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ABSTRACT
Growing evidence indicate supermassive black holes (SMBHs) in a mass range of
MBH∼ 106 − 1010M¯ lurking in central stellar bulges of galaxies. Extensive observa-
tions reveal fairly tight power laws of MBH versus the mean stellar velocity dispersion
σ of the host stellar bulge. Together with evidence for correlations between MBH and
other properties of host bulges, the dynamic evolution of a bulge and the formation of
a central SMBH should be linked. In this Letter, we reproduce the empirical MBH−σ
power laws based on our recent theoretical analyses (Lou & Wang; Wang & Lou; Lou,
Jiang & Jin) for a self-similar general polytropic quasi-static dynamic evolution of
bulges with self-gravity and spherical symmetry and present a sensible criterion of
forming a central SMBH. The key result is MBH = L σ1/(1−n) where 2/3 < n < 1
and L is a proportional coefficient characteristic of different classes of host bulges. By
fitting and comparing several empirical MBH−σ power laws, we conclude that SMBHs
and galactic bulges grow and evolve in a coeval manner and most likely there exist sev-
eral classes of galactic bulge systems in quasi-static self-similar evolution and that to
mix them together can lead to an unrealistic fitting. Based on our bulge-SMBH model,
we provide explanations for intrinsic scatter in the relation and a unified scenario for
the formation and evolution of SMBHs in different classes of host bulges.
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1 INTRODUCTION

It is now widely accepted that supermassive black holes
(SMBHs) within a mass range of 106 ∼ 1010M¯ (M¯ =
2 × 1033g is the solar mass) form at the centres of spi-
ral and elliptical galaxies (e.g., Lynden-Bell 1969; Kor-
mendy & Richstone 1995; Kormendy 2004). Observation-
ally, SMBH masses MBH correlate with various properties
of spiral galaxy bulges or elliptical galaxies, including bulge
luminosities (e.g., Kormendy & Richstone 1995; Magorrian
et al. 1998; Marconi & Hunt 2003), stellar bulge masses
Mbulge (e.g., Magorrian et al. 1998; Marconi & Hunt 2003;
Häring & Rix 2004), MBH versus Mbulge relations in ac-
tive (AGN) and inactive galaxies (e.g., Wandel 1999, 2002;
McLure & Dunlop 2002), galaxy light concentrations (e.g.,
Graham et al. 2001), the Sérsic index (Sérsic 1968) of sur-
face brightness profile (e.g., Graham & Driver 2007), inner
core radii (e.g., Lauer et al. 2007), spiral arm pitch angles
(e.g., Seigar et al. 2008), bulge gravitational binding energies
(e.g., Aller & Richstone 2007) and mean stellar velocity dis-
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persions σ (e.g., Ferrarese & Merritt 2000; Gebhardt et al.
2000; Tremaine et al. 2002; Ferrarese & Ford 2005; Hu 2008).
These empirical correlations strongly suggest a physical link
between SMBHs and their host bulges (e.g., Springel, Mat-
teo & Hernquist 2005; Li, Haiman & MacLow 2007).

Among these empirical relations, MBH and σ correlate
tightly in a power law with an intrinsic scatter of <∼ 0.3 dex
(e.g., Novak et al. 2006). This relation was explored theoret-
ically (e.g., Silk & Rees 1998; Fabian 1999; Blandford 1999)
before observations (e.g., Ferrarese & Merritt 2000; Geb-
hardt et al. 2000) and the emphasis was on outflow effects for
galaxies. The idea was further elaborated by King (2003). A
model of singular isothermal sphere with rotation (Adams,
Graff & Richstone 2001) was proposed for the MBH − σ
relation. This relation was also studied in a semi-analytic
model (Kauffmann & Haehnelt 2000) with starbursts while
SMBHs being formed and fueled during major mergers. Ac-
cretion of collisional dark matter onto SMBHs may also give
the MBH−σ relation (e.g., Ostriker 2000; see Haehnelt 2004
for a review). There are also numerical simulations to model
feedbacks from SMBHs and stars on host galaxies.

Observationally, there are two empirical types of bulges:
classical bulges (spiral galaxies with classical bulges or ellip-
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tical galaxies) and pseudobulges (e.g., Kormendy et al. 2004;
Drory & Fisher 2007). While SMBHs in classical bulges are
formed after major mergers, pseudobulges do not show obvi-
ous merger signatures. Interestingly, pseudobulges also man-
ifest a MBH−σ power law yet with a different exponent (e.g.,
Kormendy & Gebhardt 2001; Hu 2008).

Self-similar dynamics of a conventional polytropic gas
sphere has been studied earlier (e.g., Yahil 1983; Suto & Silk
1988; Lou & Wang 2006 (LW06) and references therein).
LW06 obtained novel self-similar quasi-static dynamic so-
lutions which approach singular polytropic spheres (SPS)
after a long time. Such polytropic dynamic solutions have
been further generalized and applied to study protostar for-
mation, “champagne flows” in H II regions, stellar core col-
lapse, rebound shocks and the formation of compact stellar
objects in a single fluid model (LW06; Lou & Wang 2007;
Wang & Lou 2007, 2008; Hu & Lou 2008) as well as galaxy
clusters in a two-fluid model (Lou, Jiang & Jin 2008; LJJ
hereafter). Here, we take such quasi-static solutions in a gen-
eral polytropic fluid to describe long-time evolution of host
stellar bulges and the formation of central SMBHs and to
establish MBH − σ power laws.

2 A POLYTROPIC SELF-SIMILAR DYNAMIC
MODEL FOR MBH − σ POWER LAWS

For the dynamic evolution of a stellar bulge in a galaxy,
we adopt a few simplifying assumptions. First, we treat the
stellar bulge as a spherical polytropic fluid as the typical age
∼ 109 yr of galactic bulges is long (e.g., Frogel 1998; Gnedin,
Norman & Ostriker 1999) that they are continuously ad-
justed and relaxed. Stellar velocity dispersions produce an
effective pressure P against the self-gravity as in the Jeans
equation (e.g., Binney & Tremaine 1987). Secondly, the total
mass of the interstellar medium in a galaxy is ∼ 107−108M¯
(e.g., Gnedin et al. 1999), only 10−2 ∼ 10−3 of the total
bulge mass. Although gas densities in broad and narrow line
regions of AGNs are high, the filling factor is usually small
(∼ 10−3; Osterbrock & Ferland 2006) and the gas breaks
into clumpy clouds. Thus gas is merged into our stellar fluid
as an approximation. Thirdly, the diameter of broad line re-
gions of AGNs is only ∼ 0.1 pc (Osterbrock & Ferland 2006)
and the disc around a SMBH is even smaller while a galactic
bulge size is >∼ 1 kpc. We thus ignore small-scale structures
around the central SMBH of a spherical bulge. Finally, as
rotation curves of galaxies show (e.g., Binney & Tremaine
1987), the effect of dark matter halo in the innermost region
(around several kpcs ) of a galaxy may be neglected. So the
dark matter is not included as we study the bulge dynamics.

Hydrodynamic equations of a general polytropic bulge
model with spherical symmetry are mass conservation
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∂r
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= 4πr2ρ , (1)
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radial momentum conservation (LW06; Wang & Lou 2008)

∂u

∂t
+ u

∂u

∂r
= −1

ρ

∂P

∂r
− GM

r2
, (3)

and ‘specific entropy’ conservation along streamlines (LJJ)
(
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∂
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) (
P

ργ

)
= 0 , (4)

where r is radius and t is time; M(r, t) is the enclosed mass
and u(r, t) is the bulk radial flow speed; P (r, t) is the effective
pressure and ρ(r, t) is the mass density; γ is the polytropic
index for the stellar bulge fluid; G is the gravity constant.

As the bulk flow of stellar fluid is slow, we invoke
the novel self-similar quasi-static solutions (LW06; LJJ) to
model the bulge evolution under spherical symmetry. We
use a self-similar transformation (LW06; LJJ) to solve the
general polytropic fluid equations (1)− (4), namely

r = K1/2tnx , ρ =
α(x)

4πGt2
, u = K1/2tn−1v(x) ,

P =
Kt2n−4

4πG
β(x) , M =

K3/2t3n−2m(x)

(3n− 2)G
. (5)

Here, x is the independent dimensionless similarity variable
while K and n are two scaling indices;1 α(x) is the reduced
mass density and v(x) is the reduced radial flow speed; β(x)
is the reduced pressure and m(x) is the reduced enclosed
mass; reduced variables α, β, v and m are functions of x
only. We require n > 2/3 for a positive mass.

By transformation (5), we readily construct self-similar
quasi-static dynamic solutions from the general polytropic
fluid equations (1)−(4) that approach the SPS as the leading
term for small x. Properties of such asymptotic solutions
to the leading order (LW06; Wang & Lou 2008; LJJ) are
summarized below. Both initial (t → 0+) and final (t →
+∞) mass density profiles scale as ∼ r−2/n; accordingly,
the bulge enclosed mass profile is M ∝ r3−2/n. As r → 0+

or t → +∞, the density and enclosed mass profiles are

M =
nAK1/n

(3n− 2)G
r(3n−2)/n , ρ =

A

4πG
K1/nr−2/n , (6)

where A ≡ {n2−q/[2(2 − n)(3n − 2)]}1/(q+γ−2) and q ≡
2(n + γ − 2)/(3n − 2). For either x → 0+ or x → +∞,
the reduced velocity v → 0, which means at a time t, for
either r → 0+ or r → +∞ the flow speed u → 0, or at
a radius r, when t is short or long enough, the radial flow
speed u → 0. Our model describes a self-similar bulge evolu-
tion towards a nearly static configuration after a long time
lapse, appropriate for galactic bulges at the present epoch.

As the effective pressure P results from stellar bulge
velocity dispersion, we readily derive the mean velocity dis-
persion σ in a bulge. By specific entropy conservation along
streamlines, we relate P with ρ and M (LJJ) and derive the
P profile from our quasi-static solutions. We then take the
local stellar velocity dispersion as σL(r, t) = (γP/ρ)1/2. The
asymptotic expression when t → +∞ for the local stellar
velocity dispersion in our model is therefore

σL(r) = γ1/2K1/(2n)nq/2A(q+γ−1)/2r(n−1)/n . (7)

To compare with observations, we derive the spatially av-
eraged stellar velocity dispersion σ within the bulge. The
bulge boundary is taken as the radius rc where ρ drops to a
value ρc indistinguishable from the environment. Practically,
the mean velocity dispersion σ is usually estimated within

1 Here, n is not the Sérsic index of surface brightness profile.
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Figure 1. The criterion of forming a central SMBH in a self-

similar quasi-static bulge evolution in a general polytropic formu-

lation (LW06; LJJ). The enclosed mass power law is M ∝ r0.337

with n = 0.751 (solid curve). Meanwhile, we draw a straight

dashed line Ms = frc2/(2G) with f = 1 for the mass of
the central SMBH versus the Schwarzschild radius r. Here at

rs = 7.2 × 107 km, the straight line intersects the enclosed mass

power-law curve for a 2.45 × 107M¯ SMBH. The region within
rs = 7.2 × 107 km is the SMBH in this example. A self-similar

general polytropic quasi-static solution of n < 1 can thus form a

SMBH at the stellar bulge centre by this criterion.

the half-light radius which is less than the outer bulge photo-
metric radius. As σL decreases with increasing r by equation
(7), the mean σ would be higher within the half-light radius.
In principle, the environmental density for different bulges
is not the same and it is difficult to give the density exactly.
Here, we take a reasonable critical density ρc as the criterion
to define the boundary of a bulge, which means when the
density of a bulge drops to the critical density ρc, we define
the domain within this radius rc as the bulge. For a class of
bulges with the same n, ρc is regarded as a constant. So the
difference in ρc reflects different environments of bulges with
different parameter n. One can readily show that within rc

σ =
3

4πr3
c

∫ rc

0

σL(r)4πr2dr

=
[
3n1+q/2γ1/2/(4n− 1)

]
(4πGρc)

(1−n)/2A3nq/4K1/2

≡ QK1/2 . (8)

This relation is particularly satisfying on the intuitive
ground. A SMBH forms at the centre of a galactic bulge that
evolves in a self-similar quasi-static manner. Such a SMBH
was formed by the core collapse of collections of stars and
gas towards the bulge centre and grows rapidly by matter
accretion at an earlier phase (e.g., Lynden-Bell 1969; Hu et
al. 2006; see Haehnelt 2004 and references therein for a re-
view of the joint formation of SMBHs and galaxies). As the
growth timescale for SMBHs is only ∼ 105 yr, our quasi-
static solutions describe the relatively quiescent phase of
galactic bulges after the formation of SMBHs as a longer
history of a bulge evolution. The stellar fluid made up of
stars and condensed gas clouds has a slow bulk flow speed
towards the central SMBH, sustaining a reservoir of mass
accretion for the circumnuclear torus and/or disc on smaller

scales. Besides, there have been observational evidences to
show that stars torn up by the tidal force of the SMBH may
account for the observed X-rays at the centre of bulges (e.g.,
Zhao, Haehnelt & Rees 2002; Komossa 2004; Komossa et al.
2004; Komossa et al. 2008), which presents a scenario of how
our stellar fluid being accreted by a central SMBH.

We now introduce the criterion of forming a SMBH
in a spherical stellar bulge. A SMBH mass MBH and its
Schwarzschild radius rs are related by MBH = frsc

2/(2G)
where c is the speed of light and f is an adjustable fac-
tor of order unity. According to equation (6), the mass en-
closed within the radius2 r is M ∝ r3−2/n. At a certain
radius r = rs = [(3n − 2)fc2/(2nAK1/n)]n/(2n−2) where
it happens3 M = rsc

2/(2G), a SMBH forms. Only those
quasi-static bulges with n < 1 can form central SMBHs
as shown in Figure 1; we derive MBH = [fc2/(2G)][(3n −
2)fc2/(2nA)]n/(2n−2)K1/(2−2n) and the power law below

MBH =

(
nA

3n− 2

)n/(2−2n)(
2

fc2

)(3n−2)/(2−2n)

×Q
1/(n−1)

G
σ 1/(1−n) ≡ L σ 1/(1−n) , (9)

where the coefficient L depends on fc2, G, n, γ, ρc, and the
exponent 1/(1 − n) > 3 because of the requirement 2/3 <
n < 1. Other researchers have their own criteria, which differ
from ours, to define the black holes in their models to give
a MBH − σ relation (e.g., Adams et al. 2001).

While the MBH−σ power law is very tight with intrinsic
scatter 6 0.3 dex for SMBHs and host bulges (e.g., Novak &
Faber 2006), such scatter is large enough to accommodate
different exponents in the MBH − σ relation (Ferrarese &
Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002).
By relation (9), we have a natural interpretation for intrinsic
scatters in the observed MBH − σ power law. In our model,
all bulges with the same n lie on a straight line with the
exponent 1/(1− n) as shown in Figure 2. For a fixed n, dif-
ferent bulges are represented by different K values in trans-
formation (5), leading to different MBH and σ. However, for
bulges with different n values, they lie on different lines. For
elliptical galaxies or bulges in spiral galaxies, they appear
to eventually take the self-similar evolution described above
with a certain n value. But pseudobulges may take on differ-
ent n values. Observationally, we cannot determine a priori
the specific n value for a bulge but simply attempt to fit all
bulges with a single exponent, which then leads in part to
intrinsic scatter in the observed MBH − σ power law.

To show this, we fit three published MBH − σ
power laws in Figure 2. The first one is MBH =
1.2 × 108M¯(σ/200 km s−1)3.75 given in Gebhardt et
al. (2000) with our parameters {n, γ, ρc} being
{0.733, 1.327, 0.47 M¯pc−3}; and the five points (aster-
isks ∗) correspond to K = {0.8, 1, 2, 3, 4} × 1023 cgs
unit and rc = 0.73, 0.82, 1.15, 1.41, 1.63 kpc. The sec-
ond one is log(MBH/M¯) = 8.13 + 4.02 log(σ/200 km s−1)
given in Tremaine et al. (2002) with our parameters

2 In the domain of bulges and SMBHs, these asymptotic expres-

sions represent a very good approximation of the exact solution.
3 We may take the last stable orbit as the cutoff radius or a mildly
relativistic case of MBH = frsc2/(2G) with 0.2 <∼ f <∼ 3 to form

central SMBHs, and this would not alter our results significantly.
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Figure 2. Power-law MBH − σ relations in our general poly-

tropic model for quasi-static self-similar bulge evolution and the

formation of a central SMBH. Three indices n = 0.7537, 0.7512,
0.7333 are adopted for three different classes, namely, solid line

(Hu 2008), dashed line (Tremaine et al. 2002), dotted line (Geb-
hardt et al. 2000), of MBH−σ power law (9). Given n, we calculate

the SMBH mass MBH and the mean stellar velocity dispersion σ

for a certain K value in self-similar transformation (5). A bulge
has different mean velocity dispersion σ for different K values.

Each bulge-SMBH system is represented by a point in this plot.

All such systems of same n lie on a straight line, while systems
of different n values correspond to different lines in our model.

{n, γ, ρc} being {0.7512, 1.330, 0.0122 M¯pc−3}; and
the seven points (plus signs +) correspond to K =
{1, 2, 4, 6, 8, 10, 20} × 1022 cgs unit and rc =
2.92, 4.13, 5.83, 7.14, 8.25, 9.22, 13.04 kpc. The third
one is log(MBH/M¯) = 8.28 + 4.06 log(σ/200 km s−1)
given in Hu (2008) with our parameters {n, γ, ρc} being
{0.7537, 1.332, 0.00364 M¯pc−3}; and the six points (solid
dots) correspond to K = {0.6, 0.9, 1.5, 2.5, 3.5, 4.5}×1023

cgs unit and rc = 5.74, 7.03, 9.08, 11.72, 13.87, 15.73 kpc.
Clearly, to fit all these points in Figure 2 with a single power
law, we would get a different result with higher intrinsic scat-
ter. In fact, there is yet another MBH − σ relation given in
Ferrarese & Ford (2005), namely log(MBH/M¯) = 8.22 +
4.86 log(σ/200 km s−1) (also Ferrarese & Merritt 2000). If
we were to fit this relation according to our model (e.g.,
n = 0.7942, ρc = 1.46 × 10−7M¯pc−3, rc = 3.25 Mpc), the
critical mass density ρc would be too small and the bulge
size for a certain average velocity dispersion would be too
large. So it seems that our model favours multiple power laws
contained in the available data. In the three more sensible
fitting examples above, bulge inflow speeds of stellar fluid
are slow (∼ 0.1 − 1 km s−1), an evolution feature of our
self-similar quasi-static solutions. Near the SMBH bound-
ary rs, the inflow rest mass-energy flux falls in the range
of 1040 − 1045 erg s−1 in these examples, sufficient to sup-
ply the observed X-ray luminosities (Komossa et al. 2008).
There can be outgoing accretion shocks around a SMBH in
these inflows. As the age of galactic bulges is so long (∼ 109

yr) (Frogel 1998) that such shocks should have already gone
outside bulges and dispersed or merged into surroundings.

Besides the MBH − σ relation, observations reveal
MBH ∝ M1.12

bulge with Mbulge being the stellar bulge mass

(e.g., Häring & Rix 2004 and references therein) and MBH ∝
E0.6

g with Eg being the absolute value of the bulge gravita-
tional binding energy (e.g., Aller & Richstone 2007). Us-
ing our criterion of forming a SMBH and the bulge ra-
dius rc, we derive a power law between MBH and Mbulge as

MBH ∝ M
1/(3−3n)
bulge according to equation (6). For n = 0.75,

our result leads to relations in Adams et al. (2001) but for a
nonisothermal general SPS. The bulge gravitational binding
energy, without contributions from dark matter halo and a
disc as in Aller & Richstone (2007), is Eg ≈

∫ rc

0
GMρ4πrdr.

For self-similar quasi-static dynamic solutions in general
polytropic fluid model, we obtain MBH ∝ E

1/(5−5n)
g .

As another class of bulges, pseudobulges are thought to
have formed without merging in contrast to classical bulges.
Pseudobulges again follow a MBH−σ power law (Hu 2008),
i.e., log(MBH/M¯) = 7.5 + 4.5 log(σ/200 km s−1). Pseu-
dobulges may take a different self-similar quasi-static evo-
lution for a different n. For their different formation his-
tory, they show a different MBH − σ power law as observed.
For {n, γ, ρc} being {0.7778, 1.34, 0.000426 M¯pc−3},
we can fit the empirical power law for pseudobulges; e.g.,
with K = 6 × 1022 cgs unit, we have σ = 124 km s−1 and
rc = 5.742 kpc for elliptical galaxies.

3 CONCLUSIONS AND DISCUSSION

On the basis of a self-similar quasi-static dynamic evolu-
tion of a general polytropic sphere (LW06, LJJ), we es-
tablish MBH = L σ 1/(1−n) with 2/3 < n < 1 by equa-
tion (9). Our first conclusion is 1/(1 − n) > 3 which ap-
pears consistent with observations so far. Secondly, uncer-
tainties in the formation criterion of a SMBH [i.e., factor f
in MBH = frsc

2/(2G)] and in the choice of rc and thus ρc

will not change the form of equation (9) and the n value but
will only affect the value of L. Thirdly, the tight MBH − σ
power laws and other relations among the SMBH mass MBH

and known properties of host stellar bulges strongly suggest
coeval growths of SMBHs and galactic bulges (e.g., Page et
al. 2001; Haehnelt 2004; Kauffmann & Haehnelt 2000; Hu
et al. 2006). Fourthly in our model, while forming a SMBH
at the bulge centre (e.g., by core collapse of gas and stars or
by merging), the spherical general polytropic bulge evolves
in a self-similar quasi-static phase for a long time. We then
reproduce well-established empirical MBH − σ power laws.
Different energetic processes appear to give rise to different
scaling index n values, which finally determines the slope of
the MBH − σ relations in a logarithmic presentation.

Besides classical bulges and pseudobulges, there are also
‘core’ elliptical galaxies (i.e., those with apparent ‘cores’
of relatively flat brightness; Lauer et al. 1995; Hu 2008),
thought to have formed by ‘dry’ mergers (i.e., almost with-
out gas). A steeper MBH−σ relation exists in these galaxies
as compared to that for classical bulges (e.g., Lauer et al.
1995; Laine et al. 2003; Lauer et al. 2007).

This can also be accommodated in our unified scenario
that all hosts of SMBHs may finally evolve into self-similar
quasi-static phase with different scaling parameters (i.e., dif-
ferent index n for the slope and different ρc for the normal-
ization of the MBH − σ relation). While these bulges can
be of quite different kinds in galaxies, they have these simi-
lar tight relations and we thus provide a unified self-similar
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dynamic framework to model the relatively quiescent evolu-
tion phase of SMBH host bulges and the growth of SMBH
masses. As the observed MBH−σ relation for classical bulges
is tight, the elliptical galaxies and spiral galaxies appear to
take on close n values for merging processes.

In our model, n is a key scaling index to determine the
exponent of the MBH − σ power law. The smaller the value
of n is, the steeper the density profile is and the smaller
the index of the MBH − σ relation is. If SMBHs are formed
by collapse of stars and gas and a less steeper density dis-
tribution may provide a more effective mechanism to form
SMBHs, then we conclude that for a certain value of veloc-
ity dispersions, 4 the smaller the mass of an initially formed
SMBH is, the smaller the value of n is.

After a long lapse, our quasi-static solutions approach
the static SPS solution as the leading term that is inde-
pendent of the timescale. So all the described relations here
are nearly independent of time, as long as the systems have
evolved for a long enough time. It is not obvious to decide
when the host bulges began to take the described self-similar
evolution. But even if we take different times in our model,
our results would remain largely the same. The only dif-
ference is that for an early time, we may have a chance to
observe accretion shocks within the region of stellar bulges.
Such shocks are characterized by a rapid inner density rise
of several times and a rapid inner rise of stellar velocity dis-
persions depending on the strength of accretion shocks.
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