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Active Galactic Nuclei
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AGN-Unification
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Blazar

o The emission is strongly boosted

o The emission is produced from the        

compact region in the jet

o Unique possibility to investigate the 

sub-parsec scale structure of jet
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Radiogalaxies
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Radiogalaxy types
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14110  serg Radio luminosity 14110  serg

Bulk motionLow Γ High Γ

BrightnessToward core Toward edges

jetinefficient energy 

transport

Collimated, efficient 
energy transport  

FR I- BL Lac

FR II- FSRQ
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Components
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M87 jet

knots
lobes

Observations in the gamma-ray band can help to understand the particle acceleration 

and emission processes in the components of radio galaxies
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Large Area Telescope (LAT)

KEY FEATURES

• 20 MeV   >300 GeV photon 
energies

• 2.4 Steradian field of view

• Operated in scanning mode, so 
views the entire sky every 3 
hours.

• Point Source Sensitivity

Fermi LAT- new view
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Gamma-ray Burst Monitor (GBM) 
8 keV - 40 MeV

129106  scm
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Third Catalog of AGN
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Non-Blazar AGNs
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New Possibilities

6/21/2016 11

PASS 8

Pass 8 provides a full reprocessing of 
the entire mission dataset, including 
an improved event reconstruction, a 
wider energy range, better energy 
measurements, and significantly 

increased effective area.

The accumulation of a larger data

set allows detailed temporal

analysis in short and long time

scales, as well as to study the

spectrum with better statistics at

energies above several GeV.



Sahakyan

Analysis
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Time period:  2008-2015 (7 years)

Allows to study the variability in short and long time scales which allows 
to investigate the physical processes, such as particle acceleration and 

emission mechanisms, origin of flares and size, structure and location of 
the emission  

Energy range: 100 MeV- 300 GeV

The improved statistics allows to investigate the spectrum above GeV
energies and test the power-law with exponential cut and broken power-
law models. Any cut-off or break in the spectrum will be defined by
the cooling of relativistic particles.
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Results
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Spectra
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Sources with hard spectrum
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NGC 6251
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PKS 0625-354
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The HESS spectrum can be explained when the Power-Law Exponential cut-off 
model is extrapolated to TeV energies. 
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Unusual spectrum
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Variability
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3C 207

NGC6251

3C 275.1
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Variable Sources
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3C 380

3C 111
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NGC 1275
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Flare-Post Flare
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First Flaring period
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Index changes from 2.2 to <2.0

Kataoka et al. 2010
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More detailed view
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GB 1310+487

6/21/2016 25

Gamma-ray/radio-loud narrow-line AGN at z = 0.638.
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Flare -1 and Flare -2
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Flare -1
2009-11-16––2009-12-21

Flare -2
2010-04-26––2010-07-26

112

04081

11

23491
exp

361446
102083 






























 MeVscm

E

.

E
)..(

dE

dN
.. 112

02091

11

46065
exp

361446
1012036.1 






























 MeVscm

E

.

E
).(

dE

dN
..



Sahakyan

Luminosity-Photon index
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FRI

FRII NLSy1
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Individual Sources
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Cen A core @ HE (4 year data)
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Fermi LAT data from four years of observations of Cen A => detection of HE (>100 MeV)  
gamma-rays up to 50 GeV  with detection significance of about 44 sigma

The power-law fit with data:

The spectrum shows a tendency for a 
deviation from a single power law with 
respect to the data above several GeV.

Broken power-law fit with data:
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Sahakyan, Yang, Aharonian, and Rieger 2013 ApJ , 770, L6

The log likelihood ratio test givea preference to 
a broken power-law model.
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Second Component ?
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The results of the data analysis reveal a hardening of the (average) gamma-ray core 
spectrum toward higher energies. The  “unusual” break at 4 GeV could most naturally be 
explained by a superposition of different spectral components.

The power-law fit in the range 0.1-4 GeV

Sahakyan, Yang, Aharonian, and Rieger 2013 ApJ , 770, L6





1  2.74  0.02photon index     -

flux  -




F  (1.68  0.04)10
7 phcm2s1

detection significance  - 1944TS

The power-law fit in the range 4-100 GeV





2  2.09  0.2photon index     -

Flux -




F  (4.2  0.64)10
10 phcm2s1

detection significance- 4.124TS

hardening of the spectrum !
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Time variability





R 
D
1 z

ctvar cm
Time variability       region size

31

Low Energy Component

45 day bin

High Energy Component

90 day bin
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Spectral Energy Distribution
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HESS data

For a distance of 3.8 Mpc, corresponds to apparent (isotropic) gamma-ray luminosities:

and                                                 which are larger than VHE 

luminosity reported by HESS  




L (0.1 4GeV) 10
41ergs1





L ( 4GeV) 1.4 10
40ergs1





L ( 250GeV)  2.610
39ergs1Aharonian et al. 2009, ApJ, 695, L40

Aharonian et al. 2009
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Origin of HE and VHE gamma-rays
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(1) non-thermal processes in its BH magnetosphere (Rieger & Aharonian 2009),

(2) multiple SSC-emitting components (i.e.,  differential beaming; Lenain et al. 2008), 

(3) photo–meson interactions of protons in the inner jet (Kachelrieß et al. 2010; Sahu et al.2012),

(4) gamma-ray-induced pair-cascades in a torus-like region (Roustazadeh & Bottcher 2011), 

(5) secondary Compton upscattering of host galaxy starlight (Stawarz et al. 2006),

(6) inverse-Compton processes in the kpc-scale jet (Hardcastle & Croston 2011).

The lack of significant variability + limited angular resolution (∼5 kpc)-> uncertainties
production site of the HE gamma-ray emission. 
In terms of SSC processes occurring in inner jet-> well modeling up to a few GeV (e.g., 
Chiaberge et al. 2001; Abdo et al. 2010). However the hardening on the HE spectrum 
above 4 GeV -> appearance of a physically different component.
Different scenarios for new additional component:

Also gamma-rays can be produced  from relativistic protons. Effective gamma-ray production 
if the diffusion coefficient does not exceed                                                                          by 
much. An interesting possibility, especially for the hard HE component with photon index 
close to 2.1, given the similarity to so-called “Fermi Bubbles”.





D ~ Rh
2 /tpp ~10

28(Rh /10kpc)
2(102 cm3 /n)cm2 s1
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Cen A lobes @ HE- 10 month data 
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



F  0.7710
7 ph cm2 s1N lobe-





F 1.0910
7 phcm2 s1S lobe-





  2.6With photon index  

Count map SED

Gamma-rays are the result of IC  scattering of 
cosmic microwave background photons and 
the extragalactic background light photons by 
in situ accelerated electrons

Fermi-LAT Collaboration, Science , 2010, 328,  725.

After 10 months Fermi LAT operation discovery of the HE gamma-ray emission from radio lobes. 
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Cen A lobes @ (3 year data)
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3 times larger than the previous observation -> study the morphology and photon spectrum 
with higher statistics.

1) detected >10 sigma up to  6 GeV

2) photon index -2.6 for Southern, harder 

for Northern -2.24

3)  substantial extension of HE emission

beyond radio/ WMAP for Northern part

4) HE gives model-independent info about 

spatial distribution of electrons

Yang , Sahakyan  + Rieger A&A, 2012, 542, A19
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Spatial distribution of electrons
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The radio luminosity depends on electron 

density       and magnetic-field square      .

The IC gamma-ray luminosity only depends 

on        ->  only HE gamma-rays can give 

model-independent information about both

the energy and spatial distribution of electrons.

eN 2B

eN

Yang , Sahakyan  + Rieger A&A, 2012, 542, A19

Extension of HE emission observed for Cen A 
Northern lobe -> example showing  no 
conclusions can be made about electron 
density based on radio observations !
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Origin of gamma rays

Leptonic origin:

radio emission          nonthermal / synchrotron radiation existence of 

multi-GeV  electrons photons scattering due to IC on 

different target photon field.

i)     CMB photon field – main contribution

ii)     EBL photon field – some contribution (for highest       energies)

iii)      Synchrotron photon field – negligible

Hadronic origin:

protons can interact with the ambient low density plasma,

creating daughter mesons and neutral component decay 

into  -rays

















p  p 0 





37









Sahakyan

Electron spectrum
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



f
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(Pr f )



(br f )



2(dr f )

 2

The general equation describing evolution of energy distribution function  f of relativistic 

particles can be written as

is the energy loss rate,      is the diffusion coefficient,      is the fluid velocity and     and         
are acceleration efficiencies. After integration by volume
rP rD ru rb rd




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N
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where                 is electron energy distribution function ,       is escape time and                is 
the injection rate of electrons. The solution of kinetic equation is
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Escape of particles from the lobes

39

The electrons lose energy mainly by IC cooling

The particles can escape from the lobes only by diffusion

where            is the diffusion coefficient and generally is taken in the form  





esc 
R2

2D(E)

3
)(

cr
ED

g


is the particle gyroradius and    is the gyrofactor.

the escape distance is

which is very small compared to the size of the outer lobes of Cen A (250 kpc) 

)(ED
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
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 and        is energy loss rate of electrons
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Origin of gamma-rays
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EBL
EBL

pp pp

Leptonic gamma-rays

Synchrotron emission and IC scattering of  

electrons for injection                       and 

. The maximum total energy of 
leptons

yrt 7108





max 10
6





We  610
57erg

Hadronic gamma-rays

For                           the maximum 

energy of hadrons

GeVEp 55max 





Wp 10
61(n /104cm3) 1erg

Yang , Sahakyan  + Rieger A&A, 2012, 542, A19
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Fornax A
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Ackerman, Ajelo and et al. 2016

Distance- 18.6 Mpc
Lobe size- 389 kpc

Detection significance: TS=121≈11 σ

6.1 years
2008 August 4 2014 September 4

The spectrum:       Γ=2.080.08

Flux: 
12 -12100.78)(5.34  scmerg
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Observation in the other waveband
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Tashiro et al. 2009

Radio photon  index: Γ=1.68

X-ray photon  index: Γ=1.62
The same population of electrons is responsible

for radio (synchrotron) and X-ray (IC/CMB) 

emissions. 
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IC scattering of EBL photons
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Georganopoulos et. al., 2008 

The exact measurement of gamma-ray 
flux will allow to measure the EBL.
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Overall SED
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The multi-wavelength spectrum allows self-consistent estimation
of the parameters describing the particle distribution.  
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Leptonic
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Several Maxwellian
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The total electron spectrum is formed from the contribution of several relativistic 

Maxwellian distributions

)........,( 21 ici  
4

1

ci

iW



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Lepto Hadronic scenario
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The low energy emission produced from synchrotron emission of electrons, X-ray 
Emission from  the IC scattering of CMB photons on the same electrons. The 

gamma-ray emission produced from the interaction of protons. 
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Emission from the compact regions
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3C 120 radio galaxy at the redshift z=0.033 is an active and powerful emitter of radiation
at all the observed wavebands

Large Scale jet up to 100 kpc with

several knots.

Harris et al. (2004)
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Emission from the knots
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Aharonian 2002

Harris et al. 2004

Both the proton synchrotron model and the electron self synchrotron model predict 

flux detectable by Fermi LAT
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Gamma-ray emission from 3C 120
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Based on 5 years of data
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New data analysis- flare
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Spectrum: flare vs averaged
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The jet luminosity                                  which corresponds to 10 % 
Eddington accretion power

Origin of gamma-rays
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Synchrotron/Synchrotron self-Compton radiation)

144106  sergL jet

Monthly variability- emission region size

cmRb

1810

Doppler boosting

4
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Another example….
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B(G) α γmin γc Ue/Ub

Solid line 0.18 2 100 11500 1

Dashed 

line

0.14 2 200 4500 8

4

1017







cmRb

3C 111
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Conclusions
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The analysis of 7-year of Fermi LAT data from the observations of 
radio galaxies allows to investigate both the spectrum and 
variability.

The spectra of several sources show deviation from a simple 
power-law modeling (NGC 6251, NGC 1275 etc) 

Strong variation of gamma-ray flux and photon index of NGC 1275 
radio galaxy is found. 

The modeling of the emission from extended lobes of Cen A and
Fornax A, indicates that the proton contribution can be significant.

The analysis of simultaneous X-ray data will allow to reconstruct
the nonthermal electron spectrum and investigate the particle
acceleration/emission in the sub-parsec scale structures of radio
galaxies.


