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3. Brief description

3.1. Abstract

From the interaction of physics and astrophysics we are witnessing in these
years a splendid synthesis of theoretical, experimental and observational re-
sults originating from three fundametal physical processes. They were orig-
inally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg,
Euler and Schwinger. For almost seventy years they have all three been fol-
lowed by a continued effort of experimental verification on Earth-based ex-
periments. The Dirac process, ete” — 27, has been by far the most suc-
cessful. It has obtained extremely accurate experimental verification and has
led as well to an enormous number of new physics in possibly one of the
most fruitful experimental avenue by introduction of storage rings in Fras-
cati and followed by the largest accelerators worldwide: DESY, SLAC etc.
The Breit-Wheeler process, 2y — ete™, although conceptually simple, being
the inverse process of the Dirac one, has been by far one of the most difficult
to be verified experimentally. Only recently, through the technology based on
free electron X-ray laser and its numerous applications in Earth-based exper-
iments, some first indications of its possible verification have been reached.
The vacuum polarization process in strong electromagnetic field, pioneered
by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of crit-
ical electric field E. = m2c3/(eh). It has been searched without success for
more than forty years by heavy-ion collisions in many of the leading particle
accelerators worldwide.

The novel situation today is that these same processes can be studied on a
much more grandiose scale during the gravitational collapse leading to the
formation of a black hole. The observational evidence rests on the most pow-
erful events ever observed in our Universe: the Gamma-Ray Bursts (GRBs).
This report is dedicated to the scientific race in act. The theoretical and exper-
imental work developed in Earth-based laboratories is confronted with the
theoretical interpretation of space-based observations of phenomena origi-
nating on cosmological scales. What has become clear in the last ten years
is that all the three above mentioned processes, duly extended in the general
relativistic framework, are necessary for the understanding the GRBs. Vice
versa, the natural arena where these processes can be observed in mutual in-
teraction and on an unprecedented scale, is indeed the realm of relativistic
astrophysics.
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3. Brief description

We systematically analyze the conceptual developments which have fol-
lowed the basic work of Dirac and Breit-Wheeler. We also recall how the
seminal work of Born and Infeld inspired the work by Sauter, Heisenberg
and Euler on effective Lagrangian leading to the estimate of the rate for the
process of electron-positron production in a constant electric field. In addi-
tion of reviewing the intuitive semi-classical treatment of quantum mechan-
ical tunneling for describing the process of electron-positron production, we
recall the calculations in Quantum Electro-Dynamics of the Schwinger rate and
effective Lagrangian for constant electromagnetic fields. We also review the
electron-positron production in both time-alternating electromagnetic fields,
studied by Brezin, Itzykson, Popov, Nikishov and Narozhny, and the cor-
responding processes relevant for pair production at the focus of coherent
laser beams as well as electron beam-laser collision. We finally report some
current developments based on the general JWKB approach which allows to
compute the Schwinger rate in spatially varying and time varying electro-
magnetic fields.

We then turn to the possible experimental verification of these phenom-
ena. We review: A) the experimental verification of the eTe™ — 27 process
studied by Dirac. We also briefly recall the very successful experiments of
eTe” annihilation to hadronic channels, in addition to the Dirac electromag-
netic channel; B) ongoing Earth based experiments to detect electron-positron
production in strong fields by focusing coherent laser beams and by elec-
tron beam-laser collisions; and C) the multiyear attempts to detect electron-
positron production in Coulomb fields for a large atomic number Z > 137 in
heavy ion collisions. These attempts follow the classical theoretical work of
Popov and Zeldovich, and Greiner and their schools.

We then turn to the astrophysical scenario. We first review the basic work
on the energetics and electrodynamical properties of an electromagnetic black
hole and the application of the Schwinger formula around Kerr-Newman
black holes as pioneered by Damour and Ruffini. We derive the correspond-
ing rate of electron-positron pair production and the introduction of the con-
cept of Dyadosphere. We review recent progress in describing the evolution
of optically thick electron-positron plasma in presence of supercritical elec-
tric field, which is relevant both in astrophysics as well as ongoing laser
beam experiments. In particular we review recent progress based on the
Vlasov-Boltzmann-Maxwell equations to study the feedback of the created
electron-positron pairs on the original constant electric field. We evidence
the existence of plasma oscillations and its interaction with photons leading
to energy and number equipartition of photons, electrons and positrons. We
finally review the recent progress obtained by using the Boltzmann equa-
tions to study the evolution of an electron-positron-photon plasma towards
thermal equilibrium and determination of its characteristic timescales. The
crucial difference introduced by the correct evaluation of the role of two and
three body collisions, direct and inverse, is especially evidenced. This result
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3.2. The three fundamental contributions to the electron-positron pair
creation and annihilation and the concept of critical electric field

is crucial in fixing the initial conditions of the electron-positron plasma af-
ter the process of gravitational collapse. We plan to treat this topic on the
forthcoming report. We then present some general conclusions.

3.2. The three fundamental contributions to the
electron-positron pair creation and
annihilation and the concept of critical
electric field

The annihilation of electron-positron pair to two photons, and its inverse pro-
cess — the production of electron-positron pair by the collision of two pho-
tons were first studied in the framework of quantum mechanics by P.A.M.
Dirac and by G. Breit and J.A. Wheeler in the 1930’s |Dirac (1930b)); Breit and
Wheeler (1934).

A third fundamental process was pioneered by the work of Fritz Sauter and
Oscar Klein, pointing to the possibility of creating an electron-positron pair
from the vacuum in a constant electromagnetic field. This became known
as the ‘Klein paradox” and such a process named as vacuum polarization. It
would occur for an electric field stronger than the critical value

2.3
MeC . 13.10V/cm. (3.2.1)

E
¢ eh

where m,, e, c and T are respectively the electron mass and charge, the speed
of light and the Planck’s constant.

The experimental difficulties to verify the existence of such three processes
became immediately clear. While the process studied by Dirac was almost
immediately observed Klemperer| (1934) and the electron-positron collisions
became possibly the best tested and prolific phenomenon ever observed in
physics, see e.g. The Breit-Wheeler process, on the contrary, is still today
waiting a direct observational verification, see e.g. Chapter |[E| Similarly the
vacuum polarization process defied dedicated attempts for almost fifty years
in experiments in nuclear physics laboratories and accelerators all over the
world, see Chapter

From the theoretical point of view the conceptual changes implied by these
processes became immediately clear. They were by vastity and depth only
comparable to the modifications of the linear gravitational theory of New-
ton introduced by the nonlinear general relativistic equations of Einstein. In
the work of Euler, Oppenheimer and Debye, Born and his school it became
clear that the existence of the Breit-Wheeler process was conceptually modi-
tying the linearity of the Maxwell theory. In fact the creation of the electron-
positron pair out of the two photons modifies the concept of superposition
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3. Brief description

of the linear electromagnetic Maxwell equations and impose the necessity to
transit to a nonlinear theory of electrodynamics. In a certain sense the Breit-
Wheeler process was having for electrodynamics the same fundamental role
of gedanken experiment that the equivalence principle had for gravitation.
Two different attempts to study these nonlinearities in the electrodynam-
ics were made: one by Born and Infeld Born (1933, 1934); Born and Infeld
(1934) and one by Euler and Heisenberg Heisenberg and Euler| (1936). These
works prepared the even greater revolution of Quantum Electrodynamics by
Tomonaga [Tomonaga (1946), Feynman Feynman, (1948, [1949bja), Schwinger
Schwinger| (1948b), 1949a/b) and Dyson Dyson! (1949a/b).

In Chapter[A]we review the fundamental contribution to the electron-positron
pair creation and annihilation and to the concept of the critical electric field.
In Sec. we review the Dirac derivation [Dirac (1930b) of the electron-
positron annihilation process obtained within the perturbation theory in the
framework of relativistic quantum mechanics and his derivation of the clas-

sical formula for the cross-section O';ilz,, in the rest frame of the electron
2 ~2 o ~
lab ahi I (0 e o0 Gk RN ISP SR V! 7+3
= -1 ——1 -1 -
Tte ”(mec) (9-1) { 5 n[y+(§°—1)"7] CEE

where § = £, /m,c?* > 1 is the energy of the positron and & = €2/ (fic) is as
usual the fine structure constant, and we recall the corresponding formula for
the center of mass reference frame. In Sec. we recall the main steps in the
classical Breit-Wheeler work Breit and Wheeler| (1934) on the production of a
real electron-positron pair in the collision of two photons, following the same
method used by Dirac and leading to the evaluation of the total cross-section
0 in the center of mass of the system

2 A
o =5 (ez) -BIRBE-2+0-Fm ()], win p=2

where f is the reduced velocity of the electron or the positron. In Sec.
we recall the famous Klein paradox Klein/ (1929); Sauter (1931b) and the pos-
sible tunneling between the positive and negative energy states leading to
the concept of level crossing and pair creation by analogy to the Gamow tun-
neling Gamow| (1931)) in the nuclear potential barrier. We then turn to the
celebrated Sauter work Sauter (1931a) showing the possibility of creating a
pair in a uniform electric field E. We recover in Sec. a JWKB approxi-
mation in order to reproduce and improve on the Sauter result by obtaining
the classical Sauter exponential term as well as the prefactor

Tiwks . &E? o~ TEc/E
vV T T2m2h ’
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3.3. Nonlinear electrodynamics and rate of pair creation

where D = 2 for a spin-1/2 particle and Ds; = 1 for spin-0, V is the volume.
Finally, in Sec. the case of a simultaneous presence of an electric and a
magnetic field B is presented leading to the estimate of pair production rate

r
~IWKB an—‘ifcoth <%’B) exp (—NTEC) , spin—1/2 particle

\%
and
r
—W‘\;KB ~ % sinh ™! (%’B) exp (— ﬂfc) , spin — 0 particle,
where

B = %\/\/(EZ ~B2)2 1 4(E-B)2 — (E2 — B?) = \/(S2 + P2)/2 5,

where the scalar S and the pseudoscalar P are

1

S=-Fu,F" = E(E2 ~B?); P=_F,F""=E-B,

I

1
4

where FI' = e#A*F, is the dual field tensor (see Appendix @)

3.3. Nonlinear electrodynamics and rate of pair
creation
In Chapter [B| we first recall in Sec. the seminal work of Hans Euler [Euler

(1936) pointing out for the first time the necessity of nonlinear character of
electromagnetism introducing the classical Euler lagrangian

E2—-B%2 11 2
L= —— |—ar (E2—B2) —br(E-B)?
81 +“E%[ﬂ5( ) E( )},

where
ap = —1/(3607%), bg = —7/(3607%),

a first order perturbation to the Maxwell lagrangian. In Sec. B.2Jwe review the
alternative theoretical approach of nonlinear electrodynamics by Max Born
Born| (1934) and his collaborators, to the more ambitious attempt to obtain
the correct nonlinear Lagrangian of electrodynamics. The motivation of Born
was to attempt a theory free of divergences in the observable properties of an
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3. Brief description

elementary particle, what has become known as “unitarian’ standpoint versus
the “dualistic’ standpoint in description of elementary particles and fields. We
recall how the Born Lagrangian was formulated to be

L=+1+425—-P2—1,

and one of the first solutions derived by Born and Infeld Born and Infeld
(1934). We also recall one of the interesting aspects of the courageous ap-
proach of Born had been to formulate this Lagrangian within a unified theory
of gravitation and electromagnetism following Einstein program. Indeed, we
also recall the very interesting solution within the Born theory obtained by
Hoffmann |[Hoffmann| (1935); Hoffmann and Infeld (1937). Still in the work of
Born Born! (1934) the seminal idea of describing the nonlinear vacuum prop-
erties of this novel electrodynamics by an effective dielectric constant and
magnetic permeability functions of the field. We then review in Sec.
the work of Heisenberg and Euler |[Heisenberg and Euler| (1936) adopting the
general approach of Born and generalizing to the presence of a real and imag-
inary part of the electric permittivity and magnetic permeability. They obtain
an integral expression of the effective Lagrangian given by

e? /°° e_szl_g [isz EBcos(s[E2 — B2+ 2i(EB)]"?) +c.c.
0

AL — i i
eff 1672hc cos(s[E2 — B2 4 2i(EB)]'/2) — c.c.

EC/

E;’ Ec’
obtaining the real part and the crucial imaginary term which relates to the
pair production in a given electric field. It is shown how these results give as
a special case the previous result obtained by Euler (B.1.3). In Sec. the
work by Weisskopf Weisskopf| (1936) working on a spin-0 field fulfilling the
Klein-Gordon equation, in contrast to the spin 1/2 field studied by Heisen-
berg and Euler, confirms the Euler-Heisenberg result. Weisskopf obtains ex-
plicit expression of pair creation in an arbitrary strong magnetic field and in
an electric field described by E and B expansion.

For the first time Heisenberg and Euler provided a description of the vac-
uum properties by the characteristic scale of strong field E; and the effective
Lagrangian of nonlinear electromagnetic fields. In 1951, Schwinger Schwinger
(1951} [1954a)b) made an elegant quantum field theoretic reformulation of this
discovery in the QED-framework. This played an important role in under-
standing the properties of the QED theory in strong electromagnetic fields.
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3.4. Pair production and annihilation in QED

The QED theory in strong coupling regime, i.e., in the regime of strong elec-
tromagnetic fields, is still a vast arena awaiting for experimental verification
as well as of further theoretical understanding (see Appendix [B).

3.4. Pair production and annihilation in QED

In Chapter || after recalling some general properties of QED in Sec. and
some basic processes in Sec. [C.2lwe proceed to the consideration of the Dirac
and the Breit-Wheeler processes in QED in Sec. In Sec. the classical
result for the vacuum to vacuum decay via pair creation in uniform electric

tield by Schwinger is recalled

F_aEzi 1o ke
vV oo nz &P E )

n=1

This formula generalizes and encompasses the previous results reviewed in
our report: the JWKB results, discussed in Sec. and the Sauter expo-
nential factor (A.4.11), and the Heisenberg-Euler imaginary part of the ef-
fective Lagrangian. We then recall the generalization of this formula to the
case of a constant electromagnetic fields. Such results were further general-
ized to spatially non-uniform and time-dependent electromagnetic fields by
Nikishov Nikishov|(1969), Vanyashin and Terent’ev Vanyashin and Terent’ev
(1965), Popov Popov| (1971c, [1972b}, 2001b), Narozhny and Nikishov Narozh-
nyi and Nikishov|(1970) and Batalin and Fradkin Batalin and Fradkin| (1970).
We then conclude this argument by giving the real and imaginary parts for
the effective Lagrangian for arbitrary constant electromagnetic field recently
published by Ruffini and Xue Ruffini and Xue (2006). This result generalizes
the previous result obtained by Weisskopf in strong fields. In weak field it
gives the Euler-Heisenberg effective Lagrangian. As we will see in the Sec.
much attention has been given experimentally to the creation of pairs in
the rapidly changing electric fields. A fundamental contribution in this field
studying pair production rates in an oscillating electric field was given by
Brezin and Itzykson Brezin and Itzykson| (1970) and we recover in Sec.
their main results which apply both to the case of bosons and fermions. We
recall how similar results were independently obtained two years later by
Popov Popov| (1972a). In Sec. we recall an alternative physical process
considering the quantum theory of the interaction of free electron with the
tield of a strong electromagnetic waves: an ultrarelativistic electron absorbs
multiple photons and emits only a single photon in the reaction Bula et al.
(1996):
e+nw— e +7,
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3. Brief description

This process appears to be of the great relevance as we will see in the next
Chapter for the nonlinear effects originating from laser beam experiments.
Particularly important appears to be the possibility outlined by Burke et al.
Burke et al|(1997) that the high-energy photon 7 created in the first process
propagates through the laser field, it interacts with laser photons nw to pro-
duce an electron-positron pair

y+nw—et +e .

We also refer to the papers by Narozhny and Popov Nikishov and Ritus
(1964a)b, 1965a, 1967, (1979, 1965b) studying the dependence of this process
on the status of the polarization of the photons.

We have already pointed out in the previous Chapter the great relevance
of departing from the case of the uniform electromagnetic field originally
considered by Sauter, Heisenberg and Euler, and Schwinger. We have also
recalled in the previous Chapter some of the classical works of Brezin and
Itzykson and Popov on time-varying fields. The space variation of the field
was also considered in the classical papers of Nikishov and Narozhny as well
as in the work of Wang and Wong. Finally, we recall the work of Khriplovich
Khriplovich!(2000) studying the vacuum polarization around a Reissner- Nord-
strom approach. A more recent approach using the world line formalism
sometimes called the string-inspired formalism was advance by Dunne and
Schubert Schubert (2001); Dunne and Schubert (2005) (see Appendix|C).

3.5. Semi-classical description of pair production in
a general electric field

In Chapter D} after recalling studies of pair-production in inhomogeneous
electromagnetic fields in the literature by |Dunne and Schubert| (2005); Dunne
et al| (2006); Dunne and Wang| (2006); Kim and Page (2002, 2006, 2007), we
present a brief review of our recent work Kleinert et al. (2008) where the gen-
eral formulae for pairproduction rate as functions of either crossing energy-
level or classical turning point, and total production rate are obtained in ex-
ternal electromagnetic fields which vary either in one space direction E(z) or
in time E(t). In Secs. [D.1jand these formulae are explicitly derived in the
JWKB approximation and generalized to the case of 3-dimensianal electro-
magnetic configurations. We apply these formulae to several cases of such
inhomogeneous electric field configurations, which are classified into two

categories. In the first category, we study two cases: a semi confined field
E(z) # 0 for z < £ and the Sauter field

E(z) = Eg/cosh® (z/€), V(z) = —osmec®tanh(z/0),
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3.6. Phenomenology of electron-positron pair creation and annihilation

where ¢ is width in the z-direction, and
0s = eEol /mec* = (£/Ac)(Eo/Ee).

In these two cases the pairs produced are not confined by the electric po-
tential and can reach an infinite distance. The resultant pair-production rate
varies as a function of space coordinate. The result we obtaned is drasti-
cally different from the Schwinger rate in homogeneous electric fields with-
out any boundary. We clearly show that the approximate application of the
Schwinger rate to electric fields limited within finite size of space over esti-
mates the total number of pairs produced, particularly when the finite size is
comparable with the Compton wavelength Ac, see Figs. and where
it is clearly shown how the rate of pair creation far from being constant goes
to zero at both boundaries. The same situation is also found for the case of
the semi confined field z(z) # 0 for |z| < ¢, see Eq. (D.3.34). In the second
category, we study a linearly rising electric field E(z) ~ z, corresponding to
a harmonic potential V(z) ~ z2, see Figs. In this case the energy-spectra
of bound states are discrete and thus energy crossing levels for tunneling are
discrete. To obtain the total number of pairs created, using the general formu-
lae for pair production rate, we need to sum over all discrete energy-crossing
levels, see Eq. (D.4.11)), provided these energy-levels are not occupied. Oth-
erwise, the pair-production would stop due to the Pauli principle (see Ap-

pendix D).

3.6. Phenomenology of electron-positron pair
creation and annihilation

In Chapter [E| we focus on the phenomenology of electron-positron pair cre-
ation and annihilation experiments. There are three different aspects which
are examined: the verification of the process initially studied by Dirac,
the process studied by Breit and Wheeler, and then the classical work
of vacuum polarization process around a supercritical nucleus, following the
Sauter, Euler, Heisenberg and Schwinger work. We first recall in Sec. [E.Tjhow
the process predicted by Dirac was almost immediately discovered by
Klemperer Klemperer| (1934). Following this discovery the electron-positron
collisions have become possibly the most prolific field of research in the do-
main of particle physics. The crucial step experimentally was the creation of
the first electron-positron collider the “Anello d’Accumulazione” (AdA) was
built by the theoretical proposal of Bruno Touschek in Frascati (Rome) in 1960
Bernardini| (2004). Following the success of AdA (luminosity ~ 10%° /(cm?
sec), beam energy ~0.25GeV), it was decided to build in the Frascati National
Laboratory a storage ring of the same kind, Adone. Electron-positron collid-
ers have been built and proposed for this purpose all over the world (CERN,
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SLAC, INP, DESY, KEK and IHEP). The aim here is just to recall the existence
of this enormous field of research following the original Dirac idea. The main
cross-sections and are recalled and the diagram (Fig. sum-
marizing this very great success of particle physics is presented. While the
Dirac process has been by far one of the most prolific in physics, the
Breit-Wheeler process has been one of the most elusive for direct ob-
servations. In Earth-bound experiments the major effort today is directed to
evidence this phenomenon in very strong and coherent electromagnetic field
in lasers. In this process collision of many photons may lead in the future to
pair creation. This topic is discussed in Sec. Alternative evidence for the
Breit-Wheeler process can come from optically thick electron-positron plasma
which may be created either in the future in Earth-bound experiments, or
currently observed in astrophysics, see Chapter [H, One additional way to
probe the existence of the Breit-Wheeler process is by establishing in astro-
physics an upper limits to observable high energy photons, as a function of
distance, propagating in the Universe as pioneered by Nikishov Nikishov
(1961)), see Sec. We then recall in Sec. how the crucial experimental
breakthrough came from the idea of John Madey |Deacon et al.| (1977) of self-
amplified spontaneous emission in an undulator, which results when charges
interact with the synchrotron radiation they emit Tremaine et al.|(2002). Such
X-ray free electron lasers have been constructed among others at DESY and
SLAC and focus energy onto a small spot hopefully with the size of the X-ray
laser wavelength A ~ O(0.1)nm Nuhn and Pellegrini| (2000), and obtain a
very large electric field E ~ 1/A, much larger than those obtainable with any
optical laser of the same power. This technique can be used to achieve a very
strong electric field near to its critical value for observable electron-positron
pair production in vacuum. No pair can be created by a single laser beam. It
is then assumed that each X-ray laser pulse is split into two equal parts and
recombined to form a standing wave with a frequency w. We then recall how
for a laser pulse with wavelength A about 1yum and the theoretical diffraction
limit 0,4 =~ A being reached, the critical intensity laser beam would be

c
o = EE? ~ 4.6 -10°W /cm?.

In Sec. we recall the theoretical formula for the probability of pair pro-
duction in time-alternating electric field in two limiting cases of large fre-
quency and small frequency. It is interesting that in the limit of large field and
small frequency the production rate approach the one of the Sauter, Heisen-
berg, Euler and Schwinger, discussed in Chapter|C] In the following Sec. [E.2.2]
we recall the actually reached experimental limits quoted by Ringwald Ring-
wald (2001b) for a X-ray laser and give a reference to the relevant literature.
In Sec. [E.2.3l we summarize some of the most recent theoretical estimates for
pair production by a circularly polarized laser beam by Narozhny, Popov and
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their collaborators. In this case the field invariants are not vanishing
and pair creation can be achieved by a single laser beam. They computed the
total number of electron-positron pairs produced as a function of intensity
and focusing parameter of the laser. Particularly interesting is their analy-
sis of the case of two counter-propagating focused laser-pulses with circular
polarizations, pair production becomes experimentally observable when the
laser intensity [jyser ~ 102°W /cm? for each beam, which is about 1 ~ 2 orders
of magnitude lower than for a single focused laser-pulse, and more than 3
orders of magnitude lower than the critical intensity (E.2.4). Equally interest-
ing are the considerations which first appear in treating this problem that the
backreaction of the pairs created on the field has to be taken into due account.
We give the essential references and we will see in Chapter[Ghow indeed this
feature becomes of paramount importance in the field of astrophysics. We fi-
nally review in Sec. the technological situation attempting to increase
both the frequency and the intensity of laser beams.

The difficulty of evidencing the Breit-Wheeler process even when the high
energy photon beams have a center-of-mass energy larger than the energy-
threshold 2m,.c? = 1.02 MeV was clearly recognized since the early days. In
the previous Section we have shown the crucial role of the effective nonlinear
terms originating in strong electromagnetic laser fields: the interaction needs
not to be limited to initial states of two photons Reiss (1962, 1971). A collec-
tive state of many interacting laser photons occurs. We turn then in Sec.
to an even more complex and interesting procedure: the interaction of an ul-
trarelativistic electron beam with a terawatt laser pulse, performed at SLAC
Kotseroglou et al.|(1996), when strong electromagnetic fields are involved. A
tirst nonlinear Compton scattering process occurs in which the ultrarelativis-
tic electrons absorb multiple photons from the laser field and emit a single
photon via the process (E.3.1). The theory of this process has been given in
Sec. The second is a drastically improved Breit-Wheeler process
by which the high-energy photon 1, created in the first process, propagates
through the laser field and interacts with laser photons nw to produce an
electron-positron pair Burke et al.[(1997). In Sec. we describe the status
of this very exciting experiments which give the first evidence for the obser-
vation in the laboratory of the Breit-Wheeler process although in a somewhat
indirect form. Having determined the theoretical basis as well as attempts
to verify experimentally the Breit-Wheeler formula we turn in Sec. toa
most important application of the Breit-Wheeler process in the framework
of cosmology. As pointed out by Nikishov Nikishov| (1961) the existence of
background photons in cosmology puts a stringent cutoff on the maximum
trajectory of the high energy photons in cosmology.

Having reviewed both the theoretical and observational evidence of the
Dirac and Breit-Wheeler processes of creation and annihilation of electron-
positron pairs we turn now to one of the most conspicuous field of theoretical
and experimental physics dealing with the process of pair electron-positron
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pair creation by vacuum polarization in the field of a heavy nuclei. This topic
has originated one of the vastest experimental and theoretical physics activ-
ities in the last forty years, especially by the process of collisions of heavy
ions. We first review in Sec. the Z = 137 catastrophe, a collapse to the
center, in semi-classical approach, following the Pomeranchuk work Pomer-
anchuk and Smorodinskii| (1945) based on the imposing the quantum condi-
tions on the classical treatment of the motion of two relativistic particles in
circular orbits. We then proceed showing in Sec. how the introduction
of the finite size of the nucleus, following the classical work of Popov and Zel-
dovich [Zeldovich and Popov| (1971), leads to the critical charge of a nucleus
of Z, = 173 above which a bare nucleus would lead to the level crossing
between the bound state and negative energy states of electrons in the field
of a bare nucleus. We then review in Sec. the recent theoretical progress
in analyzing the pair creation process in a Coulomb field, taking into account
radial dependence and time variability of electric field. We finally recall in
Sec. [E.6/the attempt use to heavy-ion collisions to form transient super heavy
“quasimolecules”: a long-lived metastable nuclear complex with Z > Z,. It
was expected that the two heavy ions of charges respectively Z; and Z, with
71+ Z, > Z; would reach small inter-nuclear distances well within the elec-
tron’s orbiting radii. The electrons would not distinguish between the two
nuclear centers and they would evolve as if they were bounded by nuclear-
“quasimolecules” with nuclear charge Z; + Z;. Therefore, it was expected
that electrons would evolve quasi statically through a series of well defined
nuclear-“quasimolecules” states in the two-center field of the nuclei as the
inter-nuclear separation decreases and then increases again. When heavy-
ion collision occurs the two nuclei come into contact and some deep inelastic
reaction occurs determining the duration At; of this contact. Such “sticking
time” is expected to depend on the nuclei involved in the reaction and on the
beam energy. Theoretical attempts have been proposed to study the nuclear
aspects of heavy-ion collisions at energies very close to the Coulomb barrier
and search for conditions, which would serve as a trigger for prolonged nu-
clear reaction times, to enhance the amplitude of pair production. The stick-
ing time At; should be larger than 1 ~ 21072 sec Greiner and Reinhardt
(1999) in order to have significant pair production. Up to now no success has
been achieved in justifying theoretically such a long sticking time. In reality
the characteristic sticking time has been found of the order of At ~ 1023 gec,
hundred times shorter than the needed to activate the pair creation process.
We finally recall in Sec. the Darmstadt-Brookhaven dialogue between
the Orange and the Epos groups and the Apex group at Argonne in which
the original discovery of electron-positron pair creation by vacuum polar-
ization in heavy-ion collisions was finally retracted. In conclusion, out of
the three fundamental processes addressed in this report, the Dirac electron-
positron annihilation and the Breit-Wheeler electron-positron creation from
two photons have found complete theoretical descriptions within Quantum
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Electrodynamics. The first one is very likely the best-tested process in physi-
cal science, while the second has finally obtained the first indirect experimen-
tal evidence. The third process, the one of the vacuum polarization studied
by Sauter, Euler, Heisenberg and Schwinger, presents in Earth-bound experi-
ments presents a situation “terra incognita” (see Appendix [E).

3.6.1. The Breit-Wheeler cutoff in high-energy Gamma-rays

The Breit-Wheeler process for the photon-photon pair production is one of
most relevant elementary processes in high energy astrophysics (see Sec. [E.4).
In addition to the importance of this process in dense radiation fields of
compact objects (Bonometto and Rees| 1971), the essential role of this pro-
cess in the context of intergalactic absorption of high-energy y-rays was first
pointed out by Nikishov (Nikishov) 1962; |Gould and Schréder, 1967). The
spectra of TeV radiation observed from distant (d > 100 Mpc) extragalac-
tic objects suffer essential deformation during the passage through the in-
tergalactic medium, caused by energy-dependent absorption of primary -
rays at interactions with the diffuse extragalactic background radiation, for
the optical depth 7,, most likely significantly exceeding one (Gould and
Schréder), 1967} [Stecker et al| [1992; Vassiliev, |2000; Coppi and Aharonian)
1999). A relevant broad-band information about the cosmic background ra-
diation (CBR) is important for the interpretation of the observed high-energy
7 spectra (Aharonian et al., 2000; Kneiske et al.,, 2002; Dwek and Krennrich)
2005;|Aharonian et al.,[2006)). For details see Hauser and Dwek](2001); Aharo-
nian (2003). In this section, we are particularly interested in such absorption
effect of high-energy y-ray, originated from cosmological sources, interacting
with the Cosmic Microwave Background (CMB) photons. Fazio and Stecker
(Fazio and Stecker, (1970; Stecker et al., 1977) were the first who calculated the
cutoff energy versus redshift for cosmological y-rays. This calculation was
applied to further study of the optical depth of the Universe to high-energy
y-rays (MacMinn and Primack, 1996; Kneiske et al., 2004; Stecker et al., 2006).
With the Fermi telescope, such study turns out to be important to understand
the spectrum of high-energy <y-ray originated from GRBs’ sources at cosmo-
logical distance, we therefore offer the details of theoretical analysis as follow.

Breit-Wheeler cross-section in arbitrary frame
Breit and Wheeler| (1934) studied the process
Yi+r2—et e, (3.6.1)

in the center of mass of the system, the momenta of the electron and positron
are equal and opposite p; = —p». The same thing holds for the momenta of
the photons in the initial state: k; = —kj;. As a consequence, the energies
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of electron and positron are equal: &1 = €, = &, and so are the energies of
the photons: hw; = hw, = €, = &. They found the total cross-section in the
center of mass of the system:

m(ah\? 5 P A 1 .
o =5 () A-PPBE -2+ 6-Fn R, win =P
(3.6.2)
where p and § are respectively momentum and the reduced velocity of an
electron or positron. The necessary kinematic condition in order for the pro-

cess (A.0.2) taking place is that the energy of two colliding photons is larger
than the energetic threshold 2m.c?, ie.,

€ > mec?. (3.6.3)

The cross-section in line (A.2.9) can be easily generalized to an arbitrary ref-
erence frame X, in which the two photons k; and k, are moving in opposite
directions; for Lorentz invariance of (k1 - k), one has wiw; = 8%. Since

€y =& =me?/\/1— P2, (3.6.4)

to obtain the total cross-section in the arbitrary frame X, we must therefore
make the following substitution (Landau and Lifshitz, 1975),

p— \/ 1 —m2ct/(wiw,), (3.6.5)

in Eq. (A.2.9). For € >> m,c?, the total effective cross-section is approximately
proportional to

ah \2 [mec?\’ 5 [ Mec? 2
Ty = 7T (mec) ( g ) = 717 ( 2 ) , (3.6.6)
where 7, = (n%) is the electron classical radius and 7172 ~ 2.5 - 10~?°cm?.

Opacity of high-energy GRB photons colliding with CMB photons

We study the Breit-Wheeler process to the case that high-energy GRB
photons w;, originated from GRBs sources at cosmological distance z, on
their way traveling to us, collide with CMB photons w; in the rest frame
of CMB photons, leading to electron-positron pair production. We calculate
the opacity and mean free-path of these high-energy GRB photons, find the
energy-range of absorption as a function of the cosmological red-shift z.

In general, a high-energy GRB photon with a give energy wj, collides with
background photons in all possible energies w,. We assume that i-type back-
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ground photons have the spectrum distribution f;(w,/T;), where T; is the
characteristic energy scale of the distribution, the opacity is then given by

wzde w17
(w1, z /dr/ it T2 fl(wz/T)(Tw(?), (3.6.7)

where m2c* / wy is the energy-threshold (A.2.8) above which the Breit-Wheeler

process (A.0.2) can occurs and the cross-section (TW( x) is given by Egs. (A.2.9),
depending only on x = ‘“1“’2 . The total opacity is then given by

ol (w Z (wr,z), (3.6.8)

which the sum is over all types of photon background in the Universe. The
high-energy photons traveling path [ dr is given by,

to dt/ T’(t) dr r(t)
R = h aowmm=l (369

where R(f) is the scalar factor, ty is the present time and t corresponds to
epoch of the red-shift z for a flat (k = 0) Freemann Universe. Using the
relationship z + 1 = Ro/R(t), we change integrand variable from t’ to the
red-shift z,

dz
/ s —
dt’ = @ 1) H(Z)’ (3.6.10)
so that we have
to dt/ 1 /7 dz
/ r—/ R =’ o HGY (3.6.11)

where H(z) = R(t)/R(to) is the Hubble function, obeyed the Friedmann
equation

H(z) = Ho[Qm(z+ 1) + QA" Qu+Qa =1, (3.6.12)

In the case of CMB photons in a black-body distribution 1/ (e<2/T — 1) with
the temperature T, the opacity is given by

2

B o0 dwy;  wj w1wy
Tryry((,(]l,Z) = /dr [ngc4/w1 ?m(ﬁyy(m), (3613)
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where the Boltzmann constant kg = 1. To simply Eq. (E.4.4), we set x = %,
3
© dx x?
T , d / — O . 3.6.14
(w2 / r( ) ) exp xm§c4 3 (%) ( )

In terms of CMB temperature and GRB-photons energy at the present time,
T=0z+1T% wip=(z+1)wi,, (3.6.15)

we obtain,

(@l z) =+ [ 22 i / x__x* (x)
TV RoJo H(Z') (z+1)3 | WY 1 mlexp(x/0)—1 T

(3.6.16)
where 00
T

0=0z+1)2 0=41" 3.6.17

x(z4+1)% «x 2c ( )

and x° is the energy ! in unit of m.c?(m.c?>/T°) = 1.15 - 10"°eV. For the
purpose of numerical calculations, we rewrite the expression,

mTr? T? dz' 1 dx  X“fyq(x)
T (XO Z) — e L / Y
TS RoHo/c \x%) Jo [Qm(z' +1)3+ Qa2 (2 +1)3 /1 2n%exp(x/0) — 1

_ @(1) [ 2! LYl S 221G P
~ Roh \ 0 0 [Om(z +1)34+Qp]/2(2/+1)3 )1 212 exp(x/6) — T

where Ry = 1, present Hubble constant 1 = Hy/100km /sec/Mpc and

Frle) = (- PIPBE -2+ G- Fm (T E)], p=vi-1/x

1-p

The 7, (w?,z) = 1 give the relationship w? = w(z) that separates the ab-
sorbed regime T,,(w?,z) > 1 and transparent regime 7,,(w{,z) < 1in the
w? — z plane.

The numerical result is shown in Fig. It clearly shows the following
properties:

1. for the redshift z smaller than a critical value z, ~ 0.1 (z < z;), the CMB
photons are transparent 7,,(w{,z) < 1 to GRB photons in any energy
bands, this indicates a minimal mean-free path of photons traveling in
CMB photons background;

2. for the redshift z larger than the value (z > z.), there are two branches
of solutions for 7,,(w{,z) = 1, respectively corresponding to the dif-
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ferent energy-dependence of the cross-section (A.2.9): the cross-section
increases with the center-mass-energy x = 8% / (mec?)? from the energy-
threshold x = 1 to x ~ 1.99, and decreases from x ~ 1.99 to
x — oco. The turn point (z ~ 0.1,a)§J ~ 1.15 - 10%eV) from one solution
to another is determined by the maximal cross-section at x ~ 1.99. Due
to these two solutions, CMB photons are transparent to GRB photons of
large and small energies, opaque to those GRB photons in an interme-
diate energy-range large for a given finite z-value;

3. CMB photons are transparent to very low-energy GRB photons w? <
102eV, i.e., xY < 1073, due to their energies are below the energetic
threshold for the Breit-Wheeler process (A.0.2). In addition, CMB pho-
tons are transparent to very large-energy GRB photons «w? > 108V,
i.e., x9 > 103, due to the cross-section of Breit-Wheeler process is
very small for extremely high-energy photons. For very large z ~ 103,
the Universe becomes completely opaque and photon distribution can-
not be described by the black body spectrum, we disregard this regime.

Due to the fact that there are other radiation backgrounds (E.4.1), the back-
ground of CMB photons gives the lowest bound of opacity, absorption limit,
to GRB photons with respect to the Breit-Wheeler process (A.0.2). Finally, we
point out that Fazio and Stecker (Fazio and Stecker, |1970; Stecker et al., (1977)
gave only asymptotic form of small-energy solution indicated in Fig. (E.4).

3.7. The extraction of blackholic energy from a
black hole by vacuum polarization processes

In Chapter [F we turn then to astrophysics, where, in the process of gravi-
tational collapse to a black hole and in its outcomes these three processes
will be for the first time verified on a much larger scale, involving particle
numbers of the order of 10, seeing both the Dirac process and the Breit-
Wheeler process at work in symbiotic form and electron-positron plasma cre-
ated from the “blackholic energy” during the process of gravitational col-
lapse. It is becoming more and more clear that the gravitational collapse
process to a Kerr-Newman black hole is possibly the most complex problem
ever addressed in physics and astrophysics. What is most important for this
report is that it gives for the first time the opportunity to see the above three
processes simultaneously at work under ultrarelativistic special and general
relativistic regimes. The process of gravitational collapse is characterized by
the timescale Aty = GM /3 ~5-107°M/ Mg sec and the energy involved
are of the order of AE = 10°*M /M, ergs. It is clear that this is one of the
most energetic and most transient phenomena in physics and astrophysics
and needs for its correct description such a highly time varying treatment.
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Lg =z

Figure 3.1.: This is a Log-Log plot for GRB photon energy x° (in unit of
1.11 - 10"%) vs redshift z. For z > z. ~ 0.1, the line that bounds shadow
area indicates two solutions for the opacity 7,, = 1: (i) large-energy solu-
tion for w? > 1.15 - 10'%eV; (ii) small-energy solution for w) < 1.15- 10V,
which separate the optically thick regime (shadow area) 7,,(w?,z) > 1 and
optically thin regime 7,,(«w?{,z) < 1.
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Our approach in Chapter [H is to gain understanding of this process by sep-
arating the different components and describing 1) the basic energetic pro-
cess of an already formed black hole, 2) the vacuum polarization process of
an already formed black hole, 3) the basic formula of the gravitational col-
lapse recovering the Tolman-Oppenheimer-Snyder solutions and evolving to
the gravitational collapse of charged and uncharged shells. This will allow
among others to obtain a better understanding of the role of irreducible mass
of the black hole and the maximum blackholic energy extractable from the
gravitational collapse. We will as well address some conceptual issues be-
tween general relativity and thermodynamics which have been of interest to
theoretical physicists in the last forty years. Of course in these brief chap-
ter we will be only recalling some of these essential themes and refer to the
literature where in-depth analysis can be found. In Sec. we recall the
Kerr-Newman metric and the associated electromagnetic field. We then re-
call the classical work of Carter Carter| (1968) integrating the Hamilton-Jacobi
equations for charged particle motions in the above given metric and elec-
tromagnetic field. We then recall in Sec. [F.2| the introduction of the effective
potential techniques in order to obtain explicit expression for the trajectory of
a particle in a Kerr-Newman geometry, and especially the introduction of the
reversible-irreversible transformations which led then to the Christodoulou-
Ruffini mass formula of the black hole

)4 -To 2 128
M*c* = (erc + 4GMir> + 1G2ME
where M;; is the irreducible mass of a black hole, Q and L are its charge
and angular momentum. We then recall in Sec. the positive and neg-
ative root states of the Hamilton-Jacobi equations as well as their quantum
limit. We finally introduce in Sec. the vacuum polarization process in
the Kerr-Newman geometry as derived by Damour and Ruffini Damour and
Ruffini| (1975) by using a spatially orthonormal tetrad which made the appli-
cation of the Schwinger formalism in this general relativistic treatment almost
straightforward. We then recall in Sec. [E.5|the definition of a Dyadosphere in
a Reissner- Nordstrom geometry, a region extending from the horizon radius

rie = 147-10°u(1+ /1 —&2)cm

out to an outer radius

r*:( B >1/2 (%>1/2 (@)1/2 (£)1/2< Q )1/2:
MeC c2 M, p VGM

=1.12-108\/u& cm,

415



3. Brief description

where the dimensionless mass and charge parameters y = A]/\I/{\ =2 <

MVG) —
1. In Sec. the definition of a Dyadotorus in a Kerr-Newman r(netri)c is
recalled. We have focused on the theoretically well defined problem of pair
creation in the electric field of an already formed black hole. Having set the
background for the blackholic energy we recall some fundamental features
of the dynamical process of the gravitational collapse. In Sec. [F.7|we address
some specific issues on the dynamical formation of the black hole, recalling
first the Oppenheimer-Snyder solution Oppenheimer and Snyder; (1939) and
then considering its generalization to the charged non-rotating case using the
classical work of W. Israel and V. de la Cruz Israel|(1966)); De la Cruz and Israel
(1967). In Sec. [E.7.1jwe recover the classical Tolman-Oppenheimer-Snyder so-
lution in a more transparent way than it is usually done in the literature. In
the Sec. we are studying using the Israel-de la Cruz formalism the col-
lapse of a charged shell to a black hole for selected cases of a charged shell
collapsing on itself or collapsing in an already formed Reissner- Nordstrom
black hole. Such elegant and powerful formalism has allowed to obtain for
the first time all the analytic equations for such large variety of possibilities
of the process of the gravitational collapse. The theoretical analysis of the
collapsing shell considered in the previous section allows to reach a deeper
understanding of the mass formula of black holes at least in the case of a
Reissner- Nordstrom black hole. This allows as well to give in Sec. an
expression of the irreducible mass of the black hole only in terms of its ki-
netic energy of the initial rest mass undergoing gravitational collapse and its
gravitational energy and kinetic energy T at the crossing of the black hole
horizon

M?
Mir = Mo — 5+ + T

Similarly strong, in view of their generality, are the considerations in Sec.
[F.8.2] which indicate a sharp difference between the vacuum polarization pro-
cess in an overcritical E > E. and undercritical E < E; black hole. For
E > E. the electron-positron plasma created will be optically thick with av-
erage particle energy 10 MeV. For E < E. the process of the radiation will
be optically thin and the characteristic energy will be of the order of 10?! eV.
This argument will be further developed in a forthcoming report. In Sec.
we show how the expression of the irreducible mass obtained in the previ-
ous Section leads to a theorem establishing an upper limit to 50% of the total
mass energy initially at rest at infinity which can be extracted from any pro-
cess of gravitational collapse independent of the details. These results also
lead to some general considerations which have been sometimes claimed in
reconciling general relativity and thermodynamics (see Appendix [F).

416



3.8. Plasma oscillations in electric fields

3.8. Plasma oscillations in electric fields

In Chapter |G| we discuss that the conditions encountered in the vacuum po-
larization process around black holes lead to a number of electron-positron
pairs created of the order of 10%° confined in the Dyadosphere volume, of the
order of a few hundred times to the horizon of the black hole. Under these
conditions the plasma is expected to be optically thick and is very different
from the nuclear collisions and laser case where pairs are very few and there-
fore optically thin. We turn then in Chapter|G| to discuss a new phenomenon:
the plasma oscillations, following the dynamical evolution of pair production
in an external electric field close to the critical value. In particular, we will ex-
amine: i) the back reaction of pair production on the external electric field; ii)
the screening effect of pairs on the electric field; iii) the motion of pairs and
their interactions with the created photon fields. In Secs. and we
review semi-classical and kinetic theories describing the plasma oscillations
using respectively the Dirac-Maxwell equations and the Boltzmann-Vlasov
equations. The electron-positron pairs, after they are created, coherently os-
cillate back and forth giving origin to an oscillating electric field. The os-
cillations lasting for at least a few hundred Compton times. We review the
damping due to the quantum decoherence. The energy from collective mo-
tion of the classical electric field and pairs flows to the quantum fluctuations
of these fields. This process is quantitatively discussed by using the quantum
Boltzmann-Vlasov equation in Secs. and The damping due to col-
lision decoherence is quantitatively discussed in Secs. and by using
Boltzmann-Vlasov equation with particle collisions terms. This damping de-
termines the energy flows from collective motion of the classical electric field
and pairs to the kinetic energy of non-collective motion of particles of these
tields due to collisions. In Sec. we particularly address the study of he
influence of the collision processes e"e~ = 7 on the plasma oscillations in
supercritical electric field Ruffini et al. (2003c). It is shown that the plasma os-
cillation is mildly affected by a small number of photons creation in the early
evolution during a few hundred Compton times (see Fig. [G.4). In the later
evolution of 103~* Compton times, the oscillating electric field is damped
to its critical value with a large number of photons created. An equiparti-
tion of number and energy between electron-positron pairs and photons is
reached (see Fig. [G.4). In Sec. we introduce an approach based on the fol-
lowing three equations: the number density continuity equation, the energy-
momentum conservation equation and the Maxwell equations. We describe
the plasma oscillation for both over critical electric field E > E; and under
critical electric field E < E; Rutffini et al.|(2007b). In additional of reviewing
the result well known in the literature for E > E. we review some novel re-
sult for the case E < E. It was traditionally assumed that electron-positron
pairs, created by the vacuum polarization process, move as charged particles
in external uniform electric field reaching arbitrary large Lorentz factors. It

417



3. Brief description

is reviewed how recent computations show the existence of plasma oscilla-
tions of the electron-positron pairs also for E < E.. For both cases we quote
the maximum Lorentz factors ymax reached by the electrons and positrons as
well as the length of oscillations. Two specific cases are given. For Ey = 10E,
the length of oscillations 10 7/ (m.c), and Ey = 0.15E, the length of oscilla-
tions 107 1/ (mec). We also review the asymptotic behavior in time, t — oo,
of the plasma oscillations by the phase portrait technique. Finally we review
some recent results which differentiate the case E > E. from the one E < E.
with respect to the creation of the rest mass of the pair versus their kinetic
energy. For E > E; the vacuum polarization process transforms the electro-
magnetic energy of the field mainly in the rest mass of pairs, with moderate
contribution to their kinetic energy (see Appendix|G).

3.9. Thermalization of the mildly relativistic pair
plasma

We then turn in Chapter|H|to the last physical process needed in ascertaining
the reaching of equilibrium of an optically thick electron-positron plasma.
The average energy of electrons and positrons we illustrate are 0.1 < € <
10 MeV. These bounds are necessary from the one hand to have significant
amount of electron-positron pairs to make the plasma optically thick, and
from the other hand to avoid production of other particles such as muons.
As we will see in the next report these are indeed the relevant parameters
for the creation of ultrarelativistic regimes to be encountered in pair creation
process during the formation phase of a black hole. They are also relevant
for the physics of GRBs and active galactic nuclei. We then review the prob-
lem of evolution of optically thick, nonequilibrium electron-positron plasma,
towards an equilibrium state, following |Aksenov et al. (2007, 2008). These
results have been mainly obtained by two of us (RR and GV)in recent pub-
lications and all relevant previous results are also reviewed in this Chapter
We have integrating directly relativistic Boltzmann equations with all bi-
nary and triple interactions between electrons, positrons and photons two
kinds of equilibrium are found: kinetic and thermal ones. Kinetic equilibrium
is obtained on a timescale of few (UTnic)_l, where o7 and n4 are Thom-
son’s cross-section and electron-positron concentrations respectively, when
detailed balance is established between all binary interactions in plasma. Ther-
mal equilibrium is reached on a timescale of few (aorn.c)~!, when all bi-
nary and triple, direct and inverse interactions are balanced. In Sec.
basic plasma parameters are illustrated. The computational scheme as well
as the discretization procedure are discussed in Sec. Relevant conserva-
tion laws are given in Sec. Details on binary interactions, consisting of
Compton, Moller and Bhabha scatterings, Dirac pair annihilation and Breit-
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Wheeler pair creation processes, and triple interactions, consisting of rela-
tivistic bremsstrahlung, double Compton process, radiative pair production
and three-photon annihilation process, are presented in Sec. and re-
spectively. In Sec. collisional integrals with binary interactions are com-
puted from first principles, using QED matrix elements. In Sec. Coulomb
scattering and the corresponding cutoff in collisional integrals are discussed.
Numerical results are presented in Sec. where the time dependence of
energy and number densities as well as chemical potential and temperature
of electron-positron-photon plasma is shown, together with particle spectra.
The most interesting result of this analysis is to have differentiate the role
of binary and triple interactions. The detailed balance in binary interactions
following the classical work of Ehlers Ehlers| (1973) leads to a distribution
function of the form of the Fermi-Dirac for electron-positron pairs or of the
Bose-Einstein for the photons. This is the reason we refer in the text to such
conditions as the Ehlers equilibrium conditions. The crucial role of the direct
and inverse three-body interactions is well summarized in fig. panel A
from which it is clear that the inverse three-body interactions are essential in
reaching thermal equilibrium. If the latter are neglected, the system deflates
to the creation of electron-positron pairs all the way down to the threshold
of 0.5MeV. This last result which is referred as the Cavallo-Rees scenario is
simply due to improper neglection of the inverse triple reaction terms (see

Appendix .
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4. Publications (before 2005)

1. R. Ruffini and J. A. Wheeler, “Introducing the black hole ”, Phys. Today,
January (1971) 178.

This article proved to be popular and was written with the intention of com-
municating some of the major processes made in understanding the final con-
figurations of collapsed stars to the largest possible audience. In this article,
the authors summarized the results of their students” work with particular
emphasis on the work of D. Christodoulou (graduate student of R. Ruffini’s at
that time) together with some of their most significant new results. Moreover,
it was emphasized that of all the procedures for identifying a collapsed object
in space at a great distance, the most promising consisted of analyzing a close
binary system in which one member is a normal star and the other a black hole.
The X-ray emission associated with the transfer of material from the normal
star to the collapsed object would then be of greatest importance in determin-
ing the properties of the collapsed object. This article has been reprinted many
times and has been translated into many languages (Japanese, Russian, and
Greek, among others). It has created much interest in the final configuration of
stars after the endpoint of their thermonuclear evolution. The analysis of the
possible processes leading to the formation of a black hole, via either a one-
step process of a multistep process, was also presented for the first time in this
article.

2. D.Christodoulou and R. Ruffini, “Reversible Transformations of a Charged
Black Hole”, Phys. Rev. D4 (1971) 3552.

A formula is derived for the mass of a black hole as a function of its ”irre-
ducible mass,” its angular momentum, and its charge. It is shown that 50%
of the mass of an extreme charged black hole can be converted into energy as
contrasted with 29% for an extreme rotating black hole.

3. T. Damour and R. Ruffini, “Quantum electrodynamical effects in Kerr-
Newman geometries”, Phys. Rev. Lett. 35 (1975) 463.

Following the classical approach of Sauter, of Heisenberg and Euler and of
Schwinger the process of vacuum polarization in the field of a “"bare” Kerr-
Newman geometry is studied. The value of the critical strength of the elec-
tromagnetic fields is given together with an analysis of the feedback of the
discharge on the geometry. The relevance of this analysis for current astro-
physical observations is mentioned.
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4. J. Ferreirinho, R. Ruffini and L. Stella, “On the relativistic Thomas-Fermi

model”, Phys. Lett. B 91, (1980) 314. The relativistic generalization of the
Thomas-Fermi model of the atom is derived. It approaches the usual nonrela-
tivistic equation in the limit Z < Zj;, where Z is the total number of electrons
of the atom and Z;y = (371/ 4)1/ 2x4=3/2 and a is the fine structure constant. The
new equation leads to the breakdown of scaling laws and to the appearance of
a critical charge, purely as a consequence of relativistic effects. These results
are compared and contrasted with those corresponding to N self-gravitating
degenerate relativistic fermions, which for N ~ Ngit = (371/ HV2(m/ mp)3
give rise to the concept of a critical mass against gravitational collapse. Here
m is the mass of the fermion and m, = (fic/G)!/? is the Planck mass.

R. Ruffini and L. Stella,”Some comments on the relativistic Thomas-
Fermi model and the Vallarta-Rosen equation”, Phys. Lett. B 102 (1981)
442. Some basic differences between the screening of the nuclear charge due
to a relativistic cloud of electrons in a neutral atom and the screening due to
vacuum polarization effects induced by a superheavy ion are discussed.

. G. Preparata, R. Ruffini and S.-S. Xue, “The dyadosphere of black holes

and gamma-ray bursts”, Astron. Astroph. Lett. 337 (1998) L3.

The "dyadosphere” has been defined (Ruffini, Preparata et al.) as the region
outside the horizon of a black hole endowed with an electromagnetic field (ab-
breviated to EMBH for ”electromagnetic black hole”) where the electromag-
netic field exceeds the critical value, predicted by Heisenberg & Euler for e*e™
pair production. In a very short time (~ O(%/(mc?))), a very large number of
pairs is created there. We here give limits on the EMBH parameters leading to
a Dyadosphere for 10M, and 10° M, EMBH’s, and give as well the pair densi-
ties as functions of the radial coordinate. We here assume that the pairs reach
thermodynamic equilibrium with a photon gas and estimate the average en-
ergy per pair as a function of the EMBH mass. These data give the initial con-
ditions for the analysis of an enormous pair-electromagnetic-pulse or "P.E.M.
pulse” which naturally leads to relativistic expansion. Basic energy require-
ments for gamma ray bursts (GRB), including GRB971214 recently observed at
z = 3.4, can be accounted for by processes occurring in the dyadosphere. In
this letter we do not address the problem of forming either the EMBH or the
dyadosphere: we establish some inequalities which must be satisfied during
their formation process.

R. Ruffini, “On the dyadosphere of black holes”, at the XLIXth Yamada
Conference on “Black Holes and High-Energy Astrophysics”, H. Sato
Ed., Univ. Acad. Press, Tokyo, 1998.

The “dyadosphere” (from the Greek word “duas-duados” for pairs) is here
defined as the region outside the horizon of a black hole endowed with an
electromagnetic field (abbreviated to EMBH for “electromagnetic black hole”)
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10.

where the electromagnetic field exceeds the critical value, predicted by Heisen-
berg and Euler for electron-positron pair production. In a very short time, a
very large number of pairs is created there. I give limits on the EMBH pa-
rameters leading to a Dyadosphere for 10 solar mass and 100000 solar mass
EMBH’s, and give as well the pair densities as functions of the radial coordi-
nate. These data give the initial conditions for the analysis of an enormous
pair-electromagnetic-pulse or "PEM-pulse” which naturally leads to relativis-
tic expansion. Basic energy requirements for gamma ray bursts (GRB), includ-
ing GRB971214 recently observed at z=3.4, can be accounted for by processes
occurring in the dyadosphere.

R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On the Pair
Electromagnetic Pulse of a Black Hole with Electromagnetic Structure”,
Astron. Astroph. 350 (1999) 334.

Starting from a nonequilibrium configuration we analyse the essential role of
the direct and the inverse binary and triple interactions in reaching an asymp-
totic thermal equilibrium in a homogeneous isotropic electron-positron-photon
plasma. We focus on energies in the range 0.1-10 MeV. We numerically inte-
grate the integro-partial differential relativistic Boltzmann equation with the
exact QED collisional integrals taking into account all binary and triple inter-
actions in the plasma. We show that first, when detailed balance is reached
for all binary interactions on a timescale f; < 10~ Msec, photons and electron-
positron pairs establish kinetic equilibrium. Successively, when triple inter-
actions fulfill the detailed balance on a timescale teg < 10~ 2sec, the plasma
reaches thermal equilibrium. It is shown that neglecting the inverse triple in-
teractions prevents reaching thermal equilibrium. Our results obtained in the
theoretical physics domain also find application in astrophysics and cosmol-

ogy.

. R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On Evolution of

the Pair-Electromagnetic Pulse of a Charge Black Hole ”, Astron. Astro-
phys. Suppl. Ser. 138 (1999) 511.

Using hydrodynamic computer codes, we study the possible patterns of rel-
ativistic expansion of an enormous pair-electromagnetic-pulse (P.E.M. pulse);
a hot, high density plasma composed of photons, electron-positron pairs and
baryons deposited near a charged black hole (EMBH). On the bases of baryon-
loading and energy conservation, we study the bulk Lorentz factor of expan-
sion of the P.E.M. pulse by both numerical and analytical methods.

R. Ruffini, J. D. Salmonson, J. R. Wilson and S.-S. Xue, “On the pair-
electromagnetic pulse from an electromagnetic Black Hole surrounded
by a Baryonic Remnant ”, Astron. Astrophys 359, 855-864 (2000).

The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with
a shell of baryonic matter surrounding a Black Hole with electromagnetic struc-
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ture (EMBH) is analyzed for selected values of the baryonic mass at selected
distances well outside the dyadosphere of an EMBH. The dyadosphere, the
region in which a super critical field exists for the creation of electron-positron
pairs, is here considered in the special case of a Reissner-Nordstrom geometry.
The interaction of the PEM pulse with the baryonic matter is described us-
ing a simplified model of a slab of constant thickness in the laboratory frame
(constant-thickness approximation) as well as performing the integration of
the general relativistic hydrodynamical equations. The validation of the constant-
thickness approximation, already presented in a previous paper Ruffini, et
al.(1999) for a PEM pulse in vacuum, is here generalized to the presence of
baryonic matter. It is found that for a baryonic shell of mass-energy less than
1% of the total energy of the dyadosphere, the constant-thickness approxima-
tion is in excellent agreement with full general relativistic computations. The
approximation breaks down for larger values of the baryonic shell mass, how-
ever such cases are of less interest for observed Gamma Ray Bursts (GRBs). On
the basis of numerical computations of the slab model for PEM pulses, we de-
scribe (i) the properties of relativistic evolution of a PEM pulse colliding with
a baryonic shell; (ii) the details of the expected emission energy and observed
temperature of the associated GRBs for a given value of the EMBH mass; 103
solar masses, and for baryonic mass-energies in the range 10~ to 1072 the total
energy of the dyadosphere.

11. G. Preparata, R. Ruffini and S.-S. Xue,“The role of the screen factor in
GRBs 7, Il Nuovo Cimento B115 (2000) 915.

We derive the screen factor for the radiation flux from an optically thick plasma
of electron-positron pairs and photons, created by vacuum polarization pro-
cess around a black hole endowed with electromagnetic structure.

12. C. L. Bianco, R. Ruffini and S.-S. Xue, “The elementary spike produced
by a pure eTe™ pair-electromagnetic pulse from a Black Hole: The PEM
Pulse ”, Astron. Astrophys. 368 (2001) 377.

In the framework of the model that uses black holes endowed with electro-
magnetic structure (EMBH) as the energy source, we study how an elemen-
tary spike appears to the detectors. We consider the simplest possible case of a
pulse produced by a pure e*e™ pair-electro-magnetic plasma, the PEM pulse,
in the absence of any baryonic matter. The resulting time profiles show a Fast-
Rise-Exponential-Decay shape, followed by a power-law tail. This is obtained
without any special fitting procedure, but only by fixing the energetics of the
process taking place in a given EMBH of selected mass, varying in the range
from 10 to 10° M, and considering the relativistic effects to be expected in an
electron-positron plasma gradually reaching transparency. Special attention is
given to the contributions from all regimes with Lorentz -y factor varying from
v = 1toy = 10* in a few hundreds of the PEM pulse travel time. Although the
main goal of this paper is to obtain the elementary spike intensity as a function
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13.

14.

15.

of the arrival time, and its observed duration, some qualitative considerations
are also presented regarding the expected spectrum and on its departure from
the thermal one. The results of this paper will be comparable, when data will
become available, with a subfamily of particularly short GRBs not followed by
any afterglow. They can also be propedeutical to the study of longer bursts in
presence of baryonic matter currently observed in GRBs.

R. Ruffini and L. Vitagliano, “Irreducible mass and energetics of an elec-
tromagnetic black hole ”, Phys. Lett. B545 (2002) 233.

The mass-energy formula for a black hole endowed with electromagnetic struc-
ture (EMBH) is clarified for the nonrotating case. The irreducible mass Mj,; is
found to be independent of the electromagnetic field and explicitly expressable
as a function of the rest mass, the gravitational energy and the kinetic energy of
the collapsing matter at the horizon. The electromagnetic energy is distributed
throughout the entire region extending from the horizon of the EMBH to in-
finity. We discuss two conceptually different mechanisms of energy extraction
occurring respectively in an EMBH with electromagnetic fields smaller and
larger than the critical field for vacuum polarization. For a subcritical EMBH
the energy extraction mechanism involves a sequence of discrete elementary
processes implying the decay of a particle into two oppositely charged parti-
cles. For a supercritical EMBH an alternative mechanism is at work involving
an electron-positron plasma created by vacuum polarization. The energetics of
these mechanisms as well as the definition of the spatial regions in which thay
can occur are given. The physical implementations of these ideas are outlined
for ultrahigh energy cosmic rays UHECR) and gamma ray bursts (GRBs).

C. Cherubini, R. Ruffini and L. Vitagliano, “On the electromagnetic field

of a charged collapsing spherical shell in general relativity ”, Phys. Lett. B545

(2002) 226.

A new exact solution of the Einstein-Maxwell equations for the gravitational
collapse of a shell of matter in an already formed black hole is given. Both
the shell and the black hole are endowed with electromagnetic structure and
are assumed spherically symmetric. Implications for current research are out-
lined.

R. Ruffini, L. Vitagliano and S.-S. Xue, “On Plasma Oscillations in Strong
Electric Fields ”, Phys. Lett. B559 (2003) 12.

We describe the creation and evolution of electron-positron pairs in a strong
electric field as well as the pairs annihilation into photons. The formalism
is based on generalized Vlasov equations, which are numerically integrated.
We recover previous results about the oscillations of the charges, discuss the
electric field screening and the relaxation of the system to a thermal equilib-
rium configuration. The timescale of the thermalization is estimated to be
~ 10% — 10*1/m,c2.
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16.

17.

18.

R. Ruffini, L. Vitagliano and S.-S. Xue,”electron-positron-photon plasma
around a collapsing star ”, (invited talk) in Proc. of the 28" Joint ICFA
Conference on Quantum Aspects of Beam Physics and Other Critical
Issues of Beams in Physics and Astrophysics, January 7-11, 2003, Hi-
roshima University, Higashi-Hiroshima, Japan, Pisin Chen Ed., World
Scientific, Singapore.

We describe electron-positron pairs creation around an electrically charged
star core collapsing to an electromagnetic black hole (EMBH), as well as pairs
annihilation into photons. We use the kinetic Vlasov equation formalism for
the pairs and photons and show that a regime of plasma oscillations is estab-
lished around the core. As a byproduct of our analysis we can provide an
estimate for the thermalization time scale.

G. Preparata, R. Ruffini and S.-S. Xue, “On the Dyadosphere of Black
Hole”, ]. Korean Phys.Soc. 42 (2003) 599-5104 (astro-ph/0204080).

Basic energy requirements of Gamma Ray Burst(GRB) sources can be easily
accounted for by a pair creation process occurring in the “Dyadosphere” of
a Black Hole endowed with an electromagnetic field (abbreviated to EMBH
for “electromagnetic Black Hole”). This includes the recent observations of
GRB971214 by Kulkarni et al. The "Dyadosphere” is defined as the region
outside the horizon of an EMBH where the electromagnetic field exceeds the
critical value for e*e~ pair production. In a very short time ~ O(himc?), very
large numbers of pairs are created there. Further evolution then leads nat-
urally to a relativistically expanding pair-electromagnetic-pulse (PEM-pulse).
Specific examples of Dyadosphere parameters are given for 10 and 10° solar
mass EMBH’s. This process does occur for EMBH with charge-to-mass ratio
larger than 2.2107° and strictly smaller than one. From a fundamental point of
view, this process represents the first mechanism proved capable of extracting
large amounts of energy from a Black Hole with an extremely high efficiency
(close to 100%).

R. Ruffini and L. Vitagliano, “Energy Extraction From Gravitational Col-
lapse to Static Black Holes ”, Int. J. Mod. Phys. D12 (2003) 121.

The mass-energy formula of black holes implies that up to 50% of the energy
can be extracted from a static black hole. Such a result is reexamined using the
recently established analytic formulas for the collapse of a shell and expression
for the irreducible mass of a static black hole. It is shown that the efficiency of
energy extraction process during the formation of the black hole is linked in
an essential way to the gravitational binding energy, the formation of the hori-
zon and the reduction of the kinetic energy of implosion. Here a maximum
efficiency of 50% in the extraction of the mass energy is shown to be generally
attainable in the collapse of a spherically symmetric shell: surprisingly this re-
sult holds as well in the two limiting cases of the Schwarzschild and extreme
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Reissner-Nordstrom space-times. Moreover, the analytic expression recently
found for the implosion of a spherical shell onto an already formed black hole
leads to a new exact analytic expression for the energy extraction which re-
sults in an efficiency strictly less than 100% for any physical implementable
process. There appears to be no incompatibility between General Relativity
and Thermodynamics at this classical level.
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1. R. Ruffini, F. Fraschetti, L. Vitagliano and S.-S. Xue,”Observational sig-
natures of an electromagnetic overcritical gravitational collapse ”, Int.
Journ. Mod. Phys. D14 (2005) 131.

We present theoretical predictions for the spectral, temporal and intensity sig-
natures of the electromagnetic radiation emitted during the process of the
gravitational collapse of a stellar core to a black hole, during which electro-
magnetic field strengths rise over the critical value for ete™ pair creation. The
last phases of this gravitational collapse are studied, leading to the formation
of a black hole with a subcritical electromagnetic field, likely with zero charge,
and an outgoing pulse of initially optically thick e™e™-photon plasma. Such
a pulse reaches transparency at Lorentz gamma factors of 10>~10*. We find a
clear signature in the outgoing electromagnetic signal, drifting from a soft to a
hard spectrum, on very precise time-scales and with a very specific intensity
modulation. The relevance of these theoretical results for the understanding
of short gamma-ray bursts is outlined.

2. Federico Fraschetti, Remo Ruffini, Luca Vitagliano, and She-Sheng Xue
“Theoretical predictions of spectral evolution of short GRBs ”, in Venice
(Italy), June 5-9, 2006, IL NUOVO CIMENTO Vol. 121 (2006) 1477.

We present the properties of spectrum of radiation emitted during gravita-
tional collapse in which electromagnetic field strengths rise over the critical
value for eTe™ pair creation. A drift from soft to a hard energy and a high en-
ergy cut off have been found; a comparison with a pure black body spectrum
is outlined.

3. R. Ruffini and S.-S. Xue, “Effective Lagrangian of QED”, Journal of the
Korean physical society, Vol. 49, No. 2, august 2006, pp. 715.

From the Euler-Heisenberg formula we calculate the exact real part of the one-
loop effective Lagrangian of Quantum Electrodynamics in a constant electro-
magnetic field, and determine its strong-field limit.

4. R. Ruffini and S.-S. Xue, “Electron-positron pairs production in an elec-
tric potential of massive cores”, submitted to Phys. Lett. B (2008).

Classical and semi-classical energy states of relativistic electrons bounded by a
massive and charged core with the charge-mass-radio Q/M and macroscopic
radius R, are discussed. We show that the energies of semi-classical (bound)
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states can be much smaller than the negative electron mass-energy (—mc?),
and energy-level crossing to negative energy continuum occurs. Electron-
positron pair production takes place by quantum tunneling, if these bound
states are not occupied. Electrons fill into these bound states and positrons go
to infinity. We explicitly calculate the rate of pair-production, and compare it
with the rates of electron-positron production by the Sauter-Euler-Heisenberg-
Schwinger in a constant electric field. In addition, the pair-production rate for
the electro-gravitational balance ratio Q/M = 10~!? is much larger than the
pair-production rate due to the Hawking processes. We point out that in neu-
tral cores with equal proton and electron numbers, the configuration of rela-
tivistic electrons in these semi-classical (bound) states should be stabilized by
photon emissions.

. C. Cherubini, A. Geralico, ]. Rueda and R. Ruffini, “On the “Dyado-

torus” of Kerr-Newman space time ”, AIP Conf. Proceeding (2008).

We present the geometrical properties of the region where vacuum polariza-
tion precess occur int he Kerr-Newman space time. We find that the shape of
the region can be ellipsoid-like or torus-like depending on the charge of the
black hole.

. H. Kleinert, R. Ruffini and S.-S. Xue, “Electron-positron pair-production

in nonuniform electric fields”, Phys. Rev. D 78 (2008) 025011.

Treating the production of electron and positron pairs in vacuum as quantum
tunneling, at the semiclassical level O(%), we derive a general expression, both
exponential and pre-exponential factors, of the pair-production rate in nonuni-
form electric fields varying only in one direction. In particularly we discuss the
expression for the case when produced electrons (or positrons) fill into bound
states of electric potentials with discrete spectra of energy-level crossings. This
expression is applied to the examples of the confined field E(z) # 0,|z] < ¢,
half-confined field E(z) # 0,z 2 0, and linear increasing field E(z) ~ z, as well
as the Coulomb field E(r) = eZ/r? for a nucleus with finite size r,, and large
Z>1

R. Ruffini, G. V. Vereshchagin and S.-S. Xue, “Vacuum polarization
and plasma oscillations”, Phys. Lett. A 371(2007) 399 ( arXiv:0706.4363).

We evidence the existence of plasma oscillations of electrons-positron pairs
created by the vacuum polarization in an uniform electric field with E < E..
Our general treatment, encompassing also the traditional, well studied case of
E > E., shows the existence in both cases of a maximum Lorentz factor ac-
quired by electrons and positrons and allows determination of the a maximal
length of oscillation. We quantitatively estimate how plasma oscillations re-
duce the rate of pair creation and increase the time scale of the pair production.
These results are particularly relevant in view of the experimental progress in
approaching the field strengths E < E..
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8.

10.

A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin, “Thermalization
of a nonequilibrium electron-positron-photon plasma ”, Phys.Rev.Lett.
99 (2007) 125003 .

Starting from a nonequilibrium configuration we analyse the essential role of
the direct and the inverse binary and triple interactions in reaching an asymp-
totic thermal equilibrium in a homogeneous isotropic electron-positron-photon
plasma. We focus on energies in the range 0.1-10 MeV. We numerically inte-
grate the integro-partial differential relativistic Boltzmann equation with the
exact QED collisional integrals taking into account all binary and triple inter-
actions in the plasma. We show that first, when detailed balance is reached
for all binary interactions on a timescale t; < 10~ 14gec, photons and electron-
positron pairs establish kinetic equilibrium. Successively, when triple inter-
actions fulfill the detailed balance on a timescale t,; < 10~ 2sec, the plasma
reaches thermal equilibrium. It is shown that neglecting the inverse triple in-
teractions prevents reaching thermal equilibrium. Our results obtained in the
theoretical physics domain also find application in astrophysics and cosmol-

ogy.

. R.Ruffini, M. Rotondo and S.-S. Xue,”Electrodynamics for Nuclear Mat-

ter in Bulk ”, Int. Journ. Mod. Phys. D Vol. 16, No. 1 (2007) 1-9.

A general approach to analyze the electrodynamics of nuclear matter in bulk
is presented using the relativistic Thomas-Fermi equation generalizing to the
case of N =~ (mpjanc/My)° nucleons of mass m, the approach well tested in
very heavy nuclei (Z ~ 10°). Particular attention is given to implement the
condition of charge neutrality globally on the entire configuration, versus the
one usually adopted on a microscopic scale. As the limit N ~ (mpjanck/ my,)3
is approached the penetration of electrons inside the core increases and a rel-
atively small tail of electrons persists leading to a significant electron density
outside the core. Within a region of 10? electron Compton wavelength near the
core surface electric fields close to the critical value for pair creation by vacuum
polarization effect develop. These results can have important consequences on
the understanding of physical process in neutron stars structures as well as on
the initial conditions leading to the process of gravitational collapse to a black
hole.

R. Ruffini, M. Rotondo and S.-S. Xue, “Analytic treatment of the electro-
dynamics for nuclear matter in bulk”, to be submitted to Phy. Rev. Lett.

Using the relativistic Thomas-Fermi equation, we present an analytic treat-
ment of the electrodynamic properties of nuclear matter in bulk. Following
the works of Migdal and Popov we generalize to the case of a massive core
with the mass number A ~ 10° the analytic approach well tested in very
heavy nuclei with A ~ 10°. Attention is given to implement the condition of
charge neutrality globally on the entire configuration, versus the one usually
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5. Publications (2005-2008)

11.

12.

adopted on a microscopic scale. It is confirmed that also in this limit A, an
electric field develops near the core surface of magnitude close to the critical
value of vacuum polarization. It is shown that such a configuration is ener-
getically favorable with respect to the one which obeys local charge neutrality.
These results can have important consequences on the understanding of the
physical process in neutron stars as well as on the initial conditions leading to
the process of gravitational collapse to a black hole.

R. Ruffini, M. Rotondo and S.-S. Xue, “Neutral nuclear core vs super
charged one ”, AIP Conf. Proc. (2008).

Based on the Thomas-Fermi approach, we describe and distinguish the elec-
tron distributions around extended nuclear cores: (i) in the case that cores are
neutral for electrons bound by protons inside cores and proton and electron
numbers are the same; (ii) in the case that super charged cores are bare, elec-
trons (positrons) produced by vacuum polarization are bound by (fly into)
cores (infinity).

R. Ruffini and S.-S. Xue, “Dyadosphere formed in gravitational collapse
”, AIP Conf. Proc. 1059 (2008) 72.

We first recall the concept of Dyadosphere (electron-positron-photon plasma
around a formed black holes) and its motivation, and recall on (i) the Dirac pro-
cess: annihilation of electron-positron pairs to photons; (ii) the Breit-Wheeler
process: production of electron-positron pairs by photons with the energy
larger than electron-positron mass threshold; the Sauter-Euler-Heisenberg ef-
fective Lagrangian and rate for the process of electron-positron production in
a constant electric field. We present a general formula for the pair-production
rate in the semi-classical treatment of quantum mechanical tunneling. We also
present in the Quantum Electro-Dynamics framework, the calculations of the
Schwinger rate and effective Lagrangian for constant electromagnetic fields.
We give a review on the electron-positron plasma oscillation in constant elec-
tric fields, and its interaction with photons leading to energy and number
equipartition of photons, electrons and positrons. The possibility of creating an
overcritical field in astrophysical condition is pointed out. We present the dis-
cussions and calculations on (i) energy extraction from gravitational collapse;
(i) the formation of Dyadosphere in gravitational collapsing process, and (iii)
its hydrodynamical expansion in Reissner Nordstrom geometry. We calculate
the spectrum and flux of photon radiation at the point of transparency, and
make predictions for short Gamma-Ray Bursts.
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11.
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13.

Invited talks in international
conferences

. Yamada conference “On the dyadosphere of black holes” in Kyoto Japan,

April 1998 .
International workshop on Gamma Ray Bursts, Rome (1998) .
19th Texas Symposium, Dec. 1998

“Exploring the Universe”, a Festschrift in honour of Riccardo Giacconi,
(2000).

. Fluctuating Paths and Fields - Dedicated to Hagen Kleinert on the Oc-

casion of His 60th Birthday, Berlin 2001.

the ESO workshop on “Black Holes in Binaries and Galactic Nuclei”, in
honour of Prof. R. Giacconi, (2000) .

Marcel Grossmann Meetings IX (Rome) (2000), X (Brazil) (2003) and XI
Berlin (2006).

international conference in the quantum aspect of beam physics in Hi-
roshima Japan (2003)

“Frontiers in Astroparticle Physics and Cosmology”, 6th RESCEU In-
ternational Symposium, Tokyo 2003.

International Conference “Analysis, manifolds and geometric structures
in physics”, in Honour of Y. Choquet-Bruhat, Isola d’Elba June 24th-
26th, 2004 .

Brazilian School of Cosmology and Gravitation X (2002), XI (2004) and
XII (2006) (Portobello, Brazile).

Relativistic Astrophysics and Cosmology - Einstein’s Legacy meeting,
November 7-11, 2005,

35th COSPAR scientific assembly (Paris, 2004) and 36th COSPAR scien-
tific assembly (Beijing , 2006).
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6. Invited talks in international conferences

14.

15.
16.
17.
18.

9th International Conference Path Integrals - New Trends and Perspec-
tives, DRESDEN, Germany 23 - 28 September 2007

APS April meeting, April 12-15 2008, Saint Louis (USA).
V Italian-Sino Workshop, May 28- June 1 2008, Taipei (Taiwan).
III Stueckelberg Workshop, July 8-18 2008, Pescara (Italy).

XII Brazilian School of Cosmology and Gravitation, July 20-August 2
2008, Rio de Janeiro (Brazil).
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A. The three fundamental
contributions to the
electron-positron pair creation
and annihilation and the
concept of critical electric field

In this chapter we recall the annihilation process of an electron-positron pair
with the production of two photons

e te = mnt7n (A.0.1)

studied by Dirac in|Dirac|(1930b), the Breit-Wheeler process of electron-positron
pair production by light-light collisions Breit and Wheeler| (1934)

Y1+72 —et e (A.0.2)

and the vacuum polarization in external electric field, introduced by Sauter
Sauter| (1931a). These three results, obtained in the mid-30’s of the last cen-
tury Medvedev and Shirkov| (1987); Miller (1995), played a crucial role in the
development of the Quantum Electro-Dynamics (QED).

A.1. Dirac’s electron-positron annihilation

Dirac had proposed his theory of the electron Dirac (1928,[1930a)) in the frame-
work of relativistic quantum theory. Such a theory predicted the existence of
positive and negative energy states. Only the positive energy states could
correspond to the electrons. The negative energy states had to have a phys-
ical meaning since transitions were considered to be possible from positive
to negative energy states. It was proposed by Dirac |Dirac (1930a) that nearly
all possible states of negative energy are occupied with just one electron in
accordance with Pauli’s exclusion principle and that the unoccupied states,
‘holes’ in the negative energy states should be regarded as ‘positronsﬂ

! Actually initially Dirac|(1930a,b) Dirac believed that these ‘holes’ in negative energy spec-
trum describe protons, but later he realized that these holes represent particles with the

437



A. The three fundamental contributions to the electron-positron pair
creation and annihilation and the concept of critical electric field

Adopting his time-dependent perturbation theory Dirac|(1926) in the frame-
work of relativistic Quantum Mechanics Dirac pointed out in |Dirac (1930b)
the necessity of the annihilation process of electron-positron pair into two
photons He considered an electron under the simultaneous influence
of two incident beams of radiation, which induce transition of the electron
to states of negative energy, then he calculated the transition probability per
unit time, using the well established validity of the Einstein emission and
absorption coefficients, which connect spontaneous and stimulated emission
probabilities. He obtained the explicit expression of the cross-section of the
annihilation process.

Such process is spontaneous, i.e. it occurs necessarily for any pair of electron
and positron independently of their energy. The process does not need any
previously existing radiation. The derivation of the cross-section, considering
the stimulated emission process, was simplified by the fact that the electro-
magnetic field could be treated as an external classical perturbation and did
not need to be quantized Heitler| (1954).

Dirac started from his wave equation Dirac| (1928) for the spinor field ¥:

E e e
{F+EAO+DC.(p+zA)+ﬁDmec}‘P=o, (A11)

where m, and e are electron’s mass and charge, A is electromagnetic vector
potential, and the matrices « and Bp are:

“:(2- g) and ,BD:<(I) _OI), (A1.2)

where o and I are respectively the Pauli’s and unit matrices. By choosing a
gauge in which A( vanishes he obtained:

A=a ol [t—11-x/c] + aT e W [t—11-x/c] + ap eiwz[t—lz.x/c] + a; e—iwz[t—lz.x/c]’
(A.1.3)
where wj and w; are respectively the frequencies of the two beams, 1; and 1,
are the unit vectors in their direction of motion and a; and a; are the polar-
ization vectors, the modulus of which are the amplitudes of the two beam:s.
Dirac solved Eq. by a perturbation method, finding a solution of the
form ¢ = o + P + P2 + ..., where ¢y is the solution in the free case, and
i1 is the first order perturbation containing the field A, or, explicitly — £« - A.
He then computed the explicit expression of the second order expansion term
{», which represents electrons that have made the double photon emission
process and decay into negative-energy states. He evaluated the transition

same mass as of electron but with opposite charge, ‘anti-electrons’ Dirac| (1931). The
discovery of these anti-electrons was made by Anderson in 1932 |[Anderson| (1933) and
named by him ‘positrons’.
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A.1. Dirac’s electron-positron annihilation

amplitude for the stimulated transition process, which reads

_16¢%|ag|?|az|?,, 1 —cos(6Et/h)
Wettem—y14+712 = 7 me 2 12 (6€7)2 ¢

(A.1.4)

where &' = m, c> — v; — v5, v; and 15 are the photons’ frequencies and

1 v+ v
Kip = —(myq - my)* + 1 [1— (my-my)(ng - ny) + (my - ny)(my - ny)] 1’1 622,
e
(A.15)

is a dimensionless number depending on the unit vectors in the directions of
the two photon’s polarization vectors m; and mj. The quantities n; and np
are respectively given by n;» = 115 X mj,. Introducing the intensty of the
two incident beams

2
V7

2
_ _
27 ¢

I —
1 27 ¢

ki’ b k2 |?, (A.1.6)
where k; » = w1 5l; . Dirac obtained from the above transition amplitude the

transition probability

8m2cet 1—cos(6&’t/h)
Perteomin = ol B 2 (e (A.1.7)

In order to evaluate the spontaneous emission probability Dirac uses the re-
lation between the Einstein coefficients Ar and Bg which is of the form

Ap/Bg = 21th/c*(v1/2m)3. (A.1.8)

Integrating on all possible directions of emission he obtains the total proba-
bility per unit time, in the rest frame of the electron he obtains

2 2 A N
lab _ afi a1 YA L o 12 743
U€+€__7T(mec) (’)/_1) { ,?2_1 ln[,)/+(’)/ _1) ]_(/)\/2_1)1/2 ’
(A.1.9)

where § = &, /m,c? > 1 is the energy of the positron and & = ¢?/(fc) is
as usual the fine structure constant, and we recall the corresponding formula
for the center of mass reference frame. Again, historically Dirac was initially
confused about the negative energy states interpretation as we recalled. Al-
though he derived the correct formula, he was doubtful about the presence
in it of the mass of the electron or of the mass of the proton. Of course today
this has been clarified and this derivation is fully correct if one uses the mass
of the electron and applied this formula to description of electron-positron
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annihilation. The limit for high-energy pairs (¥ > 1) is

2
lab 7T ah Y 1T
ot = % (mec> [In (29) —1]; (A.1.10)

The corresponding center of mass formula is

e~

1+
1—

Tpiy = % < ah >2(1 .y [23(/32 —2)+(3—p4In( )}, (A.1.11)

= 472 \mec

o~

where f is as in (A.2.9).

A.2. Breit-Wheeler pair production

We now turn to the equally important derivation on the production of an
electron-positron pair in the collision of two real photons given by Breit and
Wheeler Breit and Wheeler (1934). According to Dirac’s theory of the elec-
tron, this process is caused by a transition of an electron from a negative-
energy state to a positive energy under the influence of two light quanta
on the vacuum. This process differently from the one considered by Dirac,
which occurs spontaneously, has a threshold due to the fact that electron and
positron mass is not zero. In other words in the center of mass of the system
there must be sufficient available energy to create an electron-positron pair.
This energy must be larger than twice of electron rest mass energy.

Breit and Wheeler, following the discovery of the positron by Anderson,
studied the effect of two light waves upon an electron in a negative energy
state, represented by a normalized Dirac wave function ¢(?). Like in the pre-
vious case studied by Dirac Dirac|(1930b) the light waves have frequencies w;,
wave-vectors k; and vector potentials . Under the influence of the light
waves, the initial electron wave function \°) is changed after some time t into
a final wave function (), The method adopted is the time-dependent pertur-
bation Dirac (1926) (for details see [Landau and Lifshitz| (1981a)) to solve the
Dirac equation with the time-dependent potential eA(t) (A.1.3). The transi-
tion amplitude was calculated by an expansion in powers of aj » up to O(a?).
The wave function *) contains a term representing an electron in a positive
energy state. The associated density is found to be

alt \* 5 o |1 —exp(—itd€/h)|?
Wy typ—ettem = (mec) |a1["[az["K12 (0E) (A.2.1)
(ah\? o a. |1—cos(6&t/h)?
= (m_ec> 2|a1|“|az|"K12 (0e)? , (A.2.2)
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A.2. Breit-Wheeler pair production

where Ky, is the dimensionless number already obtained by Dirac, Eq. ,
depending on initial momenta and spin of the wave function ¥(©) and the
polarizations of the quanta. This quantity is actually the squared transition
matrix in the momenta and spin of initial and final states of light and electron-
positron. The squared amplitudes |aj »|? in Eq. are determined by the
intensities I » of the two light beams as

27cC
’31,2‘2 = w_z Il,Z' (A23)

1,2

The quantity 4¢ in Eq. is the difference in energies between initial
light states and final electron-positron states. Indicating by e-) = —c(p? +
m2c?)1/2, where p; is the four-momentum of the positron, the negative en-
ergy of the electron in its initial state and the corresponding quantity for the
electron & = —c(p3 + m2c?)1/2, where p, is the four-momentum of the elec-

tron, 6€ is given by
68 = c(p3 + m2cH)V? 4 &1 — hw; — haws, where & =—¢7), (A2.4)

and p» = —p1 + ky + ky is the final momentum of the electron. From this
energy and momentum conservation it follows

aoe) = 2Pl Prop2 g, A25
00 =[50~ (e (A2
It is then possible to sum the probability densities (A.2.1) over all possible
initial electron states of negative energy in the volume V. An integral over
the phase space [ 2|p1|?d|p1|dQV /(27th)® must be performed. The effective

collision area for the head-on collision of two light quanta was shown by Breit
and Wheeler to be

ah\?  clpaf? lpil  p1-p2]?
=2 — K — (@) A2.
Ty (m c) hwihwy 12[ & |p1|82} d€yy, ( 6)

where ()4 is the solid angler, which fulfills the total energy-conservation /€ =
0.

In the center of mass of the system, the momenta of the electron and the
positron are equal and opposite p; = —p2. In that frame the momenta of the
photons in the initial state are k; = —k,. As a consequence, the energies of
the electron and the positron are equal: €1 = £, = &, and so are the energies
of the photons: iw; = hiw, = €, = €. The total cross-section of the process is

then )
ah c
Oyy = 2 <me C) % /Klzdﬂl, (A27)
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where |p| = |p1] = |p2|, and & = (?|p|? + m2c*)!/2. Therefore, the necessary
kinematic condition in order for the process (A.0.2) taking place is that the
energy of the two colliding photons be larger than the threshold 2m,c?, i.e.,

&y > Mec?, (A.2.8)

From Eq. (A.2.7) the total cross-section in the center of mass of the system
is

| |
=5 (i) 0B 0B, v po P

(A.2.9)
where f is the reduced velocity of the electron or the positron. In modern

QED cross-sections (A.1.10) and (A.2.9) emerge form two tree-level Feynman
diagrams (see, for example, the textbook Itzykson and Zuber| (2006)).

For & > m,c?, the total effective cross-section is approximately propor-

tional to ) )
wh Mmec?
awgn(m—ec) ( (f: > : (A.2.10)

The cross-section in line (A.2.9) can be easily generalized to an arbitrary
reference frame, in which the two photons k; and k; cross with arbitrary rel-
ative directions. The Lorentz invariance of the scalar product of their four

momenta (kiky) gives wiwy = 8%. Since &, = & = mec?/1/1— j2, to obtain
the total cross-section in the arbitrary frame X, we must therefore make the
following substitution Berestetskii et al. (1971)

p— \/1 —mact/ (wywy), (A.2.11)

in Eq. (A.2.9).

A.3. Klein paradox and Sauter work

Every relativistic wave equation of a free particle of mass m,, momentum p
and energy &, admits “positive energy” and “negative energy” solutions. In
Minkowski space such a solution is symmetric with respect to the zero energy
and the wave-function given by

P (x, 1) ~ e (kx—Ext) (A3.1)

describes a relativistic particle, whose energy, mass and momentum satisfy,

&3 = m2c* + lpl% & = 44/m2ct + c2|pl2. (A.3.2)
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A.3. Klein paradox and Sauter work

This gives rise to the familiar positive and negative energy spectrum (€4.)
of positive and negative energy states ¥ (x, t) of the relativistic particle, as
represented in Fig. In such a situation, in absence of external field, all
the quantum states are stable; that is, there is no possibility of “positive”
(“negative”) energy states decaying into “negative” (“positive”) energy states
since there is an energy gap 2m,c? separating the negative energy spectrum
from the positive energy spectrum. This stability condition was implemented
by Dirac by considering all negative energy states as fully filled.

A scalar field described by the wave function ¢ (x) satisfies the Klein-Gordon
equation Schrodinger (1926); [Fock! (1926)); Klein| (1926); Gordon (1926))

{ [ihay + SA” (z)} g m?cz} $(x) = 0. (A.3.3)

If there is only an electric field E(z) in the z-direction and varying only as a
function of z, we can choose a vector potential with the only nonzero compo-
nent Ag(z) and potential energy

z
V(z) = —eAy(z) = e/ dz'E(Z). (A.3.4)
For an electron of charge —e by assuming

4)(36) — e—iEt/heipJ_xJ_/hgb(z)’

with a fixed transverse momentum p, in the x,y direction and an energy
eigenvalue &, and Eq. (A.3.3) becomes simply

2
—hZ% +pA +mic— C1_2 & — V(z)ﬂ ¢(z) = 0. (A.3.5)

Klein studied a relativistic particle moving in an external step-function po-
tential V(z) = Vp©O(z) and in this case Eq. (A.3.5) is modified as

(& = Vo2 = m2c* + Plp|*  &x = Vo= /m2ct + 2|pl2, (A.3.6)

where |p|? = |p:|? + p3 . He solved his relativistic wave equation Schrédinger
(1926)); [Fock! (1926)); Klein| (1926); Gordon| (1926) by considering an incident
free relativistic wave of positive energy states scattered by the constant po-
tential V), leading to reflected and transmitted waves. He found a paradox
that in the case Vo > & + m,c?, the reflected flux is larger than the incident
flux jref > jinc, although the total flux is conserved, i.e. jinc = jref + jtran- This
is known as the Klein paradox Klein| (1929); Sauter (1931b)). This implies that
negative energy states have contributions to both the transmitted flux jiran
and reflected flux jpes.
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positive continuum € > m,c?
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Mec?

\4
N

Figure A.1.: The mass-gap 2m,c? that separates the positive continuum spec-

trum € from the negative continuum spectrum € _.
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A.3. Klein paradox and Sauter work

Sauter studied this problem by considering a potential varying in the z di-
rection corresponding to a constant electric field E in the 2 = z/|z| direction
and considering spin 1/2 particles fulfilling the Dirac equation. In this case
the energy € is shifted by the amount V(z) = —eEz. He further assumed
an electric field E uniform between z; and z; and null outside. Fig.
represents the corresponding sketch of allowed states. The key point now,
which is the essence of the Klein paradox Klein|(1929); Sauter|(1931b), is that a
level crossing between the positive and negative energy levels occurs. Under
this condition the above mentioned stability of the “positive energy” states
is lost for sufficiently strong electric fields. The same is true for “negative
energy” states. Some “positive energy” and “negative energy” states have
the same energy-levels. Thus, these “negative energy” waves incident from
the left will be both reflected back by the electric field and partly transmit-
ted to the right as a “’positive energy” wave, as shown in Fig. Damour
(1975). This transmission represents a quantum tunneling of the wave func-
tion through the electric potential barrier, where classical states are forbidden.
This quantum tunneling phenomenon was pioneered by George Gamow by
the analysis of alpha particle emission or capture in the nuclear potential bar-
rier (Gamow-wall) Gamow| (1931). In the latter case however the tunneling
occurred between two states of positive energy while in the Klein paradox
and Sauter computation the tunneling occurs for the first time between the
positive and negative energy states giving rise to the totally new concept of
the creation of particle-antiparticle pairs in the positive energy state as we are
going to show.

Sauter first solved the relativistic Dirac equation in the presence of the con-
stant electric field by the ansatz,

Pa(x, 1) = eh btk (z) (A3.7)

where spinor function jxs,(z) obeys the following equation (o, 7y; are Dirac
matrices)

d . .
hc%E +70(V(z) —&x) + (mec2 +icyapy +icyipx) | Xss(z) =0, (A3.8)

and the solution xs,(z) can be expressed in terms of hypergeometric func-
tions [Sauter| (1931a). Using this wave-function ¢s(x, t) (A.3.7) and the flux
icpl y31ps, Sauter computed the transmitted flux of positive energy states, the
incident and reflected fluxes of negative energy states, as well as exponential
decaying flux of classically forbidden states, as indicated in Fig. Using
the regular matching conditions of the wave functions and fluxes at bound-
aries of the potential, Sauter found that the transmission coefficient |T|? of
the wave through the electric potential barrier from the negative energy state
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& // L s idids
'POSITIVE/STATES
p+ eV
» CLASSICALLY /
-#‘cv

“ d’\ v TANSMITTED /
INCIDENT 1 M # /

R F 3t
RefLEctes ED STATES

////)“/E%'/“/"/S}iﬁ 0

Figure A.2.: In presence of a strong enough electric field the boundaries of
the classically allowed states (“positive” or “negative”) can be so tilted that
a “negative” is at the same level as a “positive” (level crossing). Therefore
a “negative” wave-packet from the left will be partially transmitted, after an
exponential damping due to the tunneling through the classically forbidden
states, as s “positive” wave-packet outgoing to the right. This figure is repro-
duced from Fig. Il in Ref. Damour (1975), and yt = m.c?,eV = V(z),w = €.
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A.3. Klein paradox and Sauter work

to positive energy states:

|transmission flux| mzcd

T|* = ~ e THE A3.
7] lincident flux| ¢ (A.3.9)

This is the probability of negative energy states decaying to positive energy
states, caused by an external electric field. The method that Sauter adopted
to calculate the transmission coefficient |T|? is indeed the same as the one
Gamow used to calculate quantum tunneling of the wave function through
nuclear potential barrier, leading to the a-particle emission Gamow|(1931).

The simplest way to calculate the transmission coefficient |T|? is
the JWKB approximation. The electric potential V(z) is not a constant. The
corresponding solution of the Dirac equation is not straightforward, however
it can be found using the quasi-classical, JWKB (Jeffreys-Wentzel-Kramers-
Brillouin) approximation. Particle’s energy &, momentum p and mass 1,
satisfy,

(6L —V(2)]? =m2ct + Plp|s €+ = V(z) £ /m2ct +c2|pl2, (A.3.10)

where the momentum p,(z) is spatially dependent. The momentum p, >
0 for both negative and positive energy states and the wave functions ex-
hibit usual oscillatory behavior of propagating wave in the 2-direction, i.e.
exp %pzz. Inside the electric potential barrier where are the classically forbid-
den states, the momentum p? given by Eq. becomes negative, and
p- becomes imaginary, which means that the wave-function will have an ex-
ponential behavior, i.e. exp —% [ |pz|dz, instead of the oscillatory behavior
which characterize the positive and negative energy states. Therefore the
transmission coefficient |T|? of the wave through the one-dimensional poten-
tial barrier is given by

2 2 (=
T xexp—y | |pz|dz, (A.3.11)

where z_ and z, are roots of the equation p,(z) = 0 defining the turn-
ing points of the classical trajectory, separating positive and negative energy
states.
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A.4. A semi-classical description of pair production
in quantum mechanics

A.4.1. An external constant electric field

The phenomenon of pair production can be understood as a quantum-mechanical
tunneling process of relativistic particles. The external electric field modifies

the positive and negative energy-spectrum of the free Hamiltonian. Let the
field vector E point in the 2-direction. The electric potential is Ay = —|E|z
where —¢ < z < +/ and the length ¢ > h/(m.c), then the positive and
negative continuum energy-spectra are

&y =|eElz £ \/(cpz)2 + c2p? + (mec?)?, (A4.1)

where p, is the momentum in 2z-direction, p, transverse momenta. The
energy-spectra &4 are sketched in Fig. One finds that crossing
energy-levels £ between two energy-spectra €_ and € appear, then
quantum tunneling process occurs. The probability amplitude for this pro-
cess can be estimated by a semi-classical calculation using JWKB method (see
e.g. Landau and Lifshitz| (1981a); Kleinert et al.| (2008)):

2 rz+(&4)
Prwks(lpL]) = exp {_ﬁ/ pzdz} , (A.4.2)
z_(E-)
where
pz = \/pi + m2c? — (& — |eE|z)?/c? (A.4.3)

is the classical momentum. The limits of integration z+(€4) are the turning
points of the classical orbit in imaginary time. They are determined by setting

p> = 0in Eq. (A.4.1). The solutions are

_c [p? + m3c?] V2 el

Z:I:(g:t) - ‘EE’ ’ (A44)
At the turning points of the classical orbit, the crossing energy-level
E=Er=¢C, (A4.5)
as shown by dashed line in Fig. The tunneling length is
21, c> h (E.
—z_(E-) = =2 — Ad4.
Z+(8+) Z (8 ) |€E| 1yc (E ) ’ ( 6)
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which is independent of crossing energy-levels €. The critical electric field
E. in Eq. is the field at which the tunneling length is twice the
Compton length Ac = i/mec.

Changing the variable of integration from z to y(z),

& — |eE|z
y(z) = , (A47)
c\/p% + m2c?
we obtain
y—(z-) = -1, y+(z4) = +1 (A.4.8)
and the JWKB probability amplitude (A.4.2) becomes
3 2E, p7 /+1 .
Pwks(lpL]) = exp [ E <1 toaa ) |, oy
_ tE, pi
= exp [— - (1 +oge ] (A.4.9)

Summing over initial and final spin states and integrating over the transverse
phase-space [dz,dp, /(27th)? yields the final result

~ —rtem2c/|eE|h [ 4°P1_,—mcp? /|eElh _
:PIWKB ~ DV e TtcMeC /|eE| f (27:;328 mep? /|eEl —

= DV, {4 e mE/E, (A.4.10)
where the transverse surface V| = [dz,. For the constant electric field E
in —¢ < z < +/, crossing energy-levels £ vary from the maximal energy
potential V(—¢) = +eE{ to the minimal energy potential V(+¢) = —eE.
This probability Eq. (A.4.10) is independent of crossing energy-levels €. We
integrate Eq. (A.4.10) over crossing energy-levels [ d€/m.c? and divide it by
the time interval At ~ 1/m,c? during which quantum tunneling occurs, and
find the transition rate per unit time and volume

Tjwks . &E? o TEc/E
vV T 212k ’

(A4.11)

where D; = 2 for a spin-1/2 particle and Ds = 1 for spin-0, V is the volume.
The JWKB result contains the Sauter exponential e~ Ee/E Sauter| (1931a) and
reproduces as well the prefactor of Heisenberg and Euler Heisenberg and
Euler| (1936).

Let us specify a quantitative condition for the validity of the above “semi-
classical” JWKB approximation, which is in fact leading term of the expan-
sion of wave function in powers of 7. In order to have the next-leading term
be much smaller than the leading term, the de Broglie wavelength A(z) =
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\</ &, = +/m2c + pl — |eElz

E_ = —/m2c* + 2|p|? — |eE|z

Figure A.3.: Energy-spectra €4 with an external electric field E along 2-
direction (for —¢ < z < £ and ¢ > 1). Crossing energy-levels appear, in-
dicated by a dashed line between two continuum energy-spectra €_ and €.
The turning points z1 (€) for the crossing energy-levels € of Eq. are
marked. This implies that virtual electrons at these crossing energy-levels
in the negative energy-spectrum can quantum-mechanically tunnel toward
infinity [z > z4(€)] as real electrons; empty states left over in the negative
energy-spectrum represent real positrons. This is how quantum tunneling
produces pairs of electrons and positrons.
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27th/ p2(z) of wave-function of the tunneling particle must have only small
spatial variations Landau and Lifshitz (1981a):

dp:(z)
dz

h
p2(2)
with p,(z) of Eq. (A.4.3). The electric potential Ay = —e|z3Z must satisfy

1 |dA(z)

27t | dz

< 1. (A4.12)

h

N |dAg
2p3

dz

E
~— < 1. (A.4.13)
E.

so that the result (A.4.11) is valid only for E < E..

A.4.2. An additional constant magnetic field

The result can be generalized to include a uniform magnetic field B.
The calculation is simplest by going into a Lorentz frame in which B and E are
parallel to each other, which is always possible. This frame will be referred
to a center-of-fields frame, and the associated fields will be denoted by Bcr and
Ecr. Suppose the initial B and E are not parallel, then we perform a Lorentz
transformation with a velocity determined by Landau and Lifshitz| (1975)

v/c ExB
_ ) Ad14
T5 (w702~ TER+ [BP A
in the direction ¥ = v/|v| as follows

. VX(Ex¥)+(v/c)xB

Ecr = (E-9)v+ ) (A.4.15)
[1=([v]/c)?]!/2

Bop = (B-¢)+ X (Bx¥—(v/c) xE (A.4.16)

The fields Bcr and Ecp are now parallel. As a consequence, the wave function
factorizes into a Landau state and into a spinor function, this last one first
calculated by Sauter (see Egs. (A.3.7),(A.3.8)). The energy spectrum in the
JWKB approximation is still given by Eq. (A.4.1), but the squared transverse
momenta p? is quantized due to the presence of the magnetic field: they
are replaced by the Landau energy levels whose transverse energies have the
discrete spectrum

2.2 2 Pi 2 hwy, 1
cp’l = 2mec” X T = 2mec X g—= (nt5+0 ), n=0,12,-, (A417)

where ¢ = 24+ a/m + ... is the anomalous magnetic moment of the elec-
tron Schwinger| (1948a); Feynman| (1949a); Lautrup et al.| (1972); Cvitanovi¢

451



A. The three fundamental contributions to the electron-positron pair
creation and annihilation and the concept of critical electric field

and Kinoshita| (1974); Bailey et al.| (1977), w; = e|Bcg|/m.c the Landau fre-
quency, 0 = £1/2 for a spin-1/2 particle (¢ = 0 for a spin-0 particle) are
eigenvalues of spinor operator ¢, in the Ez)-direction, i.e.,, in the common
direction of Ecp and B¢y in the selected frame. The quantum number 7 char-
acterizing the Landau levels is associated with harmonic oscillations in the
plane orthogonal to Ecr and Bcp. Apart from the replacement (A.4.17), the
JWKB calculation remains the same as in the case of constant electric field
(A41T). We must only replace the integration over the transverse phase-
space [ dxdydp, /(27h)? in Eq. (A.4.10) by the sum over all Landau levels

with the degeneracy V| e|Bcg|/ (27thc) Landau and Lifshitz| (1981a):

V e|B 2chle||B 1/2+ 06 232
Le| CF|ZeXp {_n chle||Bcg|(n +1/2 + ) + (mec?)

A4.18
27the e|Ecg|ch ( )

no

The results are

VJ_e‘BCF’ n’BCF‘ 7'L'EC . .
S he coth o] exp ,  spin—1/2 particle (A.4.19)

and

VieBer| . . 1 (7[Bcr| nE , :
Lo sinh Ecr| exp Ecr] )’ spin — 0 particle. (A.4.20)

We find the pair-production rate per unit time and volume

r Bcr||E B E
JWKB #[Ber| CF’co’ch(ﬂ’ CF|>exp< T C), spin — 1/2 particle

|4 mth |Eck| ~ [Ec|
(A.4.21)
and
FIWKB lX|BCF||ECF| . -1 <7‘L’|BCF|> ( 7'CEC > . .
~ sinh ——— Jexp| ——=— ], spin— 0 particle.
|4 27th |Eck| P\ B P P

(A.4.22)

We can now go back to an arbitrary Lorentz frame by expressing the result
in terms of the two Lorentz invariants that can be formed from the B and E
fields: the scalar S and the pseudoscalar P

S =

1 i
FuF" = S(E*—B%); P= F,F" =E-B, (A4.23)

s |

where " = e"AF,  is the dual field tensor. We define the invariants € and
B as the solutions of the invariant equations

2 - B2=E>-B>=2S5, ¢f=EB=P, (A.4.24)
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and obtain

e——\/\/ )2+ 4(E-B)? + (E? — B2)=\/ (52 + P?)1/2 (8,4.25)

\/_\/\/ —B2)2 + 4(E-B)? — (E2 — B2)=y/(S? + P2)1/2 (8.4.26)

In the special frame with parallel Bcg and Ecp, we see that = |Bcg| and
¢ = |Ecgl, so that we can replace (A.4.21) and (A.4.22) directly by the invariant

expressions
Tiwks  ape np nE : :
v = C coth ( . ) &P - | spin 1/2 particle  (A.4.27)
and
r
% ~ % sinh ™! <%ﬁ) exp (— ﬂfc) , spin — 0 particle, (A.4.28)

which are pair-production rates in arbitrary constant electromagnetic fields.
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B. Nonlinear electrodynamics and
rate of pair creation

B.1. Hans Euler and light-light scattering

Hans Euler in his celebrated diplom thesis Euler| (1936)) discussed at the Uni-
versity of Leipzig called attention on the reaction

M2 —eteT — Y7

He recalled that Halpern Halpern| (1933) and Debye Debye (1934) first rec-
ognized that Dirac theory of electrons and the Dirac process and the
Breit-Wheeler had fundamental implication for the light on light scat-
tering and consequently implied a modifications of the Maxwell equations.

If the energy of the photons is high enough then a real electron-positron
pair is created, following Breit and Wheeler Breit and Wheeler (1934). Again,
if electron-positron pair do exist, two photons are created following Dirac
(1930b). In the case that the sum of energies of the two photons are smaller
than the threshold 2m.c? then the reaction (above) still occurs through a vir-
tual pair of electron and positron.

Under this condition the light-light scattering implies deviation from su-
perposition principle, and therefore the linear theory of electromagnetism
has to be substituted by a nonlinear one. Maxwell equations acquire non-
linear corrections due to the Dirac theory of the electron.

Euler first attempted to describe this nonlinearity by an effective Lagrangian
representing the interaction term. He showed that the interaction term had
to contain the forth power of the field strengths and its derivatives

3F OF
£, = const / {PPFP + const'S S FF + 1 , (B.1.1)

F being symbolically the electromagnetic field strength. He also estimated
that the constants may be determined from dimensional considerations. Since
the interaction Uj,; has the dimension of energy density and contains electric
charge in the forth power, the constants up to numerical factors are

he 1 ho\?
const = —2C—2, const’ = ( ) , (B.1.2)
e“ Ej MeC
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where Ej = ¢ (me—zcz> , namely “the field strength at the edge of the elec-

tron”.

From these general qualitative considerations Euler made an important
further step taking into account that the Lagrangian describing such
a process had necessarily be built from invariants constructed from the field
strengths, such as E? — B? and E - B following a precise procedure indicated
by Max Born [Pauli| (1981). Contrary to the usual Maxwell Lagrangian which
is only a function of F3, Euler first recognized that virtual electron-positron
loops are represented by higher powers in the field strength corrections to
the linear action of electromagnetism and written down the Lagrangian with
second order corrections, expression

E2—-B%2 11 2
— —— |—ar (E2—=B2) —br(E-B)? B.1.
B (e ow) w01
where
ap = —1/(3607%), b = —7/(3607%). (B.1.4)

The crucial result of Euler has been to determine the values of the coefficients
using time dependent perturbation technique, e.g. [Landau and Lif-
shitz/ (1981a) in Dirac theory.

Euler computed only the lowest order corrections in a to Maxwell equa-
tions, namely “the 1/137 fraction of the field strength at the edge of the elec-
tron”. This perturbation method did not allow calculation of the tunneling
rate for electron-positron pair creation in strong electromagnetic field which
became the topic of the further work with Heisenberg Heisenberg and Euler
(1936).

B.2. Born’s nonlinear electromagnetism

A nonlinear theory of electrodynamics was independently proposed and de-
veloped by Max Born Born (1933),Born| (1934) and later by Born and Infeld
Born and Infeld| (1934). The main motivation in Born’s approach was the
avoidance of infinities in an elementary particle description. Among the clas-
sical discussions on the fundamental interactions this topic had attracted at-
tention of a large number of scientists. It was clear in fact from the consid-
erations of J.J. Thomson, Abraham Lorentz that a point-like electron needed
to have necessarily an infinite mass. The existence of a finite radius was at-
tempted by Poincare by introduction of non-electromagnetic stresses. Also
among the attempts we have to recall the theory of Mie Mie| (1912a,b} 1913);
Born (1914) modifying the Maxwell theory by nonlinear terms. This theory
however had serious difficulty because solutions of Mie field equations de-
pend on the absolute value of the potentials.
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Max Born developed his theory in collaboration with Infeld. This alterna-
tive to the Maxwell theory is today called the Born-Infeld theory which still
finds interest in the framework of subnuclear physics. The coauthorship of
Infeld is felt by the general premise of the article in distinguishing the unitar-
ian standpoint versus the dualistic standpoint in the description of particles
and fields. “In the dualistic standpoint the particles are the sources of the
tield, are acted own by the field but are not a part of the field. Their charac-
teristic properties are inertia, measured by specific constant, the mass” Born
and Infeld|(1934). The unitarian theory developed by Thomson, Lorentz and
Mie tends to describe the particle as a point-like singularity but with finite
mass-energy density fulfilling uniquely an appropriate nonlinear field equa-
tions. It is interesting that this approach was later developed in the classical
book by Einstein and Infeld Einstein and Infeld (1967) as well as in the classi-
cal paper by Einstein, Infeld and Hoffmann Einstein et al.|(1938) on equations
of motion in General Relativity.

In the Born-Infeld approach the emphasis is directed to a formalism en-
compassing General Relativity. But for simplicity the field equations are
solved within the realm only of the electromagnetic field. A basic tensor
awg = Qup t fup is introduced. Its symmetric part g, is identified with a
metric component and the antisymmetric part f,g with the electromagnetic
field. Formally therefore both the electromagnetic and gravitational fields
are present although the authors explicitly avoided to insert the part of the
Lagrangian describing the gravitational interaction and focused uniquely on
the following non-linear lagrangian

L=+1+25—P2—1. (B.2.1)

The necessity to have the quadratic form of the Gp term is due to obtain a
lagrangian invariant under reflections as pointed out by W. Pauli in his clas-
sical book Pauli| (1981). For small field strengths lagrangian has the
same form as obtained by Euler.

From the non-linear lagrangian (B.2.1) Born and Infeld calculated the fields
D and H through a tensor, Pjy = D' and P;; = —elkHk, where

_ (SLBorn o F]/H/ - Pﬁ]ﬂ/
Pa = g = —— (B.2.2)

and introduced therefore an effective electric permittivity and magnetic per-
meability which are functions of S and P. It is very interesting that Born and
Infeld managed to obtain a solution for electrostatic field of a point particle
(P = 0) in which the radial component D, = ¢/r? becomes infinite as r — 0
but the radial component of E field is perfectly finite and is given by the ex-
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pression

E, — € (B.2.3)

where r( is the “radius” of the electron.
Most important the integral of the electromagnetic energy is finite and
given by

2
/ HpormdV = / (PuF" — Lpomm)dV = 1.2361r£ ) (B.2.4)
0

Equating this energy to m,c? they obtain ro = 1.2361¢?/ (m,.c?).

The attempt therefore is to have a theoretical framework explaining the
mass of the electron solely by a modified nonlinear electromagnetic field the-
ory. This approach has not been followed by the current theories in particle
physics where the dualistic approach is today adopted by which the particles
are described by half-integer spin fields and field by integer-spin fields.

The initial goal to develop a fully covariant theory of electrodynamics within
General Relativity although not developed by Born himself was not aban-
doned. Hoffmann found an analytic solution Hotfmann|(1935) to the coupled
system of the Einstein-Born-Infeld equations.

B.3. The Euler-Heisenberg lagrangian

The two different approaches Born and Infeld and of Euler present strong
analogies and substantial differences. The attempt of Born and Infeld was
to obtain at once a new nonlinear Lagrangian for electromagnetic field re-
placing the Maxwell Lagrangian in order to avoid the appearance of infinite
self-energy for a classical point-like electron.

The attempt of Euler Euler and Kockel (1935) was more conservative, to
obtain the first order nonlinear perturbation corrections to the Maxwell La-
grangian on the ground of the Dirac theory of the electron.

Born and Infeld in addition introduced an effective dielectric constant and
an effective magnetic permeability of the vacuum out of their nonlinear La-
grangian (B.2.T). This approach was adopted as well in the classical work of
Heisenberg and Euler Heisenberg and Euler| (1936). They introduced an ef-
fective Lagrangian on the ground of the Dirac theory of the electron and ex-
pressed the result in integral form duly taking away infinities, see Sec. [B.3.1]
This integral was explicitly performed in the weak field limit and the special
attention was given to the real part, see Sec. and the imaginary part, see
Sec.

A successive work of Weisskopf Weisskopf| (1936) derived the same equa-
tions of Heisenberg and Euler for the real part of the dielectric constant and
magnetic permeability by using instead of the spin 1/2 particle of the Dirac
equation the scalar relativistic wave equation of Klein and Gordon. The re-
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sults differ from the one of spin 1/2 particle only by a factor 2 due to the Bose
statistics, see Sec. The technique used by Weisskopf refers to the case
of magnetic field of arbitrary strengths and describes the electric field pertur-
batively, see Sec. As we will see in the following we have solved the
Heisenberg and Euler integral in the case of arbitrariy large both electric and

magnetic fields, see Sec.

B.3.1. Real part of the effective lagrangian

We now recall how Heisenberg and Euler adopted the crucial idea of Max
Born to describe the nonlinear Lagrangian by the introduction of an effective
dielectric constant and magnetic permeability Heisenberg and Euler| (1936).
They further extended this idea by adopting the most general case of a di-
electric constant containing real and imaginary part. Such an approach is
generally followed in the description of dissipative media. The crucial point
was to relate electron-positron pair creation process to imaginary part of the
Lagrangian.

Let £ to be the Lagrangian density of electromagnetic fields E, B, a Legen-
dre transformation produces the Hamiltonian density:

H=Eigp — L (B.3.1)

In Maxwell’s theory, the two densities are given by

! (E2—-B?), Hy= i(E2 + B?). (B.3.2)

Ly = —
M 871 81

To quantitatively describe non-linear electromagnetic properties of the vac-
uum based on the Dirac theory, Heisenberg and Euler introduced an effective
Lagrangian L of the vacuum state and an associated Hamiltonian density

Lot = Ly + AL, Hege = Hpyp + AT (B.3.3)

Here Hq¢ and Leg are complex functions of E and B. In Maxwell’s theory,
AL = 0in the vacuum, so that D = E and H = B.
Heisenberg and Euler derived the induced fields D, H as the derivatives

OE; ’ "7 $B;

_ et Ok

D; = . (B.3.4)

Consequently, the vacuum behaves as a dielectric and permeable medium
Heisenberg and Euler| (1936); Weisskopf (1936) in which,

D; =) exEx, Hi=)_ B (B.3.5)
k k
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where €, and yj; are complex and field-dependent dielectric and permeabil-
ity tensors of the vacuum.

The discussions on complex dielectric and permeability tensors (€ and px)
can be found for example in Ref. Landau and Lifshitz (1960). The effective
Lagrangian and Hamiltonian densities in such a medium are given by

1
Logf =
eff 8

1
—(E-D—B-H = —(E-D+B-H). B.3.6
7T( ) Hegt 871'( + ) ( )

In this medium, the conservation of electromagnetic energy has the form

oD oH
~divS=E-—-+B-=-, S=cExB B.3.7
divS Eat+ at,Sc><, (B.3.7)
where S is the Poynting vector describing the density of electromagnetic en-

ergy flux. Consider complex and monochromatic electromagnetic field
E =E(w)exp—i(wt); B =B(w)exp—i(wt), (B.3.8)

of frequency w, and dielectric and permeability tensors are frequency-dependent,
ie., €j(w) and pj(w). Substituting these fields and tensors into the r.h.s. of
Eq. (B.3.7), one obtains the dissipation of electromagnetic energy per time
into the medium,

Qdis = %{Im [eix(w)] EiEf + Im [y (w)] BiBj } - (B.3.9)

This is nonzero if €;(w) and pj(w) contain an imaginary part. The dissi-
pation of electromagnetic energy is accompanied by heat production. In the
light of the third thermodynamical law of entropy increase, the energy lost
Qgis of electromagnetic fields in the medium is always positive, i.e., Qq4is > 0.
As a consequence, Im[ej(w)] > 0 and Im[pj(w)] > 0. The real parts of
€ix(w) and pjx(w) represent an electric and magnetic polarizability of the vac-
uum and leads, for example, to the refraction of light in an electromagnetic
field, or to the elastic scattering of light from light. The n;;(w) = /e (w)pxj(w)
is the reflection index of the medium. The field-dependence of €;; and p;; im-
plies non-linear electromagnetic properties of the vacuum as a dielectric and
permeable medium.

The effective Lagrangian density is a relativistically invariant func-
tion of the field strengths E and B. Since (E?> — B?) and E - B are relativistic
invariants, one can formally expand AL in powers of weak field strengths:

AL = K20(E? —B2)? + k0o (E - B)? + k30 (E2 — B2)® +- k12 (E2 — B?)(E-B)> +.. .,
(B.3.10)
where «;; are field-independent constants whose subscripts indicate the pow-

ers of (E2 — B2) and E - B, respectively. Note that the invariant E - B appears
p y pp
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only in even powers since it is odd under parity and electromagnetism is
parity invariant. The Lagrangian density (B.3.10) corresponds, via relation

(B.3.1), to

AH = x20(E? — B2)(3E* + B?) + x92(E - B)?
+1x3,0(E* — B?)?(5E* + B?) + 1 5(3E* — B?)(E- B)* +. (B.3.11)

To obtain H¢ in Dirac’s theory, one has to calculate
830 = Y {yp, [ (—iheV +eA) + Bomec?| g}, (B3.12)
k

where {9 (x) } are the wave functions of the occupied negative-energy states.
When performing the sum, one encounters infinities which were removed by
Dirac, Heisenberg, and Weisskopf|Weisskopf| (1936); Dirac (1934); Heisenberg
(1934); Weisskopt| (1934) by a suitable subtraction.

Heisenberg Heisenberg| (1934) expressed the Hamiltonian density in terms
of the density matrix p(x, x") = Y 5 (x)ipx(x") Dirac (1934). Heisenberg and
Euler Heisenberg and Euler (1936) calculated the coefficients kij. They did so
by solving the Dirac equation in the presence of parallel electric and magnetic
tields E and B in a specific direction,

Pe(xX) = Py sy = eh =€y, (Y)xs;(x), n=0,12,... (B.3.13)

where {u,(y)} are the Landau statedl| depending on the magnetic field and
Xs;(x) are the spinor functions calculated by Sauter Sauter| (1931a). Heisen-
berg and Euler used the Euler-Maclaurin formula to perform the sum over n,
and obtained for the additional Lagrangian in the integral representa-
tion

AL e? /°° _sds [isz EBCOS(S[EZ — B2 +2i(EB)]Y?) + c.c.
eff 167t2hc Jo s3 cos(s[E2 — B2+ 2i(EB)]1/2) — c.c.
2
(o ) EP), (B.3.14)
eh 3

where E, B are the dimensionless reduced fields in the unit of the critical field
EC/

- |E[ 5 _ B

E=-—, B=—. B.3.15

Expanding this expression in powers of a up to &> yields the following values

Landau determined the quantum states of a particle in an external magnetic field in 1930
Landau and Lifshitz|(1981a)); Berestetskii et al.| (1971).
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for the four constants:

8a 4

& 3
=_—E;? EEC ;Ko = K30,

= 5o (B.3.16)

K2,0 Koz = 7K20, K30 =
The above results will receive higher corrections in QED and are correct only
up to order a2. Up to this order, the field-dependent dielectric and perme-

ability tensors €;; and i (B.3.5) have the following real parts for weak fields

o _ _ _
Re(ej) = O+ B [2(E2 — B?)6y + 7BiBy] + 0(a?),
% _ _ _
Re(pir) = O+ 5~ [2(E% — B?)0y + 7E:E] + 0(a?).  (B3.17)

B.3.2. Weisskopf effective Lagrangian

Weisskopf |Weisskopf| (1936) adopted a simpler method. He considered first
the special case in which E = 0, B # 0 and used the Landau states to find AK
of Eq. (B.3.T1)), extracting from this x and k3. Then he added a weak elec-
tric field E # 0 to calculate perturbatively its contributions to AJ in the Born
approximation (see for example Landau and Lifshitz| (1981a)). This led again
to the coefficients (B.3.16),(B.3.17). In addition to the weak-field expansion of
real part of effective Lagrangian, Weisskopf also obtained the leading order
term considering very large field strengths E > 1 or B > 1,

2 2
_ e
— E2InE; Alug ~
22hc” eff = 12 2he

We shall address this same problem in Sec. in the framework of QED
Ruffini and Xue| (2006) and we will compare and contrast our exact expres-
sions with the one given by Weisskopf. The crucial point stressed by Weis-
skopf is that if one limits to the analysis of the real part of the dielectric
constant and magnetic permeability then the nonlinearity of effective electro-
magnetic Lagrangian represent only small corrections even for field strengths
which are much higher than the critical field strength E.. As we will show
however, the contribution of the imaginary part of the effective Lagrangian
diverges as pointed out by Heisenberg and Euler|Heisenberg and Euler|(1936).

AL g ~ B?In B, (B.3.18)

B.3.3. Imaginary part of the effective Lagrangian

Heisenberg and Euler Heisenberg and Euler| (1936) were the first to realize
that for E # 0 the powers series expansion (B.3.10) is not convergent, due
to singularities of the integrand in (B.3.14) ats = 7 /E,2n/E,.... They con-
cluded that the powers series expansion does not yield all corrections
to the Maxwell Lagrangian, calling for a more careful evaluation of the inte-
gral representation (B.3.14). Selecting an integration path that avoids these
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singularities, they found an imaginary term. Motivated by Sauter’s work
Sauter|(1931a) on Klein paradox Klein (1929); Sauter| (1931b), Heisenberg and
Euler estimated the size of the imaginary term in the effective Lagrangian as

Lo = — E2m,c? <@>3e_”/ E (B.3.19)
T h

and pointed out that it is associated with pair production by the electric field.

The exponential in this expression is exactly reproducing the Sauter result

(A3.9). However, for the first time the pre-exponential factor is determined.

This imaginary term in the effective Lagrangian is related to the imaginary

parts of field-dependent dielectric € and permeability u of the vacuum.

In 1950’s, Schwinger Schwinger| (1951, 1954a,b) derived the same formula
within the Quantum Electrodymanics (QED). In the following sections,
our discussions and computations will focus on the Schwinger formula, the
real and imaginary parts of effective Lagrangian for arbitrary values of elec-
tromagnetic field strength.

The consideration of Heisenberg and Euler were applied to a uniform elec-

tric field. The exponential factor e~ /Ein Egs. 1} and character-
izes the transmission coefficient of quantum tunneling, Heisenberg and Eu-
ler Heisenberg and Euler| (1936) introduced the critical field strength (B.3.15).
They compared it with the field strength E, of an electron at its classical ra-
dius, E, = e/r> where r, = ah/(mec). They found the field strength E, is 137
time larger than the critical field strength E, i.e. E, = a~1E.. At a critical ra-
dius r. = al/2h/ (mec) < 1, the field strength of the electron would be equal
to the critical field strength E.. There have been various attempts to reach the
critical field: in Secs. and we will examine the possibility of reaching
such value around the bare nucleus. In Sec.[F.5we will discuss the possibility
of reaching such a field in an astrophysical setting around a black hole.

In conclusion, if an electric field attempts to tear an electron out of the filled
state the gap energy must be gained over the distance of two electron radii.
The virtual particles give an electron a radius of the order of the Compton
wavelength Ac. Thus we expect a significant creation of electron-positron
pairs if the work done by the electric field E over twice the Compton wave
length 71 /m,c is larger than 21m,c?

2h
eE ( ) > 2mgc2.
MeC

This condition defines a critical electric field above which pair creation
becomes abundant. To have an idea how large this critical electric field is, we
compare it with the value of the electric field required to ionize a hydrogen
atom. There the above inequality holds for twice of the Bohr radius and the

463



B. Nonlinear electrodynamics and rate of pair creation

Rydberg energy

eElon ﬂ > a’m,c?
XMeC e

so that E, ~ Eicon/ a3 is about 10° times as large, a value that has so far not
been reached in a laboratory on Earth.
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in QED

C.1. Quantum Electrodynamics

Quantum Electro-Dynamics (QED), the quantum theory of electrons, positrons,
and photons, was established by by Tomonaga Tomonaga (1946)), Feynmann
Feynman (1948, 1949b,a), Schwinger |Schwinger| (1948b, (1949a,b) and Dyson
Dyson| (1949ab) and others in the 1940’s and 1950’s Schwinger (1958). For
decades, both theoretical computations and experimental tests have been de-
veloped to great perfection. It is now one of the fundamental pillars of the
theory of the microscopic world. Many excellent monographs have been
written Bogoliubov and Shirkov]|(1959); Bjorken and Drell (1998, (1965); |[Feyn-
man| (1998); [Feynman and Hibbs| (1965); Berestetskii et al.| (1971); Itzykson
and Zuber| (2006); Lee (1990); Schwinger (1951, |1954a,b} 1970, 1998)); Wein-
berg| (1995); Kleinert (1990), so the concepts of the theory and the techniques
of calculation are well explained. On the basis of this material, we review
some aspects and properties of the QED that are relevant to the subject of the
present review.

QED combines a relativistic extension of quantum mechanics with a quan-
tized electromagnetic field. The non relativistic system has a unique ground
state, which is the state with no particle, the vacuum state. The excited states
contain a fixed number of electrons and an arbitrary number of photons. As
electrons are allowed to become relativistic, their number becomes also arbi-
trary, and it is possible to create pairs of electrons and positrons.

In the modern functional integral description, the non relativistic system is
described by a given set of fluctuating particle orbits running forward in time.
If the theory is continued to an imaginary time, in which case one speaks of
a Euclidean formulation, the non relativistic system corresponds to a canonical
statistical ensemble of trajectories.

In the relativistic system, the orbits form worldlines in four-dimensional
spacetime which may run in any time direction, in particular they may run
backwards in time, in which case the backward parts of a line correspond
to positrons. The number of lines is arbitrary and the Euclidean formula-
tion corresponds to a grand-canonical ensemble. The most efficient way of
describing such an ensemble is by a single fluctuating field Kleinert| (1990).

The vacuum state contains no physical particles. It does, however, harbor
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zero-point oscillations of the electron and photon fields. In the world-line de-
scription, the vacuum is represented by a grand-canonical ensemble of inter-
acting closed world lines. These are called virtual particles. Thus the vacuum
contains the full complexity of a many-body problem so that one may right-
fully say that the vacuum is the world Streater and Wightman (2000). In the
Fourier decomposition of the fluctuating fields, virtual particles correspond
to Fourier components, or modes, in which the four-vectors of energy and
momentum k* = (k°, k) = (&,k) do not satisfy the mass-shell relation

k2 = (kO)Z . C2|k|2 — 82 i C2|k|2 — mgc4’ (C.l.l)

valid for real particles.

The only way to evaluate physical consequences from QED is based on the
smallness of the electromagnetic interaction. It is characterized by the dimen-
sionless fine structure constant a. All theoretical results derived from QED
are found in the form of series expansions in powers of x, which are expan-
sions around the non-interacting system. Unfortunately, all these expansions
are badly divergent (see e.g. Sec. 4.62 in Kleinert (2008)). The coefficients
grow factorially fast, i.e., faster than any exponential, leading to a zero ra-
dius of convergence. Fortunately, however, the coupling « is so small that
the series possess an apparent convergence up to order 1/a ~ 137, which
is much higher than will be calculable for a long time to come (see e.g. Sec.
4.62 in Kleinert (2008)). With this rather academic limitation, perturbation
expansions are well-defined.

In perturbation expansions, all physical processes are expressible in terms
of Feynman diagrams. These are direct pictures of the interacting world lines
of all particles. Among these lines, there are some which run to infinity. They
satisfy the mass shell relation (C.1.1) and describe real particles observable
in the laboratory. Those which remain inside a finite spacetime region are
virtual.

The presence of virtual particles in the perturbation expansions leads to
observable effects. Some of these have been measured and calculated with
great accuracy. The most famous examples are

1. the electrostatic polarizability of quantum fluctuations of the QED vac-
uum has been measured in the Lamb shift Lamb and Retherford (1947);
Triebwasser et al.|(1953).

2. the anomalous magnetic moment of the electron Schwinger (1948a);
Feynman (1949a); Lautrup et al. (1972); Cvitanovi¢ and Kinoshita|(1974);
Bailey et al.|(1977).

3. the dependence of the electric charge on the distance. It is observed by
measuring cross sections of electron-positron collisions, most recently
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in the L3-experiments at the Large Electron-Positron Collider (LEP) at CERN
L3C.

4. the Casimir effect caused by virtual photons, i.e., by the fluctuations
of the electromagnetic field in the QED vacuum (Casimir| (1948); Fierz
(1960). It causes an attractive force Sparnaay| (1958); Lamoreaux| (1997);
Mohideen and Roy|(1998) between two uncharged conducting plates in
the vacuum (see also Heye et al.|(2001); Harris et al. (2000); Chen et al.
(2004); Xue| (1989bla); Xue and Xian| (1986); Zheng and Xue (1993)).

There are, of course, many other discussions of the effects of virtual par-
ticles caused either by external boundary conditions or by external classi-
cal fields |Schwinger| (1992alb, [1993a)d,blc, (1994); Bordag (1999, 1996)); Milton
(2004/,2001); Xue| (2001, 2003albl, 2005).

An interesting aspect of virtual particles both theoretically and experimen-
tally is the possibility that they can become real by the effect of external fields.
In this case, real particles are excited out of the vacuum. In the previous
Sec.|A.3|and [B.3.1}, we have shown that this possibility was first pointed out
in the framework of quantum mechanics by Klein, Sauter, Euler and Heisen-
berg Klein| (1929); Sauter| (1931b,a); Heisenberg and Euler (1936) who studied
the behavior of the Dirac vacuum in a strong external electric field. After-
ward, Schwinger studied this process and derived the probability (Schwinger-
formula) in the field theory of Quantum Electrodynamics, which will be de-
scribed in this chapter. If the field is sufficiently strong, the energy of the
vacuum can be lowered by creating an electron-positron pair. This makes
the vacuum unstable. This is the Sauter-Euler-Heisenberg-Schwinger process for
electron-positron pair production. There are many reasons for the interest in
the phenomenon of pair-production in a strong electric field. The most com-
pelling one is that now both laboratory conditions and astrophysical events
may now exist for observing this process.

In the following chapters, in addition to reviewing the Schwinger-formula
and QED-effective Lagrangian in constant electromagnetic fields, we will
also derive the probability of pair production in an alternating field, and dis-
cuss theoretical studies of pair production in (i) electron beam-laser collisions
and (ii) Coulomb potential. In addition, the plasma oscillations of electron-
positron pairs in electric fields will be reviewed. The rest part of this chapter,
we shall use natural units 7 = c = 1.
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C.2. Basic processes in Quantum
Electro-Dynamics

The total Lagrangian describing the interacting system of photons, electrons,
and positrons reads Berestetskii et al.| (1982)

L=L)+L5C + Ling, (C.2.1)
where the free Lagrangians Lf;f and L] for electrons and photons are ex-

pressed in terms of quantized Dirac field ¢(x) and quantized electromagnetic
field A;(x) as follows:

L5 = P(x)(i7"0, — me)p(x), (C.2.2)
Ly = _}LFW(X)FW(JC) + gauge—fixing term. (C.2.3)

Here 7* are the 4 x 4 Dirac matrices, {(x) = ¢’ (x)7°, and Fy = 0,A, — 0y Ay
denotes the electromagnetic field tensor. Minimal coupling gives rise to the
interaction Lagrangian

Line = —¢f* () Au(x),  F(x) = P07 (x). (C.24)

After quantization, the photon field is expanded into plane waves as

Pk » N
) = [ s 1 [a M 0067 00+ D el e
A=1

(C.2.5)
where e;(}) are polarization vectors, and a(/\), aMT are annihilation and cre-
ation operators of photons. The quantized fermion field ¢ (x) has the expan-
sion

d3k m % —ikx o ikx
W”::/Eaﬁﬁgﬂmm%w“m%kk+ﬂwmw“w@wﬂ,

(C.2.6)

where the four-component spinors u(®) (k,s3), v(®)(k,s3) are positive- and
negative-energy solutions of the Dirac equation with momentum k and spin
component s3. The operators b(k,s3), b'(k,s3) annihilate and create elec-
trons, the operators d(k,s3) and d'(k,s;) do the same thing for positrons
Berestetskii et al.| (1982).

In the framework of QED the transition probability from an initial to a final
state for a given process is represented by the imaginary part of the unitary
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S-matrix squared
Pr; = |(f out|Im8|i,in)|*, (C.2.7)

where
Im 8 = (27)*6*(P; — P;) | My;

, (C.2.8)

My; is called matrix element and J-function stays for energy-momentum con-
servation in the process.

When initial state contains two particles with energies €; and €3, and final
state contain arbitrary number of particles having 3-momenta p/, the transi-
tion probability per unit time and unit volume is given by

dPr i 1 d3p!

_ 44D p. |2
dvar ~ 20O Pr =P My 46162121(27'5)3261'.

(C.2.9)

The Lorentz-invariant differential cross-section for a given process is then
obtained from (C.2.9) by dividing it on the flux density of initial particles

‘2 1 dap;

41yin [1

do = (27)*6" (Py — Py) [ My ~(2m)° 2¢
1 1

, (C.2.10)

where p; and p; are particles’ 4-momenta, 77 and m; are their masses respec-

tively, Ikin = \/(plpz)z — m%m%

It is useful to work with Mandelstam variables which are kinematic invari-
ants built from particles 4-momenta. Consider the process A + B — C + D.
Lorentz invariant variables can be constructed in the following way

s=(pa+ps) = (pc+pp),
t=(pa+pc)’ = (ps+pp), (C.2.11)
u=(ps+pc)’ = (pa+pp)*.

Since any incoming particle can be regarded as outgoing antiparticle, it gives
rise to the crossing symmetry property of the scattering amplitude, which
is best reflected in the Mandelstam variables. In fact, reactions A + B —
C+D,A+C — B+ Dor A+ D — C+ B where the bar denotes the
antiparticle are just different cross-channels of a single general reaction. The
meaning of the variables s, t, u changes, but the amplitude is the same.

The S-matrix is computed through the interaction operator as

S = Texp (i / Lintd4x) , (C2.12)

where T is the chronological operator. Perturbation theory is applied, since
the fine structure constant is small, while any additional interaction in colli-
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sion of particles contains the factor «.

A simple and elegant way of computation of the S-matrix and consequently
of the matrix element My; is due to Feynman, who discovered a graphical
way to represent each QED process, in momentum representation.

In what follows we consider briefly the calculation for the case of Compton
scattering process Berestetskii et al.|(1982), which is represented by two Feyn-
man diagrams. Conservation law for 4-momenta is p +k = p’ 4+ k" and invari-
ant Iy, = 1(s —m?)2. After the calculation of traces with gamma-matrices,
the final result, expressed in Mandelstam variables, is

2 2 2 2 2
12 A7, 2.4 m m m m
Myil” = 2'me [s—m2+u—m2+(s—m2+u—m2

_l(s_mz +“_m2)}, (C.2.13)

4\ u—m?> s—m2

s=(p+k?t=(p—p)?and u = (p— k)% Since the differential cross-
section is independent of the azimuth of p] relative to p;, it is obtained from

(C.2.13) as
1

do = —
7T an

dt
|Mﬁ|217. (C.2.14)
In the laboratory frame, where s — m? = 2mw, u — m? = —2mw’ and elec-
tron is at rest before the collision with photon, the differential cross-section
of Compton scattering is thus given by the Klein-Nishina formula Klein and

Nishinal (1929)
2\ 2 N\ 2 /
do=2(C) () (Y19 _gn2e), (C.2.15)
2 \m w w  w

where w and ' are frequencies of photon before and after the collision, ¢ is
the angle at which the photon is scattered.

C.3. The Dirac and the Breit-Wheeler processes in
QED

We turn now the the formulas obtained within framework of quantum me-
chanics by Dirac Dirac (1930b) and Breit and Wheeler Breit and Wheeler
(1934) within QED. The crossing-symmetry allows to readily write the matrix
element for the pair production and pair annihilation processes
with the energy-momentum conservation written as p; + p— = ky +kp. It is
in fact given by the same formula (C.2.13) with the substitution p — p_,
P\ — p+, k — ki, k' — ky, but with different meaning of the kinematic in-

470



C.3. The Dirac and the Breit-Wheeler processes in QED

variants s = (p_ —k1)%,t = (p— + p+)% u = (p— — k2)?>. Matrix elements
for Dirac and Breit-Wheeler processes are the same. The differential cross-
section of the Dirac process is obtained from with the exchange s « t
and the invariant I;, = }Lt(t — 4m?), which leads to (A.1.9). For the case of

the Breit-Wheeler process with the invariant Ij;, = }Ltz, the result is reduced

to (A.2.9).

Since the Dirac pair-annihilation process is the inverse of Breit-
Wheeler pair-production (A.0.2), thus it is useful to compare the cross-section
of the two processes. We note that the squared transition amplitude |M fi|2
must be the same for two processes, due to the CPT invariance. The cross-
sections could be different only by kinematics and statistical factors. Let us
consider the pair annihilation process in the center of mass system where
& = &+ & = & + &} is the total energy, the initial and final momenta are
equal and opposite, py = —p2 = p and p] = —p5 = p’. The differential
cross-section is given by (C.2.14). For the Breit and Wheeler process of
two colliding photons with four-momenta k; and k, the scalar I, = (k1k2)?.
For the Dirac process of colliding electron and positron with four-
momenta p1 and py, the scalar I, = (p1p2)? — mj. As results, one has

=B, (C3.1)

doy, 12, 2kk)—4m? & —2m? (|p|\?
dU’e-s-e— N I,ZW N Z(klkz) B €2 N I
where momenta and energies are related by

(Pl + Pz)z = (kl + kz)z = Z(klkz) =282,

Integrating Eq. over all scattering angles yields the total cross-section.
Whereas the previous ¢, required division by a Bose factor 2 for the two
identical photons in the final state, the cross-section o,+,- has no such factor
since the final electron and positron are not identical. Hence we obtain

1
0—€+€7 - Z_ﬁzor')ﬂ)/. (C.3.2)

By re-expressing the kinematic quantities in the laboratory frame, one obtains
the Dirac cross-section (A.1.9).

As shown in Eq. in the center of mass of the system, the two cross-
sections 0,+,- and 0, of the above described phenomena differ only in the
kinematics and statistical factor 1/(232), which is related to the fact that
the resulting particles are massless or massive. The process of electron and
positron production by the collision of two photons has a kinematic energy-
threshold, while the process of electron and positron annihilation to two pho-
tons has not such kinematic energy-threshold. In the limit of high energy
neglecting the masses of the electron and positron, B — 1, the difference be-
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tween two cross-sections 0,+,- and ¢, is only the statistical factor 1/2.

The total cross-sections of Breit-Wheeler’s and Dirac’s process are
of the same order of magnitude ~ 107?’cm? and have the same energy-
dependence 1/&? above the energy threshold. The energy threshold (211,c?)
have made until now technically impossible to observe the pair production
by the Breit-Wheeler process in laboratory experiments at the intersection of
two beams of X-rays. Another reason is of course the smallness of the total
cross-section (A.2.10) (07, < 1072°cm?) and the experimental limitations on
the intensities I; (A.2.3)) of the light beams. We shall see however, that this
Breit-Wheeler process occurs routinely in the Dyadosphere of a black hole

and in the entire physics of GRBs. In this sense GRBs are the first direct ob-
servational test of the validity of the Breit-Wheeler process.

C.4. QED description of pair production

We turn now to a Sauter-Heisenberg-Euler process in QED. An external elec-
tromagnetic field is incorporated by adding to the quantum field A, in (C.2.4)
an unquantized external vector potential A$, so that the total interaction be-
comes

Lint + L5 = —ep(x) v p(x) [Ay(x) + A;(x)} : (C4.1)

Instead of an operator formulation, one can derive the quantum field theory
from a functional integral formulation, in which the quantum mechanical
partition function is described by

7]A¢] = / [DYDFDA,] exp [i / (L + Lfm)] , (C.42)

to be integrated over all fluctuating electromagnetic and Grassmannian elec-
tron fields. The normalized quantity Z[A€| gives the amplitude for the vac-
uum to vacuum transition in the presence of the external classical electro-

magnetic field:
. Z[A®]
t,0/0,in) = ——, C4.3
where |0, in) is the initial vacuum state at the time t = _ — —c0, and (out, 0|
is the final vacuum state at the time t = t; — 4-o00. By selecting only the
one-particle irreducible Feynman diagrams in the perturbation expansion of
Z[A*®] one obtains the effective action as a functional of A¢:

AAc[A®] = —iln(out, 00, in). (C4.4)

In general, there exists no local effective Lagrangian density AL.¢ whose
spacetime integral is AA.g[A¢]|. An infinite set of derivatives would be needed,
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i.e.,, ALqgs would have the arguments A¢(x),9,A%(x),9,0,A%(x), ..., contain-
ing gradients of arbitrary high order. With presently available methods it
is possible to calculate a few terms in such a gradient expansion, or a semi
classical approximation a [2 JWKB for an arbitrary but smooth spacetime de-
pendence (see Sec. 3.21ff in Ref. Kleinert| (2004)). Under the assumption that
the external field A®(x) varies smoothly over a finite spacetime region, we
may define an approximately local effective Lagrangian ALq¢[A®(x)],

Ao A%] = / B4 AL o[ AC(x)] & VAIAL [ A°], (C.4.5)

where V is the spatial volume and time interval At =t —¢_.

For a large time interval At = t, —t_ — oo, the amplitude of the vacuum
to vacuum transition (C.4.3) has the form,

(out, 0|0, in) = e~ /(Aéo—il/2)AL (C.4.6)

where A&y = Ey(A®) — &p(0) is the difference between the vacuum energies
in the presence and the absence of the external field, I' is the vacuum decay
rate, and At the time over which the field is nonzero. The probability that the
vacuum remains as it is in the presence of the external classical electromag-

netic field is
| (out, 00, in)|> = ¢~ 2mAMer[A°], (C.4.7)

This determines the decay rate of the vacuum in an external electromagnetic
field: I D ImAA (A€
- = m - ‘e/ff A% 2 ImALqg[AC)]. (CA8)

The vacuum decay is caused by the production of electron and positron pairs.
The external field changes the energy-density by

Ay ReMA[AC]

v ALV ~ — ReALeff[Ae]. (C49)

C.4.1. Schwinger formula for pair production in uniform
electric field

The Dirac fields appears quadratically in the partition functional (C.4.2) and
can be integrated out, leading to

Z[A] = [ DA, Det{ig—elA(x)+ A°(0)] —me+in}; §=1"3,, A=7"4,,
(C.4.10)

where Det denotes the functional determinant of the Dirac operator. Ignoring

the fluctuations of the electromagnetic field, the result is a functional of the
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external vector potential A®(x):
Z|A®] =~ const x Det{ig — e A°(x) — m, + in}. (C4.11)

The infinitesimal constant i with # > 0 specifies the treatment of singulari-
ties in energy integrals. From Egs. (C.4.3)—(C.4.11), the effective action (C.4.7)
is given by

AAgg| A%l = —iTrIn {[za —e A%(x) — me + iy (C4.12)

=
id—m,+in )’
where Tr denotes the functional and Dirac trace. In physical units, this is
of order /. The result may be expressed as a one-loop Feynman diagram,
so that one speaks of one-loop approximation. More convenient will be the
equivalent expression

DA% = =5 Teln ({7 — e AP =i+ i) gy,

(C.4.13)
where
19— e A°(x)]2 = [i9y — eAS(x)]? + %U’“’Fﬁv. (CA.14)
Using the identity
lnz—j _ /0 dSS |: 1s(a1+117) (a2+i17)}’ (C415)

Eq. (C.4.13) becomes

A‘Aeff[Ae 2/ ds —ls( e Tr<x|els{ laV —eAj ( )] WFFQW} _e—i582|x>’

(C.4.16)
where ¢ = L[y#, 4], Fj, = 0, A} — 9y A3, and (x|{- - -}|x) are the diagonal
matrix elements in the local basis |x). This is defined by the matrix elements
with the momentum eigenstates |k) being plane waves: (x|k) = e~**. The
symbol Tr denotes integral [ d*x in spacetime and the trace in spinor space.
For constant electromagnetic fields, the integrand in does not depend
on x, and ¢"'F;;, commutes with all other operators. This will allows us to
calculate the exponential in Eq. explicitly. The presence of —iy in the
mass term ensures convergence of integral for s — oo.

If only a constant electric field E is present, it may be assumed to point
along the z-axis, and one can choose a gauge such that A = —Et is the only
nonzero component of Ay. Then one finds

trexpis EUV"FP‘;’V} = 4 cosh(seE), (C4.17)
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where the symbol tr denotes the trace in spinor space. Using the commuta-
tion relation [dg, xo] = 1, where x° = ¢, one computes the exponential term in
the effective action (C.4.16) (c.e.g. Itzykson and Zuber| (2006))

e
2

eE
WY e _
o FHV} |x) 2n)s coth(eEs). (C.4.18)

The second term in Eq. (C.4.16) is obtained by setting E = 0 in Eq. (C.4.18),
so that the effective action (C.4.16)) yields,

(x| expis [(iay - eAf,(x))2 +

_ 1 T ~is(m i)
AAefs = W/d x/o .~ [eEs coth(eEs) —1]e . (C4.19)

Since the field is constant, the integral over x gives a volume factor, and the
effective action (C.4.16) can be attributed to the spacetime integral over an
effective Lagrangian (C.4.5)

1

A£"eff = 2(27_[)2

/ g [eEs coth(eEs) — 1] e is(m i), (C.4.20)
0

By expanding the integrand in Eq. (C.4.20) in powers of e, one obtains,

1 [eEs coth(eEs) — 1] e is(me—in) — éE2 — 64—5154 + 0(e®) e is(me—in)
s3 3s 45 ’
(C.4.21)
The small-s divergence in the integrand,
2
ec » 1 ©ds _iimi_i
§E W/O ?e is (m ”7), (C422)

is proportional to the electric term in the original Maxwell Lagrangian. The
divergent term (C.4.22) can therefore be removed by a renormalization of the
field E. Thus we subtract a counterterm in Eq. (C.4.20) and form

AL ¢ = 1 /Oo ds eEscoth(eEs) —1 — éE?'S2 e (me=in) (C.4.23)
T 202n2 b $B 3 -

Remembering Eq. (C.4.8), we find from (C.4.23)) the decay rate of the vacuum
per unit volume

r 1 ® ds e? (i
V= Wlm/o ~ {eEs coth(eEs) — 1 — EEZSZ] e~ BSUMe=in) - (C.4.24)

The integral (C.4.24) can be evaluated analytically by the method of residues.
Since the integrand is even, the integral can be extended to the entire s-axis.
After this, the integration contour is deformed to enclose the negative imagi-

475



C. Pair production and annihilation in QED

nary axis and to pick up the contributions of the poles of the coth function at
s = nrt/eE. The result is

r aEzileX _ nmE;
Vo 2 g ®®P E )

n=

(C.4.25)

This result, i.e. the Schwinger-formula Schwinger (1951} 1954a,b) is valid to
lowest order in 71 for arbitrary constant electric field strength.

An analogous calculation for a charged scalar field yields
E? & (1)t E
[an Z ) exp (— ”7; C) , (C.4.26)

which generalizes the Weisskopf treatment being restricted to the leading
term n = 1. These Schwinger results complete the derivation of the prob-
ability for pair productions. The leading n = 1 -terms of and
agrees with the JWKB results we discuss in Sec. and thus the correct
Sauter exponential factor and Heisenberg-Euler imaginary part of the

effective Lagrangian (B.3.19).
Narozhny and Nikishov Narozhnyi and Nikishov]| (1970) have expressed

the probability (C.4.7) of one pair production P, of n pair production P, with
n=1,2,3,---aswell as the average number of pair productions

|(out,0/0,in)[?=1—-P, —P, —P3— - - -, (C.4.27)

where Py, (n = 1,2,3,- - -) is the probability of n-pair production, and the
probability of one pair production is,

EZ nmg e
P = VAt2 In <1—eeE)eZVAHmALeff[A]. (C.4.28)

The average number N of pair productions is then given by

nE? nE,
N = Z nP, = VAt— exp < £ ) , (C.4.29)

n=1

which is the quantity directly related to the experimental measurements.

C.4.2. Pair production in constant electromagnetic fields

Since the QED theory is gauge and Lorentz invariant, effective action AAqg
and Lagrangian AL.g are expressed as functional of the scalar and pseu-
doscalar invariants S, P (A.4.23). Thus they must be invariant under the dis-
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crete duality transformation:
|B| — —i|E|, |E| —i|B|, (C.4.30)

ie.,
B — —ig, &—ip. (C.4.31)

This implies that in the case E = 0 and B # 0, results can be simply obtained
by replacing |E| — i|B| in Egs. (C.4.18), (C.4.23), (C.4.24):

Ty e eB
(x| expis [(zay — eA‘;(x))2 + EU”"F;,’V} |x) = ()i cot(eBs), (C4.32)
and
1 ®© dS 82 22 i 2_
AL s = IPEE /O = [eBs cot(eBs) — 1+ - B% } e~ B(me=in)  (C.4.33)

In the presence of both constant electric and magnetic fields E and B, we
adopt parallel Ecr and Bcp pointing along the z-axis in the center-of-fields
frame, as discussed after Eqgs. (A.4.14), (A.4.15), (A.4.16). We can choose a
gauge such that only A7 = —Ecpt, Aj = Bcpx! are nonzero. Due to constant
fields, the exponential in the effective action Eq. can be factorized
into a product of the magnetic part and the electric part. Following the same
method used to compute the electric part (C.4.17C.4.18), one can compute the
magnetic part by using the commutation relation [d1, x!] = 1, where x! = x.
Or one can make the substitution to obtain the magnetic part, based
on the discrete symmetry of duality. As results, Egs. (C.4.17), (C.4.18) become

trexpis [gawFﬁv] = 4 cosh(seEcr) cos(seBck), (C.4.34)
and
(s e
(x| expis {[zay - eA;(x)]2 + §‘Twl:ﬁv} |x)
1 eECF eBCF

s coth(seEcg) cot(seBck). (C.4.35)

(271)2

In this special frame, the effective Lagrangian is then given by

1 ® ds
ALt = 20272 /0 5—3[ 2EcrBcrs? coth(seEcr) cot(seBcr)
62 2 2 2 —is(mz—iry)

As discussed in Egs. (A.4.23), (A.4.24), (A.4.25), we obtain the effective La-
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grangian

ALog= ! /0 @[ezsﬁszcoth(ees)cot(eﬁs)

2(2m)? s3
2 A
11— 3(82 _ ‘BZ)SZ} e—zs(me—uy)l. (C.4.37)
and the decay rate
r 1 Cdsro h0
v Wlm/o 3 [e €Bs” coth(ees) cot(eps)
ez . 2 .
1 3(82 i 132)52} e—zs(me—ny), (C.4.38)

in terms of the invariants € and f (A.4.25) for arbitrary electromagnetic fields
E and B.

The integral (C.4.38) is evaluated as in Eq. (C.4.25)) by the method of residues,
and yields Schwinger (1951, 1954a\b)

I e 1 nmBl/e nmE,
v Fn;l n2tanhnmpB/e ¥ <_ e > ’ (C439)

which reduces for § — 0 (B = 0) correctly to (C.4.25). The n = 1 -term is the
JWKB approximation (A.4.27).

The analogous result for bosonic fields is

ae o ()" nmp/e nreE,
= ”2;;1 n2 Sinhnﬂﬁ/gexp (— c ), (C.4.40)

r
14
where the first term n = 1 corresponds to the Euler-Heisenberg result (B.3.19).
Note that the magnetic field produces in the fermionic case an extra factor
(ntB/¢e)/ tanh(nmtB/e) > 1in each term which enhances the decay rate. The

bosonic series (C.4.40), on the other hand, carries in each term a suppression
factor (n7tB/e)/ sinhnmB/e < 1. The average number N (C.4.29) is given by

V=Y — o wpe ke
N = n;nPn = VAl — 3¢ P ( - > : (C.4.41)

The decay rate I'/ V gives the number of electron-positron pairs produced
per unit volume and time. The prefactor can be estimated on dimensional
grounds. It has the dimension of E2/f, i.e., m*c®/h*. This arises from the
energy of a pair 2m,c? divided by the volume whose diameter is the Comp-
ton wavelength 7/m,c, produced within a Compton time % /m.c?>. The ex-
ponential factor suppresses pair production as long as the electric field is
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C.4. QED description of pair production

much smaller than the critical electric field E., in which case the JWKB re-

sults (A.4.27) and (A.4.28) are good approximations.
The general results (C.4.39),(C.4.40) was first obtained by Schwinger/Schwinger

(1951, 1954alb)) for scalar and spinor electrodynamics (see also Nikishov Nik-
ishov|(1969), Batalin and Fradkin|Vanyashin and Terent’ev|(1965)). The method
was extended to special spacetime-dependent fields in Refs. |Popov| (1971c,
1972b, 2001b)); Narozhnyi and Nikishov| (1970); Batalin and Fradkin (1970).
The monographs [Itzykson and Zuber| (2006); Kleinert (2008); Greiner et al.
(1985)); Grib et al.| (1980); Fradkin et al.| (1991) can be consulted about more
detailed calculation, discussion and bibliography.

C.4.3. Effective nonlinear Lagrangian for arbitrary constant
electromagnetic field

Starting from the integral form of Heisenberg and Euler Lagrangian (C.4.37)
we find explicitly real and imaginary parts of the effective Lagrangian AL
for arbitrary constant electromagnetic fields E and B Ruffini and Xue
(2006). The essential step is to reach a direct analytic form resulting from
performing the integration. We use the expressions Gradshteyn and Ryzhik
(1994),

ees coth(ees) Z 52 ) ;. T, =nmt/es, (C.4.42)
00 SZ
epscot(efs) = Y a2y Ty = mrt/ef, (C.4.43)
m=—0oo m

and obtain for the finite effective Lagrangian of Heisenberg and Euler integral
representation,

; Z / 51110 _ 5_110 ]e—is(mgfin)
2(27)? T2+T2 (s2—12) (s2+13) !

n,m—=—oo
(C.4.44)

AL g =

where divergent terms n # 0,m = 0, n = 0,m # 0Oand n = m = 0 are
excluded from the sum, as indicated by a prime. The symbol §;; = 1 — J;;
denotes the complimentary Kronecker-§ which vanishes for i = j. The di-
vergent term with n = m = 0 is eliminated by the zero-field subtraction in
Eq. (C4.37), while the divergent terms n # 0,m = 0and n = 0,m # 0

: 1 ©ds o > 1 = 1
ALle — / - _ls(me_m)z — — |, 4.4

m=1 n=1 "1
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are eliminated by the second subtraction in Eq. (C.4.37). This can be seen by
performing the sums

| ee\ k =1 ep k
— == k); — == k), C.4.46
Ya=(G s La=(%)an cas
where {(k) = ¥, 1/n* is the Riemann function.

The infinitesimal iy accompanying the mass term in the s-integral (C.4.44)
is equivalent to replacing e~ (mz i) by e~ (1=in)mg  This implies that s is to be
integrated slightly below (above) the real axis for s > 0 (s < 0). Equivalently

one may shift the 7, (—T) variables slightly upwards (downwards) to 7, +
iy (—Ty — 1) in the complex plane.

In order to calculate the finite effective Lagrangian (C.4.44), the factor pis(1—in)m;
is divided into its sin and cos parts:

i —i 5_m0 5—110 . . 21.
Ai?:z—imgm/wﬂ+ﬂ )~ s ) S =il
(C.4.47)

1 Smo 5710 . 2
et = 2y, mZ m/ 7+ rz 2) (2 Tg)} cos(s(1 =)
(C.4.48)

The sin part has an even integrand allowing for an extension of the s-
integral over the entire s-axis. The contours of integration can then be closed
by infinite semicircles in the half-plane, the integration receives contributions
from poles £71,,, £iTy, so that the residue theorem leads to,

ALSR = ocsﬁ Z ( ’B) exp(—nmE./¢€) (C.4.49)
. | .
_ z% mz1 — coth (%) exp(imnE./p) (C.4.50)

The first part (C.4.49) leads to the exact non-perturbative Schwinger rate (C.4.39)
for pair production.

The second term, as we see below, is canceled by the imaginary part of the
cos term. In fact, shifting s — s — iy, we rewrite the cos part of effective

Lagrangian (C.4.48) as

Apcos _ 1 2 / cos(sm? SOmo 800
ff 7202 )2 = o ’l'z-i-’l'z s2—13—in s24+T2—in)’
(C.4.51)
In the first term of magnetic part, singularities s = T,,(m > 0) and s =
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—Tm, (m < 0) appear in integrating s-axis. We decompose
S .TT 7T
R 155(5—%) +1§5(S+Tm) tPa = z (C.4.52)

where P indicates the principle value under the integral. The integrals over
the J-functions give

AsL0S = 1068/3 Z —c oth ( 5 ) exp(immE./B), (C.4.53)

which exactly cancels the second part (C.4.50) of the sin part ALSE.

It remains to find the principle-value integrals in Eq. (C.4.51), which corre-
sponds to the real part of the effective Lagrangian

1 0 , 2 ngo Sgno
(Aﬁ“g?fs)? = 2(27.[)2 n/m;ml-z ¥+ T2 T/ ds COS(Sm ) (52 — T,% B s2 + T,% '
(C.4.54)

We rewrite the cos function as cos(sm?2) = (e 4 ¢~™:) /2 and make the
rotations of integration contours by 4-77/2 respectively,

1 1
A COoSs — /
( eff )fP 2(27-[)2 " mZ OOT2 + TZ X
—-T 5 —-T
« P / OmoTe OnoTe . (C.4.55)
— (itym2)2 12— (1,m2)?

Using the formulas (see Secs. 3.354, 8.211.1 and 8.211.2 in Ref. Gradshteyn
and Ryzhik (1994))

= / ds5—s [ “Ei(z) + €°Ei(—2)], (C.4.56)

where Fi(z) is the exponential-integral function,
=7 / dt— log(—z) + Z Pk (C4.57)

we obtain the principal-value integrals (C.4.55),

2(21n)2 L /%[mof(”m 2) - 5no](rnm§)] (C.4.58)

n,m=—00

(ALGE )

Having so obtained the real part of an effective Lagrangian for an arbi-
trary constant electromagnetic field we recover the usual approximate results
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C. Pair production and annihilation in QED

by suitable expansion of the exact formula. With the help of the series and
asymptotic representation (see formula 8.215 in Ref. Gradshteyn and Ryzhik
(1994)) of the exponential-integral function Ei(z) for large z, corresponding
to weak electromagnetic fields (e < 1,8 < 1),

1 6 120 5040 362880

](Z) = _2_2 — 2—4 — Z6 28 210 ceey, (C459)
and Eq. (C.4.58), we find,
1 © 1 - 1 6 120
ALCOS — / ..
(ML) = 357 L oo {m T Tnd T o2
_ 1 6 120
0 — . . C.4.60
- omo L,%ms w8 T emE T ] J (C.4.60)

Applying the summation formulas (C.4.46), the weak-field expansion (C.4.60)
is seen to agree with the Heisenberg and Euler effective Lagrangian Heisen-
berg and Euler| (1936),

202

(Met)y = 25— { (E*~B%)? +7(E-B)*}
e
64 7o’
2(E>—B%)® + 13(E>—B?)(E-B)?} +---,  (C.4.61)
3155 | 2(F—B%)° + 13(°~B)(E-B)’

which is expressed in terms of a powers series of weak electromagnetic fields
up to O(a®). The expansion coefficients of the terms of order n have the gen-
eral form m%/(E;)". As long as the fields are much smaller than E, the ex-
pansion converges.

On the other hand, we can address the limiting form of the effective La-
grangian (C.4.58) corresponding to electromagnetic fields (¢ > 1,8 > 1). We
use the series and asymptotic representation (formulas 8.214.1 and 8.214.2 in
Ref. Gradshteyn and Ryzhik|(1994)) of the exponential-integral function Ei(z)
for small z < 1,

I(z) = —% [ In(z) + ¢~ In(~2)] +7e + 0(2), (C4.62)

with g = 0.577216 being the Euler-Mascheroni constant, we obtain the lead-
ing terms in the strong-field expansion of Eq. (C.4.58),

/

1 i 1 _ ) _ )
(ALg?fs)iP - m nlmg_oo m |:5n0 ln(Tnme) - 57’”0 ln(Tmme)] _|— R

(C.4.63)
In the case of vanishing magnetic field B = 0 and m = 0 in Eq. (C.4.63), we
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have,

0 2 o
2 ocE nmE;
(OL)s = s 1 )+ = 5y 3 o (V)
(C.4.64)
for a strong electric field E. In the case of vanishing electric field E = 0 and

n = 0in Eq. (C.4.63), we obtain for the strong magnetic field B,

1 &1 aB? & mrE,
2020)? mzz:laln(rmmg)—i—. =—>> Z mz < 5 )+

(C.4.65)
The (m = 1) term is the one obtained by Weisskopf|Weisskopf]| (1936).

We have presented in Egs. (C.4.49), (C.4.50), (C.4.53), (C.4.58) closed form
results for the one-loop effective Lagrangian AL (C.4.37) for arbitrary strength
of constant electromagnetic fields. The results will receive fluctuation cor-
rections from higher loop diagrams. These carry one or more factors a, a2,

and are thus suppressed by factors 1/137. Thus results are valid for all
tield strengths with an error no larger than roughly 1%. If we include, for

example, the two-loop correction, the first term in the Heisenberg and Euler
effective Lagrangian (C.4.61) becomes Kleinert (2008)

202 400\ 5 oo 1315« 9
(C.4.66)

Readers can consult the recent review article Dunne|(2004), where one finds
discussions and computations of the effective Lagrangian at the two-loop
level, and Dunne and Schubert (2000) for discussion of pair production rate.

(ALGE)o = -

C.5. Theory of pair production in an alternating
field

When the external electromagnetic field Fy,, is spacetime dependent, i.e., Fy, =
Fi, (x, t) the exponential in Eq. (C.4.16) can no longer be calculated exactly. In
this case, JWKB methods have to be used to calculate pair production rates
Brezin and Itzykson (1970); Popov| (1971c,[1972b, 2001b| 1972a); Marinov and
Popov| (1973, 1977); Popov/| (1971c, 1972b, 2001b). The aim of this section is
to show how one can use a semiclassical JWKB approach to estimate the rate
of pair production in an oscillating electric field as first indicated by Brezin
and Itzykson in Ref. Brezin and Itzykson| (1970). They evaluated the produc-
tion rate of charged boson pairs. The results they obtained can be straight-
forwardly generalized to charged fermion case, since the spins of charged
particles contribute essentially with a counting factor to the final results (see
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C. Pair production and annihilation in QED

Secs. |A4 and [C.4.1). Thus, let the electromagnetic potential be Z directed,
uniform in space and periodic in time with frequency wy:

A8(x) = (0,0,0,A(t)), A(t) = wﬂo cos wot. (C5.1)
Then the electric field is 2 directed, uniform in space and periodic in time
as well. The electric field strength is given by E(t) = —A(t) = Esinwpt.
It is assumed that the electric field is adiabatically switched on and damped
off in a time T¢, which is much larger than the period of oscillation Ty =
27/ wy. Suppose also that Ty is much larger than the Compton time 277/ w of
the created particle , i.e.,

27
T¢ > Ty > I ~ (C.5.2)

where w = +/|p|?> + m2, p being the 3-momentum of the created particle.
Furthermore, ¢E is assumed to be much smaller than m?, ie, E < E. (see

Eq. (A.4.13)).

We have to study the time evolution of a scattered wave-function ¢ (t) rep-
resenting the production of particle and antiparticle pairs in the electromag-
netic potential (C.5.1). As usual, an antiparticle can be thought of as a wave
packet moving backward in time. Therefore, for large positive time (forward)
only positive energy modes (~ e~'“!) contribute to 1(t). Similarly, for large
negative times both positive energy and negative energy modes (~ ¢/“’*) con-
tribute to (t) which satisfies the differential equation Brezin and Itzykson
(1970):

d? ?
{W +w (t)] P(t) =0, (C5.3)
where the “variable frequency” is defined as
1/2
w(t) = {m? +pil+[p.— eA(t)]z} . (C5.4)

The JWKB method suggests a general solution of the from

. , t
P(t) = a(t)e X L (1)), x(t) = / dfw(t), (C.5.5)
0
where the boundary conditions at large positive and negative times are:
a(—o0) =1, PB(+00) =0; x(+oo)=w. (C.5.6)

The backward scattering amplitude B(t) for large negative time (t — —oo)
represents the probability of antiparticle production.
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The normalization condition |1(¢)|? = 1 implies
(e 4 (1)) = 0. (C5.7)

Eq. (C.5.3) can be written in terms of the scattering amplitudes as

i(He x® — f(1)eix® = —Zg; [a(t)e-iw) - ,rs(t)eiw)} , (C.5.8)

or, which is the same,
Q) = — z‘fu((tt)) [(x(t) - ﬁ(t)ei2X<f>] , (C.5.9)
Bt) = _wa—((tt)) [ﬁ(t) - a(t)e*ﬁx(f)] . (C.5.10)

It follows from assumption (C.5.2) that w(t) vanishes as [t| — oo, i.e.,

wz(t) _ eE[p; — eA(t)] 5 < 1. (C.5.11)
WHE) {2+ p 2+ [p: —eA(H)]?)
More precisely
w(t) eE eE
'wz(t) ' R < m2 <L (C.5.12)

Therefore, a(t) and B(t) slowly vary in time and tend to constants as |¢| — oo.
The phase ¢2X(!) oscillates very rapidly as compared to the variation of a(t)
and B(t), for x(t) = w(t) > |w(t)/w(t)|. In the zeroth order the oscillating
terms in Egs. (C.5.9), (C.5.10) are negligible and one finds

aO) = [w/w®B]V?~1; pO®) =0, (C.5.13)

which duly satisfy the boundary conditions, and

[B(l)(t) = /too dtl%e_iz?((t/)’ (C.5.14)

where (C.5.2) and (C.5.12) have been used. |B(})(—o0)|? gives information
about the probability of particle-antiparticle pair production. Namely, the
probability of pair production per unit volume and time is given by

. .1 7 &k
Po= dim — [T

Te o T€ (27)?
—d3k LT o) ’
B / (27-[)3 Tyinoo ﬁ /—Te/Z dt Zw(t/)e . (C515)
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Since w(t) is a periodic function with the same frequency wy as A(t) one can
make a Fourier series expansion:

Z cpe™ o, (C.5.16)

n=—oo

Defined a renormalized frequency () via x(t) = tQ) one finds

27 dx eE 212
Q= /0 e | Me +k, "+ (k3 I cos x) ] . (C.5.17)
so that
1 Te/2 C(J(t ) ; / 2
lim — P emiax(t)| =9 E —20) 2, 5.1
Te o T /_Te/zd 2w(t’)e & - oo Jlenl (€518)

Consequently, the probability of pair production (C.5.15) is,

@—/ Pk Y8 —20)]c 2= /ﬂ 2 (C.5.19)
(277)2 0 ! (277)2wy ’ -

where n° = 20} /wy and ¢y~ are determined via Eq. (C.5.16) as
eE 2
mZ+pi*+ <pz - — Cos(x')>
wo

Cpo = " iz olx) 21 / dx’
") 2n2w(x) P wo
(C.5.20)

The expression for c,o contains a very rapidly oscillating phase factor with
frequency of the order of m,/wy, and it decreases very rapidly in terms of
imaginary time T = —it. Its evaluation requires the application of the steepest-
descent method in the complex time x = wyt plane. This is done by selecting
a proper contour turning in a neighborhood of the saddle point and following
the steepest descent line, so as to find the main contributions to the integral

in Eq. (C.5.20). The saddle point originates from branch points and poles in
C.5.20

1/2

Eq. (C.5.20), which are the zeros of w(x). Mathematical details can be found
in Ref. Brezin and Itzykson (1970). One finds

H ~ &0 Pk o4 o
~— [ —— 5.21
P 9 / (27_[)26 cos” B, (C.5.21)

where
1/2
2 (% E 2

—A+iB="" / Y m2+p, 2+ (p.— = cos(x) , (C5.22)

wo Jo wo
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and the saddle pointis xg = 1/71 + isinh ' [(wq/eE)(m2 4 p 1 2)1/?].

The exponential factor e 24 in Eq. indicates that particle-antiparticle
pairs tend to be emitted with small momenta. This allows one to estimate the
rh.s. of Eq. (C.5.21) as follow: (i) p; is set equal to zero, moreover, the range
of the pz-mtegratlon is of the order of 2¢E/wy as suggested by the classical
equation of motion - ); (ii) cos® B is replaced by its average value 1/2. As
a result, one obtains Brezin and Itzykson| (1970),

- rteE
P~ d —— 5.2
187tw0/ uuexp[ 2 u?g(u )] (C.5.23)

where 771 = mwo/ (eE), u = (m2 + p,?)w?/(¢E)? and

4 1 1—y? q1/2 11 L
g(z) = —/0 d]/[m} =F (5’5’2’ -z ) , (C.5.24)

where F(1/2,1/2;2; —z72) = ,F;(1/2,1/2;2; —z~?) is the Gauss hyper-geometrical
function. The function u?g(u) is monotonically increasing:

eE , eE _, m?2
— > — =L 5.
2" gu) > el gln) = —£&ln) >1, (C.5.25)

which indicates that the integral in (C.5.23) is strongly dominated by values
in a neighborhood of u = 7 ~1. This allows one to approximately perform the
integration and leads to the rate of pair-production of charged bosons Brezin
and Itzykson| (1970),

wE? 1 Tm?2

‘jb ~ ex —
P 2T () + 8/ (n) p[ ¢E

g(q)] . (C.5.26)

Analogously, the rate of pair-production of charged fermions can be approx-
imately obtained from Eq. (C.5.26) by taking into account two helicity states
of fermions (see Secs.|A.4|and [C.4.1),

wE? 1 Tm3

j)f rmion = exp |:_ g(”):| : (C.5.27)
ST g (n) + 58/ (n) ¢E

This formula has played an important role in recent studies of electron and
positron pair production by laser beams, which we will discuss in some de-
tails in Sec.

Unfortunately, it appears very difficult to produce a macroscopic electric
field with strength of the order of the critical value (3 and lifetime long
enough (> 11/ (m.c?)) in any ground laboratory to dlrectly observe the Sauter-
Euler-Heisenberg-Schwinger process of electron-positron pair production in
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vacuum. The same argument applies for the production of any other pair of
fermions or bosons. In the following chapter, we first discuss some ideas to
experimentally create a transient electric field E S E. in Earth-bound labora-
tories, whose lifetime is expected to be long enough (larger than 7 /m,c?) for
the pair production process to take place.

C.6. Nonlinear Compton effect

In Refs. Reiss| (1962, 1971); Nikishov and Ritus| (1964a,b, 1965a, 1967, 1979,
1965b); Sengupta (1952); Brown and Kibble (1964);|Goldman|(1964alb); Eberly
(1969); Berestetskii et al.| (1982), it has been studied the quantum theory of the
interaction of free electrons with the field of a strong electromagnetic wave.
The application of quantum perturbation theory to such interaction requires
not only that the interaction constant & should be small but also that field
should be sufficiently weak. The characteristic quantity in this respect is the
dimensionless invariant ratio 7 (E.3.5). The photon-emission processes occur-
ring in the interaction of an electron with the field of a strong electromagnetic
wave have been discussed in Ref. Berestetskii et al. (1982) for any # value.
The method used is based on an exact treatment of this interaction, while
the interaction of the electron with the newly emitted photons regarded as a
perturbation.

Laser beam is considered as a monochromatic plane wave, described by the
gauge potential A,(¢) and ¢ = kx, where wave vector k = (w, k) (k* = 0)
(see Eq. (A.1.3)]). The Dirac equation can be exactly solved Wolkow] (1935)
for an electron moving in this field of electromagnetic plane wave of an ar-
bitrary polarization and the normalized wave function of the electron with
momentum p is given by (c.e.g. Berestetskii et al.| (1982)),

_ ¢ u(p) o
B kx [ e e,

where u(p) is the solution of free Dirac equation ( p — m,)u(p) = 0 and the
time-average value of 4-vector,

2(A2)

is the kinetic momentum operator in the electron state ¥, (C.6.1) and the “ef-
fective mass” m., of the electron in the field is

7 =m2, me=me/1+ 12, (C.6.4)
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C.6. Nonlinear Compton effect

where 72 is given by Eq. . The electron becomes “heavy” in an oscillat-
ing electromagnetic field.

The S-matrix element for a transition of the electron from the state ¥, to the
state ¢,y, with emission of a photon having momentum k” and polarization €’
is given by (c.e.g. Berestetskii et al.| (1982))

ik'x
. - * e
Sfi = —ZE/II)p/(’)/el )lpp\/—_/d4x (C65)
1

- VRV S () 4;5(4) AR
20240 - 2 & Mﬁ (2m)*i6' (nk+q—4q — k'), (C.6.6)

where the integrand in Eq. (C.6.5) is expanded in Fourier series and expan-
sion coefficients are in terms of Bessel functions J;, the scattering amplitude

M]((':) in Eq. (C.6.6) is obtained by integrating over x Eq. (C.6.6) shows that
Sfi is an infinite sum of terms, each corresponds to an energy-momentum
conservation law nk + g = g’ +k’, indicating an electron () absorbs n-photons

(nk) and emits another photon (k') of frequency

, nw
Y = T (nw/m) (0 = cos0)’ (€67)

in the frame of reference where the electron is at rest (q = 0,99 = m.), and 0
is the angle between k and k'. Given the nth term of the S-matrix S fi 1 ,
the differential probability per unit volume and unit time yields,

d3k/d3q/

(275 20" 240 - 24 MW 2246 (nk+9—q —K).  (C.68)

i) —

Integrating over the phase space of final states [ d°k’d*q/, one obtained the
total probability of emission from unit volume in unit time (circular polariza-
tion),

2 2 0 2
Por =T & 1+K { 4@+ P+ ) T+ T =2
(C.6.9)
where « = (kk')/ (kp'), kn = ZW(kP)/mi and Bessel functions J,(z),
1/2
— 22 n K (. K
P A ) [ (1 )] ' (€610

for any 7 value. A systematic investigation of various quantum processes

IThe explicit expression M}'Z) is not given here for its complicity, see for example Berestet-
skii et al.|(1982).
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C. Pair production and annihilation in QED

in the field of a strong electromagnetic wave can be found in Nikishov and
Ritus (1964a)b| [1965a, 1967, (1979, 1965b), in particular photon emission and
pair production in the field of a plane wave with various polarizations are
discussed.

We now turn to the second process (E.3.2), i.e. the Breit-Wheeler process
for multi-photons. In this process, the pair production is attributed to the
interaction of a high-energy photon with many laser photons in the electro-
magnetic laser wave. Actually, the Breit-Wheeler process for multi-photons
is related to the nonlinear Compton scattering process by cross-
ing symmetry (see Eq. (E.3.2)), i.e., in Eq. v is moved to the Lhs., e is
moved to the rh.s. and changed to e*. By replacement p — —p and k' — —I
and reverse the common sign of the expression in Eq. (C.6.6), one obtains the
probability of pair production by a photon 7y (momentum /) colliding
with n laser photons (momentum k) per unit volume in unit time (circular
polarization) Nikishov and Ritus (1964a\b, 1965a, 1967, 1979, 1965b),

2 2 00
fP'y = 1610 n;/ U3/2 +U 1/2

X 2RE@+Peo-1)Ra+Ra-2D)],  (Cea

where v = (kI)?/4(kq)(kq"), vy = n/ng, ng = 2m?2/ (kl) and Bessel functions

Jn(2), 142 v o\ 1172
e )

In Eq. m the number 7 of laser photons must be larger than no (n > 1),
which is the energy threshold ng(kl) = 2m?2 for the process of pair
production to occur.
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D. Semi-classical description of
pair production in a general
electric field

As shown in previous sections, the rate of pair-production may be split into
an exponential and a pre-exponential factor. The exponent is determined
by the classical trajectory of the tunneling particle in imaginary time which
has the smallest action. It plays the same role as the activation energy in a
Boltzmann factor with a “temperature” /i. The pre-exponential factor is de-
termined by the quantum fluctuations of the path around that trajectory. At
the semiclassical level, the latter is obtained from the functional determinant
of the quadratic fluctuations. It can be calculated in closed form only for a few
classical paths Kleinert (2004). An efficient technique for doing this is based
on the JWKB wave functions, another on solving the Heisenberg equations of
motion for the position operator in the external field Kleinert (2004).

Given the difficulties in calculating the pre-exponential factor, only a few
nonuniform electric fields in space or in time have led to analytic results for
the pair-production rate: (i) the electric field in the z-direction is confined in
the space x < x, i.e., E = E(x)2 where E(x) = Eg®(xy — x) Martin and Vau-
therinl (1988, 1989); (ii) the electric field in the z-direction depends only on the
light-cone coordinate z = (t+z)/+/2,i.e., E = E(z )z Tomaras et al./(2000);
Avan et al.[(2003). If the nonuniform field has the form E(z) = Ey/ cosh®(z),
which will be referred as a Sauter field, the rate was calculated by solving the
Dirac equation Narozhnyi and Nikishov| (1970) in the same way as Heisen-
berg and Euler did for the constant electric field. For general space and time
dependences, only the exponential factor can be written down easily — the
fluctuation factor is usually hard to calculate Zeldovich and Popov|(1971). In
the Coulomb field of heavy nucleus whose size is finite and charge Z is su-
percritical, the problem becomes even more difficult for bound states being
involved in pair production, and a lot of effort has been spent on this issue
Zeldovich and Popov|(1971); Greiner et al.|(1985); Rafelski et al.| (1978a).

If the electric field has only a time dependence E = E(t), both exponen-
tial and pre-exponential factors were approximately computed by Brezin and
Itzykson using JWKB methods for the purely periodic field E(t) = Eg cos wot
Brezin and Itzykson (1970). The result was generalized by Popov in Ref. Mari-
nov and Popov/|(1973); Soff et al. (1974) to more general time-dependent fields
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D. Semi-classical description of pair production in a general electric field

E(t). After this, several time-independent but space-dependent fields were
treated, for instance an electric field between two conducting plates Wang
and Wong| (1988), and an electric field around a Reissner-Nordstrom black
hole Khriplovich! (2000).

The semiclassical expansion was carried beyond the JWKB approximation
by calculating higher-order corrections in powers of 71 in Refs. Kim and Page
(2002, 2006) and Kim and Page (2007). Unfortunately, these terms do not
comprise all corrections of the same orders 7 as explained in Kleinert et al.
(2008).

An alternative approach to the same problems was recently proposed by
using the worldline formalism [Schubert (2001), sometimes called the “string-
inspired formalism”. This formalism is closely related to Schwinger’s quan-
tum field theoretic treatment of the tunneling problem, where the evaluation
of a fluctuation determinant is required involving the fields of the particle
pairs created from the vacuum. The worldline approach is special technique
for calculating precisely this functional determinant. Within the worldline
formalism, Dunne and Schubert Dunne and Schubert (2005) calculated the
exponential factor and Dunne et al. Dunne et al. (2006) gave the associated
prefactor for various field configurations: for instance a spatially uniform,
and single-pulse field with a temporal Sauter shape o« 1/ cosh? wt. For gen-
eral z-dependences, a numerical calculation scheme was proposed in Ref.
Gies and Langfeld (2001, 2002); Langfeld et al.| (2002); Gies et al.| (2003) and
applied further in Gies and Klingmdiller| (2005). For a multidimensional ex-
tension of the techniques see Ref. Dunne and Wang (2006).

In this Chapter, a general expression is derived for the pair-production rate
in nonuniform electric fields E(z) pointing in the z-direction recently derived
in |Kleinert et al| (2008). A simple variable change in all formulas leads to
results for electric fields depending also on time rather than space. As exam-
ples, three cases will be treated: (i) a nonzero electric field confined to a region
of size /,i.e., E(z) # 0, |z| S ¢ (Sauter field see Eq. (D.3.4)); (ii) a nonzero elec-
tric field in a half-space, i.e., E(z) # 0,z 2 0 (see Eq. (D.3.25)); (iii) an electric
field increasing linearly like E(z) ~ z. In addition, the process of negative-
energy electrons tunneling into the bound states of an electric potential with
the emission of positrons will be studied, by considering the case: the electric

field E(z) ~ z of harmonic potential V (z) ~ z2.

D.1. Semi-classical description of pair production

The phenomenon of pair production in an external electric field can be un-
derstood as a quantum-mechanical tunneling process of Dirac electrons Dirac
(1928, [1930b)). In the original Dirac picture, the electric field bends the positive
and negative-energy levels of the Hamiltonian, leading to a level-crossing
and a tunneling of the electrons in the negative-energy band to the positive-
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D.1. Semi-classical description of pair production

energy band. Let the field vector E(z) point in the z-direction. In the one-
dimensional potential energy (A.3.4) the classical positive and negative-energy
spectra are

Ex(pzpriz) = :l:\/<cpz)2 + c2p3 + (mec?)? + V(2), (D.1.1)

where p; is the momentum in the z-direction, p | the momentum orthogonal
toit,and p, = |p |. For a given energy &, the tunneling takes place from z_

to z; determined by p, = 0in Eq. (D.1.1)
E=E4(0,pLiz4) =E-(0,pL;2-). (D.1.2)

The points z are the turning points of the classical trajectories crossing from
the positive-energy band to the negative one at energy €. They satisfy the

equations
V(z+) = Fy/2p% +m2c* + €. (D.1.3)

This energy-level crossing € is shown in Fig. for the Sauter potential
V(z) o« tanh(z/¥¢).
Energy
&y
o+l 6r

o-1 4 r

Figure D.1.: Positive- and negative-energy spectra £ (z) of Eq. (D.1.1) in
units of m,c?, with pz = p1. = 0 as a function of £ = z//¢ for the Sauter

potential V.. (z) (D.3.4) for o5 = 5.

D.1.1. JWKB transmission probability for Klein-Gordon Field

The probability of quantum tunneling in the z-direction is most easily studied
for a scalar field which satisfies the Klein-Gordon equation (A.3.3). If there
is only an electric field in the z-direction which varies only along z, a vector
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D. Semi-classical description of pair production in a general electric field

potential with the only nonzero component (A.3.4) is chosen, and the ansatz
P(x) = e~ iEt/M ZPLXi/hcp ¢(z), is made w1th a f1xed momentum p | in the
x,y direction and an energy €, and Eq. (A.3.3) becomes simply

2
—hZ; P e VEE| g () =0 (D14)

By expressing the wave function ¢, ¢(z) as an exponential
Pp e (z) = Cepre/T (D.1.5)

where C is some normalization constant, the wave equation becomes a Ric-
catti equation for S, ¢:

—ih02S, e(z) + [0:Sp, £ (2)]* — p2(z) = 0. (D.1.6)
where the function p,(z) is the solution of the equation
1
Pi2) = 5 [e- V@) -1 —mic (D17)

The solution of Eq. (D.1.6) can be found iteratively as an expansion in powers
of :

0 2 (1 , 2
Spe(2) =8 (2) =SV, (2) + (=im)28\7 o (2) + ... (D.1.8)
Neglecting the expansion terms after Sl(all),g(z) —log pi/?(z) leads to the

JWKB approximation for the wave functions of positive and negative ener-
gies can (see e.g. Landau and Lifshitz|(1981a)); Kleinert| (2004))

C st .(z)/n
PR ) = e e (D.19)
z
where Si)oj, ¢ () is the eikonal
(0) : N g
So.e (z) = / pz(z')dz". (D.1.10)

Between the turning points z_ < z < zy, whose positions are illustrated in
Fig.[D.1} the momentum p,(z) is imaginary and is useful to define the positive
function

k. (z) = \/pi + m2c? — Clz e — V()] >o. (D.1.11)
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D.1. Semi-classical description of pair production

The tunneling wave function in this regime is the linear combination

Lx —l/zxdz —i—Lx —|—1/ZKdZ (D.1.12)
20:)125P | Tr )" 20125 | Ty ), )

Outside the turning points, i.e., for z < z_ and z > z, there exist negative-
energy and positive-energy solutions for ¢ < £_ and & > & for positive p,.
On the left-hand side of z_, the general solution is a linear combination of an
incoming wave running to the right and outgoing wave running to the left:

— G+ io[* C_ 1 [Z
(p.)1/2 exp [%/ Pzdz} + —(Pz)l/z exp {_ﬁ/ pzdz] : (D.1.13)

On the right hand of z_, there is only an outgoing wave

T i [Z
——exp | = .Adz |, D.1.14
(p2)1/? P {h /Z+ P ] ( )

The connection equations can be solved by

. z
é =0, ei = eilIZTL’/4G/2, T = €+ exp |:—%/ ' KZdZ:| . (D115)
zZ_

The incident flux density is

= 0.0 — (3.07)9] = Prore = G2 D.1.16
]z—zmei[‘ib 2P (24’)4’]—me4’4’— — (D.1.16)

which can be written as
j2(z) = v(z)n_(2), (D.1.17)

where v;(z) = pz(z)/m, is the velocity and n_(z) = ¢*(z)¢(z) the density of
the incoming particles. Note that the z-dependence of v, (z) and n_(z) cancel
each other. By analogy, the outgoing flux density is |T|?/m,.

D.1.2. Rate of pair production

From the above considerations, the transmission probability is obtained

transmitted flux

D.1.18
incident flux ( )

Prwks =

the simple exponential

2 [*
[-P]WKB(pJ_IE) = exp |:—ﬁ/ KZdZ:| . (D119)
z
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D. Semi-classical description of pair production in a general electric field

In order to derive from (D.1.18) the total rate of pair production in the elec-
tric field, it must be multiplied with the incident particle flux density at the

entrance z_ of the tunnel. The particle velocity at that point is v, = 9€/dp.,
where the relation between € and z_ is given by Eq. (D.1.3):

E—-V(z_)
V(ep)? +m3ct
This must be multiplied with the particle density which is given by the phase

space density d®p/(27th)3. The incident flux density at the tunnel entrance is
therefore

—1=

(D.1.20)

. _ o0& d*p, dp, de d*p,
Jo(z-) = Ds op, (2mh)22mth Ds 2mth (27th)?’

(D.1.21)

and the extra factor D; is equal to 2 for electrons with two spin orientationsﬂ
It is useful to change the variable of integration from z to {(z) defined by

& —-V(z)
V(ep )%+ m2ct

and to introduce the notation for the electric field E(p |, ;) = E[z(p1, & 0)],
where z(p |, &; () is the inverse function of (D.1.22), the equations in (D.1.3)
reduce to

C(pi &2) =

(D.1.22)

C—(p1,&z2)=-1, C+(pL,&z+)=+1. (D.1.23)

In terms of the variable {, the JWKB transmission probability (D.1.19) can be
rewritten as

2mpcd [ (ep)®] [ V1-22
P &) =exp{ — e |y [ .d D.1.24
pealp £ = exp { ehEo { L } -1 "E(p1, &)/ Eo )
Here a standard field strength Ey has been introduced to make the integral in
the exponent dimensionless, which is abbreviated by

G(pL, &) = E/1 A0 = L-¢ (D.1.25)

)1 TE(pL,&0)/Eo

The first term in the exponent of is equal to 2E./ E.

At the semiclassical level, tunneling takes place only if the potential height
is larger than 2m,c? and for energies & for which there are two real turning
points z1. The total tunneling rate is obtained by integrating over all in-
coming momenta and the total area V| = [ dxdy of the incoming flux. The

1By setting Ds equal to 1 one can obtain the tunneling result also for spin-0 particles al-
though the Dirac picture is no longer applicable.
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D.1. Semi-classical description of pair production

JWKB-rate per area is

FJWKB

d2
/ 27th L TJWKB(m, €). (D.1.26)

Using the relation following from (D.1.20)
dé = eE(z_)dz_, (D.1.27)

the alternative expression is obtained

r]WKB i dz_ dzpj_ E(

2rh | (27h)2 z-)Pywks(pL,€(z-)), (D.1.28)

where €(z_) is obtained by solving the differential equation (D.1.27).

The integral over p; cannot be done exactly. At the semiclassical level, this
is fortunately not necessary. Since E. is proportional to 1/7, the exponential
in restricts the transverse momentum p | to be small of the order of
V1, so that the integral in may be calculated from an expansion of
G(pL, &) up to the order p?:

N VI-22 14E(0,€,2)/d¢
G(pL, &) ~ _/ O EOE {1-5 Foen S0t
= G(0,&) 4 Gs(0,€)5 + .. (D.1.29)

where § = 5(p ) = (cp )%/ (m%c*), and

__/ CE208§/E 0,80

- ——GOE / Q/@E(o,&é)/Eo'

The integral over p in (D.1.28) is approximately performed as follows:

Gs(0,¢8)

(D.1.30)

/ (0212% ¢~ (Ec/ Eo) (140) [G(0,6)+ G5 (02)8] _ (D.1.31)
7T
/ 35 o~ (Ee/E)[G(0)+3C(08) o, ¢Eo  —n(E./E)G(0)
4nh2 " 4m?reG(0,€) '

where
G(0,€) = G(0,&) + Gs(0,€). (D.1.32)

The electric fields E(p,, ;) at the tunnel entrance z_ in the prefactor of
(D.1.28) can be expanded similarly to first order in 6. If z° denotes the solu-

497



D. Semi-classical description of pair production in a general electric field

tions of (D.1.20) at p, = 0, it is found that for small J:

Mmoc® 6
Az =z —70 ~ —C _— D.1.33
z Po A E(z9)2 ( )
so that
E'(z°)é
E(z_) ~E(Z*) —m,c2="=L". D.1.34
() 2 B0 — e L o3 (D134

Here the extra term proportional to § can be neglected in the semiclassical
limit since it gives a contribution to the prefactor of the order 7. Thus the
JWKB-rate (D.1.28)) of pair production per unit area is obtained

TjwKB _ / dZaZF]WKB(z) o / s Dse?*EoE(z) o~ (E/E)GOE(3} 1 35)
vV, VvV, 87317 G(0,&(2))

where z is short for z. At this point it is useful to return from the integral
[ dz_eE(z_) introduced in (D.1.28) to the original energy integral [d€ in
(D.1.26)), so that the final result is

Tywke _ / aelctwks @) eFo [ dé 1 _xe/e)c04p 1 36)
1

1% vV, ~ 4n?hc ) 2rnh G(0,¢€)

where E-integration is over all crossing energy-levels.

These formula can be approximately applied to the 3-dimensional case of
electric fields E(x,y,z) and potentials V(x,y,z) at the points (x,y,z) where
the tunneling length is much smaller than the variation lengths dx | of
electric potentials V(x, v, z) in the xy-plane,

1 l(SV
Zy —Z_ Vx|’

(D.1.37)

At these points (x,y,z), one can arrange the tunneling path dz and momen-

tum p;(x,z,z) in the direction of electric field, corresponding perpendicu-

lar area d*V| = dxdy for incident flux and perpendicular momentum p | .

It is then approximately reduced to a one-dimensional problem in the re-

gion of size O(a) around these points. The surfaces z_(x_,y_,€) and zy =
(x+,y+, &) assciated with the classical turning points are determined by Egs.
and Egs. for a given energy €. The JWKB-rate of pair production

can then be expressed as an volume integral over the rate density

per volume element

3

B d°Tywks d* Nywks
Tjwis = / dudydzy T = / ddxdydz g oS (0139
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D.1. Semi-classical description of pair production

On the right-hand side one has found it useful to rewrite the rate I'wkgp as
the time derivative of the number of pair creation events dNjwkg/dt, so that
one obtains an event density in four-space

d* Njwxs e?EgE(z)
— WS D - —(Ee/Eo)G(0£(2)), D.1.39
dtdx dydz "873h G(O,E(Z))e ( )

Here x,y and z are related by the function z = z_(x, y, £) which is obtained
by solving (D.1.27).

It is now useful to observe that the left-hand side of is a Lorentz-
invariant quantity. In addition, it is symmetric under the exchange of time
and z, and this symmetry will be exploited in the next section to relate pair
production processes in a z-dependent electric field E(z) to those in a time-
dependent field E(t).

Attempts to go beyond the JWKB results (D.1.35) or (D.1.36) require a great
amount of work. Corrections will come from three sources:

I from the higher terms of order in (7)" with n > 1 in the the expansion
(D.1.8) solving the Riccati equation (D.1.6).

II from the perturbative evaluation of the integral over p in Egs. (D.1.26))
or (D.1.28) when going beyond the Gaussian approximation.

III from perturbative corrections to the Gaussian energy integral (D.1.36)
or the corresponding z-integral (D.1.35).

All these corrections contribute terms of higher order in 7.

D.1.3. Including a Smoothly Varying B(z)-Field Parallel to
E(z)

The above results can easily be extended to allow for the presence of a con-
stant magnetic field B parallel to E(z). Then the wave function factorizes into
a Landau state and a spinor function first calculated by Sauter Sauter|(1931a).
In the JWKB approximation, the energy spectrum is still given by Eq. (D.1.1),
but the squared transverse momenta p? is quantized and must be replaced by
discrete values corresponding to the Landau energy levels. From the known
nonrelativistic levels for the Hamiltonian p% /2m, one extracts immediately
the replacements (A.4.17). Apart from the replacement (A.4.17), the JWKB
calculations remain the same. Thus one must only replace the integration
over the transverse momenta [ d?p, /(277)? in Eq. (D.1.31) by the sum over
all Landau levels with the degeneracy eB/(27thic). Thus, the right-hand side
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D. Semi-classical description of pair production in a general electric field

becomes

eB o (E./E)G(0,€) N ,—7(B/Ey)(n+1/2+40)G(0,€)
5 Y e , (D.1.40)

n,o

where ¢ and ¢ are as in (A.4.17). The result is, for spin-0 and spin-1/2:
€E0

47-(27;1CG(O 8)€_H(EC/EO)G(O’8)fO,1/2(BG(O/ 8)/E0) (D.1.41)
where
_ 7TX _ TTX @
fol) = o fia(x) =2 —"—cosh = (D.1.42)

In the limit B — 0, Eq. (A.4.20) reduces to Eq. (D.1.31).

The result remains approximately valid if the magnetic field has a smooth
z-dependence varying little over a Compton wavelength Ac.

In the following only on nonuniform electric fields without a magnetic field
is focused.

D.2. Time-dependent electric fields

The above semiclassical considerations can be applied with little change to
the different physical situation in which the electric field along the z-direction
depends only on time rather than z. Instead of the time ¢ itself one prefers
working with the zeroth length coordinate xop = ct, as usual in relativistic
calculations. As an intermediate step consider for a vector potential

Ay = (Ap(2),0,0, Az (xq)), (D.2.1)
with the electric field
E = —0;A0(z) — d0Az(xg9), xo = ct. (D.2.2)

The associated Klein-Gordon equation (A.3.3) reads
2 2
{ [ihdy + ng(z)} + 1202, — |ind; + gAz(xo)} - m§c2} ¢(x) = 0(D.2.3)

The previous discussion was valid under the assumption A;(xp) = 0, in
which case the ansatz

(P(x) — e—lst/helpLXL(PpL,S(z)’
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led to the field equatlon (D.1.4). For the present discussion it is useful to write
the ansatz as ¢(x ~iPo%o ZPL"L/F%p (z) with pg = €/¢, and Eq. ( m
in the form

1 : 2 d?
{C_Z |:8 — 6/ dZ/ E(Z/):| _ pj_ mZCZ + hzdzz } (PPL/PO(Z) =0. (D24)

Now the electric field to depend only on xo = ct is assumed. Then the
ansatz ¢(x) = e'P=/felPix1/hg . (x)) leads to the field equation

d2
{ hz pJ_ _m C - |: Pz_ _/ de :| }(PPL;PZ(XO) (I‘D25)

de

If Eq. (D.2.5) is compared with (D.2.4) one realizes that one arises from the
other by interchanging

zZ < X9, pL —1ipy, c¢—ic, E— —iE. (D.2.6)

With these exchanges, it may easy to calculate the decay rate of the vacuum
caused by a time-dependent electric field E(xg) using the above-derived for-
mulas.

D.3. Applications

Now formulas (D.1.36) or (D.1.35) is applied to various external field config-
urations capable of producing electron-positron pairs.

D.3.1. Step-like electric field

First one checks the result for the original case of a constant electric field
E(z) = eEy where the potential energy is the linear function V(z) = —eEyz.
Here the function (D.1.25) becomes trivial

G(O,S):%/lldg 1-2=1, Gys(0,8) =0, (D3.1)

which is independent of € (or z_). The JWKB-rate for pair-production per
unit time and volume is found from Eq. (D.1.35) to be

I‘EH E2
WKB 1 _
IV ~ Dsﬁe nEC/EO. (D32)

where V = dz_V, . This expression contains the exponential e~"¢/£o found
by Sauter Sauter (1931a), and the correct prefactor as calculated by Heisen-
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D. Semi-classical description of pair production in a general electric field

berg and Euler |Heisenberg and Euler| (1936), and by Schwinger Schwinger
(1951, 1954alb).

In order to apply the translation table to obtain the analogous result
for the constant electric field in time, one can rewrite Eq. as

dNywKs «E§ rE
~ D, 50 - mE/Ey D323
dxoV S2he’ ( )

where dNjwkg/dxo = FFVE,IKB/ ¢ and Njwkg is the number of pairs produced.

Applying the translation table (D.2.6) to Eq. (D.3.3), one obtains the same
formula as Eq. (D.3.2).

D.3.2. Sauter electric field

Let us now consider the nontrivial Sauter electric field localized within finite
slab in the xy-plane with the width ¢ in the 2-direction. A field of this type
can be produced, e.g., between two opposite charged conducting plates. The
electric field E(z)2 in the z-direction and the associated potential energy V(z)
are given by

E(z) = Eg/cosh® (z/€), V(z) = —osmec®tanh(z/0), (D.3.4)

where
0s = eEol /mec®> = (¢/A¢c)(Eo/Ee). (D.3.5)

From now on natural units, in which energies are measured in units of M2,
is used. Figure [D.1]shows the positive and negative-energy spectra & (z)

of Eq. (D.1.1) for p, = p, = 0 to show the energy-gap and energy-level
crossings. From Eq. (D.1.3)) one finds the classical turning points

ELVIFS _ L, o+ €L VIT)

z4+ = { arctanh —1

Os 2 Us—giFm'

Tunneling is possible for all energies satisfying

—V1+d6+o0s>E>V1I+06—o0s, (D.3.7)

for the strength parameter o5 > /1 + 4.
One may invert Eq. (D.1.22) to find the relation between  and z:

8+§\/1+5:£ nas+8+§v1+(5
Os

(D.3.6)

| :
2 g —E—0V1+90

In terms of the function z(p |, &; (), the equation (D.3.6). reads simply z+ =
z(py, & £1).

(D.3.8)

z=1z(p,, & () = Larctanh
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D.3. Applications

Inserting (D.3.8) into the equation for E(z) in Eq. (D.3.4), one obtains

2
E(z) = Eo [1 - (g—ma—e) ] =E(p.,&0).  (D39)

Os

G(0,¢&) and G;(0, €) of Egs. (D.1.25), (D.1.29) and (D.1.30) are calculated:

1/2 1/2

G(0,8) = 202 — o [(as 2o 1] — 0 [(crs +e?- 1} , (D.3.10)

and
G(0,€) + Gs(0,€) = % { [(as —e)2 - 1} Ty [(as )R- 1] 1”%}3.3.11)

Substituting the functions G(0, £) and G;(0, €) into Egs. (D.1.35) and (D.1.36),

one obtains the general expression for the pair-production rate per volume
slice at a given tunnel entrance point z_ (&) or the associated energy £(z_).
The pair-production rate per area is obtained by integrating over all slices
permitted by the energy inequality (D.3.7).

In Fig. the slice dependence of the integrand in the tunneling rate
for the Sauter potential is shown and compared with the
constant-field expression of Euler and Heisenberg, if this is evaluated
at the z-dependent electric field E(z). This is done once as a function of the
tunnel entrance point z and once as a function of the associated energy €. On
each plot, the difference between the two curves illustrates the nonlocality
of the tunneling procesﬂ The integral is dominated by the region around
€ ~ 0, where the tunneling length is shortest [see Fig. and tunneling
probability is largest. Both functions G(0, £) and G4(0, £) have a symmetric
peak at € = 0. Around the peak they can be expanded in powers of € as

Os

G(0,8) = 2[02—os(c2—1)"? + Wez +0(&%) =
= Go(os) + %Gz(og) &2+ 0(eY), (D.3.12)
and
G(0,&) 4+ Gs(0,8) = L +1 (1+207) €240 =
(g2 =112 " 2(02 —1)>/2
= Golos) + 162(05) &2+ 0(eh). (D.3.13)

2

2Note that omitting the z-integral in the rate formula (D.1.35) does not justify calling the
result a “local production rate”, as done in the abstract of Ref. |Gies and Klingmdiller
(2005). The result is always nonlocal and depends on all gradients of the electric field.
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D. Semi-classical description of pair production in a general electric field
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\\ Iige (B -> E(2)1/TER

E/mc? - z/1

Figure D.2.: The slice dependence of the integrand in the tunneling rate
for the Sauter potential is plotted: left, as a function of the
tunnel entrance z (compare with numeric results plotted in Fig. 1 of Ref.
Gies and Klingmiiller| (2005)); right, as a function of the associated energy &,
which is normalized by the Euler-Heisenberg rate (D.3.2). The dashed curve
in left figure shows the Euler-Heisenberg expression evaluated for the
z-dependent field E(z) to illustrate the nonlocality of the production rate. The
dashed curve in right figure shows the Euler-Heisenberg expression (D.3.2)
is independent of energy-level crossing €. The dimensionless parameters are
0s =5, Eg/E. = 1.

The exponential e~ 7C(0&)E/Eo has a Gaussian peak around & = 0 whose

width is of the order of 1/E; « f. This implies that in the semiclassical limit,
one may perform only a Gaussian integral and neglect the £-dependence of
the prefactor in (D.1.36). Recalling that € in this section is in natural units
with m.c? = 1, one must replace [ d€ by m.c? [ d€ and can perform the inte-
gral over € approximately as follows

I'twks -~ eEomeczie—n(Ec/Eo)Go d€ e—n(Ec/EO)G{)’SZ/Z:
V. T T 4r?he G, 27th

—m(Ec/Eo)Go
_ pth 1 ¢ (D.3.14)

S e .
470he Go o, /GUE, /2Eq

For convenience, the limits of integration over E is extended from the interval
(=14 05,1 — 05) to (—o0,00). This introduces exponentially small errors and
can be ignored.

Using the relation 1) one may replace eEqmec?/ hic by ezE%ZE /0, and
obtain

I'jws[total] D aEj @M[ﬂ%(%)’fc/ Eo (D.3.15)
/EC : 3.

V.l — 2Pk oo/2

This approximate result agrees E| with that obtained before with a different,

3See Eq. (63) of Dunne and Schubert Dunne and Schubert (2005), and replace there 4 —
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D.3. Applications

somewhat more complicated technique proposed by Dunne and Schubert
Dunne and Schubert (2005) after the fluctuation determinant was calculated
exactly in Dunne et al.| (2006) with the help of the Gelfand-Yaglom method,
see Sec. 2.2 in Ref. Kleinert| (2004). The advantage of knowing the exact fluc-
tuation determinant could not, however, be fully exploited since the remain-
ing integral was calculated only in the saddle point approximation. The rate
agrees with the leading term of the expansion (42) of Kim and Page
Kim and Page (2007). Note that the higher expansion terms calculated by the
latter authors do not yet lead to proper higher-order results since they are
only of type I and III in the list after Eq. (D.1.39). The terms of equal order
in 71 in the expansion of the solution of the Riccatti equation are still
missing.

Using the translation table (D.2.6), it is straightforward to obtain the pair-
production rate of the Sauter-type of electric field depending on time rather
than space. According to the translation table (D.2.6), one has to replace ¢ —
c¢dT, where 0T is the characteristic time over which the electric field acts—the

analog of £ in (D.3.4). Thus the field (D.3.4) becomes
E(t) = Eo/cosh® (t/6T), V(t) = —dsmec®tanh (t/6T).(D.3.16)

According to the same table, one must also replace 05 — 05, where

0s = eEgdT /mec. (D.3.17)
This brings Go(0s) of Eq. (D.3.10) to the form
Go(os) — Gh(05) = 2[55(62 — 1)1/2 — 52, (D.3.18)

and yields the pair-production rate

- 5/4
FfWKB [total] ~D aE% @ 72 +1 o~ 70Gh(0%)Ec/ Eo (D.3.19)
vieT ~ amn\E \~ #2 o

where Ifypltotal] = ONjwkp/0dz is the number of pairs produced per unit
thickness in a spatial shell parallel to the xy-plane. This agrees with Ref.
Dunne et al.[(2006).

Note also that the constant-field result of Euler and Heisenberg can-
not be deduced from by simply taking the limit £ — oo as one might
have expected. The reason is that the saddle point approximation (D.3.14) to
the integral becomes invalid in this limit. Indeed, if £ « 05 is large in

1/0s. It agrees also with the later paper by Dunne et al. [Dunne et al.| (2006) apart from a
factor 2.
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D. Semi-classical description of pair production in a general electric field

Egs. (D.3.10) and (D.3.11), these become

1
and the integral in (D.1.36) becomes approximately
+05
e [ T (1 £2/07) e B/ R E /D (D:321)

For not too large ¢ o o5, the integral can be evaluated in the leading Gaussian

approximation
© d8 —7T(E /Eo)(82/02) 1 EO
— ¢ )= —— [ — D.3.22
o 27th¢ 2\ E.7¥ ( )

corresponding to the previous result (D.3.15) for large-cs. For a constant field,
however, where the integrands becomes flat, the Gaussian approximation is

no longer applicable. Instead one must first set s — oo in the integrand of
(D.3.21), making it constant. Then the integral (D.3.21) becomesﬁ

e " E/ By 127t = e B/ Bo)D e By /mpc? 27th. (D.3.23)

Inserting this into (D.1.36) one recovers the constant-field result (D.3.2). One
must replace 2/ by L to comply with the relation (D.1.27) from which one
obtains

/d8 = /dzeE(z) = eEo/dz/ cosh?(z/ ) = 20eEy = LeEj.

In order to see the boundary effect on the pair-production rate, this section
is closed with a comparison between pair-production rates in the constant

tield (D.3.2) and Sauter field (D.3.15) for the same field strength Ej in the

volume V| ¢. The ratio Ryate of pair-production rates (D.3.15) and (D.3.2) in
the volume V| 7 is defined as

E 2 1 5/4
Riate = [ ¢/ B (% — 77 - /2) e~ Co(o)Ee/ By, (D.3.24)
Cc O.S

The soft boundary of the Sauter field reduces its pair-production rate
with respect to the pair-production rate computed in a constant field
of width L = 2/. The reduction is shown quantitatively in Fig. where
curves are plotted for the rates and (D.3.15), and and for their ratio

4This treatment is analogous to that of the translational degree of freedom in instanton
calculations in Section 17.3.1 of [Kleinert (2004) [see in particular Eq. (17.112)].

506



D.3. Applications

(D.3.24) at Ey = E. and 05 = {/Ac [recall (D.3.5)]. One can see that the
reduction is significant if the width of the field slab shrinks to the size of a

Compton wavelength Ac.

1 [ xp [totall /v

10°
R rate
0.8 10~

0.6 10
10°
10°
10°

©® 9 o o s W

Figure D.3.: Left: Ratio Rrate defined in Eq. (D.3.24) is plotted as function of
0s in the left figure. Right: Number of pairs created in slab of Compton width
per area and time as functions of ;. Upper curve is for the constant field

(D.3.2), lower for the Sauter field (D.3.15)). Both plots are for Ey = E; and

D.3.3. Constant electric field in half space

As a second application consider an electric field which is zero for z < 0 and
goes to —E( over a distance / as follows:

E(z) = —% [tanh (%) + 1} , V(z) = —%mec2 {lncosh <%> + %](D.3.25)

where 05 = eEol/m,c?. In Fig. the positive and negative-energy spectra

€+ (z) defined by Eq. (D.1.1) for p. = p; = 0 are plotted to show energy
gap and level crossing. From Eq. (D.1.3) one finds now the classical turning

points [instead of (D.3.6)]
7. — gln [Ze“im)/ o _ 1} . (D.3.26)
For tunneling to take place, the energy € has to satisfy
E<V1+5—05In2, (D.3.27)

and os must be larger than /1 + 6. Expressing z// in terms of { as

z=2(p,, &) = éln [Ze@*?””)/f’s - 1] , (D.3.28)
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D. Semi-classical description of pair production in a general electric field

Energy
2 -

Figure D.4.: Energies (D.1.1) for a soft electric field step E(z) of Eq. (D.3.25)
(z) (D-3.25

and the potentials V4 .3.25) for s = 5. Positive and negative-energies

€+(z) of Eq. (D.1.1) are plotted for p, = p, = 0 as functions of 2 = z//.

so that zy = z(p, & £1), one finds the electric field in the form
1
E(z) = Eo |1 — Ee@"v””)/‘fs] =E(py, &0). (D.3.29)

Inserting this into Eq. (D.1.25) and expanding Ey/E (p 1,&0)in powers one
obtains

0 e*”‘g/‘TSZ 1 2 ntlo
Gpre) = 1+ ) ot [ dgy1-get/o =
n=1 TJ-1
= 1+ Y e "™/ L(nV1+0/0y), (D.3.30)
n=1

where I (x) is a modified Bessel function. Expanding I1 (n+v/1 + 6 /05) in pow-
ers of ¢:

L(nV1+46/05) = Li(n/os)+ (n/4os)[Io(n/os) + I(n/0s)]d + ... (D.3.31)
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D.4. Tunneling into Bound States

one can identify

G(0,8) =1+ i e "% (n)oy), (D.3.32)

n=1

G(0,&) +Gs(0,8) =1+ % i e "% (n) o) Io(n/ o) — I (n/o(]).3.33)
n=1

The integral over & in Eq. starts at £« = 1 — 05 log2 where the in-
tegrand rises from 0 to 1 as £ exceeds a few units of ¢;. The derivative
of e~ T(E/E0)G(0€) drops from 1 to e 7(Ec/E0) over this interval. Hence the
derivative dge~7"(Ee/E0)G(0€) js peaked around some value &. Thus the inte-
gral [ deeT(E/E0)G(08) i performed by parts as

/dgen(Ec/Eo)G(O,S) _ e (Ec/E)G(0,E)

0 _/ngE)ge”(E”/EO)G(O’S)-
<

(D.3.34)
The first term can be rewritten with the help of & = eEgdz as e~ 7(Ee/Fo) |eEq| ¢ /2,
thus giving rise to the decay rate in the volume V| //2 , and the sec-
ond term gives only a small correction to this. The second term in Eq.
shows that the boundary effects reduce the pair-production rate compared
with the pair-production rate in the constant field without any bound-

ary.

D.4. Tunneling into Bound States

We turn now to the case in which instead of an outgoing wave as given
(D.1.14) there is a bound state. A linearly rising electric field whose poten-
tial is harmonic is considered:

E(z) = E (i) V(z) = eE(;‘C (Aicy (D.4.1)

It will be convenient to parametrize the field strength Ej in terms of a dimen-
sionless reduced electric field € as Eg = ehc/eA% = €E,. In Fig. the posi-
tive and negative-energy spectra £ (z) defined by Eq. forp,=p, =0
are plotted to show energy gap and level crossing for € > 0 (left) and e < 0
(right). If € is positive, Eq. yields for z > 0,

2 1/2
7y = /\C\/; (e VIt 5) i<z, (D.4.2)

and mirror-reflected turning points for z < 0, obtained by exchanging z+ —
—z+ in (D.4.2). Negative-energy electrons tunnel into the potential well —z <
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Figure D.5.: Positive- and negative-energy spectra £4(z) of Eq. for
p. = p. = 0 as a function of Z = z/Ac for the linearly rising electric field
E(z) with the harmonic potential (D.4.1). The reduced field strengths are
€ = 2 (left figure) and € = —2 (right figure). On the left, bound states are
filled and positrons escape to z = £oo. On the right, bound electrons with
negative energy tunnel out of the well and escape with increasing energy to
z = to0.

z < +z4, where € > €, forming bound states. The associated positrons run
off to infinity.

D.4.1. JWKB transmission probability

Due to the physical application to be discussed in the next section, here only
the tunneling process for € > 0 on the left-hand side of Fig. D.5 will be stud-
ied. One can consider the regime z < 0 with the turning pints —z_ < —z,.
The incident wave and flux for z < —z_ pointing in the positive z-direction
are given by Egs. (D.1.13) and (D.1.16). The wave function for —z_ < z <
—2z4 has the form Eq. (D.1.12) with the replacement z_ — —z_. The transmit-
ted wave is now no longer freely propagating as in (D.1.14), but a describes a
bound state of a positive-energy electron:

¢e, (z) = ﬁcos [% ) pzdz — %] : (D.4.3)

The Sommerfeld quantization condition

1 +z4

1
- pdz=nn+=), n=0,12,.... (D.4.4)
)z,

2

tixes the energies ;. The connection rules for the wave functions (D.1.12)
and (D.4.3) at the turning point —z determine

. —Z
B = V2C e ™ exp [—%/ " szz} : (D.4.5)
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D.4. Tunneling into Bound States

Assuming the states ¢¢, (z) to be initially unoccupied, the transmitted flux to
these states at the classical turning point —z is

—Z

exp [—% " szz} . (D.A4.6)

_IBE _je.f?
Z—)—Z+ (zme) me

h
e, (2)2:0%, (2)

From Egs. (D.1.16), (D.4.6), and (D.1.18) one then finds the JWKB transmis-
sion probability for positrons to fill these bound states leaving a positron out-
side:

2 [T
Prwxs(p1, En) = exp {_ﬁ/ szz} , (D.4.7)

—Z_

which has the same form as Eq. (A.4.10). The same result is obtained once
more for z > 0 with turning points z4 < z_, which can be obtained from
(D.4.7) by the mirror reflection —z4 < z.

D.4.2. Energy spectrum of bound states

From Eq. (D.1.7) for p, and Eq. (D.4.1) for the potential V(z), the eikonal
(D.4.4) is calculated to determine the energy spectrum &, of bound states

1 [rz

Z4 1/2
ﬁ - pzdz = 2%/0 |:(ZZ _Zi)(z2 —22_)] dz
2
- % (2 +22)E() — (2 -2)K(1)]|, (D48)

where E(t), K(t) are complete elliptical integrals of the first and second kind,
respectively, and t = z; /z_. The Sommerfeld quantization rule (D.4.4) be-
comes

1/2

[E4E () — (VI T OK(t)] = mln + (P49

8 [2(&, — VI+9)
3 €

1/2
(e —V1F9
"T\e, V140 '

For any given transverse momentum p; = /9, this determines the discrete
energies €.

D.4.3. Rate of pair production

By analogy with Egs. (D.1.26) and (D.1.36), the transmission probability (D.4.7)
must now be integrated over all incident particles with the flux (D.1.21) to
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D. Semi-classical description of pair production in a general electric field

yield the rate of pair production:

I'Twks w d’p
S =y / 2 s(p ), (D.4.10)

|€E0| 2 1 ¢
47t2hc 2 G(0,Ex) + Gs(0, &)

—n(Ec/E0)G(0EnD 4.11)

In obtaining these expressions one has used the energy conservation law to
perform the integral over €. This receives only contributions for &€ = &,
where f d€ = wyh = &, — €,_1. The factor 2 accounts for the equal contri-
butions from the two regimes z > 0 and z < 0. The previous relation (D.1.27)
is now replaced by

wph = |eE(z")|AZ". (D.4.12)

Using Eq. (D.1.22)) and expressing z/A¢c > 0 in terms of  as

=z2(p,En Q) = AC\/E <8n Vi 5)1/2, (D.4.13)

one calculates z4 = z(p 1, €y, £1), and find the electric field in the form

E(z) = EO\@ (en V1T 5)1/2 =E(p.,&n Q). (D.4.14)

Inserting this into Eq. (D.1.25) one obtains

_ Vi-@
Glpo,€n) = \[/ e s

a 3n zw[( — &K (qi)+8iE(qi)](D.4.15)

where & = &,/(1+6)? and ¢} = \/2/(&} + 1). Expanding G(p, &) in
powers of ¢ one finds the zeroth order term

G(0,&,) = 3%\/5(8”+1)1/2[(1—8n)1<(qn)+enE(qn)] (D.4.16)

and the derivative

Go(0,E0) = Yo L g — 1[4~ 50y + Ea(7 ~ 600) E(gn) +

+ (1- & —7€2)(9: — DK(q,)] - (DA4.17)

where g, = \/2/(&n + 1).
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E. Phenomenology of
electron-positron pair creation
and annihilation

E.1. ¢Te~ annihilation experiments in particle
physics

The ete~ — 7 + 7 process predicted by Dirac was almost immediately ob-
served Klemperer| (1934). The e"e™ annihilation experiments have since be-
came possibly the most prolific field of research in the active domain of parti-
cle physics. The Dirac pair-annihilation process has no energy thresh-
old and the energy release in the e*e™ collision is larger than 2m,.c?. This
process is the only one in the limit of low energy. As the eTe™ energy in-
creases the collision produces not only photons through the Dirac process
but also other particles. For early work in this direction, predicting
resonances for pions, K-mesons - - -, see (Cabibbo and Gatto| (1961). Produc-
tion of such particles are achievable and precisely conceived in experimental
particle physics, but hardly possible with the vacuum polarization process .
In particular when the energy in the center of mass is larger than twice muon
mass 1, about 100 times electron mass, the electron and positron electromag-
netically annihilate into two muons eTe™ — u™u~ via the intermediation of
a virtual photon. The cross-section in the center of mass frame is given by
Altarelli (1982)

” 1671%a? (fic)? I, () = 47ta® (hic)? 86.8nb

tem—syty- — 5 — +y = =

ce T 9ém peee 3&m  9im(GeV)?
(E.1.1)

where @+, ~(4?%,,) is the muon part of the vacuum polarization tensor and

K
Qom = 2(P+ + p_)?/4 the square of energy of the center of mass frame,
where p+ are four-momenta of positron and electron. At very high energy

M/ G — 0, I @yt (q8m) — 1/(1271).
At very high energles of the order of several GeV, electron and positron

electromagnetically annihilate into hadrons, whose cross-section has the same
structure as the cross-section 1.} 1) with @, (qgm) replaced by the hadron
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E. Phenomenology of electron-positron pair creation and annihilation

part of the vacuum polarization tensor @nadrons (72m ),

167202 (hc)?
Gém

The two cross-sections (E.1.1) and (E.1.2) are comparable, of the order of a few

tens of nanobarns (10™°°cm®). It is traditional to call R the ratio of hadronic
to electromagnetic annihilation cross-sections |Altarelli (1982),

Uete——hadron — Im Whardrons (q%m) . (E'l -2)

R(q%m) = M = 127Im (Dhadrons(qgm)' (E13)
Tetem—pty-

As the energy g2, of electron and positron collision increases and reaches
the mass-energy thresholds of constituents of hadrons, which are now called
“quarks”, narrow resonances occurs, see for example, the ratio R as a function
of \/? measured at SLAC [Schwitters and Strauch| (1976)). These resonances
correspond to production of particles such as J/¢, Y etc., see Fig. This

cand Rin ete® collisions
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Figure E.1.: The total cross section of ete~ — hadron (E.1.2) and the ratio
R = e*e*—>hadron/0'e+e*—>y+y* 1} where s = q%m.

provides a fruitful investigation of hadron physics.
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E.2. The Breit-Wheeler process in laser physics and astrophysics

As the center of mass energy g2, reaches the electroweak scale (several
hundred GeVs), electron and positron annihilation process probes a rich do-
main of investigating electroweak physics, see for instance Refs. Murayama
and Peskin| (1996); Barklow et al. (1997). Recent experiments on e"e™ col-
lisions at LEP, SLAC and the Tevatron allowed precision tests of the elec-
troweak Standard Model. In Grunewald (1999),Altarelli and Grinewald|(2004)
the results of these precision tests together with implications on parame-
ters, in particular Higgs boson mass, as well as constraints for possible new
physics effects are discussed.

Electron and positron collisions are used to produce many particles in the
laboratory, which live too short to occur naturally. Several electron-positron
colliders have been built and proposed for this purpose all over the world
(CERN, SLAC, INP, DESY, KEK and IHEP), since the first electron-positron
collider the “Anello d’Accumulazione” (AdA) was built by the theoretical
proposal of Bruno Touschek in Frascati (Rome) in 1960 Bernardini (2004).
Following the success of AdA (luminosity ~ 10%°/(cm? sec), beam energy
~0.25GeV), it was decided to build in the Frascati National Laboratory a stor-
age ring of the same kind, Adone and then Daphne (luminosity ~ 10% /(cm?sec),
beam energy ~0.51GeV), with the aim of exploring the new energy range in
sub-nuclear physics opened by the possibility of observing particle-antiparticle
interactions with center of mass at rest. The biggest of all is CERN’s Large
Electron Positron (LEP) collider L3C, which began operation in the summer
of 1989 and have reached a massive collision energy of 206.5 GeV. The de-
tectors around the LEP ring have been able to perform precise experiments,
testing and extending our knowledge of particles and their strong, electro-
magnetic and weak interactions, as described by the Standard Model for ele-
mentary particle physics.

All these clearly show how the study of eTe™ reaction introduced by Dirac
have grown to be one of the most prolific field in particle physics and have
received remarkable verification in energies up to TeV in a succession of ma-
chines increasing in energy.

E.2. The Breit-Wheeler process in laser physics
and astrophysics

While the Dirac process has been by far one of the most prolific in
physics, the Breit-Wheeler process has been one of the most elusive
for direct observations. In Earth-bound experiments the major effort today
is directed to evidence this phenomenon in very strong and coherent electro-
magnetic field in lasers. In this process collision of many photons may lead in
the future to pair creation. This topic is discussed in the following Sections.
Alternative evidence for the Breit-Wheeler process can come from optically
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E. Phenomenology of electron-positron pair creation and annihilation

thick electron-positron plasma which may be created in the future either in
Earth-bound experiments, or currently observed in astrophysics, see Chapter
One additional way to probe the existence of the Breit-Wheeler process
is by establishing in astrophysics an upper limits to observable high energy
photons, as a function of distance, propagating in the Universe as pioneered
by Nikishov [Nikishov]| (1961), see Sec.

We first briefly discuss the phenomenon of electron-positron pair produc-
tion at the focus of an X-ray free electron laser, as given in the review ar-
ticle Ringwald (2001bja, 2003). In the early 1970’s, the question was raised
whether intense laser beams could be used to produce a very strong elec-
tric field by focusing the laser beam onto a smaller spot of size of the laser
wavelength A, so as to possibly study electron-positron pair production in
vacuum Bunkin and Tugov| (1970); Brezin and Itzykson (1970). However, it
was found that the power density of all available and conceivable optical
lasers |Perry and Mourou (1994) is too small to have a sizable pair production
rate for observations Bunkin and Tugov| (1970); Brezin and Itzykson (1970);
Popov| (1971c¢, [1972b, [2001b, 1971c, 1972b, 2001b)); Troup and Perlmanl (1972);
Popov| (1972a); Marinov and Popov| (1973, [1977); Narozhnyi and Nikishov
(1974); Popov| (1973a); Mostepanenko and Frolov| (1974); Popov| (1974); Mari-
nov and Popov| (1973, 1977), since the wavelength of optical lasers and the
size of focusing spot are too large to have a strong enough electric field.

Definite projects for the construction of X-ray free electron lasers (XFEL)
have been set up at both DESY and SLAC. Both are based on the principle
pioneered by John Madey |Deacon et al.| (1977) of self-amplified spontaneous
emission in an undulator, which results when charges interact with the syn-
chrotron radiation they emit [Iremaine et al. (2002). At DESY the project is
called XFEL and is part of the design of the electron-positron collider TESLA
Materlik and Tschentscher; Brinkmann et al.;|[Materlik and Wroblewski| (1999);
Badelek et al. (2004) but is now being build as a stand-alone facility. At SLAC
the project so-called Linac Coherent Light Source (LCLS) has been proposed
Arthur; Lindau et al.| (1999); Icl. It has been pointed out by several authors
Melissinos|(1999); Chen and Pellegrini (1998);/Chen and Tajima|(1999); Tajima
(2003) that having at hand an X-ray free electron laser, the experimental study
and application of strong-field physics turn out to be possible. One will use
not only the strong energy and transverse coherence of the X-ray laser beam,
but also focus it onto a small spot hopefully with the size of the X-ray laser
wavelength A ~ O(0.1)nm Nuhn and Pellegrini (2000), and obtain a very
large electric field E ~ 1/A, much larger than those obtainable with any op-
tical laser of the same power.

Using the X-ray laser, we can hopefully achieve a very strong electric field
near to its critical value for observable electron-positron pair production in
vacuum. Electron-positron pair production at the focus of an X-ray laser has
been discussed in Ref. Melissinos| (1999), and an estimate of the correspond-
ing production rate has been presented in Ref. Chen and Pellegrini (1998). In
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E.2. The Breit-Wheeler process in laser physics and astrophysics

Ref. Ringwald| (2001b,a, 2003), the critical laser parameters, such as the laser
power and focus spot size, are determined in order for achieving an observ-
able effect of pair production in vacuum.

The electric field produced by a single laser beam is the light-like static,
spatially uniform electromagnetic field, and field invariants S and P (A.4.23)
vanish Troup and Perlman| (1972),

S=0 P=0, (E.2.1)

which results field invariants e = B = 0 and non pair producing
Schwinger| (1951, 1954a.b), this can be seen from Eqgs. (A.4.23), (A.4.27) and
(C.4.39). It is then required that two or more coherent laser beams form a
standing wave at their intersection spot, where a strong electric field can hy-
pothetically be produced without magnetic field.

We assume that each X-ray laser pulse is split into two equal parts and
recombined to form a standing wave with a frequency w, whose electromag-
netic fields are then given by

E(t) = [0,0, Epeaic cos(wt)], B(t) = (0,0,0), (E2.2)

where the peak electric field is Ringwald (2001bja, 2003),

Piaser 17 (Plaser) 1/2 <0.1nm> V
E =4 = 1.1-10 — —, E2.3
peak nalzaser 1ITW Olager / M ( )

as expressed in terms of the laser power Pj,qe (1 TW=10'2W), the focus spot
radius 0jaser- Eq. (E.2.3) shows that the peak electric energy-density EIZ) cak/ 2

is created in a spot of area mflzas or Dy an X-ray laser of power Pjyger- The laser
beam intensity on the focused spot is then given by

I o P laser c E2
laser — o2 — E peak®
laser

For a laser pulse with wavelength A about 1um and the theoretical diffraction
limit 0,5 =~ A being reached, the critical intensity laser beam can be defined

as,
e = 3o F2 = 46 10°W /em?, (E2.4)

which corresponds to the peak electric field approximately equal to the criti-
cal value E; (3.2.1).
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E.2.1. Phenomenology of pair production in alternating fields

To compute pair-production rate in an alternating electric field of laser
wave in a semi classical manner, one assumes the conditions that the peak
electric field Epeak is much smaller than the critical field E. 1} and the en-
ergy hw of the laser photons is much smaller than the rest energy of electron
mec2,

Epeak < Ec,  wh < mec?. (E.2.5)

These conditions are well satisfied at realistic optical as well as X-ray lasers
Ringwald| (2001b,a, 2003).

The phenomenon of electron-positron pair production in alternating elec-
tric fields was studied in Refs. Brezin and Itzykson| (1970); Popov| (1971c,
1972b), [2001b, [1971c, 1972b, 2001b|, [1972a)); Marinov and Popov| (1973, 1977);
Narozhnyi and Nikishov| (1974); Popov| (1973a); Mostepanenko and Frolov
(1974); Popov| (1974); Marinov and Popov|(1973,1977); Dunne and Hall|(1998).
By using generalized JWKB method Brezin and Itzykson| (1970) and imag-
inary time method Popov (1971c, [1972b, 2001b)} 1971c, 1972b, 2001b, 1973a,
1974) the rate of pair production was computed. In Ref. Brezin and Itzykson
(1970), the rate of pair production was estimated to be (see Sec. |C.5),

= c Epeak 2 T Epeak
P = ( P ) exp [—n P g(;y)] , (E.2.6)
4AE N\ Ee ) g(n) + 2;8' (i) Ec

where the complex function g(7) is given in Refs. Brezin and Itzykson/(1970);

Popov|(1971c, 1972b, 2001b)) (see Eq. (C.5.24)),

1 2 112 1— L +0(n", >1
4 / du[ 1—u ] :{ g FO™), (E27)
0

8(n) = — T4y 22 Zin(2)+0(p%), n<1

and the parameter 7 is defined as the work done by the electric force eEpeaxk
in the Compton wavelength A in unit of laser photon energy fiw,

eEpeakA 2E
peak/*C MeC™ Lpeak
= = . E.2.
T hew hw E. (E2.8)

which is the same as 7 in Sec. and agrees with its time-average
(E-3.4), over one period of laser wave. The exponential factor in Eq.
has been confirmed by later works Popov|(1971c, 1972b| 2001b} 1973a, 1974),
which determine more accurately the pre-exponential factor by taking into
account also interference effects. The parameter 7 is related to the adiabatic-
ity parameter y = 1/7.

In the strong-field and low-frequency limit (7 > 1), formula (E.2.6) agrees
to the Schwinger non perturbative result for a static and spatially uni-
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form field, apart from an “inessential” (see Ref. Brezin and Itzykson (1970))
pre-exponential factor of 7r. This is similar to the adiabatic approximation of
a slowly varying electric field that we discussed in Sec. On the other
hand, for # < 1 high-frequency and weak-field limit, Eq. yields Brezin
and Itzykson| (1970),

2 ngcz

5 C hw \2 /] en\ 2755 )
v 4m3AL (mecz) 2In(4/7) (z) [1+O(17 )], (E.2.9)

corresponding to the nth order perturbative result, where n is the minimum
number of quanta of laser field required to create an e*e™ pair:

2
0> 2m,c
~ hw

The pair production rate interpolates analytically between the adia-
batic, non perturbative tunneling mechanism (C.4.25) (7 > 1,7 < 1) and
the anti-adiabatic, perturbative multi-photon production mechanism (E.2.9)
(n<1l,y>1).

In Refs. Popov| (1973a, [1974), it was found that the pair-production rate,
under the condition (E.2.5), can be expressed as a sum of probabilities w,, of
many-photon processes,

> 1. (E.2.10)

MeC?

B, (E.2.11)

n>ngp

where A, indicates an effective energy gap m.c?A,;, due to the transverse
oscillations of the electron propagating in a laser wave (see Sec. and
Eq. (C.6.11)). In the limiting cases of small and large 7, the result is given
by Popov (1974),

Epea 5/2 B
o o B0 on - n(s) 0 hrrou ), wa
p— 344 5/2 )
A () L (D) e v (9172), <1,
(E.2.12)

where n > (2m,c*/hw), ¢ = 2(n — 2’;}52) and Erfi(x) is the imaginary er-
ror function [Bateman!| (1955). The range of validity of results (E.2.6), (E.2.9),
(E.2.11)) and (E.2.12) is indicated by the conditions (E.2.5).

E.2.2. Pair production in X-ray free electron lasers

According to Eq. (E.2.3) for the electric field E of an X-ray laser, in order to
obtain an observable effect of pair production we need to have a large power
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P, a small laser focusing spot radius 0j,¢e; and a long duration time At of
the coherent laser pulse. The power of an X-ray free electron laser is lim-
ited by the current laser technology. The focusing spot radii ¢j,se, are lim-
ited by the theoretical diffraction of the order of the X-ray laser beam wave-
length. In Ref. Ringwald| (2001bja, 2003), it was estimated that to produce
at least one pair of electron and positron, we need the minimum power of
the X-ray laser to be ~ 2.5 — 4.5TW corresponding to an electric field of
~ 1.7 -23-10"V/em ~ 0.1E, provided the laser wavelength is A ~ 0.1lnm
and the theoretical diffraction limit j,e; >~ A is actually reached and the
laser coherent duration time At ~ 10~ (13~16) second. Based on these estima-
tions, Ringwald concluded Ringwald (2001bja, [2003) that with present avail-
able techniques, the power density and electric fields of X-ray laser are far
too small to produce a sizable Sauter-Euler-Heisenberg-Schwinger effect. If
the techniques for X-ray free electron laser are considerably improved, so that
the XFEL power can reach the terawatt regime and the focusing spot radii can
reach the theoretical diffraction limit, we will still have the possibility of in-
vestigating the Sauter-Euler-Heisenberg-Schwinger phenomenon by a future
XFEL.

E.2.3. Pair production by a circularly polarized laser beam

Instead of a time-varying electric field that is created by an intersec-
tion of more than two coherent laser beams, one considered [Bulanov| (2004);
Narozhny et al.[(2004) a focused circularly polarized laser beam to have non
vanishing field invariants S, P and strong electromagnetic fields E, B
for pair production. It is well known that the electromagnetic field of a fo-
cused light beam is not transverse, however, one can always represent the
field of a focused beam as a superposition of fields with transverse either
electric (e-polarized) field or magnetic (h-polarized) field only, see e.g., Born
and Wolf| (1980).

In Ref. Narozhny et al.| (2004), the e-polarized electric and magnetic fields
(E®, B®) propagating in the 2 direction is described by the following exact so-
lution of Maxwell equations Narozhny and Fofanov| (2000),

EC = iEpeae [Fl(ex +e,) — Fet2(e, T ey)} ; (E.2.13)
< d
_ - VA
B = +Epeue "/’{ (1 s ﬂ)
[Fl(ex +ey) + Fet (e, T ey)] + 2iAei21¢a—£ez}, (E.2.14)

where ¢ = w(t —z/c), e = (x+iy)/p, x = zA/R, & = p/R and
p = v/x% + y2. The focusing parameter A = A/ (27tR) is expressed in terms of
laser’s wavelength A and the focal spot radius R. The functions F; (&, x, A)
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obey differential equations Narozhny and Fofanov| (2000), go to zero suffi-
ciently fast when ¢, |x| — oo and conditions F;(0,0,A) = 1; F,(0,0,A) = 0 for
A — 0|Narozhny et al| (2004). The h-polarized electric and magnetic fields
E" = +iB® and B" = F{E°Narozhny and Fofanov| (2000).

Corresponding to electromagnetic fields (E.2.13), (E.2.14), field invariants

S¢, P¢ are given by Eq. (A.4.23) and ¢, B by Eq. (A.4.25) in Sec. The total
number of electron and positron pairs is given by Eq. (C.4.39) for n = 1 (see

also Eq. (C.4.41),

b T T tE
Nptp- > ;(/VdV/O dtep coth?ﬁexp (— . C) , (E.2.15)

where the integral over the volume V and duration T of the laser pulse. The
qualitative estimations and numerical calculations of total number N,+,- of
electron and positron pairs in terms of laser intensity Ij,¢er and focusing pa-
rameter A are presented in Ref. Narozhny et al. (2004). Two examples for
e-polarized electromagnetic fields are as follow,

1. for Epeak = Ec, A = 1um, T = 10fs and A = 0.1 (the theoretical

diffraction limit), the laser beam intensity [jer ~ 1.5 10®W/cm? ~
0.311},, the critical intensity (E.2.4). The total number of pairs created

laser

Nte- =~ 5-10% according to the Schwinger formula Eq. (E.2.15) for
pair—production rate;

2. with the same values of laser parameters A, A and 7, while the laser
pulse intensity Luser ~ 510 W/cm? ~ 1072[ __ corresponding to

laser
Epeak ~ 0.18E., Eq. (E.2.15) gives N,+,- ~ 20.

Because the volume V and duration 7 of the laser pulse is much larger than
the Compton volume and time occupied by one pair, the average number
of pairs N,+,- ~ 20 is large and possibly observable even the peak value
of electric field is only 18% of the critical value. In addition, pair produc-
tion is much more effective by the e-polarized electric and magnetic fields
E°, B than by the h-polarized fields E", B". The detailed analysis of the de-
pendence of the number of pairs N,+,- on the laser intensity Ij,e; and fo-
cusing parameter A is given in a recent article Bulanov et al. (2006), and re-
sults is presented in Fig. (E2). In particular, it is shown that for the case
of two counter-propagating focused laser-pulses with circular polarizations,
pair production becomes experimentally observable when the laser intensity
Laser ~ 10%°W/cm? for each beam, which is about 1 ~ 2 orders of mag-
nitude lower than for a single focused laser-pulse, and more than 3 orders
of magnitude lower than the critical intensity (E.2.4). Recently the process
of electron-positron pair creation in the superposition of a nuclear Coulomb
and a strong laser field was studied in Milstein et al.| (2006).

It was pointed Narozhny et al| (2004); Bulanov et al. (2006) that the ex-
ploited method becomes inconsistent and one should take into account back
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Figure E.2.: Logarithm of the number of pairs N,+,- produced by the field
of two counter-propagating laser-pulses (circular polarization) is shown as
functions of: (a) the beam intensity Ij,s, for the focusing parameters A =
0.1,0.075,0.05 and 0.01 (the curves 1,2,3 and 4 correspondingly); (b) the fo-
cusing parameter A for the beam intensity Ij,ser = 4 - 10°°W/cm? and laser-
pulse duration T = 104 sec. This figure is reproduced from Fig. 6 in Ref. Bu-
lanov et al.[(2006).
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reaction of the pair production effect on the process of laser pulse focusing
at such high laser intensity and Epeax ~ Ec. It has already been argued in
Refs. Marinov and Popov|(1973,/1977); Popov|(1973a,1974) that for the super-
strong field regime E 2 0.1E,, such back reaction of the produced electron-
positron pairs on the external field and the mutual interactions between these
particles have to be considered. These back reaction effects on pair produc-
tion by laser beams leading to the formation of plasma oscillation have been
recently studied in Refs. Roberts et al.  (2002); |Alkofer et al. (2001); Bulanov
et al. (2005). Our recent studies Ruffini et al.| (2003c, 2007b) show that the
plasma oscillation and electron-positron-photon collision are important for
electric fields E > 0.1E,, see Sec.

E.2.4. Auvailability of laser technology for pair production

There are several ways to increase the electromagnetic fields of a laser beam.
One way is to increase the frequency of the laser radiation and then focus it
onto a tiny region. X-ray lasers can be used Ringwald (2001b,a, 2003);|Alkoter
et al| (2001); Tajima (2003). Another way is, again, to increase the intensi-
ties of laser beams. The recent development of laser technology and the in-
vention of the chirped pulse amplification (CPA) method have led to a stun-
ning increase of the light intensity (102W/cm?) in a laser focal spot Tajima
and Mourou (2002); Mourou et al.[ (1998). To achieve intensities of the order
10%*~2W/cm?, a scheme was suggested in Ref. Shen and Yul (2002), where
a quasi-soliton wave between two foils is pumped by the external laser field
up to an ultrahigh magnitude. Using the method based on the simultaneous
laser frequency upshifting and pulse compression, another scheme for reach-
ing critical intensities has also been suggested in Ref. Bulanov et al. (2003,
2004), where the interaction of the laser pulse with electron density modula-
tions in a plasma produced by a counter propagating breaking wake plasma
wave, results in the frequency up-shift and pulse focusing. In addition, it
has been suggested [Tajima and Mourou| (2002) a path to reach the extremely
high-intensity level of 10%°~*°W /cm? already in the coming decade. Such
field intensities are very close to the value of critical intensity I .. (E.2.4).
For a recent review, see Ref. Mourou et al. (2006) This technological situation
has attracted the attention of the theorists who involved in physics in strong
electromagnetic fields.

E.3. Phenomenology of pair production in electron
beam-laser collisions

In Sec. we have discussed the Breit-Wheeler process Breit and Wheeler
(1934) in which that an electron-positron pair is produced in the collision of
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two real photons 1 4+ 72 — et + e~ (A.0.2). The cross-section they obtained
is O(r2), where the classical electron radius ., see Eq. (A.2.10). This lowest-
order photon-photon pair-production cross-section is so small that it is dif-
ficult to observe creation of pairs in the collision of two high-energy photon
beams, even if their center-of-mass energy is larger than the energy-threshold
2mec* = 1.02 MeV.

In the previous Sections we have seen that in strong electromagnetic fields
in lasers the effective non-linear terms become significant and there-
fore, the interaction needs not to be limited to initial states of two photons
Reiss| (1962, [1971). A collective state of many interacting laser photons oc-
curs.

We turn now to two important processes Bula et al. (1996); Burke et al.
(1997) emerging in the interaction of an ultra relativistic electron beam with
a terawatt laser pulse, performed at SLAC Kotseroglou et al.,| (1996), when
strong electromagnetic fields are involved. The first process is the nonlinear
Compton scattering, in which an ultra relativistic electron absorbs multiple
photons from the laser field, but emits only a single photon via the process

e+nw —e 47, (E.3.1)

where w represents photons from the strong electromagnetic wave of the
laser beam (its frequency being w), n indicates the number of absorbed pho-
tons and y represents a high-energy emitted photon (see Eq. for cross
symmetry). The theory of this nonlinear Compton effect is given in Sec.
The same process has been expressed by Bamber et al. [Bamber
et al.| (1999) in a semi-classical framework. The second is the Breit-Wheeler
process

y+nw —et +e . (E.3.2)

between this very high energy photon y and multiple laser photons: the high-
energy photon v, created in the first process, propagates through the laser
tield and interacts with laser photons nw to produce an electron-positron pair
Burke et al. (1997).

In the electric field E of a high dense laser beam, an electron oscillates with
the frequency w of the laser and its maximum velocity in unit of the speed of
light is given by

eE

Vmax = —. (E.3.3)
mw

In the case of weak electric field, vmax < 1 and the non-relativistic electron
emits the dipole radiation well-described in linear and perturbative QED. On
the other hand, in the case of strong electric fields, vmax — 1 and the ul-
tra relativistically oscillating electron emits multi-pole radiation. The radiated
power is then a nonlinear function of the intensity of the incident laser beam.
Using the maximum velocity vmax of oscillating electrons in the electric field
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of laser beam, one can characterize the effect of nonlinear Compton scattering
by the dimensionless parameter

2
eErms _ MmecC Erms

mw  wh E;' (E34)

N = Umax =

where the subscript ‘rms’ means root-mean-square, with respect to the num-
ber of interacting laser photons with scattered electron. The parameter 1 can
be expressed as a Lorentz invariant,

2
2 _ e l(ApAr)]
=— E.3.5
0 mg (E.35)
where A, is the gauge potential of laser wave, 0¥ A, = 0 and the time-average
is taken over one period of laser wave, (A;) = 0 and

(ApAFY = ((Au— (AW)?). (E.3.6)

Eq. (E.3.5) shows that 7% is the intensity parameter of laser fields, and 7

(E.3.4) coincides with the parameter 7 introduced in Eq. (C.5.23)) for the pair-
production in an alternating electric field (see Sec.|C.5).

E.3.1. Experiment of electron beam-laser collisions

After the availability of high dense and powerful laser beams, the Breit-Wheeler
process has been reconsidered in Refs. [Reiss| (1962), [1971)); [Nikishov
and Ritus| (1964ab, 1965a, 1967, (1979, [1965b) for high-energy multiple pho-
ton collisions. The phenomenon of eTe™ pair production in multi photon
light-by-light scattering has been reported in recent papers Bula et al.| (1996);
Burke et al. (1997); Melissinos| (1999); Bamber et al.| (1999) on the experiment
SLAC-E-144 SLA; Kotseroglou et al.| (1996).

As described in Ref. Burke et al. (1997), such a large center-of-mass energy
(2mec? = 1.02 MeV) can be possibly achieved in the collision of a laser beam
against another high-energy photon beam. With a laser beam of energy 2.35
eV, a high-energy photon beam of energy 111 GeV is required for the Breit-
Wheeler reaction to be feasible. Such a high-energy photon beam can
be created for instance by backscattering the laser beam off a high-energy
electron beam, i.e., by inverse Compton-scattering. With a laser beam of en-
ergy 2.35 eV (wavelength 527nm) backscattering off a high-energy electron
beam of energy 46.6 GeV, as available at SLAC Kotseroglou et al. (1996), the
maximum energy acquired by Compton-backscattered photon beam is only
29.2GeV. This is still not enough for the Breit-Wheeler reaction (A.0.2)) to oc-
cur, since such photon energy is four times smaller than the needed energetic
threshold.
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Nevertheless in strong electromagnetic fields and a long coherent time-
duration At = 27t/ w of the laser pulse, the number n of laser photons inter-
acting with scattered electron becomes large, when the intensity parameter
of laser fields 7 approaches or even exceeds unity. Once this number
n is larger than the critical number n in Sec. pair production by
the Breit-Wheeler reaction for high-energy multiple photon collisions
becomes feasible.

The probability of pair production by the processes (E.3.1) and (E.3.2) is
given by Egs. (C.6.9) and (C.6.11)) for any values of 7 in Sec. In high-

frequency and weak-field limit 7 < 1, the probability P., (C.6.9) and P,
(C.6.11)) for fairly small 1 are proportional to 72", i.e.

Py o 72", Py 72" (E.3.7)

(see Egs. (E.2.9), (E.2.12)). This corresponds to the anti-adiabatic, perturba-
tive multi-photon production mechanism (E.2.9), (E.2.12) for (y < 1). In
low-frequency and strong field limit # >> 1, it essentially refers to process
in a constant and uniform field where E and B are orthogonal and equal in

magnitude. This corresponds the adiabatic limit of a slowly varying electro-
magnetic field discussed in Sec. [E.2.1}

For n > 5 laser photons of energy 2.35eV colliding with a photon of energy
29 GeV, the process of Breit-Wheeler pair production becomes energetically
accessible. In Refs. [Bula et al. (1996)); Burke et al.| (1997); Bamber et al. (1999),
it is reported that nonlinear Compton scattering and Breit-Wheeler
electron-positron pair production have been observed in the collision
of 46.6 GeV and 49.1 GeV electrons of the Final Focus Test Beam at SLAC with
terawatt pulse of 1053 nm (1.18 eV) and 527 nm (2.35 eV) wavelengths from a
Nd:glass laser. The rate of pair production, i.e., R+ of positrons/(laser shot)
is measured in terms of the parameter 1 (y < 1), as shown in Fig. where
line is a power law fit to the data and gives Burke et al.|(1997),

R+ o« ", with n = 5.1+ 0.2(stat) )3 (syst). (E.3.8)

These experimental results are found to be in agreement with theoretical pre-
dictions (E.3.7), i.e., (C.6.9), (C.6.11)) for small #7; as well as with and
for w — 7w in the frame of reference where the electron beam is at
rest. This shows that the pair production of Breit-Wheeler type by the anti-
adiabatic, perturbative multi-photon production mechanism, described by
Egs. (C.6.9), (C.6.11) or (E.2.9), (E2.12) for small # < 1, has been experi-
mentally confirmed. However, one has not yet experimentally observed the
pair production by the adiabatic, non-perturbative tunneling mechanism, de-
scribed by Egs. (C.6.9), (C.6.11) or (E.2.9), (E.2.12) for large  >> 1, i.e. for static
and constant electromagnetic fields. Nevertheless, pair production probabil-
ities Egs. (E.2.6), (E.2.12) and Egs. (C.6.9), (C.6.11) interpolates between both
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Figure E.3.: Dependence of the positron rate per laser shot on the laser field-
strength parameter 5. The line shows a power law fit to the data. The shaded
distribution is the 95% confidence limit on the residual background from
showers of lost beam particles after subtracting the laser-off positron rate.
This figure is reproduced from Fig. 4 in Ref. Burke et al. (1997)

n < 1and 77 > 1 regimes. Based on such analyticity of these probability
functions in terms of the laser intensity parameter 7, we expect the pair pro-
duction to be observed in 77 > 1 regime.

E.3.2. Pair production viewed in the rest frame of electron
beam

In the frame of reference where the electron beam is at rest one can dis-
cuss Melissinos| (1999) pair production in the processes (E.3.I) and (E.3.2)
by using pair-production rate Egs. (E.2.6), (E.2.9), (]m[) in Sec [E.2] for X-
ray laser case. In the experiment of colliding 46.6GeV electron beam with
2.35eV (527nm) laser wave, the field strength in the laboratory is Ejy, ~
6 - 101°V/cm and intensity I ~ 10°W/cm? for n = 1 Burke et al.| (1997).
The Lorentz gamma factor of the electron beam v = &,/ mec* ~ 9.32 - 10* for
Ee ~ 46.6GeV. In the rest frame of the electron beam, the electric field is given

by

Erest = Y (Epab + V X Blap) = YEpp (14 |v|) ~ 27Ejp (E.3.9)

527



E. Phenomenology of electron-positron pair creation and annihilation

where laser’s electromagnetic fields E- B = 0, |E| = |B|, B x k = E, and
laser’s wave-vector k = —¥V, thus one has
Erest = 2vEp ~ 2 - 10°E}y, ~ 0.86E.. (E.3.10)

The field of 2.35eV laser wave is well-defined coherent wave field with wave-
length A, = 5.27 - 10~2cm and frequency wyy, = 3.57 - 10'°/sec (the pe-
riod Aty = 271/w = 1.76 - 10 %sec). In the rest frame of electron beam,
Arest = YAp = 4.91cm and Atrest = At /7 = 1.9 - 10~ Osec. Comparing
these wavelength and frequence of laser wave field with the spatial length
h/m.c = 3.86 - 10 1lcm and time scale fi/m,c? = 1.29 - 10~ %1sec of sponta-
neous pair-production in vacuum, we are allowed to apply the homogenous
and adiabatic approximation discussed in Sec. and use the rate of pair

production (E.2.6), (E.2.9), (E.2.12) in Sec. for X-ray laser case.

E.4. The Breit-Wheeler cutoff in high-energy
Y-rays

Having determined the theoretical basis as well as attempts to verify experi-
mentally the Breit-Wheeler formula we turn in Sec. to a most important
application of the Breit-Wheeler process in the framework of cosmology. As
pointed out by Nikishov Nikishov| (1961) the existence of background pho-
tons in cosmology puts a stringent cutoff on the maximum trajectory of the
high energy photons in cosmology.

The Breit-Wheeler process for the photon-photon pair production is one of
most relevant elementary processes in high energy astrophysics. In addition
to the importance of this process in dense radiation fields of compact objects
Bonometto and Rees| (1971), the essential role of this process in the context of
intergalactic absorption of high-energy y-rays was first pointed out by Nik-
ishov Nikishov]| (1961); Gould and Schréder (1967). The spectra of TeV radia-
tion observed from distant (d > 100 Mpc) extragalactic objects suffer essential
deformation during the passage through the intergalactic medium, caused
by energy-dependent absorption of primary 7y-rays at interactions with the
diffuse extragalactic background radiation, for the optical depth 7,, most
likely significantly exceeding one |(Gould and Schréder| (1967); Stecker et al.
(1992); |Vassiliev| (2000); Coppi and Aharonian! (1999). A relevant broad-band
information about the cosmic background radiation (CBR) is important for
the interpretation of the observed high-energy -y spectra |Aharonian, (2000);
Kneiske et al. (2002); Dwek and Krennrich (2005); |Aharonian et al.| (2006).
For details, readers are referred to Refs. Hauser and Dwek! (2001); Aharonian
(2003). In this section, we are particularly interested in such absorption effect
of high-energy y-ray, originated from cosmological sources, interacting with
the Cosmic Microwave Background (CMB) photons. Fazio and Stecker |Fazio
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and Stecker (1970); Stecker et al. (1977) were the first who calculated the cutoff
energy versus redshift for cosmological y-rays. This calculation was applied
to further study of the optical depth of the Universe to high-energy y-rays
MacMinn and Primack (1996)); [ Kneiske et al. (2004); [Stecker et al.|(2006). With
the Fermi telescope, such study turns out to be important to understand the
spectrum of high-energy 7y-ray originated from GRBs’ sources at cosmolog-
ical distance, we therefore offer the details of theoretical analysis as follow
Ruffini et al.| (2008).

We study the Breit-Wheeler process to the case that high-energy
GRB photons w1, originated from GRBs sources at cosmological distance z,
on their way traveling to us, collide with CMB photons w; in the rest frame
of CMB photons, leading to electron-positron pair production. We calculate
the opacity and mean free-path of these high-energy GRB photons, find the
energy-range of absorption as a function of the cosmological red-shift z.

In general, a high-energy GRB photon with a give energy wy, collides with
background photons in all possible energies w,. We assume that i-type back-
ground photons have the spectrum distribution f;(w,), the opacity is then
given by

Tl

2 od7 e widw,
7Y

w1,z) = | ——
( 1, ) m§c4/w1 71-2

o H(z) fi(CUZ)‘Tw( . 2), (E4.1)

m2ct

where m2c*/ w; is the energy-threshold (A.2.8) above which the Breit-Wheeler
process (A.0.2) can occur and the cross-section ¢4 is given by Egs. (A.2.9);
H(z) is the Hubble function, obeyed the Friedmann equation

H(z) = Hy[Qum(z +1)% + Qp)2. (E4.2)

We will assume Qp; ~ 0.3 and Qs ~ 0.7 and Hy = 75Km/s/Mpc. The total
opacity is then given by

Tfy‘i;al(wl,z) = erw(wl,z), (E.4.3)
i

which the sum is over all types of photon backgrounds in the Universe.
In the case of CMB photons the distribution is black-body one fomp (w2 /T) =
1/ (e“2/T — 1) with the CMB temperature T, the opacity is given by

2

Ty \W2) = | e o , E44
mlwn2) o H(z') /m%c‘l/wl 2 ew2/T — 17 i m2ct ) ( )
where the Boltzmann constant kg = 1. To simply Eq. (E.4.4), we set x = 6:11%6;2.

In terms of CMB temperature and GRB-photons energy at the present time,

T=0z+1T% wip=(z+1)w],, (E.4.5)
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we obtain,

0 1 % d7 m2c* © dx x?
Tyy (Wi, 2) = Ro Jo HZ) (z+ 1) ( W) > /1 m2exp(x/0) — 1 _1‘777(95)/
(E.4.6)
where 070
1

0=x"z+1)?% =",
m2ct

(E.4.7)
and x¥ is the energy w{ in unit of m.c?(m.c?/T°) = 1.11 - 10%eV.

The 7y, (w?,z) = 1 gives the relationship @ = w{(z) that separates the
optically thick T, (w?,z) > 1 and optically thin 7,, (w?,z) < 1 regimes in the
Y — z plane.

The integral is evaluated numerically and the result is presented in
Fig. It clearly shows the following properties:

1. for the redshift z smaller than a critical value z, ~ 0.1 (z < z.), the CMB
is transparent to GRB photons with arbitrary energy, this indicates a
minimal mean-free path of GRB photons;

2. for the redshift z larger than the value (z > z.), there are two branches
of solutions for T,,(w{,z) = 1, respectively corresponding to the dif-
ferent energy-dependence of the cross-section (A.2.9): the cross-section
0,y (x) increases with the center of mass energy x = wiwz?/(m.c?)?
from the energy-threshold x = 1 to x ~ 1.97, and decreases
from x ~ 1.97 to x — oco. The energy of the CMB photon correspond-
ing to the critical redshift z ~ 0.1, w{ is ~ 1.15 - 10'°eV which separates
two branches of the solution. The position of this point in Fig. is
determined by the maximal cross-section at x ~ 1.97. Due to these
exsistence of these two solutions for a given redshift z, GRB photons
having energies in the grey region of Fig. [E.4/cannot reach the observer,
while photons from the white region of Fig. [E.4|are observable.

3. above the critical redshift z. low-energy GRB photons can reach due to
their energies are below the energetic threshold for the Breit-Wheeler
process (A.0.2). In addition, large-energy GRB photons are also ob-
serable due to the fact that the cross-section of Breit-Wheeler process
decreases with increasing energy of photons. For large redshifts
z ~ 103, the Universe is opaque and we disregard this regime.

Due to the fact that there are other radiation backgrounds contributing into
(E.4.3), the background of CMB photons gives the lower limit for opacity for
GRB photons with respect to the Breit-Wheeler process (A.0.2). Finally, we
point out that the small-energy solution for large redshift in Fig. agrees
with the one found by Fazio and Stecker Fazio and Stecker (1970); |Stecker
et al. (1977).
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Figure E.4.: This is a Log-Log plot for GRB photon energy x° vs redshift z.
The grey region represents optically thick case, while the white one is for
optically thin case. The boundary between the two is the two-branch solution
of Eq. for T,, = 1. There is a critical redshift z. ~ 0.1 for GRB photons
with arbitrary energy, which can reach the observer. The value of the GRB
photon energy corresponding to this critical redshift is w{ ~ 1.11 - 10'%eV.
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E.5. Theory of pair production in Coulomb
potential

By far the major attention to build a critical electric field has occurred in the
physics of heavy nuclei and in heavy ion collisions. We recall in the follow-
ing some of the basic ideas, calculations, as well as experimental attempts to
obtain the pair creation process in nuclear physics.

E.5.1. The Z = 137 catastrophe

Soon after the Dirac equation for a relativistic electron was discovered Dirac
(1928, 1947), Gordon [Gordon| (1928a)b) (for all Z < 137) and Darwin [Dar-
win|(1928) (for Z = 1) found its solution in the point-like Coulomb potential
V(r) = —Zua/r, 0 <r < oo.Solving the differential equations for the Dirac
wave function, they obtained the well-known Sommerfeld’s formula Som-
merfeld (1916) for the energy-spectrum,

~1/2
Zuo 2
N 2
E(n,j) = mec” |1+ (n KT (K- Zzaz)l/z) ] . (E.5.1)

Here the principle quantum number n = 1,2,3, - - - and

[ —(+1/2)=—(+1), if j=I1+% 1>0
K_{(j+1/2):l, if j=1-3 1>1 (ES.2)
where | = 0,1,2,... is the orbital angular momentum corresponding to the
upper component of Dirac bi-spinor, j is the total angular momentum, and
the states with K = F1,F2,F3,- - -, F(n — 1) are doubly degenerate, while
the state K = —n is a singlet Gordon (1928alb); [Darwin, (1928). The integer
values 7 and K label bound states whose energies are &(n,j) € (0, m.c?). For
the example, in the case of the lowest energy states, one has

1) = mec?y[1—(Za)?, (E.5.3)
£(25,) = 8(2P%):mec2\/1+vl2_ (Za)* (E.5.4)

E(2Py) = mgcz,/l—%(zzx)z. (E.5.5)

2

For all states of the discrete spectrum, the binding energy m.c* — &(n,j) in-
creases as the nuclear charge Z increases, as shown in Fig. When Z = 137,

€(1S1/2) = 0, €(251/2) = E(2P1 ) = (mec®)/v/2 and &(2S3/2) = mec*V/3/2.
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Figure E.5.: Atomic binding energies as function of nuclear charge Z. This
figure is reproduced from Fig. 1 in Ref. Greiner and Reinhardt (1999).

Gordon noticed in his pioneer paper |Gordon/ (1928a,b) that no regular solu-
tions withn = 1,7 = 1/2,] = 0, and K = —1 (the 157/, ground state) are
found beyond Z = 137. This phenomenon is the so-called “Z = 137 catastro-
phe” and it is associated with the assumption that the nucleus is point-like in
calculating the electronic energy-spectrum.

In fact, it was shown since the pioneering work of Pomeranchuk Pomer-
anchuk and Smorodinskii (1945) that in nature there cannot be a point-like
charged object with effective coupling constant Za > 1 since the entire elec-
tron shell will collapse to the center.

E.5.2. Semi-Classical description

In order to have further understanding of this phenomenon, we study it in the
semi-classical scenario. Setting the origin of spherical coordinates (7,6, ¢) at
the point-like charge, we introduce the vector potential A, = (A, Ag), where
A = 0 and Ay is the Coulomb potential. The motion of a relativistic “elec-
tron” (scalar particle) with mass m and charge e is described by its radial
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momentum p,, angular momenta py and the Hamiltonian,

Hy = imecz\/u(m”—rc)u(%)z—vu), (E.5.6)

where the potential energy V(1) = eAp, and =+ corresponds for positive and
negative solutions. The states corresponding to negative energy solutions are
fully occupied. The angular momentum py is conserved, for the Hamiltonian
is spherically symmetric. For a given angular momentum p,, the Hamilto-
nian describes electron’s radial motion in the following the effective

potential
Ex = “+mec? /1+ (ﬁ)2 — V(r). (E.5.7)
mecr

The Coulomb potential energy V(r) is given by

_ Ze?

Vir) = —. (E.5.8)

In the classical scenario, given different values of angular momenta py,
the stable circulating orbits (states) are determined by the minimum of the
effective potential E(r) (E.5.7). Using dE(r)/dr = 0, we obtain the stable
orbit location at the radius Ry, in the unit of the Compton length Ac,

2
Ri(py) = ZMC\/ 1- (pfj‘h) , (E.5.9)

where & = ¢?/hc and py > Za. Substituting Eq. (E.5.9) into Eq. (E.5.7), we
tind the energy of the electron at each stable orbit,

2
E(pp) =min(Ey) = mecz\/l - (pjjf) . (E.5.10)

The last stable orbits (minimal energy) are given by
py — Zah+0%, Rp(pp) — 0%, &(pg) — 0. (E.5.11)

For stable orbits for py/h > 1, the radii Rp/Ac > 1 and energies £ —
mec% + 0~ ; electrons in these orbits are critically bound since their banding en-

ergy goes to zero. As the energy-spectrum (E.5.1), see Egs. (E.5.3]E.5.4)E.5.5),
Eq. (E.5.10) shows, only positive or null energy solutions (states) exist in the

presence of a point-like nucleus.

In the semi-classical scenario, the discrete values of angular momentum p,
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are selected by the Bohr-Sommerfeld quantization rule

/p¢d4> ~ h(l + %), = pe(l) ~n(l+ %), 1=0,1,2,3,... (BE5.12)

describing the semi-classical states of radius and energy

2
(Za) " TA¢ \/ 1- ( ;i"‘l) , (E.5.13)

27 \2
2 —_—
MeC \/1 <Zl T 1) . (E.5.14)

Other values of angular momentum py, radius R; and energy & given by
Egs. (E.5.9JE.5.10) in the classical scenario are not allowed. When these semi-
classical states are not occupied as required by the

12

RL(1)

e(l)

12

Pauli Principle, the transition from one state to another with different dis-
crete values (/1,1 and Al = I — [} = £1) is made by emission or absorption
of a spin-1 (1) photon. Following the energy and angular-momentum con-
servations, photon emitted or absorbed in the transition have angular mo-
menta py(l2) — pp(li) = h(lp — 1) = £h and energy E(lo) — E(1). As re-
quired by the Heisenberg indeterminacy principle ApApy ~ 4rtpy(l) 2 h,
the absolute ground state for minimal energy and angular momentum is
given by the I = 0 state, py ~ h/2, Ry ~ ZaAc\/1—(2Zx)? > 0 and
€ ~ mec®\/1— (2Za)?2 > 0 for Za < 1/2. Thus the stability of all semi-
classical states | > 0 is guaranteed by the Pauli principle. In contrast for
Zwx > 1/2, there is not an absolute ground state in the semi-classical scenario.

We see now how the lowest energy states are selected by the quantiza-
tion rule in the semi-classical scenario out of the last stable orbits
in the classical scenario. For the case of Za < 1/2, equating Eq. (E.5.11) to
pp = h(l+1/2) (E5.12), we find the selected state | = 0 is only possible
solution so that the ground state I = 0 in the semi-classical scenario corre-
sponds to the last stable orbits (E.5.11) in the classical scenario. On the other
hand for the case Za > 1/2, equating Eq. (E.5.11) to py = (1 4-1/2) (E.5.12),
we find the selected state | = [ = (Za —1)/2 > 0 in the semi-classical sce-
nario corresponds to the last stable orbits in the classical scenario.
This state | = [ > 0 is not protected by the Heisenberg indeterminacy princi-
ple from quantum-mechanically decaying in %i-steps to the states with lower
angular momentum and energy (correspondingly smaller radius R;, (E.5.13))
via photon emissions. This clearly shows that the “Z = 137-catastrophe” cor-
responds to Ry — 0, falling to the center of the Coulomb potential and all
semi-classical states (I) are unstable.
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E.5.3. The critical value of the nuclear charge Z., = 173

A very different situation is encountered when considering the fact the nu-
cleus is not point-like and has an extended charge distribution Pomeranchuk
and Smorodinskii (1945); Case| (1950); Werner and Wheeler| (1958)); Voronkov
and Kolesnikov/|(1961); Popov (1970a}b, (1971bja); Zeldovich and Popov|(1971).
When doing so, the Z = 137 catastrophe disappears and the energy-levels
&(n,j) of the bound states 1S, 2P and 2§, - - - smoothly continue to drop
toward the negative energy continuum as Z increases to values larger than
137, as shown in Fig. The reason is that the finite size R of the nucleus
charge distribution provides a cutoff for the boundary condition at the ori-
gin r — 0 and the energy-levels £(n, j) of the Dirac equation are shifted due
to this cutoff. In order to determine the critical value Z., when the negative
energy continuum (€ < —m,c?) is encountered (see Fig. , Zeldovich and
PopovPopov (1970a}b,|[1971b)a); Zeldovich and Popov|(1971) solved the Dirac
equation corresponding to a nucleus of finite extended charge distribution,
i.e., the Coulomb potential is modified as

_ze?
V(r) = { r r> R (E.5.15)

where R ~ 10~ !2cm is the size of the nucleus. The form of the cutoff function
f(x) depends on the distribution of the electric charge over the volume of
the nucleus (x = /R,0 < x < 1, with f(1) = 1). Thus, f(x) = (3 — x?)/2
corresponds to a constant volume density of charge.

Solving the Dirac equation with the modified Coulomb potential (E.5.15)
and calculating the corresponding perturbative shift AEr of the lowest en-
ergy level (E.5.3) Popov obtainsPopov| (1970a); Zeldovich and Popov|(1971)

2 zge—A)Z’yZ 1
ptg = me2 O] {1 —2 / X xz%dx} , E5.16
where ¢ = Zua, 7, = /1 — &% and A = In(h/m.cR) > 1 is a logarithmic pa-
rameter in the problem under consideration. The asymptotic expressions for

the 151/, energy that were obtained arePopov|(1971a); Zeldovich and Popov
(1971)

V1—¢E%coth(Ay/1-¢2), 0<Z<1,
E(1S1,5) = mec? { AL E=1, (E.5.17)

V&2 —Tcot(A/E2—1), ¢&>1.

As aresult, the “Z = 137 catastrophe” in Eq. (E.5.1) disappears and £(15;,5) =
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0 gives

i ! E.5.18

=14 —— ATF); 5.

the state 15, /, energy continuously goes down to the negative energy contin-
uum since Za > 1, and €(1S;,,) = —1 gives

2 1

=14+ —— A~ E5.1
Ger +2A(A—|—2)+O( ) (E.5.19)

as shown in Fig. In Ref. Popov]| (1970a); [Zeldovich and Popov| (1971)

Popov and Zeldovich found that the critical value d”) = Z.«a for the energy-
levels nS; /, and nP; /, to reach the negative energy continuum is equal to

n??

n —

e =14 Sz O, (E.5.20)
The critical value increases rapidly with increasing n. As a result, it is found
that Z,, ~ 173 is a critical value at which the lowest energy-level of the
bound state 151/, encounters the negative energy continuum, while other
bound states encounter the negative energy continuum at Z., > 173 (see also
Ref.Werner and Wheeler| (1958) for a numerical estimation of the same spec-
trum). The change in the vacuum polarization near a high-Z nucleus arising
from the finite extent of the nuclear charge density was computed in Brown
et al.| (1975a,bjc) with all calculations done analytically, and to all orders in
Zw. Note that two nuclei with charges Z; and Z; respectively, if Z; > Z, and
K-shell of the Z;-nucleus is empty, then Z; may be neutral atom. In this case
two nuclei make a quasi molecular state for which the ground term (1sc)
is unoccupied by electrons: so spontaneous production of positrons is also
possible Gershtein and Popov| (1973); Popov| (1973b). We refer the readers to
Ref.Popov|(1970a,b, 1971bja);|Zeldovich and Popov|(1971);|Popov|(2001a) for
mathematical and numerical details.

When Z > Z;, = 173, the lowest energy-level of the bound state 15;,,
enters the negative energy continuum. Its energy-level can be estimated as
follows

z
E(1S1 ) = mec® — 7"‘ < —mec?, (E.5.21)

where 7 is the average radius of the 15, /, state’s orbit, and the binding energy
of this state satisfies Za /7 > 2m,c?. If this bound state is unoccupied, the
bare nucleus gains a binding energy Za /7 larger than 2m,.c?, and becomes
unstable against the production of an electron-positron pair. Assuming this
pair-production occurs around the radius 7, we have energies for the electron
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(e—-) and positron (e4) given by

Zo Zuo
e \/|cp_|2 + m2ct — — e = \/|CP+|2 + mict + —  (E522)

where p4 are electron and positron momenta, and p— = —p4. The total
energy required for the production of a pair is

€L =€_+er = 2\/|cp_|2 + m2cH, (E.5.23)

which is independent of the potential V(7). The potential energies +eV (7)
of the electron and positron cancel each other out and do not contribute to
the total energy required for pair production. This energy
is acquired from the binding energy (Za/7 > 2m,c?) by the electron filling
into the bound state 1Sy ;. A part of the binding energy becomes the kinetic
energy of positron that goes out. This is analogous to the familiar case that
a proton (Z = 1) catches an electron into the ground state 15;,,, and a pho-
ton is emitted with the energy not less than 13.6 eV. In the same way, more
electron-positron pairs are produced, when Z > Z., = 173 the energy-levels
of the next bound states 2P; /5,253 5, . . . enter the negative energy continuum,
provided these bound states of the bare nucleus are unoccupied.

E.5.4. Positron production

Gershtein and Zeldovich Gershtein and Zeldovich/ (1969); Gershtein and Zel-
dovich/(1969) proposed that when Z > Z, the bare nucleus produces sponta-
neously pairs of electrons and positrons: the two positrons'|go off to infinity
and the effective charge of the bare nucleus decreases by two electrons, which
corresponds exactly to filling the K—shel]E| A more detailed investigation was
made for the solution of the Dirac equation at Z ~ Z,, when the lowest elec-
tron level 151, merges with the negative energy continuum, in Refs. Popov
(1970ajb} 1971bja,d). It was there further clarified the situation, showing that
at Z 2 Z., an imaginary resonance energy of Dirac equation appears,

€=¢€p— i%, (E.5.24)

'Hyperfine structure of 15y /, state: single and triplet.

2The supposition was made in Ref. Gershtein and Zeldovich (1969); |Gershtein and Zel-
dovich| (1969) that the electron density of 157, state, as well as the vacuum polarization
density, is delocalized at Z — Z,. Further it was proved to be incorrect |[Popov/| (1970Db)
1971b)-Zeldovich and Popov]|(1971).
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where

€0 = —me—a(Z—Zy), (E.5.25)

Z
Thua ~ 0(Z—Zy)exp (—b1 / ~ _CVZW) ) (E.5.26)

and a, b are constants, depending on the cutoff A (for example, b = 1.73 for
Z = Zy = 173 Popov| (1970b, 1971b); Zeldovich and Popov| (1971)). The

energy and momentum of emitted positrons are |eg| and |p| = +/|€o| — m.c?.

The kinetic energy of the two positrons at infinity is given by
ep = |eo| —mec> =a(Z —Zer) + - - -, (E.5.27)

which is proportional to Z — Z, (so long as (Z — Z.+) < Z) and tends to
zero as Z — Zr. The pair-production resonance at the energy is ex-
tremely narrow and practically all positrons are emitted with almost same ki-
netic energy for Z ~ Z,, i.e. nearly mono-energetic spectra (sharp line struc-
ture). Apart from a pre-exponential factor, I', in Eq. coincides with
the probability of positron production, i.e., the penetrability of the Coulomb
barrier (see Sec.[A.4). The related problems of vacuum charge density due to
electrons filling into the K-shell and charge renormalization due to the change
of wave function of electron states are discussed in Refs. Zeldovich and Rabi-
novich (1960); Shnol| (1971); Baz’ et al.| (1966); Migdal et al.| (1971); Perelomov
and Popov]| (1971). An extensive and detailed review on this theoretical issue
can be found in Refs. Zeldovich and Popov] (1971); Popov| (2001a)); Greiner
and Reinhardt| (2003, (1999).

On the other hand, some theoretical work has been done studying the pos-
sibility that pair production, due to bound states encountering the negative
energy continuum, is prevented from occurring by higher order processes
of quantum field theory, such as charge renormalization, electron self-energy
and nonlinearities in electrodynamics and even Dirac field itself Muller (1976);
Reinhardt and Greiner|(1977); Rafelski et al.| (1978a); Brodsky and Mohr|(1978);
Gyulassy| (1975); Rinker and Wilets (1975); Soff et al.| (1982). However, these
studies show that various effects modify Z., by a few percent, but have no
way to prevent the binding energy from increasing to 2m,c? as Z increases,
without simultaneously contradicting the existing precise experimental data
on stable atoms Greenberg and Greiner| (1982). Contrary claim Dietz et al.
(1993) according to which bound states are repelled by the lower continuum

through some kind of self screening appear to be unfounded Greiner and
Reinhardt (1999).

It is worth noting that an over critical nucleus (Z > Z.) can be formed
for example in the collision of two heavy nuclei Voronkov and Kolesnikov
(1961); |[Popov| (1971d); Gershtein and Zeldovich (1969); Gershtein and Zel-
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dovich (1969); Pieper and Greiner| (1969); Miiller et al.| (1972alc/b). To observe
the emission of positrons originated from pair production occurring near to
an overcritical nucleus temporally formed by two nuclei, the following neces-
sary conditions have to be full filled: (i) the atomic number of an over critical
nucleus is larger than Z., = 173; (ii) the lifetime of the over critical nucleus
must be much longer than the characteristic time (7/m.c?) of pair produc-
tion; (iii) the inner shells (K-shell) of the over critical nucleus should be unoc-
cupied.

However, we notice that the condition (ii) is crucial and cannot be fulfilled
n heavy ion collisions. In fact, in order to overcome the Coulomb repul-
sion the ion must have relativistic speed and consequently the characteris-
tic time of approach when the supercritical condition is reached last a time
At ~ h/(mzc?) which is much smaller than the characteristic time of pair
production. There has been up to now various unsuccessful attempts to bro-
den this time of encounter by ‘sticking” phenomena. Similarly, the condition
(iii) is not sufficient for pair production, since electrons that occupied outer
shells of high energies must undergo a rapid transmission to occupy inner
shells of lower energies, which is supposed to be vacant and encountering
the negative energy continuum. If such transmission and occupation take
place faster than pair production, the pair-production process is blocked. As
a consequence, it needs a larger value of Z > Z., = 173 to have stronger elec-
tric field for vacant out shells encountering the negative energy continuum
(see Eq. (E.5.20)) so that electrons produced in pair productions can occupy
outer shells. This makes pair production even less probable to be observed,
unless the overcritical charged nucleus is bare, i.e. all shells are vacant.

E.5.5. Homogeneous and adiabatic approximation

There is a certain analogy between positron production by a nucleus with
Z > Z¢ and pair production in a homogeneous electrostatic field. We note
that in a Coulomb potential of a nucleus with Z = Z., the corresponding
electric field E,, = Zcle|/ r2 is comparable with the critical electric field E,
, when r ~ Ac. However, the condition E > E. is certainly the neces-
sary condition in order to have the pair creation but not a sufficient one: the
spatial extent of the region where E > E; occurs must be larger than the De
Broglie wavelength of the created electron-positron pair. If a pair production
takes place, electrons should be bound into the K-shell nucleus and positrons
should go off to infinity. This intuitive reasoning builds the connection be-
tween the phenomena of pair production in the Coulomb potential at charge
Z > Z. and the one in an external constant electric field which was treated
in Sec. [E| The exact formula for pair production probability W in an over crit-
ical Coulomb potential has not yet been obtained in the framework of QED.
We cannot expect a literal coincidence of formulas for the probability W of

540



E.6. Pair production in heavy-ion collisions

pair production in these different cases, since the Schwinger formula
is exactly derived for a homogeneous field, while the Coulomb potential is
strongly inhomogeneous at small distances. Some progress in the treatment
of this problem is presented in Sec. [D]

All the discussions dealing with pair production in an external homoge-
neous electric field or a Coulomb potential assume that the electric field be
static. Without the feedback of the particles created on the field this will
clearly lead to a divergence of the number of pairs created. In the real de-
scription of the phenomenon at t — —oco we have an initial empty vacuum
state. We then have the turned on of an overcritical electric field and ongoing
process of pair creation with their feedback on a time on the electric field and
a final state at remote future t — +oo with the electron and positron created
and the remaining subcritical electric field. To describe this very different
regimes a simplified “adiabatic approximation” can be adopted by assum-
ing the existence of a homogeneous field only during a finite time interval
[—T,7]. That time 7 should be of course shorter than the feedback time .
During that time interval the Schwinger formula (C.4.25) is assumed to be
applicable and it is appropriate to remark that the overcritical electric fields
are related to very high energy-densities: E2/2 = 9.53 - 10%%ergs/cm?. In the
adiabatic approximation an effective spatial limitation to the electric field is
also imposed. Therefore the constant overcritical electric field and the appli-
cation of the Schwinger formula is limited both in space and time. Progress
in this direction has been presented in Ruffini et al.| (2007b), see Sec. A
significant amount of pairs is only produced if the finite lifetime of the over-
critical electric field is larger than the characteristic time of pair production
(h/m,c?) and the spatial extent of the electric field is larger than the tunneling
length a (A.4.6).

We have already discussed in Secs. and the experimental status
of electron-positron pair creation in X-ray free-electron laser and an electron
beam-laser collision, respectively. We now turn in Sec. to the multiyear
attempts in creating electron-positron pairs in heavy-ion collisions.

E.6. Pair production in heavy-ion collisions

E.6.1. A transient super heavy “quasimolecules”

There has been a multiyear effort to observe positrons from pair production
associated with the overcritical field of two colliding nuclei, in heavy-ion
collisions Popov| (1971d); Greenberg and Greiner| (1982); Gershtein and Zel-
dovich (1969); Gershtein and Zeldovich| (1969); Miiller et al.| (1972c)b); Gyu-
lassy| (1974). The hope was to use heavy-ion collisions to form transient su-
per heavy “quasimolecules”: a long-lived metastable nuclear complex with
Z > Z¢. It was expected that the two heavy ions of charges respectively Z;
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and Z; with Z; + Z, > Z., would reach small inter-nuclear distances well
within the electron’s orbiting radii. The electrons would not distinguish be-
tween the two nuclear centers and they would evolve as if they were bounded
by nuclear-“quasimolecules” with nuclear charge Z; + Z,. Therefore, it was
expected that electrons would evolve quasi statically through a series of well
defined nuclear-“quasimolecules” states in the two-center field of the nuclei
as the inter-nuclear separation decreases and then increases again.

When heavy-ion collision occurs the two nuclei come into contact and some
deep inelastic reaction occurs determining the duration At of this contact.
Such “sticking time” is expected to depend on the nuclei involved in the re-
action and on the beam energy. Theoretical attempts have been proposed to
study the nuclear aspects of heavy-ion collisions at energies very close to the
Coulomb barrier and search for conditions, which would serve as a trigger
for prolonged nuclear reaction times, to enhance the amplitude of pair pro-
duction. The sticking time At; should be larger than 1 ~ 2 - 107! sec Greiner
and Reinhardt|(1999) in order to have significant pair production. Up to now
no success has been achieved in justifying theoretically such a long sticking
time. In reality the characteristic sticking time has been found of the order
of At ~ 1072 sec, hundred times shorter than the needed to activate the
pair creation process. Moreover, it is recognized that several other dynamical
processes can make the existence of a sharp line corresponding to an electron-
positron annihilation very unlikely Greiner and Reinhardt (1999); Greenberg
and Greiner| (1982); Rafelski et al.| (1978b); Reinhardt et al.| (1981); Graf et al.
(1988).

It is worth noting that several other dynamical processes contribute to the
production of positrons in undercritical as well as in overcritical collision
systems Muller (1976)); Reinhardt and Greiner, (1977); Rafelski et al.| (1978a);
Brodsky and Mohr| (1978). Due to the time-energy uncertainty relation (col-
lision broadening), the energy-spectrum of such positrons has a rather broad
and oscillating structure, considerably different from a sharp line structure
that we would expect from pair-production positron emission alone.

E.6.2. Experiments

As remarked above, if the sticking time Af; could be prolonged, the proba-
bility of pair production in vacuum around the super heavy nucleus would
be enhanced. As a consequence, the spectrum of emitted positrons is ex-
pected to develop a sharp line structure, indicating the spontaneous vacuum
decay caused by the overcritical electric field of a forming super heavy nu-
clear system with Z > Z,. If the sticking time At; is not long enough and
the sharp line of pair production positrons has not yet well-developed, in the
observed positron spectrum it is difficult to distinguish the pair production
positrons from positrons created through other different mechanisms. Pro-
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Figure E.6.: Energy expectation values of the 1sc state in a U+U collision at
10 GeV /nucleon. The unit of time is /1/m,c?. This figure is reproduced from
Fig. 4 in Ref. |Greiner and Reinhardt (1999).

longing the “sticking time” and identifying pair production positrons among
all other particles Kozhuharov| (1982); Vincent et al. (1983) created in the col-
lision process has been an object of a very large experimental campaign in
recent years Kienle et al. (1983); Kienle (1981); (Greenberg| (1980); Backe et al.
(1978); Kozhuharov et al./(1979); Miiller et al. (1983); Bokemeyer| (1983); Backe
(1983).

For nearly 20 years the study of atomic excitation processes and in particu-
lar of positron creation in heavy-ion collisions has been a major research topic
at GSI (Darmstadt) Schweppe et al.| (1983); Ganz et al.|(1996)); Leinberger et al.
(1997); Heinz et al.| (1998). The Orange and Epos groups at GSI (Darmstadt)
discovered narrow line structures (see Fig. of unexplained origin, first
in the single positron energy spectra and later in coincident electron-positron
pair emission. Studying more collision systems with a wider range of the
combined nuclear charge Z = Z; + Z; they found that narrow line structures
were essentially independent of Z. This has ruled out the explanation of a
pair-production positron, since the line was expected at the position of the
1so resonance, i.e., at a kinetic energy given by Eq. (E.5.27), which is strongly
Z dependent. Attempts to link this positron line to spontaneous pair pro-
duction have failed. Other attempts to explain this positron line in term of
atomic physics and new particle scenario were not successful as well |Greiner
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Figure E.7.: Two typical example of coincident electron-positron spectra mea-
sured by the Epose group in the system U+Th (left) and by the Orange group
in U+Pb collisions (right). When plotted as a function of the total energy of
the electron and positron, very narrow line structures were observed. This
tigure is reproduced from Fig. 7 in Ref. Greiner and Reinhardt (1999).

and Reinhardt (1999).

The anomalous positron line problem has perplexed experimentalists and
theorists alike for more than a decade. Moreover, later results obtained by
the Apex collaboration at Argonne National Laboratory showed no statisti-
cally significant positron line structures /Ahmad et al.| (1995, 1997). This is
in strong contradiction with the former results obtained by the Orange and
Epos groups. However, the analysis of Apex data was challenged in the com-
ment by Ref. Cowan and Greenberg| (1996); |/ Ahmad et al. (1996) for the Apex
measurement would have been less sensitive to extremely narrow positron
lines. A new generation of experiments (Apex at Argonne and the new Epos
and Orange setups at GSI) with much improved counting statistics has failed
to reproduce the earlier results Greiner and Reinhardt (1999).

To overcome the problem posed by the short time scale of pair production
(10~2! sec), hopes rest on the idea to select collision systems in which a nu-
clear reaction with sufficient sticking time occurs. Whether such a situation
can be realized still is an open question (Greiner and Reinhardt| (1999). In
addition, the anomalous positron line problem and its experimental contra-
diction overshadow the field of the pair production in heavy ion collisions.
In summary, clear experimental signals for electron-positron pair produc-
tion in heavy ion collisions are still missing (Greiner and Reinhardt (1999)
at the present time. For more recent information on the pair production in
the heavy-ion collisions see Krekora et al. (2005); Zagrebaev et al. (2006); Za-
grebaev and Greiner| (2007) and for complete references the resource letter
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Greiner and Schramm (2008). Having reviewed the situation of electron-
positron pair creation by vacuum polarization in Earth-bound experiments
we turn now to the corresponding problems in the realm of astrophysics.
The obvious case is the one of black holes where the existence of critical field
is clearly predicted by the analytic solutions of the Einstein-Maxwell field
equations.
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F. The extraction of blackholic
energy from a black hole by
vacuum polarization processes

It is becoming more and more clear that the theoretical description of the
gravitational collapse process to a Kerr-Newman black hole, with all the as-
pects of nuclear physics and electrodynamics involved, is likely the most
complex problem in physics and astrophysics. Specific to this report is the
opportunity given by the process of gravitational collapse to study for the
tirst time the above mentioned three quantum processes simultaneously at
work under ultrarelativistic special and general relativistic regimes. The pro-
cess of gravitational collapse is characterized by the gravitational timescale
Aty = GM/c® ~ 5-107%(M/Mg) sec and the energy involved are of the
order of AE = 10°*M/ M, ergs. This is one of the most energetic and most
transient phenomena in physics and astrophysics and needs for its correct
description the identification of the basic constitutive processes occuring in a
highly time varying regime. Our approach in Chapter [His to proceed with an
idealized model which can give us estimates of the basic energetics and some
leading features of the real phenomenon. We shell describe: 1) the basic en-
ergetic process of an already formed black hole; 2) the vacuum polarization
process a la Schwinger of an already formed Kerr-Newman black hole; 3) the
basic formula of the dynamics of the gravitational collapse. We shall in par-
ticular recover the Tolman-Oppenheimer-Snyder solutions in a more explicit
form and give exact analytic solution for the description of the gravitational
collapse of charged and uncharged shells. This will allow, among others,
to recall the mass formula of the black hole, to clarify the special role of the
irreducible mass in that formula, and to have a general derivation of the max-
imum extractable energy in the process of gravitational collapse. We will as
well address some conceptual issues between general relativity and thermo-
dynamics which have been of interest to theoretical physicists in the last forty
years. Of course in these brief chapter we will be only recalling some of these
essential themes and refer to the literature where in-depth analysis can be
found.

We recall here the basic steps leading to the study of the electrodynamics of
a Kerr-Newman black hole, indicating the relevant references. In this Chapter
we use the system of unitsc =G =h = 1.
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polarization processes

F.1. Test particles in Kerr-Newmann geometries

According to the uniqueness theorem for stationary, regular black holes (see
Ref. Carter| (1999)), the process of gravitational collapse of a core whose mass
is larger than the neutron star critical mass Rhoades and Ruffini (1974) will
generally lead to a black hole characterized by all the three fundamental pa-
rameters: the mass-energy M, the angular momentum L, and the charge Q
(see Ruffini and Wheeler (1971a)). The creation of critical electric fields and
consequent process of pair creation by vacum polarization are expected to
occur in the late phases of gravitational collapse when the gravitational en-
ergy of the collapsing core is transformed into an electromagnetic energy and
eventually in electron-positron pairs. As of today no process of the grav-
itational collapse either to a neutron star or to a black hol has reached a
satisfactory theoretical understanding. It is a fact that even the theory of a
gravitational collapse to a neutron star via a supernova is not able to explain
even the ejection of a supernova remnant Mezzacappa, (2006). In order to
estimate the fundamental energetics of this transient phenomena we recall
first the metric of a Kerr-Newman black hole, the role of the reversible and
irreversible transformations in reaching the mass formula as well as the role
of the positive and negative energy states in a quantum analogue. We will
then estimate the energy emission due to vacuum polarization process. As
we will see, such a process occurs on characteristic quantum timescale of
t ~ 1/ (mec®) ~ 1072 sec, which is many orders of magnitude shorter than
the characteristic gravitational collapse timescale. Of course the astrophysi-
cal progenitor of the black hole will be a neutral one, as all the astrophysical
systems. Only during the process of the gravitational collapse and for the
above mentioned characteristic gravitational timescale a process of charge
separation will occur. The positively charged core would give rise to the elec-
trodynamical process approaching asymptotically in time the horizon of a
Kerr-Newman black hole.

A generally charged and rotating, black hole has been considered whose
curved space-time is described by the Kerr-Newman geometry Newman et al.
(1965). In Kerr-Newman coordinates (u,7,6,¢) the line element takes the
form,

ds* = £.d6% — 2asin” Odrd¢ + 2drdu — 2aX " (2Mr — Q?) sin” 8d¢du

+ X7 (1 + a?)? — Aa® sin® 0] sin® 0d¢* — [(1 — 271 (2Mr — Q%)]du?
(F1.1)

where A = 2 — 2Mr + a? + Q2 and ¥ = 12+ a%cos?6,a = L/ M being the
angular momentum per unit mass of the black hole. The Reissner-Nordstrém
and Kerr geometries are particular cases for a non-rotating, a = 0, and un-
charged, Q = 0, black holes respectively. The Kerr-Newman space-time has
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a horizon at
r=r. =M+ (M>—Q?>—a*)/? (F.1.2)

where A = 0.
The electromagnetic vector potential around the Kerr-Newman black hole
is given by Newman et al.| (1965)

A = -2 'Qr(du — asin” 8d¢), (F.1.3)
the electromagnetic field tensor is then

F = dA = 2Q%2[(r* — a® cos® 8)dr A du — 2a*r cos 0 sin 0d0 A du

— asin®8(r* — a* cos? 0)dr A d¢ + 2ar(r* + a®) cos 0 sin d6 A d¢).
(F.1.4)

The equation of motion of a test particle of mass m and charge e in the Kerr-
Newman geometry reads

utVyu” = (e/m)utF,", (E.1.5)

where 1 is the 4—velocity of the particle. These equations may be derived
from the Lagrangian
L= %mgwu”u" +eAyut, (F.1.6)

or, equivalently, from the Hamiltonian
H = 38" (pu — eAu)(pv — eAy), (E1.7)
where we have introduced the 4-momentum of the particle
pu = muy +eAy. (F1.8)
Note that Hamiltonian is subject to the constraint
H=—1m% (F.1.9)

Carter |Carter|(1968) firstly recognized that the corresponding Hamilton-Jacobi
equations

oxB

are separable. Correspondingly four integrals of the equation of motion (F.1.5)
can be found. Indeed, in addition to the constant of motion (F.1.9) which cor-
responds to conservation of the rest mass we have the two first integrals

py=—& (F.1.11)
pp =@ (F.1.12)
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associated with the stationarity and the axial symmetry of Kerr-Newman
space—time respectively. £ and @ are naturally interpreted as the energy and
the angular momentum about the symmetry axis of the test particle. It fol-
lows from the separability of Eq. that the quantities

p3 + (a€sinf — dsin~1 )% 4 a®m* cos®§ = K (F1.13)
Ap? —2[(r* + a*)& + eQr — a®]p, + m*r* = —K (F1.14)
are conserved as well. Together with € and ® they form a complete set of

first integrals of the motion and allow one to integrate Eq. (F.1.5). As an ex-
ample consider the proper time derivative 7 of the radial coordinate of the

test particle. It follows from Egs. (F.1.11), (E.1.12), (E.1.13) and (F.1.14), that
¥2i% = (&(r* + a?) + eQr — ®a)* — A(m*r* + K) (F.1.15)

which can be numerically integrated using the effective potential technique
Ruffini (1973).

F.2. Reversible and irreversible transformations of
a black hole: the Christodoulou-Ruffini mass
formula

In 1969 Roger Penrose Penrose (1969) pointed out for the first time the pos-
sibility to extract rotational energy from a Kerr black hole. The first example
of such an energy extraction was obtained by Ruffini and Wheeler who also
introduced the concept of the ergosphere Rees et al. (1974); Ruttini| (2009);
Ruffini and Wheeler (1971a). It makes use of the ergosphere Ruftini and
Wheeler|(1971a), the region between the horizon of the black hole and the sur-
face of infinite redshift. These works has been generalized by Denardo and
Ruffini in 1973 Denardo and Ruffini (1973) and Denardo, Hively and Ruffini
in 1974 Denardo et al| (1974) to the case of a Kerr-Newman black hole. The
process described by Denardo, Hively and Ruffini can be described as fol-
lows. A neutral particle Py approaches the black hole with positive energy £g
and decays into two oppositely charged particles P; and P, whose energies
are &1 < 0 and &, > &g respectively. P; falls into the black hole while P, is
accelerated towards spatial infinity. Correspondingly, a positive energy

08 =&y — & (F2.1)

has been extracted from the black hole and deposited on P,. The region
around the black hole where the energy extraction processes can occur is
named effective ergosphere in Refs. Denardo and Rutffini| (1973), Denardo et al.
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(1974). Note that, as the particle P; is swallowed, the black hole undergoes a
transformation since its energy, angular-momentum and charge change ac-
cordingly. When is the extracted energy maximal? In order to answer this
question note that the energy € of a particle of angular momentum &, charge
e and rest mass m moving around a Kerr-Newman black hole and having a
turning point at r is given by (see Eq. (F1.15)) the quadratic equation

(1 + a%)?E +2(eQr — ®a) (r* + a) & + (eQr — ®a)? — A(m?*r* +K) = 0.
(E2.2)
As recalled in Landau and Lifshitz| (1975), p.352, in the case of Q = 0 which
corresponds to a pure Kerr solution, the explicit integration of this equation
was performed by Ruffini and Wheeler Ruffini and Wheeler| (1971b). They
introduced the effective potential energy defined by

(1 +a*)?€? — 2(®a) (r* + a)& + (®a)*> — A(m** +K) =0.  (E2.3)

The radii of stable orbits are determined by minimum of function &(r), i.e.
by simultaneous solution of equations &(r) = &g, &'(r) = 0 for " (r) > 0.
The orbit closest to the center corresponds to & (#)min = 0; for ¥ < rmin, the
function () has no minima. As a result

e When @ < 0 (motion opposite to the direction of rotation of the collap-
sar)
"min 9 8() 5 O 11

fmin _ 9 €0 _ 5 —— F2.4
M2 w3/ M 33 (FE24)

e For ® > 0 (motion in the direction of rotation of the collapsar) asa — M
the radius rmin tends towards the radius of the horizon. Setting a =
M(1+9), we find 6 — O0:

Thor 1 min 1 1/3
oap =51+ V26), =S+ (49)17). (F.2.5)
Then
fo_ @ L (14 (40)'/3]. (F.2.6)

mZZmM:ﬁ

We call attention to the fact that rmin /7hor remains greater than one through-
out, i.e. the orbit does not go inside the horizon. This is as it should be:
the horizon is a null hypersurface, and no timelike world lines of moving
particles can lie on it. Although no general formula exists in the case of the
Kerr-Newman geometry the energy and the angular velocity of a test parti-
cle in a circular orbit with radius R in the Reissner-Nordstrom geometry has
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been given by Ruffini and Zerilli Ruffini (1973)

/2
S M Q eQle0 3M 202 e Q2\'
2
M e Qe L (1 ° F2.7
V=R " RE MR |ma2Rr T R TR TR  (F2.7)
1/2
e 2M Q2 e Q 3M  2Q%* e @?
(122 x SRy (1R R F2.
m( R+R2)/ m2R+( R TR T mare (F2.8)
qQ
T R

and the limiting cases are there treated.

Eq. is not only relevant for understanding the fully relativistic stable
circular orbit but it is also very new since it defines the “positive-root states”
and the “negative-root states” for the particle Christodoulou and Ruffini/(1971).
Such states were first interpreted as limits of states of a quantum field by
Deruelle and Ruffini |Deruelle and Ruffini (1974). Such an interpretation will
be discussed in the next section. Note that in the case eQr — ®a < 0 there
can exist negative energy states of positive root solutions and, as a direct con-
sequence, energy can be extracted from a Kerr-Newman black hole via the
Denardo-Ruffini process. Such a process is most efficient when the reduc-
tion of mass is greatest for a given reduction in angular momentum. To meet
this requirement the energy £; must be as negative as possible. This happens
when v = r, that is the particle has a turning point at the horizon of the
black hole. When r = r, A = 0 and the separation between negative and
positive-root states vanishes. This implies that capture processes from such
an orbit are reversible since they can be inverted bringing the black hole to its
original state. Correspondingly the energy of the incoming particle is

_ad +eQry

&, = E2.9
1 a2+7’3_ ( )

If we apply the conservation of energy, angular momentum and charge to
the capture of the particle P; by the black hole, we find that M, L and Q
change as for the quantities

AM =€, dL=®, dQ=e. (F2.10)
Thus Eq. (FE.2.9) reads
dn — AL+ r-QdQ (F2.11)
a2 + 13

Integration of Eq. (F.2.11) gives

212 \ 2 2.8
24 2, Q Lec
Mc* = (erc + 4:GM11-> + 4G2M12r, (F212)
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provided the condition is satisfied

c? 4 2 4
ir

where M, is an integration constant and we restored the physical constants c
and G. Eq. is the Christodoulou—Ruffini mass formula|/Christodoulou
and Ruffini (1971) and express the contributions to the total energy of the
black hole. Extreme black holes satisfy equality (F2.13). The irreducible mass
M, satisfies the equation Christodoulou and Ruffini (1971)

Sy = 16”(5# (F2.14)
where S, is the surface area of the horizon of the black hole, and cannot
be decreased by classical processes. Any transformation of the black hole
which leaves fixed the irreducible mass (for instance, as we have seen, the
capture of a particle having a turning point at the horizon of the black hole)
is called reversible Christodoulou and Ruffini (1971). Any transformation
of the black hole which increases its irreducible mass, for instance, the cap-
ture of a particle with non zero radial momentum at the horizon, is called
irreversible. In irreversible transformations there is always some kinetic en-
ergy that is irretrievably lost behind the horizon. Note that energy can be
extracted approaching arbitrarily close to reversible transformations which
are the most efficient ones. Namely, from Eq. it follows that up to
29% of the mass-energy of an extreme Kerr black hole (M? = 4?) can be
stored in its rotational energy term Zéi;ir and can in principle be extracted.
Gedanken experiments have been conceived to extract such energy Penrose
(1969); Ruffini and Wilson|(1975); Blandford and Znajek|(1977); Damour et al.
(1978); |Price and Thorne (1986). The first specific example of a process of en-
ergy extraction from a black hole can be found in R. Ruffini and J. A. Wheeler,
as quoted in Christodoulou (1970), see also |Penrose and Floyd (1971). Other
processes of rotational energy extraction of astrophysical interest based on
magnetohydrodynamic mechanism occurring around a rotating Black Hole
have also been advanced Ruffini and Wilson (1975); Blandford and Znajek
(1977); Damour et al.| (1978); Price and Thorne (1986) though their reversibil-
ity as defined in Ref. Christodoulou and Ruffini| (1971), and consequently
their efficiency of energy extraction, has not been assessed. From the same
mass formula follows that up to 50% of the mass energy of an ex-
treme black hole with (Q = M) can be stored in the electromagnetic term
L%AQAZH and can be in principle extracted. This extractable energies either ro-
tational or electromagnetic will be indicated in the following as blackholic
energy and they can be the source of some of the most energetic phenomena
in the Universe like jets from active galactic nuclei and GRBs.
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F.3. Positive and negative root states as limits of
quantum field states

In 1974 Deruelle and Ruffini Deruelle and Ruttini| (1974) pointed out that neg-
ative root solutions of Eq. can be interpreted in the framework of a fully
relativistic quantum field theory as classical limits of antimatter solutions. In
this section we briefly review their analysis. The equation of motion of a test
particle in a Kerr-Newman geometry can be derived by the Hamilton-Jacobi
Eq. (F1.10). The first quantized corresponding theory can be obtained sub-
stituting the Hamilton—Jacoby equation with the generalized Klein—-Gordon
equation

§"P (Vu+ieAy) (Vp+ieAg) @+ m*® =0 (F3.1)

for the wave function ®. For simplicity we restrict to the Kerr case: Q = 0,

when Eq. reduces to

§ PV Vp® +m*® = 0. (F3.2)
In order to solve Eq. we can separate the variables as follows:

O = e MELR S (0)R (1) (F3.3)

where Sy;(6) are spheroidal harmonics. We thus obtain the radial equation

Py 2.2 2 | 2Ma? 4MakE 2 2M 2 2M
= (B (14 4 240 ¢ SMER 2(1 24 ) k2l

— }2 — ;’—z —ki—i’z + r% [Mr3 — 1’2(012 +2M2) + 3Ma?r — a4] } u,
where u = R(r)r and dr/dr« = A/r?. Corresponding to classical bound
states (circular or elliptic orbits) it is natural to look for “resonances” states
of the Klein-Gordon equation. Then, impose as boundary conditions a) an
exponential decay of the wave function for r — oo and b) a purely ingoing
wave at the horizon r — r.. The solutions of the corresponding problem can
be found numerically Deruelle and Ruffini| (1974). The main conclusions of
the integration can be summarized as follows:

1. The continuum spectrum of the classical stable bound states is replaced
by a discrete spectrum of resonances with tunneling through the poten-
tial barrier giving the finite probability of the particle to be captured by
the horizon.

2. In the classical limit (GM/c?)/(li/m,c) — oo the separation of the en-
ergy levels of the resonances tends to zero. The leakage toward the
horizon also decreases and the width of the resonance tends to zero.
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3. The negative root solutions of Eq. correspond to the classical limit
(GM/c?)/(h/mec) — oo of the negative energy solutions of the Klein—
Gordon Eq. and consequently they can be thought of as antimat-
ter solutions with an appropriate interchange of the sign of charge, the
direction of time and the angular momentum.

4. We can have positive root states of negative energy in the ergosphere,
see e.g. Rees et al.|(1974). In particular we can have crossing of positive
and negative energy root states. This corresponds, at the second quan-
tized theory level to the possibility of particle pair creation a la Klein,
Sauter, Heisenberg, Euler and Schwinger Klein| (1929); Sauter|(1931b,a);
Heisenberg and Euler (1936);|Schwinger| (1951} 1954a)b).

Similar considerations can be made in the Kerr-Newman case, Q # 0,
when the generalized Klein Gordon Eq. has to be integrated. The res-
onance states can be obtained imposing the same boundary conditions as
above. Once again we can have level crossing inside the effective ergosphere
Denardo and Ruffini| (1973); Denardo et al.|(1974) and therefore possible pair
creation.

F.4. Vacuum polarization in Kerr-Newman
geometries

We discussed in the previous chapters the phenomenon of electron-positron
pair production in a strong electric field in a flat space-time. We study the
same phenomenon occurring around a black hole endowed with mass M,
charge Q and the angular momentum a.

The spacetime of a Kerr-Newman geometry is described by a metric which
in Boyer-Lindquist coordinates (t,7,6, ¢) acquires the form

-2 2
% [(r2 +a®)d¢ — adt] ,

(E4.1)

where A and X are defined following (E.1.1). We recall that the Reissner-

Nordstrem geometry is the particular case a = 0 of a non-rotating black hole.

)3 A
ds? — Kdrz + Xdo? — E(alt — asin®0d¢)? +

The electromagnetic vector potential around the Kerr-Newman black hole
is given in Boyer-Lindquist coordinates by

A = —QX7lr(dt — asin®0de). (F4.2)
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The electromagnetic field tensor is then

F = dA = 2Q%72[(r* — a® cos® 8)dr A dt — 2a®r cos 0 sin 0d0 A dt

— asin®0(r? — a* cos? 0)dr A d¢ 4 2ar(r* + a*) cos 0 sin 0d6 A de].
(F4.3)

After some preliminary work in Refs. Zeldovich, (1972); Starobinskit (1973);
Unruh|(1976), the occurrence of pair production in a Kerr-Newman geometry
was addressed by Deruelle Deruelle (1977). In a Reissner-Nordstrom geom-
etry, QED pair production has been studied by Zaumen Zaumen| (1974) and
GibbonsGibbons| (1975). The corresponding problem of QED pair produc-
tion in the Kerr-Newman geometry was addressed by Damour and Ruffini
Damour and Rutffini| (1975), who obtained the rate of pair production with
particular emphasis on:

e the limitations imposed by pair production on the strength of the elec-
tromagnetic field of a black hole Rutftini (1973);

o the efficiency of extracting rotational and Coulomb energy (the “black-
holic” energy) from a black hole by pair production;

e the possibility of having observational consequences of astrophysical
interest.

The third point was in fact a far-reaching prevision of possible energy sources
for GRBs that are now one of the most important phenomena under current
theoretical and observational study. In the following, we recall the main re-
sults of the work by Damour and Ruffini.

In order to study the pair production in the Kerr-Newman geometry, they
introduced at each event (t,7,6,¢) a local Lorentz frame associated with a
stationary observer O at the event (f,7,60,¢). A convenient frame is defined
by the following orthogonal tetrad |Carter (1968)

w® = (A/)VY2(dt — asin® 0dg), (F4.4)
wM = (=/A)2dr, (F4.5)
w? =x1/24p, (F4.6)
w® = sin07V2((r? + a*)d¢ — adt). (F4.7)

In this Lorentz frame, the electric potential Ap, the electric field E and the
magnetic field B are given by the following formulas (c.e.g. Ref. Misner et al.
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(1973)),
Ay = 0V A7,
E* = wg))F”‘ﬁ,
1
Bf = Ew(yo)em‘sﬁﬂﬂg.
We then obtain
Ay = —Qr(zZA)7V2, (F4.8)

while the electromagnetic fields E and B are parallel to the direction of w()
and have strengths given by

Eqy = QX 2(r* — a® cos? 9), (F4.9)
B(1) = QL ?2ar cos 6, (F.4.10)

respectively. The maximal strength Ep,x of the electric field is obtained in the
case a = 0 at the horizon of the black hole: r = r;.. We have

Emax = Q/72. (F4.11)

Equating the maximal electric field strength to the critical value (3.2.1),
one obtains the maximal black hole mass Mpmax ~ 7.2 - 106 M, for pair pro-
duction to occur. For any black hole with mass smaller than Mmax, the pair
production process can drastically modify its electromagnetic structure.

Both the gravitational and the electromagnetic background fields of the
Kerr-Newman black hole are stationary when considering the quantum field
of the electron. Since m,M ~ 10 > 1 the gravitational field of the back-
ground black hole is practically constant over the Compton wavelength of
the electron characterizing the quantum field. As far as purely QED phe-
nomena such as pair production are concerned, it is possible to consider the
electric and magnetic fields defined by Egs. as constants in the
neighborhood of a few wavelengths around any events (7,6, ¢, t). Thus, the
analysis and discussion on the Sauter-Euler-Heisenberg-Schwinger process
over a flat space-time can be locally applied to the case of the curved Kerr-
Newman geometry, based on the equivalence principle.

The rate of pair production around a Kerr-Newman black hole can be ob-
tained from the Schwinger formula (C.4.39) for parallel electromagnetic fields
¢ =Eq)and p = By) as:

I aEqBa) &1 nmB nmnE.
=7 E —coth [ ———= | ex — . F4.12
O Eny )P\ Ea) i
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The total number of pairs produced in a region D of the space-time is

r
_ 4 —
N = /Dd x\/—g=, (F4.13)

where \/—¢ = Zsinf. In Ref. Damour and Ruffini (1975), it was assumed
that for each created pair the particle (or antiparticle) with the same sign of
charge as the black hole was expelled to infinity with charge e, energy w
and angular momentum [, while the antiparticle was absorbed by the black
hole. This implies the decrease of charge, mass and angular momentum of
the black hole and a corresponding extraction of all three quantities. This
considerations, however, were profoundly modified later by the introduction
of the concept of Dyadosphere which is presented in the next section. The
rates of change of the charge, mass and angular momentum were estimated

by

Q = _Rel
M= —R{w), (F4.14)
L= —R{ly),

where R = N is the rate of pair production and (w) and (ly) represent some
suitable mean values for the energy and angular momentum carried by the
pairs.

Supposing the maximal variation of black hole charge to be AQ = —Q, one
can estimate the maximal number of pairs created and the maximal mass-
energy variation. It was concluded in Ref. Damour and Ruffini (1975) that
the maximal mass-energy variation in the pair production process is larger
than 10*'erg and up to 10°%erg, depending on the black hole mass, see Table 1
in Damour and Ruffini (1975). They concluded at the time “this work naturally
leads to a most simple model for the explanation of the recently discovered 7y-ray
bursts”.

F.5. The “Dyadosphere” in Reissner- Nordstrom
geometry

After the discovery in 1997 of the afterglow of GRBs Costa et al.| (1997) and
the determination of the cosmological distance of their sources, it was no-
ticed Ruffini (1998) the coincidence between their observed energetics and
the one theoretically predicted by Damour and Ruffini Damour and Ruffini
(1975). Ruffini and collaborators therefore returned to these theoretical re-

sults with renewed interest developing some additional basic theoretical con-
cepts Ruffini (1998); Preparata et al. (2003, |1998); Rutffini et al. (1999, 2000)
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such as the dyadosphere and, more recently, the dyadotorus. In this Section
we restore constants G, ¢ and 7 for clarity.

As a first simplifying assumption the case of absence of rotation was con-
sidered. The space -time is then described by the Reissner-Nordstrém geom-
etry, see (F4.1) whose spherically symmetric metric is given by

d*s = qu(r)d?t + gy, (r)d*r + 1?d?0 + r* sin® 0d%¢ , (F5.1)
where g;(r) = — [1 LM %rﬂ = —a?(r) and gr(r) = a7 2(r).

The first result obtained is that the pair creation process does not occur
at the horizon of the black hole: it extends over the entire region outside
the horizon in which the electric field exceeds the value E* of the order of
magnitude of the critical value given by Eq. (3.2.1). We recall the pair creation
process is a quantum tunneling between the positive and negative energy
states, which needs a level crossing, can occur for E* < E. if the field extent to
spatial dimension D* such that D*E* = 2m,c?/e. The probability of such pair
creation process will be exponentially damped by exp(—mD*/A.). Clearly,
very intense process of pair creation will occur for E* > E.. In order to give a
scale of the phenomenon, and for definiteness, in Ref. Preparata et al.| (1998)
it was considered the case of E* = E.. Since the electric field in the Reissner-
Nordstrom geometry has only a radial component given by Ruffini (1978)

Q

E(r)= 2 (E5.2)

this region extends from the horizon radius

re = 147-10°u(14 /1 —¢&2)cm (F.5.3)

out to an outer radius Ruffinil (1998)

r*:( B )1/2 (G_M)l/z (@>1/2 (3)1/2( Q )1/2:
mMeC c2 me Jp VGM

=1.12-10%\/uécm,  (E5.4)

where we have introduced the dimensionless mass and charge parameters

:M_M@ ,C= M\f)<1 seeFlg

The second result gave the local number density of electron and positron
pairs created in this region as a function of radius

My (1) = — 3 {1 - (1)2] , (E5.5)

4712 (%C) e
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and consequently the total number of electron and positron pairs in this re-
gion is
o ~ Q — QC

+,—- =
ete e

14 (r*_h—”)] , (F5.6)

MeC

_r 2
where Q. = E.r7.

The total number of pairs is larger by an enormous factor r*/ (f1/m.c) >
10'8 than the value Q/e which a naive estimate of the discharge of the black
hole would have predicted. Due to this enormous amplification factor in the
number of pairs created, the region between the horizon and r* is dominated
by an essentially high density neutral plasma of electron-positron pairs. This
region was defined |Ruffini (1998) as the Dyadosphere of the black hole from
the Greek duas, duadsos for pairs. Consequently we have called r* the Dya-
dosphere radius r* = r4s Ruffini (1998); Preparata et al. (2003, [1998). The
vacuum polarization process occurs as if the entire Dyadosphere is subdi-
vided into a concentric set of shells of capacitors each of thickness 71 /m,.c and
each producing a number of e*e™ pairs on the order of ~ Q/e (see Fig.[F.2).
The energy density of the electron-positron pairs is there given by

2 4
e(r) = 8%4 (1 - (é) ) , (E5.7)

(see Figs. 2-3 of Ref. |Preparata et al. (2003)). The total energy of pairs con-
verted from the static electric energy and deposited within the Dyadosphere

is then A
1Q° ry 'y
== (1—-— | [1—-(—F ) Eb5.
adya 2 (== ( rds) [ (rds ( > 8)

In the limit %S — 0, Eq. (F5.8) leads to Eqya — %%, which coincides
with the energy extractable from black holes by reversible processes (M;, =

const.), namely Epy — M, = %rQ—jChristodoulou and Ruffini (1971), see Fig.
Due to the very large pair density given by Eq. and to the sizes of the
cross-sections for the process eTe™ « 7 + 7y, the system has been assumed to
thermalize to a plasma configuration for which

Npt = Mo ~ Ny ~ N1, (E5.9)

where n?, ,_ is the total number density of e e~ -pairs created in the Dyado-
sphere |Preparata et al.| (2003, 1998). This assumption has been in the mean-
time rigorously proven by Aksenov, Ruffini and Vereshchagin Aksenov et al.
(2007), see Chapter

The third result, again introduced for simplicity, is that for a given gy, it
was assumed either a constant average energy density over the entire Dyado-

560



E5. The “Dyadosphere” in Reissner- Nordstréom geometry
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Figure F.1.: The energy extracted by the process of vacuum polarization is
plotted (solid lines) as a function of the mass M in solar mass units for se-
lected values of the charge parameter ¢ = 1,0.1,0.01 (from top to bottom)
for a Reisner-Nordstrom black hole, the case { = 1 reachable only as a lim-
iting process. For comparison we have also plotted the maximum energy
extractable from a black hole (dotted lines) given by Eq. (F2.12). Details in
Ref. Preparata et al.[(2003).
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plasma (e*e~ )

Figure E.2.: The dyadosphere of a Reissner-Nordstrém black hole can be rep-
resented as equivalent to a concentric set of capacitor shells, each one of thick-
ness 71/ mec and producing a number of ete™ pairs of the order of ~ Q/e on
a time scale of 102! s, where Q is the black hole charge. The shells extend in
a region of thickness Ar, from the horizon r out to the Dyadosphere outer
radius 744 (see text). The system evolves to a thermalized plasma configura-
tion.
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Figure E3.: Left) Selected lines corresponding to fixed values of the €4y, are
given as a function of the two parameters y ¢, only the solutions below the
continuous heavy line are physically relevant. The configurations above the
continuous heavy lines correspond to unphysical solutions with rgqs < 7.
Right) There are two different approximations for the energy density profile
inside the Dyadosphere. The first one (dashed line) fixes the energy density
equal to its peak value, and computes an “effective” Dyadosphere radius ac-
cordingly. The second one (dotted line) fixes the Dyadosphere radius to its
correct value, and assumes a uniform energy density over the Dyadosphere
volume. The total energy in the Dyadosphere is of course the same in both
cases. The solid curve represents the real energy density profile. Details in
Ruffini et al.| (2003a).

sphere volume, or a more compact configuration with energy density equal
to its peak value. These are the two possible initial conditions for the evolu-
tion of the Dyadosphere (see Fig.[F.3).

The above theoretical results permit a good estimate of the general energet-
ics processes originating in the Dyadosphere, assuming an already formed
black hole. In reality, if the GRB data become accurate enough, the full dy-
namical description of the Dyadosphere formation will be needed in order
to explain the observational data by the general relativistic effects and char-
acteristic time scales of the approach to the black hole horizon Cherubini
et al.| (2002); Ruffini and Vitagliano (2002, 2003); Ruffini et al.| (2003b}, 2005);
Fraschetti et al.[(2006).

F.6. The “Dyadotorus”

We turn now to examine how the presence of rotation modifies the geometry
of the surface containing the region where electron-positron pairs are created
as well as the conditions for the existence of such a surface. Due to the axial
symmetry of the problem, this region was called the “dyadotorus” Cherubini
et al. (2008).
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We shall follow the treatment of Cherubini et al. (2008). As in Damour
Damour (1982); Damour et al.|(1978) we introduce at each point of the space-

time the orthogonal Carter tetrad (F.4.44F.4.7).
From Eq. (F4.9) we define the dyadotorus by the condition |E(;)| = xE,

where 107! < x < 10. Solving for r and introducing the dimensionless quan-
tities § = Q/(VGM), u = M/Mo, & = ac*/(GM), € = x Ec Moc*/ G/ and
7 =rc?/(GM) we get

42\ 2 2
(’ic> :i—ﬁczcoszHi\/ 6 —z—"i&zcoszG, (F6.1)

GM 2ué 4282 u€

where the + signs correspond to the two different parts of the surface.
The two parts of the surface join at the particular values 6* and 7 — 6* of

the polar angle where
L /¢
6" = arccos | —=—/ == | -
(2\@2 uél)

The requirement that cos8* < 1 can be solved for instance for the charge
parameter ¢, giving a range of values of ¢ for which the dyadotorus takes one

of the shapes (see fig[F4)

s a s
surface = elhpsmd' like %f €26 (F6.2)
thorus-like if ¢ < ¢

where ¢, = 8u€a?.

In Fig. |[F.4|we show some examples of the dyadotorus geometry for differ-
ent sets of parameters for an extreme Kerr-Newman black hole (a2c8/ G2 +
Q?/G = M?), we can see the transition from a toroidal geometry to an ellip-
soidal one depending on the value of the black hole charge.

Fig. shows the projections of the surfaces corresponding to different
values of the ratio |E(;)|/Ec = « for the same choice of parameters as in
Fig.|E.4| (b), as an example. We see that the region enclosed by such surfaces
shrinks for increasing values of .

F.7. Geometry of gravitationally collapsing cores

In the previous Sections we have focused on the theoretically well defined
problem of pair creation in the electric field of an already formed black hole.
In this section we shall follow the treatment of Cherubini et al. Cherubini
et al| (2002) addressing some specific issues on the dynamical formation of
the black hole, recalling first the Oppenheimer-Snyder solution and then con-
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(d)

Figure F4.: The projection of the dyadotorus on the X — Z plane (X = rsin¥,
Z = rcosf are Cartesian-like coordinates built up simply using the Boyer-
Lindquist radial and angular coordinates) is shown for an extreme Kerr-
Newman black hole with ¢ = 10 and different values of the charge parame-
ter ¢ = [1,1.3,1.49,1.65] x 10~* (from (a) to (d) respectively). The black circle
represents the black hole horizon. Details in Cherubini et al. (2008).
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Figure E.5.: The projections of the surfaces corresponding to different values
of the ratio |E(y)|/E; = « are shown for the same choice of parameters as in
Fig.[F.4{(b), as an example. The gray shaded region is part of the “dyadotorus”
corresponding to the case ¥ = 1 as plotted in Fig. |[F.4|(b). The region delimited
by dashed curves corresponds to x = 0.8, i.e., to a value of the strength of the
electric field smaller than the critical one, and contains the dyadotorus; the
latter in turn contains the white region corresponding to x = 14, i.e., to a
value of the strength of the electric field greater than the critical one. Details
in Cherubini et al.| (2008)).
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sidering its generalization to the charged case using the classial work of W.
Israel and V. de la Cruz Israel (1966); De la Cruz and Israel (1967).

F.7.1. The Tolman-Oppenheimer-Snyder solution

Oppenheimer and Snyder first found a solution of the Einstein equations
describing the gravitational collapse of spherically symmetric star of mass
greater than ~ 0.7M. In this section we briefly review their pioneering work
as presented in Ref. Oppenheimer and Snyder| (1939).

In a sperically symmetric space-time they can be found coordinates (¢, 7,6, ¢)
such that the line element takes the form

ds? = e’dt?> — eMdr? — r2dQ?, (E7.1)

dQ? = d6? +sin?0d¢?, v = v(t,r), A = A(t,r). However the gravitational
collapse problem is better solved in a system of coordinates (7, R, 6, ¢) which
are comoving with the matter inside the star. In comoving coordinates the
line element takes the form

ds?> = dt? — ¢“dR? — e¥d()?,

w =w(7,R), w = w(1,R). Einstein equations read

8T] = e — e 79 4 &+ 24 (E7.2)
87T3 = 8Ty = — 4 <2w” + W' — a’w’)

+ 126 + 0 + 200 + 0 + 0w) (F.7.3)

8Ty =e @ —e 7 (w” + 30" - "'ﬁ"/) + %2 +% (F.7.4)

8re’ Ty = —8nT} = 2o/ (w0 — ¢) + & (E7.5)

Where T),, is the energy-momentum tensor of the stellar matter, a dot denotes
a derivative with respect to T and a prime denotes a derivative with respect
to R. Oppenheimer and Snyder were only able to integrate Eqs. (F.7.2)-(E7.5)
in the case when the pressure p of the stellar matter vanishes and no energy
is radiated outwards. In the following we thus p = 0. In this hypothesis

TI=T3=T3 =T} =T{ =0, T{=p

where p is the comoving density of the star. Eq. (E7.5) was first integrated by
Tolman in Ref. Tolman|(1934). The solution is

e’ = e“w?/4f*(R), (F.7.6)

where f = f(R) is an arbitrary function. In Ref. Oppenheimer and Snyder
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(1939) was studied the case f(R) = 1. In Sec. the hypothesis f(R) =
is relaxed in the case of a shell of dust. Using Eq. into Eq. with
f(R) =1 gives

i+ 3@? =0, (F7.7)

which can be integrated to
= (Ft+ G)*¥/3, (F.7.8)

where F = F(R) and G = G(R) are arbitrary functlon Usmg Eq. (E7.6)

into Eq. (F7.3) gives Eq. (F7.7) again. From Egs. (F74), (F7.6) and (F7.8) the

density p can be found as

-1 N1
87p = % <T+ %) <T—|— %) . (E7.9)
There is still the gauge freedom of choosing R so to have
G =RY2

Moreover, it can be freely chosen the initial density profile, i.e., the density at
the initial time T = 0, pg = po(R). Eq. (F7.9) then becomes

FF' = 97R%0(R)

whose solution contains only one arbitrary integration constant. It is thus
seen the choice of Oppenheimer and Snyder of putting f(R) = 1 allows one
to assign only a one—parameter family of functions for the initial values py =
po(R) of p. However in general one should be able to assign the initial values
of p arbitrarily. This will be done in Sec. in the case of a shell of dust.

Choosing, for instance,

_J const >0 if R <Ry
Po = 0 ifR >R, ’

Ry, being the comooving radius of the boundary of the star, gives

3/2
o) -EA(R)T iR<R,
~3,1/2 if R > R,

where 1 = 2M is the Shwarzschild radius of the star.

We are finally in the position of performing a coordinate transformation
from the comoving coordinates (7, R, 6, $) to new coordinates (t,7,6,¢) in
which the line elements looks like (F7.I). The requirement that the line ele-
ment be the Schwarzschild one outside the star fix the form of such a coordi-
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nate transformation to be
r=(Ft+G)*3

1/2
%r;l/z(Ri/z — ri/2y3/2) — 2r+y1/2 +r4 log v+l 4fR < R,

yl/Z_l
- 1725172 ,
2 3/2 3/2 1/2 r ot .
3r1/2(R/ —r3/2) = 2(rry)V +rilog 55—n R2>R,
+ +

where

F.7.2. Gravitational collapse of charged and uncharged shells

It is well known that the role of exact solutions has been fundamental in the
development of general relativity. In this section, we present here exact solu-
tions for a charged shell of matter collapsing into a black hole. Such solutions
were found in Ref. Cherubini et al.| (2002) and are new with respect to the
Tolman-Oppenheimer-Snyder class. For simplicity we consider the case of
zero angular momentum and spherical symmetry. This problem is relevant
for its own sake as an addition to the existing family of interesting exact so-
lutions and also represents some progress in understanding the role of the
formation of the horizon and of the irreducible mass as will be discussed in
Sec. see e.g. Ruffini and Vitagliano (2002). It is also essential in improv-
ing the treatment of the vacuum polarization processes occurring during the
formation of a black hole discussed in Ruffini et al. (2003b). As we already
mentioned, both of these issues are becoming relevant to explaining GRBs,
see e.g. Ruffini et al. (2001c/blajd) and references therein.

W. Israel and V. de La Cruz [Israel (1966)); De la Cruz and Israel (1967)
showed that the problem of a collapsing charged shell can be reduced to a
set of ordinary differential equations. We reconsider here the following rela-
tivistic system: a spherical shell of electrically charged dust which is moving
radially in the Reissner-Nordstrém background of an already formed nonro-
tating black hole of mass M; and charge Q;, with Q; < M;j. The Einstein-
Maxwell equations with a charged spherical dust as source are

G = 87 | TS + TW™ |, VWP = 4mf, V=0,  (F7.10)
where

TS = euyu,, To™ = L (FyPPpU - ;{g,wFP"PW) ;= out.  (E7.11)

Here Tp(fj), Tﬁm) and j" are respectively the energy-momentum tensor of the
dust, the energy-momentum tensor of the electromagnetic field F,, and the
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charge 4—current. The mass and charge density in the comoving frame are
given by ¢, o and u” is the 4-velocity of the dust. In spherical-polar coordi-
nates the line element is

ds? = gudxtdx’ = —e'UN a2 4+ Mt dr? 1 r2d0?, (F.7.12)
where d0? = d6? + sin® 0d¢?.
We describe the shell by using the 4-dimensional Dirac distribution §(

normalized as
69 (x,x') =gdtx =1 (F7.13)

where ¢ = det||guv||- We then have

e(x) =My /5(4) (x, x0) r*dTdQ), (E7.14)

7 (x) = Qo / 5@ (x, x0) r2dTdQ. (E7.15)

My and Qg respectively are the rest mass and the charge of the shell and 7
is the proper time along the world surface S : xg = x¢ (7, Q) of the shell. S
divides the space-time into two regions: an internal one M_ and an external
one M. As we will see in the next section for the description of the collapse
we can choose either M_ or M . The two descriptions, clearly equivalent,
will be relevant for the physical interpretation of the solutions.

Introducing the orthonormal tetrad

Wi = 1241, Wl = 2%, 0 =rde, W) = rsinfdg;

(E7.16)
we obtain the tetrad components of the electric field
Q ., -
E = Ew® = g w+(1) outside the shell (F7.17)
Fwr inside the shell

where Q = Qp + Q) is the total charge of the system. From the G4 Einstein
equation we get

g2 — { —frdt? + f;ldr2 + r2d0)? outside the shell (F7.18)

—f_df> + f~ldr? 4 r?d0?  inside the shell ’ o
where fL =1— @ + (7)_22/ f-=1- % + ?—2% and t_ and t, are the Schwarzschild-
like time coordinates in M_ and M respectively. Here M is the total mass-
energy of the system formed by the shell and the black hole, measured by an
observer at rest at infinity.

Indicating by ry the Schwarzschild-like radial coordinate of the shell and
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by to4+ its time coordinate, from the G Einstein equation we have

d d
20| i (ro) 4 + £ (ro) %= | = M — My - 5% (F7.19)
The remaining Einstein equations are identically satisfied. From (E.7.19) and
the normalization condition u,u# = —1 we find
drn\* _ 1 M— M MR o)’
()" g (e 3-890 o
M? QZ 2
- & (M- My — 50— BQ) £ (rp), (F7.20)
dt 1 M;  Q}
# =t (M- MF 5 - 5 - GR). (721

We now define, as usual, r+ = M+ /M2 — Q2 when Q < M, r+ are
real and they correspond to the horizons of the new black hole formed by
the gravitational collapse of the shell. We similarly introduce the horizons
rl = My £ /M2 — Q? of the already formed black hole. From (F.7.19) we
have that the inequality

2
M- M — g — 9% 5 (F.7.22)

27’0

holds for rg > r4 if Q < M and for ry > r}k if Q > M since in these cases the

left hand side of (F.7.19) is clearly positive. Egs. (F.7.20) and (F.7.21) (together
with (F.7.18), (F7.17)) completely describe a 5-parameter (M, Q, M1, Q1, M)

family of solutions of the Einstein-Maxwell equations.

For astrophysical applications Ruffini et al.| (2003b) the trajectory of the
shell 7y = 7 (fo+) is obtained as a function of the time coordinate ty rela-
tive to the space-time region M. In the following we drop the + index from

to+. From (E7.20) and (E.7.21) we have

»
f

u
o
m

drg
dt

Q..|m_‘
~

=+LVO2—F, (F.7.23)

/|
(=}

where

_ _ MZ+Q*—Q2 _ M-M
F=f (rg)=1- 2M+Q Q=r- 28 r=MM (R724)

Since we are interested in an imploding shell, only the minus sign case in

(F.7.23) will be studied. We can give the following physical interpretation of
I If M — M; > My, I coincides with the Lorentz y factor of the imploding
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shell at infinity; from (F.7.23) it satisfies

r=——4_41__ >1. (F.7.25)

When M — M; < M) then there is a turning point r;, defined by %8 =0.
ro=";
In this case I' coincides with the “effective potential” at r; :
2 2
D= \/f- () +My" (=50 + 32+ 2Q) <1, (F.7.26)

The solution of the differential equation (E.7.23) is given by:

/ dtg = — / 2 —dn, (F.7.27)

The functional form of the integral (E.7.27) crucially depends on the degree of
the polynomial P (ry) = r3 (0> — F), which is generically two, but in special

cases has lower values. We therefore distinguish the following cases:
1. M = My+ M1; Q1 = My; Q = M: P (1) is equal to 0, we simply have
ro(tp) = const. (E7.28)

2. M = My + My; M2 — Q% = M? — Q% Q # M: P (ry) is a constant, we
have

to = const + Z\/ﬁ [(ro +2) 79+ 12 log (rox/lw) + 72 log (%)} :
(E7.29)

3. M = Mo+ My; M? — Q% # M? — Q2%: P (ry) is a first order polynomial
and

— 02 — Myrg
to = const +2rgv (> — F [3(M2_Q2_M%+Q%)
(M3+Q2—0Q2)* ~9MMy (M3 +Q%—Q2 ) +12M2 M3 +2Q M3
(-G )
— Mi—Qz [riarctanh (:—i—v%zfp) — 72 arctanh (:—E Qz*FH ,
(F.7.30)

_|_

where Q. = Q (ry).
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4. M # My + Mq: P (rp) is a second order polynomial and

= comst = e | T ST

2\/M27Q2 Irz—1
1200 roVO2—F | 13(OP—F)+r2.0% —(T2-1) (ro— ri)?
+108 | T 2(rg—r4)roVO2—F

ro\/i + ( )+r2 02 — (F2—1)(r0 r_
2(ro—r—)roVO2—F
_ [2MMp(2r3-3T) + M3+ Q> QF] /M2 - Q2 [ r o
Mo(2_1)72 log | ;v Q*—F
2Mo(T%—1)ro— (MZ+Q?—Q3)T+2MoM
2MyMVT2—1 )

— 1% log

_|_

(F.7.31)

In the case of a shell falling in a flat background (M; = Q; = 0) it is of
particular interest to study the turning points r; of the shell trajectory. In this
case equation (F.7.20) reduces to

(%)2 - L (M+ My _ Q_z) 1 (F.7.32)

27’0 27‘0

Case (2) has no counterpart in this new regime and Eq. (F.7.22) constrains the
possible solutions to only the following cases:

1. M = My; Q = M. rg = rg (0) constantly.

2. M = My, Q < Mp. There are no turning points, the shell starts at
rest at infinity and collapses until a Reissner-Nordstrém black-hole is
formed with horizons atrg = r+ = M £ y/M? — Q? and the singularity
in ro = 0.

3. M # M. There is one turning point r;.

a) M < My, then necessarily is Q < M() Positivity of rhs of (F7.32)

requires ry < rj, where rj = %% MO is the unique turning point.

Then the shell starts from r; and collapses until the singularity at
ro = 0 is reached.

b) M > M. The shell has finite radial velocity at infinity.

i. Q < M,. The dynamics are qualitatively analogous to case
(2).

ii. Q > M. Positivity of the rhs of (F.7.32) and (F.7.22) requires

that ry > rj, where rj = 1 % ]1\\/1/10 The shell starts from infinity

and bounces at rg = 7], reversing its motion.
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In this regime the analytic forms of the solutions are given by Egs. (F.7.30)

and (E.7.31)), simply setting M; = Q1 = 0.
Of course, it is of particular interest for the issue of vacuum polarization

the time varying electric field E,;, = % on the external surface of the shell.

0
In order to study the variability of E,, with time it is useful to consider in
the tridimensional space of parameters (ry, to, E;,) the parametric curve C :

(ro =A, to=1ty(A), E;= Q). In astrophysical applications Rulffini et al.

(2003b) we are specially interested in the family of solutions such that dro is 0
when rg = co which implies that I’ = 1. In Fig.[F.6|we plot the collapse curves
in the plane (o, r9) for different values of the parameter ¢ = %, 0<d <1
The initial data are chosen so that the integration constant in Eq. is
equal to 0. In all the cases we can follow the details of the approach to the
horizon which is reached in an infinite Schwarzschild time coordinate.

In Fig. [E.7|we plot the parametric curves € in the space (7o, to, Er,) for dif-
ferent values of ¢. Again we can follow the exact asymptotic behavior of the
curves C, E;, reaching the asymptotic value Q The detailed knowledge of

this asymptotic behavior is of relevance for the observational properties of
the black hole formation, see e.g. Ruffini and Vitagliano| (2002), Ruffini et al.
(2003b).

F.8. The maximum energy extractable from a
black hole

The theoretical analysis of the collapsing shell considered in the previous sec-
tion allows to reach a deeper understanding of the mass formula of black
holes at least in the case of a Reissner-Nordstrém black hole. This allows as
well to give an expression of the irreducible mass of the black hole only in
terms of its kinetic energy of the initial rest mass undergoing gravitational
collapse and its gravitational energy and kinetic energy at the crossing of the
black hole horizon. It also allows to create a scenario for acceleration of the
ultra high energy cosmic rays with energy typically 10?! eV from black holes,
as opposed to the process of vacuum polarization occurring in the MeV re-
gion. We shall follow in this Section the treatment by Ruffini and Vitagliano
Ruffini and Vitagliano (2003).

F.8.1. The formula of the irreducible mass of a black hole

The main objective of this section is to clarify the interpretation of the mass-
energy formula Christodoulou and Rutffini| (1971) for a black hole. For sim-
plicity we study the case of a nonrotating black hole using the results pre-
sented in the previous section. As we saw there, the collapse of a nonrotating
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Figure F.6.: Collapse curves in the plane (T,R) for M = 20M, and for dif-
ferent values of the parameter ¢. The asymptotic behavior is the clear man-

ifestation of general relativistic effects as the horizon of the black hole is ap-
proached. Details in Cherubini et al.| (2002).
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Figure E7.: Electric field behaviour at the surface of the shell for M = 20M,
and for different values of the parameter . The asymptotic behavior is the
clear manifestation of general relativistic effects as the horizon of the black
hole is approached. Details in Cherubini et al.| (2002).
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charged shell can be described by exact analytic solutions of the Einstein-
Maxwell equations. Consider to two complementary regions in which the
world surface of the shell divides the space-time: M_ and M, . They are static
space-times; we denote their time-like Killing vectors by ¢" and &', respec-
tively. M is foliated by the family {X," : £, = t} of space-like hypersurfaces
of constant ¢ .

The splitting of the space-time into the regions M_ and M, allows two
physically equivalent descriptions of the collapse and the use of one or the
other depends on the question one is studying. The use of M_ proves helpful
for the identification of the physical constituents of the irreducible mass while
M is needed to describe the energy extraction process from black hole. The
equation of motion for the shell, Eq. reduces in this case to

(ModrO)2 - <M + %ﬁ - %)2 — M (F8.1)
in M_ and
(Modm)z = (M- w %)2 ~ M2, (F8.2)

in M. The constraint|F.7.22|becomes

M- >0 (F8.3)
o 8.

2
Since M_ is a flat space-time we can interpret _2%) in (F.8.1) as the gravita-
2
tional binding energy of the system. 2% is its electromagnetic energy. Then
Egs. (F8.1), (F.8.2) differ by the grav1tat10nal and electromagnetic self-energy

terms from the correspondmg equations of motion of a test particle.

Introducing the total radial momentum P" = Mou" = Mo% of the shell,
we can express the kinetic energy of the shell as measured by static observers

in M_ as T = —Mouu&" — My = /(P")2+ M3 — M. Then from Eq. (F.8.1
we have

M=-$4 & J(PrpsMi=M+T-P+ & (F8.4)
where we choose the positive root solution due to the constraint (F.8.3). Eq. (F.8.4)
is the mass formula of the shell, which depends on the time-dependent radial
coordinate rg and kinetic energy T. If M > Q, a black hole is formed and we
have

M:MO+T+—2++Q (F.8.5)

r 2ry ’

where Ty = T (r4) and r = M + /M? — Q? is the radius of the external
horizon of that ,
M= M + 2%, (F.8.6)
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so it follows that ,
My = Mo — 30 + T4, (E.8.7)

namely that M;; is the sum of only three contributions: the rest mass My, the
gravitational potential energy and the kinetic energy of the rest mass eval-
uated at the horizon. M;; is independent of the electromagnetic energy, a
fact noticed by Bekenstein Bekenstein! (1971). We have taken one further step
here by identifying the independent physical contributions to Mj,. This will
have important consequences for the energetics of black hole formation (see
Ruffini and Vitagliano| (2002)).

Next we consider the physical interpretation of the electromagnetic term
2
370, which can be obtained by evaluating the Killing integral

/ C”T(em)dZ”—/oorzdr/ldCOSO/zndqu(em) 0_ & F38.3
+4uv — 0 — 2457 ( 0. )
xf o 0 0 0

where &' is the space-like hypersurface in M described by the equation
ty = t = const, with dX" as its surface element vector. The quantity in
Eq. (E8.8) differs from the purely electromagnetic energy

o 2
/ZJr npiT}Sim)dZv _ %/ d?’\/@%, (E8.9)

t 7o

where 1/, = f;l/ 2@’1 is the unit normal to the integration hypersurface and
grr = f4. This is similar to the analogous situation for the total energy
of a static spherical star of energy density € within a radius ry, m (rp) =
4 for *dr r’e, which differs from the pure matter energy

;
my (rg) = 4m / Y dr e
0
by the gravitational energy (see Misner et al. (1973)). Therefore the term % in
the mass formula (E.8.4) is the total energy of the electromagnetic field and in-

cludes its own gravitational binding energy. This energy is stored throughout
the region M, extending from ry to infinity.

F.8.2. Extracting electromagnetic energy from a subcritical
and overcritical blackhole

We now turn to the problem of extracting the electromagnetic energy from
a black hole (see Christodoulou and Ruffini (1971)). We can distinguish be-
tween two conceptually physically different processes, depending on whether

the electric field strength E = % is smaller or greater than the critical value

578



E8. The maximum energy extractable from a black hole

E.. The maximum value E; = £ of the electric field around a black hole is

reached at the horizon. In what follows we restore G,  and ¢ and then have
the following:

For E; < E. the leading energy extraction mechanism consists of a se-
quence of discrete elementary decay processes of a particle into two oppo-
sitely charged particles. The condition E < E. implies

-1
fo 0 <) (g5 ~ 100 i <10
- 1

- . (F8.10)

<

where Ac is the Compton wavelength of the electron. Denardo and Ruffini
Denardo and Ruffini (1973) and Denardo, Hively and Ruffini Denardo et al.
(1974) have defined as the effective ergosphere the region around a black hole
where the energy extraction processes occur. This region extends from the
horizon r up to a radius

_ GM
rEerg - 2

1+\/1—§2( Gm)] ~ 9 (F8.11)

The energy extraction occurs in a finite number Npp of such discrete elemen-
tary processes, each one corresponding to a decrease of the black hole charge.
We have

Npp =~ £. (F8.12)

Since the total extracted energy is (see Eq. (F.8.6)) &'t = 2Qr , we obtain for

the mean energy per accelerated particle (€)pp = %

— Qe _ 1

(E)pp = 27 = 3+ - _{;2 T MeC Z%Cﬁme Mec?, (F.8.13)

which gives

M 21 M 6
10 eV 1f <10
(€ep S { (F8.14)

1027eV i L~ 108 °

One of the crucial aspects of the energy extraction process from a black
hole is its back reaction on the irreducible mass expressed in (Christodoulou
and Ruttini| (1971). Although the energy extraction processes can occur in the
entire effective ergosphere defined by Eq. (F.8.11)), only the limiting processes
occurring on the horizon with zero kinetic energy can reach the maximum
efficiency while approaching the condition of total reversibility (see Fig. 2 in
Christodoulou and Rutffini| (1971) for details). The farther from the horizon
that a decay occurs, the more it increases the irreducible mass and loses ef-
ficiency. Only in the complete reversibility limit Christodoulou and Ruffini
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(1971) can the energy extraction process from an extreme black hole reach the
upper value of 50% of the total black hole energy.

For E, > E. the leading extraction process is the collective process based on
the optically thick electron-positron plasma generated by the vacuum polar-
ization. The condition E > E. implies

GM/c? e \7! ~n.10-6 M
M (W) ~2.10%M <z <1, (F.8.15)

This vacuum polarization process can occur only for a black hole with mass
smaller than 2 - 10°M,. The electron-positron pairs are now produced in the
Dyadosphere of the black hole. We have

Fdya < TEerg- (F.8.16)

The number of particles created Preparata et al.|(1998) is then

2
1 Tda 4 rda
Now =1 () (- ) o 2+ ()] 22 1(2) 8. wamy

The total energy stored in the dyadosphere is Preparata et al.| (1998)

4] 52 2
tot I+ Y Q_ ~ Q_
et = (1-22) {1 (=) ] Loz (F8.18)
gtot
The mean energy per particle produced in the Dyadosphere () dya = ﬁz is
then
1(T_+)4
_ 3 "dya A w3 (A
<8>dya -2 " y re 2 <ﬁ> % -3 (ﬁ) %, (F819)
g (7o)

which can be also rewritten as

Tdya 2 5
(€)aya = § (52) mec® ~ \/5rf-10%keV . (F.8.20)

We stress again that the vacuum polarization around a black hole has been
observed to reach theoretically the maximum efficiency limit of 50% of the
total mass-energy of an extreme black hole (see e.g. Preparata et al.|(1998)).

Let us now compare and contrast these two processes. We have

r a r a )\
Pherg ™ (j—z) Fayar  Naya = (;‘g ) Npp, (&) 4y ™ (ﬁ) (€)pp. (F8.21)

Moreover we see (Eqs. (F.8.14), (F.8.20)) that (&) pp is in the range of energies
of UHECR (see Nagano and Watson| (2000) and references therein), while for
¢ ~ 0.1and M ~ 10Mo, (€)4y, is in the gamma ray range. In other words,

580



E9. A theorem on a possible disagreement between black holes and
thermodynamics

the discrete particle decay process involves a small number of particles with
ultra high energies (~ 10?'eV), while vacuum polarization involves a much
larger number of particles with lower mean energies (~ 10MeV).

F.9. A theorem on a possible disagreement
between black holes and thermodynamics

This analysis of vacuum polarization process around black holes is so general
that it allows as well to look back to traditional results on black hole physics
with an alternative point of view. We quote in particular a result which allows
to overcome a claimed inconsistency between general relativity and thermo-
dynamics in the field of black holes.

It is well known that if a spherically symmetric mass distribution without
any electromagnetic structure undergoes free gravitational collapse, its total
mass-energy M is conserved according to the Birkhoff theorem: the increase
in the kinetic energy of implosion is balanced by the increase in the gravita-
tional energy of the system. If one considers the possibility that part of the
kinetic energy of implosion is extracted then the situation is very different:
configurations of smaller mass-energy and greater density can be attained
without violating Birkhoff theorem in view of the radiation process.

From a theoretical physics point of view it is still an open question how
far such a sequence can go: using causality non violating interactions, can
one find a sequence of braking and energy extraction processes by which the
density and the gravitational binding energy can increase indefinitely and
the mass-energy of the collapsed object be reduced at will? This question can
also be formulated in the mass-formula language Christodoulou and Ruffini
(1971) (see also Ref. Ruffini and Vitagliano| (2002)): given a collapsing core of
nucleons with a given rest mass-energy My, what is the minimum irreducible
mass of the black hole which is formed?

Following the previous two sections, consider a spherical shell of rest mass
M collapsing in a flat space-time. In the neutral case the irreducible mass of
the final black hole satisfies Eq.|F.8.7, The minimum irreducible mass MI(IT in)
is obtained when the kinetic energy at the horizon T is 0, that is when the
entire kinetic energy T, has been extracted. We then obtain, form Eq.
the simple result

M — Mo (F9.1)

1rr
We conclude that in the gravitational collapse of a spherical shell of rest mass
M at rest at infinity (initial energy M; = M), an energy up to 50% of Myc?
can in principle be extracted, by braking processes of the kinetic energy. In
this limiting case the shell crosses the horizon with T, = 0. The limit %
in the extractable kinetic energy can further increase if the collapsing shell
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Figure E8.: Collapse curves for neutral shells with rest mass M, starting
at rest at selected radii R* computed by using the exact solutions given in
Ref. Cherubini et al. (2002). A different value of M, (and therefore of r.)
corresponds to each curve. The time parameter is the Schwarzschild time
coordinate ¢ and the asymptotic behaviour at the respective horizons is ev-
ident. The limiting configuration M,y = % (solid line) corresponds to the
case in which the shell is trapped, at the very beginning of its motion, by the
formation of the horizon.

is endowed with kinetic energy at infinity, since all that kinetic energy is in
principle extractable.

We have represented in Fig. [F.8| the world lines of spherical shells of the
same rest mass M), starting their gravitational collapse at rest at selected radii
ro- These initial conditions can be implemented by performing suitable brak-
ing of the collapsing shell and concurrent kinetic energy extraction processes
at progressively smaller radii (see also Fig.[F.9). The reason for the existence
of the minimum in the black hole mass is the “self closure” occurring
by the formation of a horizon in the initial configuration (thick line in Fig. [F.8).

Is the limit M, — % actually attainable without violating causality? Let
us consider a collapsing shell with charge Q. If M > Q a black hole is formed.
As pointed out in the previous section the irreducible mass of the final black
hole does not depend on the charge Q. Therefore Egs. and still
hold in the charged case. In Fig. [F.9 we consider the special case in which the
shell is initially at rest at infinity, i.e. has initial energy M; = M)y, for three
different values of the charge Q. We plot the initial energy M;, the energy of

the system when all the kinetic energy of implosion has been extracted as well
2

as the sum of the rest mass energy and the gravitational binding energy — %J
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of the system (here ry is the radius of the shell). In the extreme case Q = My,
the shell is in equilibrium at all radii (see Ref. Cherubini et al. (2002)) and the
kinetic energy is identically zero. In all three cases, the sum of the extractable

kinetic energy T and the electromagnetic energy % reaches 50% of the rest
mass energy at the horizon, according to Eq. (F9.1).

What is the role of the electromagnetic field here? If we consider the case
of a charged shell with Q ~ M)y, the electromagnetic repulsion implements
the braking process and the extractable energy is entirely stored in the elec-
tromagnetic field surrounding the black hole (see Ref. Ruffini and Vitagliano
(2002)). We emphasize here that the extraction of 50% of the mass-energy
of a black hole is not specifically linked to the electromagnetic field but de-
pends on three factors: a) the increase of the gravitational energy during the
collapse, b) the formation of a horizon, c) the reduction of the kinetic energy
of implosion. Such conditions are naturally met during the formation of an
extreme black hole with Q = M, but as we have seen, they are more general
and can indeed occur in a variety of different situations, e.g. during the for-
mation of a Schwarzschild black hole by a suitable extraction of the kinetic
energy of implosion (see Fig.[F.8|and Fig.[F9).

Before closing let us consider a test particle of mass m in the gravitational
tield of an already formed Schwarzschild black hole of mass M and go through
such a sequence of braking and energy extraction processes. Kaplan Kaplan
(1949) found for the energy & of the particle as a function of the radius r

€=my/1—2M1 (F.9.2)

It would appear from this formula that the entire energy of a particle could be
extracted in the limit r — 2M. Such 100% efficiency of energy extraction has
often been quoted as evidence for incompatibility between General Relativ-
ity and the second principle of Thermodynamics (see Ref. Bekenstein! (1973)
and references therein). J. Bekenstein and S. Hawking have gone as far as to
consider General Relativity not to be a complete theory and to conclude that
in order to avoid inconsistencies with thermodynamics, the theory should
be implemented through a quantum description Bekenstein| (1973); Hawking
(1974, 1975); Gibbons and Hawking| (1977). Einstein himself often expressed
the opposite point of view (see, e.g., Ref. Dyson|(2002) and references therein).

The analytic treatment presented in Sec. can clarify this fundamental
issue. It allows to express the energy increase € of a black hole of mass M;

through the accretion of a shell of mass My starting its motion at rest at a
radius r¢ in the following formula which generalizes Eq. (F.9.2):

2
E=M— M =—50+ Mo /1- 24 (F.9.3)

ro 7

where M = M + € is clearly the mass-energy of the final black hole. This

583



E The extraction of blackholic energy from a black hole by vacuum
polarization processes

Q=0
1.2 T | |
1
o 08F Ty | LT A
2 06 o ]
= .
0.4 i) ) A
M.mln . ]
0.2 irr Mi_T:Mo—MS/ZR ,,,,,,,,
0 1 1 1
0 1 2 3 . -~ .
Q=0.7M,
1.2 T | |
1k
0.8+ T(r,) R — — E— — A
S o6 QYo | - ]
= Fy
0.4 - ) MT,
L M‘mln !
0.2 irr . Mg T —
0 ) 1
0 1 2 3 ; -~ ;
Q =M,
1.2 T | |
1+
o 08 ¥ ar, T — [ - ]
S o6f ]
E —y
0.4 . ]
02l MY e
2t 2 ]
0 . ) Mgy — Mg/ 2R -
0 1 2 3 . - .

Figure F.9.: Energetics of a shell such that M; = M, for selected values of
the charge. In the first diagram Q = 0; the dashed line represents the total
energy for a gravitational collapse without any braking process as a function
of the radius R of the shell; the solid, stepwise line represents a collapse with
suitable braking of the kinetic energy of implosion at selected radii; the dot-
ted line represents the rest mass energy plus the gravitational binding energy.
In the second and third diagram Q/My = 0.7, Q/ M, = 1 respectively; the
dashed and the dotted lines have the same meaning as above; the solid lines
represent the total energy minus the kinetic energy. The region between the
solid line and the dotted line corresponds to the stored electromagnetic en-
ergy. The region between the dashed line and the solid line corresponds to
the kinetic energy of collapse. In all the cases the sum of the kinetic energy
and the electromagnetic energy at the horizon is 50% of My. Both the elec-
tromagnetic and the kinetic energy are extractable. It is most remarkable that
the same underlying process occurs in the three cases: the role of the electro-
magnetic interaction is twofold: a) to reduce the kinetic energy of implosion
by the Coulomb repulsion of the shell; b) to store such an energy in the re-
gion around the black hole. The stored electromagnetic energy is extractable
as shown in Ref. Ruffini and Vitagliano (2002)
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thermodynamics

formula differs from the Kaplan formula (E.9.2) in three respects: a) it takes
into account the increase of the horizon area due to the accretion of the shell;
b) it shows the role of the gravitational self energy of the imploding shell; c)
it expresses the combined effects of a) and b) in an exact closed formula.

The minimum value €, of € is attained for the minimum value of the
radius ro = 2M: the horizon of the final black hole. This corresponds to the
maximum efficiency of the energy extraction. We have

M2 M M3 M
Emin = —gpi + Mo/ 1= = ey + Moy - mty (B94)

or solving the quadratic equation and choosing the positive solution for phys-

ical reasons
Emin = 3 (, /M2 + M2 — Ml) . (E.9.5)

The corresponding efficiency of energy extraction is

e / M}
Umax — MOMgomm — _ %% ( 1 —+ M(lz) — ]_) , (F96)

which is strictly smaller than 100% for any given My # 0. It is interesting that
this analytic formula, in the limit M; < M), properly reproduces the result of
equation (F9.1), corresponding to an efficiency of 50%. In the opposite limit
Mj; > M, we have

Hmax = 1-— }1%(1) (F9.7)

Only for My — 0, Eq. corresponds to an efficiency of 100% and cor-
rectly represents the limiting reversible transformations. It seems that the
difficulties of reconciling General Relativity and Thermodynamics are ascrib-
able not to an incompleteness of General Relativity but to the use of the Ka-
plan formula in a regime in which it is not valid.
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G. Plasma oscillations in electric
fields

We have seen in the previous chapters the application of the Sauter-Heisenberg-
Euler-Schwinger process for electron-positron pair production in the heavy
nuclei, in the laser and in the last chapter in the field of black holes. The case
of black holes is drastically different from all the previous ones. The number
of electron-positron pairs created is of the order of 10°°, the plasma expected
is optically thick and is very different from the nuclear collisions and laser
case where pairs are very few and therefore optically thin. The following
dynamical aspects need to be addressed.

1. the back reaction of pair production on the external electric field;
2. the screening effect of pairs on the external electric field strengths;

3. the motion of pairs and their interactions.

When these dynamics are considered, the pair production in an external
electric field is no longer only a process of quantum tunneling in a constant
static electric field. In fact, it turns out to be a much more complex process
during which all the three above mentioned dynamics play an important
role. More precisely, a phenomenon of electron-positron oscillation, plasma
oscillation, takes place. We are going to discuss such plasma oscillation phe-
nomenon in this chapter. As we will see in this chapter these phenomena can
become also relevant for heavy ion collisions. After giving the basic equa-
tions for description of plasma oscillations we give first some applications in
the field of heavy ions. In this Chapter in all formulas we usec = = 1.

G.1. Semiclassical theory of plasma oscillations in
electric fields

In the semi classical QED Cooper and Mottola| (1987, |1989), one quantize only
the Dirac field ¢(x), while an external electromagnetic field A*(x) is treated
classically as a mean field. This is the self-consistent mean-field or Gaus-
sian approximation that can be formally derived as the leading term in the
large-N limit of QED, where N is the number of charged matter fields Cooper
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and Mottola|(1989); Boyanovsky and de Vega|(1993); Boyanovsky et al. (1994)
1995, 1996). The motion of these electrons can be described by a Dirac equa-
tion in an external classical electromagnetic potential A*(x),

[yu(io" —eAl) —m]p(x) =0 (G.1.1)

and the semi classical Maxwell equation,

ouF" = (j"(x)), j"(x) = ig[tﬁ(X),v"tp(x)], (G.1.2)

where j¥(x) is the electron and positron current and the expectation value is
with respect to the quantum states of the electron field. The dynamics that
these equations describe are not only the motion of electron and positron
pairs, but also their back reaction on the external electromagnetic field. The
resultant phenomenon is the so-called plasma oscillation that we will discuss
based on both a simplified model of semi classical scalar QED and kinetic
Boltzmann-Vlasov equation as presented in Refs. Cooper and Mottola (1987,
1989); Kluger et al.|(1991); Best and Eisenberg) (1993); Kluger et al.| (1998).

A scheme for solving the back reaction problem in scalar QED was offered
in Refs. Cooper and Mottola (1987, 1989). Based on this scheme, a numerical
analysis was made in (1+1) dimensional case Kluger et al.| (1991). Egs. (G.1.1),
are replaced by the scalar-QED coupled equations for a charged scalar
field ®(x),

[(i0" — eAM)? — m2]®(x) = 0. (G.1.3)

The current j¥(x) of the charged scalar field in the semi classical Maxwell

equations is,
(x) = 20" (10 ) — D(x)" D" (1] G14)

Now, consider a spatially homogeneous electric field E = E,(t)2 in the 2
direction. A corresponding gauge potential is A = A, (t)z, Ag = 0. Defining
E=E, A= A;andj = j;, the Maxwell equations reduce to the single
equation

?A

T
for the potential and E = —dA/dt.

The quantized scalar field ®(x) in Eq. can be expanded in terms of

plane waves with operator-valued amplitudes fy (t)ay and f*, (t)b],

(7(x)), (G.1.5)

(1) = 717z LB+ e, (G.16)

where V is the volume of the system and the time-independent creation and
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G.1. Semiclassical theory of plasma oscillations in electric fields

destruction operators obey the commutation relations
[ay, al)] = [bi, b = Sixes (G.1.7)

and each k-mode function fy obeys the Wronskian condition,

fihe — ffi =i (G.1.8)

The time dependency in this basis (ay, b ) (G.1.6)G.1.7) is carried by the com-
plex mode functions fy(t) that satisfy the following equation of motion, as
demanded from the QED-coupled Eq. (G.1.3) of Klein-Gordon type,

A2
(dtz + Wit )) fit) =0, (G.1.9)
where the time-dependent frequency wZ (t) is given by

Wi (t) = [k — eA)? +m? = [k — eA(t)]? + K3 + m2. (G.1.10)

Here k is the constant canonical momentum in the 2 direction which should be
distinguished from the gauge-invariant, but time-dependent kinetic momen-
tum,

p(t) = k— eA(t), ‘fi—’z _¢E, (G.1.11)

which reflects the acceleration of the charged particles due to the electric field,
while in the directions transverse to the electric field the kinetic and canonical
momenta are thesame k, =p .

The mean value of electromagnetic current (G.1.4) in the 2 direction is then

3

(i) =2e | %[k — AW [fi P+ Ny (k) + N_(~K)],  (G.112)

where N (k) = (afay) and N_(k) = (b} by) are the mean numbers of parti-
cles and antiparticles in the time-independent basis (G.1.6)G.1.7). The mean
charge density must vanish,

3 3
0 = [ N9 N =0, [ TE =0y

by the Gauss law for a spatially homogeneous electric field (i.e., V - E = 0).
As a result, Ny (k) = N_(—k) = Ny. For the vacuum state, Ny = 0. The
Maxwell equation (G.1.5) for the evolution of electric field becomes,

8 =2 [ SN k- eA®APoe = (42N, (G113

589



G. Plasma oscillations in electric fields
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Figure G.1.: Time evolution of scaled electric field £ and current j, with initial
value £ = 1.0 and coupling ¢?/m? = 0.1. The solid line is semi classical
scalar QED, and the dashed line is the Boltzmann-Vlasov model. This figure
is reproduced from Fig. 1 (a) in Ref. Kluger et al.| (1991).

These two scalar QED-coupled Egs. (G.1.9) and (G.1.13) in (1+1) dimensional
case were solved and numerically integrated Kluger et al. (1991). The results
are shown in Fig. where the time evolutions of the scaled electric field
E = E/E. and current j = jii/(Em,c?) are shown as functions of time T =
(mec?/h)t in unit of Compton time (%/m,c?). Starting with a strong electric
field, one clearly finds the phenomenon of oscillating electric field E(f) and
current j(t), i.e., plasma oscillation.

This phenomenon of plasma oscillation is shown in Fig. and is easy
to understand as follows. In a classical kinetic picture, we have the electric
current j = 2en(v) where n is the density of electrons (or positrons) and (v)
is their mean velocity. Driven by the external electric field, the velocity (v) of
electrons (or positrons) continuously increases, until the electric field of elec-
tron and positron pairs screens the external electric field down to zero, and
the kinetic energy of electrons (or positrons) reaches its maximum. The elec-
tric current j saturates as the velocity (v) is close to the speed of light. After-
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ward, these electrons and positrons continuously move apart from each other
turther, their electric field, whose direction is opposite to the direction of the
external electric field, increases and de-accelerates electrons and positrons
themselves. Thus the velocity (v) of electrons and positrons decreases, until
the electric field reaches negative maximum and the velocity vanishes. Then
the velocity (v) of electrons and positrons starts to increase in backward di-
rection and the electric field starts to decrease for another oscillation cycle.

G.2. Kinetic theory of plasma oscillations in
electric fields

In describing the same system as in the previous section it can be used, alter-
natively to the semi classical theory, a phenomenological model based on the
following relativistic Boltzmann-Vlasov equation Kluger et al.| (1991),

¥ _39F  _3F AN
ar = o T°E3, = daviy (G2.1)

where the x-independent function F(p, t) is a classical distribution function
of particle and antiparticle pairs in phase space. The source term in the right-
hand side of Eq. is related to the Schwinger rate Pposon for the
pair-production of spin-0 particle and antiparticle,

dN

dthd3p [ +2rf(pl )]:Pbosonés(P)/ (G.2.2)

where the é-function 6%(p) expresses the fact that particles are produced at
rest and the factor [1+2F(p, t)] accounts for stimulated pair-production (Bose
enhancement). The Boltzmann-Vlasov equation for the distribution
function F(p, t) is in fact attributed to the conservation of particle number in
phase space.

In the field equation for the classical gauge potential A, the electric
current (j(x)) is contributed from the conduction current,

, d —eA(t
Jcond = 26/ (2753 [P ae)p ( )]?(p,t), (G.2.3)

and the polarization current Gatoff et al. (1987),

(G.2.4)

Jpol = F / 27)3 Pdthd3p
The relativistic Boltzmann-Vlasov equation (G.2.1) and field equation (G.1.5)
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with the conduction current and the polarization current were
numerically integrated Kluger et al.|(1991) in (1+1) dimensional case. The nu-
merical integration shows that the system undergoes plasma oscillations. In
Fig. [G.T|the results of the semiclassical analysis and the numerical integration
of the Boltzmann equation are compared. We see that they are in good quan-
titative agreement. The discrepancies are because in addition to spontaneous
pair production, the quantum theory takes into account pair production via
bremsstrahlung (“induced” pair production), which are neglected in the clas-
sical kinetic theory (Boltzmann-Vlasov equation).

In Refs. Kluger et al. (1992, 1993), the study of plasma oscillation was ex-
tended to the fermionic case. On the basis of semi-classical theory of spinor
QED, expressing the solution of the Dirac equation (G.1.1) as

P(x) = [yu(id" — eA") + me]¢p(x),

where ¢(x) is a four component spinor, one finds that ¢ (x) satisfies the quadratic
Dirac equation,

[(iaﬂ —eAM)? — %(IVVPW - mg] ¢(x) = 0. (G.2.5)

The electric current of spinor field ¢(x) couples to the external electric field
that obeys the field equation (G.1.5).

The source term in the right-hand side of the kinetic Boltzmann-Vlasov
equation is changed to the Schwinger rate Pfermion for the pair-

production of electrons and positrons,

dN

diavap — L~ 25 ()] hermiond” (), (G2.6)

where the Pauli blocking is taken into account by the factor [1 — 25 (p, t)].
Analogously to the scalar QED case, both semi-classical theory of spinor QED
and kinetic Boltzmann-Vlasov equation have been analyzed and numerical
integration was made in the (1+1) dimensional case Kluger et al. (1992, 1993).
The numerical results show the plasma oscillation of electric field, electron
and positron currents is similar to that plotted in Fig.

G.3. Plasma oscillations in the color electric field
of heavy ions

The Relativistic Heavy-Ion Collider (RIHC) at Brookhaven National Labo-
ratory and Large Hadron Collider (LHC) at CERN are designed with the
goal of producing a phase of deconfined hadronic matter: the quark-gluon
plasma. A popular theoretical model for studying high-energy heavy-ion
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collisions begins with the creation of a flux tube containing a strong color
electric field Biro et al. (1984). The field energy is converted into particles
as quark and anti quark pairs and gluons that are created by the Sauter-
Euler-Heisenberg-Schwinger quantum tunneling mechanism. A relativistic
Boltzmann-Vlasov equation coupling to such particle creation source is phe-
nomenologically adopted in a kinetic theory model for the hydrodynamics
of quark and gluon plasma Gatoff et al.|(1987); Biatas and Czyz (1984); Bialas
and Czyz|(1985alb, 1986); Kerman et al.|(1986)); Bialas et al.| (1988).

In the collision of heavy-ion beams, one is clearly dealing with a situa-
tion that is not spatially homogeneous. However, particle production in the
central rapidity region can be modeled as hydrodynamical system with lon-
gitudinal boost invariance Landau (1953); Cooper et al.| (1975); Low (1975);
Nussinov| (1975); |Andersson et al.| (1983). To express the longitudinal boost
invariance of the hydrodynamical system, one introduces the comoving coor-
dinates: fluid proper time 7 and rapidity 7 by the relationships Cooper et al.
(1993),

z = Tsinh(y), t= Tcoshy, (G.3.1)

in terms of the Minkowski time t and the coordinate z along the beam direc-
tion 2 in the ordinary laboratory-frame. The line element and metric tensor
in these coordinates are given by

ds* = dt* —dx* —dy* — T%dy?,  gu =diag(l,—-1,-1,-7%), (G.3.2)
and
Sy = VﬁVfﬂab, V, =diag(1,1,1,7).

where the vierbein V]f transforms the curvilinear coordinates to Minkowski

coordinates and det(V) = \/—¢ = 7. The covariant derivative on fermion
field ¢(x) is given by [Weinberg (1972)

Vup(x) = [(id, — eAy) +T]pp(x) (G.3.3)
and the spin connection I';, is

1 1
T, = Ezabvm/(ayvbv +T, V), == S ¥,
with TZ ), the usual Christoffel symbols and * the usual coordinate-independent

Dirac gamma matrices. The coordinate-dependent gamma matrices §# are
obtained via
= ,)/ava]l.

In the curved space time (G.3.2), the Dirac equation (G.1.1) and semi-classical
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Maxwell equation (G.1.2) are modified as

and

/I = (), P =S 63

I\.)IN

The phenomenological Boltzmann-Vlasov equation in (3+1) dimensions
can be also written covariantly as

DF _ 3T 9F AN
Dr = Plagr P g, = esaddiqdp’

where D /Dt is the total time derivative. This kinetic transport equation is
written in the comoving coordinates and their conjugate momenta:

(G.3.6)

" = (t,x,y,m), pu= (P, Px Py Py)-

Due to the longitudinal boost invariance, energy density and color electric
tield are spatially homogeneous, i.e., they are functions of the proper time T
only Cooper et al.| (1993). Consequently, the approach for spatially homoge-
neous electric field presented in Refs. Cooper and Mottola (1989); Kluger et al.
(1991} 1992, |1993) and discussed in the previous Sec. is applicable to the
phenomenon of plasma oscillations in ultra relativistic heavy-ion collisions

Cooper et al.|(1993) using Eq. (resp. Eq. [G.3.6)) in the place of Eq.
(resp. Eq.{G.2.1).

G.4. Quantum Vlasov equation

To understand the connection between the two frameworks of semi-classical
field theory and classical kinetic theory, both of which describe the plasma
oscillations, one can try to study a quantum transport equation in the semi-
classical theory Kluger et al.|(1998); Smolyansky et al.| (1997); Schmidt et al.
(1998). For this purpose, a Bogoliubov transformation from the time-independent
number basis (ay, b}) (G.1.6) mh to a time-dependent number basis [dy (t), bf (#)]
is introduced Kluger et al. (1998); Smolyansky et al. (1997); Schmidt et al.
(1998),

ficlt) = () fict) + Bic(B) AL (1); (G41)
fillt) = —iwa () fie(t) + i i (8) fi (), (G.4.2)
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and

(t); (G.4.3)

me = o (D)a(t) — Br(Hb (¢
Y (1), (GA4)

b i(t) = (6D (1) — Bt

where wy () and B () are the Bogoliubov coefficients. They obey

(1) * = Bkt * =1,

for each mode k. In the limit of very slowly varying wy(t) as a function of
time t G.l.lO, ie., W K wlz( and @, < wf’(, the adiabatic number basis
[ax (t), bi ()] is defined by first constructing the adiabatic mode functions,

t

1/2
fi(t) = (L> exp [—iOx(t)], Ox(t) =/ wi(t)at'. (G4.5)

Zwk

The particle number Ny (¢) in the time-dependent adiabatic number basis is
given by

Ni(t) = (ag(t)a(t)) = (b" ()b i (t))
= Jasc(£) PNic + |Bic(#) [P[1 + Nad, (G4.6)
which though time-dependent, is an adiabatic invariant of the motion. Con-

sequently, it is a natural candidate for a particle number-density distribution
function F(p, t) in the phase space, that is needed in a kinetic description.

By differentiating Ny (¢) (G.4.6) and using the basic relationships (G.1.10}G.4.2)G.4.5),

one obtains,

Xic(1) = SERe (€l expl 204 (1)]}, - Eult) = (14 2Nmi(Di(t),
(G4.7)
and

2“’_k [1+ 2Ny ()] exp[2i@y (1)) (G48)
Wik

These two equations give rise to the quantum Vlasov equations Kluger et al.
(1998)); Smolyansky et al. (1997);|Schmidt et al.| (1998),

Cu(t) =

Ni(t) = Sk (G.4.9)
Sult) = 5% / dt’“’k )1 2N (#)] cos[2@ () — 204 (F(.4.10)

k
describing the time evolution of the adiabatic particle number Ny (¢) of the

mean field theory. 8y (t) describes the quantum creation rate of particle num-
ber in an arbitrary slowly varying mean field. The Bose enhancement and
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Pauli blocking factors [1 + 2N (#')] appear in Eq. so that both spon-
taneous and induced particle creation are included automatically in the quan-
tum treatment. The most important feature of Eq. is that the source
term Sy (t) is nonlocal in time, indicating the particle creation rate depend-
ing on the entire history of the system. This means that the time evolution
of the particle number Ny () governed by the quantum Vlasov equation is a
non-Markovian process.

The mean electric current (j(t)) (G.1.12) in the basis of adiabatic number
[ax (t), b ()] (G.4.2)G.4.4) can be rewritten as,

(7(t)) = Jjcond + Jpols (G4.11)
Pk [k—

[— / (271)3[ ;f(t)]Nk(t), (G.412)
Sk

Jpol = % / (SIT)g,wka(t), (G.4.13)

by using Egs. (G.4.6), (G.4.7). This means electric current (j(¢)) enters into the
right-hand side of the field equation (G.1.5).

For the comparison between the quantum Vlasov equation (G.4.10) and
the classical Boltzmann-Vlasov equation (G.2.1)), the adiabatic particle num-
ber Ny (t) has to be understood as the counterpart of the classical distri-
bution function F(p,t) of particle number in the phase space. The source
term, that is composed by the Schwinger rate of pair production and the fac-
tor [1 + 2Ny (#')] for either the Bose enhancement or Pauli blocking, is phe-
nomenologically added into in the Boltzmann-Vlasov equation (G.2.1). Such
source term is local in time, indicating that the time evolution of the classical
distribution function F(p,t) is a Markovian process. In the limit of a very
slowly varying uniform electric field E and at very large time ¢ the source
term Sy (t) (G.4.10) integrated over momenta k reduces to the source term
in the Boltzmann-Vlasov equation Kluger et al. (1998); Smolyansky
et al| (1997); Schmidt et al. (1998). As a result, the conduction current j.onq
and the polarization current j,, in Eq. (G.4.11) are reduced to their counter-
parts Egs. (G.2.3), in the phenomenological model of kinetic theory. In
Ref. Kluger et al.| (1998); Bloch et al.|(1999); Schmidt et al.| (1999); |Vinnik et al.
(2001); Roberts et al. (2002), the quantum Vlasov equation has been numeri-
cally studied to show the plasma oscillations and the non-Markovian effects.
They are also compared with the Boltzmann-Vlasov equation that cor-
responds to the Markovian limit.
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G.5. Quantum decoherence in plasma oscillations

As showed in Fig. the collective oscillations of electric field E(t) and
associate electric current (j(t)) are damped in their amplitude. Moreover,
as time increases, a decoherence in their oscillating frequency occurs Kluger
et al. (1991); Habib et al.| (1996). This indicates that plasma oscillations decay
in time. This effective energy dissipation or time irreversibility is the phe-
nomenon of quantum decoherence Zurek| (1991) in the process of creation and
oscillation of particles, in the sense that energy flows from collective motion
of the classical electromagnetic field to the quantum fluctuations of charged
matter fields without returning back over times of physical interest Habib
et al.[(1996); Cooper et al.| (1997). This means that the characteristic frequency
wy of the quantum fluctuation mode “k” is much larger than the frequency
wy; of the classical electric field: wy >> wy, and wy,; ~ 2e*hn, / (mec?) Kluger
et al.| (1998); Habib et al.| (1996), where 7, is the number-density of particles
and antiparticles. The study of quantum decoherence and energy dissipation
associated with particle production to understand the plasma oscillation fre-
quency and damping can be found in Refs. Kluger et al.| (1998); Habib et al.
(1996)); |(Cooper et al.|(1997).

To understand the energy dissipation from the collective oscillation of clas-
sical mean-fields to rapid fluctuations of quantum fields, it is necessary to use
the Hamiltonian formalism of semi-classical theory. One defines the quan-
tum fluctuation ¢y (#) upon classical mean-field (P (t)) in the semi-classical
scalar theory Kluger et al.| (1998); Habib et al. (1996); |(Cooper et al.|(1997),

Cie(t) = ([@u(t) — (@u(1))]?) = (Pac(H)Pi(t)) — [(Px(1)]?, (G5

where ®y (t) is the Fourier k—component of the quantized scalar field ®(x)

(G.1.6). In the time-independent basis (G.1.7)G.1.8), one has (see Sec.[G),
& (1) = ol fi(®)]?, (G.5.2)
and the mode equation (G.1.9) for fi(t) can be rewritten as

2(7'
(t) = E(t) = @R (DE(H) + fgk—(‘;) G53)

where 7, (t) = & (t) momentum canonically conjugate to ¢ (t). Moreover,
the semiclassical Maxwell equation (G.1.13) is rewritten as

=2 [ Sk eawIG0) G5.4)
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Egs. (G.5.3) and (G.5.4) actually are Hamilton equations of motion,

OH et OH et

~smay PO =5zt (G.5.5)

me(t) =

for a closed system with Hamiltonian,

2 2

E? Bk [, o, .. Iog
}Ceff(A/ PA/ gl n, 0-) - V? + V/ W (”k + wk(A)Ck + a ’ (G56)

where Py = A = —E is the momentum canonically conjugate to A, wy (A) is
the field-dependent frequency of quantum fluctuations given by Eq.
and the value of mean-field (G.5.1) vanishes, (®y(t)) = 0, for each k-mode.
In Eq. (G.5.6), the first term is the electric energy and the second term is the
energy of quantum fluctuations of charged matter field, interacting with elec-
tric field.

Quantum decoherence is addressable within this Hamiltonian framework.
If one considers only the time-evolution of classical electric field A(f), that is
influenced by the quantum fluctuating modes fy (t), the latter can be treated
as a heat bath “environment”. Quantitative information about the quantum
decoherence is contained into the so called influence functional, which is
a functional of two time-evolution trajectories A1(t) and A;(t) Habib et al.
(1996)
Fia(t) = expliTia()] = Te(|A1 (1)) (A (1)), (G57)

where |Aj,(t)) are different time-evolution states determined by Eq. (G.5.5),
starting with the same initial state | A(0)) and initial vacuum condition Ny, =
0,0 = 1(G.1.13). One finds Habib et al. (1996),

T fifs
Fia(f) = 21 [|f1f2| (flfz* —flfz*)] ' (6:58)

in terms of the two sets of mode functions {f1(t)} and {f>(t)} (the subscript
k is omitted). This I'1p is precisely the closed time path (CTP) effective
action functional which generates the connected real n-points vertices in the
quantum theory|Calzetta and Hu/| (1989, 1994); Cooper et al.|(1994); Schwinger
(1961); Bakshi and Mahanthappa! (1963a,b)); Keldysh|(1964); Chou et al.| (1985).
The absolute value of Fj, measures the influence of quantum fluctua-
tions fi(t) on the time-evolution of the classical electric field A(f), i.e., the ef-
fect of quantum decoherence. If there is no influence of quantum fluctuations
on A(t), then |A1(t)) = |A2(t)) and |F2| = 1, otherwise A, (t) deviates from
Aq(t), |A1(t)) # |Aa(t)) and |Fip| < 1. Numerical results about the damping
and the decoherence of the electric field are presented in Refs. Kluger et al.

(1991); Habib et al. (1996) (see Figs.|G.1]and [G.2).
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G.5. Quantum decoherence in plasma oscillations

Figure G.2.: Absolute values of the decoherence functional |Fj;| as a function
of time. The two field values are E and E — A. The top figure shows (for
tixed A) the sharp dependence of decoherence on particle production when
|E| > 0.2E.. The second illustrates the relatively milder dependence on A.
These figures are reproduced from Fig. 2 in Ref.|Habib et al.| (1996).
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G. Plasma oscillations in electric fields

The effective damping observed in the plasma oscillation is certainly colli-
sionless, since the charged particle modes fi (t) interact only with the electric
field but not directly each other. The damping of plasma oscillation attributed
to the collisions between charged particle modes fi (t) will be discussed in the
next section.

G.6. Collision decoherence in plasma oscillations

If there are interactions between different modes k and species of particles,
the time evolutions of electric field and the distribution function F(p, t) of
particle number in the phase space are certainly changed. This can be phe-
nomenologically studied in the relativistic Boltzmann-Vlasov equation
by adding collision terms C(p, t),

iF _oF  _aF

These collision terms C(p,t) describe not only the interactions of different
modes k of particles, but also interactions of different species of particles, for
example, electron and positron annihilation to two photons and vice versa.
In Refs. Bloch et al. (1999); Vinnik et al,| (2001), the following equilibrating
collision terms were considered,

e(p, 1) = ~[5%(p,1,T) ~ 5(p, 1), (G.62)

T

where F¢4(p, t, T) is the thermal (Fermi or Bose) distribution function of par-
ticle number (fermions or bosons) at temperature T, the relaxation time t; is
determined by the mean free-path A(t) and mean velocity () of particles,
through

(G.6.3)

and 7. is a dimensionless parameter. A(f) is computed from the number den-
sity n(t) of particles,

1 d’k
e 0= / @) (G.6.4)

Whereas, the mean velocity of particles is given by o(t) = p(t)/&(t), ex-
pressed in terms of mean kinetic momentum f(f) and energy &(t) of particles.
The mean values of momentum j(t) and energy &(t) is computed |Vinnik et al.
(2001) by using distribution function JF(p, t) regularized via the procedure de-
scribed in Ref. Bloch et al.| (1999) that yields the renormalized electric current

(G.4.11). The temperature T(t) in Eq. (G.6.2) is the “instantaneous tempera-

At) =
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G.7. ete vy interactions in plasma oscillations in electric fields

ture”, which is determined by requiring that at each time t the mean particle
energy €(f) is identical to that in an equilibrium distribution F°1(k, ¢, T) at
the temperature T'(t),

A3k
&(t) = / (roy3e (0T £ (1) (G.6.5)
This system of two coupled equations: (i) the field equation with
renormalized electric currents ; (ii) the relativistic Boltzmann-Vlasov
equation (G.6.1) with the source term 8, (t) (G.4.10) and equilibrating colli-
sion term €(p, f) (G.6.2), are numerically integrated in Refs. Bloch et al.|(1999);
Vinnik et al. (2001). One of these numerical results is presented in Fig. It
shows Bloch et al.|(1999) that when the collision time-scale T; is much
larger than the plasma oscillation time-scale Tpl, Te > Ty, the plasma oscilla-
tions are unaffected. On the other hand, when 7, ~ Tyl the collision term has
a significant impact on both the amplitude and the frequency of the oscilla-
tions that result damped. There is a value of 7. below which no oscillations
arise and the system evolves quickly and directly to thermal equilibrium. Itis
worthwhile to contract this collision damping of plasma oscillation with the

collisionless damping effect due to rapid quantum fluctuations described in
Sec.

G.7. eTe vy interactions in plasma oscillations in
electric fields

In this section, it is presented a detailed report of the studies Ruffini et al.
(2003c) of the relativistic Boltzmann-Vlasov equations for electrons, positrons
and photons with collision terms originated from collisions and annihilation
of electrons and positrons pair into two photons and vice versa. These colli-
sion terms lead to the damping of plasma oscillation and possibly to thermal-
ization of particles. It is focused on the evolution of a system of eTe™ pairs
created in a strongly overcritical electric field (E ~ 10E.), explicitly taking
into account the scattering process e*e~ = 7. Since it is far from equilib-
rium the collisions cannot be modeled by an effective relaxation time term
in the transport equations, as discussed in the previous section. Rather the
actual, time varying, cross-sections have to be used.

Furthermore it is mainly interested in a system in which the electric field
varies on macroscopic length scale and therefore one can approximately adopt
a homogeneous electric field. Also, transport equations are used for electrons,
positrons and photons, with collision terms, coupled to Maxwell equations,
as introduced in Sec. and There is no free parameter here: the colli-
sion terms can be exactly computed, since the QED cross-sections are known.
Starting from a regime which is far from thermal equilibrium, one finds that
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Figure G.3.: Time evolution for electric field obtained using different relax-
ation times T, in the collision term of Eq. and with the impulse exter-
nal field E.(t) = —Ag[bcosh?(t/b)]~!, where Ay = 0.7 and b = 0.5. All
dimensioned quantities are given in units of the mass-scale m. This Figure is
reproduced from Fig. 6 in Ref. Bloch et al.|(1999).
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G.7. ete vy interactions in plasma oscillations in electric fields

collisions do not prevent plasma oscillations in the initial phase of the evo-
lution and analyze the issue of the timescale of the approach to an eTe 7y
plasma equilibrium configuration.

As discussed in Sec. and one can describe positrons (electrons)
created by vacuum polarization in a strong homogeneous electric field E
through the distribution function f.+ (f.-) in the phase space of positrons
(electrons). Because of homogeneity f,+ (f,-) only depend on the time t and
the positron (electron) 3-momentum p:

fer~ = fer- (t,p). (G.7.1)
Moreover, because of particle-antiparticle symmetry, one also has
fer (t,p) = fo- (t, —p) = fe (1, D). (G.7.2)

Analogously photons created by pair annihilation are described through the
distribution function f, in the phase space of photons. k is the photon 3-
momentum , then

fy=fy (LK). (G.7.3)
fe and f, are normalized so that
&’p _
| &8 feltip) = e (), (G7.4)
/ élSka £ (LK) =, (1), (G.7.5)

where 1, and n,, are number densities of positrons (electrons) and photons,
respectively. For any function of the momenta, one can denote by

3 3
(F(pryrPi))e = 1" [ P A2 F (b1, pi) - fo (P1) o fo ().
(G.7.6)
or

_ 3 3
(G (K1, k1)), = n,yl/ B K G (1, ) - fo (K1) - fo (K1),
(G.7.7)

its mean value in the phase space of positrons (electrons) or photons, respec-
tively.

The motion of positrons (electrons) is the resultant of three contributions:
the pair creation, the electric acceleration and the annihilation damping. The
probability density rate 8 (E, p) for the creation of a pair with 3-momentum p
in the electric field E is given by the Schwinger formula (see also Refs. Kluger
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G. Plasma oscillations in electric fields

et al (1991] [1992)):

3
8 (E,p) = (27)° il

(2 2
= — |eE|log [1 —exp (—%)] 5(py) (G.7.8)

where p| and p, are the components of the 3-momentum p parallel and
orthogonal to E, respectively. Also the energy is introduced

1/2
ep = (p-p+m?) (G.7.9)

of an electron of 3-momentum p and the energy
e = (k- k)12 (G.7.10)

of a photon of 3-momentum k. Then, the probability density rate C, (¢, p) for
the creation (destruction) of a fermion with 3-momentum p is given by

~ 1 dp 43k dk 4 5(4) e —
ee (tl p) - €p / (27_()32131 (27_[)3;1(1 (27_[)321(2 (27-[) 5 (p + pl kl kZ)
2
X ‘Me‘*‘(p)e—(pl)ﬂ'y(kl)'y(kz) [fe (p) fe (P1) — fy (k1) fy (k2)],
(G.7.11)

where

Me+( = Me+( =M (G.7.12)

p1)e (p2)—(ki)r(ka) p1)e (p2)<—r(ki)r(ka)

is the matrix element for the process

et (p1)e” (p2) — 7 (k1) v (ko) (G.7.13)

and as a first approximation, Pauli blocking and Bose enhancement (see, for
instance, Ref. Kluger et al. (1992)) are neglected. Analogously the probabil-
ity density rate C, (f,p) for the creation (destruction) of a photon with 3-
momentum k is given by

e,)/ (t/ k) ~ L/ : d3p1 d3p2 d°kq (27_[)4 5(4) (pl + Py — k— kl)

€k 271)361,1 (2n)3€P2 (27r)3ek1
2

[fe (p1) fe (p2) — f’Y (k) f7 (kl)] , (G.7.14)

X ‘M3+(P1)e_(P2)_’7(k)7(k1)

Finally the evolution of the pairs is governed by the transport Vlasov equa-
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G.7. ete vy interactions in plasma oscillations in electric fields

tions

dife+eE-Vpfe=8(E p)—Ce(t,p), (G.7.15)
3f, =26, (1K), (G.7.16)

Note that the collisional terms (G.7.11) and (G.7.14) are negligible, when cre-
ated pairs do not originate a dense plasma.

Because pair creation back reacts on the electric field, as seen in Sec.
and Vlasov equations are coupled with the homogeneous Maxwell equa-
tions, which read

E = —j, (E) —jc (1), (G.7.17)

where s
. d
jp (E) =24& ﬁeps (E,p) (G.7.18)

is the polarization current and

3
jo (£) = 2en, [ 2221 (p) (G7.19)

is the conduction current (see Ref.|Gatoft et al.| (1987)).

Egs. (G.7.15), (G.7.16) and describe the dynamical evolution of
the electron—positron pairs, the photons and the strong homogeneous elec-
tric field as the Schwinger process of pair creation, the pair annihilation into
photons and the two photons annihilation into pairs take place. It is hard to
(even numerically) solve this system of integral and partial differential equa-
tions. It is therefore useful to introduce a simplification procedure of such a
system through an approximation scheme. First of all note that Egs.
and can be suitably integrated over the phase spaces of positrons
(electrons) and photons to get differential equations for mean values. The
following exact equations for mean values are obtained:

4ne =S (E) —n (nv'), +n (020"), .

I, =2n (0, — Zn% <(727)”>,Y ,

D, (ep), = encE- (v), + 3E- jp— ng (epo1v”), + n <€k0‘20”>7,
Ln, ()., = 2n; (epo1v’), — 212 (exov”).
4, (p), = en.E —n3 (poyv'),,
LE = —2en, (v), —jp (E), (G.7.20)
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where
43
S(E) = / 223 (E,p) (G.7.21)

— _dN

= AL, (G.7.22)
is the total probability rate for vacuum polarization,

I _ | Pem _ Pet
= e " &, (G.7.23)

is the relative velocity between electrons and positrons (here p,- and p,+ are
3-momenta of electron and positron and €p, . have analogous meanings),

1/

o=k _ ko

ekl €k2

(G.7.24)

eg°M> is the total cross-

o)

is the relative velocity between photons, o1 = o1 (

section for the process ete™ — 7y, and » = 0 (e is the total cross-
section for the process 7y — e*e~, here €“°M is the energy of a particle in the
reference frame of the center of mass.

In order to evaluate the mean values in system some further hy-
potheses on the distribution functions are needed. One defines p|, €, and p*
such that

<PH>E = Pl (G.7.25)
(ep). =& = (PT + P71 + m)'/% (G.7.26)

It is assumed
fe(t,p) ecne ()6 (py —py) 5 (P2~ B2 ) (G.7.27)

Since in the scattering ete™ — 7y the coincidence of the scattering direction
with the incidence direction is statistically favored, it is also assumed

fr (1) ey (66 (18 ~R) [5 (b —F)) + (ky +F)], (G729

where k| and k | have analogous meaning as p and p | and the terms ¢ (k\l — E||)

and ¢ (kH + I_<H> account for the probability of producing, respectively, for-

wardly scattered and backwardly scattered photons. Since the Schwinger
source term implies that the positrons (electrons) have initially fixed
p|, namely p| = 0, assumption (G.7.27) ((G.7.28)) means that the distribution
of p (k) does not spread too much with time and, analogously, that the dis-
tribution of energies is sufficiently peaked to be describable by a é—function.
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As long as this condition is fulfilled, approximations (G.7.27) and (G.7.28)

are applicable. The actual dependence on the momentum of the distribution
functions has been discussed in Ref. Kluger et al|(1992}1998). If Eqs.
and are used into the system (G.7.20) one gets a new system of ordi-
nary differential equations. Since, in average, the inertial reference frame one
can fix coincides with the center of mass frame for the processes e*e™ = 77,
and has €“°M ~ & for each species therefore substituting Eqs. and

(G.7.28) into Egs. (G.7.20) one finds

4n. =S (E) = 2n3o1p, " |, | + 20502,
dny = dnionp, ! Ty | — 4130,
e = eneEp; 1| 7Ty | + 3Ejp — 2epecipy |y | + 2190402,
%p«, = 4n€pecflpe_1 TC|| | — 4140402,
%neu = en.E — ZneneHUlp;l T | »
4E = —2enp. " |1y | —jp (E), (G.7.29)
where
Pe = N€p, (G.7.30)
Py = Ny€i, (G.7.31)
Tl = MeP| (G.7.32)

are the energy density of positrons (electrons), the energy density of photons
and the density of “parallel momentum” of positrons (electrons), E is the elec-
tric field strength and j, the unique component of j, parallel to E. 07 and o
are evaluated at €“° = ¢ for each species. Note that Egs. are “clas-
sical” in the sense that the only quantum information is encoded in the terms
describing pair creation and scattering probabilities. Finally Egs. are
duly consistent with energy density conservation:

d <pe +o,+1 EZ) = 0. (G.7.33)
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Egs. (G.7.29) have to be integrated with the following initial conditions

ne =0,
n, =0,
pe =0,
oy =0,
e =0,

E = E,.

In Fig. the results of the numerical integration for Eg = 9E. is showed.
The integration stops at t = 150 7 (where, as usual, ¢ = 1/ mec? is the
Compton time of the electron). Each quantity is represented in units of m,
and Ac = fi/m.c, the Compton length of the electron.

The numerical integration confirms Kluger et al.| (1991, 1992) that the sys-
tem undergoes plasma oscillations:

1. the electric field does not abruptly reach the equilibrium value but rather
oscillates with decreasing amplitude;

2. electrons and positrons oscillates in the electric field direction, reaching
ultra relativistic velocities;

3. therole of the eTe™ = 7y scatterings is marginal in the early time of the
evolution.

This last point can be easily explained as follows: since the electrons are
too extremely relativistic, the annihilation probability is very low and conse-
quently the density of photons builds up very slowly (see details in Fig.[G.4).

At late times the system is expected to relax to a plasma configuration of
thermal equilibrium and assumptions and have to be gener-
alized to take into account quantum spreading of the distribution functions.
It is nevertheless instructive to look at the solutions of Egs. in this
regime. Moreover, such a solution should give informations at least at the
order of magnitude level. In Fig. the numerical solution of Egs.
is plotted, but the integration extends here all the way up to t = 7000 7¢ (the
time scale of oscillations is not resolved in these plots).

It is interesting that the leading term recovers the expected asymptotic be-
havior:

1. the electric field is screened to about the critical value: E ~ E. for t ~
103 — 10*1c > 1¢;

2. the initial electromagnetic energy density is distributed over electron—
positron pairs and photons, indicating energy equipartition;
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Figure G.4.: Plasma oscillations in a strong homogeneous electric field: early
times behavior. Setting Eg = 9E., t < 1507c and it is plotted, from the top
to the bottom panel: a) electromagnetic field strength; b) electrons energy
density; c) electrons number density; d) photons energy density; e) photons

number density as functions of time.
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Figure G.5.: Plasma oscillations in a strong homogeneous electric field: late
time expected behaviour. Setting Eg = 9E, t < 70007¢c and it is plotted, from
the top to the bottom panel: a) electromagnetic field strength; b) electrons
energy density; c) electrons number density; d) photons energy density; e)
photons number density as functions of time — the oscillation period is not
resolved in these plots. The model should have a breakdown at a time much
earlier than 70007c and therefore this plot contains no more than qualitative

informations.
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G.8. Electro-fluidodynamics of the pair plasma

3. photons and electron—positron pairs number densities are asymptoti-
cally comparable, indicating number equipartition.

At such late times a regime of thermalized electrons—positrons—photons
plasma is expected to begin (as qualitatively indicated by points 2 and 3
above) during which the system is describable by hydrodynamic equations
Ruffini et al. (2003b), 1999).

Let us summarize the results in this section. A very simple formalism is
provided to describe simultaneously the creation of electron—positron pairs
by a strong electric field E 2 E. and the pairs annihilation into photons.
As discussed in literature, one finds plasma oscillations. In particular the
collisions do not prevent such a feature. This is because the momentum of
electrons (positrons) is very high, therefore the cross-section for the process
ete” — 77 is small and the annihilation into photons is negligible in the
very first phase of the evolution. As a result, the system takes some time
(t ~ 10° — 10*1¢) to thermalize to a e*e ™y plasma equilibrium configuration.

G.8. Electro-fluidodynamics of the pair plasma

In the previous section, collisional terms in the Vlasov-Boltzmann equation
are introduced, describing interaction of pairs and photons via the reaction
eTe” < 7. These results have been considered of interest in the studies
of pair production in free electron lasers [Ringwald (2001bja) 2003),Bulanov
et al.| (2006),Narozhny et al.| (2004), in optical lasers Blaschke et al. (2006), of
millicharged fermions in extensions of the standard model of particle physics
Gies et al| (2006), electromagnetic wave propagation in a plasma Bulanov
et al.[(2005), as well in astrophysics Ruttini et al.[(2003b).

In this section, following|Ruffini et al.|(2007b)), the case of undercritical elec-
tric field is explored. It is usually expected that for E < E back reaction of the
created electrons and positrons on the external electric field can be neglected
and electrons and positrons would move as test particles along electric lines
of force. Here it is shown that this is not the case in a uniform unbounded
tield. This work is important since the first observation of oscillations effects
should be first detectable in experiments for the regime E < E, in view of the
rapid developments in experimental techniques, see e.g. Tajima and Mourou
(2002),Bulanov et al. (2003|, 2004).

An approach is introduced based on continuity, energy-momentum con-
servation and Maxwell equations in order to account for the back reaction
of the created pairs. This approach is more simple than the one, presented
in the previous section. However, the final equations coincide with
when the collisional terms can be neglected. By this treatment one can ana-
lyze the new case of undercritical field, E < E., and recover the old results
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G. Plasma oscillations in electric fields

for overcritical field, E > E.. In particular, the range 0.15E. < E < 10E. is
focused.

It is generally assumed that electrons and positrons are created at rest in
pairs, due to vacuum polarization in uniform electric field with strength E
Sauter (1931a),Heisenberg and Euler (1936),Schwinger| (1951} (1954a,b) Narozhnyi
and Nikishov| (1970),Greiner et al.| (1985),Grib et al.| (1980), with the average
rate per unit volume and per unit time

AN m} [(E\? E.

This formula is derived for uniform constant in time electric field. However,
it still can be used for slowly time-varying electric field provided the inverse
adiabaticity parameter|Greiner et al.|(1985),Grib et al.|(1980),Brezin and Itzyk-
son! (1970),Popov| (1971c, 1972b} 2001b),Popov| (1973a) is much larger than

one,

Ne Epeuk e
1= 5 =T > 1, (G.8.2)

where w is the frequency of oscillations, T = m,/w is dimensionless period
of oscillations. Equation implies that time variation of the electric field
is much slower than the rate of pair production. In two specific cases consid-
ered in this section, E = 10E. and E = 0.15E, one finds for the first oscillation
7 = 334 and 7 = 3.1 x 10° respectively. This demonstrates applicability of
the formula (G.8.1) in this case.

From the continuity, energy-momentum conservation and Maxwell equa-
tions written for electrons, positrons and electromagnetic field one can have

d (nUH
(axV ) _ S, (G.8.3)

aTH
o = T, (G.8.4)

nv
aaiv = —4m]J¥, (G.8.5)

where 7i is the comoving number density of electrons, T#" is energy-momentum
tensor of electrons and positrons

vo_ = H v K v
T = men (Ul Ul + Ul Uy ), (G8.6)

F#* is electromagnetic field tensor, J# is the total four-current density, U" is
four velocity respectively of positrons and electrons

uV

() =U"=7(1,7900), ul  =+(1,-17,0,0), (G.8.7)

(=
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v is the average velocity of electrons, v = (1 — 0?) 1'% s relativistic Lorentz

factor. Electrons and positrons move along the electric field lines in opposite
directions.

One can choose a coordinate frame where pairs are created at rest. Electric
tield in this frame is directed along x-axis and introduce coordinate number
density n = 71<y. In spatially homogeneous case from (G.8.3) one has

i =S. (G.8.8)

With definitions (G.8.6) from (G.8.4) and equation of motion for positrons and

electrons

a”ﬁ) 1z
Me P FeF,, (G.8.9)
one finds
oTH
S = —en (Ul —up ) ) E s (U + Ul ) = <FTY,(G8.10)

where the total current density is the sum of conducting | C” onq and polarization
J Z ,; currents Gatoff et al.| (1987) densities

T = Jona + Thots (G.8.11)

]?ond =efn (ué:_) - uéi)) , (G.8.12)
2m,S

Jo = = 7(0,1,0,0). (G.8.13)

Energy-momentum tensor in (G.8.4) and electromagnetic field tensor in
(G.8.5) change for two reasons: 1) electrons and positrons acceleration in the
electric field, given by the term ]  2) particle creation, described by the

cond’
term | 5 »- Equation (G.8.3) is satisfied separately for electrons and positrons.

Defining energy density of positrons

1
p =T =meny, (G.8.14)
one can find from (G.8.4)
p = envE + m,7yS. (G.8.15)

Due to homogeneity of the electric field and plasma, electrons and positrons
have the same energy and absolute value of the momentum density p, but
their momenta have opposite directions. The definitions also imply for ve-
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locity and momentum densities of electrons and positrons

p
v=", (G.8.16)
P
and
0% = p? + m*n?, (G.8.17)

which is just relativistic relation between the energy, momentum and mass
densities of particles.

Gathering together the above equations one then has the following equa-
tions

=S, (G.8.18)
p=E <env + megs) , (G.8.19)
p = enE 4+ m,vyS, (G.8.20)
E=-8m (env + meT,YS) . (G.8.21)

From (G.8.19) and (G.8.21)) one obtains the energy conservation equation

E} — E?

81

+20 =0, (G.8.22)

where Ej is the constant of integration, so the particle energy density vanishes
for initial value of the electric field, Ey.

These equations give also the maximum number of the pair density asymp-
totically attainable consistently with the above rate equation and energy con-
servation

E
= . G.8.23
" = g ( )
For simplicity dimensionless variables n = m3fi, p = mip, p = mip,

E = E.E, and t = m, 'f are introduced. With these variables the system
of equations (G.8.18)-(G.8.21)) takes the form

dii
df
% = fiEd + 46, (G.8.24)
ap
df

(7]
dE v
E——Smx( v+f),
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where § = 5 E%exp (—Z>, od==Fandy = (1- 52)_1/2, a = e?/(hc) as

47 E

=

before.

The system of equations is solved numerically with the initial con-
ditions n(0) = p(0) = v(0) = 0, and the electric field E(0) = E,.

In fig. electric field strength, number density, velocity and Lorentz
gamma factor of electrons as functions of time, are presented for initial values
of the electric field Ey = 10E, (left column) and Ey = 0.15E; (right column).
Slowly decaying plasma oscillations develop in both cases. The half-life of
oscillations to be 103t for Eg = 10E, and 10°t. for Ey = 0.8E, are estimated
respectively. The period of the fist oscillation is 50¢, and 3 x 10”t,, the Lorentz
factor of electrons and positrons in the first oscillation equals 75 and 3 x 10°
respectively for Ey = 10E. and Ey = 0.15E.. Therefore, in contrast to the case
E > E., for E < E; plasma oscillations develop on a much longer timescale,
electrons and positrons reach extremely relativistic velocities.

In fig. the characteristic length of oscillations is shown together with
the distance between the pairs at the moment of their creation. For con-
stant electric field the formation length for the electron-positron pairs, or the
quantum tunneling length, is not simply m,./(eE), as expected from a semi-
classical approximation, but Nikishov| (1969) Khriplovich! (2000)

1/2
* me [ Ec
D= — | = . 8.2
€E<E> (G825)

Thus, given initial electric field strength one can define two characteristic
distances: D*, the distance between created pairs, above which pair creation
is possible, and the length of oscillations, D = ct, above which plasma os-
cillations occur in a uniform electric field. The length of oscillations is the
maximal distance between two turning points in the motion of electrons and
positrons (see fig. [G.7). From fig. it is clear that D > D*. In the oscil-
lation phenomena the larger electric field is, the larger becomes the density
of pairs and therefore the back reaction, or the screening effect, is stronger.
Thus the period of oscillations becomes shorter. Note that the frequency of
oscillation is not equal to the plasma frequency, so it cannot be used as the
measure of the latter. Notice that for E < E. the length of oscillations be-
comes macroscopically large.

At fig. maximum Lorentz gamma factor in the first oscillation is pre-
sented depending on initial value of the electric field. Since in the succes-
sive oscillations the maximal value of the Lorentz factor is monotonically de-
creasing (see fig. It is concluded that for every initial value of the elec-
tric field there exists a maximum Lorentz factor attainable by the electrons
and positrons in the plasma. It is interesting to stress the dependence of the
Lorentz factor on initial electric field strength. The kinetic energy contribu-
tion becomes overwhelming in the E < E; case. On the contrary, in the case
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Figure G.6.: Electric field strength, number density of electrons, their velocity
and Lorentz gamma factor depending on time with Ey = 10E; (left column)
and Ey = 0.15E (right column). Electric field, number density and velocity of
positron are measured respectively in terms of the critical field E., Compton

3
volume A3 = <L> , and the speed of light c. The length of oscillation is

MeC
defined as D = c¢1, where 7 is the time needed for the first half-oscillation,
shown above.
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Figure G.7.: Maximum length of oscillations (black curves) together with the
distance between electron and positron in a pair (red curve) computed from
(G.8.25), depending on initial value of electric field strength. The solid black
curve is obtained from solutions of exact equations (G.8.24), while the dotted
black curve corresponds to solutions of approximate equation (G.8.27).

E > E. the electromagnetic energy of the field goes mainly into the rest mass
energy of the pairs.

This diagram clearly shows that never in this process the test particle ap-
proximation for the electrons and positrons motion in uniform electric field
can be applied. Without considering back-reaction on the initial field, elec-
trons and positrons moving in a uniform electric field would experience con-
stant acceleration reaching v ~ c for E = E. on the timescale ¢. and keep that
speed thereafter. Therefore, the back reaction effects in a uniform field are
essential both in the case of E > E. and E < E..

The average rate of pair creation is compared for two cases: when the elec-
tric field value is constant in time (an external energy source keeps the field
unchanged) and when it is self-regulated by equations (G.8.24). The result is
represented in fig. It is clear from fig. that when the back reaction ef-
fects are taken into account, the effective rate of the pair production is smaller
than the corresponding rate in a uniform field Ey. At the same time,
discharge of the field takes much longer time. To quantify this effect it needs
to compute the efficiency of the pair production defined as e = n(tg)/ny
where tg is the time when pair creation with the constant rate S(Ej) would
stop, and ng is defined above, see (G.8.23). For Ey = E. one finds € = 14%,
while for Ey = 0.3E. one has € = 1%.

It is clear from the structure of the above equations that for E < E. the
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Figure G.8.: Maximum Lorentz gamma factor v reached at the first oscillation
depending on initial value of the electric field strength.

number of pairs is small, electrons and positrons are accelerated in electric
field and the conducting current dominates. Assuming electric field to be
weak, the polarization current is neglected in energy conservation (G.8.19)
and in Maxwell equation (G.8.21)). This means energy density change due to
acceleration is much larger than the one due to pair creation,

Eenv > m,vS. (G.8.26)

In this case oscillations equations (G.8.18)-(G.8.21) simplify. From (G.8.19)
and one has ¢ = vp, and using (G.8.16) obtains v = +1. This is the
limit when rest mass energy is much smaller than the kinetic energy, v > 1.
One may therefore use only the first and the last equations from the above
set. Taking time derivative of the Maxwell equation one arrives to a single
second order differential equation
E.

E+ 2emm; (E) ‘E ex (—7{
2 \E)|E|“F E
Equation (G.8.27) is integrated numerically to find the length of oscillations
shown in fig. for E < E,. Notice that condition means ultrarela-
tivistic approximation for electrons and positrons, so that although according
to there is creation of pairs with rest mass 2m for each pair, the corre-

sponding increase of plasma energy is neglected, as can be seen from (G.8.26).
Now one can turn to qualitative properties of the system (G.8.18)-(G.8.21).

) =0. (G.8.27)
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Figure G.9.: The average rate of pair production n/t is shown as function of
time (thick curve), comparing to its initial value S(Ey) (thin line) for Eg = E..
The dashed line marks the time when the energy of electric field would have
exhaused if the rate kept constant.

These nonlinear ordinary differential equations describe certain dynamical
system which can be studied by using methods of qualitative analysis of dy-
namical systems. The presence of the two integrals and al-
lows reduction of the system to two dimensions. It is useful to work with the
variables v and E. In these variables one has

% - (1- 52>3/ ’F (G.8.28)
5;_1; _ —%77 (1 _ 52)1/2 (E% — E2> — 87m1::(1_—~52)1/2. (G.8.29)

Introducing the new time variable T

% = (1-#) 2 (G.8.30)

one arrives at
Z_i - (1- 52>2 E (G.8.31)
Z—E - —%5 (1 — 52) (Eg _ EZ) _ 8me:. (G.8.32)

Clearly the phase space is bounded by the two curves ¢ = 1. Moreover,
physical requirement p > 0 leads to existence of two other bounds £ = +E.
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Figure G.10.: Phase portrait of the two-dimensional dynamical system
(G.8.31),(G.8.32). Tildes are omitted. Notice that phase trajectories are not
closed curves and with each cycle they approach the point with E = 0 and
7=0.

This system has only one singular point in the physical region, of the type
focusat E = 0and ¢ = 0.

The phase portrait of the dynamical system (G.8.31),(G.8.32) is represented
at fig. Thus, every phase trajectory tends asymptotically to the only
singular point at E = 0 and @ = 0. This means oscillations stop only when
electric field vanishes. At that point clearly

0 = Meh. (G.8.33)

is valid. i.e. all the energy in the system transforms just to the rest mass of
the pairs.

In order to illustrate details of the phase trajectories shown at fig. [G.10|only
1.5 cycles are plotted at fig. One can see that the deviation from closed
curves shown by dashed curves is maximal when the field peaks, namely
when the pair production rate is maximal.
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Figure G.11.: Phase trajectory for 1.5 cycles (thick curve) compared with so-
lutions where the Schwinger pair production is switched off (dashed curves).
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The above treatment has been done by considering uniquely back reaction
of the electron-positron pairs on the external uniform electric field. The only
source of damping of the oscillations is pair production, i.e. creation of mass.
As analysis shows the damping in this case is exponentially weak. How-
ever, since electrons and positrons are strongly accelerated in electric field
the bremsstrahlung radiation may give significant contribution to the damp-
ing of oscillations and further reduce the pair creation rate. Therefore, the
effective rate shown in fig. [G.9 will represent an upper limit. In order to esti-
mate the effect of bremsstrahlung, the classical formula for the radiation loss
in electric field is recalled

2 ¢t 2 E\?
=25 F2 = Zom? (E—> . (G.8.34)
C

Thus the equations (G.8.19) and (G.8.20), generalized for bremsstrahlung, are

2
p=E (env + mzyS) — §e4meEz, (G.8.35)
. 2 4 2
p = enkE + meuyS — 3¢ meE“v. (G.8.36)

while equations (G.8.18) and (G.8.21) remain unchanged. Assuming that new

terms are small, relations (G.8.17) and (G.8.22)) are still approximately satis-
tied.

Now damping of the oscillations is caused by two terms:
T Broxp (T 2.2
47_[2E exp ( E) and 3sz . (G.8.37)

The modified system of equations is integrated, taking into account radia-
tion loss, starting with Eg = 10E,. The results are presented in fig. [G.12]where
the sum of the energy of electric field and electrons-positrons pairs normal-
ized to the initial energy is shown as a function of time. The energy loss
reaches 20 percent for 400 Compton times. Thus the effect of bremsstrahlung
is as important as the effect of collisions considered in Ruffini et al.|(2003c) for
E > E., leading to comparable energy loss for pairs on the same timescale.
For E < E. one expects that the damping due to bremsstrahlung dominates,
but the correct description in this case requires Vlasov-Boltzmann treatment
Aksenov et al.[(2007).

The damping of the plasma oscillations due to electron-positron annihila-
tion into photons has been addressed in Rutffini et al. (2003c). There it was
found that the system evolves towards an electron-positron-photon plasma
reaching energy equipartition. Such a system undergoes self-acceleration
process following the work of Ruffini et al. (1999).

Therefore the following conclusions are reached:
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Figure G.12.: Losses of the energy due to classical bremsstrahlung radiation.
The energy density of the system of electrons, positrons and the electric field

normalized to the initial energy density is shown without (solid line) and
with (dashed line) the effect of bremsstrahlung.

e It is usually assumed that for E < E; electron-positron pairs, created
by the vacuum polarization process, move as charged particles in exter-
nal uniform electric field reaching arbitrary large Lorentz factors. The
existence of plasma oscillations of the electron-positron pairs also for
E < E; is demonstrated. The corresponding results for E > E. are
well known in the literature. For both cases the maximum Lorentz
factors ymax reached by electrons and positrons are determined. The
length of oscillations is 10 7/ (m,c) for Eg = 10E., and 107 7/ (m,c) for
Ey = 0.15E.. The asymptotic behavior in time, t — oo, of the plasma
oscillations by the phase portrait technique is also studied.

e For E > E. the vacuum polarization process transforms the electromag-
netic energy of the field mainly in the rest mass of pairs, with moderate
contribution to their kinetic energy: for Ey = 10E. one finds ymax = 76.
For E < E, the kinetic energy contribution is maximized with respect to
the rest mass of pairs: ymax = 8 X 10° for Ey = 0.15E...

e In the case of oscillations the effective rate of pair production is smaller
than the rate in uniform electric field a constant in time, and conse-
quently, the discharge process lasts longer. The half-life of oscillations
is 103t for Ey = 10E. and 10°t. for Ey = 0.8E.. The efficiency of pair
production is computed with respect to the one in a uniform constant
field. For E = 0.3E, the efficiency is reduced to one percent, decreasing
turther for smaller initial electric field.

All these considerations apply to a uniform electric field unbounded in
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space. The presence of a boundary or a gradient in electric field would re-
quire the use of partial differential equations, in contrast to the ordinary dif-
ferential equations used here. This topic needs further study. The effect of
bremsstrahlung for E > E. is also estimated, and it is found that it represents
comparable contribution to the damping of the plasma oscillations caused by
collisions |[Ruffini et al.| (2003c). It is therefore clear, that the effects of oscil-
lations introduces a new and firm upper limit to the rate of pair production
which would be further reduced if one takes into account bremsstrahlung,
collisions and boundary effects.
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relativistic pair plasma

An electron-positron plasma is of interest in many fields of physics and astro-
physics. In the early universe Weinberg|(1972),Kolb and Turner (1990) during
the lepton era, ultrarelativistic electron-positron pairs contributed to the mat-
ter contents of the Universe. In GRBs electron-positron pairs play an essen-
tial role in the dynamics of expansion Goodman| (1986)),Piran| (1999),Ruffini
et al. (1999). Indications exist on the presence of the pair plasma also in ac-
tive galactic nuclei|Wardle et al.| (1998), in the center of our Galaxy Churazov
et al. (2005), around hypothetical quark stars Usov| (1998). In the laboratory
pair plasma is expected to appear in the fields of ultraintense lasers Blaschke
et al. (2006).

In many stationary astrophysical sources the pair plasma is thought to
be in thermodynamic equilibrium. A detailed study of the relevant pro-
cesses Bisnovatyi-Kogan et al. (1971),Weaver (1976),Lightman| (1982),Gould
(1982),Stepney and Guilbert (1983),Coppi and Blandford|(1990), radiation mech-
anisms Lightman and Band|(1981), possible equilibrium configurations Light-
man|(1982),Svensson|(1982a) and spectra|Zdziarski (1984) in an optically thin
pair plasma has been carried out. Particular attention has been given to col-
lisional relaxation process (Gould| (1981),Stepney (1983), pair production and
annihilation Svensson/(1982b), relativistic bremsstrahlung Gould|(1980),Haug
(1985), double Compton scattering Lightman| (1981),Gould, (1984).

An equilibrium occurs if the sum of all reaction rates vanishes. For in-
stance, electron-positron pairs are in equilibrium when the net pair produc-
tion (annihilation) rate is zero. This can be achieved by variety of ways and
the corresponding condition can be represented as a system of algebraic equa-
tions Svensson| (1984). However, the main assumption made in all the above
mentioned works is that the plasma is in thermodynamic equilibrium.

At the same time, in some cases considered above the pair plasma can be
optically thick. Although moderately thick plasmas have been considered
in the literature Guilbert and Stepney| (1985), only qualitative description
is available for large optical depths. Assumption of thermal equilibrium is
often adopted for rapidly evolving systems such as GRBs without explicit
proof (Goodman (1986),Piran| (1999),Ruffini et al.| (1999),Iwamoto and Taka-
hara (2004). Then hydrodynamic approximation is usually applied both for
leptons and photons. However, particles may not be in equilibrium initially.
Moreover, it is very likely situation, especially in the early Universe or in
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transient events when the energy is released on a very short timescale and
there is no time for the system to relax to thermal equilibrium configuration.

Ultrarelativistic expansion of GRB sources is unprecedented in astrophysics.
There are indications that relativistic jets in X-ray binaries have Lorentz fac-
tors oy ~ 2 — 10 while in active galactic nuclei 7y ~ 10 — 20 Miller-Jones et al.
(2006), but some bursts sources have v ~ 400 and possibly more |Vergani
(2007). There is a consensus in the literature that the acceleration required
to reach ultrarelativistic velocity in GRBs comes from the radiation pressure,
namely from photons and electron-positron pairs. Therefore, the source does
not move as a whole, but expands from a compact region, almost reaching
the speed of light. The bulk of radiation is emitted far from the region of
formation of the plasma, when it becomes transparent for photons, trapped
initially inside by the huge optical depth. Thus the plasma is optically thick
at the moment of its formation and intense interactions between electrons,
positrons and photons take place in it. Even if initially the energy is released
in the form of only photons, or only pairs, the process of creation and anni-
hilation of pairs soon redistribute the energy between particles in such a way
that the final state will be a mixture of pairs and photons. The main question
arises: what is the initial state, prior to expansion, of the pair plasma? Is it in a
kind of equilibrium and, if so, is it thermal equilibrium, as expected from the
optically thick plasma? Stationary sources in astrophysics have enough time
for such an equilibrium to be achieved. On the contrary, for GRBs with the
timescale of expansion of the order of milliseconds it is not at all clear that
equilibrium can be reached.

In the literature there is no consensus on this point. Some authors con-
sidered thermal equilibrium as the initial state prior to expansion Goodman
(1986)),Ruffini et al. (1999), while others did not |Cavallo and Rees| (1978)). In
fact, the study of the pair plasma equilibrium configurations in detail, per-
formed in Svensson| (1982a), cannot answer this question, because essentially
nonequilibrium processes have to be considered.

Thus, observations provide motivation for theoretical analysis of physi-
cal conditions taking place in the sources of GRBs, and more generally, in
nonequilibrium optically thick pair plasma. Notice that there is substantial
difference between the ion-electron plasma on the one hand and electron-
positron plasma on the other hand. Firstly, the former is collisionless in the
wide range of parameters, while collisions are always essential in the latter.
Secondly, when collisions are important relevant interactions in the former
case are Coulomb scattering of particles which are usually described by the
classical Rutherford cross-section. In contrast, interactions in the pair plasma
are described by quantum cross-sections even if the plasma itself can be still
considered as classical one.

The study reported in Aksenov et al.| (2007),Aksenov et al.| (2008) in the case
of pure pair plasma clarified the issue of initial state of the pair plasma in
GRB sources. The numerical calculations show that the pair plasma quickly
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reach thermal equilibrium prior to expansion, due to intense binary and triple
collisions. In this Chapter details about the computational scheme adopted
in|Aksenov et al. (2007) are given.

H.1l. Qualitative description of the pair plasma

First of all the domain of parameters characterizing the pair plasma consid-
ered in this Chapter is specified. It is convenient to use dimensionless param-
eters usually adopted for this purpose.

Mildly relativistic pair plasma is considered, thus the average energy per
particle € brackets the electron rest mass energy

0.1 MeV < € < 10 MeV. (H.1.1)

The lower boundary is required for significant concentrations of pairs, while
the upper boundary is set to avoid substantial production of other particles
such as muons.

The plasma parameter is g = (n_d>)~!, where d = ,/4’;’13;_ = Z/0_is

the Debye length, kp is Boltzmann’s constant, n_ and T_ are electron number
density and temperature respectively, - = kpT-/(mcc?) is dimensionless
temperature, w = +/4mwe?n_/m, is the plasma frequency. To ensure applica-
bility of kinetic approach it is necessary that the plasma parameter is small,
g < 1. This condition means that kinetic energy of particles dominates their
potential energy due to mutual interaction. For the pair plasma considered
in this Chapter this condition is satisfied.

Further, the classicality parameter, defined as s = e/ (hvy) = a/ By, where
v, = Byc is mean relative velocity of particles, see (H.7.12). The condition
2 > 1 means that particles collisions can be considered classically, while for
» < 1 quantum description is required. Both for pairs and protons quantum
cross-sections are used since s < 1.

The strength of screening of the Coulomb interactions is characterized by
the Coulomb logarithm A = m.dv,/h. Coulomb logarithm varies with mean
particle velocity, and it cannot be set a constant as in most of studies of the
pair plasma.

Finally, pair plasma is considered with linear dimensions R exceeding the

mean free path of photons | = (n,(f)_l, where n_ is concentration of elec-
trons and ¢ is the corresponding total cross section. Thus the optical depth
T = noR > 1is large, and interactions between photons and other particles
have to be taken in due account. These interaction are reviewed in the next
section.

Note that natural parameters for perturbative expansion in the problem
under consideration are the fine structure constant & and the electron-proton
mass ratio m, /mp.

627



H. Thermalization of the mildly relativistic pair plasma

Pure pair plasma composed of electrons e™, positrons e*, and photons 7y
is considered. It is assumed that pairs or photons appear by some physical
process in the region with a size R and on a timescale t < R/c. Distribu-
tion functions of particles depend on neither spatial coordinates nor direction
of momentum f; = fi(e, t), i.e. isotropic in momentum space and uniform
plasma is considered.

To make sure that classical kinetic description is adequate the dimension-
less degeneracy temperature is estimated

o[ o)

and compared with the estimated temperature in thermal equilibrium. With
initial conditions the degeneracy temperature is always smaller than
the temperature in thermal equilibrium and therefore the classical kinetic ap-
proach is applied. Besides, since ideal plasma is considered with the plasma
parameter g ~ 1072 it is possible to use one-particle distribution functions.
These considerations justify the computational approach based on classical
relativistic Boltzmann equation. At the same time the right hand side of
Boltzmann equations contains collisional integrals with quantum and not
classical matrix elements, as discussed in the introduction.

1/2
—1, (H.1.2)

Relativistic Boltzmann equations Belyaev and Budker| (1956),Mihalas and
Mihalas| (1984) in spherically symmetric case are

19f; of; u? of; %
Caf;ﬂ%z( af+ - 8{4> vu a]; ;( ni-xif),  (HLY

where y = cos ¥, ¥ is the angle between the radius vector r from the origin
and the particle momentum p, U is a potential due to some external force,
Bi = v;/c are particles velocities, f;(e, t) are their distribution functions, the
index i denotes the type of particle, € is their energy, and 17? and )(? are the
emission and the absorption coefficients for the production of a particle of
type “i” via the physical process labeled by g. This is a coupled system of
part1al integro-differential equations. For homogeneous and isotropic distri-
bution functions of electrons, positrons and photons reduces to

19f; B '
PiTi ; (n! = xifi) (H.14)

which is a coupled system of integro-differential equations. In (H.1.4) the
Vlasov term vug—{; is explicitly neglected.

Therefore, the left-hand side of the Boltzmann equation is reduced to par-
tial derivative of the distribution function with respect to time. The right-
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hand side contains collisional integrals, representing interactions between
electrons, positrons and photons.

Differential probability for all processes per unit time and unit volume
Berestetskii et al.[(1982) is defined as

hic

HZebV

b

dw = C(Z?Th)4(5(4) (pf — pi) }Mfi|2 V x

H dpa he
o (2mh)32el |7
(H.1.5)

where p), and €, are respectively momenta and energies of outgoing parti-
cles, €, are energies of particles before interaction, My; are the corresponding

matrix elements, 6(4) stands for energy-momentum conservation, V is the
normalization volume. The matrix elements are related to the scattering am-

plitudes by
fic fic

M = [1;[ 26,V I:IZe;V

As example consider absorption coefficient for Compton scattering which
is given by

Tfi. (H.1.6)

:|:_> =)
e e g / A dpdp' Wi praep fy (1, £) fi (P, 1), (H.1.7)

where p and k are momenta of electron (positron) and photon respectively,
dp = deidoeifi/c3, dk' = deledol /c® and the differential probability

Wy p'kp 18 given by (H.5.3).

In (H.1.7) one can perform one integration over dp’
/ dp's(k+p—K —p') —1, (H.1.8)

but it is necessary to take into account the momentum conservation in the
next integration over dk’, so

/deiY(S(e7 +er—e —€)= (H.1.9)
_ / / 1 VA, 1 _
- /d(e')’ +€:|:) |a(€[y+€;:)/aefy|5(€7 + €4 €y e:l:) - |a(€{y +€;:)/a€£),| = Jes,

where the Jacobian of the transformation is

1

Jos = —————, (H.1.10)
© 1 BLb bl

where b; = p;/p, b; = p;/p’, by = (BreLbs +e,by —e b))/ (Bl €] ).
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Finally, for the absorption coefficient

“fy = — [ dold M B aoD) (H.1.11)
X“fy = 0y Pm]csfv ) f+(p,t), 1.
where the matrix element here is dimensionless. This integral is evaluated
numerically.

For all binary interactions exact QED matrix elements are used which can
be found in the standard textbooks, e.g. in Berestetskii et al.| (1982),Greiner
and Reinhardt|(2003),Akhiezer and Berestetskii (1981), and are given below.

In order to account for charge screening in Coulomb scattering the mini-
mal scattering angles are introduced following Haug| (1988). This allows to
apply the same scheme for the computation of emission and absorption coef-
ticients even for Coulomb scattering, while many treatments in the literature
use Fokker-Planck approximation Pilla and Shaham|(1997).

For such a dense plasma collisional integrals in should include not
only binary interactions, having order a*> in Feynman diagrams, but also
triple ones, having order a® Berestetskii et al| (1982). Consider relativistic
bremsstrahlung

e1+ey e +eb+ 7. (H.1.12)

For the time derivative, for instance, of the distribution function f, in the
direct and in the inverse reactions (H.1.12) one has

f2 = /dpldplldplzdk, [Wp/llplz,k/;pl,pzf{leflé — WPLPz;P'l,P’Z,k’fle] = (H.1.13)

613 64 (P — P;)| M2
byt s Ch f 1V fi perg 1
[ dmraptapaac 5 (AR it
where

N
dpldpzwp/yp/sz/;}ilfpz =V dwl,

dplldp,/’zdklwpl,pz;p’l,p/z,k’ = Vduwy,
and dw; and dw, are differential probabilities given by (H.1.5). The matrix
element here has dimensions of the length squared.

In the case of the distribution functions (H.1.I8), see below, there are mul-
tipliers proportional to exp kBLT in front of the integrals, where ¢ are chemical
potentials. The calculation of emission and absorption coefficients is then re-
duced to the well known thermal equilibrium case Svensson, (1984). In fact,
since reaction rates of triple interactions are « times smaller than binary reac-
tion rates, it is expected that binary reactions come to detailed balance first.
Only when binary reactions are all balanced, triple interactions become im-
portant. In addition, when binary reactions come into balance, distribution
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H.1. Qualitative description of the pair plasma

| Binary interactions

| Radiative and pair producing variants |

| Reactions with pairs

|

Mogller and Bhabha scattering Bremsstrahlung
eliezjE — ef ef eiezi<—>ei e, 'y
etet — etlet! eteT—eteT'y
Single Compton scattering Double Compton scattering
ei,),_)ei,)// e 7(_)611,)//,)///

Pair production
and annihilation

Radiative pair production
and three photon annihilation

’)f’)//<—>€i€q:’)/”
eiejﬁ—vy'y’fy”
ei’y<—>ei’e$ei”

Y —eteT

Table H.1.: Microphysical processes in the pair plasma.

functions already acquire the form (H.1.18). Although there is no principle
difficulty in computations using exact matrix elements for triple reactions as
well, the simplified scheme allows for much faster numerical computation.

All possible binary and triple interactions between electrons, positrons and
photons are considered as summarized in Tab.

Each of the above mentioned reactions is characterized by the correspond-
ing timescale and optical depth. For Compton scattering of a photon, for

instance 1

fes = ——,
ornyc

Tes = OTH+R, (H.1.14)

where o7 = 83” o ( Z )2 is the Thomson cross section. There are two timescales
in the problem that characterize the condition of detailed balance between
direct and inverse reactions, ts for binary and a1t for triple interactions
respectively.

Notice, that electron-positron pair can annihilate into neutrino channel with
the main contribution from the reaction e*e™ —v7. By this process the en-
ergy could leak out from the plasma if it is transparent for neutrinos. The
optical depth and energy loss for this process can be estimated following
Beaudet et al.| (1967) by using Fermi theory, see also Dicus) (1972),Misiaszek
et al.[(2006) for calculations within electro-weak theory.

The optical depth is given by (H.1.14) with the cross section

2 B 2
Oyy ™~ (g_ ( ) ’
7T \ m,C

where ¢ ~ 10712 is the weak interaction coupling constant and it is assumed
that typical energies of electron and positron are ~ m,.c? and their relative ve-

(H.1.15)
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H. Thermalization of the mildly relativistic pair plasma

locities v ~ c¢. Numerically o,y /01 = % (g/ zx)z ~ 7 1022, For GRB sources
the plasma may be both transparent and opaque to neutrino production. The
energy loss when pairs are relativistic and nondegenerate is

2

dp 128> mec\3 (mec
B B eweme () (). (H116)

The ratio between the energy lost due to neutrinos and the energy of pho-
tons in thermal equilibrium is then

Mec?

Ldo,, 128" 5(5)5(4)95( . )At~3610 395 ﬁec. (H.1.17)

- dt e

For GRB sources with the dynamical time At ~ 1073 sec, the energy loss due
to neutrinos becomes relevant Koers and Wijers| (2005) for high temperatures
6 > 10. However, on the timescale of relaxation to thermal equilibrium At ~
10~ !2 sec the energy loss is negligible.

Starting from arbitrary distribution functions a common development is
found: at the time f. the distribution functions always have evolved in a
functional form on the entire energy range, and depend only on two param-
eters. In fact it is found for the distribution functions

file) = (273—h)3)exp (—g ;ivi) , (H.1.18)

4’

with chemical potential v; = —*; and temperature 0; = k 25, where e = ﬁ

is the energy of the particle. Such a configuration corresponds to a kinetic
equilibrium Kolb and Turner| (1990),Pilla and Shaham| (1997),Ehlers| (1973)
in which all particles acquire a common temperature and nonzero chemical
potentials. Triple interactions become essential for t > t, after the estab-
lishment of kinetic equilibrium. In strict mathematical sense the sufficient
condition for reaching thermal equilibrium is when all direct reactions are
exactly balanced with their inverse. Therefore, in principle, not only triple,
but also four-particle, five-particle and so on reaction have to be accounted
for in equation (H.1.4). The timescale for reaching thermal equilibrium will
be then determined by the slowest reaction which is not balanced with its
inverse. The necessary condition here is the detailed balance at least in triple
interactions, since binary reactions do not change chemical potentials at all.

Notice that similar method to ours was applied in Pilla and Shaham|(1997)
in order to compute spectra of particles in kinetic equilibrium. However, it
was never shown how particles evolve down to thermal equilibrium.

In the case of pure pair plasma chemical potentials in (H.1.18) represents
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H.2. The discretization procedure and the computational scheme

deviation from the thermal equilibrium through the relation
v==01In(n/ny), (H.1.19)

where ny;, are concentrations of particles in thermal equilibrium.

H.2. The discretization procedure and the
computational scheme

In order to solve equations a finite difference method is used by intro-
ducing a computational grid in the phase space to represent the distribution
functions and to compute collisional integrals following Aksenov et al. (2004).
The goal is to construct the scheme implementing energy, baryon number
and electric charge conservation laws. For this reason instead of distribution
functions f;, spectral energy densities are used

_ 4medBif;
= —5=

Ei(e;) , (H2.1)

where B; = \/1 — (m;c2/¢€;)?, in the phase space €;. Then

3p.f.
€ifi(Pr t)drdp = Mec—éBlfll'dGi = E;drde; (H.2.2)

is the energy in the volume of the phase space drdp. The particle density is

E.
n; = / fdp = / Zdei,  dn; = fidp, (H.2.3)
1

while the corresponding energy density is

pi = /eifidp = /Eidez'-

Boltzmann equations (H.1.4) can be rewritten in the form

10E; _
q

where 77! = (47e3B; /%)y

The computational grid for phase space is {€;, 4, ¢}, where y = cosd, ¢
and ¢ are angles between radius vector r and the particle momentum p. The
zone boundaries are €; ,,+1/2, Hkr1/2, Prr1/2 for 1 < w < Wmax, 1 < k < kmax,
1 <1 < Imax- The length of the i-th interval is A€; , = €; 1172 — € w—1/2- On
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H. Thermalization of the mildly relativistic pair plasma

the finite grid the functions (H.2.1) become

1

E;
)
Aei,w

/A deE;(e). (H.2.5)

Now the collisional integrals in (H.2.4) are replaced by the corresponding
sums.

After this procedure the set of ordinary differential equations (ODE’s) is
obtained, instead of the system of partial differential equations for the quan-
tities E; ,, to be solved. There are several characteristic times for different
processes in the problem, and therefore the system of differential equations
is stiff. (Eigenvalues of Jacobi matrix differs significantly, and the real parts of
eigenvalues are negative.) Gear’s method Hall and Watt| (1976) is used to in-
tegrate ODE’s numerically. This high-order implicit method was developed
for the solution of stiff ODE’s. The method is conserves for the number of
particles, when appropriate.

In this method exact energy conservation law is satisfied. For binary inter-
actions the particles number conservation law is satisfied as interpolation of
grid functions E; ,, inside the energy intervals is adopted.

H.3. Conservation laws

Conservation laws consist of charge and energy conservations. In addition,
in binary reactions particle number is conserved.

Energy conservation law can be rewritten for the spectral density

d d
=Y pi=0, or —) Y;,=0, (H.3.1)
dt - dt i
where
€iw +A€i,w/2
Y, = / E.de. (H.3.2)
ei,w_A€i,w/2

Particle’s conservation law in binary reactions reduces to

d 4 v Yiw
E;nl—o, or dtz

iw €i,w

=0. (H.3.3)

For electrically neutral plasma considered in this Chapter charge conserva-
tion implies
n_ =nqy. (H.3.4)
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H.4. Determination of temperature and chemical potentials in kinetic
equilibrium

H.4. Determination of temperature and chemical
potentials in kinetic equilibrium

Consider distribution functions for photons and pairs in the most general
form (H.1.18). If one supposes that reaction rate for the Bhabha scattering
vanishes, i.e. there is equilibrium with respect to reaction

et +e - Fet +e 7, (H.4.1)
and the corresponding condition can be written in the following way

fr=fDf-A=f ) =" =)' A+ fo), (H.4.2)

where Bose-Einstein enhancement along with Pauli blocking factors are taken
into account, it can be shown that electrons and positrons have the same tem-
perature

0y =60_=04, (H.4.3)

and they have arbitrary chemical potentials.
With (H.4.3) analogous consideration for the Compton scattering

e+ o e+, (H.4.4)

gives
fe(= N0+ ) = f£ A= fo) fy (14 £3), (H4.5)

and leads to the same temperature of pairs and photons
0+ =0, =6, (H.4.6)

with arbitrary chemical potentials. If, in addition, reaction rate in the pair-
creation and annihilation process

et +et - y+q (H.4.7)

vanishes too, i.e. there is equilibrium with respect to pair production and
annihilation, with the corresponding condition,

fof-(U+ )+ £) = fo s (1= f) (1 = £-), (H.4.8)

it turns out that also chemical potentials for pairs and photons satisfy the
following condition for the chemical potentials

Ve +vo =2v,. (H.4.9)

However, since in general v, # 0 the condition (H.4.9) does not imply v, =
v_.
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H. Thermalization of the mildly relativistic pair plasma

\ | Interaction | Parameters of DFs \
[ | eTe scattering 0, =0_, Vv ,v_
Il | e% scattering 0, =0+, Vv, vi

III | pair production | vy +v_ =2v,,if 0, = 0+
IV | Tripe interactions Vo, v+ = 0,if 0, = 0+

Table H.2.: Relations between parameters of equilibrium DFs fulfilling de-
tailed balance conditions for the reactions shown in Tab.

In general, the detailed balance conditions for different reactions lead to
relations between temperatures and chemical potentials summarized in table
[EH2

Kinetic equilibrium is first established simultaneously for electrons, positrons
and photons. Thus they reach the same temperature, but with chemical po-
tentials different from zero. Later on, protons reach the same temperature.

In order to find temperatures and chemical potentials the following con-
straints are implemented: energy conservation (H.3.1)), particle number con-
servation (H.3.3), charge conservation (H.3.4), condition for the chemical po-

tentials (H.4.9).
Given (H.1.18) it is found for photons

Py 1 Yr ) g3
—— =36 = — — 126, H.4.10
My 1M1eC2 My, 1y Vo P (97> U ( )
and for pairs
0+ _ 1 V4 .
= j»(0 = — — 61), H.4.11
11 1maC2 ja(0x), ns v, &P (9i>]1( +) ( )
where the Compton volume is
vy = L (2 (H.4.12)
0~ 81 \nmec o
and functions j; and j, are defined as
T ,—503/2
i1(0) = 0K (671) — \ﬁe o, 0=0 (H.4.13)
263, 0 — oo
] TGRS STC) 1+3%, 60
j2(8) = K01 “1 36 g (H.4.14)

For pure electron-positron-photon plasma in kinetic equilibrium, summing

up energy densities in (H.4.10),(H.4.11) and using (H.4.3),(H.4.6) and (H.4.9)
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H.5. Binary interactions

it is found

Y pi= 2 e (g—i) [36% + 1 (B 2(61)] (H.4.15)

et ey
and analogously for number densities
2 n; = exp ( ) [91( —|—]1(9k)] (H.4.16)
et,e=,y Ok
Therefore, two unknowns, v and 6} can be found.
In thermal equilibrium v,, vanishes and one has

vy =v_ =0. (H.4.17)

H.5. Binary interactions

H.5.1. Compton scattering

The time evolution of the distribution functions of photons and pair parti-
cles due to Compton scattering may be described by Landau and Lifshitz
(1981b),Ochelkov et al. (1979)

(M

= [ dK'dpdp' Vwi o X
ot ),Yei_>,),/e:t/ / PP

X[fy (K, 1) f(p, 1) — fr (K t) f+(p,1)], (H.5.1)
afi(p,t)) / o
-, = dkdk dp V’Z/Uk/, 1K, X
( at ,},e:t_>,-)//ej:/ p p
X[fo (K, 1) f+ (P, ) — fr(k, t) f=(p, 1)), (H.5.2)
where
h2C6 ! / / / |Mfi|2
wk',p’;k,p = W(Xey — €4 — G'Y — €:|:)5<k + P kK — |Y )m,
(H.5.3)

is the probability of the process,
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H. Thermalization of the mildly relativistic pair plasma

2
| My |? = 267242 mgc’ + mgc’ + g 4 g
fi s —m2c2  u—m2c? s —m2c2  u—m2c?

1 /s — m2c2 2.2
__(s mpe” | U mc )}, (H.5.4)

4 \u—m2?2  s—m2c?

is the square of the matrix element, s = (p + £)> and u = (p — ¥)? are in-
variants, ¢ = (e,/c)(1,e,) and p = (e+/c)(1, B+e+) are energy-momentum
four vectors of photons and electrons, respectively, dp = derdoe? B+/c>,
dk' = de! edol /c® and do = dud¢.

The energies of photon and positron (electron) after the scattering are

r_ 6167(1 — ‘Bibi-by)
v Gi(l — ﬁibi~bfy) + 67(1 — bfy'bfy) !

€ €, =er+e,—e,, (H55)

b; = p;i/p, b} =p;/p', by = (Bretbs +e,by —elbl)/(BLe]).

For photons, the absorption coefficient (H.1.11) in the Boltzmann equations

(H.1.4) is

. ) M;;|?h*c?
W = = (—aj?) -/ dnidoﬁcs—| AT (5
Yot —ylet! +€y

where dni = deido,-eizﬁ,-fi/c3 = dGidOiEi/(szei).

From equations (H and (H.5.6), the absorption coefficient for photon

energy density E,, averaged over the €, u-grid with zone numbers w and k is

1
Ae%w

1
" Aeyw

(XE) 7 =

/ devdyy(xE)w —r'et _
€yENEYw

/ dn.dn..dol.] | MyiPhe? (H.5.7)
nodnidol Joo——"———, 5.
€yENAEYw 7Ry Jes 16€i€IlL

where the Jacobian of the transformation is

! A
€,€L

eyer (1= Bab,be)’ (H.5.8)

]cs -

Similar integrations can be performed for the other terms of equations (H.5.1),
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H.5. Binary interactions

(H.5.2), and
2 2%2 2
et /et _ 1 / dnedne do! €7|Mfi| h“c H.5.9
Hoy,w A(:‘%w ¢ ene nyany 07]CS—16€i€7€;: ’ (H.5.9)
/ 232 2
et oot _ 1 / dnedndo! €7|Mfi| hc H.5.10
77j:,w Aeﬁ:,w ¢ ches == 7]CS—16€:|:€,Y ’ ( . )
1 €’ |Mfi|2h2C2
E 7" —ve / dndnido’ Jos———t——. H.5.11
(X ) Ae:tcu crches YU+ ry]cs 16676; ( )

In order to perform integrals (H.5.7)-(H.5.11) numerically over ¢ (0 < ¢ <
27) a uniform grid ¢;+1/, is introduced with 1 < | < I[pax and Ay =
(P11 /2 — (Pl 1/2)/2 = 270/ Imax. It is assumed that any function of ¢ in equa-
tions -(F.5.9) in the interval A¢; is equal to its value at ¢ = ¢;

(p1-1/2 + gblH /2 / 2. It is necessary to integrate over ¢ only once at the be—
ginning of calculations. The number of intervals of the ¢-grid depends on
the average energy of particles and is typically taken as Imax = 2kmax = 64.

H.5.2. Pair creation and annihilation

The rates of change of the distribution function due to pair creation and an-
nihilation are

( ’hatl ) - _/dkjdp_dp+VwP—zPJr;kl,sz’h(klft)f’yz(kZIt)/
e (H.5 12)
of-.(k;,t e
( f%é()tl )) - /dkjdp_dp+vwk1rk2}P—rP+f—(P—/t)f+(p+/t)/
e"et =717
(H.5.13)

fori=1,j=2,andforj=1,i=2.

0 Lt
( = (alzi )> - /dijdkldkszP,p+;k1,sz7(k1r t)fy(ka, t),
TY2—e et
(H.5.14)
0 Lt
( f:t (apti )) - /dp:':dkldkszklrkz;P,P+f— (P—/ t)f-i— (p—|—r t) ’
e~et—7172
(H.5.15)
where
726 M ,’2
Wp_pikiky = W&(e_ ter—e1—e)i(p-+p+ —ki— k2)16€€—1161€2.
(H.5.16)
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H. Thermalization of the mildly relativistic pair plasma

Here, the matrix element |M fi|2 is given by equation (H.5.4) with the new

invariants s = (p_ — ¢)2and u = (p_ — £)?, see Berestetskii et al. (1982).

The energies of photons created via annihilation of a e* pair are

m2C4 + €_€+(1 — [3_‘3+b_‘b+)
€_(1 — ‘B_b_‘bl) + €_|_(1 — ,3_|_b_|_'b1) ’

e1(b1) = e2(b1) =€ +ep —eq,

(H.5.17)
while the energies of pair particles created by two photons are found from

BFrvB? - AC

e_(b_) = 1 , er(b_)=e€1+e—€_, (H.5.18)

where A = (61 + €2)2 — [(61b1 + €2b2)-b_]2, B = (€1 + €2)€1€2(1 — bl-bz),
C = m3c*[(e1by + €2b3)-b_]> + €2¢3(1 — by-by)%. Only one root in equation
(H.5.18) has to be chosen. From energy-momentum conservation

G+ —p_ =p,, (H.5.19)
taking square from the energy part leads to
€2+ €5+ €% 4 2e1er — 2616 — 2626 = e%r, (H.5.20)
and taking square from the momentum part

€2+ e+ €2 B 4 2e169b1-by — 2616 B _bi-b_ —2e3¢ B byb_ = (e fy)%
(H.5.21)
There are no additional roots because of the arbitrary e

6162(1 — bl-bz) — 616_(1 — ‘B_bl'b_) — 626_(1 — ﬁbzb_) = O, (H.5.22)
e_B_(e1b1 + e2by)-b_ =€_(e1 + €2) — €162(1 — by-by).

Eliminating p it is obtained

€2e3(1 —by-by)? — 2e162(1 — by-by) (€1 +€2)e_+

+ {(61 + €)% — [(e1by + ezbz)-b_]z} et =

= [(e1by + €2b2)-b_] (—m?), (H.5.23)
Therefore, the condition to be checked reads

e_B_[(e1b1 + €2b3)-b_]* = [e_(e1 + €2) — (e1€2)(1 — by-by)] x
X [(61b1 + €2b2)-b_] > 0. (H.5.24)
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Finally, integration of equations (H.5.12)-(H.5.15) yields

242 2
ety 1 / 2 |Mfz| hc
=— +
Ty Aeq ( e1€0E 0 +Jea 16e_e €
|2h2 2

1 €1|Mf1
+ / d*n
Aeyw ( €260 tlea g e, 16e_e€+

1 €1|]\/If1|2h2 2
e et _ 72
(XE) A€ew </€6Aee,w N T 16e€ *

(H.5.25)

1 €1’Mf1’2h2 2
+ / d*n
A€e ( €+EANEqw S T 16e_¢€;

1 €— :B “\/Ifz|2h2c2
E\nm—e et _ / 2
(XE)yiw ene yJea T66sc.s

1 e B | M e
d*n , H.5.27
+ A€y (/quew 7)ea l6€e1€e+ ( )

(H.5.26)

+

T172—e et

Ne,w = +

2 24,2 2

/ 2] €2 B—|Mg;|“hc
ca

€_€Aeow T l6€e1€e7€+

A€ 16€1€7

e_B_|Mq;|*h?c?
- ( [ i p- 1M ) (H.5.28)
€1 EA€Ew

where d’ny = dn_dnidoy,d*n, = dn,dn,do_, dny = deirdoi€’Byify,
o 2 . .
dn., , = deypdoy 2€7 5 f+,, and the Jacobian is

_ €+p-
Jea = (€ Tc ) —(ebiTeba) b (H.5.29)

H.5.3. Mgller scattering of electrons and positrons

The time evolution of the distribution functions of electrons (or positrons) is
described by

< ! (al; )>elez—>e’e’2 B /dp]dpldp2VwP/1 php1p2 <
x[fi(p1 t) f2(p2 t) — fi(p1,t) f2(P2, )], (H.5.30)
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H. Thermalization of the mildly relativistic pair plasma

withi =1, j =2,and withj =1, i = 2, and where

h2co |Mfz‘|2
Wp! phiprp2 = (271)2_1/5(":1 +er—€1—€)d(p1+p2—p)— Pé)m,
(H.5.31)
1 2 2
\Mfi\z = 2671202 {tz {S ;u +4m§c2( mzcz)} -+ (H.5.32)
1 2 t2
— {S T + 4m?c?(u — mgcz)} + (H.5.33)
u 2
4 s 22\ (S 22
T (2 Mec > (2 3imgc > ‘ (H.5.34)

with s = (p +p2)? = 2(m 22 4 pipa), t = (p1 —py)? = 2(m2c — p1p}), and
u=(p1 —ph)? =2(m?*— plpz) Berestetskii et al.| (1982).

N

The energies of final-state partlcles are given by H.5.18) with new coef-
ficients A = (1 + €)% — (61,81b1 bj + ezﬁzbz b})?, B = (61 + ez)[m +
e162(1 — B1Bob1by)], and C = m2c*(e1B1b1-b] + €2B82b2-b])? + [m2c* + e162(1 —
B1B2b1-by)]%. The condition to be checked is

[ei(el + &) —myct — (e162) (1 — ﬁlﬁzbl'bz)} [(e1B1b1 + €282b2)-b7] > 0.
(H.5.35)

Integration of equations (H.5.30), similar to the case of Compton scattering
in Section yields

—eie] 1 2By | M| *h*c?
172’,1:;2 ey _ (/ d2ﬂ]ms 1Pl fz| / X

Aee,w AN 16€1€2€2
1 €1 Bh| M| 2P c?
+ / d*n ) H.5.36
Aee,w < A Jmns 16€1€7 ( )
= 1 €} B | M |*h*c?
(XE)euzz ey _ / dz”]ms 187 f1|/ n
Aee,w €1€EA€ 166262
1 €1 Bh| My 2P c?
+ / d*n , H.5.37
Aee,w < erEN€e ]ms 16616& ( )

where d?n = dnydnaydoy, dny , = deq 2do1 262,12, ,, and the Jacobian is

€85
Jms = 2 . (H.5.38)
" (e +€5)By — (e1p1b1 + €282b2) b
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H.5. Binary interactions

H.5.4. Bhaba scattering of electrons on positrons

The time evolution of the distribution functions of electrons and positrons
due to Bhaba scattering is described by

(w) = /dpqzdpl_dpﬁrva/ Pp-pr <
e~et—e et/ B

ot
x[f-(pL Of+ (Pl t) — f-(p— ) f+(p+,1)],  (H539)

where
1%t / / / / |Mfi|2
WpL plip-p+ = (271)2V(5(€_ tep—e-—e)o(p-+pr—p-—P) 16e_et€’ €’
(H.5.40)

and |My;| is given by the equation (H.5.34), but the invariants are s = (p— —
pl)% t = (pr —p')> and u = (p_ + p+ )% The final energies €', €, are
functions of the outgoing particle directions in a way similar to that in Section
see also Berestetskii et al.| (1982).

Integration of equations (H.5.39) yields

pper e o L ( [ e ]bse%'_|Mﬁ|2/n2cz>+
' Aetw \ Je ete 166 € €,
Aeli,w ( /  re, dzn/i]bsel_ﬁlié]:fféfh202>, (H.5.41)
e =i ([, )+
Ae:w ( /e cnen, dzn;]bsel_ﬁligfféf hzcz), (H.5.42)

where d?n', = dn_dndo’_, dny = derdoLe? B f+, and the Jacobian is

_ e\ B ' H.5.43
]bs (G/_ + e{’_)ﬁ/_ — (e_ﬁ_b_ -+ €+‘B+b+)-b/_ ( )

Analogously to the case of pair creation and annihilation in Section (H.5.2)
the energies of final state particles are given by (H.5.18) with the coefficients
A= (e-+er)*—(e-p-b_-b_ +eifiby-b )% B = (e-+ey) [mic* +e_er(1—p-pib_-b.
C=[mc*+e e (1-B Bib by)]*+mcte p_b b +e pibi-b ]%
In order to select the correct root one has to check the condition (H.5.35)

changing the subscripts 1 — —, 2 — +.
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H. Thermalization of the mildly relativistic pair plasma

H.6. Three-body processes

Emission coefficients for triple interactions are adopted from Svensson, (1984).
Bremsstrahlung

2
. 16 2
T ﬁeﬂ:(ﬂiwz—)?%( e ) -

Mec2

0 3./260 + 202
1.2 +10.40%)= 5 H.6.1
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1+10.46%)= H.6.2
xIn {45( 1049 )s] exp(1/0)Ka(1/6)’ (F.6.2)

where ¢ = ¢70%72, and K, (1/6) is the modified Bessel function of the second
kind of order 2.
Double Compton scattering

ety—etly/y" _ (ny + n_)nn,%%
s 2 0 (H.6.3)
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Three photon annihilation
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(H.6.4)

where two limiting approximations Svensson| (1984) are joined together.
Radiative pair production

2 2
vy oot _ ety My [Ka(1/6)
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Electron-photon pair production
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(H.6.6)
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H.7. Cutoff in the Coulomb scattering

The absorption coefficient for three-body processes is written as
3
XP =P /B (H.6.7)

where nf’rp is the sum of the emission coefficients of photons in the three par-
ticle processes, Ef,q = 27€ fﬁq/ c3, where fiq is given by (H.1.18).

From equation (H.2.4), the law of energy conservation in the three-body
processes is

/ Z E;)dude = 0. (H.6.8)

For exact conservation of energy in these processes the following coefficients
of emission and absorption for electrons are introduced:

[0 — X E))dedy » / e
Xe = ngde]/[ ! ;76 o 0’ (;7’)/ X'y 7)d€ ;Ll > O
(H.6.9)
or
3p
E. f E.dedy r Xe =0, (7P = OPE, )dedu < 0.
(H.6.10)

H.7. Cutoff in the Coulomb scattering

Denote quantities in the center of mass (CM) frame with index 0, and with
prime after interaction. Suppose there are two particles with masses m; and
my. The change of the angle of the first particle in CM system is

019 = arccos(big-b)y), (H.7.1)

the numerical grid size is A, the minimal angle at the scattering is Om;n.

By definition in the in CM frame

pio+p20 =0, (H.7.2)
where
pio = pi + | (T — 1)(Np;) — r%% N, i=1,2 (H.7.3)
and
€; =TI'(ejp + Vpio)- (H.7.4)
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Then for the velocity of the CM frame

Voeptpr g Vo 1 (H75)
Cc
By definition
bip = byy, by = b, (H.7.6)
and then
P10l = |p20| = po =
1 1
= €2, — mict = E\/(—:%O — m3c4, (H.7.7)
where
o (€1+ €2)? — T?(m3 — m3)c* (7.8
10 2(e1 + €)T ’ v
o — (€14 €2)* + T2 (m3 — m3)c* (EL7.9)
i et + el 7

Haug Haug (1988) gives the minimal scattering angle in the center of mass

system
2n Yr

emin - ’
MecD (v, +1)/2(yr — 1)

where the maximum impact parameter (neglecting the effect of protons) is

(H.7.10)

2
p=2P (H.7.11)
w €19

and the invariant Lorentz factor of relative motion (e.g. [Haug| (1988)) is

1 _ €1€&2—Pp1- pac®

. P (H.7.12)
- (%) oz

Finally, in the CM frame
€10\ 2
tmin = 2 [(mec)z - (%) (1 — ,B%O Ccos Qmin)}

Since it is invariant, ¢ in the denominator of |M fi|2 in (H.5.34) is replaced
by the value t1/1 + 2. /#2 to implement the cutoff scheme. Also at the scat-

min

tering of equivalent particles u in the denominator of |M fi|2 in (H.5.34) by is
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changed by the value uy/1+ 2. /u2.

H.8. Numerical results

The results of numerical simulations are reported below. Two limiting ini-
tial conditions with flat spectra are chosen: (i) electron-positron pairs with a
107> energy fraction of photons and (ii) the reverse case, i.e., photons with
a 107> energy fraction of pairs. The grid consists of 60 energy intervals and
16 x 32 intervals for two angles characterizing the direction of the particle
momenta. In both cases the total energy density is p = 10%* erg - cm 3. In the
tirst case initial concentration of pairsis 3.1 - 102 cm 3, in the second case the
concentration of photons is 7.2 - 10%° cm 3.

In Fig. panel A concentrations of photons and pairs as well as their
sum for both initial conditions are shown. After calculations begin, concen-
trations and energy density of photons (pairs) increase rapidly with time, due
to annihilation (creation) of pairs. Then, in the kinetic equilibrium phase,
concentrations of each component stay almost constant, and the sum of con-
centrations of photons and pairs remains unchanged. Finally, both individual
components and their sum reach stationary values. If one compares and con-
trasts both cases as reproduced in Fig. A one can see that, although the
initial conditions are drastically different, in both cases the same asymptotic
values of the concentration are reached.

One can see in Fig. panel C that the spectral density of photons and
pairs can be fitted already at t; &~ 20tcs ~ 7 - 10~ '° sec by distribution func-
tions with definite values of temperature 6y (tcs) ~ 1.2 and chemical
potential ¢¢(t;) ~ —4.5, common for pairs and photons. As expected, after
t; the distribution functions preserve their form with the values of
temperature and chemical potential changing in time, as shown in Fig.
panel B. As one can see from this figure, the chemical potential evolves with
time and reaches zero at the moment ty, ~ a~'t; ~ 7-10713 sec, correspond-
ing to the final stationary solution. Condition is satisfied in kinetic
equilibrium.

The necessary condition for thermal equilibrium in the pair plasma is the
detailed balance between direct and inverse triple interactions. This point
is usually neglected in the literature where there are claims that the thermal
equilibrium may be established with only binary interactions|Stepney|(1983).
In order to demonstrate it explicitly in Fig. panel A the dependence of
concentrations of pairs and photons when inverse triple interactions are arti-
ticially switched off is also shown. In this case (see dotted curves in the upper
part of Fig. panel A), after kinetic equilibrium is reached concentrations
of pairs decrease monotonically with time, and thermal equilibrium is never
reached.

The existence of a non-null chemical potential for photons indicates the
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Figure H.1.: A: Dependence on time of concentrations of pairs (black), pho-
tons (red) and both (thick) when all interactions take place (solid). Upper
(lower) figure corresponds to the case when initially there are mainly pairs
(photons). Dotted curves on the upper figure show concentrations when in-
verse triple interactions are neglected. In this case an enhancement of the
pairs occurs with the corresponding increase in photon number and thermal
equilibrium is never reached. B: Time dependence of temperatures, mea-
sured on the left axis (solid), and chemical potentials, measured on the right
axis (dotted), of electrons (black) and photons (red). The dashed lines corre-
spond to the reaching of the kinetic (~ 10~ *sec) and the thermal (~ 10~ ?sec)
equilibria. Upper (lower) figure corresponds to the case when initially there
are mainly pairs (photons). C: Spectra of pairs (upper figure) and photons
(lower figure) when initially only pairs are present. The black curve repre-
sents the results of numerical calculations obtained successively at t = 0,
t =ty and t = ty, (see the text). Both spectra of photons and pairs are ini-
tially taken to be flat. The yellow curves indicate the spectra obtained form
at t = fi. The perfect fit of the two curves is most evident in the
entire energy range leading to the first determination of the temperature and
chemical potential both for pairs and photons. The orange curves indicate
the final spectra as thermal equilibrium is reached.
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departure of the distribution function from the one corresponding to thermal
equilibrium. Negative (positive) value of the chemical potential generates
an increase (decrease) of the number of particles in order to approach the
one corresponding to the thermal equilibrium state. Then, since the total
number of particles increases (decreases), the energy is shared between more
(less) particles and the temperature decreases (increases). Clearly, as thermal
equilibrium is approached, the chemical potential of photons is zero.

In this example with the energy density 10%* erg - cm > the thermal equilib-
rium is reached at ~ 7 - 10713 sec with the final temperature Ty, = 0.26 MeV.
For a larger energy density the duration of the kinetic equilibrium phase, as
well as of the thermalization time scale, is smaller. Recall, that in entire tem-
perature range the plasma is nondegenerate.

The results, obtained for the case of an uniform plasma, can only be adopted
for a description of a physical system with dimensions Rg > LT =4.310"°cm.

no-
The assumption of the constancy of the energy density is only valid if the

-1
dynamical timescale ¢, = (%‘Zi—lf) of the plasma is much larger than the

above timescale t;;, which is indeed true in all the cases of astrophysical inter-
est.

Since thermal equilibrium is obtained already on the timescale f;;, < 10~ 2sec,
and such a state is independent of the initial distribution functions for elec-
trons, positrons and photons, the sufficient condition to obtain an isothermal
distribution on a causally disconnected spatial scale R > cty, = 10~2cm is
the request of constancy of the energy density on such a scale as well as, of
course, the invariance of the physical laws.

To summarize, the evolution of an initially nonequilibrium optically thick
electron-positron-photon plasma is considered up to reaching thermal equi-
librium. Starting from arbitrary initial conditions kinetic equilibrium is ob-
tained from first principles, directly solving the relativistic Boltzmann equa-
tion with collisional integrals computed from QED matrix elements. The es-
sential role of direct and inverse triple interactions in reaching thermal equi-
librium is demonstrated. These results can be applied in the theories of the
early universe and of GRBs, where thermal equilibrium is postulated at the
very early stages. These results can in principle be tested in laboratory exper-
iments in the generation of electron-positron pairs.
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. Concluding remarks

We have reviewed three fundamental quantum processes which have high-
lighted some of the greatest effort in theoretical and experimental physics in
last seventy years. They all deal with creation and annihilation of electron-
positron pairs. We have followed the original path starting from the classical
works of Dirac, on the process ete~ — 27, and the inverse process, 2y —
ete”, considered by Breit-Wheeler. We have then reviewed the e*e™ pair
creation in a critical electric field E. = m2c3/(he) and the Sauter-Heisenberg-
Euler-Schwinger description of this process both in Quantum Mechanics and
Quantum Electrodynamics. We have also taken this occasion to reconstruct
the exciting conceptual developments, initiated by the Sauter work, enlarged
by the Born-Infeld nonlinear electrodynamical approach, finally leading to
the Euler and Euler-Heisenberg results. We were guided in this reconstruc-
tion by the memories of many discussions of one of us (RR) with Werner
Heisenberg. We have then reviewed the latest theoretical developments de-
riving the general formula for pair-production rate in electric fields varying
in space and in time, compared with one in a constant electric field approx-
imation originally studied by Schwinger within QED. We also reviewed re-
cent studies of pair production rates in selected electric fields varying both in
space and in time, obtained in literatures using instanton and JWKB methods.
Special attention has been given to the pair-production rate in electric fields
alternating periodically in time, early derived by Brezin, Itzykson and Popov,
and the nonlinear Compton effect in the processes of electrons and photons
colliding with laser beams, studied by Nikishov and Narozhny. These theo-
retical results play an essential role in Laboratory experiments to observe the
pair-production phenomenon using laser technologies.

We then reviewed the different level of verification of these three processes
in experiments carried all over the world. We stressed the success of exper-
imental verification of the Dirac process, by far one of the most prolific and
best tested process in the field of physics. We also recalled the study of the
hadronic branch in addition to the pure electrodynanmical branch originally
studied by Dirac, made possible by the introduction of eTe™ storage rings
technology. We then turned to the very exciting current situation which sees
possibly the Breit-Wheeler formula reaching its first experimental verifica-
tion. This result is made possible thanks to the current great developments of
laser physics. We reviewed as well the somewhat traumatic situation in the
last forty years of the heavy-ion collisions in Darmstadt and Brookhaven, yet
unsuccessfully attempting to observe the creation of electron-positron pairs
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in heavy ion collisions. We also reviewed how this vast experimental pro-
gram was rooted in the theoretical ideas of Zeldovich, Popov, Greiner and
their schools.

We have then recalled the great novelty in the field of relativistic astro-
physics where we are daily observing the phenomenon of Gamma Ray Bursts
Piran| (1999, 2005); Meszaros (2006); Rutfini et al.[(2003al, 2007a). These bursts
of photons occur in energy range keV to MeV, last about one second and come
from astrophysical sources located at a cosmological distance Costa et al.
(1997); van Paradijs et al. (1997); Kulkarni et al.| (1998); Halpern et al.| (1998);
Ramaprakash et al{ (1998). The energy released is up to ~ 10°* ergs, equiv-
alent to all the energy emitted by all the stars of all the galaxies of the entire
visible Universe during that second. It is generally agreed that the energetics
of this GRBs sources is dominated by a dense plasma of electrons, positrons
and photons created during the process of gravitational collapse leading to
a Black Hole. It is clear that the Sauter-Heisenberg-Euler-Schwinger vacuum
polarization process, we have considered in the first part of the report, is a
viable theoretical model to study the creation of such an electron-positron
optically thick plasma. Similarly the Breit-Wheeler and the Dirac processes
we have discussed, are essential in describing the further evolution of such
an optically thick electron-positron plasma. The GRBs present an unique op-
portunity to test new unexplored regime of ultra high energy physics with
Lorentz factor y ~ 200 and relativistic field theories in the strongest general
relativistic domain.

The aim in this report, in addition to describe the above mentioned three
basic quantum processes, has been to identify and review three basic top-
ics in ultrarelativistic regimes. They are necessary to reach a theoretical un-
derstanding of the new and complex phenomenon occurring in the quan-
tum electrodynamical processes during the gravitational collapse to a Kerr-
Newman black hole and in the onset of the dense electron positron plasma.
The first topic contains the basic results of the physics of black holes, of
their energetics and of the associated process of vacuum polarization. We
reviewed the procedures to generalize in a Kerr-Newman geometry the QED
treatment of Schwinger and the creation of enormous number of 10°° electron-
positron pairs in such a process.

The second topic is the back reaction of a newly created electron-positron
plasma on an overcritical electric field. Again we reviewed the Breit-Wheeler
and Dirac processes applied in the wider context of the Vlasov-Boltzmann-
Maxwell equations. To discuss the back reaction of electron-positron pair on
external electric fields, we reviewed semi-classical and kinetic theories de-
scribing the plasma oscillations using respectively the Dirac-Maxwell equa-
tions and the Boltzmann-Vlasov equations. We also reviewed the discus-
sions of plasma oscillations damping due to quantum decoherence and col-
lisions, described by respectively the quantum Boltzmann-Vlasov equation
and Boltzmann-Vlasov equation with particle collisions terms. We particu-
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larly addressed the study of the influence of the collision processes e™e™ =

v+ on the plasma oscillations in supercritical electric field E > E.. After 1034
Compton times, the oscillating electric field is damped to its critical value
with a large number of photons created. An equipartition of number and en-
ergy between electron-positron pairs and photons is reached. For the plasma
oscillation with undercritical electric field E < E., we recalled that electron-
positron pairs, created by the vacuum polarization process, move as charged
particles in external electric field reaching a maximum Lorentz factor at finite
length of oscillations, instead of arbitrary large Lorentz factors, as tradition-
ally assumed. Finally we point out some recent results which differentiate
the case E > E. from the one E < E. with respect to the creation of the rest
mass of the pair versus its kinetic energy. For E > E; the vacuum polarization
process transforms the electromagnetic energy of the field mainly in the rest
mass of pairs, with moderate contribution to their kinetic energy. Such phe-
nomena, certainly fundamental on astrophysical scales, may become soon
directly testable in the the verification of the Breit Wheeler process tested in
laser experiments in the laboratory.

As third topic we have reviewed the recent progress in the understand-
ing of thermalization process of an optically thick electron-positron-photon
plasma. Numerical integration of relativistic Boltzmann equation with colli-
sional integrals for binary and triple interactions is used to follow the time
evolution of such a plasma, in the range of energies per particle between
0.1 and 10 MeV, starting from arbitrary nonequilibrium configuration. It is
recalled that there exist two types of equilibria in such a plasma: kinetic equi-
librium, when all particles are at the same temperature, but have different
nonzero chemical potentials, and thermal equilibrium, when chemical po-
tentials vanish. The crucial role of direct and inverse binary and triple in-
teractions in reaching thermal equilibrium is emphasized. These results are
indeed essential in determining the initial conditions and differentiating ma-
jor different approaches in the astrophysical scenario of GRBs.

The comprehension of these three ultrarelativistic processes are indeed nec-
essary for starting to formulate the dynamics and the basic energetics of
GRBs, which we will address in a forthcoming report.

The comprehension of an astrophysical system is only reached when the
understanding of its energetics is reached. There are two classical examples
of how theoretical physics has given the conceptual basis to comprehend
an astrophysical system. The first case is the theoretical work which led to
the understanding of the energy sources of main sequence stars. The “long
march” started in 1920s, when J. Perrin Perrin! (1920) and A. Eddington Ed-
dington| (1920) pointed out independently that the fusion of four hydrogen
nuclei into one helium nucleus could explain the energy production in stars.
This idea was put on a solid base by R. Atkinson and F. Houtermans Atkin-
son and Houtermans| (1929a,b) using G. Gamow quantum theory of nuclear
barrier penetration Gamow and Houtermans (1929). This work, further de-
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veloped by C.F. von Weiszsacker von Weizsacker| (1937, (1938) led to the mon-
umental theoretical work of H. Bethe Bethe (1968) later further developed by
Burbidge et al. Burbidge et al.| (1957). It was concluded that nuclear fusion
process explained the energy sources of stars. The second case is the theoret-
ical work which kead to the understanding of the energy source of the binary
X-ray sources. These souces, discovered by R. Giacconi and his group Giac-
conil (1978), presented luminosities up to 10*L, in the X ray band. In this case
the main theoretical physics tool was represented by the solution of the effec-
tive potential around a gravitationally collapsed object and the consequent
evaluation of the gravitational binding energy for circular orbits. It was then
possible to understand that in binary X-ray sources the energy source was
indeed a new form of energy, alternative to the nuclear energy explaining
main sequence stars. It became clear that the energy source was due to mat-
ter accretion process in relativistic gravitational potential. It was concluded
that relativistic gravitational energy is the source of X-ray binaries |Giacconi
(2003).

The reason of reviewing in this report all the above mentioned fundamental
mechanisms is that we are very likely to approach a similar epochal discov-
ery. There is the distinct possibility that explanation of the energy source of
the most energetic phenomenon yet observed in the Universe is given by a
vacuum polarization process and consequent creation of e™e™ pairs occuring
during the formation of a black hole Ruffini (2009). It may be soon concluded
that the blackholic energy is indeed the source of GRBs.

It is then possible from our review and the many references we have given
to gain an understanding of this new field of research. The three topics which
we have reviewed are closely linked to the three quantum processes currently
being tested in precision measurement in the laboratories. There is a distinct
possibility that the experiments in the laboratories and the astrophysical ob-
servations cover complementary aspects which may facilitate a deeper and
wider understanding of the GRB phenomenon as well as of the nuclear and
laser physics processes as well as of heavy-ion collisions.
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