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Figure 0.1: Newton’s argument for an oblate earth.

0.3 Brief description

0.3.1 Self Gravitating Systems and Galactic Structures:
historical Review of the Problem.

The investigation of the gravitational equilibrium of self-gravitating masses
started with Newton in the third book of his Principia (1687). In this book
Newton developed for the first time the idea of an oblate form of the earth
due to rotation. In fact, using an argument based on the picture of a hole
drilled up to the center of the earth from a point of the equator, and another
one drilled from the pole, both meeting at the center and both filled with
water in equilibrium in a rotating earth, Newton proposed the relationship
among the ellipticity and the ratio centrifugal force/gravitational force in the
form for slow rotation (Figure 1).

In this theory the earth is a spheroidal object and it is assumed that the dis-
tribution of mass is homogeneous. Newton concluded that the ellipticity is
1/230; however, the actual ellipticity is 1/294, a smaller result than Newton’s
predicted value; this discrepancy is interpreted in terms of the inhomogeneity
of the earth. This work initiated the study of the rotation and configuration
of the celestial bodies. A further step was given by Maclaurin (1742) who
generalized the theory on the case when rotation cannot be considered slow
but the density is homogeneous. The main result of this research is summa-
rized in Maclaurin’s formula giving the connection among angular velocity,
eccentricity and density (Figure 2).

In Maclaurin’s work is asserted that the direction of the composition of
gravitational and centrifugal forces is perpendicular to the surface of the con-
figuration. From Maclarin’s formula the existence of two types of oblong

1436



Contents

Figure 0.2: Bifurcation diagram of the Maclaurin’s spheroids into Jacobi
sequences

configurations can be deduced, one of them of small ellipticity (e → 0 , in
the limit Ω2 → 0 ), the other one being highly flattened (e → 1 , in the limit
Ω2 → 0 ). These figures are known as Maclaurin’s spheroids. In 1834 Ja-
cobi recognized that ellipsoids with three unequal axes, studied before by La-
grange (1811), can be indeed equilibrium configurations. In fact, the existence
of such figures can be established by a direct extension of Newton’s original
arguments. In the triaxial case we may imagine three canals drilled along the
direction of the principal axis of the ellipsoid and filled with water. From this
argument it is possible to find the relationship among the size of the axes,
the angular velocity and the density. As a consequence, the following in-
equality among the axis can be calculated 1/a2

3 > 1/a2
1 + 1/a2

2 . According to
Mayer (1842), the Jacobian sequence bifurcates from the Maclaurin spheroids
at the point where the eccentricity is e = 0.81267, a result that can be de-
duced from the Jacobi’s formula. In fact, if a1 = a2, it can be demonstrated
that e = 0.81267 and Ω2/πGρ = 0.37423 . As the maximum value of Ω2/πGρ
along the Maclaurin sequence is 0.4493, it follows that for Ω2/πGρ < 0.37423
there are three equilibrium figures: two Maclaurin spheroids and one Jacobi
ellipsoid; for 0.4493 > Ω2/πGρ > 0.3742 only the Maclaurin figures are pos-
sible; for Ω2/πGρ > 0.4493 there are not equilibrium figures. These results
were found by Liouville again (1846) using angular momentum instead of
the angular velocity as the variable. Liouville demonstrated that increasing
angular velocity from zero the Jacobi configurations are possible only for an-
gular momenta up a critical value, that on the point of bifurcation. Later, on
1857, Dedekind, considering configurations with a linear profile of velocity
as seen from an inertial frame, proved explicitly a theorem regarding the ex-
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istence of a relation among this configuration and another one with the same
form but uniformly rotating. Thus, a rotating ellipsoid without vorticity has
the same dynamics as the same ellipsoid with a linear profile of velocity and
without rotation. The next step was given by Riemann (1860), who showed
that for linear profiles of velocity, the more general type of motion compati-
ble with an ellipsoidal figure of equilibrium consists in a superposition of a
uniform rotation and an internal motion with constant vorticity ζ in the ro-
tating frame. Exactly, he showed that the possible motions are given by: (1)
uniform rotation without vorticity; this case leads to sequences of Maclau-
rin and Jacobi, (2) directions of Ω and ζ coinciding with a principal axis of
the ellipsoid; these configurations are known as Riemann-S ellipsoids and
spheroids. This case leads as special cases to Jacobi and Dedekind sequences,
and (3) the directions of Ω and ζ lie in a principal plane of the ellipsoid. This
case leads to three other classes of ellipsoids, namely I, II, III. The subsequent
important discovery, due to Poincare (1885), was that, along the Jacobian se-
quence, there is a point of bifurcation similar to that found in the Maclaurin
sequence and that a new sequence of pear-shaped configurations branches
off from the Jacobi sequence, corresponding to neutral modes of oscillation
of the third harmonics. As a further conclusion there are neutral modes be-
longing to fourth, fifth and higher harmonics. The fission theory of the origin
of the double stars comes from this considerations as conjectured by Poincare
and Darwin (1906). In 1924 Cartan established that the Jacobi ellipsoids be-
come unstable at the first point of bifurcation and behave in a different mode
with respect to the Maclaurin sequence that is stable on both sides of the
bifurcation point. When the density of the configuration is inhomogeneous
it is necessary to provide an equation of state. In this case the barotropes
are particularly relevant for the construction of the theory. In 1889 an im-
portant theorem was proved by Hamy: a mass ellipsoidally stratified can-
not have a uniform rotation. Another classical theorem is the one given by
Dive (1930): a stratified heterogeneous spheroid, rotating and without dif-
ferential rotation, cannot be a barotrope. A new approach to the problem of
the equilibrium configurations was started in the works by Chandrasekhar
and Lebovitz (1961-69) using an integral formulation of the hydrodynamical
problem. This approach, known as virial theory allows one to recover the
fundamental results of Maclaurin, Jacobi, Dedekind and Riemann and sheds
a new light on the problem of stability of these configurations. The tensor
virial equations are integral relations, consequences of the equations of stellar
hydrodynamics, and they yield necessary conditions that can furnish useful
insights for the construction of ellipsoidal models. The virial method devel-
oped in Chandrasekhar (1987), shows that only in the case of homogeneous
self-gravitating masses having a linear velocity field, the virial equations of
second order result equivalent to the complete set of hydrodynamic equa-
tions. In the general case of heterogeneous density and non linear velocity
field, this equivalence does not exist, and the n-th order virial equations rep-
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resent necessarly global conditions to be satisfied by any equilibrium config-
uration.

0.3.2 The ICRANET project on galactic structures.

A series of papers of the ICRANET group (I to IX) have been devoted on the
generalization of the theory of ellipsoidal figures of equilibrium, endowed
with rotation Ω and vorticity ζ, obtained for the homogeneous case in the
classic work of Maclaurin, Jacobi, Dedekind and Riemann, and treated in
a unified manner by Chandrasekhar in the virial equation formalism in his
book ”Ellipsoidal figures of equilibrium” (1987). This series of papers has
followed a variety of tentative approaches, consisting of subsequent gener-
alizations of known results: looking at more general density distributions,
non-linear velocity fields, selected forms of the pressure tensor, and finally
analysing the constraints imposed by the n-th order virial equations. Clearly
we have proceeded step by step. The first new step in the theory of ellipsoidal
figures in equilibrium was the introduction by Pacheco, Pucacco and Ruffini
(paper I, 1986a) of an heterogeneous density distribution and an anisotropic
pressure. Using only the second order virial equations, the equilibrium and
stability of heterogeneous generalized Riemann ellipsoids was analysed for
the case of a linear velocity field with a corresponding uniform vorticity. The
stability of second harmonic perturbations of these equilibrium solutions was
also analyzed. In paper II, (1986b) by Pacheco, Pucacco and Ruffini additional
special solutions of the equations introduced in paper I were considered:
some generalized Maclaurin-Dedekind spheroids with anisotropic pressure
and their stability properties were analyzed. It was shown how the presence
of anisotropic pressure extends the region of stability towards greater values
of the eccentricity, which is similar to the homogeneous case considered by
Wiegand (1980). In paper III, (1988) by Busarello, Filippi and Ruffini, a second
step was made to the generalization of the solutions by introducing a fully
general stratified density distribution of the form ρ = ρ(m2) , where ρ is an
arbitrary function of the equidensity surfaces. As in the previous papers the
pressure is still anisotropic and the velocity field linear. The equilibrium and
stability properties of anisotropic and heterogeneous generalized Maclaurin
spheroids and Jacobi and Dedekind ellipsoids were studied. The Dedekind
theorem, originally proved for homogeneous and isotropic configurations is
still valid for this more general case. In Pacheco, Pucacco, Ruffini and Se-
bastiani (paper IV, 1989) several applications of the previous treatment of the
generalized Riemann sequences were studied. Special attention was given
to the axial ratios of the equilibrium figures, compatible with given values of
anisotropy. A stability analysis of the equilibrium was performed against odd
modes of second harmonic perturbations. In Busarello, Filippi and Ruffini,
(paper V, 1989), the heterogeneous and anisotropic ellipsoidal Riemann con-
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figurations of equilibrium, obtained in the previous paper and characterized
by non zero angular velocity of the figure and constant vorticity were used to
model a class of elliptical galaxies. Their geometrical and physical properties
were discussed in terms of the anisotropy, the uniform figure rotation, and the
internal streaming motion. In Busarello, Filippi and Ruffini, (paper VI, 1990),
the equilibrium, stability, and some physical properties of a special case of
oblate spheroidal configurations which rotate perpendicularly to the symme-
try axis were analyzed, still within the framework of the second order virial
equations. In Filippi, Ruffini and Sepulveda (paper VII, 1990), the authors
made an additional fundamental generalization by introducing a non linear
velocity field with a cylindrical structure an a density distribution originally
adopted in paper I of the form ρ = ρc(1−m2)n. The generalized anisotropic
Riemann sequences coming from second order virial equations were studied.
Some of the results obtained in that article have been modified by the consid-
eration of the virial equations of n-th order, specially the claim regarding the
validity of the Dedekind theorem, made on the basis of an unfortunate def-
inition of certain coefficients. In Filippi, Ruffini and Sepulveda (paper VIII,
1991), following the theoretical approach of its predecessor, the nonlinear ve-
locity field was extended to cover the most general directions of the vorticity
and angular velocity. The more general form for the density ρ = ρ(m2) was
adopted. Equilibrium sequences were determined, and their stability was an-
alyzed against odd and even modes of second harmonic perturbations. In the
next paper, discussed below in some detail, (Filippi, Ruffini and Sepulveda,
1996, Paper IX), the authors have considered an heterogeneous, rotating, self-
gravitating fluid mass with anisotropic pressure and internal motions that are
nonlinear functions of the coordinates in an inertial frame. We present here
the complete results for the virial equations of n-th order, and we discuss the
constraints for the equilibrium of spherical, spheroidal, and ellipsoidal con-
figurations imposed by the higher order virial equations. In this context, the
classical results of Hamy (1887) and Dive (1930) are also confirmed and gen-
eralized. In particular, (a) the Dedekind theorem is proved to be invalid in
this more general case: the Dedekind figure with Ω = 0 and Z 6= 0 cannot
be obtained by transposition of the Jacobi figure, endowed Ω 6= 0 and Z = 0;
(b) the considerations contained in the previous eight papers on the series,
concerning spherical or spheroidal configurations, are generalized to recover
as special cases; (c) the n-th order virial equations severely constraint all het-
erogeneous ellipsoidal figures: as shown from tables in figures 3, 4, and 5, all
the heterogeneous ellipsoidal figures cannot exist.

The n-th order virial approach. Paper IX

Let us consider an ideal self-gravitating fluid of density ρ, stratified as con-
centric ellipsoidal shells and with an anisotropic diagonal pressure Pi. The
fluid will be considered from a rotating frame with angular velocity Ω re-
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spect to an inertial frame. If u is the velocity of any point of the fluid and
v is the gravitational potential, the hydrodynamical equation governing the
motion, referred to the rotating frame is given by (Goldstein 1980)

ρ
du
dt

= −∇P + ρ∇v +
1
2

ρ∇|Ω× x|2 + 2ρu×Ω− ρΩ̇× x .

In this equation appear, respectively, the contributions of pressure, gravita-
tion, centrifugal force, Coriolis force and a ”Faraday” term, corresponding
to the time change in the angular velocity. As usual, the gravitational po-
tential satisfies the Poisson equation ∇2v = −4πGρ. We want to generalize
the form of the virial equations, given for the second, third and fourth order
by Chandrasekhar (1987), to the n-th order and for non-linear velocities. In
the rotating frame the generalization can be done in complete analogy with
the treatment presented by Chandrasekhar, multiplying the hydrodynamical
equation by xa−1

i xb
j xc

k and integrating over the volume V of an ellipsoid. That
means that the boundary of the configuration is defined; on the surface the
pressure vanishes. The index i appears a-1 times, the indices j and k appear
b and c times, respectively, and a, b, c ≥ 1. Now, the velocity field considered
in Chandrasekhar (1987, pag 69) is a linear function of the coordinates, corre-
sponding to a constant vorticity. In order to generalize the velocity profile we
propose a more general form, preserving the ellipsoidal stratification and the
ellipsoidal boundary. Specifically, we assume the existence of a constant unit
vector n fixed in the rest frame of the ellipsoid such that the velocity field cir-
culates in planes perpendicular to n and having the same direction as Ω. Ad-
ditionally the continuity equation must be preserved so that the velocity pro-
file can be written as u = n̂× (Mṙ)φ̂. The dimensionless function φ describes
the characteristic features of the velocity field. Thus, the velocity is linear if φ
is 1. In this equation M = ∑3

i=1 êixi. Then, the equation of the ellipse has the
form m2 = r ·M · r: In the steady state regime we may rewrite the general-
ized virial equations by introducing generalizations of kinetic energy tensor,
angular momentum and moment of inertia respectively. Note first that the
virial equations with odd values of n = a + b + c are identically zero if the
density, , and the function contain powers of xixj with i, j = 1, 2. We now
turn our attention to the virial equations with even values of n. The analysis
can be performed easily by classifying the powers of the coordinates. In fact,
there are only the following possibilities: (1) a=even, b,c= odd; (2) b=even,
a,c=odd; (3) c=even, a,b=odd; (4) a,b,c=even. Cases (2) and (3) are equivalent
because of the interchangeable positions of j and k in eq (1). Cases (1) and
(2) are non-equivalent owing to the privileged position of the index i. So, the
steady state virial equations can be classified in three families. In this way
the classical homogeneous and linear Maclaurin spheroids, Jacobi, Dedekind
and Riemann ellipsoids can be generalized to cover heterogeneous systems
with non uniform vorticity and anisotropic pressure, denoted as generalized
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Figure 0.3: Table 1

Maclaurin spheroids, and generalized Jacobi, Dedekind and Riemann ellip-
soids.

The generalized S-type Riemann ellipsoids (homogeneous and heteroge-
neous systems with uniform figure rotation Ω parallel to the vorticity Z, and
isotropic or anisotropic pressure) encompass as special cases the generalized
Dedekind ellipsoids (homogeneous and heterogeneous systems with Ω =
0, Z 6= 0 and isotropic or anisotropic pressure), the generalized Maclaurin
spheroids and and the generalized Jacobi ellipsoids (homogeneous and het-
erogeneous axysymmetric or ellipsoidal, respectively, having Ω 6= 0, Z = 0,
with isotropic or anisotropic pressure). Its interesting to note that Dedekind’s
theorem, which transforms Dedekind ellipsoids into Jacobi ellipsoids and
vice versa, no longer applies in the non linear velocity regime, being lim-
ited to the linear case. The density may be inhomogeneous and the pres-
sure may be anisotropic. For generalized S-type ellipsoids we may write
n = (0, 0, 1), Ω = (0, 0, Ω), Z = (0, 0, Z). With this choice the explicit virial
equation are reduced to the infinite set. It is easy to show that in the linear and
homogeneous case (φ̃ = Pi = Pic(m2)), this infinite set reduces just to three
equations which coincide with hydrodynamical equations (Chandrasekhar
1987, pp 74-75). The analysis of the possible configurations can be performed
for two independent cases in which the form of the velocity profile is decided
by φ̃ = φ̃(m2) and φ̃ = φ̃∗, the last one containing combinations of m2, r2, x2

3.
The analysis of equilibrium configurations are summarized by the tables in
figures 3, 4, and 5 for Maclaurin, Dedekind and Riemann S configurations.
These tables list the existent configurations in this specific sequence. Some
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Figure 0.4: Table 2

Figure 0.5: Table 3
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other classical results can be recovered from our formulation, as the Dive’s
theorem (a stratified heterogeneous and rotating spheroid, without differen-
tial rotation, cannot be a barotrope) that can be generalized to ellipsoidal,
anisotropic configurations. The Hamy theorem (a mass ellipsoidally strati-
fied cannot have a uniform rotation) is confirmed also in the anisotropic case.
All the results in Chandrasekhar (1987) for homogeneous configurations are
extended to the anisotropic case. Our analysis is restricted to ellipsoidal or
spheroidal configurations. Many other, non ellipsoidal, self-gravitating fig-
ures can exist as announced by Dive’s theorem and must be studied by doing
a further generalization of the virial theory to cover integration on non ellip-
soidal volumes. In this case the form of the configuration is unknown.

0.3.3 The functional approach

The n-th order virial method is an integral approach to the problem of con-
figuration of self-gravitating systems. A different approach, the functional
method, begins directly with the differential hydrodynamical equation and
tries to solve an essential question: how may be expressed the functional
dependence among velocity potential, the density, the pressure, the gravi-
tational potential, the vorticity, and the form of the configuration? Using a
functional method based on the introduction of a velocity potential to solve
the Euler, continuity and Poisson equations, a new analytic study of the equi-
librium of self-gravitating rotating systems with a polytropic equation of state
allows the formulation of the conditions of integrability. For the polytropic
index n, and a state equation P = αρ1+1/n , in the incompressible case∇ ·~v =
0, we are able to find the conditions for solving the problem of the equilib-
rium of polytropic self-gravitating systems that rotate and have a non uni-
form vorticity. In the paper X, an analysis of the hydrodynamic equation
for self-gravitating systems is presented from the point of view of functional
analysis. We demonstrate that the basic quantities such as the density, the
geometric form of the fluid, the pressure, the velocity profile and the vor-
ticity ζ can be expressed as functionals of the velocity potential Ψ and of a
function g(z) of the coordinate z on the fluid rotation axis. By writing the
hydrodynamical equations in terms of the velocity potential, it is possible to
establish the integrability conditions according to which the pressure and the
third component of the vorticity ζ3 have the functional form P = P(ρ) and
ζ3 = ζ3(Ψ) ; these conclusions suggest the form Ψ = Ψ(x, y) for the veloc-
ity potential. In this way the steady state non linear hydrodynamic equation
can be written as a functional equation of Ψ and we may propose some sim-
ple arguments to construct analytic solutions. In the special case n = 1, an
explicit analytic solution can be found. The axisymmetric, linear and non
homogeneous configurations can be revisited and we may describe how the
properties of the configurations obtained compare to the well-known homo-
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geneous ellipsoids of Maclaurin, Jacobi and Riemann and the discussion can
be extended to related works using analytical and numerical tools in Newto-
nian gravity.

0.3.4 Recent Studies

The theory of self-gravitating rotating bodies is well known to be quite com-
plicated even if many simplifications are assumed. The main problem comes
from the fact that the equations are in general highly nonlinear and bound-
ary conditions refer to the surface of the configuration, which is not known
at the beginning but can be located after numerical studies only. Analytical
results can be obtained for constant density, incompressible bodies and lin-
ear velocity profiles only, as discussed before. Nowadays numerically two-
dimensional (2D) and 3D codes allow to study complicated scenarios in the
temporal domain, but there is the need to get initial values for the equations.
An analysis still in progress (Cherubini, Filippi, Ruffini, Sepulveda and Zu-
luaga 2007) uses the notion of velocity potential to formulate the hydrody-
namical problem and gives the solution for arbitrary values of the polytropic
index n based on the computational method of Eruguchi-Muller (1985) that
can be implemented for arbitrary profiles of the differential angular veloc-
ity. More in detail, the equations are studied with a totally general functional
form which interpolates a dimensionless angular velocity profile of gaussian
type due to Stoeckly (see Tassoul’s monograph) and rational polynomial one
(Eriguchi-Muller), i.e.

Ω̃(ξ) =
e−αξ2

1 + δ2ξ2 ,

where ξ is the non dimensional cylindrical radius. While Stoeckly’s model
is typically used to describe fast non-uniformly rotating configuration close
to fission, Eriguchi-Muller one instead is used for j-constant law related to
constant specific angular momentum near to the axes of rotation. More in de-
tail in this case for small values of the parameter the rotation law approaches
the one of a constant specific angular momentum and the rotation law tend to
give rigidly rotating configuration for larger values of the parameter. The plot
of our generalized choice for the non dimensional angular velocity is shown
in Figure 6. Introducing a computational grid as the one shown in Figure 7,
after calibration of the code with well known results of the literature (James
and Williams), we have been able to get some new plots of equilibrium con-
figurations (figure 8), with associated mass diagrams (figure 9). The stability
of these configurations, a nontrivial point in the theory, is still under exam.
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Figure 0.6: Dimensionless angular velocity versus dimensionless equatorial
radius for the three models taken into exam.
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Figure 0.8: Isopicnics for n = 1 with α = 0.2 and δ2 = 0.3 for increasing
values of the ratio of equatorial and polar radii.
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Figure 0.9: Mass Sequence for three values of n in our simulations.
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In recent decades an analogy between General Relativity (GR) and other
branches of Physics has been noticed. The central idea is that a number of sys-
tems of non relativistic condensed matter manifest a mathematical structure
similar to the dynamics of fields in a curved manifold. In biology, as an ex-
ample, it has been hypothesized that stationary scroll wave filaments in car-
diac tissue describe a geodesic in a curved space whose metric is represented
by the inverse diffusion tensor, with a dynamics close to cosmic strings in a
curved universe. In fluid dynamics, in particular, this analogy becomes more
striking: given a perfect barotropic and irrotational Newtonian fluid a study
for the perturbations of the velocity potential with respect to a background
exact solution has been performed. The equations satisfied by the perturbed
quantities can be unified in a linear second order hyperbolic equation with
non constant coefficients for the velocity potential only, while other quanti-
ties like density and pressure can be obtained by differentiation. This wave
equation can be rewritten as describing the dynamics of a massless scalar
field on a pseudo-Euclidean four dimensional Riemannian manifold. In fact,
an induced “effective gravity” in the fluid arises, in which the local speed of
sound plays the role of the speed of light in GR. However, while this geo-
metric analogy is quite appealing, finding a relation with experiments is still
problematic. All the performed studies in fact, have been essentially linked
with superfluid physics experiments, for which viscous contributions can be
neglected and perfect fluid approximation is valid, i.e. what Feynman de-
fined as “dry water, although the quantized nature of these systems still poses
some formal problems. It is then natural to look for other systems such that
the perfect fluid approximation is still valid but quantization complications
may be neglected, i.e. a purely classical perfect fluid. Self-gravitating classi-
cal fluids and gaseous masses, as described by Euler’s equations, appear as
the best candidates to satisfy this requirement. For these systems however,
one must solve a coupled problem of hydrodynamics and gravitation which
is absent in acoustic analogy literature. In all the existing studies on analog
models in fact, the contribution of gravitational field was assumed to be ex-
ternally fixed and practically constant, with no back-reaction. On the other
hand in the self-gravitating problem, one must take into account the effect
of gravitational back-reaction, present both in the exact background solution
as well as in its perturbations. This effect of coupled acoustic disturbances
which travel at finite speed and the gravitational field which rearranges it-
self instantaneously has never been analyzed before using analog geometry
models and has been examined by ICRA scientists, focusing in particular on
the classical problem of self-gravitating polytropes. Polytropic systems, as
discussed before, play an important role in galactic dynamics as well as in
the theory of stellar structure and evolution. For these systems the pressure
is simply related to the density, while remaining independent of the temper-
ature. Such a choice has specific physical grounds: in the case of a degenerate
electron gas, central in the theory of stars, it is well known, as an example,
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that the pressure and density behave as ρ ∼ p
3
5 . Assuming that such a rela-

tion exists for other states of the star one has a general relation of polytropic
form p ∝ ρ1+ 1

n with a general polytropic index n. Regarding galactic dynam-
ics on the other hand, spherical polytropes are globally stable solutions to the
collisionless Boltzmann, or Vlasov, equation of galactic dynamics. While in
galactic dynamics n must be larger than 1

2 , in the case of the theory of stellar
structure quantity n ranges in 0 ≤ n < +∞. For selfgravitating polytropes
the Lane-Emden equation is central: there exist very few analytic solutions
and only for selected values of polytropic index and typically for non rotat-
ing spherically symmetric configurations or for incompressible fluids only. In
more general cases, while uniformly rotating polytropes have analytic solu-
tions in the case n = 1 only (assuming truncations of power series), solutions
for the other non spherical configurations are obtained by numerical tech-
niques only. The acoustic analogy has been extended here to these systems.
Skipping the mathematical details we list here the equations satisfied by the
velocity (ψ1) and gravitational (Φ1) perturbed potentials. Let us form the fol-
lowing symmetric 4× 4 matrix

f 00 = −ρ0

c2 , f 0i = −
ρ0vi

0
c2 , f ij = ρ0(δij −

vi
0vi

0
c2 ) (0.1)

where Greek indices run from 0 to 3, while Roman indices run from 1 to 3.
Quantity ρ0 is the background density function satisfying the exact nonlinear
self-gravitating problem. Here the local speed of sound c−2 ≡ ∂ρ

∂p , computed
on the background solution, has been introduced (p is the pressure). Then,
using (1 + 3)–dimensional space-time coordinates xµ ≡ (t; xi) we get

−∂µ( f µν ∂νψ1) = ∂t

(
∂ρ

∂p
ρ0Φ1

)
+∇ ·

(
∂ρ

∂p
ρ0Φ1~v0

)
, (0.2)

∇2Φ1 + 4πG
∂ρ

∂p
ρ0Φ1 = 4πG

∂ρ

∂p
ρ0 (∂tψ1 +~v0 · ∇ψ1) . (0.3)

Let us now define
√−g gµν = f µν which leads to

√−g = ρ2
0
c . We get the

acoustic line element ds2 = gµνdxµdxν with metric tensor and its inverse
given by

gµν ≡ 1
ρ0c

 −1
... −vj

0
· · · · · · · · · · · · · · · · · · ·
−vi

0
... (c2δij − vi

0vj
0)

 , gµν ≡
ρ0

c

 −(c2 − v2
0)

... −vj
0

· · · · · · · · · · · · · · · · · · ·
−vi

0
... δij

 .

(0.4)
Note that ds2 has not the dimension of a length, as it happens in GR instead.
We can now rewrite the final system as
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1√−g
∂µ

(√
−g gµν ∂νψ1

)
= − c

ρ2
0

[
∂t

(
1
c2 ρ0Φ1

)
+∇ ·

(
1
c2 ρ0Φ1~v0

)]
,(0.5)(

∇2 +
4πGρ0

c2

)
Φ1 =

4πGρ0

c2 (∂tψ1 +~v0 · ∇ψ1) . (0.6)

The minus sign on the right hand side of first equation above comes from our
choice of signature (−, +, +, +).

Introducing the magnitude of a generalized Jeans’ wavevector k J =
√

4πGρ0
c2 ,

associated with Jeans wavelength by λJ = 2π/k J , we can finally write (∇2 is
standard Laplace operator of Euclidean space in three dimensions):

1√−g
∂µ

(√
−g gµν ∂νψ1

)
= − c

ρ2
0

[
∂t

(ρ0

c2 Φ1

)
+∇ ·

(ρ0

c2 Φ1~v0

)]
(0.7)[

∇2 + k2
J

]
Φ1 = k2

J (∂tψ1 +~v0 · ∇ψ1) , (0.8)

which mixes the hydrodynamical (with finite speed) and gravitational (in-
stantaneous) problems through first order time and space partial derivatives
of the fields. The last two equations can also be rewritten as

1√−g
∂µ

(√
−g gµν ∂νψ1

)
= − ρ0√−g

D(0)

∂t

(
Φ1

c2

)
(0.9)

[
∇2 + k2

J

]
Φ1 = k2

J
D(0)

∂t
ψ1 , (0.10)

where
D(0)

∂t
= ∂t +~v0 · ∇ . (0.11)

If Φ1 vanishes (no gravitational back-reaction) and G → 0, one recovers
known results in absence of gravitational back-reaction. These equations
have been studied in detail for the spherical cases solutions of Lane-Emden’s
equation. In some cases the PDE’s have been numerically analysed using
finite element techniques (Bini, Cherubini and Filippi 2008).
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0.4 Hamiltonian Dynamical Systems and Galactic
Dynamics

0.4.1 Near-integrable dynamics and galactic structures.

The study of self-gravitating stellar systems has provided in several occa-
sions important hints to develop powerful tools of analytical mechanics. We
may cite the ideas of Jeans (1929) about the relevance of conserved quanti-
ties in describing the phase-space structure of large N-body systems and his
introduction of the concept of isolating integral. Later important contribution
are those of Hénon & Heiles, (1964), where a paradigmatic example of non-
integrable system derived from a simple galactic model was introduced and
of Hori (1966), where the theory of Lie transform was introduced in the field
of canonical perturbation theory and Hamiltonian normal forms. These and
other cues contributed to set up a body of methods and techniques to ana-
lyze the near integrable and chaotic regimes of the dynamics of generic non-
integrable systems. For a general overview see Boccaletti & Pucacco (Theory
of Orbits, Vol. I, 1996; Vol. II, 1999).

On the other side, the payback from analytical mechanics to galactic dy-
namics has not been as systematic and productive as it could be. The main
line of research has been that pursued by Contopoulos (2002) who applied a
direct approach to compute approximate forms of effective integrals of mo-
tion. The method of Hori (1966), subsequently developed by several other
people (Deprit, 1969; Dragt & Finn, 1976; Efthymiopoulos et al. 2004; Finn,
1984; Giorgilli, 2002), has several technical advantages and has gradually be-
come a standard tool in the perturbation theory of Hamiltonian dynamical
systems (Boccaletti & Pucacco, 1999).

In this respect we have applied the Lie transform method to construct
Hamiltonian normal forms of perturbed oscillators and investigate the orbit
structure of potentials of interest in galactic dynamics (Belmonte, Boccaletti
and Pucacco, 2006, 2007a, 2007b). The approach allows us to gather several
informations concerning the near integrable dynamics below the stochastic-
ity threshold (if any) of the system. Being a completely analytical approach,
it has the fundamental value of a complete generality which provides simple
recipes to explore the structure of the backbone of phase-space. Exploiting
asymptotic properties of the series constructed via the normal form, one can
also get quantitative predictions extending the validity of the approach well
beyond the radius of convergence of the initial series expansion of the per-
turbed potential. We have shown how to exploit resonant normal forms to
extract information on several aspects of the dynamics of the the logarithmic
and the Schwarzschild potential. In particular, using energy and ellipticity as
parameters, we have computed the instability thresholds of axial orbits, bi-
furcation values of low-order boxlets and phase-space fractions pertaining to
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the families around them. We have also shown how to infer something about
the singular limit of the potential.

As in any analytical approach, this method has the virtue of embodying in
(more or less) compact formulas simple rules to compute specific properties,
giving a general overview of the behavior of the system. In the case in which
a non-integrable system has a regular behavior in a large portion of its phase
space, a very conservative strategy like the one adopted in our work pro-
vides sufficient qualitative and quantitative agreement with other more ac-
curate but less general approaches. In our view, the most relevant limitation
of this approach, common to all perturbation methods, comes from the intrin-
sic structure of the single-resonance normal form. The usual feeling about the
problems posed by non-integrable dynamics is in general grounded on try-
ing to cope with the interaction of (several) resonances. Each normal form is
instead able to correctly describe only one resonance at the time. However,
we remark that the regular dynamics of a non-integrable system can be imag-
ined as a superposition of very weakly interacting resonances. If we are not
interested in the thin stochastic layers in the regular regime, each portion of
phase space associated with a given resonance has a fairly good alias in the
corresponding normal form. An important subject of investigation would
therefore be that of including weak interactions in a sort of higher order per-
turbation theory. For the time being, there are two natural lines of devel-
opement of this work: 1. to extend the analysis to cuspy potentials and/or
central ‘black holes’; 2. to apply this normalization algorithm to three degrees
of freedom systems.

0.4.2 Geometric approach to the integrability of Hamiltonian
systems

Integrable systems are still very useful benchmark to understand the prop-
erties of general non-integrable systems, not only for their relevance as start-
ing points for perturbation theory. The topology of invariant surfaces in the
phase-space of integrable systems can be highly non-trivial and give rise to
complex phenomena (high-order resonances, monodromy, etc.) still not com-
pletely understood.

We have started our work by investigating quadratic integrals at fixed and
arbitrary energy with a unified geometric approach (Rosquist & Pucacco,
1995; Boccaletti & Pucacco, 1997) solving the Killing tensor equations for
2nd-rank Killing tensors on 2-dim. conformally-Euclidean spaces. In Pu-
cacco & Rosquist (2003) these systems have been shown to be endowed of a
bi-Hamiltonian structure and in Pucacco & Rosquist (2004) a class of systems
separable at fixed energy has been shown to be non-integrable in Poincarè
sense. The case of cubic and quartic integrals of motion, respectively associ-
ated to 3rd and 4th-rank Killing tensors, has been investigated in Karlovini &
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Rosquist (2000) and in Karlovini, Pucacco, Rosquist and Samuelsson (2002).
In Pucacco (2004) and Pucacco & Rosquist (2005a) we have obtained new
classes of integrable Hamiltonian system with vector potentials and in Pu-
cacco & Rosquist (2005b) we have provided a general treatment of weakly
integrable systems. Recently, Pucacco & Rosquist (2007), we have presented
the theory of separability over 2-dimensional pseudo-Riemannian manifolds
(1+1-separable metrics).

We plan to investigate the existence of higher-order polynomial integrals
on general compact surfaces with the topology of the sphere and the torus
and to apply the results about pseudo-Riemannian systems to treat integrable
time-dependent Hamiltonian systems.

0.4.3 Stochasticity in galactic dynamics

The issue of stochasticity in galactic dynamics received in the past few years
a certain degree of attention (Contopoulos, 2002). A possible approach can
be that of exploiting methods of the theory of dynamical systems (Pucacco,
1992) to study instability and relaxation. In fact, in a self-gravitating N-body
system, the compactness of phase space can be introduced by force. More-
over, the violently varying sign and amount of the curvatures could provide
effects close to ergodicity. However, in addition to the fact that there is no
strict proof neither of mixing nor of ergodicity, there is a fundamental dif-
ficulty connected with numerical simulations indicating an instability time
much smaller than that predicted by the Gurzadyan & Savvidy (1996) ap-
proach (Goodman, Heggie and Hut, 1993; Hut & Heggie, 2002).

If effects related to the curvature could be envisaged, they are more prob-
ably associated to ‘violent relaxation’ on a time scale of the order of the dy-
namical time (Boccaletti, Pucacco and Ruffini, 1991; Cipriani and Pucacco,
1993, 1994). We remark that there are still many open issues in this area: the
qualitative picture of the exponential instability given by Hut and collabora-
tors is itself quite uncertain and its relation to the standard Chandrasekhar
relaxation still obscure. A thorough general picture is still lacking and it can-
not be excluded that the geometric approach based on geodesic flows could
help. However, the results obtained up to now are very far from the target.

Aim of this project is to provide the evidence of effects produced by stochas-
ticity in elliptical galaxies. The fact that irregular orbits in non-integrable
triaxial potentials may play an important role in determining the structure
and evolution of elliptical galaxies was already realized by Goodman and
Schwarzschild (1981) and studied then in many other papers (Binney, 1982;
Schwarzschild, 1993). However, in the past years, the prevailing line of think-
ing maintained the view that effective regularity is more or less the rule: Ger-
hard (1985), for example, in his study of perturbed Stäckel potentials, was
led to deny a relevance to stochasticity because, although it was produced
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by every non-integrable perturbation, its amount was always very small in
the case of perturbations consistent with observations. Hence, the emergence
of appreciable stochasticity only in the presence of unreasonable perturba-
tions, was again used as an argument in favour of regularity. But, if the
nature of perturbed potentials with near-homogeneous cores is to be “reluc-
tant” to produce much chaos, as soon as one examines singular or simply
higher concentrated systems, the fraction of stochastic orbits becomes sud-
denly non-negligible (Miralda-Escudé and Schwarzschild, 1989). Merritt and
Valluri (1996) have performed high-accuracy numerical integrations of orbits
in the potential Φm0 and have detected a two-peak distribution in the Lia-
pounov numbers, with an increasing amount of positive values at smaller
m0. The origin of the breaking of integrability is the central singularity which
induces a chaotic scattering on the box orbits, which pass arbitrarily close to
the center, with a characteristic Liapounov time-scale:

τL ∼ 3÷ 5 τd. (12)

It is superfluos to remark on the importance of this result: box orbits con-
stitute the bulk of a triaxial galaxy and, due to the short time-scale on which
stochasticity is expected to develop, we must necessarily reconsider the pic-
ture of elliptical galaxy modelling based on integrable potentials. It is cleat
that many new aspects of the theory emerge and need a deep analysis in the
light of these findings. One important consequence is just on the issue of
the rotational support of elliptical galaxies: in fact, in objects more flattened
than indicated by the amount of rotation, anisotropic stresses contribute to
the support. Since they are originated by non-classical integrals, their perma-
nence over the life-time of the galaxy implies that the system must settle from
its origin in a state of integrable mean potential. Otherwise, in the stochastic
regions of the orbit space of a generic potential, even if some effective integral
is approximately conserved along the orbits, the short instability time rapidly
remove the corresponding anisotropy in velocity space.

Consider for simplicity the axially symmetric case (Boccaletti & Pucacco,1998).
The effective potential is

Φeff(r, z) = Φ(r, z) +
L2

z
2r2 , r =

√
x2 + y2 (13)

and if Φ is separable in elliptical coordinates in the meridional plane, for ex-
ample the potential coming from the spheroidal specialization of the density
distribution (8), (“Kuzmin’s spheroid”)

ρ(r, z) = ρ0

(
1 +

r2

a2 +
z2

c2

)−2

, (14)

also Φeff is separable. If Φ is a generic non-integrable potential, stochasticity
instead appears in many fashions in so far the relative fraction of irregular
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orbits depends on several geometric and dynamical parameters. Recall that
the celebrated paper by Hénon and Heiles (1964) explores just the nature of
the motion of a generic Φeff around its minimum; in fact, if r = rmin, z = 0
is the location of this minimum, we can write the expansion up to the third
order

Φeff ' Φmin +
1
2

A(r− rm)2 +
1
2

Bz2 − C(r− rm)z2 +
1
3

D(r− rm)3, (15)

when Φmin = Φeff(rm, 0) and A, B, C, D are positive constants. After suitable
rescaling, we recognize in expression (15) that of the Hénon-Heiles potential.
We have therefore that there is a low-energy near integrable regime in which
every system behaves in a way which is practically indistinguishable from
the exact integrability. Above a certain threshold, which depends in a com-
plex way on the parameters but that is generically well below the average
stellar energy, stochasticity dominates.

Coming back to the issue of rotational support, it was already proposed by
the author (Pucacco, 1992) that secular evolution in dwarf and normal ellipti-
cal galaxies, accompanied by a progressive reduction of anisotropy, accounts
for the distribution of data-points in the [(v/< σ >)∗ versus M]-plane. In
the light of what said above, the secular evolution is linked to a gradual dis-
appearance of orbits effectively constrained by quasi-conserved phase-space
functions. Using the data collected by accurate observavions with HST, we
can perform a more reliable test of the scenario proposed above.

Merritt and Valluri (1996), besides to compute short-time estimates of Lya-
punov numbers, have also attempted the assesment of the “mixing-time” of
their systems, that is the time-scale required to reach a coarse-grained steady-
state of the ensemble of the irregular orbits. Their conclusion is that in a time
of the order τmix ∼ 10− 100τL the system relaxes to an invariant distribution.
Despite its large uncertainty, this result is in line with many other works in
pointing out that the Lyapunov time is only the instability time-scale of single
orbits. The time required so that instability manifests itself in the structure of
the whole system is much longer. This fact helps to clarify laso some obscure
point in the theory of the exponential instability of N-body systems. Good-
man, Heggie and Hut (1993) and others find that the instability time-scale is
of the order of τD, but their explanation of its relation with the classical relax-
ation time is not satisfactory: in particular, it is not clear why, at the end of
the linear regime of the growth of perturbations, classical relaxation would
ensue. In the light of the above discussion, we propose instead that the N-
body system, much in the same way of chaotic ensembles in a non-integrable
potential, attains a “mixed” (equilibrium) state after a τmix ∼ 10kτL, where
the order of magnitude k is possibly dependent on the number of stars.
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0.5 Publications (2008)

Refereed journals

• D. Bini, Cherubini and S. Filippi,
“Effective geometries in self-gravitating polytropes”,
Phys. Rev. D 78, 064024 (2008).
Abstract: Perturbations of a perfect barotropic and irrotational Newto-
nian self-gravitating fluid are studied using a generalization of the so-
called effective geometry formalism. The case of polytropic spherical
stars, as described by the Lane-Emden equation, is studied in detail in
the known cases of existing explicit solutions. The present formulation
gives a natural scenario in which the acoustic analogy has relevance for
both stellar and galactic dynamics.
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