SN rates from SUDARE survey SUpernova Diversity And Rate Evolution with VST telescope

Vahagn Harutyunyan

Capodimonte Astronomical Observatory - INAF-Napoli

E. Cappellaro, **M. T. Botticella, M. Della Valle**, G. Pignata, **A. Grado**, L. Greggio, **L. Limatola**, M. Vaccari, A. Baruffolo, S. Benetti, F. Bufano, M. Capaccioli, **E. Cascone**, G. Covone, D. De Cicco, S. Falocco, M. Jarvis, L. Marchetti, N. R. Napolitano, M., Paolillo, A. Pastorello, M. Radovich, **P. Schipani**, S. Spiro, L.Tomasella, and M.Turatto

Overview & Aims

- SNe as endpoints of stellar evolution
- SN classes and main issues
- SN rates

SUDARE

- survey strategy and pipeline
- SN sample
- galaxy sample

Results

- SN rates per volume and stellar mass units
- SN rates as a function of cosmic time
- SN rates as a function of galaxy colour, mass, SFR & sSFR

SN classes

Turatto 2003

SNe Core Collapse (Type II, Ib/c, GRB-SNe)

 $M > 8 \pm 1 M_{\odot}$

lack of progenitors above $\sim 20 M_{\odot}$? LBV luminous explosion, new mechanism? SLSNe new types ?

IIP and few Ib/c progenitors have been detected in HST pre-explosion images within 30 Mpc

occur in late type galaxies trace the SFR

Smartt 2009 Eldridge+2013

Whelan & Iben 1973 Tutukov & Yungelson 1981

details of binary evolution, identity of progenitor systems explosion mechanisms?

nonrotating $\sim 1.38 M_{\odot}$

Arnett 1969, Nomoto 1982

Delay Time Distribution

Fraction of la & II SNe per subtypes

SUDARE

SUpernova Diversity And Rate Evolution

conducted on VST (VLT Survey Telescope) telescope at ESO

monitoring two of the best studied extragalactic fields: CDFS & COSMOS

to measure rates of different SNe in the redshift range 0.1 < z < 0.8

117 SNe & ~130000 galaxies in CDFS1, CDFS2 and COSMOS pointings up to z < 1

VST - VLT Survey Telescope

Capaccioli & Schipani 2011

OmegaCAM camera 2.6m primariy morror $u-z (0.3-1\mu)$ 8×4 CCDs $4k \times 2k$ pixels $1 deg^2$ with $0.214'' pix^{-1}$

OmegaCAM

Kuijken 2011

Credit: ESO

SUDARE on CDFS & COSMOS fields

Cosmic Evolutionary Survey

UltroVISTA 3.5 Subaru Optical ACS IRAC MIPS 3.0 00020 2.5 0 0 0 0 0 0 1.5 1.5 151.0 150.5 150.0 149.5 149.0 R.A. (J2000)

1 deg²

g, **r**, **i** - SUDARE, P.I. Cappellaro - INAF GTO

Chandra Deep Field South

VST-Tube & SUDARE pipelines

search image

template image

difference image

transient detection

SNe

	*	
2012-11-10	2012-08-13	2012gv
		No.
	-	
2012-11-10	2012-08-13	2012gu
	2012 00 12	2012at
2012-11-10	2012-08-13	201290
		22
2012-10-25	2012-08-13	2012gs
•		
2012-10-07	2012-08-13	2012fq
	100 M	
2012-10-13	2012-08-13	2012fp
		C. C. C. C.
		10 10 * 1 10 1
2012-10-13	2012-08-13	2012fo
	4	
•		1. 1. N. 2.
2012-10-07	2012-08-13	2012fn
	an a	
2012-09-14	2012-08-13	2012fa
	State of the second	Start Start
12-2-5-0 -0.1000000000005-5-	•	

AGNs

Variable stars

Moving objects

Spurious detection

photometric typing

Detection Efficiency

artificial star experiments with range of magnitudes and positions on images

500 fake stars per image

three different criteria to position the fake stars

- events associated with galaxies
- event that coincide with persistent point like sources
- events with no counterpart in the template image

percentage detected/injected events

detection efficiency

SN sample

r-band mag at discovery

z distribution

galaxy catalog obtained from

UltraVISTA survey

30 bands

GALEX, Subaru/SupremeCam, VISTA/VIRCAM, Spitzer/IRAC, MIPS

Muzzin+2013

Galaxy sample

0 < z < 1

CDFS

VOICE-CDFS 4 deg²

g, r, i - SUDARE, P.I. Cappellaro - INAF GTO u - VOICE, P.I. Covone & Vaccari - INAF GTO J, H, K - VIDEO P.I. Jarvis FUV, NUV - GALEX IRAC - Spitzer CDFS 1,2

12 bands

source detection & photometry

EAZY

SExtractor

SFR, sSFR, & Mass

Star vs. Galaxy

$$J - K > 0.18 \times (u - J) - 0.75$$
 for $u - J < 3.0$
 $J - K > 0.08 \times (u - J) - 0.45$ otherwise.

Brammer+2008 Muzzin+2013

Photometric z

after removing outliers \sim 14% rms=0.02

methods to asses the quality of photo z

- analyse width of CI and quality measurements
- comparing with different z estimates
- comparing with available spectroscopic z

spectroscopic z

COSMOS 4377 galaxies CDFS 3362 galaxies

Star forming & Passive galaxy separation

U-V Balmer break

V-J "red" passively evolving from "red" dusty SF

$$U - V > 1.3$$
 $V - J < 1.5$ at all redshifts
 $U - V > (V - J) \times 0.88 + 0.69$ for $0 < z \le 1$

Williams+2009

Control Time & SN rates

Control Time(CT)-the effective observing time

Zwicky 1942

CT depends on SN luminosity and light-curve evolution

total CT of a campaign is the sum of CT for each observation

Cappellaro+1997

Ia, Ib/c, II, IIn & SLSN considered separately simulate a number N of events that explore the possible epochs of explosion:

SN rate per unit volume

CC SN rate as a function of cosmic time

Ia SN rate as a function of cosmic time

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

Ia SNe rates compared with models

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

SN rates as a function of galaxy colour

in late types SN Ia rate is higher than in early types

"blue" galaxies exhibit 30 times higher la rates than that of "red"

Mannucci+2005

van den Bergh 1990

Della Valle & Livio 1994

SN rates vs. B-K galaxy colour (AB mag)

SN rates in SF & passive galaxies

SN type	gal type	N _{SN}	rate
Ia	passive star-forming	4.0 32.6	$\begin{array}{c} 0.5^{+0.2}_{-0.3} \\ 2.7^{+0.5}_{-0.4} \end{array}$
CC	passive star-forming	0.0 13.6	< 0.1 4.4 ^{+1.2} _{-1.3}

Ia SN rate a factor of ~4 higher in SF over passive galaxies

CC SN rate order of mag higher in SF over passive galaxies

SN rates as function of sSFR

divided into 3 groups

Sullivan+2006

factor 5 increase for la factor 15 increase for CC

SN rates as a function galaxy mass

Work in progress...

SN rates as a function of galaxy radio & infrared power

SN rates in filed vs galaxy clusters

Harutyunyan+ in preparation

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

Supernove, Hypernove and Binary Driven Hypernove, Pescara - June 20-30, 2016

Conclusions

- rates per unit volume are in agreement with other results
- CC SN rates consistent with SFH assuming for 8-40 Mo range
- the dispersion of SN Ia rate does not allow to discriminate between SD & DD models
- no evolution for type Ib/c, IIn consistent with local measurements, no SLSN gives the upper limit
- rates per unit mass as function of B-K colour have the same trend in local Universe and intermediate z
- both types CC & Ia SNe show more than an order of increase from passive to starburst galaxies
- clear increase of rates per unit mass with sSFR confirmed at intermediate z