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AXIALLY AND REFLECTION SYMMETRIC SOURCES
(L.H,A. Di Prisco,J.Ibanez,J.Ospino, PRD89, 084034
(2014))

I Relationship between gravitational radiation and source
properties. Gravitational radiation is an irreversible process,
accordingly there must exist an entropy production factor in
the equation of state (dissipation).

I We need to “break” the spherical symmetry in order to have
gravitational radiation.

I Cylindrical symmetry is ruled out on physical grounds.

I The axial and reflection symmetries do not prevent the
emission of gravitational radiation

I 1+3 formalism in a given coordinate system.

I Structure scalars.
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BASIC EQUATIONS, CONVENTIONS AND NOTATION

I The line element:

ds2 = −A2dt2 + B2
(
dr2 + r2dθ2

)
+ C 2dφ2 + 2Gdθdt, (1)

A,B,C ,G are positive functions of t, r and θ.
x0 = t, x1 = r , x2 = θ, x3 = φ.

I The energy momentum tensor:

Tαβ = (µ+ P)VαVβ + Pgαβ + Παβ + qαVβ + qβVα. (2)

I

µ = TαβV
αV β, qα = −µVα − TαβV

β, (3)

P =
1

3
hαβTαβ, Παβ = hµαh

ν
β (Tµν − Phµν) , (4)

with hµν = gµν + VνVµ.
I

V α = (
1

A
, 0, 0, 0); Vα = (−A, 0, G

A
, 0). (5)
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Next, let us introduce the unit, spacelike vectors K,L, S, with
components

Kα = (0,B, 0, 0); Lα = (0, 0,

√
A2B2r2 + G 2

A
, 0), (6)

Sα = (0, 0, 0,C ), (7)

satisfying the following relations:

VαV
α = −KαKα = −LαLα = −SαSα = −1, (8)

VαK
α = V αLα = V αSα = KαLα = KαSα = SαLα = 0. (9)

Παβ =
1

3
(2ΠI + ΠII )(KαKβ −

hαβ
3

) +
1

3
(2ΠII + ΠI )(LαLβ −

hαβ
3

)

+ 2ΠKLK(αLβ), (10)
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with

ΠKL = KαLβTαβ, , (11)

ΠI = (2KαKβ − LαLβ − SαSβ)Tαβ, (12)

ΠII = (2LαLβ − SαSβ − KαKβ)Tαβ. (13)

qµ = qIKµ + qIILµ (14)

qµ = (
qIIG

A
√
A2B2r2 + G 2

,
qI
B
,

AqII√
A2B2r2 + G 2

, 0), (15)

qµ =

(
0,BqI ,

√
A2B2r2 + G 2qII

A
, 0

)
. (16)
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Kinematical variables

aα = V βVα;β = aIKα + aIILα

=

(
0,

A,r
A
,
G

A2

[
−A,t

A
+

G,t
G

]
+

A,θ
A
, 0

)
, (17)

Θ = V α
;α

=
AB2

r2A2B2 + G 2

[
r2
(

2
B,t
B

+
C,t
C

)
+

G 2

A2B2

(
B,t
B
− A,t

A
+

G,t
G

+
C,t
C

)]
, (18)

σαβ = V(α;β) + a(αVβ) −
1

3
Θhαβ. (19)
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σ11 = −1

3

1

r2A2B2 + G 2

B2

A

[
r2A2B2

(
−B,t

B
+

C,t
C

)
+ G 2

(
−2

B,t
B
− A,t

A
+

G,t
G

+
C,t
C

)]
, (20)

σ22 = −1

3

1

A3

[
r2A2B2

(
−B,t

B
+

C,t
C

)
+G 2

(
2
A,t
A

+
B,t
B
− 2

G,t
G

+
C,t
C

)]
, (21)

σ33 =
1

3

1

r2A2B2 + G 2

C 2

A

[
2r2A2B2

(
−B,t

B
+

C,t
C

)
+G 2

(
2
C,t
C
− B,t

B
− G,t

G
+

A,t
A

)]
. (22)
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σαβ =
1

3
(2σI + σII )(KαKβ −

1

3
hαβ)

+
1

3
(2σII + σI )(LαLβ −

1

3
hαβ). (23)

2σI + σII =
3

A

(
B,t
B
− C,t

C

)
, (24)

2σII + σI =
3

A2B2r2 + G 2

[
AB2r2

(
B,t
B
− C,t

C

)
+
G 2

A

(
−A,t

A
+

G,t
G
− C,t

C

)]
, (25)
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ωα =
1

2
ηαβµν V

β;µ V ν =
1

2
ηαβµν Ωβµ V ν , (26)

where Ωαβ = V[α;β] + a[αVβ] and ηαβµν denote the vorticity tensor
and the Levi-Civita tensor respectively;

Ωαβ = Ω(LαKβ − LβKα), (27)

ωα = −ΩSα. (28)

Ω =
G (

G,r

G −
2A,r

A )

2B
√
A2B2r2 + G 2

. (29)

Observe that from (29) and regularity conditions at the centre, it
follows that: G = 0⇔ Ω = 0.
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Now, from the regularity conditions, necessary to ensure
elementary flatness in the vicinity of the axis of symmetry, and in
particular at the center we should require that as r ≈ 0

Ω =
∑
n≥1

Ω(n)(t, θ)rn, (30)

implying, because of (29) that in the neighborhood of the center

G =
∑
n≥3

G (n)(t, θ)rn. (31)

Also, for the length of an orbit at t, θ constant, to be 2πr , close to
the origin (elementary flatness), we may write, as r → 0,

C ≈ rγ(t, θ), (32)

implying
C ′ ≈ γ(t, θ), C,θ ≈ rγ,θ, (33)

where γ(t, θ) is an arbitrary function of its arguments, which as
appears evident from the elementary flatness condition, cannot
vanish anywhere within the fluid distribution.
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The orthogonal splitting of Riemann Tensor and structure
scalars

Rαβνδ = Rαβ(F ) νδ + Rαβ(Q) νδ + Rαβ(E) νδ + Rαβ(H) νδ, (34)

with

Rαβ(F ) νδ =
16π

3
(µ+ 3P)V [αV[νh

β]
δ] +

16π

3
µhα[νh

β
δ], (35)

Rαβ(Q) νδ = −16πV [αh
β]
[νqδ]−16πV[νh

[α
δ] q

β]−16πV [αV[νΠ
β]
δ]+16πh

[α
[νΠ

β]
δ]

(36)

Rαβ(E) νδ = 4V [αV[νE
β]
δ] + 4h

[α
[ν E

β]
δ] , (37)

Rαβ(H) νδ = −2εαβγV[νHδ]γ − 2ενδγV
[αHβ]γ , (38)
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Eαβ = CανβδV
νV δ, Hαβ =

1

2
ηανερC

ερ
βδ V νV δ , (39)

where εαβρ = ηναβρV
ν .

Eαβ =
1

3
(2EI + EII )(KαKβ −

1

3
hαβ) +

1

3
(2EII + EI )(LαLβ −

1

3
hαβ)

+ EKL(KαLβ + KβLα), (40)

Hαβ = H1(SαKβ + SβKα) + H2(SαLβ + SβLα). (41)

Yαβ = RανβδV
νV δ, (42)

Xαβ =
1

2
η ερ
αν R?ερβδV

νV δ, (43)

Zαβ =
1

2
εαερR

ερ
δβ V δ, (44)

where R?αβνδ = 1
2ηερνδR

ερ
αβ .
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Yαβ =
1

3
YThαβ +

1

3
(2YI + YII )(KαKβ −

1

3
hαβ)

+
1

3
(2YII + YI )(LαLβ −

1

3
hαβ) + YKL(KαLβ + KβLα), (45)

with

YT = 4π(µ+ 3P), (46)

YI = EI − 4πΠI , (47)

YII = EII − 4πΠII , (48)

YKL = EKL − 4πΠKL. (49)

Xαβ =
1

3
XThαβ +

1

3
(2XI + XII )(KαKβ −

1

3
hαβ)

+
1

3
(2XII + XI )(LαLβ −

1

3
hαβ) + XKL(KαLβ + KβLα), (50)
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XT = 8πµ, (51)

XI = −EI − 4πΠI , (52)

XII = −EII − 4πΠII , (53)

XKL = −EKL − 4πΠKL. (54)

Zαβ = Hαβ + 4πqρεαβρ. (55)

or

Zαβ = ZIKβSα + ZIIKαSβ + ZIIILαSβ + ZIV LβSα (56)

where

ZI = (H1 − 4πqII ); ZII = (H1 + 4πqII );

ZIII = (H2 − 4πqI ); ZIV = (H2 + 4πqI ). (57)

Variables:µ,P,ΠI ,II ,KL, qI ,II , aI ,II ,Θ, σI ,II ,Ω, EI ,II ,KL,HI ,II .
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The super–Poynting vector

Pα = εαβγ

(
Y γ
δ Z

βδ − X γ
δ Z

δβ
)

; Pα = PIKα + PIILα (58)

PI =
2H2

3
(2EII + EI ) + 2H1EKL +

32π2qI
3

[3(µ+ P) + ΠI ]

+ 32π2qIIΠKL,

PII = −2H1

3
(2EI + EII ) + 2H2EKL +

32π2qII
3

[3(µ+ P) + ΠII ]

+ 32π2qIΠKL. (59)

I A state of gravitational radiation is associated to a
non–vanishing component of the super–Poynting vector. This
is in agreement with the established link between the
super–Poynting vector and the news functions, in the context
of the Bondi–Sachs approach.
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I Both components have terms not containing heat dissipative
contributions. It is reasonable to associate these with
gravitational radiation. Both components have contributions
of both components of the heat flux vector.

I There is always a non-vanishing component of Pµ, on the
plane orthogonal to a unit vector along which there is a
non-vanishing component of vorticity (the θ − r - plane).
Inversely, Pµ vanishes along the φ-direction since there are no
motions along this latter direction, because of the reflection
symmetry.

I We can identify three different contributions in (59). On the
one hand we have contributions from the heat transport
process. These are independent of the magnetic part of the
Weyl tensor, which explains why they remain in the spherically
symmetric limit.
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I On the other hand we have contributions from the magnetic
part of the Weyl tensor. These are of two kinds:a)
contributions associated with the propagation of gravitational
radiation within the fluid, b) contributions of the flow of
super–energy associated with the vorticity on the plane
orthogonal to the direction of propagation of the radiation.
Both are intertwined, and it appears to be impossible to
disentangle them through two independent scalars.

I Both components of the four–vector q, appear in both
components of P. Observe that this is achieved through the
XKL + YKL terms in (59), or using (49, 54), through ΠKL.
Thus, ΠKL couples the two components of the super–Poynting
vector, with the two components of the heat flux vector.
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The heat transport equation

τhµνq
ν
;βV

β + qµ = −κhµν(T,ν +Taν)− 1

2
κT 2

(
τV α

κT 2

)
;α

qµ, (60)

where τ , κ, T denote the relaxation time, the thermal conductivity
and the temperature, respectively. (92)

τ

A
(qII ,t + AqIΩ) + qII = −κ

A

(
GT,t + A2T,θ√
A2B2r2 + G 2

+ ATaII

)
− κT 2qII

2
(
τV α

κT 2
);α, (61)

(93)

τ

A
(qI ,t − AqIIΩ) + qI = − κ

B
(T,r + BTaI )−

κT 2qI
2

(
τV α

κT 2
);α. (62)

The vorticity acts as a coupling factor between the two
components of the heat flux vector in the transport equation.
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The basic equations

Vα;β = σαβ + Ωαβ − aαVβ + 1
3hαβΘ→Vα;β;ν − Vα;ν;β = RµαβνVµ

Θ;αV
α +

1

3
Θ2 + 2(σ2 − Ω2)− aα;α + 4π(µ+ 3P) = 0 (63)

where 2σ2 = σαβσ
αβ. (75)

hµαh
ν
βσµν;δV

δ + σµασβµ +
2

3
Θσαβ −

1

3

(
2σ2 + Ω2 − aδ;δ

)
hαβ

+ ωαωβ − aαaβ − hµ(αh
ν
β)aν;µ + Eαβ − 4πΠαβ = 0, (64)

(78)

hµαh
ν
βΩµν;δV

δ +
2

3
ΘΩαβ + 2σµ[αΩµ

β] − hµ[αh
ν
β]aµ;ν = 0. (65)

hβα

(
2

3
Θ;β − σµβ;µ + Ω µ

β ;µ

)
+ (σαβ + Ωαβ) aβ = 8πqα, (66)

(79)
2ω(αaβ) + hµ(αhβ)ν (σµδ + Ωµδ);γ η

νκγδVκ = Hαβ. (67)

(81)
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The conservation law Tα
β;α = 0 leads to the following equations:

µ;αV
α+(µ+P)Θ+

1

9
(2σI+σII )ΠI+

1

9
(2σII+σI )ΠII+qα;α+qαaα = 0,

(68)
(92)

(µ+P)aα+hβα

(
P;β + Πµ

β;µ + qβ;µV
µ
)

+

(
4

3
Θhαβ + σαβ + Ωαβ

)
qβ = 0.

(69)
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From the Bianchi identities and Einstein equations, the following
set of equations are obtained:

hµ(αh
ν
β)Eµν;δV

δ + ΘEαβ + hαβEµνσ
µν − 3Eµ(ασ

µ
β)

+ hµ(αη
δγκ

β) VδHγµ;κ − Eδ(αΩ δ
β) − 2Hµ

(αηβ)δκµV
δaκ = −4π(µ+ P)σαβ

− 4π

3
ΘΠαβ − 4πhµ(αh

ν
β)Πµν;δV

δ − 4πσµ(αΠµ
β) − 4πΩµ

(αΠβ)µ

− 8πa(αqβ) +
4π

3

(
Πµνσ

µν + aµq
µ + qµ;µ

)
hαβ − 4πhµ(αh

ν
β)qν;µ, (70)

(83)

hµαh
νβEµν;β − η δνκ

α Vδσ
γ
νHκγ + 3Hαβω

β =

8π

3
hβαµ;β − 4πhβαh

µνΠβν;µ − 4π

(
2

3
Θhβα − σβα + 3Ω β

α

)
qβ, (71)

(87) (
σαδE

δ
β + 3ΩαδE

δ
β

)
ε αβκ + aνHνκ − Hνδ

;δhνκ =

+4π(µ+ P)Ωαβε
αβ
κ + 4π

[
qα;β + Πνα(σνβ + Ων

β)
]
ε αβκ , (72)

(89)
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2aβEακε
αβ
γ − Eνβ;δh

ν
κε

δβ
γ + E δβ;δε

β
γκ +

2

3
ΘHκγ + Hµ

ν;δV
δhνκhµγ

− (σκδ + Ωκδ)H
δ
γ + (σβδ + Ωβδ)H

µ
αε

δ
κ µε

αβ
γ +

1

3
ΘHµ

αε
δ
κ µε

α
γ δ

=
4π

3
µ,βε

β
γκ + 4πΠαν;βh

ν
κε

αβ
γ

+ 4π

[
qκΩαβ + qα(σκβ + Ωκβ +

1

3
Θhκβ)

]
ε αβγ . (73)

(90)
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Scalar equations

Equation (63)

Θ;αV
α +

1

3
Θ2 + 2(σ2 − Ω2)− aα;α + YT = 0. (74)

Contracting (64) with KK, KL and LL we obtain respectively

σI ,δV
δ+

1

3
σ2I +

2

3
ΘσI−(2σ2+Ω2−aδ;δ)−3(KµK νaν;µ+a2I )+YI = 0,

(75)

1

3
(σI − σII )Ω− aIaII − K (µLν)aν;µ + YKL = 0, (76)

σII ,δV
δ+

1

3
σ2II +

2

3
ΘσII−(2σ2+Ω2−aδ;δ)−3(LµLνaν;µ+a2II )+YII = 0.

(77)
Contracting (65) with KL

Ω,δV
δ +

1

3
(2Θ + σI + σII )Ω + K [µLν]aµ;ν = 0. (78)
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Contracting (66) with K and L we obtain respectively

2

3B
Θ,r − Ω;µL

µ + Ω(Lβ;µK
µKβ − Lµ;µ) +

1

3
σIaI − ΩaII −

1

3
σI ;µK

µ

−1

3
(2σI + σII )(Kµ

;µ −
aI
3

)− 1

3
(2σII + σI )(Lβ;µL

µKβ − aI
3

) = 8πqI , (79)

1

3
√
A2B2r2 + G 2

(
2G

A
Θ,t + 2AΘ,θ

)
+

aIIσII
3

+ Ω;µK
µ − 1

3
σII ;µL

µ

+ Ω(Kµ
;µ + LµKβLβ;µ) + ΩaI +

1

3
(2σI + σII )(Lβ;µK

βKµ +
aII
3

)

− 1

3
(2σII + σI )(Lµ;µ −

aII
3

) = 8πqII . (80)
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Contracting (67) with KS and LS we obtain respectively:

−ΩaI −
1

2
(KµSν + SµKν)(σµδ + Ωµδ);γε

νγδ = H1, (81)

−ΩaII −
1

2
(LµSν + SµLν)(σµδ + Ωµδ);γε

νγδ = H2. (82)

Contracting (70) with KK, KL, LL and SS we obtain:

−1

3
(XI − 4πµ),δV

δ +
1

9
EI (3Θ + σII − σI ) +

1

9
(2σII + σI )EII

− Kνε
νγκ [H1,κSγ + H1Sγ;κ + H2(Sµ;κLγK

µ + Lµ;κSγK
µ)] + ΩXKL

= 2aIIH1 −
4π

3
(µ+ P +

1

3
ΠI )(σI + Θ)− 8πaIqI −

4π

B
(qI ),r

− 4πqIIA√
A2B2r2 + G 2

(
GB,t
A2B

+
B,θ
B

)
, (83)
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− XKL,δV
δ +

1

6
Ω (XII − XI )−

1

2
XKL(2Θ− σI − σII ) + aIH1 − H2aII

− 1

2

[
(H1,κSγ + H1(Sγ;κ + Sµ;κKγK

µ) + H2SγLµ;κK
µ)εβγκLβ

−(H1K
µSγ + H2S

µLγ)Lµ;κε
βγκKβ

]
− 1

2
(H2;κSγ + H2Sγ;κ)εβγκKβ =

8π

3
ΠKL(Θ− σI − σII )− 4πaIIqI

− 2π(KµLν + K νLµ)qν;µ − 4πaIqII , (84)

1

3
(−XII + 4πµ);δV

δ +
EII
9

(3Θ + σI − σII ) +
EI
9

(2σI + σII )− ΩXKL

− [H2;κSγ − H1(SγLµ;κK
µ + Lµ;κS

µKγ) + H2Sγ;κ] εβγκLβ + 2aIH2

= −4π

3
(µ+ P +

1

3
ΠII )(σII + Θ)− 8πaIIqII − 4πLµLνq

ν
;µ, (85)
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1

3
(XI + XII + 4πµ);δV

δ +
1

3
(XI + XII )(Θ + σI + σII )

+
1

9
(2σI + σII )EI +

1

9
(2σII + σI )EII

− (H1,κKγ + H2,κLγ + H1Kγ;κ + H2Lγ;κ)εβγκSβ + 2 (H1aII − H2aI )

=
4π

3
(µ+ P)(σI + σII −Θ)− 8π

9
(Θ + 2σI + 2σII )(ΠI + ΠII )

− 4πqI
C,r
BC
− 4πqIIA√

A2B2r2 + G 2

(
GC,t
A2C

+
C,θ
C

)
. (86)
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Contraction of (71) with K and L produces:

−1

3
XI ,βK

β − XKL,βL
β − 1

3
(2XI + XII )(Kβ

;β − aνK
ν)

− 1

3
(XI + 2XII )Lµ;βL

βKµ − XKL(Lµ;βK
µKβ + Lβ;β − aβL

β)

− 1

3
H2(σI + 2σII )− 3ΩH1 =

8π

3
µ;βK

β − 4π

3
qI (2Θ− σI )

+ 12πΩqII , (87)

(95)

−1

3
XII ,βL

β − XKL,βK
β − 1

3
(XI + 2XII )(Lβ;β − aβL

β)

− 1

3
(2XI + XII )Kµ;βL

µKβ − XKL(Kµ;βL
µLβ + Kβ

;β − aβK
β)

+
1

3
H1(2σI + σII )− 3ΩH2 =

8π

3
µ;βL

β − 12πΩqI

− 4πqII
3

(2Θ− σII ) . (88)
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Contraction of (72) with S yields:

−1

3
XKL(σII − σI ) + aIH1 + aIIH2 − H1,δK

δ − H2,δL
δ

− H1(K δ
;δ + K ν

;δS
δSν)− H2(Lδ;δ + SδSνL

ν
;δ)

=

{
8π[µ+ P − 1

3
(ΠI + ΠII )]− YI − YII

}
Ω−

4πA(qIB),θ

B
√
A2B2r2 + G 2

+
4πA

B
√
A2B2r2 + G 2

[
qII
√

(A2B2r2 + G 2)

A

]
,r

, (89)
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whereas by contracting (73) with SK and SL we obtain:

−2

3
aIIEI + 2aIEKL − E δ2;δL

2 −
AYI ,θ

3
√
A2B2r2 + G 2

+
YKL,r

B

−
[

1

3
(2YI + YII )Kβ;δ +

1

3
(2YII + YI )K

νLν;δLβ

+YKL(Lν;δK
νKβ + Lβ;δ)] εγδβSγ

+ H1,δV
δ +

1

3
H1(3Θ + σII − σI ) + ΩH2 = −4π

3
µ,θL

2 + 12πΩqI

+
4πqII

3
(σI + Θ), (90)
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2aI
3
EII − 2aIIEKL + E δβ;δK

β +
YII ,r

3B
−

AYKL,θ√
A2B2r2 + G 2

−
[
−1

3
(2YI + YII )Lν;δK

νKβ +
1

3
(2YII + YI )Lβ;δ

+YKL(Kβ;δ − K νLβLν;δ)] εγδβSγ

+ H2,δV
δ +

1

3
H2(3Θ + σI − σII )− ΩH1 =

4π

3
µ,βK

β

− 4πqI
3

(σII + Θ) + 12πΩqII . (91)
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The effective inertial mass density of the dissipative fluid

Combining the equations (69) and (60) we obtain

(µ+ P)

[
1− κT

τ(µ+ P)

]
aα = −hβαΠµ

β;µ −∇αP − (σαβ + Ωαβ)qβ

+
κ

τ
∇αT +

{
1

τ
+

1

2
Dt

[
ln(

τ

κT 2
)
]
− 5

6
Θ

}
qα, (92)

where ∇αP ≡ hβαP,β and Dt f ≡ f,βV
β.

The factor multiplying the four acceleration vector represents the
effective inertial mass density. Thus, the obtained expression for
the e.i.m. density contains a contribution from dissipative
variables, which reduces its value with respect to the
non-dissipative situation.
From the equivalence principle it follows that the “passive”
gravitational mass density should be reduced too, by the same
factor. This in turn might lead, in some critical cases when such
diminishing is significative, to a bouncing of the collapsing object.
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Vorticity and heat transport

Let us assume that at some initial time (say t = 0) and before it,
there is thermodynamic equilibrium in the θ direction, this implies
qII = 0. Then it follows at once from (61) that:

qII ,t = −AΩqI , (93)

implying that the propagation in time of the vanishing of the
meridional flow, is subject to the vanishing of the vorticity and/or
the vanishing of heat flow in the r - direction.
Inversely, repeating the same argument for (62)

qI ,t = AΩqII . (94)

In other words, time propagation of the thermal equilibrium
condition, in either direction r , θ, is assured only in the absence of
vorticity. Otherwise, it requires initial thermal equilibrium in both
directions.
This result is a clear reminiscence of the von Zeipel’s theorem.
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The density inhomogeneity factors and their evolution

The density inhomogeneity factors (say Ψi ),are such that their
vanishing is sufficient and necessary condition for the homogeneity
of energy density i.e.

∇αµ ≡ hβαµ,β = 0. (95)

In the spherically symmetric case, in the absence of dissipation, the
density inhomogeneity factor is the scalar associated to the
trace–free part of Xαβ.
In the cylindrically symmetric case, the trace–free part of Xαβ,
besides the magnetic part of the Weyl tensor and the dissipative
flux determine the energy density inhomogeneity.
In the static axially symmetric case they are the structure scalars
associated to the trace–free part of Xαβ.
In the present case it follows at once from (87) and (88) that the
vanishing of XI ,XII ,XKL,ZI ,ZII ,ZIII ,ZIV implies the homogeneity
of energy density. On the other hand, the evolution of the above
mentioned scalars is determined by (61, 62, 83, 84, 85, 86, 90, 91).
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The shear free case (L.H, A. Di Prisco, J.Ospino., PRD,
89, 127502 (2014)).

I For a general dissipative and anisotropic (shear free) fluid,
vanishing vorticity, is a necessary and sufficient condition for
the magnetic part of the Weyl tensor to vanish.

I Vorticity should necessarily appear if the system radiates
gravitationally. This further reinforces the well established link
between radiation and vorticity.

I In the geodesic case, the vorticity vanishes (and thereof the
magnetic parts of the Weyl tensor). No gravitational radiation
is produced. A similar result is obtained for the cylindrically
symmetric case, suggesting a link between the shear of the
source and the generation of gravitational radiation.

I In the geodesic ( non-dissipative) case the models do not need
to be FRW , however the system relaxes to the FRW
spacetime (if Θ > 0). Such tendency does not appear for
dissipative fluids.
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The perfect, geodesic fluid (L.H, A. Di Prisco, J.Ospino,
J.Carot, PRD91,024010 (2015)).

I All possible models compatible with the line element (1) and a
perfect fluid, are FRW, and accordingly non–radiating
(gravitationally). Both, the geodesic and the non–dissipative,
conditions, are quite restrictive, when looking for a source of
gravitational waves.

I Not only in the case of dust, but also in the absence of
dissipation in a perfect fluid, the system is not expected to
radiate (gravitationally) due to the reversibility of the
equation of state. Indeed, radiation is an irreversible process,
this fact emerges at once if absorption is taken into account
and/or Sommerfeld type conditions, which eliminate inward
traveling waves, are imposed. Therefore, the irreversibility of
the process of emission of gravitational waves, must be
reflected in the equation of state through an entropy
increasing (dissipative) factor.
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I

Ω,δV
δ +

1

3
(2Θ + σI + σII )Ω + K [µLν]aµ;ν = 0, (96)

In the geodesic case, If at any given time, the vorticity
vanishes, then it vanishes at any other time afterwards. Thus
we should not expect gravitational radiation from a system,
radiating for a finite period of time, for otherwise such a
radiation will not be accompanied by the presence of vorticity.

I In the perfect (non–dissipative, non–geodesic) fluid, the
condition of thermal equilibrium (absence of dissipative flux)
reads

aµ = −hβµΓ,β, Γ = lnT . (97)

Ω,δV
δ +

1

3
(2Θ + σI + σII + V µΓ,µ)Ω = 0. (98)

Thus, even if the fluid is not geodesic, but is non–dissipative,
the situation is the same as in the geodesic case.
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I This result is in full agreement with earlier works indicating
that vorticity generation is sourced by entropy gradients. At
the same time we confirm, by invoking the radiation–vorticity
link, the Bondi’s conjecture about the absence of radiation for
non–dissipative systems.

I The role played by magnetic fields in the generation and
survival of vorticity, has been been established in the past.
This strongly suggest that the inclusion of magnetic fields in
the discussion of gravitationally radiating sources, deserves
further attention.

I Geodesic fluids not belonging to the class considered here
(Szekeres) have also been shown not to produce gravitational
radiation. This strengthens further the case of the
non–radiative character of pure dust distributions.
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The dissipative, geodesic fluid L.H, A. Di Prisco, J.Ospino,
PRD,91, 124015 (2015)

I We consider separately the two possible subcases, namely: the
fluid distribution is assumed, from the beginning, to be
vorticity–free, or not.

I In the former case, it is shown that the vanishing vorticity
implies the vanishing of the heat flux vector, and therefore,
the resulting spacetime is FRW.

I In the latter case, it is shown that the enforcement of the
regularity conditions at the center, implies the vanishing of
the dissipative flux, leading also to a FRW spacetime.

I Thus all possible models, sourced by a dissipative geodesic
dust fluid, belonging to the family of the line element
considered here, do not radiate gravitational waves during
their evolution, unless regularity conditions at the center of
the distribution are relaxed.
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The quasi–static approximation (L.H., A. Di Prisco, J.
Ospino, J. Carot, IJMPD 2015

I Static regime: time like hypersurface Killing vector.

I Dynamic regime.

I Quasi–static regime: the time scale is much larger than the
hydrostatic time scale (τhydr .) and the thermal relaxation time
(τ). The system evolves but is always in equilibrium, and the
heat flux vector describes a steady heat flow.

I τhydr . of the Sun ≈ 27 min, white dwarf 4.5 sec., neutron star
10−4 sec.
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I We have provided a general framework for describing the
evolution of axially symmetric dissipative fluids in the QSA.

I The fluid distribution may split, under the effects of the
vorticity, the shear and the dissipative flux, leading to a variety
of very different structures.

I Finally it is worth mentioning that in the QSA the magnetic
part of the Weyl tensor does not necessarily vanish (though it
is of order O(ε)), thereby implying that the “gravitational”
part of the super-Poynting vector does not vanish either,
meaning that gravitational radiation is not incompatible with
the QSA.
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However Ḣ1 ≈ Ḣ2 ≈ O(ε2) (at least), and therefore are neglectable
in the QSA. This in turn implies that if the magnetic part of the
Weyl tensor vanishes at any given time, it will do so for any time
afterwards. In other words, no state of radiation for a finite period
of time is expected in the QSA. This result is in agreement with
the one obtained by Bondi, for a more restricted case. However
besides the “inductive” transfer of energy, mentioned by Bondi, we
also have here, the transfer carried on by the dissipative flux.
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The earliest stages of the non–equilibrium

I We evaluate the system immediately after departure from
equilibrium, .

I “Immediately” means on the smallest time scale, at which we
could observe the first signs of dynamical evolution. Such a
time scale is assumed to be smaller than the thermal
relaxation time, the hydrostatic time, and the thermal
adjustment time.

The main issues we want to address here are:

1. what are the first signs of non–equilibrium?

2. what physical variables, do exhibit such signs?

3. what does control the onset of the dynamic regime, from an
equlibrium initial configuration?
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I The hydrostatic time is the typical time in which a fluid
element reacts on a slight perturbation of hydrostatic
equilibrium, it is basically of the order of magnitude of the
time taken by a sound wave to propagate through the whole
fluid distribution.

I The thermal relaxation time is the time taken by the system
to return to the steady state in the heat flux (whether of
thermodynamic equlibrium or not), after it has been removed
from it.

I The thermal adjustment time is the time it takes a fluid
element to adjust thermally to its surroundings. It is,
essentially, of the order of magnitude of the time required for
a significant change in the temperature gradients.
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Conclusions

I A single function (f ) controls the onset of non–equilibrium.

I Bondi’s news function and f .

I ΠKL and q̇II show the first signs of departure from equilibrium.

I No gravitational radiation is emitted at this stage of evolution.

I If the function f is different from zero until some time (always
within the time scale under consideration), and vanishes
afterwards, the system will turn back to equilibrium, without
“remembering” to have been out of it previously.

I Both phenomena (radiation and vorticity) occur essentially at
the same time scale.

I The decreasing of the effective inertial mass density appears
already at this stage of evolution.
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Open issues

I We have identified the subset of equations which should
determine the density inhomogeneity factors and their
evolution, but we were unable to isolate such factors in the
general case. Is this possible?

I How could one describe the “cracking” (splitting) of the
configurations ?

I We do not have an exact solution (written down in closed
analytical form) describing gravitational radiation in vacuum,
from bounded sources. Accordingly, any specific modeling of a
source, and its matching to an exterior, should be done
numerically.

I It should be useful to introduce the concept of the mass
function, similar to the one existing in the spherically
symmetric case. This could be relevant, in particular, in the
matching of the source to a specific exterior.
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