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0.1 Topics

• Reaction-diffusion equations

• Turbulence in vortex dynamics

• Heat Transfer in excitable tissues

• Mechano-electric Feedback

• Computational Cardiology

• Mathematical Models of Tumor Growth
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0.4 Brief description

This group has started recently the study of problems of nonlinear dynamics
of complex systems focusing on biological problems using a theoretical physics
approach. The term ”biophysics” is today changing in its meaning and appears
not to be sufficient to contain areas like ”theoretical biology”, ”living matter
physics” of ”complex biological systems”. On the other hand, the term ”The-
oretical Physics applied to biological systems” appears to be wide enough to
describe very different areas. It is well established both numerically and experi-
mentally that nonlinear systems involving diffusion, chemotaxis, and/or convec-
tion mechanisms can generate complicated time-dependent patterns. Specific
examples include the Belousov-Zhabotinskii reaction ,the oxidation of carbon
monoxide on platinum surfaces, slime mold, the cardiac muscle, nerve fibres
and more in general excitable media. Because this phenomenon is global in
nature, obtaining a quantitative mathematical characterization that to some
extent records or preserves the geometric structures of the complex patterns is
difficult.

Following Landau’s course in theoretical physics, we have worked in Theoret-
ical Biophysics focusing our studies on pathological physiology of cardiac and
neural tissues. Finite element simulations of electro-thermo-visco-elastic models
describing heart and neural tissue dynamics in 1D and 2D have been performed
([1],[2]), finding a possible experimental way to evidence the topological defects
which drive the spiral associated with typical arrythmias (Figure 1), typical of
reaction diffusion equations, whose prototype, with two variables for the sake of
simplicity, is shown below

Vt = D1∇
2V + f(U, V )

Ut = D2∇
2U + g(U, V ) , (0.1)

where the V variable refers to an activator and the U variable to the inhibitor
respectively. The f and g terms are typically highly nonlinear in U and V. We
have analyzed [3] in particular the coupling of the reaction-diffusion equations
governing the electric dynamics of the tissue with finite elasticity (see Figures 2,
3 and 4). The problem, due to the free boundary conditions, must be formulated
in weak form (integral form) of deformable domains, and requires massive use of
differential geometry and numerical techniques like finite elements methods. The
experience obtained in this field will be adapted in future studies for problems of
self-gravitating systems and cosmology. Moreover computational cardiology and
neurology for cancer research in 3D using NMR imported real heart geometries
have been studied ([4]-[6]) (Figures 5,6 and 7 ). More in detail the RMN import
of a real brain geometry in Comsol Multiphysics (a powerful finite element
PDEs solver) via an interpolating function has been performed. The physical
property associated with the greyscale is the diffusivity tensor, assumed to be
isotropic but inhomogeneous. Applications to antitumoral drug delivery and
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cancer growth processes have been presented. In 2009 specifically the group
has published an article on heat transfer in excitable biological tissues of neural
type extending the previous studies focused on the FitzHugh-Nagumo model.
More in detail, an extension of the Hodgkin-Huxley mathematical model for
the propagation of nerve signal taking into account dynamical heat transfer
in biological tissue has been derived in accordance with existing experimental
data[7]. The model equations, summarized are:

Cm
∂V

∂t
= ~∇ · (Ĝ~∇V ) + η(T )[gNam

3h(VNa − V ) + gKn
4(VK − V ) + gℓ(Vℓ − V )] ,

∂m

∂t
= φ(T )[αm(V )(1−m)− βm(V )m] ,

∂h

∂t
= φ(T )[αh(V )(1− h)− βh(V )h] ,

∂n

∂t
= φ(T )[αn(V )(1− n)− βn(V )n] . (0.2)

where αj(V ), βj(V ) (with j = m,n, h) are specific functions (the rate constants)
of the form

αn(V ) =
0.01(10 + V )

[e(10+V )/10 − 1]
, βn(V ) = 0.125eV/80 ,

αm(V ) =
0.1(25 + V )

[e(25+V )/10 − 1]
, βm(V ) = 4eV/18 ,

αh(V ) = 0.07eV/20 , βh(V ) =
1

e(30+V )/10 + 1
, (0.3)

ρ cp ∂tT
︸ ︷︷ ︸

energy storage rate

= ∇i(kil∇ℓT )
︸ ︷︷ ︸

conduction

+ σik∇iV∇kV
︸ ︷︷ ︸

heat source

+w∗(T∗ − T )
︸ ︷︷ ︸

perfusion−sink

, (0.4)

(the meaning of the remaining quantities can be found in the publication rela-
tive to this study). The medium, heated by the Joule’s effect associated with
action potential propagation, manifests characteristic thermal patterns (see fig-
ure0.8 and 0.9) in association with spiral and scroll waves. The introduction
of heat transfer—necessary on physical grounds—has provided a novel way to
directly observe the movement, regular or chaotic, of the tip of 3D scroll waves
in numerical simulations and possibly in experiments. The model will open new
perspective also in the context of cardiac dynamics: at the moment in fact the
authors are approaching the problem in the same context. The group has also
developed a more fundamental study on general theory of reaction diffusion
[8]. It is commonly accepted in fact that reaction-diffusion equations cannot
be obtained by a Lagrangian formulation. Guided by the well known connec-
tion between quantum and diffusion equations, we implemented a Lagrangian
approach valid for totally general nonlinear reacting-diffusing systems allowing
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the definition of global conserved observables derived using Noethers theorem.
Specifically, for the case of two diffusing species, denoting with an odd suffix
the physical real field and with an even one the auxiliary ones, we define the
following Lagrangian density

L = − D1(∇ψ2) · (∇ψ1)−D2(∇ψ4) · (∇ψ3) +

−
1

2

(

ψ2
∂ψ1

∂t
− ψ1

∂ψ2

∂t

)

+ S(ψ1, ψ3)(ψ2 − C1) +

−
1

2

(

ψ4
∂ψ3

∂t
− ψ3

∂ψ4

∂t

)

+H(ψ1, ψ3)(ψ4 − C2) . (0.5)

This quantity, once inserted into Euler-Lagrange equations gives:

∂ψ2

∂t
= −D1∇

2ψ2 +
∂S

∂ψ1
(C1 − ψ2) +

∂H

∂ψ1
(C2 − ψ4)

∂ψ4

∂t
= −D2∇

2ψ4 +
∂S

∂ψ3

(C1 − ψ2) +
∂H

∂ψ3

(C2 − ψ4)

∂ψ1

∂t
= D1∇

2ψ1 + S(ψ1, ψ3)

∂ψ3

∂t
= D2∇

2ψ3 +H(ψ1, ψ3) , (0.6)

Noether’s theorem then can be adopted to obtain conserved quantities as sum-
marized in figures 10-13 for FitzHugh-Nagumo model. Finally in 2009 the group
has published a chapter devoted on mathematical modelling of cardiac tissue
dynamics on a monograph on Mechano-sensitivity in biological cells [9].

0.5 Publications (2005-2009)

1. Bini D., Cherubini C., Filippi S., ”Heat Transfer in FitzHugh-Nagumo
models,” Physical Review E, Vol. 74 041905 (2006).

Abstract: An extended FitzHugh-Nagumo model coupled with dynamic al heat

transfer in tissue, as described by a bioheat equation, is derived and confronted

with experiments. The main outcome of this analysis is that traveling pulses and

spiral waves of electric activity produce temperature variations on the order of

tens of C . In particular, the model predicts that a spiral wave’s tip, heating the

surrounding medium as a consequence of the Joule effect, leads to characteristic

hot spots. This process could possibly be used to have a direct visualization of

the tip’s position by using thermal detectors

2. Bini D., Cherubini C., Filippi S., ”Viscoelastic FitzHugh-Nagumo mod-
els,” Physical Review E, Vol. 72 041929 (2005).

Abstract: An extended Fitzhugh-Nagumo model including linear viscoelastici
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Figure 0.1: Spiral wave in the temperature domain at a given time.

Figure 0.2: 2D Evolution of a spiral wave in voltage domain coupled to finite
elastic deformations at a given time.
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Figure 0.3: 3D spiral wave coupled to strong mechanical deformations.

ty is derived in general and studied in detail in the one-dimensional case. The

equations of the theory are numerically integrated in two situations: i) a free

insulated fiber activated by an initial Gaussian distribution of action potential,

and ii) a clamped fiber stimulated by two counter phased currents, located at

both ends of the space domain. The former case accounts for a description of

the physiological experiments on biological samples in which a fiber contracts

because of the spread of action potential, and then relaxes. The latter case,

instead, is introduced to extend recent models discussing a strongly electrically

stimulated fiber so that nodal structures associated on quasistanding waves are

produced. Results are qualitatively in agreement with physiological behavior

of cardiac fibers. Modifications induced on the action potential of a standard

Fitzhugh-Nagumo model appear to be very small even when strong external

electric stimulations are activated. On the other hand, elastic backreaction is

evident in the model

3. Cherubini C., Filippi S., Nardinocchi P., Teresi L., ”An electromechani-
cal model of cardiac tissue: Constitutive issues and electrophysiological
effects,” Progress in Biophysics and Molecular Biology vol. 97, 562−573
(2008)
Abstract: We present an electromechanical model of myocardium tissue cou-

pling a modified FitzHughNagumo type system, describing the electrical activ-
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Figure 0.4: 3D spiral waves iso-voltage lines embedded in a mechanically de-
formed domain.

Figure 0.5: Voltage distribution at a given time on a real 3D NMR imported
heart geometry.
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Figure 0.6: 3D NMR imported brain geometry associated with a diffusion tensor.

Figure 0.7: Mathematical model of tumor growth on the reconstructed brain
geometry.
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Figure 0.8: 3D scroll wave of action potential

Figure 0.9: 3D thermal pattern associated with the electric scroll wave of the
previous figure.
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Figure 0.10: Case A: spiral waves of variable ψ1: notice the Dirichlet bound-
ary condition behavior of the spiral to be confronted with case B
simulations.

Figure 0.11: Case A: Total angular momentum Lz , and total field momenta Px

and Py in time: conservation laws hold for all these quantities.
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Figure 0.12: Case B: spiral waves of variable ψ1: notice the typical Neumann
zero flux boundary condition behavior of the spirals.

Figure 0.13: Case B: Total angular momentum Lz, and total field momenta
Px and Py in time: conservation laws do not hold for all these
quantities.
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ity of the excitable media, with finite elasticity, endowed with the capability of

describing muscle contractions. The high degree of deformability of the medium

makes it mandatory to set the diffusion process in a moving domain, thereby

producing a direct influence of the deformation on the electrical activity. Vari-

ous mechanoelectric effects concerning the propagation of cylindrical waves, the

rotating spiral waves, and the spiral breakups are discussed

4. S.Filippi, C.Cherubini, Electrical Signals in a Heart, Comsol Multiphysics
Model Library, Sept. p.106-116.(2005)

5. S.Filippi, C.Cherubini, Models of Biological System, Procceedings of COM-
SOL Conference, Milan (2006).
Abstract: This article discusses the RMN import of a brain geometry in Comsol

Multiphysics via an interpolating function. The physical property associated

with the grayscale is the diffusivity tensor, assumed here to be isotropic but

inhomogeneous. Applications to antitumoral drug delivery and cancer growth

processes are discussed.

6. C.Cherubini, S.Filippi, A.Gizzi, Diffusion processes in Human Brain us-
ing Comsol Multiphysics, Procceedings of COMSOL Conference, Milan
(2006).
Abstract:This article presents different applications of Comsol Multiphysics in

the context of mathematical modeling of biological systems. Simulations of

excitable media like cardiac and neural tissues are discussed.

7. Bini D., Cherubini C., Filippi S., ”On vortices heating biological excitable
media,” Chaos, Solitons and Fractals vol. 42 (2009) 20572066

Abstract: An extension of the HodgkinHuxley mathematical model for the

propagation of nerve signal which takes into account dynamical heat transfer in

biological tissue is derived and fine tuned with existing experimental data. The

medium is heated by Joules effect associated with action potential propagation,

leading to characteristic thermal patterns in association with spiral and scroll

waves. The introduction of heat transfernecessary on physical groundsprovides

a novel way to directly observe the movement, regular or chaotic, of the tip

of spiral waves in numerical simulations and possibly in experiments regarding

different biological excitable media.

8. Cherubini C. and Filippi S., ”Lagrangian field theory of reaction-diffusion,”
Physical Review E, Vol. 80 046117 (2009).

Abstract: It is commonly accepted that reaction-diffusion equations cannot be

obtained by a Lagrangian field theory. Guided by the well known connection

between quantum and diffusion equations, we implement here a Lagrangian ap-

proach valid for totally general nonlinear reacting-diffusing systems which allows

the definition of global conserved observables derived using Nthers theorem
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9. Cherubini C., Filippi S., Nardinocchi P., Teresi L., ”Electromechanical
modelling of cardiac tissue”, in ”Mechanosensitivity of the Heart Series:
Mechanosensitivity in Cells and Tissues , Vol. 3”, Kamkin, A.; Kiseleva,
I. (Eds.) (2009), Springer.
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