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3. Brief description

The discovery, in our Galaxy, of binary systems comprising gravitationally
condensed objects (neutron stars or black holes) has opened up both new
experimental opportunities, and new theoretical challenges. The project dis-
cussed here concerns the theoretical challenges posed, for certain binary sys-
tems, by the necessity of getting a very accurate, general relativistic descrip-
tion of binary systems made of condensed objects. We have particularly in
mind two different physical situations.

On the one hand, the discovery of binary pulsars in 1974 by Hulse and Tay-
lor has given us the challenge of developing a theory of the relativistic motion
of two compact objects which is accurate enough to match the remarkable
precision of the observational data. Indeed, the very high stability of “pul-
sar clocks” has made it possible to monitor the orbital dynamics of binary
pulsars down to a precision allowing one to measure secular effects linked to
very small (~ (v/c)* and ~ (v/c)?) terms in the orbital equations of motion,
as well as periodic effects linked to O((v/c)?) terms. An additional challenge
is that these small ‘post-Newtonian-type” terms in the equations of motion
must be cleanly disentangled from the numerically much larger self-gravity
effects. Indeed, though both types of effects can be formally expanded in
a post-Newtonian (PN) expansion in powers of 1/c?, the self-gravity effects
contain powers of 7; = GM/(c?R), where R denotes the radius of one of
the compact objects, while the orbital effects should gather only the terms
containing powers of 7, = GM/(c?D) ~ (Vompital/ €)%, Where D denotes the
typical distance separating the two objects. [The subscript i in -y; refers to ‘in-
ternal’, by contrast to the subscript e which refers to ‘external’.] One can al-
ways consider 7, as a small parameter (for instance 7, ~ 10~ in the currently
observed binary pulsars), while, because R < D, one will have ; > <,. For
a usual star, or even a white dwarf, v; is quite small and can be used as an
expansion parameter. By contrast, for a compact object (here defined as a
neutron star or a black hole) ; will be of order unity, and cannot, a priori, be
meaningfully used as an expansion parameter.

Special methods have been developed (notably by T. Damour) not only to
show how one can, in principle, disentangle the ‘orbital’ (y.) expansion, from
the ‘self-gravity” (y;) one, but also to compute the 7, expansion to the very
high accuracy needed to discuss observational data. These methods were
applied with success to the theory of the motion and timing of binary pul-
sars. The resulting relativistic “DD Timing Formula” has, since its derivation
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3. Brief description

many years ago, been of constant use by pulsar observers, and has crucially
contributed to the data analysis of all the binary pulsars. In addition, it has al-
lowed one to obtain the first accurate tests of Einstein’s theory that probe the
strong-field aspects of relativistic gravity (i.e. those which are potentially linked
to physical effects linked to the strong internal self-gravity ; ~ 1 of compact
objects). For a recent review, see (1).

The second physical situation which yields an even bigger theoretical chal-
lenge is the forthcoming detection of gravitational wave signals, in large in-
terferometers (LIGO, VIRGO, GEO600, LISA,. . .). Indeed, one of the premier
sources that one hopes to detect in LIGO/VIRGO is a coalescing binary black
hole. The observationally important signal from these sources is generated
during the last few orbits leading to a plunge and a merger. Though some as-
pects of this signal need three-dimensional numerical relativity simulations
to be reliably computed, it can be argued that it is necessary to develop in
parallel an analytical description of the motion of coalescing binary black holes
down to the merger phase. A method of choice for such an analytical de-
scription is the ‘effective one body” approach to the motion of binary black holes
(introduced a few years ago by A. Buonanno and T. Damour).

More precisely, for LIGO/VIRGO to successfully detect gravitational waves
(GWs) from coalescing black hole binaries and to be able to reliably measure
the source physical parameters, one needs to have in advance a large bank
of “templates” that accurately represent the GW waveforms emitted by these
binaries. The construction of faithful GW templates for coalescing binaries
comprising spinning black holes (with arbitrary masses m1, my and spins Sy,
S,) poses a difficult challenge. Due to the multi-dimensionality of the corre-
sponding parameter space, it seems impossible for state-of-the-art numerical
simulations to densely sample this parameter space. This motivates the need
to develop analytical methods for computing (as a function of the physical
parameters mj, my, S1, Sp) the corresponding waveforms.

The Effective-One-Body (EOB) method (2} 3; 14; 5) was developed to ana-
lytically represent the motion of, and radiation from, coalescing binary black
holes with arbitrary masses and spins. As early as 2000 (3) this method made
several quantitative and qualitative predictions concerning the dynamics of
the coalescence, and the corresponding waveform, notably: (i) a blurred tran-
sition from inspiral to a “plunge” that is just a smooth continuation of the
inspiral, (ii) a sharp transition, around the merger of the black holes, between
a continued inspiral and a ringdown signal, and (iii) estimates of the radiated
energy and of the spin of the final black hole.

The recent impressive breakthroughs in numerical relativity (for a review
see (6)) have given us access to extremely valuable, and reliable, information
about the dynamics and radiation of binary black hole coalescence.

In addition, numerical simulations of test particles (with an added radia-
tion reaction force) moving in black hole backgrounds have given an excellent
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3. Brief description

(and well controllable) “laboratory” for learning various ways of improving
the EOB formalism by comparing it to numerical data (7). Let us recall in this
respect that the analytical foundations of black hole perturbation theory have
been laid long ago by Regge and Wheeler, and by Zerilli. Then, pioneering
numerical studies of selected orbits (mainly circular or radial) led to the dis-
covery of several important features of gravitational radiation in black hole
backgrounds, such as the transition between the plunge signal and a ring-
ing tail when a particle falls into a black hole (see the classic work of Davis,
Ruffini and Tiomno (8)).

It is comforting (for theorists) to note that the picture which is emerging
from the recent numerical simulations broadly confirms the predictions made
by the EOB approach. This gives us confidence in the soundness of the vari-
ous theoretical tools and assumptions used in this approach, such as the sys-
tematic use of resummation methods, notably Padé approximants.

In view of the recent progress in numerical relativity, the time is ripe for
tapping the information present in numerical data, and for using it to “cal-
ibrate” in the best possible way the EOB approach (which contains various
“flexibility parameters” linked to presently uncalculated high-order analyt-
ical effects). This general program has been initiated in a series of recent
papers which used 3-dimensional numerical relativity results (9;[10; 11).

The current project feeds itself from three main sources of knowledge:

e information obtained from numerical simulations (both fully general rel-
ativistic ones, and the much simpler black hole perturbation ones);

e information obtained from high-accuracy analytical perturbation theory
(notably post-Newtonian ones);

o the Effective-One-Body approach to the dynamics of binary black holes;

e the systematic use of various resummation methods, notably Padé ap-
proximants (12).

The project will explore the comparison between the analytical description
of coalescing binary black holes (motion and radiation) and the recent numer-
ical results on these systems (notably the high-accuracy numerical simulation
of 15 orbits of an inspiralling equal-mass binary black hole system (13)). Some
results have been recently obtained and published (10; [7; [14).
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4. Publications

1. T. Damour, “Black Hole and Neutron Star Binaries: Theoretical Chal-
lenges ”, arXiv:0705.3109 [gr-qc]. 53 pages, 3 eps figures, to appear in
a revised edition of the book: Neutron Stars, Black Holes and Binary
X-Ray Sources by H. Gursky and R. Ruffini

Some of the theoretical challenges posed by the general relativistic descrip-
tion of binary systems of compact objects (neutron stars or black holes) are
reviewed. We recall the various ways one can use the theory of the motion,
and of the timing, of binary pulsars to test the strong-field and/or radiative
aspects of General Relativity. Recent advances in the theory of the motion and
radiation of binary black holes are discussed. One emphasizes the usefulness
of the Effective One Body approach in providing a quasi-analytical description
of the waveform emitted by coalescing binary black holes.

2. T. Damour and A. Nagar, “Faithful Effective-One-Body waveforms of
small-mass-ratio coalescing black-hole binaries ”, Phys. Rev. D 76,
064028 (2007)

We address the problem of constructing high-accuracy, faithful analytic wave-
forms describing the gravitational wave signal emitted by inspiralling and co-
alescing binary black holes. We work within the Effective-One-Body (EOB)
framework and propose a methodology for improving the current (waveform)
implementations of this framework based on understanding, element by el-
ement, the physics behind each feature of the waveform, and on systemati-
cally comparing various EOB-based waveforms with “exact” waveforms ob-
tained by numerical relativity approaches. The present paper focuses on small-
mass-ratio non-spinning binary systems, which can be conveniently studied
by Regge-Wheeler-Zerilli-type methods. Our results include: (i) a resummed,
3PN-accurate description of the inspiral waveform, (ii) a better description of
radiation reaction during the plunge, (iii) a refined analytic expression for the
plunge waveform, (iv) an improved treatment of the matching between the
plunge and ring-down waveforms. This improved implementation of the EOB
approach allows us to construct complete analytic waveforms which exhibit a
remarkable agreement with the “exact” ones in modulus, frequency and phase.
In particular, the analytic and numerical waveforms stay in phase, during the
whole process, within +1.1% of a cycle. We expect that the extension of our
methodology to the comparable-mass case will be able to generate compara-
bly accurate analytic waveforms of direct use for the ground-based network of
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4. Publications

interferometric detectors of gravitational waves.

. T. Damour and A. Nagar, “Final spin of a coalescing black-hole binary:

an Effective-One-Body approach ”, Phys. Rev. D 76, 044003 (2007)

We update the analytical estimate of the final spin of a coalescing black-hole
binary derived within the Effective-One-Body (EOB) approach. We consider
unequal-mass non-spinning black-hole binaries. It is found that a more com-
plete account of relevant physical effects (higher post-Newtonian accuracy,
ringdown losses) allows the analytical EOB estimate to ‘converge towards’ the
recently obtained numerical results within 2%. This agreement illustrates the
ability of the EOB approach to capture the essential physics of coalescing black-
hole binaries. Our analytical approach allows one to estimate the final spin of
the black hole formed by coalescing binaries in a mass range (v = mymy/ (m; +
my)? < 0.16) which is not presently covered by numerical simulations.

. T. Damour and A. Nagar, Comparing Effective-One-Body gravitational

waveforms to accurate numerical data, arXiv:0711.2628

We continue the program of constructing, within the Effective-One-Body (EOB)
approach, high accuracy, faithful analytic waveforms describing the gravita-
tional wave signal emitted by inspiralling and coalescing binary black holes
(BHs). We present the comparable-mass version of a new, resummed 3PN-
accurate EOB quadrupolar waveform recently introduced in the small-mass-
ratio limit. We compare the phase and the amplitude of this waveform to the
recently published results of a high-accuracy numerical relativity (NR) simu-
lation of 15 orbits of an inspiralling equal-mass binary BHs system performed
by the Caltech-Cornell group. We find a remarkable agreement, both in phase
and in amplitude, between the new EOB waveform and the published nu-
merical data. More precisely: (i) in the gravitational wave (GW) frequency
domain Mw < 0.08 where the phase of one of the non-resummed “Taylor ap-
proximant” (T4) waveform matches well with the numerical relativity one, we
find that the EOB phase fares as well, while (ii) for higher GW frequencies,
0.08 < Mw < 0.14, where the TaylorT4 approximant starts to significantly di-
verge from the NR phase, we show that the EOB phase continues to match well
the NR one. We further propose various methods of tuning the two inspiral
flexibility parameters, a5 and Upoles of the EOB waveform so as to “best fit” EOB
predictions to numerical data. We find that the maximal dephasing between
EOB and NR can then be reduced below 1073 GW cycles over the entire span
(30 GW cycles) of the simulation. Our resummed EOB amplitude agrees much
better with the NR one than any of the previously considered non-resummed,
post-Newtonian one.
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A. Black Hole and Neutron Star
Binaries: Theoretical Challenges

A.1l. Introduction

The discovery, in our Galaxy, of binary systems comprising gravitationally
condensed objects (neutron stars or black holes) has opened up both new
experimental opportunities, and new theoretical challenges. Here we shall
focus on the theoretical challenges posed, for certain binary systems, by the
necessity of getting a very accurate, general relativistic description of binary
systems made of condensed objects. We have particularly in mind two dif-
ferent physical situations.

On the one hand, the discovery of binary pulsars in 1974 (15) has given us
the challenge of developing a theory of the relativistic motion of two com-
pact objects which is accurate enough to match the remarkable precision of
the observational data. Indeed, the very high stability of “pulsar clocks” has
made it possible to monitor the orbital dynamics of binary pulsars down
to a precision allowing one to measure secular effects linked to very small
(~ (v/c)* and ~ (v/c)°) terms in the orbital equations of motion, as well
as periodic effects linked to O((v/c)?) terms. An additional challenge is that
these small ‘post-Newtonian-type’ terms in the equations of motion must be
cleanly disentangled from the numerically much larger self-gravity effects.
Indeed, though both types of effects can be formally expanded in a post-
Newtonian (PN) expansion in powers of 1/¢?, the self-gravity effects contain
powers of 7; = GM/(c?R), where R denotes the radius of one of the compact
objects, while the orbital effects should gather only the terms containing pow-
ers of 7, = GM/(c?D) ~ (vgmital/ €)%, where D denotes the typical distance
separating the two objects. [The subscript i in <; refers to ‘internal’, by con-
trast to the subscript e which refers to ‘external’.] One can always consider
Y. as a small parameter (for instance 7, < 107> in the currently observed
binary pulsars), while, because R < D, one will have 7; > .. For a usual
star, or even a white dwarf, <; is quite small and can be used as an expansion
parameter. By contrast, for a compact object (here defined as a neutron star
or a black hole) v; will be of order unity, and cannot, a priori, be meaning-
tully used as an expansion parameter. We shall review below some of the
methods which have been used not only to show how one can, in principle,
disentangle the ‘orbital’ (vy.) expansion, from the ‘self-gravity’ (vy;) one, but
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A. Black Hole and Neutron Star Binaries: Theoretical Challenges

also to compute the y, expansion to the very high accuracy needed to discuss
observational data.

The second physical situation which yields an even bigger theoretical chal-
lenge is the forthcoming detection of gravitational wave signals, in large in-
terferometers (LIGO, VIRGO, GEO600, LISA,...). Indeed, one of the premier
sources that one hopes to detect in LIGO/VIRGO is a coalescing binary black
hole. The observationally important signal for these sources is generated dur-
ing the last few orbits leading to a plunge and a merger. Though some aspects
of this signal need three-dimensional numerical relativity simulations to be
reliably computed, we shall argue here for the need of developing in parallel
an analytical description of the motion of coalescing binary black holes down
to the merger phase. We shall present below an essential ingredient of such
an analytical description: the ‘effective one body” approach to the motion of
binary black holes (16} 17).

A.2. Motion of binary pulsars in general relativity

The traditional (text book) approach to the problem of motion of N separate
bodies in General Relativity (GR) consists of solving, by successive approxi-
mations, Einstein’s field equations (we use the signature — + ++)

1 81 G
RVV — E ngv = C—4 T]ll/ , (A21)

together with their consequence
V,T" =0. (A2.2)
To do so, one assumes some specific matter model, say a perfect fluid,
™ = (e+p)uru’ +pgh. (A2.3)

One expands (say in powers of Newton’s constant)

G (M) =+ 1D+ (A.2.4)

and uses the simplifications brought by the ‘Post-Newtonian” approximation
(9o hyy = c 1o, hy < 9ihyy; v/c < 1, p < ¢). Then one integrates the local
material equation of motion over the volume of each separate body,
labelled say by a = 1,2,...,N. In so doing, one must define some ‘center
of mass’ z; of body a, as well as some (approximately conserved) ‘mass’ 1,
of body a, together with some corresponding ‘spin vector’ S} and, possibly,
higher multipole moments.

An important feature of this traditional method is to use a unique coordinate
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A.2. Motion of binary pulsars in general relativity

chart x¥ to describe the full N-body system. For instance, the center of mass,
shape and spin of each body a are all described within this common coordi-
nate system x/”. This use of a single chart has several inconvenient aspects,
even in the case of weakly self-gravitating bodies (as in the solar system case).
Indeed, it means for instance that a body which is, say, spherically symmetric
in its own ‘rest frame’ X* will appear as deformed into some kind of ellipsoid
in the common coordinate chart x#. Moreover, it is not clear how to construct
‘good definitions” of the center of mass, spin vector, and higher multipole
moments of body a, when described in the common coordinate chart x¥. In
addition, as we are interested in the motion of strongly self-gravitating bod-
ies, it is not a priori justified to use a simple expansion of the type
(1)

because hy, ~ Y. Gm,/(c*|x — z,|) will not be uniformly small in the com-
a

mon coordinate system x*. It will be small if one stays far away from each
object a, but, as recalled above, it will become of order unity on the surface of
a compact body.

These two shortcomings of the traditional ‘one-chart” approach to the rela-
tivistic problem of motion can be cured by using a ‘multi-chart” approach.The
multi-chart approach describes the motion of N (possibly, but not necessarily,
compact) bodies by using N + 1 separate coordinate systems: (i) one global
coordinate chart x* (4 = 0,1,2,3) used to describe the spacetime outside
N ‘tubes’, each containing one body, and (ii) N local coordinate charts X
(0« =0,1,2,3;a =1,2,...,N) used to describe the spacetime in and around
each body a. The multi-chart approach was first used to discuss the motion
of black holes and other compact objects (18;[19; 20; 21; 22} 23; 24; 25). Then it
was also found to be very convenient for describing, with the high-accuracy
required for dealing with modern technologies such as VLBI, systems of N
weakly self-gravitating bodies, such as the solar system (26; 27).

The essential idea of the multi-chart approach is to combine the informa-
tion contained in several expansions. One uses both a global expansion of the
type (A.2.4) and several local expansions of the type

Gap(X7) = GO (XT;ma) + HY (X, my) + -, (A.2.5)
where Gi%) (X;m,) denotes the (possibly strong-field) metric generated by an

isolated body of mass m, (possibly with the additional effect of spin).

The separate expansions and are then ‘matched’ in some
overlapping domain of common validity of the type Gm,/c*> < R, < |z —
zq| € D ~ |x, — xp| (With b # a), where one can relate the different coordi-
nate systems by expansions of the form

1 .
Xt :zg(Ta)+e§‘(Ta)X;+E 5 (Ta) X, Xo + -+ (A.2.6)
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A. Black Hole and Neutron Star Binaries: Theoretical Challenges

The multi-chart approach becomes simplified if one considers compact bod-
ies (of radius R, comparable to 2 Gm,/c?). In this case, it was shown (23), by
considering how the ‘internal expansion’ propagates into the ‘exter-
nal’ one via the matching (A.2.6), that, in General Relativity, the inter-
nal structure of each compact body was effaced to a very high degree, when
seen in the external expansion (A.2.4). For instance, for non spinning bodies,
the internal structure of each body (notably the way it responds to an exter-
nal tidal excitation) shows up in the external problem of motion only at the
fifth post-Newtonian (5PN) approximation, i.e. in terms of order (v/c)! in the
equations of motion.

This ‘effacement of internal structure’ indicates that it should be possible to
simplify the rigorous multi-chart approach by skeletonizing each compact
body by means of some delta-function source. Mathematically, the use of
distributional sources is delicate in a nonlinear theory such as GR. However,
it was found that one can reproduce the results of the more rigorous matched-
multi-chart approach by treating the divergent integrals generated by the use
of delta-function sources by means of (complex) analytic continuation (23).
The most efficient method (especially to high PN orders) has been found to
use analytic continuation in the dimension of space 4 (28).

Finally, the most efficient way to derive the general relativistic equations of
motion of N compact bodies consists of solving the equations derived from
the action (where ¢ = — det(gv))

A

49+1 i
S = / V8 TETe R(g) — Zma c/ \/—gw(zé) dz, dzV, (A.2.7)
a

c

formally using the standard weak-field expansion (A.2.4), but considering
the space dimension d as an arbitrary complex number which is sent to its
physical value d = 3 only at the end of the calculation. This ‘skeletonized’
effective action approach to the motion of compact bodies has been extended
to other theories of gravity (21; 25). Finite-size corrections can be taken into
account by adding nonminimal worldline couplings to the effective action
(29;130).

Using this methodﬂ one has derived the equations of motion of two compact
bodies at the 2.5PN (v° /®) approximation level needed for describing binary
pulsars (31; 32} 23):

2 i
d-z},

P2 A;o(za - Zb) + c2 Aflz(zu — Zp, Va, 'Ub)

+ C_4 Afl4(za — Zp, Vg, Uy, Sﬂ/ Sb)
+ P Als(zy — zp,v5 —vp) +O(c7) . (A.2.8)

10r, more precisely, an essentially equivalent analytic continuation using the so-called
‘Riesz kernels’.
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A.3. Timing of binary pulsars in general relativity

Here Aly = —Gmy(z} — z})/|za — zp|* denotes the Newtonian acceleration,
A;Z its 1PN modification, AZA its 2PN modification (together with the spin-
orbit effects), and A;5 the 2.5PN contribution of order v°/c°. [See the refer-
ences above; or the review (33), for more references and the explicit expres-
sions of Ay, A4 and As.] It was verified that the term Af15 has the effect of
decreasing the mechanical energy of the system by an amount equal (on av-
erage) to the energy lost in the form of gravitational wave flux at infinity.
Note, however, that here A;S was derived, in the near zone of the system, as
a direct consequence of the general relativistic propagation of gravity, at the
velocity ¢, between the two bodies. This highlights the fact that binary pulsar
tests of the existence of Al - are direct tests of the reality of gravitational radiation.

The 2.5PN equations of motion are accurate enough for interpreting
(together with the corresponding ‘timing formula’ discussed next) current
and foreseeable binary pulsar data. In Section below we shall discuss
recent improvements (3PN and 3.5PN) in the knowledge of the equations of
motion and their use (in a suitably resummed form) for describing the last
orbits of coalescing binary black holes.

A.3. Timing of binary pulsars in general relativity

In order to extract observational effects from the equations of motion (A.2.8
one needs to go through two steps: (i) to solve the equations of motion (A.2.8
so as to get the coordinate positions z; and z; as explicit functions of the
coordinate time ¢, and (ii) to relate the coordinate motion z,(t) to the pulsar
observables, i.e. mainly to the times of arrival of electromagnetic pulses on
Earth.

The first step has been accomplished, in a form particularly useful for dis-
cussing pulsar timing, in Ref. (34). There (see also (35)) it was shown that,
when considering the full (periodic and secular) effects of the A, ~ v/ c?
terms in Eq. , together with the secular effects of the Ay ~ v*/c* and
As ~ v°/ ¢ terms, the relativistic two-body motion could be written in a very
simple ‘quasi-Keplerian” form (in polar coordinates), namely:

/ndt—i—a:u—etsinu, (A.3.1)
145\ 2
6 — 6y = (1+k)2arctan ) tanZ|, (A3.2)
1-—- €9 2
R = ry=ar(l—egcosu), (A.3.3)
te = |za—zcm| =ar(1—e,cosu), (A.3.4)
rn = |zp—zcm| =a.(1—epcosu). (A.3.5)
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Here n = 27/ P, denotes the orbital frequency, k = A6/2rt = (w)/n =
(w) Py/27 the fractional periastron advance per orbit, u an auxiliary angle
(‘relativistic eccentric anomaly’), e, eg, er, e, and e, various ‘relativistic ec-
centricities” and ag,a, and a,, some ‘relativistic semi-major axes’. See (34)
for the relations between these quantities, as well as their link to the rela-
tivistic energy and angular momentum E,]J. A direct study (35) of the dy-
namical effect of the contribution As ~ v°/c® in the equations of motion
has checked that it led to a secular increase of the orbital frequency
n(t) ~ n(0) + n(t — tp), and thereby to a quadratic term in the ‘relativistic
mean anomaly’ ¢ = [ndt + ¢ appearing on the left-hand side (L.H.S.) of

Eq. (A3.1):

E:@+ﬂdb%@+%ﬁ@—mf. (A3.6)

As for the contribution A; ~ v*/c* it induces several secular effects in the
orbital motion: various 2PN contributions to the dimensionless periastron
parameter k (64 k ~ v*/c*+ spin-orbit effects), and secular variations in the
inclination of the orbital plane (due to spin-orbit effects).

The second step in relating to pulsar observations has been accom-
plished through the derivation of a ‘relativistic timing formula’ (36; 37). The
‘timing formula’ of a binary pulsar is a multi-parameter mathematical func-
tion relating the observed time of arrival (at the radio-telescope) of the center
of the N* pulse to the integer N. It involves many different physical ef-
fects: (i) dispersion effects, (ii) travel time across the solar system, (iii) gravita-
tional delay due to the Sun and the planets, (iv) time dilation effects between
the time measured on the Earth and the solar-system-barycenter time, (v)
variations in the travel time between the binary pulsar and the solar-system
barycenter (due to relative accelerations, parallax and proper motion), (vi)
time delays happening within the binary system. We shall focus here on the
time delays which take place within the binary system. [See Refs. (38;39) for
the use of timing effects linked to parallax and proper motion.]

For a proper derivation of the time delays occurring within the binary sys-
tem we need to use the multi-chart approach mentionned above. In the ‘rest
frame’ (X9 = ¢ T, X!) attached to the pulsar a, the pulsar phenomenon can
be modelled by the secularly changing rotation of a beam of radio waves:

1

- O T2+, (A.3.7)

D, = /Qu(Ta)dTu ~ QaTa+%QHT§+
where @, is the longitude around the spin axis. [Depending on the precise
definition of the rest-frame attached to the pulsar, the spin axis can either be
fixed, or be slowly evolving, see e.g. (27).] One must then relate the initial
direction (®,, ®,), and proper time T,, of emission of the pulsar beam to the
coordinate direction and coordinate time of the null geodesic representing
the electromagnetic beam in the ‘global” coordinates x* used to describe the
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dynamics of the binary system [NB: the explicit orbital motion (A.3.1)-(A.3.5)
refers to such global coordinates x’ = ct, x']. This is done by using the link
in which z!, denotes the global coordinates of the ‘center of mass’ of the
pulsar, T, the local (proper) time of the pulsar frame, and where, for instance

2
0 Ui 1lwv Gmy,
0 _ 14 = = 4320 4 ... A38
¢ c<+262+czrab+ )+ (A.3.8)

Using the link (A.2.6) (with expressions such as (A.3.8) for the coefficients
e? ,...) one finds, among other results, that a radio beam emitted in the proper

direction N’ in the local frame appears to propagate, in the global frame, in
the coordinate direction n' where

i NI 2
n :Nl+%—N1 ch 1o (U—) . (A.3.9)

C2

This is the well known “aberration effect’, which will then contribute to the
timing formula.

One must also write the link between the pulsar ‘proper time’ T, and the
coordinate time t = x%/c = z0/c used in the orbital motion —.
This reads

— A T? = Gu(a)) dzh dz)) (A.3.10)

where the ‘tilde” denotes the operation consisting (in the matching approach)
in discarding in g, the ‘self contributions’ ~ (Gm,/R,)", while keeping the
effect of the companion (~ Gmy /1y, etc...). One checks that this is equiva-
lent (in the dimensional-continuation approach) to taking x* = z}, for suffi-
ciently small values of the real part of the dimension 4. To lowest order this
yields the link

1
2Gm,  v3)\? Gm, 102
T,~ [ar(1-232"M Y :/dt -2 Y A3.11
“ / ( 21 cz) ( c2ry 2 c? (A3.11)

which combines the special relativistic and general relativistic time dilation
effects. Hence, following (37) we can refer to them as the ‘Einstein time de-
lay’.

Then, one must compute the (global) time taken by a light beam emitted
by the pulsar, at the proper time T, (linked to femission Py (A.3.11)), in the
initial global direction 1’ (see Eq. ), to reach the barycenter of the solar
system. This is done by writing that this light beam follows a null geodesic:
in particular

2 2
0 =ds® = gu(x") dxt dx" ~ — (1 — C—lj) 2 dt? + (1 + C—lj) dz? (A3.12)
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where U = Gm, /|x — z4| + Gmy/ | — zp| is the Newtonian potential within
the binary system. This yields (with t, = temission, ta = tarrival)

ta 1 rte 2t
ta—tez/ dt:—/ |da;\+—/ Cma G\ 4zl (A313)
te cJi, AJ \|z—2zi |z— 2]

The first term on the last RHS of Eq. is the usual ‘light crossing
time’ % | Zbarycenter (ta) — Za(te)| between the pulsar and the solar barycenter. It
contains the ‘Roemer time delay’ due to the fact that z,(t,) moves on an orbit.
The second term on the last RHS of Eq. is the ‘Shapiro time delay’
due to the propagation of the beam in a curved spacetime (only the Gm;, piece
linked to the companion is variable). For a discussion of the O(v/c¢) fractional
corrections to the Shapiro time delay see (40) and references therein.

When inserting the ‘quasi-Keplerian’ form (A.3.1)-(A.3.5) of the relativistic
motion in the ‘Roemer’ term in (A.3.13), together with all other relativistic
effects, one finds that the final expression for the relativistic timing formula
can be significantly simplified by doing two mathematical transformations.
One can redefine the ‘time eccentricity’ ¢; appearing in the ‘Kepler equation’
(A.3.T), and one can define a new ‘eccentric anomaly’ angle: u — u™" [we
henceforth drop the superscript ‘new” on u]. After these changes, the binary-
system part of the general relativistic timing formula (37) takes the form (we
suppress the index a on the pulsar proper time T,)

tbarycenter —fy = D_l[T + AR(T) + AE(T) + AS(T) + AA(T)] (A.3.14)
with

AR = xsinw[cosu —e(1+6,)] + x[1 —e*(1 + 85)%'/? cos w sin u (A.3.15)
ysinu, (A.3.16)
—2rIn{1 —ecosu — s[sinw(cos u — e) + (1 — €*)1/2 cos w s{tud}7)
Ay = A{sinjw+ A.(u)] +esinw} + B{cos[w + Ac(u)] + e cos wA.3.18)

> >
v
I

where x = xo + (T — Tp) represents the projected light-crossing time (x =
Apulsar SiNi/C), e = eg + é(T — Tp) a certain (relativistically-defined) ‘timing

eccentricity’, A.(u) the function
1 1/2
(1—“) tan 3] , (A3.19)

Ae(u) =2 arctan 5

w = wo + k Ac(u) the “argument of the periastron’, and where the (relativisti-
cally-defined) ‘eccentric anomaly’ u is the function of the ‘pulsar proper time’
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T obtained by solving the Kepler equation

T—Ty 1. (T—Ty\>
— P
P, 2 P,

u—esinu =2mr [ (A.3.20)

It is understood here that the pulsar proper time T corresponding to the N*h
pulse is related to the integer N by an equation of the form

N=c0+va+%v,,T2+%va3. (A.3.21)
(From these formulas, one sees that dy (and §,) measure some relativistic dis-
tortion of the pulsar orbit, ¢ the amplitude of the ‘Einstein time delayﬁ AE,
and r and s the range and shape of the ‘Shapiro time delayﬁ As. Note also that
the dimensionless PPK parameter k measures the non-uniform advance of the
periastron. It is related to the often quoted secular rate of periastron advance
w = (dw/dt) by the relation k = wP,/27. It has been explicitly checked that
binary-pulsar observational data do indeed require to model the relativistic
periastron advance by means of the non-uniform (and non-trivial) function
of u multiplying k on the R.H.S. of Eq. (41ﬂ Finally, we see from
Eq. that P, represents the (periastron to periastron) orbital period at
the fiducial epoch Ty, while the dimensionless parameter P, represents the
time derivative of P, (at Tp).

Schematically, the structure of the DD timing formula (A.3.14) is

tbarycenter —tp=F [TN; {PK}; {PPK}/' {qPK}] ’ (A.3.22)

where fparycenter denotes the solar-system barycentric (infinite frequency) ar-
rival time of a pulse, T the pulsar emission proper time (corrected for aber-
ration), {pX} = {Py, To, eo, wo, xo} is the set of Keplerian parameters, {p"’K =
k, v, Py, 1,5, 00,¢, x} the set of separately measurable post-Keplerian parameters,
and {q"X} = {6,, A, B, D} the set of not separately measurable post-Keplerian
parameters (41). [The parameter D is a ‘Doppler factor’ which enters as an
overall multiplicative factor D! on the right-hand side of Eq. .]

A further simplification of the DD timing formula was found possible. In-
deed, the fact that the parameters {qg"X} = {é,, A, B, D} are not separately
measurable means that they can be absorbed in changes of the other param-

2The post-Keplerian timing parameter 1, first introduced in (36), has the dimension of time,
and should not be confused with the dimensionless post-Newtonian Eddington parame-
ter 7PPN probed by solar-system experiments (see below).

3The dimensionless parameter s is numerically equal to the sine of the inclination angle i of
the orbital plane, but its real definition within the PPK formalism is the timing parameter
which determines the ‘shape’ of the logarithmic time delay Ag(T).

4 Alas this function is theory-independent, so that the non-uniform aspect of the periastron
advance cannot be used to yield discriminating tests of relativistic gravity theories.
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eters. The explicit formulas for doing that were given in (37) and (41): they
consist in redefining e, x, Py, 6g and J,. At the end of the day; it suffices to con-
sider a simplified timing formula where {,, A, B, D} have been set to some
given fiducial values, e.g. {0,0,0,1}, and where one only fits for the remain-
ing parameters {pX} and {p"¥}.

Finally, let us mention that it is possible to extend the general parametrized
timing formula by writing a similar parametrized formula describing
the effect of the pulsar orbital motion on the directional spectral luminosity
[d(energy) /d(time) d(frequency) d(solid angle)] received by an observer. As
discussed in detail in (41) this introduces a new set of “pulse-structure post-
Keplerian parameters’.

A.4. Phenomenological approach to testing
relativistic gravity with binary pulsar data

As said in the Introduction, binary pulsars contain strong gravity domains
and should therefore allow one to test the strong-field aspects of relativistic
gravity. The question we face is then the following: How can one use binary
pulsar data to test strong-field (and radiative) gravity?

Two different types of answers can be given to this question: a phenomeno-
logical (or theory-independent) one, or various types of theory-dependent ap-
proaches. In this Section we shall consider the phenomenological approach.

The phenomenological approach to binary-pulsar tests of relativistic grav-
ity is called the parametrized post-Keplerian formalism (42; 41). This approach
is based on the fact that the mathematical form of the multi-parameter DD
timing formula was found to be applicable not only in General Rel-
ativity, but also in a wide class of alternative theories of gravity. Indeed,
any theory in which gravity is mediated not only by a metric field g,, but
by a general combination of a metric field and of one or several scalar fields
@@ will induce relativistic timing effects in binary pulsars which can still be
parametrized by the formulas (A.3.14)-(A.3.21). Such general ‘tensor-multi-
scalar’ theories of gravity contain arbitrary functions of the scalar fields. They
have been studied in full generality in (43). It was shown that, under certain
conditions, such tensor-scalar gravity theories could lead, because of strong-
tield effects, to very different predictions from those of General Relativity in
binary pulsar timing observations (44} 45; 29). However, the point which is
important for this Section, is that even when such strong-field effects develop
one can still use the universal DD timing formula to fit the observed
pulsar times of arrival.

The basic idea of the phenomenological, parametrized post-Keplerian (PPK)
approach is then the following: By least-square fitting the observed sequence
of pulsar arrival times ¢y to the parametrized formula (A.3.22) (in which Ty is
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defined by Eq. which introduces the further parameters v,, vy, 7/,) one
can phenomenologically extract from raw observational data the (best fit) val-
ues of all the parameters entering Egs. and (A.3.22). In particular, one
so determines both the set of Keplerian parameters { p~ } = {P,, Ty, e, wo, X0 },
and the set of post-Keplerian (PK) parameters {p"X} = {k,v, P,,7,s, g, ¢, %}.
In extracting these values, we did not have to assume any theory of grav-
ity. However, each specific theory of gravity will make specific predictions
relating the PK parameters to the Keplerian ones, and to the two (a priori un-
known) masses m, and m, of the pulsar and its companion. [For certain PK
parameters one must also consider other variables related to the spin vectors
of 2 and b.] In other words, the measurement (in addition of the Keplerian
parameters) of each PK parameter defines, for each given theory, a curve in
the (mgq, my) mass plane. For any given theory, the measurement of two PK
parameters determines two curves and thereby generically determines the
values of the two masses m, and m;, (as the point of intersection of these two
curves). Therefore, as soon as one measures three PK parameters one obtains
a test of the considered gravity theory. The test is passed only if the three
curves meet at one point. More generally, the measurement of n PK timing
parameters yields n — 2 independent tests of relativistic gravity. Any one of
these tests, i.e. any simultaneous measurement of three PK parameters can
either confirm or put in doubt any given theory of gravity.

As General Relativity is our current most successful theory of gravity, it is
clearly the prime target for these tests. We have seen above that the tim-
ing data of each binary pulsar provides a maximum of 8 PK parameters:
k,y, Py, r,5,00,¢ and x. Here, we were talking about a normal ‘single line’
binary pulsar where, among the two compact objects a2 and b only one of the
two, say 4 is observed as a pulsar. In this case, one binary system can provide
up to 8 — 2 = 6 tests of GR. In practice, however, it has not yet been possible
to measure the parameter Jy (which measures a small relativistic deformation
of the elliptical orbit), nor the secular parameters ¢ and x. The original Hulse-
Taylor system PSR 19134-16 has allowed one to measure 3 PK parameters:
k = (@)P, /27, v and P,. The two parameters k and -y involve (non radiative)
strong-field effects, while, as explained above, the orbital period derivative
P, is a direct consequence of the term As ~ v° /¢ in the binary-system equa-
tions of motion (A.2.5). The term As is itself directly linked to the retarded
propagation, at the velocity of light, of the gravitational interaction between
the two strongly self-gravitating bodies a and b. Therefore, any test involving
Py, will be a mixed radiative strong-field test.

Let us explain on this example what information one needs to implement
a phenomenological test such as the (k — ¢ — Py)1913416 one. First, we need
to know the predictions made by the considered target theory for the PK
parameters k,y and P, as functions of the two masses m, and m;. These
predictions have been worked out, for General Relativity, in Refs. (36} 35} 37).
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Introducing the notation (where n = 27t/ P,)

M = m;+my (A4.1)
X, = my/M; Xp=mp/M; X,+X,=1 (A4.2)
GMn\ '3
Bo(M) = ( 3 ) , (A.4.3)
they read
kCR Sy A44
(mq,my) = ﬁﬁof (A4.4)
e

YR (1, mp) = - Xy(14 Xp) B, (A.4.5)

: 192 1+ 5%+ 32 et

GR _ 2% % 5

Pyt (mg,my) = — 5 a—c2yr- Xa Xp B) - (A4.6)
However, if we use the three predictions (A.4.4)—(A.4.6), together with the

best current observed values of the PK parameters kOS obs POIDd (46) we

shall find that the three curves kSR (m,, m;) = ko, GR(ma,mb) = 0,
PER(mg,my) = PSP in the (m,, m;) mass plane fail to meet at about the 13 ¢
level! Should this put in doubt General Relativity? No, because Ref. (47)
has shown that the time variation (notably due to galactic acceleration ef-
fects) of the Doppler factor D entering Eq. (A.3.14) entailed an extra contri-
bution to the ‘observed’ period derivative P2°S. We need to subtract this non-
GR contribution before drawing the corresponding curve: PSR (m,, my) =

Pg’bs — P;?alacnc. Then one finds that the three curves do meet within one ¢.

This yields a deep confirmation of General Relativity, and a direct observa-
tional proof of the reality of gravitational radiation.

We said several times that this test is also a probe of the strong-field as-
pects of GR. How can one see this? A look at the GR predictions (A.4.4)-
does not exhibit explicit strong-field effects. Indeed, the derivation of
Eqgs. (A.4.4)-(A.4.6) used in a crucial way the ‘effacement of internal struc-
ture’ that occurs in the general relativistic dynamics of compact objects. This
non trivial property is rather specific of GR and means that, in this theory,
all the strong-field effects can be absorbed in the definition of the masses m,
and my;. One can, however, verify that strong-field effects do enter the ob-
servable PK parameters k, 7, P, etc. .. by considering how the theoretical pre-
dictions (A.4.4)-(A.4.6) get modified in alternative theories of gravity. The
presence of such strong-field effects in PK parameters was first pointed out
in Ref. (21) (see also (48)) for the Jordan-Fierz-Brans-Dicke theory of gravity,
and in Ref. (22) for Rosen’s bi-metric theory of gravity. A detailed study of
such strong-field deviations was then performed in (43; 44} 145) for general
tensor-(multi-)scalar theories of gravity. In the following Section we shall
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exhibit how such strong-field effects enter the various post-Keplerian param-
eters.

Continuing our historical review of phenomenological pulsar tests, let us
come to the binary system which was the first one to provide several ‘pure
strong-field tests” of relativistic gravity, without mixing of radiative effects:
PSR 1534+12. In this system, it was possible to measure the four (non radia-
tive) PK parameters k, ¢, and s. [We see from Eq. that r and s mea-
sure, respectively, the range and the shape of the ‘Shapiro time delay” Ag.] The
measurement of the 4 PK parameters k, 7y, 7, s define 4 curves in the (m,, my)
mass plane, and thereby yield 2 strong-field tests of GR. It was found in (49)
that GR passes these two tests. For instance, the ratio between the measured
value s° of the phenomenological paramete s and the value sSR[koPs, 40Ps]
predicted by GR on the basis of the measurements of the two PK parameters
k and v (which determine, via Eqgs. (A.4.4) , (A.4.5), the GR-predicted value
of m, and m;,) was found to be s°P% /sGR[kbs 10PS] — 1,004 & 0.007 (49). The
most recent data (50) yield s°b%/sSR[k°Ps, bS] = 1.000 4 0.007. We see that
we have here a confirmation of the strong-field regime of GR at the 1% level.

Another way to get phenomenological tests of the strong field aspects of
gravity concerns the possibility of a violation of the strong equivalence prin-
ciple. This is parametrized by phenomenologically assuming that the ratio
between the gravitational and the inertial mass of the pulsar differs from
unity (which is its value in GR): (gray/ Minert)a = 1+ A,. Similarly to what
happens in the Earth-Moon-Sun system (51), the three-body system made
of a binary pulsar and of the Galaxy exhibits a “polarization” of the orbit
which is proportional to A = A; — Ay, and which can be constrained by con-
sidering certain quasi-circular neutron-star-white-dwarf binary systems (52).
See (53) for recently published improved limitﬁ on the phenomenological
equivalence-principle violation parameter A.

The Parkes multibeam survey has recently discovered several new interest-
ing ‘relativistic’ binary pulsars, thereby giving a huge increase in the number
of phenomenological tests of relativistic gravity. Among those new binary
pulsar systems, two stand out as superb testing grounds for relativistic grav-
ity: (i) PSR J1141—-6545 (55; 56)), and (ii) the remarkable double binary pulsar
PSR J0737—-3039A and B (57;58;59; 160).

The PSR J1141—-6545 timing data have led to the measurement of 3 PK
parameters: k, 7, and P, (56). As in PSR 1913416 this yields one mixed

5As already mentioned the dimensionless parameter s is numerically equal (in all theories)
to the sine of the inclination angle i of the orbital plane, but it is better thought, in the
PPK formalism, as a phenomenological timing parameter determining the ‘shape’ of the
logarithmic time delay Ag(T).

6Note, however, that these limits, as well as those previously obtained in (54), assume that
the (a priori pulsar-mass dependent) parameter A ~ A, is the same for all the analyzed
pulsars.
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radiative-strong-field tesiﬂ

The timing data of the millisecond binary pulsar PSR J0737—-3039A have
led to the direct measurement of 5 PK parameters: k, v, 7, s and P, (58;59; 160).
In addition, the ‘double line” nature of this binary system (i.e. the fact that
one observes both components, A and B, as radio pulsars) allows one to per-
form new phenomenological tests by using Keplerian parameters. Indeed, the
simultaneous measurement of the Keplerian parameters x, and x; represent-
ing the projected light crossing times of both pulsars (A and B) gives access
to the combined Keplerian parameter

(A47)

On the other hand, the general derivation of (37) (applicable to any Lorentz-
invariant theory of gravity, and notably to any tensor-scalar theory) shows
that the theoretical prediction for the the ratio R, considered as a function of
the masses m, and m,, is

4
Rtheory = % +0 (Z)_4> . (A4.8)
my C

The absence of any explicit strong-field-gravity effects in the theoretical pre-

diction (A.4.8) (to be contrasted, for instance, with the predictions for PK

parameters in tensor-scalar gravity discussed in the next Section) is mainly

due to the convention used in (37) and (41) for defining the masses m, and

my. These are always defined so that the Lagrangian for two non interact-

ing compact objects reads Ly = Y — m, c?(1 — v2/c?)!/2. In other words,
a

m, c? represents the total energy of body a. This means that one has implicitly
lumped in the definition of m, many strong-self-gravity effects. [For instance,
in tensor-scalar gravity m, includes not only the usual Einsteinian gravita-
tional binding energy due to the self-gravitational field g,,(x), but also the
extra binding energy linked to the scalar field ¢(x).] Anyway, what is impor-

7In addition, scintillation data have led to an estimate of the sine of the orbital inclination,
sini (61). As said above, sini numerically coincides with the PK parameter s measuring
the ‘shape’ of the Shapiro time delay. Therefore, one could use the scintillation measure-
ments as an indirect determination of s, thereby obtaining two independent tests from
PSR J1141—6545 data. A caveat, however, is that the extraction of sini from scintillation
measurements rests on several simplifying assumptions whose validity is unclear. In fact,
in the case of PSR J0737—3039 the direct timing measurement of s disagrees with its es-
timate via scintillation data (60). It is therefore safer not to use scintillation estimates of
sini on the same footing as direct timing measurements of the PK parameter s. On the
other hand, a safe way of obtaining an s-related gravity test consists in using the neces-
sary mathematical fact that s = sini < 1. In GR the definition x, = a,sini/c leads to
sini = nx,/(BoXp). Therefore we can write the inequality nx,/(Bo(M) X;) < 1 as a
phenomenological test of GR.
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tant is that, when performing a phenomenological test from the measurement
of a triplet of parameters, e.g. {k, v, R}, at least one parameter among them be
a priori sensitive to strong-field effects. This is enough for guaranteeing that
the crossing of the three curves ke (m,, m;) = k%, 4theory (m,, my,) = 4P,
RtheorY (111, m;,) = RO is really a probe of strong-field gravity.

m, PSR B1913+16 m PSR B1534+12

B B

251 " @

intersection

0 05 1 1.5 2 25 My

m PSR J1141-6545

0 0.5 1 1.5 2 25 Ma0 0.5 1 1.5 2 25 Ma

Figure A.1.: Phenomenological tests of General Relativity obtained from Kep-
lerian and post-Keplerian timing parameters of four relativistic pulsars. Fig-
ure taken from (62).

In conclusion, the two recently discovered binary pulsars PSR J1141—6545
and PSR J0737—-3039 have more than doubled the number of phenomenolog-
ical tests of (radiative and) strong-field gravity. Before their discovery, the
‘canonical” relativistic binary pulsars PSR 1913416 and PSR 1534+12 had
given us four such tests: one (k — v — P,) test from PSR 1913+16 and three
(k — v —r—s — PJ) tests from PSR 1534+12. The two new binary systems
have given us fivg’| more phenomenological tests: one (k — y — P,) (or two,
k — v — P, — s) tests from PSR J1141—6545 and four (k —y —r —s — P, — R)
tests from PSR ]0737—303 As illustrated in Figure these nine phe-
nomenological tests of strong-field (and radiative) gravity are all in beautiful

8The timing measurement of Plgbs in PSR 1534+12 is even more strongly affected by kine-
matic corrections (D terms) than in the PSR 1913+16 case. In absence of a precise, inde-
pendent measurement of the distance to PSR 1534+12, the k — v — Py test yields, at best,
a ~ 15% test of GR.
90r even six, if we use the scintillation determination of s in PSR J1141—6545.
19The companion pulsar 0737—3039B being non recycled, and being visible only during a
small part of its orbit, cannot be timed with sufficient accuracy to allow one to measure
any of its post-Keplerian parameters.
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agreement with General Relativity.

In addition, let us recall that several quasi-circular wide binaries, made of a
neutron star and a white dwarf, have led to high-precision phenomenological
confirmations (53) (in strong-field conditions) of one of the deep predictions
of General Relativity: the ‘strong’ equivalence principle, i.e. the fact that var-
ious bodies fall with the same acceleration in an external gravitational field,
independently of the strength of their self-gravity.

Finally, let us mention that Ref. (41) has extended the philosophy of the
phenomenological (parametrized post-Keplerian) analysis of timing data, to
a similar phenomenological analysis of pulse-structure data. Ref. (41) showed
that, in principle, one could extract up to 11 ‘post-Keplerian pulse-structure
parameters’. Together with the 8 post-Keplerian timing parameters of a (single-
line) binary pulsar, this makes a total of 19 phenomenological PK parameters.
As these parameters depend not only on the two masses m,, m; but also on
the two angles A, 77 determining the direction of the spin axis of the pulsar,
the maximum number of tests one might hope to extract from one (single-
line) binary pulsar is 19 — 4 = 15. However, the present accuracy with which
one can model and measure the pulse structure of the known pulsars has not
yet allowed one to measure any of these new pulse-structure parameters in a
theory-independent and model-independent way.

Nonetheless, it has been possible to confirm the reality (and order of mag-
nitude) of the spin-orbit coupling in GR which was pointed out (63} [64) to
be observable via a secular change of the intensity profile of a pulsar sig-
nal. Confirmations of general relativistic spin-orbit effects in the evolution of
pulsar profiles were obtained in several pulsars: PSR 1913416 (65} 166), PSR
B1534+-12 (67) and PSR J1141—6545 (68). In this respect, let us mention that
the spin-orbit interaction affects also several PK parameters, either by induc-
ing a secular evolution in some of them (see (41)) or by contributing to their
value. For instance, the spin-orbit interaction contributes to the observed
value of the periastron advance parameter k an amount which is significant
for the pulsars (such as 1913+16 and 0737—3039) where k is measured with
high-accuracy. It was then pointed out (69) that this gives, in principle, and
indirect way of measuring the moment of inertia of neutron stars (a useful
quantity for probing the equation of state of nuclear matter (70; [71)). How-
ever, this can be done only if one measures, besides k, two other PK parameters
with 107> accuracy. A rather tall order which will be a challenge to meet.

The phenomenological approach to pulsar tests has the advantage that it
can confirm or invalidate a specific theory of gravity without making as-
sumptions about other theories. Moreover, as General Relativity has no free
parameters, any test of its predictions is a potentially lethal test. From this
point of view, it is remarkable that GR has passed with flying colours all the
pulsar tests if has been submitted to. [See, notably, Fig.[A.1l] As argued
above, these tests have probed strong-field aspects of gravity which had not
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been probed by solar-system (or cosmological) tests. On the other hand, a
disadvantage of the phenomenological tests is that they do not tell us in any
precise way which strong-field structures, have been actually tested. For in-
stance, let us imagine that one day one specific PPK test fails to be satisfied
by GR, while the others are OK. This leaves us in a quandary: If we trust the
problematic test, we must conclude that GR is wrong. However, the other
tests say that GR is OK. This example shows that we would like to have some
idea of what physical effects, linked to strong-field gravity, enter in each test,
or even better in each PK parameter. The ‘effacement of internal structure’
which takes place in GR does not allow one to discuss this issue. This gives
us a motivation for going beyond the phenomenological PPK approach by
considering theory-dependent formalisms in which one embeds GR within a
space of alternative gravity theories.

A.5. Theory-space approach to testing relativistic
gravity with binary pulsar data

A complementary approach to testing gravity with binary pulsar data con-
sists in embedding General Relativity within a multi-parameter space of alter-
native theories of gravity. In other words, we want to contrast the predictions
of GR with the predictions of continuous families of alternative theories. In
so doing we hope to learn more about which structures of GR are actually
being probed in binary pulsar tests. This is a bit similar to the well-known
psycho-physiological fact that the best way to appreciate a nuance of colour
is to surround a given patch of colour by other patches with slightly differ-
ent colours. This makes it much easier to detect subtle differences in colour.
In the same way, we hope to learn about the probing power of pulsar tests
by seeing how the phenomenological tests summarized in Fig. fail (or
continue) to be satisfied when one continuously deform, away from GR, the
gravity theory which is being tested.

Let us first recall the various ways in which this theory-space approach has
been used in the context of the solar-system tests of relativistic gravity.

A.5.1. Theory-space approaches to solar-system tests of
relativistic gravity

In the quasi-stationary weak-field context of the solar-system, this theory-
space approach has been implemented in two different ways. First, the parametrized
post-Newtonian (PPN) formalism (72 73} [74; 51} [75} [76; 25; [77) describes
many ‘directions” in which generic alternative theories of gravity might dif-
fer in their weak-field predictions from GR. In its most general versions the
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PPN formalism contains 10 “post-Einstein” PPN parameters, 7 = 4"*N — 1
B = 5PPN —1,¢,a1,a2, 23,81, 2, 3, (4. Each one of these dimensionless quan-
tities parametrizes a certain class of slow-motion, weak-field gravitational
effects which deviate from corresponding GR predictions. For instance, ¥
parametrizes modifications both of the effect of a massive body (say, the Sun)
on the light passing near it, and of the terms in the two-body gravitational
Lagrangian which are proportional to (G m, my,/7,.) - (vs — vp)?/ 2.

A second way of implementing the theory-space philosophy consists in
considering some explicit, parameter-dependent family of alternative rela-
tivistic theories of gravity. For instance, the simplest tensor-scalar theory of
gravity put forward by Jordan (78), Fierz (79) and Brans and Dicke (80) has
a unique free parameter, say a3 = (2wpp +3)'. When a3 — 0, this the-
ory reduces to GR, so that (x% (or 1/wpp) measures all the deviations from
GR. When considering the weak-field limit of the Jordan-Fierz-Brans-Dicke
(JEBD) theory, one finds that it can be described within the PPN formalism
by choosing ¥ = —2aj(1+a3) !, p=0and & = a; = {; = 0.

Having briefly recalled the two types of theory-space approaches used to
discuss solar-system tests, let us now consider the case of binary-pulsar tests.

A.5.2. Theory-space approaches to binary-pulsar tests of
relativistic gravity

There exist generalizations of these two different theory-space approaches
to the context of strong-field gravity and binary pulsar tests. First, the PPN
formalism has been (partially) extended beyond the ‘first post-Newtonian’
(1PN) order deviations from GR (~ v?/c* + Gm/c?r) to describe 2PN order

2
deviations from GR (N (ZC’—; + Gm) (81). Remarkably, there appear only

c2r
two new parameters at the 2PN level'“ € and J. Also, by expanding in pow-
ers of the self-gravity parameters of body 4 and b the predictions for the PPK
timing parameters in generic tensor-multi-scalar theories, one has shown that
these predictions depended on several ‘layers” of new dimensionless param-
eters (43). Early among these parameters one finds, the 1PN parameters B,
and then the basic 2PN parameters € and ¢, but one also finds further pa-
rameters B3, (BB'), B”, ... which would not enter usual 2PN effects. The two
approaches that we have just mentionned can be viewed as generalizations

The PPN parameter 4PN is usually denoted simply as 7. To distinguish it from the
Einstein-time-delay PPK timing parameter 7y used above we add the superscript PPN.
In addition, as the value of 'yPPN in GR is 1, we prefer to work with the parameter
4 = 9PN — 1 which vanishes in GR, and therefore measures a ‘deviation’ from GR in
a certain “direction’ in theory-space. Similarly with § = gF'™N — 1.

12When restricting oneself to the general class of tensor-multi-scalar theories. At the 1PN
level, this restriction would imply that only the “directions’ 7 and B are allowed.
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of the PPN formalism.

There exist also useful generalizations to the strong-field context of the idea
of considering some explicit parameter-dependent family of alternative the-
ories of relativistic gravity. Early studies (21; 22} 48) focussed either on the
one-parameter JFBD tensor-scalar theory, or on some theories which are not
continuously connected to GR, such as Rosen’s bimetric theory of gravity.
Though the JFBD theory exhibits a marked difference from GR in that it pre-
dicts the existence of dipole radiation, it has the disadvantage that the weak
field, solar-system constraints on its unique parameter a3 are so strong that
they drastically constrain (and essentially forbid) the presence of any non-
radiative, strong-field deviations from GR. In view of this, it is useful to con-
sider other ‘mini-spaces” of alternative theories.

A two-parameter mini-space of theories, that we shall denotﬁ here as
T(B', B"), was introduced in (43). This two-parameter family of tensor-bi-
scalar theories was constructed so as to have exactly the same first post-
Newtonian limit as GR (ie. ¥ = B = --- = 0), but to differ from GR in
its predictions for the various observables that can be extracted from binary
pulsar data. Let us give one example of this behaviour of the T>(p’, ") class
of theories. For a general theory of gravity we expect to have violations of
the strong equivalence principle in the sense that the ratio between the grav-
itational mass of a self-gravitating body to its inertial mass will admit an ex-
pansion of the type

grav 1
a — 2
where ¢, = -2 % measures the ‘gravitational compactness’ (or fractional

gravitational binding energy, ¢, ~ —2E5 " /m,c?) of body a. The numeri-
cal coefficient #; of the contribution linear in ¢, is a combination of the first
post-Newtonian order PPN parameters, namely 17; = 48 — ¥ (51). The nu-
merical coefficient #, of the term quadratic in ¢, is a combination of the 1PN
and 2PN parameters. When working in the context of the T,(f/, p”) theo-
ries, the 1PN parameters vanish exactly (B = 0 = 7¥) and the coefficient
of the quadratic term becomes simply proportional to the theory parameter
B’ : 1, = 3 BB/, where B ~ 1.026. This example shows explicitly how binary
pulsar data (here the data constraining the equivalence principle violation
parameter A = A; — Ay, see above) can go beyond solar-system experiments
in probing certain strong-self-gravity effects. Indeed, solar-system experi-
ments are totally insensitive to 2PN parameters because of the smallness of
ca ~ Gm,/c* R, and of the structure of 2PN effects (81). By contrast, the ‘com-
pactness’ of neutron stars is of order ¢, ~ 0.21m,;/ Mgy ~ 0.3 (43) so that the

1BWe add here an index 2 to T as a reminder that this is a class of tensor-bi-scalar theories,
i.e. that they contain two independent scalar fields @1, ¢» besides a dynamical metric g.
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pulsar limit |A| < 5.5 x 1073 (53) yields, within the T,(g/, 8") framework, a
significant limit on the dimensionless (2PN order) parameter g’ : |f/| < 0.12.

Ref. (45) introduced a new two-parameter mini-space of gravity theories,
denoted here as Ty (xo, Bo), which, from the point of view of theoretical physics,
has several advantages over the T,(f/, ) mini-space mentionned above.
First, it is technically simpler in that it contains only one scalar field ¢ be-
sides the metric g,y (hence the index 1 on T (o, Bo)). Second, it contains only
positive-energy excitations (while one combination of the two scalar fields
of To(B/, ") carried negative-energy waves). Third, it is the minimal way to
parametrize the huge class of tensor-mono-scalar theories with a ‘coupling
function” a(¢) satisfying some very general requirements (see below).

Let us now motivate the use of tensor-scalar theories of gravity as alterna-
tives to general relativity.

A.5.3. Tensor-scalar theories of gravity

Let us start by recalling (essentially from (45)) why tensor-(mono)-scalar the-
ories define a natural class of alternatives to GR. First, and foremost, the ex-
istence of scalar partners to the graviton is a simple theoretical possibility
which has surfaced many times in the development of unified theories, from
Kaluza-Klein to superstring theory. Second, they are general enough to de-
scribe many interesting deviations from GR (both in weak-field and in strong
field conditions), but simple enough to allow one to work out their predic-
tions in full detail.

Let us therefore consider a general tensor-scalar action involving a metric
Suv (with signature ‘mostly plus’), a scalar field ®, and some matter variables
Py, (including gauge bosons):

4 d4 _
S= e [ F[F@R - Z(@)"9,90,0 — U(®)] + Sultpi G
(A5.2)

For simplicity, we assume here that the weak equivalence principle is satis-
tied, i.e., that the matter variables ¢, are all coupled to the same “physical
(3352

metricﬁ &uv- The general model (A.5.2) involves three arbitrary functions: a
function F(®) coupling the scalar @ to the Ricci scalar of v, R = R(§u), a

4 Actually, most unified models suggest that there are violations of the weak equivalence
principle. However, the study of general string-inspired tensor-scalar models (82) has
found that the composition-dependent effects would be negligible in the gravitational
physics of neutron stars that we consider here. The experimental limits on tests of
the equivalence principle would, however, bring a strong additional constraint of or-
der 107°a3 ~ Aa/a < 10712, As this constraint is strongly model-dependent, we will
not use it in our exclusion plots below. One should, however, keep in mind that a limit
on the scalar coupling strength a3 of order a3 < 1077 (82;[83) is likely to exist in many,
physically-motivated, tensor-scalar models.
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function Z(®) renormalizing the kinetic term of ®, and a potential function
U(P). As we have the freedom of arbitrary redefinitions of the scalar field,
® — @' = f(P), only two functions among F, Z and U are independent. It is
often convenient to rewrite in a canonical form, obtained by redefining
both @ and ¢, according to

g;v = F(P) Suv (A.5.3)
[ [3FA@) | 12(2) /2 A54
7= / {1F2(¢)+§F(¢)] ' (A-54)

This yields

s— ¢ /d4x V2[R — 28409 0,0 — V(9)] + S [¢ ; A%(9) ]
167G, c 8x * T £8x OuPovg % m | Wm; ?)8uv|

(A.5.5)
where R, = R(gj,,), where the potential
V() = F2(®)U(P), (A.5.6)
and where the conformal coupling function A(¢) is given by
Alg) = FV2(®), (A5.7)

with ®(¢) obtained by inverting the integral (A.5.4).

The two arbitrary functions entering the canonical form are: (i)
the conformal coupling function A(¢), and (ii) the potential function V(¢).
Note that the “physical metric’ ¢, (the one measured by laboratory clocks
and rods) is conformally related to the “Einstein metric’ g;,,, being given by
S = A%(g) 8- The canonical representation is technically useful because it
decouples the two irreducible propagating excitations: the spin-0 excitations
are described by ¢, while the pure spin-2 excitations are described by the Ein-
stein metric g;,,, (with kinetic term the usual Einstein-Hilbert action « R(g}, ))-

In many technical developments it is useful to work with the logarithmic
coupling function a(¢) such that:

a(¢) =InA(g); Alp) = e"?). (A5.8)

In the case of the general model (A.5.2) this logarithmiciﬂ coupling function
is given by

a(g) = — (@),

15As we shall mostly work with a(¢) below, we shall henceforth drop the adjective ‘loga-
rithmic’.
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where ®(¢) must be obtained from (A.5.4).

In the following, we shall assume that the potential V(¢) is a slowly vary-
ing function of ¢ which, in the domain of variation we shall explore, is roughly

equivalent to a very small mass term V(¢) ~ Zm%’,(q) — @o)? with mé, of
cosmological order of magnitude m%P = O(Hj), or, at least, with a range
Ap = m(;l much larger than the typical length scales that we shall consider
(such as the size of the binary orbit, or the size of the Galaxy when consider-
ing violations of the strong equivalence principle). Under this assumptio
the potential function V(¢) will only serve the role of fixing the value of ¢
far from the system (to ¢(r = o) = ¢p), and its effect on the propagation
of ¢ within the system will be negligible. In the end, the tensor-scalar phe-
nomenology that we shall explore only depends on one function: the coupling

function a(¢).

Let us consider some examples to see what kind of coupling functions
might naturally arise. First, the simplest case is the Jordan-Fierz-Brans-Dicke

action, which is of the general type (A.5.2) with

F(@) = @ (A.5.9)
Z(®) = wpp® I, (A.5.10)

where wpp is an arbitrary constant. Using Eqgs. (A.5.4), (A.5.7) above, one
tinds that — 2 ap ¢ = In ® and that the (logarithmic) coupling function is sim-

ply

a(¢) = ap ¢ + const., (A5.11)

where ag = F(2wpp + 3)"!/2, depending on the sign chosen in Eq. (A.5.4).
Independently of this sign, one has the link

2 1

= . A.5.12
%o 2wpp + 3 ( )

Note that 2 wpp + 3 must be positive for the spin-0 excitations to have the
correct (non ghost) sign.

Let us now discuss the often considered case of a massive scalar field hav-
ing a nonminimal coupling to curvature

g — C4 /d4xg~1/2<R_g~]M/a P9 q)_qu)2+€Rq)2>+S [l/) g ]
1677 G* c U v o m|Wms §pv
(A.5.13)

16Note, however, that, as was recently explored in (84; [85} [86), a sufficiently fast varying
potential V(¢) can change the tensor-scalar phenomenology by endowing ¢ with a mass
term m?’) = % 02V /d¢? which strongly depends on the local value of ¢ and, thereby can

get large in sufficiently dense environments.
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This is of the form with
F(®) =1+ D%, Z(®) =1, U(P) = m5,d°. (A.5.14)
The case ¢ = —# is usually referred to as that of ‘conformal coupling’. With

the variables (A.5.13) the theory is ghost-free only if 2 (1 4 ¢®?)? (dp/dP)? =
14 ¢(14 6¢) @ is everywhere positive. If we do not wish to restrict the ini-
tial values of ®, we must have ¢(1+ 6¢) > 0. Introducing then the notation

X =+/¢(146¢), we get the following link between ® and ¢:

2V2¢9 = %‘m {1+2X¢(,/1+X2¢2+X¢>}

+ V6lIn [1—2\/6@ VHX%Z_%@]. (A5.15)

1+ ¢ P2

For small values of ®, this yields ¢ = ®/+/2 + O(®3). The potential and the
coupling functions are given by

2 q)Z
V(p) = 1mfé®2, (A.5.16)
a(g) = —% In(1 4 ¢d?). (A.5.17)

These functions have singularities when 1 + ¢®? vanishes. If we do not
wish to restrict the initial value of ® we must assume ¢ > 0 (which then
implies our previous assumption ¢(1+ 6¢) > 0). Then there is a one-to-
one relation between ® and ¢ over the entire real line. Small values of ®
correspond to small values of ¢ and to a coupling function

a(g) = — >+ 0(o%). (A.5.18)

On the other hand, large values of |®| correspond to large values of |¢|, and
to a coupling function of the asymptotic form

a(p) ~ —v2 % |¢| + const. (A.5.19)

The potential V(¢) has a minimum at ¢ = 0, as well as other minima at
@ — -o0. If we assume, for instance, that m3, and the cosmological dynamics
are such that the cosmological value of ¢ is currently attracted towards zero,
the value of ¢ at large distances from the local gravitating systems we shall
consider will be g < 1.

As a final example of a possible tensor-scalar gravity theory, let us discuss
the string-motivated dilaton-runaway scenario considered in (87). The start-
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ing action (a functional of §;,, and ®) was taken of the general form

5= /d%@(Bgf) R+ 22 g

(VDY — 31 Br(®)F2 — V(D) + - - ) ,

and it was assumed that all the functions B;(®) have a regular asymptotic
behavior when & — 4-co of the form B;(®) = C; + O(e~®). Under this as-
sumption the early cosmological evolution can push ® towards +co (hence
the name ‘runaway dilaton’). In the canonical, ‘Einstein frame” representa-
tion (A.5.5), one has, for large values of ®, & ~ ¢ ¢, where c is a numerical
constant, and the coupling function to hadronic matter is given by

1/2(

P Aqcp(@) « By (9) exp[—87 b§1 Br ()]

where b3 is the one-loop rational coefficient entering the renormalization-
group running of the gauge field coupling g2. This finally yields a coupling
function of the approximate form (for large values of ¢):

a(¢) ~ ke “? 4 const.,

where the dimensionless constants k and c¢ are both expected to be of order
unity. [The constant ¢ must be positive, but the sign of k is not a priori re-
stricted.]

Summarizing: the JFBD model yields a coupling function which is a linear
function of ¢, Eq. (A.5.11)), a nonminimally coupled scalar yields a coupling
function which interpolates between a quadratic function of ¢, Eq. (A.5.18),
and a linear one, Eq. (A.5.19), and the dilaton-runaway scenario of Ref. (87)
yields a coupling function of a decaying exponential type.

A.5.4. The role of the coupling function a(¢); definition of
the two-dimensional space of tensor-scalar gravity
theories T; (o, Bo)

Let us now discuss how the coupling function a(¢) enters the observable
predictions of tensor-scalar gravity at the first post-Newtonian (1PN) level,
i.e., in the weak-field conditions appropriate to solar-system tests. It was
shown in previous work that, if one uses appropriate units in the asymptotic
region far from the system, namely units such that the asymptotic value a(¢o)
of a(¢) Vanishe all observable quantities at the 1PN level depend only on
the values of the first two derivatives of the a(¢) at ¢ = ¢o. More precisely,

7In these units the Einstein metric 8w and the physical metric g, asymptotically coincide.
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if one defines

d 9 o*
g(f);ﬁ@’)E g((;l’) _ aagif)’ (A.5.20)

a(g) =

and denotes by ag = a(¢g), Bo = B(¢po) their asymptotic values, one finds
(see, e.g., (43)) that the effective gravitational constant between two bodies
(as measured by a Cavendish experiment) is given by

G = G.(1+4a3), (A.5.21)

while, among the PPN parameters, only the two basic Eddington ones, ¢y =

PPN —1,and B = BPPN — 1, do not vanish, and are given by
PPN g
Yy = -1 = -2——, A5.22
T=7 1+ aj ( )
B = g™ 1« Boao (A5.23)
= 2+l 5.

The structure of the results (A.5.22) and (A.5.23) can be transparently ex-
pressed by means of simple (Feynman-like) diagrams (see, e.g., (88)). Egs. (A.5.21)

and correspond to diagrams where the interaction between two world-
lines (representing two massive bodies) is mediated by the sum of the ex-
change of one graviton and one scalar particle. The scalar couples to matter
with strength ~ g +/G,. The exchange of a scalar excitation then leads to
a term « a3. On the other hand, Eq. corresponds to a nonlinear in-
teraction between three worldlines involving: (i) the ‘generation” of a scalar
excitation on a first worldline (factor ag), (ii) a nonlinear vertex on a second
worldline associated to the quadratic piece of a(¢) (aquad (¢) = 3 Bo(o—90)%
so that one gets a factor By), and (iii) the final ‘absorption” of a scalar excita-
tion on a third worldline (second factor ay).

Egs. (A.5.22) and (A.5.23) can be summarized by saying that the first two
coefficients in the Taylor expansion of the coupling function a(¢) around ¢ =

@o (after setting a(¢g) = 0)

a(9) = ao(9 — 90) + 5 fo(§ — 90 + (A520

suffice to determine the quasi-stationary, weak-field (1PN) predictions of any
tensor-scalar theory. In other words, the solar-system tests only explore the
‘osculating approximation” (A.5.24) (slope and local curvature) to the func-
tion a(¢). Note that GR corresponds to a vanishing coupling function a(¢) =
0 (so that g = Bp = - -+ = 0), the JFBD model corresponds to keeping only
the first term on the R.H.S. of (A.5.24), while, for instance, the nonminimally
coupled scalar field (with asymptotic value ¢y < 1) does indeed lead to
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nonzero values for both ay and By, namely

g~ —2¢@p; o~ —2G. (A.5.25)

Finally the dilaton-runaway scenario considered above leads also to non
zero values for both ay and By, namely

ag~ —kce % ; By~ +kc?e P, (A.5.26)

for a largish value of ¢g. Note that the dilaton-runaway model naturally
predicts that ap < 1, and that By is of the same order of magnitude as
ng @ Po ~ —cap with c being (positive and) of order unity. The interesting
outcome is that such a model is well approximated by the usual JFBD model
(with Bop = 0). This shows that a JFBD-like theory could come out from a
model which is initially quite different from the usual exact JFBD theory.

As we shall discuss in detail below, solar-system tests constrain a3 and
a3 |Bo| to be both small. This immediately implies that |ap| must be small,
i.e., that the scalar field is linearly weakly coupled to matter. On the other
hand, the quadratic coupling parameter By is not directly constrained. Both
its magnitude and its sign can be more or less arbitrary. Note that there are
no a priori sign restrictions on By. The conformal factor A%(¢) = exp(2a(¢))
entering Eq. had to be positive, but this leads to no restrictions on the
sign of a(¢) and of its various derivative For instance, in the nonmin-
imally coupled scalar field case, it seemed more natural to require { > 0,
which leads to a negative B in view of Eq. (A.5.25).

Let us summarize the results above: (i) the most general tensor-scalar the-
ory@ is described by one arbitrary function a(¢); and (ii) weak-field tests
depend only on the first two terms, parametrized by ag and By, in the Taylor
expansion (A.5.24) of a(¢) around its asymptotic value @y.

(From this follows a rather natural way to define a simple mini space of
tensor-scalar theories. It suffices to consider the two-dimensional space of the-
ories, say Tj(wo, Bo), defined by the coupling function which is a quadratic
polynomial in ¢ (44;45), say

ag b0 (@) = a0(@ — o) + % Bo(® — @0)*. (A.5.27)

As indicated, this class of theories depends only on two parameters: xp and
Bo- The asymptotic value ¢q of ¢ does not count as a third parameter (when

18As explained above, we assume here the presence of a potential term V(¢) to fix the
asymptotic value ¢y of ¢. If the potential V(¢) is absent (or negligible), the “attractor
mechanism’ of Refs. (89}[82) would attract ¢ to a minimum of the coupling function a(¢),
thereby favoring a positive value of .

YUnder the assumption that the potential V(¢) is a slowly-varying function of ¢, which
modifies the propagation of ¢ only on very large scales.
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using the form (A.5.27)) because one can always work with the shifted field
¢ = ¢ — ¢o, with asymptotic value ¢g = 0 and coupling function a,, g, (¢) =
ag ¢ + 3 Bo ¢*. Moreover, as already said, the asymptotic value a(go) of a(¢)

has also no physical meaning, because one can always use units such that it
vanishes (as done in (A.5.27)).

Note also that an alternative way to represent the same class of theories is
to use a coupling function of the very simple form

a5(9) = 569, (A.5.28)

but to keep the asymptotic value ¢( as an independent parameter. This class
of theories is clearly equivalent to Ty (ag, Bo), Eq. (A.5.27), with the dictionary:

0‘0:[3?0/:30:[3'

A.5.5. Tensor-scalar gravity, strong-field effects, and
binary-pulsar observables

Having chosen some mini-space of gravity theories, we now wish to derive
what predictions these theories make for the timing observables of binary
pulsars. To do this we need to generalize the general relativistic treatment of
the motion and timing of binary systems comprising strongly self-gravitating
bodies summarized above. Let us recall that this treatment was based on a
multi-chart method, using a matching between two separate problems: (i) the
‘internal problem’ considers each strongly self-gravitating body in a suitable
approximately freely falling frame where the influence of its companion is
small, and (ii) the ‘external problem” where the two bodies are described as
effective point masses which interact via the various fields they are coupled
to. Let us first consider the internal problem, i.e., the description of a neutron
star in an approximately freely falling frame where the influence of the com-
panion is reduced to imposing some boundary conditions on the tensor and
scalar fields with which it interacts (21; 22; 43} 44} 45). The field equations
of a general tensor-scalar theory, as derived from the canonical action (A.5.5)
(neglecting the effect of V(¢)) read

1
R, = 20,93, +81G, (T;‘V -5 T*gj;v) , (A.5.29)

where T} = 2c¢(g.)"Y26S,,/6 v denotes the material stress-energy tensor
in “Einstein units’, and a(¢) the ¢-derivative of the coupling function, see

Eq. (A.5.20). All tensorial operations in Egs. (A.5.29) and (A.5.30) are per-

formed by using the Einstein metric gy, .
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Explicitly writing the field equations (A.5.29) and (A.5.30) for a slowly ro-
d H A,

tating (stationary, axisymmetric) neutron star, labelle leads to a coupled
set of ordinary differential equations constraining the radial dependence of
Sy and ¢ (45;190). Imposing the boundary conditions gy, — #uv, ¢ — ¢4 at
large radial distances, finally determines the crucial “form factors’ (in Einstein
units) describing the effective coupling between the neutron star A and the
fields to which it is sensitive: total mass m 4 (¢,), total scalar charge w(¢,),
and inertia moment I4 (¢, ). As indicated, these quantities are functions of the
asymptotic value ¢, of ¢ felt by the considered neutron sta@ They satisfy the
relation wa (@,) = —9ma(@a)/9 ¢,. From them, one defines other quantities
that play an important role in binary pulsar physics, notably

aa(pa) = s = g (A.5.31)
Jn
Balga) = 5 42 , (A.5.32)
as well as Ay
ka(pa) = — T (A.5.33)

The quantity a4, Eq. (A.5.31), plays a crucial role. It measures the effective
coupling strength between the neutron star and the ambient scalar field. If we
formally let the self-gravity of the neutron A tend toward zero (i.e., if we con-
sider a weakly self-gravitating object), the function a4 (¢,) becomes replaced
by a(¢,) where a(¢) = da(¢)/9 ¢ is the coupling strength appearing in the
R.H.S. of Eq. (A.5.30). Roughly speaking, we can think of a4 (¢,) as a (suit-
able defined) average value of the local coupling strength a(¢(r)) over the
radial profile of the neutron star A.

It was pointed out in Refs. (44} 145) that the strong self-gravity of a neu-
tron star can cause the effective coupling strength a 4 (¢,) to become of order
unity, even when its weak-field counterpart vy = a(¢,) is extremely small
(as is implied by solar-system tests that put strong constraints on the PPN
combination ¥ = —2a3/(1 + a3)). This is illustrated, in the minimal context

20We henceforth use the labels A and B for the (recycled) pulsar and its companion, instead
of the labels a and b used above. We henceforth use the label a to denote the asymptotic
value of some quantity (at large radial distances within the local frame, qu or Xg, of the
considered neutron star A or B).

21This ¢, is a combination of the cosmological background value ¢y and of the scalar influ-
ence of the companion of the considered neutron star. It varies with the orbital period
and is determined as part of the ‘external problem” discussed below. Note that, strictly
speaking, the label a (for asymptotic) should be indexed by the label of the considered
neutron star: i.e. one should use a label a4 (and a locally asymptotic value ¢,,) when con-
sidering the neutron star A, and a label ap (with a corresponding ¢,,) when considering
the neutron star B.
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neutron star

¢
scalar charge
[oeal

baryonic mass
EA/mG

critical maximum maximum

mass mass in GR mass
Figure A.2.: Dependence upon the baryonic mass 174 of the coupling param-
eter a4 in the theory Tj(ao, o) with a9 = —0.014, Bo = —6. Figure taken
from (91)).

of the Ty («g, Bo) class of theories, in Figure

Note that when the baryonic mass 114 of the neutron star is smaller than
the critical mass 7., ~ 1.24 M., the effective scalar coupling strength « 4
of the star is quite small (because it is proportional to its weak-field limit
ag = a(¢@g)). By contrast, when 4 > 1, |aa| becomes of order unity,
nearly independently of the externally imposed ayp = &, = a(¢,). This in-
teresting non-perturbative behaviour was related in (44;45) to a mechanism of
spontaneous scalarization, akin to the well-known mechanism of spontaneous
magnetization of ferromagnets. See also (62) for a simple analytical descrip-
tion of the behaviour of a 4.

Let us also mention in passing that, in the case where A is a black hole, the
effective coupling strength « 4 actually vanishes (43). This result is related to
the impossibility of having (regular) ‘scalar hair” on a black hole.

We have sketched above the first part of the matching approach to the mo-
tion and timing of strongly self-gravitating bodies: the ‘internal problem’.
It remains to describe the remaining ‘external problem’. As already men-
tionned (and emphasized, in the present context, by Eardley (21; 25)), the
most efficient way to describe the external problem is, instead of matching in
detail the external fields (gj,,, @) to the fields generated by each body in its
comoving frame, to ‘skeletonize’ the bodies by point masses. Technically this
means working with the effective action

dPx
5 = 167TG/ gi*R. — 281 0,9 0,9]

Zc/mA ¢(z4) —gW(zA)dzﬁ dz'y)'/?, (A.5.34)
A

where the function m 4 (¢) in the last term on the R.H.S. is the function m 4 (¢,)
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obtained above by solving the internal problem. Eq. indicates that
the argument of this function is taken to be ¢, = ¢(z4), i.e., the value that
the scalar field (as viewed in the external problem) takes at the location zi of
the center of mass of body A. However, as body A is described, in the exter-
nal problem, as a point mass this causes a technical difficulty: the externally
determined field ¢(x) becomes formally singular at the location of the point
sources, so that ¢(z4) is a priori undefined. One can either deal with this
problem by coming back to the physically well-defined matching approach
(which shows that ¢(z4) should be replaced by ¢,, the value of ¢ in an in-
termediate domain Ry < r < |z4 — zg|), or use the efficient technique of
dimensional regularization. This means that the spacetime dimension D in
Eq. is first taken to have a complex value such that ¢(z,) is finite,
before being analytically continued to its physical value D = 4.

One then derives from the action two important consequences for
the motion and timing of binary pulsars. First, one derives the Lagrangian
describing the relativistic interaction between N strongly self-gravitating bod-
ies (including orbital ~ (v/c)? effects, and neglecting O(v*/c*) ones) (25; 21}
43} 48). It is the sum of one-body, two-body and three-body terms.

The one-body action has the usual form of the sum (over the label A) of the
kinetic term of each point mass:

one-body 2 2
L = —mycy/1—0%/c?

1 1 (v%)? 1
_ 2 2 A
= —mpc"+ EmAvA + §mAc—2 + 0 (c_4) . (A.5.35)
Here, we use Einstein units, and the inertial mass m4 entering Eq. (A.5.35)
is my = my(¢po), where ¢ is the asymptotic value of ¢ far away from the
considered N-body system.

The two-body action is a sum over the pairs A, B of a term L% which
differs from the GR-predicted 2-body Lagrangian in two ways: (i) the usual
gravitational constant G appearing as an overall factor in Lif%()dy must be re-
placed by an effective (body-dependent) gravitational constant (in the appro-

priate units mentioned above) given by
Gap = G*(l-l-lXA DéB), (A.5.36)

and (ii) the relativistic (O(v?/c?)) terms in Li%()dy contain, in addition to those
predicted by GR, new velocity-dependent terms of the form
2-bod _ \Gapmamp (vq —vp)?
0TLyg " = (7as)

o -~ SRy (A.5.37)
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with ) o
’)/ABE’)/AB—lz—Zm. (A538)
In these expressions a4 = a4 (o) = dlnma(pg)/d¢g (see Eq. with
®a — ¢0)-
Finally, the 3-body action is a sum over the pairs B,C and over A (with
A # B, A # C, but the possibility of having B = C) of

bod -4\ GapGacmampmc
Lise = —(1+2B5c) 2

(A.5.39)
YABTAC

where

_ 1 114 ‘B 114
A _ pA BPARC

=pa-—1== , A.5.40
BC BC 2(1—|—0{40€B)(1+0640éc) ( )

with B4 = 94 (go)/9¢o (see Eq. with @, — o).

When comparing the strong-field results (A.5.36), (A.5.38)), (A.5.40) to their
weak-field counterparts (A.5.21), (A.5.22), (A.5.23) one sees that the body-
dependent quantity a4 replaces the weak-field coupling strength «( in all
quantities which are linked to a scalar effect generated by body A. Note
also that, in keeping with the ‘3-body’ nature of Eq. (A.5.39), the quantity
B4 — 1is linked to scalar interactions which are generated in bodies B and
C and which nonlinearly interact on body A. The notation used above has
been chosen to emphasize that y4p and 4. are strong-field analogs of the
usual Eddington parameters 7"™N, BN 5o that 95 and B4 are strong-field
analogs of the ‘post-Einstein” 1PN parameters 4 and 8 (which vanish in GR).
Indeed the usual PPN results for the post-Einstein terms in the O(1/c?) 2-

body and 3-body Lagrangians are obtained by replacing in Egs. (A.5.37) and
A539 ’?AB — ’7, BSC — Band GAB — G.

The non-perturbative strong-field effects discussed above show that the
strong self-gravity of neutron stars can cause y 4p and ﬁ‘gc to be significantly
different from their GR values ’yGR =1, ﬁGR = 1, in some scalar-tensor
theories having a small value of the basic coupling parameter ag (so that
PPN 1 oc% and ,BPPN —1 o« By oc% are both small). For instance, Fig.
shows that it is possible to have a4 ~ ap ~ £0.6 which implies y4p —1 ~
—0.53, i.e., a 50% deviation from GR! Even larger effects can arise in 4. — 1
because of the large values that B4 = da4/d¢@p can reach near the sponta-

neous scalarization transition (45).

Those possible strong-field modifications of the effective Eddington pa-
rameters 7y 45, Bac, which parametrize the ‘first post-Keplerian’ (1PK) effects
(i.e., the orbital effects ~ v?/c? smaller than those entailed by the Lagrangian

Z% ma vi + % Y., Gapmamp/7r4p), can then significantly modify the usual
A A#B
GR predictions relating the directly observable parametrized post-Keplerian
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(PPK) parameters to the values of the masses of the pulsar and its compan-
ion. As worked out in Refs. (25} 41} 43; 45) one finds the following modified
predictions for the PPK parameters k = (w) /n, r and s:

KM (ma,mp) = 1 —332 (GAB(mi;L "s) n)2/3
R e o TSR
M (m 4, mg) = Gog mg, (A.5.42)
5t (114, ) = n}éc; {GAB(mi;mB)n}_l/g . (A543)

Here, the label A refers to the object which is timed (‘the pulsar’EI), the la-
bel B refers to its companion, x4 = a4 sini/c denotes the projected semi-
major axis of the orbit of A (in light seconds), X4 = my/(my + mp) and
Xp = mp/(ma + mp) = 1 — X, the mass ratios, n = 27/ P, the orbital fre-
quency and Gog = G« (1 + agap) the effective gravitational constant mea-
suring the interaction between B and a test object (namely electromagnetic
waves on their way from the pulsar toward the Earth). In addition one must
replace the unknown bare Newtonian G by its expression in terms of the one
measured in Cavendish experiments, i.e., G, = G/ (1 + a3) as deduced from

Eq. (A-521).

The modified theoretical prediction for the PPK parameter y entering the
‘Einstein time delay” Ag, Eq. (A.3.16), is more complicated to derive because
one must take into account the modulation of the proper spin period of the
pulsar caused by the variation of its moment of inertia I, under the (scalar)
influence of its companion (25; 21} 45). This leads to

th(

my, mB)

v e XB (GAB(mA—i—mB)n)z/S

El—l—[XAOCB c3
[XB(l +op DCB) +1+ka IXB] , (A.5.44)

where k4 (¢@o) = —9InI4(¢o)/9¢o (see Eq. (A.5.33) with ¢, — ¢¢). Numeri-
cal studies (45) show that k4 can take quite large values. Actually, the quan-

tity k4 ap entering (A.5.44) blows up near the scalarization transition when
ag — 0 (keeping B < 0 fixed). In other words a theory which is closer to GR
in weak-field conditions predicts larger deviations in the strong-field regime.

The structure dependence of the effective gravitational constant G 45, Eq. (A.5.36),

22In the double binary pulsar, both the first discovered pulsar and its companion are pulsars.
However, the companion B is a non recycled, slow pulsar whose motion is well described
by Keplerian parameters only.
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has also the consequence that the object A does not fall in the same way
as B in the gravitational field of the Galaxy. As most of the mass of the
Galaxy is made of non strongly-self-gravitating bodies, A will fall toward
the Galaxy with an acceleration o« G4, while B will fall with an acceleration
o Gpo. Here, as above, Gyg = Goa = G«(1 4+ agay) is the effective gravita-
tional constant between A and any weakly self-gravitating body. As pointed
out in Ref. (52) this possible violation of the universality of free fall of self-
gravitating bodies can be constrained by using observational data on the class
of small-eccentricity long-orbital-period binary pulsars. More precisely, the
quantity which can be observationally constrained is not exactly the violation
Apg = (Goa — Gop)/G = (1+a3) 1 (apas — g ap) of the strong equivalence
principle [which simplifies to Agg = (Goa — G)/G = (1 +a) Hagaas — a3)
in the case of observational relevance where one neglects the self-gravity of
the white-dwarf companion] but rathe@ (43))

3
(1+ay DCB)_3/2(1+IX(2))_1(1X0 ap—waoap). (A5.45)

| 245 — (Xa BB, + X ) +2)
Aeffectlve = YAB AﬁAA B PBB

Here, the index B (= white-dwarf companion) can be replaced by 0 (weakly
self-gravitating body) so that, for instance, yap = Y40 = 1 —2waa a0/ (1 +

apang) = (1—waag)/(1+aang), as deduced from Eq. (A.5.38).

It remains to discuss the possible strong-field modifications of the theo-
retical prediction for the orbital period derivative P, = Plgh(m A,mp). This
is obtained by deriving from the effective action the energy lost by
the binary system in the form of fluxes of spin-2 and spin-0 waves at in-
tinity. The needed results in a generic tensor-scalar theory were derived in
Refs. (43;48) (in addition one must take into account the tensor-scalar mod-
ification of the additional ‘varying-Doppler’ contribution to the observed P,
due to the Galactic acceleration (47)). The final result for P, is of the form

smonopole sdipole squadrupole squadrupole

s galagtic h pgalactic
+ PP+ 6 D , (A.5.46)

P (ma,mg) =

Pmonopole

" is (heuristicall b related to the monopolar flux

where, for instance,

2This refinement is given here for pedagogical completeness. However, in practice, the
lowest-order result A ~ (1+a3) "} (agas — a3) ~ agas — a3 is accurate enough.

24Contrary to the GR case where a lot of effort was spent to show how the observed P, was
directly related to the GR predictions for the (v/c)-accurate orbital equations of motion
of a binary system (23), we use here the indirect and less rigorous argument that the
energy flux at infinity should be balanced by a corresponding decrease of the mechanical

energy of the binary system.
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of spin-0 waves at infinity. The term P%adrupo}e corresponds to the usual
P Y bg P
quadrupolar flux of spin-2 waves at infinity. It reads:

) 1927 mam
Pqu*adrupole M4, m _ A"'B A547
bg (.4, 1) 5(1+wagap) (ma+mp)? ( )

Gap(ma+mp)n\°">1+73¢2/24+37¢*/96
3 (1—¢2)7/2 ’

with Gap = G.(1+aaap) = G(1+aaap)/(1+ a3), where G, is the ‘bare’
gravitational constant appearing in the action, while G is the gravitational
constant measured in Cavendish experiments. The flux is the only
one which survives in GR (although without any & 4-related modifications).
Among the several other contributions which arise in tensor-scalar theories,
let us only write down the explicit expression of the contribution to (A.5.46)
coming from the dipolar flux of scalar waves. Indeed, this contribution is, in
most cases, the dominant one (21) because it scales as (v/c)?, while the monopo-
lar and quadrupolar contributions scale as (v/c)°. It reads

Gimygmpgn 1+4+62/2 5

sdipole
P — .
c3(ma +mp) (1—e2)5/2 (24 = ap)

" (A.5.48)

(mA,mB) = 27

Note that the dipolar effect vanishes when a4 = ap. Indeed, a
binary system made of two identical objects (A = B) cannot select a pre-
ferred direction for a dipole vector, and cannot therefore emit any dipolar
radiation. This also implies that double neutron star systems (which tend to
have my ~ mp ~ 1.35 M) will be rather poor emitters of dipolar radiation
(though still tends to dominate over the other terms in (A.5.46), be-
cause of the remaining difference (m4 — mp)/(my + mp) # 0). By contrast,
very dissymmetric systems such as a neutron-star and a white-dwarf (or a
neutron-star and a black hole) will be very efficient emitters of dipolar ra-
diation, and will potentially lead to very strong constraints on tensor-scalar
theories. See below.

A.5.6. Theory-space analyses of binary pulsar data

Having reviewed the theoretical results needed to discuss the predictions of
alternative gravity theories, let us end by summarizing the results of various
theory-space analyses of binary pulsar data.

Let us first recall what are the best, current solar-system limits on the two
1PN “post-Einstein’ parameters 4 = 4**N — 1 and = PPN — 1. They are:

7 =(21423)x107°, (A.5.49)

from frequency shift measurements made with the Cassini spacecraft (92),
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data
which supersedes the constraint
7= (-17+45)x107* (A.5.50)
from VLBI measurements (93)),
29— B| <3x1073, (A.5.51)
from Mercury’s perihelion shift (77;194), and
4B — 4 = (44+£45) x 1074, (A.5.52)

from Lunar laser ranging measurements (95).

Concerning binary pulsar data, we can make use of the published mea-
surements of various Keplerian and post-Keplerian timing parameters in the
binary pulsars: PSR 1913+16 (46), PSR B1534+12 (50), PSR J1141—6545 (56)
and PSR J0737—3039A+B (58} 59} 160). In addition, we can usﬂ the recently
updated limit on the parameter A measuring a possible violation of the strong
equivalence principle (SEP), namely |A| < 5.5 x 107 at the 95% confidence
level (53).

This ensemble of solar-system and binary-pulsar data can then be ana-
lyzed within any given parametrized theoretical framework. For instance,
one might work within

(i) the 4-parameter framework Ty(7, B; €, ) (81) which defines the 2PN ex-
tension of the original (Eddington) PPN framework Ty(-y, B); or

(ii) the 2-parameter class of tensor-mono-scalar theories T; (g, Bo) (44); or
(iii) the 2-parameter class of tensor-bi-scalar theories T (B, B”) (43).

Here, the index 0 on Ty(7, B; €,{) is a reminder of the fact that this frame-
work is not a family of specific theories (it contains zero explicit dynamical
tields), but is a parametrization of 2PN deviations from GR. As a conse-
quence, its use for analyzing binary pulsar data is somewhat ill-defined be-
cause one needs to truncate the various timing observables (which are func-
tions of the compactness of the two bodies A and B, say P'X = f(c4,cg))
at the 2PN order (i.e. essentially at the quadratic order in c4 and/or cp). For
some observables (or for product of observables) there might be several ways
of defining this truncation. In spite of this slight inconvenience, the use of the
To(7, B; €, () framework is conceptually useful because it shows very clearly

BThere is, however, a caveat in the theoretical use one can make of the phenomenological
limits on A. Indeed, in the small-eccentricity long-orbital-period binary pulsar systems
used to constrain A one does not have access to enough PK parameters to measure the
pulsar mass m 4 directly. As the theoretical expression of A ~ aga 4 — a3 depends on 4
(through « 4), one needs to assume some fiducial value of m 4 (say m4 ~ 1.35 Mg).
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why and how binary-pulsar data can probe the behaviour of gravitational
theories beyond the usual 1PN regime probed by solar-system tests.

For instance, the parameter Ay = m® " /miJe — 1 measuring the strong

equivalence principle (SEP) violation in a neutron star has, within the To(, B ;€,0)
framework, a 2PN-order expansion of the form (43} 81)

Ag = —% (4B —F)ca+ (g +O+ 0(5)) b, (A.5.53)

where cq = =290 ~ L(U)y, by = L (UP)4 ~ Bch, with B ~ 1.026
and cy4 ~ kmu /Mg with k ~ 0.21. The general result is compatible
with the result quoted in subsection within the context of the theory
T»(B', B”) when taking into account the fact that, within T,(8’, B”’), one has
B=%=0e=p and { =0 [and that B’ parametrizes some effects beyond
the 2PN level].

On the example of Eq. one sees that, after having used solar-system
tests to constrain the first contribution on the RHS to a very small value, one
can use binary-pulsar tests of the SEP to set a significant limit on the combina-
tion % € + ¢ of 2PN parameters. Other pulsar data then yield significant limits
on other combinations of the two 2PN parameters € and {. The final conclu-
sion is that binary-pulsar data allow one to set significant limits (around or
better than the 1% level) on the possible 2PN deviations from GR (in contrast
to solar-system tests which are unable to yield any limit on € and () (81). For
a recent update of the limits on € and ¢, which makes use of recent pulsar
data see (62).

Let us now briefly discuss the use of mini-space of theories, such as Ty («, Bo)
or To(B', B"), for analyzing solar-system and binary-pulsar data. The basic
methodology is to compute, for each given theory (e.g. for each given values
of ap and B if one chooses to work in the T; («g, Bo) theory space) a goodness-
of-fit statistics x2(ao, Bo) measuring the quality of the agreement between the
experimental data and the considered theory. For instance, when considering
the timing data of a particular pulsar, for which one has measured several PK
parameters p; (i = 1, ..., n) with some standard deviations (Toibs, one defines,
for this pulsar

(a0, fo) = min Y (052%)72(p"* (ao, fos ma, mp) — p2*)2,  (A5.54)

where ‘min’ denotes the result of minimizing over the unknown masses m 4, mp
and where p?heory(zxo, Bo; ma, mp) denotes the theoretical prediction (within
T1 (o, Bo)) for the PK observable p; (given also the observed values of the

Keplerian parameters).

The goodness-of-fit quantity x*(ap, Bo) will reach its minimum x2, for
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some values, say zx{)“in, ,Bf)“in, of ag and By. Then, one focusses, for each pulsar,
on the level contours of the function

A x* (w0, Bo) = X3 (20, Bo) — X - (A.5.55)

Each choice of level contour (e.g. Ax> = 1 or A x*> = 2.3) defines a certain
region in theory space, which contains, with a certain corresponding ‘con-
fidence level’, the ‘correct’ theory of gravity (if it belongs to the considered
mini-space of theories). When combining together several independent data
sets (e.g. solar-system data, and different pulsar data) we can define a total
goodness-of-fit statistics x2,, (o, Bo), by adding together the various individ-
ual x2(ag, Bo)- This leads to a corresponding combined contour A x2,,(xo, Bo)-

Let us end by briefly summarizing the results of the theory-space approach
to relativistic gravity tests. For detailed discussions the reader should consult
Refs. (43} 49; 45; 29; 91)), and especially the recent update (62) which uses the
latest binary-pulsar data.

Regarding the two-parameter class of tensor-bi-scalar theories T»(f', B”)
the recent analysis (62) has shown that the A x?(8, B”") corresponding to the
double binary pulsar PSR J0737—3039 was defining quite a small elliptical
allowed region in the (p/, B”) plane. By contrast the other pulsar data define
much wider allowed regions, while the strong equivalence principle tests de-
fine (in view of the theoretical result A ~ 1+ 1 BB/(c% — ¢3)) a thin, but in-
finitely long, strip |f| < cst. in the (B, B”) plane. This highlights the power
of the double binary pulsar in probing certain specific strong-field deviations
from GR.

Contrary to the T,(B’, B”") tensor-bi-scalar theories, which were constructed
to have exactly the same first post-Newtonian limit as GR@ (so that solar-
system tests put no constraints on g’ and p”), the class of tensor-mono-scalar
theories Ty (g, Bo) is such that its parameters ay and By parametrize both the
weak-field 1PN regime (see Egs. and above) and the strong-
field regime (which plays an important role in compact binaries). This means
that each class of solar-system data (see Eqgs. (A.5.49)—(A.5.52) above) will
define, via a corresponding goodness-of-fit statistics of the type, say

X%assini(“()/ [30) — (Uf(y:aSSini)fZ (,7the0ry(oc0’ ,80) . ,?Cassini)z

a certain allowed region@ in the (g, Bo) plane. As a consequence, the anal-

26However, this could be achieved only at the cost of allowing some combination of the two
scalar fields to carry a negative energy flux.

%7 Actually, in the case of the Cassini data, as it is quite plausible that the positive value of the
published central value 425" = 12,1 x 1072 is due to unsubtracted systematic effects,
we use asassmi = 2.3 x 1075 but <l = (. Otherwise, we would get unreasonably

strong 1o limits on a because tensor-scalar theories predict that 7 must be negative, see

Egs. (A.5.22) and (A.5.23).
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ysis in the framework of the Tj(ag, Bo) space of theories allows one to com-
pare and contrast the probing powers of solar-system tests versus binary-
pulsar tests (while comparing also solar-system tests among themselves and
binary-pulsar ones among themselves). The result of the recent analysis (62)
is shown in Figure

B1534+12

solar

system /% B1913+16

___J1141-6545

[0}
general relativity o—= ¢

Figure A.3.: Solar-system and binary-pulsar constraints on the two-
parameter family of tensor-mono-scalar theories Tj(ao, o). Figure taken
from (62).

In Fig. the various solar-system constraints (A.5.49)-(A.5.52) are con-
centrated around the horizontal By axis. In particular, the high-precision
Cassini constraint is the lower small grey strip. The various pulsar con-
straints are labelled by the name of the pulsar, except for the strong equiv-
alence principle constraint which is labelled SEP. Note that General Relativ-
ity corresponds to the origin of the («g, Bp) plane, and is compatible with all
existing tests.

The global constraint obtained by combining all the pulsar tests would,
to a good accuracy, be obtained by intersecting the various pulsar-allowed
regions. One can then see on Fig. that it would be comparable to the pre-
Cassini solar-system constraints and that its boundaries would be defined
successively (starting from the left) by 191316, 1141—-6545, 0737—-3039, 1913416
again and 1141—6545 again.

A first conclusion is therefore that, at the quantitative level, binary-pulsar
tests constrain tensor-scalar gravity theories as strongly as most solar-system
tests (excluding the exceptionally accurate Cassini result which constrains a3
to be smaller than 1.15 x 107>, i.e. |ap| < 3.4 x 1073). A second conclusion
is obtained by comparing the behaviour of the solar-system exclusion plots
and of the binary-pulsar ones around the negative By axis. One sees that
binary-pulsar tests exclude a whole domain of the theory space (located on
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the left of By < —4) which is compatible with all solar-system experiments
(even when including the very tight Cassini constraint). This remarkable
qualitative feature of pulsar tests is a direct consequence of the existence of
(non-perturbative) strong-field effects which start developing when the prod-
uct —Boca (with ¢4 denoting, as above, the compactness of the pulsar) be-
comes of order unity.

A.6. Motion and radiation of binary black holes:
post-Newtonian-expanded results

In Section we mentioned that the 2.5PN accurate equations of motion
were sufficiently accurate to interpret binary pulsar observations. By
contrast, the forthcoming observations of gravitational wave signals from
inspiralling binary black holes (and also inspiralling binary neutron stars,
or mixed black-hole-neutron-star systems) has posed to theorists the double
challenge of: (i) deriving more accurate equations of motion, and (ii) deriving
accurate expressions for the waveforms emitted by inspiralling, and even co-
alescing, compact binaries. Indeed, the premier targets for LIGO/VIRGO/GEO
are the waveforms emitted during the late inspiral phase of compact bina-
ries, as well as during the subsequent ‘plunge” and ‘merger” phases. During
these phases the basic PN expansion parameter 7, = GM/ ¢?D ~ (Vopbital /C)?
ceases to be numerically very small, and starts approaching values of order
unity. It might then seem hopeless to tackle the motion and radiation of such
close binary systems by means of a PN-expansion-type analytical approach.
However, there are two reasons why it is meaningful, and probably very use-
ful, to tackle the motion of close compact binaries by an analytical approach.

The first reason is the need to describe with high accuracy the phasing of
the gravitational waveforms emitted during the inspiral phase (i.e. before the
plunge and merger). During the inspiral phase, the PN expansion parameter
7. stays most of the time significantly below 1, though it increases to reach
values of order ~ £ at the end of the inspiral. It is then a priori reasonable
to expect that the expansions of interesting physical quantities in powers of
e will converge sufficiently rapidly during most of the inspiral to allow one
to deduce physically meaningful results from a PN expansion truncated at
a large enough order. This motivated the efforts of several groups for de-
riving equations of motion more accurate than the 2.5PN level mentioned
above, and for deriving correspondingly accurate gravitational-wave gener-
ation formalisms. These efforts will be briefly reviewed in this Section.

The second reason is that there might be ways of improving the convergence
of PN expansions by using resummation methods. Two such methods have
been particularly studied: one based on Padé approximants, and the other
one on a novel approach to the dynamics of compact binaries called the ‘ef-
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fective one body” approach.

Before discussing (in the next Section) these two resummation techniques,

let us briefly recall the state of the art in analytical approaches to the motion
and radiation of binary black holeﬂ

Two different gravitational-wave generation formalisms have been developed
up to a high PN accuracy: (i) the Blanchet-Damour-lIyer formalism (96; 97} 98;
99; 100; 101} [102) combines a multipolar post-Minkowskian (MPM) expan-
sion in the exterior zone with a post-Newtonian expansion in the near zone;
while (ii) the Will-Wiseman-Pati formalism (103} [104; 105} 106)) uses a direct
integration of the relaxed Einstein equations. These formalisms were used
to compute increasingly accurate estimates of the gravitational waveforms
emitted by inspiralling binaries. These estimates include both normal, near-
zone generated post-Newtonian effects (at the 1PN (97), 2PN (107; 108; [103),
and 3PN (109; 110) levels), and more subtle, wave-zone generated (linear
and non-linear) ‘tail effects” (100; 111; 112 [102). However, technical prob-
lems arose at the 3PN level. The representation of black holes by ‘delta-
function” sources causes the appearance of dangerously divergent integrals in
the 3PN multipole moments. The use of Hadamard (partie finie) regulariza-
tion did not allow one to unambiguously compute the needed 3PN-accurate
quadrupole moment. Only the use of the (formally) diffeomorphism-invariant
dimensional regularization method (i.e. analytic continuation in the dimension
of space d) allowed one to complete the 3PN-level gravitational-radiation for-
malism (113).

In parallel with the development of 3PN-accurate gravitational radiation
formalisms, several groups (notably Jaranowski-Schéfer and Blanchet-Faye)
extended the PN-type computation of the equations of motion of binary black
holes beyond the 2.5PN level recalled in Section above. Here also, the
representation of black holes by delta-function sources and the use of the
(non diffeomorphism invariant) Hadamard regularization method led to am-
biguities in the computation of the badly divergent integrals that enter the
3PN equations of motion (114; 115). By contrast, the use of the (diffeomor-
phism invariant) dimensional reqularization method allowed one to complete
the determination of the 3PN-level equations of motion (116;[117). They have
also been derived by an Einstein-Infeld-Hoffmann-type surface-integral ap-
proach (118). The 3.5PN terms in the equations of motion are also known
(106} 11195 [120).

The works mentioned in this Section (see (121) for a detailed account and
more references) finally lead to PN-expanded results for the motion and ra-
diation of binary black holes. For instance, the equations of motion are given

28For simplicity, we shall phrase the results in the context of binary black holes. Actually, we
use the ‘effacement of internal structure” mentioned above to skeletonize the black holes
by means of delta-function sources. This means that, apart from quadrupole-deformation
effects, the results are also valid for binary systems comprising neutron stars.
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in a form which generalize those of Section above, namely (@ = 1,2;
i=1,2,3)

dzziz icons iRR
R = A, + A, (A.6.1)
where
A — Ao+ c2Ar+c A+ ¢ 0 A, (A.6.2)

denotes the ‘conservative’ 3PN-accurate terms, while
ARR — =5 A5 + 77 Ay, (A.6.3)

denotes the time-asymmetric contibutions, linked to ‘radiation reaction’.

On the other hand, if we consider for simplicity the inspiralling motion
of a quasi-circular binary system, the essential quantity describing the emit-
ted gravitational waveform is the phase ¢ of the quadrupolar gravitational
wave amplitude h(t) ~ a(t)cos(¢(t) 4+ 6). PN theory allows one to derive
several different functional expressions for the gravitational wave phase ¢,
as a function either of time or of the instantaneous frequency. For instance,
as a function of time, ¢ admits the following explicit expansion in powers
of 6 = vc3(t. — t)/5GM (where t. denotes a formal ‘time of coalescence’,
M = mqy +my and v = mq my/ M?)

7
¢(t) = g —v 167/ (1 +Y (an+al, In6) 9”/8> ) (A.6.4)

n=2

with some numerical coefficients a,,a), which depend only on the dimen-
sionless (symmetric) mass ratio v = mj my/ M?. The derivation of the 3.5PN-
accurate expansion uses both the 3PN-accurate conservative accelera-
tion (A.6.2) and a 3.5PN extension of the (fractionally) 1PN-accurate radiation
reaction acceleration obtained by assuming a balance between the en-
ergy of the binary system and the gravitational-wave energy flux at infinity
(see, e.g., (121)).

A.7. Motion and radiation of binary black holes:
the Effective One Body approach

The PN-expanded results briefly reviewed in the previous Section are ex-
pected to yield accurate descriptions of the motion and radiation of binary
black holes during their inspiralling stage, say up to the moment where the
PN expansion parameter 7, = GM/c?D reaches the value ~ % where the or-
bital motion is expected to become dynamically unstable (‘last stable (circu-
lar) orbit” and beginning of a ‘plunge’ leading to the merger of the two black
holes). One possible strategy for having a complete description of the motion
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and radiation of binary black holes, covering all the stages (inspiral, plunge,
merger, ring-down), would then be to try to ‘stitch together” PN-expanded
analytical results describing the inspiral phase with 3d numerical results de-
scribing the end of the inspiral, the plunge, the merger and the ring-down of
the final black hole.

However, we wish to argue that it might be possible to do a better use of
all the analytical information contained in the PN-expanded results (A.6.1)-
(A.6.3). The basic claim (first made in (16; [17)) is that the use of suitable
resummation methods should allow one to describe, by analytical toolsF_T;L a suf-
ficiently accurate approximation of the entire waveform, from inspiral to ring-
down, including the non-perturbative plunge and merger phases. To reach
such a goal, one needs to make use of several tools: (i) resummation meth-
ods, (ii) exploitation of the flexibility of analytical approaches, (iii) extraction
of the non-perturbative information contained in various numerical simu-
lations, (iv) qualitative understanding of the basic physical features which
determine the waveform.

Before coming to grasp with some of these issues, let us emphasize some
conceptual aspects of this programme. Recently, an important breakthrough
in numerical relativity (122} 123; 124} 125; [126] 127) has led to the computa-
tion of the gravitational waveform emitted during the late inspiral, plunge,
merger and ring-down of equal-mass (v = %), non-spinning binary black
holes. Some sample numerical simulations have also begun to explore the

multi-parameter space of coalescing unequal-mass (0 < v < 1), spinning (S,

S») black hole binaries (see, e.g., (128} [129)). In spite of the high computer
power used in these simulations, the calculation of one waveform, corre-
sponding to specific values of the continuous parameters (v, d1, 01, ¢1, 42,62, ¢2)
parametrizing the considered initial binary state, takes a long time. It would
be therefore extremely useful, for detection purposes, to have in hand a (quasi-
)analytical approach which would combine the crucial non-perturbative in-
formation that we can get from numerical simulations, with the rich perturba-
tive information that has been acquired in many years of work on the theory
of the motion and radiation of binary black holes. The claim here is that the
Effective One Body (EOB) approach offers enough flexibility in its definition
and implementation to be able to smoothly combine these two types of infor-
mation. First results towards this goal are given in Refs. (130} 131} 132} 133}
134;135).

Let us start by discussing the first tool used in the EOB approach: the

2Here we use the adjective ‘analytical’ for methods that solve explicit (analytically given)
ordinary differential equations (ODE), even if one uses standard (Runge-Kutta-type) nu-
merical tools to solve them. The important point is that, contrary to 3d numerical relativ-
ity simulations, numerically solving ODE'’s is extremely fast, and can therefore be done
(possibly even in real time) for a dense sample of theoretical parameters, such as orbital
(v=mymy/M,...)orspin (4] = Sl/Gm%, 01, ¢1,...) parameters.
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systematic use of resummation methods. Two such methods have been em-
ployed (and combined), and some evidence has been given that they do sig-
nificantly improve the convergence properties of PN expansions. The first
method is the use of Padé approximants. It has been shown in Ref. (12) that
near-diagonal Padé approximants of the radiation reaction force ’J’m seemed
to provide a good representation of I down to the last stable orbit (which is
expected to occur when D ~ 6GM/c?, i.e. when 7, ~ %). The second method
is a novel approach to the dynamics of compact binaries, which constitutes
the core of the Effective One Body (EOB) method. The EOB method was in-
troduced in (16} [17), and was further extended to the 3PN level in (136), and
by including spin effects in (137).

For simplicity of exposition, let us first explain the EOB method at the
2PN level. The starting point of the method is the 2PN-accurate Hamiltonian
describing (in Arnowitt-Deser-Misner-type coordinates) the conservative, or
time symmetric, part of the equations of motion (i.e. the truncation
AN = Ay + C_2A2 + C_4A4 of Eq ) say HZPN(QI — qz,p1,p2). By
going to the center of mass of the system (p; + p» = 0), one obtains a PN-
expanded Hamiltonian describing the relative motion, q = q1 — q2, p = p1 =

—Dp2:
relative 1 1
HypN ' “(q,p) = Ho(gq, p) + 2 Hy(q,p) + a Hy(q,p), (A.7.1)

where Hy(q,p) = ﬁp2 + % (with M = my + mp and p = mq my/ M) cor-
responds to the Newtonian approximation to the relative motion, while H,
describes 1PN corrections and Hy 2PN ones. It is well known that, at the
Newtonian approximation, Hy(g, p) can be thought of as describing a “test
particle” of mass p orbiting around an ‘external mass” GM. The EOB ap-
proach is a general relativistic generalization of this fact. It consists in looking
for an ‘external spacetime geometry’ g;’f,t(xA ; GM) such that the geodesic dy-
namics of a ‘test particle’ of mass y within g‘f},‘f(xA, GM) is equivalen (when
expanded in powers of 1/¢?) to the original, relative PN-expanded dynamics
(A.7.1). The advantage of the EOB method is that it compactifies the informa-
tion contained in the rather complicated PN-expanded Hamiltonian (A.7.1)
into the much simpler PN-expansions of the two independent metric coeffi-

30We henceforth denote by F the Hamiltonian version of the radiation reaction term ARR,
Eq. (A.6.3), in the (PN-expanded) equations of motion. It can be heuristically computed
up to (absolute) 5.5PN (109; [138; 113) and even 6PN (143) order by assuming that the
energy radiated in gravitational waves at infinity is balanced by a loss of the dynamical
energy of the binary system.

31See the above references to see the precise sense in which the two dynamics are equivalent.
Let us just say here that the best way to think about it is to think of both dynamics in

quantum terms as two sets of quantized energy spectra Eg‘f}la\}i"e(n,é), Eext(n, £) that are

required to be mapped onto each other by an energy rescaling Eé%lﬁfi"e = f(Eext)-
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cients A(R), B(R) of the ‘external’ geometry

g dxt dx’ = —A(R) ¢>dT? + B(R) dR* + R*(d6” +sin*0dg*) . (A.7.2)
For instance, the crucial ‘g§3"" metric coefficient A(R) (which fully encodes
the energetics of circular orbits) is originally given, at 2PN order, by the PN

expansion
Apn(R) =1 —2u+2vu®, (A.7.3)

where 1 = GM/c?*R and v = u/M=mymy/(my + mz)z.

The dimensionless parameter v = u/ M varies between 0 (in the test mass
limit m; < mpy) and }1 (in the equal-mass case m; = mjy). When v — 0,
Eq. yields back, as expected, the well-known Schwarzschild time-time
metric coefficient —g5S™ = 1 —2u = 1 —2GM/c?R. One therefore sees in
Eq. the role of v as a deformation parameter connecting a well-known
test-mass result to a non trivial and new 2PN result. It is also to be noted
that the 1PN EOB result A;pn(R) = 1 — 2u happens to be v-independent,
and therefore identical to AS™ = 1 — 2u. This is remarkable in view of
the many non-trivial v-dependent terms in the 1PN relative dynamics. The
physically real 1PN v-dependence happens to be fully encoded in the func-
tion f(E) mapping the two energy spectra which was found to be always
given by a very simple result:

1E
Exos = Ereal (1 +5 Ajfca21> . (A.7.4)

Let us emphasize the remarkable simplicity of the 2PN result (A.7.3). The
2PN Hamiltonian contains eleven rather complicated v-dependent
terms. After transformation to the EOB format, the dynamical information
contained in these eleven coefficients gets compactified into the very simple
additional contribution +2vu® in A(R), together with an equally simple
contribution in the radial metric coefficient: (A(R)B(R));pn = 1 — 6vu?.
This compactification process is even more drastic when one goes to the next
(conservative) post-Newtonian order: the 3PN level, i.e. additional terms of
order O(1/¢®) in the Hamiltonian . As mentioned above, the complete
obtention of the 3PN dynamics has represented quite a theoretical challenge
and the final, resulting Hamiltonian is quite complicated. Even after going
to the center of mass frame, the 3PN additional contribution Clé He(q, p) to
Eq. introduces eleven new complicated v-dependent coefficients. Af-
ter transformation to the EOB format (16), these eleven new coefficients get
‘compactified” into only three additional terms: (i) an additional contribution
to A(R), (ii) an additional contribution to B(R), and (iii) a O(p*) modifica-
tion of the ‘external’ geodesic Hamiltonian. For instance, the crucial 3PN g&st
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metric coefficient becomes
Aspn(R) =1 —2u+2vud +agvut, (A.7.5)
where o4 41
Gy =5 — g = 18.6879027 . (A.7.6)

The fact that the 3PN coefficient a4 in the crucial “effective radial potential’
Aspn(R), Eq. (A.7.5), is rather large and positive indicates that the v-dependent
nonlinear gravitational effects lead, for comparable masses (v ~ 411)' to a last
stable (circular) orbit (LSO) which has a higher frequency and a larger bind-
ing energy than what a naive scaling from the test-particle limit (v — 0)
would suggest. Actually, the PN-expanded form (A.7.5) of Azpn(R) does not
seem to be a good representation of the (unknown) exact function Agop(R)
when the (Schwarzschild-like) relative coordinate R becomes smaller than
about 6GM /c? (which is the radius of the LSO in the test-mass limit). It was
therefore suggested (136) to further resumf Aspn(R) by replacing it by a
suitable Padé (P) approximant. For instance, the replacement of Aspn(R) by

_ 14+ nu
14 dyu+ dou? + dsud

AY(R) = P;[Aspn(R)] (A.7.7)

ensures that the v = % case is smoothly connected with the v = 0 limit.

The use of was suggested before one had any (reliable) non-perturbative
information on the binding of close black hole binaries. Later, a comparison
with some ‘waveless” numerical simulations of circular black hole binaries
(130) has given some evidence that is physically adequate. There it
was also emphasized that, in principle, the comparison between numerical
data and EOB-based predictions should allow one to determine the effect
of the unknown higher PN contributions to Eq. (A.7.5). For intance, one can
add a 4PN-like term + as v #° in Eq. lb , and then Padé the resulting radial
function, say A} = P} [AspN + a5 v u°]. Comparing the predictions of A} [as] to
numerical data might then determine what is the physically preferred ‘effec-
tive’ value of the unknown coefficient a5. This is an example of the useful flex-
ibility of analytical approaches: the fact that one can tap numerically-based,
non-perturbative information to improve the EOB approach.

As recently emphasized (134), it is quite useful to tap the information con-
tained in the Regge-Wheeler-Zerilli-type signals emitted by test-particles or-
biting black holes (small v limit). The numerical methods needed to compute
these non-perturbative phenomena (139;140; 133) are much simpler than the

32The PN-expanded EOB building blocks A(R), B(R), ... already represent a resummation of
the PN dynamics in the sense that they have compactified the many terms of the original
PN-expanded Hamiltonian within a very concise format. But one should not refrain to
further resum the EOB building blocks themselves, if this is physically motivated.
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ones needed in the comparable-mass case (v ~ 411)' but their results contain a
lot of useful physical insights, which are relatively easy to explore.

Let us finally sketch the overall structure of the EOB approach to the mo-
tion and radiation of binary black holes. Two of the basic elements are the
EOB Hamiltonian Hgog (g, p, S1, S2) and the radiation reaction force F(q, p, S1, S»).
We have indicated here that the EOB approach has been generalized to the
case of arbitrarily spinning black holes (137; [144; 141). This leads to ODE’s
for the evolution of the variables g, p, S7 and S»:

dg _ JHgop

dt op

dp  JHgop

T >y,
S - BHEOB s, . 8HEOB

it = asl X Sl , it = aSZ X SZ . (A78)

The knowledge of the time evolution of g(t), p(t), S1(t), S2(t) is then injected
into some gravitational-wave generation formalism, h;;(t) = H;i(q, p, S1, S2),
and used to compute the waveform h;?sP(t) during inspiral and plunge, up to
some ‘matching’ time t,,. [The analytical prediction Hij(q, p,S1,S>2) can be
computed with various accuracies: Ref. (17) used the lowest-order quadrupole
approximation, while Ref. (134) uses a 3PN-accurate, resummed quadrupo-
lar waveform.] Then, one continues this waveform to the merger and ring-
down phase by smoothly matching, around the matching time t,,, the EOB-

dynamics derived hglsp (t) to a pure ring-down waveform, made of the super-
position of several quasi-normal-mode frequencies: h""8(t) = ¥ ¢, e~ 0n(t—tm)
n

with 0, = a;, +1 wy,. Finally, this procedure defines a complete, quasi-analytical
EOB-based waveform (covering the full process from inspiral to ring-down)
as:

HEOB(E) = O(tn — t) Hyj(a(t), p(t), S1(t), Sa(t))
LBt — ) Y cmatched nlt—ta) (A79)

n

where 0(t) denotes Heaviside’s step function.

The lowest approximation to the complete EOB waveform was constructed
in (17). Since then, more accurate versions were constructed in (144; 134).
These EOB-type waveforms have been compared to full, 3d numerical rel-
ativity waveforms in (131} 142). When taking advantage of the flexibility
available in the EOB approach, an excellent agreement is reached between
the quasi-analytical EOB-based waveforms and the numerical relativity ones.
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A.8. Conclusions

In conclusion, we hope to have exemplified the way compact binaries set
theoretical challenges to General Relativity.

On the one hand, over the past thirty years, binary pulsars have stimulated
a lively dialogue between Experiment and Theory. This dialogue has led to
novel tests of General Relativity, which have confirmed, with high accuracy,
some of the strong-field and radiative aspects of Einstein’s theory. The re-
cent discovery of a double binary pulsar has greatly increased the number of
available strong-field tests of General Relativity.

On the other hand, the forthcoming detection of gravitational-wave sig-
nals in large interferometers is currently stimulating both analytical and nu-
merical investigations in inspiralling and coalescing binary black holes. For
the moment, this fosters a dialogue between numerical results and analyt-
ical methods. Hopefully, one will soon be able to compare the combined
analytical-numerical predictions to real gravitational wave data.
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