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3 ICRA-BR activities

In the years 2007-2008 ICRA-Br developped an intense activity of Confer-
ences, Workshops, Visiting scientists and Schools of advanced topics. We
present here a list of these main meetings.

• During the period from 26 February to 03 March (2007) was held in
Rio the First Cesare Lattes Meeting on Gamma-Ray Bursts which was
sponsored by ICRANet, and took place in Mangaratiba (Rio de Janeiro).
For further details see the homepage of ICRANet (www.icra.it).

• The IV School on Cosmology and Gravitation was held from 16 to 21
July (2007). This event has its focus on students from Brazilian universi-
ties and young beginners in pos-graduate programs in Brazil and South
America. This school takes place in years in which no Brazilian School
of Cosmology and Gravitation is to be held, and has as main purpose
to present to undergraduate, M.Sc. and Ph.D. students in Physics and
related areas, an introductory overview to both Cosmology and Gravi-
tation.

• The Conference Goedel: Logic and Time took place during August 27,
28 (2007) at ICRA/CBPF to homage the great mathematician Kurt Goedel,
who performed a deep reform in the structure of Logics and contributed
in a singular fashion to the examination of the notion of global cosmic
time. This work triggered a series of questions about the concept of time
in General Relativity.

• During August 8, 9 and 10 (2007) was held in Sobral (Ceara) the Sobral
First Conference on Cosmology, Relativity and Astrophysics, which aimed
at celebrating the most important scientific mission ever realized in the
country involving gravitational processes, that is the Eddington Mis-
sion.

• From October 9 to 11 (2007), the First ICRA-BR Internal Workshop took
place at CBPF, with 33 oral presentations by researchers and students
members of ICRA-BR. They had the opportunity to learn about the re-
search activities that are being developed by the other members of the
group. Such an experience was so successful that it was decided to
transform it in one of the permanent activities, to be held each year.
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3 ICRA-BR activities

• In November 27 and 28 Prof. M. Novello participated of the presenta-
tion of The 2005-2007 Scientific Report ICRANet held in Pescara, Italia,
for the ICRANet Scientific Committee. In this meeting Prof. Novello
described the activities organized by ICRA-BR/CBPF.

• In 2007, an ICRA-BR team of researchers performed a historical-scientific
study on the evolution of Cosmology along the XX century. The main
topics of this path were included in a poster prepared as a piece of pop-
ular science. It is being distributed in technical schools of the Brazilian
Ministry of Science and Technology and also in the public schools of the
city of Rio de Janeiro. This experience will be extended to cover other
Brazilian states. To continue this endeavour a review book is being pre-
pared containing reading material and pictures to serve as a guide for
the teaching of Cosmology in schools and universities.

• During the 2nd semester of 2007 and the first months of 2008, the 3rd
edition of the itinerant program of Cosmology (Programa Minimo de
Cosmologia, PMC, in Portuguese) was held in the University of the
State of Ceara (while the first was in Rio Grande do Sul and the sec-
ond in the state of Rio de Janeiro). Its goal is to communicate basic and
advanced knowledge in Cosmology and Relativity throughout Brazil.

• The XIII Brazilian School of Cosmology and Gravitation was held from
July 20 to August 3, 2008. The 30th anniversary of the School was com-
memorated in this edition. The School started in 1978 under the ini-
tiative of the Cosmology and Gravitation Group (CBPF). Its efforts are
dedicated to the diffusion of different aspects of Cosmology, Gravita-
tion and Astrophysics. Details can be found bellow in http://mesonpi.

cat.cbpf.br:8080/esccosmologia/site_in/index.html.

• Visits of professor M Novello, Herman Mosquera Cuesta and S E P
Bergliaffa to ICRANet in Pescara.
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4 BSCG (Brazilian School of
Cosmology and Gravitation): 30
years

MARIO NOVELLO

A Revolution in Science: The Expansion of Cosmology

In the second half of the 1970’s, the attention of physicists was drawn to
processes of a global nature, namely cosmic processes. This was ensued by in-
tense activity throughout the community of physicists in various areas, many
of whom were led to migrate to Cosmology. Such a broad and intense dis-
placement, involving so many scientists, requires proper sociological analysis
of the scientific practice in order to provide insights into the transformation
Cosmology was going through and to the changes in the traditional mode
cosmological studies had been conducted until then.

This activity produced numerous proposals of solutions to some cosmo-
logical problems and prompted a reformulation of traditional questions of
Physics, thanks to the reliability that could be attributed to the cosmic way
of investigating nature, a fact acknowledged by the international scientific
community

Up until the late 1960s, Cosmology attracted very little interest, apart from
a small group of scientists working in the area. There are several reasons one
could attribute to the causes of this lack of interest. Though dissemination of
activities in Cosmology had started in that decade, the 1970s could be con-
sidered the split between one attitude and the other, and the popularization
of Cosmology in the overall community of physicists was achieved in the
1980s. In fact, it was in this decade that major conferences brought cosmol-
ogists, astronomers, relativist astrophysicists (traditionally, those who dealt
with the Universe in its totality), and theoretical high energy physicists (who
examined the microcosmos of elementary particles) together in a single event.
One remarkable example was the US Fermilab 1983 Conference, which was
given the suggestive title of Inner Space / Outer Space.

There have been concerted reasons contributing for this growth in Cos-
mology, some of which are intrinsic to this science while others are totally
independent of it. This is not the place for such an inventory, but, just for
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clarifying purposes, one could give two examples. One, internal to Cosmol-
ogy, is related to the success of the new telescopes and space probes, which
yielded a huge amount of highly-reliable new data. Another, of an extrin-
sic nature, was the crisis of elementary particles physics in the 1970s, which,
for the purposes of its own development, required the construction of huge
and extraordinarily expensive high-energy accelerators, which faced political
hindrances in Europe and in the United States.

The evolutionary character associated to the geometry discovered by Rus-
sian mathematician A. Friedmann, who described a dynamic expanding Uni-
verse, was thus the territory of choice to substitute in the minds of high-
energy physicists, for the lack of particle accelerators, machines that could
not be accomplished due to financial reasons. Such displacement was as-
sociated with the successes of Cosmology. Indeed, the standard model of
the Universe was based on the existence of a configuration that described its
material content as a perfect fluid in thermodynamic balance, whose temper-
ature scaled as the inverse of the expansion; that is, the smaller the Universes
total spatial volume, the greater the temperature. So, in the early times of
the current expansion phase, the Universe would have experienced fantas-
tically high temperatures, thereby exciting particle states and requiring the
knowledge of the behavior of matter in situations of very high energies for
its description. And, most conveniently, for free, without costs: all it took was
to look at the skies.

It was within this context that the Brazilian School of Cosmology and Grav-
itation, BSCG, became a national and international endeavor , promoting the
interaction between different physicists communities, involving astronomers,
relativists, cosmologists, and theoretical high-energy physicists. It may not be
an overstatement to say that the history of Cosmology in our country may be
revealed through the analysis of the history of the BSCG.

Moving Toward a Second Copernican Revolution?

The booming interest for Cosmology, as recorded in the past few decades,
has yielded several consequences, but perhaps the most remarkablethough
not yet recognized as such shall be that it is inducing an effort to re-found
Physics. To mention but one example that can help us understand the mean-
ing of this re-founding, we could refer to Electrodynamics.

The success of Maxwells linear theory in describing electromagnetic pro-
cesses was remarkable along the 20th Century. The application of this the-
ory to the Universe, within the standard scenario of spatial homogeneity and
isotropy, produced a number of particular features , including some unex-
pected ones. Among the latter, the one with most formidable consequences
was the demonstration that the linear theory of Electromagnetism inevitably
leads to the existence of a singularity in our past. That is, the Universe would
have had a finite time to evolve and reach its current state.
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This was the single most important characteristic of the linear theory since
it led to the acceptance, in the scientists imagination, that the so-called theo-
rems of singularity discovered in the late 1960s would, in effect, be applicable
to our Universe.

However, in the following decade, a slightly more profound criticism changed
this interpretation, thus rendering the consequences of theorems less impos-
ing. This involved a lengthier r analysis of the mode through which the elec-
tromagnetic field is affected by the gravitational interaction. That it is af-
fected, there had been no doubt, because this property was at the basis of the
very theory of General Relativity, given that the field carries energy. What
was yet to be learned, in detail, , was how to describe this action and which
qualitative differences t the participation of the gravitational field could pro-
voke. It soon came out that there was no single mode to describe this interac-
tion. This is due to the vectorial and tensorial nature of electromagnetic and
gravitational fields, respectively. Several proposals for this interaction were
then examined.

One of these changes to Electromagnetism, motivated by the gravitational
field, seemed to be somehow unrealistic because it could be naively inter-
preted as if the field transporter, the photon, acquired a mass in this process
of interaction with the geometry of space-time, through its curvature. More-
over: this mass would depend on the intensity of this curvature. In fact, to
adhere to the technical terminology, it was a non-minimal coupling between
both fields: a mode of interaction that does not allow the behavior of the
electromagnetic field to be reducedby using the Principle of Equivalenceto
the structure that this field possesses in the idealized absence of a gravita-
tional field. , This coupling radically changes the properties of the geometry
of the Universe in the spatially homogeneous and isotropic scenario. Just to
mention a new and remarkable characteristic, the electromagnetic field, un-
der this mode of interaction with the gravitational field, produces an Eternal
Universe, without singularity, without beginning, extending indefinitely to
the past. It is not difficult to show that this interaction also generates a non-
linearity of the electromagnetic field.

This property led the way to think about other non-linear feature of the
electromagnetic field where this form of interaction with gravitation was not
dominant. These features did not correspond to non-linear corrections to
Maxwells Electromagnetism such as those obtained by Euler and Heisenberg,
of quantum origin, though they could contain them. Regardless of these pos-
sibilities allowed by the quantum world, physicists started to think about
other origins for the non-linearity: they should be thought as if Maxwells
equations with which Electromagnetism had been treated this far would be
nothing more than approximations of a more complex form associated to a
non-linear description. This non-linearity should appear as a cosmic mode
of the field, where linearity is locally an approximation, thereby inverting
the traditional way of thinking non-linearity as corrections to the basic linear
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theory.
This simple example allows for the introduction of a fantastic situation that

Cosmology would be producing and that we can synthesize in a small sen-
tence of great formal consequences: the extrapolation of terrestrial Physics to
the entire Universe should be reviewed.

The old generalization mode is a rather natural and common procedure
among scientists. Thus, by extrapolation, even in conditions that have never
been tested before, we go on legislating until new physics can stop, block,
limit this extension of the local scientific knowledge .

In other words, the considerations above seem to point to the need of a new
Copernican criticism. Not quite the one that removed us from the center of
the Universe, but another, arguing against the extrapolation scientists have
been resorting to. That is, to think that a global characteristic should not be
attributed to the Laws of Physics and that, from this perspective, the action
of discarding global cosmological processes in building a complete theory of
natural phenomena would be legitimate.

That is, these Laws may take forms and modes that are different from those
with which, in similar but not the same situations, ”terrestrial Physics was
successfully developed. This analysis, that may lead to a description differ-
ent from that physicists are used to, which becomes more and more necessary,
even indispensable, is what we refer to as re-founding Physics through Cos-
mology. We may quote English physicist P.A.M. Dirac and Brazilian physi-
cist C. Lattes as recent precursors of this way of thinking. Unfortunately, the
practical mode they proposed for a particular re-foundation was too simple,
thus allowing for a powerful reaction that shunned these ideas to the border-
ing and swampy terrain of speculation. Recent and formidable advances in
Observational Cosmology allow us to accept that the time is coming when
an analysis of this re-foundation, slightly more sophisticated than that sim-
ple modification of the fundamental constants as Dirac and others intended,
may be seriously undertaken.

Antecedents of the Brazilian School of Cosmology and Gravitation

At the end of January, 1971, my post-doctorate supervisor in Oxford, the
renowned scientist Denis Sciama, invited me for a meeting at the All Souls
College to which some scientists who worked in his research group were also
invited (R. Penrose, S. Hawking, G. Ellis, W. Rindler, among others–Apart
from myself, of all these, only Penrose and Rindler showed up). The goal was
to informally discuss some major issues of Physics, particularly those related
to a science that was experiencing intense activity back then: Cosmology. In
a given moment of that meeting, Sciama said he considered it important that
we participated in the first major School of Cosmology that the French were
organizing for the coming summer, possibly July, in a beautiful place in the
Mediterranean, in the small island of Cargse, Corsica.
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It was a very special situation and it came at a crucial moment of my de-
cision to dedicate myself to Cosmology. One week before, when I had par-
ticipated in a conference at the International Center for Theoretical Physics
(ICTP) in Trieste, I had talked to a CBPF physicist who had just arrived from
Brazil and made some comments on my decision to dedicate to Cosmology
that caused me to become apprehensive. His comments were that a decision
had been made that it would be very important for Brazil and the CBPF that
I shifted my interests and started a program to guide my research efforts to
a more useful area for the country, such as some sector of solid state physics.
And, he added, renewal of my doctorates scholarship could depend on my
decision. This type of action was not uncommon in those days. I dont know
whether such interference would happen today. At least, not with that lack
of subtlety! My decision had already been made and my scholarship was
renewed, particularly thanks to a Brazilian physicist who worked in Geneva
like myself, though he was not at the Geneva Universitys Institut de Physique
but rather at CERN: Roberto Salmeron. After learning of the evolution of my
dissertation work, he told me he would be supporting my decision to choose
a path that looked totally estranged from the major motivation of most scien-
tists, that is, Cosmology. If I allow myself to wander a bit into this incident,
it is just to show the general state of affairs a scientist had to overcome back
then in order to address Cosmology. Curiously enough, less than ten years
later, Cosmology started a formidable phase of expansion, and has attracted
an ever bigger number of scientists since then. Having said that, let us go
back to Corsica.

The Cargèse School was an enormous success. In attendance were great
names of Cosmology coming not only from England and the United States,
such as Schucking, Silk, Steigman, Harrison, Rees, Ellis, and others, but also
some European ones, particularly professor Hagedorn, who was very suc-
cessful at the time with his theory that postulated the existence of a maximum
temperature inducing a new perspective on the singularity of the standard
model.

For various reasons, the big names missing in that meeting were the rep-
resentatives of the Soviet School of Cosmology who, nevertheless, attracted
my attention because their approach seemed to be more imaginative than
the conventional proposals by European and American physicists. However,
they were the ones who eventually commanded the thoughts of the western
community of scientists for the coming decades, with some beautiful excep-
tions.

A simple and superficial exam of the list of lecturers that participated in
the BSCG shows that this Russian School has been really active, from the very
first meeting to date. Thus, the BSCG have managed to popularize, especially
among Brazilian scientists, many ideas from those Soviet physicists and, later,
from the Russian community. The peculiarity and originality of this Rus-
sian School have marked this unique participation and often allowed it to
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become the main outlet for ideas that are alternative to the ones dominating
the panorama of Cosmology. To share a particular and extremely relevant ex-
ample, suffice it to mention the course program offered in 1979 at the II BSCG,
in Joo Pessoa, by Professor Evgeni Lifshitz who, based on his previous efforts
with V. Belinski and I. Khalatnikov, addressed the way in which the Universe
behaved in the vicinities of a singularity, raising a daring hypothesis of the
existence of a primordial anisotropic phase. Nearly thirty years later, in the
most recent Marcel Grossmann Congress held in 2006 in Berlin, one of the ple-
nary sessions conducted by the French physicist Thibault Damour attempted
to revive the original ideas by Belinski-Lifshitz-Khalatnikov , adapting them
to modern proposals of cosmological investigation.

The Cargèse School lasted two wonderful weeks, under the happy and ca-
sual coordination of Professor E. Schatzman. Himself an enthusiast of scien-
tific communication, he brought together the young participants , sometimes
at the beach and others at tiny Cargèse’s downtown area, for some beauti-
ful starry evenings of explanations to awed locals about recent discoveries
in Astrophysics and Cosmology . After a brief introduction to the behavior
and structure of stars and galaxies, our coordinator urged listeners to ask
questions of all sorts to the scientists. Those questions were never limited to
Astrophysics, Cosmology, and Physics in general; they rather and inevitably
overflowed into a scientists social role, a theme Schatzman was passionate
about.

In one such evening, feeling the cold breeze from the sea, concentrated
around a small bonfire, I told him that the meeting had been so exciting to
me, so informative, and such a unique experience, that I would try to orga-
nize similar meetings as soon as I got back to my country. Being so kind
and heedful of others, as usual, he committed himself by saying that I could
certainly count on his support, adding one question about the number of sci-
entists working in that area in Brazil. I answered that though there were d a
few physicists working in isolation who could follow up on the development
of modern properties of the gravitation theory, there was nothing systematic
going on in my country. He then added that if the idea was to be successful, I
should try to create first a small core composed by young scientists who were
to receive solid training in the theory of gravitation and r one or two years of
Cosmology studies. When I returned to CBPF, in the second semester of 1972,
that was exactly what I did, creating the Gravitation and Cosmology Group
of CBPF, which turned up to be the seed of todays Institute of Cosmology
Relativity and Astrophysics (ICRA).

First School: Success of the Teacher-Student Interaction

During the year of 1976, the Brazilian Center for Research in Physics went
through a radical change. Aware of the constant difficulties posed to a spe-
cial institution such as the CBPF, focused on fundamental research, the fed-
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eral government finally accepted to integrate this center to a federal agency.
The CBPF thus became the first physics research institute to be directly in-
corporated to the National Research Council (CNPq), currently the National
Council for Scientific and Technological Development.

The CBPF started its new phase with the arrival of Antonio Csar Olinto,
designated as head of the new CBPF/CNPq. It was within this framework of
renewal that Cosmology conquered its space and came forth as a new area of
the endeavors of CBPF. The history of this period is rich in debates between
personalities who built the history of Physics in Brazil, but I will talk about
it in another occasion. Of our interest here is only the outcome, as the head
of the CBPF agreed to grant financial and institutional support to the First
Brazilian School of Cosmology and Gravitation, which would later be known
as Brazilian School of Cosmology and Gravitation when it went international,
therefore acquiring the acronym BSCG.

This School was divided into two parts, involving basic programs that
lasted a full week, and advanced seminars whose classes could be limited
to one up to three sessions at most. Interestingly enough, the BSCG is struc-
tured as such, to date.

The budget of the School was very small, as it was basically funded by the
CBPF. However, the enthusiasm of the students was such that turned it into
a major success, contrary to the pessimistic forecast of various colleagues. To
mention but one example of this important student co-participation, I recall
their performance in organizing the School texts. Though the faculty had
carefully prepared their class notes, we had no possibility to print them. The
solution was then offered by the students themselves: they mimeographed
the notes, created a strongly-yellow-colored cover and manually bound all of
the texts!

This willpower on the part of the students greatly encouraged the staff,
who then spent the entire School in permanent activity, thus producing a
student-teacher interaction that lingered on as a hallmark and operated as a
trigger for CBPFs director to convince the relevant authorities (CNPq, Capes)
to provide the funds in the subsequent year for the 2nd School, much more
complete and administratively more organized than the 1st .

Both the 1st and the 2nd School (held respectively in 1978 and 1979) were
a means to consolidate the basic structure of Gravitational Theory for our
young physicists, as well as the crucial mathematical tools and techniques for
a better understanding of the General Theory of Relativity. Besides this basic
endeavor, some crucial concepts of theories that are correlated with Gravita-
tion and the General Theory of Relativity involving rudiments of the Unified
Theories and some basic aspects of Relativistic Astrophysics were discussed.
This may be confirmed with an overview of the course programs offered for
the 2nd School.

In the 3rd and 4th Schools (held in 1982 and 1984, respectively), notions of
Astrophysics presented in the previous Schools were elaborated. Further-
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more, there was a focus on the study of the Theory of Elementary Parti-
cles and its last association with the so-called Standard Model of Cosmol-
ogy, identified with the notion of an explosive and hot start for the Universe
(known in the literature as the Hot Big Bang Hypothesis).

The Internationalization

In 1987, the 5th School of Cosmology and Gravitation could increase the
knowledge base and the analysis presented in the previous Schools, thus
evolving to a broader and deeper debate of the feasible potential alternatives
to explain the large scale behavior of the Universe. Back then, courses based
on the Standard Model were presented, as well as several talks dealing with
the idea of an Eternal Universe, without beginning or end. Besides these spe-
cific approaches, the relation between Quantum Physics and Gravitation was
examined in detail. Though this union is still far from being complete, the ba-
sic ideas involving quantum principles of gravitation were presented in the
5th School that were later developed in the 6th School.

The 5th School was also the first one opened to the international scientific
community: researchers and students from twenty-four (24) countries were
enrolled and, from that 5th edition onward, the Schools name became inter-
national and it was then renamed as the Brazilian School of Cosmology and
Gravitation. The lectures presented there also reflected this internationaliza-
tion.

The ideas preliminarily presented in the previous School were developed
during the two weeks of the 6th School of Cosmology and Gravitation, in
1989. The courses underlined the emphasis given to quantum processes in
Cosmology. That fact is a natural evolution of the previous events, reflecting
the important role played, even then, by the examination of quantum pro-
cesses in Cosmology. Besides these course programslasting a week eachsmall
working meetings were held as parallel courses. Amongst these additional
events, two were particularly important: the opening of a session of student-
participant seminars, thus promoting greater interaction between them and
exhibitors; the start of an extraordinary debate session where the ten present-
ing professors individually exposed their ideas on the main current issues of
Cosmology and related areas. This experience was so satisfactory that it was
integrated in the organization of subsequent Schools.

In 1991, due to financial difficulties of the countrys Science/Technology
system, the periodicity of the Brazilian Schools of Cosmology and Gravitation
could not be maintained. Nevertheless, in order not to hinder an entire gener-
ation of young scientists, a small meeting was held at CBPF: A Crash-Course
on July 15-26, 1991, whose program was as follows: Cosmology: M. Nov-
ello Gravitation: I.D.Soares Relativist Thermodynamics: J. M. Salim Hamil-
tonian Formulation of Gravitation: N. Pinto Neto Quantum Theory of Fields
with Curved Spaces: N. F. Svaiter This crash-course was attended by 79 stu-
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dent/grantees of different Brazilian universities and was an important basis
for later studies and projects.

New models on the creation of the Universe

In 1993, the 7th Brazilian School of Cosmology and Gravitation was again
held in two weeks. Besides presenting an overall panorama of the main con-
quests and unresolved issues of Cosmology today, this School enabled the
continued discussion on a most formidable issue : the creation of the Uni-
verse. The main novelty was due to a general change in the scientists behav-
ior concerning the remote past of our Universe: whereas up until recently
the role of an explanation generator for all of natures ulterior processes was
attributed to an inaccessible initial explosion, back then several competing
proposals started to appear in search for access to the issue of creation, both
the classical and the quantum ones. So, models of the Eternal Universe with-
out singularity were discussed in this School, at various moments. There was,
however, general consensus that the Universe would have been through an
extremely hot period. It means that either a process of quantum tunneling
or a previous classical collapsing phase should provide the conditions for a
likely moment of tremendous concentration of matter/energy. Different pro-
posals of that sort were examined in the courses and seminars of this School.

The 8th Brazilian School of Cosmology and Gravitation, held in 1995, con-
solidated the international nature of the School, not only for the fact that it
involved professors who enjoyed high prestige in the international scientific
community but also, and mostly, because of the large number of student-
participants coming from other countries. In this School, special emphasis
was given to quantum processes and their consequences in an expanding
Universe. Not only quantum processes of matter in classical background
(semi-classical approach) were examined but also different proposals for quan-
tum treatment of the very gravitational field were proposed. The recent at-
tempts to explain the existence and formation of major structures (galaxies,
clusters etc.) were also examined and discussed either from a more observa-
tional and classical perspective or through elementary quantum processes.

Two round-tables were also organized: Loss of Information from Black
Holes (coordinated by Prof. W.Israel) and Time Machines (coordinated by
Prof. A.Starobinsky). Furthermore, a number of seminars on other topics of
interest to Cosmology and related areas were included.

A Speaker is given the Nobel Prize

The 9th BSCG happened in 1998. Its international nature appears when
we list of the countries where participating scientists came from: Brazil, Ar-
gentina, Canada, Denmark, France, Israel, Italy, Mexico, Portugal, Russia,
Spain, United States, and Venezuela. In this School, we commemorated twenty
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years of its existence. On the occasion, Professor Yvonne Choquet-Bruhat was
honored with a tribute pronounced by Prof. Werner Israel. Special empha-
sis was given to localized astrophysical processes, particularly e to properties
of black holes. A series of lectures on CMBR was delivered by Professor G.
Smoot, who was subsequently awarded the Nobel Prize, precisely for his en-
deavors in that area. The theory of the gravitational field and the analysis
of field theories on the light cone and on geometries representing expanding
universes were also presented.

The 10th School was held in July, 2002, and involved scientists from 16
countries: Brazil, Germany, Bolivia, Canada, Chile, Denmark, France, Eng-
land, Ireland, Italy, Mexico, Poland, Russia, United States, and Turkey. At
this moment, the BSCG consolidated its tendency to open the exam of non-
conventional issues not only in Cosmology but also in related areas. A brief
examination of the topics therein is enough to underline this fact. This ten-
dency continued on in the other Meetings.

Some scientist’s comments on the BSCG

In 1988, CBPFs Group of Cosmology and Gravitation intended to give a
permanent role to the Schools by creating a Cosmology Center, under the
Ministry of Science and Technology. At that time, several physicists (at the
request of the minister) were asked for their opinions on the group, as tran-
scribed below. Particular attention should be paid to the support I received
from great Brazilian scientist Csar Lattes. Whenever Lattes came to Rio, we
often talked about this possibility. On these occasions, Lattes would air his
ideas, similar to Paul Diracs, on local effects of the properties of the evolution
of the Universe, saying he had solid arguments to show how Physics very
interactions would depend on the Universes state of evolution. Years earlier,
Vitrio Canuto had presented an extensive review of Diracs ideas in the School
and, in the early 1970s, my CERN collaborator P. Rotelli and I had produced
an alternative to Diracs proposal on the cosmic dependence of weak interac-
tions. Lattess ideas did not possess similar development to Diracs, and were
very close to mine, that being the reason why we started to write the draft
(for a yet unpublished paper) together.

Lattes used to think it was totally unnecessary to write about his support
to my idea of transforming the Schools of Cosmology and Gravitation into a
permanent and continuous forum entirely focused on cosmological issues. I
eventually convinced him that this letter of his could be important to openly
communicate his opinion.

We have reproduced the content of letters by some professors where their
opinions on the School are recorded.

• YVONNE CHOQUET-BRUHAT (19/9/1988) (Professor at the Univer-
sity of Paris VI; Director of the Relativist Mechanics Laboratory and
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Fellow of the French Academy of Sciences):

() The Brazilian Schools of Cosmology and Gravitation that you have
organized since 1978 have proved extremely successful both for the ad-
vancement of science at an international level, and for the development
of a remarkably good Brazilian group in these fields. Having myself
attended two of these Schools, I have been able to appreciate their ex-
cellent organization, the high level course programs on the most up-to-
date topics by the best specialists in the field, a fruitful experience to all
by the active participation of many in the audience, from the Director
of the School to the youngest colleagues. These meetings have certainly
contributed to obtaining many results in the fields of Cosmology and
Gravitation, which have given your group the high reputation that it
enjoys internationally.

• RUBEN ALDROVANDI (29/09/1988) (So Paulo Institute of Theoretical
Physics):

Although I think you know my opinion on the CBPF Group of Cosmol-
ogy and Gravitation and on the Brazilian School it has been organizing
for so many years, this seems to be a good opportunity to put it down in
written words. The Group is the only one worthy of this name in Brazil,
as other people working on those subjects never really seem to get their
act together. I have very high regards for the quality, coherence andin
Brazil this is essentialendurance shown during all the difficult times
the Group has been in existence. As to the School: I have been in many
Schools, and most are fairly good, but have never met one that is better
organized than this. (...) Such an institution would give stability to the
School and, I am convinced, greatly contribute to the development of
activities in the sister sciences of Cosmology and Gravitation. For the
reasons given above, it is a matter of course that the CBPF Group and
its School are the ideal nucleation centre for the Institute.

• EDWARD W. KOLB (23/09/1988) (Professor of Astronomy and Astro-
physics at the University of Chicago and at the FERMILAB):

(...) As you know, I had the opportunity of attending the 4th and 5th
Schools as a lecturer. I cannot express the student’s view, but from
my perspective they were both great successes. I benefited a great deal
from the lectures by the many distinguished scientists and from ques-
tions and discussions with students. CBPFs Gravitation and Cosmol-
ogy Group is large and active. The people already present at CBPF
could easily serve as a nucleus for a more ambitious program. An In-
stitute with a larger scope would be beneficial to Brazilian science in
two ways: It would attract to Rio the best people in the international
scientific community to share recent developments in general relativity
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and cosmology; and it would afford the opportunity for the rest of the
world to learn about the great work done in Rio by Brazilian scientists.
I can think of no better use of resources available to help the develop-
ment of science in Brazil. I would be happy to do anything I can to help
your initiative. Good luck with your efforts.

• VITORIO CANUTO (31/10/1988) (Member of NASA, Goddard Insti-
tute for Space Studies):

(...) In all of Latin America, Brazil is the country that, thanks to your
efforts, has taken the leadership in the field of General Relativity and
Cosmology, as witnessed by the success of the several Schools that you
have convened in the last ten years. From both the scientific and the
organizational points of views, I believe they were a remarkable suc-
cess. Cosmology is about to be reborn thanks to launching the Space
Telescope next year. The wealth of new data available in the near future
will dramatically change the field, and the fact that your Schools have
already prepared young researchers in this field represents an invest-
ment on which this Institute can confidently be built. For these reasons,
I firmly believe that an Institute of Research in Cosmology and Gravita-
tion will be an outstanding Brazilian contribution not only to the devel-
opment of science in Latin America but to future generations of young
scientists. As can be seen from the excerpts above, even back then the
Brazilian Schools of Cosmology and Gravitation already had aninter-
nationally recognizedtradition of providing young researchers and stu-
dents with easy access, and as thorough as possible, to the current state
of research in some sectors of Cosmology, Gravitation, Astrophysics,
and related areas. The following passages have been taken from scien-
tists who participated in the Schools of Cosmology and Gravitation at
different times.

• BAHRAN MASSHOOM (Missouri, EUA), 1993:

The organization of the School was excellent: a rigorous schedule of
lectures combined with evening seminars. There was ample time, how-
ever, to get to know the participants and to have lengthy discussions
of scientific issues of mutual interest that arose in the course of lec-
tures and seminars. (...) On the administrative side, I can only have
high praise for the professionalism and dedication of the staff combined
with a pleasant human touch that added warmth to the atmosphere of
the School. The quality of the School was outstanding. I was also im-
pressed with the excellent quality of graduate students at the School.

• BERNARD JONES (Copenhagen, Denmark), 1993:

The organization of the School was in fact one of the best I have ever
encountered. In fact, it was so good I never noticed it, since everything
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seemed to work like clockwork and, most important, the organizing
team exhibited a remarkable degree of flexibility. You, evidently, have
the organization of this kind of meeting down to an art-form. I made
many contacts among the young people at the School and I am currently
looking into the question of partially financing a bi-lateral cooperation
on the subjects of mutual interest. I have contacted our Ministry of
Education and will see other relevant groups over the next couple of
months. I am hopeful we will be able to invite people to spend some
time here.

• VITALY MELNIKOV (Head of CSVRs Department of Fundamental In-
teraction and Metrology; President of the Russian Gravitational Associ-
ation, Moscow, Russia), 1993:

The scientific level of the VII Brazilian School of Cosmology and Grav-
itation was on a good international level. Practically all modern prob-
lems on cosmology and gravitation were discussed at the School. Lec-
turers were renowned scientists from Europe, USA, and Brazil. It is
very nice that among lecturers were some scientists representing Rus-
sian schools in basic sciences: Prof. A.Dolgov, I.Tyutin (seminar), Git-
man (seminar), and myself. It may contribute to further cooperation
and interaction between Brazilian and Russian basic sciences in the field
of cosmology and gravitation. There were interesting discussions on the
cosmological constant problem and inflationary models, as well as dis-
cussions concerning each lecture. The fact that nearly all the Brazilian
groups were represented at the School and also many scientists from Ar-
gentine, Mexico, other Latin American countries, and even some people
from Europe makes this School in essence an international one. The sci-
entific organization of the School was excellent: strict time-table, full
attendance, copying of the lectures, work of secretaries, conditions to
work, discussions, etc. The fact that all participants lived in one com-
pact and nearly isolated place is very good for productive interaction
between all the participants and lecturers. I should like to note that it
is a very good practice that all participants had their accommodations
paid for by the Organizing Committee, where the scientific merit was
the only reason for choosing the attendants. It is the same practice that
is used in many other renowned schools like Les Houches, in France,
Erice, in Italy, etc. Especially I should like to stress the great role of Prof.
Mrio Novello in the preparation and organization of the work of the
School. Due to his attitude, the atmosphere was very friendly and cre-
ative. Conditions of living and meals were also good. As to suggestions
for future schools I should like to point out that some topics may be rep-
resented more widely like quantum cosmology and quantum gravity
and also experimental problems of gravitation. In general, I think the
traditional interaction of Brazilian and Russian scientists in cosmology
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and gravitation should be kept and enhanced. And, of course, the best
traditions of the Brazilian School of Cosmology and Gravitation, which
already were present at the VII School, must be kept.

• A.DOLGOV (Theoretical Astrophyiscs Center - TAC, Copenhagen, Den-
mark), 1998:

The Brazilian Schools of Cosmology and Gravitation already have a
long and glorious history. They started 20 years ago and, ever since, re-
main as one of the leading schools on the subject, not only in Brazil but
in the world. It is difficult to overstate their educational and scientific
value. The level of lecturers is always first rate. The scientific programs
each year contain most interesting, important, and up-to-date subjects.
In parallel to the main courses of lectures, more brief scientific seminars
are organized, where original works by the local and visiting physicists
are presented. This makes the Schools not only educationally important
but also plays an essential role in the recognition of Brazilian scientific
achievements. I would also like to stress the great, excellent, and diffi-
cult work done by Professor M.Novello in organizing these Schools.

• IGOR NOVIKOV (Director, Theoretical Astrophysics Center, Copen-
hagen, Denmark), 1998: I am writing in connection with the great tra-
dition of Brazilian physicists: a series of scientific meetings called the
Brazilian Schools of Cosmology and Gravitation (BSCG). (...) The BSCG
have taken place approximately every two years starting from 1978. In
this year of 1998, the IX BSCG was held in which I had the privilege
to participate as an invited lecturer. The main goals of the Schools are
to provide the possibility to present and discuss the new achievements
in cosmology, general theory of relativity, astrophysics, quantum field
theory and in related areas. I have learned these Schools from my col-
leagues and from Proceedings of the Schools for many years. This year
as a participant of the IX BSCG I personally observed the highest sci-
entific and organizational level of the School. The unique format of the
BSCG and very friendly working atmosphere provided many fruitful
discussions both in pure science and in scientific education. It leads to
a real progress in physics and is especially important and competitive
at a world class level, and the list of lecturers at BSCG is a who’s who
of the leaders of cosmology and physics of the international level. I be-
lieve that the outstanding BSCG is the result of enormous work of the
talented organizers of the School under the leadership of the Head of
BSCG, Prof. M.Novello. It would be very important both for Brazilian
physics and for the world physics community to continue the Brazilian
Schools of Cosmology and Gravitation in the future.

• EDWARD W. KOLB (Theoretical Astrophysics, FERMILAB; The Uni-
versity of Chicago, EUA), 1998:
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I have had the pleasure of attending two of the Brazilian Schools of
Cosmology and Gravitation. In addition to an enthusiastic audience for
my lectures, I learned a great deal from the other fine lectures at the
Schools. The Schools were exceptionally well run and well balanced. I
believe that the Schools have had many benefits for Brazilian science.
Not only are the students exposed to ideas and research of leading sci-
entists from the entire world, but scientific leaders from throughout the
world are exposed to the very fine young Brazilian researchers. There
are many talented young scientists who would otherwise not be easily
noticed outside Brazil. Because of the contacts made during my visits to
Brazil to attend the Schools, several young scientists have been invited
to spend long periods visiting our group at Fermi National Accelerator
Laboratory. I am sure that we benefitted from their visits, and I believe
that they benefitted from visiting us as well. Nowadays it is difficult
to provide continuity even to successful projects. In spite of difficulties
you may face, I would like to encourage you to do whatever it takes to
continue with the Brazilian Schools of Cosmology and Gravitation. The
benefits of the School are quite considerable.

• J. NARLIKAR (Inter-University Centre for Astronomy and Astrophysics
- IUCAA, India), 1998:

I am writing this letter to give my impressions on the Schools of Cos-
mology and Gravitation conducted by your group in Brazil over the
last 20 years. I recall participating in one of the schools in 1987 as a
resource person. It was indeed an exhilarating experience to meet the
students who were attracted not only from Brazil but also from other
countries. The resource persons were also from many different coun-
tries and enjoyed international reputation. The School which I attended
and lectured in certainly ????? went a long way in bringing to the stu-
dent community the latest ideas in cosmology and astrophysics. Know-
ing that many of the students would normally miss the lectures that
are routinely delivered in schools held in Europe or the United States,
I think the BSCG is playing a very vital role in this field. I do hope
that you will continue this activity and possibly expand upon it if your
funding agency so permits. You have established a tradition which has
to be continued, and I hope that it will.

• FANG LI-ZHI (University of Arizona, Tucson, USA), 1998:

(...) Gravitational theory and cosmology are two of the most fundamen-
tal fields of physics. It could not exist without strong public support.
However, given the small number of researchers in gravitation and cos-
mology, these fields make unexpectedly large contributions to formal
and informal science education. In the current world, more and more
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countries recognize that the synergistic, educational, and cultural con-
tributions of the study of cosmology and gravitation are worthy. There-
fore, not only big and rich countries attach importance to these fields,
but also many others. For instance, even under the current Asian finan-
cial crisis, the programs of cosmological and gravitational research in
Korea, Vietnam, and Taiwan have firmly been funded by their own au-
thorities. I had the honor to be invited as a lecturer at the BSCG in 1984.
Since then I have kept in touch with colleagues of the BSCG. I would
like to evaluate the BSCG to be the first rank of schools in the field.
All lecturers are influential, and all lectures delivered at the BSCG are
on the frontier of gravitation and cosmology research. In addition, the
BSCG provides unusual opportunities for international exchange and
cooperation of colleagues from Brazil and Latin America with the rest
of the world. Therefore, I strongly recommend support to the BSCG
School, and its activity should be regular and permanent.

• G.F.R.ELLIS (University of Cape Town, Department of Mathematics and
Applied Mathematics, South Africa ), 1998:

This letter is to state that the series of scientific meetings called the
Brazilian Schools of Cosmology and Gravitation (BSCG) have been a
significant series of meetings, pulling together high quality lecturers
from around the world, and resulting from time to time in good quality
publications of significant merit. I therefore believe that continuation of
these schools on a regular basis will be a very worthwhile project, and
will make a significant contribution to the development of relativity and
cosmology not merely to Brazil, but in the whole of Latin America. I am
therefore pleased to support your request that funding for these schools
should be continued.

• VLADIMIR MOSTEPANENKO (A.Friedmann Laboratory for Theoret-
ical Physics, Moscow, Russia; Visiting Professor, UFPb, Joo Pessoa),
1998:

Let me express my gratitude for your kind invitation to take part in
the IX Brazilian School of Cosmology and Gravitation and to give the
lectures there. The School of Cosmology and Gravitation has become
a traditional event in Brazil. During twenty years it has gathered the
most qualified lecturers on the subject from all over the world and the
most promising young Brazilian researchers working in the field of cos-
mology and gravitation. It is a great honor to Brazil that this country
considers it possible to support this field of fundamental physics re-
search. Giving seemingly small contribution to technologies, Cosmol-
ogy and Gravitation investigate and solve the most profound problems
of the structure and evolution of our Universe. These problems have
attracted the most prominent scientists from different countries during
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all the history of mankind. Now both Gravitation and Cosmology are
the experimentally based exact sciences with great perspectives. I hope
that the tradition of the Brazilian Schools of Cosmology and Gravita-
tion will be prolonged giving significant contribution to education and
science in Brazil.

• YVONNE CHOQUET-BRUHAT (Universit Pierre et Marie Curie, Grav-
itation et Cosmologie Relativistes, Paris, France), 1998:

The Brazilian School of Cosmology and Gravitation has held regular
meetings - or rather summer schools - since 1978. The list of speakers
at these schools is an impressive assembly of internationally renowned
names of specialists covering the broad area of General Relativity and
Cosmology. I myself have been fortunate enough to participate in two
of these schools. I have learned greatly from the lectures of colleagues
working in fields distinct but related to mine (which is mainly mathe-
matical problems in General Relativity). The school was also attended
by a member of graduate students. The solid background as well as the
advanced view points that they received there was certainly a great as-
set for their future. The Brazilian School of Cosmology and Gravitation
has an international reputation, enhanced and perpetuated by the vol-
umes of its proceedings. This school totally deserves to be supported.
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5 Brief description

5.1 Bouncing Cosmological Models

The standard cosmological model (SCM) furnishes an accurate description of
the evolution of the universe, which spans approximately 13.7 billion years.
The main hypothesis on which the model is based are the following:

• Gravity is described by General Relativity;

• The universe obeys the Cosmological Principle . As a consequence, all
the relevant quantities depend only on global Gaussian time;

• Above a certain scale, the matter content of the model is described by a
continuous distribution of matter/energy, which is described by a per-
fect fluid.

In spite of its success, the SCM suffers from a series of problems such as
the initial singularity, the cosmological horizon, the flatness problem, baryon
asymmetry, and the nature of dark matter and dark energy. Although in-
flation (which for many is currently a part of the SCM) partially or totally
answers some of these, it does not solve the crucial problem of the initial sin-
gularity. The existence of an initial singularity is disturbing: a singularity
can be naturally considered as a source of lawlessness, because the spacetime
description breaks down there, and physical laws presuppose spacetime. Re-
gardless of the fact that several scenarios have been developed to deal with
the singularity issue, the breakdown of physical laws continues to be a conun-
drum after almost a hundred years since the discovery of the FLRW solution
(which inevitably displays a past singularity, or in the words of Friedmann,
a beginning of the world). In the review we made for Physics Report, we
concentrate precisely on the issue of the initial singularity. We shown that
non-singular universes have been recurrently present in the scientific litera-
ture. In spite of the fact that the idea of a cosmological bounce is rather old,
the first exact solutions for a bouncing geometry were obtained by Novello
and Salim, and Melnikov and Orlov in the late 70s. It is legitimate to ask
why these solutions did not attract the attention of the community then. In
the beginning of the 80s, it was clear that the SCM was in crisis (due to the
problems mentioned above, to which we may add the creation of topological
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defects, and the lack of a process capable of producing the initial spectrum
of perturbations, necessary for structure formation). On the other hand, at
that time the singularity theorems were taken as the last word about the ex-
istence of a singularity in reasonable cosmological models. The appearance
of inflationary theory gave an answer to some of the issues in a relatively
economical way, and opened the door for an explanation of the origin of the
spectrum of primordial fluctuations. Faced with these developments, and
taking into account the status of singularity theorems at that time, the is-
sue of the initial singularity was not pressing anymore, and was temporarily
abandoned in the hope that quantum gravity would properly address it. At
the end of the 90s, the discovery of the acceleration of the universe brought
back to the front the idea that the density of energy ρ+ 3p could be negative,
which is precisely one of the conditions needed for a cosmological bounce in
GR, and contributed to the revival of nonsingular universes. Bouncing mod-
els even made it to the headlines in the late 90s and early XXI century, since
some models in principle embedded in string theory seemed to suggest that a
bouncing geometry could also take care of the problems solved by inflation.
Perhaps the main motivation for nonsingular universes is the avoidance of
lawlessness, as mentioned above. Also, since we do not know how to handle
infinite quantities, we would like to have at our disposal solutions that do
not entail divergencies. As seen in Physics Report, this can be achieved at a
classical level, and also by quantum modifications. On a historical vein, this
situation calls for a parallel with the status of the classical theory of the elec-
tron by the end of the 19th century. The divergence of the field on the world
line of the electron led to a deep analysis of Maxwells theory, including the
acceptance of a cooperative influence of retarded and advanced fields and the
related causality issues. However, this divergence is milder than that of some
solutions of General Relativity, since it can be removed by the interaction of
the electron with the environment. Clearly, this is not an option when the
singularity is that of a cosmological model.

Another motivation for the elimination of the initial singularity is related
to the Cauchy problem. In the SCM, the structure of spacetime has a natu-
ral foliation (if no closed timelike curves are present), from which a global
Gaussian coordinate system can be constructed, with g00 = 1 and g01 = 0,
in such a way that ds2 = dt2 − gijdxidxj. The existence of a global coordinate
system allows a rigorous setting for the Cauchy problem of initial data. How-
ever, it is the gravitational field that diverges on a given spatial hypersurface
t = const (denoted by Σ) at the singularity in the SCM. Hence, the Cauchy
problem cannot be well formulated on such a surface: we cannot pose on
Σ the initial values for the field to evolve. There are more arguments that
suggest that the singularity should be absent in an appropriate cosmological
model. According to some proposals the second law of thermodynamics is
to be supplemented with a limit on the entropy of a system of largest linear
dimension R and proper energy E, given by S/E ≤ 2πR/h̄c. Currently this
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bound is known to be satisfied in several physical systems. It was shown
that the bound is violated as the putative singularity is approached in the
radiation-dominated FLRW model (taking as R the particle horizon size). The
restriction to FLRW models was lifted later on, where it was shown, indepen-
dently of the spacetime model, and under the assumptions that (1) causality
and the strong energy condition (SEC) hold, (2) for a given energy density,
the matter entropy is always bounded from above by the radiation entropy,
that the existence of a singularity is inconsistent with the entropy bound: a
violation occurs at time scales of the order of Planck’s time. ¿From the point
of view of quantum mechanics, we could ask if it is possible to repeat in grav-
itation what was done to eliminate the singularity in the classical theory of
the electron. Namely, can the initial singularity be smoothed via quantum
theory of gravity? The absence of the initial singularity in a quantum setting
is to be expected on qualitative grounds. There exists only one quantity with
dimensions of length that can be constructed from Newton constant G, the
velocity of light c and h̄ (namely LPl =

√
Gh̄/c3.). This quantity would play

in quantum gravity a role analogous to that of the energy of the ground state
of the hydrogen atom (which is the only quantity with dimensions of energy
that can be built with fundamental constants). As in the hydrogen atom, LPl
would imply some kind of discreteness, and a spectrum bounded from be-
low, hence avoiding the singularity. Also, since it is generally assumed that
LPl sets the scale for quantum gravity effects, geometries in which curvature
can become larger than L−2

Pl or can vary very rapidly on this scale would be
highly improbable. Yet another argument that suggests that quantum effects
may tame a singularity is given by the Rayleigh-Jeans spectrum. According
to classical physics, the spectral energy distribution of radiation in thermal
equilibrium diverges like ω3 at high frequencies, but when quantum correc-
tions are taken into account, this classical singularity is regularized and the
Planck distribution applies. We may expect that QG effects would regularize
the initial singularity. As a consequence of all these arguments indicating that
the initial singularity may be absent in realistic descriptions of the universe,
many cosmological solutions displaying a bounce were examined in the last
decades. In fact, the pattern in scientific cosmologies somehow parallels that
of the cosmogonic myths in diverse civilizations, which can be classified in
two broad classes. In one of them, the universe emerges in a single instant of
creation (as in the Jewish-Christian and the Brazilian Carajas cosmogonies).
In the second class, the universe is eternal, consisting of an infinite series of
cycles (as in the cosmogonies of the Babylonians and Egyptians). We have
seen that there are reasons to assume that the initial singularity is not a fea-
ture of our universe. Quite naturally, the idea of a non-singular universe
has been extended to encompass cyclic cosmologies, which display phases of
expansion and contraction. The first scientific account of cyclic universes is
in the papers of Friedmann, Einstein, Tolman and Lemaitre and his Phoenix
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universe, all published in the 1930’s. A long path has been trodden since
those days up to recent realizations of these ideas. Some cyclic models could
potentially solve the problems of the standard cosmological model, with the
interesting addition that they do not need to address the issue of the initial
conditions. Another motivation to consider bouncing universes comes from
the recognition that a phase of accelerated contraction can solve some of the
problems of the SCM in a manner similar to inflation. Let us take for instance
the flatness problem. Present observations imply that the spatial curvature
term, if not negligible, is at least non-dominant w.r.t. the curvature term:
r2 = ε/a2H2 ≤ 1, but during a phase of standard, decelerated expansion, r
grows with time. So we need an impressive fine-tuning at, say, the GUT scale,
to get the observed value. This problem can be solved by introducing an early
phase during which the value of r, initially of order 1, decreases so much in
time that its subsequent growth during FLRW evolution keeps it still below
1 today. Thus, an era of accelerated contraction may solve the flatness prob-
lem (and the other kinematical issues of the SCM ). This property helps in the
construction of a scenario for the creation of the initial spectrum of cosmolog-
ical perturbations in non-singular models. The main goal of this review is to
present some of the many non-singular solutions available in the literature,
exhibit the mechanism by which they avoid the singularity, and discuss what
observational consequences follow from these solutions and may be taken
(hopefully) as an unmistakable evidence of a bounce. We shall not pretend
to produce an exhaustive list, but we intend to include at least an explicit
form for the time evolution of a representative member of each type of solu-
tion. The models examined here are restricted to those close or identical to
the FLRW geometry. It will suffice for our purposes in this review to define
a singularity as the region where a physical property of the matter source or
the curvature blows up. In fact, since we shall be dealing almost exclusively
with geometries of the Friedmann type, the singularity is always associated
with the divergence of some functional of the curvature. Let us remark at
this point that there are at least two different types of nonsingular universes:
(a) bouncing universes (in which the scale factor attains a minimum), and (b)
eternal universes, which are past infinity and ever expanding, and exist for-
ever. Class (a) includes cyclic universes. The focus of this review are those
models in class (a), although we shall review a few examples of models in
class (b).
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5.2 Effective Geometry in non-linear
Electrodynamics

In recent years, there has been a growing interest in models that mimic in
the laboratory some features of gravitation. The actual realization of these
models relies on systems that are very different in nature: ordinary non-
viscous fluids, superfluids, flowing and non-flowing dielectrics, non-linear
electromagnetism in vacuum, and Bose-Einstein condensates. The basic fea-
ture shared by these systems is that the behavior of the fluctuations around
a background solution is governed by an effective metric. More precisely,
the particles associated to the perturbations do not follow geodesics of the
background spacetime but of a Lorentzian geometry described by the effec-
tive metric, which depends on the background solution as pointed out some
time ago by Unruh and earlier by Plebanski. It is important to notice that
only some kinematical aspects of general relativity can be imitated by this
method, but not its dynamical features. Although most of these works con-
cerns sound propagation, the most fashionable results deal with non-linear
Electrodynamics. This is related to the possibility of dealing with phenom-
ena that are treatable in actual laboratory experiments. This is one of the
main reasons that induce us to analyze carefully a certain number of non-
equivalent non-linear electromagnetic configurations. Among these results
we can quote the possibility of imitating a non-gravitational Black Hole in
laboratory dealing with non-linear electrodynamics effects (see Appendix).

5.3 Non-linear field theory in flat and curved
space-time

Recent works have shown the important role that Nonlinear Electrodynamics
(NLED) can have in two crucial questions of Cosmology, concerning partic-
ular moments of its evolution for very large and for low-curvature regimes,
that is for very condensed phase and at the period of acceleration. We present
here a a toy model of a complete cosmological scenario in which the main
factor responsible for the geometry is a nonlinear magnetic field which pro-
duces a FRW homogeneous and isotropic geometry. In this scenario we dis-
tinguish four distinct phases: a bouncing period, a radiation era, an accel-
eration era and a re-bouncing. It has already been shown that in NLED
a strong magnetic field can overcome the inevitability of a singular region
typical of linear Maxwell theory; on the other extreme situation, that is for
very weak magnetic field it can accelerate the expansion. The present model
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goes one step further: after the acceleration phase the universe re-bounces
and enter in a collapse era. This behavior is a manifestation of the invari-
ance under the dual map of the scale factor a(t) → 1/a(t), a consequence of
the corresponding inverse symmetry of the electromagnetic field (F → 1/F,
where F ≡ FµνFµν) of the NLED theory presented here. Such sequence
collapse-bouncing-expansion-acceleration-re-bouncing-collapse constitutes a
basic unitary element for the structure of the universe that can be repeated in-
definitely yielding what we call a Cyclic Magnetic Universe (see Appendix).

Summary

In the last years there has been increasing of interest on the cosmologi-
cal effects induced by Nonlinear Electrodynamics (NLED). The main reason
for this is related to the drastic modification NLED provokes in the behavior
of the cosmological geometry in respect to two of the most important ques-
tions of standard cosmology, that is, the initial singularity and the accelera-
tion of the scale factor. Indeed, NLED provides worthwhile alternatives to
solve these two problems in a unified way, that is without invoking different
mechanisms for each one of them separately. Such economy of hypotheses is
certainly welcome. The partial analysis of each one of these problems was ini-
tiated by our group in ICRA-Br. In this workk we present a new cosmological
model, that unifies both descriptions.

The general form for the dynamics of the electromagnetic field, compati-
ble with covariance and gauge conservation principles reduces to L = L(F),
where F ≡ FµνFµν. We do not consider here the other invariant G ≡ FµνF∗µν

constructed with the dual, since its practical importance disappears in cos-
mological framework once in our scenario the average of the electric field
vanishes in a magnetic universe as we shall see in the next sections. Thus, the
Lagrangian appears as a regular function that can be developed as positive or
negative powers of the invariant F. Positive powers dominate the dynamics
of the gravitational field in the neighborhood of its moment of extremely high
curvatures. Negative powers control the other extreme, that is, in the case of
very weak electromagnetic fields. In this case as it was pointed out previ-
ously it modifies the evolution of the cosmic geometry for large values of the
scale factor, inducing the phenomenon of acceleration of the universe. The
arguments presented make it worth considering that only the averaged mag-
netic field survives in a FRW spatially homogeneous and isotropic geometry.
Such configuration of pure averaged magnetic field combined with the dy-
namic equations of General Relativity received the generic name of Magnetic
Universe.

The most remarkable property of a Magnetic Universe configuration is the
fact that from the energy conservation law it follows that the dependence on
time of the magnetic field H(t) is the same irrespective of the specific form
of the Lagrangian. This property allows us to obtain the dependence of the
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magnetic field on the scale factor a(t), without knowing the particular form
of the Lagrangian L(F). Indeed, as we will show later on, from the energy-
momentum conservation law it follows that H = H0 a−2. This dependence
is responsible for the property which states that strong magnetic fields dom-
inates the geometry for small values of the scale factor; on the other hand,
weak fields determines the evolution of the geometry for latter eras when the
radius is big enough to excite these terms.

In order to combine both effects, here we will analyze a toy model. The
symmetric behavior of the magnetic field in both extremes – that is for very
strong and very weak regimes – allows the appearance of a repetitive config-
uration of the kind exhibited by an eternal cyclic universe.

Negative power of the field in the Lagrangian of the gravitational field was
used in attempting to explain the acceleration of the scale factor of the uni-
verse by modification of the dynamics of the gravitational field by adding
to the Einstein-Hilbert action a term that depends on negative power of the
curvature, that is

S =
M2

Pl
2

∫ √
−g
(

R− α4

R

)
d4x,

Although this Lagrangian was shown to be in disagreement with solar sys-
tem observations, it started a program which introduced polynomial Lagrangian
of the form

∑
n

cn Rn

containing positive and negative values of n.
This modification introduced an idea that is worth to be generalized: the

dynamics should be invariant with respect to the inverse symmetry trans-
formation. In other words,if X represents the invariant used to construct a
Lagrangian for a given field, the Action should be invariant under the map
X → 1/X. Since the Electrodynamics is the paradigm of field theory, one
should start the exam of such a principle into the realm of this theory. In
other words we will deal here with a new symmetry between strong and
weak electromagnetic field. In a previous work, a model assuming this idea
was presented and its cosmological consequences analyzed. In this model,
the action for the electromagnetic field was modified by the addition of a
new term, namely

S =
∫ √

−g(−F
4

+
γ

F
)d4x.

This action yields an accelerated expansion phase for the evolution of the
universe, and correctly describes the electric field of an isolated charge for
a sufficiently small value of parameter γ. The acceleration becomes a conse-
quence of the properties of this dynamics for the situation in which the field
is weak.

In another cosmological context, in the strong regime, it has been pointed
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out in the literature by us, that NLED can produces a bouncing, altering an-
other important issue in Cosmology: the singularity problem. In this article
we would like to combine both effects improving the action to discuss the
consequences of NLED for both, weak and strong fields.

It is a well-known fact that under certain assumptions, the standard cos-
mological model unavoidably leads to a singular behavior of the curvature
invariants in what has been termed the Big Bang. This is a highly distress-
ing state of affairs, because in the presence of a singularity we are obliged
to abandon the rational description of Nature. It is possible that a complete
quantum cosmology could describe the state of affairs in a very different and
more complete way. For the time being, while such complete quantum theory
is not yet known, one should attempt to explore alternatives that are allowed
and that provide some sort of phenomenological consequences of a more pro-
found theory.

It is tempting then to investigate how NLED can give origin to an unified
scenario that not only accelerates the universe for weak fields (latter cosmo-
logical era) but that is also capable of avoiding an initial singularity as a con-
sequence of its properties in the strong regime.

Scenarios that avoid an initial singularity have been intensely studied over
the years. As an example of some latest realizations we can mention the pre-
big-bang universe and the ekpyrotic universe. While these models are based
on deep modifications on conventional physics, that are extremely difficult to
be observed, the model we present here relies instead on the electromagnetic
field. The new ingredient that we introduce concerns the dynamics that is
rather different from that of Maxwell in distinct regimes. Specifically, the
Lagrangian we will work with is given by

LT = α2 F2 − 1
4

F− µ2

F
+

β2

F2 . (5.3.1)

The dimensional constants α, β and µ are to be determined by observation.
Thus the complete dynamics of electromagnetic and gravitational fields are
governed by Einstein equations plus LT.

We shall see that in Friedmann-Robertson-Walker (FRW) geometry we can
distinguish four typical eras which generate a basic unity of the cosmos (BUC)
that repeat indefinitely. The whole cosmological scenario is controlled by the
energy density ρ and the pressure p of the magnetic field. Each era of the BUC
is associated with a specific term of the Lagrangian. As we shall see the con-
servation of the energy-momentum tensor implies that the field dependence
on the scale factor yields that the invariant F is proportional to a− 4. This
dependence is responsible by the different dominance of each term of the
Lagrangian in different phases. The first term α2F2 dominates in very early
epochs allowing a bouncing to avoid the presence of a singularity. Let us call
this the bouncing era. The second term is the Maxwell linear action which
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dominates in the radiation era. The inverse term µ2/F dominates in the ac-
celeration era. Finally the last term β2/F2 is responsible for a re-bouncing.
Thus each BUC can be described in the following way:

• The bouncing era: There exists a collapsing phase that attains a mini-
mum value for the scale factor aB(t);

• The radiation era: after the bouncing, ρ + 3p changes the sign; the uni-
verse stops its acceleration and start expanding with ä < 0;

• The acceleration era: when the 1/F factor dominates the universe enters
an accelerated regime;

• The re-bouncing era: when the term 1/F2 dominates, the acceleration
changes the sign and starts a phase in which ä < 0 once more; the scale
factor attains a maximum and re-bounces

The universe starts a collapsing phase entering a new bouncing era. This
unity of four stages, the BUC, constitutes an eternal cyclic configuration that
repeats itself indefinitely.

The plan of the work is as follows. First we review the Tolman process of
average in order to conciliate the energy distribution of the electromagnetic
field with a spatially isotropic geometry, presents the notion of the Magnetic
Universe and its generic features concerning the dynamics of electromagnetic
field generated by a Lagrangian L = L(F). Then we present the conditions
of bouncing and acceleration of a FRW universe in terms of properties to
be satisfied by L. Later on we introduce the notion of inverse symmetry of
the electromagnetic field in a cosmological context. This principle is used to
complete the form of the Lagrangian that guides the combined dynamics of
the unique long-range fields yielding a spatially homogeneous and isotropic
nonsingular universe. We present then a complete scenario consisting of the
four eras: a bouncing, an expansion with negative acceleration, an acceler-
ated phase and a re-bouncing. Finally let us point out that although the total
Lagrangian of NLED seems at first sight to induce an energy which is not
strictly positive definite, this is not the case in the actual toy model. Further-
more, even in the case of a static spherically symmetric field of a charged
particle, the negative contribution to the total energy - as measured in the
asymptotic spatial infinity - reduces to a finite constant depending only on
the free parameters of the theory. Thus, as it was done by Born and Infeld in
their NLED, this constant can be ruled out by the addition of a constant term
in the Lagrangian, which do not affect the dynamics of the electromagnetic
field and makes the total energy positive definite.
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5.4 Spinor theory of Gravity

From Einstein Equivalence Principle (EEP) it follows that universality of grav-
itational processes leads naturally to its identification to a metric tensor gµν.
However anyone that accepts this interpretation of the EEP should ask, be-
fore adopting the General Relativity approach the following question: giving
the observational fact that any piece of matter/energy provokes a modifi-
cation of the geometry in which this piece is merged, could one be led to
the unique conclusion that this modification is driven by a differential equa-
tion containing derivatives up to second order of the metric tensor and by
properties of the matter that represents its energy distribution? Should one
be obliged to conclude that there is no other logical way to understand this
fact? Is there a unique and only way that compels any sort of gravitationally
interacting matter to modify space-time geometry through a direct relation
between a continuous local modification of the geometry and the correspond-
ing matter-energy content? In other words, are we contrived to accept that
geometry is also a physical component of nature, requiring unequivocally a
dynamical equation itself? Is this the unique way to implement the Equiva-
lence Principle? General Relativity is a complete realization of EEP that an-
swers yes to these questions. These lectures will deal with Pre-Gravity The-
ory, which provides a distinct and competitive way to implement EEP which
answers no to all these questions. In Pre-Gravity the gravitational field is
represented in terms of two fundamental spinor fields ΨE and ΨN. Its origins
goes back to a complementary view of EEP, according to which the geomet-
rical field is an induced quantity that depends on some intimate microscopic
sub-structure. This sub-structure does not have by itself a geometric origin
but instead it is a matter field. We could say that GR is based on a vision
according to which space-time is to be understood as the arena of Physics
(in Wheeler’s words) and gravity is nothing but the consequence of a direct
modification of the intrinsic geometry of such an arena. PG on the other hand,
considers that the arena contains only matter and energy and the geometry
is nothing but a specific way related to these real quantities or substances in-
teracts among themselves. In this way, in Pre-gravity it has no practical sense
to attribute a dynamics to the geometry. Its evolution is just a natural con-
sequence of the dynamics of matter interacting gravitationally, as we shall
see. Accepting the idea that the metric tensor is a derived quantity that is, it
is not an independent dynamical variable, then we face the question: what
should be the intermediate dynamical variables that represents the gravita-
tional phenomenon? In his analysis of similar question, Feynmann argued
against the possibility to identify such dynamical entity to different kinds of
continuum fields like scalar, spinor and vector. Let us review this analysis.
The argument against the scalar field rests on the impossibility of describe the
influence of gravity in photon propagation. Accepting that the net effect of a
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scalar field should produce only conformally flat geometries then it follows
that conformal invariance of Maxwell electrodynamics imply the absence of
any direct influence of gravity on photon propagation. This was ruled out by
the Sobral observation. The impossibility to identify gravity to vector field
is related to the purely attractive effect of gravity. For neutrino-like field the
Feynmann argument rests on the impossibility of having a 1/r static poten-
tial. Then he concludes that only a tensorial field ϕµν could fulfill this criteria
which led that the dynamical quantity of gravitational field has to be identi-
fied with the metric tensor. The Spinor Theory of Gravity provides a distinct
answer and circumvent these difficulties, see Appendix.
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7 Some symbolic dates of
important Cosmology moments
in the 20th Century

• 1915 German physicist A. Einstein (1879-1955) creates a new theory of
gravitation, the General Relativity (GR), identifying the gravitational
force with the geometric structure of space-time.

• 1917 Einstein proposes the first relativist cosmologic model and intro-
duces a new universal constant represented by the Greek letter ?? (lambda),
called cosmologic constant. This model represents a finite, static uni-
verse whose total volume does not vary with time, that is, it does not
admit expansion. Using GR equations with the cosmologic constant,
Dutch astronomer W. De Sitter (1872-1934) establishes the second cos-
mologic model and shows that, contrary to Einsteins model, solutions
can be built to represent an expanding universe in stationary regime,
that is, with constant expanding speed. The existence of ? is enough to
produce this universe, as the action of matter and energy is disregarded.
So, W. De Sitters model does not have matter; it is pure geometry.

• 1922 Russian physicist A. Friedmann (1888-1925) develops a cosmologic
model that represents a spatially homogeneous (same properties any-
where in the space) and isotropic (same properties in any direction in
the space) universe. This universe expands from the beginning, when
the volume is zero, to a maximum volume and, then, it contracts, reach-
ing singularity again (volume equal to zero). The source of this geome-
try is a perfect fluid whose energy is incoherently distributed, without
interaction between its parts (that is, without pressure).

• 1924 Friedmann publishes a second cosmologic model, similar to that
from 1922, but with an important difference: in this new solution, the
three-dimensional space structure allows the total volume of the uni-
verse to grow indefinitely.

• 1927 Belgian priest and physicist G. Lematre (1894-1966) constructs a
cosmologic model representing an expanding universe, containing mat-
ter, radiation, and cosmologic constant. He associates the initial sin-
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gularity of this model to the notion of primordial atom, presenting a
cosmogonist hypothesis according to which the Universe would have
resulted from the radioactive disintegration of an atom. Nearly thirty
years later, this explosion reappears in cosmologic imagination as rep-
resented by the Big Bang scenario. American mathematician E.Kasner
(1878-1955) builds a solution of Einsteins equations, without matter and
without cosmologic constant, which represents a spatially homogeneous
but anisotropic universe, that is, with distinct properties in different di-
rections.

• 1929 American astronomer E. P. Hubble (1889-1953) deduces the empir-
ical relation of the separation of galaxies from observational data, and
introduces the concept of the expanding universe, perhaps the major
Cosmology discovery to date. American mathematician and physicist
H.P.Robertson (1903-1961) establishes a mathematic form that repre-
sents spatially homogeneous and isotropic universes like Friedmanns.
This model of universe follows the Cosmologic Principle according to
which all spatial points have the same physical and geometric proper-
ties.

• 1932 Einstein and de Sitter discover a cosmologic solution similar to
Friedmanns, with homogeneous and isotropic space, characterized by
a Euclidean geometry. The source of this universe is a perfect fluid with-
out pressure.

• 1933 Bulgarian astronomer F. Zwicky (1898-1974) proposes the concept
of dark matter, thanks to observations of local speeds in the galaxies in
clusters. Zwicky and collaborators infer that there is much more matter
in the Universe than that emitting visible light (stars).

• 1937 A new question appears in Cosmology: traditional thinking is
shifted, that is, from how matter influences the global behavior of the
Universe to how the Universe influences the very laws of Physics. British
physicist P.A.M. Dirac (1902-1984) offers the hypothesis that some of
the fundamental constants of Physics (Newtons constant, for instance)
could depend on the cosmologic state in which the Universe is (gravi-
tational interaction changes with cosmic evolution). According to this
line of thought, in 1967 Russian-American physicist G.Gamow (1904-
1968) suggests that an electrons charge could vary with cosmic time
(electromagnetic interaction changes with cosmic evolution). In 1972,
Brazilian physicist M.Novello redirects this analysis by arguing that the
fundamental constants of Physics were not the ones to depend on cos-
mic time, but rather the very mechanisms of interaction. As an example
to this orientation, he then suggests that, in the processes of matter dis-
integration via weak interaction, the violation of parity would depend
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on the stage of evolution of the Universe (weak interaction changes with
cosmic evolution).

• 1949 Austrian mathematician K.Gdel (1906-1978) shows that the equa-
tions of General Relativity enable the generation of geometries with
closedtime type of curves, that is, pathways that lead into the past.
From then on, the causality structure and the notion of global cosmic
time receive profound criticism which has not yet been resolved by
General Relativity to date.

• 1967 Russian physicist A. Sakharov (1921-1989) proposes a model of el-
ementary particles that can explain the matter-antimatter asymmetry
of the fundamental constituents of baryonic matter (as the proton and
neutron) existing in the Universe. 1941 A. MacKellar observes the first
data on the existence of a sea of photons in thermodynamic equilib-
rium like a thermal spectrum (black body) at 2.3o Kelvin. These data
were ignored for more than twenty years partly because of the World
War II conjuncture and were only observed again in the 1960s by two
American radio-astronomers.

• 1963 American radio-astronomers A. Penzias and R. Wilson observe
the existence of a background cosmic radiation, constituted by a sea of
photons in thermodynamic equilibrium like a thermal spectrum (black
body) at 2.7o Kelvin, thus proving the phenomenon observed by MacKel-
lar in 1941. Background cosmic radiation is considered an evidence of
the Big Bang scenario.

• 1970 V.C. Rubin and W.K. Ford find evidence of the dark matter as they
studied the rotation curve of stars in galaxies near the Milky Way.

• 1972 The first Cosmology and Gravitation Group is created in Brazil at
the Brazilian Center for Physical Research, CBPF.

• 1977 In order to explain the abundance of light chemicals (hydrogen,
helium etc.) and the different structure scales of the Universe, B. W.
Lee and S. Weinberg, in the 1970s, and, as a complement to that, the
endeavors by J.R. Bond, G. Efstathiou, J. Silk develop in the 1980s the
concept of non-baryonic dark matter, that is, dark matter not composed
of photons, neutrons, and electrons like ordinary matter.

• 1978 The I Brazilian School of Cosmology and Gravitation (BSCG) is
held at CBPF-RJ. From then on, these meetings have been held every
two years, where the research from Cosmology, Gravitation, Astrophysics,
and related areas is presented. A. Penzias and R. Wilson are awarded
the Nobel Prize for having discovered the cosmic background radiation.
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• 1979 Brazilian physicists M. Novello and J. M. Salim develop the first
cosmologic model with analytical solution that possesses bouncing, that
is, there would be a previous collapse phase of the Universe where the
volume would have reduced in time, reaching a minimum value, and
then expanded again. The sources of this geometry are non-linear pho-
tons. In the same year, Russian physicists V. Melnikov and S. V. Orlov
propose another cosmologic model with bouncing, whose sources are
quantized scalar fields (spontaneous break of symmetry).

• 1981 Inflationary Universe Model The proposal of an inflationary model
appears, re-updating the importance of the cosmologic constant in a
brief historical period of the evolution of the Universe. Inflation of the
Universe is the existence of a period of extremely accelerated geometric
expansion, which would have occurred next to the singularity in Fried-
manns model.

• 1982 Canadian cosmologist J.E. Peebles relates the evolution of small
changes in the temperature of cosmic background radiation to the cre-
ation of structures such as galaxies and galaxy clusters, taking dark mat-
ter and initial fluctuations into account.

• 1983 J. Huchra, M. Davis, D. Latham, and J. Tonry manage to map, for
the first time, the distribution of ordinary matter in large scales in the
Universe.

• 1987 Gravitational Lenses Discovery of the first gigantic arcs formed by
gravitational lensing. Besides proving the deviation of light by gravity,
the study of this phenomenon confirms the presence of dark matter in
clusters of galaxies [the term gravitational lens is given to any body of
matter that can produce change to the trajectory of light passing by as a
result of the gravitational force exercised by this body].

• 1990 Launching the Hubble Space Telescope One of the main objectives
of this space mission was to determine the current expansion rate of
the Universe, named Hubble parameter. The satellite is now used for
countless cosmologic studies.

• 1998 Acceleration of the Universe Measures of luminosity and redshift
of supernova star explosions suggest strong evidence that the Universe
would have suffered a transition and is currently going through a phase
of accelerated expansion.

• 21st Century. The observation that the Universe is in accelerated ex-
pansion has created a serious problem for the Theory of General Rela-
tivity. According to the GR, the cause of this acceleration is associated
to a substance with extravagant characteristics that has conventionally

1534



7 Some symbolic dates of important Cosmology moments in the 20th
Century

been named ”dark energy”. This dark energy seems to be the dominant
substance in the Universe, though ”what it is” and ”what type of en-
ergy it is” are not precisely known. Dark energy and dark matter are
the observed phenomena that most directly demonstrate that the cur-
rent Theories of Elementary Particles and Gravitation are either incor-
rect or incomplete. Cosmic observations in the 21st Century show that
we should seriously consider the hypothesis that Einstein’s Theory of
Gravitation could be modified, which allows for the potential appear-
ance of a new Cosmology, since every new theory of gravitation founds
a new Cosmoloy.
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9 Non linear Electrodynamics

M. NOVELLO, J M SALIM AND S E P BERGLIAFFA

9.1 Introduction

In recent years, there has been a growing interest in models that mimic in
the laboratory some features of gravitation. The actual realization of these
models relies on systems that are very different in nature: ordinary non-
viscous fluids, super-fluids, flowing and non-flowing dielectrics, non-linear
electromagnetism in vacuum, and Bose-Einstein condensates. The basic fea-
ture shared by these systems is that the behavior of the fluctuations around a
background solution is governed by an “effective metric”. More precisely, the
particles associated to the perturbations do not follow geodesics of the back-
ground space-time but of a Lorentzian geometry described by the effective
metric, which depends on the background solution. It is important to notice
that only some kinematical aspects of general relativity can be imitated by
this method, but not its dynamical features.

By use of this analogy, the geometrical tools of General Relativity can be
used to study some condensed matter systems. More importantly perhaps
is the fact that the analogy has permitted the simulation of several config-
urations of the gravitational field, such as wormholes and closed space-like
curves for photons, and warped spacetimes for phonons. Particular attention
has been paid to analog black holes, because these would emit Hawking ra-
diation exactly as the gravitational black holes do, and are obviously much
easier to generate in the laboratory. The fact that analog black holes emit ther-
mal radiation was shown first by Unruh in the case of dumb black holes, and
it is the prospect of observing this radiation (thus testing the hypothesis that
the thermal emission is independent of the physics at arbitrarily short wave-
lengths) that motivates the quest for a realization of analog black holes in the
laboratory. Let us emphasize that the actual observation of the radiation is a
difficult task from the point of view of the experiment, if only because of the
extremely low temperatures involved. In the case of a quasi one-dimensional
flow of a Bose-Einstein condensate for instance, the temperature of the radi-
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ation would be around 70 nK, which is comparable but lower than the tem-
perature needed form the condensate.

We shall begin by presenting the basics of the idea of the effective geom-
etry by studying a simple case: nonlinear electromagnetism. Later on we
shall analyze another example: photons in a flowing dielectric medium. We
shall see that, in analogy to the most general nonlinear electromagnetic case,
the photons experience bi-refringence and bi-metricity. Then we show that is
possible to build a static and spherically symmetric analog black hole, gen-
erated by a flowing isotropic dielectric that depends on an applied electric
field. We give a specific example, in which the radius of the horizon and
the temperature depend on three parameters (the zeroth order permittivity,
the charge that generates the external field, and the linear susceptibility) in-
stead of depending only on the zeroth order permittivity. As we shall show
another feature of this black hole is that there is a new term in the surface
gravity (and hence in the temperature of Hawking radiation), in addition to
the usual term proportional to the acceleration of the fluid. This new term de-
pends exclusively on the dielectric properties of the fluid, and it might give
an opportunity to get Hawking radiation with temperature higher than that
reported up to date.

9.2 The effective metric

Historically, the first example of the idea of effective metric was presented by
W. Gordon in 1923. In modern language, the wave equation for the propaga-
tion of light in a moving nondispersive medium, with slowly varying refrac-
tive index n and 4-velocity uµ:[

∂α∂α + (n2 − 1)(uα∂α)2
]

Fµν = 0.

Taking the geometrical optics limit, the Hamilton-Jacobi equation for light
rays can be written as gµνkµkν = 0 where

gµν = ηµν + (n2 − 1)uµuν (9.2.1)

is the effective metric for this problem. It must be noted that only photons
in the geometric optics approximation move on geodesics of gµν: the parti-
cles that compose the fluid couple instead to the background Minkowskian
metric.

Let us study now in detail the example of nonlinear electromagnetism. We
start with the action

S =
∫ √
−γ L(F) d4x, (9.2.2)
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where F ≡ FµνFµν and L is an arbitrary function of F. Notice that γ is the
determinant of the background metric, which we take in the following to
be that of flat spacetime, but the same techniques can be applied when the
background is curved. Varying this action w.r.t. the potential Aµ, related to
the field by the expression

Fµν = Aµ;ν − Aν;µ = Aµ,ν − Aν,µ,

we obtain the Euler-Lagrange equations of motion (EOM)

(
√
−γ LFFµν);ν = 0, (9.2.3)

where LF is the functional derivative LF ≡ δL
δF . In the particular case of a linear

dependence of the Lagrangian with the invariant F we recover Maxwell’s
equations of motion.

As mentioned in the Introduction, we want to study the behavior of pertur-
bations of these EOM around a fixed background solution. Instead of using
the traditional perturbation method, we shall use a more elegant method set
out by Hadamard. In this method, the propagation of low-energy photons
are studied by following the evolution of the wave front, through which the
field is continuous but its first derivative is not. To be specific, let Σ be the
surface of discontinuity defined by the equation

Σ(xµ) = constant.

The discontinuity of a function J through the surface Σ will be represented
by [J]Σ, and its definition is

[J]Σ ≡ lim
δ→0+

(
J|Σ+δ − J|Σ−δ

)
.

The discontinuities of the field and its first derivative are given by

[Fµν]Σ = 0, [Fµν,λ]Σ = fµνkλ, (9.2.4)

where the vector kλ is nothing but the normal to the surface Σ, that is, kλ =
Σ,λ.

To set the stage for the nonlinear case, let us first discuss the propagation
in Maxwell’s electrodynamics, for which LFF = 0. The EOM then reduces to
Fµν

;ν = 0, and taking the discontinuity we get

f µνkν = 0. (9.2.5)

The other Maxwell equation is given by F∗µν
;ν = 0 or equivalently,

Fµν;λ + Fνλ;µ + Fλµ;ν = 0. (9.2.6)
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The discontinuity of this equation yields

fµνkλ + fνλkµ + fλµkν = 0. (9.2.7)

Multiplying this equation by kλ gives

fµνk2 + fνλkλkµ + fλµkλkν = 0, (9.2.8)

where k2 ≡ kµkνγµν. Using the orthogonality condition from previous equa-
tion it follows that

f µνk2 = 0 (9.2.9)

Since the tensor associated to the discontinuity cannot vanish (we are assum-
ing that there is a true discontinuity!) we conclude that the surface of discon-
tinuity is null w.r.t. the metric γµν. That is,

kµkνγµν = 0. (9.2.10)

It follows that kλ;µkλ = 0, and since the vector of discontinuity is a gradient,

kµ;λkλ = 0. (9.2.11)

This shows that the propagation of discontinuities of the electromagnetic
field, in the case of Maxwell’s equations (which are linear), is along the null
geodesics of the Minkowski background metric.

Let us apply the same technique to the case of a nonlinear Lagrangian
for the electromagnetic field, given by L(F). Taking the discontinuity of the
EOM, we get

LF f µνkν + 2η LFF Fµνkν = 0, (9.2.12)

where we defined the quantity η by Fαβ fαβ ≡ η. Note that contrary to the lin-
ear case in which the discontinuity tensor fµν is orthogonal to the propagation
vector kµ, here there is a complicated relation between the vector f µνkν and
quantities dependent on the background field. This is the origin of a more
involved expression for the evolution of the discontinuity vector, as we shall
see next. Multiplying equation (9.2.8) by Fµν we obtain

η k2 + Fµν fνλkλkµ + Fµν fλµkλkν = 0. (9.2.13)

Now we substitute in this equation the term f µνkν from Eqn.(9.2.12), and we
arrive at the expression

ηk2 − 2
LFF

LF
η(Fµλkµkλ − Fλµkµkλ), (9.2.14)
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which can be written as gµνkµkν = 0, where

gµν = LFγµν − 4LFF FµαFα
ν. (9.2.15)

We then conclude that

The low-energy photons of a nonlinear theory of electrodynamics
with L = L(F) do not propagate on the null cones of the back-
ground metric but on the null cones of an effective metric, gener-
ated by the self-interaction of the electromagnetic field.

This statement is always true in case of Lagrangians depending only of
the invariant F. For Lagrangians that depend also of F∗, there may be some
special cases in which the propagation coincides with that in Minkowski. An-
other feature of the more general case L = L(F, F∗) is that bi-refringence is
present. That is, the two polarization states of the photon propagate in a
different way. In some special cases, there is also bi-metricity (one effective
metric for each state). Even more special cases (such as Born-Infeld electro-
dynamics) exhibit only a single metric. Some of these features are present in
our next example.

9.3 Effective metric in flowing fluids with zero
vorticity

Another example in which an effective metric arises naturally is that of fluid
dynamics for inviscid fluids. The equations decribing this system are the
continuity equation,

∂tρ + ~∇.(ρ~v) = 0

and Euler’s equation,

ρ(∂t~v + (~v.~∇)~v) = −~∇p−−ρ~∇Φ.

If we assume that assuming that there is no vorticty, the velocity of the fluid
can be expressed in terms of a potential:

~v = −~∇ψ.

If we also assume that the fluid is barotropic, that is

~∇h =
1
ρ
~∇p,
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Euler eqn. reduces to

− ∂tψ + h +
1
2
(~∇ψ)2 + ψ + Φ = 0 (9.3.1)

Linearize the EOM around some assumed background using

ρ = ρ0 + ερ1 + O(ε2)

and similar developments for p and ψ1 (the background quantities have a 0
subindex).

Keeping up to first order in ε, we get from the linearized EOM:

−∂t

(
∂ρ

∂p
ρ0(∂tψ1 +~v0.~∇ψ1)

)
+ ~∇.

(
ρ0~∇ψ1−

∂ρ

∂p
ρ0 ~v0(∂tψ1 +~v0.~∇ψ1)

)
= 0

Introducing the velocity of sound c−2
s = ∂ρ

∂p , and the metric

gµν =
ρ0

cs

 −(c2
s − v2

0)
... −vj

0
. . . . . . .

−vj
0

... δij


We can write the wave equation

4ψ1 = 0, (9.3.2)

where4 is the d’Alembertian in the geometry gµν:

4ψ1 =
1√−g

∂µ(
√
−g gµν∂νψ1), (9.3.3)

The scalar field ψ1 moves in an effective curved spacetime, in which the geometry
depends on the background fluid.

Many of the notions of GR (like horizon and ergosphere) can be applied in
this context. In particular, it is rather easy to generate an analog black hole in
this model, and it can be shown that this analog black hole emits Hawking
radiation.

9.3.1 Effective metric(s) in the presence of a dielectric

We now move to another interesting case where the effective geometry is use-
ful to study the motion of low-energy photons. We shall analyze the propaga-
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tion of such photons in a nonlinear medium. Let us define first the antisym-
metric tensors Fµν and Pµν, which are convenient to represent the electromag-
netic field when material media are present. These tensors can be expressed
in terms of the strengths (E, H) and the excitations (D, B) of the electric and
magnetic fields as

Fµν = vµEν − vνEµ − ηµν
αβvαBβ,

Pµν = vµDν − vνDµ − ηµν
αβvαHβ.

where vµ represents the 4-velocity of an arbitrary observer (which we will
take later as co-moving with the fluid). The Levi-Civita tensor introduced
above is defined in such way that η0123 = +1 in Cartesian coordinates. Since
the electric and magnetic fields are space-like vectors, the notation EαEα ≡
−E2, HαHα ≡ −H2 will be used. We will consider here media with proper-
ties determined only by the tensors εαβ and µαβ (i.e. media with null magneto-
electric tensor), which relate the electromagnetic excitations to the field strengths
by the constitutive laws,

Dα = εα
β(E, H)Eβ, Bα = µα

β(E, H)Hβ. (9.3.4)

In order to get the effective metric, we shall use Hadamard’s method as in the
previous section. By taking the discontinuity of the field equations ∗Fµν

;ν = 0
and Pµν

;ν = 0, and assuming that

εµβ = ε(E)(γµβ − vµvβ), (9.3.5)

and
µµβ = µ0(γµβ − vµvβ), (9.3.6)

with µ0 = const., we get the following equations:

ε(k.e)− ε′

E
(E.e)(k.E) = 0, (9.3.7)

µ0(k.h) = 0, (9.3.8)

ε(k.v)eµ − ε′

E
Eαeα(k.v)Eµ + ηµναβkνvαhβ = 0, (9.3.9)

µ0(k.v)hµ − ηµναβkνvαeβ = 0, (9.3.10)

where kµ is the wave propagation vector, ε′ is the derivative of ε w.r.t. E, and

[Eµ,λ]Σ = eµ kλ, [Hµ,λ]Σ = hµ kλ.

Note in particular that previous equation shows that the vectors kµ and eµ are
not always orthogonal, as would be the case if ε′ was zero. Substituting in
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the previous equation, we get

Zµβeβ = 0, (9.3.11)

where the matrix Z is given by

Zµβ =
[
k2 + (k.v)2(µ0ε− 1)

]
γµβ−µ0

ε′

E
(k.v)2EµEβ +(v.k)(vµkβ + kµvβ)−

[
εµ0(k.v) + k2

]
vµvβ− kµkβ.

(9.3.12)
Non-trivial solutions can be found only for cases in which det

∣∣Zµβ
∣∣ = 0 ( this

condition is a generalization of the well-known Fresnel equation).

This equation can be solved by expanding eν as a linear combination of the
four linearly independent vectors vν, Eν, kν and ηαβµνvαEβkµ (the particular
case in which the vectors vν, Eν and kν are coplanar will be examined below).
That is,

eν = αEν + βηαλµνvαEλkµ + γkν + δvν. (9.3.13)

Notice that taking the discontinuity of Eµ
,λ we can show that (e.v) = 0. This

restriction imposes a relation between the coefficients of Eqn.(9.3.13):

δ = −γ(k.v)

With the expression given in Eqn.(9.3.13), Eqn. (9.3.11) reads

α
[
k2 −

(
1− µ0 (ε E)′

)
(k.v)2

]
− γ

[
µ0(k.v)2 1

E
ε′αkα

]
= 0,

αEµkµ + γ(1− µ0ε)(k.v)2 + δ(k.v) = 0,

α(k.v)Eµkµ + γ(k.v)k2 + δ
[
k2 + µ0ε (k.v)2

]
= 0,

β
[
k2 − (1− µ0ε)(k.v)2

]
= 0.

The solution of this system results in the following dispersion relations:

k2
− = (k.v)2 [1− µ0(ε E)′

]
+

1
εE

ε′αEβkαkβ, (9.3.14)

k2
+ = [1− µ0ε(E)](k.v)2. (9.3.15)

They correspond to the propagation modes

e−ν = ρ−
{

µ0 ε(k.v)2Eν + Eαkα[kν − (k.v)vν]
}

, (9.3.16)

e+
ν = ρ+ ηαλµνvαEλkµ, (9.3.17)

where ρ− and ρ+ are arbitrary constants. The labels “+” and “−” refer to the
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ordinary and extraordinary rays, respectively. Eqns. that govern the prop-
agation of photons in the medium characterized by µ = µ0 =const., and
ε = ε(E). They can be rewritten as gµν

± kµkν = 0, where we have defined the
effective geometries

gµν

(−) = γµν −
[
1− µ0 (ε E)′

]
vµvν − 1

εE
ε′µEν, (9.3.18)

gµν

(+) = γµν − [1− µ0 ε]vµvν. (9.3.19)

The metric given above was derived previously, while the second metric very
much resembles the metric derived by Gordon. The difference is that in the
case under consideration, ε is a function of the modulus of the external elec-
tric field, while Gordon worked with a constant permeability.

We see then that in this example each polarization state has its own dis-
persion relation, so there is bi-refringence. There is also bi-metricity, because
each type of photon moves according a different metric.

Let us discuss now a particular instance in which the vectors used as a basis
in previous Eqn. are not linearly independent. If we assume that

Eµ = akµ + bvµ, (9.3.20)

then vectors eµ, kµ, and vµ are coplanar. In this case, the basis chosen is not
appropriate. Notice however that if we assume that eµ is a combination of
vectors that are perpendicular to kµ, so that (e.k) = 0, then (E.e) = 0. The
converse is also true: if (E.e) = 0, then (k.e) = 0. For this particular case, in
which eµ is perpendicular to vµ, kµ (and consequently to Eµ), imply that[

k2 + (k.v)2(µ0ε− 1)
]

eµ = 0

We see then that in the case in which Eµ = akµ + bvµ, Fresnel’s equation de-
termines that the polarization of the photons is perpendicular to the direction
of propagation and to the velocity of the fluid. Moreover, the motion of these
photons is governed by the metric gµν

+ . For instance, if the electric field, the
velocity of the fluid, and the direction of propagation are all radial, then the
polarization is in the plane perpendicular to the propagation, and the two
polarization modes feel the same geometry.

9.4 The Analog Black Hole

We shall show in this section that the system described by the effective met-
rics given above can be used to produce an analog black hole. It will be
convenient to rewrite at this point the inverse of the effective metric using a
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different notation:

g(−)
µν = γµν −

vµvν

c2 (1− f ) +
ξ

1 + ξ
lµlν, (9.4.1)

where we have defined the quantities

f ≡ 1
c2µ0ε(1 + ξ)

, ξ ≡ ε′E
ε

, lµ ≡
Eµ

E
.

Note that ε = ε(E). We have introduced here the velocity of light c, which
was set to 1 before. Taking a Minkowskian background in spherical coordi-
nates, and

vµ = (v0, v1, 0, 0), Eµ = (E0, E1, 0, 0), (9.4.2)

we get for the effective metric,

g(−)
00 = 1−

v2
0

c2 (1− f ) +
ξ

1 + ξ
l2
0 , (9.4.3)

g(−)
11 = −1−

v2
1

c2 (1− f ) +
ξ

1 + ξ
l2
1 , (9.4.4)

g(−)
01 = −v0v1

c2 (1− f ) +
ξ

1 + ξ
l0 l1, (9.4.5)

and g(−)
22 and g(−)

33 as in Minkowski spacetime. The vectors vµ and lµ satisfy
the constraints

v2
0 − v2

1 = c2, (9.4.6)

l2
0 − l2

1 = −1, (9.4.7)

v0l0 − v1l1 = 0. (9.4.8)

This system of equations can be solved in terms of v1, and the result is

v2
0 = c2 + v2

1, (9.4.9)

l2
0 =

v2
1

c2 , l2
1 =

c2 + v2
1

c2 . (9.4.10)

Now we can rewrite the metric in terms of β ≡ v1/c, a definition which
coincides with the usual one for small values of v1. The explicit expression of
the metric coefficients is:

g(−)
00 =

1− β2(c2µ0ε− 1)
c2µ0(ε + ε′E)

, (9.4.11)
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g(−)
01 = β

√
1 + β2 1− c2µ0ε

c2µ0(ε + ε′E)
, (9.4.12)

g(−)
11 =

β2 − c2µ0ε(1 + β2)
c2µ0(ε + ε′E)

. (9.4.13)

¿From Eqn.(9.4.11) it is easily seen that, depending on the function ε(E), this
metric has a horizon at r = rh, given by the condition g00(rh) = 0 or, equiva-
lently, (

c2µ0ε− 1
β2

) ∣∣∣∣
rh

= 1. (9.4.14)

The metric given above resembles the form of Schwarzschild’s solution in
Painlevé-Gullstrand coordinates:

ds2 =
(

1− 2GM
r

)
dt2 ± 2

√
2GM

r
dr dt− dr2 − r2dΩ2. (9.4.15)

With the coordinate transformation

dtP = dtS ∓
√

2GM/r
1− 2GM

r
dr, (9.4.16)

the line element given in above equation can be written in Schwarzschild’s
coordinates. The “+” sign covers the future horizon and the black hole sin-
gularity.

The effective metric looks like the metric in Eqn.(9.4.15). In fact, it can be
written in Schwarzschild’s coordinates, with the coordinate change

dtPG = dtS −
g01(r)
g00(r)

dr. (9.4.17)

Using this transformation with the metric coefficients given in Eqns.(9.4.11)
and (9.4.12), we get the expression of g(−)

11 in Schwarzschild coordinates:

g(−)
11 = − ε(E)

(1− β2[c2µ0ε(E)− 1])(ε(E) + ε(E)′E)
. (9.4.18)

Note that g(−)
01 is zero in the new coordinate system, while g(−)

00 is still given
by Eqn.(9.4.11). Consequently, the position of the horizon does not change,
and is still given by Eqn.(9.4.14).

Working in Painlevé-Gullstrand coordinates, we have shown that the met-
ric for the “−” polarization describes a Schwarzschild black hole if Eqn.(9.4.14)
has a solution. Afterwards we have rewritten the “−” metric in the more fa-
miliar Schwarzschild coordinates. Let us consider now photons with the
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other polarization. They “see” the metric given by Eqn.(9.3.19), whose in-
verse is given by:

g(+)
µν = γµν −

vµvν

c2

(
1− 1

c2µ0ε(E)

)
. (9.4.19)

Using this equation and Eqns.(9.4.9) and (9.4.10) it is straightforward to show
that

g(+)
00 = 1−

(
1 + β2

)(
1− 1

c2µ0ε(E)

)
, (9.4.20)

g(+)
01 = −β

√
1 + β2

(
1− 1

c2µ0ε(E)

)
, (9.4.21)

g(+)
11 = −1− β2

(
1− 1

c2µ0ε(E)

)
. (9.4.22)

This metric also corresponds to a Schwarzschild black hole, for some ε(E)
and β. Comparing Eqns.(9.4.11) and (9.4.20) we see that the horizon of both
analog black holes is located at rh, given by Eqn.(9.4.14).

By means of the coordinate change defined by Eqn.(9.4.17), we can write
this metric in Schwarzschild’s coordinates. The relevant coefficients are given
by

g(+)
00 =

1 + β2(1− c2µ0ε(E))
c2µ0ε(E)

, (9.4.23)

g(+)
11 = − 1

1 + β2(1− c2µ0ε(E))
. (9.4.24)

It is important to stress then that the horizon is located at rh given by Eqn.(9.4.14)
for photons with any polarization. Moreover, the motion of the photons in both
geometries will be qualitatively the same, as we shall show below.

9.5 An example

We have not specified up to now the functions ε(E) and E(r) that determine
the dependence of the coefficients of the effective metrics with the coordi-
nate r. From now on we assume a linear ε(E), a type of behaviour which is
exhibited for instance by electrorheological fluids. Specifically, we take

ε(E) = ε0(χ + χ(2)E(r)), (9.5.1)

with χ = 1 + χ(1). The nontrivial Maxwell’s equation then reads(√
−γ ε(r)F01

)
,1

= 0. (9.5.2)
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Taking into account that (F01)2 = E2

c2 , we get as a solution of Eqn.(9.5.2) for a
point source in a flat background in spherical coordinates

F01 =
−χ±

√
χ2 + 4χ(2)Q/ε0r2

2cχ(2)
. (9.5.3)

Let us consider a particular combination of parameters: χ(2) > 0, Q > 0 and
the “+” sign in front of the square root in F01, in such a way that E > 0 for
all r. To get more manageable expressions for the metric, it is convenient to
define the function σ(r):

E(r) ≡ χ

2χ(2)
σ(r) (9.5.4)

where
σ(r) = −1 +

1
r

√
r2 + q (9.5.5)

and

q =
4χ(2)Q

ε0χ2 . (9.5.6)

In terms of σ, the metrics take the form

ds2
(−) =

2− β2 [ χ (σ(r) + 2)− 2]
2 χ (1 + σ(r))

dτ2−

2 + σ(r)
[2− β2 (χ (σ(r) + 2)− 2)] (1 + σ(r))

dr2 − r2dΩ2, (9.5.7)

ds2
(+) =

2− β2 [ χ (σ(r) + 2)− 2]
χ (2 + σ(r))

dτ2−

2
2 + β2 [2− χ (σ(r) + 2)]

dr2 − r2dΩ2. (9.5.8)

Notice that the (t, r) sectors of these metrics are related by the following
expression:

ds2
(+) = Φ(r) ds2

(−) (9.5.9)

where the conformal factor Φ is given by:

Φ = 2
1 + σ(r)
2 + σ(r)

We shall study next some features of the effective black hole metrics. It
is important to remark that up to this point, the velocity of the fluid v1 is
completely arbitrary; it can even be a function of the coordinate r. We shall
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assume in the following that v1 is a constant. This assumption, which will
be lifted later on, may seem rather restrictive but it helps to display the main
features of the effective metrics in an easy way.

To study the motion of the photons in these geometries, we can use the
technique of the effective potential. Standard manipulations show that in the
case of a static and spherically symmetric metric, the effective potential is
given by

V(r) = ε2
(

1 +
1

g00(r) g11(r)

)
− L2

r2g11(r)
(9.5.10)

where ε is the energy and L the angular momentum of the photon.

In terms of σ(r), and of the impact parameter b2 = L2/ε2, the ”small”
effective potential v(r) ≡ V(r)/ε2 for the metric Eqn.(9.5.7) in Schwarzschild
coordinates can be written as follows:

v(−)(r) = 1− 2(1 + σ(r))2

2 + σ(r)
− b2

r2
(2− β2σ(r))(1 + σ(r))

2 + σ(r)
(9.5.11)

A short calculation shows that v(−) is a monotonically decreasing function of
β. b = 1, 3, 5 (starting from the lowest curve), and β = 0.5.

The effective potential for the Gordon-like metric can be obtained in the
same way. From Eqns.(9.5.10) and (9.5.8) we get

v(+)(r) = 1− 2 + σ(r)
2

+
b2

2r2 [2− β2σ(r)]. (9.5.12)

We see that, in the case of a constant flux velocity, the shape of the effective
potential for both metrics qualitatively agrees with that for photons moving
on the geometry of a Schwarzschild black hole.

9.6 Surface gravity and temperature

Let us now go back to the more general case of β = β(r), and calculate the
“surface gravity” of our analog black hole. We present first the results for the
constant permittivity case. By setting ε′(E) ≡ 0 in the metrics Eqns.(9.3.18)
and (9.3.19), we regain the example of constant index of refraction It is easy
to show that the horizon of the black hole in this case is given by

β2(rh) =
1

χ̄− 1
. (9.6.1)
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The “surface gravity” of a spherically symmetric analog black hole in Schwarszchild
coordinates is given by

κ =
c2

2
lim
r→rh

g00,r√
|g11| g00

. (9.6.2)

For the metrics Eqns.(9.3.18) and (9.3.19) with ε = ε0χ̄ and rh given by Eqn.(9.6.1),
the analog surface gravity is

κ = − c2

2
1− χ̄√

χ̄
(β2)′

∣∣∣
rh

. (9.6.3)

This equation can be rewritten in terms of the velocity of light in the medium
and the refraction index, respectively given by

c2
m =

1
µ0ε

, n =
c

cm
. (9.6.4)

The result is

κ =
c2

2
1− n2

n
(β2),r (9.6.5)

In this expression we can see the influence of the dielectric properties of the
fluid (through the index of refraction of the medium) and also of its dynamics
through the physical acceleration in the radial direction, given by

ar|rh
=

c2

2
(β2)′

∣∣∣
rh

,

for β2(rh) � 1. This acceleration is a quantity that must be determined solv-
ing the equations of motion of the fluid 1.

Going back the the more general case of a linear permittivity, described by
the metrics given above and considering that β(rh) � 1, the radius of the
horizon is 2:

r2
h =

qχ̄2

4
β4(rh). (9.6.6)

Using the expressions given above, the result for the surface gravity of the
“−” black hole for β(rh)� 1 is

κ(−) =
c2

β

(
1

χ̄
√

q
− 1

2
(β2)′

)∣∣∣∣
rh

. (9.6.7)

1If we set β ≡ 0 in Eqns.(9.4.11)-(9.4.13), we cease to have a black hole.
2Notice that we cannot take the limit q→ 0 in this expression or in any expression in which

this one has been used.
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This equation differs from the surface gravity of the case of constant permit-
tivity (Eqn.(9.6.3)) by the presence of a new term that does not depend on
the acceleration of the fluid. To see where this new term comes from, we can
go back to the definition of the surface gravity given in Eqn.(9.6.2), and use
the fact that in the high frequency limit the velocity of light and the index of
refraction in a medium of variable ε are still given by Eqn.(9.6.4), replacing
the constant permittivity by ε = ε(E). The result is

κ =
(

c2

2
1− n2(E)

n(E)
(β2),r +

n(E)ε(E)
ε(E) + ε(E)′E

(c2
m),r

)∣∣∣∣
rh

(9.6.8)

In this expression, the first term is the generalization of the case ε = const.
(compare with Eqn.(9.6.5)), which mixes the acceleration of the fluid with its
dielectric properties. On the other hand, the second term, which is the new
term displayed in Eqn.(9.6.7), is related to the radial variation of the velocity
of light in the medium. It is important to point out that the result exhibited in
Eqn.(9.6.8) is parallel to that of dumb holes: Unruh found in that case that the
surface gravity for constant speed of sound is proportional to the acceleration
of the fluid (as in the first term of Eqn.(9.6.8)). This was generalized by Visser,
who showed that for a position-dependent velocity of sound a second term
appears, coming from the gradients of the speed of sound, in analogy with
the second term of Eqn.(9.6.8).

It is easy to show that the these results also apply to the black hole de-
scribed by the Gordon-like metric. This is not surprising though, because of
the conformal relation between the two metrics, given by Eqn.(9.5.9) .

Let us remark once more that the concept of temperature, and indeed that
of effective geometry is valid in this context only for low-energy photons, i.e.
photons with wavelengths long compared to the intermolecular spacing in
the fluid. For shorter wavelengths, there would be corrections to the prop-
agation dictated by the effective metric. However, results for other systems
(such as dumb black holes and Bose-Einstein condensates) suggest that the
phenomenon of Hawking radiation is robust (i.e. independent of this ”high-
energy” physics). Consequently, it makes sense to talk about the temperature
of the radiation in these systems.

At first sight it may seem that by choosing an appropriate material and a
convenient value of the charge we could obtain a high value of the tempera-
ture of the radiation, given by

T ≡ h̄
2πkBc

κ ≈ 4× 10−21 κ Ks2/m. (9.6.9)
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However, the equation for the surface gravity can be rewritten as 3

κ = c2
(

β

2r
− β,r

)∣∣∣∣
rh

.

We see then that, because β(rh) � 1, the new term appearing in κ is bound
to be very small. In spite of this result, the emergence in the surface gravity
of the term due to the variable velocity of light suggests that it may be worth
to study if some media with nonlinear dependence on an external electro-
magnetic field can be used to generate analog black holes whose Hawking
radiation could be measured in laboratory.

3Note that this equation depends on χ(2) through the expression for rh, Eqn.(9.6.6).
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10 Einstein linearized equations of
GR from Heisenberg dynamics

E.HUGUET and M. NOVELLO

10.1 Introduction

The result presented in this paper is concerned by solutions of linearized
equations of Einstein’s general relativity (LEGR). These solutions are con-
structed from a spinor which obeys a non-linear Heisenberg equation (NLHE)
(1) satisfying the Inomata condition (2). As they stand these solutions may
look somehow artificial, it is thus important to make our motivations clear.
The present work originates from our current investigation of a new theory
of gravitation recently proposed by one of us (3), and called Spinor Theory
of Gravity (STG). Although the solutions presented here are completely inde-
pendent of the hypothesis underlying STG let us briefly summarize its mean
features (details may be found in (3)).

The STG originates mainly on the observation that Einstein theory of grav-
itation is based on two independent principles: the equivalence principle
(EP) and the Einstein’s equations for the metric tensor gµν. The first states
that the gravitation may be described as a modification of the geometry of
space-time, the second comes from the natural assumption that the gravi-
tational field should have a dynamics of its own. In STG this last assump-
tion is relaxed. In fact, STG rely on a very different hypothesis: it postu-
late the existence of two fundamentals spinors ΨN, ΨE coupling universally
with all forms of matter/energy. The choice of two spinors is motivated by
the fact that the metric tensor has ten components. The coupling between
spinors and matter/energy takes place consistently with the EP. The spinor
fields - through its vector and axial currents - induce an effective metric of
the form gµν = ηµν + ϕµν where ηµν is the usual Minkowskian metric and
ϕµν depends on the two fundamentals spinors through the basic currents
I(A)
µ := ΨAγµγ5ΨA and J(A)

µ := ΨAγµψA with A = N, E. It is worth to em-
phasize that in STG, by contrast to solutions presented hereafter, ϕµν is not a
perturbation of ηµν. By contrast to the usual Einstein theory, the induced met-
ric gµν do not have a proper dynamics: the evolution of the metric is inherited
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from that of the fundamentals spinors. These obey non-linear Heisenberg
equations of motion. Of course, as a proposal, STG has to be confronted to
well established results. In particular, one must recover the weak field limit.
The solutions presented hereafter were discovered in that context.

10.1.1 Basic properties of the spinor field

Let us consider a four-component spinor ψ and the two associated currents

Jµ = ψ̄γµψ, Iµ = ψ̄γµγ5ψ,

where γµ are the usual Dirac matrices verifying {γµ, γν} = 2ηµν and γ5 :=
iγ0γ1γ2γ3. We assume that the dynamics of ψ is given by the non-linear
lagrangian

L =
i
2

ψ̄γµ∂µψ− i
2
(∂µψ̄)γµψ− s(A2 + B2),

where A := ψ̄ψ, B := iψ̄γ5ψ and s is a real parameter. This lagrangian leads
to the NLHE for ψ:

iγµ∂µψ− 2s(A + iBγ5)ψ = 0. (10.1.1)

A lot of simplifications in calculations with non-linear spinors can be ob-
tained using the identity

(ψ̄Qγµψ)γµψ = (ψ̄Qψ)ψ

− (ψ̄Qγ5ψ)γ5ψ, (10.1.2)

where Q equal to γν, γ5, γνγ5 or the identity of the Clifford algebra. The
above identity is a consequence of the Pauli-Kofink (PK) relations (3). In par-
ticular, from (10.1.2) with Q = I and Q = γ5 one obtains

J2 ≡ Jµ Jµ = A2 + B2,

I2 ≡ Iµ Iµ = −A2 − B2,

which shows that Jµ is time-like, Iµ, space-like and that they are orthogonal
to each other. In addition the Heisenberg potential appears clearly as a vector
current-current coupling.

The Inomata condition

A very interesting class of solutions of NLHE are provided by spinors which
satisfy the Inomata condition (2):

∂µψ = (aJµ + bIµγ5)ψ,
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where a, b are complex numbers. If ψ verify this relation then it provides a
solution of the NLHE for 2s = i(a− b). This can be checked directly by using
the above relation in (10.1.1).

Another important property of Inomata-spinors, which can be shown by
an explicit calculation, is that for any combination Γ constructed with such
spinor ψ and elements of the Clifford algebra the integrability condition

[∂µ, ∂ν]Γ = 0,

holds iff Re(a) = Re(b). In particular, setting r := Re(a) and using the results
of the previous section one has

∂µ Jν = 2r Cµν, ∂µ Iν = 2r Dµν,

with

Cµν := Jµ Jν + Iν Iµ, Dµν := Jµ Iν + Jν Iµ.

A number of identities relating the tensors Cµν, Dµν and the currents Jµ and
Iµ can now be obtained by using the above relations and the identity (10.1.2).
Those useful for our calculations are:

ηµνCµν = 0, ηµνDµν = 0, CµνDµν = 0,
∂µCµν = 0, ∂µDµν = 0,
Cµν Jν = XJµ, Dµν Jν = XIµ,
Cµν Iν = −XIµ, Dµν Iν = −XJµ,
CµνCνσ = X (Jµ Jσ − Iµ Iσ),
DµνDνσ = X (Iµ Iσ − Jµ Jσ),
CµνDνσ = X (Jµ Iσ − Iµ Jσ),

where we have set X ≡ J2.

Linearized Einstein equations in terms of the currents of Inomata-spinors

We are now in position to give new forms to describe the linear equation of
General Relativity. Let us consider a small perturbation ϕµν to the Minkowski
metric ηµν. The metric tensor thus reads gµν = ηµν + ϕµν. Using the results
of previous sections a straightforward calculation shows that

ϕµν :=
Cµν

X
,
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satisfy the equation of motion of a massless spin-2 field (LEGR). Indeed, for
such field it follows that

�ϕµν − ∂α(∂µ ϕ α
ν + ∂ν ϕ α

µ )+

+ ∂µ∂ν ϕ α
α − ηµν(�ϕ α

α − ∂α∂β ϕαβ) = 0.

Let us note that one can construct other combinations of the vector and the
axial currents that satisfy the massless spin-2 equation like, for instance, the
quantities Ωµν and ∆µν defined as:

Ωµν := 4r (1− α)
Dµν

Xα
,

∆µν := 4r
(

Iµ Iν + Jµ Jν

Xβ
− 2β

Xβ
Jµ Jν

)
,

where α and β are arbitrary parameters. However, a straightforward calcu-
lation shows that these are pure gauge that can be transformed away by a
coordinate transformation. Indeed, we have

Ωµν = ∂µχν + ∂νχµ, ∆µν = ∂µην + ∂νηµ,

where

χµ ≡
Iµ

Xα
, ηµ ≡

Jµ

Xα
.

Due to the linearity of the equation we can write the spin-2 field as the com-
bination

Φµν = a
Cµν

X
+ b ∆µν + c Ωµν.

One could argue on the degree of generality of such decomposition. In-
deed, the two vectors Jν and Iµ, do not have enough components to describe
arbitrary second order symmetric tensor. In usual GR framework this could
be corrected by means of a tetrad frame, which contains the necessary num-
ber (four) vectors to describe arbitrary metrics. In the present context, this
can be achieved by the introduction of a second spinor ΨE. This is precisely
what occurs in the Spinor Theory of Gravity in which the presence of two
spinors allows to describe the full gravitational field. In this vein, the general
form of the spin-2 massless field is provided by

Φµν = a
Cµν

X
+ b ∆µν + c Ωµν

+ m
zµν

XE
+ n δµν + q ωµν,

where zµν, δµν and ωµν are constructed with the second spinor field ΨE in an
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analogous way as Cµν, ∆µν and Ωµν are written in terms of the spinor ψ.

Conclusion

In this paper, we have shown that the linearized equations of Einstein general
relativity can be understood as a consequence of a more fundamental equa-
tion of motion for spinor fields that obey the non linear Heisenberg equation
satisfying the Inomata condition. In this respect, this property may be viewed
as pointing to a close connection between gravitation and non-linear spinor
dynamics as it was proposed by us.
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11 Constructing Dirac linear
fermions in terms of non linear
Heisenberg spinors

M. NOVELLO

11.1 ..

There are evidences that neutrino changes from one flavor to another as ob-
served for instance in neutrino oscillations found by the Super-Kamiokande
Collaboration. This mix is understood as an evidence that the neutrino has a
small mass. This has important consequences not only in local laboratory ex-
periments but also in astrophysics and even in cosmology. In a closely related
path, the possibility that not only left-handed but also right-handed neutri-
nos exist has recently attracted interest, receiving a new treatment in a very
imaginative example presented in dealing with the possibility of neutrino
superfluidity. The main idea requires the existence of an interaction between
neutrinos that in the case of small energy and momentum can be described
as a sort of Fermi process. If the field is the same, this interaction is nothing
but an old theory of Heisenberg concerning self-interacting fermions. Re-
cent experiments strongly support the idea that there are only three neutrino
flavours. Based on this and on the possibility of mixing neutrino species, it
has been argued that neutrino flavours are combinations of mass eigenstate-
sof mass mi through a unitary matrix. It would be interesting if we could de-
scribe all these properties as consequences of the existence of a common root
for the neutrino species, e.g., if they are particular realizations of a unique
structure. In this paper we will develop a model of such idea and work out a
unified description of the three species of neutrinos by showing that they can
be considered as having a common origin on a more fundamental nonlinear
structure. Actually such property is not exclusive for neutrinos but instead
is typical for any Dirac fermion (e.g., quark, electron). However as we shall
see, the decomposition of the Dirac fermion in terms of non-linear structure
contains three parameters (associated to the Heisenberg self-interaction con-
stant) that separate different classes of Dirac spinors and three elements for
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each class that could be associated to three types of particles in each class.
This form of decomposition may appear as if we were inverting the common
procedure and treating the simple linear case of Dirac spinor as a particular
state of a more involved self-interacting nonlinear structure. This goes in the
same direction as some modern treatments in which linearity is understood
as a realization of a subjacent nonlinear structure. In this vein we will exam-
ine the hypothesis that neutrinos are special states of nonlinear Heisenberg
spinors.

The main outcome of the present paper is the proof of the statement that
a massive or massless neutrino that satisfies Dirac equation can be described
as a deformation of the Heisenberg spinor.

This finally proves the following Lemma: A free linear massive (or mass-
less) Dirac field can be represented as a combination of Inomata spinors sat-
isfying the non-linear Heisenberg equation.

11.1.1 From Heisenberg to Dirac: How elementar is the
neutrino?

We will make a small intermezzo now to exemplify the interest by its own of
non-linear Heisenberg dynamics. Indeed, in this section we will describe an
unexpected result of the Inomata class IC which states that for any spinor of
IC it is possible to construct another spinor which satisfies the linear Dirac
equation. In other words, we claim that a spinor that satisfies the linear Dirac
equation may be constructed in terms of a non linear structure. This is a
very important and non-trivial result that merits some analysis. Although
this property is not directly related to the Pre-Gravity Theory, it allows us to
understand the importance of the non-linear Heisenberg structure. Besides, it
points in a path to be followed in the future, for a possible unifications scheme
of distinct interactions, like for instance Fermi weak forces and gravity.

Let us start by defining a plane πH characterized by the left and right-
handed Heisenberg spinor:

ΨH = ΨH
L + ΨH

R =
1
2
(1 + γ5)ΨH +

1
2
(1− γ5)ΨH (11.1.1)

We now show that it is possible to write the left and the righ-handed Dirac
spinor as a deformation of ΨH in the plane πH given by

ΨD
L = eF ΨH

L (11.1.2)

ΨD
R = eG ΨH

R (11.1.3)

What are the properties of F and G in order that ΨD satisfies Dirac equa-
tion? In order to answer this question we have to make some additional
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calculations. From eq. (13.1.43) we obtain

∂µΨH
L = (a Jµ + b Iµ) ΨH

L (11.1.4)

∂µΨH
R = (a Jµ − b Iµ) ΨH

R (11.1.5)

Now comes a miracle that permits the accomplishment of our procedure,
which is the fact that the two vectors Jµ and Iµ can be written as gradients
of nonlinear expressions under the form

Jµ = ∂µS,
Iµ = ∂µR, (11.1.6)

where S and R are given in eq. (13.1.47) and (13.1.54). ¿From these equations
it follows

∂µΨD
L =

(
∂F
∂S

Jµ +
∂F
∂R

Iµ

)
ΨD

L + (a Jµ + b Iµ) ΨD
L . (11.1.7)

∂µΨD
R =

(
∂G
∂S

Jµ +
∂G
∂R

Iµ

)
ΨD

R + (a Jµ − b Iµ) ΨD
R . (11.1.8)

Multiplying these expressions by i γµ it follows that ΨD satisfies Dirac
equation if F and G are given by:

F = − 1
2

(b− b) R + (2is− 1
2
(b− b))S +

iM
a + a

e−(a+a)S (11.1.9)

G =
1
2

(b− b) R + (2is− 1
2
(b− b))S +

iM
a + a

e−(a+a)S (11.1.10)

To arrive at this result it is convenient to use the formulas provided by Pauli-
Kofink identities (see (13.1.28) and (11.1.1) ) to obtain:

Jµ γµ ΨL = (A− iB) ΨR

Iµ γµ ΨL = −(A− iB) ΨR

Iµ γµ ΨR = (A + iB) ΨL

Jµ γµ ΨR = (A + iB) ΨL. (11.1.11)

where

A + iB =
J2

A− iB
.

Thus, the linear Dirac field can be written in terms of the non-linear Heisen-
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berg field by:

ΨD
L =

√
J

A− iB
exp

(
iM

(a + a) J
+ (2is− 1

2
(b− b))S

)
ΨH

L (11.1.12)

ΨD
R =

√
A− iB

J
exp

(
iM

(a + a) J
+ (2is− 1

2
(b− b))S

)
ΨH

R , (11.1.13)

where J ≡
√

J2. Using expression (13.1.47) we can simplify these expressions,
once we can write

exp (2is− 1
2
(b− b))S = J2σ

where we have defined

σ ≡
is− 1

4(b− b)
a + a

= − i
4

Im(a)
Re(a)

.

Then, finally, for the Dirac spinor

ΨD = exp
iM

(a + a) J
J2σ

(√
J

A− iB
ΨH

L +

√
A− iB

J
ΨH

R

)
(11.1.14)

or, for the mass-less neutrino

ΨD = J2σ

(√
J

A− iB
ΨH

L +

√
A− iB

J
ΨH

R

)
(11.1.15)

This ends the proof of the following
Lemma: Free linear massive (or mass-less) Dirac field can be represented as

a combination of Inomata spinors satisfying the non-linear Heisenberg equa-
tion.

We must analyze carefully the domain of parameters a and b once the po-
tentials S and R become singular in the imaginary axis and in the real axis,
respectively. Thus we can distinguish different domains in the space of these
two parameters. We set a = a0 eiϕ and b = b0 eiθ. Then, the constraints on
these parameters presented previously, that allows the existence of the Ino-
mata solution, is written under the form:

cosϕ

cos θ
> 0, (11.1.16)

cos ϕ (tanϕ− tanθ) < 0, (11.1.17)

once the Heisenberg constant s is positive. Let us name the following sectors:
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W1 for 0 < ϕ < π
2 ; W2 for π

2 < ϕ < π; W3 for π < ϕ < 3π
2 , and W4 for

3π
2 < ϕ < 2π. In an analogous way we define Z1, Z2, Z3 and Z4 for similar

sectors of θ. We distinguish then six domains:

Ω1 ≡W1 ⊗ Z1

Ω2 ≡W4 ⊗ Z1

Ω3 ≡W4 ⊗ Z4

Ω4 ≡W2 ⊗ Z2

Ω5 ≡W3 ⊗ Z2

Ω6 ≡W3 ⊗ Z3

The missing domains W1 ⊗ Z4 and W2 ⊗ Z3 are forbidden because they vio-
late constraint (11.1.17). Thus, for the massless case, equation (11.1.14) shows
that different choices of the parameters - a and b for a given value of constant
s yields different spinor configurations ΨD. This allows us to write

ΨD = ∑
Ωi

ci Γi,s (11.1.18)

where Γi,s is defined by the rhs of equation (11.1.14) and we have to sum over
all possible independent domains. Note furthermore that we are not obliged
at this level to specify the helicity. This expression exhibits the existence of
a degeneracy: for each Heisenberg theory characterized by a given value of
the self-coupling s there exists six distinct class of Dirac spinors, which we
could identify to three neutrinos and its corresponding anti-neutrinos. In this
framework we can understand the change of flavor of massless neutrinos. Be-
sides, changing the value of s allows the decomposition not only of neutrinos
but also of others fields in terms of fundamental Heisenberg spinors. This is
the end of the Intermezzo.
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12 Cosmological effects of non
linear Electrodynamics

M NOVELLO, ALINE N. ARAUJO and J M SALIM

Recent works have shown the important role that Nonlinear Electrody-
namics (NLED) can have in two crucial questions of Cosmology, concern-
ing particular moments of its evolution for very large and for low-curvature
regimes, that is for very condensed phase and at the period of acceleration.
We present here a a toy model of a complete cosmological scenario in which
the main factor responsible for the geometry is a nonlinear magnetic field
which produces a FRW homogeneous and isotropic geometry. In this sce-
nario we distinguish four distinct phases: a bouncing period, a radiation era,
an acceleration era and a re-bouncing. It has already been shown that in
NLED a strong magnetic field can overcome the inevitability of a singular
region typical of linear Maxwell theory; on the other extreme situation, that
is for very weak magnetic field it can accelerate the expansion. The present
model goes one step further: after the acceleration phase the universe re-
bounces and enter in a collapse era. This behavior is a manifestation of the
invariance under the dual map of the scale factor a(t) → 1/a(t), a conse-
quence of the corresponding inverse symmetry of the electromagnetic field
(F → 1/F, where F ≡ FµνFµν) of the NLED theory presented here. Such se-
quence collapse-bouncing-expansion-acceleration-re-bouncing-collapse con-
stitutes a basic unitary element for the structure of the universe that can be
repeated indefinitely yielding what we call a Cyclic Magnetic Universe.

12.1 Introduction

In the last years there has been increasing of interest on the cosmological ef-
fects induced by Nonlinear Electrodynamics (NLED). The main reason for
this is related to the drastic modification NLED provokes in the behavior
of the cosmological geometry in respect to two of the most important ques-
tions of standard cosmology, that is, the initial singularity and the accelera-
tion of the scale factor. Indeed, NLED provides worthwhile alternatives to
solve these two problems in a unified way, that is without invoking different
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mechanisms for each one of them separately. Such economy of hypotheses
is certainly welcome. The partial analysis of each one of these problems was
initiated in previous paper. Here we will present a description of a new cos-
mological model.

The most general form for the dynamics of the electromagnetic field, com-
patible with covariance and gauge conservation principles reduces to L =
L(F), where F ≡ FµνFµν. We do not consider here the other invariant G ≡
FµνF∗µν constructed with the dual since in our scenario the average of the elec-
tric field vanishes in a magnetic universe as we shall see in the next sections.
Thus, the Lagrangian appears as a regular function that can be developed as
positive or negative powers of the invariant F. Positive powers dominate the
dynamics of the gravitational field in the neighborhood of its moment of ex-
tremely high curvatures. Negative powers control the other extreme, that is,
in the case of very weak electromagnetic fields. In this case as it was pointed
out previously it modifies the evolution of the cosmic geometry for large
values of the scale factor, inducing the phenomenon of acceleration of the
universe. The arguments presented by Lemoine make it worth considering
that only the averaged magnetic field survives in a FRW spatially homoge-
neous and isotropic geometry. Such configuration of pure averaged magnetic
field combined with the dynamic equations of General Relativity received the
generic name of Magnetic Universe.

The most remarkable property of a Magnetic Universe configuration is the
fact that from the energy conservation law it follows that the dependence
on time of the magnetic field H(t) is the same irrespective of the specific
form of the Lagrangian. This property allows us to obtain the dependence of
the magnetic field on the scale factor, without knowing the particular form
of the Lagrangian L(F). Indeed, as we will show later on, from the energy-
momentum conservation law it follows that H = H0 a−2. This dependence
is responsible for the property which states that strong magnetic fields dom-
inates the geometry for small values of the scale factor; on the other hand,
weak fields determines the evolution of the geometry for latter eras when the
radius is big enough to excite these terms.

In order to combine both effects, here we will analyze a toy model. The
symmetric behavior of the magnetic field in both extremes – that is for very
strong and very weak regimes – allows the appearance of a repetitive config-
uration of the kind exhibited by an eternal cyclic universe.

Negative power of the field in the Lagrangian of the gravitational field was
used by Carroll and others in an attempt to explain the acceleration of the
scale factor of the universe by modification of the dynamics of the gravita-
tional field by adding to the Einstein-Hilbert action a term that depends on
negative power of the curvature, that is

S =
M2

Pl
2

∫ √
−g
(

R− α4

R

)
d4x,
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This modification showed not to be a good candidate to describe a local grav-
itational field. However, as a by-product of such proposal, one could envis-
age the possibility to deal with a new symmetry between strong and weak
fields. In a paper by Novello et al, a model assuming this idea was presented
and its cosmological consequences analyzed. In this model, the action for the
electromagnetic field was modified by the addition of a new term, namely

S =
∫ √

−g
(
−F

4
+

γ

F

)
d4x. (12.1.1)

This action yields an accelerated expansion phase for the evolution of the
universe, and correctly describes the electric field of an isolated charge for
a sufficiently small value of parameter γ. The acceleration becomes a conse-
quence of the properties of this dynamics for the situation in which the field
is weak.

In another cosmological context, in the strong regime, it has been pointed
out in the literature that NLED can produces a bouncing, altering another
important issue in Cosmology: the singularity problem. In this article we
would like to combine both effects improving the action given in Eqn.(12.1.1)
to discuss the consequences of NLED for both, weak and strong fields.

It is a well-known fact that under certain assumptions, the standard cos-
mological model unavoidably leads to a singular behavior of the curvature
invariants in what has been termed the Big Bang. This is a highly distress-
ing state of affairs, because in the presence of a singularity we are obliged to
abandon the rational description of Nature. It may happen that a complete
quantum cosmology could describe the state of affairs in a very different and
more complete way. For the time being, while such complete quantum theory
is not yet known, one should attempt to explore alternatives that are allowed
and that provide some sort of phenomenological consequences of a more pro-
found theory.

It is tempting then to investigate how NLED can give origin to an unified
scenario that not only accelerates the universe for weak fields (latter cosmo-
logical era, for latter times) but that is also capable of avoiding an initial sin-
gularity as a consequence of its properties in the strong regime.

Scenarios that avoid an initial singularity have been intensely studied over
the years. As an example of some latest realizations we can mention the pre-
big-bang universe and the ekpyrotic universe. While these models are based
on deep modifications on conventional physics (assuming the important role
of new entities as scalar fields, string theory or branes) the model we present
here relies instead on the electromagnetic field. The new ingredient that we
introduce concerns the dynamics that is rather different from that of Maxwell
in distinct regimes. Specifically, the Lagrangian we will work with is given
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by

LT = α2 F2 − 1
4

F− µ2

F
+

β2

F2 . (12.1.2)

The dimensional constants α, β and µ are to be determined by observation.
Thus the complete dynamics of electromagnetic and gravitational fields are
governed by Einstein equations plus LT.

We shall see that in Friedmann-Robertson-Walker (FRW) geometry we can
distinguish four typical eras which generate a basic unity – which we will call
tetraktys – that repeat indefinitely1. The whole cosmological scenario is con-
trolled by the energy density ρ and the pressure p of the magnetic field. Each
era of the tetraktys is associated with a specific term of the Lagrangian. As
we shall see the conservation of the energy-momentum tensor implies that
the field dependence on the scale factor yields that the invariant F is propor-
tional to a− 4. This dependence is responsible by the different dominance of
each term of the Lagrangian in different phases. The first term α2F2 dom-
inates in very early epochs allowing a bouncing to avoid the presence of a
singularity. Let us call this the bouncing era. The second term is the Maxwell
linear action which dominates in the radiation era. The inverse term µ2/F
dominates in the acceleration era. Finally the last term β2/F2 is responsible
for a re-bouncing. Thus the tetraktys universe can be described in the follow-
ing way:

• The bouncing era: There exists a collapsing phase that attains a mini-
mum value for the scale factor aB(t);

• The radiation era: after the bouncing, ρ + 3p changes the sign; the uni-
verse stops its acceleration and start expanding with ä < 0;

• The acceleration era: when the 1/F factor dominates the universe enters
an accelerated regime;

• The re-bouncing era: when the term 1/F2 dominates the acceleration
changes the sign and starts a phase in which ä < 0 once more; the
scale factor attains a maximum and re-bounces starting a new collaps-
ing phase and entering a bouncing era once more.

This unity of four stages, the tetraktys, constitutes an eternal cyclic config-
uration that repeats itself indefinitely.

The plan of the article is as follows. In section II we review the Tolman
process of average in order to conciliate the energy distribution of the elec-
tromagnetic field with a spatially isotropic geometry. Section III presents the
notion of the Magnetic Universe and its generic features concerning the dy-
namics of electromagnetic field generated by a Lagrangian L = L(F). Section

1This term was taken from Pithagoras who represented the unity of the world constituted
by four basic elements by a geometrical figure called tetratkys.
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IV presents the conditions of bouncing and acceleration of a FRW universe
in terms of properties to be satisfied by L. In section V we introduce the no-
tion of inverse symmetry of the combined electromagnetic and gravitational
fields in a cosmological context. This principle is used to complete the form of
the Lagrangian that guides the combined dynamics of the unique long-range
fields yielding a spatially homogeneous and isotropic nonsingular universe.
In sections VI and VII we present a complete scenario consisting of the four
eras: a bouncing, an expansion with negative acceleration, an accelerated
phase and a re-bouncing. We end with some comments on the form of the
scale factor and future developments. In appendix we present the compati-
bility of our Lagrangian with standard Coulomb law and the modifications
induced on causal properties of nonlinear electrodynamics.

12.2 The average procedure and the fluid
representation

The effects of a nonlinear electromagnetic theory in a cosmological setting
have been studied in several articles.

Given a generic gauge-independent Lagrangian L = L(F), written in terms
of the invariant F ≡ FµνFµν it follows that the associated energy-momentum
tensor, defined by

Tµν =
2√
−γ

δL
√
−γ

δγµν , (12.2.1)

reduces to
Tµν = −4 LF Fµ

α Fαν − L gµν. (12.2.2)

In the standard cosmological scenario the metric structure of space-time is
provided by the FLRW geometry. For compatibility with the cosmological
framework, that is, in order that an electromagnetic field can generates a ho-
mogeneous and isotropic geometry an average procedure must be used. We
define the volumetric spatial average of a quantity X at the time t by

X ≡ lim
V→V0

1
V

∫
X
√
−g d3x, (12.2.3)

where V =
∫ √−g d3x and V0 is a sufficiently large time-dependent three-

volume. In this notation, for the electromagnetic field to act as a source for
the FLRW model we need to impose that

Ei = 0, Hi = 0, EiHj = 0, (12.2.4)

EiEj = −1
3

E2gij, HiHj = −1
3

H2gij. (12.2.5)
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With these conditions, the energy-momentum tensor of the EM field associ-
ated to L = L(F) can be written as that of a perfect fluid,

Tµν = (ρ + p)vµvν − p gµν, (12.2.6)

where

ρ = −L− 4LFE2,

p = L− 4
3

(2H2 − E2) LF, (12.2.7)

where LF ≡ dL/dF.

12.3 Magnetic universe

A particularly interesting case occurs when only the average of the magnetic
part does not vanishes and E2 = 0. Such situation has been investigated
in the cosmological framework yielding what has been called magnetic uni-
verse. This should be a real possibility in the case of cosmology, since in the
early universe the electric field is screened by the charged primordial plasma,
while the magnetic field lines are frozen. In spite of this fact, some attention
was devoted to the mathematically interesting case in which E2 = σ2H2 6= 0.

An interesting feature of such magnetic universe comes from the fact that it
can be associated with a four-component non-interacting perfect fluid. Let us
give a brief proof of the statement that in the cosmological context the energy-
content that follows from this theory can be described in terms of a perfect
fluid. We work with the standard form of the FLRW geometry in Gaussian
coordinates provided by (we limit the present analysis to the Euclidean sec-
tion)

ds2 = dt2 − a(t)2
(

dr2 + r2dΩ2
)

. (12.3.1)

The expansion factor, θ defined as the divergence of the fluid velocity re-
duces, in the present case, to the derivative of logarithm of the scale factor

θ ≡ vµ
;µ = 3

ȧ
a

(12.3.2)

The conservation of the energy-momentum tensor projected in the direction
of the co-moving velocity vµ = δ

µ
0 yields

ρ̇ + (ρ + p)θ = 0 (12.3.3)

Using Lagrangian LT in the case of the magnetic universe yields for the den-
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sity of energy and pressure given in equations (12.2.7):

ρ = − α2 F2 +
1
4

F +
µ2

F
− β2

F2 (12.3.4)

p = − 5α2

3
F2 +

1
12

F− 7µ2

3
1
F

+
11β2

3
1
F2 (12.3.5)

Substituting these values in the conservation law, it follows

LF

[
(H2)̇ + 4 H2 ȧ

a

]
= 0. (12.3.6)

where LF ≡ ∂L/∂F.

The important result that follows from this equation is that the dependence
on the specific form of the Lagrangian appears as a multiplicative factor. This
property shows that any Lagrangian L(F) yields the same dependence of the
field on the scale factor irrespective of the particular form of the Lagrangian.
Indeed, equation (12.3.6) yields

H = H0 a−2. (12.3.7)

This property implies that for each power Fk it is possible to associate a spe-
cific fluid configuration with density of energy ρk and pressure pk in such a
way that the corresponding equation of state is given by

pk =
(

4k
3
− 1
)

ρk. (12.3.8)

We restrict our analysis in the present paper to the theory provided by a toy-
model described by the Lagrangian

LT = L1 + L2 + L3 + L4

= α2 F2 − 1
4

F− µ2

F
+

β2

F2 (12.3.9)

where α, β, µ are parameters characterizing a concrete specific model. For
latter use we present the corresponding many-fluid component associated
to Lagrangian LT. We set for the total density and pressure ρT = ∑ ρi and
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pT = ∑ pi where

ρ1 = −α2 F2 , p1 =
5
3

ρ1

ρ2 =
1
4

F , p2 =
1
3

ρ2

ρ3 =
µ2

F
, p3 = − 7

3
ρ3

ρ4 = − β2

F2 , p4 = − 11
3

ρ4. (12.3.10)

Or, using the dependence of the field on the scale factor equation (12.3.7),

ρ1 = − 4α2 H4
0

1
a8

ρ2 =
H0

2
1
a4

ρ3 =
µ2

2H2
0

a4

ρ4 = − β2

4H4
0

a8. (12.3.11)

Let us point out a remarkable property of the combined system of this NLED
generated by LT and Friedman equations of cosmological evolution. A sim-
ple look into the above expressions for the values of the density of energy
exhibits what could be a possible difficulty of this system in two extreme
situations, that is, when F2 and 1/F2 terms dominate, since if the radius of
the universe can attain arbitrary small and/or arbitrary big values, then one
should face the question regarding the positivity of its energy content. How-
ever, as we shall show in the next sections, the combined system of equations
of the cosmic metric and the magnetic field described by General Relativity
and NLED, are such that a beautiful conspiracy occurs in such a way that
the negative contributions for the energy density that came from terms L1
and L4 never overcomes the positive terms that come from L2 and L3. Before
arriving at the undesirable values where the density of energy could attain
negative values, the universe bounces ( for very large values of the field) and
re-bounces (in the other extreme, that is, for very small values) to precisely
avoid this difficulty. This occurs at the limit value ρB = ρRB = 0, as follows
from equation

ρ =
θ2

3
. (12.3.12)

We emphasize that this is not an extra condition imposed by hand but a
direct consequence of the dynamics described by LT. Indeed, at early stages
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of the expansion phase the dynamics is controlled by the approximation La-
grangian LT ≈ L1,2 = L1 + L2. Then

ρ =
F
4

(1− 4α2 F).

Using the conservation law (12.3.3) we conclude that the density of energy
will be always positive since there exists a minimum value of the scale fac-
tor given by a4

mim = 8α2H2
o . A similar conspiracy occurs in the other extreme

where we approximate LT ≈ L2,3 = L2 + L3, which shows that the density
remains positive definite, since a(t) remains bound, attaining a maximum in
the moment the universe makes a re-bounce. These extrema occurs precisely
at the points where the total density vanishes. Let us now turn to the generic
conditions needed for the universe to have a bounce and a phase of acceler-
ated expansion.

12.4 Conditions for bouncing and acceleration

12.4.1 Acceleration

¿From Einstein’s equations, the acceleration of the universe is related to its
matter content by

3
ä
a

= −1
2
(ρ + 3p). (12.4.1)

In order to have an accelerated universe, matter must satisfy the constraint
(ρ + 3p) < 0. In terms of the quantities defined in Eqn. (12.2.7),

ρ + 3p = 2(L− 4H2LF). (12.4.2)

Hence the constraint (ρ + 3p) < 0 translates into

LF >
L

4H2 . (12.4.3)

It follows that any nonlinear electromagnetic theory that satisfies this in-
equality yields accelerated expansion. In our present model it follows that
terms L2 and L4 produce negative acceleration and L1 and L3 yield inflation-
ary regimes (ä > 0).

For latter uses we write the value of ρ + 3p for the case of Lagrangian LT :

ρ + 3p = −6α2F2 +
F
2
− 6µ2

F
+

10β2

F2 .
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12.4.2 Bouncing

In order to analyze the conditions for a bouncing it is convenient to re-write
the equation of acceleration using explicitly the expansion factor Θ, which is
called the Raychaudhuri equation:

θ̇ +
1
3

θ2 =
1
2
(ρ + 3p) (12.4.4)

Thus besides condition (12.4.3) for the existence of an acceleration a bounce
needs further restrictions on a(t). Indeed, the existence of a minimum (or
a maximum) for the scale factor implies that at the bouncing point B the
inequality (ρB + 3pB) < 0 (or, respectively, (ρB + 3pB) > 0) must be satis-
fied. Note that at any extremum (maximum or minimum) of the scale factor
the density of energy vanishes. This is a direct consequence of the first inte-
gral of Friedman equation which, in the Euclidean case, reduces to equation
(12.3.12).

12.5 Duality on the Magnetic Universe as a
consequence of the inverse symmetry

The cosmological scenario that is presented here deals with a cyclic FRW ge-
ometry which has a symmetric behavior for small and big values of the scale
factor. This scenario is possible because the behavior of its energy content
at high energy is the same as it has in its weak regime. This is precisely the
case of the magnetic universe that we are dealing with here. To obtain a per-
fect symmetric configuration for our model we will impose a new dynamical
principle:

• The inverse symmetry principle:

The NLED theory should be invariant under the inverse map

F → F̃ =
4µ2

F
.

This restricts the number of free parameters from three to two, once a direct
application of this principle implies that β2 = 16α2µ4. This symmetry induces
a corresponding one for the geometry. Indeed, the cosmological dynamics is
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invariant under the associated dual map

a(t)→ ã(t) =
H0√

µ

1
a

(12.5.1)

It is precisely this invariance that is at the origin of the cyclic property of this
cosmological scenario.

Let us point out that the above map is a conformal transformation. Indeed,
in conformal time, the geometry takes the form

ds2 = a(η)2
(

dη2 − dr2 − r2dΩ2
)

. (12.5.2)

Thus making the conformal map

g̃µν = Ω2 gµν

where Ω = λ/a2, and λ ≡ H0/
√

µ. Note that although the Lagrangian LT is
not invariant under a conformal transformation, the average procedure used
to make compatible the dynamical system of the electomagnetic field and the
Friedman equation is invariant. Indeed, we have

F̃ = g̃µν g̃αβ FαµFβν =
4µ2

F
.

12.6 A complete scenario

There is no doubt that electromagnetic radiation described by a maxwellian
distribution has driven the cosmic geometry for a period. Now we would like
to analyze the modifications introduced by the non linear terms in the cosmic
scenario. The simplest way to do this is to combine the previous lagrangian
with the dependence of the magnetic field on the scale factor. We set

LT = α2 F2 − 1
4

F− µ2

F
+

β2

F2 (12.6.1)

where β is related to the other parameters α and µ by the inverse symmetry
principle, as displayed above.

12.7 Potential

It will be more direct to examine the effects of the magnetic universe con-
trolled by the above lagrangian if we undertake a qualitative analysis using
an analogy with classical mechanics. Friedman’s equation reduces to the set
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ȧ2 + V(a) = 0 (12.7.1)

where
V(a) =

A
a6 −

B
a2 − Ca6 + Da10 (12.7.2)

is a potential that restricts the motion of the localization a(t) of the “particle”.
The constants in V are given by

A =
4α2H4

0
3

, B =
H2

0
6

, C =
µ2

6H2
0

, D =
4α2µ4

3H4
0

,

and are positive.
We can then synthesize the properties of the magnetic universe the dynam-

ics of which is given by LT. We recognize that the dependence of the field as
H = H0/a2 implies the existence of four distinct epochs, which we will ana-
lyze now.

The derivative dL/dF has three zeros in points a, b, c. In these points ρ +
p vanishes. In the case of pure magnetic universe the value of F is always
positive. We distinguish the following eras:

12.8 The four eras of the Magnetic Universe

The dynamics of the universe with matter density given by Eqn.(12.11.2) can
be obtained qualitatively from the analysis of Einstein’s equations We distin-
guish four distinct periods according to the dominance of each term of the
energy density. The early regime (driven by the F2 term); the radiation era
(where the equation of state p = 1/3ρ controls the expansion); the third accel-
erated evolution (where the 1/F term is the most important one) and finally
the last era where the 1/F2 dominates and in which the expansion stops, the
universe re-bounces and enters in a collapse era.

12.9 Bouncing era

In the strong field limit the value of the scalar of curvature is small and the
volume of the universe attains its minimum, the density of energy and the
pressure are dominated by the terms coming from the quadratic lagrangian
F2 and is approximated by the forms

ρ ≈ H2

2
(1− 8α2 H2)

p ≈ H2

6
(1− 40α2 H2) (12.9.1)
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Using the dependence H = Ho/a2, leads to

ȧ2 =
kH2

o
6 a2

(
1− 8α2H2

o
a4

)
− ε. (12.9.2)

We remind the reader that we limit our analysis here to the Euclidean section
(ε = 0). As long as the right-hand side of equation (12.9.2) must not be nega-
tive it follows that, the scale-factor a(t) cannot be arbitrarily small. Indeed, a
solution of (12.9.2) is given as

a2 = Ho

√
2
3

(t2 + 12 α2). (12.9.3)

The linear case can be achieved by setting α = 0. The average strength of the
magnetic field H evolves in time as

H2 =
3
2

1
t2 + 12 α2 . (12.9.4)

Note that at t = 0 the radius of the universe attains a minimum value at the
bounce:

a2
B = Ho

√
8 α2. (12.9.5)

Therefore, the actual value of aB depends on Ho, which - for given α, µ turns
out to be the sole free parameter of the model. The energy density ρ reaches
its maximum for the value ρB = 1/64α2 at the instant t = tB, where

tB =
√

12 α2. (12.9.6)

For smaller values of t the energy density decreases, vanishing at t = 0,
while the pressure becomes negative. Only for very small times t <

√
4α2/k

the non-linear effects are relevant for cosmological solution of the normal-
ized scale-factor. Indeed, solution (12.9.3) fits the standard expression of the
Maxwell case at the limit of large times.

12.10 Radiation era

The standard, Maxwellian term dominates in the intermediary regime. Due
to the dependence on a−2 of the field, this phase is defined by H2 >> H4

yielding the approximation

ρ ≈ H2

2

p ≈ H2

6
(12.10.1)
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This is the phase dominated by the linear regime of the electromagnetic field.
Its properties are the same as described in the standard cosmological model.

12.11 The accelerated era: weak field drives the
cosmological geometry

When the universe becomes larger, negative powers of F dominates and the
distribution of energy becomes typical of an accelerated universe, that is:

ρ ≈ 1
2

µ8

H2

p ≈ −7
6

µ8

H2 (12.11.1)

In the intermediate regime between the radiation and the acceleration regime
the energy content is described by the combined form

ρ =
H2

2
+

µ2

2
1

H2 ,

or, in terms of the scale factor,

ρ =
H2

0
2

1
a4 +

µ2

2H2
0

a4. (12.11.2)

For small a it is the ordinary radiation term that dominates. The 1/F term
takes over only after a =

√
H0/µ, and would grows without bound after-

wards. In fact, the curvature scalar is

R = Tµ
µ = ρ− 3p =

4µ2

H2
0

a4,

showing that one could expect a curvature singularity in the future of the
universe for which a → ∞. We shall see, however that the presence of the
term 1/F2 changes this behavior.

Using this matter density in Eqn.(12.4.1) gives

3
ä
a

+
H2

0
2

1
a4 −

3
2

µ8

H2
0

a4 = 0.

To get a regime of accelerated expansion, we must have

H2
0

a4 − 3
µ8

H2
0

a4 < 0,
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which implies that the universe will accelerate for a > ac, with

ac =

(
H4

0
3µ8

)1/8

.

12.12 Re-Bouncing

For very big values of the scale factor the density of energy can be approxi-
mated by

ρ ≈ µ2

F
− β2

F2 (12.12.1)

and we pass from an accelerated regime to a phase in which the accelera-
tion is negative. When the field attains the value FRB = 16α2µ2 the universe
changes its expansion to a collapse. The scale factor attains its maximum
value

a4
max ≈

H2
0

8α2µ2 .

12.13 Positivity of the density of energy

The total density of energy of the tetraktys universe is always positive def-
inite (see equation 12.3.12). In the bouncing and in the re-bouncing eras it
takes the value ρB = ρRB = 0. At these points the density is an extremum.
Actually, both points are minimum of the density. This is a direct conse-
quence of equations (12.3.3) and (12.3.12). Indeed, derivative of (12.3.3) at the
bouncing and at the re-bouncing yields

ρ̈B =
3
2

p2
B > 0.

Thus there must exists another extremum of ρ which should be a maximum.
This is indeed the case since there exists a value on the domain of the evolu-
tion of the universe between the two minima such that

ρc + pc = 0.

At this point we have

ρ̈ + ṗc θc = 0

showing that at this point c the density takes its maximum value.

1583



12 Cosmological effects of non linear Electrodynamics

12.14 The behavior of the scale factor

Let us pause for a while and describe the form of the scale factor as function
of time in the four regimes. To simplify such description let us separate in
three parts:

Phase A: Bouncing-Radiation

Phase B: Radiation-Acceleration

Phase C: Acceleration-Rebouncing

characterized respectivelly by the dynamics controlled by: LA = L1 +
L2; LB = L2 + L3; LC = L3 + L4. It is straightforward to obtain an analyti-
cal expression for each one of these periods. We obtain for phase A :

a(t)BR =
√

H0

(
2
3

t2 + 12 α2
) 1

4

(12.14.1)

The inverse symmetric phase C is given by

a(t)AR = Constant

(
(t− tc)2 +

8α2µ4H2
0

µ2

)− 1
4

(12.14.2)

For the case of phase B it is convenient to use an auxiliary coordinate Ψ and
write A specific form is provided by

t =
√

3
2
√

µ
F(arcosΨ,

√
2

2
)

Ψ =
1− na4

1 + na4 (12.14.3)

where n ≡ µ/H2
0 , and F is a first kind elliptic function.

12.15 Some general comments

Although we have analyzed a simplified toy model it displays many regular
properties that should be worth of further investigation. In particular, it pro-
vides a spatially homogeneous and isotropic FRW geometry which has no
Big Bang and no Big Rip. It describes correctly the radiation era and allows
for an accelerated phase without introducing any extra source.

The particular form of NLED described here is based on a new principle
that states an intimate relation between strong and weak field configurations.
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This inverse-symmetry principle reduces the number of arbitrary parameters
of the theory and allows for the regular properties of the cosmical model.
The universe is a cyclic one, having its main characteristics synthesized in
the following steps:

• Step 1: The universe contains a collapsing phase in which the scalar
factor attains a minimum value aB(t);

• Step 2: after the bouncing the universe expands with ä < 0;

• Step 3: when the 1/F factor dominates the universe enters an acceler-
ated regime;

• Step 4: when 1/F2 dominates the acceleration changes the sign and
starts a phase in which ä < 0 once more, the scale factor attains a maxi-
mum and re-bounces starting a new collapsing phase;

• Step 5: the universe repeats the same behavior passing steps 1, 2, 3 and
4 again and again, indefinitely.

The particular form of the dynamics of the magnetic field is dictated by
the inverse principle, which states that the behavior of the field is invariant

under the mapping F → F̃ = 4µ2

F . This reflects on the symmetric behavior of
the geometry by the dual map a→ ã = constant

a .
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13 Spinor theory of Gravity

M.NOVELLO

13.1 Introduction to STG

¿From Einstein Equivalence Principle (EEP) it follows that universality of
gravitational processes leads naturally to its identification to a metric tensor
gµν. However anyone that accepts this interpretation of the EEP should ask,
before adopting the General Relativity approach the following question: giv-
ing the observational fact that any piece of matter/energy provokes a mod-
ification of the geometry in which this piece is merged, could one be led to
the unique conclusion that this modification is driven by a differential equa-
tion containing derivatives up to second order of the metric tensor and by
properties of the matter that represents its energy distribution? Should one
be obliged to conclude that there is no other logical way to understand this
fact? Is there a unique and only way that compels any sort of gravitationally
interacting matter to modify space-time geometry through a direct relation
between a continuous local modification of the geometry and the correspond-
ing matter-energy content? In other words, are we contrived to accept that
geometry is also a physical component of nature, requiring unequivocally a
dynamical equation itself? Is this the unique way to implement the Equiva-
lence Principle? General Relativity is a complete realization of EEP that an-
swers yes to these questions. These lectures will deal with Pre-Gravity The-
ory, which provides a distinct and competitive way to implement EEP which
answers no to all these questions.

In the Spinor Theory of Gravity (STG) the gravitational field is represented
in terms of two fundamental spinor fields ΨE and ΨN. Its origins goes back to
a complementary view of EEP, according to which the geometrical field is an
induced quantity that depends on some intimate microscopic sub-structure.
This sub-structure does not have by itself a geometric origin by instead is a
matter field.

We could say that GR is based on a vision according to which space-time is
to be understood as the arena of Physics (in Wheeler’s words) and gravity is
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nothing but the consequence of a direct modification of the intrinsic geometry
of such an arena. PG on the other hand, considers that the arena contains only
matter and energy and the geometry is nothing but a specific way related to
these real quantities or substances interacts among themselves.

In this way, in STG it has no practical sense to attribute a dynamics to the
geometry. Its evolution is just a natural consequence of the dynamics of mat-
ter interacting gravitationally, as we shall see.

Accepting the idea that the metric tensor is a derived quantity that is, it
is not an independent dynamical variable, then we face the question: what
should be the intermediate dynamical variables that represents the gravita-
tional phenomenon? In his analysis of similar question, Feynmann argued
against the possibility to identify such dynamical entity to different kinds of
continuum fields like scalar, spinor and vector. Let us review this analysis.
The argument against the scalar field rests on the impossibility of describe
the influence of gravity in photon propagation. Accepting that the net ef-
fect of a scalar field should produce only conformally flat geometries then
it follows that conformal invariance of Maxwell electrodynamics imply the
absence of any direct influence of gravity on photon propagation. This was
ruled out by the Sobral observation. The impossibility to identify gravity to
vector field is related to the purely attractive effect of gravity. For neutrino-
like field the Feynmann argument rests on the impossibility of having a 1/r
static potential. Then he concludes that only a tensorial field ϕµν could fulfill
this criteria which led that the dynamical quantity of gravitational field has to
be identified with the metric tensor. The Spinor Theory of Gravity provides
a distinct answer. We shall see that Feynmann critics against spinor field is
surmounted if we consider two spinor fields. In this case we do obtain the
required 1/r static potential. We will be led then to adopt a two-spinor field
to be the fundamental quantity to describe gravitational processes. The met-
ric tensor, needed to fulfill the equivalence Principle is treated as an induced
quantity. Let us turn to the analysis of this theory. This is the theory we will
analyze. Before this, just a few words on history.

13.1.1 Pre-history

In this session we would like to spend some time in order to clarify the sta-
tus of the Pre-Gravity Theory (PGT) with respect to other theories that deal
with similar objects (spinors) or with alternative dynamics of the gravita-
tional field.

They can be separated into two classes. The first class contain theories
that deal with the idea that the intermediate of the gravitational field, the
hypothetical graviton, should be a composite particle. This idea goes back
to the original papers of de Broglie which still in the first half of the twen-
tieth century tried to develop this in what he called ”théorie de la fusion”.
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Using the property of addition of spin, de Broglie introduced the idea of par-
ticles having states between a minimum value 1

2 to a maximum value S. The
higher states being a certain cooperative fusion of lower ones. He succeeded
in obtaining the equations of motion of spin 1 and 2 in the weak field ap-
proximation. This approach defines a specific dynamics for each component
of spin. In the traditional view, de Broglie intends to reproduce the individ-
ual dynamics of the fields in terms of the dynamics of the basic stuffs. This
approach, if it could be pushed beyond its linearized formulation stands in
the tradition of physics that provides one dynamic field for each basic inter-
action: electrodynamics and gravity being the paradigmatic ones, the unique
that contains a classical interpretation. We shall see in these lectures that de
Broglie’s approach has no point of contact with STG which takes the radical
point of view arguing that there is no such thing as an independent dynamics
which controls the gravitational forces.

The second class contains theories that consider the metric as a sub-product
of more fundamental entities. In this class we find, for instance, what is called
Spinor gravity and the vierbein formulation. These theories provides a dy-
namics for the metric, but it appears in terms of more rich structures. In the
case of vierbein one takes a set of four independent four-vectors Ea

µ which
is a local vector for arbitrary coordinate transformation and a Lorentz vec-
tor under local Lorentz rotation. In general the dynamics associated to this
structure needs the presence of a non-symmetric connection. A typical theory
makes use of Cartan geometries instead of the more symmetrical Riemannian
of GR. Another category deals with spinors that are at the basis of the rieman-
nian structure like for instance taking the elements of a Clifford algebra – the
generalization of the constant γµ of Dirac — as the basic elements of the the-
ory. Both class accepts the idea that gravity must have its own dynamics.
They differ in the way such dynamics is constructed and in the structure of
the basic elements of the gravitational field: either the metric tensor itself or
some sort of larger structure.

13.1.2 Historical comment

In a series of papers Heisenberg examined a proposal regarding a complete
quantum theory of fields and elementary particles. Such a huge and ambi-
tious program did not fulfill his initial expectation. It is not our intention
here to discuss this program. For our purpose, it is important only to re-
tain the original non linear equation of motion which Heisenberg postulated
for the constituents of the fundamental material blocks of all existing matter.
The modern point of view has developed in a very different direction and
it is sufficient to take a look at the book of Particle Data Properties and the
description of our actual knowledge of the elementary particle properties to
realize how far from Heisenberg dream the theory has gone.
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So much for the historical context. What we would like to retain from
Heisenberg’s approach reduces exclusively to his suggestion of a non linear
equation of motion for a spinor field. We will use this equation for both our
fundamental spinors, once as we will now see, it is the simplest non-linear
dynamics that can be constructed in a covariant way.

13.1.3 Introducing some ideas of STG

There is no doubt that the activity in the field of experimental gravitation
has increased largely in the last decades. New space measurements and as-
tronomical discoveries, including those of cosmological origin are mainly re-
sponsible for this. At the basis of any theory of gravity compatible with such
observations, one has the Einstein Equivalence Principle (EEP) which can be
described as three conditions:

a. The weak equivalence principle is valid (that is, all bodies fall precisely
the same way in a gravitational field);

b. The outcome of any local non-gravitational experiment is independent
of the velocity of the freely-falling reference frame in which it is performed;

c. The outcome of any local non-gravitational experiment is independent
of where and when in the universe it is performed;

¿From the validity of this EEP one infers that ”the gravitation must be a
curved space-time phenomenon”. This was implemented by Einstein by as-
suming that the curvature of the space-time is related to the stress-energy-
momentum tensor of matter in space-time and by postulating a specific form
for such an equation. Taken together, the EEP and Einstein’s equation consti-
tute the basis of a successful program of a theory of gravity.

Is this the unique way to deal with the universality of gravitational pro-
cesses? Is the only way to implement the EEP? Recently we proposed a new
look into this old question by arguing that it is possible to treat the metric of
space-time - that in General Relativity (GR) describes the gravitational inter-
action - as an effective geometry, that is, the metric acting on matter is not
an independent field and as such does not posses its own dynamics. Instead,
it inherits one from the dynamics of two fundamental spinor fields ΨE and
ΨN which are responsible for the gravitational interaction and from which an
effective geometry appears.

The nonlinear character of gravity should be present already at the most
basic level of these fundamental structures. It seems natural to describe this
nonlinearity in terms of the invariants constructed with the spinor fields. The
simplest way to build a concrete model is to use the standard form of a con-
traction of the currents of these fields, e.g. Jµ Jµ, to construct the Lagrangian
of the theory. We assume that these two fields (which are half-integer repre-
sentations of the Poincaré group) interact universally with all other forms of
matter and energy. As a consequence, this process can be viewed as nothing
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but a change of the metric of the space-time. In other words, the influence of
these spinor fields on matter/energy is completely equivalent to a modifica-
tion of the background geometry into an effective Riemannian geometry gµν.
In this aspect this theory agrees with the idea of General Relativity theory
which states that the Equivalence Principle implies a change on the geome-
try of space-time as a consequence of the gravitational interaction. However,
the similarities between the Spinor Theory of Gravity and General Relativity
stop here.

To summarize, let us stress the main steps of this program.
a. There exist two fundamental spinor fields – which we will name ΨE and

ΨN;
b. The interaction of ΨE and ΨN is described by Fermi Lagrangian;
c. The fields Ψ and ΨN interact universally with all forms of matter and

energy;
d. As a consequence of this coupling with matter, the universal interaction

produces an effective metric;
e. The dynamics of the effective metric is already contained in the dynam-

ics of ΨE and ΨN : the metric does not have a dynamics of its own, but inherits
its evolution through its relation with the fundamental spinors.

We understand that the need of two spinors is a fundamental one. Indeed,
a four-component Dirac spinor Ψ has 8 degrees of freedom. Thus, we have
2x8 quantities at our disposal to generate the 10 independent components
of the metric tensor gµν. Once in the STG only the vector and axial currents
appear, we have the liberty to make a local Lorentz rotation in the spinors,
which eliminates 6 superfluous conditions.

In a previous paper we presented a particular example of the effective met-
ric in the case of a compact spherically static object, like a star and have shown
that it is astonishingly similar to the Schwarzschild solution of GR.

Before entering the analysis of these questions let us briefly comment our
motivation. As we shall see, the present proposal and the theory of General
Relativity have a common underlying idea: the characterization of gravita-
tional forces as nothing but the effect on matter and energy of a modification
of the geometry of space-time. This major property of General Relativity re-
mains unchanged. The main difference concerns the dynamics that this ge-
ometry obeys. In GR the dynamics of the gravitational field depends on the
curvature invariants; in the Spinor Theory of Gravity such a specific dynam-
ics simply does not exist: the geometry evolves in space-time according to
the dynamics of the spinors ΨE and ΨN. The metric is not a field of its own,
it does not have an independent reality but is just a consequence of the uni-
versal coupling of matter with the fundamental spinors. The motivation of
walking down only half of Einstein’s path to General Relativity is to avoid
certain known problems that still plague this theory, including its difficult
passage to the quantum world and the questions put into evidence by astro-
physics involving many discoveries such as the acceleration of the universe,
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the problems requiring dark matter and dark energy. It seems worthwhile
to quote here : ”Dark energy appears to be the dominant component of the
physical Universe, yet there is no persuasive theoretical explanation for its
existence or magnitude. The acceleration of the Universe is, along with dark
matter, the observed phenomenon that most directly demonstrates that our
theories of fundamental particles and gravity are either incorrect or incom-
plete. Recent observations in Cosmology are responsible for an unexpected
attitude: to take seriously the possibility of modifying Einstein’ s theory of
gravity”. Pre-Gravity, a spinorial theory of gravity presents the possibility of
a way out of these difficulties. The reason, which will be explained later on,
can be understood from the fact that in the STG there is no direct relation-
ship between the acceleration of the scale factor of the universe and the mat-
ter/energy distribution, contrary to the case of GR, in which the Friedman
equation that controls the dynamics of the universe relates the matter-energy
content to the geometry through the evolution of the scale factor a(t) :

ä
a

= − 1
6

(ρ + 3p).

It follows from this equation that if the universe is accelerating, then some-
thing very unusual must occur, like, for instance, a very negative pressure
term dominating the evolution. As we shall see, nothing similar happens in
STG, since the way in which matter influences the dynamics of the geometry
does not take such form.

In the first subsection we present the mathematical background used in
the paper and in particular the very important Pauli-Kofinki identity. These
relations allow us to obtain a set of products of currents which will be very
useful to simplify our calculations. In section II we recall the definition of the
effective metric and some of its properties and compare with the field the-
ory formulation of General Relativity. In section III we present the dynamics,
separated in two parts: i) the kinetic part, which tells us how particles move
in a given gravitational field; and ii) the influence of matter on the formation
of the gravitational field. We shall see that in what concerns the first part, the
Spinor Theory of Gravity is completely identical to General Relativity. They
differ in the second part, once in STG there is no independent dynamics for
the geometry. In the field theory formulation of General Relativity as it was
described in the fifties by Gupta, Feynman and others, and more recently
Grischuck et al, the gravitational field can be described alternatively either
as the metric of space-time – as in Einstein’s original version – or as a field
ϕµν in an arbitrary unobservable background geometry, which is chosen to
be Minkowski. We shall see that by universally coupling the spinor fields to
all forms of matter and energy, a metric structure appears, in a similar way
to the field theoretical description of GR. The main distinction between these
two approaches concerns the status of this metric. In General Relativity it has
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a dynamics provided by a Lagrangian constructed in terms of the curvature
invariants. In our proposal, this is not the case. The metric is an effective
way to describe gravity and it appears because of the universal form of the
coupling of matter/energy of any form and the fundamental spinors. Be-
fore entering in the analysis of the new theory let us make some comments
concerning others metric representation to describe dynamics in field theory.

We will exhibit two examples of such theoretical framework, one provided
by a scalar field and another one given by non-linear Electrodynamics.

Non-linear Scalar field

In recent years a lot of speculative theories concerning non-linear scalar field
have been proposed. The main motivation to consider seriously such sugges-
tions is related to the so-called dark-energy problem, that we have mentioned
above. To simplify our analysis let us limit ourselves to consider scalar field
models whose Lagrangian have a non-canonical form

L = F(W) , (13.1.1)

where W := ∂µ ϕ ∂µ ϕ. The corresponding energy-momentum tensor is given
by

Tµν = −L gµν + 2LW ∇µ ϕ∇ν ϕ , (13.1.2)

where LW := ∂L/∂W.
The study of the behavior of discontinuities of the equations of motion

around a fixed background solution (which we will call scalarons) can be
made either using the traditional perturbation method (the eikonal approxi-
mation) or the more elegant formalism synthesized in the work of Hadamard.
In this method, the propagation of high-energy scalarons is studied by fol-
lowing the evolution of the wave front, through which the field is continuous
but its first derivative is not. To be specific, let σ be the surface of discontinu-
ity defined by the equation

σ(xµ) = const .

The discontinuity of a function J through the surface σ will be represented by
[J]σ, and its definition is

[J]σ := lim
δ→0+

(
J|σ+δ − J|σ−δ

)
.

The discontinuities of the field and its first derivative are given by

[ϕ]σ = 0 , [∇µ ϕ]σ = 0 ,
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[∇µ∇ν ϕ]σ = χ kµ kν .

where the vector kµ is the normal to the surface of discontinuity. Using these
values in the equation of motion for the field ϕ,

∇µ (LW∇µ ϕ) = 0 , (13.1.3)

we obtain
kµ kν gµν

e f f = 0 , (13.1.4)

where the effective metric is given by

gµν
e f f = LW gµν + 2LWW ∇µ ϕ∇ν ϕ (13.1.5)

and gµν is the background metric. Only in the case of a linear theory L = W,
the metric that controls the propagation of the discontinuities of the field co-
incides with the background metric. Therefore, the propagation of disconti-
nuities of the scalar field, which we called scalaron, follows null curves in an
effective metric that is not universal, but instead depends on the field con-
figuration. We should emphasize that this property is quite generic for any
nonlinear field theory. In terms of the background geometry we can re-write
the equation of propagation as

kµkνgµν = −2LWW

LW

(
kµ∇µ ϕ

)2 . (13.1.6)

This means that in the background geometry the scalaron behaves as time-
like particles in cases in which LW LWW < 0, and it behaves as tachyons in the
cases in which LW LWW > 0.

13.1.4 Geometrization in non-linear field theory

The question presented in the previous section and that will appear many
times in the present lectures can be set in the following convenient way: given
that the description of the effects of a gravitational field in the motion of mat-
ter can be described by a modification of the geometry of space-time does this
implies necessarily that the gravitational field must be described by an equa-
tion involving derivatives up to second order of the metric tensor? Should
this modification of the geometry as experienced by matter in its kinemati-
cally behavior be just a simplified and compact formal way to describe such
dynamics? It is certainly true that it is a formal benefit if instead of a force
field we can interpret the motion of a body in a given gravitational field as
nothing but as a free motion in a specific curved geometry, identifying the
gravitational phenomenon as a modification of the geometric structure of
space-time. Is this just a formal simplification and no more than this? We
shall deal in these lectures with two opposite answers. One, provided by
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General Relativity and other given by Pre-Gravity. Before going into these al-
ternative proposals and in order to understand more deeply the status of each
one, let us analyze a minor correlated question that appears in a certain class
of non-linear field theories. We shall see that there exists some theoretical
framework in which the modification of the background geometry describes
a given dynamics but it does not allow to treat the whole interaction process
through the modification of the associated geometry.

The Effective Metric of Nonlinear Electrodynamics

Historically, the first example of the idea of effective metric was presented in
1923 by W. Gordon. In modern language, the wave equation for the prop-
agation of light in a moving non-dispersive medium, with slowly varying
refractive index n and 4-velocity uµ:[

∂α∂α + (n2 − 1)(uα∂α)2
]

Fµν = 0.

Taking the geometrical optics limit, the Hamilton-Jacobi equation for light
rays can be written as gµνkµkν = 0, where

gµν = ηµν + (n2 − 1)uµuν (13.1.7)

is the effective metric for this problem. It must be noted that only photons
in the geometric optics approximation move on geodesics of gµν: the parti-
cles that compose the fluid couple instead to the background Minkowskian
metric.

Let us study now in detail the example of nonlinear electromagnetism. We
start with the action

S =
∫ √
−γ L(F) d4x, (13.1.8)

where F ≡ FµνFµν
1 Varying this action w.r.t. the potential Wµ, related to the

field by the expression

Fµν = Wµ;ν −Wν;µ = Wµ,ν −Wν,µ,

we obtain the Euler-Lagrange equations of motion (EOM)

(LFFµν);ν = 0, (13.1.9)

where LF is the derivative LF ≡ ∂L/∂F. In the particular case of a linear
dependence of the Lagrangian with the invariant F we recover Maxwell’s

1We could have considered L = L(F, G) instead, where G ≡ F∗µνFµν. This case is studied
in detail, and L is an arbitrary function of F. Notice that γ is the determinant of the
background metric.
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equations of motion.

In the same framework as in the previous case of the non-linear scalar field,
let us study the behavior of perturbations of these EOM around a fixed back-
ground solution. Instead of using the traditional perturbation method, we
shall use the method set out by Hadamard as above. In this method, the
propagation of low-energy photons are studied by following the evolution
of the wave front, through which the field is continuous but its first deriva-
tive is not. To be specific, let Σ be the surface of discontinuity defined by the
equation

Σ(xµ) = constant.

The discontinuities of the field and its first derivative are given by

[Fµν]Σ = 0, [Fµν,λ]Σ = fµνkλ, (13.1.10)

where the vector kλ is nothing but the normal to the surface Σ, that is, kλ =
Σ,λ, and fµν represents the discontinuity of the field. To set the stage for the
nonlinear case, let us first discuss the propagation in Maxwell’s electrody-
namics, for which LFF = 0. The EOM then reduces to Fµν

;ν = 0, and taking the
discontinuity we get

f µνkν = 0. (13.1.11)

The other Maxwell equation is given by F∗µν
;ν = 0 or equivalently,

Fµν;λ + Fνλ;µ + Fλµ;ν = 0. (13.1.12)

The discontinuity of this equation yields

fµνkλ + fνλkµ + fλµkν = 0. (13.1.13)

Multiplying this equation by kλ gives

fµνk2 + fνλkλkµ + fλµkλkν = 0, (13.1.14)

where k2 ≡ kµkνγµν. Using the orthogonality condition from Eqn.(9.2.5) it
follows that

f µνk2 = 0 (13.1.15)

Since the tensor associated to the discontinuity cannot vanish (we are assum-
ing that there is a true discontinuity!) we conclude that the surface of discon-
tinuity is null w.r.t. the metric γµν. That is,

kµkνγµν = 0. (13.1.16)
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It follows that kλ;µkλ = 0, and since the vector of discontinuity is a gradient,

kµ;λkλ = 0. (13.1.17)

This shows that the propagation of discontinuities of the electromagnetic
field, in the case of Maxwell’s equations (which are linear), is along the null
geodesics of the Minkowski background metric.

Let us apply the same technique to the case of a nonlinear Lagrangian
for the electromagnetic field, given by L(F). Taking the discontinuity of the
EOM, Eqn.(9.2.3), we get

LF f µνkν + 2η LFF Fµνkν = 0, (13.1.18)

where we defined the quantity η by Fαβ fαβ ≡ η. Note that contrary to the lin-
ear case in which the discontinuity tensor fµν is orthogonal to the propagation
vector kµ, here there is a complicated relation between the vector f µνkν and
quantities dependent on the background field. This is the origin of a more
involved expression for the evolution of the discontinuity vector, as we shall
see next. Multiplying equation (9.2.8) by Fµν we obtain

η k2 + Fµν fνλkλkµ + Fµν fλµkλkν = 0. (13.1.19)

Now we substitute in this equation the term f µνkν from Eqn.(9.2.12), and we
arrive at the expression

LF ηk2 − 2 LFFη(Fµλkµkλ − Fλµkµkλ), (13.1.20)

which can be written as gµνkµkν = 0, where

gµν = LF γµν − 4 LFF FµαFα
ν. (13.1.21)

We then conclude that the high-energy photons of a nonlinear theory of elec-
trodynamics with L = L(F) do not propagate on the null cones of the back-
ground metric but on the null cones of an effective metric, generated by the
self-interaction of the electromagnetic field. This statement is always true in
case of Lagrangians depending only of the invariant F. For Lagrangians that
depend also of F∗, an analogous effective geometry appears.

After these two exercises on the description of the kinematics of the ”quanta”
of the fields we are led to make two comments. First of all, we note that the
modification of the background geometry is a powerful tool in non-linear
field theories. The second comment concern the restriction of this modifica-
tion. Indeed, the effective metric is important only to the limited analysis of
the propagation of the discontinuities. The dynamics of the field is not related
to the properties of the effective metric, in general. Only in the particular case
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of Born-Infeld Electrodynamics it is possible to use a functional of the metric
- actually, the determinant of the effective metric tensor – to act as the La-
grangian of the field. Thus the complete Einstein geometrized scheme cannot
be applied in this case, although a limited form of it is certainly not only pos-
sible but very useful. What we have learned with these two examples can be
summarized: there are properties of non-linear field theories that can be use-
fully described by a change of the metric properties of space-time. In certain
theories - like Electrodynamics - this is a very limited procedure due to the
fact that the theory is not universal. In others, like gravity, it can be applied
to all kind of ponderable substances and to all forms of non-gravitational en-
ergies. Does this implies necessarily that it applies to the gravitational field
itself? In order to answer this question one has to answer a preliminary one:
what is the gravitational field? In the General relativity it is identified with
the geometry and consequently its dynamics must be provided by products
of derivatives of the metric tensor. We shall see that in Pre-Gravity the answer
is completely different.

Conservation laws

After accepting to describe the behavior of any matter or energy in a given
gravitational field by a modification of the Minkowski metric to a Rieman-
nian geometry one one usually remarks that Bianchi identity gives a ”natu-
ral” support of Einstein path for the choice of the dynamics of the gravita-
tional field. Indeed, in any Riemannian geometry the metric tensor satisfies
identically the divergence-less of tensor Gµν that is

Gµν; ν = 0, (13.1.22)

where
Gµν ≡ Rµν −

1
2

R gµν.

The uses of the minimal coupling principle to couple any form of matter and
non-gravitational energy with gravity yields the conservation of the energy-
momentum tensor

Tµν; ν = 0. (13.1.23)

These two properties are not correlated. General relativity makes the hy-
pothesis that the dynamics of the gravitational field is such that these two
identities become just a single one by setting

Rµν −
1
2

R gµν = −κ Tµν. (13.1.24)

It is clear that (13.1.24) makes both divergence-less equations to be co-related.
However, this is just a sufficient condition, not a necessary one. Indeed, the
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validity of ( 13.1.22 ) and (13.1.23) do not imply the validity of (13.1.24).
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13.1.5 Dirac Spinors and the Clifford algebra

In these lectures we will deal with two fields ΨE and ΨN that are four-components
Dirac spinors. We use capital symbols to represent the vector and axial cur-
rents constructed with ΨE and lower case to represent the corresponding
terms of the spinor ΨN, namely,

Jµ ≡ ΨEγµΨE

Iµ ≡ ΨEγµγ5ΨE.

jµ ≡ ΨNγµΨN

iµ ≡ ΨNγµγ5ΨN.

We use the convention and definitions by Elbaz. For completeness we re-
call:

Ψ ≡ Ψ+γ0.

The Clifford algebra is the algebra of the Dirac γ matrix defined by its basic
property

γµ γν + γν γµ = 2gµν I. (13.1.25)

In the case of Minkowski background gµν = ηµν we use the convention pro-
vided by the form:

γ̃0 =
(

I2 0
0 − I2

)

γ̃k =
(

0 σk
−σk 0

)
γ5 =

(
0 I2
I2 0

)
.

that, from now on, we write 1 instead of I to represent the identity of the
Clifford algebra. The γ5 anti-commute with all γµ and is given by

γ5 =
i

4!
ηαβµν γαγβγµγν = iγ0γ1γ2γ3,

where the second equality is valid in a Euclidean coordinate system in the
Minkowski background. Tensor ηαβµν is given in terms of the completely
anti-symmetric Levi-Civita symbol as

ηαβµν =
−1√−g

εαβµν

and g = detgµν. The γ5 is Hermitian and the others γµ obey the Hermiticity
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relation
γ+

µ = γ0γµγ0.

The Pauli matrices satisfy the condition

σi σj = i εijk σk + δij.

We set

σ1 =
(

0 1
1 0

)

σ2 =
(

0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Any spinor can be decomposed into its left and right parts through the iden-
tity

Ψ = ΨL + ΨR =
1
2
(1 + γ5)Ψ +

1
2
(1− γ5)Ψ (13.1.26)

Then
ΨL ΨL = 0,

and
ΨR ΨR = 0.

13.1.6 Pauli-Kofink identity

The properties needed to analyze non-linear spinors are contained in the
Pauli-Kofink (PK) relation. These are identities that establish a set of rela-
tions concerning elements of the four-dimensional Clifford algebra. The main
property states that, for any element Q of this algebra, the PK relation ensures
the validity of the identity:

(ΨQγλΨ)γλΨ = (ΨQΨ)Ψ− (ΨQγ5Ψ)γ5Ψ. (13.1.27)

for Q equal to I , γµ, γ5 and γµγ5, respectively, where I is the identity of the
Clifford algebra. As a consequence of this relation we obtain two extremely
important facts:

• The norm of the currents Jµ and Iµ have the same value and opposite
sign.

• Vectors Jµ and Iµ are orthogonal.

Thus Jµ is a time-like vector and Iµ is space-like.
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Pauli-Kofink formula implies some identities which will be used later on
to simplify our calculations:

Jµ γµ Ψ ≡ (A + iBγ5) Ψ

Iµ γµ γ5 Ψ ≡ −(A + iBγ5) Ψ

Iµ γµ Ψ ≡ (A + iBγ5) γ5Ψ

Jµ γµ γ5 Ψ ≡ −(A + iBγ5) γ5Ψ, (13.1.28)

where A ≡ Ψ Ψ and B ≡ iΨ γ5Ψ. Note that both quantities A and B are real.

13.1.7 Dirac dynamics

In these lectures we analyze two dynamics for the spinor fields: one, linear
and one non-linear. For the linear case we take Dirac theory:

iγµ∂µ Ψ− µ Ψ = 0 (13.1.29)

where M = h̄
c µ is the mass. The corresponding Lagrangian is

L = h̄ c
(

i
2

Ψ̄γµ∂µΨ− i
2

∂µΨ̄γµΨ− µ Ψ̄ Ψ
)

(13.1.30)

Note that on-mass-shell Dirac Lagrangian vanishes:

L(oms) = 0.

¿From the decomposition in a right ΨR and left-handed ΨL helicity it fol-
lows that the mass-term mix both helicities:

iγµ∂µ ΨL −M ΨR = 0 (13.1.31)

iγµ∂µ ΨR −M ΨL = 0 (13.1.32)

13.1.8 Heisenberg dynamics

Let Ψ be a fundamental four-component spinor field. The dynamics of Ψ is
given by the Heisenberg self-interaction Lagrangian (we use from now on the
conventional units were h̄ = c = 1) :

L =
i
2

Ψ̄γµ∂µΨ− i
2

∂µΨ̄γµΨ−V(Ψ). (13.1.33)
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The potential V is constructed with the two scalars that can be formed with
Ψ, that is A and B. We will only consider the Heisenberg potential that is

V = s
(

A2 + B2
)

(13.1.34)

where s is a real parameter of dimension (length)2 yielding the equation of
motion

iγµ∂µ ΨH − 2s (A + iBγ5) ΨH = 0 (13.1.35)

Correspondingly we have

i∂µ ΨH
γµ + 2s ΨH (A + iBγ5) = 0 (13.1.36)

The Heisenberg potential VH can be written in an equivalent and more sug-
gestive form in terms of the associated currents Jµ and Iµ. As a direct conse-
quence of Pauli-Kofinki identities, Heisenberg potential V is nothing but the
norm of the four-vector current Jµ, that is

A2 + B2 = Jµ Jµ.

Note that on-mass-shell, Heisenberg Lagrangian takes the value of its po-
tential:

L(oms) = VH.

Gauge invariance

The dynamics displayed by both Dirac and Heisenberg equations of motion
are invariant under the map

Ψ̃ = S Ψ, (13.1.37)

where S is a unitary matrix2. From Noether theorem this imply that the cur-
rent Jµ is conserved. When the transformation S is space-time dependent
one has to introduce a modification on the derivative as much the same as
it occurs for tensors in arbitrary coordinate transformation when a covari-
ant derivative is defined. We shall deal with this spinor covariant derivative
latter on.

Chiral invariance

Chiral transformation is defined by the map

Ψ
′
= γ5 Ψ.

2We treat in detail the case in which matrix S satisfies the condition S−1S,µ = cµ I.
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Dirac equation is invariant under this map only for massless neutrino equa-
tion. On the other hand, Heisenberg equation is invariant under chirality.
Indeed, we have, for the conjugate spinor:

Ψ
′
= −Ψγ5,

which implies
A
′
= − A

B
′
= − B

consequently the Lagrangian remains the same

L
′
= L

Although the constant s is not a ”mass” it provokes the similar mixing of
Heisenberg spinors ΨL and ΨR. Indeed, we have

iγµ∂µ ΨL − 2s (A− iB) ΨR = 0 (13.1.38)

iγµ∂µ ΨR − 2s (A + iB) ΨL = 0 (13.1.39)

Plane wave solution of Heisenberg equation

Although Heisenberg equation is non-linear it admits a solution as a plane
wave. Actually, any non-linear equation admits such particular type of solu-
tion as noticed by M. Born (citar non-linear optics). We set

Ψ = eikαxα
Ψo (13.1.40)

where Ψo is a constant spinor written in terms of two-components spinors:

Ψo =
(

ϕ
η

)
.

It is convenient to write Heisenberg equation in the form

iγµ∂µ Ψ− 2s (A + iBγ5) Ψ = 0 (13.1.41)

The above decomposition implies that the two-components spinors are not
completely independent. They must satisfy the constraint

η =
(

σiki − 2isBo

k0 − 2sAo

)
ϕ. (13.1.42)
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Compatibility requires the ”on-mass” condition

kµkµ = 4s2 (A2
o − B2

o).

13.1.9 The Inomata solution of Heisenberg dynamics

In ... a very interesting class of solutions of Heisenberg equation was set out
by Inomata. The interest on this class rests on the fact that it allows one di-
rectly to deal with the derivatives of the spinor field allowing, consequently,
to obtain derivatives of the associated metric tensor. Let us present briefly
this class of Heisenberg spinors.

Inomata starts his analysis by the recognition that one can construct a sub-
class of solution of Heisenberg dynamics by imposing a more restrictive con-
dition given by

∂µΨ =
(

a Jµ + b Iµγ5
)

Ψ (13.1.43)

where a and b are complex numbers of dimensionality (lenght)2. A Ψ that
satisfies such Inomata condition will be called I-spinor. It is immediate to
prove that if Ψ satisfies condition(13.1.43) it satisfies automatically Heisen-
berg equation of motion. This is a rather strong condition that deals with
simple derivatives instead of the scalar structure obtained by the contraction
with γµ typical of Dirac or Heisenberg operators. Thus prior of anything
one has to examine its compatibility concerning all quantities that one can
construct with such spinors. It is a remarkable result that in order that the
restrictive condition eq. (13.1.43) to be integrable the constants α and β must
satisfy a unique constraint given by Re(a)− Re(b) = 0.

Indeed, we have

[∂µ, ∂ν] Ψ =
(

a ∂[µ Jν] + b ∂[µ Iν] γ5
)

Ψ.

Now, the derivative of the currents yields

∂µ Jν − ∂ν Jµ = (a + a)[Jµ, Jν] + (b + b) [Iµ, Iν],

and
∂µ Iν − ∂ν Iµ = (a + a− b− b)[Jµ Iν − Iµ Jν].

Thus the condition of integrability is given by

Re(a) = Re(b). (13.1.44)

Note that a and b are related to Heisenberg constant by 2s = i (a− b).
It is a rather long and tedious work to show that any combination X con-

structed with Ψ and for all elements of the Clifford algebra is such that the
compatibility condition [∂µ, ∂ν]X = 0 is automatically fulfilled under the

1605



13 Spinor theory of Gravity

unique condition (13.1.44). Let us now turn to some remarkable properties
of I-spinors.

Lemma. The current four-vector Jµ is irrotational. The same is valid for the
axial-current Iµ.

The proof that the vector Jµ is the gradient of a certain scalar quantity is a
simple direct consequence of its definition in terms of H-spinors. However
there is a further property that is worth of mention: this scalar is nothing but
the norm J2 of the current. Indeed, using equation (13.1.43), we have

∂µ Jν = (a + a)Jµ Jν + (b + b)Iµ Iν (13.1.45)

This expression shows that the derivative of the four-vector current is sym-
metric. Multiplying eq. (13.1.45) by Jµ and using the properties established
before it follows then

Jµ = ∂µS (13.1.46)

in which the scalar S is written in terms of the norm J2:

S =
1

a + a
ln
√

J2. (13.1.47)

Note that S = const. defines a hypersurface in space-time such that the
current Jµ is not only geodesic but orthogonal to S. It follows

∂µS ∂νS ηµν = e2(a+a)S,

or, defining the conformal metric

gc
µν ≡ e2(a+a)S ηµν

we write
∂µS ∂νS gµν

c = 1, (13.1.48)

showing that S is an eikonal in the conformal space.
Lemma. The two four-vectors Jµ and Iµ constitutes a basis for vectors con-

structed by the derivative ∂µ operating on functionals of Ψ.
Proof. It is enough to show that this assertion is true for the scalars A and

B. Indeed, we have:

∂µ A = (a + a) A Jµ + (b− b) iB Iµ. (13.1.49)

and
∂µ B = (a + a) B Jµ + (b− b) iAIµ. (13.1.50)

It then follows that the vector Iµ is a gradient too. Indeed,

∂µ Iν = (a + a)Jµ Iν + (b + b)Jν Iµ. (13.1.51)
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Iµ = ∂µR (13.1.52)

in which the scalar R is:

R =
1

b− b
ln

(
A− iB√

J2

)
(13.1.53)

or,

R =
i

b− b
arccos

B√
J2

(13.1.54)

13.1.10 Another form of constrained solution

Besides the formal expression that we exhibited in the previous section, there
is another one that deals with the derivative of the field Ψ but which yields
very different consequences. Indeed, a solution of Heisenberg dynamics is
obtained if one sets instead of equation (13.1.43):

∂µΨ = −i gF

(
Jµ +

(1 + β)
2

Iµ + (
(1 + β)

2
Jµ + β Iµ) γ5

)
Ψ (13.1.55)

A direct calculation, using Pauli-Kofink relations shows that such a Ψ satisfies
identically Heisenberg dynamics. Indeed, we have

iγµ ∂µΨ = gF

(
A + iBγ5

)(
1 +

1 + β

2
γ5 − 1 + β

2
γ5 − β

)
Ψ (13.1.56)

or
iγµ ∂µΨ = gF (1− β)

(
A + iBγ5

)
Ψ (13.1.57)

Thus we should identify gF (1− β) = 2s. Now comes, however a very distinct
property: such a solution yields that both associated currents are constants,
that is:

∂µ Jν = 0; (13.1.58)

∂µ Iν = 0; (13.1.59)

This can be understood on the basis of the previous Inomata ansatz if we note
that for this case the constant a and b become pure imaginary numbers. Such
second form of Inomata solution will play an important role when we will
consider later on basic equations of the fundamental spinors of pre-gravity
theory.
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13.1.11 Internal connection

Sometimes it is useful to treat spinor equation of motion in a non-euclidean
system of coordinates. In order to deal with the covariance of the theory
we have to deal with the concept of internal connection. In the case of an
arbitrary Riemannian geometry (of which the Minkowski metric is a particu-
lar case) Fock and Ivanenko displayed the main properties needed to obtain
such covariant description. This means, exchanging the simple derivative for
a covariant one defined by

∇µΨ = ∂µΨ− iΓµΨ. (13.1.60)

The quantity Γµ is called the internal connection and acts in the same way as
Christoffel symbols for tensors allowing the definition of a derivative which
generates tensor quantities that transform co-variantly under arbitrary coor-
dinate transformations. In order to arrive a specific form of this connection
in terms of the γµ and its derivatives, Fock and Ivanenko make the hypoth-
esis that the covariant derivative of γµ vanishes. This is the counter-part in
the spinor world of the tensorial condition of vanishing covariant deriva-
tive of the metric tensor. In the case of this Riemann hypothesis one arrives
at the class of geometries called Riemannian manifolds. In the case of the
spinor structure one arrives at the Fock-Ivanenko class. We note that the
Fock-Ivanenko condition is much less restrictive and it implies the Rieman-
nian one. Indeed, from the defined relation of the anti-commutation of the
γµ and the Fock-Ivanenko condition it follows directly the vanishing of the
co-variant derivative of the metric tensor. On the other hand, the vanishing
of the metric tensor does not requires the vanishing of the γµ. Assuming the
Fock-Ivanenko condition one obtains the internal connection as

Γ0
µ =

1
8

[
γαγµ ,α − γµ ,αγα + Γε

µν (γεγν − γνγε)
]

. (13.1.61)

The index 0 in Γµ is just a reminder that we are dealing with a Minkowski
background in an arbitrary system of coordinates. We can globally annihilate
such connection by moving to an Euclidean constant coordinate system.

13.1.12 Generalized internal connection

The expression of the internal connection as displayed by Fock and Ivanenko
was obtained by assuming that the covariant derivative of all γµ vanish. This
is a direct consequence of relation (13.1.25). Indeed, ∇µ γν = 0 implies that
the metric is Riemannian: ∇µ gαβ = 0. However, although the condition of
vanishing covariant derivatives of γµ is enough to guarantee the Riemannian
structure of the geometry, it is not necessary. Novello examined a case in
which the dynamics of the Clifford structure is driven by the condition of the
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commutator:
∇µ γν = [Uµ , γν], (13.1.62)

where Uµ is an arbitrary element of the Clifford algebra.
Indeed, from the relation (13.1.25) and using the above expression with

Uµ = Aµ + Bµγ5, we have for arbitrary vectors Aµ and Bµ :

∇µ γν = [Aµ + Bµ γ5, γν]. (13.1.63)

Thus

∇µ gαβ = [Uµ, γα] γβ + γα[Uµ, γβ] + [Uµ, γβ] γα + γβ [Uµ, γα]

Using the property that γ5 anti-commutes with all γν, it follows that∇µ gαβ =
0. This holds for arbitrary vectors Aµ and Bµ.

We shall see that the internal connection obtained in this way provides an
equivalent way to describe the non linear structure of Heisenberg spinors for
a convenient choice of Uµ. Thus the generalized internal connection takes the
form

Γµ = Γ0
µ − iUµ. (13.1.64)

13.1.13 Geometrical description of Heisenberg dynamics

We now show that it is possible to understand the self-coupling of equation
(13.1.35) in terms of a modification of the internal connection. In so doing,
we are preparing our analysis for the universal gravitational interaction of
the non-linear spinor theory. Let us use the form (13.1.64) and set

Γ1
µ = −i

(
a0 Jµ + b0 Iµγ5

)
(13.1.65)

in which, for simplicity we use an Euclidean coordinate system in which the
Fock-Ivanenko standard part of the connection vanishes. Thus we have

∇1
µΨ = ∂µΨ−

(
a0 Jµ + b0 Iµγ5

)
Ψ (13.1.66)

Then we can re-write Heisenberg equation in the form

iγµ∇1
µΨ = 0 (13.1.67)

once
iγµ∇1

µΨ = iγµ∂µΨ− iγµ
(

a0 Jµ + b0 Iµγ5
)

Ψ (13.1.68)

Indeed, using identities (13.1.28) we have

iγµ∇1
µΨ = iγµ∂µΨ− i(a0 − b0)

(
A + iBγ5

)
Ψ (13.1.69)
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and identifying 2s = i(a0 − b0).
Let us note that we could in an equivalent way choose a modified form and

instead of (13.1.65) use

Γµ = −i
(
aJµ + bIµ

) (
I + γ5

)
(13.1.70)

In this case the Lagrangian of the fundamental spinor takes the form

L =
i
2

Ψ̄γµ∇µΨ− i
2
∇µΨ̄γµΨ

=
i
2

Ψ̄γµ∂µΨ +
1
2

Ψ̄γµΓµΨ + h.c. (13.1.71)

Substituting the form (13.1.70) in this Lagrangian we obtain

L =
i
2

Ψ̄γµ∂µΨ− i
2

∂µΨ̄γµΨ− i
2
[
(a− ā)− (b− b̄

]
Jµ Jµ. (13.1.72)

This is precisely the expression of Heisenberg Lagrangian (13.1.33) and ( 13.1.34
) which led us to the identification

s =
i
2
[
(a− ā)− (b− b̄)

]
=

i
2

(a− ā) (1− β). (13.1.73)

We shall define
gF ≡ i h̄ c (a− ā).

This proves that Heisenberg self-interaction can be interpreted in a geomet-
rical way, as a modification of the internal connection. Then, we can re-write
Heisenberg equation in the compact form

iγµ∇µΨ = 0 (13.1.74)

where we used the connection provided by eq (13.1.70).

13.1.14 Geometrical realization of the interaction of ΨE and
ΨN

We shall see in the next lectures that gravitational processes deal with two
fundamental fields which we will call ΨE and ΨN. These spinors interact with
each other and with all forms of matter. In the present section we show how
the coupling of ΨE and ΨN are described in the same geometrical framework
as in the self-interaction case presented above. This analysis is based on the
hypothesis that these two fields are indistinguishable, as far as gravitational
processes are concerned. Thus the internal connection is given by the gener-
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alization (see (13.1.70) ):

Uµ =
[
a
(

Jµ + jµ
)
+ b

(
Iµ + iµ

) ] (
I + γ5

)
(13.1.75)

We note that we are using the same value for constants a and b assuming that
the theory is symmetrical under the exchange of ΨE and ΨN. Following the
same procedure as in the precedent case one sets for the Lagrangian the form

L =
i
2

Ψ̄Eγµ∇µΨE +
i
2

Ψ̄Nγµ∇µΨN + h.c.

=
i
2

Ψ̄Eγµ∂µΨE +
1
2

Ψ̄EγµΓµΨE +
i
2

Ψ̄Nγµ∂µΨN +
1
2

Ψ̄EγµΓµΨN + h.c.(13.1.76)

The interaction term assumes the form

Lint = −sJ2 − sj2 − gF

(
Jµ jµ + β Iµiµ +

1 + β

2
Iµ jµ +

1 + β

2
Jµiµ

)
(13.1.77)

where s = gF
2 (1− β). The first two terms represents Heisenberg self-interactions

of both fields; the others concern the interaction between ΨE and ΨN. We have
already commented on the property that this interaction reduces to the Fermi
Lagrangian.

This expression can be written in a compact form using two vectors Σµ and
Πµ defined as

Σµ ≡ Jµ + jµ + Iµ + iµ (13.1.78)

and
Πµ ≡ Jµ + jµ + β

(
Iµ + iµ

)
. (13.1.79)

Then it follows immediately

Lint = − gF

2
ΣµΠµ.

Let us note that we can use definitions (13.1.78) and (13.1.79) and re-write
the equation of motion in a compact form. Indeed, we have

Jµ + jµ +
(1 + β)

2
(Iµ + iµ) =

1
2

(Σµ + Πµ)

(1 + β)
2

(Jµ + jµ) + β(Iµ + iµ) =
1
2

(β Σµ + Πµ) (13.1.80)

Then, in the absence of matter we have, for both fields,

iγµ ∂µΨ− gF

2
(Σµ + Πµ)γµ Ψ− gF

2
(β Σµ + Πµ)γµγ5 Ψ = 0. (13.1.81)
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13.1.15 Numerology

Some dimensional quantities that will be used later on will be displayed in a
compact way in this section.

For the field we set
[Ψ] = L−3/2;

and consequently, for the current

[Jµ] = L−3;

Besides, we recall
[h̄] = M L2 T−1;

[h̄/c] = M L;

[s] = L2;

[gF] = [h̄ c s] = M L5 T−2;

[gN] = M−1 L3 T−2;

The interaction of ΨE and ΨN presented in the previous section is simi-
lar to the Lagrangian of weak interaction processes in Fermi treatment. The
Fermi constant gF appears for dimensionality reasons. The presence of such
constant in the realm of gravitational world – which is the true goal of our
analysis in these Notes — may seem very unusual . However, an interesting
remark attributed to W. Pauli makes this identification less strange. It is gen-
erally argued that, as far as gravity is concerned, the quantity 10−33cm is an
important one. This number appears very naturally by simple dimensional
analysis and in certain scientific communities this length is associated to the
appearance of quantum gravitational processes. Its expression contains three
ingredients: the relativistic quantity c (the light velocity), the Heisenberg con-
stant h̄ and a typical gravity representative provided by Newton ’s constant
gN, yielding the Planck-Newton constant:

LPN =

√
h gN

c3 .

A similar quantity cannot be constructed with the other known long range
field (electrodynamics), but it can be defined for the weak interaction. In
this case we have only to exchange gN by the Fermi constant, yielding the
definition of what we call the Planck-Fermi length:

LPF =
√

gF

h̄c
.

Now Pauli remarks that this quantity is equal to 10−16cm, the square-root of
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the Planck-Newton value. It is clear that such a coincidence depends on the
units used. The original argument, which in a sense was re-taken by Dicke
in 1957 deals with the so-called ”natural system of units” for the high energy
physics community, that is for h̄ = c = 1 and by taking a specific unit of mass
(the electron mass in Dicke’s choice).

13.1.16 Field theory of gravity and General Relativity

Half a century has already elapsed since the idea of dealing with the con-
tent of General Relativity in terms of a field theory propagating in a non-
observable Minkowski background was presented by Gupta, Feynman and
others. In recent times this approach has been revised and commented. The
field theoretical approach goes back to the fact that Einstein dynamics of the
curvature of the Riemannian metric of space-time can be obtained as a sort of
iterative process, starting from a linear theory of a symmetric second order
tensor ϕµν and by an infinite sequence of self-interacting process leading to a
geometrical description.

13.1.17 Short review of Gupta-Feynman field theory
presentation of General Relativity

For a weak field let us set the linear approximation

gµν ≈ ηµν + ε ϕµν

where ε is a small parameter, such that we can neglect terms of higher order
on it. It follows that the inverse contra-variant expression is provided, at the
same order, by

gµν ≈ ηµν − ε ϕµν.

In the linear regime Einstein’s equations takes the form

GL
µν = −κ TM

µν. (13.1.82)

where the linear differential operator is

GL
µν ≡ ∂α ∂α ϕµν − ∂ε∂(µ ϕε

ν) + ∂µ∂ν ϕ− ηµν(∂α ∂α ϕ− ∂α∂β ϕαβ). (13.1.83)

Gupta remarked that this equation should not be correct: the lhs is identically
divergence-free and the rhs is not, once it does not contains the amount of
energy present under gravitational form. In order to conciliate this, one must
add a missing term to the energy-momentum tensor of matter that represents
the contribution coming from the gravitational field:

rhs ≈ TM
µν + T1

µν.
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The added term is of order 0(ε2). This term comes from a term of order three
in the Lagrangian. Thus, one has to add to the Lagrangian a term too, in order
to correct the added one:

rhs ≈ TM
µν + T1

µν + T2
µν.

This process continues to infinity, once each time we add a new term, another
term must be introduced for higher order of correction. An unexpected result
then comes: this series admits a sum. Indeed, the result can be written in a
compact form if one uses the geometrical language of Riemann manifold in
the following way. We define a Riemannian geometry in terms of the metric
of the background ηµν as follows

gµν ≡ ηµν + ϕµν (13.1.84)

Note that this is not an approximation formula as above, but instead an exact
one. The inverse metric (gµν)−1 ≡ gµν is defined by gνµgµα = δα

ν . Other
definitions were also used, for instance,√

−g gµν ≡
√
−γ (γµν + ϕµν)

where γµν is the background Minkowski metric, written in an arbitrary sys-
tem of coordinates. Using these definitions and after a rather long and terrible
calculation the above series is reduced to the final geometrical form presented
in General Relativity:

Rµν −
1
2

R gµν = −κ Tµν. (13.1.85)

For each particular choice of relationship between the field ϕµν and the met-
ric, a distinct field theory representation of General Relativity appears.

Although these theories can be named ” field theories” they contain the
same metric content of GR, disguised in a non geometrical form. The frame-
work of the Spinor Theory of Gravity is totally different. It is important to
emphasize that we will not present a dynamics for the metric in the sense of
such field theories. Instead, the geometry is to be understood as an effective
one, in the sense that it is the way gravity appears for all forms of matter and
energy: its evolution is given by the fundamental spinor fields ΨE and ΨN.

We learn from these field theories of gravity the way to couple the tensor
field ϕµν with matter in order to guarantee that the net effect of such an in-
teraction is to produce the modification of the metric structure. This idea will
guide us when coupling the two fundamental spinors with all forms of matter
and energy in order to arrive at the same interpretation of the identification
of the gravitational field with the metric of the space-time.
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13.1.18 A new implementation of the Equivalence principle:
universal coupling of ΨE and ΨN with matter

¿From the previous section, we understand that the strategy of the PreGravity
theory is to treat the interaction of the spinors fields in terms of a modification
of an internal connection. Now we face the question: how does matter of any
form and any kind of energy interact with these two fields? Following this
strategy we make a major hypothesis (which substitutes the corresponding
hypothesis made by Einstein on the dynamics of gµν) that the fundamen-
tal fields ΨE and ΨN interact universally with all forms of matter/energy
through the modification of the internal connection Γµ. Let us review briefly
the way GR describes this coupling and compare it with our procedure for
the STG.

13.1.19 Kinematics: The behavior of matter in a given
gravitational field

The coupling of matter to gravity is provided by the identification of the
gravitational field with the geometry. This means that we have to modify
the matter Lagrangian in the Minkowski background by changing ηµν to
gµν ≡ ηµν + ϕµν. This part of the action – which answers the question of
how gravity acts on matter – has precisely the same structure as in General
Relativity. Indeed, let us consider that in the Special Theory of Relativity
the dynamics of a certain matter distribution is provided by a Lagrangian
Lm. General Relativity describes its interaction with gravity using the Equiv-
alence Principle, also known as the minimal coupling principle. This requires
the substitution of all terms in the action S0 in which the Minkowski metric
γµν appears by the induced metric gµν and its inverse gµν. As an example con-
sider a scalar field Φ such that L0 be the associated Lagrangian – neglecting
gravitational forces – given by

S0 =
∫ √
−γ L0 =

∫ √
−γ Bµν γµν. (13.1.86)

For a specific example, we set

S0 =
∫ √
−γ Bµν γµν =

∫ √
−γ ∂µΦ ∂νΦ γµν, (13.1.87)

where γ ≡ det γµν. In this case Bµν can be written in terms of the energy-
momentum tensor defined as

Tµν =
2√
−γ

δ

δγµν

(√
−γL

)
. (13.1.88)
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Indeed, a direct calculation yields

Tµν = ∂αΦ∂βΦ γαµγβν − 1
2

∂λΦ∂σΦ γλσγµν (13.1.89)

immediately implying

Bµν = Tµν − 1
2

Tγµν, (13.1.90)

where T ≡ Tµν γµν. The corresponding action, including the gravitational
interaction, is obtained by replacing γµν and its inverse γµν with the corre-
sponding gµν = γµν + ϕµν which yields

S =
∫ √
−γ ω ∂µΦ ∂νΦ gµν, (13.1.91)

where we have used the standard definition such that ω ≡ √−g/
√
−γ, and

g = det gµν. In this case

Bµν = ω [Tµν − 1
2

Tgµν]. (13.1.92)

This procedure can be generalized in such a way that for any kind of matter
interacting with the gravitational field, the action is provided by the golden
rule of General Relativity, namely

S =
∫ √
−γ ω LM =

∫ √
−g LM (13.1.93)

where the corresponding energy-momentum tensor is given by

Tµν =
2√−g

δ

δgµν

(√
−gL

)
. (13.1.94)

It follows that this quantity is divergence-free, in the induced metric gµν, that
is, Tµν

;ν = 0. The equation of evolution of the scalar field follows from this
property. This procedure is generalized for any kind of matter and non-
gravitational energy. We can thus state the important point concerning the
kinematics of gravity in the following statements:

In Pre-Gravity Theory the interaction of matter with gravity is precisely
the same as in GR. The way matter couples with the fundamental fields ΨE
and ΨN guarantees that, kinematically, the behavior of any kind of matter
(and energy) in PGT coincides with the response given by GR, that is: free
particles follow geodesics in a prescribed geometry, due to gravitational in-
teraction.
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13.1.20 The induced metric

In order to construct an effective metric with product of currents we must
define the tensor field in the way it was proposed in the Gupta-Feynmann
approach of General Relativity. In the same way as in the field theoretical
prescription of General Relativity, each choice provides a distinct form of
representation with the same physical content. We will use the simplest com-
bination guided by the properties displayed in ( 13.1.78) and ( 13.1.79), that
is

ϕµν = − gF gm
Σµ Πν + Σν Πµ√

X
(13.1.95)

where parameter gm has the dimensionality as the inverse of energy (the field
ϕµν is dimensionless) and X is given by

X ≡ Σµ Πµ.

Let us make another comment here concerning the number of independent
components of the field. Four-dimensional Dirac spinor has 8 real compo-
nents. Thus, the two spinors that we are dealing here contains 16 compo-
nents. This number however is not the number of independent components
contained in the field ϕµν.

The reason is the following. The induced metric deals only with the cur-
rents associated to the two fundamental spinors fields. The dynamics of
these fields are invariant under a Lorentz rotation, which is characterized
by 6 numbers. It then follows that one has to substract 6 from the total 16,
which leaves the necessary 10 components to define an arbitrary symmetric
second-order tensor.

13.1.21 Generating the gravitational field

Let us now turn to the influence of matter on the gravitational field. The dy-
namics of the gravitational field is completely distinct in these two theories.
In General Relativity, the metric obeys a dynamics generated by the Hilbert-
Einstein Lagrangian

SHE =
1
ke

∫ √
−g Rd4x.

Nothing similar occurs in the Spinorial Theory of Gravity. The metric does
not have a specific dynamics, but instead obeys the evolution dictated by its
relationship with the dynamics of the fundamental spinors. The dynamics
presented contains the following terms:

L = L(ΨE) + L(ΨN) + Lint(ΨE, ΨN) + Lmat. (13.1.96)
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We make our analysis on the equation for any spinor Ψ, say ΨE. The corre-
sponding equation for the other field ΨN is obtained similarly by substituting
ΨE by ΨN. We have:

iγµ∂µΨ− gF γµ

(
Cµ + Dµγ5

)
Ψ = 0 (13.1.97)

We write this equation in the equivalent compact form:

iγµ∂µΨ− gF H Ψ = 0, (13.1.98)

That is
H ≡ γµ Cµ + γµ γ5 Dµ. (13.1.99)

Let us write:
H = Hs + Ho + Hm, (13.1.100)

which, respectively, represents the self-interaction Hs, the interaction with
the other spinor Ho and the influence of matter Hm. Thus, the quantities Cµ

and Dµ are separated in three parts, according to their origin in the process
of interaction. Let us analyze each part separately:

13.1.22 Self-interaction

Heisenberg dynamics is represented by:

Hs Ψ = (1− β)(A + iB γ5) Ψ (13.1.101)

which implies

Cµ
s ≡ Jµ +

1 + β

2
Iµ

Dµ
s ≡ 1 + β

2
Jµ + βIµ (13.1.102)

This term, which contains only quantities constructed with the spinor Ψ it-
self, is given by the quartic Heisenberg Lagrangian, the simplest non-linear
covariant term which can be constructed with a spinor field. The Lagrangian
is provided by eq. (13.1.33)

Ls =
i
2

Ψ̄γµ∂µΨ− i
2

∂µΨ̄γµΨ−V(Ψ). (13.1.103)

where Heisenberg potential is

V =
1− β

2
gF

(
A2 + B2

)
. (13.1.104)
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Note that Pauli-Kofink identity implies that

A2 + B2 = Jµ Jµ.

It is immediate that in the case β = 1, the self-interacting Heisenberg term
vanishes.

13.1.23 Interaction with the other fundamental spinor ΨN

We have:

Ho Ψ = γµ

(
jµ +

(1 + β)
2

iµ

)
Ψ

+ γµγ5
(

(1 + β)
2

jµ + β iµ

)
Ψ (13.1.105)

The interacting Lagrangian is provided by

Lo = −gF {Jµ jµ + βIµiµ}

+
gF

2
(1 + β)(Jµiµ + Iµ jµ). (13.1.106)

In the case β = 1 the interaction assumes the reduced form

LF = −gF Ψγµ(1 + γ5)Ψ Ψγµ(1 + γ5)Ψ. (13.1.107)

In the case of the interaction of the fundamental spinors, the vectors Cµ, Dµ

are given by

Cµ
o ≡ jµ +

1 + β

2
iµ

Dµ
o ≡ 1 + β

2
jµ + βiµ (13.1.108)

13.1.24 The effect of matter in the generation of gravity

This term is provided by (13.1.93) inspired by the Equivalence Principle that
states that the matter interacts only through the effective metric gµν. Variation
of spinor Ψ in equation (13.1.93) yields

δS = −1
2

∫ √
−g Tµν δgµν

= −1
2

∫ √
−g Tµν δϕµν

= gF gm

∫ √
−g Tµν δ

(
ΣµΠν√

X

)
(13.1.109)
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where we used (13.1.95). Note that the product gF gm has dimensionality L3

as it should. Then we can write

δS = gF gm (I1 + I2 + I3)

where

I1 =
∫ √

−g Tµν Σµ Πν δ
1√
X

I2 =
∫ √

−g Tµν 1√
X

ΣµδΠν

I3 =
∫ √

−g Tµν 1√
X

ΠνδΣµ (13.1.110)

Let us evaluate each term separately. We have

δ
1√
X

= − 1

2 X
3
2

δΨ̄
(

Πµ γµ (1 + γ5) + Σµ γµ(1 + βγ5)
)

Ψ. (13.1.111)

To simplify our notation let us define the following quantities:

Φ =
1

X3/2 TµνΣµΠν.

ξµ = Πµ + Σµ,

ηµ = Πµ + β Σµ.

Then, we can write

I1 = − 1
2

∫
ω
√
−γ δΨ̄ Φ

(
ξµγµ + ηµγµγ5

)
Ψ (13.1.112)

Now, let us evaluate I2. Defining

Eµ =
1√
X

TµνΣν,

we have:

I2 =
∫ √

−g
1√
X

Tµν ΣµδΠν

=
∫ √
−γω Eµ δΠν

=
∫ √
−γω δΨ̄ Eµ

(
γµ + βγµγ5

)
Ψ. (13.1.113)

For the remaining integral and defining
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Hµ =
1√
X

TµνΠν,

we find

I3 =
∫ √

−g
1√
X

Tµν ΠµδΣν

=
∫ √
−γω Hµ δΣν

=
∫ √
−γω δΨ̄ Hµ

(
γµ + γµγ5

)
Ψ. (13.1.114)

Finally, collecting all these three terms and using eq. (13.1.97 ) we obtain

Cµ
m ≡ gmω

(
− 1

2
Φ ξµ + Eµ + Hµ

)
Dµ

m ≡ gmω

(
− 1

2
Φ ηµ + βEµ + Hµ

)
(13.1.115)

In the STG this is how matter generates gravitational fields.
The most important task now is to analyze the consequences of this theory.
For later use it is useful to separate this matter influence into three parts

using the notation of equation (13.1.100):

Hm = Ts + To + Tm (13.1.116)

where

Ts = −gm

2
ω Φ (1− β) (A + iB γ5)

= −gmωΦ
2

Hs (13.1.117)

To = −gm

2
ω Φ jµ

(
γµ +

(1 + β)
2

γµγ5
)

− gm

2
ω Φ iµ

(
(1 + β)

2
γµ + β γµγ5

)
= −gm

2
ω Φ Ho, (13.1.118)

Tm =
gm

4
ω γµ (Eµ + Hµ)

+
gm

4
ω γµγ5 (β Eµ + Hµ) . (13.1.119)
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The origin of these terms is very similar to the other expression. Indeed, Ts is
proportional to Hs; the term To is proportional to Ho. This suggests treating
the third term in such a way that it can be reduced to a combination of both
terms. We postpone this analysis to another place.

Let us now turn to some specific examples of solutions of the fundamental
equations of ΨE and ΨN in some special situations: the gravitational field of
a compact static configuration and the case of an expanding spatially homo-
geneous and isotropic universe.
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13.1.25 Gravitational field of a compact object

In order to compare the response of both theories, Genral Relativity and Pre-
Gravity, we will review very briefly what is the procedure, in the realm of
General Relativity, to obtain the gravitational field of a star. Einstein’s theory
in the absence of matter is provided by the non-linear equations envolving
the contracted curvature tensor:

Rµν = 0, (13.1.120)

defined as the trace of the Riemannian curvature Rµν = Rαµβνgαβ, where:

Rµ
εαβ = Γµ

εα,β − Γµ
εβ,α + Γµ

βσ Γσ
εα − Γµ

ασ Γσ
βε (13.1.121)

The connection Γµ
εα is identified with Christoffel symbol, that is:

Γµ
αβ =

1
2

gµν
(

gνα,β + gνβ,α − gαβ,ν
)

(13.1.122)

One chooses a parametrization for the coordinates and write the expected
metric in the form

ds2 = A(r) dt2 + B(r) dr2 − r2dθ2 − r2sin2θdϕ2. (13.1.123)

Then, equations (13.1.120) reduces to the set:
The response of GR to the question ” what is the gravitational field of a

star?” is then given by the geometry found by Schwarzshild:

ds2 = (1− rH

r
)dT2 − (1− rH

r
)−1 dr2 − r2dθ2 − r2sin2θdϕ2. (13.1.124)

Let us turn now to our Pre-Gravity theory and try to answer the same ques-
tion, that is ” what is the gravitational field of a star? We start by choos-
ing a parametrization to represent the background Minkowski geometry in a
spherical coordinate system

ds2 = dt2 − dr2 − r2dθ2 − r2sin2θdϕ2. (13.1.125)

In consequence, the γµ’s are given in terms of the constant γ̃µ as follows:

γ0 = γ̃0

γ1 = γ̃1

γ2 = r γ̃2

γ3 = r sinθ γ̃3.

In the absence of matter and energy, the effective metric can be obtained by
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a direct solution of the equation of the fundamental spinors. The equations
of motion in this case are

iγµ ∂µΨE + γµ Γ(0)
µ ΨE

− gF γµ

(
Jµ + jµ +

1 + β

2
(Iµ + iµ)

)
ΨE

− gF

(
β(Iµ + iµ) +

1 + β

2
(Jµ + jµ)

)
γµγ5 ΨE = 0.(13.1.126)

iγµ ∂µΨN + γµ Γ(0)
µ ΨN

− gF γµ

(
Jµ + jµ +

1 + β

2
(Iµ + iµ)

)
ΨN

− gF

(
β(Iµ + iµ) +

1 + β

2
(Jµ + jµ)

)
γµγ5 ΨN = 0.(13.1.127)

This is a highly non linear system that must be solved in order to ob-
tain the effective metric. We succeeded in finding a solution in the case
of a spherically symmetric and static configuration. Using the background
Minkowski metric in the form (13.1.125) we obtain the unique non identically
background FI connection:

Γ(0)
2 =

1
2

γ̃1 γ̃2

Γ(0)
3 =

1
2

sinθ γ̃1 γ̃3 +
1
2

cosθ γ̃2 γ̃3

We will look for a solution of the form

ΨE = f (r) eiεlnr eih(θ) Ψ0
E (13.1.128)

ΨN = g(r) eiτlnr eil(θ Ψ0
N (13.1.129)

where ε and τ are constants; Ψ0
E and Ψ0

N are constant spinors. The Heisenberg
equation of motion is solved if h(θ) and l(θ) are proportional to ln

√
sinθ.

Moreover, f (r) and g(r) obey the equations

1
f 3

d f
dr

= constant, (13.1.130)

1
g3

dg
dr

= constant. (13.1.131)
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We then have
ΨE =

1√
r

eiεlnr eiln
√

sinθ Ψ0
E, (13.1.132)

ΨN =
1√
r

eiτlnr eiln
√

sinθ Ψ0
N. (13.1.133)

The dependence on the angle θ disappears in both (vector and axial) currents.
The r−

1
2 term depends on the fact that the Heisenberg potential is of quartic

order. Any other dependence should yield a different functional dependence
for the effective metric. As we shall see next, this form is crucial in order to
obtain the good behavior of the metric in the newtonian limit.

We set

Ψ0
E =

(
ϕ0

η0.

)
(13.1.134)

To solve the equation of motion, the constant spinor Ψ0
E (correspondingly

Ψ0
N) must satisfy a set of equations. We set

ϕ0 = (c1 + c2 σ1) η0 (13.1.135)

We look for a solution such that

σ1 η0 = ε η0. (13.1.136)

where ε2 = 1. We will choose ε = 1 for spinor ΨE and ε = −1 for ΨN. That
is,

σ1 ϕ0 = ϕ0,

and where c1 and c2 are pure imaginary numbers. Then,

ϕ0 = i R η0,

where R = |c1| + |c2| is a real number. Note that all currents from the ex-
pression of ΨE and ΨN are of the form aµ/r for different constant vectors aµ.
After a rather long and tedious calculation we obtain the final expressions
of these currents constructed with our solution. It is precisely these currents
that provide the effective metric, namely:

Jo =
p
r

Io =
q
r

J1 =
m
r

I1 =
n
r
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and analogous formulas for the other spinor:

jo =
p′

r

io =
q′

r

j1 =
m′

r

i1 =
n′

r

where

p = [c1c̄1 + c2c̄2 + 1]η+η + [c1c̄2 + c2c̄1]η+σ1η

q = −[c1 + c̄1]η+η − [c2 + c̄2]η+σ1η

m = [c2 + c̄2]η+η + [c1 + c̄1]η+σ1η

n = [c1c̄2 + c2c̄1]η+η + [c1c̄1 + c2c̄2 + 1]η+σ1η

Similar formulas holds for the corresponding quantities constructed with ΨN
involving p′, q′, m′, n′. Analogously we set

Ψ0
N =

(
χ0

ζ0

)
(13.1.137)

and:
χ0 = (d1 + d2 σ1) ζ0 (13.1.138)

where
σ1 ζ0 = − ζ0,

and

χ0 = i S ζ0

where S is a real number.
Since the constants c1, c2, d1 and d2 are purely imaginary numbers it follows

that m = q = m′ = q′ = 0. This follows from the identities concerning the
vector and axial current, thats is, Jµ Jµ = − Iµ Iµ. Consistency imposes the
conditions

ε = 1− (1 + β)
2

(
1 + gF(n + n′)

)
, (13.1.139)

R =
−1

2gF (p + p′ + β (n + n′))
(13.1.140)

and analogous expressions for the quantities related to spinor Ψ0
N.
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By symmetry, the components (2) and (3) of the currents Jµ, Iµ, jµ, iµ, must
vanish. This is possible if the constant spinors satisfy:

η+
0 σ2η0 = 0

η+
0 σ3η0 = 0 (13.1.141)

These equations are identically satisfied by condition (13.1.136 ). Indeed, in
this case we have

Ψ0
N =

(
z

ε z

)
(13.1.142)

where z = m + i n. Then,

η+
0 σ1η0 = 2ε |z|2

and η+
0 σ2η0 = 0 and η+

0 σ3η0 = 0.
The same happens for the other tensor. There remains two arbitrary con-

ditions to be fixed: η+
0 η0 and ζ+

0 ζ0. Different choices yield different solutions
for the spinor fields and consequently distinct configurations for the observ-
able metric. We will fix them by conditions on the induced metric.

The induced metric

¿From the above solution of the spinor fields we can evaluate the currents and
the effective geometry that acts on all forms of matter and energy. From its
dependence on r and θ we have that all currents depend only on 1/r. Using
the expression of the effective metric in terms of the spinorial fields, a direct
calculation gives:

ϕ00 = −2gFgm
(p + p

′
)2

r2
1√
X

ϕ11 = −2gFgm
(n + n

′
)2

r2
β√
X

ϕ01 = −gFgm
(n + n

′
)(p + p

′
)

r2
1 + β√

X
(13.1.143)

Then, for the induced geometry

ds2 = (1− rH

r
)dt2 + 2

N
r

drdt

− (1 +
Q
r

)dr2 − r2dθ2 − r2sin2θdϕ2, (13.1.144)
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where:

rH = 2gFgm
1√
Z

(p + p′)2,

Q = 2gFgm
1√
Z

β (n + n′)2,

N = − gFλ

2
1√
Z

(p + p′)(n + n′) (1 + β).

The constant Z is defined in terms of the norm of the currents as Z = X r2.
In order to compare this geometry with the corresponding solution in Gen-
eral Relativity, we make a coordinate transformation to eliminate the crossing
term drdt. Setting

dt = dT +
N

r− rH
dr,

we obtain

ds2 = (1− rH

r
)dT2

−
(

1− rH

r

)−1
(

1− rH −Q
r
− QrH − N2

r2

)
dr2

− r2dθ2 − r2sin2θdϕ2. (13.1.145)

At this point we remark that in the case of General Relativity, Birkhoff’s the-
orem forbids the existence of more than one arbitrary constant in the Schwzarschild
solution. In the present case of the Spinor Gravity theory, this theorem does
not apply. Thus we can understand the fact that this solution contains one ad-
ditional arbitrary constant. Observations impose that for small values of rH/r
the factors g00 and g11 must be in the first order respectively g00 = 1− rH/r
and g11 = −1− rH/r. This fact imply that the the constants η+

0 η0 and ζ+
0 ζ0

must be chosen such that rH = Q. This fixes one constant. The other constant
is provided, as in the similar procedure in GR, by the newtonian limit for
r → ∞, in terms of the Newton constant and the mass of the compact object
that is, rH = 2gN M/c2. Thus, the final form of the effective metric is given by

ds2 = (1− rH

r
)dT2

−
(

1− rH

r

)−1
[

1 + σ2
(rH

r

)2
]

dr2

− r2dθ2 − r2sin2θdϕ2, (13.1.146)

where

σ2 ≡ (β− 1)2

4β
.
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It is a remarkable consequence of the above solution that in the case in
which the self-interaction of the fundamental spinors vanishes and only the
interaction between Ψ and ΨN occurs, that is, for β = 1 the four-geometry is
precisely the same as the Schwarzschild solution in GR. On the other hand,
if β 6= 1 the difference between both theories appears already in the order
(rH/r)2. Indeed for General Relativity we have

− g11 = 1 +
rH

r
+ (

rH

r
)2

and for the Spinor Theory we obtain

− g11 = 1 +
rH

r
+ (

rH

r
)2 (1 + σ2). (13.1.147)

The parameter β should be fixed by observation.

Linearized Einstein equation as a consequence of Heisenberg dynamics

In this section we will analyze how it is possible to generate a dynamics of
spin-2 field from the self-interaction of a Heisenberg spinor. Let us define

Φµν ≡
cµν

X
(13.1.148)

where X ≡ Jµ Jµ and cµν ≡ Jµ Jν + Iµ Iν. We will show that such field con-
structed in terms of the currents of a Heisenberg spinor satisfies equation
(13.1.83). We have:

Φ = Φµν ηµν = 0. (13.1.149)

Using the Inomata prescription we obtain:

∂νΦµν = −2Jµ (13.1.150)

∂µ∂νΦµν = 0. (13.1.151)

∂α∂µΦαν = −2cµν (13.1.152)

∂α∂αΦµν = −4cµν (13.1.153)

Collecting all these terms and using the expression (13.1.83) for GL
µν it follows

that indeed Φ = cµν/X satisfies the linearized Einstein equation

GL
µν = 0. (13.1.154)

Let us make a remark concerning the linearity of the operator GL
µν. From

equations ( 13.1.45, 13.1.51 ) we have

∂µ Jν = w cµν,
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∂µ Iν = w dµν,

where w ≡ Re(a). Thus the quantities cµν and dµν or any linear combina-
tions of them satisfy identically the mass-less spin-2 equation (13.1.83) once
they can be associated to coordinate transformations of the Minkowski met-
ric. Note however that the expression Φµν ≡ cµν/X is not of this kind and
consequently generates a non-trivial spin-2 field.

The following comment will simplify our search for spin-2 fields constructed
in terms of Heisenberg spinors. All possible terms that are trivial spin-2 fields
– call them, generically Θµν - can be written in terms of arbitrary fields ξµ in
the form

Θµν ≡ ∂µξν + ∂νξµ (13.1.155)

Thus, it should be interesting to know how to construct this kind of tensor
Θµν from Heisenberg currents. There are two possible tensors constructed
with currents Jµ and Iµ which we now analyze separately. Let us consider
first the axial-current and set

ξµ ≡
Iµ

Xa .

It follows that

∂µξν + ∂νξµ = 2(1− a)
dµν

Xa (13.1.156)

Thus, when a 6= 1 the tensor constructed with dµν divided by any power
a distinct of 1 of X is a trivial spin-2 tensor. In an analogous way we can
construct with the current vector the quantity

ηµ ≡
Jµ

Xa .

We have
∂µην + ∂νηµ =

1
Xa

(
Iµ Iν + (1− 2a) Jµ Jµ

)
(13.1.157)

The unique case in which this is a trivial Θµν tensor occurs for a = 0 which is
the case that we have presented previously, that is, cµν.

Let us now consider the field defined in terms of quantities Σµ and Πµ as
in equations (13.1.78) and (13.1.79). For the case of a single spinor we have

Σµ ≡ Jµ + Iµ (13.1.158)

and
Πµ ≡ Jµ + β Iµ. (13.1.159)

We define the tensor

Eµν ≡ Σ(µ Πν) = Σµ Πν + Σν Πµ. (13.1.160)
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Then,
Eµν = (1 + β) dµν + 2β Iµ Iν + 2 Jµ Jν (13.1.161)

Let us define the quantity

Φµν ≡
Eµν√

X
.

Using the results obtained above it is straightforward to obtain the equation
of motion that such tensor satisfies:

GL
µν =

w2

2(1− β)2 Φ2
(
−1 + β

1− β
Φµν −

1
2

Φ ηµν

)
+

w2 (1 + β)
(1− β)3 ΦΣµΣν

(13.1.162)
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