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3. Brief description

Astroparticle physics is a new field of research emerging at the intersection
of particle physics, astrophysics and cosmology. Theoretical development in
these fields is mainly triggered by the growing amount of experimental data
of unprecedented accuracy, coming both from the ground based laboratories
and from the dedicated space missions.

3.1. Electron-positron plasma

Electron-positron plasma is of interest in many fields of physics and astro-
physics, e.g. in the early universe, active galactic nuclei, the center of our
Galaxy, compact astrophysical objects such as hypothetical quark stars, neu-
tron stars and gamma-ray bursts sources. It is also relevant for the physics
of ultraintense lasers and thermonuclear reactions. We study physical prop-
erties of dense and hot electron-positron plasmas. In particular, we are in-
terested in the issues of its creation and relaxation, its kinetic properties and
hydrodynamic description, baryon loading and radiation from such plasmas.

Two different states exist for electron-positron plasma: optically thin and
optically thick. Optically thin pair plasma may exist in active galactic nuclei
and in X-ray binaries. The theory of relativistic optically thin nonmagnetic
plasma and especially its equilibrium configurations was established in the
80s by Svensson, Lightman, Gould and others. It was shown that relaxation
of the plasma to some equilibrium state is determined by a dominant reac-
tion, e.g. Compton scattering or bremsstrahlung.

Developments in the theory of gamma ray bursts from one side, and ob-
servational data from the other side, unambiguously point out on existence
of optically thick pair dominated non-steady phase in the beginning of for-
mation of GRBs. The spectrum of radiation from optically thick plasma is
usually assumed to be thermal.

These months we have been focusing on effects of relativistic degener-
acy. In doing so we have generalized the numerical schemes for solution
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3. Brief description

of Boltzmann equations for pairs and photons, used in previous works. As
the outcome, we have developed a computer code which has been exten-
sively tested. All two-particle interactions are taken into account. From three-
particle interactions the double Compton process is tested.

Then, in a broader context, we consider the appearance of thermal emission
from relativistic plasma, focusing on several topics. In what follows all this
work is discussed in details, while in Appendix all relevant papers can be
found.

3.1.1. Relativistic degeneracy in the pair plasma

It is well known that at relativistic temperatures plasma becomes degenerate
Landau and Lifshitz (1980). In order to study relativistic degeneracy we have
introduced the Bose enhancement and Pauli blocking factors in the Boltz-
mann equation that allows us to follow the relaxation of the pair plasma to
Planck spectrum of photons and Fermi-Dirac distribution of electrons and
positrons. This improvement allows us to study higher energy densities with
respect to those treated before in Aksenov et al. (2007, 2009). However, for
such high energy densities the assumption adopted in these works, namely
that three-particle interactions operate on longer timescale with respect to
two-particle ones, does not hold any longer. For this reason we had to intro-
duce the collisional integrals for three-particle interactions based on the exact
QED matrix elements, in full analogy with previously treated two-particle
interactions.

Thus in this work we consider relaxation of nonequilibrium optically thick
pair plasma to complete thermal equilibrium by integrating numerically rel-
ativistic Boltzmann equations with collisional integrals computed from the
first principles, namely from the QED matrix elements both for two-particle
and three-particle interactions.

We point out that unlike classical Boltzmann equation for binary interac-
tions such as scattering, more general interactions are typically described by
four collisional integrals for each particle that appears both among incoming
and outgoing particles.

Our numerical results indicate that the rates of three-particle interactions
become comparable to those of two-particle ones for temperatures exceeding
the electron rest-mass energy. Thus three particle interactions such as rela-
tivistic bremsstrahlung, double Compton scattering and radiative pair cre-
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3.2. Thermal emission from relativistic plasma and GRBs

ation become essential not only for establishment of thermal equilibrium, but
also for correct evaluation of interaction rates, energy losses etc. Our results
on this topic are reported in Appendix A.

3.2. Thermal emission from relativistic plasma and

GRBs

Emission from optically thick stationary plasma is an important topic in as-
trophysics. Such plasma confined by the gravitational field constitutes stars,
accretion disks and other objects. The light from these systems is coming
from the so called photosphere defined as a region where the optical depth
computed from the interior of the optically thick plasma outwards reaches
unity.

There are also dynamical sources where bulk velocities of plasma reach ul-
trarelativistic values such as microquasars, active galactic nuclei and gamma-
ray bursts (GRBs). While in the former two objects there is clear evidence for
jets which contain optically thin plasma, in the latter objects the issue of jets
is controversial, and the source is required to be optically thick. This observa-
tional fact poses a new problem: the emission from (spherically) expanding
plasma which initially is optically thick. Such plasma eventually becomes
optically thin during its expansion, and initially trapped photons should be
released.

Recently, thermal components were found in spectra of GRBs not only in
the prompt emission, but also in the early afterglow. This motivated us to
extend the study of thermal emission previously focused on ultrarelativistic
photosphere into a more broad context of thermal emission from relativistic
plasma in GRBs.

3.2.1. Thermal emission in early afterglow from the
GRB-SNR interaction

The interaction between the GRB ejecta and a baryonic shell is considered in
the context of the binary driven hypernova model of GRBs. The kinematic
and observational properties of the shell after the interaction are derived. In
particular, the temperature and the duration of the thermal emission are ob-
tained. The model is then applied to GRB 090618 and other sources, and the
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3. Brief description

observed characteristics of the thermal component are reproduced. For de-
tails see Appendix B.

3.3. Relativistic kinetic theory and its applications

We pay particular attention to presenting our results in relativistic kinetic
theory in a systematic and pedagogic manner. This approach resulted in
a lecture course created by G.V. Vereshchagin for the students of the IRAP
PhD Erasmus Mundus Joint Doctorate program. This lecture course was also
delivered at the XV Brazilian School of Cosmology and Gravitation in Man-
garatiba, Brazil in 2012. The lecture notes are published in Cambridge Scien-
tific Publishers this year and are presented in Appendix C.

3.4. Ultra high energy particles

This year we started a new research field on propagation of ultra high energy
particles on cosmological distances. We consider cosmic limits on the prop-
agation distance, or cosmic horizon due to interactions of such particles with
known cosmological backgrounds, such as cosmic microwave background of
photons, extragalactic background light, and cosmic neutrino background.
We examine the mean free path and mean energy losss distances due to var-
ious interactions such as Breit-Wheeler process, photon-photon scattering,
photopion process, Bethe-Heitler process, neutrino-neutrino scattering etc.

3.4.1. Cosmic absorption of ultra high energy particles

This work summarizes the limits on propagation of ultra high energy par-
ticles in the Universe, set up by their interactions with cosmic background
of photons and neutrinos. By taking into account cosmic evolution of these
backgrounds and considering appropriate interactions we derive the mean
free path for ultra high energy photons, protons and neutrinos. For photons
the relevant processes are the Breit-Wheeler process as well as the double pair
production process. For protons the relevant reactions are the photopion pro-
duction and the Bethe-Heitler process. We discuss the interplay between the
energy loss length and mean free path for the Bethe-Heitler process. Neutrino
opacity is determined by its scattering off the cosmic background neutrino.
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3.5. Neutrinos in cosmology

We compute for the first time the high energy neutrino horizon as a function
of its energy. For details see Appendix D.

3.4.2. Interaction of high energy photons with the
background radiation in the Universe

We compare and contrast cosmic limits on propagation of very high energy
photons set by their interactions with cosmic microwave background and ex-
tragalactic background light with data on very high energy photons detected
from gamma-ray bursts and blazars. We calculate the optical depth due to the
Breit-Wheeler pair creation and Euler-Heisenberg photon-photon scattering,
taking into account cosmic evolution of the background photons, as well as
particle energy redshift. We confirm, that pair production at TeV energy and
higher impose dominant constraint on transparency of high energy cosmic
photons and the photon-photon scattering at energy less than 1 TeV impose
almost the same constrain as Breit-Wheeler on transparency of high energy
cosmic photons. For details see Appendix E.

3.5. Neutrinos in cosmology

Many observational facts make it clear that luminous matter alone cannot
account for the whole matter content of the Universe. Among them there
is the cosmic background radiation anisotropy spectrum, that is well fitted
by a cosmological model in which just a small fraction of the total density is
supported by baryons.

In particular, the best fit to the observed spectrum is given by a flat ΛCDM
model, namely a model in which the main contribution to the energy density
of the Universe comes from vacuum energy and cold dark matter. This result
is confirmed by other observational data, like the power spectrum of large
scale structures.

Another strong evidence for the presence of dark matter is given by the
rotation curves of galaxies. In fact, if we assume a spherical or ellipsoidal
mass distribution inside the galaxy, the orbital velocity at a radius r is given
by Newton’s equation of motion. The peculiar velocity of stars beyond the
visible edge of the galaxy should then decrease as 1/r. What is instead ob-
served is that the velocity stays nearly constant with r. This requires a halo
of invisible, dark, matter to be present outside the edge. Galactic size should
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3. Brief description

then be extended beyond the visible edge. From observations is follows that
the halo radius is at least 10 times larger than the radius of visible part of the
galaxy. Then it follows that a halo is at least 10 times more massive than all
stars in a galaxy.

Neutrinos were considered as the best candidate for dark matter about
twenty years ago. Indeed, it was shown that if these particles have a small
mass mν ∼ 30 eV, they provide a large energy density contribution up to crit-
ical density. Tremaine and Gunn (1979) have claimed, however, that massive
neutrinos cannot be considered as dark matter. Their paper was very influen-
tial and turned most of cosmologists away from neutrinos as cosmologically
important particles.

Tremaine and Gunn paper was based on estimation of lower and upper
bounds for neutrino mass; when contradiction with these bounds was found,
the conclusion was made that neutrinos cannot supply dark matter. The up-
per bound was given by cosmological considerations, but compared with the
energy density of clustered matter. It is possible, however, that a fraction of
neutrinos lays outside galaxies.

Moreover, their lower bound was found on the basis of considerations of
galactic halos and derived on the ground of the classical Maxwell-Boltzmann
statistics. Gao and Ruffini (1980) established a lower limit on the neutrino
mass by the assumption that galactic halos are composed by degenerate
neutrinos. Subsequent development of their approach Arbolino and Ruffini
(1988) has shown that contradiction with two limits can be avoided.

At the same time, in 1977 the paper by Lee and Weinberg (1977) appeared,
in which authors turned their attention to massive neutrinos with mν >>

2 GeV. Such particles could also provide a large contribution into the energy
density of the Universe, in spite of much smaller value of number density.

Recent experimental results from laboratory (see Dolgov (2002) for a re-
view) rule out massive neutrinos with mν > 2 GeV. However, the paper by
Lee and Weinberg was among the first where very massive particles were
considered as candidates for dark matter. This can be considered as the first
of cold dark matter models.

Today the interest toward neutrinos as a candidate for dark matter came
down, since from one side, the laboratory limit on its mass do not allow for
significant contribution to the density of the Universe, and from other side,
conventional neutrino dominated models have problems with formation of
structure on small scales. However, in these scenarios the role of the chem-
ical potential of neutrinos was overlooked, while it could help solving both
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3.5. Neutrinos in cosmology

problems.

3.5.1. Massive neutrino and structure formation

Lattanzi et al. (2003) have studied the possible role of massive neutrinos in
the large scale structure formation. Although now it is clear, that massive
light neutrinos cannot be the dominant part of the dark matter, their influ-
ence on the large scale structure formation should not be underestimated. In
particular, large lepton asymmetry, still allowed by observations, can affect
cosmological constraints on neutrino mass.

3.5.2. Cellular structure of the Universe

Figure 3.1.: Cellular structure of the Universe.

One of the interesting possibilities, from a conceptual point of view, is the
change from the description of the physical properties by a continuous func-
tion, to a new picture by introducing a self-similar fractal structure. This
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3. Brief description

approach has been relevant, since the concept of homogeneity and isotropy
formerly apply to any geometrical point in space and leads to the concept
of a Universe observer-homogeneous (Ruffini (1989)). Calzetti et al. (1987),
Giavalisco (1992), Calzetti et al. (1988) have defined the correlation length of
a fractal

r0 =
(

1− γ

3

)1/γ
RS, (3.5.1)

where RS is the sample size, γ = 3 − D, and D is the Hausdorff dimen-
sion of the fractal. Most challenging was the merging of the concepts of
fractal, Jeans mass of dark matter and the cellular structure in the Universe,
advanced by Ruffini et al. (1988). The cellular structure emerging from this
study is represented in Figure 3.1. There the upper cutoff in the fractal
structure Rcutoff ≈ 100 Mpc, was associated to the Jeans mass of the ”ino”

Mcell =
(

mpl

mino

)2
mpl.

3.5.3. Lepton asymmetry of the Universe

Lattanzi et al. (2005), Lattanzi et al. (2006) studied how the cosmological con-
straints on neutrino mass are affected by the presence of a lepton asymmetry.
The main conclusion is that while constraints on neutrino mass do not change
by the inclusion into the cosmological model the dimensional chemical po-
tential of neutrino, as an additional parameter, the value of lepton asymmetry
allowed by the present cosmological data is surprisingly large, being

L = ∑
ν

nν − nν̄

nγ
. 0.9. (3.5.2)

Therefore, large lepton asymmetry is not ruled out by the current cosmologi-
cal data.

3.6. Self-gravitating systems of Dark Matter

particles

A general study of Dark Matter (DM) within the particle DM paradigm re-
quires the interconnection between particle Physics (Standard Model (SM)
and beyond SM Physics), together with a fully general relativistic treatment.
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The study of the Physics must be always guided by the many different known
astrophysical scenarios where DM plays certainly a role, i.e.: the interac-
tion nature within the primordial plasma in the early universe, leptogenesis,
baryogenesis, the large structure of the Universe, structure formation, gravi-
tational lensing in clusters of galaxies, galaxy rotation curves and the overall
galaxy density profiles. The current attention of research within our group is
focused in the Physics and astrophysics of DM particles in the early Universe,
its effects in the mass and neutrino species number constraints, and mainly,
the role of DM in galaxies at all scales.

The study of all these issues are in part a natural continuation of the pio-
neering works developed in the past by former members of the ICRA group
and collaborators, all headed by the director of the institute, Prof. R. Ruffini
(see Ruffini et al. (1983, 1988); Ruffini and Stella (1983); Arbolino and Ruffini
(1988); Merafina and Ruffini (1989); Gao et al. (1990); Ingrosso et al. (1992);
Bisnovatyj-Kogan et al. (1993); Bisnovatyi-Kogan et al. (1998)).

The nature of the DM particle interactions for the recently proposed ster-
ile neutrino in the context of the so called neutrino Minimal Standard Model
(νMSM, see Boyarsky et al. (2009b) and references therein), in compatibility
with the early cosmology and further constrained with data coming form the
center of the galaxies, is being studied by the Ph.D student C. R. Argüelles
under the tutorship of the Prof. J. A. Rueda and Prof. R. Ruffini, in collabo-
ration with N. Mavromatos. Some correlated aspects of the role of sterile ν in
the early Universe, as neutrino species number constraints is currently being
studied by the Ph.D student B. Fraga, guided by the professors J. A. Rueda
and Prof. R. Ruffini.

The actual main topic of research respecting the role of fermionic DM par-
ticles in halos as well as in the centers of the galaxies together with its pos-
sible interaction regime is studied by the Ph.D students C. R. Argüelles and
B. Fraga, with the collaboration of the ICRANet colleagues I. Siutsou, J. A.
Rueda, and the external collaboration of the Prof. N. Mavromatos, headed by
Prof. R. Ruffini.

Below we present an introduction for each topic of research together with
a more detailed description through the links to actual results and ongoing
papers.

The problem of the distribution of DM in galaxies as generally studied in
the literature, is mainly focused in the halo regions and associated with the
galactic rotation curves, where the major amount of data is available. The
most common actual mathematical techniques used to deal with this prob-
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lem are phenomenological fits (See e.g. Burkert (1995)) as well as best fits re-
sulting from numerical N-body simulations centered in the ΛCDM paradigm
(See Navarro et al. (1997), Navarro et al. (2004)).

We propose here a new approach for this problem based on the following
main assumptions:

1) that the problem of the galactic core and the halo have to be addressed
unitarily;

2) for definiteness we study the simplest problem of ‘bare’ neutrinos in
thermodynamic equilibrium fulfilling only the Fermi Dirac statistical distri-
bution

f =
1

exp
ǫ−µ
kT + 1

=
1

exp
(

ǫ
βmc2 − θ

)

+ 1
, (3.6.1)

where ǫ is kinetic energy of the particles, µ is chemical potential, T is the tem-
perature, k is Boltzmann constant, m is the mass of ‘ino’, c is the speed of light,
β = kT/mc2, θ = µ/kT, without consider either Fermi weak interactions or
alternative interactions;

3) we consider zero total angular momentum and also we neglect any effect
of Baryonic matter.

The equilibrium configurations of a self-gravitating semi-degenerate sys-
tem of fermions were first studied in Newtonian gravity by Ruffini and Stella
(1983) and then generalized in general relativity by Gao et al. (1990). It is
shown that in any such system the density at large radii scales as r−2 quite
independently of the values of the central density, always providing a flat
rotation curve. These solutions were extended to an energy and angular mo-
mentum cut-off in the distribution function Ingrosso et al. (1992).

A typical mass density profile solution from the model, contrasted with a
Navarro-Frenk-White (NFW) profile Navarro et al. (1997), as well as a Boltz-
mannian Isothermal sphere model is shown in Fig. 3.2,

It is interesting that the quantum and relativistic treatment of the config-
urations considered here are characterized by the presence of central cored
structures unlike the typical cuspy configurations obtained from a classic
non-relativistic approximation, such as the ones of numerical N-body sim-
ulations in Navarro et al. (1997). This naturally leads to a possible solution to
the well-known core-cusp discrepancy de Blok et al. (2001).

We have recently returned to the Gao et. al. work, and propose a com-
pletely different way for solving the boundary condition problem for the
system of non-linear first order differential equations, in order to fulfill the
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Figure 3.2.: The cored behaviour of the dark matter density profiles from our
model is contrasted with the cuspy NFW density profile. The free parameters
of the model are fixed as β0 = 1.251× 10−7, θ0 = 30 and m = 10.54keV/c2,
while the corresponding free parameters in the NFW formula ρNFW(r) =
ρ0r0/(r(1+ r/r0)

2) are chosen as ρ0 = 5× 10−3M⊙pc−3 and r0 = 25 Kpc (i.e.
typical of spiral galaxies according to de Blok et al. (2008)).

observationally inferred values of typical dark matter halos in spiral galaxies
as given in de Blok et al. (2008). Namely, for a given initial condition for the
total mass M(0) = 0 (consistent with no singularity at the center), arbitrary
fixed θ0 (depending on the chosen central degeneracy), and defining the halo
radius rh at the onset of the flat rotation curve, we solve an eigenvalue prob-
lem for the central temperature parameter β0, until the observed halo circular
velocity vh is obtained. After this, we solve a second eigenvalue problem for
the particle mass m until the observed halo mass Mh is reached at the radius
rh.

The quest has been to use all these information in order to put a novel lower
constraints on the mass of the ‘ino’ in galactic halos by introducing the above
mentioned observational properties. This bound is for typical spiral galaxies:

m ≥ 0.42keV/c2. (3.6.2)

The novel density profile solutions as well as the rotation curves in agree-
ment with the observed halo properties are plotted in Fig. 3.3 for different
values of the central degeneracy parameter θ0 in correspondence with the
particle mass m,

Another relevant observational aspect on galactic halos is the so called Uni-
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Figure 3.3.: Mass density profiles and rotation curves for specific ino masses
m and central degeneracies θ0 fulfilling the observational constraints Mh =
1.6× 1011M⊙ at rh = 25 Kpc. All the quantum configurations have a dark
matter halo circular velocity vh = 168 km/s in correspondence with β0 =
1.251× 10−7. These solutions are contrasted with a Boltzmannian isothermal
sphere and the observationally inferred dark matter profile of typical spirals
(see Chemin et al. (2011), de Blok et al. (2008)).

versality laws. Donato et al. (2009), fitting DM halos with Burkert profiles,
found out that the surface density µ0D = rBρ0 of galaxy dark matter halos,
where rB and ρ0 are the burkert radius and central halo density, is nearly
constant for a wide number of galaxies with different total masses and ab-
solute magnitudes. This further implies a constant acceleration due to DM
at the Burkert radius aDMGMB/r2

B = 3.2× 10−9 cm/s2. The fact that from
our model we obtain scaling formulas for the magnitudes rB and MB with
respect the free parameters of the model m, β0 and θ0, it allow us to show
that always exist a definite range of the θ0 as well as β0 parameter for a given
particle mass above the limit found in (3.6.2), which is in agreement with the
observational universal result.

In these months the group was focused on the following issues.

3.6.1. A regular and relativistic Einstein cluster within the S2

orbit centered in SgrA*

In 1939 Einstein provided a model of self-gravitating masses, each moving
along geodesic circular orbits under the influence of the gravitational field
of the rest of the particle’s system. This model allowed him to argue that
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‘Schwarzschild singularities’ do not exist in physical reality because a cluster
with a given number of masses cannot be arbitrarily concentrated. And this
is due to the fact that otherwise the particles constituting the cluster would
reach the speed of light. Of course, actually this model can only be consid-
ered as an interesting possibility to try to provide a counterexample of a sin-
gularity within gravity Einstein’s theory, being nonetheless the Black Holes,
a physical reality within the theory of General Relativity.

In this work we first present the theoretical formalism of Einstein Clusters
(EC), and secondly we use the model under the special assumption of a con-
stant density distribution to model the central (sub-miliparsec) region of our
galaxy, in order to provide an alternative for the SMBH of M = 4.4× 106M⊙
thought to be hosted at very center. The matter content will be treated as dark
matter, i.e. we assume a dark EC composed by dark matter particles of mass
m (regardless of its nature), and therefore no contribution to the pressure in
form of radiation is assured as the cluster shrinks till relativistic regimes. We
first analyze the stability condition in the specific case of a regular and rela-
tivistic energy density EC, contained marginally inside the S2 star peri-center
rp(S2) as observed in the literature. Secondly, and for an EC with fixed par-
ticle number N, we will explicitly show through the R vs. M relation, and
for particle velocities ranging from zero up to the speed of light, up to which
point an EC can be contracted before losing its global stability. For details see
Appendix F.

3.6.2. Semidegenerate self-gravitating system of fermion as

Dark Matter on galaxies I: Universality laws

We compare and contrast the RAR model against an observational and Uni-
versal empirical correlation between the surface density of DM halos and
their one-halo scale-lengths as observed and recently presented in the liter-
ature. Specifically speaking, the so-called ‘central’ surface density of galaxy
DM halos Σ0D = r0/ρ0h, where r0 and ρ0h are the core radius of the halo
(or halo-scale-length) and central (halo) density respectively, was found to be
roughly a constant independently of the galaxy luminosity. This significant
result, involved a sample of several hundreds of rotation curves allowing for
mass models in a very wide range of galaxy types from dwarf to elliptical
galaxies, and was analyzed under the assumption that each DM halo follows
a Burkert profile ρB(r). We demonstrate here that the self-gravitating sys-
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tems of keV fermions (RAR model), when applied to a wide range of galax-
ies, is able to reproduce the Universality law of constant surface density of
DM halos. It is further shown how these Universal laws can be used to put
constraints the free parameters (β0 and θ0) within a definite range, as well
as to provide an approximate correlation between these both free parame-
ters in that range of validity. As a consequence of this phenomenological
approach, the range of validity of θ0 can be used now to study the density
behaviour of the central degenerate core regions. When this is done appears
the remarkable conclusion that the fulfillment of the DM Universality law,
valid for dwarf up to big spirals, is at the same time consistent with dense
compact DM objects (below sub-parsec scales) with masses 104 and 107 M⊙
respectively. For details see Appendix G.

3.6.3. On the core-halo distribution of dark matter in galaxies

Within the realm of non-baryonic DM in the form of collisionless mas-
sive fermions, we present a model of self-gravitating and semi-degenerate
fermions including relativistic effects, and named as the Ruffini - Arguelles
- Rueda (RAR) model. The integration of the system under study will allow
to deal with distance-scales well below mpc up to Mpc, being able to seg-
regate different marked physical regimes: a degenerate quantum regime in
the central part of the configurations, and a classical Boltzmannian one in
the outermost part. We further show the mean features of the equilibrium
configurations in terms of the free parameters, and most important, how sen-
sitive is the particle mass when the model is asked to fulfill all the accessible
observables at galaxy scales. With the different applications of this model
to galaxies, ranging from dwarf to big elliptical, it will be clear the central
role of an underlying Fermi-Dirac late-time phase-space density g/h3 f (r, p)
of DM in a virialized halo. It is shown in particular, a natural and novel way
to constraint the DM content in the very central part of dwarf spheroidal and
spiral galaxies. More interestingly, it is analyzed in some detail up to which
extents this central DM content can be interpreted as an alternative to the
central BH paradigm, and how, when equilibrium solutions allows for it, the
keV fermionic DM particle appears as a natural candidate. For details see
Appendix H.
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3.6.4. Dark matter massive fermions and Einasto profiles in
galactic halos

In 2008, a sample of 34 nearby (closer than 15 Mpc) spiral and irregular galax-
ies (Sb to Im) were observed with The HI Nearby Galaxy Survey (THINGS).
These observations allowed to obtain the highest quality rotation curves
available to date due to the high spatial and velocity resolution of THINGS.
Then a sub-sample of these rotation curves, corresponding to 19 rotationally
dominated and undisturbed galaxies, were combined with information on
the distribution of gas and stars to construct mass models for the dark mat-
ter component of the sample. After that, using these rotation curves from
THINGS, the Einasto dark matter halo mode has been proposed as the stan-
dard model for dark matter halos as it provides both cored and cusped dis-
tributions for different values of model

parameters when compared with other models of the literature. Here
we fit rotation curves of the THINGS sample with the RAR model based
on semi-degenerate self-gravitating system of fermions, to further compare
and contrast the results of the fitting procedures with different dark matter
phenomenological models used in the literature. In particular we compare
the best-fitting results with respect to the Navarro–Frenk–White (NFW) 2-
parameter model, and with respect to the Einasto 3-parameter model. As
it is shown here, the comparison among different models shows that the
fermionic structures can present a better fit when contrasted with the rota-
tion curve data of THINGS. More relevant is the fact that the overall fermionic
model solutions, in contrast with the other models analyzed here, are associ-
ated with important predicting power regarding the innermost dark matter
distribution due to the quantum nature of their sub-parsec cores. For details
see Appendix I.
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4.1. Publications before 2005

1. R. Ruffini, D. J. Song, and L. Stella, “On the statistical distribution of
massive fermions and bosons in a Friedmann universe” Astronomy and
Astrophysics, Vol. 125, (1983) pp. 265-270.

The distribution function of massive Fermi and Bose particles in an expanding

universe is considered as well as some associated thermodynamic quantities,

pressure and energy density. These considerations are then applied to cosmo-

logical neutrinos. A new limit is derived for the degeneracy of a cosmological

gas of massive neutrinos.

2. R. Ruffini and D. J. Song, “On the Jeans mass of weakly interacting neu-
tral massive leptons”, in Gamow cosmology, eds. F. Melchiorri and R.
Ruffini, (1986) pp. 370–385.

The cosmological limits on the abundances and masses of weakly interacting

neutral particles are strongly affected by the nonzero chemical potentials of

these leptons. For heavy leptons (mx > GeV), the value of the chemical po-

tential must be much smaller than unity in order not to give very high values

of the cosmological density parameter and the mass of heavy leptons, or they

will be unstable. The Jeans’ mass of weakly interacting neutral particles could

give the scale of cosmological structure and the masses of astrophysical ob-

jects. For a mass of the order 10 eV, the Jeans’ mass could give the scenario

of galaxy formation, the supercluster forming first and then the smaller scales,

such as clusters and galaxies, could form inside the large supercluster.

3. D. Calzetti, M. Giavalisco, R. Ruffini, J. Einasto, and E. Saar, “The corre-
lation function of galaxies in the direction of the Coma cluster”, Astro-
physics and Space Science, Vol. 137 (1987) pp. 101-106.

Data obtained by Einasto et al. (1986) on the amplitude of the correlation func-

tion of galaxies in the direction of the Coma cluster are compared with theo-
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retical predictions of a model derived for a self-similar observer-homogeneous

structure. The observational samples can be approximated by cones of angu-

lar width alpha of about 77 deg. Eliminating sources of large observational

error, and by making a specified correction, the observational data are found

to agree very well with the theoretical predictions of Calzetti et al. (1987).

4. R. Ruffini, D. J. Song, and S. Taraglio, “The ’ino’ mass and the cellu-
lar large-scale structure of the universe”, Astronomy and Astrophysics,
Vol. 190, (1988) pp. 1-9.

Within the theoretical framework of a Gamow cosmology with massive ”inos”,

the authors show how the observed correlation functions between galaxies

and between clusters of galaxies naturally lead to a ”cellular” structure for the

Universe. From the size of the ”elementary cells” they derive constraints on

the value of the masses and chemical potentials of the cosmological ”inos”.

They outline a procedure to estimate the ”effective” average mass density of

the Universe. They also predict the angular size of the inhomogeneities to be

expected in the cosmological black body radiation as remnants of this cellular

structure. A possible relationship between the model and a fractal structure is

indicated.

5. D. Calzetti, M. Giavalisco, and R. Ruffini, “The normalization of the
correlation functions for extragalactic structures”, Astronomy and As-
trophysics, Vol. 198 (1988), pp. 1-15.

It is shown that the spatial two-point correlation functions for galaxies, clus-

ters and superclusters depend explicitly on the spatial volume of the statistical

sample considered. Rules for the normalization of the correlation functions are

given and the traditional classification of galaxies into field galaxies, clusters

and superclusters is replaced by the introduction of a single fractal structure,

with a lower cut-off at galactic scales. The roles played by random and stochas-

tic fractal components in the galaxy distribution are discussed in detail.

6. M. V. Arbolino and R. Ruffini, “The ratio between the mass of the halo
and visible matter in spiral galaxies and limits on the neutrino mass”,
Astronomy and Astrophysics, Vol. 192, (1988) pp. 107-116.

Observed rotation curves for galaxies with values of the visible mass ranging

over three orders of magnitude together with considerations involving equi-

librium configurations of massive neutrinos, impose constraints on the ratio

between the masses of visible and dark halo comporents in spiral galaxies.
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Upper and lower limits are derived for the mass of the particles making up the

dark matter.

7. A. Bianconi, H. W. Lee, and R. Ruffini, “Limits from cosmological nu-
cleosynthesis on the leptonic numbers of the universe”, Astronomy and
Astrophysics, Vol. 241 (1991) pp. 343-357.

Constraints on chemical potentials and masses of ’inos’ are calculated using

cosmological standard nucleosynthesis processes. It is shown that the elec-

tron neutrino chemical potential (ENCP) should not be greater than a value of

the order of 1, and that the possible effective chemical potential of the other

neutrino species should be about 10 times the ENCP in order not to conflict

with observational data. The allowed region (consistent with the He-4 abun-

dance observations) is insensitive to the baryon to proton ratio η, while those

imposed by other light elements strongly depend on η.

8. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair
electromagnetic pulse of a black hole with electromagnetic structure”,
Astronomy and Astrophysics, Vol. 350 (1999) pp. 334-343.

We study the relativistically expanding electron-positron pair plasma formed

by the process of vacuum polarization around an electromagnetic black hole

(EMBH). Such processes can occur for EMBH’s with mass all the way up to

6 · 105M⊙. Beginning with a idealized model of a Reissner-Nordstrom EMBH

with charge to mass ratio ξ = 0.1, numerical hydrodynamic calculations are

made to model the expansion of the pair-electromagnetic pulse (PEM pulse)

to the point that the system is transparent to photons. Three idealized special

relativistic models have been compared and contrasted with the results of the

numerically integrated general relativistic hydrodynamic equations. One of

the three models has been validated: a PEM pulse of constant thickness in the

laboratory frame is shown to be in excellent agreement with results of the gen-

eral relativistic hydrodynamic code. It is remarkable that this precise model,

starting from the fundamental parameters of the EMBH, leads uniquely to the

explicit evaluation of the parameters of the PEM pulse, including the energy

spectrum and the astrophysically unprecedented large Lorentz factors (up to

6 · 103 for a 103 M⊙ EMBH). The observed photon energy at the peak of the

photon spectrum at the moment of photon decoupling is shown to range from

0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total

energy in photons is in the range of 1052 to 1054 ergs, consistent with observed
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gamma-ray bursts. In these computations we neglect the presence of baryonic

matter which will be the subject of forthcoming publications.

9. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair-
electromagnetic pulse from an electromagnetic black hole surrounded
by a baryonic remnant”, Astronomy and Astrophysics, Vol. 359 (2000)
pp. 855-864.

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with

a shell of baryonic matter surrounding a Black Hole with electromagnetic

structure (EMBH) is analyzed for selected values of the baryonic mass at se-

lected distances well outside the dyadosphere of an EMBH. The dyadosphere,

the region in which a super critical field exists for the creation of e+e− pairs,

is here considered in the special case of a Reissner-Nordstrom geometry. The

interaction of the PEM pulse with the baryonic matter is described using a sim-

plified model of a slab of constant thickness in the laboratory frame (constant-

thickness approximation) as well as performing the integration of the general

relativistic hydrodynamical equations. Te validation of the constant-thickness

approximation, already presented in a previous paper Ruffini et al. (1999) for a

PEM pulse in vacuum, is here generalized to the presence of baryonic matter.

It is found that for a baryonic shell of mass-energy less than 1% of the total

energy of the dyadosphere, the constant-thickness approximation is in excel-

lent agreement with full general relativistic computations. The approximation

breaks down for larger values of the baryonic shell mass, however such cases

are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of

numerical computations of the slab model for PEM pulses, we describe (i) the

properties of relativistic evolution of a PEM pulse colliding with a baryonic

shell; (ii) the details of the expected emission energy and observed tempera-

ture of the associated GRBs for a given value of the EMBH mass; 103M⊙, and

for baryonic mass-energies in the range 10−8 to 10−2 the total energy of the

dyadosphere.

10. M. Lattanzi, R. Ruffini, and G. Vereshchagin, “On the possible role of
massive neutrinos in cosmological structure formation”, in Cosmology
and Gravitation, eds. M. Novello and S. E. Perez Bergliaffa, Vol. 668 of
AIP Conference Series, (2003) pp. 263–287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe
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that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

4.2. Publications (2005 – 2014)

1. D. Begue and G.V. Vereshchagin, “Transparency of an instantaneously
created electron-positron-photon plasma”, MNRAS, Vol. 439 (2014), pp.
924-928.

The problem of the expansion of a relativistic plasma generated when a large

amount of energy is released in a small volume has been considered by many

authors. We use the analytical solution of Bisnovatyi-Kogan and Murzina for

the spherically symmetric relativistic expansion. The light curves and the spec-

tra from transparency of an electron-positron-photon plasma are obtained. We

compare our results with the work of Goodman.

2. I.A. Siutsou and G.V. Vereshchagin, “Relativistic spotlight ”, Physics
Letters B, Volume 730 (2014), pp. 190âe“192.

Relativistic motion gives rise to a large number of interesting and sometimes

counterintuitive effects. In this work we consider an example of such effects,

which we term relativistic spotlight. When an isotropic source of soft photons

with proper intensity I0 is placed at rest between a distant observer and photo-

sphere of relativistic wind, its intensity as seen by the observer gets enhanced

up to ∼ Γ4 I0, where Γ is bulk Lorentz factor of the wind. In addition, these

photons may extract a large part of the wind kinetic energy. We speculate that

such effect may be relevant for the physics of GRBs.

3. G.V. Vereshchagin, “Physics of non-dissipative ultrarelativistic photo-
spheres ”, International Journal of Modern Physics D Vol. 23, No. 1
(2014) 1430003.

Recent observations, especially by the Fermi satellite, point out the importance

of the thermal component in GRB spectra. This fact revives strong interest in
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photospheric emission from relativistic outflows. Early studies already sug-

gested that the observed spectrum of photospheric emission from relativisti-

cally moving objects differs in shape from the Planck spectrum. However, this

component appears to be subdominant in many GRBs and the origin of the

dominant component is still unclear. One of the popular ideas is that energy

dissipation near the photosphere may produce a nonthermal spectrum and ac-

count for such emission. Before considering such models, though, one has to

determine precise spectral and timing characteristics of the photospheric emis-

sion in the simplest possible case. Hence this paper focuses on various physi-

cal effects which make the photospheric emission spectrum different from the

black body spectrum and quantifies them.

4. I.A. Siutsou, R. Ruffini and G.V. Vereshchagin, “Spreading of ultrarela-
tivistically expanding shell: an application to GRBs”, New Astronomy,
Vol. 27 (2014), pp. 30-33.

Optically thick energy dominated plasma created in the source of Gamma-Ray

Bursts (GRBs) expands radially with acceleration and forms a shell with con-

stant width measured in the laboratory frame. When strong Lorentz factor

gradients are present within the shell it is supposed to spread at sufficiently

large radii. There are two possible mechanisms of spreading: hydrodynamical

and thermal ones. We consider both mechanisms evaluating the amount of

spreading that occurs during expansion up to the moment when the expand-

ing shell becomes transparent for photons. We compute the hydrodynamical

spreading of an ultrarelativistically expanding shell. In the case of thermal

spreading we compute the velocity spread as a function of two parameters:

comoving temperature and bulk Lorentz factor of relativistic Maxwellian dis-

tribution. Based on this result we determine the value of thermal spreading

of relativistically expanding shell. We found that thermal spreading is negli-

gible for typical GRB parameters. Instead hydrodynamical spreading appears

to be significant, with the shell width reaching ∼ 1010 cm for total energy

E = 1054 erg and baryonic loading B = 10−2. Within the fireshell model

such spreading will result in the duration of Proper Gamma-Ray Bursts up to

several seconds.

5. G.V.Vereshchagin, ”Relativistic Kinetic Theory with some Applica-
tions”, in: Cosmology and Gravitation: XVth Brazilian School of Cos-
mology and Gravitation, eds. Mario Novello and Santiago E.Perez
Bergliaffa, Cambridge Scientific Publishers, 2014, pp 1-40.
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A brief introduction into relativistic kinetic theory is given. Some applications

of this theory in plasma physics, astrophysics and cosmology are reviewed.

6. A. Benedetti, R. Ruffini and G.V. Vereshchagin, ”Evolution of the pair
plasma generated by a strong electric field”, Physics Letters A, Volume
377 (2013), Issue 3-4, p. 206-215.

We study the process of energy conversion from overcritical electric field into

electron-positron-photon plasma. We solve numerically Vlasov-Boltzmann

equations for pairs and photons assuming the system to be homogeneous and

anisotropic. All the 2-particle QED interactions between pairs and photons

are described by collision terms. We evidence several epochs of this energy

conversion, each of them associated to a specific physical process. Firstly pair

creation occurs, secondly back reaction results in plasma oscillations. Thirdly

photons are produced by electron-positron annihilation. Finally particle in-

teractions lead to completely equilibrated thermal electron-positron-photon

plasma.

7. D. Begue, I. A. Siutsou and G. V. Vereshchagin, ”Monte Carlo simula-
tions of the photospheric emission in GRBs”, the Astrophysical Journal
Volume 767 (2013), Issue 2, article id. 139.

We studied the decoupling of photons from ultra-relativistic spherically sym-

metric outflows expanding with constant velocity by means of Monte Carlo

simulations. For outflows with finite widths we confirm the existence of two

regimes: photon-thick and photon-thin, introduced recently by Ruffini et al.

(RSV). The probability density function of the last scattering of photons is

shown to be very different in these two cases. We also obtained spectra as

well as light curves. In the photon-thick case, the time-integrated spectrum

is much broader than the Planck function and its shape is well described by

the fuzzy photosphere approximation introduced by RSV. In the photon-thin

case, we confirm the crucial role of photon diffusion, hence the probability

density of decoupling has a maximum near the diffusion radius well below

the photosphere. The time-integrated spectrum of the photon-thin case has a

Band shape that is produced when the outflow is optically thick and its peak

is formed at the diffusion radius.

8. R. Ruffni, I. A. Siutsou and G. V. Vereshchagin, ”Theory of photospheric
emission from relativistic outflows” , the Astrophysical Journal, Vol.
772, Issue 1 (2013) article id. 11.
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We derive the optical depth and photospheric radius of relativistic outflow

using the model of relativistic wind with finite duration. We also discuss the

role of radiative diffusion in such outflow. We solve numerically radiative

transfer equation and obtain light curves and observed spectra of photospheric

emission. The obtained spectra are nonthermal and in some cases have Band

shape.

9. R. Ruffini and G.V. Vereshchagin, ”Electron-positron plasma in GRBs
and in cosmology”, Il Nuovo Cimento C 36 (2013) 255.

Electron-positron plasma is believed to play imporant role both in the early

Universe and in sources of Gamma-Ray Bursts (GRBs). We focus on anal-

ogy and difference between physical conditions of electron-positron plasma

in the early Universe and in sources of GRBs. We discuss a) dynamical differ-

ences, namely thermal acceleration of the outflow in GRB sources vs cosmo-

logical deceleration; b) nuclear composition differences as synthesis of light

elements in the early Universe and possible destruction of heavy elements in

GRB plasma; c) different physical conditions during last scattering of photons

by electrons. Only during the acceleration phase of the optically thick electron-

positron plasma comoving observer may find it similar to the early Universe.

This similarity breaks down during the coasting phase. Reprocessing of nu-

clear abundances may likely take place in GRB sources. Heavy nuclear ele-

ments are then destroyed, resulting mainly in protons with small admixture of

helium. Unlike the primordial plasma which recombines to form neutral hy-

drogen, and emits the Cosmic Microwave Background Radiation, GRB plasma

does not cool down enough to recombine.

10. A.G. Aksenov, R. Ruffni and G. V. Vereshchagin, ”Comptonization of
photons near the photosphere of relativistic outflows”, MNRAS Letters,
Vol. 436, Issue 1 (2013) pp. L54-L58.

We consider the formation of photon spectrum at the photosphere of ultra-

relativistically expanding outflow. We use the Fokker–Planck approximation

to the Boltzmann equation, and obtain the generalized Kompaneets equation

which takes into account anisotropic distribution of photons developed near

the photosphere. This equation is solved numerically for relativistic steady

wind and the observed spectrum is found in agreement with previous stud-

ies. We also study the photospheric emission for different temperature depen-

dences on radius in such outflows. In particular, we found that for T ∝ r−2 the
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Band low-energy photon index of the observed spectrum is≃ −1, as typically

observed in Gamma-Ray Bursts.

11. R. Ruffini, C. R. Argüelles, B. M. O. Fraga, A. Geralico, H. Quevedo, J.
A. Rueda, I. Siutsou, ”Black Holes in Gamma Ray Bursts and Galactic
Nuclei”, IJMPD 22 No. 11, 1360008, 2013.

Current research marks a clear success in identifying the moment of forma-

tion of a Black Hole of 10M⊙, with the emission of a Gamma Ray Burst. This

explains in terms of the ’Blackholic Energy’ the source of the energy of these

astrophysical systems. Their energetics up to 1054 erg, make them detectable

all over our Universe. Concurrently a new problematic has been arising re-

lated to: (a) The evidence of Dark Matter in galactic halos; (b) The origin of the

Super Massive Black Holes in active galactic nuclei and Quasars and (c) The

purported existence of a Black Hole in the Center of our Galaxy. These three

aspects of this new problematic have been traditionally approached indepen-

dently. We propose an unified approach to all three of them based on a system

of massive self-gravitating neutrinos in General Relativity. Perspectives of fu-

ture research are presented.

12. C. R. Argüelles, I. Siutsou, R. Ruffini, J. A. Rueda, B. Machado, ”On the
core-halo constituents of a semi-degenerate gas of massive fermions”
AAS, Probes of Dark Matter on Galaxy Scales, 45, 30204, 2013.

We propose a model of self-gravitating bare fermions at finite temperature in

General Relativity to describe the dark matter (DM) in galaxies. We obtain

a universal density profile composed by a flat and fully degenerate core for

small radii, a low-degenerate plateau and a Newtonian tail that scales with

r−2 for the outer halo region. The free parameters of the model are fitted using

galactic observables such as the constant rotation velocity, mass of the central

object and the halo radius, concluding that the particle mass should be in the

keV range. We further show that thighter constraints of a few keV for the mass

of the fermions are obtained when using typical smallest dwarf galaxies.

13. B. M. O. Fraga, C. R. Argüelles, R. Ruffini, ”Self-Gravitating System of
Semidegenerated Fermions as Central Objects and Dark Matter Halos
in Galaxies”, IJMPS 23, 357-362, 2013.

We propose a unified model for dark matter haloes and central galactic objects

as a self-gravitating system of semidegenerated fermions in thermal equilib-

rium. We consider spherical symmetry and then we solve the equations of
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gravitational equilibrium using the Fermi integrals in a dimensionless man-

ner, obtaining the density profile and velocity curve. We also obtain scaling

laws for the observables of the system and show that, for a wide range of our

parameters, our model is consistent with the so called universality of the sur-

face density of dark matter.

14. Micol Benetti, S. Pandolfi, M. Lattanzi, M.Martinelli, A. Melchiorri.
“Featuring the primordial power spectrum: new constraints on inter-
rupted slow-roll from CMB and LRG data ”, Physical Review D (2013)
vol. 87, Issue 2, id. 023519

Using the most recent data from the WMAP, ACT and SPT experiments, we

update the constraints on models with oscillatory features in the primordial

power spectrum of scalar perturbations. This kind of features can appear in

models of inflation where slow-roll is interrupted, like multifield models. We

also derive constraints for the case in which, in addition to cosmic microwave

observations, we also consider the data on the spectrum of luminous red galax-

ies from the 7th SDSS catalog, and the SNIa Union Compilation 2 data. We

have found that: (i) considering a model with features in the primordial power

spectrum increases the agreement with data with the respect of the featureless

“vanilla” ΛCDM model by ∆χ2 ≃ 7; (ii) the uncertainty on the determination

of the standard parameters is not degraded when features are included; (iii)

the best fit for the features model locates the step in the primordial spectrum

at a scale k ≃ 0.005 Mpc−1, corresponding to the scale where the outliers in

the WMAP7 data at ℓ = 22 and ℓ = 40 are located.; (iv) a distinct, albeit less

statistically significant peak is present in the likelihood at smaller scales, with

a ∆χ2 ≃ 3.5, whose presence might be related to the WMAP7 preference for

a negative value of the running of the scalar spectral index parameter; (v) the

inclusion of the LRG-7 data do not change significantly the best fit model, but

allows to better constrain the amplitude of the oscillations.

15. M. Benetti, M. Gerbino, W. H. Kinney, E. W. Kolb, M. Lattanzi, A.
Melchiorri, L. Pagano, A. Riotto. ”Cosmological data and indications
for new physics”, Journal of Cosmology and Astroparticle Physics, 10
(2013) 030.

Data from the Atacama Cosmology Telescope (ACT) and the South Pole Tele-

scope (SPT), combined with the nine-year data release from the WMAP satel-

lite, provide very precise measurements of the cosmic microwave background

(CMB) angular anisotropies down to very small angular scales. Augmented

364



4.2. Publications (2005 – 2014)

with measurements from Baryonic Acoustic Oscillations surveys and determi-

nations of the Hubble constant, we investigate whether there are indications

for new physics beyond a Harrison-Zel’dovich model for primordial perturba-

tions and the standard number of relativistic degrees of freedom at primordial

recombination. All combinations of datasets point to physics beyond the mini-

mal Harrison-Zel’dovich model in the form of either a scalar spectral index dif-

ferent from unity or additional relativistic degrees of freedom at recombination

(e.g., additional light neutrinos). Beyond that, the extended datasets including

either ACT or SPT provide very different indications: while the extended-ACT

(eACT) dataset is perfectly consistent with the predictions of standard slow-

roll inflation, the extended-SPT (eSPT) dataset prefers a non-power-law scalar

spectral index with a very large variation with scale of the spectral index. Both

eACT and eSPT favor additional light degrees of freedom. eACT is consis-

tent with zero neutrino masses, while eSPT favors nonzero neutrino masses at

more than 95% confidence.

16. M. Benetti. ”Updating constraints by Planck data on inlationary fea-
tures model”, Physical Review D 88 (2013) 087302.

We present new constraints on possible features in the primordial inflationary

density perturbations power spectrum in light of the recent Cosmic Microwave

Background Anisotropies measurements from the Planck satellite. We found

that the Planck data hints for the presence of features in two different ranges

of angular scales, corresponding to multipoles 10 < l < 60 and 150 < l < 300,

with a decrease in the best fit χ2 value with respect to the featureless ”vanilla”

LCDM model of ∆χ2 around 9 in both cases.

17. B. Patricelli, M.G. Bernardini, C.L. Bianco, L. Caito, G. de Barros, L.
Izzo, R. Ruffini and G.V. Vereshchagin, ”Analysis of GRB 080319B and
GRB 050904 within the Fireshell Model: Evidence for a Broader Spectral
Energy Distribution”, The Astrophysical Journal, Volume 756, Issue 1,
article id. 16 (2012).

The observation of GRB 080319B, with an isotropic energy Eiso= 1.32 · 1054

erg, and GRB 050904, with Eiso= 1.04 · 1054 erg, offers the possibility of study-

ing the spectral properties of the prompt radiation of two of the most ener-

getic gamma-ray bursts (GRBs). This allows us to probe the validity of the

fireshell model for GRBs beyond 1054 erg, well outside the energy range where

it has been successfully tested up to now (1049-1053erg). We find that in the

low-energy region, the prompt emission spectra observed by Swift Burst Alert
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Telescope (BAT) reveals more power than theoretically predicted. The oppor-

tunities offered by these observations to improve the fireshell model are out-

lined in this paper. One of the distinguishing features of the fireshell model

is that it relates the observed GRB spectra to the spectrum in the comoving

frame of the fireshell. Originally, a fully radiative condition and a comoving

thermal spectrum were adopted. An additional power law in the comoving

thermal spectrum is required due to the discrepancy of the theoretical and ob-

served light curves and spectra in the fireshell model for GRBs 080319B and

050904. A new phenomenological parameter α is correspondingly introduced

in the model. We perform numerical simulations of the prompt emission in

the Swift BAT bandpass by assuming different values of within the fireshell

model. We compare them with the GRB 080319B and GRB 050904 observed

time-resolved spectra, as well as with their time-integrated spectra and light

curves. Although GRB 080319B and GRB 050904 are at very different red-

shifts (z = 0.937 and z = 6.29, respectively), a value of α = −1.8 for both

of them leads to a good agreement between the numerical simulations and the

observed BAT light curves, time-resolved and time-integrated spectra. Such a

modified spectrum is also consistent with the observations of previously ana-

lyzed less energetic GRBs and reasons for this additional agreement are given.

Perspectives for future low-energy missions are outlined.

18. A.G. Aksenov, R. Ruffni, I. A. Siutsou and G. V. Vereshchagin, ”Dynam-
ics and emission of mildly relativistic plasma”, International Journal of
Modern Physics: Conference Series, Vol. 12, Issue 01, (2012) pp. 1-9.

Initially optically thick (with τ = 3 · 107) spherically symmetric outflow con-

sisting of electron-positron pairs and photons is considered. We do not as-

sume thermal equilibrium, and include the two-body processes that occur in

such plasma: Moller and Bhaba scattering of pairs, Compton scattering, two-

photon pair annihilation, two-photon pair production, together with their ra-

diative three-body variants: bremsstrahlung, double Compton scattering, and

three-photon pair annihilation, with their inverse processes. We solve numer-

ically the relativistic Boltzmann equations in spherically symmetric case for

distribution functions of pairs and photons. Three epochs are considered in

details: a) the thermalization, which brings initially nonequilibrium plasma to

thermal equilibrium; b) the self-accelerated expansion, which we find in agree-

ment with previous hydrodynamic studies and c) decoupling of photons from

the expanding electron-positron plasma. Photon spectra are computed, and

appear to be non thermal near the peak of the luminosity. In particular, the
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low energy part of the spectrum contain more power with respect to the black

body one.

19. A. Benedetti, W.-B. Han, R. Ruffini and G.V. Vereshchagin, “On the fre-
quency of oscillations in the pair plasma generated by a strong electric
field”, Physics Letters B, Vol. 698 (2011) 75-79.

We study the frequency of the plasma oscillations of electron-positron pairs

created by the vacuum polarization in a uniform electric field with strength E

in the range 0.2Ec < E < 10Ec. Following the approach adopted in Ruffini et

al. (2007) we work out one second order ordinary differential equation for a

variable related to the velocity from which we can recover the classical plasma

oscillation equation when E→0. Thereby, we focus our attention on its evo-

lution in time studying how this oscillation frequency approaches the plasma

frequency. The time-scale needed to approach to the plasma frequency and

the power spectrum of these oscillations are computed. The characteristic fre-

quency of the power spectrum is determined uniquely from the initial value

of the electric field strength. The effects of plasma degeneracy and pair anni-

hilation are discussed.

20. B. Patricelli, M.G. Bernardini, C.L. Bianco, L. Caito, L. Izzo, R. Ruffini
and G.V. Vereshchagin, “A New Spectral Energy Distribution of Pho-
tons in the Fireshell Model of GRBs”, International Journal of Modern
Physics D, Vol. 20 (2011) 1983-1987.

The analysis of various Gamma-Ray Bursts (GRBs) having a low energetics

within the fireshell model has shown how the N(E) spectrum of their prompt

emission can be reproduced in a satisfactory way by a convolution of ther-

mal spectra. Nevertheless, from the study of very energetic bursts such as,

for example, GRB 080319B, some discrepancies between the numerical simu-

lations and the observational data have been observed. We investigate a dif-

ferent spectrum of photons in the comoving frame of the fireshell in order to

better reproduce the spectral properties of GRB prompt emission within the

fireshell model. We introduce a phenomenologically modified thermal spec-

trum: a thermal spectrum characterized by a different asymptotic power-law

index in the low energy region. Such an index depends on a free parameter α,

so that the pure thermal spectrum corresponds to the case α = 0. We test this

spectrum by comparing the numerical simulations with the observed prompt

emission spectra of various GRBs. From this analysis it has emerged that the
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observational data can be correctly reproduced by assuming a modified ther-

mal spectrum with α = −1.8.

21. Elena Giusarma, Martina Corsi, Maria Archidiacono, Roland de Putter,
Alessandro Melchiorri, Olga Mena, Stefania Pandolfi. ”Constraints on
massive sterile neutrino species from current and future cosmological
data”, Phys.Rev. D83, 115023 (2011)

Sterile massive neutrinos are a natural extension of the standard model of ele-

mentary particles. The energy density of the extra sterile massive states affects

cosmological measurements in an analogous way to that of active neutrino

species. We perform here an analysis of current cosmological data and derive

bounds on the masses of the active and the sterile neutrino states, as well as

on the number of sterile states. The so-called (3+2) models, with three sub-

eV active massive neutrinos plus two sub-eV massive sterile species, is well

within the 95% CL allowed regions when considering cosmological data only.

If the two extra sterile states have thermal abundances at decoupling, big bang

nucleosynthesis bounds compromise the viability of (3+2) models. Forecasts

from future cosmological data on the active and sterile neutrino parameters

are also presented. Independent measurements of the neutrino mass from tri-

tium beta-decay experiments and of the Hubble constant could shed light on

sub-eV massive sterile neutrino scenarios.

22. M. Archidiacono, A. Melchiorri, S. Pandolfi, ”The impact of Reioniza-
tion modelling on CMB Neutrino Mass Bounds”, Nuclear Physics B,
Proceedings Supplements, Volume 217, Issue 1, p. 65-67. (2011)

We investigate the bounds on the neutrino mass in a general reionization sce-

nario based on a principal component approach. We found the constraint on

the sum of the neutrino masses from CMB data can be relaxed by a ∼ 40 % in

a generalized reionization scenario.

23. Erminia Calabrese, Eloisa Menegoni, C. J. A. P. Martins, Alessandro
Melchiorri, and Graca Rocha, ”Constraining variations in the fine struc-
ture constant in the presence of early dark energy”, Phys.Rev. D84
(2011) 023518.

We discuss present and future cosmological constraints on variations of the

fine structure constant α induced by an early dark energy component hav-

ing the simplest allowed (linear) coupling to electromagnetism. We find that

current cosmological data show no variation of the fine structure constant at
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recombination respect to the present-day value, with α/α0 = 0.975± 0.020 at

95% c.l., constraining the energy density in early dark energy to Ωe < 0.060 at

95% c.l. Moreover, we consider constraints on the parameter quantifying the

strength of the coupling by the scalar field. We find that current cosmological

constraints on the coupling are about 20 times weaker than those obtainable

locally (which come from Equivalence Principle tests). However forthcoming

or future missions, such as Planck Surveyor and CMBPol, can match and pos-

sibly even surpass the sensitivity of current local tests.

24. Micol Benetti, Massimiliano Lattanzi, Erminia Calabrese, Alessandro
Melchiorri, ”Features in the primordial spectrum: new constraints from
WMAP7+ACT data and prospects for Planck”, Phys. Rev. D 84, 063509
(2011)

We update the constraints on possible features in the primordial inflationary

density perturbation spectrum by using the latest data from the WMAP7 and

ACT Cosmic Microwave Background experiments. The inclusion of new data

significantly improves the constraints with respect to older work, especially to

smaller angular scales. While we found no clear statistical evidence in the data

for extensions to the simplest, featureless, inflationary model, models with

a step provide a significantly better fit than standard featureless power-law

spectra. We show that the possibility of a step in the inflationary potential

like the one preferred by current data will soon be tested by the forthcoming

temperature and polarization data from the Planck satellite mission.

25. Stefania Pandolfi, Elena Giusarma, Edward W. Kolb, Massimiliano
Lattanzi, Alessandro Melchiorri, Olga Mena, Manuel Pena, Asantha
Cooray, Paolo Serra, ”Impact of general reionization scenarios on ex-
traction of inflationary parameters”, Phys.Rev. D82, 123527, (2010).

Determination of whether the Harrison–Zel’dovich spectrum for primordial

scalar perturbations is consistent with observations is sensitive to assumptions

about the reionization scenario. In light of this result, we revisit constraints

on inflationary models using more general reionization scenarios. While the

bounds on the tensor-to-scalar ratio are largely unmodified, when different

reionization schemes are addressed, hybrid models are back into the inflation-

ary game. In the general reionization picture, we reconstruct both the shape

and amplitude of the inflaton potential. We find a broader spectrum of poten-

tial shapes when relaxing the simple reionization restriction. An upper limit of
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1016 GeV to the amplitude of the potential is found, regardless of the assump-

tions on the reionization history.

26. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Pair plasma relax-
ation time scales”, Physical Review E, Vol. 81 (2010) 046401.

By numerically solving the relativistic Boltzmann equations, we compute the

time scale for relaxation to thermal equilibrium for an optically thick electron-

positron plasma with baryon loading. We focus on the time scales of elec-

tromagnetic interactions. The collisional integrals are obtained directly from

the corresponding QED matrix elements. Thermalization time scales are com-

puted for a wide range of values of both the total energy density (over 10 or-

ders of magnitude) and of the baryonic loading parameter (over 6 orders of

magnitude). This also allows us to study such interesting limiting cases as the

almost purely electron-positron plasma or electron-proton plasma as well as

intermediate cases. These results appear to be important both for laboratory

experiments aimed at generating optically thick pair plasmas as well as for

astrophysical models in which electron-positron pair plasmas play a relevant

role.

27. R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Electron-positron pairs in
physics and astrophysics: from heavy nuclei to black holes” Physics
Reports, Vol. 487 (2010) No 1-4, pp. 1-140.

From the interaction of physics and astrophysics we are witnessing in these

years a splendid synthesis of theoretical, experimental and observational re-

sults originating from three fundametal physical processes. They were origi-

nally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg, Eu-

ler and Schwinger. For almost seventy years they have all three been followed

by a continued effort of experimental verification on Earth-based experiments.

The Dirac process, e+e− → 2γ, has been by far the most successful. It has ob-

tained extremely accurate experimental verification and has led as well to an

enormous number of new physics in possibly one of the most fruitful experi-

mental avenue by introduction of storage rings in Frascati and followed by the

largest accelerators worldwide: DESY, SLAC etc. The Breit-Wheeler process,

2γ → e+e−, although conceptually simple, being the inverse process of the

Dirac one, has been by far one of the most difficult to be verified experimen-

tally. Only recently, through the technology based on free electron X-ray laser

and its numerous applications in Earth-based experiments, some first indica-

tions of its possible verification have been reached. The vacuum polarization
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process in strong electromagnetic field, pioneered by Sauter, Heisenberg, Euler

and Schwinger, introduced the concept of critical electric field Ec = m2
e c3/eh̄.

It has been searched without success for more than forty years by heavy-ion

collisions in many of the leading particle accelerators worldwide. The novel

situation today is that these same processes can be studied on a much more

grandiose scale during the gravitational collapse leading to the formation of a

black hole being observed in Gamma Ray Bursts (GRBs). This report is ded-

icated to the scientific race in act. The theoretical and experimental work de-

veloped in Earth-based laboratories is confronted with the theoretical interpre-

tation of space-based observations of phenomena originating on cosmological

scales. What has become clear in the last ten years is that all the three above

mentioned processes, duly extended in the general relativistic framework, are

necessary for the understanding of the physics of the gravitational collapse to a

black hole. Vice versa, the natural arena where these processes can be observed

in mutual interaction and on an unprecedented scale, is indeed the realm of rel-

ativistic astrophysics. We systematically analyze the conceptual developments

which have followed the basic work of Dirac and Breit-Wheeler. We also recall

how the seminal work of Born and Infeld inspired the work by Sauter, Heisen-

berg and Euler on effective Lagrangian leading to the estimate of the rate for

the process of electron-positron production in a constant electric field. In ad-

dition of reviewing the intuitive semi-classical treatment of quantum mechan-

ical tunneling for describing the process of electron-positron production, we

recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and

effective Lagrangian for constant electromagnetic fields. We also review the

electron-positron production in both time-alternating electromagnetic fields,

studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the corre-

sponding processes relevant for pair production at the focus of coherent laser

beams as well as electron beam-laser collision. We finally report some cur-

rent developments based on the general JWKB approach which allows to com-

pute the Schwinger rate in spatially varying and time varying electromagnetic

fields. We also recall the pioneering work of Landau and Lifshitz, and Racah

on the collision of charged particles as well as experimental success of AdA

and ADONE in the production of electron-positron pairs. We then turn to the

possible experimental verification of these phenomena. We review: A) the ex-

perimental verification of the e+e− → 2γ process studied by Dirac. We also

briefly recall the very successful experiments of e+e− annihilation to hadronic

channels, in addition to the Dirac electromagnetic channel; B) ongoing Earth

based experiments to detect electron-positron production in strong fields by
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focusing coherent laser beams and by electron beam-laser collisions; and C) the

multiyear attempts to detect electron-positron production in Coulomb fields

for a large atomic number Z > 137 in heavy ion collisions. These attempts

follow the classical theoretical work of Popov and Zeldovich, and Greiner and

their schools. We then turn to astrophysics. We first review the basic work

on the energetics and electrodynamical properties of an electromagnetic black

hole and the application of the Schwinger formula around Kerr-Newman black

holes as pioneered by Damour and Ruffini. We only focus on black hole masses

larger than the critical mass of neutron stars, for convenience assumed to coin-

cide with the Rhoades and Ruffini upper limit of 3.2M⊙. In this case the elec-

tron Compton wavelength is much smaller than the spacetime curvature and

all previous results invariantly expressed can be applied following well estab-

lished rules of the equivalence principle. We derive the corresponding rate of

electron-positron pair production and the introduction of the concept of Dya-

dosphere. We review recent progress in describing the evolution of optically

thick electron-positron plasma in presence of supercritical electric field, which

is relevant both in astrophysics as well as ongoing laser beam experiments. In

particular we review recent progress based on the Vlasov-Boltzmann-Maxwell

equations to study the feedback of the created electron-positron pairs on the

original constant electric field. We evidence the existence of plasma oscillations

and its interaction with photons leading to energy and number equipartition

of photons, electrons and positrons. We finally review the recent progress ob-

tained by using the Boltzmann equations to study the evolution of an electron-

positron-photon plasma towards thermal equilibrium and determination of

its characteristic timescales. The crucial difference introduced by the correct

evaluation of the role of two and three body collisions, direct and inverse, is

especially evidenced. We then present some general conclusions. The results

reviewed in this report are going to be submitted to decisive tests in the forth-

coming years both in physics and astrophysics. To mention only a few of the

fundamental steps in testing in physics we recall the starting of experimental

facilities at the National Ignition Facility at the Lawrence Livermore National

Laboratory as well as corresponding French Laser the Mega Joule project. In

astrophysics these results will be tested in galactic and extragalactic black holes

observed in binary X-ray sources, active galactic nuclei, microquasars and in

the process of gravitational collapse to a neutron star and also of two neutron

stars to a black hole giving origin to GRBs. The astrophysical description of

the stellar precursors and the initial physical conditions leading to a gravita-

tional collapse process will be the subject of a forthcoming report. As of today
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no theoretical description has yet been found to explain either the emission of

the remnant for supernova or the formation of a charged black hole for GRBs.

Important current progress toward the understanding of such phenomena as

well as of the electrodynamical structure of neutron stars, the supernova ex-

plosion and the theories of GRBs will be discussed in the above mentioned

forthcoming report. What is important to recall at this stage is only that both

the supernovae and GRBs processes are among the most energetic and tran-

sient phenomena ever observed in the Universe: a supernova can reach energy

of ˜1054 ergs on a time scale of a few months and GRBs can have emission of

up to ˜1054 ergs in a time scale as short as of a few seconds. The central role

of neutron stars in the description of supernovae, as well as of black holes and

the electron-positron plasma, in the description of GRBs, pioneered by one of

us (RR) in 1975, are widely recognized. Only the theoretical basis to address

these topics are discussed in the present report.

28. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Kinetics of the
Mildly Relativistic Plasma and GRBs” in the Proceedings of “The Sun,
the stars, the Universe and General Relativity” meeting in honor of 95th
Anniversary of Ya. B. Zeldovich in Minsk, AIP Conference Proceedings
1205 (2010) 11-16.

We consider optically thick photon-pair-proton plasma in the framework of

Boltzmann equations. For the sake of simplicity we consider the uniform and

isotropic plasma. It has been shown that arbitrary initial distribution functions

evolve to the thermal equilibrium state through so called kinetic equilibrium

state with common temperature of all particles and nonzero chemical poten-

tials. For the plasma temperature 0.1− 10 MeV relevant for GRB (Gamma-Ray

Burst) sources we evaluate the thermalization time scale as function of total

energy density and baryonic loading parameter.

29. E. Menegoni, S. Pandolfi, S. Galli, M. Lattanzi, A. Melchiorri “Con-
straints on the dark energy equation of state in presence of a varying
fine structure constant” in Int. J. Mod. Phys D19, 507 (2010).

We discuss the cosmological constraints on the dark energy equation of state

in the pres- ence of primordial variations in the fine structure constant. We

find that the constraints from CMB data alone on w and the Hubble constant

are much weaker when variations in the fine structure constant are permitted.

Vice versa, constraints on the fine struc- ture constant are relaxed by more
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than 50% when dark energy models different from a cosmological constant are

considered.

30. C.J.A.P. Martins, E. Menegoni, S. Galli and A. Melchiorri, “Varying cou-
plings in the early universe: correlated variations of α and G, Physical
Review D 82 023532 (2010)

The cosmic microwave background anisotropies provide a unique opportu-

nity to constrain simultaneous variations of the fine-structure constant α and

Newton’s gravitational constant G. Those correlated variations are possible

in a wide class of theoretical models. In this brief paper we show that the

current data, assuming that particle masses are constant, give no clear indi-

cation for such variations, but already prefer that any relative variations in α

should be of the same sign of those of G for variations of 1%. We also show

that a cosmic complementarity is present with big bang nucleosynthesis and

that a combination of current CMB and big bang nucleosynthesis data strongly

constraints simultaneous variations in α and G. We finally discuss the future

bounds achievable by the Planck satellite mission.

31. E. Menegoni, “New Constraints on Variations of Fine Structure Con-
stant from Cosmic Microwave Background Anisotropies”, GRAVITA-
TIONAL PHYSICS: TESTING GRAVITY FROM SUBMILLIMETER TO
COSMIC: Proceedings of the VIII Mexican School on Gravitation and
Mathematical Physics. AIP Conference Proceedings, Volume 1256, pp.
288-292 (2010).

The recent measurements of Cosmic Microwave Background temperature and

polarization anisotropy made by the ACBAR, QUAD and BICEP experiments

substantially improve the cosmological constraints on possible variations of

the fine structure constant in the early universe. In this work I analyze this

recent data obtaining the constraint α/α0 = 0.987+/-0.012 at 68% c.l.. The in-

clusion of the new HST constraints on the Hubble constant further increases

the bound to α/α0 = 1.001+/-0.007 at 68% c.l., bringing possible deviations

from the current value below the 1% level.

32. A. Melchiorri, F. De Bernardis, E. Menegoni, “Limits on the neutrino
mass from cosmology”. GRAVITATIONAL PHYSICS: TESTING GRAV-
ITY FROM SUBMILLIMETER TO COSMIC: Proceedings of the VIII
Mexican School on Gravitation and Mathematical Physics. AIP Con-
ference Proceedings, Volume 1256, pp. 96-106 (2010).
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We use measurements of luminosity-dependent galaxy bias at several different

redshifts, SDSS at z = 0.05, DEEP2 at z = 1 and LBGs at z = 3.8, combined with

WMAP five-year cosmic microwave background anisotropy data and SDSS

Red Luminous Galaxy survey three-dimensional clustering power spectrum

to put constraints on cosmological parameters.

33. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of the
mildly relativistic plasma”, Physical Review D, Vol. 79 (2009) 043008.

In the recent Letter Aksenov et al. (2007) we considered the approach of

nonequilibrium pair plasma towards thermal equilibrium state adopting a ki-

netic treatment and solving numerically the relativistic Boltzmann equations.

It was shown that plasma in the energy range 0.1-10 MeV first reaches kinetic

equilibrium, on a timescale tk . 10−14 sec, with detailed balance between

binary interactions such as Compton, Bhabha and Møller scattering, and pair

production and annihilation. Later the electron-positron-photon plasma ap-

proaches thermal equilibrium on a timescale tth . 10−12 sec, with detailed

balance for all direct and inverse reactions. In the present paper we system-

atically present details of the computational scheme used in Aksenov et al.

(2007), as well as generalize our treatment, considering proton loading of

the pair plasma. When proton loading is large, protons thermalize first by

proton-proton scattering, and then with the electron-positron-photon plasma

by proton-electron scattering. In the opposite case of small proton loading

proton-electron scattering dominates over proton-proton one. Thus in all cases

the plasma, even with proton admixture, reaches thermal equilibrium config-

uration on a timescale tth . 10−11 sec. We show that it is crucial to account

for not only binary but also triple direct and inverse interactions between elec-

trons, positrons, photons and protons. Several explicit examples are given and

the corresponding timescales for reaching kinetic and thermal equilibria are

determined.

34. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
pair plasma with proton loading” in the Proceedings of “PROBING
STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE” meet-
ing, AIP Conference Proceedings 1111 (2009) 344-350.

We study kinetic evolution of nonequilibrium optically thick electron-positron

plasma towards thermal equilibrium solving numerically relativistic Boltz-

mann equations with energy per particle ranging from 0.1 to 10 MeV. We gen-

eralize our results presented in Aksenov et al. (2007), considering proton load-
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ing of the pair plasma. Proton loading introduces new characteristic timescales

essentially due to proton-proton and proton-electron Coulomb collisions. Tak-

ing into account not only binary but also triple direct and inverse interactions

between electrons, positrons, photons and protons we show that thermal equi-

librium is reached on a timescale tth ≃ 10−11 sec.

35. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of
nonequilibrium electron-positron-photon plasmas”, Physical Review
Letters, Vol. 99 (2007) No 12, 125003.

Starting from a nonequilibrium configuration we analyze the role of the di-

rect and the inverse binary and triple interactions in reaching thermal equi-

librium in a homogeneous isotropic pair plasma. We focus on energies in the

range 0.1− 10 MeV. We numerically integrate the relativistic Boltzmann equa-

tion with the exact QED collisional integrals taking into account all binary and

triple interactions. We show that first, when a detailed balance is reached for

all binary interactions on a time scale tk < 10−14 sec, photons and electron-

positron pairs establish kinetic equilibrium. Subsequently, when triple inter-

actions satisfy the detailed balance on a time scale teq < 10−12 sec, the plasma

reaches thermal equilibrium. It is shown that neglecting the inverse triple in-

teractions prevents reaching thermal equilibrium. Our results obtained in the

theoretical physics domain also find application in astrophysics and cosmol-

ogy.

36. C.L. Bianco, R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Equations of
Motion and Initial and Boundary Conditions for Gamma-ray Burst”,
Journal of the Korean Physical Society, Vol. 49 (2006) No. 2, pp. 722-
731.

We compare and contrast the different approaches to the optically thick adia-

batic phase of GRB all the way to the transparency. Special attention is given

to the role of the rate equation to be self consistently solved with the rela-

tivistic hydrodynamic equations. The works of Shemi and Piran (1990), Piran,

Shemi and Narayan (1993), Meszaros, Laguna and Rees (1993) and Ruffini,

Salmonson, Wilson and Xue (1999,2000) are compared and contrasted. The role

of the baryonic loading in these three treatments is pointed out. Constraints

on initial conditions for the fireball produced by electro-magnetic black hole

are obtained.

37. P. Singh, K. Vandersloot and G.V. Vereshchagin, “Nonsingular bouncing
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universes in loop quantum cosmology”, Physical Review D, Vol. 74
(2006) 043510.

Nonperturbative quantum geometric effects in loop quantum cosmology

(LQC) predict a ρ2 modification to the Friedmann equation at high energies.

The quadratic term is negative definite and can lead to generic bounces when

the matter energy density becomes equal to a critical value of the order of

the Planck density. The nonsingular bounce is achieved for arbitrary matter

without violation of positive energy conditions. By performing a qualitative

analysis we explore the nature of the bounce for inflationary and cyclic model

potentials. For the former we show that inflationary trajectories are attractors

of the dynamics after the bounce implying that inflation can be harmoniously

embedded in LQC. For the latter difficulties associated with singularities in

cyclic models can be overcome. We show that nonsingular cyclic models can

be constructed with a small variation in the original cyclic model potential by

making it slightly positive in the regime where scalar field is negative.

38. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, “Joint constraints on the
lepton asymmetry of the Universe and neutrino mass from the Wilkin-
son Microwave Anisotropy Probe”, Physical Review D, Vol. 72 (2005)
063003.

We use the Wilkinson Microwave Anisotropy Probe (WMAP) data on the spec-

trum of cosmic microwave background anisotropies to put constraints on the

present amount of lepton asymmetry L, parametrized by the dimensionless

chemical potential (also called degeneracy parameter) xi and on the effective

number of relativistic particle species. We assume a flat cosmological model

with three thermally distributed neutrino species having all the same mass

and chemical potential, plus an additional amount of effectively massless ex-

otic particle species. The extra energy density associated to these species is

parametrized through an effective number of additional species ∆Nothers
e f f .

We find that 0 < |ξ| < 1.1 and correspondingly 0 < |L| < 0.9 at 2σ, so that

WMAP data alone cannot firmly rule out scenarios with a large lepton number;

moreover, a small preference for this kind of scenarios is actually found. We

also discuss the effect of the asymmetry on the estimation of other parameters

and, in particular, of the neutrino mass. In the case of perfect lepton symmetry,

we obtain the standard results. When the amount of asymmetry is left free, we

find at 2sigma. Finally we study how the determination of |L| is affected by

the assumptions on ∆N
e f f
others. We find that lower values of the extra energy
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density allow for larger values of the lepton asymmetry, effectively ruling out,

at 2sigma level, lepton symmetric models with ∆N
e f f
others ≃ 0.

39. G.V. Vereshchagin, “Gauge Theories of Gravity with the Scalar Field in
Cosmology”, in “Frontiers in Field Theory”, edited by O. Kovras, Nova
Science Publishers, New York, (2005), pp. 213-255 (ISBN: 1-59454-127-
2).

Brief introduction into gauge theories of gravity is presented. The most general

gravitational lagrangian including quadratic on curvature, torsion and non-

metricity invariants for metric-affine gravity is given. Cosmological implica-

tions of gauge gravity are considered. The problem of cosmological singularity

is discussed within the framework of general relativity as well as gauge theo-

ries of gravity. We consider the role of scalar field in connection to this prob-

lem. Initial conditions for nonsingular homogeneous isotropic Universe filled

by single scalar field are discussed within the framework of gauge theories of

gravity. Homogeneous isotropic cosmological models including ultrarelativis-

tic matter and scalar field with gravitational coupling are investigated. We

consider different symmetry states of effective potential of the scalar field, in

particular restored symmetry at high temperatures and broken symmetry. Ob-

tained bouncing solutions can be divided in two groups, namely nonsingular

inflationary and

oscillating solutions. It is shown that inflationary solutions exist for quite gen-

eral initial conditions like in the case of general relativity. However, the phase

space of the dynamical system, corresponding to the cosmological equations

is bounded. Violation of the uniqueness of solutions on the boundaries of the

phase space takes place. As a result, it is impossible to define either the past

or the future for a given solution. However, definitely there are singular solu-

tions and therefore the problem of cosmological singularity cannot be solved

in models with the scalar field within gauge theories of gravity.

40. R. Ruffini, M. G. Bernardini, C. L. Bianco, L. Caito, P. Chardonnet, M.
G. Dainotti, F. Fraschetti, R. Guida, M. Rotondo, G. Vereshchagin, L.
Vitagliano, S.-S. Xue,
”The Blackholic energy and the canonical Gamma-Ray Burst” in Cos-
mology and Gravitation: XIIth Brazilian School of Cosmology and
Gravitation, edited by M. Novello and S.E. Perez Bergliaffa, AIP Con-
ference Proceedings, Vol. 910, Melville, New York, 2007, pp. 55-217.
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Gamma-Ray Bursts (GRBs) represent very likely “the” most extensive com-

putational, theoretical and observational effort ever carried out successfully

in physics and astrophysics. The extensive campaign of observation from

space based X-ray and γ-ray observatory, such as the Vela, CGRO, Bep-

poSAX, HETE-II, INTEGRAL, Swift, R-XTE, Chandra, XMM satellites, have

been matched by complementary observations in the radio wavelength (e.g.

by the VLA) and in the optical band (e.g. by VLT, Keck, ROSAT). The net

result is unprecedented accuracy in the received data allowing the determina-

tion of the energetics, the time variability and the spectral properties of these

GRB sources. The very fortunate situation occurs that these data can be con-

fronted with a mature theoretical development. Theoretical interpretation of

the above data allows progress in three different frontiers of knowledge: a) the

ultrarelativistic regimes of a macroscopic source moving at Lorentz gamma

factors up to ∼ 400; b) the occurrence of vacuum polarization process verify-

ing some of the yet untested regimes of ultrarelativistic quantum field theo-

ries; and c) the first evidence for extracting, during the process of gravitational

collapse leading to the formation of a black hole, amounts of energies up to

1055 ergs of blackholic energy — a new form of energy in physics and as-

trophysics. We outline how this progress leads to the confirmation of three

interpretation paradigms for GRBs proposed in July 2001. Thanks mainly to

the observations by Swift and the optical observations by VLT, the outcome of

this analysis points to the existence of a “canonical” GRB, originating from a

variety of different initial astrophysical scenarios. The communality of these

GRBs appears to be that they all are emitted in the process of formation of a

black hole with a negligible value of its angular momentum. The following

sequence of events appears to be canonical: the vacuum polarization process

in the dyadosphere with the creation of the optically thick self accelerating

electron-positron plasma; the engulfment of baryonic mass during the plasma

expansion; adiabatic expansion of the optically thick “fireshell” of electron-

positron-baryon plasma up to the transparency; the interaction of the accel-

erated baryonic matter with the interstellar medium (ISM). This leads to the

canonical GRB composed of a proper GRB (P-GRB), emitted at the moment

of transparency, followed by an extended afterglow. The sole parameters in

this scenario are the total energy of the dyadosphere Edya, the fireshell baryon

loading MB defined by the dimensionless parameter B = MBc2/Edya, and the

ISM filamentary distribution around the source. In the limit B −→ 0 the total

energy is radiated in the P-GRB with a vanishing contribution in the afterglow.
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In this limit, the canonical GRBs explain as well the short GRBs. In these lec-

ture notes we systematically outline the main results of our model comparing

and contrasting them with the ones in the current literature. In both cases, we

have limited ourselves to review already published results in refereed pub-

lications. We emphasize as well the role of GRBs in testing yet unexplored

grounds in the foundations of general relativity and relativistic field theories.

41. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, ”Do WMAP data con-
straint the lepton asymmetry of the Universe to be zero?” in Albert Ein-
stein Century International Conference, edited by J.-M. Alimi, and A.
Füzfa, AIP Conference Proceedings, Vol. 861, Melville, New York, 2006,
pp.912-919.

It is shown that extended flat ΛCDM models with massive neutrinos, a size-

able lepton asymmetry and an additional contribution to the radiation content

of the Universe, are not excluded by the Wilkinson Microwave Anisotropy

Probe (WMAP) first year data. We assume a flat cosmological model with

three thermally distributed neutrino species having all the same mass and

chemical potential, plus an additional amount of effectively massless exotic

particle species X. After maximizing over seven other cosmological parame-

ters, we derive from WMAP first year data the following constraints for the

lepton asymmetry L of the Universe (95% CL): 0 < |L| < 0.9, so that WMAP

data alone cannot firmly rule out scenarios with a large lepton number; more-

over, a small preference for this kind of scenarios is actually found. We also

find for the neutrino mass mν < 1.2eV and for the effective number of rela-

tivistic particle species −0.45 < ∆Ne f f < 2.10, both at 95% CL. The limit on

∆Ne f f is more restrictive man others found in the literature, but we argue that

this is due to our choice of priors.

42. R. Ruffini, C.L. Bianco, G.V. Vereshchagin, S.-S. Xue “Baryonic loading
and e+e− rate equation in GRB sources” to appear in the proceedings
of ”Relativistic Astrophysics and Cosmology - Einstein’s Legacy” Meet-
ing, November 7-11, 2005, Munich, Germany.

The expansion of the electron-positron plasma in the GRB phenomenon is

compared and contrasted in the treatments of Meszaros, Laguna and Rees, of

Shemi, Piran and Narayan, and of Ruffini et al. The role of the correct numeri-

cal integration of the hydrodynamical equations, as well as of the rate equation

for the electron-positron plasma loaded with a baryonic mass, are outlined and

confronted for crucial differences.
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43. G.V. Vereshchagin, M. Lattanzi, H.W. Lee, R. Ruffini, ”Cosmological
massive neutrinos with nonzero chemical potential: I. Perturbations in
cosmological models with neutrino in ideal fluid approximation”, in
proceedings of the Xth Marcel Grossmann Meeting on Recent Develop-
ments in Theoretical and Experimental General Relativity, World Scien-
tific: Singapore, 2005, vol. 2, pp. 1246-1248.

Recent constraints on neutrino mass and chemical potential are discussed with

application to large scale structure formation. Power spectra in cosmologi-

cal model with hot and cold dark matter, baryons and cosmological term are

calculated in newtonian approximation using linear perturbation theory. All

components are considered to be ideal fluids. Dissipative processes are taken

into account by initial spectrum of perturbations so the problem is reduced to

a simple system of equations. Our results are in good agreement with those

obtained before using more complicated treatments.

44. M. Lattanzi, H.W. Lee, R. Ruffini, G.V. Vereshchagin, ”Cosmological
massive neutrinos with nonzero chemical potential: II. Effect on the es-
timation of cosmological parameters”, in proceedings of the Xth Marcel
Grossmann Meeting on Recent Developments in Theoretical and Exper-
imental General Relativity, World Scientific: Singapore, 2005, vol. 2, pp.
1255-1257.

The recent analysis of the cosmic microwave background data carried out by

the WMAP team seems to show that the sum of the neutrino mass is ¡0.7 eV.

However, this result is not model-independent, depending on precise assump-

tions on the cosmological model. We study how this result is modified when

the assumption of perfect lepton symmetry is dropped out.

45. R. Ruffini, M. Lattanzi and G. Vereshchagin, ”On the possible role of
massive neutrinos in cosmological structure formation” in Cosmology
and Gravitation: Xth Brazilian School of Cosmology and Gravitation,
edited by M. Novello and S.E. Perez Bergliaffa, AIP Conference Pro-
ceedings, Vol. 668, Melville, New York, 2003, pp.263-287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe

that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter
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component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

46. A.G. Aksenov, C.L. Bianco, R. Ruffini and G.V. Vereshchagin, “GRBs
and the thermalization process of electron-positron plasmas” in the Pro-
ceedings of the ”Gamma Ray Bursts 2007” meeting, AIP Conf.Proc.
1000 (2008) 309-312.

We discuss temporal evolution of the pair plasma, created in Gamma-Ray

Bursts sources. A particular attention is paid to the relaxation of plasma into

thermal equilibrium. We also discuss the connection between the dynamics of

expansion and spatial geometry of plasma. The role of the baryonic loading

parameter is emphasized.

47. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
Electron-Positron-Photon Plasmas with an Application to GRB” in REL-
ATIVISTIC ASTROPHYSICS: 4th Italian-Sino Workshop, AIP Confer-
ence Proceedings, Vol. 966, Melville, New York, 2008, pp. 191-196.

The pair plasma with photon energies in the range 0.1− 10MeV is believed

to play crucial role in cosmic Gamma-Ray Bursts. Starting from a nonequilib-

rium configuration we analyze the role of the direct and the inverse binary and

triple interactions in reaching thermal equilibrium in a homogeneous isotropic

pair plasma.We numerically integrate the relativistic Boltzmann equation with

the exact QED collisional integrals taking into account all binary and triple in-

teractions. We show that first, when a detailed balance is reached for all bi-

nary interactions on a time scale tk= 10−14sec , photons and electronpositron

pairs establish kinetic equilibrium. Subsequently, when triple interactions sat-

isfy the detailed balance on a time scale teq= 10−12sec , the plasma reaches

thermal equilibrium. It is shown that neglecting the inverse triple interactions

prevents reaching thermal equilibrium. Our results obtained in the theoretical

physics domain also find application in astrophysics and cosmology.

48. R. Ruffini, G. V. Vereshchagin and S.-S. Xue, “Vacuum Polarization
and Electron-Positron Plasma Oscillations” in RELATIVISTIC ASTRO-
PHYSICS: 4th Italian-Sino Workshop, AIP Conference Proceedings, Vol.
966, Melville, New York, 2008, pp. 207-212.

382



4.3. Publications (2015)

We study plasma oscillations of electrons-positron pairs created by the vacuum

polarization in an uniform electric field. Our treatment, encompassing the

case of E > Ec, shows also in the case E < Ecthe existence of a maximum

Lorentz factor acquired by electrons and positrons and allows determination

of the a maximal length of oscillation. We quantitatively estimate how plasma

oscillations reduce the rate of pair creation and increase the time scale of the

pair production.

4.3. Publications (2015)

1. G.V. Vereshchagin, ”Relativistic Kinetic Theory with some Applica-
tions”, in: Cosmology and Gravitation: XVth Brazilian School of Cos-
mology and Gravitation, eds. Mario Novello and Santiago E.Perez
Bergliaffa, Cambridge Scientific Publishers, 2015, pp 1-40.

2. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Radiative transfer
in relativistic plasma outflows and comptonization of photons near the
photosphere”, Astronomy Reports, Vol. 59, No. 6, (2015) pp. 418–424.

3. G. V. Vereshchagin, ”Physics of Non-Dissipative Ultrarelativistic Pho-
tospheres”, in Proceedings of the MG13 Meeting on General Relativity,
eds. Rosquist et al., WSPC (2015) pp. 708-728.

4. R. Ruffini, I.A. Siutsou and G.V. Vereshchagin, ”Photon Thick and Pho-
ton Thin Relativistic Outflows and GRBs”, in Proceedings of the MG13
Meeting on General Relativity, eds. Rosquist et al., WSPC (2015) pp.
1748-1750.

5. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, ”Radiative Transfer
Near the Photosphere of Mildly and Ultrarelativistic Outflows”, in Pro-
ceedings of the MG13 Meeting on General Relativity, eds. Rosquist et
al., WSPC (2015) pp. 1754-1756.

6. D. Bégué, I.A. Siutsou and G.V. Vereshchagin, ”On the Decoupling of
Photons from Relativistically Expanding Outflows”, in Proceedings of
the MG13 Meeting on General Relativity, eds. Rosquist et al., WSPC
(2015) pp. 1760-1761.
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7. R. Ruffini, G. V. Vereshchagin and S.-S. Xue, “Cosmic absorption of ultra
high energy particles”, submitted to Astrophys. Space Sci. (2015).

8. R. Ruffini G. V. Vereshchagin Yu Wang, “Thermal emission in the early
afterglow of GRBs from their interaction with supernova ejecta”, sub-
mitted to A&A (2015).

9. I. A. Siutsou, A. G. Aksenov and G. V. Vereshchagin, “On Thermaliza-
tion of Electron-Positron-Photon Plasma”, to appear in proceedings of
the Second César Lattes Meeting, AIP Conf. Proc. (2015).

10. S. Tizchang, S. Batebi, G.V. Vereshchagin, R. Mohammadi, S.-S. Xue and
R. Ruffini, “Interaction of high energy photons with the background
radiation in the Universe”, in preparation (2015).

11. R. Ruffini, C. R. Argüelles and J. A. Rueda, ”On the core-halo distribu-
tion of dark matter in galaxies” MNRAS, 451 (2015) 622.

12. I. Siutsou, C. R. Argüelles and R. Ruffini, ”Dark matter massive
fermions and Einasto profiles in galactic halos”, Astron. Rep. 59 No.
7 (2015) 656.

13. C. R. Argüelles and R. Ruffini, ”A regular and relativistic Einstein clus-
ter within the S2 orbit centered in SgrA*” The Thirteenth Marcel Gross-
mann Meeting Book, Vol. B (2015) 1734.

14. B. M. O. Fraga, C. R. Argüelles, R. Ruffini and I. Siutsou, ”Semidegen-
erate self-gravitating system of fermion as Dark Matter on galaxies I:
Universality laws”, The Thirteenth Marcel Grossmann Meeting Book,
Vol. B (2015) 1730.

4.4. Invited talks at international conferences

1. “Thermal emission in the early afterglow”, 1st Scientific ICRANet Meet-
ing in Armenia, Yerevan, Armenia, 30 June - 4 July 2014.

(G.V. Vereshchagin)

2. “Photospheric emission from relativistic outflows”, Zeldovich-100 In-
ternational Conference, Space Research Institute (IKI), Moscow, Russia,
16-20 June, 2014
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(G.V. Vereshchagin)

3. “Dark matter massive fermions and Einasto profiles in galactic haloes “

(Ivan Siutsou)

Subatomic particles, Nucleons, Atoms, Universe: Processes and Struc-
ture International conference in honor of Ya. B. Zeldovich 100th An-
niversary, March 10-14, 2014, Minsk, Belarus

4. “DM halos and super massive dark objects at sub-parsec scales:the na-
ture of the DM particle “

(Carlos R. Argüelles)

Subatomic particles, Nucleons, Atoms, Universe: Processes and Struc-
ture International conference in honor of Ya. B. Zeldovich 100th An-
niversary, March 10-14, 2014, Minsk, Belarus

5. “Physics of non-dissipative ultrarelativistic photospheres“

(G.V. Vereshchagin)

On recent developments in theoretical and experimental general rela-
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A. On Thermalization of
Electron-Positron-Photon
Plasma

A.1. INTRODUCTION

Degenerate relativistic plasmas are common is astrophysics. For instance,
white dwarfs are supported by pressure of degenerate electron gas, while
pressure in neutron stars is dominated by degenerate neutrons. Photon gas
in thermal equilibrium is a classical example of a quantum system, where
occupation numbers of energy levels are infinitely increasing towards lower
energies Landau and Lifshitz (1980). Kinetic description of such systems out
of equilibrium necessary include Bose enhancement and Pauli blocking, see
Landau and Lifshitz (1981).

Relaxation of optically thick electron-positron plasma to thermal equilib-
rium has been considered in Aksenov et al. (2007, 2009). There relativis-
tic Boltzmann equations with exact QED collision integrals taking into ac-
count all relevant two-particle (Bhabha scattering, Møller scattering, Comp-
ton scattering, pair creation and annihilation) and three-particle (relativistic
bremsstrahlung, three photon annihilation, double Compton scattering, and
radiative pair production) interactions were solved numerically. It was con-
firmed that a metastable state called ”kinetic equilibrium” (Pilla and Shaham,
1997) exists in such plasma, which is characterized by the same temper-
ature of all particles, but nonnull chemical potentials. Such state occurs
when the detailed balance of all two-particle reactions is established. It was
pointed out that direct and inverse three-particle interactions become rele-
vant when kinetic equilibrium has been reached. These three-particle inter-
actions are shown to be essential Aksenov et al. (2007) in bringing electron-
positron plasma to thermal equilibrium, as they are particle non-conserving
processes. This work was extended considering creation of electron-positron
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pairs out of the vacuum in external electric field in Benedetti et al. (2013).
In Aksenov et al. (2010) relaxation timescales for optically thick electron-

positron plasma in a wide range of temperatures and proton loadings were
computed numerically using the kinetic code developed in Aksenov et al.
(2007, 2009). These timescales were previously estimated in the literature by
order of magnitude arguments using the reaction rates of the dominant pro-
cesses (Gould, 1981; Stepney, 1983). It was shown that these numerically ob-
tained timescales differ from previous estimations by several orders of mag-
nitude.

In all these works Boltzmann statistics of particles was adopted. How-
ever, it is well known that electrons, positrons and photons fulfill quantum
Fermi-Dirac and Bose-Einstein statistics, respectively. Accounting for cor-
rect particle statistics is essential at relativistic temperatures since even ther-
mal relativistic plasma has non negligible degree of degeneracy. Indeed,
the average occupation number can characterize the degree of degeneracy
in relativistic plasma. In ultrarelativistic limit in thermal equilibrium this
averaged occupation numbers are equal to 0.368 for photons, and 0.087 for
electrons and positrons. In plasma out of equilibrium degeneracy can be
much higer. This requires the change of reaction rates considered firstly in
Uehling and Uhlenbeck (1933); Uehling (1934).

The role of relativistic degeneracy in electron-positron plasma was stud-
ied in Avetisian et al. (1988) for the process of one-photon pair creation and
annihilation. This process is possible in ultradense plasmas due to collec-
tive effects leading to effective refraction index n in dispersion relation for
photons. The problem of propagation of electromagnetic perturbations in
highly degenerate nonrelativistic and relativistic plasmas was addressed in a
number of papers El-Taibany and Mamun (2012); Sadiq et al. (2014) by appli-
cation of quantum magnetohydrodynamic approach. Possible formation of
solitons was found and their properties investigated. However, to the best of
our knowledge, the role of relativistic degeneracy in pair plasma in establish-
ing thermal equilibrium has never been studied from kinetic point of view.
In this paper we bridge this gap.

In this paper we consider relaxation of nonequilibrium optically thick pair
plasma to complete thermal equilibrium by integrating numerically relativis-
tic Boltzmann equations with exact QED two-particle and three-particle col-
lision integrals. Quantum nature of particle statistics is accounted for in col-
lision integrals by the corresponding Bose enhancement and Pauli blocking
factors.
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A.2. DEGENERACY OF PLASMA AND ITS INFLUENCE ON THE
KINETICS

We point out that unlike classical Boltzmann equation for binary interac-
tions such as scattering, more general interactions are typically described by
four collision integrals for each particle that appears both among incoming
and outgoing particles.

We generalize previous works on thermalization of uniform isotropic neu-
tral pair plasma. In addition to collision integrals for two-particle interactions
expressed through QED matrix elements we take into account also three-
particle interactions in the same way. Plasma degeneracy is accounted for
by quantum corrections to collision integrals with the corresponding Pauli
blocking and Bose enhancement factors. We describe our numerical scheme
and provide some preliminary results. Conclusions follow.

A.2. DEGENERACY OF PLASMA AND ITS

INFLUENCE ON THE KINETICS

As it was already mentioned, both fermion and boson presence in the plasma
provide corrections to the rates of processes involving these particles. Its rel-
ative importance can be estimated by the degeneracy parameter (Groot et al.,

1980, p. 352) defined as D =
1

nλ3
th

, where n is number density of parti-

cles, λth =
ch̄

kT
is the thermal wave-length, k is Boltzmann constant, T is

temperature, h̄ = h/(2π), h is Planck constant. In Fig. A.1 on the number
density–energy density diagram for relativistic electron-positron plasma we
show nondegenerate (D > 1) and degenerate (D < 1) regions. It is clear
then that plasma near thermal equilibrium can be degenerate and inclusion
of Bose enhancement and Pauli blocking coefficients is important in studying
its kinetics.

A.2.1. Interactions and Equilibrium

Kinetic equilibrium Rybicki and Lightman (1979); Pilla and Shaham (1997) is
defined as the state with vanishing difference between the rates of direct
and inverse interactions for each of the two-particle processes. Such state
is characterized by two parameters: common temperature of all particles T
and non-null chemical potential µ. Combining detailed balance conditions in
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Figure A.1.: Number density-energy density diagram of relativistic electron-
positron plasma. Solid curve shows critical particle density ncr(ρ) in thermal
equilibrium with chemical potential ξ = 0. Dashed line corresponds to tran-
sition from nondegenerate D > 1 to degenerate D < 1 plasma.

two-particle interactions, we arrive to Aksenov et al. (2009)

θ = θ+ = θ− = θγ, ξ = ξγ = ξ+ = ξ−, (A.2.1)

where θ =
kT

mec2
is dimensionless temperature and ξ =

µ

kT
is dimensionless

chemical potential of components.
In fact, the chemical potential in kinetic equilibrium is constrained by the

condition ξ ≤ 0. The equality in this relation implies that there is a critical
number density ncr given by ξ = 0. Since in two-particle processes the total
number of particles (number density) is conserved, for n > ncr Bose conden-
sation of photons is expected. However, in reality three-particle interactions
do change the number of particles bringing the system to thermal equilibrium
with ξ = 0 Khatri et al. (2012).

Thermal equilibrium is defined as the state with vanishing difference be-
tween the rates of direct and inverse interactions of all processes. It was
shown in Aksenov et al. (2007) that in electron-positron plasma two-particle
processes are insufficient to bring the non-equilibrium system to thermal
equilibrium. The necessary condition for reaching thermal equilibrium is de-
tailed balance in three-particle processes. Provided that kinetic equilibrium is
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Table A.1.: Particle interactions in the pair plasma.

Two-particle processes Three-particle processes

Compton scattering Double Compton
e±γ−→e±′γ′ e±γ←→e±′γ′γ′′

Coulomb, Møller and Bhabha scattering Bremmstrahlung
e±1 e±2 −→ e±′1 e±′2 e±1 e±2 ←→e±′1 e±′2 γ
e+e− −→ e+′e−′ e+e−←→e+′e−′γ

Creation/annihilation Three-photon annihilation
e+e− ←→ γ1γ2 e+e−←→γ1γ2γ3

Pair creation/annihilation
γ1γ2←→e+e−γ′

e±γ←→e±′e+e−

established, this condition constrains the chemical potential to vanish, ξ = 0.
This state is the state of complete thermal equilibrium, and it is characterized
by temperature θ only.

A.3. BOLTZMANN EQUATIONS

In uniform electron-positron plasma relativistic Boltzmann equations for dis-
tribution functions fα have the following form (Aksenov et al., 2007):

d

dt
fα(p, t) = ∑

q

(

η
q
α − χ

q
α fα(p, t)

)

, (A.3.1)

where fα(ε) are distribution functions of particle species α, normalized as
nα(t) =

∫

fα(~p, t)d3~p, nα are the corresponding number densities, the sum
enumerated by index q is taken over all two- and three-particle processes
q listed in Table A.1, η

q
α and χ

q
α are, respectively, emission and absorption

coefficients.
Not coming into details of calculations of two-particle collision integral,

that can be found in textbooks, for example Groot et al. (1980), we just men-
tion the important property of three-particle interactions. As the same parti-
cle specie can appear in both sides of of three-particle reaction, collision in-
tegrals appear to have four different terms corresponding to absorption and
emission of the particle in a given quantum state in both direct and inverse re-
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action. Generally speaking, such four terms should be present in collision integral
of any reaction for a particle specie which is present both among incoming and outgo-
ing particles, unless the process is a scattering (in such a case direct and inverse
reaction are the same reaction from quantum point of view and it should not
be taken twice). This statement is valid for arbitrary number of incoming and
outgoing particles. It is not limited to QED but applies to any quantum field
theory in general.

All three-particle QED processes listed in Table A.1, with exception of
three-photon annihilation, are indeed represented by four terms in collision
integrals. Such four terms for double Compton scattering with corresponding
symmetrization factors were considered by Chluba Chluba (2005). It should
be noted, that the detailed balance conditions may be obtained Lightman
(1981); Thorne (1981) with only two terms in collision integrals. However,
the structure of all four coefficients is different, and their presence in collision
integral is essential.

The rates of reactions can be expressed from QED matrix elements squared,
that for double Compton scattering is given by Eqs. (3), (9), (10) of
Mandl and Skyrme (1952). For relativistic bremsstrahlung it can be found in
Appendix B of Haug and Nakel (2004). Matrix elements for all other pro-
cesses of Tab. A.1 were obtained from the ones of double Compton scat-
tering and of relativistic bremsstrahlung by the substitution law, given in
(Jauch and Rohrlich, 1976, Sec. 8.5). For inverse three-particle interaction we
use the detailed balance condition to find the rates of reactions from direct
ones. Then collision integral of any of three-particle processes is a seven-
dimensional integral in momentum space. In the next Section we show how
such integral is computed numerically on finite grid.

A.4. THE NUMERICAL SCHEME

The main difficulty arising in computation of collision integrals in compar-
ison with previous works Aksenov et al. (2007, 2009, 2010) is that particle
emission and absorbtion coefficients contain not only distribution functions
of incoming particles, but also those of outgoing particles. Therefore we
adopt a different approach which we refer to as ”reaction-oriented” instead
of ”particle-oriented” one used earlier.

The phase space is divided in zones. Introducing variables ”kinetic energy”
ε–”cosine of polar angle” µ–”azimuthal angle” φ, corresponding to spherical
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symmetry of the problem, we define zones as spherical layers corresponding
to intervals in energy with arbitrary angles. Emission and absorption coef-
ficients in the interaction of particles from different zones are obtained by
integration of corresponding collision integrals over them. The correspond-
ing integrals are replaced by sums on the grid of angles. When energies of
incoming particles are fixed on the grid, the energies of outgoing particles
are generally not on the grid. Hence redistribution of two final particles is
adopted, each over two adjacent zones. It enforces the exact number of par-
ticles and energy conservation in each two-particle process, as well as corre-
sponding change of particle number and energy conservation in each three-
particle process.

The redistribution of final particles should also satisfy requirements of
quantum statistics. Therefore if a process occurs for fermion, when final par-
ticle should be distributed over the quantum states which are fully occupied,
such process is forbidden. Thus we introduce the Bose enhancement/Pauli
blocking coefficients in the reaction rates as minimum of the two values cor-
responding to zones where the final particles are redistributed to.

The sums over angles in collisional integrals can be found once and for
all at the beginning of the calculations. We then store in the program for
each set of the incoming and outgoing particles the corresponding terms and
redistribution coefficients.

Representation of discretized collisional integral for number density Y I
a of

particle I in energy zone a in two- and three-particle processes I + I I ⇄ I I I +
IV and I + I I ⇄ I I I + IV + V is then

dY I
a

dt
= −∑ A×Y I

a Y I I
b ×

[

1± Y I I I
c

Ȳ I I I
c

]

[

1± Y IV
d

Ȳ IV
d

]

+

∑ B×Y I I I
c Y IV

d ×
[

1± Y I
a

Ȳ I
a

]

[

1± Y I I
b

Ȳ I I
b

]

−∑ C×Y I
a Y I I

b ×
[

1± Y I I I
c

Ȳ I I I
c

]

[

1± Y IV
d

Ȳ IV
d

] [

1±
YV

f

ȲV
f

]

+

∑ D×Y I I I
c Y IV

d YV
f ×

[

1± Y I
a

Ȳ I
a

]

[

1± Y I I
b

Ȳ I I
b

]

, (A.4.1)

where Ȳ I
a are the number density corresponding to occupation numbers
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for quantum states equals unity over the zone, and constant coefficients
A, B, C, D are obtained from the summation over angles in the corresponding
sums representing integrated collision integrals. The full Boltzmann equation
contains similar sums for all processes from Tab. A.1. Each individual term in
these sums appears in the system of discretized Boltzmann equations four or
five times in emission and absorption coefficients for each particle entering a
given process. Then each term can be computed only once and added to all
corresponding sums, that is the essence of our ”reaction-oriented” approach.

In our method exact energy and number of particles conservation laws are
satisfied. The number of energy intervals is typically 40, while internal grid
of angles has 16 points in µ and 32 in φ. The system under consideration has
several characteristic times for different processes, and therefore the result-
ing system of ordinary differential equations is stiff. We use Gear’s method
Hall and Watt (1976) to integrate the system numerically.

A.5. PRELIMINARY RESULTS AND

CONCLUSIONS

To test our approach we calculate first the final state of evolution given
by two-particle interactions only. Starting with total energy density ρ =
1025 erg/cm3 and corresponding thermal particle density, we obtain numer-
ical equilibrium that reproduces thermal spectra for Plank and Fermi-Dirac
distributions, see Figure A.2. Two discrepancies are present: small deviation
in the lowest energy interval for photons and high-energy ”tails” for both dis-
tributions. However, maxima of thermal distributions are reproduced very
well, as well as Plank low-energy power law.

Given that result we continue the testing by introducing double Compton
scattering. Switching off two-particle interactions and taking into account
only double Compton scattering we obtain final numerical equilibrium spec-
tra shown in Figure A.3. Low-energy part of photon distribution falls down
faster then corresponding Plank spectrum. That can be attributed to higher
effect of Bose enhancement realization in numerical scheme on three-particle
interactions. Combined two-particle and double Compton reactions result in
numerical equilibrium shown in Figure A.4. The picture of resulting spectra
are somewhat in between of the two previous.

Detailed balance condition can be checked directly from the rates of re-
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Figure A.2.: Numerical spectral energy densities of photons (left) and
pairs (right) at numerical equilibrium in two-particle reactions for ρ =
1025 erg/cm3. Thick curves show the corresponding Plank and Fermi-Dirac
distributions with the corresponding temperature.
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Figure A.3.: Numerical spectral energy densities of photons (left) and pairs
(right) at numerical equilibrium in double Compton reaction for ρ =
1025 erg/cm3. Thick curves show the corresponding Plank and Fermi-Dirac
distributions with the corresponding temperature.

action, illustrated by Figure A.5. Corresponding rates in direct and inverse
reactions coincide in the low and middle energy parts of spectra, starting to
deviate at high energy due to ”tails” mentioned above.

The partial summations over angles in three-particle processes appears to
be the most time-consuming part of the numerical solution of Boltzmann
equation. Typical number of points in calculations is 1012.

Our preliminary numerical results indicate that the rates of three-particle
interactions become comparable to those of two-particle ones for tempera-
tures exceeding the electron rest-mass energy, see Figure A.5. Thus three par-
ticle interactions such as relativistic bremsstrahlung, double Compton scat-
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Figure A.4.: Numerical spectral energy densities of photons (left) and pairs
(right) at numerical equilibrium in two-particle and double Compton reac-
tions for ρ = 1025 erg/cm3. Thick blue curves show the corresponding Plank
and Fermi-Dirac distributions with the corresponding temperature, and thick
brown curves show the corresponding Wien and Boltzmann distributions for
classical particles.
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Figure A.5.: Numerical rates of double (solid line) and ordinary (dashed line)
Compton scattering of photons (left) and pairs (right) at numerical equilib-
rium in two-particle and double Compton reactions for ρ = 1025 erg/cm3.
Blue and brown lines denote χ and η/n in direct reaction, while green and
red lines denote χ and η/n in inverse reaction, correspondingly.

tering, and radiative pair creation become essential not only for establish-
ment of thermal equilibrium, but also for correct estimation of interaction
rates, energy losses etc.
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B. Thermal emission from the
interaction of GRBs and
supernova ejecta

B.1. Introduction

A thermal X-ray component, regularly coupled with a flare, is observed in
the early afterglow of many gamma-ray bursts (GRBs), for instance, GRB
060729, 081007, 090618, 130427A, see more examples inPage et al. (2011);
Sparre and Starling (2012); Starling et al. (2012); Ruffini et al. (2014a,b) . Some
possible mechanisms were proposed, in the literature there is no consen-
sus. The traditional shockwave breakout model has difficulties in generat-
ing the observed high luminosity in a distant radius Ghisellini et al. (2007);
Starling et al. (2012). In ref. Friis and Watson (2013), the authors link the
afterglow thermal radiation to the prompt phase via photospheric emission
from the jet, but from the observation, the cooling of thermal components in
the prompt phase and in the afterglow follows different trends, see an exam-
ple in Fig.B.3. In ref.Pe’er et al. (2006), the thermal emission is interpreted as
coming from a hot plasma “cocoon” heated by the GRB jet, but this model re-
quires much higher Lorentz factors (on the order of 10) than the ones inferred
from the observations.

In this paper, we attempt to explain the thermal component in the early af-
terglow by considering the interaction of GRB outflow with a baryonic shell
encircling a GRB source. In the particular paradigm of induced gravitational
collapse (IGC), see e.g. Ruffini et al. (2014a) and references therein, such shell
is interpreted as a supernova (SN) ejecta. IGC delineates a missive star ex-
ploding as a SN in a close binary system, the companion neutron star ac-
cretes a partial SN ejecta and gravitationally collapses to a blackhole, GRB
occurs simultaneously. The mechanisms of GRB energy engine and explo-
sive dynamics in the prompt phase are described by fireshell model, see e.g.
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Ruffini et al. (2010a, 2009) and references therein. Such a GRB then interacts
with the rest of the supernova ejecta, accelerates and heats the supernova
ejecta, as a consequence, the supernova ejecta expands mild-relativistically
and emits the thermal radiation.

The content is organized as follows. In Section B.2 we solve the equations
of relativistic energy-momentum conservation in order to recover the amount
of thermal energy and velocity of the shell after the collision with the GRB
ejecta, also the photon diffusion is considered. In Section B.3 we compute
the resulting temperature and estimate the optical depth of the shell. We
apply the model in Section B.4 and consider the cases of 6 GRBs, including
the prototype GRB 090618. Conclusions follow.

B.2. Velocity and internal energy

Assuming the SN ejecta is a shell comprised of baryonic clumps with differ-
ent sizes and thicknesses at radius R from the SN source, the clumps near
the GRB are thinner than the more distant ones as a result of the accretion by
the initial neutron star. The circumstances we deal with in this paper have
R > 1012 cm, two orders of magnitude larger than the distance (< 1010 cm)
between binary stars in the IGC paradigm, therefore R is also considered
approximatively as the distance between the shell and the GRB Fryer et al.
(2014). This shell interacts with the GRB ultra-relativistic outflow. Here we
approximate the total energy of GRB outflow as the observed isotropic en-
ergy Eiso. In practice, the shell may not fully cover the sphere, also the GRB
outflow may be jetted, so in the following computation, we only consider
the interacting part, involving a portion of the shell with area 4πǫR2 and the
associated mass M = ǫMs, the energy of GRB outflow interacting with this
portion of shell E = ǫEiso, where ǫ is a fractional factor and Ms is a mass of
the spherical shell. For simplicity, in the following text, when we mention the
shell, it means the interacting part of the shell.

B.2.1. Interaction

Interaction transfers energy and momentum from the GRB outflow to the
clumps of the shell. Energy-momentum conservation reads
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E + Mc2 =
(

Mc2 + W
)

Γ, (B.2.1)

E

c
=

(

M +
W

c2

)

Γv, (B.2.2)

where Γ =
[

1− (v/c)2
]−1/2

is the Lorentz factor of radial motion of the shell,

c is the speed of light, W is internal energy. These equations can be used to
find the internal energy and the velocity of the shell after the interaction. If
the shell remains opaque, the internal energy of the shell is transformed into
its kinetic energy resulting in acceleration. At the phase of acceleration the ra-
dial momentum is not conserved, and equation (B.2.2) in the above set cannot
be used. The final velocity after the acceleration phase can be found from the
energy conservation alone, namely from equation (B.2.1). For having concise
expressions, we neglect the initial energy and momentum of the shell, which
only affects less than 5% and 12% of the temperature and mass respectively
for our cases.

In order to solve equations (B.2.1) and (B.2.2) we introduce the new vari-
ables

η =
E

Mc2
, ω =

W

Mc2
, u = Γ

v

c
(B.2.3)

we rewrite the energy-momentum conservation

η = (ω + 1)
√

u2 + 1− 1, (B.2.4)

η = (ω + 1) u. (B.2.5)

The solution to this system reads

u =
η

√

1 + 2η
,

W

E
=

ω

η
=

1

u
− 1

η
. (B.2.6)

In nonrelativistic and ultrarelativistic asymptotics, respectively, the solution
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Figure B.1.: Two functions are shown: the dimensionless velocity parameter
u = Γv/c of the shell after the interaction with photons (thick), as function of
the parameter η = E/(Mc2), as well as the ratio between the internal energy
and the initial energy in photons (thin), ω/η = W/E, as function of the same
parameter η. Dotted (dashed) line shows the nonrelativistic (ultrarelativis-
tic) asymptotics for u, while the dash-dotted line shows the ultrarelativistic
asymptotics for W/E.

becomes

u ≃ v

c
≃ η ≪ 1, ω ≃ η, (B.2.7)

u ≃ Γ ≃
√

η

2
≫ 1,

ω

η
≃
√

2

η
. (B.2.8)

This solution is illustrated in Figure B.1. These results imply the following.
On the one hand, when the energy in photons is much less than the rest
mass of the shell, E ≪ Mc2, most of the energy is transferred into inter-
nal energy W ≃ E, and the resulting velocity of the shell is nonrelativistic,
v/c ≃ E/(Mc2). On the other hand, for E ≫ Mc2 the transfer of momen-

tum is inefficient. We have Γ ≃
√

E/(2Mc2) and W/(Mc2) ≃
√

2Mc2/E.
The shell is accelerated to ultrarelativistic velocity, but some energy goes into
internal energy as well. This internal energy will then be transferred into
kinetic one during the acceleration phase.
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Figure B.2.: The ratio between internal (dashed) and kinetic (solid) energy to
initial energy (dotted) after the interaction. In nonrelativistic case with η ≪ 1
all the energy of the GRB ejecta is transformed into internal energy (heat) of
the baryonic shell. In ultrarelativistic case with η ≫ 1 the energy of the GRB
ejecta is transformed mostly in kinetic energy of the shell.

In Figure B.2 we present the ratio between internal and kinetic energy of
the shell to initial energy of the system, composed of the GRB ejecta and the
baryonic shell, computed after the interaction. One can see that in the non-
relativistic case with E≪ Mc2 all the energy of the GRB ejecta is transformed
into internal energy of the baryonic shell. In contrast, in ultrarelativistic case
with E ≫ Mc2 the energy of the GRB ejecta is transformed mostly in kinetic
energy of the shell. Notice the striking similarity with the corresponding di-
agram for the energies emitted in the P-GRB and in the extended afterglow,
in units of the total energy of the plasma within the fireshell model, see e.g.
Figure 5 in Ruffini et al. (2009).

B.2.2. Acceleration

If the shell is spherically symmetric, assuming all energy is ultimately trans-
ferred into kinetic energy of the shell (W ≪ Mc2) from the energy conserva-
tion, equation (B.2.1), one has

Γ− 1 =
E

Mc2
=

Eiso

Msc2
= η, (B.2.9)
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Again, in nonrelativistic and ultrarelativistic asymptotics, respectively, one
finds

v

c
≃
√

2η, η ≪ 1, (B.2.10)

Γ ≃ η, η ≫ 1. (B.2.11)

As a matter of fact, the values of velocity (Lorentz factor) after the interaction
are always smaller than the final values, reached after the acceleration phase.

Note that in the derivation in this Section we never used the condition
W ≪ Mc2. This condition is valid in GRBs context as baryons after collision
never reach relativistic temperatures, kT ≪ mpc2.

B.3. Temperature and optical depth

The comoving temperature of the shell Tc is found from the condition W =
4πǫaR2lT4

c . The observed temperature for the source with angle ϑ with re-
spect to the line of sight is

T =
Tc

Γ (1− β cos ϑ)
=

√

1 + 2η

1 + η − η cos ϑ

(

ω

η

F

al

)1/4

, (B.3.1)

where F = ǫEiso/
(

4πǫR2
)

= Eiso/
(

4πR2
)

is isotropic energy flux. This
expression gives, respectively, in nonrelativistic and ultrarelativistic asymp-
totics

T ≃
(

F

al

)1/4

, E≪ Mc2, (B.3.2)

T ≃ 2Γ

[

F

al

(

2

η

)1/2
]1/4

, E≫ Mc2, (B.3.3)

where in eq. (B.3.3) we assume that the source is on the line of sight.
The shell will emit photons from its photosphere. The case of ultrarelativis-

tic photosphere with Γ ≫ 1 is treated in Ruffini et al. (2013b), see also recent
review Vereshchagin (2014). From now on assume that the photosphere is not
ultrarelativistic. We still retain fully relativistic expression (B.3.1). The valid-
ity of the treatment in the previous section requires that the shell is opaque,
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namely its optical depth τ is large. The latter is given by

τ = σnl =
σM

4πǫR2Zmp
≫ 1, (B.3.4)

where σ is Thomson cross section mp is proton mass, Z is atomic number.
Further acceleration of the shell, considered above, is possible only of the
shell is still opaque during the acceleration phase.

The emission from the photosphere occurs due to radiative diffusion from
the interior of the shell. The emission lasts until all energy diffuses out from
the shell. The characteristic diffusion time form a clump with a given thick-
ness is

tD =
l2

D
= 3τ

l

c
, (B.3.5)

where D = c/(3σn) is the diffusion coefficient for photons. Since τ ≫ 1 we
have l ≪ ctD. The density decrease in diffusion coefficient due to expansion
of the shell can be neglected if the diffusion time is less than the dynamical
time of expansion R/v, namely if

3τ
v

c
≪ R

l
. (B.3.6)

In the opposite case one has to consider the effects of expansion and the ther-
mal spreading of the baryonic shell after interaction with photons on the dif-
fusion time. In any case, this effect reduces the diffusion time.

Note that equations (B.2.8) and especially (B.3.3) are relevant in the context
of the fireshell model Ruffini et al. (2009) as they describe the values of the
Lorentz factor of the PEMB pulse and its temperature at the moment after
the collision of the PEM pulse with the baryonic remnant. The asymptotic
expression (B.2.11) describes the Lorentz factor of the PEMB pulse under the
condition η < 104.

B.4. Application

From the observation one can derive the isotropic energy via the observed
flux and redshift, and by fitting the light curve and spectra, one can obtain
the evolution of temperature from thermal emission, as well as the velocity
of expansion. In practice, the satellites do not cover all the energy band, what
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we can have are only given temperatures with given duration. The Swift-XRT
is the most widely used instrument on detecting the GRB afterglow, it cov-
ers 0.3 ∼ 10 KeV. In other words, by analyzing the data from Swift-XRT, we
can only obtain the thermal temperature in soft X-ray band, and the corre-
sponding duration. For example, in Fig.7 of Ruffini et al. (2014b), clearly the
temperature of blackbody radiation from 196 s to 461 s is within the scope
Swift-XRT, temperature cools along the time. Therefore here we adopt three
parameters Eiso, tD and u given by the observations, then we deduce the tem-
perature using the above equations for the comparison with the observational
one. It is convenient to rewrite equation (B.3.1) using equations (B.2.6) and
(B.3.5) as

T = X(u)F1/2

(

a
mpc2

3σ ZctD

)−1/4

≃ 2.13X(u)E1/2
iso,52R−1

13 t−1/4
100 Z−1/4

10 keV,

(B.4.1)

where E52 = E/1052erg, R13 = R/1013cm, t100 = tD/100s, Z10 = Z/10,

X =
1√
u

1√
1 + u2 − u cos ϑ

(

u +
√

1 + u2 − 1

2u2 + 2u
√

1 + u2 + 1

)1/4

(B.4.2)

=

{

u−1/4, u≪ 1,

23/4u1/4, u≫ 1

is a slowly varying function of u which decreases as u−1/4 for u < 1 and
increases as u1/4 for u > 1, with X(u = 1, ϑ = 0) ≈ 1.7.

In fact, in most cases thermal component in soft X-ray contains small frac-
tion of the GRB energy, see table B.1. The baryonic shell may not necessary
be spherically symmetric as we assumed, clumps have different thickness.
The thinner clumps have earlier emission with higher temperature, and vice
versa. The small ratio between thermal energy in X-ray and GRB energy can
be explained assuming small ratio of the total surface of relatively thin bary-
onic clumps to the total spherical area at that radius. Naturally in the IGC
paradigm, these thin clumps are accumulated around the accreting source,
the progenitor of GRB. Some similar ideas in treatment of thermal emission
in GRBs are discussed in Badjin et al. (2013); Pe’er et al. (2006).
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B.4.1. The case of GRB 090618

A thermal component has been inferred from observations of the early X-
ray afterglow in GRB 090618. Following Izzo et al. (2012) and Ruffini et al.
(2014a) we summarize the parameters:

• isotropic energy of GRB Eiso = 2.9× 1053 erg,

• observed duration of the thermal component in Episode 3, t = 150 s,

• observed temperature T is decreasing from 1 keV to 0.3 keV.

Two alternative models were presented to explain this component: a rela-
tivistic wind model (e.g. Friis and Watson (2013)) and a mild-relativistic shell
model Ruffini et al. (2014a). Here we focus on the second one. In the model
described above we neglected the initial kinetic energy of the shell and as-
sumed that the interaction between the GRB ejecta and the shell results in
two effects: heating of the shell and its acceleration. The parameters of the
shell were inferred from observations Ruffini et al. (2014a):

• radius R = 1013 cm,

• velocity 0.75 < v/c < 0.89.

These parameters are quite close to those discussed above. The observed
trend of decreasing temperature can be explained by the expansion of the
shell, neglected in our simplified treatment in Section B.3. Given relativis-
tic velocities of the shell, neither nonrelativistic nor ultrarelativistic approx-
imations can be used to infer the parameters of the clump. Instead, the full
analytic solution (B.2.6) must be used. So from equation (B.2.6) we determine

3.0 < η < 8.1,

then knowing the energy in the thermal component the mass is

0.02M⊙ < Ms < 0.05M⊙,

then the optical depth of the clump is found from equation (B.3.4), and it is

1.3× 104
< Zτ < 3.4× 104,

415



B. Thermal emission from the interaction of GRBs and supernova ejecta

then the length of the clump is obtained from equation (B.3.5) and it gives

4.4× 107cm <
l

Z
< 1.2× 108cm.

Again, with these parameters the constraint equation (B.3.6) is satisfied.

It is clear from Figure B.2, that with these parameters the energy of GRB
ejecta is divided nearly equally between kinetic energy of the shell and its
internal energy.

Assuming the shell is composed of hydrogen with Z = 1 the temperature
of the shell is 8.62 keV, which is a factor 9 higher than the observed one. In-
stead, if the shell is composed of radioactive elements produced at the super-
nova explosion, the atomic number should be around Z = 26, which gives
for the temperature a much closer value to the one observed, namely 3.8 keV.
Clearly, in our simplified treatment this coincidence is remarkable. In fact, we
assumed that the temperature and density distribution in the shell are uni-
form. However, realistic temperature and density profiles will give smaller
temperature at the photosphere, compared to the temperature in the interior
of the shell.

Our model predicts that in non-relativistic case (η . 1) practically all ki-
netic energy of the GRB outflow is transferred into internal energy of the
baryonic shell, namely W ≃ E. In the case of GRB 090618 we have W ≃ E/2.
However, the total energy in the thermal component is estimated to be only
EBB = 2.1× 1049 erg. This can be explained if only a small fraction (ǫ ≃ 0.005)
of the GRB ejecta actually interacts with thin baryonic clumps. Recall that our
model is also valid without imposing the spherical symmetry. It implies that
the mass of thin baryonic material around the GRB source is M ∼ 10−4M⊙.
This is the lower limit to the total mass of baryonic material around the
source. The rest of the material can be much more massive and thicker.

If the GRB ejecta is spherical, interaction of this ejecta with the main part of
the SN remnant will increase the internal energy of the ejecta, thus contribut-
ing to the bolometric luminosity of the optical SN light curve. This effect can
explain why the nickel mass inferred in GRB-SN systems is systematically
higher than in other Ibc type SN.

In the IGC paradigm, accretion contributes to the emission of first seconds,
while in the fireball model, photospheric emission could exist in the begin-
ning. In both cases, as a result, thermal emission could be detected if its flu-
ence is sufficient. For GRB 090618, a decreasing thermal temperature within
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Figure B.3.: Temperature of the thermal component in the prompt emission
(grey points) and in the afterglow (black points). The single power-law fit-
ting of the temperature in the prompt emission clearly shows its extrapola-
tion lays much higher than the temperature in the afterglow. The value of
temperature comes from Ruffini et al. (2014a); Izzo et al. (2012).
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the first 50 s is observed, and we extrapolate this temperature by a single
power-law till hundreds of seconds and find that the extrapolated value is
much higher than the observed one, as shown in Figure B.3. This considera-
tion Begue (2014) supports that the thermal component in the afterglow has a
different origin, as in this article we adopt the proposal from IGC paradigm,
generated by the collision of GRB afterglow and a baryonic shell.

GRB z Eiso Rc td,c ν Tobs,c T Ebb ǫ M

(×1052 erg) (×1013 cm) (×100s) (×1010 cm/s) (KeV) (KeV) (×1050 erg) (10−4 M⊙)
060218 0.033 0.0053 0.039 25.40 0.040 0.18 5.18 0.063 0.12 2.6

100316D 0.070 0.0060 0.093 5.53 0.39 0.19 1.83 0.095 0.16 0.4
081007 0.53 0.15 0.13 0.45 2.15 0.47 5.45 0.42 0.028 0.1
060729 0.54 1.60 0.58 1.45 2.34 0.32 2.62 4.92 0.030 0.8
090618 0.54 41 1.00 0.98 2.45 0.97 4.85 24.00 0.006 1.2

130427A 0.34 140 1.20 2.65 2.40 0.50 9.77 28.68 0.002 4.0

Table B.1.: Observational parameters and deduced temperature of 5 su-
pernova associated GRBs, subscript ’c’ presents the comoving frame. Ob-
servational data is taken from Ruffini et al. (2014a,b); Izzo et al. (2012);
Starling et al. (2012).

B.4.2. More Examples

In order to have a more general comparison, we adopt 5 more GRBs with
isotropic energy from 1049 erg to 1054 erg, all these GRBs show supernova
signal either from the spectral aspect or a bump in the optical lightcurve is
detected. To find a thermal component, two conditions are required due to
the capacity of satellites, that the flux of thermal component is sufficient and
the ratio of thermal flux versus total flux is prominent, the thermal flux within
the observed duration tD adopted in this article fulfills these two conditions.
With this consideration, tD should be shorter than the real thermal emission
time, however, a great fraction of the total thermal energy is released during
tD, it’s reasonable to employ the observed tD as an approximation.

Table (B.1) shows the observational parameters and the temperature de-
duced from equation (B.4.1), and the ratio (defined as ǫ) of observed total
thermal energy Ebb in Episode 3 versus isotropic energy, in Figure B.4, we
demonstrate and fit the Eiso and Ebb relation, which shows approximately
Ebb ∝ E0.6

iso . We notice that in reality, radius R and temperature T are not con-
stants, common pattern are found as radius increases while temperature de-
creases within the duration tD. But some GRBs in our sample do not provide
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Figure B.4.: Isotropic energy versus thermal energy, dashed line displays a
simple power-law fitting of the GRBs in Table B.1, the power-law index is 0.6,
as Ebb ∝ E0.6

iso.
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adequate data for having precise time resolved analysis, instead, averaged
values are given for all the 5 GRBs.

The temperature deduced are universally higher than the observed ones,
and a trend that the deduced temperature increases along with the observed
temperature can be found. These results are within our expectation, because
equation (B.4.1) depicts the average temperature, measured in the interior
of the shell. In reality, a temperature distribution profile should be taken
into consideration, and a steep gradient of temperature always exists at the
outer edge which emits thermal photons. Detailed simulation will be given
elsewhere.

B.5. Conclusions

The observed parameters of the thermal component in the Episode 3 of emis-
sion in GRB 090618 are reproduced by considering the interaction of the GRB
outflow with the thin baryonic shell having mass of 10−4M⊙ and thickness
of 108 cm. In addition, thermal temperature of 5 more GRBs, namely 060218,
100316D, 081007, 060729, 130427A, with observed thermal emission in the
early afteglow were analysed, and the parameters of associated baryonic
shells are obtained.

Our results suggest an alternative explanation of the observed thermal sig-
nal in the early afterglow of some GRBs. While in Friis and Watson (2013) this
signal is associated with the photospheric emission from relativistic wind, in
our approach this emission is due to nonrelativistic photosphere of a thin
baryonic shell, energized and accelerated by the associated GRB.
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C. Relativistic kinetic theory and
its applications

C.1. Introduction

Kinetic theory (KT) was born in the XIX century, the golden age of classical
physics. Based on the atomic picture of a medium Boltzmann (2011) prop-
erties such as heat and electrical conductivity, as well as viscosity and diffu-
sion found natural explanations. The term originates from the Greek where
κινησιζ means motion. In fact all these properties of the medium may be
understood to be emerging from its microscopical structure and motion.

KT now has to be considered in a wider framework of statistical mechan-
ics appearing at the end of XIX century essentially in the works of Maxwell,
Boltzmann and Gibbs. It should be emphasized that the main ideas and
principles of KT influenced the development of many other sciences, includ-
ing the mathematics (probability theory, ergodic theory), biology (evolution-
ary biology, population genetics) and economics (financial markets, econo-
physics).

Within physics, KT is closely related to statistical physics, thermodynam-
ics, hydro- and gasdynamics. Today one can say that the main task of ki-
netic theory is explanation of various macroscopic properties of a medium
based on known microscopic properties and interactions. In a general con-
text, KT is a microscopic theory of nonequilibrium systems. Indeed, all the
above mentioned fields of physics such as e.g. thermodynamics assume that
the medium is in its most probable microphysical state, called equilibrium.
Clearly, any macroscopic manifestation of deviations from this microscopic
equilibrium should be considered within KT.

The first classical applications of KT concerned gases. A successful descrip-
tion of ideal and nonideal gases has been reached within the framework of
Newtonian mechanics. With the discovery of Special Relativity KT had to
be reformulated in a Lorentz invariant fashion, to make it compatible with
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existence of a limiting velocity, the speed of light. Indeed, the generaliza-
tion of Maxwell-Boltzmann equilibrium distributions to relativistic case was
obtained already in 1911 Jüttner (1911). It soon became clear that there is
another natural arena for application of KT which is plasma physics Landau
(1936, 1937). The major difference between plasma and gas is the existence
of long range forces, which has been accommodated by introduction of the
mean field description Vlasov (1938). Formulation of relativistic KT has been
completed in the 1960s and is presented in several monographs, see e.g.
Synge (1957); Groot et al. (1980); Cercignani and Kremer (2002).

Since basic phenomena in the microworld are described on a quantum lan-
guage, KT uses extensively quantum theory. In fact, basic principles and
equations of KT may be derived from Quantum Field Theory, see Groot et al.
(1980).

The purpose of these lecture notes is, however, not to review the founda-
tions of KT that would require an entire dedicated monograph. In this paper
I will only remind basic concepts of KT and introduce the necessary mathe-
matical apparatus. The main goal is essentially to show a wide area of ap-
plications of KT, spanning from astrophysical compact objects to the whole
Universe in its evolution.

C.2. Basic concepts

C.2.1. Distribution function

In classical (also relativistic) mechanics a complete description of a system
composed of N interacting particles is given by their N equations of motion.
In non-relativistic kinetic theory one deals with a space of positions and ve-
locities of these particles, the configuration space. In relativistic kinetic the-
ory it is replaced by the phase space M of positions and momenta. In principle,
equivalent description of the system is given by a function F(Γ) of 6N inde-
pendent variables, defined on M. An equation can be formulated for this
function, called the Liouville equation, that can be written apparently in a
very simple form

dF(Γ)

ds
= 0, (C.2.1)

where the derivative is over the proper time. However, its complexity is
equivalent to the complexity of original N-body problem, and in majority
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of cases it cannot be addressed directly.

A tremendous simplification occurs for some systems, where N is very
large. Under certain conditions, which will be discussed below in Sec. C.6,
they can be described by a function defined on the 6-dimensional phase space
M6. Such function depends only on 7 variables: 3 space coordinates, 3 mo-
mentum components, and time. In such a case the DF is called the one particle
distribution function (DF) f (xµ, pµ). This is the basic object used in statistical
(probabilistic) description of a system composed of large number of particles.
For brevity in what follows denote1 the coordinates in momentum space as
x = xµ = (ct, x), p = pµ = (p0, p), where c is the speed of light. Notice
that p0 is not an independent variable and it satisfies the relativistic energy

equation p0 =
√

p2 + m2c2. The DF is defined such that the integral

N ≡
∫

M6
f (p, x, t)d3pd3x, (C.2.2)

gives the total number of particles. Notice that the integral is clearly Lorentz
invariant. The invariance of the distribution function itself is not obvious
from such a definition and will be demonstrated explicitly below in Sec.
C.2.3. Then one observes that f (x, p)d3pd3x is an average number of parti-
cles having momenta in the range (p, p+d3p) and coordinates in the range
(x, x+d3x) at the moment t, and the integral (C.2.2) is taken in the whole
phase space M6.

Notice that despite symmetrical form of f (x, p) there is a conceptual differ-
ence between x and p. In particular, the integral

n(x, t) ≡
∫ +∞

−∞
f d3p (C.2.3)

is assumed to be finite, leading to certain restrictions on f (p). In particular,
when the DF is isotropic in momentum space, p2 f (|p|) should decrease with
increasing momentum for |p| ≫ 1 fast enough, at least faster than 1/ |p|; it
also should not increase with decreasing momentum for |p| ≪ 1 faster than
1/ |p|.

1In what follows Greek indices run from 0 to 3, while Latin ones run from 1 to 3. Einstein
summation rule is adopted.
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C.2.2. Averaging and macroscopic quantities

It is important to keep in mind that the DF defined by eq. (C.2.2) is not ac-
cessible directly to measurements. In any experiment or observation one has
to deal with averaged quantities. While a microscopic state is defined on the
phase space by the DF, it is useful to introduce a macroscopic quantity A(x)
as

A(x) ≡
∫ +∞

−∞
A(x, p)d3p. (C.2.4)

Particle density (C.2.3) is the simplest example. By definition the macroscopic
quantity does not depend on momentum, but only on coordinates and time.
Such quantity may be further averaged in space or time as follows

〈A〉time (x) ≡ lim
T→∞

1

T

∫ T

0
A(x)dt, 〈A〉space (t) ≡ lim

V→∞

1

V

∫

V
A(x)d3x.

(C.2.5)
The averaging may also be made on finite time T and in finite volume V then
the limits in front of integrals in eq. (C.2.5) are omitted.

In contrast to space and time averaging, statistical (or ensemble) averaging
for a quantity A(x, p) is defined as

〈A〉ens ≡
1

N

∫

M6
A(x, p) f (x, p)d3pd3x. (C.2.6)

While experiments deal with space and time averaged quantities, theory usu-
ally works with ensemble averaged ones. The connection between macro-
scopic and microscopic quantities from the one hand, but also space-time
averaged quantities and ensemble averaged ones from the other hand, is re-
quired. An important concept called statistical equilibrium requires that any
macroscopically large part of the system has macroscopic physical quantities
being equal to their statistical average values. For one particle DF this state-
ment can be represented as follows

1

V

∫

V

∫ +∞

−∞
A(x, p)d3pd3x =

∫

V

∫ +∞

−∞
A(x, p) f (x, p)d3pd3x

∫

V

∫ +∞

−∞
f (x, p)d3pd3x

, (C.2.7)

where V is an arbitrary macroscopic volume.
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One of the most important theorems in statistical mechanics states that for
ergodic systems the time averaged quantity should be equal to its ensemble
average. In a specific case when the system is described by one particle DF it
is reduced to

lim
T→∞

1

T

∫ T

0
A(x, p)dt =

1

N

∫

M6
A(x, p) f (x, p)d3pd3x. (C.2.8)

Note that it is difficult to prove ergodicity of a given physical system. Never-
theless, ergodicity is often assumed in practice.

C.2.3. Invariance of one particle DF

The one particle DF defined by (C.2.2) is not written in a Lorentz invari-
ant way. However, it is an invariant, as demonstrated below following
Ochelkov et al. (1979); Groot et al. (1980), see also Debbasch et al. (2001).
Consider the system of particles of equal mass m with coordinates xi(t) and
momenta pi(t). By definition, from the statistical point of view, the one
particle DF is the averaged particle density in momentum space, see e.g.
Debbasch and van Leeuwen (2009a), that is

f (p, x, t) =

〈

∑
i

δ3 [p− pi(t)] δ3 [x− xi(t)]

〉

ens

. (C.2.9)

In a relativistic context, it is natural to introduce an eight-dimensional one-
particle phase space M8. In such phase space the variable p0 is not necessarily
related to p, likewise t is not related to x. At the end of any calculations in-
volving M8 the physical results can be recovered by restricting every equation
to the sub-manifold of the mass-shell where p0 > 0. Introducing in this way
a new quantity

F(x, p) = 2Θ(p0)δ(pµ pµ −m2c2) f (p, x, t), (C.2.10)

where the term Θ(p0)δ(pµ pµ −m2c2) is Lorentz scalar, one has to show that
this function is a Lorentz scalar. Recalling the identity

δ (Z(x)) = ∑
i

∣

∣

∣

∣

dZ

dx

∣

∣

∣

∣

−1

δ (x− xi) , (C.2.11)
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where xi are the roots of the equation Z(x) = 0, rewrite eq. (C.2.10) using
(C.2.9) as

F(x, p) =

〈

∑
i

1

p0
i (t)

δ3 [p− pi(t)] δ
[

p− p0
i (t)

]

δ3 [x− xi(t)]

〉

ens

. (C.2.12)

Introducing additional integration over a delta function as

F(x, p) =
∫

dt

〈

∑
i

1

p0
i (ti)

δ [t− ti] δ3 [p− pi(ti)] δ
[

p− p0
i (ti)

]

δ3 [x− xi(ti)]

〉

ens
(C.2.13)

and using the relation dsi =
mc

p0
i (ti)

dti one can show that F(x, p) is a scalar since

F(x, p) =
1

mc

∫

ds

〈

∑
i

δ4 [x− xi(s)] δ4 [p− pi(s)]

〉

ens

, (C.2.14)

where xi(s) and momenta pi(s) are trajectories in M8. The last expression can
be understood as the ensemble averaged and time integrated Klimontovich
one particle DF, see e.g. Zakharov (2000) and Sec. C.3.1 below.

C.2.4. Important macroscopic quantities

One can define an invariant quantity instead of eq. (C.2.3) as

jµ(x, t) ≡ c
∫

pµ f
d3p

p0
= c

∫

F(x, p)pµd4p, (C.2.15)

where both f and d3p/p0 are scalars. This first moment of the DF is the par-
ticle four-flux. Its spatial part represents usual three-vector flux j(x, t) ≡
c
∫

v f d3p, where v = cp/p0 is the velocity of a relativistic particle with mo-
mentum p, uµ = dxµ/ds .

Analogously, the second moment can be constructed

Tµν(x, t) ≡ c
∫

pµ pν f
d3p

p0
, (C.2.16)
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and so on. The quantity Tµν is a symmetric tensor by construction. It rep-
resents an energy-momentum tensor of the system of particles. It should be
noted that in eq. (C.2.16) only rest mass energy and kinetic energy of particles
are taken into account, excluding their potential energy.

One more important quantity is entropy flux defined as

Sµ(x, t) ≡ −kBc
∫

pµ f
d3p

p0

[

log
(

h3 f
)

− 1
]

, (C.2.17)

where two new constants appear: kB is Boltzmann’s constant and h is a di-
mensional parameter needed to make the argument of the logarithm dimen-
sionless.

Unlike non-relativistic kinetic theory, in its relativistic counterpart macro-
scopic velocity can be defined in different ways. Two widespread definitions
are due to Eckart Eckart (1940) and Landau and Lifshitz Landau and Lifshitz
(1959):

U
µ
E ≡

cjµ

√

jµ jµ
or U

µ
LL ≡

cTµνUν
√

UρTρσTστUτ
. (C.2.18)

While U
µ
E can be interpreted as the average velocity of particles, U

µ
LL can be

understood as the average velocity of energy-momentum transfer.

C.3. Kinetic equation

This section follows the derivation presented in Groot et al. (1980). One can
introduce a scalar quantity

∆J =
1

c

∫

∆3σ
d3σµ jµ =

∫

∆3σ
d3σµ

∫

d3p

p0
pµ f , (C.3.1)

where the time-like four-vector d3σµ is an oriented three-surface element of

a plane space-like surface σ, the quantity ∆3σ is a small element and the last
equality follows from eq. (C.2.15). In the Lorentz frame where d3σµ is purely

timelike it has components (d3x, 0, 0, 0). In this frame

∆J =
∫

∆3σ

∫

f (x, p) d3pd3x, (C.3.2)
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which is just an average number of world lines crossing the segment ∆3σ.
Considering those world lines which have momenta in the range ∆3p around
p, one can get

∆J =
∫

∆3σ

∫

∆3 p
f (x, p) d3pd3x. (C.3.3)

Accepting this interpretation, consider world lines given by eq. (C.3.1)
which later cross another segment ∆3σ̂. Since there are no collisions it is pos-
sible to write

∫

∆3σ̂
d3σµ

∫

∆3 p

d3p

p0
pµ f −

∫

∆3σ
d3σµ

∫

∆3 p

d3p

p0
pµ f = 0, (C.3.4)

or in other way
∫

∆3x
d3σµ

∫

∆3 p

d3p

p0
pµ f = 0, (C.3.5)

where ∆3x is the surface of Minkowski space element ∆4x. Applying Gauss’
theorem one gets

∫

∆4x
d4x

∫

∆3 p

d3p

p0
pµ∂µ f = 0, (C.3.6)

where ∂µ =
(

c−1∂/∂t,∇
)

, ∆3x and ∆3p are some arbitrary hypersurfaces in
the phase space.

The basic equation represents time evolution of the DF due to microscopic
interactions in the system. In absence of any interactions between particles it
represents continuity of the four-vector pµ f and it follows from eq. (C.3.6) as

pµ∂µ f = 0. (C.3.7)

Written in the vector notation

∂ f

∂t
+ v · ∇ f = 0. (C.3.8)

In general case both collisions and external forces alter eq. (C.3.7) and the
kinetic equation becomes

pµ∂µ f + mFµ ∂ f

∂pµ = St f , (C.3.9)
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where Fµ represents an external four-force, St f is the collision integral. This
is the relativistic transport equation.

One of the main goals of KT is to establish the form of the collision integral.
Consider an elastic collision

1 + 2 −→ 1′ + 2′, (C.3.10)

where particles 1 and 2 have masses m1 and m2, momenta pµ and kµ which
changed after the collision to p′µ and k′µ respectively. Energy-momentum
conservation gives

pµ + kµ = p′µ + k′µ. (C.3.11)

The average number of such collisions is proportional to 1) the number of
particles per unit volume with momenta pµ in the range d3p, 2) the num-
ber of particles per unit volume with momenta kµ in the range d3k and 3)
the intervals d3p′µ, d3k′µ and d4x. The proportionality coefficients, depend-
ing only on four-momenta before and after the collision are represented as
W (p, k | p′, k′) /

(

p0k0p′0k′0
)

. The quantity W (p, k | p′, k′) is called the tran-
sition rate and it is a scalar. By this process particles leave the phase volume
d3p around pµ. Collisions also bring particles back into this volume by the
inverse process with the corresponding rate W (p′, k′ | p, k).

Then Boltzmann equation can be written as

∫

V

∫

P
pµ∂µ f

d3p

p0
d4x =

1

2

∫

V

∫

P

∫

d3p

p0

d3p′

p′0
d3k

k0

d3k′

k′0
× (C.3.12)

×
[

f
(

x, p′
)

f
(

x, k′
)

W
(

p′, k′ | p, k
)

− f (x, p) f (x, k)W
(

p, k | p′, k′
)]

d4x,

or in differential form

pµ∂µ f =
1

2

∫

d3p′

p′0
d3k

k0

d3k′

k′0
× (C.3.13)

×
[

f
(

x, p′
)

f
(

x, k′
)

W
(

p′, k′ | p, k
)

− f (x, p) f (x, k)W
(

p, k | p′, k′
)]

.

The same equation in vector notation becomes

∂ f

∂t
+v · ∇ f =

1

2

∫

d3p′d3k3k′
[

f
(

x, p′
)

f
(

x, k′
)

wp′k′;pk − f (x, p) f (x, k)wpk;p′k′
]

,

(C.3.14)
where wpk;p′k′ = cW (p, k | p′, k′) /

(

p0k0p′0k′0
)

. If in this expression particle
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momenta are substituted by their velocities, this equation will coincide with
the one derived first by Boltzmann Boltzmann (2011). Notice that the factor
1/2 in front of collision integral is due to indistinguishability of particles.

C.3.1. Boltzmann equation in General Relativity

The derivation of Boltzmann equation in General Relativity is presented here
following Zakharov (2000), for more details see Chernikov (1962, 1963b);
Debbasch and van Leeuwen (2009a,b).

Let us start by introducing the 8-dimensional phase space M8. The distri-
bution function FK (x, p) in this phase space is defined Beliaev and Budker
(1956) such that

jµ =
∫

uµFK (x, p) d4p (C.3.15)

is the usual particle-current four-vector (C.2.15). Define the Klimontovich DF
Klimontovich (1960a)

FK(x, p) =
1

mc ∑
i

∫

dsδ4 [x− xi(s)] δ4 [p− pi(s)] , (C.3.16)

where ds =
(

gµνdxµdxν
)1/2

is the proper time. Notice that eq. (C.2.14)
defined above is nothing but the ensemble averaged function (C.3.16). The
equations of motion for each particle in the gravitational field are

mc
dxµ

ds
= pµ, mc

dpµ

ds
= −Γ

µ
νλ pν pλ, (C.3.17)

where the Γ
µ
νλ are the Christoffel symbols. Using the property

d

ds
δ [x− g (s)] = − d

dx
δ [x− g (s)]

dg

ds
(C.3.18)

from the identity

∫

ds
d

ds

{

δ4 [x− xi(s)] δ4 [p− pi(s)]
}

= 0 (C.3.19)
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one can obtain
∂
(

pµFK
)

∂xµ − ∂

∂pµ

(

Γ
µ
νλ pν pλFK

)

= 0. (C.3.20)

Using another identity

∂pµ

∂xµ −
∂

∂pµ

(

Γ
µ
νλ pν pλ

)

= 0, (C.3.21)

see Zakharov (2000), and applying to eq. (C.3.20) the averaging procedure
with F =

〈

FK(x, p)
〉

ens
one finally gets

pµ ∂F

∂xµ − Γ
µ
νλ pν pλ ∂F

∂pµ = 0. (C.3.22)

This is the collisionless kinetic equation for the distribution function defined
in M8. As for the DF f (p, x, t) defined in M6 the corresponding equation can
be obtained using eq. (C.2.10) and integrating eq. (C.3.22) over p0. As the
result one has

pµ ∂ f

∂xµ − Γi
νλ pν pλ ∂ f

∂pi
= 0. (C.3.23)

Finally, assuming that it is possible to introduce a local Lorentz frame and
define the expressions for St f in that frame, one can write by analogy with
eq. (C.3.9) the general expression for the Boltzmann equation as

pµ ∂ f

∂xµ − Γi
νλ pν pλ ∂ f

∂pi
= St f . (C.3.24)

This equation has to be compared with eq. (C.3.9): in General Relativity the
curved nature of space-time results in a term similar to the external force in
eq. (C.3.9). Another form of Boltzmann equation can be written in a different
form, similar to eq. (C.3.13) by introducing the Cartan covariant derivative

∇µΦ(x, p) ≡ ∂Φ

∂xµ + Γλ
µν pλ

∂Φ

∂pν
. (C.3.25)

Then for the ensemble averaged DF one has

pµ∇µ f (x, p) = St f . (C.3.26)
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Comparing this last expression with eq. (C.3.13) one can see that, as often
occurs in General Relativity, usual derivative in eq. (C.3.13) is substituted
with the covariant derivative in eq. (C.3.26).

C.3.2. Uehling-Uhlenbeck collision integral

In this section the collision integral of eq. (C.3.13) is obtained for the
case of elastic collision between two classical particles. When particles
follow quantum statistics it is still possible to use the collision integral
Uehling and Uhlenbeck (1933); Uehling (1934) which is phenomenologically
modified as follows

St f =
1

2

∫

d3p′

p′0
d3k

k0

d3k′

k′0
×

×
{

f
(

x, p′
)

f
(

x, k′
)

[1 + θϕ (x, p)] [1 + θϕ (x, k)]W
(

p′, k′ | p, k
)

− (C.3.27)

− f (x, p) f (x, k)
[

1 + θϕ
(

x, p′
)] [

1 + θϕ
(

x, k′
)]

W
(

p, k | p′, k′
)}

,

where f (x, p) = gϕ (x, p) / (2πh̄)3, g is the degeneracy factor, θ = ±1, 0
for respectively Bose-Einstein, Fermi-Dirac and Boltzmann statistics. Com-
paring this expression to eq. (C.3.13) one finds additional multipliers

1 ± (2πh̄)3 f (x, p) /g, which guarantee that equilibrium distribution func-
tions are indeed Bose-Einstein and Fermi-Dirac ones, respectively, see e.g.
Chernikov (1964a); Ehlers (1973).

C.3.3. Cross-section

An important concept describing the strength of particle interactions is the
cross-section. It plays an important role in the case of two particle collisions,
which is the most simple and hence the most studied case. This concept will
be illustrated for the process of scattering (C.3.10).

It is possible to introduce Mandelstam (1958) the following invariant vari-
ables

s = (pµ + kµ)2 , t =
(

pµ − p′µ
)2

. (C.3.28)

They prove technically useful, but they also possess a physical interpretation:
sc2 is the square of the energy in the center of mass reference system, t is
related to the scattering angle in this system: cos ϑ− 1 = 2t/

(

s− 4m1m2c2
)

.
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Then one may rewrite

W
(

p, k | p′, k′
)

= sσ (s, ϑ) δ4
(

pµ + kµ − p′µ − k′µ
)

, (C.3.29)

where σ (s, ϑ) is the differential cross-section for a given process. Remind
Berestetskii et al. (1982) that the cross-section is defined through

dw = jdσ, (C.3.30)

where dw is the probability of the process per unit time and unit volume and

j =

[

(

pµkµ

)2 −
(

m1m2c2
)2
]1/2

(C.3.31)

is invariant flux of particles in initial state. It is possible to show Groot et al.
(1980) that

∫

d3p′

p′0
d3k′

k′0
1

j
W
(

p, k | p′, k′
)

=
∫

σdΩ =
∫

dσ. (C.3.32)

Then, using the detailed balance condition

W
(

p, k | p′, k′
)

= W
(

p′, k′ | p, k
)

(C.3.33)

one may write Boltzmann equation as

pµ∂µ f =
1

2

∫

d3k

k0
σ
[

f
(

x, p′
)

f
(

x, k′
)

− f (x, p) f (x, k)
]

dΩ, (C.3.34)

or in vector notation as

∂ f

∂t
+ v · ∇ f =

1

2

∫

d3kσv
[

f
(

x, p′
)

f
(

x, k′
)

− f (x, p) f (x, k)
]

dΩ, (C.3.35)

where v = cj/
(

p0k0
)

is the particles relative velocity.
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C.4. Conservation laws and relativistic

hydrodynamics

In this Section following Groot et al. (1980) the conservation laws fulfilled by
the macroscopic quantities are derived, namely the particle number conser-
vation, the entropy conservation and the energy-momentum conservation, see
also Chernikov (1963a, 1964b).

Consider a mixture of D components whose particles may interact by elas-
tic and inelastic collisions, conserving their total number. Boltzmann equa-
tions for each DF fk (x, pk) then read

p
µ
k ∂µ fk =

D

∑
l=1

Ckl (x, pk) , (C.4.1)

where Latin indices now denote the species kind (not to be confused with
tensor indices) and

Ckl (x, pk) =
1

2

D

∑
i,j=1

∫

d3pl

p0
l

d3pi

p0
i

d3pj

p0
j

(

fi f jWij|kl − fk flWkl|ij
)

. (C.4.2)

An important property of collision integrals follows from the microscopic
conservation laws fulfilled at each interaction, namely

F =
D

∑
k,l=1

∫

d3pk

p0
k

ψk(x)Ckl(x, pk) = 0, (C.4.3)

where ψk(x) are so called summational invariants

ψk(x) = ak(x) + p
µ
k bµ(x), (C.4.4)

they are arbitrary functions, except for the constraint that ak(x) is additively
conserved in all reactions, i.e.

ai(x) + aj(x) = ak(x) + al(x), (C.4.5)

and bµ(x) is an arbitrary vector. The proof of eq. (C.4.3) is based on eq. (C.4.5)

and on energy-momentum conservation in a binary reaction p
µ
i + p

µ
j = p

µ
k +
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p
µ
l . In particular, for elastic scattering

∫

d3pk

p0
k

Ckl(x, pk) = 0. (C.4.6)

Now it is possible to show how the basic equations of relativistic hydrody-
namics, namely the particle number conservation (continuity) equation and
the energy-momentum conservation equations arise from Boltzmann equa-
tion.

Consider the case when in eq. (C.4.4) bµ(x) = 0 and ak(x) = qka(x), where
a(x) is an arbitrary function. Then from eqs. (C.4.1) and (C.4.2) one has

D

∑
k=1

qk

∫

d3pk

p0
k

p
µ
k ∂µ fk = 0. (C.4.7)

Recalling the definition (C.2.15) for each component

j
µ
k = c

∫

d3pk

p0
k

p
µ
k fk, (C.4.8)

one gets

∂µ Jµ = 0, Jµ =
D

∑
k=1

qk j
µ
k , (C.4.9)

where qk is a charge (e.g. electric, leptonic, baryonic). In particular, with q = 1
this is just particle number conservation. Similarly the conservation law for
the total particle number can be obtained. In particular, for elastic scattering
using eq. (C.4.6) one finds

∂µ j
µ
k = 0. (C.4.10)

Consider now the case ak(x) = 0. Then from eq. (C.4.3) one finds

D

∑
k,l=1

∫

d3pk

p0
k

p
µ
k Ckl = 0. (C.4.11)

Substituting this into eqs. (C.4.1) and (C.4.2) and recalling the definition
(C.2.16) one gets

∂νTµν = 0, (C.4.12)
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where

Tµν = c
D

∑
k=1

∫

d3pk

p0
k

p
µ
k pν

k fk, (C.4.13)

is the energy-momentum tensor of the mixture. Equations (C.4.9) and
(C.4.11) represent basic equations of relativistic hydrodynamics, see e.g.
Mihalas and Mihalas (1984).

C.5. Entropy and equilibrium

In this Section the concept of thermodynamic equilibrium will be discussed
from the point of view of kinetic theory.

C.5.1. H-theorem

First let us show, following Groot et al. (1980), that the quantity defined as
divergence of four-vector (C.2.17) as

σ(x) ≡ ∂µSµ, (C.5.1)

can never decrease. For alternative derivation see Chernikov (1963b). From
eqs. (C.2.17) and (C.5.1) it follows

σ = −kBc
∫

d3p

p0

[

log
(

h3 f
)]

pµ∂µ f . (C.5.2)

Substituting Boltzmann equation (C.3.9) into this expression one get

σ = −kBc
∫

d3p

p0

[

log
(

h3 f
)]

St f + kBc
∫

d3p

p0

[

log
(

h3 f
)]

Fµ ∂ f

∂pµ . (C.5.3)

Assume that the force satisfies the following properties: pµFµ = 0 and ∂Fµ

∂pµ =

0. The former condition means that the force is mechanical and does not alter
particle rest mass. Then the second contribution in eq. (C.5.3) can be written
as

2kBc
∫

d4p
∂

∂pµ

{

Θ(p0)δ(pµ pµ −m2c2) f
[

log
(

h3 f
)

− 1
]

Fµ
}

, (C.5.4)
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and it vanishes, provided that the integrand is decreasing fast enough for
large momenta in the sense defined above.

The first contribution can be rewritten as

σ = −1

4
kBc ∑

i,j,k,l

∫

d3pi

p0
i

d3pj

p0
j

d3pk

p0
k

d3pl

p0
l

[

log

(

fk fl

fi f j

)]

fi f jWij|kl . (C.5.5)

Now using the property

∑
i,j,k,l

∫

d3pi

p0
i

d3pj

p0
j

d3pk

p0
k

d3pl

p0
l

(

fk fl − fi f j

)

Wij|kl = 0, (C.5.6)

which follows from the bilateral normalization condition Groot et al. (1980)
one finally gets

σ =
1

4
kBc ∑

i,j,k,l

∫

d3pi

p0
i

d3pj

p0
j

d3pk

p0
k

d3pl

p0
l

A (y) fi f jWij|kl , (C.5.7)

where

A (y) = y− log y− 1 ≥ 0, y =
fk fl

fi f j
. (C.5.8)

Since A (y) is a non-negative function, eq. (C.5.7) implies that σ ≥ 0. This
completes the proof of the Boltzmann H-theorem.

Notice that σ = 0 holds if and only if

fi (x, pi) f j

(

x, pj

)

= fk (x, pk) fl (x, pl) . (C.5.9)

This condition is satisfied, as can be seen from eq. (C.3.34) when collision
integral in the RHS of Boltzmann equation vanishes. This case is identified as
local equilibrium. In fact, the equilibrium DF is characterized by the following
macroscopic quantities as parameters: density, temperature, 4-velocity. It is
possible to show this by turning to a simple system with binary collisions and
rewrite the condition (C.5.9) as

log
(

h3 f1

)

+ log
(

h3 f2

)

= log
(

h3 f ′1
)

+ log
(

h3 f ′2
)

. (C.5.10)

It is clear that the quantity log
(

h3 f
)

is a summational invariant. The most
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general summational invariant, as discussed above, is a linear combination
of a constant and pµ. Then one particle distribution function in equilibrium
is

f eq =
1

h3
exp

[

a(x) + bµ(x)pµ
]

(C.5.11)

with arbitrary space- and time-dependent parameters a(x) and bµ(x).

However, DF f eq will be a solution of the Boltzmann equation only if it
turns to zero also its LHS. Then the parameters of eq. (C.5.11) should satisfy

pµ∂µa(x) + pµ pν∂µbν(x) + mbµ(x)Fµ(x, p) = 0, (C.5.12)

which should be an identity for arbitrary pµ. When the DF satisfies eq.
(C.5.12) it is called global equilibrium DF f EQ.

In the absence of external field f EQ reduces to the Jüttner Jüttner (1911)
momentum distribution

f EQ (p) =
1

h3
exp

[

φ− pµUµ

kBT

]

, (C.5.13)

where φ, T and Uµ are parameters, UµUµ = c2, h and kB are Planck’s and
Boltzmann’s constants.

It is possible now to compute such important macroscopic quantities as
the number density, the energy density and the pressure of a system in local
equilibrium. Using the definition (C.2.15) and jµ = nUµ one has

n =
jµUµ

c2
=

1

ch3
exp

(

φ

kBT

)

∫

d3p

p0
pµUµ exp

(−pνUν

kBT

)

. (C.5.14)

The integral, being a scalar, can be evaluated in the rest frame, where Uµ =
(c, 0, 0, 0) by introducing polar coordinates and dimensionless variables θ =

kBT/
(

mc2
)

, ν = φ/
(

mc2
)

and y = c
√

p2 + m2c2/ (kBT). The result is

n =
4π

λ3
C

exp
(ν

θ

)

K2

(

θ−1
)

, (C.5.15)

where λC = h̄
mc and

Kn

(

θ−1
)

=
2n−1 (n− 1)!

(2n− 2)!
z−n

∫ ∞

z
dy
(

y2 − θ−2
)n− 3

2
y exp (−y) (C.5.16)
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is the modified Bessel function of the second kind.

In full analogy, using the definition of the energy-momentum tensor and
Tµν = c−2ρUµUν − p∆µν, where ∆µν = gµν − c−2UµUν, one can compute the
energy density ρ and pressure p as follows

ρ =
TµνUµUν

c2
=

1

c

∫

d3p

p0

(

pµUµ

)2
f EQ, (C.5.17)

p = −1

3
Tµν∆µν = − c

3

∫

d3p

p0
pµ pν∆µν f EQ. (C.5.18)

Performing the integrals one finally gets

ρ = 4π
mc2

λ3
C

exp
(ν

θ

) [

3θ2K2

(

θ−1
)

+ θK1

(

θ−1
)]

, (C.5.19)

p = 4π
mc2

λ3
C

exp
(ν

θ

)

θ2K2

(

θ−1
)

. (C.5.20)

Introducing the enthalpy as he = (ρ + p) /n one obtains

he = mc2 K3

(

θ−1
)

K2 (θ−1)
. (C.5.21)

Finally, the entropy density is given by

s =
SµUµ

c2
= −kB

c
exp

(

φ

kBT

)

∫

d3p

p0
pµUµ

(

ϕ− pνUν

kBT
− 1

)

exp

(−pνUν

kBT

)

.

(C.5.22)
Taking into account eqs. (C.5.15) and (C.5.19) this integral gives

s =
1

T
(ρ− φn) + kBn. (C.5.23)

Finally, for the thermal index Γ = cp/cv, which is the ratio of specific heat
capacities

cp =

(

∂he

∂T

)

p

, cv =

(

∂ (ρ/n)

∂T

)

v

, (C.5.24)
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one has
Γ

Γ− 1
= θ−2 + 5

(

he

θ

)

−
(

he

θ

)2

, (C.5.25)

and the limiting cases are

Γ→







5
3 , θ → 0,

4
3 , θ → ∞.

. (C.5.26)

In Fig. C.1 the dependence Γ(θ) computed using eqs. (C.5.25) and (C.5.21) is
shown. Non-relativistic and ultra-relativistic asymptotics are clearly visible.
Interestingly, at temperatures kBT ∼ mc2 usually considered mildly relativis-
tic this function is already close to its ultra-relativistic value.

Combining expressions (C.5.15), (C.5.19), (C.5.20), (C.5.23) and (C.5.21)
above one find the perfect gas laws

p = nkBT,

p = (Γ− 1) ρ, (C.5.27)

φ = he − Ts.

Note that the traditional scheme of thermodynamics is recovered if we iden-
tify T as temperature, φ as the chemical (Gibbs) potential.

C.5.2. Relativistic Maxwellian distribution

It is instructive to consider relativistic Maxwell distribution of particles with
somewhat more attention. Considering eq. (C.5.13) in the local rest frame

f LEQ =
1

h3
exp

(ν

θ

)

exp
(

−γ

θ

)

, (C.5.28)

where γ = p0/ (mc), using eq. (C.2.3) and comparing it with eq. (C.5.15) one
gets

f =
dn

dγ
=

4π

λ3
CθK2 (θ−1)

exp
(ν

θ

)

γ
√

γ2 − 1 exp
(

−γ

θ

)

. (C.5.29)
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Figure C.1.: The thermal index of relativistic gas as function of dimensionless
temperature.

The function f (β) with β = |v| /c is shown in Fig. C.2 for selected values of
the dimensionless temperature, each curve is normalized to unity. While the
distribution function with the lowest temperature θ = 0.02 reminds a classi-
cal Maxwellian, the one with the highest temperature θ = 1.78 it is already
far from it: the effect of limiting velocity is clearly visible.
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Figure C.2.: Relativistic Maxwellian distribution function for selected values
of dimensionless temperature.

C.5.3. Generalized continuity equation

Up to now only such interactions where particle conservation is satisfied
were discussed. An obvious example is scattering. However, there are pro-
cesses where particle conservation does not hold. The simplest example anni-
hilation of particles-antiparticle pair in two photons and the inverse process
of pair creation from two photons. Even if total number of particles (both
pairs and photons) is conserved, individual number of particles in each com-
ponent can change. Consider this process in more details

e+ + e− ←→ γ1 + γ2, (C.5.30)
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with the corresponding energy-momentum conservation p− + p+ = k1 + k2.
For positron (electron) from eq. (C.3.13) one has2

pµ∂µ f± =
∫

d3p∓
p0
∓

d3k1

k0
1

d3k2

k0
2

[ f1 f2W (k1, k2 | p±, p∓)− f± f∓W (p±, p∓ | k1, k2)] ,

(C.5.31)
where f± = f (x, p±), etc. From eqs. (C.3.30) and (C.3.31) one gets

d3k1

k0
1

d3k2

k0
2

W (p±, p∓ | k1, k2) = jdσ, (C.5.32)

vrel =

√

(v− − v+)
2 − (v− × v+)

2 = j
c

p0
±p0∓

,

where vrel is the relative velocity between electron and positron. Then inte-

grating eq. (C.5.31) over
d3 p±

p0
±

and using eq. (C.5.32) one obtains

∂µ

∫

d3p±
p0
±

pµ f± =
∫

d3p±
p0
±

d3p∓
p0
∓

d3k1

k0
1

d3k2

k0
2

f1 f2W (k1, k2 | p±, p∓)− (C.5.33)

−
∫

d3p±
p0
±

d3p∓
p0
∓

f± f∓ jdσ.

In view of eq. (C.2.3) and second equation in (C.5.32) the annihilation rate is
defined as

n±n∓ 〈σv〉ann ≡ c
∫

d3p±
p0
±

d3p∓
p0
∓

f± f∓ jdσ. (C.5.34)

This is an invariant quantity, as can be seen from analysis of the RHS. Notice,
that the LHS in eq. (C.5.33) is nothing but derivative of the particle four-flux
(C.2.15). In equilibrium this quantity is conserved, see eq. (C.4.10). So that in
equilibrium

c
∫

d3p±
p0
±

d3p∓
p0
∓

d3k1

k0
1

d3k2

k0
2

f1 f2W (k1, k2 | p±, p∓) = n
eq
±n

eq
∓ 〈σv〉ann . (C.5.35)

2Electrons and positrons are distinguishable particles and hence there is no factor 1/2 in
front of the collision integral.
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Thus one can write

∂µ j
µ
± = 〈σv〉ann

(

n
eq
+n

eq
− − n+n−

)

, (C.5.36)

and it reduces to eq. (C.4.10) in thermal equilibrium, since in equilibrium
particle non conserving interactions balance each other. This equation finds
numerous applications, especially in cosmology, since it is much easier to
solve compared to integro-differential eq. (C.3.13).

C.6. Relativistic BBGKY hierarchy

In this section following de Jagher and Sluijter (1988), the derivation of
relativistic Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy is briefly
illustrated, see also Klimontovich (1960a),Kuz’menkov (1978),Naumov
(1981),Polyakov (1988) and Hakim (2011). The basic idea in this approach
is that any many-body system can be characterized by the set of equations of
motion under given interaction. Applying averaging to Klimontovich distri-
bution functions one can derive the infinite chain of equations (hierarchy) for
many particle distribution functions.

For definiteness let us discuss a system of charged particles of equal mass
with the corresponding electromagnetic interaction. In that case it is conve-
nient to use for the four-momentum pµ −→ pµ− q

c Aµ, where Aµ is the vector
potential of the electromagnetic field. The equations of motion are

dpµ

ds
= −q

c
Fµνuν, pµ = muµ, uµ =

dxµ

ds
, (C.6.1)

where Fµν is the electromagnetic field tensor, uµ is the particle four-velocity.
For the point particle the four-current is

jµ = q
∫

uµδ4 [xν − xν (s)] ds. (C.6.2)

Recalling the definition (C.3.16) of the Klimontovich DF one may proceed
in analogy with Sec. C.3.1. Using eq. (C.6.1) one arrives to the Klimontovich
equation

pµ∂µF
K − q

c
pµFµν ∂FK

∂pν
= 0. (C.6.3)
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This equation has to be supplemented by the Maxwell field equations

∂µFµν = 4π Jν, εµνσρ∂νFσρ = 0. (C.6.4)

These equations are the basis for derivation of the hierarchy. Notice
that these equations are used in numerical simulations (particle-in-cell algo-
rithms). Solutions of eqs. (C.6.3), (C.6.4) are approximate solutions to the

Vlasov-Maxwell system with the accuracy O(µ), where µ =
(

nλ3
D

)−1
, see

e.g. Sigov (2001) is the plasma parameter, λD is the Debye length, see eq.
(C.7.8) below, n is density.

The usual approach in statistical physics of a many-body system is to start
with the Liouville theorem for ensemble density. In order to generalize the
treatment to include fields with infinite degrees of freedom one has to con-
sider linear spaces. Assume that relativistic Hamilton equations are valid (in
symbolic form)

dX

ds
= G [X (s) , s] , (C.6.5)

and they are supplied with initial conditions X(s = s0) = X0. Introducing
the N-particle phase space with coordinates X being the element of the linear
space and probability density F (X, s) in this phase space, after rather lengthy
derivation one can show that Liouville’s theorem holds

∂

∂s
F (X, s) + F (X, s)

∂

∂X
· G (X, s) + G (X, s) · ∂

∂X
F (X, s) = 0. (C.6.6)

Then one has to apply statistical averaging to eqs. (C.6.3) and (C.6.4), which
have to be rewritten in the Hamiltonian form. This can be done by introduc-
ing a hypersurface S on which initial conditions are given and which deter-
mines a scalar that can be used as a time parameter. Then a linear space is
constructed in which a point can be interpreted as a state vector for the sys-
tem at the surface S. Assume that fields Fµν restricted on S can be regarded as
an element of a Hilbert space with a set of orthonormal coordinates denoted
by |Ψi〉.

It is possible to show that statistical averaging and differentiation with re-
spect to s commute, i.e.

〈

d

ds
A (X, s)

〉

ens

=
d

ds
〈A (X, s)〉ens . (C.6.7)
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Introducing the one-particle DF (C.2.14) as F (x, p) =
〈

FK (x, p)
〉

ens
, aver-

aged fields 〈∑i Fµν (s) |Ψi〉〉ens and currents
〈

q
∫

pµFK (x, p) d4p
〉

ens
it is pos-

sible to write down the hierarchy

uµ∂µF (x, p) =
1

pσuσ

{

∆µν pµ∂ν f +
q

c
pµFµν ∂ f

∂pν
+

q

c
pµ

∂Iµν

∂pν

}

,

uσ∂σFµν (x) = 4π∆
µν
λ

(

Jλ − ∆ησ∂η Fσλ
)

+ ∆
µν
σλρ∂σFλρ, (C.6.8)

uµ∂µ Iµν (x, p) = ...

where

Iµν (x, p) =
〈

[Fµν (x)− 〈Fµν〉ens]
[

FK (x, p)− F (x, p)
]〉

ens
(C.6.9)

is the particle-field correlation, ∆µν = gµν + UµUν is a projection operator
and

∆
µν
λ = uµ∆ν

λ − uν∆
µ
λ, ∆

µν
σλρ =

(

∆
µ
σ∆ν

ρ − ∆ν
σ∆

µ
ρ

)

uλ. (C.6.10)

Dynamical equation for Iµν (x, p) contains particle variance, field variance

g12 (x, p1, p2) =
〈[

FK (x, p1)− f (x, p1)
] [

FK (x, p2)− f (x, p2)
]〉

ens
,

(C.6.11)

Gµνρσ (x) = 〈[Fµν (x)− 〈Fµν〉ens] [F
ρσ (x)− 〈Fρσ〉ens]〉ens ,

as well as triple correlations and so on, for details see de Jagher and Sluijter
(1988). The system (C.6.8) is the relativistic Bogoliubov–Born–Green–
Kirkwood–Yvon hierarchy. Like in non-relativistic theory this hierarchy is
infinite.

Notice that Klimontovich in his original derivation Klimontovich (1960b)
of relativistic kinetic equation neglecting radiation used solution of Maxwell
equations for the four-potential Aµ. Hence in his chain of equations only
particle-particle correlation functions such as g12 (x, p1, p2) appear, see also
Kuz’menkov (1978).

In order to close the system (C.6.8) additional assumptions are needed. In
plasma physics with Coulomb interactions between particles the rapid atten-
uation of correlations principle Bogoliubov (1946, 1962) is usually adopted.
Notice that such a principle may be considered as a consequence of ergodic-
ity of the system Smolyansky (1968). In this way the assumption of no corre-
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lation between particles

G (x, p1, p2) = F (x, p1)F (x, p2) ,

G (x, p1, p2, p3) = F (x, p1)F (x, p2)F (x, p3) , (C.6.12)

...

leads to the system of Vlasov-Maxwell equations

pµ∂µF−
q

c
pµFµν ∂F

∂pν
= 0, (C.6.13)

∂µFµν = 4πq
∫

d3p

p0
pµ∂µF, εµνσρ∂νFσρ = 0. (C.6.14)

Taking into account nonvanishing two point correlation function, but ne-
glecting three point correlations results in the Belyaev-Budker equation
Beliaev and Budker (1956). For its derivation from the BBGKY hierarchy see
Klimontovich (1960b), Naumov (1981) and Polyakov (1988). The result in-
stead of eq. (C.6.13) is

uµ∂µF = −∂Kµ

∂pµ ,

Kµ =
2π (qq′)2

Λ

c2

∫

d4p′
(

uλu′λ
)2

c
[

(

uλu′λ
)2 − 1

]
3
2

Bµν

(

F
∂F′

∂p′ν
− F′

∂F

∂pν

)

, (C.6.15)

Bµν =
{[

(

uλu′λ
)2 − 1

]

δµν − uµuν − u′µu′ν − uλu′λ
(

uµu′ν + u′µuν

)}

,

where Λ is Coulomb logarithm, see eq. (C.7.22) below, primed and unprimed
values correspond to two incoming particles, and the mean field is neglected.
In non-relativistic case Landau (1936, 1937) this equation reduces to

∂ f

∂t
+ v

∂ f

∂r
+ q

(

E +
1

c
v× B

)

∂ f

∂p
= − ∂sa

∂pa
, (C.6.16)

sa = 2πq2Λ

∫

(

f
∂ f ′

∂p′b
− f ′

∂ f

∂pb

)

(v− v′)2
δab − (va − v′a)

(

vb − v′b
)

(|v− v′|)3
d3p′.

Recall that in dilute plasma collisions with small momentum transfer domi-
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nate. For this reason the Coulomb collision integral in non-relativistic plasma
is usually approximated by the Fokker-Planck diffusive term. Such approx-
imation actually becomes invalid for relativistic plasma with kBT & mec

2,
where me is electron mass, since at these temperatures pairs of electrons and
positrons form, see Sec. C.8 below. Description of such relativistic plasma
requires the full Boltzmann collision integral.

It has to be noted that both system (C.6.13), (C.6.14) and equation (C.6.15)
are microscopic equations in the sense that they define one particle distribu-
tion functions for discrete sources and corresponding electromagnetic fields.

The system of particles interacting via gravitational mean field is described
Zakharov (2000) by the Einstein-Vlasov system of equations

Rµν − 1

2
gµνR + gµνΛ =

8πG

c4
c
∫

d3p

p0
pµ pνFK (C.6.17)

pµ ∂FK

∂xµ − Γi
νλ pν pλ ∂FK

∂pi
= 0,

where FK is the Klimontovich DF defined by eq. (C.3.16). These equations
form the basis for microscopic gravity. For mathematical aspects see recent
review Andréasson (2011).

Macroscopic gravitation theory should be derived from these equations by
applying the averaging procedure. Following the discussion in Sec. C.6 it is
expected that correlations should appear in both equations after the averag-
ing and represent matter-field, matter-matter and field-field correlations. An
attempt to construct such equations up to the second order terms in interac-
tion is made in Zakharov (2000).

C.7. Gases and plasmas

Having derived basic kinetic equation in Sec. C.3 and C.6 let us turn to their
application. Dilute gas and plasma are traditionally considered as primary
applications for KT. The generalization to relativistic case of KT for gas re-
quired mainly terminological changes Synge (1957). However, KT of plasma
had to be build on relativistic basis from the beginning since Maxwell equa-
tions, being intrinsically relativistic, are necessarily a natural part of it. Be-
sides, in relativistic domain (at relativistic temperatures) many qualitatively
new phenomena occur in plasma. In order to understand these phenomena,
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as well as to provide the physical foundations for the derivation of the Boltz-
mann and Vlasov equations discussed in the previous section, it is very useful
to discuss characteristic quantities in both gases and plasmas.

C.7.1. Plasma frequency

Let us start from the Maxwell equations (C.6.4) and assume that particles
move collectively with velocity v given by the equation of motion

m
∂Uµ

∂xν
= −q

c
F

µ
ν , (C.7.1)

Taking 0-1 components in eq. (C.6.4) one has

m
d (γβ)

dt
= qE,

dE

dt
= −4πqnβ, (C.7.2)

where β = v/c and γ =
(

1− β2
)−1/2

. Differentiating the first equation with
respect to time one gets, see e.g. Benedetti et al. (2011)

d2u

dt
+

4πq2n

m

u√
1 + u2

= 0, u = γβ. (C.7.3)

This equation describes nonlinear Langmuir oscillations (reducing to har-
monic ones for v≪ c) with the frequency given by

ω2
p =

4πq2n

mγ
. (C.7.4)

This parameter is one of the most fundamental ones and it is called plasma
frequency.

C.7.2. Correlations in plasma

In order to determine other characteristic quantities of plasma one needs to
consider the notion of correlation in plasma. It is well known that the corre-
lation function in a medium composed of particles interacting via Coulomb
potential is divergent. However, since a neutral plasma contains both posi-
tive and negative charges in equal amount, the field of a charged particle in
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plasma is different from the Coulomb field. In order to illustrate this point
consider a charged particle at rest in the origin, see e.g. Chen (1984) and Silin
(1998). The system of equations (C.6.13) and (C.6.14) simplifies for this case
and there remain only two of them:

vi
∂ fi

∂r
− qi

∂ϕ

∂r

∂ fi

∂pi
= 0, ∆ϕ = −4π ∑

i

qini − 4πqδ (r) , (C.7.5)

where ϕ is electrostatic potential, and for clarity the DF defined in eq. (C.2.2)
is used instead of F. In order to solve these equations one has to set up the
boundary conditions. Assume that the electric field vanishes at infinity, i.e.
ϕ (∞) = 0. Assume also that the DF far from the origin is the Maxwell-
Boltzmann one (C.5.28), that is

fi (γi) ∝ ni exp

(

−γimic
2 + qi ϕ(r)

kBT

)

. (C.7.6)

Then taking into account charge conservation ∑i qini = 0 one can get for the
potential

∆ϕ = −4πqδ (r) + 4π ∑
i

qini

[

1− exp

(

− qi ϕ

kBT

)]

. (C.7.7)

At large radii |qi ϕ| ≪ kBT and instead of eq. (C.7.7) a linear equation is
obtained

∆ϕ− 1

λ2
D

ϕ = −4πqδ (r) , λ2
D =

kBT

∑i 4πq2
i ni

. (C.7.8)

and it gives the solution for the electric potential in equilibrium plasma

ϕ =
q

r
exp

(

− r

λD

)

. (C.7.9)

This result implies that at large distances the Coulomb field of the point
charge is screened.

Define now a two-particle spatial correlation function in equilibrium as

f2 (1, 2) = f1 (γ1) f1 (γ2) g(r), (C.7.10)

where the functions fi (γi) are given by eq. (C.5.29), r = |x2 − x1| and g(r) is
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called radial distribution function . Using the normalization
∫

fi (γi) dγi = 1
one can introduce the total correlation function

ξ(r) = g(r)− 1≪ 1, (C.7.11)

where ξ(r) is zero for uncorrelated particles. For dilute plasma in a state close
to equilibrium Klimontovich (1997) this function is

ξ(r) = − 1

kBT

q2

r
exp

(

− r

λD

)

, (C.7.12)

which means that the correlation radius for this plasma is rcor ∼ λD.

C.7.3. Gravitational correlations in expanding Universe

Unlike for the electromagnetic interactions, there is no Debye screening in the
gravitational interactions since there is no negative mass. In an expanding
Universe it is possible, however, to introduce the gravitational correlation
radius. Following Zakharov (2000) consider the Poisson-Vlasov equations in
the comoving coordinates

∂ f

∂t
+

u

a2

∂ f

∂q
− ∂Φ

∂q

∂ f

∂u
= 0, ∆Φ =

4πG

a

∫

f d3u− a3ρ0, (C.7.13)

where ρ0 is the average density, Φ is gravitational potential. Here comoving
coordinates q and velocities u are related to the physical ones as usual

q =
x

a (t)
, u = a (t) [v− H (t) x] , (C.7.14)

where a (t) is cosmological scale factor. By comparison of eqs. (C.7.13) and
(C.7.5) one finds that the average density in eq. (C.7.13) plays the role of
opposite charge particles. By analogy with eq. (C.7.7) considering a gravitat-
ing particle in a uniform media, insert in eq. (C.7.13) instead of a3ρ0 a new
density

a3ρ = a3ρ0 exp

(

−mΦ

kBT

)

. (C.7.15)
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In the physical coordinates one obtains

∆Φ = 4πGρ

[

exp

(

−mΦ

kBT

)

− 1

]

, (C.7.16)

which is similar to eq. (C.7.7). For large distances it reduces to

1

r2

d

dr

(

r2 dΦ

dr

)

+
4πGρ0m

kBT
Φ = 0, (C.7.17)

which gives

Φ ∝
1

r
cos

(

r

rg

)

, r2
g =

kBT

4πGρ0m
. (C.7.18)

It is important that this dependence, being introduced in the correlation func-
tion

gab = fab − fa fb ∝ exp

(

Φ (r1, r2)

kBT
− 1

)

. (C.7.19)

leads to finite integrals at infinity.

C.7.4. Coulomb collisions

Consider Coulomb collision with large impact parameter and, consequently,
small deflection angle ϑ, measured in the center-of-mass system. The trans-
port cross-section in non-relativistic case Lifshitz and Pitaevskii (1981) is

σt =
∫

(1− cos ϑ) dσ ≃ 1

2

∫

ϑ2dσ. (C.7.20)

Here the differential cross section with small angles is given by the Ruther-
ford formula

dσ =
8π (qq′)2

µ2 (v− v′)4

dϑ

ϑ3
, (C.7.21)

where prime denotes the second particle. Then the total cross-section is

σt =
4π (qq′)2

µ2 (v− v′)4
Λ, Λ = log (L) =

∫

dϑ

ϑ
. (C.7.22)
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This result shows that in non-relativistic plasma, due to the long-range na-
ture of the electromagnetic interactions the ”collision” process occurs at large
distances between particles.

Consider now Coulomb logarithm in relativistic plasma. Electron-electron or
electron-positron collisions are then described by Møller and Bhabha cross-
sections, instead of (C.7.21). In this case the Born approximation has to be
used since the relative velocity vr between particles is larger than αc and then

L =
m 〈vγ〉

h
λD ≃ ϑ−1

min. (C.7.23)

In thermal equilibrium, using eqs. (C.7.8) and (C.5.15) one finds

〈v

c
γ
〉

= 3θ +
K1

(

θ−1
)

K2 (θ−1)
−→
θ→∞

3θ, (C.7.24)

so in relativistic case one has

log (Λ) =
3

4π3/2
θ

3
2

(

αλ3
Cn
)− 1

2 −→
θ→∞

O(1), (C.7.25)

where α is the fine structure constant. This result implies that the mean free
path due to Compton scattering lC = 1

nσT
and the one due to Coulomb scat-

tering lC = 1
log(Λ)σT

become equal in the ultra-relativistic case. This formula

shows also that for relativistic plasmas, when log (Λ) ≃ O(1) the momentum
transfer in Coulomb collisions is no longer small, and so the Fokker-Planck
approximation (C.6.15) does not hold.

C.7.5. Characteristic distances

Following Klimontovich (1983) let us compare the characteristic distances in
gas and plasma: the correlation radius rcor, the average distance between
particles rav and the mean free path l.

For dilute gas interactions between particles occur when they approach
each other, so the correlation length is rcor ∼ r0, where r0 is the particle (atom
or molecule) size. Average distance between particles is determined from
particle density n as rav ∼ n−1/3. The mean free path, i.e. the average distance

that particles travel without interactions is l ∼ (nσ)−1 ∼
(

nr2
0

)−1
, where in
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the last relation the fact that the cross-section in gas is typically σ ∼ r2
0 is used.

For dilute plasma, as discussed above, rcor ∼ λD. The mean free path is

instead l ∼
(

nλ2
D

)−1
.

From these quantities it is possible to construct dimensionless parameters
characterizing a given medium: for dilute plasma and gas, respectively

gp =
1

nλ3
D

≪ 1, gg = nr3
0 ≪ 1. (C.7.26)

Relativistic plasma in thermal equilibrium is always dilute, see Fig. C.3. In

0.1 0.2 0.5 1.0 2.0 5.0 10.0
Θ

10-4

10-3

10-2

g

Figure C.3.: The plasma parameter of relativistic plasma in thermal equilib-
rium as function of dimensionless temperature.

general the following inequalities hold for gas and plasma

rcor ≪ rav ≪ l, (gas) (C.7.27)

rav ≪ rcor ≪ l. (plasma)

It is clear that in dilute gas interaction occurs only when two particles en-
counter or ”collide” with each other. Correlations between particles may be
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neglected before and after the collision. In dilute plasma the situation is op-
posite. A given particle is interacting simultaneously with many particles
located in the Debye sphere around this particle with radius λD. It means
that particles move in the mean electromagnetic field, created by many other
particles. This field has to be averaged over some volume, smaller than the
Debye volume λ3

D, but larger than the interparticle volumes r3
av. The Vlasov

approximation (C.6.13),(C.6.14) is valid when the rate of particle collisions is
smaller than the rate of change of these averaged electromagnetic field. In
other words, the relaxation lengths are much larger than the size of the sys-
tem L.

Now it is possible to justify the derivation of the Boltzmann equation in Sec.
C.3, where only binary interactions have been considered and interactions
between three particles, four particles, and so on were neglected. Indeed,
triple collisions in gas are much less probable than binary collisions, since the
correlation function C (1, 2) is small, see e.g. Liboff (2003)

C (1, 2) = f2 (1, 2)− f1 (1) f1 (2) ∼ gg f2 (1, 2) , (C.7.28)

where f2 (1, 2) is two particle DF, f1 (1) and f1 (2) stand for one particle DF
of particle one and two, respectively. Analogously, C (1, 2, 3) ∼ gg f3 (1, 2, 3)
and so on.

From the kinetic point of view physically infinitesimally small scales
should satisfy the inequalities

rph ≪ L, nr3
ph ≫ 1, (C.7.29)

where L is the characteristic size in the problem (the size over which DF
changes significantly). Then one has for such kinetic infinitesimally small
scales

rK ≪ l, (gas) (C.7.30)

rK ≪ λD. (plasma)

From the hydrodynamic point of view the relaxation scale is a function of
the characteristic size L and of one of the three dissipation coefficients: dif-
fusion D, viscosity ν and heat conductivity χ. The corresponding physically
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infinitesimally small scale satisfies the following inequality

rHD ≪
vL2

D∗
, D∗ = max (D, ν, χ) . (C.7.31)

The transition from kinetic level of description to the hydrodynamic one is
realized by the introduction of the physical Knudsen number

Kn =
rph

L
≪ 1. (C.7.32)

The approximate methods of solutions of the Boltzmann equation (such as
Hilbert, Chapman-Enskog, Grad methods, see e.g. Cercignani and Kremer
(2002) and Liboff (2003)) use Kn as a small parameter for expansion of ki-
netic equations. The ratio of the two infinitesimally small scales (kinetic and
hydrodynamic ones) is

rK

rHD
∼ g3/10

g Kn6/5 ≤ 1, (C.7.33)

where equality corresponds to the maximal Knudsen number (minimal scale
L) when a common hydrodynamic and kinetic description of the system is
still possible.

C.7.6. Relativistic degeneracy

If the temperature of plasma decreases for a given density of particles it may
become degenerate Landau and Lifshitz (1980). The same phenomenon oc-
curs when particle density increases, but the temperature is fixed. It is useful
to construct the temperature-density diagram, see Fig. C.4.

The characteristic temperature which separates non-degenerate from de-
generate systems is defined by

θF ≡
EF

mec2
, (C.7.34)

where EF is Fermi energy, corresponding to Fermi momentum

pF =
(

3π2n
)

1
3

h̄. (C.7.35)
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Figure C.4.: The temperature-density diagram for relativistic plasma. Solid
line corresponds to the condition D = 1. To the right of this curve D < 1 and
plasma is degenerate. Dashed curve corresponds to the condition gp = 1.
Above this curve gp < 1 and plasma is ideal. Dotted curve corresponds to
thermal electron-positron plasma.

For a relativistic gas the total energy and momentum are related E2 =
p2c2 + m2

e c4. Equating the kinetic energy E − mec
2 to the Fermi energy the

degeneracy temperature is obtained

θF =

[

(

3π2
)

4
3
(

λCn
1
3

)2
+ 1

]1/2

− 1. (C.7.36)

Define the degeneracy parameter

D =
θ

θF
. (C.7.37)

Note that it is related to the degeneracy parameter introduced in Groot et al.

(1980) as D′ = θ3

nλ3
C

≃ D3. Definition (C.7.37) takes into account both non-

relativistic and ultra-relativistic asymptotics in eq. (C.7.36). As can be seen
from Fig. C.4 even in thermal equilibrium relativistic plasma becomes de-
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generate, though this degeneracy is weak.

C.7.7. Landau damping

Following Lifshitz and Pitaevskii (1981) consider non-relativistic linear Lan-
dau damping with a simplified treatment. More details, including non-linear
damping are given in the mathematical treatise Mouhot and Villani (2011),
see also Klimontovich (1997). Consider a homogeneous isotropic plasma with
DF f0(p). Assume that a weak electromagnetic field is present, which induces
a small perturbation on DF such that f = f0(p) + δ f . In isotropic plasma
magnetic field in eqs. (C.6.13),(C.6.14) is not important, then linearized eq.
(C.6.13) becomes

∂δ f

∂t
+ v · ∇δ f = qE

∂ f0

∂p
, (C.7.38)

where δ f and E are, respectively, DF and electric field perturbations. Assum-
ing that δ f ∼ exp [i (kr−ωt)], E ∼ exp [i (kr−ωt)], the solution is

δ f =
qE

i (k · v−ω)
·∂ f0

∂p
. (C.7.39)

The dielectric constant, given by 4πP = (ε− 1)E can be found, observing
that

ik · P = −ρ = q
∫

δ f d3p. (C.7.40)

Since the function δ f has a pole at ω = k · v the integral above should be
evaluated using the Landau rule ω → ω + i0. The result is

ε = 1− 4πq2

k2

∫

k·∂ f0

∂p

d3p

(k · v−ω− i0)
. (C.7.41)

It means that the dielectric constant has an imaginary part. Introducing the
DF along x-axis and choosing the direction of k along the same axis one gets

Im (ε) = −4πq2m

k2

d f (px)

dpx
. (C.7.42)
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Non-vanishing Im (ε) means that the electric field looses energy with the rate

Q = − |E|2 πmq2

2k2

d f (px)

dpx
. (C.7.43)

This is collisionless damping of electromagnetic waves as established by Lan-
dau Landau (1946). The validity condition for this result is λD ≪ 2π

k ≪ L.
Actually, the damping of electromagnetic field oscillations in non-

relativistic case is exponentially weak. In contrast, in ultra relativistic case
there are two possibilities: when phase velocity of the wave is smaller than
the speed of light the damping is strong; in the opposite case the damping
is absent Buti (1962). This result is generally confirmed for electron-positron
plasma Laing and Diver (2006).

C.8. Pair plasma

In this section a special case of plasma will be considered, when both negative
and positive charge carriers have equal masses: electron-positron plasma.
Electron-positron plasma is of interest in many fields of physics and as-
trophysics. In cosmology during the lepton era ultra-relativistic electron-
positron pairs contribute to the matter content of the Universe Weinberg
(2008). The cosmic microwave background radiation is created at the black
body photosphere Khatri and Sunyaev (2012), around the cosmic redshift
z = 106.

In astrophysics comparable energy densities are expected to be reached
in gamma-ray bursts sources, hence electron-positron pairs play an essen-
tial role there Piran (2005). Indications exist that the pair plasma is present
also in active galactic nuclei Wardle et al. (1998), in the center of our Galaxy
Churazov et al. (2005), around hypothetical quark stars Usov (1998). In the
laboratory pair plasma is expected to appear in the fields of ultra intense
lasers Blaschke et al. (2006), see also Benedetti et al. (2013) and Ruffini et al.
(2010b) for review.

In many stationary astrophysical sources the pair plasma is thought to
be in thermodynamic equilibrium. A detailed study of the relevant pro-
cesses Bisnovatyi-Kogan et al. (1971), Weaver (1976), Lightman (1982), Gould
(1982), Stepney and Guilbert (1983), Coppi and Blandford (1990), radiation
mechanisms Lightman and Band (1981), possible equilibrium configurations

459



C. Relativistic kinetic theory and its applications

Lightman (1982), Svensson (1982a), Guilbert and Stepney (1985) and spectra
Zdziarski (1984) in an optically thin pair plasma has been carried out. Partic-
ular attention has been given to collisional relaxation process Gould (1981),
Stepney (1983), pair production and annihilation Svensson (1982b), relativis-
tic bremsstrahlung Gould (1980), Haug (1985), double Compton scattering
Lightman (1981), Gould (1984).

An equilibrium occurs if the sum of all reaction rates vanishes, see eq.
(C.5.9) and discussion that follows. For instance, electron-positron pairs are
in equilibrium when the net pair production (annihilation) rate is zero. This
can be achieved by variety of ways and the corresponding condition can
be represented as a system of algebraic equations Svensson (1984). How-
ever, the main assumption made in all the above mentioned works is that
the plasma is assumed to obey relativistic quantum statistics. The latter is
shown to be possible, in principle, in the range of temperatures up to 10 MeV
Bisnovatyi-Kogan et al. (1971),Stepney (1983). It will be shown that indepen-
dently of a wide set of initial conditions, thermal equilibrium forms for the
phase space distribution functions are recovered during the process of ther-
malization by two body and three body direct and inverse particle-particle
collisions. The pair plasma is assumed to be optically thick. Although mod-
erately thick plasmas have been treated in the literature Guilbert and Stepney
(1985), only qualitative description Bisnovatyi-Kogan et al. (1971),Svensson
(1982a) was available for large optical depths until recently Aksenov et al.
(2007),Aksenov et al. (2009).

C.8.1. Basic parameters

Consider a mildly relativistic plasma with average energy per particle 0.1 .
ǫ

MeV . 10. Before formulating the relativistic kinetic equations for the
electron-positron plasma recall the basic plasma parameters and their typical
values. The plasma parameter (C.7.26) for electron-positron plasma is typi-
cally gp = (n−λ3

D)
−1 ∼ 10−3, here λD = c

ω

√
θ− is the Debye length (C.7.8),

θ− = kBT−/(mc2) is the dimensionless temperature, ω =
√

4πq2n−/m is
the plasma frequency, n− is the electron number density, m is its mass. It
implies that the relativistic Boltzmann equations for one particle distribution
functions can be used to describe an electron-positron plasma. The classi-
cality parameter κ = e2/(h̄vr) = α/βr < 1, where vr = βrc is the mean
relative velocity of particles. It means that in electron-positron plasma a
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quantum description of scattering is required. The Coulomb logarithm is
Λ = MλDvrγr/h̄, where M is the reduced mass. Since this expression con-
tains the Debye length, which is defined only for a thermal plasma, the ex-
pression (C.7.25) for relativistic Coulomb logarithm will be used. As already
mentioned in Sec. C.7.6 a relativistic plasma may be degenerate, but in what
follows such relativistic degeneracy will be neglected.

Intensity of interaction of photons with other particles is characterized by
the optical depth

τ =
∫

L
σ (n− + n+) dl, (C.8.1)

where σ is the cross-section and the integral (C.8.1) is taken over the light-
like worldline L. In what follows consider the case in which plasma linear

dimensions R exceed the photon mean free path λγ = (n−σ)−1, thus τ ≫ 1.

When admixture of protons and electrons is allowed it may be character-
ized by an additional parameter, the baryonic loading

B =
npMc2

ρr
, (C.8.2)

where M is the proton mass, ρr is the energy density in relativistic component
(electrons, positrons and photons).

In thermal equilibrium, while e+e− are relativistic, with average energies
ǫ± ∼ mc2 ∼ kBT, protons are not with kinetic energies Mv2

p ∼ kBT, and thus
vp

c ∼
√

m
M . Also in equilibrium with ǫ± ≥ mc2 one has ρ± ≈ n±mc2 and

thus the density ratio between protons and pairs is
np

n±
∼ m

M B. Since electron

is subject to interaction with both electrons (positrons) and photons, one has
for the ratio of mean free paths, see e.g. Groot et al. (1980)

λγ

λ±
= log (Λ) +

n± + np

nγ
. (C.8.3)

Note that there are two natural parameters for perturbative expansion in
various expressions: the fine structure constant α ≃ 1/137 and the ration
between electron and proton masses m/M ≃ 1/1836.
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C.8.2. Kinetic equation and collision integrals

Relativistic Boltzmann equations (C.3.9) for homogeneous isotropic plasma
are

1

c

∂ fi

∂t
−∇U

∂ fi

∂p
= St f , (C.8.4)

where U is a potential due to external force, fi(ǫ, t) are distribution functions
and the index i stands for electrons, positrons and photons. The second term
on the LHS of eq. (C.8.4) describes the mean field produced by all particles,
plus an external field. Particle collisions, including Coulomb ones, are taken
into account by collision terms on the RHS. Particle motion between colli-
sions is assumed to be subject to the mean field, which is neglected. This is
an assumption, but in dense collision dominated plasma this assumption is
justified, see e.g. Groot et al. (1980). Then eq. (C.8.4) reduces to a coupled
system of partial-integro-differential equations

1

c

∂ fi

∂t
= ∑

q

(

η
q
i − χ

q
i fi

)

, (C.8.5)

where η
q
i and χ

q
i are the emission and the absorption coefficients for a given

process q Mihalas and Mihalas (1984).

The elementary interactions between particles are described by the quan-
tum field theory. In the case under consideration this is quantum electro-
dynamics. These coefficients have to be computed from the probability of
a given process, expressed as function of the corresponding matrix element.
In general, for a process involving a outgoing and b incoming particles the
differential probability per unit time is (h̄ = c = 1)

dw = c(2πh̄)4δ(4)
(

p f − pi

) ∣

∣M f i

∣

∣

2
V

[

∏
b

h̄c

2ǫbV

] [

∏
a

dp′a
(2πh̄)3

h̄c

2ǫ′a

]

, (C.8.6)

where p′a and ǫ′a (ǫb) are respectively momenta and energies of outgoing (in-

coming) particles, M f i are the corresponding matrix elements, δ(4) stands for
energy-momentum conservation, V is the normalization volume. The list
of processes that are relevant for optically thick electron-positron plasma is
given in Tab. C.1.

The list of the leptonic processes involving protons is given in Tab. C.2.
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Binary interactions Radiative and pair producing variants

Møller and Bhabha scattering Bremsstrahlung
e±1 e±2 −→ e±′1 e±′2 e±1 e±2 ←→ e±′1 e±′2 γ
e±e∓ −→ e±′e∓′ e±e∓ ←→ e±′e∓′γ

Single Compton scattering Double Compton scattering
e±γ −→ e±γ′ e±γ←→ e±′γ′γ′′

Pair production Radiative pair production
and annihilation and three photon annihilation

γγ′ ←→ e±e∓ γγ′ ←→ e±e∓γ′′

e±e∓ ←→ γγ′γ′′

e±γ←→ e±′e∓e±′′

Table C.1.: Microphysical processes in the pair plasma.

Binary interactions Radiative and pair producing variants

Coulomb scattering Bremsstrahlung
p1p2 −→ p′1p′2 p1p2 ←→ p′1p′2γ
pe± −→ p′e±′ pe± ←→ p′e±′γ

pe±1 ←→ p′e±′1 e±e∓

Single Compton scattering Double Compton scattering
and radiative pair production

pγ −→ p′γ′ pγ←→ p′γ′γ′′

pγ←→ p′e±e∓

Table C.2.: Microphysical processes involving protons in the pair plasma.
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Each of the above mentioned reactions is characterized by the correspond-
ing time-scale and optical depth. For Compton scattering of an electron, for
instance, one has

tcs =
1

σTn±c
, τcs = σTn±R, (C.8.7)

where σT = 8π
3 α2( h̄

mc )
2 is the Thomson cross-section, R is the linear size of

plasma. There are several time-scales in this problem that characterize the
condition of detailed balance between direct and inverse reactions, namely

• Pair production, Compton and electron-electron scattering: tγe ∼ tγe ∼
(σTnc)−1;

• Cooling: tbr = α−1tc;

• Proton-proton:
(

nptpp

)−1 ≈
√

m
M (n−tee)

−1 , vp ≈
√

m
M ve, ve ≈

c;

• Electron-proton: t−1
ep ≈ ǫ±

Mc2 t−1
ee , ǫ± ≪ ǫp;

• Proton Compton scattering:
(

nptγp

)−1 ≈
(

ǫ
Mc2

)2
(n−tγe)

−1 , ǫ ≥
mc2;

• Dynamical time-scale: thyd ∼ R/c.

As example of collision integral consider the absorption coefficient for
Compton scattering which is given by

χ
cs

fγ =
∫

dk′dpdp′Wk′,p′;k,p fγ(k, t) f±(p, t), (C.8.8)

where p and k are the four-momenta of electron (positron) and photon re-
spectively, p and k are their three-momenta, dp = dǫ±doǫ2

±β±/c3, dk′ =
dǫ′γǫ′2γ do′γ/c3 and the transition rate Wk′,p′;k,p is related to the differential tran-
sition probability dwk′,p′;k,p per unit time as

Wk′,p′;k,pdk′dp′ ≡ Vdwk′,p′;k,p, dwk′,p′;k,p = wk′,p′;k,pdk′dp′. (C.8.9)

One integration over dp′ as
∫

dp′δ(dk+ dp− dk′− dp′)→ 1 can be readily
performed. Then it is necessary to take into account the momentum conser-
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vation in the next integration over dk′, namely

∫

dǫ′γδ(ǫγ + ǫ± − ǫ′γ − ǫ′±)→
1

|∂(ǫ′γ + ǫ′±)/∂ǫ′γ|
≡ Jcs, (C.8.10)

where the Jacobian of the transformation is Jcs =
1

1−β′±b′γ·b′±
, where bi = pi/p,

b′i = p′i/p′ and b′± = (β±ǫ±b± + ǫγbγ − ǫ′γb′γ)/(β′±ǫ′±). Finally, for the
absorption coefficient one has

χcs fγ = −
∫ do′γdp

(2π)2

ǫ′γ|M f i|2h̄2c2

16ǫ±ǫγǫ′±
Jcs fγ(k, t) f±(p, t), (C.8.11)

where the matrix element squared, see e.g. Berestetskii et al. (1982), is

|M f i|2 = 26π2α2

[

m2c2

s−m2c2
+

m2c2

u−m2c2
+

(

m2c2

s−m2c2
+

m2c2

u−m2c2

)2

−1

4

(

s−m2c2

u−m2c2
+

u−m2c2

s−m2c2

)]

, (C.8.12)

s = (p + k)2 and u = (p − k′)2 are invariants, k = (ǫγ/c)(1, eγ) and p =
(ǫ±/c)(1, β±e±) are energy-momentum four-vectors of photons and elec-
trons, respectively, dp = dǫ±doǫ2

±β±/c3, dk′ = dǫ′γǫ′2γ do′γ/c3 and do = dµdφ.

As example of triple interactions consider the relativistic bremsstrahlung

e1 + e2 ↔ e′1 + e′2 + γ′. (C.8.13)

For the time derivative, for instance, of the distribution function f2 in the
direct and in the inverse reactions (C.8.13) one has

ḟ2 =
∫

dp1dp′1dp′2dk′
[

Wp′1,p′2,k′;p1,p2
f ′1 f ′2 f ′k −Wp1,p2;p′1,p′2,k′ f1 f2

]

=

=
∫

dp1dp′1dp′2dk′
c6h̄3

(2π)2

δ(4)(Pf − Pi)|M f i|2
25ǫ1ǫ2ǫ′1ǫ′2ǫ′γ

[

f ′1 f ′2 f ′k −
1

(2πh̄)3
f1 f2

]

,

(C.8.14)

dp1dp2Wp′1,p′2,k′;p1,p2
≡ V2dw1, dp′1dp′2dk′Wp1,p2;p′1,p′2,k′ ≡ Vdw2,

A finite difference method with a computational grid in the phase space can
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Interaction Parameters of DFs

I e+e− scattering θ+ = θ−, ∀ν+,ν−
II e±p scattering θp = θ±, ∀ν±,νp

III e±γ scattering θγ = θ±, ∀νγ,ν±
IV pair production ν+ + ν− = 2νγ, if θγ = θ±
V Tripe interactions νγ, ν± = 0, if θγ = θ±

Table C.3.: Thermodynamic quantities under detailed balance conditions for
a given process.

be used for numerical solution of eq. (C.8.5), see Aksenov et al. (2009). In
what follows a concrete example of numerical solution of the system of rela-
tivistic Boltzmann equations (C.8.5) will be discussed. In order to interpret
this solution it is necessary to introduce the notion of kinetic equilibrium
Aksenov et al. (2007).

C.8.3. Kinetic and thermal equilibria

The number of conservation laws in the problem under consideration imply
the existence of some relations between thermodynamic quantities in equlib-

rium. The following conservation laws exist: energy conservation d
dt ∑i ρi =

0, particle number conservation for binary reactions d
dt ∑i ni = 0, baryonic

number conservation
dnp

dt = 0 and charge conservation n− = n+ + np. The
condition for the chemical potentials coming from detailed balance condi-
tions is ϕ+ + ϕ− = 2ϕγ.

The kinetic equilibrium is defined as the state when the detailed balance
condition is satisfied for any binary process. In this state distribution func-
tions have the following form

fi(ε) =
2

(2πh̄)3
exp

(

− ε− νi

θi

)

, (C.8.15)

with chemical potential νi ≡ φi

mc2 and temperature θi ≡ kBTi

mec2 , where ε ≡ ǫ
mec2

is the energy of the particle. In particular, detailed balance conditions with
respect to a given direct and inverse process listed in Tab. C.1 leads to the
following constraints on temperatures and chemical potentials in eq. (C.8.15):
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C.8. Pair plasma

Provided conditions I-IV in Tab. C.3 are satisfied, one can obtain the rela-
tion between two couples of quantities: total the number density and the total
energy density on the one hand, and temperature and the chemical potential
on the other hand. In particular, for photons

nγ =
1

V0
exp

(νγ

θ

)

2θ3,
ργ

nγmc2
= 3θ, V0 =

1

8π

(

2πh̄

mc

)3

. (C.8.16)

From eqs. (C.5.15) and (C.5.19) for non-degenerate pairs

n± =
1

V0
exp

(ν±
θ

)

j1(θ),
ρ±

n±mc2
= j2(θ), (C.8.17)

and for non-relativistic protons

np =
1

V0

√

π

2

(

M

m

)3/2

exp

(

νp −M/m

θ

)

θ3/2,
ρp

Mnpc2
= 1 +

3

2

m

M
θ,

(C.8.18)
where

j1(θ) = θK2(θ
−1)→

{ √

π
2 e−

1
θ θ3/2, θ → 0

2θ3, θ → ∞
, (C.8.19)

j2(θ) =
3K3(θ

−1) + K1(θ
−1)

4K2(θ−1)
→
{

1 + 3
2 θ, θ → 0

3θ, θ → ∞
.

With nonzero baryon loading (C.8.2) in kinetic equilibrium θ+ = θ− =
θγ = θk, but it may be that θp 6= θk. Summing up energy densities

∑
e+,e−,γ

ρi =
mc2

V0

{

[

1− npV0

j1(θk)
exp

(

−ν+
θk

)]
1
2

× (C.8.20)

×6θ4
k exp

(

ν+
θk

)

+

[

2j1(θk) exp

(

ν+
θk

)

− npV0

]

j2(θk)

}

,
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and analogously for number densities

∑
e+,e−,γ

ni =
1

V0

{

[

1− npV0

j1(θk)
exp

(

−ν+
θk

)]
1
2

× (C.8.21)

×6θ4
k exp

(

ν+
θk

)

+ 2j1(θk) exp

(

ν+
θk

)}

.

Equations (C.8.20) and (C.8.21) represent the relations between (ρ, n) and
(ν+, θk). Conservation laws allow to determine the rest of chemical poten-
tials, obtained from the following relations

exp

(

ν−
θk

)

= exp

(

ν+
θk

)

+
npV0

j1(θk)
, (C.8.22)

exp

(

νγ

θk

)

= exp

(

ν+
θk

) [

1 +
npV0

j1(θk)
exp

(

−ν+
θk

)]
1
2

, (C.8.23)

The temperature and chemical potential of protons can be found separately.

In thermal equilibrium νγ vanishes and one has

ν− = θkarcsinh

[

npV0

2j1(θk)

]

, ν+ = −ν−, (C.8.24)

which both reduce to ν− = ν+ = 0 for np = 0. At the same time, for np > 0
one always has ν− > 0 and ν+ < 0 in thermal equilibrium. In order to
determine the Coulomb logarithm as function of particle energies, one can
use the relation (C.7.23). The minimal scattering angle in thermal relativistic
plasma in the center of mass system Haug (1985) is

θmin =
2h̄

McD

γr

(γr + 1)
√

2(γr − 1)
, (C.8.25)

where the maximum impact parameter (neglecting the effect of protons) is

D = c2

ω
p0
ǫ10

, where p0 and ǫ10 are CM quantities, and the invariant Lorentz

factor of relative motion is

γr =
1

√

1−
(

vr
c

)2
=

ǫ1ǫ2 − p1p2c2

m1m2c4
. (C.8.26)
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The Coulomb logarithm is

log (Λ) =
1

2
− log

(√
2 sin θmin

)

. (C.8.27)

C.8.4. Numerical example

Consider now an example of thermalization of initially non-equilibrium
electron-positron plasma, following Aksenov et al. (2009). The following ini-
tial conditions are adopted: flat initial spectral energy densities Ei(ǫi) =
4πǫ3

i βi fi

c3 = const, with total energy density ρ = 1024erg/cm3. Plasma is
dominated by photons with small amount of electron-positron pairs, the
ratio between energy densities in photons and in electron-positron pairs
ρ±/ργ = 10−5. Baryonic loading parameter B = 10−3, corresponding to
ρp = 2.7× 1018erg/cm3. The energy density in each component of plasma
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Figure C.5.: Depencence on time of energy densities of electrons (green),
positrons (red), photons (black) and protons (blue) for initial conditions I.
Total energy density is shown by dotted black line. Interaction between
pairs and photons operates on very short time-scales up to 10−23 sec. Quasi-
equilibrium state is established at tk ≃ 10−14 sec which corresponds to kinetic
equilibrium for pairs and photons. Protons start to interact with then as late
as at tth ≃ 10−13 sec.
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Figure C.6.: Depencence on time of concentrations of electrons (green),
positrons (red), photons (black) and protons (blue) for initial conditions I.
Total number density is shown by dotted black line. In this case kinetic equi-
librium between electrons, positrons and photons is reached at tk ≃ 10−14

sec. Protons join thermal equilibrium with other particles at tth ≃ 4× 10−12

sec.

changes, as can be seen from Fig. C.5, keeping constant the total energy den-
sity shown by dotted line in Fig. C.5, as the energy conservation requires. As
early as at 10−23 sec the energy starts to redistribute between electrons and
positrons from the one hand and photons from the other hand essentially
by the pair-creation process. This leads to equipartition of energies between
these particles at 3× 10−15 sec. Concentrations of pairs and photons equalize
at 10−14 sec, as can be seen from Fig. C.6. From this moment temperatures
and chemical potentials of electrons, positrons and photons tend to be equal,
see Fig. C.7 and Fig. C.8 respectively, and it corresponds to the approach to
kinetic equilibrium.

This is quasi-equilibrium state since total number of particles is still ap-
proximately conserved, as can be seen from Fig. C.6, and triple interactions
are not yet efficient. At the moment t1 = 4× 10−14 sec, shown by the verti-
cal line on the left in Fig. C.7 and Fig. C.8, the temperature of photons and
pairs is θk ≃ 1.5, while the chemical potentials of these particles are νk ≃ −7.
Concentration of protons is so small that their energy density is not affected
by the presence of other components; also proton-proton collisions are inef-
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Figure C.7.: Depencence on time of dimensionless temperature of electrons
(green), positrons (red), photons (black) and protons (blue) for initial condi-
tions I. The temperature for pairs and photons acquires physical meaning
only in kinetic equilibrium at tk ≃ 10−14 sec. Protons are cooled by the
pair-photon plasma and acquire common temperature with it as late as at
tth ≃ 4× 10−12 sec.

ficient. In other words, protons do not interact yet and their spectra are not
yet of equilibrium form, see Fig. C.9. The temperature of protons start to
change only at 10−13 sec, when proton-electron Coulomb scattering becomes
efficient.

As can be seen from Fig. C.8, the chemical potentials of electrons, positrons
and photons evolved by that time due to triple interactions. Since chemical
potentials of electrons, positrons and photons were negative, the particles
were in deficit with respect to the thermal state. This caused the total number
of these particles to increase and consequently the temperature to decrease.
The chemical potential of photons reaches zero at t2 = 10−12 sec, shown by
the vertical line on the right in Fig. C.7 and Fig. C.8, which means that elec-
trons, positrons and photons are now in thermal equilibrium. However, pro-
tons are not yet in equilibrium with other particle since their spectra are not
thermal, as shown in the lower part of Fig. C.9.

Finally, the proton component thermalize with other particles at 4× 10−12

sec, and from that moment plasma is characterized by unique temperature,
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Figure C.8.: Depencence on time of dimensionless chemical potential of elec-
trons (green), positrons (red), photons (black) and protons (blue) for initial
conditions I. The chemical potential for pairs and photons acquires physical
meaning only in kinetic equilibrium at tk ≃ 10−14 sec, while for protons this
happens at tth ≃ 4× 10−12 sec. At this time chemical potential of photons has
evolved to zero and thermal equilibrium has been already reached.

θth ≃ 0.48 as Fig. C.7 clearly shows. Protons have final chemical potential
νp ≃ −12.8.

This state is characterized by thermal distribution of all particles as can be
seen from Fig. C.10. There initial flat as well as final spectral densities are
shown together with fits of particles spectra with the values of the common
temperature and the corresponding chemical potentials in thermal equilib-
rium.

In this particular example relaxation time-scales towards kinetic and ther-
mal equilibria have been determined. One can similarly determine relax-
ation time-scales as the function of total energy density ρ and baryon load-
ing parameter B in wide range range of these parameters. This was done in
Aksenov et al. (2010).

472



C.8. Pair plasma

0.1 1
1019

1021

1023

1025

1027

1029
1019

1021

1023

1025

1027

1029

10-12 sec

4 10-14 sec

, e+, e-, p

 

 

( i-mic
2)/(mec

2)

 

 

d
i/d

, c
m

-3

Figure C.9.: Spectral density as function of particle energy for electrons
(green), positrons (red), photons (black) and protons (blue) for initial con-
ditions I at intermediate time moments t1 = 4× 10−14 sec (upper figure) and
t2 = 10−12 sec (lower figure). Fits of the spectra with chemical potentials
and temperatures corresponding to thermal equilibrium state are also shown
by yellow (electrons and positrons), grey (photons) and light blue (protons)
thick lines. The upper figure shows the spectra when kinetic equilibrium is
established for the first time between electrons, positrons and photons while
the lower figure shows the spectra at thermal equilibrium between these par-
ticles. On both figures protons are not yet in equilibrium neither with them-
selves nor with other particles.
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Figure C.10.: Spectral density as function of particle energy are shown as be-
fore at initial and final moments of the computations. The final photon spec-
trum is black body one.

C.9. Collisionless and self-gravitating systems

The kinetic approach is remarkably useful in studying collisionless systems.
In such systems particle do not collide, but interact via long range forces
such as gravitational and electromagnetic fields. The basic equations gov-
erning evolution of the system are, respectively, Vlasov-Einstein and Vlasov-
Maxwell equations. In this Section systems interacting via electromagnetic
and gravitatinal fields will be discussed.

C.9.1. Plasma instabilities

In Sec. C.7.7 damping of waves in collisionless plasma were discussed.
This process suppresses the amplitude of initial perturbations thus bring-
ing the system to an equilibrium. The opposite can happen, namely initially
small perturbation can grow with time: this process is generally referred to
as instability. There are many plasma instabilities occurring when different
plasma flows, particles with different masses and electromagnetic fields in-
teract Mikhailovskii (1975). The focus will be on two particular kinds, which
are thought to occur in astrophysical conditions: Weibel and two stream insta-
bilities.
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The Weibel instability is a plasma instability present in homogeneous or
nearly-homogeneous electromagnetic plasmas which possess an anisotropy
in momentum (velocity) space. In the linear limit the instability causes expo-
nential growth of electromagnetic fields in the plasma which helps to restore
momentum space isotropy.

The two stream instability can be thought of as the inverse of Landau
damping, where the existence of a greater number of particles that move
slower than the wave phase velocity as compared with those that move faster,
leads to an energy transfer from the wave to the particles. Again, focus will be
on non-relativistic case for simplicity, see Achterberg and Wiersma (2007) for
Weibel instability in relativistic plasma and Dieckmann (2005) for relativistic
two-stream instability, see also Bret et al. (2008).

Following Weibel (1959) consider an electron-ion plasma, where electrons
have an anisotropic DF f0(v). The equations for first order perturbations are
obtained from the Vlasov-Maxwell equations (C.6.13),(C.6.14) as

∂δ f

∂t
+ v·∂δ f

∂r
+

q

m
[v× B0] ·

∂δ f

∂v
= − q

m
[E + v× B] ·∂ f0

∂v
, (C.9.1)

where magnetic field B0 is included for generality. In analogy with Sec. C.7.7
assume that perturbations of DF and electromagnetic fields fields are of the
form exp [−i (k · r−ωt)]. Then it follows

i (ω + k · v) δ f − q

m
B0·
[

v×∂δ f

∂v

]

= − q

mω

{

ωE·∂ f0

∂v
+ [k× E] ·

[

v×∂ f0

∂v

]}

,

(C.9.2)
where the effect of anisotropy is seen on the RHS. Actually the external mag-
netic field B0 is not necessary for the development of instability, it is included
for generality. Assume k ‖ ẑ, E ⊥ k and consider a special case of distribution
function

f0 =
n

(2π)3/2 u2
0u3

exp

(

−
v2

x + v2
y

2u2
0

− v2
z

2u2
3

)

. (C.9.3)

Now taking B0 = 0, ω ≫ u3k it is possible to integrate the dispersion relation
and get

ω4 −
(

ω2
p + k2

)

ω2 − u2
0ω2

pk2 = 0, (C.9.4)
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where ω2
p = 4πq2n

m is the usual plasma frequency. This equation has four roots

ω = ±
{

1

2

[

ω2
p + k2 ±

√

(

ω2
p + k2

)2
+ 4u2

0ω2
pk2

]}1/2

, (C.9.5)

and the one corresponding to both ”−” signs is negative imaginary. It is
the source of instability. This solution is valid only when u0 ≫ u3 (velocity
dispersion in ẑ direction is much smaller than in other directions).

The two stream instability occurs for instance when there is a stream of
particles uniformly distributed in space through a plasma at rest (counter
streaming beams etc.). Consider electron-ion plasma with electron density ne,
and electrons with much smaller density n′e stream through it with constant
velocity v (total charge is zero).

Following the same steps as before the dispersion relation can be obtained,
see e.g. Lifshitz and Pitaevskii (1981). In this case one has

(ωe

ω

)2
+

(

ω′e
ω− k · v

)2

= 1, ω2
e =

4πq2ne

m
, ω

′2
e =

4πq2n′e
m

, (C.9.6)

and one should search for its solution of the form ω = k · v + δ, where δ ≪
k · v. The solution is

δ = ± ω′e
√

1− (ωe/k · v)2
. (C.9.7)

For k · v≪ ωe purely imaginary δ is found, which again means the presence
of instability. The linear analysis presented above shows that initially small
perturbations grow exponentially with time. Actually, as soon as validity
condition δ f ≪ f0 breaks down, the non-linear character of instabilities has
to be considered.

C.9.2. Collisionless shock waves

Such instabilities are present in relativistic regime as well. They may play a
crucial role in the Gamma-Ray Burst phenomena, where interaction between
two streams moving relativistically with respect to each other is expected
Spitkovsky (2008b). Similar plasma instabilities are expected also in experi-
ments with ultra-intense lasers Fiuza et al. (2012).
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The growth rates for linear Weibel and two-stream instabilities are, respec-
tively

ΓW ∝

(

n′e
ne

)1/2

, ΓTS ∝

(

n′e
ne

)1/3

, (C.9.8)

see e.g. Silva (2006). The typical wavelengths are similar

λW ≃
c

ωe
, λTS ≃

v

ωe
, (C.9.9)

where v is velocity of plasma stream. It is remarkable that currently numerical
experiments in three dimensions, see e.g. Frederiksen et al. (2004),Spitkovsky
(2008a), allow studying not only development of instabilities at their linear
stage, but also following them on much longer time-scales, where saturation
occurs and complex electromagnetic field patterns emerge.

C.9.3. Free streaming

Gas of self-gravitating particles in a flat space time is also known to be un-
stable Jeans (1902). Following Bisnovatyi-Kogan and Zel’Dovich (1971) con-
sider Vlasov-Poisson equations (C.7.13) for collisionless particles in expand-
ing Universe

∂ f

∂t
+ v·∂ f

∂r
− ∂Φ

∂r
·∂ f

∂v
= 0, ∆Φ = 4πGρ, (C.9.10)

where ρ = m
∫

f d3v is mass density of particles. The background solution for
a Newtonian universe with zero spatial curvature is

ρ =
1

6πGt2
, Φ =

2

3
πGρ (t) r2,

∂Φ

∂r
=

2

9

r

t2
. (C.9.11)

Solving the corresponding linearized equations for a perturbed
Maxwellian distribution with temperature θ by integration over charac-
teristics the gravitational potential is found

ϕ (t) =
2

t2/3

∫ t

0
ϕ
(

t′
)

τ exp

(

−9

4
k2θτ2

)

dt′, τ = t−1/3 − t′−1/3, (C.9.12)

where Φ = exp (ikξ) ϕ (t).
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For long waves the exponential is substituted by unity and the result is

ϕ (t) ∝ t−5/3, δρ/ρ ∝ t2/3, (C.9.13)

which is the usual result of gravitational instability in matter dominated
phase of the Universe, see e.g. Weinberg (2008). For short waves with
9
4 k2θ ≫ t1/3 using the method of steepest descents one finds

ϕ (t) ∝ exp

[

1

9

√

2eλ3

π

1

t

]

, λ =
9

4
k2θ, (C.9.14)

which means perturbations are damped with time. This phenomenon is sim-
ilar to Landau damping in plasma and is called gravitational Landau damping
(or free streaming). Distribution function with two counter streams has been
studied as well in Bisnovatyi-Kogan and Zel’Dovich (1971), but it was found
that this does not lead to additional instability. For the formulation of the
problem within General Relativity see Bond and Szalay (1983).

Note that the treatment of perturbations in hydrodynamic limit shows os-
cillations of perturbations at small scales, see e.g. Lattanzi et al. (2003), in-
stead of damping. These oscillations occur due to interplay between gravity
and pressure. Hence the hydrodynamic treatment does not capture an essen-
tial phenomenon in self-gravitating systems.

This result of kinetic theory is so remarkable that it has been one of the main
reasons why purely hot dark matter cosmological scenarios were rejected,
see e.g. White et al. (1983). In fact, light particles which decouple from pri-
mordial plasma when relativistic have the free streaming scale Padmanabhan
(1993)

lFS ≃ 0.5
(mDM

1 keV

)−4/3
(ΩDMh2)1/3 Mpc, (C.9.15)

where mDM is particle mass, ΩDM is the fraction of the dark matter in the
critical density of the Universe, H = 100h km/s/Mpc is the Hubble parame-
ter. On the scale smaller than lFS structures cannot form as any perturbations
are exponentially suppressed. A corresponding mass scale has an order of
supercluster of galaxies or even larger if the particle mass is mDM < 30 eV,
implying that dark matter cannot consist mainly of particles with such mass.
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C.9.4. Phase mixing and violent relaxation

The phenomenon of phase mixing is thought to be important in for-
mation of galaxies and large scale structure of the Universe, see e.g.
Binney and Tremaine (2008). For illustration of this phenomenon let us con-
sider an example. Assume particles are placed in a rectangular potential well
and each one moves with constant velocity, see Fig. C.11. When particles

Figure C.11.: Phase space of particles moving in rectangular potential well,
see Artsimovich and Sagdeev (1979), p. 80.

hit the wall they change the direction of the velocity. While in the beginning
only lower half of the phase space is filled, in course of time the distribution
function tends to fill all the phase space. While the fine grained DF f stays
constant by the Liouville theorem, the coarse grained DF decreases. Another
example of phase mixing is given in Binney and Tremaine (2008).

Relaxation mechanism related to phase mixing is found by Linden-Bell
Lynden-Bell (1967). It should operate in a newly formed gravitationally
bound collisionless systems such as galactic halo or cluster of galaxies. When
a star moves in a fixed potential Φ its specific energy is constant ǫ = 1

2 v2 + Φ.
When the potential is time varying Φ (x, t), the energy is not constant

dǫ

dt
=

1

2

dv2

dt
+

dΦ

dt
= v·

(

dv

dt
+∇Φ

)

+
∂Φ

∂t
=

∂Φ

∂t

∣

∣

∣

∣

x(t)

. (C.9.16)

This is a mechanism of redistributing particles in the phase space, i.e. relax-
ation. It differs from particle collisions, because the energy change does not
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depend on mass. Linden-Bell derived also the relaxation time-scale, which is

tLB ≃
3

4
√

2πG 〈ρ〉
=

3

8π
P, (C.9.17)

where P is the typical radial period of the orbit of a star in the galaxy.

C.9.5. Dark matter structure formation

The processes discussed above provide a mechanism to form the structure in
the Universe. Almost homogeneous matter initially has small density fluc-
tuations being subject to gravitational instability. Structures become gravi-
tationally bound, detach from the Hubble flow, relax by phase mixing and
violent relaxation, and end up as virialized equilibrium systems. The pro-
cess repeats on larger and larger scales. This bottom-up picture of structure
formation is called hierarchical clustering, and it is supported by numerical
simulations. There are additional physical effects such as merging of smaller
structures that influence and possibly even dominate structure formation.

The largest success of the numerical N-body simulations resulted in so
called Navarro-Frenk-While profile of dark mater halos Navarro et al. (1996).
The dark matter halo density profile is inferred from numerical simulations,
and has a universal shape with mass density profile

ρ

ρc
=

δc

(r/rs) (1 + r/rs)
2

, (C.9.18)

where ρc is the critical density, δc is the characteristic density, rs is the scale
radius. It should be noted that other halo profiles are suggested in the litera-
ture which may give better agreement with measurements of rotation curves
of galaxies.

C.10. Conclusions

These brief lecture notes summarize the material presented during five lec-
tures during XV Brazilian School of Cosmology and Gravitation. The idea
has been to illustrate not only the theoretical progress in kinetic theory in rel-
ativistic domain, but also to acknowledge the rapid development of its appli-
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cations, especially in the field of astrophysics and cosmology. Many processes
in these fields can be understood on the basis of hydrodynamics. However,
the study of phenomena which generally involve non-equilibrium processes
require a different approach, based on kinetic theory.

I could only touch upon several phenomena, providing references in which
interested reader could find more details. Much more phenomena remain
even not mentioned: the choice is due to personal interests of the author.

Phenomena that I did not cover include, among others, reheating af-
ter inflation, cosmic recombination, cosmological nucleosynthesis, primor-
dial magnetic fields generation, particle acceleration in shocks, Sunyaev–
Zeldovich effect. I conclude with a general remark: that astrophysics and
cosmology are natural fields of application of kinetic theory, since basic re-
quirements of the theory such as large number of particles are easily satisfied.
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D. Cosmic absorption of ultra high
energy particles

D.1. Introduction

Observation of ultra high energy (UHE) particles, such as photons, ions and
neutrinos, provides the crucial information on astrophysical systems as well
as mechanisms of charged particle acceleration in these systems. Such infor-
mation cannot be obtained from the study of low energy emission, which is
much easier to detect.

Propagation of UHE particles on cosmological distances involves interac-
tion with other particles, as well as with electromagnetic fields, in the case
of charged particles (Aharonian, 2003). One of the most important reser-
voir of photons is the cosmic microwave background (CMB). Interaction
with CMB imposes strong limits on propagation of UHE photons, protons,
and nuclei, for a review see e.g. Bhattacharjee and Sigl (2000). Extragalac-
tic background light (EBL), being the accumulated radiation in the Universe
due to stars and active galactic nuclei, represents additional background of
photons (Hauser and Dwek, 2001), which limits propagation of high energy
photons. Yet another important background is cosmic neutrino background
(CνB), which places a tight limit on the propagation of UHE neutrinos.

In this work, we review stringent limits on propagation of UHE particles,
namely photons, protons and neutrinos, in the Universe due to their interac-
tions with cosmic background of photons and neutrinos. We pay the partic-
ular attention to accounting for the cosmic evolution of CMB and CνB fields,
being important at high redshifts. We discuss relation with previous results,
as well as implications of new results, obtained in this work.

First in Sec. D.2 we discuss most important processes, responsible for in-
teraction of UHE particles with cosmic backgrounds, as well as the corre-
sponding cross-sections. Most of these processes are discussed in detail by
Ruffini et al. (2010a). Then in Sec. D.3 we discuss the method used to com-
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pute the mean free path of UHE particles, which takes into account cosmolog-
ical redshift of particle energy, as well as temperature evolution of the CMB
and CνB. In Sec. D.4 the definition of the mean energy loss distance is given.
We present and discuss results in Sec. D.5. Conclusions follow.

D.2. Processes

D.2.1. Processes involving photons

UHE photons are likely produced in sources of UHE cosmic rays. The most
important process, responsible for intergalactic absorption of high-energy γ-
rays is the Breit-Wheeler process (Breit and Wheeler, 1934) for the photon-
photon pair production

γ1 + γ2 −→ e+ + e− (D.2.1)

It was first discussed by Nikishov (1961) back in 1961 and then, after the
discovery of CMB, by Gould and Schréder (1967).

Breit and Wheeler (1934) studied collision process (D.2.1) of two photons
with energies E and E in the laboratory frame, producing electron and
positron pair. They found the total cross-section

σγγ =
π

2

(

αh̄

me c

)2

(1− β2)

[

2β(β2 − 2) + (3− β4) ln

(

1 + β

1− β

)]

, (D.2.2)

where

β =

√

1− 1

x
, x =

EE

(mec2)
2

, (D.2.3)

h̄ is Planck’s constant, me is electron mass, c is the speed of light and α is
the fine structure constant. The necessary kinematic condition in order for
the process (D.2.1) to take place is that the energy of two colliding photons is
larger than the energetic threshold 2mec

2, i.e., x ≥ 1. Due to this kinematic
condition the function (D.2.2) has a low energy cut-off at x = 1. The cross-
section has a maximum at x ≃ 2, with σmax

γγ ≃ σT/4, where σT is Thomson
cross-section. At higher energies it decreases as 1/x.

A simple estimate of the mean free path for the Breit-Wheeler absorption
of high energy photon can be given as follows. Considering the actual CMB
photon density nCMB ≃ 411 cm−3 and taking σT/4 for the cross-section of
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the interaction, the mean free path is λBW = (σTnCMB/4)−1 ≃ 4.8 kpc. One
can refer to this distance as to a horizon, namely the maximal distance to
the source for which the particle with the given energy can still be detected
on Earth. However, owing to the energy dependence of the cross-section,
and cosmic evolution of the CMB photon field the actual mean free path
strongly depends on energy. The characteristic energy of UHE photons in-
teracting with CMB, having temperature today T0 ≈ 2.725 K, is given by
EBW = (mec

2)/kT0 ≃ 1.11 PeV. At lower energies, in the TeV range, pho-
tons interact by the Breit-Wheeler process with the EBL (Gould and Schréder,
1967; Vassiliev, 2000; Coppi and Aharonian, 1999). Hence the observation
of TeV radiation from distant (d > 100 Mpc) extragalactic objects provides
important constraints on the EBL (Aharonian et al., 2007; Meyer et al., 2012;
Sinha et al., 2014).

At much higher energies the double pair production process

γ1 + γ2 → e+ + e− + e+ + e− (D.2.4)

dominates (Brown et al., 1973; Coppi and Aharonian, 1997). In this high-
energy limit it has nearly a constant cross-section, see e.g. (Ruffini et al.,
2010a)

σdpp =
α2

36π

(

αh̄

me c

)2

[175ζ(3)− 38] ∼ 6.45µb. (D.2.5)

Clearly, this process has a threshold with the sum of energies of photons
which must exceed 4mec

2. It imposes a limit for UHE photons propa-

gation λdpp =
(

σdppnCMB

)−1 ≃ 121 Mpc. The influence of this pro-
cess on development of cascades at very high energies is discussed by
Demidov and Kalashev (2009).

Besides, at energies much higher than EBW the UHE photon interacts with
the typical CMB photon well above the threshold. Due to large asymmetry in
energy distribution between electron and positron, one of them takes almost
all the energy of original UHE photon and then upscatters another CMB pho-
ton. This process of pair creation and subsequent Compton scattering creates
secondary UHE photon and thus originate a cascade (Bonometto, 1971). The
mean energy loss in a single pair creation episode is

〈

∆E

E

〉

≃ 1

π
√

x
. (D.2.6)
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One also has to keep in mind the photons from the radio background,
produced by normal galaxies and radio galaxies. Such background
may dominate the opacity for VHE photons at 1019 − 1023 eV, see e.g.
(Protheroe and Biermann, 1996; Coppi and Aharonian, 1997). Since the spec-
trum of radio background is presently not well constrained, we do not dis-
cuss the contribution of radio background to photon opacity in this work.

D.2.2. Processes involving protons

Charged UHE particles, such as protons and nuclei, are assumed to orig-
inate from extragalactic sources, which work as ”cosmic accelerators”
(Aharonian, 2003). Such particles interact with the CMB photons as well.
In fact, the famous Greisen–Zatsepin–Kuzmin (GZK) limit (Greisen, 1966;
Zatsepin and Kuz’min, 1966) was established by considering that this UHE
particle interacts with the CMB photons via the pion photoproducton pro-
cess

p + γ −→
(

p
n

)

+ π. (D.2.7)

and lose its initial energy. Due to the fact that at this process the proton
loses more than half of its energy (Dermer and Atoyan, 2006), such inter-
action imposes a strong cut-off on energies of UHE cosmic rays. The cut-
off energy is easy to estimate. Recall that the characteristic energy in the
Breit-Wheeler process (D.2.1) is EBW = (mec

2)2/kT0. When the photopion
process (D.2.7) is concerned, the electron mass is exchanged with the pion
mass, and an additional factor 4 comes from the reference frame transfor-
mation, giving Epγ = 4(mπc2)2/kT0 ≃ 3× 105EBW = 3.33× 1020 eV. More
careful evaluation of the energy by comparing energy losses due to photo-
pion (D.2.7) and photoproduction of pair (D.2.9) processes (see below) gives
the value Epγ = 5× 1019 eV (Berezinskii and Grigor’eva, 1988). The cross-
section of the photopion process in high energy limit is constant with the
value (Dermer and Atoyan, 2006)

σpγ ≃ 120µb. (D.2.8)

The mean free path due to this process for energies E > Epγ is λpγ =
(

σpγnCMB

)−1 ≃ 6 Mpc.

Another process relevant for interaction of UHE particles with CMB is the
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photoproduction of electron-positron pair on a nucleus, or Bethe-Heitler pro-
cess (Bethe and Heitler, 1934). In the case of proton, which is the only one
considered in this work, this process is

p + γ −→ p + e+ + e−. (D.2.9)

It has the characteristic energy EBH = mempc4/(2kT0) ≃ 1.0× 1018 eV. This
process has a threshold with photon energy in the proton rest frame E′ >
2mec

2. We use for its cross-section in the proton rest frame the expressions
given by Chodorowski et al. (1992), namely near the threshold with 2 ≤ ǫ′ ≤
4

σthr
BH(ǫ

′) ≃ 2π

3
α

(

αh̄

me c

)2

(

ǫ′ − 2

ǫ′

)3 (

1 +
1

2
η +

23

40
η2 +

37

120
η3 +

61

192
η4

)

, (D.2.10)

where ǫ′ = E′/(mec
2) is photon energy in the proton rest frame and η =

(ǫ′ − 2) / (ǫ′ + 2). At higher energies ǫ′ > 4 the cross-section is

σhe
BH(ǫ

′) ≃ α

(

αh̄

me c

)2
{

28

9
δ− 218

27
+

(

2

ǫ′

)2

(D.2.11)

×
[

6δ− 7

2
+

2

3
δ3 − δ2 − π2

3
δ + 2ζ(3) +

π2

6

]

−
(

2

ǫ′

)4 [ 3

16
δ +

1

8

]

−
(

2

ǫ′

)6 [ 29

9× 256
δ− 77

27× 512

]

}

,

where δ = log(2ǫ′). Expression (D.2.11) is logarithmically increasing at high
energies, so we can take a characteristic value obtained by Bethe and Heitler

σBH ≃ (28/9)α [(αh̄)/(me c)]2 in order to estimate the mean free path of UHE

protons, which gives λBH = (σBHnCMB)
−1 ≃ 437 kpc.

It is important to note that unlike the Breit-Wheeler process, leading to
annihilation of UHE photons, or the pion photoproducton, where single in-
teraction alters the energy of the UHE proton, the single Bethe-Heitler in-
teraction does not change the proton energy significantly. Therefore, unlike
all previous processes, the mean free path λBH does not correspond to a

487



D. Cosmic absorption of ultra high energy particles

horizon. Another quantity is used for this purpose, namely the mean en-
ergy loss distance, defined as λBH ∼ [dE/(Ecdt)]−1, where E is the pro-
ton energy, which corresponds to the distance on which the energy of the
UHE proton is reduced by a factor e due to numerous interactions with
background photons (Dermer and Atoyan, 2006; Berezinskii and Grigor’eva,
1988; Stanev et al., 2000). However, it should be emphasized that single
Bethe-Heitler interaction deflects the UHE proton by a small angle. This ef-
fect is discussed in detail below.

D.2.3. Processes involving neutrinos

UHE neutrinos can be produced either in astrophysical sources, or in some
exotic new physics scenarios (Ringwald, 2006). Below we compute the hori-
zon due to interaction of UHE neutrinos with cosmic neutrino background
(CνB). Following Lunardini et al. (2013) we assume CνB neutrinos are in their
mass states. The cross-section is composed of two parts. The resonant neu-
trino annihilation occurs in the s-channel:

ν + ν̄ −→ Z0 −→ f + f̄ , (D.2.12)

where bar denotes antiparticle, f is a fermion. It has a typical Breit-Wigner
shape and is given in the analytic form by D’Olivo et al. (2006). We take
the small momentum expansion of the cross-section given by eq. (23) of
D’Olivo et al. (2006) as

σR
νν̄ ≃ 4

√
2GF

mνM2
Z

√
ξE

(M2
Z − 2Emν)2 + 4E2m2

νξ
GeV−2, (D.2.13)

where GF = 1.16637 × 10−5 GeV−2 is the Fermi’s coupling constant, ξ =

(Γ/MZ)
2, Γ = 2.495 GeV is the width of Z0 resonance and MZ = 91.1876 GeV

is the mass of Z0 boson, mν is neutrino mass, E is energy of UHE neutrino in
laboratory frame. Clearly, the position of the resonance scales inversely pro-
portional to the neutrino mass. Throughout this paper we use the reference
value mν = 0.08 eV/c2, corresponding to the recent cosmological bound from
the Planck mission (Planck Collaboration et al., 2014), which gives character-
istic energy Er = M2

Zc2/2mν ≃ 5.2× 1022 eV. The amplitude of the resonance
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does not depend on neutrino mass, and is given by

σR max
νν̄ = 2

√
2GF MZ/Γ ≃ 0.471µb. (D.2.14)

The resonant production of the Z-boson in neutrino-antineutrino annihilation
(the Z-burst mechanism) has been suggested as a possible mechanism for cre-
ation of UHE particles near or above the GZK limit (Weiler, 1982). However,
this mechanism requires significant clustering of light neutrinos, disfavored
by the current cosmological model.

The second contribution is the non-resonant cross-section, which is
adopted here in the form

σNR
νν̄ =

σhe
νν̄

1 + (E/Er)
−1

, (D.2.15)

where σhe
νν̄ ≃ 8.3× 10−4µb.

We assume that neutrino are non-relativistic even at sufficiently high red-
shift, which is a good approximation for z < 102 for mν = 0.08 eV/c2. Effects
of non-zero momentum on the neutrino annihilation cross-section are stud-
ied by D’Olivo et al. (2006); Lunardini et al. (2013). Using the number density
of relic neutrinos nCνB ≃ 112 cm−3 and the non-resonant cross-section in the
high energy limit one can estimate the horizon for UHE neutrinos at highest
energies. Solving the Friedmann equation (see next section) one finds for the
redshift zν ≃ 84.

D.3. The optical depth and the mean free path

In this section we compute the optical depth for the propagation of UHE
particles in the Universe. Imposing the condition that it equals unity we de-
termine the corresponding mean free path. It should be noted that simple
estimates, made in the literature, as well as in previous section, do not take
into account evolution of CMB and CνB fields with time. The simplest way to
account for cosmic redshift is to compare this estimate of the mean free path
to the expansion scale c/H0, where H0 is the present day Hubble parame-
ter, see e.g. (Berezinskii and Grigor’eva, 1988; Stanev et al., 2000). In what
follows we describe more rigorous way to take into account both redshift of
particle energy as well as the evolution of CMB and CνB fields with redshift.
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The optical depth along the particle world line L is defined as

τ =
∫

L
σjµdxµ, (D.3.1)

where σ is the cross-section of a given process, jµ is the 4-current of particles,
on which the UHE particle scatters, and dxµ is the element of the UHE particle
world line. We assume the Universe is homogeneous and isotropic, and the
background particles are either CMB photons or CνB neutrinos. Both have
thermal distribution functions, given by

f (E/kT) =
1

e(E−µ)/kT ± 1
, (D.3.2)

where k is the Boltzmann constant, T is the CMB or CνB temperature, the sign
”−” is for photons while the sign ”+” is for neutrinos, E and µ are the energy
and the chemical potential of background particles (for photons µ = 0). Then
the optical depth (D.3.1) is

τ(E, t) =
gs

2π2h̄3c3

∫ 0

t
cdt′

∫ ∞

Etr

E2dE f (E)σ(E,E, t′), (D.3.3)

where Etr is threshold energy in a given process, gs = 2 is the number of
helicity states for both protons and neutrinos. Here we assumed that UHE
particles move along light-like geodesics. The integral over time can be trans-
formed into the integral over redshift by means of the Friedmann equation.
The latter for the flat Universe reads

(

1

a

da

dt

)2

=
8πG

3
ρ, (D.3.4)

where a is the scale factor, ρ is energy density of the Universe, G is Newton’s
constant. From this equation, the definition of cosmological redshift, as well
as the definition of the density parameters

a0/a = 1 + z, Ωi =
ρi

ρc
, ρc =

3H2
0

8πG
, (D.3.5)

where H0 and a0 are present time Hubble parameter and scale factor, respec-
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tively, we have
∫ 0

t
cdt′ −→ c

H0

∫ z

0

dz′

(1 + z′) H(z′)
, (D.3.6)

where H0 is the Hubble parameter and the function H(z) is given by

H(z) = [Ωr(1 + z)4 + ΩM(1 + z)3 + ΩΛ]
1/2, (D.3.7)

and Ωr, ΩM and ΩΛ are present densities of radiation, matter and dark en-
ergy, respectively. Then the expression (D.3.3) can be written as follows

τ(E, z) =
1

π2h̄3c3

c

H0

∫ z

0

dz′

(1 + z′) H(z′)
(D.3.8)

×
∫ ∞

Etr

E2dE f (E)σ(E,E, z′).

Cosmic expansion results in the energy and temperature dependence on red-
shift

T = (1 + z)T0, E = (1 + z)E0, E = (1 + z)E0, (D.3.9)

where temperature T0,γ ≃ 2.725 K for photons, T0,ν = (4/11)1/3 ≃ 1.95 K for
neutrinos and energies E0,E0 are measured at the present time.

The second integral in (D.3.8) can be simplified, provided two conditions
are fulfilled: a) the cross-section does not depend on the energy of back-
ground particle and b) there is no threshold in the given process (Etr = 0).
In this case one has

1

π2h̄3c3

∫ ∞

0
E2dE f (E)σ(E, z) (D.3.10)

= σ(E, z)n(z) = σ(E, z)n0 (1 + z)3 ,

where n0 is present number density and it stands for either

n0,γ ≈
2ζ (3)

π2

(

h̄

m c

)−3 ( kT0

mec2

)3

≃ 411 cm−3

for photons, or n0,ν = 3/4
(

T0,ν/T0,γ

)3 ≃ 113 cm−3 for neutrinos. Then eq.
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(D.3.3) becomes

τ(E, z) = n0
c

H0

∫ z

0

σ(E, z′) (1 + z′)2
dz′

H(z′)
. (D.3.11)

When the cross-section is just a constant, the integral (D.3.11) can be readily
performed. Assuming Ωr ≃ 9.2× 10−5, ΩM ≃ 0.315, ΩΛ ≃ 0.685 and H0 =
67.3 km/s/Mpc (Planck Collaboration et al., 2014) in the matter dominated
epoch we have

∫ z

0

(1 + z′)2
dz′

[ΩM(1 + z′)3 + ΩΛ]1/2
≃
{

1.045z, z≪ 1,

1.006z3/2, z≫ 1.

The mean free path is defined by the condition τ(E0, z) = 1. For the con-
stant cross-section σ at low redshift z ≪ 1 we get the traditional definition

λ = (σn)−1 used above. For high redshift z ≫ 1 one can define the redshift,
corresponding to the mean free path as

zλ =

(

n0σc

H0

)−2/3

≃ 8.9

(

n0

n0,γ

σ

10−8σT

)−2/3

. (D.3.12)

Using this equation we obtain for UHE neutrinos with highest energies zλ ≃
84.

D.4. The mean energy loss distance

When UHE particle annihilates in a given process, such as in the case of Breit-
Wheeler one (D.2.1), the mean free path correpsonds to the horizon defined
above.

Another possibility is that the particle is not annihilated in a given process,
but scattered, such as in the case of proton producing the pion (D.2.7). When
the energy loss in single scattering corresponds to a large fraction of UHE
particle energy, the situation is similar to the case of annihilation. However,
UHE particle may lose only a small fraction of its energy, as in the case of
Bethe-Heitler process (D.2.9). Here another relevant quantity corresponds
the particle horizon defined above is the mean energy loss distance λ̃. We
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define it following Blumenthal (1970) as

λ̃−1 =

(

1

E

dE

cdt

)

. (D.4.1)

Then we evaluate the quantity

τ̃ =
∫ 0

t

cdt

λ̃
=

c

H0

∫ z

0

dz′

λ̃ (1 + z′) H(z′)
. (D.4.2)

It is computed below for the Bethe-Heitler process.

The propagation of ultra high energy particles on cosmological distances is
usually dealt with by Monte Carlo simulations, see e.g. (Aloisio et al., 2012;
Kampert et al., 2013). These codes are essentially one-dimensional and do not
describe particle deflections, discussed below.

D.5. Results

Now we apply the method developed in the previous section to the compu-
tation of the mean free path for UHE photons, protons and neutrinos, as well
as the mean energy loss distance for protons interacting via the Bethe-Heitler
process.

D.5.1. Photons

First, we consider cosmic limits on propagation of UHE photons. In the Breit-
Wheeler process (D.2.1) the cross-section depends on both energies through
the definition (D.2.3). When one considers all possible orientations of CMB
photons additional averaging over their angular distribution has to be per-
formed (Nikishov, 1961; Gould and Schréder, 1967). The resulting averaged
cross section differs from eq. (D.2.2). The useful approximations for this
quanity can be found e.g. in (Gould and Schréder, 1967; Aharonian et al.,
1983; Coppi and Blandford, 1990). We use the accurate expression given by

493



D. Cosmic absorption of ultra high energy particles

eq. (3.23) of Aharonian (2003):

σ̄γγ (x) =
3

2
σTΣ (x) , (D.5.1)

Σ (x) =
1

x2

[(

x +
1

2
log x− 1

6
+

1

2x

)

×

× log
(√

x +
√

x− 1
)

−
(

x +
4

9
− 1

9x

)

√

1− 1

x

]

.

We change our variables in eq. (D.3.8) and get

τγγ(E0, z) =
A

y3
0

∫ z

0

1

(1 + z′)4

dz′

H (z′)

∫ ∞

1

x2dx

exp(x/y)− 1
Σ (x) , (D.5.2)

where

A =
4α2

π

c

H0

(

h̄

m c

)−1 ( kT0

mec2

)3

≈ 2.37× 106, (D.5.3)

and

y = y0(1 + z)2; y0 =
E0

mec2

kT0

mec2
, (D.5.4)

and y0 is the energy E0 in units of the critical energy EBW =
(

mec
2
)2

/kT0 ≃
1.11× 1015 eV. The intergal over energy can be evaluated numerically and we
find a reasonable fit

F1 (y) = 0.839
(

y2.1 + 2× 10−8y2.8
)

exp

(

−1.1

y

)

. (D.5.5)

Then eq. (D.5.2) becomes

τγγ(y0, z) =
A

y3
0

∫ z

0

1

(1 + z′)4

dz′

H (z′)
F1

[

y0(1 + z)2
]

. (D.5.6)

This integral is also evaluated numerically.

In the low energy E ≪ EBW and high redshift z ≫ 1 limit the integral
(D.5.6) can be evaluated analytically. The redshift corresponding to the mean
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free path in this limit is

zλ,BW ≃ 0.21

(

E

EBW

)−1/2

. (D.5.7)

This result is known as the Fazio-Stecker relation (Fazio and Stecker, 1970),
see their eq. (9).

In addition to the Breit-Wheeler process (D.2.1), following
Coppi and Aharonian (1997) we consider also the double pair produc-
tion process (D.2.4) with the cross-section defined in (D.2.5). This process is
relevant for the highest energies. The optical depth for this process is

τ
dpp
γγ (y0, z) =

B

y3
0

∫ z

0

1

(1 + z′)4

dz′

H (z′)

∫ ∞

2
σdpp

x2dx

exp(x/y)− 1
= (D.5.8)

=
B

y3
0

∫ z

0

1

(1 + z′)4

dz′

H (z′)
F2

[

y0(1 + z′)2
]

,

where

F2 (y) =
8

3
− 4iπy− 4y log

[

exp

(

2

y

)

− 1

]

− (D.5.9)

− 4y2PolyLog

[

2, exp

(

2

y

)]

+ 2y3PolyLog

[

3, exp

(

2

y

)]

.

and B ≈ 15.3.

The condition τ(y0, z) = τγγ(y0, z) + τ
dpp
γγ (y0, z) = 1 in eqs. (D.5.2) and

(D.5.8) determines the mean free path of UHE photons. This mean free path
is shown in Fig. D.1 in megaparsecs and in Fig. D.2 in cosmological redshift
by the solid curve. The region above the solid curve is opaque for high en-
ergy photons. In addition, thick black dashed line shows the boundary of
transparency for EBL, according to the baseline model of Inoue et al. (2013),
while dotted line in Fig. D.1 shows the cosmological horizon z = ∞.

For the distance smaller than a critical value of about dc = 6.8 kpc, the
CMB is transparent to high-energy photons with arbitrary energy. For larger
distances there are two branches of solutions for the condition τγγ(y0, z) = 1,
respectively corresponding to the different energy-dependence of the aver-
age cross-section (D.5.1). This average cross-section σ̄γγ (x) increases with
the center of mass energy x from the energy threshold x = 1 to x ≃ 3.5, and
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Figure D.1.: The mean free path, measured in megaparsecs as a function of
energy E of UHE particles, measured in electronvolts. In the region above
the curves the optical depth is larger than unity. Thin black curve shows the
mean free path of UHE photons. Dashed black curve shows the photon mean
free path computed without accounting for cosmological evolution (impos-
ing z = 0). Thick black dashed curve shows the boundary of transparency for
the EBL, according to the baseline model (Inoue et al., 2013). Thick black dot-
ted curve shows the mean energy loss distance for photons interacting with
the CMB. Thick blue curve shows the mean free path of UHE protons (GZK
limit). Blue dashed (dotted-dashed) curve shows the mean free path (mean
energy loss distance) for UHE protons due to Bethe-Heitler process. Dotted
horizontal line shows cosmological horizon.

decreases from x ≃ 3.5 to x→ ∞. The energy of the UHE photon correspond-
ing to the critical distance dc is about 1.11 PeV, which separates two branches
of the solution. The double pair production process (D.2.4) is relevant for
the highest energies, as expected. Photons with energies above 10 PeV are
absorbed by the double pair production if they are emitted at redshift above
z ≃ 0.03 (distance about 120 Mpc). We show the mean energy loss distance
by thick dotted curve which above the energy EBW is a factor

√
E/EBW larger

than the mean free path (Bonometto, 1971).

For comparison we show by the dashed curve also the mean free path
computed at z = 0, namely neglecting cosmological expansion, see e.g.
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Figure D.2.: The same as in Fig. D.1 for the distance measured in cosmologi-
cal redshift. Red thick curve shows the mean free path of UHE neutrinos.

(Coppi and Aharonian, 1997).
We also show in Fig. D.2 by the dotted curve the mean free

path for the photon-photon scattering which follows from the Euler-
Heisenberg lagrangian, see e.g. (Berestetskii et al., 1982; Ruffini et al.,
2010a). This process was first discussed by Zdziarski and Svensson (1989);
Svensson and Zdziarski (1990). We will discuss it in details in a separate
publicationBatebi et al. (2015).

Finally, the black dotted thick curve shows the horizon of photons with
energies above 20 GeV and below 100 TeV, which is determined by their in-
teraction with the EBL. The latest EBL model (Inoue et al., 2013) is used. It
is clear, that the contribution of CMB photons gives the absolute upper limit
on the mean free path. In the energy range between 1 GeV and 20 GeV the
propagation of high energy photons is limited only by the CMB radiation.

D.5.2. Protons

Second, we consider the propagation of UHE protons, accelerated in a source
located at a cosmological distance from Earth. First, considering the photo-
pion process (D.2.7) we use the method developed in the previous section and
compute the GZK limit (Greisen, 1966; Zatsepin and Kuz’min, 1966). This
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limit applies to protons and other charged particles, leading to the existence
of a cutoff in the observed spectrum of (UHE) cosmic rays at about 1020 eV.
For the photopion process (D.2.7) one can use the simple expression (D.3.11)
with the constant cross-section (D.2.8). However, we compute the optical
depth in the same way as in the case of double pair production, using eq.
(D.5.8) with different value of the constant B′ ≈ 253.

The mean free path due to photopion process is shown by the blue thick
curve in Fig. D.1 in megaparsecs and in Fig. D.2 in cosmological redshift.
From Fig. D.1 it appears that for energies well below Epγ ≃ 3.3× 1020 eV
the GZK limit approaches the cosmological horizon. Instead, from Fig. D.2 it
follows that the mean free path measured in redshift, below the energy Epγ,
increases with decreasing energy as a power law, which is a consequence of
eq. (D.3.12).

Similarly to the Breit-Wheeler case, the integral (D.5.8) is evaluated ana-
lytically in the low energy E ≪ Epγ and high redshift z ≫ 1 limit, with the
result

zλ,GZK ≃ 0.57

(

E

Epγ

)−1/2

. (D.5.10)

We also evaluate the mean free path due to the Bethe-Heitler process
(D.2.9). Since cross-sections (D.2.10) and (D.2.11) are given in the proton rest
frame, one has to transform photon energy to this reference frame using

E′ = 2ΓE =2
EE

mpc2
, (D.5.11)

where the primed quantity corresponds to the proton rest frame, while un-
primed quantities to laboratory reference frame. Then it is convenient to
make use of the same type of variable change as before for the Breit-Wheeler
process1, with a difference that instead of electron mass squared a product of
electron and proton masses arises, namely

x̄ = 2
EE

mempc4
, ȳ0 = 2

E0

mpc2

kT0

mec2
=

E0

EBH
. (D.5.12)

1We assume that UHE protons collide with the with CMB photons head on. More accurate
calculation with average over angular distribution of the CMB photons does not change
qualitatively our results.
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The optical depth is computed in the laboratory frame as follows2

τpγ(ȳ0, z) =
1

π2

c

H0

(

h̄

m c

)−3 ( kT0

mec2

)3

× (D.5.13)

× 1

ȳ3
0

∫ z

0

1

(1 + z′)4

dz′

H (z′)

∫ ∞

2

x̄2dx̄

exp(x̄/ȳ)− 1
σBH(x).

The intergal over energy can be evaluated numerically and we find a reason-
able fit

F3 (ȳ) =
86.15 exp

(

− 2
ȳ

)

103ȳ−3.47 + ȳ−3
. (D.5.14)

Then eq. (D.5.2) becomes

τpγ(ȳ0, z) =
C

ȳ3
0

∫ z

0

1

(1 + z′)
dz′

H (z′)
F3

[

ȳ0(1 + z)2
]

, (D.5.15)

where

C =
2α3

3π

c

H0

(

h̄

m c

)−1 ( kT0

mec2

)3

≈ 2863. (D.5.16)

The mean free path for protons interacting via the Bethe-Heitler process is
shown by blue dashed curve in Fig. D.1 in megaparsecs and in Fig. D.2 in
cosmological redshift. The integral (D.5.15) is evaluated analytically in the
low energy E≪ EBH and high redshift z≫ 1 limit, with the result

zλ,BH ≃ 0.43

(

E

EBH

)−1/2

. (D.5.17)

As discussed before, at energies above 1018 eV the mean free path
is relatively small, about a few hundred kiloparsecs, and it quickly de-
creases with increasing energy. This is in contrast with the large mean en-
ergy loss path, which is above 1 Gpc at energies 1018 − 1020 eV, see e.g.
(Berezinskii and Grigor’eva, 1988; Stanev et al., 2000). It means, that be-
fore UHE proton starts to lose its energy, it is scattered many hundred

2Note that the integral over energy is not transformed to the proton rest frame, as done e.g.
by Blumenthal (1970). Instead, only a change of variables is performed in the integral
(D.5.13).
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times (Dermer and Atoyan, 2006). At each of this scattering the proton re-
coils, being deflected by a small angle measured in the laboratory reference
frame. From the analysis of the cross-section as the function of recoil angle
(Jost et al., 1950), see also (Motz et al., 1969) in the proton rest frame, it follows
that in the high energy limit the photon recoils in the plane, orthogonal to the
incident photon. It implies that each scattering produces a deflection of the
UHE proton in the laboratory frame by angle∼ 1/γ, where γ = E/

(

mpc2
)

is
proton Lorentz factor. The number of scatterings is given approximately by
τ.

One can compute the mean energy loss distance defined in (D.4.1) and then
evaluate the quantity (D.4.2) using eq. (18)-(20) of Blumenthal (1970) to obtain

τ̃ =
D

y3
0

∫ z

0

dz′

(1 + z′)4 H(z′)

∫ ∞

2

dx̄

exp( x̄
ȳ )− 1

φ (x̄) , (D.5.18)

where the function φ (x̄) is given in eq. (16) of (Blumenthal, 1970)

φ (x̄) = x̄
[

−86.07 + 50.95 log x̄− 14.45 (log x̄)2 + 2.667 (log x̄)3
]

(D.5.19)

and

D =
2

π2
α3 me

mp

c

H0

(

h̄

m c

)−1 ( kT0

mec2

)3

. (D.5.20)

From the condition τ̃ = 1 we determine the mean energy loss distance λ̃.
This distance is shown by blue dash-dotted curve in Fig. D.1 in megaparsecs
and in Fig. D.2 in cosmological redshift.

We evaluate the optical depth (D.5.13) at the redshift, corresponding to λ̃
for energies in the range between 1015 and 1020 eV and find it in the range 104

to 105, see Fig. D.3. Since the deflection at each interaction is small, the aver-
age number of interactions is proportional to the optical depth. The average
deflection angle is then

δ ∼
√

τ (E)

γ
. (D.5.21)

We find an average deflection angle of UHE protons as a function of proton
energy for sources located at the mean energy loss distance and show it in
Fig. D.4. At energies E = 1016eV, this angle is about δ ∼ 15′′ and it decreases
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Figure D.3.: The optical depth at the mean energy distance for the Bethe-
Heitler process.

down to δ ∼ 2.4 mas for E = 1019eV. For E < 1019eV we find a relation

δ ≃ 7.6× 10−9

(

E

1019eV

)−1.27

. (D.5.22)

Such deflection, although small compared to deflection in galactic magnetic
field (Medina Tanco et al., 1998), might be comparable to deflection in in-
tergalactic magnetic fields (Dolag et al., 2005). The latter are poorly coon-
strained, but their knowledge is essential for the charged particle astronomy.

D.5.3. Neutrinos

Third, we consider the propagation of UHE neutrinos. Such neutrinos
can be produced in the source of UHE cosmic rays in decay of sec-
ondary pions π+ −→ µ+ + νµ or secondary neutrons n −→ p + e− + ν̄e

(Dermer and Atoyan, 2006). UHE neutrino can be produced also in some ex-
tensions of the standard model of particle physics (Ringwald, 2006). Such
UHE neutrino interacts with the CνB via the process (D.2.12).

The cross-section of this process has a resonance, and it approaches a con-
stant for highest energies. We compute the optical depth, which instead of
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Figure D.4.: The average deflection angle of UHE protons as function of pro-
ton energy for sources located at the mean energy loss distance for the Bethe-
Heitler process.

eq. (D.3.8) is given by

τνν(E, z) =
1

π2h̄3c3

c

H0

∫ z

0

dz′

(1 + z′) H(z′)

×
∫ ∞

Etr

E

√

E2 − (mνc2)
2
dE f (E)σ(E, z) (D.5.23)

≈ 1

π2h̄3c3

c

H0
n0,ν

∫ z

0

(1 + z′)2
dz′

H(z′)
σ(E(1 + z′)),

using the cross-sections given in the laboratory reference frame by eqs.
(D.2.13) and (D.2.15). The mean free path for neutrinos, measured in cos-
mological redshift, is shown in Fig. D.2 by the thick red curve. Since the
characteristic redshifts are high, this curve practically coincides with the hori-
zon, when measured in megaparsecs, so we do not show it in Fig. D.1. It is
clear that the Breit-Wigner resonance in the cross-section decreases the mean
free path in a wide range of energies. The lowest redshift for E ≃ Er at which
the Universe is transparent for UHE neutrinos is zmin ≃ 30. The resonance

produces a dip around Er/(1 + zmin) ≃ 1.7× 1021 (mν/0.08 eV)−1 eV, where
zmin ≃ 30. Additional broadening of the resonance, due to thermal effect, is
discussed in detail by Lunardini et al. (2013). At higher energies the corre-
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sponding redshift is z ≃ 87.
Similarly to the previous cases, in the low energy E ≪ Epγ and high red-

shift z≫ 1 limit, we find

zλ,ν ≃ 14

(

E

Er

)−2/5

. (D.5.24)

D.6. Conclusions

We reviewed cosmic limits on propagation of ultra high energy particles such
as photons, protons and neutrinos, set up by their interactions with the cos-
mic background of photons and neutrinos. In doing so we take into account
explicitly cosmic evolution of both cosmic backgrounds, and redshift of UHE
particle energy. This is in contrast with majority of the literature, where cor-
responding mean free paths are found at present epoch, neglecting cosmic
expansion. A number of new results were obtained, in particular:

• for UHE photons the contribution of CMB photons gives the absolute
upper limit on the mean free path. At high redshift, where other radia-
tion backgrounds, such as EBL are absent, the CMB radiation limits the
propagation of UHE photons at energies above GeV.

• for UHE protons the mean free path due to Bethe-Heitler process ap-
pears to be much shorter than the mean energy loss distance. This re-
sults in multiple deflections suffered by UHE protons, before they start
to lose energy in the energy range 1016 − 1020 eV. Such deflections re-
sult in dimming of point sources of UHE protons, which makes it more
difficult to detect them.

• for UHE neutrinos for the first time we compute the horizon as a
function of redshift. We found that the Universe is transparent of
UHE neutrinos at redshifts z < 30, near the Breit-Wigner resonance

at Er ≃ 5.2× 1022 (mν/0.08 eV)−1 eV, and it is transparent at redshifts
z < 87 at higher energies.

• Remarkably, in the low energy and high redshift limit, the Fazio-
Stecker relation (Fazio and Stecker, 1970) holds for all processes with
exception of neutrinos, and it is given by a universal expression zλ ≃
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O (1)
(

E
Ethr

)−1/2
, where Ethr is the characteristic (e.g. threshold) energy

for a given process. In the case of neutrinos similar power law exists
zλ ∝ E−2/5.
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E. Interaction of high energy
photons with the background
radiation in the Universe

E.1. Introduction

Cosmic ray particles permanently hit the earth. When these particles en-
ter the atmosphere with energies up to and above 1018eV, they initiate cas-
cades of high energetic particles moving towards the ground, called ex-
tensive air showers Torres and Anchordoqui (2004). Till now, the accurate
source of the cosmic rays is unknown. However, some theories and mod-
els of particle acceleration in astrophysical sources can explain the source of
these high energy particles. Also some theories predict exotic particles re-
maining from the big bang, which on decay might produce ultra-high en-
ergy cosmic rays Sushchov et al. (2012). Some of the possible astrophysi-
cal sources of UHE photon are Pulsars, active galactic nuclei, gamma ray
bursts(GRB), quiet black holes, colliding galaxies and so on, see e.g. Stanev
(2004). Interaction of Ultra High energy photons with background radia-
tion, impose strong limits on UHE photons. some of the studied are given in
Zdziarski and Svensson (1989); Svensson and Zdziarski (1990); Venters et al.
(2009); Colombo and Bonometto (2003); Protheroe and Johnson (1996).

UHE photon in the presence of cosmic microwave background (CMB) in-
teract predominantly in the ways of pair production,γγ → e−e+, double
pair production, γγ → e−e+e−e+, photon- photon scattering, γγ → γγ
Zdziarski and Svensson (1989); Svensson and Zdziarski (1990).

The photon-photon scattering is a special process of quantum electrody-
namics (QED), which does not occur in classical electrodynamics, owing to
the fact that Maxwell’s equations are linear. The leading contribution to the
photon-photon scattering comes from Feynman ”box” diagrams of the four
external photon lines, which is the leading term in the Euler-Heisenberg ef-
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fective Lagrangian.

The Euler-Hesinberg effective Lagrangian is given by
Heisenberg and Euler (1935):

£e f f = −
1

4
FµνFµν +

α2

90m4
e

[

(FµνFµν)2 +
7

4
(Fµν F̃µν)2

]

, (E.1.1)

where the first term 1
4 FµνFµν is the classical Maxwell Lagrangian.

Therefore, cross section of photon-photon collision γ γ → γ γ can be gener-
alized to any arbitrary reference frame and natural unit as follows:

σ =
0.031

8
α2 r2

e x3(1− cosθ)3 x≪ 1, (E.1.2)

σ =
4.7

2
α4 (

1

me
)2 1

x (1− cosθ)
x≫ 1;

where x = εE/m2
e and α is the fine structure constant, re is the classical elec-

tron radius, ε and E are the energy of incoming photons.
Since Photon-Photon scattering is a forth- order process the cross section is
of order α2r2

e ≃ 4× 10−30cm at x3 ∼ 1 where at large and smaller values of
x3 ∼ 1 the cross section is declines rapidly.

The cross section of photon photon pair production, γγ → e−e+, is a
threshold process with condition x > 1. the Euler Heisenberg cross section is
of the order of α2 ∼ 10−4 smaller than pair production cross section. How-
ever, photon photon scattering can be important only in threshold x ≪ 1
lower than pair production threshold energy where pair production is for-
bidden.

E.2. Optical Depth

UHE photons attenuation is a function of the observed γ-ray energy E0 and
the redshift z of the emitting source. The attenuation is generally parameter-
ized by the optical depth τ(E0, z), which is defined as the number of e-fold
reductions of the observed flux, Iobs, as compared with the emitted source
flux, Iemitted, at redshift z:

Iobs = e−τ(E0,z) Iemitted. (E.2.1)
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The optical depth is calculated from physical principles. For a photon emitted
at time t in the past and travelling to us at time t = 0 optical depth,τ(E0, z),
given by:

τγγ(E, t) =
∫ 0

t
n(ε)σ(ε, E)dt; (E.2.2)

The integral over time can be transformed into the integral over redshift as
follow:

∫ 0

t
dt′ −→ 1

H0

∫ z

0

dz′

(1 + z′) Ĥ(z′)
, (E.2.3)

where H0 is the Hubble parameter and the function Ĥ(z) is given by

Ĥ(z) = [Ωr(1 + z)4 + ΩM(1 + z)3 + ΩΛ]
1/2, (E.2.4)

and Ωr ≤ 10−4, ΩM = 0.3 and ΩΛ = 0.7 are present densities of radiation,
matter and dark energy, respectively. Therefore, the optical depth of the cos-
mic background for a γ- ray emitted at matter and dark energy dominant
redshift z is given by standard formula:

τ(E, z) =
1

4π

∫ z

0

dz′

(1 + z′) H(z′)

∫ ∞

εth

dε
dn(ε)

dε

∫ ∫

dΩ(1− cosθ) σ(ε, E)(E.2.5)

Where dn
dε is differential number density of background photons, θ and εth are

scattering angle and threshold energy of the specific interaction.

E.2.1. UHE photon attenuation through CMB

In this section we describe our calculation for optical depth of UHE photon
in presence of the most important cosmic background, CMB through Euler-
Heisenberg lagrangian.

CMB is the thermal radiation filled the universe and predicted by Big Bang
Cosmology. UHE photons attenuation through interaction with CMB. Euler-
Hiesenberg cross section in lab frame, through the definition (E.1.3), depends
on both energies. then optical depth is as follows:

τγγ(ω0, z) =
Cτ

y0

∫

dz
(1 + z)8

H(z)

∫

dx0
dn(x0)

dx0
x3

0 (E.2.6)
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where we can substitute H−1
0 ≃ 6.5× 1032 eV−1 and T0 = 2.34× 10−4 eV,

then:

Cτ =
0.06

5
α4(

1

me
)2 1

H0
T0, (E.2.7)

and
dn(ε)

dε =
( ε

π )2

e
ǫ

kT−1
is differential number density of CMB in dimension eV2 in

natural unit, and x = x0(1 + z)2, y = y0(1 + z)2, where

y0 =
E0

me

T0

me
(E.2.8)

E0, ε0 and T0, are the energy of UHE photon, background photon and
CMB temperature today, respectively. one can approximate the solution of
equation(E.2.6), at z≫ 1 and ε≪ EBW , where EBW = mec

2/kT ≃ 1.11PeV, to
obtain a cutoff energy above which γ-rays originating at a high redshift can-
not reach us. The redshift corresponding to the mean free path in this limit is

z = 0.57(
E0

EBW
)−2/5 ; (E.2.9)

At last scattering redshift the maximum critical energy of photon is EC =
6.78× 10−9eV.

Anyway, the equation(E.2.6) can be solved analytically. Finally by consid-
ering low energy EH cross section, the exact solution to the E.2.6 is obtain as
follow:

τγγCMB
(E0, z) = C′(τ) y3

0

∫ z

zC

(1 + z′)8dz′

H(z′)
(E.2.10)

where

C′(τ) =
0.06

5

8

63

π4

H0

α4

m2
e

T3
0 ≃ 14.12 (E.2.11)

By calculating τ(E0, z) = 1 cosmological redshift as a function of energy is
given in Fig. E.1. this result is compered by critical redshift obtained by
Breit-Wheeler process, γ1 + γ2 → e+ + e−, studied inRuffini et al. (2015).
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Figure E.1.: This plot shows distance measured in cosmological redshift as
a function of energy E of UHE photons, in electronvolts. Thin black curve
shows the of UHE photons transparency for CMB according to pair pro-
duction Breit- Wheeler interactionRuffini et al. (2015). Dashed brown curve
shows the UHE photons transparency for CMB according to the Euler-
Heisenberg photonphoton scattering . Dotdashed purple curve shows the
boundary of transparency for extragalactic background light(EBL), accord-
ing to the baseline model of Inoue et al. (2013). Dark blue points and green
points show GRB (Ackermann et al., 2013) and Blazar (Finke and Razzaque,
2009) photons detected recently, respectively.
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E.3. Conclusion

We have studied propagation of UHE cosmic rays through the cosmic back-
grounds over cosmological distances. This important calculation was done
Zdziarski and Svensson (1989) previously for CMB. We updated this calcu-
lation, in doing so we considered the energy above GeV. We confirm that
high energy photons interact with background photons mainly producing
electron-positron pairs at high redshift. We showed the blazar and GRB da-
tum observed recently, are consistent with the obtained result.
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F. A regular and relativistic
Einstein Cluster within the S2
orbit centered in SgrA*

F.1. Introduction

In 1939 Einstein Einstein (1939) provided a model of self-gravitating masses,
each moving along geodesic circular orbits under the influence of the grav-
itational field of the rest of the particle in the system. This model allowed
him to argue that ‘Schwarzschild singularities’ do not exist in physical reality
because a cluster with a given number of masses cannot be arbitrarily con-
centrated. This is due to the fact that otherwise the particles constituting the
cluster would reach the speed of light. Of course, this model can actually
only be considered as an interesting possibility to try to provide a counterex-
ample of a singularity within Einstein’s theory of gravity, since Black Holes
are a physical reality within the theory of General Relativity.

The aim of this chapter is to model the central (sub-milliparsec) region of
our galaxy in terms of a dark ‘Einstein Cluster’ (EC) in order to provide an al-
ternative to the Super Massive Black Hole (SMBH) of mass M = 4.4× 106M⊙
thought to be hosted at very center Ghez et al. (2008); Gillessen et al. (2009).
A dark EC is understood as an EC composed by dark matter particles of mass
m (regardless of its nature), and therefore no contribution to the pressure in
form of radiation is assured as the cluster shrinks till relativistic regimes. The
model is based on the assumption of a constant density distribution harbored
inside the peri-center of the S2 star (rp(S2)), the closest to SgrA* as observed in
Gillessen et al. (2009). We will first analyze the stability condition in the spe-
cific case of a regular and relativistic energy density EC, contained marginally
inside the S2 peri-center. Secondly, and for an EC with fixed particle number
N, we will explicitly show through the R vs. M relation, and for particle ve-
locities ranging from zero up to the speed of light, up to which point an EC
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can be shrank before loosing its global stability.

F.2. Einstein Clusters

The full theoretical formalism of ‘Einstein Clusters’ and their different stabil-
ity analysis has been extensively studied in Zapolsky (1968); Gilbert (1954);
Hogan (1973); Florides (1974); Comer and Katz (1993); Cocco and Ruffini
(1997); Böhmer and Harko (2007b); Geralico et al. (2012). We give in next
a short summary of the most important outcomes of this theory, point-
ing out the principal formulas which will allow us to deal with the astro-
physical application object of this work. Thus, consider a static spherically
symmetric distribution of particles all with rest mass m which are moving
along circular geodetic orbits about the center of symmetry. The associated
line element ds2 is written in terms of a Schwarzschild metric of the form
gµν = diag(−eν, eλ, r2, r2 sin2 θ), where ν and λ depend only on the radial
coordinate r. From now and on we will work in the geometric unit system
(G = c = 1).

The stress-energy tensor in the laboratory frame is assumed to take the
form

Tµν = m n0 UµUν , U = γ[et̂ + vθ̂eθ̂ + vφ̂eφ̂] , (F.2.1)

which is just the Einstein’s ansatz Einstein (1939) (or a dust-like ansatz). n0

is the proper particle number density (i.e. defined at rest w.r.t a coordinate
system of special relativity), U is the particle 4-velocity satisfying the circular

geodetic equations in the laboratory frame with vθ̂ and vφ̂ the linear velocities
along the angular directions, γ = (1− v2)−1/2 (v2 = δθφvθvφ), and the uni-
tary vectors introduced in U corresponds to the following orthonormal frame
(adapted to the static observers)

et̂ = e−ν/2∂t , er̂ = e−λ/2∂r , eθ̂ =
1

r
∂θ , eφ̂ =

1

r2 sin θ
∂φ . (F.2.2)

In the laboratory frame, and after applying the killing vector formalism to
this specific spacetime (see also Geralico et al. (2012)) naturally appears the
two constants of motion associated with each trajectory, the energy E and the
angular momentum L which reads

E = mγ eν/2, L2 = L2
θ + L2

φ/ sin2 θ = m2γ2r2v2. (F.2.3)
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The angular momentum formula in (F.2.3) together with the definition of γ
directly implies γ = (1+ L̃2/r2)1/2 which will be very useful in what follows,
with L̃ = L/m.

By writing the conserved L2 in terms of each angular component Lθ =
mγrvθ and Lφ = mγrvφ sin θ as done in (F.2.3), implies the following relation

1 = (Lθ/L)2 + (Lφ/(L sin2 θ))2. This last equation further implies that the

possible values of Lθ/L and Lφ/(L sin2 θ) lie on a circle of unit radius, and
then each angular component can be written in terms of an angle α respect
to the eθ̂-axis. This decomposition allow us to make an average of the angu-
lar momentum components in the eθ̂ − eφ̂ plane (i.e. around each orbit with

α ∈ [0, 2π]), as originally proposed by Einstein Einstein (1939). The averaged
variables reads1.

〈Lθ〉 = 〈Lφ〉 = 0, 〈L2
θ〉 = 〈L2

φ/ sin2 θ〉 = L2/2 . (F.2.4)

The above averaging allows to express the averaged stress-energy compo-
nents without any angular dependence, and reads

〈Tt
t〉 = −mn0

(

1 +
L̃2

r2

)

≡ −ρ , 〈Tθ
θ〉 = 〈Tφ

φ〉 =
mn0

2

L̃2

r2
≡ pt , (F.2.5)

where ρ is the energy density of the system and pt the tangential pressure. It
can be easily verified that the divergence of the stress-energy tensor vanishes
identically.

The relevant Einstein equations are

1

r2
[r(1− e−λ)]′ = 8πρ , (F.2.6)

ν′ =
1

r
(eλ − 1) , (F.2.7)

e−λ

2

[

ν′′ +
ν′2

2
+

ν′ − λ′

r
− ν′λ′

2

]

= 8πpt , (F.2.8)

where a prime denotes differentiation with respect to r. By using the standard
definition of the mass function in terms of λ, eλ = (1 − 2M(r)/r)−1, the

1The average or mean value is defined by 2π〈La(α)〉 =
∫ 2π

0 La(α)dα, with a either θ or φ.
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system (F.2.6–F.2.8) is solved to give:

M(r) = 4π
∫ r

0
ρr2dr, eν = (1− 2M/R)e−2Φ(r) , (F.2.9)

where

Φ(r) =
∫ R

r

v2
k

r
dr, v2

k =
M(r)

r− 2M(r)
, L̃ = γ vk r (F.2.10)

where vk is the Keplerian speed. Thus, in order to completely solve the prob-
lem we have to provide a the energy density ρ(r) (or equivalently the mass
profile).

Another needed relevant quantity is the total particle number N. It can be
easily shown that the averaged 4-current 〈Jµ〉 = −n0〈Uµ〉 is divergence-free.
The associated conserved particle number is thus given by Misner and Sharp
(1964)

N =
∫

Σ
〈Jµ〉 dΣµ , (F.2.11)

where Σ denotes a spacelike hypersurface with infinitesimal element dΣν =
nνdΣ and unit timelike normal n. By choosing Σ to be a t = const hyper-
surface with unit normal n = et̂ and dΣ = eλ/2r2 sin θ dr dθ dφ, Eq. (F.2.11)
gives

N = 4π
∫ R

0
n0(r)γeλ/2r2 dr . (F.2.12)

A constant energy density ρ = 3M/(4πR3) implies a radial distribution
mass M(r) = Mr3/R3, and consequently through second and third Eqs. in
(F.2.10), an angular momentum per unit mass L̃ with the corresponding num-
ber distribution of the particles mn0 given by

L̃ =

√

M

R

r2

R

(

1− 3Mr2

R3

)−1/2

, mn0 =
3M

4πR3

R3 − 3Mr2

R3 − 2Mr2
. (F.2.13)

where 0 ≤ r ≤ R. Thus, the full solution of the Einstein equations (F.2.6–F.2.8)
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gives for the metric functions

eν =

(

1− 2M

R

)3/2 (

1− 2Mr2

R3

)−1/2

, eλ =

(

1− 2Mr2

R3

)−1

, (F.2.14)

The stability conditions for particles moving along a circular geodetic orbit on
the equatorial plane is studied in next for the specific case of an EC of constant
energy density, in terms of the effective potential Ve f f = eν/2(1 + L̃2/r2)1/2

(see e.g. Geralico et al. (2012) for a general discussion of stability). The ex-
istence of circular orbit at r0 is calculated through the necessary condition
V′e f f (r0) = 0, while the the necessary condition for stability is V′′e f f (r0) > 0.

In general (for any given EC) both necessary conditions reads respectively

r > 3M(r),
d(ln M(r))

d(ln r)
+ 1− 6M(r)

r
> 0 , (F.2.15)

In particular, for ρ = 3M/(4πR3) =const, the stability analysis directly im-
plies that stable circular orbits exist within the cluster in the range

r < R

√

R

3M
. (F.2.16)

Note that there is no upper limit on r if R > 3M, implying that circular orbits
are stable all the way up to the boundary of the configuration.

For outer particles r > R, the stability conditions in (F.2.15) makes possible
to distinguish the following classes: models with R > 6M and models with
3M < R < 6M. If R > 6M the cluster is said to be globally stable, because
circular orbits are always stable both inside and outside the configuration
(see also Fig. F.3 (a)).

If 3M < R < 6M all particles constituting the cluster move on stable orbits,
but in the adjacent exterior region of the configuration there is a region of
instability (R < r < 6M), so that the cluster is meta-stable (see also Fig. F.3
(b)). This stability criterion was first applied in Cocco and Ruffini (1997).

Another formal criterion which will be also used in next to classify an EC
regarding the stability, is the one adopted in Zapolsky (1968) based on the
behaviour of the gravitational binding energy of the system. Where the frac-
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tional binding energy of the cluster is defined by

E
f
b =

mN−M

mN
. (F.2.17)

A regular and relativistic EC marginally inside the pericenter of the S2 star,
has to fulfill the following observational constraints for its boundary R and
total mass M

R = rp(S2) = 6× 10−4 pc, M = 4.4× 106 M⊙, (F.2.18)

where both values are subject to some ∼ few % of error due to propagated
error in the distance from the sun to the galactic center R0 ≈ 8.3 kpc (see
e.g. Gillessen et al. (2009)). These constraints implies (in geometrical units)
a ratio R/M = 2840.9 ≫ 6, which safely indicates global stability, i.e. both
inside and outside the cluster according with the criterion presented above
with Cocco and Ruffini (1997).

In next we analyze, for an EC of constant number particles N, up to which
extent it can be shrank inside rp(S2) without becoming meta-stable, and more-
over, what happens when the particles approach the ultra-relativistic regime.
For this we first calculate the relation between M and R for fixed values of the
rest mass mN of the system, taking the velocity 0 < vk ≤ 1 as a parameter. By
use of Eq. (F.2.12) we have

mN = M [1/v2
k + 2]3/2F(vk) , (F.2.19)

where

F(vk) = −3/4[arctan (x(vk)− 3)−1/2

+ (x(vk)− 3)1/2/x(vk)] + (3/4)1/2 arctan (3/(x(vk)− 3))1/2, (F.2.20)

since x(vk) = R/M(vk) = 1/v2
k + 2. The direct relation between R/M and vk

is easily understood from the Keplerian velocity formula in (F.2.10) evaluated
at r = R. Eq. (F.2.19) together with x(vk) automatically leads to the following
total mass and radius normalized variables

R

mN
=

1

F(vk)[1/v2
k + 2]1/2

,
M

mN
=

1

F(vk)[1/v2
k + 2]3/2

. (F.2.21)
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F.3. Results and discussion

In Fig. (F.1) we explicitly show the R vs. M relation (normalized with the
constant rest mass) with vk taken as a free parameter. Regions of stability
and meta-stability are differentiated depending on the value of the rotation
velocity (vk) at the boundary of the EC (see caption for details). Instead, in
Fig. (F.2) we show the behaviour of the binding energy as a function of the
velocity vk, this is, showing the fraction of the total mass that turns into bind-
ing energy when the cluster is contracted from R ≫ 1 to a given R. After
the maximum a change of stability takes place and the cluster itself becomes
unstable according to this criterion (see caption for details).
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Figure F.1.: Gravitational mass vs. boundary radius relation (in units of rest
mass) for an EC with constant energy density. The velocity at the boundary
0 < vk < 1 is taken as a parameter. In Fig. (a): for vk → 0 the total mass
approaches the rest mass at R/(mN) → ∞. At vk = 0.5 the EC becomes
meta-stable (i.e. R/M = 6), while vk = 0.6 corresponds to the minimum in
M/(mN) = 0.955 which further implies the maximum bounded state for the
cluster (see Fig. F.2 for comparison). At vk = 0.903 the gravitational mass
equals the rest mass, and at vk = 0.98 a turning point in the radius appears
(see Fig. (b) for a zoom). Finally, the onset of instability R/M = 3 (accord-
ing to the classification given in Cocco and Ruffini (1997)) is asymptotically
approached when vk → 1.

Even though these systems reach meta-stability (according to the classi-
fication given in Cocco and Ruffini (1997)) or become unstable (according
the binding energy analysis), well before the velocity vk reaches the ultra-
relativistic regime; it is interesting to note that these tangential pressure sup-
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Figure F.2.: The behaviour of the fractional binding energy (F.2.17) as a func-
tion of vk with fixed particle number. The maximum corresponds to an EC

which has shrank to R/(mN) = 4.5 where E
f
b ≈ 0.045. The latter vanishes

at R/(mN) = 3.22 for a velocity vk = 0.903 where the cluster is considered
unstable according to this criterion. At vk = 0.5 the radius of the cluster is
R/(mN) = 5.75 implying R/M = 6 (see Fig. F.1 for comparison).

ported self-gravitating systems, never reaches a critical mass as in the case
of radial pressure supported self-gravitating systems, being neutron stars a
typical example of this last case.

In Fig. (F.3) we present two examples of constant energy density EC, the
case of R/M = 10 (Fig. a) where circular stable orbits exist either for parti-
cles forming the EC but also for outside ones, and the case of R/M = 3.1
(Fig. b) where unstable orbits (i.e. a maximum in Ve f f ) appears for outer
particles located in the outer vicinity of the border of the EC. In the second
case the EC is called meta-stable according to the characterization given in
Cocco and Ruffini (1997).

The fact of working with a fixed rest mass energy mN which can be cal-
culated with the observational constraints (F.2.21), implies that the constant
energy density ρ = 3M/(4πR3) increases more and more according the ve-
locity vk increases. From Eqs. (F.2.19) and (R/M(vk) = 1/v2

k + 2) it is possi-

ble to give an explicit expression for ρ(vk) = 3/(4π)(F(vk)/(mN))2, from
which we can give the uppermost limits for the density of a dark EC in-
side SgrA*. Changing units to M⊙/pc3, the first upper limit corresponds
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Figure F.3.: Behaviour of the effective potential as a function of r/M for an
EC with constant energy density. In Fig. (a) we show a globally stable cluster
with R/M = 10, and in Fig. (b) a meta-stable one with R/M = 3.1. Only
in Fig. (b) and for relatively high values of L̃ an external maximum appears
showing the existence of unstable orbits in the outer vicinity of the cluster.
The dots corresponds to the point a maximum angular momentum at the
border of the cluster.

to ρ(vk = 0.5) ≈ 5.5 × 1023M⊙/pc3, below which the EC is always glob-
ally stable. The second limit is given by ρ(vk = 0.6) ≈ 1.1× 1024M⊙/pc3,
and will be considered as the uppermost limit for a regular and relativistic
EC inside S2 and centered in SgrA*, due to the fact that above this veloc-
ity the value of the binding energy (F.2.17) starts to decrease from its maxi-
mum, undergoing a change of stability (see also Fig. F.2). These results are
in consistency with the bound obtained in Böhmer and Harko (2007b) from
a different stability analysis, based on the lose of isotropy of the fluid due
to non-radial perturbations; since anisotropy serves as a source of instability
(see Herrera and Santos (1997) and refs. therein).

It is important to note that this specific EC model composed by dark matter
particles with ρ = const provides a good alternative for the SMBH thought to
be hosted in the center of SgrA*. This due to the fact that the upper limit for
ρ(vk = 0.5) given above, is already about one order of magnitude higher than
the lowest limit for the mass density of SgrA* as imposed in Doeleman et al.
(2008) through the 1.3 mm Very Large Baseline Interferometry observations,
but below the critical density required for a black hole of 4.4× 106M⊙.
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G. Semidegenerate Self-gravitating
system of fermion as Dark
Matter on galaxies I:
Universality laws

Our aim here is to propose a system of self-gravitating system of fermions at
a finite temperature as a unified model for galactic halos and compact objects
in the center of galaxies, as an alternative to the usual black hole. This work
will deal mainly with the halo part, leaving the core description to another
paper Argüelles and Ruffini (2014a).

The equilibrium configurations of such systems were already studied by
Gao et al. (1990) and it was found that the system is unbound and has infi-
nite mass. In order to prevent that, a cut-off in the distribution function was
used Ingrosso et al. (1992). The equations governing a spherically symmet-
ric self-gravitating system of fermions in general relativity are the Tolman-
Oppenheimer-Volkoff equations

dP

dr
= −G

c2

(P + ρc2)(Mr + 4πρr3)

r(rc2 − 2GM)
(G.0.1)

dMr

dr
= 4πρr2, (G.0.2)

where Mr is the mass inside a radius r and ρ(r) and P(r) are the mass density
and the pressure, respectively given by

ρ = m
g

h3

∫ ǫc

0

(

1 +
ǫ

mc2

) 1− e(ǫ−ǫc)/kT

e(ǫ−µ)/kT + 1
d3p (G.0.3)

P =
2g

3h3

∫ ǫc

0

(

1 +
ǫ

2mc2

) (

1 +
ǫ

mc2

)−1 (1− e(ǫ−ǫc)/kT)ǫ

e(ǫ−µ)/KT + 1
d3p. (G.0.4)
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Here g = 2s + 1 is the multiplicity of states, m the mass of the parti-
cle, ǫc is the cutoff energy and ǫ is the kinectic energy of a single particle

ǫ =
√

p2c2 + m2c4 − mc2. Since we are considering a system in thermody-
namical equilibrium Klein (1949a).

(µ + mc2) exp(ν/2) = constant, T exp( ˚ /2) = constant. (G.0.5)

In order to solve (numerically) the system, we transform the quantities into
dimensionless ones, using a characteristic length

χ =
h̄

mc

mp

m

(

8π3

g

)1/2

,

where mp is the Planck mass. The transformed quantities are

ρ =
c2

Gχ2
ρ̂, P =

c4

Gχ2
P̂, Mr =

c2χ

G
M̂r, r = χr̂. (G.0.6)

Additionally we define the degeneracy parameter θ0 = µ0/kT0, the
temperature parameter β = kT0/mc2 and the cut-off parameter W = ǫc/kT0,
all in the center of the configuration; this, together with the mass of the parti-
cle, will serve as the free parameters of the system. However, when we turn
to the dimensionless equations, the mass appears only in the definition of the
characteristic length χ, and we can check the general properties of the system
without specifying a mass for the particle.

Below are shown the density profile and velocity rotation curve for differ-
ent values of the degeneracy parameter and the temperature parameter:

We can see that, despite the wide range of the parameters, the shape of
the density profile is universal and composed of a central degenerate core,
an inner halo of almost constant density and a tail that scales with r−2. Also,
from fig. G.1 it is clear that, for small values of θ0 we have smaller inner halos,
but the drop from the core is also smaller; and vice-versa for large values of θ0.
This means that, for small enough values, we lose the core+inner halo, being
left only with the halo; inversely, for very large values of the degeneracy
parameter, the drop is so sharp that the halo is practically non-existent.

The rotation curve is also universal and composed of four parts:(I) The core
with constant density, where v ∝ r; (II) The first part of the inner halo, where
the mass of the core prevails over the mass of the halo and v ∝ r−1/2; (III)
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Second part of the inner halo, where now the mass of the halo prevails and
again v ∝ r; (IV) The outer halo, where the velocity tends to a constant value
v0 after some oscillations of diminishing magnitude.

It is important to notice also that the velocity tends to a constant value as
required by observations and it depends only on the temperature parameter
at the center:

log
v0

km/s
= 5.63 + 0.5 log β0. (G.0.7)

This means we can uniquely determine β0 for any system using only the
asymptotic rotation velocity.

One important point is to compare our profile with the other existent pro-
files to see its validity. We choose here the phenomenological profile of
Burkert (1995), the profile coming from the N-Body simulations of Navarro,
Frenk and White (NFW) Navarro et al. (1996, 1997) and a simple pseudo-
isothermal profile. We find that our profile is in good agreement with both
NFW and Burkert profile up to a cerain radius just after the second maximum
of the rotation curve.

In order to use observations to constrain our parameters, we first build a
set of scaling laws for the physical properties of a given system, i.e., the core
radius and mass and the halo mass and radius, where we define the radius
of the core rc as the first maximum of the rotation curve and the radius of the
halo rh as the second maximum, with respective masses:

Mc = 1.96× 1012(β0θ0)
0.75
(

m f

kev/c2

)−2

, (G.0.8)

rc = 0.180(β0θ0)
−0.25

(

m f

kev/c2

)−2

(G.0.9)

Mh = 1.49× 1013β0
0.75100.16 θ0

(

m

kev/c2

)−2

, (G.0.10)

rh = 0.35β0
−0.25100.16 θ0

(

m

kev/c2

)−2

. (G.0.11)

where masses are in solar masses and radii in parsecs. The cutoff parameter
does not influence the properties of the system and is used only to determine
the size. It is interesting to note that, for the core, the important quantity is
β0θ0 = µ/mc2, and not the parameters themselves. Also, the halo has a much
stronger dependence on θ0 than the core. This scaling laws are exact for the
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mass and are valid for log β0 ∈ [−11,−5] and θ0 ∈ [0, 200].
Donato et al. (2009), fitting DM halos with the Burkert profile, found out

that the surface density at the Burkert radius is constant for a wide number
of galaxies, with different masses and magnitudes; this implies a constant
acceleration due to DM at the Burkert radius, aDM) = 3.2× 10−9cm/s2. Using
our scaling laws and the fact that aDM = GMh/r2

h, we have the scaling law
for the acceleration:

log
aDM

km2/pc.s2
= 11.786 + 1.25 log β0 − 0.16θ0 + 2 log

m

keV/c2
. (G.0.12)

Using this, with velocities 5-500 km/s, and considering a particle with a mass
of 8.5 keV, we find that θ0 ∈ [5, 40].

Another scaling law was found by Walker et al. (2010), now for the rotation
velocity:

log
v

km/s
= 1.47 + 0.5 log

r

kpc
. (G.0.13)

We then defined an average radius where the bulk of the measurements of
Walker et al. (2010) were made. With a scaling law for this radius, we can
then compare our results with Eq. G.0.13 and we find a relation between two
parameters:

β0 = 2.47× 10−10+0.128θ0 m−8/5. (G.0.14)

Using the velocity range 5-500 km/s and a mass of 8.5 keV, we find that θ0 ∈
[6, 40], in agreement with our former result. This shows that the choice of the
radius is good, since a law like Eq. G.0.13 implies a constant acceleration.

However, Boyarsky et al. (2009a), studying larger systems and using the
DM column density, found that the acceleration is not constant but tend to
increase for systems with M > 1010M⊙. Again using a scaling law for the
column density, we find a slight increase for the degeneracy parameter for
the same mass: θ0 ∈ [23, 52].

In conclusion, we show that our model could be a viable model for DM
halos and compact objects in the center of galaxies, despite still having some
problems in the core (see Argüelles and Ruffini (2014a) for details). We can
use observations to constrain our parameter space to two free parameters (the
mass of the particle and the degeneracy parameter) and show that our model
can reproduce the universality laws for a wide range of parameters.
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(a) (b)

Figure G.1.: (a) Density profile for different values of θ0. (b) Rotation curve
for different values of β0.

Figure G.2.: Comparison of the other profiles with our model for the best-fit
parameters.
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H. On the core-halo distribution of
dark matter in galaxies

H.1. Introduction

The problem of identifying the masses and the fundamental interac-
tions of the dark matter particles is currently one of the most funda-
mental issues in physics and astrophysics. The first astrophysical and
cosmological constraints on the mass of the dark matter particle ap-
peared in Cowsik and McClelland (1972); Weinberg (1972); Gott et al. (1974);
Lee and Weinberg (1977); Tremaine and Gunn (1979). As we will show, some
inferences on the dark matter particle mass can be derived from general con-
siderations based solely on quantum statistics and gravitational interactions
on galaxy scales.

An important open issue in astrophysics is the description of the dark
matter in terms of collisionless massive particles. Attempts have been
presented to put constraints on its phase-space density by knowing its
evolution from the cosmological decoupling until the approximate time
of virialization of a dark matter halo. Phenomenological attempts have
been proposed in the past in terms of Maxwellian-like, Fermi-Dirac-like
or Bose-Einstein-like distribution functions. Since the 80’s all the way
up to the present, the problem of modeling the distribution of dark mat-
ter in terms of self-gravitating quantum particles has been extensively
studied and contrasted against galactic observables. In Ruffini and Stella
(1983); Viollier et al. (1993); Chavanis and Sommeria (1998); Bilic et al.
(2002); Chavanis (2002a); Boyanovsky et al. (2008); Argüelles et al. (2013);
Ruffini et al. (2013a); Destri et al. (2013); Argüelles and Ruffini (2014b);
Argüelles et al. (2014b); de Vega et al. (2014); Siutsou et al. (2015), and refer-
ences therein, this problem was studied by considering Fermi-Dirac statis-
tics in different regimes, from the fully degenerate to the dilute one, and
for different fermion masses going from few eV to keV. Instead, in Sin
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(1994); Hu et al. (2000); Böhmer and Harko (2007a); Boyanovsky et al. (2008);
Spivey et al. (2013); Harko (2014) the same problem was analyzed in terms of
Bose-Einstein condensates with particle masses from 10−25 eV up to few eV.

Attempts of studying galactic structures in terms of fundamental physi-
cal principles such as thermodynamics and statistical physics, has been long
considered (e.g. Binney and Tremaine (2008)) since galaxies present many
quasi-universal self-organized properties such as: the constant mean surface
density at one-halo scale-length for luminous and dark matter (Gentile et al.
(2009)); the Fundamental Plane of galaxies (Djorgovski and Davis (1987);
Jorgensen et al. (1996)); or the fact that dark matter halos can be well fitted
by many different but similar profiles that resemble isothermal equilibrium
spheres (e.g. de Blok et al. (2008); Chemin et al. (2011); de Vega et al. (2014)).
Within the statistical and thermodynamical approach, the most subtle prob-
lem is the one of understanding the complex processes of relaxation which
take place before a galactic halo enters in the steady states we observe. In
the context of this paper we will deal only with the (quasi) relaxed states of
galaxies, and do not worry about the previous relaxation history of the halos.
Nevertheless, and in order to justify in a consistent way the hypothesis we
use here, the relaxation process must be certainly considered within the realm
of collisionless relaxation, giving the non-interacting nature of the dark mat-
ter at halo scales. Formally speaking, this kind of relaxation process differs
from the standard collisional relaxation by the fact that the last is described
in terms of the Fokker-Planck equation, while the former must be described
in terms of the Vlasov-Poisson equation, in order to account for the space and
time variations in the overall gravitational potential, not included in the col-
lisional approach (Binney and Tremaine (2008)). While collisional relaxation
processes can be applied in globular clusters (stellar component dominant)
implying relaxation times tR of the order or less than the age of the Uni-
verse, if applied to galaxies, these processes are largely not relevant because
tR exceeds 10 Gyr by orders of magnitude (Binney and Tremaine (2008)). By
the contrary, it has been extensively shown by now that the time-varying
(global) gravitational potential proper of the collisionless process known as
violent relaxation (Lynden-Bell (1967); Chavanis (2002b, 2006)), provides a re-
laxation mechanism analogous to collisions in a gas, but with an associated
dynamical time-scale much shorter tD << tR; implying now an excellent
opportunity to attack the problem of relaxation in galaxies. The central out-
come of this theory is that within a few dynamical times tD, the collisionless
system quasi relaxes into a tremendously long lived quasi-stationary-state
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(QSS), which under well mixing conditions can be described in terms of the
Fermi-Dirac statistics as shown in Lynden-Bell (1967); Shu (1978); Kull et al.
(1996); Chavanis (2002a,b, 2005, 2006) 1. Even though the Fermi-Dirac distri-
bution was first obtained in terms of a coarse-grained dynamical description
(Lynden-Bell (1967)), the same statistics was also derived more fundamen-
tally, in terms of particles, either distinguishable (i.e. stars Shu (1978)), or
indistinguishable fermionic particles (Kull et al. (1996); Chavanis (2002a)), as
the ones we are interested here 2.

Models based on self-gravitating fermions whose equilibrium distributions
are assumed to be everywhere in a classical dilute regime (i.e. which can be
well approximated by Boltzmannian distributions) as the one recently stud-
ied in de Vega et al. (2014), may have serious problems of stability when ap-
plied to galactic structures such as big spirals. Even though a model of this
kind provide good fits when contrasted with observational rotation curves
and density profiles (which is also the case within our model, Siutsou et al.
(2015)), these profiles most likely undergo core-collapse, being this an in-
evitable fait of Boltzmannian-based distributions which present large den-
sity contrast between center and periphery, even in the case of collisionless
particles (Padmanabhan (1990); Chavanis and Sommeria (1998); Chavanis
(2002b)). By the contrary, for self-gravitating systems of collisionless parti-
cles which develop some degree of central degeneracy such that the overall
dilute-regime can no longer be assumed (i.e. for θ0 & 10 within our model),
the core-collapse can be stopped, basically because the exclusion principle
now present saturates the gravitational collapse (see Chavanis and Sommeria

1It has been explicitly shown that these kind of Fermi-Dirac distribution functions can be
obtained from a maximization entropy principle at fixed total mass and temperature of
the systems (Chavanis and Sommeria (1998); Chavanis (2002a); Bilic and Viollier (1999);
Chavanis (2005)), implying therefore the necessity for these quasi-relaxed structures to
be bounded in radius. This condition can be achieved, for example, by introducing a
cut-off in the momentum space of the original Fermi-Dirac distribution as shown first in
Ingrosso et al. (1992), and more recently in the context of the model here introduced, in
Ruffini et al. (2013a); Argüelles and Ruffini (2014a). The main properties of the fermionic
model relevant for the conclusions of this work do not depend on the cut-off as shown in
Argüelles and Ruffini (2014a), which only set the outermost boundary radius. Therefore
we will adopt for simplicity the standard Fermi-Dirac statistics throughout this paper.

2In any case, the (fermionic) Fermi-Dirac distribution used in this work must be always
thought as the final outcome of a macroscopic coarse-grained mixing, such that the macro-
scopic entropy can increase during the complex (collisionless) relaxation processes (sec-
ond law of thermodynamics) and eventually be maximized to find the final state, as in
the cases mentioned in the above footnote 1.
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(1998); Bilic and Viollier (1999); Chavanis (2002a,b)).

It is our opinion that in the fermionic case, a clear differentiation of a quan-
tum degenerate core and an almost classical halo, has never been properly
implemented. In particular it has been neglected the crucial role of compar-
ing and contrasting different configurations, for fixed halo boundary condi-
tions. As we will show, this leads to a very specific eigenvalue problem for
the mass of the inos.

In this paper, and for completeness, we formulate the general problem of
the dark matter distribution in galaxies based in the following assumptions:
1) that the dark matter phase-space density is described by the Fermi-Dirac
statistics; 2) that the equilibrium equations for the configurations be solved
within a general relativistic treatment; 3) we set the boundary condition for
all dark matter profiles associated with a specific galaxy type (dwarfs, spirals,
and big spirals), to have, in each case, the same value of the flat rotation curve.
Having established this procedure in section H.2, we evidence in section H.3:
i) the new core-halo distribution of dark matter density, which is composed
by a dense compact core governed by almost degenerate quantum statistics, a
semi-degenerate transition, followed by a dilute halo governed by Boltzmann
classic statistics; ii) for each central degeneracy parameter we determine as
an eigenvalue problem, the mass and radius of the inner quantum core, as
well as the corresponding ino mass; and iii) we show that, for an ino mass of
∼ 10 keV/c2, there is in our model a theoretical correlation between the inner
quantum core mass and the halo mass, for galaxy types from dwarf up to big
spirals. From these considerations clearly follows that the determination of
the ino mass is uniquely established by the properties of the inner quantum
core and the asymptotic boundary conditions, and it cannot be determined
in a dark matter distribution governed only by a Boltzmannian distribution,
which is independent of the mass of the ino. In section H.4 we summarize
and discuss our results.

H.2. Equilibrium equations and boundary

conditions

Following Gao et al. (1990); Argüelles et al. (2014b), we here consider a sys-
tem of general relativistic self-gravitating bare massive fermions under the
approximation of thermodynamic equilibrium. As mentioned above, this ap-
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proximation is well justified under the assumption of well mixing during
the collisionless relaxation process, where the overall distribution function of
the inos in the QSS, can be well approximated by the Fermi-Dirac distribu-
tion. No additional interactions are initially assumed for the fermions besides
their fulfillment of quantum-like statistics and the relativistic gravitational
equations. In particular, we do not assume weakly interacting particles as
in Tremaine and Gunn (1979). We refer to this bare particles more generally
as inos, leaving the possibility of additional fundamental interactions to be
determined by further requirements to be fulfilled by the model. Already
this treatment of bare fermions leads to a new class of equilibrium configura-
tions and, correspondingly, to new limits to the ino mass. This is a necessary
first step in view of a final treatment involving additional interactions to be
treated self-consistently, as we will soon indicate here.

The density and pressure of the fermion system are given by

ρ = m
2

h3

∫

f (p)

[

1 +
ǫ(p)

mc2

]

d3p, (H.2.1)

P =
1

3

2

h3

∫

f (p)

[

1 +
ǫ(p)

mc2

]−1 [

1 +
ǫ(p)

2mc2

]

ǫ d3p, (H.2.2)

where the integration is over all the momentum space, fp = (exp[(ǫ −
µ)/(kT)] + 1)−1 is the distribution function, ǫ =

√

c2p2 + m2c4 − mc2 is
the particle kinetic energy, µ is the chemical potential with the particle rest-
energy subtracted off, T is the temperature, k is the Boltzmann constant, h is
the Planck constant, c is the speed of light, and m is the ino’s particle mass.
We do not include the presence of anti-fermions, i.e. we consider tempera-
tures T ≪ mc2/k.

The Einstein equations for the spherically symmetric metric gµν =

diag(eν,−eλ,−r2,−r2 sin2 Θ), being Θ the azimutal angle, where ν and λ
depend only on the radial coordinate r, together with the thermodynamic
equilibrium conditions of Tolman (1930), eν/2T =constant, and Klein (1949b),
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eν/2(µ + mc2) =constant, can be written as Gao et al. (1990)

dM̂

dr̂
= 4πr̂2ρ̂, (H.2.3)

dθ

dr̂
= −1− β0(θ − θ0)

β0

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (H.2.4)

dν

dr̂
=

2(M̂ + 4πP̂r̂3)

r̂2(1− 2M̂/r̂)
, (H.2.5)

β0 = β(r)e
ν(r)−ν0

2 . (H.2.6)

The following dimensionless quantities were introduced: r̂ = r/χ, M̂ =
GM/(c2χ), ρ̂ = Gχ2ρ/c2, P̂ = Gχ2P/c4, where χ = 2π3/2(h̄/mc)(mp/m),

with mp =
√

h̄c/G the Planck mass, and the temperature and degeneracy

parameters, β = kT/(mc2) and θ = µ/(kT), respectively. The constants of
the Tolman and Klein conditions are evaluated at the center r = 0, indicated
with a subscript ‘0’.

The system variables are [M(r), θ(r), β(r), ν(r)]. We integrate Eqs. (H.2.3–
H.2.6) for given initial conditions at the center, r = 0, in order to be consistent
with the observed dark matter halo mass M(r = rh) = Mh and radius rh,
defined in our model at the onset of the flat rotation curves. The so called
halo radius (and mass) in this paper represent the one-halo scale length (and
mass) associated with the fermionic model here presented, and correspond-
ing with the turn-over of the density profiles in total analogy as other halo-
scale lengths used in the literature such as r0 or r−2 as shown in Fig. H.3. The
circular velocity is

v(r) =

√

GM(r)

r− 2GM(r)/c2
, (H.2.7)

which at r = rh, is v(r = rh) = vh.

It is interesting that a very similar set of equations have been re-derived
in Bilic et al. (2002) apparently disregarding the theoretical approach already
implemented in 1990 in Gao et al. (1990). They integrated the Einstein equa-
tions fixing a fiducial mass of the ino of m = 15 keV/c2, and they derived
a family of density profiles for different values of the central degeneracy pa-
rameter at a fixed temperature consistent with an asymptotic circular veloc-
ity v∞ = 220 km/s. They conclude that a self-gravitating system of such inos
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could offer an alternative to the interpretation of the massive black hole in
the core of SgrA* (Ghez et al. (2008)). Although this result was possible at
that time, it has been superseded by new constraints imposed by further ob-
servational limits on the trajectory of S-stars such as S1 and S2 (Ghez et al.
(2008); Gillessen et al. (2009)).

In this paper we give special attention to the halo boundary conditions de-
termined through the flat rotation curves. We integrate our system of equa-
tions using different boundary conditions to the ones imposed in Bilic et al.
(2002) and reaching different conclusions. We first apply this model to typical
spiral galaxies, similar to our own galaxy, adopting dark matter halo param-
eters (de Blok et al. (2008); Sofue et al. (2009)):

rh = 25 kpc, vh = 168 km/s, Mh = 1.6× 1011M⊙ . (H.2.8)

Later on we repeat the analysis also for typical dwarf spheroidal galaxies:
rh = 0.6 kpc; vh = 13 km/s; Mh = 2× 107M⊙ (Walker et al. (2009)); as well
as for typical big spiral galaxies:rh = 75 kpc; vh = 345 km/s; Mh = 2 ×
1012M⊙ (Boyarsky et al. (2009a)). The initial conditions are M(0) = 0, ν(0) =
0, θ(0) = θ0 and β(0) = β0. We integrate Eqs. (H.2.3–H.2.6) for selected
values of θ0 and m, corresponding to different degenerate states of the gas
at the center of the configuration. The value of β0 is actually an eigenvalue
which is found by a trial and error procedure until the observed values of vh

and Mh at rh are obtained. We show in Fig. H.1 the density profiles and the
rotation curves as a function of the distance for a wide range of parameters
(θ0, m), for which the boundary conditions in (H.2.8) are exactly fulfilled.

H.3. Dark matter profiles: from dwarf to big spiral

galaxies

The phase-space distribution encompasses both the classical and quantum
regimes. Correspondingly, the integration of the equilibrium equations leads
to three marked different regimes (see Fig. H.1): a) the first consisting in a
quantum core of almost degenerate fermions. These cores are characterized
by having θ(r) > 0. The core radius rc is defined by the first maximum of
the velocity curve. A necessary condition for the validity of this quantum
treatment for the central core is that the interparticle mean-distance, lc, be
smaller or of the same order, of the thermal de Broglie wavelength of the inos,
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Figure H.1.: Mass density (left panel), degeneracy parameter (central panel),
and rotation velocity curves (right panel) for specific ino masses m and cen-
tral degeneracies θ0 fulfilling the observational constraints (H.2.8). The den-
sity solutions are contrasted with a Boltzmannian isothermal sphere with the
same halo properties. All the configurations, for any value of θ0 and corre-
sponding m, converge for r & rh to the classical Boltzmannian isothermal
distribution. It is clear how the Boltzmann distribution, is as it should be, in-
dependent of m. Interestingly, when the value Mc(r . 10−2 pc)∼ 106M⊙ (i.e.
m ∼ 10 keV/c2) is chosen as the one of more astrophysical interest, the onset
of the classical Boltzmann regime takes place at distances of r & few 102 pc, in
consistency with the observed cored nature of the innermost resolved regions
in spiral galaxies as analyzed in (de Blok et al., 2008).

λB = h/
√

2πmkT. As we show below (see Fig. H.2), this indeed is fulfilled in
all the cases here studied. b) A second regime where θ(r) goes from positive
to negative values for r > rc, all the way up to the so called classical domain
where the quantum corrections become negligible. This transition region con-
sists in a sharply decreasing density followed by an extended plateau. c) The
classical regime described by Boltzmann statistics and corresponding with
θ(r)≪ −1 (for r & rh), in which the solution tends to the Newtonian isother-
mal sphere with ρ ∼ r−2, where the flat rotation curve sets in. Of course,
the flat region of the velocity curve can not continue indefinitely in the case
of realistic bounded systems. This can be easily achieved in the context of
our model and without changing the results here presented, by introducing
a cut-off in the momentum space accounting for possible dissipative and/or
tidal effects as done in (Ruffini et al. (2013a); Argüelles and Ruffini (2014a)),
and already explained in the footnote 1. Regarding a possible astrophysical
discussion about the novel (increasing-decreasing) aspect of the inner part of
the rotation curve arising before reaching the known classical behaviour, as
well as the numerical implications of β0 and θ0, they are given at the end of
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θ0 m (keV/c2) rc (pc) Mc(M⊙) vc (km/s) θc

11 0.420 3.3× 101 8.5× 108 3.3× 102 2.1
25 4.323 2.5× 10−1 1.4× 107 4.9× 102 5.5
30 10.540 4.0× 10−2 2.7× 106 5.4× 102 6.7
40 64.450 1.0× 10−3 8.9× 104 6.2× 102 8.9

58.4 2.0× 103 9.3× 10−7 1.2× 102 7.5× 102 14.4
98.5 3.2× 106 3.2× 10−13 7.2× 10−5 9.8× 102 21.4

Table H.1.: Core properties for different equilibrium configurations fulfilling
the halo parameters (H.2.8) of spiral galaxies.

this section.

We define the core mass, the circular velocity at rc, and the core degener-
acy as Mc = M(rc), vc = v(rc) and θc = θ(rc), respectively. In Table H.1 we
show the core properties of the equilibrium configurations in spiral galaxies,
for a wide range of (θ0, m). For any selected value of θ0 we obtain the cor-
respondent ino mass m to fulfill the halo properties (H.2.8), after the above
eigenvalue problem of β0 is solved.

It is clear from Table H.1 and Fig. H.1 that the mass of the core Mc is
strongly dependent on the ino mass, and that the maximum space-density
in the core is considerably larger than the maximum value considered in
(Tremaine and Gunn, 1979) for a Maxwellian distribution. Interestingly, as
can be seen from Fig. H.1, the less degenerate quantum cores in agreement
with the halo observables (H.2.8), are the ones with the largest sizes, of the
order of halo-distance-scales. In this limit, the fermion mass acquires a sub-
keV minimum value which is larger, but comparable, than the corresponding
sub-keV bound in (Tremaine and Gunn, 1979), for the same halo observables.
Indeed, their formula gives a lower limit m ≈ 0.05 keV/c2 when using the
proper value for the King radius, rK ≃ 8.5 kpc, as obtained from σ =

√
2/5vh

and ρ0 = 2.5× 10−2M⊙/pc3, which are the associated values to the Boltz-
mannian density profile of Fig. H.1. This small difference is formally under-
stood by the following fact: while their conclusions are reached by adopting
the maximum phase-space density, Qh

max ∼ ρh
0m−4σ−3

h , at the center of a halo
described by a Maxwellian distribution; in our model the maximum phase-
space density is reached at the center of the dense quantum core described
by Fermi-Dirac statistics, Qc

max ∼ ρc
0m−4σ−3

c (where lower and upper index c
reads for the central core). An entire new family of solutions exists for larger
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H. On the core-halo distribution of dark matter in galaxies

values of central phase-space occupation numbers, always in agreement with
the halo observables (see Fig. H.1). Now, since these phase-space values, by
the Liouville’s theorem, can never exceed the maximum primordial phase-

space density at decoupling, Qd
max, we have Qh,c

max < Qd
max. Then, considering

that all our quantum solutions satisfy Qc
max > Qh

max, it directly implies larger
values of our ino mass with respect to the Tremaine and Gunn limit. Nev-
ertheless, as we have quantitatively shown above, e.g. for the case of typi-
cal spiral galaxies, the two limits become comparable for our less degenerate
(θ0 ≈ 10) quantum cores in agreement with the used halo observables (H.2.8).

In the case of a typical spiral galaxy, for an ino mass of m ∼ 10 keV/c2,
and a temperature parameter β0 ∼ 10−7, obtained from the observed halo
rotation velocity vh, the de Broglie wavelength λB is higher than the interpar-
ticle mean-distance in the core lc, see Fig. H.2, safely justifying the quantum-
statistical treatment applied here.

If we turn to the issue of an alternative interpretation to the black hole on
SgrA*, we conclude that a compact degenerate core mass Mc ∼ 4× 106M⊙ is
definitely possible corresponding to an ino of m ∼ 10 keV/c2 (see Table H.1).
However, the core radius of our configuration is larger by a factor ∼ 102

than the one obtained with the closest observed star to Sgr A*, i.e. the S2
star (Gillessen et al. (2009)). Nevertheless, for an ino mass of m ∼ 10 keV/c2

(θ0 = 30), the very low temperature of the dense quantum core is already
a small fraction of the Fermi energy (i.e. λB > l), where additional interac-
tions between the inos should arise, affecting the mass and radius of the new
denser core depending on the interaction adopted 3. Indeed, we have recently
applied this novel idea in Argüelles et al. (2014a), achieving now higher pos-
sible compactness for the new quantum core, in perfect agreement with the
observational constraints imposed by the S2 star, and always for ino masses
in the range of m ∼ 101 keV/c2. Moreover, the relevance of self-interactions
in ultra-cold fermionic-particle collisions has been already shown in labo-
ratory, for example, for (effective) Fermi gases, e.g. 6Li, at temperatures of
fractions of the Fermi energy (Giorgini et al. (2008)). There, a good agree-
ment between experiment and theory was achieved for such a cold Fermi
gas when studied in terms of a grand-canonical many-body Hamiltonian in
second quantization, with a term accounting for fermion-fermion interaction,
similarly as done in Argüelles et al. (2014a).

3This is analogous for instance to the case of neutron stars, where nuclear fermion interac-
tions strongly influence the mass-radius relation (see, e.g., Lattimer and Prakash (2007))
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Figure H.2.: The less degenerate quantum cores in agreement with the halo
observables (H.2.8) corresponds to θ0 ≈ 10 (λB ∼ 3lc). These cores are the
ones which achieve the largest sizes, of order ∼ 101 pc, and implying the
lowest ino masses in the sub-keV region.
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H. On the core-halo distribution of dark matter in galaxies

We further compare and contrast in Fig. H.3 our theoretical curves of
Fig. H.1 with observationally inferred ones. In order to provide a more
detailed comparison, we have extensively contrasted our three-parametric
fermionic model with many other dark matter parametric models resulting
from N-body simulations, in terms of a formal Bayesian statistical analysis
and using high resolution data samples including for baryonic components,
in Siutsou et al. (2015). It is interesting that the quantum statistical treatment
(including relativistic effects) considered here, is characterized by the pres-
ence of central cored structures unlike the typical cuspy configurations ob-
tained from a classic non-relativistic approximation, such as the ones of nu-
merical N-body simulations in Navarro et al. (1997). This naturally leads to
a first step, in terms of a first principle physics approach, to understand the
well-known core-cusp discrepancy as first shown in de Blok et al. (2001) and
further confirmed for typical spiral galaxies in Chemin et al. (2011). Such a
difference between the ino’s core and the cuspy NFW profile, as well as the
possible black hole nature of the compact source in SgrA*, will certainly reac-
tivate the development of observational campaigns in the near future. There
the interesting possibility, in view of the BlackHoleCam Project based on the
largest Very Long Baseline Interferometry (VLBI) array4, to verify the general
relativistic effects expected in the surroundings of the central compact source
in SgrA*. Such effects depend on whether the source is modeled in terms of
the RAR model presented here (with the possible inclusion of fermion inter-
actions, Argüelles et al. (2014a)), or as a black hole. To compare and contrast
these two alternatives is an observational challenge now clearly open.

Following the analysis developed here for a typical spiral, we have also
considered two new different sets of physical dark matter halos: rh = 0.6 kpc;
vh = 13 km/s; Mh = 2 × 107M⊙ for typical dwarf spheroidal galaxies,
(e.g. Walker et al. (2009)); and rh = 75 kpc; vh = 345 km/s; Mh = 2× 1012M⊙
for big spiral galaxies, as analyzed in Boyarsky et al. (2009a). For big spirals,
λB/lc = 5.3, while for typical dwarfs galaxies λB/lc = 4.1, justifying the
quantum treatment in both cases.

A remarkable outcome of the application of our model to such a wide range
of representative dark halo galaxy types, from dwarfs to big spirals, is that
for the same ino mass, m ∼ 10 keV/c2, we obtain respectively core masses
Mc ∼ 104M⊙ and radii rc ∼ 10−1pc for dwarf galaxies, and core masses
Mc ∼ 107M⊙ and radii rc ∼ 10−2pc for big spirals. This leads to a possible

4http://horizon-magazine.eu/space
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Figure H.3.: The cored behavior of the dark matter density profile from the
Ruffini-Argüelles-Rueda (RAR) model is contrasted with the cuspy Navarro-
Frenk-White (NFW) density profile (Navarro et al., 1997), and with a cored-
like Einasto profile (Einasto, 1965; Einasto and Haud, 1989). The free pa-
rameters of the RAR model are fixed as β0 = 1.251 × 10−7, θ0 = 30 and
m = 10.54 keV/c2. The corresponding free parameters in the NFW formula
ρNFW(r) = ρ0r0/[r(1 + r/r0)

2] are chosen as ρ0 = 5 × 10−3M⊙ pc−3 and
r0 = 25 kpc, and for the Einasto profile ρE(r) = ρ−2 exp [−2n(r/r−2)

1/n − 1],
ρ−2 = 2.4 × 10−3M⊙ pc−3, r−2 = 16.8 kpc, and n = 3/2. In the last two
models, the chosen free parameters are typical of spiral galaxies according to
(de Blok et al., 2008; Chemin et al., 2011).
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alternative to intermediate (∼ 104M⊙) and more massive (∼ 106−7M⊙) black
holes, thought to be hosted at the center of the galaxies.

Moreover, we have obtained out of first principles, a possible universal
relation between the dark matter halos and the super massive dark central
objects. For a fixed ino mass m = 10 keV/c2, we found the Mc-Mh correlation
law

Mc

106M⊙
= 2.35

(

Mh

1011M⊙

)0.52

, (H.3.1)

valid for core masses ∼ [104, 107] M⊙ (corresponding to dark matter halo
masses∼ [107, 1012] M⊙). Regarding the observational relation between mas-
sive dark compact objects and bulge dispersion velocities in galaxies (the Mc-
σ relation (Ferrarese (2002b)), it can be combined with two observationally
inferred relations such as the σ-Vc and the Vc-Mh correlations, where Vc is the
observed halo circular velocity and Mh a typical halo mass. This was done
in Ferrarese (2002a) to find, by transitivity, a new correlation between cen-
tral mass concentrations and halo dark masses (Mc-Mh). Interestingly, such
a correlation matches with the one found above in Eq. (H.3.1) in the range
Mc = [106, 107] M⊙, without assuming the black hole hypothesis. The ap-
pearance of a core surrounded by a non-relativistic halo, is a key feature of
the configurations presented in this paper. It cannot however be extended
to quantum cores with masses of ∼ 109M⊙. Such core masses, observed in
Active Galactic Nuclei (AGN), overcome the critical mass value for gravita-
tional collapse Mcr ∼ M3

pl/m2 for keV-fermions, and therefore these cores

have to be necessarily black holes (Argüelles and Ruffini (2014b)). The char-
acteristic signatures of such supermassive black-holes, including jets and X-
ray emissions, are indeed missing from the observations of the much quiet
SgrA* source, or the centers of dwarf galaxies.

At this point it is relevant to discuss the qualitative and quantitative rele-
vance of the general relativistic approach proposed here to model the distri-
bution of dark matter in galaxies, when compared with a classical Newtonian
approach. For the example analyzed here, i.e. for m ∼ 10 keV/c2 and spi-
ral galaxies, the compactness of the quantum core is GMc/(rcc2) ∼ 10−6,
thus general relativistic effects are not dominant in these configurations. Un-
der those conditions, we do expect a Newtonian approach to describe satis-
factorily the configurations. Indeed, by integrating the corresponding equa-
tions of equilibrium in the Newtonian case, which are obtained in the non-
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relativistic weak-field limit of the treatment presented here 5, we obtain sim-
ilar results to the general relativistic solution within 1% (for spiral galaxies
and m ∼ 10 keV/c2), keeping the core-halo structure containing the three
markedly different physical regimes from quasi-degeneracy regime in the
core all the way up to Boltzmaniann one in the halo. As we have explained,
such a change of regimes is due to the combination of the non-zero tempera-
ture and the changing fermion chemical potential with distance, which pro-
duces a changing degeneracy parameter with the distance. It is important
to mention at this point that, if we were to model the galactic halos assum-
ing a zero temperature, we would obtain a different behavior of the density
profile (resembling our quantum core and never reaching the plateau plus
Boltzmannian phase) which leads to non-flat rotation velocity curves (with a
raising part, a maximum, and a Keplerian falling down region), hence incon-
sistent with observations.

A general relativistic treatment becomes a necessity in the case of
more compact configurations approaching the critical mass for gravita-
tional collapse, Mcr ∼ M3

pl/m2 ∼ 109M⊙, which as we have shown

(Argüelles and Ruffini (2014b)) could be attained in the central compact cores
observed in AGNs by the same dark matter candidate of m ∼ 10 keV/c2, and
corresponding to different boundary conditions as contrasted with the case
of normal galaxies here considered.

We turn now to briefly discuss the astrophysical implications of the full
morphology of the dark matter rotation curves as well as the numerical im-
plications of the typical temperature and degeneracy parameters found here.
Indeed, the issue addressed in the present article is referred only to a pure
dark matter composition while the observational data refers to the sum of
the dark and baryonic (gas and stellar populations) matter. The key result
presented here is that the dark matter contribution is always predominant in
the inner core (at sub-pc scales), and in the outer halo region at the onset of
the flat part of the given rotation curve; while in between baryonic matter
prevails. We can see from the right panel of Fig. H.1 that indeed, for a Milky
Way-like galaxy, our model correctly predicts both the value and flattening of
the circular velocity at distances r & 10 kpc. A detailed comparison of the the-
oretical curves analyzed here with extended astrophysical data will be soon

5This is obtained by taking the limit c→ ∞ and eν/2 ≈ 1+ φ/c2, leading to thermodynamic
equilibrium conditions T =constant, and µ + mφ =constant, with φ the Newtonian grav-
itational potential.
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presented elsewhere (Argüelles et al. (2015)), including the special behavior
of the circular velocity e.g. at the sub-pc scales.

Regarding the actual values of the dark matter temperatures and (effective)
chemical potentials obtained out of the free parameters of the model (β0, θ0)
consistent with the (quasi) relaxed galactic structures analyzed here, we have:
for an ino mass of m ∼ 10 keV/c2, in typical dwarfs Td ∼ 10−1 K (β0 ∼ 10−9),
while in spirals Ts ∼ 101 K (β0 ∼ 10−7). This values when combined with
the central degeneracy parameters gives, for typical dwarfs µd ∼ 10−7 keV
(θ0,d = 15), and µs ∼ 10−5 keV (θ0,s = 30) or µbs ∼ 10−4 keV (θ0,bs = 36),
for typical spiral or big spirals respectively6. The issue of the potential impli-
cations of these dark matter temperatures and chemical potentials in relation
with different possible microscopic models for the dark matter candidate in
cosmology, will be a subject for future works.

H.4. Conclusions

A consistent treatment of self-gravitating fermions within general relativity
has been here introduced and solved with standard boundary conditions
appropriate to flat rotation curves observed in galactic halos of spiral and
dwarf galaxies. A new structure has been identified: 1) a core governed by
quantum-like statistics; 2) a velocity of rotation at the surface of this core
which is bounded independently of the mass of the particle and remarkably
close to the asymptotic rotation curve; 3) a semi-degenerate region leading to
an asymptotic regime described by a pure Boltzmann distribution, consistent
with the flat rotation curves observed in galaxies. Interestingly it has been
recently shown that quasi relaxed core-halo structures analogous as the one
obtained here for the dark matter in galaxies, take part of a broader and more
ubiquitous behaviour in nature, proper of long-range collisionless interacting
systems including also plasmas and kinetic spin models (Levin et al. (2014)).

For m ∼ 10 keV/c2 a universal relation between the mass of the core Mc

and the mass of the halo Mh has been found. This universal relation applies

6It is important to recall that i) due to the small general relativistic effects in the cases ana-
lyzed in this work, from the Tolman and Klein conditions the central values of T and µ
given above are accurate through the overall configurations; and ii) µ is the chemical po-
tential with the fermion rest-mass subtracted-off, therefore the (effective) chemical poten-
tials, including the fermion rest-mass, are roughly (for all the cases with m ∼ 10 keV/c2)
µd,s,bs + mc2 ≈ 10 keV.
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in a vast region of galactic systems, ranging from dwarf to big spiral galaxies
with core masses ∼ [104, 107] M⊙ (corresponding to dark matter halo masses
∼ [107, 1012] M⊙).

Starting from the basic treatment here introduced, of bare self-gravitating
fermions, we have already examined the possibility to introduce new types of
interactions (Argüelles et al. (2014a)) among the inos, considering, for exam-
ple, a self-interacting picture in the context of right-handed sterile neutrinos
in the minimal standard model extension (see e.g. Boyarsky et al. (2009b)), as
a viable candidate for the ino particles in our new scenario. The extended ap-
proach studied in Argüelles et al. (2014a) allowed us to verify the possibility
of the radius of the quantum core to become consistent with the observations
of SgrA*, and so open the way to identify additional (effective) fundamental
interactions in the ino physics. For this more general analysis, as well as for
the model extension which allow us to deal with the very massive galactic
compact cores of Mc ∼ 109M⊙ as studied in Argüelles and Ruffini (2014b),
the General Relativistic treatment here introduced for completeness, clearly
becomes mandatory.

After this generalized treatment, we will further address the issue of the
implications of these kev-fermions in cosmology.

543





I. Dark Matter Massive Fermions
and Einasto Profiles in Galactic
Haloes

I.1. Introduction

The problem of the distribution of Dark Matter (DM) in galaxies, as usually
addressed in the literature, is mainly focused in the halo regions and asso-
ciated with the galaxy rotation curves obtained from the observations, see
e.g. Einasto (2013). A well-known approach used to deal with this problem
is the Navarro–Frenk–White (NFW) model (Navarro et al., 1997), expected
to provide a universal description of dark matter halos obtained under the
following main considerations: 1) N-body simulations in Cold dark matter
(CDM) and (ΛCDM) cosmologies; 2) particles each of masses of ∼ 109M⊙ 1;
3) classical Newtonian physics.

Despite an indicated agreement of this model with the large scale struc-
ture of the Universe, some problems remains at galactic scales, see e.g.
Munshi et al. (2013). A central characteristic of the NFW dark matter den-
sity profiles, is that they show a cuspy and divergent behaviour through the
center of the configuration, while empirical profiles tend to show a core of
constant density, giving rise to the well-known core-cusp controversy, see
e.g. de Blok (2010).

Yet another important approach developed to understand the distri-
bution of matter in galaxies has been advanced by Einasto (1965) and
Einasto and Haud (1989). This is a phenomenological approach consisting
in the proposal of an empirical fitting function composed by three free pa-

1Modern numerical simulations can reach better resolution down to particle masses of ∼
105M⊙ (Gao et al., 2012).
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rameters as detailed in equation (I.1.1)

ρE(r) = ρ−2 exp

(

− 2

n

[(

r

r−2

)n

− 1

])

, (I.1.1)

where ρ−2 and r−2 are the density and radius at which ρ(r) ∝ r−2, and n is
the Einasto index which determines the shape of the profile.

Recent N-body simulations in ΛCDM cosmology by Navarro et al. (2004)
purported a novel dark matter halo model different from NFW. This model
was soon realized (Merritt et al., 2006) to be the same as the Einasto one as
given by equation (I.1.1).

After that, using the highest quality rotation curves available to date ob-
tained from The HI Nearby Galaxy Survey (THINGS) (Walter et al., 2008;
de Blok et al., 2008), the Einasto dark matter halo model has been proposed
as the standard model for dark matter halos by Chemin et al. (2011), as it
provides both cored and cusped distributions for different values of model
parameters (see Fig. I.1). In that work, the fundamental core-cusp discrep-
ancy is analyzed in detail for the whole sample of galaxies under study. It is
clearly shown that for the majority of the galaxies considered in the sample,
the cored halos (compatible with near unity Einasto indexes) are preferred
over the cuspy ones (these instead compatible with higher Einasto indexes).

We present here a novel approach focusing on galactic structures and an
underlying microphysical component of Dark Matter. The model is built
upon the following general considerations: 1) the Dark Matter component
is assumed to be chargeless spin-1/2 fermions; 2) the configurations are de-
scribed by General Relativity; 3) the particles are assumed to be isothermal in
thermodynamic equilibrium (i.e. without the need of pre-fixing any cosmo-
logical history). The theoretical fundament of this new approach is detailed
in the model of semi-degenerate self-gravitating fermions first introduced by
Gao et al. (1990), and more recently with applications to galactic dark mat-
ter by Argüelles et al. (2014b). Our model is based in the following main
assumptions:

1. the problem of galactic cores and halos have to be addressed unitarily;

2. for definiteness we study the simplest problem of ”bare” massive parti-
cles, neglecting at this stage all other interactions than the gravitational
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Figure I.1.: Comparison of the density profiles for different phenomenologi-
cal models of dark matter distribution.

one and fulfilling only the Fermi–Dirac statistical distribution

f =
1

exp
(

ǫ−µ
kT

)

+ 1
=

1

exp
(

ǫ
βmc2 − θ

)

+ 1
, (I.1.2)

where ǫ is kinetic energy of the particles, µ is chemical potential, T is
the temperature, k is Boltzmann constant and c is the speed of light.
The mass of the particle (m), the temperature parameter (β = kT/mc2)
and the degeneracy parameter (θ = µ/kT) at the center are the three
free parameters of the model;

3. we consider zero total angular momentum and also neglect any effect
of baryonic matter on the DM in the mathematical formulation.

It is shown that in any such system the density at large radii scales as r−2

independently of the values of the central density, providing the flat rotation
curve (Gao et al., 1990; Argüelles et al., 2014b).

The dark matter halos obtained in the new dark matter approach proposed
here share a common or universal feature which shed more light on the core-
cusp discrepancy, while providing a new mass scale to the dark matter candi-
date. Our density profiles always favor a cored behaviour (without any cusp)

547



I. Dark Matter Massive Fermions and Einasto Profiles in Galactic Haloes

in the observed inner halo regions, given the quantum nature of the fermionic
particles. Another fundamental outcome of our model is the range of the DM
particle mass, which must be m & 5 keV in order to be in agreement with
typical halo sizes of the observed dwarf galaxies (Argüelles et al., 2014b).

The theoretical formulation of Argüelles et al. (2014b) is based on the first
principles physics and provides a physical complement to Einasto phe-
nomenological models. It also offers the necessity to approach the Dark Mat-
ter distribution in galactic haloes with fermions with masses larger than the
above mentioned bound.
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Figure I.2.: Semidegenerate density profile in dimensionless units for cen-
tral degeneracy parameter θ0 = 15 and central temperature parameter β0 =
10−10.

The paper is structured as follows. We model the distribution of Dark Mat-
ter as semidegenerate fully relaxed thermal self-gravitating general relativis-
tic fermionic solutions of Gao et al. (1990), see Sec. I.2. The resulting density
profiles provide flat rotation curve at large distances, cored distribution of
dark matter in the halo, and a massive degenerate core at the very center,
see Sec. I.3. We describe in Sec. I.4 the actual procedure of fitting of rotation
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curves, and then discuss the results in Sec. I.5. Conclusions follow.

I.2. Model equations

We consider self-gravitating system of fermions in thermal equilibrium fol-
lowing Gao et al. (1990) with occupation numbers given by

f (ǫ) =
1

e
ǫ−µ
kT + 1

. (I.2.1)

Then equation of state reads

ρ = m
g

h3

∫

1 + ǫ/mc2

e
ǫ−µ
kT + 1

d3p, (I.2.2)

P =
2

3

g

h3

∫

(1 + ǫ/mc2)−1(1 + ǫ/2mc2)ǫ

e
ǫ−µ
kT + 1

d3p, (I.2.3)

where g = 2s + 1, s is the spin of the particle, and integration is extended
over all 3-momentum space.

The Einstein equations for the spherically symmetric metric

gµν = diag(eν,−eλ,−r2,−r2 sin2 θ), (I.2.4)

where ν and λ depend only on the radial coordinate r, together with the ther-
modynamic equilibrium conditions of Tolman (1930) and Klein (1949b)

eν/2T = const , eν/2(µ + mc2) = const, (I.2.5)
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can be written in the dimensionless form of Gao et al. (1990)

dM̂

dr̂
= 4πr̂2ρ̂, (I.2.6)

dθ

dr̂
= −1− β0(θ − θ0)

β0

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (I.2.7)

dν

dr̂
=

M̂ + 4πP̂r̂3

r̂2(1− 2M̂/r̂)
, (I.2.8)

β0 = β(r)e
ν(r)−ν0

2 , (I.2.9)

e−λ = 1− 2M̂(r̂)

r̂
. (I.2.10)

The following dimensionless quantities were introduced:

r̂ = r/χ, (I.2.11)

M̂ = GM/(c2χ), (I.2.12)

ρ̂ = Gχ2ρ/c2, (I.2.13)

P̂ = Gχ2P/c4, (I.2.14)

where χ = 2π3/2(h̄/mc)(mp/m) is the characteristic length that scales as

m−2, with mp =
√

h̄c/G being the Planck mass, and the temperature and

degeneracy parameters, β = kT/(mc2) and θ = µ/(kT), respectively. The
constants of the equilibrium conditions of Tolman and Klein have been eval-
uated at the center r = 0, which we indicate with a subscript ‘0’.

The system of coupled differential equations (I.2.6–I.2.10) is solved for ini-
tial conditions M(0) = ν(0) = 0 and given set of free parameters β0 and θ0,
m for each galaxy under study as detailed below.

I.3. Properties of semidegenerate configurations

Galactic halos have to be necessarily composed from cold particles, so that as-
trophysically relevant solutions will have temperature parameters β ≪ 1. In
this case, the general solution for semidegenerate configurations (θ0 & 10)
present three different regions: an inner degenerate compact core, an ex-
tended low-degenerate inner halo of almost constant density and a non-
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degenerate outer halo with characteristic slope ρ ∝ r−2 (see Gao et al. (1990)
and Fig. I.2 for additional details). The infinite mass of the configuration ex-
tended up to spatial infinity is not a problem, because in reality it is limited
by tidal interactions with other galaxies, which introduce an energy cutoff
into the distribution function, see e.g. Ingrosso et al. (1992). However this is
not important for the inner parts of the configuration we are interested in.

In order to understand the crucial properties of this equilibrium config-
urations we plot the circular velocity of a test body in the metric fulfilling
Eqs. (I.2.6–I.2.10) on Fig. I.3. There are indeed four regions of the solution for
circular velocity, each with characteristic slope. The inner region I correspond
to the degenerate core of almost constant density, so that vcirc ∝ r. For increas-
ing values of radial coordinate the inner halo follows, itself composed of two
different regions. In the region II the density of dark matter sharply decreases
and this Keplerian region is dominated by the mass of the degenerate core,
and as a result vcirc ∝ r−1/2. For yet increasing values of the radial coordi-
nate the density of dark matter reach an almost constant value giving rise to a
plateau, see Fig. I.2. As soon as the mass of the plateau prevails over the mass
of the core we have the region III where vcirc ∝ r. Finally in the region IV, after
some oscillations the circular velocity tends to a constant independent on r,
corresponding to a pure Boltzmannian regime and characteristic for the flat
rotation curve of outer halo.

We define the physical characteristics of each configuration as follows:

• The characteristic radius of the core r̂c is given by v̂circ(r̂c) = max in
region I.

• M̂c is the mass of the core given by M̂c = v̂2
circr̂ in the region II.

• The characteristic radius of the inner halo r̂h correspond to v̂circ(r̂h) =
max in region III.

• The characteristic mass of the inner halo M̂h is given by M̂h = M̂(r̂h)
just between the regions III and IV.

For the parameters in the region of θ0 ∈ [0, 200], log β0 ∈ [−10,−5] we
calculate a grid of models and extracted numerically the physical character-
istics mentioned above. Then we fit the obtained values by different double
parametric functions and find out the best fitting formulae with the corre-
spondent (β0,θ0) dependence for the range of θ0 ∈ [20, 200]. An interesting
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Figure I.3.: Dependence of v̂circ = vcirc/c on dimensionless radius r̂, β =
10−8, θ0 = 50.
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fact is that in our region of parameters circular velocity vcirc in the flat part of
region IV (i.e. v∞) is defined by temperature β0 only. In the range of astro-
physically relevant parameters θ0 ∈ [10, 200], log β0 ∈ [−10,−5] the scaling
relation between circular velocity and β0 corresponds to the Boltzmannian
relation between vcirc and one-dimensional dispersion velocity σ =

√
kT/m

(see e.g. Binney and Tremaine (1987))

v∞

km/s
=
√

2c
√

β0. (I.3.1)

We have here neglected general relativistic corrections which are very small

in these ranges of parameters, i.e. eν(∞)−ν(0) ≈ 1, and then β(∞) ≈ β0 by
equation (H.2.6).

For the temperature and degeneracy free parameters in the range log β0 ∈
[−10,−5], θ0 ∈ [20, 200], respectively, we obtain the following dimensionless
scaling laws for core radius and mass2

r̂c = 0.226(β0θ0)
−1/4, (I.3.2)

M̂c = 0.234(β0θ0)
3/4. (I.3.3)

However, the core region is typically very small and is not constrained by
empirical data of the THINGS sample considered here. Moreover, the mass
contribution of regions I and II to the total mass Mh at the end of region
III is . 10−2 in our parameter range as shown in Argüelles et al. (2014b),
indicating that only regions III and IV are the relevant ones to be used in the
fitting procedure against the data.

At this point it is important to emphasize that the theoretical treatment
used here to fit dark matter halos applies for any core size, even for the
ones which are close to its critical mass, Mcr ∼ 109M⊙, as studied in
Argüelles et al. (2014b), where a relativistic treatment is mandatory. Even
though the regions I-II-III-IV corresponding to the sample considered here
can be well explained in terms of non-relativistic physics, the general rela-

2For radii r < rc the configurations corresponds to region I, where ρ(r) ≈ const and then
from (I.3.2) and (I.3.3), taking into account (I.2.11) and (I.2.12), we can write ρc ∝ Mc/r3

c

in terms of the chemical potential and particle mass (β0θ0 = µ0/mc2) as ρc ∝ µ3/2
0 m5/2.

This dependence is precisely the one of a fully degenerate non-relativistic Fermi gas in
presence of an external gravitational field, which is further coinciding with a polytrope
of index n = 3/2 (see e.g. Shapiro and Teukolsky (1983)).
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tivistic approach has been used for formal correctness, only giving negligible
corrections.

Dimensionless halo radius and mass have different scalings, they are pro-
portional not to θα

0 , but to αθ0

r̂h = 0.953β1/4
0 (1.445)θ0 , (I.3.4)

M̂h = 2.454β3/4
0 (1.445)θ0 . (I.3.5)

Formulas (I.3.4–I.3.5) represent perfect scalings in the region of parame-
ters considered above, which involves also the scaling of the whole rotational
curves in regions III and IV; formula (I.3.1) shows a perfect scaling in the flat
part of the rotation curve for region IV. Moreover, the Newtonian expression
for the dimensionless circular velocity v̂2

circ(r̂) = M̂/r̂ is perfectly suitable in
the physical region under consideration. The expression for maximal rotation
velocity in the halo is thus obtained from (I.3.4) and (I.3.5) and reads

v̂2
h(r̂h(β0, θ0)) = 2.575β1/2

0 . (I.3.6)

In next section we explain the fitting procedure with the use of the halo
scaling laws for regions III and IV obtained here.

I.4. Observed rotation curves and fitting procedure

In 2008, a sample of 34 nearby (closer than 15 Mpc) spiral and irregular galax-
ies (Sb to Im) were observed with The HI Nearby Galaxy Survey (THINGS)
(Walter et al., 2008). These observations allowed to obtain the highest quality
rotation curves available to date due to the high spatial and velocity resolu-
tion of THINGS. Then a sub-sample of these rotation curves, corresponding
to 19 rotationally dominated and undisturbed galaxies, were combined with
information on the distribution of gas and stars by de Blok et al. (2008) to
construct mass models for the dark matter component of the sample. These
models finally were used to quantify the dark matter contribution for each
galaxy by using the following formula

V2
obs = V2

gas + Υ∗V2
∗ + V2

DM, (I.4.1)
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which relates the observed input curves of Vobs, Vgas and V∗, defined below,
with the dark matter rotation curve VDM to be determined from the known
input data once the the mass-to-light ratio Υ∗ is provided.

The total and gas observed rotation curves Vobs and Vgas, respectively, were
both obtained from the THINGS data: the first was obtained from velocity
fields analysis and the second from the neutral hydrogen (HI) distribution
maps, as described in de Blok et al. (2008). Instead, each stellar (light) rota-
tion curve V∗ is obtained from the corresponding stellar distribution observed
in the K band (i.e. at 3.6 µm) by the Spitzer Infrared Nearby Galaxy Survey
(SINGS), independent of THINGS, and described in de Blok et al. (2008) and
references therein. Finally, the mass-to-light ratio ΥK

∗ was used to determine
the rotation curve associated with the stellar mass distribution from that of
the measured light.

At this point it is relevant to further emphasize the underlying hypothesis
to which equation (I.4.1) is subject to. This is, each baryonic rotation velocity
Vgas and V∗ was calculated from the correspondent observed baryonic mass
density distribution, and was defined as the velocity that each component
would induce on a test particle in the galactic plane as if they were isolated
of any external influence.

In de Blok et al. (2008) equation (I.4.1) was applied to test the cuspy
Navarro-Frenk-White and cored pseudo-ISO dark matter models against
data as follows: the (squared) rotation curves of the baryonic components
(after appropriate scaling with ΥK

∗ ) were subtracted from the (squared) ob-
served rotation curve V2

obs to apply a reduced χ2 fitting procedure in order
to find the best fitting free parameters for each dark matter model. Soon
after, the same analysis was extended further to Einasto dark matter pro-
files by Chemin et al. (2011), concluding that the Einasto model provides the
best match to the observed rotation curves when compared with NFW and
pseudo-ISO models with empirical fixed values for ΥK

∗ for two different stel-
lar initial mass functions (IMFs).

Here we propose a different dark matter halo model, which is neither based
on numerical N-body simulations nor on phenomenological model propos-
als, but relies on the underlying microphysical composition of the dark mat-
ter candidate, as explained in former sections.

Thus, analogously to de Blok et al. (2008) and Chemin et al. (2011) we
use the HI high resolution observations of galaxies from THINGS survey
(Walter et al., 2008). We analyze here the sample of 16 rotationally domi-
nated and undisturbed galaxies presented both in de Blok et al. (2008) and
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Chemin et al. (2011), listed below in Table 1.
Regarding the rotation curves data of the baryonic components, we con-

sider the contributions of the gas, the stellar disk and a spherical stellar bulge
Vb as given in Chemin et al. (2011). The halo rotation velocity correspond-
ing to the spherical dark matter component is taken from the two parametric
scaling, see (I.3.4–I.3.5), which we name from now on as the fermionic dark
matter velocity profile Vf (r).

Once each component is provided, we make use of the equation analogous
to (I.4.1)

V2
obs = V2

gas + Υ∗V2
∗ + V2

b + V2
f , (I.4.2)

With all the baryonic velocity terms (V2
gas, Υ∗V2

∗ and V2
b ) as observa-

tional inputs, we fit the HI observed rotation curve V2
obs by Levenberg–

Marquardt nonlinear least-squares algorithm, in complete analogy as done
in Chemin et al. (2011).

We did not take into account the contribution of molecular gas because the
total gas surface densities are dominated by atomic gas for the majority of
the sample, as explained in Chemin et al. (2011) and references therein. Total
rotation curve was taken from de Blok et al. (2008). We have not considered
models with free mass-to-light ratios, deferring it to a future paper (in prepa-
ration). Instead following Chemin et al. (2011) we have adopted the fixed
mass-to-light ratios of stellar populations with a bursty star formation his-
tory with a Kroupa IMF. We choose this IMF instead of the diet-Salpeter IMF,
also considered in Chemin et al. (2011) and de Blok et al. (2008), as it gener-
ally provides better agreement with observations for rotation curves (see Fig.
5 of Chemin et al. (2011)), and in some cases the Salpeter IMF leads to rota-
tional velocities due to stellar component only already in pronounced excess
over observed total rotational velocity (see, for example, cases of NGC3521
and NGC5055 at Fig. 3 of Chemin et al. (2011)).

Together with the dark matter profile of semidegenerate configurations
with particle mass m = 10 keV/c2 and varying θ0 and β0, and for the sake of
comparison, the following profiles were also used for fitting:

• Cored profiles with central density ρ0 and characteristic radius r0:

– pseudo-isothermal sphere profile

ρDM(r) = ρ0
r2

0

r2 + r2
0

, (I.4.3)

556



I.5. Results and discussion

– Burkert profile

ρDM(r) = ρ0
r3

0

(r0 + r)(r2
0 + r2)

. (I.4.4)

• Cusped profiles with characteristic radius r−2 where the density profile
has a (logarithmic) slope of −2 (the ”isothermal” value) and ρ−2 as the
local density at that radius. In the case of Einasto profiles a third pa-
rameter is needed, the Einasto index n which determines the shape of
the profile.

– Navarro–Frenk–White profile

ρDM(r) = 4ρ−2
r−2

r

(

r−2

r + r−2

)2

, (I.4.5)

– Einasto profile3

ρDM(r) = ρ−2 exp

{

−2n

[

(

r

r−2

)1/n

− 1

]}

. (I.4.6)

I.5. Results and discussion

In this section, we compare the fits of rotation curves by the different mod-
els considered in the last section. As we have to compare models with dif-
ferent number of parameters, which are not nested into each other, we use
Bayesian Information Criterion (BIC) introduced by Schwarz (1978). It pro-
vides a penalty to models with larger number of parameters to check what
of them is more likely to be correct. Model with minimum BIC value is pre-
ferred. For the models with the same number of parameters, BIC is equiva-
lent to χ2 criterion.

The results of fitting are presented in the Table I.1 and on Fig. I.4. Due to
the scaling laws recalled in Sec. I.3 the fits obtained here for particle mass
m = 10 keV/c2 can be also transferred to another particle mass by changing

3The family of Einasto profiles with relatively large indices n > 4 are identified with cuspy
halos, while low index values n < 4 presents a cored-like behaviour (Chemin et al., 2011).
The lower the n the more cored-like the halo profile.
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Table I.1.: Results of fitting
Semidegenerate Burkert

Galaxy β, 10−8 θ∗0 χ2
r BIC r0 , kpc ρ0 , 10−3 M⊙/pc3 χ2

r BIC
NGC2366 0.99± 0.02 24.22± 0.08 0.10 27 2.2± 0.2 43± 10 0.12 35
NGC2403 7.10± 0.06 27.43± 0.07 2.7 902 4.08± 0.06 83± 3 2.3 866
NGC2841 10.8± 0.4 32.04± 0.17 2.6 366 20.6± 0.9 5.2± 0.5 2.7 370
NGC2903 16.33± 0.09 26.88± 0.06 0.66 238 2.89± 0.06 388± 18 1.1 283
NGC2976 9± 3 28.8± 0.4 0.44 93 20± 20 40± 150 0.49 97
NGC3031 9.7± 0.3 26.6± 0.2 3.9 470 2.63± 0.10 270± 20 3.9 468
NGC3198 7.44± 0.07 28.66± 0.08 1.06 254 6.32± 0.18 36± 2 0.99 248

IC2574 2.00± 0.06 27.96± 0.09 0.28 167 8.0± 0.6 7.2± 1.2 0.10 67
NGC3521 8.9± 0.7 28.3± 0.4 4.1 437 5.4± 0.4 60± 8 4.2 437
NGC3621 7.35± 0.11 28.70± 0.08 3.0 496 6.48± 0.12 34.3± 1.3 2.5 475
NGC4736 3.01± 0.13 22.4± 0.5 2.1 302 0.84± 0.07 870± 160 1.9 296
DDO154 0.791± 0.017 24.37± 0.10 0.84 172 2.32± 0.10 29± 3 0.62 153
NGC5055 8.35± 0.13 30.99± 0.12 1.9 708 14.3± 0.5 8.0± 0.5 2.0 719
NGC6946 8.9± 0.3 26.9± 0.2 16.4 993 3.48± 0.08 146± 7 15.7 985
NGC7331 11.7± 0.2 30.10± 0.12 0.45 226 9.7± 0.7 25± 4 0.41 214
NGC7793 4.44± 0.16 25.85± 0.13 3.7 287 2.60± 0.07 130± 8 3.5 284

Navarro–Frenk–White Pseudo-ISO

Galaxy r−2 , kpc ρ−2 , 10−3 M⊙/pc3 χ2
r BIC r0 , kpc ρ0 , 10−3 M⊙/pc3 χ2

r BIC
NGC2366 200± 1100 0.02± 0.24 1.1 117 1.29± 0.17 40± 11 0.15 42
NGC2403 11.2± 0.3 2.86± 0.17 0.7 575 1.56± 0.04 144± 8 1.2 703
NGC2841 150± 30 0.05± 0.02 3.8 402 12.5± 0.7 4.6± 0.6 2.8 374
NGC2903 4.75± 0.16 34± 2 1.8 334 0.53± 0.05 2300± 500 3.9 406
NGC2976 900± 40000 0.009± 1 2.1 158 9± 18 30± 180 0.49 98
NGC3031 4.9± 0.4 20± 3 4.0 472 0.82± 0.1 690± 170 4.3 480
NGC3198 16.5± 0.9 1.37± 0.15 2.0 306 2.7± 0.14 51± 5 1.2 266

IC2574 500± 1300 0.007± 0.045 1.5 331 5.1± 0.4 6.3± 1.1 0.11 70
NGC3521 18± 3 1.5± 0.4 5.1 457 2.4± 0.3 78± 19 4.2 439
NGC3621 123± 17 0.08± 0.02 5.9 579 2.81± 0.09 49± 3 1.1 377
NGC4736 1.25± 0.16 90± 20 1.9 296 0± 0.07 0±ND 2.3 311
DDO154 14± 2 0.35± 0.11 1.03 184 1.22± 0.07 32± 4 0.48 138
NGC5055 48± 4 0.20± 0.03 3.0 795 7.8± 0.4 7.7± 0.8 2.5 759
NGC6946 9.3± 0.4 5.3± 0.5 10.4 915 0.66± 0.03 870± 70 11.0 923
NGC7331 3000± 40000 0.004± 0.087 0.48 233 5.± 0.5 28± 6 0.32 190
NGC7793 17.0± 1.9 1.4± 0.3 4.1 294 1.47± 0.05 126± 10 4.0 293

Einasto

Galaxy r−2 , kpc ρ−2 , 10−3 M⊙/pc3 n χ2
r BIC

NGC2366 2.9± 0.4 6.86± 0.04 0.9± 0.3 0.13 39
NGC2403 13.6± 1.3 1.98± 0.05 4.9± 0.4 0.6 570
NGC2841 24.5± 0.6 1.091± 0.006 0.54± 0.08 2.5 367
NGC2903 5.33± 0.15 28.983± 0.005 2.9± 0.2 1.6 326
NGC2976 70000±ND 0.019±ND 4.0± 70 0.49 100
NGC3031 4.81± 0.09 30.159± 0.002 0.56± 0.07 3.2 452
NGC3198 11.5± 0.4 3.029± 0.006 1.80± 0.17 1.1 257

IC2574 8.6± 1.2 1.57± 0.05 0.7± 0.2 0.09 62
NGC3521 9.3± 0.5 6.27± 0.02 1.2± 0.3 4.3 443
NGC3621 37± 10 0.3± 0.4 6.1± 0.9 0.57 296
NGC4736 1.73± 0.16 56.78± 0.03 2.0± 0.5 1.8 295
DDO154 4.9± 0.7 1.95± 0.03 2.0± 0.3 0.31 114
NGC5055 21.4± 0.4 1.464± 0.002 0.39± 0.04 1.2 626
NGC6946 50± 40 0.2± 4 15± 4 8.5 883
NGC7331 1000± 8000 0.002± 900 11± 21 0.23 158
NGC7793 3.65± 0.14 19.217± 0.007 0.97± 0.09 3.1 279

ND means not constrained model parameters
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the fitted central degeneracy parameter from θ∗0 (see Table I.1) according to
the relation

θ0(m) = θ∗0 + 12.52 log
m

10 keV/c2
, (I.5.1)

provided that θ0(m) is larger than 20 and the influence of the degenerate core
on rotational velocity is negligible in the observed radial range. From the val-
ues of θ∗0 obtained for the fitting of the sample listed in Table I.1, and the lower
value of θ0(m) from which the scaling laws (I.3.2–I.3.5) are valid, it is possible
to obtain from (I.5.1) a preliminary lower limit for the particle mass m & few
keV/c2. Nonetheless this limit should not be considered as an absolute lower
limit for the fermion mass of the model because the bound θ0(m) > 20 in the
formula above is a numerical limit, and no underlying physics has been spec-
ified here for it. The formal way of providing an absolute lower limit for the
particle mass of our model when applied to typical spiral galaxies has been
found in Argüelles et al. (2014b), and yields roughly an order of magnitude
less than the one inferred here.

From the 16 galaxies analyzed, our model has minimum BIC value in 5
cases (NGC2366, NGC2841, NGC2903, NGC2976, NGC3521), Einasto model
in 10 cases (NGC2403, NGC3031, IC2574, NGC3621, NGC4736, DDO154,
NGC5055, NGC6946, NGC7331, NGC7793), and in the case of NGC3198
Burkert model is the best one, marginally better than ours, which in turn
is marginally better than Einasto. Besides this general comparison in which
apparently Einasto model is preferred against our model, there is a more rel-
evant comparison which must be made considering that the semi-degenerate
model provides cored halos only. For this, we compare the Einasto model
against the semi-degenerate one for the sub-set of galaxies which are cored-
like (i.e. with Einasto index n . 4), and then the same comparison is made
for the sub-set of galaxies which are cuspy-like (i.e. with Einasto index
n > 4). The important outcome of this new BIC comparison is that our
model is equivalently as good as Einasto for the cored-like sub-sample, that
is connected to the fact that Einasto profile with n ∼ 1 provides rotational
curves that in a wide range of radii is quite close to the one of ours at transi-
tion from region III to region IV. For cored-like galaxies in 6 cases our model
has lower BIC number than Einasto model (NGC2366, NGC2841, NGC2903,
NGC2976, NGC3198, NGC3521), and inversely in other 6 cases Einasto is bet-
ter (NGC3031, IC2574, NGC4736, DDO154, NGC5055, NGC7793). Instead,
for the cuspy-like sub-sample (NGC2403, NGC3621, NGC6946, NGC7331),
in all the cases Einasto model has lower BIC numbers as logically one may
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expect due to the cored nature of the semi-degenerate halos.
If we take only the models with significant fits, i.e. with reduced χ2 less

than one at least for one fit, then our model is preferred in 3 cases (NGC2366,
NGC2903, NGC2976), Einasto one in 5 cases (NGC2403, IC2574, NGC3621,
DDO154, NGC7331), and Burkert fit for NGC3198 is also significant. It is re-
markable that neither Navarro–Frenk–White model, nor pseudo-ISO model
is preferred against others in the THINGS sample.

If we take into account only two-parametric models, then we have the
same 5 aforementioned cases for our model to be the best plus the case of
NGC5055, NFW model is preferred in 2 cases (NGC2403, NGC6946), pseudo-
ISO one in 3 cases (NGC3621, DDO154, NGC7331), and Burkert model in 5
cases (NGC3031, NGC3198, IC2574, NGC4736, NGC7331). Taking only sig-
nificant fits, we get the best performance of our model in 3 cases (NGC2366,
NGC2903, NGC2976), NFW in 1 case of NGC2403, pseudo-ISO in 2 cases
(DDO154, NGC7331), and Burkert in 2 cases (NGC3198, IC2574). From this
we can conclude that our model is the best two-parametric model of the set
considered.

It is interesting to make pair comparison of our model with Burkert pro-
file: it is preferred statistically in 6 cases (NGC2366, NGC2841, NGC2903,
NGC2976, NGC3521, NGC5055) and is disfavored in 10 cases. However, in
all these cases besides IC2574 the preference is only marginal.

It should be mentioned that the velocity profile of the semidegenerate con-
figuration used for fitting is exact only in the case of Dark Matter domination
and thermal equilibrium at all radii, that can be not the case of real galax-
ies. However, it is especially interesting that even such a simplified model
provides good correspondence to empirical rotational curves.

I.6. Conclusion

It follows from the results of fitting that the semidegenerate fermionic distri-
butions can fit dark matter in the THINGS sample of galaxies at least as well
as other profiles considered in the literature, with the important ”revenue”
that this profile is theoretically motivated, and is not phenomenological as
most of the others. The cases when Einasto profile fits rotational curve much
better than semidegenerate profile show the general cuspy behaviour of dark
matter distribution, possibly representing a special class of galaxies that are
still not completely relaxed.
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Figure I.4.: Rotational curves vr(r) for some galaxies from THINGS survey
together with fits. Blue thick curves show best fits by dark matter distri-
butions of semidegenerate configurations, while magenta thin curves show
Einasto profile best fits. Galaxy names where semidegenerate profile fits ro-
tation curves better than Einasto profile are emphasized, and names where
profiles are comparable in fit quality are bolded. See digital version for col-
ored plots.
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I. Dark Matter Massive Fermions and Einasto Profiles in Galactic Haloes

While Einasto profile is a pure phenomenological one based on best fit of
the observational and numerical simulation data, our profile is derived from
the first principles and based on the General Relativistic treatment of self-
gravitating neutral fermions. There is the distinct possibility that our treat-
ment gives the conceptual physical motivation for the existence of the cored
Einasto profile directly from the structure of the microphysical constituents
of dark matter.
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≪Empirical Models for Dark Matter Halos. I. Nonparametric Construction
of Density Profiles and Comparison with Parametric Models≫.
AJ, 132, pp. 2685–2700 (2006).

MEYER, M., RAUE, M., MAZIN, D. AND HORNS, D.
≪Limits on the extragalactic background light in the Fermi era≫.
A&A, 542, A59 (2012).

MIHALAS, D. AND MIHALAS, B.W.
Foundations of Radiation Hydrodynamics (New York, Oxford University
Press, 1984).

MIKHAILOVSKII, A.B.
≪Plasma instability theory. Volume 1 - Instabilities in a homogeneous
plasma /2nd revised and enlarged edition/≫.
Moscow Atomizdat (1975).

583



Bibliography

MISNER, C.W. AND SHARP, D.H.
≪Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational
Collapse≫.
Physical Review, 136, pp. 571–576 (1964).

MOTZ, J.W., OLSEN, H.A. AND KOCH, H.W.
≪Pair Production by Photons≫.
Reviews of Modern Physics, 41, pp. 581–639 (1969).

MOUHOT, C. AND VILLANI, C.
≪On Landau damping≫.
Acta Mathematica, 207, pp. 29–201 (2011).
ISSN 0001-5962.

MUNSHI, F., GOVERNATO, F., BROOKS, A.M., CHRISTENSEN, C., SHEN, S.,
LOEBMAN, S., MOSTER, B., QUINN, T. AND WADSLEY, J.
≪Reproducing the Stellar Mass/Halo Mass Relation in Simulated ΛCDM
Galaxies: Theory versus Observational Estimates≫.
ApJ, 766, 56 (2013).

NAUMOV, N.D.
≪Kinetic theory of a relativistic plasma≫.
Soviet Physics Journal, 24, pp. 270–274 (1981).

NAVARRO, J.F., FRENK, C.S. AND WHITE, S.D.M.
≪The Structure of Cold Dark Matter Halos≫.
ApJ, 462, p. 563 (1996).

NAVARRO, J.F., FRENK, C.S. AND WHITE, S.D.M.
≪A Universal Density Profile from Hierarchical Clustering≫.
ApJ, 490, pp. 493–508 (1997).

NAVARRO, J.F., HAYASHI, E., POWER, C., JENKINS, A.R., FRENK, C.S.,
WHITE, S.D.M., SPRINGEL, V., STADEL, J. AND QUINN, T.R.
≪The inner structure of ΛCDM haloes - III. Universality and asymptotic
slopes≫.
MNRAS, 349, pp. 1039–1051 (2004).

NIKISHOV, A.I.
≪Absorption of high-energy photons in the universe≫.
Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 41, pp. 549–550 (1961).

584



Bibliography

OCHELKOV, I.P., PRILUTSKII, O.F., ROZENTAL, I.L. AND USOV, V.V.
≪Relativistic kinetics and hydrodynamics≫.
Moscow Atomizdat (1979).

PADMANABHAN, T.
≪Statistical mechanics of gravitating systems≫.
Phys. Rep., 188, pp. 285–362 (1990).

PADMANABHAN, T.
Structure Formation in the Universe (Structure Formation in the Universe, by
T. Padmanabhan, pp. 499. ISBN 0521424860. Cambridge, UK: Cambridge
University Press, June 1993., 1993).

PAGE, K.L., STARLING, R.L.C., FITZPATRICK, G., PANDEY, S.B., OSBORNE,
J.P., SCHADY, P., MCBREEN, S., CAMPANA, S., UKWATTA, T.N., PAGANI,
C. ET AL.
≪GRB 090618: detection of thermal X-ray emission from a bright gamma-
ray burst≫.
Monthly Notices of the Royal Astronomical Society, 416(3), pp. 2078–2089
(2011).

PE’ER, A., MESZAROS, P. AND REES, M.J.
≪Radiation from an Expanding Cocoon as an Explanation of the Steep De-
cay Observed in GRB Early Afterglow Light Curves≫.
The Astrophysical Journal, 652(1), pp. 482–489 (2006).

PILLA, R.P. AND SHAHAM, J.
≪Kinetics of Electron-Positron Pair Plasmas Using an Adaptive Monte
Carlo Method≫.
ApJ, 486, pp. 903–+ (1997).

PIRAN, T.
≪The physics of gamma-ray bursts≫.
Reviews of Modern Physics, 76, pp. 1143–1210 (2005).

PLANCK COLLABORATION, ADE, P.A.R., AGHANIM, N., ARMITAGE-
CAPLAN, C., ARNAUD, M., ASHDOWN, M., ATRIO-BARANDELA, F., AU-
MONT, J., BACCIGALUPI, C., BANDAY, A.J. ET AL.
≪Planck 2013 results. XVI. Cosmological parameters≫.
A&A, 571, A16 (2014).

585



Bibliography

POLYAKOV, P.A.
≪Bogolyubov (BBGKY) hierarchy in classical relativistic electrodynamics≫.
Theoretical and Mathematical Physics, 76, pp. 939–944 (1988).

PROTHEROE, R.J. AND BIERMANN, P.L.
≪A new estimate of the extragalactic radio background and implications
for ultra-high-energy γ-ray propagation≫.
Astroparticle Physics, 6, pp. 45–54 (1996).

PROTHEROE, R.J. AND JOHNSON, P.A.
≪Propagation of ultra high energy protons and gamma rays over cosmo-
logical distances and implications for topological defect models≫.
Astroparticle Physics, 4, pp. 253–269 (1996).

RINGWALD, A.
≪Super-GZK neutrinos≫.
Journal of Physics Conference Series, 39, pp. 393–399 (2006).

RUFFINI, R.
≪On the de Vaucouleurs density-radius relation and the cellular interme-
diate large-scale structure of the universe≫.
In H.G. Corwin Jr. and L. Bottinelli (eds.), World of Galaxies (Le Monde des
Galaxies), pp. 461–472 (1989).

RUFFINI, R., AKSENOV, A.G., BERNARDINI, M.G., BIANCO, C.L., CAITO,
L., CHARDONNET, P., DAINOTTI, M.G., DE BARROS, G., GUIDA, R., IZZO,
L. ET AL.
≪The Blackholic energy and the canonical Gamma-Ray Burst IV: the
“long,” “genuine short” and “fake-disguised short” GRBs≫.
In M. Novello and S. Perez (eds.), American Institute of Physics Conference
Series, volume 1132 of American Institute of Physics Conference Series, pp. 199–
266 (2009).
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