Dark energy without dark energy

David L. Wiltshire (University of Canterbury, NZ)

DLW: New J. Phys. 9 (2007) 377

Phys. Rev. Lett. 99 (2007) 251101

arXiv:0712.3984

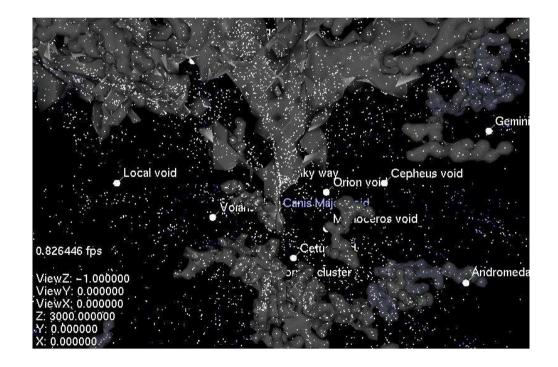
Phys. Rev. D78 (2008) in press

[arXiv:0809.1183];

new results, to appear

B.M. Leith, S.C.C. Ng and DLW:

ApJ 672 (2008) L91



What is "dark energy"?

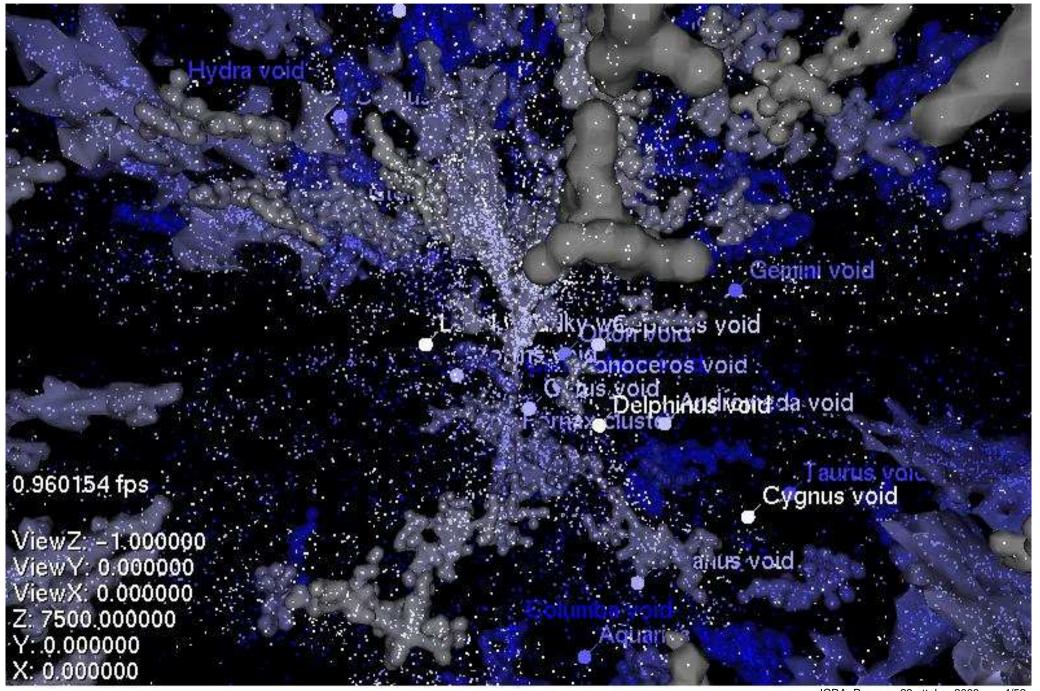
- Usual explanation: a homogeneous isotropic form of "stuff" which violates the strong energy condition. (Locally pressure $P=w\rho c^2,\,w<-\frac{1}{3};$ e.g., for cosmological constant, $\Lambda,\,w=-1$.)
- New explanation: in ordinary general relativity, a manifestation of global variations of those aspects of gravitational energy which by virtue of the equivalence principle cannot be localised – the cosmological quasilocal gravitational energy associated with dynamical gradients in spatial curvature generated by a universe as inhomogeneous as the one we observe. [Call this dark energy if you like. It involves energy; and "nothing" is dark.]

Overview

I will write down a viable model for the observed universe, with its almost isotropic Hubble flow but inhomogeneous matter distribution, considering

- the definition of gravitational energy;
- the decoupling bound systems from the expansion of space;
- operational issues associated with measurements and averaging in an inhomogeneous universe;
- resolving the Sandage-de Vaucouleurs paradox;
- understanding the problem of obtaining a void-dominated universe;
- how to realistically obtain apparent cosmological acceleration without exotic dark energy

6df: voids & bubble walls (A. Fairall, UCT)



From smooth to lumpy

- Universe was very smooth at time of last scattering; fluctuations in the fluid were tiny $(\delta \rho/\rho \sim 10^{-5})$ in photons and baryons; $\sim 10^{-3}$ in non–baryonic dark matter).
- FLRW approximation very good early on.
- Universe is very lumpy or inhomogeneous today.
- Recent surveys estimate that 40–50% of the volume of the universe is contained in voids of diameter $30h^{-1}$ Mpc. [Hubble constant $H_0=100h$ km $\,{\rm sec}^{-1}$ Mpc $^{-1}$] (Hoyle & Vogeley, ApJ 566 (2002) 641; 607 (2004) 751)
- Add some larger voids, and many smaller minivoids, and the universe is void—dominated at present epoch.
- Clusters of galaxies are strung in filaments and bubbles around these voids.

The Sandage-de Vaucouleurs paradox...

- ullet Matter homogeneity only observed at $\gtrsim 200$ Mpc scales
- If "the coins on the balloon" are galaxies, their peculiar velocities should show great statistical scatter on scale much smaller than $\sim\!200$ Mpc
- However, a nearly linear Hubble law flow begins at scales above 1.5–2 Mpc from barycentre of local group.
- Moreover, the local flow is statistically "quiet".
- Can we explain this as an effect of dark energy? Maybe. Peculiar velocities are isotropized in FLRW universes which expand forever (regardless of dark energy).
- Empirical results do not appear to match best-fit ΛCDM parameters (Axenides & Perivolaropoulos, PRD 65 (2002) 127301).

Inhomogeneous cosmology

- Need an averaging scheme to extract the average homogeneous geometry
- Only exact approaches dealing with averages of full non-linear Einstein equations considered here (NOT perturbation theory: Kolb et al...; NOT LTB models etc)
- Still many approaches, with different assumptions
- Do we average tensors on curves of observers (Zalaletdinov 1992, 1993) . . . recent work Coley, Pelavas, and Zalaletdinov, PRL 95 (2005) 151102; Coley and Pelavas, PR D75 (2007) 043506
- Can we get away with averaging scalars (density, pressure, shear ...)? (Buchert 2000, 2001) ... recent work Buchert CQG 23 (2006) 817; Astron. Astrophys. 454 (2006) 415; Gen. Rel. Grav. 40 (2008) 467 etc.

Buchert's dust equations (2000)

For irrotational dust cosmologies, characterised by an energy density, $\rho(t, \mathbf{x})$, expansion, $\theta(t, \mathbf{x})$, and shear, $\sigma(t, \mathbf{x})$, on a compact domain, \mathcal{D} , of a suitably defined spatial hypersurface of constant average time, t, and spatial 3–metric, average cosmic evolution in Buchert's scheme is described by the exact equations

$$3\frac{\dot{a}^{2}}{\bar{a}^{2}} = 8\pi G\langle\rho\rangle - \frac{1}{2}\langle\mathcal{R}\rangle - \frac{1}{2}\mathcal{Q}$$

$$3\frac{\ddot{a}}{\bar{a}} = -4\pi G\langle\rho\rangle + \mathcal{Q}$$

$$\partial_{t}\langle\rho\rangle + 3\frac{\dot{a}}{\bar{a}}\langle\rho\rangle = 0$$

$$\mathcal{Q} \equiv \frac{2}{3}\left(\langle\theta^{2}\rangle - \langle\theta\rangle^{2}\right) - 2\langle\sigma^{2}\rangle$$

Back-reaction

Angle brackets denote the spatial volume average, e.g.,

$$\langle \mathcal{R} \rangle \equiv \left(\int_{\mathcal{D}} d^3x \sqrt{\det {}^3g} \mathcal{R}(t, \mathbf{x}) \right) / \mathcal{V}(t)$$

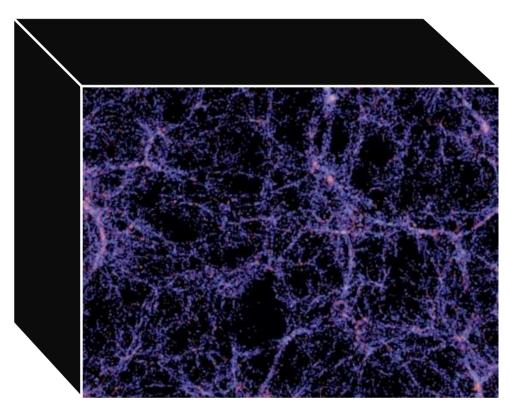
$$\langle \theta \rangle = 3 \frac{\dot{\bar{a}}}{\bar{a}}$$

Generally for any scalar Ψ ,

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\Psi\rangle - \langle\frac{\mathrm{d}\Psi}{\mathrm{d}t}\rangle = \langle\Psi\theta\rangle - \langle\theta\rangle\langle\Psi\rangle$$

The extent to which the back-reaction, Q, can lead to apparent cosmic acceleration or not has been the subject of much debate.

Within a statistically average cell



- Need to consider relative position of observers over scales of tens of Mpc over which $\delta \rho/\rho \sim -1$.
- GR is a local theory: gradients in spatial curvature and gravitational energy can lead to calibration differences between our rods and clocks and volume average ones

The Copernican principle

- Retain Copernican Principle we are at an average position for observers in a galaxy
- Observers in bound systems are not at a volume average position in freely expanding space
- By Copernican principle other average observers should see an isotropic CMB
- BUT nothing in theory, principle nor observation demands that such observers measure the same mean CMB temperature nor the same angular scales in the CMB anisotropies
- Average mass environment (galaxy) can differ significantly from volume—average environment (void)

Dilemma of gravitational energy...

In GR spacetime carries energy & angular momentum

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- On account of the strong equivalence principle, $T_{\mu\nu}$ contains localizable energy–momentum only
- Kinetic energy and energy associated with spatial curvature are in $G_{\mu\nu}$: variations are "quasilocal"!
- Newtonian version, T U = -V, of Friedmann equation

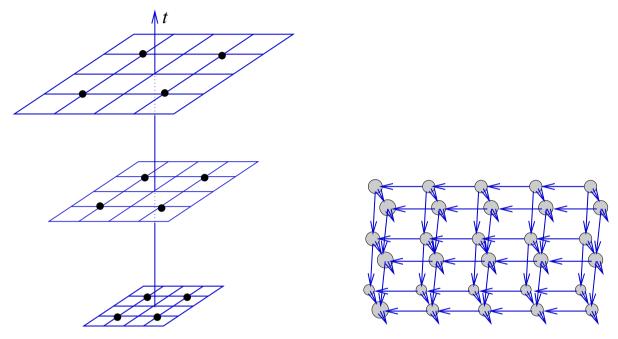
$$\frac{\dot{a}^2}{a^2} + \frac{kc^2}{a^2} = \frac{8\pi G\rho}{3}$$

where
$$T=\frac{1}{2}m\dot{a}^2x^2$$
, $U=-\frac{1}{2}kmc^2x^2$, $V=-\frac{4}{3}\pi G\rho a^2x^2m$; ${\bf r}=a(t){\bf x}$.

Ricci curvature and gravitational energy

- For Lemaître–Tolman–Bondi models constant spatial curvature replaced by energy function with E(r)>0 in regions of negative spatial curvature.
- In quasilocal Hamiltonian approach of Chen, Nester and Liu (MPL A22 (2007) 2039) relative to a fiducial static Cartesian refencence frame a comoving observer in k=-1 FLRW universe sees negative quasilocal energy; or relative to the static frame the comoving observer has positive quasilocal energy.
- For perturbation theory I advocate "Machian gauge" of Bičak, Katz and Lynden–Bell (PR D76 (2007) 063501): uniform Hubble flow plus minimal shift distortion condition.

Cosmological Equivalence Principle



- Homogeneous isotropic volume expansion is locally indistinguishable from equivalent motion in static Minkowski space
- Extend to decelerating motion over long time intervals by Minkowski space analogue (semi-tethered lattice indefinitely long tethers with one end fixed, one free end on spool, apply brakes syncronously at each site)

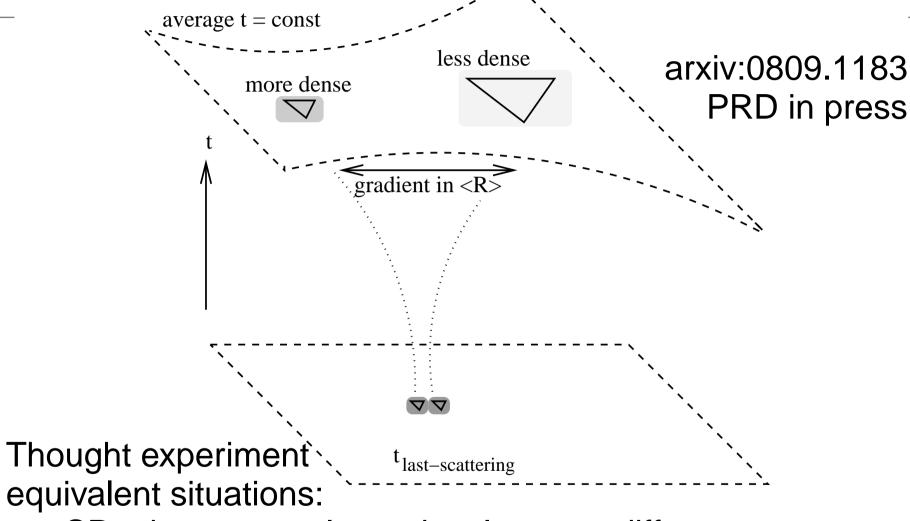
Cosmological Equivalence Principle

At any event, always and everywhere, it is possible to choose a suitably defined spacetime neighbourhood, the cosmological inertial frame, in which average motions (timelike and null) can be described by geodesics in a geometry which is Minkowski up to some time-dependent conformal transformation,

$$ds_{CIF}^2 = a^2(\eta) \left[-d\eta^2 + dr^2 + r^2 d\Omega^2 \right],$$

- Defines Cosmological Inertial Frame (CIF)
- In semi-tethered lattice analogue there is local homogeneous isotropic deceleration: no net force on any lattice observer

Cosmological Equivalence Principle



- SR: observers volume decelerate at different rates
- GR: regions of different density have different volume deceleration (for same initial conditions)

Bound and unbound systems...

- Isotropic observers "at rest" within expanding space in voids may have clocks ticking at a rate $\mathrm{d}\tau_\mathrm{v} = \gamma(\tau_\mathrm{w},\mathbf{x})\mathrm{d}\tau_\mathrm{w}$ with respect to static observers in bound systems. Volume average: $\mathrm{d}t = \bar{\gamma}_\mathrm{w}\mathrm{d}\tau_\mathrm{w}$, $\bar{\gamma}_\mathrm{w}(\tau_\mathrm{w}) = \langle -\xi^\mu n_\mu \rangle_{\mathcal{H}}$
- We are not restricted to $\gamma=1+\epsilon,\,\epsilon\ll 1$, as expected for typical variations of binding energy.
- Observable universe is assumed unbound.
- I find $\bar{\gamma} \simeq 1.38$ at present epoch from relative regional deceleration $\sim 10^{-10} \rm ms^{-2}$ integrated over age of universe. (N.B. Absolute upper bound: $\bar{\gamma} < 1.5$.)
- Where is infinity? In 1984 George Ellis suggested a notion of *finite infinity*: a region within which isolated systems, such as stars or galaxies, or galaxy clusters are approximately independent dynamical systems.

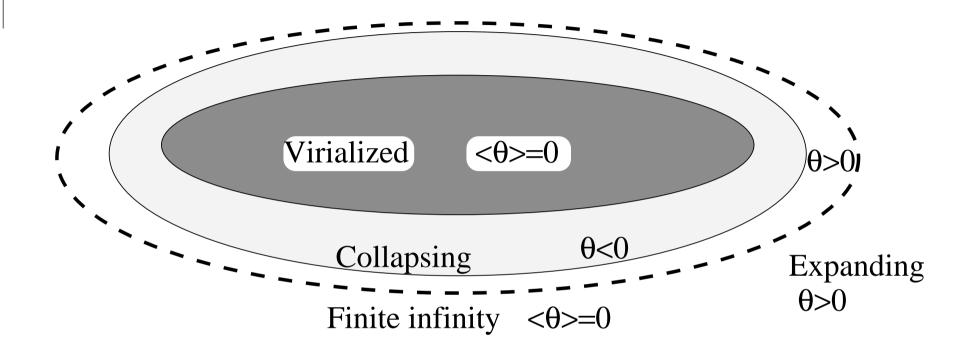
Where is infinity?

- Inflation provides us with boundary conditions.
- Initial smoothness at last—scattering ensures a uniform initial expansion rate. For gravity to overcome this a universal critical density exists. BUT if we assume a smooth average evolution we can overestimate the critical density today.

$$\rho_{\rm cr} \neq \frac{3H_{\rm av}^2}{8\pi G}$$

- Identify finite infinity relative to demarcation between bound and unbound systems, depending on the time evolution of the true critical density since last-scattering.
- Normalise wall time, $\tau_{\rm w}$, as the time at finite infinity, (close to galaxy clocks) by $\langle -\xi^\mu n_\mu \rangle_{\mathcal{F}_{\bf r}} = \langle \gamma(\tau_{\rm w}, {\bf x}) \rangle_{\mathcal{F}_{\bf r}} = 1$.

Finite infinity



- Define *finite infinity*, "*fi*" as boundary to minimal connected region within which average expansion vanishes $\langle \theta \rangle = 0$ or average curvature vanishes $\langle R \rangle = 0$.
- Shape of fi boundary irrelevant (minimal surface generally): could typically contain a galaxy cluster.

Cosmic rest frame

Patch together CIFs for observers who see an isotropic CMB by taking surfaces of uniform volume expansion

$$\langle \frac{1}{\ell_r(\tau)} \frac{\mathrm{d}\ell_r(\tau)}{\mathrm{d}\tau} \rangle = \frac{1}{3} \langle \theta \rangle_1 = \frac{1}{3} \langle \theta \rangle_2 = \dots = \bar{H}(\tau)$$

- Average over regions in which (i) spatial curvature is zero or negative; (ii) space is expanding at the boundaries, at least marginally.
- Solves the Sandage—de Vaucouleurs paradox implicitly.
- Voids appear to expand faster; but their local clocks tick faster, locally measured expansion can still be uniform.
- Global average $H_{\rm av}$ on large scales with respect to any one set of clocks will differ from \bar{H}

Two/three scale model

$$\bar{a}^3 = f_{\rm wi} a_{\rm w}^3 + f_{\rm vi} a_{\rm v}^3$$

- Splits into void fraction with scale factor $a_{\rm v}$ and "wall" fraction with scalar factor $a_{\rm w}$. Assume $\delta^2 H_w = \frac{1}{3} \langle \sigma^2 \rangle_w$, $\delta^2 H_v = \frac{1}{3} \langle \sigma^2 \rangle_v$.
- Buchert equations for volume averaged observer, with $f_{\rm v}(t) = f_{\rm vi} a_{\rm v}^{3}/\bar{a}^{3}$ (void volume fraction) and $k_{\rm v} < 0$

$$\frac{\dot{\bar{a}}^2}{\bar{a}^2} + \frac{\dot{f_v}^2}{9f_v(1 - f_v)} - \frac{\alpha^2 f_v^{1/3}}{\bar{a}^2} = \frac{8\pi G}{3} \bar{\rho}_0 \frac{\bar{a}_0^3}{\bar{a}^3},$$

$$\ddot{f_v} + \frac{\dot{f_v}^2 (2f_v - 1)}{2f_v(1 - f_v)} + 3\frac{\dot{\bar{a}}}{\bar{a}}\dot{f_v} - \frac{3\alpha^2 f_v^{1/3} (1 - f_v)}{2\bar{a}^2} = 0,$$

if $f_{\rm v}(t) \neq {\rm const}$; where $\alpha^2 = -k_{\rm v} f_{\rm vi}^{-2/3}$.

Two/three scale model

- Universe starts as Einstein-de Sitter, from boundary conditions at last scattering consistent with CMB; almost no difference in clock rates initially.
- We must be careful to account for clock rate variations. Buchert's clocks are set at the volume average position, with a rate between wall clocks and void clock extreme.

$$\bar{H}(t) = \bar{\gamma}_{\mathrm{w}} H_{\mathrm{w}} = \bar{\gamma}_{\mathrm{v}} H_{\mathrm{v}}; \qquad H_{\mathrm{w}} \equiv \frac{1}{a_{\mathrm{w}}} \frac{\mathrm{d}a_{\mathrm{w}}}{\mathrm{d}t}, \quad H_{\mathrm{v}} \equiv \frac{1}{a_{\mathrm{v}}} \frac{\mathrm{d}a_{\mathrm{v}}}{\mathrm{d}t}$$

where
$$\bar{\gamma}_{\rm v}=\frac{{
m d}t}{{
m d} au_{
m v}}$$
, $\bar{\gamma}_{
m w}=\frac{{
m d}t}{{
m d} au_{
m w}}=1+(1-h_r)f_v/h_r$, $h_r=H_{
m w}/H_{
m v}<1$.

• Need to be careful to obtain global $H_{\rm av}$ in terms of one set of isoptropic observer wall clocks, $\tau_{\rm w}$.

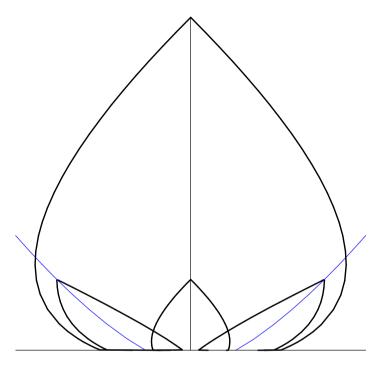
Bare cosmological parameters

- Different sets of cosmological parameters are possible
- Bare cosmological parameters are defined as fractions of the true critical density related to the bare Hubble rate

$$\bar{\Omega}_{M} = \frac{8\pi G \bar{\rho}_{M0} \bar{a}_{0}^{3}}{3\bar{H}^{2} \bar{a}^{3}},
\bar{\Omega}_{K} = \frac{\alpha^{2} f_{v}^{1/3}}{\bar{a}^{2} \bar{H}^{2}},
\bar{\Omega}_{Q} = \frac{-\dot{f}_{v}^{2}}{9f_{v}(1 - f_{v})\bar{H}^{2}}.$$

■ These are the volume—average parameters, with first Buchert equation: $\bar{\Omega}_M + \bar{\Omega}_k + \bar{\Omega}_O = 1.$

Past light cone average



Interpret Buchert solution by radial null cone average

$$ds^{2} = -dt^{2} + \bar{a}^{2}(t) d\bar{\eta}^{2} + A(\bar{\eta}, t) d\Omega^{2},$$

- LTB metric but NOT an LTB solution
- Conformally match radial null geodesics to those of finite infinity geometry with uniform local Hubble flow.

Dressed cosmological parameters

Conventional parameters for "wall observers" in galaxies: defined by assumption (no longer true) that others in entire observable universe have synchronous clocks and same local spatial curvature

$$ds_{\mathcal{F}_I}^2 = -d\tau_w^2 + a_w^2(\tau_w) \left[d\eta_w^2 + \eta_w^2 d\Omega^2 \right]$$
$$= -d\tau_w^2 + \frac{\bar{a}^2}{\bar{\gamma}_w^2} \left[d\bar{\eta}^2 + r_w^2(\bar{\eta}, \tau_w) d\Omega^2 \right]$$

where $r_{\rm w}\equiv \bar{\gamma}_{\rm w}\left(1-f_{\rm v}\right)^{1/3} f_{\rm wi}^{-1/3} \eta_{\rm w}(\bar{\eta},\tau_{\rm w})$, and volume–average conformal time ${\rm d}\bar{\eta}={\rm d}t/\bar{a}=\bar{\gamma}_{\rm w}\,{\rm d}\tau_{\rm w}/\bar{a}$.

This leads to conventional dressed parameters which do not sum to 1, e.g.,

$$\Omega_M = \bar{\gamma}_{\rm w}^3 \bar{\Omega}_M \,.$$

Tracker solution PRL 99, 251101

General exact solution possesses a "tracker limit"

$$\bar{a} = \frac{\bar{a}_0 (3\bar{H}_0 t)^{2/3}}{2 + f_{v0}} \left[3f_{v0}\bar{H}_0 t + (1 - f_{v0})(2 + f_{v0}) \right]^{1/3}$$

$$f_v = \frac{3f_{v0}\bar{H}_0 t}{3f_{v0}\bar{H}_0 t + (1 - f_{v0})(2 + f_{v0})},$$

• Void fraction $f_{v}(t)$ determines many parameters:

$$\bar{\gamma}_{w} = 1 + \frac{1}{2} f_{v} = \frac{3}{2} \bar{H} t$$

$$\tau_{w} = \frac{2}{3} t + \frac{2(1 - f_{v0})(2 + f_{v0})}{27 f_{v0} \bar{H}_{0}} \ln \left(1 + \frac{9 f_{v0} \bar{H}_{0} t}{2(1 - f_{v0})(2 + f_{v0})} \right)$$

$$\bar{\Omega}_{M} = \frac{4(1 - f_{v})}{(2 + f_{v})^{2}}$$

Apparent cosmic acceleration

Volume average observer sees no apparent cosmic acceleration

$$\bar{q} = \frac{2(1 - f_{\rm v})^2}{(2 + f_{\rm v})^2}.$$

As $t \to \infty$, $f_v \to 1$ and $\bar{q} \to 0^+$.

A wall observer registers apparent cosmic acceleration

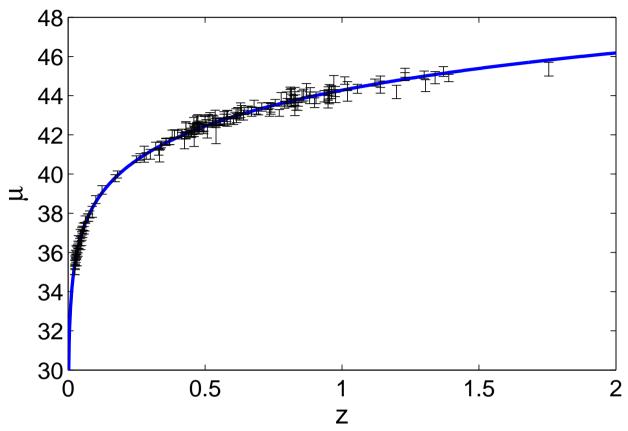
$$q = \frac{-(1 - f_{\rm v}) (8f_{\rm v}^3 + 39f_{\rm v}^2 - 12f_{\rm v} - 8)}{(4 + f_{\rm v} + 4f_{\rm v}^2)^2},$$

Effective deceleration parameter starts at $q \sim \frac{1}{2}$, for small $f_{\rm v}$; changes sign when $f_{\rm v} = 0.58670773\ldots$, and approaches $q \to 0^-$ at late times.

Cosmic coincidence problem solved

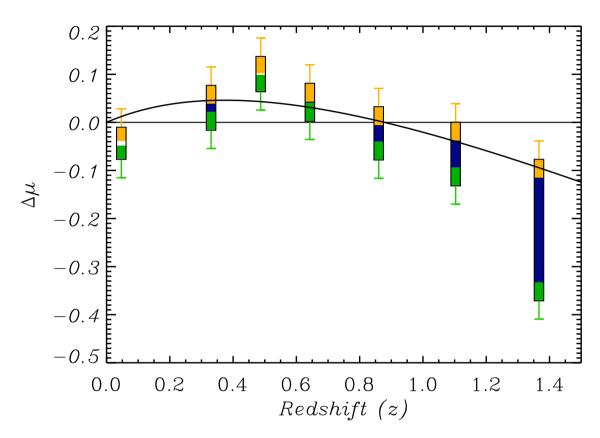
Spatial curvature gradients largely responsible for gravitational energy gradient giving clock rate variance. Apparent acceleration starts when voids start to open. Decelerating Stoan Great Woll

Test 1: SneIa luminosity distances



- Type Ia supernovae of Riess07 Gold data set fit with χ^2 per degree of freedom = 0.9
- With $55 \le H_0 \le 75 \, \mathrm{km} \, \mathrm{sec}^{-1} \, \mathrm{Mpc}^{-1}$, $0.01 \le \Omega_{M0} \le 0.5$, find Bayes factor $\ln B = 0.27$ in favour or FB model (marginally): statistically indistinguishable from $\Lambda \mathrm{CDM}$.

Test 1: SneIa luminosity distances

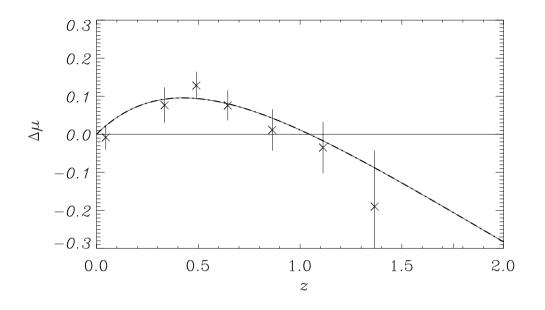


Plot shows difference of model apparent magnitude and that of an empty Milne universe of same Hubble constant $H_0=61.73\,\mathrm{km}\,\mathrm{sec}^{-1}\,\mathrm{Mpc}^{-1}$. Note: residual depends on the expansion rate of the Milne universe subtracted (2σ limits on H_0 indicated by whiskers)

Comparison Λ **CDM** models

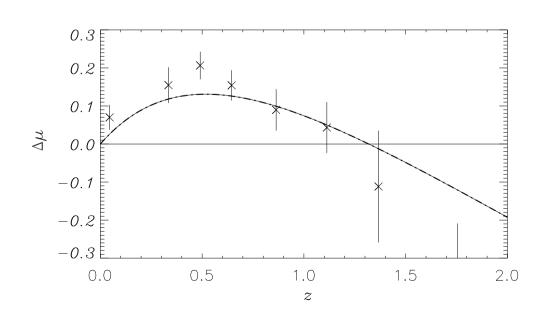
Best-fi t spatially flat Λ CDM

$$\begin{split} H_0 &= 62.7 \, \mathrm{km \ sec^{-1} \, Mpc^{-1}}, \\ \Omega_{M0} &= 0.34, \Omega_{\Lambda0} = 0.66 \end{split}$$



Riess astro-ph/0611572, p. 63

$$\begin{split} H_0 &= 65 \, \mathrm{km \ sec^{-1} \, Mpc^{-1}}, \\ \Omega_{M0} &= 0.29, \Omega_{\Lambda0} = 0.71 \end{split}$$

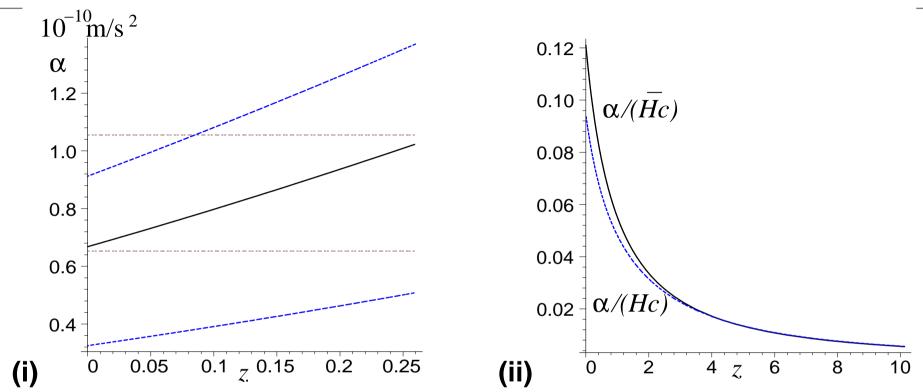


Test 1: SneIa luminosity distances



Best–fit H_0 agrees with HST key team, Sandage et al., $H_0 = 62.3 \pm 1.3$ (stat) ± 5.0 (syst) km sec⁻¹ Mpc⁻¹ [ApJ 653 (2006) 843].

CEP relative acceleration scale

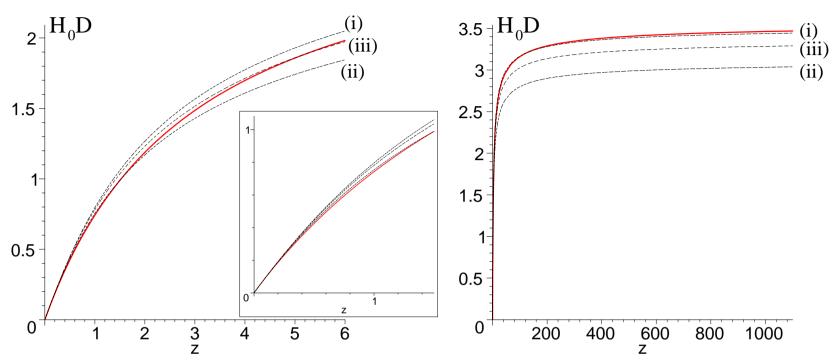


By equivalence principle the instantaneous relative deceleration of backgrounds gives an instantaneous 4-acceleration of magnitude $\alpha=H_0c\bar{\gamma}\dot{\bar{\gamma}}/(\sqrt{\bar{\gamma}^2-1})$ beyond which weak fi eld cosmological general relativity will be changed from Newtonian expectations: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

• For $z \lesssim 0.25$, coincides with empirical MOND scale $\alpha_0 = 1.2^{+0.3}_{-0.2} \times 10^{-10}\,\mathrm{ms}^{-2}h_{75}^2 = 8.1^{+2.5}_{-1.6} \times 10^{-11}\mathrm{ms}^{-2} \ \mathrm{for}$

$$H_0 = 61.7 \, \mathrm{km \ sec^{-1} \, Mpc^{-1}}$$
 .

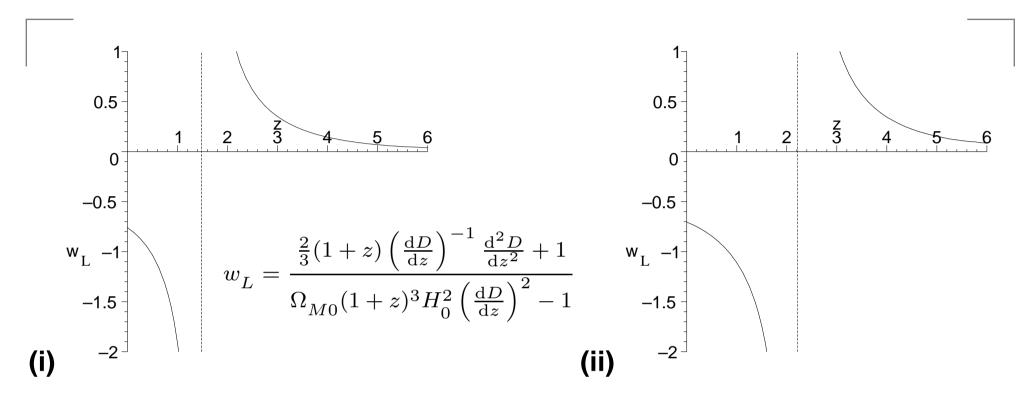
Dressed "comoving distance" D(z)



Best-fi t FB model (red line) compared to 3 spatially flat Λ CDM models: (i) best–fi t to WMAP5 only ($\Omega_{\Lambda}=0.751$); (ii) best–fi t to (Riess07) Snela only ($\Omega_{\Lambda}=0.66$); (iii) joint WMAP5 + BAO + Snela fi t ($\Omega_{\Lambda}=0.721$)

FB model closest to best–fit Λ CDM to Snela only result $(\Omega_{M0}=0.34)$ at low redshift, and to WMAP5 only result $(\Omega_{M0}=0.249)$ at high redshift

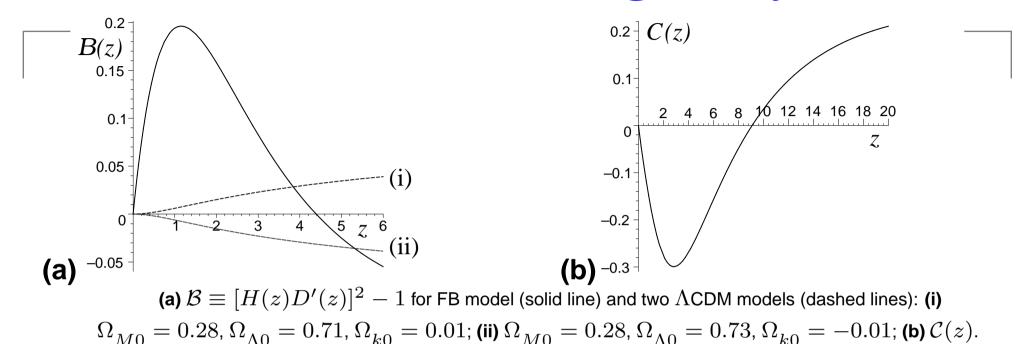
Equivalent "equation of state"?



A formal "dark energy equation of state" $w_L(z)$ for the best-fit FB model, $f_{v0}=0.76$, calculated directly from $r_w(z)$: (i) $\Omega_{M0}=0.33$; (ii) $\Omega_{M0}=0.279$.

● Description by a "dark energy equation of state" makes no sense when there is no physics behind it; but average value $w_L \simeq -1$ for z < 0.7 makes empirical sense.

Clarkson et al homogeneity test



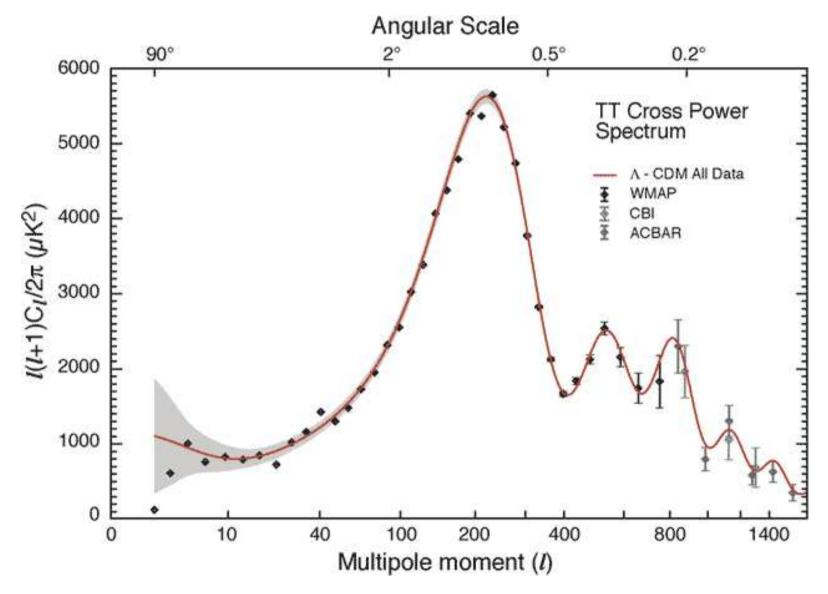
For FLRW equations, irrespective of dark energy model

$$\Omega_{k0}=\left[(H(z)D'(z))^2-1\right]/[H_0D(z)]^2=\mathrm{const}$$

$$\mathcal{C}(z)\equiv 1+H^2(DD''-D'^2)+HH'DD'=0$$

Will give a powerful test of FLRW assumption in future,
 with quantitative different prediction for FB model.

Test 2: Angular scale of CMB Doppler peaks

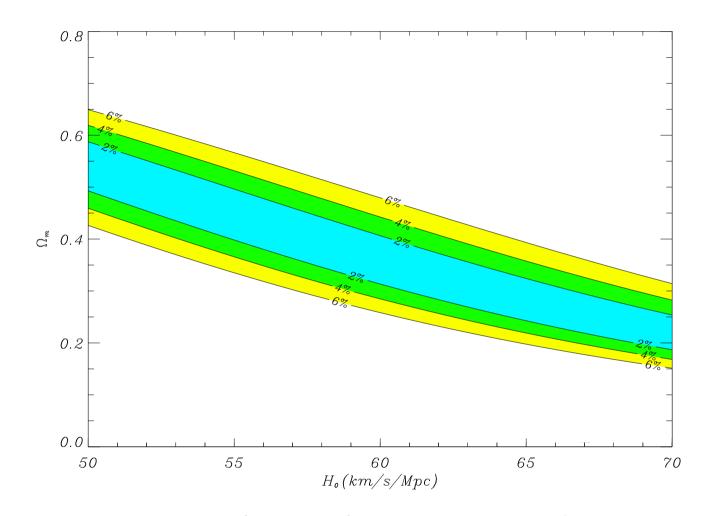


Power in CMB temperature anisotropies versus angular size of fluctuation on sky

Test 2: Angular scale of CMB Doppler peaks

- Angular scale is related to spatial curvature of FLRW models
- Relies on the simplifying assumption that spatial curvature is same everywhere
- In new approach spatial curvature is not the same everywhere
- ▶ Volume–average observer measures lower mean CMB temperature ($\bar{T}_0 \sim 1.98\,\mathrm{K}$, c.f. $T_0 \sim 2.73\,\mathrm{K}$ in walls) and a smaller angular anisotropy scale
- Relative focussing between voids and walls
- Integrated Sachs–Wolfe effect needs recomputation
- Here just calculate angular—diameter distance of sound horizon

Test 2: Angular scale of CMB Doppler peaks

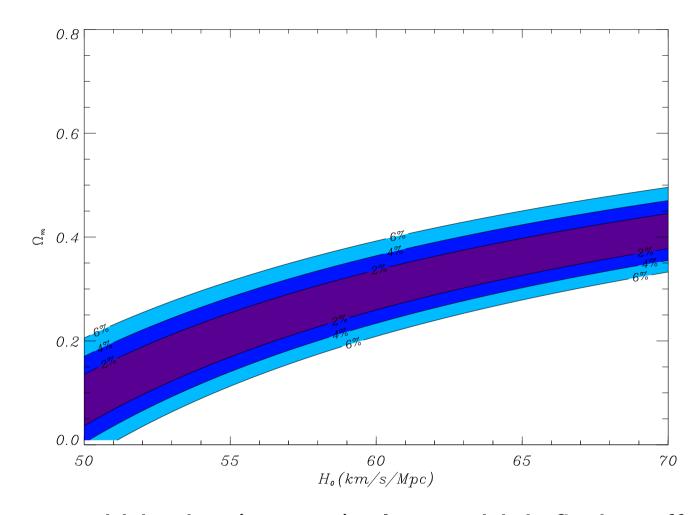


Parameters within the (Ω_m, H_0) plane which fit the angular scale of the sound horizon $\delta = 0.01$ rad deduced for WMAP, to within 2%, 4% and 6%.

Test 3: Baryon acoustic oscillation scale

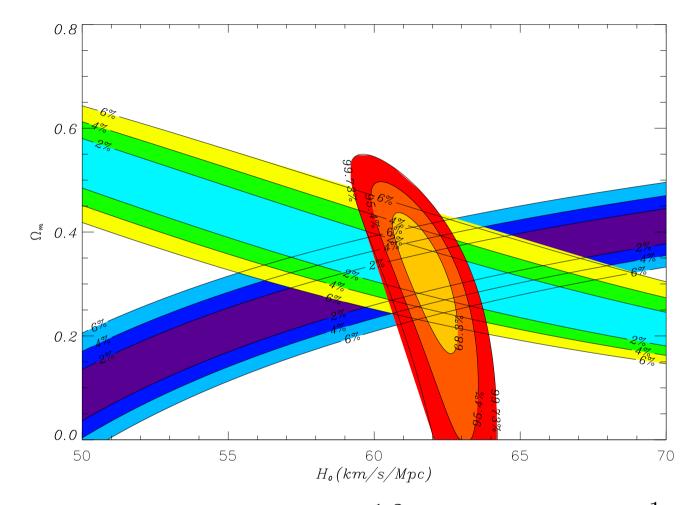
- In 2005 Cole et al. (2dF), and Eisenstein et al. (SDSS) detected the signature of the comoving baryon acoustic oscillation in galaxy clustering statistics
- Powerful independent probe of "dark energy"
- Here the effective dressed geometry should give an equivalent scale

Test 3: Baryon acoustic oscillation scale



Parameters within the (Ω_m, H_0) plane which fit the effective comoving baryon acoustic oscillation scale of $104h^{-1}$ Mpc, as seen in 2dF and SDSS.

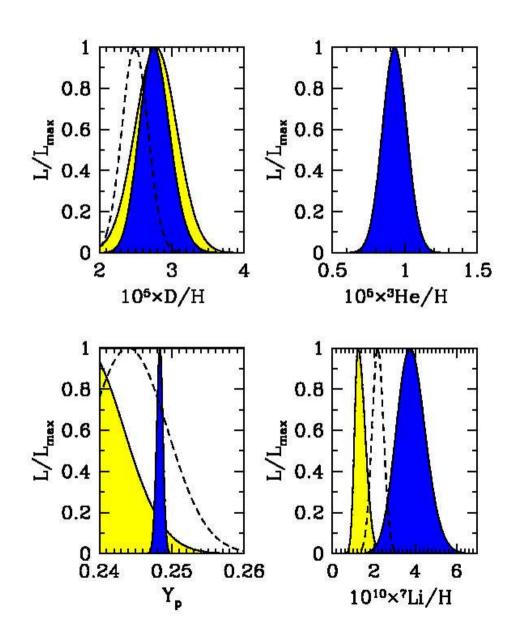
Agreement of independent tests



Best–fit parameters: $H_0 = 61.7^{+1.2}_{-1.1} \, \mathrm{km \ sec^{-1} \ Mpc^{-1}},$ $\Omega_m = 0.33^{+0.11}_{-0.16}$ (1 σ errors for Snela only) [Leith, Ng & Wiltshire, ApJ 672 (2008) L91]

Li abundance anomaly

Big-bang nucleosynthesis, light element abundances and WMAP with Λ CDM cosmology.

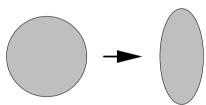


Resolution of Li abundance anomaly?

- Tests 2 & 3 shown earlier use the baryon—to—photon ratio $\eta_{B\gamma}=4.6$ — 5.6×10^{-10} admitting concordance with lithium abundances favoured prior to WMAP in 2003
- Conventional dressed parameter $\Omega_{M0}=0.33$ for wall observer means $\bar{\Omega}_{M0}=0.127$ for the volume–average.
- Conventional theory predicts the *volume-average* baryon fraction. With old BBN favoured $\eta_{B\gamma}$: $\bar{\Omega}_{B0} \simeq 0.027$ –0.033; but this translates to a conventional dressed baryon fraction parameter $\Omega_{B0} \simeq 0.072$ –0.088
- The mass ratio of baryonic matter to non-baryonic dark matter is typically increased to 1:3
- Enough baryon drag to fit peak heights ratio

Spatial curvature: ellipticity anomaly

- Negative spatial curvature should manifest itself in other ways than angular—diameter distance of sound horizon
- Indeed it does: greater geodesic mixing from negative spatial curvature registers ellipticity in the CMB anisotropy spectrum



- Ellipticity has been detected since COBE, and statistical significance increases with each data release (Gurzadyan et al., Phys. Lett. A 363 (2007) 121; Mod. Phys. Lett. A 20 (2005) 813,...)
- For FLRW models this is an anomaly; here it is expected; but still needs quantitative analysis

Alleviation of age problem

- Old structures seen at large redshifts are a problem for ΛCDM.
- Problem alleviated here; expansion age is increased, by an increasingly larger relative fraction at larger redshifts, e.g., for best–fit values Λ CDM $\tau=0.85$ Gyr at z=6.42, $\tau=0.365$ Gyr at z=11 FB $\tau=1.14$ Gyr at z=6.42, $\tau=0.563$ Gyr at z=11
- Present age of universe for best-fit is $\tau_0 \simeq 14.7$ Gyr for wall observer; $t_0 \simeq 18.6$ Gyr for volume—average observer.
- Suggests problems of under-emptiness of voids in Newtonian N-body simulations may be an issue of using volume-average time?? The simulations need to carefully reconsidered.

Variance of Hubble flow

- Relative to "wall clocks" the global average Hubble parameter $H_{\rm av}>\bar{H}$
- $m{ ilde{ ilde{P}}}$ is nonetheless also the locally measurable Hubble parameter within walls
- TESTABLE PREDICTION:

$$H_{\rm av} = \bar{\gamma}_{\rm w} \bar{H} - \bar{\gamma}_{\rm w}^{-1} \bar{\gamma}_{\rm w}'$$

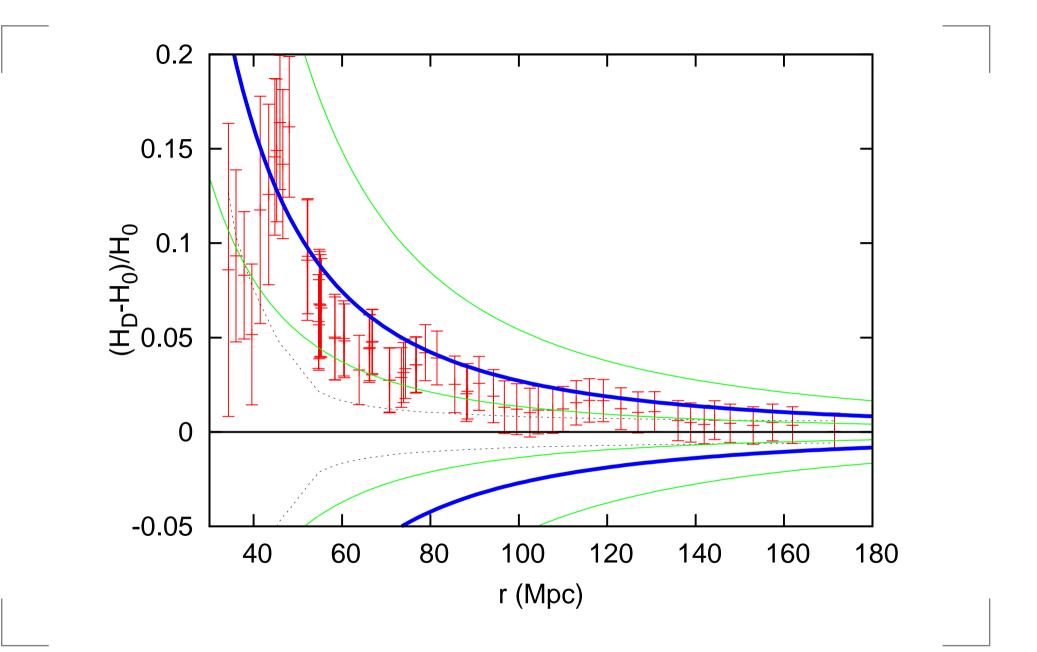
▶ With $H_0 = 62 \, \mathrm{km} \, \mathrm{sec}^{-1} \, \mathrm{Mpc}^{-1}$, expect according to our measurements:

 $\bar{H}_0 = 48 \, \mathrm{km \ sec^{-1} \ Mpc^{-1}}$ within ideal walls (e.g., around Virgo cluster?); and

 $\bar{H}_{\mathrm{v}0}=76\,\mathrm{km\ sec^{-1}\,Mpc^{-1}}$ across local voids (scale \sim 45 Mpc)

Explanation for Hubble bubble

- As voids occupy largest volume of space expect to measure higher average Hubble constant locally until the global average relative volumes of walls and voids are sampled at scale of homogeneity; thus expect maximum H_0 value for isotropic average on scale of dominant void diameter, $30h^{-1}{\rm Mpc}$, then decreasing til levelling out by $100h^{-1}{\rm Mpc}$.
- Consistent with observed Hubble bubble feature (Jha, Riess, Kirshner ApJ 659, 122 (2007)), which is unexplained (and problem for) ΛCDM.
- Intrinsic variance in apparent Hubble flow exposes a local scale dependence which may partly explain difficulties astronomers have had in converging on a value for H_0 .



N. Li and D. Schwarz, arxiv:0710.5073v1-2

Best fit parameters

- Hubble constant $H_0 = 61.7^{+1.2}_{-1.1}\,{\rm km\ sec^{-1}\,Mpc^{-1}}$
- present void volume fraction $f_{v0} = 0.76^{+0.12}_{-0.09}$
- \bullet bare density parameter $\bar{\Omega}_{M0}=0.125^{+0.060}_{-0.069}$
- dressed density parameter $\Omega_{M0} = 0.33^{+0.11}_{-0.16}$
- non–baryonic dark matter / baryonic matter mass ratio $(\bar{\Omega}_{M0}-\bar{\Omega}_{B0})/\bar{\Omega}_{B0}=3.1^{+2.5}_{-2.4}$
- bare Hubble constant $\bar{H}_0 = 48.2^{+2.0}_{-2.4} \, \mathrm{km \ sec^{-1} \ Mpc^{-1}}$
- mean lapse function $\bar{\gamma}_0 = 1.381^{+0.061}_{-0.046}$
- deceleration parameter $q_0 = -0.0428^{+0.0120}_{-0.0002}$
- \bullet wall age universe $au_0=14.7^{+0.7}_{-0.5}$ Gyr

Model comparison

	Λ CDM	FB scenario —
Snela luminosity distances	Yes	Yes
BAO scale (clustering)	Yes	Yes
Sound horizon scale (CMB)	Yes	Yes
Doppler peak fine structure	Yes	[still to calculate]
Integrated Sachs-Wolfe effect	Yes	[still to calculate]
Primordial ⁷ Li abundances	No	Yes?
CMB ellipticity	No	[Maybe]
CMB low multipole anomalies	No	[Foreground void:
	Re	es-Sciama dipole]
Hubble bubble	No	Yes
Nucleochronology dates		
of old globular clusters	Tension	Yes
X-ray cluster abundances	Marginal	Yes
Emptiness of voids	No	[Maybe]
Sandage-de Vaucouleurs paradox	No	Yes
Coincidence problem	No	Yes

Conclusion

- Apparent cosmic acceleration can be understood purely within general relativity; by (i) treating geometry of universe more realistically; (ii) understanding fundamental aspects of general relativity which have not been fully explored – quasi–local gravitational energy, of gradients in spatial curvature etc.
- The "fractal bubble" model passes three major independent tests which support ΛCDM and may resolve significant puzzles and anomalies.
- Every cosmological parameter requires subtle recalibration, but no "new" physics beyond dark matter: no Λ , no exotic scalars, no modifications to gravity.
- Questions raised otherwise unanswered should be addressed irrespective of phenomenological success.