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3. Brief Description of Quantum
Gravity

3.1. Canonical Quantum Gravity without the time
gauge

In section “Canonical Quantum Gravity without the time gauge” our inves-
tigation has been focused on describing quantum gravitational degrees of
freedom, without fixing the time gauge. A Quantum Gravity theory is ex-
pected to provide a discrete structure for the space-time geometry. In this
respect, it is worth noting the achievement of Loop Quantum Gravity of a
discrete structure for spatial geometrical operators, at least on a kinematical
level. However, this formulation is based on fixing the so-called time-gauge
condition, i.e., the choice of the vier-bein is adapted to the space-time split-
ting, such that the time-like vector e0 is normal to spatial hypersurfaces. This
way, boosts are frozen out and the investigation on the behavior of quantum
geometrical operators in different Lorentz frames is highly non-trivial [6].

The people involved in this line of research are Francesco Cianfrani and
Giovanni Montani.

3.2. The time gauge problem in the path integral
formalism

In section “The time gauge problem in the path integral formalism” we turn
our attention to general relativity expressed in first-order formalism, in or-
der to investigate [10] the physicality condition for the states of the gravita-
tional field arising from BRST invariance of the theory, following the same
procedure employed for non-Abelian gauge theories. In this procedure we
will intentionally avoid to use canonical quantization methods. We are to
determine a physical state condition on quantum states without thinking of
classical Hamiltonian constraints in order to compare, at the end of our cal-
culation, our physicality condition required by BRST symmetry and derived
with path-integral methods with the one obtained using the Dirac quantiza-
tion method employed within Ashtekar’s canonical formulation.

The people involved in this line of research are Michele Castellana and
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3. Brief Description of Quantum Gravity

Giovanni Montani.

3.3. The problem of time in quantum gravity

In section “The problem of time in quantum gravity” the so called Kučhar-
Brown mechanism for a perfect fluid in the Schutz velocity potential repre-
sentation is analyzed [11],[18]. When treated with the canonical formalism,
this model turns out to be a constrained system, with numerous secondary
and tertiary constraints, which require some restrictions on the phase space
variables. We find, as a result, that the Schutz model is a good matter clock
when coupled with General Relativity.

The people involved in this line of research are Simone Zonetti and Gio-
vanni Montani.

3.4. Evolutionary Quantum Gravity

In section “Evolutionary Quantum Gravity” we review the fundamental as-
pects of the so-called evolutionary quantum gravity.

An evolutionary paradigm is inferred by restricting the covariance princi-
ple within a Gaussian gauge and the corresponding implications for a generic
cosmological scenario are investigated both on a classical and a quantum
level [13]. A dualism between time and the reference frame fixing is then
inferred.

The people involved in this line of research are M.Valerio Battisti, Francesco
Cianfrani and Giovanni Montani (past collaborator: Simone Mercuri).

3.5. Minisuperspace and Generalized Uncertainty
Principle

In section “Minisuperspace and Generalized Uncertainty Principle” we ex-
plain some results obtained in a recent approach to quantum cosmology, in
which the notion of a fundamental scale naturally appears. This scheme re-
alizes in quantizing a cosmological model by using a deformed Heisenberg
algebra, which reproduces a Generalized Uncertainty Principle as arises from
studies on string theory. We find that the classical cosmological singularity
of the Taub model is solved by this approach in the sense that the quantum
Universe can be regarded as probabilistically singularity-free [4], [12]. More-
over, the Taub GUP wave packets provide the right behavior in the estab-
lishment of a quasi-isotropic configuration for the Universe. The Bianchi I,
II and IX cosmological models are also analyzed in the GUP framework and
the ordinary dynamics appears to be deeply modified and, in particular, the
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3.6. Quantum isotropization mechanism

Mixmaster Universe can be still considered a chaotic system. Furthermore,
in the context of a deformed Heisenberg minisuperspace algebra framework,
a deep phenomenological relation between loop quantum cosmology, brane
cosmology and the κ-Poincaré scheme is obtained.

The people involved in this line of research are Marco Valerio Battisti and
Giovanni Montani.

3.6. Quantum isotropization mechanism

In section “Quantum isotropization mechanism” we explain some results of
a research line in which a wave function of the inhomogeneous Mixmaster
Universe which has a meaningful probabilistic interpretation in agreement
with the Copenhagen school is obtained. Our result is that this wave function
of the Universe is spread over all values of anisotropy near the cosmological
singularity but, when the radius of the Universe grows, it is asymptotically
peaked around the isotropic configuration. Therefore, the FRW cosmological
model is naturally the privileged state when a sufficient large volume of the
Universe is taken into account and a semi-classical isotropization mechanism
for the Universe naturally arises.

The people involved in this line of research are Marco Valerio Battisti, Ric-
cardo Belvedere and Giovanni Montani.

3.7. Polymer quantum cosmology

In section “Polymer quantum cosmology” we explain some results obtained
applying the polymer quantization paradigm to the Taub Universe. The poly-
mer approach is based on a inequivalent representation of the Weyl alge-
bra and its physical relevance arises from consideration on the mechanical-
system-limit of the loop quantum gravity theory. As a result of our analysis,
the cosmological singularity is not probabilistically removed, as in the GUP
approach, since the dynamics of the wave packets is not able to stop the evo-
lution toward the classical singularity.

The people involved in this line of research are Marco Valerio Battisti, Or-
chidea Maria Lecian and Giovanni Montani.

3.8. Lorentz Gauge Theory

In section “Lorentz Gauge Theory” we implement a non-standard gauge the-
ory of the local Lorentz group both in flat and in curved space-time, based on
diffeomorphism induced Lorentz transformation and the ambiguity which
emerges in the transformation laws of the usual spin connection and spinors.
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3. Brief Description of Quantum Gravity

We propose a model [8][22] to analyze the interaction of a 4-spinor with
the new connections of the Lorentz group (addressed in flat space). This
scheme exhibits strong analogies with the electro-magnetic case and the so-
called Pauli equation. The analysis of this interaction is devoted to find out
anomalous selection rules for a hydrogen-like model and, of course, energy-
level splits. According to standard quantum mechanics new energy levels
are present, but no new transitions arise.

The peoples involved in this line of research are Giovanni Montani, Nakia
Carlevaro and Orchidea M. Lecian (past collaborator: Simone Mercuri).
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4. Brief Description of Quantum
Fields on Classical Background

4.1. Dirac equation on a curved spaces and
classical trajectories

In section “Dirac equation on a curved space-time and classical trajectories”,
the interaction between geometry and internal spinor-like degrees of free-
dom has been investigated with the aim to infer the analogous of Papapetrou
equations for a quantum spin. This task has been approached by an eikonal
approximation, and a localization hypothesis along the integral curve of the
momentum [25]. Hence, a dispersion relation has been recovered starting
from the squared Dirac equation and by virtue of an integration on spatial co-
ordinates. It is worth noting the emergence of a Papapetrou-like interaction
between the Riemann tensor and a tensor, which characterizes the internal
structure of spinors.

The persons involved in this research line are Giovanni Montani and Fran-
cesco Cianfrani.
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4. Brief Description of Quantum Fields on Classical Background

1312



5. Brief Description of Unification
Theories

5.1. 5 Dimensional Kaluza-Klein Model

In section “5 Dimensional Kaluza-Klein model”, we analyze 5-dimensional
Kaluza - Klein schemes. Within the unification picture provided by the Kaluza
Klein (KK) theory, the 5- Dimensional (5D) model is the simplest one and the
starting point for the investigation of the breaking of multidimensional grav-
ity into the usual gravity plus Yang-Mills fields. It is characterized by an
abelian structure; indeed, it provides the coupling between gravity, a U(1)
gauge field and an extra scalar field. If the scalar field it is assumed to be
constant from the beginning, the 5D model reproduces exactly the Einstein-
Maxwell theory in vacuum. The research line about this topic is focused on
following points: Hamiltonian formulation [31], test-particles dynamics, cou-
pling with matter, geodesic deviation, search of cosmological and spherical
solutions for the KK model with source.

The people involved in this research line are Valentino Lacquaniti, Gio-
vanni Montani and Francesco Vietri.
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6. Selected Publications before
2005

6.1. Quantum Gravity

[1] G. Montani, Canonical Quantization of Gravity without “Frozen For-
malism”, Nucl. Phys. B, 634, 370 (2002).

We write down a quantum gravity equation which generalizes the Wheel-
erDeWitt one in view of including a time dependence in the wave func-
tional. The obtained equation provides a consistent canonical quan-
tization of the 3-geometries resulting from a “gauge-fixing” (3 + 1)-
slicing of the spacetime. Our leading idea relies on a criticism to the
possibility that, in a quantum spacetime, the notion of a (3+1)-slicing
formalism (underlying the WheelerDeWitt approach) has yet a precise
physical meaning. As solution to this problem we propose of adding
to the gravity-matter action the so-called kinematical action (indeed in
its reduced form, as implemented in the quantum regime), and then
we impose the new quantum constraints. As consequence of this re-
vised approach, the quantization procedure of the 3-geometries takes
place in a fixed reference frame and the wave functional acquires a time
evolution along a one-parameter family of spatial hypersurfaces filling
the spacetime. We show how the states of the new quantum dynamics
can be arranged into an Hilbert space, whose associated inner product
induces a conserved probability notion for the 3-geometries. Finally,
since the constraints we quantize violate the classical symmetries (i.e.,
the vanishing nature of the super-Hamiltonian), then a key result is to
find a (non-physical) restriction on the initial wave functional phase,
ensuring that general relativity outcomes when taking the appropriate
classical limit. However, we propose a physical interpretation of the
kinematical variables which, based on the analogy with the so-called
Gaussian reference fluid, makes allowance even for such classical sym-
metry violation.

[2] G. Montani, Cosmological Issues for revised canonical quantum grav-
ity, Int. J. Mod. Phys. D, 12, 8, 1445 (2003)

In a recent work we presented a reformulation of the canonical quan-
tum gravity, based on adding the so-called kinematical term to the gravity-
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6. Selected Publications before 2005

matter action. This revised approach leads to a self-consistent canonical
quantization of the 3-geometries, which referred to the external time as
provided via the added term. Here, we show how the kinematical term
can be interpreted in terms of a non- relativistic dust fluid which plaies
the role of a “real clock” for the quantum gravity theory, and, in the
WKB limit of a cosmological problem, makes account for a dark matter
component which, at present time, could play a dynamical role.

[3] G. Aprea, G. Montani and R. Ruffini, Test particles behavior in the
framework of a Lagrangian geometric theory with propagating torsion,
Int. J. Mod. Phys. D, 12, 10, 1875 (2003)

Working in the Lagrangian framework, we develop a geometric theory
in vacuum with propagating torsion; the antisymmetric and trace parts
of the torsion tensor, considered as derived from local potential fields,
are taken and, using the minimal action principle, their field equations
are calculated. Actually these will show themselves to be just equations
for propagating waves giving torsion a behavior similar to that of met-
ric which, as known, propagates through gravitational waves. Then
we establish a principle of minimal substitution to derive test particles
equation of motion, obtaining, as result, that they move along autopar-
allels. We then calculate the analogous of the geodesic deviation for
these trajectories and analyze their behavior in the nonrelativistic limit,
showing that the torsion trace potential φ has a phenomenology which
is indistinguishable from that of the gravitational Newtonian field; in
this way we also give a reason for why there have never been evidence
for it.

[4] G. Imponente and G. Montani, Mixmaster Chaoticity as Semiclassical
Limit of the Canonical Quantum Dynamics, Int. J. Mod. Phys. D, 12(6),
977-984 (2003).

Within a cosmological framework, we provide a Hamiltonian analysis
of the Mixmaster Universe dynamics on the base of a standard Arnowitt-
Deser-Misner approach, showing how the chaotic behavior characteriz-
ing the evolution of the system near the cosmological singularity can be
obtained as the semiclassical limit of the canonical quantization of the
model in the same dynamical representation. The relation between this
intrinsic chaotic behavior and the indeterministic quantum dynamics is
inferred through the coincidence between the microcanonical probabil-
ity distribution and the semiclassical quantum one.

[5] S. Mercuri and G. Montani, Revised Canonical Quantum Gravity via
the Frame Fixing, Int. J. Mod. Phys. D, 13, 165 (2004).

We present a new reformulation of the canonical quantum geometro-
dynamics, which allows one to overcome the fundamental problem of
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6.1. Quantum Gravity

the frozen formalism and, therefore, to construct an appropriate Hilbert
space associate to the solution of the restated dynamics. More precisely,
to remove the ambiguity contained in the Wheeler-DeWitt approach,
with respect to the possibility of a (3 + 1)-splitting when space-time is
in a quantum regime, we fix the reference frame (i.e. the lapse func-
tion and the shift vector) by introducing the so-called kinematical ac-
tion. As a consequence the new super-Hamiltonian constraint becomes
a parabolic one and we arrive to a Schrödingerlike approach for the
quantum dynamics. In the semiclassical limit our theory provides Gen-
eral Relativity in the presence of an additional energy-momentum den-
sity contribution coming from non-zero eigenvalues of the Hamiltonian
constraints. The interpretation of these new contributions comes out in
natural way that soon as it is recognized that the kinematical action can
be recasted in such a way that it describes a pressureless, but, in general,
non-geodesic perfect fluid.

[6] S. Mercuri and G. Montani, Dualism between physical frames and time
in quantum gravity, Mod. Phys. Lett. A, 19, 20, 1519 (2004).

In this work we present a discussion of the existing links between the
procedures of endowing the quantum gravity with a real time and of
including in the theory a physical reference frame. More precisely, as a
first step, we develop the canonical quantum dynamics, starting from
the Einstein equations in presence of a dust fluid and arrive at a Schrödi-
nger evolution. Then, by fixing the lapse function in the path-integral
of gravity, we get a Schrödinger quantum dynamics, of which eigen-
values problem provides the appearance of a dust fluid in the classical
limit. The main issue of our analysis is to claim that a theory, in which
the time displacement invariance, on a quantum level, is broken, is in-
distinguishable from a theory for which this symmetry holds, but a real
reference fluid is include.

[7] G. Montani, Minisuperspace model for revised canonical quantum grav-
ity, Int. J. Mod. Phys. D, 13, 8, 1703 (2004)

We present a reformulation of the canonical quantization of gravity, as
referred to the minisuperspace; the new approach is based on fixing
a Gaussian (or synchronous) reference frame and then quantizing the
system via the reconstruction of a suitable constraint; then the quantum
dynamics is re-stated in a generic coordinates system and it becomes de-
pendent on the lapse function. The analysis follows a parallelism with
the case of the non-relativistic particle and leads to the minisuperspace
implementation of the so-called kinematical action as proposed in Ref.
1 (here almost coinciding also with the approach presented in Ref. 2).
The new constraint leads to a Schrödinger equation for the system, i.e.
to nonvanishing eigenvalues for the super-Hamiltonian operator; the
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6. Selected Publications before 2005

physical interpretation of this feature relies on the appearance of a “dust
fluid” (non-positive definite) energy density, i.e. a kind of “materializa-
tion” of the reference frame. As an example of minisuperspace model,
we consider a Bianchi type IX Universe, for which some dynamical im-
plications of the revised canonical quantum gravity are discussed. We
also show how, on the classical limit, the presence of the dust fluid can
have relevant cosmological issues. Finally we upgrade our analysis by
its extension to the generic cosmological solution, which is performed
in the so-called long-wavelength approximation. In fact, near the Big-
Bang, we can neglect the spatial gradients of the dynamical variables
and proceed to implement, in each space point, the same minisuper-
space paradigm valid for the Bianchi IX model.

[8] G.V. Vereshchagin, On stability of simplest nonsingular inflationary cos-
mological models within general relativity and gauge theories of grav-
ity, Int. J. Mod. Phys. D, 13, 695 (2004).

In this paper we provide approximate analytical analysis of stability
of nonsingular inflationary chaotic-type cosmological models. Initial
conditions for nonsingular solutions at the bounce correspond to dom-
inance of potential part of the energy density of the scalar field over its
kinetic part both within general relativity and gauge theories of gravity.
Moreover, scalar field at the bounce exceeds the planckian value and on
expansion stage these models correspond to chaotic inflation. Such so-
lutions can be well approximated by explicitly solvable model with con-
stant effective potential (cosmological term) and massless scalar field
during the bounce and on stages of quasi-exponential contraction and
expansion. Perturbative analysis shows that nonsingular inflationary
solutions are exponentially unstable during contraction stage. This re-
sult is compared with numerical calculations.

[9] G.V. Vereshchagin, Qualitative Approach to Semi-Classical Loop Quan-
tum Cosmology, JCAP, 0407, 013 (2004).

Recently the mechanism was found which allows avoidance of the cos-
mological singularity within the semi-classical formulation of Loop Quan-
tum Gravity. Numerical studies show that the presence of self-interaction
potential of the scalar field allows generation of initial conditions for
successful slow-roll inflation. In this paper qualitative analysis of dy-
namical system, corresponding to cosmological equations of Loop Quan-
tum Gravity is performed. The conclusion on singularity avoidance in
positively curved cosmological models is confirmed. Two cases are con-
sidered, the massless (with flat potential) and massive scalar field. Ex-
planation of initial conditions generation for inflation in models with
massive scalar field is given. The bounce is discussed in models with
zero spatial curvature and negative potentials.
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6.2. Quantum Field on Classical Background

6.2. Quantum Field on Classical Background

[10] V. Belinski, On the existence of quantum evaporation of a black hole,
Phys. Lett. A, 209, 13 (1995).

A conjecture is made that the standard derivation of the black hole
evaporation effect which uses infinite frequency wave modes is inad-
equate to describe black hole physics. The proposed resolution is that
the problem is not due to the absence of the as yet unknown “correct”
derivation but rather that the effect does not exist.

[11] A. Fedotov, V. Mur , N. Narozhny, V. Belinski and B.Karnakov, Quan-
tum field aspect of the Unruh problem, Phys. Lett. A, 254, 126, (1999).

It is shown using a both conventional and algebraic approach to quan-
tum field theory that it is impossible to perform quantization on Unruh
modes in Minkowski space-time. Such a quantization implies setting a
boundary condition for the quantum field operator which changes the
topological properties and symmetry group of space-time and leads to
a field theory in two disconnected left and right Rindler space-times. It
means that the “Unruh effect” does not exist.

[12] N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur and V.A. Be-
linski, Boundary conditions in the Unruh problem, Phys. Rev. D, 65,
025004, (2002).

According to Unruh, a detector moving with constant proper accelera-
tion in empty Minkowski spacetime reveals universalnot depending on
the inner structure of the detectorthermal response. We have analyzed
the Unruh problem using both conventional and algebraic approaches
to quantum field theory. It is shown that the Unruh quantization pro-
cedure implies setting a boundary condition for the quantum field op-
erator which changes the topological properties and symmetry group
of the spacetime and leads to a field theory in two disconnected left
and right Rindler spacetimes instead of Minkowski spacetime. Thus
we conclude that, in spite of the work over the last 25 years, there still
remain serious gaps in grounding of the Unruh effect, and as of now
there is no compelling evidence for the universal behavior attributed to
all uniformly accelerated detectors.

[13] A.M. Fedotov, N.B. Narozhny, B.M. V.D. Mur and V.A. Belinski, An
example of a uniformly accelerated particle detector with non-Unruh
response, Phys. Lett. A, 305, 211 (2002).

We propose a scalar background in Minkowski spacetime imparting
constant proper acceleration to a classical particle. In contrast to the case
of a constant electric field the proposed scalar potential does not create
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6. Selected Publications before 2005

particleantiparticle pairs. Therefore, an elementary particle accelerated
by such field is a more appropriate candidate for an “Unruh-detector”
than a particle moving in a constant electric field.We show that the pro-
posed detector does not reveal the universal thermal response of the
Unruh type.

[14] N.B. Narozhny, A.M. Fedotov, B.M. Karnakov, V.D. Mur, and V.A. Belin-
skii, Reply to “Comment on ‘Boundary conditions in the Unruh prob-
lem’ ”, Phys. Rev. D, 70, 048702 (2004).

We reply to the preceding Comment by Fulling and Unruh criticizing
our conclusion that principles of quantum field theory as of now do
not give convincing arguments in favor of a universal thermal response
of detectors uniformly accelerated in Minkowski space [Phys. Rev. D
65, 025004 2002]. We maintain our conclusion and present additional
arguments to confirm it.

[15] V.A. Belinski, N.B. Narozhny, AM. Fedotov and V.D. Mur, Unruh quan-
tization in the presence of a condensate, Phys. Lett. A, 331, 349 (2004).

We have shown that the Unruh quantization scheme can be realized in
Minkowski spacetime in the presence of BoseEinstein condensate con-
taining infinite average number of particles in the zero boost mode and
located basically inside the light cone. Unlike the case of an empty
Minkowski spacetime the condensate provides the boundary conditions
necessary for the Fulling quantization of the part of the field restricted
only to the Rindler wedge of Minkowski spacetime.

[16] G. Montani, A scenario for the dimensional compactification in eleven-
dimensional space-time, Int. J. Mod. Phys. D, 13, 6, 1029 (2004).

We discuss the inhomogeneous multidimensional mixmaster model in
view of the appearing, near the cosmological singularity, of a scenario
for the dimensional compactification in correspondence to an 11-dimen-
sional spacetime. Our analysis candidates such a collapsing picture to-
ward the singularity to describe the actual expanding 3-dimensional
Universe and an associated collapsed 7-dimensional space. To this end,
a conformal factor is determined in front of the 4-dimensional metric
to remove the 4-curvature divergences and the resulting Universe ex-
pands with a power-law inflation. Thus we provide an additional pe-
culiarity of the eleven space-time dimensions in view of implementing
a geometrical theory of unification.
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7.1. Quantum Gravity

[1] E. Cerasti and G. Montani, Generating functional for the gravitational
filed: implementation of an evolutionary quantum dynamics, Int. J.
Mod. Phys. D, 14, 10, 1739 (2005)

We provide a generating functional for the gravitational field that is
associated with the relaxation of the primary constraints by extend-
ing to the quantum sector. This requirement of the theory relies on
the assumption that a suitable time variable exists, when taking the T-
products of the dynamical variables. More precisely, we start from the
gravitational field equations written in the Hamiltonian formalism and
expressed via Misner-like variables; hence we construct the equation to
which the T-products of the dynamical variables obey and transform
this paradigm in terms of the generating functional, as taken on the
theory phase-space. We show how the relaxation of the primary con-
straints (which corresponds to the breakdown of the invariance of the
quantum theory under the four-diffeomorphisms) is summarized by a
free functional taken on the Lagrangian multipliers, accounting for such
constraints in the classical theory. The issue of our analysis is equiva-
lent to a Gupta-Bleuler approach on the quantum implementation of all
the gravitational constraints; in fact, in the limit of small h̄, the quantum
dynamics is described by a Schrödinger equation as soon as the mean
values of the momenta, associated to the lapse function and the shift
vector, are not vanishing. Finally we show how, in the classical limit,
the evolutionary quantum gravity reduces to General Relativity in the
presence of an Eckart fluid, which corresponds to the classical counter-
part of the physical clock, introduced in the quantum theory.

[2] M.V. Battisti and G. Montani, Evolutionary Quantum Dynamics of a
Generic Universe, Phys. Lett. B, 637, 203 (2006).

The implications of an evolutionary quantum gravity are addressed
in view of formulating a new dark matter candidate. We consider a
Schroedinger dynamics for the gravitational field associated to a generic
cosmological model and then we solve the corresponding eigenvalue
problem, inferring its phenomenological issue for the actual universe.
The spectrum of the super-Hamiltonian is determined including a free
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inflaton field, the ultrarelativistic thermal bath and a perfect gas into
the dynamics. We show that, when a Planckian cut-off is imposed in
the theory and the classical limit of the ground state is taken, then a
dark matter contribution cannot arise because its critical parameter Ωdm
is negligible today when the appropriate cosmological implementation
of the model is provided. Thus, we show that, from a phenomenolog-
ical point of view, an evolutionary quantum cosmology overlaps the
Wheeler-DeWitt approach and therefore it can be inferred as appropri-
ate to describe early stages of the universe without significant traces on
the later evolution.

[3] P. Singh, K. Vandersloot and G.V. Vereshchagin, Nonsingular bouncing
universes in loop quantum cosmology Phys. Rev. D, 74, 043510 (2006).

Nonperturbative quantum geometric effects in loop quantum cosmol-
ogy (LQC) predict a ρ2 modification to the Friedmann equation at high
energies. The quadratic term is negative definite and can lead to generic
bounces when the matter energy density becomes equal to a critical
value of the order of the Planck density. The nonsingular bounce is
achieved for arbitrary matter without violation of positive energy con-
ditions. By performing a qualitative analysis we explore the nature of
the bounce for inflationary and cyclic model potentials. For the former
we show that inflationary trajectories are attractors of the dynamics af-
ter the bounce implying that inflation can be harmoniously embedded
in LQC. For the latter difficulties associated with singularities in cyclic
models can be overcome. We show that nonsingular cyclic models can
be constructed with a small variation in the original cyclic model po-
tential by making it slightly positive in the regime where scalar field is
negative.

[4] M.V. Battisti and G. Montani, The big-bang singularity in the frame-
work of a generalized uncertainty principle, Phys. Lett. B, 656, 96 (2006).

We analyze the quantum dynamics of the FriedmannRobertsonWalker
Universe in the context of a Generalized Uncertainty Principle. Since
the isotropic Universe dynamics resembles that of a one-dimensional
particle, we quantize it with the commutation relations associated to
an extended formulation of the Heisenberg algebra. The evolution of
the system is described in terms of a massless scalar field taken as a
relational time. We construct suitable wave packets and analyze their
dynamics from a quasi-classical region to the initial singularity. The ap-
pearance of a non-singular dynamics comes out as far as the behavior
of the probability density is investigated. Furthermore, reliable indi-
cations arise about the absence of a big-bounce, as predicted in recent
issues of loop quantum cosmology.
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[5] M.V. Battisti and G. Montani, Evolutionary Quantization of Cosmolog-
ical Models, Nuovo Cimento B, 122, 179-184 (2007).

We consider a Schrödinger quantum dynamics for the gravitational field
associated to a FRW spacetime and then we solve the corresponding
eigenvalue problem. We show that, from a phenomenological point
of view, an Evolutionary Quantum Cosmology overlaps the Wheeler-
DeWitt approach. We also show how a so peculiar solution can be in-
ferred to describe the more interesting case of a generic cosmological
model.

[6] F. Cianfrani and G. Montani, Boost invariance of the gravitational field
dynamics: quantization without time gauge, Class. Quant. Grav., 24,
4161 (2007).

We perform a canonical quantization of gravity in a second-order for-
mulation, taking as configuration variables those describing a 4-bein,
not adapted to the spacetime splitting. We outline how, if we either fix
the Lorentz frame before quantizing or perform no gauge fixing at all,
the invariance under boost transformations is affected by the quantiza-
tion.

[7] R. Benini and G. Montani, Inhomogeneous Quantum Mixmaster: from
Classical toward Quantum Mechanics, Class. Quant. Grav., 24, 387
(2007).

Starting from the Hamiltonian formulation for the inhomogeneous Mix-
master dynamics, we approach its quantum features through the link of
the quasiclassical limit. We fix the proper operator-ordering which en-
sures that the WKB continuity equation overlaps the Liouville theorem
as restricted to the configuration space. We describe the full quantum
dynamics of the model in some detail, providing a characterization of
the (discrete) spectrum with analytic expressions for the limit of high
occupation number. One of the main achievements of our analysis re-
lies on the description of the ground state morphology, showing how it
is characterized by a non-vanishing zero-point energy associated with
the universe anisotropy degrees of freedom.

[8] N. Carlevaro, O.M. Lecian and G. Montani, Macroscopic and micro-
scopic paradigms for the torsion field: from the test-particles motion to
a Lorentz gauge theory, Ann. Fond. Louis de Broglie, 32, 281 (2007).

Torsion represents the most natural extension of General Relativity and
it attracted interest over the years in view of its link with fundamental
properties of particle motion. The bulk of the approaches concerning
the torsion dynamics focus their attention on their geometrical nature
and they are naturally lead to formulate a non-propagating theory. Here
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we review two different paradigms to describe the role of the torsion
field, as far as a propagating feature of the resulting dynamics is con-
cerned. However, these two proposals deal with different pictures, i.e.,
a macroscopic approach, based on the construction of suitable poten-
tials for the torsion field, and a microscopic approach, which relies on
the identification of torsion with the gauge field associated with the lo-
cal Lorentz symmetry. We analyze in some detail both points of view
and their implications on the coupling between torsion and matter. In
particular, in the macroscopic case, we analyze the test-particle motion
to fix the physical trajectory, while, in the microscopic approach, a nat-
ural coupling between torsion and the spin momentum of matter fields
arises

[9] F. Cianfrani and G. Montani, The role of the time gauge in the 2nd order
formalism, Int. J. Mod. Phys. A, 23, 8, 1214 (2008).

We perform a canonical quantization of gravity in a second-order for-
mulation, taking as configuration variables those describing a 4-bein,
not adapted to the space-time splitting. We outline how, neither if we
fix the Lorentz frame before quantizing, nor if we perform no gauge
fixing at all, is invariance under boost transformations affected by the
quantization.

[10] M. Castellana and G. Montani, Physical state condition in Quantum
General Relativity as a consequence of BRST symmetry, Class. Quant.
Grav., 25, 105018 (2008).

Quantization of systems with constraints can be carried on with sev-
eral methods. In the Dirac formulation the classical generators of gauge
transformations are required to annihilate physical quantum states to
ensure their gauge invariance. Carrying on BRST symmetry it is pos-
sible to get a condition on physical states which, differently from the
Dirac method, requires them to be invariant under the BRST trans-
formation. Employing this method for the action of general relativity
expressed in terms of the spin connection and tetrad fields with path
integral methods, we construct the generator of BRST transformation
associated with the underlying local Lorentz symmetry of the theory
and write a physical state condition consequence of BRST invariance.
We observe that this condition differs form the one obtained within
Ashtekar’s canonical formulation, showing how we recover the latter
only by a suitable choice of the gauge fixing functionals. We finally dis-
cuss how it should be possible to obtain all the requested physical state
conditions associated with all the underlying gauge symmetries of the
classical theory using our approach.
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[11] G. Montani and S. Zonetti, Parametrizing fluids in canonical quantum
gravity, Int. J. Mod. Phys. A, 23, 8, 1240-1243 (2008).

The problem of time is an unsolved issue of canonical General Relativ-
ity. A possible solution is the Brown-Kuchar mechanism which couples
matter to the gravitational field and recovers a physical, i.e. non vanish-
ing, observable Hamiltonian functional by manipulating the set of con-
straints. Two cases are analyzed. A generalized scalar fluid model pro-
vides an evolutionary picture, but only in a singular case. The Schutz’
model provides an interesting singularity free result: the entropy per
baryon enters the definition of the physical Hamiltonian. Moreover in
the co-moving frame one is able to identify the time variable tau with
the logarithm of entropy.

[12] M.V.Battisti and G.Montani, Quantum dynamics of the Taub Universe
in a generalized uncertainty principle framework, Phys. Rev. D, 77,
023518 (2008).

The implications of a Generalized Uncertainty Principle on the Taub
cosmological model are investigated. The model is studied in the ADM
reduction of the dynamics and therefore a time variable is ruled out.
Such a variable is quantized in a canonical way and the only physical
degree of freedom of the system (related to the Universe anisotropy) is
quantized by means of a modified Heisenberg algebra. The analysis is
performed at both classical and quantum level. In particular, at quan-
tum level, the motion of wave packets is investigated. The two main
results obtained are as follows. i) The classical singularity is probabilis-
tically suppressed. The Universe exhibits a stationary behavior and the
probability amplitude is peaked in a determinate region. ii) The GUP
wave packets provide the right behavior in the establishment of a quasi-
isotropic configuration for the Universe.

[13] G. Montani and F. Cianfrani, General Relativity as Classical Limit of
Evolutionary Quantum Gravity, Class. Quant. Grav., 25, 065007 (2008).

In this paper we analyze the dynamics of the gravitational field when
the covariance is restricted to a synchronous gauge. In the spirit of the
Noether theorem, we determine the conservation law associated to the
Lagrangian invariance and we outline that a non-vanishing behavior
of the Hamiltonian comes out. We then interpret such resulting non-
zero “energy” of the gravitational field in terms of a dust fluid. This
new matter contribution is co-moving to the slicing and it accounts
for the “materialization” of a synchronous reference from the corre-
sponding gauge condition. Further, we analyze the quantum dynam-
ics of a generic inhomogeneous Universe as described by this evolu-
tionary scheme, asymptotically to the singularity. We show how the
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phenomenology of such a model overlaps the corresponding Wheeler-
DeWitt picture. Finally, we study the possibility of a Schrödinger dy-
namics of the gravitational field as a consequence of the correspondence
inferred between the ensemble dynamics of stochastic systems and the
WKB limit of their quantum evolution. We demonstrate that the time
dependence of the ensemble distribution is associated with the first or-
der correction in h̄ to the WKB expansion of the energy spectrum.

[14] F. Cianfrani and G. Montani, Synchronous Quantum Gravity, Int. J.
Mod. Phys. A, 23, 8, 1105-1112 (2008).

The implications of restricting the covariance principle within a Gaus-
sian gauge are developed both on a classical and a quantum level. Hence,
we investigate the cosmological issues of the obtained Schrödinger Quan-
tum Gravity with respect to the asymptotically early dynamics of a
generic Universe. A dualism between time and the reference frame fix-
ing is then inferred.

[15] M.V. Battisti, O.M. Lecian and G. Montani, Quantum cosmology with a
minimal length, Int. J. Mod. Phys. A, 23, 1257-1265 (2008).

Quantum cosmology in the presence of a fundamental minimal length
is analyzed in the context of the flat isotropic and the Taub cosmological
models. Such minimal scale comes out from a generalized uncertainty
principle and the quantization is performed in the minisuperspace rep-
resentation. Both the quantum Universes are singularity-free and (i) in
the isotropic model no evidences for a Big-Bounce appear; (ii) in the
Taub one a quasi-isotropic configuration for the Universe is predicted
by the model.

[16] N. Carlevaro, O.M. Lecian and G. Montani, Lorentz Gauge Theory and
Spinor Interaction, Int. J. Mod. Phys. A, 23(8), 1282 (2008).

A gauge theory of the Lorentz group, based on the different behavior of
spinors and vectors under local transformations, is formulated in a flat
space-time and the role of the torsion field within the generalization to
curved space-time is briefly discussed. The spinor interaction with the
new gauge field is then analyzed assuming the time gauge and station-
ary solutions, in the non-relativistic limit, are treated to generalize the
Pauli equation.

[17] M.V. Battisti, O.M. Lecian and G. Montani, Polymer Quantum Dynam-
ics of the Taub Universe, Phys. Rev. D, in press.

Within the framework of non-standard (Weyl) representations of the
canonical commutation relations, we investigate the polymer quanti-
zation of the Taub cosmological model. The Taub model is analyzed
within the Arnowitt-Deser-Misner reduction of its dynamics, by which
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a time variable arises. While the energy variable and its conjugate mo-
mentum are treated as ordinary Heisenberg operators, the anisotropy
variable and its conjugate momentum are represented by the polymer
technique. The model is analyzed at both classical and quantum level.
As a result, classical trajectories flatten with respect to the potential
wall, and the cosmological singularity is not probabilistically removed.
In fact, the dynamics of the wave packets is characterized by an inter-
ference phenomenon, which, however, is not able to stop the evolution
towards the classical singularity.

[18] G. Montani and S. Zonetti,Definition of a time variable with Entropy of
a perfect fluid in Canonical Quantum Gravity, submitted to Phys. Rev.
D.

The Brown-Kuchar mechanism is applied in the case of General Relativ-
ity coupled with the Schutz’ model for a perfect fluid. Using the canon-
ical formalism and manipulating the set of modified constraints one is
able to recover the definition of a time evolution operator, i.e. a phys-
ical Hamiltonian, expressed as a functional of gravitational variables
and the entropy. Entropy then reveals to be, in the comoving frame,
the time variable for the system, and a simple evolution operator is ob-
tained.

[19] M.V. Battisti and G. Montani, The Mixmaster Universe in a generalized
uncertainty principle framework, submitted to Phys. Rev. D.

The Bianchi IX cosmological model is analyzed in a generalized uncer-
tainty principle framework. The Arnowitt-Deser-Misner reduction of
the dynamics is performed and a time-coordinate, namely the volume
of the Universe, naturally arises. Such a variable is treated in the or-
dinary way while the anisotropies (the physical degrees of freedom of
the Universe) are described by a deformed Heisenberg algebra. The
analysis of the model (passing through Bianchi I and II) is performed at
classical level by studying the modifications induced on the symplectic
geometry by the deformed algebra. We show that, the triangular al-
lowed domain is asymptotically stationary with respect to the particle
(Universe) and that its bounces against the walls are not interrupted by
the deformed effects. Furthermore, no reflection law can be in general
obtained since the Bianchi II model is no longer analytically integrable.
This way, the deformed Mixmaster Universe can be still considered a
chaotic system.

[20] M.V. Battisti, Loop and braneworlds cosmologies from a deformed Heisen-
berg algebra, submitted to Phys. Rev. D.

The implications of a deformed Heisenberg algebra on the Friedmann-
Robertson-Walker cosmological models are investigated. In particu-
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lar, we consider generalized commutation relations which leave unde-
formed the translation group and preserve the rotational invariance.
The resulting algebra is related to the ?-Poincare one and no sign in
the deformation term is selected at all. The analysis of the models
is performed at classical level by studying the modifications induced
on the symplectic geometry by the deformed algebra. We show that
this framework leads to a modified Friedmann equation which coin-
cide with that one found in loop quantum cosmology as well as in the
Randall-Sundrum braneworlds scenario. In fact, the complementary
sign of the loop and brane term, in the effective cosmological dynamics,
naturally emerges from the free sign of the deformed algebra. This way,
a common phenomenological description for both these theories is ob-
tained and a relation with the low energy quantum gravity framework
established.

[21] M.V. Battisti, R. Belvedere and G. Montani, Semi-classical isotropization
mechanism for a generic Universe, submitted to Phys. Rev. D.

A semi-classical mechanism which leads to an isotropic configuration
for a generic Universe is developed. In particular, we construct a wave
function of the inhomogeneous Mixmaster Universe which has a mean-
ingful probabilistic interpretation in agreement with the Copenhagen
school one. It describes the evolution of the anisotropies of the Uni-
verse with respect to the isotropic scale factor, which is regarded as
a semi-classical variable, i.e. plays the role of the external observer.
We show that, near the cosmological singularity the solution is spread
over all values of the anisotropies while, when the Universe expands
enough, the closed Friedmann-Robertson-Walker model appears to be
the favorite state.

[22] N. Carlevaro, O.M. Lecian and G. Montani, Fermion dynamics by inter-
nal and space-time symmetries, submitted to Mod. Phys. Lett. A.

This manuscript is devoted to introduce a gauge theory of the Lorentz
Group based on the ambiguity emerging in dealing with isometric diffeo-
morphism-induced Lorentz transformations. The behaviors under lo-
cal transformations of fermion fields and spin connections (assumed to
be ordinary world vectors) are analyzed in flat space-time and the role
of the torsion field, within the generalization to curved space-time, is
briefly discussed. The fermion dynamics is then analyzed including the
new gauge fields and assuming time-gauge. Stationary solutions of the
problem are also studied in the non-relativistic limit, to study the spinor
structure of an hydrogen-like atom.
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7.2. Quantum Field on Classical Background

[23] V. Belinski , On the existence of black hole evaporation yet again, Phys.
Lett. A, 354, 249 (2006).

A new argument is presented confirming the point of view that a Schwa-
rzshild black hole formed during a collapse process does not radiate.

[24] F. Cianfrani, G. Montani, Curvature-spin coupling from the semi-classical
limit of the Dirac equation, Int. J. Mod. Phys. A, 23, 8, 1274-1277 (2008).

The notion of a classical particle is inferred from Dirac quantum fields
on a curved space-time, by an eikonal approximation and a localiza-
tion hypothesis for amplitudes. This procedure allows to define a semi-
classical version of the spin-tensor from internal quantum degrees of
freedom, which has a Papapetrou-like coupling with the curvature.

[25] F. Cianfrani and G. Montani, Dirac equations in curved space-time ver-
sus Papapetrou spinning particles, Europhys. Lett., in press.

We recover classical particles, starting from Dirac quantum fields on
a curved space-time, by an eikonal approximation and a localization
hypothesis for amplitudes. We conclude that the semi-classical dynam-
ics of spinors is neither a geodesics one, nor resembling a Papapetrou-
like spinning body. However, the spin-curvature coupling predicted by
the Papapetrou theory is recovered in the weak-gravitational-field limit,
but still an additional contribution to the dynamics arises

7.3. Unification Theories

[26] G. Montani, Geometrization of the Gauge Connection within a Kaluza-
Klein Theory, Int. J. Theor. Phys., 44, 43-52 (2005).

Within the framework of a Kaluza-Klein theory, we provide the ge-
ometrization of a generic (Abelian and non-Abelian) gauge coupling,
which comes out by choosing a suitable matter fields dependence on the
extra-coordinates. We start by the extension of the Nother theorem to
a multidimensional spacetime being the direct sum of a 4-dimensional
Minkowski space and of a compact homogeneous manifold (whose isome-
tries reflect the gauge symmetry); we show, how on such a “vacuum”
configuration, the extra-dimensional components of the field momen-
tum correspond to the gauge charges. Then we analyze the structure
of a Dirac algebra as referred to a spacetime with the Kaluza-Klein re-
strictions and, by splitting the corresponding free-field Lagrangian, we
show how the gauge coupling terms outcome.
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[27] E. Alesci and G. Montani, Can gravitational waves be markers for an
extra-dimension?, Int. J. Mod. Phys. D, 14, 6, 923 (2005).

The main issue of the present paper is to fix specific features (which turn
out being independent of extradimension size) of gravitational waves
generated before a dimensional compactification process. Valuable is
the possibility to detect our prediction from gravitational wave exper-
iment without high energy laboratory investigation. In particular we
show how gravitational waves can bring information on the number of
Universe dimensions. Within the framework of Kaluza-Klein hypothe-
ses, a different morphology arises between waves generated before than
the compactification process settled down and ordinary 4-dimensional
waves. In the former case the scalar and tensor degrees of freedom can-
not be resolved. As a consequence if gravitational waves having the
feature predicted here were detected (anomalous polarization ampli-
tudes), then they would be reliable markers for the existence of an extra
dimension.

[28] F. Cianfrani, A. Marrocco and G. Montani, Gauge Theories as a Geo-
metrical Issue of a Kaluza-Klein Framework, Int. J. Mod. Phys. D, 14(7),
1095 (2006).

We present a geometrical unification theory in a Kaluza-Klein approach
that achieve the geometrization of a generic gauge theory bosonic com-
ponent. We show how it is possible to derive gauge charge conservation
from the invariance of the model under extra-dimensional translations
and to geometrize gauge connections for spinors, in order to make pos-
sible to introducing matter just through free spinorial fields. Then we
present the applications to (i) a pentadimensional manifold so repro-
ducing the original Kaluza-Klein theory with some extensions related to
the rule of the scalar field contained in the metric and to the introduction
of matter through spinors with a phase dependance from the fifth coor-
dinate, (ii) a seven-dimensional manifold, in which we geometrize the
electroweak model by introducing two spinors for every leptonic fam-
ily and quark generation and a scalar field with two components with
opposite hypercharge responsible for spontaneous symmetry breaking.

[29] F. Cianfrani and G. Montani, Non Abelian gauge symmetries induced
by the unobservability of extra-dimensions in a Kaluza-Klein approach,
Mod. Phys. Lett. A, 21(3), 265 (2006).

In this work we deal with the extension of the Kaluza-Klein approach
to a non-Abelian gauge theory; we show how we need to consider the
link between the n-dimensional model and a four-dimensional observer
physics, in order to reproduce field equations and gauge transforma-
tions in the four-dimensional picture. More precisely, in field equations
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any dependence on extra coordinates is canceled out by an integra-
tion, as consequence of the unobservability of extra dimensions. Thus,
by virtue of this extra dimension unobservability, we are able to re-
cast the multidimensional Einstein equations into the four-dimensional
Einstein-Yang-Mills ones, as well as all the right gauge transformations
of fields are induced. The same analysis is performed for the Dirac
equation describing the dynamics of the matter fields and, again, the
gauge coupling with Yang-Mills fields are inferred from the multidi-
mensional free fields theory, together with the proper spinors transfor-
mations.

[30] O.M. Lecian and G. Montani, On the Kaluza-Klein geometrization of
the Electro-Weak model within a gauge theory of the 5-dimensional
Lorentz group, Int. J. Mod. Phys. D, 15, 717 (2006).

The geometrization of the Electroweak Model is achieved in a five-
dimensional RiemannCartan framework. Matter spinorial fields are
extended to 5 dimensions by the choice of a proper dependence on
the extracoordinate and of a normalization factor. weak hypercharge
gauge fields are obtained from a KaluzaKlein scheme, while the tetradic
projections of the extradimensional contortion fields are interpreted as
weak isospin gauge fields. generators are derived by the identifica-
tion of the weak isospin current to the extradimensional current term
in the Lagrangian density of the local Lorentz group. The geometrized
U(1) and SU(2) groups will provide the proper transformation laws for
bosonic and spinorial fields. Spin connections will be found to be purely
Riemannian.

[31] V. Lacquaniti and Giovanni Montani, On the ADM decomposition of
the 5D Kaluza-Klein model, Int.J. Mod. Phys. D, 15, 559 (2006).

Our purpose is to recast the KK model in terms of ADM variables. We
examine and solve the problem of the consistency of this approach, with
particular care about the role of the cylindricity hypothesis. We show
in detail how the KK reduction commutes with the ADM slicing proce-
dure and how this leads to a well-defined and unique ADM reformu-
lation. This allows us to consider the Hamiltonian formulation of the
model and moreover it can be viewed as the first step for the Ashtekar
reformulation of the KK scheme. Moreover, we show how the time
component of the gage vector arises naturally from the geometrical con-
straints of the dynamics; this is a positive check for the autoconsistency
of the KK theory and for an Hamiltonian description of the dynamics
which will take into account the compactification scenario; this result
enforces the physical meaning of the KK model.
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[32] F. Cianfrani and G. Montani, Geometrization of the electro-weak model
bosonic component, Int. J. Theor. Phys., 46(3), 471 (2007).

In this work we develop a geometrical unification theory for gravity
and the electro-weak model in a Kaluza-Klein approach; in particular,
from the curvature dimensional reduction Einstein-Yang-Mills action is
obtained. We consider two possible space-time manifolds: 1)V4 ⊗ S1 ⊗
S2 where isospin doublets are identified with spinors; 2) V4 ⊗ S1 ⊗ S3

in which both quarks and leptons doublets can be recast into the same
spinor, such that the equal number of quark generations and leptonic
families is explained. Finally a self-interacting complex scalar field is
introduced to reproduce the spontaneous symmetry breaking mecha-
nism; in this respect, at the end we get an Higgs fields whose two com-
ponents have got opposite hypercharges.

[33] F. Cianfrani and G. Montani, The Electro-Weak model as low-energy
sector of 8-dimensional General Relativity, Nuovo Cimento B, 122, 213
(2007).

In a Kaluza-Klein background V4⊗ S3, we provide a way to reproduce,
by the dimensional reduction, a 4-spinor with a SU(2) gauge coupling.
Since additional gauge violating terms cannot be avoided, we compute
their order of magnitude by virtue of the application to the Electro-
Weak model.

[34] F. Cianfrani, I. Milillo and G. Montani, Dixon-Souriau equations from
a 5-dimensional spinning particle in a Kaluza-Klein framework, Phys.
Lett. A, 366, 7 (2007).

The dimensional reduction of Papapetrou equations is performed in a 5-
dimensional KaluzaKlein background and DixonSouriau results for the
motion of a charged spinning body are obtained. The splitting provides
an electric dipole moment, and, for elementary particles, the induced
parity and time-reversal violations are explained.

[35] F. Cianfrani and G. Montani, Spinning particles in General Relativity,
Nuovo Cimento B, 122, 173 (2007).

We analyze the behavior of a spinning particle in gravity, both from a
quantum and a classical point of view. We infer that, since the inter-
action between the space-time curvature and a spinning test particle is
expected, then the main features of such an interaction can get light on
which degrees of freedom have physical meaning in a quantum gravity
theory with fermions. Finally, the dimensional reduction of Papapetrou
equations is performed in a 5-dimensional Kaluza-Klein background
and Dixon-Souriau results for the motion of a charged spinning body
are obtained.
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[36] O.M. Lecian and G. Montani, Electro-weak Model within the frame-
work of Lorentz gauge theory: Ashtekar variables?, Nuovo Cimento B,
122, 207-212 (2007).

The Electroweak (EW) model is geometrized in the framework of a
5D gauge theory of the Lorentz group, after the implementation of the
Kaluza-Klein (KK) paradigm. The possibility of introducing Ashtekar
variables on a 5D KK manifold is considered on the ground of its geo-
metrical structure.

[37] V. Lacquaniti and G. Montani, Hamiltonian Formulation of 5-dimensional
Kaluza-Klein Theory, Nuovo Cimento B, 122, 201-206 (2007).

We analyze the consistency of the ADM approach to KK model; we
prove that KK reduction commute with ADM splitting. This leads to
a well defined Hamiltonian; we provide the outcome. The electromag-
netic constraint is derived from a geometrical one and this result en-
forces the physical meaning of KK model. Moreover we study the role
of the extra scalar field we have in our model; classical hints from geodesic
motion and cosmological solutions suggest that the scalar field can be
an alternative time variable in the relational point of view.

[38] F. Cianfrani and G. Montani, Low-energy sector of 8-dimensional Gen-
eral Relativity: Electro-Weak model and neutrino mass, Int. J. Mod.
Phys. D, 17(5), 785 (2008).

In this paper we demonstrate that in a Kaluza-Klein space-time V4⊗ S3

the dimensional reduction of spinors provides a 4-field, whose associ-
ated SU(2) gauge connections are geometrized. However, additional
and gauge-violating terms arise, but they are highly suppressed by a
factor β, which fixes the amount of the spinor dependence on extra-
coordinates. The application of this framework to the Electro-Weak
model is performed, thus giving a lower bound for β from the request
of the electric charge conservation. Moreover, we emphasize that also
the Higgs sector can be reproduced, but neutrino masses are predicted
and the fine-tuning on the Higgs parameters can be explained, too.
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We discuss properties of particles and fields in a multi-dimensional
space-time, where the geometrization of gauge interactions can be per-
formed. As far as spinors are concerned, we outline how the gauge cou-
pling can be recognized by a proper dependence on extra-coordinates
and by the dimensional reduction procedure. Finally applications to the
Electro-Weak model are presented.
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couplings and does not generate huge massive modes.
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A longstanding problem in Kaluza-Klein models is the description of
matter dynamics. Within the 5D model, the dimensional reduction of
the geodesic motion for a 5D free test particle formally restores electro-
dynamics, but the reduced 4D particle shows a charge-mass ratio that
is upper bounded, such that it cannot fit to any kind of elementary par-
ticle. At the same time, from the quantum dynamics viewpoint, there is
the problem of the huge massive modes generation. We present a criti-
cism against the 5D geodesic approach and face the hypothesis that in
Kaluza-Klein space the geodesic motion does not deal with the real dy-
namics of test particle. We propose a new approach: starting from the
conservation equation for the 5D matter tensor, within the Papapetrou
multipole expansion, we prove that the 5D dynamical equation differs
from the 5D geodesic one. Our new equation provides right coupling
terms without bounding and in such a scheme the tower of massive
modes is removed.
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8. Introduction

The gravitational interaction, as described in General Relativity, has a geo-
metrical nature, which makes it very different from many other fundamen-
tal forces of Nature. This picture calls attention to search for a unification
scheme, in which all fundamental fields are on the same footing, carrying
physical interactions via a common mechanism.

Two different approaches can be pursued in this direction

- to find a gauge representation for the gravitational field, which fixes
a clear strategy for its quantization. By other words, we can pursue
the attempt to restate the space-time geometry as a natural issue for a
gauge paradigm of the fundamental symmetries. This is the direction
addressed by the Loop-Quantum-Gravity approach, and, in our inves-
tigation, attention is devoted to the extension of this point of view to
include non-Riemannian features of the space-time, as the torsion field.
In fact, we formulate a more general scheme, in which a Lorentz connec-
tion is introduced to take into account diffeomorphism-induced Lorentz
rotations.

- It is possible to define a more general scheme, which is able to pro-
vide a geometrical interpretation for all fundamental interactions. Such
an ambitious unification plan mainly relies on the introduction of extra-
dimensions, which provide the necessary additional degrees of freedom
to represent other physical fields beyond gravity. In our studies, this
paradigm is intensely developed both within a well-established Kaluza-
Klein framework and in extended non-Riemannian approaches to im-
plement gauge symmetries. The Kaluza-Klein approach is then modi-
fied to make physical account for the non-observabilty of extra dimen-
sions, thus expressing internal gauge symmetries as dimensional reduc-
tion of multi-dimensional properties, even when the coupling with mat-
ter fields is addressed.

An intermediate point of view is that of studying quantum field theory on
a fixed background, regarding the back reaction as a negligible effect. This
research line is mainly devoted to investigate features concerning the influ-
ence of choosing non-inertial systems on quantum states (for instance, the
so-called Unruh effect), as well as considering space-time curvature features,
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i.e., the Hawking effect. The present work concernes a basic criticism to the
mathematical formalism on which these effects are described, and therefore
on their physical ground.

Finally, since the natural scenario to implement generalization of the Ein-
steinian picture is the very early universe dynamics, a significant discussion
of cosmological applications concerning quantum and unification aspects is
provided. These implementations give interesting tests on the viability of un-
derlying theories, as well as important indications about the arising physics.
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9. Quantum Gravity

9.1. Canonical Quantum Gravity without the time
gauge

A Quantum Gravity theory is expected to provide a discrete structure for
the space-time geometry. In this respect, it is worth noting the achievement
of Loop Quantum Gravity of a discrete structure for spatial geometrical op-
erators, at least on a kinematical level. However, this formulation is based
on fixing the so-called time-gauge condition, i.e., the choice of the vier-bein is
adapted to the space-time splitting, such that the time-like vector e0 is normal
to spatial hypersurfaces. This way, boosts are frozen out and the investigation
on the behavior of quantum geometrical operators in different Lorentz frames
is highly non-trivial. Hence, our investigation has been focused on describ-
ing quantum gravitational degrees of freedom, without fixing the time gauge
(Cianfrani and Montani, 2008d), (Cianfrani and Montani, 2007b), (Cianfrani
and Montani, 2007a).

We also perform such an analysis in the first order formulation, thus estab-
lishing a clear connection with the Loop Quantum Gravity framework.

We start from the Holst modification, which reads as follows (in units 8πG =
1)

S =
1
2

∫ √
geµ

Aeν
BRCD

µν (ωFG
µ )γpAB

CD, (9.1.1)

g being the determinant of the metric tensor gµν with 4-bein vectors eA
µ and

spinor connections ωAB
µ , while the expressions for RAB

µν and γpAB
CD are

RAB
µν = ∂[µωAB

ν] + ωA
c[µωCB

ν] , γpAB
CD = δAB

CD −
1

2γ
εAB

CD. (9.1.2)

Here γ is the Immirzi parameter.
By a Legendre transformation, conjugate momenta γπ

µ
AB = γpCD

ABπ
µ
CD can

be defined.
The full Hamiltonian turns out to be

H =
∫ [ 1

egtt H − gti

gtt Hi −ωAB
t

γpCD
ABGCD + λijCij + ηijDij + λABπt

AB

]
d3x,

(9.1.3)
where 1/egtt, gti/gtt, γpCD

ABωAB
t , λij, ηij and λAB behave as Lagrangian

1337
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multipliers, while constraints are given by

H = πi
CFπ

jF
D

γpCD
ABRAB

ij = 0

Hi = γp CD
AB π

j
CDRAB

ij = 0

GAB = Diπ
i
AB = ∂iπ

i
AB −ω C

i[A πi
|C|B] = 0

Cij = εABCDπ
(i
ABπ

j)
CD = 0

Dij = εABCDπk
AFπ

(iF
BDkπ

j)
CD = 0

. (9.1.4)

The interpretation of such constraints is straightforward, since H and Hi
denote the super-Hamiltonian and the super-momentum, respectively, while
GAB is the Gauss constraint of the Lorentz symmetry. As far as Cij and Dij are
concerned, they are the main difficulty of this analysis, since they make the
constraint algebra second-class.

A solution for Cij and Dij for constant χa can be written as

πi
ab = χ[aπi

b], ω b
a i = πω b

a i + χaωob
i + χb(ω 0

a i +
πω c

a iχc) (9.1.5)

πi
b being πi

0b, while πω b
a i = 1

π1/2 πb
l

3∇i(π1/2πl
a) with π the determinant of

πa
i and T−1

ab = ηab + χaχb.

In the reduced set of variables {ωa0
i, π

j
b} the boost constraints is redundant,

since Diπ
i
a = χbDiπ

i
ab.

In order to define constraints with a closed algebra we sum up to the ro-
tation constraints a vanishing contribution, so finding the following Gauss
constraints

Ga = ∂iπ̃
i
a + γεabc Ãb

i π̃i
c = 0, {Ga, Gb} = γε c

ab Gc, (9.1.6)

with π̃
j
b “densitized” 3-bein vectors of the metric, whose expressions read as

π̃i
a = Sb

aπi
b, Sa

b =
√

1 + χ2δa
b +

1−
√

1 + χ2

χ2 χaχb, (9.1.7)

while new connection Ãa
i are

Ãa
i = (1 + χ2)S−1b

a Tc
b(ωc0i − πω d

ic χd)−
1

2γ
S−1b

a εbcd
πω

c f
iT
−1d
f . (9.1.8)

Since the symplectic structure is trivial one, Ãa
i are the extension of Barbero-
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Immirzi connections to a generic global Lorentz frame.
The above results demonstrate that it can be inferred a phase space struc-

ture similar to a SU(2) one also without the time-gauge condition. Therefore,
the LQG quantization procedure can be extended to a generic global Lorentz
frame and no modification occurs (for instance we can probe that the area
spectrum is not modified).

The action of the boost constraints can be represented by the operators
ε bc

a χbG′c, thus by gauge transformations. Hence the boost symmetry is ac-
tually preserved on a quantum level.

As far as local Lorentz frames are concerned, Gauss constraints cannot be
inferred by this procedure, thus the investigation is going on the possibility
to implement the local Lorentz invariance after the quantization.

Finally, further investigations will consider the case with matter fields,
which can give a better characterization to the space-time slicing.

9.2. The time gauge problem in the path integral
formalism

The problem of quantization of constrained systems arises in many contexts
of physical interest. The presence of constraints at a classical level avoids
us to threat all the dynamical variables as independent ones, and entails
several difficulties when we are to construct the quantum theory. In a pro-
gram of canonical quantization which promotes all classical canonical vari-
ables to quantum operators one has to deal with the problem of quantum-
mechanically imposing the constraints. In the procedure à la Dirac, the con-
straint operators are imposed to annihilate physical states. This procedure
stems from the observation that in the classical theory, the constraint func-
tions are generators of infinitesimal canonical transformations which don’t
alter the physical state of the system.
The Dirac procedure is widely used in different contexts, including quanti-
zation of general relativity. Nevertheless this procedure of quantization en-
counters several difficulties when we require the Dirac conditions on physi-
cal states to be consistent with each other and the physical states selected by
constraint operators to posses a finite scalar product allowing a probabilistic
interpretation: moreover, in some cases this procedure can lead to a physical
subspace of the entire Hilbert space that is curiously empty. Other difficul-
ties arise when one tries to implement the Dirac procedure, which are not
properly to be ascribed to the Dirac theory for constrained systems, but to
the canonical quantization framework this procedure is developed in. As a
matter of fact, our experience on quantum field theory in special relativity
showed us how canonical quantization methods, when applied to systems
with infinite degrees of freedom, lead to several inconsistencies: for example,

1339
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it is a remarkable fact that the Glashow - Weinberg - Salam theory for elec-
troweak interactions cannot be consistently formulated by canonical quanti-
zation methods, while the only way by which can be coherently written by is
the Feynman path integral technique. Even if Feynman’s path integral can be
derived after constructing the quantum theory by means of canonical quanti-
zation methods, such inconsistencies need to postulate the path-integral ap-
proach as a founding element of the quantum theory when we deal with
systems with infinite degrees of freedom. It is for these reasons that we de-
veloped all of our work (Castellana and Montani, 2008) avoiding using the
Dirac procedure for constrained systems and canonical quantization meth-
ods at all, employing a method to derive conditions on physical states based
on BRST symmetry and path=integral methods uniquely.

BRST symmetry was conceived at first within non-Abelian gauge theories
and shown to apply to a really wide class of systems of physical interest.
Anyway, in the literature, there are different formulations for the BRST for-
malism, with substantial differences from each other. First of all, there exists
a formulation of BRST symmetry for constrained systems based on canoni-
cal quantization methods which is widely diffused, being also employed in
quantization of general relativity. Another approach, the one we followed in
this work, is to derive BRST symmetry, based entirely on path integral meth-
ods, and it is applicable to systems with infinite degrees of freedom, avoiding
those inconsistencies proper of canonical quantization methods we discussed
above.

We start with an enlightening and more or less known example, consid-
ering BRST symmetry for a non-Abelian gauge theory. In order to compare
path integral methods with canonical quantization ones, one can consider the
Nöether charge following from BRST symmetry of the action and, taking an
appropriate choice for the gauge fixing functionals in the DeWitt - Fadeev -
Popov method, show it to be the generator of quantum BRST transformation
within a canonical quantization framework.
Otherwise, using solely path integral methods, we show the BRST Nöether
charge

Q ≡
∫

d3xJ0(x) (9.2.1)

related to the BRST current Jµ to generate quantum BRST transformation
by means of Ward’s identities for the ensemble of gauge fields, ghost and
antighost fields and Nakanishi - Lautrup fields, designed by ψi(x), i. e.

0 = ∂x
µ

〈
ψik (xk) · · ·ψi1 (x1) Jµ(x)

〉
j=0 − i

k

∑
l=1

σi1 · · · σil〈ψik (xk) · · ·(9.2.2)

· · ·ψil+1 (xl+1) sψil(x)ψil−1 (xl−1) · · ·ψi1 (x1)〉j=0δ(4) (x− xl) .
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where σi = ±1 for ψi bosonic or fermionic respectively. The fact that in
(9.2.2) the gauge fixing functionals are completely arbitrary allows us to infer
a physical-state condition on states of the gauge fields following from BRST
invariance, given by the usual Gauss’

DaF0aα(x) |ψ〉 = 0. (9.2.3)

Afterward, we turn our attention to general relativity expressed in first-
order formalism, in order to investigate the physicality condition for the states
of the gravitational field arising from BRST invariance of the theory, follow-
ing the same procedure employed for non-Abelian gauge theories. In this
procedure we will intentionally avoid to use canonical quantization meth-
ods. We are to determine a physical state condition on quantum states with-
out thinking of classical Hamiltonian constraints in order to compare, at the
end of our calculation, our physicality condition required by BRST symme-
try and derived with path-integral methods with the one obtained using the
Dirac quantization method employed within Ashtekar’s canonical formula-
tion. Employing the same method leading us to the usual Gauss’ constraint
for non-Abelian gauge theories, we arrive at the following physical state con-
dition for the densitized triad Ea

i

Da

[
Ea

j (x) + iejb(x)e0c(x)εabc
]
|ψ〉 = 0. (9.2.4)

Comparing our physicality condition with the one used in loop quantum
gravity, we find they differ by an additional non-vanishing term. We think
the origin of this discrepancy is in the choice of a particular gauge in the
classical theory which is made within Ashtekar’s approach and which was
intentionally avoided in our work. Finally, we show how we recover the
Dirac canonical condition in our BRST quantization only by a suitable choice
of gauge fixing functionals within the DeWitt - Fadeev - Popov method.

9.3. The problem of time in quantum gravity

The problem of time arises in General Relativity when the canonical formal-
ism is applied: the Hamiltonian function is constrained to vanish as a result
of the 4-dim diffeomorphism invariance of the theory, which in this picture
acquires a non evolutionary behaviour.
In the Dirac quantization program, where one tries to quantize the whole
phase space and to impose constraints as conditions on quantum states, the
famous Wheeler-DeWitt equation appears, stating that for physical states:

Ĥ|ψ〉 = 0. (9.3.1)
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These have to be annihilated by the quantum Hamiltonian operator, which
in the ordinary quantum theories is also the generator of infinitesimal time
evolution.
Hence the lost of the evolutionary character: the Schrödinger equation is re-
placed by the WDW one, and physical state cannot depend on the time vari-
able.
Different solutions have been proposed so far, one among them is to use some
kind of matter as a physical clock. The proposal by Brown and Kučhar is
to introduce a fluid coupled to the gravitational field in the standard ADM
formulation: in the canonical formalism the modified constraint equations are
solved, in order to recover a meaningful Schrödingher equation. The Hamil-
tonian constraint will take the local form:

π(x)− h(q, P)(x) = 0 (9.3.2)

where π is the momentum conjugate to one of the fluid variables, τ. The
whole procedure has to be performed with smeared quantities, i.e. integrat-
ing in space local quantities on suitable functions. Under the condition of a
closed constraint algebra under time evolution, i.e. {π − h, H} = 0 for the
Hamiltonian constraint, one can write down the equation for the physical
evolutionary quantum states:

− ih̄
d

dτ
ψ = ĥψ. (9.3.3)

This is the usual Schrödinger equation, where the notion of time is recovered
from the coupling of GR with the fluid. This is the so called Kučhar-Brown
mechanism.

This procedure can be applied [Montani and Zonetti (2008)] to different
fluid models: a scalar field model, with a Lagrangian density in the form:

LF =
√
−g(∂µφ∂µφ)γ, (9.3.4)

where γ takes real values, has been analyzed. The associated equation of
state depends on γ, being:

p =
ρ

2γ− 1
. (9.3.5)

Some values seem to allow the KB procedure to be applied, and this includes
some singular cases, like γ → ∞. The result is that only for γ = 1/2 a non
vanishing Hamiltonian is recovered: but this model exhibits a singular equa-
tion of state, with p→ ∞.
The Schutz velocity potential representation of a perfect fluid is another po-
tential candidate.
In this model a relativistic description of the fluid is performed, using six
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scalar fields, which combine in the 4-velocity as:

Uν = µ−1(φ,ν + αβ,ν + θS,ν) = µ−1vν, (9.3.6)

and a Lagrangian is constructed following the standard classical thermody-
namics:

LF =
√
−gp (9.3.7)

where p is the pressure, expressed as p = ρ0(
√

vµvµ − TS), ρ0 is the rest
mass energy distribution and T is the temperature. Only the field S has a
direct physical interpretation: it is the entropy per barion.
When treated with the canonical formalism this model turns out to be a con-
strained system, with numerous secondary and tertiary constraints, which
require some restrictions on the phase space variables. Despite the number
and the complexity of the constraints one can perform the KB procedure, and
finally obtain a meaningful Schrödinger equation, where the entropy is linked
to the time variable by the constraint equation:

SpS ± θ

T
HG = SpS + h = 0. (9.3.8)

So that taking the logarithm of S as the time variable τ one can write down
the infinitesimal time evolution of observables as:

dO(τ)
dτ

= {Hphys, O(τ)} (9.3.9)

where Hphys is nothing else that the integration on the 3-dim hypersurfaces of
function h in 9.3.8. This ensures that the Schutz model is a good matter clock
when coupled with General Relativity.

9.4. Evolutionary Quantum Gravity

We establish a fundamental link between the identification of a reference and
the appearance of a matter term from the point of view of Lagrangian sym-
metries. In particular, by fixing a synchronous frame of reference, which
is characterized by a metric tensor having the following fixed components
g00 = 1 and g0i = 0, general covariance is restricted to the invariance under
the following set of coordinate transformations

t′ = t + ξ(xl) , xi′ = xi + ∂jξ
∫

hijdt + φi(xl) , (9.4.1)

ξ and φi being three generic space functions.
This feature implies replacing the super-Hamiltonian and the super-momentum

constraints with the following ones,
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H∗ ≡ H − E(xl) = 0, Hi = 0, (9.4.2)

E being a scalar density of weight 1/2, hence it can be written as E ≡
−2
√

hρ(t, xi), with ρ a scalar function.
Hence the super-momentum still vanishes, while the super-Hamiltonian

acquires a non-vanishing eigen-value, which can be interpreted as the emer-
gence of a dust fluid co-moving with the slicing.

One can think at this contribution as the physical realization of the syn-
chronous reference. However, it is clear that we are not dealing with an ex-
ternal matter field since its energy density ρ is not always positive and E(xi)
is fixed, once initial conditions are assigned on a non-singular hypersurface.

We perform quantization of the synchronous gravitational field in a canon-
ical way and we implemented according with the Dirac prescription, so fixing
an evolutionary character for wave functional, which can be described by the
Schrödinger equation

ih̄∂tχ =
∫

Σ3
t

Ĥd3xχ . (9.4.3)

Therefore, the quantum features of the dust contribution outline its behav-
ior as a clock-like matter. The next task is to find out a negative portion of the
super-Hamiltonian spectrum, which allows to interpret the additional contri-
bution as a physical matter field.

This can be done in a generic inhomogeneous cosmological setting, where
the 3-metric is given by

hij = eqa δadOa
bOd

c ∂iyb∂jyc, a, b, c, d, α, β = 1, 2, 3, (9.4.4)

with qa = qa(xl, t) and yb = yb(xl, t) six scalar functions and Oa
b = Oa

b(xl) a
SO(3) matrix.

The dynamics of different points decouples near the singularity and the
Schrödinger functional equation splits to the sum of ∞3 independent point-
like contributions as follows (we denote by the subscript x any minisuper-
space quantity)

ih̄∂tψx = Ĥxψx =
c2h̄2k

3

[
∂αe−3α∂α − e−3α

(
∂2
+ + ∂2

−

)]
ψx −

−3h̄2

8π
e−3α∂2

ϕψx −
(

1
2k | J |2 eαV(β±)− Λ

k
e3α

)
ψx (9.4.5)

ψx = ψx(t, α, β±, ϕ) , (9.4.6)

where a cosmological constant Λ and a scalar field ϕ have been added to
the dynamical description.

1344



9.4. Evolutionary Quantum Gravity

If an integral representation is taken for the wave function ψx

ψx =
∫

dExB(Ex)σx(α, β±, ϕ, Ex)exp
{
− i

h̄

∫ t

t0

NxExdt′
}

(9.4.7)

σx = ξx(α, Ex)πx(α, β±, ϕ) , (9.4.8)

where B is fixed by the initial conditions at t0, the dynamics is given by

Ĥσx = Exσx (9.4.9)(
−∂2

+ − ∂2
− −

9h̄2

8πc2k
∂2

ϕ

)
πx −

3e4α

2c2h̄2k2 | J |2
V(β±)πx = v2(α)πx (9.4.10)[

c2h̄2k
3

(
∂αe−3α∂αξx + e−3αv2(α)

)
+

Λ
k

e3α

]
ξx = Exξx . (9.4.11)

Let us now consider wave packets which are flat over the width ∆β ∼
1/∆vβ � 1 (∆vβ being the standard deviation in the momenta space).

In the new variable τ = e3α, the equation (9.4.10) reads

c2h̄2k
3

(
9

d2

dτ2 +
v2

τ2

)
ξx +

Λ
k

ξx =
Ex

τ
ξx . (9.4.12)

A solution to equation (9.4.12) is provided by

ξx = τδ fx(τ), δ =
1
2

(
1±

√
1− 4

9
v2

)
(9.4.13)

f = Ce−β2τ2+γτ, γ = 2 | β |
√

δ +
1
2
− 1

12L2
Λl4

Pβ2
,

1
LEl2

P
= 6δγ ,(9.4.14)

LE = h̄c
E being the characteristic length associated to the Universe “energy”,

while lP ≡
√

h̄ck denotes the Planck scale length. However, the validity of the
solution above requires the condition β2τ � γ = 2

√
δ + 1

2 −
1

12L2
Λl4

Pβ2 | β |.

Hence, the quantum dynamics in a fixed space point (i.e. over a causal
portion of the Universe) is described, in the considered approximation (τ �
1), by a free wave-packet for the variables β± and ϕ and by a profile in τ

which has a maximum in τ = (γ +
√

γ2 + 8δβ2)/4β2.
If a lattice structure for the space-time is assumed on the Planckian scale,

to preserve the reality of E we have to impose some inequalities, leading to
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| Ex |�
c2kh̄2

l3
Pl
∼ O(MPlc2)→ LE � lP , (9.4.15)

MPl ≡ h̄/(lPlc) being the Planck mass.
Therefore, the existence of a cut-off implies that a ground state exists for the

evolutionary approach. Hence it is a natural request to assume the Universe
to approach this state during its evolution.

The associated critical parameter turns out to be

ΩE ≡
ρE

ρc
� O

(
10−2GMPl

c2R0

)
∼ O

(
10−2lPl

R0

)
∼ O

(
10−60

)
. (9.4.16)

Therefore, the dust contribution cannot play the role of dark matter.
Within this scheme a proper quantum to classical transition for the Uni-

verse volume can also be described.

9.5. Minisuperspace and Generalized Uncertainty
Principle

This section is devoted to explain some results obtained in a recent approach
to quantum cosmology, in which the notion of a minimal length naturally ap-
pears. In particular, this scheme realizes in quantizing a cosmological model
by using a modified Heisenberg algebra, which reproduces a Generalized
Uncertainty Principle (GUP)

∆q∆p ≥ 1
2

(
1 + β(∆p)2 + β〈p〉2

)
, (9.5.1)

where β is a “deformation” parameter. The above uncertainty principle (9.5.1)
can be obtained by considering an algebra generated by q and p obeying the
commutation relation

[q, p] = i(1 + βp2). (9.5.2)

Such a deformed Heisenberg uncertainty principle was appeared in studies
on string theory and leads to a fundamental minimal scale. More precisely,
from the string theory point of view, a minimal observable length it is a con-
sequence of the fact that strings can not probe distance below the string scale.
However, we have to stress that the minimal scale predicted by the GUP is, by
its nature, different from the minimal length predicted by other approaches.
In fact, the equation (9.5.1) implies a finite minimal uncertainty in position
∆qmin =

√
β. This way, we will introduce a minimal scale in the quantum

dynamics of a cosmological model.
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Of course the appearance of a nonzero uncertainty in position pose some
difficulty in the construction of an Hilbert space. In fact, as well-known, no
physical state which is a position eigenstate can be constructed. An eigen-
state of an observable necessarily has to have vanishing uncertainty on it.
Although it is possible to construct position eigenvectors, they are only for-
mal eigenvectors but not physical states. In order to recover information on
position, we have to study the so-called quasiposition wave functions

ψ(ζ) ∼
∫ +∞

−∞

dp
(1 + βp2)3/2 exp

(
i

ζ√
β

tan−1(
√

βp)

)
ψ(p), (9.5.3)

where ζ is the quasiposition defined by the main value of the position q on
certain functions, i.e., 〈q〉 = ı. The quasiposition wave function (9.5.3) rep-
resent the probability amplitude to find a particle being maximally localized
around the position ζ (i.e., with standard deviation ∆qmin).

It is notable to stress how, the GUP approach relies on a modification of the
canonical prescription for quantization, and therefore it can be reliable ap-
plied to any dynamical system. Moreover, the application of such a formal-
ism in quantizing a cosmological model allows us to analyze some peculiar
features of string theory in the minisuperspace dynamics.

Let us now extend the above framework to the Taub general cosmological
model, discussing its quantization in the GUP scheme. The Taub model is
a particular case of the Bianchi IX model which line element (in the Misner
parametrization) reads

ds2 = N2dt2 − e2α
(

e2γ
)

ij
ωi ⊗ω j, (9.5.4)

where N = N(t) is the lapse function, the variable α = α(t) describes the
isotropic expansion of the Universe and γij = γij(t) is a traceless symmetric
matrix which determines the shape change (the anisotropy) via γ±. Since the
determinant of the 3-metric is given by h = det eα+γij = e3α, it is easy to
recognize that the classical singularity appears for α → −∞.The Taub model
is the Bianchi IX model in the γ− = 0 case and thus its dynamics is equivalent
to the motion of a particle in a one-dimensional closed domain. Its ADM
Hamiltonian in the Poincaré-plane framework is

HT
ADM = px ≡ p, x ∈ [x0 ≡ ln(1/2), ∞), (9.5.5)

where x = ln v and the classical singularity now appears for τ → ∞.
The canonical quantization of this model is not able to solve the classi-

cal singularity problem. In fact, the incoming Universe (τ < 0) bounces at
the potential wall at x = x0 and then falls toward the classical singularity
(τ → ∞). Such situation is drastically changed in the GUP scheme and two
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main conclusions can be inferred: (i) The probability amplitude to find the
Universe is peaked near the potential wall. In other words, the GUP Taub
Universe exhibits a singularity-free behavior. (ii) The large anisotropy states,
i.e. those for |γ+| � 1, are probabilistically suppressed. In fact the Universe
wave function appears to be peaked at values of anisotropy |γ+| ' O(10−1).
In this respect, the GUP wave packets predict the establishment of a quantum
isotropic Universe differently from what happens in the WDW theory.

When this approach is applied to the Bianchi IX cosmological model we
show that three important features. i) The velocity of the anasotropy-particle
(Universe) inside the allowed domain of the Mixmaster model grows with
respect to the undeformed case. Furthermore, although the dynamics is still
Kasner-like, two negative Kasner indices are now allowed. Therefore, during
each Kasner era, the volume of the Universe can contracts in one direction
while expands in the other two. ii) The velocity γ̇w of the potential walls,
bounding the triangular domain of Bianchi IX, is increased by the deforma-
tion terms. However, it no rises so much to avoid the bounces of the γ-particle
against the walls, i.e. the particle bounces are not stopped by the GUP effects.
As matter of fact, when the ultra-deformed regime is reached the dynamics
is that of a particle which bounces against stationary walls (no maximum
incidence angle appears). iii) No BKL map (reflection law θ f = θ f (θi)) can
be in general analytically computed. In fact, such a map arises from the
analysis of the Bianchi II model which is no longer analytically integrable
in the deformed scheme. Thus, a non-vanishing minimal uncertainty in the
anisotropies complicates so much the Mixmaster dynamics in such a way that
each its wall-side is no longer an integrable system. This way, we can con-
clude that the chaoticity of the Bianchi IX model is not tamed by the GUP
effects on the Universe anisotropies.

A relation between the effective dynamics of loop quantum cosmology and
the Randall-Sundrum braneworlds scenario can by obtained quantizing the
FRW models with the use of the following deformed algebra

[q, p] = i
√

1± αp2, (9.5.6)

where α > 0 is a deformation parameter such that for α = 0 the ordinary
Heisenberg algebra is recovered. In particular, such an algebra is related to
the κ-Poincaré one which is the mathematical structure which describes the
so-called doubly special relativity, where an other invariant, observer inde-
pendent, scale (the Planck scale) is included ab initio in the theory. From this
approach the deformed Friedmann equation

H2
k=0 =

8πG
3

ρ

(
1± ρ

ρP

)
, (9.5.7)

for the flat case is obtained. The most interesting point to be stressed is the

1348



9.6. Quantum isotropization mechanism

equivalence, at phenomenological level, between the (−)-deformed Fried-
mann equation (9.5.7) and the one obtained considering the effective dy-
namics in loop quantum cosmology. On the other hand, the string inspired
Randall-Sundrum braneworlds scenario leads to a modified Friedmenn equa-
tion as in (9.5.7) with the positive sign. The opposite sign of the ρ2-term in
such an equation, is the well-known key difference between the effective loop
quantum cosmology and the Randall-Sundrum framework. In fact, the for-
mer approach leads to a non-singular bouncing cosmology while in the latter,
because of the positive sign, ȧ can not vanish and there is not place for a big-
bounce.

9.6. Quantum isotropization mechanism

In this section we show how a semi-classical mechanism, which leads to an
isotropic configuration for an inhomogeneous quasi-isotropic Universe, can
be developed. In particular, we obtain a wave function of the Universe which
has a clear probabilistic interpretation when the isotropic scale factor a of the
Universe is regarded as a semi-classical variable. It describes the evolution
of the anisotropies of the inhomogeneous Mixmaster Universe and its dy-
namics is traced with respect to a, which can be regarded as a semi-classical
variable as soon as the Universe expands enough. Explicitly it satisfies the
Schrödinger equation in τ ∝ a−3

i∂τχ = Ĥqχ =
1
2

(
−∆β + ω2(τ)(β2

+ + β2
−)
)

χ, (9.6.1)

where ω2(τ) = C/τ4/3 is a time-dependent frequency and C being a con-
stant. The exact solution can by obtained the use of the invariants method
and on some time-dependent transformations. The wave function of the Uni-
verse is spread over all values of anisotropy near the cosmological singular-
ity but, when the radius of the Universe grows, it is asymptotically peaked
around the isotropic configuration. In other words, the closed FRW model is
naturally the privileged state when a sufficient large volume of the Universe
is taken into account. This way, a semi-classical isotropization mechanism for
the Universe is obtained.

9.7. Polymer Quantum Cosmology

The polymer representation of quantum mechanics is based on a non-standard
representation of the canonical commutation relations. In particular, in a
two-dimensional phase space, it is possible to choose a discretized opera-
tor, whose conjugate variable cannot be promoted as an operator directly.
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From a physical point of view, this scheme can be interpreted as the quantum-
mechanical framework for the introduction of a cutoff. Its continuum limit,
which corresponds to the removal of the cutoff, has to be understood as the
equivalence of microscopically-modified theories at different scales. This ap-
proach is relevant in treating the quantum-mechanical properties of a background-
independent canonical quantization of gravity. In fact, the holonomy-flux
algebra used in Loop Quantum Gravity reduces to a polymer-likealgebra,
when a system with a finite number of degrees of freedom is taken into ac-
count. From a quantum-field theoretical point of view, this is substantially
equivalent to introducing a lattice structure on the space. Loop Quantum
Cosmology can be regarded as the implementation of this quantization tech-
nique in the minisuperspace dynamics.
The Taub model is approached in the scheme of an Arnowitt-Deser-Misner
(ADM) reduction of the dynamics in the Poincare plane. As a result, a time
variable naturally emerges, and the Universe is described by an anisotropy-
like variable. The anisotropy variable and its conjugate momentum are quan-
tized within the framework of the polymer representation. More precisely,
the former appears as discretized, while the latter cannot be implemented as
an operator in an appropriate Hilbert space directly, but only its exponenti-
ated version exists. The analysis is performed at both classical and quantum
levels. The modifications induced by the cutoff scale on ordinary trajectories
are analyzed from a classical point of view. On the other hand, the quantum
regime is explored in detail by the investigation of the evolution of the wave
packets of the universe (Battisti et al., 2008).
From a classical point of view, in the ordinary case, the model can be inter-
preted as a photon in the Lorentzian minisuperspace, and the classical tra-
jectory is its light-cone. More precisely, the incoming particle bounces on the
wall and falls into the classical cosmological singularity. Contrastingly, in
the discretized case, the one-parameter family of trajectories flattens, i.e. the
angle between the incoming trajectory and the outgoing one is greater than
π/2.
From a quantum point of view, the modified Schroedinger equation is solved.
As a result, a modified dispersion relation is found, and wave functions de-
pend on this modified dispersion relation.
The analysis of the corresponding wavepackets shows the implications of
the polymer representation of quantum mechanics mostly when a spread
weighting function is taken into account. In fact, in this case, as a result, a
strong interference phenomenon appears between the incoming (outgoing)
wave and the wall. However, as a matter of fact, such an interference phe-
nomenon is not able to localize the wave packet in a determined region of
the configuration space, so that the probability density to find the Universe
far away the singularity is not peaked, i.e. the cosmological singularity of
this model is not tamed by the polymer representation from a probabilistic
point of view. Consequently, the incoming particle (Universe) is initially lo-
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calized around the classical polymer trajectory. It then bounces against the
wall, where the wave packet spreads in the ’outer’ region, regains the classi-
cal polymer trajectory and eventually falls into the cosmological singularity.
This way, we claim that the classical singularity is not solved by this quanti-
zation of the model.
The result can be also discussed as compared with the application of the poly-
mer representation of quantum mechanics to other cosmological models, as
well as with the implementation of a generalized uncertainty principle to the
Taub model itself. In these cases, the peculiarity of this scheme are clarified.

9.8. Lorentz Gauge Theory

General Relativity admits two different symmetries, namely the diffeomor-
phism invariance, defined in the real space-time, and the local Lorentz in-
variance, associated to the tangent fiber. Such two symmetries reflect the
different behavior of tensors and spinors, respectively, when global Lorentz
transformations become local, i.e., while tensors do not experience the dif-
ference between the two transformations, spinors do. In our proposal, the
diffeomorphism invariance concerns the metric structure of the space-time
and it finds in the vier-bein fields the natural gauge counterpart, though the
gauge picture holds on a qualitative framework. On the other hand, the real
gauge symmetry corresponds to the local rotations in the tangent fiber and
admits a geometrical gauge field induced by the space-time torsion and its
properties.

This picture has led us to infer the existence of (metric-independent) gauge
fields of the Lorentz group, identified with A ab

µ , which interacts with spinors.
The Ricci spin connection ω ab

µ could not be identified with the suitable gauge
field, for it is not a primitive object (it depends on bein vectors) and defines
local Lorentz transformations on the tangent bundle.

Perspectives on observability We propose here a model to analyze the inter-
action of a 4-spinor ψ with the gauge field Aµ of the Lorentz group (addressed
in flat space) (Carlevaro et al., 2008). Using the tetrad formalism, the imple-
mentation of the local Lorentz symmetry leads to the Lagrangian density

L = L0 + Lint , L0 = i
2 ψ̄γaeµ

a ∂µψ− i
2 eµ

a ∂µψ̄γaψ − m ψ̄ψ , (9.8.1)

Lint = 1
8 eµ

c ψ̄{γc, τab} Aab
µ ψ = 1

8 eµ
c ψ̄ 2εc

abd γ5 γd Aab
µ ψ . (9.8.2)

To study the interaction terms, we perform a 3+1 splitting of the gauge field
and impose the time-gauge condition associated to this picture (i.e., Aij

0 = 0).
Using variational principles, we are able to write down the motion equations
for the spinor field. In this scheme, it is convenient to express the Lorentz
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gauge field trough the fields C0 = 1
4 εk

ij0Ai
k, and Ci = 1

4 εk
0ji A

0j
k , describing

rotations and Lorentz boosts respectively.
Our purpose is the analysis of corrections, due to the implementation of

the Lorentz gauge theory, and to a one-electron-atom model. In this respect,
we look for stationary solutions of the Dirac equation and we express the 4-
component spinor ψ(t, x) in terms of two stationary 2-spinors χ(x) and φ(x),
assuming standard-representation Dirac matrices. To investigate the low-
energy limit, we can write the spinor-field total energy in the form E = E + m,
obtaining the expression

φ = 1
2m (σi pi + C0) χ . (9.8.3)

It is immediate to see that φ is smaller than χ by a factor of order p
m (i.e., v

c
where v is the magnitude of the velocity): the 2-component spinors φ and χ
form the so-called small and large components, respectively.

Using standard Pauli relations, we finally get the following equation for
the large components

E χ = 1
2m

[
p2 + C2

0 + 2C0 σi pi + σiCi

]
χ . (9.8.4)

This equation exhibits strong analogies with the electro-magnetic case and
the so-called Pauli equation

E χ(x) = 1
2m

[
(p + A)2 + µB σ · B + Φ

]
χ(x) , (9.8.5)

where µB = e/2m is the Bohr magneton and A denotes the vector potential
(B and Φ are the external magnetic and electric field respectively). These eqs
can be used in the analysis of the energy levels as in the Zeeman effect.

Let us now neglect the term C2
0 in eq. (9.8.4) and implement the symmetry

∂µ → ∂µ + AU(1)
µ + A ab

µ Σab , (9.8.6)

with a vanishing electromagnetic potential A = 0. This way, we can intro-
duce a Coulomb central potential V(r) (E→ E−V(r)), obtaining the expres-
sions

H0 =
p2

2m
− Ze2

(4πε0)r
, (9.8.7)

H ′ = 1
2m

[
2C0 (σi · p i) + σ · Ci

]
, (9.8.8)

which characterize the electron dynamics in a hydrogen-like atom in presence
of a gauge field of the LG. It is worth noting the presence of a term related
to the helicity of the 2-spinor: this coupling is controlled by the rotation-like
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component associated to C0. A Zeeman-like coupling associated to the boost-
like component Ci is also present.
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10. Quantum Fields on Classical
Background

10.1. Dirac equation on a curved spaces and
classical trajectories

The interaction between geometry and internal spinor-like degrees of free-
dom has been investigated with the aim to infer the analogous of Papapetrou
equations for a quantum spin (Cianfrani and Montani, 2008a). This task has
been approached by an eikonal approximation, i.e., ψ = eiSu, and a localiza-
tion hypothesis for u along the integral curve of the momentum Kµ. Hence, a
dispersion relation has been recovered starting from the squared Dirac equa-
tion and by virtue of an integration on spatial coordinates. This way, the
following relation has been obtained

(KµKµ − KµSµ)(1 + O(λ2)) + µ2 = 0, (10.1.1)

λ and µ being the Compton length of the particle and the mass, respectively,
while the quantity Sµ reads as

Sµ = 2i
ū0γ0̄Dµu0 − Dµū0γ0̄u0

ū0γ0̄u0
. (10.1.2)

Hence the dynamics of Kµ is obtained by acting on the relation (10.1.1) with
the derivative operator ∇ν and we have

Uµ∇µPν − h̄
2 RρσµνUµSρσ − h̄∇νUµSµ−

−2ih̄UµD[νū0γ0̄Dµ]u0 + O(λ2) = 0
Pν = Kν − Sν

. (10.1.3)

Here the quantity Sµν is given by the expression

Sµν =
∫

d3x
√

hū{γ0̄, Σµν}u
2
∫

d3x
√

hūγ0̄u
=

ū0{γ0̄, Σµν}u0

2ū0γ0̄u0
+ O(λ2), (10.1.4)

for which we have
SνµUν = 0, (10.1.5)
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Since we are performing a multi-pole expansion, it is possible to assume
that

Dµu0 = iUµv, (10.1.6)

v being an arbitrary spinor. It can be shown that this hypotheses is well-
grounded by an analysis on the dynamics of the wave-function.

This way, the following equations are obtained

Uµ∇µUν −
h̄
2

RρσµνUµSρσ = 0 (10.1.7)

Therefore, Dirac particles follow the trajectory of classical spinning ones
(according with the Mathisson-Papapetrou formulation), whose spin tensor
is given by Sµν (10.1.4).
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Kaluza-Klein theories aim at providing a geometrical interpretation for gauge
degrees of freedom, by arranging bosons into the metric tensor. This scheme
implies to deal with a space-time having more than four-dimensions, being
the additional space compactified to distances not yet accessible to experi-
ments. In these models, the metric tensor takes the following form

jAB =


gµν(xρ) + γmn(xρ; yr)ξm

M̄(yr)ξn
N̄(yr)AM̄

µ (xρ)AN̄
ν (xρ) γmn(xρ; yr)ξm

M̄(yr)AM̄
µ (xρ)

γmn(xρ; yr)ξn
N̄(yr)AN̄

ν (xρ) γmn(xρ; yr)

 ,

xµ and gµν being the four-dimensional coordinates and metric, respectively,
while ym and γmn are the analogous ones on the extra-dimensional space,
endowed with Killing vectors ξm

M̄.
The possibility to geometrize a gauge theory is encoded in the existence

of a homogeneous manifold, whose isometries reproduce the algebra of the
gauge group in the following way

ξn
N̄

∂ξm
M̄

∂yn − ξn
M̄

∂ξm
N̄

∂yn = CP̄
N̄M̄ξm

P̄ , (11.0.1)

where CP̄
N̄M̄ indicate the structure constants of the Lie group. It is possible

to interpret AM̄
µ as gauge bosons since, by the dimensional reduction of the

Einstein-Hilbert action, the Yang-Mills Lagrangian density comes out.

11.1. 5-Dimensional Kaluza-Klein model

Within the unification picture provided by Kaluza Klein (KK) theory, the 5-
Dimensional (5D) model is the simplest one and the starting point for the in-
vestigation of the breaking of multidimensional gravity into the usual gravity
plus Yang-Mills fields. It is characterized by an abelian structure; indeed, it
provides the coupling between gravity, a U(1) gauge field and an extra scalar
field. If the scalar field it is assumed to be constant from the beginning, the
5D model reproduces exactly the Einstein-Maxwell theory in vacuum.

However, an interesting perspectives deals with the dynamics of the scalar
field and its conjugate momentum; starting from the Hamiltonian of the model
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it is possible to see via the Kuchar-Brown approach that the momentum πφ

de-parametrizes from hamiltonian constraints and we are therefore able to
write down a Schroedinger-like equation. This is a hint toward the interpre-
tation of φ as a time variable in the relational point of view. People involved
are Valentino Lacquaniti, Giovanni Montani and Simone Zonetti (Lacquaniti
et al., 2008b).

(i) Matter Coupling The problem of the matter coupling is a longstanding
puzzle that affects KK models from the foundation. Indeed, while KK models
are successful in vacuum, they show unsatisfactory features when the pres-
ence of matter is considered. The standard approach to the dynamics of test
particles is to generalize to five dimensions the ”geodesic” Action usually
adopted in 4D, namely S = m

∫
ds. Therefore, starting from S5 = m̂

∫
ds5,

where m̂ is the 5D mass parameter, it is shown via dimensional reduction,
that the motion of a free 5D test particle is reduced into the motion of a 4D
test particle interacting with the electromagnetic field, plus the extra scalar
field. In such a scheme, the q/m ratio is defined in term of the fifth compo-
nent of the 5D-velocity w5, which is a constant of the motion. Even if elec-
trodynamics is formally restored, setting φ = 1, the q/m ratio results to be
upper bounded in such a way that this bound cannot be satisfied by every
known elementary particles. In the simple case φ = 1, indeed we have:{ d

ds w5 = 0
D
Ds uµ =

√
4GFµνuν( w5√

1+w2
5
) ,

where
q/m
√

4G =
w5√

1 + w2
5

< 1 .

The problem of the geodesic approach relies in a bad definition of the rest
mass of the particle. By studying the Hamiltonian formulation of the dy-
namics we can get the dispersion relation for the 4D reduced particle: such a
relation is consistent with an interacting particle whose charge q and mass m
arise defined as follows:

q =
√

4GP5 m2 = m̂2 + P2
5 /φ2

Given that P5 = m̂w5, in the case φ = 1, we recover the previous bound.
These relations show that the physical mass m of the particle does not coin-
cide with the mass parameter m̂ we put in the Action; moreover, if we con-
sider the compactification of the extra dimension, we get a quantized charge,
as well as a tower of massive modes; but, fixing the length of the extra di-
mension using the value of the elementary charge, we get massive modes
beyond Planck scale ( which is indeed the order of magnitude of mass re-
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quested by the q/m bound ). Hence, the 5D geodesic approach is not able to
take into account the definition of the rest mass for a test particle. This re-
lies in the fact that in the 5D KK model the Equivalence Principle is violated,
thus the 5D test particle does not follow a geodesic motion. We are studying
a new scheme based on the multipole expansion of Papapetrou. This ap-
proach deals directly with a generic 5D matter tensor and is able, via a Taylor
expansion, to takes into account the case of a test particle, i.e., a localized par-
ticle, as it happens in the 4D theory, where the test particle is recognized as
the single-pole order of the Papapetrou expansion. When applied in the 5D
framework, the Papapetrou approach reproduces the electrodynamics mo-
tion of a 4D particle, plus the interaction with an extra scalar field. This new
equation is formally the same as the old one, but coupling factors are now
different and no bound appears for q/m. The reason is that coupling factors
are now defined by means of degrees of freedom provided by the 5D matter
tensor, while in the geodesic approach they are defined only via the kinemat-
ical constant of motion. Mass is defined via the component T00, a conserved
current is defined in terms of components Tµ

5 , and an additional coupling fac-
tor A, between matter and the KK extra scalar field, is found to be related to
T55. Moreover, this model reproduces electrodynamics and correct couplings
not only at the test particle level, but also for a generic kind of 4D matter,
described by a 4D tensor Tµν. If the extra scalar field is assumed to be con-
stant, this model reproduces exactly the classical electrodynamics; if the extra
scalar field is allowed to vary, the most important difference is that the model
shows as a new feature a varying mass, depending on the scalar field and on
the coupling factor A. The new equations reads

m
Duµ

Ds
= A(uρuµ − gµρ)

∂ρφ

φ
+ qFµρuρ ,

with
dm
ds

= −A
φ

dφ

ds
.

This equation for the motion can also be obtained by the Action S5 = −
∫

m ds +
q(Aµdxµ + dx5

√
4G

), where m is now a variable function whose derivatives are
known. Charge is still identified with P5 as in the geodesic approach, but
now the parameter m we put in the Action represents the physical rest mass
of the particle, without carrying extra factor, as it is confirmed by the analy-
sis of Hamiltonian and conjugate momenta. This means that the additional
factor P2

5 /φ2 now does not affects the definition of mass; indeed the novelty
of this scheme is the removal of the huge massive modes we usually have in
KK models. People involved are Valentino Lacquaniti and Giovanni Montani
(Lacquaniti and Montani, 2008a).

Most promising perspectives of this line of research are the following:
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- KK model with generic matter fields: following the analysis performed on
the particles dynamics is possible to consider a KK model with a generic mat-
ter source; extending the results obtained for particle we identify 4D sources
starting from a conserved 5D matter tensor; therefore we can write down
equations for the full model with fields plus matter:

Gµν =
1
φ
∇µ∂νφ− 1

φ
gµν�φ + 8πGφ2Tµν

em + 8πG
Tµν

matt
φ

∇ν

(
φ3Fνµ

)
= 4π jµ

�φ = −1
4

φ3(ek)2FµνFµν +
8
3

πG
(

Tmatter + 2
T55

φ

)
Given this model, next step to be pursued are: i) search for the general La-
grangian formulation and definitions of appropriate conserved currents re-
lated to gauge symmetries ii) analysis of the role of the extra source term T55,
which is linked to the coupling factor A for particles, in the dynamics. It is
possible to find scenarios where we recover the free falling universality of
particles, without necessarily setting φ = 1, and this topic deserves some ef-
fort to be pursued. People involved are Valentino Lacquaniti and Giovanni
Montani (Lacquaniti and Montani, 2008b). Also interesting is to search for
a generic cosmological solution of the equations, especially near the singu-
larity; people involved are Riccardo Benini, Valentino Lacquaniti, Giovanni
Montani.

- Dark matter models with particles of running mass depending on a scalar
field: this topic involves Valentino Lacquaniti and Giovanni Montani, with
an ongoing collaboration with Massimiliano Lattanzi ( University of Oxford
) as far as model with mass varying neutrinos are considered, and with an on-
going collaboration with Luca Amendola (OAR/INAF ) and Cinzia Di Porto
(University of Roma “RomaTre” ) where models with a non conserved 4D
matter tensor are taken into account.

(ii) Geodesic Deviation In a work of Kerner et al. (2000) the problem of
geodesic deviation in 5D KK is faced. The 4D space-time projection of the
obtained equation is identical with the equations obtained by direct variation
of the usual geodesic equation in the presence of the Lorenz force, provided
that the fifth component of the deviation vector satisfies an extra constraint
there derived . The analysis was performed taking φ = 1 and it was devel-
oped within the scheme of the geodesic approach. Therefore, our research
focused on the extension of this work to the model where the presence of
the scalar field is considered. Our results coincide with those of Kerner et
al. when the minimal case φ = 1 is considered, while it shows some depar-
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tures in the general case. The novelty due to the presence of φ is that the
variation of the q/m between the two geodesic line is not conserved during
the motion; an exact law for such a behavior has been derived. In principle
such a results is interesting in order to check if it is possible to find a mark
of the extra dimension via tidal effects due to the scalar field. Other perspec-
tive is to deal with this topic addressing the Papapetrou approach : the aim
is to find the geodesic deviation via the localization hypothesis on the matter
tensor around two world lines separated by an infinitesimal displacement,
and compare the result with respect to the pure geodesic approach. People
involved are Valentino Lacquaniti, Giovanni Montani, Francesco Vietri (Lac-
quaniti et al., 2008a).

(iii) Spherical Solutions This research line is in collaboration with P. Chardon-
net. It consists in searching an extra-dimensional scenario for the formation
of so-called “Small-Mass Black Holes” (SMBH). These mini black holes are
supposed to have mass m ∼ 1017g and a Schwarzschild radius between the
size of the proton and of the atom. The SMBH model is strictly linked to
an experimental evidence of 511 keV annihilation line in the Galactic Center.
These objects, with the mechanism of their accretion disk, could reproduce
this emission. But, more important, they can be a good candidate for dark
matter. Their mass is too small to be detected by micro-lensing and too big
to evaporate by Hawking scenario. The problem is that the usual fluctua-
tion scenario seems not able to explain these objects; it provides a continuous
spectrum, depending on the mass, while it would be preferable to have a
peak on the supposed mass that fits with the observed emission. Therefore,
the scheme of this research is to apply the multidimensional KK model, that
provides extra parameters (i.e., scalar fields). First step is the analysis of the
corresponding Schwarzschild solution : unfortunately in the 5D KK model
we do not have a Birkhoff-like theorem, therefore spherical solution are not
unique. Some solutions with singularity, of the form f (r, t) = g(r)h(t) are
known, but they do not represent black holes; in the usual KK model with-
out matter then they represent solitons, while in our model with matter we
can see them as the exterior solution for fields given by a spherical matter
distribution. The black-hole like solution are to be looked for in a generic so-
lution f (r, t). People involved are Pascal Chardonnet, Valentino Lacquaniti,
Giovanni Montani.
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This group lives within the Relativistic Astrophysics Center at the Physics
Department of “Sapienza” University of Rome (Prof. Remo Ruffini - 2nd

Chair in Theoretical Physics). It deals with three main research lines, each of
them aimed to specific topics, according to the following scheme:

- Early Cosmology:

Chaotic Universes, Dissipative cosmologies

- Quantum Gravity:

Quantum cosmology, The problem of time

- Multidimensional Physics:

Particle and Field dynamics in Kaluza-Klein theories,
Geometrization of the gauge connection (the electroweak model)

The group is directed by Dr. Giovanni Montani and it is composed of
about ten members, undergraduate students, PhD students and post-docs.
The main goal of this investigation paradigm is to find, through different
aspects of the gravitational field, markers for a unification picture of the fun-
damental interactions. In this respect, the Cosmological framework is the
natural arena of this expected scenario.

12.1. Seminars and Workshops

12.1.1. I Stueckelberg Workshop on Relativistic Field
Theories

Period: 26-30 June 2006
Main Lecturer: A. Ashtekar
Introduction to Loop Quantum Gravity trough Cosmology

Talks:

- G. Montani: Evolutionary Quantum Gravity.

- L. Titarchuk
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- S. Mercuri: Nieh-Yan invariant and Fermions in Ashtekar-Barbero-Immirzi
formalism

- G. Vereshchagin: Non-singular solutions in Loop Quantum Cosmology

- V.A. Belinski: New developments in Einstein-Maxwell Theory: non-perturbative
approach

- A. Geralico: New developments in Einstein-Maxwell Theory: perturbative
approach

- D. Bini: Relative strains in General Relativity

- F. Cianfrani, O.M. Lecian: Stuckelberg: a forerunner of modern physics

- R. Benini: Multi-Time approach to the Generic Quantum Cosmology

- M.V. Battisti: Generic Evolutionary Quantum Universe

- S.S. Xue: Gravitational instantons and the cosmological term

- V. Laquaniti: Hamiltonian formulation to 5-dimensional Kaluza-Klein The-
ory

- F. Cianfrani: Spinning particle in the gravitational field

- O.M. Lecian: Electroweak Model within the framework of Lorentz Gauge The-
ory: Ashtekar variables?

- F. Cianfrani: The Electroweak Model within Kaluza-Klein Framework

12.1.2. II Stueckelberg Workshop on Relativistic Field
Theories

Period: 3-7 September 2007
Main Lecturers: T. Thiemann,
Loop Quantum Gravity and Recent Developements
T. Damour
Coalescing Binary Black Holes and Chaos in String Cosmology

Talks:

- G. Montani: Sincrhonous Quantum Gravity: Early Universe dynamics

- F. Cianfrani, O.M. Lecian: Stuckelberg: a forerunner of modern physics II

- F. Cianfrani: The role of the time gauge in the 2nd order formalism

- G.V. Vereshchagin: Semi-classical Loop Quantum Cosmology

- E. Magliaro, C. Perini: Comparing loop quantum gravity with the linearized
theory

- E. Alesci: The full graviton propagator from loop quantum gravity
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- G. Vereshchagin: Thermalization of the pair plasma

- N. Carlevaro: Lorentz Gauge Theory and spinor interaction

- K. Giesel: Dirac observables

- O.M. Lecian: Exponential Lagrangian for the gravitational field and the prob-
lem of vacuum energy

- R. Zalaletdinov: Macroscopic Gravity and Averaging Problem in Cosmology

- S.S. Xue: The gravitational origin of fermion masses

- C. Sigismondi: Meteotsunami detection in Adriatic and Tyrrenian sea

- G. Amelino-Camelia: Quantum Gravity Phenomenology and a generaliza-
tion of the Noether theorem for quantum spacetime

- M.V. Battisti: Minisuperspace dynamics in the GUP framework

- A. Geralico: Perturbations of a Reissner-Nordström black hole by a charged
massive particle at rest

- K. Giesel: Geometrical Operators

- S. Xue: Electron-positron productions in inhomogeneous electric fields

- F. Cianfrani: Curvature-spin coupling from the semi-classical limit of the
Dirac equation

- N. Carlevaro: On the role of viscosity in Early Cosmology

- S. Zonetti: The parametrizing fluids in canonical Quantum Gravity

- F. Cianfrani: Elementary particle interaction from a Kaluza-Klein scheme

- V. Lacquaniti: On the problem of the matter coupling in a 5d Kaluza-Klein
theory”

- O.M. Lecian: Extended fundamental space-time symmetries

- C. Perini: Noncommutative geometries: an overview

- M. Pizzi: Electric force lines of the double Reissner-Nordstrom solution

- R. Benini: Mixmaster dynamics in the Wheeler-DeWitt framework

- F. Zonca: The Physics of Burning Plasmas in Toroidal Magnetic Field Devices

- I. Milillo: On the coupling between spinning particles and cosmological grav-
itational waves

- M.V. Battisti: Cosmological implication of Evolutionary Quantum Gravity

12.1.3. III Stueckelberg Workshop on Relativistic Field
Theories - III Session

Period: 15-18 July 2008
Main Lecturers: Prof. G. ’t Hooft.

1365



12. Activities

Talks:

- A. Zhuk: Early Inflation in Non-Linear Multidimensional Cosmological Mod-
els

- G. Montani: Perspectives in Cosmology, Gravitation and Multidimensions

- Prof G. ’t Hooft: Quantum Mechanics, Discretization and Local Determin-
ism

- R. Benini, O.M. Lecian: E.C.G. Stueckelberg: a Forerunner of Modern Physics
III

- F. Cianfrani: The Role of Time-Gauge in Quantizing Gravity

- M.V. Battisti: Time Evolution of a Generic Quantum Universe

- S. Zonetti: Fluid Entropy as Time-Variable in Canonical Quantum Gravity

- N. Carlevaro: New Issues in Lorentz Guage Theories

- E. Alesci: Graviton Propagator in LQG: a Tool to Test Spinfoam Models

- N. Carlevaro: Gravitational Instability in Presence of Dissipative Effects

- M.V. Battisti: Quantum Cosmology in the GUP Approach

- R. Belvedere: Quantum Isotropization Mechanism for the Mixmaster Model

- F. Cianfrani: Review on Extended Approaches in the Kaluza-Klein Model

- O.M. Lecian: Recent Approaches to Modified-Gravity Theories

- M.V. Battisti: Extended Approach to the Canonincal Quantization in the Min-
isuperspace

- O.M. Lecian: The Taub Universe viewed in a Polymer Quantization Approach

- L. Lusanna: Towards Relativistic Atomic Physics and Relativistic Entangle-
ment

- R. Benini: Review on the Generic Cosmological Solution Near the Singularity

- T.P. Shestakova: The Extended Phase Space Approach to Quantum Geometro-
dynamics

- S. Mercuri: From the Einstein-Cartan to the Ashketar-Barbero formulation of
Gravity and a possible interpretation of the Immirzi parameter

- G. Fodor: Almost Periodic Localized Systems: Oscillons and Oscillatons

- V. Lacquaniti: Recent Developement in Particle and Field Motion within the
Kaluza-Klein Picture

- D. Pugliese: Deformations of Spacetime Metrics

- F. Vietri: Geodesic Deviation on a Kaluza-Klein Background
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- A. Cardinali: Asymptotic Techniques and Hamiltonian Formalism in the So-
lution of the Electromagnetic Wave Equation in Ionized Gases

- Prof. G. ’t Hooft: A Locally Finite Model for Gravity

- G. Barbiellini: Fulmini e Saette

- S. Bernuzzi: Gravitational Waves from Neutron Star Oscillation

- A. Nagar: Gravitational Waves from Binary Black Hole Coalescence

- M. Lattanzi: Constraining Dark Matter Models Through 21cm Observations

- S. Capozziello: Dark Energy Models toward Observational Tests and Data

- G. Amelino-Camelia: Falsifiable Planck-Scale Theories of NOT Everything

- M.F. De Laurentis: Stochastic background of gravitational waves ”tuned” by
f(R) gravity

- L. Izzo: Detection of the CSB of GW in f(R) gravity with FASTICA

- C. Corda: Signals and Interferometric Response Functions in the Framework
of GW Arising from Ext.Th.Grav.

12.1.4. ICRA Seminars on Quantum Gravity

Preface: Aim of this seminars was to fix some relevant links between differ-
ent approach to the cut-off physics. Particular attention has been devoted to
the mathematical framework underlying Loop Quantum Gravity in view of
clarifying how the notion of a minimal length lives within the local Lorentz
gauge symmetry. In this respect, some implications of Loop Quantum Cos-
mology are discussed and the features of a Big-Bounce, replacing a Big-Bang,
are outlined in some detail. As alternative approach to the cut-off physics, we
dealt with the non-commutative structure of the space-time, especially on the
base of a Generalized Uncertainty Principle (GUP) formalism. The issues of a
GUP quantum dynamics were described in the case of a non-relativistic parti-
cles, while the proposal for a real quantum field theory was critically revised.
Finally interesting aspects of a path integral theory for the gravitational field
were analyzed within a metric formulation and attention to the gauge fixing
procedure was devoted.

Polymer representation and GNS construction: fundamentals and applica-
tions - Speakers: O.M. Lecian, M.V. Battisti
Abstract: We briefly review the main steps of the GNS construction. We
then discuss the polymer representation of quantum mechanics within this
framework, and eventually outline the features of its continuum limit for the
toy-model of a one-dimensional particle. Furthermore, we implement this
paradigm also to the case of a scalar field, and the differences between this
picture and the Schroedinger representation are pointed out. As a result, we
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the possibility to apply such a framework to the quantization of cosmologi-
cal models is envisaged, especially in view of the removal of the cosmological
singularity.

On the notion on Classical limit in relativistic and non-relativistic limit -
Speaker: G. Montani

An introduction Wilson Loop - Speaker: F. Cianfrani
Abstract: The emergence of Wilson loops in the strong coupling limit of lat-
tice gauge theories is outlined, stressing how this formulation easily accom-
plished the issue of gauge invariance. Then, the appealing features of a quan-
tization of gravity in terms of loops are sketched, in particular with respect to
the appearance of non canonical commutation relations and of a numerable
basis in the Hilbert space.

Mixmaster chaos from the Loop Quantum Cosmology point of view -
Speaker: M.V. Battisti
Abstract: The chaotic behavior of the Bianchi IX model, in the dynamics to-
ward the classical singularity, is investigated in the Loop Quantum Cosmol-
ogy framework. Starting from an isotropic settings, we review the key points
that brings to a non-chaotic dynamics for such a model, as soon as the quan-
tum effects become important. We also point out the problems and ambigui-
ties of such a framework, in particular in the formulation of the Hamiltonian
constraint.

Quantization of theories with constraints I - Speaker: S. Zonetti
Abstract: Gauge theories, when treated with an hamiltonian formalism, be-
have as constrained theories, where conditions between the canonical vari-
ables hold. At first two kinds of constraints can be recognized: primary and
secondary constraints. The former appearing with Lagrange multipliers, the
latter arising from the consistency conditions, i.e. time indipendence, of the
others. This distinction, however, is not essential, and the more usefull clas-
sification based on the Poisson algebra is adopted. This way it is possible
to discard the Poisson bracktes and adopt the Dirac ones, constructed with
2nd class constraint algebra matrix, and embed these constraints in the inner
structure of the theory. Now one gets a theory with at most 1st class con-
straints, that generate the gauge transformations.

Quantization of theories with constraints II - Speaker: F. Cianfrani
Abstract: The geometrical interpretation of first- and second-class constraints
in the phase space is outlined, with the aim to demonstrate the different re-
duction of degrees of freedom they produce. Furthermore, the quantization
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of such constrained system is analyzed, which provide us with a demonstra-
tion of how the Fadeev-Popov determinant arises in the path-integral formu-
lation.

BRST symmetries - Speaker: M. Castellana
Abstract: After the experimental observation of neutral-currents processes in
1973, the requirement for a proof of renormalizability of non-abelian gauge
theories predicting the existence of such processes became an essential point
in quantum field theory. The discovery of BRST symmetry for the Yang -
Mills action made the electroweak model predicting these processes a con-
sistent theoretical framework. As a matter of fact, this underlying symmetry
of the gauge fixed action allowed to show it to posses all the required term
to make it renormalizable. BRST symmetry showed to apply to a really wide
class of systems of physical interest, and can be easily generalized to a generic
system which possessing some basic gauge symmetry. To this end, we recall
that in the literature there exist different formulations for the BRST formal-
ism, with substantial differences from each other. On one side there exists a
formulation of BRST symmetry for constrained systems based on canonical
quantization methods which is widely diffused and on the other hand there
is another approach to derive BRST symmetry based entirely on path inte-
gral methods and is applicable to systems with infinite degrees of freedom
avoiding those inconsistencies proper of canonical quantization methods we
discussed above. In this paper we will follow the latter derivation.

An introduction to spin foams - Speaker: O.M. Lecian
Abstract: Spin foams will be introduced from a geometrical and field-theoretical
point of view. Starting from the definition of spin networks as a generaliza-
tion of Wilson loops and drawing the analogy with the concept of “plaque-
ttes” will allow one to outline the possibility of recognizing spin-network
states as basis for the functionals of the connection. Spin foams, defined as
branched surfaces, will accomplish the dual transformation that leads to a
physically equivalent description of lattice gauge theory. Particular attention
will be paid to the description of physical observables in terms of the path-
integral formulation within this formalism, and to the mathematical meaning
of these operations. A spin-foam model for Yang-Mills theories will follow,
and a background independent spin-foam model for quantum gravity will be
obtained by slightly modifying the duality map. The relation between spin-
network states and the geometry of spacetime will be further investigated. In
particular, covariant quantum gravity will be approached considering spin-
network states as states of the gravitational field. Equivalence classes for spin
foams will be established, and the interpretation of spin foams as quantum
histories will be proposed.
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Generalized uncertainty principle and noncommutative spacetime - Speaker:
M.V. Battisti
Abstract: The existence of a minimal observable length has long been sug-
gested when we try to unify Enistein’s theory of classical gravity with quan-
tum mechanics principles. The first attempt to describe a Lorentz invariant
spacetime with a minimal length was made by Snyder in 1947. This approach
is compared with that one in which the authors study in full detail the quan-
tum mechanical structure which underlies a generalized uncertainty relation,
which implement the appearance of a nonzero minimal uncertainty in posi-
tion. At the end, introducing the Moyal star-product, we discuss about the
criteria for preserving Poncarè invariance in noncommutative gauge theories.

Framework of Loop Quantum Cosmology - Speaker: M.V. Battisti
Abstract: Is showed how the classical singularity, of k=0 FRW cosmological
model, is removed by quantum geometry. We begin by singling out “elemen-
tary functions” on the classical phase space which are to have unambiguous
quantum analogs: the almost periodic function and the momenta p. No oper-
ator corresponding to connections is defined. Then,we will express the phys-
ically interesting operators in terms of these variables. We will show that the
WDW equation is transformed in a difference equation, because the area op-
erators has a lowest eigenvalue and, thus, is physically inappropriate to try
to localize the curvature on arbitrary small surfaces. References:

Wheeler-DeWitt equation - Speaker: R. Benini
Abstract: We briefly discuss some features of the Wheeler-DeWitt [WDW]
equation: starting from the Arnowitt-Deser-Misner approach to the Einstein
action, we discuss the meaning, the problems and some solutions of the WDW.
We derive in particular the solutions in the mini super-space of the flat FRW
model, with particular attention to the role that the initial conditions have
in a cosmological model. Then, the problem of classical constraints while
quantizing a theory is discussed from the Multi-time point of view; in this
framework some features of the Bianchi type I and IX homogeneous models
are presented. The last remark is about the semiclassical states in the quan-
tum Mixmaster. References

Phenomenology of Lorentz violations - Speaker: F. Cianfrani
Abstract: The fate of Lorentz invariance in Quantum Gravity is an open is-
sue; however, if it will induce Lorentz violating terms in the Lagrangian den-
sity, because of radiative corrections, they will be suppressed by the size of
Standard Model couplings, unless some sort of fine-tuning on the parameters
of such terms. Therefore, the quantum gravity phenomenology of possible
Lorentz-violations has already been ruled out by experimental data.
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Covariant formulation of Loop Quantum Gravity - Speaker: F. Cianfrani
Abstract: It is possible to derive the formulation of General Relativity in terms
of Barbero-Immirzi connections starting from a variational principle. In par-
ticular, the ADM splitting, in the time gauge, of the Holsts action gives the set
of constraints predicted by Barbero. In particular, the Super-Hamiltonian and
the Super-Momentum ones reproduce the algebra of time-diffeomorphisms
and three-diffeomorphisms, respectively. Then, the machinery of the quanti-
zation by virtue of holonomies can start. However, holonomies themselves,
despite the case of Ashtekar variables, depend on the splitting, therefore con-
nections have no well-defined behavior under time reparametrization. In
order to solve this aesthetical issue, Alexandrov introduce a covariant the-
ory, where the splitting is not performed in the time gauge. At the end, the
ambiguity due to the Immirzi parameter disappears, but arise second class
constraints, which in general cannot be solved and predict modified commu-
tation relations between fields and their conjugates momenta.

Resolution of the cosmological singularity in Loop Quantum Gravity -
Speaker: F. Cianfrani
Abstract: The quantization of the k=0 Freedman-Robertson-Walker space-
time, in a minisuperspace approach, can be performed in the Wheeler DeWitt
or in the Loop Quantum Gravity framework. The main distinction between
the two procedures deals with the choice of fundamental variables (in the
former case they are holonomies and smeared densitized triads) and the def-
inition of the kinemathical Hilbert space; in the dynamical sector, we end
up with differential and difference equations, respectively. The origin of dif-
ference equations can be traced to the impossibility to take the limit of van-
ishing area for loops, when the hamiltonian constraint is rewritten in terms
of holonomies, since no operator corresponding to connections is defined.
Hence, by the group averaging techniques a scalar product can be introduced,
so amplitudes, Dirac observables and semiclassical states can be determined.
By introducing a massless scalar field as the internal time, the evolution of
semiclassical states is studied: while for the Wheeler DeWitt equation, once
evolved backward in time, they remain semi-classical till they reach the clas-
sical singularity, this is replaced by a bounce in Loop Quantum Cosmology.
Moreover, before the bounce a semi-classical contracting phase is predicted.
This way, Loop Quantum Cosmology solves the Big Bang singularity.

A derivation of ADM splitting via the Space-Ambient embedding of a
manifold - Speaker: V. Lacquaniti
Abstract: The embedding of a 4D manifold in a 5D external Minkowskyan
space (our so-called Space-Ambient) allows us to recover the whole features
of General Relativity in a simple vectorial picture. Within this picture its easy
to stress the geometrical meaning of the metrics and the covariant derivative.
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A similar technique allows us to derive in a fast way the rules of the ADM
splitting. It is showed hot to get the rules for the synchronous splitting, for the
generic ADM splitting of the metrics and for the projection of a generic tensor;
also, it is examined the splitting of the covariant derivative, the definition
of the extrinsic curvature and its geometrical meaning. Finally, the Gauss-
Codacci formula is provided, with a discussion of the dynamical properties
of the Einstein-Hilbert action that arises from this picture.

Generalized uncertainty principle, noncommutative spacetime and the scalar
field - Speaker: O.M. Lecian
Abstract: The gravity-induced breakdown of canonical quantum mechanics
in the description of the spacetime at the Plank scale and the emergence of
a cut off is described by different mathematical structures. In the frame-
work of a generalized uncertainty principle, the quantization of fields is dis-
cussed, and two approaches are presented. The standard QFT established
by A.Kempf, based on nonzero minimal lengths and momenta and achieved
in the framework of a generalized Bargman Fock representation, is com-
pared to the proposal by T.Matsuo et al., where nonzero minimal momenta
only are taken into account, and canonical and path integral quantization
are extended to higher dimensions by means of the introduction of new pa-
rameters. k-Minkowski and canonical noncommutative spacetimes are pre-
sented, and the Moyal product is introduced. In particular, in a canonical
noncommutative spacetime scenario, the quantization of the scalar field is
studied, and the problem of microcausality (and its possible violation) is in-
vestigated between vacuum states and between non-vacuum states: for par-
ticular choices of the commutation relations only the microcausality of the
scalar field is satisfied.

Functional approach to quantum gravity - Speaker: O.M. Lecian
Abstract: Different formalisms in quantum gravity are aimed to describe the
dynamics of physical processes by means of integration over all the pos-
sible states (geometries), once the initial and the final states are given. In
this context, Minkowski vacuum has been studied. Minkowski vacuum, the
zero-particle state, is expressed in terms of a functional that depends on the
field boundary value and on the geometry of the surface that encloses the
region where experiments are performed. This functional is preliminary ex-
pressed in terms of a functional Schroedinger representation; then, the con-
cept of Hilbert space is extended to include the initial and final states of the
measure operation: here a covariant vacuum is defined, which maps the ini-
tial state into the final one, and a relation connecting the two vacuum states
is found. Neither spacial nor time infinities are needed: since macroscopic
scales are much larger than the mass gap that ensures convergence, local par-
ticles can be treated like global particles for these purposes. Analogous for-
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mulas are worked out for background independent quantum gravity, where
the Minkowski vacuum can be expressed by a Euclidean gravitational func-
tional integral. Faddeev Popovmethod in the temporal gauge is applied to
the propagation Kernel: after fixing the notation in the YM case, General rela-
tivity is taken into account. Changing all the fields into a synchronous gauge
and transforming the action accordingly solve the problem of fixing such a
gauge without removing all four-metrics. In the compact case, the functional
integral is independent of the proper time, which can be determined from
the 00 component of the Einstein equations. In the asymptotically flat case,
on the other hand, the functional integral depends also on the asymptotic
proper time, because of the boundary conditions.

Loop Quantum space - Speaker: E. Magliaro
Abstract: In this talk I show how to quantize (in LQG) the canonical formula-
tion of General Relativity. Starting from the Hamiltonian system defined by
three constraints equations, a quantization of the theory can be obtained in
terms of complex valued Schrdinger-like wave functionals; the Gaussian con-
straint and the vectorial constraint simply force to be invariant under SU(2)
gauge transformations and 3d diffeomorphisms, the Hamiltonian constraint
gives the Wheeler-De Witt equation. In order to construct the kinematical
Hilbert space is necessary to find suitable functionals of the connection (cylin-
drical functions) and then to require internal gauge invariance (spin network
states) and diffeomorphism invariance (linear functionals of spin network
states) of the states and of their scalar product. The next step is to find well
defined operators in our Hilbert space that are invariant and self-adjoint. We
obtain two operators of this kind which are diagonal on the spin networks
with discrete spectrum and have a precise physical interpretation: they are
the physical area of the surface intersected by spin networks’ links, and the
physical volume that get contribution only from the nodes of the spin net-
work states; we notice that in the context of Loop Quantum Gravity this dis-
creteness is a direct consequence of a (conceptually) straightforward quan-
tization of General Relativity. Finally I present relational interpretation of
Quantum Mechanics and I observe that there is a connection between rela-
tionalism of QM and of GR due to the connection between contiguity and
interaction.

Lorentz invariance and space(-time) discretization - Speaker: S. Mercuri
Abstract: One of the most interesting aspects of non-perturbative quantum
gravity theories is the discretization of the space(-time). In particular in Loop
Quantum Gravity the area and volume operators are not only hermitian and
regularizable, but have also discrete eigenvalues in the base of spin-network.
The question is: Can the Lorentz symmetry be reconcilable with such a dis-
cretization? Or, as suggested by the non-commutative geometry theories, we
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might expect a modification in the Lorentz-Fitzgerald transformation at the
Planck scale? We present arguments in favor of the former and latter hypoth-
esis accordingly to the up to now results existing in literature.

The Ashtekar-Barbero-Immirzi connections - Speaker: S. Mercuri
Abstract: The canonical formulation of General Relativity leads to a consis-
tent formulation of a Quantum Gravity theory. Even though many aspects
of Quantum Gravity can be studied in the framework of ADM phase space,
it is in general useful to operate a canonical transformation, passing to the
Ashtekar formulation. This transformation reduces the phase space of Gen-
eral Relativity to that of a Yang-Mills gauge theory of the SU(2,C) group, al-
lowing the implementation of many well known technics developed in gauge
theories to the gravitational theory. We give a detailed description of the con-
struction of Ashtekar phase space, dwelling upon the problem of Immirzi
parameter and to the definition of Barbero connections, which actually com-
plicate the constraints, but being real do not need any reality condition.

12.2. Review Work

12.2.1. Fundamentals and recent developments in
non-perturbative canonical Quantum Gravity

- Authors: F. Cianfrani, O.M. Lecian and G. Montani

In this work fundamental and recent aspects of canonical quantum gravity
are reviewed. The aim of the presentation is to provide a pedagogical ap-
proach to the problem of quantizing the gravitational field which provides
the tools for a proper understanding of recent issues in this research line.

After a detailed discussion of some relevant features concerning the classi-
cal and quantum field dynamics, the Wheeler-DeWitt formulation of canoni-
cal quantum gravity is presented with a careful discussion of its main short-
comings. Then a detailed analysis of the Loop Quantum Gravity approach is
given starting from the basic mathematical notions at the ground of this mod-
ern formulation. Finally the full paradigm is developed giving emphasis on
the successes and the open questions concerning the loop representation of
space-time.

Contents:

- 1. Quantization methods

1.1 Classical and quantum dynamics

1.2 Quantum operators and wave functions
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1.3 Difference operators Vs differential operators

1.4 Time

1.5 Quantization of Hamiltonian constraints

1.6 Weyl quantization

1.7 GNS construction

- 2. Hamiltonian formulation of the geometrodynamics

2.1 The action for the gravitational field

2.2 The space-time slicing

2.3 The Hamiltonian structure

2.4 The Hamilton-Jacobi equation

2.5 Reduction to the canonical form

- 3. Gravity as a gauge theory

3.1 Gauge theories

3.2 First-order formulation for the gravitational field

3.3 Gravity as a gauge theory of the Lorentz group?

3.4 Poincaré gauge theory

3.5 The Holst formulation

3.6 The Kodama state

- 4. Quantization of the gravitational field

4.1 The WDW equation

4.2 The problem of time

4.3 Interpretation of the wave function

4.4 The idea of Third Quantization

- 5. Loop Quantum Gravity

5.1 Holonomies and Fluxes

5.1.1 Why a reformulation in terms of Wilson loops?

5.1.2 Lattice gauge theories

5.1.3 Holonomies and fluxes in Quantum Gravity

5.2 Spectrum of space-time operators

5.3 Quantum dynamics in LQG

5.4 Open issues in Loop Quantum Gravity

5.4.1 Master Constraint and Algebraic QG

5.5 Loop Quantum Cosmology
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5.6 On the physical meaning of the Immirzi parameter

5.7 Time gauge and boost invariance

5.8 The picture of the space-time
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A. Brief description of Quantum
Gravity

A.1. Quantum Mixmaster

In section “Quantum Mixmaster” we propose a semiclassical treatment and
a Schrödinger quantization scheme applied to the Mixmaster dynamics; the
associated eigenvalue problem is solved. This approach gives a set of eigen-
functions (here we assume an ordering for the position and momentum op-
erators such that v2p2

v → v̂ p̂v
2v̂, which is the only one able to reproduce

the proper statistical dynamics). As soon as (approximated) Dirichlet bound-
ary condition are taken into account, the energy spectrum is obtained. This
spectrum is a discrete one, and it admits a minimum value given by E2

0 =
19.831h̄2. In the figures in the section the wave function of the ground state
and its probability distribution are plotted [7]. The persons working on this
topic are Riccardo Benini and Giovanni Montani.

A.2. Loop Quantum Cosmology

In section “Loop Quantum Cosmology” we perform a general analysis of the
equations governing the evolution of the Universe within semi-classical Loop
Quantum Cosmology by using qualitative methods of the theory of dynami-
cal systems. Specifically, two cases are considered with different type of cor-
rections to the Friedmann equations [8], [3]. Quadratic terms on the energy
density correction to the Friedmann equation, coming from effective Hamil-
tonian of Loop Quantum Cosmology, and corrections due to the inverse scale
factor operator (both in the gravitational and the matter part of the effective
Hamiltonian) were analyzed, respectively.

Our general conclusion, considering both types of corrections, is the ab-
sence of cosmic singularity, so in all solutions the usual expansion stage fol-
lows after the generic bounce. Moreover, we have shown that in both cases
there exist successful mechanisms for generation of initial conditions suitable
for inflation.

This work is relevant for the development of the theory of Early Universe.
In particular, better understanding of background solutions and their prop-
erties should be reached to study of the cosmological perturbations.The dy-
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namics of these perturbations, in turn, is crucial in view of verifications of
predictions of the theory, confronted with observational data.

The peoples involved in this line of research are Giovanni Montani and
Gregory V. Vereshchagin.

A.3. Lorentz gauge connection

The Yang-Mills picture of the local Lorentz transformations is approached in
a second-order formalism. For the Lagrangian approach to reproduce the sec-
ond Cartan structure equation, as soon as the Lorentz gauge connections are
identified with the contortion tensor, an interaction term between the Lorentz
gauge fields and the spin connections ω has to be postulated. This interac-
tion term induces a Riemannian source to the Yang-Mills equations; thus,
the real vacuum dynamics of the Lorentz gauge connection takes place on
a Minkowski space only, when the Riemannian curvature and the spin cur-
rents provide negligible effects. In fact, it is the geometrical interpretation
of the torsion field as a gauge field that generates the non-vanishing part of
the Lorentz connection on flat space-time. The full picture involving gravity,
torsion and spinors is described by a coupled set of field equations, which
allows one to interpret both gravitational spin connections and matter spin
density as the source term for the Yang-Mills equations. The contortion ten-
sor acquires a propagating character, because of its non-Abelian feature, and
the pure contact interaction is restored in the limit of vanishing Lorentz con-
nections [8].
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Fields on Classical Background

B.1. Quantum Fields in accelerated systems

In section “Quantum Fields in accelerated systems” we concentrate on a rig-
orous analysis of Quantum Field Theory (QFT) from the point of view of an
accelerated observer moving in the flat space and so called Unruh effect. We
showed that the quantization procedure proposed by Unruh implies setting
a boundary condition for the quantum field operator and this changes drasti-
cally the topological properties and symmetry group of the spacetime which
lead to the field theory in two disconnected left and right Rindler spacetimes
instead of Minkowski spacetime. Thus in spite of the work over last 30 years,
there still remain serious gaps in grounding of the Unruh effect, and as of
now there is no compelling evidence for the universal behaviour attributed
to all uniformly accelerated detectors [11], [12], [14], [13], [15].

The people involved in this line of research are Vladimir A. Belinski, Niko-
lay B. Narozhny and Alexander M. Fedotov.

B.2. Quantum Fields in Black Hole Space-Time

In section “Quantum Fields in Black Hole Space-Time” a careful investiga-
tion of the conventional derivation of the quantum effect of evaporation of
black holes have been done. We show that there are serious doubts about the
existence of such phenomenon. The main reason is due to the absence of the
quasiclassical tunneling process corresponding to the particle creation by the
Schwarzschild black hole created by the collapse [10], [23].

The person involved in this line of research is Vladimir A. Belinski.
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C. Brief description of Unification
Theories

C.1. Classical and Quantum spinning particles in
Kaluza-Klein space-times

In the section “Classical and Quantum spinning particles in Kaluza-Klein
space-times”, we analyze the introduction of spinor fields in a KK model. The
dynamics of a classical spinning particle, in a KK space-time, is inferred from
the extension of Papapetrou equations to the 5-dimensional case, with Pirani
conditions. This way, the system reproduces exactly equations of motion of a
spinning particle, endowed with a charge and an electro-magnetic moment.
This result demonstrates that the geometrization of electro-dynamics does
not modify the dynamics of spinning objects [34].

The introduction of spinor fields in a KK model is the main open point
of such an approach. The standard way to deal with them is to extend the
Dirac equation to the multi-dimensional case and to try to identify extra-
dimensional quantum numbers with internal ones. However this procedure
fails, because of the emergence of mass terms of the compactification scale
order and because quantum numbers of Standard model particles cannot be
inferred. In this respect, our investigation has been focused on a more phe-
nomenological approach, based on recovering 4-dimensional properties by
an averaging procedure on the extra-dimensional manifold. This average is
motivated by the undetectability of the extra-space and the need for it is not
restricted to the case spinors are present. In fact, we showed that it is re-
quired in order to reproduce non-Abelian gauge transformations from extra-
dimensional isometries and to get the equations of motion, proper of the 4-
dimensional picture, starting from multi-dimensional ones. As far as spinors
are concerned, the average produces a non-trivial effect on extra-dimensional
symmetries, such that some of the above mentioned issues can be solved [28],
[29], [38].

The people involved in this research line are Francesco Cianfrani, Irene
Milillo, Andrea Marrocco and Giovanni Montani.
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C.2. Generalized 5-Dimensional Theories

In section “Generalized 5-Dimensional Theories”, we analyze possible gen-
eralizations of the 5D Kaluza-Klein model. The introduction of torsion has
been shown to produce interesting structures after dimensional reduction. In
a 5D scenario, the geometrization of the Electro-weak model has been worked
out on the ground of the broken 5D Lorentz group and the properties of tor-
sion [30], and proposal for the introduction of Ashtekar variables within this
scheme has been evaluated.On the other hand, the truncation of the infinite
tower that characterizes KK theories has been evaluated within the frame-
work of polymer representation and generalized uncertainty principle: in
the first case, compactification is illustrated to occur because of the trunca-
tion, while, in the second case, compactification is illustrated to be compatible
with the main hypotheses of the scheme.

The people involved in this research line are Orchidea M. Lecian and Gio-
vanni Montani.
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D.1. Boost invariance in a second order
formulation

Given an hyperbolic space-time manifold V, endowed with a metric gµν, a
3 + 1 splitting consists in a map V → Σ⊗ R, Σ being spatial 3-hypersurfaces
(in the following xi (i = 1, 2, 3) indicate spatial coordinates, while t is the co-
ordinate on the real time-like axis). The crucial choice consists in introducing
an arbitrary vier-bein, i.e.,

e0 = Ndt + χaEa
i dxi , ea = Ea

i Nidt + Ea
i dxi , (a = 1, 2, 3) , (D.1.1)

where the time-gauge is obtained for χa = 0.
From a physical point of view, χa gives the velocity components of the eA

frame with respect to one at rest, i.e., adapted to the spatial splitting.
The standard variables of the ADM formulation (the lapse function Ñ, the
shift vector Ñi and the 3-geometry hij) read as follows in terms of eA

µ compo-
nents

Ñ =
1√

1− χ2
(N − NiEa

i χa) , Ñi = Ni + Ec
l χc Nl−N

1−χ2 Ei
aχa , χa = χbδab ,

hij = Ea
i Eb

j (δab − χaχb) . (D.1.2)

Once the 3 + 1 splitting of the Einstein-Hilbert action has been performed,
by taking as configuration variables Ñ, Ñi, Ea

i and χa, the full Hamiltonian
density turns out to be

H = Ñ′H + ÑiHi + λÑπÑ + λiπi + λabΦab + λaΦa , (D.1.3)

Ñ′ being
√

hÑ, while the super-Hamiltonian and the super-momentum, H
and Hi, respectively, take the following forms

H = πi
aπ

j
b

(
1
2

Ea
i Eb

j − Eb
i Ea

j

)
+ h3R , (D.1.4)

Hi = Dj(π
j
aEa

i ) , (D.1.5)
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Di being the covariant derivative built up from hij.
Lagrangian multipliers λÑ, λi, λa and λab = −λba ensure the standard first-
class constraints

πÑ = 0 , πi = 0 , (D.1.6)

and new conditions, coming out as a consequence of variables adopted,

Φa = πa − πbχbχa + δabπi
bχcEc

i = 0 , (D.1.7)

Φab = πcδc[aχb] − δc[aπi
b]E

c
i = 0 . (D.1.8)

The investigation on these new constraints is performed by analyzing their
action on the phase space, once a canonical symplectic structure is intro-
duced. It outlines that Φab and Φa generate rotations and boosts, modulo
a time re-parametrization, respectively, on the phase space. Therefore, they
arise because General Relativity is a Lorentz-invariant theory.
We also probe that the algebra of constraints is first-class.
Before performing the quantization, a formal fixing of the boost symmetry is
performed, such that transformations between χ-sectors can be studied. In
this respect, we set χa = χ̄a(t; x), χ̄a(t; x) being arbitrary functions of space-
time coordinates. The boost constraint can be solved classically, so finding

πa = −
(

δab +
χaχb

1− χ2

)
πi

bχcEc
i . (D.1.9)

Hence the action becomes

S = − 1
16πG

∫
[πi

a∂tEa
i + πÑ′∂tÑ′ + πi∂tÑi − Ñ′Hχ̄ − ÑiHχ̄

i − λabΦ′ab+

− λÑπÑ − λiπi]dtd3x , (D.1.10)

where the new constraint for rotations is

Φ′ab = χ̄[aπi
b]E

d
i χ̄d − δc[aπi

b]E
c
i , (D.1.11)

while, in Hχ̄ and in Hχ̄
i , χ are replaced by functions χ̄.

In this picture, we have completely fixed the gauge associated with the boost
symmetry, because χ̄a are three functions to be assigned explicitly together
with the Cauchy data.

The canonical quantization consists in promoting to operators Ñ, Ñi, Ea
i

and the corresponding conjugated momenta, then Poisson brackets are re-
placed by commutators in a canonical way. Once an Hilbert space has been
defined to which wave functionals ψ = ψχ̄(Ñ, Ñi, Ea

i ) belong, according with
the Dirac prescription for constrained systems, physical states are defined as
states annihilated by quantum constraints.
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In order to investigate if the transformation between different χ̄-sectors can
be implemented in a quantum setting, an operator connecting Hilbert spaces
with different forms of χ̄ must be defined.
Let us now consider a wave functional ψ0 in the time gauge: it is a solution of
the following system of constraints (we do not consider primary constraints
(D.1.6), since they are not affected by transformations changing χ̄a)

H0ψ0 = 0 , H0
i ψ0 = 0 , −δc[aπi

b]E
c
i ψ0 = 0 , (D.1.12)

H0 and H0
i being the super-Hamiltonian and super-momentum built up from

the metric tensor hij = δabEa
i Eb

j , i.e., in the case χ̄ ≡ 0, respectively.
The action of the boost constraint Φa, restricted to the hypersurface χa = 0, is
reproduced by the unitary operator Uε

Uε = I − i
4

∫
εaεb(Eb

i πi
a + πi

aEb
i )d3x + O(ε4) , (D.1.13)

which maps the metric hij from χ̄ = 0 to χ̄a = εa � 1. The new state ψ′ =
Uεψ satisfies, at the ε2 order,

UεH0U−1
ε ψ′ = Hε = ψ′0 , UεH0

i U−1
ε ψ′ = Hε

i ψ′ = 0 , (D.1.14)

Uε(−δc[aπi
b]E

c
i )U−1

ε ψ′ = −
[

δc[aπi
b]E

c
i +

1
2

δc[aεb]ε
dEc

i πi
d −

1
2

εdε[aπi
b]E

d
i χd

]
ψ′ = 0 . (D.1.15)

While the first two relations reproduce the vanishing of the super-Hamiltonian
and of the super-momentum in the ε-sector, the last condition can be shown
to be equivalent to Φ′abψ′ = 0 for χ̄a = εa.
Therefore, since the unitary operator Uε maps physical states corresponding
to χ̄ = 0 and χ̄ = ε, the transformation between a frame at rest and one mov-
ing with respect to Σ can be implemented as a symmetry on a quantum level.
This provides us with an explanation for the use of the time-gauge condition,
because any other choice for the Lorentz frame gives the same expectation
values for observables.

D.2. Quantum Mixmaster

The quantization of the Bianchi IX geometry is investigated in the approxi-
mation of a squared potential well, after an ADM reduction of the dynamics
with respect to the super-momentum constraint only. A functional represen-
tation of the quantum dynamics, equivalent to the Misner-like one, was ex-
tended point by point, since the Hilbert space factorizes into ∞3 independent
components, due to the parametric role that the three-coordinates assume in
the asymptotic potential term. Finally, we obtain the conditions for a semi-

1385



D. Quantum Gravity

classical behavior of the dynamics, equivalent to mean occupation numbers
n = O(102) [Imponente and Montani (2006)].

A physical link between the chaoticity characterizing the system at a classi-
cal level and the quantum indeterminism appearing in the Planckian era was
constructed through the canonical quantization of the model via a Schrödinger
approach (equivalent to the Wheeler-DeWitt scheme) and then developed the
WKB semiclassical limit to be compared with the classical dynamics [Impo-
nente and Montani (2003a)], [Imponente and Montani (2003b)]. We found a
correspondence between the continuity equation of the microcanonical dis-
tribution function and that one describing the dynamics of the first-order cor-
rections in the wave function for h̄→ 0 [Imponente and Montani (2002)].

The dynamics of the homogeneous model of the type IX of the Bianchi clas-
sification (the Mixmaster model) exhibits an oscillatory like behavior while
approaching the Big Bang; furthermore, Belinskii et al. showed in the 70’s
how this model can be used to construct a generic cosmological solution in
the neighborhood of a time-like singular point, in the sense of the correct
number of physically-arbitrary functions.

However, this classical description is in conflict with the requirement of
a quantum behavior of the Universe through the Planck era; there are re-
liable indications that the Mixmaster dynamics overlaps the quantum Uni-
verse evolution, requiring an appropriate analysis of the transition between
these two different regimes. Indeed, the dynamics of the very early Universe
corresponds to a very peculiar situation, with respect to the link existing be-
tween the classical and quantum regimes. The expansion of the Universe is
the crucial phenomenon which maps into each other these two stages of the
evolution. The appearance of a classical background takes place essentially
at the end of the Mixmaster phase, when the anisotropy degrees of freedom
can be treated as small perturbations; this result indicates that the oscillatory
regime takes place almost during the Planck era and therefore it is a problem
of quantum dynamics. However the end of the Mixmaster (and in princi-
ple the quantum to classical transition phase) is fixed by the initial conditions
on the system and, in particular, it takes place when the cosmological hori-
zon reaches the inhomogeneity scale of the model; therefore the question of
an appropriate treatment for the semiclassical behavior arises when the in-
homogeneity scale is so larger than the Planck scale, so that the horizon can
approach it only in the classical limit.

In the Arnowitt-Deser-Misner (ADM) formalism, the classical dynamics of
the Mixmaster can be reduced to the physical degrees of freedom: the evo-
lution resembles that one of a billiard ball on a constant negative curved 2-
dimensional surface, described in the Poincaré half-plane by the following
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Q1(u, v) = −u/δ ≥ 0
Q2(u, v) = (1 + u)/δ ≥ 0
Q3(u, v) = (u2 + u + v2)/δ ≥ 0
δ = u2 + u + 1 + v2

(D.2.3)
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Figure D.1.: The billiard where the
Mixmaster Universe moves.

action principle:

I =
∫

ΓQ

(pu∂tu + pv∂tv− HADM) dt , (D.2.1)

HADM = ε = v
√

p2
u + p2

v , (D.2.2)

where ΓQ is a portion of the full Poincarè plane described by the inequalities
above.

A Schrödinger quantization scheme can be applied to the squared Hamil-
tonian operator, and the associated eigenvalue problem is solved. This ap-
proach gives a set of eigenfunctions (here we assume an ordering for the
position and momentum operators such that v2p2

v → v̂ p̂v
2v̂, which is the

only one able to reproduce the proper statistical dynamics). As soon as (ap-
proximated) Dirichlet boundary condition are taken into account, the energy
spectrum results to be given by

(E/h̄)2 = t2 + 1/4 . (D.2.4)

where the values of the parameter t have to be evaluated solving Kit(2n) = 0
for a generic integer n. This spectrum is a discrete one, and it admits a min-
imum value given by E2

0 = 19.831h̄2. In the figures below the wave function
of the ground state and its probability distribution are plotted.

D.3. Dualism between time evolution and matter
fields

In this section we review the fundamental aspects of the so-called evolution-
ary quantum gravity as presented in (Montani, 2002), (Mercuri and Montani,
2004). First we analyze the implication of a Schrödinger formulation of the
quantum dynamics for the gravitational field and then we establish a dualism
between time evolution and matter fields. Finally, we stress how an evolu-
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Figure D.2.: The ground state wave function and the probability distribution.

tionary paradigm can be fixed by restricting the admissible set of coordinate
transformations to synchronous ones (Montani and Cianfrani, 2008).

Let us assume that the quantum evolution of the gravitational field is gov-
erned by the smeared Schrödinger equation

i∂tΨ = ĤΨ ≡
∫

Σ
d3x

(
NĤ

)
Ψ , (D.3.1)

being Ĥ the super-Hamiltonian operator, N the lapse function and the wave
functional Ψ is defined on the Wheeler superspace, i.e., it is annihilated by
the super-momentum operator Ĥα. Let us now take the following expansion
for the wave functional

Ψ =
∫

Dεχ(ε,
{

hαβ

}
) exp

{
−i
∫ t

t0

dt′
∫

Σ
d3x(Nε)

}
, (D.3.2)

Dε being the Lebesgue measure in the space of the functions ε(xρ). Such an
expansion reduces the Schrödinger dynamics to an eigenvalues problem of
the form

Ĥχ = εχ, Ĥαχ = 0, (D.3.3)

which outlines the appearance of a non zero super-Hamiltonian eigenvalue.
In order to reconstruct the classical limit of the above dynamical constraints,

we address the limit h̄ → 0 and replace the wave functional χ by its corre-
sponding zero-order WKB approximation χ ∼ eiS/h̄. Under these restrictions,
the eigenvalues problem (D.3.3) reduces to the following classical counterpart

Ĥ JS = ε ≡ −2
√

hT00, Ĥ JαS = 0 , (D.3.4)

where Ĥ J and Ĥ Jα denote operators which, acting on the phase S, reproduce
the super-Hamiltonian and super-momentum Hamilton-Jacobi equations re-
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spectively. We see that the classical limit of the adopted Schrödinger quantum
dynamics is characterized by the appearance of a new matter contribution
(associated with the non zero eigenvalue ε) whose energy density reads

ρ ≡ T00 = −ε(xρ)
2
√

h
, (D.3.5)

where by Tij we refer to the new matter energy-momentum tensor.

Since the spectrum of the super-Hamiltonian has, in general, a negative
component, we can then infer that, when the gravitational field is in the
ground state, this matter out-coming in the classical limit has a positive en-
ergy density. The explicit form of (D.3.5) is that of a dust fluid co-moving
with the slicing 3-hypersurfaces, i.e., the field ni begin the 4-velocity normal
to the 3-hypersurfaces (in other words, we deal with an energy-momentum
tensor Tij = ρninj).

We stress that in this approach, it is possible to turn the solution space
into Hilbert one and therefore a notion of probability density naturally arises,
from the squared modulus of the wave-functional.

Let us now consider the opposite sector, i.e., a gravitational system in the
presence of a macroscopic matter source. In particular, we choice a perfect
fluid having a generic equation of state p = (ξ − 1)ρ (p being the pressure
and ξ the polytropic index). The energy-momentum tensor, associated to this
system reads

Tij = ξρuiuj − (ξ − 1)ρgij . (D.3.6)

To fix the constraints when matter is included in the dynamics, let us make
use of the relations

Gijninj = −κ
H

2
√

h
, (D.3.7)

Gijni∂αyj = κ
Hi

2
√

h
, (D.3.8)

where ∂αyi are the tangent vectors to the 3-hypersurfaces, i.e., ni∂αyi = 0.
Equations (D.3.7) and (D.3.8), by (D.3.6) and identifying ui with ni (i.e., the
physical space is filled by the fluid), rewrite

ρ = − H
2
√

h
, Hi = 0 ; (D.3.9)

furthermore, we get the equations

Gij∂αyi∂βyj ≡ Gαβ = κ(ξ − 1)ρhαβ . (D.3.10)

We now observe that the conservation law ∇jT
j
i = 0 implies the following
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two conditions
ξ∇i

(
ρui
)

= (ξ − 1)ui∂iρ , (D.3.11)

uj∇jui =
(

1− 1
ξ

)(
∂i ln ρ− uiuj∂j ln ρ

)
. (D.3.12)

If we now adapt the spacetime slicing, looking the dynamics into the fluid
frame (i.e., ni = δi

0), then, by the relation ni = (1/N, −Nα/N), we see that
the co-moving constraint implies the synchronous nature of the reference
frame. As it is well-known that a synchronous reference is also a geodesic
one, the right-hand-side of equation (D.3.12) must vanish identically and, for
a generic inhomogeneous case, this means to require ξ ≡ 1. Hence, equa-
tions (D.3.11) yields ρ = −ε̄(xρ)/2

√
h; substituting the last expression into

(D.3.9), we get the same Hamiltonian constraints associated to the Evolution-
ary Quantum Gravity at the point i), as soon as the function ε̄ is turned into
the eigenvalue ε. In this respect, we stress that, while ε̄ is positive by defini-
tion, the corresponding eigenvalue can also take negative values because of
the H-structure.

Thus, we conclude that a dust fluid is a good choice to realize a clock in
Quantum Gravity, because it induces a non-zero super-Hamiltonian eigen-
value into the dynamics; furthermore, for vanishing pressure (ξ = 1), the
equations (D.3.10) reduces to the right vacuum evolution for hαβ. Moreover,
we stress how the above two points outline, in quantum gravity, a real dual-
ism between time evolution and the presence of a dust fluid.

The approach above was applied to a generic cosmological model in (Bat-
tisti and Montani, 2006b) where is shown how, from a phenomenological
point of view, an evolutionary quantum cosmology overlaps the Wheeler-
DeWitt framework.

In particular, for such a model, the eigenvalues problem (D.3.3) rewrite as{
κ

[
∂R

1
R

∂R −
1

R3

(
∂2
+ + ∂2

−

)]
− 3

8πR3 ∂2
φ −

R3

4κl2
in

V(β±) + R3(ρur + ρpg)

}
χ = εχ.

(D.3.13)
where κ = 8πl2

P and we have added to the dynamics of the system an ultra-
relativistic energy density (ρur = µ2/R4), a perfect gas contribution (ρpg =
σ2/R5) and a scalar field φ (a free inflaton field). Such a problem can be ana-
lytically solved and the spectrum of the super-Hamiltonian reads as

εn,γ =
σ2

l2
P(n + γ− 1/2)

. (D.3.14)

Therefore the ground state n = 0 eigenvalue, for γ < 1/2, is negative and so
it is associated via (D.3.5) to a positive dust energy density.

In order to analyze the cosmological implication of the new matter con-
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tribution, we have to impose a cut-off length in our model, requiring that
the Planck length lP is the minimal physical length accessible by an observer
(l ≥ lP). This way, we get σ2 ≤ O(lP) and so |ε0| ≤ (1/lP): the spectrum is
limited by below. Moreover the contribution of such a dust fluid to the actual
critical parameter is

Ωdust ∼
ρdust

ρToday
∼ O

(
10−60

)
. (D.3.15)

As matter of fact, such a parameter is much less then unity and so no phe-
nomenology can came out (today) from our dust fluid. In this sense we claim
that an evolutionary quantum cosmology overlaps the Wheeler-DeWitt ap-
proach and therefore it can be inferred as appropriate to describe early stages
of the Universe without significant traces on the later evolution.

D.4. Loop Quantum Cosmology

Standard cosmological model raises several fundamental issues such as ini-
tial singularity and the problem of horizon. We analyze these well known
problems within the framework of cosmological models based on Loop Quan-
tum Gravity.

One of the fundamental issues of the theory of Early Universe is cosmic
singularity. Many researchers, such as J.A. Wheeler, believed that appear-
ance of initial singularity in Friedmann Equations marks a breakdown of
General Relativity theory and searched for a possible solution in quantiza-
tion of gravity. The well known Wheeler-de Witt equation is one example of
such an approach, although unsuccessful. At the same time, it is clear that at-
tempts to construct viable nonsingular cosmologies within classical theories
of gravitation did not succeed, as discussed by (Vereshchagin, 2004a, 2005).

Loop Quantum Gravity is at present the main background independent
and nonperturbative candidate for a quantum theory of gravity; Loop Quan-
tum Cosmology is the application of Loop Quantum Gravity to a homoge-
neous minisuperspace environment. The underlying geometry in LQG is
discrete and the continuum spacetime is obtained from quantum geometry
in a large eigenvalue limit. Numerical calculations performed within Loop
Quantum Gravity theory established the possibility of resolution of singular-
ities in various situations.
The underlying dynamics in LQC is governed by a discrete quantum differ-
ence equation in quantum geometry. However, using semiclassical states one
can construct an effective Hamiltonian description on a continuum spacetime
which has been shown to very well approximate the quantum dynamics.

We have performed a general analysis of equations governing evolution of
the Universe within semiclassical Loop Quantum Cosmology by using qual-
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itative methods of the theory of dynamical systems. Specifically, two cases
were considered with different type of corrections to the Friedmann equa-
tions.
In the work by (Singh et al., 2006) quadratic on the energy density correc-
tion to the Friedmann equation, coming from effective Hamiltonian of Loop
Quantum Cosmology was studied. The modified Friedmann equation takes
the form (

1
a

da
dt

)2

+
kc2

a2 =
8πG
3c2 ρ

(
1− ρ

ρcrit

)
, (D.4.1)

where a is the scale factor, k denotes spatial curvature, c and G are the speed
of light and the gravitational constant respectively. The energy density of the
scalar field is

ρ =
1
2

(
dφ

dt

)2

+ V. (D.4.2)

The critical energy density is

ρcrit =
√

3
16π2γ3 ρpl, (D.4.3)

where γ is Barbero-Immirzi parameter, ρpl is the Planckian density. The usual
continuity equation for the real scalar field φ with effective potential V(φ)
takes the form

d2φ

dt2 + 3
1
a

da
dt

dφ

dt
+

∂V
∂φ

= 0. (D.4.4)

Equations (D.4.1) and (D.4.4) can be analysed by means of qualitative the-
ory of dynamical systems. First of all, the derivative of the scale factor can be
expressed from (D.4.1) and substituted into (D.4.4) thus reducing the phase
space to two dimensions. The corresponding phase space variables are the
scalar field φ and its time derivative φ̇ ≡ dφ

dt . Expample of the phase portrait
is represented in Fig. D.3 The boundary of the phase space, defined as

ρ = ρcrit, (D.4.5)

prevents appearance of singularities for positive energy density, unlike the
case of General Relativity, where the boundary is absent. Details see in (Singh
et al., 2006).

In the work of (Vereshchagin, 2004b) corrections due to the inverse scale
factor operator both in the gravitational and the matter part of the effective
Hamiltonian were analyzed. These corrections appear both in the energy
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Figure D.3.: Phase portrait for massive scalar field V = m2φ2/2 potential.
Dashed curves represent GR case and solid curves shown LQC case.

density (D.4.2) and in the continuity equation as(
1
a

da
dt

)2

+
kc2

a2 =
8πG
3c2

[
1

2D

(
dφ

dt

)2

+ V

]
, (D.4.6)

d2φ

dt2 + 3
1
a

da
dt

dφ

dt
− 1

D
dD
dt

dφ

dt
+ D

∂V
∂ϕ

= 0, (D.4.7)

where the function D is defined as

D(q) =
(

8
77

)6

q3/27
[
(q + 1)11/4 − |q− 1|11/4

]
− (D.4.8)

− 11q
[
(q + 1)7/4 − sign(q− 1)|q− 1|7/4

]6
,

with q = (a/a∗)2 and a2
∗ = j ln 2

3
√

3π
l2
P being the scale where quantum corrections

become essential. The latter can be larger than the planckian length lP, since
the quantization parameter j, which must take half integer values, but is ar-
bitrary. Equation (D.4.7) can be substituted into (D.4.6) and role of dynamical
variables is then played by the scale factor and its derivative H ≡ 1

a
da
dt . Exam-

ples of phase portraits are shown in Fig. D.4. The left figure represents the
case of General Relativity, while central and right figures correspond to Loop
Quantum Cosmology. Due to different structure of the phase space, again
singular solutions do not appear.

Our general conclusion, considering both types of corrections, is the ab-
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sence of cosmic singularity, so in all solutions the usual expansion stage fol-
lows after the generic bounce. Moreover, we have shown that in both cases
there exist successful mechanisms for generation of initial conditions suitable
for inflation.

This work is relevant for the development of the theory of Early Universe.
In particular, better understanding of background solutions and their prop-
erties should be reached prior to study of the cosmological perturbations.
Dynamics of these perturbations, in turn, is crucial in view of verification of
predictions of the theory, confronted with observational data.

D.5. FRW cosmological model in the GUP
framework

Let us now investigate the consequences of the an Heisenberg deformed al-
gebra (9.5.2) of the quantum dynamics of the flat (k = 0) FRW model in the
presence of a massless scalar field φ. In particular, we will interested about
the fate of the classical singularity in this framework. In which follows we
summarize the discussion and results reported in [1]. The Hamiltonian con-
straint for this model has the form

Hgrav + Hφ ≡ −9κp2
xx +

3
8π

p2
φ

x
≈ 0 , x ≡ a3, (D.5.1)

where a is the scale factor. In the classical theory, the phase space is 4- dimen-
sional, with coordinates (x, px; φ, pφ) and at x = 0 the physical volume of the
Universe goes to zero and the singularity appears. Moreover, it is not diffi-
cult to see that each classical trajectory can be specified in the (x, φ)-plane,
i.e., φ can be considered as a relational time for the dynamics. In particular,
the dynamical trajectories read as

φ = ± 1√
24πκ

ln
∣∣∣∣ x
x0

∣∣∣∣+ φ0 , (D.5.2)

where x0 and φ0 are integration constants. In this equation, the plus sign
describes an expanding Universe from the Big-Bang, while the minus sign a
contracting one into the Big-Crunch. We now stress that the classical cosmo-
logical singularity is reached at φ = ±∞ and every classical solution, in this
model, reaches the singularity.

As well-known the canonical approach (the WDW theory) to this problem
does not solve the singularity problem. More precisely, it is possible to con-
struct a state localized at some initial time. Then, in the backward evolution,
its peak will moves along the classical trajectory (D.5.2) and thus it falls into
the classical singularity. This way, the classical singularity is not tamed by
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quantum effects.
This picture is radically changed in the GUP framework and the modifica-

tions can be realized in two different steps. At first, it is possible to show how
the probability density |Ψ(ζ, t)|2 to find the Universe around ζ ' 0 (around
the Planckian region) can be expanded as

|Ψ(ζ, t)|2 ' |A(t)|2 + ζ2|B(t)|2. (D.5.3)

Here t is a dimensionless time t =
√

24πκφ and the wave packets

Ψ(ζ, t) =
∫ ∞

0
dεg(ε)Ψε(ζ)eiεt , (D.5.4)

are such that the state is initially packed at late time, i.e., the weight func-
tion g(ε) is a Gaussian distribution peaked at some ε∗ � 1 (at energy much
less then the Plank energy 1/lP). Of course, Ψε(ζ) rapresent the quasiposition
eigenfunctions (9.5.3) of this problem.

Therefore, near the Planckian region, the probability density to find the
Universe is |A(t)|2, which is very well approximated by a Lorentzian func-
tion packed in t = 0. This value corresponds to the classical time for which
x(t) = x0. Thus, for x0 ∼ O(l3

P), the probability density to find the Universe
in a Planckian volume is peaked around the corresponding classical time. As
a matter of fact this probability density vanishes for t→ −∞, where the clas-
sical singularity appears. This is the meaning when we claim that the classical
cosmological singularity is solved by this model.

Of course the more interesting differences between the WDW and the GUP
approaches can be recognized in the wave packets dynamics. In particular,
we consider a wave packet initially peaked at late times and let it evolve nu-
merically “backward in time”. The result of the integration is that the prob-
ability density, at different fixed values of ζ, is very well approximated by a
Lorentzian function yet. Moreover, the width of this function remains, actu-
ally, the same as the states evolves from large ζ (103) to ζ = 0. The peaks
of Lorentzian functions, at different ζ values, move along the classically ex-
panding trajectory (D.5.2) for values of ζ larger then ∼ 4. Near the Planckian
region, i.e., when ζ ∈ [0, 4], we observe a modification of the trajectory of
the peaks. In fact they follow a power-law up to ζ = 0, reached in a finite
time interval and “escape” from the classical trajectory toward the classical
singularity. The peaks of the Lorentzian at fixed time t, evolves very slowly
remaining close to the Planckian region. Such behavior outlines that the Uni-
verse has a stationary approach to the cutoff volume.

An important fact has now to be stressed. The peculiar behavior of our
quantum Universe is different from other approaches to the same problem.
In fact, recently, it was shown how the classical Big-Bang is replaced by a Big-
Bounce in the framework of Loop Quantum Cosmology (LQC). Intuitively,
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one can expect that the bounce and so the consequently repulsive features
of the gravitational field in the Planck regime are consequences of a Planck-
ian cut-off length. But this is not the case. As matter of fact that there is
not a bounce for our quantum Universe. The main differences between the
two approaches resides in the quantum modification of the classical trajec-
tory. In fact, in the LQC framework we observe a “quantum bridge” between
the expanding and contracting Universes; in our approach, contrarily, the
probability density of finding the Universe reaches the Planckian region in a
stationary way.

D.6. Gauge potential of a Lorentz gauge theory

A gauge theory of the local Lorentz group has been implemented both in flat
and in curved space-time, and the resulting dynamics is analyzed in view of
the geometrical interpretation of the gauge potential. The Yang-Mills picture
of the local Lorentz transformations in curved space-time is first approached
in a first-order formalism. For the Lagrangian approach to reproduce the
II Cartan Structure Equation as soon as the Lorentz gauge connections are
identified with the contortion tensor, an interaction term between the new
Lorentz gauge fields A ab

µ and the spin connections ω ab
µ ,has to be postulated,

i.e.,
Sint = 2

∫
det(e) d4x eµ

aeν
b ω

[a
µc A bc]

ν . (D.6.1)

This interaction term induces a Riemannian source to the Yang-Mills equa-
tions; thus, the real vacuum dynamics of the Lorentz gauge connections takes
place on a Minkowski space only, when the Riemannian curvature and the
spin currents provide negligible effects. In fact, it is the geometrical interpre-
tation of the torsion field as a gauge field that generates the non-vanishing
part of the Lorentz connection on flat space-time. The full picture involving
gravity, torsion and spinors is described by a coupled set of field equations,
which allows one to interpret both gravitational spin connections and matter
spin density as the source term for the Yang-Mills equations. The contortion
tensor acquires a propagating character, because of its non-Abelian feature,
and the pure contact interaction is restored in the limit of vanishing Lorentz
connections (Carlevaro et al., 2007).

To better understand the physical implications of first- and second-order
approaches, a comparison between field equations has been accomplished in
the linearized regime, by considering the case of small perturbations hµν of a
flat Minkowskian metric ηµν. Because of the interaction term (D.6.1) postu-
lated in the first-order approach, it is possible to solve the structure equation
and to express the connection as a sum of the pure gravitational (Ricci) con-
nection plus other contributions, both in absence and in presence of spinor
matter. The Ricci connection ω ab

µ = ebν∇µe a
ν rewrites, because of the lin-
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earization,
ω ab

µ = δbν
(

∂νζa
ν − Γ̃(ζ)ρ

µνδb
ρ

)
, (D.6.2)

where Γ̃(ζ)ρ
µν are the linearized Christoffel symbols. Since it acquires the

physical meaning of a source for torsion, it can be interpreted as a spin-
current density. Nevertheless, it is linear in ζ, since the interaction term
(D.6.1) is linear itself; as suggested by the comparison with gauge theories,
and with the current

Mτ β
α =

∂L
∂hµν,τ

Σρβσ
αµνhρσ =

(
δcµζν,τ

c + δcνζ
µ,τ
c

)
Σρβσ

αµν

(
δ f ρζ

f
σ + δ f σζ

f
ρ

)
, (D.6.3)

(where Σραβσ
µν = ηγ[α(δ

ρ
γδ

β]
µ δσ

ν + δ
ρ
µδσ

γδ
β]
ν )), the interaction term is quadratic. In

this case, however, it would be very difficult to split up the solution of the
structure equation as the sum of the pure gravitational connection plus other
contributions.
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Figure D.4.: Phase portraits of cosmological models with the scalar field with
flat effective potential. Left figure corresponds to the case of GR, V0 = 0.05ρpl.
Central figure represents the phase space with focus and saddle for V0 =
0.006ρpl. Right figure represents the phase space with V0 = 0.05ρpl. Thick
curves surround regions where the derivative of the scalar field φ̇ is complex
and there are no solutions. For central and right figure j = 100. Dashed lines
again surround the region where semi-classical approach is valid.
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Background

E.1. Quantum Fields in accelerated systems

The research on this topic was dedicated to the rigorous analysis of Quantum
Field Theory (QFT) from the point of view of an accelerated observer moving
in the flat space and so called Unruh effect.

The field-theoretical analysis of the Unruh effect both from the point of
view of canonical and algebraic approach to the quantum field theory was
performed and the main results was published in the papers (Belinski et al.,
1997), (Fedotov et al., 1999), (Narozhny et al., 2000), (Narozhny et al., 2002a),
(Narozhny et al., 2004). We showed that the quantization procedure proposed
by Unruh implies setting a boundary condition for the quantum field oper-
ator and this changes drastically the topological properties and symmetry
group of the spacetime which lead to the field theory in two disconnected left
and right Rindler spacetimes instead of Minkowski spacetime. The double
Rindler wedge is composed of two causally disjoint regions (R-and L-wedges
of Minkowski spacetime) and the Unruh construction implies existence of
zero boundary condition for the quantum field operator at the common edge
of R- and L-sectors of Minkowski spacetime. Such boundary condition gives
rise to a superselection rule prohibiting any correlations between right and
left Unruh particles. Thus the part of the field from the L-wedge in no way
can influence a Rindler observer living in the R-wedge and elimination of
the invisible left degrees of freedom will take no effect on him. Hence av-
eraging over states of the field in one wedge can not lead to thermalization
of the state in the other. This result is proved both in the standard and alge-
braic formulations of quantum field theory and conclusion is that principles
of quantum field theory does not give any grounds for existence of the Unruh
effect. Thus in spite of the work over last 30 years, there still remain serious
gaps in grounding of the Unruh effect, and as of now there is no compelling
evidence for the universal behaviour attributed to all uniformly accelerated
detectors.

In parallel to the field-theoretical analysis of the Unruh effect we analyzed
also the detector aspect of the Unruh problem (Narozhny et al., 2002b) in
order to resolve the natural question what will be a reaction of a detector
moving in the space filled by the Minkowski vacuum. The answer is that
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in general a detector by no means should exhibit the Unruh type behavior
and such problem is sharply individual depending on the concrete detector
structure and the nature of the accelerating force. There is no reasons to ex-
pect some universal answer based only on the general principles of the quan-
tum field theory. To avoid misunderstandings it is worth to emphasize that
in our work we have not asserted that one can not prepare a special type of
detector which will show the Unruh reaction. Rather, we have questioned
whether such reaction is universal. Certainly, the response of a particular
detector can be predicted in principle by performing calculations using stan-
dard quantum mechanical technique in an inertial reference frame without
any reference to Unruh modes, or the notion of Rindler particles. This could
be done if one knows the nature of the accelerating force and the structure of
the detector. However, there is no hope to prove universality of the Unruh
effect sorting out an arbitrary number of detector models. On the contrary,
non-universality of thermal response could be proved within such approach
just by demonstration of at least a single example of a uniformly accelerated
detector which does not reveal the Unruh behavior. The crucial point is that
such examples really exist. One of the such detector construction we demon-
strated in our paper (Narozhny et al., 2002b) where we showed that the pro-
posed detector does not reveal the universal thermal response of the Unruh
type. This example demonstrates non-universality of the Unruh response
and constitutes a convincing argument in favor of impossibility to prove the
existence of universal Unruh effect in the framework of quantum field theory.

Finally it is reasonable to ask whether one can find some physically sen-
sible model in which the Unruh quantization procedure can be applied. In
our work (Belinski et al., 2004), it is shown that such quantization procedure
can be realized in Minkowski spacetime in the presence of Bose-Einstein con-
densate containing infinite number of particles in the zero boost mode. Un-
like the case of an empty Minkowski spacetime the condensate provides the
boundary conditions necessary for the Unruh quantization of the part of the
field restricted only to the Rindler wedge of Minkowski spacetime. How-
ever, this treatment corresponds to the case when an accelerated observer is
moving not in the Minkowski vacuum but in some medium filled by the real
particles. Then there is no surprise that a detector can detect these quanta.

E.2. Quantum Fields in Black Hole Space-Time

A careful investigation of the conventional derivation of the quantum effect
of evaporation of black holes have been done and the results have been re-
ported in papers (Belinski, 1995), (Belinski, 2006), (Belinski, 2007). These
results show that there are serious doubts about the existence of such phe-
nomenon. The main reason is due to the absence of the quasiclassical tunnel-
ing process corresponding to the particle creation by the Schwarzschild black
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hole created by the collapse. The manifestation of this fact can be seen also as
an insolvency in the conventional second-quantization procedure analogous
to the insolvency in the standard treatment of the Unruh effect.
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F. Unification theories

F.1. Hamiltonian Formulation of the 5-dimensional
Kaluza-Klein model

A first line of research is the analysis of the ADM splitting of the 5D KK
model, to achieve the Hamiltonian formulation of the dynamics and get in-
sights onto the gauge-symmetry generation. The ADM slicing of KK model,
and its physical meaning, is not obvious, due to the existence of two possi-
ble procedures; we refer to these as KK-ADM and ADM-KK procedures. In
KK-ADM we firstly perform the usual KK reduction of the metrics, and then
a 3+1 ADM splitting of the gravitational tensor and the abelian gauge vector.
The 5D metric jAB splits as follows

jAB ⇒


gµν → ϑij, Si, N
Aµ → Ai, A0
φ→ φ

→

 N2 − SiSi − φ2 A2
0 −Si − φ2 A0 Ai −φ2 A0

−S2
i φ2 A0 Ai −ϑij − φ2 Ai Aj −φ2 Ai
−φ2 A0 −φ2 Ai −φ2

 .

Here N, Si, ϑij are the lapse function, the 3D shift vector and the 3D induced
metrics (A, B = 0, 1, 2, 3, 5; µ, ν = 0, 1, 2, 3; i, j = 1, 2, 3). This way, we have
a non-complete space-time slicing, due to the fact that we are doing a 3+1
splitting of a 5-D background, so that the extra-dimension is not included. In
the ADM-KK procedure we firstly deal with a 4+1 splitting that includes the
extra-dimension and then we consider the KK reduction related to the pure
spatial manifold:

jAB ⇒


h Î, Ĵ → Ai, ϑij, φ

NÎ → Ni, N5
N → N

⇒

 N2 − h Î Ĵ N Î N Ĵ −Ni −N5

−Ni −ϑij −2 φ2 Ai Aj −φ2 Ai
−N5 −φ2 Ai −φ2

 .

Here NÎ and h Î Ĵ are the 4D shift vector and the 4D spatial induced metric
( Î, Ĵ = 1, 2, 3, 5). Now we have a complete slicing but, in this set of variables,
the component A0 is missing. Hence, both procedures are unsatisfactory and
it must be checked if they commute. Despite the outcoming metric seem to be
different, we are dealing with objects that must show well defined properties
under pure spatial KK diffeomorphisms. This allow us to look for “conver-
sion formulas” between this two metrics. Indeed, we can implement the KK
reduction on NÎ ; it is possible to recognize that NÎ is not a pure 4D spatial
vector neither simple gauge vector but a mixture of them. A detailed study
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of the 5-bein structure yields the following formulas for NÎ{
Ni = Si + φ2A0Ai
N5 = φ2A0

,
{

Ni = Si

N5 = N2A0 .

As soon as the Lagrangians resulting from these two procedures are recasted
in the same set of variables, it is possible to recognize that they differ only
for surface terms. Then, we conclude that we are dealing with equivalent
dynamics and with a unique well defined Hamiltonian. Hence, ADM split-
ting is provided to commute with KK reduction and this allows us to com-
pute the Hamiltonian. Moreover, the Hamiltonian formulation, together with
conversion formulas, clearly shows how the time component of the electro-
magnetic field is given by a combination of the geometrical Lagrangian mul-
tipliers coming out in a 5D scheme.
People involved in this topic are Valentino Lacquaniti and Giovanni Montani
(Lacquaniti and Montani, 2006a).

F.2. Classical and Quantum spinning particles in
Kaluza-Klein space-times

The dynamics of a classical spinning particle, in a KK space-time, is inferred
from the extension of Papapetrou equations to the 5-dimensional case, with
Pirani conditions, i.e.,

D
(5)Ds

(5)PA = 1
2
(5)R A

BCD ΣBC(5)uD

D
(5)Ds

ΣAB = (5)PA(5)uB − (5)PB(5)uA

(5)PA = (5)m(5)uA − DΣAB

(5)Ds
(5)uB

ΣAB(5)uA = 0

. (F.2.1)

The main new feature is the 4 additional components of the spin-tensor ΣAB,
whose physical meaning is going to be clarified by our analysis. At first, un-
der coordinate transformations, proper of a KK model, Σµν and Σ5µ behave
like 4-dimensional quantities, in particular a tensor Sµν and a vector Sµ, re-
spectively.
By rewriting the full system above in terms of 4-dimensional quantities, Sµν,
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Sµ, Aµ and gµν, one finds, after some manipulations,

D
Ds P̂µ = 1

2 R µ
αβγ Sαβuγ + qFµ

νuν + 1
2∇µFνρMνρ

Dq
Ds = D

Ds (α2P̃5 + 1
4 ekFαβSαβ)

DSµν

Ds = P̂µuν − P̂νuµ + Fµ
ρMρν − Fν

ρMρµ

P̂µ = α2Pµ + u5
DSµ

Ds − ekFρνuρSνµu5 + 1
2 ekFµ

ρSρ

Sνµuν + Sµu5 = 0

. (F.2.2)

The quantity Mµν has the following expression

Mµν = 1
2 ek(Sµνu5 + uµSν − uνSµ) , (F.2.3)

and becouse of its coupling into equations of motion it has to be identified
with the electro-magnetic moment.
This way, it is worth nothing that the system (F.2.2) reproduces exactly equa-
tions of motion of a spinning particle, endowed with a charge q and an electro-
magnetic moment Mµν. This result demonstrates that the geometrization of
the electro-dynamics does not modify the dynamics of spinning objects.
In this scenario, from the expression (F.2.3), the quantity Sµ is recognized as
describing an electric dipole moment. The emergence of an electric dipole
moment term seems to be a proper feature of a KK approach, since it arises
also for spinors, in the Riemannian case.

The introduction of spinor fields in a KK model is the main open point
of such an approach. The standard way to deal with them is to extend the
Dirac equation to the multi-dimensional case and to try to identify extra-
dimensional quantum numbers with internal ones. However this procedure
fails, because of the emergence of mass terms of the compactification scale
order and because quantum numbers of Standard model particles cannot be
inferred.
In this respect, our investigation has been focused on a more phenomenolog-
ical approach, based on recovering 4-dimensional properties by an averaging
procedure on the extra-dimensional manifold. This average is motivated by
the undetectability of the extra-space and the need for it is not restricted to the
case spinors are present. In fact, we showed that it is required in order to re-
produce non-Abelian gauge transformations from extra-dimensional isome-
tries and to get the equations of motion, proper of the 4-dimensional picture,
starting from multi-dimensional ones. As far as spinors are concerned, the
average produces a non-trivial effect on extra-dimensional symmetries, such
that some of the above mentioned issues can be solved.
For instance, we considered the case of a 3-sphere in view of performing the
geometrization of an SU(2) gauge theory. We look for a solution of the Dirac
equation integrated over the sphere. Even though we do not find an exact
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solution, an approximated one, with corrections controlled by an order pa-
rameter, is inferred. This is given by

χr =
1√
V

e−
i
2 σ(p)rsλ

(p)
(q) Θ(q)(ym) , (F.2.4)

V being the volume of S3, σ(p) SU(2) generators, while the constant matrix λ
satisfies

(λ−1)(p)
(q) =

1
V

∫
S3

√
−γem

(q)∂mΘ(p)d3y . (F.2.5)

Θ functions are fixed as having the following form

Θ(p) =
1
β

c(p)e−βη , η > 0 , (F.2.6)

with c(p) and η some arbitrary functions, while β is the order parameter, such
that corrections to the Dirac equation are of the β−1 order.
This form for the spinor is able to geometrize the SU(2) gauge connection at
the leading order in β−1, while, at next orders, gauge-violating terms come
out. Hence, this procedure can be used to geometrize the electro-weak model
and infer a lower bound for β from current limits on gauge-violating pro-
cesses. Moreover, the introduction of the Higgs field in such a scenario suc-
ceeds in stabilizing its mass and in reproducing mass terms for neutrinos,
too.

F.3. Generalized 5-Dimensional Theories

5D KK models provide an interesting toy-model for the analysis of compact-
ification schemes, and the features of generalized 5D models has been inves-
tigated, and the symmetries arising after dimensional reduction have been
considered. In particular, alternative mechanisms that can imply compactifi-
cation have been proposed, and broken 5D symmetries have been explored.
On the one hand, the presence of torsion in a 5D model has been shown to
produce interesting structures after dimensional reduction. In a 5D scenario,
the geometrization of the Electro-weak model has been worked out on the
ground of the broken 5D Lorentz group and the properties of torsion [Lecian
and Montani (2006)], and proposal for the introduction of Ashtekar variables
within this scheme has been evaluated [Lecian and Montani (2007)]. Start-
ing from the 5D Gauss-Codacci formula, and making sure that the residual
symmetry of the metric components does not violate the Frobenius-Geroch
requirements, evolutionary variables have been proposed.
On the other hand, a truncation of the KK towers has proposed from both
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theoretical and phenomenological points of views. In particular, the simplest
toy model of a scalar field in 5 dimensions has been analyzed: the trunca-
tion of such a tower has been considered as the hint of a modification of the
extraD geometrical structures and related symmetries and compactification
scenarios.
In the simplest toy model, i.e., a scalar field in a 5-dimensional (5D) space-
time, described as the Dirac product of a 4D manifold plus a ring, M5 =
M4 ⊗ S1, the Kaluza-Klein (KK) tower is defined as

Ψ5(xρ, x5) =
+∞

∑
−∞

ψn(xρ)eix5m/L, L ≡ 2πR, (F.3.1)

that is the infinite sum of the Fourier harmonics, labeled by m. In this com-
pactification scheme, because of the periodic (boundary) condition on the
modes of the tower,

ψ(x5) = ψ(x5 + L), L = 2πR,

i.e., of the identification of the points 0 ↔ 2πR, ψ(x5) is defined on S1/Z ∼
R.
The scalar-field wavefunction obeys the Klein-Gordon equation

(∂µ∂µ + 5M
2
m)Ψ = 0⇒ 5M

2
m ≡ 4M

2
+ (m/L)2, (F.3.2)

and it expression in the momentum representation reads

ψ̃m(P5) = δ(P5 −m/L).

From F.3.1, it is easy to understand the the structure of the extraD geometry
can be described by means of the extraD projection of physical objects.
The analysis of truncated Kaluza-Klein (KK) tower can be performed on the
ground of several considerations.
In fact, as it can be easily seen in (F.3.2), the label of the mode is deeply
connected both with mass and extraD momentum, which can also be iden-
tified with the quantum number of a geometrized interaction, thus allow-
ing for supposing a strict connection between the extraD and the internal
structure. From theoretical point of view, the truncation of the tower would
correspond to the introduction of a cutoff in the extra D, based on the fact
that it would make little sense to specify the localization of a particle below
its Schwartzschield radius. The exact localization of a particle in the extraD
geometry would yield interpretative difficulties, such that a more general de-
scription of the internal structure, which does not automatically allow for
an exact notion of point, should be looked for. Furthermore, an infinite spec-
trum of particles brings field-theoretical as well as algebraic difficulties. From
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a phenomenological point of view, possible indications of the existence of an
extraD would be provided both by geodesic deviation and scattering ampli-
tudes. In the second case, the truncation would simplify the calculation of
scattering amplitudes and would anyhow account for the impossibility of
reaching an infinite energy in experiments.
As a result, the symmetries that characterize KK theories can be compared in
the cases of infinite and truncated series. Since, in this toy model, the extraD
expansion of the wavefunction of the scalar field is the only feature that ac-
counts for the extraD, the truncation of the series would correspond to some
modifications of the extraD geometry, as remarked for F.3.1. This way, it will
be possible to analyze KK symmetries in both cases and possible compactifi-
cation scenarios.
It has already been proposed to gain insight into the geometrical interpreta-
tion of truncated harmonics expansion on a circle by considering it as worked
out from a higher-dimensional structure, thus obtaining a ”fuzzy circle”, in
a ”matrix-manifold” scheme. As a result, the ultraviolet cutoff of the model
implies a minimal wavelength. As a first attempt, we propose a finite set of
approximating wave functions, whose finite sum should reproduce the peri-
odicity on the extraD coordinate, with the aim of pointing out the main diffi-
culties of the problem.This preliminary speculation will be aimed at pointing
out the main difficulties of the problem.
As a second strategy, we have considered the truncated wavefunction as a
quasi-periodic function, projected on a finite set of Fourier modes. For this
purpose, we have analyzed different representations of the standard operator
algebra, given by the canonical commutation relations of the extraD opera-
tors x̂5 and P̂5, within the framework of the polymer representation. In this
case, compactification has been illustrated to occur because of the truncation.
We have then established generalized commutation relations; this way, the
occurrence of compactification has been investigated through the fundamen-
tal wavelength of the theory.
The investigation of the role of the operators x̂5 and P̂5 in the extra-D sym-
metry and the different compactification mechanisms that arise from these
scheme have motivated the comparison between the different approaches
from a mathematical point of view [Lecian and Montani (2008)].
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