Observational constraints of a Matter-Antimatter Symmetric Milne Universe

> Aurélien Benoit-Lévy ICRAnet - Pescara March 2008

dapnia Single COCI saclay

Problems in standard cosmology

- 95 % of the Universe in unknown
- Horizon problem (causality): need for an inflation scenario
- Coincidence problem and cosmological constant

The Symmetric Milne Universe

FRLW metric

$$ds^{2} = c^{2}dt^{2} - a(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left[\Omega_M \left(\frac{a_0}{a}\right)^3 + \Omega_R \left(\frac{a_0}{a}\right)^4 + \Omega_k \left(\frac{a_0}{a}\right)^2 + \Omega_\Lambda\right]$$

Standard model (LCDM)

Einstein-de Sitter model

$$\Omega_M \approx 0.3, \ \Omega_\Lambda \approx 0.7, \ \Omega_k = 0$$

 $\Omega_M = 1, \ \Omega_\Lambda = 0, \ \Omega_k = 0$

Milne model

$$\Omega_M = 0, \ \Omega_\Lambda = 0, \ \Omega_k = 1$$

The Symmetric Milne Universe

Empty Universe: equal quantities of matter (with positive mass) and antimatter (with negative mass). No Dark Matter and no Dark Energy.

This is considered here as a working hypothesis, and it could have justification from GR

Aim: check consistency with cosmological tests :

- Age of the Universe
- Big-Bang Nucleosynthesis
- Type la Supernovae
- CMB

Big-Bang Nucleosynthesis

Big-Bang Nucleosynthesis

Observational status

Large dispersion of deuterium observations but deuterium is believed to be a good probe as it cannot be produced after BBN

Tension on Li-7:WMAP gives 3 times more Li-7 than observed.

Tension on Li-6: 1000 times more observed than predicted.

Coasting nucleosynthesis

Work and discussion between Lohiya et al. and Steigman et al.

Timescale is radically different: 4×10^6 more time !

Weak n<>p reactions decouple at lower temperature: ≈80 keV instead of ≈800 keV

e⁻e⁺ annihilation occurs before weak decoupling: photon and neutrinos background should have the same temperature.

Some neutrons are slowly regenerated to maintain equilibrium value, enabling nucleosynthesis to occur.

Diffusion, spallation, nucleodisruption and photodisintegration

Matter and antimatter are separated in domains: diffusion of (anti-)nucleons lead to production of D,T, He-3

- T \geq 80 keV, only neutrons diffuse (neutral)
- 80 keV \geq T \geq 5 keV, annihilation stalled. No neutron available.
- 5 keV \ge T \ge 1 keV: Proton diffusion becomes efficient. Convection toward annihilation zone. Nucleodisruption products deuterium (and others ...)

$$P_n$$
 P_p P_D P_T $P_{^3\text{He}}$ 0.510.280.130.430.21

Creation probability by \bar{p}^4He reaction

Jedamzik et al. PRD(64)2, Kurki Suonio et al. PRD(62)10

Type la Supernovae

CMB

Standard Model: Space-time is curved and space is flat

Milne Model: Space-time is flat (empty) and space is curved

This changes drastically the angular distance

$$\frac{\Delta\theta_{\rm EdS}}{\Delta\theta_{\rm Milne}} = \frac{\sinh(\ln(1+z))}{2\left(1-\frac{1}{\sqrt{1+z}}\right)} = \overset{z=1100}{\sharp} 284$$

The same object is seen under a much smaller angle in Milne Universe

CMB

Sound horizon at recombinaison θ Angular distance to the last scattering surface $r_s = \int_0^{\eta_{\rm rec}} c_s d\eta = \int_0^{t_{\rm rec}} c_s \frac{dt}{a(t)}$ Sound horizon sound speed conformal time $c_s = \frac{c}{\sqrt{3(1+R)}}, R = \frac{3\rho_b}{4\rho_{\gamma}}$ Sound speed Initial condition: sound wave generation at QGP transition around 150 MeV

Under these simple hypothesis

 $heta_{
m Milne} pprox 1.2^{\circ}$ One degree scale, just like the observed scale !

Conclusion

Standard model is a good fit but is not natural (two unobserved components)

Surprisingly, the symmetric Milne Universe seems to satisfy cosmological tests: Age, Big-Bang Nucleosynthesis, Type Ia Supernovae and CMB.

Still, number of questions unsolved:

- angular spectrum of temperature fluctuations (CMB),
- How to hide so much baryons ?
- Check consistency with other cosmological tests

Questions ?