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Take go home

Numerical relativity has reached a stage that allows to study realistic
astrophysical scenarios

Roadmap
Astrophysical
scenario Hypothesis
Evolve Initial data

Choose a numerical
formulation




To be on the same page ...

Formulation, gauge conditions and numerical code:

Local one in town

. Punture gauge
conditions:

< a=—a*f(a) K 0t2.{3i = a®E O - 770t..3i

dt | i
Control size of Control distortion of
volume elements volume elements

- AMR GRMHD lllinois code
embedded in Cactus
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What astrophysical problems can be
addressed with NR?

The simplest one: Vacuum

One-body problem:
R ———

M From theoretical point
of view: Excellent

[J From astrophysical point
of view: Crude approx
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What astrophysical problems can be

addressed with NR?

A simple one: Single star

M From astrophysical point
of view: E0S, NS stabillity, ..
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Lora-Clavijo et al.: in preparation



What astrophysical problems can be
addressed with NR?

1
A simple one: Single star Ryy = 8m (Tuv - 59;“/T>
M From astrophysical point I \Vhat about B field?
of view: EoS, NS stability, ..
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What astrophysical problems can be
addressed with NR?

A bit more complicated: Pulsars in full GR

@ Regime:
» Flat-spacetime:
1. Dipole magnetic B-field (Maxwell in vacuum)

2. Pulsar magnetosphere is well-described by force-free
proposed by Goldreich & Julian '69 justification by
Philippov et al. '13

3. Back-reaction of B-field onto the matter is ignored

4. Deviations from sphericity are ignored (e.g. due to
rotation)

(Komissarov '02, McKinney '06, Spitkovsky '06)



What astrophysical problems can be
addressed with NR?

A bit more complicated: Pulsars in full GR

@ Regime:
* Curve-spacetime:

1. Frame dragging induces an enhanced E field that
modifies the structure of the magnetosphere

2. A GRMHD simulation shows a possible deviation in
the pulsar spin down luminosity from flat spacetime
( Palenzuela '12)

What can we say about it?
e ——————



What astrophysical problems can be
addressed with NR?

A bit more complicated: Pulsars in full GR

0.5

@ Regime:
* In: Ideal MHD (frozen-in B field) 0.25

* Out: Force-free electrodynamics ol in

ab ab ab ab
1™ =T1quia + 1Tem = 1eMm —0.25

« What about B field back- —0%

reaction? T ——

MW < 1 Ruiz et al. 2014
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What astrophysical problems can be
addressed with NR?

Pulsars in full GR

Oblateness alone
does NOT matter! ‘

V(B (P e
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What astrophysical problems can be
addressed with NR?
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What about the two-body problem?

The simplest one: Vacuum Ry, = 8m <T"7€Q“'/T )

GWs carry out energy and momenta:
The orbit shrinks and then the system
collapses

e —————

. Let’s try a numerical evolution:
Credit: NASA/Tod Strohmayer (GSFC) But the singularity?

Dana Berry (Chandra X-Ray Observatory) /
| — M/Q2r)
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What about the two-body problem?

0
The simplest one: Vacuum Ry, = 8m (T‘,%QWT )

Let’s try a numerical evolution:
Factor out the singular term &
evolve regular term
(Brandt-Bruegmann ‘97)

Courtesy: M. Alcubierre
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What about the two-body problem?

| Puncture gauge.:
Ingredients for a
successful evolution: d

i—% a=—a’f(a)K Otzdz - Ozf Otfz — 11 0”32'
dt
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T — —————— Hannam et aI. 2008



What about the two-body problem?

_ Puncture gauge:
Ingredients for a

successful evolution: J Y o |
——— . F ¥ = —(tzf(a') K Ot ",32 = Y € Oth — 1) (‘)t.,.'/)-’z
at

| —  ——

" Campanelli et al. ‘06 |
Baker et al. ‘06 ‘

Singular term: — " AX




What about the two-body problem?

18 P Dimensionless Ricci Scalar
7N\ 03 04 05 06 0.7
—* ) E e
/'-4—_ . _//. \"‘~ -—"/ O ? C 8
/N
1/’ ': L
05 .l ," 'j Y ®
\ 'I /
e S e .
s RN
°« _— ¢ .
P N/
-05 [ e \ o .
l. — _.._—"r
N\ 4 .
— . ”
o °
0.7
-15 : B:03
-15 -05 0.5 15 Mass Ratio: 3.0
XM
R — E—

First ingredient to explain, for example,
X-shaped galaxies
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Radio image of the galaxy NGC 326




What about the two-body problem?

A bit more complicated: matter spacetimes Ry, = 8 (Tuu = %guuT)

B ——

[] Stellar Evolution: The birth, life, and death of a star (Jorge's talk)

[ Binary system immerse in a magnetized environment

M Binary systems: BH-BH, BH-NS and NS-NS

‘-—w




What about the two-body problem?

: . : 1
A Dbit more complicated: matter spacetimes Ry, =8 (Tw = 59,,,,7“)

S —

Binary BHs and magnetized accretion disk: Near decoupling regime

[ Initial data:
Accretion disk model
around a single BH

[ = 4/3 radiation
pressure dominated,
optically thick disk

EE—
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Gold et al. 2014




What about the two-body problem?

: . : 1
A Dbit more complicated: matter spacetimes Ry, = 8m (Tw - 59;,,,7“)

S —

Binary BHs and magnetized accretion disk: Postdecoupling regime

[ Initial data:
Accretion disk models
around a single BH

[ = 4/3 radiation
pressure dominated,
optically thick disk

T— T—

Gold et al. 2014




What about gravitational waves?

: . : 1
A Dbit more complicated: matter spacetimes Ry, = 8m (Tw - 59;,,,7“)

S —

Binary BHs and magnetized accretion disk: Postdecoupling regime

M Waveforms (h+) are plotted
in the region of r/M =40

Gold et al. 2014
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What about the two-body problem?

A bit more complicated: matter spacetimes Ry, = 8 (Tu-u — %gm/T>

S — E—

Why magnetized accretion disk are important?
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What about the two-body problem?

A bit more complicated: matter spacetimes Ry, = 8 (Tu-u — %.%J)

T — —

Why magnetized accretion disk are important?

Multi-messenger astronomy:

Gravitational radiation: Coupled to the dynamics of the source

Electromagnetic Radiation: Interaction of charged particles
with matter and/or radiation around the source




What about the two-body problem?

Binary BH-NS and NS-NS: Precursor of Short Gamma ray burst?

GRB: Flashes of gamma rays associated with extremely
energetic explosions

M Long gamma-ray bursts (> 2s): Associated with rapid star
formation, core-collapse supernova (Jorge’s talk)

[ Short gamma-ray bursts (< 2s): Associated with BH-NS and NS-
NS merger (hypothesis)

e e ——
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Can we prove it numericallyﬂ
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What about the two-body problem?

Inaries

Let’s start with BH-NS b

t/M =4921

t/M =4921
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What about the two-body problem?

Inaries

Let’s start with BH-NS b
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What about the two-body problem?

We know that GRMHD
studies of magnetized
accretion disk

onto a BH have shown a jet
(eg. McKinney et al. '12)

Ideal MHD
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What about the two-body problem?

MHD- BHNS simulation: Jet if the disk is artificially seeded
with a purely poloidal B field then the system launches a jet
(Etienne et al. '"12)

et e



What is the issue?

The fluid motion, after tidal disruption, becomes strongly
toroidal, dragging the B field into a toroidal configuration.
Beckwith, Hawley & Krolik 2008: We need a strong poloidal
component

e e




What is the issue?

The fluid motion, after tidal disruption, becomes strongly
toroidal, dragging the B field into a toroidal configuration.
Beckwith, Hawley & Krolik 2008: We need a strong poloidal
component

w_:‘ -_—“

What if we use Pulsars?

New Features:

1) B field lines attached to
the fluid thread the BH
before tidal disruption.

2) After tidal disruption, the ’l
- exterior and interior fluid
elements in the disk are

linked via the B field:
Strong poloidal B field.




BH-NS simulations: Setup

CTS initial data: NS is an irrotational, unmagnetized polytrope n=1.
BH: a/m = 0.75 and mass ratio 3:1

BH (NS) resolved by 60 (80) points

Two orbits prior to tidal disruption, we insert the dipole B field generated
by a current loop such that (Frozen in-condition):

1. NS Interior: the ratio of the gas to magnetic
pressure is f ~20. The B field is dynamically week.

‘3 = Pg‘as/[)nmg

T —

2. NS Exterior: > 0.01. The exterior is magnetic

pressure dominated. We set a variable atmosphere
at B-insertion time such that our MHD code can handle it.




BH-NS simulation

Paschadilis et al. 2015

p
log .
o8 {p,,.a_tw)]
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Disk life-time: At ~ Mg /M ~ 0.5(Mys/1.4Mg)s

Consistent with typical sGRB Tgo
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What about NS-NS?

] aLIGO/Virgo: the best-bet rate for detection BH—-NS mergers
IS ~10/yr

M aLIGO/Virgo: the best-bet rate for detection NS—NS mergers
is ~40/yr

Our best chance: NS-NS

S ———eee =

%+ Rumor of a gravitational wave detection at LIGO detector |

from a NS-NS binary system 1

— e — — —— —




NS-NS simulation

( Preliminary results )

Lang et al. in preparation




NS-NS simulation

( Preliminary results )

Lang et al. in preparation
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Final Comments

Numerical relativity is the current tool to tackle unresolved
problems in theoretical astrophysics and GR

BH-NS and NS-NS binaries are viable sGRB engines

Multi-messenger astronomy: New observational window!
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