
Loop Quantum Cosmology: Effective Dynamics

Edison Montoya

Escuela de Física, Universidad Industrial de Santander, Bucaramanga, Colombia.

Julio Garavito Armero Meeting, ICRA-UIS
23-25 Noviembre

Edison Montoya (UIS) LQC 1 / 47



Download-> http://math.ucr.edu/home/baez/week280.html

Edison Montoya (UIS) LQC 2 / 47



The implications of the Big Bounce

The qualitative picture is that non-perturbative quantum geometry
corrections create a ’repulsive’ force.
The universe follows a classical trajectory till the matter density ρ reaches
about ∼ 1% of the Planck density ρPl.
When the density is near to the Planck density, the universe bounces.
Spacetime fluctuations are severely constrained on both sides of the
bounce. At very early times, before the bounce, the universe was as
classical as ours.
The ’horizon problem’ disappears.
LQC calculations provide an a priori justification for using classical
general relativity during inflation.

Edison Montoya (UIS) LQC 3 / 47



Introduction

Loop Quantum Gravity
Is a non-perturbative and background independent quantization of General
Relativity. Some important results of the theory are the statistical description
of the black holes entropy and the discrete spectrum of the volume and area
operators, which gives a picture of a discrete space-time.

Loop Quantum Cosmology
is a reduce model that uses the Loop Quantum Gravity techniques in order to
quantize cosmological models. A significant result from this theory is the
resolution of the Big Bang singularity, which is replace with a Bounce that take
place near to the Planck density.

Loop quantum cosmology has provided a complete description of the
quantum dynamics in the case of isotropic cosmological models and
singularity resolution has been shown to be generic. The theory has been
generalized to anisotropic universes. The idea is to solve the quantum
dynamics for these models.
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Introduction
Effective Dynamics

Effective Dynamics
This effective theory comes from the construction of the full quantum theory
and we expect that it gives some insights about the quantum dynamics of
semiclassical states. The accuracy of the effective equations has been
established in the isotropic cases and thus we expect that they should give an
excellent approximation of the full quantum evolution for semiclassical states.

We analyzed the solutions to the effective equations that come from the
improved LQC dynamics of the Bianchi I, II and IX models.

These models are of interest to the issue of singularity resolution in the
context of the Belinskii, Khalatnikov and Lifshitz (BKL) conjecture.
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Introduction
BKL and Mixmaster

Belinskii, Khalatnikov and Lifshitz (BKL) Conjecture
Classical universes that have the BKL behavior are universes in which the
dynamics near to the big bang singularity is dominated by the time
derivatives, which turn been more important than the spatial derivatives.
Therefore locally approach the Bianchi IX universe.

Mixmaster
In Bianchi IX when the universe approaches the big bang singularity, there is
an oscillatory behavior between Bianchi I solutions with Bianchi II transitions.
This is known as the mixmaster behavior, studied first by Misner.
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Introduction
Bianchi Models

We want to study homogeneous and anisotropic universes, these kind of
universes are classified as Bianchi models. We are interested in

Bianchi I, which the spacetime is like M = Σ× R where Σ is a spatial
3-manifold which have a 3-dimensional group of symmetries generated
by three translations.

ds2 = −N2dt2 + a1(t)2d2x + a2(t)2 dy2 + a3(t)2 dz2 (1)

Bianchi II, which the spacetime is like M = Σ× R where Σ is a spatial
3-manifold which have a 3-dimensional group of symmetries generated
by two translations and a rotation on a null 2-plane.

ds2 = −N2dt2 + a1(t)2 (dx − αz dy)2 + a2(t)2 dy2 + a3(t)2 dz2 (2)

where α is a switch (Bianchi I α = 0, Bianchi II α = 1).
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Introduction
Bianchi Models

Bianchi IX, which the spacetime is like M = Σ× R where Σ is a spatial
3-manifold which have a 3-dimensional group of symmetries generated
by three rotations that can be identified by the symmetry group SU(2).
The Bianchi IX metric can be construct from the fiducial co-triads

oω1
a = sinβ sin γ(dα)a + cos γ(dβ)a,

oω2
a = − sinβ cos γ(dα)a + sin γ(dβ)a, (3)

oω3
a = cosβ(dα)a + (dγ)a,

with physical co-triads ωi
a = ai (t)oωi

a and 3-metric qab := ωi
aωbi . The

spacetime metric is
gµν = −nµnν + qµν (4)
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Introduction
Phase space variables

We use the fiducial triads and co-triads to introduce a convenient
parametrization of the phase space variables, Ea

i ,A
i
a given by

Ea
i = piLiV−1

0

√
|oq| oea

i and Ai
a = c iL−1

i
oωi

a. (5)

Thus, a point in the phase space is now coordinatized by six real numbers
(pi , c i ) with Poisson brackets given by

{c i , pj} = 8πGγ δi
j . (6)

Additionally to the matter degrees of freedom, e.g., the scalar field φ and its
momenta pφ, with Poisson bracket {φ,pφ} = 1 .
The relation between the new and the old variables is

pi = ajak LjLk ,

with i 6= j 6= k 6= i, Li fiducial lengths, V0 = L1L2L3 .
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Introduction
Constraints

The choice of the physical triads and connections has fixed the Gauss and
vector constraint and only remain the Hamiltonian constraint

CH =

∫
V

[
NEa

i Eb
j

16πG
√
|q|

(
εijk F k

ab − 2(1 + γ2)K i
[aK j

b]

)
+ NHmatt

]
d3x (7)

with F k
ab = 2∂[aAk

b] + ε k
ij Ai

aAj
b and Hmatt Hamiltonian of matter.

At classical level the Hamiltonian constraint for Bianchi I and II is given by

CHBII = − 1
8πGγ2

[
p1c1p2c2 + p1c1p3c3 + p2c2p3c3 + αp2p3c1

−(1 + γ2)

(
αp2p3

2p1

)2
]

+
p2
φ

2
≈ 0 (8)

with lapse N = V =
√

p1p2p3 and Hmatt =
p2
φ

2V .
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Bianchi Models

Directional scale factors, ai = L−1
i

√
pj pk
pi

.

Hubble parameters, Hi =
a′i
ai

= 1
2

(
p′j
pj

+
p′k
pk
− p′i

pi

)
.

Expansion, θ = V ′
V = H1 + H2 + H3 .

Matter density, ρ =
p2
φ

2V 2 =
p2
φ

2p1p2p3
.

Density parameter, Ω = 24πGρ
θ2 .

Shear, σ2 = 1
3 [(H1 − H2)2 + (H1 − H3)2 + (H2 − H3)2] .

Shear parameter, Σ2 = 3σ2

2θ2

Curvature parameter, K = − 3 (3)R
2θ2 , where Ω + Σ2 + K = 1 for the

classical Bianchi.
Ricci scalar R.
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Bianchi Models

Intrinsic curvature, one feature of Bianchi II and IX models is that the spatial
curvature is different from zero. The intrinsic spatial curvature is given by

(3)R = −1
2
[
x2

1 + x2
2 + x2

3 − 2(x1x2 + x1x3 + x2x3)
]
, (9)

where

x1 = α1

√
p2p3

p3
1
, x2 = α2

√
p1p3

p3
2
, x3 = α3

√
p1p2

p3
3
. (10)

The values of αi are:
Bianchi I, α1 = α2 = α3 = 0.
Bianchi II, α1 = 1, α2 = 0, α3 = 0 or permutations.

Bianchi IX, α1 = α2 = α3 = l20 , with l0 = V 1/3
0 .

The isotropic FLRW model with k = 1, is obtained from the Bianchi IX
model by setting x1 = x2 = x3.
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Introduction
Quantum Dynamics

The elementary functions on the classical phase space are the momenta
pi and the holonomies of the gravitational connection Ai

a .
The elementary functions are promoted to operators on Hgrav

kin .
The Hamiltonian constraint is written in terms of the elementary variables
and promoted to operator.

In the last step there are some subtleties, namely
The curvature is calculated from the connection and not from the
holonomies, F k

ab = 2∂[aAk
b] + ε k

ij Ai
aAj

b .
The connection is calculated from the holonomies

Aa = lim
lk→2µ̄k

∑
k

1
2lk Lk

(
h(lk )

k − (h(lk )
k )−1

)
⇒ Ak

a =
sin(µ̄k ck )

µ̄k Lk

oωk
a

with

µ̄1 = λ

√
p1

p2p3
, µ̄2 = λ

√
p2

p1p3
, µ̄3 = λ

√
p3

p1p2
.

The value of λ is chosen such that λ2 = 4
√

3πγ`2
Pl.
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Introduction
Effective constraint

HBII =
p1p2p3

8πGγ2λ2

[
sin µ̄1c1 sin µ̄2c2 + sin µ̄2c2 sin µ̄3c3 + sin µ̄3c3 sin µ̄1c1

]
+

1
8πGγ2

[
α(p2p3)3/2

λ
√

p1
sin µ̄1c1 − (1 + γ2)

(
αp2p3

2p1

)2
]
−

p2
φ

2
≈ 0

HBIX =− p1p2p3

8πGγ2λ2

(
sin µ̄1c1 sin µ̄2c2 + sin µ̄2c2 sin µ̄3c3 + sin µ̄3c3 sin µ̄1c1

)
− ϑ

8πGγ2λ

(
(p1p2)3/2
√

p3
sin µ̄3c3 +

(p2p3)3/2
√

p1
sin µ̄1c1 +

(p3p1)3/2
√

p2
sin µ̄2c2

)
− ϑ2(1 + γ2)

32πGγ2

[
2(p2

1 + p2
2 + p2

3)−
(

p1p2

p3

)2

−
(

p2p3

p1

)2

−
(

p3p1

p2

)2 ]
+

p2
φ

2
≈ 0

with lapse N = V =
√

p1p2p3 .
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Introduction
Inverse Triad Corrections

Given that Bianchi IX is spatially compact, the inverse triad corrections are
important. The terms related to the curvatures, F k

ab and K i
a, contain some

negative powers of pi which are not well defined operators. To solve this
problem is used the same idea as Thiemann’s strategy.

|pi |(`−1)/2 = −
√
|pi |Li

4πGγj(j + 1)µ̄i`
Tr(τih

(µ̄i )
i {h(µ̄i )−1

i , |pi |`/2}) , (11)

The eigenvalues for the operator ̂|pi |−1/4 are given by

Ji (V ,p1,p2,p3) =
h(V )

Vc

∏
j 6=i

p1/4
j , (12)

with
h(V ) =

√
V + Vc −

√
|V − Vc |, and Vc = 2πγλ`2

Pl. (13)

The correction term which comes from the operator εijk Ea
i Eb

j /
√
|q| is

A(V ) =
1

2Vc
(V + Vc − |V − Vc |) (14)
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Effective Bianchi I and II
Matter Source: Massless scalar field.
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Bianchi II
Classical Limit
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Bianchi II
Classical Limit
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Bianchi II
Bianchi I Limit
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Bianchi II
Bianchi I Limit
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LRS Bianchi II
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LRS Bianchi II
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Bianchi II
Vacuum Limit
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Bianchi II
Vacuum Limit
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Bianchi II
Vacuum Limit
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Bianchi II Conclusions

The classical singularities are resolved, namely, the geodesics are
inextensible, i.e., scale factor non zero (or infinite) in a finite time.
Bianchi I limit is recover and presents all its known facts.
Shear can be zero at the bounce and non zero in the evolution.
Some important solutions are LRS, like the one with maximal density and
the one with maximal shear.
In the vacuum limit (Ω ≈ 0) is possible to have solutions where all the
dynamical contribution comes from the anisotropies (Σ2 ≈ 1).
There is one global bounce θ = 0.
The effective solutions connect anisotropic solutions even when the shear
is zero at the bounce.
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Effective Bianchi IX
Matter Source: Massless scalar field.
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Bianchi IX
Classical Limit
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Bianchi IX
Big Volume Limit
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Bianchi IX
Bianchi I Limit
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Bianchi IX
Bianchi I Limit
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Bianchi IX
Bianchi I Limit
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Bianchi IX
Conclusions

All solutions have a bounce. In other words, singularities are resolved. In
Bianchi IX, there is an infinite number of bounces and recollapses.
Both effective theories in the large volume limit (compared to the Planck
volume) describe the same dynamics.
Bianchi I and the isotropic case k = 0,1 are limiting cases of Bianchi IX.
A set of quantities that are very useful are the functions xi associated to
the intrinsic curvature (3)R, because they can be used to determine which
kind of solution is obtained.
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Qualitative Bianchi IX
Independent of the matter content.
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Bianchi IX
Misner Variables

In order to study the qualitative behavior of the Bianchi IX theories.

We first consider the maximal density for each effective theory. This
maximal density is reach when the sine functions are equal to one in
each theory. This let the maximal density as a function only of the triads
(p1,p2,p3).
Second we do a change of variables to the Misner varibles (V , β+, β−),

a1 = V 1/3eβ++
√

3β− , a2 = V 1/3eβ+−
√

3β− , a3 = V 1/3e−2β+ . (15)

The variables used to write the effective theories are the triads
(p1,p2,p3), which in the new variables (V , β+, β−) are

p1 = V 2/3e−β+−
√

3β− , p2 = V 2/3e−β++
√

3β− , p3 = V 2/3e2β+ (16)
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Bianchi IX
Density Region

Figure : Density region (ρ ≥ 0) with N = 1.
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Bianchi IX
Density Region

Figure : Density region (ρ ≥ 0) with N = V .
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Bianchi IX
Density Region

Figure : Comparison of the regions for ρ with N = V and N = 1.
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Bianchi IX
Density Region

Figure : Comparison of the region boundaries for ρ with N = V and N = 1, for different
volumes.
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Bianchi IX
Density Region

Figure : Comparison of the region boundaries for ρ with N = 1, for different volumes.
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Bianchi IX
Potential

Figure : Potential at V = 10Vpl, in the region ρ ≥ 0, with N = V .

Edison Montoya (UIS) LQC 41 / 47



Bianchi IX
Potential

Figure : Potential at V = 10Vpl, in the region ρ ≥ 0, with N = V .
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Bianchi IX
Potential

Figure : Potential at V = 10Vpl, in the region ρ ≥ 0, with N = 1.
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Bianchi IX
Potential

Figure : Potential at V = 20Vpl, in the region ρ ≥ 0, with N = 1.
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Bianchi IX
Conclusions

There is an isotropization process.
Some classical solutions are discarded.
The triangular symmetry of the classical theory (associated with the
Misner variables) is still present, but the qualitative behavior in the
anisotropic directions changes drastically due to the quantum effects.
The potential walls are modify such that there is not chaotic behavior.
These results remain true even when they are consider the quantization
ambiguities or different inverse triad corrections or ambiguities in the
definition of the matter density.

Edison Montoya (UIS) LQC 45 / 47



Acknowledgments

Thank You!!!

Edison Montoya (UIS) LQC 46 / 47



Questions

Is the bouncing non-singular behavior generic for inhomogeneous
configurations?
Are we a step forward toward generic quantum singularity resolution?
How to understand inhomogeneities in quantum theory?
What are the observable predictions?
What can we say about primordial gravitational waves?
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