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3. Brief description

3.1. Foreword

The machinery for construction the exact solutions of the Einstein and Einstein-
Maxwell equations appeared at the end of 70th with implantation of the
Inverse Scattering Method (ISM) into General Relativity and discovery of
Gravitational Solitons. Solitons are remarkable solutions of certain nonlinear
wave equations which behave in several ways like extended particles. Soli-
ton waves where first found in some two-dimensional nonlinear differential
equations in fluid dynamics. In 1960’s - 1970’s by many authors, following
the pioneering discovery of Gardner, Green, Kruskal and Miura, a method for
construction the exact solutions of some special classes of non-linear equa-
tions, known as the Inverse Scattering Method (ISM) have been developed.
In 1978 V.Belinski and V.Zakharov (1; 2) extended the ISM also to General
Relativity to solve Einstein equations in vacuum for space-times that admit
an orthogonally transitive two-parameter group of isometries. Together with
ISM for generation of pure solitonic solutions they also formulated (1) the first
version of more general technique: the so-called Integral Equation Method
(IEM) for the vacuum gravitational field. In 1980 G.Alekseev (3) generalized
ISM to the Einstein-Maxwell equations and in 1985 he developed (4) most
general and quite different version of the Integral Equation Method for con-
struction the exact solutions of the coupled Einstein-Maxwell equations (the
most detailed and comprehensive account of his approach was given in his
later papers (5),(6)). Metrics of this sort depends only on two coordinates
(either one time-like and one space-like or both space-like), however such
ansatz includes many important physical cases such as number of cosmolog-
ical models, cylindrically symmetric waves, colliding plane waves and sta-
tionary axisymmetric solutions. Some of the solitonic solutions generated by
the ISM are most relevant in the gravitational physics, for example, the Kerr,
Schwarzschild and Kerr-Newman black holes solutions and their generaliza-
tions are solitonic solutions. In a nutshell the ISM procedure involves two
main steps. The first step consists in finding for a given nonlinear equation
a set of linear “Schrodinger-like” differential system for some “wave func-
tion” (so called spectral equations) whose integrability conditions coincide
with the original nonlinear equation of interest. The second step consists in
tinding the special class of solutions of this spectral equations which corre-
spond to the set of poles of the “wave function” in the complex plane of the
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3. Brief description

spectral parameter where from the solutions of the original nonlinear equa-
tion, known as solitons, can be extracted. The IEM procedure technically is
different and more general, however, in number of cases it permits to find the
solitonic solutions by a shorter way with respect to the ISM approach.

3.1.1. Vacuum and electrovacuum fields with two -
dimensional Abelian isometry group

For space-times admitting two-dimensional Abelian isometry groups with
the orbits which have the signature of internal metric (+—) or (——), the
four-dimensional metric can be written in the form

ds? = f(x!, x®)pudxtdx’ + gup(x!, x?)dx"dx’ (3.1.1)

where y,v = 1,2, a,b = 3,4; f > 0 and 1, = diag{ey, 2} with e; = £1,
€ = £1. The Einstein equations for such metrics can be written in the form
(g € GL(2,R)):

{ﬂ‘uvay(“avg'g_l):o H = —€16 H B: 01B = €102,

(3.1.2)
2 ayaV(X =0 82‘3 = —628106

gl =g, detg=en

The real symmetric 2 x 2-matrix function g = ||g,;|| depending on some two
of the four space-time coordinates (x!,x?), should satisfy the nonlinear par-
tial differential equations given above. These equations are equivalent to the
“dynamical part” of the Einstein equations. In accordance with these equa-
tions, the function a(x!, x?), representing the square root of the modulus of
determinant of g, should satisfy the linear two-dimensional d’Alembert or
Laplace equation for the signatures (+—) or (——) of conformal metric 7,
on the orbit space respectively. This “harmonic” property of the function a
allows to determine its “harmonically” conjugated function B(x!,x?). It is
convenient to use these functions as new local coordinates on the orbit space
of the isometry group. If the metric components which constitute the matrix
g would have been found as the solution of the above equations, the remain-
ing yet unknown function f(x!, x?) can be calculated (in principle, at least)
from the other (“constraint”) part of Einstein equations in quadratures (the
corresponding expressions can be found in the papers cited below).

For electrovacuum fields which admit the same types of space-time sym-
metry, i.e. for the fields with all components and potentials depending on
some two of the four space-time coordinates (x!,x?) and for both possible
signatures (+—) or (——) of the conformal metric 77, on the orbit space of
the isometry group, the four-dimensional metric and electromagnrtic poten-
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3.2. Inverse scattering approach to solution of vacuum Einstein equations
(“Lambda-solitons” and the Riemann - Hilbert problem)

tial can be written in the forms

ds? = f(xl,xz)qwdxydx" + gap (!, x?)dxdx?, Ai={A,=0,A:}
(3.1.3)
The Einstein - Maxwell equations for these electrovacuum fields can be

written conveniently in a complex self-dual form of Kinnersley-like equa-
tions:

b _ ;. — b
a]/[ Ha = IX 1haC€yVavHC gab = hab hub — ebchac
a‘ll@a — i“_lhacsi/lva]/@(j
duHy? = duhat + i hote, Yyt — 2809, @, || Aa =Re®q &, = 1qe™
(3.1.4)
where we use the same notations

0 1 0 1 €1 0
= (% o) = (0 0) == (5 0) detlhal = en

Both systems of nonlinear equations (3.1.2) and (3.1.4) were found completely
integrable. Both of them admit a construction of solitons by appropriate
dressing methods and development of some integral equation methods of
essentially different structures for construction of solitons as well as of non-
soliton types of their solutions.

3.2. Inverse scattering approach to solution of
vacuum Einstein equations
(“Lambda-solitons” and the Riemann -
Hilbert problem)

The integrability of the equations had been discovered in the papers
(1), ), where the authors developed the methods for construction of solu-
tions using the basic ideas of the Inverse Scattering Transform approach — the
dressing method for construction of solitons on arbitrarily chosen vacuum
backgrounds and the reduction of the equations to the classical Rie-
mann - Hilbert problem and corresponding 2 x 2-matrix linear singular inte-
gral equations on the spectral plane for construction of none-soliton types of
solutions. Changing a bit the notations of the papers (1), (2), we write here the
equations for g € GL(2,R) in terms the coordinates (¢, 7) which are
the linear combinations of Weyl-like coordinates (&, 8) such that ¢ = 8+ ju
and 7 = B —ja, withj = 1 fore = 1 and j = i for e = —1. The coordinates
(&, 1), therefore, are real for e = 1 or complex conjugated to each other for
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3. Brief description

€ = —1. In these terms, the equations (3.1.2) take the form

aé(txang-gfl)+8,7(zx8§g-g’1) =0 [ xtt, e=1
(&)= { z+tip, e=—1
(3.2.1)
In (1), (2), these equations had been presented as the integrability conditions
for the overdetermined linear system for a complex 2 x 2-matrix function
¥(¢,n,A) depending (besides the coordinates ¢ and 7) also on a complex
“spectral” parameter A:

gl =g detg=ea?, e=+1.

A9
D:-¥ =V ¥ _ . B
¢ X —ja De=0: =3 a0 | Ve=jadeg g™
\Y
D,¥Y=-—"T_v A0 o]
U A—l—]oc Dﬂ_a’l /\_|_]'“8A Vﬂ_]“aﬂg g
(3.2.2)

For construction of a dressing method for solution of the above equations a
new matrix variable x (¢, 77, A) was introduced in the above equations instead
of ¥(¢&,7n,A). This matrix plays the role of the “scattering” matrix which re-

0
lates ¥(¢,7,A) characterizing the unknown solution g with ¥(&,#,A) char-

acterizing some chosen “background” solution g in accordance with the fol-
lowing scheme:

lgasll — ¥ — ¥=x-T — gyl

For this new matrix variable the equations (3.2.2) take the form

(A —ja)Dex =Vg-x —Xx - Ve
(3.2.3)

(A+ja)Dyx =Vy-x =X - Vy
It is important, that these equations for the new unknown matrix variable

X (¢,17,A) should be supplied by some algebraic constraints providing the
solution for the matrix g to be real and symmetric (see (1), (2) for details):

gzx(A)~§~xT(%&2)f XA =x(A) (3.2.4)

Another condition imposed on the behaviour of x at A = co allowed to ex-
press the solution for metric in a simple form:

e

X()=1 = g=x(0)-8 (3.2.5)
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3.2. Inverse scattering approach to solution of vacuum Einstein equations
(“Lambda-solitons” and the Riemann - Hilbert problem)

3.2.1. Vacuum solitons on arbitrary background

For construction of vacuum N-soliton solutions the following ansatz was
used in (1) for the structure of x on the spectral plane:

N Re(&7) N _Si(&m)
R S Y ATy en 629

where the 2 x 2-matrices Ry and S; and the functions i and v; are yet un-
known. Substituting of this ansatz into and conditions and
and solving of the corresponding (ratlonal with respect to )t) relatlons,
one obtains the following solution. The pole trajectories i and vy are deter-
mined by simple algebraic equations (k =1,2,...,N):

2 ’ e’

Hi +2(B —wiug +ea” =0, ve=—

Mk
where wy constitute a set of arbitrarily chosen constants of real ones or/and
complex conjugated pairs. The matrices Ry and S; are degenerate and they
can be expressed as the products of vector functions which admit an explicit

expressions in terms of pole trajectories j, the functions g, ¥ associated with
the background solution and a set of “projective” constant vectors k; whose
components include arbitrary constants ¢; which should satisfy the constraint
that they should be real for real w; and they should be complex and conju-
gated to each other for complex conjugated w;:

Rk = ni ® my my = kk . Y_l(“l/tk)

N | B

S =p1®@q ng = —pi Elg -mT},!
N o i

qrx = z; L pmy p =g m

o (myg-g-my) _
T = —prp —— k= {1, ¢}

However, it is necessary to take into account that the corresponding solution
of the equations (3.2.3 - 3.2.5) does not satisfy the condition detg = ea? in
(3.2.1). In accordance w1th (1), this last condition will be satisfied, if we make
a special conformal transformation of g which we give here together with the
corresponding transformation for x of the form (3.2.6) which provides for
transformed x the condition detx = 1:

/\—Vk

N /) 2 N
TG« s )
k=1 o
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3. Brief description

And, the last constraint which should be imposed on this solution tp provide
a correct signature of the soliton metrics is that the number of solitons (i.e.
the number of poles in (3.2.6)) should be even: N = 2n. It can be mentioned
here also that in general these soliton solutions can be presented in a compact
determinant form, such that for calculation of all metric components, one
needs to calculate (instead of all components of N x N- matrix I'y; and of its
inverse) only four determinants of the order N x N.

3.2.2. Formulation of the Riemann-Hilbert problem and its
solution

As it was shown in (1), the general solution of the vacuum equations for the
matrix g can be characterized by the matrix x (&,7,A) which is an analytical
function on the spectral plane A outside and inside the contour

['={A Al =a},
where it can be represented as the Cauchy integrals over this contour

N5,
k=1 A — Vg

Xork = I+m/A Hlowm u() =

dC
it [ RO o

where +i0 and —i0 mean “outside the contour” and “inside the contour”
respectively; the matrix function U(,#,A) characterizes the “soliton part”
of the solution and therefore, it should possess the specific structure shown
above.

As it was also shown in (1)), the limit values of x ;, and X o4+ on the contour
I' should satisfy some algebraic relation which includes a 2-matrix G of a
special structure:

T Xowt=Xin'G  G=¥Go(w)¥ ' (3.2.7)

where Go(w) is an arbitrary 2-matrix function which depends only on the
parameter w
1 e’

w=p+5(A+ ) (3.2.8)

The problem of construction of the analytical matrix functions x j,; and X our
which satisfy on the contour I' the re;ation is known as the classical
matrix Riemann-Hilbert problem. Its solutlon can be reduced to an equiva-
lent problem of solution of a matrix linear singular integral equation which
had been presented in (1) in the following form of the integral equations for
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3.2. Inverse scattering approach to solution of vacuum Einstein equations
(“Lambda-solitons” and the Riemann - Hilbert problem)

the kernel matrix function p (¢, 7, {)

p(0) ~T() {I+%/g£€2d§’w(g)} 0

T({) =(1+G)"'(I-G)

The solution p (¢, 7, ) of these integral equations should satisfy the supple-
mentary conditions which were imposed in (1) on the corresponding matrices
X in and X oyt in the form

2
_ - EX °
Xin,out()\) = Xin,out(/\)/ g = Xout(T) ngTn(/\)

These conditions provide the matrix g to be real and symmetric, and they
allow to express the corresponding solution of vacuum Einstein equations in
a simple form

g =Xin(0) é
For solitons on a given background, one should chose G = I and therefore,

for this case p ({) = 0. In this case, X = Xout = Xin iS meromorphic on a
Riemann sphere (extended spectral plane) and it has no any jumps on the

contour I'. In this case, a construction of (N-soliton) solutions in terms of ;;

and corresponding ¥ reduces, as it was mentioned above, to pure algebraic
steps described in detail in (1), (2) and later in (26).
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3. Brief description

3.3. Monodromy transform approach to solution of
Einstein-Maxwell equations
(“Omega-solitons” and the integral equation
method)

The analysis of integrability of the symmetry reduced electrovacuum Ein-
stein - Maxwell equations was made in an essentially different way than it
was described above for pure vacuum gravitational fields. This analysis was
also based on the same idea of consideration of the nonlinear field equations
as the integrability conditions of some overdetermined linear system (“spec-
tral” problem). However, a specific structure of the spectral problem for the
self-dual equations (3.1.4), constructed in (3) and reformulated in terms of
Jordan conditions in (4), suggested a possibility for development of some
new approach to solution of these equations called the “monodromy trans-
form” approach (3) — (6). In this approach, any solution can be expressed
in quadratures in terms of corresponding solution of a system of linear sin-
gular integral equations which arose without a connection with some matrix
Riemann - Hilbert problem, but from a simple analysis of the analytical and
monodromy properties of the fundamental solution of the associated linear
system on the spectral plane. It is worth to note here also, that this approach
to solution of Einstein - Maxwell equations, being restricted to pure vacuum
case, also can provide us with some new useful tools for solution of vacuum
equations in addition to those, which arise from the inverse scattering meth-
ods described above.

At first, we recall the structure of the overdetermined linear system and
a complete formulation of the corresponding spectral problem whose inte-
grability conditions are equivalent to the complex (Kinnersley-like) self-dual
form (3.1.4) of the symmetry reduced Einstein - Maxwell equations. These
equations can be represented as the integrability conditions of the linear sys-
tem for 3 x 3-matrix function ¥ (¢, #7, w)|'|with additional constraints imposed
on the ranks and traces of its matrix coefficients which determine uniquely

For simplicity of notations and, on the other hand, trying to keep the notations close
enough to those in the original papers, we use everywhere below ¥ to denote the 3 x 3-
matrix of the fundamental solution of the spectral problem for electrovacuum case, and
it should not be confused with the 2 x 2-matrix function ¥ of the fundamental solution
of an essentially different spectral problem for vacuum case described in the previous
section.
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3.3. Monodromy transform approach to solution of Einstein-Maxwell
equations (“Omega-solitons” and the integral equation method)

the canonical Jordan forms of these complex 3 x 3—matricesE|

{ 2i(w — £)9;¥ = U(&,5) - ¥ H rankU=1wU=i" .20

2i(w —1)0, ¥ =V(,n)-¥ rankV=1, trV=i

where w is a new spectral parameter whose relation to the spectral parameter
A used in (1)) is given by . For an equivalence to the Einstein - Maxwell
equations, the integrability conditions of the linear system together
with the Jordan conditions for U and V should be supplied with the condition
of existence for the above linear system of a Hermitian matrix integral K(w)
of a special structure (see (3)—(6) for details):

{T*-W-T:K(w) H OW 332)

01
. 40, a=[(-10
K'(w) = K(w) 00

o OO

Jw

where ¥'(¢,7,w) = YT(&,n,w) and W = W(E,7,w) is also an unknown
function which is linearly dependent on the spectral parameter w with a con-
stant coefficient 4i(). This Hermitian 3 x 3-matrix function plays an impor-
tant role in the calculation of solutions because its components can be iden-
tified directly with the metric and complex vector electromagnetic potential
components by the following way:

(3.3.3)

__AJab agdb a
W =4i(w— ) +G, G:( 4h_;§b®q’ 21q>)

where the indices 4, b are raised similarly to the two-component spinor ones

(see (3.1.4)).

3.3.1. Elecrovacuum solitons on arbitrary background

The electrovacuum N-soliton solutions of Einstein - Maxwell equations had
0
been constructed in (3) using the same dressing transformation ¥ = x - ¥,

where ¥ denotes the solution of the spectral problem for chosen electrovac-
uum background. In this case, the equations (3.3.1)), (3.3.2) take the form

2i(w—§)8€x:U-x—x-ﬁ rankU=1, trU=i,
2i(w—1)dyx =V-x —x -V rankV =1, trV=i (334

0

2We note here that some part of necessary supplemetary conditions had been presented in
(@) in a not the most convenient form, and they have been formulated in a compact form
in terms of given here trace- and rank- conditions a bit later, in (4).
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3. Brief description

where we have assumed that the gauge transformation ¥ — ¥ - C(w) is cho-
sen so that the values of the integral (3.3.2) for the solitons and for the back-
ground solution coincide:

K(w) = K(w)

Following (3), we use now in (3.3.4) the appropriately modified soliton ansatz
similar to (1):

w Wi w [¢%%

_1+ZR"‘:’7) o _I+ZS"C’7) (3.35)

Here the dressing matrix X and its inverse x ~! are assumed to have (differ-

ent) simple poles on the plane of the spectral parameter w. Solving of the
corresponding (polynomial with respect to w) relations, one obtains the fol-
lowing solution. The pole locations wy of x are arbitrarily chosen complex
constants and the poles of x ~! are located at the complex conjugated points:

Wy, = Wy, n=12,...,N
The matrices Ry and S; are degenerate and they can be expressed as the prod-
ucts of vector functions which admit an explicit expressions in terms of the

functions ¥ and W of the background solution and two sets of constant vec-
tors k, and 1,

Ry =n®@m; my =k ¥ 1(wy)
Si=p1®q pr =Y (w;) -

n, = r-t
k l;( JkIPI . (m; - pg)
N - S
=— Y m(I 1y o Wk
=1
where k,I,... = 1,...,N. The constant complex 3-dimensional vectors k;

and 1,, possess a “projective” character in a sense, that the N-soliton solution
depends only on the ratios of the components of each of these vectors. The
vectors kj, can be chosen arbitrarily and therefore, their components include
2N arbitrary complex constants which we denote as c;;, d,;, while the compo-
nents of vectors 1,, can be expressed (up to a common constant multiplier) in
terms of the the components of k; as follows:

1, =K Y@k, k,={1,cy du}
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3.3. Monodromy transform approach to solution of Einstein-Maxwell
equations (“Omega-solitons” and the integral equation method)

All components of metric and complex electromagnetic vector potential of
the constructed N-soliton solutions are given by the expressions, where (3.3.3)
should be taken into account):

G=G—4i(Q-R+R" Q) +4i8,Q, f=dTITf

N N
R = k21 n; @ my = kEI I','pr ®my, [ = det [Ty

where By is a real constant which should be chosen to provide the nondiag-
onal component of metric h,;, to be real, and ¢ is an arbitrary real constant.
Thus, we obtain the families of N-soliton (for any positive integer N) solu-
tions on arbitrarily chosen electrovacuum background which depend on 3N
arbitrary complex constant parameters {wn, Cn, dn}.

The electrovacuum solitons described in this section generalize the vac-
uum solitons constructed in (1) on arbitrary vacuum background which have
complex conjugated poles, while the electrovacuum generalization of the vac-
uum solitons (1) with real poles do not arise in the technique described just
above. However, it seems worth to note, that many electrovacuum solutions
which generalize vacuum solitons with real poles on some specially chosen
backgrounds (e.g., on the Minkowski background) can be constructed as the
analytical continuations of soliton solutions with complex poles in the space
of their constant parameters. This analytical continuation is quite similar to
the known one, which relates the “underextreme “and “overextreme "“parts
of the Kerr - Newman family of solutions. Such analytical continuations of
the soliton solutions in the space of their parameters can be constructed us-
ing the monodromy transform approach and the integral equation method
described in the next two sections and this represents one of useful applica-
tions of this method.

3.3.2. Monodromy data parametrization of the solution space

A remarkable feature of the spectral problem —~ is that its funda-
mental solution ¥ (¢, 77, w) possess some universal (i.e. solution independent)
analytical properties. These properties (found in (4) and described in more
details in (5) and (6)) allowed to identify within a general structure of ¥ a
set of four functional parameters {u.(w),v.(w)} — the coordinate indepen-
dent functions of the spectral parameter which were called the “monodromy
data” because they determine completely the branching (monodromy) prop-
erties of ¥ on the spectral plane. The important property of these functional
parameters is that they are defined for any local solution and they take dif-
ferent particular functional values for different solutions. Moreover, as it was
proved in the papers cited above, for any particular choice of these func-
tions (holomorphic in some local region of the spectral plane), there exists
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3. Brief description

a uniquely defined local solution of the field equations, such that the corre-
sponding fundamental solution of the spectral problem (3.3.1) — (3.3.2) has
such monodromy data. All these mean that these monodromy data functions
can play the role of “coordinates” in the infinite-dimensional space of all lo-
cal solutions of the symmetry reduced Einstein - Maxwell equations. The use
of this “coordinate transformation” in the space of solutions was called the
“monodromy transform”. In what follows, we describe a “direct problem” of
this monodromy transform. Namely, we explain, how the monodromy data
can be determined (in principle, at leats) for any local solution of the symme-
try reduced Einstein - Maxwell equations. In the next section we describe a
solution of the “inverse problem” of the monodromy transform, i.e. a con-
struction of solution of the Einstein - Maxwell equations for any particular
choice of the monodromy data functions.

To avoid obvious ambiguities in the definitions, we impose some “normal-
ization” conditions on the metric and electromagnetic potential components
of any solution as well as on the corresponding fundamental solutions of the
spectral problem. For this, we chose some regular space-time point (o, 7o)
for the “initial” point (or the point of normalization) and, without any loss
of generality, set there for normalized values (denoted by ~): ¢,;(So,70) =
eodiag {1, ea3}, ©4(&o,10) = 0, where g = £1 and a9 = (&0 — 170)/2j. Any
fundamental solution ¥ can be normalized at the initial point by a unit matrix
as follows:

Y& n,w) =Y nw) Y Ho,n,w) = ¥(,mw) =1

As it was shown in (4) —(6), for any solution of the reduced Einstein - Maxwell
equations, this normalized 3 x 3-matrix function ¥ possess the four singular
(branching) points on the spectral plane: w = o, w = ¢, w = g and w = 17E|
For given initial values ¢ and 779 and fixed values ¢, # of coordinates, the ma-
trix ¥ on the spectral plane is a multi-valued function. For construction of its
single-valued branch, it is convenient to chose the cut on the plane w which
consists of two opened and non-intersecting contours L, and L_, where L
starts at w = {p and ends at w = ¢, while L_ starts at w = 79 and ends
at w = 7. Then this matrix function on the spectral plane outside the cut
L = L4 + L_ will have a holomorphic branch we denote further as ¥. At
infinity, this holomorphic branch possess the property ¥ (&, 7, w = c0) =1, it
has the jumps of certain structures on L and L_ and it branches at their end-
points. It is remarkable that the character of this branching on L, and L_ can
be described by two monodromy matriceslﬂ T4 (w) and T_(w) respectively,

3In this construction, we consider the solutions of reduced Einstein - Maxwell equations
in some local region near the initial point, where ¢ and # are close enough to ¢p and 7o
respectively.

“The matrices T, and T_ determine the linear transformations of ¥ after its analytical
continuation along the paths which join the corresponding points on different edges of
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3.3. Monodromy transform approach to solution of Einstein-Maxwell
equations (“Omega-solitons” and the integral equation method)

which possess in general the very specific structures:

L () © ks (w) I (w) ®k_(w)
(1 (w) ko (@)’ (I (w) - k_(w))’

In accordance with these structures, these monodromy matrices are deter-
mined by the independent components of the four “projective” vectors k. (w)
and 1. (w), which can be parametrized, without any loss of generality, as fol-
lows:

T (w)=1-2 T (w)=1-2 T2 (w) =1

ke(w) = {1 us(w), ve(w)},  Le(w) = {1, p(w), q=(w)}

where the scalar functions uy (w), v (w), p+(w), q+ (w) holomorphic on L
and u_(w), v_(w), p—(w), q—(w) holomorphic on L_ represent a complete
set of the monodromy data for the normalized fundamental solution of the
linear problem (3.3.1). However, taking into account the additional condition
of our spectral problem, we find that the whole content of this condi-
tion can be expressed as a simple relations which determine 1, (w) in terms of
a complex conjugation of ky (w) and 1_ (w) in terms of a complex conjugation
of k_(w) (see (4) for details).. Therefore, a complete set of monodromy data
for the fundamental solution of the spectral problem (3.3.1), consists of
the set of four functions {u+(w), v4(w)}, which determine completely the
monodromy matrices T+ (w) and vise versa. It is worth to note that the func-
tions v (w) are responsible for electromagnetic fields: for pure vacuum case
v (w) = 0 and the set of monodromy data functions in general consists only
of two functions uy (w).

3.3.3. Constructing solutions for arbitrary monodromy data

The structure of the spectral problem (3.3.), provides the existence and
uniqueness of a local solution of Einstein - Maxwell equations for any choice
of the monodromy data functions u+(w) and v+ (w). In accordance with the
analisys given in (4) (more detail explanatins were given in (5), (6)), all com-
ponents and potentials of a general local solution of electrovacuum Einstein
- Maxwell equations can be expressed in quadratures in terms of the mon-
odromy data {u(w), vi(w)} and of the corresponding solution of a master
system of linear singular integral equations whose kernels and rhs are ex-
pressed algebraically in terms of the monodromy data. These expressions can
be derived from the following expression, where the structure should
be taken into account:

W=W;—-4i(Q-R+R".Q), R= % /[A]gl(g) @@ (0)d  (3.3.6)

L

the cut Ly or L_ respectively.
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3. Brief description

where { € L and the contour L on the spectral plane consists of two dis-
connected opened contours L and L_ with the endpoints (&o, &) and (10, 77)
respectively. The notation [A]; means a jump at the point { € L of a “standard
“branching function A = /(£ — &)({ — 1)/ (L — €0)(L — 10). Wy is the initial
value of W and the components of the vector 1({) are expressed in terms of
the monodromy data:

Wo(w) = 4i(w — Bo)Q + diag { —4epea3, —4eg, 1},

1+ieo(¢ — Po)u’(2)
1(0) = | —ieo(§ — Po) + eagu’(2)
4€0(C — o) (C —10)v'(Q)

where €9 = +1, a9 = (&0 — 170) /2], Bo = (€0 +10)/2 and u'(7) = u({) and

v'(¢) = v({). The components of a 3-dimensional vector function ¢ (¢,7,7) =
{p [, () [u], (0] [V]} should satisfy the linear singular integral equations with
a scalar kernel X and the right hand side k(7) = {1, u(7), v(7)}, both de-
pending on the monodromy data (4):

MG n,0) 1
1 f XEnTo) [ Guzn gy dz = (3.3.7)
LT \eMEno) v(7)

L

where 7,{ € L, and the kernel X(¢,7,7,0) = —[Al;(k(7) -1({)). It is easy
to see, that these vector equations decouple into three independent equations
for each component of the vector function ¢ (&,#,7). It is important to note
that each of these three independent equations, in general, is a coupled pair of
two integral equations, because each function on the disconnected parts L+
of the contour is represented by two indpendent functions, e.g. u(7) should
be understood as u(7) = uy(7) fort € Ly and u(t) = u_(7) fort € L_
and the same is for v(7), @ (7)), @ M(2), @ (7).

For a conclusion, we note that for different problems the master integral
equations can admit various useful modifications. In particular, for
stationary axisymmetric fields, the regularity axis condition implies that the
monodromy data are analytically matched: u4(7) = u_(7), v (1) = v_(7),

and therefore, ¢ |/(2) = 0 !(2), 0 (0) = 0 (), 0 ' (2) = @ M (¢). This
allows to merge L, and L_ and reduce to some more simple scalar
forms. In this case, these integral equations can be solved explicitly, if the an-
alytically matched monodromy data are chosen to be arbitrary rational func-
tions of the spectral parameter.
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4. Publications

In ICRA and ICRANET group the research on the ISM and IEM methods
always have been of a high priority. This field was developed mainly by
G.A.Alekseev, V.A.Belinski, A.Paolino, M.Pizzi. The following results were
obtained and published:

4.1. Books

1. V. Belinski and E. Verdaguer, “Gravitational Solitons ”, Cambridge Uni-
versity Press, Cambridge Monographs on Mathematical Physics, 2001.

The monograph dedicated to the a self-contained and systematic exposition
of the theory of gravitational solitons. The book represents and provides a
comprehensive review of exact soliton solutions to the relativistic gravitational
equations. The text begins with a detailed discussion of the extension of the In-
verse Scattering Method to the theory of gravitation, starting with pure gravity
and then extending it to the coupling of gravity with the electromagnetic field.
There follows a review of the gravitational soliton solutions based on their
symmetries. These solutions include some of the most interesting in gravita-
tional physics such as those describing inhomogeneous cosmological models,
gravitational waves and black holes.

4.2. Refereed journals

1. V.Belinski “Gravitational breather and topological properties of gravi-
solitons ”, Phys. Rev., D44, 3109, (1991).

It was discovered that in general gravitational solitons are topological objects
and a topological charge for them can be introduced in rigorous mathemat-
ical way. It was shown that for a wide class of solitonic solutions of the vac-
uum Einstein equations the notions of gravisolitons and antigravisolitons with
respect to this charge can be introduced. The presence of attractive forces
between two gravitational solitons with the topological charges of opposite
signs and repulsive forces between solitons of the same charges was shown.
The construction of the exact solution of Einstein equations which have been
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4. Publications

named “The Gravibreather “as a bound state of the gravisoliton and antigrav-
isoliton was described.

2. V.Belinski “On the Equilibrium of Two Charged Masses in General Rel-
ativity”, Journ. Korean Phys. Soc., 49, 732 (2006).

It was found the exact solution of Einstein-Maxwell equations repre-
senting the equilibrium state of the Reissner-Nordstrom black hole and
Kerr-Newman spinning naked singularity object. It was shown that
the equilibrium without a strut between such centers is possible only if
both of them are critically charged. The conjecture has been made that
the last constrain is only due to fact that solutions was obtained under
too restrictive constrains and in more general settings the equilibrium
state for the two arbitrary charged centers can be constructed.

3. M.Pizzi “Gravitational Field and Electric Force Lines of a new 2-soliton
solution”, JMP(D),16, 1087 (2007).

A new exact solution of the coupled Einstein-Maxwell equations was obtained
and studied. It was found using the ISM, adding one soliton to the Schwarzschild
background. The solution is stationary and axial-symmetric. The physical in-
terpretation is that it describes a Kerr-Newman naked singularity linked by
a “strut “to a charged black hole. On the axis, between the two bodies, it is
present an unavoidable anomaly region and a conic singularity. The solution
is stationary also in the case with zero total angular momentum. The force
lines of the electrical field in a general case, and in the case in which the Kerr-
Newman singularity has a much smaller mass than the nearby black hole have
been constructed for different distances between the bodies. In spite of the
naive interpretation suggested by the mathematical construction of the solu-
tion, what one can expect to be a Schwarzschild black hole, appears to be a
charged and rotating object. It is possible to interpret this fact as a parameter-
mixing phenomenon.

4. G.Alekseev and V.Belinski “Schwarzschild Black Hole Hovering in the
Field of a Reissner-Nordstrom Naked Singularity”, Nuovo Cimento,
122B, No.2, (2007).

It was found a three-parametric family of exact static axisymmetric solutions
of Einstein - Maxwell equations which describe a Schwarzschild black hole
hovering in the field of an over-critically charged Reissner - Nordstrom source
(naked singularity). This family of solutions depends on three real (positive)
parameters which are the mass of a Schwarzshild black hole, the mass of a
naked singularity and the parameter characterizing the distance separating
these sources. The charge of the naked singularity providing the equilibrium
at this distance and various geometric characteristics of interacting sources in
our solutions are functions of these three independent parameters. This con-
figuration is stable with respect to displacements of the sources one towards
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4.2. Retereed journals

or apart from another along the axis of symmetry. The existence of such equi-
librium state is due to the repulsive forces produced by a naked singularity.

. G.Alekseev and V.Belinski “Equilibrium configurations of two charged
masses in General Relativity”, Phys. Rev. D76, 021501(R), (2007).

An asymptotically flat static solution of Einstein-Maxwell equations which de-
scribes the field of two non-extreme Reissner - Nordstrom sources in equilib-
rium is presented. It is expressed in terms of physical parameters of the sources
(their masses, charges and separating distance). Very simple analytical forms
were found for the solution as well as for the equilibrium condition which
guarantees the absence of any struts on the symmetry axis. This condition
shows that the equilibrium is not possible for two black holes or for two naked
singularities. However, in the case when one of the sources is a black hole and
another one is a naked singularity, the equilibrium is possible at some distance
separating the sources. It is interesting that for appropriately chosen parame-
ters even a Schwarzschild black hole together with a naked singularity can be
“suspended” freely in the superposition of their fields.

. A.Paolino and M.Pizzi “Electric Force Lines of the double Reissner-
Nordstrom exact solution”, accepted for publication in IJJMP(D) (2007).

The Alekseev-Belinski exact solution of the Einstein-Maxwell equation which
describes two Reissner-Nordstrom sources in reciprocal equilibrium (no struts
nor strings) have been studied in some detail: examination of coordinate sys-
tems used and description of distribution in space of the gravitational and elec-
tric fields. In particular, the plots of the electric force lines have been explicitly
constructed in three qualitatively different situations: equal-signed charges,
opposite-signed charges and the case of a charged naked singularity near a
neutral black hole.

. MLV. Barkov, V.A. Belinski and G.S. Bisnovatyi-Kogan, “An exact Gen-
eral Relativity solution for the Motion and Intersections of Self-Gravitating
Shells in the Field of a Massive Black Hole”, JETP 95, 371, (2002); (astro-
ph/0210296).

Finally it should be mention the very interesting and important enough exact
solution in the General Relativity for the intersection process of two massive
self-gravitating spherically symmetric shells with tangential pressure. This so-
lution was found by the direct integration of the gravitational equations with-
out using any generating solutions technic. It was shown how one can calcu-
late all shell’s parameters after intersection in terms of the parameters before
the intersection. The result was quite new, the solution of this kind was known
only for the massless shells (Dray and t'Hooft, 1985). The solution have been
applied to the analysis of matter ejection effect from relativistic stellar clusters.
It was shown that in relativistic case the matter ejection effect is stronger than
in Newtonian gravity.
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8. V.Belinski, M.Pizzi and A.Paolino “Charged membrane as a source for
repulsive gravity”, accepted by IJMP(D), in press (2008).

We demonstrate an alternative (with respect to the ones existing in literature)
and more habitual for physicists derivation of exact solution of the Einstein-
Maxwell equations for the motion of a charged spherical membrane with tan-
gential tension. We stress that the physically acceptable range of parameters
for which the static and stable state of the membrane producing the Reissner-
Nordstrom (RN) repulsive gravity effect exists. The concrete realization of
such state for the Nambu-Goto membrane is described. The point is that mem-
brane are able to cut out the central naked singularity region and at the same
time to join in appropriate way the RN repulsive region. As result we have a
model of an everywhere-regular material source exhibiting a repulsive gravita-
tional force in the vicinity of its surface: this construction gives a more sensible
physical status to the RN solution in the naked singularity case.

9. M. Pizzi and A. Paolino “Intersection of self-gravitating charged shells
in a Reissner-Nordstrom field ”,, IMP(D), submitted, October 2008.

We describe the equation of motion of two charged spherical shells with tan-
gential pressure in the field of a central Reissner-Nordstrom (RN) source. We
solve the problem of determining the motion of the two shells after the inter-
section by solving the related Einstein-Maxwell equations and by requiring a
physical continuity condition on the shells velocities. We consider also four ap-
plications: post-Newtonian and ultra-relativistic approximations, a test-shell
case, and the ejection mechanism of one shell. This work is a direct generaliza-
tion of Barkov-Belinski-Bisnovati-Kogan paper.

4.3. Proceedings of international conferences

1. G.Alekseev and V.Belinski “Superposition of fields of two Reissner-Nordstrom
sourses”, Invited paper for Proceedings of 11 Marcel Grossmann Meet-
ing (Berlin, July 2006); ArXiv:gr-qc/0710.2515 (2007).

It was described the detailed and systematic derivation (by solving of the lin-
ear singular integral equation form of the electro-vacuum Einstein - Maxwell
equations) of the 5-parametric family of static asymptotically flat solutions
for the superposed gravitational and electromagnetic fields of two Reissner-
Nordstrom sources with arbitrary parameters (masses, charges and separat-
ing distance). The 4-parametric family of equilibrium configurations of two
Reissner-Nordstrom sources (one of which should be a black hole and another
one a naked singularity) presented in our previous paper (Phys. Rev. D76,
021501(R), 2007) arises after a restriction of the parameters of the 5-parametric
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4.3. Proceedings of international conferences

10.

11.

solution by the equilibrium condition which provides the absence in the solu-
tion of conical singular points on the symmetry axis between the sources.

V.Belinski “Gravitational Topological Charge and Gravibreather”, Pro-
ceedings of the 10th Italian Conference on General Relativity and Gravi-
tational Physics (Bardonecchia, Italy, September 1-5, 1992), ed. M.Cerdonio
et al., page 37, World Scientific, (1994).

. V.Belinski “Gravitational Topological Charge ”, International Confer-

ence “Birth of the Universe and Fundamental Physics”(Rome, May 1994),
Lectures Notes in Physics, vol. 455, ed. F. Ochionero, Springer, (1995).

. V.Belinski “Gravitational Topological Charge and the Gravibreather”,

Proceedings of the Seventh Marcel Grossman Meeting (MG7), Stan-
ford, USA, July 24-30, 1994, ed. R Jantzen, G. Mac Keiser and R.Ruffini,
World Scientific (1996), p. 96.

. V.Belinski “On the Equilibrium of two Charged Masses in General Rela-

tivity”, the 9th Italian-Korean Symposium on Relativistic Astrophysics
(Seoul, July 19-24, 2005), Journ. Korean Phys. Soc., vol. 49, p.732 (2006)

G.Alekseev “Monodromy Transform Approach in the Theory of Inte-

grable Reductions of Einstein’s Field Equations and Some Applications”,
the Eleventh Marcel Grossman Meeting (MG11), Berlin, July 23-29, 2006,

Proceedings of MG11, in press.

M.Pizzi “Some features of a new 2-soliton solution of the Einstein-Maxwell
equations”, the Eleventh Marcel Grossman Meeting (MG11), Berlin, July
23-29, 2006, Proceedings of MG11, in press.

G.Alekseev and V.Belinski “Superposition of fields of two Reissner-Nordstrom
sourses ”, Invited paper for Proceedings of 11 Marcel Grossmann Meet-

ing (Berlin, July 23-29, 2006), World Scientific, pub. date September

2008.

. M.Pizzi and A.Paolino “Electric force lines of the double Reissner-Nordstrom

solution ”, the 2nd Stueckelberg Workshop on Relativistic Field Theo-
ries, (Pescara, September 3-8, 2007), IMP(A), vol.23(8), March 2008

V. Belinski, M.Pizzi, A.Paolino “A Membrane Model of the Reissner-
Nordstrom Singularity with Repulsive Gravity ”, the 5th Italian-Sino
Workshop on Relativistic Astrophysics, (Taiwan, May 28-June 1, 2008),
AIP Conference Proceedings, 1059, Relativistic Astrophysics, ed. Da-
Shin Lee, Wolung Lee and She-Sheng Xue, page 3 (2008)

V. Belinski, M.Pizzi, A.Paolino “Charged masses and repulsive grav-
ity 7, The 3rd Stueckelberg Workshop on Relativistic Field Theories,
Pescara, 8-18 July, 2008, in press.
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12. V.Belinski “Einstein-Maxwell solitons ”, Five invited lectures, XIII Brazil-
ian School in Gravitation and Cosmology, Rio de Janeiro, July 20- Au-
gust 2, 2008, AIP Conference Proceedings, Ed. M.Novello and S. Bergli-
affa, in press.

4.4. Talks at international conferences

1. “Gravitational Topological Charge and Gravibreather”

(V.Belinski)
Plenary talk at the 10th Italian Conference on General Relativity and
Gravitational Physics, Bardonecchia, Italy, September 1-5, 1992.

2. “Gravitational Topological Charge ”,

(V.Belinski)
Plenary talk at the International Conference “Birth of the Universe and
Fundamental Physics”, Rome, May 1994.

3. “Gravitational Topological Charge and the Gravibreather”

(V.Belinski)
Plenary talk at the Seventh Marcel Grossman Meeting (MG7), Stanford,
USA, July 24-30, 1994.

4. “On the equilibrium state for two charged masses in General Relativity”

(V.Belinski)
Talk at the 2nd Italian-Sino Workshop on Relativistic Astrophysics, Pescara,
June 10-20, 2005.

5. “On the Equilibrium of two Charged Masses in General Relativity”

(V.Belinski)
Invited talk at the 9th Italian-Korean Symposium on Relativistic Astro-
physics, Seoul, July 19-24, 2005.

6. “Equilibrium configuration of two charged masses in General Relativ-

. 77

ity

(G.Alekseev and V.Belinski)
The talk at the 3rd Italian-Sino Workshop on Relativistic Astrophysics,
Pescara, June 10-20, 2006.

7. “New developments in Einstein-Maxwell Theory: non-perturbative ap-
proach ”
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10.

11.

12.

13.

14.

(G.Alekseev and V.Belinski)
The talk at the 1st Stueckelberg Workshop on Relativistic Field Theories,
Pescara, June 25-July 1, 2006.

“Monodromy Transform Approach in the Theory of Integrable Reduc-
tions of Einstein’s Field Equations and Some Applications”

(G.Alekseev)
Talk at the Eleventh Marcel Grossman Meeting (MG11), Berlin, July 23-
29, 2006.

“Some features of a new 2-soliton solution of the Einstein-Maxwell equa-
tions”

(M.Pizzi)
Talk at the Eleventh Marcel Grossman Meeting (MG11), Berlin, July 23-
29, 2006.

“The exact solution for the equilibrium configuration of two static Reissner-
Nordstrom sources”

(G.Alekseev and V.Belinski)
Invited talk at the workshop “Key Problems in Theoretical Cosmology”,
April 23-28, 2007, Cargese, Institut D’Etudes Scientifiques De Cargese.

“The static equilibrium state of two Reissner-Nordstrom sources”

(G.Alekseev and V.Belinski)
Talk at the 10th Italian-Korean Symposium on Relativistic Astrophysics,
Pescara, June 25-30, 2007.

“Interaction of black holes with external gravitational and electromag-
netic fields”

(G.Alekseev)
Talk at the 10th Italian-Korean Symposium on Relativistic Astrophysics,
Pescara, June 25-30, 2007.

“The fields of a naked singularity and black hole in mutual equilib-
rium and the electric force lines in the equilibrium configuration of two
Reissner-Nordstrom sources”

(G.Alekseev, V.Belinski, M.Pizzi (speaker) and A.Paolino)
Talk at the 4th Italian-Sino Workshop on Relativistic Astrophysics, Pescara,
July 20-30, 2007.

“Electric force lines of the double Reissner-Nordstrom solution”

(M.Pizzi)
Talk at the 2nd Stueckelberg Workshop on Relativistic Field Theories,
Pescara, September 3-8, 2007.
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15.

16.

17.

“A Membrane Model of the Reissner-Nordstrom Singularity with Re-
pulsive Gravity ”

(V. Belinski, M.Pizzi, A.Paolino)

Talk at the 5th Italian-Sino Workshop on Relativistic Astrophysics, (Tai-
wan, May 28-June 1, 2008)

“Charged masses and repulsive gravity ”

V. Belinski, M.Pizzi, A.Paolino
Talk at the 3rd Stueckelberg Workshop on Relativistic Field Theories,
(Pescara, 8-18 July, 2008).

“Einstein-Maxwell solitons ”

V.Belinski
Five invited lectures at the XIII Brazilian School in Gravitation and Cos-
mology, Rio de Janeiro, July 20- August 2, 2008
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A. Equilibrium configurations of
two charged masses in General
Relativity

A.1l. Introduction

In the Newtonian physics two point-like particles can be in equilibrium if the
product of their masses is equal to the product of their charges (we use the
units for which G = ¢ = 1). In General Relativity, till now the equilibrium
condition for two particle-like sources imposed on their physical masses,
charges and separating distance was not known in explicit and reasonably
simple analytical form which would admit a rigorous analysis without a need
of numerical experiments. The only exceptional case was the Majumdar-
Papapetrou solution (7; 8), for which the charge of each source is equal to
its mass. In this case, the equilibrium is independent of the distance between
the sources. For each of the static sources of this sort its outer and inner
Reissner-Nordstrom horizons coincide and such sources are called extreme
ones. Accordingly, the sources with two separated horizons are called under-
extreme and the sources without horizons — super-extreme.

The problem, which had been under investigation by many researchers
and which we solve in the present paper, consists in the search of equilib-
rium configurations of non-extreme sources. Since the advent of solution
generating techniques for stationary axisymmetric Einstein-Maxwell fields, a
construction of an exact solution for two charged masses at rest does not rep-
resent any principal difficulty. However, in general the asymptotically flat
solutions of this kind contain conical singularities on the symmetry axis be-
tween the sources which can be interpreted as a presence of some extraneous
struts preventing the sources to fall onto or to run away from each other. The
equilibrium condition just implies the absence of such struts. Naturally, if the
metric is known so is the equilibrium condition. In the static case, the lat-
ter means that the product of the metric coefficients g and g, (in cylindrical
Weyl coordinates) should be equal to unity at the axis where p = 0. However,
this equilibrium equation in such general form usually is expressed by a set
of formal parameters and it is so complicated that its analytical investigation
appears to be very difficult. Therefore, it is desirable to have this equation
expressed in terms of physical parameters and in a simple enough form mak-
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A. Equilibrium configurations of two charged masses in General Relativity

ing it accessible for an analytical examination of a possibility of realization of
equilibrium. Moreover, this realization should be compatible with a condi-
tion of a positive value of the distance between the sources. This task have
not been accomplished yet, and up to now there were known only some re-
sults achieved by numerical calculations.

The first researches of the equilibrium of non-extreme sources (9) - (14) led
to the contradictory conclusions. The authors of the indicated papers used
both the exact techniques and pN and ppN approximations. The common
opinion expressed in (9 [10) and (12) - (14) was that the equilibrium for non-
extreme sources is impossible. Nevertheless, in (13) one can find a remark
that the analysis performed was insufficient and the existence of equilibrium
configurations for the non-extreme objects can not be excluded. The argu-
ments in favour of such possibility can be found also in (11).

The next step which attracted attention to the problem again have been
done by Bonnor in (15), where the equilibrium condition for a charged test
particle in the Reissner-Nordstrom field was analyzed. Examination made
there suggested also some plausible assumptions for the exact solutions. As
have been indicated in (15) a charged test body can be at rest in the field
of the Reissner-Nordstrom source only if they both are either extreme (for
the test particle the degree of its extremality is defined just by the ratio be-
tween its charge and mass), balanced irrespective of distance, or one of them
is super-extreme and the other is under-extreme, and in this case the equilib-
rium depends on the distance. There is no way for equilibrium in cases when
both sources are either super-extreme or under-extreme. It is worth to men-
tion that in the very recent papers (16) a new perturbative solution describing
an equilibrium state of two-body system consisting of a Reissner-Nordstrém
black hole and a super-extreme test particle has been presented. The whole
set of combined Einstein-Maxwell equations has been solved there by using
the first order perturbation approach developed in (17) and based on the ten-
sor harmonic expansion of both the gravitational and electromagnetic fields
adopting the Regge-Wheeler (18) gauge. (The basic equations for combined
gravitational and electromagnetic perturbations of the Reissner-Nordstrom
background in the decoupled form were found in another gauges in (19) and
in the also decoupled Hamiltonian form in (20)). Both the electromagnetically
induced gravitational perturbations and gravitationally induced electromag-
netic perturbations (21) due to a mass as well as a charge of the particle have
thus taken into account. The expressions in a closed form for both the per-
turbed metric and electromagnetic field have been explicitly given (16). It is
interesting that the equilibrium equation (which arises in this case as a self-
consistency condition for the set of differential equations for perturbations)
remains the same as of Bonnor (15).

The Bonnor’s analysis allows to expect that qualitatively the same can hap-
pen also for two Reissner-Nordstrom sources. For two extreme sources this
is indeed the case because it is known that such generalization exists and
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leads to the Majumdar-Papapetrou solution. Up to 1997 it remained un-
known whether the analogous generalization for the non-extreme bodies can
be found. The first solid arguments in favour of existence of a static equi-
librium configuration for the “black hole - naked singularity” system was
presented in (22). These results have been obtained thereby numerical calcu-
lations and three examples of numerical solutions of the equilibrium equation
have been demonstrated. These solutions can correspond to the equilibrium
configurations free of struts. For the complete proof it would be necessary
to show that such configurations indeed consist of two sources, separated by
physically sensible distance between them. However, in (22) it was pointed
out that the distance dependence for the equilibrium state is unknown. The
authors of (22) also reported that a number of numerical experiments for two
black holes and for two naked singularities showed the negative outcomes,
i.e. all tested sets of parameters were not in power to satisfy the equilibrium
equation. These findings are in agreement with Bonnor’s test particle analy-
sis. One year later the similar numerical analysis was made in (23).

In this paper, we present an exact solution of the Einstein-Maxwell equa-
tions which describes the field of two Reissner-Nordstrom sources in static
equilibrium as well as the equilibrium condition itself which turns out to
have unexpectedly simple form expressed in terms of physical parameters
of the sources. This simplicity permits us to prove a validity of conjectures
of the papers (15) and (22) on exact analytical level. It allows also a direct
analytical investigation of the physical properties of the equilibrium state of
two non-extreme sources.

We precede a description of our results with a few words on the method-
ology of the derivation of our solution. An application for derivation of this
solution of the Inverse Scattering Method for electro-vacuum developed in
(24;25) and described in details in the book (26)) leads to not most convenient
parametrization of the solution which give rise to some subsequent technical
difficulties (although there are no principal obstacles to use this approach).
Instead, we used the Integral Equation Method (27;125) which opens a shorter
way to the desirable results. The first step was to construct the solution for
the two-pole structure of the monodromy data on the spectral plane with a
special choice of parameters providing asymptotical flatness and the static
character of the solution. This corresponds also to the two-pole structure
of the Ernst potentials (as functions of the Weyl cylindrical coordinate z) on
the symmetry axis. Then the expressions for physical masses and physical
charges for both sources were found with the help of the Gauss theorem and
the notion of distance between these sources was also defined. We stress here
that the physical character of masses and charges of the sources follows not
only from their definition using the Gauss theorem, but also from the analy-
sis of that limiting case in which one of the sources is a test particle (see the
formulae (12), (13) below and the text after them). After that we derived the
equilibrium equation in terms of these five physical parameters. The miracle
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A. Equilibrium configurations of two charged masses in General Relativity

arises if one substitutes this equilibrium equation back into the solution. This
results in the impressive simplification of all formulas. Below we expose the
final outcome which is ready for using in practical purposes without neces-
sity of knowledge of any details of its derivation.

It is worthwhile to mention that a correctness of our solution has been con-
firmed also by its direct substitution into the Einstein - Maxwell field equa-
tions.

A.2. The solution

For our static solution in cylindrical Weyl coordinates, metric and vector elec-
tromagnetic potential take the forms

2
ds2 = Hd — f(dp® +dz2) — %d(pz, (A2.1)
At = @, A‘D — AZ — A(P — O, (A.2.2)

where H, f and ® are real functions of the coordinates p and z. These func-
tions take the most simple form in bipolar coordinates which consist of two
pairs of spheroidal variables (r1,61), (72,62) defined by their relations to the
Weyl coordinates:

{ o= \/(rl —my)? — o7 sinb,

zZ=2z1+ (1’1 — TYZ1) COS@l,
(A.2.3)

{ p = \/(1”2 — 1712)2 — 0'22 sin@z,

Z =2+ (1’2 - WZQ) cos 6;.

Here and below, the indices | and , denote the coordinates and parameters
related to the Reissner - Nordstrom sources located at the symmetry axis at
the points z = z; and z = z; respectively. A positive constant ¢ defined as

{= Zy — 21 (A.2.4)

characterizes the z-distance separating these sources (for definiteness we take
zp > z1). The constants m; and m; are physical masses of the sources.

Each of the parameters oy (k = 1, 2) can be either real or pure imaginary and
this property characterizes the corresponding Reissner - Nordstrom source to
be either a black hole or a naked singularity: the real value of o} means that
this is a black hole whose horizon in Weyl coordinates is {p = 0, zx — 0} <
z < zj + 0y } while the imaginary o} corresponds to a naked singularity whose
critical spheroid ry = my is {0 < p < |0k|, z = zx}. So the coordinate distance
between two black holes (both 07 and 0, are real and positive) we define as the
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distance along z-axis between the nearest points of its intersections with two
horizons and this distance is £ — 0y — 0». The distance between the black hole
located at the point z = z; and the naked singularity at the point z = z; (03 is
real and positive but ¢y is pure imaginary) we define as distance between the
nearest points of intersections of the symmetry axis with black hole horizon
and critical spheroid and this distance is ¢ — 0. The distance between two
naked singularities (both ¢; and 0, are pure imaginary) is simply ¢ and it is
the length of the segment between the nearest points of intersections of two
critical spheroids with the z-axis.

In terms of bipolar coordinates our solution reads:

H = [(rn—m)*—0f +7sin®6,] (A.2.5)
x[(ro — m2)? — 0% + v*sin® 6] D2,

© = [(e1 —7)(ra—m2) + (e2 +7)(r1 — my) (A.2.6)
+(mq cos 61 + my cos 62)]9_1,

fo= [ —m)?*—0ofcos’6] " (A.2.7)

X [(7’2 — H’Z2)2 — 022 cos® 92]_192,

where
D=rrp—(e1—y—ycosby)(ex+ v —ycosb). (A.2.8)

In these expressions the quantities ej, e, represent physical charges of the
sources. The parameter 7y and the parameters ¢y, 0> are determined by the

relations:

2 _ 2 2 2 2 2
of =m] —e]+2ey, 05 =m5—e5—2e7,

. (A.2.9)

v = (mpey —myep) (€ + my + mp) .
The formulas (A.2.1)-(A.2.9) give the exact solution of the Einstein-Maxwell
equations if and only if the five parameters m;, my, €1, ex and ¢ satisfy the
following condition

mymy = (e1 — v)(e2 + 7). (A.2.10)

The condition (A.2.10) guarantees the equilibrium without any struts on the
symmetry axis between the sources.

A.3. Properties of the solution

First of all one can see that the balance equation do not admit two
black holes ((712 > 0, 022 > 0) to be in equilibrium under the condition that
there is some distance between them, that is if / — 07 — 0, > 0. This is in
an agreement with a non-existence of static equilibrium configurations of
charged black holes proved under rather general assumptions in (28). (To
avoid a confusion, we mention here that the results of (28) do not apply in
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A. Equilibrium configurations of two charged masses in General Relativity

the presence of naked singularities.) The equilibrium is also impossible if
one of the sources is extreme and the other is a non-extreme one and a pos-
itive distance exists between them, i.e. if / — 0o, > 0 for the case 4 = 0 and
(722 > 0 (a negative value for (722 is forbidden at all if oy = 0) H The condi-
tion implies also that (712 and (722 never can be both negative, that is
the equilibrium of two naked singularities is impossible. So, for separated
sources an equilibrium may exist either between a black hole and a naked
singularity or between two extreme sources. The latter case can be realized

only if o7 = 0 = 0,y = 0 and it is easy to see that the formulas (A.2.1)-(A.2.9)
reduce for this case to the Majumdar-Papapetrou solution.

At spatial infinity the variables rq, , coincide and one can choose any of
them as the radial coordinate. In this region the fields, as can be seen from
and (A.2.6), acquire the standard Reissner-Nordstrém asymptotical
form with the total mass m; + my and the total charge e; + e».

At the symmetry axis cos? 6] = cos? §, = 1 and the formulas (A.2.5), (A.2.7)
show that the condition fH = 1 is satisfied there automatically, i.e. there

are no conical singularities. Besides the singularities inherent to the sources
themselves, any other kind of singularities (such as, for example, the off-axis
singularities found in the double-Kerr solution in (29)) are also absent in our
solution.

The constant 7y vanishes in the limit / — co whence it follows from (A.2.10)
that the equilibrium condition asymptotically reduces to the Newtonian form
mymy = eqe for a large distance between the sources.

If one of the sources disappears, e.g. m; = e; = 0, our solution reduces to
the exact Reissner-Nordstrom solution with the mass m; and the charge e, in
the standard spherical coordinates ro, 6.

Let us turn now to that limiting case in which one of the sources can be con-
sidered as a test particle. For this we assume that 711 and e are infinitesimally
small but the ratio ey /m; is finite. In this case, in the first non-vanishing or-
der with respect to the constants m; and e; the equilibrium condition
gives:

(£ 4 my)(mymy — e1ep) = (myep — maeq )er. (A3.1)

We introduce instead of m; a new parameter y; defined by the relation:

mp = ‘111[1 — 27}12(£ + THQ)_l —|—6%(£ + mz)_2]1/2

(A.3.2)
+erea(f +mp) L.

!Non-separated objects for which the horizons overlap each other or the horizon intersects
with the critical spheroid also may be possible but such cases are not in the scope of this
communication.
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Now the relation (A.3.1)) takes the form:

my — €%(£ + 1’}12)_1

A33
— e1€2y1*1[1 —2my (€ +my)~! +e§(£+m2)*2]1/2. ( )

This last equation is nothing else but the Bonnor’s balance condition (15)
for the test particle of the rest mass y; and the charge e; in the Reissner-
Nordstrom field of the mass m, and the charge e;. The particle is at rest
on the symmetry axis at the point R = ¢ + my where R is the radius of the
standard spherical coordinates of the Reissner-Nordstrom solution. If we cal-
culate from the potential ® in the linear approximation with respect
to the small parameters m; and ey for the particular case e; = 0 (i.e. for the
Schwarzschild background) the result will coincide exactly with the potential
which have been found first in (30) - (32) in the form of multipole expansion
and then in (33) in closed analytical form.

The relation is important since it exhibits clearly the physical nature
of the mass m; and gives its correct interpretation. This relation shows that
the parameters my, my are not the rest masses but they represent the total
relativistic energy of each source in the external field produced by its partner.

Finally it is worth to mention that our exact solution remains physically
sensible also in the case e; = 0. This corresponds to a Schwarzschild black
hole of the mass m, hovering freely in the field of a naked singularity of the
mass mj and the charge e¢;. Such configuration exists due to the repulsive
nature of gravity in the vicinity of the naked Reissner-Nordstrom singularity.
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B. Superposition of fields of two
Reissner-Nordstrom sources

B.1. Introduction

In our recent short paper (34) we presented (in a surprisingly simple form)
an exact 4-parametric family of static asymptotically flat solutions of elec-
trovacuum Einstein-Maxwell equations which describes the equilibrium con-
tigurations of two (nonrotating) charged massess in General Relativity. In
this paper we present a more general, 5-parametric solution of these equa-
tions which represent a nonlinear superposition of fields of two Reissner-
Nordstrém sources with arbitrary mass and charge parameters and arbitrar-
ily chosen separating distance and describe the procedure for a construction
of a superposition of these fields. In the subsequent sections, we use a spe-
cial divergent form of the reduced Einstein-Maxwell equations to derive the
Komar-like integrals for the total gravitational mass and charge of this field
and calculate the physical masses and charges of the sources defined as the
additive inputs of each source in the total gravitational mass and total charge
of the system. The expression of our solution in terms of these physical pa-
rameters simplifies it considerably. Then we determine the constraint which
should be imposed on the parameters of this superposition of fields to pro-
vide the absence in the remaining 4-parametric solution of any non-physical
singularities such as the conical points on the axis outside the sources. This
constraint plays the role of the condition for equilibrium of these sources in their
common gravitational and electromagnetic fields.

The 5-parametric solution, presented in this paper, was constructed using
the monodromy transform approach (35; 36) which give rise to a reformu-
lation of the Einstein-Maxwell equations for stationary axisymmetric fields
in terms of equivalent system of linear singular integral equations. As it is
explained below, the functional parameters (monodromy data) in the ker-
nels of these integral equations for our solution are chosen as analytically
matched, rational functions of the spectral parameter which have two sim-
ple poles and vanish at infinity. A solution of the integral equations (35) for
this kind of the monodromy data was described in (36). Moreover, our so-
lution can be identified as the particular one within an infinite hierarchy of
families of electrovacuum solutions corresponding to arbitrary rational (an-
alytically matched) monodromy data, whose general explicit (determinant)
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form was first presented in (37) and later described in (38). Besides that,
we note that the static solution for superposition of two Reissner-Nordstrom
sources with arbitrary charges, masses and separating distance (and there-
fore, including the struts) which we present in this paper, is closely related
with a general two-soliton electrovacuum solution which was constructed
using the soliton generating technique (39) and first presented in an explicit
form in (40) and later in (36). Namely, this two-soliton twelve-parametric so-
lution describes a superposition of fields of two Kerr-Newman sources with
arbitrary masses, angular momenta, NUT parameters, electric and magnetic
charges and the separating distance, coincides in its static limit with that part
of our 5-parametric static solution which corresponds to a superposition of
tields of two Reissner-Nordstrém naked singularities, while the black hole -
black hole part and mixed part of our 5-parametric family of solutions arise
as the analytical continuations of the part with two naked singularities in
the space of parameters. However, the interplay of the twelve parameters
in general two-soliton solution seemed us from the beginning so complicate
that we preferred to construct our 5-parametric solution using the alternative
way based on the integral equations solving the inverse problem of the mon-
odromy transform which allow from the beginning to make such choice of
the monodromy data which would guarantee that the solution will be static
and include all parts related by the analytical continuations in the spaces of
their parameters.

Thus, in this paper, after some historical remarks concerning various meth-
ods for solution of integrable reductions of Einstein - Maxwell equations, we
start from the results of the papers (35} 36) and (37) and describe step by
step a construction of our solution using appropriate choice of the parame-
ters which leads to so compact form of our solution and makes it well adapted
for a detail analysis. E|

10ur choice of the monodromy data means that the solution possess rational axis data, i.e.
that the values of all components of metric and electromagnetic potential, expressed in
terms of cylindrical Weyl coordinates (p,z), on the axis of simmetry p = 0 are rational
functions of z. This means also that our solution virtually is the soliton solution on the
Minkowski background in the sense, that it consists of a pure soliton part and its ana-
lytical continuation in the space of parameters. (This analytical continuation is similar to
that which connects different parts of the Kerr-Newman family of solutions correspond-
ing to the field of a naked singularity and the black hole solution.) These three classes
of vacuum and electrovacuum stationary axisymmetric solutions — the solitons on the
Minkowski background, solutions with rational axis data and the solutions with ratio-
nal (analytically matched) monodromy data were constructed by different authors in the
framework of very different approaches. The corresponding hierarchies of solutions coin-
cide in the main, but very different forms in which they have been derived and presented
in the literature, and an absence of a correct comparative analysis in later publications and
discussions, gave rise to some misunderstandings, confusions and dupplications of the
results in later publications. Having no the purpose to give in this paper a corresponding
detailed survey, we confine ourselves here by some historical remarks concerning various
methods and corresponding citations of the original results. In particular, we would like
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On the integral equation methods

Different approaches to solution of integrable space-time symmetry reduc-
tions of the Einstein’s field equations, which began to develop about thirty
years ago, gave rise to different formulations (generally non-equivalent to
each other) of the integral equation methods, which allow to calculate the
solutions of these field equations solving some systems of linear singular in-
tegral equations.

The first reformulation of symmetry reduced Einstein equations in terms
of a system of linear singular integral equations for vacuum gravitational
tields (together with a construction of vacuum solitons) was proposed in the
framework of the inverse scattering approach (41). This construction was based
on a formulation of equivalent Riemann-Hilbert problem for the 2 x 2-matrix
functions on the spectral plane which gave rise to some system of linear sin-
gular integral equations. It is important, that the solutions of this equations
possess the character of solution generating transformations, because the ma-
trix kernel of these integral equations includes, as functional parameters, the
components of an arbitrarily chosen vacuum metric which serves as the back-
ground for solitons, while the generating solution itself can be considered as
describing some nonlinear perturbation of this background.

In the framework of another, group-theoretic approach, for construction of the
solution generating transformations corresponding to the elements of the in-
finite dimensional algebra of internal symmetries of electrovacuum Einstein-
Maxwell equations for stationary axisymmetric fields (found by Kinnersley
and Chitre (44)), Hauser and Ernst (42) reduced these equations to a homo-
geneous Hilbert problem for 3 x 3-matrix functions of an auxiliary complex
parameter and then, to the corresponding 3 x 3-matrix linear singular inte-

to mention that the solitons on the Minkowski background are a small part of the largest
known class of explicitly calculating solutions - the solitons generated on arbitrary cho-
sen vacuum (41) or electrovacuum (39) backgrounds. The main steps of an algorithm
for a direct construction of solutions with rational axis data for the Ernst potentials were
described and illustrated for the already known solutions in the papers of Hauser and
Ernst (42) and Sibgatullin (43). In the last one and a half decades this algorithm was
actively used by Sibgatullin and others for a formal calculation of numerous examples
of asymptotically flat solutions. Calculation of solutions for arbitrary rational (analyti-
cally matched) monodromy data have been described in (36), while a complete class of
these solutions in a general explicit form was presented in (37), where any asymptotically
flat as well as asymptotically non-flat solutions with rational axis data were included in a
unified manner and the result was presented in a determinant form. A bit later the equiv-
alent forms of this class of solutions were published by Sibgatullin et al and by Hauser
and Ernst. However, it is necessary to note, that all these formal calculations of solu-
tions and using of such (formally) explicit general forms do not lead immediately to the
solutions in a compact form which would be best adapted for detail analysis of the cor-
responding physical and geometrical properties of the solutions, while in each particular
case a special choice of parameters most adequate to a particular physical situation under
consideration can simplify significantly the intermediate steps of calculations and, was is
more important, the final form of the corresponding solution.
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gral equations. This construction assumed an additional constraint imposed
on the class of solutions, which means that only those solutions are consid-
ered which possess (locally) a regular behaviour of fields near the axis of
symmetry. The integral equations (42) have rather complicate matrix kernel
which construction includes a calculation of matrix exponents of the elements
of Kinnersley and Chitre algebra, represented by some algebraically defined
holomorphic 3 x 3-matrix functions of the mentioned above auxiliary com-
plex parameter. Later, fixing the choice of the seed solution by the simplest
one, Sibgatullin (43) reduced the matrix integral equations (42) of Hauser and
Ernst to a simpler scalar linear singular integral equation with some “normal-
ization” condition imposed additionally on its solutions. The kernel of this
scalar integral equation was expressed explicitly in terms of the values of the
Ernst potentials on the axis of symmetry. This integral equation was actively
used during the last one and a half decades by Sibgatullin and others for
mostly formal calculation of asymptotically flat solutions for various partic-
ular choices of (asymptotically flat) rational axis data for the Ernst potentials.

The monodromy transform approach(35; [36) does not follow the ideology of
the matrix Riemann-Hilbert problems, however, it is also based on some ideas
of the modern theory of integrable systems, analytical theory of differential
equations and the theory of linear singular integral equations. For physically
different classes of vacuum and electrovacuum fields with two commuting
isometries (stationary axisymmetric fields, plane and cylindrical waves, in-
homogeneous cosmological solutions and some others) this approach sug-
gests rather simple general construction of the coordinate-independent func-
tional parameters (called as monodromy data) which characterize uniquely
every local solution. The problem of constructing solutions for given mon-
odromy data (the inverse problem of the monodromy transform) gave rise to
a system of linear singular integral equations which differs essentially from
the integral equations mentioned above. A specific structures of the (scalar)
kernels of these integral equations and of the integration path on the spectral
plane allow to describe all degrees of freedom of the gravitational and electro-
magnetic fields and make these integral equations equivalent to the symmetry
reduced Einstein-Maxwell equations. For stationary axisymmetric fields sat-
isfying the regularity axis condition, the integral equations (35} 36) simplify
considerably. A general scheme for constructing of solutions with any rational
analytically matched monodromy data (or, equivalently, of solutions for any ra-
tional, not only asymptotically flat, axis data) was described earlier in detail
(see Refs. (36;38) and the references therein).

Solitons on the Minkowski background and rational axis data.

A discovery of existence of pure gravitational solitons and of the ways for
their generating on arbitrarily chosen vacuum backgrounds—the dressing
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methods(41)(see also Ref. (45)), together with initiated by these results de-
velopments of the similar methods for Einstein-Maxwell fields(39), gave us
a powerful tool for construction of a large variety of solutions of Einstein’s
field equations and for nonlinear superposition of fields of certain kinds of
sources with various external fields.

On the other hand, later developments of the integral equation methods
briefly described above suggested a simple idea to calculate the solutions
of Einstein and Einstein-Maxwell equations using these integral equations
with the simplest choice of functional parameters (the contour data, or the
axis data for the Ernst potentials, or analytically matched monodromy data)
in their kernels as rational functions of their arguments. This also leads to
a construction of large families of exact solutions with an arbitrary (finitely
large) number of free parameters, but without any freedom in the choice of
the background solution. This gives rise to obvious questions concerning a
comparison of these two constructions.

First of all, it is clear that the asymptotically flat rational-data solutions can
be only a very special case of soliton solutions corresponding to a particular
choice of the background for solitons. This can be the Minkowski space-time
or any other soliton solution on this background. Indeed, a direct calcula-
tion shows that vacuum solitons(41) and electrovacuum solitons (39), both
generated on the Minkowski background, represent the asymptotically flat
solutions with rational axis data. These solitons have as many of free param-
eters per one simple pole of the dressing matrix, as it is necessary to describe
an arbitrary chosen rational asymptotically flat axis data with a twice lower
number (for the vacuum case) or with the same number of poles in this dataE|
Of course, the coincidence of the number of parameters itself does not mean
that these classes of solutions coincide. Moreover, some doubts in this coinci-
dence can arise from that fact that the construction(39) of electrovacuum soli-
tons (in contrast to the vacuum soliton generating technique(41)) allows one
to generate the solitons with arbitrarily located complex poles of the dressing
matrix and with the complex conjugated poles of the inverse matrix, while
the solitons with real poles do not arise in this technique. Of course, one can
try to obtain the electrovacuum solitons with real poles as limiting cases of
solitons with complex poles, however, this leads to solutions with coinciding
real poles of the dressing matrix and its inverse, which have a fewer number
of free parameters per pole than the solitons with complex poles.

To clarify this situation, it is worth considering a one-soliton solution on
the Minkowski background, which coincides with the over-extreme part of
the well known Kerr-Newman solution corresponding to a naked singular-
ity. The under-extreme part of this solution, which has a horizon and cor-

21t is necessary to note, however, that the poles of the dressing matrices for solitons coin-
cide with the poles of the solutions of the integral equations, but they do not in general
coincide with the poles of the axis data for the Ernst potentials.
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responds to a black hole, can be described in terms of the soliton generat-
ing technique by a dressing matrix with one real pole. However, as is well
known, the under-extreme part of the Kerr-Newman family can be obtained
by a simple analytical continuation from its over-extreme part in the space of
its parameters. It is very likely that a similar analytical continuation is pos-
sible not only for a one-soliton solution on the Minkowski background, but
for any number of solitons as well. Indeed, solving the integral equations for
the (static) two-pole monodromy data, we have found that the part of our
static 5-parametric solution which corresponds to a pair of naked Reissner-
Nordstrém singularities coincides with the static subfamily of two-soliton so-
lutions on the Minkowski background, while the remaining part of this fam-
ily is connected with this two-soliton solution by analytical continuations in
the space of parameters similar to the ones used in the one-soliton case to con-
nect different parts of the Kerr-Newman family of solutions. The motivation
given above shows that it is most reasonable to expect that the class of solu-
tions of the integral equations for asymptotically flat rational axis data con-
sists of the already known solitons on the Minkowski background together
with their analytical continuations in the space of parameters (which should
be supplied also, for completeness, by certain limiting solutions correspond-
ing to multiple poles in the dressing matrices). On the one hand, in view
of the above considerations, this means that there is not any reason to con-
sider every formally calculated solution of the integral equations for rational
asymptotically flat axis data as some new one describing the “extended” or
“generalized” solitons, because it would be curiously enough to call similarly
the under-extreme part of the Kerr-Newman family of solutions which is a
simple analytically continuation in the parameter space of its over-extreme
part.

On the other hand, the above motivation does at all not mean that it has
no sense to use the integral equation methods for calculation of these soliton
solutions starting directly from some asymptotically flat rational axis data. It
is worth to mention here, that the application of the soliton generating tech-
nique leads to some specific parameterization of the constructing solutions
which differs significantly from that which arise for the solutions constructed
from the corresponding solutions of the integral equations. Each of these pa-
rameterizations can occur to be more or less useful in different considerations
of this class of soliton (or rational-data) solutions. For example, it seems, that
just the existence of the analytical continuation in the parameter space dis-
cussed above can be proved for N-soliton solution more easily if we use its
expression which arises from the solution of the integral equations, but con-
sidering the general twelve-parametric two-soliton solution, we find that it
has the most compact form just in the soliton parameterization(36).

This concludes our very brief recollection of some fragments of the history
of the methods and of some interrelations between the solitons and solutions
with rational axis data derived from the integral equation methods. At the
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end of this introduction, we sketch out the monodromy transform approach
and the integral equation method which we use for construction of our 5-
parametric solution for a superposition of fields of two Reissner-Nordstrom
sources. In all necessary details, a theory of this method and a general scheme
for construction of solutions with rational, analytically matched monodromy
data, were developed long ago and were described in the papers cited above
with some additional useful references therein.

Monodromy transform approach

This approach is based a) on the parametrization of the space of local so-
lutions of the symmetry reduced Einstein-Maxwell equations by the mon-
odromy data—a set of coordinate independent functions of a spectral param-
eter, which determine the branching properties on the spectral plane of the
fundamental solution of associated linear system, and b) on the reformula-
tion of these equations in terms of a system of linear singular integral equa-
tions. For stationary axisymmetric fields, this approach allows to construct
nonlinear superpositions of electrovacuum fields of different sources charac-
terized by analytically matched, rational monodromy data (36) (see also the
Appendix in Ref. (38)). In the following sections, we demonstrate at first that
the external field of a single Reissner-Nordstrom source is characterized just
by this kind of the monodromy data functions which have on the spectral
plane one simple pole and vanish at infinity. For superposition of fields of
two such sources we choose the rational monodromy data functions as the
sums of two poles with such coefficients which guarantee that the solution is
static. Given this monodromy data, we describe step by step the construction
of the corresponding solution.

The space of local solutions and its parameterization by
monodromy data

For electrovacuum Einstein-Maxwell fields depending only on two space-
time coordinates, in the entire space of local solutions, which are analytical
near some initial point and take at this point (the point of “normalization”)
some “standard” values, every local solution with the metric g;; and electro-
magnetic potential A; can be characterized uniquely by the monodromy data
which consist of four coordinate-independent holomorphic functions of the
spectral parameter w:

{gin(x!, %), A;i(x}, x%)}  ——  {us(w),vi(w)} (B.1.1)

This monodromy data are defined as a complete set of independent functions
which characterize the branching properties of the corresponding fundamen-
tal solution of the associated linear system on the spectral plane at its four
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singular points. This data are defined uniquely for any local solution and for
arbitrary choice of these functions there always exists a unique local solution
of electrovacuum Einstein-Maxwell equations with given monodromy data.

This construction is useful as far as some effective methods can be devel-
oped for explicit constructing of local solutions for given monodromy data.
Then, given an explicit local solution, the corresponding global solution can
be determined using its analytical continuation to other space-time regions
where this solution may reveal also some regular behaviour or approaches
various types of singularities.

The master system of linear singular integral equations

The key point of the use of the monodromy data is the existence of some sys-
tem of linear singular integral equations whose kernels and right hand sides
are expressed algebraically in terms of the monodromy data and whose so-
lution determines (by means of some quadratures) all components of metric
and electromagnetic potential.

In general, the structure of this system of linear singular integral equations
is rather complicate. The singular integrals are defined on the contour L on
the spectral plane which consists of two disconnected parts L = L + L_.
The locations of their endpoints depend on the space-time coordinates and
coordinates of the initial point which enter also the integrands as parameters.
In particular, Ly goes from w = ¢, to w = ¢ and L_ goes from w = 1, to
w = 17, where, for example, for stationary axisymmetric fields in terms of
Weyl coordinates { = z +ip, 1 = z — ip, but for plane waves { = x +t,
n = x —t)and (&,,1,) correspond to the initial point.

The monodromy data as well as the unknown functions in these integral
equations are defined in two disconnected regions of the spectral plane—the
neighbourhoods of L and L_, where they are represented by pairs of func-
tions (uy, u_), (vy, v—) and (@ 4, @ _) respectively. It is clear that these
equations cannot be solved for arbitrarily chosen monodromy data. How-
ever, for some classes of fields, such as, for example, stationary axisymmetric
fields with a regular axis of symmetry considered in this paper, these inte-
gral equations can be simplified considerably and admit infinite hierarchies
of multiparametric families of explicit solutions.

Monodromy data for stationary fields with a regular
symmetry axis

For stationary axisymmetric fields, it is typical that physical and geometrical
formulations of various problems (as, for example, in the case of asymptoti-
cally flat fields) imply that at least some part of the axis of symmetry is free
of the field sources and therefore, a behaviour of metric and matter fields
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in the neighbourhood of this part of the axis should be regular. For such
tields, if we choose the initial point (the point of normalization) of a solu-
tion on such regular part of the axis, the initial points of the contours L and
L_ coincide and instead of two disconnected contours we obtain one simple
curve L = L, + L_. Changing preliminary the direction of integration on
L_, we obtain one contour where the system of singular integral equations is
defined. It starts at the point w = #, goes through the initial point w = z
and ends at w = ¢. On this contour the monodromy data and the unknown
variable in the integral equations are represented by twice lower number of
holomorphic functions because for these fields we have

uy (w) = ‘1,1__ (w) i ‘1,1((55)), ¢ +(w) =@ _(w) = @ (w) (B.1.2)

Usually, we call these conditions as the regularity axis condition, however we
note that these conditions guarantee only a regular local behaviour of fields
near the axis, but they do not exclude the presence of some non-curvature sin-
gularities, such as conical points on the axis or closed time-like curves near it.
Thus, for stationary axisymmetric electrovacuum fields with a regular axis of
symmetry the monodromy data are represented only by two arbitrary holo-
morphic functions u(w) and v(w). We recall also that v(w) is “responsible”
for a presence of electromagnetic field, so that for vacuum v(w) = 0 and the
space of solutions of vacuum stationary axisymmetric fields near the regu-
lar part of the axis of symmetry is parameterized by the monodromy data
consisting of one holomorphic function u(w).

Another important property of the stationary axisymmetric electrovacuum
tields with the regular axis of symmetry is that any solution can be charac-
terized by the finite values of its metric components and potentials (e.g., of
the complex Ernst potentials £(p, z), ®(p,z)) on the regular part of the axis
of symmetry. In this case, the monodromy data can be related to the
values €(z), ®(z) on the axis:

E(p=0,z) =& —2i(z—zp)u(w =2z), P(p=0,z)=Dy+2i(z—2zp)v(w = z),
(B.1.3)
where z is the Weyl coordinate along the axis, zg is a coordinate of the ini-
tial point on this axis, €y and ®g are the “normalized” values of the Ernst
potentials at the initial point, for which we usually put £y = 1 and ®y = 0.

The conditions for asymptotically flat and static fields

The expressions (B.1.3) allow us to relate the structure of the monodromy data
(B.1.2) with some physical and geometrical properties of fields. In particular,
for any asymptotically flat field u(w) and v(w) should be holomorphic at
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B. Superposition of fields of two Reissner-Nordstrom sources

w = oo and
u(w) -0 and v(w)—0 for w— oo.

Moreover, in this case, the coefficients of expansions of these functions in
the inverse powers of w for w — co can be simply related to the multipole
moments of this asymptotically flat field. Therefore, the multipole structure
of the field can be determined in advance by the appropriate choice of the
monodromy data.

For static fields, € should be real, while ® should be real for pure electric
fields and imaginary for pure magnetic fields and therefore, u(w) and v(w)
should satisfy

u'(w) = —u(w) and  v'(w) = Fv(w)

where u'(w) = u(w) and v’ (w) = v(w) and a bar means a complex conju-
gation.

Exact solutions with rational monodromy data

An infinite hierarchies of solutions of the Einstein-Maxwell equations can be
calculated explicitly if we choose the analytically matched monodromy data
(B.1.2) to be rational functions of the spectral parameter:

U@ V@)
"0 =5y Y= G

where the functions U(w), V(w) and Q(w) are some polynomials. A general
algorithm for solution of the integral equations for these polynomials of arbi-
trary orders was described in (36;38). This algorithm leads to explicit form of
solutions in a unified, but rather complicate form, and, as we shall see below,
a large careful work is necessary for finding of appropriate choice of physical
parameters which can simplify significantly the constructed solutions.

The linear singular integral equations

For stationary axisymmetric fields outside their sources the metric and elec-
tromagnetic vector potential can be considered in cylindrical coordinates in
the form

(B.1.4)
Ai = {Atl O/ 0/ A(p}/
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where x' = {t,p,z, ¢} and the metric components g, iy, $pp and f as
well as the components A; and A, of the electromagnetic potential are func-
tions of the coordinates p and z only. It is well known, that for the met-
ric and electromagnetic fields the symmetry reduced electrovacuum
Einstein-Maxwell field equations decouple into two parts. One of these parts
is a closed system of “dynamical” equations-the nonlinear partial differential
equations for the functions g, g1, o9, Ar and A,. (We recall here that the
Weyl cylindrical coordinates are defined so that g1:gpe — g%q) = —p? and there-
fore, only two of these three metric components are unknown functions).
Another part is a pair of constraint equations which allow to determine in
quadratures the conformal factor f provided the solution for gt, §tp, §pe, At
and A, is already known. Though an explicit calculation of these quadra-
tures for the conformal factor f represent usually a large technical difficulty,
the principal problem is a construction of the solution of the “dynamical”
equations with wanted physical and geometrical properties. That is why we
concentrate below mainly on the construction of solution of the “dynamical”
equations.

In accordance with a general scheme (35} 36), the components of metric and
electromagnetic potential (B.1.4), which satisfy the electrovacuum Einstein-
Maxwell equations, can be expressed in the form

g1 = 1-— i(Rt(P — tho) + d>t5t E=1- ZiRt(P

Stg = —i(z — 20) +i(Rf + Ry?) + @4 D, d Rs* >B'1'5)
_ _ By =2i (51
Spp = i(Ry' = Ry') + DDy <CD(P> (qu*

where {®;, @} are the components of a complex electromagnetic potential
and Re®; = A;, Re®, = A,; the functions Rf, Rf, R}, Rz,, Rg, R; constitute a
matrix which is determined by the integral over the contour L on the spectral
plane

RE(th Rg Rt>
R, Ry R}

1 Wg( 1+i(C —zo)u' ()
L

= [1 [u] [v]
= 12V B ) @ {0100 (), 0 (0}
(B.1.6)
Here { € L and the contour L (unlike the general case) is a simple curve
which starts from w = 1 = z — ip, goes through the initial point w = z
and ends at the point w = ¢ = z + ip, where p and z are the well known
cylindrical Weyl coordinates in which g:gpe — gt9 = —p>, and zo determines
the location of the point of normalization on the axis of symmetry p = 0. In

the above integral, [A]; denotes a jump (i.e. a half of the difference between
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left and right limits) at the point { € L of a “standard” branching function

A= \/(g —z—ip)({—z+1ip)/({ —z0)?, Mp,z,{ =) =1. (B.1.7)

The functions @ [1(7), @ ["(7), @ V(7)) should satisfy to the decoupled linear
singular integral equations with the same scalar kernels and different right
hand sides (35; 36):

() 1
_ 1 MeHTE) (ﬁ[u]@)) iz = (u(‘c)) (B.18)
L @ M(g)

where {, T € L; there is a Cauchy principal value integral in the left hand
side, and the kernel function (7, ) in its integrand is

H(t,8) = 14i(Z — z0) [u"(Z) — u(T)] +4(Z — z0)*v(T)v'(])

and everywhere below, we can put zg = 0 without any loss of generality. The
coordinates p and z enter the equations as the parameters which deter-
mine the location of the endpoints of the contour L and as the arguments of
the function A, however, for simplicity we have not shown explicitly in
the dependence of the unknown functions ¢ 1], @ [l and ¢ [V on these coor-
dinates. We note also, that in general, ¢ [, (0] v and 0] V] as well as the right
hand sides of constitute the row-vectors, however, for a convenience
we write in a transposed form.

B.2. The Kerr-Newman field as a one-pole solution

We begin our description of solution of the integral equation (B.1.8) with a
simple case of a one-pole structure of the monodromy data functions:

Ug

u(w) = p— v(w) = Y

w—h

(B.2.1)

where 10, vg and h are arbitrary complex constants. For these data the kernel
function H(t, () /(¢ — T) can be split into the singular and regular parts:

H(zr,§) 1 {P(C)

-1  (t-m-h -7

+ R(@)} (B.2.2)
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where the polynomials P({) and R({) possess the expressions (zg = 0):

P(7) = ¢*[1 —i(ug — 1p) + 4voTo) — L[(1 + iwg)h + (1 — iug)h] + hh

R(¢) = —(1 +itig){ +h
(B.2.3)
Assuming that i # 0, what means that the pole is not located on the integra-
tion path L, we present the polynomial P(w) in a factorized form

P(w) = Po(w —wy)(w—w1),  Po=1—1i(ug—1p)+4vo79  (B.2.4)

The coefficients of P(w) always are real and therefore, its roots wy and @, are
real or complex conjugated to each other. We parameterize these roots as

w1 = z1 + 07, W =21 — 0 (B.2.5)

where z1 is a real parameter while ¢y can be real or pure imaginary. A com-
parison of and allows to express z; and o7 in terms of u, vy
and h, however, it is more convenient to use z; and 07 as new parameters and
express some of the parameters ug, vo and h as functions of z;, &7 and others.
We give the explicit expressions later, but now we concentrate on solving of

the integral equations (B.1.8).
As it can be concluded from the structure of the singular integral equations,

their solutions for the monodromy data (B.2.1) should have the form

{oWw), o1 (w), o M(w)} = (ﬁ(w;l ) {w+Xo, Yo 2o} (B26)
where X)), Yy and Zj are independent of the spectral parameter w, but they
can depend on the coordinates p and z. As we see from these expressions, the
solutions of the integral equations are rational functions of the spectral
parameter and they have the poles coinciding with the roots of the polyno-
mial P(w).

To calculate the values of Xy, Yy and Zj explicitly, we substitute ,
(B.2.2) and (B.2.6) into the integral equations and obtain the linear al-
gebraic equations for Xy, Yp and Z( with rather complicate coefficients. These
coefficients are linear combinations of the usual or singular Cauchy principal
value integrals of the form

1 [ [Ag ek 1 (Al
S

TTi (—7
L

where 7,0 € L and k > 0 is some integer. Any integral of these types can
be calculated explicitly using the elementary theory of residues. Indeed, the
integrands in these integrals can be expressed as the jumps of analytical func-
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tions A(w) w*/ (w — 7) and A(w) w*/ P(w) respectively. Therefore, these inte-
grals can be expressed as the integrals over the closed curves L surrounding
the contour L:

1o, 1 _/A(X)x" i, l./ Mg & 1 _/A(X)x" iy
miJ {—7 2ni) x—T i ) P(C) 27t / P(x)
(B.2.7)
where x € £ and L surrounds L in negative direction (i.e. so that the interior
is to the right) and close enough to L so that no poles of P(w) are inside L.
The function A(w) w*/(w — T) is analytical outside the contour L and it can
have only the pole at w = oo, while the function A(w) w*/P(w) is analytical
outside L, besides the poles which arise from zeros of P(w) and possible poles
at w = oo. This allows us to transform the closed integration path L into a
one approaching w = oo taking into account the inputs from the finite poles
and therefore, in , each of the integrals over L is equal to the sum of
residues of its integrand at finite poles plus the residue at w = co. Thus, for

the integrals (B.2.7) we obtain

k k
% [é\]fgi ¢ = — ZO(A)km ™,
L e
i/M iz = A(wr) wy N Moy @ Mw) ok (B.2.8)
Tl / P(?) P’ (wq) P (@) P(w) 1

where (A),,_; means the coefficient in front of 1/w*~" in the inverse powers
expansion of the function A(w) at w = oo and similarly, (...)_1 means the
coefficient in front of 1/w in the inverse powers expansion of a function at
w = co. The parameters wy and w; are the roots of the polynomial P(w),
while P/(wq) and P’ (@) mean a derivative of P(w) with respect to w at w =
wy or w = Wy respectively.

The substitution of (B.2.6) and (B.2.2) into (B.1.8) and the subsequent cal-

culation of the contour integrals leads to the equations whose left and right
hand sides, after multiplication by (T — /), become polynomial functions of
7. Equating the coefficients of these polynomials, we obtain the linear alge-
braic equations for Xy, Yp and Zy whose solution allows to obtain the explicit
expressions for @ :

1) o] () _ (@—h) ChtA w w
{(p (), @™ (w), @ (W)} - {w+7~ Ao Ao’ Ao}

(B.2.9)
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where Ag and A; possess the expressions

__ Muw) M) 4o 1+ i
A = — ;,((Z’Uﬁ R(w1)(wy +z) — %R(@_) (@1 + 2) (B.2.10)
1 j;gmo [E(1 —iug) +h(1+ iu_o)} + Pﬁo

and the polynomials P({) and R(Z) were defined in (B.2.3). Now we have
to substitute these solutions of the integral equations into the integrands of
quadratures and calculate these quadratures using the same methods
for calculation of these type of integrals as it was described above. The com-
ponents of metric and of electromagnetic potential, as well as the Ernst po-
tentials for the constructing solution can be calculated then algebraically from

the expressions (B.1.5).

The formal calculations for the monodromy data described above
lead us to the explicit but very complicate form of the solution. This so-
lution can be simplified considerably using (i) a new and most appropriate
set of parameters, (ii) some global gauge transformations—SL(2, R)-rotations
and rescalings of the Killing vectors ¢; and ¢, with the corresponding linear
transformations of t and ¢ coordinates and (iii) a set of more convenient co-
ordinates (such as the prolate or oblate ellipsoidal coordinates) instead of the
Weyl coordinates p and z. In the remaining part of this section we describe
these simplifications and show that this solution represents nothing more but
the well known Kerr-Newman family.

At first, comparing the explicit expression for P(w) with its factor-
ized form and using , we obtain a set of relations between z1, 07
and the original set of independent parameters uy, vy and h. Solving these
relations we express ug, vg and h in terms of a new set of parameters which
consists of the real parameters m, a, b, z; and a complex parameter e:

ih

uy = —i+——(z1 +ia), h=z1+m—i(a+D)
wiws
o Wi (B.2.11)
= —/D,, Py=—,
o 2h 0 0 w11

and the parameter o is is related to the parameters m, a, b, z; and e by the
equation

alzzm2+b2—a2—eé
Now, for the choice of new coordinates we note, that besides a presence of
p and z in the solution explicitly, its dependence of these coordinates also

comes from the functions A(p, z, w) which should be calculated at the points
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w = w1 and w = Wy, i.e. at the roots of P(w). Let us express these functions
in the form

X1 — 0y A(p, z @1) _ X1+ o1y1

Alo,z,w1) = ,
(b J Z1+ 01 z1 — 01

where x; and y; will be considered as new coordinates. If we compare these
expressions with the definition (B.1.7), we obtain the relations between p, z
and x1, y1:

p:\/x%—alz\/l—y%, z=1z1+ X111

Finally, we have to make some gauge transformation of our solution:

h E— 89+ 2Py(D— D

Wy — 2L e 14 0 + 2% 0) € = 1— 2iuy
Py oD Py

htq) — htcp D — —0 CDO :2iUQ

VP
hop — Pohgg ® — /Py®

After this reparametrization, change of coordinates and gauge transforma-
tions we obtain the solution in a simple form. In particular, we obtain the
Ernst potentials

(—iequp + 460?)0?)6) 2(m — ib)
E=1-2 =1- ) —,
PyAg x1 +iay; +m —ib
2ivg e

VPAy  x1+iay; +m —ib

P=—

which can be identified with those for the well known Kerr-Newman solu-
tion. The coordinates x; and y; are connected directly with the polar spheroidal
coordinates:

Xy =1r—m, Y1 = cos 04

and the real parameters m, a, b, z1, real and imaginary part of e can be identi-
tied respectively with the mass, angular momentum, NUT-parameter, electric
and magnetic charges of the Kerr-Newman source (a black hole or a naked
singularity).

The Reissner-Nordstrom field as a static one-pole solution

As it was already mentioned above, to obtain a static solution with the mon-
odromy functions having only one pole, it is not necessary to make all of
the calculations described above, but it would be enough to restrict from the
beginning the monodromy data functions by the case, when these functions
would take pure imaginary values on the real axis on the spectral plane. For
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this, it is necessary to choose the parameter & to be real and the parameters
up and vy pure imaginary. In this case, as one can see from (B.2.11)), we would
have

hZE, Ug = —Ugy, Vg = —07g <~ a=0, b=0, e

I
N

i.e. we obtain the Reissner-Nordstrom solution.

B.3. Superposing the fields of two Reissner -
Nordstrom sources

In this section we describe the key points of the calculation of solutions for
monodromy data having two simple poles on the spectral plane. This mon-
odromy data can be represented as a superposition of two one-pole terms
and therefore, in accordance with the previous section, it is naturally to ex-
pect that the corresponding solution will describe the superposition of fields
of two Reissner-Nordstrom sources.

Structure of the monodromy data

Thus, we begin with the choice of the monodromy data functions in the form

u(w) = + , v(w) = + . (B.3.1)

where uy, up, v1, vp, by and hy are arbitrary complex constants. However,
to obtain a static solution, we specify this data imposing the following con-
straints:

m=-im n=-0 h=h (B.3.2)

Structure of the kernel and a new set of parameters

In this case, the kernel (7, {)/({ — ) splits into the singular and regular

parts:
H(z,{) 1 [ P(C)

(-~ (t-m(-h) -t

#R(0)]
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where the polynomials P({), R(7,{) are defined as (everywhere below zy =
0):

P(C) = h%h% — Zhll’lz[(l — iul)hz + (1 — iuz)hl]C + [(hl + hz)z + 2h1hy
— 4(h1?)2 + hzvl)z — 2i(h%u2 + h%ul) — 4ih1h2(u1 + uz)]CZ
-+ [2]’[1(—1 + iu1 + 2ilx[2 -+ 40102 —+ 47)%) —+ 2h2(—1 —+ 2iu1 + iuz
+ 4010y + 409)]03 + [1 — 2i(ug + up) — 4(v1 + 02)?] ¢*
R(7,¢) = Ro(¢) + Ra(0)T
Ro(g) = hiha(h1 + ha)
— [h% + 3h1]’l2 + I’l% — lhl(hl + 2]12)112 — lh2(2h1 -+ hz)ul} g
+ [2(h1 + 1) (1 — iug — iup — 20107) — ihqup — ihpuy — 4hy03 — 4hpv3] 2
+ [—1 + 2i(uy + up) +4(v1 + 02)2} Cs
Rl(g) = —hyhy + (h1 + hy — ihquy — ihzul)é: + (—1 4+ iuq + iuZ)gz
(B.3.3)

Assuming that the pole of the monodromy data is not located on the integra-
tion path L and therefore, h1hy # 0, we present P(w) in a factorized form

P(w) = Po(w — w1)(w — w1)(w — w ) (w — ) (B.3.4)

The coefficients of the polynomial P(w) always are real and therefore, its
roots wq, w1 and wy, W, are real or complex conjugated in pairs. We parame-
terize them as

w1 =2z1+ 01 Wy = 29+ 0» hy = z1 +my

_ s ~ Zo =21 +4
w1 =2Z1—0 Wy = Zp — 07 h2:22+m2 1

(B.3.5)
where z; and z; (and therefore, ¢) are real parameters while 07 as well as
07 can be real or pure imaginary. A comparison of coefficients of different
powers of the spectral parameter in (B.3.3) and in (B.3.4) leads to a number of
relations of the form

h2h3 = PyJa,

Zhlhz(hl + hy — ihquy — ihzul) = PyJs,

h% + I’l% + 4h1hy — Zi(hl + hz)(hluz + hzul) — 2ih1h2(u1 + uz)
—4(h1’02 + hz’()l)z = PyJ,, (B.3.6)

2(’11 + h2) — 2i(h1u2 + hzul) - 2i(h1 + hz)(ul + uz)

—8(]’11?)2 + hzvl)(vl + Uz) = PyJq,

1—2i(u; +up) — 4(vy +v2)? = Py.
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where we have introduced the notations

I = wy + Wy + wy + Wy

J) = W w1 + wiwy + W Wy + Wiwy + W1 Wy + Wrwy
J3 = WwoWy + W WoWy + W1 W1Wy + W1 W1Wo

34 = ZU1?:(717/U2@2

In terms of the parameters (B.3.5) these functions possess the expressions:

J1 = 2(z1 + 22) J3 = 22125(z1 + 22) — 22007 — 221073
I =z} +4z12p + 25 — 0% — 03 Iy = (22 — 02) (25 — 03)

The relations allow to express the roots of P(w) (or the new parameters
z1, zp and 01, 0 in terms of uq, up, v1, v and hy, hy, however, it is more simple
and convenient to use zj, z» and ¢y, 02 as new parameters and express Py and
some of the parameters 1, up, v1, v2 and hy, hy as functions of z1, zo, 01, 02
and others. We present these expressions in the form

_ 2ihih3e18Py Py + 2ih3e3PF + ihf(hy — ha) (h3J1 — 2h372 + 3hyJ3 — 474)

231

Z(hl - h2)3j4 !
. —2ih2hye16, Py Py — 2ih362 P? + ih3 (hy — ha) (B30y — 21375 + 3175 — 434)
2 2(h1 — h2)30, '
ihye, P hyé,P;
01 = npe1 7 vy = ez

2(h = ho) v/ 2(h —ha)VTs
(B.3.7)

where the parameters ¢7, €, and P;, P> are defined as follows. Solving (B.3.6)
leads to the expressions P(hy) and P(h;) which must be non-negative:

P(h1) = (h1 —w1)(hy — 1) (h — w2) (1 — @2) > 0

P(hZ) = (hz — wl)(hz - @1)(}12 — w2)(h2 — @2) >0 (B.3.8)

Assuming for the case of real roots of P(w) that they are numbered so that
w1 < wy < wy < wy, and that in any case, z; < zp, we conclude from
that /1y and h; should be located outside the interval (w1, wy) if wy (and
therefore, w-) is real and outside the interval (w;, wy ) if wy (and therefore, w5)
is real. This means that

(h —wy)(h —@1) =2 —02 >0,  (hy—wo)(hy — W) = W3 — 05 >0
and therefore, there exist the real parameters e; and e, such that

2 _ =2 2 2 _ =2 2
el = mj] — oy, e5 = m5 — 05 (B.3.9)
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and we allow to each of the parameters ¢; and ¢, to be positive or negative in
order to cover all opportunities to have in the expressions different signs in
front of the square roots: ++/P(h1) and £+/P(hy). The parameters P; and P»
in (B.3.7)) are defined as positive parameters which have the following explicit
expressions:

P1 = \/(hl —wz)(hl —@2) = \/(5—7711)2 —0'22
Py = \/(hy —w1)(ho —W1) = \/(f+"~12)2 4

The expressions allow us to use instead ug, uq, vg, v1 and hy, hy the
parameters z1, zp, 1y, My, €1, €2 (With ¢ = z, —z; > 0) which can take arbitrar

real values, provided P12 > 0 and P22 > 0, in view of and
Without loss of generality, we assume that if all roots are real, then o7 > 0,
oy > 0, and for the sources to be separated, we assume also that ¢ > 071 + 07.

(B.3.10)

Formal construction of the solution

For solving of the integral equations (B.1.8)) for the monodromy data (B.3.1))-
(B.3.2), we substitute this data into the integral equation (B.1.8) and obtain
the equations whose solution has the structure which is very similar to that

for the one-pole case (B.2.6):

1] 2
(0] (W) _n _n Xo+ Xjw + Xow

@MW)ZJW ;%; 2) Yo + Yiw + Yow? (B.3.11)
w Zo + Zyw + Zow?

where the coefficients Xj, Yy and Z; (k = 0,1, 2) are independent of the spec-
tral parameter w and they are functions of coordinates and constant param-
eters. To find these coefficients explicitly, we have to substitute back
into the integral equations, to calculate the corresponding integrals using the
rules and solve the linear algebraic equations for X, Yy and Z;. Using
this solution, we find explicitly (using again the rules (B.2.8)) all components
of the matrix R and calculate then pure algebraically the Ernst poten-
tials and all metric and electromagnetic potential components in accordance
with their general expressions (B.1.5).

Weyl cylindrical and bipolar coordinates

During the calculation of the contour integrals (B.2.7), the coordinate depen-
dence of the solution arises from calculation of residues of the integrands. It
is easy to see, that the residue at infinity gives rise to the terms which are
polynomial functions of Weyl coordinates p and z, while the residues at fi-
nite poles — the roots of P(w) give rise to the terms which are proportional
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to the values of the function A(¢, 77, w) at these roots: Ay = A(E, 7, w1), A =
AG,m,w1), A2 = A(E,n,wp) and Ay = A(E,n,wy). To have deal with these
functions, we introduce bipolar coordinates (x1,y1) and (x,12) related to
the corresponding pairs of spherical-like coordinates (r1,61) and (2, 6;) cen-
tered on the symmetry axis p = 0 at z = z; and z = z, so that x; = r; —m;,
Y1 = cos by, xp = ry — 1y, Yo = cosby. The coordinates (x1,y1) and (x2,y2)
are defined by the relations to A4, 7\1, Ay and A,

P B U X1:X1+01y1 p:\/x%—af\/l—y%
z1 + 01 Zz1— 01 zZ =121 —l—x1y1

AZZXZ—U'Z]/Z X2:x2+02y2 p:\/xg_a'zz\/l_y%
2+ 02 2 — 07 zZ =2y + X2

while their relations to the Weyl coordinates given just above follow from the
definition of the function A (&, 7, w).

Physical parameters of the solution

The calculations described above lead to rather complicate form of the so-
lution expressed in terms of functions of bipolar coordinates x1, x2, ¥1, ¥2,
the formal mass and charge parameters iy, 1y, €1, e; and the parameters
z1 and z; which characterize the location of the sources on the symmetry
axis. However, it is more convenient to describe the structure of this solution
using certain combinations of these parameters, which, as it will be shown
later, represent physical parameters—the masses of the sources m, mj, their
charges e, e; calculated using the Gauss theorem and therefore, expressed in
terms of the Komar-like integrals. These physical parameters are determined
by the expressions

My = fity 4 Elé‘z(ﬁ —my + 7’712) o — glpz(g —my + 1’712)
. PP + &2 ! PiP, + 812
iy = fity — e1ex(0 —my + miy) er = e P + e e
PP, +eqep 0 —my + myp
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where P;, P, were introduced in (B.3.10). The inverse relations are (vy is de-
fined below):

. (L+m +mp)?—Kop _ (m+mp)?—*+Ky
2(L+my +my) 2(€ + my + my)
1
=5 [(€+ mp)? —m3 — Ko] +e1(e1 + e2)
1 (my +m3)Ko
& =5 [(t=m) m%—KO}+(€2+27)(€1+€2)+—€+m1+7)nz
1 mq + my) Ky
P2 = 2 [(0—my)?—md+K 2 _Um T )%
%[ m1)? —mj3 + Ko| + (e2 +27)(e1 + e2) ———
§[€+m2 —m?+ Ko| +e1(er +e2)

. (0 +my)? —m1 Ky
— —P,P
“1e2 e ((6 + my)? — m? + Ko
K2 = [(£ + mp)? — m3)? + dey (€ + my + mp)[ea (£ — my + my) + 2eymy]

The parameters 07 and o> also can be expressed in terms of my, my, e1, e and

/:

2 _ =2 2

02 = Mm% — 6% = m? — €2 + 2ey7, moe1 — mie

P ) I 1y where y=-2>1_"1"2 (B312)
(fzzmz—ez:mz—e2 2e57, {+mq +my

Using these parameters, we obtain more symmetric and simpler form of the
solution. We introduce also, instead of e; and e, two other parameters g; and
g2 such that:

2
q=e—7, _ maq1 — miq2 of =mi+7° —q, B.3.13
Q2:€2+’)/, ,)/ g 7 0_22_m2+,)/ q% ( D )

Finally, after some long calculations and consideration of various possible
forms of our solution, its rather short form was found. In this form, all com-
ponents of the solution are presented as functions of six parameters with only
one constraint

{my, ma, q1, 92, €, v} H Y = moq1 — myqp (B.3.14)

which leaves only five parameters to be independent.
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B.4. 5-parametric solution for interacting
Reissner-Nordstrom sources

For the monodromy data (B.3.1),(B.3.2), the corresponding solution is static
and its metric and electromagnetic potential in cylindrical Weyl coordinates
take the forms

2
ds? = HAi? — f(dp? +dz?) — L-dg?,
At:¢, Ap:AZ:A(P:OI

where H, f and ® are real functions of p and z. The calculations described

in previous subsections lead to the following structure of the functions H, ®
and f:

(B.4.1)

D2 Q242 F fo(D + G)?
H = @ = -, =
GEEE I = B - i)
(B.4.2)

where D, G, F are polynomial functions of bipolar coordinates with rather
simple coefficients depending on the parameters of the solution:

D = x1x2 — V*Y1y2
+6[x3 + x5 — o1yi — 03y3 + 2(myma — q142)y1y>]

§ = myxy + mpx1 + Y(q1y1 + 9242) (BA.3)
+ 20 [m1x1 + maxy + y1(q2y — ma1l) + ya(q1y + mal)]

F = q1x2 + gox1 + y(mry1 + mayn)
+258[q1x1 + qaxz + y1 (may — q1€) + y2(m1y + g20)]

In (B.4.2), fo is an arbitrary constant which should be chosen so that f — 1 at
spatial infinity and the parameter ¢ in (B.4.3) is determined by the expression:
1 niniy — q1q2

:—’ 5:
fo (1+20)2 2 —m?—m2+q>+q3

In accordance with (B.3.13)) and (B.3.14), these equations give us an explicit

expression of the solution in terms of five free real parameters my, my, e1, ez
and ¢ = z; — z;. We consider this solution as depending on six parameters
my, my, 41, 42, £ and 7y restricted by the only one constraint (B.3.14) and with

the expressions (B.3.13) for 07, 03:
2

vl = maqr — miq, o =mi + 9% —q, o5 =m3+9* —q3. (B45)

(B.4.4)

This solution is asymptotically flat. As it will be explained in the next section,
the parameters m; and mj; characterize the individual masses of the sources
and the charges of these sources are e; = q; + y and e; = g — 7y respectively,
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while the total mass m = m; + my and the total charge e = e; + e5.

B.5. Physical parameters of the sources

For electrovacuum space-time which admits a time-like Killing vector field
¢ = d; we can write (following, for example, (36)) the “dynamical” part of
the Einstein-Maxwell equations in the Kinnersley-like self-dual form

ik ik
ViH =0, VF =0 (B.5.1)

where the bivectors H;;, and Fj; are defined as follows (y = ¢ = 1):

+ + _+ + i
Hix = Kig — 20T, Kix = Kir + §€ik1mK1m, Kix = 0iC — 9kCi,
N .
Fik = Fir + %siklmFlmz Fie = 0iAx — 0 A;
(B.5.2)
and, due to (B.5.I), these self-dual bivectors possess complex vector poten-
tials, one of which determines the complex scalar function ® which enters

the expressions (B.5.2):
+ + .
}Cik = ai%k - akﬂ{i fﬂk = aiq3k - akq)i D = C q)k (B.5.3)

The “dynamical” equations allow us to construct the “conserved”
quantities—the additive integral values which characterize the sources and
which can be calculated as the integrals over the spherical-like 2-surfaces sur-
rounding different parts of the sources on the space-like hypersurfaces slic-
ing the space-time region outside the sources. For stationary axisymmetric
spacetime outside the field sources we consider the space-like hypersurfaces
Yy : t = const where t is the Killing parameter. Contraction the equations
with the gradient 0;f, we obtain

(3) 410 (3) +10
Vs(NH )=0, VsiNF )=0 (B.5.4)

®)

whered = 1,2,3; V is a covariant derivative with respect to a three-dimensional
metric on the hypersurfaces 2; and N; is a unit time-like future-directed nor-
mal to these hypersurfaces. Integrating the above equations on X; over a
three-dimensional region between a sphere of a large radius B located in
the asymptotically Minkowski region and by a closed surface Bs surround-
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ing the sources, and applying the Gauss theorem, we obtain

/(j—i‘_fikNink)dZ(T = /(g—“_fikNink)dzU, /(;ikNink)dz(T = /(;ikNink)dzU
B B Bs Beo
(B.5.5)
where 7y is a unit vector tangent to the hypersurface X; and representing the
outward normal to the corresponding boundary B or By and d?c is the area
element on these boundaries. At first, we calculate the integrals over Be.

For any stationary axisymmetric asymptotically flat electrovacuum solu-
tion of Einstein-Maxwell equations, the metric and electromagnetic potential
of the form at spatial infinity admit the expansions (the NUT param-
eter, the total magnetic charge and the additive constants in A and A, are
assumed to vanish):

2m 1 2m 1
2 1 1
Gip = —sin? 6 + O() Ar=S1003)
r r r 1 7

Sop = —1° sin? @ — 2mr sin® 6 + O(1°) Ay =O(

where p = rsin6, z = z, + r cos 6 and the constants 7, 2 and e mean the total
mass, total angular momentum per unit mass and the total electric charge re-
spectively. For the complex vector potentials H; and ®; introduced in (B.5.3)
for r — oo in the coordinates {t, p, z, ¢} we obtain the expansions

2 1 1
H; = {__m +0(=), 0, 0, —2imcos6+O(=)}
. r 1 r 1 r (B.5.6)
o, = {; + O(r—z), 0, 0, iecosf + O(;)}
The components of the vector N in these coordinates take the form

™ok 2am o1
N'={1+=+0(3), 0,0, =5~ +0(3)}

For a sphere of a large radius, the spatial unit normal vector in the leading
order is n'd; = d/9r and in the limit r — oo for the integrals |i over By
we obtain

+ NP + kD
/(g{ikNln )d“c = —8mm, /(ffikNlﬂ )d“o = 4re
Beo Beo

where m and e are the total mass and charge of the field configuration. This
allows us to express (in accordance with (B.5.5)) the total mass and charge of
a system of sources in terms of the integrals over the surface Bs surrounding
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the sources:

1 + 1 + .
m=—o [GaNRo, o= [FaNn)Ee  B57)
B Bs

_|_
Now we transform the integrands in (B.5.7) using the self-duality of J{ and
Jr

F:
+if + .
H Nin]'dz(?' = i/iHijk’lfdza .. .. ..
F 5 e Ny = K — K1
s s . B (B.5.8)
3" Nn]dza = z/ ?l]kiljdza SZ]klNk”lkilj =1
Bs Bs

Here we introduced two spatial unit vectors k' and I’ which are orthogonal
to each other and tangent to 2-surface Bs. These vectors determine the ori-
entation of the 2-surface Bs so that the spatial basis {ni, ki, 1k } is positively
oriented. Choosing the 2-surface B; to be axially symmetric, we specify the
choice of the vectors k' and I/ in the tangent space of B so that I/ would be
the rotational Killing vector 9/9, and k' is tangent to a curve L on Bs with
¢ = const:

dp dz i 1

=10 3 a N

where the parameter ¢ is the length on the curve L and the direction on £
is chosen so that it goes from some point on the positive part of the z-axis
to some point on its negative part (provided the point p = z = 0 is located
somewhere inside B;). The element of the area on Bs is  /—g,pdld . After the
integration over ¢ we observe that the integrands of the remaining contour
integrals over L are the differentials of the ¢-components of the potentials of

+ +
self-dual bivectors H and F:

{0,0,0,1}

(B.5.9)

where (...)+ means the value of a potential at the beginning of £, i.e. on the
positive part of the z-axis, and (...) _—its value on the negative part of this
axis.
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It is important to note that 3{, and ®, are constant along the regular parts
of the symmetry axis outside the sources and therefore, the integrals
do not change if we deform the surface of integration Bs surrounding the
sources in the domain of regularity of the solution.

Now we consider the case, in which the source of the field consists of two
parts (black holes, naked singularities or extended bodies) separated by some
segment of the symmetry axis. In this case, we can deform the surface B; sur-
rounding the sources into two spheres each surrounding one of these parts
of the sources and a thin tube surrounding the intermediate part of the axis
between the sources. If }{, and ®, are constant on the intermediate part of
the axis, the integral over the thin tube vanish and we obtain that the inte-
grals for the total mass and the total charge are expressed as the sums of the
integrals of the same type over the spheres surrounding each of the sources.
In particular, for the sources consisting of two parts, as it is in our solution
for two Reissner-Nordstrom sources, we obtain

m = mq + mpy, e=et+e

where m1, my and ey, ey can be interpreted respectively as the masses (ener-
gies) and charges of the corresponding parts of the source. To conclude this
section, we mention that rather tedious calculations show that the parame-
ters my, my and ey, ey in our electrostatic solution presented in the previous
section and describing the field of two Reissner-Nordstrom sources, coincide
with the values of the integrals calculated for each part of the sources
and therefore, these parameters can be interpreted as the additive masses and
charges of these interacting sources.

B.6. Equilibrium of two Reissner-Nordstrom
sources

The 5-parametric solution (B.4.1)-(B.4.5) presented above is asymptotically
flat and the space-time geometry is regular far enough from the sources.
However, for an arbitrary choice of parameters my, my, 41, g2 and ¢, this so-
lution may have some physically not reasonable singularities (“struts”) on
the part of the axis of symmetry between the sources. Like at the vertex of
the cone, at these points, the local Euclidean properties of space-time may be
violated so that on the space-time sections t = const, z = const the ratio of
the length £ of a small circle, surrounding the axis of symmetry p = 0 and
contracting to the point z of this axis, to its radius R multiplied by 27t is not
equal to a unit. The constraint imposed on the parameters which provide
the absence of such conical singularities plays the role of equilibrium condi-
tion because it allows to select a physically acceptable solution in which these
singularities are absent and the sources are in the equilibrium because of the
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balance between their gravitational and electromagnetic interactions.

As it follows from elementary considerations, the limiting value of the
square of the ratio (27tR)/L for R — 0 is equal to the value of the prod-
uct fH at the point z of the axis. However, the field equations imply that on
the regular parts of the axis of symmetry the product f(p = 0,z)H(p = 0, z)
does not depend on z and therefore, it is a constant. However, the values
of this constant can be different on different parts of the axis of symmetry
separated by the sources, and the condition fH = 1 of the absence of conical
singularities should be satisfied at each of these parts of the axis of symmetry.

In our solution with two separated sources, there exists three parts of the
axis of symmetry where the condition of the absence of conical points should
be considered. There are two semi-infinite parts of the axis outside the sources.
On the negative part L_, we have —co < z < z; — 0 (if the first source is a
black hole) or —c0 < z < zj (if the first source is a naked singularity) and
on this part x; = z1 —z, xp = 20—z, y1 = —1, y2 = —1. On the positive
part L of the axis, zp + 0» < z < oo (if the second source is a black hole) or
zp < z < oo (if the second source is a naked singularity) and we have there
X1 =2z—21,X = z—22,y1 = 1,y = 1. It is easy to see that on these parts
of the axis the condition fH = 1 is satisfied for any choice of free parameters
of our solution. However, it is not the case on the part L of the axis between
the sources. On Ly we have z; + Re(07) < z < zp — Re(0z) and x1 = z — z3,
x2 =21 +¢—2zy; =1,y = —1 and the product fH also takes there some
constant value whose equality to a unit give us the equilibrium condition:

mymy — 4192 =0 (B.6.1)

It is interesting to note that this equilibrium condition looks just like the New-
tonian condition of equilibrium of two charged point-like masses, but in the
case of General Relativity this condition relates the masses of the Reissner-
Nordstrém sources not with their charges e; and e;, but with the parameters
g1 and g2 whose expressions in terms of masses mj, my and charges ej, e
depend also on the z-distance ¢ separating the sources.

The equilibrium condition allows also to simplify the solution (B.4.1)-
and leads to the 4-parametric family which describes the superposed
field of two Reissner-Nordstrom sources in equilibrium. This solution has
been presented in our previous short paper (34). Here we persent it in a bit
different form using m, my, 41, q2, y as the basic set of parameters, such that
the first four of them should satisfy the equilibrium condition (B.6.I). For
this solution the metric functions have the same expressions where
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the polynomials D, § and J have the expressions

D = x1x2 — V*Y1y2
G = myxy + max1 + Y(q1y1 + 9242) myny = q14q2
F = qixo + qoxq + y(myyr + mays)

and fy = 1. The other physical parameters—the z-distance ¢ separating the
sources and their charges are determined by the expressions

0 =zy—z1 = (magqy —m1q2) /7, e1=qm+7y e=qp-—v

The independent parameters my, my, g1, 2, 7y of this solution should be cho-
sen so that the sources would be separated actually by some positive distance,
i.e. £ > Re(op) + Re(0).

This concludes our description in this paper of some fragments of the mon-
odromy transform approach and of the procedure for solution of the corre-
sponding singular integral equations for stationary axisymmetric electrovac-
uum fields with simple rational monodromy data, which leads to the con-
struction of the 5-parametric family of solutions for the field of two interact-
ing Reissner-Nordstrom sources, and of the derivation from this solution of
the 4-parametric family of solutions for the fields of equilibrium configura-
tions of these sources. Some properties of these equilibrium field configura-
tions have been discussed in (34), however, a more detail analysis of physi-
cal and geometrical properties of these configurations, such as the structure
of the superposed fields, influence on the geometry of horizons and on the
space-time geometry inside the horizon of the external gravitational and elec-
tromagnetic fields created by another source, tidal influence of these fields
on the structure of naked singularities, stability of equilibrium and probably,
some others, are expected to be the subject of our next publications.

1115



B. Superposition of fields of two Reissner-Nordstrom sources

1116



C. A membrane model of the
Reissner-Nordstrom singularity
with repulsive gravity

C.1. Introduction

One of the interesting effects of relativistic gravity which has no analogue in
the Newtonian theory is the presence of gravitational repulsive forces. The
classical example is the Reissner-Nordstrom (RN) field in the region close
enough to the central singularity. Indeed, in the RN metric

—ds* = —f 2dt? + f~1dr? 4 12(d6% + sin® 0d¢?) (C.1.1)
where 02
2kM  kQ
f_l_W+W' (C1.2)
the radial motion of a test neutral particle follows the equation:
d*r 1df k (Q? 2
=2 an (5 M) (1)

from where one can see the appearance of repulsive force in the region of
small 7. In this zone the gradient of the gravitational potential f(r) is negative
and the gravitational force in Eq.(C.1.3) is directed toward the outside of the
central source.

For the RN naked singularity case (Q* > kM?), in which we are interested
in the present paper, the potential f(r) is everywhere positive and has a min-
imum at the point r = Q*/ Mc?. Therefore at this point a neutral particle can
stay at rest in the state of stable equilibrium (the detailed study can be found
in (46;47) ).

It is an interesting and nontrivial fact that the same sort of stationary equi-
librium state due to the repulsive gravity exists also as an exact asymptot-
ically flat two-body solution of the Einstein Maxwell equations which de-
scribes a Schwarzschild black hole situated at rest in the field of a RN naked
singularity without any strut or string between these two objects (48; 49).
However, solutions of this kind have the feature that the object creating the
repelling region has naked singularity and this last property has no clear
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physical interpretation. Consequently the pertinent question is whether the
repelling phenomenon around a charged source arises only due to the pres-
ence of the naked singularity or it can be also a feature of physically reason-
able structure of the space-time and matter.

By other words the question is whether or not it is possible to construct a
regular material source which can block the central singularity and join the
external repulsive region in a proper way. Then we are interested to construct
a body with the following properties:

1. inside the body there are no singularities;

2. outside the body there is the RN field (C.1.1)-(C.1.2), corresponding to
the case Q% > kM?;

3. the radius of the body is less than QZ/ Mc?, so between the surface of
the body and the sphere r = Q?/ Mc? arises the repulsive region;

4. such stationary state of the body is stable with respect to collapse or
expansion.

In this paper we propose a new model for such body in the form of spher-
ically symmetric thin membrane with positive tension. We assert that there
exists a physically acceptable range of parameters for which all the above four
conditions (1)-(4) can be satisfied. We illustrate this conclusion by the espe-
cially transparent case of a Nambu-Goto membrane with equation of state
€=T.

Then the existence of everywhere-regular material sources possessing RN
“antigravity” properties in the vicinity of their surfaces attribute to this phe-
nomenon and to the RN naked singularity solution more sensible physical
status.

It is necessary to mention that at least two exact solutions of Einstein-
Maxwell equations representing a compact continuous spherically symmetric
distribution of charged matter under the tension producing the gravitation-
ally repulsive forces inside the matter as well as in some region outside of it
already exist in the literature. These are solutions constructed in Ref.(50) and
Ref.(51). A more detailed study of these two results can be found in Ref.(52).
An interesting possibility to have a gravitationally repulsive core of electri-
cally neutral but viscous matter has been communicated in Ref.(53).

It is worth to remark that the first (to our knowledge) mentioning of the
gravitational repulsive force due to the presence of electric field was made
already in 1937 in the Ref.(54) in connection to the nonlinear model of elec-
trodynamics of Born-Infield type. One of the first paper where a repulsive
phenomenon in the framework of the conventional Einstein-Maxwell theory
has been mentioned is Ref.(55). The general investigation of the different as-
pects of this phenomenon apart from the already mentioned references (46))-
(55) can be found also in the more detailed works (56;57;/58;59). Some part of
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these papers is dedicated to a possibility of construction a classical model for
electron. This is doubtful enterprise, however, because the intrinsic structure
of electron is a matter out of classical physics. Nonetheless the mathemati-
cal results obtained are useful and can be applied to the physically sensible
situations, e.g. for construction the models of macroscopical objects.

C.2. Equation of motion of a membrane with
empty space inside

The equation of motion for the most general case of a thin charged spherically
symmetric fluid shell with tangential pressure moving in the RN field have
been derived 38 years ago by J.E. Chase(60). The corresponding dynamics for
a charged elastic membrane with tension follows from his equation simply by
the change of the sign of the pressure. We derived, however, the membrane’s
dynamics again using a different approach.

Chase used the geometrical method which have been applied to the de-
scription of singular surfaces in relativistic gravity in (61) and have been
elaborated in (55; 162) for some special cases of charged shells. An essen-
tial development of the Israel approach in application to the cosmological
domain walls can be found in the series of works of V.Berezin, V.Kuzmin
and I. Tkachev, see Ref.(63) and references therein. Our treatment follows the
method more habitual for physicists which have been used in (64), where the
motion of a neutral fluid shell in a Schwarzschild field was derived by the di-
rect integration of the Einstein equations with appropriate J-shaped source.
Now we generalized this approach for the charged membrane and charged
central source.

In this section we study only the particular solution in which there is no
central body, that is inside the membrane we have flat space-time.

The exposition we give here is more or less self-consistent, we reserve to
give more details on the procedure used on a forthcoming paper.

For the thin spherically symmetric membrane with empty space inside and
with radius which depends on time the metrics inside, outside and on mem-
brane are:

— (ds?)iy = —T2(t)2dt? + dr? + r*(d6* + sin® 0d¢?) (C.2.1)
— (ds*)out = —f(r)c?dt> + 1 (r)dr? 4 r*(d6? + sin” Od¢?) (C.2.2)
— (ds?)on = —c2dy? + 13(n) (d6* + sin Bdp?) (C.2.3)

In the interval (C.2.3) 7 is the proper time of the membrane. The factor I'?
in (C.2.1)) is necessary to ensure the continuity of the global time coordinate ¢
through the membrane. The metric coefficient f(7) in the region outside the
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membrane is given by Eq.(C.1.2).

Matching conditions for the intervals (C.2.1)-(C.2.3) through the membrane’s
surface are:

[(dsz)in]r:ro(n) = [(ds2)ouf]r:ro(17) = (dsz)(m (C.2.4)

If the equation of motion of the membrane r = ry(7) is known, then from
these conditions the connection (1) between global and proper times and
factor I'(t) follow easily:

o)1+ c2(roy)?
VF(ro) +e2(ro 2

dt o) + e 2y
dy f(ro)

(C.2.5)

(C.2.6)

The differential equation for the function ry(7) follows from Einstein-Maxwell
equations with energy-momentum tensor and charge current concentrated
on the surface of the membrane. It is:

dro\? Q¥  ku®(ro)
2 2 0 . H-(ro
Mc® = u(ro)cy |1+ (_c ) + TR P (C.2.7)

Here u(rp) > 0 is the effective rest mass of the membrane in the radially
comoving frame. This quantity includes the membrane’s rest mass as well
as all kinds of interaction mass-energies between membrane’s constituents,
that is those intrinsic energies which are responsible for the tension. The
constants Q and M are the total charge of the membrane and total relativistic
mass of the system. These are the same constants which appeared earlier in
Eq.(C.1.2). The membrane’s energy density € and tension 7 are :

€ = eo(r0)o[r —ro(n)] T =10(r0)d[r —ro(17)] (C.2.8)
where
_ p(ro)e? 1 f(ro) C.29
R e V(o) + e 2(ro, )2 2
Wo(re) = d%;yo@ f;;o(ggo; (C.2.10)

The electromagnetic potentials have the form A, = Ag = Ay = 0, Ay =
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A¢(t,7) and for the electric field strength dA;/dr the solution is

8 for r>ry(
2 0 77)
oA { (C.2.11)

o 0 for r<ry(y)

The formulas (C.2.1)-(C.2.11) give the complete solution of the problem for
the case of empty space inside the membrane.

Finally we would like to stress the following important point. The signs of

the square roots /1 +c~2(rg,)? and \/ f(ro) +c2(ro,y)?* coincide with the

signs of the time component u° of the 4-velocity of the membrane evaluated
from inside and outside of the membrane respectively. The component u" is
a continuous quantity by definition and can not change the sign when pass-
ing through the membrane’s surface. Besides, for macroscopical objects we
are interested in in this paper u” should be positive. Consequently the both
aforementioned square roots should be positive. From another side it is easy
to show that equation can be written also in the following equivalent
form

dro\> Q% ku?
2 2 0 H
Mc* = yuc \/f(ro) + (_c d17) + 20 + 20 (C.2.12)

Then from this expression and from (C.2.7)) follows that both square roots will
be positive if and only if

» Q& ke

M
¢ 21’0 27’()

>0 (C.2.13)

This is unavoidable constraint which must be adopted as additional condi-
tion for any physically realizable solution of the equation of motion (C.2.7) in
classical macroscopical realm.

C.3. Nambu-Goto membrane with “antigravity”
effect

To proceed further we must specify the function y(rg), which is equivalent to
specifying an equation of state, as can be seen from (C.2.10).

Let us analyze the membrane with equation of state € = 7. This model
can be interpreted as “bare” Nambu-Goto charged membrane(65} 66), or as
Zeldovich-Kobzarev-Okun charged domain wall(67). It follows from (C.2.10)
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repulsive gravity

that for such type of membrane we have:
U= 'yr% (C.3.1)

where 7 is an arbitrary constant. In this and next section we consider only
the case of positive constants v and M:

v>0, M>0. (C.3.2)

The sign of Q is of no matter since the charge appear everywhere in square.
Now we write the equation of motion (C.2.7) in the following form:

) 2
4(‘1”’) —<k7r°+2M— QZ) — 4. (C33)

cdy 2 yrd 2yrd

Formally this can be considered as the equation of motion of a non-relativistic
particle with the “mass” equal to 8 moving in the potential U(r),

2
U(rg) = — (WO U ) (C.3.4)

2 yr3 cz'yrg

and under that condition that particle is forced to live on the “total energy”
level equal to minus four.

For the existence of the stable stationary state we are interested in, the fol-
lowing conditions should hold:

1. The gravitational field in the exterior region should correspond to the
super-extreme RN metric:

Q? > kM>. (C.3.5)

2. The potential U(rp) should have a local minimum at some value ry =
Ryyin- The form (C.3.4) of U(rg) permit this if and only if

ky?Q% < (Mc?)4, (C.3.6)

Under this restriction the potential U(rg) has three extrema, two max-

(2)

ima at points 7y = R,(ﬁgx and ryp = R, and a minimum which is located

between them: R% < Ryuin < R,(fgx. We show the shape of the poten-

tial U(rp) for this case in Fig.1.

The equation U(rp) = 0 has only one real root and this is also the
(1)

first local maximum R;;;,. The minimum and the second maximum are
coming as two other roots of the equation 27% = 0.
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C.3. Nambu-Goto membrane with “antigravity” effect

Figure C.1.: The membrane’s motion can be described as the motion of a non-
relativistic point particle in the potential U(ry).
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repulsive gravity

The equation for R,,;, is:

ky*R% . — AMc*Rypin + 30> =0. (C.3.7)

min

This fourth order equation has only two real solutions and R,,;, is the
smaller one.

3. For the stationary position of the membrane at the minimum of the po-

tential we must ensure the relation U(R,,;;,) = —4 which is:
ky 2M o, Qs
C_ZRmin + TRmin - @Rmin =2 (C.3.8)

(the minus two in the r.h.s. of (C.3.8) would be incompatible with Eq.(C.3.7)
under condition (C.3.2)).

4. To have repulsive region it is necessary for the membrane’s radius R,
to be less than the minimum of the gravitational potential f(r), that is
less than the quantity Q?/Mc?. In this case outside of the membrane
surface in the region R,,;;, < r < Q?/Mc? we have the repulsive effect.
Then we demand:

QZ

Ryin < — .
min Mc2

(C.3.9)

5. Also the additional constraint (C.2.13) should be satisfied. This means
that for our stationary solution we have to satisfy the inequality:

2 k 2
21?% ~ LR >0. (C.3.10)

Mc* —

6. We have also another condition: that the electric field nearby the mem-

brane should be not too large, otherwise the stability of the model would

be destroyed by the strong macroscopical consequences of quantum ef-

fects, e.g. by the intensive electron-positron pair creation. This condi-
tion (which was suggested by J.A. Wheeler long time ago(68)) is:

2.3
9 e, £ = T (C3.11)
Rmin eeh

where m, and e, are the electron’s mass and charge). &, is the well
known critical electric field above which the intensive process of pair
creation starts.
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C.4. Summary

To satisfy these six conditions we have to find a physically acceptable domain
in the space of the four parameters M, Q, v and R,;;,. The point is that such
domain indeed exists and it is wide enough. If we introduce the dimension-
less radius of the stationary membrane x as

k
g@mwzu (C.3.12)

then one can check directly that the first five of the above formulated condi-
tions will be satisfied under the following three constraints:

x<1 (C.3.13)
!
_ 2_ 5.3
M= 7(3x 2:%) (C.3.14)
8
2 _ _
Q= 1572 (4x 3x%) (C.3.15)

The last two of these relations are just the equatlons C.3.7) and (C.3.8) but
written in the form resolved with respect to M and Q2.

The formulas (C.3.13)-(C.3.15) shows that for the first five conditions it is
convenient to take x < 1 and -y as independent parameters, and then to cal-
culate the mass and charge necessary to obtain the model we need.

As for the last constraint it gives some restriction also for parame-
ter :

ky? << &2, . (C.3.16)

4 — 3
The energy density € for the stationary state at ro = R,,;,, expressed in terms
of parameters x and v, is:

1+— —2x+1 Roin) (C.3.17)

C.4. Summary

1. We showed that exists a possibility to have a spherically charged mem-
brane in stable stationary state producing RN repulsive gravitational force
outside its surface and having flat space inside. To construct such model one
should take a pair of constants 0 < x < 1 and y > 0 satisfying the inequal-
ity and calculate from (C.3.12) and (C.3.14)-(C.3.15) the membrane’s
radius R, total mass M and charge Q.

2. The equation of motion can be used also for the description of the
oscillation of the membrane in the potential well ABC (see fig.1) above the
equilibrium point C. If we slightly increase the total membrane’s energy Mc?

1125



C. A membrane model of the Reissner-Nordstrom singularity with
repulsive gravity

then the potential U(ry) around its minimum (i.e. the point C and its vicinity)
will be shifted slightly down but he level “minus four” in Eq.(C.3.4) on which
the system lives will remain at the same position. Then the membrane will
oscillate between the new shifted walls AC and CB.

3. Itis easy to see that in the general dynamical state the membrane can live
only inside the potential well ABC. All regions outside ABC are forbidden. In
the region to the right from the point R,%z x and above the potential U(ry) any
location of the membrane is impossible due to the fact that inequality
is violated there.

This means that a membrane of considered type in principle can not have

(2)

the radius (no matter in which state) greater than R,%)x In turn for R, it is

1/3
easy to obtain from the potential (20) the upper limit R,ngx < % 4k2CZM ) .
The same violation of the inequality (C.2.13) take place in the domain be-

tween R,ggx and R,(,fgx and above the segment AB. The motion in the region

to the left from the point R,(ﬂlgx and above the curve U(ry) is forbidden again
due to the same violation of the condition (C.2.13). This means that a mem-
brane of considered type in principle can not have the radius less than R%x.
In particular there is no way for a membrane with positive effective rest mass
u to collapse to the point ryp = 0 leaving outside the field corresponding to
the RN naked singularity solution. This conclusion is in agreement with the
main result of the paper (69).

4. Although we claimed that the stationary state of a membrane constructed
is stable this stability should be understood in a very restrict sense, that is as
stability in the framework of the dynamics described by the equation (C.2.7).
We do not know what will happen to our membrane after the whole set of
arbitrary perturbations will be given.

5. In general the arbitrary perturbations will change also the equation of
state. We investigated a membrane with equation of state e = 7. However
this case can be considered only as “bare” Nambu-Goto membrane, by other
words as a toy model. In the papers (65} 66; 70; 71; 72; 73) it was shown
that arbitrary perturbations essentially renormalize the form of the equation
of state of the strings and membranes. Moreover for the membranes (66)
(differently from the strings) the fixed points of the renormalization group
for the transverse and longitudinal perturbations does not coincide, which
means that for the general “wiggly” membrane there is no equation of state
of the type € = €(7) at all.

6. We also would like to stress that for appearance of repulsive force the
presence of electric field is of no principal necessity. For example the repul-
sive gravitational forces arise also in neutral viscous fluid (53) and in the
course of interaction between electrically neutral topological gravitational
solitons (74).

7. From the conditions (21)-(26) also follows that in addition to the inequal-
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C.4. Summary

ity (25) the radius R,;;, of the shell in the stable stationary state cannot be less

than Q—Zz A simple analysis shows that there is no way for R,,;,, to be arbi-
2Mc
trarily small keeping some finite non-zero value for M and Q.
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D. Intersections of self-gravitating
charged shells in a
Reissner-Nordstrom field

The mathematical model that we have analyzed in the paper submitted to
IJMPD, Ref.(75), describes the dynamic evolution of two spherical shells of
charged matter which freely move outside the field of a central Reissner-
Nordstrom (RN) source. Microscopically these shells are assumed to be com-
posed by charged particles which move on elliptical orbits with a collective
variable radius. The angular motion, distributed uniformly and isotropically
on the shell surfaces, is mathematically described by a tangential-pressure
term in the energy momentum tensor of the Einstein equations. The defini-
tion of the shell implies that all the particles have the same following three
ratios: energy/mass, angular momentum/mass, and charge/mass. Thus, if
at the beginning the particles are on the same radius r, = Ry, then the shell
will evolve “coherently”, i.e. all particles will evolve with the same radius.
This work is a direct generalization to the electric case of Barkov-Belinski-
Bisnovati-Kogan paper.

The problem we were interested in was to find the exchange of energy be-
tween the two shells after the intersection. Indeed the motion of the shells
before and after the intersection can be easily deduced from the equation of
motion for just one shell, which equation has been found many years ago by
Chase with a geometrical method first used by Israel. All these authors used
the extrinsic curvature tensor and the Gauss-Codazzi equations. However
we followed a different way, finding the solution by using J and 6 distribu-
tions and then by direct integration of the Einstein-Maxwell equations. This
method has the advantage of a clearer physical interpretation, and it is also
straightforward in the calculations.

What we concretely achieved in this paper is the determination of the con-
stant parameters after the intersection knowing just the parameters before the
intersection. Actually the unknown parameter is only one, the Schwarzschild
mass parameter measured by an observer between the shells after the inter-
section. This parameter is strictly related to the energy transfer which takes
place in the crossing, and it is found joining in a proper way the intervals
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tield

inside, outside, and on the shell

— (ds)2, = —e"O £, (NP + £, (r)dr + 20>
- (ds)out — fout (1) zdtz—t—fout( )dr +2d0?
— (ds)2, = —c2d7? + 19(1)2dQ?
where
d0? = d6* + sin® fdg?
Gm; G€ Gmouf G(e +€)2.
fin =1-2 CZrm = 2 , fout =1-2 2, 1;172 ;

and imposing a proper continuity condition on the shells velocities.

In the model we assumed that the emission of electromagnetic waves is
negligible, and that there are no other interactions between the two shells
apart the gravitational and electrostatic ones. In particular the shells, during
the intersection, are assumed to be “transparent” each other (i.e. no scattering
processes). In this paper we dealt only with the mathematical aspects of the
problem; astrophysical applications will be considered elsewhere.

The main formula we achieved is the equation of the energy exchange be-
tween the two charged crossing shells:

e1ér _ GM1M2 0102/C2 —1

T T \/1—0 /62\/1 2/c2 .

Then we have used this formula to study the ejection-mechanism: indeed
starting with two bounded shells, it is possible (thanks to the energy-exchange)
that one shell is kicked out to infinity. We also considered special cases of
physical interest in which the formulas simplify: the non relativistic case, the
massless shells, the test shell, and finally the ejection mechanism in a semi-
Newtonian regime. We found that the ejection mechanism is more efficient
in the charged case than in the neutral one if the charges have opposite sign,
because the energy transfer is larger due to the Coulomb interaction.

AE = —
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