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3. Brief description

Astroparticle physics is a new field of research emerging at the intersection
of particle physics, astrophysics and cosmology. Theoretical development in
these fields is mainly triggered by the growing amount of experimental data
of unprecedented accuracy, coming both from the ground based laboratories
and from the dedicated space missions.

3.1. Electron-positron plasma

Electron-positron plasma is of interest in many fields of astrophysics, e.g. in
the early universe, gamma-ray bursts, active galactic nuclei, the center of our
Galaxy, hypothetical quark stars. It is also relevant for the physics of ultrain-
tense lasers and thermonuclear reactions. We study some properties of dense
and hot electron-positron plasmas. In particular, we are interested in the is-
sues of its creation and relaxation, its kinetic properties and hydrodynamic
description, baryon loading, transition to transparency and radiation from
such plasmas.

Two completely different states exist for electron-positron plasma: opti-
cally thin and optically thick. Optically thin pair plasma may exist in active
galactic nuclei and in X-ray binaries. The theory of relativistic optically thin
nonmagnetic plasma and especially its equilibrium configurations was es-
tablished in the 80s by Svensson, Lightman, Gould and others. It was shown
that relaxation of the plasma to some equilibrium state is determined by a
dominant reaction, e.g. Compton scattering or bremsstrahlung.

Developments in the theory of gamma ray bursts from one side, and ob-
servational data from the other side, unambiguously point out on existence
of optically thick pair dominated non-steady phase in the beginning of for-
mation of GRBs. The spectrum of radiation from optically thick plasma is
assumed to be thermal. However, in such a transient phenomena as gamma-
ray bursts there could be not enough time for the plasma to relax into equi-
librium.

3.1.1. Thermalization of mildly relativistic plasma with

proton loading

One of crucial assumptions adopted in the literature on gamma-ray bursts
(Ruffini et al. (1999),Ruffini et al. (2000)) is that initial state of the pair plasma,
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3. Brief description

formed in the source of the gamma-ray burst is supposed to be thermal,
with equal temperature of pairs and photons. This assumption was ana-
lyzed by Aksenov et al. (2007),Aksenov et al. (2008). The electron-positron-
photon plasma was assumed to be homogeneous and isotropic, in the ab-
sence of magnetic fields, with average energy per particle bracketing electron
rest mass, in the range 0.1MeV . ǫ . 10MeV. Relativistic Boltzmann equa-
tions were solved numerically for pairs and photons, starting from arbitrary
initial configurations described by the corresponding distribution functions.
All binary and triple collisions were accounted for, by the corresponding col-
lisional integrals.

Proton loading of electron-positron plasma was considered by Aksenov et al.
(2009c) (2009). This paper systematically presents details of the computa-
tional scheme used by Aksenov et al. (2007), as well as generalizes the treat-
ment, considering proton loading of the pair plasma. When proton loading is
large, protons thermalize first by proton-proton scattering, and then with the
electron-positron-photon plasma by proton-electron scattering. In the oppo-
site case of small proton loading proton-electron scattering dominates over
proton-proton one. Thus in all cases the plasma, even with proton admix-
ture, reaches thermal equilibrium configuration on a timescale t < 10−11 sec.
We show that it is crucial to account for not only binary but also triple di-
rect and inverse interactions between electrons, positrons, photons and pro-
tons. Several explicit examples are given and the corresponding timescales
for reaching kinetic and thermal equilibria are determined.

3.1.2. Pair plasma relaxation timescales

In previous works (Aksenov et al. (2007),Aksenov et al. (2009c)) relaxation
timescales were computed explicitly only in few cases. Systematic explo-
ration of the space of parameters is performed in a separate publication by
Aksenov et al. (2009b), see Appendix A. These parameters are: total energy
density ρ and the baryonic loading parameter B = ρb/ρe,γ, the ratio between
the energy densities of baryons and of electron-positron pairs and photons.
We focused on the time scales of electromagnetic interactions only.

Thermalization timescales are computed for a wide range of values of both

the total energy density (1023erg/cm3 ≤ ρ ≤ 1033erg/cm3) and of the bary-
onic loading parameter (10−3 ≤ B ≤ 103). This also allows to study such
interesting limiting cases as the almost purely electron-positron plasma or
electron-proton plasma as well as intermediate cases.

Both dependencies (thermalization time scales of electron-positron-photon
component and final thermalization time scale of pair plasma with baryonic
loading) cannot be fitted by simple power laws, though decrease monotoni-
cally with increasing total energy density, see Figs. A.1,A.2. Thermalization
time scales are not monotonic functions of the baryonic loading parameter.
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3.2. Neutrinos in cosmology

The relaxation to thermal equilibrium always occurs on a time scale less
than 10−9 sec. It is interesting that the electron-positron-photon component
and/or proton component can thermalize earlier than the time at which com-
plete thermal equilibrium is reached. The relevant time scales are given and
compared with the order-of-magnitude estimates.

These results appear to be important both for laboratory experiments aimed
at generating optically thick pair plasmas as well as for astrophysical models
in which electron-positron pair plasmas play a relevant role.

3.1.3. Hydrodynamic phase of GRB sources

Having established the thermalization timescales of electron-positron plasma
with baryonic loading we turn to hydrodynamic evolution of this plasma on
much longer timescales. Given that the optical depth of the pair plasma in
GRB sources is huge, of the order of 1015, the dynamical equations are the
total energy-momentum conservation as well as the continuity equation for
baryonic component.

The fireshell model, unlike the fireball model, properly takes into account
nonequilibrium processes in the pair plasma by the rate equation of electron-
positron component. However, it only operates with volume-averaged macro-
scopic quantities such as average number densities, average energy densities,
average bulk Lorentz factors etc.

We developed an Eulerian relativistic code, which solves hydrodynamic
equations in spherically symmetric case (de Barros et al. (2009)). We were
mainly interested in the question how different initial spatial distribution for
energy and mass densities influence the early evolution of the pair plasma
with baryonic loading, for details see Appendix C. We found that deviations
from a simple “frozen radial profile” advocated by Piran et al. (1993), see also
Piran (1999) in spatial distributions of energy and matter densities are possi-
ble. In fact when the expansion occurs not in vacuum but in a cold medium,
two peaks in the radial distribution of energy and matter form, the leading
one being matter dominated from the very beginning, see e.g. Fig. B.8. Such
structures in the energy and matter spatial distributions of the expanding
plasma, if survived when transparency is reached, will be reflected in the
light curves of GRBs. This gives a fascinating possibility to probe the struc-
ture of energy and matter distributions withing the sources of GRBs where
the energy is released.

3.2. Neutrinos in cosmology

Many observational facts make it clear that luminous matter alone cannot
account for the whole matter content of the Universe. Among them there
is the cosmic background radiation anisotropy spectrum, that is well fitted

1345



3. Brief description

by a cosmological model in which just a small fraction of the total density is
supported by baryons.

In particular, the best fit to the observed spectrum is given by a flat ΛCDM
model, namely a model in which the main contribution to the energy density
of the Universe comes from vacuum energy and cold dark matter. This result
is confirmed by other observational data, like the power spectrum of large
scale structures.

Another strong evidence for the presence of dark matter is given by the
rotation curves of galaxies. In fact, if we assume a spherical or ellipsoidal
mass distribution inside the galaxy, the orbital velocity at a radius r is given
by Newton’s equation of motion. The peculiar velocity of stars beyond the
visible edge of the galaxy should then decrease as 1/r. What is instead ob-
served is that the velocity stays nearly constant with r. This requires a halo
of invisible, dark, matter to be present outside the edge. Galactic size should
then be extended beyond the visible edge. From observations is follows that
the halo radius is at least 10 times larger than the radius of visible part of the
galaxy. Then it follows that a halo is at least 10 times more massive than all
stars in a galaxy.

Neutrinos were considered as the best candidate for dark matter about
twenty years ago. Indeed, it was shown that if these particles have a small
mass mν ∼ 30 eV, they provide a large energy density contribution up to crit-
ical density. Tremaine and Gunn (1979) have claimed, however, that massive
neutrinos cannot be considered as dark matter. Their paper was very influen-
tial and turned most of cosmologists away from neutrinos as cosmologically
important particles.

Tremaine and Gunn paper was based on estimation of lower and upper
bounds for neutrino mass; when contradiction with these bounds was found,
the conclusion was made that neutrinos cannot supply dark matter. The up-
per bound was given by cosmological considerations, but compared with the
energy density of clustered matter. It is possible, however, that a fraction of
neutrinos lays outside galaxies.

Moreover, their lower bound was found on the basis of considerations of
galactic halos and derived on the ground of the classical Maxwell-Boltzmann
statistics. Gao and Ruffini (1980) established a lower limit on the neutrino
mass by the assumption that galactic halos are composed by degenerate neu-
trinos. Subsequent development of their approach Arbolino and Ruffini (1988)
has shown that contradiction with two limits can be avoided.

At the same time, in 1977 the paper by Lee and Weinberg (1977) appeared,
in which authors turned their attention to massive neutrinos with mν >

2 GeV. Such particles could also provide a large contribution into the energy
density of the Universe, in spite of much smaller value of number density.

Recent experimental results from laboratory (see Dolgov (2002) for a re-
view) rule out massive neutrinos with mν > 2 GeV. However, the paper by
Lee and Weinberg was among the first where very massive particles were
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3.2. Neutrinos in cosmology

considered as candidates for dark matter. This can be considered as the first
of cold dark matter models.

Today the interest toward neutrinos as a candidate for dark matter came
down, since from one side, the laboratory limit on its mass do not allow for
significant contribution to the density of the Universe, and from other side,
conventional neutrino dominated models have problems with formation of
structure on small scales. However, in these scenarios the role of the chem-
ical potential of neutrinos was overlooked, while it could help solving both
problems.

3.2.1. Massive neutrino and structure formation

Lattanzi et al. (2003) have studied the possible role of massive neutrinos in
the large scale structure formation. Although now it is clear, that massive
light neutrinos cannot be the dominant part of the dark matter, their influ-
ence on the large scale structure formation should not be underestimated. In
particular, large lepton asymmetry, still allowed by observations, can affect
cosmological constraints on neutrino mass.

3.2.2. Cellular structure of the Universe

Figure 3.1.: Cellular structure of the Universe.

1347



3. Brief description

One of the interesting possibilities, from a conceptual point of view, is the
change from the description of the physical properties by a continuous func-
tion, to a new picture by introducing a self-similar fractal structure. This
approach has been relevant, since the concept of homogeneity and isotropy
formerly apply to any geometrical point in space and leads to the concept of a
Universe observer-homogeneous Ruffini (1989). Calzetti et al. (1987),Giavalisco
(1992),Calzetti et al. (1988) have defined the correlation length of a fractal

r0 =
(

1− γ

3

)1/γ
RS, (3.2.1)

where RS is the sample size, γ = 3−D, and D is the Hausdorff dimension of
the fractal. Most challenging was the merging of the concepts of fractal, Jeans
mass of dark matter and the cellular structure in the Universe, advanced by
Ruffini et al. (1988). The cellular structure emerging from this study is repre-
sented in Figure 3.1. There the upper cutoff in the fractal structure Rcutoff ≈
100 Mpc, was associated to the Jeans mass of the ”ino” Mcell =

(

mpl

mino

)2
mpl.

Details see in Appendix C.

3.2.3. Lepton asymmetry of the Universe

Lattanzi et al. (2005),Lattanzi et al. (2006) studied how the cosmological con-
straints on neutrino mass are affected by the presence of a lepton asymmetry.
The main conclusion is that while constraints on neutrino mass do not change
by the inclusion into the cosmological model the dimensional chemical po-
tential of neutrino, as an additional parameter, the value of lepton asymmetry
allowed by the present cosmological data is surprisingly large, being

L = ∑
ν

nν − nν̄

nγ
. 0.9, (3.2.2)

Therefore, large lepton asymmetry is not ruled out by the current cosmologi-
cal data. Details see in Appendix D.

3.2.4. Mass Varying Neutrinos

A possible interesting link between neutrinos and cosmology is given by
those models of dark energy in which neutrinos interact with the scalar field
supposed to be responsible for the acceleration of the universe. In these mod-
els, the interaction between neutrinos and the scalar field usually implies a
variation of the neutrino masses on cosmological time scales. For this reason
they are known as mass-varying neutrinos (MaVaNs in short) models.

Several candidates for the accelerating component of the universe, generi-
cally dubbed dark energy (DE), have been proposed, but understanding them
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3.3. Indirect Detection of Dark Matter

theoretically and observationally has proven to be challenging. On the theo-
retical side, explaining the small value of the observed dark energy density
component, ρφ ∼ (10−3 eV)4, as well as the fact that both dark energy and
matter densities contribute significantly to the energy budget of the present
universe requires in general a strong fine tuning on the overall scale of the
dark energy models. On the observational side, choosing among the dark
energy models is a complicated task. Most of them can mimic a cosmologi-
cal constant at late times and all data until now are perfectly consistent with
this limit. In this sense, looking for different imprints that could favor the
existence of a particular model of dark energy is a path worth taking.

Recently, Franca et al. (2009) found that the MaVaNs scenario could be con-
strained not only via the dark energy effects, but also by indirect signs of the
neutrino mass variation during cosmological evolution, since neutrinos play
a key role in several epochs. In particular, they proposed a parameterization
for the neutrino mass variation that captures the essentials of those scenarios
and allows to constrain them in a model independent way, that is, without
resorting to any particular scalar field model. Using WMAP 5yr data com-
bined with the matter power spectrum of SDSS and 2dFGRS, the limit on the
present value of the neutrino mass is m0 ≡ mν(z = 0) < 0.43 (0.28) eV at 95%
C.L. for the case in which the neutrino mass was lighter (heavier) in the past,
a result competitive with the ones imposed for standard (i.e., constant mass)
neutrinos. Moreover, for the ratio of the mass variation of the neutrino mass
∆mν over the current mass m0 it is found that log[|∆mν|/m0] < −1.3 (−2.7)
at 95% C.L. for ∆mν < 0 (∆mν > 0), totally consistent with no mass variation.

3.3. Indirect Detection of Dark Matter

The motivation for studying dark matter annihilation signatures (see e.g.
Bertone et al. (2005)) has received considerable recent attention following re-
ports of a 100 GeV excess in the PAMELA data on the ratio of the fluxes of cos-
mic ray positrons to electrons Adriani et al. (2009). In the absence of any com-
pelling astrophysical explanation, the signature is reminiscent of the origi-
nal prediction of a unique dark matter annihilation signal Silk and Srednicki
(1984), although there are several problems that demand attention before any
definitive statements can be made. By far the most serious of these is the
required annihilation boost factor. The remaining difficulties with a dark
matter interpretation, including most notably the gamma ray signals from
the Galactic Centre and the inferred leptonic branching ratio, are plausibly
circumvented or at least alleviated. Recent data from the ATIC balloon ex-
periment provides evidence for a cut-off in the positron flux near 500 GeV
that supports a KK-like candidate for the annihilating particle Chang et al.
(2008) or a neutralino with incorporation of suitable radiative corrections
(Bergstrom et al., 2008).
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3. Brief description

In a pioneering paper, it was noted (Profumo, 2005) that the annihilation
signal can be boosted by a combination of coannihilations and Sommerfeld
corrrection. We remark first that the inclusion of coannihilations to boost
the annihilation cross-section modifies the relic density, and opens the 1-10
TeV neutralino mass window to the observed (WMAP5-normalised) dark
matter density. As found by Lavalle et al. (2008), the outstanding problem
now becomes that of normalisation. A boost factor of around 100 is required
to explain the HEAT data in the context of a 100 GeV neutralino. The flux
is suppressed by between one and two powers of neutralino mass, and the
problem becomes far more severe with the 1-10 TeV neutralino required by
the PAMELA/ATIC data (Cirelli et al., 2009), a boost of 104 or more being re-
quired. These latter authors included a Sommerfeld correction appropriate
to our β ≡ v/c = 0.001 dark halo and incorporated channel-dependent boost
factors to fit the data, but the required boosts still fell short of plausible values
by at least an order of magnitude.

Recently Lattanzi and Silk (2009) proposed a solution to the boost prob-
lem via Sommerfeld correction in the presence of a model of substructure
that incorporates a plausible phase space structure for CDM, also reassess-
ing the difficulty with the leptonic branching ratio and showing that it is not
insurmountable for SUSY candidates. They also evaluated the possibility of
independent confirmation via photon channels.

Then, Pieri et al. (2009b) studied the expected γ-ray flux from two local
dwarf galaxies for which Cherenkov Telescope measurements are available,
namely Draco and Sagittarius, incorporating the Sommerfeld enhancement
of the annihilation cross-section. They used recent stellar kinematical mea-
surements to model the dark matter halos of the dwarfs, and the results of
numerical simulations to model the presence of an associated population of
subhalos. They compared their predictions with the observations of Draco
and Sagittarius performed by MAGIC and HESS, respectively, and derived
exclusion limits on the effective annihilation cross-section. They also stud-
ied the sensitivities of Fermi and of the future Cherenkov Telescope Array to
cross-section enhancements. It is found that the boost factor due to the Som-
merfeld enhancement is already constrained by the MAGIC and HESS data,
with enhancements greater than ∼ 104 being excluded.

3.4. Alternative Cosmological Models

Precision measurement of the cosmological observables have lead to believe
that we leave in a flat Friedmann Universe, seeded by nearly scale-invariant
adiabatic primordial fluctuations Komatsu et al. (2009). The majority (∼ 70%)
of the energy density of the Universe is in the form of a fluid with a cosmo-
logical constant-like equation of state (w ∼ −1), dubbed dark energy, that
is responsible for the observed acceleration of the Universe Frieman et al.
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(2008). Although this “concordance model” gives a very satisfactory fit of
all available data, nevertheless it should be noted that a convincing theoret-
ical explanation for what the dark energy is, is still missing. For this reason
it is worth looking for alternatives to the concordance model. Several inter-
esting ideas have been put forward in this regard. One is that the observed
acceleration is an artefact due to small-scale inhomogeneities. However this
interpretation has to deal with the fact that hints for the presence of dark
energy come not only from the acceleration, but also from the CMB data.
Recently, Blanchard et al. (2003) have noted that in fact, by relaxing the hy-
pothesis that the fluctuation spectrum can be described by a single power
law, the CMB data can be well fitted by a Universe with zero cosmologi-
cal constant. In this alternative model, the Hubble constant has to be very

low (∼ 46 km s−1Mpc−1) with respect to the value measured by the Hub-

ble space telescope (∼ 72 km s−1Mpc−1), but this could be explained if we
were living in an underdense region, so that our local neighborhood was ex-
panding faster that the average. This would imply that the Hubble constant
measured by the HST would be larger than the “actual” Hubble constant
measuring the average expansion speed of the Universe. However, in the
paper by Blanchard et al. (2003) a thorough treatment of the statistical issues
related to the problem was missing. We reassessed the statistical significance
of their findings in a paper presently in preparation (Giusarma et al.).
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4. Publications

4.1. Publications before 2005

1. R. Ruffini, D. J. Song, and L. Stella, “On the statistical distribution off
massive fermions and bosons in a Friedmann universe” Astronomy and
Astrophysics, Vol. 125, (1983) pp. 265-270.

The distribution function of massive Fermi and Bose particles in an expanding

universe is considered as well as some associated thermodynamic quantities,

pressure and energy density. These considerations are then applied to cosmo-

logical neutrinos. A new limit is derived for the degeneracy of a cosmological

gas of massive neutrinos.

2. R. Ruffini and D. J. Song, “On the Jeans mass of weakly interacting neu-
tral massive leptons”, in Gamow cosmology, eds. F. Melchiorri and R.
Ruffini, (1986) pp. 370–385.

The cosmological limits on the abundances and masses of weakly interacting

neutral particles are strongly affected by the nonzero chemical potentials of

these leptons. For heavy leptons (mx > GeV), the value of the chemical po-

tential must be much smaller than unity in order not to give very high values

of the cosmological density parameter and the mass of heavy leptons, or they

will be unstable. The Jeans’ mass of weakly interacting neutral particles could

give the scale of cosmological structure and the masses of astrophysical ob-

jects. For a mass of the order 10 eV, the Jeans’ mass could give the scenario

of galaxy formation, the supercluster forming first and then the smaller scales,

such as clusters and galaxies, could form inside the large supercluster.

3. D. Calzetti, M. Giavalisco, R. Ruffini, J. Einasto, and E. Saar, “The corre-
lation function of galaxies in the direction of the Coma cluster”, Astro-
physics and Space Science, Vol. 137 (1987) pp. 101-106.

Data obtained by Einasto et al. (1986) on the amplitude of the correlation func-

tion of galaxies in the direction of the Coma cluster are compared with theo-

retical predictions of a model derived for a self-similar observer-homogeneous

structure. The observational samples can be approximated by cones of angu-

lar width alpha of about 77 deg. Eliminating sources of large observational

error, and by making a specified correction, the observational data are found

to agree very well with the theoretical predictions of Calzetti et al. (1987).
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4. R. Ruffini, D. J. Song, and S. Taraglio, “The ’ino’ mass and the cellu-
lar large-scale structure of the universe”, Astronomy and Astrophysics,
Vol. 190, (1988) pp. 1-9.

Within the theoretical framework of a Gamow cosmology with massive ”inos”,

the authors show how the observed correlation functions between galaxies

and between clusters of galaxies naturally lead to a ”cellular” structure for the

Universe. From the size of the ”elementary cells” they derive constraints on

the value of the masses and chemical potentials of the cosmological ”inos”.

They outline a procedure to estimate the ”effective” average mass density of

the Universe. They also predict the angular size of the inhomogeneities to be

expected in the cosmological black body radiation as remnants of this cellular

structure. A possible relationship between the model and a fractal structure is

indicated.

5. D. Calzetti, M. Giavalisco, and R. Ruffini, “The normalization of the
correlation functions for extragalactic structures”, Astronomy and As-
trophysics, Vol. 198 (1988), pp. 1-15.

It is shown that the spatial two-point correlation functions for galaxies, clus-

ters and superclusters depend explicitly on the spatial volume of the statistical

sample considered. Rules for the normalization of the correlation functions are

given and the traditional classification of galaxies into field galaxies, clusters

and superclusters is replaced by the introduction of a single fractal structure,

with a lower cut-off at galactic scales. The roles played by random and stochas-

tic fractal components in the galaxy distribution are discussed in detail.

6. M. V. Arbolino and R. Ruffini, “The ratio between the mass of the halo
and visible matter in spiral galaxies and limits on the neutrino mass”,
Astronomy and Astrophysics, Vol. 192, (1988) pp. 107-116.

Observed rotation curves for galaxies with values of the visible mass ranging

over three orders of magnitude together with considerations involving equi-

librium configurations of massive neutrinos, impose constraints on the ratio

between the masses of visible and dark halo comporents in spiral galaxies.

Upper and lower limits are derived for the mass of the particles making up the

dark matter.

7. A. Bianconi, H. W. Lee, and R. Ruffini, “Limits from cosmological nu-
cleosynthesis on the leptonic numbers of the universe”, Astronomy and
Astrophysics, Vol. 241 (1991) pp. 343-357.

Constraints on chemical potentials and masses of ’inos’ are calculated using

cosmological standard nucleosynthesis processes. It is shown that the elec-

tron neutrino chemical potential (ENCP) should not be greater than a value of

the order of 1, and that the possible effective chemical potential of the other

neutrino species should be about 10 times the ENCP in order not to conflict
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with observational data. The allowed region (consistent with the He-4 abun-

dance observations) is insensitive to the baryon to proton ratio η, while those

imposed by other light elements strongly depend on η.

8. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair
electromagnetic pulse of a black hole with electromagnetic structure”,
Astronomy and Astrophysics, Vol. 350 (1999) pp. 334-343.

We study the relativistically expanding electron-positron pair plasma formed

by the process of vacuum polarization around an electromagnetic black hole

(EMBH). Such processes can occur for EMBH’s with mass all the way up to

6 · 105M⊙. Beginning with a idealized model of a Reissner-Nordstrom EMBH

with charge to mass ratio ξ = 0.1, numerical hydrodynamic calculations are

made to model the expansion of the pair-electromagnetic pulse (PEM pulse)

to the point that the system is transparent to photons. Three idealized special

relativistic models have been compared and contrasted with the results of the

numerically integrated general relativistic hydrodynamic equations. One of

the three models has been validated: a PEM pulse of constant thickness in the

laboratory frame is shown to be in excellent agreement with results of the gen-

eral relativistic hydrodynamic code. It is remarkable that this precise model,

starting from the fundamental parameters of the EMBH, leads uniquely to the

explicit evaluation of the parameters of the PEM pulse, including the energy

spectrum and the astrophysically unprecedented large Lorentz factors (up to

6 · 103 for a 103M⊙ EMBH). The observed photon energy at the peak of the

photon spectrum at the moment of photon decoupling is shown to range from

0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total

energy in photons is in the range of 1052 to 1054 ergs, consistent with observed

gamma-ray bursts. In these computations we neglect the presence of baryonic

matter which will be the subject of forthcoming publications.

9. R. Ruffini, J. D. Salmonson, J. R. Wilson, and S.-S. Xue, “On the pair-
electromagnetic pulse from an electromagnetic black hole surrounded
by a baryonic remnant”, Astronomy and Astrophysics, Vol. 359 (2000)
pp. 855-864.

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with

a shell of baryonic matter surrounding a Black Hole with electromagnetic struc-

ture (EMBH) is analyzed for selected values of the baryonic mass at selected

distances well outside the dyadosphere of an EMBH. The dyadosphere, the

region in which a super critical field exists for the creation of e+e− pairs, is

here considered in the special case of a Reissner-Nordstrom geometry. The in-

teraction of the PEM pulse with the baryonic matter is described using a sim-

plified model of a slab of constant thickness in the laboratory frame (constant-

thickness approximation) as well as performing the integration of the general

relativistic hydrodynamical equations. Te validation of the constant-thickness

approximation, already presented in a previous paper Ruffini et al. (1999) for a
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PEM pulse in vacuum, is here generalized to the presence of baryonic matter.

It is found that for a baryonic shell of mass-energy less than 1% of the total

energy of the dyadosphere, the constant-thickness approximation is in excel-

lent agreement with full general relativistic computations. The approximation

breaks down for larger values of the baryonic shell mass, however such cases

are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of

numerical computations of the slab model for PEM pulses, we describe (i) the

properties of relativistic evolution of a PEM pulse colliding with a baryonic

shell; (ii) the details of the expected emission energy and observed tempera-

ture of the associated GRBs for a given value of the EMBH mass; 103M⊙, and

for baryonic mass-energies in the range 10−8 to 10−2 the total energy of the

dyadosphere.

10. M. Lattanzi, R. Ruffini, and G. Vereshchagin, “On the possible role of
massive neutrinos in cosmological structure formation”, in Cosmology
and Gravitation, eds. M. Novello and S. E. Perez Bergliaffa, Vol. 668 of
AIP Conference Series, (2003) pp. 263–287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe

that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

4.2. Publications (2005 - 2008)

1. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of
nonequilibrium electron-positron-photon plasmas”, Physical Review Let-
ters, Vol. 99 (2007) No 12, 125003.

Starting from a nonequilibrium configuration we analyze the role of the di-

rect and the inverse binary and triple interactions in reaching thermal equi-

librium in a homogeneous isotropic pair plasma. We focus on energies in the

range 0.1− 10 MeV. We numerically integrate the relativistic Boltzmann equa-

tion with the exact QED collisional integrals taking into account all binary and

triple interactions. We show that first, when a detailed balance is reached for

all binary interactions on a time scale tk < 10−14 sec, photons and electron-

positron pairs establish kinetic equilibrium. Subsequently, when triple inter-

actions satisfy the detailed balance on a time scale teq < 10−12 sec, the plasma

1356



4.2. Publications (2005 - 2008)

reaches thermal equilibrium. It is shown that neglecting the inverse triple in-

teractions prevents reaching thermal equilibrium. Our results obtained in the

theoretical physics domain also find application in astrophysics and cosmol-

ogy.

2. C.L. Bianco, R. Ruffini, G.V. Vereshchagin and S.-S. Xue, “Equations of
Motion and Initial and Boundary Conditions for Gamma-ray Burst”,
Journal of the Korean Physical Society, Vol. 49 (2006) No. 2, pp. 722-
731.

We compare and contrast the different approaches to the optically thick adia-

batic phase of GRB all the way to the transparency. Special attention is given

to the role of the rate equation to be self consistently solved with the rela-

tivistic hydrodynamic equations. The works of Shemi and Piran (1990), Piran,

Shemi and Narayan (1993), Meszaros, Laguna and Rees (1993) and Ruffini,

Salmonson, Wilson and Xue (1999,2000) are compared and contrasted. The role

of the baryonic loading in these three treatments is pointed out. Constraints

on initial conditions for the fireball produced by electro-magnetic black hole

are obtained.

3. P. Singh, K. Vandersloot and G.V. Vereshchagin, “Nonsingular bouncing
universes in loop quantum cosmology”, Physical Review D, Vol. 74
(2006) 043510.

Nonperturbative quantum geometric effects in loop quantum cosmology (LQC)

predict a ρ2 modification to the Friedmann equation at high energies. The

quadratic term is negative definite and can lead to generic bounces when the

matter energy density becomes equal to a critical value of the order of the

Planck density. The nonsingular bounce is achieved for arbitrary matter with-

out violation of positive energy conditions. By performing a qualitative anal-

ysis we explore the nature of the bounce for inflationary and cyclic model po-

tentials. For the former we show that inflationary trajectories are attractors

of the dynamics after the bounce implying that inflation can be harmoniously

embedded in LQC. For the latter difficulties associated with singularities in

cyclic models can be overcome. We show that nonsingular cyclic models can

be constructed with a small variation in the original cyclic model potential by

making it slightly positive in the regime where scalar field is negative.

4. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, “Joint constraints on the
lepton asymmetry of the Universe and neutrino mass from the Wilkin-
son Microwave Anisotropy Probe”, Physical Review D, Vol. 72 (2005)
063003.

We use the Wilkinson Microwave Anisotropy Probe (WMAP) data on the spec-

trum of cosmic microwave background anisotropies to put constraints on the

present amount of lepton asymmetry L, parametrized by the dimensionless

chemical potential (also called degeneracy parameter) xi and on the effective
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number of relativistic particle species. We assume a flat cosmological model

with three thermally distributed neutrino species having all the same mass

and chemical potential, plus an additional amount of effectively massless ex-

otic particle species. The extra energy density associated to these species is

parametrized through an effective number of additional species ∆Nothers
e f f .

We find that 0 < |ξ| < 1.1 and correspondingly 0 < |L| < 0.9 at 2σ, so that

WMAP data alone cannot firmly rule out scenarios with a large lepton number;

moreover, a small preference for this kind of scenarios is actually found. We

also discuss the effect of the asymmetry on the estimation of other parameters

and, in particular, of the neutrino mass. In the case of perfect lepton symmetry,

we obtain the standard results. When the amount of asymmetry is left free, we

find at 2sigma. Finally we study how the determination of |L| is affected by

the assumptions on ∆Nothers
e f f . We find that lower values of the extra energy

density allow for larger values of the lepton asymmetry, effectively ruling out,

at 2sigma level, lepton symmetric models with ∆Nothers
e f f ≃ 0.

5. G.V. Vereshchagin, “Gauge Theories of Gravity with the Scalar Field in
Cosmology”, in “Frontiers in Field Theory”, edited by O. Kovras, Nova
Science Publishers, New York, (2005), pp. 213-255 (ISBN: 1-59454-127-
2).

Brief introduction into gauge theories of gravity is presented. The most general

gravitational lagrangian including quadratic on curvature, torsion and non-

metricity invariants for metric-affine gravity is given. Cosmological implica-

tions of gauge gravity are considered. The problem of cosmological singularity

is discussed within the framework of general relativity as well as gauge theo-

ries of gravity. We consider the role of scalar field in connection to this prob-

lem. Initial conditions for nonsingular homogeneous isotropic Universe filled

by single scalar field are discussed within the framework of gauge theories of

gravity. Homogeneous isotropic cosmological models including ultrarelativis-

tic matter and scalar field with gravitational coupling are investigated. We

consider different symmetry states of effective potential of the scalar field, in

particular restored symmetry at high temperatures and broken symmetry. Ob-

tained bouncing solutions can be divided in two groups, namely nonsingular

inflationary and

oscillating solutions. It is shown that inflationary solutions exist for quite gen-

eral initial conditions like in the case of general relativity. However, the phase

space of the dynamical system, corresponding to the cosmological equations

is bounded. Violation of the uniqueness of solutions on the boundaries of the

phase space takes place. As a result, it is impossible to define either the past

or the future for a given solution. However, definitely there are singular solu-

tions and therefore the problem of cosmological singularity cannot be solved

in models with the scalar field within gauge theories of gravity.

6. R. Ruffini, M. G. Bernardini, C. L. Bianco, L. Caito, P. Chardonnet, M.
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G. Dainotti, F. Fraschetti, R. Guida, M. Rotondo, G. Vereshchagin, L.
Vitagliano, S.-S. Xue,
”The Blackholic energy and the canonical Gamma-Ray Burst” in Cos-
mology and Gravitation: XIIth Brazilian School of Cosmology and Grav-
itation, edited by M. Novello and S.E. Perez Bergliaffa, AIP Conference
Proceedings, Vol. 910, Melville, New York, 2007, pp. 55-217.

Gamma-Ray Bursts (GRBs) represent very likely “the” most extensive com-

putational, theoretical and observational effort ever carried out successfully

in physics and astrophysics. The extensive campaign of observation from

space based X-ray and γ-ray observatory, such as the Vela, CGRO, BeppoSAX,

HETE-II, INTEGRAL, Swift, R-XTE, Chandra, XMM satellites, have been matched

by complementary observations in the radio wavelength (e.g. by the VLA)

and in the optical band (e.g. by VLT, Keck, ROSAT). The net result is unprece-

dented accuracy in the received data allowing the determination of the ener-

getics, the time variability and the spectral properties of these GRB sources.

The very fortunate situation occurs that these data can be confronted with a

mature theoretical development. Theoretical interpretation of the above data

allows progress in three different frontiers of knowledge: a) the ultrarelativis-

tic regimes of a macroscopic source moving at Lorentz gamma factors up to

∼ 400; b) the occurrence of vacuum polarization process verifying some of the

yet untested regimes of ultrarelativistic quantum field theories; and c) the first

evidence for extracting, during the process of gravitational collapse leading to

the formation of a black hole, amounts of energies up to 1055 ergs of black-

holic energy — a new form of energy in physics and astrophysics. We outline

how this progress leads to the confirmation of three interpretation paradigms

for GRBs proposed in July 2001. Thanks mainly to the observations by Swift

and the optical observations by VLT, the outcome of this analysis points to the

existence of a “canonical” GRB, originating from a variety of different initial

astrophysical scenarios. The communality of these GRBs appears to be that

they all are emitted in the process of formation of a black hole with a negligi-

ble value of its angular momentum. The following sequence of events appears

to be canonical: the vacuum polarization process in the dyadosphere with the

creation of the optically thick self accelerating electron-positron plasma; the

engulfment of baryonic mass during the plasma expansion; adiabatic expan-

sion of the optically thick “fireshell” of electron-positron-baryon plasma up

to the transparency; the interaction of the accelerated baryonic matter with

the interstellar medium (ISM). This leads to the canonical GRB composed of a

proper GRB (P-GRB), emitted at the moment of transparency, followed by an

extended afterglow. The sole parameters in this scenario are the total energy of

the dyadosphere Edya, the fireshell baryon loading MB defined by the dimen-

sionless parameter B = MBc2/Edya , and the ISM filamentary distribution

around the source. In the limit B −→ 0 the total energy is radiated in the P-

GRB with a vanishing contribution in the afterglow. In this limit, the canonical
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GRBs explain as well the short GRBs. In these lecture notes we systematically

outline the main results of our model comparing and contrasting them with

the ones in the current literature. In both cases, we have limited ourselves to

review already published results in refereed publications. We emphasize as

well the role of GRBs in testing yet unexplored grounds in the foundations of

general relativity and relativistic field theories.

7. M. Lattanzi, R. Ruffini and G.V. Vereshchagin, ”Do WMAP data con-
straint the lepton asymmetry of the Universe to be zero?” in Albert Ein-
stein Century International Conference, edited by J.-M. Alimi, and A.
Füzfa, AIP Conference Proceedings, Vol. 861, Melville, New York, 2006,
pp.912-919.

It is shown that extended flat ΛCDM models with massive neutrinos, a size-

able lepton asymmetry and an additional contribution to the radiation content

of the Universe, are not excluded by the Wilkinson Microwave Anisotropy

Probe (WMAP) first year data. We assume a flat cosmological model with

three thermally distributed neutrino species having all the same mass and

chemical potential, plus an additional amount of effectively massless exotic

particle species X. After maximizing over seven other cosmological parame-

ters, we derive from WMAP first year data the following constraints for the

lepton asymmetry L of the Universe (95% CL): 0 < |L| < 0.9, so that WMAP

data alone cannot firmly rule out scenarios with a large lepton number; more-

over, a small preference for this kind of scenarios is actually found. We also

find for the neutrino mass mν < 1.2eV and for the effective number of rela-

tivistic particle species −0.45 < ∆Ne f f < 2.10, both at 95% CL. The limit on

∆Ne f f is more restrictive man others found in the literature, but we argue that

this is due to our choice of priors.

8. R. Ruffini, C.L. Bianco, G.V. Vereshchagin, S.-S. Xue “Baryonic loading
and e+e− rate equation in GRB sources” to appear in the proceedings
of ”Relativistic Astrophysics and Cosmology - Einstein’s Legacy” Meet-
ing, November 7-11, 2005, Munich, Germany.

The expansion of the electron-positron plasma in the GRB phenomenon is

compared and contrasted in the treatments of Meszaros, Laguna and Rees, of

Shemi, Piran and Narayan, and of Ruffini et al. The role of the correct numeri-

cal integration of the hydrodynamical equations, as well as of the rate equation

for the electron-positron plasma loaded with a baryonic mass, are outlined and

confronted for crucial differences.

9. G.V. Vereshchagin, M. Lattanzi, H.W. Lee, R. Ruffini, ”Cosmological
massive neutrinos with nonzero chemical potential: I. Perturbations in
cosmological models with neutrino in ideal fluid approximation”, in
proceedings of the Xth Marcel Grossmann Meeting on Recent Develop-
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ments in Theoretical and Experimental General Relativity, World Scien-
tific: Singapore, 2005, vol. 2, pp. 1246-1248.

Recent constraints on neutrino mass and chemical potential are discussed with

application to large scale structure formation. Power spectra in cosmologi-

cal model with hot and cold dark matter, baryons and cosmological term are

calculated in newtonian approximation using linear perturbation theory. All

components are considered to be ideal fluids. Dissipative processes are taken

into account by initial spectrum of perturbations so the problem is reduced to

a simple system of equations. Our results are in good agreement with those

obtained before using more complicated treatments.

10. M. Lattanzi, H.W. Lee, R. Ruffini, G.V. Vereshchagin, ”Cosmological
massive neutrinos with nonzero chemical potential: II. Effect on the es-
timation of cosmological parameters”, in proceedings of the Xth Marcel
Grossmann Meeting on Recent Developments in Theoretical and Exper-
imental General Relativity, World Scientific: Singapore, 2005, vol. 2, pp.
1255-1257.

The recent analysis of the cosmic microwave background data carried out by

the WMAP team seems to show that the sum of the neutrino mass is <0.7 eV.

However, this result is not model-independent, depending on precise assump-

tions on the cosmological model. We study how this result is modified when

the assumption of perfect lepton symmetry is dropped out.

11. R. Ruffini, M. Lattanzi and G. Vereshchagin, ”On the possible role of
massive neutrinos in cosmological structure formation” in Cosmology
and Gravitation: Xth Brazilian School of Cosmology and Gravitation,
edited by M. Novello and S.E. Perez Bergliaffa, AIP Conference Pro-
ceedings, Vol. 668, Melville, New York, 2003, pp.263-287.

In addition to the problem of galaxy formation, one of the greatest open ques-

tions of cosmology is represented by the existence of an asymmetry between

matter and antimatter in the baryonic component of the Universe. We believe

that a net lepton number for the three neutrino species can be used to under-

stand this asymmetry. This also implies an asymmetry in the matter-antimatter

component of the leptons. The existence of a nonnull lepton number for the

neutrinos can easily explain a cosmological abundance of neutrinos consistent

with the one needed to explain both the rotation curves of galaxies and the

flatness of the Universe. Some propedeutic results are presented in order to

attack this problem.

12. A.G. Aksenov, C.L. Bianco, R. Ruffini and G.V. Vereshchagin, “GRBs
and the thermalization process of electron-positron plasmas” in the Pro-
ceedings of the ”Gamma Ray Bursts 2007” meeting, AIP Conf.Proc.
1000 (2008) 309-312.
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We discuss temporal evolution of the pair plasma, created in Gamma-Ray

Bursts sources. A particular attention is paid to the relaxation of plasma into

thermal equilibrium. We also discuss the connection between the dynamics of

expansion and spatial geometry of plasma. The role of the baryonic loading

parameter is emphasized.

13. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
Electron-Positron-Photon Plasmas with an Application to GRB” in REL-
ATIVISTIC ASTROPHYSICS: 4th Italian-Sino Workshop, AIP Confer-
ence Proceedings, Vol. 966, Melville, New York, 2008, pp. 191-196.

The pair plasma with photon energies in the range 0.1− 10MeV is believed

to play crucial role in cosmic Gamma-Ray Bursts. Starting from a nonequilib-

rium configuration we analyze the role of the direct and the inverse binary and

triple interactions in reaching thermal equilibrium in a homogeneous isotropic

pair plasma.We numerically integrate the relativistic Boltzmann equation with

the exact QED collisional integrals taking into account all binary and triple in-

teractions. We show that first, when a detailed balance is reached for all bi-

nary interactions on a time scale tk= 10−14sec , photons and electronpositron

pairs establish kinetic equilibrium. Subsequently, when triple interactions sat-

isfy the detailed balance on a time scale teq= 10−12sec , the plasma reaches

thermal equilibrium. It is shown that neglecting the inverse triple interactions

prevents reaching thermal equilibrium. Our results obtained in the theoretical

physics domain also find application in astrophysics and cosmology.

14. R. Ruffini, and G. V. Vereshchagin, S.-S. Xue, “Vacuum Polarization
and Electron-Positron Plasma Oscillations” in RELATIVISTIC ASTRO-
PHYSICS: 4th Italian-Sino Workshop, AIP Conference Proceedings, Vol.
966, Melville, New York, 2008, pp. 207-212.

We study plasma oscillations of electrons-positron pairs created by the vacuum

polarization in an uniform electric field. Our treatment, encompassing the

case of E > Ec, shows also in the case E < Ecthe existence of a maximum

Lorentz factor acquired by electrons and positrons and allows determination

of the a maximal length of oscillation. We quantitatively estimate how plasma

oscillations reduce the rate of pair creation and increase the time scale of the

pair production.

4.3. Publications (2009)

1. A.G. Aksenov, R. Ruffini and G.V. Vereshchagin, “Thermalization of the
mildly relativistic plasma”, Physical Review D, Vol. 79 (2009) 043008.

In the recent Letter Aksenov et al. (2007) we considered the approach of nonequi-

librium pair plasma towards thermal equilibrium state adopting a kinetic treat-

ment and solving numerically the relativistic Boltzmann equations. It was
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shown that plasma in the energy range 0.1-10 MeV first reaches kinetic equi-

librium, on a timescale tk . 10−14 sec, with detailed balance between binary

interactions such as Compton, Bhabha and Møller scattering, and pair produc-

tion and annihilation. Later the electron-positron-photon plasma approaches

thermal equilibrium on a timescale tth . 10−12 sec, with detailed balance for

all direct and inverse reactions. In the present paper we systematically present

details of the computational scheme used in Aksenov et al. (2007), as well as

generalize our treatment, considering proton loading of the pair plasma. When

proton loading is large, protons thermalize first by proton-proton scattering,

and then with the electron-positron-photon plasma by proton-electron scatter-

ing. In the opposite case of small proton loading proton-electron scattering

dominates over proton-proton one. Thus in all cases the plasma, even with

proton admixture, reaches thermal equilibrium configuration on a timescale

tth . 10−11 sec. We show that it is crucial to account for not only binary but

also triple direct and inverse interactions between electrons, positrons, pho-

tons and protons. Several explicit examples are given and the corresponding

timescales for reaching kinetic and thermal equilibria are determined.

2. A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization of
pair plasma with proton loading” in the Proceedings of “PROBING
STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE” meet-
ing, AIP Conference Proceedings 1111 (2009) 344-350.

We study kinetic evolution of nonequilibrium optically thick electron-positron

plasma towards thermal equilibrium solving numerically relativistic Boltz-

mann equations with energy per particle ranging from 0.1 to 10 MeV. We gen-

eralize our results presented in Aksenov et al. (2007), considering proton load-

ing of the pair plasma. Proton loading introduces new characteristic timescales

essentially due to proton-proton and proton-electron Coulomb collisions. Tak-

ing into account not only binary but also triple direct and inverse interactions

between electrons, positrons, photons and protons we show that thermal equi-

librium is reached on a timescale tth ≃ 10−11 sec.

3. M. Lattanzi, J. Silk “Can the WIMP annihilation boost factor be boosted
by the Sommerfeld enhancement? ”, in Phys. Rev. D79, 083523 (2009).

We demonstrate that the Sommerfeld correction to cold dark matter (CDM)

annihilations can be appreciable if even a small component of the dark matter

is extremely cold. Subhalo substructure provides such a possibility given that

the smallest clumps are relatively cold and contain even colder substructure

due to incomplete phase space mixing. Leptonic channels can be enhanced

for plausible models and the solar neighbourhood boost required to account

for PAMELA/ATIC data is plausibly obtained, especially in the case of a few

TeV mass neutralino for which the Sommerfeld-corrected boost is found to

be ∼ 104 − 105. Saturation of the Sommerfeld effect is shown to occur below

β ∼ 10−4, thereby making this result largely independent on the presence of
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substructures below ∼ 105M⊙. We find that the associated diffuse gamma ray

signal from annihilations would exceed EGRET constraints unless the chan-

nels annihilating to heavy quarks or to gauge bosons are suppressed. The

lepton channel gamma rays are potentially detectable by the FERMI satellite,

not from the inner galaxy where substructures are tidally disrupted, but rather

as a quasi-isotropic background from the outer halo, unless the outer substruc-

tures are much less concentrated than the inner substructures and/or the CDM

density profile out to the virial radius steepens significantly.

4. L. Pieri, M. Lattanzi, J. Silk “Constraining the Sommerfeld enhancement
with Cherenkov telescope observations of dwarf galaxies”, in Mon. Not.
Roy. Astron. Soc., in press (2009).

The presence of dark matter in the halo of our galaxy could be revealed through

indirect detection of its annihilation products. Dark matter annihilation is one

possible interpretation of the recently measured excesses in positron and elec-

tron fluxes, provided that boost factors of the order of 103 or more are taken

into account. Such boost factors are actually achievable through the velocity-

dependent Sommerfeld enhancement of the annihilation cross-section. Here

we study the expected γ-ray flux from two local dwarf galaxies for which

Cherenkov Telescope measurements are available, namely Draco and Sagit-

tarius. We use recent stellar kinematical measurements to model the dark mat-

ter halos of the dwarfs, and the results of numerical simulations to model the

presence of an associated population of subhalos. We incorporate the Som-

merfeld enhancement of the annihilation cross-section. We compare our pre-

dictions with the observations of Draco and Sagittarius performed by MAGIC

and HESS, respectively, and derive exclusion limits on the effective annihila-

tion cross-section. We also study the sensitivities of Fermi and of the future

Cherenkov Telescope Array to cross-section enhancements. We find that the

boost factor due to the Sommerfeld enhancement is already constrained by

the MAGIC and HESS data, with enhancements greater than ∼ 104 being ex-

cluded.

5. M. Lattanzi, “Mass Varying Neutrinos: A model-independent approach”,
in Nucl. Phys. Proc. Suppl. 188, 40, (2009).

In Mass Varying Neutrinos (MaVaNs) models, the neutrinos are coupled with

the quintessence field supposed to be responsible for the acceleration of the

Universe. Here we propose a new parameterization for the neutrino mass

variation that is independent on the details of the scalar field potential and still

captures the essential of most MaVaNs models. We also find an upper limit on

the mass variation in the case of decreasing mass models, independent of the

particular parameterization.

6. U. Franca, M. Lattanzi, J. Lesgourgues, S. Pastor “Model independent
constraints on mass-varying neutrino scenarios”, in Phys. Rev. D80,
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083506 (2009).

Models of dark energy in which neutrinos interact with the scalar field sup-

posed to be responsible for the acceleration of the universe usually imply a

variation of the neutrino masses on cosmological time scales. In this work we

propose a parameterization for the neutrino mass variation that captures the

essentials of those scenarios and allows to constrain them in a model indepen-

dent way, that is, without resorting to any particular scalar field model. Us-

ing WMAP 5yr data combined with the matter power spectrum of SDSS and

2dFGRS, the limit on the present value of the neutrino mass is m0 ≡ mν(z =

0) < 0.43 (0.28) eV at 95% C.L. for the case in which the neutrino mass was

lighter (heavier) in the past, a result competitive with the ones imposed for

standard (i.e., constant mass) neutrinos. Moreover, for the ratio of the mass

variation of the neutrino mass ∆mν over the current mass m0 we found that

log[|∆mν|/m0] < −1.3 (−2.7) at 95% C.L. for ∆mν < 0 (∆mν > 0), totally
consistent with no mass variation.

4.4. Invited talks at international conferences

1. “From thermalization mechanisms to emission processes in GRBs”

(G.V. Vereshchagin)

XII Marcel Grossmann Meeting, Paris, 12-18 July 2009.

2. “Kinetics of the mildly relativistic plasma and GRBs”

(A.G. Aksenov R. Ruffini, and G.V. Vereshchagin)

“The Sun, the Stars, the Universe, and General Relativity” - Interna-
tional conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk,
Belarus, April 19-23, 2009.

3. “Pair plasma around compact astrophysical sources: kinetics, electro-
dynamics and hydrodynamics”

(G.V. Vereshchagin and R. Ruffini)

Invited seminar at RMKI, Budapest, February 24, 2009.

4. “Thermalization of the pair plasma with proton loading”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)

Probing Stellar Populations out to the Distant Universe, Cefalu’, Italy,
September 7-19, 2008.

5. “Thermalization of the pair plasma with proton loading”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)

3rd Stueckelberg Workshop, Pescara, Italy, 8-18 July, 2008.
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6. “Thermalization of the pair plasma”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)

7. “Non-singular solutions in Loop Quantum Cosmology”

(G.V. Vereshchagin)

2nd Stueckelberg Workshop, Pescara, Italy, 3-7 September, 2007.

8. “(From) massive neutrinos and inos and the upper cutoff to the fractal
structure of the Universe (to recent progress in theoretical cosmology)”

(G.V. Vereshchagin, M. Lattanzi and R. Ruffini)

A Century of Cosmology, San Servolo, Venice, Italy, 27-31 August, 2007.

9. “Pair creation and plasma oscillations”

(G.V. Vereshchagin, R. Ruffini, and S.-S. Xue)
4th Italian-Sino Workshop on Relativistic Astrophysics, Pescara, Italy,
20-29 July, 2007.

10. “Thermalization of electron-positron plasma in GRB sources”

(G.V. Vereshchagin, R. Ruffini, and A.G. Aksenov)
Xth Italian-Korean Symposium on Relativistic Astrophysics, Pescara,
Italy, 25-30 June, 2007.

11. “Kinetics and hydrodynamics of the pair plasma”

(G.V. Vereshchagin, R. Ruffini, C.L. Bianco, A.G. Aksenov)

12. “Pair creation and plasma oscillations”

(G.V. Vereshchagin, R. Ruffini and S.-S. Xue)
Cesare Lattes Meeting on GRBs, Black Holes and Supernovae, Mangaratiba-
Portobello, Brazil, 26 February - 3 March 2007.

13. “Cavallo-Rees classification revisited”

(G.V. Vereshchagin, R.Ruffini and S.-S. Xue)

On recent developments in theoretical and experimental general rela-
tivity, gravitation and relativistic field theories: XIth Marcel Grossmann
Meeting, Berlin, Germany, 23-29 July, 2006.

14. “Kinetic and thermal equilibria in the pair plasma”

(G.V. Vereshchagin)

The 1st Bego scientific rencontre, Nice, 5-16 February 2006.
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15. “From semi-classical LQC to Friedmann Universe”

(G.V. Vereshchagin)

Loops ’05, Potsdam, Golm, Max-Plank Institut für Gravitationsphysik
(Albert-Einstein-Institut), 10-14 October 2005.

16. “Equations of motion, initial and boundary conditions for GRBs”

(G.V. Vereshchagin, R. Ruffini and S.-S. Xue)

IXth Italian-Korean Symposium on Relativistic Astrophysics, Seoul, Mt.
Kumgang, Korea, 19-24 July 2005.

17. “On the Cavallo-Rees classification and GRBs”

(G.V. Vereshchagin, R. Ruffini and S.-S. Xue)

II Italian-Sino Workshop on Relativistic Astrophysics, Pescara, Italy, 10-
20 June, 2005.
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A. Pair plasma relaxation
timescales

Current interest toward electron-positron plasmas is due to an exciting pos-
sibility to generate such plasmas in the laboratory conditions with already
operating facilities or those under construction, see e.g. Myatt et al. (2009),
for a review see Ruffini et al. (2009b). An impressive progress with ultrain-
tense lasers Chen et al. (2009) allows to reach unprecedented density of cre-
ated positrons of 1016 cm−3 with ultraintense short laser pulses, with dimen-
sions close to the Debye length. However, such densities have not yet reached
the creation of optically thick pair plasma Katz (2000),Mustafa and Kämpfer
(2009). In the focus of ultra intense lasers pairs are created via the Bethe-
Heitler conversion of hard x-ray bremsstrahlung photons Myatt et al. (2009)
in collisionless regime Wilks et al. (1992). The approach to optically thick
phase may be well envisaged in the near future.

Electron-positron plasmas are known to be present in compact astrophys-
ical objects, leaving characteristic imprint in the observed radiation spec-
tra Churazov et al. (2005). Optically thick electron-positron plasma does in-
deed have a crucial role in the Gamma-Ray Bursts phenomenon Ruffini et al.
(2009b),Ruffini et al. (2009a).

Most theoretical considerations so far assumed that electron-positron plasma
is formed either in thermal equilibrium (common temperature, zero chemi-
cal potentials) or in chemical equilibrium (nonzero chemical potentials), see
e.g. Thoma (2009) and references therein. However, it is necessary to estab-
lish the timescale for actually reaching such configuration. The only way for
particles to thermalize, i.e. reach equilibrium distributions (Bose-Einstein or
Fermi-Dirac) is via collisions. Collisions become relevant when the mean free
path of particles becomes smaller than the spatial dimensions of plasma, and
so optical thickness condition is crucial for thermalization.

Thermalization, or chemical equilibration timescales for optically thick plas-
mas are estimated in the literature by an order of magnitude arguments using
essentially the reaction rates of dominant particle interaction processes, see
e.g. Gould (1981),Stepney (1983). They were computed using various approx-
imations such as ultrarelativistic electrons and constant Coulomb logarithm.
Accurate determination of such timescales is here presented by solving the
relativistic Boltzmann equations, including collisional integrals representing
all possible particle interactions. In that case Boltzmann equations become
highly nonlinear coupled partial integro-differential equations, and can be
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A. Pair plasma relaxation timescales

solved only numerically.

We developed relativistic kinetic code, treating the plasma as homoge-
neous and isotropic and determined thermalization timescales of electron-
positron plasma for selected initial conditions Aksenov et al. (2007). Our ap-
proach has been generalized to include protons in Aksenov et al. (2009c). We
focus on electromagnetic interactions only which have a timescales of less
than 10−9 sec for our system, and therefore on the proton and leptonic com-
ponent. The presence of neutrons and their possible equilibrium due to weak
interactions will occur only on much longer timescales.

In this Letter we report on the systematic results, obtained by exploring the
wide parameter space characterizing pair plasma with baryonic loading. The
two basic parameters are the total energy density ρ and the baryonic loading
parameter

B ≡ ρb

ρe,γ
≃ npmpc2

ρe,γ
, (A.0.1)

where ρb and ρe,γ are total energy densities of baryons and electron-positron-
photon plasma, respectively, np and mp are proton number density and pro-
ton mass, c is the speed of light. We choose the following range of plasma
parameters

1023 ≤ ρ ≤ 1033 erg/cm3, (A.0.2)

10−3 ≤ B ≤ 103, (A.0.3)

allowing one to treat also the limiting cases of almost pure electron-positron
plasma with B ≪ 1, and almost pure electron-ion plasma with B ≃ mp/me,
respectively. The temperatures in thermal equilibrium, corresponding to (A.0.2)
are 0.1 . kBT . 10 MeV.

Given the smallness of plasma parameter g = (neλD)
3 ≪ 1, where λD is

the Debye length, ne is electron number density, it is sufficient to use only one-
particle distribution functions. In homogeneous and isotropic plasma distri-
bution functions depend on energy of a particle and time f (ǫ, t). We treat the
plasma as nondegenerate, neglecting neutrino channels as well as creation
and annihilation of baryons and weak interactions Aksenov et al. (2009c).

Relativistic Boltzmann equations Belyaev and Budker (1956), Mihalas and Mihalas
(1984) for photons, electrons, positrons, and protons in our case are

1

c

∂ fi

∂t
= ∑

q

(η
q
i − χ

q
i fi), (A.0.4)

the index i denotes the type of the particle and η
q
i , χ

q
i are the emission and

the absorption coefficients for the production of i-particle via the reaction la-
beled by q. We account for all relecant binary and triple interactions between
electrons, positrons, photons, and protons as summarized in Table A.1, and
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Binary interactions Radiative and
pair producing variants

Møller and Bhabha Bremsstrahlung

e±1 e±2 −→ e±1
′
e±2
′

e±1 e±2 ↔e±′1 e±′2 γ
e±e∓ −→ e±′e∓′ e±e∓↔e±′e∓′γ
Single Compton Double Compton

e±γ−→e±γ′ e±γ↔e±′γ′γ′′

Pair production Radiative pair production
and annihilation and 3-photon annihilation

γγ′↔e±e∓ γγ′↔e±e∓γ′′

e±e∓↔γγ′γ′′

e±γ↔e±′e∓e±′′

Table A.1.: Microphysical processes in the pair plasma.

Binary interactions Radiative and
(Coulomb scattering) pair producing variants

p1p2 −→ p′1p′2 pe± ↔ p
′
e±′γ

pe± −→ p
′
e±′ pγ↔p′e±e∓

Table A.2.: Microphysical processes in the pair plasma involving protons. For
details see also Ruffini et al. (2009b).

Table A.2.
It has been shown Aksenov et al. (2007) that independent on the functional

form of initial distribution functions fi(ǫ, 0) plasma evolves to thermal equi-
librium state through the kinetic equilibrium, when distribution functions of
all particles acquire the same form

fi(ε) = exp

(

− ε− ϕi

θi

)

, (A.0.5)

where εi = ǫi/(mic
2) is the energy of the particles, ϕi ≡ µi/(mic

2) and
θi ≡ kBTi/(mic

2) are their chemical potentials and temperatures, kB is Boltz-
mann’s constant. The unique signature of the kinetic equilibrium is the equal
temperature of all particles and nonzero chemical potential of photons. In
fact the same is also true for pair plasma with proton loading Aksenov et al.
(2009c). Approach to complete thermal equilibrium is more complicated in
this latter case and depends on the baryon loading. For B ≪

√

mp/me pro-
tons are rare and thermalize via proton-electron (positron) elastic scattering,
while in the opposite case B ≫

√

mp/me proton-proton Coulomb scatter-
ing dominates over the proton-electron one and brings protons in thermal
equilibrium first with themselves. Then protons thermalize with the pair
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Figure A.1.: The thermalization time scale of electron-positron-photon com-
ponent of plasma as function of total energy density and baryonic loading
parameter. Energy density is measured in erg/cm3, time is seconds.

plasma by triple interactions. Two-body timescales involving protons should
be compared with three-body timescales bringing electron-positron-photon
plasma to thermal equilibrium. In fact we found that for B ≪ 1 electron-
positron-photon plasma reaches thermal equilibrium at a given temperature,
while protons reach thermal equilibrium with themselves at a different tem-
perature; only later plasma evolves to complete thermal equilibrium with the
single temperature on a timescale

τth ≃ Max
[

τ3p, Min
(

τep, τpp

)]

, (A.0.6)

where

τep ≃
mpc

ǫeσTne
, (A.0.7)

τpp ≃
√

mp

me

(

σTnpc
)−1

, (A.0.8)

τ3p ≃ (ασTnec)−1 (A.0.9)

are the proton-electron (positron) elastic scattering timescale, proton-proton
elastic scattering timescale, and three-particle interaction timescale, respec-
tively, σT is the Thomson cross-section, α is the fine structure constant. In
(A.0.7)-(A.0.9) energy dependence of the corresponding timescales is neglected.
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Figure A.2.: The final thermalization timescale of pair plasma with baryonic
loading as function of total energy density and baryonic loading parameter.
Energy density is measured in erg/cm3, time is seconds.

The chemical relaxation (thermalization) time scale is usually computed as

τi = lim
t→∞

{

[Fi(t)− Fi(∞)]

(

dFi

dt

)−1
}

, (A.0.10)

where Fi = exp (ϕi/θi) is fugacity of a particle of sort i. We use instead of Fi

one of the quantities θi, ϕi, ni, or ρi.

We solved the Boltzmann equations with parameters (ρ, B) in the range
given by Eqs. (A.0.2) and (A.0.3). Totally 78 models were computed, starting
from nonequilibrium configuration until the reaching of steady solution on
the computational grid with 20 intervals for particle energy and 16 intervals
for angles, details see in Aksenov et al. (2009c). For each model we computed
the corresponding timescales for all particles of i kind. For practical purposes
instead of (A.0.10) we used the following approximation

τth =
1

t f in − tin

∫ t f in

tin

[θ(t) − θ(tmax)]

(

dθ

dt

)−1

dt, (A.0.11)

with tin < t f in < tmax, tmax is the moment of time where steady solution is
reached, tin and t f in are the boundaries of time interval over which the av-
eraging is performed, for details see Aksenov et al. (2009a). Thermalization
timescales of electron-positron-photon component is shown in Fig. A.1 as
function of total energy density of plasma and the baryonic loading parame-
ter. Timescale of electrons, positrons and photons coincide. Final thermaliza-
tion timescale of pair plasma with baryonic loading is shown in Fig. A.2. Both
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Figure A.3.: The final thermalization timescale of pair plasma with baryonic
loading as function of total energy density for selected values of the bary-
onic loading parameter B = (10−3, 10−1.5, 1, 10, 102, 103). Energy density is
measured in erg/cm3, time is seconds. Error bars correspond to the standard
deviation of the timescale (A.0.11) in the averaging interval tin ≤ t ≤ t f in

from the average value of τth.

dependencies cannot be fitted by simple power laws, though decrease mono-
tonically with increasing total energy density. Thermalization timescales are
not monotonic functions of the baryonic loading parameter.

In Fig. A.3 final thermalization timescale is shown for all models com-
puted, along with the ”error bars” which mark the standard deviation of the
timescale (A.0.11) in the averaging interval tin ≤ t ≤ t f in from the average
value of τth. The largest source of errors comes from the small values of time
derivative in (A.0.11), though errors are typically below few percent.

In Fig. A.4 we compare for B = 1 the actual value of thermalization
timescale of electron-positron-photon component with the value estimated
from (A.0.9). Both values clearly differ significantly. Actually, the system-
atic underestimation in more than one order of magnitude, present for B ≤ 1
disappears for larger baryonic loading.

In Fig. A.5 we present the computed values of final thermalization timescale
of the pair plasma with baryonic loading together with the value estimated
from (A.0.6), again for B = 1. Unlike the previous case, the final thermaliza-
tion timescale is a more complex function of the total energy density. Interest-
ingly, less significant deviations from the value (A.0.6) occur at the extremes
of the interval (A.0.3).

In this Letter we computed for the first time the timescale of thermalization
for electron-positron plasma with proton loading in the wide ranges of both
total energy density (10 orders of magnitude) and baryonic loading param-
eter (6 orders of magnitude) allowing to treat limiting cases of almost pure
electron-positron plasma, almost pure electron-ion plasma as well as inter-
mediate cases. The final result is presented in Fig. A.1 and A.2. The relaxation
to thermal equilibrium for the total energy density (A.0.2) occurs always on
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Figure A.4.: The thermalization time scale of electron-positron-photon com-
ponent of plasma as function of total energy density (points), compared with
the τ3p timescale (joined points) computed by (A.0.9) for B = 1. Energy den-

sity is measured in erg/cm3, time is seconds.
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Figure A.5.: The final thermalization timescale of pair plasma with baryonic
loading as function of total energy density (points), compared with the τth

timescale (joined points) computed by (A.0.6) for B = 1. Energy density is
measured in erg/cm3, time is seconds.

a timescale less than 10−9 sec. It is interesting, that electron-positron-photon
component and/or proton component can thermalize earlier than the com-
plete thermal equilibrium is reached. The relevant timescales are given, and
compared with the order-of-magnitude estimates. Unlike the previous works
there is no simplifying assumptions in our method since collisional integrals
in the Boltzmann equations are computed directly from the corresponding
QED matrix elements. These results are important for the ongoing and fu-
ture laboratory experiments aimed at creation of electron-positron plasma, as
well as for astrophysical models where electron-positron plasmas are present.
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B. Hydrodynamic phase of GRB
sources

B.1. Introduction

GRBs represent one of the greatest puzzles in astrophysics. They are the
brightest and the shortest explosions in the Universe, originating from the
most catastrophic events such as gravitational collapse to a Black Hole (BH)
taking place at cosmological distances. Such explosions give rise to rela-
tivistic outflows with unprecedented Lorentz factors, of the order of hun-
dreds to thousands. Despite the nature of the central engine still remains
unclear, one well established fact is the presence of an optically thick rela-
tivistic expanding plasma composed of electrons e−, positrons e+, photons γ
and baryons b. One model for GRBs, the fireball model, involving relativistic
outflows was suggested in the early 90’s and remain till today the most attrac-
tive explanation of large Lorentz factors attained in such outflows (Goodman
(1986); Shemi and Piran (1990)). In such a model thermal energy is converted
into the bulk kinetic energy due to radiative pressure of relativistic electrons,
positrons and photons.

The first study about cosmic fireballs (the plasma originating GRBs) was
done by Cavallo and Rees (1978) where the analysis is performed for a plasma
composed of pairs and photons for different initial values of optical depth
due to Compton scattering, and optical depth due to pair production. This
study concludes that average energy of photons should always decrease down
to the electron rest mass energy mec

2 independently on initial conditions. In
contrast with this conclusion a recent article by Aksenov et al. (2007) shows
that, if the two and three body, direct and inverse processes, are taken into
account; thermodynamic equilibrium is always reached, with temperature
which, depending on initial conditions, can exceed mec

2, before beginning of
the plasma expansion.

Detailed one-dimensional hydrodynamic simulations were performed (Piran et al.
(1993); Mészáros et al. (1993); Ruffini et al. (1999)). In Piran et al. (1993) the
equations of energy-momentum conservation are solved numerically. One of
the main conclusions derived from these simulations is that in the reference
frame of the explosion, short after the beginning of the expansion most of
the matter and energy becomes concentrated in a narrow shell which propa-
gates at nearly the speed of light with a simple single peaked “frozen radial
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profile”. This profile can be reproduced in subsequent time moments by the
simple set of scaling laws. In the study by Ruffini et al. (1999)) the same equa-
tions were solved, but in addition the departure of e+e− from thermal equi-
librium with photons was taken into account. This was done adding to the
energy-momentum conservation equations, the rate equation for pairs, which
reflects the freeze-out of interactions involving electrons and positrons. Ini-
tial profiles for the densities were assumed in such a way that e+e− plasma
is formed in the center, surrounded by the shell of cold baryons. With such
configuration a limit was established in order to have a constant width ap-
proximation (for details see Ruffini et al. (2000))). In fact it was found for the
final baryon loading (after the expanding e+e− plasma mixes with baryons)

B = Mc2/E < 10−2, (B.1.1)

where Mc2 is the rest mass energy of baryons, E is the energy of e+e− plasma.
In Bianco Bianco et al. (2006), the analysis of the similarities and differences
between fireshell and other models was performed with the conclusion that
it is necessary to take into account the rate equation together with energy and
mass conservation conditions, in order to compare theory and observations.

In this paper we revisit the hydrodynamic phase in GRB sources, by study-
ing numerically the evolution of an optically thick plasma. Keeping the as-
sumption of spherical symmetry we focus on the issue how different possible
initial spatial distributions of matter and energy in the source of GRBs may in-
fluence subsequent evolution of the plasma. We solve the same equations as
in Piran et al. (1993) and Ruffini et al. (1999), neglecting for simplicity the rate
equation (which is not essential for this scope), instead focusing on various
different initial profiles. In addition to considering expansion of γ, e+, e−, b
in vacuum, we also study the case with expansion into an extended uniform
distribution of baryons still satisfying the Ruffini-Wilson condition given by
equation (B.1.1). We would like to clarify whether the “frozen radial profile”
is the unique radial structure which should be expected in GRB sources, or
otherwise a variety of radial profiles in the final evolution of the γ, e+, e−, b
plasma is also possible.

Our study is expected to shed some light on two different problems. One
problem is the emission of plasma at transparency due to Compton scat-
tering, with the light curve clearly depending on the spatial distribution of
plasma (what we call the structure of P-GRB) in the optically thick phase.
The other problem is purely hydrodynamic possibility to form after trans-
parency multiple shells of collisionless electron-baryon plasma, having dif-
ferent Lorentz factors. This is important in the fireshell model (Ruffini et al.
(2009a)) where baryonic shells with different Lorentz factor are expected at
tranparecy. The opposite case of a delayed emission by the central engine
at different times was considered in internal shock models of GRBs (Piran
(1999)).
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The structure of the chapter is the following. In section B.2 we briefly re-
mind the concept of fireball and discuss the relevant timescales in the ap-
proach of relativistic plasma to thermal equilibrium. In section B.3 we turn to
the hydrodynamical evolution of relativistic plasma. We present the results
of numerical analysis in section B.4. Conclusions follow in the last section. In
section B.6 we review the adopted numerical scheme used to solve relativis-
tic hydrodynamic equations, while in section B.7 we present the results of the
test computation.

B.2. Kinetic and hydrodynamical phases

It is generally assumed that the sources of GRBs contain hot relativistic plasma.
This plasma is radiation dominated with baryon loading parameter B ≪ 1.
The energy injection resulting in creation of such plasma is assumed to last on
a short timescale t≪ R0/c where R0 is the initial radius of the plasma. Such
plasma is optically thick both to pair production and to Compton scattering
with the optical depth

τ ≃
∫

(ne+ + ne−)σTdr ≫ 1, (B.2.1)

where n stands for the number density and σT is the Thompson cross sec-
tion. Even if initially the energy is injected in the form of γ only, e± pairs
will be generated on a timescale t ≃ 1/(σTnγc) and vice versa: if only e±

pairs are present from the beginning, γ will be generated on a timescale t∗ ≃
1/(σTne+c). Such plasma, which may be non thermal as it forms, will come
to thermal equilibrium on a timescale α−1t∗, the characteristic timescales for
T = 0.1 MeV are (Aksenov et al. (2007)):

tkin . 10−14s, tther . 10−12s, (B.2.2)

for more details on relaxation timescales see Aksenov et al. (2009b).

Due to radiative pressure of γ and e± pairs the plasma starts to expand
adiabatically on a timescale texp ≃ R/c with 〈γ〉 ∝ r where 〈γ〉 is the average
Lorentz factor of the bulk radial motion. Such self accelerating phase lasts up
to the moment when plasma becomes either matter dominated or transparent
to photons (Ruffini et al. (1999)).

Expansion is governed by the relativistic energy-momentum conservation
equations and the continuity equation (Goodman (1986); Shemi and Piran
(1990); Piran et al. (1993); Mészáros et al. (1993); Ruffini et al. (1999)).

Tµν
;ν = 0, (B.2.3)

(nBUν);ν = 0, (B.2.4)
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Figure B.1.: The density of pairs as function of radial coordinate. Continuous line is ob-
tained by the rate equation (B.2.5), while dotted line represents thermal distribution. Param-

eters are: mass of the black-hole MBH = 103M⊙ and charge to mas ratio Q/
√

GM = 0.1.
Reproduced from (Ruffini et al. (1999)).
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Figure B.2.: Reaction timescales as well as expansion timescale as functions of radius of the
fireshell. The radius at which the departure from kinetic and thermal equilibrium occurs is
determined respectively by intersections of the dashed and dotted lines with the continuous
one. Parameters are: total initial energy E = 1053erg and initial radius r = 2.4× 108 cm.

where Tµν is the energy-momentum tensor of plasma, Uν and nB are four-
velocity and number density of baryons respectively. However, when the
rate of electron-positron pair creation and annihilation, i.e. 2-body processes
t2p ≃ 1/(σTcn±) becomes eventually equal to the expansion rate texp, pairs
freeze out, i.e. go out from thermal equilibrium at t∗ther, see Fig. B.1. In the
same way 3-body reactions such as bremsstrahlung freeze out earlier, at the
moment t∗kin, when t3p ≃ 1/(ασTcn±) becomes equal to the expansion rate.
We illustrate these processes in Fig. B.2.

Therefore, in order to describe the freeze out of e+e− pairs the continuity
equation (B.2.4) is phenomenologically modified (Ruffini et al. (1999); Ruffini et al.
(2000)).
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(n±Uν);ν = 〈σv〉
[

n2
±(T)− n2

±
]

, (B.2.5)

where 〈σv〉 is the average product of the annihilation cross section and parti-
cles relative velocity, n±(T) is equilibrium density of pairs and n± is the den-
sity out of equilibrium (see also Grimsrud and Wasserman (1998)). More de-
tails about the importance of the equation (B.2.5), within the fireshell model,
can be found in Bianco et al. (2006).

Overall, we identify seven important timescales in the evolution of the
plasma from the moment of its appearance until it reaches transparency. In
chronological order these are:

• energy is injected on the timescale tin,

• pair plasma reaches kinetic equilibrium on the timescale tkin,

• thermal equilibrium is reached on the timescale tther,

• expansion starts at tex,

• plasma departs from thermal equilibrium at t∗ther,

• finally it departs from kinetic equilibrium at t∗kin.

• transparency is reached at ttr.

We can split therefore the entire evolution of plasma in two phases: the
kinetic phase from its formation at tin until the moment tex when it begins
to expand, and the hydrodynamic phase from the beginning of expansion until
the moment of transparency ttr. Kinetic evolution of plasma drives it towards
thermal equilibrium. Thermodynamics and hydrodynamics can be applied
to its description starting from the moment tther. Finally, when the mean free
path of photons exceeds the spatial dimensions of plasma at the moment of
reaching transparency it becomes collisionless1.

During the hydrodynamic phase there are two important moments: when
three particle processes such as bremsstrahlung freeze out at t∗ther which marks
the end of thermal equilibrium, and the freeze out of two particle processes
at t∗kin when even kinetic equilibrium is violated.

B.3. Physical evolution

We study the evolution of a thermal plasma in the hydrodynamic approxima-
tion, considering an energy momentum tensor of a perfect fluid (Weinberg

1The timescales of Compton scattering and of Coulomb scatterings nearly coincide.
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(1972)),
Tµν = pgµν + [ρ(1 + ǫ) + p]UµUν (B.3.1)

where p is pressure, gµν = diag(1,−1,−r2,−r2 sin2 θ) is the Minkowski met-
ric tensor, ǫ is specific energy density, ρ is matter density and Uµ ≡ (Γ, Γv, 0, 0)
is the four velocity, Γ is the Lorentz factor and v is the fluid velocity. Assum-
ing that particles are non relativistic baryons and ultrarelativistic photons,
electrons and positrons the fluid variables will be:

ǫr = ǫ− + ǫ+ + ǫγ,

ρr = ργ + ρ+ + ρ−,

pr = pγ + p− + p+,

where the subscript “r” denotes relativistic component, and

ρnr = ρb,

pnr = pb ≃ 0,

where the subscript “nr” denotes non relativistic component. Velocity of both
components is the same since they are coupled by collisions, so we have:

ǫ = ǫnr + ǫr ≃ ǫr, (B.3.2)

ρ = ρnr + ρr ≃ ρb, (B.3.3)

p = pr + pnr ≃ ǫr/3. (B.3.4)

It is useful to introduce new variables following Bowers and Wilson (1991):

D = ρΓ is the non relativistic component, (B.3.5)

E = ǫD is the relativistic component, (B.3.6)

S = (D + E + Γp)u is the radial momentum. (B.3.7)

In spherically symmetric case we get from the energy-momentum and num-
ber of particles conservation (B.2.3)-(B.2.4):
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∂D

∂t
= −∂(r2Dv)

r2∂r
, (B.3.8)

∂E

∂t
= −∂(r2Ev)

r2∂r
− p

∂(r2u)

r2∂r
− p

∂Γ

∂t
, (B.3.9)

∂S

∂t
= −∂(r2Sv)

r2∂r
− ∂p

∂r
, (B.3.10)

where u, v and Γ are related as follows:

Γ =
√

1 + u2, v = u/Γ. (B.3.11)

Equations (B.3.8)-(B.3.10) form a coupled system of partial differential equa-
tions, and its solutions cannot be found without further approximations. We
implemented a numerical code to solve this system of equations. Explanation
of the code and details can be found in section B.6.

B.4. Results

As a test for the code, we performed a simulation with initial conditions taken
from Piran et al. (1993), see section B.7. In that paper it is shown that quite
independently on initial distribution of matter and energy all solutions for
energy-dominated plasma look similar to the one presented in Fig. B.10. In-
deed, it was shown that after a brief rearrangement the energy, density and
Lorentz factor profiles acquire a certain shape, called there “frozen radial pro-
file”, which does not change with time, but just rescales according to simple
scaling laws. It is found that this approximation is valid in the energy dom-
inated regime, and in the beginning of the matter dominated regime. Below
we show that for different initial distributions of energy and matter the result-
ing evolution can be also different from the one found in Piran et al. (1993).

B.4.1. Constant baryonic distribution profile

Considering initial profile for E to be

E0 =
ǫ0ρ0Γ0

R8
0 + r8

, (B.4.1)

(the same as in section B.7), with initial parameters: ǫ0ρ0 = 0.2, Γ0 = 1 and
R0 = 1, and taking a constant distribution of nonrelativistic matter over space
with D0 = 2× 10−9, we have the evolution which is presented in Fig. B.3.
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Figure B.3.: Densities and Lorentz factor evolution in the case with a constant
baryonic distribution profile.

The plasma in spatial region dominated by the relativistic component E self
accelerates like in the previous case. However, it pushes the nonrelativistic
baryons which are collected in the front of the shell, creating a leading shell
which is matter dominated from the very beginning. Our analysis is different
from Ruffini et al. (2000) because we consider uniform baryonic distribution
while they consider a shell of baryons located initially at some radius.

Thus unlike the case treated in section B.7, two distinct shells are formed:
the outer one being matter dominated and the inner one being energy domi-
nated. The matter dominated shell has from the very beginning a maximum
baryon loading of B ≃ 102. Besides, in this case there is a tail of rarefied en-
ergy dominated plasma inside the shell. The baryonic loading at fixed time
changes eight orders of magnitude while moving from central region to the
matter dominated peak. The Lorentz factor increases very rapidly in the be-
ginning, reaching almost a constant value at the end, see Fig. B.3.

Inspection of Fig. B.3 leads to the following conclusions (see also Figs. B.4,
B.5 and B.6):

• the E-shell density is decreasing, its energy is transferred to the baryons
which are swept up in the external shell.

• the density of the baryonic shell is increasing, while the shell spreads
since it is matter dominated.
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Figure B.4.: Detailed structure of the spatial distribution of Lorentz factor and
baryonic loading (upper panel), energy and matter density (lower panel) is
shown for the moment t = 40. The B parameter changes 8 orders of magni-
tude in the extension of the shell. B is plotted until the point where Lorentz
factor is equal one (also in the following figures).

• the slope of the B parameter is changing, becoming less steep, because
of the spreading of the matter dominated shell, and the decreasing of
the density in the E-shell.

• the relation B(r) ∝ 1/Γ(r), whose integral version is true for 10−4 .
B . 1 is not valid in the differential case.

• B parameter has a constant maximum value in the outer shell.

B.4.2. c) Hybrid profile

Combining the profile used in section B.7 with the previous one, we have
now for E, the same profile as in both cases, see Eq. (B.4.1), with the same
parameters as in section B.4.1. For the nonrelativistic matter distribution we
have instead:

D0 =
ρ0Γ0

aR8
0 + r8

+ d, (B.4.2)

with the following parameters: ρ0 = 2× 10−6, Γ0 = 1, a = 10−4, d = 2×
10−11 and R0 = 1, which correspond to a dense core inside the radiation
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Figure B.5.: The same as in Fig. B.4, for the moment t = 92. The density of the
outer matter dominated shell increases, and the density of the inner energy
dominated one decreases.

dominated region, and a constant density outside.

In this case we have a mixture of two previous cases. In fact, two shells
form again: inner one energy dominated, and outer one matter dominated,
see Fig. B.7. The “frozen radial profile” is valid for the the inner shell, while
the leading shell is matter dominated because of the constant baryon density
outside. This kind of initial conditions gives the possibility for the formation
of two shells with two maxima in E and D spatial distributions which per-
sists up to large radii, see Fig. B.8. We computed the average values of the
Lorentz factors in two regions of space in Fig. 10: for 342 < r < 347 for the
inner shell, and for 347 < r < 349 for the outer shell. The average Lorentz
factors are, respectively, Γ1 ≃ 400 and Γ2 ≃ 10.

Again, in this case the baryon loading at fixed time changes five orders
of magnitude throughout the plasma. The outer matter dominated shell has
constant B ≃ 102, and the energy dominated shell has small B gradually
increasing outwards.
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Figure B.6.: The same as in Fig. B.4, for t = 248. The maximum B parameter
does not change, the ratio between D and E in the outer shell is constant,
while in the inner shell it increases.

B.5. Conclusions

We found that the initial spatial distribution for energy density E(r) and mat-
ter density D(r), indeed influences the subsequent dynamics of plasma ex-
pansion. In particular, the “frozen radial profile” found in Piran et al. (1993)
and the constant width approximation established in Ruffini et al. (2000) are
not the unique solutions: structures are formed and survive in the expanding
shell up to large radii, in the last example 350 times the initial radius when
an extended baryon distribution is assumed.

In fact, considering expansion not in vacuum, but in a space uniformly
filled by a cold baryonic medium, a leading matter dominated shell is found
to form. The local baryonic loading in this shell has a maximum value B ≃
102, and it remains constant throughout the evolution although the global
baryon loading still respects equation (B.1.1). We found also that the energy
density in pairs and photons decreases, being transferred to kinetic energy of
baryons. The outer shell spreads with time since it is matter dominated.

We found two peaks in the D(r) profile in the hybrid case: the outer peak
is due to swept up baryons, the inner one is due to the dense core located
in the center in the beginning of the simulation. Such structure, if survives
until the plasma becomes transparent, will give rise to two shells, moving
with different Lorentz factors. Since the Lorentz factor of the leading shell
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Figure B.7.: The same as in Fig. B.3, but for the hybrid case. The Lorentz
factor evolution presents some structure, but its shape is very similar to the
case reproduced in section B.7). The densities profiles instead show a very
different structure.

is smaller than the one of the inner shell, they will eventually interact in the
collisionless regime.

It is conceptually important that the energy budget of photons emitted at
transparency versus kinetic energy of remaining baryons will be affected by
this more general solution as contrasted to the “frozen radial profile” one.

Finally, the structure seen in energy and matter spatial profiles will be
encoded in the light curve of the radiation emitted when transparency is
reached. In principle we have now a way to get information from the struc-
ture of the P-GRB and the different Lorentz gamma factors in the multiple
distribution of accelerated baryons left over at transparency, to infer the infor-
mation about the matter distribution during the process of the gravitational
collapse to a black hole.

B.6. Numerical approach

Finite-difference methods can be applied to solve partial differential equa-
tions (B.3.8)-(B.3.10). One approach to the solution of resulting system of
coupled nonlinear algebraic equations involves matrix inversion which turns
out to be particularly time consuming for our purposes. Instead we fol-
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Figure B.8.: The same as in Fig. B.4, for the hybrid case, and t = 434. Now
we can see two shells for both densities E and D.

low another simpler approach called operator splitting. Below we briefly
illustrate the main steps applied for our case (for details of the method see
Bowers and Wilson (1991).

The main idea of the operator splitting method is to compute separately
the contributions to the “Left Hand Side” (LHS) of equations (B.3.8)-(B.3.10)
from different terms on the “Right Hand Side” (RHS). The new values of the
physical quantities obtained in this way are then used to compute next dif-
ferent time values to RHS terms.

The order in which terms will be solved is:

INTERACTION
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∂S

∂t
= −∂p

∂r
= −∂E/Γ

3∂r
, (B.6.1)

u =
S

D + E + pΓ
, (B.6.2)

∂E

∂t
= −p

∂Γ

∂t
, (B.6.3)

∂E

∂t
= −p

∂(r2u)

r2∂r
, (B.6.4)

where we have used (B.3.4), and

ADVECTION

∂D

∂t
= −∂(r2Dv)

r2∂r
, (B.6.5)

∂E

∂t
= −∂(r2Ev)

r2∂r
, (B.6.6)

∂S

∂t
= −∂(r2Sv)

r2∂r
. (B.6.7)

From the physical point of view one may think that first we solve the phys-
ical interactions in the plasma, namely

• the acceleration due to radiative pressure,

• the new velocity,

• the new energy densities for the changes in velocity and pressure.

Then we solve the “advection equations” which can be thought just as a
rearrangement of the densities in space. As the fluid elements move in space,
the “advection equations” will just show where the fluid element located be-
fore in r1 will be after each iteration, to say r2.

B.6.1. Finite difference form of equations

Using a finite difference method to solve numerically the previous equations,
we can have an iteration system in which given initial conditions we can
solve step by step in time, the evolution of the variables. Using the following
notation:
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∆t = tn − tn−1, (B.6.8)

∆r = rk − rk−1, (B.6.9)

∆tG = Gn − Gn−1, (B.6.10)

∆rG = Gk − Gk−1, (B.6.11)

where G represents any of the variables, n is a temporal step and k is a spatial
step, the system of equations reads

INTERACTION

∆tS

∆t
= −4πr2 ∆r p

∆r
, (B.6.12)

u =
S

D + E + pΓ
, (B.6.13)

∆tE

∆t
= −p

∆tΓ

∆t
, (B.6.14)

∆tE

E
= −∆t

3Γ

∆r(r2u)

r2∆r
, (B.6.15)

Et+1 = Ete−
∆t

3Γ∆rV
∆r(r2u), (B.6.16)

ADVECTION

∆tD

∆t
= −∆r(r2Dv)

∆rV
, (B.6.17)

∆tE

∆t
= −∆r(r2Ev)

∆rV
, (B.6.18)

∆tS

∆t
= −∆r(r2Sv)

∆rV
. (B.6.19)

In order to solve (B.6.12)-(B.6.19), we have to give as initial condition spa-
tial profiles for the physical variables at t = 0, then, by iteration method we
can calculate the spatial distribution for the variables at any later time. There-
fore we have to set initial profiles for: D(t = 0, r), E(t = 0, r), S(t = 0, r).

B.6.2. Numerical issues

Some important points should be kept in mind when making a hydrody-
namic code, especially in relativistic case. These points influence both accu-
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racy and stability of the scheme. In particular, since our code does not contain
treatment of shocks for the moment, distributions of matter, energy and ve-
locity have to be smooth, without any discontinuities.

Centering

The variables have different position on the grid: some are calculated in the
center of each volume element (Gk+1/2) and some are defined in the edge of
volume elements (Gk). There is no general rule, but specifically in our case
variables related to motion (velocity, momentum) are computed in center of
volume element; instead, variables not intrinsically related to motion (den-
sities, temperature) are computed on edges. All this is crucial for numerical
stability of the code.

Extrapolating the grid

As in many finite difference methods the differentiation is approximated as:

∂Gk

∂r
=

Gk+1/2 − Gk−1/2

∆r
. (B.6.20)

The values on the RHS are the current time step iteration (Gn) while those
on the LHS will be used to construct the variables at next time step itera-
tion (Gn+1). It means that, at each time step, one spatial value is lost at the
ends of the grid. In order to solve this problem we perform an extrapola-
tion after each iteration, restoring the values at the end of the grid (kmin−1/2

and kmax+1/2), keeping the same amount of grid points all the time. A linear
extrapolation is used to construct these values:

Gkmax+1 = 2Gkmax−1 − Gkmax−3 (B.6.21)

Gkmin−1 = 2Gkmin+1− Gkmin+3 (B.6.22)

We tried also a second order extrapolation, but it does not work well and
leads to instability.

Time step and dispersion

The steps in radial coordinate ∆r and in time interval ∆t are related, the re-
sults are quite sensitive to these choices, which should satisfy the Courant
condition. Due to relativistic velocities it is better to set the limit for ∆t, using
the light velocity, ∆t < ∆r/c, (see Wilson and Mathews (2003)), where c = 1
is the light velocity. For a coarse grid we were unable to reproduce known
results, in particular the “frozen radial profile” had some dispersion growing
with time, while refining ∆t leads to better agreement.
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B.7. test

B.7.1. a) Piran’s profile

As a test for the code, we performed a simulation with initial conditions taken
from Piran et al. (1993). Initial profile for E and D with a very steep decay
were chosen, namely

E0 = ǫ0D0 =
ǫ0ρ0Γ0

R8
0 + r8

(B.7.1)

where parameters are: ǫ0 = 0.001, ρ0 = 200, Γ0 = 1 and R0 = 1. The high
power in r is needed to represent a dense object with vacuum outside. The
material is initially at rest, and it is non relativistic because from the begin-
ning it is matter dominated D0 = 103E0. Plasma expands like a gas which
was initially confined. It just tends to fill all the space with equal density
(at infinite time), see Fig. B.9, in good agreement with Fig. 3 of Piran et al.
(1993)).
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Figure B.9.: Time evolution of the energy density E(r) and matter density
D(r) profiles for non relativistic case. All figures are represented in laboratory
frame. In this case the baryon loading parameter is B = 103.

For a relativistic case we use also the equation (B.4.1) for the initial profiles,
but with parameters: ǫ0 = 50, ρ0 = 0.004, Γ0 = 1 and R0 = 1. It is initially
at rest with Γ(0, r) = 1, but due to the pressure of relativistic particles, the
shell self accelerates reaching high Lorentz factors. Because of this peculiar-
ity practically all particles of the shell accelerate almost together and the shell
propagates like one-body system accelerating in vacuum. Different from the
non relativistic case, just a small part of the density remains in the central re-
gion inside the shell, see Fig. B.10.

We also reproduced their relativistic case, shown in their Fig. 1, see our Fig.
B.10.
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Figure B.10.: The same as in Fig. B.9, but for relativistic case. B parameter is
B = 2× 10−2
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C.0.2. The Cosmological Principle

There have been three distinct moments in the developement of the so called
cosmological principle which is at the very basis of our approach to the analysis
of the Universe. The first formulation of the cosmological principle can be
simply stated:

All the events in the Universe are equivalent. (C.0.1)

Such cosmological principle was enunciated a few years after the introduc-
tion of the field equations of general relativity by Albert Einstein himself
(Einstein, 1917) in the quest of visualizing a Universe most democratic with
respect to any special point and any possible moment of time: a Universe
everlasting in time and totally homogenous in the spatial directions. No so-
lution fulfilling such a cosmological principle could be found, and Einstein
was so strongly confident in the validity of this principle that he modified his
field equations of general relativity by introducing a cosmological term Λ.
George Gamow refers that Einstein later on considered that the biggest mis-
take in his life. It was through the work of Alexander Friedmann (Friedman,
1922) that a new cosmological principle was advanced:

All the points in the Universe are equivalent. (C.0.2)

As long as we look at our ‘neighbour’ Universe, this statement is certainly
false, because the distribution of matter is far from homogeneous: there are
planets, stars, and, going to larger scales, galaxies and clusters of galaxies,
separated by almost empty regions. However, Friedmann principle should
apply when we average this distribution over a volume containing a large
enough amount of galaxies. For such a spatially homogeneous Universe
Friedmann (Friedman, 1922) found in 1922 explicit analytic solutions of Ein-
stein equations of general relativity. A remarkable property of this solution
is that it describes a non-static Universe. At that time, there were no obser-
vational evidences for the temporal evolution of the whole Universe. A first
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Figure C.1.: The distribution of galaxies in the 2dFGRS (from Peacock (2002)).

evidence came in the 1929 from the observation by Hubble (Hubble, 1929)
of the recession of the nebulae. Hubble was the first trying to study the
spatial distribution of objects as large as the galaxies, at that time thought
to be the largest self-gravitating systems to exist. The Hubble law, inter-
preted within the framework of Friedmann cosmology, would imply that the
galaxy distribution is close to homogenous on the large-scale average (Weyl,
1952; Lemaı̂tre, 1927, 1931b,a). It was through the above mentioned work
of Hubble first, the remarkable work of George Gamow together with his
collaborators (1946-1949) (Gamow, 1946; Alpher et al., 1948; Gamow, 1948;
Alpher and Herman, 1948), postulating an initially hot Universe, and the de-
tailed work of Fermi and Turkievich in the same years (Alpher and Herman,
1950) introducing the first computation of cosmological nucleosynthesis, that
the Friedmann Universe has grown to become the standard paradigm in cos-
mology following the discovery of CBR by Penzias & Wilson in 1965 (Penzias and Wilson,
1965).
In effect, one of the strongest predictions of Big Bang model is the presence

of a background microwave radiation, relic of the early Universe. This ra-
diation is highly isotropic, reflecting, through the coupling with matter, the
high isotropy and homogeneity of the primeval plasma. This tells us that
the cosmological principle, and then Friedmann picture, safely applies to the
early Universe. Homogeneity on very large scales is confirmed by present
day observations of, in particular:

• X-ray background

• radio sources
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• gamma ray bursts distribution

• galaxies and clusters of galaxies.

So much so for the very large scales, but what about structures as galaxies
and clusters of galaxies? They appear more and more distributed without
any apparent homogeneity, but on the contrary showing regularities in an
apparent hierarchical distribution of galaxies, clusters of galaxies and super-
clusters of galaxies separated by large voids (see Fig. C.1). Slowly but more
and more clearly the presence of a fractal distribution in the Universe has
started to surface and with it a new cosmological principle which can be sim-
ply expressed:

All the observers in the Universe are equivalent. (C.0.3)

On the other hand, on smaller scales, distribution of matter is far from ho-
mogeneous: galaxies tend to cluster, forming structures separated by large
voids. These clusters of galaxies are themselves members of even larger
structures, so called superclusters of galaxies. To study such a complicated
distribution of matter, it is necessary to use a statistical approach. In the next
section we will introduce the mathematical tools usually used to study large
scale structure (LSS).

We shall recall in the following a few basic points which have in essential
to reach this new principle and make possible the verification of its possible
validity.

C.1. Two-point Correlation Function

The statistical description of clustering is based upon the concept of correla-
tion, namely, in a more rigorous way, the probability of finding an object in
the vicinity of another one. The standard way to quantify this probability is
to define the two-point correlation function ξ(~x) Peebles (1993).

Let’s consider a distribution of objects in space, described by the number
density function n(~x). The probability that an object is found in an infinites-
imal volume δV centered around the point ~x is proportional to the volume
itself:

δP ∝ δV. (C.1.1)

In the absence of structure, the joint probability of finding two objects in two
different infinitesimal volumes δV1 and δV2, centered respectively around ~x1
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and ~x2 is given by the product of the two probabilities:

δP = δP1δP2 ∝ δV1δV2 (C.1.2)

On the other hand, if objects have a tendence to cluster, we will find an excess
probability:

δP ∝ δV1δV2 · (1 + ξ(~x1,~x2)) (C.1.3)

According to the cosmological principle, we don’t expect the correlation func-
tion to depend on the position neither on the direction, but only on separation
beetween volumes: ξ(~x1,~x2) = ξ(r12), where r12 ≡ |~x1 −~x2|.

An equivalent definition of the two-point correlation function is the follow-
ing:

ξ(r12) =< δ(~x1)δ(~x2) >, (C.1.4)

where < ... > denotes averaging over all pairs of points in space separated
by a distance r12, and δ(~x) ≡ (n(~x)− n̄)/n̄.

C.1.1. Observed Galaxy Distribution

Observational data coming from galactic surveys are usually expressed in the
form of correlation function in redshift space, ξ(π, σ), where π is a separation
along the line of sight and σ is a angular separation on the plane of the sky
between two galaxies. It is then possible to obtain the real-space correlation
function ξ(r); this step is never a trivial one, but we are not going into details
since it is beyond the purpose of this review.

Peebles Peebles (1993) have shown that distribution of galaxies can be de-
scribed by a two point correlation function with a simple power law form:

ξg(r) =

(

r

rg

)−1.77

, r < 10h−1Mpc, (C.1.5)

where h is a Hubble parameter today measured in 100 km
s Mpc . The correlation

length rg determines the typical distance between objects. For galaxies, it was

estimated to be ≃ 5h−1Mpc.
For clusters of galaxies the same power law was found first by Bahcall and

Soneira Bahcall and Soneira (1983) and Klypin and Kopylov Klypin and Kopylov
(1983)

ξc(r) =

(

r

rc

)−1.8

, 5h−1
< r < 150h−1Mpc. (C.1.6)

with different correlation length, namely rc ≃ 25h−1Mpc. Further, Bahcall
and Burgett Bahcall and Burgett (1986) have found correlation function for
superclusters of galaxies with the same power law.

Recent observations support these conclusions. Results from the Sloan
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Digital Sky Survey (SDSS) on galaxy clustering Zehavi et al. (2005) for about
200,000 galaxies give a real-space correlation function as

ξg(r) =

(

r

r0

)−1.8

, 0.1h−1
< r < 10h−1Mpc, (C.1.7)

where r0 ≃ 5.0h−1Mpc, although the brightest subsample of galaxies has a
significantly steeper ξ(r). The geometry of samples in SDSS is quite close to
Las Campanas Redshift Survey Shectman et al. (1996) and the results are very
similar, but with much better resolution.

The 2dF Galaxy Redshift Survey Peacock et al. (2001) (see fig.C.1) consists
of approximately 250,000 galaxies redshifts. Their result is Hawkins et al.
(2003):

ξg =

(

r

r0

)−1.67

, 0.1h−1
< r < 12h−1Mpc, (C.1.8)

with r0 = 5.05h−1Mpc
Their measurements are in agreement with previous surveys. However,

having much smaller statistical errors they were able to find a slight differ-
ence of the power law exponent as well as the correlation length on distances
or redshifts, colors and types of galaxies. For a summary of measurements
of ξ(r) by different surveys other than the ones cited here, see Table 2 of Ref.
Hawkins et al. (2003).

C.1.2. Power Law Clustering and Fractals

It is clear that, once a correlation function is given, the density of objects
around any randomly chosen member of the system is:

n(r) ∝ 1 + ξ(r) (C.1.9)

If the correlation function has a power law behaviour with exponent γ:

ξ(r) ∝ r−γ (C.1.10)

as for galaxies and clusters of galaxies, where γ ≃ 1.8, then the number of
objects in a given volume scales in a similar way:

N(r) ∝ r3−γ (C.1.11)

So, for non integer γ, the number of objects scales with a fractional power of
the radius of the volume under consideration. This behaviour is typical of
fractal sets.

A fractal is a set in which ‘mass’ and ‘radius’ are linked by a fractional
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power law Mandelbrot (1983):

M(r) ∝ rDF (C.1.12)

where DF is the fractional or Hausdorff dimension of the set. So galaxies
seem to show, at least up to scales of about 100 Mpc, a fractal distribution
with DF ≃ 1.2.

A crucial characteristic of a fractal distribution is the presence of fluctua-
tions at all length scales and, consequently, impossibility of defining an av-
erage value for the density. It can be stressed that a fractal structure in a
cosmological model, although not spatially homogeneous, is not in conflict
with weaker form of the cosmological principle Mandelbrot (1983): in a ho-
mogeneous fractal set each observer at a matter point belonging to the set
observes the same matter distribution as any other observer belonging to the
set.

The question about fractality in galaxy distribution is still under debate
Coleman and Pietronero (1992),de Bernardis et al. (2002),Kolb and Turner (1990),Luo and Schramm
(1992),de Gouveia dal Pino et al. (1995),Durrer and Labini (1998),Gaite et al. (1999),Joyce et al.
(2005). There are two main problems that are to be faced with:

1. Most of the matter in the Universe is in the form of dark matter, while
observations are about luminous matter. It is still unclear how (and
even if) light traces mass: this is in particular related to the problem
of matching the clustering of galaxies, that tells us about distribution
of luminous (baryonic) matter, with the CMB anisotropies, that tell us
about distribution of gravitating matter.

2. On the other hand, still little is known about fluctuations on interme-
diate scales between those of local galaxy surveys (∼ 100h−1 Mpc) and
those probed by the observation of CMB anisotropies (∼ 1000h−1 Mpc).
However, this gap is greatly reduced in recent times de Bernardis et al.
(2002),Peacock et al. (2001).

Assuming that the fractal framework is, at least up to some large scale, a
good description of the real matter distribution, a consistent model of struc-
ture formation has been proposed by Ruffini in the eighties (see Ruffini et al.
(1988) and references therein). In this model fractality arises from successive
fragmentations of primordial structures, so called ‘elementary cells’, formed
via gravitational instability in the neutrino component of the matter in the
Universe. In the following chapter we shall analyse in detail this model.
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In Appendix C we have described the evolution of perturbations, and we
saw that the nature of dark matter particles is crucial in determining the way
structure formation goes. In spite of the fact that a lot of candidates for CDM
particles are being considered (see Ref. Bertone et al. (2005) for a review, there
are no experimental detections of such particles at present. From the other
hand, neutrinos are the only candidates for DM known to exist.

‘Light’ neutrinos (mν ≪ 1 MeV) Dolgov (2002), namely neutrinos that de-
couple while still in their ultrarelativistic regime (see below), may provide a
significant contribution to the energy density of the Universe (Ων ∼ 1). Mod-
els with light neutrinos were extensively studied in the eighties; a large litera-
ture exists on this subject Bisnovatyi-Kogan and Novikov (1980),Zeldovich and Syunyaev
(1980),Doroshkevich and Khlopov (1981),Peebles (1982).

The key prediction of the cosmological model with neutrinos is a cellu-
lar structure on large scales (see Fig.3.1). The qualitative drawing of cellular
structure of the Universe is represented at Fig.C.1.

Ruffini and collaborators have studied such models with particular atten-
tion to the problem of clustering on large scales and its relation to the fractal
distribution of matter. In the following, we are going to describe their works
in detail.

D.1. Neutrino decoupling

The cosmological evolution of a gas of particles can be split in two very dif-
ferent regimes. At early times, the particles are in thermal equilibrium with
the cosmological plasma; this corresponds to the situation in which the rate
Γ =< σvn > of the reactions supposed to mantain the equilibrium (such as
νe + ν̄e ↔ e+ + e− ↔ 2γ in the case of electronic neutrinos) is much greater
than the expansion rate, given by the Hubble parameter. The gas evolves
then through a sequence of thermodynamic equilibrium states, described by
the usual Fermi-Dirac statistics:

f (p) =
1

exp [(E(p) − µ)/kB T] + 1
, (D.1.1)
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where p, µ and T are the momentum, chemical potential and temperature of
neutrinos respectively, and kB is a Boltzmann constant.

However, as the Universe expands and cools, the collision rate Γ becomes
lower than the expansion rate; this means that the mean free path is greater
than the Hubble radius, thus we can consider the gas as expanding without
collisions. It is customary to describe the transition beetween the two regimes
by saying that the gas has decoupled from the cosmological plasma.

D.2. The redshifted statistics

Since in a spatially homegeneous and isotropic Universe, described by the
Robertson-Walker metric, the product of the three-momentum p(t) of a free
particle times the scale factor a(t) is a constant of the motion:

p(t) · a(t) = const, (D.2.1)

each particle in the gas changes its momentum according to this relation. This
fact, together with Liouville’s theorem, implies that the distribuition function
after the decoupling time td (defined as the time at which Γ = H) is given by
Ruffini et al. (1983):

f (p, t > td) = f

(

a(t)

ad
p, td

)

=
1

exp
[

(E
(

a(t)
ad

p
)

− µd)/kBTd

]

+ 1
(D.2.2)

where the subscript d denotes quantities evaluated at the decoupling time.
Now let’s turn our attention to the special case of neutrinos with mν .

10 eV. The ratio Γ/H, as a function of the cosmological temperature, can be
evaluated using quantum field theory Kolb and Turner (1990)

Γ

H
≃
(

T

1 MeV

)3

(D.2.3)

as long as T ≫ m.
Therefore, neutrinos decouple from the cosmological plasma, when T =

Td ≃ 1 MeV. Since kTd ≫ mc2, many of the particles obey pc ≫ mc2 and
then, when performing integration over the distribution function (D.2.2), we
can safely approximate:

f (p, t > td) = f

(

a(t)

ad
p, td

)

≃ 1

exp
[(

a(t)
ad

pc− µd

)

/kBTd

]

+ 1
, (D.2.4)

since the tail of the distribution function for which mc2 ≫ pc gives little
contribution.
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In the following, we will need to compute the mean value of physical quan-
tities over this distribution. It will be useful to consider two limiting regimes,
namely the nonrelativistic one and the ultrarelativistic one. They correspond
to two approximations for the single particle energy Ruffini et al. (1983):

E ≃ mc2 kT ≪ mc2 NR
E ≃ pc kT ≫ mc2 UR

We stress the fact that this substitution has to be performed only in the func-
tion to be integrated, and not on the distribution function. The approximation
(D.2.4) depends only on the fact that the particles are ultrarelativistic at the
time of decoupling, and then it is valid even when kT ≪ mc2.

Then, with a suitable substitution of variables, all the relevant integrals can
be recast in a very simple, dimensionless form:

In(ξ) ≡
∫ ∞

0

yndy

exp [(y− ξ)] + 1
, (D.2.5)

where ξ ≡ µd/kTd is the dimensionless chemical potential, or degeneracy
parameter. These integrals can be expressed using Riemann zeta and related
functions.

D.3. Energy density of neutrinos

The present density parameter of neutrinos can be easily evaluated using the
method outlined in the previous section. The energy density is given by:

ρν+ν̄(t0) =
g

h3
P

∫ ∞

0
E(p) f (p, t0) d3p (D.3.1)

where g is the number of helicity states and hP is the Planck constant. By
normalization with respect to the critical density ρc = 1.054 h2 · 104 eV

cm3 , we
obtain Ruffini and Song (1986),Ruffini et al. (1988):

Ων+ν̄h2 ≃ 1.10 · 10−1 g
m

10 eV
A(ξ), (D.3.2)

where A(ξ) is defined as follows

A(ξ) ≡ I2(ξ) + I2(−ξ)

2I2(0)
=

1

4η(3)

[

1

3
|ξ|3 + 4η(2)|ξ| + 4

∞

∑
k=1

(−1)k+1 e−k|ξ|

k3

]

,

(D.3.3)
and η(n) is the Riemann eta function of index n.

The term I2(−ξ) appears because we have to take into consideration the
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presence of antiparticles, for which the relation ξν̄ = −ξν holds. This result
follows from the fact that, if we consider a reaction such as

ν + ν̄←→ ...←→ γ + γ (D.3.4)

we get that, since the chemical potentials of the initial and final states have to
be equal, and the chemical potential of the latter is equal to zero, it follows,
that ξν̄ = −ξν.

D.3.1. Neutrino mass

We now know from neutrino oscillation experiments that neutrino do have
mass (see Ref. Maltoni et al. (2004) for a review). It is a remarkable fact that
neutrino flavour and mass eigenstates do not coincide, but are instead related
by a rotation in flavour space:

|να〉 =
3

∑
i=1

Uαi|νi〉 (D.3.5)

where α = e, µ, τ labels flavour eigenstates, while i = 1, 2, 3 labels mass
eigenstates. The “rotation” matrix Uαi is called the neutrino mixing matrix.
A great deal of effort is presently being put now in measuring the elements
of the mixing matrix and the mass differences, which are the parameters ac-
tually probed in oscillation experiments. On the other hand, this kind of ex-
periments do not give any information on the absolute scale of the neutrino
mass. In this regard, useful information can be obtained by 1. tritium beta
decay experiments, 2. neutrinoless beta decay experiments, 3. cosmological
observations.

The tritium β decay experiments are sensitive to the “electron neutrino
mass” (this is actually a misnomer since the electron neutrino is not a mass
eigenstate and thus does not possess a well definite mass) me:

me =

(

3

∑
i=1

|Uei|2 m2
i

)1/2

. (D.3.6)

The present 95% CL bounds are:

me < 2.05 eV Troitsk experiment Lobashev (2003)

me < 2.3 eV Mainz experiment Kraus et al. (2005) (D.3.7)

The upcoming KATRIN experiment KATRIN collaboration (2001) is ex-
pected to improve this bounds by nearly an order of magnitude, reaching
a discovery potential for 0.3-0.35 eV masses.

At the same time, no direct measurements or constraints on muonic and
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tauonic neutrino masses exist, although we know from oscillation experi-
ments that the difference between masses should in the sub-eV range. More-
over, it is still unknown, whether neutrinos are Majorana or Dirac particles.

Experiments on neutrinoless double β decay (Aalseth et al. (1999),Klapdor-Kleingrothaus et al.
(2001),Arnaboldi et al. (2005)) are instead sensitive to the “Majorana mass”
mββ:

mββ =

∣

∣

∣

∣

∣

3

∑
i=1

U2
eimi

∣

∣

∣

∣

∣

(D.3.8)

A recent paper Strumia and Vissani (2005) gives the following upper bound
at 99% CL:

|mββ| . 0.6eV. (D.3.9)

Cosmology is mainly sensitive, at least to leading order, to the sum of neu-
trino masses Mν:

Mν =
3

∑
i=1

mi (D.3.10)

We should stress that there is no single limit that can be obtained on Mν by
means of cosmological observables, since the exact result depends of several
factor, like the datasets considered, and the theoretical assumptions that are
made (“priors”). However, we can summarize the present status as follows:

Mν . 0.2− 2.3eV (D.3.11)

where of course the largest value should be taken as the most conservative
one, i.e., the one that is obtained by using only the more robust pieces of data
(basically the CMB spectrum) and without making any assumption other
than the standard FRW cosmological model. It is worth noting that these
bounds are competitive with the ones coming from particle physics experi-
ments. They are also expected to improve by an order of magnitude with the
next generation of cosmological observations. For a review on the current
limits on neutrino mass from cosmology, and how these will be improved
in the future, we refer the reader to the work of Lesgourgues and Pastor
Lesgourgues and Pastor (2006).

D.3.2. Chemical potential

First constraints on neutrino degeneracy parameter from BBN were obtained
in Doroshkevich et al. (1971),Beaudet and Goret (1976). It was shown later
Bianconi et al. (1991) that a small value of ξe and large values of |ξµ,τ | simulta-
neously, can lead to BBN abundances which are consistent with observations.
It is found in particular that

0 ≤ ξe . 1.5, (D.3.12)
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with the additional constraint F(ξµ) + F(ξτ) ≈ F(10ξe), where F(ξ) ≡ ξ2 +

ξ4/2π2. This, in particular, implies |ξµ, τ| . 10ξe.

Recent data both from BBN and CMBR Orito et al. (2001),Kneller et al. (2001),Hansen et al.
(2002),Orito et al. (2002),Hansen et al. (2002) strongly constrain neutrino de-
generacy parameters. In the paper Orito et al. (2001) these constraints are
surprisingly wide, ξe < 1.4 and |ξµ,τ | < 40. Other papers give essentially
stronger constraints using additional assumptions,

ξe < 0.3
|ξµ,τ | < 2.6.

(D.3.13)

Recently, a very robust albeit less stringent limit has been obtained by the
analysis of CMB data Lattanzi et al. (2005):

|ξ| ≤ 1.1 (D.3.14)

where the same limit holds for every flavour.

D.3.3. Neutrino oscillations

When one consider different chemical potentials for all neutrino flavors at
the epoch prior to BBN, neutrino oscillations equalize chemical potentials
Savage et al. (1991), if there is enough time to relaxation process Abazajian et al.
(2002). On the basis of large mixing angle solution of the solar neutrino prob-
lem,which is favored by recent data Ahmad et al. (2001), the BBN consider-
ation constrains degeneracy parameters of all neutrino flavors Dolgov et al.
(2002):

|ξ| ≤ 0.07. (D.3.15)

However the situation when flavor equilibrium is not achieved before BBN
is also possible. Thus in the following we consider quite high values of the
degeneracy parameter and assume it is positive without loss of generality.

The main result that comes from oscillations consideration is that masses
of different neutrino species are nearly equal: mνe ≃ mνµ ≃ mντ .

D.4. The Jeans mass of neutrinos

In neutrino dominated Universe the first possible structure occurs when these
particles become nonrelativistic, since at earlier times free streaming erases all
perturbations. At this epoch the cosmological redshift has the value Ruffini et al.
(1988)

1 + znr = 1.698 104
( mν

10eV

)

A(ξ)
1
2 B(ξ)−

1
2 , (D.4.1)
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where

B(ξ) ≡ I3(ξ) + I3(−ξ)

I3(0)
=

=
1

48ηR(5)

[

1

5
ξ5 + 8ηR(2)ξ

3 + 48ηR(4)ξ + 48
∞

∑
n=1

(−1)n+1 e−nξ

n5

]

. (D.4.2)

The basic mechanism of fragmentation of the initial inhomogeneities in an
expanding Universe is the Jeans instability described in the previous section.

However, in the calculation of Jeans’ length of nonrelativistic collisionless
neutrinos, we cannot use the velocity of sound obtained by the classical for-
mula v2

s = dp/dρ. In fact, since particles are collisionless, their effective pres-
sure is zero and this would lead to a vanishing Jeans length, meaning that
even the smallest perturbation would be unstable. This is not the case, since,
in the absence of pressure, another mechanism works against gravitational
collapse, namely the free streaming of particles. The characteristic velocity

associated with this process is simply the dispersion velocity
√
< v2 > /3,

where the factor 3 comes from averaging over spatial directions. Thus, we
have to make the substitution v2

s →< v2 > /3 Ruffini and Song (1986). The
correct expression for < v2 > can be obtained using the method described
above:

< v2
>=

{

c2 z > znr

12
ηR(5)
ηR(3)

(

kTν0
mν

)2 B(ξ)
A(ξ)

z < znr,
(D.4.3)

where Tν0 = 1.97 K is the present temperature of neutrinos.
As a result, the Jeans mass grows in UR regime and decreases in NR regime

Bond et al. (1980). The evolution of Jeans mass of neutrinos for mν = 2.5 eV
and ξ = 2.5 with redshift z is represented at fig.D.1.

It is clear, that for such values of neutrino mass the peak of Jeans mass lay
above 1017 M⊙ and the corresponding comoving Jeans length is λ0 > 100 Mpc.
From the other hand, Jeans mass today is still larger, than the mass of massive
galaxy 1012 M⊙.

Finally, the maximum value of Jeans mass at the moment (D.4.1) is Ruffini and Song
(1986)

MJ(znr) = 1.475 1017M⊙g
− 1

2
ν N

− 1
2

ν

( mν

10eV

)−2
A(ξ)−

5
4 B(ξ)

3
4 . (D.4.4)

The peak of Jeans mass depending on degeneracy parameter for different
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Figure D.1.: The Jeans mass dependence on redshift for neutrinos with mass
mν = 2.5eV and degeneracy parameter ξ = 2.5.
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Figure D.2.: The Jeans mass dependence on degeneracy parameter with fixed
value of energy density, curves (1-4). Curve (1) corresponds to energy density
Ων = 0.11. Curve (2) corresponds to Ων = 0.3. Curve (3) represents neutrino
energy density Ων = 0.5 and, finally, curve (4) gives Jeans mass for Ων = 1.
The dashed line represents Jeans mass dependence on degeneracy parameter
with fixed neutrino mass mν = 2.5 eV.

1410



D.5. Joint constraints on the lepton asymmetry of the Universe and neutrino
mass from the Wilkinson Microwave Anisotropy Probe

fixed values of energy density as well as with constant mass mν = 2.5 eV is
shown at Fig.D.2.

By comparing different curves with fixed value of ξ one can find the well
known result, that the Jeans mass increases with decreasing of neutrino mass.
With growth of degeneracy parameter, however, neutrino mass decreases in
the beginning, and its different values correspond to different points at the
same curve.

The space above the dashed line at Fig.D.2 represents the region in which
the neutrino mass is less than 2.5 eV. It is interesting to note, that this value of
mν is still sufficient to obtain Ων = 1 with ξ ≈ 4.

D.5. Joint constraints on the lepton asymmetry of

the Universe and neutrino mass from the

Wilkinson Microwave Anisotropy Probe

D.5.1. Introduction

It is a remarkable fact that our observational knowledge of the Universe can
be justified in terms of a model, the so-called power-law ΛCDM model, char-
acterized by just six parameters, describing the matter content of our Uni-
verse (the physical density of baryons ωb, the physical density of matter ωm,
the Hubble constant h), the initial conditions from which it evolved (the am-
plitude A and the spectral index n of the primordial power spectrum) and
the optical depth at reionization (τ). In particular, this model provides a
good fit to both the cosmic microwave background (CMB) (Spergel et al.,
2003) and large scale structure (LSS) data (although in this last case one ad-
ditional parameter, the bias parameter b, is needed) (Tegmark et al., 2004).
Nevertheless, the data leave room for more refined models, described by
additional parameters: among them, the spatial curvature, the amplitude
of tensor fluctuations, a running spectral index for scalar modes, the equa-
tion of state for dark energy, the neutrino fraction in the dark matter com-
ponent, a non-standard value for the relativistic energy density. All have
been considered in previous works. In particular the last two have been
studied in order to gain deeper information on the properties of neutrinos
(Hannestad, 2002; Spergel et al., 2003; Hannestad, 2003b; Elgaroy and Lahav,
2003; Elgaroy et al., 2002; Allen et al., 2003; Barger et al., 2004; Crotty et al.,
2003; Pierpaoli, 2003; Di Bari, 2002, 2003; Barger et al., 2003b; Crotty et al.,
2004; Hannestad and Raffelt, 2004; Hannestad, 2003a; Cuoco et al., 2004). Be-
fore the measurements of the CMB anisotropy spectrum carried out by the
Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett et al., 2003; Hinshaw et al.,
2003; Kogut et al., 2003; Page et al., 2003; Peiris et al., 2003; Spergel et al., 2003;
Verde et al., 2003), the combined CMB and LSS data yielded the following up-
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per bound on the sum of neutrino masses: ∑ mν ≤ 3 eV (Hannestad, 2002).
The WMAP precision data allowed to strengthen this limit. Using rather sim-
plifying assumptions, i.e., assuming three thermalized neutrino families all
with the same mass and a null chemical potential (thus implying perfect lep-
ton symmetry), the WMAP team found that the neutrino mass should be
lower than 0.23 eV (Spergel et al., 2003). This tight limit has been somewhat
relaxed to ∑ mν ≤ 1 eV (Hannestad, 2003b) owing to a more careful treat-
ment of the Ly-α data, and its dependence on the priors has been examined
(Elgaroy and Lahav, 2003). The LSS data can also be used to put similar con-
straints, although they are usually weaker. Using the data from the 2 De-
gree Field Galaxy Redshift Survey (2dFGRS) and assuming “concordance”
values for the matter density Ωm and the Hubble constant h it is found that

∑ mν ≤ 1.8 eV (Elgaroy et al., 2002). A combined analysis of the Sloan Digital
Sky Survey (SDSS) and WMAP data gives a similar bound : ∑ mν ≤ 1.7 eV
(Tegmark et al., 2004). Quite interestingly, the authors of Ref. (Tegmark et al.,
2004) claim that, from a conservative point of view (i.e., making as few as-
sumptions as possible), the WMAP data alone don’t give any information
about the neutrino mass and are indeed consistent with neutrinos making up
the 100% of dark matter. In Allen et al. (2003) it is claimed that the cosmolog-
ical data favor a non-zero neutrino mass at the 68% confidence limit, while
Barger et al. (2004) find the limit ∑ mν < 0.74.

At the same time, more detailed scenarios with a different structure of the
neutrino sector have been studied. The first and more natural extension to the
standard scenario is the one in which a certain degree of lepton asymmetry
(parameterized by the so-called degeneracy parameter ξ, i.e., the dimension-
less chemical potential) is introduced (Freese et al., 1983; Ruffini et al., 1983,
1988). Although standard models of baryogenesis (for example those based
on SU(5) grand unification models) predict the lepton charge asymmetry to
be of the same order of the baryonic asymmetry B ∼ 10−10, nevertheless there
are many particle physics motivated scenario in which a lepton asymme-
try much larger than the baryionic one is generated Harvey and Kolb (1981);
Dolgov (1992); Foot et al. (1996); Casas et al. (1999); March-Russell et al. (1999);
Dolgov et al. (2000); McDonald (2000); Kawasaki et al. (2002); Di Bari and Foot
(2002); Yamaguchi (2003); Chiba et al. (2004); Takahashi and Yamaguchi (2004).
In some cases, the predicted lepton asymmetry can be of order unity. One of
the interesting cosmological implications of a net leptonic asymmetry is the
possibility to generate small observed baryonic asymmetry of the Universe
(Buchmuller et al., 2004; Falcone and Tramontano, 2001) via the so-called sphaleron
process (Kuzmin et al., 1985). The process of Big Bang Nucleosynthesis (BBN)
is very sensitive to a lepton asymmetry in the electronic sector, since an ex-
cess (deficit) of electron neutrinos with respect to their antiparticles, alters the
equilibrium of beta reactions and leads to a lower (higher) cosmological neu-
tron to proton ratio n/p. On the other hand, an asymmetry in the µ or τ sec-
tor, even if not influencing directly the beta reactions, can increase the equi-
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librium n/p ratio due to a faster cosmological expansion. This can be used to
constrain the value of the degeneracy parameter (Bianconi et al., 1991). This
leads to the bounds −0.01 < ξe < 0.22 and |ξµ,τ | < 2.6 (Kneller et al., 2001;
Hansen et al., 2002).

The effect of a relic neutrino asymmetry on the CMB anisotropy and matter
power spectrum was first studied in Ref. (Lesgourgues and Pastor, 1999), and
is mainly related to the fact that a lepton asymmetry implies an energy den-
sity in relativistic particles larger than in the standard case. The cosmological
observables can then be used to constrain this extra energy density, parame-
terized by the effective number of relativistic neutrino species Neff. Although
this is somewhat more general than the case of a lepton asymmetry, in the
sense that the extra energy density can arise due to other effects as well, nev-
ertheless the case of a non-null chemical potential is not strictly covered by
the introduction of Neff. This is because the increased relativistic energy den-
sity is not the only effect connected to the lepton asymmetry (an additional
side effect is for example a change in the Jeans mass of neutrinos (Freese et al.,
1983; Ruffini and Song, 1986; Ruffini et al., 1988)). In the hypothesis of a neg-
ligible neutrino mass, it has been shown that the WMAP data constrain Neff

to be smaller than 9; when other CMB and LSS data are taken into account,
the bound shrinks to 1.4 ≤ Neff ≤ 6.8 (Crotty et al., 2003; Pierpaoli, 2003).
A combined analysis of CMB and BBN data leads to even tighter bounds
(Di Bari, 2002, 2003; Hannestad, 2003b; Barger et al., 2003b). A more detailed
analysis, in which the effective number of relativistic relics and the neutrino
mass are both left arbitrary and varied independently, can be found in Ref.
(Crotty et al., 2004). In the same paper, the effect of different mass splittings
is also studied. Finally an extension of these arguments to the case in which
additional relativistic, low-mass relics (such as a fourth, sterile neutrino or
a QCD axion) are present, has been studied in Ref. (Hannestad and Raffelt,
2004).

The goal of this paper is to perform an analysis of the WMAP data using the
degeneracy parameter, together with the effective number of relativistic par-
ticles, as additional free parameters, in order to put constraints on the lepton
number of the Universe. We work in the framework of an extended cosmo-
logical model with three thermally distributed neutrino families having all
the same mass and chemical potential, plus a certain amount of exotic parti-
cles species, considered to be effectively massless. We use the physical neu-
trino density ων ≡ Ωνh2, the degeneracy parameter ξ and the extra energy
density in exotic particles ∆Neff

others as additional parameters that describe the
neutrino sector. We perform an analysis in a 8-dimensional parameter space
that includes the standard, “core” cosmological parameters.

The paper is organized as follows. After a discussion on the motivations
that drive our work in Sec. D.5.2, we shortly review some basic formulae in
Sec. D.5.3 and discuss the impact of a non-null degeneracy parameter on the
CMB spectrum in Sec. D.5.4. In Sec. D.5.5 we describe the analysis pipeline,
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while in Sec. D.5.6 we present our basic results. Finally, we draw our conclu-
sions in Sec. D.5.7.

D.5.2. Motivation for this work

The main motivation for this work comes from the fact that, even though sev-
eral analyses have been performed which were aimed at putting constraints
on the number of effective relativistic degrees of freedom, a statistical analysis
of the CMB data aiming to put bounds directly on the degeneracy parameter,
instead of on Neff, is nevertheless still missing. There are two reasons for this:
first of all, in the limit of a vanishing neutrino mass, the increase in Neff is in
effect all that is needed to implement the non null chemical potential into the
standard model of the evolution of perturbations (Lesgourgues and Pastor,
1999; Ma and Bertschinger, 1995). It is then argued that, since neutrinos with
mass smaller than roughly 0.3 eV, being still relativistic at the time of last
scattering, would behave as massless, the distinction between ξ and Neff

is no more relevant in this case for what concerns their effect on the CMB
anisotropy spectrum. Although this is certainly true, it is our opinion that
this does not allow to neglect a priori the difference between the two parame-
ters. One reason is that the most conservative bound on neutrino mass, com-
ing from the tritium beta decay experiments, reads mν < 2.2 eV (at the 2σ
level) (Weinheimer et al., 1999; Bonn et al., 2002), that is quite higher than the
value of 0.3 eV quoted above. The main evidences for a neutrino mass in
the sub-eV range come, in the field of particle physics, from the experiments
on neutrinoless double beta decay (Klapdor-Kleingrothaus et al., 2001, 2004),
whose interpretation depends on assumptions about the Majorana nature of
neutrinos and on the details of the mixing matrix. Other indications of a
sub-eV mass come, as stated above, from cosmology and in particular from
the power spectrum of anisotropies, but since we want to keep our results
as much as possible independent from other analyses, we should not use in-
formation on neutrino mass derived from the previous analyses of the CMB
data. Moreover, let us note that CMB data analyses are often refined using
the results from LSS experiments. Since the structure formation, starting close
to the epoch of matter-radiation equality, goes on until very late times, even
very light neutrinos (in the range 10−3÷ 0.3 eV) cannot be considered mass-
less for the purpose of evaluating their effect on the matter power spectrum.
This means in particular that using Neff would lead to overlook the change
in the free streaming length and in the Jeans mass of neutrinos due to the in-
creased velocity dispersion (Lattanzi et al., 2003). It is then our opinion that
the use of Neff, even if correct with respect to the interpretation of CMB data,
precludes the possibility of correctly implementing the LSS data as a subse-
quent step in the analysis pipeline.

The second point against the cosmological significance of the degeneracy
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parameter is related to the constrain from BBN. It was recently shown that,
if the Large Mixing Angle (LMA) solution to the solar neutrino problem is
correct (as the results of the KamLAND experiment suggest (Eguchi et al.,
2003)), then the flavor neutrino oscillations equalize the chemical potentials
of e, µ and τ neutrinos prior to the onset of BBN, so that a stringent limit
ξ . 0.07 actually applies to all flavours (Dolgov et al., 2002; Abazajian et al.,
2002; Wong, 2002). This would constrain the lepton asymmetry of the Uni-
verse to such small values that it could be safely ignored in cosmological
analyses. However, the presence of another relativistic particle or scalar field
would make these limits relax (Barger et al., 2003a), while the effect of the
mixing with a light sterile neutrino, whose existence is required in order to ac-
count for the results of the Liquid Scintillation Neutrino Detector (LSND) ex-
periment (Aguilar et al., 2001), is still unclear (Abazajian et al., 2002). More-
over, it has been recently shown that a hypothetical neutrino-majoron cou-
pling can suppress neutrino flavor oscillations, thus reopening a window for
a large lepton asymmetry (Dolgov and Takahashi, 2004a,b). For all these rea-
sons, we judge it is interesting to study if CMB data alone can constraint or
maybe even rule out such exotic scenarios.

D.5.3. Basic formulae

It is customary in cosmology to call ultrarelativistic (or simply relativistic) a
species x that decouples from the photon bath at a temperature Td such that
its thermal energy is much larger than its rest mass energy: kBTd ≫ mxc2.

Owing to Liouville’s theorem, the distribution function in momentum space
fx(p ; Tx, ξx) of the species x is given, after decoupling, by (we shall use all
throughout the paper units in which c = h̄ = kB = 1):

fx(p ; Tx, ξx) =
gx

(2π)3

[

exp

(

p

Tx
− ξx

)

± 1

]−1

, (D.5.1)

where ξ ≡ µd/Td is the dimensionless chemical potential, often called degen-
eracy parameter, the sign + (−) corresponds to the case in which the x’s are
fermions (bosons), g is the number of quantum degrees of freedom, and the
temperature T evolves in time as the inverse of the cosmological scale factor
a, so that T(t) · a(t) = const.

The energy density of the x’s at a given temperature is readily calculated:

ρx(Tx, ξ) =
∫

E(p) f (p ; Tx, ξx)d
3
~p =

=
gx

2π2

∫ ∞

0
p2
√

p2 + m2
x f (p ; Tx, ξx)dp. (D.5.2)

Using the dimensionless quantities y ≡ p/T and β ≡ mx/T, the expression
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for the energy density can be put in the form:

ρx(Tx , ξx) =
gx

2π2
T4

x

∫ ∞

0
dy y2

√

y2 + β2

exp(y− ξx)± 1
. (D.5.3)

We stress the fact that a temperature dependence is still present in the inte-
gral through the term β. However, the temperature dependence disappear
from the integral in two notable limits, the ultrarelativistic (UR) and non-
relativistic (NR) one, corresponding respectively to the two opposite cases
β≪ 1 and β≫ 1 (Ruffini et al., 1983). Then, defining

J±n (ξ) ≡
(

∫ ∞

0

yn

ey−ξ ± 1
dy

)(

∫ ∞

0

yn

ey ± 1
dy

)−1

, (D.5.4)

so that J±n (0) = 1, we have

ρx(Tx , ξx) =



















(

1
7/8

)

gx
π2

30
J±3 (ξx)T

4
x UR

(

1
3/4

)

gx
ζ(3)

π2
mx J±2 (ξx)T

3
x NR

(D.5.5)

where the upper and lower values in parentheses in front of the expression
in the right-hand side hold for bosons and fermions respectively, and ζ(n) is
the Riemann Zeta function of order n.

It is useful to express ρx(t) in terms of the present day energy density of
the cosmic background photons:

ρx(t) =

(

1
7/8

)





gx

2

(

T0
x

T0
γ

)4

J±3 (ξx)



 ρ0
γ(1 + z)4 ≡

≡ geff
x ρ0

γ (1 + z)4 , (D.5.6)

having defined an effective number of relativistic degrees of freedom geff
x as

geff
x ≡

gx

2

(

1
7/8

)

·





(

T0
x

T0
γ

)4

J±3 (ξx)



 . (D.5.7)

It is often the case that one has to consider a fermion species x together with
its antiparticle x̄, the most notable example being the relic neutrinos and an-
tineutrinos. In chemical equilibrium, the relation ξx = −ξ x̄ holds owing to
the conservation of chemical potential, as can be seen considering the reac-
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tion:
x + x̄ ←→ . . . ←→ γ + γ (D.5.8)

and noting that the chemical potential in the final state vanishes (Weinberg,
1972). This relation holds for neutrinos and antineutrinos in several cosmo-
logical scenarios. There are some exceptions to this, most notably early Uni-
verse scenarios in which lepton asymmetry is generated (Foot and Volkas,
1997) or destroyed (Abazajian et al., 2005) by active-sterile neutrino oscilla-
tions at low temperatures. However, we shall assume all throughout the pa-
per that the relation ξν = −ξν̄ holds.

It can then be shown that

geff
x+x̄ = geff

x + geff
x̄ =

=
7

8
gx

[

1 +
30

7

(

ξx

π

)2

+
15

7

(

ξx

π

)4
](

T0
x

T0
γ

)4

, (D.5.9)

where the factor between square parentheses can be recognized as what it is
often quoted as the contribution of a non-vanishing chemical potential to the
effective number of relativistic species Neff.

The definitions introduced above can be easily extended to the case when
several ultra-relativistic species xi are present:

geff ≡∑
i

geff
i , (D.5.10)

where photons are excluded from the summation. This means that, since
geff

γ = gγ = 1, the actual number of relativistic degrees of freedom is (1 +

geff).
The total density of ultrarelativistic particles at a given time is thus:

ρrad = ρ0
γ

(

1 + geff
)

(1 + z)4. (D.5.11)

Finally we can use this expression to find the dependence on geff of the
redshift of radiation-matter equality zeq (the subscripts b and CDM stands for
baryons and cold dark matter respectively):

1 + zeq =
ρ0

b + ρ0
CDM

ρ0
γ

(

1 + geff
)−1

. (D.5.12)

So, the larger is the energy density of ultra-relativistic particles in the Uni-
verse, parameterized by the effective number of degrees of freedom geff, the
smaller zeq will be, i.e., the later the equality between radiation and matter
will occur. In other words, supposing that the density in non-relativistic par-
ticles (baryons + CDM) is well known and fixed, having more relativistic de-
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grees of freedom will shift zeq closer to us and to the CMB decoupling.

In the standard cosmological scenario, the only contribution to the energy
density of relativistic particles other than photons is the one due to the three
families of standard neutrinos, with zero chemical potential. The ratio of
the neutrino temperature to the photon temperature is T0

ν /T0
γ = (4/11)1/3,

due to the entropy transfer that followed the electron-positron annihilation,
shortly after neutrino decoupling. Then

geff =
7

8

(

4

11

)4/3

Nν ≃ 0.23 Nν, (D.5.13)

where Nν = 3 is the number of neutrino families. The energy density in a
single neutrino species is:

ρstd
ν =

7π2

120

(

4

11

)4/3

T4
γ. (D.5.14)

However, several mechanisms that could increase (or even decrease) the
energy density of relativistic particles have been proposed. In the presence of
some extra relics (such as sterile neutrinos, majorons, axions, etc.) the energy
density of radiation would obviously increase. A non-zero chemical potential
for neutrinos or an unaccounted change of ργ, due for example to particle
decays that increase the photon temperature, would produce the same result.
In all cases the effect is the same: a change in geff, as it can be seen by looking
at eq. (D.5.7). It is usual in the literature to parameterize the extra energy
density by introducing an effective number of neutrino families Neff, defined
as:

Neff ≡ ∑i ρi

ρstd
ν

, (D.5.15)

where again the sum runs over all ultrarelativistic species with the excep-
tions of photons. It is clear from this definition that Neff is actually the energy
density in ultrarelativistic species (apart from photons) normalized to the en-
ergy density of a single neutrino species with zero chemical potential and
standard thermal history. It is easy to show that a relation formally similar to
(D.5.13) holds in the non-standard scenario:

geff = 0.23 Neff. (D.5.16)

In addition, it should be noted that even in the standard scenario Neff 6=
Nν = 3, but instead Neff ≃ 3.04. This is due to the fact that neutrino de-
coupling is not instantaneous, so that neutrino actually share some of the
entropy transfer of the e+e− annihilation, on one side, and to finite temper-
ature quantum electrodynamics corrections on the other (Dolgov et al., 1997;
Mangano et al., 2002).
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It is also useful to introduce the effective number of additional relativistic
species ∆Neff defined as:

∆Neff ≡ Neff− 3.04 , (D.5.17)

so that ∆Neff = 0 in the standard scenario. Please note that ∆Neff can also be
negative, for example in very low reheating scenarios (Giudice et al., 2001).

In this paper we shall consider a scenario in which the radiation content of
the Universe at the time of radiation-matter equality is shared among pho-
tons, three neutrino families with standard temperature but possibly non-
zero chemical potential, and some other relic particle. We shall suppose that
the presence of the latter can be completely taken into account through its
effect on Neff. This is true if the species has been in its ultrarelativistic regime
for the most part of the history of the Universe. The presence of this extra
relic is required for our analysis, in order to circumvent the equalization of
neutrino chemical potentials, as explained at the end of section D.5.2. We also
assume that the degeneracy parameters for neutrinos and antineutrinos are
equal and opposite, and that e, µ and τ neutrinos all have the same chemical
potential.

The extra energy density can thus be split into two distinct contributions,
the first due to the non-zero degeneracy parameter of neutrinos and the sec-
ond due to the extra relic(s):

∆Neff = ∆Neff
ν (ξ) + ∆Neff

others. (D.5.18)

Following our assumptions, ∆Neff
ν can be expressed as a function of the chem-

ical potential only:

∆Neff
ν (ξ) = 3

[

30

7

(

ξx

π

)2

+
15

7

(

ξx

π

)4
]

. (D.5.19)

D.5.4. Effect of a non-null chemical potential

As anticipated above, the main effect connected to the presence of a non-
vanishing degeneracy parameter, is an increase in geff (or, equivalently, in
Neff). The presence of this extra number of effective relativistic degrees of
freedom can in principle be detected from observations of the CMB radia-
tion. The shift of matter-radiation equality has important consequences for
the CMB anisotropy spectrum, these being due to the larger amplitude of
the oscillations that enter the horizon during the radiation dominated phase,
and to a larger early integrated Sachs-Wolfe (ISW) effect. However these ef-
fects, basically due to the speeding up of the cosmological expansion, can
be similarly produced by the variation of other cosmological parameters, for
example by a smaller CDM density.
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Moreover since the change in the redshift of matter-radiation equality de-
pends on the ultra-relativistic species only through the quantity geff, it cannot
be used to distinguish between the different species (i.e., it is “flavor blind”),
nor to understand if the excess energy density is due to the presence of some
unconventional relic, to an extra entropy transfer to photons, or to a non-null
chemical potential (i.e., to a lepton asymmetry), or maybe to all of the previ-
ous.

However ultrarelativistic particles, other than changing the background
evolution, have an effect even on the evolution of perturbations, as it was
pointed out in (Bashinsky and Seljak, 2004) with particular regard to the case
of neutrinos. First of all, the high velocity dispersion of ultrarelativistic parti-
cles damps all perturbations under the horizon scale. Second, the anisotropic
part of the neutrino stress-energy tensor couples with the tensor part of the
metric perturbations. It was shown in (Weinberg, 2004) that this reduces the
amplitude squared of tensor modes by roughly 30% at small scales. Finally,
the authors of Ref. (Bashinsky and Seljak, 2004) claimed that the perturba-
tions of relativistic neutrinos produce a distinctive phase shift of the CMB
acoustic oscillations. These effects can thus be used to break the degeneracy
between geff and other parameters. It remains to establish whether they can
be used to break the degeneracy between the different contributions to geff or
not. Even without performing a detailed analysis, it can be seen by looking
at the relevant equations in Ref. (Bashinsky and Seljak, 2004) and (Weinberg,
2004), that both the absorption of tensor modes and the phase shift depend
on the quantity fν ≡ ρν/(ργ + ρν). The effect of free streaming, even if more
difficult to express analytically, is also mainly dependent on the value of fν

(Hu et al., 1998). If we consider the case where the three standard neutrinos
are the only contribution to the radiation energy density other than photons,
but we allow for the possibility of a non-vanishing chemical potential or for a
different T0

ν /T0
γ ratio, we see again that the changes in the shape of the CMB

anisotropy spectrum depend only on geff as whole, as long as eq. (D.5.6) re-
tains its validity, i.e., as long as neutrinos are in their ultra-relativistic regime.
Even considering the presence of some additional relic particle x does not
seem to change this picture. Supposing that the other ultrarelativistic parti-
cles behave as neutrinos for what concerns the effects under consideration,
we can argue that in all cases the relevant quantity is fx ≡ ρx/ρrad, so that
we are again lead to the conclusions that geff is the only relevant parameter.
This means, for example, that in the case of neutrinos with mass less than
∼ 0.3 eV, so that they stay ultrarelativistic until the time of last scattering and
for some time after, the effect on CMB perturbations is exactly the same of
massless neutrinos, and every change in their temperature or chemical po-
tential, as even the presence of an additional, sterile neutrino, is absorbed in
geff (moreover, we don’t have obviously any possibility to extract information
about their mass).
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However the picture changes when considering neutrinos (or other relic
particles) that go out from the ultrarelativistic regime before matter-radiation
decoupling. If the neutrino mass is larger than ∼ 0.3 eV, the effect of its
finite mass is felt by the perturbations that enter the horizon after neutrinos
have gone out from the ultrarelativistic regime, because from some point on
the evolution the energy density will be given no more by the approximate
formula (D.5.6), but instead by eq. (D.5.2) that contains a dependence on
mass through the term β. A side effect of this is that it will not be possible to
single out the dependence of ρ from T and ξ as an overall factor, so that these
two contributions become distinguishable.

Let us make this more clear with an example. Consider a gravitational
wave entering the horizon after neutrinos became non-relativistic, but be-
fore matter-radiation decoupling. This wave will be absorbed, according to
(Weinberg, 2004), proportionally to ρν. On the other hand the free stream-
ing length of neutrinos will vary according to the velocity dispersion < v2 >

(Freese et al., 1983; Ruffini and Song, 1986). The key point is that, for a gas
of non-relativistic particles, ρν and < v2 > will depend on Tν and ξν in dif-
ferent ways, so that measuring independently the absorption factor and the
free streaming length, it would be possible at least in principle to obtain the
values of Tν and ξν without any ambiguity left.

What we have just said is even more true with respect to the LSS data, since
even neutrinos with mass greater than 10−3 eV are in their non-relativistic
regime during the late stages of the process of structure formation. We con-
clude then by stressing that one should be careful when parameterizing the
lepton asymmetry by means of an effective number of degrees of freedom.

D.5.5. Method

We used the CMBFAST code (Seljak and Zaldarriaga, 1996), modified as de-
scribed in (Lesgourgues and Pastor, 1999) in order to account for a non van-
ishing chemical potential of neutrinos, to compute the temperature (TT) and
polarization (TE) CMB spectra for different combinations of the cosmolog-
ical parameters. As a first step, we added three more parameters, namely
the effective number of additional relativistic species ∆Neff

others, the neutrino
degeneracy parameter ξ (both defined in Sec. D.5.3) and the neutrino physi-
cal energy density ων ≡ Ωνh2 to the standard six-parameters ΛCDM model
that accounts in a remarkably good way for the WMAP data. As anticipated
above, ∆Neff

others accounts only for the extra energy density due to the presence
of additional relic relativistic particles other than the three Standard Model
neutrinos. We shall refer to the (ων, ξ, ∆Neff

others) subspace as the “neutrino

sector” of the parameter space (although, as we have just noticed, ∆Neff
others

does not refer directly to neutrinos).

With the above mentioned choice of the parameters we can make a con-
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sistency check to our results, by verifying that imposing the priors ξ = 0,
ων = 0 and ∆Neff

others = 0, we obtain results that are in agreement with the
ones of the WMAP collaboration. Moreover, by choosing a sufficiently wide
range for the variation of the three additional parameters, we can check how
much their introduction affects the estimation of the best-fit values of the
core parameters. Thus we choose to use the following parameters: the phys-
ical baryon density ωb ≡ Ωbh2, the total density of non relativistic matter
ωm ≡ (Ωb + ΩCDM)h2, the scalar spectral index n, the optical depth to reion-
ization τ, the overall normalization of the CMB spectrum A, the physical
neutrino density ων = Ωνh2, the neutrino degeneracy parameter ξ and the
extra energy density in non-standard relics ∆Neff

others. We will be considering
the scenario in which the three standard model neutrinos have all the same
mass and chemical potential. We take the chemical potential to be positive
(this corresponds to an excess of neutrinos over antineutrinos), but since the
effects on the CMB do not depend on the sign of ξ, we quote the limits that
we obtain in terms of its absolute value. We do not include as a free param-
eter the Hubble constant H0, whose degeneracy with the effective number of
relativistic degrees of freedom and with the neutrino mass has been studied
in previous works (Elgaroy and Lahav, 2003). Instead we decided, accord-
ing to the recent measurements of Hubble Space Telescope (HST) Key Project
(Freedman et al., 2001), to assume that h = 0.72. Moreover, we restrict our-
selves to the case of a flat Universe, so that the density parameter of the cos-
mological constant ΩΛ is equal to 1− (ωm + ων)/h2. We are thus dealing
with a 8-dimensional parameter space.

Let us discuss in a bit more detail the way we deal with priors in the neu-
trino sector of parameter space, i.e., with information coming from other ob-
servations, and in particular from BBN. As we have stressed in section D.5.2,
the standard BBN scenario, together with the equalization of chemical po-
tentials, constraints the neutrino degeneracy parameter to values lower than
the ones considered in this paper; on the other hand this conclusion possibly
does not hold in non-standard scenarios where additional relativistic relics
are present. However, even non-standard scenarios of this kind usually sin-
gle out some preferred region in parameter space. At the present, several
non-standard scenarios that can account for the observed Helium abundance
exist (see for example Refs. (Di Bari, 2002) and (Di Bari, 2003)) so that we
adopt a conservative approach, and choose not to impose any prior on the
neutrino sector, other than the ones that emerge “naturally” as a consequence
of our choice of parameters. Anyway, this does not preclude the possibility
of successively using the BBN information: in fact once the likelihood func-
tion in the neutrino sector has been calculated, it can be convolved with the
relevant priors coming from non-standard BBN scenarios.

We span the following region in parameter space: 0.020 ≤ ωb ≤ 0.028,
0.10 ≤ ωm ≤ 0.18, 0.9 ≤ n ≤ 1.10, 0 ≤ τ ≤ 0.3, 0.70 ≤ A ≤ 1.10, 0 ≤ ων ≤
0.30, 0 ≤ |ξ| ≤ 2.0, 0 ≤ ∆Neff

others ≤ 2.0. We shall call this our “(5+3) parameter
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space”. In order to obtain the likelihood function L(ωb, ωm, n, τ, A, ων, ξ, ∆Neff
others)

in this region, we sample it over a grid consisting of 5 equally spaced points
in each dimension. For each point on our grid, corresponding to a com-
bination of the parameters, we compute the likelihood relative to the TT
(Hinshaw et al., 2003) and TE (Kogut et al., 2003) angular power spectrum
observed by WMAP, using the software developed by the WMAP collabo-
ration (Verde et al., 2003) and kindly made publicly available at their web-
site1. To obtain the likelihood function for a single parameter, we should
marginalize over the remaining ones. However for simplicity we approxi-
mate the multi-dimensional integration required for the marginalization pro-
cedure with a maximization of the likelihood, as it is a common usage in this
kind of likelihood analysis. This approximation relies on the fact that the like-
lihood for cosmological parameters is supposed to have a gaussian shape (at
least in the vicinity of its maximum) and that integration and maximization
are known to be equivalent for a multivariate Gaussian distribution.

According to Bayes’ theorem, in order to interpret the likelihood functions
as probability densities, they to be inverted through a convolution with the
relevant priors, representing our knowledge and assumptions on the param-
eters we want to constrain. Here we shall assume uniform priors, i.e. we will
assume that all values of the parameters are equally probable.

For each of the core parameters, we quote the maximum likelihood value
(which we shall refer to also as the “best-fit” value) over the grid and the ex-
pectation value over the marginalized distribution function. We quote also
the best chi square value χ2

0 (we recall that χ2 ≡ −2 lnL) divided by the
number of degrees freedom, that is equal to the number of data (for WMAP,
this is 1348) minus the number of parameters. For what concerns the pa-
rameters of the neutrino sector, we quote the maximum likelihood and the
expectation value as well, and in addition we report a 2σ confidence interval.
Using a Bayesian approach, we define the 95% confidence limits as the val-
ues at which the marginalized likelihood is equal to exp[−(χ2

0 − 4)/2], i.e.,
the values at which the likelihood is reduced by a factor exp(2) with respect
to its maximum value 2. There is one exception to this procedure, namely,
when the maximum likelihood value for a parameter that is positively de-
fined (such as ων or the absolute value of ξ), let us call it θ, is equal to zero.
In this case, instead than computing the expectation value, we just give an
upper bound. In order to do this, we compute the cumulative distribution

function C(θ) =
(

∫ θ
0 L(θ̄)dθ̄

)

/
(∫ ∞

0 L(θ̄)dθ̄
)

and quote as the upper limit at

the 95% confidence level the value of θ at which C(θ) = 0.95.

1http://lambda.gsfc.nasa.gov/
2The 95% confidence level defined in this way is not in general equal to the 2σ region,

defined computing the variance of the probability distribution. However, the two are
equal for a gaussian probability density. As we shall see, almost all the marginalized
distribution have a nearly gaussian shape. When it is not so, we shall point this out.
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Once we have obtained constraints on ων, ξ and ∆Neff
others, we translate them

to limits on the neutrino mass mν, the lepton asymmetry L and the extra num-
ber of effective relativistic species ∆Neff, using eqs. (D.5.18) and (D.5.19) to-
gether with the following relations (Freese et al., 1983; Ruffini and Song, 1986;
Lattanzi et al., 2003):

Ωνh2 = ∑
ν

mνF(ξν)

93.5 eV
, (D.5.20)

L ≡∑
ν

nν − nν̄

nγ
=

=
1

12ζ(3)



∑
ν

(

ξ3 + π2ξ
)

(

T0
ν

T0
γ

)3


 , (D.5.21)

where

F(ξ) ≡ 2

3ζ(3)

[

∞

∑
k=1

(−1)k+1 e+kξ + e−kξ

k3

]

=

=
1

3ζ(3)

[

1

3
ξ3 +

π2

3
ξ + 4

∞

∑
k=1

(−1)k+1 e−kξ

k3

]

. (D.5.22)

D.5.6. Results and discussion

We start our analysis by looking at the effect of the introduction of the addi-
tional parameters to the estimation of the core parameters (ωb, ωm, n, τ, A).
First of all, we check that imposing the priors ξ = 0, ων = 0 and ∆Neff

others = 0
our results are in good agreement with the ones of the WMAP collaboration
(we should refer to the values quoted in Table I of Ref. (Spergel et al., 2003)).
The mean and maximum likelihood values that we obtain for each parameter
are summarized in Table D.1. We see that in all cases our results lie within
the 68% confidence interval of WMAP expected values. Then we remove the
prior on ων, while still retaining the ones on ξ and ∆Neff

others. The maximum
likelihood model has still ων = 0. The best-fit values of the core parameters
are left unchanged, and the same happens for the best-fit χ2, thus suggesting
that a non-zero ων is not required in order to improve the goodness of fit. The
results for the core parameters are summarized in Table D.2.

Finally, we compute the likelihood over our whole parameter space. The
results for the core parameters are summarized in Table D.3. The maximum
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Table D.1.: Core Parameters with priors: ξ = 0, Ων = 0, ∆Neff
others = 0

Parameter Mean Likelihood

Baryon density, ωb 0.024 0.024
Matter density, ωm 0.15 0.16
Hubble constant, h (fixed) 0.72 0.72
Spectral index, n 1.00 1.00
Optical depth, τ 0.13 0.075
Amplitude, A 0.8 0.8
χ2/ν 1437/1343

Table D.2.: Core Parameters with priors: ξ = 0, ∆Neff
others = 0

Parameter Mean Likelihood

Baryon density, ωb 0.024 0.024
Matter density, ωm 0.15 0.16
Hubble constant, h (fixed) 0.72 0.72
Spectral index, n 1.00 1.00
Optical depth, τ 0.13 0.075
Amplitude, A 0.8 0.8
χ2/ν 1437/1342

Table D.3.: Core Parameters with no neutrino priors

Parameter Mean Likelihood

Baryon density, ωb 0.023 0.022
Matter density, ωm 0.14 0.14
Hubble constant, h (fixed) 0.72 0.72
Spectral index, n 0.98 0.95
Optical depth, τ 0.12 0.075
Amplitude, A 0.8 0.7
χ2/ν 1431/1340
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Figure D.3.: Comparison between the best-fit power spectrum obtained as-
suming the priors ξ = 0, ∆Neff

others = 0 (solid line) and without such prior
(dashed line). The points are the WMAP data on the temperature angular
power spectrum (Hinshaw et al., 2003).
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Figure D.4.: Likelihood functions for ων, |ξ|, ∆Neff
others and for the derived

parameters |L|, mν and ∆Neff, obtained as a result of the analysis in (5+3)
parameter space. The dotted lines bound the 95% confidence interval. The
functions are normalized so that their integral is equal to unity.

likelihood model over the grid has (ωb, ωm, n, τ, A, ων, ξ, ∆Neff
others) =, and

(0.022, 0.14, 0.95, 0.075, 0.7, 0, 0.5, 0). We see that this time, the best fit val-
ues for the five core parameters are slightly changed with respect to the stan-
dard case. The changes in ωm and n could seem strange at a first sight, since
intuitively one would expect the opposite behaviour, i.e., a change to larger
values for both, because a larger ωm could keep the time of matter-radiation
equality, while a larger n would increase the power on small scales thus leav-
ing more room for neutrino free streaming. This is because the goodness of fit
of a particular model with respect of the WMAP data is mainly determined
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by its ability to fit the first and second peak. Increasing together ωm, n, ξ and
∆Neff

others would increase the height of the first peak that can be then lowered
back by decreasing the overall amplitude A. We show in fig. D.3 a compari-
son between the best-fit spectrum in the (ξ = 0, ∆Neff

others = 0) subspace with
the best-fit spectrum on the whole space.

Now let us turn our attention to the neutrino sector of parameter space.
The best-fit model over the (ξ = 0, ∆Neff

others = 0) subspace of the grid has

ων = 0, and the χ2 changes from 1437 to 1541 when going from ων = 0 to
the next value in our grid, ων = 0.075. We can compute an upper bound for
ων, but since the region in which L(ων) significantly differs from zero is all
comprised between the first two values in our grid {0, 0.075}, the result is
rather dependent from the particular interpolation scheme we choose. Using
a simple, first order interpolation scheme, we find the bound ων < 0.0045
(95% CL), corresponding to mν < 0.14 eV, while using higher order interpo-
lation schemes the bound weakens up to ων < 0.015 (mν < 0.47 eV). This
result should then be taken with caution and we shall simply consider it as
an indication that, although we are using a grid-based method with a rather
wide grid spacing instead than the more sophisticated Markov Chain Monte
Carlo (MCMC) method (Christensen et al., 2001; Lewis and Bridle, 2002), we
basically obtain the same results of the WMAP collaboration, namely, ων ≤
0.0072 (Spergel et al., 2003), when imposing the priors ξ = 0, ∆Neff

others = 0.

We make a second check by imposing that ων = 0, ξ = 0 and comput-
ing the 95% confidence region for ∆Neff

others. We find that 0 ≤ ∆Neff
others ≤

1.4. Since the degeneracy parameter is vanishing, the same limit applies to
∆Neff = ∆Neff

others. This is quite in agreement with the results quoted in Ref.
(Crotty et al., 2003), although it is more restrictive. This is probably due to the
fact that we are imposing a stronger prior on h, keeping it constant and equal
to 0.72. This is confirmed by a visual inspection of fig. 2 of Ref. (Crotty et al.,
2003).

The best-fit value for neutrino density over the whole parameter space is
still ων = 0, but this time χ2 changes from 1431 to 1441 as ων goes from 0 to
0.075, so that the probability density spreads out to higher values of ων with
respect to the preceding case. The result is that the upper bound raises up to
ων < 0.044, quite independently from the interpolation scheme used. This
is probably related to the already observed trend for which, when the energy
density of relativistic relics is increased, the possibility for larger neutrino
masses reopens (Hannestad, 2003b; Elgaroy and Lahav, 2003; Hannestad and Raffelt,
2004; Lesgourgues and Liddle, 2001).

The maximum likelihood value for the degeneracy parameter is |ξ| = 0.5,
while the expectation value over the distribution function is |ξ| = 0.56 (cor-
responding to |L| = 0.43). At the 2σ level, the degeneracy parameter is con-
strained in the range 0 ≤ |ξ| ≤ 1.07. This corresponds to 0 ≤ |L| ≤ 0.9. For
what concerns the additional number of relativistic relics, the maximum like-
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lihood model has ∆Neff
others = 0, and the expectation value over the marginal-

ized probability function is ∆Neff
others = 0.3. The 95% confidence region is

−0.7 ≤ ∆Neff
others ≤ 1.3. This opening towards smaller, negative values of

∆Neff
others can be ascribed to the fact that such values produce a lowering of

the acoustic peak, that can be compensated by a larger degeneracy parame-
ter. The quoted bounds on ων and ξ translate to the following bound on the
neutrino mass: mν < 1.2 eV (95% CL). In fig. D.4 we show the likelihood
functions, while in Table D.4 we summarize our results for the basic and de-
rived parameters describing the neutrino sector.

We remark that, although the maximum likelihood model over the whole
grid has ων = 0, this is not in contradiction with our choice of considering ξ
and ∆Neff

others as independent parameters, in spite of the fact that in this limit
they should be degenerate. The basic reason is that, as can be seen from the
likelihood curves, models with ων > 0 can be statistically significant. For
these models, ∆Neff

ν and ∆Neff
others are not exactly degenerate.

In order to better study the partial degeneracy between |ξ| and ∆Neff
others,

and then to understand how the value of ∆Neff
others affects the estimation of

the degeneracy parameter, we compute the likelihood curve for the degen-
eracy parameter for particular values of ∆Neff

others. The results are shown in
Table D.5. . From this table, a quite evident trend appears, namely that for
large values of ∆Neff

others, smaller values of |ξ| are preferred, and viceversa.

As already noticed, this is probably related to the fact that when ∆Neff
others

is increased, it remains less room for the extra energy density of neutrinos
coming from the non-vanishing degeneracy parameter. It is worth noting
that, for ∆Neff

others ≃ 0, the case ξ = 0 lies outside the 95% confidence region.
We stress the fact that, according to theoretical predictions, in models of de-
generate BBN with “3+1” neutrino mixing, if chemical potentials are large
(ξ > 0.05), the production of sterile neutrinos is suppressed, effectively re-
sulting in ∆Neff

others = 0 (Di Bari, 2002, 2003).

D.5.7. Conclusions and perspectives

In this paper, we have studied the possibility to constraint the lepton asym-
metry of the Universe, the sum of neutrino masses, and the energy density of
relativistic particles using the WMAP data, in the framework of an extended
flat ΛCDM model. Despite the fact that the current amount of cosmological
data can be rather coherently explained by the standard picture with three
thermally distributed neutrinos, vanishing lepton asymmetry and no addi-
tional particle species, nevertheless we think that it is useful to explore how
non-standard scenarios are constrained by the cosmological observables. We
have concentrated our attention to models with a (eventually large) net lep-
ton asymmetry (corresponding to a non-zero degeneracy parameter for neu-
trinos). Such models are motivated in the framework of extensions to the
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D.5. Joint constraints on the lepton asymmetry of the Universe and neutrino
mass from the Wilkinson Microwave Anisotropy Probe

Table D.4.: Neutrino Sector

95% Confidence
Parameter Interval

Physical neutrino density, ων . 0.044

Degeneracy parameter, |ξ| 0.60+0.50
−0.60

Neutrino mass in eV, mν . 1.2

Lepton asymmetry, |L| 0.46+0.43
−0.46

Effective number of additional 0.30± 1.0

relativistic relics, ∆Neff
others

Effective number of additional 0.70+1.40
−1.15

relativistic relics, ∆Neff

Table D.5.: Correlation between ξ and ∆Neff
others

∆Neff
others ξ

(95% Confidence Interval)

0 0.65± 0.58

0.5 0.42+0.58
−0.42

1.0 0.18+0.58
−0.18

1.5 ≤ 0.53

2.0 ≤ 0.29
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standard model of particle physics, and can possibly explain the observed
amount of baryon asymmetry in the Universe. Having in mind this, we have
also included the energy density of relativistic species as an independent pa-
rameter. In this last aspect, our approach differs from previous ones, where
the two parameters where considered degenerate. We have remarked that,
although an approximate degeneracy between the two exists, it could be bro-
ken by finite mass effect, especially in the case of neutrino masses saturating
the tritium beta decay bound.

When considering perfect lepton symmetry , our results are in agreement
with previous ones. In the more general case, we have found that, at the
2σ level the bounds on the degeneracy parameter and lepton asymmetry
are respectively 0 ≤ |ξ| ≤ 1.1 and 0 ≤ |L| ≤ 0.9. The effective num-
ber of additional relativistic species (excluding the contribution from the non
standard thermal distribution of neutrinos) is bounded as follows (95% CL):
−0.7 ≤ ∆Neff

others ≤ 1.3. Including also neutrinos, this reads −0.45 ≤
∆Neff ≤ 2.10. This limit is much more restrictive than the ones found in
similar analysis (Crotty et al., 2003; Pierpaoli, 2003). This is probably due to
the fact that we assume a very strong prior on the Hubble parameter, fixing
h = 0.72. The physical explanation is that the later matter-radiation equality
due to ∆Neff > 0 can be compensated by making ωm = Ωmh2 larger, and
viceversa. This gives rise to a partial degeneracy between ∆Neff and h, thus
making the costraints on both parameters looser unless some external prior
is imposed to break the degeneracy.

We also find that the data are compatible with ων and mν equal to 0, with
upper bounds (95% CL) ων ≤ 0.044 and mν ≤ 1.2 eV. This bounds are larger
than the ones usually found, and this is probably due on one hand to the
presence of a larger energy density of UR particles, and on the other hand to
the wide grid spacing we have used.

The usual scenario, with |L| = 0 and ∆Neff = 0, is then compatible with
WMAP data at the 2σ level; however the likelihood curves show that alter-
native scenarios with ξ ≃ 0.6 and ∆Neff ≃ 0.7 have a larger likelihood with
respect to the data. In effect, the standard scenario lies outside the 1σ confi-
dence region. Even if this is not enough to definitely claim evidence, in the
CMB anisotropy spectrum, of exotic physics, we think that it is however in-
teresting that non-standard models are not ruled out but actually preferred
by the WMAP data.

We have also studied how the results on the lepton asymmetry can change
when more precise information on the energy density of relativistic particles
is given. We have shown that, the smaller is the extra energy density, the
larger is the allowed lepton asymmetry. In particular, for models with van-
ishing ∆Neff

others, perfect lepton symmetry is ruled out at the 2σ level. This is

probably due to the approximate degeneracy between ∆Neff and ξ. The is-
sue of the exact extent of this degeneracy is still open, and we think that it
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deserves a deeper attention. It would be desirable to investigate if future pre-
cision CMB experiments, and in particular the PLANCK mission, can clearly
disentangle the two parameters. Even more promising to this purpose is the
power spectrum of LSS, as we have stressed in Sec. D.5.4.

The results presented in this paper have been derived assuming that the
three neutrino families have all the same mass and chemical potential, owing
to the structure of the CMBFast code used to generate the theoretical power
spectra. It is yet to investigate the role of a non-uniform distribution of the
lepton asymmetry between different families. In a similar way we did not
investigate models in which chemical equilibrium between neutrinos and an-
tineutrinos does not hold, implying ξν 6= −ξν̄.

We conclude then that WMAP data still cannot exclude the presence of
non-standard physics in the early evolution of the Universe. In particular,
they do not exclude the presence of a large neutrino asymmetry, and conse-
quently they do not rule out exotic leptogenesis scenario where a large lepton
number is produced.

D.6. Model independent constraints on

mass-varying neutrino scenarios

D.6.1. Introduction

Since the accelerated expansion of the universe was first observed with Type
Ia supernovae (SN) (Riess et al., 1998; Perlmutter et al., 1999), the case for a
cosmological constant-like fluid that dominates the energy density of the uni-
verse has become stronger and is well established by now with the new pieces
of data gathered (Frieman et al., 2008).

Several candidates for the accelerating component of the universe, gener-
ically dubbed dark energy (DE), have been proposed (Frieman et al., 2008;
Copeland et al., 2006; Peebles and Ratra, 2003; Caldwell and Kamionkowski,
2009), but understanding them theoretically and observationally has proven
to be challenging. On the theoretical side, explaining the small value of the
observed dark energy density component, ρφ ∼ (10−3 eV)4, as well as the
fact that both dark energy and matter densities contribute significantly to the
energy budget of the present universe requires in general a strong fine tuning
on the overall scale of the dark energy models. In the case in which the dark
energy is assumed to be a scalar field φ slowly rolling down its flat potential
V(φ), the so-called quintessence models (Caldwell et al., 1998), the effective
mass of the field has to be taken of the order mφ = |d2V(φ)/dφ2|1/2 ∼ 10−33

eV for fields with vacuum expectation values of the order of the Planck mass.

On the observational side, choosing among the dark energy models is a
complicated task (Linder, 2008). Most of them can mimic a cosmological con-
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stant at late times (that is, an equation of state wφ ≡ pφ/ρφ = −1) (Albrecht et al.,
2006), and all data until now are perfectly consistent with this limit. In this
sense, looking for different imprints that could favor the existence of a par-
ticular model of dark energy is a path worth taking.

Our goal in this paper consists in understanding whether the so-called
Mass-Varying Neutrinos (MaVaNs) scenario (Gu et al., 2003; Fardon et al., 2004;
Peccei, 2005; Amendola et al., 2008; Wetterich, 2007) could be constrained not
only via the dark energy effects, but also by indirect signs of the neutrino
mass variation during cosmological evolution, since neutrinos play a key role
in several epochs (Hannestad, 2006; Lesgourgues and Pastor, 2006). An indi-
cation of the variation of the neutrino mass would certainly tend to favor
this models (at least on a theoretical basis) with respect to most DE models.
One should keep in mind that MaVaNs scenarios can suffer from stability is-
sues for the neutrino perturbations (Afshordi et al., 2005), although there is
a wide class of models and couplings that avoid this problem (Bjaelde et al.,
2008; Bean et al., 2008c,b,a; Bernardini and Bertolami, 2008).

Similar analyses have been made in the past, but they have either assumed
particular models for the interaction between the neutrinos and the DE field
(Brookfield et al., 2006a,b; Ichiki and Keum, 2008), or chosen a parameteriza-
tion that does not reflect the richness of the possible behavior of the neutrino
mass variations (Zhao et al., 2007).

In order to be able to deal with a large number of models, instead of fo-
cusing on a particular model for the coupling between the DE field and the
neutrino sector, we choose to parameterize the neutrino mass variation to
place general and robust constraints on the MaVaNs scenario. In this sense,
our work complements previous analyses by assuming a realistic and generic
parameterization for the neutrino mass, designed in such a way to probe al-
most all the different regimes and models within the same framework. In
particular, our parameterization allows for fast and slow mass transitions be-
tween two values of the neutrino mass, and it takes into account that the
neutrino mass variation should start when the coupled neutrinos change
their behavior from relativistic to nonrelativistic species. We can mimic dif-
ferent neutrino-dark energy couplings and allow for almost any monotonic
behavior in the neutrino mass, placing reliable constraints on this scenario in
a model independent way.

Our work is organized as follows: in Section D.6.2 we give a brief review of
the MaVaNs scenario and its main equations. In Section D.6.3 we present our
parameterization with the results for the background and the perturbation
equations obtained within this context. The results of our comparison of the
numerical results with the data and the discussion of its main implications
are shown in section D.6.4. Finally, in section D.6.5 the main conclusions and
possible future directions are discussed.
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D.6.2. Mass-varying neutrinos

In what follows, we consider a homogeneous and isotropic universe with a
Robertson-Walker flat metric, ds2 = a2

(

dτ2 + dr2 + r2dΩ2
)

, where τ is the
conformal time, that can be written in terms of the cosmic time t and scale
factor a as dτ = dt/a, in natural units (h̄ = c = kB = 1). In this case, the
Friedmann equations read

H
2 =

(

ȧ

a

)2

=
a2

3m2
p

ρ, (D.6.1)

Ḣ = − a2

6m2
p
(ρ + 3p) , (D.6.2)

where the dot denotes a derivative with respect to conformal time, and the

reduced Planck mass is mp = 1/
√

8πG = 2.436× 1018 GeV. As usual, ρ and
p correspond to the total energy density and pressure of the cosmic fluid, re-
spectively. The neutrino mass in the models we are interested in is a function
of the scalar field φ that plays the role of the dark energy, and can be written
as

mν(φ) = Mν f (φ) , (D.6.3)

where Mν is a constant and different models are represented by distinct f (φ).

The fluid equation of the neutrino species can be directly obtained from the
Boltzmann equation for its distribution function (Brookfield et al., 2006b),

ρ̇ν + 3Hρν (1 + wν) = α(φ)φ̇ (ρν − 3pν) , (D.6.4)

where α(φ) = d ln[mν(φ)]/dφ takes into account the variation of the neu-
trino mass, and wx = px/ρx is the equation of state of the species x. For
completeness and later use, we will define Ωx0 = ρx/ρc0, the standard den-
sity parameter, where the current critical density is given by ρc0 = 3H2

0m2
p =

8.099 h2 × 10−11 eV4 and H0 = 100 h km s−1 Mpc−1 is the Hubble constant.

Since the total energy momentum tensor is conserved, the dark energy
fluid equation also presents an extra right-hand side term proportional to
the neutrino energy momentum tensor trace, Tα

(ν)α
= (ρν − 3pν), and can be

written as
ρ̇φ + 3Hρφ

(

1 + wφ

)

= −α(φ)φ̇ (ρν − 3pν) . (D.6.5)

For a homogeneous and isotropic scalar field, the energy density and pres-
sure are given by

ρφ =
φ̇2

2a2
+ V(φ) , pφ =

φ̇2

2a2
−V(φ) , (D.6.6)

and both equations lead to the standard cosmological Klein-Gordon equation

1433



D. Massive degenerate neutrinos in Cosmology

for an interacting scalar field, namely,

φ̈ + 2Hφ̇ + a2 dV(φ)

dφ
= −a2α(φ) (ρν − 3pν) . (D.6.7)

From the above equations one sees that, given a potential V(φ) for the scalar
field and a field-dependent mass term mν(φ) for the neutrino mass, the cou-
pled system given by equations (D.6.1), (D.6.4), and (D.6.7), together with the
fluid equations for the baryonic matter, cold dark matter and radiation (pho-
tons and other massless species) can be numerically solved (Brookfield et al.,
2006b). Notice that a similar approach has been used for a possible variation
of the dark matter mass (Anderson and Carroll, 1997) and its possible interac-
tion with the dark energy (Amendola, 2000; Amendola and Tocchini-Valentini,
2001), with several interesting phenomenological ramifications (Farrar and Peebles,
2004; Franca and Rosenfeld, 2004; Huey and Wandelt, 2006; Das et al., 2006;
Quartin et al., 2008; La Vacca et al., 2009).

Following (Franca and Rosenfeld, 2004; Das et al., 2006), equations (D.6.4)
and (D.6.5) can be rewritten in the standard form,

ρ̇ν + 3Hρν

(

1 + w
(eff)
ν

)

= 0 ,
(D.6.8)

ρ̇φ + 3Hρφ

(

1 + w
(eff)
φ

)

= 0 ,

if one defines the effective equation of state of neutrinos and DE as

w
(eff)
ν =

pν

ρν
− α(φ)φ̇ (ρν − 3pν)

3Hρν
,

(D.6.9)

w
(eff)
φ =

pφ

ρφ
+

α(φ)φ̇ (ρν − 3pν)

3Hρφ
.

The effective equation of state can be understood in terms of the dilution
of the energy density of the species. In the standard noncoupled case, the
energy density of a fluid with a given constant equation of state w scales as

ρ ∝ a−3(1+w). However, in the case of interacting fluids, one should also take
into account the energy transfer between them, and the energy density in this
case will be given by

ρ(z) = ρ0 exp

[

3
∫ z

0

(

1 + w(eff)(z′)
)

d ln(1 + z′)
]

, (D.6.10)

where the index 0 denotes the current value of a parameter, and the redshift
z is defined by the expansion of the scale factor, a = a0(1+ z)−1 (in the rest of
this work we will assume a0 = 1). For a constant effective equation of state

one obtains the standard result, ρ ∝ a−3(1+w(eff)), as expected.
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Notice that this mismatch between the effective and standard DE equa-
tions of state could be responsible for the “phantom behavior” suggested by
supernovae data when fitting it using a cosmological model with noninter-
acting components (Das et al., 2006). This effect could be observable if dark
energy was coupled to the dominant dark matter component. For the mod-
els discussed here, however, it cannot be significant: the neutrino fraction
today (Ων0/Ωφ0 ∼ 10−2) is too small to induce an “effective phantom-like”
behavior.

As we commented before, the analysis until now dealt mainly with par-
ticular models, that is, with particular functional forms of the dark energy
potential V(φ) and field dependence of the neutrino mass α(φ). A noticeable
exception is the analysis of Ref. (Zhao et al., 2007), in which the authors use a
parameterization for the neutrino mass a là Chevallier-Polarski-Linder (CPL)
(Albrecht et al., 2006; Chevallier and Polarski, 2001; Linder, 2003): mν(a) =
mν0 + mν1(1− a). However, although the CPL parameterization works well
for the dark energy equation of state, it cannot reproduce the main features
of the mass variation in the case of variable mass particle models. In the case
of the models discussed here, for instance, the mass variation is related to
the relativistic/nonrelativistic nature of the coupled neutrino species. With a
CPL mass parameterization, the transition from m1 to m0 always takes place
around z ∼ 1, which is in fact only compatible with masses as small as 10−3

eV. Hence, the CPL mass parameterization is not suited for a self-consistent
exploration of all interesting possibilites.

One of the goals in this paper is to propose and test a parameterization
that allows for a realistic simulation of mass-varying scenarios in a model
independent way, with the minimum possible number of parameters, as ex-
plained in the next section.

D.6.3. Model independent approach

Background equations

As usual, the neutrino energy density and pressure are given in terms of the
zero order Fermi-Dirac distribution function by

f 0(q) =
gν

eq/Tν0 + 1
, (D.6.11)

where q = ap denotes the modulus of the comoving momentum qi = qni

(δijninj = 1), gν corresponds to the number of neutrino degrees of freedom,
and Tν0 is the present neutrino background temperature. Notice that in the
neutrino distribution function we have used the fact that the neutrinos decou-
ple very early in the history of the universe while they are relativistic, and
therefore their equilibrium distribution depends on the comoving momen-
tum, but not on the mass (Lesgourgues and Pastor, 2006). In what follows we
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have neglected the small spectral distortions arising from non-instantaneous
neutrino decoupling (Mangano et al., 2005). Thus, the neutrino energy den-
sity and pressure are given by

ρν =
1

a4

∫

dq

(2π)3
dΩ q2ǫ f 0(q) , (D.6.12)

pν =
1

3a4

∫

dq

(2π)3
dΩ q2 f 0(q)

q2

ǫ
, (D.6.13)

where ǫ2 = q2 +m2
ν(a)a

2 (assuming that mν depends only on the scale factor).
Taking the time-derivative of the energy density, one can then obtain the fluid
equation for the neutrinos,

ρ̇ν + 3H (ρν + pν) =
d ln mν(u)

du
H (ρν − 3pν) , (D.6.14)

where u ≡ ln a = − ln(1 + z) is the number of e-folds counted back from
today. Due to the conservation of the total energy momentum tensor, the
dark energy fluid equation is then given by

ρ̇φ + 3Hρφ

(

1 + wφ

)

= −d ln mν(u)

du
H (ρν − 3pν) . (D.6.15)

We can write the effective equations of state, defined in eqs. (D.6.8), as

weff
ν =

pν

ρν
− d ln mν(u)

du

(

1

3
− pν

ρν

)

,

(D.6.16)

weff
φ =

pφ

ρφ
+

(

Ων

Ωφ

)

d ln mν(u)

du

(

1

3
− pν

ρν

)

.

The above results only assume that the neutrino mass depends on the scale
factor a, and up to this point, we have not chosen any particular parameteri-
zation. Concerning the particle physics models, it is important to notice that
starting from a value of wφ and a function mν(a) one could, at least in princi-
ple, reconstruct the scalar potential and the scalar interaction with neutrinos
following an approach similar to the one in Ref. (Rosenfeld, 2007).

Mass variation parameters

Some of the main features of the MaVaNs scenario are: (i) that the dark en-
ergy field gets kicked and moves away from its minimum (if mφ > H) or from
its previous slow-rolling trajectory (if mφ < H) when the neutrinos become
non-relativistic, very much like the case when it is coupled to the full matter
content of the universe in the so-called chameleon scenarios (Brax et al., 2004);
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and (ii) that as a consequence, the coupling with the scalar field generates
a neutrino mass variation at that time. Any parameterization that intends to
mimic scalar field models interacting with a mass-varying particle (neutrinos,
in our case) for the large redshift range to which the data is sensitive should
at least take into account those characteristics. Moreover, the variation of the
mass in most models (see (Brookfield et al., 2006b), for instance) can be well
approximated by a transition between two periods: an earlier one, in which
the mass is given by m1, and the present epoch, in which the mass is given
by m0 (we will not consider here models in which the neutrino mass behav-
ior is nonmonotonic). The transition for this parameterization, as mentioned
before, starts when neutrinos become nonrelativistic, which corresponds ap-
proximately to

zNR ≈ 1.40

(

1 eV

3 Tγ0

)

( m1

1 eV

)

≈ 2× 103
( m1

1 eV

)

(D.6.17)

where m1 corresponds to the mass of the neutrino during the period in which
it is a relativistic species. Before zNR we can treat the neutrino mass as es-
sentially constant, since the right-hand side (RHS) of the fluid equation is
negligible compared to the left-hand side (LHS), and therefore there is no
observable signature of a possible mass variation.

When the neutrinos become nonrelativistic, the RHS of the DE and neu-
trino fluid equations becomes important, and the neutrino mass starts vary-
ing. In order to model this variation, we use two parameters, namely the cur-
rent neutrino mass, m0, and ∆, a quantity related to the amount of time that it
takes to complete the transition from m1 to m0. That behavior resembles very
much the parameterization of the dark energy equation of state discussed in
(Corasaniti and Copeland, 2003), except for the fact that in our case the tran-
sition for the mass can be very slow, taking several e-folds to complete, and
must be triggered by the time of the nonrelativistic transition, given by equa-

tion (D.6.17). Defining f = [1 + e−[u (1+∆)−uNR]/∆]−1 and f∗ = [1 + euNR/∆]−1

we can use the form

mν = m0 + (m1 −m0)× Γ(u, uNR, ∆) , (D.6.18)

where

Γ(u, uNR, ∆) = 1− f

f∗
(D.6.19)

=

[

1− 1 + euNR/∆

1 + e−[u (1+∆)−uNR]/∆

]

.

Starting at uNR = − ln(1 + zNR), the function Γ(u, uNR , ∆) decreases from 1
to 0, with a velocity that depends on ∆. The top panel in Figure D.5 gives the
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behavior of eq. (D.6.18) with different parameters; the bottom panels shows
that in this parametrization, the derivative of the mass with respect to e-fold
number resembles a Gaussian function. The peak of the quantity dm/du oc-
curs at the value ū = uNR/(1 + ∆); hence, for ∆ ≪ 1, the mass variation
takes place immediately after the non-relativistic transition (ū ≃ uNR) and
lasts a fraction of e-folds (roughly, 3∆ e-folds); for 1 ≤ ∆ ≤ |uNR| the varia-
tion is smooth and centered on some intermediate redshift between zNR and
0; while for ∆ ≫ |uNR|, the transition is still on-going today, and the present
epoch roughly coincides with the maximum variation.
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Figure D.5.: (Color online) Neutrino mass behavior for the parameterization
given by equation (D.6.18). Top panel: Neutrino mass as a function of log(a) =
u/ ln(10) for models with m0 = 0.5 eV and different values of m1 and ∆.
Bottom panel: Neutrino mass variation for the same parameters as in the top
panel.

Although the functional form of Γ, eq. (D.6.19), seems complicated, one
should note that it is one of the simplest forms satisfying our requirements
with a minimal number of parameters. An example that could look sim-
pler, but that for practical purposes is not, would be to assume that the two
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plateaus are linked together by a straight line. In this case, we would need a
parameterization of the form

mν=















m1 , u < uNR ,

m0 + (m1 −m0)
[

u−uend
uNR−uend

]

, uNR ≤ u ≤ uend ,

m0 , u > uend

where uend corresponds to the chosen redshift in which the transition stops.
Notice that in this case not only we still have three parameters to describe the
mass variation, but also the function is not smoooth. Moreover, the derivative
of the mass with respect to u gives a top-hat-like function which is discontinu-
ous at both uNR and uend. In this sense, it seemed to us that equation (D.6.18)
would give us the best “price-to-earnings ratio” among the possibilities to
use phenomenologically motivated parameterizations for the mass-varying
neutrinos, although certainly there could be similar proposals equally viable,
such as for instance the possibility of adapting for the mass variation the pa-
rameterization used for the dark energy equation of state in (Douspis et al.,
2006; Linden and Virey, 2008). There, the transition between two constant
values of the equation of state exhibits a tanh [Γt(u− ut)] dependence, where
Γt is responsible for the duration of the transition and ut is related to its half-
way point.

In the rest of our analysis, we will use a couple of extra assumptions that
need to be taken into account when going through our results. First, we will
consider that only one of the three neutrino species is interacting with the
dark energy field, that is, only one of the mass eigenstates has a variable mass.
The reason for this approximation is twofold: it is a simpler case (compared
to the case with 3 varying-mass neutrinos), since instead of 6 extra param-
eters with respect to the case of constant mass, we have only 2, namely the
early mass of the neutrino whose mass is varying, m1, and the velocity of the
transition, related to ∆.

Besides simplicity, the current choice is the only one allowed presently
in the case in which neutrinos were heavier in the past. Indeed, we expect
our stronger constraints to come from those scenarios, especially if the neu-
trino species behaves as a nonrelativistic component at the time of radiation-
matter equality, given by 1+ zeq ∼ 4.05× 104(Ωc0h2 + Ωb0h2)/(1 + 0.23Neff)
(here the indexes c and b stand for cold dark matter and baryons, respec-
tively, and Neff is the effective number of relativistic neutrinos). Taking the
three neutrino species to be nonrelativistic at equality would change sig-
nificantly the value of zeq, contradicting CMB data (according to WMAP5,

1 + zeq = 3141+154
−157 (68% C.L.) (Komatsu et al., 2009)). Instead, a single neu-

trino species is still marginally allowed to be non-relativistic at that time.

To simplify the analysis, we also assumed that the dark energy field, when
not interacting with the neutrinos, reached already the so-called scaling so-
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lution [see, e.g., Copeland et al. (2006) and references therein], i.e., the dark
energy equation of state wφ in eq. (D.6.15) is constant in the absence of in-
teraction. Notice however that when the neutrinos become non-relativistic
the dark energy fluid receives the analogous of the chameleon kicks we men-
tioned before, and the dark energy effective equation of state, eq. (D.6.16),
does vary for this period in a consistent way.

The upper panel of Figure D.6 shows how the density parameters of the
different components of the universe evolve in time, in a typical MaVaNs
model. The lower panel displays a comparison between mass-varying and
constant mass models, in particular during the transition from m1 to m0. As
one would expect, far from the time of the transition, the densities evolve as
they would do in the constant mass case.

Perturbation equations

The next step is to calculate the cosmological perturbation equations and their
evolution using this parameterization. We chose to work in the synchronous
gauge, and our conventions follow the ones by Ma and Bertschinger (Ma and Bertschinger,
1995). In this case, the perturbed metric is given by

ds2 = −a2dτ2 + a2
(

δij + hij

)

dxidxj . (D.6.20)

In this gauge, the equation for the three-momentum of the neutrinos reads
(Ichiki and Keum, 2008)

dq

dτ
= −1

2
qḣijninj − a2 m2

ν

q
β

∂ρφ

∂xi

∂xi

dτ
, (D.6.21)

where, as in equation (D.6.4), we define

β(a) ≡ d ln mν

dρφ
=

d ln mν

d ln a

(

dρφ

d ln a

)−1

. (D.6.22)

Since the neutrino phase space distribution (Ma and Bertschinger, 1995) can
be written as f

(

xi, q, nj, τ
)

= f 0(q)
[

1 + Ψ
(

xi, q, nj, τ
)]

, one can show that the
first order Boltzmann equation for a massive neutrino species, after Fourier
transformation, is given by (Brookfield et al., 2006b; Ichiki and Keum, 2008)

∂Ψ

∂τ
+ i

q

ǫ
(n̂ · k)Ψ +

(

η̇ − (k̂ · n̂)2 ḣ + 6η̇

2

)

d ln f 0

d ln q
(D.6.23)

= −iβ
qk

ǫ
(n̂ · k)a2m2

ν

q2

d ln f 0

d ln q
δρφ ,
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where η and h are the synchronous potentials in the Fourier space. Notice
that the perturbed neutrino energy density and pressure are also going to be
modified due to the interaction, and are written as

δρν =
1

a4

∫

d3q

(2π)3
f 0

(

ǫΨ + β
m2

νa2

ǫ
δρφ

)

, (D.6.24)

3δpν =
1

a4

∫

d3q

(2π)3
f 0

(

q2

ǫ
Ψ− β

q2m2
νa2

ǫ3
δρφ

)

. (D.6.25)

This extra term comes from the fact that the comoving energy ǫ depends on
the dark energy density, leading to an extra-term which is proportional to β.

Moreover, if we expand the perturbation Ψ (k, q, n, τ) in a Legendre series
(Ma and Bertschinger, 1995), the neutrino hierarchy equations will read,

Ψ̇0 = −qk

ǫ
Ψ1 +

ḣ

6

d ln f 0

d ln q
,

Ψ̇1 =
qk

3ǫ
(Ψ0 − 2Ψ2) + κ , (D.6.26)

Ψ̇2 =
qk

5ǫ
(2Ψ1 − 3Ψ3)−

(

1

15
ḣ +

2

5
η̇

)

d ln f 0

d ln q
,

Ψ̇ℓ =
qk

(2ℓ+ 1)ǫ
[ℓΨℓ−1 − (ℓ+ 1)Ψℓ+1] .

where

κ = −1

3
β

qk

ǫ

a2m2
ν

q2

d ln f 0

d ln q
δρφ . (D.6.27)

For the dark energy, we use the “fluid approach” (Hu, 1998) (see also (Bean and Dore,
2004; Hannestad, 2005; Koivisto and Mota, 2006)), so that the density and ve-
locity perturbations are given by,

δ̇φ =
[

1 + βρν(1− 3wν)
]−1
{

3H(wφ − ĉ2
φ)

(

δφ +
3H(1 + wφ)

1 + βρν(1− 3wν)

θφ

k2

)

+

− (1 + wφ)

(

θφ +
ḣ

2

)

−
(

ρν

ρφ

)

[

βρ̇φ(1− 3c2
ν)δν + β̇ρφ(1− 3wν)δφ

]

}

,

(D.6.28)
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θ̇φ = −
[

H(1− 3ĉ2
φ)+βρν(1− 3wν)H(1− 3wφ)

1 + βρν(1− 3wν)

]

θφ+

+
k2

1 + wφ
ĉ2

φδφ−β(1− 3wν)

(

ρν

ρφ

)[

k2

1 + wφ
ρφδφ − ρ̇φθφ

]

, (D.6.29)

where the dark energy anisotropic stress is assumed to be zero (Mota et al.,
2007), and the sound speed ĉ2

φ is defined in the frame comoving with the

dark energy fluid (Weller and Lewis, 2003). So, in the synchronous gauge,
the quantity c2

φ ≡ δpφ/δρφ is related to ĉ2
φ through

c2
φδφ = ĉ2

φ

(

δφ −
ρ̇φ

ρφ

θφ

k2

)

+ wφ
ρ̇φ

ρφ

θφ

k2
. (D.6.30)

In addition, from eqs. (D.6.15) and (D.6.22), we have that

ρ̇φ

ρφ
=
−3H(1 + wφ)

1 + βρν(1− 3wν)
. (D.6.31)

D.6.4. Results and Discussion

Numerical approach

Equipped with the background and perturbation equations, we can study
this scenario by modifying the numerical packages that evaluate the CMB
anisotropies and the matter power spectrum. In particular, we modified the
CAMB code3 (Lewis et al., 2000), based on CMBFast4 (Seljak and Zaldarriaga,
1996) routines. We use CosmoMC5 (Lewis and Bridle, 2002) in order to sam-
ple the parameter space of our model with a Markov Chain Monte Carlo
(MCMC) technique.

We assume a flat universe, with a constant equation of state dark energy
fluid, cold dark matter, 2 species of massless neutrinos plus a massive one,
and ten free parameters. Six of them are the standard ΛCDM parameters,
namely, the physical baryon density Ωb0h2, the physical cold dark matter
density Ωc0h2, the dimensionless Hubble constant h, the optical depth to
reionization τreion, the amplitude (As) and spectral index (ns) of primordial
density fluctuations. In addition, we vary the constant dark energy equation
of state parameter wφ and the three parameters accounting for the neutrino
mass: the present mass m0, the logarithm of the parameter ∆ related to the
duration of the transition, and the logarithm of the ratio of the modulus of

3http://camb.info/
4http://cfa-www.harvard.edu/∼mzaldarr/CMBFAST/cmbfast.html
5http://cosmologist.info/cosmomc/
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Table D.6.: Assumed ranges for the MaVaNs parameters

Parameter Range
wφ −1 < wφ < −0.5
m0 0 < m0/eV < 5
∆ −4 < log ∆ < 2
µ −6 < log(µ+) < 0

−6 < log(µ−) < 0

the mass difference over the current mass, log µ, where we define

µ ≡ |m1 −m0|
m0

{

µ+ ≡ m1
m0
− 1 , m1 > m0 ,

µ− ≡ 1− m1
m0

, m1 < m0 .

All these parameters take implicit flat priors in the regions in which they are
allowed to vary (see Table D.6).

Table D.7.: Results for increasing and decreasing neutrino mass, using
WMAP 5yr + small scale CMB + LSS + SN + HST data.

(+)Region 95% (68%) C.L. (−)Region 95% (68%) C.L.

wφ < −0.85 (< −0.91) < −0.87 (< −0.93)
m0 (eV) < 0.28 (< 0.10) < 0.43 (< 0.21)
log µ+ < −2.7 (< −4.5) —
log µ− — < −1.3 (< −3.1)
log ∆ [−3.84; 0.53] ([−2.20; 0.05]) [−0.13; 4] ([0.56; 4])

Concerning the last parameter, notice that we choose to divide the param-
eter space between two regions: one in which the mass is decreasing over
time (µ+) and one in which it is increasing (µ−). We chose to make this sep-
aration because the impact on cosmological observables is different in each
regime, as we will discuss later, and by analyzing this regions separately we
can gain a better insight of the physics driving the constraints in each one of
them. Moreover, we do not allow for models with wφ < −1, since we are
only considering scalar field models with standard kinetic terms.

For given values of all these parameters, our modified version of CAMB
first integrates the background equations backward in time, in order to find
the initial value of ρφ leading to the correct dark energy density today. This
problem does not always admit a solution leading to well-behaved pertur-
bations: the dark energy perturbation equations (D.6.28), (D.6.29) become
singular whenever one of the two quantities, ρφ or [1 + βρν(1 − 3wν)], ap-
pearing in the denominators vanishes. As we shall see later, in the case in

1443



D. Massive degenerate neutrinos in Cosmology

which the neutrino mass decreases, the background evolution is compatible
with cases in which the dark energy density crosses zero, while the second
term can never vanish. We exclude singular models by stopping the execu-
tion of CAMB whenever ρφ < 0, and giving a negligible probability to these
models in CosmoMC. The physical interpretation of these pathological mod-
els will be explained in the next sections. For other models, CAMB integrates
the full perturbation equations, and passes the CMB and matter power spec-
tra to CosmoMC for comparison with the data.

We constrain this scenario using CMB data (from WMAP 5yr (Komatsu et al.,
2009; Dunkley et al., 2009), VSA (Scott et al., 2003), CBI (Pearson et al., 2003)
and ACBAR (Kuo et al., 2004)); matter power spectrum from large scale struc-
ture (LSS) data (2dFGRS (Cole et al., 2005) and SDSS (Tegmark et al., 2006));
supernovae Ia (SN) data from (Kowalski et al., 2008), and the HST Key project
measurements of the Hubble constant (Freedman et al., 2001)6.

Once the posterior probability of all ten parameters has been obtained,
we can marginalize over all but one or two of them, to obtain one- or two-
dimensional probability distributions. We verified that the confidence limits
on the usual six parameters do not differ significantly from what is obtained
in the “vanilla model” (Komatsu et al., 2009), and therefore we only provide
the results for the extra neutrino and dark energy parameters (Figures D.11,
D.10, D.8, D.7, and Table D.7).

Increasing neutrino mass

In this model, the background evolution of the dark energy component obeys
to equation (D.6.15), which reads after division by ρφ:

ρ̇φ

ρφ
= −3H(1 + wφ)−

d ln mν

du

ρν

ρφ
H(1− 3wν) (D.6.32)

≡ −Γd − Γi

where the two positive quantities Γd and Γi represent respectively the dilu-
tion rate and interaction rate of the dark energy density. For any parameter
choice, ρφ can only decrease with time, so that the integration of the dark
energy background equation backward in time always find well-behaved so-
lutions with positive values of ρφ. Moreover, the quantity [1 + βρν(1− 3wν)]
appearing in the denominator of the dark energy perturbation equations is
equal to the contribution of the dilution rate to the total energy loss rate,

6While this work was being finished, the SHOES (Supernova, HO, for the Equation of State)
Team (Riess et al., 2009) reduced the uncertainty on the Hubble constant by more than a
factor 2 with respect to the value obtained by the HST Key Project, finding H0 = 74.2± 3.6
km s−1 Mpc−1. However, since we are taking a flat prior on H0, and our best fit value for
H0 is contained in their 1σ region, we do not expect our results to be strongly affected by
their results.
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Γd/(Γd + Γi). This quantity is by construction greater than zero, and the dark
energy equations cannot become singular. However, when the the interac-
tion rate becomes very large with respect to the dilution rate, this denom-
inator can become arbitrarily close to zero. Then, the dark energy pertur-
bations can be enhanced considerably, distorting the observable spectra and
conflicting the data. Actually, this amplification mechanism is well-known
and was studied by various authors (Bean et al., 2008b; Valiviita et al., 2008;
Gavela et al., 2009). It was found to affect the largest wavelengths first, and is
usually refered as the large scale instability of coupled dark energy models.
The condition for avoiding this instability can be thought to be roughly of the
form

Γi < AΓd , (D.6.33)

where A is some number depending on the cosmological parameters and on
the data set (since a given data set tells how constrained is the large scale
instability, i.e. how small can be the denominator [1+ βρν(1− 3wν)], i.e. how
small should the interaction rate remain with respect to the dilution rate). The
perturbations are amplified when the denominator is much smaller than one,
so A should be a number much greater than one. Intuitively, the condition
(D.6.39) will lead to the rejection of models with small values of (wφ, ∆) and
large values of µ−. Indeed, the interaction rate is too large when the mass
variation is significant (large µ−) and rapid (small ∆). The dilution rate is too
small when wφ is small (close to the cosmological constant limit). Because of
that, it seems that when the dark energy equation of state is allowed to vary
one can obtain a larger number of viable models if wφ > −0.8 early on in the
cosmological evolution (Majerotto et al., 2009; Valiviita et al., 2009).

We ran CosmoMC with our full data set in order to see how much this
mass-varying scenario can depart from a standard cosmological model with
a fixed dark energy equation of state and massive neutrinos. In our param-
eter basis, this standard model corresponds to the limit logµ− → −∞, with
whatever value of log∆. The observational signature of a neutrino mass vari-
ation during dark energy or matter domination is encoded in well-known
effects, such as: (i) a modification of the small-scale matter power spectrum
[due to a different free-streaming history], or (ii) a change in the time of mat-
ter/radiation equality [due to a different correspondence between the values
of (ωb, ωm, ων) today and the actual matter density at the time of equality].
On top of that, the neutrino and dark energy perturbations can approach the
regime of large-scale instability discussed above.

Our final results - namely, the marginalized 1D and 2D parameter prob-
abilities - are shown in figures D.7 and D.8. The shape of the contours in
(logµ−, log ∆) space is easily understandable with analytic approximations.
The necessary condition (D.6.33) for avoiding the large-scale instability reads
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in terms of our model parameters

µ−

[

1 + ∆(1 + Γ)

∆

]

< A

[

1

(1− Γ) (1− f )

]

3Ωφ(1 + wφ)

Ων(1− 3wν)
, (D.6.34)

where we expressed the mass variation as

d ln mν

du
=

(

µ−
1− µ−Γ

)(

1 + ∆

∆

)

(1− Γ) (1− f ) . (D.6.35)

Two limits can be clearly seen from this equations. For ∆ ≪ 1 (fast transi-
tions), the upper limit on µ− reads

µ− . A∆

[

1

(1− Γ) (1− f )

]

3Ωφ(1 + wφ)

Ων(1− 3wν)
. (D.6.36)

This corresponds to the diagonal limit in the lower half of the right upper
panel of figure D.8. In fact, the appearance of the large-scale instability is
seen in models localized at the edge of the allowed region, as shown in figure
D.9.

In the opposite case of a very slow transition, ∆ ≫ 1, it is clear from eq.
(D.6.34) that the limit on µ− should be independent on ∆,

µ− . A

[

1

(1− Γ) (1− f )

]

3Ωφ(1 + wφ)

Ων(1− 3wν)
. (D.6.37)

This limit corresponds to the almost vertical cut in the upper part of the plane
(log µ−, log ∆) (upper right panel, fig. D.8).

These conditions are easier to satisfy when at the time of the transition,
Ωφ(1 + wφ) is large. So, in order to avoid the instability, large values of wφ

are preferred. However, it is well-known that cosmological observables (lu-
minosity distance relation, CMB and LSS power spectra) better fit the data
for w close to −1 (cosmological constant limit). In the present model, the role
of the large-scale instability is to push the best-fit value from -1 to -0.96, but
wφ = −1 is still allowed at the 68% C.L.

The main result of this section is that the variation of the neutrino mass is
bounded to be small, not so much because of the constraining power of large-
scale structure observations in the regime where neutrino free-streaming is
important (i.e., small scales), but by CMB and LSS data on the largest scales,
which provide limits on the possible instability in DE and neutrino perturba-
tions.

Indeed, for the allowed models, the mass variation could be at most of
order 10% for masses around 0.05 eV, and less than 1% for masses larger than
0.3 eV: this is undetectable with small scale clustering data, showing that the
limit really comes from large scales.
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With those results, we conclude that there is no evidence for a neutrino
mass variation coming from the present data. In fact, as for most cosmologi-
cal data analyses, the concordance ΛCDM model remains one of the best fits
to the data, lying within the 68% interval of this analysis.

Nonetheless, better constraints will possibly be obtained with forthcoming
data, especially the ones that probe patches of the cosmological “desert” be-
tween z ≃ 1100 and z ≃ 1, like CMB weak lensing (Lesgourgues et al., 2006),
and/or cross-correlations of different pieces of data, like CMB and galaxy-
density maps (Lesgourgues et al., 2008). We can estimate, for instance, what
is the favored redshift range for the neutrino mass variation according to our
results. Taking m0 = 0.1 eV and the mean likelihood values for log ∆ and
log[m1/m0], one can see that the bulk of the mass variation takes place around
z ∼ 20, a redshift that possibly will be probed by future tomographic probes
like weak lensing (Hannestad et al., 2006; Kitching et al., 2008) and especially
21 cm absorption lines (Loeb and Zaldarriaga, 2004; Loeb and Wyithe, 2008;
Mao et al., 2008; Pritchard and Pierpaoli, 2008). Those will help not only to
disentangle some degeneracies in the parameter space, but will also allow
for direct probes of the neutrino mass in different redshift slices.

Decreasing neutrino mass

In this case, the evolution rate of the dark energy density is still given by
equation (D.6.32) but with an opposite sign for the interaction rate: in can be
summarized as

ρ̇φ

ρφ
= −Γd + Γi , (D.6.38)

with Γd and Γi both positive. In principle, the interaction rate could overcome
the dilution rate, leading to an increase of ρφ. Hence, the integration of the
dark energy evolution equation backward in time can lead to negative values
of ρφ, and the prior ρφ > 0 implemented in our CAMB version is relevant.
Still, the denominator [1 + βρν(1− 3wν)] can never vanish since it is equal to
Γd/(Γd − Γi).

Well before before the transition, the interaction rate is negligible and ρ̇φ is
always negative. We conclude that β = d ln mν/dρφ starts from small positive
values and increases. If the condition

Γi < Γd (D.6.39)

is violated during the transition, ρ̇φ will cross zero and become positive. This
corresponds to β growing from zero to +∞, and from −∞ to some finite neg-
ative value. After Γi/Γd has reached its maximum, β undergoes the opposite
evolution. Reaching ρφ = 0 is only possible if ρφ has a non-monotonic evolu-
tion, i.e. if (D.6.39) is violated. However, the perturbations diverge even be-
fore reaching this singular point: when β tends to infinity, it is clear from eq.
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(D.6.26) that the neutrino perturbation derivatives become arbitrarily large.
We conclude that in this model, the condition (D.6.39) is a necessary condition
for avoiding instabilities, but not a sufficient condition: the data is expected
to put a limit on the largest possible value of β, which will always be reached
before ρ̇φ changes sign, i.e. before the inequality (D.6.39) is saturated. Hence,
the condition for avoiding the instability is intuitively of the form of (D.6.33),
but now with A being a number smaller than one.

We then ran CosmoMC with the full data set and obtained the marginal-
ized 1D and 2D parameter probabilities shown in figures D.10 and D.11. The
major differences with respect to the increasing mass case are: a stronger
bound on m0, a much stronger bound on µ−, and the fact that large values of
∆ are now excluded. This can be understood as follows. In order to avoid in-
stabilites, it is necessary to satisfy the inequalities (D.6.36), (D.6.37), but with
a much smaller value of A than in the increasing mass case; hence, the con-
tours should look qualitatively similar to those obtained previously, but with
stronger bounds. This turns out to be the case, although in addition, large
∆ values are now excluded. Looking at the mass variation for large ∆ in fig-
ure D.5, we see that in this limit the energy transfer takes place essentially
at low redhsift. Hence, the interaction rate is large close to z = 0. In many
models, this leads to positive values of ρ̇φ at the present time, to a non- be-
havior of the dark energy density, and to diverging perturbations. This can
only be avoided when w is large with respect to -1, i.e. when the dilution rate
is enhanced. Hence, in this model, the need to avoid diverging perturbations
imposes a strong parameter correlation between w and ∆. However, values
of w greater than -0.8 are not compatible with the supernovae, CMB and LSS
data set; this slices out all models with large ∆.

The fact that the bound on m0 is stronger in the decreasing mass case is
also easily understandable: for the same value of the mass difference µ± =
|m1 − m0|/m0, a given m0 corresponds to a larger mass m1 in the decreasing
mass case. It is well-known that CMB and LSS data constrain the neutrinos
mass through its background effect, i.e. through its impact on the time of
matter/radiation equality for a given dark matter abundance today. The im-
pact is greater when m1 is larger, i.e. in the decreasing mass case; therefore,
the bounds on m0 are stronger.

D.6.5. Concluding remarks

In this work we analysed some mass-varying neutrino scenarios in a nearly
model independent way, using a general and well-behaved parameterization
for the neutrino mass, including variations in the dark energy density in a
self-consistent way, and taking neutrino/dark energy perturbations into ac-
count.

Our results for the background, CMB anisotropies, and matter power spec-
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tra are in agreement with previous analyses of particular scalar field models,
showing that the results obtained with this parameterization are robust and
encompass the main features of the MaVaNs scenario.

Moreover, a comparison with cosmological data shows that only small
mass variations are allowed, and that MaVaNs scenario are mildly disfavored
with respect to the constant mass case, especially when neutrinos become
lighter as the universe expands. In both cases, neutrinos can change signifi-
cantly the evolution of the dark energy density, leading to instabilities in the
dark energy and/or neutrino perturbations when the transfer of energy be-
tween the two components per unit of time is too large. These instabilities
can only be avoided when the mass varies by a very small amount, espe-
cially in the case of a decreasing neutrino mass. Even in the case of increasing
mass, constraining better the model with forthcoming data will be a difficult
task, since it mimics a massless neutrino scenario for most of the cosmological
time.

One should keep in mind that our analysis assumes a constant equation of
state for dark energy and a monotonic behavior for the mass variation. Even
though those features are present in most of the simplest possible models,
more complicated models surely can evade the constraints we obtained in
our analysis.

Finally, those constraints will improve with forthcoming tomographic data.
If any of the future probes indicate a mismatch in the values of the neutrino
mass at different redshifts, we could arguably have a case made for the mass-
varying models.
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Figure D.6.: (Color online) Top panel: Density parameters for the differ-
ent components of the universe versus log(a) = u/ ln(10) in a model with
m1 = 0.05 eV, m0 = 0.2 eV, ∆ = 10, and all the other parameters consistent
with present data. The radiation curve include photons and two massless
neutrino species, and matter stands for cold dark matter and baryons. The
bump in the neutrino density close to log(a) = −0.5 is due to the increas-
ing neutrino mass. Bottom panel: Density parameters for two different mass-
varying neutrino models. The solid black curves show the density parameter
variation for two distinct constant mass models, with masses mν = 0.05 eV
and mν = 0.2 eV. The dashed (red) curve shows a model in which the mass
varies from m1 = 0.2 eV to m0 = 0.05 eV, with ∆ = 0.1, and the dotted (blue)
line corresponds a model with m1 = 0.05 eV to m0 = 0.2 eV, with ∆ = 10.
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Figure D.7.: Marginalised 1D probability distribution in the increasing mass case
m1 < m0, for the neutrino / dark energy parameters: m0, log10[µ−] (top panels), wφ,
and log ∆ (bottom panels).
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Figure D.8.: Marginalised 2D probability distribution in the increasing mass
case m1 < m0.
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Figure D.9.: (Color on-line) CMB anisotropies and matter power spectra for some
mass varying models with increasing mass, showing the development of the large
scale instability. The cosmological parameters are set to our best fit values, except for
the ones shown in the plot. The data points in the CMB spectrum correspond to the
binned WMAP 5yr data.
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Figure D.10.: (Color online:) Marginalised 1D probability distribution (red/solid
lines) for the decreasing mass case m1 > m0, for neutrino / dark energy parameters:
m0, log[µ+] (top panels), wφ, and log ∆ (bottom panels).
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E. Indirect Detection of Dark
Matter

E.1. Boosting the WIMP annihilation through the

Sommerfeld enhancement

The motivation for studying dark matter annihilation signatures (see e.g.
(Bertone et al., 2005)) has received considerable recent attention following re-
ports of a 100 GeV excess in the PAMELA data on the ratio of the fluxes
of cosmic ray positrons to electrons (Adriani et al., 2009). In the absence of
any compelling astrophysical explanation, the signature is reminiscent of the
original prediction of a unique dark matter annihilation signal (Silk and Srednicki,
1984), although there are several problems that demand attention before any
definitive statements can be made. By far the most serious of these is the re-
quired annihilation boost factor. The remaining difficulties with a dark mat-
ter interpretation, including most notably the gamma ray signals from the
Galactic Centre and the inferred leptonic branching ratio, are, as we argue
below, plausibly circumvented or at least alleviated. Recent data from the
ATIC balloon experiment provides evidence for a cut-off in the positron flux
near 500 GeV that supports a Kaluza-Klein-like candidate for the annihilat-
ing particle (Chang et al., 2008) or a neutralino with incorporation of suitable
radiative corrections (Bergstrom et al., 2008).

In a pioneering paper, it was noted (Profumo, 2005) that the annihilation
signal can be boosted by a combination of coannihilations and Sommerfeld
corrrection. We remark first that the inclusion of coannihilations to boost
the annihilation cross-section modifies the relic density, and opens the 1-10
TeV neutralino mass window to the observed (WMAP5-normalised) dark
matter density. As found by Lavalle et al. (2008), the outstanding problem
now becomes that of normalisation. A boost factor of around 100 is required
to explain the HEAT data in the context of a 100 GeV neutralino. The flux
is suppressed by between one and two powers of neutralino mass, and the
problem becomes far more severe with the 1-10 TeV neutralino required by
the PAMELA/ATIC data (Cirelli et al., 2009), a boost of 104 or more being re-
quired. These latter authors included a Sommerfeld correction appropriate
to our β ≡ v/c = 0.001 dark halo and incorporated channel-dependent boost
factors to fit the data, but the required boosts still fell short of plausible values
by at least an order of magnitude.

1455



E. Indirect Detection of Dark Matter

Here we propose a solution to the boost problem via Sommerfeld correc-
tion in the presence of a model of substructure that incorporates a plausible
phase space structure for cold dark matter (CDM). We reassess the difficulty
with the leptonic branching ratio and show that it is not insurmountable for
supersymmetric candidates. Finally, we evaluate the possibility of indepen-
dent confirmation via photon channels.

Substructure survival means that as much as 10% of the dark matter is at
much lower β. This is likely in the solar neighbourhood and beyond, but
not in the inner galaxy where clump destruction is prevalent due to tidal in-
teractions. Possible annihilation signatures from the innermost galaxy such
as the WMAP haze of synchrotron emission and the EGRET flux of diffuse
gamma rays are likely to be much less affected by clumpy substructure than
the positron flux in the solar neighbourhood. We show in the following sec-
tion that incorporation of the Sommerfeld correction means that clumps dom-
inate the annihilation signal, to the extent that the initial clumpiness of the
dark halo survives.

E.1.1. The Sommerfeld enhancement

Dark matter annihilation cross sections in the low-velocity regime can be en-
hanced through the so-called “Sommerfeld effect” (Sommerfeld, 1931; Hisano et al.,
2004, 2005; Cirelli et al., 2007; March-Russell et al., 2008; Arkani-Hamed et al.,
2009; Pospelov and Ritz, 2009). This non-relativistic quantum effect arises be-
cause, when the particles interact through some kind of force, their wave
function is distorted by the presence of a potential if their kinetic energy is
low enough. In the language of quantum field theory, this correspond to the
contribution of “ladder” Feynman diagrams like the one shown in Fig. E.1
in which the force carrier is exchanged many times before the annihilation
finally occurs. This gives rise to (non-perturbative) corrections to the cross
section for the process under consideration. The actual annihilation cross
section times velocity will then be:

σv = S (σv)0 (E.1.1)

where (σv)0 is the tree level cross section times velocity, and in the follow-
ing we will refer to the factor S as the “Sommerfeld boost” or “Sommerfeld
enhancement” 1.

In this section we will study this process in a semi-quantitative way using a
simple case, namely that of a particle interacting through a Yukawa potential.
We consider a dark matter particle of mass m. Let ψ(r) be the reduced two-
body wave function for the s-wave annihilation; in the non-relativistic limit,

1 In the case of repulsive forces, the Sommerfeld “enhancement” can actually be S < 1,
although we will not consider this possibility here.
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χ

χ

X̄

X

. . .

Figure E.1.: Ladder diagram giving rise to the Sommerfeld enhancement for
χχ→ XX̄ annihilation, via the exchange of gauge bosons.

it will obey the radial Schrödinger equation:

1

m

d2ψ(r)

dr2
−V(r)ψ(r) = −mβ2ψ(r), (E.1.2)

where β is the velocity of the particle and V(r) = − α
r e−mVr is an attractive

Yukawa potential mediated by a boson of mass mV.
The Sommerfeld enhancement S can be calculated by solving the Schrödinger

equation with the boundary condition dψ/dr = imβψ as r → ∞. Eq. (E.1.2)
can be easily solved numerically. It is however useful to consider some par-
ticular limits in order to gain some qualitative insight into the dependence of
the Sommerfeld enhancement on particle mass and velocity. First of all, we
note that for mV → 0, the potential becomes Coulomb-like. In this case the
Schrödinger equation can be solved analytically; the resulting Sommerfeld
enhancement is:

S =
πα

β
(1− e−πα/β)−1. (E.1.3)

For very small velocities (β → 0), the boost S ≃ πα/β: this is why the Som-
merfeld enhancement is often referred as a 1/v enhancement. On the other
hand, S→ 1 when α/β→ 0, as one would expect.

It should however be noted that the 1/v behaviour breaks down at very
small velocities. The reason is that the condition for neglecting the Yukawa
part of the potential is that the kinetic energy of the collision should be much
larger than the boson mass mV times the coupling constant α, i.e., mβ2 ≫
αmV, and this condition will not be fulfilled for very small values of β. This is
also evident if we expand the potential in powers of x = mVr; then, neglect-
ing terms of order x2 or smaller, the Schrödinger equation can be written as
(the prime denotes the derivative with respect to x):

ψ′′ +
α

ε

ψ

x
=

(

−β2

ε2
+

α

ε

)

ψ, (E.1.4)

having defined ε = mV/m. The Coulomb case is recovered for β2 ≫ αε, or
exactly the condition on the kinetic energy stated above. It is useful to define
β∗ ≡

√
αmV/m such that β ≫ β∗ is the velocity regime where the Coulomb

approximation for the potential is valid.
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Another simple, classical interpretation of this result is the following. The

range of the Yukawa interaction is given by R ≃ m−1
V . Then the crossing time

scale is given by tcross ≃ R/v ≃ 1/βmV. On the other hand, the dynamical

time scale associated to the potential is tdyn ≃
√

R3m/α ≃
√

m/αm3
V. Then

the condition β ≫ β∗ is equivalent to tcross ≪ tdyn, i.e., the crossing time
should be much smaller than the dynamical time-scale. Finally, we note that
since in the Coulomb case S ∼ 1/β for α ≫ β, the region where the Som-
merfeld enhancement actually has a 1/v behaviour is β∗ ≪ β ≪ α. It is
interesting to notice that this region does not exist at all when m . mV/α.

The other interesting regime to examine is β ≪ β∗. Following the dis-
cussion above, this corresponds to the potential energy dominating over the
kinetic term. Referring again to the form (E.1.4) for x ≪ 1 of the Schrödinger
equation, this becomes:

ψ′′ +
α

ε

ψ

x
=

α

ε
ψ. (E.1.5)

The positiveness of the right-hand side of the equation points to the existence
of bound states. In fact, this equation has the same form as the one describing
the hydrogen atom. Then bound states exist when

√
α/ε is an even integer,

i.e. when:
m = 4mVn2/α, n = 1, 2, . . . (E.1.6)

From this result, we expect that the Sommerfeld enhancement will exhibit a
series of resonances for specific values of the particle mass spaced in a 1 :
4 : 9 : ... fashion. The behaviour of the cross section close to the resonances
can be better understood by approximating the electroweak potential by a

well potential, for example: V(r) = −αmVθ(R − r), where R = m−1
V is the

range of the Yukawa interaction, and the normalization is chosen so that the
well potential roughly matches the original Yukawa potential at r = R. The
external solution satisfying the boundary conditions at infinity is simply an
incoming plane wave, ψout(r) ∝ eikoutr, with kout = mβ. The internal solution

is: ψin(r) = Aeikinr + Be−ikinr, where kin =
√

k2
out + αmmV ≃

√
αmmV (the last

approximate equality holds because β ≪ β∗). The coefficients A and B are
as usual obtained by matching the wave function and its first derivative at
r = R; then the enhancement is found to be:

S =

[

cos2 kinR +
k2

out

k2
in

sin2 kinR

]−1

. (E.1.7)

When cos kinR = 0, i.e., when
√

αm/mV = (2n + 1)π/2, the enhancement

assumes the value k2
in/k2

out ≃ β∗2/β2 ≫ 1. This is however cut off by the
finite width of the state.

In summary, the qualitative features that we expect to observe are
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Figure E.2.: Sommerfeld enhancement S as a function of the dark matter par-
ticle mass m, for different values of the particle velocity. Going from bottom
to top β = 10−1, 10−2, 10−3, 10−4, 10−5.

i) at large velocities (β≫ α) there is no enhancement, S ≃ 1;
ii) in the intermediate range β∗ ≪ β ≪ α, the enhancement goes like 1/v:
S ≃ πα/β, this value being independent of the particle mass;
iii) at small velocities (β ≪ β∗), a series of resonances appear, due to the
presence of bound states. Close to the resonances, S ≃ (β∗/β)2. In this
regime, the enhancement strongly depends on the particle mass, because it
is this that determines whether we are close to a resonance or not. Similar
results have been independently obtained in Ref. (March-Russell and West,
2009).

We show the result of the numerical integration of Eq. (E.1.2) in Figure
E.2, where we plot the enhancement S as a function of the particle mass m,
for different values of β. We choose specific values of the boson mass mV =
90 GeV and of the gauge coupling α = α2 ≃ 1/30. These values correspond
to a particle interacting through the exchange of a Z boson.

We note however that, as can be seen by the form of the equation, the en-
hancement depends on the boson mass only through the combination ε =
mV/m, so that a different boson mass would be equivalent to rescaling the
abscissa in the plot. Moreover, the evolution of the wave function only de-
pends on the two quantities α/ε and β/ε, so that a change α → α′ in the

gauge coupling would be equivalent to: β → β′ = α′
α β, ε → ε′ = α′

α ε. This
shows that Fig. E.2 does indeed contain all the relevant information on the
behaviour of the enhancement S.

We see that the results of the numerical evaluation agree with our quali-
tative analysis above. When β = 10−1 (bottom curve), we are in the β >

α ≃ 3× 10−2 regime and there is basically no enhancement. The next curve
β = 10−2 is representative of the β & β∗ regime, at least for m larger than
a few TeV. The enhancement is constant with the particle mass and its value
agrees well with the expected value πα/β ≃ 10. The drop of the enhance-
ment in the mass region below ∼ 3 TeV is due to the fact that here β . β∗,
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Figure E.3.: Top panel: Sommerfeld enhancement S as a function of the par-
ticle velocity β for different values of the dark matter mass. From bottom
to top: m = 2, 10, 100, 4.5 TeV, the last value corresponding to the first res-
onance in Fig. E.2. The black dashed line shows the 1/v behaviour that is
expected in the intermediate velocity range (see text for discussion). Bottom
panel: Sommerefeld enhancement S as a function of the relative distance from
the first resonance shown in Fig. E.2, occurring at m ≃ 4.5 TeV, for different
values of β. From top to bottom: β = 10−4, 10−3, 10−2.

and that there are no resonances for this value of the mass. Decreasing β
again (top three curves, corresponding to β = 10−3, 10−4, 10−5 from bottom
to top) we observe the appearance of resonance peaks. The first peak occurs
for m = m̄ = 4.5 TeV, so that expression (E.1.6) based on the analogy with
the hydrogen atom overestimates the peak position by a factor 2. However,
the spacing between the peaks is as expected, going like n2, as the next peaks
occur roughly at m = 4, 9, 16 m̄. The height of the first peak agrees fairly
well with its expected value of (β∗/β)2. The other peaks are damped; this
is particularly evident for β = 10−3, and in this case it is due to the fact
that β∗ decreases as m increases, so that for m ∼ 100 TeV we return to the
non-resonant, 1/β behaviour, and the enhancement takes the constant value
πα/β ≃ 100.

Complementary information can be extracted from the analysis of the up-
per panel of Fig. E.3, where we plot the Sommerfeld enhancement as a func-
tion of β, for different values of the particle mass. Far from the resonances,
the enhancement factor initially grows as 1/β and then saturates to some con-
stant value. This constant value can be estimated by solving the Schrödinger
equation with β = 0. We find that a reasonable order of magnitude estimate
is given by Smax ∼ 6α/ε; the corresponding value of β ∼ 0.5ε. The 1/β be-
haviour holds down to smaller velocities for larger particle masses, leading
to larger enhancement factors. However, when the particle mass is close to
a resonance, S initially grows like 1/β but at some point the 1/β2 behaviour
”turns on”, leading to very large values of the boost factor, until this also
saturates to some constant value.
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It is clear from the discussion until this point that the best hope for obtain-
ing a large enhancement comes from the possibility of the dark matter mass
lying close to a resonance; for the choice of parameter used above this would
mean m ≃ m̄ ≃ 4.5 TeV. However, one could be interested in knowing how
close the mass should be to the center of the resonance in order to obtain a
sizeable boost in the cross-section. In order to understand this, we show in
Fig. E.3 the enhancement as a function of µ ≡ |m − m̄|/m, i.e., of the frac-
tional shift from the center of the resonance. Clearly, for β ≤ 10−3, a boost
factor of & 100 can be obtained for µ . 0.2, i.e., for deviations of up to 20%
from m̄, corresponding to the range between 3.5 and 5.5 TeV. This is further
reduced to the 4 to 5 TeV range if one requires S & 103.

E.1.2. The leptonic branching ratio

The relevance of the Sommerfeld enhancement for the annihilation of super-
symmetric particles was first pointed out in Refs (Hisano et al., 2004, 2005),
in the context of the minimal supersymmetric standard model where the neu-
tralino is the lightest supersymmetric particle. A wino-like or higgsino-like
neutralino would interact with the W and Z gauge bosons due to its SU(2)L

nonsinglet nature. In particular, the wino W̃0 is the neutral component of a
SU(2)L triplet , while the higgsinos (H̃0

1 , H̃0
2) are the neutral components of

two SU(2)L doublets. The mass (quasi-) degeneracy between the neutralino
and the other components of the multiplet leads to transitions between them,
mediated by the exchange of weak gauge bosons; this gives rise to a Som-
merfeld enhancement at small velocities. On the other hand, the bino-like
neutralino being a SU(2) singlet, would not experience any Sommerfeld en-
hancement, unless a mass degeneracy with some other particle is introduced
into the model.

The formalism needed to compute the enhancement when mixing among
states is present is slightly more complicated than the one described above,
but the general strategy is the same. As shown in the paper by Hisano et al.
(Hisano et al., 2005) through direct numerical integration of the Schrödinger
equation, the qualitative results of the previous section still hold: for dark
matter masses & 1 TeV, a series of resonances appear, and the annihilation
cross section can be boosted by several order of magnitude.

An interesting feature of this “multi-state” Sommerfeld effect is the possi-
bility of boosting the cross section for some annihilation channels more than
others. This happens when one particular annihilation channel is very sup-
pressed (or even forbidden) for a given two-particle initial state, but not for
other initial states. This can be seen as follows. The general form for the total
annihilation cross section after the enhancement has been taken into account
is

σv = N ∑
ij

Γijdi(v)d
∗
j (v), (E.1.8)
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where N is a multiplicity factor, Γij is the absorptive part of the action, re-
sponsible for the annihilation, the di are coefficients describing the Sommer-
feld enhancement, and the indices i, j run over the possible initial two-particle
states. Let us consider for definiteness the case of the wino-like neutralino:
the possible initial states are {χ0χ0, χ+χ−}. The neutralino and the chargino
are assumed to be quasi-degenerate, since they are all members of the same
triplet. What we will say can anyway be easily generalized to the case of
the higgsino-like neutralino. Let us also focus on two particular annihilation
channels: the W+W− channel and the e+e− channel. It can be assumed that,
close to a resonance, d1 ∼ d2. This can be inferred for example using the
square well approximation as in Ref. (Hisano et al., 2005), where it is found

that, in the limit of small velocity, d1 ≃
√

2(cos
√

2pc)−1−
√

2(cosh pc)−1 and

d2 ≃ (cos
√

2pc)−1 + 2(cosh pc)−1, where pc ≡
√

2α2m/mW . The elements of
the Γ matrix for the annihilation into a pair of W bosons are ∼ α2

2/m2
χ, so that

we can write the following order of magnitude estimate:

σv(χ0χ0 →W+W−) ∼ |d1|2
α2

2

m2
χ

. (E.1.9)

On the other hand, the non-enhanced neutralino annihilation cross section to
an electron-positron pair Γ22 ∼ α2

2m2
e /m4

χ, so that it is suppressed by a fac-

tor (me/mχ)2 with respect to the gauge boson channel. This is a well-known
general feature of neutralino annihilations to fermion pairs and is due to the
Majorana nature of the neutralino. The result is that all low velocity neu-
tralino annihilation diagrams to fermion pairs have amplitudes proportional
to the final state fermion mass. The chargino annihilation cross section to
fermions, however, does not suffer from such an helicity suppression, so that
it is again Γ11 ∼ α2

2/m2
χ ≫ Γ22. Then:

σv(χ0χ0 → e+e−) ∼ |d1|2
α2

2

m2
χ

. (E.1.10)

Then we have that, after the Sommerfeld correction, the neutralino annihi-
lates to W bosons and to e+e− pairs (and indeed to all fermion pairs) with
similar rates, apart from O(1) factors. This means that while the W channel
is enhanced by a factor |d1|2, the electron channel is enhanced by a factor
|d1|2m2

χ/m2
e . The reason is that the annihilation can proceed through a lad-

der diagram like the one shown in Fig. E.4, in which basically the electron-
positron pair is produced by annihilation of a chargino pair close to an on-
shell state. This mechanism can be similarly extended to annihilations to
other charged leptons, neutrinos or quarks.
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Figure E.4.: Diagram describing the annihilation of two neutralinos into a
charged lepton pair, circumventing helicity suppression.

E.1.3. CDM substructure: enhancing the Sommerfeld boost

There is a vast reservoir of clumps in the outer halo where they spend most of
their time. Clumps should survive perigalacticon passage over a fraction (say
ν) of an orbital time-scale, td = r/vr, where vr is the orbital velocity (given
by v2

r = GM/r). It is reasonable to assume that the survival probability
is a function of the ratio between td and the age of the halo tH , and that it
vanishes for td → 0. Thus, at linear order in the (small) ratio td/tH , a first
guess at the clump mass fraction as a function of galactic radius would be

fclump ∝ td. We conservatively adopt the clump mass fraction µcl = νrv−1
r t−1

H
with ν = 0.1− 1. This gives a crude but adequate fit to the highest resolution
simulations, which find that the outermost halo has a high clump survival
fraction, but that near the sun only 0.1-1 % survive (Springel et al., 2008c). In
the innermost galaxy, essentially all clumps are destroyed.

Suppose the clump survival fraction S(r) ∝ fclump ∝ r3/2 to zeroth order.

The annihilation flux is proportional to ρ2 × Volume × S(r) ∝ S(r)/r. This
suggests we should expect to find an appreciable gamma ray flux from the
outer galactic halo. It should be quasi-isotropic with a ∼10% offset from the
centre of the distribution. The flux from the Galactic Centre would be su-
perimposed on this. High resolution simulations demonstrate that clumps
account for as much luminosity as the uniform halo (Diemand et al., 2008),
(Springel et al., 2008a). However much of the soft lepton excess from the in-
ner halo will be suppressed due to the clumpiness being much less in the
inner galaxy.

We see from the numerical simulations of our halo, performed at a mass
resolution of 1000M⊙ that the subhalo contribution to the annihilation lu-
minosity scales as M−0.226

min (Springel et al., 2008a). For Mmin = 105M⊙, this
roughly equates the contribution of the smooth halo at r = 200 kpc from
the center. This should continue down to the minimum subhalo mass. We
take the latter to be 10−6M⊙ clumps, corresponding the damping scale of a
bino-like neutralino (Hofmann et al., 2001; Loeb and Zaldarriaga, 2005). We
consider this as representative of the damping scale of neutralino dark matter,
although it should be noted that the values of this cutoff for a general weakly
interacting massive particle (WIMP) candidate can span several orders of
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magnitude, depending on the details of the underlying particle physics model
(Profumo et al., 2006; Bringmann, 2009). It should also be taken into account
that the substructure is a strong function of galactic radius. Since the dark
matter density drops precipitously outside the solar circle (as r−2), the clump
contribution to boost is important in the solar neighbourhood. However ab-
sent any Sommerfeld boost, it amounts only to a factor of order unity. Inci-
dentally the simulations show that most of the luminosity occurs in the outer
parts of the halo (Springel et al., 2008a) and that the boost here due to sub-
structure is large, typically a factor of 230 at r200.

However there is another effect of clumpiness, namely low internal veloc-
ity dispersion. In fact, the preceding discussion greatly underestimates the
clump contribution to the annihilation signal. This is because the coldest
substructure survives clump destruction albeit on microscopic scales. Within
the clumps, the velocity dispersion σ initially is low. Thus, the annihilation
cross section is further enhanced by the Sommerfeld effect in the coldest sur-
viving substructure. We now estimate that including this effect results in a
Sommerfeld-enhanced clumpiness boost factor at the solar neighborhood of
104 to 105.

To infer σ from the mass M of the clump is straightforward. The scal-
ings can be obtained by combining dynamically self-consistent solutions for
the radial dependence of the phase space density in simulated CDM ha-
los (Dehnen and McLaughlin, 2005) as well as directly from the simulations
(Vass et al., 2009) ρ/σǫ ∝ r−α, combined with our ansatz about clump sur-
vival that relates minimum clump mass to radius and the argument that
marginally surviving clumps have density contrast of order unity. With ǫ = 3
and α = 1.875 (Navarro et al., 2008), we infer (for the isotropic case) that

σ ∝ ρ1/ǫrα/ǫ ∝∼ M1/4. This is a compromise between the two exact solutions
for nonlinear clumps formed from hierarchical clustering of CDM: spherical
(M ∝ r3) or Zeldovich pancakes (M ∝ r), and is just the self-similar scaling
limiting value. The numerical simulations of Springel et al. (2008c) suggest
a scaling Msub ∝ v3.5

max down to the resolution limit of ∼ 103M⊙, somewhat
steeper than self-similar scaling.

So one can combine this result with the previous scaling to compute the
total boost, i.e., taking into account both the clumpiness and the Sommerfeld
enhancement. We know from the analysis of Springel et al. (Springel et al.,
2008a) that for a minimum halo mass of 10−6 M⊙ the luminosity of the sub-
halo component should more or less equate to that of the smooth halo at the
galactocentric radius, i.e. L0

sh ≃ L0
sm at r = 8 kpc, where the superscript 0

stands for the luminosity in the absence of any Sommerfeld correction. Thus
the boost factor with respect to a smooth halo is of order unity, after the pres-
ence of subhalos is taken in consideration. Next we take into account the
Sommerfeld enhancement. The velocity dispersion in the halo is β ∼ 10−3,
while the velocity dispersion in the subhalos is β ∼ 10−5 for a 105 M⊙ clump,
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and can be scaled down to smaller clumps using the σ ∝∼ M1/4 relation. From
the discussion in sec. E.1.1 and in particular from Figs. E.2 and E.3 it appears
that, if the dark matter mass is . 10 TeV and far from the resonance occurring
for m ≃ 4.5 TeV: (1) the Sommerfeld enhancement is the same for the halo
and for the subhalos, since it has already reached the saturation regime; (2) it
is of order 30 at most, so that the resulting boost factor still falls short by at
least one order of magnitude with respect to the value needed to explain the
PAMELA data. On the other hand, if the dark matter mass is close to its res-
onance value, then a larger value of the boost can be achieved inside the cold
clumps, since (1) the enhancement is growing like 1/v2 and (2) it is saturat-
ing at a small value of β. Referring for definiteness to the top curve in the top
panel of Fig. E.3 (m = 4.5 TeV), one finds S ≃ 104 − 105 for all clumps with
mass M . 109 M⊙ (that is roughly the mass of the largest clumps) while the
smooth halo is enhanced by a factor 1000. Then the net result is that the boost
factor is of order 104− 105 and is mainly due to the Sommerfeld enhancement
in the cold clumps (the enhancement in the diffuse halo only contributing a
fraction 1-10%). Of course the details will be model dependent; it should also
be stressed that the enhancement strongly depends on the value of the mass
when this is close to the resonance.

E.1.4. Discussion

In the previous section we have shown how it is possible to get a boost factor
of order 104− 105 for a dark matter particle mass of order 4.5 TeV. This is tan-
talizing because this is roughly the value one needs to explain the PAMELA
data for a dark matter candidate with this given mass, as can be inferred by
analysis of Fig. 9 of Ref (Cirelli et al., 2009). Although we have made several
approximations concerning the clump distribution and velocity, it should be
noted that our results still hold as long as the majority of the clumps are very
cold (β . 10−4) because this is the regime in which the enhancement becomes
constant. The saturation of the Sommerfeld effect also plays a crucial role in
showing that the very coldest clumps are unable to contribute significantly
to the required boost factor if the dark matter mass is not close to one of the
Sommerfeld resonances. Because of saturation below β ∼ 10−4, the Sommer-
feld boost is insensitive to extrapolations beyond the currently resolved scales
in simulations. Note however that the precise value for the dark matter par-
ticle mass is uncertain because of such model-dependent assumptions as the
adopted mass-splitting, the multiplet nature of the supersymmetric particles,
and the possibility of different couplings, weaker than weak.

The model presented here does not pose any problem from the point of
view of the high energy gamma-ray emission from the centre of the galaxy,
since very few clumps are presents in the inner core and thus there is no Som-
merfeld enhancement. Thus there is no possibility of violating the EGRET
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or HESS observations of the galactic center or ridge, contrary to what is ar-
gued in Ref. (Bertone et al., 2009). There is a potential problem however
with gamma ray production beyond the solar radius out to the outer halo.
From (Springel et al., 2008a), the simulations are seen to yield an additional
enhancement due to clumpiness alone above 105M⊙ of around 80% at r200

in the annihilation luminosity. Extrapolating to earth mass clumps, the en-
hancement is 230 in the annihilation luminosity at the same radius. This is
what a distant observer would see. The incorporation of the Sommerfeld fac-
tor would greatly amplify this signal by S ∼ 104− 105.

The expected flux that would be observed by looking in a direction far from
the galactic center can be readily estimated. Assuming an effective cross sec-
tion σv = 3× 10−22 cm3 s−1, corresponding to a Sommerfeld boost of 104

on top of the canonical value of the cross section times velocity, the num-
ber of annihilations on the line of sight is roughly 4× 10−9(m/TeV)−2 cm−2

s−1. We have assumed a Navarro-Frenk-White (NFW) profile. The effect of
the clumpiness is still not included in this estimate. Following the results of
the simulation in Ref. (Springel et al., 2008a), this value should be multiplied
by a factor ∼ 200. Convolving with the single annihilation spectrum of a 5
TeV dark matter particle yields the flux shown in Fig. E.5. There we show
the spectrum that would be produced if the dark matter particle would an-
nihilate exclusively either to W bosons, b quarks or τ leptons (blue, red and
green curves, respectively). We also consider a candidate that annihilates to
τ leptons 90% of the time and to Ws the remaining 10% of the time (model
“Hyb1”) and a candidate that annihilates only to quarks and leptons, with
the same cross section apart from color factors (model “Hyb2”).

The gamma ray signal mostly originates from the outer halo and should
be detectable as an almost isotropic hard gamma-ray background. Candi-
dates annihilating to heavy quarks or to gauge bosons seem to be excluded by
EGRET. On the other hand, a dark matter particle annihilating to τ leptons is
compatible with the measurements of EGRET at these energies (Strong et al.,
2004), and within the reach of FERMI.

There are however at least two reasons that induce significant uncertainty
into any estimates. Firstly, the halo density profile in the outer galaxy may be
substantially steeper than is inferred from an NFW profile, as current models
are best fit by an Einasto profile (Gao, 2008), ρ(r) ∝ exp[(−2/α((r/rs)α − 1)],
as opposed to the asymptotic NFW profile ρ(r) ∝ r−3. Using the Einasto pro-
file yields at least a 10% reduction. Another possibility is to use a Burkert pro-
file (Burkert, 1996), that gives a better phenomenological description of the
dark matter distribution inside the halo, as it is inferred by the rotation curves
of galaxies (Gentile et al., 2004; Salucci et al., 2007). Using a Burkert profile,
the flux is reduced by a factor 3. Secondly, and more importantly, the subha-
los are much less concentrated at greater distances from the Galactic Centre
(Diemand et al., 2007). These effects should substantially reduce the gamma
ray contribution from the outer halo. A future application will be to evalu-
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Figure E.5.: Contribution to the diffuse galactic photon background from the
annihilation of a 5 TeV dark matter particle, for different channels, when both
clumpiness and the Sommerfeld enhancement in cold clumps are taken into
account, compared with the measurements of the diffuse gamma background
from EGRET (Strong et al., 2004). The label “Hyb1” (solid black line) stands
for a hybrid model in which the dark matter annihilates to τ leptons 90% of
the time and to W pairs the rest of the time. The label “Hyb2” (dashed black
line) stands for a model in which the dark matter annihilates to leptons and
quarks only, with the same cross-section apart from color factors. The latter
could be realized through the circumvention of helicity suppression.

ate the extragalactic diffuse gamma ray background where the evolution of
clumpiness with redshift should play an interesting role in producing a pos-
sible spectral feature in the isotropic component. Note that the annihilation
rate originating from very high redshift subhalo substructure and clumpiness
near the neutralino free-streaming scale (Kamionkowski and Profumo, 2008)
is mostly suppressed due to the saturation of the Sommerfeld effect that we
described above.

Because of the saturation of the Sommerfeld boost, it should be possi-
ble to focus future simulations on improved modelling of the radial profiles
and concentrations of substructures in the outer halo. It is these that con-
tribute significantly to the expected diffuse gamma if our interpretation of
the PAMELA and the ATIC data, and in particular the required normalisation
and hence boost, is correct. Of course, there are other possible explanations
of the high energy positron data, most notably the flux from a local pulsar
(Aharonian et al., 1995; Yuksel et al., 2009; Hooper et al., 2009a) that has re-
cently been detected as a TeV gamma ray source.

An interesting consequence of the model proposed here is the production
of synchrotron radiation emitted by the electrons and positrons produced in
the dark matter annihilations, similar to the one that is possibly the cause of
the observed “WMAP haze” (Hooper et al., 2007; Cumberbatch et al., 2009).
For a TeV candidate, this synchrotron emission would be visible in the ν &
100 GHz frequency region. This region will be probed by the Planck mis-
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sion; the synchrotron radiation would then give rise to a galactic foreground
“Planck haze” in the microwave/far infrared part of the spectrum. This
quasi-isotropic high frequency synchrotron component will be an additional
source of B-mode foregrounds that will need to be incorporated into pro-
posed attempts to disentangle any primordial B-mode component in the cos-
mic microwave background. Another interesting application would be to
look at the gamma-ray emission from specific objects, like the Andromeda
Galaxy (M31). M31 has been observed in the relevant energy range by the
CELESTE and HEGRA atmospheric Cherenkov telescopes, and limits on the
partial cross section to photons, in the absence of boost, were obtained by
Mack et al. (2008).

Finally, we note that in Sec. E.1.2 we have described a mechanism that
can enhance the production of leptons (especially light leptons) in neutralino
dark matter annihilations, making the leptonic channel as important as the
gauge boson channel. A dark matter candidate annihilating mainly into lep-
tons can simultaneously fit the PAMELA positron and antiproton data, ow-
ing to the fact that no antiproton excess is produced. The enhancement of
the lepton branching ratio can possibly alleviate the problem of antiproton
production following neutralino annihilation into a pair of gauge bosons. It
should however be noted that the mechanism in question also enhances the
quark channel in a similar way, thus introducing an additional source of an-
tiprotons. It would thus be desirable to suppress in some way the quark anni-
hilation channel. This could be realised in a variation of the above mentioned
mechanism, if the lightest neutralino is quasi-degenerate in mass with the
lightest slepton l̃; this is what happens for example in the τ̃ coannihilation re-
gion. In this case, the Sommerfeld enhancement would proceed through the
creation of an intermediate l̃+ l̃− bound state that would subsequently anni-
hilate to the corresponding standard model lepton pair, without producing
any (tree-level) quark. This points to the necessity of further investigating
different models in order to assess if the boost in the leptonic branching ratio
is indeed compatible with the PAMELA data.

E.2. Constraining the dark matter annihilation

cross-section with Cherenkov telescope

observations of dwarf galaxies

E.2.1. Introduction

Detection of a rise in the high energy cosmic ray e+ fraction by the PAMELA
satellite experiment (Adriani et al., 2009) and of a possible peak in the e++ e−

flux by the ATIC balloon experiment (Chang et al., 2008) has stimulated con-
siderable recent theoretical activity in indirect detection signatures of particle
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dark matter via annihilations of the Lightest Supersymmetric Particle (LSP)
and other massive particle candidates (Bergstrom et al., 2008; Cirelli and Strumia,
2008; Cholis et al., 2008; Liu et al., 2009; Hooper et al., 2009b; Grajek et al., 2009;
Donato et al., 2009; de Boer, 2009; Hooper and Zurek, 2009). Several hurdles
must be surmounted if these signals are to be associated with dark matter an-
nihilations. Firstly, a high boost factor (103− 104) is needed within a kilopar-
sec of the solar circle (Cirelli et al., 2008). Secondly, the boost factor must be
suppressed in the inner galaxy to avoid excessive γ-ray and synchrotron ra-
dio emission (Bertone et al., 2009). Thirdly, the annihilation channels must be
largely lepton–dominated to avoid p̄ production (Cirelli et al., 2009). Finally,
account must be taken of the FERMI/HESS observations of electron/positron
fluxes that do not reproduce part of the ATIC data (Abdo et al., 2009; Aharonian,
2009).

The third of these requirements is addressed in various particle physics
models for the dark matter candidate (Cirelli et al., 2009). Here we explore
the implications of the first two requirements, and comment on the impli-
cations of the newest data on particle fluxes. The higher annihilation cross-
section needed for the interpretation of the positron excess in terms of dark
matter annihilations can be obtained via the Sommerfeld effect (Arkani-Hamed et al.,
2009; Lattanzi and Silk, 2009). This effect occurs only at low relative velocities
of the annihilating particles, and does not change the thermal cross-section
required by cosmological measurements. Robertson and Zentner (2009) ex-
amined possible signatures of the Sommerfeld enhancement arising from the
non-trivial dependence of the DM velocity distribution upon position within
a DM halo. Here we consider the Sommerfeld enhancement in the substruc-
tures of our galaxy, where the velocity dispersion is as low as 10 km s−1 in
the dwarf galaxies and becomes even lower for smaller subhalo masses. The
boost, which is inversely proportional to the particle velocity, is especially
relevant on the smallest scales that are unresolved by numerical simulations
(Springel et al., 2008b). Throughout this paper, we will not consider the full
velocity distribution function but will take the central values as a reference
for computing the boost.

The second requirement can be understood because the unresolved sub-
structures that dominate the local boost are likely to be tidally disrupted in
the inner galaxy (Lattanzi and Silk, 2009). The predictions for signals coming
from the Galactic Center (GC) are also reduced by adopting a shallower DM
profile. We note that these effects also lower the local p̄ contribution.

In this paper, we focus on the γ-ray signal coming from the Draco dwarf
galaxy. We choose Draco because its DM density profile is determined in
detail (Walker et al., 2009) and because it has been observed by the MAGIC
Cherenkov Telescope (Albert et al., 2008). Our aim is to constraint the Som-
merfeld enhancement through such a measurement. We will show how the
constraints depend sensitively on the astrophysical uncertainties due to both
numerical simulations and astronomical measurements. Moreover, we will
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show how the result is mainly dominated by the smooth DM halo of the
dwarf galaxy, so that it is almost independent of the sub-substructure model
used. We also derive exclusion plots for the effective annihilation cross-
section obtained with the available measurements, as well as for the sensi-
tivities achievable with future detectors. We apply our results to the case of
the Sagittarius dwarf galaxy, which has also been observed with the HESS
Cherenkov Telescope (Aharonian, 2008). This galaxy, much closer to us than
Draco, would give a higher γ-ray flux and thus sets the greatest constraint.
Unfortunately, the tidal stripping of Sagittarius because of its proximity to the
GC makes it difficult to model the DM profile. In this paper we will assume
that its mass profile can be modeled in the same way as Draco, by adopting
the universality of mass profiles in the dwarf galaxies found in Walker et al.
(2009). Since neither MAGIC nor HESS have observed any signal along the
direction of the targets, we therefore set 95% CL upper limits on the γ-ray
coming from these sources.

The paper is organized as follows: in Sec.E.2.2 we model the particle physics
scenarios where the Sommerfeld enhancement is largest, as well as the as-
trophysical uncertainties in the determination of the γ-ray flux; in Sec.E.2.3
we derive the constraints on the effective cross-section set with the avail-
able Cherenkov Telescope measurements, and give exclusion plots achiev-
able with the next generation of experiments that make use of Cherenkov
Telescope technology, namely the proposed Cherenkov Telescope Array (CTA).
We give our conclusions in Sec. E.2.4.

E.2.2. γ-ray flux from Dark Matter annihilation in Draco and
Sagittarius

The observed photon flux from DM annihilations inside a halo can be factor-
ized into two terms:

dΦγ

dEγ
(M, Eγ, Mh, r, d, θ) =

dΦPP

dEγ
(M, Eγ)× LOS(Mh , r, d, θ) (E.2.1)

where M denotes DM particle mass, Eγ is photon energy, Mh halo mass,
r the position inside the halo, d the distance from the observer and θ the
angular resolution of the instrument (θ ∼ 0.1◦ for the Cherenkov Telescopes).
The first term depends on the nature of the DM and describes the yields of
photons in a single annihilation:

dΦPP

dEγ
(M, Eγ) =

1

4π

(σv)0

2M2
·∑

f

dN
f
γ

dEγ
B f . (E.2.2)
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Here, dN
f
γ/dEγ is the differential photon spectrum per annihilation relative

to the final state f , which is produced with branching ratio B f , and (σv)0 de-
notes the tree level s-wave annihilation cross section, which we assume to be
equal to its thermal value necessary for reproducing the observed cosmolog-
ical abundance today: (σv)0 = 3× 10−26 cm3 s−1. The second term in Eq.
E.2.1 is the line of sight integral of the DM density squared which describes
the number of the annihilations which happen along the cone of view defined
by the instrument:

LOS(Mh , r, d, θ) =
∫ ∫

∆Ω
dθdφ

∫

los
dλ

[

ρ2
DM(Mh, c, r(λ, ψ, θ, φ))

d2
J(x, y, z|λ, θ, φ)

]

(E.2.3)

Here, ρDM is the DM density profile inside the halo, c being the concentration
parameter of the halo, defined as the ratio between virial radius and scale
radius and computed following the prescriptions of Bullock et al. (2001); r
is the galactocentric distance, which, inside the cone, can be written as a
function of the line of sight λ, the angular coordinates θ and φ coordinates
and the pointing angle with respect to the observed ψ through the relation

r =
√

λ2 + R⊙2 − 2λR⊙C, where R⊙ is the distance of the Sun from the GC

(R⊙ = 8.5kpc) and C = cos(θ) cos(ψ) − cos(φ) sin(θ) sin(ψ); finally, inside
the cone, d = λ and J(x, y, z|λ, θ, φ) is the Jacobian determinant from carte-
sian to polar coordinates. The presence of the Sommerfeld effect is reflected
by setting σv = S(β(Mh , r), M)(σv)0. The Sommerfeld enhancement S now
enters the line of sight integral of Eq.E.2.3.

The particle physics sector

The dark matter annihilation cross section can be enhanced, with respect to
its primordial value, in the presence of the so-called Sommerfeld effect. This
is a (non-relativistic) quantum effect occurring when the slow-moving anni-
hilating particles interact through a potential (Sommerfeld, 1931). The idea
that the gamma-ray flux from dark matter annihilations can be enhanced in
this way was first proposed in a pioneering paper by Hisano et al. (2004) (see
also Hisano et al., 2005). Recently, the possibility of explaining the large boost
factor required by PAMELA using this mechanism has stimulated several
studies of this effect (see for example Cirelli et al., 2007; March-Russell et al.,
2008; Arkani-Hamed et al., 2009; Pospelov and Ritz, 2009; Lattanzi and Silk,
2009; March-Russell and West, 2009).

As already noticed, in the presence of the enhancement, the effective s-
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wave annihilation cross section times velocity can be written as:

σv = S(β, M) (σv)0 , (E.2.4)

where (σv)0 is the tree level s-wave annihilation cross section, and the Som-
merfeld enhancement S depends (for a given interaction potential) on the
annihilating particle mass M and velocity β = v/c.

The enhancement is effective in the low-velocity regime, and disappears
(S = 1) in the limit β → 1. In general, one can distinguish two distinct
behaviours, resonant and non-resonant, depending on the value of the anni-
hilating particle mass. In the non-resonant case, the cross section grows like
1/β before saturation occurs at a certain value Smax of the enhancement. In
the resonant case, occurring for particular values of M, the cross-section first
grows like 1/β (as in the non-resonant case), then at some point it grows like
1/β2 before saturating. The Sommerfeld boost can reach very large values.
Both in the resonant and non-resonant case, the values of β and S for which
the saturation occurs depend, other than on the particle mass, on the parame-
ters of the interaction potential, namely the coupling constant α and the mass
of the exchange boson mV .

In this paper, we will consider two different particle physics scenarios. In
the first, we consider a weakly interacting massive particle (WIMP) dark mat-
ter candidate. In this case the Sommerfeld effect is caused by the standard
model weak interaction, mediated by W and Z bosons, so that mV = 90 GeV
and α = 1/30. If the dark matter is a Majorana particle, such as for example
the supersymmetric neutralino, its annihilation into a fermionic final state f
is helicity-suppressed by a factor (m f /M)2 . For a dark matter particle in the

1 to 10 TeV range, this is a factor 10−2÷ 10−4 even for the heaviest possible fi-
nal state, i.e. the top quark. Thus we are naturally led to consider a candidate
that annihilates mainly to weak gauge bosons. However, for completeness
we have also considered the heavy quark and lepton annihilation channels.

The differential photon spectra per annihilation dN
f
γ/dEγ for the various final

states have been computed using PYTHIA (Sjostrand et al., 2001), including
also the contribution from final state radiation.

We consider the following values for the mass of the particle: M = (4.3, 4.45, 4.5, 4.55 TeV).
This values are chosen because, in the case of a weak interaction potential, a
resonance in the Sommerfeld-enhanced cross section occurs for M ≃ 4.5TeV
(Lattanzi and Silk, 2009). Being so close to the resonance, even a relatively
small change in the mass of the particle can produce order of magnitude
changes in the Sommerfeld boost. In fact, the maximum achievable boost
goes from S ≃ 1.5× 103 for M = 4.3 TeV to S ≃ 4× 105 for M = 4.55 TeV.

The second scenario we consider has been introduced by Arkani-Hamed et al.
(2009) [AH]. In this model, a new force with a coupling constant α ∼ 10−2 is
introduced in the dark sector, mediated by a boson φ having a mass mV =
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Mass (TeV) mV(GeV) α Smax β̄

4.3 80 1/30 1.5× 103 8.0× 10−4

4.45 80 1/30 1.2× 104 2.8× 10−4

4.5 80 1/30 7.0× 104 1.1× 10−4

4.55 80 1/30 4.2× 105 4.7× 10−5

0.7 1 10−2 750 2.4× 10−5

0.7 0.1 10−2 750 8.5× 10−6

Table E.1.: Values of the maximum possible boost Smax and of the satura-
tion velocity β̄, for different dark matter models. Each model is defined by
the value of the dark matter particle mass M, and by the parameters of the
Yukawa potential responsible for the enhancement, namely the mass mV of
the exchange boson and the coupling constant α.

mφ <∼ 1 GeV. It is this new force that is responsible for the Sommerfeld en-
hancement. In this case, it is found that the large boosts required to explain
the PAMELA and ATIC data can be obtained for a dark matter particle of
mass M ≃ 700 GeV. In AH models, the dark matter annihilates mainly to φ
bosons, that in turn decay into electrons or muons (depending on the mass
of the φ). The gamma rays are produced in the decay of the φ as final state
radiation (Bergstrom et al., 2009). We consider two particular realisations of
this scenario: we take the dark matter mass to be M = 700 GeV in both, and
mφ equal to either 100 MeV or 1 GeV. We note that the dark matter interac-
tion cross section in the first case is only one order of magnitude away from
the upper bound coming from observations of the mass distribution inside
clusters of galaxies (Miralda-Escudé, 2002).

The enhancement as a function of velocity in the models considered is de-
picted in Fig. E.6. The main properties of the enhancement, i.e. the maximum
value Smax and the saturation velocity β̄, are summarised in Table E.1 for the
different models, together with the parameters of the interaction potential
that is responsible for the Sommerfeld boost. We point out that, in the case of
dwarf galaxies and their subhalos, the dispersion velocity is of the order of
10 km s−1, which means that we are always in the saturation regime, and the
enhancement is always maximum, and equal to Smax . As we show in the next
sections, these large boost factors can be tested through Cherenkov telescope
observations of dwarf galaxies.

The astrophysical sector: smooth dark matter halo

We discuss here the modeling of the dark matter inside the Draco dwarf
galaxy. Walker et al. (2009) have recently demostrated the existence of a uni-
versal mass profile for the dwarf spheroidal galaxies of the Local Group, find-
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Figure E.6.: Sommerfeld enhancement S as a function of the particle velocity
β for different values of the dark matter mass close to the resonance in our
model with α= 1/30 and mV = 80 GeV, as well as for a model with α = 10−2

and mV = 1 GeV and 100 MeV (labeled AH).

1474



E.2. Constraining the dark matter annihilation cross-section with
Cherenkov telescope observations of dwarf galaxies

ing that the enclosed mass at the half-light radius is well constrained and ro-
bust within a wide range of halo models and velocity anisotropies and that
the dwarfs can be characterized by a universal dark matter halo of fixed shape
and narrow range in normalization. The Draco galaxy lies about 80 kpc away
from us, almost at the zenith with respect to the GC (ψD ∼ 85◦). Walker et al.
(2009) found that a cuspy NFW halo:

ρDM(r) =
ρs

(

r
rs

) (

1 + r
rs

)2
(E.2.5)

with scale radius rs ∼ 1kpc is the best fit to the data on the stellar velocity
dispersions, although a cored universal halo:

ρDM(r) =
ρs

(

1 + r
rs

)3
(E.2.6)

with scale radius rs ∼ 200 pc is not yet ruled out. The scale density ρs is
fixed by requiring that the mass embedded in the inner 300 pc equals the
measured value of M300 = 1.9× 107 M⊙. In Table E.2 we list the central values
as well as the 95 % CL ones for the scale radius as universally found for the
dwarfs by Walker et al. (2009). We note the King radius of Draco is ∼ 650 pc
(Armandroff et al., 1995), which roughly corresponds to the scale for the mass
universality in the dwarf galaxy (600 pc). The mass measured within 600 pc in
the case of Draco is about 7× 107 M⊙, and the mass enclosed by the maximum
radius with stellar velocity dispersion measurements is ∼ 9× 107 M⊙, while
the virial mass is estimated to be 4× 109 M⊙ with a concentration parameter
cNFW ∼ 18 (Walker et al., 2007).

The satellites, or subhalos, of our Galaxy suffer from external tidal strip-
ping due to the interaction with the Milky Way. To account for gravitational
tides, we follow Hayashi et al. (2003) and assume that all the mass beyond
the subhalo tidal radius is lost in a single orbit without affecting its central
density profile. The tidal radius is defined as the distance from the subhalo
center at which the tidal forces of the host potential equal the self-gravity of
the subhalo. In the Roche limit, it is expressed as:

rtid(r) =

(

Msub

2Mhost(< r)

)1/3

r (E.2.7)

where r is the distance from the halo center, Msub the subhalo mass and
Mhost(< r) the host halo mass enclosed in a sphere of radius r.
In our case, the host halo is the Milky Way (MW), which we model after the
recent high resolution N-body simulations Aquarius (Springel et al., 2008b,c)
and Via Lactea II (Diemand et al., 2008): while the latter describes the MW
with an NFW profile (Mh ∼ 1.9× 1012 M⊙, rs = 21kpc, ρs = 8.09× 106 M⊙kpc−3),
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the former finds a shallower profile in the inner regions. We have checked
that the difference between the two profiles are irrelevant for our analysis.
At the distance of Draco, we find rtid = 11.2kpc. We note that the condition
rtid > rs holds, which guarantees that the binding energy is negative and the
system is not dispersed by tides. The value of rtid found making use of the
Roche criterium is indeed an upper limit since it has been computed in the
pointlike approximation.
The LOS integral for the Draco galaxy is computed by numerically integrat-
ing Eq. E.2.3, assuming that the integral is different from zero only in the
interval [d− rtid, d + rtid].

In the case of the dwarf galaxies, their mass and therefore the masses of
the sub-subhalos lie in the region at low β where the Sommerfeld enhance-
ment saturates. This is true for every DM mass except for the one which lies
closest to the resonance (in our model, M = 4.55TeV). In this case, however,
the radial dependence of the enhancement produces a variation of a few per-
cent, so that as a good approximation, the Sommerfeld enhancement S can
be considered constant and taken out of the LOS integral. The result of the
computation of the LOS integral (S = 1) according to Eq.E.2.3 in the case of
Draco is depicted in Fig.E.7 as a function of the angle of view ψ with respect
to the center of Draco. Only the LOS relative to the central value for the NFW
fit to the data is shown.

In view of the dark matter profile universality, we model the inner regions
of the closer Sagittarius galaxy using the same profile parameters as in the
case of Draco (see also Evans et al. (2004) for a comparison between the Draco
and Sagittarius inner DM profiles), although there is no direct evidence of the
shape of its DM halo. The Sagittarius dwarf galaxy is located at a distance of
about 24 kpc from us, at low latitudes ψS = 15◦. Its vicinity to the Galac-
tic Center causes significant tidal stripping due to the interaction with the
gravitational potential of the Milky Way. Yet the surviving stellar component
suggests that its inner dark matter halo also survives. Moreover, the obser-
vations show that Sagittarius is indeed dark matter-dominated with a central
stellar velocity dispersion of about 10 km s−1 (Ibata et al., 1997), similar to
the one observed in Draco. At the distance of Sagittarius, the tidal radius is
rtid = 4kpc, still larger than the scale radius.

The results of the line of sight integral towards the center of each dwarf
galaxy are shown in Table E.2, for the central value and the 95 % CL values of
both the best fit NFW and the cored profile obtained by Walker et al. (2009).

In Table E.3 we list the values of the LOS computed for the smooth compo-
nent of the MW in the direction of the dwarf galaxies, which will provide a
foreground for the detection of the dwarfs themselves. We do not describe in
this paper the details of these computations, which are studied extensively in
Pato et al. (2009) and Pieri, Bertone & Branchini (in preparation). We observe
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Draco fit rs(kpc) LOSD
ψD=0 LOSS

ψS=0

NFW 0.795 1.05× 10−3 4.43× 10−3

NFW +2σ 3.0 7.85× 10−4 2.8× 10−3

NFW −2σ 0.3 1.91× 10−3 9.8× 10−3

Core 0.15 7.5× 10−4 2.17× 10−3

Core +2σ 0.3 5.2× 10−4 9.4× 10−4

Core −2σ 0.085 1.54× 10−3 6.9× 10−3

Table E.2.: Line of sight integral for the smooth halo of the dwarf galaxies.
First column: models reflecting the astronomical uncertainties from a fit to
the Draco stellar velocity dispersion. Second column: scale radius for each
model. Third column: values for the LOS integral toward the center of Draco.
Fourth column: values for the LOS integral toward the center of Sagittarius.

MW model LOSψMW=ψD LOSψMW=ψS

VL2 1.18× 10−5 2.73× 10−4

Aquarius 1.13× 10−5 4× 10−4

Table E.3.: Line of sight integral for the smooth component of the Milky Way
integrated along a direction pointing towards the center of the dwarf galaxies.
First column: MW model from numerical simulation. Second column: line of
sight integral towards the center of Draco. Third column: line of sight integral
towards the center of Sagittarius.

that, both for Draco and for Sagittarius, the dwarf center is brighter in γ-ray
than the MW foreground.

The astrophysical sector: substructures

The recent Aquarius and the Via Lactea II simulations have succeeded in deter-
mining the properties of the subhalos and sub-subhalos such as spatial and
mass distribution, density profiles and spatial dependence of the concentra-
tion parameter. We therefore study the effects on the expected γ-ray flux of a
population of sub-subhalos inside the dwarfs according to the recent findings
of numerical simulations, although we do not expect a significant impact on
the expected flux towards the center of the dwarf, where the smooth halo flux
is larger (Giocoli et al., 2008, 2009). We populate Draco with sub-subhalos
with masses as small as 10−6M⊙, corresponding to the damping scale of a
typical DM candidate with M = 100GeV (Hofmann et al., 2001; Green et al.,
2004, 2005; Loeb and Zaldarriaga, 2005). It should howevere be noted that
such a minimum mass may vary between 10−12 and 10−4M⊙ depending on
the particle physics model considered (Profumo et al., 2006).
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We follow the results of Via Lactea II to model the population of sub-substructures:

ρsh(Mh, Msub, r) =
AM−α

sub
(

1 + r
rh

s

)2
M⊙−1kpc−3 (E.2.8)

where rh
s is the scale radius of the host halo and r is the radial coordinate in-

side the host halo. We normalize the subhalo distribution function ρsh(Mh, Msub, r)
such that 10 % of the mass of the host halo before the tidal stripping is dis-
tributed in substructures with masses between 10−5Mh and 10−2Mh, adopt-
ing two choices for the mass slope α = 2 and α = 1.9. We have checked that
modeling the spatial substructure distribution function according to Aquarius
does not significantly change our results.

As a second step, we remove all of the subhalos which lie beyond rtid. This
is indeed an upper value for the number of surviving sub-subhaloes, since we
are not considering here the fifty percent of the subhalos that exit the virial
radius of the parent halo during their first orbit (Tormen et al., 2004) and are
therefore dispersed into the halo of the Milky Way.
The contribution of such a population of sub-substructures to the annihilation
signal can be written as (Pieri et al., 2008):

LOS(Mh , r, d, θ) ∝

∫

Msub

dMsub

∫

c
dc
∫ ∫

∆Ω
dθdφ

∫

los
dλ[ρsh(Mh, Msub, r)P(c(Msub, r))LOSsh(Msh, r, d, θ)] (E.2.9)

where the contribution from each sub-subhalo (LOSsh) is convolved with its
distribution function (ρsh). P(c) is the lognormal distribution of the concen-
tration parameter with dispersion σc = 0.24 (Bullock et al., 2001) and mean
value c̄:

P(c̄, c) =
1√

2πσcc
e
−
(

ln(c)−ln(c̄)√
2σc

)2

. (E.2.10)

Again, the integral along the line-of-sight will be different from zero only in
the interval [d− rtid, d + rtid].

For each sub-substructure, we use an NFW density profile whose concen-
tration parameter c(Msub, r) relative to the radius Rvir that encloses an aver-
age density of 200 × the critical one, depends on its mass and on its position
inside the host halo, according to the results of Via Lactea II and Bullock et al.

1478



E.2. Constraining the dark matter annihilation cross-section with
Cherenkov telescope observations of dwarf galaxies

Draco fit mass slope LOSD,sub
ψD=0 LOSS,sub

ψS=0

NFW -2 4.13× 10−5 5.40× 10−5

NFW -1.9 1.03× 10−5 1.34× 10−5

NFW +2σ -2 3.85× 10−6 4.25× 10−6

NFW +2σ -1.9 9.5× 10−7 1.05× 10−6

NFW −2σ -2 1.98× 10−4 3.10× 10−4

NFW −2σ -1.9 4.94× 10−5 7.71× 10−5

Table E.4.: Line of sight integral for the clumpy component of the dwarf
galaxies. First column: models reflecting the astronomical uncertainties from
a fit to the Draco stellar velocity dispersion. Second column: subhalo mass
slope. Third column: values for the LOS integral toward the center of Draco.
Fourth column: values for the LOS integral toward the center of Sagittarius.

(2001) extrapolated to 10−6 M⊙:

c(Msub, r) =

(

r

Rvir

)−0.286

×
(

89.04

(

Msub

M⊙

)−0.0135

− 42.43

(

Msub

M⊙

)0.006
)

(E.2.11)

We numerically integrate Eq. E.2.9 to estimate the LOS contribution from
the sub-substructures in a 10−5 sr solid angle along the direction ψD or ψS to-
wards the center of the dwarfs. The result of this computation for the subhalo
population of Draco is depicted in Fig.E.7 as a function of ψD, for the central
value of the NFW fit to the stellar kinematics and for a mass slope of -2. As ex-
pected, this contribution becomes relevant only away from the center, where
it anyway gives a flux which is one order of magnitude smaller.

We repeat the same analysis for Sagittarius, assuming its sub-subhalo pop-
ulation is modeled in the same way as the Draco’s one, yet with a smaller to-
dal radius. The result of the integration of Eq. E.2.9 along a direction pointing
towards the center of the dwarfs is listed in Table E.4. Although the values in
the case of Sagittarius are slightly larger than for Draco, due to its proximity
to us, the relative strength of the smooth to clumpy component is larger in
Draco, making the presence of sub-subhalos in Sagittarius almost irrelevant
with respect to the smooth component.

In Table E.5 we compute the values of the LOS flux computed for the
clumpy component of the MW in the direction of the dwarf galaxies. We
observe that, both for Draco and for Sagittarius, the dwarf center is brighter
in γ-rays than the MW clumpy foreground. We do not describe in this pa-
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subhalo mass slope LOSsub
ψMW=ψD

LOSsub
ψMW=ψS

-2 2× 10−5 5.5× 10−5

-1.9 2.5× 10−6 6.5× 10−6

Table E.5.: Line of sight integral for the clumpy component of the Milky Way
integrated along a direction pointing towards the center of the dwarf galax-
ies. First column: Subhalo mass slope. Second column: line of sight integral
towards the center of Draco. Third column: line of sight integral towards the
center of Sagittarius.

per the details of these computations, which can be found in Pato et al. (2009)
and Pieri, Bertone & Branchini (in preparation). The MW foreground contri-
bution to Draco, computed including its smooth and clumpy component, is
shown in Fig.E.7. The band of values accounts for the different simulations
as well as for the different subhalo mass slope. The MW foreground begins
hiding Draco at around 0.3 degrees from the Draco center. We have checked
that the same happens in the case of Sagittarius.

The mass modeling of the dwarf galaxies at large distances from their cen-
ters is just an educated guess; as a check of consistency of our results, we
repeated our calculations in the case when the DM halo extends only up to
600 pc, that is to say to the King radius (we remind that the mass within the
King radius is directly measured through stellar kinematics). The differences
between the computations extending to Rvir and the ones extending to the
600 pc amount to 5% at most.

In the following section we will compare our predictions with the available
data and expected sensitivities from the atmospheric Cherenkov telescopes
(ACTs). To compare with the data, we will consider the sum of the four con-
tributions to the photon flux: 1) annihilations in the smooth halo of the dwarf
galaxy, 2) annihilations in the subhalos of the dwarf galaxy, 3) annihilations
in the smooth halo of the Milky Way and 4) in the subhalos of the Milky Way,
computed along the direction which corresponds to the position of the dwarf
galaxy in the sky. The relative importance of the four terms depends on the
angle of view from the centre of the dwarf galaxy, as well as on the particle
physics model. The contribution due to the annihilation in the smooth halo
of the dwarf galaxy is always predominant when looking at the dwarf center.

E.2.3. Comparison with the experimental data

The MAGIC and HESS ACTs have put 95 % upper limits on the γ-ray fluxes
from Draco and Sagittarius, respectively. The upper limit for Draco inte-
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Figure E.7.: Φcosmo as a function of the angle of view ψ from the centre of halo,
computed in the case of Draco and Sagittarius, for the smooth halo and from
the subhalo population.

1481



E. Indirect Detection of Dark Matter

Figure E.8.: Expected γ-ray flux above 140 GeV as a function of the angle of
view ψ from the centre of Draco.

grated over energies above 140 GeV is 10−11 ph cm−2 s−1. In the case of
Sagittarius, this limit is 3.6× 10−12 ph cm−2 s−1, integrated above 250 GeV.

In Fig. E.8 and E.9 we compare these values with the prediction of the γ-
ray flux from DM annihilations. We compute the flux for the particle DM
models described in Sec.E.2.2. We show the result in the case of the central
value for the scale radius in the NFW best fit to the kinematic data, as de-
rived in Walker et al. (2009). Indeed, in the case of M=4.45 TeV, we show the
astrophysical uncertainty by plotting the curves relative to NFW and cored
fits, for central and 95 % CL values of the scale radius.
We note that our dwarfs actually appear as point sources for an angular res-
olution of 0.1◦.
The data from both MAGIC and HESS already exclude the highest Sommerfeld-
enhanced cross-sections.

Since the main contribution to the γ-ray flux at the center of the dwarf
comes from halos which are in saturation with respect to the velocity-dependent
enhancement, we can present the previous results in terms of an exclusion
plot on the effective Sommerfeld-enhanced cross-section. In Fig.E.10 we show
the exclusion limit on the effective annihilation cross-section imposed by the
MAGIC upper limit on Draco, in the case when the DM particle annihilates
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Figure E.9.: Expected γ-ray flux above 250 GeV as a function of the angle of
view ψ from the centre of Sagittarius.

in gauge bosons. The band of values reflects the astrophysical uncertainties
due to astronomical data and numerical simulations. For comparison, we
also show the exclusion plot obtained by the observation of the GC with the
HESS telescope. HESS has extensively observed the Galactic Center (GC)
source, measuring an integrated flux above 160 GeV of Φ(> 160TeV) =
1.87× 10−11 ph cm−2 s−1 in 2003 and 2004 (Aharonian et al., 2006).
In order to compute the Sommerfeld enhancement of the MW halo towards
the GC, it is necessary to convolve the information on the rotation curve of
our Galaxy with the β-dependence of the effect, and including the presence
of the black hole at the center of the Galaxy. This computation has been
done in Pato et al. (2009) and brings enhancements of the order of 103 to
104 for the Lattanzi & Silk models, and of the order of 102 for the Arkani-
Hamed model. In Fig.E.10 we report the exclusion limit with respect to a con-
stant effective Sommerfeld-enhanced annihilation cross-section. The band
of values for each experiment reflects the astrophysical uncertainty due to
the inner profile. We have used the spiky NFW profiles obtained by Via
Lactea II and a cored isothermal profile with scale radius rs = 5kpc nor-
malized to the same local value for the DM density as found in Via Lactea
II (i.e. ∼ 0.4GeV cm−3). Since simulations do not include baryons which
may play an important role at the GC, the large uncertainty on the inner pro-
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file prevents this measurement to put strong limits. As an exercise, we com-
puted the sensitivity to Draco to the space-based telescope Fermi and the fu-
ture Cherenkov Telescope Array (CTA) 2. The CTA is a proposed experiment
which will make use of Cherenkov Telescope technology on a large scale, in
order to lower the threshold energy down to ∼ 50GeV. The instrument is be-
ing designed. The tens of telescopes in the array could either look at different
portions of the sky, thus reaching up to ∼ 1 sr of field of view, or focus on
the same source, thus dramatically increasing the single telescope sensitivity.
We take a sample sensitivity from the CTA home page, according to which
the CTA will be able to detect Φ(> 50GeV) = 7 × 10−12 ph cm−2 s−1 and
Φ(> 1TeV) = 2.9× 10−14 ph cm−2 s−1. Such a sensitivity to a single source
could improve if more telescopes could point at the same source. In the case
of Fermi, we took the sensitivity to point sources from Baltz et al. (2008), that
is to say, Φ(> 3GeV) = 10−10 ph cm−2 s−1. We show the sensitivity bands for
Fermi and the CTA in Fig.E.10. The uncertainty always derives from astro-
physics. Although a boost to the thermal annihilation cross-section is always
required to observe Draco (see also Pieri et al., 2009a), the limits will improve
significantly with the future data.
In Fig.E.11 we show the same kind of exclusion limits and expected sensitivi-
ties as in Fig.E.10, yet computed for a DM particle annihilating into e+e− and
producing photons as a final state radiation. The limits and sensitivities at
high DM masses are in this case poorly restrictive.

Finally, in Fig.E.12 we show the sensitivity to Sagittarius with Fermi and
the CTA, under the assumption that we have used all throughout the paper,
namely that the inner DM halo of Sagittarius is modeled as the one of Draco.
We superimpose the effective cross-section as a function of the DM particle
mass in the case of a Sommerfeld effect mediated by a 80 GeV boson, for dif-
ferent values of β. For TeV DM masses close to the resonance, with a boost of
a factor∼ 103, the CTA would be the only instrument able to detect the signal.

In general, the constraints will depend, among other things, on the final
states for annihilation. In the case of the WIMP scenario, the results discussed
so far have been obtained considering a dark matter particle of mass M ≃ 4.5
TeV annihilating exclusively into gauge bosons. Considering instead annihi-
lation into heavy quarks or leptons as possible final states changes the pre-
dicted fluxes by factors of order unity, thus leaving our conclusions basically
unchanged. In particular, a particle that annihilates only to heavy quarks
would produce a flux 1.6-1.7 times larger than that shown in the figures, for
all experiments. The limits on the Sommerfeld boost would then be propor-
tionally tighter. In the case of a particle annihilating to τ leptons, the change
in the flux depends on the energy threshold: for MAGIC, HESS and CTA it
is respectively 0.5, 0.8, and 3.8 times the flux from the gauge boson channel.

2CTA homepage: http://www.cta-observatory.org/
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Figure E.10.: Exclusion plot (MAGIC and HESS GC) and expected sensitiv-
ity (CTA and Fermi) for the effective annihilation cross section, in the case of
γ-ray observations of the Draco galaxy and for dark matter particles annihi-
lating into WW.

Ligther leptonic and quark final states are strongly disfavoured due to the
helicity suppression; however they could become important if the helicity
suppression is lifted in some way. In the case of the AH scenario, the final
spectrum is instead naturally driven to light leptons (electrons and muons)
since heavier states are kinematically forbidden.

E.2.4. Conclusions

The excess in cosmic-ray positrons and electrons has motivated a wealth of
theoretical efforts in order to be explained in terms of DM. In particular, the
annihilation mechanism has been revised in the light of the Sommerfeld en-
hancement, a velocity-dependent effect. Such an effect is maximal in the
dwarf galaxies and in their substructures. The enhancement actually satu-
rates for DM halo masses smaller than the dwarf scale. Several studies (see.
e.g. Bertone et al., 2009; Cirelli and Panci, 2009; Galli et al., 2009; Pato et al.,
2009) have recently constrained the Sommerfeld enhancement and thus the
interpretation of the Pamela excess in terms of dark matter. However, the DM
halo of the dwarf galaxies can now be modeled making use of kinematic stel-
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Figure E.11.: Exclusion plot (MAGIC and HESS GC) and expected sensitiv-
ity (CTA and Fermi) for the effective annihilation cross section, in the case of
γ-ray observations of the Draco galaxy and for dark matter particles annihi-
lating into e+e− in the AH case with MV = 100 MeV.
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Figure E.12.: Expected sensitivity for the effective annihilation cross section,
in the case of γ-ray observations of the Sagittarius galaxy and for dark matter
particles annihilating into WW.
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lar data with a precision which is far better than the uncertainties on the MW
DM profile or on the subhalo population or on the propagation parameters
which affect the limits set by antimatter, radio and γ-ray signals. We have
computed the expected γ-ray flux from the Draco and the Sagittarius dwarf
galaxies, for which upper limits are available from the ACTs. We have com-
puted the flux within the astrophysical uncertainties and we find that the
measurements of MAGIC and HESS are able to constrain the enhancement
and set an upper limit of ∼ 104. We have shown that the future CTA ex-
periment should be able to test the boost relative to the thermal annihilation
cross-sections up to values of a few hundred.
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Precision measurement of the cosmological observables have lead to believe
that we leave in a flat Friedmann Universe, seeded by nearly scale-invariant
adiabatic primordial fluctuations Komatsu et al. (2009). The majority (∼ 70%)
of the energy density of the Universe is in the form of a fluid with a cosmolog-
ical constant-like equation of state (w ∼ −1), dubbed dark energy, that is re-
sponsible for the observed acceleration of the Universe Frieman et al. (2008).
Although this “concordance model” gives a very satisfactory fit of all avail-
able data, nevertheless it should be noted that a convincing theoretical expla-
nation for what the dark energy is, is still missing. For this reason it is worth
looking for alternatives to the concordance model. Several interesting ideas
have been put forward in this regard. One is that the observed acceleration is
an artefact due to small-scale inhomogeneities. However this interpretation
has to deal with the fact that hints for the presence of dark energy come not
only from the acceleration, but also from the CMB data.

Recently, Blanchard et al. (2003) have noted that in fact, by relaxing the hy-
pothesis that the fluctuation spectrum can be described by a single power
law, the CMB data can be well fitted by a Universe with zero cosmological
constant. In this alternative model, the Hubble constant has to be very low

(∼ 46 km s−1Mpc−1) with respect to the value measured by the Hubble space

telescope (∼ 72 km s−1Mpc−1), but this could be explained if we were liv-
ing in an underdense region, so that our local neighborhood was expanding
faster that the average. This would imply that the Hubble constant measured
by the HST would be larger than the “actual” Hubble constant measuring the
average expansion speed of the Universe.

However, in the paper by Blanchard et al. (2003) a thorough treatment of
the statistical issues related to the problem was missing. We reassessed the
statistical significance of their findings in a paper presently in preparation
(Giusarma et al.). The main point is that the fact that, introducing additional
parameters, the WMAP data can be explained by a model with ΩΛ = 0,
providing a fit that is as good (or nearly as good) as the fit provided by the
concordance model, is not enough. In fact, it could be that the alternative
model requires a very fine-tuning of the model parameters. In the language of
probabilities, this is the case if there are some combination of the parameters
where the probablity density is very large, but nevertheless they have a very
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small support, i.e. the volume in parameter space associated to these models
is very small. The overrall result is that the probablity mass associated to
these models is low as well, even if they fit well the data (i.e they have a high
likelihood).

Then, following Blanchard et al. (2003) we have focused on models with a
broken power-law spectrum of primordial fluctuations:

P(k) =

{

A1kn1 for k < k∗
A2kn2 for k ≥ k∗

(F.0.1)

with a continuity condition A1kn1∗ = A2kn2∗ . Thus the primordial power
spectrum is defined by five parameters, of which only four are independent
instead of two as in the concordance model. We choose the four independent
parameters to be A1, n1, n2, k∗. The other parameters defining the model are
the standard parameters of the concordance cosmological model. In order to
explore the parameter space, we use the Markov Chain Monte Carlo (MCMC)
method, through the publicly available code CosmoMC (Lewis and Bridle, 2002).
In order to be as conservativa as possible, we have used only the WMAP
5-year data. The result for the density parameter of the cosmological con-
stant ΩΛ is that 0.35 ≤ ΩΛ 0.76 at 95% confidence level, with mean value
ΩΛ = 0.62. This should be compared with the WMAP 5-year result ΩΛ =
0.742± 0.030. We also show the comparison between the two full posterior
probability distributions in Fig. F.1. It can be seen that allowing for a broken
power-law primordial spectrum shifts the preferred value for ΩΛ to lower
values and increases the width of the distribution, with the result that the
95% lower limit gows down to ΩΛ = 0.35. Then we find that, contrarily to
what claimed by Blanchard et al. (2003), models with ΩΛ = 0 do not provide
a satisfactory explanation to the CMB data. We have explicitly checked that
the disagreement can be traced down to the fact that there are models with
very smallΩΛ that have a high likelihood (i.e., a small χ2) but that have a very
small statistical weight associated to them.
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Figure F.1.: Relative probability as a function of ΩΛ, for the standard concor-
dance model (“LCDM”) and for the alternative model described in the text
(“Broken power spectrum”).
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LEMAÎTRE, A.G.
≪Contributions to a British Association Discussion on the Evolution of the
Universe.≫

1512



Bibliography

Nature , 128, pp. 704–706 (1931a).
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