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0.3 Brief description

0.3.1 Spacetime splitting techniques in
General Relativity

Spacetime splitting techniques play a central role and have fundamental in-
terest in General Relativity in view of extracting from the unified notion of
spacetime the separated and classical notions of space and time, at the real
basis of all our experience and intuition. Studing all the existing different
techniques scattered in the literature has recently offered the possibility to
create a unique framework for all these techniques (1) and a more clear geo-
metrical interpretation of the underlying “measurement process” for tensors
and tensorial equations. The name for the newly introduced framework has
been chosen as “gravitoelectromagnetism” because this formalism helps in
explaining the closeness between gravity and electromagnetism represented
by the Coriolis and centrifugal forces on one side and the Lorentz force on
the other side.

“1+3” splitting of the spacetime

During the last century, the various relativistic schools: Landau, Lifshitz and
the Russian school, Lichnerowicz in France, the British school, the Italian
school (Cattaneo and Ferrarese), scattered Europeans (Ehlers and Trautman,
for example) and the Americans (Misner, Wheeler, etc.), developed a num-
ber of different approaches to spacetime splitting almost without reference to
each other.

R. Ruffini (2), a former student of Cattaneo and a collaborator of Wheeler,
looking for a better understanding of black holes and their electromagnetic
properties, stimulated Jantzen, Carini and Bini to approach the problem and
to make an effort to clarify the interrelationships between these various ap-
proaches as well as to shed some light on the then confusing works of Abra-
mowicz and others on relativistic centrifugal and Coriolis forces. By putting
them all in a common framework and clarifying the related geometrical as-
pects, some order was brought to the field (1; 3; 4).

Measurement process in General Relativity

The investigations on the underlying geometrical structure of any spacetime
splitting approach show that it is not relevant to ask which of these various
splitting formalisms is the “best” or “correct” one, but to instead ask what
exactly each one of them “measures” and which is specially suited to a par-
ticular application.

For instance, in certain situations a single approach can be more suited than
another to provide intuition about or simplify the presentation of the invari-
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ant spacetime geometry, even if all of them may always be used. These ideas
were then used to try to understand better the geometry of circular orbits
in stationary spacetimes and their physical properties where the connection
between general relativity and its Newtonian progenitor are most natural.

The list of problems approached and results obtained together can be found
in Appendix A.

0.3.2 Motion of particles and extended bodies in General
Relativity

The features of test particle motion along a given orbit strongly depend on
the nature of the background spacetime as well as on the model adopted for
the description of the intrinsic properties of the particle itself (e.g. its charge
or spin). As a basic assumption, the dimensions of the test particle are sup-
posed to be very small compared with the characteristic length of the back-
ground field in such a way that the background metric is not modified by
the presence of the particle (i.e. the backreaction being neglected), and that
the gravitational radiation emitted by the particle in its motion is negligible.
The particle can, in turn, be thought as a small extended body described by its
own energy-momentum tensor, whose motion in a given background may be
studied by treating the body via a multipole expansion. Thus, a single-pole
particle is a test particle without any internal structure; a pole-dipole parti-
cle, instead, is a test particle whose internal structure is expressed by its spin,
and so on. The equations of motion are, then, obtained by applying the Ein-
steins field equations together with conservation of the energy-momentum
tensor describing the body. For a single-pole particle this leads to a free
particle moving along the geodesics associated with the given background
geometry. The motion of a pole-dipole particle is, instead, described by the
Mathisson-Papapetrou-Dixon equations which couple background curvature
and the spin tensor of the field. The motion of particles with in addition a
quadrupolar structure has been developed mostly by Dixon; because of its
complexity, there are very few applications in the literature. Finally, the dis-
cussion of the case in which the test particle has also a charge is due to Dixon
and Souriau and this situation is very poorly studied too.

A complete list of the original results obtained and a deeper introduction
to the models can be found in Appendix B.

Test particles

Since 1990s we have been investigating all the geometrical as well as phys-
ical properties of circular orbits in black hole spacetimes, selecting a numer
of special orbits for certain reasons. These were already reviewed in pre-
vious ICRANet report on activities. It is instead a recent work to consider a
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given gravitational background with superposed a (weak) radiation field and
a test particle interacting with both fields. Interesting effects arise like the one
termed Poynting-Robertson effect which have been considered in the frame-
work of the full general relativistic theory. Properly speaking, the general
relativistic model accounting for Poynting-Robertson effect uses a test radia-
tion field of photons in outward radial motion with zero angular momentum.
The gravitational background we have considered is the equatorial plane of
the exterior Schwarzschild or Kerr spacetime, apparently rather poorly stud-
ied up to now.

Spinning test particles

During the last five years we have investigated the motion of spinning test
particles along special orbits in various spacetimes of astrophysical interest:
black hole spacetimes as well as more “exotic” background fields represent-
ing naked singularities or superposition of two or more axially symmetric
bodies kept apart on stable configuration by gravitationally inert singular
structures.

In particular, we have focused on the so called “clock effect,” defined by
the difference in the arrival time between two massive particles (as well as
photons) orbiting around a gravitating source in opposite directions after one
complete loop with respect to a given observer (5; 6; 7).

We have also analyzed the motion of massless spinning test particles, ac-
cording to an extended version of the Mathisson-Papapetrou model in a gen-
eral vacuum algebraically special spacetimes, using the Newman-Penrose
formalism, in the special case in which the multipole reduction world line
is aligned with a principal null direction of the spacetime.

Particles with both dipolar and quadrupolar structure (Dixon’s model)

We have studied the motion of particles with both dipolar and quadrupo-
lar in several different gravitational background (including Schwarzschild,
Kerr, weak and strong gravitational waves, etc.) following Dixon’s model
and within certain restrictions (constant frame components for the spin and
the quadrupole tensor, center of mass moving along a circular orbit, etc.).

We have found a number of interesting situations in which deviations from
the geodesic motion, due to the internal structure of the particle, can originate
measurable effects.

0.3.3 Perturbations

A discussion of curvature perturbations of black holes needs a plenty of dif-
ferent approaches and mathematical tools. For example, the Newman-Penrose
formalism in the tetradic and spinor version, the Cahen-Debever-Defrise self
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dual theory, the properties of the spin-weighted angular harmonics, with par-
ticular attention to the related differential geometry and the group theory,
some tools of complex analysis, etc. Furthermore, using any of the above
mentioned approaches, this remains a difficult problem to handle with. It is
not by chance, for instance, that the gravitational and electromagnetic pertur-
bations of the Kerr-Newman rotating and charged black hole represent still
an open problem in General Relativity.

During the last years, however, the modern computers and software have
reached an exceptional computational level and one may re-visit some still
open problems, where technical difficulties stopped the research in the past.
Details can be found in Appendix C.

Curvature perturbations in type D spacetimes

In the Kerr spacetime Teukolsky (8) has given a single “master equation”
to deal with curvature perturbations by a field of any spin (“spin-weight,”
properly speaking). Then the problem of extending the results of Teukolsky
to any other spacetime raised.

Actually, a very important result that we have obtained consisted in fram-
ing the Teukolsky equation in the form of a linearized de-Rham laplacian
equation for the perturbing field (9; 10). In addition, in all the cases (type
D spacetime: Taub-NUT, type D-Kasner, etc) in which an equation similar to
the Teukolsky equation can be written one can study the various couplings
between the spin of the perturbing field and the background parameters, i.e.
spin-rotation, spin-acceleration couplings etc, which can also be relevant into
different contexts and from other point of view. Moreover, we have obtained
important results considering explicit applications to Taub-NUT, Kerr-Taub-
NUT, C-metric, spinning C-metric and Kasner spacetime. For example in the
Taub-NUT spacetime we have shown that the perturbing field acquires an ef-
fective spin which is simply related to gravitomagnetic monopole parameter
` of the background (11); in the C-metric case (uniformly accelerated black
hole spacetime) we have been able to introduce a gravitational analog of the
Stark effect, etc.

Metric perturbations in a Reissner-Nordström spacetime

We have recently solved the multiyear problem of a two-body system con-
sisting of a ReissnerNordström black hole and a charged massive particle at
rest. The expressions of the metric and of the electromagnetic field, includ-
ing the effects of the electromagnetically induced gravitational perturbation
and of the gravitationally induced electromagnetic perturbation, have been
presented in closed analytic formulas; the details are indicated in Appendix
C.

1679



Contents

0.3.4 Cosmology

Mixmaster universe and the spectral index

We have recently revised the Mixmaster dynamics a new light, revealing a se-
ries of transitions in the complex scale invariant scalar invariant of the Weyl
curvature tensor best represented by the speciality index S, which gives a 4-
dimensional measure of the evolution of the spacetime independent of all the
3-dimensional gauge-dependent variables except the time used to parametrize
it.

Its graph versus time with typical spikes in its real and imaginary parts cor-
responding to curvature wall collisions serves as a sort of electrocardiogram
of the Mixmaster universe, with each such spike pair arising from a single
circuit or pulse around the origin in the complex plane. These pulses in the
speciality index seem to invariantly characterize some of the so called spike
solutions in inhomogeneous cosmology and should play an important role
in the current investigations of inhomogeneous Mixmaster dynamics. This
interesting work is just started and will be certainly continued over the next
years.
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0.4 Publications (2005 - 2008)

Refereed journals

1. Bini D., Taub-NUT spinless particles and Schwarzschild spinning particles,
Il Nuovo Cimento B, vol. 120, 1021-1025, 2005.
Abstract
The effect of a small gravitomagnetic monopole on (accelerated) circular
orbits in the equatorial plane of the Taub-NUT spacetime is compared to
the corresponding (accelerated) orbits pushed slightly off the equatorial
plane in the absense of the monopole (Schwarzschild spacetime).

2. Cherubini C., Bini D. , Bruni M., Perjes Z.,
The Speciality Index as invariant indicator in the BKL mixmaster dynamics,
Classical and Quantum Gravity, vol. 22, 1763-1768, 2005.
Abstract
The long-standing difficulty in general relativity of classifying the dy-
namics of cosmological models, e.g. as chaotic, is directly related to the
gauge freedom intrinsic to relativistic spacetime theories: in general the
invariance under diffeomorphisms makes any analysis of dynamical
evolution dependent on the particular choice of time slicing one uses.
We show here that the speciality index, a scalar dimensionless curvature
invariant that has been mainly used in numerical relativity as an indica-
tor of the special or non-special Petrov-type character of a spacetime, is
a time-independent quantity (a pure number) at each Kasner step of the
Belinski–Khalatnikov–Lifshitz (BKL) map approximating the mixmas-
ter cosmology. Thus the BKL dynamics can be characterized in terms
of the speciality index, i.e. in terms of curvature invariants directly re-
lated to observables. Possible applications for the associated mixmaster
dynamics are discussed.

3. Bini D., de Felice F., Geralico A., Lunari A.,
Spinning test particles in Weyl spacetimes,
J. Phys. A: Math. Gen. 38, 1163-1186, 2005.
Abstract
The motion of spinning test particles along circular orbits in static vac-
uum spacetimes belonging to the Weyl class is discussed. Spin align-
ment and coupling with background parameters in the case of superim-
posed Weyl fields, corresponding to a single Schwarzschild black hole
and a single Chazy-Curzon particle as well as to two Schwarzschild
black holes and two Chazy-Curzon particles, are studied in detail for
standard choices of supplementary conditions. Applications to the grav-
itomagnetic ’clock effect’ are also discussed.

4. Bini D., Lusanna L., Mashhoon B.,
Limitations of Radar Coordinates,
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International Jornal of Modern Physics D, vol. 14, 1413-1429, 2005.
Abstract
The construction of a radar coordinate system about the world line of
an observer is discussed. Radar coordinates for a hyperbolic observer
as well as a uniformly rotating observer are described in detail. The
utility of the notion of radar distance and the admissibility of radar co-
ordinates are investigated. Our results provide a critical assessment of
the physical significance of radar coordinates.

5. Bini D., De Paolis F., Geralico A., Ingrosso G., Nucita A.
Periastron shift in Weyl class spacetimes,
General Relativity and Gravitation, vol. 37, 1263-1276, 2005.
Abstract
The periastron position advance for geodesic motion in axially symmet-
ric solutions of the Einstein field equations belonging to the Weyl class
of vacuum solutions is investigated. Explicit examples corresponding
to either static solutions (single Chazy-Curzon, Schwarzschild and a
pair of them), or stationary solutions (single rotating Chazy-Curzon and
Kerr black hole) are discussed. The results are then applied to the case
of S2-SgrA* binary system of which the periastron position advance will
be soon measured with a great accuracy.

6. Bini D., Cherubini C., Geralico A., Mashhoon B.,
Spinning particles in the vacuum C metric,
Classical and Quantum Gravity, vol. 22, 709-722, 2005.
Abstract
The motion of a spinning test particle given by the MathissonPapa-
petrou equations is studied on an exterior vacuum C metric background
spacetime describing the accelerated motion of a spherically symmetric
gravitational source. We consider circular orbits of the particle around
the direction of acceleration of the source. The symmetries of this con-
figuration lead to the reduction of the differential equations of motion
to algebraic relations. The spin supplementary conditions as well as
the coupling between the spin of the particle and the acceleration of the
source are discussed.

7. Bini D., de Felice F., Geralico A.
Charged spinning particles on circular orbits in the Reissner-Nordström space-
time,
International Journal of Modern Physics D, vol. 14, 1793-1811, 2005.
Abstract
The behavior of charged spinning test particles moving along circular
orbits in the equatorial plane of the Reissner-Nordström spacetime is
studied in the framework of the Dixon-Souriau model completed with
standard choices of supplementary conditions. The gravitomagnetic

1682



Contents

”clock effect,” i.e. the delay in the arrival times of two oppositely cir-
culating particles as measured by a static observer, is derived and dis-
cussed in the cases in which the particles have equal/opposite charge
and spin, the latter being directed along the z-axis.

8. Bini D., de Felice F., Geralico A. and Jantzen R.T.
Spin precession in the Schwarzschild spacetime: circular orbits,
Classical and Quantum Gravity, vol. 22, 2947-2970, 2005.
Abstract
We study the behaviour of nonzero rest mass spinning test particles
moving along circular orbits in the Schwarzschild spacetime in the case
in which the components of the spin tensor are allowed to vary along
the orbit, generalizing some previous work.

9. Bini D., Geralico A., Jantzen R. T.,
Kerr metric, static observers and Fermi coordinates,
Classical and Quantum Gravity, vol. 22, 4729-4742, 2005.
Abstract
The coordinate transformation which maps the Kerr metric written in
standard BoyerLindquist coordinates to its corresponding form adapted
to the natural local coordinates of an observer at rest at a fixed position
in the equatorial plane, i.e., Fermi coordinates for the neighbourhood of
a static observer world line, is derived and discussed in a way which
extends to any uniformly circularly orbiting observer there.

10. Bini D., Cherubini C., Filippi S., Geralico A.,
C metric: the equatorial plane and Fermi coordinates,
Classical and Quantum Gravity, vol. 22, 5157-5168, 2005.
Abstract
We discuss geodesic motion in the vacuum C metric using Bondi-like
spherical coordinates, with special attention to the role played by the
’equatorial plane’. We show that the spatial trajectory of photons on
such a hypersurface is formally the same as that of photons on the equa-
torial plane of the Schwarzschild spacetime, apart from an energy shift
involving the spacetime acceleration parameter. Furthermore, we show
that photons starting their motion from this hypersurface with vanish-
ing component of the momentum along θ, remain confined on it, differ-
ently from the case of massive particles. This effect is shown to have a
counterpart also in the massless limit of the C metric, i.e. in Minkowski
spacetime. Finally, we give the explicit map between Bondi-like spher-
ical coordinates and Fermi coordinates (up to the second order) for the
world line of an observer at rest at a fixed spatial point of the equatorial
plane of the C metric, a result which may be useful to estimate both the
mass and the acceleration parameter of accelerated sources.
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11. Bini D., Geralico A., Jantzen R.T.
Frenet-Serret formalism for null world lines,
Classical and Quantum Gravity, vol. 23, 3963-3981, 2006.
Abstract
The FrenetSerret curve analysis is extended from non-null to null tra-
jectories in a generic spacetime using the NewmanPenrose formalism,
recovering old results which are not well known and clarifying the as-
sociated FermiWalker transport which has been left largely unexplored
in the literature. This machinery is then used to discuss null circular or-
bits in stationary axisymmetric spacetimes using the Kerr spacetime as
a concrete example, and to integrate the equations of parallel transport
along null geodesics in any spacetime.

12. Bini D., Cherubini C., Geralico A., Jantzen R.T.
Massless spinning test particles in vacuum algebraically special spacetimes,
International Journal of Modern Physics D, vol. 15, 737-758, 2006.
Abstract
The motion of massless spinning test particles is investigated using the
NewmanPenrose formalism within the MathissonPapapetrou model ex-
tended to massless particles by Mashhoon and supplemented by the
Pirani condition. When the ”multipole reduction world line” lies along
a principal null direction of an algebraically special vacuum spacetime,
the equations of motion can be explicitly integrated. Examples are given
for some familiar spacetimes of this type in the interest of shedding
some light on the consequences of this model.

13. Bini D., de Felice F., Geralico A., Jantzen R.T.
Spin precession along circular orbits in the Kerr spacetime: the Frenet-Serret
description,
Classical and Quantum Gravity, vol. 23, 3287-3304, 2006.
Abstract
The circular motion of spinning massive test particles in the equatorial
plane of a rotating black hole is investigated in the case where the com-
ponents of the spin tensor are allowed to vary along the orbit.

14. Bini D., de Felice F., Geralico A.
Strains in General Relativity,
Classical and Quantum Gravity, vol. 23 7603-7626, 2006.
Abstract
The definition of relative accelerations and strains among a set of co-
moving particles is studied in connection with the geometric properties
of the frame adapted to a ’fiducial observer’. We find that a relativisti-
cally complete and correct definition of strains must take into account
the transport law of the chosen spatial triad along the observer’s con-
gruence. We use special congruences of (accelerated) test particles in
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some familiar spacetimes to elucidate such a point. The celebrated idea
of Szekeres’ compass of inertia, arising when studying geodesic devia-
tion among a set of free-falling particles, is here generalized to the case
of accelerated particles. In doing so we have naturally contributed to
the theory of relativistic gravity gradiometer. Moreover, our analysis
was made in an observer-dependent form, a fact that would be very
useful when thinking about general relativistic tests on space stations
orbiting compact objects like black holes and also in other interesting
gravitational situations.

15. Bini D., Geralico A., Ruffini R. J.
Charged massive particle at rest in the field of a Reissner-Nordström black hole,
Phys. Rev. D, 75, 044012, 2007.
Abstract
The interaction of a Reissner-Nordström black hole and a charged mas-
sive particle is studied in the framework of perturbation theory. The
particle backreaction is taken into account, studying the effect of general
static perturbations of the hole following the approach of Zerilli. The so-
lutions of the combined Einstein-Maxwell equations for both perturbed
gravitational and electromagnetic fields to first order of the perturba-
tion are exactly reconstructed by summing all multipoles, and are given
explicit closed form expressions. The existence of a singularity-free so-
lution of the Einstein-Maxwell system requires that the charge-to-mass
ratios of the black hole and of the particle satisfy an equilibrium condi-
tion which is in general dependent on the separation between the two
bodies. If the black hole is undercritically charged (i.e. its charge-to-
mass ratio is less than one), the particle must be overcritically charged,
in the sense that the particle must have a charge-to-mass ratio greater
than one. If the charge-to-mass ratios of the black hole and of the par-
ticle are both equal to one (so that they are both critically charged, or
extreme), the equilibrium can exist for any separation distance, and the
solution we find coincides with the linearization in the present con-
text of the well-known Majumdar-Papapetrou solution for two extreme
Reissner-Nordstrm black holes. In addition to these singularity-free so-
lutions, we also analyze the corresponding solution for the problem of
a massive particle at rest near a Schwarzschild black hole, exhibiting
a strut singularity on the axis between the two bodies. The relations
between our perturbative solutions and the corresponding exact two-
body solutions belonging to the Weyl class are also discussed.

16. Bini D., Geralico A., Ruffini R. J.
On the equilibrium of a charged massive particle in the field of a Reissner-
Nordström black hole,
Physics Letters A, vol. 360, 515-517, 2007.
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Abstract
The multiyear problem of a two-body system consisting of a Reissner-
Nordström black hole and a charged massive particle at rest is here
solved by an exact perturbative solution of the full EinsteinMaxwell
system of equations. The expressions of the metric and of the electro-
magnetic field, including the effects of the electromagnetically induced
gravitational perturbation and of the gravitationally induced electro-
magnetic perturbation, are presented in closed analytic formulas.

17. Bini D., de Felice F., Geralico A.
Strains and axial outflows in the field of a rotating black hole,
Phys. Rev. D, 76, 047502, 2007.
Abstract
We study the behavior of an initially spherical bunch of particles ac-
celerated along trajectories parallel to the symmetry axis of a rotating
black hole. We find that, under suitable conditions, curvature and iner-
tial strains compete to generate jetlike structures. This is a purely kine-
matical effect which does not account by itself for physical processes
underlying the formation of jets. In our analysis a crucial role is played
by the property of the electric and magnetic part of the Weyl tensor to
be Lorentz invariant along the axis of symmetry in Kerr spacetime.

18. Bini D., Cherubini, C., Geralico A., Jantzen R.T.
Circular motion in accelerating black hole spacetimes,
International Journal of Modern Physics D, vol. 16, 1813-1828, 2007.
Abstract
The motion of test particles along circular orbits in the vacuum C met-
ric is studied in the Frenet-Serret formalism. Special orbits and cor-
responding intrinsically defined geometrically relevant properties are
selectively studied.

19. Bini D., Cherubini, C., Jantzen R.T.
The speciality index and the Lifshitz-Khalatnikov Kasner index parametriza-
tion,
Class. and Quantum Gravit., vol. 24, 5627-5636, 2007.
Abstract
The speciality index function S for any Petrov type I, II or D spacetime
is shown to be a natural function of a single complex scalar quantity
µ (natural modulo permutation symmetries). For the family of Kasner
spacetimes, this quantity is a function of the Kasner indices alone which
coincides with the real Lifshitz-Khalatnikov parameter u for those in-
dices.

20. Bini D., Fortini, F., Geralico, A, Ortolan, A.
Quadrupole effects on the motion of extended bodies in Schwarzschild space-
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time,
Class. and Quantum Gravity, vol. 25, 035005 (9pp), 2008.
Abstract
The motion of an extended body up to the quadrupolar structure is
studied in the Schwarzschild background following Dixon’s model and
within certain restrictions (constant frame components for the spin and
the quadrupole tensor, center of mass moving along a circular orbit,
etc). We find a number of interesting situations in which deviations
from the geodesic motion, due to the internal structure of the particle,
can originate measurable effects. However, the standard clock effect for
a pair of co/counter-rotating bodies spinning up/down is not modified
by the quadrupolar structure of the particle.

21. Bini D., Cherubini, C., Geralico A., Jantzen R.T.
Physical frames along circular orbits in stationary axisymmetric spacetimes,
Gen. Rel. and Gravity, vol. 40, 985-1012, 2008.
Abstract
Three natural classes of orthonormal frames, namely Frenet-Serret, Fer-
miWalker and parallel transported frames, exist along any timelike world
line in spacetime. Their relationships are investigated for timelike cir-
cular orbits in stationary axisymmetric spacetimes, and illustrated for
black hole spacetimes.

22. Bini D., Lusanna L.
Spin-rotation couplings: spinning test particles and Dirac field,
Gen. Rel. and Gravit., vol. 40, 1145-1177, 2008.
Abstract
The hypothesis of coupling between spin and rotation introduced long
ago by Mashhoon is examined in the context of 1 + 3 and 3 + 1 space-
time splitting techniques, either in special or in general relativity. Its
content is discussed in terms of classical (Mathisson-Papapetrou-Dixon-
Souriou model) as well as quantum physics (Foldy-Wouthuysen trans-
formation for the Dirac field in an external field), reviewing and dis-
cussing all the relevant theoretical literature concerning the existence of
such effect. Some original contributions are also included.

23. Bini D., Geralico A., Ruffini R.
Charged massive particle at rest in the field of a Reissner-Nordström black hole
II. Analysis of the electric field lines,
Phys. Rev. D, 77, 064020, 2008.
Abstract
The properties of the electric field of a two-body system consisting of
a Reissner-Nordstrm black hole and a charged massive particle at rest
have recently been analyzed in the framework of first order perturba-
tion theory following the standard approach of Regge, Wheeler, and
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Zerilli. In the present paper we complete this analysis by numerically
constructing and discussing the lines of force of the “effective” electric
field of the sole particle with the subtraction of the dominant contribu-
tion of the black hole. We also give the total field due to the black hole
and the particle. As the black hole becomes extreme an effect analo-
gous to the Meissner effect arises for the electric field, with the “effec-
tive field” lines of the point charge being expelled by the outer horizon
of the black hole. This effect existing at the level of test field approx-
imation, i.e. by neglecting the backreaction on the background met-
ric and electromagnetic field due to the particles mass and charge, is
here found also at the complete perturbative level. We point out analo-
gies with similar considerations for magnetic fields by Bicak and Dvo-
rak. We also explicitly show that the linearization of the recently ob-
tained Belinski-Alekseev exact solution coincides with our solution in
the Regge-Wheeler gauge. Our solution thus represents a bridge be-
tween the test field solution, which neglects all the feedback terms, and
the exact two-body solution, which takes into account all the nonlinear-
ity of the interaction.

24. Bini D., Fortini, F., Geralico, A., Ortolan, A.
Quadrupole effects on the motion of extended bodies in Kerr spacetime,
Class. and Quantum Gravit., vol. 25, 125007, 2008.
Abstract
The motion of a body endowed with a dipolar as well as a quadrupolar
structure is investigated in the Kerr background according to the Dixon
model, extending a previous analysis done in the Schwarzschild back-
ground. The full set of evolution equations is solved under the sim-
plifying assumptions of constant frame components for both the spin
and the quadrupole tensors and that the center of mass moves along
an equatorial circular orbit, the total 4-momentum of the body being
aligned with it. We find that the motion deviates from the geodesic
one due to the internal structure of the body, leading to measurable ef-
fects. Corrections to the geodesic value of the orbital period of a close
binary system orbiting the galactic center are discussed assuming that
the galactic center is a Kerr supermassive black hole.

25. Bini D., Succi S.
Analogy between capillary motion and Friedmann-Robertson-Walker cosmol-
ogy,
Europhysics Letters, 82, 34003, 2008.
Abstract
A formal equivalence between the motion of an inviscid fluid in a cap-
illary tube and the Friedmann-Robertson-Walker cosmological equa-
tions is discussed. Similarly to the case of “sonic black holes” or “black
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hole analogs,” largely discussed in recent literature, it is hoped that this
analogy may inspire a class of capillary-filling experiments reproducing
simple cosmological scenarios in terrestrial laboratories.

26. Bini D., de Felice, F., Geralico, A.,
Relative strains in the Kerr-Taub-NUT spacetime,
Il Nuovo Cimento B, vol. 122, 499-504, 2007.
Abstract
The strains experienced by static observers in the Kerr-Taub-NUT space-
time are investigated. The role played in this context by the physical
parameters characterizing this solution (i.e. the rotation parameter and
NUT parameter) is discussed by analysing the limits of Kerr, Taub-NUT,
NUT and Schwarzschild space-time as well as the limit of weak gravi-
tational field.

27. Bini D., Cherubini, C., Chicone, C., Mashhoon, B.
Gravitational induction
Classical and Quantum Gravity, submitted, 2008.
Abstract
We study the linear post-Newtonian approximation to general relativ-
ity known as gravitoelectromagnetism (GEM); in particular, we exam-
ine the similarities and differences between GEM and electrodynamics.
Notwithstanding some significant differences between them, we find
that a special nonstationary metric in GEM can be employed to show
explicitly that it is possible to introduce gravitational induction within
GEM in close analogy with Faraday’s law of induction and Lenz’s law
in electrodynamics. Some of the physical implications of gravitational
induction are briefly discussed.

28. Bini D., Geralico, A., Ruggiero, M. L., Tartaglia A.,
On the emission coordinate system for the Earth
Classical and Quantum Gravity, to appear, 2008.
Abstract
A 4-dimensional relativistic positioning system for a general spacetime
is constructed by using the so called “emission coordinates.” The re-
sults apply in a small region around the world line of an accelerated
observer carrying a Fermi triad, as described by the Fermi metric. In
the case of a Schwarzschild spacetime modeling the gravitational field
around the Earth and an observer at rest at a fixed spacetime point,
these coordinates realize a relativistic positioning system alternative to
the current GPS system. The latter is indeed essentially conceived as
Newtonian, so that it necessarily needs taking into account at least the
most important relativistic effects through Post-Newtonian corrections
to work properly. Previous results concerning emission coordinates in
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flat spacetime are thus extended to this more general situation. Fur-
thermore, the mapping between spacetime coordinates and emission
coordinates is completely determined by means of the world function,
which in the case of a Fermi metric can be explicitly obtained.

29. Bini D., Cherubini, C., Geralico, A., Ortolan, A.
Dixon’s extended bodies and weak gravitational waves,
GRG, to appear, 2008.
Abstract
General relativity considers Dixons theory as the standard theory to
deal with the motion of extended bodies in a given gravitational back-
ground. We discuss here the features of the reaction of an extended
body to the passage of a weak gravitational wave. We find that the
body acquires a dipolar moment induced by its quadrupole structure.
Furthermore, we derive the world function for the weak field limit of
a gravitational wave background and use it to estimate the deviation
between geodesics and the world lines of structured bodies. Measuring
such deviations, due to the existence of cumulative effects, should be
favorite with respect to measuring the amplitude of the gravitational
wave itself.

30. Bini D., Cherubini, C., Geralico A.
Massless field perturbations of the spinning C metric,
JMP, vol. 49, 062502, 2008.
Abstract
A single master equation is given describing spin s ≤ 2 test fields that
are gauge- and tetrad-invariant perturbations of the spinning C metric
spacetime representing a source with mass M, uniformly rotating with
angular momentum per unit mass a and uniformly accelerated with ac-
celeration A. This equation can be separated into its radial and angular
parts. The behavior of the radial functions near the black hole (outer)
horizon is studied to examine the influence of A on the phenomenon
of superradiance, while the angular equation leads to modified spin-
weighted spheroidal harmonic solutions generalizing those of the Kerr
spacetime. Finally the coupling between the spin of the perturbing field
and the acceleration parameter A is discussed.

31. Bini D., Geralico A., Ruffini R.
On the linearization of the Belinski-Alekseev exact solution for two charged
masses in equilibrium,
IJMPA, 23, 1226 - 1230, 2008.
Abstract
A perturbative solution describing a two-body system consisting of a
Reissner-Nordstrm black hole and a charged massive particle at rest is
presented. The coincidence between such a solution and the linearized
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form of the recently obtained Belinski-Alekseev exact solution is explic-
itly shown.

32. Bini D., Capozziello S., Esposito G.
Gravitational waves about curved backgrounds: a consistency analysis in De
Sitter spacetime,
IJGMMP, to appear, 2008.
Abstract
Gravitational waves are considered as metric perturbations about a curved
background metric, rather than the flat Minkowski metric since several
situations of physical interest can be discussed by this generalization.
In this case, when the de Donder gauge is imposed, its preservation un-
der infinitesimal spacetime diffeomorphisms is guaranteed if and only
if the associated covector is ruled by a second-order hyperbolic opera-
tor which is the classical counterpart of the ghost operator in quantum
gravity. In such a wave equation, the Ricci term has opposite sign with
respect to the wave equation for Maxwell theory in the Lorenz gauge.
We are, nevertheless, able to relate the solutions of the two problems,
and the algorithm is applied to the case when the curved background
geometry is the de Sitter spacetime. Such vector wave equations are
studied in two different ways: i) an integral representation, ii) through a
solution by factorization of the hyperbolic equation. The latter method
is extended to the wave equation of metric perturbations in the de Sit-
ter spacetime. This approach is a step towards a general discussion of
gravitational waves in the de Sitter spacetime and might assume rele-
vance in cosmology in order to study the stochastic background emerg-
ing from inflation.

33. Bini D., Fortini, F., Geralico, A., Ortolan, A.
Dixon’s extended bodies and impulsive gravitational waves,
PLA, to appear, 2008.
Abstract
The reaction of an extended body to the passage of an exact plane grav-
itational wave is discussed following Dixons model. The analysis per-
formed shows several general features, e.g. even if initially absent, the
body acquires a spin induced by the quadrupole structure, the center
of mass moves from its initial position, as well as certain spin-flip or
spin-glitch effects which are being observed.

34. Bini D., Cherubini C., Filippi S.
On vortices heating biological excitable media,
submitted, 2008.
Abstract
An extension of the Hodgkin-Huxley model for the propagation of nerve
signal which takes into account dynamical heat transfer in biological
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tissue is derived and ne tuned with existing experimental data. The
medium is heated due to the Joule’s eect associated with action poten-
tial propagation, leading to characteristic thermal patterns. The intro-
duction of heat transfer—necessary on physical grounds—provides a
novel way to directly observe movement of the tip of spiral waves in
numerical simulations and possibly in experiments regarding biologi-
cal excitable media.

35. Bini D., Jantzen R. T., Stella L.
The general relativistic Poynting-Robertson effect
Classical and Quantum Gravity, submitted, 2008.
Abstract
The general relativistic version is developed for Robertsons discussion
of the Poynting-Robertson effect that he based on special relativity and
Newtonian gravity for point radiation sources like stars. The general
relativistic model uses a test radiation field of photons in outward ra-
dial motion with zero angular momentum in the equatorial plane of the
exterior Schwarzschild or Kerr spacetime.

36. Bini D., Cherubini C., Geralico A., Jantzen R. T.
Electrocardiogram of the Mixmaster Universe
submitted, 2008.
Abstract
The Mixmaster dynamics is revisited in a new light as revealing a se-
ries of transitions in the complex scale invariant scalar invariant of the
Weyl curvature tensor best represented by the speciality index S, which
gives a 4-dimensional measure of the evolution of the spacetime inde-
pendent of all the 3-dimensional gauge-dependent variables except the
time used to parametrize it. Its graph versus time with typical spikes in
its real and imaginary parts corresponding to curvature wall collisions
serves as a sort of electrocardiogram of the Mixmaster universe, with
each such spike pair arising from a single circuit or pulse around the
origin in the complex plane. These pulses in the speciality index seem
to invariantly characterize some of the so called spike solutions in inho-
mogeneous cosmology and should play an important role in the current
investigations of inhomogeneous Mixmaster dynamics.

37. Bini D., Cherubini C., Filippi S.,
On the effective geometries in classical selfgravitating systems
Phys. Rev. D, to appear, 2008.
Abstract
Given a perfect barotropic and irrotational Newtonian selfgravitating
fluid, perturbations with respect to a background solutions are stud-
ied. The field equations can be rearranged in a novel generalization
of standard induced metric formalism which takes into account the
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gravitational backreaction however. The case of perturbations of poly-
tropic spherical stars described by Lane-Emden’s equation, for which
the Matching problem results mathematically directly accessible, is stud-
ied in detail in the known cases of existing analytic solutions. This novel
formulation presents a natural scenario in which the acoustic analogy
has practical applications both for stellar and galactic dynamics.

Books and book chapters

1. (Chapter in Book) Ferrarese G. and Bini D. ,
Compatibility of physical frames in relativity,
Rendiconti del Circolo Matematico di Palermo, serie II, Suppl. 78, 97-
110, 2006.
Abstract
Certain notions concerning physical frames thought as geometrical sup-
port of continuous systems are discussed; from these notions, indepen-
dently from the continuum dynamics, the Cauchy problem for the first
order characteristics of the frame, as well as the associated (involutive) com-
patibility conditions, involving only the initial data, are considered.

2. (Book) G. Ferrarese, Bini D.
Introduction to relativistic continuum mechanics,
Lecture Notes in Physics 727, Ed. Springer, 2007.
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.1 Spacetime splitting techniques in general
relativity

The concept of a “gravitational force” modeled after the electromagnetic Lo-
rentz force was born in the Newtonian context of centrifugal and Coriolis
“fictitious” forces introduced by a rigidly rotating coordinate system in a flat
Euclidean space. Bringing this idea first into linearized general relativity and
then into its fully nonlinear form, it has found a number of closely related but
distinct generalizations. Regardless of the details, this analogy between grav-
itation and electromagnetism has proven useful in interpreting the results of
spacetime geometry in terms we can relate to, and has been illustrated in
many research articles and textbooks over the past half century.

ICRANet has itself devoted a workshop and its proceedings to aspects of
this topic in 2003 (2). In the lengthy introduction to these proceedings, R.
Ruffini has discussed a number of related topics, like “the gravitational ana-
logue of the Coulomb-like interactions, of Hertz-like wave solutions, of the
Oersted-Ampére-like magnetic interaction, etc.,” supporting the thesis that
treating gravitation in analogy with electromagnetism may help to better un-
derstand the main features of certain gravitational phenomena, at least when
the gravitational field may be considered appropriately described by its lin-
earized approximation (12; 13; 14; 15; 16; 17; 18). A particularly long bib-
liography surveying most of the relevant literature through 2001 had been
published earlier in the Proceedings of one of the annual Spanish Relativity
Meetings (19).

In the 1990s, working in fully nonlinear general relativity, all of the various
notions of “noninertial forces” (centrifugal and Coriolis forces) were put into
a single framework by means of a unifying formalism dubbed “gravitoelec-
tromagnetism” (1; 3; 4) which is a convenient framework to deal with these
and curvature forces and related questions of their effect on test bodies mov-
ing in the gravitational field. More precisely, such a language grounds on the
splitting of spacetime into “space plus time,” accomplished locally by means
of an observer congruence, namely a congruence of timelike worldlines with
(future-pointing) unit tangent vector field u which may be interpreted as the
4-velocity field of a family of test observers filling some region of spacetime.
The orthogonal decomposition of each tangent space into a local time direc-
tion along u and the orthogonal local rest space (LRS) is used to decompose
all spacetime tensors and tensor equations into a “space plus time” represen-
tation; the latter representation is somehow equivalent to a geometrical “mea-
surement” process. This leads to a family of “spatial” spacetime tensor fields
which represent each spacetime field and a family of spatial equations which
represent each spacetime equation. Dealing with spacetime splitting tech-
niques as well as 3-dimensional-like quantities clearly permits a better inter-
face of our intuition and experience with the 4-dimensional geometry in cer-
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tain gravitational problems. It can be particularly useful in spacetimes which
have a geometrically defined timelike congruence, either explicitly given or
defined implicitly as the congruence of orthogonal trajectories to a slicing or
foliation of spacetime by a family of privileged spacelike hypersurfaces.

For example, splitting techniques are useful in the following spacetimes:

1. Stationary spacetimes, having a preferred congruence of Killing trajec-
tories associated with the stationary symmetry, which is timelike on a
certain region of spacetime (usually an open region, the boundary of
which corresponding to the case in which the Killing vector becomes
null so that in the exterior region Killing trajectories are spacelike).

2. Stationary axially symmetric spacetimes having in addition a preferred
slicing whose orthogonal trajectories coincide with the worldlines of
locally nonrotating test observers.

3. Cosmological spacetimes with a spatial homogeneity subgroup, which
have a preferred spacelike slicing by the orbits of this subgroup.

From the various schools of relativity that blossomed during the second
half of the last century a number of different approaches to spacetime split-
ting were developed without reference to each other. During the 1950s efforts
were initiated to better understand general relativity and the mathematical
tools needed to flush out its consequences. Lifshitz and the Russian school,
Lichnerowicz in France, the British school, scattered Europeans (Ehlers and
Trautman, for example) and the Americans best represented by Wheeler ini-
tiated this wave of relativity which blossomed in the 1960s. The textbook of
Landau and Lifshitz and articles of Zelmanov (20; 21; 22; 23) presented the
“threading point of view” of the Russian school and of Moller (21) which in-
fluenced Cattaneo in Rome and his successor Ferrarese (24; 25; 26; 27; 28),
while a variation of this approach not relying on a complementary family
of hypersurfaces (the “congruence point of view) began from work initially
codified by Ehlers (17) and then taken up by Ellis (29; 30) in analyzing cos-
mological issues.

However, issues of quantum gravity lead to the higher profile of the “slic-
ing point of view” in the 1960s initiated earlier by Lichnerowicz and devel-
oped by Arnowitt, Deser and Misner and later promoted by the influential
textbook “Gravitation” by Misner, Thorne and Wheeler (31; 32; 33; 34) repre-
sents a splitting technique which is complementary to the threading point of
view and its congruence variation, and proved quite useful in illuminating
properties of black hole spacetimes.

R. Ruffini, a former student of Cattaneo and a collaborator of Wheeler,
in his quest to better understand electromagnetic properties of black holes,
awakened the curiosity of Jantzen and Carini at the end of the 1980s, later
joined by Bini, who together made an effort to clarify the interrelationships
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between these various approaches as well as shed some light on the then
confusing work of Abramowicz and others on relativistic centrifugal and
Coriolis forces. By putting them all in a common framework, and describ-
ing what each measured in geometrical terms, and how each related to the
others, some order was brought to the field (1; 3; 4).

The ICRANet people working on this subject have applied the main ideas
underlying spacetime splitting techniques to concrete problems arising when
studying test particle motion in black hole spacetimes. Among the various re-
sults obtained it is worth mentioning the relativistic and geometrically correct
definition of inertial forces in general relativity (35; 36; 37; 38; 39), the defi-
nition of special world line congruences, relevant for the description of the
motion of test particles along circular orbits in the Kerr spacetime (geodesic
meeting point observers, extremely accelerated observers, etc.), the specifi-
cation of all the geometrical properties concerning observer-adapted frames
to the above mentioned special world line congruences (40; 41), the char-
acterization of certain relevant tensors in black hole spacetimes (Simon ten-
sor, Killing-Yano tensor) in terms of gravitoelectromagnetism (42; 43), etc.
Mashhoon, who was particularly skilled in gravitoelectromagnetic analyses
of physical questions in linearized general relativity especially, entered into
some collaborations with Jantzen and Bini and their various students from
the Rome group of Ruffini. This research line is still ongoing and productive.

Over a period of several decades Jantzen, Bini and a number of students at
the University of Rome “La Sapienza” under the umbrella of the Rome ICRA
group have been working on this problem under the supervision of Ruffini.
The collaborators involved have been already listed and the most relevant
papers produced are indicated in the references below (44)–(83).

Let us now describe some fundamental notions of gravitoelectromagnetism
in more detail.

.1.1 Observer-orthogonal splitting

Let (4)g (signature -+++ and components (4)gαβ, α, β, . . . = 0, 1, 2, 3) be the
spacetime metric, (4)∇ its associated covariant derivative operator, and (4)η

the unit volume 4-form which orients spacetime ((4)η0123 = (4)g1/2 in an ori-
ented frame, where (4)g ≡ |det((4)gαβ)|). Assume the spacetime is also time
oriented and let u be a future-pointing unit timelike vector field (uαuα = −1)
representing the 4-velocity field of a family of test observers filling the space-
time (or some open submanifold of it).

If S is an arbitrary tensor field, let S[ and S] denote its totally covariant
and totally contravariant forms with respect to the metric index-shifting op-
erations. It is also convenient to introduce the right contraction notation
[S X]α = Sα

βXβ for the contraction of a vector field and the covariant in-
dex of a (1

1)-tensor field (left contraction notation being analogous).
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The measurement process

The observer-orthogonal decomposition of the tangent space, and in turn of
the algebra of spacetime tensor fields, is accomplished by the temporal pro-
jection operator T(u) along u and the spatial projection operator P(u) onto
LRSu, which may be identified with mixed second rank tensors acting by
contraction

δα
β = T(u)α

β + P(u)α
β ,

T(u)α
β = −uαuβ ,

P(u)α
β = δα

β + uαuβ .

(.1)

These satisfy the usual orthogonal projection relations P(u)2 = P(u), T(u)2 =
T(u), and T(u) P(u) = P(u) T(u) = 0. Let

[P(u)S]α...
β... = P(u)α

γ · · · P(u)δ
β · · · Sγ...

δ... (.2)

denote the spatial projection of a tensor S on all indices.
The measurement of S by the observer congruence is the family of spatial

tensor fields which result from the spatial projection of all possible contrac-
tions of S by any number of factors of u. For example, if S is a (1

1)-tensor, then
its measurement

Sα
β ↔(uδuγSγ

δ︸ ︷︷ ︸
scalar

, P(u)α
γuδSγ

δ︸ ︷︷ ︸
vector

, P(u)δ
αuγSγ

δ︸ ︷︷ ︸
vector

, P(u)α
γP(u)δ

βSγ
δ︸ ︷︷ ︸

tensor

)
(.3)

results in a scalar field, a spatial vector field, a spatial 1-form and a spatial (1
1)-

tensor field. It is exactly this family of fields which occur in the orthogonal
“decomposition of S” with respect to the observer congruence

Sα
β = [T(u)α

γ + P(u)α
γ][T(u)δ

β + P(u)δ
β]Sγ

δ

= [uδuγSγ
δ]uαuβ + · · ·+ [P(u)S]αβ .

(.4)

.1.2 Examples

1. Measurement of the spacetime metric and volume 4-form

• spatial metric [P(u)(4)g]αβ = P(u)αβ

• spatial unit volume 3-form η(u)αβγ = uδ(4)ηδαβγ;
In a compact notation: η(u) = [P(u) u (4)η]

2. Measurement of the Lie, exterior and covariant derivative

• spatial Lie derivative £(u)X = P(u)£X
• the spatial exterior derivative d(u) = P(u)d
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• the spatial covariant derivative ∇(u) = P(u)(4)∇

• the spatial Fermi-Walker derivative (or Fermi-Walker temporal deriva-
tive) ∇(fw)(u) = P(u)(4)∇u (when acting on spatial fields)

• the Lie temporal derivative ∇(lie)(u) = P(u)£u = £(u)u

Note that spatial differential operators do not obey the usual product
rules for nonspatial fields since undifferentiated factors of u are killed
by the spatial projection.

3. Notation for 3-dimensional operations

It is convenient to introduce 3-dimensional vector notation for the spa-
tial inner product and spatial cross product of two spatial vector fields
X and Y. The inner product is just

X ·u Y = P(u)αβXαYβ (.5)

while the cross product is

[X×u Y]α = η(u)α
βγXβYγ . (.6)

With the “vector derivative operator” ∇(u)α one can introduce spatial
gradient, curl and divergence operators for functions f and spatial vec-
tor fields X by

gradu f = ∇(u) f = [d(u) f ]] ,

curlu X = ∇(u)×u X = [∗(u)d(u)X[]] ,

divu X = ∇(u) ·u X = ∗(u)[d(u)∗(u)X[] ,

(.7)

where ∗(u) is the spatial duality operation for antisymmetric tensor fields
associated with the spatial volume form η(u) in the usual way. These
definitions enable one to mimic all the usual formulas of 3-dimensional
vector analysis. For example, the spatial exterior derivative formula for
the curl has the index form

[curlu X]α = η(u)αβγ(4)∇βXγ (.8)

which also defines a useful operator for nonspatial vector fields X.

4. Measurement of the covariant derivative of the observer four velocity

Measurement of the covariant derivative [(4)∇u]αβ = uα
;β leads to two

spatial fields, the acceleration vector field a(u) and the kinematical mixed
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tensor field k(u)
uα

;β = −a(u)αuβ − k(u)α
β ,

a(u) = ∇(fw)(u)u ,

k(u) = −∇(u)u .

(.9)

The kinematical tensor field may be decomposed into its antisymmetric
and symmetric parts:

k(u) = ω(u)− θ(u) , (.10)

with
[ω(u)[]αβ = P(u)σ

α P(u)δ
βu[δ;σ]

= 1
2 [d(u)u[]αβ ,

[θ(u)[]αβ = P(u)σ
α P(u)δ

βu(δ;σ)

= 1
2 [∇(lie)(u)P(u)[]αβ = 1

2£(u)u(4)gαβ ,

(.11)

defining the mixed rotation or vorticity tensor field ω(u) (whose sign
depends on convention) and the mixed expansion tensor field θ(u), the
latter of which may itself be decomposed into its tracefree and pure
trace parts

θ(u) = σ(u) +
1
3

Θ(u)P(u) , (.12)

where the mixed shear tensor field σ(u) is tracefree (σ(u)α
α = 0) and

the expansion scalar is

Θ(u) = uα
;α = ∗(u)[∇(lie)(u)η(u)] . (.13)

Define also the rotation or vorticity vector field ω(u) = 1
2 curlu u as the

spatial dual of the spatial rotation tensor field

ω(u)α = 1
2 η(u)αβγω(u)βγ = 1

2
(4)ηαβγδuβuγ;δ . (.14)

5. Lie, Fermi-Walker and co-Fermi-Walker derivatives

The kinematical tensor describes the difference between the Lie and
Fermi-Walker temporal derivative operators when acting on spatial ten-
sor fields. For example, for a spatial vector field X

∇(fw)(u)Xα = ∇(lie)(u)Xα − k(u)α
βXβ

= ∇(lie)(u)Xα −ω(u)α
βXβ + θ(u)α

βXβ ,
(.15)

where
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ω(u)α
βXβ = −η(u)α

βγω(u)βXγ = −[ω(u)×u X]α . (.16)

The kinematical quantities associated with u may be used to introduce
two spacetime temporal derivatives, the Fermi-Walker derivative and
the co-rotating Fermi-Walker derivative along u

(4)∇(fw)(u)Xα = (4)∇uXα + [a(u) ∧ u]αβXβ ,
(4)∇(cfw)(u)Xα = (4)∇(fw)(u)Xα + ω(u)α

βXβ .
(.17)

These may be extended to arbitrary tensor fields in the usual way (so
that they commute with contraction and tensor products) and they both
commute with index shifting with respect to the metric and with duality
operations on antisymmetric tensor fields since both (4)g and (4)η have
zero derivative with respect to both operators (as does u itself). For an
arbitrary vector field X the following relations hold

£uXα = (4)∇(fw)(u)Xα + [ω(u)α
β − θ(u)α

β + uαa(u)β]Xβ

= (4)∇(cfw)(u)Xα + [−θ(u)α
β + uαa(u)β]Xβ .

(.18)

A spatial co-rotating Fermi-Walker derivative ∇(cfw)(u) (“co-rotating
Fermi-Walker temporal derivative”) may be defined in a way analogous
to the ordinary one, such that the three temporal derivatives have the
following relation when acting on a spatial vector field X

∇(cfw)(u)Xα = ∇(fw)(u)Xα + ω(u)α
βXβ

= ∇(lie)(u)Xα + θ(u)α
βXβ ,

(.19)

while ∇(cfw)(u)[ f u] = f a(u) determines its action on nonspatial fields.
It has been introduced an index notation to handle these three operators
simultaneously

{∇(tem)(u)}tem=fw,cfw,lie = {∇(fw)(u),∇(cfw)(u),∇(lie)(u)} . (.20)

.1.3 Comparing measurements by two observers in relative
motion

Suppose U is another unit timelike vector field representing a different family
of test observers. One can then consider relating the “observations” of each
to the other. Their relative velocities are defined by

U = γ(U, u)[u + ν(U, u)] ,
u = γ(u, U)[U + ν(u, U)] ,

(.21)

1701



Contents

where the relative velocity ν(U, u) of U with respect to u is spatial with re-
spect to u and vice versa, both of which have the same magnitude ||ν(U, u)|| =
[ν(U, u)αν(U, u)α]1/2, while the common gamma factor is related to that mag-
nitude by

γ(U, u) = γ(u, U) = [1− ||ν(U, u)||2]−1/2 = −Uαuα . (.22)

Let ν̂(U, u) be the unit vector giving the direction of the relative velocity
ν(U, u). In addition to the natural parametrization of the worldlines of U
by the proper time τU, one may introduce two new parametrizations: by a
(Cattaneo) relative standard time τ(U,u)

dτ(U,u)/dτU = γ(U, u) , (.23)

which corresponds to the sequence of proper times of the family of observers
from the u congruence which cross paths with a given worldline of the U
congruence, and by a relative standard lenght `(U,u)

d`(U,u)/dτU = γ(U, u)||ν(U, u)|| = ||ν(U, u)||dτ(U,u)/dτU , (.24)

which corresponds to the spatial arc lenght along U as observed by u.
Eqs. (.21) describe a unique active “relative observer boost” B(U, u) in the

“relative observer plane” spanned by u and U such that

B(U, u)u = U , B(U, u)ν(U, u) = −ν(u, U) (.25)

and which acts as the identity on the common subspace of the local rest
spaces LRSu ∩ LRSU orthogonal to the direction of motion.

Maps between the LRSs of different observers

The projection P(U) restricts to an invertible map when combined with P(u)
as follows

P(U, u) = P(U) ◦ P(u) : LRSu → LRSU (.26)

with inverse P(U, u)−1 : LRSU → LRSu and vice versa, and these maps also
act as the identity on the common subspace of the local rest spaces.

Similarly the boost B(U, u) restricts to an invertible map

B(lrs)(U, u) ≡ P(U) ◦ B(U, u) ◦ P(u) (.27)

between the local rest spaces which also acts as the identity on their common
subspace. The boosts and projections between the local rest spaces differ only
by a gamma factor along the direction of motion.

An expression for the inverse projection
If Y ∈ LRSu, then the orthogonality condition 0 = uαYα implies that Y has
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the form
Y = [ν(u, U) ·U P(U, u)Y]U + P(U, u)Y . (.28)

If X = P(U, u)Y ∈ LRSU is the field seen by U, then Y = P(U, u)−1X and

P(U, u)−1X = [ν(u, U) ·U X]U + X = [P(U) + U ⊗ ν(u, U)[] X , (.29)

which gives a useful expression for the inverse projection.
This map appears in the transformation law for the electric and magnetic

fields:
E(u) = γP(U, u)−1[E(U) + ν(u, U)×U B(U)] ,

B(u) = γP(U, u)−1[B(U)− ν(u, U)×U E(U)] .
(.30)

.1.4 Comparing measurements by three or more observers in
relative motion

A typical situation is that of a fluid/particle whis is observed by two diferrent
families of observers. In this case one deal with three timelike congruences
(or two congruences and a single line): the rest frame of the fluid U and the
two observer families u e u′.

All the previous formalism can be easily generalized. One has

U = γ(U, u)[u + ν(U, u)] ,

U = γ(U, u′)[u′ + ν(U, u′)] ,

u′ = γ(u′, u)[u + ν(u′, u)] ,

u = γ(u, u′)[u′ + ν(u, u′)] .

(.31)

and mixed projectors involving the various four-velocities can be introduced.
They are summarized in the following table:

PROJECTORS
P(u, U, u) P(u) + γ(U, u)2ν(U, u)⊗ ν(U, u)
P(u, U, u)−1 P(u)− ν(U, u)⊗ ν(U, u)
P(u, U, u′) P(u, u′) + γ(U, u)γ(U, u′)ν(U, u)⊗ ν(U, u′)
P(u, U, u′)−1 P(u′, u) + γ(u, u′)[(ν(u, u′)− ν(U, u′))⊗ ν(U, u)

+ ν(U, u′)⊗ ν(u′, u)]
P(U, u)−1P(U, u′) P(u, u′) + γ(u, u′)ν(U, u)⊗ ν(u, u′)
P(u′, u)P(U, u)−1P(U, u′) P(u′) + δ(U, u, u′)ν(U, u′)⊗ ν(u, u′)
P(u′, u)P(u′, U, u)−1 P(u′) + δ(U, u, u′)ν(U, u′)⊗ [ν(u, u′)− ν(U, u′)]

where

δ(U, u, u′) =
γ(U, u′)γ(u′, u)

γ(U, u)
, δ(U, u, u′)−1 = δ(u, U, u′) , (.32)
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and
P(u, U, u′) = P(u, U)P(U, u′)

.1.5 Derivatives

Suppose one uses the suggestive notation

(4)D(U)/dτU = (4)∇U (.33)

for the “total covariant derivative” along U. Its spatial projection with respect
to u and rescaling corresponding to the reparametrization of Eq. (.24) is then
given by the “Fermi-Walker total spatial covariant derivative,” defined by

D(fw,U,u)/dτ(U,u) = γ−1D(fw,U,u)/dτU = γ−1P(u)(4)D(U)/dτU

= ∇(fw)(u) +∇(u)ν(U, u) .
(.34)

Extend this to two other similar derivative operators (the co-rotating Fermi-
Walker and the Lie total spatial covariant derivatives) by

D(tem,U,u)/dτ(U,u) = ∇(tem)(u) +∇(u)ν(U, u) , tem=fw,cfw,lie , (.35)

which are then related to each other in the same way as the corresponding
temporal derivative operators

D(cfw,U,u)Xα/dτ(U,u) = D(fw,U,u)Xα/dτ(U,u) + ω(u)α
βXβ

= D(lie,U,u)Xα/dτ(U,u) + θ(u)α
βXβ

(.36)

when acting on a spatial vector field X. All of these derivative operators
reduce to the ordinary parameter derivative D/dτ(U,u) ≡ d/dτ(U,u) when
acting on a function and extend in an obvious way to all tensor fields.

Introduce the ordinary and co-rotating Fermi-Walker and the Lie “relative
accelerations” of U with respect to u by

a(tem)(U, u) = D(tem)(U, u)ν(U, u)/dτ(U,u) , tem=fw,cfw,lie . (.37)

These are related to each other in the same way as the corresponding deriva-
tive operators in Eq. (.19).

The total spatial covariant derivative operators restrict in a natural way to a
single timelike worldline with 4-velocity U, where the D/dτ notation is most
appropriate; (4)D(U)/dτU is often called the absolute or intrinsic derivative
along the worldline of U (associated with an induced connection along such
a worldline).
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.1.6 Applications

Test-particle motion

Let’s consider the motion of a unit mass test-particle with four velocity U,
accelerated by an external force f (U): a(U) = f (U). A generic observer u can
measure the particle four velocity U, obtaining its relative energy E(U, u) =
γ(U, u) and momentum p(U, u) = γ(U, u)ν(U, u),

U = E(U, u)[u + p(U, u)] = γ(U, u)[u + ν(U, u)]. (.38)

Splitting the acceleration equation gives the evolution (along U) of the rela-
tive energy and momentum of the particle

dE(U, u)
dτ(U,u)

= [F(G)
(tem,U,u) + F(U, u)] · ν(U, u)

+ ε(tem)γ(U, u)ν(U, u) · (θ(u) ν(U, u))
D(tem)p(U, u)

dτ(U,u)
= F(G)

(tem,U,u) + F(U, u) ,

(.39)

where tem=fw,cfw,lie,lie[ refers to the various possible (i.e. geometrically
meaningful) transport of vectors along U, ε(tem) = (0, 0,−1, 1) respectively
and

dτ(U,u) = γ(U, u)dτU

F(G)
(tem,U,u) = γ(U, u)[g(u) + H(tem,u) ν(U, u)]

F(U, u) = γ(U, u)−1P(u, U) f (U)

with
H(fw,u) = ω(u)− θ(u) H(cfw,u) = 2ω(u)− θ(u)

H(lie,u) = 2ω(u)− 2θ(u) H(lie[,u) = 2ω(u) .
(.40)

The gravitoelectric vector field g(u) = −a(u) = −∇u u and the gravito-
magnetic vector field H(u) = 2[∗(u)ω(u)[]] of the observer u (sign-reversed
acceleration and twice the vorticity vector field) are defined by the exterior
derivative of u

du[ = [u ∧ g(u) + ∗(u)H(u)][ . (.41)

and will be essential in showing the analogy between the gravitational force
F(G)
(tem,U,u) and the Lorentz force. The expansion scalar Θ(u) = Tr θ(u) ap-

pears in an additional term in the covariant derivative of u as the trace of
the (mixed) expansion tensor θ(u), of which the shear tensor σ(u) = θ(u)−
1
3 Θ(u)P(u) is its tracefree part

∇u = −a(u)⊗ u[ + θ(u)−ω(u) . (.42)
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The term D(tem)p(U, u)/dτ(U,u) contains itself the “spatial geometry” con-
tribution which must be added to the gravitational and the external force to
reconstruct the spacetime point of view. Actually, this term comes out nat-
urally and is significant all along the line of the particle: the single terms
∇(fw,u) and ∇(u)ν(U,u), in which it can be further decomposed, are not indi-
vidually meaningful unless one defines some extension for the spatial mo-
mentum p(U, u) off the line of the particle, which of course is unnecessary at
all.

From this spatial geometry contribution a general relativistic version of in-
ertial forces can be further extracted.

Maxwell’s equations

Maxwell’s equations can be expressed covariantly in many ways. For in-
stance, in differential form language one has

dF = 0 , d∗F = −4π∗J[ , (.43)

where F is the Faraday electromagnetic 2-form and J is the current vector
field, obeying the conservation law

δJ[ = ∗d∗J[ = 0 . (.44)

The splitting of the electromagnetic 2-form F by any observer family (with
unit 4-velocity vector field u) gives the associated electric and magnetic vector
fields E(u) and B(u) as measured by those observers through the Lorentz
force law on a test charge, and the relative charge and current density ρ(u)
and J(u). The “relative observer decomposition” of F and its dual 2-form ∗F
is

F = [u ∧ E(u) + ∗(u)B(u)][ ,
∗F = [−u ∧ B(u) + ∗(u)E(u)][ ,

while J has the representation

J = ρ(u)u + J(u) . (.45)

If U is the 4-velocity of any test particle with charge q and nonzero rest
mass m, it has the orthogonal decomposition

U = γ(U, u)[u + ν(U, u)] . (.46)

Its absolute derivative with respect to a proper time parametrization of its
world line is its 4-acceleration a(U) = DU/dτU. The Lorentz force law then
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takes the form

ma(U) = qγ(U, u)[E(u) + ν(U, u)×u B(u)] . (.47)

The relative observer formulation of Maxwell’s equations is well known.
Projection of the differential form equations (.43) along and orthogonal to u
gives the spatial scalar (divergence) and spatial vector (curl) equations:

divuB(u) + ~H(u) ·u E(u) = 0 ,
curluE(u)−~g(u)×u E(u) + [£(u)u + Θ(u)]B(u) = 0 ,

divuE(u)− ~H(u) ·u B(u) = 4πρ(u) ,
curluB(u)−~g(u)×u B(u)− [£(u)u + Θ(u)]E(u) = 4π J(u) ,

(.48)

This representation of Maxwell’s equations differs from the Ellis represen-
tation only in the use of the spatially projected Lie derivative rather than the
spatially projected covariant derivative along u (spatial Fermi-Walker deriva-
tive). These two derivative operators are related by the following identity for
a spatial vector field X (orthogonal to u)

[£(u)u + Θ(u)]X = [∇(u)u + {−σ(u) + ω(u)} ]X . (.49)

It is clear, at this point, that for any spacetime tensor equation the “1+3”
associated version allows one to read it in a Newtonian form and to interpret
it quasi-classically.

For instance one can consider motion of test fields in a given gravitational
background (i.e. neglecting backreaction) as described by spacetime equa-
tions and look at their “1+3” counterpart. Over the last ten years, in a similar
way in which we have discussed the splitting of Maxwell’s equations in in-
tegral formulation, we have studied scalar field, spinorial field (Dirac fields),
fluid motions, etc.
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.2 Motion of particles and extended bodies in
General Relativity

.2.1 Introduction

The motion of an extended body in a given background may be studied by
treating the body via a multipole expansion. The starting point of this method
is the covariant conservation law

∇µTµ
ν = 0 , (.50)

where Tµν is the energy-momentum tensor describing the body. The body
sweeps out a narrow tube in spacetime as it moves. Let L be a line inside
this tube representing the motion of the body. Denote the coordinates of the
points of this line by Xα, and define the displacement δxα = Xα − xα, where
xα are the coordinates of the points of the body. Let us consider now the
quantities∫

TµνdV ,
∫

δxλTµνdV ,
∫

δxλδxρTµνdV , . . . (.51)

where the integrations are carried out on the 3-dimensional hypersurfaces
of fixed time t = X0 = const, the tensor Tµν being different from zero only
inside the world tube: these are the successive terms of the multipole expan-
sion. A single-pole particle is defined as a particle that has nonvanishing at
least some of the integrals in the first (monopole) term, assuming that all the
integrals containing δxµ vanish. A pole-dipole particle, instead, is defined as
a particle for which all the integrals with more than one factor of δxµ (dipole
term) vanish. Higher order approximations may be defined in a similar way.
Thus, a single-pole particle is a test particle without any internal structure.
A pole-dipole particle, instead, is a test particle whose internal structure is
expressed by its spin, an antisymmetric second-rank tensor defined by

Sµν ≡
∫ [

δxµT0ν − δxνT0µ
]

dV . (.52)

The equations of motion are, then, obtained by applying the Einstein’s field
equations together with conservation of the energy-momentum tensor (.50)
describing the body. For a single-pole particle this leads to a free particle
moving along the geodesics associated with the given background field. For
the motion of a pole-dipole particle, instead, the corresponding set of equa-
tions was derived by Papapetrou (84) by using the above procedure. Obvi-
ously, the model is worked out under the assumption that the dimensions of
the test particle are very small compared with the characteristic length of the
basic field (i.e., with backreaction neglected), and that the gravitational radia-
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tion emitted by the particle in its motion is negligible. As a final remark, note
that this model can be extended to charged bodies by considering in addition
the conservation law of the current density.

.2.2 The Mathisson-Papapetrou model

The equations of motion for a spinning (or pole-dipole) test particle in a given
gravitational background were deduced by Mathisson and Papapetrou (84;
85) and read

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ ≡ F(spin)µ , (.53)

DSµν

dτU
= PµUν − PνUµ , (.54)

where Pµ is the total four-momentum of the particle, and Sµν is a (antisym-
metric) spin tensor; U is the timelike unit tangent vector of the “center of
mass line” used to make the multipole reduction. Equations (.53) and (.54)
define the evolution of P and S only along the world line of U, so a correct
interpretation of U is that of being tangent to the true world-line of the spin-
ning particle. The 4-momentum P and the spin tensor S are then defined as
vector fields along the trajectory of U. By contracting both sides of Eq. (.54)
with Uν, one obtains the following expression for the total 4-momentum

Pµ = −(U · P)Uµ −Uν
DSµν

dτU
≡ mUµ + Pµ

s , (.55)

where m = −U · P reduces to the ordinary mass in the case in which the
particle is not spinning, and Ps is a 4-vector orthogonal to U.

The test character of the particle under consideration refers to its mass as
well as to its spin, since both quantities should not be large enough to con-
tribute to the background metric. In what follows, with the magnitude of
the spin of the particle, with the mass and with a natural lengthscale asso-
ciated with the gravitational background we will construct a dimensionless
parameter as a smallness indicator, which we retain to the first order only so
that the test character of the particle be fully satisfied. Moreover, in order to
have a closed set of equations Eqs. (.53) and (.54) must be completed with
supplementary conditions (SC), whose standard choices in the literature are
the following

1. Corinaldesi-Papapetrou (86) conditions (CP): Sµν(e0)ν = 0, where e0 is
the coordinate timelike direction given by the background;

2. Pirani (87) conditions (P): SµνUν = 0;

3. Tulczyjew (88) conditions (T): SµνPν = 0;
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all of these are algebraic conditions.
Detailed studies concerning spinning test particles in General Relativity

are due to Dixon (89; 90; 91; 92; 93), Taub (94), Mashhoon (95; 96) and Ehlers
and Rudolph (97). The Mathisson-Papapetrou model does not give a priori
restrictions on the causal character of U and P and there is no agreement in
the literature on how this point should be considered. For instance, Tod, de
Felice and Calvani (98) consider P timelike, assuming that it represents the to-
tal energy momentum content of the particle, while they do not impose any
causality condition on the world line U, which plays the role of a mere math-
ematical “tool” to perform the multipole reduction. Differently, according to
Mashhoon (96), P can be considered analogously to the canonical momentum
of the particle: hence, there should be not any meaning for its causality char-
acter, while the world line U has to be timelike (or eventually null) because
it represents the center of mass line of the particle. This uncertainty in the
model itself then reflects in the need for a supplementary condition, whose
choice among the three mentioned above is arbitrary, making the general rel-
ativistic description of a spinning test particle somehow unsatisfactory. When
both U and P are timelike vectors as e0, all of them can be taken as the 4-
velocity field of a preferred observer family, and all the SC above state that
for the corresponding observer the spin tensor is purely spatial. In a sense,
only P and T supplementary conditions give “intrinsic” relations between the
various unknown of the model and they should be somehow more physical
conditions. In fact, the CP conditions are “coordinate dependent,” being e0
the coordinate timelike vector. It is worth to mention that grounded on phys-
ical reasons, Dixon has shown that the T conditions should be preferred with
respect to the others.

.2.3 The Dixon-Souriau model

Theequations of motion for a charged spinning test particle in a given grav-
itational as well as electromagnetic background were deduced by Dixon-
Souriau (99; 100; 101; 102). They have the form

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ + qFµ
νUν − λ

2
Sρσ∇µFρσ ≡ F(tot)µ , (.56)

DSµν

dτU
= PµUν − PνUµ + λ[SµρFρ

ν − SνρFρ
µ] , (.57)

where Fµν is the electromagnetic field, Pµ is the total 4-momentum of the par-
ticle, and Sµν is the spin tensor (antisymmetric); U is the timelike unit tangent
vector of the “center of mass line” used to make the multipole reduction. As
it has been shown by Souriau, the quantity λ is an arbitrary electromagnetic
coupling scalar constant. We note that the special choice λ = −q/m (see
(46)) in flat spacetime corresponds to the Bargman-Michel-Telegdi (103) spin
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precession law.

.2.4 Particles with quadrupole structure

The equations of motion for an extended body in a given gravitational back-
ground were deduced by Dixon (89; 90; 91; 92; 93) in multipole approxima-
tion to any order. In the quadrupole approximation they read

DPµ

dτU
= −1

2
Rµ

ναβUνSαβ − 1
6

JαβγδRαβγδ
; µ ≡ F(spin)µ + F(quad)µ (.58)

DSµν

dτU
= 2P[µUν] − 4

3
Jαβγ[µRν]

αβγ , (.59)

where Pµ = mUµ
p (with Up ·Up = −1) is the total four-momentum of the par-

ticle, and Sµν is a (antisymmetric) spin tensor; U is the timelike unit tangent
vector of the “center of mass line” CU used to make the multipole reduc-
tion, parametrized by the proper time τU. The tensor Jαβγδ is the quadrupole
moment of the stress-energy tensor of the body, and has the same algebraic
symmetries as the Riemann tensor. Using standard spacetime splitting tech-
niques it can be reduced to the following form

Jαβγδ = Παβγδ − ū[απβ]γδ − ū[γπδ]αβ − 3ū[αQβ][γūδ] , (.60)

where Qαβ = Q(αβ) represents the quadrupole moment of the mass distribu-
tion as measured by an observer with 4-velocity ū. Similarly παβγ = πα[βγ]

(with the additional property π[αβγ] = 0) and Παβγδ = Π[αβ][γδ] are essen-
tially the body’s momentum and stress quadrupoles. Moreover the various
fields Qαβ, παβγ and Παβγδ are all spatial (i.e. give zero after any contraction
by ū). The number of independent components of Jαβγδ is 20: 6 in Qαβ, 6 in
Παβγδ and 8 in παβγ. When the observer ū = Up, i.e. in the frame associated
with the momentum of the particle, the tensors Qαβ, παβγ and Παβγδ have an
intrinsic meaning.

There are no evolution equations for the quadrupole as well as higher mul-
tipoles as a consequence of the Dixon’s construction, so their evolution is
completely free, depending only on the considered body. Therefore the sys-
tem of equations is not self-consistent, and one must assume that all unspec-
ified quantities are known as intrinsic properties of the matter under consid-
eration.

In order the model to be mathematically correct the following additional
condition should be imposed to the spin tensor:

SµνUpν = 0. (.61)

Such supplementary conditions (or Tulczyjew-Dixon conditions (88; 89)) are
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necessary to ensure the correct definition of the various multipolar terms.
Dixon’s model for structured particles originated to complete and give

a rigorous mathematical support to the previously introduced Mathisson-
Papapetrou model (84; 85; 86; 87), i.e. a multipole approximation to any order
which includes evolutional equations along the “center line” for all the var-
ious structural quantities. The models are then different and a comparison
between the two is possible at the dipolar order but not once the involved
order is the quadrupole.

Here we limit our considerations to Dixon’s model under the further sim-
plifying assumption(94; 97) that the only contribution to the complete quadrupole
moment Jαβγδ stems from the mass quadrupole moment Qαβ, so that παβγ =
0 = Παβγδ and

Jαβγδ = −3U[α
p Qβ][γUδ]

p , QαβUpβ = 0 ; (.62)

The assumption that the particle under consideration is a test particle means
that its mass, its spin as well as its quadrupole moments must all be small
enough not to contribute significantly to the background metric. Otherwise,
backreaction must be taken into account.

.2.5 Null multipole reduction world line: the massless case

The extension of the Mathisson-Papapetrou model to the case of a null multi-
pole reduction world line l has been considered by Mashhoon (96): the model
equations have exactly the same form as (.53) and (.54), with U (timelike) re-
placed by l (null) for what concerns the multipole reduction world line and
τU (proper time parametrization of the U line) replaced by λ (affine parame-
ter along the l line):

DPα

dλ
= −1

2
Rα

βρσlβSρσ ≡ F(spin)α , (.63)

DSαβ

dλ
= [P ∧ l]αβ . (.64)

Equations (.63) and (.64) should be then solved assuming some SC. Let us
limit ourselves to the case of “intrinsic” SC, i.e. Pirani and Tulczyjew, with
Pirani’s conditions now naturally generalized as Sαβlβ = 0. Furthermore,
we require P · l = 0: in fact, we are interested to the massless limit of the
Mathisson-Papapetrou equations, and as the mass of the particle is defined
by m = −P ·U the massless limit implies −P · l = 0.

By denoting with {l = e1, n = e2, m = e3, m̄ = e4} a complex null frame
along the center line l, such that l · l = n · n = m · m = 0, l · n = 1, l · m =
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l ·m = 0 and m · m̄ = −1, it is possible to parametrize the path so that

Dlµ

dλ
= b̄mµ + bm̄µ ,

Dnµ

dλ
= āmµ + am̄µ ,

Dmµ

dλ
= alµ + bnµ + icmµ , (.65)

where a, b, c are functions of λ and c is real. The metric signature is assumed
now +−−− in order to follow standard notation of Newman-Penrose for-
malism, and the bar over a quantity denotes complex conjugation. Equa-
tions (.65) are the analogous of the FS relations for null lines so that, repeat-
ing exactly the above procedure, one gets the final set of equations. Since
for a massless spinning test particle we have m = −P · l = 0, the total 4-
momentum P has the following decomposition:

Pµ = −[Blµ + Amµ + Ām̄µ] . (.66)

Following Mashhoon (96), Tulczyjew’s conditions SαβPβ = 0 are in general
inconsistent in the presence of a gravitational background if in addition one
has P lightlike: P · P = 0. Thus, even if these inconsistencies concern only
the case of null P, we are clearly forced to consider Pirani’s SC as the only
physically meaningful supplementary conditions. Using the P supplemen-
tary conditions (implying b = 0), Mashhoon has shown that l is necessarily
geodesics: Dlµ/dλ = 0 and

Sµν = f (λ)[l ∧m]µν + f̄ (λ)[l ∧ m̄]µν + ig(λ)[m ∧ m̄]µν , (.67)

with B real and

A =
d f
dλ

+ ic f − igā , PµPµ = −2|A|2 . (.68)

so that P is in general spacelike or eventually null. Furthermore, he has
shown that the spin vector defined by

Sµ =
1
2

ηµναβlνSαβ (.69)

is constant along l and either parallel or antiparallel to l.

Finally, the generalized momentum of the particle should be determined
by solving equations (.63) and (.64) supplemented by Sαβlβ = 0. The other
components of the spin tensor not summarized by the spin vector should be
determined too. By assuming a = 0 (n parallel propagated along l) without
any loss of the physical content of the solution, Mashhoon has obtained for f
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and B the following differential equations:[
d

dλ
+ ic

]2

f = f R1413 + f̄ R1414 + igR1434 ,

−dB
dλ

= f R1213 + f̄ R1214 + igR1234 , (.70)

which determine the total 4-momentum and the spin tensor along the path
once they have been specified initially.

.2.6 Applications

The special case of constant frame components of the spin tensor

Due to the mathematical complexity in treating the general case of non-con-
stant frame components of the spin tensor, we have considered first the sim-
plest case of massive spinning test particles moving uniformly along circular
orbits with constant frame components of the spin tensor with respect to a
naturally geometrically defined frame adapted to the stationary observers in
the Schwarzschild spacetime (104) as well as in other spacetimes of astro-
physical interest: Reissner-Nordström spacetime (105), Kerr spacetime (5),
superposed static Weyl field (106), vacuum C metric (107). A static spin vec-
tor is a very strong restriction on the solutions of the Mathisson-Papapetrou
equations of motion. However, this assumption not only greatly simplifies
the calculation, but seems to be not so restrictive, since, as previously demon-
strated at least in the Schwarzschild case, the spin tensor components still re-
main constant under the CP an T choices of supplementary conditions, start-
ing from the more general non-constant case.

We have confined our attention to spatially circular equatorial orbits in
Schwarzschild, Reissner-Nordström and Kerr spacetimes, and searched for
observable effects which could eventually discriminate among the standard
supplementary conditions. We have found that if the world line chosen for
the multipole reduction and whose unit tangent we denote as U is a circular
orbit, then also the generalized momentum P of the spinning test particle is
tangent to a circular orbit even though P and U are not parallel 4-vectors.
These orbits are shown to exist because the spin induced tidal forces provide
the required acceleration no matter what supplementary condition we select.
Of course, in the limit of a small spin the particle’s orbit is close of being a
circular geodesic and the (small) deviation of the angular velocities from the
geodesic values can be of an arbitrary sign, corresponding to the possible
spin-up and spin-down alignment to the z-axis. When two massive particles
(as well as photons) orbit around a gravitating source in opposite directions,
they make one loop with respect to a given static observer with different ar-
rival times. This difference is termed clock effect (see (50; 108; 109; 110; 111)
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and references therein). Hereafter we shall refer the co/counter-rotation as
with respect to a fixed sense of variation of the azimuthal angular coordinate.
In the case of a static observer and of timelike spatially circular geodesics the
coordinate time delay is given by

∆t(+,−) = 2π

(
1

ζ+
+

1
ζ−

)
, (.71)

where ζ± denote angular velocities of two opposite rotating geodesics. In the
case of spinless neutral particles in geodesic motion on the equatorial plane of
both Schwarzschild and Reissner-Nordström spacetimes one has ζ+ = −ζ−,
and so the clock effect vanishes; in the Kerr case, instead, the clock effect reads
∆t(+,−) = 4πa, where a is the angular momentum per unit mass of the Kerr
black hole. These results are well known in the literature. We have then ex-
tended the notion of clock effect to non geodesic circular trajectories consid-
ering co/counter-rotating spinning-up/spinning-down particles. In this case
we have found that the time delay is nonzero for oppositely orbiting both
spin-up or spin-down particles even in both Schwarzschild and Reissner-
Nordström cases, and can be measured. In addition, we have found that
a nonzero gravitomagnetic clock effect appears in the Reissner-Nordström
spacetime for spinless (oppositely) charged particles as well.

An analogous effect is found in the case of superposed Weyl fields corre-
sponding to Chazy-Curzon particles and Schwarzschild black holes when the
circular motion of spinning test particles is considered on particular symme-
try hyperplanes, where the orbits are close to a geodesic for small values of
the spin. In the case of the C metric, instead, we have found that the orbital
frequency is in general spin-dependent, but there is no clock effect, in contrast
to the limiting Schwarzschild case.

Spin precession in Schwarzschild and Kerr spacetimes

We have then studied the behaviour of spinning test particles moving along
equatorial circular orbits in the Schwarzschild (6) as well as Kerr (7) space-
times within the framework of the Mathisson-Papapetrou approach supple-
mented by standard conditions, in the general case in which the components
of the spin tensor are not constant along the orbit. We have found that preces-
sion effects occur only if the Pirani’s supplementary conditions are imposed,
where one finds a Fermi-Walker transported spin vector along an accelerated
center of mass world line. The remaining two supplementary conditions ap-
parently force the test particle center of mass world line to deviate from a
circular orbit because of the feedback of the precessing spin vector; in addi-
tion, under these choices of supplementary conditions the spin tensor com-
ponents still remain constant. In reaching these conclusions, we only consid-
ered solutions for which both U and P are timelike vectors, in order to have
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a meaningful interpretation describing a spinning test particle with nonzero
rest mass.

Massless spinning test particles in vacuum algebraically special spacetimes

As a final application, we have derived the equations of motion for massless
spinning test particles in general vacuum algebraically special spacetimes,
using the Newman-Penrose formalism, in the special case in which the mul-
tipole reduction world line is aligned with a principal null direction of the
spacetime (112). This situation gives very simple equations and their com-
plete integration is straightforward. Explicit solutions corresponding to some
familiar Petrov type D and type N spacetimes (including Schwarzschild, Taub-
NUT, Kerr, C metric, Kasner, single exact gravitational wave) are derived and
discussed. Furthermore, we have investigated the motion along (null) circu-
lar orbits, providing explicit solutions in black hole spacetimes.

Quadrupole effects in black hole spacetimes

We have studied the motion of quadrupolar particles on a Schwarzschild as
well as Kerr backgrounds (113; 114) following Dixon’s model. In the sim-
plified situation of constant frame components (with respect to a natural or-
thonormal frame) of both the spin and the quadrupole tensor of the parti-
cle we have found the kinematical conditions to be imposed to the particle’s
structure in order the orbit of the particle itself be circular and confined on the
equatorial plane. Co-rotating and counter-rotating particles result to have a
non-symmetric speed in spite of the spherical symmetry of the background,
due to their internal structure. This fact has been anticipated when studying
spinning particles only, i.e. with vanishing quadrupole moments. We show
modifications due to the quadrupole which could be eventually observed in
experiments. Such experiment, however, cannot concern standard clock ef-
fects, because in this case we have shown that there are no contributions aris-
ing from the quadrupolar structure of the body. In contrast, the effect of the
quadrupole terms could be important when considering the period of revo-
lution of an extended body around the central source: measuring the period
will provide an estimate of the quantities determining the quadrupolar struc-
ture of the body, if its spin is known.

It would be of great interest to extend this analysis to systems with varying
quadrupolar structure and emitting gravitational waves without perturbing
significantly the background spacetime.

Quadrupole effects in gravitational wave spacetimes

Finally, we have studied how a small extended body at rest interacts with
an incoming single plane gravitational wave. The body is spinning and also
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endowed with a quadrupolar structure, so that due to the latter property it
can be thus considered as a good model for a gravitational wave antenna.

We have first discussed the motion of such an extended body by assuming
that it can be described according to Dixon’s model and that the gravitational
field of the wave is weak, i.e. the “reaction” (induced motion) of a “gravi-
tational wave antenna” (the extended body) to the passage of the wave, and
then the case of an exact plane gravitational wave. We have found that in gen-
eral, even if initially absent, the body acquires a dipolar moment induced by
the quadrupole tensor, a property never pointed out before in the literature.

Special situations may occur in which certain spin components change
their magnitude leading to effects (e.g. spin-flip) which can be eventually ob-
served. This interesting feature recalls the phenomenon of glitches observed
in pulsars: a sudden increase in the rotation frequency, often accompanied by
an increase in slow-down rate. The physical mechanism triggering glitches
is not well understood yet, even if these are commonly thought to be caused
by internal processes. If one models a pulsar by a Dixon’s extended body,
then the present analysis shows that a sort of glitch can be generated by the
passage of a strong gravitational wave, due to the pulsar quadrupole struc-
ture. In fact, we have found that the profile of a polarization function can be
suitably selected in order to fit observed glitches and in particular to describe
the post-glitch behavior.
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.3 Metric and curvature perturbations in black
hole spacetimes

.3.1 Perturbations of charged and rotating Black hole

The gravitational and electromagnetic perturbations of the Kerr-Newman
metric represent still an open problem in General Relativity whose solution
could have an enormous importance for the astrophysics of charged and ro-
tating collapsed objects. A complete discussion about this problems needs
a plenty of different mathematical tools: the Newman-Penrose formalism in
the tetradic and spinor version, the Cahen-Debever-Defrise self dual theory,
the properties of the spin-weighted angular harmonics, with particular atten-
tion to the related differential geometry and the group theory, some tools of
complex analysis, etc, but in any case it is difficult to handle with the pertur-
bative equations. Fortunately, during the last years, the modern computers
and software have reached an optimal computational level which allows now
to approach this problem from a completely new point of view.

The Kerr-Newman solution in Boyer-Lindquist coordinates is represented
by the metric:

ds2 =
(

1− V
Σ

)
dt2 +

2a sin2 θ

Σ
Vdtdφ− Σ

∆
dr2

−Σdθ2 −
[

r2 + a2 +
a2 sin2 θ

Σ
V

]
sin2 θdφ2 (.72)

where as usual:

V ≡ 2Mr−Q2 (.73)
∆ ≡ r2 − 2Mr + a2 + Q2

Σ ≡ r2 + a2 cos2 θ

and by the vector potential:

A[ = Aµ dxµ =
Qr
Σ

(dt− a sin2 θ dφ) . (.74)

To investigate the geometrical features of this metric it is convenient to in-
troduce a symmetry-adapted tetrad. For any type D metric, and in particu-
lar for the Kerr-Newman solution, the best choice is a null tetrad with two
“legs” aligned along the two repeated principal null directions of the Weyl
tensor. The standard theory for analyzing different spin massless wave fields
in a given background is represented by the spinorial tetradic formalism of
Newman-Penrose (N-P)(115). Here we follow the standard approach, point-
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ing out that a more advanced reformulation of this formalism, called “GHP”
(116) exists, allowing a more geometric comprehension of the theory. In the
N-P formalism, this solution is represented by the following quantities (117)
(in this section we use an A label over all quantities for a reason which will
be clear later). The Kinnersley tetrad (118):

(lµ)A =
1
∆

[r2 + a2, ∆, 0, a]

(nµ)A =
1

2Σ
[r2 + a2,−∆, 0, a] (.75)

(mµ)A =
1√

2(r + ia cos θ)
[ia sin θ, 0, 1,

i
sin θ

] ,

with the 4th leg represented by the conjugate (m∗µ)A, gives the metric tensor
of Kerr-Newman spacetime the form:

η(a)(b) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (.76)

The Weyl tensor is represented by:

ΨA
0 = ΨA

1 = ΨA
3 = ΨA

4 = 0
(.77)

ΨA
2 = Mρ3 + Q2ρ∗ρ3

and the electromagnetic field is given by:

φA
0 = φA

2 = 0 , φA
1 =

Q
2(r− ia cos θ)2 . (.78)

For the Ricci tensor and the curvature scalar we have:

ΛA = 0 , ΦA
nm = 2φA

m φ∗A
n (m, n = 0, 1, 2) (.79)

so in Kerr-Newman, the only quantity different from zero is:

ΦA
11 =

Q2

2Σ2 . (.80)

The spin coefficients, which are linear combination of the Ricci rotation coef-
ficients, are given by:

κA = σA = λA = νA = εA = 0 ,
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ρA =
−1

(r− ia cos θ)
, τA =

−iaρAρ∗A sin θ√
2

,

βA =
−ρ∗A cot θ

2
√

2
, πA =

ia(ρA)2 sin θ√
2

, (.81)

µA =
(ρA)2ρ∗A∆

2
, γA = µA +

ρAρ∗A(r−M)
2

,

αA = πA − β∗A .

The directional derivatives are expressed by:

D = lµ∂µ , ∆ = nµ∂µ , δ = mµ∂µ , δ∗ = m∗µ∂µ . (.82)

Unfortunately in the literature the same letter for (.73) and for the directional
derivative along n it is used. However the meaning of ∆ will always be clear
from the context. The study of perturbations in the N-P formalism is achieved
splitting all the relevant quantities in the form l = lA + lB, Ψ4 = ΨA

4 + ΨB
4 ,

σ = σA + σB, D = DA + DB, etc., where the A terms are the background
and the B’s are small perturbations. The full set of perturbative equations is
obtained inserting these quantities in the basic equations of the theory (Ricci
and Bianchi identities, Maxwell, Dirac, Rarita-Schwinger equations etc.) and
keeping only first order terms. After certain standard algebraic manipula-
tions one usually obtains coupled linear PDE’s involving curvature quanti-
ties. In the following, we will omit the A superscript for the background
quantities. Comparing with the standard Regge-Wheeler-Zerilli (119; 120)
approach which gives the equation for the metric, here one gets the equations
for Weyl tensor components. This theory is known as curvature perturbations.
In the case of Einstein-Maxwell perturbed metrics, one gets as in R-W-Z the
well known phenomenon of the “gravitationally induced electromagnetic ra-
diation and vice versa” (121), which couples gravitational and electromag-
netic fields. In the first formulation, one gets a coupled system for FB

µν and
gB

µν quantities. In the N-P approach one has the coupling between perturbed
Weyl and Maxwell tensor components, although it’s possible to recover the
metric perturbations using the curvature one (122). A discussion about the
connections between these two approaches can be found in (123). To make a
long story short, taking in account the two Killing vectors of this spacetime,
one can write the unknown functions in the form:

F(t, r, θ, φ) = e−iωteimφ f (r, θ) . (.83)

In the easier cases of Kerr, Reissner-Nordstrom and Schwarzchild, writing
f (r, θ) = R(r)Y(θ) one gets separability of the problem. For instance, the
Reissner-Nordström case (124) is separable using the spin-weighted spherical
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harmonics:[
1

sin θ

d
dθ

(
sin θ

d
dθ

)
−
(

m2 + s2 + 2ms cos θ

sin2 θ

)]
sYm

l(θ) = −l(l + 1)sYm
l(θ)

(.84)
and their related laddering operators:(

d
dθ
− m

sin θ
− s

cos θ

sin θ

)
sYm

l(θ) = −
√

(l − s)(l + s + 1)s+1Ym
l(θ) (.85)

(
d
dθ

+
m

sin θ
+ s

cos θ

sin θ

)
sYm

l(θ) = +
√

(l + s)(l − s + 1)s−1Ym
l(θ) . (.86)

The unknown functions can be cast in the form:

ΨB
0 = e−iωteimφ

2Ym
l(θ)R(2)

l (r)

χB
1 = e−iωteimφ

1Ym
l(θ)R(1)

l (r) (.87)

χB
−1 = e−iωteimφ

−1Ym
l(θ)

∆
2r2 R(−1)

l (r)

ΨB
4 = e−iωteimφ

−2Ym
l(θ)

∆2

4r4 R(−2)
l (r)

where ∆ = r2 − 2Mr + Q2, and after manipulations, one gets two sets of
coupled ODE’s. The first set is:[

−ω2 r4

∆
+ 4iωr

(
−2 +

r(r−M)
∆

+
Q2

3Mr− 4Q2

)
− ∆

d2

dr2

−
{

6(r−M)− 4Q2∆
r(3Mr− 4Q2)

}
d
dr
− 4− 2Q2

r2

+
4Q2(r2 + 2Mr− 3Q2)

r2(3Mr− 4Q2)
+

3Mr− 4Q2

3Mr− 2Q2 (l − 1)(l + 2)
]

R(2)
l (.88)

=
2
√

2Q
√

(l − 1)(l + 2)r3

3Mr− 2Q2

(
−iω

r2

∆
+

d
dr

+
4
r

− 4Q2

r(3Mr− 4Q2)

)
R(1)

l

[
−ω2 r4

∆
+ 2iωr

(
−2 +

r(r−M)
∆

− Q2

3Mr− 2Q2

)
− ∆

d2

dr2

−
{

6∆
r

+ 4(r−M)− 2Q2∆
r(3Mr− 2Q2)

}
d
dr
− 18r2 − 24Mr + 2Q2

r2
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+
12Q2∆

r2(3Mr− 2Q2)
+

3Mr− 2Q2

3Mr− 4Q2 (l − 1)(l + 2)
]

R(1)
l (.89)

=
−
√

2Q2
√

(l − 1)(l + 2)∆
r3(3Mr− 4Q2)

(
iω

r2

∆
+

d
dr
− 2

r
+

4(r−M)
∆

− 2Q2

r(3Mr− 2Q2)

)
R(2)

l .

The quantities (R(−1)
l )∗ e (R(−2)

l )∗ (from χB
−1 e ΨB

4 ), satisfy the same equations

of R(1)
l and R(2)

l . At this point decoupling this system of ordinary differential
equations is straightforward.

Similarly, the Kerr case is separable using but the so-called spin-weighted
spheroidal harmonics (8; 125):

(H0 + H1)Θ(θ) = −EΘ(θ) (.90)

where:

H0 =
[

1
sin θ

d
dθ

(
sin θ

d
dθ

)
−
(

m2 + s2 + 2ms cos θ

sin2 θ

)]
(.91)

H1 = a2ω2 cos2 θ − 2aωs cos θ (.92)

and E is the eigenvalue. We have factorized the spherical and the spheroidal
parts to give the problem the form of a typical Quantum Mechanics exercise.
In fact depending if the H1 term is small or not, the way to approach the prob-
lem is very different. Unfortunately, in this case the laddering operators are
not know (126) and this does not allow the same strategy used in the case of
the Reissner-Nordström spacetime. In the case of the Kerr spacetime instead,
this is not a problem because laddering operators are unnecessary to solve
completely the problem. In the case of the Kerr-Newman spacetime this cre-
ates a “formal” problem. In fact the presence of the charge Q generates “ugly”
terms which don’t allow the separation of variables in all known coordinates.
A hypothetical separation of variables in these coordinates would have been
stopped by the explicit absence of laddering operators. During the last 25
years there have been various attempts to solve this problem. One idea, pro-
posed in Chandrasekhar’s monography (126), is to decouple the PDE’s be-
fore the separation of variables, obtaining 4th order or higher linear PDE’s.
This task could be accomplished only using a super-computer, because of the
4th order derivatives. Another formulation was developed using de Cahen-
Debever-Defrise formalism, but a part some elegant conservative equations,
the problem has not been solved (127; 128). In conclusion the problem re-
mains still open. A new approach has been developed (9; 10) for vacuum
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spacetimes which gives directly the full set of perturbative equations. The
direct extension of this work to the case of Einstein-Maxwell or more compli-
cate spacetimes can put in a new light this difficult problem.

After this short historical overview we can discuss the results obtained by
ICRANet researchers in this field. In (129), due to Cherubini and Ruffini,
gravitational and electromagnetic perturbations to the Kerr-Newman space-
time using Maple tensor package are shown; a detailed analysis for slightly
charged, rotating and oblate black hole is presented too. Subsequent to this
article there have been various studies regarding the Teukolsky Master Equa-
tions (TMEs) in General Relativity. To this aim, a new form is found for the
Teukolsky Master Equation in Kerr and interpreted in terms of de Rham-
Lichenrowicz laplacians. The exact form of these generalized wave equations
in any vacuum spacetime is given for the Riemann and Maxwell tensors, and
the equations are linearized at any order, obtaining a hierarchy. It is shown
that the TME for any Petrov type D spacetime is nothing more than a com-
ponent of this laplacian linearized and that the TME cannot be derived by
variational principles (9; 10). More in detail, the Teukolsky Master Equation
in the Kerr case, can be cast in a more compact form (Bini-Cherubini-Jantzen-
Ruffini form) by introducing a “connection vector” whose components are:

Γt = − 1
Σ

[
M(r2 − a2)

∆
− (r + ia cos θ)

]
Γr = − 1

Σ
(r−M)

Γθ = 0

Γφ = − 1
Σ

[
a(r−M)

∆
+ i

cos θ

sin2 θ

]
. (.93)

It’s easy to prove that:

∇µΓµ = − 1
Σ

, ΓµΓµ =
1
Σ

cot2 θ + 4ψA
2 (.94)

and consequently the Teukolsky Master Equation assumes the form:

[(∇µ + sΓµ)(∇µ + sΓµ)− 4s2ψA
2 ]ψ(s) = 4πT (.95)

where ψA
2 is the only non vanishing NP component of the Weyl tensor in the

Kerr background in the Kinnersley tetrad (.76) (with Q = 0). Equation (.95)
gives a common structure for these massless fields in the Kerr background
varying the “s” index. In fact, the first part in the lhs represents (formally)
a D’Alembertian, corrected by taking into account the spin-weight, and the
second part is a curvature (Weyl) term linked to the “s” index too. This partic-
ular form of the Teukolsky Master Equation forces us to extend this analysis
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in the next sections because it suggests a connection between the perturbation
theory and a sort of generalized wave equations which differ from the stan-
dard ones by curvature terms. In fact generalized wave operators are know
in the mathematical literature as De Rham-Lichnerowicz Laplacians and the
curvature terms which make them different from the ordinary ones are given
by the Weitzenböck formulas. Mostly known examples in electromagnetism
are

• the wave equation for the vector potential Aµ:

∇α∇α Aµ − Rµ
λ Aλ = −4π Jµ , ∇α Aα = 0 (.96)

• the wave equation for the Maxwell tensor :

∇µ∇µFνλ + RρµνλFρµ − Rρ
λFνρ + Rρ

νFλρ = −8π∇[µ Jν] (.97)

while for the gravitational case one has

• the wave equation for the metric perturbations:

∇α∇αh̄µν + 2Rαµβνh̄αβ − 2Rα(µh̄ν)
α = 0,

∇αh̄µ
α = 0, h̄µν = hµν −

1
2

gµνhα
α (.98)

• the wave equation for the Riemann Tensor

Rαβ
γδ;ε

ε = 4R[α
[γ;δ]

β] − 2R[α
εRβ]ε

γδ − 2RαµβνRµνγδ

−4R[α
µν[γRβ]µν

δ] . (.99)

These equations are “non minimal,” in the sense that they cannot be recov-
ered by a minimal substitution from their flat space counterparts. A similar
situation holds in the standard Quantum Field Theory for the electromagnetic
Dirac equation. In fact, applying for instance to the Dirac equation an “ad
hoc” first order differential operator one gets the second order Dirac equa-
tion

(i/∂− e/A + m)(i/∂− e/A−m)ψ =[
(i∂µ − eAµ)(i∂µ − eAµ)− e

2
σµνFµν −m2

]
ψ = 0, (.100)

where the notation is obvious. It is easy to recognize in equation (.100) a
generalized Laplacian and a curvature (Maxwell) term applied to the spinor.
Moreover this equation is “non minimal”, in the sense that the curvature

1724



Contents

(Maxwell) term cannot be recovered by electromagnetic minimal substitu-
tion in the standard Klein-Gordon equation for the spinor components. The
analogous second order Dirac equation in presence of a gravitational field
also has a non minimal curvature term and reduces to the form:

(∇α∇α + m2 +
1
4

R)ψ = 0 . (.101)

The general TME formalism is applied to other exact solutions of the vacuum
Einstein field equations of Petrov type D. A new analysis of the Kerr-Taub-
NUT black hole is given, focussing on Mashhoon spin-coupling and superra-
diance (130; 59).

More in detail, in (130) Bini, Cherubini and Jantzen studied a single mas-
ter equation describing spin s = 0− 2 test field gauge and tetrad-invariant
perturbations of the Taub-NUT spacetime. This solution of vacuum Ein-
stein field equations describes a black hole with mass M and gravitomagnetic
monopole moment `. This equation can be separated into its radial and an-
gular parts. The behaviour of the radial functions at infinity and near the
horizon is studied. The angular equation, solved in terms of hypergeomet-
ric functions, can be related both to spherical harmonics of suitable weight,
resulting from the coupling of the spin-weight of the field and the gravito-
magnetic monopole moment of the spacetime, and to the total angular mo-
mentum operator associated with the spacetime’s rotational symmetry. The
results are compared with the Teukolsky master equation for the Kerr space-
time.

In (59) instead Bini, Cherubini, Jantzen and Mashhoon have studied a sin-
gle master equation describing spin s ≤ 2 test fields that are gauge- and
tetrad-invariant perturbations of the Kerr-Taub-NUT (Newman - Unti - Tam-
burino) spacetime representing a source with a mass M, gravitomagnetic
monopole moment −`, and gravitomagnetic dipole moment (angular mo-
mentum) per unit mass a. This equation can be separated into its radial and
angular parts. The behavior of the radial functions at infinity and near the
horizon is studied and used to examine the influence of l on the phenomenon
of superradiance, while the angular equation leads to spin-weighted spheroidal
harmonic solutions generalizing those of the Kerr spacetime. Finally, the
coupling between the spin of the perturbing field and the gravitomagnetic
monopole moment is discussed.

In (69) instead Bini and Cherubini investigate the algebraically special fre-
quencies of Taub-NUT black holes in detail in comparison with known results
concerning the Schwarzschild case. The periodicity of the time coordinate, re-
quired for regularity of the solution, prevents algebraically special frequen-
cies to be physically acceptable. In the more involved Kerr-Taub-NUT case,
the relevant equations governing the problem are obtained. The formalism is
applied to the C-metric, and physical speculations are presented concerning
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the spin-acceleration coupling.
In (70) Bini, Cherubini and Mashhoon study the vacuum C metric and its

physical interpretation in terms of the exterior spacetime of a uniformly accel-
erating spherically-symmetric gravitational source. Wave phenomena on the
linearized C metric background are investigated. It is shown that the scalar
perturbations of the linearized C metric correspond to the gravitational Stark
effect. This effect is studied in connection with the Pioneer anomaly.

In (71) instead Bini, Cherubini and Mashhoon analysed the massless field
perturbations of the accelerating Minkowski and Schwarzschild spacetimes.
The results are extended to the propagation of the Proca field in Rindler
spacetime. They examine critically the possibility of existence of a general
spinacceleration coupling in complete analogy with the well-known spinro-
tation coupling. They argue that such a direct coupling between spin and
linear acceleration does not exist.

In (72) Cherubini, Bini, Bruni and Perjes consider vacuum Kasner space-
times, focusing on those that can be parametrized as linear perturbations of
the special Petrov type D case. In particular they analyze in detail the per-
turbations which map the Petrov type D Kasner spacetime into another Kas-
ner spacetime of Petrov type I. For these ’quasi-D’ Kasner models they first
investigate the modification to some curvature invariants and the principal
null directions, both related to the Petrov classification of the spacetime. This
simple Kasner example allows one to clarify the fact that perturbed space-
times do not retain in general the speciality character of the background. In
fact, there are four distinct principal null directions, although they are not
necessarily first-order perturbations of the background principal null direc-
tions. Then in the Kasner type D background they derive a Teukolsky master
equation, a classical tool for studying black-hole perturbations of any spin.
This further step allows one to control totally general cosmologies around
such a background as well as to show, from a completely new point of view,
the well-known absence of gravitational waves in Kasner spacetimes.

.3.2 Perturbations of a Reissner-Nordström black hole by a
massive point charge at rest and the “electric Meissner
effect”

The problem of the effect of gravity on the electromagnetic field of a charged
particle leading to the consideration of the Einstein-Maxwell equations has
been one of the most extensively treated in the literature, resulting in exact
solutions (see (131) and references therein) as well as in a variety of approxi-
mation methods (132)-(140).

The issue of the interaction of a massive charged particle of mass m and
charge q with a Reissner-Nordström black hole with mass M and charge Q
has been addressed by the ICRANet collaboration: Bini, Geralico and Ruffini
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(141; 142; 143). We have solved this problem by the first order perturbation
approach formulated by Zerilli (120) using the tensor harmonic expansion of
the Einstein-Maxwell system of equations.

The results discussed in (141; 142) gave answer to a problem whose inves-
tigation started long ago by Hanni and Ruffini (137). They obtained the so-
lution for a charged particle at rest in the field of a Schwarzschild black hole
in the case of test field approximation, i.e. under the conditions q/m � 1,
m ≈ 0 and q � M, q � Q, by using the vector harmonic expansion of the
electromagnetic field in curved space. The conditions above imply the so-
lution of the Maxwell equations only in a fixed Schwarzschild metric, since
the perturbation to the background geometry given by the electromagnetic
stress-energy tensor is second order in the particle’s charge and the effect of
the particle’s mass is there neglected. As a result, no constraint on the posi-
tion of the test particle follows from the Einstein equations and the Bianchi
identities: the position of the particle is totally arbitrary.

This same test field approximation has been applied to the case of a Reissner-
Nordström black hole by Leaute and Linet (140). In analogy with the Schwarzschild
case, they used the vector harmonic expansion of the electromagnetic field
holding the background geometry fixed. However, this “test field approxi-
mation” is not valid in the present context. In fact, in addition to neglect-
ing the effect of the particle mass on the background geometry, this treat-
ment also neglects the electromagnetically induced gravitational perturba-
tion terms linear in the charge of the particle which would contribute to mod-
ifying the metric as well.

The correct way to attack the problem is thus to solve the linearized Einstein-
Maxwell equations following Zerilli’s first order tensor harmonic analysis
(120). In fact the source terms of the Einstein equations comprise the energy-
momentum tensor associated with the particle’s mass, the electromagnetic
energy-momentum tensor associated with the background field as well as
additional interaction terms, to first order in m and q, proportional to the
product of the square of the charge of the background geometry and the par-
ticle’s mass (∼ Q2m) and to the product of the charges of both the particle and
the black hole (∼ qQ). These terms give origin to the so called “electromag-
netically induced gravitational perturbation” (144). On the other hand, the
source terms of the Maxwell equations contain the electromagnetic current
associated with the particle’s charge as well as interaction terms proportional
to the product of the black hole’s charge and the particle’s mass (∼ Qm),
giving origin to the “gravitationally induced electromagnetic perturbation”
(145).

This has been explicitly done in (141; 142). Let us briefly summarize the re-
sults and the properties of the solution derived there. In standard Schwarzschild-
like coordinates the Reissner-Nordström black hole metric is

ds2 = − f (r)dt2 + f (r)−1dr2 + r2(dθ2 + sin2 θdφ2) ,
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f (r) = 1− 2M

r
+

Q2

r2 , (.102)

with associated electromagnetic field

F = −Q
r2 dt ∧ dr . (.103)

The horizons are located at r± = M ±
√

M2 −Q2 ≡ M ± Γ; we consider
the case |Q| ≤ M and the region r > r+ outside the outer horizon, with an
extremely charged hole corresponding to |Q| = M (which implies Γ = 0)
where the two horizons coalesce.

The only nonvanishing components of the stress-energy tensor and of the
current density are given by

Tpart
00 =

m
2πb2 f (b)3/2δ (r− b) δ (cos θ − 1)

J0
part =

q
2πb2 δ (r− b) δ (cos θ − 1) , (.104)

which enter the system of combined Einstein-Maxwell equations

G̃µν = 8π
(

Tpart
µν + T̃em

µν

)
,

F̃µν
; ν = 4π Jµ

part , ∗ F̃αβ
;β = 0 . (.105)

The quantities denoted by the tilde refer to the total electromagnetic and
gravitational fields, to first order of the perturbation:

g̃µν = gµν + hµν , F̃µν = Fµν + fµν ,

T̃em
µν =

1
4π

[
g̃ρσ F̃ρµ F̃σν −

1
4

g̃µν F̃ρσ F̃ρσ

]
,

G̃µν = R̃µν −
1
2

g̃µνR̃ ; (.106)

note that the covariant derivative operation makes use of the perturbed met-
ric g̃µν as well. The corresponding quantities without the tilde refer to the
background Reissner-Nordström geometry (.102) and electromagnetic field
(.103). Following Zerilli’s (120) procedure we expand the fields hµν and fµν

as well as the source terms (.104) in tensor harmonics, imposing then the
Regge-Wheeler gauge (119) to simplify the description of the perturbation.
The perturbation equations are then obtained from the system (.105), keeping
terms to first order in the mass m of the particle and its charge q which are
assumed sufficiently small with respect to the black hole mass and charge.
The axial symmetry of the problem about the z axis (θ = 0) allows to put
the azimuthal parameter equal to zero in the expansion, leading to a great
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simplification. Furthermore, it is sufficient to consider only electric-parity
perturbations, since there are no magnetic sources (144; 145; 120).

The geometrical perturbations hµν for the electric multipoles in the Regge-
Wheeler gauge are given by

||hµν|| =


eνH0Yl0 H1Yl0 0 0

H1Yl0 e−νH2Yl0 0 0

0 0 r2KYl0 0

0 0 0 r2 sin2 θKYl0

 , (.107)

where Yl0 are normalized spherical harmonics with azimuthal index equal to
zero and eν = f (r) is Zerilli’s notation. The electromagnetic field harmonics
fµν for the electric multipoles are given by

|| fµν|| =



0 f̃01Yl0 f̃02
∂Yl0
∂θ

0

antisym 0 f̃12
∂Yl0
∂θ

0

antisym antisym 0 0

antisym antisym antisym 0


, (.108)

where f̃µν denotes the θ-independent part of fµν, and the symbol “antisym”
indicates components obtainable by antisymmetry. The expansion of the
source terms (.104) gives the relations

∑
l

A00Yl0 = 16πTpart
00 , ∑

l
vYl0 = J0

part , (.109)

with

A00 = 8
√

π
m
√

2l + 1
b2 f (b)3/2δ (r− b) , v =

1
2
√

π

q
√

2l + 1
b2 δ (r− b) . (.110)

The Einstein-Maxwell field equations (.105) give rise to the following system
of radial equations for values l ≥ 2 of the multipoles (note that the cases
l = 0, 1 must be treated separately)

0 = e2ν

[
2K′′ − 2

r
W ′ +

(
ν′ +

6
r

)
K′ − 4

(
1
r2 +

ν′

r

)
W
]
− 2λeν

r2 (W + K)

−2
Q2eνW

r4 − 4
Qeν f̃01

r2 + A00 ,

0 =
2
r

W ′ −
(

ν′ +
2
r

)
K′ − 2λe−ν

r2 (W − K)− 2
Q2e−νW

r4 + 4
Qe−ν f̃01

r2 ,
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0 = K′′ +
(

ν′ +
2
r

)
K′ −W ′′ − 2

(
ν′ +

1
r

)
W ′

+
(

ν′′ + ν′
2 +

2ν′

r

)
(K−W)− 2

Q2e−νK
r4 +

4Qe−ν

r2 f̃01 ,

0 = −W ′ + K′ − ν′W + 4
Qe−ν f̃02

r2 ,

0 = f̃01
′ +

2
r

f̃01 −
l (l + 1) e−ν f̃02

r2 − Q
r2 K′ + 4πv ,

0 = f̃01 − f̃02
′ , (.111)

since H0 = H2 ≡ W, H1 ≡ 0 and f̃12 ≡ 0, where λ = 1
2 (l − 1) (l + 2) and a

prime denotes differentiation with respect to r.
We have a system of 6 coupled ordinary differential equations for 4 un-

known functions: K, W, f̃01 and f̃02. The compatibility of the system requires
that these equations are not independent. Two equations can indeed be elim-
inated provided that the following stability condition holds

m = qQ
b f (b)1/2

Mb−Q2 , (.112)

involving the black hole and particle parameters as well as their separation
distance b. If the black hole is extreme (i.e. Q/M = 1), then the particle
must also have the same ratio q/m = 1, and equilibrium exists indepen-
dent of the separation. In the general non-extreme case Q/M < 1 there is
instead only one position of the particle which corresponds to equilibrium,
for given values of the charge-to-mass ratios of the bodies. In this case the
particle charge-to-mass ratio must satisfy the condition q/m > 1. Note that
quite surprisingly Eq. (.112) coincides with the equilibrium condition for a
charged test particle in the field of a Reissner-Nordström black hole which
has been discussed by Bonnor (146) in the simplified approach of test field
approximation, neglecting all the feedback terms.

We then succeed in the exact reconstruction of both the perturbed grav-
itational and electromagnetic fields by summing all multipoles (142). The
perturbed metric is given by

ds̃2 = −[1− H̄− k(r)] f (r)dt2 + [1 + H̄ + k(r)] f (r)−1dr2

+(1 + H̄)r2(dθ2 + sin2 θdφ2) ,

k(r) =
H̄0Q2

r2 f (r)
, H̄0 = −2qΓ2/[Q(Mb−Q2)] , (.113)

where

H̄ = 2
m
br

f (b)−1/2 (r−M)(b−M)− Γ2 cos θ

D̄
,
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D̄ = [(r−M)2 + (b−M)2 − 2(r−M)(b−M) cos θ

−Γ2 sin2 θ]1/2 . (.114)

It can be shown that this perturbed metric is spatially conformally flat; more-
over, the solution remains valid as long as the condition |H̄| � 1 is satisfied.
The total electromagnetic field to first order of the perturbation turns out to
be

F̃ = −
[

Q
r2 + Er

]
dt ∧ dr− Eθdt ∧ dθ , (.115)

with

Er =
q
r3

Mr−Q2

Mb−Q2
1
D̄

{[
M(b−M) + Γ2 cos θ

+
Q2[(r−M)(b−M)− Γ2 cos θ]

Mr−Q2

]
−r[(r−M)(b−M)− Γ2 cos θ]

D̄2 [(r−M)− (b−M) cos θ]
}

,

Eθ = q
Mr−Q2

Mb−Q2
b2 f (b) f (r)

D̄3 sin θ . (.116)

Note that in the extreme case Q/M = q/m = 1 this solution reduces to the
linearized form of the well known exact solution by Majumdar and Papa-
petrou (147; 148) for two extreme Reissner-Nordström black holes. Further-
more, this solution satisfies Gauss’ theorem

Φ =
∫

S

∗ F̃ ∧ dS = 4π[Q + qϑ(r− b)] , (.117)

where Φ is the flux of the electric field obtained by integrating the dual of the
electromagnetic form (.115) over a spherical 2-surface S centered at the origin
where the black hole charge Q is placed and with variable radius (r greater
or lesser than b), the function ϑ(x) denoting the step function.

Recently an important progress has been achieved by Belinski and Alek-
seev (149). They have obtained an exact two-body solution of the Einstein-
Maxwell equations in explicit analytic form for the system consisting of a
Reissner-Nordström black hole and a naked singularity, by using the mon-
odromy transform approach (150). They have shown that an equilibrium
without intervening struts or tensions is possible for such a system at selected
values of the separating distance between the sources. Furthermore, their
equilibrium condition exactly reduces to our equation (.112) once linearized
with respect to the mass and charge of the naked singularity. We have indeed
been able to show explicitly the coincidence between the linearized form of
their exact solution and our perturbative solution.
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We have then analyzed in (143) the properties of the perturbed electric field
with special attention to the construction of the lines of force of the electric
field. The two cases have been considered of the sole particle, with the sub-
traction of the dominant contribution of the black hole, as well as of the total
field due to the black hole and the particle. As the black hole becomes ex-
treme an effect similar to the ordinary Meissner effect for magnetic fields in
the presence of superconductors arises: the electric field lines of the point
charge are expelled outside the outer horizon. Note that this effective “elec-
tric Meissner effect” has no classical analogue, as far as we know, and is a
pure general relativistic effect. Let us discuss this issue more in detail.

The electric field lines are defined as the solution of the differential equa-
tion

dxα

dλ
= E(U)α , (.118)

where λ is an affine parameter for the lines and E(U)α are the coordinate
components of the electric field

E(U)α = Fα
βUβ (.119)

as measured by an observer with four-velocity U. The shape of the lines thus
depends on the choice of the observer and that of the coordinates which are
used to draw the curves. We refer to the static observers with respect to the
metric (.113), whose four-velocity is given by

U =
1√
−g̃tt

∂t = f (r)−1/2
(

1 +
H̄ + k(r)

2

)
∂t , (.120)

to first order of the perturbation. Eq. (.118) thus becomes

dr
dλ

= E(U)r ,
dθ

dλ
= E(U)θ , (.121)

leading to the equation

− E(U)r dθ + E(U)θ dr = 0 , (.122)

after eliminating the parameter λ.

For a static spacetime and using a static family of observers the electric lines
of force coincide with the constant flux lines (151). The flux across a generic
2-surface S is given by

Φ =
∫

S

[∗ F̃rφdr dφ + ∗ F̃θφdθ dφ
]

, (.123)
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since the only nonvanishing components of ∗ F̃ are

∗ F̃θφ = −r2 sin θ

[
−(1 + H̄)

Q
r2 + ftr

]
≡ ∗ F̃(0)

θφ + ∗ F̃(1)
θφ ,

∗ F̃rφ = f (r)−1 sin θ ftθ ≡ ∗ F̃
(1)
rφ , (.124)

where the superscripts (0), (1) refer to the zeroth order and first order terms
respectively. Therefore, as the electromagnetic field components do not de-
pend explicitly on φ, if S is a generic revolution surface around the symmetry
z-axis we can write

Φ = 2π
∫

S

[∗ F̃rφdr + ∗ F̃θφdθ
]

, (.125)

so that the elementary flux across an infinitesimal surface (closed, limited
by the two spherical caps: φ ∈ [0, 2π], θ = θ0 and r = r0 and φ ∈ [0, 2π],
θ = θ0 + dθ and r = r0 + dr) of this kind is

dΦ = 2π[∗ F̃rφdr + ∗ F̃θφdθ] . (.126)

The lines of constant electric flux (dΦ = 0) are then defined as those curves
solutions of the equation

0 = ∗ F̃rφdr + ∗ F̃θφdθ , (.127)

which coincides with Eq. (.122), noting that

∗ F̃θφ = −
√
−g̃

U0
E(U)r , ∗ F̃rφ =

√
−g̃

U0
E(U)θ . (.128)

We are now ready to draw the electric lines of force by numerically integrat-
ing Eq. (.122). Note that if the total electric field is considered the contribution
of the black hole always dominates (see Fig. .1).

We are mainly interested in studying the “effective field” representing the
net effect of the perturbation induced by the massive charged particle on the
background electric field. The most natural way to separate the two contri-
butions is to directly use the elementary flux equation (.126). By requiring
that the integration over a spherical 2-surface S centered at the origin gives
the first order contribution Φ(1) = 4πqϑ(r − b) only to the total electric flux
(.117), i.e. the charge of the particle only, we get

dΦ(1) = 2π[∗ F̃(1)
rφ dr + ∗ F̃(1)

θφ dθ] . (.129)

The “effective field” lines corresponding to the perturbation with the contri-
bution of the black hole electric field being subtracted are thus defined as the
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Figure .1: Lines of force of the total electric field of the black hole and particle
in the X− Z plane (X = r sin θ, Z = r cos θ are Cartesian-like coordinates) for
charges of the same sign q/Q = 0.1 and fixed parameter values b/M = 3 and
Q/M = 0.8.
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Figure .2: Lines of force of the effective electric field of the sole particle in
the non-extreme case for the same choice of parameters as in Fig. .1. As ex-
plained in the text this “effective field” is obtained by subtracting the dom-
inant contribution of the black hole own electric field to the total perturbed
field, thus representing the net effect of the perturbation induced by the mas-
sive charged particle on the background field.

lines of constant flux dΦ(1) = 0, namely

0 = ∗ F̃(1)
rφ dr + ∗ F̃(1)

θφ dθ , (.130)

according to Eq. (.127), which reduces to the previous one when only the
contribution of those terms which are first order is taken into account.

The behavior of the lines of force of the effective electric field of the particle
alone is shown in Fig. .2.

Following Hanni and Ruffini (137) we now compute the induced charge on
the surface of the black hole horizon. Some lines of force intersect the horizon.
If the particle is positively charged, at angles smaller than a certain critical
angle the induced charge is negative and the lines of force cross the horizon.
At angles greater than the critical angle the induced charge is positive and
the lines of force extend out of the horizon. At the critical angle the induced
charge density vanishes and the lines of force of the electric field are tangent
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to the horizon. The total electric flux through the horizon and thus the total
induced charge are zero.

The induced charge density on the horizon σH(θ) is defined in such a way
that the amount of induced charge on an infinitesimal portion of the horizon
sphere r = r+ between θ = θ0 and θ = θ0 + dθ equals 1/(4π) times the
elementary flux across the same surface

1
4π

dΦ|r+ =
1

4π
2π∗ F̃(1)

θφ

∣∣
r+

dθ = 2πr2
+σH(θ) sin θdθ , (.131)

implying
∗ F̃(1)

θφ

∣∣
r+

r2
+ sin θ

= 4πσH(θ) . (.132)

This can be identified with the surface version of the Gauss’ law. The cor-
responding expression for the critical angle θ(crit) comes from the condition
σH(θ(crit)) = 0. Hence it results

σH(θ) =
q

4πr+

Γ2

Mb−Q2

×Γ(1 + cos2 θ)− 2(b−M) cos θ

[b−M− Γ cos θ]2
, (.133)

θ(crit) = arccos

[
b−M−

√
(b−M)2 − Γ2

Γ

]
. (.134)

Assuming then the black hole and particle both have positive charge, one can
evaluate the total amount of negative charge induced on the horizon by the
particle

Q(−)
ind =

∫
Σ

σH(θ)dΣ = 2πr2
+

∫ θ(crit)

0
σH(θ) sin θdθ

= −q
Γr+

Mb−Q2 cos θ(crit) , (.135)

where dΣ = √gθθgφφ dθ dφ and Σ is the spherical cap 0 ≤ θ ≤ θ(crit).

Let us study what happens as the black hole approaches the extreme con-
dition |Q| = M (implying Γ = 0). Eq. (.133) shows that the induced charge
density on the horizon degenerates to zero for every value of the angle θ; the
critical angle (.134) approaches the value π/2 and the amount of negative
charge (.135) induced on the horizon vanishes identically. Therefore no lines
of force cross the horizon, remaining tangent to it for every value of the polar
angle, since every angle becomes critical: as the black hole approaches the
extreme condition the electric field lines are thus pulled off the outer horizon
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Figure .3: Lines of force of the effective electric field of the particle alone in
the extreme case Q/M = 1 for the same choice of the distance parameter as in
Fig. .1. No lines of force intersect the black hole horizon in this case, leading
to the the “electric Meissner effect.”

and never intersect it when the black hole becomes extreme. The situation is
summarized in Fig. .3 showing the behavior of the lines of force of the effec-
tive electric field of the particle alone in the extreme case.

The “electric Meissner effect” above described is suitable to a suggestive
interpretation in terms of the nature of the Reissner-Nordström solution. As
soon as the black hole is not extreme the point particle induces charge on
the horizon, and accordingly the electric field lines terminate on it; when the
black hole becomes extreme no further charge induction is possible (unless
one turns the black hole into a naked singularity), and coherently the electric
field lines no more cross the horizon. In a sense the black hole rejects to turn
itself into a naked singularity and this might be thought of as an argument in
favor of the Cosmic Censorship conjecture.
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.4 Cosmology

The Bianchi type IX spatially homogeneous vacuum spacetime also known
as the Mixmaster universe has served as a theoretical playground for many
ideas in general relativity, one of which is the question of the nature of the
chaotic behavior exhibited in some solutions of the vacuum Einstein equa-
tions and another is the question of whether or not one can interpret the
spacetime as a closed gravitational wave. In particular, to describe the mathe-
matical approach to an initial cosmological singularity, the exact Bianchi type
IX dynamics leads to the BLK approximation involving the discrete BLK map
which acts as the transition between phases of approximately Bianchi type I
evolution. The parameters of this map are not so easily extracted from the
numerical evolution of the metric variables. However, recently it has been
realized that these parameters are directly related to transitions in the scale-
free part of the Weyl tensor. In fact this leads to a whole new interpretation
of what the BLK dynamics represents.

For a given foliation of any spacetime, one can always introduce the scale
free part of the extrinsic curvature when its trace is nonzero by dividing by
that trace. In the expansion-normalized approach to spatially homogeneous
dynamics, this corresponds to the expansion-normalized gravitational veloc-
ity variables. This scale free extrinsic curvature tensor can be characterized
by its eigenvalues, whose sum is 1 by definition: these define three functions
of the time parametrizing the foliation which generalize the Kasner indices of
Bianchi type I vacuum spacetimes. A phase of velocity-dominated evolution
is loosely defined as an interval of time during which the spatial curvature
terms in the spacetime curvature are negligible compared to the extrinsic cur-
vature terms. Under these conditions the vacuum Einstein equations can be
approximated by ordinary differential equations in the time. These lead to a
simple scaling of the eigenvectors of the extrinsic curvature during which the
generalized Kasner indices remain approximately constant and simulate the
Bianchi type I Kasner evolution.

The Weyl tensor can be also be repackaged as a second rank but complex
spatial tensor with respect to the foliation and its scale free part is deter-
mined by a single complex scalar function of its eigenvalues, a number of
particular representations for which are useful. In particular the so called
speciality index is the natural choice for this variable which is independent
of the permutations of the spatial axes used to order the eigenvalues, and so
is a natural 4-dimensional tracker of the evolving gravitational field quoti-
enting out all 3-dimensional gauge-dependent quantities. During a phase of
velocity-dominated (“Kasner”) evolution, the Weyl tensor is approximately
determined by the extrinsic curvature alone, and hence the scalefree invari-
ant part of the Weyl tensor is locked to the generalized Kasner indices exactly
as in a Kasner spacetime. Of course during transitions between velocity-
dominated evolution where the spatial curvature terms are important, the
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generalized Kasner indices and the Weyl tensor are uncoupled in their evolu-
tion, but the transition between one set of generalized Kasner indices and the
next is locked to a transition in the scalefree Weyl tensor. This idealized map-
ping, approximated by the BKL map between Kasner triplets, can be rein-
terpreted as a continuous transition in the Weyl tensor whose scale invariant
part can be followed through the transition directly. For spatially homoge-
neous vacuum spacetimes, the BLK transition is a consequence of a Bianchi
type II phase of the dynamics which can be interpreted as a single bounce
with a curvature wall in the Hamiltonian approach to the problem. One can
in fact follow this transition in the Weyl tensor directly with an additional
first order differential equation which is easily extracted from the Newman-
Penrose equations expressed in a frame adapted both to the foliation and the
Petrov type of the Weyl tensor.

This type of Weyl transition in the Mixmaster dynamics can be followed ap-
proximately using the Bianchi type II approximation to a curvature bounce,
leading to a temporal spike in the real and imaginary parts of the special-
ity index which represents a circuit in the complex plane between the two
real asymptotic Kasner points (a “pulse”). The graph of the speciality index
versus time thus serves as a sort of electrocardiogram of the “heart” of the
Mixmaster dynamics, stripping away all the gauge and frame dependent de-
tails of its evolution except for the choice of time parametrization, which is a
recent nice result of our investigation.
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