Massive Stellar Black Hole Binaries and Gravitational Waves

Chris Belczynski¹
Tomek Bulik¹
Daniel Holz
Richard O'Shaughnessy

Wojciech Gladysz¹ and Grzegorz Wiktorowicz¹

¹Astronomical Observatory, Warsaw University

- BH-BH binaries: modeling (field)
- BH-BH mergers: formation (field)
- BH-BH detection: astrophysical implications of LIGO detections

modeling: synthetic universe

Star formation rate update

revised SFR: merger rate decrease

Metallicity evolution update

revised metallicity: merger rate increase

Predictions: BH-BH merger rates and masses

Evolutionary assumptions and uncertainties:

- global properties: cosmology, SFR(z), Z(z), $f_{\text{binary-fraction}}$
- initial conditions: IMF, q, a_{orbit}, e, V_{rotation}
- single star evolution: winds + mixing -> radius & BH mass?
- binary CE evolution: development criteria + survival?
- BH formation: SN or Direct BH -> BH mass?
- BH formation: BH natal kicks -> low or high?

population synthesis calculations ->

Maximum BH mass: first breakthrough

stellar origin BH can reach: $\sim 100~M_{\odot}$ (Zamperi & Roberts 2009; Mapelli et al. 2009)

– two existing updates:

IMF extension: $\sim 300 \text{ M}_{\odot}$ (Belczynski et al. 2014)

- two upcoming updates:

Pair-instability SNe: $\lesssim 50 \text{ M}_{\odot}$ (Belczynski et al. 2016)

Common envelop at low Z: second breakthrough

BH-BH progenitors survive CE at low Z: rates up by 70 times!!! (Z_{\odot} -> 0.1 Z_{\odot}) (low-Z stars: RLOF beyond HG -> convective envelope -> CE & orbit decay)

Formation of massive BH-BH merger

- low metallicity: $Z < 10\% Z_{\odot}$
- CE: during CHeB
- delay: 10 Gyr or 2 Gyr
- O1 horizon: z = 0.7 (inspiral-merger-ringdown)
- \bullet total merger mass: 20–80 ${
 m M}_{\odot}$
- aligned BH spins: tilt= 0 deg

• BH spin:
$$a = 0.0 -> a = 0.126$$

 $a = 0.5 -> a = 0.572$
 $a = 0.9 -> a = 0.920$

credit: Wojciech Gladysz (Warsaw)

BH-BH progenitors: birth times

typical BH-BH progenitors: very old (10 Gyr) or young (2 Gyr) systems

LIGO detections: all BH-BH mergers (44 days)

BH-BH mergers:

GW150914: $36 + 29 \text{ M}_{\odot}$, LVT151012: $23 + 13 \text{ M}_{\odot}$, GW151226: $8 + 14 \text{ M}_{\odot}$

BH-BH mergers: LIGO 60 days of O2

of BH-BH detections: 64 (M1), 62 (M10), 2 (M3) in 60 days of LIGO O2

Astro implications: from BH-BH merger detection

- massive BH-BH merger: dominant GW source (field evolution)
 (1000 × over NS-NS, 200 × over BH-NS)
- BH-BH merger: comparable masses, aligned (?) birth spins
- BH-BH progenitor: either very old or young and low Z environ
- easy common envelope: (case B) excluded
- high BH kicks: most likely excluded (more detections?)
- field detection rates: 40 times higher than for dynamical BH-BH!
 (Belczynski et al. 2016 versus Rodriguez et al. 2016)

Birth time distribution for BH-BH progenitors

BH natal kicks: extras 1/4

EM observations: no good information

if BH kicks decrease with $M_{\rm BH}$:

- asymmetric mass ejection
- asymmetric neutrino emission
 both mechanisms: OK!

Belczynski et al. 2015 (arXiv:1510.04615)

Observations (Tomek Bulik): 1/3

The interesting case of IC10 X-1 and NGC300X-1

- WR stars mass ~30 solar masses
- Compact objects ~ 20-30 solar masses (but see later)
- Orbital period ~ 1.25 days
- Future evolution: mass transfer, mass loss, formation of 2nd BH
- Formation of BH-BH with the coalescence time ~a few Gyrs
- · Low metallicity host galaxies

Bulik, Belczynski, Prestwich 2011

Observations (Tomek Bulik): 2/3

Rate density estimate

- Estimate of the observability volume and object density
- Estimate of the time to coalescence
- Just two objects low stastistic leads to high uncertainty
- Rate density very high
- Expected to be close to detection even with Initial LIGO/VIRGO
- Expected component mass range:
 - ~20-40 solar mass
- · Expected total mass:
 - ~60 solar masses

Bulik, Belczynski, Prestwich 2011

Observations (Tomek Bulik): 3/3

Potential problem with mass estimate

- Recent mesurement of the X-ray eclipse over the optical lightcurve (Laycock et al. 2015)
- Offset of 0.25 in phase
- The radial velocity has a contribution from ionized wind velocity
- Imply a possibility that the companion is a low mass BH or a NS
- Model of Kerkwijk et al. (1996)

Potential problems:

Evolution: it is very difficult to form a massive WR star in a binary with a low mass compact object

Mass transfer: if wind, then the Xray luminosity (10³⁸ erg/s) is unusually high (too large by 2-3 orders of magnitude)

Mass transfer: if RLOF, then the system should not be stable.

It is still quite likely that the companions in IC10 X-1 and NGC300 X-1 are ~20 solar mass BHs

Advanced LIGO/Virgo upper limits: OLD OLD OLD

most likely detection: BH-BH merger with total redshifted mass $\,$ 25–73 M_{\odot}

Initial mass function update: 2/5

revised IMF: merger rate increase (de Mink & Belczynski 2015)

Overall updates (2010-2015):

Most important recent model updates:

- low metallicity introduced: $Z_{\odot} \rightarrow 10\% Z_{\odot} \rightarrow 1\% Z_{\odot}$ (2010)
- binary CE evolution: more physical (2012)
- NS/BH formation: updated models (2012)
- first metallicity grid: 11 grid points (150% Z_{\odot} –0.5% Z_{\odot}) (2013)
- BH natal kicks: low and high (2015)
- initial conditions: a_{orb} , e, f_{binary} (2015, now)
- global properties: IMF, SFR(z), Z(z) (now)
- metallicity grid: 32 grid points (150% Z_☉-0.5% Z_☉) (now)
- statistics: Monte Carlo (2 millions -> 20 millions) (now)

BH-BH progenitors: chemical composition

typical BH-BH progenitors: low metallicity stars $\emph{Z} < 10\%\,\emph{Z}_{\odot}$

