Physics and Astrophysics of Compact Objects

The study of compact objects such as white dwarfs, neutron stars and black holes requires the interplay between nuclear and atomic physics together with relativistic field theories, e.g., general relativity, quantum electrodynamics, quantum chromodynamics, as well as particle physics. In addition to the theoretical physics aspects, the study of astrophysical scenarios characterized by the presence of at least one of the above compact object is focus of extensive research within our group. The research of our group can be divided into the following topics:

• White Dwarf Physics and Structure.

• White Dwarf Astrophysics.

• Neutron Star Physics and Structure.

• Neutron Star Astrophysics.

• Radiation Mechanisms of White Dwarfs and Neutron Stars.

• Exact and Numerical Solutions of the Einstein and Einstein-Maxwell Equations in Astrophysics.
fig1


Group leader: Prof. Jorge A. Rueda H.

Group members:
At ICRANet: C. L. Bianco (ICRANet, Italy), J. A. Rueda (ICRANet, Italy), R. Ruffini (ICRANet, Italy), N. Sahakyan (ICRANet, Armenia), G. Vereschagin (ICRANet, Italy), S.-S. Xue (ICRANet, Italy)
External collaborators: K. Boshkayev (Al-Farabi Kazakh National University, Kazakhstan), R. Camargo (Universidade do Estado de Santa Catarina, Florianópolis, Brazil), C. Cherubini (Università Campus Biomedico, Rome, Italy), J. G. Coelho (Universidade Tecnológica Federal do Paraná, Brazil), S. Filippi (Università Campus Biomedico, Rome, Italy), C. L. Fryer (University of Arizona; Los Alamos National Laboratory, USA), G. A. González (Universidad Industrial de Santander, Colombia), M. M. Guzzo (Universidade Estadual de Campinas, Brazil), F. D. Lora-Clavijo (Universidad Industrial de Santander, Colombia), P. Lorén Aguilar (University of Exeter, United Kingdom), S. O. Kepler (Universidade Federal do Rio Grande do Sul, Brazil), M. Malheiro (Instituto Tecnológico de Aeronáutica, Brazil), R. M. Jr. Marinho (Instituto Tecnológico de Aeronáutica, Brazil), G. Mathews (University of Notre Dame, USA), R. Negreiros (Universidade Federal de Fluminense, Brazil), L. A. Nuñez (Universidad Industrial de Santander, Colombia), R. Riahi (Department of Science, Shahrekord Branch, Islamic Azad University, Iran), C. V. Rodrigues (Instituto Nacional de Pesquisas Espaciais, Brazil), F. Rossi-Torres (Universidade Estadual de Campinas, Brazil), J. I. Zuluaga (Universidad de Antioquia, Colombia)
Postdocs: L. Becerra (Universidad Pontificia Católica de Chile, Chile), G. A. Carvalho (Instituto Tecnológico de Aeronáutica, Brazil), C. L. Ellinger (Los Alamos National Laboratory, USA), R. V. Lobato (ICRANet; Sapienza University of Rome, Italy; Instituto Tecnológico de Aeronáutica, Brazil), R. Moradi (ICRANet, Italy), J. P. Pereira (Universidade Federal do ABC, Brazil; Mathematical Sciences and STAG Research Centre, University of Southampton, United Kingdom), J. F. Rodriguez (Universidad Industrial de Santander, Colombia), Y. Wang (ICRANet, Italy)
Graduate Students: E. Becerra (ICRANet; Sapienza University of Rome, Italy), J. M. Blanco-Iglesias (Universitat Politècnica de Catalunya), S. Campion (ICRANet; Sapienza University of Rome, Italy), J. D. Uribe (ICRANet; Sapienza University of Rome, Italy)

Brief description



• White Dwarf Physics and Structure.

fig1
Figure 1: Mass-radius relation of non-rotating and rotating white dwarfs. Taken from Becerra, et al. 2018, ApJ 857, 134.
The aim of this research is the construction of the white dwarf structure within a self-consistent description of the equation of state of the interior together with the solution of the hydrostatic equilibrium equations in general relativity. Non-magnetized, magnetized, non-rotating and rotating white dwarfs are studied. The interaction and evolution of a central white dwarf with a surrounding disk and magnetic fields, as occurred in the aftermath of white dwarf binary mergers, is also a subject of study.










• White Dwarf Astrophysics.

fig2
Figure 2: Time evolution of the central temperature of a rotating white dwarf while losing angular momentum by magnetic-dipole radiation. Taken from Becerra, et al. 2019, MNRAS 487, 812.
We are interested in the astrophysical scenarios in which white dwarfs are present, either isolated or in binaries. Magnetized white dwarfs, soft gamma repeaters, anomalous X-ray pulsars, white dwarf pulsars, cataclysmic variables, binary white dwarf mergers, and type Ia supernovae are studied. The role of a realistic description of the white dwarf structure is emphasized.













• Neutron Star Physics and Structure.

fig3
Figure 3: Mass-equatorial radius relation of rotating neutron stars at the mass-shedding rate, for several up-to-date nuclear equations of state. Taken from Riahi, Kalantari and Rueda, 2019, PRD 99, 043004.
We study the properties of the neutron stars interiors and structure using realistic models of the nuclear matter equation of state within the general relativistic equations of equilibrium. Strong, weak, electromagnetic and gravitational interactions have to be jointly taken into due account within a self-consistent fully relativistic framework. Non-magnetized, magnetized, non-rotating and rotating neutron stars are studied.
























• Neutron Star Astrophysics.

fig4
Figure 4: Snapshots of the smoothed-particle-hydrodynamics (SPH) simulation of the induced gravitational collapse scenario for long gamma-ray bursts. Here we have a binary system formed by a carbon-oxygen star (COcore), which explodes as supernova in presence of a 2M companion neutron star. The accretion of supernova matter onto the NS induces the gravitational collapse of it into a black hole, with subsequent emission of a gamma-ray burst. The system has an initial orbital period of 5 min. The plots show the mass density on the binary equatorial plane, at different times of the simulation. Taken from Becerra, et al., 2019, ApJ 871, 14.
We study astrophysical scenarios harboring neutron stars such as isolated and binary pulsars, low and intermediate X-ray binaries, inspiraling and merging double neutron stars. Most extreme cataclysmic events involving neutron stars and their role in the explanation of extraordinarily energetic astrophysical events such as gamma-ray bursts are analyzed in detail.















• Radiation Mechanisms of White Dwarfs and Neutron Stars.

fig5
Figure 5: Snapshots of the time evolution of 0.8 + 0.6 M white-dwarf binary merger. The simulation uses the SPH technique with 7×105 particles. The newly-formed central white dwarf has approximately 1.1 M. In the sequence it can be seen how the secondary star is disrupted by Roche lobe overflow. Little mass is ejected, in the present simulation nearly 1.2 × 10−3 M. Taken from Rueda, et al., 2019, JCAP 3, 044.
We here study the possible radiation mechanisms of white dwarfs and neutron stars. We are thus interested in the electromagnetic, neutrino and gravitational wave emission at work in astrophysical systems such as compact star magnetosphere, accretion disks surrounding them and inspiraling and merging relativistic binaries such as double neutron stars, neutron star-white dwarfs, white dwarf-white dwarf and neutron star-black hole.
















• Exact and Numerical Solutions of the Einstein and Einstein-Maxwell Equations in Astrophysics.

fig6
Figure 6: Electric and magnetic field lines of the solution of the Einstein-Maxwell equations by Wald 1974: an asymptotically uniform magnetic field, aligned with the rotation axis of a Kerr black hole. The blue lines show the magnetic field lines and the violet show the electric field lines. This electromagnetic field structure has been exploited in a new electrodynamical process to extract the rotational of a Kerr black hole that explains the high-energy GeV-TeV emission from gamma-ray bursts. Taken from Ruffini, et al., 2019, ApJ 886, 82.
We analyze the ability of analytic exact solutions of the Einstein and Einstein-Maxwell equations to describe the exterior spacetime of compact stars such as white dwarfs and neutron stars. For this we compare and contrast exact analytic with numerical solutions of the stationary axisymmetric Einstein equations. The problem of matching between interior and exterior spacetime is addressed in detail. The effect of the quadrupole moment on the properties of the spacetime is also investigated. Particular attention is given to the application of exact solutions in astrophysics, e.g. the dynamics of particles around compact stars and its relevance in astrophysical systems such as X-ray binaries and gamma-ray bursts.

Publications



[1] R. C. R. de Lima, J. G. Coelho, J. P. Pereira, C. V. Rodrigues and J. A. Rueda, Evidence for a Multipolar Magnetic Field in SGR J1745-2900 from X-Ray Light-curve Analysis, Astroph. J. 889 (2020) 165 [1912.12336].
[2] R. Ruffini, R. Moradi, J. A. Rueda, L. Becerra, C. L. Bianco, C. Cherubini et al., On the GeV Emission of the Type I BdHN GRB 130427A, Astroph. J. 886 (2019) 82 [1812.00354].
[3] L. Becerra, K. Boshkayev, J. A. Rueda and R. Ruffini, Time evolution of rotating and magnetized white dwarf stars, Mon. Not. R. Astron. Soc. 487 (2019) 812 [1812.10543].
[4] J. D. Uribe and J. A. Rueda, Some recent results on neutrino osillations in hypercritical accretion, Astronomische Nachrichten 340 (2019) 935.
[5] A. W. Romero Jorge, E. Rodriguez Querts, H. Perez Rojas, A. Perez Martı́nez, L. Cruz Rodrı́guez, G. Piccinelli Bocchi et al., The photon time delay in magnetized vacuum magnetosphere, Astronomische Nachrichten 340 (2019) 852 [1912.02904].
[6] J. A. Rueda and R. Ruffini, The blackholic quantum, European Journal pf Physics C; in press; arXiv:1907.08066 (2019) arXiv:1907.08066 [1907.08066].
[7] J. A. Rueda, R. Ruffini, M. Karlica, R. Moradi and Y. Wang, Magnetic Fields and Afterglows of BdHNe: Inferences from GRB 130427A, GRB 160509A, GRB 160625B, GRB 180728A and GRB 190114C, Astrophysical Journal; in press; arXiv:1905.11339 (2019) arXiv:1905.11339 [1905.11339].
[8] R. Moradi, J. A. Rueda, R. Ruffini and Y. Wang, The newborn black hole in GRB 191014C manifests that is alive, submitted to Astronomy and Astrophysics; arXiv:1911.07552 (2019) arXiv:1911.07552 [1911.07552].
[9] J. A. Rueda, R. Ruffini and Y. Wang, Induced Gravitational Collapse, Binary-Driven Hypernovae, Long Gramma-ray Bursts and Their Connection with Short Gamma-ray Bursts, Universe 5 (2019) 110 [1905.06050].
[10] R. Ruffini, L. Li, R. Moradi, J. A. Rueda, Y. Wang, S. S. Xue et al., Self-similarity and power-laws in GRB 190114C, arXiv e-prints (2019) arXiv:1904.04162 [1904.04162].
[11] J. A. Rueda, R. Ruffini, Y. Wang, C. L. Bianco, J. M. Blanco-Iglesias, M. Karlica et al., Electromagnetic emission of white dwarf binary mergers, Journal of Cosmology and Astro-Particle Physics 2019 (2019) 044 [1807.07905].
[12] Y. Wang, J. A. Rueda, R. Ruffini, L. Becerra, C. Bianco, L. Becerra et al., Two Predictions of Supernova: GRB 130427A/SN 2013cq and GRB 180728A/SN 2018fip, Astroph. J. 874 (2019) 39 [1811.05433].
[13] R. Riahi, S. Z. Kalantari and J. A. Rueda, Universal relations for the Keplerian sequence of rotating neutron stars, Phys. Rev. D 99 (2019) 043004 [1902.00349].
[14] R. Ruffini, R. Moradi, Y. Aimuratov, U. Barres, V. A. Belinski, C. L. Bianco et al., GRB 190114C: A type 1 BdHN with TeV emission., GRB Coordinates Network 23715 (2019) 1.
[15] L. Becerra, C. L. Ellinger, C. L. Fryer, J. A. Rueda and R. Ruffini, SPH Simulations of the Induced Gravitational Collapse Scenario of Long Gamma-Ray Bursts Associated with Supernovae, Astroph. J. 871 (2019) 14 [1803.04356].
[16] J. F. Rodriguez, J. A. Rueda and R. Ruffini, On the Final Gravitational Wave Burst from Binary Black Holes Mergers, Astronomy Reports 62 (2018) 940.
[17] D. Primorac, M. Muccino, R. Moradi, Y. Wang, J. D. Melon Fuksman, R. Ruffini et al., Structure of the Prompt Emission of GRB 151027A Within the Fireshell Model, Astronomy Reports 62 (2018) 933.
[18] R. Moradi, R. Ruffini, C. L. Bianco, Y. C. Chen, M. Karlica, J. D. Melon Fuksman et al., Relativistic Behavior and Equitemporal Surfaces in Ultra-Relativistic Prompt Emission Phase of Gamma-Ray Bursts, Astronomy Reports 62 (2018) 905.
[19] L. Becerra, C. Ellinger, C. Fryer, J. A. Rueda and R. Ruffini, On the Induced Gravitational Collapse: SPH Simulations, Astronomy Reports 62 (2018) 840.
[20] R. Ruffini, L. Becerra, C. L. Bianco, Y. C. Chen, M. Karlica, M. Kovačević et al., On the Ultra-relativistic Prompt Emission, the Hard and Soft X-Ray Flares, and the Extended Thermal Emission in GRB 151027A, Astroph. J. 869 (2018) 151 [1712.05001].
[21] R. Ruffini, M. Karlica, N. Sahakyan, J. A. Rueda, Y. Wang, G. J. Mathews et al., A GRB Afterglow Model Consistent with Hypernova Observations, Astroph. J. 869 (2018) 101 [1712.05000].
[22] J. A. Rueda, R. Ruffini, Y. Wang, Y. Aimuratov, U. Barres de Almeida, C. L. Bianco et al., GRB 170817A-GW170817-AT 2017gfo and the observations of NS-NS, NS-WD and WD-WD mergers, Journal of Cosmology and Astro-Particle Physics 2018 (2018) 006 [1802.10027].
[23] R. Ruffini, Y. Wang, Y. Aimuratov, U. B. de Almeida, L. Becerra, C. L. Bianco et al., VizieR Online Data Catalog: Early X-ray flares in GRBs (Ruffini+, 2018), VizieR Online Data Catalog (2018) J/ApJ/852/53.
[24] J. A. Rueda, R. Ruffini, Y. Wang, U. Barres de Almeida, C. L. Bianco, Y. C. Chen et al., GRB 170817A-GW170817-AT 2017gfo and the observations of NS-NS, NS-WD and WD-WD mergers, in Talk presented at The Fifteenth Marcel Grossmann Meeting - MG15, p. E15, Aug, 2018.
[25] R. Ruffini, J. Rodriguez, M. Muccino, J. A. Rueda, Y. Aimuratov, U. Barres de Almeida et al., On the Rate and on the Gravitational Wave Emission of Short and Long GRBs, Astroph. J. 859 (2018) 30.
[26] L. Becerra, J. A. Rueda, P. Lorén-Aguilar and E. Garcı́a-Berro, The Spin Evolution of Fast-rotating, Magnetized Super-Chandrasekhar White Dwarfs in the Aftermath of White Dwarf Mergers, Astroph. J. 857 (2018) 134 [1804.01275].
[27] R. Ruffini, R. Moradi, J. A. Rueda, Y. Wang, Y. Aimuratov, L. Becerra et al., On the role of the Kerr-Newman black hole in the GeV emission of long gamma-ray bursts, arXiv e-prints (2018) arXiv:1803.05476 [1803.05476].
[28] J. F. Rodrı́guez, J. A. Rueda and R. Ruffini, Comparison and contrast of test-particle and numerical-relativity waveform templates, Journal of Cosmology and Astro-Particle Physics 2018 (2018) 030 [1706.07704].
[29] R. Ruffini, M. Muccino, Y. Aimuratov, M. Amiri, C. L. Bianco, Y. C. Chen et al., On the Short GRB GeV emission from a Kerr Black hole, arXiv e-prints (2018) arXiv:1802.07552 [1802.07552].
[30] K. A. Boshkayev, M. Muccino, J. A. Rueda and G. D. Zhumakhanova, Fundamental Frequencies in the Schwarzschild Spacetime, arXiv e-prints (2018) arXiv:1802.06773 [1802.06773].
[31] K. Boshkayev, J. A. Rueda, R. Ruffini and B. Zhami, Induced compression of white dwarfs by angular momentum loss, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 4379–4384, Jan, 2018, DOI.
[32] D. L. Caceres and J. A. Rueda, On the spin-down and X-ray luminosity of anomalous X-ray pulsars and soft gamma repeaters as white dwarfs, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 4344–4349, Jan, 2018, DOI.
[33] R. C. R. de Lima, J. G. Coelho, D. L. CáCeres, J. A. Rueda and R. Ruffini, Application of modern neutron star equations of state in the study of SGRs and AXPs properties, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 4337–4343, Jan, 2018, DOI.
[34] L. M. Becerra, J. A. Rueda, P. LoréN-Aguilar and E. Garcı́A-Berro, Induced compression by angular momentum losses in fast-rotating, magnetized super-Chandraskehar white dwarfs, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 4291–4296, Jan, 2018, DOI.
[35] K. Boshkayev, J. A. Rueda, R. Ruffini, B. Zhami, Z. Kalymova and G. Balgimbekov, Mass-radius relations of white dwarfs at finite temperatures, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 4287–4290, Jan, 2018, DOI.
[36] K. Boshkayev, J. A. Rueda and M. Muccino, Main parameters of neutron stars from quasi-periodic oscillations in low mass X-ray binaries, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 3433–3440, Jan, 2018, DOI.
[37] Y. Aimuratov, R. Ruffini, C. L. Bianco, M. Enderli, L. Izzo, M. Kovacevic et al., Analysis of the GRB 081024B, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 2975–2980, Jan, 2018, DOI.
[38] M. Muccino, R. Ruffini, M. Kovacevic, F. G. Oliveira, J. A. Rueda, Y. Aimuratov et al., GRB 140619B: A short GRB from a binary neutron star merger leading to black hole formation, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 2969–2974, Jan, 2018, DOI.
[39] G. J. Mathews, C. Biaco, M. Muccio, G. Pisani, J. Rueda, R. Ruffini et al., Constraints on the source for gamma-ray bursts from observed X-ray afterglows, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 2957–2962, Jan, 2018, DOI.
[40] L. M. Becerra, F. Cipolletta, J. A. Rueda, R. Ruffini and C. L. Fryer, Angular momentum role in the hypercritical accretion of binary-driven hypernovae, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 2953–2956, Jan, 2018, DOI.
[41] A. Krut, C. R. Argüelles, G. Gomez, J. A. Rueda and R. Ruffini, Dark matter phase-space density distribution in dwarf spheroidal galaxies, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 2503–2508, Jan, 2018, DOI.
[42] J. A. Rueda, Y. Aimuratov, U. B. de Almeida, L. Becerra, C. L. Bianco, C. Cherubini et al., The binary systems associated with short and long gamma-ray bursts and their detectability, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 306–324, Jan, 2018, DOI.
[43] R. Ruffini, Y. Aimuratov, L. Becerra, C. L. Bianco, M. Karlica, M. Kovacevic et al., The cosmic matrix in the 50th anniversary of relativistic astrophysics, in Fifteenth Marcel Grossmann Meeting - MG15, pp. 258–305, Jan, 2018, DOI.
[44] R. Ruffini, Y. Aimuratov, C. L. Bianco, Y. C. Chen, D. M. Fuksman, M. Karlica et al., GRB 180728A: A long GRB of the X-ray flash (XRF) subclass, expecti=., GRB Coordinates Network 23066 (2018) 1.
[45] R. Ruffini, Y. Aimuratov, C. L. Bianco, Y. C. Chen, D. M. Fuksman, M. Karlica et al., GRB 180720B: Testing the universality of the newly born neutron st=., GRB Coordinates Network 23019 (2018) 1.
[46] J. D. Melon Fuksman, L. Becerra, C. L. Bianco, M. Karlica, M. Kovacevic, R. Moradi et al., Evolution of an electron-positron plasma produced by induced gravitational collapse in binary-driven hypernovae, in European Physical Journal Web of Conferences, vol. 168, p. 04009, Jan, 2018, DOI.
[47] D. Primorac, R. Ruffini, G. B. Pisani, Y. Aimuratov, C. L. Biancol, M. Karlica et al., GRB 110731A within the IGC paradigm, in European Physical Journal Web of Conferences, vol. 168, p. 04008, Jan, 2018, DOI.
[48] G. B. Pisani, R. Ruffini, Y. Aimuratov, C. L. Bianco, M. Karlica, M. Kovacevic et al., The first ICRANet catalog of binary-driven hypernovae, in European Physical Journal Web of Conferences, vol. 168, p. 04002, Jan, 2018, DOI.
[49] J. F. Rodrı́guez, J. A. Rueda and R. Ruffini, Strong-field gravitational-wave emission in Schwarzschild and Kerr geometries: some general considerations, in European Physical Journal Web of Conferences, vol. 168 of European Physical Journal Web of Conferences, p. 02006, Jan, 2018, 1706.06440, DOI.
[50] L. M. Becerra, C. Bianco, C. Fryer, J. Rueda and R. Ruffini, On the Induced Gravitational Collapse, in European Physical Journal Web of Conferences, vol. 168, p. 02005, Jan, 2018, DOI.
[51] M. Muccino, R. Ruffini, Y. Aimuratov, L. M. Becerra, C. L. Bianco, M. Karlica et al., What can we learn from GRBs?, in European Physical Journal Web of Conferences, vol. 168, p. 01015, Jan, 2018, DOI.
[52] J. A. Rueda, R. Ruffini, J. F. Rodriguez, M. Muccino, Y. Aimuratov, U. Barres de Almeida et al., The binary progenitors of short and long GRBs and their gravitational-wave emission, in European Physical Journal Web of Conferences, vol. 168, p. 01006, Jan, 2018, DOI.
[53] L. Becerra, M. M. Guzzo, F. Rossi-Torres, J. A. Rueda, R. Ruffini and J. D. Uribe, Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts, Astroph. J. 852 (2018) 120 [1712.07210].
[54] R. Ruffini, Y. Wang, Y. Aimuratov, U. Barres de Almeida, L. Becerra, C. L. Bianco et al., Early X-Ray Flares in GRBs, Astroph. J. 852 (2018) 53 [1704.03821].
[55] L. G. Gómez and J. A. Rueda, Dark matter dynamical friction versus gravitational wave emission in the evolution of compact-star binaries, Phys. Rev. D 96 (2017) 063001 [1706.06801].
[56] L. M. Becerra, C. L. Fryer, J. A. Rueda and R. Ruffini, Hypercritical Accretion in the Induced Gravitational Collapse, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vol. 49, pp. 83–83, Jul, 2017.
[57] F. Cipolletta, C. Cherubini, S. Filippi, J. A. Rueda and R. Ruffini, Last stable orbit around rapidly rotating neutron stars, Phys. Rev. D 96 (2017) 024046 [1612.02207].
[58] Y. Aimuratov, R. Ruffini, M. Muccino, C. L. Bianco, A. V. Penacchioni, G. B. Pisani et al., GRB 081024B and GRB 140402A: Two Additional Short GRBs from Binary Neutron Star Mergers, Astroph. J. 844 (2017) 83 [1704.08179].
[59] D. L. Cáceres, S. M. de Carvalho, J. G. Coelho, R. C. R. de Lima and J. A. Rueda, Thermal X-ray emission from massive, fast rotating, highly magnetized white dwarfs, Mon. Not. R. Astron. Soc. 465 (2017) 4434 [1611.07653].
[60] J. G. Coelho, D. L. Cáceres, R. C. R. de Lima, M. Malheiro, J. A. Rueda and R. Ruffini, The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-ray pulsars, Astron. Astroph. 599 (2017) A87.
[61] R. C. R. de Lima, J. G. Coelho, M. Malheiro, J. A. Rueda and R. Ruffini, SGRs/AXPs as Rotation-Powered Neutron Stars, in International Journal of Modern Physics Conference Series, vol. 45, p. 1760030, Jan, 2017, DOI.
[62] R. Ruffini, Y. Aimuratov, L. Becerra, C. L. Bianco, M. Karlica, M. Kovacevic et al., The cosmic matrix in the 50th anniversary of relativistic astrophysics, International Journal of Modern Physics D 26 (2017) 1730019.
[63] J. A. Rueda, Y. Aimuratov, U. B. de Almeida, L. Becerra, C. L. Bianco, C. Cherubini et al., The binary systems associated with short and long gamma-ray bursts and their detectability, International Journal of Modern Physics D 26 (2017) 1730016.
[64] J. A. Rueda, Y.-B. Wu and S.-S. Xue, Surface tension of compressed, superheavy atoms, arXiv e-prints (2017) arXiv:1701.08146 [1701.08146].
[65] J. G. Coelho, D. L. Cáceres, R. C. R. de Lima, M. Malheiro, J. A. Rueda and R. Ruffini, On the nature of some SGRs and AXPs as rotation-powered neutron stars, arXiv e-prints (2016) arXiv:1612.01875 [1612.01875].
[66] G. B. Pisani, R. Ruffini, Y. Aimuratov, C. L. Bianco, M. Kovacevic, R. Moradi et al., On the Universal Late X-Ray Emission of Binary-driven Hypernovae and Its Possible Collimation, Astroph. J. 833 (2016) 159 [1610.05619].
[67] L. Becerra, C. L. Bianco, C. L. Fryer, J. A. Rueda and R. Ruffini, On the Induced Gravitational Collapse Scenario of Gamma-ray Bursts Associated with Supernovae, Astroph. J. 833 (2016) 107 [1606.02523].
[68] R. Ruffini, J. A. Rueda, M. Muccino, Y. Aimuratov, L. M. Becerra, C. L. Bianco et al., On the Classification of GRBs and Their Occurrence Rates, Astroph. J. 832 (2016) 136 [1602.02732].
[69] R. Ruffini, M. Muccino, Y. Aimuratov, C. L. Bianco, C. Cherubini, M. Enderli et al., GRB 090510: A Genuine Short GRB from a Binary Neutron Star Coalescing into a Kerr-Newman Black Hole, Astroph. J. 831 (2016) 178 [1607.02400].
[70] K. Boshkayev, J. A. Rueda and M. Muccino, Theoretical and observational constraints on the mass-radius relations of neutron stars, arXiv e-prints (2016) arXiv:1606.07804 [1606.07804].
[71] J. F. Rodriguez, J. A. Rueda and R. Ruffini, What can we really infer from GW 150914? (II), arXiv e-prints (2016) arXiv:1605.07609 [1605.07609].
[72] J. F. Rodriguez, J. A. Rueda and R. Ruffini, What can we really infer from GW 150914?, arXiv e-prints (2016) arXiv:1605.04767 [1605.04767].
[73] K. Boshkayev, J. A. Rueda and M. Muccino, Main parameters of neutron stars from quasi-periodic oscillations in low mass X-ray binaries, arXiv e-prints (2016) arXiv:1604.02398 [1604.02398].
[74] K. Boshkayev, J. A. Rueda, R. Ruffini and B. Zhami, Induced Compression of White Dwarfs by Angular Momentum Loss, arXiv e-prints (2016) arXiv:1604.02393 [1604.02393].
[75] K. Boshkayev, J. A. Rueda, R. Ruffini, B. Zhami, Z. Kalymova and G. Balgimbekov, Mass-radius relations of white dwarfs at finite temperatures, arXiv e-prints (2016) arXiv:1604.02391 [1604.02391].
[76] K. A. Boshkayev, J. A. Rueda, B. A. Zhami, Z. A. Kalymova and G. S. Balgymbekov, Equilibrium structure of white dwarfs at finite temperatures, in International Journal of Modern Physics Conference Series, vol. 41 of International Journal of Modern Physics Conference Series, p. 1660129, Mar, 2016, 1510.02024, DOI.
[77] R. Ruffini, J. Rodriguez, M. Muccino, J. A. Rueda, Y. Aimuratov, U. Barres de Almeida et al., On the rate and on the gravitational wave emission of short and long GRBs, arXiv e-prints (2016) arXiv:1602.03545 [1602.03545].
[78] R. Ruffini, Y. Aimuratov, L. Becerra, C. L. Bianco, M. Kovacevic, R. Moradi et al., GRB 160521B: Theoretical estimate of the redshift and urgent need for further x-ray observations., GRB Coordinates Network 19456 (2016) 1.
[79] K. A. Boshkayev, J. A. Rueda and B. A. Zhami, Rotating hot white dwarfs, in Gravitation, Astrophysics, and Cosmology, J.-P. Hsu and et al., eds., pp. 189–190, Jan, 2016, 1512.00052, DOI.
[80] C. L. Fryer, F. G. Oliveira, J. A. Rueda and R. Ruffini, Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae, Phys. Rev. Lett. 115 (2015) 231102 [1505.02809].
[81] A. Mesquita, M. Razeira, R. Ruffini, J. A. Rueda, D. Hadjimichef, R. O. Gomes et al., An effective field theory for neutron stars with many-body forces, strong Σ − repulsion, and K − and {K} 0 condensation, Astronomische Nachrichten 336 (2015) 880.
[82] L. Becerra, F. Cipolletta, C. L. Fryer, J. A. Rueda and R. Ruffini, Angular Momentum Role in the Hypercritical Accretion of Binary-driven Hypernovae, Astroph. J. 812 (2015) 100 [1505.07580].
[83] R. Ruffini, M. Muccino, M. Kovacevic, F. G. Oliveira, J. A. Rueda, C. L. Bianco et al., GRB 140619B: a short GRB from a binary neutron star merger leading to black hole formation, Astroph. J. 808 (2015) 190 [1412.1018].
[84] F. Cipolletta, C. Cherubini, S. Filippi, J. A. Rueda and R. Ruffini, Fast rotating neutron stars with realistic nuclear matter equation of state, Phys. Rev. D 92 (2015) 023007 [1506.05926].
[85] Y. Wang, R. Ruffini, M. Kovacevic, C. L. Bianco, M. Enderli, M. Muccino et al., Predicting supernova associated to gamma-ray burst 130427a, Astronomy Reports 59 (2015) 667.
[86] R. Ruffini, L. Izzo, C. L. Bianco, J. A. Rueda, C. Barbarino, H. Dereli et al., Induced gravitational collapse in the BATSE era: The case of GRB 970828, Astronomy Reports 59 (2015) 626 [1311.7432].
[87] M. Muccino, R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, L. Izzo et al., On binary driven hypernovae and their nested late X-ray emission, Astronomy Reports 59 (2015) 581.
[88] K. Boshkayev, J. Rueda and M. Muccino, Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries, Astronomy Reports 59 (2015) 441.
[89] J. P. Pereira, J. G. Coelho and J. A. Rueda, Publisher’s Note: Stability of thin-shell interfaces inside compact stars [Phys. Rev. D 90, 123011 (2014)], Phys. Rev. D 91 (2015) 069901.
[90] J. P. Pereira and J. A. Rueda, Energy decomposition within Einstein-Born-Infeld black holes, Phys. Rev. D 91 (2015) 064048 [1503.02441].
[91] J. P. Pereira and J. A. Rueda, Radial Stability in Stratified Stars, Astroph. J. 801 (2015) 19 [1501.02621].
[92] S. M. de Carvalho, J. A. Rueda and R. Ruffini, On the Relativistic Feynman-Metropolis Equation of State at Finite Temperatures, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 2481–2483, Jan, 2015, DOI.
[93] K. Boshkayev, J. A. Rueda, R. Ruffini and I. Siutsou, General Relativistic and Newtonian White Dwarfs, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 2468–2474, Jan, 2015, 1503.04171, DOI.
[94] K. Boshkayev, J. A. Rueda and R. Ruffini, Sgrs and Axps as Massive Fast Rotating Highly Magnetized White Dwarfs: the Case of SGR 0418+5729, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 2295–2300, Jan, 2015, 1503.04176, DOI.
[95] G. B. Pisani, L. Izzo, R. Ruffini, C. L. Bianco, M. Muccino, A. V. Penacchioni et al., On a Novel Distance Indicator for Gamma-Ray Bursts Associated with Supernovae, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 1789–1793, Jan, 2015, DOI.
[96] A. V. Penacchioni, R. Ruffini, C. L. Bianco, L. Izzo, M. Muccino, G. B. Pisani et al., The Family of the Induced Gravitational Collapse Scenario: the Case of GRB 110709B, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 1768–1772, Jan, 2015, DOI.
[97] J. A. Rueda and R. Ruffini, Strong, Weak, Electromagnetic, and Gravitational Interactions in Neutron Stars, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, pp. 191–209, Jan, 2015, DOI.
[98] R. Ruffini, Y. Aimuratov, U. Barres, R. Belvedere, C. L. Bianco, M. Enderli et al., GRB 151027A: the missing GeV component., GRB Coordinates Network 18555 (2015) 1.
[99] R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, L. Li, M. Muccino et al., GRB 150906B: theoretical estimation of redshift and isotropic energy., GRB Coordinates Network 18296 (2015) 1.
[100] R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, M. Muccino, G. B. Pisani et al., GRB 150513A: request for X-ray follow up., GRB Coordinates Network 17871 (2015) 1.
[101] F. G. Oliveira, J. A. Rueda and R. Ruffini, X, Gamma-Rays, and Gravitational Waves Emission in a Short Gamma-Ray Burst, in Gravitational Wave Astrophysics, vol. 40, p. 43, Jan, 2015, DOI.
[102] R. Belvedere, J. A. Rueda and R. Ruffini, On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations, Astroph. J. 799 (2015) 23 [1411.2621].
[103] R. Ruffini, Y. Wang, M. Enderli, M. Muccino, M. Kovacevic, C. L. Bianco et al., GRB 130427A and SN 2013cq: A Multi-wavelength Analysis of An Induced Gravitational Collapse Event, Astroph. J. 798 (2015) 10 [1405.5723].
[104] M. Muccino, F. G. Oliveira, R. Ruffini, M. Kovacevic, L. Izzo, J. A. Rueda et al., GRB 140619B: a short GRB from a neutron star merger leading to the black hole formation, in Proceedings of Swift: 10 Years of Discovery (SWIFT 10, p. 86, Dec, 2014.
[105] J. P. Pereira, J. G. Coelho and J. A. Rueda, Stability of thin-shell interfaces inside compact stars, Phys. Rev. D 90 (2014) 123011 [1412.1848].
[106] S. M. de Carvalho, R. Negreiros, J. A. Rueda and R. Ruffini, Thermal evolution of neutron stars with global and local neutrality, Phys. Rev. C 90 (2014) 055804 [1411.5316].
[107] K. Boshkayev, D. Bini, J. Rueda, A. Geralico, M. Muccino and I. Siutsou, What can we extract from quasiperiodic oscillations?, Gravitation and Cosmology 20 (2014) 233 [1412.8214].
[108] J. G. Coelho, R. M. Marinho, M. Malheiro, R. Negreiros, D. L. Cáceres, J. A. Rueda et al., Dynamical Instability of White Dwarfs and Breaking of Spherical Symmetry Under the Presence of Extreme Magnetic Fields, Astroph. J. 794 (2014) 86 [1306.4658].
[109] C. L. Fryer, J. A. Rueda and R. Ruffini, Hypercritical Accretion, Induced Gravitational Collapse, and Binary-Driven Hypernovae, Astroph. J. 793 (2014) L36 [1409.1473].
[110] K. Boshkayev, J. A. Rueda, R. Ruffini and I. Siutsou, General relativistic white dwarfs and their astrophysical implications, Journal of Korean Physical Society 65 (2014) 855 [1412.8208].
[111] M. Razeira, A. Mesquita, C. A. Z. Vasconcellos, R. Ruffini, J. A. Rueda and R. O. Gomes, Strangeness content of neutron stars with strong Σ − -hyperon repulsion, Astronomische Nachrichten 335 (2014) 739.
[112] M. Razeira, A. Mesquita, C. A. Z. Vasconcellos, R. Ruffini, J. A. Rueda and R. O. Gomes, Effective field theory for neutron stars with strong Σ − -hyperon repulsion, Astronomische Nachrichten 335 (2014) 733.
[113] R. Ruffini, L. Izzo, M. Muccino, G. B. Pisani, J. A. Rueda, Y. Wang et al., Induced gravitational collapse at extreme cosmological distances: the case of GRB 090423, Astron. Astroph. 569 (2014) A39 [1404.1840].
[114] F. G. Oliveira, J. A. Rueda and R. Ruffini, Gravitational Waves versus X-Ray and Gamma-Ray Emission in a Short Gamma-Ray Burst, Astroph. J. 787 (2014) 150 [1205.6915].
[115] R. Ruffini, M. Muccino, C. L. Bianco, M. Enderli, L. Izzo, M. Kovacevic et al., On binary-driven hypernovae and their nested late X-ray emission, Astron. Astroph. 565 (2014) L10 [1404.3946].
[116] J. A. Rueda, R. Ruffini, Y.-B. Wu and S.-S. Xue, Surface tension of the core-crust interface of neutron stars with global charge neutrality, Phys. Rev. C 89 (2014) 035804 [1305.1974].
[117] S. M. de Carvalho, M. Rotondo, J. A. Rueda and R. Ruffini, Relativistic Feynman-Metropolis-Teller treatment at finite temperatures, Phys. Rev. C 89 (2014) 015801.
[118] R. Belvedere, K. Boshkayev, J. A. Rueda and R. Ruffini, Uniformly rotating neutron stars in the global and local charge neutrality cases, Nucl. Phys. A 921 (2014) 33 [1307.2836].
[119] R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, M. Muccino, A. V. Penacchioni et al., GRB 140206A: theoretical prediction of redshift and of supernova occurrence., GRB Coordinates Network 15794 (2014) 1.
[120] R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, M. Muccino, A. V. Penacchioni et al., GRB 140108A: theoretical prediction of redshift and of supernova occurrence., GRB Coordinates Network 15707 (2014) 1.
[121] G. Battista Pisani, L. Izzo, R. Ruffini, C. L. Bianco, M. Muccino, A. V. Penacchioni et al., On a novel distance indicator for Gamma-Ray Bursts associated with Supernovae, arXiv e-prints (2013) arXiv:1309.0454 [1309.0454].
[122] J. A. Rueda, K. Boshkayev, L. Izzo, R. Ruffini, P. Lorén-Aguilar, B. Külebi et al., A White Dwarf Merger as Progenitor of the Anomalous X-Ray Pulsar 4U 0142+61?, Astroph. J. 772 (2013) L24 [1306.5936].
[123] C. Argüelles, I. Siutsou, R. Ruffini, J. Rueda and B. Machado, On the core-halo constituents of a semi-degenerate gas of massive fermions, in Probes of Dark Matter on Galaxy Scales, vol. 1, p. 30204, Jul, 2013.
[124] L. Izzo, G. B. Pisani, M. Muccino, J. A. Rueda, Y. Wang, C. L. Bianco et al., A common behavior in the late X-ray afterglow of energetic GRB-SN systems, in EAS Publications Series, A. J. Castro-Tirado, J. Gorosabel and I. H. Park, eds., vol. 61 of EAS Publications Series, pp. 595–597, Jul, 2013, 1210.8034, DOI.
[125] G. B. Pisani, L. Izzo, R. Ruffini, C. L. Bianco, M. Muccino, A. V. Penacchioni et al., Novel distance indicator for gamma-ray bursts associated with supernovae, Astron. Astroph. 552 (2013) L5 [1304.1764].
[126] A. V. Penacchioni, R. Ruffini, C. L. Bianco, L. Izzo, M. Muccino, G. B. Pisani et al., GRB 110709B in the induced gravitational collapse paradigm, Astron. Astroph. 551 (2013) A133 [1301.6014].
[127] S. M. de Carvalho, J. A. Rueda, M. Rotondo, C. Argüelles and R. Ruffini, The Relativistic Feynman Metropolis Teller Theory at Zero and Finite Temperatures, in International Journal of Modern Physics Conference Series, vol. 23 of International Journal of Modern Physics Conference Series, pp. 244–247, Jan, 2013, 1312.2434, DOI.
[128] R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, M. Muccino, A. V. Penacchioni et al., GRB 131202A: theoretical estimation of the redshift., GRB Coordinates Network 15576 (2013) 1.
[129] R. Ruffini, C. L. Bianco, M. Enderli, M. Kovacevic, M. Muccino, A. V. Penacchioni et al., GRB 060614: theoretical derivation of the redshift and need for deeper search of the host galaxy., GRB Coordinates Network 15560 (2013) 1.
[130] R. Ruffini, C. L. Bianco, M. Enderli, M. Muccino, A. V. Penacchioni, G. B. Pisani et al., GRB 130925A: possible signatures of binary nature in the afterglow - request for observations., GRB Coordinates Network 15322 (2013) 1.
[131] R. Ruffini, C. L. Bianco, M. Enderli, M. Muccino, A. V. Penacchioni, G. B. Pisani et al., GRB 130603B: analogy with GRB 090510A and possible connection with a supernova., GRB Coordinates Network 14913 (2013) 1.
[132] R. Ruffini, C. L. Bianco, M. Enderli, M. Muccino, A. V. Penacchioni, G. B. Pisani et al., GRB 130609B: theoretical redshift estimation., GRB Coordinates Network 14888 (2013) 1.
[133] R. Ruffini, C. L. Bianco, M. Enderli, M. Muccino, A. V. Penacchioni, G. B. Pisani et al., GRB 130427A: predictions about the occurrence of a supernova., GRB Coordinates Network 14526 (2013) 1.
[134] K. Boshkayev, J. A. Rueda, R. Ruffini and I. Siutsou, On General Relativistic Uniformly Rotating White Dwarfs, Astroph. J. 762 (2013) 117 [1204.2070].
[135] L. Izzo, J. A. Rueda and R. Ruffini, GRB 090618: a candidate for a neutron star gravitational collapse onto a black hole induced by a type Ib/c supernova, Astron. Astroph. 548 (2012) L5 [1206.2887].
[136] J. A. Rueda and R. Ruffini, On the Induced Gravitational Collapse of a Neutron Star to a Black Hole by a Type Ib/c Supernova, Astroph. J. 758 (2012) L7 [1206.1684].
[137] L. A. Pachón, J. A. Rueda and C. A. Valenzuela-Toledo, On the Relativistic Precession and Oscillation Frequencies of Test Particles around Rapidly Rotating Compact Stars, Astroph. J. 756 (2012) 82 [1112.1712].
[138] L. Izzo, R. Ruffini, A. V. Penacchioni, C. L. Bianco, L. Caito, S. K. Chakrabarti et al., A double component in GRB 090618: a proto-black hole and a genuinely long gamma-ray burst, Astron. Astroph. 543 (2012) A10 [1202.4374].
[139] M. Malheiro, J. A. Rueda and R. Ruffini, SGRs and AXPs as Rotation-Powered Massive White Dwarfs, Pub. Astron. Soc. J. 64 (2012) 56 [1102.0653].
[140] R. Belvedere, D. Pugliese, J. A. Rueda, R. Ruffini and S.-S. Xue, Neutron star equilibrium configurations within a fully relativistic theory with strong, weak, electromagnetic, and gravitational interactions, Nucl. Phys. A 883 (2012) 1 [1202.6500].
[141] L. Izzo, R. Ruffini, C. L. Bianco, H. Dereli, M. Muccino, A. V. Penacchioni et al., On the thermal and double episode emissions in GRB 970828, arXiv e-prints (2012) arXiv:1205.6651 [1205.6651].
[142] R. Negreiros, R. Ruffini, C. L. Bianco and J. A. Rueda, Cooling of young neutron stars in GRB associated to supernovae, Astron. Astroph. 540 (2012) A12 [1112.3462].
[143] M. Rotondo, J. A. Rueda, R. Ruffini and S.-S. Xue, On Degenerate Compressed Atoms and Compressed Nuclear Matter Cores of Stellar Dimensions, in International Journal of Modern Physics Conference Series, vol. 12, pp. 203–212, Mar, 2012, DOI.
[144] J. A. Rueda, R. Ruffini and S.-S. Xue, Electrostatic Configurations Crossover Neutron Star Core, in Twelfth Marcel Grossmann Meeting on General Relativity, A. H. Chamseddine, ed., pp. 1042–1044, Jan, 2012, DOI.
[145] J. A. Rueda, M. Rotondo, R. Ruffini and S.-s. Xue, A New Family of Neutron Star Models: Global Neutrality Versus Local Neutrality, in Twelfth Marcel Grossmann Meeting on General Relativity, A. H. Chamseddine, ed., pp. 1039–1041, Jan, 2012, DOI.
[146] M. Rotondo, J. A. Rueda, R. Ruffini and S.-S. Xue, From Compressed Atoms to Compressed Massive Nuclear Density Cores, in Twelfth Marcel Grossmann Meeting on General Relativity, A. H. Chamseddine, ed., pp. 1036–1038, Jan, 2012, DOI.
[147] J. A. Rueda, R. Ruffini and S. S. Xue, The Klein first integrals in an equilibrium system with electromagnetic, weak, strong and gravitational interactions, Nucl. Phys. A 872 (2011) 286 [1104.4062].
[148] M. Rotondo, J. A. Rueda, R. Ruffini and S.-S. Xue, Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity, Phys. Rev. D 84 (2011) 084007 [1012.0154].
[149] R. Belvedere, J. Rueda and R. Ruffini, Mass, Radius And Moment Of Inertia Of Neutron Stars, in X-ray Astrophysics up to 511 keV, p. 7. Published online at ¡A xhref=”http://www.fe.infn.it/astrofe2011”¿http://www.fe.infn.it/astrofe2011¡/A¿, Sep, 2011.
[150] M. Malheiro, J. Rueda and R. Ruffini, SGRs and AXPs: White Dwarf Pulsars versus Magnetares, in The X-ray Universe 2011, J.-U. Ness and M. Ehle, eds., p. 248, Aug, 2011.
[151] M. Rotondo, J. A. Rueda, R. Ruffini and S. S. Xue, The self-consistent general relativistic solution for a system of degenerate neutrons, protons and electrons in β-equilibrium, Physics Letters B 701 (2011) 667 [1106.4911].
[152] M. Rotondo, J. A. Rueda, R. Ruffini and S.-S. Xue, On the equilibrium of self-gravitating neutrons, protons and electrons in -equilibrium, arXiv e-prints (2011) arXiv:1107.2777 [1107.2777].
[153] M. Rotondo, J. A. Rueda, R. Ruffini and S. S. Xue, Relativistic Thomas-Fermi treatment of compressed atoms and compressed nuclear matter cores of stellar dimensions, Phys. Rev. C 83 (2011) 045805 [0911.4622].
[154] J. A. Rueda and R. Ruffini, Towards a Relativistic Thomas-Fermi Theory of White Dwarfs and Neutron Stars, International Journal of Modern Physics E 20 (2011) 141.
[155] K. Boshkayev, J. Rueda and R. Ruffini, On the Maximum Mass of General Relativistic Uniformly Rotating White Dwarfs, International Journal of Modern Physics E 20 (2011) 136 [1210.7088].
[156] J. A. Rueda, R. Ruffini and S. S. Xue, On the electrostatic structure of neutron stars, in American Institute of Physics Conference Series, R. Ruffini and G. Vereshchagin, eds., vol. 1205 of American Institute of Physics Conference Series, pp. 143–147, Mar, 2010, DOI.
[157] R. Belvedere, J. A. Rueda, R. Ruffini and S. S. Xue, The influence of the core on the structure of the outer crust of neutron stars, in 25th Texas Symposium on Relativistic Astrophysics, p. 270, Jan, 2010.
[158] L. J. Rangel Lemos, C. L. Bianco, H. J. Mosquera Cuesta, J. A. Rueda and R. Ruffini, Luminosity function of BATSE GRBs whose prompt emission is not dominated by the P-GRB, in 25th Texas Symposium on Relativistic Astrophysics, p. 204, Jan, 2010.
[159] J. A. Rueda, R. Ruffini and S.-S. Xue, On the self-consistent general relativistic equilibrium equations of neutron stars, arXiv e-prints (2009) arXiv:0911.4627 [0911.4627].
[160] J. Rueda, The Extended Nuclear Matter Model with Smooth Transition Surface, in 3rd Stueckelberg Workshop on Relativistic Field Theories, p. 24, Jul, 2008.
[161] L. A. Pachón, J. A. Rueda and J. D. Sanabria-Gómez, Realistic exact solution for the exterior field of a rotating neutron star, Phys. Rev. D 73 (2006) 104038 [gr-qc/0606060].
[162] L. A. Pachon and J. A. Rueda, About Poynting vector in axially symmetric stationary spacetimes, arXiv e-prints (2006) gr [gr-qc/0605062].
[163] L. Herrera, G. A. González, L. A. Pachón and J. A. Rueda, Frame dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes, Classical and Quantum Gravity 23 (2006) 2395 [gr-qc/0602040].
[164] J. A. Rueda, V. S. Manko, E. Ruiz and J. D. Sanabria-Gómez, The double-Kerr equilibrium configurations involving one extreme object, Classical and Quantum Gravity 22 (2005) 4887 [gr-qc/0508101].