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Introduction

In this work we define the notions of center of mass and intrinsic angular momentum for
isolated systems, also we obtain their dynamical evolution when gravitational radiation
is emitted.

In Newtonian theory and special relativity one can find a particular trajectory with
the property that the mass dipole moment vanishes at this trajectory. This special
trajectory is called the center of mass. If one would like to generalize this concept to
GR, then the goal would be to find a worldline in spacetime with analogous properties
to the one described in Newtonian gravity or special relativity.

Thus, to implement this ideas one should generalize the mass dipole moment/angular
momentum 2-form to GR, and then define the center of mass worldline as the special
place where the mass dipole vanishes. As a bonus one should obtain the intrinsic
angular momentum evaluating the non-vanishing part of this generalized 2-form on
the center of mass worldline.

The evolution of isolated systems and its gravitational radiation naturally fits with
the notion of asymptotically flat spacetimes. Thus, our approach will be based on
this mathematical framework.
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Asymptotically Flatness and I +

A spacetime (M , gab) is called asymptotically flat if the curvature tensor vanishes as
infinity is approached along the future-directed null geodesics of the spacetime. These
geodesics end up at what is referred to as future null infinity I +, the future null
boundary of the spacetime .
A future null asymptote is a manifold M̂ with boundary I + ≡ ∂M̂ together with a
smooth lorentzian metric ĝab, and a smooth function Ω on M̂ satisfying the following

M̂ = M ∪I +

On M , ĝab = Ω2gab with Ω > 0
At I +, Ω = 0, n∗a ≡ ∂aΩ 6= 0 and ĝabn∗a n∗b = 0

Since I + is a null hypersurface in the rescaled manifold M̂ the restriction of the
rescaled metric on this null boundary takes the form

dŝ2 = 4dζd ζ̄
P2 . (1)
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Asymptotically Flatness and I +

One can introduce a set of coordinates in the neighborhood of I +. Associated with
the NU coordinates (u, r , ζ, ζ̄), there is a null tetrad system denoted by (l∗a ,n∗a ,m∗a ,m̄∗a ),
the first tetrad vector l∗a is defined as

l∗a = ∇au, (2)

Thus, la∗ is a null vector tangent to the geodesic of the null surface. The second tetrad
vector n∗a is normalized to l∗a

n∗a l∗a = 1. (3)

The null tetrad is finally completed with the choice of a complex vector ma∗ orthogonal
to la∗ and na∗

m∗a m̄∗a = −1, (4)

and zero for any other product. The spacetime metric is then given by

gab = l∗a n∗b + n∗a l∗b −m∗a m̄∗b − m̄∗a m∗b . (5)
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Asymptotically Flatness and I +

A quantity η that transforms as η → eisλη under a rotation ma∗ → eiλma∗ is said to
have a spin weight s. For any function f (u, ζ, ζ̄), we define the differential operators
ð∗ and ð̄∗ by

ð∗f = P1−s ∂(Psf )
∂ζ

, (6)

ð̄∗f = P1+s ∂(P−sf )
∂ζ̄

, (7)

where f has a spin weight s and P is the conformal factor defining the metric.
Now, consider a different choice of the original u cut of I +.

uB = Z(u, ζ, ζ̄) u = T(uB, ζ, ζ̄). (8)

where Z is a smooth function and T is the inverse of Z , and where this function
satisfaces the relation ṪZ ′ = 1.
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Asymptotically Flatness and I +

Now it is possible to define a new set of null vectors (la,na,ma, m̄a) associated with the
coordinates (uB, rB, ζ, ζ̄) where the new null surfaces intersect I on the uB = const
cuts. These coordinates are the Bondi coordinates, where uB = Z(u, ζ, ζ̄) and rB = Z ′r .
Since the NU and Bondi null tetrad are two different vector basis, we can express any
one in term of the other.

l∗a = 1
Z ′ [la −

L
rB

m̄a −
L̄
rB

ma + LL̄
r2

B
na], (9)

n∗a = Z ′na, (10)

m∗a = ma −
L
rB

na, (11)

m̄∗a = m̄a −
L̄
rB

na, (12)

where
L(uB, ζ, ζ̄) = −

ð(uB)T
Ṫ

= ð(u)Z(u, ζ, ζ̄)|u=T(uB,ζ,ζ̄). (13)
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Asymptotically Flatness and I +

Figura : Bondi family cuts. this family intersects I + at uB = cte.
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Asymptotically Flatness and I +

Figura : NU family described from a Bondi system.
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The Spin Coefficient Formalism

As the spacetime is assumed to be empty in a neighborhood of I + the gravitational
field is given by the Weyl tensor. Using the available tetrad one defines five complex
scalars, whose asymptotic behavior is

ψ0 = Cabc
dma lblcmd '

ψ0
0

r5
B
, ψ3 = Cabc

d lanbncm̄d '
ψ0

3
r2

B
.

ψ1 = Cabc
dna lblcmd '

ψ0
1

r4
B
, ψ4 = Cabc

dm̄anbncm̄d '
ψ0

4
rB
.

ψ2 = 1
2(Cabc

d lanbmcm̄d − Cabcd lanblcnd) ' ψ0
2

r3
B
.

Some of those equations relate the Weyl scalars with the Bondi shear, i.e.
ψ0

2 + ð2σ̄0 + σ0 ˙̄σ0 = ψ̄0
2 + ð̄2σ0 + σ̄0σ̇0, (14)

ψ0
3 = ð ˙̄σ0, (15)

ψ0
4 = −¨̄σ0, (16)

with σ0 the value of the Bondi shear at null infinity.

σ = mamb∇a lb '
σ0

r2
B

(17)

This complex scalar is called the Bondi free data since σ̈0 yields the gravitational
radiation reaching null infinity.
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The Spin Coefficient Formalism

In the same way we can define the Weyl scalars in NU using the fact that the Weyl
tensor Cabc

d is conformally invariant.

ψ∗1 = Cabc
dna∗lb∗lc∗m∗d ' ψ0∗

1 r−4,

σ∗ = m∗am∗b∇a l∗b ' σ0∗r−2.

From the tetrad equations, we can find transformations from NU to Bondi for any
scalar or spin coefficient. In particular we are interested in

ψ0∗
1

Z ′3 = [ψ0
1 − 3Lψ0

2 + 3L2ψ0
3 − L3ψ0

4 ], (18)

where ψ0∗
1 is constructed from the N-U tetrad. Similarly we find the relation between

σ0∗ and σ0

σ∗0

Z ′ = σ0 − ð2Z . (19)

where σ0∗ is the NU shear.
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The Spin Coefficient Formalism

Finally, the Bianchi identities (in Bondi coordinates) are given by

ψ̇0
0 = −ðψ0

1 + 3σ0ψ0
2 , (20)

ψ̇0
1 = −ðψ0

2 + 2σ0ψ0
3 , (21)

ψ̇0
2 = −ðψ0

3 + σ0ψ0
4 . (22)

Note that eq. (14) defines a real variable Ψ called the mass aspect.

Ψ = ψ0
2 + ð2σ̄0 + σ0 ˙̄σ0, (23)

In term of Ψ is possible to write the Bondi Mass M and Bondi lineal momentum P i

by

M = − c2

8π
√

2G

∫
ΨdS , (24)

P i = − c3

8π
√

2G

∫
Ψl̃ idS , (25)
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Regularized Null Cone Cuts

Another important variable in our construction is the null cone cut of null infinity.
The leading contribution to the solution comes from the Huygens part of the Null
Cone Cuts equation

ð̄2ð2Z = ð̄2σ0(Z , ζ, ζ̄) + ð2σ̄0(Z , ζ, ζ̄), (26)
In particular, the kernel of the RNC cuts is a 4 dim space xa, i.e. a flat cut

Z0 = xa`a, xa = (R0,Ri), `a = (Y 0
0 ,−

1
2Y 0

1i).

Thus, if xa(u) describes a worldline in the solution space, the function Z(xa(u), ζ, ζ̄)
describes a one parameter family of NU cuts. Solutions of this equation are very
difficult to obtain in closed form. We thus search for perturbative solutions

Z = Z0 + Z1 + Z2 + ..., (27)
where each term in the series is determined from the previous one and the free data
σ0(uB, ζ, ζ̄). The first two terms satisfy

ð̄2ð2Z0 = 0, (28)
ð̄2ð2Z1 = ð̄2σ0(Z0, ζ, ζ̄) + ð2σ̄0(Z0, ζ, ζ̄). (29)

The first perturbative order Z1 is given by,

Z1 = R0 − 1
2RiY 0

1i +
(
σij

R
12 +

√
2

72 σ̇
ig
I Rf εgfj

)
Y 0

2ij , (30)
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Definitions of Center of Mass and Angular Momentum

Given a u = const. null foliation, which can be either NU or Bondi, introducing an
affine parameter r and constructing the r = const. 2-surface with surface element
l∗[an∗b]dS , the linkage integral is defined as

Lξ(I +) = − 1
16π lim

r→∞

∫ (
∇[aξb] +∇cξ

c l̂∗[an̂∗b]) l̂∗a n̂∗b dS , (31)

with ξa the asymptotic Killing vector. This vector satisfies the asymptotic Killing
equation

ξa;b + ξb;a = O(r−n) (32)
(ξa;b + ξb;a)lb∗ = 0. (33)

Directly from the linkage integral we define the mass dipole momentum and the
angular momentum

D∗i + ic−1J∗i = − c2

12
√

2G

[
2ψ0

1 − 2σ0ðσ̄0 − ð(σ0σ̄0)
Z ′3

]∗i
. (34)
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Definitions of Center of Mass and Angular Momentum

Exist a special worldline in the N-U foliation such that, at each u = const. cut, the
mass dipole momentum D∗i vanishes. This special worldline will be called the center
of mass worldline. The angular momentum J i∗ evaluated at the center of mass will
be called intrinsic angular momentum S i .
The center of mass worldline is then determined from,

Re
[

2ψ0
1 − 2σ0ðσ̄0 − ð(σ0σ̄0)

Z ′3

]∗i
= 0. (35)

Likewise, the intrinsic angular momentum is given by

S i = − c3

12
√

2G
Im
[

2ψ0
1 − 2σ0ðσ̄0 − ð(σ0σ̄0)

Z ′3

]∗i
, (36)

evaluated at the center of mass worldline. To write down the mass dipole moment
and and angular momentum in Bondi coordinates it is convenient to define analogous
quantities in a Bondi tetrad, i.e.,

Di + ic−1J i = − c2

12
√

2G
[
2ψ0

1 − 2σ0ðσ̄0 − ð(σ0σ̄0)
]i
. (37)

15 / 23



Definitions of Center of Mass and Angular Momentum

Using the relations between the NU and the Bondi null vectors to transform the
quantities (ψ0∗

1 , σ0∗, ð∗)→(ψ0
1 , σ

0, ð), one can write as

D∗i(u) = Di(uB) + 3c2

6
√

2G
Re[ðZ(Ψ− ð2σ̄0) + F ]i (38)

J i∗(u) = J i(uB) + 3c3

6
√

2G
Im[ðZ(Ψ− ð2σ̄0) + F ]i (39)

with

F = −1
2(σ0ðð̄2Z + ð2Zðσ̄0 − ð2Zðð̄2Z)

−1
6(σ̄0ð3Z + ð̄2Zðσ0 − ð̄2Zð3Z). (40)

If we insert the center of mass RNC cut Z1 in (38), then its l.h.s. vanishes on a u =
const. surface and we obtain an algebraic equation to be solved for Ri(u). Equation
(39) then gives a relationship between S i and J i , the intrinsic and total angular
momentum respectively.
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Approximations and Assumptions

Although the main equations have been presented above, to obtain the explicit form
of the worldline in this work we will make the following assumptions.

σ = 0 for some initial Bondi time, usually taken to be −∞.
Ri is a small deviation form the coordinates origin.
R0 = u assuming the slow motion approximation.
The Bondi shear only has a quadrupole term.

Using the tensorial spin-s spherical harmonics Y 0
0 ,Y 0

1i ,Y 0
2ij , etc., one can expand the

relevant scalars at null infinity as

σ0 = σij(uB)Y 2
2ij(ζ, ζ̄),

ψ0
1 = ψ0i

1 (uB)Y 1
1i(ζ, ζ̄) + ψ0ij

1 (uB)Y 1
2ij(ζ, ζ̄), (41)

Ψ = −2
√

2G
c2 M − 6G

c3 P iY 0
1i(ζ, ζ̄) + Ψij(uB)Y 0

2ij(ζ, ζ̄),

So, we write the linearized solution Z = u + δu with

δu ≡ −1
2Ri(u)Y 0

1i(ζ, ζ̄) + 1
12σ

ij
R(u)Y 0

2ij(ζ, ζ̄), (42)
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Main Results

Then we make a Taylor expansion of the Bondi tetrad variables up to first order in
δu, we take the real and the imaginary part of the l = 1 component of eq. and use
that Di∗ vanishes at a u = const. cut to write

MRi = Di + 8
5
√

2c
σij

RP j , (43)

J i = S i + RjPkεijk . (44)

Then, using our definition of center of mass in the Bianchi identities and solving for
the real and imaginary l = 1 component, obtain

Ḋi = P i , (45)

J̇ i = c3

5G (σkl
R σ̇

jl
R + σkl

I σ̇
jl
I )εijk . (46)

In the same way taking the l = 0, 1 part of the Ψ̇ yields the mass loss equation and
the linear momentum time rate, namely,

Ṁ = − c
10G (σ̇ij

Rσ̇
ij
R + σ̇ij

I σ̇
ij
I ), (47)

Ṗ i = 2c2

15G σ̇jl
Rσ̇

kl
I ε

ijk . (48)
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Main Results

Now, taking a time derivative of eq. (43), using eq. (45), and writing up to quadratic
terms in σij , gives

MṘi = P i + 8
5
√

2c
σ̇ij

RP j , (49)

the relationship between the velocity of the center of mass Ṙi and the Bondi
momentum. It departs from the newtonian formula by radiation terms.
Finally, taking one more Bondi time derivative of (49) yields the equation of motion
for the center of mass,

MR̈i = 2c2

15G σ̇jl
Rσ̇

kl
I ε

ijk + 8
5
√

2c
σ̈ij

RP j . (50)

The r.h.s. of the equation only depends on the gravitacional data at null infinity and
the initial mass of the system.
Similarly, taking a time derivative of (44) together with (46) gives

Ṡ i = J̇ i = c3

5G (σkl
R σ̇

jl
R + σkl

I σ̇
jl
I )εijk . (51)
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Main Results

In the PN equations the radiative energy loss, the linear and angular momentum loss
are given by (in units of G = c = 1)

ĖPN = −1
5 U̇ ijU̇ ij − 16

45 V̇ ijV̇ ij − 1
189 U̇ ijkU̇ ijk

− 1
84 V̇ ijkV̇ ijk (52)

Ṗ i
PN =

(16
45 U̇ klV̇ jl + 1

126 U̇ klmV̇ jlm
)
εijk

− 2
63(U̇ jkU̇ ijk + 2V̇ jkV̇ ijk) (53)

J̇ i
PN = −

(2
5U klU̇ jl + 32

45V klV̇ jl
)
εijk

−
( 1

63U klmU̇ jlm + 1
28V klmV̇ jlm

)
εijk (54)

where in the above equations the quadrupole as well as octupole terms have been
included.
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Main Results

To compare both approaches, we must include in our formalism the octupole
contribution to the equations for the mass, angular and linear momentum

Ṁ = − 1
10(σ̇ij

Rσ̇
ij
R + σ̇ij

I σ̇
ij
I )− 3

7(σ̇ijk
R σ̇ijk

R + σ̇ijk
I σ̇ijk

I ), (55)

Ṗ i = − 2
15 σ̇

kl
R σ̇

jl
I ε

ijk −
√

2
7 (σ̇jk

R σ̇
ijk
R + σ̇jk

I σ̇
ijk
I )

−3
7 σ̇

klm
R σ̇jlm

I εijk . (56)

J̇ i = 1
5(σkl

R σ̇
jl
R + σkl

I σ̇
jl
I )εijk

+9
7(σklm

R σ̇jlm
R + σklm

I σ̇jlm
I )εijk . (57)

Making the following association

σij
R = −

√
2U ij σij

I = 8
3
√

2
V ij

σijk
R = −1

9U ijk σijk
I = 1

6V ijk
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Final Comments

We have defined the notion of center of mass and spin for asymptotically flat
spacetimes.

The main tools used in our approach are the linkages together with a canonical
NU foliation constructed from solutions to the Regularized Null Cone cut
equation. The RNC cut foliation is given in the so called Newman Penrose gauge
with a vanishing shear in the asymptotic past.

We have obtained equations of motion for these variables linking their time
evolution to the emitted gravitational radiation.

We have compared our equations with those derived from the PN formalism, the
results are very encouraging since, the r.h.s. of the evolution equation for these
variables are identical in both formulations. However, the relationship between
total linear momentum and the velocity of the center of mass is different in both
approaches.
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Thank you
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