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1 Topics

The study of compact objects such as white dwarfs, neutron stars and black
holes requires the interplay between nuclear and atomic physics together
with relativistic field theories, e.g., general relativity, quantum electrodynam-
ics, quantum chromodynamics, as well as particle physics. In addition to the
theoretical physics aspects, the study of astrophysical scenarios characterized
by the presence of a compact object has also started to be focus of extensive
research within our group. The research which has been done and is cur-
rently being developed within our group can be divided into the following
topics:

• Nuclear and Atomic Astrophysics. Within this subject of research we
study the properties and processes occurring in compact stars in which
nuclear and atomic physics have to be necessarily applied. We focus
on the properties of nuclear matter under extreme conditions of density
and pressure found in these objects. The equation of state of the mat-
ter in compact star interiors is studied in detail taking into account all
the interactions between the constituents within a full relativistic frame-
work.

• White Dwarfs Physics and Structure. The aim of this part of our re-
search is to construct the structure of white dwarfs within a self-consistent
description of the equation of state of the interior together with the solu-
tion of the hydrostatic equilibrium equations in general relativity. Both
unmagnetized and magnetized white dwarfs are studied.

• White Dwarfs Astrophysics. We are within this topic interested in
the astrophysics of white dwarfs both isolated and in binaries systems.
Magnetized white dwarfs, soft gamma repeaters, anomalous X-ray pul-
sars, white dwarf pulsars, cataclysmic variables, binary white dwarf
mergers, and type Ia supernovae are studied. The role of a realistic
white dwarf interior structure is particularly emphasized.

1275



1 Topics

• Neutron Stars Physics and Structure. We calculate the properties of
the interior structure of neutron stars using realistic models of the nu-
clear matter equation of state within the general relativistic equations
of equilibrium. Strong, weak, electromagnetic and gravitational inter-
actions have to be jointly taken into due account within a self-consistent
fully relativistic framework. Both unmagnetized and magnetized neu-
tron stars are studied.

• Neutron Stars Astrophysics. We study astrophysical systems harbor-
ing neutron stars such as isolated and binary pulsars, low and inter-
mediate X-ray binaries, inspiraling and merging double neutron stars.
Most extreme cataclysmic events involving neutron stars and their role
in the explanation of extraordinarily energetic astrophysical events such
as gamma-ray bursts are analyzed in detail.

• Radiation Mechanisms of White Dwarfs and Neutron Stars. We here
study the possible emission mechanisms of white dwarfs and neutron
stars. We are thus interested in both electromagnetic and gravitational
radiation at work in astrophysical systems such as compact star mag-
netospheres, inspiraling and merging relativistic double neutron stars,
neutron star-white dwarfs, and neutron star-black hole binaries repre-
sent some examples.

• Exact Solutions of the Einstein and Einstein-Maxwell Equations in
Astrophysics. We analyze the ability of analytic exact solutions of the
Einstein and Einstein-Maxwell equations to describe the exterior space-
time of compact stars such as white dwarfs and neutron stars. The prob-
lem of matching between interior and exterior spacetimes is addressed
in detail. The effect of the quadrupole moment on the properties of the
spacetime is also investigated. Particular attention is given to the appli-
cation of exact solutions in astrophysics, e.g. the dynamics of particles
around compact stars and its relevance in astrophysical systems such as
X-ray binaries.

• Critical Fields and Non-linear Electrodynamics Effects in Astrophysics.
We study the conditions under which ultrastrong electromagnetic fields
can develop in astrophysical systems such as neutron stars and in the
process of gravitational collapse to a black hole. The effects of non-
linear electrodynamics minimally coupled to gravity are investigated.
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New analytic and numeric solutions to the Einstein-Maxwell equations
representing black holes or the exterior field of a compact star are ob-
tained and analyzed. The consequences on extreme astrophysical sys-
tems, for instance gamma-ray bursts, is studied.
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3 Publications 2015

3.1 Refereed Journals

3.1.1 Printed

1. A. Mesquita, M. Razeira, R. Ruffini, J. A. Rueda, D. Hadjimichef, R. O.
Gomes, and C. A. Z. Vasconcellos, An effective field theory for neutron stars
with many-body forces, strong Σ− repulsion, and K− and K̄0 condensation,
Astronomische Nachrichten 336, 880 (2015).

The role of many-body correlations (many-body forces) and K−-K̄0 con-
densation in β-equilibrated hyperonic matter is investigated in order to
shed some light in the hyperonization puzzle, ie that neutron star mass
of 2M� cannot be obtained in the presence of exotic degree of freedoms.
In this investigation, we use an effective relativistic QHD-model with
parameterized couplings which represents an extended compilation of
other effective models found in the literature. Our theoretical approach
exhausts the whole fundamental baryon octet (n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0)
and simulates n-order corrections to the minimal Yukawa couplings by
considering many-body nonlinear self-couplings and meson-meson in-
teraction terms involving scalar-isoscalar, vector-isoscalar, vector-isovector,
and scalar-isovector sectors. Following recent experimental results, we
consider in our calculations the extreme case where the Σ− experiences
such a strong repulsion that its influence in the nuclear structure of a
neutron star is excluded at all. We study the effects of this exclusion on
the phase transition of conventional exotic hadronic matter to hadronic
matter containing a condensate of kaons and anti-kaons. As a novelty
in the treatment of kaon and anti-kaon condensation in high density nu-
clear matter, we consider a Lagrangian formulation which describes, in
addition to the interaction involving baryons and mesons and the con-
tribution of kaons and anti-kaons in free propagation, the presence of
many-body forces involving kaon, anti-kaon and meson fields. To im-
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3 Publications 2015

plement the corresponding phase transition we considered the Gibbs
conditions combined with the mean-field approximation, giving rise to
a mixed phase of coexistence between baryon matter and the condensed
of kaons and anti-kaons. Our investigation show that even with kaon
condensation, the nuclear equation of state satisfies both the maximum
mass and the allowed ranges of mass and radius of neutron stars.

2. L. Becerra, F. Cipolletta, C. L. Fryer, J. A. Rueda, and R. Ruffini, Angular
Momentum Role in the Hypercritical Accretion of Binary-driven-Hypernovae,
ApJ 812, 100 (2015).

The induced gravitational collapse paradigm explains a class of ener-
getic, Eiso? 1052 erg, long-duration gamma-ray bursts (GRBs) asso-
ciated with Ic supernovae, recently named binary-driven hypernovae.
The progenitor is a tight binary system formed of a carbon-oxygen (CO)
core and a neutron star (NS) companion. The supernova ejecta of the ex-
ploding CO core trigger a hypercritical accretion process onto the NS,
which reaches the critical mass in a few seconds, and gravitationally
collapses to a black hole, emitting a GRB. In our previous simulations
of this process, we adopted a spherically symmetric approximation to
compute the features of the hypercritical accretion process. We here
present the first estimates of the angular momentum transported by the
supernova ejecta, Lacc, and perform numerical simulations of the angu-
lar momentum transfer to the NS during the hyperaccretion process in
full general relativity. We show that the NS (1) reaches either the mass-
shedding limit or the secular axisymmetric instability in a few seconds
depending on its initial mass, (2) reaches a maximum dimensionless
angular momentum value, [(cJ)/(GM2)]max ∼ 0.7, and (3) can support
less angular momentum than the one transported by supernova ejecta,
Lacc > JNS,max, hence there is an angular momentum excess that neces-
sarily leads to jetted emission.

3. R. Ruffini, M. Muccino, M. Kovacevic, F. G. Oliveira, J. A. Rueda, C.
L. Bianco, M. Enderli, A. V. Penacchioni, G. B. Pisani, Y. Wang, and E.
Zaninoni, GRB 140619B: a short GRB from a binary neutron star merger
leading to black hole formation, ApJ 808, 190 (2015).

We show the existence of two families of short gamma-ray bursts (GRBs),
both originating from the merger of binary neutron stars (NSs): family-
1 with Eiso . 1052 erg, leading to a massive NS as the merged core,
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3.1 Refereed Journals

and family-2 with Eiso & 1052 erg, leading to a black hole (BH). Follow-
ing the identification of the prototype GRB 090227B, we present the de-
tails of a new example of family-2 short burst: GRB 140619B. From the
spectral analysis of the early 0.2 s, we infer an observed temperature
kT = 324± 33 keV of the e+e− plasma at transparency (P-GRB), a the-
oretically derived redshift z = 2.67± 0.37, a total burst energy Etot

e+e− =

(6.03± 0.79)× 1052 erg, a rest-frame peak energy Ep,i = 4.7 MeV, and
a baryon load B = (5.52 ± 0.73) × 10−5. We also estimate the corre-
sponding emission of gravitational waves. Two additional examples of
family-2 short bursts are identified: GRB 081024B and GRB 090510, re-
markable for its well determined cosmological distance. We show that
marked differences exist in the nature of the afterglows of these two
families of short bursts: family-2 bursts, leading to BH formation, con-
sistently exhibit high energy emission following the proper-GRB emis-
sion; family-1 bursts, leading to the formation of a massive NS, should
never exhibit high energy emission. We also show that both the families
fulfill an Ep,i − Eiso relation with slope γ = 0.59± 0.07 and a normaliza-
tion constant incompatible with the one for long GRBs. The observed
rate of such family-2 events is ρ0 = (2.1+2.8

−1.4)× 10−4 Gpc−3 yr−1.

4. F. Cipolletta, C. Cherubini, S. Filippi, J. A. Rueda, and R. Ruffini, Fast
rotating neutron stars with realistic nuclear matter equation of state, Phys.
Rev. D 92, 023007 (2015).

We construct equilibrium configurations of uniformly rotating neutron
stars for selected relativistic mean-field nuclear matter equations of state
(EOS). We compute, in particular, the gravitational mass (M), equato-
rial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J),
moment of inertia (I) and quadrupole moment (M2) of neutron stars
stable against mass shedding and secular axisymmetric instability. By
constructing the constant frequency sequence f = 716 Hz of the fastest
observed pulsar, PSR J1748-2446ad, and constraining it to be within the
stability region, we obtain a lower mass bound for the pulsar, Mmin =
[1.2–1.4] M�, for the EOS employed. Moreover, we give a fitting for-
mula relating the baryonic mass (Mb) and gravitational mass of nonro-
tating neutron stars, Mb/M = M/M�+(13/200)(M/M�)2 [or M/M� =
Mb/M� − (1/20)(Mb/M�)2], which is independent of the EOS. We
also obtain a fitting formula, although not EOS independent, relating
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the gravitational mass and the angular momentum of neutron stars
along the secular axisymmetric instability line for each EOS. We com-
pute the maximum value of the dimensionless angular momentum,
a/M = cJ/(GM2) (or “Kerr parameter”), (a/M)max ≈ 0.7, found to
be also independent of the EOS. We then compare and contrast the
quadrupole moment of rotating neutron stars with the one predicted
by the Kerr exterior solution for the same values of mass and angular
momentum. Finally, we show that, although the mass quadrupole mo-
ment of realistic neutron stars never reaches the Kerr value, the latter is
closely approached from above at the maximum mass value, as phys-
ically expected from the no-hair theorem. In particular, the stiffer the
EOS, the closer the mass quadrupole moment approaches the value of
the Kerr solution.

5. K. Boshkayev, J. A. Rueda, and M. Muccino, Extracting multipole mo-
ments of neutron stars from quasi-periodic oscillations in low mass X-ray bi-
naries, Astronomy Reports 59, 441 (2015).

We consider the kilohertz quasi-periodic oscillations of low-mass X-ray
binaries within the Hartle-Thorne spacetime. We show that the inter-
pretation of the epicyclic frequencies of this spacetime with the ob-
served kilohertz quasi-periodic oscillations, within the Relativistic Pre-
cession Model, allows us to extract the total mass M, angular momen-
tum J, and quadrupole moment Q of the compact object in a low-mass
X-ray binary. We exemplify this fact by analyzing the data of the Z-
source GX 5-1. We show that the extracted multipole structure of the
compact component of this source deviates from the one expected from
a Kerr black hole and instead it points to a neutron star explanation.

6. J. P. Pereira and J. A. Rueda, Energy decomposition within Einstein-Born-
Infeld black holes, Phys. Rev. D 91, 064048 (2015).

We analyze the consequences of the recently found generalization of
the Christodoulou-Ruffini black hole mass decomposition for Einstein-
Born-Infeld black holes [characterized by the parameters (Q, M, b), where
M = M(Mirr, Q, b), b is the scale of the field, Q the charge, Mirr the “ir-
reducible mass”, physically meaning the energy of a black hole when its
charge is null] and their interactions. We show in this context that their
description is largely simplified and can basically be split into two fami-
lies depending upon the parameter b|Q|. If b|Q| = 1/2, then black holes
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could have even zero irreducible masses and they always exhibit single
nondegenerate horizons. If b|Q| > 1/2, then an associated black hole
must have a minimum irreducible mass (related to its minimum energy)
and has two horizons up to a transitional irreducible mass. For larger
irreducible masses, single horizon structures raise again. By assum-
ing that black holes emit thermal uncharged scalar particles, we further
show in light of the black hole mass decomposition that one satisfying
b|Q| > 1/2 takes an infinite amount of time to reach the zero temper-
ature, settling down exactly at its minimum energy. Finally, we argue
that depending on the fundamental parameter b, the radiation (elec-
tromagnetic and gravitational) coming from Einstein-Born-Infeld black
holes could differ significantly from Einstein-Maxwell ones. Hence, it
could be used to assess such a parameter.

7. J. P. Pereira and J. A. Rueda, Radial Stability in Stratified Stars, ApJ 801,
19 (2015).

We formulate within a generalized distributional approach the treat-
ment of the stability against radial perturbations for both neutral and
charged stratified stars in Newtonian and Einstein’s gravity. We obtain
from this approach the boundary conditions connecting any two phases
within a star and underline its relevance for realistic models of compact
stars with phase transitions, owing to the modification of the star’s set
of eigenmodes with respect to the continuous case.

8. R. Belvedere, J. A. Rueda, and R. Ruffini, On the Magnetic Field of Pulsars
with Realistic Neutron Star Configurations, ApJ 799, 23 (2015).

We have recently developed a neutron star model fulfilling global and
not local charge neutrality, both in the static and in the uniformly ro-
tating cases. The model is described by the coupled Einstein-Maxwell-
Thomas-Fermi equations, in which all fundamental interactions are ac-
counted for in the framework of general relativity and relativistic mean
field theory. Uniform rotation is introduced following Hartle’s formal-
ism. We show that the use of realistic parameters of rotating neutron
stars, obtained from numerical integration of the self-consistent axisym-
metric general relativistic equations of equilibrium, leads to values of
the magnetic field and radiation efficiency of pulsars that are very dif-
ferent from estimates based on fiducial parameters that assume a neu-
tron star mass M = 1.4M�, radius R = 10 km, and moment of inertia
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I = 1045 g cm2. In addition, we compare and contrast the magnetic
field inferred from the traditional Newtonian rotating magnetic dipole
model with respect to the one obtained from its general relativistic ana-
log, which takes into account the effect of the finite size of the source.
We apply these considerations to the specific high-magnetic field pul-
sar class and show that, indeed, all of these sources can be described
as canonical pulsars driven by the rotational energy of the neutron star,
and have magnetic fields lower than the quantum critical field for any
value of the neutron star mass.

3.1.2 Accepted for publication or in press

1. C. L. Fryer, F. G. Oliveira, J. A. Rueda, R. Ruffini, On the Neutron Star-
Black Hole Binaries Produced by Binary-driven-Hypernovae, to appear in
Phys. Rev. Lett.

Binary-driven-hypernovae (BdHNe) within the induced gravitational
collapse (IGC) paradigm have been introduced to explain energetic (Eiso &
1052 erg), long gamma-ray bursts (GRBs) associated with type Ic super-
novae (SNe). The progenitor is a tight binary composed of a carbon-
oxygen (CO) core and a neutron star (NS) companion, a subclass of the
newly proposed ”ultra-stripped” binaries. The CO-NS short-period or-
bit causes the NS to accrete appriciable matter from the SN ejecta when
the CO core collapses, ultimately causing it to collapse to a black hole
(BH) and producing a GRB. These tight binaries evolve through the
SN explosion very differently than compact binaries studied in pop-
ulation synthesis calculations. First, the hypercritical accretion onto the
NS companion alters both the mass and momentum of the binary. Sec-
ond, because the explosion timescale is on par with the orbital period,
the mass ejection can not be assumed to be instantaneous. This dra-
matically affects the post-SN fate of the binary. Finally, the bow shock
created as the accreting NS plows through the SN ejecta transfers angu-
lar momentum, braking the orbit. These systems remain bound even if
a large fraction of the binary mass is lost in the explosion (well above
the canonical 50% limit), and even large kicks are unlikely to unbind the
system. Indeed, BdHNe produce a new family of NS-BH binaries un-
accounted for in current population synthesis analyses and, although
they may be rare, the fact that nearly 100% remain bound implies they
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may play an important role in the compact merger rate, important for
gravitational waves (GWs) that, in turn, can produce a new class of ul-
trashort GRBs.

3.1.3 Submitted

1. Jaziel G. Coelho, R. C. R. de Lima, D. L. Caceres, M. Malheiro, J. A.
Rueda, R. Ruffini, On the rotation-power nature of SGRs and AXPs, sub-
mitted to ApJ.

We show that nine of the twenty three soft gamma repeaters (SGRs) and
anomalous X-ray pulsars (AXPs), namely the 40% of the entire observed
population of sources, can be described as canonical pulsars driven by
the rotational energy of a neutron star (NS), for which we give the pos-
sible range of masses. We also show that if the blackbody component in
soft X-rays is due to the surface temperature of the NS, then two more
sources become explainable as rotation-powered NSs, leading to a 50%
of the population explainable as ordinary pulsars. We show that, within
these sources, we find the SGRs/AXPs with observed radio emission as
well as the ones possibly associated with supernova remnants, reinforc-
ing a natural explanation for these sources as ordinary pulsars. Assum-
ing on the other hand an alternative model in which SGR/AXPs are
rotation-powered white dwarfs (WDs), we show that the entire popula-
tion can be explained within this scenario. We give tight bounds for the
masses, radii, and magnetic field of the WD by requesting the gravita-
tional and rotational stability of the star.

2. J. A. Rueda, R. Ruffini, Y. Wu, S.-S. Xue, Surface tension of heavy atoms,
submitted to Phys. Rev. C.

Based on the relativistic mean field theory and the Thomas-Fermi ap-
proximation, we study the surface properties of heavy atoms in which
some of the electrons have penetrated into nuclear cores. Taking into
account the strong, weak, and electromagnetic interactions, we numer-
ically study the structure of heavy atoms and calculate the surface ten-
sion and Coulomb energy. We analyze the influence of the electron
component on the structure of heavy atoms and the surface tension to
compare and contrast with known phenomenological results in nuclear
physics and the results of the core-crust interface of neutron stars with
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global charge neutrality. Based on these results we study the instability
against Bohr-Wheeler surface deformations in the case of heavy atoms.
The results in this article provide the evidence of strong effects of the
electromagnetic interaction and electrons on structure of heavy atoms.

3. R. Belvedere, Jorge A. Rueda, R. Ruffini, On the Keplerian frequency and
moment of inertia of neutron stars, submitted to Phys. Rev. C.

In our previous treatments of static and rotating neutron stars, we have
developed a neutron star model fulfilling global, but not local, charge
neutrality. The model is described by what we have called the Einstein-
Maxwell-Thomas-Fermi (EMTF) equations, which take into account the
strong, weak, electromagnetic, and gravitational interactions within gen-
eral relativity. Uniform rotation is introduced via the Hartle formalism.
We compare and contrast here the moment of inertia and the sequence
of maximally rotating (Keplerian) neutron stars obtained from the solu-
tion of the EMTF equations, with the claimed universal analytic formu-
las 1) for the Keplerian sequence by Lattimer & Prakash (2004), and 2)
for the moment of inertia as a function of the compactness by Ravenhall
& Pethick (1994) and by Lattimer & Schutz (2005). We show that those
simple universal analytic formulas cannot properly describe the above
properties of neutron stars, irrespective of the condition of charge neu-
trality applied, namely local or global, leading to inaccurate qualitative
and quantitative results.

3.1.4 To be submitted

1. K. Boshkayev, J. A. Rueda, Induced compression by angular momentum loss
in super-Chandrasekhar white dwarfs.

2. R. C. R. de Lima, J. A. Rueda, R. Ruffini, C. A. Z. Vasconcellos, Rapidly
rotating neutron stars with strong sigma-hyperon repulsion.

3. R. C. R. de Lima, J. A. Rueda, R. Ruffini, C. A. Z. Vasconcellos, The effects
of hyperons on the structure of rapidly rotating neutron stars.

4. R. Belvedere, S. Chiapparini, S. B. Duarte, J. A. Rueda, R. Ruffini, Rapidly
rotating neutron stars with extended hadronic nuclear models with ∆-resonances.
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5. R. Negreiros, Brett Vern Carlson, S. M de Carvalho, Using cooling for
probing proton-superconductivity in the interior of neutron stars.

6. S. M. Carvalho, R. Negreiros, J. A. Rueda, Strange stars versus globally
neutral neutron stars: structure and cooling.

7. D. L. Cáceres, S. M. Carvalho, J. G. Coelho, R. C. R. de Lima, J. A. Rueda,
Thermal X-ray emission of massive, fast rotating, highly magnetized white
dwarfs.

3.2 Conference Proceedings

1. S. M. de Carvalho, J. A. Rueda, and R. Ruffini, On the Relativistic Feynman-
Metropolis Equation of State at Finite Temperatures, in Thirteenth Marcel
Grossmann Meeting: On Recent Developments in Theoretical and Ex-
perimental General Relativity, Astrophysics and Relativistic Field The-
ories (K. Rosquist, ed.), pp. 2481-2483, Jan. 2015.

2. K. Boshkayev, J. A. Rueda, R. Ruffini, and I. Siutsou, General Relativistic
and Newtonian White Dwarfs, in Thirteenth Marcel Grossmann Meeting:
On Recent Developments in Theoretical and Experimental General Rel-
ativity, Astrophysics and Relativistic Field Theories (K. Rosquist, ed.),
pp. 2468-2474, Jan. 2015.

3. K. Boshkayev, J. A. Rueda, and R. Ruffini, SGRs and AXPs as Massive
Fast Rotating Highly Magnetized White Dwarfs: the Case of SGR 0418+5729,
in Thirteenth Marcel Grossmann Meeting: On Recent Developments
in Theoretical and Experimental General Relativity, Astrophysics and
Relativistic Field Theories (K. Rosquist, ed.), pp. 2295-2300, Jan. 2015.

4. J. A. Rueda and R. Ruffini, Strong, Weak, Electromagnetic, and Gravi-
tational Interactions in Neutron Stars, in Thirteenth Marcel Grossmann
Meeting: On Recent Developments in Theoretical and Experimental
General Relativity, Astrophysics and Relativistic Field Theories (K. Rosquist,
ed.), pp. 191-209, Jan. 2015.

5. F. G. Oliveira, J. A. Rueda, and R. Ruffini, X, Gamma-Rays, and Gravi-
tational Waves Emission in a Short Gamma-Ray Burst, Astrophysics and
Space Science Proceedings, vol. 40, p. 43, 2015.
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On the Neutron Star-Black Hole Binaries Produced by Binary-driven-Hypernovae

Chris L. Fryer,1 F. G. Oliveira,2,3,4 J. A. Rueda,2,3,4,5, R. Ruffini2,3,4,5
1CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545

2Dipartimento di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I–00185 Rome, Italy
3ICRANet, Piazza della Repubblica 10, I–65122 Pescara, Italy

4Université de Nice - Sophia Antipolis Cedex 2, Grand Château Parc Valrose, Nice, France and
5ICRANet-Rio, Centro Brasileiro de Pesquisas F́ısicas,

Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290–180, Brazil
(Dated: November 12, 2015)

Binary-driven-hypernovae (BdHNe) within the induced gravitational collapse (IGC) paradigm
have been introduced to explain energetic (Eiso & 1052 erg), long gamma-ray bursts (GRBs) associ-
ated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen
(CO) core and a neutron star (NS) companion, a subclass of the newly proposed “ultra-stripped”
binaries. The CO-NS short-period orbit causes the NS to accrete appriciable matter from the SN
ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and pro-
ducing a GRB. These tight binaries evolve through the SN explosion very differently than compact
binaries studied in population synthesis calculations. First, the hypercritical accretion onto the
NS companion alters both the mass and momentum of the binary. Second, because the explosion
timescale is on par with the orbital period, the mass ejection can not be assumed to be instanta-
neous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created
as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit.
These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well
above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed,
BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis
analyses and, although they may be rare, the fact that nearly 100% remain bound implies they may
play an important role in the compact merger rate, important for gravitational waves (GWs) that,
in turn, can produce a new class of ultrashort GRBs.
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INTRODUCTION

Binary massive star systems evolve into a broad set of
compact binaries from X-ray binaries consisting of stars
accreting onto either BH or NS companions to the more
exotic binary compact objects such NS-BH and NS-NS
binaries. The formation scenarios of these compact bi-
naries typically argue that, after the first SN explosion,
the compact remnant enters a common envelope phase
with its companion, tightening the orbit. If the system
remains bound after the companion star collapses, a NS-
BH or NS-NS binary is formed. A range of scenarios have
been invoked [1–3], including exotic scenarios where both
components expand off the main sequence concurrently,
causing a single common envelope around two helium
cores [4].

Recently, two independent communities have argued
for a “new” evolutionary scenario forming these compact
binaries where, after the collapse of the primary star to a
NS, the system undergoes a series of mass transfer phases,
ejecting both the hydrogen and helium shells of the sec-
ondary to produce a binary composed of a massive CO
core and a NS. When the CO core collapses and produces
a SN explosion, a compact binary system is formed. In
the X-ray binary/SN community, these systems are called
“ultra-stripped” binaries. In the past few years, such sys-

tems have been invoked to both explain the population of
NS-NS binaries as well as a growing set of low-luminosity
and/or rapid decay-rate SNe [5, 6]. Low-mass ejecta can
match the observational features of these SNe and ultra-
stripped binaries without hydrogen and helium layers in
their pre-SN progenitor produce small cores with such
low-mass explosions. The rate of these systems are pre-
dicted to be 0.1–1% of the total SN rate [5]. These bina-
ries are extremely tight, and most of the systems studied
have orbital periods lying between 3000 and 300, 000 s.
Proponents of the ultra-stripped systems argue that this
scenario dominates the formation of NS-NS binaries and
that there are virtually no systems that are formed where
the CO core collapses directly to a BH.

The IGC scenario for GRBs [7–9] introduced a sub-
set of extremely short-period CO-NS binaries where the
ejecta from the exploding CO star accretes onto its NS
companion, causing the NS, in some cases, to collapse
to a BH. If ultra-stripped binaries dominate the forma-
tion of NS-NS binaries, this scenario would dominate the
formation of NS-BH binaries. This collapse to a BH re-
leases energy to drive the GRB emission [9, 10]. The
CO core is a requirement to allow the tight orbits needed
to produce sufficient accretion to cause the NS collapse,
but it also provides a natural explanation for the fact
that these GRBs are always associated with type Ic SNe.
The recently introduced ultra-stripped binaries are a wel-
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come support for the IGC scenario from the point of view
of stellar evolution, with the only caveat that IGC pro-
genitors are a small subset of the ultra-stripped binaries
where the initial orbital separation and CO core mass
are aligned to produce binaries with orbital periods lying
in the 100–1000 s range. This requires fine-tuning both
of the CO star mass and the binary orbit. From an as-
trophysical point of view the IGC scenario is uniquely
characterized by the formation of the BH during the ac-
cretion process of the SN ejecta onto the companion NS
and the associated GRB emission. Since the rate of the
high-luminosity GRBs (BdHNe) explained through the
IGC scenario is (1.1–1.3) × 10−2 Gpc−3 y−1 [11], and
0.1–1% of the SN Ibc population could be ultra-stripped
binaries [5], only 0.005–0.07% of the latter are needed to
explain the BdHNe population (assuming a SN Ibc rate
of 2× 104 Gpc−3 y−1 [12]).

Studies of ultra-stripped binaries have expanded our
understanding of stellar radii, confirming these results:
CO cores with masses below 2 M� have radii of 1–
4× 109 cm [13], in agreement with the assumptions used
in IGC studies [10]. Even if some helium remains on the
stripped core, it will be ejected if it expands to inter-
act with its compact-object companion. These radii are
sufficiently small to produce the tight orbits required to
produce the rapid accretion of the ejecta onto the NS
companion and the formation of the BH.

In typical systems, most of the binaries become un-
bound during the SN explosion because of the ejected
mass and momentum imparted (kick) on the newly
formed compact object in the explosion of the massive
star. Under the instantaneous explosion assumption, if
half of the binary system’s mass is lost in the SN explo-
sion, the system is disrupted, forming two single compact
objects. Although SN kicks may allow some systems to
remain bound, in general, these kicks unbind even more
systems. In general, it is believed that the fraction of
massive binaries that can produce double compact ob-
ject binaries is low: ∼0.001–1% [1–3].

For ultra-stripped binaries, the fate is very different.
In these systems, the mass ejected is extremely low and,
if the SN kick is low, these systems remain bound [5, 6].
In the tighter binaries leading to IGC progenitors, the
assumption of instantaneous mass ejection is no longer
valid. We demonstrate in this work that, removing this
assumption, even with a strong SN kick nearly all of these
systems will remain bound. In this case, even though
IGC progenitors are rare, the compact binaries produced
by these progenitors may dominate the total NS-BH bi-
naries in the Universe, and lead to a new previously un-
accounted family of GRBs.

We shall describe below the differences between these
systems and typical massive star binaries, modeling these
orbits through the SN explosion. We then calculate the
evolution of these NS-BH binaries via GWs emission up
to the merger point, and assess their detectability. We

conclude with a discussion of the additional observational
predictions of these NS-BH binaries, introducing a new
class of short GRBs, with specific observational signa-
tures, here referred to as ultrashort GRBs.

POST-EXPLOSION ORBITS

The mass ejected during the SN alters the binary orbit,
causing it to become wider and more eccentric. Assum-
ing that the mass is ejected instantaneously, the post-
explosion semi-major axis is a/a0 = (M0 −∆M)/(M0 −
2a0∆M/r), where a0 and a are the initial and final semi-
major axes respectively, M0 is the total initial mass of the
binary system, ∆M is the change of mass (equal to the
amount of mass ejected in the SN), and r is the orbital
separation at the time of explosion [14]. For circular or-
bits, like the ones expected from our systems after going
through a common envelope evolution, we find that the
system is unbound if it loses half of its mass. But, for
these close binaries, a number of additional effects can
alter the fate of the binary.

The time it takes for the ejecta to flow past a compan-
ion in a SN is roughly 10–1000 s. These explosions follow
a so-called homologous velocity profile where the velocity
is proportional to the position. Although the shock front
is moving above 10,000 km s−1, the denser,lower-velocity
ejecta can be moving at below 1000 km s−1. Our esti-
mates are based on simulated supernova explosions [10].
The broad range of times arises because the SN ejecta
velocities varies from 100–10,000 km s−1. The accretion
peaks as the slow-moving (inner) ejecta flows past the
NS companion. Note that the initial SN explosion in
this case is not a hypernova. The observed “hypernova”
is actually produced when the GRB from the BH col-
lapse sweeps up this SN (and circumstellar) material [15].
For normal binaries, this time is a very small fraction of
the orbital period and the “instantaneous” assumption
is perfectly valid. However, in the close binary systems
considered here, the orbital period ranges from only 100–
1000 s, and the mass loss from the SN explosion can no
longer be assumed to be instantaneous.

This has already been pointed out in [16] where it was
shown that in BdHNe the accretion process is fast and
massive enough to produce the BH formation in a time-
interval as short as the orbital period. We here deepen
this analysis to study the effect of the SN explosion in
such a scenario with a specific example, for which we
have produced an orbit code using a simple staggered
leapfrog integration (see [17] for details of this integra-
tion method). We have tested both stability (by mod-
eling many orbits) and convergence (decreasing the time
step by 2 orders of magnitude confirming identical re-
sults). We also reproduce the results of the instantaneous
limit. From figure 1, as the ejecta timescale becomes
just a fraction of the orbital timescale, the fate of the
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FIG. 1. Semi-major axis versus explosion time for 3 differ-
ent mass ejecta scenarios: 3.5M� (solid), 5.0M� (dotted),
8.0M� (dashed). The CO core collapse to form a 1.5M�
NS (its initial mass is the ejecta mass plus the NS mass),
and the companion NS has a mass of 2.0M�. If the explo-
sion were instantaneous, all of our systems with ejecta masses
above 3.5M� would be unbound. For explosion times above
1.2 times the orbital time, not only are the systems bound,
but the final orbital semi-major axis is less than 10 times the
initial separation.

post-explosion binary can be radically altered. For these
models, we assumed very close binaries with an initial
orbital separation of 7 × 109 cm in circular orbits (such
close binaries are only formed through a common enve-
lope phase which circularizes the orbit). With CO core
radii of 1–4 × 109 cm [13], such a separation is small,
but achievable. We assume the binary consists of a CO
core and a 2.0 M� NS companion. When the CO core
collapses, it forms a 1.5 M� NS, ejecting the rest of the
core. We then vary the ejecta mass and time required
for most of the ejected matter to move out of the binary.
Note that even if 70% of the mass is lost from the sys-
tem (the 8 M� ejecta case), the system remains bound
as long as the explosion time is just above the orbital
time (Torbit = 180 s) with semi-major axes of less than
1011 cm.

The short orbits (on ejecta timescales) are not the only
feature of these binaries that alters the post-explosion
orbit. The NS companion accretes both matter and mo-
mentum from the SN ejecta, reducing the mass lost from
the system with respect to typical binaries with larger
orbital separations and much less accretion. In addition,
as with common envelope scenarios, the bow shock pro-
duced by the accreting NS transfers orbital energy into
the SN ejecta. In figure 2, we show the final orbital sep-
aration of our same three binaries, including the effects
of mass accretion (we assume 0.5M� is accreted with
the momentum of the SN material) and orbit coupling
(30% of the orbital velocity is lost per orbit). With these
effects, not only do the systems remain bound even for
explosion times greater than 1/2 the orbital period but,
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FIG. 2. Semi-major axis versus explosion time for the same
3 binary systems as in figure 1 including mass accretion and
momentum effects. Including these effects, all systems with
explosion times above 0.7 times the orbital time are bound
and the final separations are on par with the initial separa-
tions.

if the explosion time is long, the final semi-major axis
can be on par with the initial orbital separation.

The tight separation of these binaries facilitates tidal
locking and the angular momentum axis of the CO core
will be aligned with the orbital angular momentum. For
many of the kick mechanisms in the literature, the kick is
often aligned with the rotation axis. For example, both
in neutrino-driven mechanisms [18, 19] and asymmetric
explosions driven by convection [18, 20, 21] the kick is
aligned with the rotation axis. However, it is still possi-
ble to have some misalignment leading to some eccentric-
ity and “tumbling” of the system with specific signatures
in the light curve following the prompt emission of the
GRB. Hence, we here consider both kicks aligned with
the rotation (and hence orbital) axis as well as random
kicks. If the kick is aligned with the orbital plane, the sys-
tem can remain bound even with kick velocities as high
as 1000 km s−1. However, if the kick is in the same direc-
tion as the star is moving, the systems can be disrupted
if the kick is above 500–700 km s−1 if the accretion phase
is longer than an orbital period.

The tight compact binaries produced in these explo-
sions will emit GW emission, ultimately causing the sys-
tem to merge. For typical massive star binaries, the
merger time is many Myr. For BdHNe, the merger time
is typically 10,000 y, or less (figure 3).

GRAVITATIONAL WAVES FROM THE NS-BH
BINARY

To better understand the GW signal from these merg-
ers, we study the evolution of the orbital binding en-
ergy Eb up to the merger following the effective one-body
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FIG. 3. Merger time due to GW emission as a function of
explosion time for the same 3 binary as in figure 1 includ-
ing mass accretion and momentum effects. Beyond a critical
explosion time (0.1–0.6 Torbit depending on the system), the
merger time is less than roughly 10,000 y. For most of our
systems, the explosion time is above this limit and we expect
most of these systems to merge quickly.

(EOB) formalism [22–25] up to the 4th Post-Newtonian
approximation (see Refs. [26, 27] and references therein).
We adopt here MNS = 1.5 M� and MBH = 2.67 M�
[28], the latter corresponding to the critical mass Mcrit

of a non-rotating NS obeying the nuclear NL3 equation
of state (EOS). Uncertainties in the EOS at supranuclear
densities lead to a variety of NS mass-radius relations and
consequently to different values of Mcrit, hence of MBH.
Both rotation [29] and different binary parameters may
lead to different amounts of angular momentum trans-
ferred to the NS, affecting its mass [30].

In order to assess the detectability of the GW emission
by advanced LIGO (aLIGO), we compute the signal-to-
noise ratio (SNR), averaged over all sky locations and
binary orientations, 〈SNR〉, generated by the NS-BH
spiraling-in binary up to the merger point [27]. Follow-
ing [31], we adopt as a threshold for the aLIGO detec-
tion 〈SNR〉 = 8 in a single detector, which implies a GW
horizon distance for these NS-BH binaries, which have
a chirp mass Mch = (MBHMNS)3/5/(MBH + MNS)1/5 ≈
1.73 M�, dL ≈ 335.4 Mpc, or z ≈ 0.075, using the maxi-
mum possible sensitive reachable by 2022. No BdHN has
been up to now detected with such a low redshift. Fig-
ure 4 shows, for two sources shown to be consistent with
the BdHN picture (GRB 130427A with z = 0.34 [15] and
GRB 061121 with z = 1.31 [32]), the GW source ampli-
tude spectral density,

√
Sh = 2|h̃(fd)|√fd = hc(fd)/

√
fd,

together with the one-sided ASD of the aLIGO noise,√
Sn(fd). Here hc(fd) and h̃(fd) are the characteristic

strain and the Fourier transform of the signal and fd the
frequency of the GWs at the detector. For these sources,
〈SNR〉 ≈ 1.75 and 0.45, respectively. For an optimally
located and polarized source, the SNR could increase by

up to a factor≈ 2.26, which implies that SNR=8 could be
obtained for a source as far as dL ≈ 2.26× 335.4 Mpc ≈
758 Mpc, or z ≈ 0.160. Furthermore, the SNR scales as

M5/6
ch , so it increases e.g. with larger BH masses. For

rotating NS with the NL3 EOS, the maximum value of
Mcrit is ≈ 3.4 M� [29], which would increase the SNR
only by ≈ 1.1. For this largest BH mass, the GW horizon
becomes dL ≈ 1.1 × 758 Mpc ≈ 834 Mpc, or z ≈ 0.174.
This largest possible GW horizon implies an upper limit
of ∼ 0.03 detections per year, adopting a BdHN rate of
1.2× 10−2 Gpc−3 y−1 [11].
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FIG. 4. ASD of the spiraling-in phase up to the merger,√
Sh = 2|h̃(fd)|√fd = hc(fd)/

√
fd, of the NS-BH binaries

produced by two BdHNe, GRB 130427A at redshift z = 0.34
and GRB 061121 at z = 1.31, compared with the noise ASD of
aLIGO,

√
Sn(fd). We indicate the estimated SNR for these

two sources and show the case of the NS-BH binary which
would generate a positive detection with SNR=8. The binary
dynamics is simulated via the EOB formalism up to the 4th
Post-Newtonian approximation.

CONCLUSION

The evolutionary scenario for BdHNe requires much
tighter binaries than typically studied in the literature of
ultra-stripped binaries and this produces unique features
in the end-fate of these systems. The progenitor of this
GRB engine begins with two massive stars, in contrast to
the one based on a massive core collapsing to a BH [33].
A tight binary is produced after a succession of common
envelope phases, producing a CO core near Roche-Lobe
overflow orbiting a NS, a subset of the ultra-stripped bi-
naries [5, 6, 34, 35]. Since 0.1–1% of the total SN Ibc
are expected to be ultra-stripped binaries [5], we esti-
mate that only 0.005–0.07% of the latter are needed to
explain the observed population of BdHNe. The fate of
such systems evolves very differently than the standard
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picture. The NS can accrete appreciable material in the
SN explosion and this accretion causes it to collapse to
a BH and form a GRB. However, the tight binary inval-
idates many of the assumptions about orbital evolution
in the SN. The SN explosion does not pass “instanta-
neously” across the NS, and correcting this assumption
alone drastically alters the binary fate. Including the in-
teraction of the orbit and the ejecta further exacerbates
these differences, causing these NS-BH to be very differ-
ent than the systems prediction in standard population
synthesis models.

First and foremost, the fraction of the BdHNe that re-
main bound after the SN explosion is nearly 100% even
with large ∼ 500–1000 km s−1 kicks imparted during
the SN explosion instead of the .1% in standard scenar-
ios. This means that even if BdHNe are rare, they may
dominate the fraction of NS-BH binaries in the Universe.
In addition, the merger timescales for these systems are
typically <10,000 y, producing a set of rapidly-merging
binaries. In view of such a short lifetime due to GW
emission, the current number of such events is likely to
be comparable with the original rate of long GRBs pro-
duced by BdHNe following the IGC paradigm. Because
of this rapid merger, the systems are unlikely to travel
that far from the site of the SN explosion that formed
the GRB. Even with large kicks, we expect these bina-
ries to merge within 10 pc of the BdHNe and we expect
the merger to occur within the radius swept clean by
the BdHN, giving a characteristic imprint in the GRB
emission. In view of the expected paucity of the bary-
onic contamination around the merger site, it is expected
that the characteristic prompt radiation emission time of
the GRB produced by these sources be dominated by the
general relativistic timescale of the BH, GM/c3 ≈ 10−4–
10−5 s, which justifies the attribution of the name of
ultrashort GRBs to this new family of events.

Another observational feature of these binaries is that
the BHs from these systems are low mass: ∼3–4M�, of
the order of the critical mass of rotating NSs [29, 30],
instead of the 5–10M� produced by standard scenarios.
However, further accretion of mass and angular momen-
tum from material kept bound into the system after
the BdHN process might lead the BH to larger masses
and to approach maximal rotation [30]. Although the
NS in this NS-BH binary should be rapidly rotating,
producing pulsed emission, the short timescale between
formation and merger means that it will be difficult to
observe such systems through steady pulsed emission.
However, if these systems make up a sizable fraction
of the NS-BH population, they could be detecting by
their GW signal. Although it is difficult to get the
exact component masses from aLIGO, evidence [36], or
the lack thereof, for binaries with low-mass BHs could
support, or limit the rate of, this scenario.
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ABSTRACT

The induced gravitational collapse paradigm explains a class of energetic, E 10iso
52 erg, long-duration gamma-

ray bursts (GRBs) associated with Ic supernovae, recently named binary-driven hypernovae. The progenitor is a
tight binary system formed of a carbon–oxygen (CO) core and a neutron star (NS) companion. The supernova
ejecta of the exploding CO core trigger a hypercritical accretion process onto the NS, which reaches the critical
mass in a few seconds, and gravitationally collapses to a black hole, emitting a GRB. In our previous simulations
of this process, we adopted a spherically symmetric approximation to compute the features of the hypercritical
accretion process. We here present the first estimates of the angular momentum transported by the supernova
ejecta, L ,acc and perform numerical simulations of the angular momentum transfer to the NS during the
hyperaccretion process in full general relativity. We show that the NS (1) reaches either the mass-shedding limit or
the secular axisymmetric instability in a few seconds depending on its initial mass, (2) reaches a maximum
dimensionless angular momentum value, »cJ GM 0.72

max[ ( )] , and (3) can support less angular momentum than
the one transported by supernova ejecta, >L J ,acc NS,max hence there is an angular momentum excess that
necessarily leads to jetted emission.

Key words: gamma-ray burst: general

1. INTRODUCTION

We have introduced the concept of induced gravitational
collapse (IGC, Ruffini et al. 2008; Rueda & Ruffini 2012) and a
family of systems that we have called binary-driven hyperno-
vae (BdHNe, see Ruffini et al. 2014b, and references therein),
in order to explain the subfamily of gamma-ray bursts (GRBs)
with energies E 10iso

52 erg associated with type Ic super-
novae. Within this paradigm, the supernova explosion and the
GRB occur in the following time sequence taking place in a
binary system composed of a carbon–oxygen (CO) core and a
neutron star (NS) companion: (1) explosion of the CO core; (2)
hypercritical accretion onto the NS that reaches the critical
mass; (3) NS gravitational collapse to a black hole; (4)
emission of the GRB. This sequence occurs on short timescales
of ∼100 seconds in the source rest-frame, and it has been
verified for several BdHNe with cosmological redshift z 1
(Pisani et al. 2013), all the way up to one of the farthest
sources, GRB 090423, at z = 8.2 (Ruffini et al. 2014a).

The first theoretical treatment of the IGC process (Rueda &
Ruffini 2012) was based on a simplified model of the binary
parameters and on the Bondi–Hoyle accretion formalism. More
recently, Fryer et al. (2014) performed the first more realistic
numerical simulations of the IGC by using more detailed
supernova explosions coupled to hypercritical accretion models
from previous simulations of supernova fallback (Fryer et al.
1996; Fryer 2009). The core-collapse of the CO core producing
the supernova Ic was simulated in order to calculate realistic
profiles for the density and expanding velocity of the supernova
ejecta. The hydrodynamic evolution of the material falling into
the accretion region of the NS was there followed numerically
up to the surface of the NS. The accretion in these systems can
proceed at very high rates that exceed by several orders of
magnitude the Eddington limit due to the fact that the photons
are trapped in the accreting material and the accretion energy is

lost through neutrino emission (see Fryer et al. 2014 and
references therein for additional details).
In addition, Fryer et al. (2015b) have shown that BdHNe

remain bound even if a large fraction of the binary initial total
mass is lost in the explosion, exceeding the canonical 50% limit
of mass loss. Indeed, these binaries evolve through the
supernova explosion very differntly than the compact binary
progenitors studied for instance in population synthesis
calculations due to the combined effects of (1) the hypercritical
accretion onto the NS companion, (2) the explosion timescale
comparable to the orbital period, and (3) the bow shock created
as the accreting NS plows through the supernova ejecta
transfer’s angular momentum, acting as a break on the orbit.
In previous simulations, we adopted a spherically symmetric

approximation of the hypercritical accretion process. However,
the angular momentum that the supernova ejecta carry, and
eventually might transfer to the NS during the accretion
process, could play an important role in the evolution and fate
of the system. In this work, we give first, in Section 2, an
estimate of the angular momentum transported by the part of
the supernova ejecta that enters into the gravitational capture
region (Bondi–Hoyle surface) of the NS and compute the
Bondi–Hoyle accretion rate. In Section 3, we show that the
material entering into the Bondi–Hoyle region possesses
sufficient angular momentum to circularize around the NS,
forming a disk-like structure. We then calculate, in Section 4,
the accretion of both matter and angular momentum onto the
NS from the matter that have circularized into a disk. The
accretion process is assumed to occur from an inner disk radius
given by the most bound circular orbit around a rotating NS.
We show that, depending upon the initial mass of the NS, the
NS might reach either the mass-shedding limit or the secular
axisymmetric instability in a short time. In Section 5, we
evaluate, instead, the binary parameters for which the accretion
onto the NS is not high enough to lead it to its collapse to a BH.
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The identification of such parameters defines a dichotomy in
the final product of the CO-NS binary which has been recently
discussed by Ruffini et al. (2015b): Family-1 long GRBs (i.e.,
BdHNe) in which the final system is a new NS binary, and
Family-2 long GRBs in which an NS-BH binary is produced.
Having introduced a typical CO core mass, the most important
parameters that define such a dichotomy are the initial NS
mass, the NS critical mass for the gravitational collapse to a
BH, and the orbital period of the binary. We also discuss a
possible evolutionary scenario leading to BdHN systems and
compare and contrast our picture with existing binary evolution
simulations in the literature. In the final discussion, in Section 6,
we summarize the results of this work and, in addition, show
that the total angular momentum transported by the supernova
ejecta is larger than the maximum angular momentum
supported by a maximally rotating NS. Therefore, we advance
the possibility that such an excess of angular momentum
constitutes a channel for the formation of jetted emission
during the hyperaccretion process of BdHNe leading to
possible observable non-thermal high-energy emission.

2. ANGULAR MOMENTUM TRANSPORTED
BY THE SUPERNOVA EJECTA

The accretion rate of the supernova ejecta onto the NS (see
Figure 1) can be estimated via the Bondi–Hoyle accretion
formula (Hoyle & Lyttleton 1939; Bondi & Hoyle 1944;
Bondi 1952):

pr= +M t R v c , 1B ej cap
2

rel
2

s,ej
2˙ ( ) ( )

where rej is the density of the supernova ejecta, Rcap is the
gravitational capture radius of the NS

=
+

R t
GM t

v c

2
, 2cap

NS

rel
2

s,ej
2

( ) ( ) ( )

with G the gravitational constant, MNS the mass of the NS, cs,ej

the sound speed of the supernova ejecta, and vrel the ejecta

velocity relative to the NS ( = -v v v ,rel orb ej where

= +v G M M aorb core NS( ) is the orbital velocity of the NS
around the CO core, and vej the velocity of the supernova
ejecta).
Now, we are in a position to give an estimate of the angular

momentum transported by the supernova material to the NS
during the IGC process. In doing so, we “extrapolate” the
results of Shapiro & Lightman (1976) and Wang (1981) for the
accretion process from stellar wind in a binary system. Due to
the motion of the material and the orbital motion of NS, see
Figure 1, the material falls radially with a velocity vrel making
an angle j with respect to the line that joins the stars’ centers of
the binary (so, j = v vsin orb rel). Introducing Cartesian coordi-
nates (y, z) in the plane perpendicular to v a ,rel ( ) and putting the
origin on the NS position, the angular momentum per unit time
that crosses a surface element dydz is

r=d L y z v y z y dydz, , . 32
acc ej rel

2˙ ( ) ( ) ( )

To first order in y, rej, and vrel can be written as:

 r r + +r n a a y v a v a y1 and 1 ,

4

ej ej rel rel( ) ( )( ) ( ) ( ) ( )

( )

and Equation (3) becomes

 r= + +r n
⎡⎣ ⎤⎦d L a v a y y dydz2 . 52

acc ej rel
2 2( )˙ ( ) ( ) ( )

Integrating over the area of the circle delimited by the capture
radius

+ = = - n

⎛
⎝⎜

⎞
⎠⎟y z R

GM

v a t
y

2

,
1 4 , 62 2

cap
2 NS

rel
2

2

( )
( )

( )

where we have applied c v ,s,ej ej we obtain the angular
momentum per unit time of the ejecta material falling into the
gravitational attraction region of the NS

 p
r= -r n⎜ ⎟⎛

⎝
⎞
⎠L a t v a t R a t

2

1

2
3 , , , . 7acc ej rel

2
cap
4˙ ( ) ( ) ( ) ( )

Now, we have to evaluate the terms r and n of Equation (7).
Following Anzer et al. (1987), we start expanding r rej ( ) and vej

in Taylor series around the binary separation distance, r = a:

r r
r

r
d» +

¶

¶

⎛
⎝
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⎞
⎠
⎟⎟r t a t

a t r
r, , 1

1

,
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,

( ) ( )
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where we assumed d = - r rr 1,NS∣ ∣ keeping only the first
order terms. For the supernova material, the continuity equation
implies


r

r
¶

¶
= - v

t
, 10

ej
ej ej( )· ( )

and therefore we obtain


r

r
j

r

r
j=

¢
= - +

¢
+r

⎛
⎝
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⎠
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Figure 1. Scheme of the IGC scenario: the CO core undergoes SN explosion,
the NS accretes part of the SN ejecta and then reaches the critical mass for
gravitational collapse to a black hole, with consequent emission of a GRB.
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On the other hand, defining x̂ as a unit vector in the direction of
v a ,rel ( ) the projection of v rrel ( ) on x̂ is

f j p j= + - -vx r v vcos cos 2 . 12rel ej orbˆ · ( ) ( ) ( ) ( )

In the limit when d r 1, also d j-r y sin and
f f y rsin cos (see Figure 1). Then, the last expression

together with Equation (9) becomes

j j

j j

+

- +
¶

¶


⎛
⎝⎜

⎞
⎠⎟

vx r v a v

v

r

v

r
y

cos sin

cos sin . 13
a t

rel ej orb

ej ej

,

ˆ · ( ) ( )

( )
( )

We can write the relative velocity to the NS of the ejected
material as

d+v v a t v, , 14rel rel rel( ) ( )

where

d

j j

-

=- +
¶

¶


⎛
⎝⎜

⎞
⎠⎟

v vv x r a

v

r

v

r
y cos sin .

a t
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ej ej

,

ˆ · [ ( ) ( )]

( )

Then, from a simple comparison of Equations (4) and (14), we
obtain

 j j
= - +

¶

¶
n

⎛
⎝⎜

⎞
⎠⎟

v

r

v

r v a

cos sin
. 15

a t

ej ej

, rel ( )
( )

( )

In order to integrate Equation (1) and simulate the
hypercritical accretion onto the NS, we need to implement a
model for the supernova explosion from which we determine
the velocity and the density of the ejecta near the capture region
of the NS. We shall adopt for expansion of the supernova
ejecta, i.e.,

=v r t n
r

t
, . 16ej( ) ( )

Thus, the outermost layer of the ejecta, which we denote
hereafter as R ,star evolves as

=
⎛
⎝⎜

⎞
⎠⎟R t R

t

t
, 17

n

star 0
0

star( ) ( )

where >t 00 is the initial time of the accretion process and n is
the so-called expansion parameter whose value depends on the
hydrodynamical evolution of the ejecta and the circumstellar
material, i.e., n = 1 corresponds to a free expansion, n > 1 an
accelerated expansion, and n < 1 a decelerated one.

The condition of homologous expansion give us the density
profile evolution (see Cox 1968 for details):

r r= º
⎛
⎝⎜

⎞
⎠⎟X t X t

M t

M t

R

R t
X

r

R
, , , 18ej ej 0

env

env 0

0

star

3

star

star( )( ) ( )
( ) ( )

( )

where M tenv ( ) is the mass expelled from the CO core in the
supernova explosion, and hence available to be accreted by the
NS, and r X t,ej 0( ) is the density profile of the outermost layers
of the CO core (i.e., a pre-supernova profile). Fryer et al. (2014)
considered the density profile for three different low-metallicity
stars with initial zero-age main-sequence (ZAMS) masses of

=M 15,ZAMS 20, and 30 M using the Kepler stellar evolution
code (Woosley et al. 2002). The CO envelope of such pre-

supernova configurations can be well approximated by a power
law (see Figure 2 in Fryer et al. 2014):

r r= <⎜ ⎟⎛
⎝

⎞
⎠r t

R

r
R r R, , for , 19

m

ej 0 core
core

core 0star( ) ( )

where the parameters are shown in Table 1.
In the accretion process, the NS baryonic mass evolves as

= +M t M t M t , 20b b B0( ) ( ) ( ) ( )

and, in general, its total mass, which includes the gravitational
binding energy, evolves as

=
¶
¶

+
¶
¶

M
M

M
M

M

J
J 21BNS

NS

b

NS

NS
NS˙ ˙ ˙ ( )

where JNS is the NS total angular momentum. The relation
between Mb and MNS for a rotating NS fully including the
effects of rotation in general relativity, as well as other NS
properties, are shown in the appendix.
Taking into account the NS gravitational binding and

considering the relations (2), (16), and (18), Equation (1)
becomes

m
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The parameters χ, η, and tB depend on the properties of the
binary system before the SN explosion:

t
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For the homologous explosion model adopted to describe the
expansion dynamics of the ejecta, the parameters r and n,

Table 1
Properties of the Pre-supernova CO Cores

Progenitor rcore Rcore Menv R0star m

M MZAMS ( ) (g cm−3) (cm) M( ) (cm)

15 3.31 × 108 5.01 × 107 2.079 4.49 × 109 2.771
20 3.02 × 108 7.59 × 107 3.89 4.86 × 109 2.946
30 3.08 × 108 8.32 × 107 7.94 7.65 × 109 2.801

Note. The CO cores are obtained for the low-metallicity ZAMS progenitors
with =M 15,ZAMS 20, and 30 M of Woosley et al. (2002). The central iron
core is assumed to have a mass = M M1.5 ,Fe which will be the mass of the
new NS formed out of the supernova process.
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using Equations (18) and (19), are given by


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Replacing the above equations in Equation (7), the angular
momentum per unit time transported by the ejecta crossing the
capture region is

p r
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Thus, we can write the specific angular momentum:
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Figure 2 shows the time evolution of the Bondi–Hoyle
accretion rate, obtained from the numerical integration of
Equation (22), and of the angular momentum transported by the
ejecta, obtained from Equation (7). In these simulations, we
have adopted, for the sake of example, the = M M30ZAMS
CO progenitor, an expansion parameter n = 1, a supernova
ejecta velocity = ´v 2 100

9
star cm s−1, and an initial NS mass,

= M t M2.0 .NS 0( ) Following Fryer et al. (2014), we adopt
binary parameters such that there is no Roche lobe overflow
prior to the supernova explosion. For the above CO core and
NS parameters, such a condition implies a minimum orbital
binary period of =P 4.85 minute.0

In order to visualize the dynamics of the process, we show in
Figure 3 the velocity field of the supernova ejecta at selected

times of the accretion process onto the NS. To produce this
figure, we compute the SN velocity field considering just the
effect of the NS gravitational attraction on the SN ejecta taking
into account the changes in the NS position, r t ,NS ( ) due to its
own orbital motion and the evolution of the NS mass, M t ,NS ( )
estimated by the Bondi accretion formalism. The SN matter is
seeing as a set of point-like particles, so the trajectory of each
particle was followed by solving the Newtonian equation of
motion:

= -
-
-

r r r

r r

d t

dt
GM t

t t

t t
, 26

2
sn

2 NS
sn NS

sn NS
3

( ) ( ) ( ) ( )
( ) ( )∣

( )

setting as the reference frame the initial center of mass of the
binary system. The simulation goes from time =t t0 until the
collapse of the NS. The initial conditions for each SN particle
come from the homologous velocity distribution, assuming a
free expansion.

3. CIRCULARIZATION OF THE SUPERNOVA
EJECTA AROUND THE NS

We turn now to the determination of whether or not the
supernova ejecta possess enough angular momentum to
circularize around the NS before being accreted by it. Since,
initially, the NS is slowly rotating or non-rotating, we can
describe the exterior spacetime of the NS before the accretion
process by the Schwarzschild metric. A test-mass particle
circular orbit of radius rst possesses in this metric a specific
angular momentum given by

= -
-⎛

⎝⎜
⎞
⎠⎟l c

GM r

c

GM

c r
1

3
. 27st

NS st
2

NS
2

st

1 2

( )

Assuming that there are no angular momentum losses once the
ejected material enters the NS capture region, hence

= =l l L M ,Bst acc acc˙ ˙ the material circularizes around the NS
at the radii:

= + - ⎜ ⎟
⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
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l

GM

l
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l

c

1

2
12 . 28st

acc
2

NS

acc
2

NS

2
acc

2

( )

y—circular orbit around a non-rotating NS is located at a
distance =r GM c6mb NS

2 with an angular momentum per unit
mass =l GM c2 3 .mb NS The most bound circular orbit, r ,mb is
located outside the NS surface for masses larger than M1.57 ,

M1.61 , and M1.68 for the GM1, TM1, and NL3 equation of

Figure 2. Time evolution of the mass accretion rate (left panel, in units of M s−1), the angular momentum per unit time transported by the supernova ejecta (central
panel, in units g cm2 s−2), and the Bondi–Hoyle capture radius of the NS (right panel, in units of 109 cm).
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Figure 3. Supernova ejecta velocity field at selected times of the accretion process onto the NS. This set of images shows visibly the increase of mass of the NS as a
function of time and manifestly evidence the physical reason why, as recently shown by Fryer et al. (2015b), contrary to the canonical supernova explosion occurring
in binary progenitors studied in population synthesis calculations, BdHNe remain bound even if a large fraction of the binary system’s mass is lost in the explosion
(i.e., well above the canonical 50% limit of mass loss). The reason is first, the hypercritical accretion onto the NS companion alters both the mass and momentum of
the binary; second, the explosion timescale is comparable with the orbital period, hence the mass ejection cannot be assumed to be instantaneous; and finally, the bow
shock created as the accreting NS plows through the supernova ejecta transfers angular momentum, acting as a break on the orbit. In the simulation represented in
these snapshots, we have adopted the = M M30ZAMS CO progenitor (see Table 1 for the corresponding pre-supernova CO core properties), an expansion parameter
n = 1, an ejecta outermost layer velocity = ´v 2 100

9
star cm s−1, and an initial NS mass, = = M t t M2.0 .NS 0( ) We adopt binary parameters such that there is no

Roche lobe overflow prior to the supernova explosion (Fryer et al. 2014), which imply for the present binary parameters a minimum orbital period of
=P 4.85 minute.0 In the left, central, and right columns, we show the results for binary periods =P P ,0 P4 ,0 and P10 ,0 respectively. The Bondi–Hoyle surface, the

filled gray circle, increases as the evolution continues mainly due to the increase of the NS mass. The x–y positions refer to the center-of-mass reference frame. The last
image in each column corresponds to the instant when the NS reaches the critical mass value. For the initial conditions of these simulations, the NS ends its evolution
at the mass-shedding limit with a maximum value of the angular momentum = ´J 6.14 1049 g cm2 s−1 (or »j 7NS ), and a corresponding critical mass of

=¹
M M3.15J

crit
0 (see, also, Figures 4 and 5).
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state (EOS), respectively F. Cipolletta et al. (2015, in
preparation). It is easy to check (see Figure 2) that the
supernova ejected material has an angular momentum larger
than this value, and therefore the ejecta entering into the NS
capture region will necessarily circularize at radii >r r .st mb We
have obtained from our simulations, ~r r 10st mb –103.

Even if the supernova ejecta possess enough angular
momentum to form a disk around the NS, which would
prevent it from falling rapidly onto the NS, the viscous forces
(and other angular momentum losses) might allow the material
to be accreted by the NS when it arrives at the inner boundary
of the disk. In the α-disk formalism, the kinetic viscosity is
n h r a= = c H,s,disk where η is the dynamical viscosity, H the
disk scale height, and cs,disk the sound velocity of the disk.
Following Chevalier (1993), the infall time in a disk at radius r
is

a a
~ ~ -t

r

c H

r

GM

GM

c r
1

2
, 29fall

st
2

s,disk

st
3 2

NS

NS
2

st
( )

where it is assumed that ~H rst (thick disk) and cs,disk of the
order of orbital velocity seen by an observer corotating with the
particle. Finally, a ~ 0.01–0.1 is dimensionless and measures
the viscous stress. In our simulations, we have obtained falling
times D ~ -t 10 ,fall acc

3 where Dacc is the characteristic
accretion time. Therefore, the supernova material can be
accreted by the NS in a short time interval without introducing
any significant delay.

With even a mild amount of angular momentum, this
accretion drives a strong outflow along the axis of angular
momentum (Fryer et al. 2006; Fryer 2009), ejecting up to 25%
of the infalling material, removing much of the angular
momentum. The ejecta may undergo rapid neutron capture
producing r-process elements (Fryer et al. 2006). As the
angular momentum increases, we expect the outflows to
become more collimated, which might very well lead to the
long sought explanation of the high-energy power-law MeV
emission observed in the Episode 1 of BdHNe (see, e.g.,
Sections 5 and 7 in Izzo et al. 2012; Sections 3.2 and 3.3 in
Ruffini et al. 2013; Ruffini & Izzo 2015a).

Much more work is needed to determine if there are any
observation implications of these expelled materials.

4. SPIN-UP OF THE NS AND REACHING
OF THE INSTABILITY REGION

Our first estimate of the angular momentum transported by
the supernova ejecta has shown that the materials have enough
angular momentum to circularize around the NS for a short
time and form a kind of thick disk. The viscous force torques in
the disk (and other possible losses) allow a sufficient angular
momentum loss until the material arrives at the inner boundary
of the disk, R ,in then falling into the NS surface. Thus, from
angular momentum conservation, the evolution of the NS
angular momentum, J ,NS will be given by

x=
dJ

dt
l R

dM

dt
30in

B( ) ( )

where ξ is an efficiency angular momentum transfer parameter.
In order to follow the NS spin-up during the accretion process,
this equation must be integrated simultaneously with Equa-
tion (22). In Equation (30), the value of l Rin( ) corresponds to

the angular momentum of the mostly bound circular orbit,
which for the axially symmetric exterior spacetime around the
rotating NS can be written as (F. Cipolletta et al. 2015, in
preparation):

= -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥l

GM

c

j

M
3.464 0.37 . 31mb

NS NS

NS

0.85

( )

In Figure 4, we show the evolution of the NS mass as a
function of its angular momentum during the accretion process
for a selected efficiency parameter for the NS angular
momentum rate, x = 0.5, and for selected values of the initial
NS mass, = =M t 0 2.0,NS ( ) 2.25, and M2.5 . We see how
the NS starting with = = M t M0 2.0NS ( ) reaches the mass-
shedding limit while, for higher initial masses, the NS ends at
the secular axisymmetric instability region.
Correspondingly, we show in Figure 5 the time evolution of

the dimensionless angular momentum of the NS, cJ GM ,NS NS
2( )

Figure 4. Neutron star mass as a function of its angular momentum gain for a
selected efficient parameter x = 0.5. Three evolutionary paths of the NS are
shown, each starting from a different initial NS mass = =M t 0 2.0,NS ( ) 2.25,
and M2.5 , and without loss of generality we have adopted the NL3
nuclear EOS.

Figure 5. Dimensionless angular momentum gain of the NS as a function of
the NS mass for a selected efficiency parameter x = 0.5. Three evolutionary
paths of the NS are shown, each starting from a different initial NS mass

= =M t 0 2.0,NS ( ) 2.25, and M2.5 , and without loss of generality we have
adopted the NL3 nuclear EOS.

6

The Astrophysical Journal, 812:100 (11pp), 2015 October 20 Becerra et al.



as a function of the NS mass, in the case of an efficiency of
angular momentum transfer to the NS x = 0.5. In line with the
above result of Figure 4, we see here that only the NS that ends
at the mass-shedding limit, i.e., the one with an initial mass

= = M t M0 2.0 ,NS ( ) reaches the maximum possible value
of the dimensionless angular momentum, »cJ GM 0.7.NS NS

2( )
The NSs with higher initial masses become secularly unstable
with lower angular momentum.

5. FAMILY-1 AND FAMILY-2 LONG GRBs
AND THE EVOLUTIONARY SCENARIO

We have until now evidenced the binary parameters for
which a new NS-BH binary system is produced out of the
BdHNe. There exist limiting binary parameters leading to
lower accretion rates onto the NS and to a total accreted matter
not sufficient to bring the NS to the gravitational collapse to a
BH, namely, not sufficient to reach the NS critical mass. The
identification of such limiting parameters introduces a
dichotomy in the final product of the CO-NS binary, with
consequent different observational signatures, which have been
recently discussed by Ruffini et al. (2015b): Family-1 long
GRBs (BdHNe) in which the NS does not collapse to a BH,
and the final system being a new NS binary; and Family-2 long
GRBs (BdHNe) in which the NS collapses to a BH, leading to a
new NS-BH binary.

Since we expect the accretion rate to become lower for wider
(longer binary period) binaries, there must be a maximum
binary period (of course having fixed the other system
parameters, i.e., initial NS mass, CO core mass, and supernova
velocity), which defines the aforementioned families’ dichot-
omy. Therefore, we performed simulations increasing the
binary period, starting from the minimum value P0, for given
M 0 ,NS ( ) M ,CO and v .0star Figure 6 shows the results of the
maximum binary period Pmax for which we obtained a collapse
to a BH of the NS companion, as a function of its initial mass,
M 0 ,NS ( ) keeping the other binary parameters fixed. The results
are shown for three selected nuclear EOS of the NS (NL3, TM1
and GM1). In particular, for the system, we have used as an
example in the above figures, namely = M M0 2 ,NS ( )

= M M9.4CO ( = M M30 ,ZAMS see Table1), and
= ´v 2 100

9
star cm s−1, we obtained »P 73 minute,max for

the NL3 EOS. Since the two other EOS (TM1 and GM1) lead

to lower values of the critical NS mass with respect to the NL3
EOS (see Table 2 and Cipolletta et al. 2015), the maximum
orbital period to have BH formation is longer for the same
initial NS mass.
With the knowledge of the proper set of parameters for

which the gravitational collapse of the NS to a BH is induced
by accretion, and consequently, also the parameters for which
such a process does not occur, it becomes appropriate to
discuss the possible progenitors of such binaries. A possible
evolutionary scenario was discussed by Rueda & Ruffini
(2012), taking advantage of the following facts: (1) a viable
progenitor for BdHN systems is represented by X-ray binaries
such as Cen X-3 and Her X-1 (Schreier et al. 1972; Tananbaum
et al. 1972; Wilson 1972; Leach & Ruffini 1973; Gursky &
Ruffini 1975; Rawls et al. 2011); (2) evolution sequences for
X-ray binaries, and evolution scenarios leading to systems in
which two SN events occur during their life, had been already
envisaged (see, e.g., Nomoto & Hashimoto 1988; Iwamoto
et al. 1994). Thus, BdHNe could form following the evolution
of an initial binary system composed of two main-sequence
stars, M1 and M2, with a mass ratio M M 0.4.2 1 Star 1 is
likely  M M11 ,1 leaving an NS through a first core-collapse
event. Star 2, now with  M M112 after some almost
conservative mass transfer, evolves filling its Roche lobe. It
then starts a spiral-in of the NS into the envelope of star 2, i.e.,
a common-envelope phase occurs. If the binary system
survives to this common-envelope phase, namely it does not
merge, it will be composed of a helium star and an NS in tight
orbit. The helium star then expands filling its Roche lobe and a
non-conservative mass transfer to the NS, takes place. After
loosing its helium envelope, the above scenario naturally leads
to a binary system composed of a CO star and a massive NS
whose fate has been discussed in the present work.
The above evolutionary path advanced by Rueda & Ruffini

(2012), see Figure 7, is in agreement with the recent results of
Tauris et al. (2015), who performed simulations of the
evolution of a helium core in a tight binary with an NS
companion. The helium envelope is stripped-off during the
evolution as a result of both mass-loss and binary interactions
and at the end it might lead to an SN of type Ib or Ic in the
presence of the NS companion. Their simulations show the
possibility of having binaries with orbital periods as short as
∼50 minute at the moment of the SN explosion. However, they
were interested in the so-called ultra-stripped SNe and therefore
they explored systems with helium stars of low initial masses

Figure 6. Maximum binary period for which the NS with initial mass M 0NS ( )
collapses to a BH, for three selected EOS.

Table 2
Critical Mass and Corresponding Radius for Selected

Parameterizations of Nuclear EOS

EOS

=M J
crit

0

M( )

=R J
crit

0

(km)

¹M J
max

0

M( )

¹R J
max

0

(km) p k fK (kHz)

NL3 2.81 13.49 3.38 17.35 1.68 0.006 1.34
GM1 2.39 12.56 2.84 16.12 1.69 0.011 1.49
TM1 2.20 12.07 2.62 15.98 1.61 0.017 1.40

Note. In the last column, we have also reported the rotation frequency of the
critical mass configuration in the rotating case. This value corresponds to the
frequency of the last configuration along the secular axisymmetric instability
line, i.e., the configuration that intersects the Keplerian mass-shedding
sequence.
Reference. Cipolletta et al. (2015).
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= M M2.5 3.0 ,He – less massive than the ones we expect for
the CO cores in BdHNe.

Besides comparing the value of the pre-SN core mass, it is
also instructive to compare the radii we have assumed for the
pre-SN CO core with the ones obtained by Tauris et al. (2015).
For example, they obtained a radius of the metal core of the
» M3 helium star forming initially a binary of orbital period
0.1 day with an NS companion of M1.35 , is » R R0.024 .
The most similar case we can compare with, corresponds to the
CO core formed by the = M M15ZAMS progenitor (see
Table 1), » M M3.5 ,CO for which we have adopted a radius
of » ´4.5 109 » Rcm 0.06 . This radius is »2.5 times
larger than the above M3 helium star of Tauris et al. (2015).
This implies that our assumption (Fryer et al. 2014) that, due to
the three to four orders of magnitude of pressure jump between
the CO core and helium layer, the star will not expand
significantly when the helium layer is removed, seems to be
appropriate. As we discussed in Fryer et al. (2014), differences
of ∼2 in the value of the radius could be due to the different
binary interaction ingredients as well as to subtleties of the
numerical codes, e.g., between the MESA and the KEPLER
codes.

On the other hand, the relatively long possible orbital periods
we have obtained (with respect to our minimum value P0) to
have BH formation weakens the role of the precise value of the

CO core radius on the accretion process and the final fate of the
system. If the radius of the CO core is N times the radius of the
core of the system with =P P ,0 then the evolution of the
system will be approximately the one of a system with orbital
period =P N P .3 2

0 For example, we have adopted a radius
» ´R 7.7 10CO

9 » Rcm 0.1 for the CO core with mass
» M M9.4CO (see Table 1), and thus a minimum orbital

period (to have no Roche lobe overflow) of »P 5 minute,0 if it
forms a binary with a M2 NS companion. The maximum
value of the orbital period for which we obtained BH formation
for those mass parameters was »P 73 minutemax (for the NL3
EOS), which would imply that even with a CO core
» »15 62 3 times larger, BH formation would occur. Despite
this fact, the precise value of the CO core mass and radius
depends on the binary interactions, hence on the evolutionary
path followed by the system; therefore, it is appropriate to
compute the binary evolution proposed in this work to confirm
or improve our estimates for the CO core masses and radii.

6. CONCLUSIONS

We have first computed the angular momentum transported
by the supernova ejecta expanding in the tight CO core-NS
binary system progenitor of BdHNe. We have shown that the
angular momentum of the ejecta is high enough to circularize,
although for a short time, around the NS forming a kind of
thick disk. We have then simulated the process of accretion
onto the NS of the supernova ejecta falling into the Bondi–
Hoyle region and forming the disk-like structure around the
NS. We have computed both the evolution of the NS mass and
angular momentum assuming that the material falls onto the NS
surface from an inner disk radius position given by the mostly
bound circular orbit around the NS. The properties of the
mostly bound orbit, namely binding energy and angular
momentum, have been computed in the axially symmetric
case with full rotational effects in general relativity. We have
computed the changes of these properties in a dynamical
fashion accounting for the change of the exterior gravitational
field due to the increasing NS mass and angular momentum.
In Figure 3, we have shown a set of snapshots of our

simulation of the velocity field of the supernova ejecta falling
into the NS. It is evident from the evolution the increase of size
of the Bondi–Hoyle gravitational capture region of the NS with
time due to the increase of the NS mass. It becomes also
manifestly evident why, as shown by Fryer et al. (2015b),
contrary to the canonical supernova explosion occurring in
binary progenitors studied in population synthesis calculations,
BdHNe remain bound even if a large fraction of the binary
system’s mass is lost in the explosion. Indeed, they might
exceed the canonical 50% limit of mass loss without being
disrupted. This impressive result is the combined result of (1)
the hypercritical accretion onto the NS companion which alters
both the mass and momentum of the binary, (2) the explosion
timescale which is on par with the orbital period, hence the
mass ejection cannot be assumed to be instantaneous, and (3)
the bow shock created, as the accreting NS plows through the
supernova ejecta, transfers angular momentum acting as a
break on the orbit.
We have shown that the fate of the NS depends on its initial

mass: for example, we have seen how an NS with an initial
mass = M M0 2.0NS ( ) reaches the mass-shedding limit,
while for higher initial masses, e.g., 2.5 M , the NS ends at
the secular axisymmetric instability limit (see Figure 4). Only

Figure 7. Scheme of a possible evolutionary scenario leading to BdHNe as
outlined in Rueda & Ruffini (2012).
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those NSs reaching the mass-shedding limit are spun-up up to
the maximum value of the angular momentum,

» ¹J G M c0.7 J
NS,max crit

0 2( ) (see Figure 5). Since the NS
dimensionless angular momentum reaches a maximum value
<1, the new black hole formed out of the gravitational collapse
of the NS is initially not maximally rotating. Further accretion
of mass and angular momentum from material kept bound into
the system after the BdHNe process might lead the black hole
to approach maximal rotation; however it is out of the scope of
this work to explore such a possibility and will be the subject of
a forthcoming publication.

We can compute the total angular momentum transported by
the supernova ejecta material, L ,acc by integrating the angular
momentum per unit time Lacc˙ during the entire time interval of
the accretion process up to the point when the NS reaches the
instability region. If we compare the value of Lacc with the
maximum possible angular momentum that an NS can support,
J ,NS,max we reach the most important conclusion of this work:
since >L J ,acc NS,max see Figure 8, there is an excess of angular
momentum in the system that might give rise to jetted emission
in BdHNe with possible high-energy signatures.

We have explored the fate of the system for increasing the
orbital period and as a function of the initial NS mass, for a
fixed typical CO core mass. We have shown that, as expected,
there exists a maximum orbital period, P ,max over which the NS
does not accrete enough mass to become a BH. Despite the fact
that this could be seen as an expected result, it has been quite
unexpected, as shown in Figure 6, that the orbital period does
not need to be as short as ∼5 minutes in order to produce the
collapse of the NS to a BH. Indeed, for = M M0 2NS the
orbital period can be as long as 73 minutes, for the NL3 EOS.
Clearly, the value of Pmax increases for lower values of the
critical mass of the NS, i.e., the softer the EOS the longer the
maximum orbital period up to which BH formation occurs, and
vice versa. As discussed by Ruffini et al. (2015b), the existence
of Pmax and the precise value of the NS critical mass define a
dichotomy in the long GRBs associated with SNe (BdHNe),
namely two long GRB families with different observational
signatures: Family-1 long GRBs in which a BH is not
produced, and Family-2 long GRBs in which a BH is
produced. The relative rate of Family-2 long GRBs with

respect to Family-1 long GRBs can give us crucial information
on the value of the NS critical mass, hence on the stiffness of
the nuclear EOS; and thus population synthesis analyses
leading to theoretically inferred rates of events are needed to
unveil this important information (see, e.g., Ruffini et al.
2014c; Fryer et al. 2015a, for the complementary case of short
GRBs). As a first starting point toward such an analysis, we
have discussed a possible evolutionary scenario leading to tight
CO core-NS binaries (see Figure 7).
To conclude, in this work, we have advanced the first

estimates of the role of the angular momentum transported by
the supernova ejecta into the final fate of the NS companion in
a BdHNe. In order to keep the problem tractable and to extract
the main features of these complex systems, we have adopted a
series of approximations. (1) We have applied the Bondi–
Hoyle-Lyttleton formalism to compute the accretion rate onto
the NS; BdHNe are time-varying systems that might challenge
the validity of this framework which is valid for steady-state
systems (see Edgar 2004 and references therein). (2) We have
adopted Taylor series expansions of the supernova ejecta
density and velocity around the NS under the assumption that
the Bondi–Hoyle radius is small in comparison with the binary
separation; this has to be considered a first order solution to the
problem since for the conditions of BdHNe we have

~R 0.01cap – a0.1 . (3) We have adopted an homologous
expansion model for the supernova ejecta that could lead to
the suspicion of producing artificially higher accretion rates
onto the NS due to the low-velocity inner layers of the ejecta.
However, we have already shown (see Figure 3 in Fryer et al.
2014) that the homologous model leads to an accretion process
lasting for a longer time with respect to more realistic explosion
models, but with lower accretion rates such that the time-
integrated accretion rate leads to a lower amount of accreted
material by the NS. The reason for this is that, in a given time
interval, some of the low-velocity ejecta do not have enough
time to reach the gravitational capture region of the NS. (4) We
have adopted some characteristic values for the homologous
expansion parameter of the supernova ejecta (n= 1), for the
initial velocity of the outermost supernova ejecta layer
( = ´v 2 100

9
star cm s−1), for the efficiency of the angular

momentum transfer from the circularized matter to the NS
(x = 0.5). Thus, a systematic analysis of simulations exploring
the entire possible range of the above parameters as well as full
2D and/or 3D of the supernova explosion and accretion in
BdHNe are required in order to validate and/or improve our
results.

J.A.R. acknowledges the support by the International
Cooperation Program CAPES-ICRANet financed by CAPES,
Brazilian Federal Agency for Support and Evaluation of
Graduate Education within the Ministry of Education of Brazil.

APPENDIX
NS STRUCTURE

The contents of this appendix are based on the recent work
of Cipolletta et al. (2015). The interior and exterior metric of a
uniformly rotating NS can be written in the form of the
stationary axisymmetric spacetime metric

f w

q

=- + -

+ +

n y

l

ds e dt e d dt

e dr r d , 32

2 2 2 2 2

2 2 2 2( )
( )

( )

Figure 8. Ratio between the total angular momentum transported by the ejecta
circularized around the NS and the maximum angular momentum of the NS
when it reaches the instability point, for the NL3 EOS.

9

The Astrophysical Journal, 812:100 (11pp), 2015 October 20 Becerra et al.



where ν, ψ, ω, and λ depend only on variables r and θ. It is
useful to introduce the variable q=y n-e r Besin ,( ) being again

q=B B r, .( ) The energy–momentum tensor of the NS interior
is given by

e= + +ab a b abT P u u Pg , 33( ) ( )

where ε and P denote the energy density and pressure of the
fluid, and au is the fluid 4-velocity. Thus, with the metric given
by Equation (32) and the energy–momentum tensor given by
Equation (33), one can write the field equations as (setting
z l n= + ):
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where, in the equation for z m,, we introduced m qº cos .( )
We can integrate numerically the above Einstein equations

once a relation between ε and P is given,, namely an EOS. The
NS interior is made of a core and a crust. The core of the star

has densities higher than the nuclear value, r » ´3 10nuc
14

g cm−3, and it is composed of a degenerate gas of baryons
(e.g., neutrons, protons, hyperons) and leptons (e.g., electrons
and muons). The crust, in its outer region
( r r » ´4.3 10drip

11 g cm−3), is composed of ions and
electrons, and in the so-called inner crust (r r r< <drip nuc),
there are also free neutrons that drip out from the nuclei. For
the crust, we adopt the Baym–Pethick–Sutherland EOS (Baym
et al. 1971). For the core, we here adopt modern models based
on relativistic mean-field theory, which have Lorentz covar-
iance, intrinsic inclusion of spin, a simple mechanism of
saturation for nuclear matter, and they do not violate causality.
We use an extension of the formulation of Boguta & Bodmer
(1977) with a massive scalar meson (sigma) and two vector
meson (omega and rho) mediators, and possible interactions
between them.
With the knowledge of the EOS, we can compute

equilibrium configurations integrating the above equations for
suitable initial conditions, for instance central density and
angular momentum (or angular velocity) of the star. Then, after
integrating the Einstein equations, properties of the NS can be
obtained for the given central density and angular momentum
such as the total gravitational mass, the total baryon mass, polar
and equatorial radii, moment of inertia, quadrupole
moment, etc.
For the present problem of accretion onto the NS, as we have

mentioned in Section 2, an important relation to be obtained
from the NS equilibrium properties, is the one between the total
baryon rest-mass, Mb, and the gravitational mass, M ,NS namely
the gravitational binding energy of the NS; see Equation (21).
For non-rotating configurations, Cipolletta et al. (2015)
obtained an EOS-independent relation
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For the non-zero angular momentum configurations we are
interested in, Cipolletta et al. (2015) obtained
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where º j cJ GM .NS NS
2( ) This formula is accurate within an

error of 2% and it correctly generalizes the above Equation (38),
aproaching it in the limit j 0.NS
The NS can accrete mass until it reaches a region of

instability. There are two main instability limits for rotating
NSs, namely the mass-shedding or Keplerian limit, and the
secular axisymmetric instability. Cipolletta et al. (2015) have
shown that the critical NS mass along the secular instability
line, is approximately given by

= +=M M kj1 , 40J p
NS
crit

NS
0

NS( ) ( )

where the parameters k and p depend on the nuclear EOS (see
Table2). These formulas fit the numerical results with a
maximum error of 0.45%.
In addition to the above relations, we have used in this work

an analytic formula, Equation (31) obtained by F. Cipolletta
et al. (2015, in preparation), which gives us the angular
momentum of the mostly bound circular orbit around a
uniformly rotating NS, as a function of the NS mass and
angular momentum. Such a relation has allowed us to perform
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the simulations of the evolution of the accreting NS in a semi-
analytic fashion, including dynamically the feedback of the
increase of the NS mass and angular momentum into the
exterior geometry.
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ABSTRACT

We show the existence of two families of short gamma-ray bursts (GRBs), both originating from the merger of
binary neutron stars (NSs): family-1 with E 10iso

52< erg, leading to a massive NS as the merged core, and family-
2 with E 10iso

52> erg, leading to a black hole (BH). Following the identification of the prototype GRB 090227B,
we present the details of a new example of family-2 short burst: GRB 140619B. From the spectral analysis of the
early ∼0.2 s, we infer an observed temperature kT (324 33)=  keV of the e e+ --plasma at transparency
(P-GRB), a theoretically derived redshift z 2.67 0.37=  , a total burst energy E (6.03 0.79) 10e e

tot 52=  ´+ - erg,
a rest-frame peak energy E 4.7p i, = MeV, and a baryon load B (5.52 0.73) 10 5=  ´ - . We also estimate the
corresponding emission of gravitational waves. Two additional examples of family-2 short bursts are identified:
GRB 081024B and GRB 090510, remarkable for its well determined cosmological distance. We show that marked
differences exist in the nature of the afterglows of these two families of short bursts: family-2 bursts, leading to BH
formation, consistently exhibit high energy emission following the proper-GRB emission; family-1 bursts, leading
to the formation of a massive NS, should never exhibit high energy emission. We also show that both the families
fulfill an Ep i, –Eiso relation with slope 0.59 0.07g =  and a normalization constant incompatible with the one for

long GRBs. The observed rate of such family-2 events is ( )2.1 100 1.4
2.8 4r = ´-

+ - Gpc−3 yr−1.

Key words: gamma-ray burst: general

1. INTRODUCTION

The phenomenological classification of gamma-ray bursts
(GRBs) based on their prompt emission observed T90 durations
defines “long” and “short” bursts which are, respectively,
longer or shorter than T 290 = s (Dezalay et al. 1992;
Klebesadel 1992, pp. 161–168; Kouveliotou et al. 1993; Tavani
1998). Short GRBs have been often indicated as originating
from binary neutron star (NS) mergers (see, e.g., Good-
man 1986; Paczynski 1986; Eichler et al. 1989; Narayan
et al. 1991; Meszaros & Rees 1997; Rosswog et al. 2003; Lee
et al. 2004; Berger 2014).

An ample literature exists of short GRBs with a measured
redshift, isotropic burst energy E 10iso

52< erg and rest-frame
spectral peak energy E 2p i, < MeV (see, e.g., Berger 2014 and
references therein). Thanks to extensive data provided by the
Swift-XRT instrument (Burrows et al. 2005), it is possible to
observe the long lasting X-ray afterglow of these short bursts to
identify their host galaxies and to compute their cosmological
redshifts. They have been observed in both early- and late-type
galaxies with older stellar population ages (see, e.g.,
Berger 2014 for details), and at systematically larger radial
offsets from their host galaxies than long GRBs (Sahu et al.
1997; van Paradijs et al. 1997; Bloom et al. 2006; Troja et al.
2008; Fong et al. 2010; Berger 2011; Kopač et al. 2012). None
of these afterglows appears to have the specific power law
signature in the X-ray luminosity when computed in the source
rest-frame, as found in some long GRBs (see, e.g., Ruffini
et al. 2014).

In the meantime, considerable progress has been obtained in
the theoretical understanding of the equilibrium configuration
of NSs, in their mass–radius relation (see Figure 2 in Section 2),
and especially in the theoretical determination of the value of
the NS critical mass for gravitational collapse Mcrit

NS (Rotondo
et al. 2011; Rueda et al. 2011; Belvedere et al. 2012). This has
led to a theoretical value M 2.67crit

NS = M (Belvedere
et al. 2012). Particularly relevant to this determination has
been the conceptual change of paradigm of imposing global
charge neutrality (Belvedere et al. 2012) instead of the
traditional local charge neutrality (LCN) still applied in the
current literature (see, e.g., Haensel et al. 2007 and references
therein).
Similarly, noteworthy progress has been achieved in the

determination of the masses of galactic binary pulsars. Of the
greatest relevance has been the direct observation of NS masses
larger than 2 M (see Antoniadis et al. 2013 and Section 2). In
the majority of the observed cases of binary NSs the sum of the
NS masses, M M1 2+ , is indeed smaller than Mcrit

NS and, given
the above determination of the NS critical mass, their
coalescence will never lead to a black hole (BH) formation
(see Figure 3 in Section 2). This of course offers a clear
challenge to the traditional assumption that all short GRBs
originate from BH formation (see, e.g., Berger 2014 and
references therein).
Motivated by the above considerations, we propose in this

article the existence of two families of short GRBs, both
originating from NS mergers: the difference between these two
families depends on whether the total mass of the merged core
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is smaller or larger than Mcrit
NS. We assume that family-

1 coincides with the above mentioned less energetic short
GRBs with E 10iso

52< erg and the coalescence of the merging
NSs leads to a massive NS as the merged core. We assume that
family-2 short bursts with E 10iso

52> erg originate from a
merger process leading to a BH as the merged core. The
presence of the BH allows us to address the GRB nature within
the fireshell model (Ruffini et al. 2001a, 2001b, 2001c) leading
to specific signatures in the luminosity, spectra and time
variability observed in two very different components: the
proper-GRB (P-GRB) and the prompt emission (see Section 3).
The prototype is GRB 090227B, which we already analyzed
within the fireshell model in Muccino et al. (2013). We also
assume that the BH gives rise to the short-lived (102 s in the
observer frame) and very energetic GeV emission which has
been found to be present in all these family-2 short GRBs,

when Fermi-LAT data are available. This article is mainly
dedicated to giving the theoretical predictions and the
observational diagnostics to support the above picture.
In Section 4 we recall the results obtained in the case of the

prototype of family-2 short GRBs: GRB 090227B (Muccino
et al. 2013). The analysis of its P-GRB emission led to a
particularly low value of the baryon load, B ∼ 10−5, as well as
to the prediction of the distance corresponding to a redshift
z = 1.61, and consequently to E 2.83 10e e

tot 53= ´+ - erg. From
the analysis of the spectrum and the light curve of the prompt
emission we inferred an average circumburst medium (CBM)
density n 10CBM

5á ñ ~ - cm−3 typical of galactic halos of GRB
host galaxies.
In Section 5 we summarize the observations of a second

example of such family-2 short bursts, GRB 140619B, and our
data analysis from 8 keV up to 100 GeV. We also point out the

Figure 1. Space–time diagram of family-2 short GRBs. The orbital separation between the two NSs decreases due to the emission of GWs, until the merging occurs
and a family-2 short GRB is emitted. Following the fireshell model (see Section 3): (A) vacuum polarization occurs while the event horizon is formed and a fireshell
of e e+ - plasma self-accelerates radially outwards; (B) the fireshell, after engulfing the baryons, keeps self-accelerating and reaches the transparency when the P-GRB
is emitted; (C) the accelerated baryons interact with the local CBM giving rise to the prompt emission. The remnant of the merger is a Kerr BH. The accretion of a
small (large) amount of orbiting matter onto the BH can lead to the short lived but very energetic 0.1–100 GeV emission observed in GRB 081024B, GRB 090510,
and GRB 140619B. The absence of such an emission in GRB 090227B is due to the absence of observations of Fermi-LAT.

2
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lack of any observed X-ray afterglow following the prompt
emission (Maselli & D’Avanzo 2014).

In Section 6 we address GRB 140619B within the fireshell
model and compare and contrast the results with those of the
prototype, GRB 090227B (Muccino et al. 2013). In Section 6.1,
from the fireshell equations of motion, we theoretically
estimate and predict the value of the redshift of the source,
z 2.67 0.37=  . Consequently, we derive the burst energy
E 10iso

52> erg and the value of the baryon load B ∼ 10−5. In
Section 6.2 we infer an average density of the CBM
n 10CBM

5á ñ ~ - cm−3 from fitting the prompt emission light
curve and spectra. This parameter is typical of the galactic halo
environment and further confirms a NS–NS merger as the
progenitor for GRB 140619B (see Section 6.3 and Figure 1).

In Section 7 we discuss the possibility for Advanced LIGO
to detect the emission of gravitational waves (GWs) from such
a binary NS progenitor. From the dynamics of the above
system, the total energy emitted in GW radiation corresponds
to E 7.42 10T

GW
52= ´ erg, computed during the entire inspiral

phase all the way up to the merger. This gives a signal below
the sensitivity of the Advanced LIGO interferometer.

In Section 8 we focus on the short-lived ( t 4D » s) but
significant 0.1–100 GeV emission (see Figure 1). We first
address the issue of whether this is a peculiarity of GRB
140619B, or whether the GeV emission can be considered to be
a common feature of all these family-2 short GRBs. We first
return to GRB 090227B to see how to explain the absence of
observations of the GeV emission from this source, and we find
a simple reason: GRB 090227B was outside the nominal LAT
field of view (FOV, see Ackermann et al. 2013, and Section 4).
We then turn our attention to another source, GRB 090510,
which presents many of the common features of the family-
2 short GRBs. Especially noteworthy is the presence of a high
energy GeV emission lasting 102~ s, much longer than the one
of GRB 140619B. The presence of an X-ray afterglow in GRB
090510 is fortunate and particularly important, though lacking
a scaling law behavior (Ruffini et al. 2014), since it has
allowed the optical identification of the source and the
determination of its distance and its cosmological redshift
z = 0.903. The corresponding isotropic energy and intrinsic
peak spectral energy are, respectively, E 10iso

52> erg and
E (7.89 0.76)p i, =  MeV, typical again of family-2 short
bursts. We then compare and contrast this high energy
emission and their corresponding X-ray emissions in the
family-2 short GRB 140619B and GRB 090510 with the
afterglow of the family-1 short GRBs (see Figure 13 and
Berger 2014).

In Section 9 we give an estimate for the rate of the family-
2 short GRBs.

In Section 10 we discuss the existence of the new Ep i, –Eiso

relation for all short GRBs introduced by Zhang et al. (2012)
and Calderone et al. (2015), with a power-law similar to the
one of the Amati relation (Amati et al. 2008) for long GRBs,
but with a different amplitude. Finally we draw our
conclusions.

2. MOTIVATION FROM GALACTIC BINARY
NS AND NS THEORY

Recent theoretical progress has been achieved in the
understanding of the NS equation of state and equilibrium
configuration and of the value of its critical mass Mcrit

NS. In
Rotondo et al. (2011) it has been shown to be impossible to

impose the LCN condition on a self-gravitating system of
degenerate neutrons, protons, and electrons in β-equilibrium
within the framework of relativistic quantum statistics and the
Einstein–Maxwell equations. The equations of equilibrium of
NSs, taking into account strong, weak, electromagnetic, and
gravitational interactions in general relativity and the equili-
brium conditions based on the Einstein–Maxwell–Thomas–
Fermi equations along with the constancy of the general
relativistic Fermi energies of particles, the “Klein potentials,”
throughout the configuration have been presented in Rueda
et al. (2011) and Belvedere et al. (2012), where a theoretical
estimate of M M2.67crit

NS »  has been obtained. The imple-
mentations of the above results by considering the equilibrium
configurations of slowly rotating NSs by using the Hartle
formalism has been presented in Belvedere et al. (2014a). Then
in Rueda et al. (2014) a detailed study was made of the
transition layer between the core and crust of NSs at the nuclear
saturation density, and its surface tension and Coulomb energy
have been calculated. A comprehensive summary of these
results for both static and uniformly rotating NSs is discussed
in Belvedere et al. (2014b). The absolute upper limit on the
angular momentum of a rotating NS fulfilling the above
microscopical conditions has been obtained in Cipolletta
et al. (2015).
A vast number of tests have been performed in fitting the

data of pulsars (Deneva et al. 2012; Lattimer 2012; Antoniadis
et al. 2013; Kramer 2014). In particular, the high value of the
recently measured mass of PSR J0348+0432, M=
(2.01 0.04) M (Antoniadis et al. 2013), favors stiff nuclear
equations of state, like the one adopted in Belvedere et al.
(2012) based on relativistic nuclear mean field theory á la
Boguta & Bodmer (1977), which leads to the above theoretical
estimate of Mcrit

NS (see also Figure 2). This value is supported by
the above observational constraints, and in any case, is well
below the absolute upper limit of M3.2  for a non-rotating NS
(Rhoades & Ruffini 1974).
If we turn to the binary NSs within our Galaxy (see Figure 3)

we notice that only in a subset of them is the total mass of the
components larger than Mcrit

NS and can lead to a BH in their
merging process.6

Given this general understanding, we have identified the
characteristic properties of family-2 short bursts, whose proto-
type was identified in GRB 090227B (Muccino et al. 2013).
Equally important has been the identification of the observed
characteristic features of family-1 short GRBs which will be
discussed in the following sections.

6 During the refereeing process, an approach by Fryer et al. (2015) based on a
combination of binary NS merger nuclear physics models and population
synthesis appeared. They infer that for a maximum nonrotating NS mass of
Mcrit

NS above 2.3–2.4 M, less than 4% of the NS mergers produces short GRBs
by gravitational collapse to a BH. Here we go one step further by indicating the
theoretical predictions characterizing short GRBs originating from the massive
NS formation (family-1) and the ones originating from BH formation (family-
2). We indicate: (a) the specific spectral features, (b) the presence of the GeV
emission originating from the BH, and (c) the fulfillment of the Ep i, –Eiso
relation (see Zhang et al. 2012; Calderone et al. 2015, and Section 10). The
paper by Fryer et al. (2015) was followed by Lawrence et al. (2015) where the
authors examine the value of Mcrit

NS for a family of equations of state and
concluded that a reasonable fraction of double NS mergers may produce neither
short GRBs nor BHs. Here we again go one step further by indicating that in
the case of a merged core with a mass smaller than Mcrit

NS leading to a massive
NS, a less energetic short GRB with a softer emission tail indeed occurs
(family-1 short bursts). We show also that these short GRBs fulfill the above
Ep i, –Eiso relation (see Section 10).
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The crucial role of Mcrit
NS has been also shown in the

corresponding analysis of long GRBs in distinguishing
between the two different families (Ruffini et al. 2015) in the
induced gravitational collapse paradigm (Izzo et al. 2012a;
Rueda & Ruffini 2012; Fryer et al. 2014).

3. THE FIRESHELL MODEL

It is well known that the majority of the astrophysical
community working on GRBs envisages the spectral and
temporal analysis of both short and long GRBs considering
their whole emission as a single event (see, e.g., Ackermann
et al. 2013). This picture follows the conceptual framework of
the “fireball model” (see, e.g., Sari et al. 1998; Piran 2005;
Meszaros 2006, and reference therein).

The “fireshell model” (Ruffini et al. 2001a, 2001b, 2001c)
has instead addressed a specific time-resolved spectral analysis
leading to distinct signatures and to the identification of
different astrophysical regimes within the same GRB (see, e.g.,
Izzo et al. 2010; Izzo et al. 2012b; Muccino et al. 2013; Ruffini
et al. 2013 and references therein). This has led to introduction

of the concept of binary mergers of NS–NS and of FeCO–NS
together with a set of new paradigms in order to describe the
complexity of GRB phenomena within a “Cosmic-Matrix”
approach (Ruffini 2015a).
In the fireshell model (Ruffini et al. 2001a, 2001b, 2001c)

GRBs originate from an optically thick e e+ - plasma (Damour
& Ruffini 1975; Ruffini & Xue 2008; Ruffini et al. 2010)
during the gravitational collapse to a BH. Such an e e+ - plasma
is confined to an expanding shell and reaches thermal
equilibrium almost instantaneously (Aksenov et al. 2007).
The annihilation of these pairs occurs gradually, while the
expanding shell, called the fireshell, self-accelerates up to ultra
relativistic velocities (Ruffini et al. 1999) and engulfs the
baryonic matter (of mass MB) left over in the process of
collapse. The baryon load thermalizes with the pairs due to the
large optical depth (Ruffini et al. 2000).
Assuming spherical symmetry of the system, the dynamics

in the optically thick phase is fully described by only two free
initial parameters: the total energy of the plasma Ee e

tot
+ - and the

baryon load B (Ruffini et al. 2000). Only solutions with
B 10 2-⩽ are characterized by regular relativistic expansion;
for B 10 2-⩾ turbulence and instabilities occur (Ruffini et al.
2000). The fireshell continues to self-accelerate until it reaches
the transparency condition and a first flash of thermal radiation,
the P-GRB, is emitted (Ruffini et al. 2001b). The radius rtr at
which the transparency occurs, the theoretical temperature
(blueshifted toward the observer kTblue), the Lorentz factor trG ,
as well as the amount of the energy emitted in the P-GRB are
functions of Ee e

tot
+ - and B (see, e.g., Ruffini et al. 2001b; Ruffini

et al. 2009, and Figure 4).
After transparency, the residual expanding plasma of leptons

and baryons collides with the CBM giving rise to multi-
wavelength emission: the prompt emission. Assuming the fully
radiative condition, the structures observed in the prompt
emission of a GRB are described by two quantities associated
with the environment: the CBM density profile nCBM, which
determines the temporal behavior of the light curve, and the
fireshell surface filling factor A Aeff vis= , in which Aeff is the
effective emitting area of the fireshell, and Avis is its total
visible area (Ruffini et al. 2002, 2005). This second parameter
takes into account the inhomogeneities in the CBM and its
filamentary structure (Ruffini et al. 2004).
The emission process of the collision between the baryons

and the CBM is described in the comoving frame of the shell as
a modified blackbody (BB) spectrum. This spectrum is
obtained by the introduction of an additional phenomenological
parameter α which characterizes the departure of the slope of
the low energy part of the comoving spectrum from the purely
thermal one (see Patricelli et al. 2012, for details). The
nonthermal spectral shape of the observed GRB is then
produced by the convolution of a very large number of
modified thermal spectra with different temperatures and
different Lorentz and Doppler factors. This convolution is
performed over the surfaces of constant arrival time for photons
at the detector (EQuiTemporal Surfaces, EQTS, Bianco &
Ruffini 2005a, 2005b), encompassing the total observation
time. The observed hard-to-soft spectral variation comes out
naturally from the decrease with time of the comoving
temperature and of the bulk Lorentz Γ factor. This effect is
amplified by the curvature effect due to the EQTS which
produces the observed time lag in the majority of the GRBs.

Figure 2. Mass–radius relation obtained with the local and the new global
neutrality equilibrium configurations, by applying the NL3 nuclear model.
Figure reproduced from Belvedere et al. (2012).

Figure 3. Plot of the binary NSs with known total masses (M M1 2+ , in solar
masses) and the corresponding uncertainties. The horizontal dashed line marks
the critical NS mass of 2.67 M (Belvedere et al. 2012). Systems beyond this
value lead to BH formation. Masses taken from Zhang et al. (2011) and
Antoniadis (2014).
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The canonical GRB light curve within the fireshell model is
then characterized by a first (mainly thermal) emission due to
the transparency of the e e+ --photon-baryon plasma, the
P-GRB. A multi-wavelength emission, the prompt emission,
follows due to the collisions between the accelerated baryons
and the CBM.

The fireshell model has originally described the process of
vacuum polarization due to the overcritical electromagnetic

field occurring at the moment of BH formation (Damour &
Ruffini 1975). The formalism has been developed by
considering a large number of relativistic quantum effects in
the electrodynamics proposed for the NS crust (Belvedere
et al. 2012, 2014a; Rueda et al. 2014), as well as on quantum-
electrodynamics processes ongoing in the gravitational collapse
(Han et al. 2012; Ruffini & Xue 2013). This has led to the
results summarized in Figure 4.
The first description of the e e+ - plasma within the fireshell

model was performed under the simplified assumption of
spherical symmetry (the dyadosphere; see, e.g., Preparata
et al. 1998). The corresponding structure in the axially
symmetric Kerr-Newman geometry has been considered (the
dyadotorus; see, e.g., Cherubini et al. 2009; Ruffini 2009) and
could possibly be tested.
The general formalism of the fireshell model can also be

applied to any optically thick e e+ - plasma in the presence of a
baryon load, like the one created during the merging of binary
NSs from ¯ e enn  + - (see, e.g., Salmonson & Wilson 2002
and references therein).
The P-GRB addresses the fully relativistic fundamental

physics aspects of the model, in particular the acceleration
process of the e e+ --baryon plasma, the collapsing NS quantum-
electrodynamics, and the BH physics. The prompt emission
addresses the conceptually simpler problem of the interaction
of the accelerated baryons with the CBM, which does not allow
nor require, by its own nature, a detailed description.

4. SUMMARY OF THE RESULTS FOR GRB 090227B:
THE PROTOTYPE OF THE FAMILY-2 SHORT GRBS

GRB 090227B is a bright short burst with an overall
emission lasting ∼0.9 s and total fluence of 3.79 10 5´ -

erg cm−2 in the energy range 8 keV–40MeV. This burst was
significantly detected only in the LAT Low Energy (LLE) data
since it was outside the nominal LAT FOV (Ackermann
et al. 2013). However, only one transient-class event with
energy above 100MeV has been associated with the GRB
(Ackermann et al. 2013).
The time-resolved spectral analysis on the time scale as short

as 16 ms, made possible by the Fermi-GBM (Meegan
et al. 2009), has allowed the identification of the P-GRB in
the early 96 ms of emission. The corresponding thermal
component has a temperature kT (517 28)=  keV (see the
upper plots of Figure 9 in Muccino et al. 2013). The subsequent
emission, fit by a Band function (see lower plots of Figure 9 in
Muccino et al. 2013), has been identified with the prompt
emission.
Due to the absence of an optical identification, a direct

measurement of the cosmological redshift was not possible.
From the temperature and flux of the P-GRB thermal
component it was possible to derive (see Figure 4) a theoretical
cosmological redshift z 1.61 0.14=  , as well as the baryon
load B (4.13 0.05) 10 5=  ´ - , the total plasma energy
E (2.83 0.15) 10e e

tot 53=  ´+ - erg, and the extremely high
Lorentz Γ factor at transparency (1.44 0.01) 10tr

4G =  ´
(see Section 4.1 in Muccino et al. 2013). Consequently, an
average CBM number density n (1.90 0.20)CBMá ñ =  1́0 5-

cm−3 has been determined which is typical of galactic halos
where NS–NS mergers migrate, owing to natal kicks imparted
to the binaries at birth (see, e.g., Narayan et al. 1992; Bloom
et al. 1999; Fryer et al. 1999; Belczynski et al. 2006;
Berger 2014).

Figure 4. Main quantities of the fireshell model at transparency for selected
values of E

e e
tot
+ -: the radius in the laboratory frame, the temperatures of the

plasma in the co-moving frame and blueshifted toward the observer, the
Lorentz Γ factor, and the fraction of energy radiated in the P-GRB and in the
prompt emission as functions of B.
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In Muccino et al. (2013) it was concluded that the progenitor
of GRB 090227B is a binary NS. For simplicity and as a lower
limit, the masses of the two NS have been assumed to be the
same, e.g., M M 1.341 2= = M, so that the total merged core
mass is Mcrit

NS> and therefore a BH is formed. This conclusion
was drawn in view of the large total energy,
E 2.83 10e e

tot 53= ´+ - erg. Correspondingly, the energy emitted
via GWs, 9.7 1052~ ´ erg, has been estimated in Oliveira
et al. (2014).

5. OBSERVATIONS AND DATA ANALYSIS
OF GRB 140619B

At 11:24:40.52 UT on 2014 June 19, the Fermi-GBM
detector (Connaughton et al. 2014) triggered and located the
short and hard burst GRB 140619B (trigger 424869883/
140619475). The on-ground calculated location, using the
GBM trigger data, was R.A.(J2000) 08 54h m= and decl.
(J2000) 3 42o= - ¢, with an uncertainty of 5o (statistical only).
The location of this burst was 32o from the LAT boresight at
the time of the trigger, and the data from the Fermi-LAT
showed a significant increase in the event rate (Kocevski
et al. 2014). The burst was also detected by Suzaku-WAM
(Iwakiri et al. 2014), showing a single pulse with a duration of
∼0.7 s (50 keV–5MeV). The analysis from 48.7 to 71.6 ks
after the GBM trigger by the Swift-XRT instrument in the FOV
of the Fermi-GBM and LAT, was completely in Photon
Counting mode (Maselli & D’Avanzo 2014). No bright X-ray
afterglow was detected within the LAT error circle. This set an
upper limit on the energy flux in the observed 0.3–10 keV
energy band of 9.24 10 14» ´ - erg/(cm2 s), assuming a photon
index 2.2g = . Therefore, no optical follow-up was possible
and thus the redshift of the source is unknown.

We have analyzed the Fermi-GBM and LAT data in the
energy range 8 keV–40MeV and 20MeV–100 GeV, respec-
tively. We have downloaded the GBM TTE (Time-Tagged
Events) files,7 suitable for short or highly structured events, and
analyzed them by using the RMFIT package.8 The LLE data9,
between 20–100MeV, and the high energy data10, between
100MeV–100 GeV, were analyzed by using the Fermi-science
tools.11 In Figure 5 we have reproduced the 64 ms binned GBM
light curves corresponding to detectors NaI-n6 (8–260 keV, top
panel) and BGO-b1 (260 keV–20MeV, second panel), the
64 ms binned LLE light curve (20–100MeV, third panel) and
the 192 ms binned high-energy channel light curve
(0.1–100 GeV, bottom panel). All the light curves are back-
ground subtracted. The NaI-n6 light curve shows a very weak
signal, almost at the background level, while the BGO-b1
signal is represented by a short hard pulse, possibly composed
by two sub-structures, with a total duration of T 0.790 » s. The
vertical dashed line in Figure 5 represents the on-set of both
LAT light curves, i.e., ∼0.2 s after the GBM trigger. In
principle, this allows us to determine the time interval within
which the P-GRB emission takes place.

We have subsequently performed the time-integrated and
time-resolved spectral analyses focused on the GBM data in the
energy range 8 keV–40MeV.

5.1. Time-integrated Spectral Analysis

We have performed a time-integrated spectral analysis in the
time interval from T 0.0640 - s to T 0.6400 + s, which
corresponds to the T90 duration of the burst. We have indicated
the trigger time by T0 and have considered the following
spectral models: Comptonization (Compt) and a Band function
(Band et al. 1993). The corresponding plots are shown in
Figure 6 and the results of the fits are listed in Table 1. From a
statistical point of view, the Compt model provides the best fit
to the data. In fact the Band function, which has an additional
parameter with respect to the Compt model, improves the fit by
only ΔC-STAT 2.53= , where ΔC-STAT is the difference
between the two C-STAT values of the Compt and Band
models. If we consider ΔC-STAT as a 2c variable for the
change in the number of the model parameters nD (in this case

n 1D = ), and assuming that the Compt model is nested within
the Band model,12 we conclude that the Band model improves
the fit only at the 89% significance level, and anyway less than
2 σ. Therefore it is not enough to reject the Compt model. The
most interesting feature of the Compt model consists of its low-
energy index, which is consistent with 0a ~ . We proceed now
to a time-resolved analysis to investigate the possibility that in
the early phases of the prompt emission the spectrum is
consistent with a BB spectrum, i.e., 1a » , which corresponds
to the signature of P-GRB emission.

5.2. Time-resolved Spectral Analysis

We performed the time-resolved spectral analysis by
selecting time intervals with fluences larger than
≈10−6 erg cm−2 in order to collect enough photons. Conse-
quently, we have selected two time intervals that correspond to
the main spike and the less intense structure (see the BGO-b1
light curve in Figure 6). The first time interval, from T0 to

Figure 5. Background subtracted light curves of GRB 140619B from various
detectors in various energy bands. From the top to the bottom panel: the 64 ms
binned light curves from the NaI-n6 (8–260 keV, top panel) and BGO-b1
(260 keV–20 MeV, second panel) detectors, the 64 ms binned LLE light curve
(20–100 MeV, third panel), and the 192 ms binned high-energy channel light
curve (100 MeV–100 GeV, bottom panel).

7 ftp://legacy.gsfc.nasa.gov/fermi/data/gbm/bursts
8 http://Fermi.gsfc.nasa.gov/ssc/data/analysis/rmfit/vc_rmfit_tutorial.pdf
9 http://fermi.gsfc.nasa.gov/ssc/observations/types/grbs/lat_grbs/
10 http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
11 http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/

12 The Compt model can be considered a particular case of the Band model
with b  -¥.
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T 0.1920 + s, is hereafter referred to as T1D , while the
subsequent emission, from T 0.1920 + s to T 0.6400 + s, is
designated by T2D .

In the T1D time interval, to identify the P-GRB, we have
performed a spectral analysis by considering the BB and
Compt spectral models. The spectra and the corresponding fits
are shown in Figure 7 and the best fit parameters are listed in
Table 1. As reported in Table 1, the Compt and the BB models
are both viable. However, the value of the low-energy index of
the Compt model in the T1D time interval, 0.26 0.32a =  , is
consistent within three σ with 1a = , which is the low energy
index of a BB. We conclude that the BB model is an acceptable
fit to the data and the best “physical model” of the T1D time
interval and therefore identify it with the P-GRB emission. The
corresponding observed temperature is kT (324 33)=  keV
(see Table 1).

We then performed a spectral analysis on the time interval
T2D to identify the prompt emission. We have again considered

the Compt and BB spectral models (see Figure 8 and Table 1).
By looking at Figure 8, it is immediately clear that the BB
model does not adequately fit the data at energies larger than
1MeV. Therefore the Compt model is favored. Its low-energy
index, 0.11 0.26a = -  , indicates that the spectral energy
distribution in the T2D time interval is broader than that of the
BB model. The Compt model is consistent with the spectral
model adopted in the fireshell model and described in Patricelli
et al. (2012) for the prompt emission.

In the next section we interpret the above data within the
fireshell theoretical framework.

6. APPLICATION OF THE FIRESHELL MODEL
TO GRB 140619B

After the P-GRB and the prompt emission identification, we
have followed the same analysis described in Muccino et al.
(2013) to determine the cosmological redshift, the baryon load
and all the other physical quantities characterizing the plasma
at the transparency point (see Figure 4). It is appropriate to
underline that a remarkable difference between the long and the
short GRBs is considered: the P-GRB emission in long GRBs
represents on average the 1%–5% of the overall emission (see,
e.g., the cases of GRB 970828, Ruffini et al. 2013, and GRB
090618, Izzo et al. 2012b), while in the cases of the short
GRBs 090227B and 140619B (see Section 6.1), the P-GRB
emissions represent ∼40% of the overall observed fluence.

6.1. Redshift Estimate in Fireshell Model

From the observed P-GRB and total fluences, respectively,
S F T T( )BB tot 1 1= D D and S F T T( )tot tot 90 90= (see values in
Table 1), we have estimated the ratio

E

E

d S z

d S z

S

S

4 (1 )

4 (1 )
(40.4 7.8)%, (1)l

l

P GRB

e e
tot

2
BB

2
tot

BB

tot

p
p

»
+

+
= = 

+ -

‐

Figure 6. Combined NaI-n6, n9+BGO-b1 Fn n spectra of GRB 140619B in the T90 time interval. The fit using the Compt spectral model is shown on the left, while the
Band model fit is on the right.

Table 1
Summary of the Time-integrated (T90) and Time-resolved ( T1D and T2D ) Spectral Analyses

TD Model K (ph keV−1 cm−2 s−1) kT (keV) Ep (keV) α β Ftot (erg cm
−2 s−1) C-STAT/DOF

T90 Compt (7.7 1.1) 10 3 ´ - L 1456 ± 216 −0.09 ± 0.18 L (5.75 0.75) 10 6 ´ - 365.09 346
Band (7.8 1.3) 10 3 ´ - L 908 ± 199 −0.38 ± 0.37 −2.28 ± 0.31 (7.4 1.8) 10 6 ´ - 362.56 345

T1D Compt (6.3 2.0) 10 3 ´ - L 1601 ± 287 0.26 ± 0.32 L (9.4 1.6) 10 6 ´ - 318.92 346

BB (7.5 2.2) 10 8 ´ - 324 ± 33 L L L (8.5 1.2) 10 6 ´ - 323.86 347

T2D Compt (7.2 1.4) 10 3 ´ - L 1283 ± 297 −0.11 ± 0.26 L (4.38 0.89) 10 6 ´ - 391.65 346

BB (3.8 1.1) 10 7 ´ - 156 ± 15 L L L (2.33 0.28) 10 6 ´ - 392.23 347

Note. In each column are listed, respectively, the time interval TD , the adopted spectral model, the normalization constant K of the fitting function, the BB
temperature kT, the peak energy Ep, the low-energy α and high-energy β photon indexes, the total energy flux Ftot in the range 8 keV–40 MeV, and the value of the
C-STAT over the number of degrees of freedom (dof).
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where the theoretically computed energy of the P-GRB,
EP GRB‐ , has been constrained by the observed thermal
emission, EBB, and we have imposed E Ee e

tot
isoº+ - . In

Equation (1) the luminosity distance dl and the redshift z of
the source do not enter into the final computation.

From the last diagram in Figure 4, it is clear that for the value
in Equation (1), we have different possible parameters (Ee e

tot
+ -,

B) and for each of them we can determine the corresponding
kTblue (see the top diagram in Figure 4). Finally, from the ratio
between kTblue and the observed P-GRB temperature kT, we
can estimate the redshift, i.e., kT kT z(1 )blue = + . To obtain
the correct value of z and then the right parameters
E z B z[ ( ), ( )]e e

tot
+ - , we have made use of the isotropic energy

formula

E d
S

z

E N E dE

E N E dE
4

(1 )

( )

( )
, (2)l

z

z

iso
2 tot 1 (1 )

10000 (1 )

8

40000

ò

ò
p=

+
+

+

in which N(E) is the photon spectrum of the burst and the
integrals are due to the K-correction on Stot (Schaefer 2007).
From the initial constraint E Eiso e e

totº + -, we have found

z 2.67 0.37=  , which leads to B (5.52 0.73) 10 5=  ´ -

and E (6.03 0.79) 10e e
tot 52=  ´+ - erg. All the quantities so

determined are summarized in Table 2. The analogy with the
prototypical source GRB 090227B, for which we have
E E(40.67 0.12)%P GRB e e

tot=  + -‐ and B (4.13 0.05)=  ´
10 5- , is very striking (Muccino et al. 2013).

We now proceed with the analysis of the subsequent
emission to derive the properties of the surrounding CBM.

6.2. Analysis of the Prompt Emission

Having determined the initial conditions for the fireshell, i.e.,
E 6.03 10e e

tot 52= ´+ - erg and B 5.52 10 5= ´ - , the dynamics
of the system is uniquely established. In particular, we obtain
the Lorentz factor at transparency, 1.08 10tr

4G = ´ , and we
can simulate the light curve and the spectrum of the prompt
emission. To reproduce the pulses observed especially in the
BGO-b1 light curve (see Figure 5) we have derived the radial
distributions of the CBM number density and of the filling
factor  around the burst site (see Table 3 and Figure 9). The
errors in the CBM number density and in  are defined as the
maximum possible variation of the parameters to guarantee
agreement between the simulated light curve and the observed
data. The final simulation of the BGO-b1 light curve (260 keV–
40MeV) is shown in Figure 10.

Figure 7. Same considerations as in Figure 6, in the T1D time interval, comparing Compt (left panel) and BB (right panel) models.

Figure 8. Same considerations as in Figure 6, in the T2D time interval, comparing Compt (left panel) and BB (right panel) models.

8

The Astrophysical Journal, 808:190 (14pp), 2015 August 1 Ruffini et al.



Interestingly, the average CBM number density in GRB
140619B, n (4.7 1.2) 10CBM

5á ñ =  ´ - cm−3 (see Table 3), is
very similar to that of the prototype GRB 090227B,
n (1.90 0.20) 10CBM

5á ñ =  ´ - cm−3. In both the cases the
CBM densities are typical of the galactic halo environment.

We turn now to the spectrum of the prompt emission using
the spectral model described in Patricelli et al. (2012) with a
phenomenological parameter 1.11a = - . From fitting the light
curve in the energy range 260 keV–40MeV, we have extended
the simulation of the corresponding spectrum down to 8 keV to
check overall agreement with the observed data. The final
result is plotted in Figure 11, where the rebinned NaI-n6 and n9
and BGO-b1 data in the T2D time interval show their
agreement with the simulation; the lower panel in Figure 11
shows the residuals of the data around the fireshell simulated
spectrum.

The fireshell approach is different from the fireball one,
where the sharp luminosity variations observed in the prompt
emission are attributed to the prolonged and variable activity of
the “inner engine” (see, e.g., Rees & Meszaros 1994; Ramirez-
Ruiz & Fenimore 2000; Piran 2004).

In the fireshell model, the observed time variability of the
prompt emission is produced by the interaction of the
accelerated baryons of the fireshell with the CBM “clumps”
(see, e.g., Ruffini et al. 2002, 2006; Patricelli et al. 2012). The
issue of the time variability in GRB light curves has been long
debated. Zhang et al. (2006) and Nakar & Granot (2007)
indicated difficulties in producing short time variability from
CBM inhomogeneities. The opposite point of view has been
expressed by Dermer & Mitman (1999) and Dermer
(2006, 2008). In the fireshell model it has been shown that,
from the correct computation of the equations of motion of the
shell, of the EQTS, and of the Lorentz factor (Bianco &
Ruffini 2005a, 2005b, and Section 3), the short time scale
variability of GRB light curves occurs in regimes with the
larger values of the Lorentz factor, when the total visible area
of the emission region is very small and “dispersion” in arrival
time of the luminosity peaks is negligible. Therefore the short
time scale variability indeed can be produced by the CBM
inhomogeneities (see Section 3 in Patricelli et al. 2012). This
has been verified in the present case of GRB 140619B, where
the values of the Lorentz factor Γ and the total transversal size
of the fireshell visible area dv at the initial radius of the CBM
cloud are explicitly indicated in Table 3. These values of dv are
smaller than the thickness of the inhomogeneities ( r 1016D » –

1017 cm) and fully justify the adopted spherical symmetry
approximation (Ruffini et al. 2002, 2006; Patricelli et al. 2012).
Consequently, a finer description of each substructure in the
spikes observed in the light curve is not necessary and does not

change the substantial agreement of the model with the
observational data, which is provided by the average densities
and the filling factors in Table 3.

6.3. The Progenitor System

In analogy with the case of GRB 090227B (see, e.g.,
Muccino et al. 2013; Oliveira et al. 2014), we conclude that the
progenitor of GRB 140619B is a NS–NS merger. As a lower
limit, we have considered the simplest case by assuming two
NSs with the same mass MNS such that the total mass would be
larger than the NS critical mass Mcrit

NS, e.g., M M2 NS crit
NS . This

condition is clearly necessary for the formation of a BH and the
consequent application of the fireshell model. It is also
appropriate here to recall that only a subset of binary NSs
mergers can fulfill this stringent requirement (see Figure 3).
This will strongly affect the estimate of the rate of these family-
2 short GRBs, when compared with the usual expected binary
NS rate (see Section 9 and Conclusions).
Referring to the work of Belvedere et al. (2012) on

nonrotating NSs in the global charge neutrality treatment with
all the fundamental interactions taken into account properly,
we have considered two NSs with mass M 1.34NS = M =

M0.5 crit
NS and corresponding radius R = 12.24 km. As a working

hypothesis we assume that in the NS merger the crustal
material from both NSs contributes to the GRB baryon load,
while the NS cores collapse to a BH. For each NS the crustal
mass from the NL3 nuclear model is M 3.63 10c

5= ´ - M, so
the total NS merger crustal mass is M M2 7.26 10c c2

5= = ´ -

M. On the other hand, the baryonic mass engulfed by
the e e+ - plasma before transparency is M E B cB e e

tot 2= =+ -

(1.86 0.35) 10 6 ´ - M, so we can conclude that only a
small fraction of the crustal mass contributes to the baryon
load, namely M M(2.56 0.48)%B c2=  . This value is con-
sistent with the global charge neutrality condition adopted in
Belvedere et al. (2012). The usually adopted LCN condition
leads instead to a crustal mass M M0.2c

LCN ~  (see, e.g.,
Belvedere et al. 2012; Oliveira et al. 2014), which would be
inconsistent with the small value of the baryon load inferred
above.

7. ON THE GWS EMISSION AND THE DETECTABILITY
OR ABSENCE THEREOF

Following the previous work on GRB 090227B (Oliveira
et al. 2014), we now estimate the emission of GWs of the
binary NS progenitor of the short GRB 140619B using
the effective-one-body (EOB) formalism (Buonanno &
Damour 1999, 2000; Damour et al. 2000; Damour 2001;
Damour & Nagar 2010) and assess the detectability of the
emission by the Advanced LIGO interferometer.13 The EOB
formalism maps the conservative dynamics of a binary system
of nonspinning objects onto the geodesic dynamics of a single
body of reduced mass M M M1 2m = , with total binary mass
M M M1 2= + . The effective metric is a modified Schwarzs-
child metric with a rescaled radial coordinate, r c r GM( )2

12= ,
where r12 is the distance between the two stars. The binary
binding energy as a function of the orbital frequency Ω is given
by E Mc H( ) [ 1 2 ( ˆ 1) 1]b

2
effnW = + - - , where the effec-

tive Hamiltonian H A u p B uˆ ( ) ( )eff
2 2= + f depends on the radial

Table 2
The Results of the Simulation of GRB 090227B in the Fireshell Model

Fireshell Parameter Value

E
e e
tot
+ - (erg) (6.03 0.79) 1052 ´

B (5.52 0.73) 10 5 ´ -

trG (1.08 0.08) 104 ´
rtr(cm) (9.36 0.42) 1012 ´
kTblue (keV) (1.08 0.08) 103 ´
z 2.67 ± 0.37

nCBMá ñ (cm−3) (4.7 1.2) 10 5 ´ -

13 http://www.advancedligo.mit.edu
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potential A(u) of the variable u r1= and B u u A u( ) ( )2= ,
while the angular momentum for the circular orbit is given
by p A u u A u( ) [ ( )]2 2= - ¢ ¢f , where a prime stands for the
derivative with respect to u (see, e.g., Bini & Damour 2013 for
further details). In order to obtain the derivative of the effective
Hamiltonian Ĥeff as a function of Ω, we must use the chain rule
together with the relation u( )W = W following from the angular

Hamilton equation of motion in the circular case
GM u u H p MA u p u u HH( ) (1 ) ( ) ( ) ( ˆ )2

effW = ¶ ¶ =f f , where
G is the gravitational constant. Finally we obtain the rate of
orbital energy loss through emission of GWs from the related
derivative dE db W.
Using the well known matched filtering technique, we

compute the signal-to-noise ratio (S/N) from the Fourier
transform of the signal h t h F h F( ) = ++ + ´ ,́ where h ,+ ´ are
functions that depend on the direction and polarization of the
source and F ,+ ´ depend on the direction of the detector. By
making an rms average over all possible source directions and
wave polarizations, i.e., F F 1 52 2á ñ = á ñ =+ ´ , we obtain (see
Flanagan & Hughes 1998 for details)

( )
( )

df
h f

f S f
S N

5
, (3)

f

f

d
c d

d h d

2
2

2 2
min

max

òá ñ =

where Sh(f) is the strain noise spectral density (in units 1/ Hz )
of the interferometer. We have also introduced the character-
istic GW amplitude, hc, defined using the Fourier transform of
the GW form h(t), h f f h f( ) ˜( )c = ∣ ∣, and it is given by

h f
z

d

dE

df
z f( )

2(1 )
(1 ) , (4)c

L

b
d

2
2

2 2p
=

+ é
ë + ù

û

with z the cosmological redshift, f f z(1 )d = + the GW
frequency at the detector, f p= W the frequency in the source
frame, fmin the minimal bandwidth frequency of the detector,
and f f z(1 )cmax = + the maximal bandwidth frequency,

Table 3
The Density and Filling Factor Masks of GRB 140619B

Cloud Distance (cm) nCBM (cm−3)  Γ dv (cm)

1th 1.50 1015´ (1.2 0.2) 10 5 ´ - (2.8 0.3) 10 11 ´ - 1.08 104´ 2.76 1011´
2nd 1.20 1017´ (9.2 1.1) 10 6 ´ - L 2.07 103´ 1.16 1014´

3rd 1.70 1017´ (2.5 0.5) 10 4 ´ - (3.5 0.6) 10 10 ´ - 1.84 103´ 1.85 1014´

Note. In each column are listed, respectively, the CBM cloud, the corresponding initial radius away from the BH, the number density, the filling factor, the Lorentz
factor, and the total transversal size of the fireshell visible area.

Figure 9. Radial CBM number density distribution of GRB 140619B (black
line) and its range of validity (red shaded region).

Figure 10. BGO-b1 (260 keV–40 MeV) simulated light curve of the prompt
emission of GRB 140619B (solid red line). Each spike corresponds to the
CBM number density profile described in Table 2 and Figure 9. The blue
dotted–dashed vertical line marks the end of the P-GRB emission. The purple
long-dashed and the black dashed vertical lines indicate, respectively, the
starting and the ending times of the T90 time interval. Clearly visible outside of
this time interval is the background noise level. The continuation of the
simulation after T90 is due to the residual large angle emission of the EQTS
(Bianco & Ruffini 2005a, 2005b) due to the density profile indicated in
Table 3.

Figure 11. Top panel: comparison between the 8–900 keV data from the NaI-
n6 (purple squares) and n9 (blue diamonds) detectors, and the 260 keV–
40 MeV data from the BGO-b1 detector (green circles), and the simulation
within the firshell model (solid red curve) in the time interval T2D . Bottom
panel: the residuals of the above mentioned data with the simulation.
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where fc c p= W is the binary contact frequency and dL is the
luminosity distance. In Figure 12 we show the strain-noise
sensitivity of Advanced LIGO, Sh(f), and the characteristic
gravitational amplitude per square root frequency, h f f( )c d d ,
both plotted as functions of the frequency at the detector fd.

Following the above procedure we obtained for the short
GRB 140619B a very low value S N 0.21á ñ » compared to the
value S N 8= needed for an optimal positive detection. The
low value of the S/N is clearly due to the large cosmological
distance to the source, d 21» Gpc. Although the rms-averaged
S/N we have computed might improve by a factor ≈5/2 for an
optimally located and polarized source (e.g. F 12á ñ =+ and
F 02á ñ =´ ) with an optimal face-on orbit (cos 1i = ), in the
case of GRB 140619B it would increase only to a maximal
value S/N(opt) ≈0.5. From the dynamics of the system, we
also find that this binary emits a total energy of
E 7.42 10T

GW
52= ´ erg in gravitational radiation during the

entire inspiral phase all the way up to the merger.

8. CONSIDERATIONS ON THE GEV EMISSION
OF GRB 140619B

In addition to the analogies with GRB 090227B, GRB
140619B presents a novelty of special interest: a short-lived
emission (∼4 s) observed at energies 0.1 GeV. The light
curve of this emission shows a rising part which peaks at ∼2 s,
followed by a decaying tail emission lasting another ∼2 s in the
observer frame (see Figure 13(b)). Since GRB 140619B was in
the LAT FoV during the entire observational period, the
absence of emission after ∼4 s has been attributed to a cut-off
intrinsic to the source. We divided the overall emission into
four time intervals (see Figure 13(b)), each of them lasting 1 s.
The corresponding spectra are best fit by power-law models.
The total isotropic energy of the 0.1–100 GeV emission is
E (2.34 0.91) 10LAT

52=  ´ erg.
In complete analogy with the GeV emission emitted in the

binary-driven hypernovae (BdHNe), we attribute this high
energy radiation to the newly formed BH. This identification is
clearer here in view of the absence of a supernova (SN) and the

related constant power-law emission in X-rays, when measured
in the cosmological rest-frame of the BdHN (Ruffini et al.
2014, 2015; Ruffini 2015b).
The presence of this GeV emission is not a peculiarity of

GRB 140619B, but is a common feature of all these family-
2 short GRBs. In line with this, the apparent absence of the
GeV emission in GRB 090227B has already been discussed in
Section 5: it can be explained simply by the fact that this source
was outside the nominal LAT FoV. The significant detection in
the LLE channel and the presence of only one transient-class
event with energy above 100MeV associated with the GRB
(Ackermann et al. 2013) confirms that in optimal conditions
the GeV emission from GRB 090227B should have been
detected.
Now consider GRB 090510, which has the characteristics of

the family-2 short GRBs (E 10iso
52> erg and E 2p i, > MeV),

including the presence of a high energy GeV emission lasting
∼102 s. This high energy emission continues up to the signal
goes below the LAT threshold (Ackermann et al. 2013). The
new feature of GRB 090510, among the family-2 short GRBs,
is a well determined cosmological redshift inferred from the
optical observations. The corresponding distance indeed
coincides with the one theoretically predicted in the fireshell
binary merger model (M. Muccino et al. 2015, in preparation).
In Figure 13(a) we compare and contrast the afterglows of

the traditional low energetic short GRBs (see Berger 2014, for
a review) with those of the family-2 short GRB 140619B (see
Figure 13(b)) and GRB 090510 (see Figure 13(c)). In Figure 1
we show the evolution of the NS–NS merger generating a
family-2 short GRB. In this system the conservation laws for
total energy and the total angular momentum have to be
satisfied during and following the binary NS merger
(J. A. Rueda et al. 2015, in preparation). One of the most
important issues is the determination of the dimensionless
angular momentum c J GM( )2 of the newly born BH (where J
and M are, respectively, the BH spin angular momentum and
mass). These considerations have been applied to GRB 090510
(M. Muccino et al. 2015, in preparation).
Before closing, we call attention to GRB 081024B, which

we are currently addressing within the fireshell model
(Y. Aimuratov et al. 2015, in preparation), and which shows
all the typical features of the family-2 short GRBs, including a
distinctive GeV emission. In conclusion, we can safely assert
that all family-2 short GRBs, when the observational require-
ments are fulfilled, present a short-lived but very intense GeV
emission, which in our interpretation originates from the newly
formed BH.
In Table 4 we listed the redshift, Ep i, , Eiso, and the GeV

isotropic emission energy ELAT in the rest-frame energy band
0.1–100 GeV of the three family-2 short GRBs discussed here.
In computating Eiso we have inserted the energy computed in
the rest-frame energy band 1–10000 keV.

9. THE RATE OF FAMILY-2 SHORT GRBS

With the identification of three family-2 short GRBs, namely
GRB 090227B and GRB 140619B, with theoretically inferred
redshifts, and GRB 090510 with a measured redshift, all of
them detected by the Fermi satellite, we are now in a position
to give an estimate of the expected rate 0r of such events.
Following Soderberg et al. (2006) and Guetta & Della Valle
(2007), for these sources we have computed the 1 s peak
photon flux fp in the energy band 1–1000 keV, which is 16.98

Figure 12. Sensitivity curve of Advanced LIGO Sh(f) (dashed black curve) and
the characteristic gravitational amplitude h f f( )c d d (solid black curve) of the
binary NS progenitor of GRB 140619B, as a function of the frequency at the
detector fd. The EOB radial potential A(u) was calculated using values for the
coefficients in the 4th order post-Newtonian (PN) approximation and P5

1 is the
Padè approximant of order (1, 5).

11

The Astrophysical Journal, 808:190 (14pp), 2015 August 1 Ruffini et al.



photons cm−2 s−1 for GRB 090227B, 9.10 photons cm−2 s−1 for
GRB 090510, and 4.97 photons cm−2 s−1 for GRB 140619B.
From the spectral parameters for each source, we have
computed fp for various redshifts until it coincided with the
corresponding threshold peak flux fT which is the limiting peak
photon flux allowing burst detection (see the analysis in
Band 2003 for details). In this way we have evaluated for
each source the maximum redshift zmax at which the burst
would have been detected and, then, the corresponding
maximum comoving volume Vmax. For GRB 140619B we

obtain f f 1.03p Tº = photons cm−2 s−1 at maximum redshift

z 5.49B140619
max = ; for GRB 090227B, which is the brightest one,

we find f f 1.68p Tº = photons cm−2 s−1 at a maximum

redshift z 5.78B090227
max = ; finally, for GRB 090510, we get

f f 1.96p Tº = photons cm−2 s−1 at a maximum redshift

z 2.25090510
max = . Correspondingly we have computed Vmax.
The empirical rate can be evaluated as

N

V T4
, (5)0

F
1

max F
r

p
=

æ
è
ççç
W ö

ø
÷÷÷

-

where N = 3 is the number of identified energetic NS–NS short
bursts, 9.6FW » sr is the average Fermi solid angle, and T = 6
years is the Fermi observational period. We infer a local rate of

( )2.6 100 1.9
4.1 4r = ´-

+ - Gpc−3 yr−1, where the attached errors
are determined from the 95% confidence level of the Poisson
statistic (Gehrels 1986). At z 0.9⩾ , the above inferred rate
provides an expected number of events N 4 3

6=> -
+ , which is

consistent with the above three observed events during the
Fermi observational period. Also at z 0.9⩽ our estimate
N 0.2 0.14

0.31=< -
+ is consistent with the absence of any family-

2 short GRB detection.
With the inclusion of GRB 081024B, with a theoretically

estimated redshift z 3> (more details will appear in
Y. Aimuratov et al. 2015, in preparation), the above rate
remains stable with smaller error bars, i.e., 0r =

( )2.1 101.4
2.8 4´-

+ - Gpc−3 yr−1. This inferred rate is different
from that of the long GRBs, recently estimated to
be 1.3L GRB 0.6

0.7r = -
+

‐ Gpc−3 yr−1 (Wanderman & Piran 2010),
and also from the estimates of the family-1 short
GRBs given in the literature (without a beaming correction

1shortr = –10 Gpc−3 yr−1; see e.g., Berger 2014 and Clark
et al. 2014).
Such a low rate can be explained based upon the existing

data of binary NSs within our Galaxy (see Section 2). From
Figure 3 we notice that only a subset of them has the sum of the
masses of the components larger than the critical NS mass and
can collapse to a BH in their merger process. Only this subset
can lead to a family-2 short GRB.

10. THE FAMILY-2 SHORT GRBS AND THE
Ep i, –EISO RELATION FOR SHORT GRBS

Now we discuss some general considerations for the new
Ep i, –Eiso relation for short GRBs (Zhang et al. 2012; Calderone
et al. 2015), with a power law similar to the one of the Amati

Figure 13. Top panel (a): the rebinned rest-frame 0.3–10 keV X-ray
luminosities of weak short GRBs leading to massive NSs; the corresponding
bursts, redshifts and energies are indicated in the legend. In their afterglows
there is no regular power-law behavior at late times and no nesting (Ruffini
et al. 2014). Middle panel (b): the short lived rest-frame 0.1–100 GeV isotropic
luminosity light curve (purple squares) and the rest-frame 0.3–10 keV upper
limit, as set from the analysis of GRB 140619B outlined in Section 3 (green
circle). Bottom panel (c): the long lived rest-frame 0.1–100 GeV (red squares)
and the rest-frame 0.3–10 keV (blue circles) isotropic luminosity light curves
of GRB 090510.

Table 4
The Redshift, the Rest-frame Peak Spectral Energy, the Isotropic Energy Eiso in
the Rest-frame Energy Band 1–10000 keV, and the GeV Isotropic Emission

energy ELAT in the Rest-frame Energy Band 0.1–100 GeV of the Four
family-2 Short GRBs Discussed Here

GRB z Ep i, Eiso ELAT

(MeV) (1052 erg) (1052 erg)

081024B >3.0 >8.2 >2.4 >2.7
090227B 1.61 ± 0.14 5.89 ± 0.30 28.3 ± 1.5 L
090510 0.903 ± 0.003 7.89 ± 0.76 3.95 ± 0.21 5.78 ± 0.60
140619B 2.67 ± 0.37 5.34 ± 0.79 6.03 ± 0.79 2.34 ± 0.91

Note. The values indicated for GRB 081024B will be Discussed in
Y. Aimuratov et al. (2015, in preparation).
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relation for long GRBs (Amati et al. 2008), but different
amplitude. This yet unexplained difference discourages the use
of the Amati relation as an astronometrical tool. All four
family-2 short GRBs satisfy this new Ep i, –Eiso relation (see the
quantities listed in Table 4). We call attention to the need to
investigate the physical reasons for the validity of this universal
Ep i, –Eiso relation, which appears to be satisfied by family-
1 short bursts, where the binary NS merger does not lead to BH
formation, and also the family-2 short bursts, where BHs are
formed and reveal their presence by giving rise to the short-
lived but significant GeV emission.

11. CONCLUSIONS

In this article we have predicted the occurrence of two
different kinds of short GRBs originating from binary NS
mergers, based on

(a) the analysis of GRB 090227B, the prototype of short
bursts originating from a binary NS leading to BH
formation (Muccino et al. 2013),

(b) the recent progress in the determination of the mass–radius
relation of NSs and the determination of their critical mass
M 2.67crit

NS » M (Rotondo et al. 2011; Rueda et al. 2011,
2014; Belvedere et al. 2012, 2014a, 2014b), and

(c) the recently measured mass of PSR J0348+0432,
M (2.01 0.04)=  M (Antoniadis et al. 2013), estab-
lishing an absolute lower limit on Mcrit

NS, and the
remarkable information gained from radio observations
of binary NS systems in our own Galaxy (Zhang et al.
2011; Antoniadis 2014).

The first kind of short GRBs, which we call family-1 , are the
most common ones with E 10iso

52< erg and rest-frame
spectral peak energy E 2p i, < MeV, originating from binary
NS mergers with merged core mass smaller than Mcrit

NS and
leading, therefore, to a massive NS, possibly with a companion.
We identify these family-1 short bursts with the ones
extensively quoted in literature (see, e.g., Berger 2014 for a
review).

The second kind of short GRBs, which we call family-2 , are
those with E 10iso

52> erg and harder spectra with E 2p i, >
MeV, originating from binary NS mergers with merged core
mass larger than Mcrit

NS. These family-2 short bursts satisfy the
necessary condition to form a BH, following the example of the
prototype GRB 090227B (Muccino et al. 2013).

The application of the fireshell model (Ruffini
et al. 2001a, 2001b, 2001c) to the family-2 short GRB
140619B analyzed here has allowed the determination of the
physical parameters of this source: the identification of the
P-GRB emission in the early ∼0.2 s of its light curve, the
theoretical cosmological redshift of z 2.67 0.37=  and
consequently the total burst energy E (6.03 0.79)e e

tot =  ´+ -

1052 erg, the baryon load B (5.52 0.73) 10 5=  ´ - , and a
Lorentz Γ factor at transparency (1.08 0.08) 10tr

4G =  ´ .
The analysis of the prompt emission has also led to the
determination of the CBM density, n (4.7 1.2)CBMá ñ =  ´
10 5- cm−3, typical of the galactic halo environment, where NS–
NS binaries migrate to, due to natal kicks imparted to them at
birth (see, e.g., Narayan et al. 1992; Bloom et al. 1999; Fryer
et al. 1999; Belczynski et al. 2006; Berger 2014), clearly
supporting the binary NS merger hypothesis of this source.
Unexpectedly, we have found the existence of a short-lived and

very intense GeV emission, just after the P-GRB occurrence
and during and after the prompt emission phase, which has led
us to conclude that this high energy emission originates from
the newly formed BH.
While this article was being refereed, we have discovered

three additional examples of these family-2 short bursts: GRB
081024B, GRB 090510, and GRB 090227B. These have given
evidence that all these family-2 short bursts indeed show the
existence of high energy emission, with the sole exception of
GRB 090227B, which at the time of the observation was
outside the nominal LAT FOV.
In summary we formulate some norms and theoretical

predictions.

(1) All family-1 short GRBs have an extended X-ray afterglow
(see, e.g., Figure 13(a) and Berger 2014). When computed
in the rest-frame 0.3–10 keV energy band they do not show
any specific power-law behavior (Pisani et al. 2013) or the
“nesting” properties (Ruffini et al. 2014) which have been
discovered in some long GRBs. We predict that family-
1 short GRBs, originating from a binary merger to a
massive NS, should never exhibit high energy emission.
The upper limit of 1052 erg can be simply understood in
terms of a merger leading to a massive NS.

(2) All family-2 short GRBs have been observed not to have
prominent X-ray or optical afterglows. They all have
short-lived but very energetic GeV emissions (see, e.g.,
Figures 13(b) and (c)), when LAT data are available. The
upper limit of 1054 erg can be also simply understood in
terms of a merger leading to BH formation.

(3) The high energy emission episode in family-2 short
GRBs always occurs at the end of the P-GRB emission,
during and after the prompt emission phase. This fact
uniquely links the high energy emission to the occurrence
of the newly born BH. The prompt emission phase
studied within the fireshell model has also allowed the
determination of a large number of essential astrophysical
parameters, both of the source (e.g., Ee e

tot
+ - and B) and of

the CBM (e.g., α, nCBM, and ).

It is interesting that the very simplified conditions encoun-
tered in the short GRBs in the absence of a SN event, which
characterize the long GRBs (Ruffini et al. 2015), have allowed
definite progress in understanding some fundamental GRB
properties, e.g., the correlation of high energy emission to the
BH formation. They can be adapted to the case of long GRBs.
The points summarized above go a long way toward reaching a
better understanding of family-1 and family-2 long GRBs
(Ruffini et al. 2015), as well as of the BdHNe (Ruffini
et al. 2014). We are confident that GRB 140619B is one of the
best examples of short GRBs obtained with the current space
technology. We sincerely hope that the results of our research
will lead to new missions with greater collecting area and time
resolution in X- and gamma-rays.
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Fast rotating neutron stars with realistic nuclear matter equation of state
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We construct equilibrium configurations of uniformly rotating neutron stars for selected relativistic
mean-field nuclear matter equations of state (EOS). We compute, in particular, the gravitational mass (M),
equatorial (Req) and polar (Rpol) radii, eccentricity, angular momentum (J), moment of inertia (I) and
quadrupole moment (M2) of neutron stars stable against mass shedding and secular axisymmetric
instability. By constructing the constant frequency sequence f ¼ 716 Hz of the fastest observed pulsar,
PSR J1748–2446ad, and constraining it to be within the stability region, we obtain a lower mass bound for
the pulsar, Mmin ¼ ½1.2–1.4�M⊙, for the EOS employed. Moreover, we give a fitting formula relating
the baryonic mass (Mb) and gravitational mass of nonrotating neutron stars, Mb=M⊙ ¼ M=M⊙ þ
ð13=200ÞðM=M⊙Þ2 [or M=M⊙ ¼ Mb=M⊙ − ð1=20ÞðMb=M⊙Þ2], which is independent of the EOS. We
also obtain a fitting formula, although not EOS independent, relating the gravitational mass and the angular
momentum of neutron stars along the secular axisymmetric instability line for each EOS. We compute the
maximum value of the dimensionless angular momentum, a=M ≡ cJ=ðGM2Þ (or “Kerr parameter”),
ða=MÞmax ≈ 0.7, found to be also independent of the EOS. We then compare and contrast the quadrupole
moment of rotating neutron stars with the one predicted by the Kerr exterior solution for the same values of
mass and angular momentum. Finally, we show that, although the mass quadrupole moment of realistic
neutron stars never reaches the Kerr value, the latter is closely approached from above at the maximum
mass value, as physically expected from the no-hair theorem. In particular, the stiffer the EOS, the closer
the mass quadrupole moment approaches the value of the Kerr solution.

DOI: 10.1103/PhysRevD.92.023007 PACS numbers: 97.10.Kc, 04.25.D-, 04.40.Dg, 26.60.Kp

I. INTRODUCTION

Understanding the physics of neutron stars and being
able to describe the spacetime in the interior and around
such compact objects is one of the most important
objectives for modern astrophysics, as from one side it
could be an excellent test for general relativity and on the
other the strong forces acting and the high level of densities
reached cannot be tested anywhere on the Earth.
Although we are actually incapable of describing these

concepts exactly, some observational limits have already
been determined, via simplifying assumptions (such as a
spherical configuration in the x-ray binaries observation).
Other general considerations on the nature of neutron stars
and pulsars are often extracted in the literature from the use

of fiducial structure parameters: a canonical neutron star
(NS) of massM ¼ 1.4M⊙, radius R ¼ 10 km, and moment
of inertia I ¼ 1045 g cm2 (see, e.g., Ref. [1] and references
therein). Based on these parameters together with the thus-
inferred surface magnetic field from the classic pointlike
magnetodipole rotating model [2,3], NSs have been tradi-
tionally classified according to the assumed nature of the
energy source powering their observed emission. Neutron
stars are also thought to possibly participate in the most
powerful explosions in the Universe, gamma-ray bursts
(GRBs), e.g., via NS mergers in the case of short GRBs
(see, e.g., Ref. [4] and references therein) and hypercritical
accretion processes leading to gravitational collapse to a
black hole (BH) in the case of long GRBs associated with
supernovae (see, e.g., Refs. [5,6] and references therein).
There are still, however, many open issues regarding the

above global picture of NSs, both from the physics and
the astrophysics points of view (see, e.g., Refs. [7,8]). On
the other hand, our theoretical and observational knowl-
edge on NSs has largely increased in the intervening years
from the first general relativistic description of a NS by
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Oppenheimer and Volkoff in 1939 [9]. Eventually, a more
complex equation of state (EOS), interior structure, and
consequently exterior gravitational field of nonrotating,
slowly rotating, and fast rotating stars were acquired, and
massive NSs of ≈2M⊙, drastically constraining the nuclear
EOS stiffness, were observed [10,11]. Thus, general con-
clusions based on fiducial parameters and corresponding
observables might be premature, and a more exhausting
exploration of the consequences of adopting different NS
parameters appears to be necessary.
For instance, as recently shown in [12] for the high-

magnetic field pulsar class, thought to be intermediate
objects linking pulsars and magnetars, for the understand-
ing of their magnetic field values and their energy source,
we need precise knowledge of the entire set of possible
structure parameters of a NS and a self-consistent general
relativistic description of the pulsar observables. Indeed, it
was shown there how the magnetic field of a pulsar is
overestimated, and how the rotational energy is under-
estimated, by the classic magnetic rotating dipole model
and the use of fiducial NS parameters.
The description of the rotational and thermal evolution,

as well as the emitted radiation of isolated and accreting
NS, requires knowledge of the structure properties and the
corresponding exterior metric. For instance, we have
recently compared and contrasted the cooling evolution
of neutral NSs satisfying local charge neutrality and global
charge neutrality [13]. In that work we have shown that,
owing to their different crust structure (mass and thickness)
for the same value of the total mass, their thermal relaxation
time (the time to form an isothermal core) can be very
different, and therefore, the signatures of the structure of
the NS might be accessed via early cooling observations.
There have been recent numerical relativity computations

of the structure of uniformly rotating NSs which have mainly
focused on the existence of universal relations between, e.g.,
the quadrupole moment, the moment of inertia, and the Love
number of NSs (see, e.g., Refs. [14–17]), considered in a
slow rotation regime. Other works (e.g., Refs. [18,19]) also
tried to recover these relations in a full rotation regime, with
a numerical method based on the one first implemented
in [20].
In this work, through a full rotation approach (treated by

numerical relativity methods), we focus on additional
structure properties of uniformly rotating NSs relevant for
astrophysical applications such as mass, polar and equatorial
radii, eccentricity, angular momentum, angular velocity,
moment of inertia, and quadrupole moment, for a selected
sample of EOS (describing nuclear matter with relations of
different stiffness) within relativistic mean-field nuclear
theory, not analyzed in the set of EOS of previous works.
This article is organized as follows. In Sec. II we briefly

review the axisymmetric system of Einstein’s equations to
be integrated for a given EOS which we describe in Sec. III.
The stability conditions (mass-shedding and secular insta-
bility) are outlined in Sec. IV, and the mass radius of

rotating NSs is shown in Sec. V. The eccentricity and the
moment of inertia are shown in Sec. VI, while the quadru-
pole moment is discussed in Sec. VII. We finally summa-
rize and discuss our results in Sec. VIII.

II. STRUCTURE EQUATIONS

We consider the equilibrium equations for a self-
gravitating, rapidly rotating NS, within a fully general
relativistic framework. We start with the stationary axisym-
metric spacetime metric (see, e.g., Ref. [21]):

ds2 ¼ −e2νdt2 þ e2ψ ðdϕ − ωdtÞ2 þ e2λðdr2 þ r2dθ2Þ;
ð1Þ

where ν, ψ , ω and λ depend only on variables r and θ.
It is useful to introduce the variable eψ ¼ r sinðθÞBe−ν,
with again B ¼ Bðr; θÞ. The above form of the metric is
obtained under two assumptions: (1) there are two Killing
vector fields, one timelike, ta, and one relative to the axial
symmetry, ϕa; (2) the spacetime is asymptotically flat.
Then, one can introduce quasi-isotropic coordinates, which
in the nonrotating limit tend to isotropic ones.
Turning to the physical matter content in the NS interior,

if one neglects sources of nonisotropic stresses, viscosity,
and heat transport, then the energy-momentum tensor
becomes one of a perfect fluid,

Tαβ ¼ ðεþ PÞuαuβ þ Pgαβ; ð2Þ

where ε and P denote the energy density and pressure of
the fluid, and uα is the fluid 4-velocity. In terms of the two
Killing vectors,

uα ¼ e−νðtα þ ΩϕαÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð3Þ

where v is the fluid 3-velocity with respect to the local zero
angular-momentum observer (ZAMO),

v ¼ ðΩ − ωÞeψ−ν ð4Þ

with Ω≡ uϕ=ut ¼ dϕ=dt the angular velocity in the
coordinate frame, equivalent to the one measured by an
observer at rest at infinity.
Thus, with the metric given by Eq. (1) and the energy-

momentum tensor given by Eq. (2), one can write the field
equations as (analogously to Ref. [22] setting ζ ¼ λþ ν)

∇ · ðB∇νÞ ¼ 1

2
r2sin2θB3e−4ν∇ω ·∇ω

þ 4πBe2ζ−2ν
�ðεþ PÞð1þ v2Þ

1 − v2
þ 2P

�
; ð5Þ
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∇ · ðr2sin2θB3e−4ν∇ωÞ ¼ −16πr sin θB2e2ζ−4ν
ðεþ PÞv
1 − v2

; ð6Þ

∇ · ðr sinðθÞ∇BÞ ¼ 16πr sin θBe2ζ−2νP; ð7Þ

ζ;μ ¼ −
�
ð1 − μ2Þ

�
1þ r

B;r

B

�
2

þ
�
μ − ð1 − μ2ÞB;r

B

�
2
�

−1
�
1

2
B−1fr2B;rr − ½ð1 − μ2ÞB;μ�;μ − 2μB;μg

×

�
−μþ ð1 − μ2ÞB;μ

B

�
þ r

B;r

B

�
1

2
μþ μr

B;r

B
þ 1

2
ð1 − μ2ÞB;μ

B

�
þ 3

2

B;μ

B

�
−μ2 þ μð1 − μ2ÞB;μ

B

�

− ð1 − μ2Þr B;μr

B

�
1þ r

B;r

B

�
− μr2ðν;rÞ2 − 2ð1 − μ2Þrν;μν;r þ μð1 − μ2Þðν;μÞ2 − 2ð1 − μ2Þr2B−1B;rν;μν;r

þ ð1 − μ2ÞB−1B;μ½r2ðν;rÞ2 − ð1 − μ2Þðν;μÞ2� þ ð1 − μ2ÞB2e−4ν
�
1

4
μr4ðω;rÞ2 þ

1

2
ð1 − μ2Þr3ω;μω;r

−
1

4
μð1 − μ2Þr2ðω;μÞ2 þ

1

2
ð1 − μ2Þr4B−1B;rω;μω;r −

1

4
ð1 − μ2Þr2B−1B;μ½r2ðω;rÞ2 − ð−μ2Þðω;μÞ2�

��
; ð8Þ

where, in the equation for ζ;μ, we introduced μ≡ cosðθÞ.

The projection of the conservation of the energy-
momentum tensor, normal to the 4-velocity,
ðδcb þ ucubÞ∇aTab ¼ 0, leads to the hydrostationary equi-
librium equation:

P;i þ ðεþ PÞ
�
ν;i þ

1

1 − v2

�
−vv;i þ v2

Ω;i

Ω − ω

��
¼ 0;

ð9Þ

where i ¼ 1; 2; 3 and, as usual, A;i ≡ ∂A=∂xi.
For a barotropic EOS, P ¼ PðεÞ, and in the case of

uniform rotation which we adopt in this work, the above
hydrostationary equilibrium equation has a first integral
that can be written asZ

P

0

dP
εþ P

− lnðua∇atÞ ¼ νjpole; ð10Þ

where the constant of motion has been obtained, for
instance, at the pole of the star (see, e.g., Ref. [21]).

III. EQUATION OF STATE

To obtain a solution to the field equations, the matter
EOS must be supplied. In general, a NS is composed of
two regions, namely, the core and the crust. The core, with
densities overcoming the nuclear saturation value, ρnuc≈
3 × 1014 g cm−3, is composed of a degenerate gas of
baryons (e.g., neutrons, protons, hyperons) and leptons
(e.g., electrons and muons). The crust, in its outer region
(ρ ≤ ρdrip ≈ 4.3 × 1011 g cm−3), is composed of ions and
electrons, while in its inner region (ρdrip < ρ < ρnuc), there is
an additional component of free neutrons dripped out from
nuclei. For the crust, we adopt the Baym-Pethick-Sutherland

(BPS) EOS [23]. For the core, here we adopt modern
models based on relativistic mean-field (RMF) theory.
Indeed, RMF models have become the most used ones in
NS literature; with their success mainly owing to important
properties such as Lorentz covariance, intrinsic inclusion
of spin, a simple mechanism of saturation for nuclear
matter, and being consistently relativistic, they do not violate
causality (see, e.g., Ref. [24]). We adopt, as is now becoming
traditional, an extension of the original formulation of
Boguta and Bodmer [25] in which nucleons interact via
massive meson mediators of different nature providing the
attractive long range (scalar σ) and repulsive short range
(vector ω) of the nuclear force, isospin and surface effects
(vector ρ). Meson-meson interactions can also be present;
for instance, in the version of Boguta and Bodmer [25] a
self-interacting scalar field potential is present in the form of
a quartic polynomial with adjustable coefficients. Here we
consider the possibility of including, in addition to such a
potential, vector-vector interactions of the ω meson. For a
very recent and comprehensive analysis of the performance
of several RMF models in the description of observed
properties of ordinary nuclei, we refer the reader to
Ref. [26], and for a brief historical and chronological
reconstruction of the developments of the RMF models,
see Ref. [27].
Thus, we constrain ourselves to models in which the

energy density and pressure are given by (in units with
ℏ ¼ c ¼ 1) [26]

ε ¼ 1

2
m2

σσ
2 þ gσ2

3
σ3 þ gσ3

4
σ4 −

1

2
m2

ωω
2
0 −

gω3
4

ðg2ωω2
0Þ2

−
1

2
m2

ρρ
2
0 þ gωω0nB þ gρ

2
ρ0n3 þ

X
i¼n;p;e;μ

εi; ð11aÞ
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P ¼ −
1

2
m2

σσ
2 −

gσ2
3

σ3 −
gσ3
4

σ4 þ 1

2
m2

ωω
2
0

þ gω3
4

ðg2ωω2
0Þ2 þ

1

2
m2

ρρ
2
0 þ

X
i¼n;p;e;μ

Pi; ð11bÞ

where mσ;ω;ρ are the masses of the scalar and vector
mesons, gσ2;3, gω, gω3 are coupling constants, σ denotes
the scalar meson and ω0 and ρ0, denote the time component
of the ω and ρ vector mesons, respectively. The compo-
nents εi and Pi for each kind of particle considered are

εn;p ¼ 2

ð2πÞ3
Z

kFn;p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm�

n;pÞ2
q

d3k; ð12aÞ

εe;μ ¼
2

ð2πÞ3
Z

kFe;μ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðme;μÞ2

q
d3k; ð12bÞ

Pn;p ¼ 1

3

2

ð2πÞ3
Z

kFn;p

0

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðm�

n;pÞ2
q d3k; ð12cÞ

Pe;μ ¼
1

3

2

ð2πÞ3
Z

kFe;μ

0

k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðme;μÞ2

q d3k; ð12dÞ

where m�
i is the effective mass of baryons.

The scalar, isospin, and baryon densities are given,
respectively, by

ns ¼
2

ð2πÞ3
X
i¼n;p

Z
kFi

0

m�
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ðm�
i Þ2

p d3k; ð13aÞ

n3 ¼ np − nn; ð13bÞ

nB ¼ np þ nn; ð13cÞ

where ni ¼ ðkFi Þ3=ð3π2Þ are the particle number densities,
with kFi the particle Fermi momenta.
The equations of motion of the meson fields within the

RMF approximation are

m2
σσ ¼ gσns − gσ2σ2 − gσ3σ3; ð14aÞ

m2
ωω0 ¼ gωnB − gω3gωðgωω0Þ3; ð14bÞ

m2
ρρ0 ¼

gρ
2
n3: ð14cÞ

A barotropic EOS can be obtained iff additional closure
relations are supplied. The first condition to be imposed is
the request of the stability of matter against beta decay. The
second closure equation that has been traditionally adopted
is the condition of local charge neutrality of the system. It
has recently been shown that the latter condition is not fully
consistent with the equilibrium equations in the presence of

multicomponent charged constituents such as protons and
electrons (see [27] and references therein). Instead, one has
to request only global charge neutrality. The new system of
equations, referred to as Einstein-Maxwell-Thomas-Fermi
(EMTF) equations, self-consistently introduce the
Coulomb interactions in addition to the strong, weak,
and gravitational interactions within a full general relativity
framework. It is worth noting that in this case no perfectlike
form of the total energy-momentum tensor is obtained since
the presence of electromagnetic fields breaks the pressure
isotropy. Static NSs fulfilling the EMTF equations were
constructed in Ref. [27], and uniformly rotating configu-
rations in the second-order Hartle approximation can be
found in Ref. [28]. To construct rotating NSs beyond the
slow rotation regime, we take advantage of existing public
numerical codes (e.g., the RNS code; see Sec. V) that solve
the field equations without any limitation of the rotation
rate of the star. However, an implementation of the
equations and boundary conditions of the EMTF system
within these codes is not yet available. Thus, as a first step,
we adopt the condition of local charge neutrality, bearing in
mind the necessity of a future implementation of the EMTF
equations of equilibrium in the fast rotation regime.
With both the beta equilibrium and the local charge

neutrality conditions, a numerical relation between the
energy density and the pressure can be obtained. Here
we adopt the nuclear parametrizations (for the specific
values of the coupling constants, particle, and meson field
masses) NL3 [29], TM1 [30], and GM1 [31,32]. In Fig. 1,
we compare and contrast the three selected EOS used in this
work in the nuclear and supranuclear regimes, relevant for
NS cores. In Sec. V, we show how this selection of EOSs is
physically relevant, as well as from the astrophysical point
of view.

FIG. 1 (color online). Pressure-energy density relation for the
three EOS (TM1, GM1, and NL3) used in the present
article.
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IV. STABILITY OF EQUILIBRIUM MODELS

To solve the system of field equations (5)–(8) and the
hydrostationary equilibrium equation (10), one has to fix
one (in the spherical static case) or two parameters (in the
rotating case). The first quantity one has to fix is the central
value of the energy density, εc. For a rotating model, one
can choose the second parameter among different possibil-
ities: the axes ratio (rpol=req) of coordinate radii, angular
velocity (Ω), dimensionless angular momentum (j), gravi-
tational mass (M), or baryonic mass (Mb). Thus, it is
always possible to construct a sequence of rotating models
by fixing a value of the second parameter and letting the
central energy density vary in a given range which is
constrained to stability limits that we now discuss.
The first limit on the stability of uniformly rotating

configurations which we take into account is given by the
sequence of maximally rotating stars, also referred to as the
Keplerian or mass-shedding sequence. In all the stars
belonging to such a sequence, the gravitational force equals
the centrifugal force at the star equator, in such a way that
faster rotation rates would induce the expulsion of mass
from the star. The RNS code calculates this sequence by
decreasing the axis ratio (which corresponds to an increase
in angular velocity) until the angular velocity equals the
one of a particle orbiting the star at its equator.
Another limit to the physically relevant models is deter-

mined by the so-called secular axisymmetric instability. For
static configurations, the maximum stable mass (the critical
mass) coincides with the first maximum of a sequence of
configurations with increasing central density, namely, the
first point where ∂M=∂εc ¼ 0, with M the mass of a
configuration with central density εc. At this point, the
frequency of the radial perturbations vanishes. For higher
densities, imaginary frequencies are obtained which lead to
nonoscillatory perturbations, hence an instability. Thus, for
static configurations, a turning point of the M − εc relation
locates the onset of unstable configurations. This instability
proceeds on secular timescales, i.e., not dynamical, so that it
proceeds for long times, allowing the star to accommodate
itself to the energy loss that occurs when going from one
equilibrium point to another during gravitational collapse
(see, e.g., Ref. [33] and references therein). As shown by
Friedman, Ipser, and Sorkin in [33], the turning-point
method leading to points of secular instability can also be
used in uniformly rotating stars as follows. In a constant
angular-momentum sequence, the turning point of a
sequence of configurations with increasing central density
separates secularly stable from secularly unstable configu-
rations. Namely, secular axisymmetric instability sets in at

∂Mðεc; JÞ
∂εc

				
J¼constant

¼ 0; ð15Þ

and therefore, the curve connecting all the maxima (turning
points) limits the stability region. The intersection of such a
limiting curve with the Keplerian sequence gives the fastest

possible configuration. It is important to mention that the
numerical code adopted (described in the next section)
builds sequences of constant dimensionless angular momen-
tum, defined as

j≡ cJ
GM2⊙

; ð16Þ

which is the quantity we refer to in the sequel.
The angular momentum J is computed from the

definition

J ¼
Z
Σ
Tabϕ

an̂bdV; ð17Þ

with Σ a spacelike 3-surface, n̂a ¼ ∇at=j∇bt∇btj the unit
normal vector field to the t=constant spacelike hyper-
surfaces, and dV ¼

ffiffiffiffiffiffiffi
j3gj

p
d3x the proper 3-volume element

(with 3g the determinant of the 3-metric). With this,
Eq. (17) becomes [22]

J ¼
Z

B2e2ζ−4ν
ðεþ PÞv
1 − v2

r3sin2ðθÞdrdθdϕ: ð18Þ

V. MASS-RADIUS RELATION, OBSERVATIONAL
CONSTRAINTS, AND STABILITY REGION

In the literature there are many different numerical
schemes and, consequently, codes to compute relativistic,
rotating figures of equilibrium. For the numerical integra-
tion of the equilibrium equations, in this work we use the
public code RNS [34] by Stergiuolas and Friedman [35].
This code is a numerical implementation based on the
scheme by Cook, Shapiro, and Teukolsky [36] (first
implemented for realistic NS EOS in [20]), which is a
modified version of the method envisaged by Komatsu,
Eriguchi, and Hachisu [37]. We refer the reader to Ref. [21]
for further details on the numerical schemes.
The major intuitive effect of rotation is to deform the

figure of equilibrium with respect to the spherical static
counterpart. This can be seen from many points of view.
For instance, we can compute sequences of constant
angular velocity Ω. An important aspect should be taken
into account however: the RNS code builds fast rotating
models starting from a spherical (static) guess and
decreases the polar to an equatorial radii ratio until the
fixed parameter (e.g., the angular velocity) is reached with a
prescribed accuracy. Thus, the axes ratio is a parameter
used intrinsically by the numerical method, while other
parameters (see the beginning of the previous section for a
list) can be chosen but are reached by spanning decreasing
values of the axis ratio. In particular, as an example, the
code does not converge for every value of fixed angular
velocity in every range of central energy density, and the
range of convergence is reduced by decreasing the angular
velocity. To be more precise, choosing fixed rotation
frequencies below 300 Hz, the code fails to converge in
the entire range in which equilibrium models should exist
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(thus between the Keplerian and secular instability limits),
even adopting a very dense numerical grid (300 angular
times 600 radial points), different accuracy and tolerance
values (down to 10−16), or values of a relaxation factor
from 1 to 0.8. Effectively, the code does converge for this
kind of rotation frequency, but in very limited ranges of
energy density. Thus, how can the slow rotation regime be
recovered for every meaningful density? As technical
advice, we mention that one could first compute sequences
keeping various values of the axes ratio constant (in the
vicinity of unity) and then select, in this set of models, the
ones with small values of a particular angular velocity. With
this simple method we construct the sequences with low
rotation frequency (e.g., models from 50 Hz to 200 Hz). For
other values of rotation frequency and for all other constant
parameter sequences, we achieved optimal convergence
using a 300 angular times 600 radial points numerical grid,
and accuracy and tolerance of 10−8, while the relaxation
parameter was not necessary.
Figure 2 shows the total mass-central energy density plane

for the selected EOS TM1, GM1, and NL3. We also show
the stability limits discussed above in Sec. IV and show
explicitly some constant angular-momentum sequences.
Figure 3 shows instead the total mass-central energy

density plane, but in this case, we show explicitly some
selected constant rotation frequency sequences ranging
from 50 Hz all the way up to the rotation frequency of
the fastest observed pulsar, PSR J1748–2446ad, with f ¼
Ω=ð2πÞ ≈ 716 Hz [38].
In Fig. 4 we plot the same Ω-constant sequences to show

the relation between M and the equatorial radius, Req.
With the knowledge of the mass-radius relations predicted

by the theory, we are now in a position to compare and
contrast themwith existing observational constraints, in order
to validate the selection of EOS of the present work, not only
from the already-presented physical aspects, but also from
the astrophysical ones. Current observational constraints on
the mass-radius relation of NSs are as follows (see Fig. 5):

(i) Most massive NS observed.—The mass value of
the most massive NS observed is the one of PSR

J1614–2230 with 2.01� 0.04M⊙ [39]. The rotation
frequency of this pulsar is 46 Hz; thus, the deviations
from spherical symmetry are negligible. This im-
plies that every mass-radius relation for nonrotating
NSs must have a maximum stable mass larger than
this value.

(ii) Fastest observed NS.—The highest rotation fre-
quency observed in a pulsar is the one from PSR
J1748–2446ad with f ¼ 716 Hz [38]. The constant
frequency sequence of this value for any mass-radius
relation must have at least one stable configuration
that supports such a rotation frequency; namely, the
constant frequency sequence for this pulsar must lie
within the region of stability. This is actually a very
weak constraint since most NS models allow much
higher rotation frequencies. Interestingly, as we
show below, the construction of the constant fre-
quency sequence for PSR J1748–2446ad allows us
to infer a lower mass for this pulsar.

(iii) Constraints on the NS radius.—Since the surface
temperatures of not-so-young NSs (t > 103–104 y)
are of the order of a million degrees (see, e.g.,
Ref. [13]), their thermal spectrum is expected to
peak in the soft x rays. Thus, the modeling of the NS
x-ray emission appears to be, at present, one of the
most promising methods to obtain information on
the NS radius. Systems that are currently used to this
aim are isolated NSs, quiescent low-mass x-ray
binaries (qLMXBs), NS bursters, and rotation-
powered millisecond pulsars (see Ref. [40] and
references therein). From the modeling of the ob-
served spectrum, the radius of the NS as measured by
an observer at infinity, R∞ ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM=ðc2RÞ

p
,

can be extracted.1 The observation of a preferable

FIG. 2 (color online). Gravitational mass is plotted against central energy density for j-constant sequences obtained with the EOS
TM1, GM1, and NL3 (from top to bottom). In this plot and hereafter, the red, green, and black curves represent, respectively, the static
sequence, the Keplerian sequence, and the limit for secular stability. Here, other colors stand for various j-constant sequences.

1Actually, accurate spectra modeling leads to preferable values
for both mass and radius; however, for a simpler comparison
between different results from different methods and for a simple
test of the mass-radius relation, it is sufficient to plot the constraints
obtained from the values of R∞ consistent with the data [41].
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radius at infinity clearly represents a constraint on
the NS mass-radius relation since the above defi-
nition for R∞ can be rewritten as 2GM=c2 ¼
R − R3=ðR3

∞Þ. In Ref. [42] (see, also, Ref. [43]),
the x-ray emission from the NSs in the qLMXBs
M87, NGC 6397, M13, ω Cen, and NGC 6304 was
revisited, and in Ref. [41] the one from the NS X7 in
the Globular Cluster 47 Tucanae was examined.
From the extracted values of R∞ consistent with
these observational data at 90% confidence level, we

can conclude that the current x-ray data very weakly
constrains the mass-radius relation, allowing radii
in the interval R∞ ¼ ½7.64; 18.86�, where the lower
limit is obtained for NGC 6304 and the upper one for
X7. It is important to mention that x-ray measure-
ments suffer from a variety of uncertainties, which
are the main reason for the very large spread in
possible NS radii. The spectra modeling depends
on the atmosphere composition, magnetic fields,
accurate knowledge of the distance to the source,
hence the extinction, and, to some extent, on the NS
exterior geometry that could be affected by the
rotation of the NS in the case of some LMXBs
which could harbor NSs rotating with frequencies of

FIG. 3 (color online). Mass versus central energy density using
the EOS TM1, GM1, and NL3 (from top to bottom) set of
parameters. Red and green curves represent the static and
Keplerian sequences. Other colors correspond to constant fre-
quency sequences of values 716 Hz (fastest observed pulsar;
blue), 500 Hz (purple), 300 Hz (orange), 200 Hz (red diamonds),
and 50 Hz (black triangles).

FIG. 4 (color online). Mass versus equatorial radius using the
EOS TM1, GM1, and NL3 (from top to bottom) set of parameters
for the same sequences as in Fig. 3. The convention of the plot
colors and symbols is the same as in Fig. 3.
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a few hundreds of Hz (see, e.g., Ref. [44] for details).
In these latter cases, a more reliable comparison
between theory and the above data constraints, which
assume spherical symmetry, could be obtained by
plotting the mass-radius relation using, instead of
the equatorial radius, a mean or average spherical
radius such as the authalic radius, hRi ¼
ð2Req þ RpolÞ=3. However, for the purposes of this
work, it is sufficient to make a comparison with the
mass-radius relation produced by the nonrotating
configurations.

An additional constraint to the mass-radius relation
might come from the request of causality to the EOS,
namely, the condition that the speed of sound in the NS
interior cannot exceed the speed of light. However, for the
present set of EOS, this condition is automatically satisfied
by construction since the models are relativistic. One can
therefore see from Fig. 5 that the spherical (static) models
(solid curves) obtained by the EOS selection of this work
are in good agreement with the current constraints of the
NS mass-radius relation determined by the most updated
observational data.
An often useful physical quantity to be computed is the

binding energy of the configurations, or the relation
between the baryonic mass and the gravitational mass.

For nonrotating NSs, we found that for the three analyzed
EOS, the following relations hold:

Mb

M⊙
≈

M
M⊙

þ 13

200

�
M
M⊙

�
2

;

M
M⊙

≈
Mb

M⊙
−

1

20

�
Mb

M⊙

�
2

; ð19Þ

where Mb is the baryonic mass. The apparent universality
of these relations for the present set of EOS points to a
universal behavior of the binding energy, namely indepen-
dent of the EOS. The maximum relative errors obtained for
nonrotating sequences of GM1, TM1, and NL3 are,
respectively, 1.4%, 1.3%, and 0.99%. For rotating con-
figurations, M ¼ MðMb; JÞ or Mb ¼ MbðM; JÞ, we find
that for our set of EOS, there is indeed a common relation
given by

Mb

M⊙
¼ M

M⊙
þ 13

200

�
M
M⊙

�
2
�
1 −

1

130
j1.7

�
; ð20Þ

which is accurate within an error of 2%, and which duly
generalizes Eq. (19).
Turning back to the above plots, we can clearly see that,

as expected, the higher the frequency of rotation, the higher
the value of the mass at which the departures from the
nonrotating mass-radius relation begin. We find that for
rotation frequencies ≲200 Hz (or rotation periods ≳5 ms),
the nonrotating star becomes an accurate representation of
the object. This is in accordance with previous results; see,
e.g., Fig. 5 in Ref. [45], where it was shown that the moment
of inertia of sequences computed with different EOS starts to
deviate considerably from the static and the slow rotation
Hartle’s approximations for frequencies above∼0.2 kHz. As
we show below, this is also the case for the moment of inertia
in the same range of frequencies (thus, the moment of inertia
of nonrotating configurations can be safely approximated
with the one of spinning configurations, with frequencies
below the aforementioned limit, and vice versa). For higher
frequencies, full rotation effects are needed for an accurate
description. This is especially important for objects with
masses lower than the maximum value, where departures
from a nonrotating or slow rotation approximation become
more and more evident.
Following this reasoning, it is important to see how a

constant frequency sequence imposes structure constraints
on a pulsar. Particularly interesting is the case of the f ¼
716 Hz sequence (blue curve), which corresponds to the
fastest observed pulsar, PSR J1748–2446ad. The constant
frequency sequence intersects the stability region in two
points: at the maximally rotating Keplerian sequence,
defining a minimum mass for the pulsar, and at the secular
axisymmetric instability limit, in the upper part, defining the
maximum possible mass for the given frequency. Clearly,
these minimum and maximum mass values depend upon the
EOS. For the EOS employed here, we can see that the mass

FIG. 5 (color online). Mass versus equatorial radius relation
using the TM1, GM1, and NL3 EOS (red, blue, and green,
respectively), plotted together with up-to-date observational
constraints. Solid color curves represent static NS configurations;
dotted color curves represent the sequence of models rotating
with spin frequency of the fastest observed pulsar (PSR J1748–
2446ad), f ¼ 716 Hz; and dashed color curves represent
sequences of models rotating at the Keplerian frequency. The
gray-shaded region corresponds to the constraints given by the
x-ray data, while the horizontal lines are the lower and upper
bounds to the mass of the most massive observed pulsar, PSR
J1614–2230, namely, M ¼ 2.01� 0.04M⊙. Further details of
these constraints can be found in the text.
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of PSR J1748–2446ad has to be ≳½1.41; 1.35; 1.20�M⊙ for
NL3, TM1, and GM1, respectively.
We now determine the maximum rotation frequency of

NSs. The fastest configuration for a given EOS is the one
that terminates the Keplerian sequence, namely, the con-
figuration at the intersection between the Keplerian and the
secular axisymmetric instability sequences. We show in
Fig. 6 the rotation frequency of the maximally rotating
configurations, i.e., the frequencies of the NSs along the
Keplerian sequence.
Another important quantity for this discussion is the

dimensionless angular momentum (“Kerr parameter”),
a=M≡ cJ=ðGM2Þ, which we show in Fig. 7 as a function

of the total mass for the maximally rotating configurations,
namely, the Keplerian sequence. It can be seen that the
maximum value attained by the NS, ða=MÞmax ≈ 0.7, holds
for all the selected EOS. The maximum value is reached for
the mass ½0.96; 1.05; 3.37�M⊙ for the TM1, GM1, and NL3
EOS, respectively. The existence of such a particular
maximum (see, also [46]) EOS-independent, value of a
possibly implies the existence of universal limiting values
of the NS compactness and the rotational to gravitational
energy ratio. This is a conjecture which deserves further
exploration. In the same plot, the same sequences obtained
with other already-known EOS (represented by differently
dashed curves), assuming widely different kinds of inter-
actions and via different many-body theories, are shown,
and the reader can notice a general universal behavior of the
dimensionless angular momentum, even if for these other
EOS, the exact maximal values of this dimensionless
parameter are slightly different. On the other hand, such
a general behavior of the a parameter is not surprising in
fact, as it was already shown in Ref. [19], it can be chosen
as a parameter to establish a universal I-Love-Q relation.
Nevertheless, the important argument here is that, although
with different stiffness, our chosen set of EOS presents a
common maximal dimensionless angular momentum a=M.
In Table I we summarize a few relevant quantities of

NSs; the maximum stable mass in the nonrotating case, the
maximum mass in the case of uniform rotation, the
maximum rotation frequency, and the maximum value of
the dimensionless angular momentum.
Before closing this section, we would like to provide a

formula, useful for astrophysical applications, for the
masses of the NSs lying along the secular axisymmetric
instability line. Using the dimensionless angular momen-
tum j, defined in Eq. (16) and related to the Kerr parameter
by j ¼ ðM=M⊙Þ2a, we obtain

M ¼ MJ¼0
maxð1þ kjlÞ; ð21Þ

where the values of MJ¼0
max are given in Table I,

k ¼ ½0.017; 0.011; 0.0060� and l ¼ ½1.61; 1.69; 1.68� for
the EOS TM1, GM1, NL3, respectively. The maximum
relative errors obtained for values of mass along the secular
axisymmetric instability line with respect to fits for each
EOS are, respectively, [0.33%,0.44%,0.45%].

FIG. 6 (color online). Frequency of the maximally rotating
configurations (Keplerian sequence) as a function of the total NS
mass for the TM1, GM1, and NL3 EOS. The curves end at the
maximum frequency configuration, which is located at the
intersection between the Keplerian and the secular axisymmetric
instability sequences.

FIG. 7 (color online). Dimensionless angular momentum
(“Kerr parameter”), a=M ≡ cJ=ðGM2Þ, as a function of the total
NS mass along the Keplerian sequence for the EOS selected in
this work (colored curves). For comparison, we show the results
for additional EOS, taken from a set supplied by the RNS code
(EOS.INDEX file). We refer the reader to the RNS web page and
references therein for further details of these EOS.

TABLE I. Some properties of NSs for the selected EOS: critical
mass for nonrotating case, MJ¼0

max ; maximum mass in uniform
rotation, MJ≠0

max; maximum rotation frequency, fmax; and maxi-
mum dimensionless angular momentum (“Kerr parameter”),
ða=MÞmax ≡ ½cJ=ðGM2Þ�max.

EOS MJ¼0
max [M⊙] MJ≠0

max [M⊙] fmax [kHz] ða=MÞmax

TM1 2.20 2.62 1.34 0.70
GM1 2.39 2.84 1.49 0.71
NL3 2.81 3.38 1.40 0.71
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VI. ECCENTRICITY AND MOMENT
OF INERTIA

In order to see how a figure of equilibrium becomes
deformed by rapid rotation, we compute the eccentricity

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Rpol

Req

�
2

s
; ð22Þ

which we plot in Fig. 8 as a function of the mass M for the
same constant Ω sequences of the previous figures.

It is also interesting to investigate the distribution of the
energy density within the figure of equilibrium for both the
static and rotational cases for the different EOS. In Fig. 9
we show the contours of constant energy density of a model
with central value εc ¼ 1015 g cm−3, both in the static case
and in the rotational one with dimensionless angular
momentum j ¼ 4, for the sake of example, for the
GM1 EOS.
We now compute the moment of inertia of the star, which

is one of the most relevant properties in pulsar analysis. The
moment of inertia can be estimated as [21]

FIG. 8 (color online). Eccentricity versus gravitational mass using EOS with the TM1, GM1, and NL3 (from left to right) set of
parameters for the same sequences as in Fig. 3.

FIG. 9 (color online). Contours of constant energy density of a model with central value εc ¼ 1015 g cm−3, both in the static case (left
plot) and in the rotational one with dimensionless angular momentum j ¼ 4 (right plot) for the GM1 EOS.

FIG. 10 (color online). Moment of inertia versus mass relation using the EOS TM1, GM1, and NL3 (from top to bottom) set of
parameters for the same sequences as in Fig. 3.

CIPOLLETTA et al. PHYSICAL REVIEW D 92, 023007 (2015)

023007-10



I ¼ J
Ω
; ð23Þ

where J is the star angular momentum which is given
by Eq. (18).
In Fig. 10 we plot the moment of inertia as a function of

the mass for some Ω-constant sequences together with the
Keplerian sequence, while in Fig. 11 we show the relations
between I and the compactness, GM�=ðc2R�Þ, where M�
and R� are the mass and the radius of the spherical
configuration with the same central density as the rotating
one, εc.
The above figures confirm that for rotation frequencies

≲200 Hz, or rotation periods ≳5 ms, the deformation of
the star is very small and, indeed, the nonrotating or the

slow rotation regimes can be safely adopted as accurate
approximations of the rotating NS.

VII. QUADRUPOLE MOMENT

The quadrupole moment in the RNS code is given by

M2 ¼
1

2
req3

Z
1

0

s02ds0

ð1 − s0Þ4
Z

1

0

P2ðμ0Þ ~Sρðs0; μ0Þdμ0; ð24Þ

where req is the value of the coordinate radius at the
equator, ρ≡ 2ν − lnðBÞ, s ¼ r=ðrþ reqÞ ∈ ½0; 1� is a com-
pacted radial coordinate, μ ¼ cosðθÞ, P2ðμÞ is the Legendre
polynomial of second order, and ~Sρ ¼ r2Sρ, with Sρ a
source function defined as

Sρðr; μÞ ¼ e
γ
2

�
8πe2λðεþ PÞ 1þ u2

1 − u2
þ r2e−2ρ

�
ω2
;r þ

1

r2
ð1 − μ2Þω2

;μ

�
þ 1

r
γ;r −

1

r2
μγ;μ

þ ρ

2

�
16πe2λ − γ;r

�
1

2
γ;r þ

1

r

�
1

r2
γ;μ

�
1

2
γ;μð1 − μ2Þ − μ

���
; ð25Þ

with γ ¼ lnðBÞ. However, as shown in Ref. [14], Eq. (24) is
not the actual quadrupole moment of the rotating source
according to the Geroch-Hansen multipole moments
[47–49]. Indeed, the quadrupole moment extracted via
Ryan’s expansion method [50] is [14,15]

Mcorr
2 ¼ M2 −

4

3

�
1

4
þ b0

�
M3; ð26Þ

b0 ¼ −
16

ffiffiffiffiffiffi
2π

p
req4

M2

Z 1
2

0

s03ds0

ð1 − s0Þ5

×
Z

1

0

dμ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
Pðs0; μ0Þeγþ2λT

1
2

0ðμ0Þ; ð27Þ

where M2 is given by Eq. (24) and T
1
2

0 is the Gegenbauer

polynomial of order 0 with normalization T1=2
0 ¼ ffiffiffiffiffiffiffiffi

2=π
p

C0,
with C0 the traditional 0th-order Gegenbauer polynomial.

Following Refs. [14,15], we numerically computed the
correction factor b0 given by Eq. (27), and then obtained
the corrected quadrupole moment through Eq. (26). In
Fig. 12 the modulus of Mcorr

2 is plotted in logarithmic scale
against the gravitational mass for selected constant fre-
quency sequences. Each sequence was stopped at the
secular instability limit. We can see that the quadrupole
moment is a decreasing function of the mass along a
constant frequency sequence, while it is an increasing
function along the Keplerian sequence.
We now compare and contrast the above mass quadru-

pole moment with the one from the Kerr solution,

MKerr
2 ¼ J2

M
: ð28Þ

The reason for this is twofold. First, we point out the long-
discussed question in astrophysics of whether the Kerr

FIG. 11 (color online). Moment of inertia versus compactness using EOS with the TM1, GM1, and NL3 (from left to right) set of
parameters for the same sequences as in Fig. 3.
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solution may describe the exterior gravitational field of a
realistic astrophysical source besides a black hole; namely,
is there any matter content which could generate a Kerr
exterior field? (See, e.g., Refs. [51,52] and references
therein.) Second, if the answer to the previous question
is negative, then one can distinguish a NS from a black hole
with the same mass and angular momentum from the
knowledge of the quadrupole moment (see, e.g., Ref. [53]
and references therein).
In Fig. 13 we show the ratio between the NS quadrupole

moment Mcorr
2 , given by Eq. (26), and the Kerr solution

quadrupole moment MKerr
2 , for selected constant frequency

sequences. We find that Mcorr
2 starts to approach MKerr

2 , as
intuitively expected, for masses close to the maximum
stable value. An interesting feature that we can see from
Fig. 13 is that the stiffer the EOS the more the quadrupole
moment approaches the Kerr value. This result is in good
accordance with previous results that showed that the
compactness of the star increases, and also the moment
of inertia, Love numbers, and mass quadrupole approach
the ones of a black hole, though they will never coincide
(see, e.g., Ref. [17]). Moreover, we confirm, in the full
rotation regime, the previous result obtained in the slow
rotation Hartle approximation [54], that the ratio
Mcorr

2 =MKerr
2 is a decreasing function of the NS mass,

hence reaching its lowest value at the maximum mass

configuration. Indeed, as we can see from Fig. 13, the larger
the maximum mass attained by a NS model, the more the
NS quadrupole moment approaches the Kerr solution value,
reaching even values < 1.5 for stiff EOS such as the
NL3 model.

VIII. DISCUSSIONS AND CONCLUSIONS

We have computed uniformly rotating NSs for the
selected relativistic mean-field nuclear matter model
EOS (TM1, GM1, and NL3). Specifically, we have
calculated their gravitational mass, equatorial and polar
radii, eccentricity, angular momentum, moment of inertia,
and quadrupole moment. We have established the region of
stability against mass shedding and the secular axisym-
metric instability. We have provided plots of all these
physical quantities, e.g., as a function of the mass of the
configurations. We have also constructed sequences of
constant rotation frequency and approximately determined
the rotation rate at which deviations of the structure
parameters from the spherically symmetric (or slowly
rotating) values start, obtaining f ≈ 200 Hz, a value in
agreement with previous works (see, e.g., Ref. [45]).
From the astrophysical point of view, we have obtained a

lower bound for the mass of the fastest observed pulsar,
PSR J1748–2446ad with f ¼ 716 Hz, by constructing its

FIG. 13 (color online). Mcorr
2 =MKerr

2 ratio for the same selected sequences of constant frequency of Fig. 12 and EOS TM1, GM1, and
NL3 (from left to right). We show here only the region of large masses where Mcorr

2 starts to approach the Kerr value MKerr
2 .

FIG. 12 (color online). The modulus of the corrected value for the mass quadrupole (in logarithmic scale) obtained via Eq. (26) is
plotted against gravitational mass for the same constant frequency sequences of Fig. 3.
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constant rotation frequency sequence and constraining
it to be within the stability region: we obtained
Mmin ¼ ½1.2–1.4�M⊙, for the EOS used in this work, a
prediction submitted for observational verification. We
have also obtained a fitting formula relating the baryonic
and gravitational mass of nonrotating NSs [see Eq. (19)],
independent of the EOS. We have computed a formula for
the masses of NSs on the secular instability line as a
function of their angular momentum [see Eq. (21)]. We
studied the Kerr parameter (dimensionless angular momen-
tum) of NSs and found that it reaches a maximum value
ða=MÞmax ≈ 0.7, independent of the EOS. This result bring
us to the important conclusion that the gravitational
collapse of a uniformly rotating NS, constrained to
mass-energy and angular-momentum conservation, cannot
lead to a maximally rotating Kerr black hole, which, by
definition, has ða=MÞBH;max ¼ 1. We have also shown that
the quadrupole moment of realistic NSs does not reach the
Kerr value (for the same values of mass and angular
momentum), but this is closely approached from above
at the maximummass value, in physical agreement with the
no-hair theorem. We have also found that the stiffer the
EOS, the more the Kerr solution is approached.
It is important to stress that the results shown in this work

for some specific nuclear EOS likely will remain valid in
the case of other different models, provided they are

consistent with current observational constraints, especially
the mass of PSR J0348þ 0432,M ¼ 2.01� 0.04M⊙ [11].
The existence of such a massive NS clearly favors stiff
nuclear EOS, such as the ones obtained via RMF theory,
which leads to a critical NS mass higher than this
constraint.
To conclude, as already mentioned in Sec. III, we would

like to note the importance of considering a global charge
neutrality condition for the system, instead of a local one,
which needs a new and more complete code to treat these
kinds of problems, including the case of fast rotating
strange quark stars with crust, which show similar features
in the core-crust transition.
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We analyze the consequences of the recently found generalization of the Christodoulou-Ruffini black
hole mass decomposition for Einstein-Born-Infeld black holes [characterized by the parameters ðQ;M; bÞ,
where M ¼ MðMirr; Q; bÞ, b scale field, Q charge,Mirr “irreducible mass,” physically meaning the energy
of a black hole when its charge is null] and their interactions. We show in this context that their description
is largely simplified and can basically be split into two families depending upon the parameter bjQj.
If bjQj ≤ 1=2, then black holes could have even zero irreducible masses and they always exhibit single
nondegenerated horizons. If bjQj > 1=2, then an associated black hole must have a minimum irreducible
mass (related to its minimum energy) and has two horizons up to a transitional irreducible mass. For larger
irreducible masses, single horizon structures raise again. By assuming that black holes emit thermal
uncharged scalar particles, we further show in light of the black hole mass decomposition that one
satisfying bjQj > 1=2 takes an infinite amount of time to reach the zero temperature, settling down exactly
at its minimum energy. Finally, we argue that depending on the fundamental parameter b, the radiation
(electromagnetic and gravitational) coming from Einstein-Born-Infeld black holes could differ significantly
from Einstein-Maxwell ones. Hence, it could be used to assess such a parameter.

DOI: 10.1103/PhysRevD.91.064048 PACS numbers: 04.20.-q, 04.70.Dy, 11.10.Ef

I. INTRODUCTION

Although solving Einstein equations for a classical
charged black hole (BH) (Reissner-Nordström one) is a
relatively simple task [1], such an approach does not make
evident the relationship between its two parameters, namely
its mass (M) and charge (Q). Intuitively, this relation must
exist since electromagnetic energies have their origin in
charges, and it can be found in a variety of ways. An
interesting notably physical manner was put forward by
Christodoulou [2] and Christodoulou and Ruffini [3], by
introducing the concept of BH reversible transformations
[2]. Such transformations are the only ones that could bring
back the BH parameters to their original values after any
transformation processed by a test particle with parameters
m and q (where M ≫ m and Q ≫ q). Another known
approach was due to Bardeen et al. [4], which takes
advantage of the spacetime symmetries.
It has been recently shown [5], in the context of

spherically symmetric spacetimes, that reversible trans-
formations are fully equivalent to the constancy of the event
horizon upon such changes for any nonlinear theory of
the electromagnetism LðFÞ that leads to asymptotically flat
solutions. Due to the generality of the analysis, such a
constant must be 2Mirr, where Mirr is the irreducible BH

mass given by the total mass energy of the system in the
uncharged case, namely when Q ¼ 0. Due to this fact,Mirr

must be always positive. The aforementioned equivalence
allows us to exchange the problem of solving nonlinear
differential equations for nonlinear theories by the problem
of solving algebraic equations. This procedure works only
for the cases where event horizons are present. We recall
that after the seminal work of Bekenstein [6], it is known
that the entropy of a black hole is equivalent to its Mirr.
Nevertheless, it is more appealing to our reasoning to make
use of the original concept of irreducible mass, Mirr.
The aim of this work is to elaborate on the consequences

of the mass-energy decomposition for nonlinear BHs and
their interactions. In order to do it, we use the specific
nonlinear theory of electromagnetism due to Born and
Infeld (BI) [7]. Such a theory has regained interest due to its
analogous emergence as an effective theory to string theory
[8]. It was constructed with the purpose of remedying the
singular behavior in terms of energy of a pointlike charged
particle. The theory introduces a parameter b identified
with the absolute upper limit of the electric field of a system
when just electric aspects are present. Born and Infeld fixed
this parameter by imposing that in the Minkowski space-
time the associated electromagnetic energy coming from a
pointlike electron equals its rest mass (unitarian viewpoint
[7]). Nevertheless, the dualistic viewpoint [7] could equally
well have been assumed and the parameter b should be
determined by a theory relying on it, such as quantum
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mechanics [7]. Actually, the BI theory has been applied to
the description of the hydrogen atom, both the nonrelativ-
istic and relativistic one [9,10], and their numerical analy-
ses show that b must be much larger than the value initially
proposed by BI. Notwithstanding, a definite value has not
been obtained.
Rasheed [8] has analyzed mathematically the validity of

the zeroth and first laws of black hole mechanics and
concluded that they do hold for any nonlinear Lagrangian
of the electromagnetism. Although Rasheed concluded that
the black hole mass formula for such a case does not keep
the same simple functional form as for the Maxwellian
Lagrangian, a further scrutiny of the consequences of this
fact was not performed. Following our results in Ref. [5],
we instead shall analyze in this work some consequences of
the black hole mass formula in the case of Einstein-Born-
Infeld black holes, and their interactions. Since such a
relation establishes a constraint for the parameters of the
theory, physically based on conservation laws, the descrip-
tion is expected to be greatly simplified, as it will turn out to
be exactly the case. To the best of our knowledge, this has
not been done before.
The article is organized as follows. In the next section,

the mathematical approach for reversible transformations is
briefly elaborated and the mass decomposition for LðFÞ
theories in the spherically symmetric case is exhibited. In
Sec. III, we revisit some aspects of the Einstein-Born-Infeld
black hole solution and exhibit the black hole mass
decomposition for this theory. In Sec. IV, we analyze some
properties of the above-mentioned mass decomposition and
show that when b is finite, there are always intrinsic
nonclassical islands of black hole solutions where each
member has a single, nondegenerated horizon. Section V is
devoted to the study of the consequences of assuming that
Einstein-Born-Infeld black holes evaporate within the
framework of the mass decomposition. In Sec. VI we
analyze the radiation emitted by two interacting Einstein-
Born-Infeld black holes and show by means of a toy model
that in principle there are alternative ways to infer the
constant b even from astrophysical scenarios. Section VII
closes the paper with an analysis of the main points raised.
Units are such that c ¼ G ¼ 1 and the signature of the

spacetime is −2.

II. BLACK HOLE MASS DECOMPOSITION
FOR ANY NONLINEAR THEORY

In the context of spherically symmetric solutions to
general relativity minimally coupled to nonlinear
Lagrangians of the electromagnetism, it can be shown that
the general solution to the metric is [11]

ds2 ¼ eνðrÞdt2 − e−νðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where [5]

eνðrÞ ¼ 1 −
2M
r

þ 8π

r

Z
∞

r
r02T0

0ðr0Þdr0

¼ 1 −
2M
r

þ 2QA0

r
−
2N
r

; ð2Þ

Er≐−
∂A0

∂r ; Tμ
ν¼

4LFFμβFνβ−Lδμν
4π

;
∂N
∂r ≐−Lr2:

ð3Þ
We are assuming that the Lagrangian describing the
electromagnetic interactions is L ¼ LðFÞ, F ≐ FμνFμν,
where Fμν is the electromagnetic field tensor [1,12].
Besides, LF was defined as the derivative of LðFÞ with
respect to the invariant F and Tμ

ν is the energy-momentum
tensor of the matter fields [1,12], here the electromagnetic
fields described by LðFÞ. In the above expressions, Er is the
radial component of the electric field and A0 is its
associated potential. In the expressions for A0 and N , it
has been chosen a gauge where they are null at infinity. We
stress that for obtaining A0ðrÞ and N ðrÞ from given ErðrÞ
and LðFÞ, it is tacit one has to integrate from an arbitrary r
to infinity, since we are interested in black hole solutions
[13]. The radial electric field satisfies the equation

LFErr2 ¼ −
Q
4

or
∂L
∂Er

¼ Q
r2
: ð4Þ

In a spherically symmetric spacetime, infinitesimal
reversible transformations are defined by

δM ¼ δQA0ðrþÞ; ð5Þ

where rþ is the outermost horizon from a given black hole
theory, defined as the largest zero of Eq. (3). For a general
transformation, one has the formal replacement “¼→≥” in
the above equation.
The customary approach for obtaining the mass formula

(energy decomposition) would be integrating Eq. (5), given
the outer horizon in terms of the parameters coming from
the electromagnetic theory under interest and the space-
time. In general, it turns out to be impossible to work
analytically for LðFÞ theories in such a case. Since one
knows that there is a correlation between black holes and
thermodynamics [4,14], one would suspect that Eq. (5)
(thermodynamics) is somehow inside the equations of
general relativity (or vice versa). It can be shown easily
that this is indeed the case, provided that the outer horizon
keeps constant under reversible transformations [5]. Since
it is so, it follows that the outer horizon must be identified
with its associated Schwarzschild horizon (where Q ¼ 0),
and it will be denoted by rþ ¼ 2Mirr.
For the nonlinear theories where the electric potential A0

is independent of the parameter M, it follows from the
above reasoning and Eq. (3) that
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M ¼ Mirr þQA0jr¼2Mirr
−N jr¼2Mirr

¼ Mirr þ 4π

Z
∞

2Mirr

r02T0
0ðr0Þdr0: ð6Þ

The above equation is the way of decomposing the total
energy in terms of intrinsic (Mirr) and extractable quantities
(M −Mirr). It can be shown with ease [5] that it implies the
so-called generalized first law of black hole mechanics for
nonlinear electrodynamics [8], thus superseding it. Notice
from the above equation that one could not associate all
Mirr (given M and T0

0) with the outer horizon. The reason
for this is simple: Eq. (6) was defined by eνð2MirrÞ ¼ 0,
which encompasses also Mirr related to the inner horizon.
Nevertheless, it is uncomplicated to single out the set of
Mirr corresponding to the outer horizon. One knows that the
condition that leads to the degeneracy of the horizons is the
common solution to eνð2MirrÞ ¼ 0 and deν=drjr¼2Mirr

¼ 0.
These requirements and Eq. (6) imply that the horizons of
black holes are degenerated at the critical points of M as a
function ofMirr. Hence, since outer horizons are larger than
inner ones, it follows that the set of irreducible masses
relevant in our analysis is the one that always gives
dM=dMirr ≥ 0. In the mass decomposition approach the
region inside the outer horizon is not of physical relevance.

III. BORN-INFELD LAGRANGIAN

The Born-Infeld Lagrangian LBI can be written as
(compatible with our previous definitions)

LBI ¼ b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2

r �
; ð7Þ

where b is the fundamental parameter of the theory and
counts for the maximum electric field exhibited by an
electrically charged and at rest particle in flat spacetime [7].
This parameter naturally defines a scale to the Born-Infeld
theory.
Putting Eq. (7) into Eqs. (3) and (3) and performing the

integral from a given arbitrary radial coordinate r up to
infinity, one gets (see for instance Ref. [13])

eνðrÞ ¼ 1 −
2M
r

−
2

3
b2y2 þ 2Q2

3
ffiffiffiffiffiffijβjp

r
F
�
xðrÞ; 1ffiffiffi

2
p
�
; ð8Þ

where we have defined

xðrÞ≐ arccos

�
r2− jβj
r2þjβj

�
; y2 ≐

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4þ β2

q
− r2; ð9Þ

β2 ≐ Q2

b2
; F

�
xðrÞ; 1ffiffiffi

2
p
�
¼ 2

Z
∞

rffiffiffi
jβj

p
duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u4

p ; ð10Þ

where F ½xðrÞ; 1= ffiffiffi
2

p � is the elliptic function of first
kind [15].
The modulus of the radial electric field and its scalar

potential in this case, as given by the first term of Eqs. (3)
and (4), are

ErðrÞ ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þ β2
p ; A0ðrÞ ¼

Q

2
ffiffiffiffiffiffijβjp F

�
xðrÞ; 1ffiffiffi

2
p
�
:

ð11Þ
As it is clear from Eq. (11), the electric field of a pointlike
charged particle is always finite, as well as its associated
scalar potential and they are positive monotonically
decreasing functions of the radial coordinate. Hence, from
Eq. (5), it implies that the necessary and sufficient
condition for extracting energy from an Einstein-Born-
Infeld black hole is to use test particles with an opposite
charge to the hole.

IV. ANALYSIS OF THE EINSTEIN-BORN-INFELD
MASS FORMULA

The metric given by Eqs. (8), (9) and (10) has been
studied in detail in Ref. [13]. It has been pointed out there
that the dimensionless quantities ~M ≐ bM, α ≐ Q=M and
u ≐ r=M are convenient to scrutinize the properties of such
a metric. Nevertheless, apparently some interesting proper-
ties of Eq. (8) have not been stressed. Under the above
definitions, Eq. (8) may be written as

eνðuÞ ¼ 1 −
2

u
þ 2

3
~M2u2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

~M2u4

s !

þ 2α2

3u

ffiffiffiffiffiffi
~M
jαj

s
F
�
arccos

�
~Mu2 − jαj
~Mu2 þ jαj

�
;
1ffiffiffi
2

p
�
: ð12Þ

The horizons are obtained as the zeros of the above
equation. As a result, one can verify that Eq. (12) has
no minimum, and hence it is a monotonic function iff

b <
9M2

jQj3F 2½π; 1ffiffi
2

p � ≈
0.654M2

jQj3 ; ð13Þ

which can also be cast as

M > M0; M0 ≐
ffiffiffiffiffiffiffiffiffiffiffi
bjQj3

p
3

F
�
π;

1ffiffiffi
2

p
�
: ð14Þ

As the limit of u going to zero in Eq. (12) shows us,
Eq. (13) also guarantees that the associated spacetime will
always exhibit just one horizon (not degenerated). The
above inequality has no classical counterpart, since it can
be formally obtained by taking the limit of b going to
infinity. Equation (13) sets a fundamental inequality
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concerning the parameters Q, b and M. Whenever it is not
verified, it does automatically imply the existence of a
minimum. A simple analysis shows us that such a require-
ment can be cast as

uþ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~M2α2 − 1

p
2 ~M

;
d
du

ðeνÞju¼uþ ¼ 0; ð15Þ

which is just the consequence of imposing that eνðuþÞ ≤ 0,
uþ being the critical point of eν, thus guaranteeing the
existence of an outer horizon. Just as a reference, in the
limit when ~M goes to infinity, the above condition reduces
to jαj ≤ 1, as it is well known from the Reissner-Nordström
solution for assuring the existence of horizons. As the
above inequality suggests, the term ð4b2Q2 − 1Þ plays a
fundamental role into the horizon description. We shall see
that this is also the case in the approach related to the
energy decomposition. Specialized to the Born-Infeld
Lagrangian, Eq. (7), the total mass [see Eq. (6)] of an
Einstein-Born-Infeld black hole can be decomposed as

M ¼ Mirr −
8

3
b2M3

irr

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

16M4
irr

s
− 1

!

þ
ffiffiffiffiffiffiffiffiffiffiffi
bjQj3

p
3

F
�
arccos

�
4M2

irr − jβj
4M2

irr þ jβj
�
;
1ffiffiffi
2

p
�
: ð16Þ

From now on we shall assume that Eq. (16) is a valid
decomposition to the total energy of a Einstein-Born-Infeld
black hole. A simple analysis tells us that whenever

2bjQj > 1 ð17Þ

is valid for the parameter Q, given b, Eq. (16) does have a
minimum with respect to Mirr, associated with the critical
irreducible mass

Mc
irr ≡Mmin

irr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
4b

: ð18Þ

Note thatMc
irr is always related to the casewhere the horizons

are degenerated (extreme black holes), as we have pointed
out in Sec. II, and it is always smaller than its classical
counterpart, jQj=2 (where M ¼ jQj). From our previous
discussions, the relevant irreducible masses to the analysis
for reversible transformations for black holes areMirr ≥ Mc

irr.
Substituting the above critical irreducible mass into Eq. (16),
one has that its associated minimum total energy is

Mmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
6b

þ
ffiffiffiffiffiffiffiffiffiffiffi
bjQj3

p
3

F
�
x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
2b

�
;
1ffiffiffi
2

p
�
; ð19Þ

which is naturally positive and it can be verified to be
smaller than M0 defined by Eq. (14). For the case
2bjQj > 1, one can check that an immediate solution to
M ¼ M0 is Mirr ¼ 0 (not of relevance for us for the present
case). There also is a nontrivial solution that cannot be
expressed analytically in general, that we shall denote by
Mt

irr. This solution is very important since it will delimit the
transition from spacelike singularities to timelike ones with
respect to the radial coordinate. This signifies that the range
of irreducible masses that generalizes Reissner-Nordström
black holes (with two horizons) is Mmin

irr ≤ Mirr < Mt
irr. An

arbitrary black hole with Mirr ≥ Mt
irr shall present a sole

horizon and hence when test particles have crossed it, their
fate is unavoidably its associated singularity. Note that
Reissner-Nordström black holes are such that Mt

irr → ∞
and the existence of Mt

rr for Einstein-Born-Infeld black
holes is only due to the finiteness of b. Figure 1 exemplifies
the analysis from the previous sentences for a selected
value of the parameter bjQj for the case 2bjQj > 1.
We consider now the case where Eq. (17) is violated. In

this case, M, as given by Eq. (16), is a monotonic function
ofMirr. Since it is given by Eq. (14) whenMirr ¼ 0 and it is
monotonic, we conclude that Eq. (14) is always satisfied
and therefore the associated singularity is unavoidable for
test particles. Just for completeness, Fig. 2 compactifies the
above-mentioned properties for a selected value of the
parameter bjQj such that 2bjQj ≤ 1. Besides, in Fig. 3 we
depicted all the different classes associated with the
parameter bjQj, assuming in all cases it is fixed.

bM0

1 2 3 4 5
bMirr

1

2

3

4

5
bM

FIG. 1. Mass formula (thick plus dotted curves), Eq. (16), when
the parameter bjQj satisfies Eq. (17), chosen here as 2. The
dashed curve represents bM0, as given by Eq. (14). The dot-
dashed curve is the asymptote to M, Mirr . Besides, bM exhibits a
minimum at the critical point Mc

irrb ≈ 0.97 (where the horizons
become degenerated) and for Mc

irrb ≤ Mirrb < Mt
irrb ≈ 3.18, we

have the range of irreducible masses that generalize Reissner-
Nordström black holes. For Mirr ≥ Mt

irr, there is a sole horizon
(not degenerated), whose radial coordinate inside of it is always
spacelike. The irreducible masses associated with the outer
horizon are Mirr ≥ Mc

irr . The dotted curve is related to the inner
horizon solutions (for given configurations) and is not relevant to
the analyses concerning the black hole mass decomposition.
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An important general remark is here in order, especially
for astrophysical analyses. Assume that bjQj ¼ C1 and
M=jQj ¼ C2, where C1 and C2 are given constants. This
means that Mb ¼ C1C2 is also known. Assuming that 0 ≤
C1 < ∞ and from the fact that bM ≥ ðbMÞmin ≥ 0, we first
conclude that C2 cannot be any, but C2 ≥ ðbMÞmin=C1.
This means that jαj ≐ jQj=M ≤ C1=ðbMÞmin and this is the
condition that guarantees the presence of an outer horizon
in an Einstein-Born-Infeld black hole. In the classical case
for instance, where ðbMÞmin ¼ bjQj [see Eq. (19) in the
limit b → ∞], the previous inequality means jαj ≤ 1, as it is
already known. Finally, after one chooses arbitrarily
another parameter to be M or jQj or b, all the remaining
ones are automatically fixed, which could be assessed by

the aforesaid choice. It is not complicated to see that when
Mirr=jQj is given instead of M=jQj, a similar reasoning as
the above one also ensues.

V. HAWKING RADIATION FROM
EINSTEIN-BORN-INFELD

BLACK HOLES

Subsequent to the work of Hawking on the semiclassical
quantization of scalar fields in some curved spacetimes
[16], it is widely accepted that black holes radiate ther-
mally, although this view has still some criticisms [17,18].
Motivated by the first law of black hole thermodynamics,
which is a direct consequence of the mass decomposition
expression given by Eq. (6) [5], and the results from the
aforesaid semiclassical quantization, we shall now study
the consequences of conjecturing that clothed black holes
should behave like blackbodies to observers at infinity (no
backreaction effects are considered here), radiating at
temperatures proportional to their surface gravity [16]. In
the spherically symmetric case, such a quantity is propor-
tional to deν=drjr¼rþ [14,19]. From Eq. (12) and preceding
definitions, one has

T ∝
1þ 8b2M2

irr − 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16b2M4

irr þQ2
p

Mirr
: ð20Þ

We notice some particularities of the insertion of the
parameter b into the description of the electromagnetic
fields. As in the classical case, b → ∞, it is possible to
attain T ¼ 0, but now as far as

MðT¼0Þ
irr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Q2 − 1

p
4b

: ð21Þ

Notice that Mc
irr ¼ MðT¼0Þ

irr . This is not surprising, since
from our previous comments, the condition for null temper-
ature of a black hole with charge Q occurs exactly at the
critical points of the energy with respect to its irreducible
mass. When Eq. (17) holds, one sees that the temperatures
of the associated clothed black holes must decrease with the
decrease of their irreducible masses until they eventually

reach zero, for Mirr ¼ MðT¼0Þ
irr . This would mean that black

holes where Eq. (17) is valid should radiate off finite

amounts of energy, namelyMðMirrÞ−MðMðT¼0Þ
irr Þ. Besides,

from the analyses of the energy decomposition, black holes
could never have negative temperatures. For the case
Eq. (17) does not hold, it is impossible to have T ¼ 0
and the temperature increases with the decrease of the
irreducible mass. Figure 4 compactifies the dependence
of the temperature upon the irreducible mass for selected
values of bjQj.
We elaborate now on the temperature evolution of

evaporating blackbodies. For an arbitrary black hole case
where 2bjQj > 1, as we know, the temperature decreases as

bM0

0.2 0.4 0.6 0.8 1.0
bMirr
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0.4

0.6

0.8

1.0
bM

FIG. 2. Mass decomposition when the parameter bjQj does not
satisfy Eq. (17) and is chosen to be 0.4. The curves have the same
meaning as the ones in Fig. 1. From the solid curve we see thatM
is a monotonic function and always larger than M0. This means
that such a case characterizes a scenario where there is always a
sole event horizon and there is no classical analogue to it.
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FIG. 3. Mass formula for selected values of the parameter bjQj
(numbers on the curves) that encompasses all physically distinct
classes of black holes for the Born-Infeld Lagrangian. The dotted
curve represents the mass formula for the Maxwell Lagrangian.
The dot-dashed curve demarcates the transition from two horizon
solutions (as given by the thick curve) to a single one (as given
by the dashed curve), where its associated inner horizon is null.
The branches related to the inner horizons were removed.
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the irreducible mass of the system does so (see Fig. 4).
Hence, it would allow us to conceive a situation where just
the emission of uncharged scalar particles are present. For
this simplified case, the charge of a hole would remain
constant. Given that the black holes would behave like
blackbodies for observers located at infinity (where there is
a meaning to talk about the total energy of a black hole),
their energy loss could be estimated by Stefan’s law [20]

dM
dλ

¼ −M2
irrT

4; ð22Þ

where λ is proportional to the observer’s time receiving the
radiation. For the emission of uncharged scalar particles,
the above equation and Eq. (16) imply that

d ~Mirr

dλ
∝ −

�
1þ 8 ~M2

irr − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 ~M4

irr þ ~Q2

q �
3

~M2
irr

: ð23Þ

In the above equation, for an arbitrary quantity A, ~A ≐ bA.
We show now that for this case the temperature never
reaches the absolute zero. Since the irreducible mass can
decrease until Mmin

irr , after a convenient transient time
interval, the right-hand side of Eq. (23) can always be
expanded about Mmin

irr , leading to

d ~Mirr

dλ̄
¼ −

�
~Mirr −

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ~Q2 − 1

q �
3

; ð24Þ

where λ̄ is proportional to λ and other terms that are
constants and not important to our analysis. The above
equation has an analytic solution and when the limit of λ̄
going to infinity is taken, one obtains ~Mirrð∞Þ ¼ ~Mmin

irr .
This means an associated black hole never reaches the
absolute zero and tends asymptotically to have just one
horizon. Our analyses in light of the energy decomposition
give the same known mathematical results for the thermo-
dynamics for Reissner-Nordström black holes [20,21], but
in a simpler way.
For an arbitrary black hole satisfying 2bjQj ≤ 1, it seems

that a juncture shall arrive where its thermal energy will be
sufficient to create pairs that could even neutralize the hole.
This would happen since in this case the thermal energy of
a black hole would augment with the diminution of its
irreducible mass (see Fig 4). Hence its description would be
much more elaborated than the former one. Black holes
with 2bjQj ≤ 1 are expected to evaporate after finite
amounts of time, as corroborated by numerical analyses
from Eq. (23). We shall not pursue further into these issues
in this work.

VI. ENERGY LOSS OF INTERACTING
EINSTEIN-BORN-INFELD

BLACK HOLES

In this section we shall make use of the energy decom-
position given by Eq. (16) to find the imprint the parameter
b has on the energy radiated off by two interacting Einstein-
Born-Infeld black holes. For accomplishing such a goal, we
shall also utilize the second law of black hole mechanics
[1,4]. Such a theorem implies that the area of the resultant
black hole can never be smaller than the sum of the areas of
the initially (far away) interacting black holes [1,4]. For
simplifying the reasoning, we will assume that all the black
holes involved are spherically symmetric Einstein-Born-
Infeld ones. This problem can easily be solved for Einstein-
Maxwell black holes (Einstein theory minimally coupled to
the Maxwell Lagrangian), because their outer horizons are
analytical. For nonlinear black holes, in general just
numerical solutions are possible. In the mass decomposi-
tion approach, it is possible to carry out the analytical
investigations further. The key for this is that whenever the
mass formula is taken into account, the outer horizon must
be always proportional to its associated irreducible mass for
any theory.
Assume that the two initially interacting black holes have

irreducible massesMi1 andMi2, respectively, giving rise to
another (final) one of the same kind with irreducible mass
Mif. Concerning its final charge, if one assumes that just
radiation is allowed to leave the system (carried away by
neutral particles), it must be the sum of the charges of the
two initial black holes [1]. Since the irreducible masses are
proportional to the horizon areas, Hawking’s theorem (or
the second law of black hole mechanics) implies that
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FIG. 4. Einstein-Born-Infeld black hole temperature as a
function of the irreducible mass for selected values of the
parameter bjQj. The temperature goes to infinity as the irreduc-
ible mass tends to zero whenever 2bjQj ≤ 1 (thick curve).
Whenever 2bjQj > 1 (dashed curve), it decreases with the
decrease of the irreducible mass (keeping the charge constant),
always being null for a finite value of the latter. The temperature
experiences a transitional behavior for 2bjQj ¼ 1 (dot-dashed
curve), being null just when the irreducible mass of the system is
so [see Eq. (20)], albeit it cannot be seen directly from this plot.
Finally, bjQj → ∞ (dotted curve) corresponds to the Reissner-
Nordström case.
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M2
if ≥ M2

i1 þM2
i2: ð25Þ

Invoking the first law of black hole mechanics for an
isolated system [1], the final energy of the two interacting
black holes Mf can never be larger than M1 þM2. The
difference in the energy balance is due to the emission of
radiation (here gravitational and electromagnetic), hence,
Wrad ¼ M1 þM2 −Mf ≥ 0. By the cognizance of the
minimum final energy of the system, it is even possible
to obtain its maximum energy radiated off, a point we shall
not pursue here.
For fixing ideas, let us analyze first the classical case,

namely two Reissner-Nordström black holes interacting in
a way to lead to another Reissner-Nordström black hole.
We know that the total energy of each black hole can be
written as [3]

Ma ¼ Mia þ
Q2

a

4Mia
; ð26Þ

where we have defined Qa as the charge of the ath black
hole. It is easy to see that just M−

if ≤ Mif ≤ Mþ
if with

M�
if ¼

M1þM2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1þM2Þ2 − ðQ1þQ2Þ2

p
2

ð27Þ

is in agreement with the above-mentioned positivity of
Wrad. Naturally, choices for Mif must satisfy simultane-
ously Eqs. (25) and (27). When nonlinear theories are
present, it is clear that in general the above range of final
irreducible masses will not agree with the classical
(Einstein-Maxwell black holes) case. It means that many
possible classical situations will not exist in the nonlinear
case and vice versa even in the simple case of symmetry
conserved binary interactions. This could possibly lead to
significant deviations for the amounts of radiation emitted
by some systems when they are treated classically or not.
In the Einstein-Born-Infeld theory, the physical interval

for Mif cannot be determined (numerically) unless the
fundamental parameter b is given. What is known [9] is that
b > b0 ≈ 10−9 cm−1, where b0 is the value for the scale
field determined by Born and Infeld using the unitarian
viewpoint [7].
Let us take a closer look at the Einstein-Born-Infeld

black holes when compared to their classical counterparts.
Assume just for simplicity that Mi1 ¼ Mi2 and Q1 ¼
Q2 ≡Q > 0. For this choice, Eq. (27) gives us
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=α2 − 1

p
≤ Mif=Q − 1=α ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=α2 − 1

p
, where α is

here defined as the charge-to-mass ratio of the initially
interacting black holes. Let us choose, just for simpleness,
Mif=Q ¼ 1=α. From the Einstein-Maxwell case, one can
check easily that for the above analysis WradðclasÞ=
Q ¼ ð1 − α2Þ=α. For the above choice of parameters,
one can show that Eq. (25) is just satisfied if

α ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ffiffiffi

2
p

− 1Þ
q

≈ 0.91. Such cases are of theoretical

interest since they would evidence the departures of the
Born-Infeld theory from the Maxwell theory. For inves-
tigating smaller values of α, one should select different final
irreducible masses for the black holes.
Figure 5 compactifies the possibilities for the above

chosen Mif for α ¼ 0.95, due to miscellaneous values of
bQ. One sees in this case that nonlinear and linear black
holes may radiate off very different amounts of energy.
Besides, the energy released for interacting Born-Infeld
black holes is always larger than its Maxwellian counter-
part. Notice finally that Q ¼ αM, M being the mass of any
of the black holes when they are far apart, which would also
allow one to compare the energies radiated off by the black
holes during their process of interaction with the total initial
energy of the system.
Some simple estimates can be done here assessing

astrophysical scenarios where Fig. 5 could be of relevance.
As we stressed before, from the hydrogen atom one knows
that b ≫ b0 ≃ 10−9 cm−1 ≃ 1015 eletronstatic unit. We also
commented at the end of Sec. IV that with fixedMirr=jQj or
M=jQj and bjQj, one still has freedom to choose arbitrarily
another parameter, such asM, even having already taken into
account the mass formula. Let us choose, as it is reasonable
under the point of view of black hole interactions coming
from neutron stars,M ≃M⨀ ≃ 1.48 × 105 cm, whereM⨀
is the mass of the Sun. Let us focus our attention at a given
value of bjQj such that the associated radiated energy may
differ considerably from its classical counterpart. As a
simple inspection in Fig. 5 reveals, one could take as a

Wrad clas Q
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FIG. 5. Total radiation (gravitational plus electromagnetic)
Wrad=Q released in the process of coalescence of two identical
Einstein-Born-Infeld black holes with α ¼ 0.95 under the
assumption it leads to another one of the same type with the
same parameters as their classical counterparts. The thick curve
represents such a case. The dashed curve stands for the radiation
encountered in the Einstein-Maxwell theory, WradðclasÞ=Q. The
associated radiation tends to its classical counterpart when bQ
goes to infinity. The energy released in the case of nonlinear black
hole interaction is always larger than the one coming from its
classical counterpart, for a given charge Q.
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good example of this case bjQj ¼ 0.1, where the energy
radiated off by Born-Infeld black holes is around 30% more
thanMaxwellian ones with identical parameters. Besides, we
recall that we have already chosen α ¼ 0.95 for plotting
Fig. 5. From this case, we have bM0 ≃ 4 × 10−2 [see
Eq. (14)], which shows that jαj ¼ 0.95 is a perfectly good
candidate for the case 2bjQj ≤ 1, the one we are interested
in here. For this case we know that Q ¼ M=C2 ¼ 1.4 ×
105 cm ¼ 1.6 × 1020 C and finally b ¼ C1C2=M ¼
7.1 × 10−7 cm−1, which is about 1000 times larger than
b0 and hence in agreement with the bound given by the
hydrogen atom, the only remaining physical constraint.
Therefore, the above example suggests that the radiation
coming from coalescing astrophysical black holes could
be a good tool to access and discriminate their electrody-
namical properties.

VII. DISCUSSION

Foremost, it is clear that the approach of analyzing a
given black hole solution just from its metric and the one
from its metric and energy decomposition expression must
be consistent since both approaches use intrinsic properties
of the spacetime. Nevertheless, the latter approach is much
more restrictive than the former one. It must be stressed that
the energy decomposition (black hole thermodynamics) is
mandatory for the proper description of any (clothed) black
hole phenomenon, since it is in accord with conservation
laws. Such a constraint equation (energy decomposition) in
turn automatically evidences the physically relevant cases
in black hole physics, hence leading to a pellucid descrip-
tion of them.
The energy decomposition analysis within Einstein-Born-

Infeld black holes leads us to their split into two fundamental
families of black holes. Whenever 2bjQj ≤ 1, independent
of their irreducible masses, one is led to an associated black
hole whose singularity cannot be forestalled after test
particles cross its sole nondegenerated horizon. Besides,
the previous inequality naturally leads to an absolute upper
limit to the charge of approximately 108 cm ≈ 103M⨀≃
1023 C, given that b > 10−9 cm−1 [9]. Finally, we notice
that for this class of black holes, the extractable energy could
be up to 100%, since black holes with 2bjQj ≤ 1 could even
have Mirr ¼ 0. We stress that the previous conclusions are
strictly nonclassical consequences of the finiteness of b.
The second family of black holes is defined by those

satisfying 2bjQj > 1, whereMirr ≥ Mmin
irr [see Eqs. (18) and

(19)] for each black hole associated. It constitutes the
family that generalizes Einstein-Reissner-Nordström black
holes for irreducible masses smaller than transitional
values, the nontrivial solutions of M ¼ M0, and larger
than Mmin

irr (related to their minimum energies), whose
associated energies (masses) are always smaller than M0.
Above such transitional irreducible masses, again due to
the finiteness of b, nonclassical black holes with single

horizons also rise, all of them having masses larger than
M0. The total amount of energy that could be extracted
[M −Mirr, see Eq. (16)] in this case is always inferior to
half of the total energy of the hole (as it occurs for Reissner-
Nordström black holes, see [3]), here due to the self-
interactions present.
Black holes satisfying 2bjQj > 1 should radiate off

(suppose by emitting uncharged scalar particles) until
their temperatures reach T ¼ 0, taking for doing so an
infinite amount of time, settling down exactly at their
lowest energy state, as one would intuitively expect and
here as a direct consequence of the mass formula. Further
energy could be extracted from them (obviously by means
of other processes rather than the emission of uncharged
scalar particles) even when T ¼ 0, since they still have an
ergosphere. For the case 2bjQj ≤ 1, it is impossible to
have T ¼ 0 and they are expected to keep radiating, with a
much more complex dynamics, until their total evapora-
tion likely after a finite amount of time as measured by the
observer who receives the radiation. Whenever charged
scalar fields are taken into account, the phenomenon of
superradiance could also take place, rendering their
dynamics even more cumbersome. Superradiance is of
interest for charged nonlinear black holes, since it is
another energy extraction mechanism for them and would
couple to the nonlinearities of the electromagnetic field.
We let more precise analyses of this case to be done
elsewhere.
Concerning the issue of energies radiated off due to the

interaction of black holes, as we showed here with a toy
model, the changes imprinted by the Einstein-Born-Infeld
black holes with respect to their classical counterparts
may be significant, depending on α for a range of values of
the fundamental parameter bjQj. This could be important
for gravitational wave detectors calibrated based on
classical results. Besides, if it is possible to identify
sources of radiation, then measurements upon such a
quantity could give us information about electromagnetic
interactions. We analyzed the radiated energies due to
charged black hole interactions. This means that also
electromagnetic radiation is always present in such proc-
esses. Identifying and analyzing this part of the radiation
would give direct information about astrophysical elec-
trodynamical processes.
We further point out that all the above conclusions

remain valid even in the case where the systems present a
slow rotation (when the rotational parameter a ≐ J=M, J
being the total angular momentum of the system as seen by
distant observers, is much smaller than the outer horizon
area or the mass of the hole). This is the case since the
energy decomposition must be an even power of a, due to
invariance requirements. Thereby, the previous analyses are
in a sense stable against rotational perturbations.
Summing up, in this work we tried to emphasize the need

of also taking into account the mass decomposition of a
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charged black hole for talking about the physical aspects it
could display. Conceptually speaking this is of relevance
since it could give us acumen of where and how to search
experimentally for charged black holes and their inter-
actions. In this regard, it would be also of interest to
investigate the aspects of the electromagnetic radiation
coming from the coalescence of charged black holes;
because it could be much more easily observed, it would
give us direct information about electromagnetic phenom-
ena and of the coalescence process itself. It also seems
that quasi periodic oscillations could also shed a light on
the illation of black hole charges and the role played by
the nonlinearities of the electromagnetism in the astro-
physical scope, since they talk about phenomena that take
place in the innermost regions of black holes (see [22]

and references therein). We let this issue be elaborated
elsewhere.
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ABSTRACT

We formulate within a generalized distributional approach the treatment of the stability against radial perturbations
for both neutral and charged stratified stars in Newtonian and Einstein’s gravity. We obtain from this approach the
boundary conditions connecting any two phases within a star and underline its relevance for realistic models of
compact stars with phase transitions, owing to the modification of the star’s set of eigenmodes with respect to the
continuous case.

Key words: stars: fundamental parameters – stars: interiors – stars: neutron – stars: oscillations

1. INTRODUCTION

There is theoretical evidence that compact stars, such as
neutron stars, are made up of several matter phases (Shapiro
& Teukolsky 1986). This is a consequence of the astonishingly
high density excursion they could attain in their inner regions.
For instance, a neutron star is in general thought to be composed
of at least two different regions: the crust and the core. Starting
from very low densities of a few grams per cubic centimeter
close to their surfaces, and up to densities on the order of
the nuclear saturation value, ρnuc ≈ 2.7 × 1014 g cm−3, the
crust of a neutron star is thought to be in a solid-like state.
The core, with densities that might be greater by orders of
magnitude than ρnuc, is instead thought to be in a liquid-
like state. The details of the treatment of the thermodynamic
transition (Maxwell or Gibbs phase construction), as well as the
conditions of density and pressure at which such a transition
occurs, are still a matter of debate. The application of the
Gibbs construction with more than one conserved charge (for
example, baryon and electric) leads to the appearance of mixed
phases in between the pure phases, with an equilibrium pressure
that varies with the density, leading to a spatially extended
phase-transition region of nonnegligible thickness with respect
to the star’s radius (Glendenning 1992, 2001; Glendenning &
Pei 1995; Christiansen & Glendenning 1997; Glendenning &
Schaffner-Bielich 1999; Christiansen et al. 2000). In contrast,
in the traditional Maxwell construction the phases are in
“contact” with each other. It is worth mentioning that in these
treatments the pure phases are subject to the condition of
local charge neutrality, so they do not account for the possible
interior Coulomb fields. Indeed, the complete equilibrium of
the multicomponent fluid in the cores of compact stars needs
the presence of a Coulomb potential formed by electric charge
separation due to gravito-polarization effects (Rotondo et al.
2011; Rueda et al. 2011), favoring a sharp core–crust transition
that ensures the global, but not the local, charge neutrality (see
Belvedere et al. 2012, 2014, and references therein). Other than
the core–crust transition, additional phase transitions, such as
the ones allowed by quantum chromo-dynamics, could occur
within the core of the star itself (see, e.g., Glendenning 1996,
and references therein). From all of the above we can conclude
that ultradense stars such as neutron stars necessarily show a
nontrivial stratification. Between any two phases, which can be

very different, it is reasonable to investigate the situation where
some quantities are discontinuous, such as the energy density
and the pressure. Such discontinuities can be harnessed by
appropriate surface tensions. These surface quantities influence
the stability of a system, adding new boundary conditions to
the problem that, as we shall show here, modify the set of
eigenfrequencies and eigenmodes of a star.

In this work we analyze the problem of perturbations in
systems constituted of various phases that are split by surfaces
that host nontrivial degrees of freedom. This analysis is thought
to be a generalization of the treatment for continuous systems
(see Herrera & Santos 1997 and references therein for a
comprehensive analysis of properties, types, and stability of
continuous anisotropic fluids also in the presence of radiation
and heat flux). By investigating the dynamics of perturbations,
we are automatically probing the stability of systems. We shall
restrict ourselves to the simplest possible case: spherically
symmetric extended bodies where radial perturbations take
place. In order to model the problem, we shall assume that
these surfaces of discontinuity separating two arbitrary phases
are very thin, and a generalized distributional approach (Poisson
2004; Raju 1982b) shall be adopted. We start our analysis in the
Newtonian case in order to gain some intuition into the relevant
aspects of the problem, and finally we generalize it to general
relativity. Our purpose is solely to expound the problem and
seek to solve it as generically as we can. Our analysis is far
from complete and must be considered as a first step toward
deeper investigations, and scrutinies of specific cases will be
the object of later studies.

We show in this work that phase transitions in the presence of
surface degrees of freedom can be enclosed in additional bound-
ary conditions on the problem. Our formalism also tells us that
such boundary conditions are only self consistent when the set
of eigenfrequencies of the perturbation modes is related to the
global system, not with individual phases. This is consistent
with the well-known results from coupled springs, where there
are only global frequencies. The presence of further bound-
ary conditions naturally modifies the possible set of eigenfre-
quencies because we are inserting further restrictive aspects to
the physical oscillation modes. Therefore, measurements on the
pulsation modes in a star could tell us very precisely about its
internal structure, being a sort of fingerprint that could help us
understand better the nature of these systems.
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The article is organized as follows. In Section 2 we formulate
the problem of radial perturbations of stars with interfaces
in the classical Newtonian case. For the sake of example,
we compute the specific solution of the stability equation
in Section 3 for the simple case of incompressible stars,
scrutinizing which circumstances deliver us enough arbitrary
constants to fix additional boundary conditions. In Section 4 we
give the formulation in the case of systems with electric charge
but still within Newtonian gravity. The formulation in the case
of general relativity in the neutral case is presented in Section 5,
and in Section 6 we extend the general relativistic treatment
to systems endowed with electric charge. Finally, in Section 7
we summarize and discuss the main results of this work. We
use units such that c = G = 1 and the metric signature −2
throughout the article, unless otherwise stated.

2. STABILITY OF CLASSICAL SYSTEMS
WITH PHASE TRANSITIONS

Assume a continuous classical astrophysical system with
spherical symmetry. When its volume elements are perturbed
radially, it is well known (see, e.g., Shapiro & Teukolsky 1986)
that the evolution of perturbations of the form

ξ̃ (r, t) = ξ (r)eiωt , (1)

with ω an arbitrary constant, is described by

d

dr

[
ΓP

1

r2

d(r2ξ )

dr

]
− 4

r

dP

dr
ξ + ω2ρξ = 0, (2)

where P (r) is the pressure of the background system under
hydrostatic equilibrium and

Γ .= ρ

P

∂P

∂ρ
, (3)

with ρ(r) the mass density of the system. Formulated in this
way, we have at hand an eigenvalue problem. For continuous
systems, the boundary conditions to be added to Equation (2) are
quite simple. They are directly related to the spherical symmetry
of the system, as well as to the vanishing of its pressure on its
border even in the presence of perturbations (other situations
where a surface tension is present could also be envisaged, and
we shall attempt to elaborate on them below). In other words,
we impose that

ξ (0) = 0, and ξ (Rs) = finite, (4)

where Rs is defined as the radius of the star, such that P (Rs) =
0. For further details about these boundary conditions see
Shapiro & Teukolsky (1986). Equation (2) supplemented with
Equation (4) constitutes a Sturm–Liouville problem, where the
aspects of its solutions are already known. Concerning the eigen-
frequencies, ω2, they are all real and form a discrete hierarchical
set. When one seeks stable solutions to Equation (2), one seeks
solutions with positive ω2, especially for its fundamental mode.
As can be seen from Equation (1), negative values of ω2 indicate
instabilities in the assumed background system, which leads to
the conclusion that they do not linger on in time. They would
either implode or explode.

We now turn to the more involved problem of permitting
the system to be stratified and harboring surface degrees of
freedom on the interface of two given phases. Such degrees of

freedom have themselves a dynamic, described generically by
the thin-shell formalism or Darmois–Israel formalism (Israel
1966, 1967; Lobo & Crawford 2005; Poisson 2004). We are
here, however, particularly interested in another aspect of
the problem, namely understanding the role such degrees of
freedom play in the stability of the system when its parts (defined
naturally by the hypersurface that hosts the aforesaid degrees
of freedom) are perturbed. Therefore, before anything, it is
assumed that, for it to be meaningful to talk about this scenario,
one has that the hypersurfaces of discontinuity themselves are
stable (see Pereira et al. 2014 for further details). If this is not
the case, any displacement of the hypersurface of discontinuity
would trigger a cataclysmic set of events that would result in
the disruption of the system.

One expects that the stratified problem could be accounted
for additional boundary conditions to the system. The reason for
this is that the perturbations in the upper and lower regions with
respect to a given surface of discontinuity would be described
by the same physics (for example Equation (2)), as well as
the totality of the matches. The only missing points would be
their connection (allowing combinations of solutions to also be
solutions to the physical equations involved) and generalization
by means of surface quantities. For example, the existence
of a surface tension would account for an extra surface force
term. The same ensues with the presence of a surface mass
(enclosed by a surface mass density) and the associated presence
of a surface gravitational force. Therefore, in order to properly
describe stratified systems, which need the addition of surface
boundary conditions to match different regions, one must make
use of distributions (Poisson 2004; Raju 1982b).

We proceed now with the distributional generalization of
the equations describing continuous fluids under gravitational
fields. Assume that a surface harboring surface degrees of
freedom in a system in equilibrium is at r = R. The first
equation to be generalized in terms of distributions in this case
is the equation of hydrostatic equilibrium. This should now read

dP

dr
+ ρg(r) − 2P

R
δ(r − R) = 0, (5)

where g(r) has been defined as the norm of the gravitational
field, the solution to (the distributional) Poisson’s equation
∇ · g = −4πGρ, g = −g(r)r̂ , which can always be written as

g(r) = GM(r)

r2
, M(r)

.= 4π

∫ r

0
ρ(r̄)r̄2dr̄. (6)

In addition, P in Equation (5) stands for the surface tension
(Peters 2013) on the surface of a discontinuity at r = R. The
expression on the aforesaid equation is the result of restoring
surface forces (this is the reason they have a direction opposite
to the pressure gradient) in a small surface area (the factor 2
comes from the principal curvatures in a surface element, which
in the spherically symmetric case are equal). The gravitational
force from the sheet of mass at r = R is naturally incorporated
into the distributional definitions of ρ and g(r), as we will show
below. The mass density, on the other hand, must be expressed as

ρ(r) = ρ−(r)θ (R − r) + ρ+(r)θ (r − R) + σδ(r − R), (7)

with θ (r − R) the Heaviside function, whose derivative is the
Dirac delta function δ(r − R) in the sense of distributions.
From the existence of a surface mass density, it can be checked
that the gravitational field is discontinuous at a given surface

2



The Astrophysical Journal, 801:19 (11pp), 2015 March 1 Pereira & Rueda

of discontinuity of the system (at R):

[g(R)]+
− = 4πGσ, (8)

where we have introduced the convention [A]+
−

.= A+ −A−, the
jump of A(r) across r = R. Therefore, g(r) could be represented
distributionally as

g = g+(r)θ (r − R) + g−(r)θ (R − r). (9)

The above equation means that the associated distributional
gravitational potential φ(r) (g = −∇φ, g = −gr̂) is always a
continuous function, although not differentiable at the surface
of a discontinuity.

We will also assume that the pressure can be discontinuous
at r = R and hence written as

P (r) = P −(r)θ (R − r) + P +(r)θ (r − R). (10)

The reason this is so will be clarified when we deal with
our original problem in the scope of general relativity. The
heuristic argument corroborating the validity of Equation (10)
is that it is meaningless to colligate a surface term to the
radial pressure because its associated force would necessarily
be normal to it and therefore would not lie on the surface. Only
tangential pressures should be tied within their surface terms.
From Equations (10), (7), (6), (8), and (9) we have

P = R

2
[P (R)]+

− +
G

16πR3
[M2(R)]+

− (11)

and
dP±

dr
+ ρ±(r)g±(r) = 0. (12)

The arithmetic average present in Equation (11) (see the def-
inition of g(r) and the value of σ ) is a general consequence of
the product of delta functions with Heaviside ones in the gen-
eralized sense of distributions (Raju 1982a, 1982b). Note from
Equation (11) that its first term is the known Young–Laplace
equation for spherical surfaces at equilibrium (see, e.g.,
Rodrı́guez-Valverde et al. 2003; Peters 2013), where only
geometric aspects are taken into account for the surface tension.
Its second term, though, is the gravitational surface tension,
uniquely due to the nonzero surface mass. If the surface tension
were null, the pressure jump could not be arbitrary but is propor-
tional to the surface mass density and must be a monotonically
decreasing function of the radial coordinate (see Equations (8)
and (11)). From Equation (11), one sees further that the force
per unit area associated with the surface tension is exactly the
one necessary to counterbalance both of the forces coming from
the pressure gradient at R and the surface gravitational force, as
it should be.

One sees that the above procedure generalizes our notion of
hydrostatic equilibrium in each phase the stratified system has
(see Equation (12)) and automatically gives the surface tension
at R that guarantees the hydrostatic equilibrium for arbitrary
pressure jumps and surface masses. We will keep the same
philosophy now concerning the generalization of Equation (2).
From our generalized hydrostatic equilibrium equation, we
have that an important term for the deduction of the equation
governing radial perturbations would be the application of the
Lagrangian operator Δ (ΔA

.= A(t, r + ξ̃ ) − A0(t, r), A0 and
A being a physical quantity in the equilibrium and perturbed

cases, respectively) on the surface force in Equation (5) (see
Equation (20)):

Δ
[P

R
δ(r − R)

]
.= ΔP

R
δ(r − R) − P ξ̃

R2
δ(r − R) (13)

because Δδ(r − R) = 0 and ΔR = ξ̃ . Now we assume that
P = P(σ ). This means that we are endowing the fluid at the
surface of a discontinuity with adiabatic properties, and the
underlying microphysics is not contemplated in this procedure.
For continuous media, the total mass in the interface of two
phases is generally not a constant. This means that mass fluxes
are allowed to take place. This generically would render the mass
of each phase not constant, an aspect not taken into account in
Equation (2). Nevertheless, if the displacements of the surface
of a discontinuity are small and oscillatory, we have that on
average the masses on each phase are conserved (here it becomes
clear why the surface of a discontinuity should be stable). For
adiabatic processes, we have

ΔP = η2Δσ, η2 .= ∂P
∂σ

, (14)

with η2 the square of the speed of sound in the fluid at the
surface of a discontinuity. The missing term Δσ can be found
via the thin-shell formalism when the classical limit is taken
there. Generically, in the static and spherically symmetric case,
σ can be written as (Lobo & Crawford 2005)

σ = − c2

4πGR
[e−β(R)]+

−, (15)

with the classical limit β(r) ≈ GM(r)/(rc2) � 1. It is easy
to check that Equation (15) reduces to Equation (8) in the
aforementioned limit. When perturbed, it can be shown that
β → β +δβ, with δβ = −4πGrρ0e

2β0 ξ̃ /c2 (Misner et al. 1973),
ρ0 here meaning the mass density in the hydrostatic background
solution. Hence,

Δσ = δσ + σ ′
0ξ̃ = −[ρ0ξ̃ ]+

− + σ ′
0ξ̃ , (16)

where we also considered σ0 the background solution
(Equation (8)).

Another simpler way of obtaining Equation (16) would be
through the dynamics of δg (δg= -(δg)r̂). In the spherically
symmetric case we have δg = −4πGρξ̃ (Shapiro & Teukolsky
1986), and because δg

.= g − g0, with g0 the norm of the
gravitational field without the perturbation ξ̃ , from Equation (8),
we finally obtain

Δσ = [δg(R)]+
−

4πG
+ σ ′

0(R)ξ̃ = σ ′
0(R)ξ̃ − [ρ0ξ̃ ]+

−. (17)

In addition, from Equations (6) and (8), for the case when the
jump of ξ̃ is null at the surface of a discontinuity (which will
be justified below), one shows that the above equation can be
further simplified to

Δσ = −2

r
σ ξ̃ . (18)

Now we show the general equation governing the propagation
of radial perturbations. For P defined as in Equation (10), ρ in
terms of Equation (7), g as given by Equation (9), and finally

ξ̃ (r, t) = ξ̃+(r, t)θ (r − R) + ξ̃−θ (R − r), (19)
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the equation governing the evolution of perturbations in a given
volume element of the fluid is

Δ
{
ρ

dvr

dt
+

∂P

∂r
+ ρg(r) −

[
2P
R

+
σ

2
(v̇+

r + v̇−
r )

]
δ(r − R)

}
= 0.

(20)
Note that we assumed that v̇r is a distribution like ξ̃ . Physically
this must be taken because the phases are always “localizable”
and do not mix. In other words, this constraint reflects the
intuitive fact that the surface of a discontinuity should be well
defined. The mathematical reason for this will be given below,
and it is related to the well-posedness of the problem.

When developed, taking into account the hydrostatic equilib-
rium equation (see Equation(5)), it can be simplified to

∂

∂r

[
ΓP

r2

∂

∂r
(r2ξ̃ )

]
− 4

r

∂P

∂r
ξ̃ − d2ξ̃

dt2
ρ =

[
2ξ̃

R2

(
2η2σ − 3P

)

−σ

2

(
d2ξ̃+

dt2
+

d2ξ̃−

dt2

)]
δ(r − R). (21)

First note that coefficients multiplied by δ2(r − R) or δ′(r −
R) in Equation (21) must all be null. Taking into account
Equation (19), this means that

[ξ̃ ]+
− = 0. (22)

This automatically warrants ¨̃
ξ as a distribution without Dirac

deltas, as we have advanced previously. In order to obtain
Equation (21), we used the results that for a distribution
A(r) = A+(r)θ (r − R) + A−(r)θ (R − r),

ΔA = δA +
∂A

∂r
ξ̃ − [A]+

−ξ̃ δ(r − R), (23)

Δ
(

∂A

∂r

)
= ∂

∂r
(ΔA) − ∂ξ̃

∂r

∂A

∂r

+
1

2

[
∂ξ̃+

∂r
+

∂ξ̃−

∂r

]
[A(R)]+

−δ(r − R). (24)

In addition to the above mathematical properties, we have also
made use of

Δρ = − ρ

r2

∂

∂r
(r2ξ̃ ) +

σ

2

(
∂ξ̃+

∂r
+

∂ξ̃−

∂r

)
δ(r − R), (25)

which is a direct consequence of assuming that the total mass
in each phase is constant, even in the presence of perturbations.
This is only guaranteed if the surface of a discontinuity is
stable, a prime hypothesis for having a well-posed stability
problem. We also have assumed that P = P (ρ), which implies
that ΔP ± = Γ±P ±Δρ±/ρ±. In deriving Equation (21), we
further took into account Equation (11). We finally stress that a
simpler way to obtain Equation (21) is to recall that ΔM = 0,
which guarantees that Δg = −2gξ̃/r . The fact that ΔM = 0
means that observers comoving with the fluid do not note a mass
change. The aforementioned result can also be directly shown
by Equations (6), (24), and (25).

It can be seen that only solutions of the type ξ̃±(r, t) =
eiω±t ξ±(r) for Equation (21) are meaningful if

ω+ = ω− .= ω. (26)

This is the only way to eliminate the time dependence above
in Equation (21) and also to guarantee that the jump of ξ̃ is
null for any surface of discontinuity at any time. Therefore,
we arrive at the important conclusion that even a stratified
system where oscillatory perturbations take place should be
described by a sole set of frequencies. Each member of this
set describes the eigenfrequency of a whole system, instead of
one or another phase. Nevertheless, we recall that at the surface
of a discontinuity the frequencies are in principle not defined.
Bearing in mind the above conclusions, we have that, using
Equation (1),

ξ (r) = ξ−(r)θ (R − r) + ξ+(r)θ (r − R) (27)

and the boundary condition

[ξ (R)]+
− = 0, or ξ+(R) = ξ−(R)

.= ξ (R), (28)

and therefore the only meaningful Γ are given by

Γ(r) = Γ−(r)θ (R − r) + Γ+(r)θ (r − R). (29)

Gathering the above equations in Equation(21), we obtain

d

dr

[
ΓP

r2

∂

∂r
(r2ξ )

]
− 4

r

dP

dr
ξ + ω2ρξ

= −ξ (R)

[
2

R2

(
3P − 2η2σ

) − ω2σ

]
δ(r − R). (30)

Ones sees from Equation (30) that in the case where P and σ
are null, the classical expression, Equation (2), is recovered.

Summing up, substituting Equations (27) and (7) into
Equation (30), one sees that the only way to satisfy such an
equation is by imposing that

d

dr

[
Γ±P ± 1

r2

d

dr
(r2ξ±)

]
− 4

r

dP ±

dr
ξ± + ω2ρ±ξ± = 0, (31)

[
ΓP

d

dr
(r2ξ )

]+

−
+2(3P−2η2σ −2R[P (R)]+

−)ξ (R) = 0, (32)

and for completeness, condition (28). Equation (31) is obtained
here as a consequence of our distributional search for solutions
to the radial Lagrangian displacements. This is exactly what one
expects under physical arguments. Equations (32) and (28) are
our desired boundary conditions to be further taken into account
(besides Equation (4)) at the interface of any two phases.

For the case where [P (R)]+
− = [Γ(R)]+

− = σ = P = 0,
we have that the derivative of ξ is also continuous, and
therefore ξ is a differentiable function anywhere, as it should be
because we are defining here a continuous system. Nevertheless,
whenever the aforementioned conditions do not take place,
richer scenarios arise. Even in the case of a phase transition at
constant pressure and negligible surface mass, the discontinuity
of Γ and the existence of P generally render the derivative of ξ
discontinuous.

3. A SPECIFIC EXAMPLE: UNIFORM-DENSITY STARS

We would like to stress that the boundary condition we have
derived previously is actually very restrictive. This is because
the physically acceptable cases (solutions to Equations (31)
associated with a surface of discontinuity at r = R) are only
the ones that deliver enough arbitrary constants of integration
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to satisfy Equations (27) and (32). This should be taken
into account together with the physical requirement of only
admitting finite ξ everywhere and that are null at the origin (see
Equation (4)). In the following, we shall see a particular example
where all of these aspects are evidenced.

Let us now investigate a star made of two phases, each with
a uniform mass density. Let us assume also, for the sake of
simplicity and example, that the associated Γ for each region
is an arbitrary constant. As we will see, although this can be
considered only as a first academic example, it already evidences
some aspects that stratified systems should have. For this case it
is straightforward to solve Poisson’s equation and the equation
of hydrostatic equilibrium (see, e.g., Shapiro & Teukolsky 1986,
for further details), and we have for r < R

P −(r) = 2πGρ2
−

3
(R2 − r2), R .= 3p−

0

2πGρ2−
, (33)

where p−
0 is an arbitrary constant that corresponds to the

pressure of the system at the origin. For r > R, instead

P +(r) = 2πGρ2
+

3
(R2

s − r2). (34)

The constant mass density in the inner and outer regions has been
defined as ρ− and ρ+, respectively. The pressure at the origin p−

0
could always be chosen such that it matches the pressure at the
base of the outer phase, and as can be seen from Equation (34),
we have also introduced the condition of having a null pressure
at the star’s surface. Substituting Equations (33) and (34) into
Equation (31), we are led to

(
1 − x2

±
) d2ξ±

dx2±
+

(
2

x±
− 4x±

)
dξ±

dx±
+

(
A± − 2

x2±

)
ξ± = 0,

(35)
where we assumed that x+

.= r/Rs , x−
.= r/R and

A±
.= 3ω2

±
2πGρ±Γ± +

8

Γ± − 2. (36)

We now solve Equation (35) by the method of Frobenius. For
the sake of simplicity, we drop the ± notation. We therefore
assume solutions of the form

ξ =
∞∑

n=0

anx
n+s , (37)

where an and s are arbitrary constants to be fixed by primarily
demanding that the first condition of Equation (4) is satisfied, as
well as ξ (x) always being finite. By substituting Equation (37)
into Equation (35), it can be checked that the solutions to s are
either s = 1 or s = −2. The associated recurrence relation
obtained generally is

am+2 = (m + s)(m + s + 3) − A

(m + s + 2)(m + s + 3) − 2
am, (38)

with m = 0, 2, 4..., and a1 = a3 = a5 = ... = 0. Let us analyze
first the inner region. It is clear in this case that the associated
a0 for s = −2 must be null, as a consequence of one of our
boundary conditions. From Equation (38), one clearly sees that
the power series given by Equation (37) does not converge.
Therefore, in order to satisfy the finiteness anywhere of ξ , we

have to impose that the series be truncated somewhere, rendering
it actually a polynomial. Hence

A−
m,s=1 = (m + 1)(m + 4). (39)

From Equation (36), one sees that only discrete frequencies
(given by Equation (39)) are possible in this region. From
Equations (36) and (39), to have the frequency of the funda-
mental mode (m = 0) positive, one should have Γ− � 4/3.
Summing up, the physically relevant solution to this case just
leaves out an arbitrary constant of integration, as required due
to the scaling law present for ξ from Equation (31).

Let us now analyze the outer region. This is the most
physically interesting region because the problems at the star’s
center are absent, and therefore in principle one could even have
two linearly independent solutions to ξ . Because of the finiteness
of ξ in this region, the outer counterpart of Equation (39) must
again take place. Nevertheless, for s = −2, one should also
impose

A+
m,s=−2 = (m − 2)(m + 1). (40)

From Equation (36), one sees from this case that its associated
fundamental mode (m = 0) is unstable. This means in principle
that this solution to the outer region should be excluded, leaving
out just the one from the case s = 1, where we should consider

A+
m,s=1 = (m + 1)(m + 4). (41)

Still, our previous analysis exhibits clear problems: there are
not enough arbitrary constants to fix Equations (28) and (32), and
the eigenfrequencies in each region are different. However, we
shall show that the condition of having a same eigenfrequency
for the whole system, as required by our formalism, addresses
all of the problems. Obviously, the stable eigenfrequencies of
the star are only related to the solution s = 1. However, they
could arise here from aspects of either the inner or outer phases
of the star. Let us see what ensues from this conclusion. Assume
initially that the only possible ω are given by Equation (39),
associated with the modes m−

s=1. So, for having finite ξ+ related
to s = 1, one must impose that there exists a m+

s=1 to the
outer phase such that the numerator of the associated recurrence
relation is null. It can be shown that this is only the case if

m+
s=1 =

−5 +
√

9 + 4A+
s=1(m−

s=1)

2
. (42)

Therefore, Equation (42) demands that

9 + 4A+
s=1 = (2p + 1)2, p � 2, p ∈ N. (43)

For the case s = −2 to ξ+, it can be shown that the condition for
the existence of a m+

s=−2 related to am+
s=−2

= 0 is exactly given
by Equation (43). The mode itself is

m+
s=−2 =

1 +
√

9 + 4A+
s=1(m−

s=1)

2
. (44)

Summarizing: if Equation (43) is satisfied for any nat-
ural p � 2, there always exist modes, characterized by
Equations (42) and (44), that guarantee the finiteness of ξ+

as a linear combination of solutions for s = 1 and s = −2, as-
sociated with a given eigenfrequency ωm−

s=1
that only takes into

account aspects of the inner phase of the system. In this case,
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one is able to come up with two arbitrary constants of integra-
tion, which would then guarantee that the additional boundary
conditions raised by the stratification, Equations (28) and (32),
are satisfied. It is immediately apparent that a reasoning sim-
ilar to the above ensues if one now chooses ωm+

s=1
as coming

from aspects of the outer region, given now by Equations (36)
and (41). For this case, we will now find an m−

s=1 and an m+
s=−2

associated with ωm+
s=1

, as given by Equations (42) and (44), with
the condition given by Equation (43), replacing A+

s=1(m−
s=1) by

A−
s=1(m+

s=1). Because Γ± and ρ± are given quantities, one sees
that the only possible eigenfrequencies for a system should sat-
isfy 9 + 4A±

s=1 = (2p + 1)2. This constraint is uniquely imposed
because of the extra boundary conditions to the problem and is
very restrictive. We have just shown a simple example where
some of the aspects imprinted by stratification arise. Whenever
there are two arbitrary solutions to ξ in a given phase, it will be
always possible to satisfy the constraints (28) and (32).

4. SYSTEMS WITH AN ELECTROMAGNETIC
STRUCTURE

Now we attempt to take a further step in our classical
generalization, by endowing the phases (as well as the surface
of a discontinuity) with an electromagnetic structure. Just
for clarity, let us work with a system that exhibits just an
electric field. The first point to be taken into account is the
additional electric force present in the system. This would have
the same structure as the gravitational force, and therefore its
generalization is straightforward. Now one should also define a
distributional solution to the charge density. The surface force
associated with the surface tension should have the same form as
previously, but now it should also take into account the present
electric aspects. The pressure in this case would also change
because of the presence of the electric field, and its jump over a
surface of discontinuity could still be kept free.

From the (distributional) Maxwell equations in the spherically
symmetric case, one has that

E(r) = Q(r)

r2
, Q(r)

.= 4π

∫ r

0
ρc(r̄)r̄2dr̄, (45)

where ρc(r) is the charge density at r. The associated “force
density” is d Fel/dv = ρcE(r)r̂ . Therefore, the equation of
hydrostatic equilibrium now reads

dP

dr
+ ρ(r)g(r) − ρc(r)E(r) − 2PQ

R
δ(r − R) = 0. (46)

Therefore, like the gravitational field, the electric field also
presents a jump at any surface of a discontinuity (at r = R)
endowed with surface charges. We write the charge density as

ρc(r) = ρ−
c (r)θ (R − r) + ρ+

c (r)θ (r − R) + σcδ(r − R), (47)

and the distributional electric field is

E(r) = E−(r)θ (R − r) + E+(r)θ (r − R), [E(R)]+
− = 4πσc.

(48)
By substituting now Equations (10), (45), (47), and (48) into
Equation (46), we have that the surface tension at equilibrium
should read

PQ = R

2
[P (R)]+

− +
G

16πR3
[M2(R)]+

− − 1

16πR3
[Q2(R)]+

−.

(49)

Note that the existence of a surface mass would lead to
[M2(R)]+

− > 0, and [Q2(R)]+
− could in principle be any. The

appearance of the last term in Equation (49) is consistent with
the expected and long ago known contribution of electric double
layers to the surface tension and surface energy of metals, as
recalled by Frenkel (1917) in his seminal work. The existence
of such surface electric fields is well known in materials
science, and it has been determined experimentally from the
photoelectric phenomenon by measuring the amount of work
done by electrons to escape from a metal’s surface. There is a
vast literature on the role of electric double layers on surface
phenomena in metals and contact surfaces, and we refer the
reader for instance to Huang & Wyllie (1949) and Israelachvili
(2011), and references therein, for further details on this subject.

Because in the presence of an electric field the hydrostatic
equilibrium equation and the surface tension changes, it can
be checked that Equation (30) keeps the same functional form.
In drawing this conclusion, it was also assumed that the total
charge of the system is a constant. This also means that ΔQ = 0.
One also sees immediately that the main results concerning the
stability of the stratified charged case are totally analogous to
the neutral one, obtained by simply making the replacement
P → PQ.

5. STRATIFIED SYSTEMS IN GENERAL RELATIVITY

Now we generalize the analysis of stratified systems to
general relativity. From the classical analysis, we have learned
that surface quantities must also be inserted into the generalized
equation of hydrostatic equilibrium. Therefore, in a certain
sense, we must find the proper generalization of the surface
forces in general relativity. This will not be difficult bearing in
mind the thin-shell formalism, as we shall see below. Such
a formalism states that in order to search for distributional
solutions to general relativity, one has to consider an energy-
momentum tensor at a surface of discontinuity, which we shall
name Σ. It is precisely this surface content that leads to the jump
of quantities that are related to physical observables, such as the
extrinsic curvature. We now outline the formalism succinctly.
Let us work just in the spherically symmetric case, where Σ
is defined as Φ = r − R(τ ) = 0, with τ the proper time of
an observer on the aforesaid hypersurface. Assume that the
metrics in the regions above and below Σ (with respect to
the normal vector to it), described by the coordinate systems
x

μ
±

.= (t±, r±, θ±, and ϕ±), respectively, are given by

ds2
± = e2α±(r±)dt2

± − e2β±(r±)dr2
± − r2

±dΩ2
±, (50)

where
dΩ2

± = dθ2
± + sin2 θ±dϕ2

±. (51)

Assume that the (three-dimensional) hypersurface Σ is described
by the (intrinsic) coordinates ya .= (τ, θ, ϕ) such that at the
hypersurface t± = t±(τ ), θ± = θ and ϕ± = ϕ and obviously
r± = R(τ ). In order to render the procedure consistent, one
has to impose primarily that the intrinsic metric to Σ is unique.
This fixes the coordinate transformations x

μ
± = x

μ
±(ya). This

is the generalization of the continuity of the gravitational
potential across a surface harboring surface degrees of freedom.
Now, if the jump of the extrinsic curvature is nonnull, the
existence of a surface energy-momentum tensor (Poisson 2004)
is automatically guaranteed that in the spherically symmetric
case can always be cast as Sa

b = diag(σ,−P,−P), with

6
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(see, e.g., Lobo & Crawford 2005)

σ = − 1

4πR

[√
e−2β + Ṙ2

]+

−
, (52)

P = −σ

2
+

1

8πR

[
Rα′(e−2β + Ṙ2) + R̈R + β ′RṘ2

√
e−2β + Ṙ2

]+

−
, (53)

where generically A′ .= ∂A/∂r and Ȧ
.= dA/dτ . Finally, the

discontinuity of the extrinsic curvature is the generalization of
the discontinuity of the gravitational field across a surface with
nontrivial degrees of freedom. The case of interest to be analyzed
here is the static and stable (upon radial displacements of Σ) one,
Ṙ = R̈ = 0, i.e., an equilibrium point.

Let us see now how the generalization of the surface forces
appears in this formalism. First of all, we know that

Tμν = T +
μνθ (r − R) + T −

μνθ (R − r) + ea
μeb

νSabδ(r − R), (54)

where ea
μ

.= ∂ya/∂xμ and Sab = hacS
c
b , hab

.= e
μ
a eν

bgμν .
Note that ea

μ is itself defined as a distribution. For hab, it does
not matter what side of Σ one takes to evaluate it, because it
must be unique. Let us constrain ourselves first to the case of
perfect fluids (locally neutral) on each side of Σ. One sees from
Equation (54) and the coordinate transformations at Σ that

T 0
0

.= ρ = ρ+θ (r − R) + ρ−θ (R − r) + σδ(r − R), (55)

T 1
1

.= −P = −P +θ (r − R) − P −θ (R − r), (56)

and
T 2

2 = T 3
3

.= −Pt = −P − Pδ(r − R). (57)

From Equation (56), we note that there are no associated surface
stresses. This is exactly what we advanced in the classical
case with heuristic arguments and obtained here as a general
consequence of distributional solutions to general relativity. Let
us search formally for solutions to Einstein’s equations with the
energy momentum given by Equations (55)–(57) with the ansatz

ds2 = e2αdt2 − e2βdr2 − r2(dθ2 + sin2 θdϕ2). (58)

The distributional nature of Equation (58) will be evidenced by
Equation (54). As the solution, we have

e−2β = 1 − 2m(r)

r
, m(r)

.= 4π

∫ r

0
ρ(r̄)r̄2dr̄. (59)

Note from the above equation that ρ is given by Equation (55),
and therefore e−2β is a distribution generally discontinuous at
R. For α we have, though,

α′ = e2β

r2
[4πPr3 + m(r)], (60)

where P is given by Equation (56). From Equations (59)
and (60), we see that α′ is a distribution with no Dirac delta
function terms. Therefore, this implies that [α]+

− = 0. In
other words, the function α is generally continuous though not
differentiable at R. Nevertheless, from the conservation law of
the energy-momentum tensor given by Equation (54), we also
have

α′
±(ρ± + P±) = −P ′

±. (61)

We note that T μν ;ν = 0, taking into account Equation (54),
would give us in principle terms dependent upon Heaviside
functions, Dirac delta functions, and their derivatives. The terms
associated with the Heaviside functions are null because of
the validity of Einstein’s equations on each side of Σ. The
nullity of the remaining terms is associated with identities that
the surface energy-momentum tensor has to satisfy (see, e.g.,
Mansouri & Khorrami 1996). It is not difficult to show that
such identities are automatically satisfied when one takes into
account Equations (52) and (53) (see, e.g., Lobo & Crawford
2005). This shows that the thin-shell formalism is consistent,
and the surface terms must indeed be taken as the aforesaid
equations.

In order to put Equation (61) in the form that would allow us
to consider Equations (55) and (56), we mandatorily should add
surface terms. The correct way of doing it is

dP

dr
= − (ρ + P )α′ +

2P
R

δ(r − R) +

{
[P (R)]+

−

+
σ

2
[α′

+(R) + α′
−(R)] +

σ

R
− [α′e−β]+

−
4πR

}
δ(r − R).

(62)

Now we show that, in the classical limit, Equation (62)
reduces exactly to Equation (5), and thus it is its proper
generalization. First of all, note that in such a limit, α = φ(r),
φ(r) the gravitational potential. It can be also shown that in such
a case

σ = 1

4πR2
[M(R)]+

−, (63)

where the above quantities are in cgs units. In Equation (63)
one recognizes the jump of the gravitational field g(r) =
φ′ = GM(r)/r2 at r = R, as exactly given by Equation (8).
Therefore,

σ

2
{α′

+(R) + α′
−(R)} � G[M2(R)]+

−
8πR4

. (64)

Substituting Equation (64) into Equation (62), we see that the
term inside the curly brackets of the latter equation is null (see
Equations (53) and (11). Hence, the remaining term in front of
the delta function is exactly 2P/R, as we already advanced and
expected (see Equation (5)).

Now we are in a position to talk about perturbations in
the general relativistic scenario. When they take place, metric
and fluid quantities change at a given spacetime point from
their static counterparts. It is customary to assume that such
departures are small, which allows us to work perturbatively.
The primary task is to find such changes from the system of
equations coming from relativistic hydrodynamics and general
relativity. Nevertheless, these solutions are already very well
known (Misner et al. 1973). Our ultimate task is simply to
generalize them to the distributional case.

The equation governing the evolution of the fluid displace-
ments on each side of Σ is the general relativistic Euler equation,
related to the orthogonal projection of T μν ;ν (perfect fluids)
onto uμ:

(ρ + P )uν ; μuμ .= (ρ + P )aν = (gμν − uμuν)P,μ, (65)

where the labels ± for each term in the above equation were
omitted just to not overload the notation.
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In the hydrostatic case, we have only that ut
± = e−α±

0 . When
perturbations are present (Misner et al. 1973),

ut
± = e−α± = e−α±

0 (1 − δα±), (66)

where δα is the change of the static solution α0 in the presence of
perturbations at a given spacetime point. For the ur

± component,
using the normalization condition u

μ
±u±

μ = 1, one shows that
(Misner et al. 1973)

ur
± = e−α±

0 ˙̃
ξ±, (67)

with ˙̃
ξ

± .= ∂ξ̃±/∂t±. Just for completeness, uθ
± = u

ϕ
± = 0.

For the components of u
μ
± given by Equations (66) and (67),

the left-hand side of Equation (65) gives as the only nontrivial
component ar

± = −e−2β±
a±

r , with

− a±
r = α′

0± + δα′
± + e2(β±

0 −α±
0 ) ¨̃

ξ± (68)

and the associated equation of motion

(ρ± + P ±)(−a±
r ) = −∂P ±

∂r±
. (69)

From Equation (68), Equation (69) can be cast as

(ρ±
0 + P ±

0 )e2(β±
0 −α±

0 ) ¨̃
ξ± = −∂P ±

∂r± − (ρ± + P ±)α′
±. (70)

Therefore, in terms of distributions, Equation (70) reads

(ρ0 + P0)e2(β0−α0) ¨̃
ξ = −∂P

∂r
− (ρ + p)α′ +

2P
R

δ(r − R)

+

[
σ

R
− [α′e−β]+

−
4πR

+ [P (R)]+
−

+
σ

2

{
e2(β+

0 −α+
0 ) ¨̃
ξ+ + e2(β−

0 −α−
0 ) ¨̃

ξ− + α′
+ + α′

−
} ]

δ(r − R),

(71)

where ρ and P are given by Equations (55) and (56), respectively,
and now

ξ̃ (r, t) = ξ̃+(r+, t+)θ (r+ − R) + ξ̃−(r−, t−)θ (R − r−). (72)

Note that in Equation (71) we are considering jumps and sym-
metrizations of quantities defined in the presence of pertur-
bations. As we stated previously, such perturbations change
slightly the value of the physical quantities with respect to their
hydrostatic values. The square brackets term of Equation (71)
is the proper generalization of the curly brackets term in
Equation (20). Naturally, the reasoning for the eigenfrequencies
of ξ̃ in the general relativistic case is the same as in the classical
case. The same can be said about the continuity, though not
differentiability, of ξ̃ at any surface of a discontinuity.

Now, in order to have the proper generalization of
Equation (30), we should evaluate Equation (71) at r + ξ̃ and
then subtract it from its evaluation at r concerning the static
solution. In order to do it properly, one should take into account
the general results for the case of Lagrangian displacements
coming from the standard procedure (see, e.g., Misner et al.
1973), but now in the sense of distributions, by recalling that

ΔA
.= A(r + ξ̃ , t) − A0(r, t), where A0 concerns the quantity A

at equilibrium.
It is not difficult to see that we have the following results in

the general relativistic distributional case (see, e.g., Misner et al.
1973, for the treatment of a continuous system):

Δβ = − α′
0ξ̃ , (73)

Δα′ = 4πre2β0 [δP + 2δβP0] +
e2β0

r
δβ + α′

0ξ̃ , (74)

ΔP = − γP0

[
e−β0 (r2eβ0 ξ̃ )′

r2
+ δβ

]
, (75)

Δρ = − (ρ0 + P0)

[
1

r2

∂

∂r
(r2ξ̃ )

]
+

(
σ0

2

{
∂ξ̃+

∂r
+

∂ξ̃−

∂r

}

+ Δσ +
2σ0ξ̃

R
+ [P0]+

−ξ̃

)
δ(r − R) − dP0

dr
ξ̃ , (76)

γ
.= ρ0 + P0

P0

(
∂P

∂ρ

)
s=const

, (77)

Δσ = − 2σ0ξ̃

R
− ξ̃

(
[eβ0P0]+

− +
[cosh β0]+

−
4πR2

)
. (78)

We stress that Equation (75) assumes adiabatic processes, in
which one considers P = P (ρ), and we have made use of
[ξ̃ ]+

− = 0 for the above equations.
We shall seek solutions to the perturbations as ξ̃ = eiωt ξ (r)

with ω the same for all of the phases the system may have. We
just need to worry about the Dirac delta function term because it
gives us the desired boundary condition valid for the separation
of each two phases. The terms in front of the Heaviside functions
by default will be the ones found in continuous media. It is not
hard to see that the surface terms at the end should satisfy the
condition

Δσ

R
(2η2 + 1) − Δ[α′eβ]+

−
4πR

= 0, (79)

where we have used Equation (24). When the last term on
the left-hand side of the above equation is expanded by us-
ing Equations (60) and (73), Equation (79) can be further
simplified to

2η2Δσ

R
− Δ

[
[cosh β]+

−
4πR2

]
=

[
2P
R2

− [Peβα′]+
−

]
ξ̃ + [ΔPeβ0 ]+

−.

(80)
One sees from Equation (80) that Equation (32) is recovered in
the classical limit by recalling that β = M(r)/r , which implies
that the last term on the left-hand side of the above equation is
4σ (g+ + g−)/(2R). In this limit we take P → 0 and eβ → 1 for
the remaining terms.

The case where electromagnetic interactions are also present
is also of interest because its associated energy-momentum

8



The Astrophysical Journal, 801:19 (11pp), 2015 March 1 Pereira & Rueda

tensor is anisotropic. This naturally influences the equation of
hydrostatic equilibrium, because it now becomes

α′(P + ρ) = −P ′ − 2

r
(Pt − P ), (81)

where P, Pt, and ρ are the resultant radial pressure, tangential
pressure, and energy density of the fluid, respectively. For the
electromagnetic fields, clearly (Pt −P ) is solely related to them.
Because of the aforementioned aspects, the latter should also
influence the dynamics of the radial perturbations, as we will
show in the next section.

6. ELECTROMAGNETIC INTERACTIONS IN
STRATIFIED SYSTEMS WITHIN GENERAL RELATIVITY

We consider now the inclusion of electromagnetic interac-
tions within the scope of stratified systems in general relativity.
An important comment at this level is in order. Because we are
dealing with electromagnetic fields in stars, it would be more
reasonable to assume the Maxwell equations in material media.
Nevertheless, because our knowledge of the structures constitut-
ing the stars is not yet precise, it is difficult to assess their realistic
dielectric properties. Because working with Maxwell equations
in the absence of material media gives us upper limits to the
fields under normal circumstances, this seems to be a good first
tool to evaluate the relevance and effects of electromagnetism
in stars. For the time being we will follow this approach. The
energy-momentum tensor of each layer of the system we are
now interested in should also have the electromagnetic one5:

4πT (em)
μν = −FμαFνβgαβ + gμν

F αβFαβ

4
, (82)

where we defined Fμν
.= ∂μAν − ∂νAμ. Solving Einstein–

Maxwell equations on each layer of a stratified system leads
us to the following equilibrium condition (Bekenstein 1971):

∂P

∂r
= Q(r)Q′(r)

4πr4
− α′

Q(ρ + P ), (83)

where

Q(r)
.=

∫ r

0
4πr2ρce

βQdr, E(r) = eαQ+βQ
Q(r)

r2
, (84)

e−βQ = 1 − 2mQ(r)

r
+

Q2(r)

r2
(85)

α′
Q = e2βQ

r2

[
4πr3P + mQ(r) − Q2(r)

r

]
(86)

and

mQ(r)
.=

∫ r

0
4πr2ρdr +

Q2

2r
+

1

2

∫ r

0

Q2

r2
dr. (87)

Equations (84), (85), (86), and (87) are the charge, radial, and
time components of the metric and the energy of the system up
to a radial coordinate r, respectively. In Equation (84), we also
showed the electric field E(r) in the context of general relativity,
obtained by means of the definition Ftr

.= E(r) = −∂rA0. We
stress that ρc is the physical charge density of the system, defined
in terms of the four-current by jμ .= e−αQuμ, where uμ is the

5 We restrict our analyses to the Maxwell Lagrangian, −FμνFμν/4
.= −F/4.

four-velocity of the fluid with respect to the coordinate system
(t, r, θ, ϕ) (see Landau & Lifshitz 1975, for further details).

From Equation (83) one sees that in the scope of general
relativity the effect of the charge is not merely to counterbalance
the gravitational pull. For certain cases, it could even contribute
to it. This is due to the contribution of the electromagnetic
energy to the final mass of the system, as clearly given by
Equation (87). Note from Equation (87) that we have assumed
that the mass at the origin is null, in order to avoid singularities
there. More generically, one could assume point or surface mass
contributions in Equation (87) by conveniently adding Dirac
delta functions in ρ. Finally, we stress that Equation (84) can
indeed be seen as the generalization of the charge in general
relativity because it takes into account the nontrivial contribution
coming from the spacetime warp due to its energy-momentum
content.

Note that the classical limit to Equation (83) can be shown
to coincide with Equation (46), by recalling that Eclas(r) =
Qclas(r)/r2 and, from Equation (84), Q′

clas(r) = 4πr2ρc. In
addition, we recall that when converted to cgs units, the term
Q2/r (here in geometric units) becomes Q2/(c2r), which is null
in the classic nonrelativistic limit, as well as any pressure term
on the right-hand side of the aforementioned equation.

Now, consider the analysis of a charged system constituted of
two parts, connected by a surface of discontinuity (at r± = R)
that hosts surface degrees of freedom, such as an energy density,
a charge density, and a surface tension. Its generalization to an
arbitrary number of layers is immediate because each surface of
discontinuity is only split by two phases. The proper description
of the charge density in this case would be given by the
generalization of Equation (47). Therefore, one would have at
equilibrium that

Q(r) = Q−(r−)θ (R − r−) + Q+(r+)θ (r+ − R), (88)

and for Q′(r), a Dirac delta will rise due to ρc.
Let us define the distribution

ρ̄c
.= ρce

βQ
.= ρ̄+

c θ (r − R) + ρ̄−
c θ (R − r) + σ̄cδ(r − R), (89)

where ρ̄±
c = ρ̄±

c (r±). From the above definition, we have that
Q′ = 4πr2ρ̄c. It implies that the total charge is the same as
the one associated with ρ̄c in a Euclidean space. Therefore, all
classical results apropos of the charge densities and total charges
that we deduced in the previous sections ensue here for ρ̄c.

We seek now the distributional generalization of
Equation (83). This can be easily done by following the same
reasoning from the previous section, which finally leads us to

dP

dr
= Q(r)ρ̄c

r2
− (ρ + P )α′

Q +
2PQ

R
δ(r − R)

+

{
[P (R)]+

− +
σQ

2
[α′

Q+(R) + α′
Q−(R)] +

σQ

R

− [α′
Qe−βQ ]+

−
4πR

− σ̄c

2R2
[Q+(R) + Q−(R)]

}
δ(r − R),

(90)

where we are assuming that surface quantities with the subindex
Q are related to the charged versions of Equations (52) and (53)
(see also Equations (85) and (86)). It is easy to show that in
the classical limit Equation (49) naturally rises, implying that in
such a limit the curly brackets in Equation (90) are null.

9
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We consider now the case where radial perturbations take
place in our charged system. This case is more involved than
the neutral case because the charged particles also feel an
electric force. The equation describing the evolution of the
displacements can be shown to be generalized to (see Anninos
& Rothman 2002, for the dynamics of the radial perturbations
in a given phase)

(ρ0 + P0)e2(βQ0−αQ0) ¨̃
ξ = −∂P

∂r
− (ρ + P )α′

Q

+
Q(r)ρ̄c

r2
+

2PQ

R
δ(r − R) +

[
σQ

R
− [α′

Qe−βQ ]+
−

4πR

+
σQ

2

{
e2(β+

Q0−α+
Q0) ¨̃

ξ
+

+ e2(β−
Q0−α−

Q0) ¨̃
ξ

−
+ α′

Q+ + α′
Q−

}
− σ̄c

2R2
[Q+(R) + Q−(R)] + [P (R)]+

−

]
δ(r − R). (91)

For the change in Q(r), it can be shown (see Bekenstein 1971)
that in the comoving frame there are no currents. This means
that the Lagrangian displacements of Q are null, ΔQ = 0.
Equation (91) takes into account the values of the physical
quantities in the presence of perturbations at r. In order to
obtain the generalization of Equation (30), we should evaluate
Equation (91) at r + ξ̃ and subtract it from Equation (90). This
is due to the definition of the Lagrangian displacement of a
given physical quantity, intrinsically related to the notion of
observers comoving with the fluid, who naturally could describe
its thermodynamics.

In order to simplify Equation (91), we have in the generalized
charged case (see Anninos & Rothman 2002 for the treatment
in a phase of a charged system)

ΔβQ = −α′
Q0ξ̃ , (92)

Δα′
Q = 4πre2βQ0

[
δP + 2δβQ

(
P0 − Q2

0

8πr4

)]

+
e2βQ0

r
δβQ + α′

Q0ξ̃ +
4πe2βQ0 ρ̄cQ0

r
ξ̃ − 2πσ̄cξ̃

R

× (
Q+

0e
2β+

0 + Q−
0 e2β−

0
)
δ(r − R), (93)

ΔP = −γP0

⎡
⎢⎣e−βQ0

(
r2eβQ0 ξ̃

)′

r2
+ δβQ

⎤
⎥⎦ , (94)

Δρ = − (ρ0 + P0)

[
1

r2

∂

∂r
(r2ξ̃ )

]
−

[
dP0

dr
− Qρ̄c

r2

]
ξ̃

+

(
σQ0

2

{
∂ξ̃+

∂r
+

∂ξ̃−

∂r

}
+ ΔσQ +

2σQ0ξ̃

R
+ [P0]+

−ξ̃

− σ̄cξ̃

2R2
[Q+ + Q−]

)
δ(r − R), (95)

γ
.= ρ0 + P0

P0

(
∂P

∂ρ

)
s=const

, (96)

ΔσQ = −
[

2σQ0

R
+ [eβQ0P0]+

− +
[cosh βQ0]+

−
4πR2

]
ξ̃ . (97)

The additional 0 subindex in a physical quantity means that its
value at equilibrium was taken. We just stress that Equation (96)
is the general relativistic definition of the adiabatic index and
assumes the existence of an equation of state linking the pressure
and density of the system, P = P (ρ). In this sense, it generalizes
Γ as defined by Equation (3).

By seeking solutions for ξ̃ = eiωt ξ (r), one can see that
Equation (91) only gives meaningful boundary conditions when
a frequency ω is the same for all of the phases present in the
system. We emphasize that this is a universal property of the
approach developed here, due to the surface degrees of freedom
and the well-posedness of the problem of radial perturbations
in stratified systems. The associated boundary condition arising
from this analysis leads us to the conclusion that generically
ξ (r) is not differentiable at a surface of discontinuity, though
continuous. It can be shown that the associated boundary
condition to be taken into account here is functionally the
same as Equation (79) (or Equation (80)), where now the
metric and surface quantities should be related to the charged
case.

7. CONCLUSIONS

In this article we have developed a formalism for assessing
the stability of a stratified star against radial perturbations. We
have derived the relevant equations defining this boundary-value
problem for both neutral and charged stars and in Newtonian
and Einstein’s gravity. It makes use of the generalized theory
of distributions: we assumed that the surfaces of discontinuity
are thin, that they host surface degrees of freedom, and that
the phases separated by them do not mix. We showed that al-
though the phases may be very different among themselves,
when perturbations take place, they lead to the notion of a set
of eigenfrequencies describing the whole system, instead of an
independent set for each phase. As a consequence, our formal-
ism also gave us the proper additional boundary conditions to
take into account when working with stratified systems. Such
boundary conditions encompass surface degrees of freedom in
the surfaces of discontinuities and generically modify the set of
eigenfrequencies with respect to their continuous counterpart.
This should be a generic fingerprint of stratified systems with
nontrivial surface degrees of freedom. Our analyses are relevant
for the assessment of the stability of realistic star models because
they ensue the precise notion of boundary conditions. It was not
our objective to systematically apply our formalism here, but
simply to derive and expound it. It is clear that for precise and
realistic numerical stability calculations, it would be ideal to
have the microphysical knowledge of the properties of the inter-
facial surfaces. However, this a difficult problem that has been
elusive even in the most advanced fields of materials science,
where laboratory data of material surface properties are acces-
sible, but there is still a lack of a complete physical theory for
their explanation (Israelachvili 2011). Thus, the measurement
of the star’s eigenmodes becomes of major relevance because
it could give information not only on the star’s bulk structure
but also on the possible existence of interior interfaces and their
associated microphysical and electromagnetic phenomena.

The radial instabilities shown in our analyses should be
interpreted analogously for continuous stars because, even in
the stratified case, a global set of eigenfrequencies arises. Thus,
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stratified stars would either implode or explode when they
are radially unstable. Although we were concerned only with
radial perturbations, it is of interest to investigate the additional
oscillation modes owing to nonradial perturbations. The only
point to be added, with respect to continuous stars, is the
proper redefinition of the surfaces of discontinuity when such
perturbations take place. This is clearly a richer scenario that
inserts additional degrees of freedom into the system, leading
to the appearance of additional modes such as the gravitational
g modes(see, e.g., Reisenegger & Goldreich 1992). Such an
analysis, however, is a second step that goes beyond the goal
of the present work and that we are planning to investigate
elsewhere.
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ABSTRACT

We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static
and in the uniformly rotating cases. The model is described by the coupled Einstein–Maxwell–Thomas–Fermi
equations, in which all fundamental interactions are accounted for in the framework of general relativity and
relativistic mean field theory. Uniform rotation is introduced following Hartle’s formalism. We show that the
use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent
axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation
efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star
mass M = 1.4 M�, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and
contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to
the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the
source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of
these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have
magnetic fields lower than the quantum critical field for any value of the neutron star mass.

Key words: equation of state – gravitation – pulsars: general – stars: neutron – stars: rotation

1. INTRODUCTION

The traditional formula used in pulsar astrophysics literature
to infer the pulsar’s magnetic field originated from the pio-
neering hypothesis of Gold (1968) and Pacini (1968), who first
stressed the role of the rotational energy of the neutron star as
an energy reservoir for the pulsar’s activity. The surface mag-
netic field of pulsars has since been estimated (see, e.g., Gunn &
Ostriker 1969; Ostriker & Gunn 1969; Ferrari & Ruffini 1969)
by equating the rotation energy loss of the neutron star,

Ėrot = −4π2I
Ṗ

P 3
, (1)

to the radiating power of a rotating magnetic point dipole in a
vacuum,

Pdip = −2

3

μ2
⊥Ω4

c3
. (2)

Here Ω is the rotation angular velocity of the star, μ⊥ =
μ sin χ is the component of the magnetic dipole μ = BR3

perpendicular to the rotation axis, which is B, the magnetic
field at the equator, and χ denotes the inclination angle of the
magnetic dipole with respect to the rotation axis. Under these
assumptions, the magnetic field is estimated as

B sin χ =
(

3c3

8π2

I

R6
P Ṗ

)1/2

, (3)

where P = 2π/Ω and Ṗ are the rotational period and the spin-
down rate of the pulsar, which are observational properties,
while the moment of inertia I and the radius R of the star are
model-dependent properties.

It is worth noting that the electromagnetic power of the
above simplified rotating magnetic point dipole model, given
by Equation (2), coincides, in regards to the so-called wave
zone approximation (r � c/Ω = 1/k = λ/2π , where k

is the wave number and λ the wavelength), with the one
obtained from the classic work by Deutsch (1955), where the
exterior (vacuum) electromagnetic field of a uniformly rotating,
perfectly conducting star with a misaligned magnetic dipole
was obtained as an exact closed-form analytic solution of the
Maxwell equations in flat spacetime.

General considerations on the nature of pulsars are often
extracted in the literature from the application of the above
formulas with fiducial parameters of a pulsar: a canonical
neutron star of mass M = 1.4 M�, radius R = 10 km, and
moment of inertia I = 1045 g cm2, (see, e.g., Caraveo 2014, and
references therein). For these fiducial parameters, Equation (1)
becomes

Ė
f
rot = −3.95 × 1046 Ṗ

P 3
ergs−1, (4)

and Equation (3) becomes

Bf sin χ = 3.2 × 1019(P Ṗ )1/2 G. (5)

We focus in this work on the interesting class referred to as
high-magnetic field pulsars (see, e.g., Ng & Kaspi 2011). In
Table 1 (Ng & Kaspi 2011; Zhu et al. 2011), we show samples
of the high-magnetic field pulsar class with their properties
as inferred from the fiducial formulas (5), and (4) for the
surface magnetic field and rotational energy loss (see second and
fourth column of the table, respectively). Notice that magnetic
fields with values higher than the critical field for quantum
electrodynamical effects,

Bc = m2
ec

2

eh̄
= 4.41 × 1013 G, (6)

appear, and in some cases also have luminosities higher than the
rotational power of the neutron star, namely, LX > |Ėf

rot|.
Due to these theoretically inferred properties, the possibility

that this family of pulsars can be the missing link has been
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Table 1
Properties of the High-magnetic Field Pulsars Obtained Assuming Fiducial Neutron Star Parameters, R = 10 km and

I = 1045 g cm2, Respectively, and Using Equation (5) with Inclination Angle χ = π/2 and Equation (4)

Pulsar Bf /Bc LX LX/|Ėf
rot| P Ṗ

(1033 erg s−1) (s) (10−12)

J1846–0258 1.11 25–28a, 120–170b 0.0031–0.0035a, 0.015–0.021b 0.326 7.083
J1819–1458c 1.13 1.8–2.4 6.21–8.28 4.263 0.575
J1734–3333 1.18 0.1–3.4 0.0018–0.0607 1.169 2.279
J1814–1744 1.24 <43 <91.5 1.169 2.279
J1718–3718 1.67 0.14–2.6 0.0875–1.625 3.378 1.598
J1847–0130 2.13 <34 <200 6.707 1.275

Notes. See Zhu et al. (2011); Ng & Kaspi (2011) for additional details of these pulsars.
a In 2000, prior to the 2006 outburst.
b During the outburst in 2006.
c Classified as a rotating radio transient (RRAT).

suggested, i.e., transition objects between rotation-powered
pulsars and the so-called magnetars: neutron stars powered by
the decay of overcritical magnetic fields. In principle, this would
lead to a large unseen population of magnetars in a quiescence
state, which could be disguised as radio pulsars (see, e.g., Zhu
et al. 2011).

However, as we shall show in this work, these conclusions
might be premature since the surface magnetic fields inferred
by fiducial neutron star parameters, namely by Equation (5),
are generally overestimated. Indeed, much lower values of the
magnetic field are obtained when realistic structure parameters
are applied and when general relativistic corrections are intro-
duced to the traditional Newtonian Equation (3); see Section 3.
The need to use more realistic neutron star configurations is the
result of the knowledge of more complex nuclear equation of
state (EOS), structure, and stability conditions of both static and
rotating neutron stars, which were acquired in the intervening
years from the seminal work of Oppenheimer & Volkoff (1939).

We show the results for neutron stars in two cases of interest:
(1) configurations obtained under the traditional constraint of
local charge neutrality and (2) configurations subjected to the
constraint of global charge neutrality, in which the Coulomb
interactions are introduced. For the latter configurations, we
use our recent formulation of the neutron star theory for both
static and uniform rotations, following our previous works
(Belvedere et al. 2012, 2014). These new set of equations,
which we called Einstein–Maxwell–Thomas–Fermi (EMTF)
equations, accounts for the weak, strong, gravitational, and
electromagnetic interactions within the framework of general
relativity and relativistic nuclear mean-field theory.

We shall show that, independently, on the theoretical model,
different structure parameters as functions of the central density
and/or rotation frequency of the star give rise to quite different
quantitative estimates of the astrophysical observables with
respect to the use of fiducial parameters.

This work is organized as follows. In Section 2, we briefly
summarize the equations of equilibrium and resulting structure
from their integration of both static and uniformly rotating
neutron stars. We analyze, in Section 3, the estimates of the
magnetic field and radiation efficiency of the high-magnetic
field pulsars class. We summarize our conclusions in Section 4.

We use cgs units throughout the article unless otherwise
specified.

2. NEUTRON STAR STRUCTURE

We have recently shown (Rotondo et al. 2011b; Rueda et al.
2011; Belvedere et al. 2012) that, in the case of both static

and rotating neutron stars, the Tolman–Oppenheimer–Volkoff
(TOV) system of equations (Oppenheimer & Volkoff 1939;
Tolman 1939) is superseded by the Einstein–Maxwell system of
equations coupled with the general relativistic Thomas–Fermi
equations of equilibrium, giving rise to the what we have called
the EMTF equations. These new equations account for the weak,
strong, gravitational, and electromagnetic interactions within
the framework of general relativity and relativistic nuclear mean
field theory.

In the TOV-like approach, the condition of local charge neu-
trality is applied to each point of the configuration, while in the
EMTF equations the condition of global charge neutrality, is im-
posed. It was shown in (Rotondo et al. 2011b; Rueda et al. 2011)
that the approach based on local charge neutrality is inconsis-
tent with the equations of motion of the particles in the system.
Consequently, the general relativistic thermodynamic equilib-
rium of the star, first introduced by Klein (1949) in the case of a
self-gravitating one-component system of uncharged particles,
is not satisfied when local charge neutrality is applied to a multi-
component system with charged constituents. The equilibrium
is ensured by the constancy, along the whole configuration, of
the generalized electro-chemical particle potentials for all of the
species, what we denominated as the conservation of “Klein po-
tentials.” When finite temperatures are considered, the constancy
of the gravitationally redshifted temperature (Tolman 1930) has
to be also imposed (Rueda et al. 2011).

The weak interactions are introduced via the condition of β-
equilibrium. For the strong interactions, we follow the σ–ω–ρ
nuclear model within the relativistic mean field theory á la
Boguta & Bodmer (1977). The nuclear model is fixed by the
coupling constants and the masses of the three mesons. Here
we adopt the NL3 parameter set (Lalazissis et al. 1997): mσ =
508.194 MeV, mω = 782.501 MeV, mρ = 763.000 MeV, gσ =
10.2170, gω = 12.8680, gρ = 4.4740, plus two constants
that give the strength of the self-scalar interactions, g2 =
−10.4310 fm−1 and g3 = −28.8850.

The structure of the neutron star solution of the EMTF
equations of equilibrium leads to a new structure of the neu-
tron stars, which is markedly different from the traditional con-
figurations obtained through the TOV equations (see Figure 4
in Belvedere et al. 2012): from the supranuclear central den-
sity up to the nuclear density ρnuc ≈ 2.7 × 1014 g cm−3, we
find the neutron star core, which is composed of a degener-
ate gas of neutrons, protons, and electrons in β-equilibrium,
and is positively charged. The core is surrounded by an elec-
tron layer that is a few hundreds of Fermi thick, which
fully screens its charge. In this core-crust transition layer, the
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electric field reaches values as large as E ∼ (mπ/me)2Ec, where
Ec = m2

ec
3/(eh̄) ≈ 1.3 × 1016 Volt cm−1 is the critical field

for vacuum polarization. The e+e− pair creation is, however, in-
hibited by Pauli blocking (Ruffini et al. 2010). In this layer, the
particle densities decrease until the point where global charge
neutrality is reached and the crust is found. Consequently, the
core is matched to the crust via this interface at a density of
ρcrust � ρnuc. In the limit ρcrust → ρnuc, the thickness of the
transition layer, as well as the electric field inside of it, vanishes
and the solution approaches the one given by local charge neu-
trality (see Figures 3 and 5 in Belvedere et al. 2012). The crust
in its outer region ρ � ρdrip ≈ 4.3 × 1011 g cm−3 is composed
of white dwarf-like material (ions and electrons), following, for
instance, the BPS EOS (Baym et al. 1971b). In its inner region,
at densities of ρ > ρdrip, free neutrons are present and the EOS
follows the BBP description (Baym et al. 1971a). Configura-
tions with ρcrust > ρdrip possess both inner and outer crusts,
while in the cases with ρcrust � ρdrip the neutron stars have only
an outer crust. As shown by Belvedere et al. (2012), all of the
above new features lead to a new mass–radius relation of static
neutron stars.

The extension of the above formulation to the case of uniform
rotation has recently been achieved in (Belvedere et al. 2014)
within the Hartle formalism (Hartle 1967). It is worth noting
that the influence of the induced magnetic field owing to
the rotation of the charged core of the neutron star in the
globally neutral case is negligible as we will show in sub
Section 2.1. From the integration of the equations of equilibrium,
we computed in Belvedere et al. (2014), for different central
densities ρc and circular angular velocities Ω, the mass M, polar
Rp and equatorial Req radii, angular momentum J, eccentricity
ε, moment of inertia I, as well as quadrupole moment Q of the
configurations.

The angular momentum J of the star is given by

J = 1

6

c2

G
R4

(
dω̄

dr

)
r=R

, (7)

which is related to the angular velocity Ω by

Ω = ω̄(R) +
2G2

c5

J

R3
, (8)

where R is the total radius of the non-rotating star and ω̄(r) =
Ω − ω(r) is the angular velocity of the fluid relative to the local
inertial frame, with ω as the fluid angular velocity in the local
inertial frame.

The total mass of the configuration is

M = M0 + δM, δM = m0(R) +
G2

c7

J 2

R3
, (9)

where M0 is the mass of the non-rotating star and δM is the
contribution to the mass due to the rotation, while m0 is a
second order contribution to the mass related to the pressure
perturbation.

The moment of inertia can be computed from the relation

I = J

Ω
, (10)

which does not account for deviations from spherical symmetry
since within the Hartle formalism J is a first order function of Ω.
This is a good approximation since, owing to the high density

Figure 1. Total mass vs. total equatorial radius for the global (red) and
local (blue) charge neutrality cases. The dashed curves represent the static
configurations, while the solid lines are the uniformly rotating neutron stars.
The light red and light blue colored lines define the secular instability boundary
for the globally and locally neutral cases, respectively. The horizontal thin red
lines define the minimum mass in the globally neutral case. The dots refer to
the sequence of the constant period P = 10 s.

of neutron stars, most of the observed pulsars are accurately
described by a perturbed spherical geometry. This can be seen,
for instance, from the sequence of configurations with periods
of P = 10 s, shown in Figure 1, which practically overlap
the non-rotating mass–radius relation. The accuracy of the
approximation increases for stiffer EOS (see Benhar et al. 2005,
for details), as the ones given by σ–ω–ρ relativistic nuclear
mean field models.

In Figure 1, we show the mass–radius relation that results
from the integration of the EMTF equations for the equilib-
rium configurations of static and rotating neutron stars. The
dashed lines represent the non-rotating, (J = 0), sequences,
while the solid lines represent the corresponding maximally ro-
tating (Keplerian) sequences. The pink-red and light blue lines
represent the secular instability boundaries for the global and
local charge neutrality cases, respectively. The horizontal thin
red lines give the minimum masses for the static (solid line)
and rotating (dashed line) sequences for the global charge neu-
trality case. These minimum mass limits are the configurations
for which the gravitational binding energy vanishes, namely,
below this mass the neutron star is unbound. In the case of the
local charge neutrality case, no minimum mass was found (see
Belvedere et al. 2014 for further details).

2.1. Influence of the Rotationally Induced Magnetic Field

The interior electric field generates a magnetic field inside
the neutron star once it is put into rotation. For the sake
of clarity and without losing generality, we now give an
estimate of such an interior magnetic field by solving the
Maxwell equations in the flat Minkowski background. The
charge distribution in the core and in the core–crust transition
layer, therefore, rotates with constant angular velocity Ω around
the axis of symmetry. The magnetic field can be first written
in terms of the electromagnetic potential A as usual, i.e.,
B(r) = ∇ × A(r). The electromagnetic potential can then be
rewritten in terms of a new potential F(r) by A(r) = �/c2 ×
F(r), with F(r) = (4πε0)−1

∫
(r ′ρch(r ′)/(r ′r − r ′))d3r ′. For

a spherically symmetric charge distribution ρch(r), the potential
F can be taken as radial, i.e., F(r) = erF (r), being er the unit
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radial vector (Marsh 1982). The magnetic field is thus given by

B(r) = Br er + Bθ eθ , (11)

where

Br = 2ΩF

c2r
cos θ , Bθ = −2Ω

c2

[
F

r
+

r

2

d

dr

(
F

r

)]
sin θ ,

(12)
are, respectively, the radial and the angular component of the
magnetic field as θ , the angle between the r and z axes, and eθ

as the unit vector along θ .
Equations (11)–(12) can now be used to calculate the induced

magnetic field both in the core and the core–crust interface shell
surrounding it. Following Boshkayev et al. (2012), in order to
estimate the rotationally induced magnetic field, we describe
the core and the core–crust interface using a simplified model
based on previous works by Rotondo et al. (2011c, 2011a). The
distribution of Np protons, np, is assumed to be constant within
the core radius Rc = Δh̄/(mπc)N1/3

p , where Δ is a parameter
such that Δ ≈ 1 (Δ < 1) corresponds to nuclear (supranuclear)
densities when applied to ordinary nuclei, i.e., for Np/A ≈ 1/2,
A = Np+Nn, the total nucleon number, and Nn, the total number
of neutrons. The distribution of Ne = Np degenerate electrons,
ne, subjected to the equilibrium condition determined by the
constancy of their Fermi energy, EF

e = μe − mec
2 − eV =

constant, where μe = √
(cP F

e )2 + m2
ec

4 and V are the chemical
and Coulomb potentials, is computed self-consistently from
the electrostatic Poisson equation, ∇2V (r) = −4πe(np − ne),
with boundary conditions of global neutrality. The electron
number density is then given by ne = (P F

e )3/(3π2h̄3) =
(e2V 2 + 2mec

2eV )3/2/(3π2h̄3). The distribution of neutrons
is hence obtained from the constraint of the β equilibrium.
From the proton and electron densities, we obtain the charge
density distribution ρch = e(np − ne), which allows us to
compute the potential F, and finally the magnetic field from
Equations (11)–(12).

For a neutron star rotating with a period of P ≈ 10 s, we
obtain

Core :

{
Br ∼ |Bθ | ∼ 3 × 10−19Bc ,

Bcore =
√

B2
r + B2

θ ≈ 10−19Bc ; (13)

Shell :

{
Br ∼ 3 × 10−19Bc , |Bθ | ∼ 10−1Bc ,

Bshell =
√

B2
r + B2

θ ≈ 10−1Bc .
(14)

We can conclude from the above estimates that the magnetic
field in the core is small enough to safely neglect its effect
on the structure of the neutron star. We can also check the
possible effects on the shell’s structure. The magnetic, Coulomb,
rotational, and gravitational energy of the shell can be estimated,
respectively, as

Emag ≈ 0.446
πh̄2

α1/2mπc2

N
4/3
p

P 2
, (15)

Eel ≈ 0.195
π1/2mπc2

α1/2
N2/3

p , (16)

Erot ≈ 2
mnπh̄2

α1/2m2
πc2

N
4/3
p

P 2
, (17)

Eg ≈ −3
Gmπm2

nc

α1/2h̄
N1/3

p A , (18)

where we have used δRc ≈ h̄/(
√

αmπc) as the thickness of the
shell, mp, mn, and mπ are the neutron, proton, and pion masses,
respectively, and α is the fine structure constant. We, therefore,
obtain

Emag

|Eg| ≈ 0.15π

(
mPl

mn

)2 (
h̄

mπc

)2
Np/A

(cP )2

≈ 3.8 × 10−13, (19)

Eel

|Eg| ≈ 0.06π1/2

(
mPl

mn

)2
N

1/3
p

A
≈ 0.05, (20)

Erot

|Eg| ≈ 2π

3

(
mn

mπ

) (
mPl

mn

)2 (
h̄

mπc

)2
Np/A

(cP )2

≈ 1.2 × 10−11, (21)

where mPl = (h̄c/G)1/2 is the Planck’s mass, and we have used
a rotation period of P = 10 s, Np/A ≈ 1/50 and A = 1057 for
the numerical estimates.

We can see that both the rotational and magnetic energies
are negligible corrections to the shell’s energy for a rotation
period of P = 10 s, and are the main contributions owing to the
gravitational and the electrostatic energy.

It is clear that the above induced magnetic field in globally
neutral neutron stars cannot be an explanation in regards to the
observed surface magnetic fields in pulsars because the induced
magnetic field only exists in the interior up to the crust’s edge
where global neutrality is reached. Therefore, it does not emerge
up to the neutron star surface. The nature of the magnetic field
observed in pulsars represents a major issue in astrophysics and
it is not the objective of the present work to try to answer such a
question. The interior magnetic field in the neutron star can be
larger than the one observed in its surface; however, it is known
that the effects of the magnetic field on the properties of nuclear
matter at high supranuclear densities present in the cores of
neutron stars are expected to be appreciable only for extremely,
and likely unrealizable, huge values B � 1018 G (see, e.g.,
Strickland et al. 2012; Isayev & Yang 2012; Dong et al. 2013;
de Lima et al. 2013, and references therein). This implies that
magnetic fields lower than these values do not have appreciable
effects either on the nuclear EOS or on the structure parameters
of the neutron star (Bocquet et al. 1995; Broderick et al. 2000).
It becomes clear that the effect of the low value of the magnetic
field induced by electric field rotation in rotating globally neutral
neutron stars, and of the possible interior magnetic field, which
may be present in the star’s interior, can be safely neglected
in the computation of the structure parameters, validating the
treatment applied in this work. More importantly, as we show
in the following section, are the undeniablegeneral relativistic
effects that affect the radiation field near the surface of a rotating
magnetic-dipole, i.e., the neutron star, which can drastically
modify the estimate of the surface magnetic field.

3. INFERENCE OF A PULSAR’S PROPERTIES

We now turn to an analysis of the consequences of using
realistic general relativistic structure parameters on the inference
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of the magnetic field and the efficiency of a pulsar when
converting rotational energy into electromagnetic radiation. We
focus here on the high-magnetic field pulsar class (see Ng &
Kaspi 2011), but our general qualitative results apply to all
pulsars.

As we have already stressed, the simplified picture of a
point-like magnetic dipole has traditionally been applied as
a model for pulsars of any rotation period, assuming fiducial
values for the neutron star structure parameters. It is possible
identify four major corrections that might be introduced to the
model: (1) the existence of a plasma magnetosphere instead
of an electrovacuum; (2) the dependence on the properties
of the interior (EOS) by neutron star structure parameters
such as mass, radius, and moment of inertia, with respect
to the oversimplification lead by the use of fiducial values;
(3) the effects due to the relativistic fast rotation, as measured
by the fastness parameter, ΩR/c; (4) the corrections measured
by the compactness parameter GM/(c2R), introduced by the
finiteness of the mass and size of the star. We now discuss each
of these points.

The first correction depends upon the specific model of the
pulsar’s magnetosphere, which determines the electric potential
developed above the neutron star surface and is responsible for
the acceleration of particles, which form a wind that exerts a
torque on the pulsar. However, starting from the classic work
of Goldreich & Julian (1969), many competing models of the
pulsar’s magnetosphere have been proposed and they are still a
matter of debate in the literature. Therefore, we will not consider
this issue in the present work.

Concerning the second point, we have shown in Section 2 how
the structure parameters depend on both the neutron star theory
and the EOS. Nuclear fermion interactions strongly influence
the mass–radius relation (Lattimer & Prakash 2007, see, e.g.,),
and hence all of the derived pulsar parameters. Therefore,
different inferences of the magnetic field value can be obtained
as functions of the neutron star mass and nuclear EOS.

The generalization of Deutsch’s results in the case of rela-
tivistic rotation (Ω ∼ c/R) was obtained by Belinsky & Ruffini
(1992). The radiation power in this case was expressed via a
cumbersome integral that has to be solved numerically. The
only exception is represented by the analytic expressions in
the non-relativistic approximation, which leads to Deutsch’s
solution, and in the ultra-relativistic approximation when Ω ap-
proaches c/R. The Maxwell equations are still solved there in
flat Minkowski spacetime. This specific correction is expected
to be important for millisecond pulsars. However, for the pulsar
class discussed in this work, with rotation periods P ∼ 10 s
(hence, ΩR/c = 2πR/(cP ) ∼ 10−5), such a correction is neg-
ligible and the solution in the slow rotation regime is sufficiently
accurate.

We now focus on the fourth correction. The exact solution of
the exterior electromagnetic fields of a (slowly) rotating mag-
netic dipole aligned with the rotation axis in general relativity
was first found by Ginzburg & Ozernoi (1964, 1965), see, also,
Anderson & Cohen (1970). They solved the Einstein–Maxwell
equations in the Schwarzschild background. The generaliza-
tion to a general electromagnetic multipolar structure in a
Schwarzschild metric was found by Anderson & Cohen (1970).
The generalization of the Deutsch’s solution to the general rel-
ativistic case in the slow rotation regime, and for a general
misaligned dipole, was obtained in analytic form in the near
zone (r � c/Ω = 1/k = λ/2π ) by Rezzolla et al. (2001, 2003)
and, for the wave zone by Rezzolla & Ahmedov (2004). In the

Figure 2. Ratio of the magnetic field given by the Newtonian formula (3) and
the general relativistic ratio (25) to the fiducial value given by Equation (5).
Here we have used the realistic mass–radius relations of globally and locally
neutral static neutron stars of this work and an inclination angle χ = π/2.

latter, the radiation power of the dipole was computed as

P G.R.
dip = −2

3

μ2
⊥Ω4

c3

(
f

N2

)2

, (22)

where f and N are the general relativistic corrections

f = − 3

8

(
R

M0

)3 [
ln(N2) +

2M0

R

(
1 +

M0

R

)]
, (23)

N =
√

1 − 2M0

R
, (24)

where M0 is the mass of the non-rotating configurations. Now, by
equating the rotational energy loss to the above electromagnetic
radiation power, it is possible to obtain the formula of the surface
magnetic field analogous to Equation (3), but with general
relativistic corrections:

B sin χ = N2

f

(
3c3

8π2

I

R6
P Ṗ

)1/2

. (25)

In Figure 2, we have plotted the ratio of the magnetic
field obtained via the Newtonian formula (3) and the general
relativistic formula (25) to the fiducial value obtained with (5),
for the realistic mass–radius relations of globally and locally
neutral neutron stars used in this work.

We can see from this figure that, in the Newtonian case, the
inferred magnetic field increases with increasing neutron star
mass. Therefore, in such a case, the configurations of maximum
and minimum masses give us, respectively, upper and lower
limits to the magnetic field. It is worth noting how the general
relativistic formula gives us a magnetic field lower than the
Newtonian counterpart, for M/M� � 1.1 and M/M� � 1.2 for
the globally and locally neutral configurations, respectively. In
addition, we find a markedly different and interesting behavior.
First, the magnetic field is extremely close, at very low masses,
with the Newtonian value, as expected; then, it deviates and
reaches a maximum value for some value of the mass, and then
decreases for increasing masses. The magnetic field inferred
from globally and locally neutral configurations coincides for
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Figure 3. Magnetic field BG.R. obtained from the general relativistic magneto–dipole formula (25), in units of critical magnetic field Bc, as a function of the mass (in
solar masses) for static neutron stars in the global (left panel) and local (right panel) charge neutrality cases.

Figure 4. Ratio between the observed X-ray luminosity LX and the loss of rotational energy Ėrot vs. the total mass of the rotating neutron star, in units of M�. We use
the high-B pulsar from the work by Ng & Kaspi (2011) for which a magnetic field higher than the critical field Bc is inferred, once the fiducial value for the moment
of inertia I = 1045 g cm2 is taken into account (see Table 1). Pulsars with luminosity LX defined by an upper limit are labeled with “up,” for pulsars whose luminosity
LX is not well established we have assumed the existent lower limits (label “min”) and upper limits (label “max”). The values for the pulsar PSR J1846-0258 are
divided as prior to the 2006 outburst and after the 2006 outburst (label “A.O.”). Left plot: global charge neutrality. Right plot: local charge neutrality. The magnetic
fields shown are referred to the high-magnetic field pulsars of Table 1.

large masses close to the critical mass value, as should be
expected since in those massive configurations the structure
parameters are dominated by the neutron star core, with a very
small role from the crust. Here we are using the parameters of
the static configurations. This is a good approximation for this
family of pulsars since their rotation periods are far from the
millisecond region, where deviations from spherical symmetry
are expected. This can be seen in Figure 1, where the sequence
of the constant rotation period P = 10 s essentially overlaps the
static mass–radius relation.

In Figure 3, we plotted our theoretical prediction for magnetic
fields of the pulsars of Table 1 as a function of the neutron star
mass, using the general relativistic formula (25).

We find that, both in global and local neutrality case, the
assumed high-B pulsars have inferred magnetic fields lower than
the critical value for the entire range of neutron star masses.

Concerning the efficiency of pulsars in converting rotational
energy into electromagnetic radiation, we show in Figure 4 the
X-ray luminosity to rotation energy loss ratio, LX/Ėrot, as a
function of the neutron star mass, for both global and local
charge neutrality. For the sake of comparison, we also present
in Table 1 the ratio LX/Ė

f
rot, where Ė

f
rot is the rotational energy

loss as obtained from fiducial neutron star parameters given by
Equation (4).

We find that for both globally and locally neutral neutron stars,
we have LX < Ėrot: 1) in PSR J1718–3718 for M0 � 1.25 M�

and for the entire range of masses adopting, respectively, the
observational upper or lower limits on LX ; 2) in PSR J1814–1744
for M0 � 0.8 M� using the upper limit on LX; 3) for the rest of
the objects in the entire range of stable masses.

The only exceptions to the above result are PSR J1847–0130
and PSR J1819–1458, for which no range of masses with
LX < Ėrot were obtained. However, for PSR J1847–0130, we
have only an upper limit for LX , so there is still room for solutions
with LX < Ėrot if future observations lead to an observed
value lower than the present upper limit. In this line, the only
object with LX > Ėrot for any mass is PSR J1819–1458. For
this particular object, there is still the possibility of being a
rotation powered neutron star since the currently used value of
the distance to the source, 3.6 kpc, inferred from its dispersion
measure, is poorly accurate with a considerable uncertainty of
at least 25% (see McLaughlin et al. 2007, for details). Indeed, a
distance to the source 25% shorter than the above value would
imply LX < Ėrot for this object in the mass range M0 � 0.6 M�.

We notice that the efficiency obtained via fiducial parameters,
LX/Ė

f
rot, is larger than the actual value obtained with the realistic

neutron star structure in the entire range of stable masses; see
Table 1 and Figure 4.

It is also worth mentioning that the rotation energy loss (1)
depends on the neutron star structure only through the moment
of inertia, whose quantitative value can be different for different
nuclear EOS and/or owing to an improved value accounting for
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deviations from the spherical geometry, for instance, consider-
ing a third-order series expansion in Ω. However, the latter effect
is negligible for this specific case (P ≈ 4.3 s), see, for instance,
Figure 5 in Benhar et al. (2005), where no deviations of I from
its spherical value appear for such long rotation periods.

4. CONCLUDING REMARKS

We explored the consequences of a realistic model for neutron
stars on the inference of the astrophysical observables of pulsars.
We showed in particular the following.

1. The magnetic field is overestimated when fiducial param-
eters are adopted independently of the use of either the
Newtonian or the general relativistic radiation formula of
the rotating magnetic dipole; see Figure 2.

2. The use of the Newtonian formula (3) can overestimate
the surface magnetic field of up to one order of magni-
tude with respect to the general relativistic one given by
Equation (25). We applied these considerations to the spe-
cific case of the high-magnetic field pulsar class, for which
overcritical magnetic fields have been obtained in the litera-
ture with the use of fiducial neutron star parameters within
the Newtonian rotating magnetic dipole model, i.e., esti-
mating the magnetic field through Equation (5). We found
that, instead, the magnetic field inferred for these pulsars
turned out to be undercritical for any values of the neutron
star mass; see Figure 3.

3. The nontrivial dependence of the inferred magnetic field
on the neutron star mass, in addition to the dependence on
P and Ṗ , namely B = B(I (M0), R(M0), P , Ṗ ), leads to
the impossibility of accommodating the pulsars in a typical
Ṗ − P diagram together with a priori fixed values of the
magnetic field; see Figure 3.

4. We computed the range of neutron star masses for which
the X-ray luminosity of these pulsars can be well explained
via the loss of rotational energy of the neutron star and,
therefore, fall into the family of ordinary rotation-powered
pulsars. The only possible exceptions were found to be PSR
J1847–0130 and PSR J1819–1458, which, as we argued,
still present observational uncertainties in the determination
of their distances and/or luminosities that leave room for
a possible explanation in terms of spindown power. We
also showed that the efficiency of the pulsar, LX/Ėrot,
is overestimated if computed with neutron star fiducial
parameters.

5. We discussed the possible effects of different nuclear
models as well as the improved values of the moment
of inertia given by further expansion orders of the slow
rotation approximation or full numerical integration of the
equilibrium equations in the rotating case. However, the
former effect appears to be negligible for long rotation
periods, P ∼ 10 s, of the high-magnetic field pulsars (see,
e.g., Figure 5 in Benhar et al. 2005). We have also given
estimates of the magnetic field induced by rotation of the
interior charge distribution in neutron stars satisfying the
condition of global, but not local, charge neutrality. We
have shown that, for the case of these long rotational
periods, the effects of the magnetic field both in the core and
in the core-crust transition surface of these configurations
are, in first approximation, negligible.

It is worth noting that the validity of the results of this
work also very likely apply to different nuclear EOS, consistent
with the current observational constraints, as suggested by the

high value of the recently measured mass of PSR J0348+0432,
M = 2.01 ± 0.04 M� (Antoniadis et al. 2013). Such a high
value favors stiff nuclear EOS, as the one used here based on
relativistic nuclear mean field theory á la Boguta & Bodmer
(1977), which lead to a critical mass of the neutron star higher
than the above value.

It is a pleasure to thank K. Boshkayev for helpful discussions
on the simplified model to estimate the rotationally induced
magnetic field in the core and in the core–crust interface of the
neutron star. We thank the referee for very constructive com-
ments, which led to an improvement on the presentation of
our results. R.B. and J.A.R. acknowledge the support by the
International Cooperation Program CAPES-ICRANet financed
by CAPES–Brazilian Federal Agency for Support and Evalu-
ation of Graduate Education within the Ministry of Education
of Brazil.
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Abstract—We consider the kilohertz quasi-periodic oscillations of low-mass X-ray binaries within the
Hartle–Thorne spacetime. We show that the interpretation of the epicyclic frequencies of this spacetime
with the observed kilohertz quasi-periodic oscillations, within the Relativistic Precession Model, allows us
to extract the total mass M , angular momentum J , and quadrupole moment Q of the compact object in a
low-mass X-ray binary. We exemplify this fact by analyzing the data of the Z-source GX 5-1. We show that
the extracted multipole structure of the compact component of this source deviates from the one expected
from a Kerr black hole and instead it points to a neutron star explanation.

DOI: 10.1134/S1063772915060050

1. INTRODUCTION

It is believed that the quasi-periodic oscillations
(QPOs) data of the X-ray flux from low mass X-
ray binaries (LMXBs) may be used to test general
relativity (GR) in the strong field regime [1–4]. QPOs
appear in variabilities of several LMXBs including
those which contain a neutron star. A certain kind
of these oscillations, the so-called kilohertz (kHz)
(or high-frequency) QPOs, come often in pairs of
frequencies (traditionally called twin-peak QPOs),
fL (lower) and fU (upper), typically in the range
∼50−1300 Hz. This is of the same order as the range
of frequencies characteristic for orbital motion close
to a compact object. Accordingly, most kHz QPO
models involve orbital motion in the inner regions of
an accretion disk (see [5, 6]).

In order to explain the QPOs, various models
have been proposed. These are: (i) the Beat-frequency
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models, where one assumes that there is some beat-
ing of an orbital frequency by the spin frequency of
the central object, (ii) the relativistic precession mod-
els, where the QPOs are associated with the orbital
motion and the periastron or nodal precession of a
particular orbit, (iii) the relativistic resonance models,
where a type of resonance between the orbital and the
epicyclic frequencies is assumed wherever they have
simple integer ratios, and finally (iv) the preferred radii
models, where some mechanism chooses a particular
radius. These models generally assume the geodesic
or almost geodesic orbits of the fluid elements in
the accretion disc to be the source of the observed
frequencies (see, e.g., [5]), while there are also models
in which the frequencies are produced from oscilla-
tory modes of the entire disc (see, e.g., [7]). In one
way or another all of these models use the properties
of the orbits around the compact object onto which
the accretion takes place. In our discussion we will
refer to the models that assume that the QPOs are
caused by the frequencies associated with the orbital
motion of the material in the accretion disc such as
the relativistic precession models (RPM) (see [2, 8]).

The RPM has been proposed in a series of pa-
pers [1, 2, 4]. It explains the kHz QPOs as a direct
manifestation of modes of relativistic epicyclic motion
of blobs arising at various radii r in the inner parts
of the accretion disk. The model identifies the lower,
fL, and upper, fU , kHz QPOs with the periastron
precession fper and Keplerian fK frequency.
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In the past years, the RPM has been considered
among the candidates for explaining the twin-peak
QPOs in several LMXBs and related constraints on
the sources have been discussed (see, e.g., [6, 9–
13]). While some of the early works discuss these
constraints in terms of both neutron star mass and
spin and include also the neutron star oblateness [3,
14], most of the published implications for individual
sources focus on the neutron star mass and neglect
its rotation and deformation.

In this work, we consider rotating spacetimes
that comprehend the effects of frame-dragging and
quadrupole moment of the source and fit directly the
correlation between the twin-peak QPO frequencies.
Since the angular momentum of the source is in a
non-trivial way related to its quadrupole moment,
they should be considered together. We shall show
below that, indeed, a statistically preferred fit is
obtained for the case of three parameters: mass (M ),
angular momentum (J) and quadrupole moment (Q)
with respect to an analysis using only M and J [16].

The importance of the quadrupole moment has
been emphasized in several works [8, 17–21]. It is
known that the quadrupole moment of realistic neu-
tron stars deviates from the Kerr quadrupole moment
(see, e.g., [22], and more recently [23]). This fact
allows one to distinguish black holes from neutron
stars. We shall extract the multipole moments (M ,
J , Q) of the Z-source GX 5-1 and show that its
quadrupole deformation parameter Q deviates from
the value expected from a Kerr black hole. Indeed, we
will show that the values (M , J , Q) point to a neutron
star nature of the compact component of this LMXB.

2. THE HARTLE–THORNE METRIC

The Hartle–Thorne metric [18, 25] describing the
exterior field of a slowly rotating slightly deformed
object is given by

ds2 = −
(

1 − 2M

r

)[
1 + 2k1P2(cos θ) (1)

+ 2

(
1 − 2M

r

)−1 J2

r4
(2 cos2 θ − 1)

]
dt2

+

(
1 − 2M

r

)−1
[
1 − 2k2P2(cos θ)

− 2

(
1 − 2M

r

)−1 J2

r4

]
dr2

+ r2[1 − 2k3P2(cos θ)]

× (dθ2 + sin2 θdφ2) − 4
J

r
sin2 θdtdφ,

where functions k1, k2, and k3 are defined as follows

k1 =
J2

Mr3

(
1 +

M

r

)

− 5

8

Q − J2/M

M3
Q2

2

( r

M
− 1

)
,

k2 = k1 − 6J2

r4
,

k3 = k1 +
J2

r4
− 5

4

Q − J2/M

M2r

×
(

1 − 2M
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)−1/2

Q1
2

( r

M
− 1

)
,

and polynomials are given by

P2(x) =
1

2
(3x2 − 1),

Q1
2(x) = (x2 − 1)1/2

[
3x

2
ln

x + 1

x − 1
− 3x2 − 2

x2 − 1

]
,

Q2
2(x) = (x2 − 1)

[
3

2
ln

x + 1

x − 1
− 3x3 − 5x

(x2 − 1)2

]
.

Here, P2(x) is Legendre polynomials of the first kind,
Qm

l are the associated Legendre polynomials of the
second kind and constants M , J , and Q are the
total mass, angular momentum and quadrupole pa-
rameter of a rotating star respectively. The Hartle–
Thorne metric is an approximate solution of vacuum
Einstein field equations that describes the exterior of
any slowly and rigidly rotating, stationary and axially
symmetric body. The metric is given with accuracy
up to the second order terms in the body’s angular
momentum, and first order in its quadrupole mo-
ment. The approximate Kerr metric [24] in the Boyer–
Lindquist coordinates (t, R, Θ, φ) up to second order
terms in the rotation parameter a can be obtained
from (1) by setting1

J = −Ma, Q = J2/M, (2)

and making a coordinate transformation given by

r = R +
a2

2R

[ (
1 +

2M

R

) (
1 − M

R

)
(3)

− cos2 Θ

(
1 − 2M

R

)(
1 +

3M

R

)]
,

θ = Θ +
a2

2R2

(
1 +

2M

R

)
sin Θ cos Θ.

1 We note here that the quadrupole moment Q in this work is
related to the mass quadrupole moment defined by Hartle and
Thorne [25] through Q = 2J2/M − QHT .
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Fig. 1. The radial frequency fr is plotted versus the upper frequency fU for the Schwarzschild spacetime (j = 0, q = 0). From
top to bottom M = [1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4]M� .

3. DETERMINATION OF THE MASS,
ANGULAR MOMENTUM

AND QUADRUPOLE MOMENT

Spacetimes around rotating neutron stars can be
with a high precision approximated by the three para-
metric Hartle–Thorne (HT) solution of Einstein field
equations ([25]; see [26]). The solution considers the
mass M , angular momentum J and quadrupole mo-
ment Q (supposed to reflect the rotationally induced
oblateness of the star). It is known that in most situa-
tions modeled with the present neutron star equations
of state (EoS) the neutron star external geometry
is very different from the Kerr geometry (represent-
ing the limit of HT geometry for q̃ ≡ QM/J2 → 1).
However, the situation changes when the neutron
star mass approaches maximum for a given EoS. For
high masses the quadrupole moment does not induce
large differences from the Kerr geometry since q̃ takes
values close to unity. Nevertheless this does not mean
that one can easily neglect the quadrupole moment.
For this reason in this work we extend the analyses
of [2] involving the Hartle–Thorne solution.

Usually in the literature the QPOs data are given
by the following frequencies

fφ = ωK/(2π), fr = ωr/(2π), (4)

fθ = ωθ/(2π),

where fφ = fK = fU is the azimuthal (Keplerian,
upper) frequency, fr is the radial frequency, and fθ

is the polar (vertical) frequency. In Fig. 1 the radial
frequency fr is plotted versus the upper (Keplerian)
frequency fU in the Schwarzschild spacetime, where
j = J/M2 and q = Q/M3 are the dimensionless
angular momentum and quadrupole parameter. The
smaller mass the higher radial frequency fr. Note for
(j = 0, q = 0), the Keplerian frequency fK coincides
with the vertical frequency fθ [27]. The Keplerian
frequency fφ versus the periastron frequency fper =
fφ − fr is shown in Fig. 2. The observational data-
points in the Figs. 1, 2 belong to Atoll (4U0614+091,
4U1608-52, 4U1636-536, 4U1728-34, 4U1735-44)
and Z (GX 5-1, GX 17+2, GX 340+0, Sco X-1,
Cir X-1) sources. For the sake of clarity the error bars
have been omitted. The QPOs data have been taken
from [28–31] and references therein. The results for
different frequencies with various combinations of
mass, angular momentum and quadrupole moment
are given in [27].

In this work we used the minimum set of pa-
rameters such as the total mass M , dimensionless
angular momentum j and quadrupole parameter q
of the source. Unfortunately, from the observations
it is hard to obtain precise values of the masses of
the LMXBs. Different references show contradicting
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numbers. For example, Sco X-1 is a well-known X-
ray binary system classified as a low-mass X-ray
binary; the neutron star is roughly 1.4 M�, while
the donor star is only 0.42 M� [32]. However, refer-
ences [2, 33] and [34] present various values for the
neutron star mass.

In Fig. 3 we show best fits for the upper fre-
quency versus the lower frequency for the Z source
GX 5-1. Here we see that the fit with all three param-
eters is better than the fit with the only one param-
eter, the mass M . Statistical test χ2 = 0.998 for the
three parameter fit and χ2 = 0.993 for the one param-
eter fit.

The Keplerian angular velocity (angular frequ-
ency) ωK for co-rotating geodesics at the equa-
torial plane in the Hartle–Thorne spacetime [35]
is given by

ω2
K(u) = ω2

K0(u) (5)

×
[
1 − jF1(u) + j2F2(u) + qF3(u)

]
,

where u = M/r. The rest functions are defined as
follows

ω2
K0(u) = u3/M2, F1(u) = 2u3/2,

F2(u) =
48u7 − 80u6 + 12u5 + 26u4 − 40u3 − 10u2 − 15u + 15

8u2(1 − 2u)
− F (u),

F3(u) = −5(6u4 − 8u3 − 2u2 − 3u + 3)

8u2(1 − 2u)
+ F (u),

F (u) =
15(1 − 2u3)

16u3
ln

(
1

1 − 2u

)
.

In terms of the Keplerian angular velocity we can
estimate for GX 5-1 the internal and external radii
of the accretion disk. We consider co-rotating or-
bits. The highest value of the upper frequency deter-
mines the internal and the lowest value determines
the external radii for a given set of parameters M =
1.98 M�, j = 0.55, and q = −2.04. As a result fU =
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Fig. 3. The upper frequency fU is plotted versus the lower frequency fL for the Z source GX 5-1. The dashed green line
corresponds to the static case and the solid red line corresponds to the rotating case.

866 Hz yields r ≈ 21 km, and fU = 478 Hz, yields
r ≈ 31 km.

The radius determining the marginally stable cir-
cular geodesic rms at equatorial plane is given by

rms = 6M

[
1 − 2

3

√
2

3
j

−
(

251 903

2592
− 240 ln

3

2

)
j2

+

(
9325

96
− 240 ln

3

2

)
q

]
.

It is clear that the presence of both the rotation and
quadrupole parameters can increase or decrease the
values for rms [21]. For our parameters M = 1.98 M�,
j = 0.55, and q = −2.04 the radius of the marginally
stable orbits equals rms = 19.3 km which is very near
to the inner part of the accretion disk.

4. CONCLUSION

In this work with the help of the epicyclic frequen-
cies of test particles in the Hartle–Thorne spacetime
and the relativistic precession model we have inter-
preted the quasi-periodic oscillations of the low-mass

X-ray binaries. We have constructed the dependence
of the higher frequencies with respect to the lower
frequencies varying the main parameters of the cen-
tral compact object such as the mass, angular mo-
mentum and quadrupole moment. Eventually for Z
source GX 5-1 we have performed the fitting analyses
and found the best fit to estimate the mass, angular
momentum and quadrupole moment. We have shown
that the three parameter fit is better than one-two
parameter fit. We have also estimated for GX 5-1
the internal and external radii of the accretion disk
around the compact object. The fact that q �= j2 al-
lows us to state that GX 5-1 is a neutron star rather
than a black hole. Moreover we calculated the ra-
dius of the marginally stable co-rotating orbits at
the equatorial plane. For better analyses one needs
to consider more sources with refined data. It would
be interesting to perform further calculations assign-
ing the neutron star equation of state and construct
mass-radius, mass-angular momentum, and angu-
lar velocity-quadrupole moment relations in order to
compare and contrast the theory with observations.
This will be the issue of future investigations.
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3 Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
4 ICRANet, P.zza della Repubblica 10, 65122 Pescara, Italy
5 ICRANet-Rio, Centro Brasileiro de Pesquisas Fsicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180, Brazil
6 Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto
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The role of many-body correlations (many-body forces) and K−-K̄0 condensation in β-equilibrated hyperonic matter is
investigated in order to shed some light in the hyperonization puzzle, ie that neutron star mass of 2M� cannot be obtained
in the presence of exotic degree of freedoms. In this investigation, we use an effective relativistic QHD-model with pa-
rameterized couplings which represents an extended compilation of other effective models found in the literature. Our
theoretical approach exhausts the whole fundamental baryon octet (n, p, Σ−, Σ0, Σ+, Λ, Ξ−, Ξ0) and simulates n-order
corrections to the minimal Yukawa couplings by considering many-body nonlinear self-couplings and meson-meson in-
teraction terms involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, φ), vector-isovector (�), and scalar-isovector (δ)
sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ− experiences
such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. We study the effects of
this exclusion on the phase transition of conventional exotic hadronic matter to hadronic matter containing a condensate
of kaons and anti-kaons. As a novelty in the treatment of kaon and anti-kaon condensation in high density nuclear matter,
we consider a Lagrangian formulation which describes, in addition to the interaction involving baryons and mesons and
the contribution of kaons and anti-kaons in free propagation, the presence of many-body forces involving kaon, anti-kaon
and meson fields. To implement the corresponding phase transition we considered the Gibbs conditions combined with the
mean-field approximation, giving rise to a mixed phase of coexistence between baryon matter and the condensed of kaons
and anti-kaons. Our investigation show that even with kaon condensation, the nuclear equation of state satisfies both the
maximum mass and the allowed ranges of mass and radius of neutron stars.

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In effective nuclear field theory, neutron stars are treated
as macroscopic portions of asymmetric and infinite nu-
clear matter, an idealized conception of many interacting
baryon systems (containing about 1058 baryons). It is as-
sumed that neutron stars are composed of nucleons and pos-
sibly hyperon and lepton fields, moving in a condensate
of mesons, photons and neutrinos (and their antiparticles).
Maybe present in this context are more complex phenom-
ena such as superfluidity, kaon and pion condensation, and
a phase transition from hadronic matter to a quark-gluon
plasma (QGP) (Glendenning 1997). The study of nuclear

� Corresponding author: cesarzen@cesarzen.com

matter at densities higher than those found in ordinary nu-
clear matter has various interests, in especial regarding to
the possibility of allowing a better understanding of the dif-
ferent properties of a neutron star.

Matter density in the core of a neutron star can exceed
tens of times the density of nuclear matter under normal
conditions. However, our knowledge of the properties of
dense nuclear matter is very much determined by the knowl-
edge we have of these properties at a single point in the
phase space diagram covered by the entire range of nuclear
densities experimentally determined, ie the saturation den-
sity, which represents the density point of nuclear matter
under normal conditions that nucleons in a nucleus senses
approximately a constant number of neighbors.

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Indeed, all empirical values of the various bulk proper-
ties of symmetric nuclear matter, essential inputs for the ef-
fective understanding of the structure and evolution of neu-
tron stars, ie, the binding energy, the mass and radius, the
surface and volume energy, the bulk symmetry energy, and
the compressibility module are only experimentally deter-
mined at this density point. Models in turn, starting from
the knowledge of these properties at the saturation density
of nuclear matter allow a controlled extrapolation of those
properties to the regime of high densities and highly asym-
metric nuclear matter.

Since the seminal work of W. Baade and F. Zwicky
(1934) proposing for the first time the existence of neutron
stars, and suggesting that these stars are formed in a super-
nova explosion which results from the gravitational collapse
of an ordinary star, the standard theoretical procedure to find
the macroscopic properties of a neutron star is by determin-
ing the equation of state of nuclear matter, a type of para-
metric equation that relates the internal energy density of
the star with its internal pressure. It has been reported in the
last years in the literature a wide spectrum of different equa-
tions of state of nuclear matter at different densities with ap-
plications to astrophysical problems. The knowledge of the
equation of state (EoS) of nuclear matter at high densities in
particular, such as those found in neutron stars and pulsars,
is still an open problem that combines the understanding of
the role of underlying physical principles and experimen-
tal and observational verifications1 placing this way strong
constraints on the interior composition of neutron stars2.

The understanding of some basic aspects of the struc-
ture of the core of a neutron star, at the regime densities of
the order of 1014 g cm−3, – the starting point for the theoret-
ical treatment adopted in this work –, demands going back
to the original perception of Baade & Zwicky (1934) that
a neutron star would be an uniform assembly of extremely
closed packed neutrons. A more accurate understanding of
the significance of this perception can be obtained by ana-
lyzing, in the non-relativistic regime, the Bethe-Weizsäcker

1 We mean, experiments mainly aimed to the understanding of the dy-
namics of heavy ion collisions and to shed some light on the equation of
state of nuclear matter at low density and high temperature and to the struc-
ture of nuclei far from stability. Observations related to neutron stars are
performed mainly by the X-ray telescopes Chandra, ESA’s XMM-Newton,
and NASA’s Rossi X-ray Timing Explorer (RXTE) providing the most re-
liable determinations yet of the relation between the radius of a neutron
star and its mass. See for instance www.nasa.gov.

2 Given an EoS that describes the structure of a neutron star, A, with
higher internal pressure than another, B, endowed with a higher internal
pressure, the star A can withstand a greater gravitational compression than
star B and so the first must have a greater mass than the second, since the
intensity of the gravitational force is directly related to the stellar mass,
although in general relativity pressure is also a mass supply. The EoS of A
is said to be more rigid or stiffer than the Eos of B and, conversely, the EoS
of B is said to be softer than the EoS of A. Observations of the magnitudes
of the stellar mass and radius (mass-radius relation), establish this way
strong restrictions on the various possible equations of state existing in the
literature. If the radius-mass ratio of a neutron star is determined accurately
enough, one can bi-univocally determine the equation of state of that star.

semi-empirical formula3

B(Z,N) = aV A − aS A2/3 − aCZ(Z − 1)A−1/3

− aA(Z − N)2A−1 − δ(Z,N) , (1)

From this expression it results that nuclear states with equal
number of neutrons and protons N = Z, ie with total i-spin
equal to zero (

∑A
k=1 T i−spin

k = 0), have a higher stability than

states with N � Z (
∑A

k=1 T i−spin
k � 0) since they maximize

the nuclear binding energy4, ie unequal numbers of neutrons
and protons imply filling higher energy levels for one type
of particle, while leaving lower energy levels vacant for the
other type. According to this formula, the bulk symmetry
energy is defined as the difference between the energy per
particle for pure neutron matter (Z → 0; A → N) and that of
symmetric nuclear matter (N = Z) at normal nuclear den-
sity. Its empirical value lies in the range 30–40 MeV (Lat-
timer & Prakash 2001).

An important aspect of the phenomenology of nuclear
physics is that the core density is approximately constant
within a nucleus. Thus, the core volume increases with the
increasing of the number of nucleons in such a way as to
maintain a constant density, behaving this way similarly to
an incompressible fluid of constant density. On the other
hand, the approximate constancy of nuclear density implies
that no physical state within a nucleus is energetically more
favorable than another5. In the limit A → ∞, the bulk sym-
metry energy controls the Fermi momenta of baryons, as
well as particle fractions and the equation of state of dense
matter.

2 The hyperonization puzzle in neutron star
models

A few steps further this simple description, in the realm of
more realistic models for the strong interaction at high den-
sities and according to experimental data (see, for instance,
Nagae 2010), the appearance of exotic particles, ie hyper-
ons and/or a condensed of kaons and anti-kaons, may oc-
cur at densities (5–8)×1014 g cm−3. However, the so called

3 This formula, based partly on the theory of the liquid drop model pro-
posed by George Gamow (1928), and partly on empirical measurements,
describes in an approximated way the nuclear binding energy B(Z,N) of a
nucleus with N neutrons, Z protons and nuclear number A = N + Z. The
free parameters in the formula, to be determined phenomenologically are:
aV, volume term; aS, surface term; aC, Coulombian term; aA, asymmetry
term and δ, pairing term. This expression represents the original theoretical
formulation for the definition of nuclear matter in the limit A →∞.

4 Roughly speaking in terms only of the nuclear force which is inde-
pendent of electric charge. In a neutron star it is assumed the presence of
leptons and mesons with negative electric charge to assure a electrically
neutral system.

5 Consequently, the nuclear potential should be approximately constant
within the core. This result justifies as a primarily approximation for the
description of a nuclear system, the use of the Fermi gas model of free
particles. The term free here should be taken carefully since baryons are
subject to the Pauli exclusion principle which manifests itself by the pres-
ence of a quantum degeneracy pressure. Assuming an uniform static spher-
ical neutron star, the neutron degeneracy pressure may be of the order
P ∼ 3 × 1033Pa

www.an-journal.org c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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hyperonization process softens the EoS of neutron stars6

and the maximal allowable mass should be reduced consid-
erably as pointed out (Glendenning & Moszkowski 1991;
Glendenning & Schaffner-Bielich 1998; Vidana et al. 2000;
Schaffner-Bielich 2008; Schulze & Rijken 2011), affecting
this way the theoretical achievement of neutron star masses
of the order or larger than 2 M� (see Demorest et al. 2010;
Antoniadis et al. 2013). These results give rise to the so
called hyperonization puzzle: how to reproduce the observed
masses of neutron stars while taking into account in the
equation of state of nuclear matter the presence of hyper-
ons and kaon and anti-kaon condensation?7

3 On the maximum mass of neutron stars

In 2010, Paul Demorest and colleagues (Demorest et al.
2010), using Shapiro delay measurements, found for the
mass of the millisecond pulsar PSR J16142230 the value
1.97 ± 0.04 M�, substantially higher than any previously
measured neutron star mass. More recently, in 2013, John
Antoniadis and colleagues (Antoniadis et al. 2013) mea-
sured the mass of the millisecond pulsar PSR J0348+0432
to be 2.01 ± 0.04 M�, through spectroscopy observations.
In addition, there has been historically a recurring discus-
sion about the upper bound limits of neutron star masses,
as for instance Rhoades & Ruffini (1974) who found
Mmax ≤ 3.2 M�, Kalogera & Baym (1996) who found
Mmax ≤ 2.9 M�, and more recently Lawrence et al. (2015)
who found the limit Mmax ≤ 2.2 M�. Regardless the uncer-
tainties on those predictions, the hyperonization puzzle is
still a very current topic.

In the search for a relativistic formulation, consistent
with these observations, recently we have shown, using a
theoretical framework which simulates n-order corrections
to the minimal Yukawa couplings, that many-body corre-
lations may shield the attractive and the repulsive parts of
the strong interaction and may increase the effective mass
of baryons in nuclear matter8 (Vasconcellos et al. 2015).

There is another important effect to be considered in our
formulation, the presence of hyperons. Our predictions for
the particle population show that the threshold equation for
a given species (Glendenning 1996) is also affected by the
presence of many-body correlations. Moreover, following

6 The Pauli exclusion principle does not manifest between nucleons and
hyperons thus causing a decrease in the internal quantum degeneracy pres-
sure in neutron stars. And thereby making it more difficult for nuclear mod-
els containing hyperons to describe stars with masses of the order of 2 M�

as recently observed (Demorest et al. 2010; Antoniadis et al. 2013).
7 Theoretical studies (Kaplan & Nelson 1986) indicate the presence of

optical repulsive potentials for the SU(2) doublet (K+, K0) (strangeness
+1). Therefore in this study we only consider in the star the presence of
condensates of the doublet (K−, K̄0) (strangeness −1).

8 When many-body correlations shield the attractive part of the strong
interaction, they intensify the corresponding repulsive part, favoring in this
way the stiffening of the EoS. On the other hand, when the effective masses
of baryons increase as the shielding of the attractive part of the strong inter-
action increases, this effect also favors the growth of the internal pressure
of the system and the stiffening of the EoS.

experimental results (Bednarek, Keska & Manka 2003), we
have considered in our previous calculations the extreme
case where the Σ− experiences such a strong repulsion that it
does not appear at all in nuclear matter for densities as those
found in neutron stars causing however, due to many-body
correlations the increase on the population of the remaining
hyperons beyond the Σ−. The first hyperon species that ap-
pears is the Λ: free of isospin-dependent forces, as the den-
sity increases, the Λ hyperon continues to accumulate until
short-range repulsion forces cause them to saturate. Other
hyperon species follow at higher densities.

Our model originates moreover an anti-correlation be-
tween the amount of hyperons: for certain values of the pa-
rameters, an anti-correlation associated with the predomi-
nance of the scalar part occurs. This mean that hyperon de-
grees of freedom become more numerous to the extent that
the attractive sector is favored in comparison with the repul-
sive part, thus favoring smaller neutron star masses. How-
ever, the absence of the Σ− hyperon reduces this effect.

When considering simultaneously both shielding effects
involving the attractive and repulsive contributions of the
strong interaction, our results indicate that the combination
of these effects previously reported favors the stiffening of
the EoS. In other words, the shielding of the attractive part
of the strong interaction combined with the increase of the
effective mass of baryons and the absence of the Σ− hy-
peron, are dominant when compared with those effects fa-
voring the softening of the EoS, i.e., the shielding of the
repulsive part of the strong interaction and the increase on
the population of the remaining hyperons beyond the Σ−.

The hypothesis of or present work is that the effects
aforementioned may therefore be the key argument to allow
the nuclear equation of state to satisfy both the maximum
mass and the allowed ranges of mass and radius of neutron
stars even in the presence of exotic degrees of freedom, ie
hyperons as well as kaon and anti-kaon condensation.

Table 1 Properties of the fields considered in the formu-
lation (3). In what follows, we use the abbreviations: ISS:
isoscalar-scalar; IVS: isovector-scalar; ISV: isoscalar-vector; IVV:
isovector-vector, and Φ = σ,σ∗, ω, �, δ, φ.

Fields Classification Particles Coupling Mass
Constants (MeV)

ψB Baryons N, Λ, N/A 939, 1116
Σ, Ξ 1193, 1318

ψl Leptons e−, μ− N/A 0.5, 106

σ ISS-meson σ g∗σB 550
δ IVS-meson a0 g∗δB 980
ωμ ISV-meson ω g∗ωB 782
�μ IVV-meson ρ g∗�B 770
σ∗ ISS-meson f0 g∗σB 975
φμ ISV-meson φ g∗φB 1020
ψK− Kaon K− g∗

ΦK− 494
ψK̄0 Anti-kaon K̄0 g∗

ΦK̄0 498

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org



Astron. Nachr. /AN 336, No. 8/9 (2015) 883

4 Lagrangian density and Gibbs phase
transition

4.1 Baryon phase

The Lagrangian density for the baryon phase in the mean
field approximation, Lξςκη (see Vasconcellos et al. 2015)
reads

Lξςκη =
1
2

m2
σσ

2
0 +

1
2

m2
σ∗σ

∗2
0 +

1
2

m2
ωω

2
0 +

1
2

m2
φφ

2
0 (2)

+
1
2

m2
ρ�

2
03 +

1
2

m2
δδ

2
3 +
∑

l

ψ̄l (iγμ∂
μ − ml)ψl

+
∑

B

ψ̄B

(
iγμ∂

μ − gωBm∗
Bξγ0ω0 − M∗

Bς

)
ψB

−
∑

B

ψ̄B

(1
2
g�Bm∗

Bκγ0τ
(3)�03+gφBm∗

Bηγ0φ0

)
ψB .

In this expression, the effective parameterized baryon-
meson coupling constants are defined as g∗ωBξ = gωBm∗

Bξ;
g∗
�Bκ = g�Bm∗

Bκ; and g∗
φBη = gφBm∗

Bη, with

m∗
Bα ≡

⎛⎜⎜⎜⎜⎝1 + gσBσ + gσ∗Bσ
∗ + 1

2gδBτ · δ

αMB

⎞⎟⎟⎟⎟⎠
−α

; (3)

(α = ξ, κ, η, ς) (Vasconcellos et al. 2015), the effective
baryon mass is defined in turn as M∗

Bς = MBm∗
Bς. Properties

of the fields considered in our formulation are presented in
Table 1. For certain values of the parameters of the model
(ξ, κ, η, ς), the treatment adopted in this work reproduces
the same predictions for global properties of neutron stars
as most of the models based on Yukawa-type couplings in-
volving the σ, ω, and � mesons. For other choices of the
space of parameters, dictated by basic physical principles
and the phenomenology, our approach allows the descrip-
tion of the effects of many-body forces and self-correlations
of higher orders involving the extended Yukawa sector of
the strong interaction. In this case a new physics for neutron
star may become feasible. This is basically the motto of our
investigation.

4.2 Mixed phase - BK̄0K−

In the mixed phase, we consider a theoretical approach
which combines the previous effective relativistic La-
grangian density QHD-model for the baryon phase (3) with,
as a novelty in the treatment of kaon and anti-kaon con-
densation in high density nuclear matter, a Lagrangian den-
sity LK which describes the free propagation of kaons and
many-body interaction forces involving kaons, anti-kaons
and meson fields. The Lagrangian density for the free prop-
agation of kaons and anti-kaons and with self-energy inser-
tions reads
LK =

∑
K

(
∂μψ̄K∂

μψK − ψ̄K M2
KΣ

s 2
Kι (σ, σ

∗, δ)ψK

)

+
∑

K

ψ̄K

(
γμΣ

μ

K ζ(σ, σ
∗, δ, ω)γμΣμK ζ(σ, σ

∗, δ, ω)

+ γμτK ·Σ
μ

Kυ(σ, σ
∗, δ, �)γμτK ·ΣμKυ(σ, σ∗, δ, �)

+ γμΣ
μ

Kβ(σ, σ
∗, δ, φ)γμΣμKβ(σ, σ∗, δ, φ)

)
ψK . (4)

From this expression, we can identify the following self-
energy insertions:

Σ
μ

K ζ(σ,σ
∗, δ, ω) = g∗ωKζω

μ; ΣμKυ(σ, σ
∗, δ, �) =

1
2
g∗�Kυ�

μ,

Σ
μ

Kβ(σ, σ
∗, δ, φ) = g∗φKβφ

μ; Σs
Kι(σ,σ

∗, δ) = MKΣ
s
Kι , (5)

with the mass of kaons and anti-kaons defined as

MKΣ
s
Kι =M∗

Kι

=MK

(
1 +
gσKσ + gσ∗Kσ

∗ + gδKτK · δ

ιMK

)−ι
. (6)

In the mean field approximation the complete Lagrangian
density for the mixed Phase - BK̄0K− is

Lξςκηιζυβ =
1
2

m2
σσ

2
0 +

1
2

m2
σ∗σ

∗2
0 +

1
2

m2
ωω

2
0 +

1
2
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φφ

2
0

+
1
2

m2
ρ�

2
03 +

1
2

m2
δδ

2
3 +
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l

ψ̄l (iγμ∂μ − ml)ψl

+
∑

B

ψ̄B

(
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Bξγ0ω0 − M∗

Bς

−
1
2
g�Bm∗

Bκγ0τ
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)
ψB

+
∑
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(
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μ − ψ̄K

{
M∗ 2

Kι + gφKm∗
Kιφ

2
0

})
ψK
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∑

K

ψ̄K
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ωKm∗ 2

Kζω
2
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2
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2
03
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ψK ,

with

m∗
Ψχ=MΨ

(
1 +
gσKσ0 + gσ∗Kσ

∗
0 + gδKτK3δ3

χMΨ

)−χ
; (7)

in this expression Ψ = (B,K) and χ = (ξ, κ, η, ς, ι, ζ, υ).

4.3 Coupling constants

In the following, the values of the sets of parameters (ξ, κ,
η, ς, ι, ζ, υ) have been chosen to allow the model to re-
produce nuclear properties at saturation, like for example
the compressibility modulus of nuclear matter smaller than
300 MeV. We assume for the saturation density of nuclear
matter ρ0 = 0.17 fm−3 and for the binding energy of nu-
clear matter εB = −16.0 MeV. The isovector coupling con-
stant g� is constrained to the symmetry energy coefficient
aasym = 32.5 MeV (Haensel et al. 2007). The values of the
coupling constants are shown in Table 2.

Table 2 Coupling constants in our model. The coupling con-
stants involving nucleons and δ meson are gδN = 3.1 and gσK =

3.325.

Model gσN gωN gρN

ς = 0.044 9.893 10.719 8.657
ς = 0.05 9.782 10.477 8.721
ς = 0.06 9.600 10.103 8.813
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Table 3 Equilibrium properties for nuclear matter: ρc is the
baryon density in the star center, K is the compressibility modulus
and M�max is the maximum neutron star mass.

Model M∗
N/MN K M�max R� ρc/ρ0

(MeV) (M�) (km)

ς = 0.044 0.66 297 2.43 11.67 4.21
ς = 0.05 0.68 281 2.38 11.50 4.36
ς = 0.06 0.70 262 2.31 11.16 4.68
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5 Conclusions

The results of our study confirm the hypothesis assumed
in the present work, ie, that shielding effects involving at-
tractive and repulsive contributions of many-body forces in
nuclear matter, combined with the increase of the effective
mass of baryons, – due to many-body scalar field correla-
tions – , and the absence of the Σ− hyperon, are dominant
and favour the stiffening of the EoS of nuclear matter when
compared with those effects favoring the softening of the
EoS, i.e., the shielding of the repulsive part of the strong
interaction and the increase on the population of the re-
maining hyperons beyond the Σ− even in the presence of
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Fig. 3 Relative population for particle constituents of neutron
stars.

exotic degrees of freedom, ie hyperons as well as kaon and
anti-kaon condensation. Those effects aforementioned may
therefore be the key argument to allow the nuclear equation
of state to satisfy both the maximum mass and the allowed
ranges of mass and radius of neutron stars as well as to go
beyond those known maximum mass limits.
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