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Abstract. | discuss potential observational tests of a “radically ssomative” solution to the problem of dark energy in
cosmology, in which the apparent acceleration of the us&& understood as a consequence of gravitational enexdiegts
that grow when spatial curvature gradients become signifiaséth the nonlinear growth of cosmic structure. In pariécu

| discuss measures equivalent to the dark energy equatistataf, baryon acoustic oscillation statidhig, H(z), the Om(z)
diagnostic, an average inhomogeneity diagnostic, andrtes-trift of cosmological redshifts.
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INTRODUCTION

| will discuss some recent results on observational tegtef{d model cosmology, which represent a new approach
to understanding the phenomenology of dark energy as a goesee of the effect of the growth of inhomogeneous
structures. The basic idea, outlined in a nontechnical maimref. [2], is that as inhomogeneities grow one must
consider not only their backreaction on average cosmicugienl, but also the variance in the geometry as it affects
the calibration of clocks and rods of ideal observers. Darkegy is then effectively realised as a misidentification of
gravitational energy gradients.

Although the standard Lambda Cold Dark Matt&xGDM) model, provides a good fit to many tests, there are
tensions between some tests, and also a number of puzzlesnanhlies. Furthermore, at the present epoch the
observed universe is only statistically homogeneous oneesamples on scales of 150—-300 Mpc. Below such scales
it displays a web-like structure, dominated in volume bydgoiSome 40%-50% of the volume of the present epoch
universe is in voids witldp /p ~ —1 on scales of 30~ Mpc [3], whereh is the dimensionless parameter related to the
Hubble constant b, = 10chkm sectMpc. Once one also accounts for numerous minivoids, and pedisps
few larger voids, then it appears that the present epocletseus void-dominated. Clusters of galaxies are spread in
sheets that surround these voids, and thin filaments thedadithem.

One particular consequence of a matter distribution thamiy statistically homogeneous, rather than exactly
homogeneous, is that when the Einstein equations are acdtiagy do not evolve as a smooth Friedmann—Lemaitre—
Robertson—Walker (FLRW) geometry. Instead the Friedmauaons are supplemented by additional backreaction
terms [4]. Whether or not one can fully explain the expansisiory of the universe as a consequence of the growth
of inhomogeneities and backreaction, without a fluid—likekdenergy, is the subject of ongoing debate [5].

Over the past two years | have developed a new physical mgton of cosmological solutions within the Buchert
averaging scheme [6, 7, 8]. | start by noting that in the preseof strong spatial curvature gradients, not only
should the average evolution equations be replaced byiegsatith terms involving backreaction, but the physical
interpretation of average quantities must also accourttiddifferences between the local geometry and the average
geometry. In other words, geometric variance can be jushasitant as geometric averaging when it comes to the
physical interpretation of the expansion history of thevarse.

| proceed from the fact that structure formation providestural division of scales in the observed universe. As
observers in galaxies, we and the objects we observe in gtilakies are necessarily in bound structures, which
formed from density perturbations that were greater th#icar density. If we consider the evidence of the large
scale structure surveys on the other hand, then the avesegion by volume in the present epoch universe is in a
void, which is negatively curved. We can expect systematferénces in spatial curvature between the average mass



environment, in bound structures, and the volume-averageomment, in voids.

Spatial curvature gradients will in general give rise toviedional energy gradients. Physically this can be un-
derstood in terms of a relative deceleration of expandigipres of different densities. Those in the denser region
decelerate more and age less. Since we are dealing with weddk the relative deceleration of the background is
small. Nonetheless even if the relative deceleration igglly of order 10 1°ms 2, cumulatively over the age of the
universe it leads to significant clock rate variances [8fdgeed from an ansatz that the variance in gravitational en-
ergy is correlated with the average spatial curvature i suway as to implicitly solve the Sandage—de Vaucouleurs
paradox that a statistically quiet, broadly isotropic, Higbflow is observed deep below the scale of statistical ho-
mogeneity. Expanding regions of different densities atehgd together so that the regionally measured expansion,
in terms of the variation of the regional proper length= #1/3, with respect to proper time of isotropic observers
(those who see an isotropic mean CMB), remains uniform.cdigh voids open up faster, so that their proper vol-
ume increases more quickly, on account of gravitationatg@ngradients the local clocks will also tick faster in a
compensating manner.

Details of the fitting of local observables to average quistfor solutions to the Buchert formalism are described
in detail in refs. [6, 7]. Negatively curved voids, and sphyiflat expanding wall regions within which galaxy cluster
are located, are combined in a Buchert average

fo(t) + fuw(t) =1, (1)

where f (t) = fyia,°/a% is thewall volume fractionand f, (t) = f,;a./a% is thevoid volume fraction”? = #a3
being the present horizon volume, afgd, f,; and¥; initial values at last scattering. The time parameteis the
volume—average time parameter of the Buchert formalisigdbas not coincide with that of local measurements in
galaxies. In trying to fit a FLRW solution to the universe wieatpt to match our local spatially flat wall geometry

dst = —dr®+a(1) [dn + n5dQ?] . 2)

to the whole universe, when in reality the rods and clocksieéli isotropic observers vary with gradients in spatial
curvature and gravitational energy. By conformally matghiadial null geodesics with those of the Buchert average
solutions, the geometry (2) may be extended to cosmologozdés as the dressed geometry

ds® = —dr?+a%(1) [dn? +r2(n, 1) dQ?] (3)

wherea=y g y=4 & isthe relative lapse function between wall clocks and vauaverage onespd= dt /a= dr/a,
andry, = y(1— £,)¥3f,; 730, (0, 1), wheren,, is given by integrating g, = f.,;/3dn /[y(1— f,)*] along null
geodesics.

In addition to the bare cosmological parameters which desd¢he Buchert equations, one obtains dressed pa-
rameters relative to the geometry (3). For example, thesdresnatter density parameter@g, = ?QM, where

QM = 87'[Gp ﬂ/ 3H%a a®) is the bare matter density parameter. The dressed paranaternumerical values close
to the ones m?erred in standard FLRW models.

APPARENT ACCELERATION AND HUBBLE FLOW VARIANCE

The gradient in gravitational energy and cumulative déferes of clock rates between wall observers and volume
average ones has important physical consequences. Usingk#tt solution obtained in ref. [7], one finds that a
volume average observer would infer an effective decetergiarameteq = —a/(H é) =2(1-f,)%/(2+ ,)?,
which is always positive since there is no global accelenatHowever, a wall observer infers a dressed deceleration
parameter
1 d’a —(1-f,)(8f,3439f,2—12f,—8) 4
q= Hzad-l-Z* (4+ fv+4fv2)2 ’ ( )

where the dressed Hubble parameter is given by

H=alGa=yH-y=H-y &y 5)



At early times whenf, — 0 the dressed and bare deceleration parameter both takernsieig—de Sitter value
g~ Qq~ % However, unlike the bare parameter which monotonicaltrel@ses to zero, the dressed parameter becomes
negative wherf, ~ 0.59 andq — 0~ at late times. For the best-fit parameters [9] the apparesi@tion begins at a
redshiftz~ 0.9.

Cosmic acceleration is thus revealed as an apparent efféchwarises due to the cumulative clock rate variance
of wall observers relative to volume—average observetedbmes significant only when the voids begin to dominate
the universe by volume. Since the epoch of onset of appaceetexation is directly related to the void fractiof,
this solves one cosmic coincidence problem.

In addition to apparent cosmic acceleration, a second itappapparent effect will arise if one considers scales
below that of statistical homogeneity. By any one set ofk$atwill appear that voids expand faster than wall regions.
Thus a wall observer will see galaxies on the far side of a dantivoid of diameter 301 Mpc to recede at a value
greater than the dressed global averdgewhile galaxies within an ideal wall will recede at a ratesléisanH,,. Since
the uniform bare ratel would also be the local value within an ideal wall, eq. (5)egia measure of the varlance in
the apparent Hubble flow. The best fit parameters [9] give aseHubble constaht) = 61 7le.2 km secMpc1,
and a bare Hubble constaf, = 48.2j§:2km secIMpc1. The present epoch variance is 22%, and we can expect
the Hubble constant to attain local maximum values of or@8Km sec ! Mpc~! when measured over local voids.

Since voids dominate the universe by volume at the pres@tte@ny observer in a galaxy in a typical wall region
will measure locally higher values of the Hubble constaritty weak values of order 72km seaMpc—? at the 3G~
Mpc scale of the dominant voids. Over larger distances, adirte of sight intersects more walls as well as voids, a
radially spherically symmetric average will give an averétybble constant whose value decreases from the maximum
at the 3G—1 Mpc scale to the dressed global average value, as the sdaterafgeneity is approached at roughly the
baryon acoustic oscillation (BAO) scale of H:GMpc. This predicted effect could account for the Hubble Babb
[10] and more detailed studies of the scale dependence @d¢hkeHubble flow [11].

In fact, the variance of the local Hubble flow below the scdleamogeneity should correlate strongly to observed
structures in a manner which has no equivalent predictiéiL RW models.

FUTURE OBSERVATIONAL TESTS

There are two types of potential cosmological tests thatlmmeveloped; those relating to scales below that of

statistical homogeneity as discussed above, and thoseelass to averages on our past light cone on scales much
greater than the scale of statistical homogeneity. Thergbctass of tests includes equivalents to all the standard
cosmological tests of the standard model of a Newtoniantyupeed FLRW model. This second class of tests can

be further divided into tests which just deal with the bullsemlogical averages (luminosity and angular diameter

distances etc), and those that deal with the variance fremgtbwth of structures (late epoch integrated Sachs—Wolfe
effect, cosmic shear, redshift space distortions etc)eHawill concentrate solely on the simplest tests which are

directly related to luminosity and angular diameter diseameasures.

In the timescape cosmology we have an effective dressedhbsity distance

d =ay(1+2ry, (6)
wherea, = y761a_0, and

_ it dt’
Fo = 1—fV1/3/°_ B 7
Y A T ROV "
We can also define agffective angular diameter distanak,, and areffective comoving distand®, to a redshifzin
the standard fashion
d,= Db _ 7dL (8)
AT 14z (1422
A direct method of comparing the distance measures withetlddfhromogeneous models with dark energy, is to
observe that for a standard spatially flat cosmology wittk @mergy obeying an equation of st&g = w(z)pp, the

quantity
dz

H,D = / \/ — 1/))@} ; 9)

mo(1+2) +QDoeXp[3fo 1+
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FIGURE 1. The effective comoving distandé,D(z) is plotted for the bestit timescape (TS) model, witlg = 0.762, (solid
line); and for various spatially flaiCDM models (dashed lines). The parameters for the dashesidire (i, ,, = 0.249 (best-fit

to WMAPS only [12]); (ii) Q,,, = 0.279 (joint best-fit to Snela, BAO and WMAPS); (i@},,, = 0.34 (best—?it to Riess07 Snela
only [13]). Panel (a) shows the redshift rarge 6, with an inset foz < 1.5, which is the range tested by current Snela data. Panel
(b) shows the range< 1100 up to the surface of last scattering, tested by WMAPS5.

does not depend on the value of the Hubble conskgjatyut only directly orQ,,, = 1 - Q. Since the best-fit values
of H, are potentially different for the different scenarios, axparison oH,D curves as a function of redshift for the
timescape model versus the&DM model gives a good indication of where the largest défferes can be expected,
independently of the value &f,. Such a comparison is made in Fig. 1.

We see that as redshift increases the timescape modeldtatrp betweeACDM models with different values of
Qpo- For redshifte < 1.5 D, is very close tdD, ., for the parameter valug®,,,,Q,,) = (0.34,0.66) (model
(ii)) which best—fit the Riess07 supernovae (Snela) dath b8/, by our own analysis. For very large redshifts
that approach the surface of last scattering, 1100, on the other hand. ., very closely matche®, ., for
the parameter value®,,,,Q,,) = (0.249,0.751) (model (i)) which best-fit WMAPS only [12]. Over redshifts
2 <2< 10, at which scales independent tests are conceivBljle,makes a transition over corresponding curves
of Dycpy With intermediate values ofQ,,, Qo). The D, curve for joint best fit parameters to Snela, BAO
measurements and WMAPS [129,,0,Q,,) = (0.279,0.721) is best-matched over the rangg % < 6, for example.

The difference oD, from any singleD,,,, curve are perhaps most pronounced only in the range Z 6,
which may be an optimal regime to probe in future experimedtgnma-—ray bursters (GRBs) now probe distances to
redshiftsz < 8.3, and could be very useful. There has already been much veorkiny Hubble diagrams using GRBs.
(See, e.g., [14].) It would appear that more work needs todsedo nail down systematic uncertainties, but GRBs
may provide a definitive test in future. An analysis of thedstape model Hubble diagram using 69 GRBs has just
been performed by Schaefer [15], who finds that it fits the Hatter than the concordand€DM model, but not yet
by a huge margin. As more data is accumulated, it should begassible to distinguish the models if the issues with
the standardization of GRBs can be ironed out.

The effective “equation of state”

It should be noted that the shape of tHgD curves depicted in Fig. 1 represent the observable quamtityis
actually measuring when some researchers loosely talktdbhmasuring the equation of state”. For spatially flat
dark energy models, withl D given by (9), one finds that the functiov(z) appearing in the fluid equation of state
P, = w(z)pp, is related to the first and second derivatives of (9) by

2 =1y
£(1+2DD"+1

w(z) = 12 39202 (10)
Quo(1+2 HOD’ -1

where prime denotes a derivative with resped tBuch a relation can be applied to observed distance measnotg,
regardless of whether the underlying cosmology has darggree not. Since it involves first and second derivatives
of the observed quantities, it is actually much more diffitoldetermine observationally than directly fittihggD(z).
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FIGURE 2. The artificial equivalent of an equation of state constriateing the effective comoving distance (10), plotted for
the timescape tracker solution with best-fit valyg = 0.762, and two different values @,,,: (a) the canonical dressed value

Qo = (1= f0)(2+ o) = 0.33; (b) Q= 0.279.

The equivalent of the “equation of stateti(z), for the timescape model is plotted in Fig. 2. The fact théd) is
undefined at a particular redshift and changes sign thrateglsimply reflects the fact that in (10) we are dividing by
a quantity which goes to zero for the timescape model, eveugth the underlying curve of Fig. 1 is smooth. Since
one is not dealing with a dark energy fluid in the present cass, simply has no physical meaning. Nonetheless,
phenomenologically the results do agree with the usualénfees abouw for fits of standard dark energy cosmologies
to Snela data. For the canonical model of Fig. 2(a) one finatstitte average value of(z) ~ —1 on the range < 0.7,
while the average value af(z) < —1 if the range of redshifts is extended to higher values. Hoe thatw(z) is a
different sign to the dark energy case for 2 is another way of viewing our statement above that the i#dahge
2 < z< 6is optimal for discriminating model differences.

The Alcock—Paczyski test and baryon acoustic oscillations

Alcock and Pacziyski devised a test [16] which relies on comparing the raafia transverse proper length scales
of spherical standard volumes comoving with the Hubble flbiis test, which determines the function

L
oz

1

1106]_HD
AP 5

==, (1)

f

was originally conceived to distinguish FLRW models withasmological constant from those without\aterm.
The test is free from many evolutionary effects, but relieoe being able to remove systematic distortions due to
peculiar velocities.

Current detections of the BAO scale in galaxy clusteringistias [17, 18] can in fact be viewed as a variant of
the Alcock—Paczyski test, as they make use of both the transverse and raldigbuas of the fiducial comoving BAO
scale to present a measure

o, = [ 2217 _ps-vs 12
V{H@J ~ Pl (12)

In Fig. 3 the Alcock—Pac#yski test function (11) and BAO scale measure (12) of thesape model are compared
to that of spatially flan\CDM model with different values of(§,,,Q,,). The curve for the timescape model has a
distinctly different shape to those of the LCDM models, lgaionvex. However, the extent to which the curves can be
reliably distinguished would require detailed analysisdzhon the precision attainable with any particular expenitn
Ideally, a model-independentdeterminatioiigf) would be required sincef, , = H(z)D(2) for all the models under
consideration.
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FIGURE 3. (a) The Alcock-Paczski test functionf , , — HD/z and (b) the BAO radial test functioti,D,, = H,Df, &> In
each case the timescape model with = 0.762 (solid line) is compared to three spatially fd@DM models with the same values
of (Qug, Qo) @s in Fig. 1 (dashed lines).
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FIGURE 4. The functionH, * & for the timescape model witf,o = 0.762 (solid line) is compared td, > & for three spatially
flat ACDM models with the same values @®,,,,Q,,) as in Fig. 1 (dashed lines).

The H(z) measure

Further observational diagnostics can be devised if thamsipn rateH (z) can be observationally determined as
a function of redshift. Recently such a determinationdf) atz= 0.24 andz = 0.43 has been made using redshift
space distortions of the BAO scale in tAh€ DM model [19]. This technique is of course model dependamd, the
Kaiser effect would have to be re-examined in the timescapaefrbefore a direct comparison of observational results
could be made. A model-independent measuié @] is discussed in sec. .

In Fig. 4 we comparél(z)/H, for the timescape model to spatially IACDM models with the same parameters
chosen in Fig. 1. The most notable feature is that the slopé(ef/H, is less than in thé\CDM case, as is to be
expected for a model whose (dressed) deceleration paravaeies more slowly than fohCDM.

The Om(z) measure
Recently Sahni, Shafieloo and Starobinsky [20] have prapasew diagnostic of dark energy, the function

H?(z)
2
Ho

~1[a+2%-1 ", (13)

oma:[

on account of the fact that it is equal to the constant presgmth matter density paramet@y, ,, for all redshifts for a
spatially flat FLRW model with pressureless dust and a cosgical constant, but is not constant if the cosmological

constant is replaced by other forms of dark energy. For géf&RW modelsH(z) = [D'(2)] 7%, /1+ QkOHg—DZ(z),



which only involves a single derivatives Bf(z). Thus the diagnostic (13) is an easier to reconstruct obtenally
than the equation of state paramete(z).

FIGURE 5. The dark energy diagnostiom(z) of Sahni, Shafieloo and Starobinsky plotted for the timesdagcker solution
with best—fit valuef,g = 0.762 (solid line), and & limits (dashed lines) from ref. [9].

The quantityOm(z) is readily calculated for the timescape model, and the résulisplayed in Fig. 5. What is
striking about Fig. 5, as compared to the curves for quietess and phantom dark energy models as plotted in ref.
[20], is that the initial value
2(813, — 312+ 4)(2+ fu0)

(4fV20 + fvo+4)2

is substantially larger than in the spatially flat dark eyermpdels. Furthermore, for the timescape mddeiz) does

not asymptote to the dressed density param@jgy in any redshift range. For quintessence mod@tyz) > Q,,,
while for phantom model©Om(z) < Q,,,, and in both case®m(z) — Q,,, asz — . In the timescape model,
om(z) > Q,,,~0.33forz< 1.7, whileOm(z) < Q,,, for z> 1.7. It thus behaves more like a quintessence model for
low z, in accordance with Fig. 2. However, the steeper slope amddimpletely different behaviour at largenean

the diagnostic is generally very different to that of typidark energy models. For largeQ,,, < Om(e) < Q, , if

fvo > 0.25.

Interestingly enough, a recent analysis of Snela, BAO an@®@ista [21] for dark energy models with two different
empirical fitting functions fow(z) gives an interceg®m(0) which is larger than expected for typical quintessence or
phantom energy models, and in the better fit of the two modhelsritercept (see Fig. 3 of ref. [21]) is close to the
valueOm(0) = 0.638 for thef,; = 0.762 timescape model.

om(0) = § H'|, =

(14)

Test of (in)homogeneity

Recently Clarkson, Bassett and Lu [22] have constructed thleg call a “test of the Copernican principle” based
on the observation that for homogeneous, isotropic modhalstwobey the Friedmann equation, the present epoch
curvature parameter, a constant, may be written as

H(@D'(z)? -1

%0 = 1D

(15)
for all z irrespective of the dark energy model or any other modelmpaters. Consequently, taking a further derivative,
the quantity

%(2) =1+ H3DD" — D?) + HH'DD’ (16)

must be zero for all redshifts for any FLRW geometry.

A deviation of ¢’(z) from zero, or of (15) from a constant value, would thereforgam that the assumption of
homogeneity is violated. Although this only constitutesst bf the assumption of the Friedmann equation, i.e., of the
Cosmological Principle rather than the broader CoperniRrémciple adopted in ref. [6], the average inhomogeneity
will give a clear and distinct prediction of a non-z&f@z) for the timescape model.

The functions (15) and (16) are computed in ref. [1]. Obs@wwally it is more feasible to fit (15) which involves
one derivative less of redshift. In Fig. 6 we exhibit the ftime %(z) = [HD']2 — 1 from the numerator of (15) for
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FIGURE 6. The (in)homogeneity test function Z(z) = [HD]> — 1 is plotted for the timescape
tracker  solution with  bestfit value f,c = 0.762 (solid line), and compared to the equiv-
alent curves % = Qko(HoD)2 for  two different ~ ACDM models  with small curvature:

@ Qo = 028, Q,, = 0.71, Q,, = 0.01; (b) Q,, = 0.28, Q,, = 0.73, Q,, = —0.01. A spatially flat FLRW model
would have#(z) = 0.

the timescape model, as compared to a@DM models with a small amount of spatial curvature. In th&iAcase
%(z) is always a monotonic function whose sign is determined BydhQ, ;. An open/A = 0 universe with the same
Q10 Would have a monotonic functiow(z) very much greater than that of the timescape model.

Time drift of cosmological redshifts

For the purpose of them(z) and (in)homogeneity tests considered in the last sedtl¢n), must be observationally
determined, and this is difficult to achieve in a model indefent way. There is one way of achieving this, however,
namely by measuring the time variation of the redshifts &édént sources over a sufficiently long time interval [23],
as has been discussed recently by Uzan, Clarkson and HJisARhough the measurement is extremely challenging,
it may be feasible over a 20 year period by precision measemé&sof the Lymarny forest in the redshift range
2 < z< 5 with the next generation of Extremely Large Telescopek [25

Inref. [1] an analytic expression fbfgl% is determined, the derivative being with respect to walktior observers
in galaxies. The resulting function is displayed in Fig. Atfee best-fit timescape model withy = 0.762, where it is
compared to the equivalent function for three differentigtis flat ACDM models. What is notable is that the curve
for the timescape model is considerably flatter than thosleeokCDM models. This may be understood to arise from
the fact that the magnitude of the apparent acceleratiamisiderably smaller in the timescape model, as compared to
the magnitude of the acceleratioi€DM models. For models in which there is no apparent acasberavhatsoever,
one finds thaHal% is always negative. If there is cosmic acceleration, reapparent, at late epochs thblgl%
will become positive at low redshifts, though at a somewaajédr redshift than that at which acceleration is deemed
to have begun.

Fig. 4 demonstrates that a very clear signal of differencésd redshift time drift between the timescape model and
ACDM models might be determined at low redshifts Wih%‘rﬂ% should be positive. In particular, the magnitude of

Hgl% is considerably smaller for the timescape model as compgara@DM models. Observationally, however, it
is expected that measurements will be best determined foces in the Lymanmr forest in the range, 2 z< 5. At
such redshifts the magnitude of the drift is somewhat move@unced in the case of theCDM models. For a source
atz=4, over a period 081 = 10 years we would havéz = —3.3 x 10~ 1%for the timescape model with,, = 0.762
andH, = 61.7km sec*Mpc~1. By comparison, for a spatially fl&tCDM model withH, = 70.5km sec*Mpc™! a
source az= 4 would over ten years giwez = —4.7 x 10~ for (Qumo» Qpg) = (0.249,0.751), anddz = —7.0 x 1010

for (Que: Qo) = (0.279,0.721),

DISCUSSION

The tests outlined here demonstrate several lines of iigatistn to distinguish the timescape model from models of
homogeneous dark energy. The (in)homogeneity test of Ba€tarkson and Lu is definitive, since it tests the validity



of the Friedmann equation directly.

In performing these tests, however, one must be very caiefrsure that data has not been reduced with built—in
assumptions that use the Friedmann equation. For exanptent estimates of the BAO scale such as that of Percival
etal. [18] do not determin®,, directly from redshift and angular diameter measures, attgerform a Fourier space
transformation to a power spectrum, assuming an FLRW cazgmgol

Furthermore, in the case of Snela, it has been recently ethii?6] that the timescape model does not compare
favourably with theACDM model when Snela from the recent Union [27] and Con&titui?8] compilations are used.
However, the Union dataset and its extension use the SALRaddb calibrate light curves. In this approach empirical
light curve parameters and cosmological parametesissuming the Friedmann equatienare simultaneously fit
by analytic marginalisation before the raw apparent magleis are recalibrated. As Hickex al. discuss [28], a
number of possible systematic discrepancies exist betda@reduced by the SALT, SALT2, MLCS31 and MLCS17
techniques. In the case of the timescape model, for whicRriedmann equation does not apply, it turns out that these
systematic differences lead to larger discrepancies idétermination of cosmological parameters from one method
to another, as will be discussed in future work [29].

The value of the dressed Hubble constant is also an obsergabhtity of considerable interest. A recent determi-
nation by Ries®t al. [30] poses a challenge for the timescape model. Howevéheipresence of spatial curvature
gradients a great deal of care must be taken, since in vieteofxpected Hubble bubble feature discussed in Sec. ,
estimates oH, made below the scale of statistical homogeneity will gelhegave higher values. The method that
is used to anchor the Cepheid calibration in th&BS survey [30] — namely a geometric maser distance to the rela
tively close galaxy NGC4258 — may in fact be the best way oéheining whether a Hubble bubble feature exists,
if sufficiently large numbers of maser distances can be oeterd within the scale of statistical homogeneity. The
Megamaser project [31] may soon begin to provide the soratd that is required.
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