the routine for computing the likelihood supplied by the WMAP
team. We marginalize over a possible contamination from Sunyaev-Zeldovich
component, rescaling the WMAP template at the corresponding experimen-
tal frequencies. Then we also consider data on the matter power spectrum
from the 2dF galaxy survey Cole et al. (2005).

Finally, we perform a model comparison between the three models (for
an introduction to bayesian model comparison, see for example Ref. Trotta
(2008)). The relevant quantity assessing a model’s performance in explaining
the data is the bayesian evidence, namely the probability of the data given the
model: p(d|M). This can be related to the quantity we are really interested in,
the posterior probability of the model (i.e., the probability of the data given
the model), by applying Bayes’ Theorem, so that:

p(M|d) ∝ p(d|M)p(M), (G.1.2)

where we have dropped an irrelevant normalization constant p(d) that de-
pends only on the data. The quantity p(M) is the prior probability assigned
to the model.

When comparing two models M0 and M1, one is interested in the ratio
between the posterior probabilities:

p(M0|d)
p(M1|d)

=
p(d|M0)p(M0)

p(d|M1)p(M1)
. (G.1.3)

In absence of significant preference for any of the models, one can take the
prior to be equal, p(M0) = p(M1), and the ratio of the posteriors is thus
given by the ratio of the evidences, the so-called Bayes factor B01:

p(M0|d)
p(M1|d)

=
p(d|M0)

p(d|M1)
≡ B01. (G.1.4)

A value of B01 larger than unity means that the current data favour model 0
with respect to model 1, and viceversa.

The bayesian evidence for each model can be in principle evaluated by
writing

p(d|M) =
∫

p(d|θ, M)p(θ|M)dθ (G.1.5)

i.e. as the integral of the product of the likelihood times the prior over the
whole parameter space of the model. Unfortunately, evaluation of this inte-
gral is in general not easy, since it involves integration over a highly-dimensional
parameter space. Also, it requires that the tail of the posterior distribution for
the parameter have been adequately explored. However, this calculation can
be simplified when the two models that are compared are nested one into the
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Parameter Mean WMAP Max Like WMAP Mean WMAP+2dF Max Like WMAP+2df

100Ωbh2 2.14+0.10
−0.11 2.07 2.206+0.080

−0.078 2.211

Ωch2 0.1221± 0.011 0.1214 0.1118+0.0054
−0.0058 0.1097

ΩΛ 0.621+0.095
−0.094 0.648 0.708+0.039

−0.034 0.728

Ωm 0.379+0.094
−0.095 0.352 0.292+0.034

−0.039 0.271

H0 [km sec−1 Mpc−1] 62.8± 5.9 63.5 68.2+3.3
−3.1 69.6

fν ≤ 0.064 0.014 ≤ 0.042 0.0057

τ 0.0882+0.0075
−0.0090 0.0810 0.0914+0.0078

−0.0092 0.0838
zr 11.1± 1.6 10.7 10.9± 1.5 10.2

t0[Gyrs] 14.23+0.33
−0.32 14.18 13.98± 0.21 13.92

n1 1.017+0.061
−0.063 1.02 1.006+0.068

−0.067 0.979

n2 0.921+0.037
−0.039 0.897 0.948+0.025

−0.023 0.944

k∗ [Mpc−1] ≤ 0.012 0.012 ≤ 0.011 0.009

log[1010As] 3.204+0.055
−0.056 3.165 3.182+0.051

−0.054 3.160

n1 − n2 0.095+0.087
−0.089 0.12 0.057+0.085

−0.088 0.035

Table G.1.: MΛCDM model parameters and 68% credible intervals (first and third

column) and best fit values (second and fourth column), obtained using the WMAP

and WMAP+2dF datasets.

other, i.e., when one of the models reduces to the other for particular values
of the parameters, as it is the case for the models considered here.

G.1.2. Results

Parameter estimation

We show the constraints for the parameters of the MΛCDM model, obtained
using the WMAP and WMAP+2dF datasets, in Table G.1. For the sake of
comparison, we also show in Table G.2 the constraints on some of the param-
eters of the MΛCDM together with the constraints obtained in the ΛCDM
model, using in both cases the WMAP-only dataset. First of all, we notice
that the value of ΩΛ = 0.62± 0.10 for the WMAP dataset is lower than the
ΛCDM value ΩΛ = 0.67± 0.07. The uncertainity in the determination of
ΩΛ is also larger, probably as an effect of the introduction of the additional
parameters describing the modified power spectrum. Adding the 2dF data

shifts the dark energy to larger values and reduces the error, ΩΛ = 0.71+0.04
−0.03.

The value of the Hubble constant is also lower in the MΛCDM model when
using only the WMAP data, and is shifted to larger values when the 2dF data
are included. In the top panels of Fig. G.1 we show the posterior distribution
for ΩΛ and H0 for the MΛCDM model, using the WMAP data only and the
WMAP+2dF dataset.

For what concerns the parameters describing the shape of the primordial
power spectrum, using the WMAP-only dataset, we find that the low-wavenumber
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Parameter MΛCDM (WMAP) ΛCDM (WMAP)

ΩΛ 0.621+0.095
−0.094 0.669± 0.066

Ωm 0.379+0.094
−0.095 0.331± 0.066

H0 [km sec−1 Mpc−1] 62.8± 5.9 65.7± 4.9

n1 1.017+0.061
−0.063 0.950± 0.017

n2 0.921+0.037
−0.039 0.950± 0.017

k∗ [Mpc−1] ≤ 0.012 –

log[1010As] 3.204+0.055
−0.056 3.211+0.051

−0.058

n1 − n2 0.095+0.087
−0.089 0

Table G.2.: Comparison between the MΛCDM and ΛCDM 68% credible intervals

for selected parameters, obtained using the WMAP dataset.

spectral index n1 = 1.02± 0.06, so that the tilt of the spectrum could be ei-
ther blue or red, while the high-wavenumber spectral index is constrained to
be red, n2 = 0.92± 0.04. For comparison, the overall spectral index ns in the
ΛCDM model lies somewhere in the middle, ns = 0.95± 0.02. It is interesting
to note that the 68% credible intervals for n1 and n2 do not overlap. This is
made more clear if one looks a the marginalized posterior for ∆n ≡ n1 − n2.
We have that ∆n = 0.095+0.087

−0.089 and thus ∆n = 0 lies sligthly outside the
68% credible interval, indicating a weak preference for models with n1 6= n2.
The wavenumber at the break of the spectrum, k∗ is poorly constrained by
the data and could lie nearly anywhere in its prior range, although values

smaller than ≃ 0.012 Mpc−1 are preferred. The main effect of adding the 2dF
data is that the mean value of n2 is shifted to larger values, n2 = 0.95± 0.01,
and then there is a small overlap of the 68% credible intervals for n1 and n2.
We show the posterior distributions for n1, n2, k∗ and ∆n in the three lower
panels of Fig. G.1.

The reason for the fact that ΩΛ tends to be smaller in the enlarged MΛCDM
model with respect to the concordance ΛCDM model is that it exists a partial
degeracy between n2 and ΩΛ (or, equivalently, between n2 and Ωm). A mildly
red spectrum at the large wavenumbers can partially compensate for the in-
creased matter content and thus mimic of the effect a cosmological constant.
This is clear in the first panel of Fig. G.2, where we show the two-dimensional
68% and 95% credible intervals in the n2 −ΩΛ plane. In the same figure, we
also show the credible intervals in the n2 − H0 and n2 − n1 planes. On the
other hand we do not find any appreciable correlation between the value of
n1 and that of ΩΛ. One could naively expect that the late integrated Sachs-
Wolfe effect would make the effect of ΩΛ at the low multipoles partially de-
generate with a change of the slope of the primordial spectrum in the same
region. However this effect is probably masked by the large cosmic variance.
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Figure G.1.: Marginalized one-dimensional posteriors for ΩΛ, H0, n1, n2,
k∗ and ∆n using the WMAP data (solid [red] curves) and the WMAP+2dF
dataset (green [dashed] curves).

The sligthly blue best-fit value that we find for n1 is probably due to the effect
of the low quadrupole in the WMAP data.

Model comparison

In order to assess the performance of the models we consider here in explain-
ing the WMAP and 2dF data, we compute the Bayes factor between pairs of
models. We assume equal priors for all the models. We start by consider-
ing the MΛCDM model and the MCDM model, namely the model studied
in Ref. Blanchard et al. (2003). The MCDM model is equivalent to the more
general MΛCDM when ΩΛ = 0. Assuming that the prior is separable, the
Bayes factor can be shown to be equal to the Savage-Dickey density ratio, i.e.
the ratio between the one-dimensional posterior and the prior, evaluated at
the point where the more complex model reduces to the simpler one. Then
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Figure G.2.: Two dimensional 68% (darker regions) and 95% (lighter regions)
credible regions for (n2, ΩΛ) [upper left panel], (n2, H0) [upper right panel],
(n1, n2) [lower panel], using the WMAP-only [blue] and WMAP+2dF [red]
datasets.
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we can write for the Bayes factor BMCDM:

BMCDM ≡
p(d|MCDM)

p(d|MΛCDM)
=

p(ΩΛ = 0 | d, MΛCDM)

p(ΩΛ = 0 |MΛCDM)
. (G.1.6)

Since ΩΛ is a derived parameter, we do not know the exact form of the prior
p(ΩΛ = 0 |MΛCDM). However, it is reasonable to assume that it is nearly
flat between 0 and 1, so that we can take p(ΩΛ = 0 |MΛCDM) = const. = 1.
Another possible issue is due to the fact that the calculation of BMCDM in-
volves the value of the one-dimensional posterior for ΩΛ in ΩΛ = 0, i.e. at
the very extreme of the parameter space and very far from the region of max-
imum probablity. Usually the tails of the posterior are poorly sampled by
the MonteCarlo methods used for parameter estimation, like the Metropolis-
Hastings algorithm. To ensure that the value of p(ΩΛ = 0) that we get
is reliable, we have perfomed different MC runs at different temperatures,
meaning that samples are drawn from p(d |θ,M)1/T p(θ|M) instead than from
p(d |θ,M)p(θ|M) (i.e., the χ2 for each model is divided by T). This lowers the
height of the peak of the likelihood relatively to the tails and allows for bet-
ter exploration of the latters. Under these assumptions, we find, using the
WMAP data, that log(BMCDM) ≃ −4.3, indicating a quite strong preference
for the more complex MΛCDM model. In particular, the odds are ∼ 77 : 1
in favour of this model. Adding the 2dF data makes the evidence in favour
to the MΛCDM model even stronger: log(BMCDM) ≃ −4.9, corresponding to
odds of ∼ 133 : 1.

Then we turn to the comparison of the MΛCDM with the concordance
ΛCDM model. In this case the former model reduces to the latter for n1 = n2,
whatever the value of k∗. In this case, always assuming the separability of the
prior, the following generalization of the Savage-Dickey density ratio holds:

BΛCDM ≡
p(d|ΛCDM)

p(d|MΛCDM)
=

=
∫

p(n1, n2|d, MΛCDM)

p(n2|MΛCDM)

∣

∣

∣

∣

n2=n1

dn1. (G.1.7)

We find that log(BΛCDM) ≃ 0.77 when using only the WMAP data, meaning
that the evidence in favour of one or the other model is inconclusive. Adding
the 2dF data yields log(BΛCDM) ≃ 1.3, corresponding to odds 7 : 2, thus
indicating a weak preference for the simpler ΛCDM model.

Finally we can combine the two results for BMCDM and BΛCDM to compute
the evidence of the ΛCDM model relative to the MCDM model, simply given
by BΛCDM/BMCDM. We get that log(BΛCDM/BMCDM) ≃ 5.1 or 6.2 using the
WMAP-only or WMAP+2dF datasets respectively, indicating a strong prefer-
ence for the concordance model with respect to broken power law spectrum,
no-Λ models.
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G.1.3. Conclusions

In this paper we have investigated the constraints on cosmological mod-
els with a broken power-law spectrum of primordial fluctuations. We have
found that, using the WMAP data, it exists a weak preference for models
with a redder spectrum after the break. In fact we find the constraint ∆n ≡
n1− n2 = 0.095+0.087

−0.089 at 68% C.L. This preference tends to disappear when the
2dF data are taken into account. We also find that the limits on ΩΛ are slightly
relaxed with respect to the concordance ΛCDM model, allowing for smaller
values of ΩΛ. However, models with ΩΛ = 0 are still incompatible with the
observations. The constraints obtained in this paper could be improved by
using the small-scale data in the galaxy power spectrum on one side, and the
Supernovae Ia and Hubble Space Telescope data on the other. The informa-
tion from the smallest scales in the galaxy power spectrum would allow a
more precise detemination of n2, although it would crucially rely on a proper
treatment of the non-linear effects. Using a prior on H would indirectly allow
to reduce the constraints on n2 by virtue of the correlation between the two
parameters, as it is clear from the second panel of Fig .G.2. We do not expect
instead that any of these additional data will improve the constrants on n1,
since it mainly affects the largest scales and is poorly degenerate with other
parameters. Overall, using the non-linear scales and the Supernovae Ia or
Hubble data will lead to a better determination of ∆n.

We have also performed a bayesian model comparison analysis in order to
assess whether models with a modified primordial spectrum provide a bet-
ter interpretation of the WMAP and 2dF data. We find that the WMAP data
alone are not yet able to discriminate between the models with a modified pri-
mordial spectrum considered here, and the concordance model. Considering
also the 2dF data, we find that the concordance model is sligthly favoured.
On the other hand, models with ΩΛ = 0 and a broken power-law primordial
spectrum like those considered in Ref. Blanchard et al. (2003) are strongly
disfavoured with respect to the concordance ΛCDM model.
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MÜLLER, B.
Theory of core-collapse supernovae.
Phys. Rep. , 442, pp. 38–74 (2007).
doi:10.1016/j.physrep.2007.02.002.

JENKINS, A. ET AL.
Evolution of structure in cold dark matter universes.
Astrophys. J., 499, p. 20 (1998).
doi:10.1086/305615.

JONES, W.C., ADE, P., BOCK, J., BOND, J., BORRILL, J. ET AL.
A Measurement of the angular power spectrum of the CMB temperature
anisotropy from the 2003 flight of BOOMERANG.
Astrophys.J., 647, pp. 823–832 (2006).
doi:10.1086/505559.

560



Bibliography

KAMIONKOWSKI, M. AND PROFUMO, S.
Early Annihilation and Diffuse Backgrounds in Models of Weakly Interacting
Massive Particles in Which the Cross Section for Pair Annihilation Is Enhanced
by 1/v.
Phys. Rev. Lett., 101, p. 261301 (2008).
doi:10.1103/PhysRevLett.101.261301.

KAPLINGHAT, M., LOPEZ, R.E., DODELSON, S. AND SCHERRER, R.J.
Improved Treatment of Cosmic Microwave Background Fluctuations Induced by a
Late-decaying Massive Neutrino.
Phys. Rev., D60, p. 123508 (1999).
doi:10.1103/PhysRevD.60.123508.

KATZ, J.I.
A Cubic Micron of Equilibrium Pair Plasma?
ApJS , 127, pp. 371–373 (2000).
doi:10.1086/313350.

KLAPDOR-KLEINGROTHAUS, H.V., KRIVOSHEINA, I.V., DIETZ, A. AND

CHKVORETS, O.
Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990-
2003.
Phys. Lett., B586, pp. 198–212 (2004).
doi:10.1016/j.physletb.2004.02.025.

KNEBE, A., ARNOLD, B., POWER, C. AND GIBSON, B.K.
The Dynamics of Subhalos in Warm Dark Matter Models (2008).

KNODLSEDER, J. ET AL.
The all-sky distribution of 511-keV electron positron annihilation emission.
Astron. Astrophys., 441, pp. 513–532 (2005).
doi:10.1051/0004-6361:20042063.

KOLB, E.W. AND TURNER, M.S.
The Early Universe (Frontiers in Physics, Reading, MA: Addison-Wesley,
1990).

KOMATSU, E. ET AL.
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions:Cosmological Interpretation.
Astrophys. J. Suppl., 180, pp. 330–376 (2009).
doi:10.1088/0067-0049/180/2/330.

KOMATSU, E. ET AL.
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cos-
mological Interpretation (2010).

561



Bibliography

KREIMER, D. AND MIELKE, E.W.
Comment on: Topological invariants, instantons, and the chiral anomaly on spaces
with torsion.
Phys. Rev., D63, p. 048501 (2001).
doi:10.1103/PhysRevD.63.048501.

KUHLEN, M., DIEMAND, J. AND MADAU, P.
The Dark Matter Annihilation Signal from Galactic Substructure: Predictions for
GLAST (2008).

KUHLEN, M., MADAU, P. AND MONTGOMERY, R.
The spin temperature and 21cm brightness of the intergalactic medium in the pre-
reionization era.
Astrophys. J., 637, pp. L1–L4 (2006).
doi:10.1086/500548.

KUO, C.L., ADE, P., BOCK, J., BOND, J., CONTALDI, C. ET AL.
Improved Measurements of the CMB Power Spectrum with ACBAR.
Astrophys.J., 664, pp. 687–701 (2007).
doi:10.1086/518401.

KUZNETSOVA, I., HABS, D. AND RAFELSKI, J.
Thermal reaction processes in a relativistic QED plasma drop.
Phys. Rev. D, 81(5), pp. 053007–+ (2010).
doi:10.1103/PhysRevD.81.053007.

LARSON, D., DUNKLEY, J., HINSHAW, G., KOMATSU, E., NOLTA, M. ET AL.
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:
Power Spectra and WMAP-Derived Parameters (2010).

LATTANZI, M., RUFFINI, R. AND VERESHCHAGIN, G.
On the possible role of massive neutrinos in cosmological structure formation.
In M. Novello and S.E. Perez Bergliaffa (eds.), Cosmology and Gravitation,
volume 668 of American Institute of Physics Conference Series, pp. 263–287
(2003).

LATTANZI, M., RUFFINI, R. AND VERESHCHAGIN, G.V.
Joint constraints on the lepton asymmetry of the Universe and neutrino mass from
the Wilkinson Microwave Anisotropy Probe.
Phys. Rev. D, 72(6), pp. 063003–+ (2005).
doi:10.1103/PhysRevD.72.063003.

LATTANZI, M., RUFFINI, R. AND VERESHCHAGIN, G.V.
Do WMAP data constraint the lepton asymmetry of the Universe to be zero?
In Albert Einstein Century International Conference, volume 861 of American
Institute of Physics Conference Series, pp. 912–919 (2006).
doi:10.1063/1.2399677.

562



Bibliography

LATTANZI, M. AND VALLE, J.W.F.
Decaying warm dark matter and neutrino masses.
Phys. Rev. Lett., 99, p. 121301 (2007).
doi:10.1103/PhysRevLett.99.121301.

LATTANZI, M.
The majoron: a new dark matter candidate.
J. Kor. Phys. Soc., 56, p. 1677 (2010).

LATTANZI, M. AND MERCURI, S.
A solution of the strong CP problem via the Peccei-Quinn mechanism through the
Nieh-Yan modified gravity and cosmological implications.
Phys.Rev., D81, p. 125015 (2010).
doi:10.1103/PhysRevD.81.125015.

LATTANZI, M. AND SILK, J.I.
Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhance-
ment?
Phys. Rev., D79, p. 083523 (2009).
doi:10.1103/PhysRevD.79.083523.

LAVALLE, J., YUAN, Q., MAURIN, D. AND BI, X.
Full calculation of clumpiness boost factors for antimatter cosmic rays in the light
of ΛCDM N-body simulation results. Abandoning hope in clumpiness enhance-
ment?
A&A , 479, pp. 427–452 (2008).
doi:10.1051/0004-6361:20078723.

LEE, B.W. AND WEINBERG, S.
Cosmological lower bound on heavy-neutrino masses.
Phys. Rev. Lett. , 39, pp. 165–168 (1977).

LEIGH, R.G., HOANG, N.N. AND PETKOU, A.C.
Torsion and the Gravity Dual of Parity Symmetry Breaking in AdS4/CFT3 Holog-
raphy.
JHEP, 03, p. 033 (2009).
doi:10.1088/1126-6708/2009/03/033.

LESGOURGUES, J. AND PASTOR, S.
Massive neutrinos and cosmology.
Phys. Rept., 429, pp. 307–379 (2006).
doi:10.1016/j.physrep.2006.04.001.

LEWIS, A., CHALLINOR, A. AND LASENBY, A.
Efficient Computation of CMB anisotropies in closed FRW models.
Astrophys. J., 538, pp. 473–476 (2000).
doi:10.1086/309179.

563



Bibliography

LISZT, H.
The spin temperature of warm interstellar H I.
A&A , 371, pp. 698–707 (2001).
doi:10.1051/0004-6361:20010395.

LIU, A., TEGMARK, M., BOWMAN, J., HEWITT, J. AND ZALDARRIAGA, M.
An Improved Method for 21cm Foreground Removal (2009a).

LIU, J., YIN, P.F. AND ZHU, S.H.
Prospects for Detecting Neutrino Signals from Annihilating/Decaying Dark Mat-
ter to Account for the PAMELA and ATIC results.
Phys. Rev., D79, p. 063522 (2009b).
doi:10.1103/PhysRevD.79.063522.

LOEB, A. AND ZALDARRIAGA, M.
The small-scale power spectrum of cold dark matter.
Phys. Rev., D71, p. 103520 (2005).
doi:10.1103/PhysRevD.71.103520.

LYTH, D.H. AND STEWART, E.D.
Axions and inflation: String formation during inflation.
Phys. Rev., D46, pp. 532–538 (1992).
doi:10.1103/PhysRevD.46.532.

MA, C.P. AND BERTSCHINGER, E.
Cosmological perturbation theory in the synchronous and conformal Newtonian
gauges.
Astrophys. J., 455, pp. 7–25 (1995).
doi:10.1086/176550.

MACK, G.D., JACQUES, T.D., BEACOM, J.F., BELL, N.F. AND YUKSEL, H.
Conservative Constraints on Dark Matter Annihilation into Gamma Rays.
Phys. Rev., D78, p. 063542 (2008).
doi:10.1103/PhysRevD.78.063542.

MADAU, P., MEIKSIN, A. AND REES, M.J.
21-cm Tomography of the Intergalactic Medium at High Redshift.
Astrophys. J., 475, p. 429 (1997).
doi:10.1086/303549.

MALTONI, M., SCHWETZ, T., TORTOLA, M.A. AND VALLE, J.W.F.
Status of global fits to neutrino oscillations.
New J. Phys., 6, p. 122 (2004).
doi:10.1088/1367-2630/6/1/122.

MARCH-RUSSELL, J., WEST, S.M., CUMBERBATCH, D. AND HOOPER, D.
Heavy Dark Matter Through the Higgs Portal.

564



Bibliography

JHEP, 07, p. 058 (2008).
doi:10.1088/1126-6708/2008/07/058.

MARCH-RUSSELL, J.D. AND WEST, S.M.
WIMPonium and Boost Factors for Indirect Dark Matter Detection.
Phys. Lett., B676, pp. 133–139 (2009).
doi:10.1016/j.physletb.2009.04.010.

MARTINS, C.J.A.P., MENEGONI, E., GALLI, S., MANGANO, G. AND MEL-
CHIORRI, A.
Varying couplings in the early universe: correlated variations of α and G.
Phys. Rev., D82, p. 023532 (2010).
doi:10.1103/PhysRevD.82.023532.

MATHEWS, G., LAN, N. AND KOLDA, C.
Late Decaying Dark Matter, Bulk Viscosity and the Cosmic Acceleration.
Phys.Rev., D78, p. 043525 (2008).
doi:10.1103/PhysRevD.78.043525.

MCKINNEY, J.C.
General relativistic magnetohydrodynamic simulations of the jet formation and
large-scale propagation from black hole accretion systems.
MNRAS , 368, pp. 1561–1582 (2006).
doi:10.1111/j.1365-2966.2006.10256.x.

MCQUINN, M., ZAHN, O., ZALDARRIAGA, M., HERNQUIST, L. AND

FURLANETTO, S.R.
Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of
Reionization.
Astrophys. J., 653, pp. 815–830 (2006).
doi:10.1086/505167.

MELCHIORRI, A., DE BERNARDIS, F. AND MENEGONI, E.
Limits on the neutrino mass from cosmology.
AIP Conf. Proc., 1256, pp. 96–106 (2010).
doi:10.1063/1.3473882.

MENEGONI, E., PANDOLFI, S., GALLI, S., LATTANZI, M. AND MELCHIORRI,
A.
Constraints on the Dark Energy Equation of State in Presence of a Varying Fine
Structure Constant.
International Journal of Modern Physics D, 19, pp. 507–512 (2010).
doi:10.1142/S0218271810016506.

MENEGONI, E.
New constraints on variations of fine structure constant from cosmic microwave
background anisotropies.

565



Bibliography

AIP Conf. Proc., 1256, pp. 288–292 (2010).
doi:10.1063/1.3473868.

MENEGONI, E., GALLI, S., BARTLETT, J.G., MARTINS, C.J.A.P. AND MEL-
CHIORRI, A.
New Constraints on variations of the fine structure constant from CMB
anisotropies.
Phys. Rev., D80, p. 087302 (2009).
doi:10.1103/PhysRevD.80.087302.

MERCURI, S.
Peccei–Quinn mechanism in gravity and the nature of the Barbero–Immirzi pa-
rameter.
Phys. Rev. Lett., 103, p. 081302 (2009).
doi:10.1103/PhysRevLett.103.081302.

MERCURI, S. AND TAVERAS, V.
Interaction of the Barbero–Immirzi Field with Matter and Pseudo-Scalar Pertur-
bations.
Phys. Rev., D80, p. 104007 (2009).
doi:10.1103/PhysRevD.80.104007.

MEREGHETTI, S.
The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray
pulsars.
A&A Rev., 15, pp. 225–287 (2008).
doi:10.1007/s00159-008-0011-z.

MESZAROS, P.
Gamma-ray bursts.
Reports of Progress in Physics, 69, pp. 2259–2322 (2006).
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A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing.
ApJ , 564, pp. 60–64 (2002).
doi:10.1086/324138.

566



Bibliography

MOORE, B.
Evidence against dissipationless dark matter from observations of galaxy haloes.
Nature, 370, p. 629 (1994).
doi:10.1038/370629a0.

MOORE, B., QUINN, T.R., GOVERNATO, F., STADEL, J. AND LAKE, G.
Cold collapse and the core catastrophe.
Mon. Not. Roy. Astron. Soc., 310, pp. 1147–1152 (1999).
doi:10.1046/j.1365-8711.1999.03039.x.

MUSTAFA, M.G. AND KÄMPFER, B.
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