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What is “dark energy”?

Usual explanation: a homogeneous isotropic form of
“stuff” which violates the strong energy condition.
(Locally pressure P = wρc2, w < −1

3
;

e.g., for cosmological constant, Λ, w = −1.)

New explanation: in ordinary general relativity, a
manifestation of global variations of those aspects of
gravitational energy which by virtue of the equivalence
principle cannot be localised – the cosmological
quasilocal gravitational energy associated with
dynamical gradients in spatial curvature generated by a
universe as inhomogeneous.
[Call this dark energy if you like. It involves energy; and
“nothing” is dark.]
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6df: voids & bubble walls (A. Fairall, UCT)

ICRANet, 4 agosto 2008 – p. 3/48



From smooth to lumpy

Universe was very smooth at time of last scattering;
fluctuations in the fluid were tiny (δρ/ρ∼ 10−5 in photons
and baryons; ∼ 10−3 in non–baryonic dark matter).

FLRW approximation very good early on.

Universe is very lumpy or inhomogeneous today.

Recent surveys estimate that 40–50% of the volume of
the universe is contained in voids of diameter 30h−1

Mpc. [Hubble constant H
0

= 100h km sec−1 Mpc−1]
(Hoyle & Vogeley, ApJ 566 (2002) 641; 607 (2004) 751)

Add some larger voids, and many smaller minivoids,
and the universe is void–dominated at present epoch.

Clusters of galaxies are strung in filaments and bubbles
around these voids.
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The Sandage-de Vaucouleurs paradox. . .

Matter homogeneity only observed at >
∼ 200 Mpc scales

If “the coins on the balloon” are galaxies, their peculiar
velocities should show great statistical scatter on scale
much smaller than ∼ 200 Mpc

However, a nearly linear Hubble law flow begins at
scales above 1.5–2 Mpc from barycentre of local group.

Moreover, the local flow is statistically “quiet”.

Can we explain this as an effect of dark energy? Maybe.
Peculiar velocities are isotropized in FLRW universes
which expand forever (regardless of dark energy).

Empirical results do not appear to match best-fit ΛCDM
parameters (Axenides & Perivolaropoulos, PRD 65
(2002) 127301).
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Inhomogeneous cosmology
Need an averaging scheme to extract the average
homogeneous geometry

Only exact approaches dealing with averages of full
non-linear Einstein equations considered here (NOT
perturbation theory: Kolb et al. . . ; NOT LTB models etc)

Still many approaches, with different assumptions

Do we average tensors on curves of observers
(Zalaletdinov 1992, 1993) . . . recent work Coley,
Pelavas, and Zalaletdinov, PRL 95 (2005) 151102;
Coley and Pelavas, PR D75 (2007) 043506

Can we get away with averaging scalars (density,
pressure, shear ...)? (Buchert 2000, 2001) . . . recent
work Buchert CQG 23 (2006) 817; Astron. Astrophys.
454 (2006) 415; Gen. Rel. Grav. 40 (2008) 467 etc
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Buchert’s dust equations (2000)

For irrotational dust cosmologies, characterised by an
energy density, ρ(t,x), expansion, θ(t,x), and shear, σ(t,x),
on a compact domain, D, of a suitably defined spatial
hypersurface of constant average time, t, and spatial
3–metric, average cosmic evolution in Buchert’s scheme is
described by the exact equations

3
˙̄a
2

ā2
= 8πG〈ρ〉 − 1
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Back-reaction

Angle brackets denote the spatial volume average, e.g.,

〈R〉 ≡

(
∫

D

d3x
√

det 3gR(t,x)

)

/V(t)

〈θ〉 = 3
˙̄a

ā

Generally for any scalar Ψ,

d

dt
〈Ψ〉 − 〈

dΨ

dt
〉 = 〈Ψθ〉 − 〈θ〉〈Ψ〉

The extent to which the back–reaction, Q, can lead to
apparent cosmic acceleration or not has been the
subject of much debate.
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Within a statistically average cell

Need to consider relative position of observers over
scales of tens of Mpc over which δρ/ρ∼ 1.

GR is a local theory: gradients in spatial curvature and
gravitational energy can lead to calibration differences
between our rods and clocks and volume average ones

ICRANet, 4 agosto 2008 – p. 9/48



The Copernican principle

Retain Copernican Principle - we are at an average
position for observers in a galaxy

Observers in bound systems are not at a volume
average position in freely expanding space

By Copernican principle other average observers
should see an isotropic CMB

BUT nothing in theory, principle nor observation
demands that such observers measure the same mean
CMB temperature nor the same angular scales in the
CMB anisotropies

Average mass environment (galaxy) can differ
significantly from volume–average environment (void)
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Dilemma of gravitational energy. . .
In GR spacetime carries energy & angular momentum

Gµν =
8πG

c4
Tµν

On account of the strong equivalence principle, Tµν

contains localizable energy–momentum only

Kinetic energy and energy associated with spatial
curvature are in Gµν: variations are “quasilocal”!

Newtonian version, T − U = −V , of Friedmann equation

ȧ2

a2
+

kc2

a2
=

8πGρ

3

where T = 1

2
mȧ2x2, U = −1

2
kmc2x2, V = −4

3
πGρa2x2m;

r = a(t)x.
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Ricci curvature and gravitational energy

For Lemaître–Tolman–Bondi models constant spatial
curvature replaced by energy function with E(r) > 0 in
regions of negative spatial curvature.

In quasilocal Hamiltonian approach of Chen, Nester
and Liu (MPL A22 (2007) 2039) relative to a fiducial
static Cartesian refencence frame a comoving observer
in k = −1 FLRW universe sees negative quasilocal
energy; or relative to the static frame the comoving
observer has positive quasilocal energy.

For perturbation theory I advocate “Machian gauge” of
Bičak, Katz and Lynden–Bell (PR D76 (2007) 063501):
uniform Hubble flow plus minimal shift distortion
condition.
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Cosmological Strong Equivalence Principle

less dense
more dense

t last−scattering

t

gradient in <R>

average t = const

Thought experiment
equivalent situations:

SR: observers isotropically decelerate at different rates

GR: regions of different density have different volume
deceleration (for same initial conditions)
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Cosmological Strong Equivalence Principle

Even within pressureless dust there exist suitable small
frames such that conformal volume expanding motions
are locally indistinguishable from the equivalent uniform
motion of particles in a static Minkowski space.

Identify cosmic “rest frame” as the union of frames
differing by an integrated “relative acceleration” of such
pseudo-Minkowski space observers from same initial
conditions, with same “local expansion” once
cumulative “relative acceleration” is accounted for.

Preserves isotropy of mean CMB temperature

Implicitly solves the Sandage–de Vaucouleurs paradox.

Voids appear to expand faster; but their local clocks tick
faster, locally measured expansion can still be uniform.
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Average isotropic observer rest frames

Define them by average expansion over different
regions being homogeneous, i.e.,

〈
1

`r(τ)

d`r(τ)

dτ
〉 =

1

3
〈θ〉

1
=

1

3
〈θ〉

2
= · · · = H̄(τ)

Average over regions in which (i) spatial curvature,
shear and vorticity fluctuations average out; (ii) space is
expanding at the boundaries, at least marginally.

IMPORTANT POINT: H̄ is the “locally” measured
Hubble parameter, NOT the global average Hav with
respect to any one set of clocks, such as τw.

H̄ is uniform whereas proper lengths `r(τi) and proper
time τi can be region dependent
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Bound and unbound systems. . .

Isotropic observers “at rest” within expanding space in
voids may have clocks ticking at a rate dτv = γ(τw,x)dτw

with respect to static observers in bound systems.
Volume average: dt = γ̄

w
dτw, γ̄

w
(τw) = 〈−ξµnµ〉H

We are not restricted to γ = 1 + ε, ε � 1, as expected for
typical variations of binding energy.

Observable universe is assumed unbound.

With no dark energy I find γ < 3

2
= HMilne/HEinstein-de Sitter.

Where is infinity? In 1984 George Ellis suggested a
notion of finite infinity: a region within which isolated
systems, such as stars or galaxies, or galaxy clusters
can be considered as as approximately independent
dynamical systems.
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Where is infinity?

Inflation provides us with boundary conditions.

Initial smoothness at last–scattering ensures a uniform
initial expansion rate. For gravity to overcome this a
universal critical density exists.
BUT if we assume a smooth average evolution we can
overestimate the critical density today.

ρcr 6=
3H2

av

8πG

Identify finite infinity relative to demarcation between
bound and unbound systems, depending on the time
evolution of the true critical density since last-scattering.

Normalise wall time, τw, as the time at finite infinity,
(close to galaxy clocks) by 〈−ξµnµ〉F

I

= 〈γ(τw,x)〉
F

I

= 1.
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Finite infinity

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

Define finite infinity, “fi” as boundary to minimal
connected region within which average expansion
vanishes 〈θ〉 = 0 or average curvature vanishes 〈R〉 = 0.

Shape of fi boundary irrelevant (minimal surface
generally): could typically contain a galaxy cluster.
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Two/three scale model
ā3 = fwiaw

3 + fviav

3

Splits into void fraction with scale factor av and “wall”
fraction with scalar factor aw. Assume 3δ2Hw = 〈σ2〉w,
3δ2Hv = 〈σ2〉v.

Buchert equations for volume averaged observer, with
fv(t) = fviav

3/ā3 (void volume fraction) and kv < 0

˙̄a
2

ā2
+

ḟv

2

9fv (1 − fv)
−

α2fv

1/3

ā2
=

8πG

3
ρ̄
0

ā3

0

ā3
,

f̈v +
ḟv

2
(2fv − 1)

2fv (1 − fv)
+ 3

˙̄a

ā
ḟv −

3α2fv

1/3 (1 − fv)

2ā2
= 0 ,

if fv(t) 6= const; where α2 = −kvfvi

2/3.
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Two/three scale model

Universe starts as Einstein–de Sitter, from boundary
conditions at last scattering consistent with CMB;
almost no difference in clock rates initially.

We must be careful to account for clock rate variations.
Buchert’s clocks are set at the volume average position,
with a rate between wall clocks and void clock extreme.

H̄(t) = γ̄
w
Hw = γ̄

v
Hv; Hw ≡

1

aw

daw

dt
, Hv ≡

1

av

dav

dt

where γ̄
v

= dt
dτv

, γ̄
w

= dt
dτw

= 1 + (1 − hr)fv/hr,
hr = Hw/Hv < 1.

Need to be careful to obtain global Hav in terms of one
set of isoptropic observer wall clocks, τw.
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Bare cosmological parameters

Different sets of cosmological parameters are possible

Bare cosmological parameters are defined as fractions
of the true critical density related to the bare Hubble rate

Ω̄M =
8πGρ̄

M0
ā3

0

3H̄
2
ā3

,

Ω̄k =
α2fv

1/3

ā2H̄
2

,

Ω̄
Q

=
−ḟv

2

9fv(1 − fv)H̄
2

.

These are the volume–average parameters, with first
Buchert equation: Ω̄M + Ω̄k + Ω̄

Q
= 1.
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Dressed cosmological parameters
Conventional parameters for “wall observers” in
galaxies: defined by assumption (no longer true) that
others in entire observable universe have synchronous
clocks and same local spatial curvature

ds2

F
I

= −dτ2
w

+ aw

2(τw)
[

dη2
w

+ η2
w
dΩ2

]

= −dτ2
w

+
ā2

γ̄2
w

[

dη̄2 + r2
w
(η̄, τw) dΩ2

]

where rw ≡ γ̄
w

(1 − fv)
1/3 fwi

−1/3ηw(η̄, τw), and
volume–average conformal time dη̄ = dt/ā = γ̄

w
dτw/ā.

This leads to conventional dressed parameters which
do not sum to 1, e.g.,

ΩM = γ̄3
w
Ω̄M .
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Tracker solution PRL 99, 251101
General exact solution possesses a “tracker limit”

ā =
ā

0
(3H̄0t)

2/3

2 + fv0

[

3fv0H̄0t + (1 − fv0)(2 + fv0)
]1/3

fv =
3fv0H̄0t

3fv0H̄0t + (1 − fv0)(2 + fv0)
,

Void fraction fv(t) determines many parameters:

γ̄
w

= 1 + 1

2
fv = 3

2
H̄t

τw = 2

3
t +

2(1 − fv0)(2 + fv0)

27fv0H̄0

ln

(

1 +
9fv0H̄0t

2(1 − fv0)(2 + fv0)

)

Ω̄M =
4(1 − fv)

(2 + fv)2
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Apparent cosmic acceleration

Volume average observer sees no apparent cosmic
acceleration

q̄ =
2 (1 − fv)

2

(2 + fv)2
.

As t → ∞, fv → 1 and q̄ → 0+.

A wall observer registers apparent cosmic acceleration

q =
− (1 − fv) (8fv

3 + 39fv

2 − 12fv − 8)
(

4 + fv + 4fv

2
)2

,

Effective deceleration parameter starts at q∼ 1

2
, for

small fv; changes sign when fv = 0.58670773 . . ., and
approaches q → 0− at late times.
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Cosmic coincidence problem solved
Spatial curvature gradients largely responsible for
gravitational energy gradient giving clock rate variance.

Apparent acceleration starts when voids start to open.
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Test 1: SneIa luminosity distances

0 0.5 1 1.5 2
30

32

34

36

38

40

42

44

46

48

z

µ

Type Ia supernovae of Riess07 Gold data set fit with χ2

per degree of freedom = 0.9

With 55 ≤ H
0
≤ 75 km sec−1 Mpc−1, 0.01 ≤ ΩM0

≤ 0.5,
find Bayes factor ln B = 0.27 in favour or FB model
(marginally): statistically indistinguishable from ΛCDM.
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Test 1: SneIa luminosity distances

Plot shows difference of model apparent magnitude and
that of an empty Milne universe of same Hubble
constant H

0
= 61.73 km sec−1 Mpc−1. Note: residual

depends on the expansion rate of the Milne universe
subtracted (2σ limits on H

0
indicated by whiskers)
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Comparison ΛCDM models

Best-fit spatially flat ΛCDM

H
0

= 62.7 km sec−1 Mpc−1,

Ω
M0

= 0.34, Ω
Λ0

= 0.66

Riess astro-ph/0611572, p. 63

H
0

= 65 km sec−1 Mpc−1 ,

Ω
M0

= 0.29, Ω
Λ0

= 0.71
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Test 1: SneIa luminosity distances

Best–fit H
0

agrees with HST key team, Sandage et al.,
H

0
= 62.3 ± 1.3 (stat) ± 5.0 (syst) km sec−1 Mpc−1 [ApJ 653

(2006) 843].
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Dressed “comoving distance” rw(z)
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Best-fit FB model (red line) compared to 3 spatially flat ΛCDM models: (i) best–fit to WMAP5

only (ΩΛ = 0.751); (ii) best–fit to (Riess07) SneIa only (ΩΛ = 0.66);

(iii) joint WMAP5 + BAO + SneIa fit (ΩΛ = 0.721)

FB model closest to best–fit ΛCDM to SneIa only result
(ΩM0

= 0.34) at low redshift; and to WMAP5 only result
(ΩM0

= 0.249) at high redshift
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Equivalent “equation of state”?

(i) –2

–1.5

–1

–0.5

0
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w
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z

L

(ii) –2
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L
w

L
=

2

3
(1 + z)

(

drw

dz

)−1
d
2
rw

dz2
+ 1

Ω
M0

(1 + z)3a2

0
H2

0

(

drw

dz

)2

− 1

A formal “dark energy equation of state” w
L
(z) for the best-fit FB model, fv0 = 0.76,

calculated directly from rw(z): (i) Ω
M0

= 0.33; (ii) Ω
M0

= 0.279.

Description by a “dark energy equation of state” makes
no sense when there is no physics behind it; but
average value wL ' −1 for z < 0.7 makes empirical
sense.
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Test 2: Angular scale of CMB Doppler peaks

Power in CMB temperature anisotropies versus angular size of fluctuation on sky
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Test 2: Angular scale of CMB Doppler peaks

Angular scale is related to spatial curvature of FLRW
models

Relies on the simplifying assumption that spatial
curvature is same everywhere

In new approach spatial curvature is not the same
everywhere

Volume–average observer measures lower mean CMB
temperature (T̄

0
∼ 1.98 K, c.f. T

0
∼ 2.73 K in walls) and a

smaller angular anisotropy scale

Relative focussing between voids and walls

Integrated Sachs–Wolfe effect needs recomputation

Here just calculate angular–diameter distance of sound
horizon
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Test 2: Angular scale of CMB Doppler peaks

Parameters within the (Ωm,H
0
) plane which fit the angular

scale of the sound horizon δ = 0.01 rad deduced for WMAP,
to within 2%, 4% and 6%.
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Test 3: Baryon acoustic oscillation scale

In 2005 Cole et al. (2dF), and Eisenstein et al. (SDSS)
detected the signature of the comoving baryon acoustic
oscillation in galaxy clustering statistics

Powerful independent probe of “dark energy”

Here the effective dressed geometry should give an
equivalent scale
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Test 3: Baryon acoustic oscillation scale

Parameters within the (Ωm,H
0
) plane which fit the effective

comoving baryon acoustic oscillation scale of 104h−1 Mpc,
as seen in 2dF and SDSS.
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Agreement of independent tests

Best–fit parameters: H
0

= 61.7+1.2
−1.1 km sec−1 Mpc−1,

Ωm = 0.33+0.11
−0.16

(1σ errors for SneIa only) [Leith, Ng &
Wiltshire, ApJ 672 (2008) L91]
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SEP relative acceleration scale

(i)
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By equivalence principle the instantaneous relative deceleration of backgrounds gives an

instantaneous 4-acceleration of magnitude α = H
0
cγ̄ ˙̄γ/(

√

γ̄2
− 1) beyond which weak

field cosmological general relativity will be changed from Newtonian expectations: (i) as
absolute scale nearby; (ii) scaled for Hubble parameter to large z.

Coincides with empirical MOND scale
α0 = 1.2+0.3

−0.2 × 10−10 ms−2h2

75
= 8.1+2.5

−1.6 × 10−11ms−2 for

h
0

= 61.7 km sec−1 Mpc−1.
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Li abundance anomaly

Big-bang
nucleosynthesis, light
element abundances
and WMAP with ΛCDM
cosmology.
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Resolution of Li abundance anomaly?

Tests 2 & 3 shown earlier use the baryon–to–photon
ratio ηBγ = 4.6–5.6 × 10−10 admitting concordance with
lithium abundances favoured prior to WMAP in 2003

Conventional dressed parameter ΩM0
= 0.33 for wall

observer means Ω̄M0
= 0.127 for the volume–average.

Conventional theory predicts the volume–average
baryon fraction. With old BBN favoured ηBγ:

Ω̄B0
' 0.027–0.033; but this translates to a conventional

dressed baryon fraction parameter ΩB0
' 0.072–0.088

The mass ratio of baryonic matter to non–baryonic dark
matter is increased to 1:3

Enough baryon drag to fit peak heights ratio
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Spatial curvature: ellipticity anomaly

Negative spatial curvature should manifest itself in other
ways than angular–diameter distance of sound horizon

Indeed it does: greater geodesic mixing from negative
spatial curvature registers ellipticity in the CMB
anisotropy spectrum

Ellipticity has been detected since COBE, and statistical
significance increases with each data release
(Gurzadyan et al., Phys. Lett. A 363 (2007) 121; Mod.
Phys. Lett. A 20 (2005) 813,. . . )

For FLRW models this is an anomaly; here it is
expected; but still needs quantitative analysis
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Alleviation of age problem

Old structures seen at large redshifts are a problem for
ΛCDM.

Problem alleviated here; expansion age is increased, by
an increasingly larger relative fraction at larger
redshifts, e.g., for best–fit values
ΛCDM τ = 0.85 Gyr at z = 6.42, τ = 0.365 Gyr at z = 11
FB τ = 1.14 Gyr at z = 6.42, τ = 0.563 Gyr at z = 11

Present age of universe for best-fit is τ
0
' 14.7 Gyr for

wall observer; t
0
' 18.6 Gyr for volume–average

observer.

Suggests problems of under–emptiness of voids in
Newtonian N-body simulations may be an issue of
using volume–average time?? The simulations need to
carefully reconsidered.
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Variance of Hubble flow

Relative to “wall clocks” the global average Hubble
parameter Hav > H̄

H̄ is nonetheless also the locally measurable Hubble
parameter within walls

TESTABLE PREDICTION:

Hav = γ̄
w
H̄ − γ̄−1

w
γ̄′

w

With H
0

= 62 km sec−1 Mpc−1, expect according to our
measurements:
H̄0 = 48 km sec−1 Mpc−1 within ideal walls (e.g., around
Virgo cluster?); and
H̄v0 = 76 km sec−1 Mpc−1 across local voids (scale ∼
45 Mpc)
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Explanation for Hubble bubble

As voids occupy largest volume of space expect to
measure higher average Hubble constant locally until
the global average relative volumes of walls and voids
are sampled at scale of homogeneity; thus expect
maximum H

0
value for isotropic average on scale of

dominant void diameter, 30h−1Mpc, then decreasing til
levelling out by 100h−1Mpc.

Consistent with observed Hubble bubble feature (Jha,
Riess, Kirshner ApJ 659, 122 (2007)), which is
unexplained (and problem for) ΛCDM.

Intrinsic variance in apparent Hubble flow exposes a
local scale dependence which may partly explain
difficulties astronomers have had in converging on a
value for H

0
.
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N. Li and D. Schwarz, arxiv:0710.5073v1–2
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Best fit parameters

Hubble constant H
0

= 61.7+1.2
−1.1 km sec−1 Mpc−1

present void volume fraction fv0 = 0.76+0.12
−0.09

bare density parameter Ω̄M0
= 0.125+0.060

−0.069

dressed density parameter ΩM0
= 0.33+0.11

−0.16

non–baryonic dark matter / baryonic matter mass ratio
(Ω̄M0

− Ω̄B0
)/Ω̄B0

= 3.1+2.5
−2.4

bare Hubble constant H̄0 = 48.2+2.0
−2.4 km sec−1 Mpc−1

mean lapse function γ̄
0

= 1.381+0.061
−0.046

deceleration parameter q
0

= −0.0428+0.0120
−0.0002

wall age universe τ
0

= 14.7+0.7
−0.5 Gyr
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Model comparison
ΛCDM FB scenario

SneIa luminosity distances Yes Yes
BAO scale (clustering) Yes Yes
Sound horizon scale (CMB) Yes Yes
Doppler peak fine structure Yes [still to calculate]
Integrated Sachs–Wolfe effect Yes [still to calculate]
Primordial 7Li abundances No Yes?
CMB ellipticity No [Maybe]
CMB low multipole anomalies No [Foreground void:

Rees–Sciama dipole]
Hubble bubble No Yes
Nucleochronology dates
of old globular clusters Tension Yes

X-ray cluster abundances Marginal Yes
Emptiness of voids No [Maybe]
Sandage-de Vaucouleurs paradox No Yes
Coincidence problem No Yes
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Conclusion

Apparent cosmic acceleration can be understood purely
within general relativity; by (i) treating geometry of
universe more realistically; (ii) understanding
fundamental aspects of general relativity which have not
been fully explored – quasi–local gravitational energy,
of gradients in spatial curvature etc.

The “fractal bubble” model passes three major
independent tests which support ΛCDM and may
resolve significant puzzles and anomalies.

Every cosmological parameter requires subtle
recalibration, but no “new” physics beyond dark matter:
no Λ, no exotic scalars, no modifications to gravity.

Questions raised – otherwise unanswered – should be
addressed irrespective of phenomenological success.
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